
Discrete
Mathematics
and Its
Applications
Seventh Edition

Kenneth H. Rosen
Monmouth University

(and formerly AT&T Laboratories)

DISCRETE MATHEMATICS AND ITS APPLICATIONS, SEVENTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the

Americas, New York, NY 10020. Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.

Previous editions © 2007, 2003, and 1999. No part of this publication may be reproduced or distributed

in any form or by any means, or stored in a database or retrieval system, without the prior written consent of

The McGraw-Hill Companies, Inc., including, but not limited to, in any network or other electronic storage

or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the

United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOW/DOW 1 0 9 8 7 6 5 4 3 2 1

ISBN 978-0-07-338309-5

MHID 0-07-338309-0

Vice President & Editor-in-Chief: Marty Lange

Editorial Director: Michael Lange

Global Publisher: Raghothaman Srinivasan

Executive Editor: Bill Stenquist

Development Editors: Lorraine K. Buczek/Rose Kernan

Senior Marketing Manager: Curt Reynolds

Project Manager: Robin A. Reed

Buyer: Sandy Ludovissy

Design Coordinator: Brenda A. Rolwes

Cover painting: Jasper Johns, Between the Clock and the Bed, 1981. Oil on Canvas (72 × 126 1/4 inches)

Collection of the artist. Photograph by Glenn Stiegelman. Cover Art © Jasper Johns/Licensed by VAGA, New York, NY

Cover Designer: Studio Montage, St. Louis, Missouri

Lead Photo Research Coordinator: Carrie K. Burger

Media Project Manager: Tammy Juran

Production Services/Compositor: RPK Editorial Services/PreTeX, Inc.

Typeface: 10.5/12 Times Roman

Printer: R.R. Donnelley

All credits appearing on this page or at the end of the book are considered to be an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data

Rosen, Kenneth H.

Discrete mathematics and its applications / Kenneth H. Rosen. — 7th ed.

p. cm.

Includes index.

ISBN 0–07–338309–0

1. Mathematics. 2. Computer science—Mathematics. I. Title.

QA39.3.R67 2012

511–dc22

2011011060

www.mhhe.com

Contents

About the Author vi
Preface vii
The CompanionWebsite xvi
To the Student xvii

1 The Foundations: Logic and Proofs . 1

1.1 Propositional Logic . 1

1.2 Applications of Propositional Logic . 16

1.3 Propositional Equivalences . 25

1.4 Predicates and Quantifiers . 36

1.5 Nested Quantifiers . 57

1.6 Rules of Inference . 69

1.7 Introduction to Proofs . 80

1.8 Proof Methods and Strategy . 92

End-of-Chapter Material . 109

2 Basic Structures: Sets, Functions, Sequences, Sums, and Matrices . 115

2.1 Sets . 115

2.2 Set Operations . 127

2.3 Functions . 138

2.4 Sequences and Summations . 156

2.5 Cardinality of Sets . 170

2.6 Matrices . 177

End-of-Chapter Material . 185

3 Algorithms . 191

3.1 Algorithms . 191

3.2 The Growth of Functions . 204

3.3 Complexity of Algorithms . 218

End-of-Chapter Material . 232

4 Number Theory and Cryptography . 237

4.1 Divisibility and Modular Arithmetic . 237

4.2 Integer Representations and Algorithms . 245

4.3 Primes and Greatest Common Divisors . 257

4.4 Solving Congruences .274

4.5 Applications of Congruences . 287

4.6 Cryptography . 294

End-of-Chapter Material . 306

iii

iv Contents

5 Induction and Recursion . 311

5.1 Mathematical Induction . 311

5.2 Strong Induction and Well-Ordering . 333

5.3 Recursive Definitions and Structural Induction . 344

5.4 Recursive Algorithms . 360

5.5 Program Correctness . 372

End-of-Chapter Material . 377

6 Counting . 385

6.1 The Basics of Counting .385

6.2 The Pigeonhole Principle . 399

6.3 Permutations and Combinations . 407

6.4 Binomial Coefficients and Identities . 415

6.5 Generalized Permutations and Combinations . 423

6.6 Generating Permutations and Combinations . 434

End-of-Chapter Material . 439

7 Discrete Probability . 445

7.1 An Introduction to Discrete Probability . 445

7.2 Probability Theory . 452

7.3 Bayes’ Theorem . 468

7.4 Expected Value and Variance . 477

End-of-Chapter Material . 494

8 Advanced Counting Techniques . 501

8.1 Applications of Recurrence Relations . 501

8.2 Solving Linear Recurrence Relations . 514

8.3 Divide-and-Conquer Algorithms and Recurrence Relations .527

8.4 Generating Functions . 537

8.5 Inclusion–Exclusion . 552

8.6 Applications of Inclusion–Exclusion . 558

End-of-Chapter Material . 565

9 Relations . 573

9.1 Relations and Their Properties . 573

9.2 n-ary Relations and Their Applications . 583

9.3 Representing Relations . 591

9.4 Closures of Relations . 597

9.5 Equivalence Relations . 607

9.6 Partial Orderings . 618

End-of-Chapter Material . 633

Contents v

10 Graphs . 641

10.1 Graphs and Graph Models . 641

10.2 Graph Terminology and Special Types of Graphs. .651

10.3 Representing Graphs and Graph Isomorphism . 668

10.4 Connectivity . 678

10.5 Euler and Hamilton Paths . 693

10.6 Shortest-Path Problems . 707

10.7 Planar Graphs . 718

10.8 Graph Coloring . 727

End-of-Chapter Material . 735

11 Trees . 745

11.1 Introduction to Trees . 745

11.2 Applications of Trees . 757

11.3 Tree Traversal . 772

11.4 Spanning Trees . 785

11.5 Minimum Spanning Trees . 797

End-of-Chapter Material . 803

12 Boolean Algebra . 811

12.1 Boolean Functions . 811

12.2 Representing Boolean Functions . 819

12.3 Logic Gates . 822

12.4 Minimization of Circuits . 828

End-of-Chapter Material . 843

13 Modeling Computation . 847

13.1 Languages and Grammars . 847

13.2 Finite-State Machines with Output .858

13.3 Finite-State Machines with No Output . 865

13.4 Language Recognition . 878

13.5 Turing Machines . 888

End-of-Chapter Material . 899

Appendixes . A-1

1 Axioms for the Real Numbers and the Positive Integers . 1

2 Exponential and Logarithmic Functions . 7

3 Pseudocode . 11

Suggested Readings B-1
Answers to Odd-Numbered Exercises S-1
Photo Credits C-1
Index of Biographies I-1
Index I-2

About the Author

Kenneth H. Rosen has had a long career as a Distinguished Member of the Technical Staff

at AT&T Laboratories in Monmouth County, New Jersey. He currently holds the position

of Visiting Research Professor at Monmouth University, where he teaches graduate courses in

computer science.

Dr. Rosen received his B.S. in Mathematics from the University of Michigan, Ann Arbor

(1972), and his Ph.D. in Mathematics from M.I.T. (1976), where he wrote his thesis in the area

of number theory under the direction of Harold Stark. Before joining Bell Laboratories in 1982,

he held positions at the University of Colorado, Boulder; The Ohio State University, Columbus;

and the University of Maine, Orono, where he was an associate professor of mathematics.

While working at AT&T Labs, he taught at Monmouth University, teaching courses in discrete

mathematics, coding theory, and data security. He currently teaches courses in algorithm design

and in computer security and cryptography.

Dr. Rosen has published numerous articles in professional journals in number theory and

in mathematical modeling. He is the author of the widely used Elementary Number Theory and

Its Applications, published by Pearson, currently in its sixth edition, which has been translated

into Chinese. He is also the author of Discrete Mathematics and Its Applications, published by

McGraw-Hill, currently in its seventh edition. Discrete Mathematics and Its Applications has

sold more than 350,000 copies in North America during its lifetime, and hundreds of thousands

of copies throughout the rest of the world. This book has also been translated into Spanish,

French, Greek, Chinese, Vietnamese, and Korean. He is also co-author of UNIX: The Complete

Reference;UNIXSystemVRelease 4:An Introduction; andBestUNIXTips Ever, all published by

Osborne McGraw-Hill. These books have sold more than 150,000 copies, with translations into

Chinese, German, Spanish, and Italian. Dr. Rosen is also the editor of theHandbook of Discrete

and Combinatorial Mathematics, published by CRC Press, and he is the advisory editor of the

CRC series of books in discrete mathematics, consisting of more than 55 volumes on different

aspects of discrete mathematics, most of which are introduced in this book. Dr. Rosen serves as an

Associate Editor for the journalDiscrete Mathematics, where he works with submitted papers in

several areas of discrete mathematics, including graph theory, enumeration, and number theory.

He is also interested in integrating mathematical software into the educational and professional

environments, and worked on several projects with Waterloo Maple Inc.’s MapleTM software

in both these areas. Dr. Rosen has also worked with several publishing companies on their

homework delivery platforms.

At Bell Laboratories andAT&T Laboratories, Dr. Rosen worked on a wide range of projects,

including operations research studies, product line planning for computers and data communi-

cations equipment, and technology assessment. He helped plan AT&T’s products and services in

the area of multimedia, including video communications, speech recognition, speech synthesis,

and image networking. He evaluated new technology for use by AT&T and did standards work

in the area of image networking. He also invented many new services, and holds more than 55

patents. One of his more interesting projects involved helping evaluate technology for the AT&T

attraction that was part of EPCOT Center.

vi

Preface

In writing this book, I was guided by my long-standing experience and interest in teaching

discrete mathematics. For the student, my purpose was to present material in a precise,

readable manner, with the concepts and techniques of discrete mathematics clearly presented

and demonstrated. My goal was to show the relevance and practicality of discrete mathematics

to students, who are often skeptical. I wanted to give students studying computer science all of

the mathematical foundations they need for their future studies. I wanted to give mathematics

students an understanding of important mathematical concepts together with a sense of why

these concepts are important for applications. And most importantly, I wanted to accomplish

these goals without watering down the material.

For the instructor, my purpose was to design a flexible, comprehensive teaching tool using

proven pedagogical techniques in mathematics. I wanted to provide instructors with a package

of materials that they could use to teach discrete mathematics effectively and efficiently in the

most appropriate manner for their particular set of students. I hope that I have achieved these

goals.

I have been extremely gratified by the tremendous success of this text. The many improve-

ments in the seventh edition have been made possible by the feedback and suggestions of a large

number of instructors and students at many of the more than 600 North American schools, and

at any many universities in parts of the world, where this book has been successfully used.

This text is designed for a one- or two-term introductory discrete mathematics course taken

by students in a wide variety of majors, including mathematics, computer science, and engineer-

ing. College algebra is the only explicit prerequisite, although a certain degree of mathematical

maturity is needed to study discrete mathematics in a meaningful way. This book has been de-

signed to meet the needs of almost all types of introductory discrete mathematics courses. It is

highly flexible and extremely comprehensive. The book is designed not only to be a successful

textbook, but also to serve as valuable resource students can consult throughout their studies

and professional life.

Goals of a Discrete Mathematics Course

A discrete mathematics course has more than one purpose. Students should learn a particular

set of mathematical facts and how to apply them; more importantly, such a course should teach

students how to think logically and mathematically. To achieve these goals, this text stresses

mathematical reasoning and the different ways problems are solved. Five important themes

are interwoven in this text: mathematical reasoning, combinatorial analysis, discrete structures,

algorithmic thinking, and applications and modeling. A successful discrete mathematics course

should carefully blend and balance all five themes.

1. Mathematical Reasoning: Students must understand mathematical reasoning in order to

read, comprehend, and construct mathematical arguments. This text starts with a discussion

of mathematical logic, which serves as the foundation for the subsequent discussions of

methods of proof. Both the science and the art of constructing proofs are addressed. The

technique of mathematical induction is stressed through many different types of examples

of such proofs and a careful explanation of why mathematical induction is a valid proof

technique.

vii

viii Preface

2. Combinatorial Analysis: An important problem-solving skill is the ability to count or enu-

merate objects. The discussion of enumeration in this book begins with the basic techniques

of counting. The stress is on performing combinatorial analysis to solve counting problems

and analyze algorithms, not on applying formulae.

3. Discrete Structures: A course in discrete mathematics should teach students how to work

with discrete structures, which are the abstract mathematical structures used to represent

discrete objects and relationships between these objects. These discrete structures include

sets, permutations, relations, graphs, trees, and finite-state machines.

4. Algorithmic Thinking: Certain classes of problems are solved by the specification of an

algorithm. After an algorithm has been described, a computer program can be constructed

implementing it. The mathematical portions of this activity, which include the specification

of the algorithm, the verification that it works properly, and the analysis of the computer

memory and time required to perform it, are all covered in this text. Algorithms are described

using both English and an easily understood form of pseudocode.

5. Applications and Modeling: Discrete mathematics has applications to almost every conceiv-

able area of study. There are many applications to computer science and data networking

in this text, as well as applications to such diverse areas as chemistry, biology, linguistics,

geography, business, and the Internet. These applications are natural and important uses of

discrete mathematics and are not contrived. Modeling with discrete mathematics is an ex-

tremely important problem-solving skill, which students have the opportunity to develop by

constructing their own models in some of the exercises.

Changes in the Seventh Edition

Although the sixth edition has been an extremely effective text, many instructors, including

longtime users, have requested changes designed to make this book more effective. I have

devoted a significant amount of time and energy to satisfy their requests and I have worked hard

to find my own ways to make the book more effective and more compelling to students.

The seventh edition is a major revision, with changes based on input from more than 40

formal reviewers, feedback from students and instructors, and author insights. The result is a

new edition that offers an improved organization of topics making the book a more effective

teaching tool. Substantial enhancements to the material devoted to logic, algorithms, number

theory, and graph theory make this book more flexible and comprehensive. Numerous changes

in the seventh edition have been designed to help students more easily learn the material.

Additional explanations and examples have been added to clarify material where students often

have difficulty. New exercises, both routine and challenging, have been added. Highly relevant

applications, including many related to the Internet, to computer science, and to mathematical

biology, have been added. The companion website has benefited from extensive development

activity and now provides tools students can use to master key concepts and explore the world

of discrete mathematics, and many new tools under development will be released in the year

following publication of this book.

I hope that instructors will closely examine this new edition to discover how it might meet

their needs. Although it is impractical to list all the changes in this edition, a brief list that

highlights some key changes, listed by the benefits they provide, may be useful.

More Flexible Organization

� Applications of propositional logic are found in a new dedicated section, which briefly

introduces logic circuits.

� Recurrence relations are now covered in Chapter 2.

� Expanded coverage of countability is now found in a dedicated section in Chapter 2.

Preface ix

� Separate chapters now provide expanded coverage of algorithms (Chapter 3) and number

theory and cryptography (Chapter 4).

� More second and third level heads have been used to break sections into smaller coherent

parts.

Tools for Easier Learning

� Difficult discussions and proofs have been marked with the famous Bourbaki “dangerous

bend” symbol in the margin.

� New marginal notes make connections, add interesting notes, and provide advice to

students.

� More details and added explanations, in both proofs and exposition, make it easier for

students to read the book.

� Many new exercises, both routine and challenging, have been added, while many ex-

isting exercises have been improved.

Enhanced Coverage of Logic, Sets, and Proof

� The satisfiability problem is addressed in greater depth, with Sudoku modeled in terms

of satisfiability.

� Hilbert’s Grand Hotel is used to help explain uncountability.

� Proofs throughout the book have been made more accessible by adding steps and reasons

behind these steps.

� A template for proofs by mathematical induction has been added.

� The step that applies the inductive hypothesis in mathematical induction proof is now

explicitly noted.

Algorithms

� The pseudocode used in the book has been updated.

� Explicit coverage of algorithmic paradigms, including brute force, greedy algorithms,

and dynamic programing, is now provided.

� Useful rules for big-O estimates of logarithms, powers, and exponential functions have

been added.

Number Theory and Cryptography

� Expanded coverage allows instructors to include just a little or a lot of number theory

in their courses.

� The relationship between the mod function and congruences has been explained more

fully.

� The sieve of Eratosthenes is now introduced earlier in the book.

� Linear congruences and modular inverses are now covered in more detail.

� Applications of number theory, including check digits and hash functions, are covered

in great depth.

� A new section on cryptography integrates previous coverage, and the notion of a cryp-

tosystem has been introduced.

� Cryptographic protocols, including digital signatures and key sharing, are now covered.

x Preface

Graph Theory

� A structured introduction to graph theory applications has been added.

� More coverage has been devoted to the notion of social networks.

� Applications to the biological sciences and motivating applications for graph isomor-

phism and planarity have been added.

� Matchings in bipartite graphs are now covered, including Hall’s theorem and its proof.

� Coverage of vertex connectivity, edge connectivity, and n-connectedness has been

added, providing more insight into the connectedness of graphs.

Enrichment Material

� Many biographies have been expanded and updated, and new biographies of Bellman,

Bézout Bienyamé, Cardano, Catalan, Cocks, Cook, Dirac, Hall, Hilbert, Ore, and Tao

have been added.

� Historical information has been added throughout the text.

� Numerous updates for latest discoveries have been made.

Expanded Media

� Extensive effort has been devoted to producing valuable web resources for this book.

� Extra examples in key parts of the text have been provided on companion website.

� Interactive algorithms have been developed, with tools for using them to explore topics

and for classroom use.

� A new online ancillary, The Virtual Discrete Mathematics Tutor, available in fall 2012,

will help students overcome problems learning discrete mathematics.

� A new homework delivery system, available in fall 2012, will provide automated home-

work for both numerical and conceptual exercises.

� Student assessment modules are available for key concepts.

� Powerpoint transparencies for instructor use have been developed.

� A supplementExploringDiscreteMathematics has been developed, providing extensive

support for using MapleTM or MathematicaTM in conjunction with the book.

� An extensive collection of external web links is provided.

Features of the Book

ACCESSIBILITY This text has proved to be easily read and understood by beginning

students. There are no mathematical prerequisites beyond college algebra for almost all the

content of the text. Students needing extra help will find tools on the companion website for

bringing their mathematical maturity up to the level of the text. The few places in the book

where calculus is referred to are explicitly noted. Most students should easily understand the

pseudocode used in the text to express algorithms, regardless of whether they have formally

studied programming languages. There is no formal computer science prerequisite.

Each chapter begins at an easily understood and accessible level. Once basic mathematical

concepts have been carefully developed, more difficult material and applications to other areas

of study are presented.

Preface xi

FLEXIBILITY This text has been carefully designed for flexible use. The dependence

of chapters on previous material has been minimized. Each chapter is divided into sections of

approximately the same length, and each section is divided into subsections that form natural

blocks of material for teaching. Instructors can easily pace their lectures using these blocks.

WRITING STYLE The writing style in this book is direct and pragmatic. Precise mathe-

matical language is used without excessive formalism and abstraction. Care has been taken to

balance the mix of notation and words in mathematical statements.

MATHEMATICAL RIGORAND PRECISION All definitions and theorems in this text

are stated extremely carefully so that students will appreciate the precision of language and

rigor needed in mathematics. Proofs are motivated and developed slowly; their steps are all

carefully justified. The axioms used in proofs and the basic properties that follow from them

are explicitly described in an appendix, giving students a clear idea of what they can assume in

a proof. Recursive definitions are explained and used extensively.

WORKEDEXAMPLES Over 800 examples are used to illustrate concepts, relate different

topics, and introduce applications. In most examples, a question is first posed, then its solution

is presented with the appropriate amount of detail.

APPLICATIONS The applications included in this text demonstrate the utility of discrete

mathematics in the solution of real-world problems. This text includes applications to a wide va-

riety of areas, including computer science, data networking, psychology, chemistry, engineering,

linguistics, biology, business, and the Internet.

ALGORITHMS Results in discrete mathematics are often expressed in terms of algo-

rithms; hence, key algorithms are introduced in each chapter of the book. These algorithms

are expressed in words and in an easily understood form of structured pseudocode, which is

described and specified in Appendix 3. The computational complexity of the algorithms in the

text is also analyzed at an elementary level.

HISTORICAL INFORMATION The background of many topics is succinctly described

in the text. Brief biographies of 83 mathematicians and computer scientists are included as foot-

notes. These biographies include information about the lives, careers, and accomplishments of

these important contributors to discrete mathematics and images, when available, are displayed.

In addition, numerous historical footnotes are included that supplement the historical in-

formation in the main body of the text. Efforts have been made to keep the book up-to-date by

reflecting the latest discoveries.

KEY TERMSAND RESULTS A list of key terms and results follows each chapter. The

key terms include only the most important that students should learn, and not every term defined

in the chapter.

EXERCISES There are over 4000 exercises in the text, with many different types of

questions posed. There is an ample supply of straightforward exercises that develop basic skills,

a large number of intermediate exercises, and many challenging exercises. Exercises are stated

clearly and unambiguously, and all are carefully graded for level of difficulty. Exercise sets

contain special discussions that develop new concepts not covered in the text, enabling students

to discover new ideas through their own work.

Exercises that are somewhat more difficult than average are marked with a single star ∗;

those that are much more challenging are marked with two stars ∗∗. Exercises whose solutions

require calculus are explicitly noted. Exercises that develop results used in the text are clearly

identified with the right pointing hand symbol . Answers or outlined solutions to all odd-

xii Preface

numbered exercises are provided at the back of the text. The solutions include proofs in which

most of the steps are clearly spelled out.

REVIEW QUESTIONS A set of review questions is provided at the end of each chapter.

These questions are designed to help students focus their study on the most important concepts

and techniques of that chapter. To answer these questions students need to write long answers,

rather than just perform calculations or give short replies.

SUPPLEMENTARY EXERCISE SETS Each chapter is followed by a rich and varied

set of supplementary exercises. These exercises are generally more difficult than those in the

exercise sets following the sections. The supplementary exercises reinforce the concepts of the

chapter and integrate different topics more effectively.

COMPUTER PROJECTS Each chapter is followed by a set of computer projects. The

approximately 150 computer projects tie together what students may have learned in computing

and in discrete mathematics. Computer projects that are more difficult than average, from both

a mathematical and a programming point of view, are marked with a star, and those that are

extremely challenging are marked with two stars.

COMPUTATIONS AND EXPLORATIONS A set of computations and explorations is

included at the conclusion of each chapter. These exercises (approximately 120 in total) are de-

signed to be completed using existing software tools, such as programs that students or instruc-

tors have written or mathematical computation packages such as MapleTM or MathematicaTM.

Many of these exercises give students the opportunity to uncover new facts and ideas through

computation. (Some of these exercises are discussed in the Exploring Discrete Mathematics

companion workbooks available online.)

WRITING PROJECTS Each chapter is followed by a set of writing projects. To do these

projects students need to consult the mathematical literature. Some of these projects are historical

in nature and may involve looking up original sources. Others are designed to serve as gateways

to new topics and ideas. All are designed to expose students to ideas not covered in depth in

the text. These projects tie mathematical concepts together with the writing process and help

expose students to possible areas for future study. (Suggested references for these projects can

be found online or in the printed Student’s Solutions Guide.)

APPENDIXES There are three appendixes to the text. The first introduces axioms for real

numbers and the positive integers, and illustrates how facts are proved directly from these axioms.

The second covers exponential and logarithmic functions, reviewing some basic material used

heavily in the course. The third specifies the pseudocode used to describe algorithms in this text.

SUGGESTED READINGS A list of suggested readings for the overall book and for each

chapter is provided after the appendices. These suggested readings include books at or below

the level of this text, more difficult books, expository articles, and articles in which discoveries

in discrete mathematics were originally published. Some of these publications are classics,

published many years ago, while others have been published in the last few years.

How to Use This Book

This text has been carefully written and constructed to support discrete mathematics courses

at several levels and with differing foci. The following table identifies the core and optional

sections. An introductory one-term course in discrete mathematics at the sophomore level can

be based on the core sections of the text, with other sections covered at the discretion of the

Preface xiii

instructor. A two-term introductory course can include all the optional mathematics sections in

addition to the core sections. A course with a strong computer science emphasis can be taught

by covering some or all of the optional computer science sections. Instructors can find sample

syllabi for a wide range of discrete mathematics courses and teaching suggestions for using each

section of the text can be found in the Instructor’s Resource Guide available on the website for

this book.

Chapter Core Optional CS Optional Math

1 1.1–1.8 (as needed)

2 2.1–2.4, 2.6 (as needed) 2.5

3 3.1–3.3 (as needed)

4 4.1–4.4 (as needed) 4.5, 4.6

5 5.1–5.3 5.4, 5.5

6 6.1–6.3 6.6 6.4, 6.5

7 7.1 7.4 7.2, 7.3

8 8.1, 8.5 8.3 8.2, 8.4, 8.6

9 9.1, 9.3, 9.5 9.2 9.4, 9.6

10 10.1–10.5 10.6–10.8

11 11.1 11.2, 11.3 11.4, 11.5

12 12.1–12.4

13 13.1–13.5

Instructors using this book can adjust the level of difficulty of their course by choosing

either to cover or to omit the more challenging examples at the end of sections, as well as

the more challenging exercises. The chapter dependency chart shown here displays the strong

dependencies. A star indicates that only relevant sections of the chapter are needed for study of a

later chapter. Weak dependencies have been ignored. More details can be found in the Instructor

Resource Guide.

Chapter 9*

Chapter 10*

Chapter 11

Chapter 13

Chapter 12
Chapter 2*

Chapter 7 Chapter 8

Chapter 6*

Chapter 3*

Chapter 1

Chapter 4*

Chapter 5*

Ancillaries

STUDENT’S SOLUTIONS GUIDE This student manual, available separately, contains

full solutions to all odd-numbered problems in the exercise sets. These solutions explain why

a particular method is used and why it works. For some exercises, one or two other possible

approaches are described to show that a problem can be solved in several different ways. Sug-

gested references for the writing projects found at the end of each chapter are also included in

this volume. Also included are a guide to writing proofs and an extensive description of common

xiv Preface

mistakes students make in discrete mathematics, plus sample tests and a sample crib sheet for

each chapter designed to help students prepare for exams.

(ISBN-10: 0-07-735350-1) (ISBN-13: 978-0-07-735350-6)

INSTRUCTOR’S RESOURCE GUIDE This manual, available on the website and in

printed form by request for instructors, contains full solutions to even-numbered exercises in

the text. Suggestions on how to teach the material in each chapter of the book are provided,

including the points to stress in each section and how to put the material into perspective. It

also offers sample tests for each chapter and a test bank containing over 1500 exam questions to

choose from. Answers to all sample tests and test bank questions are included. Finally, several

sample syllabi are presented for courses with differing emphases and student ability levels.

(ISBN-10: 0-07-735349-8) (ISBN-13: 978-0-07-735349-0)

Acknowledgments

I would like to thank the many instructors and students at a variety of schools who have used

this book and provided me with their valuable feedback and helpful suggestions. Their input

has made this a much better book than it would have been otherwise. I especially want to thank

Jerrold Grossman, Jean-Claude Evard, and Georgia Mederer for their technical reviews of the

seventh edition and their “eagle eyes,” which have helped ensure the accuracy of this book. I

also appreciate the help provided by all those who have submitted comments via the website.

I thank the reviewers of this seventh and the six previous editions. These reviewers have

provided much helpful criticism and encouragement to me. I hope this edition lives up to their

high expectations.

Reviewers for the Seventh Edition

Philip Barry
University of Minnesota, Minneapolis

Miklos Bona
University of Florida

Kirby Brown
Queens College

John Carter
University of Toronto

Narendra Chaudhari
Nanyang Technological University

Allan Cochran
University of Arkansas

Daniel Cunningham
Buffalo State College

George Davis
Georgia State University

Andrzej Derdzinski
The Ohio State University

Ronald Dotzel
University of Missouri-St. Louis

T.J. Duda
Columbus State Community College

Bruce Elenbogen
University of Michigan, Dearborn

Norma Elias
Purdue University,
Calumet-Hammond

Herbert Enderton
University of California, Los Angeles

Anthony Evans
Wright State University

Kim Factor
Marquette University

Margaret Fleck
University of Illinois, Champaign

Peter Gillespie
Fayetteville State University

Johannes Hattingh
Georgia State University

Ken Holladay
University of New Orleans

Jerry Ianni
LaGuardia Community College

Ravi Janardan
University of Minnesota, Minneapolis

Norliza Katuk
University of Utara Malaysia

William Klostermeyer
University of North Florida

Przemo Kranz
University of Mississippi

Jaromy Kuhl
University of West Florida

Loredana Lanzani
University of Arkansas, Fayetteville

Steven Leonhardi
Winona State University

Xu Liutong
Beijing University of Posts and
Telecommunications

Vladimir Logvinenko
De Anza Community College

Preface xv

Darrell Minor
Columbus State Community College

Keith Olson
Utah Valley University

Yongyuth Permpoontanalarp
King Mongkut’s University of
Technology, Thonburi

Galin Piatniskaia
University of Missouri, St. Louis

Stefan Robila
Montclair State University

Chris Rodger
Auburn University

Sukhit Singh
Texas State University, San Marcos

David Snyder
Texas State University, San Marcos

Wasin So
San Jose State University

Bogdan Suceava
California State University, Fullerton

Christopher Swanson
Ashland University

Bon Sy
Queens College

Matthew Walsh
Indiana-Purdue University, Fort
Wayne

Gideon Weinstein
Western Governors University

David Wilczynski
University of Southern California

I would like to thank Bill Stenquist, Executive Editor, for his advocacy, enthusiasm, and

support. His assistance with this edition has been essential. I would also like to thank the original

editor, Wayne Yuhasz, whose insights and skills helped ensure the book’s success, as well as all

the many other previous editors of this book.

I want to express my appreciation to the staff of RPK Editorial Services for their valuable

work on this edition, including Rose Kernan, who served as both the developmental editor and

the production editor, and the other members of the RPK team, Fred Dahl, Martha McMaster,

Erin Wagner, Harlan James, and Shelly Gerger-Knecthl. I thank Paul Mailhot of PreTeX, Inc.,

the compositor, for the tremendous amount to work he devoted to producing this edition, and

for his intimate knowledge of LaTeX. Thanks also to Danny Meldung of Photo Affairs, Inc.,

who was resourceful obtaining images for the new biographical footnotes.

The accuracy and quality of this new edition owe much to Jerry Grossman and Jean-Claude

Evard, who checked the entire manuscript for technical accuracy and Georgia Mederer, who

checked the accuracy of the answers at the end of the book and the solutions in the Student’s

Solutions Guide and Instructor’s Resource Guide. As usual, I cannot thank Jerry Grossman

enough for all his work authoring these two essential ancillaries.

I would also express my appreciation the Science, Engineering, and Mathematics (SEM)

Division of McGraw-Hill Higher Education for their valuable support for this new edition and

the associated media content. In particular, thanks go to Kurt Strand: President, SEM, McGraw-

Hill Higher Education, Marty Lange: Editor-in-Chief, SEM, Michael Lange: Editorial Director,

Raghothaman Srinivasan: Global Publisher, Bill Stenquist: Executive Editor, Curt Reynolds:

Executive Marketing Manager, Robin A. Reed: Project Manager, Sandy Ludovissey: Buyer,

Lorraine Buczek: In-house Developmental Editor, Brenda Rowles: Design Coordinator, Carrie

K. Burger: Lead Photo Research Coordinator, and Tammy Juran: Media Project Manager.

Kenneth H. Rosen

The Companion Website

The extensive companion website accompanying this text has been substantially enhanced

for the seventh edition This website is accessible at www.mhhe.com/rosen. The homepage

shows the Information Center, and contains login links for the site’s Student Site and Instructor

Site. Key features of each area are described below:

THE INFORMATION CENTER

The Information Center contains basic information about the book including the expanded

table of contents (including subsection heads), the preface, descriptions of the ancillaries, and

a sample chapter. It also provides a link that can be used to submit errata reports and other

feedback about the book.

STUDENT SITE

The Student site contains a wealth of resources available for student use, including the

following, tied into the text wherever the special icons displayed below are found in the text:

� Extra Examples You can find a large number of additional examples on the site, covering

all chapters of the book. These examples are concentrated in areas where students often

ask for additional material. Although most of these examples amplify the basic concepts,

more-challenging examples can also be found here.

� Interactive Demonstration Applets These applets enable you to interactively explore

how important algorithms work, and are tied directly to material in the text with linkages to

examples and exercises. Additional resources are provided on how to use and apply these

applets.

� Self Assessments These interactive guides help you assess your understanding of 14 key

concepts, providing a question bank where each question includes a brief tutorial followed

by a multiple-choice question. If you select an incorrect answer, advice is provided to help

you understand your error. Using these Self Assessments, you should be able to diagnose

your problems and find appropriate help.

� WebResourcesGuide This guide provides annotated links to hundreds of external websites

containing relevant material such as historical and biographical information, puzzles and

problems, discussions, applets, programs, and more. These links are keyed to the text by page

number.

Additional resources in the Student site include:

� Exploring Discrete Mathematics This ancillary provides help for using a computer alge-

bra system to do a wide range of computations in discrete mathematics. Each chapter provides

a description of relevant functions in the computer algebra system and how they are used, pro-

grams to carry out computations in discrete mathematics, examples, and exercises that can be

worked using this computer algebra system. Two versions, Exploring Discrete Mathematics

with MapleTM and Exploring Discrete Mathematics with MathematicaTM will be available.

� Applications of Discrete Mathematics This ancillary contains 24 chapters—each with

its own set of exercises—presenting a wide variety of interesting and important applications

xvi

The Companion Website xvii

covering three general areas in discrete mathematics: discrete structures, combinatorics, and

graph theory. These applications are ideal for supplementing the text or for independent study.

� A Guide to Proof-Writing This guide provides additional help for writing proofs, a skill

that many students find difficult to master. By reading this guide at the beginning of the

course and periodically thereafter when proof writing is required, you will be rewarded as

your proof-writing ability grows. (Also available in the Student’s Solutions Guide.)

� Common Mistakes in Discrete Mathematics This guide includes a detailed list of com-

mon misconceptions that students of discrete mathematics often have and the kinds of errors

they tend to make.You are encouraged to review this list from time to time to help avoid these

common traps. (Also available in the Student’s Solutions Guide.)

� Advice onWriting Projects This guide offers helpful hints and suggestions for the Writing

Projects in the text, including an extensive bibliography of helpful books and articles for

research; discussion of various resources available in print and online; tips on doing library

research; and suggestions on how to write well. (Also available in the Student’s Solutions

Guide.)

� TheVirtual Discrete Mathematics Tutor This extensive ancillary provides students with

valuable assistance as they make the transition from lower-level courses to discrete mathemat-

ics. The errors students have made when studying discrete mathematics using this text has been

analyzed to design this resource. Students will be able to get many of their questions answered

and can overcome many obstacles via this ancillaries. TheVirtual Discrete Mathematics Tutor

is expected to be available in the fall of 2012.

INSTRUCTOR SITE

This part of the website provides access to all of the resources on the Student Site, as well as

these resources for instructors:

� Suggested Syllabi Detailed course outlines are shown, offering suggestions for courses

with different emphases and different student backgrounds and ability levels.

� Teaching Suggestions This guide contains detailed teaching suggestions for instructors,

including chapter overviews for the entire text, detailed remarks on each section, and comments

on the exercise sets.

� Printable Tests Printable tests are offered in TeX and Word format for every chapter, and

can be customized by instructors.

� PowerPoints Lecture Slides andPowerPoint Figures andTables An extensive collection

of PowerPoint slides for all chapters of the text are provided for instructor use. In addition,

images of all figures and tables from the text are provided as PowerPoint slides.

� Homework Delivery System An extensive homework delivery system, under development

for availability in fall 2012, will provide questions tied directly to the text, so that students

will be able to do assignments on-line. Moreover, they will be able to use this system in a

tutorial mode. This system will be able to automatically grade assignments, and deliver free-

form student input to instructors for their own analysis. Course management capabilities will

be provided that will allow instructors to create assignments, automatically assign and grade

homework, quiz, and test questions from a bank of questions tied directly to the text, create

and edit their own questions, manage course announcements and due dates, and track student

progress.

To the Student

What is discrete mathematics?Discrete mathematics is the part of mathematics devoted to

the study of discrete objects. (Here discretemeans consisting of distinct or unconnected

elements.) The kinds of problems solved using discrete mathematics include:

� How many ways are there to choose a valid password on a computer system?

� What is the probability of winning a lottery?

� Is there a link between two computers in a network?

� How can I identify spam e-mail messages?

� How can I encrypt a message so that no unintended recipient can read it?

� What is the shortest path between two cities using a transportation system?

� How can a list of integers be sorted so that the integers are in increasing order?

� How many steps are required to do such a sorting?

� How can it be proved that a sorting algorithm correctly sorts a list?

� How can a circuit that adds two integers be designed?

� How many valid Internet addresses are there?

You will learn the discrete structures and techniques needed to solve problems such as these.

More generally, discrete mathematics is used whenever objects are counted, when relation-

ships between finite (or countable) sets are studied, and when processes involving a finite number

of steps are analyzed. A key reason for the growth in the importance of discrete mathematics is

that information is stored and manipulated by computing machines in a discrete fashion.

WHY STUDY DISCRETE MATHEMATICS? There are several important reasons for

studying discrete mathematics. First, through this course you can develop your mathematical

maturity: that is, your ability to understand and create mathematical arguments.You will not get

very far in your studies in the mathematical sciences without these skills.

Second, discrete mathematics is the gateway to more advanced courses in all parts of

the mathematical sciences. Discrete mathematics provides the mathematical foundations for

many computer science courses including data structures, algorithms, database theory, automata

theory, formal languages, compiler theory, computer security, and operating systems. Students

find these courses much more difficult when they have not had the appropriate mathematical

foundations from discrete math. One student has sent me an e-mail message saying that she

used the contents of this book in every computer science course she took!

Math courses based on the material studied in discrete mathematics include logic, set theory,

number theory, linear algebra, abstract algebra, combinatorics, graph theory, and probability

theory (the discrete part of the subject).

Also, discrete mathematics contains the necessary mathematical background for solving

problems in operations research (including many discrete optimization techniques), chemistry,

engineering, biology, and so on. In the text, we will study applications to some of these areas.

Many students find their introductory discrete mathematics course to be significantly more

challenging than courses they have previously taken. One reason for this is that one of the

primary goals of this course is to teach mathematical reasoning and problem solving, rather

than a discrete set of skills. The exercises in this book are designed to reflect this goal. Although

there are plenty of exercises in this text similar to those addressed in the examples, a large

xviii

To the Student xix

percentage of the exercises require original thought. This is intentional. The material discussed

in the text provides the tools needed to solve these exercises, but your job is to successfully

apply these tools using your own creativity. One of the primary goals of this course is to learn

how to attack problems that may be somewhat different from any you may have previously

seen. Unfortunately, learning how to solve only particular types of exercises is not sufficient for

success in developing the problem-solving skills needed in subsequent courses and professional

work. This text addresses many different topics, but discrete mathematics is an extremely diverse

and large area of study. One of my goals as an author is to help you develop the skills needed

to master the additional material you will need in your own future pursuits.

THEEXERCISES I would like to offer some advice about how you can best learn discrete

mathematics (and other subjects in the mathematical and computing sciences).You will learn the

most by actively working exercises. I suggest that you solve as many as you possibly can. After

working the exercises your instructor has assigned, I encourage you to solve additional exercises

such as those in the exercise sets following each section of the text and in the supplementary

exercises at the end of each chapter. (Note the key explaining the markings preceding exercises.)

Key to the Exercises

no marking A routine exercise
∗ A difficult exercise
∗∗ An extremely challenging exercise

An exercise containing a result used in the book (Table 1 on the

following page shows where these exercises are used.)

(Requires calculus) An exercise whose solution requires the use of limits or concepts

from differential or integral calculus

The best approach is to try exercises yourself before you consult the answer section at the

end of this book. Note that the odd-numbered exercise answers provided in the text are answers

only and not full solutions; in particular, the reasoning required to obtain answers is omitted in

these answers. The Student’s Solutions Guide, available separately, provides complete, worked

solutions to all odd-numbered exercises in this text. When you hit an impasse trying to solve an

odd-numbered exercise, I suggest you consult the Student’s Solutions Guide and look for some

guidance as to how to solve the problem. The more work you do yourself rather than passively

reading or copying solutions, the more you will learn. The answers and solutions to the even-

numbered exercises are intentionally not available from the publisher; ask your instructor if you

have trouble with these.

WEB RESOURCES You are strongly encouraged to take advantage of additional re-

sources available on the Web, especially those on the companion website for this book found

at www.mhhe.com/rosen. You will find many Extra Examples designed to clarify key concepts;

Self Assessments for gauging how well you understand core topics; Interactive Demonstration

Applets exploring key algorithms and other concepts; a Web Resources Guide containing an

extensive selection of links to external sites relevant to the world of discrete mathematics; extra

explanations and practice to help you master core concepts; added instruction on writing proofs

and on avoiding common mistakes in discrete mathematics; in-depth discussions of important

applications; and guidance on utilizing MapleTM software to explore the computational aspects

of discrete mathematics. Places in the text where these additional online resources are available

are identified in the margins by special icons. You will also find (after fall 2012) the Virtual

Discrete Mathematics Tutor, an on-line resource that provides extra support to help you make

the transition from lower level courses to discrete mathematics. This tutorial should help answer

many of your questions and correct errors that you may make, based on errors other students

using this book, have made. For more details on these and other online resources, see the

description of the companion website immediately preceding this “To the Student” message.

xx To the Student

TABLE 1 Hand-Icon Exercises andWhere They Are Used

Section Exercise SectionWhere Used PagesWhere Used

1.1 40 1.3 31

1.1 41 1.3 31

1.3 9 1.6 71

1.3 10 1.6 70, 71

1.3 15 1.6 71

1.3 30 1.6 71, 74

1.3 42 12.2 820

1.7 16 1.7 86

2.3 72 2.3 144

2.3 79 2.5 170

2.5 15 2.5 174

2.5 16 2.5 173

3.1 43 3.1 197

3.2 72 11.2 761

4.2 36 4.2 270

4.3 37 4.1 239

4.4 2 4.6 301

4.4 44 7.2 464

6.4 17 7.2 466

6.4 21 7.4 480

7.2 15 7.2 466

9.1 26 9.4 598

10.4 59 11.1 747

11.1 15 11.1 750

11.1 30 11.1 755

11.1 48 11.2 762

12.1 12 12.3 825

A.2 4 8.3 531

THE VALUE OF THIS BOOK My intention is to make your substantial investment in

this text an excellent value. The book, the associated ancillaries, and companion website have

taken many years of effort to develop and refine. I am confident that most of you will find that

the text and associated materials will help you master discrete mathematics, just as so many

previous students have. Even though it is likely that you will not cover some chapters in your

current course, you should find it helpful—as many other students have—to read the relevant

sections of the book as you take additional courses. Most of you will return to this book as a

useful tool throughout your future studies, especially for those of you who continue in computer

science, mathematics, and engineering. I have designed this book to be a gateway for future

studies and explorations, and to be comprehensive reference, and I wish you luck as you begin

your journey.

Kenneth H. Rosen

1
C H A P T E R

The Foundations:
Logic and Proofs

1.1 Propositional
Logic

1.2 Applications of
Propositional
Logic

1.3 Propositional
Equivalences

1.4 Predicates and
Quantifiers

1.5 Nested
Quantifiers

1.6 Rules of
Inference

1.7 Introduction to
Proofs

1.8 Proof Methods
and Strategy

The rules of logic specify the meaning of mathematical statements. For instance, these rules
help us understand and reason with statements such as “There exists an integer that is

not the sum of two squares” and “For every positive integer n, the sum of the positive integers
not exceeding n is n(n+ 1)/2.” Logic is the basis of all mathematical reasoning, and of all
automated reasoning. It has practical applications to the design of computing machines, to the
specification of systems, to artificial intelligence, to computer programming, to programming
languages, and to other areas of computer science, as well as to many other fields of study.

To understand mathematics, we must understand what makes up a correct mathematical
argument, that is, a proof. Once we prove a mathematical statement is true, we call it a theorem.A
collection of theorems on a topic organize what we know about this topic. To learn a mathematical
topic, a person needs to actively construct mathematical arguments on this topic, and not just
read exposition. Moreover, knowing the proof of a theorem often makes it possible to modify
the result to fit new situations.

Everyone knows that proofs are important throughout mathematics, but many people find
it surprising how important proofs are in computer science. In fact, proofs are used to verify
that computer programs produce the correct output for all possible input values, to show that
algorithms always produce the correct result, to establish the security of a system, and to create
artificial intelligence. Furthermore, automated reasoning systems have been created to allow
computers to construct their own proofs.

In this chapter, we will explain what makes up a correct mathematical argument and intro-
duce tools to construct these arguments. We will develop an arsenal of different proof methods
that will enable us to prove many different types of results. After introducing many different
methods of proof, we will introduce several strategies for constructing proofs. We will intro-
duce the notion of a conjecture and explain the process of developing mathematics by studying
conjectures.

1.1 Propositional Logic

Introduction

The rules of logic give precise meaning to mathematical statements. These rules are used to
distinguish between valid and invalid mathematical arguments. Because a major goal of this book
is to teach the reader how to understand and how to construct correct mathematical arguments,
we begin our study of discrete mathematics with an introduction to logic.

Besides the importance of logic in understanding mathematical reasoning, logic has numer-
ous applications to computer science. These rules are used in the design of computer circuits,
the construction of computer programs, the verification of the correctness of programs, and in
many other ways. Furthermore, software systems have been developed for constructing some,
but not all, types of proofs automatically. We will discuss these applications of logic in this and
later chapters.

1

2 1 / The Foundations: Logic and Proofs

Propositions

Our discussion begins with an introduction to the basic building blocks of logic—propositions.
A proposition is a declarative sentence (that is, a sentence that declares a fact) that is either true
or false, but not both.

EXAMPLE 1 All the following declarative sentences are propositions.

1. Washington, D.C., is the capital of the United States of America.

2. Toronto is the capital of Canada.

3. 1+ 1 = 2.

4. 2+ 2 = 3.

Propositions 1 and 3 are true, whereas 2 and 4 are false. ▲

Some sentences that are not propositions are given in Example 2.

EXAMPLE 2 Consider the following sentences.

1. What time is it?

2. Read this carefully.

3. x + 1 = 2.

4. x + y = z.

Sentences 1 and 2 are not propositions because they are not declarative sentences. Sentences 3
and 4 are not propositions because they are neither true nor false. Note that each of sentences 3
and 4 can be turned into a proposition if we assign values to the variables. We will also discuss
other ways to turn sentences such as these into propositions in Section 1.4. ▲

We use letters to denote propositional variables (or statement variables), that is, vari-
ables that represent propositions, just as letters are used to denote numerical variables. The

ARISTOTLE (384 b.c.e.–322 b.c.e.) Aristotle was born in Stagirus (Stagira) in northern Greece. His father was
the personal physician of the King of Macedonia. Because his father died when Aristotle was young, Aristotle
could not follow the custom of following his father’s profession. Aristotle became an orphan at a young age
when his mother also died. His guardian who raised him taught him poetry, rhetoric, and Greek. At the age of
17, his guardian sent him to Athens to further his education. Aristotle joined Plato’s Academy, where for 20
years he attended Plato’s lectures, later presenting his own lectures on rhetoric. When Plato died in 347 B.C.E.,
Aristotle was not chosen to succeed him because his views differed too much from those of Plato. Instead,
Aristotle joined the court of King Hermeas where he remained for three years, and married the niece of the
King. When the Persians defeated Hermeas, Aristotle moved to Mytilene and, at the invitation of King Philip

of Macedonia, he tutored Alexander, Philip’s son, who later became Alexander the Great. Aristotle tutored Alexander for five years
and after the death of King Philip, he returned to Athens and set up his own school, called the Lyceum.

Aristotle’s followers were called the peripatetics, which means “to walk about,” because Aristotle often walked around as he
discussed philosophical questions. Aristotle taught at the Lyceum for 13 years where he lectured to his advanced students in the
morning and gave popular lectures to a broad audience in the evening. When Alexander the Great died in 323 B.C.E., a backlash against
anything related to Alexander led to trumped-up charges of impiety against Aristotle. Aristotle fled to Chalcis to avoid prosecution.
He only lived one year in Chalcis, dying of a stomach ailment in 322 B.C.E.

Aristotle wrote three types of works: those written for a popular audience, compilations of scientific facts, and systematic
treatises. The systematic treatises included works on logic, philosophy, psychology, physics, and natural history. Aristotle’s writings
were preserved by a student and were hidden in a vault where a wealthy book collector discovered them about 200 years later. They
were taken to Rome, where they were studied by scholars and issued in new editions, preserving them for posterity.

1.1 Propositional Logic 3

conventional letters used for propositional variables are p, q, r, s, The truth value of a
proposition is true, denoted by T, if it is a true proposition, and the truth value of a proposition
is false, denoted by F, if it is a false proposition.

The area of logic that deals with propositions is called the propositional calculus or propo-
sitional logic. It was first developed systematically by the Greek philosopher Aristotle more
than 2300 years ago.

We now turn our attention to methods for producing new propositions from those that
we already have. These methods were discussed by the English mathematician George Boole
in 1854 in his book The Laws of Thought. Many mathematical statements are constructed by
combining one or more propositions. New propositions, called compound propositions, are
formed from existing propositions using logical operators.

DEFINITION 1 Letp be a proposition. The negation of p, denoted by¬p (also denoted byp), is the statement

“It is not the case that p.”

The proposition ¬p is read “not p.” The truth value of the negation of p, ¬p, is the opposite
of the truth value of p.

EXAMPLE 3 Find the negation of the proposition

“Michael’s PC runs Linux”

and express this in simple English.

Solution: The negation is

“It is not the case that Michael’s PC runs Linux.”

This negation can be more simply expressed as

“Michael’s PC does not run Linux.”

▲

EXAMPLE 4 Find the negation of the proposition

“Vandana’s smartphone has at least 32GB of memory”

and express this in simple English.

Solution: The negation is

“It is not the case that Vandana’s smartphone has at least 32GB of memory.”

This negation can also be expressed as

“Vandana’s smartphone does not have at least 32GB of memory”

or even more simply as

“Vandana’s smartphone has less than 32GB of memory.”

▲

4 1 / The Foundations: Logic and Proofs

TABLE 1 The
Truth Table for
the Negation of a
Proposition.

p ¬p

T F

F T

Table 1 displays the truth table for the negation of a proposition p. This table has a row
for each of the two possible truth values of a proposition p. Each row shows the truth value of
¬p corresponding to the truth value of p for this row.

The negation of a proposition can also be considered the result of the operation of the
negation operator on a proposition. The negation operator constructs a new proposition from
a single existing proposition. We will now introduce the logical operators that are used to form
new propositions from two or more existing propositions. These logical operators are also called
connectives.

DEFINITION 2 Let p and q be propositions. The conjunction of p and q, denoted by p ∧ q, is the proposition
“p and q.” The conjunction p ∧ q is true when both p and q are true and is false otherwise.

Table 2 displays the truth table of p ∧ q. This table has a row for each of the four possible
combinations of truth values of p and q. The four rows correspond to the pairs of truth values
TT, TF, FT, and FF, where the first truth value in the pair is the truth value of p and the second
truth value is the truth value of q.

Note that in logic the word “but” sometimes is used instead of “and” in a conjunction. For
example, the statement “The sun is shining, but it is raining” is another way of saying “The sun
is shining and it is raining.” (In natural language, there is a subtle difference in meaning between
“and” and “but”; we will not be concerned with this nuance here.)

EXAMPLE 5 Find the conjunction of the propositions p and q where p is the proposition “Rebecca’s PC has
more than 16 GB free hard disk space” and q is the proposition “The processor in Rebecca’s
PC runs faster than 1 GHz.”

Solution: The conjunction of these propositions, p ∧ q, is the proposition “Rebecca’s PC has
more than 16 GB free hard disk space, and the processor in Rebecca’s PC runs faster than 1
GHz.” This conjunction can be expressed more simply as “Rebecca’s PC has more than 16 GB
free hard disk space, and its processor runs faster than 1 GHz.” For this conjunction to be true,
both conditions given must be true. It is false, when one or both of these conditions are false. ▲

DEFINITION 3 Let p and q be propositions. The disjunction of p and q, denoted by p ∨ q, is the proposition
“p or q.” The disjunction p ∨ q is false when both p and q are false and is true otherwise.

Table 3 displays the truth table for p ∨ q.

TABLE 2 The Truth Table for
the Conjunction of Two
Propositions.

p q p ∧ q

T T T

T F F

F T F

F F F

TABLE 3 The Truth Table for
the Disjunction of Two
Propositions.

p q p ∨ q

T T T

T F T

F T T

F F F

1.1 Propositional Logic 5

The use of the connective or in a disjunction corresponds to one of the two ways the word
or is used in English, namely, as an inclusive or. A disjunction is true when at least one of the
two propositions is true. For instance, the inclusive or is being used in the statement

“Students who have taken calculus or computer science can take this class.”

Here, we mean that students who have taken both calculus and computer science can take the
class, as well as the students who have taken only one of the two subjects. On the other hand,
we are using the exclusive or when we say

“Students who have taken calculus or computer science, but not both, can enroll in this
class.”

Here, we mean that students who have taken both calculus and a computer science course cannot
take the class. Only those who have taken exactly one of the two courses can take the class.

Similarly, when a menu at a restaurant states, “Soup or salad comes with an entrée,” the
restaurant almost always means that customers can have either soup or salad, but not both.
Hence, this is an exclusive, rather than an inclusive, or.

EXAMPLE 6 What is the disjunction of the propositions p and q where p and q are the same propositions as
in Example 5?

Solution: The disjunction of p and q, p ∨ q, is the proposition

“Rebecca’s PC has at least 16 GB free hard disk space, or the processor in Rebecca’s PC
runs faster than 1 GHz.”

This proposition is true when Rebecca’s PC has at least 16 GB free hard disk space, when the
PC’s processor runs faster than 1 GHz, and when both conditions are true. It is false when both
of these conditions are false, that is, when Rebecca’s PC has less than 16 GB free hard disk
space and the processor in her PC runs at 1 GHz or slower. ▲

As was previously remarked, the use of the connective or in a disjunction corresponds
to one of the two ways the word or is used in English, namely, in an inclusive way. Thus, a
disjunction is true when at least one of the two propositions in it is true. Sometimes, we use or

in an exclusive sense. When the exclusive or is used to connect the propositions p and q, the
proposition “p or q (but not both)” is obtained. This proposition is true when p is true and q is
false, and when p is false and q is true. It is false when both p and q are false and when both
are true.

GEORGE BOOLE (1815–1864) George Boole, the son of a cobbler, was born in Lincoln, England, in
November 1815. Because of his family’s difficult financial situation, Boole struggled to educate himself while
supporting his family. Nevertheless, he became one of the most important mathematicians of the 1800s.Although
he considered a career as a clergyman, he decided instead to go into teaching, and soon afterward opened a
school of his own. In his preparation for teaching mathematics, Boole—unsatisfied with textbooks of his day—
decided to read the works of the great mathematicians. While reading papers of the great French mathematician
Lagrange, Boole made discoveries in the calculus of variations, the branch of analysis dealing with finding
curves and surfaces by optimizing certain parameters.

In 1848 Boole published The Mathematical Analysis of Logic, the first of his contributions to symbolic logic.
In 1849 he was appointed professor of mathematics at Queen’s College in Cork, Ireland. In 1854 he published The Laws of Thought,
his most famous work. In this book, Boole introduced what is now called Boolean algebra in his honor. Boole wrote textbooks
on differential equations and on difference equations that were used in Great Britain until the end of the nineteenth century. Boole
married in 1855; his wife was the niece of the professor of Greek at Queen’s College. In 1864 Boole died from pneumonia, which
he contracted as a result of keeping a lecture engagement even though he was soaking wet from a rainstorm.

6 1 / The Foundations: Logic and Proofs

TABLE 4 The Truth Table for
the Exclusive Or of Two
Propositions.

p q p ⊕ q

T T F

T F T

F T T

F F F

TABLE 5 The Truth Table for
the Conditional Statement
p → q.

p q p → q

T T T

T F F

F T T

F F T

DEFINITION 4 Let p and q be propositions. The exclusive or of p and q, denoted by p ⊕ q, is the proposition
that is true when exactly one of p and q is true and is false otherwise.

The truth table for the exclusive or of two propositions is displayed in Table 4.

Conditional Statements

We will discuss several other important ways in which propositions can be combined.

DEFINITION 5 Let p and q be propositions. The conditional statement p → q is the proposition “if p, then
q.” The conditional statement p → q is false when p is true and q is false, and true otherwise.
In the conditional statement p → q, p is called the hypothesis (or antecedent or premise)
and q is called the conclusion (or consequence).

The statement p → q is called a conditional statement because p → q asserts that q is true
on the condition that p holds. A conditional statement is also called an implication.

The truth table for the conditional statement p → q is shown in Table 5. Note that the
statement p → q is true when both p and q are true and when p is false (no matter what truth
value q has).

Because conditional statements play such an essential role in mathematical reasoning, a
variety of terminology is used to express p → q. You will encounter most if not all of the
following ways to express this conditional statement:

“if p, then q” “p implies q”
“if p, q” “p only if q”
“p is sufficient for q” “a sufficient condition for q is p”
“q if p” “q whenever p”
“q when p” “q is necessary for p”
“a necessary condition for p is q” “q follows from p”
“q unless ¬p”

A useful way to understand the truth value of a conditional statement is to think of an
obligation or a contract. For example, the pledge many politicians make when running for office
is

“If I am elected, then I will lower taxes.”

1.1 Propositional Logic 7

If the politician is elected, voters would expect this politician to lower taxes. Furthermore, if the
politician is not elected, then voters will not have any expectation that this person will lower
taxes, although the person may have sufficient influence to cause those in power to lower taxes.
It is only when the politician is elected but does not lower taxes that voters can say that the
politician has broken the campaign pledge. This last scenario corresponds to the case when p

is true but q is false in p → q.
Similarly, consider a statement that a professor might make:

“If you get 100% on the final, then you will get an A.”

If you manage to get a 100% on the final, then you would expect to receive an A. If you do not
get 100% you may or may not receive an A depending on other factors. However, if you do get
100%, but the professor does not give you an A, you will feel cheated.

Of the various ways to express the conditional statement p → q, the two that seem to cause
the most confusion are “p only if q” and “q unless ¬p.” Consequently, we will provide some
guidance for clearing up this confusion.

To remember that “p only if q” expresses the same thing as “if p, then q,” note that “p only
if q” says that p cannot be true when q is not true. That is, the statement is false if p is true,
but q is false. When p is false, q may be either true or false, because the statement says nothing
about the truth value of q. Be careful not to use “q only if p” to express p → q because this is
incorrect. To see this, note that the true values of “q only if p” and p → q are different when
p and q have different truth values.

You might have trouble

understanding how

“unless” is used in

conditional statements

unless you read this

paragraph carefully.

To remember that “q unless ¬p” expresses the same conditional statement as “if p, then
q,” note that “q unless ¬p” means that if ¬p is false, then q must be true. That is, the statement
“q unless ¬p” is false when p is true but q is false, but it is true otherwise. Consequently,
“q unless ¬p” and p → q always have the same truth value.

We illustrate the translation between conditional statements and English statements in Ex-
ample 7.

EXAMPLE 7 Let p be the statement “Maria learns discrete mathematics” and q the statement “Maria will
find a good job.” Express the statement p → q as a statement in English.

Solution: From the definition of conditional statements, we see that when p is the statement
“Maria learns discrete mathematics” and q is the statement “Maria will find a good job,” p → q

represents the statement

“If Maria learns discrete mathematics, then she will find a good job.”

There are many other ways to express this conditional statement in English. Among the most
natural of these are:

“Maria will find a good job when she learns discrete mathematics.”

“For Maria to get a good job, it is sufficient for her to learn discrete mathematics.”

and

“Maria will find a good job unless she does not learn discrete mathematics.”

▲

Note that the way we have defined conditional statements is more general than the meaning
attached to such statements in the English language. For instance, the conditional statement in
Example 7 and the statement

“If it is sunny, then we will go to the beach.”

are statements used in normal language where there is a relationship between the hypothesis
and the conclusion. Further, the first of these statements is true unless Maria learns discrete
mathematics, but she does not get a good job, and the second is true unless it is indeed sunny,
but we do not go to the beach. On the other hand, the statement

8 1 / The Foundations: Logic and Proofs

“If Juan has a smartphone, then 2+ 3 = 5”

is true from the definition of a conditional statement, because its conclusion is true. (The truth
value of the hypothesis does not matter then.) The conditional statement

“If Juan has a smartphone, then 2+ 3 = 6”

is true if Juan does not have a smartphone, even though 2+ 3 = 6 is false. We would not use
these last two conditional statements in natural language (except perhaps in sarcasm), because
there is no relationship between the hypothesis and the conclusion in either statement. In math-
ematical reasoning, we consider conditional statements of a more general sort than we use in
English. The mathematical concept of a conditional statement is independent of a cause-and-
effect relationship between hypothesis and conclusion. Our definition of a conditional statement
specifies its truth values; it is not based on English usage. Propositional language is an artificial
language; we only parallel English usage to make it easy to use and remember.

The if-then construction used in many programming languages is different from that used
in logic. Most programming languages contain statements such as if p then S, where p is a
proposition andS is a program segment (one or more statements to be executed). When execution
of a program encounters such a statement, S is executed if p is true, but S is not executed if p
is false, as illustrated in Example 8.

EXAMPLE 8 What is the value of the variable x after the statement

if 2+ 2 = 4 then x := x + 1

if x = 0 before this statement is encountered? (The symbol := stands for assignment. The
statement x := x + 1 means the assignment of the value of x + 1 to x.)

Solution: Because 2+ 2 = 4 is true, the assignment statement x := x + 1 is executed. Hence,
x has the value 0+ 1 = 1 after this statement is encountered. ▲

CONVERSE, CONTRAPOSITIVE, AND INVERSE We can form some new conditional
statements starting with a conditional statement p → q. In particular, there are three related
conditional statements that occur so often that they have special names. The proposition q → p

is called the converse of p → q. The contrapositive of p → q is the proposition ¬q → ¬p.
The proposition ¬p → ¬q is called the inverse of p → q. We will see that of these three
conditional statements formed from p → q, only the contrapositive always has the same truth
value as p → q.

We first show that the contrapositive, ¬q → ¬p, of a conditional statement p → q always
has the same truth value as p → q. To see this, note that the contrapositive is false only when
¬p is false and ¬q is true, that is, only when p is true and q is false. We now show that neither
the converse, q → p, nor the inverse, ¬p → ¬q, has the same truth value as p → q for all
possible truth values of p and q. Note that when p is true and q is false, the original conditional
statement is false, but the converse and the inverse are both true.

Remember that the

contrapositive, but neither

the converse or inverse, of

a conditional statement is

equivalent to it.

When two compound propositions always have the same truth value we call them equiv-

alent, so that a conditional statement and its contrapositive are equivalent. The converse and
the inverse of a conditional statement are also equivalent, as the reader can verify, but neither is
equivalent to the original conditional statement. (We will study equivalent propositions in Sec-
tion 1.3.) Take note that one of the most common logical errors is to assume that the converse
or the inverse of a conditional statement is equivalent to this conditional statement.

We illustrate the use of conditional statements in Example 9.

1.1 Propositional Logic 9

EXAMPLE 9 What are the contrapositive, the converse, and the inverse of the conditional statement

“The home team wins whenever it is raining?”

Solution: Because “q whenever p” is one of the ways to express the conditional statement
p → q, the original statement can be rewritten as

“If it is raining, then the home team wins.”

Consequently, the contrapositive of this conditional statement is

“If the home team does not win, then it is not raining.”

The converse is

“If the home team wins, then it is raining.”

The inverse is

“If it is not raining, then the home team does not win.”

Only the contrapositive is equivalent to the original statement. ▲

BICONDITIONALS We now introduce another way to combine propositions that expresses
that two propositions have the same truth value.

DEFINITION 6 Let p and q be propositions. The biconditional statement p ↔ q is the proposition “p if
and only if q.” The biconditional statement p ↔ q is true when p and q have the same truth
values, and is false otherwise. Biconditional statements are also called bi-implications.

The truth table for p ↔ q is shown in Table 6. Note that the statement p ↔ q is true when both
the conditional statements p → q and q → p are true and is false otherwise. That is why we use
the words “if and only if” to express this logical connective and why it is symbolically written
by combining the symbols→ and←. There are some other common ways to express p ↔ q:

“p is necessary and sufficient for q”
“if p then q, and conversely”
“p iff q.”

The last way of expressing the biconditional statement p ↔ q uses the abbreviation “iff” for
“if and only if.” Note that p ↔ q has exactly the same truth value as (p → q) ∧ (q → p).

TABLE 6 The Truth Table for the
Biconditional p ↔ q.

p q p ↔ q

T T T

T F F

F T F

F F T

10 1 / The Foundations: Logic and Proofs

EXAMPLE 10 Let p be the statement “You can take the flight,” and let q be the statement “You buy a ticket.”
Then p ↔ q is the statement

“You can take the flight if and only if you buy a ticket.”

This statement is true if p and q are either both true or both false, that is, if you buy a ticket and
can take the flight or if you do not buy a ticket and you cannot take the flight. It is false when
p and q have opposite truth values, that is, when you do not buy a ticket, but you can take the
flight (such as when you get a free trip) and when you buy a ticket but you cannot take the flight
(such as when the airline bumps you). ▲

IMPLICIT USE OF BICONDITIONALS You should be aware that biconditionals are not
always explicit in natural language. In particular, the “if and only if” construction used in
biconditionals is rarely used in common language. Instead, biconditionals are often expressed
using an “if, then” or an “only if” construction. The other part of the “if and only if” is implicit.
That is, the converse is implied, but not stated. For example, consider the statement in English
“If you finish your meal, then you can have dessert.” What is really meant is “You can have
dessert if and only if you finish your meal.” This last statement is logically equivalent to the
two statements “If you finish your meal, then you can have dessert” and “You can have dessert
only if you finish your meal.” Because of this imprecision in natural language, we need to
make an assumption whether a conditional statement in natural language implicitly includes its
converse. Because precision is essential in mathematics and in logic, we will always distinguish
between the conditional statement p → q and the biconditional statement p ↔ q.

Truth Tables of Compound Propositions

We have now introduced four important logical connectives—conjunctions, disjunctions, con-
ditional statements, and biconditional statements—as well as negations. We can use these con-
nectives to build up complicated compound propositions involving any number of propositional
variables. We can use truth tables to determine the truth values of these compound propositions,
as Example 11 illustrates. We use a separate column to find the truth value of each compound
expression that occurs in the compound proposition as it is built up. The truth values of the
compound proposition for each combination of truth values of the propositional variables in it
is found in the final column of the table.

EXAMPLE 11 Construct the truth table of the compound proposition

(p ∨ ¬q)→ (p ∧ q).

Solution: Because this truth table involves two propositional variables p and q, there are four
rows in this truth table, one for each of the pairs of truth values TT, TF, FT, and FF. The first
two columns are used for the truth values of p and q, respectively. In the third column we find
the truth value of ¬q, needed to find the truth value of p ∨ ¬q, found in the fourth column. The
fifth column gives the truth value of p ∧ q. Finally, the truth value of (p ∨ ¬q)→ (p ∧ q) is
found in the last column. The resulting truth table is shown in Table 7. ▲

TABLE 7 The Truth Table of (p ∨ ¬ q) → (p ∧ q).

p q ¬q p ∨ ¬q p ∧ q (p ∨ ¬q) → (p ∧ q)

T T F T T T

T F T T F F

F T F F F T

F F T T F F

1.1 Propositional Logic 11

Precedence of Logical Operators

We can construct compound propositions using the negation operator and the logical operators
defined so far. We will generally use parentheses to specify the order in which logical operators
in a compound proposition are to be applied. For instance, (p ∨ q) ∧ (¬r) is the conjunction
of p ∨ q and ¬r . However, to reduce the number of parentheses, we specify that the negation
operator is applied before all other logical operators. This means that¬p ∧ q is the conjunction
of¬p and q, namely, (¬p) ∧ q, not the negation of the conjunction ofp and q, namely¬(p ∧ q).

Another general rule of precedence is that the conjunction operator takes precedence over
the disjunction operator, so that p ∧ q ∨ r means (p ∧ q) ∨ r rather than p ∧ (q ∨ r). Because
this rule may be difficult to remember, we will continue to use parentheses so that the order of
the disjunction and conjunction operators is clear.

TABLE 8
Precedence of
Logical Operators.

Operator Precedence

¬ 1

∧ 2

∨ 3

→ 4

↔ 5
Finally, it is an accepted rule that the conditional and biconditional operators → and ↔

have lower precedence than the conjunction and disjunction operators, ∧ and ∨. Consequently,
p ∨ q → r is the same as (p ∨ q)→ r . We will use parentheses when the order of the con-
ditional operator and biconditional operator is at issue, although the conditional operator has
precedence over the biconditional operator. Table 8 displays the precedence levels of the logical
operators, ¬, ∧, ∨,→, and↔.

Logic and Bit Operations

Computers represent information using bits. A bit is a symbol with two possible values, namely,
0 (zero) and 1 (one). This meaning of the word bit comes from binary digit, because zeros and
ones are the digits used in binary representations of numbers. The well-known statistician John
Tukey introduced this terminology in 1946. A bit can be used to represent a truth value, because
there are two truth values, namely, true and false. As is customarily done, we will use a 1 bit to
represent true and a 0 bit to represent false. That is, 1 represents T (true), 0 represents F (false). A
variable is called a Boolean variable if its value is either true or false. Consequently, a Boolean
variable can be represented using a bit.

Truth Value Bit

T 1

F 0

Computer bit operations correspond to the logical connectives. By replacing true by a one
and false by a zero in the truth tables for the operators ∧, ∨, and⊕, the tables shown in Table 9
for the corresponding bit operations are obtained. We will also use the notation OR, AND, and
XOR for the operators ∨,∧, and ⊕, as is done in various programming languages.

JOHN WILDER TUKEY (1915–2000) Tukey, born in New Bedford, Massachusetts, was an only child. His
parents, both teachers, decided home schooling would best develop his potential. His formal education began
at Brown University, where he studied mathematics and chemistry. He received a master’s degree in chemistry
from Brown and continued his studies at Princeton University, changing his field of study from chemistry to
mathematics. He received his Ph.D. from Princeton in 1939 for work in topology, when he was appointed an
instructor in mathematics at Princeton. With the start of World War II, he joined the Fire Control Research Office,
where he began working in statistics. Tukey found statistical research to his liking and impressed several leading
statisticians with his skills. In 1945, at the conclusion of the war, Tukey returned to the mathematics department
at Princeton as a professor of statistics, and he also took a position at AT&T Bell Laboratories. Tukey founded

the Statistics Department at Princeton in 1966 and was its first chairman. Tukey made significant contributions to many areas of
statistics, including the analysis of variance, the estimation of spectra of time series, inferences about the values of a set of parameters
from a single experiment, and the philosophy of statistics. However, he is best known for his invention, with J. W. Cooley, of the fast
Fourier transform. In addition to his contributions to statistics, Tukey was noted as a skilled wordsmith; he is credited with coining
the terms bit and software.

Tukey contributed his insight and expertise by serving on the President’s Science Advisory Committee. He chaired several
important committees dealing with the environment, education, and chemicals and health. He also served on committees working
on nuclear disarmament. Tukey received many awards, including the National Medal of Science.

HISTORICAL NOTE There were several other suggested words for a binary digit, including binit and bigit, that never were widely
accepted. The adoption of the word bit may be due to its meaning as a common English word. For an account of Tukey’s coining
of the word bit, see the April 1984 issue of Annals of the History of Computing.

12 1 / The Foundations: Logic and Proofs

TABLE 9 Table for the Bit Operators OR,
AND, and XOR.

x y x ∨ y x ∧ y x ⊕ y

0 0 0 0 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 0

Information is often represented using bit strings, which are lists of zeros and ones. When
this is done, operations on the bit strings can be used to manipulate this information.

DEFINITION 7 A bit string is a sequence of zero or more bits. The length of this string is the number of bits
in the string.

EXAMPLE 12 101010011 is a bit string of length nine. ▲

We can extend bit operations to bit strings. We define the bitwise OR, bitwise AND, and
bitwise XOR of two strings of the same length to be the strings that have as their bits the OR,
AND, and XOR of the corresponding bits in the two strings, respectively. We use the symbols
∨,∧, and⊕ to represent the bitwise OR, bitwise AND, and bitwise XOR operations, respectively.
We illustrate bitwise operations on bit strings with Example 13.

EXAMPLE 13 Find the bitwise OR, bitwise AND, and bitwise XOR of the bit strings 01 1011 0110 and
11 0001 1101. (Here, and throughout this book, bit strings will be split into blocks of four
bits to make them easier to read.)

Solution: The bitwise OR, bitwise AND, and bitwise XOR of these strings are obtained by taking
the OR, AND, and XOR of the corresponding bits, respectively. This gives us

01 1011 0110
11 0001 1101

11 1011 1111 bitwise OR

01 0001 0100 bitwise AND

10 1010 1011 bitwise XOR

▲
Exercises

1. Which of these sentences are propositions? What are the
truth values of those that are propositions?

a) Boston is the capital of Massachusetts.

b) Miami is the capital of Florida.

c) 2+ 3 = 5.

d) 5+ 7 = 10.

e) x + 2 = 11.

f) Answer this question.

2. Which of these are propositions?What are the truth values
of those that are propositions?

a) Do not pass go.

b) What time is it?

c) There are no black flies in Maine.

d) 4+ x = 5.

e) The moon is made of green cheese.

f) 2n ≥ 100.

3. What is the negation of each of these propositions?

a) Mei has an MP3 player.

b) There is no pollution in New Jersey.

c) 2+ 1 = 3.

d) The summer in Maine is hot and sunny.

4. What is the negation of each of these propositions?

a) Jennifer and Teja are friends.

b) There are 13 items in a baker’s dozen.

c) Abby sent more than 100 text messages every day.

d) 121 is a perfect square.

1.1 Propositional Logic 13

5. What is the negation of each of these propositions?

a) Steve has more than 100 GB free disk space on his
laptop.

b) Zach blocks e-mails and texts from Jennifer.
c) 7 · 11 · 13 = 999.
d) Diane rode her bicycle 100 miles on Sunday.

6. Suppose that SmartphoneA has 256 MB RAM and 32 GB
ROM, and the resolution of its camera is 8 MP; Smart-
phone B has 288 MB RAM and 64 GB ROM, and the
resolution of its camera is 4 MP; and Smartphone C has
128 MB RAM and 32 GB ROM, and the resolution of
its camera is 5 MP. Determine the truth value of each of
these propositions.

a) Smartphone B has the most RAM of these three smart-
phones.

b) Smartphone C has more ROM or a higher resolution
camera than Smartphone B.

c) Smartphone B has more RAM, more ROM, and a
higher resolution camera than Smartphone A.

d) If Smartphone B has more RAM and more ROM than
Smartphone C, then it also has a higher resolution
camera.

e) Smartphone A has more RAM than Smartphone B if
and only if Smartphone B has more RAM than Smart-
phone A.

7. Suppose that during the most recent fiscal year, the an-
nual revenue of Acme Computer was 138 billion dollars
and its net profit was 8 billion dollars, the annual revenue
of Nadir Software was 87 billion dollars and its net profit
was 5 billion dollars, and the annual revenue of Quixote
Media was 111 billion dollars and its net profit was
13 billion dollars. Determine the truth value of each of
these propositions for the most recent fiscal year.

a) Quixote Media had the largest annual revenue.
b) Nadir Software had the lowest net profit and Acme

Computer had the largest annual revenue.
c) Acme Computer had the largest net profit or Quixote

Media had the largest net profit.
d) If Quixote Media had the smallest net profit, then

Acme Computer had the largest annual revenue.
e) Nadir Software had the smallest net profit if and only

if Acme Computer had the largest annual revenue.

8. Let p and q be the propositions

p : I bought a lottery ticket this week.
q : I won the million dollar jackpot.

Express each of these propositions as an English sen-
tence.

a) ¬p b) p ∨ q c) p → q

d) p ∧ q e) p ↔ q f) ¬p → ¬q
g) ¬p ∧ ¬q h) ¬p ∨ (p ∧ q)

9. Let p and q be the propositions “Swimming at the New
Jersey shore is allowed” and “Sharks have been spotted
near the shore,” respectively. Express each of these com-
pound propositions as an English sentence.

a) ¬q b) p ∧ q c) ¬p ∨ q

d) p → ¬q e) ¬q → p f) ¬p → ¬q
g) p ↔ ¬q h) ¬p ∧ (p ∨ ¬q)

10. Let p and q be the propositions “The election is decided”
and “The votes have been counted,” respectively. Express
each of these compound propositions as an English sen-
tence.

a) ¬p b) p ∨ q

c) ¬p ∧ q d) q → p

e) ¬q → ¬p f) ¬p → ¬q
g) p ↔ q h) ¬q ∨ (¬p ∧ q)

11. Let p and q be the propositions

p : It is below freezing.
q : It is snowing.

Write these propositions using p and q and logical con-
nectives (including negations).

a) It is below freezing and snowing.
b) It is below freezing but not snowing.
c) It is not below freezing and it is not snowing.
d) It is either snowing or below freezing (or both).
e) If it is below freezing, it is also snowing.
f) Either it is below freezing or it is snowing, but it is

not snowing if it is below freezing.
g) That it is below freezing is necessary and sufficient

for it to be snowing.

12. Let p, q, and r be the propositions

p :You have the flu.
q :You miss the final examination.
r :You pass the course.

Express each of these propositions as an English sen-
tence.

a) p → q b) ¬q ↔ r

c) q → ¬r d) p ∨ q ∨ r

e) (p → ¬r) ∨ (q → ¬r)
f) (p ∧ q) ∨ (¬q ∧ r)

13. Let p and q be the propositions

p :You drive over 65 miles per hour.
q :You get a speeding ticket.

Write these propositions using p and q and logical con-
nectives (including negations).

a) You do not drive over 65 miles per hour.
b) You drive over 65 miles per hour, but you do not get

a speeding ticket.
c) You will get a speeding ticket if you drive over

65 miles per hour.
d) If you do not drive over 65 miles per hour, then you

will not get a speeding ticket.
e) Driving over 65 miles per hour is sufficient for getting

a speeding ticket.
f) You get a speeding ticket, but you do not drive over

65 miles per hour.
g) Whenever you get a speeding ticket, you are driving

over 65 miles per hour.

14. Let p, q, and r be the propositions

p :You get an A on the final exam.
q :You do every exercise in this book.
r :You get an A in this class.

Write these propositions using p, q, and r and logical
connectives (including negations).

14 1 / The Foundations: Logic and Proofs

a) You get an A in this class, but you do not do every
exercise in this book.

b) You get an A on the final, you do every exercise in this
book, and you get an A in this class.

c) To get an A in this class, it is necessary for you to get
an A on the final.

d) You get an A on the final, but you don’t do every ex-
ercise in this book; nevertheless, you get an A in this
class.

e) Getting an A on the final and doing every exercise in
this book is sufficient for getting an A in this class.

f) You will get an A in this class if and only if you either
do every exercise in this book or you get an A on the
final.

15. Let p, q, and r be the propositions

p : Grizzly bears have been seen in the area.
q : Hiking is safe on the trail.
r : Berries are ripe along the trail.

Write these propositions using p, q, and r and logical
connectives (including negations).

a) Berries are ripe along the trail, but grizzly bears have
not been seen in the area.

b) Grizzly bears have not been seen in the area and hik-
ing on the trail is safe, but berries are ripe along the
trail.

c) If berries are ripe along the trail, hiking is safe if and
only if grizzly bears have not been seen in the area.

d) It is not safe to hike on the trail, but grizzly bears have
not been seen in the area and the berries along the trail
are ripe.

e) For hiking on the trail to be safe, it is necessary but not
sufficient that berries not be ripe along the trail and
for grizzly bears not to have been seen in the area.

f) Hiking is not safe on the trail whenever grizzly bears
have been seen in the area and berries are ripe along
the trail.

16. Determine whether these biconditionals are true or
false.

a) 2+ 2 = 4 if and only if 1+ 1 = 2.
b) 1+ 1 = 2 if and only if 2+ 3 = 4.
c) 1+ 1 = 3 if and only if monkeys can fly.
d) 0 > 1 if and only if 2 > 1.

17. Determine whether each of these conditional statements
is true or false.

a) If 1+ 1 = 2, then 2+ 2 = 5.
b) If 1+ 1 = 3, then 2+ 2 = 4.
c) If 1+ 1 = 3, then 2+ 2 = 5.
d) If monkeys can fly, then 1+ 1 = 3.

18. Determine whether each of these conditional statements
is true or false.

a) If 1+ 1 = 3, then unicorns exist.
b) If 1+ 1 = 3, then dogs can fly.
c) If 1+ 1 = 2, then dogs can fly.
d) If 2+ 2 = 4, then 1+ 2 = 3.

19. For each of these sentences, determine whether an in-
clusive or, or an exclusive or, is intended. Explain your
answer.

a) Coffee or tea comes with dinner.

b) A password must have at least three digits or be at
least eight characters long.

c) The prerequisite for the course is a course in number
theory or a course in cryptography.

d) You can pay using U.S. dollars or euros.

20. For each of these sentences, determine whether an in-
clusive or, or an exclusive or, is intended. Explain your
answer.

a) Experience with C++ or Java is required.

b) Lunch includes soup or salad.

c) To enter the country you need a passport or a voter
registration card.

d) Publish or perish.

21. For each of these sentences, state what the sentence means
if the logical connective or is an inclusive or (that is, a dis-
junction) versus an exclusive or. Which of these meanings
of or do you think is intended?

a) To take discrete mathematics, you must have taken
calculus or a course in computer science.

b) When you buy a new car fromAcme Motor Company,
you get $2000 back in cash or a 2% car loan.

c) Dinner for two includes two items from column A or
three items from column B.

d) School is closed if more than 2 feet of snow falls or if
the wind chill is below −100.

22. Write each of these statements in the form “if p, then q”
in English. [Hint: Refer to the list of common ways to ex-
press conditional statements provided in this section.]

a) It is necessary to wash the boss’s car to get promoted.

b) Winds from the south imply a spring thaw.

c) A sufficient condition for the warranty to be good is
that you bought the computer less than a year ago.

d) Willy gets caught whenever he cheats.

e) You can access the website only if you pay a subscrip-
tion fee.

f) Getting elected follows from knowing the right peo-
ple.

g) Carol gets seasick whenever she is on a boat.

23. Write each of these statements in the form “if p, then q”
in English. [Hint: Refer to the list of common ways to
express conditional statements.]

a) It snows whenever the wind blows from the northeast.

b) The apple trees will bloom if it stays warm for a week.

c) That the Pistons win the championship implies that
they beat the Lakers.

d) It is necessary to walk 8 miles to get to the top of
Long’s Peak.

e) To get tenure as a professor, it is sufficient to be world-
famous.

f) If you drive more than 400 miles, you will need to buy
gasoline.

g) Your guarantee is good only if you bought your CD
player less than 90 days ago.

h) Jan will go swimming unless the water is too cold.

1.1 Propositional Logic 15

24. Write each of these statements in the form “if p, then q”
in English. [Hint: Refer to the list of common ways to ex-
press conditional statements provided in this section.]

a) I will remember to send you the address only if you
send me an e-mail message.

b) To be a citizen of this country, it is sufficient that you
were born in the United States.

c) If you keep your textbook, it will be a useful reference
in your future courses.

d) The Red Wings will win the Stanley Cup if their goalie
plays well.

e) That you get the job implies that you had the best
credentials.

f) The beach erodes whenever there is a storm.
g) It is necessary to have a valid password to log on to

the server.
h) You will reach the summit unless you begin your climb

too late.

25. Write each of these propositions in the form “p if and
only if q” in English.

a) If it is hot outside you buy an ice cream cone, and if
you buy an ice cream cone it is hot outside.

b) For you to win the contest it is necessary and sufficient
that you have the only winning ticket.

c) You get promoted only if you have connections, and
you have connections only if you get promoted.

d) If you watch television your mind will decay, and con-
versely.

e) The trains run late on exactly those days when I take
it.

26. Write each of these propositions in the form “p if and
only if q” in English.

a) For you to get an A in this course, it is necessary and
sufficient that you learn how to solve discrete mathe-
matics problems.

b) If you read the newspaper every day, you will be in-
formed, and conversely.

c) It rains if it is a weekend day, and it is a weekend day
if it rains.

d) You can see the wizard only if the wizard is not in,
and the wizard is not in only if you can see him.

27. State the converse, contrapositive, and inverse of each of
these conditional statements.

a) If it snows today, I will ski tomorrow.
b) I come to class whenever there is going to be a quiz.
c) A positive integer is a prime only if it has no divisors

other than 1 and itself.

28. State the converse, contrapositive, and inverse of each of
these conditional statements.

a) If it snows tonight, then I will stay at home.
b) I go to the beach whenever it is a sunny summer day.
c) When I stay up late, it is necessary that I sleep until

noon.

29. How many rows appear in a truth table for each of these
compound propositions?

a) p → ¬p
b) (p ∨ ¬r) ∧ (q ∨ ¬s)

c) q ∨ p ∨ ¬s ∨ ¬r ∨ ¬t ∨ u

d) (p ∧ r ∧ t)↔ (q ∧ t)

30. How many rows appear in a truth table for each of these
compound propositions?

a) (q → ¬p) ∨ (¬p → ¬q)
b) (p ∨ ¬t) ∧ (p ∨ ¬s)
c) (p → r) ∨ (¬s → ¬t) ∨ (¬u→ v)

d) (p ∧ r ∧ s) ∨ (q ∧ t) ∨ (r ∧ ¬t)
31. Construct a truth table for each of these compound propo-

sitions.

a) p ∧ ¬p b) p ∨ ¬p
c) (p ∨ ¬q)→ q d) (p ∨ q)→ (p ∧ q)

e) (p → q)↔ (¬q → ¬p)
f) (p → q)→ (q → p)

32. Construct a truth table for each of these compound propo-
sitions.

a) p → ¬p b) p ↔ ¬p
c) p ⊕ (p ∨ q) d) (p ∧ q)→ (p ∨ q)

e) (q → ¬p)↔ (p ↔ q)

f) (p ↔ q)⊕ (p ↔ ¬q)
33. Construct a truth table for each of these compound propo-

sitions.

a) (p ∨ q)→ (p ⊕ q) b) (p ⊕ q)→ (p ∧ q)

c) (p ∨ q)⊕ (p ∧ q) d) (p ↔ q)⊕ (¬p ↔ q)

e) (p ↔ q)⊕ (¬p ↔ ¬r)
f) (p ⊕ q)→ (p ⊕¬q)

34. Construct a truth table for each of these compound propo-
sitions.

a) p ⊕ p b) p ⊕¬p
c) p ⊕¬q d) ¬p ⊕¬q
e) (p ⊕ q) ∨ (p ⊕¬q) f) (p ⊕ q) ∧ (p ⊕¬q)

35. Construct a truth table for each of these compound propo-
sitions.

a) p → ¬q b) ¬p ↔ q

c) (p → q) ∨ (¬p → q) d) (p → q) ∧ (¬p → q)

e) (p ↔ q) ∨ (¬p ↔ q)

f) (¬p ↔ ¬q)↔ (p ↔ q)

36. Construct a truth table for each of these compound propo-
sitions.

a) (p ∨ q) ∨ r b) (p ∨ q) ∧ r

c) (p ∧ q) ∨ r d) (p ∧ q) ∧ r

e) (p ∨ q) ∧ ¬r f) (p ∧ q) ∨ ¬r
37. Construct a truth table for each of these compound propo-

sitions.

a) p → (¬q ∨ r)

b) ¬p → (q → r)

c) (p → q) ∨ (¬p → r)

d) (p → q) ∧ (¬p → r)

e) (p ↔ q) ∨ (¬q ↔ r)

f) (¬p ↔ ¬q)↔ (q ↔ r)

38. Construct a truth table for ((p → q)→ r)→ s.

39. Construct a truth table for (p ↔ q)↔ (r ↔ s).

16 1 / The Foundations: Logic and Proofs

40. Explain, without using a truth table, why (p ∨ ¬q) ∧
(q ∨ ¬r) ∧ (r ∨ ¬p) is true when p, q, and r have the
same truth value and it is false otherwise.

41. Explain, without using a truth table, why (p ∨ q ∨ r) ∧
(¬p ∨ ¬q ∨ ¬r) is true when at least one of p, q, and r

is true and at least one is false, but is false when all three
variables have the same truth value.

42. What is the value of x after each of these statements is
encountered in a computer program, if x = 1 before the
statement is reached?

a) if x + 2 = 3 then x := x + 1
b) if (x + 1 = 3) OR (2x + 2 = 3) then x := x + 1
c) if (2x + 3 = 5) AND (3x + 4 = 7) then x := x + 1
d) if (x + 1 = 2) XOR (x + 2 = 3) then x := x + 1
e) if x < 2 then x := x + 1

43. Find the bitwise OR, bitwise AND, and bitwise XOR of
each of these pairs of bit strings.

a) 101 1110, 010 0001
b) 1111 0000, 1010 1010
c) 00 0111 0001, 10 0100 1000
d) 11 1111 1111, 00 0000 0000

44. Evaluate each of these expressions.

a) 1 1000 ∧ (0 1011 ∨ 1 1011)
b) (0 1111 ∧ 1 0101) ∨ 0 1000
c) (0 1010 ⊕ 1 1011) ⊕ 0 1000
d) (1 1011 ∨ 0 1010) ∧ (1 0001 ∨ 1 1011)

Fuzzy logic is used in artificial intelligence. In fuzzy logic, a
proposition has a truth value that is a number between 0 and 1,
inclusive.A proposition with a truth value of 0 is false and one
with a truth value of 1 is true. Truth values that are between 0
and 1 indicate varying degrees of truth. For instance, the truth
value 0.8 can be assigned to the statement “Fred is happy,”

because Fred is happy most of the time, and the truth value
0.4 can be assigned to the statement “John is happy,” because
John is happy slightly less than half the time. Use these truth
values to solve Exercises 45–47.

45. The truth value of the negation of a proposition in fuzzy
logic is 1 minus the truth value of the proposition. What
are the truth values of the statements “Fred is not happy”
and “John is not happy?”

46. The truth value of the conjunction of two propositions in
fuzzy logic is the minimum of the truth values of the two
propositions. What are the truth values of the statements
“Fred and John are happy” and “Neither Fred nor John is
happy?”

47. The truth value of the disjunction of two propositions in
fuzzy logic is the maximum of the truth values of the two
propositions. What are the truth values of the statements
“Fred is happy, or John is happy” and “Fred is not happy,
or John is not happy?”

∗48. Is the assertion “This statement is false” a proposition?
∗49. The nth statement in a list of 100 statements is “Exactly

n of the statements in this list are false.”

a) What conclusions can you draw from these state-
ments?

b) Answer part (a) if the nth statement is “At least n of
the statements in this list are false.”

c) Answer part (b) assuming that the list contains 99
statements.

50. An ancient Sicilian legend says that the barber in a remote
town who can be reached only by traveling a dangerous
mountain road shaves those people, and only those peo-
ple, who do not shave themselves. Can there be such a
barber?

1.2 Applications of Propositional Logic

Introduction

Logic has many important applications to mathematics, computer science, and numerous other
disciplines. Statements in mathematics and the sciences and in natural language often are im-
precise or ambiguous. To make such statements precise, they can be translated into the language
of logic. For example, logic is used in the specification of software and hardware, because these
specifications need to be precise before development begins. Furthermore, propositional logic
and its rules can be used to design computer circuits, to construct computer programs, to verify
the correctness of programs, and to build expert systems. Logic can be used to analyze and
solve many familiar puzzles. Software systems based on the rules of logic have been developed
for constructing some, but not all, types of proofs automatically. We will discuss some of these
applications of propositional logic in this section and in later chapters.

Translating English Sentences

There are many reasons to translate English sentences into expressions involving propositional
variables and logical connectives. In particular, English (and every other human language) is

1.2 Applications of Propositional Logic 17

often ambiguous. Translating sentences into compound statements (and other types of logical
expressions, which we will introduce later in this chapter) removes the ambiguity. Note that
this may involve making a set of reasonable assumptions based on the intended meaning of the
sentence. Moreover, once we have translated sentences from English into logical expressions
we can analyze these logical expressions to determine their truth values, we can manipulate
them, and we can use rules of inference (which are discussed in Section 1.6) to reason about
them.

To illustrate the process of translating an English sentence into a logical expression, consider
Examples 1 and 2.

EXAMPLE 1 How can this English sentence be translated into a logical expression?

“You can access the Internet from campus only if you are a computer science major or you
are not a freshman.”

Solution: There are many ways to translate this sentence into a logical expression. Although it is
possible to represent the sentence by a single propositional variable, such as p, this would not be
useful when analyzing its meaning or reasoning with it. Instead, we will use propositional vari-
ables to represent each sentence part and determine the appropriate logical connectives between
them. In particular, we let a, c, and f represent “You can access the Internet from campus,”
“You are a computer science major,” and “You are a freshman,” respectively. Noting that “only
if” is one way a conditional statement can be expressed, this sentence can be represented as

a → (c ∨ ¬f). ▲

EXAMPLE 2 How can this English sentence be translated into a logical expression?

“You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16
years old.”

Solution: Let q, r , and s represent “You can ride the roller coaster,” “You are under 4 feet tall,”
and “You are older than 16 years old,” respectively. Then the sentence can be translated to

(r ∧ ¬s)→ ¬q.

Of course, there are other ways to represent the original sentence as a logical expression,
but the one we have used should meet our needs. ▲
System Specifications

Translating sentences in natural language (such as English) into logical expressions is an essential
part of specifying both hardware and software systems. System and software engineers take
requirements in natural language and produce precise and unambiguous specifications that can
be used as the basis for system development. Example 3 shows how compound propositions
can be used in this process.

EXAMPLE 3 Express the specification “The automated reply cannot be sent when the file system is full”
using logical connectives.

Solution: One way to translate this is to let p denote “The automated reply can be sent” and
q denote “The file system is full.” Then ¬p represents “It is not the case that the automated

18 1 / The Foundations: Logic and Proofs

reply can be sent,” which can also be expressed as “The automated reply cannot be sent.”
Consequently, our specification can be represented by the conditional statement q → ¬p. ▲

System specifications should be consistent, that is, they should not contain conflicting
requirements that could be used to derive a contradiction. When specifications are not consistent,
there would be no way to develop a system that satisfies all specifications.

EXAMPLE 4 Determine whether these system specifications are consistent:

“The diagnostic message is stored in the buffer or it is retransmitted.”
“The diagnostic message is not stored in the buffer.”
“If the diagnostic message is stored in the buffer, then it is retransmitted.”

Solution: To determine whether these specifications are consistent, we first express them using
logical expressions. Let p denote “The diagnostic message is stored in the buffer” and let q

denote “The diagnostic message is retransmitted.” The specifications can then be written as
p ∨ q, ¬p, and p → q. An assignment of truth values that makes all three specifications true
must have p false to make ¬p true. Because we want p ∨ q to be true but p must be false,
q must be true. Because p → q is true when p is false and q is true, we conclude that these
specifications are consistent, because they are all true when p is false and q is true. We could
come to the same conclusion by use of a truth table to examine the four possible assignments
of truth values to p and q. ▲

EXAMPLE 5 Do the system specifications in Example 4 remain consistent if the specification “The diagnostic
message is not retransmitted” is added?

Solution: By the reasoning in Example 4, the three specifications from that example are true
only in the case when p is false and q is true. However, this new specification is ¬q, which is
false when q is true. Consequently, these four specifications are inconsistent. ▲

Boolean Searches

Logical connectives are used extensively in searches of large collections of information, such
as indexes of Web pages. Because these searches employ techniques from propositional logic,
they are called Boolean searches.

In Boolean searches, the connective AND is used to match records that contain both of
two search terms, the connective OR is used to match one or both of two search terms, and the
connective NOT (sometimes written as AND NOT) is used to exclude a particular search term.
Careful planning of how logical connectives are used is often required when Boolean searches
are used to locate information of potential interest. Example 6 illustrates how Boolean searches
are carried out.

EXAMPLE 6 Web Page Searching Most Web search engines support Boolean searching techniques, which
usually can help find Web pages about particular subjects. For instance, using Boolean searching
to find Web pages about universities in New Mexico, we can look for pages matching NEW
AND MEXICO AND UNIVERSITIES. The results of this search will include those pages that
contain the three words NEW, MEXICO, and UNIVERSITIES. This will include all of the
pages of interest, together with others such as a page about new universities in Mexico. (Note
that in Google, and many other search engines, the word “AND” is not needed, although it is
understood, because all search terms are included by default. These search engines also support
the use of quotation marks to search for specific phrases. So, it may be more effective to search
for pages matching “New Mexico” AND UNIVERSITIES.)

1.2 Applications of Propositional Logic 19

Next, to find pages that deal with universities in New Mexico or Arizona, we can search
for pages matching (NEW AND MEXICO OR ARIZONA) AND UNIVERSITIES. (Note: Here
the AND operator takes precedence over the OR operator. Also, in Google, the terms used for
this search would be NEW MEXICO OR ARIZONA.) The results of this search will include
all pages that contain the word UNIVERSITIES and either both the words NEW and MEXICO
or the word ARIZONA. Again, pages besides those of interest will be listed. Finally, to find
Web pages that deal with universities in Mexico (and not New Mexico), we might first look
for pages matching MEXICO AND UNIVERSITIES, but because the results of this search will
include pages about universities in New Mexico, as well as universities in Mexico, it might be
better to search for pages matching (MEXICO AND UNIVERSITIES) NOT NEW. The results
of this search include pages that contain both the words MEXICO and UNIVERSITIES but
do not contain the word NEW. (In Google, and many other search engines, the word “NOT” is
replaced by the symbol “-”. In Google, the terms used for this last search would be MEXICO
UNIVERSITIES -NEW.) ▲

Logic Puzzles

Puzzles that can be solved using logical reasoning are known as logic puzzles. Solving logic
puzzles is an excellent way to practice working with the rules of logic. Also, computer programs
designed to carry out logical reasoning often use well-known logic puzzles to illustrate their
capabilities. Many people enjoy solving logic puzzles, published in periodicals, books, and on
the Web, as a recreational activity.

We will discuss two logic puzzles here. We begin with a puzzle originally posed by Raymond
Smullyan, a master of logic puzzles, who has published more than a dozen books containing
challenging puzzles that involve logical reasoning. In Section 1.3 we will also discuss the
extremely popular logic puzzle Sudoku.

EXAMPLE 7 In [Sm78] Smullyan posed many puzzles about an island that has two kinds of inhabitants,
knights, who always tell the truth, and their opposites, knaves, who always lie. You encounter
two people A and B. What are A and B if A says “B is a knight” and B says “The two of us are
opposite types?”

Solution: Let p and q be the statements that A is a knight and B is a knight, respectively, so that
¬p and ¬q are the statements that A is a knave and B is a knave, respectively.

We first consider the possibility that A is a knight; this is the statement that p is true. If A is
a knight, then he is telling the truth when he says that B is a knight, so that q is true, and A and B

are the same type. However, if B is a knight, then B’s statement that A and B are of opposite
types, the statement (p ∧ ¬q) ∨ (¬p ∧ q), would have to be true, which it is not, because A

and B are both knights. Consequently, we can conclude that A is not a knight, that is, that p is
false.

If A is a knave, then because everything a knave says is false, A’s statement that B is
a knight, that is, that q is true, is a lie. This means that q is false and B is also a knave.
Furthermore, if B is a knave, then B’s statement that A and B are opposite types is a lie,
which is consistent with both A and B being knaves. We can conclude that both A and B are
knaves. ▲

We pose more of Smullyan’s puzzles about knights and knaves in Exercises 19–23. In
Exercises 24–31 we introduce related puzzles where we have three types of people, knights and
knaves as in this puzzle together with spies who can lie.

Next, we pose a puzzle known as themuddy children puzzle for the case of two children.

20 1 / The Foundations: Logic and Proofs

EXAMPLE 8 A father tells his two children, a boy and a girl, to play in their backyard without getting dirty.
However, while playing, both children get mud on their foreheads. When the children stop
playing, the father says “At least one of you has a muddy forehead,” and then asks the children
to answer “Yes” or “No” to the question: “Do you know whether you have a muddy forehead?”
The father asks this question twice. What will the children answer each time this question is
asked, assuming that a child can see whether his or her sibling has a muddy forehead, but cannot
see his or her own forehead? Assume that both children are honest and that the children answer
each question simultaneously.

Solution: Let s be the statement that the son has a muddy forehead and let d be the statement that
the daughter has a muddy forehead. When the father says that at least one of the two children
has a muddy forehead, he is stating that the disjunction s ∨ d is true. Both children will answer
“No” the first time the question is asked because each sees mud on the other child’s forehead.
That is, the son knows that d is true, but does not know whether s is true, and the daughter
knows that s is true, but does not know whether d is true.

After the son has answered “No” to the first question, the daughter can determine that d
must be true. This follows because when the first question is asked, the son knows that s ∨ d is
true, but cannot determine whether s is true. Using this information, the daughter can conclude
that d must be true, for if d were false, the son could have reasoned that because s ∨ d is true,
then s must be true, and he would have answered “Yes” to the first question. The son can reason
in a similar way to determine that s must be true. It follows that both children answer “Yes” the
second time the question is asked. ▲

Logic Circuits

Propositional logic can be applied to the design of computer hardware. This was first observed
in 1938 by Claude Shannon in his MIT master’s thesis. In Chapter 12 we will study this topic
in depth. (See that chapter for a biography of Shannon.) We give a brief introduction to this
application here.

A logic circuit (or digital circuit) receives input signals p1, p2, . . . , pn, each a bit [either
0 (off) or 1 (on)], and produces output signals s1, s2, . . . , sn, each a bit. In this section we will

In Chapter 12 we design

some useful circuits.

restrict our attention to logic circuits with a single output signal; in general, digital circuits may
have multiple outputs.

RAYMOND SMULLYAN (BORN 1919) Raymond Smullyan dropped out of high school. He wanted to study
what he was really interested in and not standard high school material. After jumping from one university to
the next, he earned an undergraduate degree in mathematics at the University of Chicago in 1955. He paid
his college expenses by performing magic tricks at parties and clubs. He obtained a Ph.D. in logic in 1959 at
Princeton, studying under Alonzo Church. After graduating from Princeton, he taught mathematics and logic at
Dartmouth College, Princeton University, Yeshiva University, and the City University of New York. He joined
the philosophy department at Indiana University in 1981 where he is now an emeritus professor.

Smullyan has written many books on recreational logic and mathematics, including Satan, Cantor, and
Infinity; What Is the Name of This Book?; The Lady or the Tiger?; Alice in Puzzleland; To Mock a Mockingbird;

Forever Undecided; and The Riddle of Scheherazade: Amazing Logic Puzzles, Ancient and Modern. Because his logic puzzles are
challenging, entertaining, and thought-provoking, he is considered to be a modern-day Lewis Carroll. Smullyan has also written
several books about the application of deductive logic to chess, three collections of philosophical essays and aphorisms, and several
advanced books on mathematical logic and set theory. He is particularly interested in self-reference and has worked on extending
some of Gödel’s results that show that it is impossible to write a computer program that can solve all mathematical problems. He is
also particularly interested in explaining ideas from mathematical logic to the public.

Smullyan is a talented musician and often plays piano with his wife, who is a concert-level pianist. Making telescopes is one
of his hobbies. He is also interested in optics and stereo photography. He states “I’ve never had a conflict between teaching and
research as some people do because when I’m teaching, I’m doing research.” Smullyan is the subject of a documentary short film
entitled This Film Needs No Title.

1.2 Applications of Propositional Logic 21

p
p ∨ q

q

p

q

p p ∧ q

Inverter OR gate AND gate

¬p

FIGURE 1 Basic logic gates.

(p ∧ ¬q) ∨ ¬rq

p p ∧ ¬q

¬q

r
¬r

FIGURE 2 A combinatorial circuit.

Complicated digital circuits can be constructed from three basic circuits, called gates, shown
in Figure 1. The inverter, or NOT gate, takes an input bit p, and produces as output ¬p. The
OR gate takes two input signals p and q, each a bit, and produces as output the signal p ∨ q.
Finally, the AND gate takes two input signals p and q, each a bit, and produces as output the
signal p ∧ q. We use combinations of these three basic gates to build more complicated circuits,
such as that shown in Figure 2.

Given a circuit built from the basic logic gates and the inputs to the circuit, we determine
the output by tracing through the circuit, as Example 9 shows.

EXAMPLE 9 Determine the output for the combinatorial circuit in Figure 2.

Solution: In Figure 2 we display the output of each logic gate in the circuit. We see that the AND
gate takes input of p and ¬q, the output of the inverter with input q, and produces p ∧ ¬q.
Next, we note that the OR gate takes input p ∧ ¬q and ¬r , the output of the inverter with
input r , and produces the final output (p ∧ ¬q) ∨ ¬r . ▲

Suppose that we have a formula for the output of a digital circuit in terms of negations,
disjunctions, and conjunctions. Then, we can systematically build a digital circuit with the
desired output, as illustrated in Example 10.

EXAMPLE 10 Build a digital circuit that produces the output (p ∨ ¬r) ∧ (¬p ∨ (q ∨ ¬r)) when given input
bits p, q, and r .

Solution: To construct the desired circuit, we build separate circuits for p ∨ ¬r and for ¬p ∨
(q ∨ ¬r) and combine them using an AND gate. To construct a circuit for p ∨ ¬r , we use an
inverter to produce ¬r from the input r . Then, we use an OR gate to combine p and ¬r . To
build a circuit for¬p ∨ (q ∨ ¬r), we first use an inverter to obtain¬r . Then we use an OR gate
with inputs q and ¬r to obtain q ∨ ¬r . Finally, we use another inverter and an OR gate to get
¬p ∨ (q ∨ ¬r) from the inputs p and q ∨ ¬r .

To complete the construction, we employ a final AND gate, with inputs p ∨ ¬r and ¬p ∨
(q ∨ ¬r). The resulting circuit is displayed in Figure 3. ▲

We will study logic circuits in great detail in Chapter 12 in the context of Boolean algebra,
and with different notation.

22 1 / The Foundations: Logic and Proofs

(p ∨ ¬r) ∧ (¬p ∨ (q ∨ ¬r))

r

p p ∨ ¬r

¬r

r

q

q ∨ ¬r

¬p ∨ (q ∨ ¬r)

¬r

p
¬p

FIGURE 3 The circuit for (p ∨ ¬r) ∧ (¬p ∨ (q ∨ ¬r)).

Exercises

In Exercises 1–6, translate the given statement into proposi-
tional logic using the propositions provided.

1. You cannot edit a protected Wikipedia entry unless you
are an administrator. Express your answer in terms of e:
“You can edit a protected Wikipedia entry” and a: “You
are an administrator.”

2. You can see the movie only if you are over 18 years old
or you have the permission of a parent. Express your an-
swer in terms of m: “You can see the movie,” e: “You are
over 18 years old,” and p: “You have the permission of a
parent.”

3. You can graduate only if you have completed the require-
ments of your major and you do not owe money to the
university and you do not have an overdue library book.
Express your answer in terms of g: “You can graduate,”
m: “You owe money to the university,” r: “You have com-
pleted the requirements of your major,” and b: “You have
an overdue library book.”

4. To use the wireless network in the airport you must pay
the daily fee unless you are a subscriber to the service.
Express your answer in terms of w: “You can use the wire-
less network in the airport,” d: “You pay the daily fee,”
and s: “You are a subscriber to the service.”

5. You are eligible to be President of the U.S.A. only if you
are at least 35 years old, were born in the U.S.A, or at the
time of your birth both of your parents were citizens, and
you have lived at least 14 years in the country. Express
your answer in terms of e: “You are eligible to be Pres-
ident of the U.S.A.,” a: “You are at least 35 years old,”
b: “You were born in the U.S.A,” p: “At the time of your
birth, both of your parents where citizens,” and r: “You
have lived at least 14 years in the U.S.A.”

6. You can upgrade your operating system only if you have
a 32-bit processor running at 1 GHz or faster, at least
1 GB RAM, and 16 GB free hard disk space, or a 64-
bit processor running at 2 GHz or faster, at least 2 GB
RAM, and at least 32 GB free hard disk space. Express
you answer in terms of u: “You can upgrade your oper-
ating system,” b32: “You have a 32-bit processor,” b64:

“You have a 64-bit processor,” g1: “Your processor runs
at 1 GHz or faster,” g2: “Your processor runs at 2 GHz or
faster,” r1: “Your processor has at least 1 GB RAM,” r2:
“Your processor has at least 2 GB RAM,” h16: “You have
at least 16 GB free hard disk space,” and h32: “You have
at least 32 GB free hard disk space.”

7. Express these system specifications using the proposi-
tions p “The message is scanned for viruses” and q “The
message was sent from an unknown system” together
with logical connectives (including negations).

a) “The message is scanned for viruses whenever the
message was sent from an unknown system.”

b) “The message was sent from an unknown system but
it was not scanned for viruses.”

c) “It is necessary to scan the message for viruses when-
ever it was sent from an unknown system.”

d) “When a message is not sent from an unknown system
it is not scanned for viruses.”

8. Express these system specifications using the proposi-
tions p “The user enters a valid password,” q “Access is
granted,” and r “The user has paid the subscription fee”
and logical connectives (including negations).

a) “The user has paid the subscription fee, but does not
enter a valid password.”

b) “Access is granted whenever the user has paid the
subscription fee and enters a valid password.”

c) “Access is denied if the user has not paid the subscrip-
tion fee.”

d) “If the user has not entered a valid password but has
paid the subscription fee, then access is granted.”

9. Are these system specifications consistent? “The system
is in multiuser state if and only if it is operating normally.
If the system is operating normally, the kernel is func-
tioning. The kernel is not functioning or the system is
in interrupt mode. If the system is not in multiuser state,
then it is in interrupt mode. The system is not in interrupt
mode.”

1.2 Applications of Propositional Logic 23

10. Are these system specifications consistent? “Whenever
the system software is being upgraded, users cannot ac-
cess the file system. If users can access the file system,
then they can save new files. If users cannot save new
files, then the system software is not being upgraded.”

11. Are these system specifications consistent? “The router
can send packets to the edge system only if it supports the
new address space. For the router to support the new ad-
dress space it is necessary that the latest software release
be installed. The router can send packets to the edge sys-
tem if the latest software release is installed, The router
does not support the new address space.”

12. Are these system specifications consistent? “If the file
system is not locked, then new messages will be queued.
If the file system is not locked, then the system is func-
tioning normally, and conversely. If new messages are not
queued, then they will be sent to the message buffer. If
the file system is not locked, then new messages will be
sent to the message buffer. New messages will not be sent
to the message buffer.”

13. What Boolean search would you use to look for Web
pages about beaches in New Jersey? What if you wanted
to find Web pages about beaches on the isle of Jersey (in
the English Channel)?

14. What Boolean search would you use to look for Web
pages about hiking in West Virginia? What if you wanted
to find Web pages about hiking inVirginia, but not in West
Virginia?

∗15. Each inhabitant of a remote village always tells the truth
or always lies. A villager will give only a “Yes” or a “No”
response to a question a tourist asks. Suppose you are a
tourist visiting this area and come to a fork in the road.
One branch leads to the ruins you want to visit; the other
branch leads deep into the jungle. A villager is standing
at the fork in the road. What one question can you ask the
villager to determine which branch to take?

16. An explorer is captured by a group of cannibals. There are
two types of cannibals—those who always tell the truth
and those who always lie. The cannibals will barbecue
the explorer unless he can determine whether a particu-
lar cannibal always lies or always tells the truth. He is
allowed to ask the cannibal exactly one question.

a) Explain why the question “Are you a liar?” does not
work.

b) Find a question that the explorer can use to determine
whether the cannibal always lies or always tells the
truth.

17. When three professors are seated in a restaurant, the host-
ess asks them: “Does everyone want coffee?” The first
professor says: “I do not know.” The second professor
then says: “I do not know.” Finally, the third professor
says: “No, not everyone wants coffee.” The hostess comes
back and gives coffee to the professors who want it. How
did she figure out who wanted coffee?

18. When planning a party you want to know whom to in-
vite. Among the people you would like to invite are three
touchy friends.You know that if Jasmine attends, she will

become unhappy if Samir is there, Samir will attend only
if Kanti will be there, and Kanti will not attend unless Jas-
mine also does.Which combinations of these three friends
can you invite so as not to make someone unhappy?

Exercises 19–23 relate to inhabitants of the island of knights
and knaves created by Smullyan, where knights always tell
the truth and knaves always lie. You encounter two people,
A and B. Determine, if possible, what A and B are if they
address you in the ways described. If you cannot determine
what these two people are, can you draw any conclusions?

19. A says “At least one of us is a knave” and B says nothing.

20. A says “The two of us are both knights” and B says “A
is a knave.”

21. A says “I am a knave orB is a knight” andB says nothing.

22. Both A and B say “I am a knight.”

23. A says “We are both knaves” and B says nothing.

Exercises 24–31 relate to inhabitants of an island on which
there are three kinds of people: knights who always tell the
truth, knaves who always lie, and spies (called normals by
Smullyan [Sm78]) who can either lie or tell the truth. You
encounter three people, A, B, and C. You know one of these
people is a knight, one is a knave, and one is a spy. Each of the
three people knows the type of person each of other two is. For
each of these situations, if possible, determine whether there
is a unique solution and determine who the knave, knight, and
spy are. When there is no unique solution, list all possible
solutions or state that there are no solutions.

24. A says “C is the knave,” B says, “A is the knight,” and C

says “I am the spy.”

25. A says “I am the knight,” B says “I am the knave,” and
C says “B is the knight.”

26. A says “I am the knave,” B says “I am the knave,” and C

says “I am the knave.”

27. A says “I am the knight,” B says “A is telling the truth,”
and C says “I am the spy.”

28. A says “I am the knight,” B says, “A is not the knave,”
and C says “B is not the knave.”

29. A says “I am the knight,” B says “I am the knight,” and
C says “I am the knight.”

30. A says “I am not the spy,” B says “I am not the spy,” and
C says “A is the spy.”

31. A says “I am not the spy,” B says “I am not the spy,” and
C says “I am not the spy.”

Exercises 32–38 are puzzles that can be solved by translating
statements into logical expressions and reasoning from these
expressions using truth tables.

32. The police have three suspects for the murder of Mr.
Cooper: Mr. Smith, Mr. Jones, and Mr. Williams. Smith,
Jones, and Williams each declare that they did not kill
Cooper. Smith also states that Cooper was a friend of
Jones and that Williams disliked him. Jones also states
that he did not know Cooper and that he was out of town
the day Cooper was killed. Williams also states that he

24 1 / The Foundations: Logic and Proofs

saw both Smith and Jones with Cooper the day of the
killing and that either Smith or Jones must have killed
him. Can you determine who the murderer was if

a) one of the three men is guilty, the two innocent men
are telling the truth, but the statements of the guilty
man may or may not be true?

b) innocent men do not lie?

33. Steve would like to determine the relative salaries of three
coworkers using two facts. First, he knows that if Fred
is not the highest paid of the three, then Janice is. Sec-
ond, he knows that if Janice is not the lowest paid, then
Maggie is paid the most. Is it possible to determine the
relative salaries of Fred, Maggie, and Janice from what
Steve knows? If so, who is paid the most and who the
least? Explain your reasoning.

34. Five friends have access to a chat room. Is it possible to
determine who is chatting if the following information is
known? Either Kevin or Heather, or both, are chatting.
Either Randy or Vijay, but not both, are chatting. If Abby
is chatting, so is Randy. Vijay and Kevin are either both
chatting or neither is. If Heather is chatting, then so are
Abby and Kevin. Explain your reasoning.

35. A detective has interviewed four witnesses to a crime.
From the stories of the witnesses the detective has con-
cluded that if the butler is telling the truth then so is the
cook; the cook and the gardener cannot both be telling the
truth; the gardener and the handyman are not both lying;
and if the handyman is telling the truth then the cook is
lying. For each of the four witnesses, can the detective de-
termine whether that person is telling the truth or lying?
Explain your reasoning.

36. Four friends have been identified as suspects for an unau-
thorized access into a computer system. They have made
statements to the investigating authorities. Alice said
“Carlos did it.” John said “I did not do it.” Carlos said
“Diana did it.” Diana said “Carlos lied when he said that
I did it.”

a) If the authorities also know that exactly one of the
four suspects is telling the truth, who did it? Explain
your reasoning.

b) If the authorities also know that exactly one is lying,
who did it? Explain your reasoning.

37. Suppose there are signs on the doors to two rooms. The
sign on the first door reads “In this room there is a lady,
and in the other one there is a tiger”; and the sign on the
second door reads “In one of these rooms, there is a lady,
and in one of them there is a tiger.” Suppose that you
know that one of these signs is true and the other is false.
Behind which door is the lady?

∗38. Solve this famous logic puzzle, attributed to Albert Ein-
stein, and known as the zebra puzzle. Five men with
different nationalities and with different jobs live in con-
secutive houses on a street. These houses are painted dif-
ferent colors. The men have different pets and have dif-
ferent favorite drinks. Determine who owns a zebra and

whose favorite drink is mineral water (which is one of the
favorite drinks) given these clues: The Englishman lives
in the red house. The Spaniard owns a dog. The Japanese
man is a painter. The Italian drinks tea. The Norwegian
lives in the first house on the left. The green house is
immediately to the right of the white one. The photogra-
pher breeds snails. The diplomat lives in the yellow house.
Milk is drunk in the middle house. The owner of the green
house drinks coffee. The Norwegian’s house is next to the
blue one. The violinist drinks orange juice. The fox is in
a house next to that of the physician. The horse is in a
house next to that of the diplomat. [Hint: Make a table
where the rows represent the men and columns represent
the color of their houses, their jobs, their pets, and their
favorite drinks and use logical reasoning to determine the
correct entries in the table.]

39. Freedonia has fifty senators. Each senator is either honest
or corrupt. Suppose you know that at least one of the Free-
donian senators is honest and that, given any two Free-
donian senators, at least one is corrupt. Based on these
facts, can you determine how many Freedonian senators
are honest and how many are corrupt? If so, what is the
answer?

40. Find the output of each of these combinatorial circuits.

q

p

p

q

pa)

b)

41. Find the output of each of these combinatorial circuits.

r

q

p

r

p

q

p

a)

b)

42. Construct a combinatorial circuit using inverters,
OR gates, and AND gates that produces the output
(p ∧ ¬r) ∨ (¬q ∧ r) from input bits p, q, and r .

43. Construct a combinatorial circuit using inverters,
OR gates, and AND gates that produces the output
((¬p ∨ ¬r) ∧ ¬q) ∨ (¬p ∧ (q ∨ r)) from input bits p,
q, and r .

1.3 Propositional Equivalences 25

1.3 Propositional Equivalences

Introduction

An important type of step used in a mathematical argument is the replacement of a statement
with another statement with the same truth value. Because of this, methods that produce propo-
sitions with the same truth value as a given compound proposition are used extensively in the
construction of mathematical arguments. Note that we will use the term “compound proposi-
tion” to refer to an expression formed from propositional variables using logical operators, such
as p ∧ q.

We begin our discussion with a classification of compound propositions according to their
possible truth values.

DEFINITION 1 A compound proposition that is always true, no matter what the truth values of the proposi-
tional variables that occur in it, is called a tautology. A compound proposition that is always
false is called a contradiction. A compound proposition that is neither a tautology nor a
contradiction is called a contingency.

Tautologies and contradictions are often important in mathematical reasoning. Example 1 illus-
trates these types of compound propositions.

EXAMPLE 1 We can construct examples of tautologies and contradictions using just one propositional vari-
able. Consider the truth tables of p ∨ ¬p and p ∧ ¬p, shown in Table 1. Because p ∨ ¬p is
always true, it is a tautology. Because p ∧ ¬p is always false, it is a contradiction. ▲

Logical Equivalences

Compound propositions that have the same truth values in all possible cases are called logically
equivalent. We can also define this notion as follows.

DEFINITION 2 The compound propositions p and q are called logically equivalent if p ↔ q is a tautology.
The notation p ≡ q denotes that p and q are logically equivalent.

Remark: The symbol ≡ is not a logical connective, and p ≡ q is not a compound proposition
but rather is the statement that p ↔ q is a tautology. The symbol⇔ is sometimes used instead
of ≡ to denote logical equivalence.

One way to determine whether two compound propositions are equivalent is to use a truth
table. In particular, the compound propositions p and q are equivalent if and only if the columns

TABLE 1 Examples of a Tautology
and a Contradiction.

p ¬p p ∨ ¬p p ∧ ¬p

T F T F

F T T F

26 1 / The Foundations: Logic and Proofs

TABLE 2 De
Morgan’s Laws.

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

giving their truth values agree. Example 2 illustrates this method to establish an extremely
important and useful logical equivalence, namely, that of ¬(p ∨ q) with ¬p ∧ ¬q. This logical
equivalence is one of the two De Morgan laws, shown in Table 2, named after the English
mathematician Augustus De Morgan, of the mid-nineteenth century.

EXAMPLE 2 Show that ¬(p ∨ q) and ¬p ∧ ¬q are logically equivalent.

Solution: The truth tables for these compound propositions are displayed in Table 3. Because
the truth values of the compound propositions ¬(p ∨ q) and ¬p ∧ ¬q agree for all possible
combinations of the truth values ofp andq, it follows that¬(p ∨ q)↔ (¬p ∧ ¬q) is a tautology
and that these compound propositions are logically equivalent. ▲

TABLE 3 Truth Tables for ¬(p ∨ q) and ¬p ∧ ¬q.

p q p ∨ q ¬(p ∨ q) ¬p ¬q ¬p ∧ ¬q

T T T F F F F

T F T F F T F

F T T F T F F

F F F T T T T

EXAMPLE 3 Show that p → q and ¬p ∨ q are logically equivalent.

Solution: We construct the truth table for these compound propositions in Table 4. Because the
truth values of ¬p ∨ q and p → q agree, they are logically equivalent. ▲

TABLE 4 Truth Tables for ¬p ∨ q and
p → q.

p q ¬p ¬p ∨ q p → q

T T F T T

T F F F F

F T T T T

F F T T T

We will now establish a logical equivalence of two compound propositions involving three
different propositional variables p, q, and r . To use a truth table to establish such a logical
equivalence, we need eight rows, one for each possible combination of truth values of these
three variables. We symbolically represent these combinations by listing the truth values of p,
q, and r , respectively. These eight combinations of truth values are TTT, TTF, TFT, TFF, FTT,
FTF, FFT, and FFF; we use this order when we display the rows of the truth table. Note that we
need to double the number of rows in the truth tables we use to show that compound propositions
are equivalent for each additional propositional variable, so that 16 rows are needed to establish
the logical equivalence of two compound propositions involving four propositional variables,
and so on. In general, 2n rows are required if a compound proposition involves n propositional
variables.

1.3 Propositional Equivalences 27

TABLE 5 A Demonstration That p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r)Are Logically
Equivalent.

p q r q ∧ r p ∨ (q ∧ r) p ∨ q p ∨ r (p ∨ q) ∧ (p ∨ r)

T T T T T T T T

T T F F T T T T

T F T F T T T T

T F F F T T T T

F T T T T T T T

F T F F F T F F

F F T F F F T F

F F F F F F F F

EXAMPLE 4 Show that p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) are logically equivalent. This is the distributive

law of disjunction over conjunction.

Solution: We construct the truth table for these compound propositions in Table 5. Because
the truth values of p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) agree, these compound propositions are
logically equivalent. ▲

The identities in Table 6

are a special case of

Boolean algebra identities

found in Table 5 of

Section 12.1. See Table 1

in Section 2.2 for

analogous set identities.

Table 6 contains some important equivalences. In these equivalences, T denotes the com-
pound proposition that is always true and F denotes the compound proposition that is always

TABLE 6 Logical Equivalences.

Equivalence Name

p ∧ T ≡ p Identity laws

p ∨ F ≡ p

p ∨ T ≡ T Domination laws

p ∧ F ≡ F

p ∨ p ≡ p Idempotent laws

p ∧ p ≡ p

¬(¬p) ≡ p Double negation law

p ∨ q ≡ q ∨ p Commutative laws

p ∧ q ≡ q ∧ p

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) Associative laws

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) Distributive laws

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgan’s laws

¬(p ∨ q) ≡ ¬p ∧ ¬q

p ∨ (p ∧ q) ≡ p Absorption laws

p ∧ (p ∨ q) ≡ p

p ∨ ¬p ≡ T Negation laws

p ∧ ¬p ≡ F

28 1 / The Foundations: Logic and Proofs

TABLE 7 Logical Equivalences
Involving Conditional Statements.

p → q ≡ ¬p ∨ q

p → q ≡ ¬q → ¬p
p ∨ q ≡ ¬p → q

p ∧ q ≡ ¬(p → ¬q)
¬(p → q) ≡ p ∧ ¬q
(p → q) ∧ (p → r) ≡ p → (q ∧ r)

(p → r) ∧ (q → r) ≡ (p ∨ q)→ r

(p → q) ∨ (p → r) ≡ p → (q ∨ r)

(p → r) ∨ (q → r) ≡ (p ∧ q)→ r

TABLE 8 Logical
Equivalences Involving
Biconditional Statements.

p ↔ q ≡ (p → q) ∧ (q → p)

p ↔ q ≡ ¬p ↔ ¬q
p ↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)
¬(p ↔ q) ≡ p ↔ ¬q

false. We also display some useful equivalences for compound propositions involving condi-
tional statements and biconditional statements in Tables 7 and 8, respectively. The reader is
asked to verify the equivalences in Tables 6–8 in the exercises.

The associative law for disjunction shows that the expression p ∨ q ∨ r is well defined,
in the sense that it does not matter whether we first take the disjunction of p with q and then
the disjunction of p ∨ q with r , or if we first take the disjunction of q and r and then take the
disjunction ofp withq ∨ r . Similarly, the expressionp ∧ q ∧ r is well defined. By extending this
reasoning, it follows that p1 ∨ p2 ∨ · · · ∨ pn and p1 ∧ p2 ∧ · · · ∧ pn are well defined whenever
p1, p2, . . . , pn are propositions.

Furthermore, note that De Morgan’s laws extend to

¬(p1 ∨ p2 ∨ · · · ∨ pn) ≡ (¬p1 ∧ ¬p2 ∧ · · · ∧ ¬pn)

and

¬(p1 ∧ p2 ∧ · · · ∧ pn) ≡ (¬p1 ∨ ¬p2 ∨ · · · ∨ ¬pn).

We will sometimes use the notation
�n

j=1 pj for p1 ∨ p2 ∨ · · · ∨ pn and
�n

j=1 pj for
p1 ∧ p2 ∧ · · · ∧ pn. Using this notation, the extended version of De Morgan’s laws can be
written concisely as ¬��n

j=1 pj

� ≡�n
j=1¬pj and ¬��n

j=1 pj

� ≡�n
j=1¬pj . (Methods for

proving these identities will be given in Section 5.1.)

Using De Morgan’s Laws

The two logical equivalences known as De Morgan’s laws are particularly important. They tell
When using De Morgan’s

laws, remember to change

the logical connective

after you negate.

us how to negate conjunctions and how to negate disjunctions. In particular, the equivalence
¬(p ∨ q) ≡ ¬p ∧ ¬q tells us that the negation of a disjunction is formed by taking the con-
junction of the negations of the component propositions. Similarly, the equivalence¬(p ∧ q) ≡
¬p ∨ ¬q tells us that the negation of a conjunction is formed by taking the disjunction of the
negations of the component propositions. Example 5 illustrates the use of De Morgan’s laws.

1.3 Propositional Equivalences 29

EXAMPLE 5 Use De Morgan’s laws to express the negations of “Miguel has a cellphone and he has a laptop
computer” and “Heather will go to the concert or Steve will go to the concert.”

Solution: Let p be “Miguel has a cellphone” and q be “Miguel has a laptop computer.” Then
“Miguel has a cellphone and he has a laptop computer” can be represented by p ∧ q. By the
first of De Morgan’s laws, ¬(p ∧ q) is equivalent to ¬p ∨ ¬q. Consequently, we can express
the negation of our original statement as “Miguel does not have a cellphone or he does not have
a laptop computer.”

Let r be “Heather will go to the concert” and s be “Steve will go to the concert.” Then
“Heather will go to the concert or Steve will go to the concert” can be represented by r ∨ s.
By the second of De Morgan’s laws, ¬(r ∨ s) is equivalent to ¬r ∧ ¬s. Consequently, we can
express the negation of our original statement as “Heather will not go to the concert and Steve
will not go to the concert.” ▲

Constructing New Logical Equivalences

The logical equivalences in Table 6, as well as any others that have been established (such as
those shown in Tables 7 and 8), can be used to construct additional logical equivalences. The
reason for this is that a proposition in a compound proposition can be replaced by a compound
proposition that is logically equivalent to it without changing the truth value of the original
compound proposition. This technique is illustrated in Examples 6–8, where we also use the
fact that if p and q are logically equivalent and q and r are logically equivalent, then p and r

are logically equivalent (see Exercise 56).

EXAMPLE 6 Show that ¬(p → q) and p ∧ ¬q are logically equivalent.

Solution: We could use a truth table to show that these compound propositions are equivalent
(similar to what we did in Example 4). Indeed, it would not be hard to do so. However, we want
to illustrate how to use logical identities that we already know to establish new logical identities,
something that is of practical importance for establishing equivalences of compound propositions
with a large number of variables. So, we will establish this equivalence by developing a series of

AUGUSTUS DE MORGAN (1806–1871) Augustus De Morgan was born in India, where his father was a
colonel in the Indian army. De Morgan’s family moved to England when he was 7 months old. He attended
private schools, where in his early teens he developed a strong interest in mathematics. De Morgan studied
at Trinity College, Cambridge, graduating in 1827. Although he considered medicine or law, he decided on
mathematics for his career. He won a position at University College, London, in 1828, but resigned after the
college dismissed a fellow professor without giving reasons. However, he resumed this position in 1836 when
his successor died, remaining until 1866.

De Morgan was a noted teacher who stressed principles over techniques. His students included many famous
mathematicians, including Augusta Ada, Countess of Lovelace, who was Charles Babbage’s collaborator in his

work on computing machines (see page 31 for biographical notes on Augusta Ada). (De Morgan cautioned the countess against
studying too much mathematics, because it might interfere with her childbearing abilities!)

De Morgan was an extremely prolific writer, publishing more than 1000 articles in more than 15 periodicals. De Morgan also
wrote textbooks on many subjects, including logic, probability, calculus, and algebra. In 1838 he presented what was perhaps the first
clear explanation of an important proof technique known as mathematical induction (discussed in Section 5.1 of this text), a term
he coined. In the 1840s De Morgan made fundamental contributions to the development of symbolic logic. He invented notations
that helped him prove propositional equivalences, such as the laws that are named after him. In 1842 De Morgan presented what
is considered to be the first precise definition of a limit and developed new tests for convergence of infinite series. De Morgan was
also interested in the history of mathematics and wrote biographies of Newton and Halley.

In 1837 De Morgan married Sophia Frend, who wrote his biography in 1882. De Morgan’s research, writing, and teaching left
little time for his family or social life. Nevertheless, he was noted for his kindness, humor, and wide range of knowledge.

30 1 / The Foundations: Logic and Proofs

logical equivalences, using one of the equivalences in Table 6 at a time, starting with¬(p → q)

and ending with p ∧ ¬q. We have the following equivalences.

¬(p → q) ≡ ¬(¬p ∨ q) by Example 3

≡ ¬(¬p) ∧ ¬q by the second De Morgan law

≡ p ∧ ¬q by the double negation law

▲

EXAMPLE 7 Show that ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q are logically equivalent by developing a series of
logical equivalences.

Solution: We will use one of the equivalences in Table 6 at a time, starting with¬(p ∨ (¬p ∧ q))

and ending with ¬p ∧ ¬q. (Note: we could also easily establish this equivalence using a truth
table.) We have the following equivalences.

¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬(¬p ∧ q) by the second De Morgan law

≡ ¬p ∧ [¬(¬p) ∨ ¬q] by the first De Morgan law

≡ ¬p ∧ (p ∨ ¬q) by the double negation law

≡ (¬p ∧ p) ∨ (¬p ∧ ¬q) by the second distributive law

≡ F ∨ (¬p ∧ ¬q) because ¬p ∧ p ≡ F
≡ (¬p ∧ ¬q) ∨ F by the commutative law for disjunction

≡ ¬p ∧ ¬q by the identity law for F

Consequently ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q are logically equivalent. ▲

EXAMPLE 8 Show that (p ∧ q)→ (p ∨ q) is a tautology.

Solution: To show that this statement is a tautology, we will use logical equivalences to demon-
strate that it is logically equivalent to T. (Note: This could also be done using a truth table.)

(p ∧ q)→ (p ∨ q) ≡ ¬(p ∧ q) ∨ (p ∨ q) by Example 3

≡ (¬p ∨ ¬q) ∨ (p ∨ q) by the first De Morgan law

≡ (¬p ∨ p) ∨ (¬q ∨ q) by the associative and commutative

laws for disjunction

≡ T ∨ T by Example 1 and the commutative

law for disjunction

≡ T by the domination law

▲

Propositional Satisfiability

A compound proposition is satisfiable if there is an assignment of truth values to its variables that
makes it true. When no such assignments exists, that is, when the compound proposition is false
for all assignments of truth values to its variables, the compound proposition is unsatisfiable.
Note that a compound proposition is unsatisfiable if and only if its negation is true for all

assignments of truth values to the variables, that is, if and only if its negation is a tautology.
When we find a particular assignment of truth values that makes a compound proposition

true, we have shown that it is satisfiable; such an assignment is called a solution of this particular

1.3 Propositional Equivalences 31

satisfiability problem. However, to show that a compound proposition is unsatisfiable, we need
to show that every assignment of truth values to its variables makes it false. Although we can
always use a truth table to determine whether a compound proposition is satisfiable, it is often
more efficient not to, as Example 9 demonstrates.

EXAMPLE 9 Determine whether each of the compound propositions (p ∨ ¬q) ∧ (q ∨ ¬r) ∧
(r ∨ ¬p), (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r), and (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) ∧
(p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) is satisfiable.

Solution: Instead of using truth table to solve this problem, we will reason about truth values.
Note that (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) is true when the three variable p, q, and r have
the same truth value (see Exercise 40 of Section 1.1). Hence, it is satisfiable as there is at
least one assignment of truth values for p, q, and r that makes it true. Similarly, note that
(p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) is true when at least one of p, q, and r is true and at least one
is false (see Exercise 41 of Section 1.1). Hence, (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) is satisfiable,
as there is at least one assignment of truth values for p, q, and r that makes it true.

Finally, note that for (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) ∧ (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r)
to be true, (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) and (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) must both
be true. For the first to be true, the three variables must have the same truth values, and
for the second to be true, at least one of three variables must be true and at least one must
be false. However, these conditions are contradictory. From these observations we conclude
that no assignment of truth values to p, q, and r makes (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) ∧
(p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) true. Hence, it is unsatisfiable. ▲

AUGUSTA ADA, COUNTESS OF LOVELACE (1815–1852) Augusta Ada was the only child from the
marriage of the famous poet Lord Byron and Lady Byron, Annabella Millbanke, who separated when Ada
was 1 month old, because of Lord Byron’s scandalous affair with his half sister. The Lord Byron had quite a
reputation, being described by one of his lovers as “mad, bad, and dangerous to know.” Lady Byron was noted for
her intellect and had a passion for mathematics; she was called by Lord Byron “The Princess of Parallelograms.”
Augusta was raised by her mother, who encouraged her intellectual talents especially in music and mathematics,
to counter what Lady Byron considered dangerous poetic tendencies. At this time, women were not allowed to
attend universities and could not join learned societies. Nevertheless, Augusta pursued her mathematical studies
independently and with mathematicians, including William Frend. She was also encouraged by another female

mathematician, Mary Somerville, and in 1834 at a dinner party hosted by Mary Somerville, she learned about Charles Babbage’s
ideas for a calculating machine, called the Analytic Engine. In 1838 Augusta Ada married Lord King, later elevated to Earl of
Lovelace. Together they had three children.

Augusta Ada continued her mathematical studies after her marriage. Charles Babbage had continued work on his Analytic
Engine and lectured on this in Europe. In 1842 Babbage asked Augusta Ada to translate an article in French describing Babbage’s
invention. When Babbage saw her translation, he suggested she add her own notes, and the resulting work was three times the
length of the original. The most complete accounts of the Analytic Engine are found in Augusta Ada’s notes. In her notes, she
compared the working of the Analytic Engine to that of the Jacquard loom, with Babbage’s punch cards analogous to the cards used
to create patterns on the loom. Furthermore, she recognized the promise of the machine as a general purpose computer much better
than Babbage did. She stated that the “engine is the material expression of any indefinite function of any degree of generality and
complexity.” Her notes on the Analytic Engine anticipate many future developments, including computer-generated music. Augusta
Ada published her writings under her initials A.A.L. concealing her identity as a woman as did many women at a time when women
were not considered to be the intellectual equals of men. After 1845 she and Babbage worked toward the development of a system
to predict horse races. Unfortunately, their system did not work well, leaving Augusta Ada heavily in debt at the time of her death
at an unfortunately young age from uterine cancer.

In 1953 Augusta Ada’s notes on the Analytic Engine were republished more than 100 years after they were written, and after
they had been long forgotten. In his work in the 1950s on the capacity of computers to think (and his famous Turing Test), Alan
Turing responded to Augusta Ada’s statement that “The Analytic Engine has no pretensions whatever to originate anything. It can do
whatever we know how to order it to perform.” This “dialogue” between Turing and Augusta Ada is still the subject of controversy.
Because of her fundamental contributions to computing, the programming language Ada is named in honor of the Countess of
Lovelace.

32 1 / The Foundations: Logic and Proofs

2 9 4

5 1

4

4 2

6 7

5

7 3 5

1 9

6

FIGURE 1 A 9× 9 Sudoku puzzle.

Applications of Satisfiability

Many problems, in diverse areas such as robotics, software testing, computer-aided design,
machine vision, integrated circuit design, computer networking, and genetics, can be modeled
in terms of propositional satisfiability. Although most of these applications are beyond the
scope of this book, we will study one application here. In particular, we will show how to use
propositional satisfiability to model Sudoku puzzles.

SUDOKU A Sudoku puzzle is represented by a 9× 9 grid made up of nine 3× 3 subgrids,
known as blocks, as shown in Figure 1. For each puzzle, some of the 81 cells, called givens,
are assigned one of the numbers 1, 2, . . . , 9, and the other cells are blank. The puzzle is solved
by assigning a number to each blank cell so that every row, every column, and every one of the
nine 3× 3 blocks contains each of the nine possible numbers. Note that instead of using a 9× 9
grid, Sudoku puzzles can be based on n2 × n2 grids, for any positive integer n, with the n2 × n2

grid made up of n2 n× n subgrids.
The popularity of Sudoku dates back to the 1980s when it was introduced in Japan. It

took 20 years for Sudoku to spread to rest of the world, but by 2005, Sudoku puzzles were a
worldwide craze. The name Sudoku is short for the Japanese suuji wa dokushin ni kagiru, which
means “the digits must remain single.” The modern game of Sudoku was apparently designed
in the late 1970s by an American puzzle designer. The basic ideas of Sudoku date back even
further; puzzles printed in French newspapers in the 1890s were quite similar, but not identical,
to modern Sudoku.

Sudoku puzzles designed for entertainment have two additional important properties. First,
they have exactly one solution. Second, they can be solved using reasoning alone, that is, without
resorting to searching all possible assignments of numbers to the cells. As a Sudoku puzzle is
solved, entries in blank cells are successively determined by already known values. For instance,
in the grid in Figure 1, the number 4 must appear in exactly one cell in the second row. How
can we determine which of the seven blank cells it must appear? First, we observe that 4 cannot
appear in one of the first three cells or in one of the last three cells of this row, because it already
appears in another cell in the block each of these cells is in. We can also see that 4 cannot appear
in the fifth cell in this row, as it already appears in the fifth column in the fourth row. This means
that 4 must appear in the sixth cell of the second row.

Many strategies based on logic and mathematics have been devised for solving Sudoku
puzzles (see [Da10], for example). Here, we discuss one of the ways that have been developed
for solving Sudoku puzzles with the aid of a computer, which depends on modeling the puzzle as
a propositional satisfiability problem. Using the model we describe, particular Sudoku puzzles
can be solved using software developed to solve satisfiability problems. Currently, Sudoku
puzzles can be solved in less than 10 milliseconds this way. It should be noted that there are
many other approaches for solving Sudoku puzzles via computers using other techniques.

1.3 Propositional Equivalences 33

To encode a Sudoku puzzle, letp(i, j, n) denote the proposition that is true when the number
n is in the cell in the ith row and j th column. There are 9× 9× 9 = 729 such propositions, as
i, j , and n all range from 1 to 9. For example, for the puzzle in Figure 1, the number 6 is given
as the value in the fifth row and first column. Hence, we see that p(5, 1, 6) is true, but p(5, j, 6)
is false for j = 2, 3, . . . , 9.

Given a particular Sudoku puzzle, we begin by encoding each of the given values. Then,
we construct compound propositions that assert that every row contains every number, every
column contains every number, every 3× 3 block contains every number, and each cell contains
no more than one number. It follows, as the reader should verify, that the Sudoku puzzle is solved
by finding an assignment of truth values to the 729 propositions p(i, j, n) with i, j , and n each
ranging from 1 to 9 that makes the conjunction of all these compound propositions true. After
listing these assertions, we will explain how to construct the assertion that every row contains
every integer from 1 to 9. We will leave the construction of the other assertions that every column
contains every number and each of the nine 3× 3 blocks contains every number to the exercises.

 For each cell with a given value, we assert p(i, j, n) when the cell in row i and column
j has the given value n.

 We assert that every row contains every number:

9�

i=1

9�

n=1

9�

j=1

p(i, j, n)

 We assert that every column contains every number:

9�

j=1

9�

n=1

9�

i=1

p(i, j, n)

It is tricky setting up the

two inner indices so that

all nine cells in each

square block are

examined.

 We assert that each of the nine 3× 3 blocks contains every number:

2�

r=0

2�

s=0

9�

n=1

3�

i=1

3�

j=1

p(3r + i, 3s + j, n)

 To assert that no cell contains more than one number, we take the conjunction over all
values of n, n , i, and j where each variable ranges from 1 to 9 and n = n of p(i, j, n)→
¬p(i, j, n).

We now explain how to construct the assertion that every row contains every number.

First, to assert that row i contains the number n, we form
�9

j=1 p(i, j, n). To assert that
row i contains all n numbers, we form the conjunction of these disjunctions over all nine

possible values of n, giving us
�9

n=1

�9
j=1 p(i, j, n). Finally, to assert that every row contains

every number, we take the conjunction of
�9

n=1

�9
j=1 p(i, j, n) over all nine rows. This gives

us
�9

i=1

�9
n=1

�9
j=1 p(i, j, n). (Exercises 65 and 66 ask for explanations of the assertions that

every column contains every number and that each of the nine 3× 3 blocks contains every
number.)

Given a particular Sudoku puzzle, to solve this puzzle we can find a solution to the satisfia-
bility problems that asks for a set of truth values for the 729 variables p(i, j, n) that makes the
conjunction of all the listed assertions true.

34 1 / The Foundations: Logic and Proofs

Solving Satisfiability Problems

A truth table can be used to determine whether a compound proposition is satisfiable, or equiv-
alently, whether its negation is a tautology (see Exercise 60). This can be done by hand for
a compound proposition with a small number of variables, but when the number of variables
grows, this becomes impractical. For instance, there are 220 = 1,048,576 rows in the truth ta-
ble for a compound proposition with 20 variables. Clearly, you need a computer to help you
determine, in this way, whether a compound proposition in 20 variables is satisfiable.

When many applications are modeled, questions concerning the satisfiability of compound
propositions with hundreds, thousands, or millions of variables arise. Note, for example, that
when there are 1000 variables, checking every one of the 21000 (a number with more than 300
decimal digits) possible combinations of truth values of the variables in a compound proposition
cannot be done by a computer in even trillions of years. No procedure is known that a com-
puter can follow to determine in a reasonable amount of time whether an arbitrary compound
proposition in such a large number of variables is satisfiable. However, progress has been made
developing methods for solving the satisfiability problem for the particular types of compound
propositions that arise in practical applications, such as for the solution of Sudoku puzzles.
Many computer programs have been developed for solving satisfiability problems which have
practical use. In our discussion of the subject of algorithms in Chapter 3, we will discuss this
question further. In particular, we will explain the important role the propositional satisfiability
problem plays in the study of the complexity of algorithms.

Exercises

1. Use truth tables to verify these equivalences.

a) p ∧ T ≡ p b) p ∨ F ≡ p

c) p ∧ F ≡ F d) p ∨ T ≡ T
e) p ∨ p ≡ p f) p ∧ p ≡ p

2. Show that ¬(¬p) and p are logically equivalent.

3. Use truth tables to verify the commutative laws

a) p ∨ q ≡ q ∨ p. b) p ∧ q ≡ q ∧ p.

4. Use truth tables to verify the associative laws

a) (p ∨ q) ∨ r ≡ p ∨ (q ∨ r).

b) (p ∧ q) ∧ r ≡ p ∧ (q ∧ r).

5. Use a truth table to verify the distributive law

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r).

6. Use a truth table to verify the first De Morgan law

¬(p ∧ q) ≡ ¬p ∨ ¬q.

7. Use De Morgan’s laws to find the negation of each of the
following statements.

a) Jan is rich and happy.

b) Carlos will bicycle or run tomorrow.

HENRY MAURICE SHEFFER (1883–1964) Henry Maurice Sheffer, born to Jewish parents in the western
Ukraine, emigrated to the United States in 1892 with his parents and six siblings. He studied at the Boston Latin
School before entering Harvard, where he completed his undergraduate degree in 1905, his master’s in 1907,
and his Ph.D. in philosophy in 1908. After holding a postdoctoral position at Harvard, Henry traveled to Europe
on a fellowship. Upon returning to the United States, he became an academic nomad, spending one year each
at the University of Washington, Cornell, the University of Minnesota, the University of Missouri, and City
College in New York. In 1916 he returned to Harvard as a faculty member in the philosophy department. He
remained at Harvard until his retirement in 1952.

Sheffer introduced what is now known as the Sheffer stroke in 1913; it became well known only after its use
in the 1925 edition of Whitehead and Russell’s Principia Mathematica. In this same edition Russell wrote that Sheffer had invented
a powerful method that could be used to simplify the Principia. Because of this comment, Sheffer was something of a mystery man
to logicians, especially because Sheffer, who published little in his career, never published the details of this method, only describing
it in mimeographed notes and in a brief published abstract.

Sheffer was a dedicated teacher of mathematical logic. He liked his classes to be small and did not like auditors. When strangers
appeared in his classroom, Sheffer would order them to leave, even his colleagues or distinguished guests visiting Harvard. Sheffer
was barely five feet tall; he was noted for his wit and vigor, as well as for his nervousness and irritability. Although widely liked, he
was quite lonely. He is noted for a quip he spoke at his retirement: “Old professors never die, they just become emeriti.” Sheffer is
also credited with coining the term “Boolean algebra” (the subject of Chapter 12 of this text). Sheffer was briefly married and lived
most of his later life in small rooms at a hotel packed with his logic books and vast files of slips of paper he used to jot down his
ideas. Unfortunately, Sheffer suffered from severe depression during the last two decades of his life.

1.3 Propositional Equivalences 35

c) Mei walks or takes the bus to class.
d) Ibrahim is smart and hard working.

8. Use De Morgan’s laws to find the negation of each of the
following statements.

a) Kwame will take a job in industry or go to graduate
school.

b) Yoshiko knows Java and calculus.
c) James is young and strong.
d) Rita will move to Oregon or Washington.

9. Show that each of these conditional statements is a tau-
tology by using truth tables.

a) (p ∧ q)→ p b) p → (p ∨ q)
c) ¬p → (p → q) d) (p ∧ q)→ (p → q)
e) ¬(p → q)→ p f) ¬(p → q)→ ¬q

10. Show that each of these conditional statements is a tau-
tology by using truth tables.

a) [¬p ∧ (p ∨ q)] → q
b) [(p → q) ∧ (q → r)] → (p → r)
c) [p ∧ (p → q)] → q
d) [(p ∨ q) ∧ (p → r) ∧ (q → r)] → r

11. Show that each conditional statement in Exercise 9 is a
tautology without using truth tables.

12. Show that each conditional statement in Exercise 10 is a
tautology without using truth tables.

13. Use truth tables to verify the absorption laws.

a) p ∨ (p ∧ q) ≡ p b) p ∧ (p ∨ q) ≡ p

14. Determine whether (¬p ∧ (p → q))→ ¬q is a tautol-
ogy.

15. Determine whether (¬q ∧ (p → q))→ ¬p is a tautol-
ogy.

Each of Exercises 16–28 asks you to show that two compound
propositions are logically equivalent. To do this, either show
that both sides are true, or that both sides are false, for exactly
the same combinations of truth values of the propositional
variables in these expressions (whichever is easier).

16. Show thatp ↔ q and (p ∧ q) ∨ (¬p ∧ ¬q) are logically
equivalent.

17. Show that ¬(p ↔ q) and p ↔ ¬q are logically equiva-
lent.

18. Show thatp → q and¬q → ¬p are logically equivalent.

19. Show that¬p ↔ q andp ↔ ¬q are logically equivalent.

20. Show that¬(p ⊕ q) and p ↔ q are logically equivalent.

21. Show that ¬(p ↔ q) and ¬p ↔ q are logically equiva-
lent.

22. Show that (p → q) ∧ (p → r) andp → (q ∧ r) are log-
ically equivalent.

23. Show that (p → r) ∧ (q → r) and (p ∨ q)→ r are log-
ically equivalent.

24. Show that (p → q) ∨ (p → r) andp → (q ∨ r) are log-
ically equivalent.

25. Show that (p → r) ∨ (q → r) and (p ∧ q)→ r are log-
ically equivalent.

26. Show that¬p → (q → r) andq → (p ∨ r) are logically
equivalent.

27. Show that p ↔ q and (p → q) ∧ (q → p) are logically
equivalent.

28. Show thatp ↔ q and¬p ↔ ¬q are logically equivalent.

29. Show that (p → q) ∧ (q → r)→ (p → r) is a tautol-
ogy.

30. Show that (p ∨ q) ∧ (¬p ∨ r)→ (q ∨ r) is a tautology.

31. Show that (p → q)→ r and p → (q → r) are not log-
ically equivalent.

32. Show that (p ∧ q)→ r and (p → r) ∧ (q → r) are not
logically equivalent.

33. Show that (p → q)→ (r → s) and (p → r)→
(q → s) are not logically equivalent.

The dual of a compound proposition that contains only the
logical operators ∨, ∧, and ¬ is the compound proposition
obtained by replacing each ∨ by ∧, each ∧ by ∨, each T
by F, and each F by T. The dual of s is denoted by s∗.
34. Find the dual of each of these compound propositions.

a) p ∨ ¬q b) p ∧ (q ∨ (r ∧ T))
c) (p ∧ ¬q) ∨ (q ∧ F)

35. Find the dual of each of these compound propositions.

a) p ∧ ¬q ∧ ¬r b) (p ∧ q ∧ r) ∨ s

c) (p ∨ F) ∧ (q ∨ T)
36. When does s∗ = s, where s is a compound proposition?

37. Show that (s∗)∗ = s when s is a compound proposition.

38. Show that the logical equivalences in Table 6, except for
the double negation law, come in pairs, where each pair
contains compound propositions that are duals of each
other.

∗∗39. Why are the duals of two equivalent compound proposi-
tions also equivalent, where these compound propositions
contain only the operators ∧,∨, and ¬?

40. Find a compound proposition involving the propositional
variables p, q, and r that is true when p and q are true
and r is false, but is false otherwise. [Hint: Use a con-
junction of each propositional variable or its negation.]

41. Find a compound proposition involving the propositional
variables p, q, and r that is true when exactly two of p, q,
and r are true and is false otherwise. [Hint: Form a dis-
junction of conjunctions. Include a conjunction for each
combination of values for which the compound proposi-
tion is true. Each conjunction should include each of the
three propositional variables or its negations.]

42. Suppose that a truth table in n propositional variables is
specified. Show that a compound proposition with this
truth table can be formed by taking the disjunction of
conjunctions of the variables or their negations, with one
conjunction included for each combination of values for
which the compound proposition is true. The resulting
compound proposition is said to be in disjunctive nor-
mal form.

A collection of logical operators is called functionally com-
plete if every compound proposition is logically equivalent to
a compound proposition involving only these logical opera-
tors.

43. Show that ¬, ∧, and ∨ form a functionally complete col-
lection of logical operators. [Hint: Use the fact that every
compound proposition is logically equivalent to one in
disjunctive normal form, as shown in Exercise 42.]

36 1 / The Foundations: Logic and Proofs

∗44. Show that ¬ and ∧ form a functionally complete col-
lection of logical operators. [Hint: First use a De Mor-
gan law to show that p ∨ q is logically equivalent to
¬(¬p ∧ ¬q).]

∗45. Show that ¬ and ∨ form a functionally complete collec-
tion of logical operators.

The following exercises involve the logical operators NAND

and NOR. The proposition p NAND q is true when either p

or q, or both, are false; and it is false when both p and q are
true. The proposition p NOR q is true when both p and q are
false, and it is false otherwise. The propositions p NAND q

and p NOR q are denoted by p | q and p ↓ q, respectively.
(The operators | and ↓ are called the Sheffer stroke and the
Peirce arrow after H. M. Sheffer and C. S. Peirce, respec-
tively.)

46. Construct a truth table for the logical operator NAND.

47. Show that p | q is logically equivalent to ¬(p ∧ q).

48. Construct a truth table for the logical operator NOR.

49. Show that p ↓ q is logically equivalent to ¬(p ∨ q).

50. In this exercise we will show that {↓} is a functionally
complete collection of logical operators.

a) Show that p ↓ p is logically equivalent to ¬p.
b) Show that (p ↓ q) ↓ (p ↓ q) is logically equivalent

to p ∨ q.
c) Conclude from parts (a) and (b), and Exercise 49, that
{↓} is a functionally complete collection of logical
operators.

∗51. Find a compound proposition logically equivalent to
p → q using only the logical operator ↓.

52. Show that {|} is a functionally complete collection of log-
ical operators.

53. Show that p | q and q | p are equivalent.

54. Show that p | (q | r) and (p | q) | r are not equivalent,
so that the logical operator | is not associative.

∗55. How many different truth tables of compound proposi-
tions are there that involve the propositional variables p

and q?

56. Show that if p, q, and r are compound propositions such
that p and q are logically equivalent and q and r are log-
ically equivalent, then p and r are logically equivalent.

57. The following sentence is taken from the specification of
a telephone system: “If the directory database is opened,
then the monitor is put in a closed state, if the system is
not in its initial state.” This specification is hard to under-

stand because it involves two conditional statements. Find
an equivalent, easier-to-understand specification that in-
volves disjunctions and negations but not conditional
statements.

58. How many of the disjunctions p ∨ ¬q, ¬p ∨ q, q ∨ r ,
q ∨ ¬r , and ¬q ∨ ¬r can be made simultaneously true
by an assignment of truth values to p, q, and r?

59. How many of the disjunctions p ∨ ¬q ∨ s, ¬p ∨
¬r ∨ s, ¬p ∨ ¬r ∨ ¬s, ¬p ∨ q ∨ ¬s, q ∨ r ∨ ¬s,
q ∨ ¬r ∨ ¬s,¬p ∨ ¬q ∨ ¬s, p ∨ r ∨ s, and p ∨ r ∨¬s
can be made simultaneously true by an assignment of
truth values to p, q, r , and s?

60. Show that the negation of an unsatisfiable compound
proposition is a tautology and the negation of a compound
proposition that is a tautology is unsatisfiable.

61. Determine whether each of these compound propositions
is satisfiable.

a) (p ∨ ¬q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬q)
b) (p → q) ∧ (p → ¬q) ∧ (¬p → q) ∧ (¬p → ¬q)
c) (p ↔ q) ∧ (¬p ↔ q)

62. Determine whether each of these compound propositions
is satisfiable.

a) (p ∨ q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬s) ∧ (p ∨ ¬r ∨ ¬s) ∧
(¬p ∨ ¬q ∨ ¬s) ∧ (p ∨ q ∨ ¬s)

b) (¬p ∨ ¬q ∨ r) ∧ (¬p ∨ q ∨ ¬s) ∧ (p ∨ ¬q ∨
¬s) ∧ (¬p ∨ ¬r ∨ ¬s) ∧ (p ∨ q ∨ ¬r) ∧ (p ∨
¬r ∨ ¬s)

c) (p ∨ q ∨ r) ∧ (p ∨ ¬q ∨ ¬s) ∧ (q ∨ ¬r ∨ s) ∧
(¬p ∨ r ∨ s) ∧ (¬p ∨ q ∨ ¬s) ∧ (p ∨ ¬q ∨ ¬r) ∧
(¬p ∨ ¬q ∨ s) ∧ (¬p ∨ ¬r ∨ ¬s)

63. Show how the solution of a given 4× 4 Sudoku puzzle
can be found by solving a satisfiability problem.

64. Construct a compound proposition that asserts that ev-
ery cell of a 9× 9 Sudoku puzzle contains at least one
number.

65. Explain the steps in the construction of the compound
proposition given in the text that asserts that every col-
umn of a 9× 9 Sudoku puzzle contains every number.

∗66. Explain the steps in the construction of the compound
proposition given in the text that asserts that each of the
nine 3× 3 blocks of a 9× 9 Sudoku puzzle contains ev-
ery number.

1.4 Predicates and Quantifiers

Introduction

Propositional logic, studied in Sections 1.1–1.3, cannot adequately express the meaning of all
statements in mathematics and in natural language. For example, suppose that we know that

“Every computer connected to the university network is functioning properly.”

1.4 Predicates and Quantifiers 37

No rules of propositional logic allow us to conclude the truth of the statement

“MATH3 is functioning properly,”

where MATH3 is one of the computers connected to the university network. Likewise, we cannot
use the rules of propositional logic to conclude from the statement

“CS2 is under attack by an intruder,”

where CS2 is a computer on the university network, to conclude the truth of

“There is a computer on the university network that is under attack by an intruder.”

In this section we will introduce a more powerful type of logic called predicate logic. We
will see how predicate logic can be used to express the meaning of a wide range of statements
in mathematics and computer science in ways that permit us to reason and explore relationships
between objects. To understand predicate logic, we first need to introduce the concept of a
predicate. Afterward, we will introduce the notion of quantifiers, which enable us to reason with
statements that assert that a certain property holds for all objects of a certain type and with
statements that assert the existence of an object with a particular property.

Predicates

Statements involving variables, such as

“x > 3,” “x = y + 3,” “x + y = z,”

and

“computer x is under attack by an intruder,”

and

“computer x is functioning properly,”

are often found in mathematical assertions, in computer programs, and in system specifications.
These statements are neither true nor false when the values of the variables are not specified. In
this section, we will discuss the ways that propositions can be produced from such statements.

The statement “x is greater than 3” has two parts. The first part, the variable x, is the subject
of the statement. The second part—the predicate, “is greater than 3”—refers to a property that
the subject of the statement can have. We can denote the statement “x is greater than 3” by P(x),
where P denotes the predicate “is greater than 3” and x is the variable. The statement P(x) is
also said to be the value of the propositional function P at x. Once a value has been assigned
to the variable x, the statement P(x) becomes a proposition and has a truth value. Consider
Examples 1 and 2.

EXAMPLE 1 Let P(x) denote the statement “x > 3.” What are the truth values of P(4) and P(2)?

Solution: We obtain the statement P(4) by setting x = 4 in the statement “x > 3.” Hence,
P(4), which is the statement “4 > 3,” is true. However, P(2), which is the statement “2 > 3,”
is false. ▲

38 1 / The Foundations: Logic and Proofs

EXAMPLE 2 Let A(x) denote the statement “Computer x is under attack by an intruder.” Suppose that of the
computers on campus, only CS2 and MATH1 are currently under attack by intruders. What are
truth values of A(CS1), A(CS2), and A(MATH1)?

Solution: We obtain the statement A(CS1) by setting x = CS1 in the statement “Computer x

is under attack by an intruder.” Because CS1 is not on the list of computers currently under
attack, we conclude that A(CS1) is false. Similarly, because CS2 and MATH1 are on the list of
computers under attack, we know that A(CS2) and A(MATH1) are true. ▲

We can also have statements that involve more than one variable. For instance, consider the
statement “x = y + 3.” We can denote this statement by Q(x, y), where x and y are variables
and Q is the predicate. When values are assigned to the variables x and y, the statement Q(x, y)

has a truth value.

EXAMPLE 3 Let Q(x, y) denote the statement “x = y + 3.” What are the truth values of the propositions
Q(1, 2) and Q(3, 0)?

Solution: To obtain Q(1, 2), set x = 1 and y = 2 in the statement Q(x, y). Hence, Q(1, 2) is
the statement “1 = 2+ 3,” which is false. The statement Q(3, 0) is the proposition “3 = 0+ 3,”
which is true. ▲

CHARLES SANDERS PEIRCE (1839–1914) Many consider Charles Peirce, born in Cambridge, Mas-
sachusetts, to be the most original and versatile American intellect. He made important contributions to an
amazing number of disciplines, including mathematics, astronomy, chemistry, geodesy, metrology, engineer-
ing, psychology, philology, the history of science, and economics. Peirce was also an inventor, a lifelong student
of medicine, a book reviewer, a dramatist and an actor, a short story writer, a phenomenologist, a logician, and a
metaphysician. He is noted as the preeminent system-building philosopher competent and productive in logic,
mathematics, and a wide range of sciences. He was encouraged by his father, Benjamin Peirce, a professor of
mathematics and natural philosophy at Harvard, to pursue a career in science. Instead, he decided to study logic
and scientific methodology. Peirce attended Harvard (1855–1859) and received a Harvard master of arts degree
(1862) and an advanced degree in chemistry from the Lawrence Scientific School (1863).

In 1861, Peirce became an aide in the U.S. Coast Survey, with the goal of better understanding scientific methodology. His service
for the Survey exempted him from military service during the Civil War. While working for the Survey, Peirce did astronomical and
geodesic work. He made fundamental contributions to the design of pendulums and to map projections, applying new mathematical
developments in the theory of elliptic functions. He was the first person to use the wavelength of light as a unit of measurement.
Peirce rose to the position of Assistant for the Survey, a position he held until forced to resign in 1891 when he disagreed with the
direction taken by the Survey’s new administration.

While making his living from work in the physical sciences, Peirce developed a hierarchy of sciences, with mathematics at the
top rung, in which the methods of one science could be adapted for use by those sciences under it in the hierarchy. During this time,
he also founded the American philosophical theory of pragmatism.

The only academic position Peirce ever held was lecturer in logic at Johns Hopkins University in Baltimore (1879–1884). His
mathematical work during this time included contributions to logic, set theory, abstract algebra, and the philosophy of mathematics.
His work is still relevant today, with recent applications of this work on logic to artificial intelligence. Peirce believed that the study
of mathematics could develop the mind’s powers of imagination, abstraction, and generalization. His diverse activities after retiring
from the Survey included writing for periodicals, contributing to scholarly dictionaries, translating scientific papers, guest lecturing,
and textbook writing. Unfortunately, his income from these pursuits was insufficient to protect him and his second wife from abject
poverty. He was supported in his later years by a fund created by his many admirers and administered by the philosopher William
James, his lifelong friend. Although Peirce wrote and published voluminously in a vast range of subjects, he left more than 100,000
pages of unpublished manuscripts. Because of the difficulty of studying his unpublished writings, scholars have only recently started
to understand some of his varied contributions. A group of people is devoted to making his work available over the Internet to bring
a better appreciation of Peirce’s accomplishments to the world.

1.4 Predicates and Quantifiers 39

EXAMPLE 4 Let A(c, n) denote the statement “Computer c is connected to network n,” where c is a variable
representing a computer and n is a variable representing a network. Suppose that the computer
MATH1 is connected to network CAMPUS2, but not to network CAMPUS1. What are the
values of A(MATH1, CAMPUS1) and A(MATH1, CAMPUS2)?

Solution: Because MATH1 is not connected to the CAMPUS1 network, we see that A(MATH1,
CAMPUS1) is false. However, because MATH1 is connected to the CAMPUS2 network, we
see that A(MATH1, CAMPUS2) is true. ▲

Similarly, we can let R(x, y, z) denote the statement ‘̀x + y = z.” When values are assigned
to the variables x, y, and z, this statement has a truth value.

EXAMPLE 5 What are the truth values of the propositions R(1, 2, 3) and R(0, 0, 1)?

Solution: The proposition R(1, 2, 3) is obtained by setting x = 1, y = 2, and z = 3 in the
statement R(x, y, z). We see that R(1, 2, 3) is the statement “1+ 2 = 3,” which is true. Also
note that R(0, 0, 1), which is the statement “0+ 0 = 1,” is false. ▲

In general, a statement involving the n variables x1, x2, . . . , xn can be denoted by

P(x1, x2, . . . , xn).

A statement of the form P(x1, x2, . . . , xn) is the value of the propositional function P at the
n-tuple (x1, x2, . . . , xn), and P is also called an n-place predicate or a n-ary predicate.

Propositional functions occur in computer programs, as Example 6 demonstrates.

EXAMPLE 6 Consider the statement

if x > 0 then x := x + 1.

When this statement is encountered in a program, the value of the variable x at that point in the
execution of the program is inserted into P(x), which is “x > 0.” If P(x) is true for this value
of x, the assignment statement x := x + 1 is executed, so the value of x is increased by 1. If
P(x) is false for this value of x, the assignment statement is not executed, so the value of x is
not changed. ▲

PRECONDITIONS AND POSTCONDITIONS Predicates are also used to establish the
correctness of computer programs, that is, to show that computer programs always produce the
desired output when given valid input. (Note that unless the correctness of a computer program
is established, no amount of testing can show that it produces the desired output for all input
values, unless every input value is tested.) The statements that describe valid input are known
as preconditions and the conditions that the output should satisfy when the program has run
are known as postconditions. As Example 7 illustrates, we use predicates to describe both
preconditions and postconditions. We will study this process in greater detail in Section 5.5.

EXAMPLE 7 Consider the following program, designed to interchange the values of two variables x and y.

temp := x

x := y

y := temp

Find predicates that we can use as the precondition and the postcondition to verify the correctness
of this program. Then explain how to use them to verify that for all valid input the program does
what is intended.

40 1 / The Foundations: Logic and Proofs

Solution: For the precondition, we need to express that x and y have particular values before
we run the program. So, for this precondition we can use the predicate P(x, y), where P(x, y)

is the statement “x = a and y = b,” where a and b are the values of x and y before we run the
program. Because we want to verify that the program swaps the values of x and y for all input
values, for the postcondition we can use Q(x, y), where Q(x, y) is the statement “x = b and
y = a.”

To verify that the program always does what it is supposed to do, suppose that the precon-
dition P(x, y) holds. That is, we suppose that the statement “x = a and y = b” is true. This
means that x = a and y = b. The first step of the program, temp := x, assigns the value of x to
the variable temp, so after this step we know that x = a, temp= a, and y = b. After the second
step of the program, x := y, we know that x = b, temp = a, and y = b. Finally, after the third
step, we know that x = b, temp = a, and y = a. Consequently, after this program is run, the
postcondition Q(x, y) holds, that is, the statement “x = b and y = a” is true. ▲

Quantifiers

When the variables in a propositional function are assigned values, the resulting statement
becomes a proposition with a certain truth value. However, there is another important way, called
quantification, to create a proposition from a propositional function. Quantification expresses
the extent to which a predicate is true over a range of elements. In English, the words all, some,
many, none, and few are used in quantifications. We will focus on two types of quantification
here: universal quantification, which tells us that a predicate is true for every element under
consideration, and existential quantification, which tells us that there is one or more element
under consideration for which the predicate is true. The area of logic that deals with predicates
and quantifiers is called the predicate calculus.

THE UNIVERSAL QUANTIFIER Many mathematical statements assert that a property is
true for all values of a variable in a particular domain, called the domain of discourse (or
the universe of discourse), often just referred to as the domain. Such a statement is expressed
using universal quantification. The universal quantification of P(x) for a particular domain is the
proposition that asserts that P(x) is true for all values of x in this domain. Note that the domain
specifies the possible values of the variable x. The meaning of the universal quantification
of P(x) changes when we change the domain. The domain must always be specified when a
universal quantifier is used; without it, the universal quantification of a statement is not defined.

DEFINITION 1 The universal quantification of P(x) is the statement

“P(x) for all values of x in the domain.”

The notation ∀xP (x) denotes the universal quantification of P(x). Here ∀ is called the
universal quantifier.We read ∀xP (x) as “for all xP (x)” or “for every xP (x).” An element
for which P(x) is false is called a counterexample of ∀xP (x).

The meaning of the universal quantifier is summarized in the first row of Table 1. We
illustrate the use of the universal quantifier in Examples 8–13.

1.4 Predicates and Quantifiers 41

TABLE 1 Quantifiers.

Statement When True? When False?

∀xP (x) P (x) is true for every x. There is an x for which P(x) is false.

∃xP (x) There is an x for which P(x) is true. P(x) is false for every x.

EXAMPLE 8 Let P(x) be the statement “x + 1 > x.” What is the truth value of the quantification ∀xP (x),
where the domain consists of all real numbers?

Solution: Because P(x) is true for all real numbers x, the quantification

∀xP (x)

is true. ▲

Remark: Generally, an implicit assumption is made that all domains of discourse for quantifiers
are nonempty. Note that if the domain is empty, then ∀xP (x) is true for any propositional
function P(x) because there are no elements x in the domain for which P(x) is false.

Remember that the truth

value of ∀xP (x) depends

on the domain!

Besides “for all” and “for every,” universal quantification can be expressed in many other
ways, including “all of,” “for each,” “given any,” “for arbitrary,” “for each,” and “for any.”

Remark: It is best to avoid using “for any x” because it is often ambiguous as to whether “any”
means “every” or “some.” In some cases, “any” is unambiguous, such as when it is used in
negatives, for example, “there is not any reason to avoid studying.”

A statement∀xP (x) is false, whereP(x) is a propositional function, if and only ifP(x) is not
always true when x is in the domain. One way to show thatP(x) is not always true whenx is in the
domain is to find a counterexample to the statement∀xP (x). Note that a single counterexample is
all we need to establish that∀xP (x) is false. Example 9 illustrates how counterexamples are used.

EXAMPLE 9 Let Q(x) be the statement “x < 2.” What is the truth value of the quantification ∀xQ(x), where
the domain consists of all real numbers?

Solution: Q(x) is not true for every real number x, because, for instance, Q(3) is false. That is,
x = 3 is a counterexample for the statement ∀xQ(x). Thus

∀xQ(x)

is false. ▲

EXAMPLE 10 Suppose that P(x) is “x2 > 0.” To show that the statement ∀xP (x) is false where the uni-
verse of discourse consists of all integers, we give a counterexample. We see that x = 0 is a
counterexample because x2 = 0 when x = 0, so that x2 is not greater than 0 when x = 0. ▲

Looking for counterexamples to universally quantified statements is an important activity
in the study of mathematics, as we will see in subsequent sections of this book.

When all the elements in the domain can be listed—say, x1, x2, . . ., xn—it follows that the
universal quantification ∀xP (x) is the same as the conjunction

P(x1) ∧ P(x2) ∧ · · · ∧ P(xn),

because this conjunction is true if and only if P(x1), P (x2), . . . , P (xn) are all true.

42 1 / The Foundations: Logic and Proofs

EXAMPLE 11 What is the truth value of ∀xP (x), where P(x) is the statement “x2 < 10” and the domain
consists of the positive integers not exceeding 4?

Solution: The statement ∀xP (x) is the same as the conjunction

P(1) ∧ P(2) ∧ P(3) ∧ P(4),

because the domain consists of the integers 1, 2, 3, and 4. Because P(4), which is the statement
“42 < 10,” is false, it follows that ∀xP (x) is false. ▲

EXAMPLE 12 What does the statement ∀xN(x) mean if N(x) is “Computer x is connected to the network”
and the domain consists of all computers on campus?

Solution: The statement ∀xN(x) means that for every computer x on campus, that computer x
is connected to the network. This statement can be expressed in English as “Every computer on
campus is connected to the network.” ▲

As we have pointed out, specifying the domain is mandatory when quantifiers are used. The
truth value of a quantified statement often depends on which elements are in this domain, as
Example 13 shows.

EXAMPLE 13 What is the truth value of ∀x(x2 ≥ x) if the domain consists of all real numbers? What is the
truth value of this statement if the domain consists of all integers?

Solution: The universal quantification ∀x(x2 ≥ x), where the domain consists of all real num-
bers, is false. For example, (1

2
)2 ≥ 1

2
. Note that x2 ≥ x if and only if x2 − x = x(x − 1) ≥ 0.

Consequently, x2 ≥ x if and only if x ≤ 0 or x ≥ 1. It follows that ∀x(x2 ≥ x) is false if the
domain consists of all real numbers (because the inequality is false for all real numbers x with
0 < x < 1). However, if the domain consists of the integers, ∀x(x2 ≥ x) is true, because there
are no integers x with 0 < x < 1. ▲

THE EXISTENTIAL QUANTIFIER Many mathematical statements assert that there is an
element with a certain property. Such statements are expressed using existential quantification.
With existential quantification, we form a proposition that is true if and only if P(x) is true for
at least one value of x in the domain.

DEFINITION 2 The existential quantification of P(x) is the proposition

“There exists an element x in the domain such that P(x).”

We use the notation ∃xP (x) for the existential quantification of P(x). Here ∃ is called the
existential quantifier.

A domain must always be specified when a statement ∃xP (x) is used. Furthermore, the
meaning of ∃xP (x) changes when the domain changes. Without specifying the domain, the
statement ∃xP (x) has no meaning.

Besides the phrase “there exists,” we can also express existential quantification in many other
ways, such as by using the words “for some,” “for at least one,” or “there is.” The existential
quantification ∃xP (x) is read as

“There is an x such that P(x),”
“There is at least one x such that P(x),”

or

“For some xP (x).”

1.4 Predicates and Quantifiers 43

The meaning of the existential quantifier is summarized in the second row of Table 1. We
illustrate the use of the existential quantifier in Examples 14–16.

EXAMPLE 14 Let P(x) denote the statement “x > 3.” What is the truth value of the quantification ∃xP (x),
where the domain consists of all real numbers?

Solution: Because “x > 3” is sometimes true—for instance, when x = 4—the existential quan-
tification of P(x), which is ∃xP (x), is true. ▲

Observe that the statement ∃xP (x) is false if and only if there is no element x in the domain
for which P(x) is true. That is, ∃xP (x) is false if and only if P(x) is false for every element of
the domain. We illustrate this observation in Example 15.

EXAMPLE 15 LetQ(x) denote the statement “x = x + 1.”What is the truth value of the quantification∃xQ(x),
where the domain consists of all real numbers?

Solution: Because Q(x) is false for every real number x, the existential quantification of Q(x),
which is ∃xQ(x), is false. ▲

Remember that the truth

value of ∃xP (x) depends

on the domain! Remark: Generally, an implicit assumption is made that all domains of discourse for quantifiers
are nonempty. If the domain is empty, then ∃xQ(x) is false whenever Q(x) is a propositional
function because when the domain is empty, there can be no element x in the domain for which
Q(x) is true.

When all elements in the domain can be listed—say, x1, x2, . . . , xn— the existential quan-
tification ∃xP (x) is the same as the disjunction

P(x1) ∨ P(x2) ∨ · · · ∨ P(xn),

because this disjunction is true if and only if at least one of P(x1), P (x2), . . . , P (xn) is true.

EXAMPLE 16 What is the truth value of ∃xP (x), where P(x) is the statement “x2 > 10” and the universe of
discourse consists of the positive integers not exceeding 4?

Solution: Because the domain is {1, 2, 3, 4}, the proposition ∃xP (x) is the same as the disjunc-
tion

P(1) ∨ P(2) ∨ P(3) ∨ P(4).

Because P(4), which is the statement “42 > 10,” is true, it follows that ∃xP (x) is true. ▲

It is sometimes helpful to think in terms of looping and searching when determining the
truth value of a quantification. Suppose that there are n objects in the domain for the variable x.
To determine whether ∀xP (x) is true, we can loop through all n values of x to see whether
P(x) is always true. If we encounter a value x for which P(x) is false, then we have shown that
∀xP (x) is false. Otherwise, ∀xP (x) is true. To see whether ∃xP (x) is true, we loop through
the n values of x searching for a value for which P(x) is true. If we find one, then ∃xP (x) is
true. If we never find such an x, then we have determined that ∃xP (x) is false. (Note that this
searching procedure does not apply if there are infinitely many values in the domain. However,
it is still a useful way of thinking about the truth values of quantifications.)

44 1 / The Foundations: Logic and Proofs

THEUNIQUENESSQUANTIFIER We have now introduced universal and existential quan-
tifiers. These are the most important quantifiers in mathematics and computer science. However,
there is no limitation on the number of different quantifiers we can define, such as “there are
exactly two,” “there are no more than three,” “there are at least 100,” and so on. Of these other
quantifiers, the one that is most often seen is the uniqueness quantifier, denoted by ∃! or ∃1.
The notation ∃!xP (x) [or ∃1xP (x)] states “There exists a unique x such that P(x) is true.”
(Other phrases for uniqueness quantification include “there is exactly one” and “there is one and
only one.”) For instance, ∃!x(x − 1 = 0), where the domain is the set of real numbers, states
that there is a unique real number x such that x − 1 = 0. This is a true statement, as x = 1 is the
unique real number such that x − 1 = 0. Observe that we can use quantifiers and propositional
logic to express uniqueness (see Exercise 52 in Section 1.5), so the uniqueness quantifier can
be avoided. Generally, it is best to stick with existential and universal quantifiers so that rules
of inference for these quantifiers can be used.

Quantifiers with Restricted Domains

An abbreviated notation is often used to restrict the domain of a quantifier. In this nota-
tion, a condition a variable must satisfy is included after the quantifier. This is illustrated in
Example 17. We will also describe other forms of this notation involving set membership in
Section 2.1.

EXAMPLE 17 What do the statements ∀x < 0 (x2 > 0), ∀y = 0 (y3 = 0), and ∃z > 0 (z2 = 2) mean, where
the domain in each case consists of the real numbers?

Solution: The statement∀x < 0 (x2 > 0) states that for every real number x with x < 0, x2 > 0.
That is, it states “The square of a negative real number is positive.” This statement is the same
as ∀x(x < 0 → x2 > 0).

The statement ∀y = 0 (y3 = 0) states that for every real number y with y = 0, we have
y3 = 0. That is, it states “The cube of every nonzero real number is nonzero.” Note that this
statement is equivalent to ∀y(y = 0 → y3 = 0).

Finally, the statement ∃z > 0 (z2 = 2) states that there exists a real number z with z > 0
such that z2 = 2. That is, it states “There is a positive square root of 2.” This statement is
equivalent to ∃z(z > 0 ∧ z2 = 2). ▲

Note that the restriction of a universal quantification is the same as the universal quantifi-
cation of a conditional statement. For instance, ∀x < 0 (x2 > 0) is another way of expressing
∀x(x < 0 → x2 > 0). On the other hand, the restriction of an existential quantification is the
same as the existential quantification of a conjunction. For instance, ∃z > 0 (z2 = 2) is another
way of expressing ∃z(z > 0 ∧ z2 = 2).

Precedence of Quantifiers

The quantifiers ∀ and ∃ have higher precedence than all logical operators from propositional
calculus. For example, ∀xP (x) ∨Q(x) is the disjunction of ∀xP (x) and Q(x). In other words,
it means (∀xP (x)) ∨Q(x) rather than ∀x(P (x) ∨Q(x)).

Binding Variables

When a quantifier is used on the variable x, we say that this occurrence of the variable is bound.
An occurrence of a variable that is not bound by a quantifier or set equal to a particular value
is said to be free. All the variables that occur in a propositional function must be bound or set
equal to a particular value to turn it into a proposition. This can be done using a combination of
universal quantifiers, existential quantifiers, and value assignments.

1.4 Predicates and Quantifiers 45

The part of a logical expression to which a quantifier is applied is called the scope of this
quantifier. Consequently, a variable is free if it is outside the scope of all quantifiers in the
formula that specify this variable.

EXAMPLE 18 In the statement ∃x(x + y = 1), the variable x is bound by the existential quantification ∃x, but
the variable y is free because it is not bound by a quantifier and no value is assigned to this
variable. This illustrates that in the statement ∃x(x + y = 1), x is bound, but y is free.

In the statement ∃x(P (x) ∧Q(x)) ∨ ∀xR(x), all variables are bound. The scope of the first
quantifier, ∃x, is the expression P(x) ∧Q(x) because ∃x is applied only to P(x) ∧Q(x), and
not to the rest of the statement. Similarly, the scope of the second quantifier, ∀x, is the expression
R(x). That is, the existential quantifier binds the variable x in P(x) ∧Q(x) and the universal
quantifier ∀x binds the variable x in R(x). Observe that we could have written our statement
using two different variables x and y, as ∃x(P (x) ∧Q(x)) ∨ ∀yR(y), because the scopes of
the two quantifiers do not overlap. The reader should be aware that in common usage, the same
letter is often used to represent variables bound by different quantifiers with scopes that do not
overlap. ▲

Logical Equivalences Involving Quantifiers

In Section 1.3 we introduced the notion of logical equivalences of compound propositions. We
can extend this notion to expressions involving predicates and quantifiers.

DEFINITION 3 Statements involving predicates and quantifiers are logically equivalent if and only if they
have the same truth value no matter which predicates are substituted into these statements
and which domain of discourse is used for the variables in these propositional functions.
We use the notation S ≡ T to indicate that two statements S and T involving predicates and
quantifiers are logically equivalent.

Example 19 illustrates how to show that two statements involving predicates and quantifiers
are logically equivalent.

EXAMPLE 19 Show that ∀x(P (x) ∧Q(x)) and ∀xP (x) ∧ ∀xQ(x) are logically equivalent (where the same
domain is used throughout). This logical equivalence shows that we can distribute a universal
quantifier over a conjunction. Furthermore, we can also distribute an existential quantifier over
a disjunction. However, we cannot distribute a universal quantifier over a disjunction, nor can
we distribute an existential quantifier over a conjunction. (See Exercises 50 and 51.)

Solution: To show that these statements are logically equivalent, we must show that they always
take the same truth value, no matter what the predicates P and Q are, and no matter which
domain of discourse is used. Suppose we have particular predicates P and Q, with a common
domain. We can show that ∀x(P (x) ∧Q(x)) and ∀xP (x) ∧ ∀xQ(x) are logically equivalent
by doing two things. First, we show that if ∀x(P (x) ∧Q(x)) is true, then ∀xP (x) ∧ ∀xQ(x)

is true. Second, we show that if ∀xP (x) ∧ ∀xQ(x) is true, then ∀x(P (x) ∧Q(x)) is true.
So, suppose that ∀x(P (x) ∧Q(x)) is true. This means that if a is in the domain, then

P(a) ∧Q(a) is true. Hence, P(a) is true and Q(a) is true. Because P(a) is true and Q(a) is
true for every element in the domain, we can conclude that ∀xP (x) and ∀xQ(x) are both true.
This means that ∀xP (x) ∧ ∀xQ(x) is true.

Next, suppose that ∀xP (x) ∧ ∀xQ(x) is true. It follows that ∀xP (x) is true and ∀xQ(x) is
true. Hence, if a is in the domain, then P(a) is true and Q(a) is true [because P(x) and Q(x)

are both true for all elements in the domain, there is no conflict using the same value of a here].

46 1 / The Foundations: Logic and Proofs

It follows that for all a, P(a) ∧Q(a) is true. It follows that ∀x(P (x) ∧Q(x)) is true. We can
now conclude that

∀x(P (x) ∧Q(x)) ≡ ∀xP (x) ∧ ∀xQ(x). ▲

Negating Quantified Expressions

We will often want to consider the negation of a quantified expression. For instance, consider
the negation of the statement

“Every student in your class has taken a course in calculus.”

This statement is a universal quantification, namely,

∀xP (x),

where P(x) is the statement “x has taken a course in calculus” and the domain consists of the
students in your class. The negation of this statement is “It is not the case that every student in
your class has taken a course in calculus.” This is equivalent to “There is a student in your class
who has not taken a course in calculus.” And this is simply the existential quantification of the
negation of the original propositional function, namely,

∃x ¬P(x).

This example illustrates the following logical equivalence:

¬∀xP (x) ≡ ∃x ¬P(x).

To show that ¬∀xP (x) and ∃xP (x) are logically equivalent no matter what the propositional
function P(x) is and what the domain is, first note that¬∀xP (x) is true if and only if ∀xP (x) is
false. Next, note that ∀xP (x) is false if and only if there is an element x in the domain for which
P(x) is false. This holds if and only if there is an element x in the domain for which ¬P(x) is
true. Finally, note that there is an element x in the domain for which ¬P(x) is true if and only
if ∃x ¬P(x) is true. Putting these steps together, we can conclude that ¬∀xP (x) is true if and
only if ∃x ¬P(x) is true. It follows that ¬∀xP (x) and ∃x ¬P(x) are logically equivalent.

Suppose we wish to negate an existential quantification. For instance, consider the propo-
sition “There is a student in this class who has taken a course in calculus.” This is the existential
quantification

∃xQ(x),

where Q(x) is the statement “x has taken a course in calculus.” The negation of this statement
is the proposition “It is not the case that there is a student in this class who has taken a course in
calculus.” This is equivalent to “Every student in this class has not taken calculus,” which is just
the universal quantification of the negation of the original propositional function, or, phrased in
the language of quantifiers,

∀x ¬Q(x).

This example illustrates the equivalence

¬∃xQ(x) ≡ ∀x ¬Q(x).

To show that¬∃xQ(x) and ∀x ¬Q(x) are logically equivalent no matter what Q(x) is and what
the domain is, first note that ¬∃xQ(x) is true if and only if ∃xQ(x) is false. This is true if and

1.4 Predicates and Quantifiers 47

TABLE 2 De Morgan’s Laws for Quantifiers.

Negation Equivalent Statement When Is Negation True? When False?

¬∃xP (x) ∀x¬P(x) For every x, P(x) is false. There is an x for which

P(x) is true.

¬∀xP (x) ∃x¬P(x) There is an x for which P(x) is true for every x.

P(x) is false.

only if no x exists in the domain for which Q(x) is true. Next, note that no x exists in the domain
for which Q(x) is true if and only if Q(x) is false for every x in the domain. Finally, note that
Q(x) is false for every x in the domain if and only if ¬Q(x) is true for all x in the domain,
which holds if and only if ∀x¬Q(x) is true. Putting these steps together, we see that ¬∃xQ(x)

is true if and only if ∀x¬Q(x) is true. We conclude that ¬∃xQ(x) and ∀x ¬Q(x) are logically
equivalent.

The rules for negations for quantifiers are called DeMorgan’s laws for quantifiers. These
rules are summarized in Table 2.

Remark: When the domain of a predicate P(x) consists of n elements, where n is a positive
integer greater than one, the rules for negating quantified statements are exactly the same as
De Morgan’s laws discussed in Section 1.3. This is why these rules are called De Morgan’s
laws for quantifiers. When the domain has n elements x1, x2, . . . , xn, it follows that ¬∀xP (x)

is the same as ¬(P (x1) ∧ P(x2) ∧ · · · ∧ P(xn)), which is equivalent to ¬P(x1) ∨ ¬P(x2) ∨
· · · ∨ ¬P(xn) by De Morgan’s laws, and this is the same as ∃x¬P(x). Similarly, ¬∃xP (x)

is the same as ¬(P (x1) ∨ P(x2) ∨ · · · ∨ P(xn)), which by De Morgan’s laws is equivalent to
¬P(x1) ∧ ¬P(x2) ∧ · · · ∧ ¬P(xn), and this is the same as ∀x¬P(x).

We illustrate the negation of quantified statements in Examples 20 and 21.

EXAMPLE 20 What are the negations of the statements “There is an honest politician” and “All Americans eat
cheeseburgers”?

Solution: Let H(x) denote “x is honest.” Then the statement “There is an honest politician”
is represented by ∃xH(x), where the domain consists of all politicians. The negation of this
statement is ¬∃xH(x), which is equivalent to ∀x¬H(x). This negation can be expressed as
“Every politician is dishonest.” (Note: In English, the statement “All politicians are not honest”
is ambiguous. In common usage, this statement often means “Not all politicians are honest.”
Consequently, we do not use this statement to express this negation.)

Let C(x) denote “x eats cheeseburgers.” Then the statement “All Americans eat cheese-
burgers” is represented by ∀xC(x), where the domain consists of all Americans. The negation
of this statement is ¬∀xC(x), which is equivalent to ∃x¬C(x). This negation can be expressed
in several different ways, including “Some American does not eat cheeseburgers” and “There
is an American who does not eat cheeseburgers.” ▲

EXAMPLE 21 What are the negations of the statements ∀x(x2 > x) and ∃x(x2 = 2)?

Solution: The negation of ∀x(x2 > x) is the statement ¬∀x(x2 > x), which is equivalent to
∃x¬(x2 > x). This can be rewritten as ∃x(x2 ≤ x). The negation of ∃x(x2 = 2) is the statement
¬∃x(x2 = 2), which is equivalent to ∀x¬(x2 = 2). This can be rewritten as ∀x(x2 = 2). The
truth values of these statements depend on the domain. ▲

We use De Morgan’s laws for quantifiers in Example 22.

48 1 / The Foundations: Logic and Proofs

EXAMPLE 22 Show that ¬∀x(P (x)→ Q(x)) and ∃x(P (x) ∧ ¬Q(x)) are logically equivalent.

Solution: By De Morgan’s law for universal quantifiers, we know that ¬∀x(P (x)→ Q(x))

and ∃x(¬(P (x)→ Q(x))) are logically equivalent. By the fifth logical equivalence in Table 7
in Section 1.3, we know that ¬(P (x)→ Q(x)) and P(x) ∧ ¬Q(x) are logically equivalent
for every x. Because we can substitute one logically equivalent expression for another in a
logical equivalence, it follows that ¬∀x(P (x)→ Q(x)) and ∃x(P (x) ∧ ¬Q(x)) are logically
equivalent. ▲

Translating from English into Logical Expressions

Translating sentences in English (or other natural languages) into logical expressions is a crucial
task in mathematics, logic programming, artificial intelligence, software engineering, and many
other disciplines. We began studying this topic in Section 1.1, where we used propositions to
express sentences in logical expressions. In that discussion, we purposely avoided sentences
whose translations required predicates and quantifiers. Translating from English to logical ex-
pressions becomes even more complex when quantifiers are needed. Furthermore, there can
be many ways to translate a particular sentence. (As a consequence, there is no “cookbook”
approach that can be followed step by step.) We will use some examples to illustrate how to
translate sentences from English into logical expressions. The goal in this translation is to pro-
duce simple and useful logical expressions. In this section, we restrict ourselves to sentences
that can be translated into logical expressions using a single quantifier; in the next section, we
will look at more complicated sentences that require multiple quantifiers.

EXAMPLE 23 Express the statement “Every student in this class has studied calculus” using predicates and
quantifiers.

Solution: First, we rewrite the statement so that we can clearly identify the appropriate quantifiers
to use. Doing so, we obtain:

“For every student in this class, that student has studied calculus.”

Next, we introduce a variable x so that our statement becomes

“For every student x in this class, x has studied calculus.”

Continuing, we introduce C(x), which is the statement “x has studied calculus.” Consequently,
if the domain for x consists of the students in the class, we can translate our statement as ∀xC(x).

However, there are other correct approaches; different domains of discourse and other
predicates can be used. The approach we select depends on the subsequent reasoning we want
to carry out. For example, we may be interested in a wider group of people than only those in
this class. If we change the domain to consist of all people, we will need to express our statement
as

“For every person x, if person x is a student in this class then x has studied calculus.”

If S(x) represents the statement that person x is in this class, we see that our statement can be
expressed as ∀x(S(x)→ C(x)). [Caution! Our statement cannot be expressed as ∀x(S(x) ∧
C(x)) because this statement says that all people are students in this class and have studied
calculus!]

Finally, when we are interested in the background of people in subjects besides calculus,
we may prefer to use the two-variable quantifier Q(x, y) for the statement “student x has
studied subject y.” Then we would replace C(x) by Q(x, calculus) in both approaches to obtain
∀xQ(x, calculus) or ∀x(S(x)→ Q(x, calculus)). ▲

1.4 Predicates and Quantifiers 49

In Example 23 we displayed different approaches for expressing the same statement using
predicates and quantifiers. However, we should always adopt the simplest approach that is
adequate for use in subsequent reasoning.

EXAMPLE 24 Express the statements “Some student in this class has visited Mexico” and “Every student in
this class has visited either Canada or Mexico” using predicates and quantifiers.

Solution: The statement “Some student in this class has visited Mexico” means that

“There is a student in this class with the property that the student has visited Mexico.”

We can introduce a variable x, so that our statement becomes

“There is a student x in this class having the property that x has visited Mexico.”

We introduce M(x), which is the statement “x has visited Mexico.” If the domain for x consists
of the students in this class, we can translate this first statement as ∃xM(x).

However, if we are interested in people other than those in this class, we look at the statement
a little differently. Our statement can be expressed as

“There is a person x having the properties that x is a student in this class and x has visited
Mexico.”

In this case, the domain for the variable x consists of all people. We introduce S(x) to represent
“x is a student in this class.” Our solution becomes ∃x(S(x) ∧M(x)) because the statement is
that there is a person x who is a student in this class and who has visited Mexico. [Caution! Our
statement cannot be expressed as ∃x(S(x)→ M(x)), which is true when there is someone not
in the class because, in that case, for such a person x, S(x)→ M(x) becomes either F→ T or
F→ F, both of which are true.]

Similarly, the second statement can be expressed as

“For every x in this class, x has the property that x has visited Mexico or x has visited
Canada.”

(Note that we are assuming the inclusive, rather than the exclusive, or here.) We let C(x) be “x
has visited Canada.” Following our earlier reasoning, we see that if the domain for x consists of
the students in this class, this second statement can be expressed as ∀x(C(x) ∨M(x)). However,
if the domain for x consists of all people, our statement can be expressed as

“For every person x, if x is a student in this class, then x has visited Mexico or x has visited
Canada.”

In this case, the statement can be expressed as ∀x(S(x)→ (C(x) ∨M(x))).

Instead of using M(x) and C(x) to represent that x has visited Mexico and x has visited
Canada, respectively, we could use a two-place predicate V (x, y) to represent “x has visited
country y.” In this case, V (x, Mexico) and V (x, Canada) would have the same meaning as M(x)

and C(x) and could replace them in our answers. If we are working with many statements that
involve people visiting different countries, we might prefer to use this two-variable approach.
Otherwise, for simplicity, we would stick with the one-variable predicates M(x) and C(x). ▲

50 1 / The Foundations: Logic and Proofs

Using Quantifiers in System Specifications

In Section 1.2 we used propositions to represent system specifications. However, many system
specifications involve predicates and quantifications. This is illustrated in Example 25.

EXAMPLE 25 Use predicates and quantifiers to express the system specifications “Every mail message larger
than one megabyte will be compressed” and “If a user is active, at least one network link will
be available.”

Solution: Let S(m, y) be “Mail message m is larger than y megabytes,” where the variable x has
the domain of all mail messages and the variable y is a positive real number, and let C(m) denote
“Mail message m will be compressed.” Then the specification “Every mail message larger than
one megabyte will be compressed” can be represented as ∀m(S(m, 1)→ C(m)).

Remember the rules of

precedence for quantifiers

and logical connectives!

Let A(u) represent “User u is active,” where the variable u has the domain of all users,
let S(n, x) denote “Network link n is in state x,” where n has the domain of all network
links and x has the domain of all possible states for a network link. Then the specifica-
tion “If a user is active, at least one network link will be available” can be represented by
∃uA(u)→ ∃nS(n, available). ▲

Examples from Lewis Carroll

Lewis Carroll (really C. L. Dodgson writing under a pseudonym), the author of Alice in Wonder-

land, is also the author of several works on symbolic logic. His books contain many examples
of reasoning using quantifiers. Examples 26 and 27 come from his book Symbolic Logic; other
examples from that book are given in the exercises at the end of this section. These examples
illustrate how quantifiers are used to express various types of statements.

EXAMPLE 26 Consider these statements. The first two are called premises and the third is called the conclusion.
The entire set is called an argument.

“All lions are fierce.”
“Some lions do not drink coffee.”
“Some fierce creatures do not drink coffee.”

(In Section 1.6 we will discuss the issue of determining whether the conclusion is a valid conse-
quence of the premises. In this example, it is.) Let P(x), Q(x), and R(x) be the statements “x is
a lion,” “x is fierce,” and “x drinks coffee,” respectively.Assuming that the domain consists of all
creatures, express the statements in the argument using quantifiers and P(x), Q(x), and R(x).

CHARLES LUTWIDGE DODGSON (1832–1898) We know Charles Dodgson as Lewis Carroll—the
pseudonym he used in his literary works. Dodgson, the son of a clergyman, was the third of 11 children,
all of whom stuttered. He was uncomfortable in the company of adults and is said to have spoken without
stuttering only to young girls, many of whom he entertained, corresponded with, and photographed (sometimes
in poses that today would be considered inappropriate). Although attracted to young girls, he was extremely
puritanical and religious. His friendship with the three young daughters of Dean Liddell led to his writing Alice
in Wonderland, which brought him money and fame.

Dodgson graduated from Oxford in 1854 and obtained his master of arts degree in 1857. He was appointed
lecturer in mathematics at Christ Church College, Oxford, in 1855. He was ordained in the Church of England

in 1861 but never practiced his ministry. His writings published under this real name include articles and books on geometry,
determinants, and the mathematics of tournaments and elections. (He also used the pseudonym Lewis Carroll for his many works
on recreational logic.)

1.4 Predicates and Quantifiers 51

Solution: We can express these statements as:

∀x(P (x)→ Q(x)).

∃x(P (x) ∧ ¬R(x)).

∃x(Q(x) ∧ ¬R(x)).

Notice that the second statement cannot be written as ∃x(P (x)→ ¬R(x)). The reason is that
P(x)→ ¬R(x) is true whenever x is not a lion, so that ∃x(P (x)→ ¬R(x)) is true as long as
there is at least one creature that is not a lion, even if every lion drinks coffee. Similarly, the
third statement cannot be written as

∃x(Q(x)→ ¬R(x)). ▲

EXAMPLE 27 Consider these statements, of which the first three are premises and the fourth is a valid conclu-
sion.

“All hummingbirds are richly colored.”
“No large birds live on honey.”
“Birds that do not live on honey are dull in color.”
“Hummingbirds are small.”

Let P(x), Q(x), R(x), and S(x) be the statements “x is a hummingbird,” “x is large,” “x lives on
honey,” and “x is richly colored,” respectively. Assuming that the domain consists of all birds,
express the statements in the argument using quantifiers and P(x), Q(x), R(x), and S(x).

Solution: We can express the statements in the argument as

∀x(P (x)→ S(x)).

¬∃x(Q(x) ∧ R(x)).

∀x(¬R(x)→ ¬S(x)).
∀x(P (x)→ ¬Q(x)).

(Note we have assumed that “small” is the same as “not large” and that “dull in color” is the
same as “not richly colored.” To show that the fourth statement is a valid conclusion of the first
three, we need to use rules of inference that will be discussed in Section 1.6.) ▲
Logic Programming

An important type of programming language is designed to reason using the rules of predicate
logic. Prolog (from Programming in Logic), developed in the 1970s by computer scientists
working in the area of artificial intelligence, is an example of such a language. Prolog programs
include a set of declarations consisting of two types of statements, Prolog facts and Prolog
rules. Prolog facts define predicates by specifying the elements that satisfy these predicates.
Prolog rules are used to define new predicates using those already defined by Prolog facts.
Example 28 illustrates these notions.

EXAMPLE 28 Consider a Prolog program given facts telling it the instructor of each class and in which classes
students are enrolled. The program uses these facts to answer queries concerning the professors
who teach particular students. Such a program could use the predicates instructor(p, c) and

52 1 / The Foundations: Logic and Proofs

enrolled(s, c) to represent that professor p is the instructor of course c and that student s

is enrolled in course c, respectively. For example, the Prolog facts in such a program might
include:

instructor(chan,math273)

instructor(patel,ee222)

instructor(grossman,cs301)

enrolled(kevin,math273)

enrolled(juana,ee222)

enrolled(juana,cs301)

enrolled(kiko,math273)

enrolled(kiko,cs301)

(Lowercase letters have been used for entries because Prolog considers names beginning with
an uppercase letter to be variables.)

A new predicate teaches(p, s), representing that professor p teaches student s, can be
defined using the Prolog rule

teaches(P,S) :- instructor(P,C), enrolled(S,C)

which means that teaches(p, s) is true if there exists a class c such that professor p is the
instructor of class c and student s is enrolled in class c. (Note that a comma is used to represent
a conjunction of predicates in Prolog. Similarly, a semicolon is used to represent a disjunction
of predicates.)

Prolog answers queries using the facts and rules it is given. For example, using the facts
and rules listed, the query

?enrolled(kevin,math273)

produces the response

yes

because the fact enrolled(kevin, math273) was provided as input. The query

?enrolled(X,math273)

produces the response

kevin

kiko

To produce this response, Prolog determines all possible values of X for which
enrolled(X, math273) has been included as a Prolog fact. Similarly, to find all the professors
who are instructors in classes being taken by Juana, we use the query

?teaches(X,juana)

This query returns

patel

grossman

▲

1.4 Predicates and Quantifiers 53

Exercises

1. Let P(x) denote the statement “x ≤ 4.” What are these
truth values?

a) P(0) b) P(4) c) P(6)

2. Let P(x) be the statement “the word x contains the
letter a.” What are these truth values?

a) P (orange) b) P (lemon)

c) P (true) d) P (false)

3. Let Q(x, y) denote the statement “x is the capital of y.”
What are these truth values?

a) Q(Denver, Colorado)

b) Q(Detroit, Michigan)

c) Q(Massachusetts, Boston)

d) Q(New York, New York)

4. State the value ofx after the statement ifP(x) thenx := 1
is executed, where P(x) is the statement “x > 1,” if the
value of x when this statement is reached is

a) x = 0. b) x = 1.

c) x = 2.

5. Let P(x) be the statement “x spends more than five hours
every weekday in class,” where the domain for x consists
of all students. Express each of these quantifications in
English.

a) ∃xP (x) b) ∀xP (x)

c) ∃x ¬P(x) d) ∀x ¬P(x)

6. Let N(x) be the statement “x has visited North Dakota,”
where the domain consists of the students in your school.
Express each of these quantifications in English.

a) ∃xN(x) b) ∀xN(x) c) ¬∃xN(x)

d) ∃x¬N(x) e) ¬∀xN(x) f) ∀x¬N(x)

7. Translate these statements into English, where C(x) is “x
is a comedian” and F(x) is “x is funny” and the domain
consists of all people.

a) ∀x(C(x)→ F(x)) b) ∀x(C(x) ∧ F(x))

c) ∃x(C(x)→ F(x)) d) ∃x(C(x) ∧ F(x))

8. Translate these statements into English, where R(x) is “x
is a rabbit” and H(x) is “x hops” and the domain consists
of all animals.

a) ∀x(R(x)→ H(x)) b) ∀x(R(x) ∧H(x))

c) ∃x(R(x)→ H(x)) d) ∃x(R(x) ∧H(x))

9. Let P(x) be the statement “x can speak Russian” and let
Q(x) be the statement “x knows the computer language
C++.” Express each of these sentences in terms of P(x),
Q(x), quantifiers, and logical connectives. The domain
for quantifiers consists of all students at your school.

a) There is a student at your school who can speak Rus-
sian and who knows C++.

b) There is a student at your school who can speak Rus-
sian but who doesn’t know C++.

c) Every student at your school either can speak Russian
or knows C++.

d) No student at your school can speak Russian or knows
C++.

10. Let C(x) be the statement “x has a cat,” let D(x) be the
statement “x has a dog,” and let F(x) be the statement “x
has a ferret.” Express each of these statements in terms of
C(x), D(x), F(x), quantifiers, and logical connectives.
Let the domain consist of all students in your class.

a) A student in your class has a cat, a dog, and a ferret.

b) All students in your class have a cat, a dog, or a ferret.

c) Some student in your class has a cat and a ferret, but
not a dog.

d) No student in your class has a cat, a dog, and a ferret.

e) For each of the three animals, cats, dogs, and ferrets,
there is a student in your class who has this animal as
a pet.

11. Let P(x) be the statement “x = x2.” If the domain con-
sists of the integers, what are these truth values?

a) P(0) b) P(1) c) P(2)

d) P(−1) e) ∃xP (x) f) ∀xP (x)

12. Let Q(x) be the statement “x + 1 > 2x.” If the domain
consists of all integers, what are these truth values?

a) Q(0) b) Q(−1) c) Q(1)

d) ∃xQ(x) e) ∀xQ(x) f) ∃x¬Q(x)

g) ∀x¬Q(x)

13. Determine the truth value of each of these statements if
the domain consists of all integers.

a) ∀n(n+ 1 > n) b) ∃n(2n = 3n)

c) ∃n(n = −n) d) ∀n(3n ≤ 4n)

14. Determine the truth value of each of these statements if
the domain consists of all real numbers.

a) ∃x(x3 = −1) b) ∃x(x4 < x2)

c) ∀x((−x)2 = x2) d) ∀x(2x > x)

15. Determine the truth value of each of these statements if
the domain for all variables consists of all integers.

a) ∀n(n2 ≥ 0) b) ∃n(n2 = 2)

c) ∀n(n2 ≥ n) d) ∃n(n2 < 0)

16. Determine the truth value of each of these statements if
the domain of each variable consists of all real numbers.

a) ∃x(x2 = 2) b) ∃x(x2 = −1)

c) ∀x(x2 + 2 ≥ 1) d) ∀x(x2 = x)

17. Suppose that the domain of the propositional function
P(x) consists of the integers 0, 1, 2, 3, and 4. Write out
each of these propositions using disjunctions, conjunc-
tions, and negations.

a) ∃xP (x) b) ∀xP (x) c) ∃x¬P(x)

d) ∀x¬P(x) e) ¬∃xP (x) f) ¬∀xP (x)

18. Suppose that the domain of the propositional function
P(x) consists of the integers −2, −1, 0, 1, and 2. Write
out each of these propositions using disjunctions, con-
junctions, and negations.

a) ∃xP (x) b) ∀xP (x) c) ∃x¬P(x)

d) ∀x¬P(x) e) ¬∃xP (x) f) ¬∀xP (x)

54 1 / The Foundations: Logic and Proofs

19. Suppose that the domain of the propositional function
P(x) consists of the integers 1, 2, 3, 4, and 5. Express
these statements without using quantifiers, instead using
only negations, disjunctions, and conjunctions.

a) ∃xP (x) b) ∀xP (x)

c) ¬∃xP (x) d) ¬∀xP (x)

e) ∀x((x = 3)→ P(x)) ∨ ∃x¬P(x)

20. Suppose that the domain of the propositional function
P(x) consists of −5, −3, −1, 1, 3, and 5. Express these
statements without using quantifiers, instead using only
negations, disjunctions, and conjunctions.

a) ∃xP (x) b) ∀xP (x)

c) ∀x((x = 1)→ P(x))

d) ∃x((x ≥ 0) ∧ P(x))

e) ∃x(¬P(x)) ∧ ∀x((x < 0)→ P(x))

21. For each of these statements find a domain for which the
statement is true and a domain for which the statement is
false.

a) Everyone is studying discrete mathematics.
b) Everyone is older than 21 years.
c) Every two people have the same mother.
d) No two different people have the same grandmother.

22. For each of these statements find a domain for which the
statement is true and a domain for which the statement is
false.

a) Everyone speaks Hindi.
b) There is someone older than 21 years.
c) Every two people have the same first name.
d) Someone knows more than two other people.

23. Translate in two ways each of these statements into logi-
cal expressions using predicates, quantifiers, and logical
connectives. First, let the domain consist of the students
in your class and second, let it consist of all people.

a) Someone in your class can speak Hindi.
b) Everyone in your class is friendly.
c) There is a person in your class who was not born in

California.
d) A student in your class has been in a movie.
e) No student in your class has taken a course in logic

programming.

24. Translate in two ways each of these statements into logi-
cal expressions using predicates, quantifiers, and logical
connectives. First, let the domain consist of the students
in your class and second, let it consist of all people.

a) Everyone in your class has a cellular phone.
b) Somebody in your class has seen a foreign movie.
c) There is a person in your class who cannot swim.
d) All students in your class can solve quadratic equa-

tions.
e) Some student in your class does not want to be rich.

25. Translate each of these statements into logical expres-
sions using predicates, quantifiers, and logical connec-
tives.

a) No one is perfect.
b) Not everyone is perfect.
c) All your friends are perfect.
d) At least one of your friends is perfect.

e) Everyone is your friend and is perfect.

f) Not everybody is your friend or someone is not per-
fect.

26. Translate each of these statements into logical expres-
sions in three different ways by varying the domain and
by using predicates with one and with two variables.

a) Someone in your school has visited Uzbekistan.

b) Everyone in your class has studied calculus and C++.

c) No one in your school owns both a bicycle and a mo-
torcycle.

d) There is a person in your school who is not happy.

e) Everyone in your school was born in the twentieth
century.

27. Translate each of these statements into logical expres-
sions in three different ways by varying the domain and
by using predicates with one and with two variables.

a) A student in your school has lived in Vietnam.

b) There is a student in your school who cannot speak
Hindi.

c) A student in your school knows Java, Prolog, and
C++.

d) Everyone in your class enjoys Thai food.

e) Someone in your class does not play hockey.

28. Translate each of these statements into logical expres-
sions using predicates, quantifiers, and logical connec-
tives.

a) Something is not in the correct place.

b) All tools are in the correct place and are in excellent
condition.

c) Everything is in the correct place and in excellent con-
dition.

d) Nothing is in the correct place and is in excellent con-
dition.

e) One of your tools is not in the correct place, but it is
in excellent condition.

29. Express each of these statements using logical operators,
predicates, and quantifiers.

a) Some propositions are tautologies.

b) The negation of a contradiction is a tautology.

c) The disjunction of two contingencies can be a tautol-
ogy.

d) The conjunction of two tautologies is a tautology.

30. Suppose the domain of the propositional functionP(x, y)

consists of pairs x and y, where x is 1, 2, or 3 and y is
1, 2, or 3. Write out these propositions using disjunctions
and conjunctions.

a) ∃x P (x, 3) b) ∀y P (1, y)

c) ∃y¬P(2, y) d) ∀x ¬P(x, 2)

31. Suppose that the domain of Q(x, y, z) consists of triples
x, y, z, where x = 0, 1, or 2, y = 0 or 1, and z = 0 or 1.
Write out these propositions using disjunctions and con-
junctions.

a) ∀yQ(0, y, 0) b) ∃xQ(x, 1, 1)

c) ∃z¬Q(0, 0, z) d) ∃x¬Q(x, 0, 1)

1.4 Predicates and Quantifiers 55

32. Express each of these statements using quantifiers. Then
form the negation of the statement so that no negation is
to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)

a) All dogs have fleas.

b) There is a horse that can add.

c) Every koala can climb.

d) No monkey can speak French.

e) There exists a pig that can swim and catch fish.

33. Express each of these statements using quantifiers. Then
form the negation of the statement, so that no negation
is to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)

a) Some old dogs can learn new tricks.

b) No rabbit knows calculus.

c) Every bird can fly.

d) There is no dog that can talk.

e) There is no one in this class who knows French and
Russian.

34. Express the negation of these propositions using quanti-
fiers, and then express the negation in English.

a) Some drivers do not obey the speed limit.

b) All Swedish movies are serious.

c) No one can keep a secret.

d) There is someone in this class who does not have a
good attitude.

35. Find a counterexample, if possible, to these universally
quantified statements, where the domain for all variables
consists of all integers.

a) ∀x(x2 ≥ x)

b) ∀x(x > 0 ∨ x < 0)

c) ∀x(x = 1)

36. Find a counterexample, if possible, to these universally
quantified statements, where the domain for all variables
consists of all real numbers.

a) ∀x(x2 = x) b) ∀x(x2 = 2)

c) ∀x(|x| > 0)

37. Express each of these statements using predicates and
quantifiers.

a) A passenger on an airline qualifies as an elite flyer if
the passenger flies more than 25,000 miles in a year
or takes more than 25 flights during that year.

b) A man qualifies for the marathon if his best previ-
ous time is less than 3 hours and a woman qualifies
for the marathon if her best previous time is less than
3.5 hours.

c) A student must take at least 60 course hours, or at least
45 course hours and write a master’s thesis, and re-
ceive a grade no lower than a B in all required courses,
to receive a master’s degree.

d) There is a student who has taken more than 21 credit
hours in a semester and received all A’s.

Exercises 38–42 deal with the translation between system
specification and logical expressions involving quantifiers.

38. Translate these system specifications into English where
the predicate S(x, y) is “x is in state y” and where the
domain for x and y consists of all systems and all possible
states, respectively.

a) ∃xS(x, open)

b) ∀x(S(x, malfunctioning) ∨ S(x, diagnostic))

c) ∃xS(x, open) ∨ ∃xS(x, diagnostic)

d) ∃x¬S(x, available)

e) ∀x¬S(x, working)

39. Translate these specifications into English where F(p) is
“Printer p is out of service,” B(p) is “Printer p is busy,”
L(j) is “Print job j is lost,” and Q(j) is “Print job j is
queued.”

a) ∃p(F(p) ∧ B(p))→ ∃jL(j)

b) ∀pB(p)→ ∃jQ(j)

c) ∃j (Q(j) ∧ L(j))→ ∃pF(p)

d) (∀pB(p) ∧ ∀jQ(j))→ ∃jL(j)

40. Express each of these system specifications using predi-
cates, quantifiers, and logical connectives.

a) When there is less than 30 megabytes free on the hard
disk, a warning message is sent to all users.

b) No directories in the file system can be opened and
no files can be closed when system errors have been
detected.

c) The file system cannot be backed up if there is a user
currently logged on.

d) Video on demand can be delivered when there are at
least 8 megabytes of memory available and the con-
nection speed is at least 56 kilobits per second.

41. Express each of these system specifications using predi-
cates, quantifiers, and logical connectives.

a) At least one mail message, among the nonempty set
of messages, can be saved if there is a disk with more
than 10 kilobytes of free space.

b) Whenever there is an active alert, all queued messages
are transmitted.

c) The diagnostic monitor tracks the status of all systems
except the main console.

d) Each participant on the conference call whom the host
of the call did not put on a special list was billed.

42. Express each of these system specifications using predi-
cates, quantifiers, and logical connectives.

a) Every user has access to an electronic mailbox.

b) The system mailbox can be accessed by everyone in
the group if the file system is locked.

c) The firewall is in a diagnostic state only if the proxy
server is in a diagnostic state.

d) At least one router is functioning normally if the
throughput is between 100 kbps and 500 kbps and
the proxy server is not in diagnostic mode.

56 1 / The Foundations: Logic and Proofs

43. Determine whether ∀x(P (x)→ Q(x)) and ∀xP (x) →
∀xQ(x) are logically equivalent. Justify your answer.

44. Determine whether ∀x(P (x)↔ Q(x)) and ∀x P (x)↔
∀xQ(x) are logically equivalent. Justify your answer.

45. Show that ∃x(P (x) ∨Q(x)) and ∃xP (x) ∨ ∃xQ(x) are
logically equivalent.

Exercises 46–49 establish rules for null quantification that
we can use when a quantified variable does not appear in part
of a statement.

46. Establish these logical equivalences, where x does not
occur as a free variable in A. Assume that the domain is
nonempty.

a) (∀xP (x)) ∨ A ≡ ∀x(P (x) ∨ A)

b) (∃xP (x)) ∨ A ≡ ∃x(P (x) ∨ A)

47. Establish these logical equivalences, where x does not
occur as a free variable in A. Assume that the domain is
nonempty.

a) (∀xP (x)) ∧ A ≡ ∀x(P (x) ∧ A)

b) (∃xP (x)) ∧ A ≡ ∃x(P (x) ∧ A)

48. Establish these logical equivalences, where x does not
occur as a free variable in A. Assume that the domain is
nonempty.

a) ∀x(A→ P(x)) ≡ A→ ∀xP (x)

b) ∃x(A→ P(x)) ≡ A→ ∃xP (x)

49. Establish these logical equivalences, where x does not
occur as a free variable in A. Assume that the domain is
nonempty.

a) ∀x(P (x)→ A) ≡ ∃xP (x)→ A

b) ∃x(P (x)→ A) ≡ ∀xP (x)→ A

50. Show that ∀xP (x) ∨ ∀xQ(x) and ∀x(P (x) ∨Q(x)) are
not logically equivalent.

51. Show that ∃xP (x) ∧ ∃xQ(x) and ∃x(P (x) ∧Q(x)) are
not logically equivalent.

52. As mentioned in the text, the notation ∃!xP (x) denotes

“There exists a unique x such that P(x) is true.”

If the domain consists of all integers, what are the truth
values of these statements?

a) ∃!x(x > 1) b) ∃!x(x2 = 1)

c) ∃!x(x + 3 = 2x) d) ∃!x(x = x + 1)

53. What are the truth values of these statements?

a) ∃!xP (x)→ ∃xP (x)

b) ∀xP (x)→ ∃!xP (x)

c) ∃!x¬P(x)→ ¬∀xP (x)

54. Write out ∃!xP (x), where the domain consists of the in-
tegers 1, 2, and 3, in terms of negations, conjunctions,
and disjunctions.

55. Given the Prolog facts in Example 28, what would Prolog
return given these queries?

a) ?instructor(chan,math273)

b) ?instructor(patel,cs301)

c) ?enrolled(X,cs301)

d) ?enrolled(kiko,Y)

e) ?teaches(grossman,Y)

56. Given the Prolog facts in Example 28, what would Prolog
return when given these queries?

a) ?enrolled(kevin,ee222)

b) ?enrolled(kiko,math273)

c) ?instructor(grossman,X)

d) ?instructor(X,cs301)

e) ?teaches(X,kevin)

57. Suppose that Prolog facts are used to define the predicates
mother(M, Y) and father(F,X), which represent that M
is the mother of Y and F is the father of X, respectively.
Give a Prolog rule to define the predicate sibling(X, Y),
which represents that X and Y are siblings (that is, have
the same mother and the same father).

58. Suppose that Prolog facts are used to define the predi-
cates mother(M, Y) and father(F,X), which represent
that M is the mother of Y and F is the father of X,
respectively. Give a Prolog rule to define the predicate
grandfather(X, Y), which represents that X is the grand-
father of Y . [Hint: You can write a disjunction in Prolog
either by using a semicolon to separate predicates or by
putting these predicates on separate lines.]

Exercises 59–62 are based on questions found in the book
Symbolic Logic by Lewis Carroll.

59. Let P(x), Q(x), and R(x) be the statements “x is a
professor,” “x is ignorant,” and “x is vain,” respectively.
Express each of these statements using quantifiers; log-
ical connectives; and P(x), Q(x), and R(x), where the
domain consists of all people.

a) No professors are ignorant.

b) All ignorant people are vain.

c) No professors are vain.

d) Does (c) follow from (a) and (b)?

60. Let P(x), Q(x), and R(x) be the statements “x is a clear
explanation,” “x is satisfactory,” and “x is an excuse,”
respectively. Suppose that the domain for x consists of all
English text. Express each of these statements using quan-
tifiers, logical connectives, and P(x), Q(x), and R(x).

a) All clear explanations are satisfactory.

b) Some excuses are unsatisfactory.

c) Some excuses are not clear explanations.

∗d) Does (c) follow from (a) and (b)?

61. Let P(x), Q(x), R(x), and S(x) be the statements “x is
a baby,” “x is logical,” “x is able to manage a crocodile,”
and “x is despised,” respectively. Suppose that the domain
consists of all people. Express each of these statements
using quantifiers; logical connectives; and P(x), Q(x),
R(x), and S(x).

a) Babies are illogical.

b) Nobody is despised who can manage a crocodile.

c) Illogical persons are despised.

d) Babies cannot manage crocodiles.

∗e) Does (d) follow from (a), (b), and (c)? If not, is there
a correct conclusion?

1.5 Nested Quantifiers 57

62. Let P(x), Q(x), R(x), and S(x) be the statements “x
is a duck,” “x is one of my poultry,” “x is an officer,”
and “x is willing to waltz,” respectively. Express each of
these statements using quantifiers; logical connectives;
and P(x), Q(x), R(x), and S(x).

a) No ducks are willing to waltz.

b) No officers ever decline to waltz.

c) All my poultry are ducks.

d) My poultry are not officers.

∗e) Does (d) follow from (a), (b), and (c)? If not, is there
a correct conclusion?

1.5 Nested Quantifiers

Introduction

In Section 1.4 we defined the existential and universal quantifiers and showed how they can
be used to represent mathematical statements. We also explained how they can be used to
translate English sentences into logical expressions. However, in Section 1.4 we avoided nested
quantifiers, where one quantifier is within the scope of another, such as

∀x∃y(x + y = 0).

Note that everything within the scope of a quantifier can be thought of as a propositional function.
For example,

∀x∃y(x + y = 0)

is the same thing as ∀xQ(x), where Q(x) is ∃yP (x, y), where P(x, y) is x + y = 0.
Nested quantifiers commonly occur in mathematics and computer science. Although nested

quantifiers can sometimes be difficult to understand, the rules we have already studied in
Section 1.4 can help us use them. In this section we will gain experience working with nested
quantifiers. We will see how to use nested quantifiers to express mathematical statements such
as “The sum of two positive integers is always positive.” We will show how nested quantifiers
can be used to translate English sentences such as “Everyone has exactly one best friend” into
logical statements. Moreover, we will gain experience working with the negations of statements
involving nested quantifiers.

Understanding Statements Involving Nested Quantifiers

To understand statements involving nested quantifiers, we need to unravel what the quantifiers
and predicates that appear mean. This is illustrated in Examples 1 and 2.

EXAMPLE 1 Assume that the domain for the variables x and y consists of all real numbers. The statement

∀x∀y(x + y = y + x)

says that x + y = y + x for all real numbers x and y. This is the commutative law for addition
of real numbers. Likewise, the statement

∀x∃y(x + y = 0)

says that for every real number x there is a real number y such that x + y = 0. This states that
every real number has an additive inverse. Similarly, the statement

∀x∀y∀z(x + (y + z) = (x + y)+ z)

is the associative law for addition of real numbers. ▲

58 1 / The Foundations: Logic and Proofs

EXAMPLE 2 Translate into English the statement

∀x∀y((x > 0) ∧ (y < 0)→ (xy < 0)),

where the domain for both variables consists of all real numbers.

Solution: This statement says that for every real number x and for every real number y, if x > 0
and y < 0, then xy < 0. That is, this statement says that for real numbers x and y, if x is positive
and y is negative, then xy is negative. This can be stated more succinctly as “The product of a
positive real number and a negative real number is always a negative real number.” ▲

THINKING OF QUANTIFICATION AS LOOPS In working with quantifications of more
than one variable, it is sometimes helpful to think in terms of nested loops. (Of course, if there
are infinitely many elements in the domain of some variable, we cannot actually loop through
all values. Nevertheless, this way of thinking is helpful in understanding nested quantifiers.) For
example, to see whether ∀x∀yP (x, y) is true, we loop through the values for x, and for each x

we loop through the values for y. If we find that P(x, y) is true for all values for x and y, we
have determined that ∀x∀yP (x, y) is true. If we ever hit a value x for which we hit a value y

for which P(x, y) is false, we have shown that ∀x∀yP (x, y) is false.
Similarly, to determine whether ∀x∃yP (x, y) is true, we loop through the values for x.

For each x we loop through the values for y until we find a y for which P(x, y) is true. If for
every x we hit such a y, then ∀x∃yP (x, y) is true; if for some x we never hit such a y, then
∀x∃yP (x, y) is false.

To see whether ∃x∀yP (x, y) is true, we loop through the values for x until we find an x for
which P(x, y) is always true when we loop through all values for y. Once we find such an x, we
know that ∃x∀yP (x, y) is true. If we never hit such an x, then we know that ∃x∀yP (x, y) is false.

Finally, to see whether ∃x∃yP (x, y) is true, we loop through the values for x, where for
each x we loop through the values for y until we hit an x for which we hit a y for which P(x, y)

is true. The statement ∃x∃yP (x, y) is false only if we never hit an x for which we hit a y such
that P(x, y) is true.

The Order of Quantifiers

Many mathematical statements involve multiple quantifications of propositional functions in-
volving more than one variable. It is important to note that the order of the quantifiers is important,
unless all the quantifiers are universal quantifiers or all are existential quantifiers.

These remarks are illustrated by Examples 3–5.

EXAMPLE 3 Let P(x, y) be the statement “x + y = y + x.” What are the truth values of the quantifications
∀x∀yP (x, y) and ∀y∀xP (x, y) where the domain for all variables consists of all real numbers?

Solution: The quantification

∀x∀yP (x, y)

denotes the proposition

“For all real numbers x, for all real numbers y, x + y = y + x.”

Because P(x, y) is true for all real numbers x and y (it is the commutative law for addition,
which is an axiom for the real numbers—see Appendix 1), the proposition ∀x∀yP (x, y) is
true. Note that the statement ∀y∀xP (x, y) says “For all real numbers y, for all real numbers x,
x + y = y + x.” This has the same meaning as the statement “For all real numbers x, for all real
numbers y, x + y = y + x.” That is, ∀x∀yP (x, y) and ∀y∀xP (x, y) have the same meaning,

1.5 Nested Quantifiers 59

and both are true. This illustrates the principle that the order of nested universal quantifiers
in a statement without other quantifiers can be changed without changing the meaning of the
quantified statement. ▲

EXAMPLE 4 Let Q(x, y) denote “x + y = 0.” What are the truth values of the quantifications ∃y∀xQ(x, y)

and ∀x∃yQ(x, y), where the domain for all variables consists of all real numbers?

Solution: The quantification

∃y∀xQ(x, y)

denotes the proposition

“There is a real number y such that for every real number x, Q(x, y).”

No matter what value of y is chosen, there is only one value of x for which x + y = 0. Because
there is no real number y such that x + y = 0 for all real numbers x, the statement ∃y∀xQ(x, y)

is false.
The quantification

∀x∃yQ(x, y)

denotes the proposition

“For every real number x there is a real number y such that Q(x, y).”

Given a real number x, there is a real number y such that x + y = 0; namely, y = −x. Hence,
the statement ∀x∃yQ(x, y) is true.

Be careful with the order

of existential and

universal quantifiers!

▲

Example 4 illustrates that the order in which quantifiers appear makes a difference. The state-
ments ∃y∀xP (x, y) and ∀x∃yP (x, y) are not logically equivalent. The statement ∃y∀xP (x, y)

is true if and only if there is a y that makes P(x, y) true for every x. So, for this statement to
be true, there must be a particular value of y for which P(x, y) is true regardless of the choice
of x. On the other hand, ∀x∃yP (x, y) is true if and only if for every value of x there is a value
of y for which P(x, y) is true. So, for this statement to be true, no matter which x you choose,
there must be a value of y (possibly depending on the x you choose) for which P(x, y) is true.
In other words, in the second case, y can depend on x, whereas in the first case, y is a constant
independent of x.

From these observations, it follows that if ∃y∀xP (x, y) is true, then ∀x∃yP (x, y) must
also be true. However, if ∀x∃yP (x, y) is true, it is not necessary for ∃y∀xP (x, y) to be true.
(See Supplementary Exercises 30 and 31.)

Table 1 summarizes the meanings of the different possible quantifications involving two
variables.

Quantifications of more than two variables are also common, as Example 5 illustrates.

EXAMPLE 5 Let Q(x, y, z) be the statement “x + y = z.” What are the truth values of the statements
∀x∀y∃zQ(x, y, z) and ∃z∀x∀yQ(x, y, z), where the domain of all variables consists of all
real numbers?

Solution: Suppose that x and y are assigned values. Then, there exists a real number z such that
x + y = z. Consequently, the quantification

∀x∀y∃zQ(x, y, z),

which is the statement

“For all real numbers x and for all real numbers y there is a real number z such that
x + y = z,”

60 1 / The Foundations: Logic and Proofs

TABLE 1 Quantifications of Two Variables.

Statement When True? When False?

∀x∀yP (x, y) P (x, y) is true for every pair x, y. There is a pair x, y for

∀y∀xP (x, y) which P(x, y) is false.

∀x∃yP (x, y) For every x there is a y for There is an x such that

which P(x, y) is true. P(x, y) is false for every y.

∃x∀yP (x, y) There is an x for which P(x, y) For every x there is a y for

is true for every y. which P(x, y) is false.

∃x∃yP (x, y) There is a pair x, y for which P(x, y) is false for every

∃y∃xP (x, y) P (x, y) is true. pair x, y.

is true. The order of the quantification here is important, because the quantification

∃z∀x∀yQ(x, y, z),

which is the statement

“There is a real number z such that for all real numbers x and for all real numbers y it is
true that x + y = z,”

is false, because there is no value of z that satisfies the equation x + y = z for all values of x

and y. ▲

Translating Mathematical Statements into Statements
Involving Nested Quantifiers

Mathematical statements expressed in English can be translated into logical expressions, as
Examples 6–8 show.

EXAMPLE 6 Translate the statement “The sum of two positive integers is always positive” into a logical
expression.

Solution: To translate this statement into a logical expression, we first rewrite it so that the implied
quantifiers and a domain are shown: “For every two integers, if these integers are both positive,
then the sum of these integers is positive.” Next, we introduce the variables x and y to obtain “For
all positive integers x and y, x + y is positive.” Consequently, we can express this statement as

∀x∀y((x > 0) ∧ (y > 0)→ (x + y > 0)),

where the domain for both variables consists of all integers. Note that we could also translate
this using the positive integers as the domain. Then the statement “The sum of two positive
integers is always positive” becomes “For every two positive integers, the sum of these integers
is positive. We can express this as

∀x∀y(x + y > 0),

where the domain for both variables consists of all positive integers. ▲

EXAMPLE 7 Translate the statement “Every real number except zero has a multiplicative inverse.” (A mul-

tiplicative inverse of a real number x is a real number y such that xy = 1.)

1.5 Nested Quantifiers 61

Solution: We first rewrite this as “For every real number x except zero, x has a multiplicative
inverse.” We can rewrite this as “For every real number x, if x = 0, then there exists a real
number y such that xy = 1.” This can be rewritten as

∀x((x = 0)→ ∃y(xy = 1)). ▲

One example that you may be familiar with is the concept of limit, which is important in
calculus.

EXAMPLE 8 (Requires calculus) Use quantifiers to express the definition of the limit of a real-valued
function f (x) of a real variable x at a point a in its domain.

Solution: Recall that the definition of the statement

lim
x→a

f (x) = L

is: For every real number > 0 there exists a real number δ > 0 such that |f (x)− L| <

whenever 0 < |x − a| < δ. This definition of a limit can be phrased in terms of quantifiers by

∀ ∃δ∀x(0 < |x − a| < δ → |f (x)− L| <),

where the domain for the variables δ and consists of all positive real numbers and for x consists
of all real numbers.

This definition can also be expressed as

∀ >0 ∃δ >0 ∀x(0 < |x − a| < δ → |f (x)− L| <)

when the domain for the variables and δ consists of all real numbers, rather than just the positive
real numbers. [Here, restricted quantifiers have been used. Recall that ∀x>0 P(x) means that
for all x with x>0, P(x) is true.] ▲

Translating from Nested Quantifiers into English

Expressions with nested quantifiers expressing statements in English can be quite complicated.
The first step in translating such an expression is to write out what the quantifiers and predicates
in the expression mean. The next step is to express this meaning in a simpler sentence. This
process is illustrated in Examples 9 and 10.

EXAMPLE 9 Translate the statement

∀x(C(x) ∨ ∃y(C(y) ∧ F(x, y)))

into English, where C(x) is “x has a computer,” F(x, y) is “x and y are friends,” and the domain
for both x and y consists of all students in your school.

Solution: The statement says that for every student x in your school, x has a computer or there
is a student y such that y has a computer and x and y are friends. In other words, every student
in your school has a computer or has a friend who has a computer. ▲

EXAMPLE 10 Translate the statement

∃x∀y∀z((F (x, y) ∧ F(x, z) ∧ (y = z))→ ¬F(y,z))

62 1 / The Foundations: Logic and Proofs

into English, where F(a,b) means a and b are friends and the domain for x, y, and z consists of
all students in your school.

Solution: We first examine the expression (F (x, y) ∧ F(x, z) ∧ (y = z))→ ¬F(y, z). This
expression says that if students x and y are friends, and students x and z are friends, and
furthermore, if y and z are not the same student, then y and z are not friends. It follows that
the original statement, which is triply quantified, says that there is a student x such that for all
students y and all students z other than y, if x and y are friends and x and z are friends, then y

and z are not friends. In other words, there is a student none of whose friends are also friends
with each other. ▲

Translating English Sentences into Logical Expressions

In Section 1.4 we showed how quantifiers can be used to translate sentences into logical expres-
sions. However, we avoided sentences whose translation into logical expressions required the
use of nested quantifiers. We now address the translation of such sentences.

EXAMPLE 11 Express the statement “If a person is female and is a parent, then this person is someone’s
mother” as a logical expression involving predicates, quantifiers with a domain consisting of all
people, and logical connectives.

Solution: The statement “If a person is female and is a parent, then this person is someone’s
mother” can be expressed as “For every person x, if person x is female and person x is a parent,
then there exists a person y such that person x is the mother of person y.” We introduce the
propositional functions F(x) to represent “x is female,” P(x) to represent “x is a parent,” and
M(x, y) to represent “x is the mother of y.” The original statement can be represented as

∀x((F (x) ∧ P(x))→ ∃yM(x, y)).

Using the null quantification rule in part (b) of Exercise 47 in Section 1.4, we can move ∃y to
the left so that it appears just after ∀x, because y does not appear in F(x) ∧ P(x). We obtain
the logically equivalent expression

∀x∃y((F (x) ∧ P(x))→ M(x, y)). ▲

EXAMPLE 12 Express the statement “Everyone has exactly one best friend” as a logical expression involving
predicates, quantifiers with a domain consisting of all people, and logical connectives.

Solution: The statement “Everyone has exactly one best friend” can be expressed as “For every
person x, person x has exactly one best friend.” Introducing the universal quantifier, we see
that this statement is the same as “∀x(person x has exactly one best friend),” where the domain
consists of all people.

To say that x has exactly one best friend means that there is a person y who is the best friend
of x, and furthermore, that for every person z, if person z is not person y, then z is not the best
friend of x. When we introduce the predicate B(x, y) to be the statement “y is the best friend
of x,” the statement that x has exactly one best friend can be represented as

∃y(B(x, y) ∧ ∀z((z = y)→ ¬B(x, z))).

Consequently, our original statement can be expressed as

∀x∃y(B(x, y) ∧ ∀z((z = y)→ ¬B(x, z))).

1.5 Nested Quantifiers 63

[Note that we can write this statement as ∀x∃!yB(x, y), where ∃! is the “uniqueness quantifier”
defined in Section 1.4.] ▲

EXAMPLE 13 Use quantifiers to express the statement “There is a woman who has taken a flight on every
airline in the world.”

Solution: Let P(w, f) be “w has taken f ” and Q(f, a) be “f is a flight on a.” We can express
the statement as

∃w∀a∃f (P (w, f) ∧Q(f, a)),

where the domains of discourse for w, f , and a consist of all the women in the world, all airplane
flights, and all airlines, respectively.

The statement could also be expressed as

∃w∀a∃fR(w, f, a),

where R(w, f, a) is “w has taken f on a.” Although this is more compact, it somewhat obscures
the relationships among the variables. Consequently, the first solution is usually preferable. ▲

Negating Nested Quantifiers

Statements involving nested quantifiers can be negated by successively applying the rules for
negating statements involving a single quantifier. This is illustrated in Examples 14–16.

EXAMPLE 14 Express the negation of the statement ∀x∃y(xy = 1) so that no negation precedes a quantifier.

Solution: By successively applying De Morgan’s laws for quantifiers in Table 2 of
Section 1.4, we can move the negation in ¬∀x∃y(xy = 1) inside all the quantifiers. We find
that ¬∀x∃y(xy = 1) is equivalent to ∃x¬∃y(xy = 1), which is equivalent to ∃x∀y¬(xy = 1).
Because ¬(xy = 1) can be expressed more simply as xy = 1, we conclude that our negated
statement can be expressed as ∃x∀y(xy = 1). ▲

EXAMPLE 15 Use quantifiers to express the statement that “There does not exist a woman who has taken a
flight on every airline in the world.”

Solution: This statement is the negation of the statement “There is a woman who has taken a
flight on every airline in the world” from Example 13. By Example 13, our statement can be
expressed as ¬∃w∀a∃f (P (w, f) ∧Q(f, a)), where P(w, f) is “w has taken f ” and Q(f, a)

is “f is a flight on a.” By successively applying De Morgan’s laws for quantifiers in Table 2
of Section 1.4 to move the negation inside successive quantifiers and by applying De Morgan’s
law for negating a conjunction in the last step, we find that our statement is equivalent to each
of this sequence of statements:

∀w¬∀a∃f (P (w, f) ∧Q(f, a)) ≡ ∀w∃a¬∃f (P (w, f) ∧Q(f, a))

≡ ∀w∃a∀f¬(P (w, f) ∧Q(f, a))

≡ ∀w∃a∀f (¬P(w, f) ∨ ¬Q(f, a)).

This last statement states “For every woman there is an airline such that for all flights, this
woman has not taken that flight or that flight is not on this airline.” ▲

64 1 / The Foundations: Logic and Proofs

EXAMPLE 16 (Requires calculus) Use quantifiers and predicates to express the fact that limx→a f (x) does
not exist where f (x) is a real-valued function of a real variable x and a belongs to the domain
of f.

Solution: To say that limx→a f (x) does not exist means that for all real numbers L,
limx→a f (x) = L. By using Example 8, the statement limx→a f (x) = L can be expressed as

¬∀ >0 ∃δ >0 ∀x(0 < |x − a| < δ → |f (x)− L| <).

Successively applying the rules for negating quantified expressions, we construct this sequence
of equivalent statements

¬∀ >0 ∃δ>0 ∀x(0< |x − a|<δ → |f (x)− L|<)

≡ ∃ >0 ¬∃δ>0 ∀x(0< |x − a|<δ → |f (x)− L|<)

≡ ∃ >0 ∀δ>0 ¬∀x(0< |x − a|<δ → |f (x)− L|<)

≡ ∃ >0 ∀δ>0 ∃x ¬(0< |x − a|<δ → |f (x)− L|<)

≡ ∃ >0 ∀δ>0 ∃x(0< |x − a|<δ ∧ |f (x)− L| ≥).

In the last step we used the equivalence ¬(p → q) ≡ p ∧ ¬q, which follows from the fifth
equivalence in Table 7 of Section 1.3.

Because the statement “limx→a f (x) does not exist” means for all real numbers L,
limx→a f (x) = L, this can be expressed as

∀L∃ >0 ∀δ>0 ∃x(0 < |x − a| < δ ∧ |f (x)− L| ≥).

This last statement says that for every real number L there is a real number > 0 such that
for every real number δ > 0, there exists a real number x such that 0 < |x − a| < δ and
|f (x)− L| ≥ . ▲

Exercises

1. Translate these statements into English, where the domain
for each variable consists of all real numbers.

a) ∀x∃y(x < y)

b) ∀x∀y(((x ≥ 0) ∧ (y ≥ 0))→ (xy ≥ 0))

c) ∀x∀y∃z(xy = z)

2. Translate these statements into English, where the domain
for each variable consists of all real numbers.

a) ∃x∀y(xy = y)

b) ∀x∀y(((x ≥ 0) ∧ (y < 0))→ (x − y > 0))

c) ∀x∀y∃z(x = y + z)

3. Let Q(x, y) be the statement “x has sent an e-mail mes-
sage to y,” where the domain for both x and y consists of
all students in your class. Express each of these quantifi-
cations in English.

a) ∃x∃yQ(x, y) b) ∃x∀yQ(x, y)

c) ∀x∃yQ(x, y) d) ∃y∀xQ(x, y)

e) ∀y∃xQ(x, y) f) ∀x∀yQ(x, y)

4. Let P(x, y) be the statement “Student x has taken class
y,” where the domain for x consists of all students in your
class and for y consists of all computer science courses

at your school. Express each of these quantifications in
English.

a) ∃x∃yP (x, y) b) ∃x∀yP (x, y)

c) ∀x∃yP (x, y) d) ∃y∀xP (x, y)

e) ∀y∃xP (x, y) f) ∀x∀yP (x, y)

5. Let W(x, y) mean that student x has visited website y,
where the domain for x consists of all students in your
school and the domain for y consists of all websites. Ex-
press each of these statements by a simple English sen-
tence.

a) W (Sarah Smith, www.att.com)

b) ∃xW (x, www.imdb.org)

c) ∃yW (José Orez, y)

d) ∃y(W (Ashok Puri, y) ∧W (Cindy Yoon, y))

e) ∃y∀z(y = (David Belcher) ∧ (W (David Belcher, z)
→ W(y,z)))

f) ∃x∃y∀z((x = y) ∧ (W(x, z)↔ W(y, z)))

6. Let C(x, y) mean that student x is enrolled in class y,
where the domain for x consists of all students in your
school and the domain for y consists of all classes being

1.5 Nested Quantifiers 65

given at your school. Express each of these statements by
a simple English sentence.

a) C(Randy Goldberg, CS 252)
b) ∃xC(x, Math 695)
c) ∃yC(Carol Sitea, y)
d) ∃x(C(x, Math 222) ∧C(x, CS 252))
e) ∃x∃y∀z((x = y) ∧ (C(x, z)→ C(y, z)))

f) ∃x∃y∀z((x = y) ∧ (C(x, z)↔ C(y, z)))

7. Let T (x, y) mean that student x likes cuisine y, where the
domain for x consists of all students at your school and
the domain for y consists of all cuisines. Express each of
these statements by a simple English sentence.

a) ¬T (Abdallah Hussein, Japanese)
b) ∃xT (x, Korean) ∧ ∀xT (x, Mexican)
c) ∃y(T (Monique Arsenault, y) ∨

T (Jay Johnson, y))
d) ∀x∀z∃y((x = z)→ ¬(T (x, y) ∧ T (z, y)))

e) ∃x∃z∀y(T (x, y)↔ T (z, y))

f) ∀x∀z∃y(T (x, y)↔ T (z, y))

8. Let Q(x, y) be the statement “student x has been a con-
testant on quiz show y.” Express each of these sentences
in terms of Q(x, y), quantifiers, and logical connectives,
where the domain for x consists of all students at your
school and for y consists of all quiz shows on television.

a) There is a student at your school who has been a con-
testant on a television quiz show.

b) No student at your school has ever been a contestant
on a television quiz show.

c) There is a student at your school who has been a con-
testant on Jeopardy and on Wheel of Fortune.

d) Every television quiz show has had a student from
your school as a contestant.

e) At least two students from your school have been con-
testants on Jeopardy.

9. Let L(x, y) be the statement “x loves y,” where the do-
main for both x and y consists of all people in the world.
Use quantifiers to express each of these statements.

a) Everybody loves Jerry.
b) Everybody loves somebody.
c) There is somebody whom everybody loves.
d) Nobody loves everybody.
e) There is somebody whom Lydia does not love.
f) There is somebody whom no one loves.
g) There is exactly one person whom everybody loves.
h) There are exactly two people whom Lynn loves.
i) Everyone loves himself or herself.
j) There is someone who loves no one besides himself

or herself.

10. Let F(x, y) be the statement “x can fool y,” where the
domain consists of all people in the world. Use quantifiers
to express each of these statements.

a) Everybody can fool Fred.
b) Evelyn can fool everybody.
c) Everybody can fool somebody.
d) There is no one who can fool everybody.
e) Everyone can be fooled by somebody.
f) No one can fool both Fred and Jerry.
g) Nancy can fool exactly two people.

h) There is exactly one person whom everybody can fool.

i) No one can fool himself or herself.

j) There is someone who can fool exactly one person
besides himself or herself.

11. Let S(x) be the predicate “x is a student,” F(x) the pred-
icate “x is a faculty member,” and A(x, y) the predicate
“x has asked y a question,” where the domain consists of
all people associated with your school. Use quantifiers to
express each of these statements.

a) Lois has asked Professor Michaels a question.

b) Every student has asked Professor Gross a question.

c) Every faculty member has either asked Professor
Miller a question or been asked a question by Pro-
fessor Miller.

d) Some student has not asked any faculty member a
question.

e) There is a faculty member who has never been asked
a question by a student.

f) Some student has asked every faculty member a ques-
tion.

g) There is a faculty member who has asked every other
faculty member a question.

h) Some student has never been asked a question by a
faculty member.

12. Let I (x) be the statement “x has an Internet connection”
and C(x, y) be the statement “x and y have chatted over
the Internet,” where the domain for the variables x and y

consists of all students in your class. Use quantifiers to
express each of these statements.

a) Jerry does not have an Internet connection.

b) Rachel has not chatted over the Internet with Chelsea.

c) Jan and Sharon have never chatted over the Internet.

d) No one in the class has chatted with Bob.

e) Sanjay has chatted with everyone except Joseph.

f) Someone in your class does not have an Internet con-
nection.

g) Not everyone in your class has an Internet connec-
tion.

h) Exactly one student in your class has an Internet con-
nection.

i) Everyone except one student in your class has an In-
ternet connection.

j) Everyone in your class with an Internet connection
has chatted over the Internet with at least one other
student in your class.

k) Someone in your class has an Internet connection but
has not chatted with anyone else in your class.

l) There are two students in your class who have not
chatted with each other over the Internet.

m) There is a student in your class who has chatted with
everyone in your class over the Internet.

n) There are at least two students in your class who have
not chatted with the same person in your class.

o) There are two students in the class who between them
have chatted with everyone else in the class.

66 1 / The Foundations: Logic and Proofs

13. Let M(x, y) be “x has sent y an e-mail message” and
T (x, y) be “x has telephoned y,” where the domain con-
sists of all students in your class. Use quantifiers to ex-
press each of these statements. (Assume that all e-mail
messages that were sent are received, which is not the
way things often work.)

a) Chou has never sent an e-mail message to Koko.

b) Arlene has never sent an e-mail message to or tele-
phoned Sarah.

c) José has never received an e-mail message from Deb-
orah.

d) Every student in your class has sent an e-mail mes-
sage to Ken.

e) No one in your class has telephoned Nina.

f) Everyone in your class has either telephoned Avi or
sent him an e-mail message.

g) There is a student in your class who has sent everyone
else in your class an e-mail message.

h) There is someone in your class who has either sent an
e-mail message or telephoned everyone else in your
class.

i) There are two different students in your class who
have sent each other e-mail messages.

j) There is a student who has sent himself or herself an
e-mail message.

k) There is a student in your class who has not received
an e-mail message from anyone else in the class and
who has not been called by any other student in the
class.

l) Every student in the class has either received an e-
mail message or received a telephone call from an-
other student in the class.

m) There are at least two students in your class such that
one student has sent the other e-mail and the second
student has telephoned the first student.

n) There are two different students in your class who
between them have sent an e-mail message to or tele-
phoned everyone else in the class.

14. Use quantifiers and predicates with more than one vari-
able to express these statements.

a) There is a student in this class who can speak Hindi.

b) Every student in this class plays some sport.

c) Some student in this class has visited Alaska but has
not visited Hawaii.

d) All students in this class have learned at least one pro-
gramming language.

e) There is a student in this class who has taken ev-
ery course offered by one of the departments in this
school.

f) Some student in this class grew up in the same town
as exactly one other student in this class.

g) Every student in this class has chatted with at least
one other student in at least one chat group.

15. Use quantifiers and predicates with more than one vari-
able to express these statements.

a) Every computer science student needs a course in dis-
crete mathematics.

b) There is a student in this class who owns a personal
computer.

c) Every student in this class has taken at least one com-
puter science course.

d) There is a student in this class who has taken at least
one course in computer science.

e) Every student in this class has been in every building
on campus.

f) There is a student in this class who has been in every
room of at least one building on campus.

g) Every student in this class has been in at least one
room of every building on campus.

16. A discrete mathematics class contains 1 mathematics ma-
jor who is a freshman, 12 mathematics majors who are
sophomores, 15 computer science majors who are sopho-
mores, 2 mathematics majors who are juniors, 2 computer
science majors who are juniors, and 1 computer science
major who is a senior. Express each of these statements in
terms of quantifiers and then determine its truth value.

a) There is a student in the class who is a junior.

b) Every student in the class is a computer science major.

c) There is a student in the class who is neither a math-
ematics major nor a junior.

d) Every student in the class is either a sophomore or a
computer science major.

e) There is a major such that there is a student in the class
in every year of study with that major.

17. Express each of these system specifications using predi-
cates, quantifiers, and logical connectives, if necessary.

a) Every user has access to exactly one mailbox.

b) There is a process that continues to run during all error
conditions only if the kernel is working correctly.

c) All users on the campus network can access all web-
sites whose url has a .edu extension.

∗d) There are exactly two systems that monitor every re-
mote server.

18. Express each of these system specifications using predi-
cates, quantifiers, and logical connectives, if necessary.

a) At least one console must be accessible during every
fault condition.

b) The e-mail address of every user can be retrieved
whenever the archive contains at least one message
sent by every user on the system.

c) For every security breach there is at least one mecha-
nism that can detect that breach if and only if there is
a process that has not been compromised.

d) There are at least two paths connecting every two dis-
tinct endpoints on the network.

e) No one knows the password of every user on the sys-
tem except for the system administrator, who knows
all passwords.[

19. Express each of these statements using mathematical and
logical operators, predicates, and quantifiers, where the
domain consists of all integers.

a) The sum of two negative integers is negative.

b) The difference of two positive integers is not neces-
sarily positive.

1.5 Nested Quantifiers 67

c) The sum of the squares of two integers is greater than
or equal to the square of their sum.

d) The absolute value of the product of two integers is
the product of their absolute values.

20. Express each of these statements using predicates, quan-
tifiers, logical connectives, and mathematical operators
where the domain consists of all integers.

a) The product of two negative integers is positive.
b) The average of two positive integers is positive.
c) The difference of two negative integers is not neces-

sarily negative.
d) The absolute value of the sum of two integers does

not exceed the sum of the absolute values of these
integers.

21. Use predicates, quantifiers, logical connectives, and
mathematical operators to express the statement that ev-
ery positive integer is the sum of the squares of four in-
tegers.

22. Use predicates, quantifiers, logical connectives, and
mathematical operators to express the statement that there
is a positive integer that is not the sum of three squares.

23. Express each of these mathematical statements using
predicates, quantifiers, logical connectives, and mathe-
matical operators.

a) The product of two negative real numbers is positive.
b) The difference of a real number and itself is zero.
c) Every positive real number has exactly two square

roots.
d) A negative real number does not have a square root

that is a real number.

24. Translate each of these nested quantifications into an En-
glish statement that expresses a mathematical fact. The
domain in each case consists of all real numbers.

a) ∃x∀y(x + y = y)

b) ∀x∀y(((x ≥ 0) ∧ (y < 0))→ (x − y > 0))
c) ∃x∃y(((x ≤ 0) ∧ (y ≤ 0)) ∧ (x − y > 0))
d) ∀x∀y((x = 0) ∧ (y = 0)↔ (xy = 0))

25. Translate each of these nested quantifications into an En-
glish statement that expresses a mathematical fact. The
domain in each case consists of all real numbers.

a) ∃x∀y(xy = y)

b) ∀x∀y(((x < 0) ∧ (y < 0))→ (xy > 0))
c) ∃x∃y((x2 > y) ∧ (x < y))

d) ∀x∀y∃z(x + y = z)

26. Let Q(x, y) be the statement “x + y = x − y.” If the do-
main for both variables consists of all integers, what are
the truth values?

a) Q(1, 1) b) Q(2, 0)
c) ∀yQ(1, y) d) ∃xQ(x, 2)
e) ∃x∃yQ(x, y) f) ∀x∃yQ(x, y)

g) ∃y∀xQ(x, y) h) ∀y∃xQ(x, y)

i) ∀x∀yQ(x, y)

27. Determine the truth value of each of these statements if
the domain for all variables consists of all integers.

a) ∀n∃m(n2 < m) b) ∃n∀m(n < m2)

c) ∀n∃m(n+m = 0) d) ∃n∀m(nm = m)

e) ∃n∃m(n2 +m2 = 5) f) ∃n∃m(n2 +m2 = 6)

g) ∃n∃m(n+m = 4 ∧ n−m = 1)

h) ∃n∃m(n+m = 4 ∧ n−m = 2)

i) ∀n∀m∃p(p = (m+ n)/2)

28. Determine the truth value of each of these statements if
the domain of each variable consists of all real numbers.

a) ∀x∃y(x2 = y) b) ∀x∃y(x = y2)

c) ∃x∀y(xy = 0) d) ∃x∃y(x + y = y + x)

e) ∀x(x = 0 → ∃y(xy = 1))

f) ∃x∀y(y = 0 → xy = 1)

g) ∀x∃y(x + y = 1)

h) ∃x∃y(x + 2y = 2 ∧ 2x + 4y = 5)

i) ∀x∃y(x + y = 2 ∧ 2x − y = 1)

j) ∀x∀y∃z(z = (x + y)/2)

29. Suppose the domain of the propositional functionP(x, y)

consists of pairs x and y, where x is 1, 2, or 3 and y is
1, 2, or 3. Write out these propositions using disjunctions
and conjunctions.

a) ∀x∀yP (x, y) b) ∃x∃yP (x, y)

c) ∃x∀yP (x, y) d) ∀y∃xP (x, y)

30. Rewrite each of these statements so that negations ap-
pear only within predicates (that is, so that no negation
is outside a quantifier or an expression involving logical
connectives).

a) ¬∃y∃xP (x, y) b) ¬∀x∃yP (x, y)

c) ¬∃y(Q(y) ∧ ∀x¬R(x, y))

d) ¬∃y(∃xR(x, y) ∨ ∀xS(x, y))
e) ¬∃y(∀x∃zT (x, y, z) ∨ ∃x∀zU(x, y, z))

31. Express the negations of each of these statements so that
all negation symbols immediately precede predicates.

a) ∀x∃y∀zT (x, y, z)

b) ∀x∃yP (x, y) ∨ ∀x∃yQ(x, y)

c) ∀x∃y(P (x, y) ∧ ∃zR(x, y, z))

d) ∀x∃y(P (x, y)→ Q(x, y))

32. Express the negations of each of these statements so that
all negation symbols immediately precede predicates.

a) ∃z∀y∀xT (x, y, z)

b) ∃x∃yP (x, y) ∧ ∀x∀yQ(x, y)

c) ∃x∃y(Q(x, y)↔ Q(y, x))

d) ∀y∃x∃z(T (x, y, z) ∨Q(x, y))

33. Rewrite each of these statements so that negations ap-
pear only within predicates (that is, so that no negation
is outside a quantifier or an expression involving logical
connectives).

a) ¬∀x∀yP (x, y) b) ¬∀y∃xP (x, y)

c) ¬∀y∀x(P (x, y) ∨Q(x, y))

d) ¬(∃x∃y¬P(x, y) ∧ ∀x∀yQ(x, y))

e) ¬∀x(∃y∀zP (x, y, z) ∧ ∃z∀yP (x, y, z))

34. Find a common domain for the variables x, y, and z

for which the statement ∀x∀y((x = y)→ ∀z((z = x) ∨
(z = y))) is true and another domain for which it is false.

35. Find a common domain for the variables x, y, z,
and w for which the statement ∀x∀y∀z∃w((w = x) ∧
(w = y) ∧ (w = z)) is true and another common domain
for these variables for which it is false.

68 1 / The Foundations: Logic and Proofs

36. Express each of these statements using quantifiers. Then
form the negation of the statement so that no negation is
to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)

a) No one has lost more than one thousand dollars play-
ing the lottery.

b) There is a student in this class who has chatted with
exactly one other student.

c) No student in this class has sent e-mail to exactly two
other students in this class.

d) Some student has solved every exercise in this book.
e) No student has solved at least one exercise in every

section of this book.

37. Express each of these statements using quantifiers. Then
form the negation of the statement so that no negation is
to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)

a) Every student in this class has taken exactly two math-
ematics classes at this school.

b) Someone has visited every country in the world except
Libya.

c) No one has climbed every mountain in the Himalayas.
d) Every movie actor has either been in a movie with

Kevin Bacon or has been in a movie with someone
who has been in a movie with Kevin Bacon.

38. Express the negations of these propositions using quan-
tifiers, and in English.

a) Every student in this class likes mathematics.
b) There is a student in this class who has never seen a

computer.
c) There is a student in this class who has taken every

mathematics course offered at this school.
d) There is a student in this class who has been in at least

one room of every building on campus.

39. Find a counterexample, if possible, to these universally
quantified statements, where the domain for all variables
consists of all integers.

a) ∀x∀y(x2 = y2 → x = y)
b) ∀x∃y(y2 = x)
c) ∀x∀y(xy ≥ x)

40. Find a counterexample, if possible, to these universally
quantified statements, where the domain for all variables
consists of all integers.

a) ∀x∃y(x = 1/y)
b) ∀x∃y(y2 − x < 100)
c) ∀x∀y(x2 = y3)

41. Use quantifiers to express the associative law for multi-
plication of real numbers.

42. Use quantifiers to express the distributive laws of multi-
plication over addition for real numbers.

43. Use quantifiers and logical connectives to express the fact
that every linear polynomial (that is, polynomial of de-
gree 1) with real coefficients and where the coefficient of
x is nonzero, has exactly one real root.

44. Use quantifiers and logical connectives to express the fact
that a quadratic polynomial with real number coefficients
has at most two real roots.

45. Determine the truth value of the statement ∀x∃y(xy = 1)
if the domain for the variables consists of

a) the nonzero real numbers.

b) the nonzero integers.

c) the positive real numbers.

46. Determine the truth value of the statement ∃x∀y(x ≤ y2)

if the domain for the variables consists of

a) the positive real numbers.

b) the integers.

c) the nonzero real numbers.

47. Show that the two statements ¬∃x∀yP (x, y) and
∀x∃y¬P(x, y), where both quantifiers over the first vari-
able in P(x, y) have the same domain, and both quanti-
fiers over the second variable in P(x, y) have the same
domain, are logically equivalent.

∗48. Show that ∀xP (x) ∨ ∀xQ(x) and ∀x∀y(P (x) ∨Q(y)),
where all quantifiers have the same nonempty domain,
are logically equivalent. (The new variable y is used to
combine the quantifications correctly.)

∗49. a) Show that ∀xP (x) ∧ ∃xQ(x) is logically equivalent
to ∀x∃y (P (x) ∧Q(y)), where all quantifiers have
the same nonempty domain.

b) Show that ∀xP (x) ∨ ∃xQ(x) is equivalent to ∀x∃y
(P (x) ∨Q(y)), where all quantifiers have the same
nonempty domain.

A statement is in prenex normal form (PNF) if and only if it
is of the form

Q1x1Q2x2 · · ·QkxkP (x1, x2, . . . , xk),

where each Qi, i = 1, 2, . . . , k, is either the existential quan-
tifier or the universal quantifier, and P(x1, . . . , xk) is a pred-
icate involving no quantifiers. For example, ∃x∀y(P (x, y) ∧
Q(y)) is in prenex normal form, whereas ∃xP (x) ∨ ∀xQ(x)

is not (because the quantifiers do not all occur first).
Every statement formed from propositional variables,

predicates, T, and F using logical connectives and quan-
tifiers is equivalent to a statement in prenex normal form.
Exercise 51 asks for a proof of this fact.

∗50. Put these statements in prenex normal form. [Hint: Use
logical equivalence from Tables 6 and 7 in Section 1.3,
Table 2 in Section 1.4, Example 19 in Section 1.4,
Exercises 45 and 46 in Section 1.4, and Exercises 48 and
49.]

a) ∃xP (x) ∨ ∃xQ(x) ∨ A, where A is a proposition not
involving any quantifiers.

b) ¬(∀xP (x) ∨ ∀xQ(x))

c) ∃xP (x)→ ∃xQ(x)

∗∗51. Show how to transform an arbitrary statement to a state-
ment in prenex normal form that is equivalent to the given
statement. (Note: A formal solution of this exercise re-
quires use of structural induction, covered in Section 5.3.)

∗52. Express the quantification ∃!xP (x), introduced in Sec-
tion 1.4, using universal quantifications, existential quan-
tifications, and logical operators.

1.6 Rules of Inference 69

1.6 Rules of Inference

Introduction

Later in this chapter we will study proofs. Proofs in mathematics are valid arguments that estab-
lish the truth of mathematical statements. By an argument, we mean a sequence of statements
that end with a conclusion. By valid, we mean that the conclusion, or final statement of the
argument, must follow from the truth of the preceding statements, or premises, of the argument.
That is, an argument is valid if and only if it is impossible for all the premises to be true and
the conclusion to be false. To deduce new statements from statements we already have, we use
rules of inference which are templates for constructing valid arguments. Rules of inference are
our basic tools for establishing the truth of statements.

Before we study mathematical proofs, we will look at arguments that involve only compound
propositions. We will define what it means for an argument involving compound propositions to
be valid. Then we will introduce a collection of rules of inference in propositional logic. These
rules of inference are among the most important ingredients in producing valid arguments. After
we illustrate how rules of inference are used to produce valid arguments, we will describe some
common forms of incorrect reasoning, called fallacies, which lead to invalid arguments.

After studying rules of inference in propositional logic, we will introduce rules of inference
for quantified statements. We will describe how these rules of inference can be used to produce
valid arguments. These rules of inference for statements involving existential and universal
quantifiers play an important role in proofs in computer science and mathematics, although they
are often used without being explicitly mentioned.

Finally, we will show how rules of inference for propositions and for quantified statements
can be combined. These combinations of rule of inference are often used together in complicated
arguments.

Valid Arguments in Propositional Logic

Consider the following argument involving propositions (which, by definition, is a sequence of
propositions):

“If you have a current password, then you can log onto the network.”

“You have a current password.”

Therefore,

“You can log onto the network.”

We would like to determine whether this is a valid argument. That is, we would like to
determine whether the conclusion “You can log onto the network” must be true when the
premises “If you have a current password, then you can log onto the network” and “You have a
current password” are both true.

70 1 / The Foundations: Logic and Proofs

Before we discuss the validity of this particular argument, we will look at its form. Use p

to represent “You have a current password” and q to represent “You can log onto the network.”
Then, the argument has the form

p → q

p

∴ q

where ∴ is the symbol that denotes “therefore.”
We know that when p and q are propositional variables, the statement ((p → q) ∧ p)→ q

is a tautology (see Exercise 10(c) in Section 1.3). In particular, when both p → q and p are
true, we know that q must also be true. We say this form of argument is valid because whenever
all its premises (all statements in the argument other than the final one, the conclusion) are true,
the conclusion must also be true. Now suppose that both “If you have a current password, then
you can log onto the network” and “You have a current password” are true statements. When
we replace p by “You have a current password” and q by “You can log onto the network,” it
necessarily follows that the conclusion “You can log onto the network” is true. This argument
is valid because its form is valid. Note that whenever we replace p and q by propositions where
p → q and p are both true, then q must also be true.

What happens when we replace p and q in this argument form by propositions where not
both p and p → q are true? For example, suppose that p represents “You have access to the
network” and q represents “You can change your grade” and that p is true, but p → q is false.
The argument we obtain by substituting these values of p and q into the argument form is

“If you have access to the network, then you can change your grade.”
“You have access to the network.”

∴ “You can change your grade.”

The argument we obtained is a valid argument, but because one of the premises, namely the first
premise, is false, we cannot conclude that the conclusion is true. (Most likely, this conclusion
is false.)

In our discussion, to analyze an argument, we replaced propositions by propositional vari-
ables. This changed an argument to an argument form. We saw that the validity of an argument
follows from the validity of the form of the argument. We summarize the terminology used to
discuss the validity of arguments with our definition of the key notions.

DEFINITION 1 An argument in propositional logic is a sequence of propositions. All but the final proposition
in the argument are called premises and the final proposition is called the conclusion. An
argument is valid if the truth of all its premises implies that the conclusion is true.

An argument form in propositional logic is a sequence of compound propositions involv-
ing propositional variables. An argument form is valid no matter which particular proposi-
tions are substituted for the propositional variables in its premises, the conclusion is true if
the premises are all true.

From the definition of a valid argument form we see that the argument form with premises
p1, p2, . . . , pn and conclusion q is valid, when (p1 ∧ p2 ∧ · · · ∧ pn)→ q is a tautology.

The key to showing that an argument in propositional logic is valid is to show that its
argument form is valid. Consequently, we would like techniques to show that argument forms
are valid. We will now develop methods for accomplishing this task.

1.6 Rules of Inference 71

Rules of Inference for Propositional Logic

We can always use a truth table to show that an argument form is valid. We do this by showing
that whenever the premises are true, the conclusion must also be true. However, this can be
a tedious approach. For example, when an argument form involves 10 different propositional
variables, to use a truth table to show this argument form is valid requires 210 = 1024 different
rows. Fortunately, we do not have to resort to truth tables. Instead, we can first establish the
validity of some relatively simple argument forms, called rules of inference. These rules of
inference can be used as building blocks to construct more complicated valid argument forms.
We will now introduce the most important rules of inference in propositional logic.

The tautology (p ∧ (p → q))→ q is the basis of the rule of inference called modus po-
nens, or the law of detachment. (Modus ponens is Latin for mode that affirms.) This tautology
leads to the following valid argument form, which we have already seen in our initial discussion
about arguments (where, as before, the symbol ∴ denotes “therefore”):

p

p → q

∴ q

Using this notation, the hypotheses are written in a column, followed by a horizontal bar, followed
by a line that begins with the therefore symbol and ends with the conclusion. In particular, modus
ponens tells us that if a conditional statement and the hypothesis of this conditional statement
are both true, then the conclusion must also be true. Example 1 illustrates the use of modus
ponens.

EXAMPLE 1 Suppose that the conditional statement “If it snows today, then we will go skiing” and its
hypothesis, “It is snowing today,” are true. Then, by modus ponens, it follows that the conclusion
of the conditional statement, “We will go skiing,” is true. ▲

As we mentioned earlier, a valid argument can lead to an incorrect conclusion if one or
more of its premises is false. We illustrate this again in Example 2.

EXAMPLE 2 Determine whether the argument given here is valid and determine whether its conclusion must
be true because of the validity of the argument.

“If
√

2 > 3
2
, then

�√
2
�2

>
�

3
2

�2
. We know that

√
2 > 3

2
. Consequently,

�√
2
�2 = 2 >

�
3
2

�2 = 9
4
.”

Solution: Let p be the proposition “
√

2 > 3
2
” and q the proposition “2 > (3

2
)2.” The premises

of the argument are p → q and p, and q is its conclusion. This argument is valid because it
is constructed by using modus ponens, a valid argument form. However, one of its premises,√

2 > 3
2
, is false. Consequently, we cannot conclude that the conclusion is true. Furthermore,

note that the conclusion of this argument is false, because 2 < 9
4
. ▲

There are many useful rules of inference for propositional logic. Perhaps the most widely
used of these are listed in Table 1. Exercises 9, 10, 15, and 30 in Section 1.3 ask for the
verifications that these rules of inference are valid argument forms. We now give examples of
arguments that use these rules of inference. In each argument, we first use propositional variables
to express the propositions in the argument. We then show that the resulting argument form is
a rule of inference from Table 1.

72 1 / The Foundations: Logic and Proofs

TABLE 1 Rules of Inference.

Rule of Inference Tautology Name

p

p → q

∴ q

(p ∧ (p → q))→ q Modus ponens

¬q
p → q

∴ ¬p

(¬q ∧ (p → q))→ ¬p Modus tollens

p → q

q → r

∴ p → r

((p → q) ∧ (q → r))→ (p → r) Hypothetical syllogism

p ∨ q

¬p
∴ q

((p ∨ q) ∧ ¬p)→ q Disjunctive syllogism

p

∴ p ∨ q

p → (p ∨ q) Addition

p ∧ q

∴ p

(p ∧ q)→ p Simplification

p

q

∴ p ∧ q

((p) ∧ (q))→ (p ∧ q) Conjunction

p ∨ q

¬p ∨ r

∴ q ∨ r

((p ∨ q) ∧ (¬p ∨ r))→ (q ∨ r) Resolution

EXAMPLE 3 State which rule of inference is the basis of the following argument: “It is below freezing now.
Therefore, it is either below freezing or raining now.”

Solution: Let p be the proposition “It is below freezing now” and q the proposition “It is raining
now.” Then this argument is of the form

p

∴ p ∨ q

This is an argument that uses the addition rule. ▲

EXAMPLE 4 State which rule of inference is the basis of the following argument: “It is below freezing and
raining now. Therefore, it is below freezing now.”

Solution: Let p be the proposition “It is below freezing now,” and let q be the proposition “It is
raining now.” This argument is of the form

p ∧ q

∴ p

This argument uses the simplification rule. ▲

1.6 Rules of Inference 73

EXAMPLE 5 State which rule of inference is used in the argument:

If it rains today, then we will not have a barbecue today. If we do not have a barbecue today,
then we will have a barbecue tomorrow. Therefore, if it rains today, then we will have a
barbecue tomorrow.

Solution: Let p be the proposition “It is raining today,” let q be the proposition “We will not
have a barbecue today,” and let r be the proposition “We will have a barbecue tomorrow.” Then
this argument is of the form

p → q

q → r

∴ p → r

Hence, this argument is a hypothetical syllogism. ▲

Using Rules of Inference to Build Arguments

When there are many premises, several rules of inference are often needed to show that an
argument is valid. This is illustrated by Examples 6 and 7, where the steps of arguments are
displayed on separate lines, with the reason for each step explicitly stated. These examples also
show how arguments in English can be analyzed using rules of inference.

EXAMPLE 6 Show that the premises “It is not sunny this afternoon and it is colder than yesterday,” “We will
go swimming only if it is sunny,” “If we do not go swimming, then we will take a canoe trip,”
and “If we take a canoe trip, then we will be home by sunset” lead to the conclusion “We will
be home by sunset.”

Solution: Let p be the proposition “It is sunny this afternoon,” q the proposition “It is colder
than yesterday,” r the proposition “We will go swimming,” s the proposition “We will take a
canoe trip,” and t the proposition “We will be home by sunset.” Then the premises become
¬p ∧ q, r → p,¬r → s, and s → t . The conclusion is simply t . We need to give a valid
argument with premises ¬p ∧ q, r → p, ¬r → s, and s → t and conclusion t .

We construct an argument to show that our premises lead to the desired conclusion as
follows.

Step Reason

1. ¬p ∧ q Premise
2. ¬p Simplification using (1)
3. r → p Premise
4. ¬r Modus tollens using (2) and (3)
5. ¬r → s Premise
6. s Modus ponens using (4) and (5)
7. s → t Premise
8. t Modus ponens using (6) and (7)

Note that we could have used a truth table to show that whenever each of the four hypotheses
is true, the conclusion is also true. However, because we are working with five propositional
variables, p, q, r , s, and t , such a truth table would have 32 rows. ▲

74 1 / The Foundations: Logic and Proofs

EXAMPLE 7 Show that the premises “If you send me an e-mail message, then I will finish writing the
program,” “If you do not send me an e-mail message, then I will go to sleep early,” and “If I go
to sleep early, then I will wake up feeling refreshed” lead to the conclusion “If I do not finish
writing the program, then I will wake up feeling refreshed.”

Solution: Let p be the proposition “You send me an e-mail message,” q the proposition “I will
finish writing the program,” r the proposition “I will go to sleep early,” and s the proposition “I
will wake up feeling refreshed.” Then the premises arep → q,¬p → r , and r → s. The desired
conclusion is ¬q → s. We need to give a valid argument with premises p → q, ¬p → r , and
r → s and conclusion ¬q → s.

This argument form shows that the premises lead to the desired conclusion.

Step Reason

1. p → q Premise
2. ¬q → ¬p Contrapositive of (1)
3. ¬p → r Premise
4. ¬q → r Hypothetical syllogism using (2) and (3)
5. r → s Premise
6. ¬q → s Hypothetical syllogism using (4) and (5)

▲

Resolution

Computer programs have been developed to automate the task of reasoning and proving theo-
rems. Many of these programs make use of a rule of inference known as resolution. This rule
of inference is based on the tautology

((p ∨ q) ∧ (¬p ∨ r))→ (q ∨ r).

(Exercise 30 in Section 1.3 asks for the verification that this is a tautology.)The final disjunction in
the resolution rule, q ∨ r , is called the resolvent. When we let q = r in this tautology, we obtain
(p ∨ q) ∧ (¬p ∨ q)→ q. Furthermore, when we let r = F, we obtain (p ∨ q) ∧ (¬p)→ q

(because q ∨ F ≡ q), which is the tautology on which the rule of disjunctive syllogism is based.

EXAMPLE 8 Use resolution to show that the hypotheses “Jasmine is skiing or it is not snowing” and “It is
snowing or Bart is playing hockey” imply that “Jasmine is skiing or Bart is playing hockey.”

Solution: Let p be the proposition “It is snowing,” q the proposition “Jasmine is skiing,” and r

the proposition “Bart is playing hockey.” We can represent the hypotheses as¬p ∨ q and p ∨ r ,
respectively. Using resolution, the proposition q ∨ r , “Jasmine is skiing or Bart is playing
hockey,” follows. ▲

Resolution plays an important role in programming languages based on the rules of logic,
such as Prolog (where resolution rules for quantified statements are applied). Furthermore, it
can be used to build automatic theorem proving systems. To construct proofs in propositional
logic using resolution as the only rule of inference, the hypotheses and the conclusion must be
expressed as clauses, where a clause is a disjunction of variables or negations of these variables.
We can replace a statement in propositional logic that is not a clause by one or more equivalent
statements that are clauses. For example, suppose we have a statement of the form p ∨ (q ∧ r).
Because p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r), we can replace the single statement p ∨ (q ∧ r) by
two statements p ∨ q and p ∨ r , each of which is a clause. We can replace a statement of
the form ¬(p ∨ q) by the two statements ¬p and ¬q because De Morgan’s law tells us that
¬(p ∨ q) ≡ ¬p ∧ ¬q. We can also replace a conditional statement p → q with the equivalent
disjunction ¬p ∨ q.

1.6 Rules of Inference 75

EXAMPLE 9 Show that the premises (p ∧ q) ∨ r and r → s imply the conclusion p ∨ s.

Solution: We can rewrite the premises (p ∧ q) ∨ r as two clauses, p ∨ r and q ∨ r . We can also
replace r → s by the equivalent clause¬r ∨ s. Using the two clauses p ∨ r and¬r ∨ s, we can
use resolution to conclude p ∨ s. ▲

Fallacies

Several common fallacies arise in incorrect arguments. These fallacies resemble rules of infer-
ence, but are based on contingencies rather than tautologies. These are discussed here to show
the distinction between correct and incorrect reasoning.

The proposition ((p → q) ∧ q)→ p is not a tautology, because it is false when p is false
and q is true. However, there are many incorrect arguments that treat this as a tautology. In
other words, they treat the argument with premises p → q and q and conclusion p as a valid
argument form, which it is not. This type of incorrect reasoning is called the fallacy of affirming
the conclusion.

EXAMPLE 10 Is the following argument valid?

If you do every problem in this book, then you will learn discrete mathematics.You learned
discrete mathematics.

Therefore, you did every problem in this book.

Solution: Let p be the proposition “You did every problem in this book.” Let q be the proposition
“You learned discrete mathematics.” Then this argument is of the form: if p → q and q, then
p. This is an example of an incorrect argument using the fallacy of affirming the conclusion.
Indeed, it is possible for you to learn discrete mathematics in some way other than by doing every
problem in this book. (You may learn discrete mathematics by reading, listening to lectures,
doing some, but not all, the problems in this book, and so on.) ▲

The proposition ((p → q) ∧ ¬p)→ ¬q is not a tautology, because it is false when p is
false and q is true. Many incorrect arguments use this incorrectly as a rule of inference. This
type of incorrect reasoning is called the fallacy of denying the hypothesis.

EXAMPLE 11 Let p and q be as in Example 10. If the conditional statement p → q is true, and ¬p is true,
is it correct to conclude that ¬q is true? In other words, is it correct to assume that you did not
learn discrete mathematics if you did not do every problem in the book, assuming that if you do
every problem in this book, then you will learn discrete mathematics?

Solution: It is possible that you learned discrete mathematics even if you did not do every
problem in this book. This incorrect argument is of the form p → q and ¬p imply ¬q, which
is an example of the fallacy of denying the hypothesis. ▲

Rules of Inference for Quantified Statements

We have discussed rules of inference for propositions.We will now describe some important rules
of inference for statements involving quantifiers. These rules of inference are used extensively
in mathematical arguments, often without being explicitly mentioned.

Universal instantiation is the rule of inference used to conclude that P(c) is true, where c

is a particular member of the domain, given the premise ∀xP (x). Universal instantiation is used
when we conclude from the statement “All women are wise” that “Lisa is wise,” where Lisa is
a member of the domain of all women.

76 1 / The Foundations: Logic and Proofs

TABLE 2 Rules of Inference for Quantified Statements.

Rule of Inference Name

∀xP (x)

∴ P(c)
Universal instantiation

P(c) for an arbitrary c

∴ ∀xP (x)
Universal generalization

∃xP (x)

∴ P(c) for some element c
Existential instantiation

P(c) for some element c

∴ ∃xP (x)
Existential generalization

Universal generalization is the rule of inference that states that ∀xP (x) is true, given the
premise that P(c) is true for all elements c in the domain. Universal generalization is used when
we show that ∀xP (x) is true by taking an arbitrary element c from the domain and showing that
P(c) is true. The element c that we select must be an arbitrary, and not a specific, element of
the domain. That is, when we assert from ∀xP (x) the existence of an element c in the domain,
we have no control over c and cannot make any other assumptions about c other than it comes
from the domain. Universal generalization is used implicitly in many proofs in mathematics and
is seldom mentioned explicitly. However, the error of adding unwarranted assumptions about
the arbitrary element c when universal generalization is used is all too common in incorrect
reasoning.

Existential instantiation is the rule that allows us to conclude that there is an element c in
the domain for which P(c) is true if we know that ∃xP (x) is true. We cannot select an arbitrary
value of c here, but rather it must be a c for which P(c) is true. Usually we have no knowledge
of what c is, only that it exists. Because it exists, we may give it a name (c) and continue our
argument.

Existential generalization is the rule of inference that is used to conclude that ∃xP (x) is
true when a particular element c with P(c) true is known. That is, if we know one element c in
the domain for which P(c) is true, then we know that ∃xP (x) is true.

We summarize these rules of inference in Table 2. We will illustrate how some of these rules
of inference for quantified statements are used in Examples 12 and 13.

EXAMPLE 12 Show that the premises “Everyone in this discrete mathematics class has taken a course in
computer science” and “Marla is a student in this class” imply the conclusion “Marla has taken
a course in computer science.”

Solution: Let D(x) denote “x is in this discrete mathematics class,” and let C(x) denote “x has
taken a course in computer science.” Then the premises are ∀x(D(x)→ C(x)) and D(Marla).
The conclusion is C(Marla).

The following steps can be used to establish the conclusion from the premises.

Step Reason

1. ∀x(D(x)→ C(x)) Premise
2. D(Marla)→ C(Marla) Universal instantiation from (1)
3. D(Marla) Premise
4. C(Marla) Modus ponens from (2) and (3) ▲

1.6 Rules of Inference 77

EXAMPLE 13 Show that the premises “A student in this class has not read the book,” and “Everyone in this
class passed the first exam” imply the conclusion “Someone who passed the first exam has not
read the book.”

Solution: Let C(x) be “x is in this class,” B(x) be “x has read the book,” and P(x) be “x passed
the first exam.” The premises are ∃x(C(x) ∧ ¬B(x)) and ∀x(C(x)→ P(x)). The conclusion
is ∃x(P (x) ∧ ¬B(x)). These steps can be used to establish the conclusion from the premises.

Step Reason

1. ∃x(C(x) ∧ ¬B(x)) Premise
2. C(a) ∧ ¬B(a) Existential instantiation from (1)
3. C(a) Simplification from (2)
4. ∀x(C(x)→ P(x)) Premise
5. C(a)→ P(a) Universal instantiation from (4)
6. P(a) Modus ponens from (3) and (5)
7. ¬B(a) Simplification from (2)
8. P(a) ∧ ¬B(a) Conjunction from (6) and (7)
9. ∃x(P (x) ∧ ¬B(x)) Existential generalization from (8)

▲

Combining Rules of Inference for Propositions
and Quantified Statements

We have developed rules of inference both for propositions and for quantified statements. Note
that in our arguments in Examples 12 and 13 we used both universal instantiation, a rule of
inference for quantified statements, and modus ponens, a rule of inference for propositional logic.
We will often need to use this combination of rules of inference. Because universal instantiation
and modus ponens are used so often together, this combination of rules is sometimes called
universal modus ponens. This rule tells us that if ∀x(P (x)→ Q(x)) is true, and if P(a) is
true for a particular element a in the domain of the universal quantifier, then Q(a) must also
be true. To see this, note that by universal instantiation, P(a)→ Q(a) is true. Then, by modus
ponens, Q(a) must also be true. We can describe universal modus ponens as follows:

∀x(P (x)→ Q(x))

P (a),where a is a particular element in the domain

∴ Q(a)

Universal modus ponens is commonly used in mathematical arguments. This is illustrated
in Example 14.

EXAMPLE 14 Assume that “For all positive integers n, if n is greater than 4, then n2 is less than 2n” is true.
Use universal modus ponens to show that 1002 < 2100.

Solution: Let P(n) denote “n > 4” and Q(n) denote “n2 < 2n.” The statement “For all positive
integersn, ifn is greater than 4, thenn2 is less than 2n” can be represented by∀n(P (n)→ Q(n)),
where the domain consists of all positive integers. We are assuming that ∀n(P (n)→ Q(n)) is
true. Note that P(100) is true because 100 > 4. It follows by universal modus ponens that
Q(100) is true, namely that 1002 < 2100. ▲

Another useful combination of a rule of inference from propositional logic and a rule
of inference for quantified statements is universal modus tollens. Universal modus tollens

78 1 / The Foundations: Logic and Proofs

combines universal instantiation and modus tollens and can be expressed in the following way:

∀x(P (x)→ Q(x))

¬Q(a),where a is a particular element in the domain

∴ ¬P(a)

The verification of universal modus tollens is left as Exercise 25. Exercises 26–29 develop
additional combinations of rules of inference in propositional logic and quantified statements.

Exercises

1. Find the argument form for the following argument and
determine whether it is valid. Can we conclude that the
conclusion is true if the premises are true?

If Socrates is human, then Socrates is mortal.
Socrates is human.

∴ Socrates is mortal.

2. Find the argument form for the following argument and
determine whether it is valid. Can we conclude that the
conclusion is true if the premises are true?

If George does not have eight legs, then he is not a
spider.
George is a spider.

∴ George has eight legs.

3. What rule of inference is used in each of these argu-
ments?

a) Alice is a mathematics major. Therefore, Alice is ei-
ther a mathematics major or a computer science major.

b) Jerry is a mathematics major and a computer science
major. Therefore, Jerry is a mathematics major.

c) If it is rainy, then the pool will be closed. It is rainy.
Therefore, the pool is closed.

d) If it snows today, the university will close. The uni-
versity is not closed today. Therefore, it did not snow
today.

e) If I go swimming, then I will stay in the sun too long.
If I stay in the sun too long, then I will sunburn. There-
fore, if I go swimming, then I will sunburn.

4. What rule of inference is used in each of these arguments?

a) Kangaroos live inAustralia and are marsupials. There-
fore, kangaroos are marsupials.

b) It is either hotter than 100 degrees today or the pollu-
tion is dangerous. It is less than 100 degrees outside
today. Therefore, the pollution is dangerous.

c) Linda is an excellent swimmer. If Linda is an excellent
swimmer, then she can work as a lifeguard. Therefore,
Linda can work as a lifeguard.

d) Steve will work at a computer company this summer.
Therefore, this summer Steve will work at a computer
company or he will be a beach bum.

e) If I work all night on this homework, then I can an-
swer all the exercises. If I answer all the exercises, I
will understand the material. Therefore, if I work all
night on this homework, then I will understand the
material.

5. Use rules of inference to show that the hypotheses “Randy
works hard,” “If Randy works hard, then he is a dull boy,”
and “If Randy is a dull boy, then he will not get the job”
imply the conclusion “Randy will not get the job.”

6. Use rules of inference to show that the hypotheses “If it
does not rain or if it is not foggy, then the sailing race will
be held and the lifesaving demonstration will go on,” “If
the sailing race is held, then the trophy will be awarded,”
and “The trophy was not awarded” imply the conclusion
“It rained.”

7. What rules of inference are used in this famous argu-
ment? “All men are mortal. Socrates is a man. Therefore,
Socrates is mortal.”

8. What rules of inference are used in this argument? “No
man is an island. Manhattan is an island. Therefore, Man-
hattan is not a man.”

9. For each of these collections of premises, what relevant
conclusion or conclusions can be drawn? Explain the
rules of inference used to obtain each conclusion from
the premises.

a) “If I take the day off, it either rains or snows.” “I took
Tuesday off or I took Thursday off.” “It was sunny on
Tuesday.” “It did not snow on Thursday.”

b) “If I eat spicy foods, then I have strange dreams.” “I
have strange dreams if there is thunder while I sleep.”
“I did not have strange dreams.”

c) “I am either clever or lucky.” “I am not lucky.” “If I
am lucky, then I will win the lottery.”

d) “Every computer science major has a personal com-
puter.” “Ralph does not have a personal computer.”
“Ann has a personal computer.”

e) “What is good for corporations is good for the United
States.” “What is good for the United States is good
for you.” “What is good for corporations is for you to
buy lots of stuff.”

f) “All rodents gnaw their food.” “Mice are rodents.”
“Rabbits do not gnaw their food.” “Bats are not ro-
dents.”

1.6 Rules of Inference 79

10. For each of these sets of premises, what relevant conclu-
sion or conclusions can be drawn? Explain the rules of in-
ference used to obtain each conclusion from the premises.

a) “If I play hockey, then I am sore the next day.” “I
use the whirlpool if I am sore.” “I did not use the
whirlpool.”

b) “If I work, it is either sunny or partly sunny.” “I worked
last Monday or I worked last Friday.” “It was not sunny
on Tuesday.” “It was not partly sunny on Friday.”

c) “All insects have six legs.” “Dragonflies are insects.”
“Spiders do not have six legs.” “Spiders eat dragon-
flies.”

d) “Every student has an Internet account.” “Homer does
not have an Internet account.” “Maggie has an Internet
account.”

e) “All foods that are healthy to eat do not taste good.”
“Tofu is healthy to eat.” “You only eat what tastes
good.” “You do not eat tofu.” “Cheeseburgers are not
healthy to eat.”

f) “I am either dreaming or hallucinating.” “I am not
dreaming.” “If I am hallucinating, I see elephants run-
ning down the road.”

11. Show that the argument form with premises
p1, p2, . . . , pn and conclusion q → r is valid if the
argument form with premises p1, p2, . . . , pn, q, and
conclusion r is valid.

12. Show that the argument form with premises (p ∧ t)→
(r ∨ s), q → (u ∧ t), u→ p, and ¬s and conclusion
q → r is valid by first using Exercise 11 and then us-
ing rules of inference from Table 1.

13. For each of these arguments, explain which rules of in-
ference are used for each step.

a) “Doug, a student in this class, knows how to write
programs in JAVA. Everyone who knows how to write
programs in JAVA can get a high-paying job. There-
fore, someone in this class can get a high-paying job.”

b) “Somebody in this class enjoys whale watching. Ev-
ery person who enjoys whale watching cares about
ocean pollution. Therefore, there is a person in this
class who cares about ocean pollution.”

c) “Each of the 93 students in this class owns a personal
computer. Everyone who owns a personal computer
can use a word processing program. Therefore, Zeke,
a student in this class, can use a word processing pro-
gram.”

d) “Everyone in New Jersey lives within 50 miles of the
ocean. Someone in New Jersey has never seen the
ocean. Therefore, someone who lives within 50 miles
of the ocean has never seen the ocean.”

14. For each of these arguments, explain which rules of in-
ference are used for each step.

a) “Linda, a student in this class, owns a red convertible.
Everyone who owns a red convertible has gotten at
least one speeding ticket. Therefore, someone in this
class has gotten a speeding ticket.”

b) “Each of five roommates, Melissa, Aaron, Ralph, Ve-
neesha, and Keeshawn, has taken a course in discrete
mathematics. Every student who has taken a course in
discrete mathematics can take a course in algorithms.
Therefore, all five roommates can take a course in
algorithms next year.”

c) “All movies produced by John Sayles are wonder-
ful. John Sayles produced a movie about coal miners.
Therefore, there is a wonderful movie about coal min-
ers.”

d) “There is someone in this class who has been to
France. Everyone who goes to France visits the
Louvre. Therefore, someone in this class has visited
the Louvre.”

15. For each of these arguments determine whether the argu-
ment is correct or incorrect and explain why.

a) All students in this class understand logic. Xavier is
a student in this class. Therefore, Xavier understands
logic.

b) Every computer science major takes discrete math-
ematics. Natasha is taking discrete mathematics.
Therefore, Natasha is a computer science major.

c) All parrots like fruit. My pet bird is not a parrot. There-
fore, my pet bird does not like fruit.

d) Everyone who eats granola every day is healthy. Linda
is not healthy. Therefore, Linda does not eat granola
every day.

16. For each of these arguments determine whether the argu-
ment is correct or incorrect and explain why.

a) Everyone enrolled in the university has lived in a dor-
mitory. Mia has never lived in a dormitory. Therefore,
Mia is not enrolled in the university.

b) A convertible car is fun to drive. Isaac’s car is not a
convertible. Therefore, Isaac’s car is not fun to drive.

c) Quincy likes all action movies. Quincy likes the movie
Eight Men Out. Therefore, Eight Men Out is an action
movie.

d) All lobstermen set at least a dozen traps. Hamilton is a
lobsterman. Therefore, Hamilton sets at least a dozen
traps.

17. What is wrong with this argument? Let H(x) be “x is
happy.” Given the premise ∃xH(x), we conclude that
H (Lola). Therefore, Lola is happy.

18. What is wrong with this argument? Let S(x, y) be “x is
shorter than y.” Given the premise∃sS(s,Max), it follows
that S(Max, Max). Then by existential generalization it
follows that ∃xS(x, x), so that someone is shorter than
himself.

19. Determine whether each of these arguments is valid. If an
argument is correct, what rule of inference is being used?
If it is not, what logical error occurs?

a) If n is a real number such that n > 1, then n2 > 1.
Suppose that n2 > 1. Then n > 1.

b) If n is a real number with n > 3, then n2 > 9.
Suppose that n2 ≤ 9. Then n ≤ 3.

c) If n is a real number with n > 2, then n2 > 4.
Suppose that n ≤ 2. Then n2 ≤ 4.

80 1 / The Foundations: Logic and Proofs

20. Determine whether these are valid arguments.

a) If x is a positive real number, then x2 is a positive real
number. Therefore, if a2 is positive, where a is a real
number, then a is a positive real number.

b) If x2 = 0, where x is a real number, then x = 0. Let
a be a real number with a2 = 0; then a = 0.

21. Which rules of inference are used to establish the
conclusion of Lewis Carroll’s argument described in
Example 26 of Section 1.4?

22. Which rules of inference are used to establish the
conclusion of Lewis Carroll’s argument described in
Example 27 of Section 1.4?

23. Identify the error or errors in this argument that sup-
posedly shows that if ∃xP (x) ∧ ∃xQ(x) is true then
∃x(P (x) ∧Q(x)) is true.

1. ∃xP (x) ∨ ∃xQ(x) Premise
2. ∃xP (x) Simplification from (1)
3. P(c) Existential instantiation from (2)
4. ∃xQ(x) Simplification from (1)
5. Q(c) Existential instantiation from (4)
6. P(c) ∧Q(c) Conjunction from (3) and (5)
7. ∃x(P (x) ∧Q(x)) Existential generalization

24. Identify the error or errors in this argument that sup-
posedly shows that if ∀x(P (x) ∨Q(x)) is true then
∀xP (x) ∨ ∀xQ(x) is true.

1. ∀x(P (x) ∨Q(x)) Premise
2. P(c) ∨Q(c) Universal instantiation from (1)
3. P(c) Simplification from (2)
4. ∀xP (x) Universal generalization from (3)
5. Q(c) Simplification from (2)
6. ∀xQ(x) Universal generalization from (5)
7. ∀x(P (x) ∨ ∀xQ(x)) Conjunction from (4) and (6)

25. Justify the rule of universal modus tollens by showing
that the premises ∀x(P (x)→ Q(x)) and ¬Q(a) for a
particular element a in the domain, imply ¬P(a).

26. Justify the rule ofuniversal transitivity, which states that
if ∀x(P (x)→ Q(x)) and ∀x(Q(x)→ R(x)) are true,
then ∀x(P (x)→ R(x)) is true, where the domains of all
quantifiers are the same.

27. Use rules of inference to show that if ∀x(P (x)→
(Q(x) ∧ S(x))) and ∀x(P (x) ∧ R(x)) are true, then
∀x(R(x) ∧ S(x)) is true.

28. Use rules of inference to show that if ∀x(P (x) ∨
Q(x)) and ∀x((¬P(x) ∧Q(x))→ R(x)) are true, then
∀x(¬R(x)→ P(x)) is also true, where the domains of
all quantifiers are the same.

29. Use rules of inference to show that if ∀x(P (x) ∨Q(x)),
∀x(¬Q(x) ∨ S(x)), ∀x(R(x)→ ¬S(x)), and ∃x¬P(x)

are true, then ∃x¬R(x) is true.

30. Use resolution to show the hypotheses “Allen is a bad
boy or Hillary is a good girl” and “Allen is a good boy or
David is happy” imply the conclusion “Hillary is a good
girl or David is happy.”

31. Use resolution to show that the hypotheses “It is not rain-
ing or Yvette has her umbrella,” “Yvette does not have
her umbrella or she does not get wet,” and “It is raining
or Yvette does not get wet” imply that “Yvette does not
get wet.”

32. Show that the equivalence p ∧ ¬p ≡ F can be derived
using resolution together with the fact that a condi-
tional statement with a false hypothesis is true. [Hint: Let
q = r = F in resolution.]

33. Use resolution to show that the compound propo-
sition (p ∨ q) ∧ (¬p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ ¬q) is
not satisfiable.

∗34. The Logic Problem, taken from WFF’N PROOF, The

Game of Logic, has these two assumptions:
1. “Logic is difficult or not many students like logic.”
2. “If mathematics is easy, then logic is not difficult.”
By translating these assumptions into statements involv-
ing propositional variables and logical connectives, deter-
mine whether each of the following are valid conclusions
of these assumptions:

a) That mathematics is not easy, if many students like
logic.

b) That not many students like logic, if mathematics is
not easy.

c) That mathematics is not easy or logic is difficult.

d) That logic is not difficult or mathematics is not easy.

e) That if not many students like logic, then either math-
ematics is not easy or logic is not difficult.

∗35. Determine whether this argument, taken from Kalish and
Montague [KaMo64], is valid.

If Superman were able and willing to prevent evil,
he would do so. If Superman were unable to prevent
evil, he would be impotent; if he were unwilling
to prevent evil, he would be malevolent. Superman
does not prevent evil. If Superman exists, he is nei-
ther impotent nor malevolent. Therefore, Superman
does not exist.

1.7 Introduction to Proofs

Introduction

In this section we introduce the notion of a proof and describe methods for constructing proofs.
A proof is a valid argument that establishes the truth of a mathematical statement. A proof can
use the hypotheses of the theorem, if any, axioms assumed to be true, and previously proven

1.7 Introduction to Proofs 81

theorems. Using these ingredients and rules of inference, the final step of the proof establishes
the truth of the statement being proved.

In our discussion we move from formal proofs of theorems toward more informal proofs.
The arguments we introduced in Section 1.6 to show that statements involving propositions
and quantified statements are true were formal proofs, where all steps were supplied, and the
rules for each step in the argument were given. However, formal proofs of useful theorems can
be extremely long and hard to follow. In practice, the proofs of theorems designed for human
consumption are almost always informal proofs, where more than one rule of inference may
be used in each step, where steps may be skipped, where the axioms being assumed and the
rules of inference used are not explicitly stated. Informal proofs can often explain to humans
why theorems are true, while computers are perfectly happy producing formal proofs using
automated reasoning systems.

The methods of proof discussed in this chapter are important not only because they are used
to prove mathematical theorems, but also for their many applications to computer science. These
applications include verifying that computer programs are correct, establishing that operating
systems are secure, making inferences in artificial intelligence, showing that system specifica-
tions are consistent, and so on. Consequently, understanding the techniques used in proofs is
essential both in mathematics and in computer science.

Some Terminology

Formally, a theorem is a statement that can be shown to be true. In mathematical writing, the
term theorem is usually reserved for a statement that is considered at least somewhat important.
Less important theorems sometimes are called propositions. (Theorems can also be referred to
as facts or results.) A theorem may be the universal quantification of a conditional statement
with one or more premises and a conclusion. However, it may be some other type of logical
statement, as the examples later in this chapter will show. We demonstrate that a theorem is true
with a proof. A proof is a valid argument that establishes the truth of a theorem. The statements
used in a proof can include axioms (or postulates), which are statements we assume to be true
(for example, the axioms for the real numbers, given in Appendix 1, and the axioms of plane
geometry), the premises, if any, of the theorem, and previously proven theorems. Axioms may
be stated using primitive terms that do not require definition, but all other terms used in theorems
and their proofs must be defined. Rules of inference, together with definitions of terms, are used
to draw conclusions from other assertions, tying together the steps of a proof. In practice, the
final step of a proof is usually just the conclusion of the theorem. However, for clarity, we will
often recap the statement of the theorem as the final step of a proof.

A less important theorem that is helpful in the proof of other results is called a lemma
(plural lemmas or lemmata). Complicated proofs are usually easier to understand when they are
proved using a series of lemmas, where each lemma is proved individually. A corollary is a
theorem that can be established directly from a theorem that has been proved. A conjecture is
a statement that is being proposed to be a true statement, usually on the basis of some partial
evidence, a heuristic argument, or the intuition of an expert. When a proof of a conjecture is
found, the conjecture becomes a theorem. Many times conjectures are shown to be false, so they
are not theorems.

Understanding How Theorems Are Stated

Before we introduce methods for proving theorems, we need to understand how many math-
ematical theorems are stated. Many theorems assert that a property holds for all elements in
a domain, such as the integers or the real numbers. Although the precise statement of such

82 1 / The Foundations: Logic and Proofs

theorems needs to include a universal quantifier, the standard convention in mathematics is to
omit it. For example, the statement

“If x > y, where x and y are positive real numbers, then x2 > y2.”

really means

“For all positive real numbers x and y, if x > y, then x2 > y2.”

Furthermore, when theorems of this type are proved, the first step of the proof usually involves
selecting a general element of the domain. Subsequent steps show that this element has the
property in question. Finally, universal generalization implies that the theorem holds for all
members of the domain.

Methods of Proving Theorems

Proving mathematical theorems can be difficult. To construct proofs we need all available am-
munition, including a powerful battery of different proof methods. These methods provide the
overall approach and strategy of proofs. Understanding these methods is a key component of
learning how to read and construct mathematical proofs. One we have chosen a proof method,
we use axioms, definitions of terms, previously proved results, and rules of inference to com-
plete the proof. Note that in this book we will always assume the axioms for real numbers
found in Appendix 1. We will also assume the usual axioms whenever we prove a result about
geometry. When you construct your own proofs, be careful not to use anything but these axioms,
definitions, and previously proved results as facts!

To prove a theorem of the form ∀x(P (x)→ Q(x)), our goal is to show that P(c)→ Q(c)

is true, where c is an arbitrary element of the domain, and then apply universal generalization.
In this proof, we need to show that a conditional statement is true. Because of this, we now focus
on methods that show that conditional statements are true. Recall that p → q is true unless p is
true but q is false. Note that to prove the statement p → q, we need only show that q is true if p
is true. The following discussion will give the most common techniques for proving conditional
statements. Later we will discuss methods for proving other types of statements. In this section,
and in Section 1.8, we will develop a large arsenal of proof techniques that can be used to prove
a wide variety of theorems.

When you read proofs, you will often find the words “obviously” or “clearly.” These words
indicate that steps have been omitted that the author expects the reader to be able to fill in.
Unfortunately, this assumption is often not warranted and readers are not at all sure how to fill in
the gaps. We will assiduously try to avoid using these words and try not to omit too many steps.
However, if we included all steps in proofs, our proofs would often be excruciatingly long.

Direct Proofs

A direct proof of a conditional statement p → q is constructed when the first step is the
assumption that p is true; subsequent steps are constructed using rules of inference, with the
final step showing that q must also be true. A direct proof shows that a conditional statement
p → q is true by showing that if p is true, then q must also be true, so that the combination
p true and q false never occurs. In a direct proof, we assume that p is true and use axioms,
definitions, and previously proven theorems, together with rules of inference, to show that q
must also be true.You will find that direct proofs of many results are quite straightforward, with a
fairly obvious sequence of steps leading from the hypothesis to the conclusion. However, direct
proofs sometimes require particular insights and can be quite tricky. The first direct proofs we
present here are quite straightforward; later in the text you will see some that are less obvious.

We will provide examples of several different direct proofs. Before we give the first example,
we need to define some terminology.

1.7 Introduction to Proofs 83

DEFINITION 1 The integer n is even if there exists an integer k such that n = 2k, and n is odd if there exists
an integer k such that n = 2k + 1. (Note that every integer is either even or odd, and no
integer is both even and odd.) Two integers have the same parity when both are even or both
are odd; they have opposite parity when one is even and the other is odd.

EXAMPLE 1 Give a direct proof of the theorem “If n is an odd integer, then n2 is odd.”

Solution: Note that this theorem states ∀nP ((n)→ Q(n)), where P(n) is “n is an odd integer”
and Q(n) is “n2 is odd.” As we have said, we will follow the usual convention in mathematical
proofs by showing that P(n) implies Q(n), and not explicitly using universal instantiation. To
begin a direct proof of this theorem, we assume that the hypothesis of this conditional statement
is true, namely, we assume that n is odd. By the definition of an odd integer, it follows that
n = 2k + 1, where k is some integer. We want to show that n2 is also odd. We can square
both sides of the equation n = 2k + 1 to obtain a new equation that expresses n2. When we do
this, we find that n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k)+ 1. By the definition of an
odd integer, we can conclude that n2 is an odd integer (it is one more than twice an integer).
Consequently, we have proved that if n is an odd integer, then n2 is an odd integer. ▲

EXAMPLE 2 Give a direct proof that if m and n are both perfect squares, then nm is also a perfect square.
(An integer a is a perfect square if there is an integer b such that a = b2.)

Solution: To produce a direct proof of this theorem, we assume that the hypothesis of this
conditional statement is true, namely, we assume that m and n are both perfect squares. By the
definition of a perfect square, it follows that there are integers s and t such that m = s2 and
n = t2. The goal of the proof is to show that mn must also be a perfect square when m and n are;
looking ahead we see how we can show this by substituting s2 for m and t2 for n into mn. This
tells us that mn = s2t2. Hence, mn = s2t2 = (ss)(tt) = (st)(st) = (st)2, using commutativity
and associativity of multiplication. By the definition of perfect square, it follows that mn is also
a perfect square, because it is the square of st , which is an integer. We have proved that if m

and n are both perfect squares, then mn is also a perfect square. ▲

Proof by Contraposition

Direct proofs lead from the premises of a theorem to the conclusion. They begin with the
premises, continue with a sequence of deductions, and end with the conclusion. However, we
will see that attempts at direct proofs often reach dead ends. We need other methods of proving
theorems of the form ∀x(P (x)→ Q(x)). Proofs of theorems of this type that are not direct
proofs, that is, that do not start with the premises and end with the conclusion, are called
indirect proofs.

An extremely useful type of indirect proof is known as proof by contraposition. Proofs
by contraposition make use of the fact that the conditional statement p → q is equivalent to its
contrapositive, ¬q → ¬p. This means that the conditional statement p → q can be proved by
showing that its contrapositive, ¬q → ¬p, is true. In a proof by contraposition of p → q, we
take ¬q as a premise, and using axioms, definitions, and previously proven theorems, together
with rules of inference, we show that¬p must follow. We will illustrate proof by contraposition
with two examples. These examples show that proof by contraposition can succeed when we
cannot easily find a direct proof.

EXAMPLE 3 Prove that if n is an integer and 3n+ 2 is odd, then n is odd.

Solution: We first attempt a direct proof. To construct a direct proof, we first assume that 3n+ 2
is an odd integer. This means that 3n+ 2 = 2k + 1 for some integer k. Can we use this fact

84 1 / The Foundations: Logic and Proofs

to show that n is odd? We see that 3n+ 1 = 2k, but there does not seem to be any direct way
to conclude that n is odd. Because our attempt at a direct proof failed, we next try a proof by
contraposition.

The first step in a proof by contraposition is to assume that the conclusion of the conditional
statement “If 3n+ 2 is odd, then n is odd” is false; namely, assume that n is even. Then, by
the definition of an even integer, n = 2k for some integer k. Substituting 2k for n, we find
that 3n+ 2 = 3(2k)+ 2 = 6k + 2 = 2(3k + 1). This tells us that 3n+ 2 is even (because it
is a multiple of 2), and therefore not odd. This is the negation of the premise of the theorem.
Because the negation of the conclusion of the conditional statement implies that the hypothesis
is false, the original conditional statement is true. Our proof by contraposition succeeded; we
have proved the theorem “If 3n+ 2 is odd, then n is odd.” ▲

EXAMPLE 4 Prove that if n = ab, where a and b are positive integers, then a ≤ √n or b ≤ √n.

Solution: Because there is no obvious way of showing that a ≤ √n or b ≤ √n directly from
the equation n = ab, where a and b are positive integers, we attempt a proof by contraposition.

The first step in a proof by contraposition is to assume that the conclusion of the conditional
statement “If n = ab, where a and b are positive integers, then a ≤ √n or b ≤ √n” is false. That
is, we assume that the statement (a ≤ √n) ∨ (b ≤ √n) is false. Using the meaning of disjunction
together with De Morgan’s law, we see that this implies that both a ≤ √n and b ≤ √n are false.
This implies that a >

√
n and b >

√
n. We can multiply these inequalities together (using the

fact that if 0 < s < t and 0 < u < v, then su < tv) to obtain ab >
√
n · √n = n. This shows

that ab = n, which contradicts the statement n = ab.
Because the negation of the conclusion of the conditional statement implies that the hypoth-

esis is false, the original conditional statement is true. Our proof by contraposition succeeded;
we have proved that if n = ab, where a and b are positive integers, then a ≤ √n or b ≤ √n. ▲

VACUOUS AND TRIVIAL PROOFS We can quickly prove that a conditional statement
p → q is true when we know that p is false, because p → q must be true when p is false.
Consequently, if we can show that p is false, then we have a proof, called a vacuous proof, of
the conditional statement p → q. Vacuous proofs are often used to establish special cases of
theorems that state that a conditional statement is true for all positive integers [i.e., a theorem
of the kind ∀nP (n), where P(n) is a propositional function]. Proof techniques for theorems of
this kind will be discussed in Section 5.1.

EXAMPLE 5 Show that the proposition P(0) is true, where P(n) is “If n > 1, then n2 > n” and the domain
consists of all integers.

Solution: Note that P(0) is “If 0 > 1, then 02 > 0.” We can show P(0) using a vacuous
proof. Indeed, the hypothesis 0 > 1 is false. This tells us that P(0) is automatically true. ▲

Remark: The fact that the conclusion of this conditional statement, 02 > 0, is false is irrelevant
to the truth value of the conditional statement, because a conditional statement with a false
hypothesis is guaranteed to be true.

We can also quickly prove a conditional statement p → q if we know that the conclusion
q is true. By showing that q is true, it follows that p → q must also be true. A proof of p → q

that uses the fact that q is true is called a trivial proof. Trivial proofs are often important when
special cases of theorems are proved (see the discussion of proof by cases in Section 1.8) and
in mathematical induction, which is a proof technique discussed in Section 5.1.

1.7 Introduction to Proofs 85

EXAMPLE 6 Let P(n) be “If a and b are positive integers with a ≥ b, then an ≥ bn,” where the domain
consists of all nonnegative integers. Show that P(0) is true.

Solution:The propositionP(0) is “Ifa ≥ b, thena0 ≥ b0.” Becausea0 = b0 = 1, the conclusion
of the conditional statement “If a ≥ b, then a0 ≥ b0” is true. Hence, this conditional statement,
which is P(0), is true. This is an example of a trivial proof. Note that the hypothesis, which is
the statement “a ≥ b,” was not needed in this proof. ▲

A LITTLE PROOF STRATEGY We have described two important approaches for proving
theorems of the form ∀x(P (x)→ Q(x)): direct proof and proof by contraposition. We have
also given examples that show how each is used. However, when you are presented with a
theorem of the form ∀x(P (x)→ Q(x)), which method should you use to attempt to prove it?
We will provide a few rules of thumb here; in Section 1.8 we will discuss proof strategy at greater
length. When you want to prove a statement of the form ∀x(P (x)→ Q(x)), first evaluate
whether a direct proof looks promising. Begin by expanding the definitions in the hypotheses.
Start to reason using these hypotheses, together with axioms and available theorems. If a direct
proof does not seem to go anywhere, try the same thing with a proof by contraposition. Recall
that in a proof by contraposition you assume that the conclusion of the conditional statement is
false and use a direct proof to show this implies that the hypothesis must be false. We illustrate
this strategy in Examples 7 and 8. Before we present our next example, we need a definition.

DEFINITION 2 The real number r is rational if there exist integers p and q with q = 0 such that r = p/q.
A real number that is not rational is called irrational.

EXAMPLE 7 Prove that the sum of two rational numbers is rational. (Note that if we include the implicit
quantifiers here, the theorem we want to prove is “For every real number r and every real
number s, if r and s are rational numbers, then r + s is rational.)

Solution:We first attempt a direct proof.To begin, suppose that r and s are rational numbers. From
the definition of a rational number, it follows that there are integers p and q, with q = 0, such
that r = p/q, and integers t and u, with u = 0, such that s = t/u. Can we use this information
to show that r + s is rational? The obvious next step is to add r = p/q and s = t/u, to obtain

r + s = p

q
+ t

u
= pu+ qt

qu
.

Because q = 0 and u = 0, it follows that qu = 0. Consequently, we have expressed r + s as
the ratio of two integers, pu+ qt and qu, where qu = 0. This means that r + s is rational. We
have proved that the sum of two rational numbers is rational; our attempt to find a direct proof
succeeded. ▲

EXAMPLE 8 Prove that if n is an integer and n2 is odd, then n is odd.

Solution: We first attempt a direct proof. Suppose that n is an integer and n2 is odd. Then, there
exists an integer k such that n2 = 2k + 1. Can we use this information to show that n is odd?
There seems to be no obvious approach to show that n is odd because solving for n produces
the equation n = ±√2k + 1, which is not terribly useful.

Because this attempt to use a direct proof did not bear fruit, we next attempt a proof by
contraposition. We take as our hypothesis the statement that n is not odd. Because every integer
is odd or even, this means that n is even. This implies that there exists an integer k such that
n = 2k. To prove the theorem, we need to show that this hypothesis implies the conclusion
that n2 is not odd, that is, that n2 is even. Can we use the equation n = 2k to achieve this? By

86 1 / The Foundations: Logic and Proofs

squaring both sides of this equation, we obtain n2 = 4k2 = 2(2k2), which implies that n2 is
also even because n2 = 2t , where t = 2k2. We have proved that if n is an integer and n2 is odd,
then n is odd. Our attempt to find a proof by contraposition succeeded. ▲

Proofs by Contradiction

Suppose we want to prove that a statement p is true. Furthermore, suppose that we can find
a contradiction q such that ¬p → q is true. Because q is false, but ¬p → q is true, we can
conclude that ¬p is false, which means that p is true. How can we find a contradiction q that
might help us prove that p is true in this way?

Because the statement r ∧ ¬r is a contradiction whenever r is a proposition, we can prove
that p is true if we can show that ¬p → (r ∧ ¬r) is true for some proposition r . Proofs of this
type are calledproofs by contradiction. Because a proof by contradiction does not prove a result
directly, it is another type of indirect proof. We provide three examples of proof by contradiction.
The first is an example of an application of the pigeonhole principle, a combinatorial technique
that we will cover in depth in Section 6.2.

EXAMPLE 9 Show that at least four of any 22 days must fall on the same day of the week.

Solution: Let p be the proposition “At least four of 22 chosen days fall on the same day of the
week.” Suppose that ¬p is true. This means that at most three of the 22 days fall on the same
day of the week. Because there are seven days of the week, this implies that at most 21 days
could have been chosen, as for each of the days of the week, at most three of the chosen days
could fall on that day. This contradicts the premise that we have 22 days under consideration.
That is, if r is the statement that 22 days are chosen, then we have shown that ¬p → (r ∧ ¬r).
Consequently, we know that p is true. We have proved that at least four of 22 chosen days fall
on the same day of the week. ▲

EXAMPLE 10 Prove that
√

2 is irrational by giving a proof by contradiction.

Solution: Letp be the proposition “
√

2 is irrational.” To start a proof by contradiction, we suppose

that ¬p is true. Note that ¬p is the statement “It is not the case that
√

2 is irrational,” which
says that

√
2 is rational. We will show that assuming that ¬p is true leads to a contradiction.

If
√

2 is rational, there exist integers a and b with
√

2 = a/b, where b = 0 and a and b

have no common factors (so that the fraction a/b is in lowest terms.) (Here, we are using the

fact that every rational number can be written in lowest terms.) Because
√

2 = a/b, when both
sides of this equation are squared, it follows that

2 = a2

b2
.

Hence,

2b2 = a2.

By the definition of an even integer it follows that a2 is even. We next use the fact that if a2 is
even, a must also be even, which follows by Exercise 16. Furthermore, because a is even, by
the definition of an even integer, a = 2c for some integer c. Thus,

2b2 = 4c2.

Dividing both sides of this equation by 2 gives

b2 = 2c2.

By the definition of even, this means that b2 is even. Again using the fact that if the square of an
integer is even, then the integer itself must be even, we conclude that b must be even as well.

1.7 Introduction to Proofs 87

We have now shown that the assumption of ¬p leads to the equation
√

2 = a/b, where a

and b have no common factors, but both a and b are even, that is, 2 divides both a and b. Note
that the statement that

√
2 = a/b, where a and b have no common factors, means, in particular,

that 2 does not divide both a and b. Because our assumption of ¬p leads to the contradiction
that 2 divides both a and b and 2 does not divide both a and b, ¬p must be false. That is, the
statement p, “

√
2 is irrational,” is true. We have proved that

√
2 is irrational. ▲

Proof by contradiction can be used to prove conditional statements. In such proofs, we first
assume the negation of the conclusion. We then use the premises of the theorem and the negation
of the conclusion to arrive at a contradiction. (The reason that such proofs are valid rests on the
logical equivalence of p → q and (p ∧ ¬q)→ F. To see that these statements are equivalent,
simply note that each is false in exactly one case, namely when p is true and q is false.)

Note that we can rewrite a proof by contraposition of a conditional statement as a proof
by contradiction. In a proof of p → q by contraposition, we assume that ¬q is true. We then
show that ¬p must also be true. To rewrite a proof by contraposition of p → q as a proof by
contradiction, we suppose that both p and ¬q are true. Then, we use the steps from the proof
of ¬q → ¬p to show that ¬p is true. This leads to the contradiction p ∧ ¬p, completing the
proof. Example 11 illustrates how a proof by contraposition of a conditional statement can be
rewritten as a proof by contradiction.

EXAMPLE 11 Give a proof by contradiction of the theorem “If 3n+ 2 is odd, then n is odd.”

Solution: Let p be “3n+ 2 is odd” and q be “n is odd.” To construct a proof by contradiction,
assume that both p and ¬q are true. That is, assume that 3n+ 2 is odd and that n is not odd.
Because n is not odd, we know that it is even. Because n is even, there is an integer k such
that n = 2k. This implies that 3n+ 2 = 3(2k)+ 2 = 6k + 2 = 2(3k + 1). Because 3n+ 2 is
2t , where t = 3k + 1, 3n+ 2 is even. Note that the statement “3n+ 2 is even” is equivalent to
the statement ¬p, because an integer is even if and only if it is not odd. Because both p and
¬p are true, we have a contradiction. This completes the proof by contradiction, proving that if
3n+ 2 is odd, then n is odd. ▲

Note that we can also prove by contradiction that p → q is true by assuming that p and
¬q are true, and showing that q must be also be true. This implies that ¬q and q are both
true, a contradiction. This observation tells us that we can turn a direct proof into a proof by
contradiction.

PROOFS OF EQUIVALENCE To prove a theorem that is a biconditional statement, that is,
a statement of the form p ↔ q, we show that p → q and q → p are both true. The validity of
this approach is based on the tautology

(p ↔ q)↔ (p → q) ∧ (q → p).

EXAMPLE 12 Prove the theorem “If n is an integer, then n is odd if and only if n2 is odd.”

Solution: This theorem has the form “p if and only if q,” where p is “n is odd” and q is “n2

is odd.” (As usual, we do not explicitly deal with the universal quantification.) To prove this
theorem, we need to show that p → q and q → p are true.

We have already shown (in Example 1) that p → q is true and (in Example 8) that q → p

is true.
Because we have shown that both p → q and q → p are true, we have shown that the

theorem is true. ▲

88 1 / The Foundations: Logic and Proofs

Sometimes a theorem states that several propositions are equivalent. Such a theorem states
that propositions p1, p2, p3, . . . , pn are equivalent. This can be written as

p1 ↔ p2 ↔ · · · ↔ pn,

which states that all n propositions have the same truth values, and consequently, that for all i
and j with 1 ≤ i ≤ n and 1 ≤ j ≤ n, pi and pj are equivalent. One way to prove these mutually
equivalent is to use the tautology

p1 ↔ p2 ↔ · · · ↔ pn ↔ (p1 → p2) ∧ (p2 → p3) ∧ · · · ∧ (pn → p1).

This shows that if the n conditional statements p1 → p2, p2 → p3, . . . , pn → p1 can be shown
to be true, then the propositions p1, p2, . . . , pn are all equivalent.

This is much more efficient than proving that pi → pj for all i = j with 1 ≤ i ≤ n and

1 ≤ j ≤ n. (Note that there are n2 − n such conditional statements.)
When we prove that a group of statements are equivalent, we can establish any chain of

conditional statements we choose as long as it is possible to work through the chain to go from
any one of these statements to any other statement. For example, we can show that p1, p2, and
p3 are equivalent by showing that p1 → p3, p3 → p2, and p2 → p1.

EXAMPLE 13 Show that these statements about the integer n are equivalent:

p1: n is even.

p2: n− 1 is odd.

p3: n2 is even.

Solution: We will show that these three statements are equivalent by showing that the conditional
statements p1 → p2, p2 → p3, and p3 → p1 are true.

We use a direct proof to show that p1 → p2. Suppose that n is even. Then n = 2k for some
integer k. Consequently, n− 1 = 2k − 1 = 2(k − 1)+ 1. This means that n− 1 is odd because
it is of the form 2m+ 1, where m is the integer k − 1.

We also use a direct proof to show that p2 → p3. Now suppose n− 1 is odd. Then n−
1 = 2k + 1 for some integer k. Hence, n = 2k + 2 so that n2 = (2k + 2)2 = 4k2 + 8k + 4 =
2(2k2 + 4k + 2). This means that n2 is twice the integer 2k2 + 4k + 2, and hence is even.

To prove p3 → p1, we use a proof by contraposition. That is, we prove that if n is not even,
then n2 is not even. This is the same as proving that if n is odd, then n2 is odd, which we have
already done in Example 1. This completes the proof. ▲
COUNTEREXAMPLES In Section 1.4 we stated that to show that a statement of the form
∀xP (x) is false, we need only find a counterexample, that is, an example x for which P(x)

is false. When presented with a statement of the form ∀xP (x), which we believe to be false or
which has resisted all proof attempts, we look for a counterexample. We illustrate the use of
counterexamples in Example 14.

EXAMPLE 14 Show that the statement “Every positive integer is the sum of the squares of two integers” is
false.

Solution: To show that this statement is false, we look for a counterexample, which is a particular
integer that is not the sum of the squares of two integers. It does not take long to find a counterex-
ample, because 3 cannot be written as the sum of the squares of two integers. To show this is the
case, note that the only perfect squares not exceeding 3 are 02 = 0 and 12 = 1. Furthermore,
there is no way to get 3 as the sum of two terms each of which is 0 or 1. Consequently, we have
shown that “Every positive integer is the sum of the squares of two integers” is false. ▲

1.7 Introduction to Proofs 89

Mistakes in Proofs

There are many common errors made in constructing mathematical proofs. We will briefly
describe some of these here.Among the most common errors are mistakes in arithmetic and basic
algebra. Even professional mathematicians make such errors, especially when working with
complicated formulae. Whenever you use such computations you should check them as carefully
as possible. (You should also review any troublesome aspects of basic algebra, especially before
you study Section 5.1.)

Each step of a mathematical proof needs to be correct and the conclusion needs to follow
logically from the steps that precede it. Many mistakes result from the introduction of steps that
do not logically follow from those that precede it. This is illustrated in Examples 15–17.

EXAMPLE 15 What is wrong with this famous supposed “proof” that 1 = 2?

“Proof:" We use these steps, where a and b are two equal positive integers.

Step Reason

1. a = b Given

2. a2 = ab Multiply both sides of (1) by a

3. a2 − b2 = ab − b2 Subtract b2 from both sides of (2)
4. (a − b)(a + b) = b(a − b) Factor both sides of (3)
5. a + b = b Divide both sides of (4) by a − b

6. 2b = b Replace a by b in (5) because a = b

and simplify
7. 2 = 1 Divide both sides of (6) by b

Solution: Every step is valid except for one, step 5 where we divided both sides by a − b. The
error is that a − b equals zero; division of both sides of an equation by the same quantity is
valid as long as this quantity is not zero. ▲

EXAMPLE 16 What is wrong with this “proof?”

“Theorem:” If n2 is positive, then n is positive.

“Proof:" Suppose that n2 is positive. Because the conditional statement “If n is positive, then
n2 is positive” is true, we can conclude that n is positive.

Solution: Let P(n) be “n is positive” and Q(n) be “n2 is positive.” Then our hypothesis is Q(n).
The statement “If n is positive, then n2 is positive” is the statement ∀n(P (n)→ Q(n)). From
the hypothesis Q(n) and the statement ∀n(P (n)→ Q(n)) we cannot conclude P(n), because
we are not using a valid rule of inference. Instead, this is an example of the fallacy of affirming
the conclusion. A counterexample is supplied by n = −1 for which n2 = 1 is positive, but n is
negative. ▲

EXAMPLE 17 What is wrong with this “proof?”

“Theorem:” If n is not positive, then n2 is not positive. (This is the contrapositive of the
“theorem” in Example 16.)

90 1 / The Foundations: Logic and Proofs

“Proof:" Suppose that n is not positive. Because the conditional statement “If n is positive, then
n2 is positive” is true, we can conclude that n2 is not positive.

Solution: Let P(n) and Q(n) be as in the solution of Example 16. Then our hypothesis is¬P(n)

and the statement “If n is positive, then n2 is positive” is the statement ∀n(P (n)→ Q(n)).
From the hypothesis ¬P(n) and the statement ∀n(P (n)→ Q(n)) we cannot conclude ¬Q(n),
because we are not using a valid rule of inference. Instead, this is an example of the fallacy of
denying the hypothesis. A counterexample is supplied by n = −1, as in Example 16. ▲

Finally, we briefly discuss a particularly nasty type of error. Many incorrect arguments are
based on a fallacy called begging the question. This fallacy occurs when one or more steps of
a proof are based on the truth of the statement being proved. In other words, this fallacy arises
when a statement is proved using itself, or a statement equivalent to it. That is why this fallacy
is also called circular reasoning.

EXAMPLE 18 Is the following argument correct? It supposedly shows that n is an even integer whenever n2 is
an even integer.

Suppose that n2 is even. Then n2 = 2k for some integer k. Let n = 2l for some integer l.
This shows that n is even.

Solution: This argument is incorrect. The statement “let n = 2l for some integer l” occurs in
the proof. No argument has been given to show that n can be written as 2l for some integer l.
This is circular reasoning because this statement is equivalent to the statement being proved,
namely, “n is even.” Of course, the result itself is correct; only the method of proof is wrong. ▲

Making mistakes in proofs is part of the learning process. When you make a mistake that
someone else finds, you should carefully analyze where you went wrong and make sure that
you do not make the same mistake again. Even professional mathematicians make mistakes in
proofs. More than a few incorrect proofs of important results have fooled people for many years
before subtle errors in them were found.

Just a Beginning

We have now developed a basic arsenal of proof methods. In the next section we will introduce
other important proof methods. We will also introduce several important proof techniques in
Chapter 5, including mathematical induction, which can be used to prove results that hold for
all positive integers. In Chapter 6 we will introduce the notion of combinatorial proofs.

In this section we introduced several methods for proving theorems of the form ∀x(P (x)→
Q(x)), including direct proofs and proofs by contraposition. There are many theorems of this
type whose proofs are easy to construct by directly working through the hypotheses and def-
initions of the terms of the theorem. However, it is often difficult to prove a theorem without
resorting to a clever use of a proof by contraposition or a proof by contradiction, or some
other proof technique. In Section 1.8 we will address proof strategy. We will describe various
approaches that can be used to find proofs when straightforward approaches do not work. Con-
structing proofs is an art that can be learned only through experience, including writing proofs,
having your proofs critiqued, and reading and analyzing other proofs.

1.7 Introduction to Proofs 91

Exercises

1. Use a direct proof to show that the sum of two odd integers
is even.

2. Use a direct proof to show that the sum of two even inte-
gers is even.

3. Show that the square of an even number is an even number
using a direct proof.

4. Show that the additive inverse, or negative, of an even
number is an even number using a direct proof.

5. Prove that if m+ n and n+ p are even integers, where
m, n, and p are integers, then m+ p is even. What kind
of proof did you use?

6. Use a direct proof to show that the product of two odd
numbers is odd.

7. Use a direct proof to show that every odd integer is the
difference of two squares.

8. Prove that if n is a perfect square, then n+ 2 is not a
perfect square.

9. Use a proof by contradiction to prove that the sum of an
irrational number and a rational number is irrational.

10. Use a direct proof to show that the product of two rational
numbers is rational.

11. Prove or disprove that the product of two irrational num-
bers is irrational.

12. Prove or disprove that the product of a nonzero rational
number and an irrational number is irrational.

13. Prove that if x is irrational, then 1/x is irrational.

14. Prove that if x is rational and x = 0, then 1/x is rational.

15. Use a proof by contraposition to show that if x + y ≥ 2,
where x and y are real numbers, then x ≥ 1 or y ≥ 1.

16. Prove that if m and n are integers and mn is even, then m

is even or n is even.

17. Show that if n is an integer and n3 + 5 is odd, then n is
even using

a) a proof by contraposition.

b) a proof by contradiction.

18. Prove that if n is an integer and 3n+ 2 is even, then n is
even using

a) a proof by contraposition.

b) a proof by contradiction.

19. Prove the proposition P(0), where P(n) is the proposi-
tion “If n is a positive integer greater than 1, then n2 > n.”
What kind of proof did you use?

20. Prove the proposition P(1), where P(n) is the proposi-
tion “If n is a positive integer, then n2 ≥ n.” What kind
of proof did you use?

21. Let P(n) be the proposition “If a and b are positive real
numbers, then (a + b)n ≥ an + bn.” Prove that P(1) is
true. What kind of proof did you use?

22. Show that if you pick three socks from a drawer contain-
ing just blue socks and black socks, you must get either
a pair of blue socks or a pair of black socks.

23. Show that at least ten of any 64 days chosen must fall on
the same day of the week.

24. Show that at least three of any 25 days chosen must fall
in the same month of the year.

25. Use a proof by contradiction to show that there is no ratio-
nal number r for which r3 + r + 1 = 0. [Hint: Assume
that r = a/b is a root, where a and b are integers and a/b

is in lowest terms. Obtain an equation involving integers
by multiplying by b3. Then look at whether a and b are
each odd or even.]

26. Prove that if n is a positive integer, then n is even if and
only if 7n+ 4 is even.

27. Prove that if n is a positive integer, then n is odd if and
only if 5n+ 6 is odd.

28. Prove that m2 = n2 if and only if m = n or m = −n.

29. Prove or disprove that if m and n are integers such that
mn = 1, then either m = 1 and n = 1, or else m = −1
and n = −1.

30. Show that these three statements are equivalent, where a

and b are real numbers: (i) a is less than b, (ii) the average
of a and b is greater than a, and (iii) the average of a and
b is less than b.

31. Show that these statements about the integer x are equiv-
alent: (i) 3x + 2 is even, (ii) x + 5 is odd, (iii) x2 is even.

32. Show that these statements about the real number x are
equivalent: (i) x is rational, (ii) x/2 is rational, (iii) 3x − 1
is rational.

33. Show that these statements about the real number x are
equivalent: (i) x is irrational, (ii) 3x + 2 is irrational,
(iii) x/2 is irrational.

34. Is this reasoning for finding the solutions of the equa-

tion
√

2x2 − 1 = x correct? (1)
√

2x2 − 1 = x is given;
(2) 2x2 − 1 = x2, obtained by squaring both sides of (1);
(3) x2 − 1 = 0, obtained by subtracting x2 from both
sides of (2); (4) (x − 1)(x + 1) = 0, obtained by factor-
ing the left-hand side of x2 − 1; (5) x = 1 or x = −1,
which follows because ab = 0 implies that a = 0 or
b = 0.

35. Are these steps for finding the solutions of
√
x + 3 =

3− x correct? (1)
√
x + 3 = 3− x is given; (2) x + 3 =

x2 − 6x + 9, obtained by squaring both sides of (1); (3)
0 = x2 − 7x + 6, obtained by subtracting x + 3 from
both sides of (2); (4) 0 = (x − 1)(x − 6), obtained by
factoring the right-hand side of (3); (5) x = 1 or x = 6,
which follows from (4) because ab = 0 implies that
a = 0 or b = 0.

36. Show that the propositions p1, p2, p3, and p4 can be
shown to be equivalent by showing that p1 ↔ p4, p2 ↔
p3, and p1 ↔ p3.

37. Show that the propositions p1, p2, p3, p4, and p5 can
be shown to be equivalent by proving that the conditional
statementsp1 → p4,p3 → p1,p4 → p2,p2 → p5, and
p5 → p3 are true.

92 1 / The Foundations: Logic and Proofs

38. Find a counterexample to the statement that every posi-
tive integer can be written as the sum of the squares of
three integers.

39. Prove that at least one of the real numbers a1, a2, . . . , an
is greater than or equal to the average of these numbers.
What kind of proof did you use?

40. Use Exercise 39 to show that if the first 10 positive inte-
gers are placed around a circle, in any order, there exist

three integers in consecutive locations around the circle
that have a sum greater than or equal to 17.

41. Prove that if n is an integer, these four statements are
equivalent: (i) n is even, (ii) n+ 1 is odd, (iii) 3n+ 1 is
odd, (iv) 3n is even.

42. Prove that these four statements about the integer n are
equivalent: (i) n2 is odd, (ii) 1− n is even, (iii) n3 is odd,
(iv) n2 + 1 is even.

1.8 Proof Methods and Strategy

Introduction

In Section 1.7 we introduced many methods of proof and illustrated how each method can be
used. In this section we continue this effort.We will introduce several other commonly used proof
methods, including the method of proving a theorem by considering different cases separately.
We will also discuss proofs where we prove the existence of objects with desired properties.

In Section 1.7 we briefly discussed the strategy behind constructing proofs. This strategy
includes selecting a proof method and then successfully constructing an argument step by step,
based on this method. In this section, after we have developed a versatile arsenal of proof
methods, we will study some aspects of the art and science of proofs. We will provide advice
on how to find a proof of a theorem. We will describe some tricks of the trade, including how
proofs can be found by working backward and by adapting existing proofs.

When mathematicians work, they formulate conjectures and attempt to prove or disprove
them. We will briefly describe this process here by proving results about tiling checkerboards
with dominoes and other types of pieces. Looking at tilings of this kind, we will be able to
quickly formulate conjectures and prove theorems without first developing a theory.

We will conclude the section by discussing the role of open questions. In particular, we
will discuss some interesting problems either that have been solved after remaining open for
hundreds of years or that still remain open.

Exhaustive Proof and Proof by Cases

Sometimes we cannot prove a theorem using a single argument that holds for all possible cases.
We now introduce a method that can be used to prove a theorem, by considering different cases
separately. This method is based on a rule of inference that we will now introduce. To prove a
conditional statement of the form

(p1 ∨ p2 ∨ · · · ∨ pn)→ q

the tautology

[(p1 ∨ p2 ∨ · · · ∨ pn)→ q] ↔ [(p1 → q) ∧ (p2 → q) ∧ · · · ∧ (pn → q)]

can be used as a rule of inference. This shows that the original conditional statement with
a hypothesis made up of a disjunction of the propositions p1, p2, . . . , pn can be proved by
proving each of the n conditional statements pi → q, i = 1, 2, . . . , n, individually. Such an
argument is called a proof by cases. Sometimes to prove that a conditional statement p → q is
true, it is convenient to use a disjunction p1 ∨ p2 ∨ · · · ∨ pn instead of p as the hypothesis of
the conditional statement, where p and p1 ∨ p2 ∨ · · · ∨ pn are equivalent.

1.8 Proof Methods and Strategy 93

EXHAUSTIVEPROOF Some theorems can be proved by examining a relatively small number
of examples. Such proofs are called exhaustive proofs, or proofs by exhaustion because these
proofs proceed by exhausting all possibilities. An exhaustive proof is a special type of proof by
cases where each case involves checking a single example. We now provide some illustrations
of exhaustive proofs.

EXAMPLE 1 Prove that (n+ 1)3 ≥ 3n if n is a positive integer with n ≤ 4.

Solution: We use a proof by exhaustion. We only need verify the inequality (n+ 1)3 ≥ 3n

when n = 1, 2, 3, and 4. For n = 1, we have (n+ 1)3 = 23 = 8 and 3n = 31 = 3; for n = 2,
we have (n+ 1)3 = 33 = 27 and 3n = 32 = 9; for n = 3, we have (n+ 1)3 = 43 = 64 and
3n = 33 = 27; and for n = 4, we have (n+ 1)3 = 53 = 125 and 3n = 34 = 81. In each of
these four cases, we see that (n+ 1)3 ≥ 3n. We have used the method of exhaustion to prove
that (n+ 1)3 ≥ 3n if n is a positive integer with n ≤ 4. ▲

EXAMPLE 2 Prove that the only consecutive positive integers not exceeding 100 that are perfect powers are
8 and 9. (An integer is a perfect power if it equals na , where a is an integer greater than 1.)

Solution: We use a proof by exhaustion. In particular, we can prove this fact by examining
positive integers n not exceeding 100, first checking whether n is a perfect power, and if it is,
checking whether n+ 1 is also a perfect power. A quicker way to do this is simply to look at all
perfect powers not exceeding 100 and checking whether the next largest integer is also a perfect
power. The squares of positive integers not exceeding 100 are 1, 4, 9, 16, 25, 36, 49, 64, 81, and
100. The cubes of positive integers not exceeding 100 are 1, 8, 27, and 64. The fourth powers
of positive integers not exceeding 100 are 1, 16, and 81. The fifth powers of positive integers
not exceeding 100 are 1 and 32. The sixth powers of positive integers not exceeding 100 are 1
and 64. There are no powers of positive integers higher than the sixth power not exceeding 100,
other than 1. Looking at this list of perfect powers not exceeding 100, we see that n = 8 is the
only perfect power n for which n+ 1 is also a perfect power. That is, 23 = 8 and 32 = 9 are the
only two consecutive perfect powers not exceeding 100. ▲

Proofs by exhaustion can

tire out people and

computers when the

number of cases

challenges the available

processing power!

People can carry out exhaustive proofs when it is necessary to check only a relatively small
number of instances of a statement. Computers do not complain when they are asked to check
a much larger number of instances of a statement, but they still have limitations. Note that not
even a computer can check all instances when it is impossible to list all instances to check.

PROOF BY CASES A proof by cases must cover all possible cases that arise in a theorem.
We illustrate proof by cases with a couple of examples. In each example, you should check that
all possible cases are covered.

EXAMPLE 3 Prove that if n is an integer, then n2 ≥ n.

Solution: We can prove that n2 ≥ n for every integer by considering three cases, when n = 0,
when n ≥ 1, and when n ≤ −1. We split the proof into three cases because it is straightforward
to prove the result by considering zero, positive integers, and negative integers separately.

Case (i): When n = 0, because 02 = 0, we see that 02 ≥ 0. It follows that n2 ≥ n is true in
this case.

Case (ii): When n ≥ 1, when we multiply both sides of the inequality n ≥ 1 by the positive
integer n, we obtain n · n ≥ n · 1. This implies that n2 ≥ n for n ≥ 1.

Case (iii): In this case n ≤ −1. However, n2 ≥ 0. It follows that n2 ≥ n.

Because the inequality n2 ≥ n holds in all three cases, we can conclude that if n is an integer,
then n2 ≥ n. ▲

94 1 / The Foundations: Logic and Proofs

EXAMPLE 4 Use a proof by cases to show that |xy| = |x||y|, where x and y are real numbers. (Recall that
|a|, the absolute value of a, equals a when a ≥ 0 and equals −a when a ≤ 0.)

Solution: In our proof of this theorem, we remove absolute values using the fact that |a| = a

when a ≥ 0 and |a| = −a when a < 0. Because both |x| and |y| occur in our formula, we will
need four cases: (i) x and y both nonnegative, (ii) x nonnegative and y is negative, (iii) x negative
and y nonnegative, and (iv) x negative and y negative. We denote by p1, p2, p3, and p4, the
proposition stating the assumption for each of these four cases, respectively.

(Note that we can remove the absolute value signs by making the appropriate choice of
signs within each case.)

Case (i): We see that p1 → q because xy ≥ 0 when x ≥ 0 and y ≥ 0, so that |xy| = xy =
|x||y|.
Case (ii): To see that p2 → q, note that if x ≥ 0 and y < 0, then xy ≤ 0, so that |xy| =
−xy = x(−y) = |x||y|. (Here, because y < 0, we have |y| = −y.)

Case (iii): To see that p3 → q, we follow the same reasoning as the previous case with the
roles of x and y reversed.

Case (iv): To see that p4 → q, note that when x < 0 and y < 0, it follows that xy > 0.
Hence, |xy| = xy = (−x)(−y) = |x||y|.

Because |xy| = |x||y| holds in each of the four cases and these cases exhaust all possibilities,
we can conclude that |xy| = |x||y|, whenever x and y are real numbers. ▲

LEVERAGING PROOF BY CASES The examples we have presented illustrating proof by
cases provide some insight into when to use this method of proof. In particular, when it is not
possible to consider all cases of a proof at the same time, a proof by cases should be considered.
When should you use such a proof ? Generally, look for a proof by cases when there is no
obvious way to begin a proof, but when extra information in each case helps move the proof
forward. Example 5 illustrates how the method of proof by cases can be used effectively.

EXAMPLE 5 Formulate a conjecture about the final decimal digit of the square of an integer and prove your
result.

Solution: The smallest perfect squares are 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169,
196, 225, and so on. We notice that the digits that occur as the final digit of a square are
0, 1, 4, 5, 6, and 9, with 2, 3, 7, and 8 never appearing as the final digit of a square. We conjecture
this theorem: The final decimal digit of a perfect square is 0, 1, 4, 5, 6 or 9. How can we prove
this theorem?

We first note that we can express an integer n as 10a + b, where a and b are pos-
itive integers and b is 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. Here a is the integer obtained by
subtracting the final decimal digit of n from n and dividing by 10. Next, note that
(10a + b)2 = 100a2 + 20ab + b2 = 10(10a2 + 2b)+ b2, so that the final decimal digit of n2

is the same as the final decimal digit of b2. Furthermore, note that the final decimal digit of b2

is the same as the final decimal digit of (10− b)2 = 100− 20b + b2. Consequently, we can
reduce our proof to the consideration of six cases.

Case (i): The final digit of n is 1 or 9. Then the final decimal digit of n2 is the final decimal
digit of 12 = 1 or 92 = 81, namely 1.

Case (ii): The final digit of n is 2 or 8. Then the final decimal digit of n2 is the final decimal
digit of 22 = 4 or 82 = 64, namely 4.

Case (iii): The final digit of n is 3 or 7. Then the final decimal digit of n2 is the final decimal
digit of 32 = 9 or 72 = 49, namely 9.

Case (iv): The final digit of n is 4 or 6. Then the final decimal digit of n2 is the final decimal
digit of 42 = 16 or 62 = 36, namely 6.

Case (v): The final decimal digit of n is 5. Then the final decimal digit of n2 is the final
decimal digit of 52 = 25, namely 5.

1.8 Proof Methods and Strategy 95

Case (vi): The final decimal digit of n is 0. Then the final decimal digit of n2 is the final
decimal digit of 02 = 0, namely 0.

Because we have considered all six cases, we can conclude that the final decimal digit of n2,
where n is an integer is either 0, 1, 2, 4, 5, 6, or 9. ▲

Sometimes we can eliminate all but a few examples in a proof by cases, as Example 6
illustrates.

EXAMPLE 6 Show that there are no solutions in integers x and y of x2 + 3y2 = 8.

Solution: We can quickly reduce a proof to checking just a few simple cases because x2 > 8
when |x| ≥ 3 and 3y2 > 8 when |y| ≥ 2. This leaves the cases when x equals −2,−1, 0, 1,
or 2 and y equals −1, 0, or 1. We can finish using an exhaustive proof. To dispense with the
remaining cases, we note that possible values for x2 are 0, 1, and 4, and possible values for 3y2

are 0 and 3, and the largest sum of possible values for x2 and 3y2 is 7. Consequently, it is
impossible for x2 + 3y2 = 8 to hold when x and y are integers. ▲

WITHOUT LOSS OF GENERALITY In the proof in Example 4, we dismissed case (iii),
where x < 0 and y ≥ 0, because it is the same as case (ii), where x ≥ 0 and y < 0, with the
roles of x and y reversed. To shorten the proof, we could have proved cases (ii) and (iii) together
by assuming,without loss of generality, that x ≥ 0 and y < 0. Implicit in this statement is that
we can complete the case with x < 0 and y ≥ 0 using the same argument as we used for the
case with x ≥ 0 and y < 0, but with the obvious changes.

In general, when the phrase “without loss of generality” is used in a proof (often abbreviated
as WLOG), we assert that by proving one case of a theorem, no additional argument is required
to prove other specified cases. That is, other cases follow by making straightforward changes
to the argument, or by filling in some straightforward initial step. Proofs by cases can often be

In a proof by cases be

sure not to omit any cases

and check that you have

proved all cases correctly!

made much more efficient when the notion of without loss of generality is employed. Of course,
incorrect use of this principle can lead to unfortunate errors. Sometimes assumptions are made
that lead to a loss in generality. Such assumptions can be made that do not take into account
that one case may be substantially different from others. This can lead to an incomplete, and
possibly unsalvageable, proof. In fact, many incorrect proofs of famous theorems turned out
to rely on arguments that used the idea of “without loss of generality” to establish cases that
could not be quickly proved from simpler cases.

We now illustrate a proof where without loss of generality is used effectively together with
other proof techniques.

EXAMPLE 7 Show that if x and y are integers and both xy and x + y are even, then both x and y are even.

Solution: We will use proof by contraposition, the notion of without loss of generality, and proof
by cases. First, suppose that x and y are not both even. That is, assume that x is odd or that y is
odd (or both). Without loss of generality, we assume that x is odd, so that x = 2m+ 1 for some
integer k.

To complete the proof, we need to show that xy is odd or x + y is odd. Consider
two cases: (i) y even, and (ii) y odd. In (i), y = 2n for some integer n, so that x + y =
(2m+ 1)+ 2n = 2(m+ n)+ 1 is odd. In (ii), y = 2n+ 1 for some integer n, so that xy =
(2m+ 1)(2n+ 1) = 4mn+ 2m+ 2n+ 1 = 2(2mn+m+ n)+ 1 is odd. This completes the
proof by contraposition. (Note that our use of without loss of generality within the proof is
justified because the proof when y is odd can be obtained by simply interchanging the roles of
x and y in the proof we have given.) ▲

COMMONERRORSWITHEXHAUSTIVEPROOFANDPROOFBYCASES A common
error of reasoning is to draw incorrect conclusions from examples. No matter how many separate
examples are considered, a theorem is not proved by considering examples unless every possible

96 1 / The Foundations: Logic and Proofs

case is covered. The problem of proving a theorem is analogous to showing that a computer
program always produces the output desired. No matter how many input values are tested, unless
all input values are tested, we cannot conclude that the program always produces the correct
output.

EXAMPLE 8 Is it true that every positive integer is the sum of 18 fourth powers of integers?

Solution: To determine whether a positive integer n can be written as the sum of 18 fourth powers
of integers, we might begin by examining whether n is the sum of 18 fourth powers of integers
for the smallest positive integers. Because the fourth powers of integers are 0, 1, 16, 81, . . . ,
if we can select 18 terms from these numbers that add up to n, then n is the sum of 18 fourth
powers. We can show that all positive integers up to 78 can be written as the sum of 18 fourth
powers. (The details are left to the reader.) However, if we decided this was enough checking,
we would come to the wrong conclusion. It is not true that every positive integer is the sum of
18 fourth powers because 79 is not the sum of 18 fourth powers (as the reader can verify). ▲

Another common error involves making unwarranted assumptions that lead to incorrect
proofs by cases where not all cases are considered. This is illustrated in Example 9.

EXAMPLE 9 What is wrong with this “proof?”

“Theorem:” If x is a real number, then x2 is a positive real number.

“Proof:" Let p1 be “x is positive,” let p2 be “x is negative,” and let q be “x2 is positive.” To
show that p1 → q is true, note that when x is positive, x2 is positive because it is the product
of two positive numbers, x and x. To show that p2 → q, note that when x is negative, x2 is
positive because it is the product of two negative numbers, x and x. This completes the proof.

Solution: The problem with this “proof” is that we missed the case of x = 0. When x = 0,
x2 = 0 is not positive, so the supposed theorem is false. If p is “x is a real number,” then
we can prove results where p is the hypothesis with three cases, p1, p2, and p3, where
p1 is “x is positive,” p2 is “x is negative,” and p3 is “x = 0” because of the equivalence
p ↔ p1 ∨ p2 ∨ p3. ▲

Existence Proofs

Many theorems are assertions that objects of a particular type exist. A theorem of this type is a
proposition of the form ∃xP (x), where P is a predicate. A proof of a proposition of the form
∃xP (x) is called an existence proof. There are several ways to prove a theorem of this type.
Sometimes an existence proof of ∃xP (x) can be given by finding an element a, called awitness,
such that P(a) is true. This type of existence proof is called constructive. It is also possible
to give an existence proof that is nonconstructive; that is, we do not find an element a such
that P(a) is true, but rather prove that ∃xP (x) is true in some other way. One common method
of giving a nonconstructive existence proof is to use proof by contradiction and show that the
negation of the existential quantification implies a contradiction. The concept of a constructive
existence proof is illustrated by Example 10 and the concept of a nonconstructive existence
proof is illustrated by Example 11.

EXAMPLE 10 A Constructive Existence Proof Show that there is a positive integer that can be written as
the sum of cubes of positive integers in two different ways.

Solution: After considerable computation (such as a computer search) we find that

1729 = 103 + 93 = 123 + 13.

1.8 Proof Methods and Strategy 97

Because we have displayed a positive integer that can be written as the sum of cubes in two
different ways, we are done.

There is an interesting story pertaining to this example. The English mathematician G. H.
Hardy, when visiting the ailing Indian prodigy Ramanujan in the hospital, remarked that 1729,
the number of the cab he took, was rather dull. Ramanujan replied “No, it is a very interesting
number; it is the smallest number expressible as the sum of cubes in two different ways.” ▲

EXAMPLE 11 A Nonconstructive Existence Proof Show that there exist irrational numbers x and y such
that xy is rational.

Solution: By Example 10 in Section 1.7 we know that
√

2 is irrational. Consider the number
√

2

√
2
. If it is rational, we have two irrational numbers x and y with xy rational, namely, x =

√
2

and y =
√

2. On the other hand if
√

2

√
2

is irrational, then we can let x =
√

2

√
2

and y =
√

2

so that xy = (
√

2

√
2
)
√

2 =
√

2
(
√

2·
√

2) =
√

2
2 = 2.

This proof is an example of a nonconstructive existence proof because we have not found
irrational numbers x and y such that xy is rational. Rather, we have shown that either the pair

x =
√

2, y =
√

2 or the pair x =
√

2

√
2
, y =

√
2 have the desired property, but we do not know

which of these two pairs works! ▲

GODFREY HAROLD HARDY (1877–1947) Hardy, born in Cranleigh, Surrey, England, was the older of
two children of Isaac Hardy and Sophia Hall Hardy. His father was the geography and drawing master at the
Cranleigh School and also gave singing lessons and played soccer. His mother gave piano lessons and helped
run a boardinghouse for young students. Hardy’s parents were devoted to their children’s education. Hardy
demonstrated his numerical ability at the early age of two when he began writing down numbers into the
millions. He had a private mathematics tutor rather than attending regular classes at the Cranleigh School. He
moved to Winchester College, a private high school, when he was 13 and was awarded a scholarship. He excelled
in his studies and demonstrated a strong interest in mathematics. He entered Trinity College, Cambridge, in
1896 on a scholarship and won several prizes during his time there, graduating in 1899.

Hardy held the position of lecturer in mathematics at Trinity College at Cambridge University from 1906 to 1919, when he was
appointed to the Sullivan chair of geometry at Oxford. He had become unhappy with Cambridge over the dismissal of the famous
philosopher and mathematician Bertrand Russell from Trinity for antiwar activities and did not like a heavy load of administrative
duties. In 1931 he returned to Cambridge as the Sadleirian professor of pure mathematics, where he remained until his retirement
in 1942. He was a pure mathematician and held an elitist view of mathematics, hoping that his research could never be applied.
Ironically, he is perhaps best known as one of the developers of the Hardy–Weinberg law, which predicts patterns of inheritance.
His work in this area appeared as a letter to the journal Science in which he used simple algebraic ideas to demonstrate errors in
an article on genetics. Hardy worked primarily in number theory and function theory, exploring such topics as the Riemann zeta
function, Fourier series, and the distribution of primes. He made many important contributions to many important problems, such
as Waring’s problem about representing positive integers as sums of kth powers and the problem of representing odd integers as
sums of three primes. Hardy is also remembered for his collaborations with John E. Littlewood, a colleague at Cambridge, with
whom he wrote more than 100 papers, and the famous Indian mathematical prodigy Srinivasa Ramanujan. His collaboration with
Littlewood led to the joke that there were only three important English mathematicians at that time, Hardy, Littlewood, and Hardy–
Littlewood, although some people thought that Hardy had invented a fictitious person, Littlewood, because Littlewood was seldom
seen outside Cambridge. Hardy had the wisdom of recognizing Ramanujan’s genius from unconventional but extremely creative
writings Ramanujan sent him, while other mathematicians failed to see the genius. Hardy brought Ramanujan to Cambridge and
collaborated on important joint papers, establishing new results on the number of partitions of an integer. Hardy was interested
in mathematics education, and his book A Course of Pure Mathematics had a profound effect on undergraduate instruction in
mathematics in the first half of the twentieth century. Hardy also wrote A Mathematician’s Apology, in which he gives his answer
to the question of whether it is worthwhile to devote one’s life to the study of mathematics. It presents Hardy’s view of what
mathematics is and what a mathematician does.

Hardy had a strong interest in sports. He was an avid cricket fan and followed scores closely. One peculiar trait he had was that
he did not like his picture taken (only five snapshots are known) and disliked mirrors, covering them with towels immediately upon
entering a hotel room.

98 1 / The Foundations: Logic and Proofs

Nonconstructive existence proofs often are quite subtle, as Example 12 illustrates.

EXAMPLE 12 Chomp is a game played by two players. In this game, cookies are laid out on a rectangular grid.
The cookie in the top left position is poisoned, as shown in Figure 1(a). The two players take
turns making moves; at each move, a player is required to eat a remaining cookie, together with
all cookies to the right and/or below it (see Figure 1(b), for example). The loser is the player
who has no choice but to eat the poisoned cookie. We ask whether one of the two players has a
winning strategy. That is, can one of the players always make moves that are guaranteed to lead
to a win?

Solution: We will give a nonconstructive existence proof of a winning strategy for the first
player. That is, we will show that the first player always has a winning strategy without explicitly
describing the moves this player must follow.

First, note that the game ends and cannot finish in a draw because with each move at least
one cookie is eaten, so after no more than m× n moves the game ends, where the initial grid
is m× n. Now, suppose that the first player begins the game by eating just the cookie in the
bottom right corner. There are two possibilities, this is the first move of a winning strategy for
the first player, or the second player can make a move that is the first move of a winning strategy
for the second player. In this second case, instead of eating just the cookie in the bottom right
corner, the first player could have made the same move that the second player made as the first

SRINIVASA RAMANUJAN (1887–1920) The famous mathematical prodigy Ramanujan was born and raised
in southern India near the city of Madras (now called Chennai). His father was a clerk in a cloth shop. His mother
contributed to the family income by singing at a local temple. Ramanujan studied at the local English language
school, displaying his talent and interest for mathematics. At the age of 13 he mastered a textbook used by
college students. When he was 15, a university student lent him a copy of Synopsis of Pure Mathematics.
Ramanujan decided to work out the over 6000 results in this book, stated without proof or explanation, writing
on sheets later collected to form notebooks. He graduated from high school in 1904, winning a scholarship to the
University of Madras. Enrolling in a fine arts curriculum, he neglected his subjects other than mathematics and
lost his scholarship. He failed to pass examinations at the university four times from 1904 to 1907, doing well

only in mathematics. During this time he filled his notebooks with original writings, sometimes rediscovering already published
work and at other times making new discoveries.

Without a university degree, it was difficult for Ramanujan to find a decent job. To survive, he had to depend on the goodwill of
his friends. He tutored students in mathematics, but his unconventional ways of thinking and failure to stick to the syllabus caused
problems. He was married in 1909 in an arranged marriage to a young woman nine years his junior. Needing to support himself and
his wife, he moved to Madras and sought a job. He showed his notebooks of mathematical writings to his potential employers, but
the books bewildered them. However, a professor at the Presidency College recognized his genius and supported him, and in 1912
he found work as an accounts clerk, earning a small salary.

Ramanujan continued his mathematical work during this time and published his first paper in 1910 in an Indian journal. He
realized that his work was beyond that of Indian mathematicians and decided to write to leading English mathematicians. The first
mathematicians he wrote to turned down his request for help. But in January 1913 he wrote to G. H. Hardy, who was inclined
to turn Ramanujan down, but the mathematical statements in the letter, although stated without proof, puzzled Hardy. He decided
to examine them closely with the help of his colleague and collaborator J. E. Littlewood. They decided, after careful study, that
Ramanujan was probably a genius, because his statements “could only be written down by a mathematician of the highest class;
they must be true, because if they were not true, no one would have the imagination to invent them.”

Hardy arranged a scholarship for Ramanujan, bringing him to England in 1914. Hardy personally tutored him in mathematical
analysis, and they collaborated for five years, proving significant theorems about the number of partitions of integers. During this
time, Ramanujan made important contributions to number theory and also worked on continued fractions, infinite series, and elliptic
functions. Ramanujan had amazing insight involving certain types of functions and series, but his purported theorems on prime
numbers were often wrong, illustrating his vague idea of what constitutes a correct proof. He was one of the youngest members ever
appointed a Fellow of the Royal Society. Unfortunately, in 1917 Ramanujan became extremely ill. At the time, it was thought that he
had trouble with the English climate and had contracted tuberculosis. It is now thought that he suffered from a vitamin deficiency,
brought on by Ramanujan’s strict vegetarianism and shortages in wartime England. He returned to India in 1919, continuing to
do mathematics even when confined to his bed. He was religious and thought his mathematical talent came from his family deity,
Namagiri. He considered mathematics and religion to be linked. He said that “an equation for me has no meaning unless it expresses
a thought of God.” His short life came to an end in April 1920, when he was 32 years old. Ramanujan left several notebooks of
unpublished results. The writings in these notebooks illustrate Ramanujan’s insights but are quite sketchy. Several mathematicians
have devoted many years of study to explaining and justifying the results in these notebooks.

1.8 Proof Methods and Strategy 99

(a) (b)

FIGURE 1 (a) Chomp (Top Left Cookie Poisoned). (b) Three Possible Moves.

move of a winning strategy (and then continued to follow that winning strategy). This would
guarantee a win for the first player.

Note that we showed that a winning strategy exists, but we did not specify an actual winning
strategy. Consequently, the proof is a nonconstructive existence proof. In fact, no one has been
able to describe a winning strategy for that Chomp that applies for all rectangular grids by
describing the moves that the first player should follow. However, winning strategies can be
described for certain special cases, such as when the grid is square and when the grid only has
two rows of cookies (see Exercises 15 and 16 in Section 5.2). ▲

Uniqueness Proofs

Some theorems assert the existence of a unique element with a particular property. In other
words, these theorems assert that there is exactly one element with this property. To prove a
statement of this type we need to show that an element with this property exists and that no
other element has this property. The two parts of a uniqueness proof are:

Existence: We show that an element x with the desired property exists.

Uniqueness: We show that if y = x, then y does not have the desired property.

Equivalently, we can show that if x and y both have the desired property, then x = y.

Remark: Showing that there is a unique element x such that P(x) is the same as proving the
statement ∃x(P (x) ∧ ∀y(y = x → ¬P(y))).

We illustrate the elements of a uniqueness proof in Example 13.

EXAMPLE 13 Show that if a and b are real numbers and a = 0, then there is a unique real number r such that
ar + b = 0.

Solution: First, note that the real number r = −b/a is a solution of ar + b = 0 because
a(−b/a)+ b = −b + b = 0. Consequently, a real number r exists for which ar + b = 0. This
is the existence part of the proof.

Second, suppose that s is a real number such that as + b = 0. Then ar + b = as + b, where
r = −b/a. Subtracting b from both sides, we find that ar = as. Dividing both sides of this last
equation by a, which is nonzero, we see that r = s. This means that if s = r , then as + b = 0.
This establishes the uniqueness part of the proof. ▲

100 1 / The Foundations: Logic and Proofs

Proof Strategies

Finding proofs can be a challenging business. When you are confronted with a statement to
prove, you should first replace terms by their definitions and then carefully analyze what the
hypotheses and the conclusion mean. After doing so, you can attempt to prove the result using
one of the available methods of proof. Generally, if the statement is a conditional statement,
you should first try a direct proof; if this fails, you can try an indirect proof. If neither of these
approaches works, you might try a proof by contradiction.

FORWARD AND BACKWARD REASONING Whichever method you choose, you need
a starting point for your proof. To begin a direct proof of a conditional statement, you start
with the premises. Using these premises, together with axioms and known theorems, you can
construct a proof using a sequence of steps that leads to the conclusion. This type of reasoning,
called forward reasoning, is the most common type of reasoning used to prove relatively simple
results. Similarly, with indirect reasoning you can start with the negation of the conclusion and,
using a sequence of steps, obtain the negation of the premises.

Unfortunately, forward reasoning is often difficult to use to prove more complicated results,
because the reasoning needed to reach the desired conclusion may be far from obvious. In such
cases it may be helpful to use backward reasoning. To reason backward to prove a statement q,
we find a statement p that we can prove with the property that p → q. (Note that it is not helpful
to find a statement r that you can prove such that q → r , because it is the fallacy of begging
the question to conclude from q → r and r that q is true.) Backward reasoning is illustrated in
Examples 14 and 15.

EXAMPLE 14 Given two positive real numbers x and y, their arithmetic mean is (x + y)/2 and their geo-
metric mean is

√
xy. When we compare the arithmetic and geometric means of pairs of distinct

positive real numbers, we find that the arithmetic mean is always greater than the geometric

mean. [For example, when x = 4 and y = 6, we have 5 = (4+ 6)/2 >
√

4 · 6 =
√

24.] Can
we prove that this inequality is always true?

Solution: To prove that (x + y)/2 >
√
xy when x and y are distinct positive real numbers,

we can work backward. We construct a sequence of equivalent inequalities. The equivalent
inequalities are

(x + y)/2 >
√
xy,

(x + y)2/4 > xy,

(x + y)2 > 4xy,

x2 + 2xy + y2 > 4xy,

x2 − 2xy + y2 > 0,

(x − y)2 > 0.

Because (x − y)2 > 0 when x = y, it follows that the final inequality is true. Because all these
inequalities are equivalent, it follows that (x + y)/2 >

√
xy when x = y. Once we have carried

out this backward reasoning, we can easily reverse the steps to construct a proof using forward
reasoning. We now give this proof.

Suppose that x and y are distinct positive real numbers. Then (x − y)2 > 0 because
the square of a nonzero real number is positive (see Appendix 1). Because (x − y)2 =
x2 − 2xy + y2, this implies that x2 − 2xy + y2 > 0. Adding 4xy to both sides, we obtain
x2 + 2xy + y2 > 4xy. Because x2 + 2xy + y2 = (x + y)2, this means that (x + y)2 ≥ 4xy.
Dividing both sides of this equation by 4, we see that (x + y)2/4 > xy. Finally, taking square
roots of both sides (which preserves the inequality because both sides are positive) yields

1.8 Proof Methods and Strategy 101

(x + y)/2 >
√
xy. We conclude that if x and y are distinct positive real numbers, then their

arithmetic mean (x + y)/2 is greater than their geometric mean
√
xy. ▲

EXAMPLE 15 Suppose that two people play a game taking turns removing one, two, or three stones at a time
from a pile that begins with 15 stones. The person who removes the last stone wins the game.
Show that the first player can win the game no matter what the second player does.

Solution: To prove that the first player can always win the game, we work backward. At the
last step, the first player can win if this player is left with a pile containing one, two, or three
stones. The second player will be forced to leave one, two, or three stones if this player has to
remove stones from a pile containing four stones. Consequently, one way for the first person to
win is to leave four stones for the second player on the next-to-last move. The first person can
leave four stones when there are five, six, or seven stones left at the beginning of this player’s
move, which happens when the second player has to remove stones from a pile with eight stones.
Consequently, to force the second player to leave five, six, or seven stones, the first player should
leave eight stones for the second player at the second-to-last move for the first player. This means
that there are nine, ten, or eleven stones when the first player makes this move. Similarly, the
first player should leave twelve stones when this player makes the first move. We can reverse
this argument to show that the first player can always make moves so that this player wins the
game no matter what the second player does. These moves successively leave twelve, eight, and
four stones for the second player. ▲

ADAPTINGEXISTING PROOFS An excellent way to look for possible approaches that can
be used to prove a statement is to take advantage of existing proofs of similar results. Often
an existing proof can be adapted to prove other facts. Even when this is not the case, some of
the ideas used in existing proofs may be helpful. Because existing proofs provide clues for new
proofs, you should read and understand the proofs you encounter in your studies. This process
is illustrated in Example 16.

EXAMPLE 16 In Example 10 of Section 1.7 we proved that
√

2 is irrational. We now conjecture that
√

3 is

irrational. Can we adapt the proof in Example 10 in Section 1.7 to show that
√

3 is irrational?

Solution: To adapt the proof in Example 10 in Section 1.7, we begin by mimicking the steps in

that proof, but with
√

2 replaced with
√

3. First, we suppose that
√

3 = d/c where the fraction
c/d is in lowest terms. Squaring both sides tells us that 3 = c2/d2, so that 3d2 = c2. Can we
use this equation to show that 3 must be a factor of both c and d, similar to how we used the
equation 2b2 = a2 in Example 10 in Section 1.7 to show that 2 must be a factor of both a

and b? (Recall that an integer s is a factor of the integer t if t/s is an integer. An integer n is even
if and only if 2 is a factor of n.) In turns out that we can, but we need some ammunition from
number theory, which we will develop in Chapter 4. We sketch out the remainder of the proof,
but leave the justification of these steps until Chapter 4. Because 3 is a factor of c2, it must also
be a factor of c. Furthermore, because 3 is a factor of c, 9 is a factor of c2, which means that 9
is a factor of 3d2. This implies that 3 is a factor of d2, which means that 3 is a factor of that d.
This makes 3 a factor of both c and d, which contradicts the assumption that c/d is in lowest

terms. After we have filled in the justification for these steps, we will have shown that
√

3 is

irrational by adapting the proof that
√

2 is irrational. Note that this proof can be extended to
show that

√
n is irrational whenever n is a positive integer that is not a perfect square. We leave

the details of this to Chapter 4. ▲

A good tip is to look for existing proofs that you might adapt when you are confronted
with proving a new theorem, particularly when the new theorem seems similar to one you have
already proved.

102 1 / The Foundations: Logic and Proofs

Looking for Counterexamples

In Section 1.7 we introduced the use of counterexamples to show that certain statements are
false. When confronted with a conjecture, you might first try to prove this conjecture, and if
your attempts are unsuccessful, you might try to find a counterexample, first by looking at
the simplest, smallest examples. If you cannot find a counterexample, you might again try to
prove the statement. In any case, looking for counterexamples is an extremely important pursuit,
which often provides insights into problems. We will illustrate the role of counterexamples in
Example 17.

EXAMPLE 17 In Example 14 in Section 1.7 we showed that the statement “Every positive integer is the sum of
two squares of integers” is false by finding a counterexample. That is, there are positive integers
that cannot be written as the sum of the squares of two integers. Although we cannot write every
positive integer as the sum of the squares of two integers, maybe we can write every positive
integer as the sum of the squares of three integers. That is, is the statement “Every positive
integer is the sum of the squares of three integers” true or false?

Solution: Because we know that not every positive integer can be written as the sum of two
squares of integers, we might initially be skeptical that every positive integer can be written as
the sum of three squares of integers. So, we first look for a counterexample. That is, we can
show that the statement “Every positive integer is the sum of three squares of integers” is false
if we can find a particular integer that is not the sum of the squares of three integers. To look
for a counterexample, we try to write successive positive integers as a sum of three squares.
We find that 1 = 02 + 02 + 12, 2 = 02 + 12 + 12, 3 = 12 + 12 + 12, 4 = 02 + 02 + 22, 5 =
02 + 12 + 22, 6 = 12 + 12 + 22, but we cannot find a way to write 7 as the sum of three
squares. To show that there are not three squares that add up to 7, we note that the only possible
squares we can use are those not exceeding 7, namely, 0, 1, and 4. Because no three terms where
each term is 0, 1, or 4 add up to 7, it follows that 7 is a counterexample. We conclude that the
statement “Every positive integer is the sum of the squares of three integers” is false.

We have shown that not every positive integer is the sum of the squares of three integers.
The next question to ask is whether every positive integer is the sum of the squares of four
positive integers. Some experimentation provides evidence that the answer is yes. For example,
7 = 12 + 12 + 12 + 22, 25 = 42 + 22 + 22 + 12, and 87 = 92 + 22 + 12 + 12. It turns out the
conjecture “Every positive integer is the sum of the squares of four integers” is true. For a proof,
see [Ro10]. ▲

Proof Strategy in Action

Mathematics is generally taught as if mathematical facts were carved in stone. Mathematics
texts (including the bulk of this book) formally present theorems and their proofs. Such presen-
tations do not convey the discovery process in mathematics. This process begins with exploring
concepts and examples, asking questions, formulating conjectures, and attempting to settle these
conjectures either by proof or by counterexample. These are the day-to-day activities of math-
ematicians. Believe it or not, the material taught in textbooks was originally developed in this
way.

People formulate conjectures on the basis of many types of possible evidence. The exam-
ination of special cases can lead to a conjecture, as can the identification of possible patterns.
Altering the hypotheses and conclusions of known theorems also can lead to plausible conjec-
tures. At other times, conjectures are made based on intuition or a belief that a result holds.
No matter how a conjecture was made, once it has been formulated, the goal is to prove or
disprove it. When mathematicians believe that a conjecture may be true, they try to find a proof.
If they cannot find a proof, they may look for a counterexample. When they cannot find a coun-
terexample, they may switch gears and once again try to prove the conjecture. Although many
conjectures are quickly settled, a few conjectures resist attack for hundreds of years and lead to

1.8 Proof Methods and Strategy 103

FIGURE 2 The Standard Checkerboard.

FIGURE 3

Two Dominoes.

the development of new parts of mathematics. We will mention a few famous conjectures later
in this section.

Tilings

We can illustrate aspects of proof strategy through a brief study of tilings of checkerboards.
Looking at tilings of checkerboards is a fruitful way to quickly discover many different results
and construct their proofs using a variety of proof methods. There are almost an endless number
of conjectures that can be made and studied in this area too. To begin, we need to define some
terms. A checkerboard is a rectangle divided into squares of the same size by horizontal and
vertical lines. The game of checkers is played on a board with 8 rows and 8 columns; this
board is called the standard checkerboard and is shown in Figure 2. In this section we use the
term board to refer to a checkerboard of any rectangular size as well as parts of checkerboards
obtained by removing one or more squares. A domino is a rectangular piece that is one square
by two squares, as shown in Figure 3. We say that a board is tiled by dominoes when all its
squares are covered with no overlapping dominoes and no dominoes overhanging the board. We
now develop some results about tiling boards using dominoes.

EXAMPLE 18 Can we tile the standard checkerboard using dominoes?

Solution: We can find many ways to tile the standard checkerboard using dominoes. For example,
we can tile it by placing 32 dominoes horizontally, as shown in Figure 4. The existence of one
such tiling completes a constructive existence proof. Of course, there are a large number of other
ways to do this tiling. We can place 32 dominoes vertically on the board or we can place some
tiles vertically and some horizontally. But for a constructive existence proof we needed to find
just one such tiling. ▲

EXAMPLE 19 Can we tile a board obtained by removing one of the four corner squares of a standard checker-
board?

Solution: To answer this question, note that a standard checkerboard has 64 squares, so removing
a square produces a board with 63 squares. Now suppose that we could tile a board obtained
from the standard checkerboard by removing a corner square. The board has an even number of

104 1 / The Foundations: Logic and Proofs

FIGURE 4 Tiling the Standard Checkerboard. FIGURE 5 The Standard Checkerboard

with the Upper Left and Lower Right

Squares Removed.

squares because each domino covers two squares and no two dominoes overlap and no dominoes
overhang the board. Consequently, we can prove by contradiction that a standard checkerboard
with one square removed cannot be tiled using dominoes because such a board has an odd
number of squares. ▲

We now consider a trickier situation.

EXAMPLE 20 Can we tile the board obtained by deleting the upper left and lower right corner squares of a
standard checkerboard, shown in Figure 5?

Solution: A board obtained by deleting two squares of a standard checkerboard contains
64− 2 = 62 squares. Because 62 is even, we cannot quickly rule out the existence of a tiling of
the standard checkerboard with its upper left and lower right squares removed, unlike Example
19, where we ruled out the existence of a tiling of the standard checkerboard with one corner
square removed. Trying to construct a tiling of this board by successively placing dominoes
might be a first approach, as the reader should attempt. However, no matter how much we try,
we cannot find such a tiling. Because our efforts do not produce a tiling, we are led to conjecture
that no tiling exists.

We might try to prove that no tiling exists by showing that we reach a dead end however
we successively place dominoes on the board. To construct such a proof, we would have to
consider all possible cases that arise as we run through all possible choices of successively
placing dominoes. For example, we have two choices for covering the square in the second
column of the first row, next to the removed top left corner. We could cover it with a horizontally
placed tile or a vertically placed tile. Each of these two choices leads to further choices, and so
on. It does not take long to see that this is not a fruitful plan of attack for a person, although a
computer could be used to complete such a proof by exhaustion. (Exercise 45 asks you to supply
such a proof to show that a 4× 4 checkerboard with opposite corners removed cannot be tiled.)

We need another approach. Perhaps there is an easier way to prove there is no tiling of a
standard checkerboard with two opposite corners removed. As with many proofs, a key obser-
vation can help. We color the squares of this checkerboard using alternating white and black
squares, as in Figure 2. Observe that a domino in a tiling of such a board covers one white square
and one black square. Next, note that this board has unequal numbers of white square and black

1.8 Proof Methods and Strategy 105

squares. We can use these observations to prove by contradiction that a standard checkerboard
with opposite corners removed cannot be tiled using dominoes. We now present such a proof.

Proof: Suppose we can use dominoes to tile a standard checkerboard with opposite corners
removed. Note that the standard checkerboard with opposite corners removed contains 64− 2 =
62 squares. The tiling would use 62/2 = 31 dominoes. Note that each domino in this tiling covers
one white and one black square. Consequently, the tiling covers 31 white squares and 31 black
squares. However, when we remove two opposite corner squares, either 32 of the remaining
squares are white and 30 are black or else 30 are white and 32 are black. This contradicts the
assumption that we can use dominoes to cover a standard checkerboard with opposite corners
removed, completing the proof. ▲

FIGURE 6 A

Right Triomino

and a Straight

Triomino.

We can use other types of pieces besides dominoes in tilings. Instead of dominoes we can
study tilings that use identically shaped pieces constructed from congruent squares that are
connected along their edges. Such pieces are called polyominoes, a term coined in 1953 by the
mathematician Solomon Golomb, the author of an entertaining book about them [Go94]. We
will consider two polyominoes with the same number of squares the same if we can rotate and/or
flip one of the polyominoes to get the other one. For example, there are two types of triominoes
(see Figure 6), which are polyominoes made up of three squares connected by their sides. One
type of triomino, the straight triomino, has three horizontally connected squares; the other
type, right triominoes, resembles the letter L in shape, flipped and/or rotated, if necessary. We
will study the tilings of a checkerboard by straight triominoes here; we will study tilings by
right triominoes in Section 5.1.

EXAMPLE 21 Can you use straight triominoes to tile a standard checkerboard?

Solution: The standard checkerboard contains 64 squares and each triomino covers three
squares. Consequently, if triominoes tile a board, the number of squares of the board must be
a multiple of 3. Because 64 is not a multiple of 3, triominoes cannot be used to cover an 8× 8
checkerboard. ▲

In Example 22, we consider the problem of using straight triominoes to tile a standard
checkerboard with one corner missing.

EXAMPLE 22 Can we use straight triominoes to tile a standard checkerboard with one of its four corners
removed? An 8× 8 checkerboard with one corner removed contains 64− 1 = 63 squares. Any
tiling by straight triominoes of one of these four boards uses 63/3 = 21 triominoes. However,
when we experiment, we cannot find a tiling of one of these boards using straight triominoes.
A proof by exhaustion does not appear promising. Can we adapt our proof from Example 20 to
prove that no such tiling exists?

Solution: We will color the squares of the checkerboard in an attempt to adapt the proof by
contradiction we gave in Example 20 of the impossibility of using dominoes to tile a standard
checkerboard with opposite corners removed. Because we are using straight triominoes rather
than dominoes, we color the squares using three colors rather than two colors, as shown in
Figure 7. Note that there are 21 blue squares, 21 black squares, and 22 white squares in this
coloring. Next, we make the crucial observation that when a straight triomino covers three
squares of the checkerboard, it covers one blue square, one black square, and one white square.
Next, note that each of the three colors appears in a corner square. Thus without loss of generality,
we may assume that we have rotated the coloring so that the missing square is colored blue.
Therefore, we assume that the remaining board contains 20 blue squares, 21 black squares, and
22 white squares.

If we could tile this board using straight triominoes, then we would use 63/3 = 21 straight
triominoes. These triominoes would cover 21 blue squares, 21 black squares, and 21 white

106 1 / The Foundations: Logic and Proofs

FIGURE 7 Coloring the Squares of the Standard Checkerboard

with Three Colors.

squares. This contradicts the fact that this board contains 20 blue squares, 21 black squares, and
22 white squares. Therefore we cannot tile this board using straight triominoes. ▲

The Role of Open Problems

Many advances in mathematics have been made by people trying to solve famous unsolved
problems. In the past 20 years, many unsolved problems have finally been resolved, such as the
proof of a conjecture in number theory made more than 300 years ago. This conjecture asserts
the truth of the statement known as Fermat’s last theorem.

THEOREM 1 FERMAT’S LAST THEOREM The equation

xn + yn = zn

has no solutions in integers x, y, and z with xyz = 0 whenever n is an integer with n > 2.

Remark: The equation x2 + y2 = z2 has infinitely many solutions in integers x, y, and z; these
solutions are called Pythagorean triples and correspond to the lengths of the sides of right
triangles with integer lengths. See Exercise 32.

This problem has a fascinating history. In the seventeenth century, Fermat jotted in the
margin of his copy of the works of Diophantus that he had a “wondrous proof” that there are no
integer solutions of xn + yn = zn when n is an integer greater than 2 with xyz = 0. However,
he never published a proof (Fermat published almost nothing), and no proof could be found in
the papers he left when he died. Mathematicians looked for a proof for three centuries without
success, although many people were convinced that a relatively simple proof could be found.
(Proofs of special cases were found, such as the proof of the case when n = 3 by Euler and the
proof of the n = 4 case by Fermat himself.) Over the years, several established mathematicians
thought that they had proved this theorem. In the nineteenth century, one of these failed attempts
led to the development of the part of number theory called algebraic number theory. A correct

1.8 Proof Methods and Strategy 107

proof, requiring hundreds of pages of advanced mathematics, was not found until the 1990s,
when Andrew Wiles used recently developed ideas from a sophisticated area of number theory
called the theory of elliptic curves to prove Fermat’s last theorem. Wiles’s quest to find a
proof of Fermat’s last theorem using this powerful theory, described in a program in the Nova

series on public television, took close to ten years! Moreover, his proof was based on major
contributions of many mathematicians. (The interested reader should consult [Ro10] for more
information about Fermat’s last theorem and for additional references concerning this problem
and its resolution.)

We now state an open problem that is simple to describe, but that seems quite difficult to
resolve.

EXAMPLE 23 The 3x + 1 Conjecture Let T be the transformation that sends an even integer x to x/2 and
an odd integer x to 3x + 1. A famous conjecture, sometimes known as the 3x + 1 conjec-

ture, states that for all positive integers x, when we repeatedly apply the transformation T ,
we will eventually reach the integer 1. For example, starting with x = 13, we find T (13) =
3 · 13+ 1 = 40, T (40) = 40/2 = 20, T (20) = 20/2 = 10, T (10) = 10/2 = 5, T (5) =
3 · 5+ 1 = 16, T (16) = 8, T (8) = 4, T (4) = 2, and T (2) = 1. The 3x + 1 conjecture has
been verified using computers for all integers x up to 5.6 · 1013.

The 3x + 1 conjecture has an interesting history and has attracted the attention of mathe-
maticians since the 1950s. The conjecture has been raised many times and goes by many other
names, including the Collatz problem, Hasse’s algorithm, Ulam’s problem, the Syracuse prob-
lem, and Kakutani’s problem. Many mathematicians have been diverted from their work to spend
time attacking this conjecture. This led to the joke that this problem was part of a conspiracy

Watch out! Working on

the 3x + 1 problem can

be addictive.

to slow down American mathematical research. See the article by Jeffrey Lagarias [La10] for a
fascinating discussion of this problem and the results that have been found by mathematicians
attacking it. ▲

In Chapter 4 we will describe additional open questions about prime numbers. Students
already familiar with the basic notions about primes might want to explore Section 4.3, where
these open questions are discussed. We will mention other important open questions throughout
the book.

Additional Proof Methods

In this chapter we introduced the basic methods used in proofs.We also described how to leverage
these methods to prove a variety of results. We will use these proof methods in all subsequent
chapters. In particular, we will use them in Chapters 2, 3, and 4 to prove results about sets,

Build up your arsenal of

proof methods as you

work through this book.

functions, algorithms, and number theory and in Chapters 9, 10, and 11 to prove results in graph
theory. Among the theorems we will prove is the famous halting theorem which states that there
is a problem that cannot be solved using any procedure. However, there are many important
proof methods besides those we have covered. We will introduce some of these methods later
in this book. In particular, in Section 5.1 we will discuss mathematical induction, which is an
extremely useful method for proving statements of the form ∀nP (n), where the domain consists
of all positive integers. In Section 5.3 we will introduce structural induction, which can be used
to prove results about recursively defined sets. We will use the Cantor diagonalization method,
which can be used to prove results about the size of infinite sets, in Section 2.5. In Chapter 6
we will introduce the notion of combinatorial proofs, which can be used to prove results by
counting arguments. The reader should note that entire books have been devoted to the activities
discussed in this section, including many excellent works by George Pólya ([Po61], [Po71],
[Po90]).

Finally, note that we have not given a procedure that can be used for proving theorems in
mathematics. It is a deep theorem of mathematical logic that there is no such procedure.

108 1 / The Foundations: Logic and Proofs

Exercises

1. Prove that n2 + 1 ≥ 2n when n is a positive integer with
1 ≤ n ≤ 4.

2. Prove that there are no positive perfect cubes less than
1000 that are the sum of the cubes of two positive integers.

3. Prove that if x and y are real numbers, then max(x, y)+
min(x, y) = x + y. [Hint: Use a proof by cases, with
the two cases corresponding to x ≥ y and x < y, respec-
tively.]

4. Use a proof by cases to show that min(a,min(b, c)) =
min(min(a, b), c) whenever a, b, and c are real numbers.

5. Prove using the notion of without loss of generality
that min(x, y) = (x + y − |x − y|)/2 and max(x, y) =
(x + y + |x − y|)/2 whenever x and y are real numbers.

6. Prove using the notion of without loss of generality that
5x + 5y is an odd integer when x and y are integers of
opposite parity.

7. Prove the triangle inequality, which states that if x and
y are real numbers, then |x| + |y| ≥ |x + y| (where |x|
represents the absolute value of x, which equals x if x ≥ 0
and equals −x if x < 0).

8. Prove that there is a positive integer that equals the sum
of the positive integers not exceeding it. Is your proof
constructive or nonconstructive?

9. Prove that there are 100 consecutive positive integers that
are not perfect squares. Is your proof constructive or non-
constructive?

10. Prove that either 2 · 10500 + 15 or 2 · 10500 + 16 is not a
perfect square. Is your proof constructive or nonconstruc-
tive?

11. Prove that there exists a pair of consecutive integers such
that one of these integers is a perfect square and the other
is a perfect cube.

12. Show that the product of two of the numbers 651000 −
82001 + 3177, 791212 − 92399 + 22001, and 244493 −
58192 + 71777 is nonnegative. Is your proof constructive
or nonconstructive? [Hint: Do not try to evaluate these
numbers!]

13. Prove or disprove that there is a rational number x and an
irrational number y such that xy is irrational.

14. Prove or disprove that if a and b are rational numbers,
then ab is also rational.

15. Show that each of these statements can be used to ex-
press the fact that there is a unique element x such that
P(x) is true. [Note that we can also write this statement
as ∃!xP (x).]

a) ∃x∀y(P (y)↔ x = y)

b) ∃xP (x) ∧ ∀x∀y(P (x) ∧ P(y)→ x = y)

c) ∃x(P (x) ∧ ∀y(P (y)→ x = y))

16. Show that if a, b, and c are real numbers and a = 0, then
there is a unique solution of the equation ax + b = c.

17. Suppose that a and b are odd integers with a = b. Show
there is a unique integer c such that |a − c| = |b − c|.

18. Show that if r is an irrational number, there is a unique
integer n such that the distance between r and n is less
than 1/2.

19. Show that if n is an odd integer, then there is a unique
integer k such that n is the sum of k − 2 and k + 3.

20. Prove that given a real number x there exist unique num-
bers n and such that x = n+ , n is an integer, and
0 ≤ < 1.

21. Prove that given a real number x there exist unique num-
bers n and such that x = n− , n is an integer, and
0 ≤ < 1.

22. Use forward reasoning to show that if x is a nonzero real
number, then x2 + 1/x2 ≥ 2. [Hint: Start with the in-
equality (x − 1/x)2 ≥ 0 which holds for all nonzero real
numbers x.]

23. The harmonic mean of two real numbers x and y equals
2xy/(x + y). By computing the harmonic and geometric
means of different pairs of positive real numbers, formu-
late a conjecture about their relative sizes and prove your
conjecture.

24. The quadratic mean of two real numbers x and y

equals
�
(x2 + y2)/2. By computing the arithmetic and

quadratic means of different pairs of positive real num-
bers, formulate a conjecture about their relative sizes and
prove your conjecture.

∗25. Write the numbers 1, 2, . . . , 2n on a blackboard, where
n is an odd integer. Pick any two of the numbers, j and
k, write |j − k| on the board and erase j and k. Continue
this process until only one integer is written on the board.
Prove that this integer must be odd.

∗26. Suppose that five ones and four zeros are arranged around
a circle. Between any two equal bits you insert a 0 and
between any two unequal bits you insert a 1 to produce
nine new bits. Then you erase the nine original bits. Show
that when you iterate this procedure, you can never get
nine zeros. [Hint: Work backward, assuming that you did
end up with nine zeros.]

27. Formulate a conjecture about the decimal digits that ap-
pear as the final decimal digit of the fourth power of an
integer. Prove your conjecture using a proof by cases.

28. Formulate a conjecture about the final two decimal digits
of the square of an integer. Prove your conjecture using a
proof by cases.

29. Prove that there is no positive integer n such that n2 +
n3 = 100.

30. Prove that there are no solutions in integers x and y to the
equation 2x2 + 5y2 = 14.

31. Prove that there are no solutions in positive integers x and
y to the equation x4 + y4 = 625.

32. Prove that there are infinitely many solutions in posi-
tive integers x, y, and z to the equation x2 + y2 = z2.
[Hint: Let x = m2 − n2, y = 2mn, and z = m2 + n2,
where m and n are integers.]

Key Terms and Results 109

33. Adapt the proof in Example 4 in Section 1.7 to prove that
if n = abc, where a, b, and c are positive integers, then
a ≤ 3

√
n, b ≤ 3

√
n, or c ≤ 3

√
n.

34. Prove that
3
√

2 is irrational.

35. Prove that between every two rational numbers there is
an irrational number.

36. Prove that between every rational number and every irra-
tional number there is an irrational number.

∗37. Let S = x1y1 + x2y2 + · · · + xnyn, where x1, x2, . . . ,

xn and y1, y2, . . . , yn are orderings of two different se-
quences of positive real numbers, each containing n ele-
ments.

a) Show that S takes its maximum value over all order-
ings of the two sequences when both sequences are
sorted (so that the elements in each sequence are in
nondecreasing order).

b) Show that S takes its minimum value over all order-
ings of the two sequences when one sequence is sorted
into nondecreasing order and the other is sorted into
nonincreasing order.

38. Prove or disprove that if you have an 8-gallon jug of wa-
ter and two empty jugs with capacities of 5 gallons and 3
gallons, respectively, then you can measure 4 gallons by
successively pouring some of or all of the water in a jug
into another jug.

39. Verify the 3x + 1 conjecture for these integers.

a) 6 b) 7 c) 17 d) 21

40. Verify the 3x + 1 conjecture for these integers.

a) 16 b) 11 c) 35 d) 113

41. Prove or disprove that you can use dominoes to tile
the standard checkerboard with two adjacent corners re-
moved (that is, corners that are not opposite).

42. Prove or disprove that you can use dominoes to tile a
standard checkerboard with all four corners removed.

43. Prove that you can use dominoes to tile a rectangular
checkerboard with an even number of squares.

44. Prove or disprove that you can use dominoes to tile a
5× 5 checkerboard with three corners removed.

45. Use a proof by exhaustion to show that a tiling using
dominoes of a 4× 4 checkerboard with opposite corners
removed does not exist. [Hint: First show that you can
assume that the squares in the upper left and lower right
corners are removed. Number the squares of the original

checkerboard from 1 to 16, starting in the first row, mov-
ing right in this row, then starting in the leftmost square
in the second row and moving right, and so on. Remove
squares 1 and 16. To begin the proof, note that square 2 is
covered either by a domino laid horizontally, which cov-
ers squares 2 and 3, or vertically, which covers squares 2
and 6. Consider each of these cases separately, and work
through all the subcases that arise.]

∗46. Prove that when a white square and a black square are
removed from an 8× 8 checkerboard (colored as in the
text) you can tile the remaining squares of the checker-
board using dominoes. [Hint: Show that when one black
and one white square are removed, each part of the parti-
tion of the remaining cells formed by inserting the barriers
shown in the figure can be covered by dominoes.]

47. Show that by removing two white squares and two black
squares from an 8× 8 checkerboard (colored as in the
text) you can make it impossible to tile the remaining
squares using dominoes.

∗48. Find all squares, if they exist, on an 8× 8 checkerboard
such that the board obtained by removing one of these
square can be tiled using straight triominoes. [Hint: First
use arguments based on coloring and rotations to elimi-
nate as many squares as possible from consideration.]

∗49. a) Draw each of the five different tetrominoes, where a
tetromino is a polyomino consisting of four squares.

b) For each of the five different tetrominoes, prove or dis-
prove that you can tile a standard checkerboard using
these tetrominoes.

∗50. Prove or disprove that you can tile a 10× 10 checker-
board using straight tetrominoes.

Key Terms and Results

TERMS

proposition: a statement that is true or false

propositional variable: a variable that represents a proposi-
tion

truth value: true or false

¬ p (negation of p): the proposition with truth value opposite
to the truth value of p

logical operators: operators used to combine propositions

compoundproposition: a proposition constructed by combin-
ing propositions using logical operators

truth table: a table displaying all possible truth values of
propositions

p∨ q (disjunction of p and q): the proposition “p or q,” which
is true if and only if at least one of p and q is true

110 1 / The Foundations: Logic and Proofs

p ∧ q (conjunction of p and q): the proposition “p and q,”
which is true if and only if both p and q are true

p ⊕ q (exclusive or of p and q): the proposition “p XOR q,”
which is true when exactly one of p and q is true

p → q (p implies q): the proposition “if p, then q,” which is
false if and only if p is true and q is false

converse of p→ q: the conditional statement q → p

contrapositive of p→ q: the conditional statement¬q → ¬p

inverse of p→ q: the conditional statement ¬p → ¬q
p ↔ q (biconditional): the proposition “p if and only if q,”

which is true if and only if p and q have the same truth
value

bit: either a 0 or a 1

Boolean variable: a variable that has a value of 0 or 1

bit operation: an operation on a bit or bits

bit string: a list of bits

bitwise operations: operations on bit strings that operate on
each bit in one string and the corresponding bit in the other
string

logic gate: a logic element that performs a logical operation
on one or more bits to produce an output bit

logic circuit: a switching circuit made up of logic gates that
produces one or more output bits

tautology: a compound proposition that is always true

contradiction: a compound proposition that is always false

contingency: a compound proposition that is sometimes true
and sometimes false

consistent compound propositions: compound propositions
for which there is an assignment of truth values to the vari-
ables that makes all these propositions true

satisfiable compound proposition: a compound proposition
for which there is an assignment of truth values to its vari-
ables that makes it true

logically equivalent compound propositions: compound
propositions that always have the same truth values

predicate: part of a sentence that attributes a property to the
subject

propositional function: a statement containing one or more
variables that becomes a proposition when each of its vari-
ables is assigned a value or is bound by a quantifier

domain (or universe) of discourse: the values a variable in a
propositional function may take

∃x P(x) (existential quantification of P(x)): the proposition
that is true if and only if there exists an x in the domain
such that P(x) is true

∀xP(x) (universal quantification of P(x)): the proposition
that is true if and only if P(x) is true for every x in the
domain

logically equivalent expressions: expressions that have the
same truth value no matter which propositional functions
and domains are used

free variable: a variable not bound in a propositional function

bound variable: a variable that is quantified

scope of a quantifier: portion of a statement where the quan-
tifier binds its variable

argument: a sequence of statements

argument form: a sequence of compound propositions involv-
ing propositional variables

premise: a statement, in an argument, or argument form, other
than the final one

conclusion: the final statement in an argument or argument
form

valid argument form: a sequence of compound propositions
involving propositional variables where the truth of all the
premises implies the truth of the conclusion

valid argument: an argument with a valid argument form

rule of inference: a valid argument form that can be used in
the demonstration that arguments are valid

fallacy: an invalid argument form often used incorrectly as a
rule of inference (or sometimes, more generally, an incor-
rect argument)

circular reasoning or begging the question: reasoning where
one or more steps are based on the truth of the statement
being proved

theorem: a mathematical assertion that can be shown to be
true

conjecture: a mathematical assertion proposed to be true, but
that has not been proved

proof: a demonstration that a theorem is true

axiom: a statement that is assumed to be true and that can be
used as a basis for proving theorems

lemma: a theorem used to prove other theorems

corollary: a proposition that can be proved as a consequence
of a theorem that has just been proved

vacuous proof: a proof that p → q is true based on the fact
that p is false

trivial proof: a proof that p → q is true based on the fact that
q is true

direct proof: a proof thatp → q is true that proceeds by show-
ing that q must be true when p is true

proof by contraposition: a proof that p → q is true that pro-
ceeds by showing that p must be false when q is false

proof by contradiction: a proof that p is true based on the
truth of the conditional statement ¬p → q, where q is a
contradiction

exhaustive proof: a proof that establishes a result by checking
a list of all possible cases

proof by cases: a proof broken into separate cases, where these
cases cover all possibilities

without loss of generality: an assumption in a proof that makes
it possible to prove a theorem by reducing the number of
cases to consider in the proof

counterexample: an element x such that P(x) is false

constructive existence proof: a proof that an element with a
specified property exists that explicitly finds such an ele-
ment

nonconstructive existence proof: a proof that an element with
a specified property exists that does not explicitly find such
an element

rational number: a number that can be expressed as the ratio
of two integers p and q such that q = 0

uniqueness proof: a proof that there is exactly one element
satisfying a specified property

Supplementary Exercises 111

RESULTS

The logical equivalences given in Tables 6, 7, and 8 in Sec-
tion 1.3.

De Morgan’s laws for quantifiers.

Rules of inference for propositional calculus.

Rules of inference for quantified statements.

Review Questions

1. a) Define the negation of a proposition.

b) What is the negation of “This is a boring course”?

2. a) Define (using truth tables) the disjunction, conjunc-
tion, exclusive or, conditional, and biconditional of
the propositions p and q.

b) What are the disjunction, conjunction, exclusive or,
conditional, and biconditional of the propositions “I’ll
go to the movies tonight” and “I’ll finish my discrete
mathematics homework”?

3. a) Describe at least five different ways to write the con-
ditional statement p → q in English.

b) Define the converse and contrapositive of a conditional
statement.

c) State the converse and the contrapositive of the con-
ditional statement “If it is sunny tomorrow, then I will
go for a walk in the woods.”

4. a) What does it mean for two propositions to be logically
equivalent?

b) Describe the different ways to show that two com-
pound propositions are logically equivalent.

c) Show in at least two different ways that the compound
propositions¬p ∨ (r → ¬q) and¬p ∨ ¬q ∨ ¬r are
equivalent.

5. (Depends on the Exercise Set in Section 1.3)

a) Given a truth table, explain how to use disjunctive nor-
mal form to construct a compound proposition with
this truth table.

b) Explain why part (a) shows that the operators ∧, ∨,
and ¬ are functionally complete.

c) Is there an operator such that the set containing just
this operator is functionally complete?

6. What are the universal and existential quantifications of
a predicate P(x)? What are their negations?

7. a) What is the difference between the quantification
∃x∀yP (x, y) and ∀y∃xP (x, y), where P(x, y) is a
predicate?

b) Give an example of a predicate P(x, y) such that
∃x∀yP (x, y) and ∀y∃xP (x, y) have different truth
values.

8. Describe what is meant by a valid argument in proposi-
tional logic and show that the argument “If the earth is
flat, then you can sail off the edge of the earth,” “You can-
not sail off the edge of the earth,” therefore, “The earth is
not flat” is a valid argument.

9. Use rules of inference to show that if the premises “All
zebras have stripes” and “Mark is a zebra” are true, then
the conclusion “Mark has stripes” is true.

10. a) Describe what is meant by a direct proof, a proof by
contraposition, and a proof by contradiction of a con-
ditional statement p → q.

b) Give a direct proof, a proof by contraposition and a
proof by contradiction of the statement: “If n is even,
then n+ 4 is even.”

11. a) Describe a way to prove the biconditional p ↔ q.
b) Prove the statement: “The integer 3n+ 2 is odd if and

only if the integer 9n+ 5 is even, where n is an inte-
ger.”

12. To prove that the statementsp1,p2,p3, andp4 are equiva-
lent, is it sufficient to show that the conditional statements
p4 → p2, p3 → p1, and p1 → p2 are valid? If not, pro-
vide another collection of conditional statements that can
be used to show that the four statements are equivalent.

13. a) Suppose that a statement of the form ∀xP (x) is false.
How can this be proved?

b) Show that the statement “For every positive integer n,
n2 ≥ 2n” is false.

14. What is the difference between a constructive and non-
constructive existence proof? Give an example of each.

15. What are the elements of a proof that there is a unique
element x such that P(x), where P(x) is a propositional
function?

16. Explain how a proof by cases can be used to prove a result
about absolute values, such as the fact that |xy| = |x||y|
for all real numbers x and y.

Supplementary Exercises

1. Let p be the proposition “I will do every exercise in
this book” and q be the proposition “I will get an “A”
in this course.” Express each of these as a combination of
p and q.

a) I will get an “A” in this course only if I do every exer-
cise in this book.

b) I will get an “A” in this course and I will do every
exercise in this book.

c) Either I will not get an “A” in this course or I will not
do every exercise in this book.

d) For me to get an “A” in this course it is necessary and
sufficient that I do every exercise in this book.

112 1 / The Foundations: Logic and Proofs

2. Find the truth table of the compound proposition (p ∨
q)→ (p ∧ ¬r).

3. Show that these compound propositions are tautologies.

a) (¬q ∧ (p → q))→ ¬p
b) ((p ∨ q) ∧ ¬p)→ q

4. Give the converse, the contrapositive, and the inverse of
these conditional statements.

a) If it rains today, then I will drive to work.

b) If |x| = x, then x ≥ 0.

c) If n is greater than 3, then n2 is greater than 9.

5. Given a conditional statement p → q, find the converse
of its inverse, the converse of its converse, and the con-
verse of its contrapositive.

6. Given a conditional statement p → q, find the inverse of
its inverse, the inverse of its converse, and the inverse of
its contrapositive.

7. Find a compound proposition involving the propositional
variables p, q, r , and s that is true when exactly three of
these propositional variables are true and is false other-
wise.

8. Show that these statements are inconsistent: “If Sergei
takes the job offer then he will get a signing bonus.” “If
Sergei takes the job offer, then he will receive a higher
salary.” “If Sergei gets a signing bonus, then he will not
receive a higher salary.” “Sergei takes the job offer.”

9. Show that these statements are inconsistent: “If Miranda
does not take a course in discrete mathematics, then she
will not graduate.” “If Miranda does not graduate, then
she is not qualified for the job.” “If Miranda reads this
book, then she is qualified for the job.” “Miranda does
not take a course in discrete mathematics but she reads
this book.”

Teachers in the Middle Ages supposedly tested the realtime
propositional logic ability of a student via a technique known
as an obligato game. In an obligato game, a number of rounds
is set and in each round the teacher gives the student succes-
sive assertions that the student must either accept or reject as
they are given. When the student accepts an assertion, it is
added as a commitment; when the student rejects an assertion
its negation is added as a commitment. The student passes
the test if the consistency of all commitments is maintained
throughout the test.

10. Suppose that in a three-round obligato game, the teacher
first gives the student the proposition p → q, then the
proposition ¬(p ∨ r) ∨ q, and finally the proposition q.
For which of the eight possible sequences of three answers
will the student pass the test?

11. Suppose that in a four-round obligato game, the teacher
first gives the student the proposition ¬(p → (q ∧ r)),
then the proposition p ∨ ¬q, then the proposition¬r , and
finally, the proposition (p ∧ r) ∨ (q → p). For which of
the 16 possible sequences of four answers will the student
pass the test?

12. Explain why every obligato game has a winning strategy.

Exercises 13 and 14 are set on the island of knights and knaves
described in Example 7 in Section 1.2.

13. Suppose that you meet three people Aaron, Bohan, and
Crystal. Can you determine whatAaron, Bohan, and Crys-
tal are ifAaron says “All of us are knaves” and Bohan says
“Exactly one of us is a knave.”?

14. Suppose that you meet three people, Anita, Boris, and
Carmen. What are Anita, Boris, and Carmen if Anita says
“I am a knave and Boris is a knight” and Boris says “Ex-
actly one of the three of us is a knight”?

15. (Adapted from [Sm78]) Suppose that on an island there
are three types of people, knights, knaves, and normals
(also known as spies). Knights always tell the truth,
knaves always lie, and normals sometimes lie and some-
times tell the truth. Detectives questioned three inhabi-
tants of the island—Amy, Brenda, and Claire—as part
of the investigation of a crime. The detectives knew that
one of the three committed the crime, but not which one.
They also knew that the criminal was a knight, and that the
other two were not. Additionally, the detectives recorded
these statements: Amy: “I am innocent.” Brenda: “What
Amy says is true.” Claire: “Brenda is not a normal.” Af-
ter analyzing their information, the detectives positively
identified the guilty party. Who was it?

16. Show that if S is a proposition, where S is the conditional
statement “If S is true, then unicorns live,” then “Uni-
corns live” is true. Show that it follows that S cannot be a
proposition. (This paradox is known as Löb’s paradox.)

17. Show that the argument with premises “The tooth fairy is a
real person” and “The tooth fairy is not a real person” and
conclusion “You can find gold at the end of the rainbow”
is a valid argument. Does this show that the conclusion is
true?

18. Suppose that the truth value of the proposition pi is T
whenever i is an odd positive integer and is F when-
ever i is an even positive integer. Find the truth values

of
�100

i=1(pi ∧ pi+1) and
�100

i=1(pi ∨ pi+1).

∗19. Model 16× 16 Sudoku puzzles (with 4× 4 blocks) as
satisfiability problems.

20. LetP(x) be the statement “Student x knows calculus” and
let Q(y) be the statement “Class y contains a student who
knows calculus.” Express each of these as quantifications
of P(x) and Q(y).

a) Some students know calculus.

b) Not every student knows calculus.

c) Every class has a student in it who knows calculus.

d) Every student in every class knows calculus.

e) There is at least one class with no students who know
calculus.

21. LetP(m, n) be the statement “m divides n,” where the do-
main for both variables consists of all positive integers.
(By “m divides n” we mean that n = km for some integer
k.) Determine the truth values of each of these statements.

a) P(4, 5) b) P(2, 4)

c) ∀m ∀nP (m, n) d) ∃m ∀nP (m, n)

e) ∃n ∀mP(m, n) f) ∀nP (1, n)

22. Find a domain for the quantifiers in ∃x∃y(x = y ∧
∀z((z = x) ∨ (z = y))) such that this statement is true.

Supplementary Exercises 113

23. Find a domain for the quantifiers in ∃x∃y(x = y ∧
∀z((z = x) ∨ (z = y))) such that this statement is false.

24. Use existential and universal quantifiers to express the
statement “No one has more than three grandmothers” us-
ing the propositional function G(x, y), which represents
“x is the grandmother of y.”

25. Use existential and universal quantifiers to express the
statement “Everyone has exactly two biological parents”
using the propositional function P(x, y), which repre-
sents “x is the biological parent of y.”

26. The quantifier ∃n denotes “there exists exactly n,” so that
∃nxP (x) means there exist exactly n values in the do-
main such that P(x) is true. Determine the true value of
these statements where the domain consists of all real
numbers.

a) ∃0x(x
2 = −1) b) ∃1x(|x| = 0)

c) ∃2x(x
2 = 2) d) ∃3x(x = |x|)

27. Express each of these statements using existential and
universal quantifiers and propositional logic where ∃n is
defined in Exercise 26.

a) ∃0xP (x) b) ∃1xP (x)

c) ∃2xP (x) d) ∃3xP (x)

28. Let P(x, y) be a propositional function. Show that
∃x ∀y P (x, y)→ ∀y ∃x P (x, y) is a tautology.

29. Let P(x) and Q(x) be propositional functions. Show
that∃x (P (x)→ Q(x)) and∀x P (x)→ ∃x Q(x) always
have the same truth value.

30. If ∀y ∃x P (x, y) is true, does it necessarily follow that
∃x ∀y P (x, y) is true?

31. If ∀x ∃y P (x, y) is true, does it necessarily follow that
∃x ∀y P (x, y) is true?

32. Find the negations of these statements.

a) If it snows today, then I will go skiing tomorrow.

b) Every person in this class understands mathematical
induction.

c) Some students in this class do not like discrete math-
ematics.

d) In every mathematics class there is some student who
falls asleep during lectures.

33. Express this statement using quantifiers: “Every student
in this class has taken some course in every department
in the school of mathematical sciences.”

34. Express this statement using quantifiers: “There is a build-
ing on the campus of some college in the United States in
which every room is painted white.”

35. Express the statement “There is exactly one student in this
class who has taken exactly one mathematics class at this
school” using the uniqueness quantifier. Then express this
statement using quantifiers, without using the uniqueness
quantifier.

36. Describe a rule of inference that can be used to prove that
there are exactly two elements x and y in a domain such
that P(x) and P(y) are true. Express this rule of inference
as a statement in English.

37. Use rules of inference to show that if the premises
∀x(P (x)→ Q(x)), ∀x(Q(x)→ R(x)), and ¬R(a),
where a is in the domain, are true, then the conclusion
¬P(a) is true.

38. Prove that if x3 is irrational, then x is irrational.

39. Prove that if x is irrational and x ≥ 0, then
√
x is irra-

tional.

40. Prove that given a nonnegative integer n, there is a unique
nonnegative integer m such that m2 ≤ n < (m+ 1)2.

41. Prove that there exists an integerm such thatm2 > 101000.
Is your proof constructive or nonconstructive?

42. Prove that there is a positive integer that can be written
as the sum of squares of positive integers in two differ-
ent ways. (Use a computer or calculator to speed up your
work.)

43. Disprove the statement that every positive integer is the
sum of the cubes of eight nonnegative integers.

44. Disprove the statement that every positive integer is the
sum of at most two squares and a cube of nonnegative
integers.

45. Disprove the statement that every positive integer is the
sum of 36 fifth powers of nonnegative integers.

46. Assuming the truth of the theorem that states that
√
n is

irrational whenever n is a positive integer that is not a
perfect square, prove that

√
2+

√
3 is irrational.

Computer Projects

Write programs with the specified input and output.

1. Given the truth values of the propositions p and q, find the
truth values of the conjunction, disjunction, exclusive or,
conditional statement, and biconditional of these proposi-
tions.

2. Given two bit strings of length n, find the bitwise AND,
bitwise OR, and bitwise XOR of these strings.

∗3. Give a compound proposition, determine whether it is sat-
isfiable by checking its truth value for all positive assign-
ments of truth values to its propositional variables.

4. Given the truth values of the propositions p and q in
fuzzy logic, find the truth value of the disjunction and
the conjunction of p and q (see Exercises 46 and 47 of
Section 1.1).

∗5. Given positive integersm andn, interactively play the game
of Chomp.

∗6. Given a portion of a checkerboard, look for tilings of this
checkerboard with various types of polyominoes, including
dominoes, the two types of triominoes, and larger polyomi-
noes.

114 1 / The Foundations: Logic and Proofs

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. Look for positive integers that are not the sum of the cubes
of nine different positive integers.

2. Look for positive integers greater than 79 that are not the
sum of the fourth powers of 18 positive integers.

3. Find as many positive integers as you can that can be writ-
ten as the sum of cubes of positive integers, in two different
ways, sharing this property with 1729.

∗4. Try to find winning strategies for the game of Chomp for
different initial configurations of cookies.

5. Construct the 12 different pentominoes, where a pentomino
is a polyomino consisting of five squares.

6. Find all the rectangles of 60 squares that can be tiled using
every one of the 12 different pentominoes.

Writing Projects

Respond to these with essays using outside sources.

1. Discuss logical paradoxes, including the paradox of Epi-
menides the Cretan, Jourdain’s card paradox, and the bar-
ber paradox, and how they are resolved.

2. Describe how fuzzy logic is being applied to practical ap-
plications. Consult one or more of the recent books on
fuzzy logic written for general audiences.

3. Describe some of the practical problems that can be mod-
eled as satisfiability problems.

4. Describe some of the techniques that have been devised
to help people solve Sudoku puzzles without the use of a
computer.

5. Describe the basic rules of WFF’N PROOF, The Game of

Modern Logic, developed by Layman Allen. Give exam-
ples of some of the games included in WFF’N PROOF.

6. Read some of the writings of Lewis Carroll on symbolic
logic. Describe in detail some of the models he used to
represent logical arguments and the rules of inference he
used in these arguments.

7. Extend the discussion of Prolog given in Section 1.4, ex-
plaining in more depth how Prolog employs resolution.

8. Discuss some of the techniques used in computational
logic, including Skolem’s rule.

9. “Automated theorem proving” is the task of using com-
puters to mechanically prove theorems. Discuss the goals
and applications of automated theorem proving and the
progress made in developing automated theorem provers.

10. Describe how DNA computing has been used to solve
instances of the satisfiability problem.

11. Look up some of the incorrect proofs of famous open
questions and open questions that were solved since 1970
and describe the type of error made in each proof.

12. Discuss what is known about winning strategies in the
game of Chomp.

13. Describe various aspects of proof strategy discussed by
George Pólya in his writings on reasoning, including
[Po62], [Po71], and [Po90].

14. Describe a few problems and results about tilings with
polyominoes, as described in [Go94] and [Ma91], for ex-
ample.

2
C H A P T E R

Basic Structures: Sets, Functions,
Sequences, Sums, and Matrices

2.1 Sets

2.2 Set Operations

2.3 Functions

2.4 Sequences and
Summations

2.5 Cardinality of
Sets

2.6 Matrices

Much of discrete mathematics is devoted to the study of discrete structures, used to repre-
sent discrete objects. Many important discrete structures are built using sets, which are

collections of objects.Among the discrete structures built from sets are combinations, unordered
collections of objects used extensively in counting; relations, sets of ordered pairs that represent
relationships between objects; graphs, sets of vertices and edges that connect vertices; and finite
state machines, used to model computing machines. These are some of the topics we will study
in later chapters.

The concept of a function is extremely important in discrete mathematics.A function assigns
to each element of a first set exactly one element of a second set, where the two sets are not
necessarily distinct. Functions play important roles throughout discrete mathematics. They are
used to represent the computational complexity of algorithms, to study the size of sets, to count
objects, and in a myriad of other ways. Useful structures such as sequences and strings are
special types of functions. In this chapter, we will introduce the notion of a sequence, which
represents ordered lists of elements. Furthermore, we will introduce some important types of
sequences and we will show how to define the terms of a sequence using earlier terms. We will
also address the problem of identifying a sequence from its first few terms.

In our study of discrete mathematics, we will often add consecutive terms of a sequence of
numbers. Because adding terms from a sequence, as well as other indexed sets of numbers, is
such a common occurrence, a special notation has been developed for adding such terms. In this
chapter, we will introduce the notation used to express summations. We will develop formulae
for certain types of summations that appear throughout the study of discrete mathematics. For
instance, we will encounter such summations in the analysis of the number of steps used by an
algorithm to sort a list of numbers so that its terms are in increasing order.

The relative sizes of infinite sets can be studied by introducing the notion of the size, or
cardinality, of a set. We say that a set is countable when it is finite or has the same size as the
set of positive integers. In this chapter we will establish the surprising result that the set of
rational numbers is countable, while the set of real numbers is not. We will also show how the
concepts we discuss can be used to show that there are functions that cannot be computed using
a computer program in any programming language.

Matrices are used in discrete mathematics to represent a variety of discrete structures. We
will review the basic material about matrices and matrix arithmetic needed to represent relations
and graphs. The matrix arithmetic we study will be used to solve a variety of problems involving
these structures.

2.1 Sets

Introduction

In this section, we study the fundamental discrete structure on which all other discrete structures
are built, namely, the set. Sets are used to group objects together. Often, but not always, the
objects in a set have similar properties. For instance, all the students who are currently enrolled
in your school make up a set. Likewise, all the students currently taking a course in discrete
mathematics at any school make up a set. In addition, those students enrolled in your school
who are taking a course in discrete mathematics form a set that can be obtained by taking the
elements common to the first two collections. The language of sets is a means to study such

115

116 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

collections in an organized fashion. We now provide a definition of a set. This definition is an
intuitive definition, which is not part of a formal theory of sets.

DEFINITION 1 A set is an unordered collection of objects, called elements or members of the set. A set is
said to contain its elements. We write a ∈ A to denote that a is an element of the set A. The
notation a ∈ A denotes that a is not an element of the set A.

It is common for sets to be denoted using uppercase letters. Lowercase letters are usually
used to denote elements of sets.

There are several ways to describe a set. One way is to list all the members of a set, when
this is possible. We use a notation where all members of the set are listed between braces. For
example, the notation {a, b, c, d} represents the set with the four elements a, b, c, and d. This
way of describing a set is known as the roster method.

EXAMPLE 1 The set V of all vowels in the English alphabet can be written as V = {a, e, i, o, u}. ▲

EXAMPLE 2 The set O of odd positive integers less than 10 can be expressed by O = {1, 3, 5, 7, 9}. ▲

EXAMPLE 3 Although sets are usually used to group together elements with common properties, there is
nothing that prevents a set from having seemingly unrelated elements. For instance, {a, 2, Fred,
New Jersey} is the set containing the four elements a, 2, Fred, and New Jersey. ▲

Sometimes the roster method is used to describe a set without listing all its members. Some
members of the set are listed, and then ellipses (. . .) are used when the general pattern of the
elements is obvious.

EXAMPLE 4 The set of positive integers less than 100 can be denoted by {1, 2, 3, . . . , 99}. ▲

Another way to describe a set is to use set builder notation. We characterize all those
elements in the set by stating the property or properties they must have to be members. For
instance, the set O of all odd positive integers less than 10 can be written as

O = {x | x is an odd positive integer less than 10},

or, specifying the universe as the set of positive integers, as

O = {x ∈ Z+ | x is odd and x < 10}.

We often use this type of notation to describe sets when it is impossible to list all the elements
of the set. For instance, the set Q+ of all positive rational numbers can be written as

Q+ = {x ∈ R | x = p
q
, for some positive integers p and q}.

Beware that mathe-
maticians disagree
whether 0 is a natural
number. We consider it
quite natural.

These sets, each denoted using a boldface letter, play an important role in discrete mathe-
matics:

N = {0, 1, 2, 3, . . .}, the set of natural numbers
Z = {. . . ,−2,−1, 0, 1, 2, . . .}, the set of integers
Z+ = {1, 2, 3, . . .}, the set of positive integers
Q = {p/q | p ∈ Z, q ∈ Z, and q = 0}, the set of rational numbers
R, the set of real numbers
R+, the set of positive real numbers
C, the set of complex numbers.

2.1 Sets 117

(Note that some people do not consider 0 a natural number, so be careful to check how the term
natural numbers is used when you read other books.)

Recall the notation for intervals of real numbers. When a and b are real numbers with
a < b, we write

[a, b] = {x | a ≤ x ≤ b}
[a, b) = {x | a ≤ x < b}
(a, b] = {x | a < x ≤ b}
(a, b) = {x | a < x < b}

Note that [a, b] is called the closed interval from a to b and (a, b) is called the open interval
from a to b.

Sets can have other sets as members, as Example 5 illustrates.

EXAMPLE 5 The set {N,Z,Q,R} is a set containing four elements, each of which is a set. The four elements
of this set are N, the set of natural numbers; Z, the set of integers; Q, the set of rational numbers;
and R, the set of real numbers. ▲

Remark: Note that the concept of a datatype, or type, in computer science is built upon the
concept of a set. In particular, a datatype or type is the name of a set, together with a set of
operations that can be performed on objects from that set. For example, boolean is the name of
the set {0, 1} together with operators on one or more elements of this set, such as AND, OR,
and NOT.

Because many mathematical statements assert that two differently specified collections of
objects are really the same set, we need to understand what it means for two sets to be equal.

DEFINITION 2 Two sets are equal if and only if they have the same elements. Therefore, if A and B are sets,
then A and B are equal if and only if ∀x(x ∈ A↔ x ∈ B). We write A = B if A and B are
equal sets.

EXAMPLE 6 The sets {1, 3, 5} and {3, 5, 1} are equal, because they have the same elements. Note that the
order in which the elements of a set are listed does not matter. Note also that it does not matter
if an element of a set is listed more than once, so {1, 3, 3, 3, 5, 5, 5, 5} is the same as the set
{1, 3, 5} because they have the same elements. ▲

GEORG CANTOR (1845–1918) Georg Cantor was born in St. Petersburg, Russia, where his father was a
successful merchant. Cantor developed his interest in mathematics in his teens. He began his university studies
in Zurich in 1862, but when his father died he left Zurich. He continued his university studies at the University
of Berlin in 1863, where he studied under the eminent mathematicians Weierstrass, Kummer, and Kronecker.
He received his doctor’s degree in 1867, after having written a dissertation on number theory. Cantor assumed
a position at the University of Halle in 1869, where he continued working until his death.

Cantor is considered the founder of set theory. His contributions in this area include the discovery that the
set of real numbers is uncountable. He is also noted for his many important contributions to analysis. Cantor
also was interested in philosophy and wrote papers relating his theory of sets with metaphysics.

Cantor married in 1874 and had five children. His melancholy temperament was balanced by his wife’s happy disposition.
Although he received a large inheritance from his father, he was poorly paid as a professor. To mitigate this, he tried to obtain a
better-paying position at the University of Berlin. His appointment there was blocked by Kronecker, who did not agree with Cantor’s
views on set theory. Cantor suffered from mental illness throughout the later years of his life. He died in 1918 from a heart attack.

118 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

THE EMPTY SET There is a special set that has no elements. This set is called the empty set,
or null set, and is denoted by ∅. The empty set can also be denoted by { } (that is, we represent
the empty set with a pair of braces that encloses all the elements in this set). Often, a set of
elements with certain properties turns out to be the null set. For instance, the set of all positive
integers that are greater than their squares is the null set.

A set with one element is called a singleton set. A common error is to confuse the empty{∅} has one more
element than ∅. set ∅ with the set {∅}, which is a singleton set. The single element of the set {∅} is the empty set

itself! A useful analogy for remembering this difference is to think of folders in a computer file
system. The empty set can be thought of as an empty folder and the set consisting of just the
empty set can be thought of as a folder with exactly one folder inside, namely, the empty folder.

NAIVE SET THEORY Note that the term object has been used in the definition of a set,
Definition 1, without specifying what an object is. This description of a set as a collection
of objects, based on the intuitive notion of an object, was first stated in 1895 by the German
mathematician Georg Cantor. The theory that results from this intuitive definition of a set, and
the use of the intuitive notion that for any property whatever, there is a set consisting of exactly
the objects with this property, leads to paradoxes, or logical inconsistencies. This was shown
by the English philosopher Bertrand Russell in 1902 (see Exercise 46 for a description of one of
these paradoxes). These logical inconsistencies can be avoided by building set theory beginning
with axioms. However, we will use Cantor’s original version of set theory, known as naive set
theory, in this book because all sets considered in this book can be treated consistently using
Cantor’s original theory. Students will find familiarity with naive set theory helpful if they go on
to learn about axiomatic set theory. They will also find the development of axiomatic set theory
much more abstract than the material in this text. We refer the interested reader to [Su72] to
learn more about axiomatic set theory.

Venn Diagrams

Sets can be represented graphically using Venn diagrams, named after the English mathemati-
cian John Venn, who introduced their use in 1881. In Venn diagrams the universal set U, which
contains all the objects under consideration, is represented by a rectangle. (Note that the uni-
versal set varies depending on which objects are of interest.) Inside this rectangle, circles or
other geometrical figures are used to represent sets. Sometimes points are used to represent the
particular elements of the set. Venn diagrams are often used to indicate the relationships between
sets. We show how a Venn diagram can be used in Example 7.

EXAMPLE 7 Draw a Venn diagram that represents V, the set of vowels in the English alphabet.

Solution: We draw a rectangle to indicate the universal set U , which is the set of the 26 letters
of the English alphabet. Inside this rectangle we draw a circle to represent V . Inside this circle
we indicate the elements of V with points (see Figure 1). ▲

U

V

a

eu

o i

FIGURE 1 Venn Diagram for the Set of Vowels.

2.1 Sets 119

Subsets

It is common to encounter situations where the elements of one set are also the elements of
a second set. We now introduce some terminology and notation to express such relationships
between sets.

DEFINITION 3 The set A is a subset of B if and only if every element of A is also an element of B. We use
the notation A ⊆ B to indicate that A is a subset of the set B.

We see that A ⊆ B if and only if the quantification

∀x(x ∈ A→ x ∈ B)

is true. Note that to show that A is not a subset of B we need only find one element x ∈ A with
x /∈ B. Such an x is a counterexample to the claim that x ∈ A implies x ∈ B.

We have these useful rules for determining whether one set is a subset of another:

Showing that A is a Subset of B To show that A ⊆ B, show that if x belongs to A then x

also belongs to B.

Showing that A is Not a Subset of B To show that A ⊆ B, find a single x ∈ A such that
x ∈ B.

EXAMPLE 8 The set of all odd positive integers less than 10 is a subset of the set of all positive integers less
than 10, the set of rational numbers is a subset of the set of real numbers, the set of all computer
science majors at your school is a subset of the set of all students at your school, and the set of
all people in China is a subset of the set of all people in China (that is, it is a subset of itself).
Each of these facts follows immediately by noting that an element that belongs to the first set
in each pair of sets also belongs to the second set in that pair. ▲

EXAMPLE 9 The set of integers with squares less than 100 is not a subset of the set of nonnegative integers
because −1 is in the former set [as (−1)2 < 100], but not the later set. The set of people who
have taken discrete mathematics at your school is not a subset of the set of all computer science
majors at your school if there is at least one student who has taken discrete mathematics who is
not a computer science major. ▲

BERTRAND RUSSELL (1872–1970) Bertrand Russell was born into a prominent English family active in
the progressive movement and having a strong commitment to liberty. He became an orphan at an early age
and was placed in the care of his father’s parents, who had him educated at home. He entered Trinity College,
Cambridge, in 1890, where he excelled in mathematics and in moral science. He won a fellowship on the basis
of his work on the foundations of geometry. In 1910 Trinity College appointed him to a lectureship in logic and
the philosophy of mathematics.

Russell fought for progressive causes throughout his life. He held strong pacifist views, and his protests
against World War I led to dismissal from his position at Trinity College. He was imprisoned for 6 months in
1918 because of an article he wrote that was branded as seditious. Russell fought for women’s suffrage in Great

Britain. In 1961, at the age of 89, he was imprisoned for the second time for his protests advocating nuclear disarmament.
Russell’s greatest work was in his development of principles that could be used as a foundation for all of mathematics. His

most famous work is Principia Mathematica, written with Alfred North Whitehead, which attempts to deduce all of mathematics
using a set of primitive axioms. He wrote many books on philosophy, physics, and his political ideas. Russell won the Nobel Prize
for literature in 1950.

120 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

U

A B

FIGURE 2 Venn Diagram Showing that A Is a Subset of B.

Theorem 1 shows that every nonempty set S is guaranteed to have at least two subsets, the
empty set and the set S itself, that is, ∅ ⊆ S and S ⊆ S.

THEOREM 1 For every set S, (i) ∅ ⊆ S and (ii) S ⊆ S.

Proof: We will prove (i) and leave the proof of (ii) as an exercise.
Let S be a set. To show that ∅ ⊆ S, we must show that ∀x(x ∈ ∅ → x ∈ S) is true. Because

the empty set contains no elements, it follows that x ∈ ∅ is always false. It follows that the
conditional statement x ∈ ∅ → x ∈ S is always true, because its hypothesis is always false and
a conditional statement with a false hypothesis is true. Therefore, ∀x(x ∈ ∅ → x ∈ S) is true.
This completes the proof of (i). Note that this is an example of a vacuous proof.

When we wish to emphasize that a set A is a subset of a set B but that A = B, we write
A ⊂ B and say that A is a proper subset of B. For A ⊂ B to be true, it must be the case that
A ⊆ B and there must exist an element x of B that is not an element of A. That is, A is a proper
subset of B if and only if

∀x(x ∈ A→ x ∈ B) ∧ ∃x(x ∈ B ∧ x ∈ A)

is true. Venn diagrams can be used to illustrate that a set A is a subset of a set B. We draw the
universal set U as a rectangle. Within this rectangle we draw a circle for B. Because A is a subset
of B, we draw the circle for A within the circle for B. This relationship is shown in Figure 2.

A useful way to show that two sets have the same elements is to show that each set is a
subset of the other. In other words, we can show that if A and B are sets with A ⊆ B and B ⊆ A,
then A = B. That is, A = B if and only if ∀x(x ∈ A→ x ∈ B) and ∀x(x ∈ B → x ∈ A) or
equivalently if and only if ∀x(x ∈ A↔ x ∈ B), which is what it means for the A and B to be
equal. Because this method of showing two sets are equal is so useful, we highlight it here.

JOHN VENN (1834–1923) John Venn was born into a London suburban family noted for its philanthropy.
He attended London schools and got his mathematics degree from Caius College, Cambridge, in 1857. He was
elected a fellow of this college and held his fellowship there until his death. He took holy orders in 1859 and,
after a brief stint of religious work, returned to Cambridge, where he developed programs in the moral sciences.
Besides his mathematical work, Venn had an interest in history and wrote extensively about his college and
family.

Venn’s book Symbolic Logic clarifies ideas originally presented by Boole. In this book, Venn presents a
systematic development of a method that uses geometric figures, known now as Venn diagrams. Today these
diagrams are primarily used to analyze logical arguments and to illustrate relationships between sets. In addition

to his work on symbolic logic, Venn made contributions to probability theory described in his widely used textbook on that subject.

2.1 Sets 121

Showing Two Sets are Equal To show that two sets A and B are equal, show that A ⊆ B

and B ⊆ A.

Sets may have other sets as members. For instance, we have the sets

A = {∅, {a}, {b}, {a, b}} and B = {x | x is a subset of the set {a, b}}.

Note that these two sets are equal, that is, A = B. Also note that {a} ∈ A, but a /∈ A.

The Size of a Set

Sets are used extensively in counting problems, and for such applications we need to discuss
the sizes of sets.

DEFINITION 4 Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer,
we say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted
by |S|.

Remark: The term cardinality comes from the common usage of the term cardinal number as
the size of a finite set.

EXAMPLE 10 Let A be the set of odd positive integers less than 10. Then |A| = 5. ▲

EXAMPLE 11 Let S be the set of letters in the English alphabet. Then |S| = 26. ▲

EXAMPLE 12 Because the null set has no elements, it follows that |∅| = 0. ▲

We will also be interested in sets that are not finite.

DEFINITION 5 A set is said to be infinite if it is not finite.

EXAMPLE 13 The set of positive integers is infinite. ▲
We will extend the notion of cardinality to infinite sets in Section 2.5, a challenging topic

full of surprising results.

Power Sets

Many problems involve testing all combinations of elements of a set to see if they satisfy some
property. To consider all such combinations of elements of a set S, we build a new set that has
as its members all the subsets of S.

DEFINITION 6 Given a set S, the power set of S is the set of all subsets of the set S. The power set of S is
denoted by P(S).

122 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

EXAMPLE 14 What is the power set of the set {0, 1, 2}?

Solution: The power set P({0, 1, 2}) is the set of all subsets of {0, 1, 2}. Hence,

P({0, 1, 2}) = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}.
Note that the empty set and the set itself are members of this set of subsets. ▲

EXAMPLE 15 What is the power set of the empty set? What is the power set of the set {∅}?

Solution: The empty set has exactly one subset, namely, itself. Consequently,

P(∅) = {∅}.
The set {∅} has exactly two subsets, namely, ∅ and the set {∅} itself. Therefore,

P({∅}) = {∅, {∅}}. ▲

If a set has n elements, then its power set has 2n elements. We will demonstrate this fact in
several ways in subsequent sections of the text.

Cartesian Products

The order of elements in a collection is often important. Because sets are unordered, a different
structure is needed to represent ordered collections. This is provided by ordered n-tuples.

DEFINITION 7 The ordered n-tuple (a1, a2, . . . , an) is the ordered collection that has a1 as its first element,
a2 as its second element, . . . , and an as its nth element.

We say that two ordered n-tuples are equal if and only if each corresponding pair of their
elements is equal. In other words, (a1, a2, . . . , an) = (b1, b2, . . . , bn) if and only if ai = bi ,
for i = 1, 2, . . . , n. In particular, ordered 2-tuples are called ordered pairs. The ordered pairs
(a, b) and (c, d) are equal if and only if a = c and b = d. Note that (a, b) and (b, a) are not
equal unless a = b.

RENÉ DESCARTES (1596–1650) René Descartes was born into a noble family near Tours, France, about
200 miles southwest of Paris. He was the third child of his father’s first wife; she died several days after his
birth. Because of René’s poor health, his father, a provincial judge, let his son’s formal lessons slide until, at
the age of 8, René entered the Jesuit college at La Flèche. The rector of the school took a liking to him and
permitted him to stay in bed until late in the morning because of his frail health. From then on, Descartes spent
his mornings in bed; he considered these times his most productive hours for thinking.

Descartes left school in 1612, moving to Paris, where he spent 2 years studying mathematics. He earned
a law degree in 1616 from the University of Poitiers. At 18 Descartes became disgusted with studying and
decided to see the world. He moved to Paris and became a successful gambler. However, he grew tired

of bawdy living and moved to the suburb of Saint-Germain, where he devoted himself to mathematical study. When his gambling
friends found him, he decided to leave France and undertake a military career. However, he never did any fighting. One day, while
escaping the cold in an overheated room at a military encampment, he had several feverish dreams, which revealed his future career
as a mathematician and philosopher.

After ending his military career, he traveled throughout Europe. He then spent several years in Paris, where he studied mathemat-
ics and philosophy and constructed optical instruments. Descartes decided to move to Holland, where he spent 20 years wandering
around the country, accomplishing his most important work. During this time he wrote several books, including the Discours, which
contains his contributions to analytic geometry, for which he is best known. He also made fundamental contributions to philosophy.

In 1649 Descartes was invited by Queen Christina to visit her court in Sweden to tutor her in philosophy. Although he was
reluctant to live in what he called “the land of bears amongst rocks and ice,” he finally accepted the invitation and moved to Sweden.
Unfortunately, the winter of 1649–1650 was extremely bitter. Descartes caught pneumonia and died in mid-February.

2.1 Sets 123

Many of the discrete structures we will study in later chapters are based on the notion of the
Cartesian product of sets (named after René Descartes). We first define the Cartesian product
of two sets.

DEFINITION 8 Let A and B be sets. The Cartesian product of A and B, denoted by A× B, is the set of all
ordered pairs (a, b), where a ∈ A and b ∈ B. Hence,

A× B = {(a, b) | a ∈ A ∧ b ∈ B}.

EXAMPLE 16 Let A represent the set of all students at a university, and let B represent the set of all courses
offered at the university. What is the Cartesian product A× B and how can it be used?

Solution: The Cartesian product A× B consists of all the ordered pairs of the form (a, b), where
a is a student at the university and b is a course offered at the university. One way to use the set
A× B is to represent all possible enrollments of students in courses at the university. ▲

EXAMPLE 17 What is the Cartesian product of A = {1, 2} and B = {a, b, c}?

Solution: The Cartesian product A× B is

A× B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}.

▲

Note that the Cartesian products A× B and B × A are not equal, unless A = ∅ or B = ∅
(so that A× B = ∅) or A = B (see Exercises 31 and 38). This is illustrated in Example 18.

EXAMPLE 18 Show that the Cartesian product B × A is not equal to the Cartesian product A× B, where A

and B are as in Example 17.

Solution: The Cartesian product B × A is

B × A = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}.

This is not equal to A× B, which was found in Example 17. ▲

The Cartesian product of more than two sets can also be defined.

DEFINITION 9 The Cartesian product of the sets A1, A2, . . . , An, denoted by A1 × A2 × · · · × An, is the
set of ordered n-tuples (a1, a2, . . . , an), where ai belongs to Ai for i = 1, 2, . . . , n. In other
words,

A1 × A2 × · · · × An = {(a1, a2, . . . , an) | ai ∈ Ai for i = 1, 2, . . . , n}.

124 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

EXAMPLE 19 What is the Cartesian product A× B × C, where A = {0, 1}, B = {1, 2}, and C = {0, 1, 2} ?

Solution: The Cartesian productA× B × C consists of all ordered triples (a, b, c), where a ∈ A,
b ∈ B, and c ∈ C. Hence,

A× B × C = {(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1), (0, 2, 2),

(1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)}. ▲

Remark: Note that when A, B, and C are sets, (A× B)× C is not the same as A× B × C (see
Exercise 39).

We use the notation A2 to denote A× A, the Cartesian product of the set A with itself.
Similarly, A3 = A× A× A, A4 = A× A× A× A, and so on. More generally,

An = {(a1, a2, . . . , an) | ai ∈ A for i = 1, 2, . . . , n}.

EXAMPLE 20 Suppose that A = {1, 2}. It follows that A2 = {(1, 1), (1, 2), (2, 1), (2, 2)} and A3 =
{(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)}. ▲

A subset R of the Cartesian product A× B is called a relation from the set A to the set
B. The elements of R are ordered pairs, where the first element belongs to A and the second
to B. For example, R = {(a, 0), (a, 1), (a, 3), (b, 1), (b, 2), (c, 0), (c, 3)} is a relation from the
set {a, b, c} to the set {0, 1, 2, 3}. A relation from a set A to itself is called a relation on A.

EXAMPLE 21 What are the ordered pairs in the less than or equal to relation, which contains (a, b) if a ≤ b,
on the set {0, 1, 2, 3}?

Solution: The ordered pair (a, b) belongs to R if and only if both a and b belong to {0, 1, 2, 3}
and a ≤ b. Consequently, the ordered pairs in R are (0,0), (0,1), (0,2), (0,3), (1,1), (1,2), (1,3),
(2,2), (2, 3), and (3, 3). ▲

We will study relations and their properties at length in Chapter 9.

Using Set Notation with Quantifiers

Sometimes we restrict the domain of a quantified statement explicitly by making use of a
particular notation. For example, ∀x∈S(P (x)) denotes the universal quantification of P(x)

over all elements in the set S. In other words, ∀x∈S(P (x)) is shorthand for ∀x(x ∈ S → P(x)).
Similarly, ∃x∈S(P (x)) denotes the existential quantification of P(x) over all elements in S.
That is, ∃x∈S(P (x)) is shorthand for ∃x(x ∈ S ∧ P(x)).

EXAMPLE 22 What do the statements ∀x∈R (x2 ≥ 0) and ∃x∈Z (x2 = 1) mean?

Solution: The statement ∀x∈R(x2 ≥ 0) states that for every real number x, x2 ≥ 0. This state-
ment can be expressed as “The square of every real number is nonnegative.” This is a true
statement.

The statement ∃x∈Z(x2 = 1) states that there exists an integer x such that x2 = 1. This
statement can be expressed as “There is an integer whose square is 1.” This is also a true statement
because x = 1 is such an integer (as is −1). ▲

2.1 Sets 125

Truth Sets and Quantifiers

We will now tie together concepts from set theory and from predicate logic. Given a predicate
P , and a domain D, we define the truth set of P to be the set of elements x in D for which
P(x) is true. The truth set of P(x) is denoted by {x ∈ D | P(x)}.

EXAMPLE 23 What are the truth sets of the predicates P(x), Q(x), and R(x), where the domain is the set of
integers and P(x) is “|x| = 1,” Q(x) is “x2 = 2,” and R(x) is “|x| = x.”

Solution: The truth set of P , {x ∈ Z | |x| = 1}, is the set of integers for which |x| = 1. Because
|x| = 1 when x = 1 or x = −1, and for no other integers x, we see that the truth set of P is the
set {−1, 1}.

The truth set of Q, {x ∈ Z | x2 = 2}, is the set of integers for which x2 = 2. This is the
empty set because there are no integers x for which x2 = 2.

The truth set of R, {x ∈ Z | |x| = x}, is the set of integers for which |x| = x. Because
|x| = x if and only if x ≥ 0, it follows that the truth set of R is N, the set of nonnegative
integers. ▲

Note that ∀xP (x) is true over the domain U if and only if the truth set of P is the set U .
Likewise, ∃xP (x) is true over the domain U if and only if the truth set of P is nonempty.

Exercises

1. List the members of these sets.

a) {x | x is a real number such that x2 = 1}
b) {x | x is a positive integer less than 12}
c) {x | x is the square of an integer and x < 100}
d) {x | x is an integer such that x2 = 2}

2. Use set builder notation to give a description of each of
these sets.

a) {0, 3, 6, 9, 12}
b) {−3,−2,−1, 0, 1, 2, 3}
c) {m, n, o, p}

3. For each of these pairs of sets, determine whether the first
is a subset of the second, the second is a subset of the first,
or neither is a subset of the other.

a) the set of airline flights from NewYork to New Delhi,
the set of nonstop airline flights from New York to
New Delhi

b) the set of people who speak English, the set of people
who speak Chinese

c) the set of flying squirrels, the set of living creatures
that can fly

4. For each of these pairs of sets, determine whether the first
is a subset of the second, the second is a subset of the first,
or neither is a subset of the other.

a) the set of people who speak English, the set of people
who speak English with an Australian accent

b) the set of fruits, the set of citrus fruits

c) the set of students studying discrete mathematics, the
set of students studying data structures

5. Determine whether each of these pairs of sets are equal.

a) {1, 3, 3, 3, 5, 5, 5, 5, 5}, {5, 3, 1}
b) {{1}}, {1, {1}} c) ∅, {∅}

6. Suppose that A = {2, 4, 6}, B = {2, 6}, C = {4, 6}, and
D = {4, 6, 8}. Determine which of these sets are subsets
of which other of these sets.

7. For each of the following sets, determine whether 2 is an
element of that set.

a) {x ∈ R | x is an integer greater than 1}
b) {x ∈ R | x is the square of an integer}
c) {2,{2}} d) {{2},{{2}}}
e) {{2},{2,{2}}} f) {{{2}}}

8. For each of the sets in Exercise 7, determine whether {2}
is an element of that set.

9. Determine whether each of these statements is true or
false.

a) 0 ∈ ∅ b) ∅ ∈ {0}
c) {0} ⊂ ∅ d) ∅ ⊂ {0}
e) {0} ∈ {0} f) {0} ⊂ {0}
g) {∅} ⊆ {∅}

10. Determine whether these statements are true or false.

a) ∅ ∈ {∅} b) ∅ ∈ {∅, {∅}}
c) {∅} ∈ {∅} d) {∅} ∈ {{∅}}
e) {∅} ⊂ {∅, {∅}} f) {{∅}} ⊂ {∅, {∅}}
g) {{∅}} ⊂ {{∅}, {∅}}

11. Determine whether each of these statements is true or
false.

a) x ∈ {x} b) {x} ⊆ {x} c) {x} ∈ {x}
d) {x} ∈ {{x}} e) ∅ ⊆ {x} f) ∅ ∈ {x}

12. Use aVenn diagram to illustrate the subset of odd integers
in the set of all positive integers not exceeding 10.

126 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

13. Use a Venn diagram to illustrate the set of all months of
the year whose names do not contain the letter R in the
set of all months of the year.

14. Use a Venn diagram to illustrate the relationship A ⊆ B

and B ⊆ C.

15. Use a Venn diagram to illustrate the relationships A ⊂ B

and B ⊂ C.

16. Use a Venn diagram to illustrate the relationships A ⊂ B

and A ⊂ C.

17. Suppose that A,B, and C are sets such that A ⊆ B and
B ⊆ C. Show that A ⊆ C.

18. Find two sets A and B such that A ∈ B and A ⊆ B.

19. What is the cardinality of each of these sets?

a) {a} b) {{a}}
c) {a, {a}} d) {a, {a}, {a, {a}}}

20. What is the cardinality of each of these sets?

a) ∅ b) {∅}
c) {∅, {∅}} d) {∅, {∅}, {∅, {∅}}}

21. Find the power set of each of these sets, where a and b

are distinct elements.

a) {a} b) {a, b} c) {∅, {∅}}
22. Can you conclude that A = B if A and B are two sets

with the same power set?

23. How many elements does each of these sets have where
a and b are distinct elements?

a) P({a, b, {a, b}})
b) P({∅, a, {a}, {{a}}})
c) P(P(∅))

24. Determine whether each of these sets is the power set of
a set, where a and b are distinct elements.

a) ∅ b) {∅, {a}}
c) {∅, {a}, {∅, a}} d) {∅, {a}, {b}, {a, b}}

25. Prove that P(A) ⊆ P(B) if and only if A ⊆ B.

26. Show that if A ⊆ C and B ⊆ D, then A× B ⊆ C ×D

27. Let A = {a, b, c, d} and B = {y, z}. Find

a) A× B. b) B × A.

28. What is the Cartesian product A× B, where A is the set
of courses offered by the mathematics department at a
university and B is the set of mathematics professors at
this university? Give an example of how this Cartesian
product can be used.

29. What is the Cartesian product A× B × C, where A is
the set of all airlines and B and C are both the set of all
cities in the United States? Give an example of how this
Cartesian product can be used.

30. Suppose that A× B = ∅, where A and B are sets. What
can you conclude?

31. Let A be a set. Show that ∅ × A = A× ∅ = ∅.

32. Let A = {a, b, c}, B = {x, y}, and C = {0, 1}. Find

a) A× B × C. b) C × B × A.
c) C × A× B. d) B × B × B.

33. Find A2 if

a) A = {0, 1, 3}. b) A = {1, 2, a, b}.
34. Find A3 if

a) A = {a}. b) A = {0, a}.
35. How many different elements does A× B have if A has

m elements and B has n elements?

36. How many different elements does A× B × C have if A
has m elements, B has n elements, and C has p elements?

37. How many different elements does An have when A has
m elements and n is a positive integer?

38. Show thatA× B = B × A, whenA andB are nonempty,
unless A = B.

39. Explain why A× B × C and (A× B)× C are not the
same.

40. Explain why (A× B)× (C ×D) and A× (B × C)×
D are not the same.

41. Translate each of these quantifications into English and
determine its truth value.

a) ∀x∈R (x2 = −1) b) ∃x∈Z (x2 = 2)
c) ∀x∈Z (x2 > 0) d) ∃x∈R (x2 = x)

42. Translate each of these quantifications into English and
determine its truth value.

a) ∃x∈R (x3 = −1) b) ∃x∈Z (x + 1 > x)

c) ∀x∈Z (x − 1 ∈ Z) d) ∀x∈Z (x2 ∈ Z)

43. Find the truth set of each of these predicates where the
domain is the set of integers.

a) P(x): x2 < 3 b) Q(x): x2 > x

c) R(x): 2x + 1 = 0

44. Find the truth set of each of these predicates where the
domain is the set of integers.

a) P(x): x3 ≥ 1 b) Q(x): x2 = 2
c) R(x): x < x2

∗45. The defining property of an ordered pair is that two or-
dered pairs are equal if and only if their first elements
are equal and their second elements are equal. Surpris-
ingly, instead of taking the ordered pair as a primitive con-
cept, we can construct ordered pairs using basic notions
from set theory. Show that if we define the ordered pair
(a, b) to be {{a}, {a, b}}, then (a, b) = (c, d) if and only
if a = c and b = d. [Hint: First show that {{a}, {a, b}} =
{{c}, {c, d}} if and only if a = c and b = d.]

∗46. This exercise presents Russell’s paradox. Let S be the
set that contains a set x if the set x does not belong to
itself, so that S = {x | x /∈ x}.
a) Show the assumption that S is a member of S leads to

a contradiction.
b) Show the assumption that S is not a member of S leads

to a contradiction.

By parts (a) and (b) it follows that the set S cannot be de-
fined as it was. This paradox can be avoided by restricting
the types of elements that sets can have.

∗47. Describe a procedure for listing all the subsets of a finite
set.

2.2 Set Operations 127

2.2 Set Operations

Introduction

Two, or more, sets can be combined in many different ways. For instance, starting with the set
of mathematics majors at your school and the set of computer science majors at your school, we
can form the set of students who are mathematics majors or computer science majors, the set of
students who are joint majors in mathematics and computer science, the set of all students not
majoring in mathematics, and so on.

DEFINITION 1 Let A and B be sets. The union of the sets A and B, denoted by A ∪ B, is the set that contains
those elements that are either in A or in B, or in both.

An element x belongs to the union of the sets A and B if and only if x belongs to A or x belongs
to B. This tells us that

A ∪ B = {x | x ∈ A ∨ x ∈ B}.

The Venn diagram shown in Figure 1 represents the union of two sets A and B. The area
that represents A ∪ B is the shaded area within either the circle representing A or the circle
representing B.

We will give some examples of the union of sets.

EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is,
{1, 3, 5} ∪ {1, 2, 3} = {1, 2, 3, 5}. ▲

EXAMPLE 2 The union of the set of all computer science majors at your school and the set of all mathe-
matics majors at your school is the set of students at your school who are majoring either in
mathematics or in computer science (or in both). ▲

DEFINITION 2 Let A and B be sets. The intersection of the sets A and B, denoted by A ∩ B, is the set
containing those elements in both A and B.

An element x belongs to the intersection of the sets A and B if and only if x belongs to A and
x belongs to B. This tells us that

A ∩ B = {x | x ∈ A ∧ x ∈ B}.

U

BA

A 傼 B is shaded.

FIGURE 1 Venn Diagram of the
Union of A and B.

U

BA

A 傽 B is shaded.

FIGURE 2 Venn Diagram of the
Intersection of A and B.

128 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

The Venn diagram shown in Figure 2 represents the intersection of two sets A and B. The shaded
area that is within both the circles representing the sets A and B is the area that represents the
intersection of A and B.

We give some examples of the intersection of sets.

EXAMPLE 3 The intersection of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 3}; that is,
{1, 3, 5} ∩ {1, 2, 3} = {1, 3}. ▲

EXAMPLE 4 The intersection of the set of all computer science majors at your school and the set of all
mathematics majors is the set of all students who are joint majors in mathematics and computer
science. ▲

DEFINITION 3 Two sets are called disjoint if their intersection is the empty set.

EXAMPLE 5 Let A = {1, 3, 5, 7, 9} and B = {2, 4, 6, 8, 10}. Because A ∩ B = ∅, A and B are disjoint. ▲

We are often interested in finding the cardinality of a union of two finite sets A and B. Note
that |A| + |B| counts each element that is in A but not in B or in B but not in A exactly once,

Be careful not to
overcount! and each element that is in both A and B exactly twice. Thus, if the number of elements that

are in both A and B is subtracted from |A| + |B|, elements in A ∩ B will be counted only once.
Hence,

|A ∪ B| = |A| + |B| − |A ∩ B|.
The generalization of this result to unions of an arbitrary number of sets is called the principle
of inclusion–exclusion. The principle of inclusion–exclusion is an important technique used in
enumeration. We will discuss this principle and other counting techniques in detail in Chapters 6
and 8.

There are other important ways to combine sets.

DEFINITION 4 Let A and B be sets. The difference of A and B, denoted by A− B, is the set containing those
elements that are in A but not in B. The difference of A and B is also called the complement

of B with respect to A.

Remark: The difference of sets A and B is sometimes denoted by A\B.

An element x belongs to the difference of A and B if and only if x ∈ A and x /∈ B. This tells us
that

A− B = {x | x ∈ A ∧ x /∈ B}.
The Venn diagram shown in Figure 3 represents the difference of the sets A and B. The shaded
area inside the circle that represents A and outside the circle that represents B is the area that
represents A− B.

We give some examples of differences of sets.

EXAMPLE 6 The difference of {1, 3, 5} and {1, 2, 3} is the set {5}; that is, {1, 3, 5} − {1, 2, 3} = {5}. This
is different from the difference of {1, 2, 3} and {1, 3, 5}, which is the set {2}. ▲

EXAMPLE 7 The difference of the set of computer science majors at your school and the set of mathematics
majors at your school is the set of all computer science majors at your school who are not also
mathematics majors. ▲

2.2 Set Operations 129

U

BA

A – B is shaded.

FIGURE 3 Venn Diagram for
the Difference of A and B.

U

A

A is shaded.

FIGURE 4 Venn Diagram for
the Complement of the Set A.

Once the universal set U has been specified, the complement of a set can be defined.

DEFINITION 5 Let U be the universal set. The complement of the set A, denoted by A, is the complement
of A with respect to U . Therefore, the complement of the set A is U − A.

An element belongs to A if and only if x /∈ A. This tells us that

A = {x ∈ U | x /∈ A}.

In Figure 4 the shaded area outside the circle representing A is the area representing A.
We give some examples of the complement of a set.

EXAMPLE 8 Let A = {a, e, i, o, u} (where the universal set is the set of letters of the English alphabet). Then
A = {b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v,w, x, y, z}. ▲

EXAMPLE 9 Let A be the set of positive integers greater than 10 (with universal set the set of all positive
integers). Then A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. ▲

It is left to the reader (Exercise 19) to show that we can express the difference of A and B

as the intersection of A and the complement of B. That is,

A− B = A ∩ B.

Set Identities

Table 1 lists the most important set identities. We will prove several of these identities here,
using three different methods. These methods are presented to illustrate that there are often many
different approaches to the solution of a problem. The proofs of the remaining identities will

Set identities and
propositional
equivalences are just
special cases of identities
for Boolean algebra.

be left as exercises. The reader should note the similarity between these set identities and the
logical equivalences discussed in Section 1.3. (Compare Table 6 of Section 1.6 and Table 1.) In
fact, the set identities given can be proved directly from the corresponding logical equivalences.
Furthermore, both are special cases of identities that hold for Boolean algebra (discussed in
Chapter 12).

One way to show that two sets are equal is to show that each is a subset of the other. Recall
that to show that one set is a subset of a second set, we can show that if an element belongs to
the first set, then it must also belong to the second set. We generally use a direct proof to do this.
We illustrate this type of proof by establishing the first of De Morgan’s laws.

130 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

TABLE 1 Set Identities.

Identity Name

A ∩ U = A Identity laws

A ∪ ∅ = A

A ∪ U = U Domination laws

A ∩ ∅ = ∅

A ∪ A = A Idempotent laws

A ∩ A = A

(A) = A Complementation law

A ∪ B = B ∪ A Commutative laws

A ∩ B = B ∩ A

A ∪ (B ∪ C) = (A ∪ B) ∪ C Associative laws

A ∩ (B ∩ C) = (A ∩ B) ∩ C

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) Distributive laws

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∩ B = A ∪ B De Morgan’s laws

A ∪ B = A ∩ B

A ∪ (A ∩ B) = A Absorption laws

A ∩ (A ∪ B) = A

A ∪ A = U Complement laws

A ∩ A = ∅

EXAMPLE 10 Prove that A ∩ B = A ∪ B.

Solution: We will prove that the two sets A ∩ B and A ∪ B are equal by showing that each set
This identity says that
the complement of the
intersection of two sets
is the union of their
complements.

is a subset of the other.
First, we will show that A ∩ B ⊆ A ∪ B. We do this by showing that if x is in A ∩ B, then it

must also be in A ∪ B. Now suppose that x ∈ A ∩ B. By the definition of complement, x ∈ A ∩
B. Using the definition of intersection, we see that the proposition¬((x ∈ A) ∧ (x ∈ B)) is true.

By applying De Morgan’s law for propositions, we see that ¬(x ∈ A) or ¬(x ∈ B). Using
the definition of negation of propositions, we have x ∈ A or x ∈ B. Using the definition of
the complement of a set, we see that this implies that x ∈ A or x ∈ B. Consequently, by the
definition of union, we see that x ∈ A ∪ B. We have now shown that A ∩ B ⊆ A ∪ B.

Next, we will show that A ∪ B ⊆ A ∩ B. We do this by showing that if x is in A ∪ B, then
it must also be in A ∩ B. Now suppose that x ∈ A ∪ B. By the definition of union, we know that
x ∈ A or x ∈ B. Using the definition of complement, we see that x ∈ A or x ∈ B. Consequently,
the proposition ¬(x ∈ A) ∨ ¬(x ∈ B) is true.

By De Morgan’s law for propositions, we conclude that ¬((x ∈ A) ∧ (x ∈ B)) is true.
By the definition of intersection, it follows that ¬(x ∈ A ∩ B). We now use the definition of
complement to conclude that x ∈ A ∩ B. This shows that A ∪ B ⊆ A ∩ B.

Because we have shown that each set is a subset of the other, the two sets are equal, and the
identity is proved. ▲

We can more succinctly express the reasoning used in Example 10 using set builder notation,
as Example 11 illustrates.

2.2 Set Operations 131

EXAMPLE 11 Use set builder notation and logical equivalences to establish the first De Morgan law A ∩ B =
A ∪ B.

Solution: We can prove this identity with the following steps.

A ∩ B = {x | x /∈ A ∩ B} by definition of complement

= {x | ¬(x ∈ (A ∩ B))} by definition of does not belong symbol

= {x | ¬(x ∈ A ∧ x ∈ B)} by definition of intersection

= {x | ¬(x ∈ A) ∨ ¬(x ∈ B)} by the first De Morgan law for logical equivalences

= {x | x /∈ A ∨ x /∈ B} by definition of does not belong symbol

= {x | x ∈ A ∨ x ∈ B} by definition of complement

= {x | x ∈ A ∪ B} by definition of union

= A ∪ B by meaning of set builder notation

Note that besides the definitions of complement, union, set membership, and set builder
notation, this proof uses the second De Morgan law for logical equivalences. ▲

Proving a set identity involving more than two sets by showing each side of the identity is
a subset of the other often requires that we keep track of different cases, as illustrated by the
proof in Example 12 of one of the distributive laws for sets.

EXAMPLE 12 Prove the second distributive law from Table 1, which states that A ∩ (B ∪ C) = (A ∩ B) ∪
(A ∩ C) for all sets A, B, and C.

Solution: We will prove this identity by showing that each side is a subset of the other side.
Suppose that x ∈ A ∩ (B ∪ C). Then x ∈ A and x ∈ B ∪ C. By the definition of union, it

follows that x ∈ A, and x ∈ B or x ∈ C (or both). In other words, we know that the compound
proposition (x ∈ A) ∧ ((x ∈ B) ∨ (x ∈ C)) is true. By the distributive law for conjunction over
disjunction, it follows that ((x ∈ A) ∧ (x ∈ B)) ∨ ((x ∈ A) ∧ (x ∈ C)).We conclude that either
x ∈ A andx ∈ B, orx ∈ A andx ∈ C. By the definition of intersection, it follows thatx ∈ A ∩ B

or x ∈ A ∩ C. Using the definition of union, we conclude that x ∈ (A ∩ B) ∪ (A ∩ C). We
conclude that A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C).

Now suppose that x ∈ (A ∩ B) ∪ (A ∩ C). Then, by the definition of union, x ∈ A ∩ B or
x ∈ A ∩ C. By the definition of intersection, it follows that x ∈ A and x ∈ B or that x ∈ A and
x ∈ C. From this we see that x ∈ A, and x ∈ B or x ∈ C. Consequently, by the definition of
union we see that x ∈ A and x ∈ B ∪ C. Furthermore, by the definition of intersection, it follows
that x ∈ A ∩ (B ∪ C). We conclude that (A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C). This completes
the proof of the identity. ▲

Set identities can also be proved using membership tables. We consider each combination
of sets that an element can belong to and verify that elements in the same combinations of sets
belong to both the sets in the identity. To indicate that an element is in a set, a 1 is used; to
indicate that an element is not in a set, a 0 is used. (The reader should note the similarity between
membership tables and truth tables.)

EXAMPLE 13 Use a membership table to show that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Solution: The membership table for these combinations of sets is shown in Table 2. This table
has eight rows. Because the columns for A ∩ (B ∪ C) and (A ∩ B) ∪ (A ∩ C) are the same, the
identity is valid. ▲

Additional set identities can be established using those that we have already proved. Consider
Example 14.

132 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

TABLE 2 A Membership Table for the Distributive Property.

A B C B ∪ C A ∩ (B ∪ C) A ∩ B A ∩ C (A ∩ B) ∪ (A ∩ C)

1 1 1 1 1 1 1 1

1 1 0 1 1 1 0 1

1 0 1 1 1 0 1 1

1 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0

EXAMPLE 14 Let A, B, and C be sets. Show that

A ∪ (B ∩ C) = (C ∪ B) ∩ A.

Solution: We have

A ∪ (B ∩ C) = A ∩ (B ∩ C) by the first De Morgan law

= A ∩ (B ∪ C) by the second De Morgan law

= (B ∪ C) ∩ A by the commutative law for intersections

= (C ∪ B) ∩ A by the commutative law for unions.

▲

Generalized Unions and Intersections

Because unions and intersections of sets satisfy associative laws, the sets A ∪ B ∪ C and
A ∩ B ∩ C are well defined; that is, the meaning of this notation is unambiguous when A,
B, and C are sets. That is, we do not have to use parentheses to indicate which operation
comes first because A ∪ (B ∪ C) = (A ∪ B) ∪ C and A ∩ (B ∩ C) = (A ∩ B) ∩ C. Note that
A ∪ B ∪ C contains those elements that are in at least one of the sets A, B, and C, and that
A ∩ B ∩ C contains those elements that are in all of A, B, and C. These combinations of the
three sets, A, B, and C, are shown in Figure 5.

U

A B

C

U

A

C

(a) A U B U C is shaded. (b) A B C is shaded.
U U

B

FIGURE 5 The Union and Intersection of A, B, and C.

2.2 Set Operations 133

EXAMPLE 15 Let A = {0, 2, 4, 6, 8}, B = {0, 1, 2, 3, 4}, and C = {0, 3, 6, 9}. What are A ∪ B ∪ C and
A ∩ B ∩ C?

Solution: The set A ∪ B ∪ C contains those elements in at least one of A, B, and C. Hence,

A ∪ B ∪ C = {0, 1, 2, 3, 4, 6, 8, 9}.

The set A ∩ B ∩ C contains those elements in all three of A, B, and C. Thus,

A ∩ B ∩ C = {0}. ▲

We can also consider unions and intersections of an arbitrary number of sets. We introduce
these definitions.

DEFINITION 6 The union of a collection of sets is the set that contains those elements that are members of
at least one set in the collection.

We use the notation

A1 ∪ A2 ∪ · · · ∪ An =
n

i=1

Ai

to denote the union of the sets A1, A2, . . . , An.

DEFINITION 7 The intersection of a collection of sets is the set that contains those elements that are members
of all the sets in the collection.

We use the notation

A1 ∩ A2 ∩ · · · ∩ An =
n

i=1

Ai

to denote the intersection of the sets A1, A2, . . . , An. We illustrate generalized unions and
intersections with Example 16.

EXAMPLE 16 For i = 1, 2, . . ., let Ai = {i, i + 1, i + 2, . . . }. Then,

n
i=1

Ai =
n

i=1

{i, i + 1, i + 2, . . . } = {1, 2, 3, . . . },

and

n
i=1

Ai =
n

i=1

{i, i + 1, i + 2, . . . } = {n, n+ 1, n+ 2, . . . } = An.

▲

134 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

We can extend the notation we have introduced for unions and intersections to other families of
sets. In particular, we use the notation

A1 ∪ A2 ∪ · · · ∪ An ∪ · · · =
∞
i=1

Ai

to denote the union of the sets A1, A2, . . . , An, Similarly, the intersection of these sets is
denoted by

A1 ∩ A2 ∩ · · · ∩ An ∩ · · · =
∞
i=1

Ai.

More generally, when I is a set, the notations

i∈I Ai and

i∈I Ai are used to denote
the intersection and union of the sets Ai for i ∈ I , respectively. Note that we have

i∈I Ai =

{x | ∀i ∈ I (x ∈ Ai)} and

i∈I Ai = {x | ∃i ∈ I (x ∈ Ai)}.

EXAMPLE 17 Suppose that Ai = {1, 2, 3, . . . , i} for i = 1, 2, 3, Then,

∞
i=1

Ai =
∞
i=1

{1, 2, 3, . . . , i} = {1, 2, 3, . . .} = Z+

and

∞
i=1

Ai =
∞
i=1

{1, 2, 3, . . . , i} = {1}.

To see that the union of these sets is the set of positive integers, note that every positive
integer n is in at least one of the sets, because it belongs toAn = {1, 2, . . . , n}, and every element
of the sets in the union is a positive integer. To see that the intersection of these sets is the set
{1}, note that the only element that belongs to all the sets A1, A2, . . . is 1. To see this note that
A1 = {1} and 1 ∈ Ai for i = 1, 2, ▲

Computer Representation of Sets

There are various ways to represent sets using a computer. One method is to store the elements
of the set in an unordered fashion. However, if this is done, the operations of computing the
union, intersection, or difference of two sets would be time-consuming, because each of these
operations would require a large amount of searching for elements. We will present a method
for storing elements using an arbitrary ordering of the elements of the universal set. This method
of representing sets makes computing combinations of sets easy.

Assume that the universal set U is finite (and of reasonable size so that the number of
elements of U is not larger than the memory size of the computer being used). First, specify an
arbitrary ordering of the elements of U, for instance a1, a2, . . . , an. Represent a subset A of U
with the bit string of length n, where the ith bit in this string is 1 if ai belongs to A and is 0 if
ai does not belong to A. Example 18 illustrates this technique.

EXAMPLE 18 Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and the ordering of elements of U has the elements in
increasing order; that is, ai = i. What bit strings represent the subset of all odd integers in U,

the subset of all even integers in U, and the subset of integers not exceeding 5 in U?

2.2 Set Operations 135

Solution: The bit string that represents the set of odd integers in U, namely, {1, 3, 5, 7, 9}, has
a one bit in the first, third, fifth, seventh, and ninth positions, and a zero elsewhere. It is

10 1010 1010.

(We have split this bit string of length ten into blocks of length four for easy reading.) Similarly,
we represent the subset of all even integers in U, namely, {2, 4, 6, 8, 10}, by the string

01 0101 0101.

The set of all integers in U that do not exceed 5, namely, {1, 2, 3, 4, 5}, is represented by the
string

11 1110 0000. ▲

Using bit strings to represent sets, it is easy to find complements of sets and unions, inter-
sections, and differences of sets. To find the bit string for the complement of a set from the bit
string for that set, we simply change each 1 to a 0 and each 0 to 1, because x ∈ A if and only if
x /∈ A. Note that this operation corresponds to taking the negation of each bit when we associate
a bit with a truth value—with 1 representing true and 0 representing false.

EXAMPLE 19 We have seen that the bit string for the set {1, 3, 5, 7, 9} (with universal set {1, 2, 3, 4,
5, 6, 7, 8, 9, 10}) is

10 1010 1010.

What is the bit string for the complement of this set?

Solution: The bit string for the complement of this set is obtained by replacing 0s with 1s and
vice versa. This yields the string

01 0101 0101,

which corresponds to the set {2, 4, 6, 8, 10}. ▲

To obtain the bit string for the union and intersection of two sets we perform bitwise Boolean
operations on the bit strings representing the two sets. The bit in the ith position of the bit string
of the union is 1 if either of the bits in the ith position in the two strings is 1 (or both are 1), and
is 0 when both bits are 0. Hence, the bit string for the union is the bitwise OR of the bit strings
for the two sets. The bit in the ith position of the bit string of the intersection is 1 when the bits
in the corresponding position in the two strings are both 1, and is 0 when either of the two bits
is 0 (or both are). Hence, the bit string for the intersection is the bitwise AND of the bit strings
for the two sets.

EXAMPLE 20 The bit strings for the sets {1, 2, 3, 4, 5} and {1, 3, 5, 7, 9} are 11 1110 0000 and 10 1010 1010,
respectively. Use bit strings to find the union and intersection of these sets.

Solution: The bit string for the union of these sets is

11 1110 0000 ∨ 10 1010 1010 = 11 1110 1010,

which corresponds to the set {1, 2, 3, 4, 5, 7, 9}. The bit string for the intersection of these sets
is

11 1110 0000 ∧ 10 1010 1010 = 10 1010 0000,

which corresponds to the set {1, 3, 5}. ▲

136 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Exercises

1. Let A be the set of students who live within one mile
of school and let B be the set of students who walk to
classes. Describe the students in each of these sets.

a) A ∩ B b) A ∪ B

c) A− B d) B − A

2. Suppose that A is the set of sophomores at your school
and B is the set of students in discrete mathematics at
your school. Express each of these sets in terms of A and
B.

a) the set of sophomores taking discrete mathematics in
your school

b) the set of sophomores at your school who are not tak-
ing discrete mathematics

c) the set of students at your school who either are sopho-
mores or are taking discrete mathematics

d) the set of students at your school who either are not
sophomores or are not taking discrete mathematics

3. Let A = {1, 2, 3, 4, 5} and B = {0, 3, 6}. Find

a) A ∪ B. b) A ∩ B.
c) A− B. d) B − A.

4. Let A = {a, b, c, d, e} and B = {a, b, c, d, e, f, g, h}.
Find

a) A ∪ B. b) A ∩ B.
c) A− B. d) B − A.

In Exercises 5–10 assume that A is a subset of some underly-
ing universal set U .
5. Prove the complementation law in Table 1 by showing

that A = A.
6. Prove the identity laws in Table 1 by showing that

a) A ∪ ∅ = A. b) A ∩ U = A.

7. Prove the domination laws in Table 1 by showing that

a) A ∪ U = U . b) A ∩ ∅ = ∅.

8. Prove the idempotent laws in Table 1 by showing that

a) A ∪ A = A. b) A ∩ A = A.

9. Prove the complement laws in Table 1 by showing that

a) A ∪ A = U. b) A ∩ A = ∅.

10. Show that

a) A− ∅ = A. b) ∅ − A = ∅.

11. Let A and B be sets. Prove the commutative laws from
Table 1 by showing that

a) A ∪ B = B ∪ A.
b) A ∩ B = B ∩ A.

12. Prove the first absorption law from Table 1 by showing
that if A and B are sets, then A ∪ (A ∩ B) = A.

13. Prove the second absorption law from Table 1 by showing
that if A and B are sets, then A ∩ (A ∪ B) = A.

14. Find the sets A and B if A− B = {1, 5, 7, 8}, B − A =
{2, 10}, and A ∩ B = {3, 6, 9}.

15. Prove the second De Morgan law in Table 1 by showing
that if A and B are sets, then A ∪ B = A ∩ B

a) by showing each side is a subset of the other side.

b) using a membership table.

16. Let A and B be sets. Show that

a) (A ∩ B) ⊆ A. b) A ⊆ (A ∪ B).
c) A− B ⊆ A. d) A ∩ (B − A) = ∅.
e) A ∪ (B − A) = A ∪ B.

17. Show that if A, B, and C are sets, then A ∩ B ∩ C =
A ∪ B ∪ C

a) by showing each side is a subset of the other side.
b) using a membership table.

18. Let A, B, and C be sets. Show that

a) (A ∪ B) ⊆ (A ∪ B ∪ C).
b) (A ∩ B ∩ C) ⊆ (A ∩ B).
c) (A− B)− C ⊆ A− C.
d) (A− C) ∩ (C − B) = ∅.
e) (B − A) ∪ (C − A) = (B ∪ C)− A.

19. Show that if A and B are sets, then

a) A− B = A ∩ B.
b) (A ∩ B) ∪ (A ∩ B) = A.

20. Show that if A and B are sets with A ⊆ B, then

a) A ∪ B = B.
b) A ∩ B = A.

21. Prove the first associative law from Table 1 by show-
ing that if A, B, and C are sets, then A ∪ (B ∪ C) =
(A ∪ B) ∪ C.

22. Prove the second associative law from Table 1 by show-
ing that if A, B, and C are sets, then A ∩ (B ∩ C) =
(A ∩ B) ∩ C.

23. Prove the first distributive law from Table 1 by show-
ing that if A, B, and C are sets, then A ∪ (B ∩ C) =
(A ∪ B) ∩ (A ∪ C).

24. Let A, B, and C be sets. Show that (A− B)− C =
(A− C)− (B − C).

25. Let A = {0, 2, 4, 6, 8, 10}, B = {0, 1, 2, 3, 4, 5, 6}, and
C = {4, 5, 6, 7, 8, 9, 10}. Find

a) A ∩ B ∩ C. b) A ∪ B ∪ C.
c) (A ∪ B) ∩ C. d) (A ∩ B) ∪ C.

26. Draw the Venn diagrams for each of these combinations
of the sets A, B, and C.

a) A ∩ (B ∪ C) b) A ∩ B ∩ C

c) (A− B) ∪ (A− C) ∪ (B − C)

27. Draw the Venn diagrams for each of these combinations
of the sets A, B, and C.

a) A ∩ (B − C) b) (A ∩ B) ∪ (A ∩ C)

c) (A ∩ B) ∪ (A ∩ C)

28. Draw the Venn diagrams for each of these combinations
of the sets A, B, C, and D.

a) (A ∩ B) ∪ (C ∩D) b) A ∪ B ∪ C ∪D

c) A− (B ∩ C ∩D)

29. What can you say about the sets A and B if we know that

a) A ∪ B = A? b) A ∩ B = A?
c) A− B = A? d) A ∩ B = B ∩ A?
e) A− B = B − A?

2.2 Set Operations 137

30. Can you conclude that A = B if A, B, and C are sets such
that

a) A ∪ C = B ∪ C? b) A ∩ C = B ∩ C?

c) A ∪ C = B ∪ C and A ∩ C = B ∩ C?

31. Let A and B be subsets of a universal set U . Show that
A ⊆ B if and only if B ⊆ A.

The symmetric difference of A and B, denoted by A⊕ B, is
the set containing those elements in either A or B, but not in
both A and B.

32. Find the symmetric difference of {1, 3, 5} and {1, 2, 3}.
33. Find the symmetric difference of the set of computer sci-

ence majors at a school and the set of mathematics majors
at this school.

34. Draw a Venn diagram for the symmetric difference of the
sets A and B.

35. Show that A⊕ B = (A ∪ B)− (A ∩ B).

36. Show that A⊕ B = (A− B) ∪ (B − A).

37. Show that if A is a subset of a universal set U , then

a) A⊕ A = ∅. b) A⊕ ∅ = A.

c) A⊕ U = A. d) A⊕ A = U .

38. Show that if A and B are sets, then

a) A⊕ B = B ⊕ A. b) (A⊕ B)⊕ B = A.

39. What can you say about the sets A and B if A⊕ B = A?
∗40. Determine whether the symmetric difference is associa-

tive; that is, if A, B, and C are sets, does it follow that
A⊕ (B ⊕ C) = (A⊕ B)⊕ C?

∗41. Suppose that A, B, and C are sets such that A⊕ C =
B ⊕ C. Must it be the case that A = B?

42. If A,B,C, and D are sets, does it follow that (A⊕ B)⊕
(C ⊕D) = (A⊕ C)⊕ (B ⊕D)?

43. If A, B, C, and D are sets, does it follow that (A⊕ B)⊕
(C ⊕D) = (A⊕D)⊕ (B ⊕ C)?

44. Show that if A and B are finite sets, then A ∪ B is a finite
set.

45. Show that if A is an infinite set, then whenever B is a set,
A ∪ B is also an infinite set.

∗46. Show that if A, B, and C are sets, then

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B|
− |A ∩ C| − |B ∩ C| + |A ∩ B ∩ C|.

(This is a special case of the inclusion–exclusion princi-
ple, which will be studied in Chapter 8.)

47. Let Ai = {1, 2, 3, . . . , i} for i = 1, 2, 3, Find

a)
n

i=1

Ai . b)
n

i=1

Ai .

48. Let Ai = {. . . ,−2,−1, 0, 1, . . . , i}. Find

a)
n

i=1

Ai . b)
n

i=1

Ai .

49. Let Ai be the set of all nonempty bit strings (that is, bit
strings of length at least one) of length not exceeding i.
Find

a)
n

i=1

Ai . b)
n

i=1

Ai .

50. Find
 ∞

i=1 Ai and
 ∞

i=1 Ai if for every positive integer i,

a) Ai = {i, i + 1, i + 2, . . .}.
b) Ai = {0, i}.
c) Ai = (0, i), that is, the set of real numbers x with

0 < x < i.

d) Ai = (i,∞), that is, the set of real numbers x with
x > i.

51. Find
 ∞

i=1 Ai and
 ∞

i=1 Ai if for every positive integer i,

a) Ai = {−i,−i + 1, . . . ,−1, 0, 1, . . . , i − 1, i}.
b) Ai = {−i, i}.
c) Ai = [−i, i], that is, the set of real numbers x with
−i ≤ x ≤ i.

d) Ai = [i,∞), that is, the set of real numbers x with
x ≥ i.

52. Suppose that the universal set is U = {1, 2, 3, 4,
5, 6, 7, 8, 9, 10}. Express each of these sets with bit
strings where the ith bit in the string is 1 if i is in the
set and 0 otherwise.

a) {3, 4, 5}
b) {1, 3, 6, 10}
c) {2, 3, 4, 7, 8, 9}

53. Using the same universal set as in the last problem, find
the set specified by each of these bit strings.

a) 11 1100 1111

b) 01 0111 1000

c) 10 0000 0001

54. What subsets of a finite universal set do these bit strings
represent?

a) the string with all zeros

b) the string with all ones

55. What is the bit string corresponding to the difference of
two sets?

56. What is the bit string corresponding to the symmetric dif-
ference of two sets?

57. Show how bitwise operations on bit strings can be
used to find these combinations of A = {a, b, c, d, e},
B = {b, c, d, g, p, t, v}, C = {c, e, i, o, u, x, y, z}, and
D = {d, e, h, i, n, o, t, u, x, y}.
a) A ∪ B b) A ∩ B

c) (A ∪D) ∩ (B ∪ C) d) A ∪ B ∪ C ∪D

58. How can the union and intersection of n sets that all are
subsets of the universal set U be found using bit strings?

The successor of the set A is the set A ∪ {A}.
59. Find the successors of the following sets.

a) {1, 2, 3} b) ∅
c) {∅} d) {∅, {∅}}

138 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

60. How many elements does the successor of a set with n

elements have?

Sometimes the number of times that an element occurs in an
unordered collection matters. Multisets are unordered collec-
tions of elements where an element can occur as a member
more than once. The notation {m1 · a1, m2 · a2, . . . , mr · ar }
denotes the multiset with element a1 occurring m1 times, el-
ement a2 occurring m2 times, and so on. The numbers mi ,
i = 1, 2, . . . , r are called the multiplicities of the elements
ai , i = 1, 2, . . . , r .

Let P and Q be multisets. The union of the multisets P

and Q is the multiset where the multiplicity of an element is
the maximum of its multiplicities in P and Q. The intersec-
tion of P and Q is the multiset where the multiplicity of an
element is the minimum of its multiplicities in P and Q. The
difference of P and Q is the multiset where the multiplicity
of an element is the multiplicity of the element in P less its
multiplicity in Q unless this difference is negative, in which
case the multiplicity is 0. The sum of P and Q is the multiset
where the multiplicity of an element is the sum of multiplic-
ities in P and Q. The union, intersection, and difference of
P and Q are denoted by P ∪Q, P ∩Q, and P −Q, respec-
tively (where these operations should not be confused with
the analogous operations for sets). The sum of P and Q is
denoted by P +Q.
61. Let A and B be the multisets {3 · a, 2 · b, 1 · c} and

{2 · a, 3 · b, 4 · d}, respectively. Find

a) A ∪ B. b) A ∩ B. c) A− B.
d) B − A. e) A+ B.

62. Suppose that A is the multiset that has as its elements
the types of computer equipment needed by one depart-
ment of a university and the multiplicities are the number
of pieces of each type needed, and B is the analogous
multiset for a second department of the university. For
instance, A could be the multiset {107 · personal comput-
ers, 44 · routers, 6 · servers} and B could be the multiset
{14 · personal computers, 6 · routers, 2 · mainframes}.
a) What combination of A and B represents the equip-

ment the university should buy assuming both depart-
ments use the same equipment?

b) What combination of A and B represents the equip-
ment that will be used by both departments if both
departments use the same equipment?

c) What combination of A and B represents the equip-
ment that the second department uses, but the first de-
partment does not, if both departments use the same
equipment?

d) What combination of A and B represents the equip-
ment that the university should purchase if the depart-
ments do not share equipment?

Fuzzy sets are used in artificial intelligence. Each element
in the universal set U has a degree of membership, which
is a real number between 0 and 1 (including 0 and 1), in a
fuzzy set S. The fuzzy set S is denoted by listing the elements
with their degrees of membership (elements with 0 degree of
membership are not listed). For instance, we write {0.6 Alice,
0.9 Brian, 0.4 Fred, 0.1 Oscar, 0.5 Rita} for the set F (of fa-
mous people) to indicate that Alice has a 0.6 degree of mem-
bership in F , Brian has a 0.9 degree of membership in F , Fred
has a 0.4 degree of membership in F , Oscar has a 0.1 degree
of membership in F , and Rita has a 0.5 degree of membership
in F (so that Brian is the most famous and Oscar is the least
famous of these people). Also suppose that R is the set of rich
people with R = {0.4 Alice, 0.8 Brian, 0.2 Fred, 0.9 Oscar,
0.7 Rita}.
63. The complement of a fuzzy set S is the set S, with the

degree of the membership of an element in S equal to
1 minus the degree of membership of this element in S.
Find F (the fuzzy set of people who are not famous) and
R (the fuzzy set of people who are not rich).

64. The union of two fuzzy sets S and T is the fuzzy set
S ∪ T , where the degree of membership of an element in
S ∪ T is the maximum of the degrees of membership of
this element in S and in T . Find the fuzzy set F ∪ R of
rich or famous people.

65. The intersection of two fuzzy sets S and T is the fuzzy
set S ∩ T , where the degree of membership of an element
in S ∩ T is the minimum of the degrees of membership
of this element in S and in T . Find the fuzzy set F ∩ R

of rich and famous people.

2.3 Functions

Introduction

In many instances we assign to each element of a set a particular element of a second set (which
may be the same as the first). For example, suppose that each student in a discrete mathematics
class is assigned a letter grade from the set {A,B,C,D, F }. And suppose that the grades are A

for Adams, C for Chou, B for Goodfriend, A for Rodriguez, and F for Stevens. This assignment
of grades is illustrated in Figure 1.

This assignment is an example of a function. The concept of a function is extremely impor-
tant in mathematics and computer science. For example, in discrete mathematics functions are
used in the definition of such discrete structures as sequences and strings. Functions are also
used to represent how long it takes a computer to solve problems of a given size. Many computer
programs and subroutines are designed to calculate values of functions. Recursive functions,

2.3 Functions 139

Adams

Chou

Goodfriend

Rodriguez

Stevens

A

B

C

D

F

FIGURE 1 Assignment of Grades in a Discrete Mathematics Class.

which are functions defined in terms of themselves, are used throughout computer science; they
will be studied in Chapter 5. This section reviews the basic concepts involving functions needed
in discrete mathematics.

DEFINITION 1 Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one
element of B to each element of A. We write f (a) = b if b is the unique element of B

assigned by the function f to the element a of A. If f is a function from A to B, we write
f : A→ B.

Remark: Functions are sometimes also called mappings or transformations.

Functions are specified in many different ways. Sometimes we explicitly state the assign-
ments, as in Figure 1. Often we give a formula, such as f (x) = x + 1, to define a function.
Other times we use a computer program to specify a function.

A function f : A→ B can also be defined in terms of a relation from A to B. Recall from
Section 2.1 that a relation from A to B is just a subset of A× B. A relation from A to B that
contains one, and only one, ordered pair (a, b) for every element a ∈ A, defines a function f

from A to B. This function is defined by the assignment f (a) = b, where (a, b) is the unique
ordered pair in the relation that has a as its first element.

DEFINITION 2 If f is a function from A to B, we say that A is the domain of f and B is the codomain of f.
If f (a) = b, we say that b is the image of a and a is a preimage of b. The range, or image,
of f is the set of all images of elements of A. Also, if f is a function from A to B, we say
that f maps A to B.

Figure 2 represents a function f from A to B.
When we define a function we specify its domain, its codomain, and the mapping of elements

of the domain to elements in the codomain. Two functions are equal when they have the same
domain, have the same codomain, and map each element of their common domain to the same
element in their common codomain. Note that if we change either the domain or the codomain

A B

a b = f (a)

f

f

FIGURE 2 The Function f Maps A to B.

140 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

of a function, then we obtain a different function. If we change the mapping of elements, then
we also obtain a different function.

Examples 1–5 provide examples of functions. In each case, we describe the domain, the
codomain, the range, and the assignment of values to elements of the domain.

EXAMPLE 1 What are the domain, codomain, and range of the function that assigns grades to students
described in the first paragraph of the introduction of this section?

Solution: LetG be the function that assigns a grade to a student in our discrete mathematics class.
Note that G(Adams) = A, for instance. The domain of G is the set {Adams, Chou, Goodfriend,
Rodriguez, Stevens}, and the codomain is the set {A,B,C,D, F }. The range of G is the set
{A,B,C, F }, because each grade except D is assigned to some student. ▲

EXAMPLE 2 Let R be the relation with ordered pairs (Abdul, 22), (Brenda, 24), (Carla, 21), (Desire, 22),
(Eddie, 24), and (Felicia, 22). Here each pair consists of a graduate student and this student’s
age. Specify a function determined by this relation.

Solution: If f is a function specified by R, then f (Abdul) = 22, f (Brenda) = 24,
f (Carla) = 21, f (Desire) = 22, f (Eddie) = 24, and f (Felicia) = 22. (Here, f (x) is the age
of x, where x is a student.) For the domain, we take the set {Abdul, Brenda, Carla, Desire,
Eddie, Felicia}. We also need to specify a codomain, which needs to contain all possible ages
of students. Because it is highly likely that all students are less than 100 years old, we can take
the set of positive integers less than 100 as the codomain. (Note that we could choose a different
codomain, such as the set of all positive integers or the set of positive integers between 10 and
90, but that would change the function. Using this codomain will also allow us to extend the
function by adding the names and ages of more students later.) The range of the function we
have specified is the set of different ages of these students, which is the set {21, 22, 24}. ▲

EXAMPLE 3 Let f be the function that assigns the last two bits of a bit string of length 2 or greater to that
string. For example, f (11010)= 10. Then, the domain of f is the set of all bit strings of length
2 or greater, and both the codomain and range are the set {00, 01, 10, 11}. ▲

EXAMPLE 4 Let f :Z→ Z assign the square of an integer to this integer. Then, f (x) = x2, where the domain
of f is the set of all integers, the codomain of f is the set of all integers, and the range of f is
the set of all integers that are perfect squares, namely, {0, 1, 4, 9, . . . }. ▲

EXAMPLE 5 The domain and codomain of functions are often specified in programming languages. For
instance, the Java statement

int floor(float real){. . .}
and the C++ function statement

int function (float x){. . .}
both tell us that the domain of the floor function is the set of real numbers (represented by
floating point numbers) and its codomain is the set of integers. ▲

A function is called real-valued if its codomain is the set of real numbers, and it is called
integer-valued if its codomain is the set of integers. Two real-valued functions or two integer-
valued functions with the same domain can be added, as well as multiplied.

2.3 Functions 141

DEFINITION 3 Let f1 and f2 be functions from A to R. Then f1 + f2 and f1f2 are also functions from A

to R defined for all x ∈ A by

(f1 + f2)(x) = f1(x)+ f2(x),

(f1f2)(x) = f1(x)f2(x).

Note that the functions f1 + f2 and f1f2 have been defined by specifying their values at x in
terms of the values of f1 and f2 at x.

EXAMPLE 6 Let f1 and f2 be functions from R to R such that f1(x) = x2 and f2(x) = x − x2. What are
the functions f1 + f2 and f1f2?

Solution: From the definition of the sum and product of functions, it follows that

(f1 + f2)(x) = f1(x)+ f2(x) = x2 + (x − x2) = x

and

(f1f2)(x) = x2(x − x2) = x3 − x4. ▲

When f is a function from A to B, the image of a subset of A can also be defined.

DEFINITION 4 Let f be a function from A to B and let S be a subset of A. The image of S under the function
f is the subset of B that consists of the images of the elements of S. We denote the image of
S by f (S), so

f (S) = {t | ∃s∈S (t = f (s))}.

We also use the shorthand {f (s) | s ∈ S} to denote this set.

Remark: The notation f (S) for the image of the set S under the function f is potentially
ambiguous. Here, f (S) denotes a set, and not the value of the function f for the set S.

EXAMPLE 7 Let A = {a, b, c, d, e} and B = {1, 2, 3, 4}with f (a) = 2, f (b) = 1, f (c) = 4, f (d) = 1, and
f (e) = 1. The image of the subset S = {b, c, d} is the set f (S) = {1, 4}. ▲

One-to-One and Onto Functions

Some functions never assign the same value to two different domain elements. These functions
are said to be one-to-one.

DEFINITION 5 A function f is said to be one-to-one, or an injunction, if and only if f (a) = f (b) implies that
a = b for all a and b in the domain of f. A function is said to be injective if it is one-to-one.

142 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

a

b

c

d

1

2

3

4

5

FIGURE 3 A One-to-One Function.

Note that a function f is one-to-one if and only if f (a) = f (b) whenever a = b. This way
of expressing that f is one-to-one is obtained by taking the contrapositive of the implication in
the definition.

Remark: We can express thatf is one-to-one using quantifiers as∀a∀b(f (a) = f (b)→ a = b)

or equivalently ∀a∀b(a = b→ f (a) = f (b)), where the universe of discourse is the domain
of the function.

We illustrate this concept by giving examples of functions that are one-to-one and other
functions that are not one-to-one.

EXAMPLE 8 Determine whether the function f from {a, b, c, d} to {1, 2, 3, 4, 5} with f (a) = 4, f (b) = 5,
f (c) = 1, and f (d) = 3 is one-to-one.

Solution: The function f is one-to-one because f takes on different values at the four elements
of its domain. This is illustrated in Figure 3. ▲

EXAMPLE 9 Determine whether the function f (x) = x2 from the set of integers to the set of integers is
one-to-one.

Solution: The function f (x) = x2 is not one-to-one because, for instance, f (1) = f (−1) = 1,
but 1 = −1.

Note that the function f (x) = x2 with its domain restricted to Z+ is one-to-one. (Techni-
cally, when we restrict the domain of a function, we obtain a new function whose values agree
with those of the original function for the elements of the restricted domain. The restricted
function is not defined for elements of the original domain outside of the restricted domain.) ▲

EXAMPLE 10 Determine whether the function f (x) = x + 1 from the set of real numbers to itself is one-to-
one.

Solution: The function f (x) = x + 1 is a one-to-one function. To demonstrate this, note that
x + 1 = y + 1 when x = y. ▲

EXAMPLE 11 Suppose that each worker in a group of employees is assigned a job from a set of possible
jobs, each to be done by a single worker. In this situation, the function f that assigns a job
to each worker is one-to-one. To see this, note that if x and y are two different workers, then
f (x) = f (y) because the two workers x and y must be assigned different jobs. ▲

We now give some conditions that guarantee that a function is one-to-one.

2.3 Functions 143

a

b

c

d

1

2

3

FIGURE 4 An Onto Function.

DEFINITION 6 A function f whose domain and codomain are subsets of the set of real numbers is called
increasing if f (x) ≤ f (y), and strictly increasing if f (x) < f (y), whenever x < y and x

and y are in the domain of f. Similarly, f is called decreasing if f (x) ≥ f (y), and strictly

decreasing if f (x) > f (y), whenever x < y and x and y are in the domain of f. (The word
strictly in this definition indicates a strict inequality.)

Remark: A function f is increasing if ∀x∀y(x < y → f (x) ≤ f (y)), strictly increasing if
∀x∀y(x < y → f (x) < f (y)), decreasing if ∀x∀y(x < y → f (x) ≥ f (y)), and strictly de-
creasing if ∀x∀y(x < y → f (x) > f (y)), where the universe of discourse is the domain of f.

From these definitions, it can be shown (see Exercises 26 and 27) that a function that is
either strictly increasing or strictly decreasing must be one-to-one. However, a function that is
increasing, but not strictly increasing, or decreasing, but not strictly decreasing, is not one-to-one.

For some functions the range and the codomain are equal. That is, every member of the
codomain is the image of some element of the domain. Functions with this property are called
onto functions.

DEFINITION 7 A function f from A to B is called onto, or a surjection, if and only if for every element
b ∈ B there is an element a ∈ A with f (a) = b. A function f is called surjective if it is onto.

Remark: A function f is onto if ∀y∃x(f (x) = y), where the domain for x is the domain of the
function and the domain for y is the codomain of the function.

We now give examples of onto functions and functions that are not onto.

EXAMPLE 12 Let f be the function from {a, b, c, d} to {1, 2, 3} defined by f (a) = 3, f (b) = 2, f (c) = 1,
and f (d) = 3. Is f an onto function?

Solution: Because all three elements of the codomain are images of elements in the domain, we
see that f is onto. This is illustrated in Figure 4. Note that if the codomain were {1, 2, 3, 4},
then f would not be onto. ▲

EXAMPLE 13 Is the function f (x) = x2 from the set of integers to the set of integers onto?

Solution: The function f is not onto because there is no integer x with x2 = −1, for instance. ▲

EXAMPLE 14 Is the function f (x) = x + 1 from the set of integers to the set of integers onto?

144 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

a

b

c

1

2

3

4

a

b

c

d

1

2

3

a

b

c

d

1

2

3

4

a

b

c

d

1

2

3

4

a

b

c

1

2

3

4

One-to-one,
not onto

Onto,
not one-to-one

 One-to-one,
and onto

Neither one-to-one
nor onto

Not a function(a) (b) (c) (d) (e)

FIGURE 5 Examples of Different Types of Correspondences.

Solution: This function is onto, because for every integer y there is an integer x such that
f (x) = y. To see this, note that f (x) = y if and only if x + 1 = y, which holds if and only if
x = y − 1. ▲

EXAMPLE 15 Consider the function f in Example 11 that assigns jobs to workers. The function f is onto if
for every job there is a worker assigned this job. The function f is not onto when there is at
least one job that has no worker assigned it. ▲

DEFINITION 8 The function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and
onto. We also say that such a function is bijective.

Examples 16 and 17 illustrate the concept of a bijection.

EXAMPLE 16 Let f be the function from {a, b, c, d} to {1, 2, 3, 4} with f (a) = 4, f (b) = 2, f (c) = 1, and
f (d) = 3. Is f a bijection?

Solution: The function f is one-to-one and onto. It is one-to-one because no two values in
the domain are assigned the same function value. It is onto because all four elements of the
codomain are images of elements in the domain. Hence, f is a bijection. ▲

Figure 5 displays four functions where the first is one-to-one but not onto, the second is onto
but not one-to-one, the third is both one-to-one and onto, and the fourth is neither one-to-one
nor onto. The fifth correspondence in Figure 5 is not a function, because it sends an element to
two different elements.

Suppose that f is a function from a set A to itself. If A is finite, then f is one-to-one if and
only if it is onto. (This follows from the result in Exercise 72.) This is not necessarily the case
if A is infinite (as will be shown in Section 2.5).

EXAMPLE 17 Let A be a set. The identity function on A is the function ιA : A→ A, where

ιA(x) = x

for all x ∈ A. In other words, the identity function ιA is the function that assigns each element
to itself. The function ιA is one-to-one and onto, so it is a bijection. (Note that ι is the Greek
letter iota.) ▲

For future reference, we summarize what needs be to shown to establish whether a function
is one-to-one and whether it is onto. It is instructive to review Examples 8–17 in light of this
summary.

2.3 Functions 145

Suppose that f : A→ B.

To show that f is injective Show that if f (x) = f (y) for arbitrary x, y ∈ A with x = y,
then x = y.

To show that f is not injective Find particular elements x, y ∈ A such that x = y and
f (x) = f (y).

To show that f is surjective Consider an arbitrary element y ∈ B and find an element x ∈ A

such that f (x) = y.

To show that f is not surjective Find a particular y ∈ B such that f (x) = y for all x ∈ A.

Inverse Functions and Compositions of Functions

Now consider a one-to-one correspondence f from the set A to the set B. Because f is an onto
function, every element of B is the image of some element in A. Furthermore, because f is also
a one-to-one function, every element of B is the image of a unique element of A. Consequently,
we can define a new function from B to A that reverses the correspondence given by f . This
leads to Definition 9.

DEFINITION 9 Let f be a one-to-one correspondence from the set A to the set B. The inverse function of
f is the function that assigns to an element b belonging to B the unique element a in A

such that f (a) = b. The inverse function of f is denoted by f−1. Hence, f−1(b) = a when
f (a) = b.

Remark: Be sure not to confuse the function f−1 with the function 1/f , which is the function
that assigns to each x in the domain the value 1/f (x). Notice that the latter makes sense only
when f (x) is a non-zero real number.

Figure 6 illustrates the concept of an inverse function.
If a function f is not a one-to-one correspondence, we cannot define an inverse function of

f . When f is not a one-to-one correspondence, either it is not one-to-one or it is not onto. If
f is not one-to-one, some element b in the codomain is the image of more than one element in
the domain. If f is not onto, for some element b in the codomain, no element a in the domain
exists for which f (a) = b. Consequently, if f is not a one-to-one correspondence, we cannot
assign to each element b in the codomain a unique element a in the domain such that f (a) = b

(because for some b there is either more than one such a or no such a).
A one-to-one correspondence is called invertible because we can define an inverse of this

function. A function is not invertible if it is not a one-to-one correspondence, because the
inverse of such a function does not exist.

f

A B

a = f –1(b) b = f (a)f (a)

f –1(b)

f –1

FIGURE 6 The Function f−1 Is the Inverse of Function f .

146 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

EXAMPLE 18 Let f be the function from {a, b, c} to {1, 2, 3} such that f (a) = 2, f (b) = 3, and f (c) = 1.
Is f invertible, and if it is, what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The in-
verse function f−1 reverses the correspondence given by f , so f−1(1) = c, f−1(2) = a, and
f−1(3) = b. ▲

EXAMPLE 19 Let f : Z→ Z be such that f (x) = x + 1. Is f invertible, and if it is, what is its inverse?

Solution: The function f has an inverse because it is a one-to-one correspondence, as follows
from Examples 10 and 14. To reverse the correspondence, suppose that y is the image of x, so
that y = x + 1. Then x = y − 1. This means that y − 1 is the unique element of Z that is sent
to y by f . Consequently, f−1(y) = y − 1. ▲

EXAMPLE 20 Let f be the function from R to R with f (x) = x2. Is f invertible?

Solution: Because f (−2) = f (2) = 4, f is not one-to-one. If an inverse function were defined,
it would have to assign two elements to 4. Hence, f is not invertible. (Note we can also show
that f is not invertible because it is not onto.) ▲

Sometimes we can restrict the domain or the codomain of a function, or both, to obtain an
invertible function, as Example 21 illustrates.

EXAMPLE 21 Show that if we restrict the function f (x) = x2 in Example 20 to a function from the set of all
nonnegative real numbers to the set of all nonnegative real numbers, then f is invertible.

Solution: The function f (x) = x2 from the set of nonnegative real numbers to the set of non-
negative real numbers is one-to-one. To see this, note that if f (x) = f (y), then x2 = y2, so
x2 − y2 = (x + y)(x − y) = 0. This means that x + y = 0 or x − y = 0, so x = −y or x = y.
Because both x and y are nonnegative, we must have x = y. So, this function is one-to-one.
Furthermore, f (x) = x2 is onto when the codomain is the set of all nonnegative real numbers,
because each nonnegative real number has a square root. That is, if y is a nonnegative real
number, there exists a nonnegative real number x such that x = √y, which means that x2 = y.
Because the function f (x) = x2 from the set of nonnegative real numbers to the set of non-
negative real numbers is one-to-one and onto, it is invertible. Its inverse is given by the rule
f−1(y) = √y. ▲

DEFINITION 10 Let g be a function from the set A to the set B and let f be a function from the set B to the
set C. The composition of the functions f and g, denoted for all a ∈ A by f ◦ g, is defined
by

(f ◦ g)(a) = f (g(a)).

In other words, f ◦ g is the function that assigns to the element a of A the element assigned
by f to g(a). That is, to find (f ◦ g)(a) we first apply the function g to a to obtain g(a) and
then we apply the function f to the result g(a) to obtain (f ◦ g)(a) = f (g(a)). Note that the
composition f ◦ g cannot be defined unless the range of g is a subset of the domain of f . In
Figure 7 the composition of functions is shown.

2.3 Functions 147

A B

a g(a)

g(a)

C

f (g(a))

f (g(a))

g f

(f g)(a)

f g

FIGURE 7 The Composition of the Functions f and g.

EXAMPLE 22 Let g be the function from the set {a, b, c} to itself such that g(a) = b, g(b) = c, and g(c) = a.
Let f be the function from the set {a, b, c} to the set {1, 2, 3} such that f (a) = 3, f (b) = 2, and
f (c) = 1. What is the composition of f and g, and what is the composition of g and f ?

Solution: The composition f ◦ g is defined by (f ◦ g)(a) = f (g(a)) = f (b) = 2,
(f ◦ g) (b) = f (g(b)) = f (c) = 1, and (f ◦ g)(c) = f (g(c)) = f (a) = 3.

Note that g ◦ f is not defined, because the range of f is not a subset of the domain of g. ▲

EXAMPLE 23 Let f and g be the functions from the set of integers to the set of integers defined by
f (x) = 2x + 3 and g(x) = 3x + 2. What is the composition of f and g? What is the com-
position of g and f ?

Solution: Both the compositions f ◦ g and g ◦ f are defined. Moreover,

(f ◦ g)(x) = f (g(x)) = f (3x + 2) = 2(3x + 2)+ 3 = 6x + 7

and

(g ◦ f)(x) = g(f (x)) = g(2x + 3) = 3(2x + 3)+ 2 = 6x + 11. ▲

Remark: Note that even though f ◦ g and g ◦ f are defined for the functions f and g in
Example 23, f ◦ g and g ◦ f are not equal. In other words, the commutative law does not hold
for the composition of functions.

When the composition of a function and its inverse is formed, in either order, an identity
function is obtained. To see this, suppose that f is a one-to-one correspondence from the set A
to the set B. Then the inverse function f−1 exists and is a one-to-one correspondence from B

to A. The inverse function reverses the correspondence of the original function, so f−1(b) = a

when f (a) = b, and f (a) = b when f−1(b) = a. Hence,

(f−1 ◦ f)(a) = f−1(f (a)) = f−1(b) = a,

and

(f ◦ f−1)(b) = f (f−1(b)) = f (a) = b.

Consequently f−1 ◦ f = ιA and f ◦ f−1 = ιB , where ιA and ιB are the identity functions on
the sets A and B, respectively. That is, (f−1)−1 = f .

148 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

The Graphs of Functions

We can associate a set of pairs in A× B to each function from A to B. This set of pairs is called
the graph of the function and is often displayed pictorially to aid in understanding the behavior
of the function.

DEFINITION 11 Let f be a function from the set A to the set B. The graph of the function f is the set of
ordered pairs {(a, b) | a ∈ A and f (a) = b}.

From the definition, the graph of a function f from A to B is the subset of A× B containing the
ordered pairs with the second entry equal to the element of B assigned by f to the first entry.
Also, note that the graph of a function f from A to B is the same as the relation from A to B

determined by the function f , as described on page 139.

EXAMPLE 24 Display the graph of the function f (n) = 2n+ 1 from the set of integers to the set of integers.

Solution: The graph of f is the set of ordered pairs of the form (n, 2n+ 1), where n is an integer.
This graph is displayed in Figure 8. ▲

EXAMPLE 25 Display the graph of the function f (x) = x2 from the set of integers to the set of integers.

Solution: The graph of f is the set of ordered pairs of the form (x, f (x)) = (x, x2), where x is
an integer. This graph is displayed in Figure 9. ▲

Some Important Functions

Next, we introduce two important functions in discrete mathematics, namely, the floor and ceiling
functions. Let x be a real number. The floor function rounds x down to the closest integer less
than or equal to x, and the ceiling function rounds x up to the closest integer greater than or
equal to x. These functions are often used when objects are counted. They play an important
role in the analysis of the number of steps used by procedures to solve problems of a particular
size.

FIGURE 8 The Graph of
f (n) = 2n+ 1 from Z to Z.

(3,9)(–3,9)

(2,4)

(1,1)(–1,1)

(0,0)

(–2,4)

FIGURE 9 The Graph of
f (x) = x2 from Z to Z.

2.3 Functions 149

DEFINITION 12 The floor function assigns to the real number x the largest integer that is less than or equal to
x. The value of the floor function at x is denoted by x . The ceiling function assigns to the
real number x the smallest integer that is greater than or equal to x. The value of the ceiling
function at x is denoted by x .

Remark: The floor function is often also called the greatest integer function. It is often denoted
by [x].

EXAMPLE 26 These are some values of the floor and ceiling functions:

 1
2 = 0, 1

2 = 1, − 1
2 = −1, − 1

2 = 0, 3.1 = 3, 3.1 = 4, 7 = 7, 7 = 7. ▲

We display the graphs of the floor and ceiling functions in Figure 10. In Figure 10(a) we display
the graph of the floor function x . Note that this function has the same value throughout the
interval [n, n+ 1), namely n, and then it jumps up to n+ 1 when x = n+ 1. In Figure 10(b)
we display the graph of the ceiling function x . Note that this function has the same value
throughout the interval (n, n+ 1], namely n+ 1, and then jumps to n+ 2 when x is a little
larger than n+ 1.

The floor and ceiling functions are useful in a wide variety of applications, including those
involving data storage and data transmission. Consider Examples 27 and 28, typical of basic
calculations done when database and data communications problems are studied.

EXAMPLE 27 Data stored on a computer disk or transmitted over a data network are usually represented as a
string of bytes. Each byte is made up of 8 bits. How many bytes are required to encode 100 bits
of data?

Solution: To determine the number of bytes needed, we determine the smallest integer that is at
least as large as the quotient when 100 is divided by 8, the number of bits in a byte. Consequently,
 100/8 = 12.5 = 13 bytes are required. ▲

EXAMPLE 28 In asynchronous transfer mode (ATM) (a communications protocol used on backbone networks),
data are organized into cells of 53 bytes. How many ATM cells can be transmitted in 1 minute
over a connection that transmits data at the rate of 500 kilobits per second?

Solution: In 1 minute, this connection can transmit 500,000 · 60 = 30,000,000 bits. Each ATM
cell is 53 bytes long, which means that it is 53 · 8 = 424 bits long. To determine the number

(a) y = [x]

3

2

1

–2

–3

–1–2–3 1 2 3

–1

(b) y = [x]

3

2

1

–2

–3

–1–2–3 1 2 3

–1

FIGURE 10 Graphs of the (a) Floor and (b) Ceiling Functions.

150 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

TABLE 1 Useful Properties of the Floor
and Ceiling Functions.
(n is an integer, x is a real number)

(1a) x = n if and only if n ≤ x < n+ 1

(1b) x = n if and only if n− 1 < x ≤ n

(1c) x = n if and only if x − 1 < n ≤ x

(1d) x = n if and only if x ≤ n < x + 1

(2) x − 1 < x ≤ x ≤ x < x + 1

(3a) −x = − x
(3b) −x = − x

(4a) x + n = x + n

(4b) x + n = x + n

of cells that can be transmitted in 1 minute, we determine the largest integer not exceeding the
quotient when 30,000,000 is divided by 424. Consequently, 30,000,000/424 = 70,754 ATM
cells can be transmitted in 1 minute over a 500 kilobit per second connection. ▲

Table 1, with x denoting a real number, displays some simple but important properties of the
floor and ceiling functions. Because these functions appear so frequently in discrete mathematics,
it is useful to look over these identities. Each property in this table can be established using the
definitions of the floor and ceiling functions. Properties (1a), (1b), (1c), and (1d) follow directly
from these definitions. For example, (1a) states that x = n if and only if the integer n is less
than or equal to x and n+ 1 is larger than x. This is precisely what it means for n to be the
greatest integer not exceeding x, which is the definition of x = n. Properties (1b), (1c), and
(1d) can be established similarly. We will prove property (4a) using a direct proof.

Proof: Suppose that x = m, where m is a positive integer. By property (1a), it follows that
m ≤ x < m+ 1. Adding n to all three quantities in this chain of two inequalities shows that m+
n ≤ x + n < m+ n+ 1. Using property (1a) again, we see that x + n = m+ n = x + n.
This completes the proof. Proofs of the other properties are left as exercises.

The floor and ceiling functions enjoy many other useful properties besides those displayed in
Table 1. There are also many statements about these functions that may appear to be correct, but
actually are not. We will consider statements about the floor and ceiling functions in Examples 29
and 30.

A useful approach for considering statements about the floor function is to let x = n+ ,
where n = x is an integer, and , the fractional part of x, satisfies the inequality 0 ≤ < 1.
Similarly, when considering statements about the ceiling function, it is useful to write x = n− ,
where n = x is an integer and 0 ≤ < 1.

EXAMPLE 29 Prove that if x is a real number, then 2x = x + x + 1
2 .

Solution: To prove this statement we let x = n+ , where n is an integer and 0 ≤ < 1. There
are two cases to consider, depending on whether is less than, or greater than or equal to 1

2 .
(The reason we choose these two cases will be made clear in the proof.)

2.3 Functions 151

We first consider the case when 0 ≤ < 1
2 . In this case, 2x = 2n+ 2 and 2x = 2n

because 0 ≤ 2 < 1. Similarly, x + 1
2 = n+ (1

2 +), so x + 1
2 = n, because 0 < 1

2 + < 1.
Consequently, 2x = 2n and x + x + 1

2 = n+ n = 2n.
Next, we consider the case when 1

2 ≤ < 1. In this case, 2x = 2n+ 2 =
(2n+ 1)+ (2 − 1). Because 0 ≤ 2 − 1 < 1, it follows that 2x = 2n+ 1. Because
 x + 1

2 = n+ (1
2 +) = n+ 1+ (− 1

2) and 0 ≤ − 1
2 < 1, it follows that x + 1

2 =
n+ 1. Consequently, 2x = 2n+ 1 and x + x + 1

2 = n+ (n+ 1) = 2n+ 1. This con-
cludes the proof. ▲

EXAMPLE 30 Prove or disprove that x + y = x + y for all real numbers x and y.

Solution: Although this statement may appear reasonable, it is false. A counterexample is sup-
plied by x = 1

2 and y = 1
2 . With these values we find that x + y = 1

2 + 1
2 = 1 = 1, but

 x + y = 1
2 + 1

2 = 1+ 1 = 2. ▲

There are certain types of functions that will be used throughout the text. These include
polynomial, logarithmic, and exponential functions. A brief review of the properties of these
functions needed in this text is given in Appendix 2. In this book the notation log x will be used
to denote the logarithm to the base 2 of x, because 2 is the base that we will usually use for
logarithms. We will denote logarithms to the base b, where b is any real number greater than 1,
by logb x, and the natural logarithm by ln x.

Another function we will use throughout this text is the factorial function f : N→ Z+,
denoted by f (n) = n!. The value of f (n) = n! is the product of the first n positive integers, so
f (n) = 1 · 2 · · · (n− 1) · n [and f (0) = 0! = 1].

EXAMPLE 31 We have f (1) = 1! = 1, f (2) = 2! = 1 · 2 = 2, f (6) = 6! = 1 · 2 · 3 · 4 · 5 · 6 = 720,
and f (20) = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11 · 12 · 13 · 14 · 15 · 16 · 17 · 18 · 19 · 20 =
2,432,902,008,176,640,000. ▲

Example 31 illustrates that the factorial function grows extremely rapidly as n grows.
The rapid growth of the factorial function is made clearer by Stirling’s formula, a result from
higher mathematics that tell us that n! ∼

√
2πn(n/e)n. Here, we have used the notation f (n) ∼

g(n), which means that the ratio f (n)/g(n) approaches 1 as n grows without bound (that is,
limn→∞ f (n)/g(n) = 1). The symbol∼ is read “is asymptotic to.” Stirling’s formula is named
after James Stirling, a Scottish mathematician of the eighteenth century.

JAMES STIRLING (1692–1770) James Stirling was born near the town of Stirling, Scotland. His family strongly supported the
Jacobite cause of the Stuarts as an alternative to the British crown. The first information known about James is that he entered Balliol
College, Oxford, on a scholarship in 1711. However, he later lost his scholarship when he refused to pledge his allegiance to the
British crown. The first Jacobean rebellion took place in 1715, and Stirling was accused of communicating with rebels. He was
charged with cursing King George, but he was acquitted of these charges. Even though he could not graduate from Oxford because
of his politics, he remained there for several years. Stirling published his first work, which extended Newton’s work on plane curves,
in 1717. He traveled to Venice, where a chair of mathematics had been promised to him, an appointment that unfortunately fell
through. Nevertheless, Stirling stayed in Venice, continuing his mathematical work. He attended the University of Padua in 1721,
and in 1722 he returned to Glasgow. Stirling apparently fled Italy after learning the secrets of the Italian glass industry, avoiding the
efforts of Italian glass makers to assassinate him to protect their secrets.

In late 1724 Stirling moved to London, staying there 10 years teaching mathematics and actively engaging in research. In 1730
he published Methodus Differentialis, his most important work, presenting results on infinite series, summations, interpolation, and
quadrature. It is in this book that his asymptotic formula for n! appears. Stirling also worked on gravitation and the shape of the
earth; he stated, but did not prove, that the earth is an oblate spheroid. Stirling returned to Scotland in 1735, when he was appointed
manager of a Scottish mining company. He was very successful in this role and even published a paper on the ventilation of mine
shafts. He continued his mathematical research, but at a reduced pace, during his years in the mining industry. Stirling is also noted
for surveying the River Clyde with the goal of creating a series of locks to make it navigable. In 1752 the citizens of Glasgow
presented him with a silver teakettle as a reward for this work.

152 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Partial Functions

A program designed to evaluate a function may not produce the correct value of the function for
all elements in the domain of this function. For example, a program may not produce a correct
value because evaluating the function may lead to an infinite loop or an overflow. Similarly, in
abstract mathematics, we often want to discuss functions that are defined only for a subset of
the real numbers, such as 1/x,

√
x, and arcsin (x). Also, we may want to use such notions as

the “youngest child” function, which is undefined for a couple having no children, or the “time
of sunrise,” which is undefined for some days above the Arctic Circle. To study such situations,
we use the concept of a partial function.

DEFINITION 13 A partial function f from a set A to a set B is an assignment to each element a in a subset
of A, called the domain of definition of f , of a unique element b in B. The sets A and B are
called the domain and codomain of f , respectively. We say that f is undefined for elements
in A that are not in the domain of definition of f . When the domain of definition of f equals
A, we say that f is a total function.

Remark: We write f : A→ B to denote that f is a partial function from A to B. Note that
this is the same notation as is used for functions. The context in which the notation is used
determines whether f is a partial function or a total function.

EXAMPLE 32 The functionf : Z→ Rwheref (n) = √n is a partial function fromZ toRwhere the domain of
definition is the set of nonnegative integers. Note that f is undefined for negative integers. ▲

Exercises

1. Why is f not a function from R to R if

a) f (x) = 1/x?
b) f (x) = √x?

c) f (x) = ±

(x2 + 1)?

2. Determine whether f is a function from Z to R if

a) f (n) = ±n.
b) f (n) =

√
n2 + 1.

c) f (n) = 1/(n2 − 4).

3. Determine whether f is a function from the set of all bit
strings to the set of integers if

a) f (S) is the position of a 0 bit in S.
b) f (S) is the number of 1 bits in S.
c) f (S) is the smallest integer i such that the ith bit of

S is 1 and f (S) = 0 when S is the empty string, the
string with no bits.

4. Find the domain and range of these functions. Note that
in each case, to find the domain, determine the set of
elements assigned values by the function.

a) the function that assigns to each nonnegative integer
its last digit

b) the function that assigns the next largest integer to a
positive integer

c) the function that assigns to a bit string the number of
one bits in the string

d) the function that assigns to a bit string the number of
bits in the string

5. Find the domain and range of these functions. Note that
in each case, to find the domain, determine the set of
elements assigned values by the function.

a) the function that assigns to each bit string the number
of ones in the string minus the number of zeros in the
string

b) the function that assigns to each bit string twice the
number of zeros in that string

c) the function that assigns the number of bits left over
when a bit string is split into bytes (which are blocks
of 8 bits)

d) the function that assigns to each positive integer the
largest perfect square not exceeding this integer

6. Find the domain and range of these functions.

a) the function that assigns to each pair of positive inte-
gers the first integer of the pair

b) the function that assigns to each positive integer its
largest decimal digit

c) the function that assigns to a bit string the number of
ones minus the number of zeros in the string

d) the function that assigns to each positive integer the
largest integer not exceeding the square root of the
integer

e) the function that assigns to a bit string the longest
string of ones in the string

2.3 Functions 153

7. Find the domain and range of these functions.

a) the function that assigns to each pair of positive inte-
gers the maximum of these two integers

b) the function that assigns to each positive integer the
number of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 that do
not appear as decimal digits of the integer

c) the function that assigns to a bit string the number of
times the block 11 appears

d) the function that assigns to a bit string the numerical
position of the first 1 in the string and that assigns the
value 0 to a bit string consisting of all 0s

8. Find these values.

a) 1.1 b) 1.1
c) −0.1 d) −0.1
e) 2.99 f) −2.99
g) 1

2 + 1
2 h) 1

2 + 1
2 + 1

2
9. Find these values.

a) 3
4 b) 7

8
c) − 3

4 d) − 7
8

e) 3 f) −1
g) 1

2 + 3
2 h) 1

2 · 5
2

10. Determine whether each of these functions from
{a, b, c, d} to itself is one-to-one.

a) f (a) = b, f (b) = a, f (c) = c, f (d) = d

b) f (a) = b, f (b) = b, f (c) = d, f (d) = c

c) f (a) = d, f (b) = b, f (c) = c, f (d) = d

11. Which functions in Exercise 10 are onto?

12. Determine whether each of these functions from Z to Z
is one-to-one.

a) f (n) = n− 1 b) f (n) = n2 + 1
c) f (n) = n3 d) f (n) = n/2

13. Which functions in Exercise 12 are onto?

14. Determine whether f : Z× Z→ Z is onto if

a) f (m, n) = 2m− n.
b) f (m, n) = m2 − n2.
c) f (m, n) = m+ n+ 1.
d) f (m, n) = |m| − |n|.
e) f (m, n) = m2 − 4.

15. Determine whether the function f : Z× Z→ Z is onto
if

a) f (m, n) = m+ n.
b) f (m, n) = m2 + n2.
c) f (m, n) = m.
d) f (m, n) = |n|.
e) f (m, n) = m− n.

16. Consider these functions from the set of students in a
discrete mathematics class. Under what conditions is the
function one-to-one if it assigns to a student his or her

a) mobile phone number.
b) student identification number.
c) final grade in the class.
d) home town.

17. Consider these functions from the set of teachers in a
school. Under what conditions is the function one-to-one
if it assigns to a teacher his or her

a) office.
b) assigned bus to chaperone in a group of buses taking

students on a field trip.
c) salary.
d) social security number.

18. Specify a codomain for each of the functions in Exercise
16. Under what conditions is each of these functions with
the codomain you specified onto?

19. Specify a codomain for each of the functions in Exercise
17. Under what conditions is each of the functions with
the codomain you specified onto?

20. Give an example of a function from N to N that is

a) one-to-one but not onto.
b) onto but not one-to-one.
c) both onto and one-to-one (but different from the iden-

tity function).
d) neither one-to-one nor onto.

21. Give an explicit formula for a function from the set of
integers to the set of positive integers that is

a) one-to-one, but not onto.
b) onto, but not one-to-one.
c) one-to-one and onto.
d) neither one-to-one nor onto.

22. Determine whether each of these functions is a bijection
from R to R.

a) f (x) = −3x + 4
b) f (x) = −3x2 + 7
c) f (x) = (x + 1)/(x + 2)
d) f (x) = x5 + 1

23. Determine whether each of these functions is a bijection
from R to R.

a) f (x) = 2x + 1
b) f (x) = x2 + 1
c) f (x) = x3

d) f (x) = (x2 + 1)/(x2 + 2)

24. Let f : R→ R and let f (x) > 0 for all x ∈ R. Show
that f (x) is strictly increasing if and only if the func-
tion g(x) = 1/f (x) is strictly decreasing.

25. Let f : R→ R and let f (x) > 0 for all x ∈ R. Show
that f (x) is strictly decreasing if and only if the func-
tion g(x) = 1/f (x) is strictly increasing.

26. a) Prove that a strictly increasing function from R to it-
self is one-to-one.

b) Give an example of an increasing function from R to
itself that is not one-to-one.

27. a) Prove that a strictly decreasing function from R to
itself is one-to-one.

b) Give an example of a decreasing function from R to
itself that is not one-to-one.

28. Show that the function f (x) = ex from the set of real
numbers to the set of real numbers is not invertible, but
if the codomain is restricted to the set of positive real
numbers, the resulting function is invertible.

154 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

29. Show that the function f (x) = |x| from the set of real
numbers to the set of nonnegative real numbers is not
invertible, but if the domain is restricted to the set of non-
negative real numbers, the resulting function is invertible.

30. Let S = {−1, 0, 2, 4, 7}. Find f (S) if

a) f (x) = 1. b) f (x) = 2x + 1.

c) f (x) = x /5 . d) f (x)= (x2 + 1)/3 .
31. Let f (x) = x2/3 . Find f (S) if

a) S = {−2,−1, 0, 1, 2, 3}.
b) S = {0, 1, 2, 3, 4, 5}.
c) S = {1, 5, 7, 11}.
d) S = {2, 6, 10, 14}.

32. Let f (x) = 2x where the domain is the set of real num-
bers. What is

a) f (Z)? b) f (N)? c) f (R)?

33. Suppose that g is a function from A to B and f is a
function from B to C.

a) Show that if both f and g are one-to-one functions,
then f ◦ g is also one-to-one.

b) Show that if both f and g are onto functions, then
f ◦ g is also onto.

∗34. If f and f ◦ g are one-to-one, does it follow that g is
one-to-one? Justify your answer.

∗35. If f and f ◦ g are onto, does it follow that g is onto?
Justify your answer.

36. Find f ◦ g and g ◦ f , where f (x) = x2 + 1 and g(x) =
x + 2, are functions from R to R.

37. Find f + g and fg for the functions f and g given in
Exercise 36.

38. Let f (x) = ax + b and g(x) = cx + d, where a, b, c,
and d are constants. Determine necessary and suffi-
cient conditions on the constants a, b, c, and d so that
f ◦ g = g ◦ f .

39. Show that the function f (x) = ax + b from R to R is
invertible, where a and b are constants, with a = 0, and
find the inverse of f .

40. Let f be a function from the set A to the set B. Let S and
T be subsets of A. Show that

a) f (S ∪ T) = f (S) ∪ f (T).

b) f (S ∩ T) ⊆ f (S) ∩ f (T).

41. a) Give an example to show that the inclusion in part (b)
in Exercise 40 may be proper.

b) Show that if f is one-to-one, the inclusion in part (b)
in Exercise 40 is an equality.

Let f be a function from the set A to the set B. Let S be a
subset of B. We define the inverse image of S to be the subset
of A whose elements are precisely all pre-images of all ele-
ments of S. We denote the inverse image of S by f−1(S), so
f−1(S) = {a ∈ A | f (a) ∈ S}. (Beware: The notation f−1 is
used in two different ways. Do not confuse the notation intro-
duced here with the notation f−1(y) for the value at y of the

inverse of the invertible function f . Notice also that f−1(S),
the inverse image of the set S, makes sense for all functions f ,
not just invertible functions.)

42. Let f be the function from R to R defined by
f (x) = x2. Find

a) f−1({1}). b) f−1({x | 0 < x < 1}).
c) f−1({x | x > 4}).

43. Let g(x) = x . Find

a) g−1({0}). b) g−1({−1, 0, 1}).
c) g−1({x | 0 < x < 1}).

44. Let f be a function from A to B. Let S and T be subsets
of B. Show that

a) f−1(S ∪ T) = f−1(S) ∪ f−1(T).
b) f−1(S ∩ T) = f−1(S) ∩ f−1(T).

45. Let f be a function from A to B. Let S be a subset of B.
Show that f−1(S) = f−1(S).

46. Show that x + 1
2 is the closest integer to the number x,

except when x is midway between two integers, when it
is the larger of these two integers.

47. Show that x − 1
2 is the closest integer to the number x,

except when x is midway between two integers, when it
is the smaller of these two integers.

48. Show that if x is a real number, then x − x = 1 if x
is not an integer and x − x = 0 if x is an integer.

49. Show that if x is a real number, then x − 1 < x ≤ x ≤
 x < x + 1.

50. Show that if x is a real number and m is an integer, then
 x +m = x +m.

51. Show that if x is a real number and n is an integer, then

a) x < n if and only if x < n.
b) n < x if and only if n < x .

52. Show that if x is a real number and n is an integer, then

a) x ≤ n if and only if x ≤ n.
b) n ≤ x if and only if n ≤ x .

53. Prove that if n is an integer, then n/2 = n/2 if n is even
and (n− 1)/2 if n is odd.

54. Prove that if x is a real number, then −x = − x and
 −x = − x .

55. The function INT is found on some calculators, where
INT(x) = x when x is a nonnegative real number and
INT(x) = x when x is a negative real number. Show
that this INT function satisfies the identity INT(−x) =
−INT(x).

56. Let a and b be real numbers with a < b. Use the floor
and/or ceiling functions to express the number of inte-
gers n that satisfy the inequality a ≤ n ≤ b.

57. Let a and b be real numbers with a < b. Use the floor
and/or ceiling functions to express the number of inte-
gers n that satisfy the inequality a < n < b.

58. How many bytes are required to encode n bits of data
where n equals

a) 4? b) 10? c) 500? d) 3000?

2.3 Functions 155

59. How many bytes are required to encode n bits of data
where n equals

a) 7? b) 17? c) 1001? d) 28,800?
60. How many ATM cells (described in Example 28) can be

transmitted in 10 seconds over a link operating at the fol-
lowing rates?

a) 128 kilobits per second (1 kilobit = 1000 bits)
b) 300 kilobits per second
c) 1 megabit per second (1 megabit = 1,000,000 bits)

61. Data are transmitted over a particular Ethernet network
in blocks of 1500 octets (blocks of 8 bits). How many
blocks are required to transmit the following amounts of
data over this Ethernet network? (Note that a byte is a
synonym for an octet, a kilobyte is 1000 bytes, and a
megabyte is 1,000,000 bytes.)

a) 150 kilobytes of data
b) 384 kilobytes of data
c) 1.544 megabytes of data
d) 45.3 megabytes of data

62. Draw the graph of the function f (n) = 1− n2 from Z
to Z.

63. Draw the graph of the function f (x) = 2x from R
to R.

64. Draw the graph of the function f (x) = x/2 from R
to R.

65. Draw the graph of the functionf (x) = x + x/2 from
R to R.

66. Draw the graph of the functionf (x) = x + x/2 from
R to R.

67. Draw graphs of each of these functions.

a) f (x) = x + 1
2 b) f (x) = 2x + 1

c) f (x) = x/3 d) f (x) = 1/x
e) f (x) = x − 2 + x + 2
f) f (x) = 2x x/2 g) f (x) = x − 1

2 + 1
2

68. Draw graphs of each of these functions.

a) f (x) = 3x − 2 b) f (x) = 0.2x
c) f (x) = −1/x d) f (x) = x2
e) f (x) = x/2 x/2 f) f (x) = x/2 + x/2
g) f (x) = 2 x/2 + 1

2
69. Find the inverse function of f (x) = x3 + 1.
70. Suppose that f is an invertible function from Y to Z

and g is an invertible function from X to Y . Show
that the inverse of the composition f ◦ g is given by
(f ◦ g)−1 = g−1 ◦ f−1.

71. Let S be a subset of a universal set U . The characteristic
function fS of S is the function from U to the set {0, 1}
such that fS(x) = 1 if x belongs to S and fS(x) = 0 if x
does not belong to S. Let A and B be sets. Show that for
all x ∈ U ,

a) fA∩B(x) = fA(x) · fB(x)
b) fA∪B(x) = fA(x)+ fB(x)− fA(x) · fB(x)
c) fA(x) = 1− fA(x)
d) fA⊕B(x) = fA(x)+ fB(x)− 2fA(x)fB(x)

72. Suppose that f is a function from A to B, where A and B

are finite sets with |A| = |B|. Show that f is one-to-one
if and only if it is onto.

73. Prove or disprove each of these statements about the floor
and ceiling functions.

a) x = x for all real numbers x.
b) 2x = 2 x whenever x is a real number.
c) x + y − x + y = 0 or 1 whenever x and y are

real numbers.
d) xy = x y for all real numbers x and y.

e)
 x

2

=

x + 1

2

for all real numbers x.

74. Prove or disprove each of these statements about the floor
and ceiling functions.

a) x = x for all real numbers x.
b) x + y = x + y for all real numbers x and y.
c) x/2 /2 = x/4 for all real numbers x.
d) √ x = √x for all positive real numbers x.
e) x + y + x + y ≤ 2x + 2y for all real

numbers x and y.

75. Prove that if x is a positive real number, then

a) √ x = √x .
b) √ x = √x .

76. Let x be a real number. Show that 3x =
 x + x + 1

3 + x + 2
3 .

77. For each of these partial functions, determine its domain,
codomain, domain of definition, and the set of values for
which it is undefined. Also, determine whether it is a total
function.

a) f : Z→ R, f (n) = 1/n
b) f : Z→ Z, f (n) = n/2
c) f : Z× Z→ Q, f (m, n) = m/n

d) f : Z× Z→ Z, f (m, n) = mn

e) f : Z× Z→ Z, f (m, n) = m− n if m > n

78. a) Show that a partial function fromA toB can be viewed
as a function f ∗ from A to B ∪ {u}, where u is not an
element of B and

f ∗(a) =
⎧⎨
⎩
f (a) if a belongs to the domain

of definition of f
u if f is undefined at a.

b) Using the construction in (a), find the function f ∗
corresponding to each partial function in Exercise 77.

79. a) Show that if a set S has cardinality m, where m is a
positive integer, then there is a one-to-one correspon-
dence between S and the set {1, 2, . . . , m}.

b) Show that if S and T are two sets each with m ele-
ments, where m is a positive integer, then there is a
one-to-one correspondence between S and T .

∗80. Show that a set S is infinite if and only if there is a proper
subset A of S such that there is a one-to-one correspon-
dence between A and S.

156 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

2.4 Sequences and Summations

Introduction

Sequences are ordered lists of elements, used in discrete mathematics in many ways. For ex-
ample, they can be used to represent solutions to certain counting problems, as we will see in
Chapter 8. They are also an important data structure in computer science. We will often need
to work with sums of terms of sequences in our study of discrete mathematics. This section
reviews the use of summation notation, basic properties of summations, and formulas for the
sums of terms of some particular types of sequences.

The terms of a sequence can be specified by providing a formula for each term of the
sequence. In this section we describe another way to specify the terms of a sequence using
a recurrence relation, which expresses each term as a combination of the previous terms. We
will introduce one method, known as iteration, for finding a closed formula for the terms of a
sequence specified via a recurrence relation. Identifying a sequence when the first few terms
are provided is a useful skill when solving problems in discrete mathematics. We will provide
some tips, including a useful tool on the Web, for doing so.

Sequences

A sequence is a discrete structure used to represent an ordered list. For example, 1, 2, 3, 5, 8 is
a sequence with five terms and 1, 3, 9, 27, 81 , . . . , 3n, . . . is an infinite sequence.

DEFINITION 1 A sequence is a function from a subset of the set of integers (usually either the set {0, 1, 2, . . .}
or the set {1, 2, 3, . . .}) to a set S. We use the notation an to denote the image of the integer n.
We call an a term of the sequence.

We use the notation {an} to describe the sequence. (Note that an represents an individual
term of the sequence {an}. Be aware that the notation {an} for a sequence conflicts with the
notation for a set. However, the context in which we use this notation will always make it clear
when we are dealing with sets and when we are dealing with sequences. Moreover, although we
have used the letter a in the notation for a sequence, other letters or expressions may be used
depending on the sequence under consideration. That is, the choice of the letter a is arbitrary.)

We describe sequences by listing the terms of the sequence in order of increasing subscripts.

EXAMPLE 1 Consider the sequence {an}, where

an =
1

n
.

The list of the terms of this sequence, beginning with a1, namely,

a1, a2, a3, a4, . . . ,

starts with

1,
1

2
,

1

3
,

1

4
, ▲

2.4 Sequences and Summations 157

DEFINITION 2 A geometric progression is a sequence of the form

a, ar, ar2, . . . , arn, . . .

where the initial term a and the common ratio r are real numbers.

Remark: A geometric progression is a discrete analogue of the exponential function f (x) =
arx .

EXAMPLE 2 The sequences {bn} with bn = (−1)n, {cn} with cn = 2 · 5n, and {dn} with dn = 6 · (1/3)n are
geometric progressions with initial term and common ratio equal to 1 and −1; 2 and 5; and 6
and 1/3, respectively, if we start at n = 0. The list of terms b0, b1, b2, b3, b4, . . . begins with

1,−1, 1,−1, 1, . . . ;
the list of terms c0, c1, c2, c3, c4, . . . begins with

2, 10, 50, 250, 1250, . . . ;
and the list of terms d0, d1, d2, d3, d4, . . . begins with

6, 2,
2

3
,

2

9
,

2

27
, ▲

DEFINITION 3 An arithmetic progression is a sequence of the form

a, a + d, a + 2d, . . . , a + nd, . . .

where the initial term a and the common difference d are real numbers.

Remark: An arithmetic progression is a discrete analogue of the linear function f (x) = dx + a.

EXAMPLE 3 The sequences {sn} with sn = −1+ 4n and {tn} with tn = 7− 3n are both arithmetic progres-
sions with initial terms and common differences equal to−1 and 4, and 7 and−3, respectively,
if we start at n = 0. The list of terms s0, s1, s2, s3, . . . begins with

−1, 3, 7, 11, . . . ,

and the list of terms t0, t1, t2, t3, . . . begins with

7, 4, 1,−2, ▲

Sequences of the form a1, a2, . . . , an are often used in computer science. These finite
sequences are also called strings. This string is also denoted by a1a2 . . . an. (Recall that bit
strings, which are finite sequences of bits, were introduced in Section 1.1.) The length of a
string is the number of terms in this string. The empty string, denoted by λ, is the string that
has no terms. The empty string has length zero.

EXAMPLE 4 The string abcd is a string of length four. ▲

Recurrence Relations

In Examples 1–3 we specified sequences by providing explicit formulas for their terms. There
are many other ways to specify a sequence. For example, another way to specify a sequence is

158 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

to provide one or more initial terms together with a rule for determining subsequent terms from
those that precede them.

DEFINITION 4 A recurrence relation for the sequence {an} is an equation that expresses an in terms of one or
more of the previous terms of the sequence, namely, a0, a1, . . . , an−1, for all integers n with
n ≥ n0, where n0 is a nonnegative integer. A sequence is called a solution of a recurrence
relation if its terms satisfy the recurrence relation. (A recurrence relation is said to recursively

define a sequence. We will explain this alternative terminology in Chapter 5.)

EXAMPLE 5 Let {an} be a sequence that satisfies the recurrence relation an = an−1 + 3 for n = 1, 2, 3, . . . ,
and suppose that a0 = 2. What are a1, a2, and a3?

Solution: We see from the recurrence relation that a1 = a0 + 3 = 2+ 3 = 5. It then follows
that a2 = 5+ 3 = 8 and a3 = 8+ 3 = 11. ▲

EXAMPLE 6 Let {an} be a sequence that satisfies the recurrence relation an = an−1 − an−2 for n =
2, 3, 4, . . . , and suppose that a0 = 3 and a1 = 5. What are a2 and a3?

Solution: We see from the recurrence relation that a2 = a1 − a0 = 5− 3 = 2 and a3 = a2 −
a1 = 2− 5 = −3. We can find a4, a5, and each successive term in a similar way. ▲

The initial conditions for a recursively defined sequence specify the terms that precede the
first term where the recurrence relation takes effect. For instance, the initial condition in Example
5 is a0 = 2, and the initial conditions in Example 6 are a0 = 3 and a1 = 5. Using mathematical
induction, a proof technique introduced in Chapter 5, it can be shown that a recurrence relation
together with its initial conditions determines a unique solution.

Hop along to Chapter 8
to learn how to find a
formula for the Fibonacci
numbers.

Next, we define a particularly useful sequence defined by a recurrence relation, known as
the Fibonacci sequence, after the Italian mathematician Fibonacci who was born in the 12th
century (see Chapter 5 for his biography). We will study this sequence in depth in Chapters 5
and 8, where we will see why it is important for many applications, including modeling the
population growth of rabbits.

DEFINITION 5 The Fibonacci sequence, f0, f1, f2, . . . , is defined by the initial conditions f0 = 0, f1 = 1,
and the recurrence relation

fn = fn−1 + fn−2

for n = 2, 3, 4,

EXAMPLE 7 Find the Fibonacci numbers f2, f3, f4, f5, and f6.

Solution: The recurrence relation for the Fibonacci sequence tells us that we find successive
terms by adding the previous two terms. Because the initial conditions tell us that f0 = 0 and
f1 = 1, using the recurrence relation in the definition we find that

f2 = f1 + f0 = 1+ 0 = 1,

f3 = f2 + f1 = 1+ 1 = 2,

f4 = f3 + f2 = 2+ 1 = 3,

f5 = f4 + f3 = 3+ 2 = 5,

f6 = f5 + f4 = 5+ 3 = 8.

▲

2.4 Sequences and Summations 159

EXAMPLE 8 Suppose that {an} is the sequence of integers defined by an = n!, the value of the factorial
function at the integer n, where n = 1, 2, 3, Because n! = n((n− 1)(n− 2) . . . 2 · 1) =
n(n− 1)! = nan−1, we see that the sequence of factorials satisfies the recurrence relation
an = nan−1, together with the initial condition a1 = 1. ▲

We say that we have solved the recurrence relation together with the initial conditions when
we find an explicit formula, called a closed formula, for the terms of the sequence.

EXAMPLE 9 Determine whether the sequence {an}, where an = 3n for every nonnegative integer n, is a
solution of the recurrence relation an = 2an−1 − an−2 for n = 2, 3, 4, Answer the same
question where an = 2n and where an = 5.

Solution: Suppose that an = 3n for every nonnegative integer n. Then, for n ≥ 2, we see that
2an−1 − an−2 = 2(3(n− 1))− 3(n− 2) = 3n = an. Therefore, {an}, where an = 3n, is a so-
lution of the recurrence relation.

Suppose that an = 2n for every nonnegative integer n. Note that a0 = 1, a1 = 2, and a2 = 4.
Because 2a1 − a0 = 2 · 2− 1 = 3 = a2, we see that {an}, where an = 2n, is not a solution of
the recurrence relation.

Suppose that an = 5 for every nonnegative integer n. Then for n ≥ 2, we see that an =
2an−1 − an−2 = 2 · 5− 5 = 5 = an. Therefore, {an}, where an = 5, is a solution of the recur-
rence relation. ▲

Many methods have been developed for solving recurrence relations. Here, we will introduce
a straightforward method known as iteration via several examples. In Chapter 8 we will study
recurrence relations in depth. In that chapter we will show how recurrence relations can be used
to solve counting problems and we will introduce several powerful methods that can be used to
solve many different recurrence relations.

EXAMPLE 10 Solve the recurrence relation and initial condition in Example 5.

Solution: We can successively apply the recurrence relation in Example 5, starting with the
initial condition a1 = 2, and working upward until we reach an to deduce a closed formula for
the sequence. We see that

a2 = 2+ 3

a3 = (2+ 3)+ 3 = 2+ 3 · 2
a4 = (2+ 2 · 3)+ 3 = 2+ 3 · 3

...

an = an−1 + 3 = (2+ 3 · (n− 2))+ 3 = 2+ 3(n− 1).

We can also successively apply the recurrence relation in Example 5, starting with the
term an and working downward until we reach the initial condition a1 = 2 to deduce this same
formula. The steps are

an = an−1 + 3

= (an−2 + 3)+ 3 = an−2 + 3 · 2
= (an−3 + 3)+ 3 · 2 = an−3 + 3 · 3
...

= a2 + 3(n− 2) = (a1 + 3)+ 3(n− 2) = 2+ 3(n− 1).

160 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

At each iteration of the recurrence relation, we obtain the next term in the sequence by
adding 3 to the previous term. We obtain the nth term after n− 1 iterations of the recurrence
relation. Hence, we have added 3(n− 1) to the initial term a0 = 2 to obtain an. This gives us
the closed formula an = 2+ 3(n− 1). Note that this sequence is an arithmetic progression. ▲

The technique used in Example 10 is called iteration. We have iterated, or repeatedly used,
the recurrence relation. The first approach is called forward substitution – we found successive
terms beginning with the initial condition and ending with an. The second approach is called
backward substitution, because we began with an and iterated to express it in terms of falling
terms of the sequence until we found it in terms of a1. Note that when we use iteration, we
essential guess a formula for the terms of the sequence. To prove that our guess is correct, we
need to use mathematical induction, a technique we discuss in Chapter 5.

In Chapter 8 we will show that recurrence relations can be used to model a wide variety of
problems. We provide one such example here, showing how to use a recurrence relation to find
compound interest.

EXAMPLE 11 Compound Interest Suppose that a person deposits $10,000 in a savings account at a bank
yielding 11% per year with interest compounded annually. How much will be in the account
after 30 years?

Solution: To solve this problem, let Pn denote the amount in the account after n years. Because
the amount in the account after n years equals the amount in the account after n− 1 years plus
interest for the nth year, we see that the sequence {Pn} satisfies the recurrence relation

Pn = Pn−1 + 0.11Pn−1 = (1.11)Pn−1.

The initial condition is P0 = 10,000.
We can use an iterative approach to find a formula for Pn. Note that

P1 = (1.11)P0

P2 = (1.11)P1 = (1.11)2P0

P3 = (1.11)P2 = (1.11)3P0
...

Pn = (1.11)Pn−1 = (1.11)nP0.

When we insert the initial condition P0 = 10,000, the formula Pn = (1.11)n10,000 is obtained.
Inserting n = 30 into the formula Pn = (1.11)n10,000 shows that after 30 years the account

contains

P30 = (1.11)3010,000 = $228,922.97. ▲

Special Integer Sequences

A common problem in discrete mathematics is finding a closed formula, a recurrence relation,
or some other type of general rule for constructing the terms of a sequence. Sometimes only a
few terms of a sequence solving a problem are known; the goal is to identify the sequence. Even
though the initial terms of a sequence do not determine the entire sequence (after all, there are
infinitely many different sequences that start with any finite set of initial terms), knowing the
first few terms may help you make an educated conjecture about the identity of your sequence.
Once you have made this conjecture, you can try to verify that you have the correct sequence.

2.4 Sequences and Summations 161

When trying to deduce a possible formula, recurrence relation, or some other type of rule
for the terms of a sequence when given the initial terms, try to find a pattern in these terms. You
might also see whether you can determine how a term might have been produced from those
preceding it. There are many questions you could ask, but some of the more useful are:

� Are there runs of the same value? That is, does the same value occur many times in a
row?

� Are terms obtained from previous terms by adding the same amount or an amount that
depends on the position in the sequence?

� Are terms obtained from previous terms by multiplying by a particular amount?
� Are terms obtained by combining previous terms in a certain way?
� Are there cycles among the terms?

EXAMPLE 12 Find formulae for the sequences with the following first five terms: (a) 1, 1/2, 1/4, 1/8, 1/16
(b) 1, 3, 5, 7, 9 (c) 1, −1, 1, −1, 1.

Solution: (a) We recognize that the denominators are powers of 2. The sequence with an = 1/2n,
n = 0, 1, 2, . . . is a possible match. This proposed sequence is a geometric progression with
a = 1 and r = 1/2.

(b) We note that each term is obtained by adding 2 to the previous term. The sequence
with an = 2n+ 1, n = 0, 1, 2, . . . is a possible match. This proposed sequence is an arithmetic
progression with a = 1 and d = 2.

(c) The terms alternate between 1 and −1. The sequence with an = (−1)n, n = 0, 1, 2 . . .

is a possible match. This proposed sequence is a geometric progression with a = 1 and r = −1.

▲

Examples 13–15 illustrate how we can analyze sequences to find how the terms are con-
structed.

EXAMPLE 13 How can we produce the terms of a sequence if the first 10 terms are 1, 2, 2, 3, 3, 3, 4, 4, 4, 4?

Solution: In this sequence, the integer 1 appears once, the integer 2 appears twice, the integer 3
appears three times, and the integer 4 appears four times. A reasonable rule for generating this
sequence is that the integer n appears exactly n times, so the next five terms of the sequence
would all be 5, the following six terms would all be 6, and so on. The sequence generated this
way is a possible match. ▲

EXAMPLE 14 How can we produce the terms of a sequence if the first 10 terms are 5, 11, 17, 23, 29, 35, 41,
47, 53, 59?

Solution: Note that each of the first 10 terms of this sequence after the first is obtained by adding
6 to the previous term. (We could see this by noticing that the difference between consecutive
terms is 6.) Consequently, the nth term could be produced by starting with 5 and adding 6 a
total of n− 1 times; that is, a reasonable guess is that the nth term is 5+ 6(n− 1) = 6n− 1.
(This is an arithmetic progression with a = 5 and d = 6.) ▲

EXAMPLE 15 How can we produce the terms of a sequence if the first 10 terms are 1, 3, 4, 7, 11, 18, 29, 47,
76, 123?

Solution: Observe that each successive term of this sequence, starting with the third term,
is the sum of the two previous terms. That is, 4 = 3+ 1, 7 = 4+ 3, 11 = 7+ 4, and so on.
Consequently, if Ln is the nth term of this sequence, we guess that the sequence is determined
by the recurrence relation Ln = Ln−1 + Ln−2 with initial conditions L1 = 1 and L2 = 3 (the

162 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

TABLE 1 Some Useful Sequences.

nth Term First 10 Terms

n2 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, . . .

n3 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, . . .

n4 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, . . .

2n 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

3n 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, . . .

n! 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, . . .

fn 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

same recurrence relation as the Fibonacci sequence, but with different initial conditions). This
sequence is known as the Lucas sequence, after the French mathematician François Édouard
Lucas. Lucas studied this sequence and the Fibonacci sequence in the nineteenth century. ▲

Another useful technique for finding a rule for generating the terms of a sequence is to
compare the terms of a sequence of interest with the terms of a well-known integer sequence,
such as terms of an arithmetic progression, terms of a geometric progression, perfect squares,
perfect cubes, and so on. The first 10 terms of some sequences you may want to keep in mind
are displayed in Table 1.

EXAMPLE 16 Conjecture a simple formula for an if the first 10 terms of the sequence {an} are 1, 7, 25, 79,
241, 727, 2185, 6559, 19681, 59047.

Solution: To attack this problem, we begin by looking at the difference of consecutive terms,
but we do not see a pattern. When we form the ratio of consecutive terms to see whether each
term is a multiple of the previous term, we find that this ratio, although not a constant, is close
to 3. So it is reasonable to suspect that the terms of this sequence are generated by a formula
involving 3n. Comparing these terms with the corresponding terms of the sequence {3n}, we
notice that the nth term is 2 less than the corresponding power of 3. We see that an = 3n − 2
for 1 ≤ n ≤ 10 and conjecture that this formula holds for all n. ▲

We will see throughout this text that integer sequences appear in a wide range of contexts in
discrete mathematics. Sequences we have encountered or will encounter include the sequence
of prime numbers (Chapter 4), the number of ways to order n discrete objects (Chapter 6), the
number of moves required to solve the famous Tower of Hanoi puzzle with n disks (Chapter 8),
and the number of rabbits on an island after n months (Chapter 8).

Check out the puzzles at
the OEIS site. Integer sequences appear in an amazingly wide range of subject areas besides discrete

mathematics, including biology, engineering, chemistry, and physics, as well as in puzzles. An
amazing database of over 200,000 different integer sequences can be found in the On-Line

Encyclopedia of Integer Sequences (OEIS). This database was originated by Neil Sloane in the
1960s. The last printed version of this database was published in 1995 ([SIPI95]); the current
encyclopedia would occupy more than 750 volumes of the size of the 1995 book with more than
10,000 new submissions a year. There is also a program accessible via the Web that you can use
to find sequences from the encyclopedia that match initial terms you provide.

Summations

Next, we consider the addition of the terms of a sequence. For this we introduce summation
notation. We begin by describing the notation used to express the sum of the terms

am, am+1, . . . , an

2.4 Sequences and Summations 163

from the sequence {an}. We use the notation

n
j=m

aj ,
 n

j=m aj , or

m≤j≤n aj

(read as the sum from j = m to j = n of aj) to represent

am + am+1 + · · · + an.

Here, the variable j is called the index of summation, and the choice of the letter j as the
variable is arbitrary; that is, we could have used any other letter, such as i or k. Or, in notation,

n
j=m

aj =
n

i=m

ai =
n

k=m

ak.

Here, the index of summation runs through all integers starting with its lower limitm and ending
with its upper limit n. A large uppercase Greek letter sigma,

, is used to denote summation.

The usual laws for arithmetic apply to summations. For example, when a and b are real
numbers, we have

 n
j=1(axj + byj) = a

 n
y=1 xj + b

 n
j=1 yj , where x1, x2, . . . , xn and

y1, y2, . . . , yn are real numbers. (We do not present a formal proof of this identity here. Such a
proof can be constructed using mathematical induction, a proof method we introduce in Chap-
ter 5. The proof also uses the commutative and associative laws for addition and the distributive
law of multiplication over addition.)

We give some examples of summation notation.

EXAMPLE 17 Use summation notation to express the sum of the first 100 terms of the sequence {aj }, where
aj = 1/j for j = 1, 2, 3,

Solution: The lower limit for the index of summation is 1, and the upper limit is 100. We write
this sum as

100
j=1

1

j
.

▲

NEIL SLOANE (BORN 1939) Neil Sloane studied mathematics and electrical engineering at the Uni-
versity of Melbourne on a scholarship from the Australian state telephone company. He mastered many
telephone-related jobs, such as erecting telephone poles, in his summer work. After graduating, he designed
minimal-cost telephone networks in Australia. In 1962 he came to the United States and studied electri-
cal engineering at Cornell University. His Ph.D. thesis was on what are now called neural networks. He
took a job at Bell Labs in 1969, working in many areas, including network design, coding theory, and
sphere packing. He now works for AT&T Labs, moving there from Bell Labs when AT&T split up in
1996. One of his favorite problems is the kissing problem (a name he coined), which asks how many
spheres can be arranged in n dimensions so that they all touch a central sphere of the same size. (In two

dimensions the answer is 6, because 6 pennies can be placed so that they touch a central penny. In three dimensions, 12 billiard
balls can be placed so that they touch a central billiard ball. Two billiard balls that just touch are said to “kiss,” giving rise to the
terminology “kissing problem” and “kissing number.”) Sloane, together with Andrew Odlyzko, showed that in 8 and 24 dimensions,
the optimal kissing numbers are, respectively, 240 and 196,560. The kissing number is known in dimensions 1, 2, 3, 4, 8, and 24, but
not in any other dimensions. Sloane’s books include Sphere Packings, Lattices and Groups, 3d ed., with John Conway; The Theory
of Error-Correcting Codes with Jessie MacWilliams; The Encyclopedia of Integer Sequences with Simon Plouffe (which has grown
into the famous OEIS website); and The Rock-Climbing Guide to New Jersey Crags with Paul Nick. The last book demonstrates his
interest in rock climbing; it includes more than 50 climbing sites in New Jersey.

164 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

EXAMPLE 18 What is the value of
 5

j=1 j2?

Solution: We have

5
j=1

j2 = 12 + 22 + 32 + 42 + 52

= 1+ 4+ 9+ 16+ 25

= 55.

▲

EXAMPLE 19 What is the value of
 8

k= 4(−1)k?

Solution: We have

8
k= 4

(−1)k = (−1)4 + (−1)5 + (−1)6 + (−1)7 + (−1)8

= 1+ (−1)+ 1+ (−1)+ 1

= 1.

▲

Sometimes it is useful to shift the index of summation in a sum. This is often done when
two sums need to be added but their indices of summation do not match. When shifting an index
of summation, it is important to make the appropriate changes in the corresponding summand.
This is illustrated by Example 20.

EXAMPLE 20 Suppose we have the sum

5
j=1

j2

but want the index of summation to run between 0 and 4 rather than from 1 to 5. To do this,
we let k = j − 1. Then the new summation index runs from 0 (because k = 1− 0 = 0 when
j = 1) to 4 (because k = 5− 1 = 4 when j = 5), and the term j2 becomes (k + 1)2. Hence,

5
j=1

j2 =
4

k= 0

(k + 1)2.

It is easily checked that both sums are 1+ 4+ 9+ 16+ 25 = 55. ▲

Sums of terms of geometric progressions commonly arise (such sums are called geometric
series). Theorem 1 gives us a formula for the sum of terms of a geometric progression.

THEOREM 1 If a and r are real numbers and r = 0, then

n
j=0

arj =

⎧⎪⎨
⎪⎩

arn+1 − a

r − 1
if r = 1

(n+ 1)a if r = 1.

Proof: Let

Sn =
n

j=0

arj .

2.4 Sequences and Summations 165

To compute S, first multiply both sides of the equality by r and then manipulate the resulting
sum as follows:

rSn = r

n
j=0

arj substituting summation formula for S

=
n

j=0

arj+1 by the distributive property

=
n+1
k=1

ark shifting the index of summation, with k = j + 1

=

n
k=0

ark

+ (arn+1 − a) removing k = n+ 1 term and adding k = 0 term

= Sn + (arn+1 − a) substituting S for summation formula

From these equalities, we see that

rSn = Sn + (arn+1 − a).

Solving for Sn shows that if r = 1, then

Sn =
arn+1 − a

r − 1
.

If r = 1, then the Sn =
 n

j=0 arj = n
j=0 a = (n+ 1)a.

EXAMPLE 21 Double summations arise in many contexts (as in the analysis of nested loops in computer
programs). An example of a double summation is

4
i=1

3
j=1

ij.

To evaluate the double sum, first expand the inner summation and then continue by computing
the outer summation:

4
i=1

3
j=1

ij =
4

i=1

(i + 2i + 3i)

=
4

i=1

6i

= 6+ 12+ 18+ 24 = 60.

▲

We can also use summation notation to add all values of a function, or terms of an indexed
set, where the index of summation runs over all values in a set. That is, we write

s ∈ S

f (s)

to represent the sum of the values f (s), for all members s of S.

166 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

TABLE 2 Some Useful Summation Formulae.

Sum Closed Form

n
k= 0

ark (r = 0) arn+1 − a

r − 1
, r = 1

n
k= 1

k
n(n+ 1)

2

n
k= 1

k2 n(n+ 1)(2n+ 1)
6

n
k= 1

k3 n2(n+ 1)2

4

∞
k= 0

xk, |x| < 1
1

1− x

∞
k= 1

kxk−1, |x| < 1
1

(1− x)2

EXAMPLE 22 What is the value of

s ∈ {0,2,4} s?

Solution: Because

s ∈ {0,2,4} s represents the sum of the values of s for all the members of the
set {0, 2, 4}, it follows that

s ∈ {0,2,4}

s = 0+ 2+ 4 = 6.

▲

Certain sums arise repeatedly throughout discrete mathematics. Having a collection of
formulae for such sums can be useful; Table 2 provides a small table of formulae for commonly
occurring sums.

We derived the first formula in this table in Theorem 1. The next three formulae give us the
sum of the first n positive integers, the sum of their squares, and the sum of their cubes. These
three formulae can be derived in many different ways (for example, see Exercises 37 and 38).
Also note that each of these formulae, once known, can easily be proved using mathematical
induction, the subject of Section 5.1. The last two formulae in the table involve infinite series
and will be discussed shortly.

Example 23 illustrates how the formulae in Table 2 can be useful.

EXAMPLE 23 Find
 100

k= 50k
2.

Solution: First note that because
 100

k= 1k
2 = 49

k= 1k
2 + 100

k= 50k
2, we have

100
k= 50

k2 =
100
k= 1

k2 −
49

k= 1

k2.

Using the formula
 n

k= 1k
2 = n(n+ 1)(2n+ 1)/6 from Table 2 (and proved in Exercise 38),

we see that

100
k= 50

k2 = 100 · 101 · 201

6
− 49 · 50 · 99

6
= 338,350− 40,425 = 297,925.

▲

2.4 Sequences and Summations 167

SOME INFINITE SERIES Although most of the summations in this book are finite sums,
infinite series are important in some parts of discrete mathematics. Infinite series are usually
studied in a course in calculus and even the definition of these series requires the use of calculus,
but sometimes they arise in discrete mathematics, because discrete mathematics deals with infi-
nite collections of discrete elements. In particular, in our future studies in discrete mathematics,
we will find the closed forms for the infinite series in Examples 24 and 25 to be quite useful.

EXAMPLE 24 (Requires calculus) Let x be a real number with |x| < 1. Find
 ∞

n= 0 xn.

Solution: By Theorem 1 with a = 1 and r = x we see that
 k

n= 0 xn = xk+1 − 1

x − 1
. Because

|x| < 1, xk+1 approaches 0 as k approaches infinity. It follows that

∞
n= 0

xn = lim
k→∞

xk+1 − 1

x − 1
= 0− 1

x − 1
= 1

1− x
. ▲

We can produce new summation formulae by differentiating or integrating existing formulae.

EXAMPLE 25 (Requires calculus) Differentiating both sides of the equation

∞
k= 0

xk = 1

1− x
,

from Example 24 we find that

∞
k= 1

kxk−1 = 1

(1− x)2
.

(This differentiation is valid for |x| < 1 by a theorem about infinite series.) ▲

Exercises

1. Find these terms of the sequence {an}, where an =
2 · (−3)n + 5n.
a) a0 b) a1 c) a4 d) a5

2. What is the term a8 of the sequence {an} if an equals

a) 2n−1? b) 7?
c) 1+ (−1)n? d) −(−2)n?

3. What are the terms a0, a1, a2, and a3 of the sequence {an},
where an equals

a) 2n + 1? b) (n+ 1)n+1?
c) n/2 ? d) n/2 + n/2 ?

4. What are the terms a0, a1, a2, and a3 of the sequence {an},
where an equals

a) (−2)n? b) 3?
c) 7+ 4n? d) 2n + (−2)n?

5. List the first 10 terms of each of these sequences.

a) the sequence that begins with 2 and in which each
successive term is 3 more than the preceding term

b) the sequence that lists each positive integer three
times, in increasing order

c) the sequence that lists the odd positive integers in in-
creasing order, listing each odd integer twice

d) the sequence whose nth term is n! − 2n

e) the sequence that begins with 3, where each succeed-
ing term is twice the preceding term

f) the sequence whose first term is 2, second term is 4,
and each succeeding term is the sum of the two pre-
ceding terms

g) the sequence whose nth term is the number of bits
in the binary expansion of the number n (defined in
Section 4.2)

h) the sequence where the nth term is the number of let-
ters in the English word for the index n

6. List the first 10 terms of each of these sequences.

a) the sequence obtained by starting with 10 and obtain-
ing each term by subtracting 3 from the previous term

b) the sequence whose nth term is the sum of the first n
positive integers

c) the sequence whose nth term is 3n − 2n

d) the sequence whose nth term is √n
e) the sequence whose first two terms are 1 and 5 and

each succeeding term is the sum of the two previous
terms

168 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

f) the sequence whose nth term is the largest integer
whose binary expansion (defined in Section 4.2) has
n bits (Write your answer in decimal notation.)

g) the sequence whose terms are constructed sequen-
tially as follows: start with 1, then add 1, then multiply
by 1, then add 2, then multiply by 2, and so on

h) the sequence whose nth term is the largest integer k

such that k! ≤ n

7. Find at least three different sequences beginning with the
terms 1, 2, 4 whose terms are generated by a simple for-
mula or rule.

8. Find at least three different sequences beginning with the
terms 3, 5, 7 whose terms are generated by a simple for-
mula or rule.

9. Find the first five terms of the sequence defined by each
of these recurrence relations and initial conditions.

a) an = 6an−1, a0 = 2
b) an = a2

n−1, a1 = 2
c) an = an−1 + 3an−2, a0 = 1, a1 = 2
d) an = nan−1 + n2an−2, a0 = 1, a1 = 1
e) an = an−1 + an−3, a0 = 1, a1 = 2, a2 = 0

10. Find the first six terms of the sequence defined by each
of these recurrence relations and initial conditions.

a) an = −2an−1, a0 = −1
b) an = an−1 − an−2, a0 = 2, a1 = −1
c) an = 3a2

n−1, a0 = 1
d) an = nan−1 + a2

n−2, a0 = −1, a1 = 0
e) an = an−1 − an−2 + an−3, a0 = 1, a1 = 1, a2 = 2

11. Let an = 2n + 5 · 3n for n = 0, 1, 2,

a) Find a0, a1, a2, a3, and a4.
b) Show that a2 = 5a1 − 6a0, a3 = 5a2 − 6a1, and

a4 = 5a3 − 6a2.
c) Show that an = 5an−1 − 6an−2 for all integers n with

n ≥ 2.

12. Show that the sequence {an} is a solution of the recurrence
relation an = −3an−1 + 4an−2 if

a) an = 0. b) an = 1.
c) an = (−4)n. d) an = 2(−4)n + 3.

13. Is the sequence {an} a solution of the recurrence relation
an = 8an−1 − 16an−2 if

a) an = 0? b) an = 1?
c) an = 2n? d) an = 4n?
e) an = n4n? f) an = 2 · 4n + 3n4n?
g) an = (−4)n? h) an = n24n?

14. For each of these sequences find a recurrence relation
satisfied by this sequence. (The answers are not unique
because there are infinitely many different recurrence
relations satisfied by any sequence.)

a) an = 3 b) an = 2n
c) an = 2n+ 3 d) an = 5n

e) an = n2 f) an = n2 + n

g) an = n+ (−1)n h) an = n!
15. Show that the sequence {an} is a solution of the recurrence

relation an = an−1 + 2an−2 + 2n− 9 if

a) an = −n+ 2.
b) an = 5(−1)n − n+ 2.

c) an = 3(−1)n + 2n − n+ 2.
d) an = 7 · 2n − n+ 2.

16. Find the solution to each of these recurrence relations with
the given initial conditions. Use an iterative approach such
as that used in Example 10.

a) an = −an−1, a0 = 5
b) an = an−1 + 3, a0 = 1
c) an = an−1 − n, a0 = 4
d) an = 2an−1 − 3, a0 = −1
e) an = (n+ 1)an−1, a0 = 2
f) an = 2nan−1, a0 = 3
g) an = −an−1 + n− 1, a0 = 7

17. Find the solution to each of these recurrence relations and
initial conditions. Use an iterative approach such as that
used in Example 10.

a) an = 3an−1, a0 = 2
b) an = an−1 + 2, a0 = 3
c) an = an−1 + n, a0 = 1
d) an = an−1 + 2n+ 3, a0 = 4
e) an = 2an−1 − 1, a0 = 1
f) an = 3an−1 + 1, a0 = 1
g) an = nan−1, a0 = 5
h) an = 2nan−1, a0 = 1

18. A person deposits $1000 in an account that yields 9%
interest compounded annually.

a) Set up a recurrence relation for the amount in the ac-
count at the end of n years.

b) Find an explicit formula for the amount in the account
at the end of n years.

c) How much money will the account contain after 100
years?

19. Suppose that the number of bacteria in a colony triples
every hour.

a) Set up a recurrence relation for the number of bacteria
after n hours have elapsed.

b) If 100 bacteria are used to begin a new colony, how
many bacteria will be in the colony in 10 hours?

20. Assume that the population of the world in 2010 was 6.9
billion and is growing at the rate of 1.1% a year.

a) Set up a recurrence relation for the population of the
world n years after 2010.

b) Find an explicit formula for the population of the
world n years after 2010.

c) What will the population of the world be in 2030?

21. A factory makes custom sports cars at an increasing rate.
In the first month only one car is made, in the second
month two cars are made, and so on, with n cars made in
the nth month.

a) Set up a recurrence relation for the number of cars
produced in the first n months by this factory.

b) How many cars are produced in the first year?
c) Find an explicit formula for the number of cars pro-

duced in the first n months by this factory.

22. An employee joined a company in 2009 with a starting
salary of $50,000. Every year this employee receives a
raise of $1000 plus 5% of the salary of the previous year.

2.4 Sequences and Summations 169

a) Set up a recurrence relation for the salary of this em-
ployee n years after 2009.

b) What will the salary of this employee be in 2017?
c) Find an explicit formula for the salary of this em-

ployee n years after 2009.

23. Find a recurrence relation for the balance B(k) owed at
the end of k months on a loan of $5000 at a rate of 7%
if a payment of $100 is made each month. [Hint: Ex-
press B(k) in terms of B(k− 1); the monthly interest is
(0.07/12)B(k− 1).]

24. a) Find a recurrence relation for the balanceB(k)owed at
the end of k months on a loan at a rate of r if a payment
P is made on the loan each month. [Hint: Express
B(k) in terms of B(k− 1) and note that the monthly
interest rate is r/12.]

b) Determine what the monthly payment P should be so
that the loan is paid off after T months.

25. For each of these lists of integers, provide a simple for-
mula or rule that generates the terms of an integer se-
quence that begins with the given list.Assuming that your
formula or rule is correct, determine the next three terms
of the sequence.

a) 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, . . .
b) 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, . . .
c) 1, 0, 2, 0, 4, 0, 8, 0, 16, 0, . . .
d) 3, 6, 12, 24, 48, 96, 192, . . .
e) 15, 8, 1,−6,−13,−20,−27, . . .
f) 3, 5, 8, 12, 17, 23, 30, 38, 47, . . .
g) 2, 16, 54, 128, 250, 432, 686, . . .
h) 2, 3, 7, 25, 121, 721, 5041, 40321, . . .

26. For each of these lists of integers, provide a simple for-
mula or rule that generates the terms of an integer se-
quence that begins with the given list.Assuming that your
formula or rule is correct, determine the next three terms
of the sequence.

a) 3, 6, 11, 18, 27, 38, 51, 66, 83, 102, . . .
b) 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, . . .
c) 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, . . .
d) 1, 2, 2, 2, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, . . .
e) 0, 2, 8, 26, 80,242,728,2186,6560,19682, . . .
f) 1, 3, 15, 105, 945, 10395, 135135, 2027025,

34459425, . . .
g) 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, . . .
h) 2, 4, 16, 256, 65536, 4294967296, . . .

∗∗27. Show that if an denotes the nth positive integer that is not
a perfect square, then an = n+ {√n}, where {x} denotes
the integer closest to the real number x.

∗28. Letan be thenth term of the sequence 1, 2, 2, 3, 3, 3, 4, 4, 4,
4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, . . . , constructed by including
the integer k exactly k times. Show that an =

√
2n+ 1

2 .
29. What are the values of these sums?

a)
5

k= 1
(k + 1) b)

4
j = 0

(−2)j

c)
10

i= 1
3 d)

8
j = 0

(2j+1 − 2j)

30. What are the values of these sums, whereS = {1, 3, 5, 7}?
a)

j ∈ S

j b)

j ∈ S

j2

c)

j ∈ S

(1/j) d)

j ∈ S

1

31. What is the value of each of these sums of terms of a
geometric progression?

a)
8

j = 0
3 · 2j b)

8
j = 1

2j

c)
8

j = 2
(−3)j d)

8
j = 0

2 · (−3)j

32. Find the value of each of these sums.

a)
8

j = 0
(1+ (−1)j) b)

8
j = 0

(3j − 2j)

c)
8

j = 0
(2 · 3j + 3 · 2j) d)

8
j = 0

(2j+1 − 2j)

33. Compute each of these double sums.

a)
2

i= 1

3
j = 1

(i + j) b)
2

i= 0

3
j = 0

(2i + 3j)

c)
3

i= 1

2
j = 0

i d)
2

i= 0

3
j = 1

ij

34. Compute each of these double sums.

a)
3

i= 1

2
j = 1

(i − j) b)
3

i= 0

2
j = 0

(3i + 2j)

c)
3

i= 1

2
j = 0

j d)
2

i= 0

3
j = 0

i2j3

35. Show that
 n

j = 1(aj − aj−1) = an − a0, where
a0, a1, . . . , an is a sequence of real numbers. This type
of sum is called telescoping.

36. Use the identity 1/(k(k + 1)) = 1/k − 1/(k + 1) and
Exercise 35 to compute

 n
k= 1 1/(k(k + 1)).

37. Sum both sides of the identity k2 − (k − 1)2 = 2k − 1
from k = 1 to k = n and use Exercise 35 to find

a) a formula for
 n

k= 1(2k − 1) (the sum of the first n
odd natural numbers).

b) a formula for
 n

k= 1 k.
∗38. Use the technique given in Exercise 35, together with the

result of Exercise 37b, to derive the formula for
 n

k= 1 k2

given in Table 2. [Hint: Take ak = k3 in the telescoping
sum in Exercise 35.]

39. Find
 200

k= 100k. (Use Table 2.)

40. Find
 200

k= 99k
3. (Use Table 2.)

∗41. Find a formula for
 m

k= 0
√
k , when m is a positive

integer.
∗42. Find a formula for

 m
k= 0 3

√
k , when m is a positive

integer.

There is also a special notation for products. The product of

am, am+1, . . . , an is represented by
n

j =m

aj , read as the prod-

uct from j = m to j = n of aj .

170 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

43. What are the values of the following products?

a)
 10

i= 0 i b)
 8

i= 5 i

c)
 100

i= 1(−1)i d)
 10

i= 1 2

Recall that the value of the factorial function at a positive in-
teger n, denoted by n!, is the product of the positive integers
from 1 to n, inclusive. Also, we specify that 0! = 1.

44. Express n! using product notation.

45. Find
 4

j = 0 j !.

46. Find
 4

j = 0 j !.

2.5 Cardinality of Sets

Introduction

In Definition 4 of Section 2.1 we defined the cardinality of a finite set as the number of elements
in the set. We use the cardinalities of finite sets to tell us when they have the same size, or when
one is bigger than the other. In this section we extend this notion to infinite sets. That is, we will
define what it means for two infinite sets to have the same cardinality, providing us with a way
to measure the relative sizes of infinite sets.

We will be particularly interested in countably infinite sets, which are sets with the same
cardinality as the set of positive integers. We will establish the surprising result that the set of
rational numbers is countably infinite. We will also provide an example of an uncountable set
when we show that the set of real numbers is not countable.

The concepts developed in this section have important applications to computer science. A
function is called uncomputable if no computer program can be written to find all its values,
even with unlimited time and memory. We will use the concepts in this section to explain why
uncomputable functions exist.

We now define what it means for two sets to have the same size, or cardinality. In Section 2.1,
we discussed the cardinality of finite sets and we defined the size, or cardinality, of such sets. In
Exercise 79 of Section 2.3 we showed that there is a one-to-one correspondence between any
two finite sets with the same number of elements. We use this observation to extend the concept
of cardinality to all sets, both finite and infinite.

DEFINITION 1 The sets A and B have the same cardinality if and only if there is a one-to-one correspondence
from A to B. When A and B have the same cardinality, we write |A| = |B|.

For infinite sets the definition of cardinality provides a relative measure of the sizes of two sets,
rather than a measure of the size of one particular set. We can also define what it means for one
set to have a smaller cardinality than another set.

DEFINITION 2 If there is a one-to-one function from A to B, the cardinality of A is less than or the same as
the cardinality of B and we write |A| ≤ |B|. Moreover, when |A| ≤ |B| and A and B have
different cardinality, we say that the cardinality of A is less than the cardinality of B and we
write |A| < |B|.

Countable Sets

We will now split infinite sets into two groups, those with the same cardinality as the set of
natural numbers and those with a different cardinality.

2.5 Cardinality of Sets 171

1 12 ...

...1 23

2

3

3

5

4

7

5

9

6

11

7

13

8

15

9

17

10

19

11

21

FIGURE 1 A One-to-One Correspondence Between Z+ and the Set of Odd Positive
Integers.

DEFINITION 3 A set that is either finite or has the same cardinality as the set of positive integers is called
countable.A set that is not countable is called uncountable.When an infinite setS is countable,
we denote the cardinality of S byℵ0 (whereℵ is aleph, the first letter of the Hebrew alphabet).
We write |S| = ℵ0 and say that S has cardinality “aleph null.”

We illustrate how to show a set is countable in the next example.

EXAMPLE 1 Show that the set of odd positive integers is a countable set.

Solution: To show that the set of odd positive integers is countable, we will exhibit a one-to-one
correspondence between this set and the set of positive integers. Consider the function

f (n) = 2n− 1

from Z+ to the set of odd positive integers. We show that f is a one-to-one correspondence by
showing that it is both one-to-one and onto. To see that it is one-to-one, suppose that f (n) =
f (m). Then 2n− 1 = 2m− 1, so n = m. To see that it is onto, suppose that t is an odd positive
integer. Then t is 1 less than an even integer 2k, where k is a natural number. Hence t = 2k − 1 =
f (k). We display this one-to-one correspondence in Figure 1. ▲

An infinite set is countable if and only if it is possible to list the elements of the set in a
sequence (indexed by the positive integers). The reason for this is that a one-to-one correspon-
dence f from the set of positive integers to a set S can be expressed in terms of a sequence
a1, a2, . . . , an, . . . , where a1 = f (1), a2 = f (2), . . . , an = f (n),

You can always get a room
at Hilbert’s Grand Hotel!

HILBERT’S GRANDHOTEL We now describe a paradox that shows that something impos-
sible with finite sets may be possible with infinite sets. The famous mathematician David Hilbert
invented the notion of the Grand Hotel, which has a countably infinite number of rooms, each
occupied by a guest. When a new guest arrives at a hotel with a finite number of rooms, and
all rooms are occupied, this guest cannot be accommodated without evicting a current guest.
However, we can always accommodate a new guest at the Grand Hotel, even when all rooms
are already occupied, as we show in Example 2. Exercises 5 and 8 ask you to show that we can
accommodate a finite number of new guests and a countable number of new guests, respectively,
at the fully occupied Grand Hotel.

DAVID HILBERT (1862–1943) Hilbert, born in Königsberg, the city famous in mathematics for its seven
bridges, was the son of a judge. During his tenure at Göttingen University, from 1892 to 1930, he made many
fundamental contributions to a wide range of mathematical subjects. He almost always worked on one area of
mathematics at a time, making important contributions, then moving to a new mathematical subject. Some areas
in which Hilbert worked are the calculus of variations, geometry, algebra, number theory, logic, and mathematical
physics. Besides his many outstanding original contributions, Hilbert is remembered for his famous list of 23
difficult problems. He described these problems at the 1900 International Congress of Mathematicians, as a
challenge to mathematicians at the birth of the twentieth century. Since that time, they have spurred a tremendous
amount and variety of research. Although many of these problems have now been solved, several remain open,

including the Riemann hypothesis, which is part of Problem 8 on Hilbert’s list. Hilbert was also the author of several important
textbooks in number theory and geometry.

172 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

1
2

3
4

5
6

7
8

Hilbert’s
Grand
Hotel

. . .

. . .
. . .

New guest

Take room 1,
everyone else

move down one room

Manager

FIGURE 2 A New Guest Arrives at Hilbert’s Grand Hotel.

EXAMPLE 2 How can we accommodate a new guest arriving at the fully occupied Grand Hotel without
removing any of the current guests?

Solution: Because the rooms of the Grand Hotel are countable, we can list them as Room 1,
Room 2, Room 3, and so on. When a new guest arrives, we move the guest in Room 1 to Room
2, the guest in Room 2 to Room 3, and in general, the guest in Room n to Room n+ 1, for all
positive integers n. This frees up Room 1, which we assign to the new guest, and all the current
guests still have rooms. We illustrate this situation in Figure 2. ▲

When there are finitely many room in a hotel, the notion that all rooms are occupied is
equivalent to the notion that no new guests can be accommodated. However, Hilbert’s paradox
of the Grand Hotel can be explained by noting that this equivalence no longer holds when there
are infinitely many room.

EXAMPLES OF COUNTABLE ANDUNCOUNTABLE SETS We will now show that cer-
tain sets of numbers are countable. We begin with the set of all integers. Note that we can show
that the set of all integers is countable by listing its members.

EXAMPLE 3 Show that the set of all integers is countable.

Solution: We can list all integers in a sequence by starting with 0 and alternating between
positive and negative integers: 0, 1,−1, 2,−2, Alternatively, we could find a one-to-one
correspondence between the set of positive integers and the set of all integers. We leave it to the
reader to show that the function f (n) = n/2 when n is even and f (n) = −(n− 1)/2 when n

is odd is such a function. Consequently, the set of all integers is countable. ▲

It is not surprising that the set of odd integers and the set of all integers are both countable
sets (as shown in Examples 1 and 3). Many people are amazed to learn that the set of rational
numbers is countable, as Example 4 demonstrates.

EXAMPLE 4 Show that the set of positive rational numbers is countable.

Solution: It may seem surprising that the set of positive rational numbers is countable, but we
will show how we can list the positive rational numbers as a sequence r1, r2, . . . , rn, First,
note that every positive rational number is the quotient p/q of two positive integers. We can

2.5 Cardinality of Sets 173

1
1

1
2

1
3

1
4

1
5

2
1

2
2

2
3

2
4

2
5

3
1

3
2

3

3

3

4

3
5

4
1

4
2

4
3

4
4

4
5

5
1

5
2

5
3

5
4

5
5

...

...

...

...

...

...............

Terms not circled
are not listed
because they
repeat previously
listed terms

FIGURE 3 The Positive Rational Numbers Are Countable.

arrange the positive rational numbers by listing those with denominator q = 1 in the first row,
those with denominator q = 2 in the second row, and so on, as displayed in Figure 3.

The key to listing the rational numbers in a sequence is to first list the positive rational
numbers p/q with p + q = 2, followed by those with p + q = 3, followed by those with
p + q = 4, and so on, following the path shown in Figure 3. Whenever we encounter a number
p/q that is already listed, we do not list it again. For example, when we come to 2/2 = 1 we
do not list it because we have already listed 1/1 = 1. The initial terms in the list of positive
rational numbers we have constructed are 1, 1/2, 2, 3, 1/3, 1/4, 2/3, 3/2, 4, 5, and so on. These
numbers are shown circled; the uncircled numbers in the list are those we leave out because
they are already listed. Because all positive rational numbers are listed once, as the reader can
verify, we have shown that the set of positive rational numbers is countable. ▲

An Uncountable Set

Not all infinite sets have
the same size! We have seen that the set of positive rational numbers is a countable set. Do we have a promising

candidate for an uncountable set? The first place we might look is the set of real numbers. In
Example 5 we use an important proof method, introduced in 1879 by Georg Cantor and known
as the Cantor diagonalization argument, to prove that the set of real numbers is not countable.
This proof method is used extensively in mathematical logic and in the theory of computation.

EXAMPLE 5 Show that the set of real numbers is an uncountable set.

Solution: To show that the set of real numbers is uncountable, we suppose that the set of real
numbers is countable and arrive at a contradiction. Then, the subset of all real numbers that
fall between 0 and 1 would also be countable (because any subset of a countable set is also
countable; see Exercise 16). Under this assumption, the real numbers between 0 and 1 can be
listed in some order, say, r1, r2, r3, Let the decimal representation of these real numbers be

r1 = 0.d11d12d13d14 . . .

r2 = 0.d21d22d23d24 . . .

r3 = 0.d31d32d33d34 . . .

r4 = 0.d41d42d43d44 . . .

...

where dij ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. (For example, if r1 = 0.23794102 . . . , we have d11 =
2, d12 = 3, d13 = 7, and so on.) Then, form a new real number with decimal expansion

174 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

r = 0.d1d2d3d4 . . . , where the decimal digits are determined by the following rule:

di =

4 if dii = 4

5 if dii = 4.

(As an example, suppose that r1 = 0.23794102 . . . , r2 = 0.44590138 . . . , r3 =
0.09118764 . . . , r4 = 0.80553900 . . . , and so on. Then we have r = 0.d1d2d3d4 . . . =
0.4544 . . . , where d1 = 4 because d11 = 4, d2 = 5 because d22 = 4, d3 = 4 because d33 = 4,
d4 = 4 because d44 = 4, and so on.)

A number with a decimal
expansion that terminates
has a second decimal
expansion ending with an
infinite sequence of 9s
because 1 = 0.999

Every real number has a unique decimal expansion (when the possibility that the expansion
has a tail end that consists entirely of the digit 9 is excluded). Therefore, the real number r is not
equal to any of r1, r2, . . . because the decimal expansion of r differs from the decimal expansion
of ri in the ith place to the right of the decimal point, for each i.

Because there is a real number r between 0 and 1 that is not in the list, the assumption that all
the real numbers between 0 and 1 could be listed must be false. Therefore, all the real numbers
between 0 and 1 cannot be listed, so the set of real numbers between 0 and 1 is uncountable. Any
set with an uncountable subset is uncountable (see Exercise 15). Hence, the set of real numbers
is uncountable. ▲

RESULTS ABOUT CARDINALITY We will now discuss some results about the cardinality
of sets. First, we will prove that the union of two countable sets is also countable.

THEOREM 1 If A and B are countable sets, then A ∪ B is also countable.

Proof: Suppose that A and B are both countable sets. Without loss of generality, we can assume
thatA andB are disjoint. (If they are not, we can replaceB byB − A, becauseA ∩ (B − A) = ∅
and A ∪ (B − A) = A ∪ B.) Furthermore, without loss of generality, if one of the two sets is

This proof uses WLOG
and cases. countably infinite and other finite, we can assume that B is the one that is finite.

There are three cases to consider: (i) A and B are both finite, (ii) A is infinite and B is finite,
and (iii) A and B are both countably infinite.

Case (i): Note that when A and B are finite, A ∪ B is also finite, and therefore, countable.

Case (ii): Because A is countably infinite, its elements can be listed in an infinite sequence
a1, a2, a3, . . ., an, . . . and because B is finite, its terms can be listed as b1, b2, . . ., bm for
some positive integer m. We can list the elements of A ∪ B as b1, b2, . . ., bm, a1, a2, a3,
. . ., an, This means that A ∪ B is countably infinite.

Case (iii): Because both A and B are countably infinite, we can list their elements as a1,
a2, a3, . . ., an, . . . and b1, b2, b3, . . ., bn, . . ., respectively. By alternating terms of these
two sequences we can list the elements of A ∪ B in the infinite sequence a1, b1, a2, b2, a3,
b3, . . ., an, bn, This means A ∪ B must be countably infinite.

We have completed the proof, as we have shown that A ∪ B is countable in all three
cases.

Because of its importance, we now state a key theorem in the study of cardinality.

THEOREM 2 SCHRÖDER-BERNSTEIN THEOREM If A and B are sets with |A| ≤ |B| and |B| ≤
|A|, then |A| = |B|. In other words, if there are one-to-one functions f from A to B and g

from B to A, then there is a one-to-one correspondence between A and B.

2.5 Cardinality of Sets 175

Because Theorem 2 seems to be quite straightforward, we might expect that it has an easy
proof. However, even though it can be proved without using advanced mathematics, no known
proof is easy to explain. Consequently, we omit a proof here. We refer the interested reader to
[AiZiHo09] and [Ve06] for a proof. This result is called the Schröder-Bernstein theorem after
Ernst Schröder who published a flawed proof of it in 1898 and Felix Bernstein, a student of
Georg Cantor, who presented a proof in 1897. However, a proof of this theorem was found
in notes of Richard Dedekind dated 1887. Dedekind was a German mathematician who made
important contributions to the foundations of mathematics, abstract algebra, and number theory.

We illustrate the use of Theorem 2 with an example.

EXAMPLE 6 Show that the |(0, 1)| = |(0, 1]|.

Solution: It is not at all obvious how to find a one-to-one correspondence between (0, 1) and
(0, 1] to show that |(0, 1)| = |(0, 1]|. Fortunately, we can use the Schröder-Bernstein theorem
instead. Finding a one-to-one function from (0, 1) to (0, 1] is simple. Because (0, 1) ⊂ (0, 1],
f (x) = x is a one-to-one function from (0, 1) to (0, 1]. Finding a one-to-one function from
(0, 1] to (0, 1) is also not difficult. The function g(x) = x/2 is clearly one-to-one and maps
(0, 1] to (0, 1/2] ⊂ (0, 1). As we have found one-to-one functions from (0, 1) to (0, 1] and
from (0, 1] to (0, 1), the Schröder-Bernstein theorem tells us that |(0, 1)| = |(0, 1]|. ▲

UNCOMPUTABLE FUNCTIONS We will now describe an important application of the
concepts of this section to computer science. In particular, we will show that there are functions
whose values cannot be computed by any computer program.

DEFINITION 4 We say that a function is computable if there is a computer program in some programming
language that finds the values of this function. If a function is not computable we say it is
uncomputable.

To show that there are uncomputable functions, we need to establish two results. First, we
need to show that the set of all computer programs in any particular programming language is
countable. This can be proved by noting that a computer programs in a particular language can
be thought of as a string of characters from a finite alphabet (see Exercise 37). Next, we show
that there are uncountably many different functions from a particular countably infinite set to
itself. In particular, Exercise 38 shows that the set of functions from the set of positive integers
to itself is uncountable. This is a consequence of the uncountability of the real numbers between
0 and 1 (see Example 5). Putting these two results together (Exercise 39) shows that there are
uncomputable functions.

THE CONTINUUM HYPOTHESIS We conclude this section with a brief discussion of a
famous open question about cardinality. It can be shown that the power set of Z+ and the set
of real numbers R have the same cardinality (see Exercise 38). In other words, we know that
|P(Z+)| = |R| = c, where c denotes the cardinality of the set of real numbers.

An important theorem of Cantor (Exercise 40) states that the cardinality of a set is always less
than the cardinality of its power set. Hence, |Z+| < |P(Z+)|. We can rewrite this as ℵ0 < 2ℵ0 ,
using the notation 2|S| to denote the cardinality of the power set of the set S. Also, note that the
relationship |P(Z+)| = |R| can be expressed as 2ℵ0 = c.

This leads us to the famous continuum hypothesis, which asserts that there is no cardinal
number X between ℵ0 and c. In other words, the continuum hypothesis states that there is no set

c is the lowercase
Fraktur c. A such that ℵ0, the cardinality of the set of positive integers, is less than |A| and |A| is less than

c, the cardinality of the set of real numbers. It can be shown that the smallest infinite cardinal
numbers form an infinite sequence ℵ0 < ℵ1 < ℵ2 < · · · . If we assume that the continuum
hypothesis is true, it would follow that c = ℵ1, so that 2ℵ0 = ℵ1.

176 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

The continuum hypothesis was stated by Cantor in 1877. He labored unsuccessfully to prove
it, becoming extremely dismayed that he could not. By 1900, settling the continuum hypothesis
was considered to be among the most important unsolved problems in mathematics. It was the
first problem posed by David Hilbert in his famous 1900 list of open problems in mathematics.

The continuum hypothesis is still an open question and remains an area for active research.
However, it has been shown that it can be neither proved nor disproved under the standard set
theory axioms in modern mathematics, the Zermelo-Fraenkel axioms. The Zermelo-Fraenkel
axioms were formulated to avoid the paradoxes of naive set theory, such as Russell’s paradox,
but there is much controversy whether they should be replaced by some other set of axioms for
set theory.

Exercises

1. Determine whether each of these sets is finite, countably
infinite, or uncountable. For those that are countably in-
finite, exhibit a one-to-one correspondence between the
set of positive integers and that set.

a) the negative integers
b) the even integers
c) the integers less than 100
d) the real numbers between 0 and 1

2
e) the positive integers less than 1,000,000,000
f) the integers that are multiples of 7

2. Determine whether each of these sets is finite, countably
infinite, or uncountable. For those that are countably in-
finite, exhibit a one-to-one correspondence between the
set of positive integers and that set.

a) the integers greater than 10
b) the odd negative integers
c) the integers with absolute value less than 1,000,000
d) the real numbers between 0 and 2
e) the set A× Z+ where A = {2, 3}
f) the integers that are multiples of 10

3. Determine whether each of these sets is countable or un-
countable. For those that are countably infinite, exhibit
a one-to-one correspondence between the set of positive
integers and that set.

a) all bit strings not containing the bit 0
b) all positive rational numbers that cannot be written

with denominators less than 4
c) the real numbers not containing 0 in their decimal

representation
d) the real numbers containing only a finite number of

1s in their decimal representation

4. Determine whether each of these sets is countable or un-
countable. For those that are countably infinite, exhibit
a one-to-one correspondence between the set of positive
integers and that set.

a) integers not divisible by 3
b) integers divisible by 5 but not by 7
c) the real numbers with decimal representations con-

sisting of all 1s
d) the real numbers with decimal representations of all

1s or 9s

5. Show that a finite group of guests arriving at Hilbert’s
fully occupied Grand Hotel can be given rooms without
evicting any current guest.

6. Suppose that Hilbert’s Grand Hotel is fully occupied, but
the hotel closes all the even numbered rooms for mainte-
nance. Show that all guests can remain in the hotel.

7. Suppose that Hilbert’s Grand Hotel is fully occupied on
the day the hotel expands to a second building which also
contains a countably infinite number of rooms. Show that
the current guests can be spread out to fill every room of
the two buildings of the hotel.

8. Show that a countably infinite number of guests arriv-
ing at Hilbert’s fully occupied Grand Hotel can be given
rooms without evicting any current guest.

∗9. Suppose that a countably infinite number of buses, each
containing a countably infinite number of guests, arrive
at Hilbert’s fully occupied Grand Hotel. Show that all the
arriving guests can be accommodated without evicting
any current guest.

10. Give an example of two uncountable sets A and B such
that A− B is

a) finite.
b) countably infinite.
c) uncountable.

11. Give an example of two uncountable sets A and B such
that A ∩ B is

a) finite.
b) countably infinite.
c) uncountable.

12. Show that if A and B are sets and A ⊂ B then |A| ≤ |B|.
13. Explain why the set A is countable if and only if |A| ≤

|Z+|.
14. Show that if A and B are sets with the same cardinality,

then |A| ≤ |B| and |B| ≤ |A|.
15. Show that if A and B are sets, A is uncountable, and

A ⊆ B, then B is uncountable.

16. Show that a subset of a countable set is also countable.

17. If A is an uncountable set and B is a countable set, must
A− B be uncountable?

2.6 Matrices 177

18. Show that if A and B are sets |A| = |B|, then |P(A)| =
|P(B)|.

19. Show that if A, B, C, and D are sets with |A| = |B| and
|C| = |D|, then |A× C| = |B ×D|.

20. Show that if |A| = |B| and |B| = |C|, then |A| = |C|.
21. Show that if A, B, and C are sets such that |A| ≤ |B| and

|B| ≤ |C|, then |A| ≤ |C|.
22. Suppose that A is a countable set. Show that the set B is

also countable if there is an onto function f from A to B.

23. Show that if A is an infinite set, then it contains a count-
ably infinite subset.

24. Show that there is no infinite setA such that |A| < |Z+| =
ℵ0.

25. Prove that if it is possible to label each element of an
infinite set S with a finite string of keyboard characters,
from a finite list characters, where no two elements of S
have the same label, then S is a countably infinite set.

26. Use Exercise 25 to provide a proof different from that
in the text that the set of rational numbers is countable.
[Hint: Show that you can express a rational number as a
string of digits with a slash and possibly a minus sign.]

∗27. Show that the union of a countable number of countable
sets is countable.

28. Show that the set Z+ × Z+ is countable.
∗29. Show that the set of all finite bit strings is countable.
∗30. Show that the set of real numbers that are solutions of

quadratic equations ax2 + bx + c = 0, where a, b, and c

are integers, is countable.
∗31. Show that Z+ × Z+ is countable by showing that

the polynomial function f : Z+ × Z+ → Z+ with
f (m, n) = (m+ n− 2)(m+ n− 1)/2+m is one-to-
one and onto.

∗32. Show that when you substitute (3n+ 1)2 for each occur-
rence of n and (3m+ 1)2 for each occurrence of m in the
right-hand side of the formula for the function f (m, n)
in Exercise 31, you obtain a one-to-one polynomial func-
tion Z× Z→ Z. It is an open question whether there is
a one-to-one polynomial function Q×Q→ Q.

33. Use the Schröder-Bernstein theorem to show that (0, 1)
and [0, 1] have the same cardinality

34. Show that (0, 1) and R have the same cardinality. [Hint:

Use the Schröder-Bernstein theorem.]

35. Show that there is no one-to-one correspondence from
the set of positive integers to the power set of the set of
positive integers. [Hint: Assume that there is such a one-
to-one correspondence. Represent a subset of the set of
positive integers as an infinite bit string with ith bit 1 if i
belongs to the subset and 0 otherwise. Suppose that you
can list these infinite strings in a sequence indexed by the
positive integers. Construct a new bit string with its ith
bit equal to the complement of the ith bit of the ith string
in the list. Show that this new bit string cannot appear in
the list.]

∗36. Show that there is a one-to-one correspondence from the
set of subsets of the positive integers to the set real num-
bers between 0 and 1. Use this result and Exercises 34 and
35 to conclude that ℵ0 < |P(Z+)| = |R|. [Hint: Look at
the first part of the hint for Exercise 35.]

∗37. Show that the set of all computer programs in a partic-
ular programming language is countable. [Hint: A com-
puter program written in a programming language can be
thought of as a string of symbols from a finite alphabet.]

∗38. Show that the set of functions from the positive inte-
gers to the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is uncountable.
[Hint: First set up a one-to-one correspondence between
the set of real numbers between 0 and 1 and a subset of
these functions. Do this by associating to the real number
0.d1d2 . . . dn . . . the function f with f (n) = dn.]

∗39. We say that a function is computable if there is a com-
puter program that finds the values of this function. Use
Exercises 37 and 38 to show that there are functions that
are not computable.

∗40. Show that if S is a set, then there does not exist an onto
function f from S to P(S), the power set of S. Con-
clude that |S| < |P(S)|. This result is known as Cantor’s
theorem. [Hint: Suppose such a function f existed. Let
T = {s ∈ S | s ∈ f (s)} and show that no element s can
exist for which f (s) = T .]

2.6 Matrices

Introduction

Matrices are used throughout discrete mathematics to express relationships between elements
in sets. In subsequent chapters we will use matrices in a wide variety of models. For instance,
matrices will be used in models of communications networks and transportation systems. Many
algorithms will be developed that use these matrix models. This section reviews matrix arithmetic
that will be used in these algorithms.

178 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

DEFINITION 1 A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called
an m× n matrix. The plural of matrix is matrices. A matrix with the same number of rows
as columns is called square. Two matrices are equal if they have the same number of rows
and the same number of columns and the corresponding entries in every position are equal.

EXAMPLE 1 The matrix

⎡
⎣1 1

0 2
1 3

⎤
⎦ is a 3× 2 matrix.

▲

We now introduce some terminology about matrices. Boldface uppercase letters will be
used to represent matrices.

DEFINITION 2 Let m and n be positive integers and let

A =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1n
a21 a22 . . . a2n
· · ·
· · ·
· · ·

am1 am2 . . . amn

⎤
⎥⎥⎥⎥⎥⎦ .

The ith row of A is the 1× n matrix [ai1, ai2, . . . , ain]. The j th column of A is the m× 1
matrix⎡

⎢⎢⎢⎢⎢⎣

a1j
a2j
·
·
·

amj

⎤
⎥⎥⎥⎥⎥⎦ .

The (i, j)th element or entry of A is the element aij , that is, the number in the ith row and
j th column of A. A convenient shorthand notation for expressing the matrix A is to write
A = [aij], which indicates that A is the matrix with its (i, j)th element equal to aij.

Matrix Arithmetic

The basic operations of matrix arithmetic will now be discussed, beginning with a definition of
matrix addition.

DEFINITION 3 Let A = [aij] and B = [bij] be m× n matrices. The sum of A and B, denoted by A + B, is
the m× n matrix that has aij + bij as its (i, j)th element. In other words, A+ B= [aij + bij].

The sum of two matrices of the same size is obtained by adding elements in the corresponding
positions. Matrices of different sizes cannot be added, because the sum of two matrices is defined
only when both matrices have the same number of rows and the same number of columns.

EXAMPLE 2

We have

⎡
⎣1 0 −1

2 2 −3
3 4 0

⎤
⎦+

⎡
⎣ 3 4 −1

1 −3 0
−1 1 2

⎤
⎦ =

⎡
⎣4 4 −2

3 −1 −3
2 5 2

⎤
⎦.

▲

2.6 Matrices 179

We now discuss matrix products.A product of two matrices is defined only when the number
of columns in the first matrix equals the number of rows of the second matrix.

DEFINITION 4 LetA be an m× k matrix andB be a k × n matrix. The product ofA andB, denoted byAB, is
the m× n matrix with its (i, j)th entry equal to the sum of the products of the corresponding
elements from the ith row of A and the j th column of B. In other words, if AB = [cij], then

cij = ai1b1j + ai2b2j + · · · + aikbkj .

In Figure 1 the colored row of A and the colored column of B are used to compute the element
cij of AB. The product of two matrices is not defined when the number of columns in the first
matrix and the number of rows in the second matrix are not the same.

We now give some examples of matrix products.

EXAMPLE 3 Let

A =

⎡
⎢⎣

1 0 4
2 1 1
3 1 0
0 2 2

⎤
⎥⎦ and B =

⎡
⎣2 4

1 1
3 0

⎤
⎦ .

Find AB if it is defined.

Solution: Because A is a 4× 3 matrix and B is a 3× 2 matrix, the product AB is defined and is
a 4× 2 matrix. To find the elements of AB, the corresponding elements of the rows of A and the
columns of B are first multiplied and then these products are added. For instance, the element in
the (3, 1)th position of AB is the sum of the products of the corresponding elements of the third
row of A and the first column of B; namely, 3 · 2 + 1 · 1+ 0 · 3 = 7. When all the elements of
AB are computed, we see that

AB =

⎡
⎢⎣

14 4
8 9
7 13
8 2

⎤
⎥⎦ .

▲

Matrix multiplication is not commutative. That is, if A and B are two matrices, it is not
necessarily true that AB and BA are the same. In fact, it may be that only one of these two
products is defined. For instance, if A is 2× 3 and B is 3× 4, then AB is defined and is 2× 4;
however, BA is not defined, because it is impossible to multiply a 3× 4 matrix and a 2× 3
matrix.

In general, suppose that A is an m× n matrix and B is an r × s matrix. Then AB is defined
only when n = r and BA is defined only when s = m. Moreover, even when AB and BA are

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1k

a21 a22 . . . a2k

...
...

...

ai1 ai2 . . . aik
...

...
...

am1 am2 . . . amk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
b11 b12 . . . b1j . . . b1n

b21 b22 . . . b2j . . . b2n

...
...

...
...

bk1 bk2 . . . bkj . . . bkn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
c11 c12 . . . c1n

c21 c22 . . . c2n

...
... cij

...

cm1 cm2 . . . cmn

⎤
⎥⎥⎥⎦

FIGURE 1 The Product of A = [aij] and B = [bij].

180 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

both defined, they will not be the same size unless m = n = r = s. Hence, if both AB and BA
are defined and are the same size, then both A and B must be square and of the same size.
Furthermore, even with A and B both n× n matrices, AB and BA are not necessarily equal, as
Example 4 demonstrates.

EXAMPLE 4 Let

A =

1 1
2 1

and B =

2 1
1 1

.

Does AB = BA?

Solution: We find that

AB =

3 2
5 3

and BA =

4 3
3 2

.

Hence, AB = BA. ▲

Transposes and Powers of Matrices

We now introduce an important matrix with entries that are zeros and ones.

DEFINITION 5 The identity matrix of order n is the n× n matrix In = [δij], where δij = 1 if i = j and
δij = 0 if i = j . Hence

In =

⎡
⎢⎢⎢⎢⎢⎣

1 0 . . . 0
0 1 . . . 0
· · ·
· · ·
· · ·
0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎦ .

Multiplying a matrix by an appropriately sized identity matrix does not change this matrix. In
other words, when A is an m× n matrix, we have

AIn = ImA = A.

Powers of square matrices can be defined. When A is an n× n matrix, we have

A0 = In, Ar = AAA · · ·A .

r times

The operation of interchanging the rows and columns of a square matrix arises in many
contexts.

2.6 Matrices 181

DEFINITION 6 Let A = [aij] be an m× n matrix. The transpose of A, denoted by At , is the n×m matrix
obtained by interchanging the rows and columns of A. In other words, if At = [bij], then
bij = aji for i = 1, 2, . . . , n and j = 1, 2, . . . , m.

EXAMPLE 5 The transpose of the matrix

1 2 3
4 5 6

is the matrix

⎡
⎣1 4

2 5
3 6

⎤
⎦.

▲

Matrices that do not change when their rows and columns are interchanged are often im-
portant.

DEFINITION 7 A square matrix A is called symmetric if A = At . Thus A = [aij] is symmetric if aij = aji
for all i and j with 1 ≤ i ≤ n and 1 ≤ j ≤ n.

Note that a matrix is symmetric if and only if it is square and it is symmetric with respect to its
main diagonal (which consists of entries that are in the ith row and ith column for some i). This
symmetry is displayed in Figure 2.

EXAMPLE 6 The matrix

⎡
⎣1 1 0

1 0 1
0 1 0

⎤
⎦ is symmetric.

▲

aj i

ai j

FIGURE 2 A
Symmetric Matrix.

Zero–One Matrices

A matrix all of whose entries are either 0 or 1 is called a zero–one matrix. Zero–one matrices
are often used to represent discrete structures, as we will see in Chapters 9 and 10. Algorithms
using these structures are based on Boolean arithmetic with zero–one matrices. This arithmetic
is based on the Boolean operations ∧ and ∨, which operate on pairs of bits, defined by

b1 ∧ b2 =

1 if b1 = b2 = 1

0 otherwise,

b1 ∨ b2 =

1 if b1 = 1 or b2 = 1

0 otherwise.

DEFINITION 8 Let A = [aij] and B = [bij] be m× n zero–one matrices. Then the join of A and B is the
zero–one matrix with (i, j)th entry aij ∨ bij . The join of A and B is denoted by A ∨ B. The
meet of A and B is the zero–one matrix with (i, j)th entry aij ∧ bij . The meet of A and B is
denoted by A ∧ B.

EXAMPLE 7 Find the join and meet of the zero–one matrices

A =

1 0 1
0 1 0

, B =

0 1 0
1 1 0

.

182 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Solution: We find that the join of A and B is

A ∨ B =

1 ∨ 0 0 ∨ 1 1 ∨ 0
0 ∨ 1 1 ∨ 1 0 ∨ 0

=

1 1 1
1 1 0

.

The meet of A and B is

A ∧ B =

1 ∧ 0 0 ∧ 1 1 ∧ 0
0 ∧ 1 1 ∧ 1 0 ∧ 0

=

0 0 0
0 1 0

.

▲

We now define the Boolean product of two matrices.

DEFINITION 9 Let A = [aij] be an m× k zero–one matrix and B = [bij] be a k × n zero–one matrix. Then
the Boolean product of A and B, denoted by A B, is the m× n matrix with (i, j)th entry
cij where

cij = (ai1 ∧ b1j) ∨ (ai2 ∧ b2j) ∨ · · · ∨ (aik ∧ bkj).

Note that the Boolean product of A and B is obtained in an analogous way to the ordinary
product of these matrices, but with addition replaced with the operation∨ and with multiplication
replaced with the operation ∧. We give an example of the Boolean products of matrices.

EXAMPLE 8 Find the Boolean product of A and B, where

A =
⎡
⎣1 0

0 1
1 0

⎤
⎦ , B =

1 1 0
0 1 1

.

Solution: The Boolean product A B is given by

A B =
⎡
⎣(1 ∧ 1) ∨ (0 ∧ 0) (1 ∧ 1) ∨ (0 ∧ 1) (1 ∧ 0) ∨ (0 ∧ 1)
(0 ∧ 1) ∨ (1 ∧ 0) (0 ∧ 1) ∨ (1 ∧ 1) (0 ∧ 0) ∨ (1 ∧ 1)
(1 ∧ 1) ∨ (0 ∧ 0) (1 ∧ 1) ∨ (0 ∧ 1) (1 ∧ 0) ∨ (0 ∧ 1)

⎤
⎦

=
⎡
⎣1 ∨ 0 1 ∨ 0 0 ∨ 0

0 ∨ 0 0 ∨ 1 0 ∨ 1
1 ∨ 0 1 ∨ 0 0 ∨ 0

⎤
⎦

=
⎡
⎣1 1 0

0 1 1
1 1 0

⎤
⎦ .

▲

We can also define the Boolean powers of a square zero–one matrix. These powers will
be used in our subsequent studies of paths in graphs, which are used to model such things as
communications paths in computer networks.

2.6 Matrices 183

DEFINITION 10 Let A be a square zero–one matrix and let r be a positive integer. The rth Boolean power of
A is the Boolean product of r factors of A. The rth Boolean product of A is denoted by A[r].
Hence

A[r] = A A A · · · A .
r times

(This is well defined because the Boolean product of matrices is associative.) We also define
A[0] to be In.

EXAMPLE 9 Let A =
⎡
⎣0 0 1

1 0 0
1 1 0

⎤
⎦. Find A[n] for all positive integers n.

Solution: We find that

A[2] = A A =
⎡
⎣1 1 0

0 0 1
1 0 1

⎤
⎦ .

We also find that

A[3] = A[2] A =
⎡
⎣1 0 1

1 1 0
1 1 1

⎤
⎦ , A[4] = A[3] A =

⎡
⎣1 1 1

1 0 1
1 1 1

⎤
⎦ .

Additional computation shows that

A[5] =
⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦ .

The reader can now see that A[n] = A[5] for all positive integers n with n ≥ 5. ▲

Exercises

1. Let A =
⎡
⎣1 1 1 3

2 0 4 6
1 1 3 7

⎤
⎦ .

a) What size is A?
b) What is the third column of A?
c) What is the second row of A?
d) What is the element of A in the (3, 2)th position?
e) What is At?

2. Find A+ B, where

a) A =
⎡
⎣ 1 0 4
−1 2 2

0 −2 −3

⎤
⎦ ,

B =
⎡
⎣−1 3 5

2 2 −3
2 −3 0

⎤
⎦ .

b) A =
 −1 0 5 6
−4 −3 5 −2

,

B =
 −3 9 −3 4

0 −2 −1 2

.

3. Find AB if

a) A =

2 1
3 2

, B =

0 4
1 3

.

b) A =
⎡
⎣1 −1

0 1
2 3

⎤
⎦ , B =

3 −2 −1
1 0 2

.

c) A =

⎡
⎢⎣

4 −3
3 −1
0 −2
−1 5

⎤
⎥⎦ , B =

 −1 3 2 −2
0 −1 4 −3

.

184 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

4. Find the product AB, where

a) A =
⎡
⎣ 1 0 1

0 −1 −1
−1 1 0

⎤
⎦ , B =

⎡
⎣ 0 1 −1

1 −1 0
−1 0 1

⎤
⎦ .

b) A =
⎡
⎣1 −3 0

1 2 2
2 1 −1

⎤
⎦ , B =

⎡
⎣ 1 −1 2 3
−1 0 3 −1
−3 −2 0 2

⎤
⎦ .

c) A =
⎡
⎣ 0 −1

7 2
−4 −3

⎤
⎦ , B =

4 −1 2 3 0
−2 0 3 4 1

.

5. Find a matrix A such that

2 3
1 4

A =

3 0
1 2

.

[Hint: FindingA requires that you solve systems of linear
equations.]

6. Find a matrix A such that

⎡
⎣1 3 2

2 1 1
4 0 3

⎤
⎦A =

⎡
⎣ 7 1 3

1 0 3
−1 −3 7

⎤
⎦ .

7. Let A be an m× n matrix and let 0 be the m× n matrix
that has all entries equal to zero. Show that A = 0+ A =
A+ 0.

8. Show that matrix addition is commutative; that is,
show that if A and B are both m× n matrices, then
A+ B = B+ A.

9. Show that matrix addition is associative; that is, show
that if A, B, and C are all m× n matrices, then
A+ (B+ C) = (A+ B)+ C.

10. Let A be a 3× 4 matrix, B be a 4× 5 matrix, and C be a
4× 4 matrix. Determine which of the following products
are defined and find the size of those that are defined.

a) AB b) BA c) AC

d) CA e) BC f) CB

11. What do we know about the sizes of the matrices A and
B if both of the products AB and BA are defined?

12. In this exercise we show that matrix multiplication is dis-
tributive over matrix addition.

a) Suppose that A and B are m× k matrices and that C
is a k × n matrix. Show that (A+ B)C = AC+ BC.

b) Suppose thatC is anm× k matrix and thatA andB are
k × n matrices. Show that C(A+ B) = CA+ CB.

13. In this exercise we show that matrix multiplication is
associative. Suppose that A is an m× p matrix, B is
a p × k matrix, and C is a k × n matrix. Show that
A(BC) = (AB)C.

14. The n× nmatrixA = [aij] is called adiagonalmatrix if
aij = 0 when i = j . Show that the product of two n× n

diagonal matrices is again a diagonal matrix. Give a sim-
ple rule for determining this product.

15. Let

A =

1 1
0 1

.

Find a formula for An, whenever n is a positive integer.

16. Show that (At)t = A.

17. Let A and B be two n× n matrices. Show that

a) (A+ B)t = At + Bt .
b) (AB)t = BtAt .

If A and B are n× n matrices with AB = BA = In, then B
is called the inverse of A (this terminology is appropriate be-
cause such a matrixB is unique) andA is said to be invertible.
The notation B = A−1 denotes that B is the inverse of A.

18. Show that⎡
⎣ 2 3 −1

1 2 1
−1 −1 3

⎤
⎦

is the inverse of⎡
⎣ 7 −8 5
−4 5 −3

1 −1 1

⎤
⎦ .

19. Let A be the 2× 2 matrix

A =

a b

c d

.

Show that if ad − bc = 0, then

A−1 =

⎡
⎢⎢⎣

d

ad − bc

−b

ad − bc

−c

ad − bc

a

ad − bc

⎤
⎥⎥⎦ .

20. Let

A =
 −1 2

1 3

.

a) Find A−1. [Hint: Use Exercise 19.]
b) Find A3.
c) Find (A−1)3.
d) Use your answers to (b) and (c) to show that (A−1)3

is the inverse of A3.

21. Let A be an invertible matrix. Show that (An)−1 =
(A−1)n whenever n is a positive integer.

22. Let A be a matrix. Show that the matrix AAt is symmet-
ric. [Hint: Show that this matrix equals its transpose with
the help of Exercise 17b.]

23. Suppose that A is an n× n matrix where n is a positive
integer. Show that A + At is symmetric.

Key Terms and Results 185

24. a) Show that the system of simultaneous linear equations

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

an1x1 + an2x2 + · · · + annxn = bn.

in the variables x1, x2, . . . , xn can be expressed as
AX = B, where A = [aij], X is an n× 1 matrix with
xi the entry in its ith row, and B is an n× 1 matrix
with bi the entry in its ith row.

b) Show that if the matrix A = [aij] is invertible (as
defined in the preamble to Exercise 18), then the so-
lution of the system in part (a) can be found using the
equation X = A−1B.

25. Use Exercises 18 and 24 to solve the system

7x1 − 8x2 + 5x3 = 5

−4x1 + 5x2 − 3x3 = −3

x1 − x2 + x3 = 0

26. Let

A =

1 1
0 1

and B =

0 1
1 0

.

Find

a) A ∨ B. b) A ∧ B. c) A B.

27. Let

A =
⎡
⎣1 0 1

1 1 0
0 0 1

⎤
⎦ and B =

⎡
⎣0 1 1

1 0 1
1 0 1

⎤
⎦ .

Find

a) A ∨ B. b) A ∧ B. c) A B.

28. Find the Boolean product of A and B, where

A =
⎡
⎣1 0 0 1

0 1 0 1
1 1 1 1

⎤
⎦ and B =

⎡
⎢⎣

1 0
0 1
1 1
1 0

⎤
⎥⎦ .

29. Let

A =
⎡
⎣1 0 0

1 0 1
0 1 0

⎤
⎦ .

Find

a) A[2]. b) A[3].
c) A ∨ A[2] ∨ A[3].

30. Let A be a zero–one matrix. Show that

a) A ∨ A = A. b) A ∧ A = A.

31. In this exercise we show that the meet and join opera-
tions are commutative. Let A and B be m× n zero–one
matrices. Show that

a) A ∨ B = B ∨ A. b) B ∧ A = A ∧ B.

32. In this exercise we show that the meet and join opera-
tions are associative. Let A, B, and C be m× n zero–one
matrices. Show that

a) (A ∨ B) ∨ C = A ∨ (B ∨ C).
b) (A ∧ B) ∧ C = A ∧ (B ∧ C).

33. We will establish distributive laws of the meet over the
join operation in this exercise. Let A, B, and C be m× n

zero–one matrices. Show that

a) A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C).
b) A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C).

34. Let A be an n× n zero–one matrix. Let I be the n× n

identity matrix. Show that A I = I A = A.

35. In this exercise we will show that the Boolean prod-
uct of zero–one matrices is associative. Assume that A
is an m× p zero–one matrix, B is a p × k zero–one
matrix, and C is a k × n zero–one matrix. Show that
A (B C) = (A B) C.

Key Terms and Results

TERMS
set: a collection of distinct objects
axiom: a basic assumption of a theory
paradox: a logical inconsistency
element, member of a set: an object in a set
roster method: a method that describes a set by listing its

elements
set builder notation: the notation that describes a set by stating

a property an element must have to be a member
∅ (empty set, null set): the set with no members
universal set: the set containing all objects under considera-

tion
Venn diagram: a graphical representation of a set or sets
S = T (set equality): S and T have the same elements

S ⊆ T (S is a subset of T): every element of S is also an
element of T

S ⊂ T (S is a proper subset of T): S is a subset of T and
S = T

finite set: a set with n elements, where n is a nonnegative
integer

infinite set: a set that is not finite

|S| (the cardinality of S): the number of elements in S

P(S) (the power set of S): the set of all subsets of S

A ∪ B (the union of A and B): the set containing those ele-
ments that are in at least one of A and B

A ∩ B (the intersection ofA and B): the set containing those
elements that are in both A and B.

186 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

A − B (the difference of A and B): the set containing those
elements that are in A but not in B

A (the complement of A): the set of elements in the universal
set that are not in A

A ⊕ B (the symmetric difference of A and B): the set con-
taining those elements in exactly one of A and B

membership table: a table displaying the membership of ele-
ments in sets

function from A to B : an assignment of exactly one element
of B to each element of A

domain of f : the set A, where f is a function from A to B

codomain of f : the set B, where f is a function from A to B

b is the image of a under f : b = f (a)

a is a pre-image of b under f : f (a) = b

range of f : the set of images of f
onto function, surjection: a function from A to B such that

every element of B is the image of some element in A

one-to-one function, injection: a function such that the im-
ages of elements in its domain are distinct

one-to-one correspondence, bijection: a function that is both
one-to-one and onto

inverse of f : the function that reverses the correspondence
given by f (when f is a bijection)

f ◦ g (composition of f and g): the function that assigns
f (g(x)) to x

 x (floor function): the largest integer not exceeding x

 x (ceiling function): the smallest integer greater than or
equal to x

partial function: an assignment to each element in a subset of
the domain a unique element in the codomain

sequence: a function with domain that is a subset of the set of
integers

geometric progression: a sequence of the form a, ar , ar2, . . . ,
where a and r are real numbers

arithmetic progression: a sequence of the form a, a + d,
a + 2d, . . . , where a and d are real numbers

string: a finite sequence
empty string: a string of length zero
recurrence relation: a equation that expresses the nth term an

of a sequence in terms of one or more of the previous terms
of the sequence for all integers n greater than a particular
integer

�n
i= 1 ai: the sum a1 + a2 + · · · + an�n
i= 1 ai: the product a1a2 · · · an

cardinality: two sets A and B have the same cardinality if
there is a one-to-one correspondence from A to B

countable set: a set that either is finite or can be placed in
one-to-one correspondence with the set of positive integers

uncountable set: a set that is not countable
ℵ0 (aleph null): the cardinality of a countable set
c: the cardinality of the set of real numbers
Cantor diagonalization argument: a proof technique used to

show that the set of real numbers is uncountable
computable function: a function for which there is a com-

puter program in some programming language that finds its
values

uncomputable function: a function for which no computer
program in a programming language exists that finds its
values

continuum hypothesis: the statement there no set A exists
such that ℵ0 < |A| < c

matrix: a rectangular array of numbers
matrix addition: see page 178
matrix multiplication: see page 179
In (identity matrix of order n): the n× n matrix that has

entries equal to 1 on its diagonal and 0s elsewhere
At (transpose ofA): the matrix obtained fromA by interchang-

ing the rows and columns
symmetric matrix: a matrix is symmetric if it equals its trans-

pose
zero–one matrix: a matrix with each entry equal to either 0 or

1
A ∨ B (the join of A and B): see page 181
A ∧ B (the meet of A and B): see page 181
A B (the Boolean product of A and B): see page 182

RESULTS

The set identities given in Table 1 in Section 2.2
The summation formulae in Table 2 in Section 2.4
The set of rational numbers is countable.
The set of real numbers is uncountable.

Review Questions

1. Explain what it means for one set to be a subset of another
set. How do you prove that one set is a subset of another
set?

2. What is the empty set? Show that the empty set is a subset
of every set.

3. a) Define |S|, the cardinality of the set S.
b) Give a formula for |A ∪ B|, where A and B are sets.

4. a) Define the power set of a set S.
b) When is the empty set in the power set of a set S?
c) How many elements does the power set of a set S with

n elements have?

5. a) Define the union, intersection, difference, and sym-
metric difference of two sets.

b) What are the union, intersection, difference, and sym-
metric difference of the set of positive integers and the
set of odd integers?

6. a) Explain what it means for two sets to be equal.

b) Describe as many of the ways as you can to show that
two sets are equal.

c) Show in at least two different ways that the sets
A− (B ∩ C) and (A− B) ∪ (A− C) are equal.

Supplementary Exercises 187

7. Explain the relationship between logical equivalences and
set identities.

8. a) Define the domain, codomain, and range of a function.
b) Let f (n) be the function from the set of integers to the

set of integers such that f (n) = n2 + 1. What are the
domain, codomain, and range of this function?

9. a) Define what it means for a function from the set of
positive integers to the set of positive integers to be
one-to-one.

b) Define what it means for a function from the set of
positive integers to the set of positive integers to be
onto.

c) Give an example of a function from the set of posi-
tive integers to the set of positive integers that is both
one-to-one and onto.

d) Give an example of a function from the set of positive
integers to the set of positive integers that is one-to-one
but not onto.

e) Give an example of a function from the set of posi-
tive integers to the set of positive integers that is not
one-to-one but is onto.

f) Give an example of a function from the set of positive
integers to the set of positive integers that is neither
one-to-one nor onto.

10. a) Define the inverse of a function.

b) When does a function have an inverse?

c) Does the function f (n) = 10− n from the set of inte-
gers to the set of integers have an inverse? If so, what
is it?

11. a) Define the floor and ceiling functions from the set of
real numbers to the set of integers.

b) For which real numbers x is it true that x = x ?
12. Conjecture a formula for the terms of the sequence that

begins 8, 14, 32, 86, 248 and find the next three terms of
your sequence.

13. Suppose that an = an−1 − 5 for n = 1, 2, Find a for-
mula for an.

14. What is the sum of the terms of the geometric progression
a + ar + · · · + arn when r = 1?

15. Show that the set of odd integers is countable.

16. Give an example of an uncountable set.

17. Define the product of two matrices A and B. When is this
product defined?

18. Show that matrix multiplication is not commutative.

Supplementary Exercises

1. Let A be the set of English words that contain the letter
x, and let B be the set of English words that contain the
letter q. Express each of these sets as a combination of A
and B.

a) The set of English words that do not contain the letter
x.

b) The set of English words that contain both an x and a
q.

c) The set of English words that contain an x but not a q.
d) The set of English words that do not contain either an

x or a q.
e) The set of English words that contain an x or a q, but

not both.

2. Show that if A is a subset of B, then the power set of A

is a subset of the power set of B.

3. Suppose that A and B are sets such that the power set of
A is a subset of the power set of B. Does it follow that A
is a subset of B?

4. Let E denote the set of even integers and O denote the
set of odd integers. As usual, let Z denote the set of all
integers. Determine each of these sets.

a) E ∪O b) E ∩O c) Z− E d) Z−O

5. Show that if A and B are sets, then A− (A− B) =
A ∩ B.

6. Let A and B be sets. Show that A ⊆ B if and only if
A ∩ B = A.

7. Let A,B, and C be sets. Show that (A− B)− C is not
necessarily equal to A− (B − C).

8. Suppose that A,B, and C are sets. Prove or disprove that
(A− B)− C = (A− C)− B.

9. Suppose that A,B,C, and D are sets. Prove or disprove
that (A− B)− (C −D) = (A− C)− (B −D).

10. Show that if A and B are finite sets, then |A ∩ B| ≤
|A∪B|. Determine when this relationship is an equality.

11. Let A and B be sets in a finite universal set U . List the
following in order of increasing size.

a) |A|, |A ∪ B|, |A ∩ B|, |U |, |∅|
b) |A− B|, |A⊕ B|, |A| + |B|, |A ∪ B|, |∅|

12. Let A and B be subsets of the finite universal set U . Show
that |A ∩ B| = |U | − |A| − |B| + |A ∩ B|.

13. Let f and g be functions from {1, 2, 3, 4} to {a, b, c, d}
and from {a, b, c, d} to {1, 2, 3, 4}, respectively, with
f (1) = d, f (2) = c, f (3) = a, and f (4) = b, and
g(a) = 2, g(b) = 1, g(c) = 3, and g(d) = 2.

a) Is f one-to-one? Is g one-to-one?
b) Is f onto? Is g onto?
c) Does either f or g have an inverse? If so, find this

inverse.

14. Suppose that f is a function from A to B where A and B

are finite sets. Explain why |f (S)| ≤ |S| for all subsets S

of A.

188 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

15. Suppose that f is a function from A to B where A and B

are finite sets. Explain why |f (S)| = |S| for all subsets S
of A if and only if f is one-to-one.

Suppose that f is a function from A to B. We define the func-
tion Sf from P(A) to P(B) by the rule Sf (X) = f (X) for
each subset X of A. Similarly, we define the function Sf−1

from P(B) to P(A) by the rule Sf−1(Y) = f−1(Y) for each
subset Y of B. Here, we are using Definition 4, and the defi-
nition of the inverse image of a set found in the preamble to
Exercise 42, both in Section 2.3.
∗16. Suppose that f is a function from the set A to the set B.

Prove that

a) if f is one-to-one, then Sf is a one-to-one function
from P(A) to P(B).

b) if f is onto function, then Sf is an onto function from
P(A) to P(B).

c) if f is onto function, then Sf−1 is a one-to-one func-
tion from P(B) to P(A).

d) if f is one-to-one, then Sf−1 is an onto function from
P(B) to P(A).

e) if f is a one-to-one correspondence, then Sf is a one-
to-one correspondence from P(A) to P(B) and Sf−1

is a one-to-one correspondence from P(B) to P(A).
[Hint: Use parts (a)-(d).]

17. Prove that if f and g are functions from A to B and
Sf = Sg (using the definition in the preamble to Exercise
16), then f (x) = g(x) for all x ∈ A.

18. Show that if n is an integer, then n = n/2 + n/2 .
19. For which real numbers x and y is it true that x + y =

 x + y ?
20. For which real numbers x and y is it true that x + y =

 x + y ?
21. For which real numbers x and y is it true that x + y =

 x + y ?
22. Prove that n/2 n/2 = n2/4 for all integers n.

23. Prove that if m is an integer, then x + m− x =
m− 1, unless x is an integer, in which case, it equals m.

24. Prove that if x is a real number, then x/2 /2 = x/4 .
25. Prove that if n is an odd integer, then n2/4 =

(n2 + 3)/4.

26. Prove that if m and n are positive integers and x is a real
number, then x + n

m

=

x + n

m

.

∗27. Prove that if m is a positive integer and x is a real number,
then

 mx = x +

x + 1

m

+

x + 2

m

+ · · ·

+

x + m− 1

m

.

∗28. We define the Ulam numbers by setting u1 = 1 and
u2 = 2. Furthermore, after determining whether the in-
tegers less than n are Ulam numbers, we set n equal to
the next Ulam number if it can be written uniquely as the
sum of two different Ulam numbers. Note that u3 = 3,
u4 = 4, u5 = 6, and u6 = 8.

a) Find the first 20 Ulam numbers.
b) Prove that there are infinitely many Ulam numbers.

29. Determine the value of
 100

k=1
k+1
k

. (The notation used
here for products is defined in the preamble to Exercise
43 in Section 2.4.)

∗30. Determine a rule for generating the terms of the sequence
that begins 1, 3, 4, 8, 15, 27, 50, 92, . . ., and find the next
four terms of the sequence.

∗31. Determine a rule for generating the terms of the sequence
that begins 2, 3, 3, 5, 10, 13, 39, 43, 172, 177, 885,
891, . . ., and find the next four terms of the sequence.

32. Show that the set of irrational numbers is an uncountable
set.

33. Show that the set S is a countable set if there is a func-
tion f from S to the positive integers such that f−1(j) is
countable whenever j is a positive integer.

34. Show that the set of all finite subsets of the set of positive
integers is a countable set.

∗∗35. Show that |R × R| = |R|. [Hint: Use the Schröder-
Bernstein theorem to show that |(0, 1)× (0, 1)| =
|(0, 1)|. To construct an injection from (0, 1)× (0, 1) to
(0, 1), suppose that (x, y) ∈ (0, 1)× (0, 1). Map (x, y)

to the number with decimal expansion formed by alter-
nating between the digits in the decimal expansions of x
and y, which do not end with an infinite string of 9s.]

∗∗36. Show that C, the set of complex numbers has the same
cardinality as R, the set of real numbers.

37. Find An if A is
0 1
−1 0

.

38. Show that if A = cI, where c is a real number and I is the
n× n identity matrix, then AB = BA whenever B is an
n× n matrix.

39. Show that ifA is a 2× 2 matrix such thatAB = BAwhen-
ever B is a 2× 2 matrix, then A = cI, where c is a real
number and I is the 2× 2 identity matrix.

40. Show that ifA andB are invertible matrices andAB exists,
then (AB)−1 = B−1A−1.

41. Let A be an n× n matrix and let 0 be the n× n matrix
all of whose entries are zero. Show that the following are
true.

a) A 0 = 0 A = 0
b) A ∨ 0 = 0 ∨ A = A
c) A ∧ 0 = 0 ∧ A = 0

Computer Projects 189

Computer Projects

Write programs with the specified input and output.

1. Given subsets A and B of a set with n elements, use bit
strings to find A, A ∪ B, A ∩ B, A− B, and A⊕ B.

2. Given multisets A and B from the same universal set, find
A ∪ B, A ∩ B, A− B, and A+ B (see preamble to Exer-
cise 61 of Section 2.2).

3. Given fuzzy sets A and B, find A, A ∪ B, and A ∩ B (see
preamble to Exercise 63 of Section 2.2).

4. Given a function f from {1, 2, . . . , n} to the set of integers,
determine whether f is one-to-one.

5. Given a function f from {1, 2, . . . , n} to itself, determine
whether f is onto.

6. Given a bijection f from the set {1, 2, . . . , n} to itself, find
f−1.

7. Given an m× k matrix A and a k × n matrix B, find AB.

8. Given a square matrix A and a positive integer n, find An.

9. Given a square matrix, determine whether it is symmetric.

10. Given two m× n Boolean matrices, find their meet and
join.

11. Given an m× k Boolean matrix A and a k × n Boolean
matrix B, find the Boolean product of A and B.

12. Given a square Boolean matrix A and a positive integer n,
find A[n].

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. Given two finite sets, list all elements in the Cartesian prod-
uct of these two sets.

2. Given a finite set, list all elements of its power set.

3. Calculate the number of one-to-one functions from a set S
to a setT , whereS andT are finite sets of various sizes. Can
you determine a formula for the number of such functions?
(We will find such a formula in Chapter 6.)

4. Calculate the number of onto functions from a set S to a
set T , where S and T are finite sets of various sizes. Can

you determine a formula for the number of such functions?
(We will find such a formula in Chapter 8.)

∗5. Develop a collection of different rules for generating the
terms of a sequence and a program for randomly selecting
one of these rules and the particular sequence generated
using these rules. Make this part of an interactive program
that prompts for the next term of the sequence and deter-
mines whether the response is the intended next term.

Writing Projects

Respond to these with essays using outside sources.

1. Discuss how an axiomatic set theory can be developed to
avoid Russell’s paradox. (See Exercise 46 of Section 2.1.)

2. Research where the concept of a function first arose, and
describe how this concept was first used.

3. Explain the different ways in which the Encyclopedia of

Integer Sequences has been found useful. Also, describe
a few of the more unusual sequences in this encyclopedia
and how they arise.

4. Define the recently invented EKG sequence and describe
some of its properties and open questions about it.

5. Look up the definition of a transcendental number. Explain
how to show that such numbers exist and how such num-
bers can be constructed. Which famous numbers can be
shown to be transcendental and for which famous numbers
is it still unknown whether they are transcendental?

6. Expand the discussion of the continuum hypothesis in the
text.

3
C H A P T E R

Algorithms

3.1 Algorithms

3.2 The Growth of
Functions

3.3 Complexity of
Algorithms

Many problems can be solved by considering them as special cases of general problems.
For instance, consider the problem of locating the largest integer in the sequence 101,

12, 144, 212, 98. This is a specific case of the problem of locating the largest integer in a sequence
of integers. To solve this general problem we must give an algorithm, which specifies a sequence
of steps used to solve this general problem. We will study algorithms for solving many different
types of problems in this book. For example, in this chapter we will introduce algorithms for
two of the most important problems in computer science, searching for an element in a list and
sorting a list so its elements are in some prescribed order, such as increasing, decreasing, or
alphabetic. Later in the book we will develop algorithms that find the greatest common divisor
of two integers, that generate all the orderings of a finite set, that find the shortest path between
nodes in a network, and for solving many other problems.

We will also introduce the notion of an algorithmic paradigm, which provides a general
method for designing algorithms. In particular we will discuss brute-force algorithms, which
find solutions using a straightforward approach without introducing any cleverness. We will also
discuss greedy algorithms, a class of algorithms used to solve optimization problems. Proofs are
important in the study of algorithms. In this chapter we illustrate this by proving that a particular
greedy algorithm always finds an optimal solution.

One important consideration concerning an algorithm is its computational complexity,
which measures the processing time and computer memory required by the algorithm to solve
problems of a particular size. To measure the complexity of algorithms we use big-O and big-
Theta notation, which we develop in this chapter. We will illustrate the analysis of the complexity
of algorithms in this chapter, focusing on the time an algorithm takes to solve a problem. Fur-
thermore, we will discuss what the time complexity of an algorithm means in practical and
theoretical terms.

3.1 Algorithms

Introduction

There are many general classes of problems that arise in discrete mathematics. For instance:
given a sequence of integers, find the largest one; given a set, list all its subsets; given a set
of integers, put them in increasing order; given a network, find the shortest path between two
vertices. When presented with such a problem, the first thing to do is to construct a model that
translates the problem into a mathematical context. Discrete structures used in such models
include sets, sequences, and functions—structures discussed in Chapter 2—as well as such
other structures as permutations, relations, graphs, trees, networks, and finite state machines—
concepts that will be discussed in later chapters.

Setting up the appropriate mathematical model is only part of the solution. To complete the
solution, a method is needed that will solve the general problem using the model. Ideally, what
is required is a procedure that follows a sequence of steps that leads to the desired answer. Such
a sequence of steps is called an algorithm.

DEFINITION 1 An algorithm is a finite sequence of precise instructions for performing a computation or for
solving a problem.

191

192 3 / Algorithms

The term algorithm is a corruption of the name al-Khowarizmi, a mathematician of the ninth
century, whose book on Hindu numerals is the basis of modern decimal notation. Originally,
the word algorism was used for the rules for performing arithmetic using decimal notation.
Algorism evolved into the word algorithm by the eighteenth century. With the growing interest
in computing machines, the concept of an algorithm was given a more general meaning, to
include all definite procedures for solving problems, not just the procedures for performing
arithmetic. (We will discuss algorithms for performing arithmetic with integers in Chapter 4.)

In this book, we will discuss algorithms that solve a wide variety of problems. In this
section we will use the problem of finding the largest integer in a finite sequence of integers to
illustrate the concept of an algorithm and the properties algorithms have. Also, we will describe
algorithms for locating a particular element in a finite set. In subsequent sections, procedures
for finding the greatest common divisor of two integers, for finding the shortest path between
two points in a network, for multiplying matrices, and so on, will be discussed.

EXAMPLE 1 Describe an algorithm for finding the maximum (largest) value in a finite sequence of integers.

Even though the problem of finding the maximum element in a sequence is relatively trivial,
it provides a good illustration of the concept of an algorithm. Also, there are many instances
where the largest integer in a finite sequence of integers is required. For instance, a university
may need to find the highest score on a competitive exam taken by thousands of students. Or
a sports organization may want to identify the member with the highest rating each month.
We want to develop an algorithm that can be used whenever the problem of finding the largest
element in a finite sequence of integers arises.

We can specify a procedure for solving this problem in several ways. One method is simply to
use the English language to describe the sequence of steps used. We now provide such a solution.

Solution of Example 1: We perform the following steps.

1. Set the temporary maximum equal to the first integer in the sequence. (The temporary
maximum will be the largest integer examined at any stage of the procedure.)

2. Compare the next integer in the sequence to the temporary maximum, and if it is larger
than the temporary maximum, set the temporary maximum equal to this integer.

3. Repeat the previous step if there are more integers in the sequence.

4. Stop when there are no integers left in the sequence. The temporary maximum at this
point is the largest integer in the sequence.

▲

An algorithm can also be described using a computer language. However, when that is done,
only those instructions permitted in the language can be used. This often leads to a description
of the algorithm that is complicated and difficult to understand. Furthermore, because many
programming languages are in common use, it would be undesirable to choose one particular
language. So, instead of using a particular computer language to specify algorithms, a form
of pseudocode, described in Appendix 3, will be used in this book. (We will also describe
algorithms using the English language.) Pseudocode provides an intermediate step between

ABU JA‘FAR MOHAMMED IBN MUSA AL-KHOWARIZMI (C. 780 – C. 850) al-Khowarizmi, an as-
tronomer and mathematician, was a member of the House of Wisdom, an academy of scientists in Baghdad.
The name al-Khowarizmi means “from the town of Kowarzizm,” which was then part of Persia, but is now
called Khiva and is part of Uzbekistan. al-Khowarizmi wrote books on mathematics, astronomy, and geography.
Western Europeans first learned about algebra from his works. The word algebra comes from al-jabr, part of
the title of his book Kitab al-jabr w’al muquabala. This book was translated into Latin and was a widely used
textbook. His book on the use of Hindu numerals describes procedures for arithmetic operations using these
numerals. European authors used a Latin corruption of his name, which later evolved to the word algorithm, to
describe the subject of arithmetic with Hindu numerals.

3.1 Algorithms 193

an English language description of an algorithm and an implementation of this algorithm in a
programming language. The steps of the algorithm are specified using instructions resembling
those used in programming languages. However, in pseudocode, the instructions used can
include any well-defined operations or statements. A computer program can be produced in
any computer language using the pseudocode description as a starting point.

The pseudocode used in this book is designed to be easily understood. It can serve as an
intermediate step in the construction of programs implementing algorithms in one of a variety of
different programming languages. Although this pseudocode does not follow the syntax of Java,
C, C++, or any other programming language, students familiar with a modern programming
language will find it easy to follow. A key difference between this pseudocode and code in a
programming language is that we can use any well-defined instruction even if it would take
many lines of code to implement this instruction. The details of the pseudocode used in the text
are given in Appendix 3. The reader should refer to this appendix whenever the need arises.

A pseudocode description of the algorithm for finding the maximum element in a finite
sequence follows.

ALGORITHM 1 Finding the Maximum Element in a Finite Sequence.

procedure max(a1, a2, . . . , an: integers)

max := a1

for i := 2 to n

if max < ai then max := ai
return max{max is the largest element}

This algorithm first assigns the initial term of the sequence, a1, to the variable max. The “for”
loop is used to successively examine terms of the sequence. If a term is greater than the current
value of max, it is assigned to be the new value of max.

PROPERTIES OF ALGORITHMS There are several properties that algorithms generally
share. They are useful to keep in mind when algorithms are described. These properties are:

� Input. An algorithm has input values from a specified set.

� Output. From each set of input values an algorithm produces output values from a spec-
ified set. The output values are the solution to the problem.

� Definiteness. The steps of an algorithm must be defined precisely.

� Correctness. An algorithm should produce the correct output values for each set of input
values.

� Finiteness. An algorithm should produce the desired output after a finite (but perhaps
large) number of steps for any input in the set.

� Effectiveness. It must be possible to perform each step of an algorithm exactly and in a
finite amount of time.

� Generality. The procedure should be applicable for all problems of the desired form, not
just for a particular set of input values.

EXAMPLE 2 Show that Algorithm 1 for finding the maximum element in a finite sequence of integers has all
the properties listed.

Solution: The input to Algorithm 1 is a sequence of integers. The output is the largest integer
in the sequence. Each step of the algorithm is precisely defined, because only assignments, a
finite loop, and conditional statements occur. To show that the algorithm is correct, we must
show that when the algorithm terminates, the value of the variable max equals the maximum

194 3 / Algorithms

of the terms of the sequence. To see this, note that the initial value of max is the first term of
the sequence; as successive terms of the sequence are examined, max is updated to the value
of a term if the term exceeds the maximum of the terms previously examined. This (informal)
argument shows that when all the terms have been examined, max equals the value of the largest
term. (A rigorous proof of this requires techniques developed in Section 5.1.) The algorithm
uses a finite number of steps, because it terminates after all the integers in the sequence have
been examined. The algorithm can be carried out in a finite amount of time because each step is
either a comparison or an assignment, there are a finite number of these steps, and each of these
two operations takes a finite amount of time. Finally, Algorithm 1 is general, because it can be
used to find the maximum of any finite sequence of integers. ▲

Searching Algorithms

The problem of locating an element in an ordered list occurs in many contexts. For instance, a
program that checks the spelling of words searches for them in a dictionary, which is just an
ordered list of words. Problems of this kind are called searching problems. We will discuss
several algorithms for searching in this section. We will study the number of steps used by each
of these algorithms in Section 3.3.

The general searching problem can be described as follows: Locate an element x in a list of
distinct elements a1, a2, . . . , an, or determine that it is not in the list. The solution to this search
problem is the location of the term in the list that equals x (that is, i is the solution if x = ai)
and is 0 if x is not in the list.

THE LINEAR SEARCH The first algorithm that we will present is called the linear search,
or sequential search, algorithm. The linear search algorithm begins by comparing x and a1.
When x = a1, the solution is the location of a1, namely, 1. When x = a1, compare x with a2. If
x = a2, the solution is the location of a2, namely, 2. When x = a2, compare x with a3. Continue
this process, comparing x successively with each term of the list until a match is found, where
the solution is the location of that term, unless no match occurs. If the entire list has been
searched without locating x, the solution is 0. The pseudocode for the linear search algorithm
is displayed as Algorithm 2.

ALGORITHM 2 The Linear Search Algorithm.

procedure linear search(x: integer, a1, a2, . . . , an: distinct integers)

i := 1

while (i ≤ n and x = ai)
i := i + 1

if i ≤ n then location := i
else location := 0

return location{location is the subscript of the term that equals x, or is 0 if x is not found}

THE BINARY SEARCH We will now consider another searching algorithm. This algorithm
can be used when the list has terms occurring in order of increasing size (for instance: if the
terms are numbers, they are listed from smallest to largest; if they are words, they are listed
in lexicographic, or alphabetic, order). This second searching algorithm is called the binary

search algorithm. It proceeds by comparing the element to be located to the middle term of
the list. The list is then split into two smaller sublists of the same size, or where one of these
smaller lists has one fewer term than the other. The search continues by restricting the search
to the appropriate sublist based on the comparison of the element to be located and the middle
term. In Section 3.3, it will be shown that the binary search algorithm is much more efficient
than the linear search algorithm. Example 3 demonstrates how a binary search works.

3.1 Algorithms 195

EXAMPLE 3 To search for 19 in the list

1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22,

first split this list, which has 16 terms, into two smaller lists with eight terms each, namely,

1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22.

Then, compare 19 and the largest term in the first list. Because 10 < 19, the search for 19 can
be restricted to the list containing the 9th through the 16th terms of the original list. Next, split
this list, which has eight terms, into the two smaller lists of four terms each, namely,

12 13 15 16 18 19 20 22.

Because 16 < 19 (comparing 19 with the largest term of the first list) the search is restricted to
the second of these lists, which contains the 13th through the 16th terms of the original list. The
list 18 19 20 22 is split into two lists, namely,

18 19 20 22.

Because 19 is not greater than the largest term of the first of these two lists, which is also 19, the
search is restricted to the first list: 18 19, which contains the 13th and 14th terms of the original
list. Next, this list of two terms is split into two lists of one term each: 18 and 19. Because
18 < 19, the search is restricted to the second list: the list containing the 14th term of the list,
which is 19. Now that the search has been narrowed down to one term, a comparison is made,
and 19 is located as the 14th term in the original list. ▲

We now specify the steps of the binary search algorithm. To search for the integer x in the
list a1, a2, . . . , an, where a1 < a2 < · · · < an, begin by comparing x with the middle term am
of the list, where m = (n+ 1)/2 . (Recall that x is the greatest integer not exceeding x.) If
x > am, the search for x is restricted to the second half of the list, which is am+1, am+2, . . . , an.
If x is not greater than am, the search for x is restricted to the first half of the list, which is
a1, a2, . . . , am.

The search has now been restricted to a list with no more than n/2 elements. (Recall that
 x is the smallest integer greater than or equal to x.) Using the same procedure, compare x to
the middle term of the restricted list. Then restrict the search to the first or second half of the
list. Repeat this process until a list with one term is obtained. Then determine whether this term
is x. Pseudocode for the binary search algorithm is displayed as Algorithm 3.

ALGORITHM 3 The Binary Search Algorithm.

procedure binary search (x: integer, a1, a2, . . . , an: increasing integers)

i := 1{i is left endpoint of search interval}

j := n {j is right endpoint of search interval}
while i < j

m := (i + j)/2
if x > am then i := m+ 1

else j := m
if x = ai then location := i
else location := 0

return location{location is the subscript i of the term ai equal to x, or 0 if x is not found}

196 3 / Algorithms

Algorithm 3 proceeds by successively narrowing down the part of the sequence being
searched. At any given stage only the terms from ai to aj are under consideration. In other
words, i and j are the smallest and largest subscripts of the remaining terms, respectively.
Algorithm 3 continues narrowing the part of the sequence being searched until only one term
of the sequence remains. When this is done, a comparison is made to see whether this term
equals x.

Sorting

Ordering the elements of a list is a problem that occurs in many contexts. For example, to produce
a telephone directory it is necessary to alphabetize the names of subscribers. Similarly, producing
a directory of songs available for downloading requires that their titles be put in alphabetic order.
Putting addresses in order in an e-mail mailing list can determine whether there are duplicated
addresses. Creating a useful dictionary requires that words be put in alphabetical order. Similarly,
generating a parts list requires that we order them according to increasing part number.

Suppose that we have a list of elements of a set. Furthermore, suppose that we have a way to
order elements of the set. (The notion of ordering elements of sets will be discussed in detail in
Section 9.6.) Sorting is putting these elements into a list in which the elements are in increasing
order. For instance, sorting the list 7, 2, 1, 4, 5, 9 produces the list 1, 2, 4, 5, 7, 9. Sorting the
list d, h, c, a, f (using alphabetical order) produces the list a, c, d, f, h.

An amazingly large percentage of computing resources is devoted to sorting one thing
or another. Hence, much effort has been devoted to the development of sorting algorithms.
A surprisingly large number of sorting algorithms have been devised using distinct strate-
gies, with new ones introduced regularly. In his fundamental work, The Art of Computer

Programming, Donald Knuth devotes close to 400 pages to sorting, covering around 15
different sorting algorithms in depth! More than 100 sorting algorithms have been de-
vised, and it is surprising how often new sorting algorithms are developed. Among the
newest sorting algorithms that have caught on is the the library sort, also known as the
gapped insertion sort, invented as recently as 2006. There are many reasons why sort-

Sorting is thought to hold

the record as the problem

solved by the most

fundamentally different

algorithms!

ing algorithms interest computer scientists and mathematicians. Among these reasons are
that some algorithms are easier to implement, some algorithms are more efficient (either
in general, or when given input with certain characteristics, such as lists slightly out of
order), some algorithms take advantage of particular computer architectures, and some al-
gorithms are particularly clever. In this section we will introduce two sorting algorithms,
the bubble sort and the insertion sort. Two other sorting algorithms, the selection sort
and the binary insertion sort, are introduced in the exercises, and the shaker sort is in-
troduced in the Supplementary Exercises. In Section 5.4 we will discuss the merge sort
and introduce the quick sort in the exercises in that section; the tournament sort is in-
troduced in the exercise set in Section 11.2. We cover sorting algorithms both because
sorting is an important problem and because these algorithms can serve as examples
for many important concepts.

THE BUBBLE SORT The bubble sort is one of the simplest sorting algorithms, but not one
of the most efficient. It puts a list into increasing order by successively comparing adjacent
elements, interchanging them if they are in the wrong order. To carry out the bubble sort, we
perform the basic operation, that is, interchanging a larger element with a smaller one following
it, starting at the beginning of the list, for a full pass. We iterate this procedure until the sort is
complete. Pseudocode for the bubble sort is given as Algorithm 4. We can imagine the elements
in the list placed in a column. In the bubble sort, the smaller elements “bubble” to the top as
they are interchanged with larger elements. The larger elements “sink” to the bottom. This is
illustrated in Example 4.

EXAMPLE 4 Use the bubble sort to put 3, 2, 4, 1, 5 into increasing order.

3.1 Algorithms 197

3

2

4

1

5

2

3

4

1

5

2

3

4

1

5

2

3

1

4

5

First pass 2

3

1

4

5

2

1

3

4

5

2

3

1

4

5

Second pass

1

2

3

4

5

Fourth pass2

1

3

4

5

1

2

3

4

5

Third pass
: an interchange

: pair in correct order

numbers in color

guaranteed to be in correct order

FIGURE 1 The Steps of a Bubble Sort.

Solution: The steps of this algorithm are illustrated in Figure 1. Begin by comparing the first two
elements, 3 and 2. Because 3 > 2, interchange 3 and 2, producing the list 2, 3, 4, 1, 5. Because
3 < 4, continue by comparing 4 and 1. Because 4 > 1, interchange 1 and 4, producing the list
2, 3, 1, 4, 5. Because 4 < 5, the first pass is complete. The first pass guarantees that the largest
element, 5, is in the correct position.

The second pass begins by comparing 2 and 3. Because these are in the correct order, 3 and 1
are compared. Because 3 > 1, these numbers are interchanged, producing 2, 1, 3, 4, 5. Because
3 < 4, these numbers are in the correct order. It is not necessary to do any more comparisons
for this pass because 5 is already in the correct position. The second pass guarantees that the
two largest elements, 4 and 5, are in their correct positions.

The third pass begins by comparing 2 and 1. These are interchanged because 2 > 1, produc-
ing 1, 2, 3, 4, 5. Because 2 < 3, these two elements are in the correct order. It is not necessary to
do any more comparisons for this pass because 4 and 5 are already in the correct positions. The
third pass guarantees that the three largest elements, 3, 4, and 5, are in their correct positions.

The fourth pass consists of one comparison, namely, the comparison of 1 and 2. Because
1 < 2, these elements are in the correct order. This completes the bubble sort. ▲

ALGORITHM 4 The Bubble Sort.

procedure bubblesort(a1, . . . , an : real numbers with n ≥ 2)

for i := 1 to n− 1

for j := 1 to n− i
if aj > aj+1 then interchange aj and aj+1

{a1, . . . , an is in increasing order}

THE INSERTION SORT The insertion sort is a simple sorting algorithm, but it is usually
not the most efficient. To sort a list with n elements, the insertion sort begins with the second
element. The insertion sort compares this second element with the first element and inserts it
before the first element if it does not exceed the first element and after the first element if it
exceeds the first element. At this point, the first two elements are in the correct order. The third
element is then compared with the first element, and if it is larger than the first element, it is
compared with the second element; it is inserted into the correct position among the first three
elements.

In general, in the j th step of the insertion sort, the j th element of the list is inserted into
the correct position in the list of the previously sorted j − 1 elements. To insert the j th element
in the list, a linear search technique is used (see Exercise 43); the j th element is successively
compared with the already sorted j − 1 elements at the start of the list until the first element that

198 3 / Algorithms

is not less than this element is found or until it has been compared with all j − 1 elements; the j th
element is inserted in the correct position so that the first j elements are sorted. The algorithm
continues until the last element is placed in the correct position relative to the already sorted list
of the first n− 1 elements. The insertion sort is described in pseudocode in Algorithm 5.

EXAMPLE 5 Use the insertion sort to put the elements of the list 3, 2, 4, 1, 5 in increasing order.

Solution: The insertion sort first compares 2 and 3. Because 3 > 2, it places 2 in the first position,
producing the list 2, 3, 4, 1, 5 (the sorted part of the list is shown in color). At this point, 2 and 3
are in the correct order. Next, it inserts the third element, 4, into the already sorted part of the list
by making the comparisons 4 > 2 and 4 > 3. Because 4 > 3, 4 remains in the third position.
At this point, the list is 2, 3, 4, 1, 5 and we know that the ordering of the first three elements
is correct. Next, we find the correct place for the fourth element, 1, among the already sorted
elements, 2, 3, 4. Because 1 < 2, we obtain the list 1, 2, 3, 4, 5. Finally, we insert 5 into the
correct position by successively comparing it to 1, 2, 3, and 4. Because 5 > 4, it stays at the end
of the list, producing the correct order for the entire list. ▲

ALGORITHM 5 The Insertion Sort.

procedure insertion sort(a1, a2, . . . , an: real numbers with n ≥ 2)

for j := 2 to n

i := 1

while aj > ai
i := i + 1

m := aj
for k := 0 to j − i − 1

aj−k := aj−k−1

ai := m
{a1, . . . , an is in increasing order}

Greedy Algorithms

Many algorithms we will study in this book are designed to solve optimization problems.
The goal of such problems is to find a solution to the given problem that either minimizes or

“Greed is good ... Greed

is right, greed works.

Greed clarifies ...” –

spoken by the character

Gordon Gecko in the film

Wall Street.

maximizes the value of some parameter. Optimization problems studied later in this text include
finding a route between two cities with smallest total mileage, determining a way to encode
messages using the fewest bits possible, and finding a set of fiber links between network nodes
using the least amount of fiber.

Surprisingly, one of the simplest approaches often leads to a solution of an optimization
problem. This approach selects the best choice at each step, instead of considering all sequences
of steps that may lead to an optimal solution. Algorithms that make what seems to be the “best”
choice at each step are called greedy algorithms. Once we know that a greedy algorithm finds a
feasible solution, we need to determine whether it has found an optimal solution. (Note that we

You have to prove that a

greedy algorithm always

finds an optimal solution.

call the algoritm “greedy” whether or not it finds an optimal solution.) To do this, we either prove
that the solution is optimal or we show that there is a counterexample where the algorithm yields
a nonoptimal solution. To make these concepts more concrete, we will consider an algorithm
that makes change using coins.

3.1 Algorithms 199

EXAMPLE 6 Consider the problem of making n cents change with quarters, dimes, nickels, and pennies, and
using the least total number of coins. We can devise a greedy algorithm for making change for
n cents by making a locally optimal choice at each step; that is, at each step we choose the coin
of the largest denomination possible to add to the pile of change without exceeding n cents. For
example, to make change for 67 cents, we first select a quarter (leaving 42 cents). We next select
a second quarter (leaving 17 cents), followed by a dime (leaving 7 cents), followed by a nickel
(leaving 2 cents), followed by a penny (leaving 1 cent), followed by a penny. ▲

We display a greedy change-making algorithm for n cents, using any set of denominations
of coins, as Algorithm 6.

ALGORITHM 6 Greedy Change-Making Algorithm.

procedure change(c1, c2, . . . , cr : values of denominations of coins, where

c1 > c2 > · · · > cr ; n: a positive integer)

for i := 1 to r

di := 0 {di counts the coins of denomination ci used}

while n ≥ ci
di := di + 1 {add a coin of denomination ci}

n := n− ci
{di is the number of coins of denomination ci in the change for i = 1, 2, . . . , r}

We have described a greedy algorithm for making change using any finite set of coins with
denominations c1, c2, ..., cr . In the particular case where the four denominations are quarters
dimes, nickels, and pennies, we have c1 = 25, c2 = 10, c3 = 5, and c4 = 1. For this case, we
will show that this algorithm leads to an optimal solution in the sense that it uses the fewest
coins possible. Before we embark on our proof, we show that there are sets of coins for which
the greedy algorithm (Algorithm 6) does not necessarily produce change using the fewest coins
possible. For example, if we have only quarters, dimes, and pennies (and no nickels) to use,
the greedy algorithm would make change for 30 cents using six coins—a quarter and five
pennies—whereas we could have used three coins, namely, three dimes.

LEMMA 1 If n is a positive integer, then n cents in change using quarters, dimes, nickels, and pennies
using the fewest coins possible has at most two dimes, at most one nickel, at most four
pennies, and cannot have two dimes and a nickel. The amount of change in dimes, nickels,
and pennies cannot exceed 24 cents.

Proof:We use a proof by contradiction. We will show that if we had more than the specified
number of coins of each type, we could replace them using fewer coins that have the same value.
We note that if we had three dimes we could replace them with a quarter and a nickel, if we
had two nickels we could replace them with a dime, if we had five pennies we could replace
them with a nickel, and if we had two dimes and a nickel we could replace them with a quarter.
Because we can have at most two dimes, one nickel, and four pennies, but we cannot have two
dimes and a nickel, it follows that 24 cents is the most money we can have in dimes, nickels,
and pennies when we make change using the fewest number of coins for n cents.

THEOREM 1 The greedy algorithm (Algorithm 6) produces change using the fewest coins possible.

200 3 / Algorithms

Proof: We will use a proof by contradiction. Suppose that there is a positive integer n such that
there is a way to make change for n cents using quarters, dimes, nickels, and pennies that uses
fewer coins than the greedy algorithm finds. We first note that q , the number of quarters used
in this optimal way to make change for n cents, must be the same as q, the number of quarters
used by the greedy algorithm. To show this, first note that the greedy algorithm uses the most
quarters possible, so q ≤ q. However, it is also the case that q cannot be less than q. If it were,
we would need to make up at least 25 cents from dimes, nickels, and pennies in this optimal
way to make change. But this is impossible by Lemma 1.

Because there must be the same number of quarters in the two ways to make change, the
value of the dimes, nickels, and pennies in these two ways must be the same, and these coins
are worth no more than 24 cents. There must be the same number of dimes, because the greedy
algorithm used the most dimes possible and by Lemma 1, when change is made using the fewest
coins possible, at most one nickel and at most four pennies are used, so that the most dimes
possible are also used in the optimal way to make change. Similarly, we have the same number
of nickels and, finally, the same number of pennies.

A greedy algorithm makes the best choice at each step according to a specified criterion.
The next example shows that it can be difficult to determine which of many possible criteria to
choose.

EXAMPLE 7 Suppose we have a group of proposed talks with preset start and end times. Devise a greedy
algorithm to schedule as many of these talks as possible in a lecture hall, under the assumptions
that once a talk starts, it continues until it ends, no two talks can proceed at the same time, and
a talk can begin at the same time another one ends. Assume that talk j begins at time sj (where
s stands for start) and ends at time ej (where e stands for end).

Solution: To use a greedy algorithm to schedule the most talks, that is, an optimal schedule, we
need to decide how to choose which talk to add at each step. There are many criteria we could
use to select a talk at each step, where we chose from the talks that do not overlap talks already
selected. For example, we could add talks in order of earliest start time, we could add talks in
order of shortest time, we could add talks in order of earliest finish time, or we could use some
other criterion.

We now consider these possible criteria. Suppose we add the talk that starts earliest among
the talks compatible with those already selected. We can construct a counterexample to see that
the resulting algorithm does not always produce an optimal schedule. For instance, suppose that
we have three talks: Talk 1 starts at 8 a.m. and ends at 12 noon, Talk 2 starts at 9 a.m. and ends
at 10 a.m., and Talk 3 starts at 11 a.m. and ends at 12 noon. We first select the Talk 1 because it
starts earliest. But once we have selected Talk 1 we cannot select either Talk 2 or Talk 3 because
both overlap Talk 1. Hence, this greedy algorithm selects only one talk. This is not optimal
because we could schedule Talk 2 and Talk 3, which do not overlap.

Now suppose we add the talk that is shortest among the talks that do not overlap any of those
already selected. Again we can construct a counterexample to show that this greedy algorithm
does not always produce an optimal schedule. So, suppose that we have three talks: Talk 1 starts
at 8 a.m. and ends at 9:15 a.m., Talk 2 starts at 9 a.m. and ends at 10 a.m., and Talk 3 starts at
9:45 a.m. and ends at 11 a.m. We select Talk 2 because it is shortest, requiring one hour. Once
we select Talk 2, we cannot select either Talk 1 or Talk 3 because neither is compatible with
Talk 2. Hence, this greedy algorithm selects only one talk. However, it is possible to select two
talks, Talk 1 and Talk 3, which are compatible.

However, it can be shown that we schedule the most talks possible if in each step we select
the talk with the earliest ending time among the talks compatible with those already selected.
We will prove this in Chapter 5 using the method of mathematical induction. The first step we
will make is to sort the talks according to increasing finish time. After this sorting, we relabel
the talks so that e1 ≤ e2 ≤ . . . ≤ en. The resulting greedy algorithm is given as Algorithm 7. ▲

3.1 Algorithms 201

ALGORITHM 7 Greedy Algorithm for Scheduling Talks.

procedure schedule(s1 ≤ s2 ≤ · · · ≤ sn: start times of talks,

e1 ≤ e2 ≤ · · · ≤ en: ending times of talks)

sort talks by finish time and reorder so that e1 ≤ e2 ≤ . . . ≤ en
S := ∅
for j := 1 to n

if talk j is compatible with S then

S := S ∪ {talk j}
return S{S is the set of talks scheduled}

The Halting Problem

We will now describe a proof of one of the most famous theorems in computer science. We will
show that there is a problem that cannot be solved using any procedure. That is, we will show
there are unsolvable problems. The problem we will study is thehaltingproblem. It asks whether
there is a procedure that does this: It takes as input a computer program and input to the program
and determines whether the program will eventually stop when run with this input. It would be
convenient to have such a procedure, if it existed. Certainly being able to test whether a program
entered into an infinite loop would be helpful when writing and debugging programs. However,
in 1936 Alan Turing showed that no such procedure exists (see his biography in Section 13.4).

Before we present a proof that the halting problem is unsolvable, first note that we cannot
simply run a program and observe what it does to determine whether it terminates when run
with the given input. If the program halts, we have our answer, but if it is still running after any
fixed length of time has elapsed, we do not know whether it will never halt or we just did not
wait long enough for it to terminate. After all, it is not hard to design a program that will stop
only after more than a billion years has elapsed.

We will describe Turing’s proof that the halting problem is unsolvable; it is a proof by
contradiction. (The reader should note that our proof is not completely rigorous, because we
have not explicitly defined what a procedure is. To remedy this, the concept of a Turing machine
is needed. This concept is introduced in Section 13.5.)

Proof: Assume there is a solution to the halting problem, a procedure called H(P, I). The
procedure H(P, I) takes two inputs, one a program P and the other I , an input to the program
P . H(P,I) generates the string “halt” as output if H determines that P stops when given I as
input. Otherwise, H(P, I) generates the string “loops forever” as output. We will now derive a
contradiction.

When a procedure is coded, it is expressed as a string of characters; this string can be
interpreted as a sequence of bits. This means that a program itself can be used as data. Therefore
a program can be thought of as input to another program, or even itself. Hence, H can take a
program P as both of its inputs, which are a program and input to this program. H should be
able to determine whether P will halt when it is given a copy of itself as input.

To show that no procedure H exists that solves the halting problem, we construct a simple
procedure K(P), which works as follows, making use of the output H(P, P). If the output of
H(P, P) is “loops forever,” which means that P loops forever when given a copy of itself as
input, thenK(P) halts. If the output ofH(P, P) is “halt,” which means that P halts when given
a copy of itself as input, then K(P) loops forever. That is, K(P) does the opposite of what the
output of H(P, P) specifies. (See Figure 2.)

Now suppose we provideK as input toK . We note that if the output ofH(K,K) is “loops
forever,” then by the definition ofK we see thatK(K) halts. Otherwise, if the output ofH(K,K)

202 3 / Algorithms

Program

H(P, I)

P as program

P as input

Output

H(P, P)

If H(P, P) = “halts,”

then loop forever

If H(P, P) = “loops forever,”

then halt

Program

K(P)Input

Program P

FIGURE 2 Showing that the Halting Problem is Unsolvable.

is “halt,” then by the definition of K we see that K(K) loops forever, in violation of what H
tells us. In both cases, we have a contradiction.

Thus, H cannot always give the correct answers. Consequently, there is no procedure that
solves the halting problem.

Exercises

1. List all the steps used byAlgorithm 1 to find the maximum
of the list 1, 8, 12, 9, 11, 2, 14, 5, 10, 4.

2. Determine which characteristics of an algorithm de-
scribed in the text (after Algorithm 1) the following pro-
cedures have and which they lack.

a) procedure double(n: positive integer)
while n > 0
n := 2n

b) procedure divide(n: positive integer)
while n ≥ 0
m := 1/n
n := n− 1

c) procedure sum(n: positive integer)
sum := 0
while i < 10

sum := sum+ i
d) procedure choose(a, b: integers)
x := either a or b

3. Devise an algorithm that finds the sum of all the integers
in a list.

4. Describe an algorithm that takes as input a list of n in-
tegers and produces as output the largest difference ob-
tained by subtracting an integer in the list from the one
following it.

5. Describe an algorithm that takes as input a list of n inte-
gers in nondecreasing order and produces the list of all
values that occur more than once. (Recall that a list of
integers is nondecreasing if each integer in the list is at
least as large as the previous integer in the list.)

6. Describe an algorithm that takes as input a list of n in-
tegers and finds the number of negative integers in the
list.

7. Describe an algorithm that takes as input a list of n inte-
gers and finds the location of the last even integer in the
list or returns 0 if there are no even integers in the list.

8. Describe an algorithm that takes as input a list of n dis-
tinct integers and finds the location of the largest even
integer in the list or returns 0 if there are no even integers
in the list.

9. A palindrome is a string that reads the same forward
and backward. Describe an algorithm for determining
whether a string of n characters is a palindrome.

10. Devise an algorithm to compute xn, where x is a real
number and n is an integer. [Hint: First give a procedure
for computing xn when n is nonnegative by successive
multiplication by x, starting with 1. Then extend this pro-
cedure, and use the fact that x−n = 1/xn to compute xn

when n is negative.]

11. Describe an algorithm that interchanges the values of the
variables x and y, using only assignments. What is the
minimum number of assignment statements needed to do
this?

12. Describe an algorithm that uses only assignment state-
ments that replaces the triple (x, y, z) with (y, z, x).
What is the minimum number of assignment statements
needed?

13. List all the steps used to search for 9 in the sequence 1,
3, 4, 5, 6, 8, 9, 11 using

a) a linear search. b) a binary search.

14. List all the steps used to search for 7 in the sequence given
in Exercise 13 for both a linear search and a binary search.

15. Describe an algorithm that inserts an integer x in the ap-
propriate position into the list a1, a2, . . . , an of integers
that are in increasing order.

16. Describe an algorithm for finding the smallest integer in
a finite sequence of natural numbers.

17. Describe an algorithm that locates the first occurrence of
the largest element in a finite list of integers, where the
integers in the list are not necessarily distinct.

18. Describe an algorithm that locates the last occurrence of
the smallest element in a finite list of integers, where the
integers in the list are not necessarily distinct.

3.1 Algorithms 203

19. Describe an algorithm that produces the maximum, me-
dian, mean, and minimum of a set of three integers. (The
median of a set of integers is the middle element in the list
when these integers are listed in order of increasing size.
The mean of a set of integers is the sum of the integers
divided by the number of integers in the set.)

20. Describe an algorithm for finding both the largest and the
smallest integers in a finite sequence of integers.

21. Describe an algorithm that puts the first three terms of
a sequence of integers of arbitrary length in increasing
order.

22. Describe an algorithm to find the longest word in an En-
glish sentence (where a sentence is a sequence of symbols,
either a letter or a blank, which can then be broken into
alternating words and blanks).

23. Describe an algorithm that determines whether a function
from a finite set of integers to another finite set of integers
is onto.

24. Describe an algorithm that determines whether a function
from a finite set to another finite set is one-to-one.

25. Describe an algorithm that will count the number of 1s in
a bit string by examining each bit of the string to deter-
mine whether it is a 1 bit.

26. Change Algorithm 3 so that the binary search procedure
compares x to am at each stage of the algorithm, with the
algorithm terminating if x = am. What advantage does
this version of the algorithm have?

27. The ternary search algorithm locates an element in a list
of increasing integers by successively splitting the list into
three sublists of equal (or as close to equal as possible)
size, and restricting the search to the appropriate piece.
Specify the steps of this algorithm.

28. Specify the steps of an algorithm that locates an element
in a list of increasing integers by successively splitting
the list into four sublists of equal (or as close to equal as
possible) size, and restricting the search to the appropriate
piece.

In a list of elements the same element may appear several
times. A mode of such a list is an element that occurs at least
as often as each of the other elements; a list has more than
one mode when more than one element appears the maximum
number of times.

29. Devise an algorithm that finds a mode in a list of nonde-
creasing integers. (Recall that a list of integers is nonde-
creasing if each term is at least as large as the preceding
term.)

30. Devise an algorithm that finds all modes. (Recall that a
list of integers is nondecreasing if each term of the list is
at least as large as the preceding term.)

31. Devise an algorithm that finds the first term of a se-
quence of integers that equals some previous term in the
sequence.

32. Devise an algorithm that finds all terms of a finite se-
quence of integers that are greater than the sum of all
previous terms of the sequence.

33. Devise an algorithm that finds the first term of a sequence
of positive integers that is less than the immediately pre-
ceding term of the sequence.

34. Use the bubble sort to sort 6, 2, 3, 1, 5, 4, showing the
lists obtained at each step.

35. Use the bubble sort to sort 3, 1, 5, 7, 4, showing the lists
obtained at each step.

36. Use the bubble sort to sort d, f, k, m, a, b, showing the
lists obtained at each step.

∗37. Adapt the bubble sort algorithm so that it stops when
no interchanges are required. Express this more efficient
version of the algorithm in pseudocode.

38. Use the insertion sort to sort the list in Exercise 34, show-
ing the lists obtained at each step.

39. Use the insertion sort to sort the list in Exercise 35, show-
ing the lists obtained at each step.

40. Use the insertion sort to sort the list in Exercise 36, show-
ing the lists obtained at each step.

The selection sort begins by finding the least element in the
list. This element is moved to the front. Then the least element
among the remaining elements is found and put into the sec-
ond position. This procedure is repeated until the entire list
has been sorted.

41. Sort these lists using the selection sort.

a) 3, 5, 4, 1, 2 b) 5, 4, 3, 2, 1

c) 1, 2, 3, 4, 5

42. Write the selection sort algorithm in pseudocode.

43. Describe an algorithm based on the linear search for de-
termining the correct position in which to insert a new
element in an already sorted list.

44. Describe an algorithm based on the binary search for de-
termining the correct position in which to insert a new
element in an already sorted list.

45. How many comparisons does the insertion sort use to sort
the list 1, 2, . . . , n?

46. How many comparisons does the insertion sort use to sort
the list n, n− 1, . . . , 2, 1?

The binary insertion sort is a variation of the insertion sort
that uses a binary search technique (see Exercise 44) rather
than a linear search technique to insert the ith element in the
correct place among the previously sorted elements.

47. Show all the steps used by the binary insertion sort to sort
the list 3, 2, 4, 5, 1, 6.

48. Compare the number of comparisons used by the inser-
tion sort and the binary insertion sort to sort the list 7, 4,
3, 8, 1, 5, 4, 2.

∗49. Express the binary insertion sort in pseudocode.

50. a) Devise a variation of the insertion sort that uses a lin-
ear search technique that inserts the j th element in the
correct place by first comparing it with the (j − 1)st
element, then the (j − 2)th element if necessary, and
so on.

b) Use your algorithm to sort 3, 2, 4, 5, 1, 6.

c) Answer Exercise 45 using this algorithm.

d) Answer Exercise 46 using this algorithm.

204 3 / Algorithms

51. When a list of elements is in close to the correct order,
would it be better to use an insertion sort or its variation
described in Exercise 50?

52. Use the greedy algorithm to make change using quarters,
dimes, nickels, and pennies for

a) 87 cents. b) 49 cents.
c) 99 cents. d) 33 cents.

53. Use the greedy algorithm to make change using quarters,
dimes, nickels, and pennies for

a) 51 cents. b) 69 cents.
c) 76 cents. d) 60 cents.

54. Use the greedy algorithm to make change using quar-
ters, dimes, and pennies (but no nickels) for each of the
amounts given in Exercise 52. For which of these amounts
does the greedy algorithm use the fewest coins of these
denominations possible?

55. Use the greedy algorithm to make change using quar-
ters, dimes, and pennies (but no nickels) for each of the
amounts given in Exercise 53. For which of these amounts
does the greedy algorithm use the fewest coins of these
denominations possible?

56. Show that if there were a coin worth 12 cents, the greedy
algorithm using quarters, 12-cent coins, dimes, nickels,
and pennies would not always produce change using the
fewest coins possible.

57. Use Algorithm 7 to schedule the largest number of talks
in a lecture hall from a proposed set of talks, if the starting
and ending times of the talks are 9:00 a.m. and 9:45 a.m.;
9:30 a.m. and 10:00 a.m.; 9:50 a.m. and 10:15 a.m.;
10:00 a.m. and 10:30 a.m.; 10:10 a.m. and 10:25 a.m.;
10:30 a.m. and 10:55 a.m.; 10:15 a.m. and 10:45 a.m.;
10:30 a.m. and 11:00 a.m.; 10:45 a.m. and 11:30 a.m.;
10:55 a.m. and 11:25 a.m.; 11:00 a.m. and 11:15 a.m.

58. Show that a greedy algorithm that schedules talks in a lec-
ture hall, as described in Example 7, by selecting at each
step the talk that overlaps the fewest other talks, does not
always produce an optimal schedule.

∗59. a) Devise a greedy algorithm that determines the fewest
lecture halls needed to accommodate n talks given the
starting and ending time for each talk.

b) Prove that your algorithm is optimal.

Suppose we have s men m1,m2, . . . , ms and s women
w1,w2, . . . ,ws . We wish to match each person with a member

of the opposite gender. Furthermore, suppose that each person
ranks, in order of preference, with no ties, the people of the
opposite gender. We say that a matching of people of opposite
genders to form couples is stable if we cannot find a man m
and a woman w who are not assigned to each other such that
m prefers w over his assigned partner and w prefers m to her
assigned partner.

60. Suppose we have three men m1, m2, and m3 and three
women w1, w2, and w3. Furthermore, suppose that the
preference rankings of the men for the three women, from
highest to lowest, arem1: w3, w1, w2; m2: w1, w2, w3;m3:
w2, w3, w1; and the preference rankings of the women for
the three men, from highest to lowest, are w1: m1, m2,
m3; w2: m2, m1, m3; w3: m3, m2, m1. For each of the
six possible matchings of men and women to form three
couples, determine whether this matching is stable.

Thedeferred acceptance algorithm, also known as theGale-
Shapley algorithm, can be used to construct a stable matching
of men and women. In this algorithm, members of one gender
are the suitors and members of the other gender the suitees.
The algorithm uses a sequence of rounds; in each round every
suitor whose proposal was rejected in the previous round pro-
poses to his or her highest ranking suitee who has not already
rejected a proposal from this suitor. A suitee rejects all pro-
posals except that from the suitor that this suitee ranks highest
among all the suitors who have proposed to this suitee in this
round or previous rounds. The proposal of this highest ranking
suitor remains pending and is rejected in a later round if a more
appealing suitor proposes in that round. The series of rounds
ends when every suitor has exactly one pending proposal. All
pending proposals are then accepted.

61. Write the deferred acceptance algorithm in pseudocode.

62. Show that the deferred acceptance algorithm terminates.

∗63. Show that the deferred acceptance always terminates with
a stable assignment.

64. Show that the problem of determining whether a program
with a given input ever prints the digit 1 is unsolvable.

65. Show that the following problem is solvable. Given two
programs with their inputs and the knowledge that exactly
one of them halts, determine which halts.

66. Show that the problem of deciding whether a specific
program with a specific input halts is solvable.

3.2 The Growth of Functions

Introduction

In Section 3.1 we discussed the concept of an algorithm. We introduced algorithms that solve a
variety of problems, including searching for an element in a list and sorting a list. In Section 3.3
we will study the number of operations used by these algorithms. In particular, we will estimate
the number of comparisons used by the linear and binary search algorithms to find an element
in a sequence of n elements. We will also estimate the number of comparisons used by the

3.2 The Growth of Functions 205

bubble sort and by the insertion sort to sort a list of n elements. The time required to solve a
problem depends on more than only the number of operations it uses. The time also depends
on the hardware and software used to run the program that implements the algorithm. However,
when we change the hardware and software used to implement an algorithm, we can closely
approximate the time required to solve a problem of size n by multiplying the previous time
required by a constant. For example, on a supercomputer we might be able to solve a problem
of size n a million times faster than we can on a PC. However, this factor of one million will
not depend on n (except perhaps in some minor ways). One of the advantages of using big-O

notation, which we introduce in this section, is that we can estimate the growth of a function
without worrying about constant multipliers or smaller order terms. This means that, using big-
O notation, we do not have to worry about the hardware and software used to implement an
algorithm. Furthermore, using big-O notation, we can assume that the different operations used
in an algorithm take the same time, which simplifies the analysis considerably.

Big-O notation is used extensively to estimate the number of operations an algorithm uses
as its input grows. With the help of this notation, we can determine whether it is practical to
use a particular algorithm to solve a problem as the size of the input increases. Furthermore,
using big-O notation, we can compare two algorithms to determine which is more efficient as
the size of the input grows. For instance, if we have two algorithms for solving a problem, one
using 100n2 + 17n+ 4 operations and the other using n3 operations, big-O notation can help
us see that the first algorithm uses far fewer operations when n is large, even though it uses more
operations for small values of n, such as n = 10.

This section introduces big-O notation and the related big-Omega and big-Theta notations.
We will explain how big-O, big-Omega, and big-Theta estimates are constructed and establish
estimates for some important functions that are used in the analysis of algorithms.

Big-O Notation

The growth of functions is often described using a special notation. Definition 1 describes this
notation.

DEFINITION 1 Let f and g be functions from the set of integers or the set of real numbers to the set of real
numbers. We say that f (x) is O(g(x)) if there are constants C and k such that

|f (x)| ≤ C|g(x)|

whenever x > k. [This is read as “f (x) is big-oh of g(x).”]

Remark: Intuitively, the definition that f (x) isO(g(x)) says that f (x) grows slower that some
fixed multiple of g(x) as x grows without bound.

The constants C and k in the definition of big-O notation are called witnesses to the
relationship f (x) is O(g(x)). To establish that f (x) is O(g(x)) we need only one pair of
witnesses to this relationship. That is, to show that f (x) isO(g(x)), we need find only one pair
of constants C and k, the witnesses, such that |f (x)| ≤ C|g(x)| whenever x > k.

Note that when there is one pair of witnesses to the relationship f (x) isO(g(x)), there are
infinitely many pairs of witnesses. To see this, note that if C and k are one pair of witnesses,
then any pair C and k , where C < C and k < k , is also a pair of witnesses, because |f (x)| ≤
C|g(x)| ≤ C |g(x)| whenever x > k > k.

206 3 / Algorithms

THE HISTORY OF BIG-O NOTATION Big-O notation has been used in mathematics for
more than a century. In computer science it is widely used in the analysis of algorithms, as
will be seen in Section 3.3. The German mathematician Paul Bachmann first introduced big-O
notation in 1892 in an important book on number theory. The big-O symbol is sometimes called
a Landau symbol after the German mathematician Edmund Landau, who used this notation
throughout his work. The use of big-O notation in computer science was popularized by Donald
Knuth, who also introduced the big- and big- notations defined later in this section.

WORKINGWITHTHEDEFINITIONOF BIG-O NOTATION A useful approach for find-
ing a pair of witnesses is to first select a value of k for which the size of |f (x)| can be readily
estimated when x > k and to see whether we can use this estimate to find a value ofC for which
|f (x)| ≤ C|g(x)| for x > k. This approach is illustrated in Example 1.

EXAMPLE 1 Show that f (x) = x2 + 2x + 1 is O(x2).

Solution: We observe that we can readily estimate the size of f (x) when x > 1 because x < x2

and 1 < x2 when x > 1. It follows that

0 ≤ x2 + 2x + 1 ≤ x2 + 2x2 + x2 = 4x2

whenever x > 1, as shown in Figure 1. Consequently, we can takeC = 4 and k = 1 as witnesses
to show that f (x) isO(x2). That is, f (x) = x2 + 2x + 1 < 4x2 whenever x > 1. (Note that it
is not necessary to use absolute values here because all functions in these equalities are positive
when x is positive.)

Alternatively, we can estimate the size of f (x)when x > 2. When x > 2, we have 2x ≤ x2

and 1 ≤ x2. Consequently, if x > 2, we have

0 ≤ x2 + 2x + 1 ≤ x2 + x2 + x2 = 3x2.

It follows that C = 3 and k = 2 are also witnesses to the relation f (x) is O(x2).

4x2 x2x2 + 2x + 1

1 2

4

3

2

1

The part of the graph of f (x) = x2 + 2x + 1

that satisfies f (x) < 4x2 is shown in blue.

x2 + 2x + 1 < 4x2 for x > 1

FIGURE 1 The Function x2 + 2x + 1 is O(x2).

3.2 The Growth of Functions 207

Observe that in the relationship “f (x) is O(x2),” x2 can be replaced by any function with
larger values than x2. For example, f (x) is O(x3), f (x) is O(x2 + x + 7), and so on.

It is also true that x2 isO(x2 + 2x + 1), because x2 < x2 + 2x + 1 whenever x > 1. This
means that C = 1 and k = 1 are witnesses to the relationship x2 is O(x2 + 2x + 1). ▲

Note that in Example 1 we have two functions, f (x) = x2 + 2x + 1 and g(x) = x2, such
that f (x) is O(g(x)) and g(x) is O(f (x))—the latter fact following from the inequality
x2 ≤ x2 + 2x + 1, which holds for all nonnegative real numbers x. We say that two func-
tions f (x) and g(x) that satisfy both of these big-O relationships are of the same order. We
will return to this notion later in this section.

Remark: The fact that f (x) is O(g(x)) is sometimes written f (x) = O(g(x)). However, the
equals sign in this notation does not represent a genuine equality. Rather, this notation tells
us that an inequality holds relating the values of the functions f and g for sufficiently large
numbers in the domains of these functions. However, it is acceptable to write f (x) ∈ O(g(x))
because O(g(x)) represents the set of functions that are O(g(x)).

When f (x) isO(g(x)), and h(x) is a function that has larger absolute values than g(x) does
for sufficiently large values of x, it follows that f (x) is O(h(x)). In other words, the function
g(x) in the relationship f (x) is O(g(x)) can be replaced by a function with larger absolute
values. To see this, note that if

|f (x)| ≤ C|g(x)| if x > k,

and if |h(x)| > |g(x)| for all x > k, then

|f (x)| ≤ C|h(x)| if x > k.

Hence, f (x) is O(h(x)).
When big-O notation is used, the function g in the relationship f (x) is O(g(x)) is chosen

to be as small as possible (sometimes from a set of reference functions, such as functions of the
form xn, where n is a positive integer).

PAUL GUSTAV HEINRICH BACHMANN (1837–1920) Paul Bachmann, the son of a Lutheran pastor, shared
his father’s pious lifestyle and love of music. His mathematical talent was discovered by one of his teachers, even
though he had difficulties with some of his early mathematical studies. After recuperating from tuberculosis
in Switzerland, Bachmann studied mathematics, first at the University of Berlin and later at Göttingen, where
he attended lectures presented by the famous number theorist Dirichlet. He received his doctorate under the
German number theorist Kummer in 1862; his thesis was on group theory. Bachmann was a professor at Breslau
and later at Münster. After he retired from his professorship, he continued his mathematical writing, played the
piano, and served as a music critic for newspapers. Bachmann’s mathematical writings include a five-volume
survey of results and methods in number theory, a two-volume work on elementary number theory, a book on

irrational numbers, and a book on the famous conjecture known as Fermat’s Last Theorem. He introduced big-O notation in his
1892 book Analytische Zahlentheorie.

EDMUND LANDAU (1877–1938) Edmund Landau, the son of a Berlin gynecologist, attended high school
and university in Berlin. He received his doctorate in 1899, under the direction of Frobenius. Landau first taught
at the University of Berlin and then moved to Göttingen, where he was a full professor until the Nazis forced
him to stop teaching. Landau’s main contributions to mathematics were in the field of analytic number theory.
In particular, he established several important results concerning the distribution of primes. He authored a
three-volume exposition on number theory as well as other books on number theory and mathematical analysis.

208 3 / Algorithms

f (x)

k

g(x)

Cg (x)

f (x) < Cg (x) for x > k

The part of the graph of f (x) that satisfies
f (x) < Cg (x) is shown in color.

FIGURE 2 The Function f (x) is O(g(x)).

In subsequent discussions, we will almost always deal with functions that take on only
positive values. All references to absolute values can be dropped when working with big-O
estimates for such functions. Figure 2 illustrates the relationship f (x) is O(g(x)).

Example 2 illustrates how big-O notation is used to estimate the growth of functions.

EXAMPLE 2 Show that 7x2 is O(x3).

Solution: Note that whenx > 7, we have 7x2 < x3. (We can obtain this inequality by multiplying
both sides of x > 7 by x2.) Consequently, we can takeC = 1 and k = 7 as witnesses to establish

DONALD E. KNUTH (BORN 1938) Knuth grew up in Milwaukee, where his father taught bookkeeping at
a Lutheran high school and owned a small printing business. He was an excellent student, earning academic
achievement awards. He applied his intelligence in unconventional ways, winning a contest when he was in the
eighth grade by finding over 4500 words that could be formed from the letters in “Ziegler’s Giant Bar.” This
won a television set for his school and a candy bar for everyone in his class.

Knuth had a difficult time choosing physics over music as his major at the Case Institute of Technology. He
then switched from physics to mathematics, and in 1960 he received his bachelor of science degree, simultane-
ously receiving a master of science degree by a special award of the faculty who considered his work outstanding.
At Case, he managed the basketball team and applied his talents by constructing a formula for the value of each

player. This novel approach was covered by Newsweek and by Walter Cronkite on the CBS television network. Knuth began graduate
work at the California Institute of Technology in 1960 and received his Ph.D. there in 1963. During this time he worked as a consultant,
writing compilers for different computers.

Knuth joined the staff of the California Institute of Technology in 1963, where he remained until 1968, when he took a job as a
full professor at Stanford University. He retired as Professor Emeritus in 1992 to concentrate on writing. He is especially interested
in updating and completing new volumes of his series The Art of Computer Programming, a work that has had a profound influence
on the development of computer science, which he began writing as a graduate student in 1962, focusing on compilers. In common
jargon, “Knuth,” referring to The Art of Computer Programming, has come to mean the reference that answers all questions about
such topics as data structures and algorithms.

Knuth is the founder of the modern study of computational complexity. He has made fundamental contributions to the subject of
compilers. His dissatisfaction with mathematics typography sparked him to invent the now widely used TeX and Metafont systems.
TeX has become a standard language for computer typography. Two of the many awards Knuth has received are the 1974 Turing
Award and the 1979 National Medal of Technology, awarded to him by President Carter.

Knuth has written for a wide range of professional journals in computer science and in mathematics. However, his first
publication, in 1957, when he was a college freshman, was a parody of the metric system called “The Potrzebie Systems of Weights
and Measures,” which appeared in MAD Magazine and has been in reprint several times. He is a church organist, as his father was.
He is also a composer of music for the organ. Knuth believes that writing computer programs can be an aesthetic experience, much
like writing poetry or composing music.

Knuth pays $2.56 for the first person to find each error in his books and $0.32 for significant suggestions. If you send him
a letter with an error (you will need to use regular mail, because he has given up reading e-mail), he will eventually inform you
whether you were the first person to tell him about this error. Be prepared for a long wait, because he receives an overwhelming
amount of mail. (The author received a letter years after sending an error report to Knuth, noting that this report arrived several
months after the first report of this error.)

3.2 The Growth of Functions 209

the relationship 7x2 is O(x3). Alternatively, when x > 1, we have 7x2 < 7x3, so that C = 7
and k = 1 are also witnesses to the relationship 7x2 is O(x3). ▲

Example 3 illustrates how to show that a big-O relationship does not hold.

EXAMPLE 3 Show that n2 is not O(n).

Solution: To show that n2 is not O(n), we must show that no pair of witnesses C and k exist
such that n2 ≤ Cn whenever n > k. We will use a proof by contradiction to show this.

Suppose that there are constants C and k for which n2 ≤ Cnwhenever n > k. Observe that
when n > 0 we can divide both sides of the inequality n2 ≤ Cn by n to obtain the equivalent
inequality n ≤ C. However, no matter what C and k are, the inequality n ≤ C cannot hold for
all n with n > k. In particular, once we set a value of k, we see that when n is larger than the
maximum of k and C, it is not true that n ≤ C even though n > k. This contradiction shows
that n2 in not O(n). ▲

EXAMPLE 4 Example 2 shows that 7x2 is O(x3). Is it also true that x3 is O(7x2)?

Solution: To determine whether x3 is O(7x2), we need to determine whether witnesses C and
k exist, so that x3 ≤ C(7x2) whenever x > k. We will show that no such witnesses exist using
a proof by contradiction.

If C and k are witnesses, the inequality x3 ≤ C(7x2) holds for all x > k. Observe that the
inequality x3 ≤ C(7x2) is equivalent to the inequality x ≤ 7C, which follows by dividing both
sides by the positive quantity x2. However, no matter what C is, it is not the case that x ≤ 7C
for all x > k no matter what k is, because x can be made arbitrarily large. It follows that no
witnesses C and k exist for this proposed big-O relationship. Hence, x3 is not O(7x2). ▲

Big-O Estimates for Some Important Functions

Polynomials can often be used to estimate the growth of functions. Instead of analyzing the
growth of polynomials each time they occur, we would like a result that can always be used to
estimate the growth of a polynomial. Theorem 1 does this. It shows that the leading term of a
polynomial dominates its growth by asserting that a polynomial of degree n or less is O(xn).

THEOREM 1 Let f (x) = anxn + an−1x
n−1 + · · · + a1x + a0, where a0, a1, . . . , an−1, an are real num-

bers. Then f (x) is O(xn).

Proof: Using the triangle inequality (see Exercise 7 in Section 1.8), if x > 1 we have

|f (x)| = |anxn + an−1x
n−1 + · · · + a1x + a0|

≤ |an|xn + |an−1|xn−1 + · · · + |a1|x + |a0|
= xn �|an| + |an−1|/x + · · · + |a1|/xn−1 + |a0|/xn

�
≤ xn (|an| + |an−1| + · · · + |a1| + |a0|) .

This shows that

|f (x)| ≤ Cxn,

210 3 / Algorithms

whereC = |an| + |an−1| + · · · + |a0|whenever x > 1. Hence, the witnessesC = |an| + |an−1|
+ · · · + |a0| and k = 1 show that f (x) is O(xn).

We now give some examples involving functions that have the set of positive integers as
their domains.

EXAMPLE 5 How can big-O notation be used to estimate the sum of the first n positive integers?

Solution: Because each of the integers in the sum of the first n positive integers does not exceed
n, it follows that

1+ 2+ · · · + n ≤ n+ n+ · · · + n = n2.

From this inequality it follows that 1+ 2+ 3+ · · · + n is O(n2), taking C = 1 and k = 1 as
witnesses. (In this example the domains of the functions in the big-O relationship are the set of
positive integers.) ▲

In Example 6 big-O estimates will be developed for the factorial function and its loga-
rithm. These estimates will be important in the analysis of the number of steps used in sorting
procedures.

EXAMPLE 6 Give big-O estimates for the factorial function and the logarithm of the factorial function, where
the factorial function f (n) = n! is defined by

n! = 1 · 2 · 3 · · · · · n

whenever n is a positive integer, and 0! = 1. For example,

1! = 1, 2! = 1 · 2 = 2, 3! = 1 · 2 · 3 = 6, 4! = 1 · 2 · 3 · 4 = 24.

Note that the function n! grows rapidly. For instance,

20! = 2,432,902,008,176,640,000.

Solution: A big-O estimate for n! can be obtained by noting that each term in the product does
not exceed n. Hence,

n! = 1 · 2 · 3 · · · · · n
≤ n · n · n · · · · · n
= nn.

This inequality shows that n! isO(nn), takingC = 1 and k = 1 as witnesses. Taking logarithms
of both sides of the inequality established for n!, we obtain

log n! ≤ log nn = n log n.

This implies that log n! is O(n log n), again taking C = 1 and k = 1 as witnesses. ▲

3.2 The Growth of Functions 211

EXAMPLE 7 In Section 4.1, we will show that n < 2n whenever n is a positive integer. Show that this
inequality implies that n is O(2n), and use this inequality to show that log n is O(n).

Solution: Using the inequality n < 2n, we quickly can conclude that n is O(2n) by taking k =
C = 1 as witnesses. Note that because the logarithm function is increasing, taking logarithms
(base 2) of both sides of this inequality shows that

log n < n.

It follows that

log n is O(n).

(Again we take C = k = 1 as witnesses.)
If we have logarithms to a base b, where b is different from 2, we still have logb n is O(n)

because

logb n =
log n

log b
<

n

log b

whenever n is a positive integer. We take C = 1/ log b and k = 1 as witnesses. (We have used
Theorem 3 in Appendix 2 to see that logb n = log n/ log b.) ▲

As mentioned before, big-O notation is used to estimate the number of operations needed to
solve a problem using a specified procedure or algorithm. The functions used in these estimates
often include the following:

1, log n, n, n log n, n2, 2n, n!

Using calculus it can be shown that each function in the list is smaller than the succeeding
function, in the sense that the ratio of a function and the succeeding function tends to zero
as n grows without bound. Figure 3 displays the graphs of these functions, using a scale for
the values of the functions that doubles for each successive marking on the graph. That is, the
vertical scale in this graph is logarithmic.

3

n!

2n

n2

n log n

n

log n

l

4 5 6 7 82

4096

2048

1024

512

256

128

64

32

16

8

4

2

1

FIGURE 3 A Display of the Growth of Functions Commonly Used in Big-O Estimates.

212 3 / Algorithms

USEFULBIG-O ESTIMATES INVOLVINGLOGARITHMS,POWERS,ANDEXPONEN-

TIAL FUNCTIONS We now give some useful facts that help us determine whether big-O
relationships hold between pairs of functions when each of the functions is a power of a loga-
rithm, a power, or an exponential function of the form bn where b > 1. Their proofs are left as
Exercises 57–60 for readers skilled with calculus.

Theorem 1 shows that if f (n) is a polynomial of degree d , then f (n) is O(nd). Applying
this theorem, we see that if d > c > 1, then nc is O(nd). We leave it to the reader to show
that the reverse of this relationship does not hold. Putting these facts together, we see that if
d > c > 1, then

nc is O(nd), but nd is not O(nc).

In Example 7 we showed that logb n isO(n) whenever b > 1. More generally, whenever b > 1
and c and d are positive, we have

(logb n)
c is O(nd), but nd is not (O(logb n)

c).

This tells us that every positive power of the logarithm of n to the base b, where b > 1, is big-O
of every positive power of n, but the reverse relationship never holds.

In Example 7, we also showed that n isO(2n). More generally, whenever d is positive and
b > 1, we have

nd is O(bn), but bn is not O(nd).

This tells us that every power of n is big-O of every exponential function of n with a base
that is greater than one, but the reverse relationship never holds. Furthermore, we have when
c > b > 1,

bn is O(cn) but cn is not O(bn).

This tells us that if we have two exponential functions with different bases greater than one, one
of these functions is big-O of the other if and only if its base is smaller or equal.

The Growth of Combinations of Functions

Many algorithms are made up of two or more separate subprocedures. The number of steps
used by a computer to solve a problem with input of a specified size using such an algorithm is
the sum of the number of steps used by these subprocedures. To give a big-O estimate for the
number of steps needed, it is necessary to find big-O estimates for the number of steps used by
each subprocedure and then combine these estimates.

Big-O estimates of combinations of functions can be provided if care is taken when different
big-O estimates are combined. In particular, it is often necessary to estimate the growth of the
sum and the product of two functions. What can be said if big-O estimates for each of two
functions are known? To see what sort of estimates hold for the sum and the product of two
functions, suppose that f1(x) is O(g1(x)) and f2(x) is O(g2(x)).

From the definition of big-O notation, there are constants C1, C2, k1, and k2 such that

|f1(x)| ≤ C1|g1(x)|

when x > k1, and

|f2(x)| ≤ C2|g2(x)|

3.2 The Growth of Functions 213

when x > k2. To estimate the sum of f1(x) and f2(x), note that

|(f1 + f2)(x)| = |f1(x)+ f2(x)|
≤ |f1(x)| + |f2(x)| using the triangle inequality |a + b| ≤ |a| + |b|.

When x is greater than both k1 and k2, it follows from the inequalities for |f1(x)| and |f2(x)|
that

|f1(x)| + |f2(x)| ≤ C1|g1(x)| + C2|g2(x)|
≤ C1|g(x)| + C2|g(x)|
= (C1 + C2)|g(x)|
= C|g(x)|,

whereC = C1 + C2 and g(x) = max(|g1(x)|, |g2(x)|). [Here max(a, b) denotes the maximum,
or larger, of a and b.]

This inequality shows that |(f1 + f2)(x)| ≤ C|g(x)| whenever x > k, where k =
max(k1, k2). We state this useful result as Theorem 2.

THEOREM 2 Suppose that f1(x) is O(g1(x)) and that f2(x) is O(g2(x)). Then (f1 + f2)(x) is
O(max(|g1(x)|, |g2(x)|)).

We often have big-O estimates forf1 andf2 in terms of the same function g. In this situation,
Theorem 2 can be used to show that (f1 + f2)(x) is alsoO(g(x)), because max(g(x), g(x)) =
g(x). This result is stated in Corollary 1.

COROLLARY 1 Suppose that f1(x) and f2(x) are both O(g(x)). Then (f1 + f2)(x) is O(g(x)).

In a similar way big-O estimates can be derived for the product of the functions f1 and f2.
When x is greater than max(k1, k2) it follows that

|(f1f2)(x)| = |f1(x)||f2(x)|
≤ C1|g1(x)|C2|g2(x)|
≤ C1C2|(g1g2)(x)|
≤ C|(g1g2)(x)|,

where C = C1C2. From this inequality, it follows that f1(x)f2(x) is O(g1g2(x)), because
there are constants C and k, namely, C = C1C2 and k = max(k1, k2), such that |(f1f2)(x)| ≤
C|g1(x)g2(x)| whenever x > k. This result is stated in Theorem 3.

THEOREM 3 Suppose that f1(x) is O(g1(x)) and f2(x) is O(g2(x)). Then (f1f2)(x) is O(g1(x)g2(x)).

The goal in using big-O notation to estimate functions is to choose a function g(x) as simple
as possible, that grows relatively slowly so that f (x) is O(g(x)). Examples 8 and 9 illustrate
how to use Theorems 2 and 3 to do this. The type of analysis given in these examples is often
used in the analysis of the time used to solve problems using computer programs.

214 3 / Algorithms

EXAMPLE 8 Give a big-O estimate for f (n) = 3n log(n!)+ (n2 + 3) log n, where n is a positive integer.

Solution: First, the product 3n log(n!) will be estimated. From Example 6 we know that log(n!)
is O(n log n). Using this estimate and the fact that 3n is O(n), Theorem 3 gives the estimate
that 3n log(n!) is O(n2 log n).

Next, the product (n2 + 3) log n will be estimated. Because (n2 + 3) < 2n2 when n > 2, it
follows that n2 + 3 isO(n2). Thus, from Theorem 3 it follows that (n2 + 3) log n isO(n2 log n).
Using Theorem 2 to combine the two big-O estimates for the products shows that f (n) =
3n log(n!)+ (n2 + 3) log n is O(n2 log n). ▲

EXAMPLE 9 Give a big-O estimate for f (x) = (x + 1) log(x2 + 1)+ 3x2.

Solution: First, a big-O estimate for (x + 1) log(x2 + 1) will be found. Note that (x + 1) is
O(x). Furthermore, x2 + 1 ≤ 2x2 when x > 1. Hence,

log(x2 + 1) ≤ log(2x2) = log 2+ log x2 = log 2+ 2 log x ≤ 3 log x,

if x > 2. This shows that log(x2 + 1) is O(log x).
From Theorem 3 it follows that (x + 1) log(x2 + 1) is O(x log x). Because 3x2 is O(x2),

Theorem 2 tells us that f (x) isO(max(x log x, x2)). Because x log x ≤ x2, for x > 1, it follows
that f (x) is O(x2). ▲

Big-Omega and Big-Theta Notation

Big-O notation is used extensively to describe the growth of functions, but it has limitations. In
particular, when f (x) isO(g(x)), we have an upper bound, in terms of g(x), for the size of f (x)
for large values ofx. However, big-O notation does not provide a lower bound for the size off (x)
for large x. For this, we use big-Omega (big-) notation. When we want to give both an upper

 and are the Greek

uppercase letters omega

and theta, respectively.

and a lower bound on the size of a functionf (x), relative to a reference functiong(x), we usebig-
Theta (big-) notation. Both big-Omega and big-Theta notation were introduced by Donald
Knuth in the 1970s. His motivation for introducing these notations was the common misuse of
big-O notation when both an upper and a lower bound on the size of a function are needed.

We now define big-Omega notation and illustrate its use. After doing so, we will do the
same for big-Theta notation.

DEFINITION 2 Let f and g be functions from the set of integers or the set of real numbers to the set of real
numbers. We say that f (x) is (g(x)) if there are positive constants C and k such that

|f (x)| ≥ C|g(x)|

whenever x > k. [This is read as “f (x) is big-Omega of g(x).”]

There is a strong connection between big-O and big-Omega notation. In particular, f (x) is
 (g(x)) if and only if g(x) isO(f (x)). We leave the verification of this fact as a straightforward
exercise for the reader.

EXAMPLE 10 The function f (x) = 8x3 + 5x2 + 7 is (g(x)), where g(x) is the function g(x) = x3. This
is easy to see because f (x) = 8x3 + 5x2 + 7 ≥ 8x3 for all positive real numbers x. This is
equivalent to saying that g(x) = x3 isO(8x3 + 5x2 + 7), which can be established directly by
turning the inequality around. ▲

3.2 The Growth of Functions 215

Often, it is important to know the order of growth of a function in terms of some relatively
simple reference function such as xn when n is a positive integer or cx , where c > 1. Knowing
the order of growth requires that we have both an upper bound and a lower bound for the size of
the function. That is, given a function f (x), we want a reference function g(x) such that f (x)
isO(g(x)) and f (x) is (g(x)). Big-Theta notation, defined as follows, is used to express both
of these relationships, providing both an upper and a lower bound on the size of a function.

DEFINITION 3 Let f and g be functions from the set of integers or the set of real numbers to the set of real
numbers. We say that f (x) is (g(x)) if f (x) isO(g(x)) and f (x) is (g(x)). When f (x)
is (g(x)) we say that f is big-Theta of g(x), that f (x) is of order g(x), and that f (x) and
g(x) are of the same order.

When f (x) is (g(x)), it is also the case that g(x) is (f (x)). Also note that f (x) is (g(x))
if and only if f (x) is O(g(x)) and g(x) is O(f (x)) (see Exercise 31). Furthermore, note that
f (x) is (g(x)) if and only if there are real numbers C1 and C2 and a positive real number k
such that

C1|g(x)| ≤ |f (x)| ≤ C2|g(x)|

whenever x > k. The existence of the constants C1, C2, and k tells us that f (x) is (g(x)) and
that f (x) is O(g(x)), respectively.

Usually, when big-Theta notation is used, the function g(x) in (g(x)) is a relatively simple
reference function, such as xn, cx , log x, and so on, while f (x) can be relatively complicated.

EXAMPLE 11 We showed (in Example 5) that the sum of the first n positive integers is O(n2). Is this sum of
order n2?

Solution: Let f (n) = 1+ 2+ 3+ · · · + n. Because we already know that f (n) is O(n2), to
show that f (n) is of order n2 we need to find a positive constant C such that f (n) > Cn2 for
sufficiently large integers n. To obtain a lower bound for this sum, we can ignore the first half
of the terms. Summing only the terms greater than n/2 , we find that

1+ 2+ · · · + n ≥ n/2 + (n/2 + 1)+ · · · + n
≥ n/2 + n/2 + · · · + n/2
= (n− n/2 + 1) n/2
≥ (n/2)(n/2)
= n2/4.

This shows that f (n) is (n2). We conclude that f (n) is of order n2, or in symbols, f (n) is
 (n2). ▲

EXAMPLE 12 Show that 3x2 + 8x log x is (x2).

Solution: Because 0 ≤ 8x log x ≤ 8x2, it follows that 3x2 + 8x log x ≤ 11x2 for x > 1.
Consequently, 3x2 + 8x log x is O(x2). Clearly, x2 is O(3x2 + 8x log x). Consequently,
3x2 + 8x log x is (x2). ▲

216 3 / Algorithms

One useful fact is that the leading term of a polynomial determines its order. For example,
if f (x) = 3x5 + x4 + 17x3 + 2, then f (x) is of order x5. This is stated in Theorem 4, whose
proof is left as Exercise 50.

THEOREM 4 Let f (x) = anxn + an−1x
n−1 + · · · + a1x + a0, where a0, a1, . . . , an are real numbers with

an = 0. Then f (x) is of order xn.

EXAMPLE 13 The polynomials 3x8 + 10x7 + 221x2 + 1444, x19 − 18x4 − 10,112, and −x99 + 40,001x98

+ 100,003x are of orders x8, x19, and x99, respectively. ▲

Unfortunately, as Knuth observed, big-O notation is often used by careless writers and
speakers as if it had the same meaning as big-Theta notation. Keep this in mind when you see
big-O notation used. The recent trend has been to use big-Theta notation whenever both upper
and lower bounds on the size of a function are needed.

Exercises

In Exercises 1–14, to establish a big-O relationship, find wit-
nessesC and k such that |f (x)| ≤ C|g(x)|whenever x > k.

1. Determine whether each of these functions is O(x).

a) f (x) = 10 b) f (x) = 3x + 7

c) f (x) = x2 + x + 1 d) f (x) = 5 log x

e) f (x) = x f) f (x) = x/2
2. Determine whether each of these functions is O(x2).

a) f (x) = 17x + 11 b) f (x) = x2 + 1000

c) f (x) = x log x d) f (x) = x4/2

e) f (x) = 2x f) f (x) = x · x
3. Use the definition of “f (x) is O(g(x))” to show that
x4 + 9x3 + 4x + 7 is O(x4).

4. Use the definition of “f (x) is O(g(x))” to show that
2x + 17 is O(3x).

5. Show that (x2 + 1)/(x + 1) is O(x).

6. Show that (x3 + 2x)/(2x + 1) is O(x2).

7. Find the least integer n such that f (x) is O(xn) for each
of these functions.

a) f (x) = 2x3 + x2 log x

b) f (x) = 3x3 + (log x)4

c) f (x) = (x4 + x2 + 1)/(x3 + 1)

d) f (x) = (x4 + 5 log x)/(x4 + 1)

8. Find the least integer n such that f (x) is O(xn) for each
of these functions.

a) f (x) = 2x2 + x3 log x

b) f (x) = 3x5 + (log x)4

c) f (x) = (x4 + x2 + 1)/(x4 + 1)

d) f (x) = (x3 + 5 log x)/(x4 + 1)

9. Show that x2 + 4x + 17 is O(x3) but that x3 is not
O(x2 + 4x + 17).

10. Show that x3 is O(x4) but that x4 is not O(x3).

11. Show that 3x4 + 1 is O(x4/2) and x4/2 is O(3x4 + 1).

12. Show that x log x is O(x2) but that x2 is not O(x log x).

13. Show that 2n isO(3n) but that 3n is notO(2n). (Note that
this is a special case of Exercise 60.)

14. Determine whether x3 isO(g(x)) for each of these func-
tions g(x).

a) g(x) = x2 b) g(x) = x3

c) g(x) = x2 + x3 d) g(x) = x2 + x4

e) g(x) = 3x f) g(x) = x3/2

15. Explain what it means for a function to be O(1).

16. Show that if f (x) is O(x), then f (x) is O(x2).

17. Suppose that f (x), g(x), and h(x) are functions such that
f (x) isO(g(x)) and g(x) isO(h(x)). Show that f (x) is
O(h(x)).

18. Let k be a positive integer. Show that 1k + 2k + · · ·+ nk

is O(nk+1).

19. Determine whether each of the functions 2n+1 and 22n is
O(2n).

20. Determine whether each of the functions log(n+ 1) and
log(n2 + 1) is O(log n).

21. Arrange the functions
√
n, 1000 log n, n log n, 2n!, 2n, 3n,

and n2/1,000,000 in a list so that each function is big-O
of the next function.

22. Arrange the function (1.5)n,n100, (log n)3,
√
n log n, 10n,

(n!)2, andn99 + n98 in a list so that each function is big-O
of the next function.

23. Suppose that you have two different algorithms for solv-
ing a problem. To solve a problem of size n, the first
algorithm uses exactly n(log n) operations and the sec-
ond algorithm uses exactly n3/2 operations. As n grows,
which algorithm uses fewer operations?

24. Suppose that you have two different algorithms for solv-
ing a problem. To solve a problem of size n, the first
algorithm uses exactly n22n operations and the second
algorithm uses exactly n! operations. As n grows, which
algorithm uses fewer operations?

3.2 The Growth of Functions 217

25. Give as good a big-O estimate as possible for each of
these functions.

a) (n2 + 8)(n+ 1) b) (n log n+ n2)(n3 + 2)

c) (n! + 2n)(n3 + log(n2 + 1))

26. Give a big-O estimate for each of these functions. For the
function g in your estimate f (x) isO(g(x)), use a simple
function g of smallest order.

a) (n3+n2 log n)(log n+1)+ (17 log n+19)(n3+2)

b) (2n + n2)(n3 + 3n)

c) (nn + n2n + 5n)(n! + 5n)

27. Give a big-O estimate for each of these functions. For the
function g in your estimate that f (x) is O(g(x)), use a
simple function g of the smallest order.

a) n log(n2 + 1)+ n2 log n

b) (n log n+ 1)2 + (log n+ 1)(n2 + 1)

c) n2n + nn2

28. For each function in Exercise 1, determine whether that
function is (x) and whether it is (x).

29. For each function in Exercise 2, determine whether that
function is (x2) and whether it is (x2).

30. Show that each of these pairs of functions are of the same
order.

a) 3x + 7, x

b) 2x2 + x − 7, x2

c) x + 1/2 , x
d) log(x2 + 1), log2 x

e) log10 x, log2 x

31. Show that f (x) is (g(x)) if and only if f (x) isO(g(x))
and g(x) is O(f (x)).

32. Show that if f (x) and g(x) are functions from the set
of real numbers to the set of real numbers, then f (x) is
O(g(x)) if and only if g(x) is (f (x)).

33. Show that if f (x) and g(x) are functions from the set
of real numbers to the set of real numbers, then f (x) is
 (g(x)) if and only if there are positive constants k, C1,
and C2 such that C1|g(x)| ≤ |f (x)| ≤ C2|g(x)| when-
ever x > k.

34. a) Show that 3x2 + x + 1 is (3x2) by directly finding
the constants k, C1, and C2 in Exercise 33.

b) Express the relationship in part (a) using a picture
showing the functions 3x2 + x + 1, C1 · 3x2, and
C2 · 3x2, and the constant k on the x-axis, where
C1, C2, and k are the constants you found in part (a)
to show that 3x2 + x + 1 is (3x2).

35. Express the relationship f (x) is (g(x)) using a picture.
Show the graphs of the functions f (x), C1|g(x)|, and
C2|g(x)|, as well as the constant k on the x-axis.

36. Explain what it means for a function to be (1).

37. Explain what it means for a function to be (1).

38. Give a big-O estimate of the product of the first n odd
positive integers.

39. Show that if f and g are real-valued functions such that
f (x) isO(g(x)), then for every positive integer n, f n(x)
is O(gn(x)). [Note that f n(x) = f (x)n.]

40. Show that for all real numbers a and b with a > 1 and
b > 1, if f (x) is O(logb x), then f (x) is O(loga x).

41. Suppose that f (x) is O(g(x)) where f and g are in-
creasing and unbounded functions. Show that log |f (x)|
is O(log |g(x)|).

42. Suppose that f (x) is O(g(x)). Does it follow that 2f (x)

is O(2g(x))?

43. Let f1(x) and f2(x) be functions from the set of real
numbers to the set of positive real numbers. Show that if
f1(x) and f2(x) are both (g(x)), where g(x) is a func-
tion from the set of real numbers to the set of positive real
numbers, then f1(x)+ f2(x) is (g(x)). Is this still true
if f1(x) and f2(x) can take negative values?

44. Suppose that f (x), g(x), and h(x) are functions such that
f (x) is (g(x)) and g(x) is (h(x)). Show that f (x) is
 (h(x)).

45. If f1(x) and f2(x) are functions from the set of positive
integers to the set of positive real numbers and f1(x) and
f2(x) are both (g(x)), is (f1 − f2)(x) also (g(x))?
Either prove that it is or give a counterexample.

46. Show that if f1(x) and f2(x) are functions from the set
of positive integers to the set of real numbers and f1(x)

is (g1(x)) and f2(x) is (g2(x)), then (f1f2)(x) is
 ((g1g2)(x)).

47. Find functions f and g from the set of positive integers
to the set of real numbers such that f (n) is not O(g(n))
and g(n) is not O(f (n)).

48. Express the relationship f (x) is (g(x)) using a picture.
Show the graphs of the functions f (x) andCg(x), as well
as the constant k on the real axis.

49. Show that if f1(x) is (g1(x)), f2(x) is (g2(x)), and
f2(x) = 0 and g2(x) = 0 for all real numbers x > 0, then
(f1/f2)(x) is ((g1/g2)(x)).

50. Show that if f (x) = anxn + an−1x
n−1 + · · · + a1x +

a0, where a0, a1, . . . , an−1, and an are real numbers and
an = 0, then f (x) is (xn).

Big-O, big-Theta, and big-Omega notation can be extended
to functions in more than one variable. For example, the state-
mentf (x, y) isO(g(x, y))means that there exist constantsC,
k1, and k2 such that |f (x, y)| ≤ C|g(x, y)| whenever x > k1

and y > k2.

51. Define the statement f (x, y) is (g(x, y)).

52. Define the statement f (x, y) is (g(x, y)).

53. Show that (x2 + xy + x log y)3 is O(x6y3).

54. Show that x5y3 + x4y4 + x3y5 is (x3y3).

55. Show that xy is O(xy).

56. Show that xy is (xy).

57. (Requires calculus) Show that if c > d > 0, then nd is
O(nc), but nc is not O(nd).

58. (Requires calculus) Show that if b > 1 and c and d
are positive, then (logb n)

c is O(nd), but nd is not
O((logb n)

c).

218 3 / Algorithms

59. (Requires calculus) Show that if d is positive and b > 1,
then nd is O(bn) but bn is not O(nd).

60. (Requires calculus) Show that if c > b > 1, then bn is
O(cn) but cn is not O(bn).

The following problems deal with another type of asymptotic
notation, called little-o notation. Because little-o notation is
based on the concept of limits, a knowledge of calculus is
needed for these problems. We say that f (x) is o(g(x)) [read
f (x) is “little-oh” of g(x)], when

lim
x→∞

f (x)

g(x)
= 0.

61. (Requires calculus) Show that

a) x2 is o(x3). b) x log x is o(x2).
c) x2 is o(2x). d) x2 + x + 1 is not o(x2).

62. (Requires calculus)

a) Show that if f (x) and g(x) are functions such that
f (x) is o(g(x)) and c is a constant, then cf (x) is
o(g(x)), where (cf)(x) = cf (x).

b) Show that if f1(x), f2(x), and g(x) are functions
such that f1(x) is o(g(x)) and f2(x) is o(g(x)),
then (f1 + f2)(x) is o(g(x)), where (f1 + f2)(x) =
f1(x)+ f2(x).

63. (Requires calculus) Represent pictorially that x log x is
o(x2) by graphing x log x, x2, and x log x/x2. Explain
how this picture shows that x log x is o(x2).

64. (Requires calculus) Express the relationship f (x) is
o(g(x)) using a picture. Show the graphs of f (x), g(x),
and f (x)/g(x).

∗65. (Requires calculus) Suppose that f (x) is o(g(x)). Does
it follow that 2f (x) is o(2g(x))?

∗66. (Requires calculus) Suppose that f (x) is o(g(x)). Does
it follow that log |f (x)| is o(log |g(x)|)?

67. (Requires calculus) The two parts of this exercise describe
the relationship between little-o and big-O notation.

a) Show that if f (x) and g(x) are functions such that
f (x) is o(g(x)), then f (x) is O(g(x)).

b) Show that if f (x) and g(x) are functions such that
f (x) is O(g(x)), then it does not necessarily follow
that f (x) is o(g(x)).

68. (Requires calculus) Show that if f (x) is a polynomial of
degree n and g(x) is a polynomial of degree m where
m > n, then f (x) is o(g(x)).

69. (Requires calculus) Show that if f1(x) is O(g(x)) and
f2(x) is o(g(x)), then f1(x)+ f2(x) is O(g(x)).

70. (Requires calculus) LetHn be the nth harmonic number

Hn = 1+ 1

2
+ 1

3
+ · · · + 1

n
.

Show that Hn is O(log n). [Hint: First establish the in-
equality

n�
j=2

1

j
<

� n
1

1

x
dx

by showing that the sum of the areas of the rectangles of
height 1/j with base from j − 1 to j , for j = 2, 3, . . . , n,
is less than the area under the curve y= 1/x from 2 to n.]

∗71. Show that n log n is O(log n!).
72. Determine whether log n! is (n log n). Justify your an-

swer.

∗73. Show that log n! is greater than (n log n)/4 for
n > 4. [Hint: Begin with the inequality n! >
n(n− 1)(n− 2) · · · n/2 .]

Let f (x) and g(x) be functions from the set of real num-
bers to the set of real numbers. We say that the func-
tions f and g are asymptotic and write f (x) ∼ g(x)
if limx→∞ f (x)/g(x) = 1.

74. (Requires calculus) For each of these pairs of functions,
determine whether f and g are asymptotic.

a) f (x) = x2 + 3x + 7, g(x) = x2 + 10

b) f (x) = x2 log x, g(x) = x3

c) f (x) = x4 + log(3x8 + 7),

g(x) = (x2 + 17x + 3)2

d) f (x) = (x3 + x2 + x + 1)4,
g(x) = (x4 + x3 + x2 + x + 1)3.

75. (Requires calculus) For each of these pairs of functions,
determine whether f and g are asymptotic.

a) f (x) = log(x2 + 1), g(x) = log x

b) f (x) = 2x+3, g(x) = 2x+7

c) f (x) = 22x , g(x) = 2x
2

d) f (x) = 2x
2+x+1, g(x) = 2x

2+2x

3.3 Complexity of Algorithms

Introduction

When does an algorithm provide a satisfactory solution to a problem? First, it must always
produce the correct answer. How this can be demonstrated will be discussed in Chapter 5.
Second, it should be efficient. The efficiency of algorithms will be discussed in this section.

How can the efficiency of an algorithm be analyzed? One measure of efficiency is the time
used by a computer to solve a problem using the algorithm, when input values are of a specified

3.3 Complexity of Algorithms 219

size. A second measure is the amount of computer memory required to implement the algorithm
when input values are of a specified size.

Questions such as these involve the computational complexityof the algorithm.An analysis
of the time required to solve a problem of a particular size involves the time complexity of the
algorithm. An analysis of the computer memory required involves the space complexity of
the algorithm. Considerations of the time and space complexity of an algorithm are essential
when algorithms are implemented. It is obviously important to know whether an algorithm will
produce an answer in a microsecond, a minute, or a billion years. Likewise, the required memory
must be available to solve a problem, so that space complexity must be taken into account.

Considerations of space complexity are tied in with the particular data structures used to
implement the algorithm. Because data structures are not dealt with in detail in this book, space
complexity will not be considered. We will restrict our attention to time complexity.

Time Complexity

The time complexity of an algorithm can be expressed in terms of the number of operations
used by the algorithm when the input has a particular size. The operations used to measure time
complexity can be the comparison of integers, the addition of integers, the multiplication of
integers, the division of integers, or any other basic operation.

Time complexity is described in terms of the number of operations required instead of actual
computer time because of the difference in time needed for different computers to perform basic
operations. Moreover, it is quite complicated to break all operations down to the basic bit oper-
ations that a computer uses. Furthermore, the fastest computers in existence can perform basic
bit operations (for instance, adding, multiplying, comparing, or exchanging two bits) in 10−11

second (10 picoseconds), but personal computers may require 10−8 second (10 nanoseconds),
which is 1000 times as long, to do the same operations.

We illustrate how to analyze the time complexity of an algorithm by consideringAlgorithm 1
of Section 3.1, which finds the maximum of a finite set of integers.

EXAMPLE 1 Describe the time complexity of Algorithm 1 of Section 3.1 for finding the maximum element
in a finite set of integers.

Solution: The number of comparisons will be used as the measure of the time complexity of the
algorithm, because comparisons are the basic operations used.

To find the maximum element of a set with n elements, listed in an arbitrary order, the
temporary maximum is first set equal to the initial term in the list. Then, after a comparison
i ≤ n has been done to determine that the end of the list has not yet been reached, the temporary
maximum and second term are compared, updating the temporary maximum to the value of
the second term if it is larger. This procedure is continued, using two additional comparisons
for each term of the list—one i ≤ n, to determine that the end of the list has not been reached
and another max < ai , to determine whether to update the temporary maximum. Because two
comparisons are used for each of the second through the nth elements and one more comparison
is used to exit the loop when i = n+ 1, exactly 2(n− 1)+ 1 = 2n− 1 comparisons are used
whenever this algorithm is applied. Hence, the algorithm for finding the maximum of a set
of n elements has time complexity (n), measured in terms of the number of comparisons
used. Note that for this algorithm the number of comparisons is independent of particular input
of n numbers. ▲

Next, we will analyze the time complexity of searching algorithms.

220 3 / Algorithms

EXAMPLE 2 Describe the time complexity of the linear search algorithm (specified as Algortihm 2 in
Section 3.1).

Solution: The number of comparisons used by Algorithm 2 in Section 3.1 will be taken as the
measure of the time complexity. At each step of the loop in the algorithm, two comparisons
are performed—one i ≤ n, to see whether the end of the list has been reached and one x ≤ ai ,
to compare the element x with a term of the list. Finally, one more comparison i ≤ n is made
outside the loop. Consequently, if x = ai , 2i + 1 comparisons are used. The most comparisons,
2n+ 2, are required when the element is not in the list. In this case, 2n comparisons are used
to determine that x is not ai , for i = 1, 2, . . . , n, an additional comparison is used to exit the
loop, and one comparison is made outside the loop. So when x is not in the list, a total of 2n+ 2
comparisons are used. Hence, a linear search requires (n) comparisons in the worst case,
because 2n+ 2 is (n). ▲

WORST-CASECOMPLEXITY The type of complexity analysis done in Example 2 is aworst-
case analysis. By the worst-case performance of an algorithm, we mean the largest number of
operations needed to solve the given problem using this algorithm on input of specified size.
Worst-case analysis tells us how many operations an algorithm requires to guarantee that it will
produce a solution.

EXAMPLE 3 Describe the time complexity of the binary search algorithm (specified as Algorithm 3 in
Section 3.1) in terms of the number of comparisons used (and ignoring the time required to
compute m = (i + j)/2 in each iteration of the loop in the algorithm).

Solution: For simplicity, assume there are n = 2k elements in the list a1, a2, . . . , an, where k is a
nonnegative integer. Note that k = log n. (If n, the number of elements in the list, is not a power
of 2, the list can be considered part of a larger list with 2k+1 elements, where 2k < n < 2k+1.
Here 2k+1 is the smallest power of 2 larger than n.)

At each stage of the algorithm, i and j , the locations of the first term and the last term of
the restricted list at that stage, are compared to see whether the restricted list has more than one
term. If i < j , a comparison is done to determine whether x is greater than the middle term of
the restricted list.

At the first stage the search is restricted to a list with 2k−1 terms. So far, two comparisons
have been used. This procedure is continued, using two comparisons at each stage to restrict
the search to a list with half as many terms. In other words, two comparisons are used at the
first stage of the algorithm when the list has 2k elements, two more when the search has been
reduced to a list with 2k−1 elements, two more when the search has been reduced to a list with
2k−2 elements, and so on, until two comparisons are used when the search has been reduced to a
list with 21 = 2 elements. Finally, when one term is left in the list, one comparison tells us that
there are no additional terms left, and one more comparison is used to determine if this term is x.

Hence, at most 2k + 2 = 2 log n+ 2 comparisons are required to perform a binary search
when the list being searched has 2k elements. (Ifn is not a power of 2, the original list is expanded
to a list with 2k+1 terms, where k = log n , and the search requires at most 2 log n + 2
comparisons.) It follows that in the worst case, binary search requires O(log n) comparisons.
Note that in the worst case, 2 log n+ 2 comparisons are used by the binary search. Hence, the
binary search uses (log n) comparisons in the worst case, because 2 log n+ 2 = (log n).
From this analysis it follows that in the worst case, the binary search algorithm is more efficient
than the linear search algorithm, because we know by Example 2 that the linear search algorithm
has (n) worst-case time complexity. ▲

AVERAGE-CASE COMPLEXITY Another important type of complexity analysis, besides
worst-case analysis, is called average-case analysis. The average number of operations used to
solve the problem over all possible inputs of a given size is found in this type of analysis.Average-
case time complexity analysis is usually much more complicated than worst-case analysis.

3.3 Complexity of Algorithms 221

However, the average-case analysis for the linear search algorithm can be done without difficulty,
as shown in Example 4.

EXAMPLE 4 Describe the average-case performance of the linear search algorithm in terms of the average
number of comparisons used, assuming that the integer x is in the list and it is equally likely
that x is in any position.

Solution: By hypothesis, the integer x is one of the integers a1, a2, . . . , an in the list. If x is the
first term a1 of the list, three comparisons are needed, one i ≤ n to determine whether the end
of the list has been reached, one x = ai to compare x and the first term, and one i ≤ n outside
the loop. If x is the second term a2 of the list, two more comparisons are needed, so that a total
of five comparisons are used. In general, if x is the ith term of the list ai , two comparisons will
be used at each of the i steps of the loop, and one outside the loop, so that a total of 2i + 1
comparisons are needed. Hence, the average number of comparisons used equals

3+ 5+ 7+ · · · + (2n+ 1)

n
= 2(1+ 2+ 3+ · · · + n)+ n

n
.

Using the formula from line 2 of Table 2 in Section 2.4 (and see Exercise 37(b) of Section 2.4),

1+ 2+ 3+ · · · + n = n(n+ 1)

2
.

Hence, the average number of comparisons used by the linear search algorithm (when x is
known to be in the list) is

2[n(n+ 1)/2]
n

+ 1 = n+ 2,

which is (n). ▲

Remark: In the analysis in Example 4 we assumed that x is in the list being searched. It is also
possible to do an average-case analysis of this algorithm when x may not be in the list (see
Exercise 23).

Remark: Although we have counted the comparisons needed to determine whether we have
reached the end of a loop, these comparisons are often not counted. From this point on we will
ignore such comparisons.

WORST-CASE COMPLEXITY OF TWO SORTING ALGORITHMS We analyze the
worst-case complexity of the bubble sort and the insertion sort in Examples 5 and 6.

EXAMPLE 5 What is the worst-case complexity of the bubble sort in terms of the number of comparisons
made?

Solution: The bubble sort described before Example 4 in Section 3.1 sorts a list by performing
a sequence of passes through the list. During each pass the bubble sort successively compares
adjacent elements, interchanging them if necessary. When the ith pass begins, the i − 1 largest
elements are guaranteed to be in the correct positions. During this pass, n− i comparisons are
used. Consequently, the total number of comparisons used by the bubble sort to order a list of
n elements is

(n− 1)+ (n− 2)+ · · · + 2+ 1 = (n− 1)n

2

222 3 / Algorithms

using a summation formula from line 2 in Table 2 in Section 2.4 (and Exercise 37(b) in
Section 2.4). Note that the bubble sort always uses this many comparisons, because it con-
tinues even if the list becomes completely sorted at some intermediate step. Consequently, the
bubble sort uses (n− 1)n/2 comparisons, so it has (n2) worst-case complexity in terms of
the number of comparisons used. ▲

EXAMPLE 6 What is the worst-case complexity of the insertion sort in terms of the number of comparisons
made?

Solution: The insertion sort (described in Section 3.1) inserts the j th element into the correct
position among the first j − 1 elements that have already been put into the correct order. It does
this by using a linear search technique, successively comparing the j th element with successive
terms until a term that is greater than or equal to it is found or it compares aj with itself and stops
because aj is not less than itself. Consequently, in the worst case, j comparisons are required
to insert the j th element into the correct position. Therefore, the total number of comparisons
used by the insertion sort to sort a list of n elements is

2+ 3+ · · · + n = n(n+ 1)

2
− 1,

using the summation formula for the sum of consecutive integers in line 2 of Table 2 of
Section 2.4 (and see Exercise 37(b) of Section 2.4), and noting that the first term, 1, is missing
in this sum. Note that the insertion sort may use considerably fewer comparisons if the smaller
elements started out at the end of the list. We conclude that the insertion sort has worst-case
complexity (n2). ▲

In Examples 5 and 6 we showed that both the bubble sort and the insertion sort have
worst-case time complexity (n2). However, the most efficient sorting algorithms can sort n
items inO(n log n) time, as we will show in Sections 8.3 and 11.1 using techniques we develop in
those sections. From this point on, we will assume that sorting n items can be done inO(n log n)
time.

Complexity of Matrix Multiplication

The definition of the product of two matrices can be expressed as an algorithm for computing
the product of two matrices. Suppose thatC = [cij] is them× nmatrix that is the product of the
m× k matrix A = [aij] and the k × n matrix B = [bij]. The algorithm based on the definition
of the matrix product is expressed in pseudocode in Algorithm 1.

ALGORITHM 1 Matrix Multiplication.

procedure matrix multiplication(A, B: matrices)

for i := 1 to m

for j := 1 to n

cij := 0

for q := 1 to k

cij := cij + aiqbqj
return C {C = [cij] is the product of A and B}

We can determine the complexity of this algorithm in terms of the number of additions and
multiplications used.

3.3 Complexity of Algorithms 223

EXAMPLE 7 How many additions of integers and multiplications of integers are used by Algorithm 1 to
multiply two n× n matrices with integer entries?

Solution: There are n2 entries in the product of A and B. To find each entry requires a total
of n multiplications and n− 1 additions. Hence, a total of n3 multiplications and n2(n− 1)
additions are used. ▲

Surprisingly, there are more efficient algorithms for matrix multiplication than that given in
Algorithm 1. As Example 7 shows, multiplying two n× n matrices directly from the definition
requires O(n3) multiplications and additions. Using other algorithms, two n× n matrices can

be multiplied using O(n
√

7) multiplications and additions. (Details of such algorithms can be
found in [CoLeRiSt09].)

We can also analyze the complexity of the algorithm we described in Chapter 2 for computing
the Boolean product of two matrices, which we display as Algorithm 2.

ALGORITHM 2 The Boolean Product of Zero-One Matrices.

procedure Boolean product of Zero-One Matrices (A, B: zero–one matrices)

for i := 1 to m

for j := 1 to n

cij := 0

for q := 1 to k

cij := cij ∨ (aiq ∧ bqj)
return C {C = [cij] is the Boolean product of A and B}

The number of bit operations used to find the Boolean product of two n× n matrices can
be easily determined.

EXAMPLE 8 How many bit operations are used to find A B, where A and B are n× n zero–one matrices?

Solution: There are n2 entries in A B. Using Algorithm 2, a total of n ORs and n ANDs are
used to find an entry of A B. Hence, 2n bit operations are used to find each entry. Therefore,
2n3 bit operations are required to compute A B using Algorithm 2. ▲

MATRIX-CHAIN MULTIPLICATION There is another important problem involving the
complexity of the multiplication of matrices. How should thematrix-chainA1A2 · · ·An be com-
puted using the fewest multiplications of integers, where A1,A2, . . . ,An are m1 ×m2,m2 ×
m3, . . . , mn ×mn+1 matrices, respectively, and each has integers as entries? (Because matrix
multiplication is associative, as shown in Exercise 13 in Section 2.6, the order of the mul-
tiplication used does not change the product.) Note that m1m2m3 multiplications of integers
are performed to multiply an m1 ×m2 matrix and an m2 ×m3 matrix using Algorithm 1.
Example 9 illustrates this problem.

EXAMPLE 9 In which order should the matrices A1,A2, and A3—where A1 is 30 × 20, A2 is 20 × 40, and
A3 is 40× 10, all with integer entries—be multiplied to use the least number of multiplications
of integers?

Solution: There are two possible ways to computeA1A2A3. These areA1(A2A3) and (A1A2)A3.
If A2 and A3 are first multiplied, a total of 20 · 40 · 10 = 8000 multiplications of inte-

gers are used to obtain the 20 × 10 matrix A2A3. Then, to multiply A1 and A2A3 requires
30 · 20 · 10 = 6000 multiplications. Hence, a total of

8000 + 6000 = 14,000

224 3 / Algorithms

multiplications are used. On the other hand, ifA1 andA2 are first multiplied, then 30 · 20 · 40 =
24,000 multiplications are used to obtain the 30 × 40 matrix A1A2. Then, to multiply A1A2

and A3 requires 30 · 40 · 10 = 12,000 multiplications. Hence, a total of

24,000 + 12,000 = 36,000

multiplications are used.
Clearly, the first method is more efficient. ▲

We will return to this problem in Exercise 57 in Section 8.1. Algorithms for determining
the most efficient way to carry out matrix-chain multiplication are discussed in [CoLeRiSt09].

Algorithmic Paradigms

In Section 3.1 we introduced the basic notion of an algorithm. We provided examples of many
different algorithms, including searching and sorting algorithms. We also introduced the concept
of a greedy algorithm, giving examples of several problems that can be solved by greedy algo-
rithms. Greedy algorithms provide an example of an algorithmic paradigm, that is, a general
approach based on a particular concept that can be used to construct algorithms for solving a
variety of problems.

In this book we will construct algorithms for solving many different problems based on a
variety of algorithmic paradigms, including the most widely used algorithmic paradigms. These
paradigms can serve as the basis for constructing efficient algorithms for solving a wide range
of problems.

Some of the algorithms we have already studied are based on an algorithmic paradigm known
as brute force, which we will describe in this section. Algorithmic paradigms, studied later in
this book, include divide-and-conquer algorithms studied in Chapter 8, dynamic programming,
also studied in Chapter 8, backtracking, studied in Chapter 10, and probabilistic algorithms,
studied in Chapter 7. There are many important algorithmic paradigms besides those described
in this book. Consult books on algorithm design such as [KlTa06] to learn more about them.

BRUTE-FORCE ALGORITHMS Brute force is an important, and basic, algorithmic
paradigm. In a brute-force algorithm, a problem is solved in the most straightforward manner
based on the statement of the problem and the definitions of terms. Brute-force algorithms are
designed to solve problems without regard to the computing resources required. For example,
in some brute-force algorithms the solution to a problem is found by examining every possible
solution, looking for the best possible. In general, brute-force algorithms are naive approaches
for solving problems that do not take advantage of any special structure of the problem or clever
ideas.

Note that Algorithm 1 in Section 3.1 for finding the maximum number in a sequence is
a brute-force algorithm because it examines each of the n numbers in a sequence to find the
maximum term. The algorithm for finding the sum of n numbers by adding one additional
number at a time is also a brute-force algorithm, as is the algorithm for matrix multiplication
based on its definition (Algorithm 1). The bubble, insertion, and selection sorts (described in
Section 3.1 in Algorithms 4 and 5 and in Exercise 42, respectively) are also considered to be
brute-force algorithms; all three of these sorting algorithms are straightforward approaches much
less efficient than other sorting algorithms such as the merge sort and the quick sort discussed
in Chapters 5 and 8.

Although brute-force algorithms are often inefficient, they are often quite useful. A brute-
force algorithm may be able to solve practical instances of problems, particularly when the input

3.3 Complexity of Algorithms 225

is not too large, even if it is impractical to use this algorithm for larger inputs. Furthermore,
when designing new algorithms to solve a problem, the goal is often to find a new algorithm
that is more efficient than a brute-force algorithm. One such problem of this type is described
in Example 10.

EXAMPLE 10 Construct a brute-force algorithm for finding the closest pair of points in a set of n points in
the plane and provide a worst-case big-O estimate for the number of bit operations used by the
algorithm.

Solution: Suppose that we are given as input the points (x1, y1), (x2, y2), . . . , (xn, yn). Recall

that the distance between (xi, yi) and (xj , yj) is
�
(xj − xi)2 + (yj − yi)2. A brute-force algo-

rithm can find the closest pair of these points by computing the distances between all pairs of
the n points and determining the smallest distance. (We can make one small simplification to
make the computation easier; we can compute the square of the distance between pairs of points
to find the closest pair, rather than the distance between these points. We can do this because
the square of the distance between a pair of points is smallest when the distance between these
points is smallest.)

ALGORITHM 3 Brute-Force Algorithm for Closest Pair of Points.

procedure closest-pair((x1, y1), (x2, y2), . . . , (xn, yn): pairs of real numbers)

min= ∞
for i := 2 to n

for j := 1 to i − 1

if (xj − xi)2 + (yj − yi)2 < min then
min := (xj − xi)2 + (yj − yi)2
closest pair := ((xi, yi), (xj , yj))

return closest pair

To estimate the number of operations used by the algorithm, first note that there are
n(n− 1)/2 pairs of points ((xi, yi), (xj , yj)) that we loop through (as the reader should verify).

For each such pair we compute (xj − xi)2 + (yj − yi)2, compare it with the current value of
min, and if it is smaller thanmin replace the current value ofmin by this new value. It follows
that this algorithm uses (n2) operations, in terms of arithmetic operations and comparisons.

In Chapter 8 we will devise an algorithm that determines the closest pair of points when given
n points in the plane as input that hasO(n log n) worst-case complexity. The original discovery
of such an algorithm, much more efficient than the brute-force approach, was considered quite
surprising. ▲

Understanding the Complexity of Algorithms

Table 1 displays some common terminology used to describe the time complexity of algorithms.
For example, an algorithm that finds the largest of the first 100 terms of a list of n elements
by applying Algorithm 1 to the sequence of the first 100 terms, where n is an integer with
n ≥ 100, has constant complexity because it uses 99 comparisons no matter what n is (as
the reader can verify). The linear search algorithm has linear (worst-case or average-case)
complexity and the binary search algorithm has logarithmic (worst-case) complexity. Many
important algorithms have n log n, or linearithmic (worst-case) complexity, such as the merge
sort, which we will introduce in Chapter 4. (The word linearithmic is a combination of the words
linear and logarithmic.)

226 3 / Algorithms

TABLE 1 Commonly Used Terminology for the
Complexity of Algorithms.

Complexity Terminology

 (1) Constant complexity

 (log n) Logarithmic complexity

 (n) Linear complexity

 (n log n) Linearithmic complexity

 (nb) Polynomial complexity

 (bn), where b > 1 Exponential complexity

 (n!) Factorial complexity

An algorithm has polynomial complexity if it has complexity (nb), where b is an integer
with b ≥ 1. For example, the bubble sort algorithm is a polynomial-time algorithm because
it uses (n2) comparisons in the worst case. An algorithm has exponential complexity if it
has time complexity (bn), where b > 1. The algorithm that determines whether a compound
proposition in n variables is satisfiable by checking all possible assignments of truth variables
is an algorithm with exponential complexity, because it uses (2n) operations. Finally, an
algorithm has factorial complexity if it has (n!) time complexity. The algorithm that finds all
orders that a traveling salesperson could use to visit n cities has factorial complexity; we will
discuss this algorithm in Chapter 9.

TRACTABILITY A problem that is solvable using an algorithm with polynomial worst-case
complexity is called tractable, because the expectation is that the algorithm will produce the
solution to the problem for reasonably sized input in a relatively short time. However, if the
polynomial in the big- estimate has high degree (such as degree 100) or if the coefficients
are extremely large, the algorithm may take an extremely long time to solve the problem.
Consequently, that a problem can be solved using an algorithm with polynomial worst-case
time complexity is no guarantee that the problem can be solved in a reasonable amount of time
for even relatively small input values. Fortunately, in practice, the degree and coefficients of
polynomials in such estimates are often small.

The situation is much worse for problems that cannot be solved using an algorithm with
worst-case polynomial time complexity. Such problems are called intractable. Usually, but not
always, an extremely large amount of time is required to solve the problem for the worst cases
of even small input values. In practice, however, there are situations where an algorithm with a
certain worst-case time complexity may be able to solve a problem much more quickly for most
cases than for its worst case. When we are willing to allow that some, perhaps small, number
of cases may not be solved in a reasonable amount of time, the average-case time complexity is
a better measure of how long an algorithm takes to solve a problem. Many problems important
in industry are thought to be intractable but can be practically solved for essentially all sets of
input that arise in daily life. Another way that intractable problems are handled when they arise
in practical applications is that instead of looking for exact solutions of a problem, approximate
solutions are sought. It may be the case that fast algorithms exist for finding such approximate so-
lutions, perhaps even with a guarantee that they do not differ by very much from an exact solution.

Some problems even exist for which it can be shown that no algorithm exists for solving
them. Such problems are called unsolvable (as opposed to solvable problems that can be
solved using an algorithm). The first proof that there are unsolvable problems was provided by
the great English mathematician and computer scientist Alan Turing when he showed that the
halting problem is unsolvable. Recall that we proved that the halting problem is unsolvable in
Section 3.1. (A biography of Alan Turing and a description of some of his other work can be
found in Chapter 13.)

3.3 Complexity of Algorithms 227

P VERSUS NP The study of the complexity of algorithms goes far beyond what we can
describe here. Note, however, that many solvable problems are believed to have the property
that no algorithm with polynomial worst-case time complexity solves them, but that a solution,
if known, can be checked in polynomial time. Problems for which a solution can be checked
in polynomial time are said to belong to the class NP (tractable problems are said to belong to
class P). The abbreviation NP stands for nondeterministic polynomial time. The satisfiability
problem, discussed in Section 1.3, is an example of an NP problem—we can quickly verify that
an assignment of truth values to the variables of a compound proposition makes it true, but no
polynomial time algorithm has been discovered for finding such an assignment of truth values.
(For example, an exhaustive search of all possible truth values requires (2n) bit operations
where n is the number of variables in the compound proposition.)

There is also an important class of problems, called NP-complete problems, with the
property that if any of these problems can be solved by a polynomial worst-case time algorithm,
then all problems in the class NP can be solved by polynomial worst-case time algorithms.
The satisfiability problem, is also an example of an NP-complete problem. It is an NP problem
and if a polynomial time algorithm for solving it were known, there would be polynomial time
algorithms for all problems known to be in this class of problems (and there are many important
problems in this class). This last statement follows from the fact that every problem in NP
can be reduced in polynomial time to the satisfiability problem. Although more than 3000 NP-
complete problems are now known, the satisfiability problem was the first problem shown to be
NP-complete. The theorem that asserts this is known as the Cook-Levin theorem after Stephen
Cook and Leonid Levin, who independently proved it in the early 1970s.

The P versus NP problem asks whether NP, the class of problems for which it is possible
to check solutions in polynomial time, equals P, the class of tractable problems. If P =NP, there
would be some problems that cannot be solved in polynomial time, but whose solutions could
be verified in polynomial time. The concept of NP-completeness is helpful in research aimed
at solving the P versus NP problem, because NP-complete problems are the problems in NP
considered most likely not to be in P, as every problem in NP can be reduced to an NP-complete
problem in polynomial time. A large majority of theoretical computer scientists believe that
P = NP, which would mean that no NP-complete problem can be solved in polynomial time.
One reason for this belief is that despite extensive research, no one has succeeded in showing that
P = NP. In particular, no one has been able to find an algorithm with worst-case polynomial time
complexity that solves any NP-complete problem. The P versus NP problem is one of the most
famous unsolved problems in the mathematical sciences (which include theoretical computer
science). It is one of the seven famous Millennium Prize Problems, of which six remain unsolved.
A prize of $1,000,000 is offered by the Clay Mathematics Institute for its solution.

STEPHEN COOK (BORN 1939) Stephen Cook was born in Buffalo where his father worked as an industrial
chemist and taught university courses. His mother taught English courses in a community college. While in
high school Cook developed an interest in electronics through his work with a famous local inventor noted for
inventing the first implantable cardiac pacemaker.

Cook was a mathematics major at the University of Michigan, graduating in 1961. He did graduate work
at Harvard, receiving a master’s degree in 1962 and a Ph.D. in 1966. Cook was appointed an assistant professor
in the Mathematics Department at the University of California, Berkeley in 1966. He was not granted tenure
there, possibly because the members of the Mathematics Department did not find his work on what is now
considered to be one of the most important areas of theoretical computer science of sufficient interest. In 1970,
he joined the University of Toronto as an assistant professor, holding a joint appointment in the Computer

Science Department and the Mathematics Department. He has remained at the University of Toronto, where he was appointed a
University Professor in 1985.

Cook is considered to be one of the founders of computational complexity theory. His 1971 paper “The Complexity of Theorem
Proving Procedures” formalized the notions of NP-completeness and polynomial-time reduction, showed that NP-complete problems
exist by showing that the satisfiability problem is such a problem, and introduced the notorious P versus NP problem.

Cook has received many awards, including the 1982 Turing Award. He is married and has two sons. Among his interests are
playing the violin and racing sailboats.

228 3 / Algorithms

For more information about the complexity of algorithms, consult the references, including
[CoLeRiSt09], for this section listed at the end of this book. (Also, for a more formal discussion
of computational complexity in terms of Turing machines, see Section 13.5.)

PRACTICAL CONSIDERATIONS Note that a big- estimate of the time complexity of an
algorithm expresses how the time required to solve the problem increases as the input grows
in size. In practice, the best estimate (that is, with the smallest reference function) that can be
shown is used. However, big- estimates of time complexity cannot be directly translated into
the actual amount of computer time used. One reason is that a big- estimate f (n) is (g(n)),
where f (n) is the time complexity of an algorithm and g(n) is a reference function, means
that C1g(n) ≤ f (n) ≤ C2g(n) when n > k, where C1, C2, and k are constants. So without
knowing the constants C1, C2, and k in the inequality, this estimate cannot be used to determine
a lower bound and an upper bound on the number of operations used in the worst case. As
remarked before, the time required for an operation depends on the type of operation and the
computer being used. Often, instead of a big- estimate on the worst-case time complexity of
an algorithm, we have only a big-O estimate. Note that a big-O estimate on the time complexity
of an algorithm provides an upper, but not a lower, bound on the worst-case time required for
the algorithm as a function of the input size. Nevertheless, for simplicity, we will often use
big-O estimates when describing the time complexity of algorithms, with the understanding
that big- estimates would provide more information.

Table 2 displays the time needed to solve problems of various sizes with an algorithm using
the indicated number n of bit operations, assuming that each bit operation takes 10−11 seconds, a
reasonable estimate of the time required for a bit operation using the fastest computers available
today. Times of more than 10100 years are indicated with an asterisk. In the future, these times
will decrease as faster computers are developed. We can use the times shown in Table 2 to see
whether it is reasonable to expect a solution to a problem of a specified size using an algorithm
with known worst-case time complexity when we run this algorithm on a modern computer.
Note that we cannot determine the exact time a computer uses to solve a problem with input of
a particular size because of a myriad of issues involving computer hardware and the particular
software implementation of the algorithm.

It is important to have a reasonable estimate for how long it will take a computer to solve a
problem. For instance, if an algorithm requires approximately 10 hours, it may be worthwhile to
spend the computer time (and money) required to solve this problem. But, if an algorithm requires
approximately 10 billion years to solve a problem, it would be unreasonable to use resources to
implement this algorithm. One of the most interesting phenomena of modern technology is the
tremendous increase in the speed and memory space of computers. Another important factor
that decreases the time needed to solve problems on computers is parallel processing, which
is the technique of performing sequences of operations simultaneously.

Efficient algorithms, including most algorithms with polynomial time complexity, benefit
most from significant technology improvements. However, these technology improvements

TABLE 2 The Computer Time Used by Algorithms.

Problem Size Bit Operations Used

n log n n n log n n2 2n n!

10 3× 10−11 s 10−10 s 3× 10−10 s 10−9 s 10−8 s 3× 10−7 s

102 7× 10−11 s 10−9 s 7× 10−9 s 10−7 s 4× 1011 yr *

103 1.0× 10−10 s 10−8 s 1× 10−7 s 10−5 s * *

104 1.3× 10−10 s 10−7 s 1× 10−6 s 10−3 s * *

105 1.7× 10−10 s 10−6 s 2× 10−5 s 0.1 s * *

106 2× 10−10 s 10−5 s 2× 10−4 s 0.17 min * *

3.3 Complexity of Algorithms 229

offer little help in overcoming the complexity of algorithms of exponential or factorial time
complexity. Because of the increased speed of computation, increases in computer memory, and
the use of algorithms that take advantage of parallel processing, many problems that were con-
sidered impossible to solve five years ago are now routinely solved, and certainly five years from
now this statement will still be true. This is even true when the algorithms used are intractable.

Exercises

1. Give a big-O estimate for the number of operations
(where an operation is an addition or a multiplication)
used in this segment of an algorithm.

t := 0
for i := 1 to 3
for j := 1 to 4
t := t + ij

2. Give a big-O estimate for the number additions used in
this segment of an algorithm.

t := 0
for i := 1 to n
for j := 1 to n
t := t + i + j

3. Give a big-O estimate for the number of operations,
where an operation is a comparison or a multiplication,
used in this segment of an algorithm (ignoring compar-
isons used to test the conditions in the for loops, where
a1, a2, ..., an are positive real numbers).

m := 0
for i := 1 to n
for j := i + 1 to n
m := max(aiaj ,m)

4. Give a big-O estimate for the number of operations,
where an operation is an addition or a multiplication, used
in this segment of an algorithm (ignoring comparisons
used to test the conditions in the while loop).

i := 1
t := 0
while i ≤ n
t := t + i
i := 2i

5. How many comparisons are used by the algorithm given
in Exercise 16 of Section 3.1 to find the smallest natural
number in a sequence of n natural numbers?

6. a) Use pseudocode to describe the algorithm that puts the
first four terms of a list of real numbers of arbitrary
length in increasing order using the insertion sort.

b) Show that this algorithm has time complexityO(1) in
terms of the number of comparisons used.

7. Suppose that an element is known to be among the first
four elements in a list of 32 elements. Would a lin-
ear search or a binary search locate this element more
rapidly?

8. Given a real number x and a positive integer k, determine

the number of multiplications used to find x2k starting

with x and successively squaring (to find x2, x4, and so
on). Is this a more efficient way to find x2k than by mul-
tiplying x by itself the appropriate number of times?

9. Give a big-O estimate for the number of comparisons
used by the algorithm that determines the number of 1s
in a bit string by examining each bit of the string to deter-
mine whether it is a 1 bit (see Exercise 25 of Section 3.1).

∗10. a) Show that this algorithm determines the number of 1
bits in the bit string S:

procedure bit count(S: bit string)
count := 0
while S = 0

count := count + 1
S := S ∧ (S − 1)

return count {count is the number of 1s in S}

Here S − 1 is the bit string obtained by changing the
rightmost 1 bit of S to a 0 and all the 0 bits to the right
of this to 1s. [Recall that S ∧ (S − 1) is the bitwise
AND of S and S − 1.]

b) How many bitwise AND operations are needed to find
the number of 1 bits in a string S using the algorithm
in part (a)?

11. a) Suppose we have n subsets S1, S2, . . . , Sn of the set
{1, 2, . . . , n}. Express a brute-force algorithm that de-
termines whether there is a disjoint pair of these sub-
sets. [Hint: The algorithm should loop through the
subsets; for each subset Si , it should then loop through
all other subsets; and for each of these other subsets
Sj , it should loop through all elements k in Si to de-
termine whether k also belongs to Sj .]

b) Give a big-O estimate for the number of times the
algorithm needs to determine whether an integer is in
one of the subsets.

12. Consider the following algorithm, which takes as input a
sequence ofn integersa1, a2, . . . , an and produces as out-
put a matrix M = {mij } where mij is the minimum term
in the sequence of integers ai, ai+1, . . . , aj for j ≥ i and
mij = 0 otherwise.

initialize M so that mij = ai if j ≥ i and mij = 0
otherwise

for i := 1 to n
for j := i + 1 to n
for k := i + 1 to j
mij := min(mij , ak)

return M= {mij } {mij is the minimum term of
ai, ai+1, . . . , aj}

230 3 / Algorithms

a) Show that this algorithm uses O(n3) comparisons to
compute the matrix M.

b) Show that this algorithm uses (n3) comparisons to
compute the matrix M. Using this fact and part (a),
conclude that the algorithms uses (n3) comparisons.
[Hint: Only consider the cases where i ≤ n/4 and
j ≥ 3n/4 in the two outer loops in the algorithm.]

13. The conventional algorithm for evaluating a polynomial
anx

n + an−1x
n−1 + · · · + a1x + a0 at x = c can be ex-

pressed in pseudocode by

procedure polynomial(c, a0, a1, . . . , an: real numbers)
power := 1
y := a0

for i := 1 to n
power := power ∗ c
y := y + ai ∗ power

return y {y = ancn + an−1c
n−1 + · · · + a1c + a0}

where the final value of y is the value of the polynomial
at x = c.
a) Evaluate 3x2 + x + 1 at x = 2 by working through

each step of the algorithm showing the values assigned
at each assignment step.

b) Exactly how many multiplications and additions are
used to evaluate a polynomial of degree n at x = c?
(Do not count additions used to increment the loop
variable.)

14. There is a more efficient algorithm (in terms of the num-
ber of multiplications and additions used) for evaluating
polynomials than the conventional algorithm described
in the previous exercise. It is called Horner’s method.
This pseudocode shows how to use this method to find the
value of anx

n + an−1x
n−1 + · · · + a1x + a0 at x = c.

procedure Horner(c, a0, a1, a2, . . . , an: real numbers)
y := an
for i := 1 to n
y := y ∗ c + an−i

return y {y = ancn + an−1c
n−1 + · · · + a1c + a0}

a) Evaluate 3x2 + x + 1 at x = 2 by working through
each step of the algorithm showing the values assigned
at each assignment step.

b) Exactly how many multiplications and additions are
used by this algorithm to evaluate a polynomial of
degree n at x = c? (Do not count additions used to
increment the loop variable.)

15. What is the largest n for which one can solve within one
second a problem using an algorithm that requires f (n)
bit operations, where each bit operation is carried out in
10−9 seconds, with these functions f (n)?

a) log n b) n c) n log n

d) n2 e) 2n f) n!

16. What is the largest n for which one can solve within a
day using an algorithm that requires f (n) bit operations,
where each bit operation is carried out in 10−11 seconds,
with these functions f (n)?

a) log n b) 1000n c) n2

d) 1000n2 e) n3 f) 2n

g) 22n h) 22n

17. What is the largest n for which one can solve within
a minute using an algorithm that requires f (n) bit op-
erations, where each bit operation is carried out in
10−12 seconds, with these functions f (n)?

a) log log n b) log n c) (log n)2

d) 1000000n e) n2 f) 2n

g) 2n
2

18. How much time does an algorithm take to solve a prob-
lem of size n if this algorithm uses 2n2 + 2n operations,
each requiring 10−9 seconds, with these values of n?

a) 10 b) 20 c) 50 d) 100

19. How much time does an algorithm using 250 operations
need if each operation takes these amounts of time?

a) 10−6 s b) 10−9 s c) 10−12 s

20. What is the effect in the time required to solve a prob-
lem when you double the size of the input from n to 2n,
assuming that the number of milliseconds the algorithm
uses to solve the problem with input size n is each of these
function? [Express your answer in the simplest form pos-
sible, either as a ratio or a difference. Your answer may
be a function of n or a constant.]

a) log log n b) log n c) 100n

d) n log n e) n2 f) n3

g) 2n

21. What is the effect in the time required to solve a problem
when you increase the size of the input from n to n+ 1,
assuming that the number of milliseconds the algorithm
uses to solve the problem with input size n is each of these
function? [Express your answer in the simplest form pos-
sible, either as a ratio or a difference. Your answer may
be a function of n or a constant.]

a) log n b) 100n c) n2

d) n3 e) 2n f) 2n
2

g) n!
22. Determine the least number of comparisons, or best-case

performance,

a) required to find the maximum of a sequence of n in-
tegers, using Algorithm 1 of Section 3.1.

b) used to locate an element in a list of n terms with a
linear search.

c) used to locate an element in a list of n terms using a
binary search.

23. Analyze the average-case performance of the linear
search algorithm, if exactly half the time the element x is
not in the list and if x is in the list it is equally likely to
be in any position.

24. An algorithm is called optimal for the solution of a prob-
lem with respect to a specified operation if there is no
algorithm for solving this problem using fewer opera-
tions.

3.3 Complexity of Algorithms 231

a) Show that Algorithm 1 in Section 3.1 is an optimal
algorithm with respect to the number of comparisons
of integers. [Note: Comparisons used for bookkeep-
ing in the loop are not of concern here.]

b) Is the linear search algorithm optimal with respect to
the number of comparisons of integers (not including
comparisons used for bookkeeping in the loop)?

25. Describe the worst-case time complexity, measured in
terms of comparisons, of the ternary search algorithm
described in Exercise 27 of Section 3.1.

26. Describe the worst-case time complexity, measured in
terms of comparisons, of the search algorithm described
in Exercise 28 of Section 3.1.

27. Analyze the worst-case time complexity of the algorithm
you devised in Exercise 29 of Section 3.1 for locating a
mode in a list of nondecreasing integers.

28. Analyze the worst-case time complexity of the algorithm
you devised in Exercise 30 of Section 3.1 for locating all
modes in a list of nondecreasing integers.

29. Analyze the worst-case time complexity of the algorithm
you devised in Exercise 31 of Section 3.1 for finding the
first term of a sequence of integers equal to some previous
term.

30. Analyze the worst-case time complexity of the algorithm
you devised in Exercise 32 of Section 3.1 for finding all
terms of a sequence that are greater than the sum of all
previous terms.

31. Analyze the worst-case time complexity of the algorithm
you devised in Exercise 33 of Section 3.1 for finding the
first term of a sequence less than the immediately preced-
ing term.

32. Determine the worst-case complexity in terms of com-
parisons of the algorithm from Exercise 5 in Section 3.1
for determining all values that occur more than once in a
sorted list of integers.

33. Determine the worst-case complexity in terms of compar-
isons of the algorithm from Exercise 9 in Section 3.1 for
determining whether a string of n characters is a palin-
drome.

34. How many comparisons does the selection sort (see
preamble to Exercise 41 in Section 3.1) use to sort n
items? Use your answer to give a big-O estimate of the
complexity of the selection sort in terms of number of
comparisons for the selection sort.

35. Find a big-O estimate for the worst-case complexity in
terms of number of comparisons used and the number of
terms swapped by the binary insertion sort described in
the preamble to Exercise 47 in Section 3.1.

36. Show that the greedy algorithm for making change for n
cents using quarters, dimes, nickels, and pennies hasO(n)
complexity measured in terms of comparisons needed.

Exercises 37 and 38 deal with the problem of scheduling the
most talks possible given the start and end times of n talks.

37. Find the complexity of a brute-force algorithm for
scheduling the talks by examining all possible subsets
of the talks. [Hint: Use the fact that a set with n elements
has 2n subsets.]

38. Find the complexity of the greedy algorithm for schedul-
ing the most talks by adding at each step the talk with the
earliest end time compatible with those already scheduled
(Algorithm 7 in Section 3.1). Assume that the talks are
not already sorted by earliest end time and assume that
the worst-case time complexity of sorting is O(n log n).

39. Describe how the number of comparisons used in the
worst case changes when these algorithms are used to
search for an element of a list when the size of the list
doubles from n to 2n, where n is a positive integer.

a) linear search b) binary search

40. Describe how the number of comparisons used in the
worst case changes when the size of the list to be sorted
doubles from n to 2n, where n is a positive integer when
these sorting algorithms are used.

a) bubble sort b) insertion sort

c) selection sort (described in the preamble to Exer-
cise 41 in Section 3.1)

d) binary insertion sort (described in the preamble to Ex-
ercise 47 in Section 3.1)

An n× nmatrix is called upper triangular if aij = 0 when-
ever i > j .

41. From the definition of the matrix product, describe an
algorithm in English for computing the product of two
upper triangular matrices that ignores those products in
the computation that are automatically equal to zero.

42. Give a pseudocode description of the algorithm in Exer-
cise 41 for multiplying two upper triangular matrices.

43. How many multiplications of entries are used by the al-
gorithm found in Exercise 41 for multiplying two n× n
upper triangular matrices?

In Exercises 44–45 assume that the number of multiplications
of entries used to multiply a p × q matrix and a q × r matrix
is pqr.

44. What is the best order to form the product ABC if A, B,
and C are matrices with dimensions 3× 9, 9× 4, and
4× 2, respectively?

45. What is the best order to form the productABCD ifA, B,
C, andD are matrices with dimensions 30× 10, 10× 40,
40× 50, and 50× 30, respectively?.

∗46. In this exercise we deal with the problem of stringmatch-
ing.

a) Explain how to use a brute-force algorithm to find
the first occurrence of a given string of m characters,
called the target, in a string of n characters, where
m ≤ n, called the text. [Hint: Think in terms of find-
ing a match for the first character of the target and
checking successive characters for a match, and if
they do not all match, moving the start location one
character to the right.]

b) Express your algorithm in pseudocode.

c) Give a big-O estimate for the worst-case time com-
plexity of the brute-force algorithm you described.

232 3 / Algorithms

Key Terms and Results

TERMS

algorithm: a finite sequence of precise instructions for per-
forming a computation or solving a problem

searching algorithm: the problem of locating an element in a
list

linear search algorithm: a procedure for searching a list ele-
ment by element

binary search algorithm: a procedure for searching an or-
dered list by successively splitting the list in half

sorting: the reordering of the elements of a list into prescribed
order

f (x) is O(g(x)): the fact that |f (x)| ≤ C|g(x)| for all x > k
for some constants C and k

witness to the relationship f (x) is O(g(x)): a pair C and k
such that |f (x)| ≤ C|g(x)| whenever x > k

f (x) is (g(x)): the fact that |f (x)| ≥ C|g(x)| for all x > k
for some positive constants C and k

f (x) is (g(x)): the fact thatf (x) is bothO(g(x)) and (g(x))
time complexity: the amount of time required for an algorithm

to solve a problem
space complexity: the amount of space in computer memory

required for an algorithm to solve a problem
worst-case time complexity: the greatest amount of time re-

quired for an algorithm to solve a problem of a given size
average-case time complexity: the average amount of time

required for an algorithm to solve a problem of a given size
algorithmic paradigm: a general approach for constructing

algorithms based on a particular concept
brute force: the algorithmic paradigm based on constructing

algorithms for solving problems in a naive manner from the
statement of the problem and definitions

greedy algorithm: an algorithm that makes the best choice at
each step according to some specified condition

tractable problem: a problem for which there is a worst-case
polynomial-time algorithm that solves it

intractable problem: a problem for which no worst-case
polynomial-time algorithm exists for solving it

solvable problem: a problem that can be solved by an algo-
rithm

unsolvable problem: a problem that cannot be solved by an
algorithm

RESULTS

linear and binary search algorithms: (given in Section 3.1)

bubble sort: a sorting that uses passes where successive items
are interchanged if they in the wrong order

insertion sort: a sorting that at the j th step inserts the j th el-
ement into the correct position in in the list, when the first
j − 1 elements of the list are already sorted

The linear search has O(n) worst case time complexity.
The binary search has O(log n) worst case time complexity.

The bubble and insertion sorts have O(n2) worst case time
complexity.

log n! is O(n log n).

If f1(x) isO(g1(x)) and f2(x) isO(g2(x)), then (f1 + f2)(x)

is O(max(g1(x), g2(x))) and (f1f2)(x) is O((g1g2(x)).

If a0, a1, . . . , an are real numbers with an = 0, then anx
n +

an−1x
n−1 + · · · + a1x + a0 is (xn), and henceO(n) and

 (n).

Review Questions

1. a) Define the term algorithm.

b) What are the different ways to describe algorithms?

c) What is the difference between an algorithm for solv-
ing a problem and a computer program that solves this
problem?

2. a) Describe, using English, an algorithm for finding the
largest integer in a list of n integers.

b) Express this algorithm in pseudocode.

c) How many comparisons does the algorithm use?

3. a) State the definition of the fact that f (n) is O(g(n)),
where f (n) and g(n) are functions from the set of
positive integers to the set of real numbers.

b) Use the definition of the fact that f (n) is O(g(n))
directly to prove or disprove that n2 + 18n+ 107 is
O(n3).

c) Use the definition of the fact that f (n) is
O(g(n)) directly to prove or disprove that n3 is
O(n2 + 18n+ 107).

4. List these functions so that each function is big-O of
the next function in the list: (log n)3, n3/1000000,

√
n,

100n+ 101, 3n, n!, 2nn2.

5. a) How can you produce a big-O estimate for a function
that is the sum of different terms where each term is
the product of several functions?

b) Give a big-O estimate for the function f (n) =
(n! + 1)(2n + 1)+ (nn−2 + 8nn−3)(n3 + 2n). For
the function g in your estimate f (x) isO(g(x)) use a
simple function of smallest possible order.

6. a) Define what the worst-case time complexity, average-
case time complexity, and best-case time complexity
(in terms of comparisons) mean for an algorithm that
finds the smallest integer in a list of n integers.

b) What are the worst-case, average-case, and best-case
time complexities, in terms of comparisons, of the al-
gorithm that finds the smallest integer in a list of n
integers by comparing each of the integers with the
smallest integer found so far?

Supplementary Exercises 233

7. a) Describe the linear search and binary search algorithm
for finding an integer in a list of integers in increasing
order.

b) Compare the worst-case time complexities of these
two algorithms.

c) Is one of these algorithms always faster than the other
(measured in terms of comparisons)?

8. a) Describe the bubble sort algorithm.
b) Use the bubble sort algorithm to sort the list 5, 2, 4,

1, 3.
c) Give a big-O estimate for the number of comparisons

used by the bubble sort.

9. a) Describe the insertion sort algorithm.

b) Use the insertion sort algorithm to sort the list 2, 5, 1,
4, 3.

c) Give a big-O estimate for the number of comparisons
used by the insertion sort.

10. a) Explain the concept of a greedy algorithm.
b) Provide an example of a greedy algorithm that pro-

duces an optimal solution and explain why it produces
an optimal solution.

c) Provide an example of a greedy algorithm that does
not always produce an optimal solution and explain
why it fails to do so.

11. Define what it means for a problem to be tractable and
what it means for a problem to be solvable.

Supplementary Exercises

1. a) Describe an algorithm for locating the last occurrence
of the largest number in a list of integers.

b) Estimate the number of comparisons used.

2. a) Describe an algorithm for finding the first and second
largest elements in a list of integers.

b) Estimate the number of comparisons used.

3. a) Give an algorithm to determine whether a bit string
contains a pair of consecutive zeros.

b) How many comparisons does the algorithm use?

4. a) Suppose that a list contains integers that are in order
of largest to smallest and an integer can appear repeat-
edly in this list. Devise an algorithm that locates all
occurrences of an integer x in the list.

b) Estimate the number of comparisons used.

5. a) Adapt Algorithm 1 in Section 3.1 to find the maxi-
mum and the minimum of a sequence of n elements
by employing a temporary maximum and a temporary
minimum that is updated as each successive element
is examined.

b) Describe the algorithm from part (a) in pseudocode.

c) How many comparisons of elements in the sequence
are carried out by this algorithm? (Do not count com-
parisons used to determine whether the end of the se-
quence has been reached.)

6. a) Describe in detail (and in English) the steps of an al-
gorithm that finds the maximum and minimum of a
sequence of n elements by examining pairs of suc-
cessive elements, keeping track of a temporary maxi-
mum and a temporary minimum. If n is odd, both the
temporary maximum and temporary minimum should
initially equal the first term, and if n is even, the tem-
porary minimum and temporary maximum should be
found by comparing the initial two elements. The tem-
porary maximum and temporary minimum should be
updated by comparing them with the maximum and
minimum of the pair of elements being examined.

b) Express the algorithm described in part (a) in pseu-
docode.

c) How many comparisons of elements of the sequence
are carried out by this algorithm? (Do not count com-
parisons used to determine whether the end of the se-
quence has been reached.) How does this compare to
the number of comparisons used by the algorithm in
Exercise 5?

∗7. Show that the worst-case complexity in terms of compar-
isons of an algorithm that finds the maximum and mini-
mum of n elements is at least 3n/2 − 2.

8. Devise an efficient algorithm for finding the second
largest element in a sequence of n elements and deter-
mine the worst-case complexity of your algorithm.

9. Devise an algorithm that finds all equal pairs of sums of
two terms of a sequence of n numbers, and determine the
worst-case complexity of your algorithm.

10. Devise an algorithm that finds the closest pair of integers
in a sequence of n integers, and determine the worst-case
complexity of your algorithm. [Hint: Sort the sequence.
Use the fact that sorting can be done with worst-case time
complexity O(n log n).]

The shaker sort (or bidirectional bubble sort) successively
compares pairs of adjacent elements, exchanging them if they
are out of order, and alternately passing through the list from
the beginning to the end and then from the end to the beginning
until no exchanges are needed.

11. Show the steps used by the shaker sort to sort the list 3,
5, 1, 4, 6, 2.

12. Express the shaker sort in pseudocode.

13. Show that the shaker sort hasO(n2) complexity measured
in terms of the number of comparisons it uses.

14. Explain why the shaker sort is efficient for sorting lists
that are already in close to the correct order.

15. Show that (n log n+ n2)3 is O(n6).

16. Show that 8x3 + 12x + 100 log x is O(x3).

17. Give a big-O estimate for (x2 + x(log x)3) · (2x + x3).

18. Find a big-O estimate for
�n
j=1 j (j + 1).

∗19. Show that n! is not O(2n).

∗20. Show that nn is not O(n!).

234 3 / Algorithms

21. Find all pairs of functions of the same order in this
list of functions: n2 + (log n)2, n2 + n, n2 + log 2n + 1,
(n+ 1)3 − (n− 1)3, and (n+ log n)2.

22. Find all pairs of functions of the same order in this list of
functionsn2 + 2n,n2 + 2100,n2 + 22n,n2 + n!,n2 + 3n,
and (n2 + 1)2.

23. Find an integer n with n > 2 for which n2100
< 2n.

24. Find an integer nwith n > 2 for which (log n)2
100
<
√
n.

∗25. Arrange the functions nn, (log n)2, n1.0001, (1.0001)n,

2
√

log2 n, and n(log n)1001 in a list so that each function
is big-O of the next function. [Hint: To determine the
relative size of some of these functions, take logarithms.]

∗26. Arrange the function 2100n, 2n
2
, 2n!, 22n , nlog n,

n log n log log n, n3/2, n(log n)3/2, and n4/3(log n)2 in a
list so that each function is big-O of the next function.
[Hint: To determine the relative size of some of these
functions, take logarithms.]

∗27. Give an example of two increasing functions f (n) and
g(n) from the set of positive integers to the set of posi-
tive integers such that neither f (n) is O(g(n)) nor g(n)
is O(f (n)).

28. Show that if the denominations of coins are c0, c1, . . . , ck ,
where k is a positive integer and c is a positive integer,
c > 1, the greedy algorithm always produces change us-
ing the fewest coins possible.

29. a) Use pseudocode to specify a brute-force algorithm that
determines when given as input a sequence of n pos-
itive integers whether there are two distinct terms of
the sequence that have as sum a third term. The algo-
rithm should loop through all triples of terms of the
sequence, checking whether the sum of the first two
terms equals the third.

b) Give a big-O estimate for the complexity of the brute-
force algorithm from part (a).

30. a) Devise a more efficient algorithm for solving the prob-
lem described in Exercise 29 that first sorts the in-
put sequence and then checks for each pair of terms
whether their difference is in the sequence.

b) Give a big-O estimate for the complexity of this al-
gorithm. Is it more efficient than the brute-force algo-
rithm from Exercise 29?

Suppose we have s men and s women each with their prefer-
ence lists for the members of the opposite gender, as described
in the preamble to Exercise 60 in Section 3.1. We say that a
woman w is a valid partner for a manm if there is some sta-
ble matching in which they are paired. Similarly, a manm is a
valid partner for a woman w if there is some stable matching
in which they are paired. A matching in which each man is as-
signed his valid partner ranking highest on his preference list
is called male optimal, and a matching in which each woman
is assigned her valid partner ranking lowest on her preference
list is called female pessimal.

31. Find all valid partners for each man and each woman if
there are three menm1,m2, andm3 and three women w1,
w2, w3 with these preference rankings of the men for the
women, from highest to lowest: m1: w3, w1, w2; m2: w3,
w2, w1; m3: w2, w3, w1; and with these preference rank-
ings of the women for the men, from highest to lowest:
w1: m3, m2, m1; w2: m1, m3, m2; w3: m3, m2, m1.

∗32. Show that the deferred acceptance algorithm given in the
preamble to Exercise 61 of Section 3.1, always produces
a male optimal and female pessimal matching.

33. Define what it means for a matching to be female optimal
and for a matching to be male pessimal.

∗34. Show that when woman do the proposing in the deferred
acceptance algorithm, the matching produced is female
optimal and male pessimal.

In Exercises 35 and 36 we consider variations on the problem
of finding stable matchings of men and women described in
the preamble to Exercise 61 in Section 3.1.

∗35. In this exercise we consider matching problems where
there may be different numbers of men and women, so
that it is impossible to match everyone with a member of
the opposite gender.

a) Extend the definition of a stable matching from that
given in the preamble to Exercise 60 in Section 3.1
to cover the case where there are unequal numbers of
men and women. Avoid all cases where a man and a
woman would prefer each other to their current sit-
uation, including those involving unmatched people.
(Assume that an unmatched person prefers a match
with a member of the opposite gender to remaining
unmatched.)

b) Adapt the deferred acceptance algorithm to find sta-
ble matchings, using the definition of stable matchings
from part (a), when there are different numbers of men
and women.

c) Prove that all matchings produced by the algorithm
from part (b) are stable, according to the definition
from part (a).

∗36. In this exercise we consider matching problems where
some man-woman pairs are not allowed.

a) Extend the definition of a stable matching to cover
the situation where there are the same number of men
and women, but certain pairs of men and women are
forbidden. Avoid all cases where a man and a woman
would prefer each other to their current situation, in-
cluding those involving unmatched people.

b) Adapt the deferred acceptance algorithm to find stable
matchings when there are the same number of men
and women, but certain man-woman pairs are forbid-
den. Be sure to consider people who are unmatched at
the end of the algorithm. (Assume that an unmatched
person prefers a match with a member of the opposite
gender who is not a forbidden partner to remaining
unmatched.)

c) Prove that all matchings produced by the algorithm
from (b) are stable, according to the definition in part
(a).

Computer Projects 235

Exercises 37–40 deal with the problem of scheduling n jobs on
a single processor. To complete job j , the processor must run
job j for time tj without interruption. Each job has a dead-
line dj . If we start job j at time sj , it will be completed at
time ej = sj + tj . The lateness of the job measures how long
it finishes after its deadline, that is, the lateness of job j is
max(0, ej − dj). We wish to devise a greedy algorithm that
minimizes the maximum lateness of a job among the n jobs.

37. Suppose we have five jobs with specified required times
and deadlines: t1 = 25, d1 = 50; t2 = 15, d2 = 60; t3 =
20, d3 = 60; t4 = 5, d4 = 55; t5 = 10, d5 = 75. Find the
maximum lateness of any job when the jobs are scheduled
in this order (and they start at time 0): Job 3, Job 1, Job 4,
Job 2, Job 5. Answer the same question for the schedule
Job 5, Job 4, Job 3, Job 1, Job 2.

38. The slackness of a job requiring time t and with deadline
d is d − t , the difference between its deadline and the
time it requires. Find an example that shows that schedul-
ing jobs by increasing slackness does not always yield a
schedule with the smallest possible maximum lateness.

39. Find an example that shows that scheduling jobs in or-
der of increasing time required does not always yield a
schedule with the smallest possible maximum lateness.

∗40. Prove that scheduling jobs in order of increasing deadlines
always produces a schedule that minimizes the maximum
lateness of a job. [Hint: First show that for a schedule to
be optimal, jobs must be scheduled with no idle time be-
tween them and so that no job is scheduled before another
with an earlier deadline.]

41. Suppose that we have a knapsack with total capacity of
W kg. We also have n items where item j has mass wj .
The knapsack problem asks for a subset of these n items
with the largest possible total mass not exceedingW .

a) Devise a brute-force algorithm for solving the knap-
sack problem.

b) Solve the knapsack problem when the capacity of the
knapsack is 18 kg and there are five items: a 5-kg

sleeping bag, an 8-kg tent, a 7-kg food pack, a 4-kg
container of water, and an 11-kg portable stove.

In Exercises 42–46 we will study the problem of load balanc-
ing. The input to the problem is a collection of p processors
and n jobs, tj is the time required to run job j , jobs run without
interruption on a single machine until finished, and a proces-
sor can run only one job at a time. The load Lk of processor
k is the sum over all jobs assigned to processor k of the times
required to run these jobs. The makespan is the maximum
load over all the p processors. The load balancing problem
asks for an assignment of jobs to processors to minimize the
makespan.

42. Suppose we have three processors and five jobs requiring
times t1 = 3, t2 = 5, t3 = 4, t4 = 7, and t5 = 8. Solve
the load balancing problem for this input by finding the
assignment of the five jobs to the three processors that
minimizes the makespan.

43. Suppose that L∗ is the minimum makespan when p pro-
cessors are given n jobs, where tj is the time required to
run job j .

a) Show that L∗ ≥ maxj=1,2,...,n tj .

b) Show that L∗ ≥ 1
p

�n
j=1 tj .

44. Write out in pseudocode the greedy algorithm that goes
through the jobs in order and assigns each job to the pro-
cessor with the smallest load at that point in the algorithm.

45. Run the algorithm from Exercise 44 on the input given in
Exercise 42.

An approximation algorithm for an optimization problem
produces a solution guaranteed to be close to an optimal so-
lution. More precisely, suppose that the optimization problem
asks for an input S that minimizes F(X) where F is some
function of the input X. If an algorithm always finds an input
T withF(T) ≤ cF (S)where c is a fixed positive real number,
the algorithm is called a c-approximation algorithm for the
problem.

∗46. Prove that the algorithm from Exercise 44 is a 2-
approximation algorithm for the load balancing problem.
[Hint: Use both parts of Exercise 43.]

Computer Projects

Write programs with these inputs and outputs.

1. Given a list of n integers, find the largest integer in the
list.

2. Given a list ofn integers, find the first and last occurrences
of the largest integer in the list.

3. Given a list of n distinct integers, determine the position
of an integer in the list using a linear search.

4. Given an ordered list of n distinct integers, determine the
position of an integer in the list using a binary search.

5. Given a list of n integers, sort them using a bubble sort.

6. Given a list of n integers, sort them using an insertion
sort.

7. Given an integer n, use the greedy algorithm to find the
change for n cents using quarters, dimes, nickels, and
pennies.

8. Given the starting and ending times of n talks, use the
appropriate greedy algorithm to schedule the most talks
possible in a single lecture hall.

236 3 / Algorithms

9. Given an ordered list of n integers and an integer x in the
list, find the number of comparisons used to determine
the position of x in the list using a linear search and using
a binary search.

10. Given a list of integers, determine the number of compar-
isons used by the bubble sort and by the insertion sort to
sort this list.

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. We know that nb is O(dn) when b and d are positive
numbers with d ≥ 2. Give values of the constants C and
k such that nb ≤ Cdn whenever x > k for each of these
sets of values: b = 10, d = 2; b = 20, d = 3; b = 1000,
d = 7.

2. Compute the change for different values of n with coins
of different denominations using the greedy algorithm

and determine whether the smallest number of coins was
used. Can you find conditions so that the greedy algorithm
is guaranteed to use the fewest coins possible?

3. Using a generator of random orderings of the integers
1, 2, . . . , n, find the number of comparisons used by
the bubble sort, insertion sort, binary insertion sort, and
selection sort to sort these integers.

Writing Projects

Respond to these with essays using outside sources.

1. Examine the history of the word algorithm and describe
the use of this word in early writings.

2. Look up Bachmann’s original introduction of big-O no-
tation. Explain how he and others have used this notation.

3. Explain how sorting algorithms can be classified into a
taxonomy based on the underlying principle on which
they are based.

4. Describe the radix sort algorithm.

5. Describe the historic trends in how quickly processors can
perform operations and use these trends to estimate how
quickly processors will be able to perform operations in
the next twenty years.

6. Develop a detailed list of algorithmic paradigms and pro-
vide examples using each of these paradigms.

7. Explain what the TuringAward is and describe the criteria
used to select winners. List six past winners of the award
and why they received the award.

8. Describe what is meant by a parallel algorithm. Explain
how the pseudocode used in this book can be extended to
handle parallel algorithms.

9. Explain how the complexity of parallel algorithms can be
measured. Give some examples to illustrate this concept,
showing how a parallel algorithm can work more quickly
than one that does not operate in parallel.

10. Describe six different NP-complete problems.

11. Demonstrate how one of the many different NP-complete
problems can be reduced to the satisfiability problem.

4
C H A P T E R

Number Theory and Cryptography

4.1 Divisibility and
Modular
Arithmetic

4.2 Integer Repre-
sentations and
Algorithms

4.3 Primes and
Greatest
Common
Divisors

4.4 Solving
Congruences

4.5 Applications of
Congruences

4.6 Cryptography

The part of mathematics devoted to the study of the set of integers and their properties is
known as number theory. In this chapter we will develop some of the important concepts

of number theory including many of those used in computer science. As we develop number
theory, we will use the proof methods developed in Chapter 1 to prove many theorems.

We will first introduce the notion of divisibility of integers, which we use to introduce
modular, or clock, arithmetic. Modular arithmetic operates with the remainders of integers
when they are divided by a fixed positive integer, called the modulus. We will prove many
important results about modular arithmetic which we will use extensively in this chapter.

Integers can be represented with any positive integer b greater than 1 as a base. In this
chapter we discuss base b representations of integers and give an algorithm for finding them.
In particular, we will discuss binary, octal, and hexadecimal (base 2, 8, and 16) representations.
We will describe algorithms for carrying out arithmetic using these representations and study
their complexity. These algorithms were the first procedures called algorithms.

We will discuss prime numbers, the positive integers that have only 1 and themselves
as positive divisors. We will prove that there are infinitely many primes; the proof we give is
considered to be one of the most beautiful proofs in mathematics.We will discuss the distribution
of primes and many famous open questions concerning primes. We will introduce the concept of
greatest common divisors and study the Euclidean algorithm for computing them. This algorithm
was first described thousands of years ago. We will introduce the fundamental theorem of
arithmetic, a key result which tells us that every positive integer has a unique factorization into
primes.

We will explain how to solve linear congruences, as well as systems of linear congruences,
which we solve using the famous Chinese remainder theorem. We will introduce the notion of
pseudoprimes, which are composite integers masquerading as primes, and show how this notion
can help us rapidly generate prime numbers.

This chapter introduces several important applications of number theory. In particular, we
will use number theory to generate pseudorandom numbers, to assign memory locations to
computer files, and to find check digits used to detect errors in various kinds of identification
numbers. We also introduce the subject of cryptography. Number theory plays an essentially
role both in classical cryptography, first used thousands of years ago, and modern cryptography,
which plays an essential role in electronic communication. We will show how the ideas we
develop can be used in cryptographical protocols, introducing protocols for sharing keys and for
sending signed messages. Number theory, once considered the purest of subjects, has become
an essential tool in providing computer and Internet security.

4.1 Divisibility and Modular Arithmetic

Introduction

The ideas that we will develop in this section are based on the notion of divisibility. Division of an
integer by a positive integer produces a quotient and a remainder. Working with these remainders
leads to modular arithmetic, which plays an important role in mathematics and which is used
throughout computer science.We will discuss some important applications of modular arithmetic

237

238 4 / Number Theory and Cryptography

later in this chapter, including generating pseudorandom numbers, assigning computer memory
locations to files, constructing check digits, and encrypting messages.

Division

When one integer is divided by a second nonzero integer, the quotient may or may not be
an integer. For example, 12/3 = 4 is an integer, whereas 11/4 = 2.75 is not. This leads to
Definition 1.

DEFINITION 1 If a and b are integers with a = 0, we say that a divides b if there is an integer c such that
b = ac, or equivalently, if b

a
is an integer. When a divides bwe say that a is a factor or divisor

of b, and that b is a multiple of a. The notation a | b denotes that a divides b. We write a | b
when a does not divide b.

Remark: We can express a | b using quantifiers as ∃c(ac = b), where the universe of discourse
is the set of integers.

In Figure 1 a number line indicates which integers are divisible by the positive integer d.

EXAMPLE 1 Determine whether 3 | 7 and whether 3 | 12.

Solution: We see that 3 | 7, because 7/3 is not an integer. On the other hand, 3 | 12 because
12/3 = 4. ▲

EXAMPLE 2 Let n and d be positive integers. How many positive integers not exceeding n are divisible by d?

Solution: The positive integers divisible by d are all the integers of the form dk, where k is
a positive integer. Hence, the number of positive integers divisible by d that do not exceed n
equals the number of integers k with 0 < dk ≤ n, or with 0 < k ≤ n/d. Therefore, there are
 n/d positive integers not exceeding n that are divisible by d. ▲

Some of the basic properties of divisibility of integers are given in Theorem 1.

THEOREM 1 Let a, b, and c be integers, where a = 0. Then

(i) if a | b and a | c, then a | (b + c);
(ii) if a | b, then a | bc for all integers c;
(iii) if a | b and b | c, then a | c.

Proof: We will give a direct proof of (i). Suppose that a | b and a | c. Then, from the definition
of divisibility, it follows that there are integers s and t with b = as and c = at . Hence,

b + c = as + at = a(s + t).

–3d –2d –d 0 d 2d 3d

FIGURE 1 Integers Divisible by the Positive Integer d.

4.1 Divisibility and Modular Arithmetic 239

Therefore, a divides b + c. This establishes part (i) of the theorem. The proofs of parts (ii) and
(iii) are left as Exercises 3 and 4.

Theorem 1 has this useful consequence.

COROLLARY 1 If a, b, and c are integers, where a = 0, such that a | b and a | c, then a | mb + nc whenever
m and n are integers.

Proof: We will give a direct proof. By part (ii) of Theorem 1 we see that a | mb and a | nc
whenever m and n are integers. By part (i) of Theorem 1 it follows that a | mb + nc.

The Division Algorithm

When an integer is divided by a positive integer, there is a quotient and a remainder, as the
division algorithm shows.

THEOREM 2 THE DIVISIONALGORITHM Let a be an integer and d a positive integer. Then there
are unique integers q and r , with 0 ≤ r < d , such that a = dq + r .

We defer the proof of the division algorithm to Section 5.2. (See Example 5 and
Exercise 37.)

Remark: Theorem 2 is not really an algorithm. (Why not?) Nevertheless, we use its traditional
name.

DEFINITION 2 In the equality given in the division algorithm, d is called the divisor, a is called the dividend,
q is called the quotient, and r is called the remainder. This notation is used to express the
quotient and remainder:

q = a div d, r = a mod d.

Remark: Note that both a div d and a mod d for a fixed d are functions on the set of inte-
gers. Furthermore, when a is an integer and d is a positive integer, we have a div d = a/d
and a mod d = a − d. (See exercise 18.)

Examples 3 and 4 illustrate the division algorithm.

EXAMPLE 3 What are the quotient and remainder when 101 is divided by 11?

Solution:We have

101 = 11 · 9 + 2.

Hence, the quotient when 101 is divided by 11 is 9 = 101 div 11, and the remainder is
2 = 101 mod 11. ▲

240 4 / Number Theory and Cryptography

EXAMPLE 4 What are the quotient and remainder when −11 is divided by 3?

Solution:We have

−11 = 3(−4)+ 1.

Hence, the quotient when −11 is divided by 3 is −4 = −11 div 3, and the remainder is
1 = −11mod 3.

Note that the remainder cannot be negative. Consequently, the remainder is not −2, even
though

−11 = 3(−3)− 2,

because r = −2 does not satisfy 0 ≤ r < 3. ▲

Note that the integer a is divisible by the integer d if and only if the remainder is zero
when a is divided by d .

Remark: A programming language may have one, or possibly two, operators for modular arith-
metic, denoted by mod (in BASIC, Maple, Mathematica, EXCEL, and SQL), % (in C, C++, Java,
and Python), rem (in Ada and Lisp), or something else. Be careful when using them, because
for a < 0, some of these operators return a −m a/m instead of amodm = a −m a/m (as
shown in Exercise 18). Also, unlike a modm, some of these operators are defined whenm < 0,
and even when m = 0.

Modular Arithmetic

In some situations we care only about the remainder of an integer when it is divided by some
specified positive integer. For instance, when we ask what time it will be (on a 24-hour clock) 50
hours from now, we care only about the remainder when 50 plus the current hour is divided by 24.
Because we are often interested only in remainders, we have special notations for them. We have
already introduced the notation amodm to represent the remainder when an integer a is divided
by the positive integer m. We now introduce a different, but related, notation that indicates that
two integers have the same remainder when they are divided by the positive integer m.

DEFINITION 3 If a and b are integers and m is a positive integer, then a is congruent to b modulo m if
m divides a − b. We use the notation a ≡ b (mod m) to indicate that a is congruent to
b modulo m. We say that a ≡ b (mod m) is a congruence and that m is its modulus (plural
moduli). If a and b are not congruent modulo m, we write a ≡ b (mod m).

Although both notations a ≡ b (mod m) and a mod m = b include “mod,” they represent
fundamentally different concepts. The first represents a relation on the set of integers, whereas
the second represents a function. However, the relation a ≡ b (modm) and themodm function
are closely related, as described in Theorem 3.

4.1 Divisibility and Modular Arithmetic 241

THEOREM 3 Let a and b be integers, and let m be a positive integer. Then a ≡ b (mod m) if and only
if a mod m = b mod m.

The proof of Theorem 3 is left as Exercises 15 and 16. Recall that a mod m and b mod m are
the remainders when a and b are divided bym, respectively. Consequently, Theorem 3 also says
that a ≡ b (mod m) if and only if a and b have the same remainder when divided by m.

EXAMPLE 5 Determine whether 17 is congruent to 5 modulo 6 and whether 24 and 14 are congruent modulo 6.

Solution: Because 6 divides 17 − 5 = 12, we see that 17 ≡ 5 (mod 6). However, because
24 − 14 = 10 is not divisible by 6, we see that 24 ≡ 14 (mod 6). ▲

The great German mathematician Karl Friedrich Gauss developed the concept of congru-
ences at the end of the eighteenth century. The notion of congruences has played an important
role in the development of number theory.

Theorem 4 provides a useful way to work with congruences.

THEOREM 4 Letm be a positive integer. The integers a and b are congruent modulom if and only if there
is an integer k such that a = b + km.

Proof: If a ≡ b (mod m), by the definition of congruence (Definition 3), we know that
m | (a − b). This means that there is an integer k such that a − b = km, so that a = b + km.
Conversely, if there is an integer k such that a = b + km, then km = a − b. Hence, m divides
a − b, so that a ≡ b (mod m).

The set of all integers congruent to an integer a modulo m is called the congruence class
of a modulom. In Chapter 9 we will show that there arem pairwise disjoint equivalence classes
modulo m and that the union of these equivalence classes is the set of integers.

Theorem 5 shows that additions and multiplications preserve congruences.

KARL FRIEDRICH GAUSS (1777–1855) Karl Friedrich Gauss, the son of a bricklayer, was a child prodigy.
He demonstrated his potential at the age of 10, when he quickly solved a problem assigned by a teacher to keep
the class busy. The teacher asked the students to find the sum of the first 100 positive integers. Gauss realized
that this sum could be found by forming 50 pairs, each with the sum 101: 1 + 100, 2 + 99, . . . , 50 + 51.
This brilliance attracted the sponsorship of patrons, including Duke Ferdinand of Brunswick, who made it
possible for Gauss to attend Caroline College and the University of Göttingen. While a student, he invented
the method of least squares, which is used to estimate the most likely value of a variable from experimental
results. In 1796 Gauss made a fundamental discovery in geometry, advancing a subject that had not advanced
since ancient times. He showed that a 17-sided regular polygon could be drawn using just a ruler and compass.

In 1799 Gauss presented the first rigorous proof of the fundamental theorem of algebra, which states that a polynomial of
degree n has exactly n roots (counting multiplicities). Gauss achieved worldwide fame when he successfully calculated the orbit of
the first asteroid discovered, Ceres, using scanty data.

Gauss was called the Prince of Mathematics by his contemporary mathematicians. Although Gauss is noted for his many
discoveries in geometry, algebra, analysis, astronomy, and physics, he had a special interest in number theory, which can be seen
from his statement “Mathematics is the queen of the sciences, and the theory of numbers is the queen of mathematics.” Gauss laid
the foundations for modern number theory with the publication of his book Disquisitiones Arithmeticae in 1801.

242 4 / Number Theory and Cryptography

THEOREM 5 Let m be a positive integer. If a ≡ b (mod m) and c ≡ d (mod m), then

a + c ≡ b + d (mod m) and ac ≡ bd (mod m).

Proof: We use a direct proof. Because a ≡ b (modm) and c ≡ d (modm), by Theorem 4 there
are integers s and t with b = a + sm and d = c + tm. Hence,

b + d = (a + sm)+ (c + tm) = (a + c)+m(s + t)

and

bd = (a + sm)(c + tm) = ac +m(at + cs + stm).

Hence,

a + c ≡ b + d (mod m) and ac ≡ bd (mod m).

EXAMPLE 6 Because 7 ≡ 2 (mod 5) and 11 ≡ 1 (mod 5), it follows from Theorem 5 that

18 = 7 + 11 ≡ 2 + 1 = 3 (mod 5)

and that

77 = 7 · 11 ≡ 2 · 1 = 2 (mod 5). ▲

You cannot always
divide both sides
of a congruence
by the same number!

We must be careful working with congruences. Some properties we may expect to be true
are not valid. For example, if ac ≡ bc (mod m), the congruence a ≡ b (mod m) may be false.
Similarly, if a ≡ b (mod m) and c ≡ d (mod m), the congruence ac ≡ bd (mod m) may be
false. (See Exercise 37.)

Corollary 2 shows how to find the values of themod m function at the sum and product of
two integers using the values of this function at each of these integers. We will use this result in
Section 5.4.

COROLLARY 2 Let m be a positive integer and let a and b be integers. Then

(a + b)modm = ((amodm)+ (bmodm))modm

and

abmodm = ((amodm)(bmodm))modm.

Proof: By the definitions of modm and of congruence modulo m, we know that a ≡
(a modm) (modm) and b ≡ (bmodm) (modm). Hence, Theorem 5 tells us that

a + b ≡ (amodm)+ (bmodm) (modm)

and

ab ≡ (amodm)(bmodm) (modm).

The equalities in this corollary follow from these last two congruences by Theorem 3.

4.1 Divisibility and Modular Arithmetic 243

Arithmetic Modulo m

We can define arithmetic operations on Zm, the set of nonnegative integers less than m, that is,
the set {0, 1, . . . , m− 1}. In particular, we define addition of these integers, denoted by +m by

a +m b = (a + b)modm,

where the addition on the right-hand side of this equation is the ordinary addition of integers,
and we define multiplication of these integers, denoted by ·m by

a ·m b = (a · b)modm,

where the multiplication on the right-hand side of this equation is the ordinary multiplication of
integers. The operations +m and ·m are called addition and multiplication modulo m and when
we use these operations, we are said to be doing arithmetic modulo m.

EXAMPLE 7 Use the definition of addition and multiplication in Zm to find 7 +11 9 and 7 ·11 9.

Solution: Using the definition of addition modulo 11, we find that

7 +11 9 = (7 + 9) mod 11 = 16 mod 11 = 5,

and

7 ·11 9 = (7 · 9)mod 11 = 63 mod 11 = 8.

Hence 7 +11 9 = 5 and 7 ·11 9 = 8. ▲

The operations +m and ·m satisfy many of the same properties of ordinary addition and
multiplication of integers. In particular, they satisfy these properties:

Closure If a and b belong to Zm, then a +m b and a ·m b belong to Zm.

Associativity If a, b, and c belong to Zm, then (a +m b)+m c = a +m (b +m c) and
(a ·m b) ·m c = a ·m (b ·m c).
Commutativity If a and b belong to Zm, then a +m b = b +m a and a ·m b = b ·m a.
Identity elements The elements 0 and 1 are identity elements for addition and multiplication
modulo m, respectively. That is, if a belongs to Zm, then a +m 0 = 0 +m a = a and a ·m 1 =
1 ·m a = a.
Additive inverses If a = 0 belongs to Zm, thenm− a is an additive inverse of a modulom and
0 is its own additive inverse. That is a +m (m− a) = 0 and 0 +m 0 = 0.

Distributivity If a, b, and c belong to Zm, then a ·m (b +m c) = (a ·m b)+m (a ·m c) and
(a +m b) ·m c = (a ·m c)+m (b ·m c).
These properties follow from the properties we have developed for congruences and remainders
modulo m, together with the properties of integers; we leave their proofs as Exercises 42–44.
Note that we have listed the property that every element of Zm has an additive inverse, but no
analogous property for multiplicative inverses has been included. This is because multiplicative
inverses do not always exists modulo m. For instance, there is no multiplicative inverse of 2
modulo 6, as the reader can verify. We will return to the question of when an integer has a
multiplicative inverse modulo m later in this chapter.

244 4 / Number Theory and Cryptography

Remark: Because Zm with the operations of addition and multiplication modulo m satisfies
the properties listed, Zm with modular addition is said to be a commutative group and Zm
with both of these operations is said to be a commutative ring. Note that the set of integers
with ordinary addition and multiplication also forms a commutative ring. Groups and rings are
studied in courses that cover abstract algebra.

Remark: In Exercise 30, and in later sections, we will use the notations + and · for +m and ·m
without the subscript m on the symbol for the operator whenever we work with Zm.

Exercises

1. Does 17 divide each of these numbers?

a) 68 b) 84 c) 357 d) 1001

2. Prove that if a is an integer other than 0, then
a) 1 divides a. b) a divides 0.

3. Prove that part (ii) of Theorem 1 is true.

4. Prove that part (iii) of Theorem 1 is true.

5. Show that if a | b and b | a, where a and b are integers,
then a = b or a = −b.

6. Show that if a, b, c, and d are integers, where a = 0, such
that a | c and b | d, then ab | cd.

7. Show that if a, b, and c are integers, where a = 0 and
c = 0, such that ac | bc, then a | b.

8. Prove or disprove that if a | bc, where a, b, and c are pos-
itive integers and a = 0, then a | b or a | c.

9. What are the quotient and remainder when

a) 19 is divided by 7?
b) −111 is divided by 11?
c) 789 is divided by 23?
d) 1001 is divided by 13?
e) 0 is divided by 19?
f) 3 is divided by 5?
g) −1 is divided by 3?
h) 4 is divided by 1?

10. What are the quotient and remainder when

a) 44 is divided by 8?
b) 777 is divided by 21?
c) −123 is divided by 19?
d) −1 is divided by 23?
e) −2002 is divided by 87?
f) 0 is divided by 17?
g) 1,234,567 is divided by 1001?
h) −100 is divided by 101?

11. What time does a 12-hour clock read

a) 80 hours after it reads 11:00?
b) 40 hours before it reads 12:00?
c) 100 hours after it reads 6:00?

12. What time does a 24-hour clock read

a) 100 hours after it reads 2:00?
b) 45 hours before it reads 12:00?
c) 168 hours after it reads 19:00?

13. Suppose that a and b are integers, a ≡ 4 (mod 13), and
b ≡ 9 (mod 13). Find the integer cwith 0 ≤ c ≤ 12 such
that

a) c ≡ 9a (mod 13).
b) c ≡ 11b (mod 13).
c) c ≡ a + b (mod 13).
d) c ≡ 2a + 3b (mod 13).
e) c ≡ a2 + b2 (mod 13).
f) c ≡ a3 − b3 (mod 13).

14. Suppose that a and b are integers, a ≡ 11 (mod 19), and
b ≡ 3 (mod 19). Find the integer cwith 0 ≤ c ≤ 18 such
that

a) c ≡ 13a (mod 19).
b) c ≡ 8b (mod 19).
c) c ≡ a − b (mod 19).
d) c ≡ 7a + 3b (mod 19).
e) c ≡ 2a2 + 3b2 (mod 19).
f) c ≡ a3 + 4b3 (mod 19).

15. Let m be a positive integer. Show that a ≡ b (mod m) if
a mod m = b mod m.

16. Let m be a positive integer. Show that a mod m =
b mod m if a ≡ b (mod m).

17. Show that if n and k are positive integers, then n/k =
 (n− 1)/k + 1.

18. Show that if a is an integer and d is an inte-
ger greater than 1, then the quotient and remain-
der obtained when a is divided by d are a/d and
a − d a/d , respectively.

19. Find a formula for the integer with smallest absolute value
that is congruent to an integer a modulo m, where m is a
positive integer.

20. Evaluate these quantities.

a) −17 mod 2 b) 144 mod 7
c) −101 mod 13 d) 199 mod 19

21. Evaluate these quantities.

a) 13 mod 3 b) −97 mod 11
c) 155 mod 19 d) −221 mod 23

22. Find a div m and a mod m when

a) a = −111, m = 99.
b) a = −9999, m = 101.
c) a = 10299, m = 999.
d) a = 123456, m = 1001.

4.2 Integer Representations and Algorithms 245

23. Find a div m and a mod m when

a) a = 228, m = 119.
b) a = 9009, m = 223.
c) a = −10101, m = 333.
d) a = −765432, m = 38271.

24. Find the integer a such that

a) a ≡ 43 (mod 23) and −22 ≤ a ≤ 0.
b) a ≡ 17 (mod 29) and −14 ≤ a ≤ 14.
c) a ≡ −11 (mod 21) and 90 ≤ a ≤ 110.

25. Find the integer a such that

a) a ≡ −15 (mod 27) and −26 ≤ a ≤ 0.
b) a ≡ 24 (mod 31) and −15 ≤ a ≤ 15.
c) a ≡ 99 (mod 41) and 100 ≤ a ≤ 140.

26. List five integers that are congruent to 4 modulo 12.

27. List all integers between−100 and 100 that are congruent
to −1 modulo 25.

28. Decide whether each of these integers is congruent to
3 modulo 7.

a) 37 b) 66
c) −17 d) −67

29. Decide whether each of these integers is congruent to
5 modulo 17.

a) 80 b) 103
c) −29 d) −122

30. Find each of these values.

a) (177mod 31 + 270mod 31)mod 31
b) (177mod 31 · 270mod 31)mod 31

31. Find each of these values.

a) (−133mod 23 + 261mod 23)mod 23
b) (457mod 23 · 182mod 23)mod 23

32. Find each of these values.

a) (192mod 41)mod 9
b) (323mod 13)2mod 11
c) (73mod 23)2mod 31
d) (212mod 15)3mod 22

33. Find each of these values.

a) (992mod 32)3mod 15
b) (34mod 17)2mod 11
c) (193mod 23)2mod 31
d) (893mod 79)4mod 26

34. Show that if a ≡ b (mod m) and c ≡ d (mod m), where
a, b, c, d, and m are integers with m ≥ 2, then a − c ≡
b − d (mod m).

35. Show that if n | m, where n and m are integers greater
than 1, and if a ≡ b (modm), where a and b are integers,
then a ≡ b (mod n).

36. Show that if a, b, c, and m are integers such that m ≥ 2,
c > 0, and a ≡ b (mod m), then ac ≡ bc (mod mc).

37. Find counterexamples to each of these statements about
congruences.

a) If ac ≡ bc (modm), where a, b, c, andm are integers
with m ≥ 2, then a ≡ b (mod m).

b) If a ≡ b (mod m) and c ≡ d (mod m), where
a, b, c, d, and m are integers with c and d positive
and m ≥ 2, then ac ≡ bd (mod m).

38. Show that if n is an integer then n2 ≡ 0 or 1 (mod 4).

39. Use Exercise 38 to show that if m is a positive integer of
the form 4k + 3 for some nonnegative integer k, then m
is not the sum of the squares of two integers.

40. Prove that if n is an odd positive integer, then n2 ≡
1 (mod 8).

41. Show that if a, b, k, and m are integers such that k ≥ 1,
m ≥ 2, and a ≡ b (modm), then ak ≡ bk(mod m).

42. Show that Zm with addition modulo m, where m ≥ 2 is
an integer, satisfies the closure, associative, and commu-
tative properties, 0 is an additive identity, and for every
nonzero a ∈ Zm, m− a is an inverse of a modulo m.

43. Show that Zm with multiplication modulo m, where
m ≥ 2 is an integer, satisfies the closure, associative, and
commutativity properties, and 1 is a multiplicative iden-
tity.

44. Show that the distributive property of multiplication over
addition holds for Zm, where m ≥ 2 is an integer.

45. Write out the addition and multiplication tables for Z5
(where by addition and multiplication we mean +5
and ·5).

46. Write out the addition and multiplication tables for Z6
(where by addition and multiplication we mean +6
and ·6).

47. Determine whether each of the functions f (a) = a div d
and g(a) = a mod d, where d is a fixed positive integer,
from the set of integers to the set of integers, is one-to-one,
and determine whether each of these functions is onto.

4.2 Integer Representations and Algorithms

Introduction

Integers can be expressed using any integer greater than one as a base, as we will show in
this section. Although we commonly use decimal (base 10), representations, binary (base 2),
octal (base 8), and hexadecimal (base 16) representations are often used, especially in computer
science. Given a base b and an integer n, we will show how to construct the base b representation
of this integer. We will also explain how to quickly covert between binary and octal and between
binary and hexadecimal notations.

246 4 / Number Theory and Cryptography

As mentioned in Section 3.1, the term algorithm originally referred to procedures for per-
forming arithmetic operations using the decimal representations of integers. These algorithms,
adapted for use with binary representations, are the basis for computer arithmetic. They provide
good illustrations of the concept of an algorithm and the complexity of algorithms. For these
reasons, they will be discussed in this section.

We will also introduce an algorithm for finding a div d and a mod d where a and d are
integers with d > 1. Finally, we will describe an efficient algorithm for modular exponentiation,
which is a particularly important algorithm for cryptography, as we will see in Section 4.6.

Representations of Integers

In everyday life we use decimal notation to express integers. For example, 965 is used to denote
9 · 102 + 6 · 10 + 5. However, it is often convenient to use bases other than 10. In particular,
computers usually use binary notation (with 2 as the base) when carrying out arithmetic, and
octal (base 8) or hexadecimal (base 16) notation when expressing characters, such as letters or
digits. In fact, we can use any integer greater than 1 as the base when expressing integers. This
is stated in Theorem 1.

THEOREM 1 Let b be an integer greater than 1. Then if n is a positive integer, it can be expressed uniquely
in the form

n = akbk + ak−1b
k−1 + · · · + a1b + a0,

where k is a nonnegative integer, a0, a1, . . . , ak are nonnegative integers less than b, and
ak = 0.

A proof of this theorem can be constructed using mathematical induction, a proof method that
is discussed in Section 5.1. It can also be found in [Ro10]. The representation of n given in
Theorem 1 is called the base b expansion of n. The base b expansion of n is denoted by
(akak−1 . . . a1a0)b. For instance, (245)8 represents 2 · 82 + 4 · 8 + 5 = 165. Typically, the sub-
script 10 is omitted for base 10 expansions of integers because base 10, or decimal expansions,
are commonly used to represent integers.

BINARY EXPANSIONS Choosing 2 as the base gives binary expansions of integers. In
binary notation each digit is either a 0 or a 1. In other words, the binary expansion of an
integer is just a bit string. Binary expansions (and related expansions that are variants of binary
expansions) are used by computers to represent and do arithmetic with integers.

EXAMPLE 1 What is the decimal expansion of the integer that has (1 0101 1111)2 as its binary expansion?

Solution:We have

(1 0101 1111)2 = 1 · 28 + 0 · 27 + 1 · 26 + 0 · 25 + 1 · 24

+ 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20 = 351. ▲

OCTAL AND HEXADECIMAL EXPANSIONS Among the most important bases in com-
puter science are base 2, base 8, and base 16. Base 8 expansions are called octal expansions and
base 16 expansions are hexadecimal expansions.

4.2 Integer Representations and Algorithms 247

EXAMPLE 2 What is the decimal expansion of the number with octal expansion (7016)8?

Solution: Using the definition of a base b expansion with b = 8 tells us that

(7016)8 = 7 · 83 + 0 · 82 + 1 · 8 + 6 = 3598. ▲

Sixteen different digits are required for hexadecimal expansions. Usually, the hexadecimal
digits used are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F, where the letters A through F
represent the digits corresponding to the numbers 10 through 15 (in decimal notation).

EXAMPLE 3 What is the decimal expansion of the number with hexadecimal expansion (2AE0B)16?

Solution: Using the definition of a base b expansion with b = 16 tells us that

(2AE0B)16 = 2 · 164 + 10 · 163 + 14 · 162 + 0 · 16 + 11 = 175627. ▲

Each hexadecimal digit can be represented using four bits. For instance, we see that
(1110 0101)2 = (E5)16 because (1110)2 = (E)16 and (0101)2 = (5)16. Bytes, which are bit
strings of length eight, can be represented by two hexadecimal digits.

BASE CONVERSION We will now describe an algorithm for constructing the base b expan-
sion of an integer n. First, divide n by b to obtain a quotient and remainder, that is,

n = bq0 + a0, 0 ≤ a0 < b.

The remainder, a0, is the rightmost digit in the base b expansion of n. Next, divide q0 by b to
obtain

q0 = bq1 + a1, 0 ≤ a1 < b.

We see that a1 is the second digit from the right in the base b expansion of n. Continue this
process, successively dividing the quotients by b, obtaining additional base b digits as the
remainders. This process terminates when we obtain a quotient equal to zero. It produces the
base b digits of n from the right to the left.

EXAMPLE 4 Find the octal expansion of (12345)10.

Solution: First, divide 12345 by 8 to obtain

12345 = 8 · 1543 + 1.

Successively dividing quotients by 8 gives

1543 = 8 · 192 + 7,

192 = 8 · 24 + 0,

24 = 8 · 3 + 0,

3 = 8 · 0 + 3.

The successive remainders that we have found, 1, 7, 0, 0, and 3, are the digits from the right to
the left of 12345 in base 8. Hence,

(12345)10 = (30071)8. ▲

248 4 / Number Theory and Cryptography

EXAMPLE 5 Find the hexadecimal expansion of (177130)10.

Solution: First divide 177130 by 16 to obtain

177130 = 16 · 11070 + 10.

Successively dividing quotients by 16 gives

11070 = 16 · 691 + 14,

691 = 16 · 43 + 3,

43 = 16 · 2 + 11,

2 = 16 · 0 + 2.

The successive remainders that we have found, 10, 14, 3, 11, 2, give us the digits from the right
to the left of 177130 in the hexadecimal (base 16) expansion of (177130)10. It follows that

(177130)10 = (2B3EA)16.

(Recall that the integers 10, 11, and 14 correspond to the hexadecimal digits A, B, and E,
respectively.) ▲

EXAMPLE 6 Find the binary expansion of (241)10.

Solution: First divide 241 by 2 to obtain

241 = 2 · 120 + 1.

Successively dividing quotients by 2 gives

120 = 2 · 60 + 0,
60 = 2 · 30 + 0,
30 = 2 · 15 + 0,
15 = 2 · 7 + 1,
7 = 2 · 3 + 1,
3 = 2 · 1 + 1,
1 = 2 · 0 + 1.

The successive remainders that we have found, 1, 0, 0, 0, 1, 1, 1, 1, are the digits from the right
to the left in the binary (base 2) expansion of (241)10. Hence,

(241)10 = (1111 0001)2. ▲

The pseudocode given in Algorithm 1 finds the base b expansion (ak−1 . . . a1a0)b of the
integer n.

4.2 Integer Representations and Algorithms 249

TABLE 1 Hexadecimal, Octal, and Binary Representation of the Integers 0 through 15.

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F

Octal 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17

Binary 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111

ALGORITHM 1 Constructing Base b Expansions.

procedure base b expansion(n, b: positive integers with b > 1)
q := n
k := 0
while q = 0

ak := q mod b
q := q div b
k := k + 1

return (ak−1, . . . , a1, a0) {(ak−1 . . . a1a0)b is the base b expansion of n}

In Algorithm 1, q represents the quotient obtained by successive divisions by b, starting with
q = n. The digits in the base b expansion are the remainders of these divisions and are given by
q mod b. The algorithm terminates when a quotient q = 0 is reached.

Remark: Note that Algorithm 1 can be thought of as a greedy algorithm, as the base b digits
are taken as large as possible in each step.

CONVERSION BETWEEN BINARY, OCTAL, AND HEXADECIMAL EXPANSIONS

Conversion between binary and octal and between binary and hexadecimal expansions is ex-
tremely easy because each octal digit corresponds to a block of three binary digits and each
hexadecimal digit corresponds to a block of four binary digits, with these correspondences
shown in Table 1 without initial 0s shown. (We leave it as Exercises 13–16 to show that this is
the case.) This conversion is illustrated in Example 7.

EXAMPLE 7 Find the octal and hexadecimal expansions of (11 1110 1011 1100)2 and the binary expansions
of (765)8 and (A8D)16.

Solution: To convert (11 1110 1011 1100)2 into octal notation we group the binary dig-
its into blocks of three, adding initial zeros at the start of the leftmost block if necessary.
These blocks, from left to right, are 011, 111, 010, 111, and 100, corresponding to 3, 7, 2, 7,
and 4, respectively. Consequently, (11 1110 1011 1100)2 = (37274)8. To convert (11 1110 1011
1100)2 into hexadecimal notation we group the binary digits into blocks of four, adding initial
zeros at the start of the leftmost block if necessary. These blocks, from left to right, are 0011,
1110, 1011, and 1100, corresponding to the hexadecimal digits 3, E, B, and C, respectively.
Consequently, (11 1110 1011 1100)2 = (3EBC)16.

To convert (765)8 into binary notation, we replace each octal digit by a block of three binary
digits. These blocks are 111, 110, and 101. Hence, (765)8 = (1 1111 0101)2. To convert (A8D)16
into binary notation, we replace each hexadecimal digit by a block of four binary digits. These
blocks are 1010, 1000, and 1101. Hence, (A8D)16 = (1010 1000 1101)2. ▲

250 4 / Number Theory and Cryptography

Algorithms for Integer Operations

The algorithms for performing operations with integers using their binary expansions are ex-
tremely important in computer arithmetic. We will describe algorithms for the addition and the
multiplication of two integers expressed in binary notation. We will also analyze the compu-
tational complexity of these algorithms, in terms of the actual number of bit operations used.
Throughout this discussion, suppose that the binary expansions of a and b are

a = (an−1an−2 . . . a1a0)2, b = (bn−1bn−2 . . . b1b0)2,

so that a and b each have n bits (putting bits equal to 0 at the beginning of one of these expansions
if necessary).

We will measure the complexity of algorithms for integer arithmetic in terms of the number
of bits in these numbers.

ADDITION ALGORITHM Consider the problem of adding two integers in binary notation.
A procedure to perform addition can be based on the usual method for adding numbers with
pencil and paper. This method proceeds by adding pairs of binary digits together with carries,
when they occur, to compute the sum of two integers. This procedure will now be specified
in detail.

To add a and b, first add their rightmost bits. This gives

a0 + b0 = c0 · 2 + s0,

where s0 is the rightmost bit in the binary expansion of a + b and c0 is the carry, which is either
0 or 1. Then add the next pair of bits and the carry,

a1 + b1 + c0 = c1 · 2 + s1,

where s1 is the next bit (from the right) in the binary expansion of a + b, and c1 is the carry.
Continue this process, adding the corresponding bits in the two binary expansions and the carry,
to determine the next bit from the right in the binary expansion of a + b. At the last stage, add
an−1, bn−1, and cn−2 to obtain cn−1 · 2 + sn−1. The leading bit of the sum is sn = cn−1. This
procedure produces the binary expansion of the sum, namely, a + b = (snsn−1sn−2 . . . s1s0)2.

EXAMPLE 8 Add a = (1110)2 and b = (1011)2.

Solution: Following the procedure specified in the algorithm, first note that

a0 + b0 = 0 + 1 = 0 · 2 + 1,

so that c0 = 0 and s0 = 1. Then, because

a1 + b1 + c0 = 1 + 1 + 0 = 1 · 2 + 0,

it follows that c1 = 1 and s1 = 0. Continuing,

a2 + b2 + c1 = 1 + 0 + 1 = 1 · 2 + 0,

4.2 Integer Representations and Algorithms 251

so that c2 = 1 and s2 = 0. Finally, because

a3 + b3 + c2 = 1 + 1 + 1 = 1 · 2 + 1,
1 1 1

1 1 1 0
+ 1 0 1 1

1 1 0 0 1

FIGURE 1
Adding (1110)2
and (1011)2.

follows that c3 = 1 and s3 = 1. This means that s4 = c3 = 1. Therefore, s = a + b = (1 1001)2.
This addition is displayed in Figure 1, where carries are shown in blue. ▲

The algorithm for addition can be described using pseudocode as follows.

ALGORITHM 2 Addition of Integers.

procedure add(a, b: positive integers)
{the binary expansions of a and b are (an−1an−2 . . . a1a0)2

and (bn−1bn−2 . . . b1b0)2, respectively}
c := 0
for j := 0 to n− 1

d := (aj + bj + c)/2
sj := aj + bj + c − 2d
c := d

sn := c
return (s0, s1, . . . , sn) {the binary expansion of the sum is (snsn−1 . . . s0)2}

Next, the number of additions of bits used by Algorithm 2 will be analyzed.

EXAMPLE 9 How many additions of bits are required to use Algorithm 2 to add two integers with n bits (or
less) in their binary representations?

Solution:Two integers are added by successively adding pairs of bits and, when it occurs, a carry.
Adding each pair of bits and the carry requires two additions of bits. Thus, the total number of
additions of bits used is less than twice the number of bits in the expansion. Hence, the number
of additions of bits used by Algorithm 2 to add two n-bit integers is O(n). ▲

MULTIPLICATIONALGORITHM Next, consider the multiplication of two n-bit integers a
and b. The conventional algorithm (used when multiplying with pencil and paper) works as
follows. Using the distributive law, we see that

ab = a(b020 + b121 + · · · + bn−12n−1)

= a(b020)+ a(b121)+ · · · + a(bn−12n−1).

We can compute ab using this equation. We first note that abj = a if bj = 1 and abj = 0 if
bj = 0. Each time we multiply a term by 2, we shift its binary expansion one place to the left
and add a zero at the tail end of the expansion. Consequently, we can obtain (abj)2j by shifting
the binary expansion of abj j places to the left, adding j zero bits at the tail end of this binary
expansion. Finally, we obtain ab by adding the n integers abj2j , j = 0, 1, 2, . . . , n− 1.

Algorithm 3 displays this procedure for multiplication.

252 4 / Number Theory and Cryptography

ALGORITHM 3 Multiplication of Integers.

procedure multiply(a, b: positive integers)
{the binary expansions of a and b are (an−1an−2 . . . a1a0)2

and (bn−1bn−2 . . . b1b0)2, respectively}
for j := 0 to n− 1

if bj = 1 then cj := a shifted j places
else cj := 0

{c0, c1, . . . , cn−1 are the partial products}
p := 0
for j := 0 to n− 1

p := p + cj
return p {p is the value of ab}

Example 10 illustrates the use of this algorithm.

EXAMPLE 10 Find the product of a = (110)2 and b = (101)2.

Solution: First note that

ab0 · 20 = (110)2 · 1 · 20 = (110)2,

ab1 · 21 = (110)2 · 0 · 21 = (0000)2,

and

ab2 · 22 = (110)2 · 1 · 22 = (11000)2.

To find the product, add (110)2, (0000)2, and (11000)2. Carrying out these additions (us-
ing Algorithm 2, including initial zero bits when necessary) shows that ab = (1 1110)2. This
multiplication is displayed in Figure 2. ▲

Next, we determine the number of additions of bits and shifts of bits used by Algorithm 3
to multiply two integers.

1 1 0
× 1 0 1

1 1 0
0 0 0

1 1 0
1 1 1 1 0

FIGURE 2
Multiplying
(110)2 and (101)2.

EXAMPLE 11 How many additions of bits and shifts of bits are used to multiply a and b using Algorithm 3?

Solution: Algorithm 3 computes the products of a and b by adding the partial products
c0, c1, c2, . . . , and cn−1. When bj = 1, we compute the partial product cj by shifting the binary
expansion of a by j bits. When bj = 0, no shifts are required because cj = 0. Hence, to find
all n of the integers abj2j , j = 0, 1, . . . , n− 1, requires at most

0 + 1 + 2 + · · · + n− 1

shifts. Hence, by Example 5 in Section 3.2 the number of shifts required is O(n2).
To add the integers abj from j = 0 to j = n− 1 requires the addition of an n-bit integer,

an (n+ 1)-bit integer, . . . , and a (2n)-bit integer. We know from Example 9 that each of these
additions requires O(n) additions of bits. Consequently, a total of O(n2) additions of bits are
required for all n additions. ▲

Surprisingly, there are more efficient algorithms than the conventional algorithm for mul-
tiplying integers. One such algorithm, which uses O(n1.585) bit operations to multiply n-bit
numbers, will be described in Section 8.3.

4.2 Integer Representations and Algorithms 253

ALGORITHM FOR div AND mod Given integers a and d , d > 0, we can find q =
a div d and r = a mod d using Algorithm 4. In this brute-force algorithm, when a is pos-
itive we subtract d from a as many times as necessary until what is left is less than d . The
number of times we perform this subtraction is the quotient and what is left over after all these
subtractions is the remainder. Algorithm 4 also covers the case where a is negative. This algo-
rithm finds the quotient q and remainder r when |a| is divided by d . Then, when a < 0 and
r > 0, it uses these to find the quotient −(q + 1) and remainder d − r when a is divided by d.
We leave it to the reader (Exercise 59) to show that, assuming that a > d , this algorithm uses
O(q log a) bit operations.

ALGORITHM 4 Computing div and mod.

procedure division algorithm(a: integer, d: positive integer)
q := 0
r := |a|
while r ≥ d

r := r − d
q := q + 1

if a < 0 and r > 0 then
r := d − r
q := −(q + 1)

return (q, r) {q = a div d is the quotient, r = a mod d is the remainder}

There are more efficient algorithms than Algorithm 4 for determining the quotient q =
a div d and the remainder r = a mod d when a positive integer a is divided by a positive
integer d (see [Kn98] for details). These algorithms require O(log a · log d) bit operations. If
both of the binary expansions of a and d contain n or fewer bits, then we can replace log a · log d
by n2. This means that we need O(n2) bit operations to find the quotient and remainder when
a is divided by d.

Modular Exponentiation

In cryptography it is important to be able to find bn mod m efficiently, where b, n, and m are
large integers. It is impractical to first compute bn and then find its remainder when divided
by m because bn will be a huge number. Instead, we can use an algorithm that employs the
binary expansion of the exponent n.

Before we present this algorithm, we illustrate its basic idea. We will explain how to use
the binary expansion of n, say n = (ak−1 . . . a1a0)2, to compute bn. First, note that

bn = bak−1·2k−1+···+a1·2+a0 = bak−1·2k−1 · · · ba1·2 · ba0 .

This shows that to compute bn, we need only compute the values of b, b2, (b2)2 = b4, (b4)2 =
b8, . . . , b2k . Once we have these values, we multiply the terms b2j in this list, where aj = 1. (For
efficiency, after multiplying by each term, we reduce the result modulom.) This gives us bn. For
example, to compute 311 we first note that 11 = (1011)2, so that 311 = 383231. By successively
squaring, we find that 32 = 9, 34 = 92 = 81, and 38 = (81)2 = 6561. Consequently, 311 =
383231 = 6561 · 9 · 3 = 177,147.

254 4 / Number Theory and Cryptography

The algorithm successively finds b mod m, b2 mod m, b4 mod m, . . . , b2k−1
mod m

and multiplies together those terms b2j mod m where aj = 1, finding the remainder

Be sure to reduce
modulo m after each
multiplication!

of the product when divided by m after each multiplication. Pseudocode for this algorithm
is shown in Algorithm 5. Note that in Algorithm 5 we can use the most efficient algorithm
available to compute values of the mod function, not necessarily Algorithm 4.

ALGORITHM 5 Modular Exponentiation.

procedure modular exponentiation(b: integer, n = (ak−1ak−2 . . . a1a0)2,
m: positive integers)

x := 1
power := b mod m
for i := 0 to k − 1

if ai = 1 then x := (x · power) mod m
power := (power · power) mod m

return x{x equals bn mod m}

We illustrate how Algorithm 5 works in Example 12.

EXAMPLE 12 Use Algorithm 5 to find 3644 mod 645.

Solution: Algorithm 5 initially sets x = 1 and power = 3 mod 645 = 3. In the computation
of 3644 mod 645, this algorithm determines 32j mod 645 for j = 1, 2, . . . , 9 by successively
squaring and reducing modulo 645. If aj = 1 (where aj is the bit in the j th position in the

binary expansion of 644, which is (1010000100)2), it multiplies the current value of x by 32j

mod 645 and reduces the result modulo 645. Here are the steps used:

i = 0: Because a0 = 0, we have x = 1 and power = 32 mod 645 = 9 mod 645 = 9;

i = 1: Because a1 = 0, we have x = 1 and power = 92 mod 645 = 81 mod 645 = 81;

i = 2: Because a2 = 1, we have x = 1 · 81 mod 645 = 81 and power = 812 mod 645 = 6561 mod 645 = 111;

i = 3: Because a3 = 0, we have x = 81 and power = 1112 mod 645 = 12,321 mod 645 = 66;

i = 4: Because a4 = 0, we have x = 81 and power = 662 mod 645 = 4356 mod 645 = 486;

i = 5: Because a5 = 0, we have x = 81 and power = 4862 mod 645 = 236,196 mod 645 = 126;

i = 6: Because a6 = 0, we have x = 81 and power = 1262 mod 645 = 15,876 mod 645 = 396;

i = 7: Because a7 = 1, we find that x = (81 · 396) mod 645 = 471 and power = 3962 mod 645 = 156,816
mod 645 = 81;

i = 8: Because a8 = 0, we have x = 471 and power = 812 mod 645 = 6561 mod 645 = 111;

i = 9: Because a9 = 1, we find that x = (471 · 111) mod 645 = 36.

This shows that following the steps of Algorithm 5 produces the result 3644 mod 645 = 36.

▲

Algorithm 5 is quite efficient; it uses O((logm)2 log n) bit operations to find bn mod m (see
Exercise 58).

4.2 Integer Representations and Algorithms 255

Exercises

1. Convert the decimal expansion of each of these integers
to a binary expansion.

a) 231 b) 4532 c) 97644

2. Convert the decimal expansion of each of these integers
to a binary expansion.

a) 321 b) 1023 c) 100632

3. Convert the binary expansion of each of these integers to
a decimal expansion.

a) (1 1111)2 b) (10 0000 0001)2
c) (1 0101 0101)2 d) (110 1001 0001 0000)2

4. Convert the binary expansion of each of these integers to
a decimal expansion.

a) (1 1011)2 b) (10 1011 0101)2
c) (11 1011 1110)2 d) (111 1100 0001 1111)2

5. Convert the octal expansion of each of these integers to a
binary expansion.

a) (572)8 b) (1604)8
c) (423)8 d) (2417)8

6. Convert the binary expansion of each of these integers to
an octal expansion.

a) (1111 0111)2
b) (1010 1010 1010)2
c) (111 0111 0111 0111)2
d) (101 0101 0101 0101)2

7. Convert the hexadecimal expansion of each of these in-
tegers to a binary expansion.

a) (80E)16 b) (135AB)16

c) (ABBA)16 d) (DEFACED)16

8. Convert (BADFACED)16 from its hexadecimal expan-
sion to its binary expansion.

9. Convert (ABCDEF)16 from its hexadecimal expansion to
its binary expansion.

10. Convert each of the integers in Exercise 6 from a binary
expansion to a hexadecimal expansion.

11. Convert (1011 0111 1011)2 from its binary expansion to
its hexadecimal expansion.

12. Convert (1 1000 0110 0011)2 from its binary expansion
to its hexadecimal expansion.

13. Show that the hexadecimal expansion of a positive integer
can be obtained from its binary expansion by grouping to-
gether blocks of four binary digits, adding initial zeros if
necessary, and translating each block of four binary digits
into a single hexadecimal digit.

14. Show that the binary expansion of a positive integer can
be obtained from its hexadecimal expansion by translat-
ing each hexadecimal digit into a block of four binary
digits.

15. Show that the octal expansion of a positive integer can be
obtained from its binary expansion by grouping together
blocks of three binary digits, adding initial zeros if nec-

essary, and translating each block of three binary digits
into a single octal digit.

16. Show that the binary expansion of a positive integer can
be obtained from its octal expansion by translating each
octal digit into a block of three binary digits.

17. Convert (7345321)8 to its binary expansion and
(10 1011 1011)2 to its octal expansion.

18. Give a procedure for converting from the hexadecimal ex-
pansion of an integer to its octal expansion using binary
notation as an intermediate step.

19. Give a procedure for converting from the octal expansion
of an integer to its hexadecimal expansion using binary
notation as an intermediate step.

20. Explain how to convert from binary to base 64 expan-
sions and from base 64 expansions to binary expansions
and from octal to base 64 expansions and from base 64
expansions to octal expansions.

21. Find the sum and the product of each of these pairs of
numbers. Express your answers as a binary expansion.

a) (100 0111)2, (111 0111)2
b) (1110 1111)2, (1011 1101)2
c) (10 1010 1010)2, (1 1111 0000)2
d) (10 0000 0001)2, (11 1111 1111)2

22. Find the sum and product of each of these pairs of num-
bers. Express your answers as a base 3 expansion.

a) (112)3, (210)3
b) (2112)3, (12021)3
c) (20001)3, (1111)3
d) (120021)3, (2002)3

23. Find the sum and product of each of these pairs of num-
bers. Express your answers as an octal expansion.

a) (763)8, (147)8
b) (6001)8, (272)8
c) (1111)8, (777)8
d) (54321)8, (3456)8

24. Find the sum and product of each of these pairs of num-
bers. Express your answers as a hexadecimal expan-
sion.

a) (1AE)16, (BBC)16

b) (20CBA)16, (A01)16

c) (ABCDE)16, (1111)16

d) (E0000E)16, (BAAA)16

25. Use Algorithm 5 to find 7644 mod 645.

26. Use Algorithm 5 to find 11644 mod 645.

27. Use Algorithm 5 to find 32003 mod 99.

28. Use Algorithm 5 to find 1231001 mod 101.

29. Show that every positive integer can be represented
uniquely as the sum of distinct powers of 2. [Hint: Con-
sider binary expansions of integers.]

256 4 / Number Theory and Cryptography

30. It can be shown that every integer can be uniquely repre-
sented in the form

ek3k + ek−13k−1 + · · · + e13 + e0,
where ej = −1, 0, or 1 for j = 0, 1, 2, . . . , k. Expan-
sions of this type are called balanced ternary expan-
sions. Find the balanced ternary expansions of

a) 5. b) 13. c) 37. d) 79.

31. Show that a positive integer is divisible by 3 if and only
if the sum of its decimal digits is divisible by 3.

32. Show that a positive integer is divisible by 11 if and only
if the difference of the sum of its decimal digits in even-
numbered positions and the sum of its decimal digits in
odd-numbered positions is divisible by 11.

33. Show that a positive integer is divisible by 3 if and only
if the difference of the sum of its binary digits in even-
numbered positions and the sum of its binary digits in
odd-numbered positions is divisible by 3.

One’s complement representations of integers are used to
simplify computer arithmetic. To represent positive and nega-
tive integers with absolute value less than 2n−1, a total of n bits
is used. The leftmost bit is used to represent the sign. A 0 bit
in this position is used for positive integers, and a 1 bit in this
position is used for negative integers. For positive integers,
the remaining bits are identical to the binary expansion of the
integer. For negative integers, the remaining bits are obtained
by first finding the binary expansion of the absolute value of
the integer, and then taking the complement of each of these
bits, where the complement of a 1 is a 0 and the complement
of a 0 is a 1.

34. Find the one’s complement representations, using bit
strings of length six, of the following integers.

a) 22 b) 31 c) −7 d) −19

35. What integer does each of the following one’s comple-
ment representations of length five represent?

a) 11001 b) 01101

c) 10001 d) 11111

36. If m is a positive integer less than 2n−1, how is the
one’s complement representation of −m obtained from
the one’s complement of m, when bit strings of length n
are used?

37. How is the one’s complement representation of the sum
of two integers obtained from the one’s complement rep-
resentations of these integers?

38. How is the one’s complement representation of the differ-
ence of two integers obtained from the one’s complement
representations of these integers?

39. Show that the integer m with one’s complement
representation (an−1an−2 . . . a1a0) can be found us-
ing the equation m = −an−1(2n−1 − 1) + an−22n−2 +
· · ·+ a1 · 2 + a0.

Two’s complement representations of integers are also used
to simplify computer arithmetic and are used more commonly

than one’s complement representations. To represent an inte-
ger x with −2n−1 ≤ x ≤ 2n−1 − 1 for a specified positive
integer n, a total of n bits is used. The leftmost bit is used to
represent the sign. A 0 bit in this position is used for positive
integers, and a 1 bit in this position is used for negative inte-
gers, just as in one’s complement expansions. For a positive
integer, the remaining bits are identical to the binary expan-
sion of the integer. For a negative integer, the remaining bits
are the bits of the binary expansion of 2n−1 − |x|. Two’s com-
plement expansions of integers are often used by computers
because addition and subtraction of integers can be performed
easily using these expansions, where these integers can be ei-
ther positive or negative.

40. Answer Exercise 34, but this time find the two’s comple-
ment expansion using bit strings of length six.

41. Answer Exercise 35 if each expansion is a two’s comple-
ment expansion of length five.

42. Answer Exercise 36 for two’s complement expansions.

43. Answer Exercise 37 for two’s complement expansions.

44. Answer Exercise 38 for two’s complement expansions.

45. Show that the integer m with two’s complement
representation (an−1an−2 . . . a1a0) can be found us-
ing the equationm = −an−1 · 2n−1 + an−22n−2 + · · · +
a1 · 2 + a0.

46. Give a simple algorithm for forming the two’s comple-
ment representation of an integer from its one’s comple-
ment representation.

47. Sometimes integers are encoded by using four-digit bi-
nary expansions to represent each decimal digit. This pro-
duces the binary coded decimal form of the integer. For
instance, 791 is encoded in this way by 011110010001.
How many bits are required to represent a number with
n decimal digits using this type of encoding?

A Cantor expansion is a sum of the form

ann! + an−1(n− 1)! + · · · + a22! + a11!,

where ai is an integer with 0 ≤ ai ≤ i for i = 1, 2, . . . , n.

48. Find the Cantor expansions of

a) 2. b) 7.
c) 19. d) 87.
e) 1000. f) 1,000,000.

∗49. Describe an algorithm that finds the Cantor expansion of
an integer.

∗50. Describe an algorithm to add two integers from their Can-
tor expansions.

51. Add (10111)2 and (11010)2 by working through each
step of the algorithm for addition given in the text.

52. Multiply (1110)2 and (1010)2 by working through each
step of the algorithm for multiplication given in the text.

53. Describe an algorithm for finding the difference of two
binary expansions.

54. Estimate the number of bit operations used to subtract
two binary expansions.

4.3 Primes and Greatest Common Divisors 257

55. Devise an algorithm that, given the binary expansions of
the integers a and b, determines whether a > b, a = b,
or a < b.

56. How many bit operations does the comparison algo-
rithm from Exercise 55 use when the larger of a and b
has n bits in its binary expansion?

57. Estimate the complexity of Algorithm 1 for finding the
base b expansion of an integer n in terms of the number
of divisions used.

∗58. Show that Algorithm 5 usesO((logm)2 log n) bit opera-
tions to find bn mod m.

59. Show that Algorithm 4 uses O(q log a) bit operations,
assuming that a > d.

4.3 Primes and Greatest Common Divisors

Introduction

In Section 4.1 we studied the concept of divisibility of integers. One important concept based
on divisibility is that of a prime number. A prime is an integer greater than 1 that is divisible by
no positive integers other than 1 and itself. The study of prime numbers goes back to ancient
times. Thousands of years ago it was known that there are infinitely many primes; the proof of
this fact, found in the works of Euclid, is famous for its elegance and beauty.

We will discuss the distribution of primes among the integers. We will describe some
of the results about primes found by mathematicians in the last 400 years. In particular, we
will introduce an important theorem, the fundamental theorem of arithmetic. This theorem,
which asserts that every positive integer can be written uniquely as the product of primes in
nondecreasing order, has many interesting consequences. We will also discuss some of the many
old conjectures about primes that remain unsettled today.

Primes have become essential in modern cryptographic systems, and we will develop some
of their properties important in cryptography. For example, finding large primes is essential in
modern cryptography. The length of time required to factor large integers into their prime factors
is the basis for the strength of some important modern cryptographic systems.

In this section we will also study the greatest common divisor of two integers, as well as the
least common multiple of two integers. We will develop an important algorithm for computing
greatest common divisors, called the Euclidean algorithm.

Primes

Every integer greater than 1 is divisible by at least two integers, because a positive integer is
divisible by 1 and by itself. Positive integers that have exactly two different positive integer
factors are called primes.

DEFINITION 1 An integer p greater than 1 is called prime if the only positive factors of p are 1 and p.
A positive integer that is greater than 1 and is not prime is called composite.

Remark: The integer n is composite if and only if there exists an integer a such that a | n and
1 < a < n.

EXAMPLE 1 The integer 7 is prime because its only positive factors are 1 and 7, whereas the integer 9 is
composite because it is divisible by 3. ▲

The primes are the building blocks of positive integers, as the fundamental theorem of
arithmetic shows. The proof will be given in Section 5.2.

258 4 / Number Theory and Cryptography

THEOREM 1 THE FUNDAMENTAL THEOREM OF ARITHMETIC Every integer greater than 1
can be written uniquely as a prime or as the product of two or more primes where the prime
factors are written in order of nondecreasing size.

Example 2 gives some prime factorizations of integers.

EXAMPLE 2 The prime factorizations of 100, 641, 999, and 1024 are given by

100 = 2 · 2 · 5 · 5 = 2252,

641 = 641,

999 = 3 · 3 · 3 · 37 = 33 · 37,

1024 = 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 = 210.

▲

Trial Division

It is often important to show that a given integer is prime. For instance, in cryptology, large
primes are used in some methods for making messages secret. One procedure for showing that
an integer is prime is based on the following observation.

THEOREM 2 If n is a composite integer, then n has a prime divisor less than or equal to
√
n.

Proof: If n is composite, by the definition of a composite integer, we know that it has a factor
a with 1 < a < n. Hence, by the definition of a factor of a positive integer, we have n = ab,
where b is a positive integer greater than 1. We will show that a ≤ √

n or b ≤ √
n. If a >

√
n and

b >
√
n, then ab >

√
n · √n = n, which is a contradiction. Consequently, a ≤ √

n or b ≤ √
n.

Because both a and b are divisors of n, we see that n has a positive divisor not exceeding
√
n.

This divisor is either prime or, by the fundamental theorem of arithmetic, has a prime divisor
less than itself. In either case, n has a prime divisor less than or equal to

√
n.

From Theorem 2, it follows that an integer is prime if it is not divisible by any prime less
than or equal to its square root. This leads to the brute-force algorithm known as trial division.
To use trial division we divide n by all primes not exceeding

√
n and conclude that n is prime

if it is not divisible by any of these primes. In Example 3 we use trial division to show that 101
is prime.

EXAMPLE 3 Show that 101 is prime.

Solution: The only primes not exceeding
√

101 are 2, 3, 5, and 7. Because 101 is not divisible
by 2, 3, 5, or 7 (the quotient of 101 and each of these integers is not an integer), it follows that
101 is prime. ▲

Because every integer has a prime factorization, it would be useful to have a procedure for
finding this prime factorization. Consider the problem of finding the prime factorization of n.
Begin by dividing n by successive primes, starting with the smallest prime, 2. If n has a prime
factor, then by Theorem 3 a prime factor p not exceeding

√
n will be found. So, if no prime

4.3 Primes and Greatest Common Divisors 259

factor not exceeding
√
n is found, then n is prime. Otherwise, if a prime factor p is found,

continue by factoring n/p. Note that n/p has no prime factors less than p. Again, if n/p has
no prime factor greater than or equal to p and not exceeding its square root, then it is prime.
Otherwise, if it has a prime factor q, continue by factoring n/(pq). This procedure is continued
until the factorization has been reduced to a prime. This procedure is illustrated in Example 4.

EXAMPLE 4 Find the prime factorization of 7007.

Solution: To find the prime factorization of 7007, first perform divisions of 7007 by succes-
sive primes, beginning with 2. None of the primes 2, 3, and 5 divides 7007. However, 7 di-
vides 7007, with 7007/7 = 1001. Next, divide 1001 by successive primes, beginning with 7.
It is immediately seen that 7 also divides 1001, because 1001/7 = 143. Continue by divid-
ing 143 by successive primes, beginning with 7. Although 7 does not divide 143, 11 does
divide 143, and 143/11 = 13. Because 13 is prime, the procedure is completed. It follows that
7007 = 7 · 1001 = 7 · 7 · 143 = 7 · 7 · 11 · 13. Consequently, the prime factorization of 7007
is 7 · 7 · 11 · 13 = 72 · 11 · 13. ▲

Prime numbers were studied in ancient times for philosophical reasons. Today, there are
highly practical reasons for their study. In particular, large primes play a crucial role in cryp-
tography, as we will see in Section 4.6.

The Sieve of Eratosthenes

Note that composite integers not exceeding 100 must have a prime factor not exceeding 10.
Because the only primes less than 10 are 2, 3, 5, and 7, the primes not exceeding 100 are these
four primes and those positive integers greater than 1 and not exceeding 100 that are divisible
by none of 2, 3, 5, or 7.

The sieve of Eratosthenes is used to find all primes not exceeding a specified positive
integer. For instance, the following procedure is used to find the primes not exceeding 100. We
begin with the list of all integers between 1 and 100. To begin the sieving process, the integers
that are divisible by 2, other than 2, are deleted. Because 3 is the first integer greater than 2 that
is left, all those integers divisible by 3, other than 3, are deleted. Because 5 is the next integer
left after 3, those integers divisible by 5, other than 5, are deleted. The next integer left is 7,
so those integers divisible by 7, other than 7, are deleted. Because all composite integers not
exceeding 100 are divisible by 2, 3, 5, or 7, all remaining integers except 1 are prime. In Table 1,
the panels display those integers deleted at each stage, where each integer divisible by 2, other
than 2, is underlined in the first panel, each integer divisible by 3, other than 3, is underlined
in the second panel, each integer divisible by 5, other than 5, is underlined in the third panel,
and each integer divisible by 7, other than 7, is underlined in the fourth panel. The integers not
underlined are the primes not exceeding 100. We conclude that the primes less than 100 are 2,
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, and 97.

THE INFINITUDEOFPRIMES It has long been known that there are infinitely many primes.
This means that whenever p1, p2, . . . , pn are the n smallest primes, we know there is a larger

ERATOSTHENES (276 b.c.e.–194 b.c.e.) It is known that Eratosthenes was born in Cyrene, a Greek colony
west of Egypt, and spent time studying at Plato’s Academy in Athens. We also know that King Ptolemy II
invited Eratosthenes to Alexandria to tutor his son and that later Eratosthenes became chief librarian at the
famous library at Alexandria, a central repository of ancient wisdom. Eratosthenes was an extremely versatile
scholar, writing on mathematics, geography, astronomy, history, philosophy, and literary criticism. Besides his
work in mathematics, he is most noted for his chronology of ancient history and for his famous measurement
of the size of the earth.

260 4 / Number Theory and Cryptography

TABLE 1 The Sieve of Eratosthenes.

Integers divisible by 2 other than 2 Integers divisible by 3 other than 3

receive an underline. receive an underline.

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100 91 92 93 94 95 96 97 98 99 100

Integers divisible by 5 other than 5 Integers divisible by 7 other than 7 receive

receive an underline. an underline; integers in color are prime.

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100 91 92 93 94 95 96 97 98 99 100

prime not listed. We will prove this fact using a proof given by Euclid in his famous mathematics
text, The Elements. This simple, yet elegant, proof is considered by many mathematicians to be
among the most beautiful proofs in mathematics. It is the first proof presented in the bookProofs
fromTHEBOOK[AiZi10], where THE BOOK refers to the imagined collection of perfect proofs
that the famous mathematician Paul Erdős claimed is maintained by God. By the way, there
are a vast number of different proofs than there are an infinitude of primes, and new ones are
published surprisingly frequently.

THEOREM 3 There are infinitely many primes.

Proof: We will prove this theorem using a proof by contradiction. We assume that there are only
finitely many primes, p1, p2, . . . , pn. Let

Q = p1p2 · · ·pn + 1.

By the fundamental theorem of arithmetic,Q is prime or else it can be written as the product of
two or more primes. However, none of the primes pj divides Q, for if pj | Q, then pj divides

4.3 Primes and Greatest Common Divisors 261

Q− p1p2 · · ·pn = 1. Hence, there is a prime not in the list p1, p2, . . . , pn. This prime is
eitherQ, if it is prime, or a prime factor ofQ. This is a contradiction because we assumed that
we have listed all the primes. Consequently, there are infinitely many primes.

Remark: Note that in this proof we do not state thatQ is prime! Furthermore, in this proof, we
have given a nonconstructive existence proof that given any n primes, there is a prime not in
this list. For this proof to be constructive, we would have had to explicitly give a prime not in
our original list of n primes.

Because there are infinitely many primes, given any positive integer there are primes greater
than this integer. There is an ongoing quest to discover larger and larger prime numbers; for
almost all the last 300 years, the largest prime known has been an integer of the special form
2p − 1, where p is also prime. (Note that 2n − 1 cannot be prime when n is not prime; see
Exercise 9.) Such primes are calledMersenne primes, after the French monk Marin Mersenne,
who studied them in the seventeenth century. The reason that the largest known prime has usually
been a Mersenne prime is that there is an extremely efficient test, known as the Lucas–Lehmer
test, for determining whether 2p − 1 is prime. Furthermore, it is not currently possible to test
numbers not of this or certain other special forms anywhere near as quickly to determine whether
they are prime.

EXAMPLE 5 The numbers 22 − 1 = 3, 23 − 1 = 7, 25 − 1 = 31 and 27 − 1 = 127 are Mersenne primes,
while 211 − 1 = 2047 is not a Mersenne prime because 2047 = 23 · 89. ▲

Progress in finding Mersenne primes has been steady since computers were invented. As of
early 2011, 47 Mersenne primes were known, with 16 found since 1990. The largest Mersenne
prime known (again as of early 2011) is 243,112,609 − 1, a number with nearly 13 million decimal
digits, which was shown to be prime in 2008. A communal effort, the Great Internet Mersenne
Prime Search (GIMPS), is devoted to the search for new Mersenne primes. You can join this
search, and if you are lucky, find a new Mersenne prime and possibly even win a cash prize. By
the way, even the search for Mersenne primes has practical implications. One quality control test
for supercomputers has been to replicate the Lucas–Lehmer test that establishes the primality of
a large Mersenne prime. (See [Ro10] for more information about the quest for finding Mersenne
primes.)

THEDISTRIBUTIONOF PRIMES Theorem 3 tells us that there are infinitely many primes.
However, how many primes are less than a positive number x? This question interested mathe-
maticians for many years; in the late eighteenth century, mathematicians produced large tables

MARIN MERSENNE (1588–1648) Mersenne was born in Maine, France, into a family of laborers and
attended the College of Mans and the Jesuit College at La Flèche. He continued his education at the Sor-
bonne, studying theology from 1609 to 1611. He joined the religious order of the Minims in 1611, a group
whose name comes from the word minimi (the members of this group were extremely humble; they consid-
ered themselves the least of all religious orders). Besides prayer, the members of this group devoted their
energy to scholarship and study. In 1612 he became a priest at the Place Royale in Paris; between 1614 and
1618 he taught philosophy at the Minim Convent at Nevers. He returned to Paris in 1619, where his cell
in the Minims de l’Annociade became a place for meetings of French scientists, philosophers, and mathe-
maticians, including Fermat and Pascal. Mersenne corresponded extensively with scholars throughout Europe,

serving as a clearinghouse for mathematical and scientific knowledge, a function later served by mathematical journals (and today
also by the Internet). Mersenne wrote books covering mechanics, mathematical physics, mathematics, music, and acoustics. He
studied prime numbers and tried unsuccessfully to construct a formula representing all primes. In 1644 Mersenne claimed that
2p − 1 is prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 but is composite for all other primes less than 257. It took over 300
years to determine that Mersenne’s claim was wrong five times. Specifically, 2p − 1 is not prime for p = 67 and p = 257 but is
prime for p = 61, p = 87, and p = 107. It is also noteworthy that Mersenne defended two of the most famous men of his time,
Descartes and Galileo, from religious critics. He also helped expose alchemists and astrologers as frauds.

262 4 / Number Theory and Cryptography

of prime numbers to gather evidence concerning the distribution of primes. Using this evidence,
the great mathematicians of the day, including Gauss and Legendre, conjectured, but did not
prove, Theorem 4.

THEOREM 4 THE PRIME NUMBER THEOREM The ratio of the number of primes not exceeding
x and x/ ln x approaches 1 as x grows without bound. (Here ln x is the natural logarithm
of x.)

The prime number theorem was first proved in 1896 by the French mathematician Jacques
Hadamard and the Belgian mathematician Charles-Jean-Gustave-Nicholas de la Vallée-Poussin
using the theory of complex variables. Although proofs not using complex variables have been
found, all known proofs of the prime number theorem are quite complicated.

We can use the prime number theorem to estimate the odds that a randomly chosen number
is prime. The prime number theorem tells us that the number of primes not exceeding x can be
approximated by x/ ln x. Consequently, the odds that a randomly selected positive integer less
than n is prime are approximately (n/ ln n)/n = 1/ ln n. Sometimes we need to find a prime
with a particular number of digits. We would like an estimate of how many integers with a
particular number of digits we need to select before we encounter a prime. Using the prime
number theorem and calculus, it can be shown that the probability that an integer n is prime
is also approximately 1/ ln n. For example, the odds that an integer near 101000 is prime are
approximately 1/ ln 101000, which is approximately 1/2300. (Of course, by choosing only odd
numbers, we double our chances of finding a prime.)

Using trial division with Theorem 2 gives procedures for factoring and for primality testing.
However, these procedures are not efficient algorithms; many much more practical and efficient
algorithms for these tasks have been developed. Factoring and primality testing have become
important in the applications of number theory to cryptography. This has led to a great interest
in developing efficient algorithms for both tasks. Clever procedures have been devised in the
last 30 years for efficiently generating large primes. Moreover, in 2002, an important theoretical
discovery was made by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. They showed there
is a polynomial-time algorithm in the number of bits in the binary expansion of an integer for
determining whether a positive integer is prime.Algorithms based on their work useO((log n)6)
bit operations to determine whether a positive integer n is prime.

However, even though powerful new factorization methods have been developed in the
same time frame, factoring large numbers remains extraordinarily more time-consuming than
primality testing. No polynomial-time algorithm for factoring integers is known. Nevertheless,
the challenge of factoring large numbers interests many people. There is a communal effort on
the Internet to factor large numbers, especially those of the special form kn ± 1, where k is a
small positive integer and n is a large positive integer (such numbers are called Cunningham
numbers). At any given time, there is a list of the “Ten Most Wanted” large numbers of this type
awaiting factorization.

PRIMES AND ARITHMETIC PROGRESSIONS Every odd integer is in one of the two
arithmetic progressions 4k + 1 or 4k + 3, k = 1, 2, Because we know that there are infinitely
many primes, we can ask whether there are infinitely many primes in both of these arithmetic
progressions. The primes 5, 13, 17, 29, 37, 41, . . . are in the arithmetic progression 4k + 1;
the primes 3, 7, 11, 19, 23, 31, 43, . . . are in the arithmetic progression 4k + 3. Looking at
the evidence hints that there may be infinitely many primes in both progressions. What about
other arithmetic progressions ak + b, k = 1, 2, . . ., where no integer greater than one divides
both a and b? Do they contain infinitely many primes? The answer was provided by the German
mathematician G. Lejeune Dirichlet, who proved that every such arithmetic progression contains
infinitely many primes. His proof, and all proofs found later, are beyond the scope of this book.

4.3 Primes and Greatest Common Divisors 263

However, it is possible to prove special cases of Dirichlet’s theorem using the ideas developed
in this book. For example, Exercises 54 and 55 ask for proofs that there are infinitely many
primes in the arithmetic progressions 3k + 2 and 4k + 3, where k is a positive integer. (The hint
for each of these exercises supplies the basic idea needed for the proof.)

We have explained that every arithmetic progression ak + b, k = 1, 2, . . ., where a and b
have no common factor greater than one, contains infinitely many primes. But are there long
arithmetic progressions made up of just primes? For example, some exploration shows that 5,
11, 17, 23, 29 is an arithmetic progression of five primes and 199, 409, 619, 829, 1039, 1249,
1459, 1669, 1879, 2089 is an arithmetic progression of ten primes. In the 1930s, the famous
mathematician Paul Erdős conjectured that for every positive integer n greater than two, there
is an arithmetic progression of length n made up entirely of primes. In 2006, Ben Green and
Terence Tao were able to prove this conjecture. Their proof, considered to be a mathematical
tour de force, is a nonconstructive proof that combines powerful ideas from several advanced
areas of mathematics.

Conjectures and Open Problems About Primes

Number theory is noted as a subject for which it is easy to formulate conjectures, some of which
are difficult to prove and others that remained open problems for many years. We will describe
some conjectures in number theory and discuss their status in Examples 6–9.

EXAMPLE 6 It would be useful to have a function f (n) such that f (n) is prime for all positive integers n. If we
had such a function, we could find large primes for use in cryptography and other applications.
Looking for such a function, we might check out different polynomial functions, as some
mathematicians did several hundred years ago. After a lot of computation we may encounter
the polynomial f (n) = n2 − n+ 41. This polynomial has the interesting property that f (n) is
prime for all positive integers n not exceeding 40. [We have f (1) = 41, f (2) = 43, f (3) = 47,
f (4) = 53, and so on.] This can lead us to the conjecture that f (n) is prime for all positive
integers n. Can we settle this conjecture?

Solution: Perhaps not surprisingly, this conjecture turns out to be false; we do not have to look far
to find a positive integer n for which f (n) is composite, because f (41) = 412 − 41 + 41 = 412.
Because f (n) = n2 − n+ 41 is prime for all positive integers n with 1 ≤ n ≤ 40, we might

TERENCE TAO (BORN 1975) Tao was born in Australia. His father is a pediatrician and his mother taught
mathematics at a Hong Kong secondary school. Tao was a child prodigy, teaching himself arithmetic at the age
of two. At 10, he became the youngest contestant at the International Mathematical Olympiad (IMO); he won
an IMO gold medal at 13. Tao received his bachelors and masters degrees when he was 17, and began graduate
studies at Princeton, receiving his Ph.D. in three years. In 1996 he became a faculty member at UCLA, where
he continues to work.

Tao is extremely versatile; he enjoys working on problems in diverse areas, including harmonic analy-
sis, partial differential equations, number theory, and combinatorics. You can follow his work by reading his
blog where he discusses progress on various problems. His most famous result is the Green-Tao theorem,

which says that there are arbitrarily long arithmetic progressions of primes. Tao has made important contributions to the applications
of mathematics, such as developing a method for reconstructing digital images using the least possible amount of information.
Tao has an amazing reputation among mathematicians; he has become a Mr. Fix-It for researchers in mathematics. The well-known
mathematician Charles Fefferman, himself a child prodigy, has said that “if you’re stuck on a problem, then one way out is to interest
Terence Tao.” In 2006 Tao was awarded a Fields Medal, the most prestigious award for mathematicians under the age of 40. He
was also awarded a MacArthur Fellowship in 2006, and in 2008, he received the Allan T. Waterman award, which came with a
$500,000 cash prize to support research work of scientists early in their career. Tao’s wife Laura is an engineer at the Jet Propulsion
Laboratory.

264 4 / Number Theory and Cryptography

be tempted to find a different polynomial with the property that f (n) is prime for all positive
integers n. However, there is no such polynomial. It can be shown that for every polynomial
f (n) with integer coefficients, there is a positive integer y such that f (y) is composite. (See
Exercise 23 in the Supplementary Exercises.) ▲

Many famous problems about primes still await ultimate resolution by clever people. We
describe a few of the most accessible and better known of these open problems in Examples 7–9.
Number theory is noted for its wealth of easy-to-understand conjectures that resist attack by all
but the most sophisticated techniques, or simply resist all attacks. We present these conjectures
to show that many questions that seem relatively simple remain unsettled even in the twenty-first
century.

EXAMPLE 7 Goldbach’s Conjecture In 1742, Christian Goldbach, in a letter to Leonhard Euler, conjec-
tured that every odd integer n, n > 5, is the sum of three primes. Euler replied that this conjecture
is equivalent to the conjecture that every even integer n, n > 2, is the sum of two primes (see
Exercise 21 in the Supplementary Exercises). The conjecture that every even integer n, n > 2, is
the sum of two primes is now called Goldbach’s conjecture. We can check this conjecture for
small even numbers. For example, 4 = 2 + 2, 6 = 3 + 3, 8 = 5 + 3, 10 = 7 + 3, 12 = 7 + 5,
and so on. Goldbach’s conjecture was verified by hand calculations for numbers up to the mil-
lions prior to the advent of computers. With computers it can be checked for extremely large
numbers. As of mid 2011, the conjecture has been checked for all positive even integers up to
1.6 · 1018.

Although no proof of Goldbach’s conjecture has been found, most mathematicians believe
it is true. Several theorems have been proved, using complicated methods from analytic number
theory far beyond the scope of this book, establishing results weaker than Goldbach’s conjecture.
Among these are the result that every even integer greater than 2 is the sum of at most six primes
(proved in 1995 by O. Ramaré) and that every sufficiently large positive integer is the sum of a
prime and a number that is either prime or the product of two primes (proved in 1966 by J. R.
Chen). Perhaps Goldbach’s conjecture will be settled in the not too distant future. ▲

EXAMPLE 8 There are many conjectures asserting that there are infinitely many primes of certain special
forms.A conjecture of this sort is the conjecture that there are infinitely many primes of the form
n2 + 1, where n is a positive integer. For example, 5 = 22 + 1, 17 = 42 + 1, 37 = 62 + 1, and
so on. The best result currently known is that there are infinitely many positive integers n such
that n2 + 1 is prime or the product of at most two primes (proved by Henryk Iwaniec in 1973
using advanced techniques from analytic number theory, far beyond the scope of this book). ▲

EXAMPLE 9 The Twin Prime Conjecture Twin primes are pairs of primes that differ by 2, such as 3 and
5, 5 and 7, 11 and 13, 17 and 19, and 4967 and 4969. The twin prime conjecture asserts that
there are infinitely many twin primes. The strongest result proved concerning twin primes is
that there are infinitely many pairs p and p + 2, where p is prime and p + 2 is prime or the
product of two primes (proved by J. R. Chen in 1966). The world’s record for twin primes, as of
mid 2011, consists of the numbers 65,516,468,355 · 2333,333 ± 1, which have 100,355 decimal
digits. ▲

CHRISTIAN GOLDBACH (1690–1764) Christian Goldbach was born in Königsberg, Prussia, the city noted for its famous bridge
problem (which will be studied in Section 10.5). He became professor of mathematics at the Academy in St. Petersburg in 1725. In
1728 Goldbach went to Moscow to tutor the son of the Tsar. He entered the world of politics when, in 1742, he became a staff member
in the Russian Ministry of Foreign Affairs. Goldbach is best known for his correspondence with eminent mathematicians, including
Euler and Bernoulli, for his famous conjectures in number theory, and for several contributions to analysis.

4.3 Primes and Greatest Common Divisors 265

Greatest Common Divisors and Least Common Multiples

The largest integer that divides both of two integers is called the greatest common divisor of
these integers.

DEFINITION 2 Let a and b be integers, not both zero. The largest integer d such that d | a and d | b is called
the greatest common divisor of a and b. The greatest common divisor of a and b is denoted
by gcd(a, b).

The greatest common divisor of two integers, not both zero, exists because the set of common
divisors of these integers is nonempty and finite. One way to find the greatest common divisor
of two integers is to find all the positive common divisors of both integers and then take the
largest divisor. This is done in Examples 10 and 11. Later, a more efficient method of finding
greatest common divisors will be given.

EXAMPLE 10 What is the greatest common divisor of 24 and 36?

Solution: The positive common divisors of 24 and 36 are 1, 2, 3, 4, 6, and 12. Hence,
gcd(24, 36) = 12. ▲

EXAMPLE 11 What is the greatest common divisor of 17 and 22?

Solution: The integers 17 and 22 have no positive common divisors other than 1, so that
gcd(17, 22) = 1. ▲

Because it is often important to specify that two integers have no common positive divisor
other than 1, we have Definition 3.

DEFINITION 3 The integers a and b are relatively prime if their greatest common divisor is 1.

EXAMPLE 12 By Example 11 it follows that the integers 17 and 22 are relatively prime, because
gcd(17, 22) = 1. ▲

Because we often need to specify that no two integers in a set of integers have a common
positive divisor greater than 1, we make Definition 4.

DEFINITION 4 The integers a1, a2, . . . , an are pairwise relatively prime if gcd(ai, aj) = 1 whenever 1 ≤
i < j ≤ n.

EXAMPLE 13 Determine whether the integers 10, 17, and 21 are pairwise relatively prime and whether the
integers 10, 19, and 24 are pairwise relatively prime.

Solution: Because gcd(10, 17) = 1, gcd(10, 21) = 1, and gcd(17, 21) = 1, we conclude that
10, 17, and 21 are pairwise relatively prime.

Because gcd(10, 24) = 2 > 1, we see that 10, 19, and 24 are not pairwise relatively
prime. ▲

266 4 / Number Theory and Cryptography

Another way to find the greatest common divisor of two positive integers is to use the prime
factorizations of these integers. Suppose that the prime factorizations of the positive integers a
and b are

a = pa11 p
a2
2 · · ·pann , b = pb11 p

b2
2 · · ·pbnn ,

where each exponent is a nonnegative integer, and where all primes occurring in the prime
factorization of either a or b are included in both factorizations, with zero exponents if necessary.
Then gcd(a, b) is given by

gcd(a, b) = pmin(a1, b1)
1 p

min(a2, b2)
2 · · ·pmin(an, bn)

n ,

where min(x, y) represents the minimum of the two numbers x and y. To show that this formula
for gcd(a, b) is valid, we must show that the integer on the right-hand side divides both a and b,
and that no larger integer also does. This integer does divide both a and b, because the power of
each prime in the factorization does not exceed the power of this prime in either the factorization
of a or that of b. Further, no larger integer can divide both a and b, because the exponents of
the primes in this factorization cannot be increased, and no other primes can be included.

EXAMPLE 14 Because the prime factorizations of 120 and 500 are 120 = 23 · 3 · 5 and 500 = 22 · 53, the
greatest common divisor is

gcd(120, 500) = 2min(3, 2)3min(1, 0)5min(1, 3) = 223051 = 20. ▲

Prime factorizations can also be used to find the least common multiple of two integers.

DEFINITION 5 The least common multiple of the positive integers a and b is the smallest positive integer that
is divisible by both a and b. The least common multiple of a and b is denoted by lcm(a, b).

The least common multiple exists because the set of integers divisible by both a and b is
nonempty (as ab belongs to this set, for instance), and every nonempty set of positive integers
has a least element (by the well-ordering property, which will be discussed in Section 5.2).
Suppose that the prime factorizations of a and b are as before. Then the least common multiple
of a and b is given by

lcm(a, b) = pmax(a1, b1)
1 p

max(a2, b2)
2 · · ·pmax(an, bn)

n ,

where max(x, y)denotes the maximum of the two numbersx andy.This formula is valid because
a common multiple of a and b has at least max(ai, bi) factors of pi in its prime factorization,
and the least common multiple has no other prime factors besides those in a and b.

EXAMPLE 15 What is the least common multiple of 233572 and 2433?

Solution:We have

lcm(233572, 2433) = 2max(3, 4)3max(5, 3)7max(2, 0) = 243572. ▲

Theorem 5 gives the relationship between the greatest common divisor and least common
multiple of two integers. It can be proved using the formulae we have derived for these quantities.
The proof of this theorem is left as Exercise 31.

4.3 Primes and Greatest Common Divisors 267

THEOREM 5 Let a and b be positive integers. Then

ab = gcd(a, b) · lcm(a, b).

The Euclidean Algorithm

Computing the greatest common divisor of two integers directly from the prime factorizations
of these integers is inefficient. The reason is that it is time-consuming to find prime factoriza-
tions. We will give a more efficient method of finding the greatest common divisor, called the
Euclidean algorithm. This algorithm has been known since ancient times. It is named after the
ancient Greek mathematician Euclid, who included a description of this algorithm in his book
The Elements.

Before describing the Euclidean algorithm, we will show how it is used to find gcd(91, 287).
First, divide 287, the larger of the two integers, by 91, the smaller, to obtain

287 = 91 · 3 + 14.

Any divisor of 91 and 287 must also be a divisor of 287 − 91 · 3 = 14. Also, any divisor of 91
and 14 must also be a divisor of 287 = 91 · 3 + 14. Hence, the greatest common divisor of 91
and 287 is the same as the greatest common divisor of 91 and 14. This means that the problem
of finding gcd(91, 287) has been reduced to the problem of finding gcd(91, 14).

Next, divide 91 by 14 to obtain

91 = 14 · 6 + 7.

Because any common divisor of 91 and 14 also divides 91 − 14 · 6 = 7 and any common divisor
of 14 and 7 divides 91, it follows that gcd(91, 14) = gcd(14, 7).

Continue by dividing 14 by 7, to obtain

14 = 7 · 2.

Because 7 divides 14, it follows that gcd(14, 7) = 7. Furthermore, because gcd(287, 91) =
gcd(91, 14) = gcd(14, 7) = 7, the original problem has been solved.

We now describe how the Euclidean algorithm works in generality. We will use successive
divisions to reduce the problem of finding the greatest common divisor of two positive integers
to the same problem with smaller integers, until one of the integers is zero.

The Euclidean algorithm is based on the following result about greatest common divisors
and the division algorithm.

EUCLID (325 b.c.e.– 265 b.c.e.) Euclid was the author of the most successful mathematics book ever written,
The Elements, which appeared in over 1000 different editions from ancient to modern times. Little is known
about Euclid’s life, other than that he taught at the famous academy at Alexandria in Egypt. Apparently, Euclid
did not stress applications. When a student asked what he would get by learning geometry, Euclid explained
that knowledge was worth acquiring for its own sake and told his servant to give the student a coin “because he
must make a profit from what he learns.”

268 4 / Number Theory and Cryptography

LEMMA 1 Let a = bq + r , where a, b, q, and r are integers. Then gcd(a, b) = gcd(b, r).

Proof: If we can show that the common divisors of a and b are the same as the common divisors
of b and r , we will have shown that gcd(a, b) = gcd(b, r), because both pairs must have the
same greatest common divisor.

So suppose that d divides both a and b. Then it follows that d also divides a − bq = r (from
Theorem 1 of Section 4.1). Hence, any common divisor of a and b is also a common divisor
of b and r .

Likewise, suppose that d divides both b and r . Then d also divides bq + r = a. Hence, any
common divisor of b and r is also a common divisor of a and b.

Consequently, gcd(a, b) = gcd(b, r).

Suppose that a and b are positive integers with a ≥ b. Let r0 = a and r1 = b. When we
successively apply the division algorithm, we obtain

r0 = r1q1 + r2 0 ≤ r2 < r1,
r1 = r2q2 + r3 0 ≤ r3 < r2,

·
·
·

rn−2 = rn−1qn−1 + rn 0 ≤ rn < rn−1,

rn−1 = rnqn.

Eventually a remainder of zero occurs in this sequence of successive divisions, because the
sequence of remainders a = r0 > r1 > r2 > · · · ≥ 0 cannot contain more than a terms. Fur-
thermore, it follows from Lemma 1 that

gcd(a, b) = gcd(r0, r1) = gcd(r1, r2) = · · · = gcd(rn−2, rn−1)

= gcd(rn−1, rn) = gcd(rn, 0) = rn.

Hence, the greatest common divisor is the last nonzero remainder in the sequence of divisions.

EXAMPLE 16 Find the greatest common divisor of 414 and 662 using the Euclidean algorithm.

Solution: Successive uses of the division algorithm give:

662 = 414 · 1 + 248

414 = 248 · 1 + 166

248 = 166 · 1 + 82

166 = 82 · 2 + 2

82 = 2 · 41.

Hence, gcd(414, 662) = 2, because 2 is the last nonzero remainder. ▲

The Euclidean algorithm is expressed in pseudocode in Algorithm 1.

4.3 Primes and Greatest Common Divisors 269

ALGORITHM 1 The Euclidean Algorithm.

procedure gcd(a, b: positive integers)
x := a
y := b
while y = 0

r := x mod y
x := y
y := r

return x{gcd(a, b) is x}

In Algorithm 1, the initial values of x and y are a and b, respectively. At each stage of the
procedure, x is replaced by y, and y is replaced by x mod y, which is the remainder when x is
divided by y. This process is repeated as long as y = 0. The algorithm terminates when y = 0,
and the value of x at that point, the last nonzero remainder in the procedure, is the greatest
common divisor of a and b.

We will study the time complexity of the Euclidean algorithm in Section 5.3, where we
will show that the number of divisions required to find the greatest common divisor of a and b,
where a ≥ b, is O(log b).

gcds as Linear Combinations

An important result we will use throughout the remainder of this section is that the greatest
common divisor of two integers a and b can be expressed in the form

sa + tb,

where s and t are integers. In other words, gcd(a, b) can be expressed as a linear combination
with integer coefficients of a and b. For example, gcd(6, 14) = 2, and 2 = (−2) · 6 + 1 · 14.
We state this fact as Theorem 6.

THEOREM 6 BÉZOUT’S THEOREM If a and b are positive integers, then there exist integers s and t
such that gcd(a, b) = sa + tb.

ÉTIENNE BÉZOUT (1730–1783) Bézout was born in Nemours, France, where his father was a magistrate.
Reading the writings of the great mathematician Leonhard Euler enticed him to become a mathematician. In
1758 he was appointed to a position at the Académie des Sciences in Paris; in 1763 he was appointed examiner
of the Gardes de la Marine, where he was assigned the task of writing mathematics textbooks. This assignment
led to a four-volume textbook completed in 1767. Bézout is well known for his six-volume comprehensive
textbook on mathematics. His textbooks were extremely popular and were studied by many generations of
students hoping to enter the École Polytechnique, the famous engineering and science school. His books were
translated into English and used in North America, including at Harvard.

His most important original work was published in 1779 in the book Théorie générale des équations
algébriques, where he introduced important methods for solving simultaneous polynomial equations in many unknowns. The most
well-known result in this book is now calledBézout’s theorem, which in its general form tells us that the number of common points on
two plane algebraic curves equals the product of the degrees of these curves. Bézout is also credited with inventing the determinant
(which was called the Bézoutian by the great English mathematician James Joseph Sylvester). He was considered to be a kind person
with a warm heart, although he had a reserved and somber personality. He was happily married and a father.

270 4 / Number Theory and Cryptography

DEFINITION 6 If a and b are positive integers, then integers s and t such that gcd(a, b) = sa + tb are called
Bézout coefficients of a and b (after Étienne Bézout, a French mathematician of the eighteenth
century). Also, the equation gcd(a, b) = sa + tb is called Bézout’s identity.

We will not give a formal proof of Theorem 6 here (see Exercise 36 in Section 5.2 and [Ro10]
for proofs). We will provide an example of a general method that can be used to find a linear
combination of two integers equal to their greatest common divisor. (In this section, we will
assume that a linear combination has integer coefficients.) The method proceeds by working
backward through the divisions of the Euclidean algorithm, so this method requires a forward
pass and a backward pass through the steps of the Euclidean algorithm. (In the exercises we
will describe an algorithm called the extended Euclidean algorithm, which can be used to
express gcd(a, b) as a linear combination of a and b using a single pass through the steps of the
Euclidean algorithm; see the preamble to Exercise 41.)

EXAMPLE 17 Express gcd(252, 198) = 18 as a linear combination of 252 and 198.

Solution: To show that gcd(252, 198) = 18, the Euclidean algorithm uses these divisions:

252 = 1 · 198 + 54

198 = 3 · 54 + 36

54 = 1 · 36 + 18

36 = 2 · 18.

Using the next-to-last division (the third division), we can express gcd(252, 198) = 18 as a
linear combination of 54 and 36. We find that

18 = 54 − 1 · 36.

The second division tells us that

36 = 198 − 3 · 54.

Substituting this expression for 36 into the previous equation, we can express 18 as a linear
combination of 54 and 198. We have

18 = 54 − 1 · 36 = 54 − 1 · (198 − 3 · 54) = 4 · 54 − 1 · 198.

The first division tells us that

54 = 252 − 1 · 198.

Substituting this expression for 54 into the previous equation, we can express 18 as a linear
combination of 252 and 198. We conclude that

18 = 4 · (252 − 1 · 198) − 1 · 198 = 4 · 252 − 5 · 198,

completing the solution. ▲

We will use Theorem 6 to develop several useful results. One of our goals will be to prove
the part of the fundamental theorem of arithmetic asserting that a positive integer has at most
one prime factorization. We will show that if a positive integer has a factorization into primes,
where the primes are written in nondecreasing order, then this factorization is unique.

4.3 Primes and Greatest Common Divisors 271

First, we need to develop some results about divisibility.

LEMMA 2 If a, b, and c are positive integers such that gcd(a, b) = 1 and a | bc, then a | c.

Proof: Because gcd(a, b) = 1, by Bézout’s theorem there are integers s and t such that

sa + tb = 1.

Multiplying both sides of this equation by c, we obtain

sac + tbc = c.

We can now use Theorem 1 of Section 4.1 to show that a | c. By part (ii) of that theorem, a | tbc.
Because a | sac and a | tbc, by part (i) of that theorem, we conclude that a divides sac + tbc.
Because sac + tbc = c, we conclude that a | c, completing the proof.

We will use the following generalization of Lemma 2 in the proof of uniqueness of prime
factorizations. (The proof of Lemma 3 is left as Exercise 64 in Section 5.1, because it can be
most easily carried out using the method of mathematical induction, covered in that section.)

LEMMA 3 If p is a prime and p | a1a2 · · · an, where each ai is an integer, then p | ai for some i.

We can now show that a factorization of an integer into primes is unique. That is, we will
show that every integer can be written as the product of primes in nondecreasing order in at
most one way. This is part of the fundamental theorem of arithmetic. We will prove the other
part, that every integer has a factorization into primes, in Section 5.2.

Proof (of the uniqueness of the prime factorization of a positive integer): We will use a
proof by contradiction. Suppose that the positive integer n can be written as the product of primes
in two different ways, say, n = p1p2 · · ·ps and n = q1q2 · · · qt , each pi and qj are primes such
that p1 ≤ p2 ≤ · · · ≤ ps and q1 ≤ q2 ≤ · · · ≤ qt .

When we remove all common primes from the two factorizations, we have

pi1pi2 · · ·piu = qj1qj2 · · · qjv ,

where no prime occurs on both sides of this equation and u and v are positive integers. By
Lemma 3 it follows that pi1 divides qjk for some k. Because no prime divides another prime,
this is impossible. Consequently, there can be at most one factorization of n into primes in
nondecreasing order.

Lemma 2 can also be used to prove a result about dividing both sides of a congruence by
the same integer. We have shown (Theorem 5 in Section 4.1) that we can multiply both sides of
a congruence by the same integer. However, dividing both sides of a congruence by an integer
does not always produce a valid congruence, as Example 18 shows.

EXAMPLE 18 The congruence 14 ≡ 8 (mod 6) holds, but both sides of this congruence cannot be divided by 2
to produce a valid congruence because 14/2 = 7 and 8/2 = 4, but 7 ≡ 4 (mod 6). ▲

272 4 / Number Theory and Cryptography

Although we cannot divide both sides of a congruence by any integer to produce a valid
congruence, we can if this integer is relatively prime to the modulus. Theorem 7 establishes this
important fact. We use Lemma 2 in the proof.

THEOREM 7 Let m be a positive integer and let a, b, and c be integers. If ac ≡ bc (mod m) and
gcd(c,m) = 1, then a ≡ b (mod m).

Proof: Because ac ≡ bc (mod m), m | ac − bc = c(a − b). By Lemma 2, because
gcd(c,m) = 1, it follows that m | a − b. We conclude that a ≡ b (mod m).

Exercises

1. Determine whether each of these integers is prime.

a) 21 b) 29
c) 71 d) 97
e) 111 f) 143

2. Determine whether each of these integers is prime.

a) 19 b) 27
c) 93 d) 101
e) 107 f) 113

3. Find the prime factorization of each of these integers.

a) 88 b) 126 c) 729
d) 1001 e) 1111 f) 909,090

4. Find the prime factorization of each of these integers.

a) 39 b) 81 c) 101
d) 143 e) 289 f) 899

5. Find the prime factorization of 10!.
∗6. How many zeros are there at the end of 100!?
7. Express in pseudocode the trial division algorithm for

determining whether an integer is prime.
8. Express in pseudocode the algorithm described in the text

for finding the prime factorization of an integer.
9. Show that if am + 1 is composite if a and m are integers

greater than 1 and m is odd. [Hint: Show that x + 1 is a
factor of the polynomial xm + 1 if m is odd.]

10. Show that if 2m + 1 is an odd prime, then m = 2n

for some nonnegative integer n. [Hint: First show that
the polynomial identity xm + 1 = (xk + 1)(xk(t−1) −
xk(t−2) + · · · − xk + 1) holds, where m = kt and t
is odd.]

∗11. Show that log2 3 is an irrational number. Recall that an ir-
rational number is a real number x that cannot be written
as the ratio of two integers.

12. Prove that for every positive integer n, there are n con-
secutive composite integers. [Hint: Consider the n con-
secutive integers starting with (n+ 1)! + 2.]

∗13. Prove or disprove that there are three consecutive odd
positive integers that are primes, that is, odd primes of
the form p, p + 2, and p + 4.

14. Which positive integers less than 12 are relatively prime
to 12?

15. Which positive integers less than 30 are relatively prime
to 30?

16. Determine whether the integers in each of these sets are
pairwise relatively prime.

a) 21, 34, 55 b) 14, 17, 85
c) 25, 41, 49, 64 d) 17, 18, 19, 23

17. Determine whether the integers in each of these sets are
pairwise relatively prime.

a) 11, 15, 19 b) 14, 15, 21
c) 12, 17, 31, 37 d) 7, 8, 9, 11

18. We call a positive integer perfect if it equals the sum of
its positive divisors other than itself.

a) Show that 6 and 28 are perfect.
b) Show that 2p−1(2p − 1) is a perfect number when

2p − 1 is prime.

19. Show that if 2n − 1 is prime, then n is prime. [Hint: Use
the identity 2ab − 1 = (2a − 1) · (2a(b−1) + 2a(b−2) +
· · · + 2a + 1).]

20. Determine whether each of these integers is prime, veri-
fying some of Mersenne’s claims.

a) 27 − 1 b) 29 − 1
c) 211 − 1 d) 213 − 1

The value of the Euler φ-function at the positive integer n
is defined to be the number of positive integers less than or
equal to n that are relatively prime to n. [Note: φ is the Greek
letter phi.]
21. Find these values of the Euler φ-function.

a) φ(4). b) φ(10). c) φ(13).

22. Show that n is prime if and only if φ(n) = n− 1.
23. What is the value of φ(pk) when p is prime and k is a

positive integer?
24. What are the greatest common divisors of these pairs of

integers?

a) 22 · 33 · 55, 25 · 33 · 52

b) 2 · 3 · 5 · 7 · 11 · 13, 211 · 39 · 11 · 1714

4.3 Primes and Greatest Common Divisors 273

c) 17, 1717 d) 22 · 7, 53 · 13
e) 0, 5 f) 2 · 3 · 5 · 7, 2 · 3 · 5 · 7

25. What are the greatest common divisors of these pairs of
integers?

a) 37 · 53 · 73, 211 · 35 · 59

b) 11 · 13 · 17, 29 · 37 · 55 · 73

c) 2331, 2317

d) 41 · 43 · 53, 41 · 43 · 53
e) 313 · 517, 212 · 721

f) 1111, 0

26. What is the least common multiple of each pair in Exer-
cise 24?

27. What is the least common multiple of each pair in Exer-
cise 25?

28. Find gcd(1000, 625) and lcm(1000, 625) and verify that
gcd(1000, 625) · lcm(1000, 625) = 1000 · 625.

29. Find gcd(92928, 123552) and lcm(92928, 123552), and
verify that gcd(92928, 123552) · lcm(92928, 123552) =
92928 · 123552. [Hint: First find the prime factorizations
of 92928 and 123552.]

30. If the product of two integers is 273852711 and their great-
est common divisor is 23345, what is their least common
multiple?

31. Show that if a and b are positive integers, then ab =
gcd(a, b) · lcm(a, b). [Hint:Use the prime factorizations
of a and b and the formulae for gcd(a, b) and lcm(a, b)
in terms of these factorizations.]

32. Use the Euclidean algorithm to find

a) gcd(1, 5). b) gcd(100, 101).
c) gcd(123, 277). d) gcd(1529, 14039).
e) gcd(1529, 14038). f) gcd(11111, 111111).

33. Use the Euclidean algorithm to find

a) gcd(12, 18). b) gcd(111, 201).
c) gcd(1001, 1331). d) gcd(12345, 54321).
e) gcd(1000, 5040). f) gcd(9888, 6060).

34. How many divisions are required to find gcd(21, 34) us-
ing the Euclidean algorithm?

35. How many divisions are required to find gcd(34, 55) us-
ing the Euclidean algorithm?

∗36. Show that if a and b are both positive integers, then
(2a − 1) mod (2b − 1) = 2a mod b − 1.

∗37. Use Exercise 36 to show that if a and b are posi-
tive integers, then gcd(2a − 1, 2b − 1) = 2gcd(a, b) − 1.
[Hint: Show that the remainders obtained when the Eu-
clidean algorithm is used to compute gcd(2a − 1, 2b − 1)
are of the form 2r − 1, where r is a remainder arising
when the Euclidean algorithm is used to find gcd(a, b).]

38. Use Exercise 37 to show that the integers 235 − 1, 234 −
1, 233 − 1, 231 − 1, 229 − 1, and 223 − 1 are pairwise
relatively prime.

39. Using the method followed in Example 17, express the
greatest common divisor of each of these pairs of integers
as a linear combination of these integers.

a) 10, 11 b) 21, 44 c) 36, 48
d) 34, 55 e) 117, 213 f) 0, 223
g) 123, 2347 h) 3454, 4666 i) 9999, 11111

40. Using the method followed in Example 17, express the
greatest common divisor of each of these pairs of integers
as a linear combination of these integers.

a) 9, 11 b) 33, 44 c) 35, 78
d) 21, 55 e) 101, 203 f) 124, 323
g) 2002, 2339 h) 3457, 4669 i) 10001, 13422

The extended Euclidean algorithm can be used to express
gcd(a, b) as a linear combination with integer coefficients of
the integers a and b. We set s0 = 1, s1 = 0, t0 = 0, and t1 = 1
and let sj = sj−2 − qj−1sj−1 and tj = tj−2 − qj−1tj−1 for
j = 2, 3, . . . , n, where the qj are the quotients in the di-
visions used when the Euclidean algorithm finds gcd(a, b),
as shown in the text. It can be shown (see [Ro10]) that
gcd(a, b) = sna + tnb. The main advantage of the extended
Euclidean algorithm is that it uses one pass through the steps
of the Euclidean algorithm to find Bézout coefficients of a
and b, unlike the method in the text which uses two passes.

41. Use the extended Euclidean algorithm to express
gcd(26, 91) as a linear combination of 26 and 91.

42. Use the extended Euclidean algorithm to express
gcd(252, 356) as a linear combination of 252 and 356.

43. Use the extended Euclidean algorithm to express
gcd(144, 89) as a linear combination of 144 and 89.

44. Use the extended Euclidean algorithm to express
gcd(1001, 100001) as a linear combination of 1001 and
100001.

45. Describe the extended Euclidean algorithm using pseu-
docode.

46. Find the smallest positive integer with exactly n different
positive factors when n is

a) 3. b) 4. c) 5.
d) 6. e) 10.

47. Can you find a formula or rule for the nth term of a se-
quence related to the prime numbers or prime factoriza-
tions so that the initial terms of the sequence have these
values?

a) 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, . . .
b) 1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, . . .
c) 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, . . .
d) 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, . . .
e) 1, 2, 3, 3, 5, 5, 7, 7, 7, 7, 11, 11, 13, 13, . . .
f) 1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690,

223092870, . . .

48. Can you find a formula or rule for the nth term of a se-
quence related to the prime numbers or prime factoriza-
tions so that the initial terms of the sequence have these
values?

a) 2, 2, 3, 5, 5, 7, 7, 11, 11, 11, 11, 13, 13, . . .
b) 0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, . . .
c) 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, . . .
d) 1, −1, −1, 0, −1, 1, −1, 0, 0, 1, −1, 0, −1, 1, 1, . . .
e) 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, . . .
f) 4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, . . .

49. Prove that the product of any three consecutive integers
is divisible by 6.

274 4 / Number Theory and Cryptography

50. Show that if a, b, andm are integers such thatm ≥ 2 and
a ≡ b (mod m), then gcd(a,m) = gcd(b,m).

∗51. Prove or disprove that n2 − 79n+ 1601 is prime when-
ever n is a positive integer.

52. Prove or disprove that p1p2 · · ·pn + 1 is prime for every
positive integer n, where p1, p2, . . . , pn are the n small-
est prime numbers.

53. Show that there is a composite integer in every arithmetic
progression ak + b, k = 1, 2, . . . where a and b are pos-
itive integers.

54. Adapt the proof in the text that there are infinitely many
primes to prove that there are infinitely many primes
of the form 3k + 2, where k is a nonnegative inte-
ger. [Hint: Suppose that there are only finitely many
such primes q1, q2, . . . , qn, and consider the number
3q1q2 · · · qn − 1.]

55. Adapt the proof in the text that there are infinitely many
primes to prove that there are infinitely many primes

of the form 4k + 3, where k is a nonnegative inte-
ger. [Hint: Suppose that there are only finitely many
such primes q1, q2, . . . , qn, and consider the number
4q1q2 · · · qn − 1.]

∗56. Prove that the set of positive rational numbers is countable
by setting up a function that assigns to a rational num-
ber p/q with gcd(p, q) = 1 the base 11 number formed
by the decimal representation of p followed by the base
11 digit A, which corresponds to the decimal number 10,
followed by the decimal representation of q.

∗57. Prove that the set of positive rational numbers is countable
by showing that the functionK is a one-to-one correspon-
dence between the set of positive rational numbers and
the set of positive integers ifK(m/n) = p

2a1
1 p

2a2
2 · · · · ·

p
2as
s q

2b1−1
1 q

2b2−1
2 · · · · · q2bt−1

t , where gcd(m, n) = 1
and the prime-power factorizations of m and n are m =
p
a1
1 p

a2
2 · · · · · pass and n = qb1

1 q
b2
2 · · · qbtt .

4.4 Solving Congruences

Introduction

Solving linear congruences, which have the form ax ≡ b (mod m), is an essential task in the
study of number theory and its applications, just as solving linear equations plays an important
role in calculus and linear algebra. To solve linear congruences, we employ inverses modulom.
We explain how to work backwards through the steps of the Euclidean algorithm to find inverses
modulo m. Once we have found an inverse of a modulo m, we solve the congruence ax ≡ b
(mod m) by multiplying both sides of the congruence by this inverse.

Simultaneous systems of linear congruence have been studied since ancient times. For
example, the Chinese mathematician Sun-Tsu studied them in the first century. We will show
how to solve systems of linear congruences modulo pairwise relatively prime moduli. The result
we will prove is called the Chinese remainder theorem, and our proof will give a method to
find all solutions of such systems of congruences. We will also show how to use the Chinese
remainder theorem as a basis for performing arithmetic with large integers.

We will introduce a useful result of Fermat, known as Fermat’s little theorem, which states
that ifp is prime andp does not divide a, then ap−1 ≡ 1 (mod p).We will examine the converse
of this statement, which will lead us to the concept of a pseudoprime.A pseudoprimem to the base
a is a composite integerm that masquerades as a prime by satisfying the congruence am−1 ≡ 1
(mod m). We will also give an example of a Carmichael number, which is a composite integer
that is a pseudoprime to all bases a relatively prime to it.

We also introduce the notion of discrete logarithms, which are analogous to ordinary loga-
rithms. To define discrete logarithms we must first define primitive roots. A primitive root of a
prime p is an integer r such that every integer not divisible by p is congruent to a power of r
modulo p. If r is a primitive root of p and re ≡ a (mod p), then e is the discrete logarithm of a
modulo p to the base r . Finding discrete logarithms turns out to be an extremely difficult prob-
lem in general. The difficulty of this problem is the basis for the security of many cryptographic
systems.

4.4 Solving Congruences 275

Linear Congruences

A congruence of the form

ax ≡ b (mod m),

where m is a positive integer, a and b are integers, and x is a variable, is called a linear
congruence. Such congruences arise throughout number theory and its applications.

How can we solve the linear congruence ax ≡ b (mod m), that is, how can we find all
integers x that satisfy this congruence? One method that we will describe uses an integer a
such that aa ≡ 1 (mod m), if such an integer exists. Such an integer a is said to be an inverse
of a modulo m. Theorem 1 guarantees that an inverse of a modulo m exists whenever a and m
are relatively prime.

THEOREM 1 If a and m are relatively prime integers and m > 1, then an inverse of a modulo m exists.
Furthermore, this inverse is unique modulo m. (That is, there is a unique positive integer a
less than m that is an inverse of a modulo m and every other inverse of a modulo m is
congruent to a modulo m.)

Proof: By Theorem 6 of Section 4.3, because gcd(a,m) = 1, there are integers s and t such
that

sa + tm = 1.

This implies that

sa + tm ≡ 1 (mod m).

Because tm ≡ 0 (mod m), it follows that

sa ≡ 1 (mod m).

Consequently, s is an inverse of a modulo m. That this inverse is unique modulo m is left as
Exercise 7.

Using inspection to find an inverse of a modulo m is easy when m is small. To find this
inverse, we look for a multiple of a that exceeds a multiple of m by 1. For example, to find an
inverse of 3 modulo 7, we can find j · 3 for j = 1, 2, . . . , 6, stopping when we find a multiple
of 3 that is one more than a multiple of 7. We can speed this approach up if we note that
2 · 3 ≡ −1 (mod 7). This means that (−2) · 3 ≡ 1 (mod 7). Hence, 5 · 3 ≡ 1 (mod 7), so 5 is an
inverse of 3 modulo 7.

We can design a more efficient algorithm than brute force to find an inverse of a modulom
when gcd(a,m) = 1 using the steps of the Euclidean algorithm. By reversing these steps as
in Example 17 of Section 4.3, we can find a linear combination sa + tm = 1 where s and t
are integers. Reducing both sides of this equation modulo m tells us that s is an inverse of
a modulo m. We illustrate this procedure in Example 1.

276 4 / Number Theory and Cryptography

EXAMPLE 1 Find an inverse of 3 modulo 7 by first finding Bézout coefficients of 3 and 7. (Note that we have
already shown that 5 is an inverse of 3 modulo 7 by inspection.)

Solution: Because gcd(3, 7) = 1, Theorem 1 tells us that an inverse of 3 modulo 7 exists. The
Euclidean algorithm ends quickly when used to find the greatest common divisor of 3 and 7:

7 = 2 · 3 + 1.

From this equation we see that

−2 · 3 + 1 · 7 = 1.

This shows that −2 and 1 are Bézout coefficients of 3 and 7. We see that −2 is an inverse of 3
modulo 7. Note that every integer congruent to −2 modulo 7 is also an inverse of 3, such as 5,
−9, 12, and so on. ▲

EXAMPLE 2 Find an inverse of 101 modulo 4620.

Solution: For completeness, we present all steps used to compute an inverse of 101 modulo 4620.
(Only the last step goes beyond methods developed in Section 4.3 and illustrated in Example 17
in that section.) First, we use the Euclidean algorithm to show that gcd(101, 4620) = 1. Then
we will reverse the steps to find Bézout coefficients a and b such that 101a + 4620b = 1. It will
then follow that a is an inverse of 101 modulo 4620. The steps used by the Euclidean algorithm
to find gcd(101, 4620) are

4620 = 45 · 101 + 75

101 = 1 · 75 + 26

75 = 2 · 26 + 23

26 = 1 · 23 + 3

23 = 7 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1.

Because the last nonzero remainder is 1, we know that gcd(101, 4620) = 1. We can now find
the Bézout coefficients for 101 and 4620 by working backwards through these steps, expressing
gcd(101, 4620) = 1 in terms of each successive pair of remainders. In each step we eliminate
the remainder by expressing it as a linear combination of the divisor and the dividend. We obtain

1 = 3 − 1 · 2

= 3 − 1 · (23 − 7 · 3) = −1 · 23 + 8 · 3

= −1 · 23 + 8 · (26 − 1 · 23) = 8 · 26 − 9 · 23

= 8 · 26 − 9 · (75 − 2 · 26) = −9 · 75 + 26 · 26

= −9 · 75 + 26 · (101 − 1 · 75) = 26 · 101 − 35 · 75

= 26 · 101 − 35 · (4620 − 45 · 101) = −35 · 4620 + 1601 · 101.

That −35 · 4620 + 1601 · 101 = 1 tells us that −35 and 1601 are Bézout coefficients of 4620
and 101, and 1601 is an inverse of 101 modulo 4620. ▲

4.4 Solving Congruences 277

Once we have an inverse a of a modulo m, we can solve the congruence ax ≡ b (mod m)
by multiplying both sides of the linear congruence by a, as Example 3 illustrates.

EXAMPLE 3 What are the solutions of the linear congruence 3x ≡ 4 (mod 7)?

Solution: By Example 1 we know that −2 is an inverse of 3 modulo 7. Multiplying both sides
of the congruence by −2 shows that

−2 · 3x ≡ −2 · 4 (mod 7).

Because −6 ≡ 1 (mod 7) and −8 ≡ 6 (mod 7), it follows that if x is a solution, then x ≡ −8 ≡
6 (mod 7).

We need to determine whether every x with x ≡ 6 (mod 7) is a solution. Assume that
x ≡ 6 (mod 7). Then, by Theorem 5 of Section 4.1, it follows that

3x ≡ 3 · 6 = 18 ≡ 4 (mod 7),

which shows that all such x satisfy the congruence. We conclude that the solutions to the
congruence are the integers x such that x ≡ 6 (mod 7), namely, 6, 13, 20, . . . and −1, −8,
−15, ▲

The Chinese Remainder Theorem

Systems of linear congruences arise in many contexts. For example, as we will see later, they are
the basis for a method that can be used to perform arithmetic with large integers. Such systems
can even be found as word puzzles in the writings of ancient Chinese and Hindu mathematicians,
such as that given in Example 4.

EXAMPLE 4 In the first century, the Chinese mathematician Sun-Tsu asked:

There are certain things whose number is unknown. When divided by 3, the remainder
is 2; when divided by 5, the remainder is 3; and when divided by 7, the remainder is 2. What
will be the number of things?

This puzzle can be translated into the following question: What are the solutions of the
systems of congruences

x ≡ 2 (mod 3),
x ≡ 3 (mod 5),
x ≡ 2 (mod 7)?

We will solve this system, and with it Sun-Tsu’s puzzle, later in this section. ▲

The Chinese remainder theorem, named after the Chinese heritage of problems involving
systems of linear congruences, states that when the moduli of a system of linear congruences
are pairwise relatively prime, there is a unique solution of the system modulo the product of the
moduli.

278 4 / Number Theory and Cryptography

THEOREM 2 THE CHINESE REMAINDERTHEOREM Letm1,m2, . . . , mn be pairwise relatively
prime positive integers greater than one and a1, a2, . . . , an arbitrary integers. Then the system

x ≡ a1 (mod m1),

x ≡ a2 (mod m2),

·
·
·

x ≡ an (mod mn)

has a unique solution modulo m = m1m2 · · ·mn. (That is, there is a solution x with
0 ≤ x < m, and all other solutions are congruent modulo m to this solution.)

Proof: To establish this theorem, we need to show that a solution exists and that it is unique
modulo m. We will show that a solution exists by describing a way to construct this solution;
showing that the solution is unique modulo m is Exercise 30.

To construct a simultaneous solution, first let

Mk = m/mk

for k = 1, 2, . . . , n. That is,Mk is the product of the moduli except formk . Becausemi andmk
have no common factors greater than 1 when i = k, it follows that gcd(mk,Mk) = 1. Conse-
quently, by Theorem 1, we know that there is an integer yk , an inverse ofMk modulo mk , such
that

Mkyk ≡ 1 (mod mk).

To construct a simultaneous solution, form the sum

x = a1M1y1 + a2M2y2 + · · · + anMnyn.

We will now show that x is a simultaneous solution. First, note that becauseMj ≡ 0 (mod mk)
whenever j = k, all terms except the kth term in this sum are congruent to 0 modulomk . Because
Mkyk ≡ 1 (mod mk) we see that

x ≡ akMkyk ≡ ak (mod mk),

for k = 1, 2, . . . , n. We have shown that x is a simultaneous solution to the n congruences.

Example 5 illustrates how to use the construction given in our proof of the Chinese remainder
theorem to solve a system of congruences. We will solve the system given in Example 4, arising
in Sun-Tsu’s puzzle.

EXAMPLE 5 To solve the system of congruences in Example 4, first let m = 3 · 5 · 7 = 105, M1 = m/3 =
35,M2 = m/5 = 21, andM3 = m/7 = 15. We see that 2 is an inverse ofM1 = 35 modulo 3,
because 35 · 2 ≡ 2 · 2 ≡ 1 (mod 3); 1 is an inverse of M2 = 21 modulo 5, because 21 ≡
1 (mod 5); and 1 is an inverse ofM3 = 15 (mod 7), because 15 ≡ 1 (mod 7). The solutions to
this system are those x such that

x ≡ a1M1y1 + a2M2y2 + a3M3y3 = 2 · 35 · 2 + 3 · 21 · 1 + 2 · 15 · 1

= 233 ≡ 23 (mod 105).

4.4 Solving Congruences 279

It follows that 23 is the smallest positive integer that is a simultaneous solution. We conclude that
23 is the smallest positive integer that leaves a remainder of 2 when divided by 3, a remainder
of 3 when divided by 5, and a remainder of 2 when divided by 7. ▲

Although the construction in Theorem 2 provides a general method for solving systems of
linear congruences with pairwise relatively prime moduli, it can be easier to solve a system using
a different method. Example 6 illustrates the use of a method known as back substitution.

EXAMPLE 6 Use the method of back substitution to find all integers x such that x ≡ 1 (mod 5),
x ≡ 2 (mod 6), and x ≡ 3 (mod 7).

Solution: By Theorem 4 in Section 4.1, the first congruence can be rewritten as an equality,
x = 5t + 1 where t is an integer. Substituting this expression for x into the second congruence
tells us that

5t + 1 ≡ 2 (mod 6),

which can be easily solved to show that t ≡ 5 (mod 6) (as the reader should verify). Using
Theorem 4 in Section 4.1 again, we see that t = 6u+ 5 where u is an integer. Substituting this
expression for t back into the equation x = 5t + 1 tells us that x = 5(6u+ 5)+ 1 = 30u+ 26.
We insert this into the third equation to obtain

30u+ 26 ≡ 3 (mod 7).

Solving this congruence tells us that u ≡ 6 (mod 7) (as the reader should verify). Hence, Theo-
rem 4 in Section 4.1 tells us that u = 7v+ 6 where v is an integer. Substituting this expression
for u into the equation x = 30u+ 26 tells us that x = 30(7v + 6)+ 26 = 210u+ 206. Trans-
lating this back into a congruence, we find the solution to the simultaneous congruences,

x ≡ 206 (mod 210). ▲

Computer Arithmetic with Large Integers

Suppose that m1,m2, . . . , mn are pairwise relatively prime moduli and let m be their product.
By the Chinese remainder theorem, we can show (see Exercise 28) that an integer a with
0 ≤ a < m can be uniquely represented by the n-tuple consisting of its remainders upon division
by mi, i = 1, 2, . . . , n. That is, we can uniquely represent a by

(a mod m1, a mod m2, . . . , a mod mn).

EXAMPLE 7 What are the pairs used to represent the nonnegative integers less than 12 when they are rep-
resented by the ordered pair where the first component is the remainder of the integer upon
division by 3 and the second component is the remainder of the integer upon division by 4?

Solution: We have the following representations, obtained by finding the remainder of each
integer when it is divided by 3 and by 4:

0 = (0, 0) 4 = (1, 0) 8 = (2, 0)
1 = (1, 1) 5 = (2, 1) 9 = (0, 1)
2 = (2, 2) 6 = (0, 2) 10 = (1, 2)
3 = (0, 3) 7 = (1, 3) 11 = (2, 3). ▲

280 4 / Number Theory and Cryptography

To perform arithmetic with large integers, we select modulim1,m2, . . . , mn, where eachmi
is an integer greater than 2, gcd(mi,mj) = 1 whenever i = j , andm = m1m2 · · ·mn is greater
than the results of the arithmetic operations we want to carry out.

Once we have selected our moduli, we carry out arithmetic operations with large integers by
performing componentwise operations on the n-tuples representing these integers using their
remainders upon division by mi, i = 1, 2, . . . , n. Once we have computed the value of each
component in the result, we recover its value by solving a system of n congruences modulo
mi, i = 1, 2, . . . , n. This method of performing arithmetic with large integers has several valu-
able features. First, it can be used to perform arithmetic with integers larger than can ordinarily
be carried out on a computer. Second, computations with respect to the different moduli can be
done in parallel, speeding up the arithmetic.

EXAMPLE 8 Suppose that performing arithmetic with integers less than 100 on a certain processor is much
quicker than doing arithmetic with larger integers. We can restrict almost all our computations to
integers less than 100 if we represent integers using their remainders modulo pairwise relatively
prime integers less than 100. For example, we can use the moduli of 99, 98, 97, and 95. (These
integers are relatively prime pairwise, because no two have a common factor greater than 1.)

By the Chinese remainder theorem, every nonnegative integer less than 99 · 98 · 97 · 95 =
89,403,930 can be represented uniquely by its remainders when divided by these four mod-
uli. For example, we represent 123,684 as (33, 8, 9, 89), because 123,684 mod 99 = 33;
123,684mod 98 = 8; 123,684mod 97 = 9; and 123,684mod 95 = 89. Similarly, we represent
413,456 as (32, 92, 42, 16).

To find the sum of 123,684 and 413,456, we work with these 4-tuples instead of these two
integers directly. We add the 4-tuples componentwise and reduce each component with respect
to the appropriate modulus. This yields

(33, 8, 9, 89) + (32, 92, 42, 16)

= (65 mod 99, 100 mod 98, 51 mod 97, 105 mod 95)

= (65, 2, 51, 10).

To find the sum, that is, the integer represented by (65, 2, 51, 10), we need to solve the
system of congruences

x ≡ 65 (mod 99),

x ≡ 2 (mod 98),

x ≡ 51 (mod 97),

x ≡ 10 (mod 95).

It can be shown (see Exercise 53) that 537,140 is the unique nonnegative solution of this
system less than 89,403,930. Consequently, 537,140 is the sum. Note that it is only when we
have to recover the integer represented by (65, 2, 51, 10) that we have to do arithmetic with
integers larger than 100. ▲

Particularly good choices for moduli for arithmetic with large integers are sets of integers of
the form 2k − 1, where k is a positive integer, because it is easy to do binary arithmetic modulo
such integers, and because it is easy to find sets of such integers that are pairwise relatively prime.
[The second reason is a consequence of the fact that gcd(2a − 1, 2b − 1) = 2gcd(a, b) − 1, as
Exercise 37 in Section 4.3 shows.] Suppose, for instance, that we can do arithmetic with integers
less than 235 easily on our computer, but that working with larger integers requires special
procedures. We can use pairwise relatively prime moduli less than 235 to perform arithmetic
with integers as large as their product. For example, as Exercise 38 in Section 4.3 shows, the
integers 235 − 1, 234 − 1, 233 − 1, 231 − 1, 229 − 1, and 223 − 1 are pairwise relatively prime.
Because the product of these six moduli exceeds 2184, we can perform arithmetic with integers
as large as 2184 (as long as the results do not exceed this number) by doing arithmetic modulo
each of these six moduli, none of which exceeds 235.

4.4 Solving Congruences 281

Fermat’s Little Theorem

The great French mathematician Pierre de Fermat made many important discoveries in number
theory. One of the most useful of these states that p divides ap−1 − 1 whenever p is prime
and a is an integer not divisible by p. Fermat announced this result in a letter to one of his
correspondents. However, he did not include a proof in the letter, stating that he feared the proof
would be too long. Although Fermat never published a proof of this fact, there is little doubt that
he knew how to prove it, unlike the result known as Fermat’s last theorem. The first published
proof is credited to Leonhard Euler. We now state this theorem in terms of congruences.

THEOREM 3 FERMAT’S LITTLE THEOREM If p is prime and a is an integer not divisible by p,
then

ap−1 ≡ 1 (mod p).

Furthermore, for every integer a we have

ap ≡ a (mod p).

Remark: Fermat’s little theorem tells us that if a ∈ Zp, then ap−1 = 1 in Zp.

The proof of Theorem 3 is outlined in Exercise 19.
Fermat’s little theorem is extremely useful in computing the remainders modulo p of large

powers of integers, as Example 9 illustrates.

EXAMPLE 9 Find 7222 mod 11.

Solution:We can use Fermat’s little theorem to evaluate 7222 mod 11 rather than using the fast
modular exponentiation algorithm. By Fermat’s little theorem we know that 710 ≡ 1 (mod 11),
so (710)k ≡ 1 (mod 11) for every positive integer k. To take advantage of this last congruence,
we divide the exponent 222 by 10, finding that 222 = 22 · 10 + 2. We now see that

7222 = 722·10+2 = (710)2272 ≡ (1)22 · 49 ≡ 5 (mod 11).

It follows that 7222 mod 11 = 5. ▲

Example 9 illustrated how we can use Fermat’s little theorem to compute an mod p, where
p is prime and p | a. First, we use the division algorithm to find the quotient q and remainder
r when n is divided by p − 1, so that n = q(p − 1)+ r where 0 ≤ r < p − 1. It follows that
an = aq(p−1)+r = (ap−1)qar ≡ 1qar ≡ ar (mod p). Hence, to find an mod p, we only need
to compute ar mod p. We will take advantage of this simplification many times in our study of
number theory.

Pseudoprimes

In Section 4.2 we showed that an integer n is prime when it is not divisible by any prime p with
p ≤ √

n. Unfortunately, using this criterion to show that a given integer is prime is inefficient.
It requires that we find all primes not exceeding

√
n and that we carry out trial division by each

such prime to see whether it divides n.

282 4 / Number Theory and Cryptography

Are there more efficient ways to determine whether an integer is prime? According to some
sources, ancient Chinese mathematicians believed that n was an odd prime if and only if

2n−1 ≡ 1 (mod n).

If this were true, it would provide an efficient primality test. Why did they believe this
congruence could be used to determine whether an integer n > 2 is prime? First, they observed
that the congruence holds whenever n is an odd prime. For example, 5 is prime and

25−1 = 24 = 16 ≡ 1 (mod 5).

By Fermat’s little theorem, we know that this observation was correct, that is, 2n−1 ≡
1 (mod n) whenever n is an odd prime. Second, they never found a composite integer n for
which the congruence holds. However, the ancient Chinese were only partially correct. They
were correct in thinking that the congruence holds whenever n is prime, but they were incorrect
in concluding that n is necessarily prime if the congruence holds.

Unfortunately, there are composite integers n such that 2n−1 ≡ 1 (mod n). Such integers
are called pseudoprimes to the base 2.

EXAMPLE 10 The integer 341 is a pseudoprime to the base 2 because it is composite (341 = 11 · 31) and as
Exercise 37 shows

2340 ≡ 1 (mod 341).

▲

We can use an integer other than 2 as the base when we study pseudoprimes.

DEFINITION 1 Let b be a positive integer. If n is a composite positive integer, and bn−1 ≡ 1 (mod n), then
n is called a pseudoprime to the base b.

Given a positive integer n, determining whether 2n−1 ≡ 1 (mod n) is a useful test that pro-
vides some evidence concerning whether n is prime. In particular, if n satisfies this congruence,
then it is either prime or a pseudoprime to the base 2; if n does not satisfy this congruence, it is
composite. We can perform similar tests using bases b other than 2 and obtain more evidence
as to whether n is prime. If n passes all such tests, it is either prime or a pseudoprime to all the
bases b we have chosen. Furthermore, among the positive integers not exceeding x, where x
is a positive real number, compared to primes there are relatively few pseudoprimes to the
base b, where b is a positive integer. For example, among the positive integers less than 1010

there are 455,052,512 primes, but only 14,884 pseudoprimes to the base 2. Unfortunately, we

PIERRE DE FERMAT (1601–1665) Pierre de Fermat, one of the most important mathematicians of the
seventeenth century, was a lawyer by profession. He is the most famous amateur mathematician in history. Fermat
published little of his mathematical discoveries. It is through his correspondence with other mathematicians
that we know of his work. Fermat was one of the inventors of analytic geometry and developed some of
the fundamental ideas of calculus. Fermat, along with Pascal, gave probability theory a mathematical basis.
Fermat formulated what was the most famous unsolved problem in mathematics. He asserted that the equation
xn + yn = zn has no nontrivial positive integer solutions when n is an integer greater than 2. For more than 300
years, no proof (or counterexample) was found. In his copy of the works of the ancient Greek mathematician
Diophantus, Fermat wrote that he had a proof but that it would not fit in the margin. Because the first proof,

found by Andrew Wiles in 1994, relies on sophisticated, modern mathematics, most people think that Fermat thought he had a proof,
but that the proof was incorrect. However, he may have been tempting others to look for a proof, not being able to find one himself.

4.4 Solving Congruences 283

cannot distinguish between primes and pseudoprimes just by choosing sufficiently many bases,
because there are composite integers n that pass all tests with bases b such that gcd(b, n) = 1.
This leads to Definition 2.

DEFINITION 2 A composite integern that satisfies the congruencebn−1 ≡ 1 (modn) for all positive integersb
with gcd(b, n) = 1 is called a Carmichael number. (These numbers are named after Robert
Carmichael, who studied them in the early twentieth century.)

EXAMPLE 11 The integer 561 is a Carmichael number. To see this, first note that 561 is composite be-
cause 561 = 3 · 11 · 17. Next, note that if gcd(b, 561) = 1, then gcd(b, 3) = gcd(b, 11) =
gcd(b, 17) = 1.

Using Fermat’s little theorem we find that

b2 ≡ 1 (mod 3), b10 ≡ 1 (mod 11), and b16 ≡ 1 (mod 17).

It follows that

b560 = (b2)280 ≡ 1 (mod 3),

b560 = (b10)56 ≡ 1 (mod 11),

b560 = (b16)35 ≡ 1 (mod 17).

By Exercise 29, it follows that b560 ≡ 1 (mod 561) for all positive integers bwith gcd(b, 561) =
1. Hence 561 is a Carmichael number. ▲

Although there are infinitely many Carmichael numbers, more delicate tests, described in
the exercise set, can be devised that can be used as the basis for efficient probabilistic primality
tests. Such tests can be used to quickly show that it is almost certainly the case that a given
integer is prime. More precisely, if an integer is not prime, then the probability that it passes a
series of tests is close to 0. We will describe such a test in Chapter 7 and discuss the notions
from probability theory that this test relies on. These probabilistic primality tests can be used,
and are used, to find large primes extremely rapidly on computers.

Primitive Roots and Discrete Logarithms

In the set of positive real numbers, if b > 1, and x = by , we say that y is the logarithm of x to
the base b. Here, we will show that we can also define the concept of logarithms modulo p of
positive integers where p is a prime. Before we do so, we need a definition.

DEFINITION 3 A primitive root modulo a prime p is an integer r in Zp such that every nonzero element of
Zp is a power of r .

ROBERT DANIEL CARMICHAEL (1879–1967) Robert Daniel Carmichael was born in Alabama. He re-
ceived his undergraduate degree from Lineville College in 1898 and his Ph.D. in 1911 from Princeton.
Carmichael held positions at Indiana University from 1911 until 1915 and at the University of Illinois from
1915 until 1947. Carmichael was an active researcher in a wide variety of areas, including number theory, real
analysis, differential equations, mathematical physics, and group theory. His Ph.D. thesis, written under the
direction of G. D. Birkhoff, is considered the first significant American contribution to the subject of differential
equations.

284 4 / Number Theory and Cryptography

EXAMPLE 12 Determine whether 2 and 3 are primitive roots modulo 11.

Solution:When we compute the powers of 2 in Z11, we obtain 21 = 2, 22 = 4, 23 = 8, 24 = 5,
25 = 10, 26 = 9, 27 = 7, 28 = 3, 29 = 6, 210 = 1. Because every element of Z11 is a power of
2, 2 is a primitive root of 11.

When we compute the powers of 3 modulo 11, we obtain 31 = 3, 32 = 9, 33 = 5, 34 = 4,
35 = 1. We note that this pattern repeats when we compute higher powers of 3. Because not all
elements of Z11 are powers of 3, we conclude that 3 is not a primitive root of 11. ▲

An important fact in number theory is that there is a primitive root modulo p for every
prime p. We refer the reader to [Ro10] for a proof of this fact. Suppose that p is prime and r is
a primitive root modulo p. If a is an integer between 1 and p − 1, that is, an element of Zp, we
know that there is an unique exponent e such that re = a in Zp, that is, remodp = a.

DEFINITION 4 Suppose that p is a prime, r is a primitive root modulo p, and a is an integer between 1 and
p − 1 inclusive. If remodp = a and 0 ≤ e ≤ p − 1, we say that e is the discrete logarithm
of a modulo p to the base r and we write logr a = e (where the prime p is understood).

EXAMPLE 13 Find the discrete logarithms of 3 and 5 modulo 11 to the base 2.

Solution:When we computed the powers of 2 modulo 11 in Example 12, we found that 28 = 3
and 24 = 5 in Z11. Hence, the discrete logarithms of 3 and 5 modulo 11 to the base 2 are 8
and 4, respectively. (These are the powers of 2 that equal 3 and 5, respectively, in Z11.) We write
log2 3 = 8 and log2 5 = 4 (where the modulus 11 is understood and not explicitly noted in the
notation). ▲

The discrete logarithm problem takes as input a prime p, a primitive root r modulo p,The discrete logarithm
problem is hard! and a positive integer a ∈ Zp; its output is the discrete logarithm of a modulo p to the base

r . Although this problem might seem not to be that difficult, it turns out that no polynomial
time algorithm is known for solving it. The difficulty of this problem plays an important role in
cryptography, as we will see in Section 4.6

Exercises

1. Show that 15 is an inverse of 7 modulo 26.

2. Show that 937 is an inverse of 13 modulo 2436.

3. By inspection (as discussed prior to Example 1), find an
inverse of 4 modulo 9.

4. By inspection (as discussed prior to Example 1), find an
inverse of 2 modulo 17.

5. Find an inverse of a modulo m for each of these pairs
of relatively prime integers using the method followed in
Example 2.

a) a = 4, m = 9
b) a = 19, m = 141
c) a = 55, m = 89
d) a = 89, m = 232

6. Find an inverse of a modulo m for each of these pairs
of relatively prime integers using the method followed in
Example 2.

a) a = 2, m = 17
b) a = 34, m = 89

c) a = 144, m = 233
d) a = 200, m = 1001

∗7. Show that if a and m are relatively prime positive inte-
gers, then the inverse of a modulo m is unique modulo
m. [Hint: Assume that there are two solutions b and c
of the congruence ax ≡ 1 (mod m). Use Theorem 7 of
Section 4.3 to show that b ≡ c (mod m).]

8. Show that an inverse of a modulo m, where a is an in-
teger and m > 2 is a positive integer, does not exist if
gcd(a,m) > 1.

9. Solve the congruence 4x ≡ 5 (mod 9) using the inverse
of 4 modulo 9 found in part (a) of Exercise 5.

10. Solve the congruence 2x ≡ 7 (mod 17) using the inverse
of 2 modulo 7 found in part (a) of Exercise 6.

11. Solve each of these congruences using the modular in-
verses found in parts (b), (c), and (d) of Exercise 5.

a) 19x ≡ 4 (mod 141)
b) 55x ≡ 34 (mod 89)
c) 89x ≡ 2 (mod 232)

4.4 Solving Congruences 285

12. Solve each of these congruences using the modular in-
verses found in parts (b), (c), and (d) of Exercise 6.

a) 34x ≡ 77 (mod 89)
b) 144x ≡ 4 (mod 233)
c) 200x ≡ 13 (mod 1001)

13. Find the solutions of the congruence 15x2 + 19x ≡ 5
(mod 11). [Hint: Show the congruence is equivalent to
the congruence 15x2 + 19x + 6 ≡ 0 (mod 11). Factor the
left-hand side of the congruence; show that a solution of
the quadratic congruence is a solution of one of the two
different linear congruences.]

14. Find the solutions of the congruence 12x2 + 25x ≡
10 (mod 11). [Hint: Show the congruence is equivalence
to the congruence 12x2 + 25x + 12 ≡ 0 (mod 11). Fac-
tor the left-hand side of the congruence; show that a so-
lution of the quadratic congruence is a solution of one of
two different linear congruences.]

∗15. Show that if m is an integer greater than 1 and ac ≡
bc (mod m), then a ≡ b (mod m/gcd(c,m)).

16. a) Show that the positive integers less than 11, except
1 and 10, can be split into pairs of integers such that
each pair consists of integers that are inverses of each
other modulo 11.

b) Use part (a) to show that 10! ≡ −1 (mod 11).

17. Show that if p is prime, the only solutions of x2 ≡
1 (mod p) are integers x such that x ≡ 1 (mod p) or
x ≡ −1 (mod p).

∗18. a) Generalize the result in part (a) of Exercise 16; that
is, show that if p is a prime, the positive integers less
thanp, except 1 andp − 1, can be split into (p − 3)/2
pairs of integers such that each pair consists of inte-
gers that are inverses of each other. [Hint: Use the
result of Exercise 17.]

b) From part (a) conclude that (p − 1)! ≡ −1 (mod p)
wheneverp is prime. This result is known asWilson’s
theorem.

c) What can we conclude if n is a positive integer such
that (n− 1)! ≡ −1 (mod n)?

∗19. This exercise outlines a proof of Fermat’s little theorem.

a) Suppose that a is not divisible by the prime p. Show
that no two of the integers 1 · a, 2 · a, . . . , (p − 1)a
are congruent modulo p.

b) Conclude from part (a) that the product of
1, 2, . . . , p − 1 is congruent modulo p to the prod-
uct of a, 2a, . . . , (p − 1)a. Use this to show that

(p − 1)! ≡ ap−1(p − 1)! (mod p).

c) Use Theorem 7 of Section 4.3 to show from part (b)
that ap−1 ≡ 1 (mod p) if p | a. [Hint:Use Lemma 3
of Section 4.3 to show that p does not divide (p − 1)!
and then use Theorem 7 of Section 4.3. Alternatively,
use Wilson’s theorem from Exercise 18(b).]

d) Use part (c) to show that ap ≡ a (mod p) for all in-
tegers a.

20. Use the construction in the proof of the Chinese remainder
theorem to find all solutions to the system of congruences
x ≡ 2 (mod 3), x ≡ 1 (mod 4), and x ≡ 3 (mod 5).

21. Use the construction in the proof of the Chinese remain-
der theorem to find all solutions to the system of congru-
ences x ≡ 1 (mod 2), x ≡ 2 (mod 3), x ≡ 3 (mod 5), and
x ≡ 4 (mod 11).

22. Solve the system of congruence x ≡ 3 (mod 6) and
x ≡ 4 (mod 7) using the method of back substitution.

23. Solve the system of congruences in Exercise 20 using the
method of back substitution.

24. Solve the system of congruences in Exercise 21 using the
method of back substitution.

25. Write out in pseudocode an algorithm for solving a si-
multaneous system of linear congruences based on the
construction in the proof of the Chinese remainder theo-
rem.

∗26. Find all solutions, if any, to the system of congruences
x ≡ 5 (mod 6), x ≡ 3 (mod 10), and x ≡ 8 (mod 15).

∗27. Find all solutions, if any, to the system of congruences
x ≡ 7 (mod 9), x ≡ 4 (mod 12), and x ≡ 16 (mod 21).

28. Use the Chinese remainder theorem to show that an
integer a, with 0 ≤ a < m = m1m2 · · ·mn, where the
positive integers m1,m2, . . . , mn are pairwise relatively
prime, can be represented uniquely by the n-tuple
(a mod m1, a mod m2, . . . , a mod mn).

∗29. Letm1,m2, . . . , mn be pairwise relatively prime integers
greater than or equal to 2. Show that if a ≡ b (mod mi)
for i = 1, 2, . . . , n, then a ≡ b (mod m), where m =
m1m2 · · ·mn. (This result will be used in Exercise 30
to prove the Chinese remainder theorem. Consequently,
do not use the Chinese remainder theorem to prove it.)

∗30. Complete the proof of the Chinese remainder theorem
by showing that the simultaneous solution of a system
of linear congruences modulo pairwise relatively prime
moduli is unique modulo the product of these moduli.
[Hint: Assume that x and y are two simultaneous solu-
tions. Show that mi | x − y for all i. Using Exercise 29,
conclude that m = m1m2 · · ·mn | x − y.]

31. Which integers leave a remainder of 1 when divided by 2
and also leave a remainder of 1 when divided by 3?

32. Which integers are divisible by 5 but leave a remainder
of 1 when divided by 3?

33. Use Fermat’s little theorem to find 7121 mod 13.

34. Use Fermat’s little theorem to find 231002 mod 41.

35. Use Fermat’s little theorem to show that if p is prime and
p | a, then ap−2 is an inverse of a modulo p.

36. Use Exercise 35 to find an inverse of 5 modulo 41.

37. a) Show that 2340 ≡ 1 (mod 11) by Fermat’s little theo-
rem and noting that 2340 = (210)34.

b) Show that 2340 ≡ 1 (mod 31) using the fact that
2340 = (25)68 = 3268.

c) Conclude from parts (a) and (b) that 2340 ≡
1 (mod 341).

286 4 / Number Theory and Cryptography

38. a) Use Fermat’s little theorem to compute 3302 mod 5,
3302 mod 7, and 3302 mod 11.

b) Use your results from part (a) and the Chinese re-
mainder theorem to find 3302 mod 385. (Note that
385 = 5 · 7 · 11.)

39. a) Use Fermat’s little theorem to compute 52003 mod 7,
52003 mod 11, and 52003 mod 13.

b) Use your results from part (a) and the Chinese re-
mainder theorem to find 52003 mod 1001. (Note that
1001 = 7 · 11 · 13.)

40. Show with the help of Fermat’s little theorem that if n is
a positive integer, then 42 divides n7 − n.

41. Show that if p is an odd prime, then every divisor of the
Mersenne number 2p − 1 is of the form 2kp + 1, where
k is a nonnegative integer. [Hint: Use Fermat’s little the-
orem and Exercise 37 of Section 4.3.]

42. Use Exercise 41 to determine whetherM13 = 213 − 1 =
8191 andM23 = 223 − 1 = 8,388,607 are prime.

43. Use Exercise 41 to determine whetherM11 = 211 − 1 =
2047 andM17 = 217 − 1 = 131,071 are prime.

Let n be a positive integer and let n− 1 = 2s t , where s is a
nonnegative integer and t is an odd positive integer. We say
that n passesMiller’s test for the base b if either bt ≡ 1 (mod
n) or b2j t ≡ −1 (mod n) for some j with 0 ≤ j ≤ s − 1. It
can be shown (see [Ro10]) that a composite integer n passes
Miller’s test for fewer than n/4 bases b with 1 < b < n. A
composite positive integer n that passes Miller’s test to the
base b is called a strong pseudoprime to the base b.
∗44. Show that if n is prime and b is a positive integer with

n | b, then n passes Miller’s test to the base b.

45. Show that 2047 is a strong pseudoprime to the base 2 by
showing that it passes Miller’s test to the base 2, but is
composite.

46. Show that 1729 is a Carmichael number.

47. Show that 2821 is a Carmichael number.
∗48. Show that if n = p1p2 · · ·pk , where p1, p2, . . . , pk

are distinct primes that satisfy pj − 1 | n− 1 for j =
1, 2, . . . , k, then n is a Carmichael number.

49. a) Use Exercise 48 to show that every integer of the form
(6m+ 1)(12m+ 1)(18m+ 1), wherem is a positive
integer and 6m+ 1, 12m+ 1, and 18m+ 1 are all
primes, is a Carmichael number.

b) Use part (a) to show that 172,947,529 is a Car-
michael number.

50. Find the nonnegative integer a less than 28 represented by
each of these pairs, where each pair represents (a mod 4,
a mod 7).

a) (0, 0) b) (1, 0) c) (1, 1)
d) (2, 1) e) (2, 2) f) (0, 3)
g) (2, 0) h) (3, 5) i) (3, 6)

51. Express each nonnegative integer a less than 15 as a pair
(a mod 3, a mod 5).

52. Explain how to use the pairs found in Exercise 51 to
add 4 and 7.

53. Solve the system of congruences that arises in Example 8.

54. Show that 2 is a primitive root of 19.

55. Find the discrete logarithms of 5 and 6 to the base 2 mod-
ulo 19.

56. Let p be an odd prime and r a primitive root of p.
Show that if a and b are positive integers in Zp , then
logr (ab) ≡ logr a + logr b (mod p − 1).

57. Write out a table of discrete logarithms modulo 17 with
respect to the primitive root 3.

Ifm is a positive integer, the integer a is a quadratic residue
of m if gcd(a,m) = 1 and the congruence x2 ≡ a (modm)
has a solution. In other words, a quadratic residue of m is
an integer relatively prime to m that is a perfect square mod-
ulom. If a is not a quadratic residue ofm and gcd(a,m) = 1,
we say that it is a quadratic nonresidue of m. For exam-
ple, 2 is a quadratic residue of 7 because gcd(2, 7) = 1 and
32 ≡ 2 (mod 7) and 3 is a quadratic nonresidue of 7 because
gcd(3, 7) = 1 and x2 ≡ 3 (mod 7) has no solution.

58. Which integers are quadratic residues of 11?

59. Show that if p is an odd prime and a is an integer not
divisible by p, then the congruence x2 ≡ a (mod p) has
either no solutions or exactly two incongruent solutions
modulo p.

60. Show that if p is an odd prime, then there are exactly
(p − 1)/2 quadratic residues of p among the integers
1, 2, . . . , p − 1.

If p is an odd prime and a is an integer not divisible by p, the

Legendre symbol

�
a

p

�
is defined to be 1 if a is a quadratic

residue of p and −1 otherwise.

61. Show that if p is an odd prime and a and b are integers
with a ≡ b (mod p), then

�
a

p

�
=

�
b

p

�
.

62. Prove Euler’s criterion, which states that if p is an odd
prime and a is a positive integer not divisible by p, then

�
a

p

�
≡ a(p−1)/2 (mod p).

[Hint: If a is a quadratic residue modulo p, apply Fer-
mat’s little theorem; otherwise, apply Wilson’s theorem,
given in Exercise 18(b).]

63. Use Exercise 62 to show that if p is an odd prime and a
and b are integers not divisible by p, then

�
ab

p

�
=

�
a

p

��
b

p

�
.

64. Show that if p is an odd prime, then −1 is a quadratic
residue of p if p ≡ 1 (mod 4), and −1 is not a quadratic
residue of p if p ≡ 3 (mod 4). [Hint: Use Exercise 62.]

65. Find all solutions of the congruence x2 ≡ 29 (mod 35).
[Hint: Find the solutions of this congruence modulo 5 and
modulo 7, and then use the Chinese remainder theorem.]

4.5 Applications of Congruences 287

66. Find all solutions of the congruence x2 ≡ 16 (mod 105).
[Hint: Find the solutions of this congruence modulo 3,
modulo 5, and modulo 7, and then use the Chinese re-
mainder theorem.]

67. Describe a brute force algorithm for solving the discrete
logarithm problem and find the worst-case and average-
case time complexity of this algorithm.

4.5 Applications of Congruences

Congruences have many applications to discrete mathematics, computer science, and many
other disciplines. We will introduce three applications in this section: the use of congruences
to assign memory locations to computer files, the generation of pseudorandom numbers, and
check digits.

Suppose that a customer identification number is ten digits long. To retrieve customer files
quickly, we do not want to assign a memory location to a customer record using the ten-digit
identification number. Instead, we want to use a smaller integer associated to the identification
number. This can be done using what is known as a hashing function. In this section we will
show how we can use modular arithmetic to do hashing.

Constructing sequences of random numbers is important for randomized algorithms, for
simulations, and for many other purposes. Constructing a sequence of truly random numbers is
extremely difficult, or perhaps impossible, because any method for generating what are supposed
to be random numbers may generate numbers with hidden patterns. As a consequence, methods
have been developed for finding sequences of numbers that have many desirable properties of
random numbers, and which can be used for various purposes in place of random numbers.
In this section we will show how to use congruences to generate sequences of pseudorandom
numbers.The advantage is that the pseudorandom numbers so generated are constructed quickly;
the disadvantage is that they have too much predictability to be used for many tasks.

Congruences also can be used to produce check digits for identification numbers of various
kinds, such as code numbers used to identify retail products, numbers used to identify books,
airline ticket numbers, and so on. We will explain how to construct check digits using congru-
ences for a variety of types of identification numbers. We will show that these check digits can
be used to detect certain kinds of common errors made when identification numbers are printed.

Hashing Functions

The central computer at an insurance company maintains records for each of its customers.
How can memory locations be assigned so that customer records can be retrieved quickly? The
solution to this problem is to use a suitably chosen hashing function. Records are identified
using a key, which uniquely identifies each customer’s records. For instance, customer records
are often identified using the Social Security number of the customer as the key. A hashing
function h assigns memory location h(k) to the record that has k as its key.

In practice, many different hashing functions are used. One of the most common is the
function

h(k) = k mod m

where m is the number of available memory locations.
Hashing functions should be easily evaluated so that files can be quickly located. The

hashing function h(k) = k mod m meets this requirement; to find h(k), we need only compute
the remainder when k is divided bym. Furthermore, the hashing function should be onto, so that
all memory locations are possible. The function h(k) = kmodm also satisfies this property.

288 4 / Number Theory and Cryptography

EXAMPLE 1 Find the memory locations assigned by the hashing function h(k) = k mod 111 to the records
of customers with Social Security numbers 064212848 and 037149212.

Solution: The record of the customer with Social Security number 064212848 is assigned to
memory location 14, because

h(064212848) = 064212848 mod 111 = 14.

Similarly, because

h(037149212) = 037149212 mod 111 = 65,

the record of the customer with Social Security number 037149212 is assigned to memory
location 65. ▲

Because a hashing function is not one-to-one (because there are more possible keys than
memory locations), more than one file may be assigned to a memory location.When this happens,
we say that a collision occurs. One way to resolve a collision is to assign the first free location
following the occupied memory location assigned by the hashing function.

EXAMPLE 2 After making the assignments of records to memory locations in Example 1, assign a memory
location to the record of the customer with Social Security number 107405723.

Solution: First note that the hashing function h(k) = k mod 111 maps the Social Security
number 107405723 to location 14, because

h(107405723) = 107405723 mod 111 = 14.

However, this location is already occupied (by the file of the customer with Social Security
number 064212848). But, because memory location 15, the first location following memory
location 14, is free, we assign the record of the customer with Social Security number 107405723
to this location. ▲

In Example 1 we used a linear probing function, namely h(k, i) = h(k)+ i mod m, to
look for the first free memory location, where i runs from 0 to m− 1. There are many other
ways to resolve collisions that are discussed in the references on hashing functions given at the
end of the book.

Pseudorandom Numbers

Randomly chosen numbers are often needed for computer simulations. Different methods have
been devised for generating numbers that have properties of randomly chosen numbers. Because
numbers generated by systematic methods are not truly random, they are called pseudorandom
numbers.

The most commonly used procedure for generating pseudorandom numbers is the
linear congruential method. We choose four integers: the modulus m, multiplier a,
increment c, and seed x0, with 2 ≤ a < m, 0 ≤ c < m, and 0 ≤ x0 < m. We generate a se-
quence of pseudorandom numbers {xn}, with 0 ≤ xn < m for all n, by successively using the
recursively defined function

xn+1 = (axn + c) mod m.

(This is an example of a recursive definition, discussed in Section 5.3. In that section we will
show that such sequences are well defined.)

4.5 Applications of Congruences 289

Many computer experiments require the generation of pseudorandom numbers between 0
and 1. To generate such numbers, we divide numbers generated with a linear congruential
generator by the modulus: that is, we use the numbers xn/m.

EXAMPLE 3 Find the sequence of pseudorandom numbers generated by the linear congruential method with
modulus m = 9, multiplier a = 7, increment c = 4, and seed x0 = 3.

Solution:We compute the terms of this sequence by successively using the recursively defined
function xn+1 = (7xn + 4) mod 9, beginning by inserting the seed x0 = 3 to find x1. We find
that

x1 = 7x0 + 4 mod 9 = 7 · 3 + 4 mod 9 = 25 mod 9 = 7,

x2 = 7x1 + 4 mod 9 = 7 · 7 + 4 mod 9 = 53 mod 9 = 8,

x3 = 7x2 + 4 mod 9 = 7 · 8 + 4 mod 9 = 60 mod 9 = 6,

x4 = 7x3 + 4 mod 9 = 7 · 6 + 4 mod 9 = 46 mod 9 = 1,

x5 = 7x4 + 4 mod 9 = 7 · 1 + 4 mod 9 = 11 mod 9 = 2,

x6 = 7x5 + 4 mod 9 = 7 · 2 + 4 mod 9 = 18 mod 9 = 0,

x7 = 7x6 + 4 mod 9 = 7 · 0 + 4 mod 9 = 4 mod 9 = 4,

x8 = 7x7 + 4 mod 9 = 7 · 4 + 4 mod 9 = 32 mod 9 = 5,

x9 = 7x8 + 4 mod 9 = 7 · 5 + 4 mod 9 = 39 mod 9 = 3.

Because x9 = x0 and because each term depends only on the previous term, we see that the
sequence

3, 7, 8, 6, 1, 2, 0, 4, 5, 3, 7, 8, 6, 1, 2, 0, 4, 5, 3, . . .

is generated. This sequence contains nine different numbers before repeating. ▲

Most computers do use linear congruential generators to generate pseudorandom numbers.
Often, a linear congruential generator with increment c = 0 is used. Such a generator is called
a pure multiplicative generator. For example, the pure multiplicative generator with modulus
231 − 1 and multiplier 75 = 16,807 is widely used. With these values, it can be shown that
231 − 2 numbers are generated before repetition begins.

Pseudorandom numbers generated by linear congruential generators have long been used
for many tasks. Unfortunately, it has been shown that sequences of pseudorandom numbers gen-
erated in this way do not share some important statistical properties that true random numbers
have. Because of this, it is not advisable to use them for some tasks, such as large simulations.
For such sensitive tasks, other methods are used to produce sequences of pseudorandom num-
bers, either using some sort of algorithm or sampling numbers arising from a random physical
phenomenon. For more details on pseudorandom number, see [Kn97] and [Re10].

Check Digits

Congruences are used to check for errors in digit strings. A common technique for detecting
errors in such strings is to add an extra digit at the end of the string. This final digit, or check digit,
is calculated using a particular function. Then, to determine whether a digit string is correct, a
check is made to see whether this final digit has the correct value. We begin with an application
of this idea for checking the correctness of bit strings.

290 4 / Number Theory and Cryptography

EXAMPLE 4 Parity Check Bits Digital information is represented by bit string, split into blocks of a
specified size. Before each block is stored or transmitted, an extra bit, called a parity check bit,
can be appended to each block. The parity check bit xn+1 for the bit string x1x2 . . . xn is defined
by

xn+1 = x1 + x2 + · · · + xnmod 2.

It follows that xn+1 is 0 if there are an even number of 1 bits in the block of n bits and it is 1 if
there are an odd number of 1 bits in the block of n bits. When we examine a string that includes
a parity check bit, we know that there is an error in it if the parity check bit is wrong. However,
when the parity check bit is correct, there still may be an error. A parity check can detect an odd
number of errors in the previous bits, but not an even number of errors. (See Exercise 14.)

Suppose we receive in a transmission the bit strings 01100101 and 11010110, each ending
with a parity check bit. Should we accept these bit strings as correct?

Solution: Before accepting these strings as correct, we examine their parity check bits. The
parity check bit of the first string is 1. Because 0 + 1 + 1 + 0 + 0 + 1 + 0 ≡ 1 (mod 2), the
parity check bit is correct. The parity check bit of the second string is 0. We find that 1 + 1 +
0 + 1 + 0 + 1 + 1 ≡ 1 (mod 2), so the parity check is incorrect. We conclude that the first
string may have been transmitted correctly and we know for certain that the second string was
transmitted incorrectly. We accept the first string as correct (even though it still may contain an
even number of errors), but we reject the second string. ▲

Check bits computed using congruences are used extensively to verify the correctness of
various kinds of identification numbers. Examples 5 and 6 show how check bits are computed
for codes that identify products (Universal Product Codes) and books (International Standard
Book Numbers). The preambles to Exercises 18, 28, and 32 introduce the use of congruences
to find and use check digits in money order numbers, airline ticket numbers, and identification
numbers for periodicals, respectively. Note that congruences are also used to compute check
digits for bank account numbers, drivers license numbers, credit card numbers, and many other
types of identification numbers.

EXAMPLE 5 UPCs Retail products are identified by their Universal Product Codes (UPCs). The most
common form of a UPC has 12 decimal digits: the first digit identifies the product category, the
next five digits identify the manufacturer, the following five identify the particular product, and
the last digit is a check digit. The check digit is determined by the congruence

3x1 + x2 + 3x3 + x4 + 3x5 + x6 + 3x7 + x8 + 3x9 + x10 + 3x11 + x12 ≡ 0 (mod 10).

Answer these questions:

(a) Suppose that the first 11 digits of a UPC are 79357343104. What is the check digit?
(b) Is 041331021641 a valid UPC?

Solution: (a) We insert the digits of 79357343104 into the congruence for UPC
check digits. This gives 3 · 7 + 9 + 3 · 3 + 5 + 3 · 7 + 3 + 3 · 4 + 3 + 3 · 1 + 0 + 3 · 4 +
x12 ≡ 0 (mod 10). Simplifying, we have 21 + 9 + 9 + 5 + 21 + 3 + 12 + 3 + 3 + 0 + 12 +
x12 ≡ 0 (mod 10). Hence, 98 + x12 ≡ 0 (mod 10). It follows that x12 ≡ 2 (mod 10), so the
check digit is 2.

(b) To check whether 041331021641 is valid, we insert the digits into the congruence these digits
must satisfy. This gives 3 · 0 + 4 + 3 · 1 + 3 + 3 · 3 + 1 + 3 · 0 + 2 + 3 · 1 + 6 + 3 · 4 + 1 ≡
0 + 4 + 3 + 3 + 9 + 1 + 0 + 2 + 3 + 6 + 12 + 1 ≡ 4 ≡ 0 (mod 10). Hence, 041331021641
is not a valid UPC. ▲

4.5 Applications of Congruences 291

EXAMPLE 6 ISBNs All books are identified by an International Standard Book Number (ISBN-10), a
10-digit code x1x2 . . . x10, assigned by the publisher. (Recently, a 13-digit code known as ISBN-

Remember that the check
digit of an ISBN-10 can
be an X!

13 was introduced to identify a larger number of published works; see the preamble to Exercise
42 in the Supplementary Exercises.) An ISBN-10 consists of blocks identifying the language,
the publisher, the number assigned to the book by its publishing company, and finally, a check
digit that is either a digit or the letter X (used to represent 10). This check digit is selected so
that

x10 ≡
9�
i=1

ixi (mod 11),

or equivalently, so that

10�
i=1

ixi ≡ 0 (mod 11).

Answer these questions about ISBN-10s:

(a) The first nine digits of the ISBN-10 of the sixth edition of this book are 007288008. What is
the check digit?

(b) Is 084930149X a valid ISBN-10?

Solution: (a) The check digit is determined by the congruence
�10
i=1 ixi ≡ 0 (mod 11). Inserting

the digits 007288008 gives x10 ≡ 1 · 0 + 2 · 0 + 3 · 7 + 4 · 2 + 5 · 8 + 6 · 8 + 7 · 0 + 8 · 0 +
9 · 8 (mod 11). This means that x10 ≡ 0 + 0 + 21 + 8 + 40 + 48 + 0 + 0 + 72 (mod 11), so
x10 ≡ 189 ≡ 2 (mod 11). Hence, x10 = 2.

(b) To see whether 084930149X is a valid ISBN-10, we see if
�10
i=1 ixi ≡ 0 (mod 11). We

see that 1 · 0 + 2 · 8 + 3 · 4 + 4 · 9 + 5 · 3 + 6 · 0 + 7 · 1 + 8 · 4 + 9 · 9 + 10 · 10 = 0 + 16 +
12 + 36 + 15 + 0 + 7 + 32 + 81 + 100 = 299 ≡ 2 ≡ 0 (mod 11). Hence, 084930149X is not
a valid ISBN-10. ▲

Several kinds of errors often arise in identification numbers. A single error, an error in one
digit of an identification number, is perhaps the most common type of error. Another common
kind of error is a transposition error, which occurs when two digits are accidentally inter-
changed. For each type of identification number, including a check digit, we would like to be
able to detect these common types of errors, as well as other types of errors. We will investigate

Publishers sometimes do
not calculate ISBNs
correctly for their books,
as was done for an earlier
edition of this text.

whether the check digit for ISBNs can detect single errors and transposition errors. Whether
check digits for UPCs can detect these kinds of errors is left as Exercises 26 and 27.

Suppose that x1x2 . . . x10 is a valid ISBN (so that
�10
i=1 xi ≡ 0 (mod 10)). We will show that

we can detect a single error and a transposition of two digits (where we include the possibility
that one of the two digits is the check digit X, representing 10). Suppose that this ISBN has been
printed with a single error as y1y2 . . . y10. If there is a single error, then, for some integer j ,
yi = xi for i = j and yj = xj + a where −10 ≤ a ≤ 10 and a = 0. Note that a = yj − xj is
the error in the j th place. It then follows that

10�
i=1

iyi =
� 10�
i=1

ixi
� + ja ≡ ja ≡ 0 (mod 11).

292 4 / Number Theory and Cryptography

These last two congruences hold because
�10
i=1 xi ≡ 0 (mod 10) and 11 | ja, because 11 | j

and 11 | a. We conclude that y1y2 . . . y10 is not a valid ISBN. So, we have detected the single
error.

Now suppose that two unequal digits have been transposed. It follows that there are distinct
integers j and k such that yj = xk and yk = xj , and yi = xi for i = j and i = k. Hence,

10�
i=1

iyi =
� 10�
i=1

ixi
� + (jxk − jxj)+ (kxj − kxk) ≡ (j − k)(xk − xj) ≡ 0 (mod 11),

because
�10
i=1 xi ≡ 0 (mod 10) and 11 | (j − k) and 11 | (xk − xj). We see that y1y2 . . . y10

is not a valid ISBN. Thus, we can detect the interchange of two unequal digits.

Exercises

1. Which memory locations are assigned by the hashing
function h(k) = k mod 97 to the records of insurance
company customers with these Social Security numbers?

a) 034567981 b) 183211232

c) 220195744 d) 987255335

2. Which memory locations are assigned by the hashing
function h(k) = k mod 101 to the records of insurance
company customers with these Social Security numbers?

a) 104578690 b) 432222187

c) 372201919 d) 501338753

3. A parking lot has 31 visitor spaces, numbered from 0 to
30.Visitors are assigned parking spaces using the hashing
function h(k) = kmod 31, where k is the number formed
from the first three digits on a visitor’s license plate.

a) Which spaces are assigned by the hashing function to
cars that have these first three digits on their license
plates: 317, 918, 007, 100, 111, 310?

b) Describe a procedure visitors should follow to find a
free parking space, when the space they are assigned
is occupied.

Another way to resolve collisions in hashing is to use double
hashing. We use an initial hashing function h(k) = kmodp
where p is prime. We also use a second hashing function
g(k) = (k + 1)mod (p − 2).When a collision occurs, we use
a probing sequence h(k, i) = (h(k)+ i · g(k))modp.

4. Use the double hashing procedure we have described with
p = 4969 to assign memory locations to files for em-
ployees with social security numbers k1 = 132489971,
k2 = 509496993, k3 = 546332190, k4 = 034367980,
k5 = 047900151, k6 = 329938157, k7 = 212228844,
k8 = 325510778, k9 = 353354519, k10 = 053708912.

5. What sequence of pseudorandom numbers is gener-
ated using the linear congruential generator xn+1 =
(3xn + 2) mod 13 with seed x0 = 1?

6. What sequence of pseudorandom numbers is gener-
ated using the linear congruential generator xn+1 =
(4xn + 1) mod 7 with seed x0 = 3?

7. What sequence of pseudorandom numbers is gener-
ated using the pure multiplicative generator xn+1 =
3xn mod 11 with seed x0 = 2?

8. Write an algorithm in pseudocode for generating a se-
quence of pseudorandom numbers using a linear congru-
ential generator.

The middle-square method for generating pseudorandom
numbers begins with an n-digit integer. This number is
squared, initial zeros are appended to ensure that the result
has 2n digits, and its middle n digits are used to form the next
number in the sequence. This process is repeated to generate
additional terms.
9. Find the first eight terms of the sequence of four-digit

pseudorandom numbers generated by the middle square
method starting with 2357.

10. Explain why both 3792 and 2916 would be bad choices
for the initial term of a sequence of four-digit pseudoran-
dom numbers generated by the middle square method.

The power generator is a method for generating pseudoran-
dom numbers. To use the power generator, parametersp and d
are specified, where p is a prime, d is a positive integer such
thatp | d, and a seed x0 is specified. The pseudorandom num-
bers x1, x2, . . . are generated using the recursive definition
xn+1 = xdn modp.
11. Find the sequence of pseudorandom numbers generated

by the power generator with p = 7, d = 3, and seed
x0 = 2.

12. Find the sequence of pseudorandom numbers generated
by the power generator with p = 11, d = 2, and seed
x0 = 3.

13. Suppose you received these bit strings over a communi-
cations link, where the last bit is a parity check bit. In
which string are you sure there is an error?

a) 00000111111
b) 10101010101
c) 11111100000
d) 10111101111

14. Prove that a parity check bit can detect an error in a string
if and only if the string contains an odd number of errors.

4.5 Applications of Congruences 293

15. The first nine digits of the ISBN-10 of the European ver-
sion of the fifth edition of this book are 0-07-119881.
What is the check digit for that book?

16. The ISBN-10 of the sixth edition of Elementary Number
Theory and Its Applications is 0-321-500Q1-8, whereQ
is a digit. Find the value ofQ.

17. Determine whether the check digit of the ISBN-10 for
this textbook (the seventh edition of Discrete Mathemat-
ics and its Applications) was computed correctly by the
publisher.

The United States Postal Service (USPS) sells money orders
identified by an 11-digit number x1x2 . . . x11. The first ten dig-
its identify the money order; x11 is a check digit that satisfies
x11 = x1 + x2 + · · · + x10mod 9.
18. Find the check digit for the USPS money orders that have

identification number that start with these ten digits.

a) 7555618873
b) 6966133421
c) 8018927435
d) 3289744134

19. Determine whether each of these numbers is a valid USPS
money order identification number.

a) 74051489623
b) 88382013445
c) 56152240784
d) 66606631178

20. One digit in each of these identification numbers of a
postal money order is smudged. Can you recover the
smudged digit, indicated by a Q, in each of these num-
bers?

a) Q1223139784
b) 6702120Q988
c) 27Q41007734
d) 213279032Q1

21. One digit in each of these identification numbers of a
postal money order is smudged. Can you recover the
smudged digit, indicated by a Q, in each of these num-
bers?

a) 493212Q0688
b) 850Q9103858
c) 2Q941007734
d) 66687Q03201

22. Determine which single digit errors are detected by the
USPS money order code.

23. Determine which transposition errors are detected by the
USPS money order code.

24. Determine the check digit for the UPCs that have these
initial 11 digits.

a) 73232184434
b) 63623991346
c) 04587320720
d) 93764323341

25. Determine whether each of the strings of 12 digits is a
valid UPC code.

a) 036000291452
b) 012345678903
c) 782421843014
d) 726412175425

26. Does the check digit of a UPC code detect all single er-
rors? Prove your answer or find a counterexample.

27. Determine which transposition errors the check digit of
a UPC code finds.

Some airline tickets have a 15-digit identification number
a1a2 . . . a15 where a15 is a check digit that equals a1a2 . . . a14
mod 7.

28. Find the check digit a15 that follows each of these initial
14 digits of an airline ticket identification number.

a) 10237424413392
b) 00032781811234
c) 00611232134231
d) 00193222543435

29. Determine whether each of these 15-digit numbers is a
valid airline ticket identification number.

a) 101333341789013
b) 007862342770445
c) 113273438882531
d) 000122347322871

30. Which errors in a single digit of a 15-digit airline ticket
identification number can be detected?

∗31. Can the accidental transposition of two consecutive dig-
its in an airline ticket identification number be detected
using the check digit?

Periodicals are identified using an International Standard
Serial Number (ISSN). An ISSN consists of two blocks
of four digits. The last digit in the second block is a check
digit. This check digit is determined by the congruence d8 ≡
3d1 + 4d2 + 5d3 + 6d4 + 7d5 + 8d6 + 9d7 (mod 11). When
d8 ≡ 10 (mod 11), we use the letter X to represent d8 in the
code.

32. For each of these initial seven digits of an ISSN, deter-
mine the check digit (which may be the letter X).

a) 1570-868
b) 1553-734
c) 1089-708
d) 1383-811

33. Are each of these eight-digit codes possible ISSNs? That
is, do they end with a correct check digit?

a) 1059-1027
b) 0002-9890
c) 1530-8669
d) 1007-120X

34. Does the check digit of an ISSN detect every single error
in an ISSN? Justify your answer with either a proof or a
counterexample.

35. Does the check digit of an ISSN detect every error where
two consecutive digits are accidentally interchanged? Jus-
tify your answer with either a proof or a counterexample.

294 4 / Number Theory and Cryptography

4.6 Cryptography

Introduction

Number theory plays a key role in cryptography, the subject of transforming information so that
it cannot be easily recovered without special knowledge. Number theory is the basis of many
classical ciphers, first used thousands of years ago, and used extensively until the 20th century.
These ciphers encrypt messages by changing each letter to a different letter, or each block of
letters to a different block of letters. We will discuss some classical ciphers, including shift
ciphers, which replace each letter by the letter a fixed number of positions later in the alphabet,
wrapping around to the beginning of the alphabet when necessary. The classical ciphers we will
discuss are examples of private key ciphers where knowing how to encrypt allows someone to
also decrypt messages. With a private key cipher, two parties who wish to communicate in secret
must share a secret key. The classical ciphers we will discuss are also vulnerable to cryptanalysis,
which seeks to recover encrypted information without access to the secret information used to
encrypt the message. We will show how to cryptanalyze messages sent using shift ciphers.

Number theory is also important in public key cryptography, a type of cryptography invented
in the 1970s. In public key cryptography, knowing how to encrypt does not also tell someone
how to decrypt. The most widely used public key system, called the RSA cryptosystem, encrypts
messages using modular exponentiation, where the modulus is the product of two large primes.
Knowing how to encrypt requires that someone know the modulus and an exponent. (It does
not require that the two prime factors of the modulus be known.) As far as it is known, knowing
how to decrypt requires someone to know how to invert the encryption function, which can only
be done in a practical amount of time when someone knows these two large prime factors. In
this chapter we will explain how the RSA cryptosystem works, including how to encrypt and
decrypt messages.

The subject of cryptography also includes the subject of cryptographic protocols, which are
exchanges of messages carried out by two or more parties to achieve a specific security goal. We
will discuss two important protocols in this chapter. One allows two people to share a common
secret key. The other can be used to send signed messages so that a recipient can be sure that
they were sent by the purported sender.

Classical Cryptography

One of the earliest known uses of cryptography was by Julius Caesar. He made messages secret
by shifting each letter three letters forward in the alphabet (sending the last three letters of the
alphabet to the first three). For instance, using this scheme the letter B is sent to E and the letter
X is sent to A. This is an example of encryption, that is, the process of making a message secret.

To express Caesar’s encryption process mathematically, first replace each letter by an ele-
ment ofZ26, that is, an integer from 0 to 25 equal to one less than its position in the alphabet. For
example, replace A by 0, K by 10, and Z by 25. Caesar’s encryption method can be represented
by the function f that assigns to the nonnegative integer p, p ≤ 25, the integer f (p) in the set
{0, 1, 2, . . . , 25} with

f (p) = (p + 3) mod 26.

In the encrypted version of the message, the letter represented by p is replaced with the letter
represented by (p + 3) mod 26.

4.6 Cryptography 295

EXAMPLE 1 What is the secret message produced from the message “MEET YOU IN THE PARK” using
the Caesar cipher?

Solution: First replace the letters in the message with numbers. This produces

12 4 4 19 24 14 20 8 13 19 7 4 15 0 17 10.

Now replace each of these numbers p by f (p) = (p + 3) mod 26. This gives

15 7 7 22 1 17 23 11 16 22 10 7 18 3 20 13.

Translating this back to letters produces the encrypted message “PHHW BRX LQ WKH
SDUN.” ▲

To recover the original message from a secret message encrypted by the Caesar cipher, the
function f−1, the inverse of f , is used. Note that the function f−1 sends an integer p from
Z26, to f−1(p) = (p − 3) mod 26. In other words, to find the original message, each letter is
shifted back three letters in the alphabet, with the first three letters sent to the last three letters
of the alphabet. The process of determining the original message from the encrypted message
is called decryption.

There are various ways to generalize the Caesar cipher. For example, instead of shifting the
numerical equivalent of each letter by 3, we can shift the numerical equivalent of each letter by
k, so that

f (p) = (p + k) mod 26.

Such a cipher is called a shift cipher. Note that decryption can be carried out using

f−1(p) = (p − k) mod 26.

Here the integer k is called a key. We illustrate the use of a shift cipher in Examples 2 and 3.

EXAMPLE 2 Encrypt the plaintext message “STOP GLOBAL WARMING” using the shift cipher with shift
k = 11.

Solution: To encrypt the message “STOP GLOBAL WARMING” we first translate each letter
to the corresponding element of Z26. This produces the string

18 19 14 15 6 11 14 1 0 11 22 0 17 12 8 13 6.

We now apply the shift f (p) = (p + 11)mod 26 to each number in this string. We obtain

3 4 25 0 17 22 25 12 11 22 7 11 2 23 19 24 17.

Translating this last string back to letters, we obtain the ciphertext “DEZA RWZMLW HLCX-
TYR.” ▲

EXAMPLE 3 Decrypt the ciphertext message “LEWLYPLUJL PZ H NYLHA ALHJOLY” that was en-
crypted with the shift cipher with shift k = 7.

Solution: To decrypt the ciphertext “LEWLYPLUJL PZ H NYLHA ALHJOLY” we first
translate the letters back to elements of Z26. We obtain

11 4 22 11 24 15 11 20 9 11 15 25 7 13 24 11 7 0 0 11 7 9 14 11 24.

296 4 / Number Theory and Cryptography

Next, we shift each of these numbers by −k = −7 modulo 26 to obtain

4 23 15 4 17 8 4 13 2 4 8 18 0 6 17 4 0 19 19 4 0 2 7 4 17.

Finally, we translate these numbers back to letters to obtain the plaintext. We obtain
“EXPERIENCE IS A GREAT TEACHER.” ▲

We can generalize shift ciphers further to slightly enhance security by using a function of
the form

f (p) = (ap + b) mod 26,

where a and b are integers, chosen so that f is a bijection. (The function f (p) = (ap +
b) mod 26 is a bijection if and only if gcd(a, 26) = 1.) Such a mapping is called an affine

transformation, and the resulting cipher is called an affine cipher.

EXAMPLE 4 What letter replaces the letter K when the function f (p) = (7p + 3) mod 26 is used for en-
cryption?

Solution: First, note that 10 represents K. Then, using the encryption function specified, it
follows that f (10) = (7 · 10 + 3) mod 26 = 21. Because 21 represents V, K is replaced by V
in the encrypted message. ▲

We will now show how to decrypt messages encrypted using an affine cipher. Suppose that
c = (ap + b)mod 26 with gcd(a, 26) = 1. To decrypt we need to show how to express p in
terms of c. To do this, we apply the encrypting congruence c ≡ ap + b (mod 26), and solve it
for p. To do this, we first subtract b from both sides, to obtain c − b ≡ ap (mod 26). Because
gcd(a, 26) = 1, we know that there is an inverse a of a modulo 26. Multiplying both sides of
the last equation by a gives us a(c − b) ≡ aap (mod 26). Because aa ≡ 1 (mod 26), this tells
us that p ≡ a(c − b) (mod 26). This determines p because p belongs to Z26.

CRYPTANALYSIS The process of recovering plaintext from ciphertext without knowledge
of both the encryption method and the key is known as crytanalysis or breaking codes. In
general, cryptanalysis is a difficult process, especially when the encryption method is unknown.
We will not discuss cryptanalysis in general, but we will explain how to break messages that
were encrypted using a shift cipher.

If we know that a ciphertext message was produced by enciphering a message using a shift
cipher, we can try to recover the message by shifting all characters of the ciphertext by each
of the 26 possible shifts (including a shift of zero characters). One of these is guaranteed to be
the plaintext. However, we can use a more intelligent approach, which we can build upon to
cryptanalyze ciphertext resulting from other ciphers. The main tool for cryptanalyzing ciphertext

Mathematicians make the
best code breakers. Their
work in World War II
changed the course of the
war.

encrypted using a shift cipher is the count of the frequency of letters in the ciphertext. The nine
most common letters in English text and their approximate relative frequencies are E 13%, T 9%,
A 8%, O 8%, I 7%, N 7%, S 7%, H 6%, and R 6%. To cryptanalyze ciphertext that we know was
produced using a shift cipher, we first find the relative frequencies of letters in the ciphertext.
We list the most common letters in the ciphertext in frequency order; we hypothesize that the
most common letter in the ciphertext is produced by encrypting E. Then, we determine the
value of the shift under this hypothesis, say k. If the message produced by shifting the ciphertext
by −k makes sense, we presume that our hypothesis is correct and that we have the correct
value of k. If it does not make sense, we next consider the hypothesis that the most common
letter in the ciphertext is produced by encrypting T, the second most common letter in English;
we find k under this hypothesis, shift the letters of the message by −k, and see whether the
resulting message makes sense. If it does not, we continue the process working our way through
the letters from most common to least common.

4.6 Cryptography 297

EXAMPLE 5 Suppose that we intercepted the ciphertext message ZNK KGXRE HOXJ MKZY ZNK CUXS
that we know was produced by a shift cipher. What was the original plaintext message?

Solution: Because we know that the intercepted ciphertext message was encrypted using a
shift cipher, we begin by calculating the frequency of letters in the ciphertext. We find that
the most common letter in the ciphertext is K. So, we hypothesize that the shift cipher sent
the plaintext letter E to the ciphertext letter K. If this hypothesis is correct, we know that
10 = 4 + k mod 26, so k = 6. Next, we shift the letters of the message by −6, obtaining
THE EARLY BIRD GETS THE WORM. Because this message makes sense, we assume that
the hypothesis that k = 6 is correct. ▲

BLOCK CIPHERS Shift ciphers and affine ciphers proceed by replacing each letter of the
alphabet by another letter in the alphabet. Because of this, these ciphers are called character
or monoalphabetic ciphers. Encryption methods of this kind are vulnerable to attacks based
on the analysis of letter frequency in the ciphertext, as we just illustrated. We can make it
harder to successfully attack ciphertext by replacing blocks of letters with other blocks of letters
instead of replacing individual characters with individual characters; such ciphers are called
block ciphers.

We will now introduce a simple type of block cipher, called the transposition cipher. As
a key we use a permutation σ of the set {1, 2, . . . , m} for some positive integer m, that is, a
one-to-one function from {1, 2, . . . , m} to itself. To encrypt a message we first split its letters
into blocks of size m. (If the number of letters in the message is not divisible by m we add
some random letters at the end to fill out the final block.) We encrypt the block p1p2 . . . pm
as c1c2 . . . cm = pσ(1)pσ(2) . . . , pσ(m). To decryt a ciphertext block c1c2 . . . cm, we transpose
its letters using the permutation σ−1, the inverse of σ . Example 6 illustrates encryption and
decryption for a transposition cipher.

EXAMPLE 6 Using the transposition cipher based on the permutation σ of the set {1, 2, 3, 4} with σ(1) = 3,
σ(2) = 1, σ(3) = 4, and σ(4) = 2,

(a) Encrypt the plaintext message PIRATE ATTACK.

(b) Decrypt the ciphertext message SWUE TRAE OEHS, which was encrypted using this cipher.

Solution: (a) We first split the letters of the plaintext into blocks of four letters. We obtain PIRA
TEAT TACK. To encrypt each block, we send the first letter to the third position, the second
letter to the first position, the third letter to the fourth position, and the fourth letter to the second
position. We obtain IAPR ETTA AKTC.

(b) We note that σ−1, the inverse of σ , sends 1 to 2, sends 2 to 4, sends 3 to 1, and sends
4 to 3. Applying σ−1(m) to each block gives us the plaintext: USEW ATER HOSE. (Grouping
together these letters to form common words, we surmise that the plaintext is USE WATER
HOSE.) ▲

CRYPTOSYSTEMS We have defined two families of ciphers: shift ciphers and affine ciphers.
We now introduce the notion of a cryptosystem, which provides a general structure for defining
new families of ciphers.

DEFINITION 1 A cryptosystem is a five-tuple (P, C,K, E,D), where P is the set of plaintext strings, C is
the set of ciphertext strings, K is the keyspace (the set of all possible keys), E is the set of
encryption functions, andD is the set of decryption functions.We denote byEk the encryption
function in E corresponding to the key k and Dk the decryption function in D that decrypts
ciphertext that was encrypted using Ek , that is Dk(Ek(p)) = p, for all plaintext strings p.

298 4 / Number Theory and Cryptography

We now illustrate the use of the definition of a cryptosystem.

EXAMPLE 7 Describe the family of shift ciphers as a cryptosytem.

Solution: To encrypt a string of English letters with a shift cipher, we first translate each letter
to an integer between 0 and 25, that is, to an element of Z26. We then shift each of these integers
by a fixed integer modulo 26, and finally, we translate the integers back to letters. To apply the
defintion of a cryptosystem to shift ciphers, we assume that our messages are already integers,
that is, elements of Z26. That is, we assume that the translation between letters and integers
is outside of the cryptosystem. Consequently, both the set of plaintext strings P and the set of
ciphertext stringsC are the set of strings of elements ofZ26.The set of keysK is the set of possible
shifts, so K = Z26. The set E consists of functions of the form Ek(p) = (p + k)mod 26, and
the setD of decryption functions is the same as the set of encrypting functions whereDk(p) =
(p − k)mod 26. ▲

The concept of a cryptosystem is useful in the discussion of additional families of ciphers
and is used extensively in cryptography.

Public Key Cryptography

All classical ciphers, including shift ciphers and affine ciphers, are examples of private key
cryptosystems. In a private key cryptosystem, once you know an encryption key, you can
quickly find the decryption key. So, knowing how to encrypt messages using a particular key
allows you to decrypt messages that were encrypted using this key. For example, when a shift
cipher is used with encryption key k, the plaintext integer p is sent to

c = (p + k) mod 26.

Decryption is carried out by shifting by −k; that is,

p = (c − k) mod 26.

So knowing how to encrypt with a shift cipher also tells you how to decrypt.
When a private key cryptosystem is used, two parties who wish to communicate in secret

must share a secret key. Because anyone who knows this key can both encrypt and decrypt
messages, two people who want to communicate securely need to securely exchange this key.
(We will introduce a method for doing this later in this section.) The shift cipher and affine cipher
cryptosystems are private key cryptosystems.They are quite simple and are extremely vulnerable
to cryptanalysis. However, the same is not true of many modern private key cryptosystems. In
particular, the current US government standard for private key cryptography, the Advanced
Encryption Standard (AES), is extremely complex and is considered to be highly resistant to
cryptanalysis. (See [St06] for details on AES and other modern private key cryptosystems.)
AES is widely used in government and commercial communications. However, it still shares
the property that for secure communications keys be shared. Furthermore, for extra security, a
new key is used for each communication session between two parties, which requires a method
for generating keys and securely sharing them.

To avoid the need for keys to be shared by every pair of parties that wish to communicate
securely, in the 1970s cryptologists introduced the concept of public key cryptosystems. When
such cryptosystems are used, knowing how to send an encrypted message does not help decrypt
messages. In such a system, everyone can have a publicly known encryption key. Only the
decryption keys are kept secret, and only the intended recipient of a message can decrypt it,
because, as far as it is currently known, knowledge of the encryption key does not let someone
recover the plaintext message without an extraordinary amount of work (such as billions of
years of computer time).

4.6 Cryptography 299

The RSA Cryptosystem

In 1976, three researchers at the Massachusetts Institute of Technology—Ronald Rivest, Adi
Shamir, and LeonardAdleman—introduced to the world a public key cryptosystem, known as the

M.I.T. is also known as
the ’Tute. RSA system, from the initials of its inventors. As often happens with cryptographic discoveries,

the RSA system had been discovered several years earlier in secret government research in the
United Kingdom. Clifford Cocks, working in secrecy at the United Kingdom’s Government
Communications Headquarters (GCHQ), had discovered this cryptosystem in 1973. However,
his invention was unknown to the outside world until the late 1990s, when he was allowed to
share classified GCHQ documents from the early 1970s. (An excellent account of this earlier
discovery, as well as the work of Rivest, Shamir, and Adleman, can be found in [Si99].)

In the RSA cryptosystem, each individual has an encryption key (n, e) where n = pq, the
Unfortunately, no one
calls this the Cocks
cryptosystem.

modulus is the product of two large primes p and q, say with 200 digits each, and an exponent
e that is relatively prime to (p − 1)(q − 1). To produce a usable key, two large primes must be
found. This can be done quickly on a computer using probabilistic primality tests, referred to
earlier in this section. However, the product of these primes n = pq, with approximately 400
digits, cannot, as far as is currently known, be factored in a reasonable length of time. As we
will see, this is an important reason why decryption cannot, as far as is currently known, be
done quickly without a separate decryption key.

RSA Encryption

To encrypt messages using a particular key (n, e), we first translate a plaintext message M
into sequences of integers. To do this, we first translate each plaintext letter into a two-digit
number, using the same translation we employed for shift ciphers, with one key difference.
That is, we include an initial zero for the letters A through J, so that A is translated into 00,
B into 01, . . . , and J into 09. Then, we concatenate these two-digit numbers into strings of digits.
Next, we divide this string into equally sized blocks of 2N digits, where 2N is the largest even
number such that the number 2525 . . . 25 with 2N digits does not exceed n. (When necessary,
we pad the plaintext message with dummy Xs to make the last block the same size as all other
blocks.)

After these steps, we have translated the plaintext message M into a sequence of integers
m1, m2, . . . , mk for some integer k. Encryption proceeds by transforming each block mi to a
ciphertext block ci . This is done using the function

C = Me mod n.
(To perform the encryption, we use an algorithm for fast modular exponentiation, such as
Algorithm 5 in Section 4.2.) We leave the encrypted message as blocks of numbers and send
these to the intended recipient. Because the RSA cryptosystem encrypts blocks of characters
into blocks of characters, it is a block cipher.

CLIFFORD COCKS (BORN 1950) Clifford Cocks, born in Cheshire, England, was a talented mathematics
student. In 1968 he won a silver medal at the International Mathematical Olympiad. Cocks attended King’s
College, Cambridge, studying mathematics. He also spent a short time at Oxford University working in number
theory. In 1973 he decided not to complete his graduate work, instead taking a mathematical job at the Govern-
ment Communications Headquarters (GCHQ) of British intelligence. Two months after joining GCHQ, Cocks
learned about public key cryptography from an internal GCHQ report written by James Ellis. Cocks used his
number theory knowledge to invent what is now called the RSA cryptosystem. He quickly realized that a public
key cryptosystem could be based on the difficulty of reversing the process of multiplying two large primes. In
1997 he was allowed to reveal declassified GCHQ internal documents describing his discovery. Cocks is also

known for his invention of a secure identity based encryption scheme, which uses information about a user’s identity as a public key.
In 2001, Cocks became the Chief Mathematician at GCHQ. He has also set up the Heilbronn Institute for Mathematical Research,
a partnership between GCHQ and the University of Bristol.

300 4 / Number Theory and Cryptography

Example 8 illustrates how RSA encryption is performed. For practical reasons we use small
primes p and q in this example, rather than primes with 200 or more digits. Although the cipher
described in this example is not secure, it does illustrate the techniques used in the RSA cipher.

EXAMPLE 8 Encrypt the message STOP using the RSA cryptosystem with key (2537, 13). Note that 2537 =
43 · 59, p = 43 and q = 59 are primes, and

gcd(e, (p − 1)(q − 1)) = gcd(13, 42 · 58) = 1.

Solution: To encrypt, we first translate the letters in STOP into their numerical equivalents. We
then group these numbers into blocks of four digits (because 2525 < 2537 < 252525), to obtain

1819 1415.

We encrypt each block using the mapping

C = M13 mod 2537.

Computations using fast modular multiplication show that 181913 mod 2537 = 2081 and
141513 mod 2537 = 2182. The encrypted message is 2081 2182. ▲

RSA Decryption

The plaintext message can be quickly recovered from a ciphertext message when the decryp-
tion key d, an inverse of e modulo (p − 1)(q − 1), is known. [Such an inverse exists because
gcd(e, (p − 1)(q − 1)) = 1.] To see this, note that if de ≡ 1 (mod (p − 1)(q − 1)), there is an
integer k such that de = 1 + k(p − 1)(q − 1). It follows that

Cd ≡ (Me)d = Mde = M1+k(p−1)(q−1) (mod n).

RONALD RIVEST (BORN 1948) Ronald Rivest received a B.A. fromYale in 1969 and his Ph.D. in computer
science from Stanford in 1974. Rivest is a computer science professor at M.I.T. and was a cofounder of RSA Data
Security, which held the patent on the RSA cryptosystem that he invented together withAdi Shamir and Leonard
Adleman. Areas that Rivest has worked in besides cryptography include machine learning, VLSI design, and
computer algorithms. He is a coauthor of a popular text on algorithms ([CoLeRiSt09]).

ADI SHAMIR (BORN 1952) Adi Shamir was born in Tel Aviv, Israel. His undergraduate degree is from
Tel Aviv University (1972) and his Ph.D. is from the Weizmann Institute of Science (1977). Shamir was a
research assistant at the University of Warwick and an assistant professor at M.I.T. He is currently a profes-
sor in the Applied Mathematics Department at the Weizmann Institute and leads a group studying computer
security. Shamir’s contributions to cryptography, besides the RSA cryptosystem, include cracking knapsack
cryptosystems, cryptanalysis of the Data Encryption Standard (DES), and the design of many cryptographic
protocols.

LEONARD ADLEMAN (BORN 1945) Leonard Adleman was born in San Francisco, California. He received
a B.S. in mathematics (1968) and his Ph.D. in computer science (1976) from the University of California,
Berkeley. Adleman was a member of the mathematics faculty at M.I.T. from 1976 until 1980, where he was
a coinventor of the RSA cryptosystem, and in 1980 he took a position in the computer science department at
the University of Southern California (USC). He was appointed to a chaired position at USC in 1985. Adleman
has worked on computer security, computational complexity, immunology, and molecular biology. He invented
the term “computer virus.” Adleman’s recent work on DNA computing has sparked great interest. He was a
technical adviser for the movie Sneakers, in which computer security played an important role.

4.6 Cryptography 301

By Fermat’s little theorem [assuming that gcd(M, p) = gcd(M, q) = 1, which holds except in
rare cases, which we cover in Exercise 28], it follows that Mp−1 ≡ 1 (mod p) and Mq−1 ≡
1 (mod q). Consequently,

Cd ≡ M · (Mp−1)k(q−1) ≡ M · 1 = M (mod p)

and

Cd ≡ M · (Mq−1)k(p−1) ≡ M · 1 = M (mod q).

Because gcd(p, q) = 1, it follows by the Chinese remainder theorem that

Cd ≡ M (mod pq).

Example 9 illustrates how to decrypt messages sent using the RSA cryptosystem.

EXAMPLE 9 We receive the encrypted message 0981 0461. What is the decrypted message if it was encrypted
using the RSA cipher from Example 8?

Solution: The message was encrypted using the RSA cryptosystem with n = 43 · 59 and expo-
nent 13. As Exercise 2 in Section 4.4 shows, d = 937 is an inverse of 13 modulo 42 · 58 = 2436.
We use 937 as our decryption exponent. Consequently, to decrypt a block C, we compute

M = C937 mod 2537.

To decrypt the message, we use the fast modular exponentiation algorithm to compute
0981937mod 2537= 0704 and 0461937mod 2537= 1115. Consequently, the numerical version
of the original message is 0704 1115. Translating this back to English letters, we see that the
message is HELP. ▲

RSA as a Public Key System

Why is the RSA cryptosystem suitable for public key cryptography? First, it is possible to rapidly
construct a public key by finding two large primes p and q, each with more than 200 digits,
and to find an integer e relatively prime to (p − 1)(q − 1). When we know the factorization of
the modulus n, that is, when we know p and q, we can quickly find an inverse d of e modulo
(p − 1)(q − 1). [This is done by using the Euclidean algorithm to find Bézout coefficients s
and t for d and (p − 1)(q − 1), which shows that the inverse of d modulo (p − 1)(q − 1) is
s mod (p − 1)(q − 1).] Knowing d lets us decrypt messages sent using our key. However, no
method is known to decrypt messages that is not based on finding a factorization of n, or that
does not also lead to the factorization of n.

Factorization is believed to be a difficult problem, as opposed to finding large primes p
and q, which can be done quickly. The most efficient factorization methods known (as of 2010)
require billions of years to factor 400-digit integers. Consequently, when p and q are 200-digit
primes, it is believed that messages encrypted using n = pq as the modulus cannot be found in
a reasonable time unless the primes p and q are known.

Although no polynomial-time algorithm is known for factoring large integers, active re-
search is under way to find new ways to efficiently factor integers. Integers that were thought, as
recently as several years ago, to be far too large to be factored in a reasonable amount of time can
now be factored routinely. Integers with more than 150 digits, as well as some with more than
200 digits, have been factored using team efforts. When new factorization techniques are found,

302 4 / Number Theory and Cryptography

it will be necessary to use larger primes to ensure secrecy of messages. Unfortunately, messages
that were considered secure earlier can be saved and subsequently decrypted by unintended
recipients when it becomes feasible to factor the n = pq in the key used for RSA encryption.

The RSA method is now widely used. However, the most commonly used cryptosystems
are private key cryptosystems. The use of public key cryptography, via the RSA system, is
growing. Nevertheless, there are applications that use both private key and public key systems.
For example, a public key cryptosystem, such as RSA, can be used to distribute private keys
to pairs of individuals when they wish to communicate. These people then use a private key
system for encryption and decryption of messages.

Cryptographic Protocols

So far we have shown how cryptography can be used to make messages secure. However,
there are many other important applications of cryptography. Among these applications are
cryptographic protocols, which are exchanges of messages carried out by two or more parties
to achieve a particular security goal. In particular, we will show how cryptography can be used
to allow two people to exchange a secret key over an insecure communication channel. We will
also show how cryptography can be used to send signed secret messages so that the recipient
can be sure that the message came from the purported sender. We refer the reader to [St05] for
thorough discussions of a variety of cryptographic protocols.

KEY EXCHANGE We now discuss a protocol that two parties can use to exchange a secret
key over an insecure communications channel without having shared any information in the
past. Generating a key that two parties can share is important for many applications of cryp-
tography. For example, for two people to send secure messages to each other using a private
key cryptosystem they need to share a common key. The protocol we will describe is known as
the Diffie-Hellman key agreement protocol, after Whitfield Diffie and Martin Hellman, who
described it in 1976. However, this protocol was invented in 1974 by Malcolm Williamson in
secret work at the British GCHQ. It was not until 1997 that his discovery was made public.

Suppose that Alice and Bob want to share a common key. The protocol follows these steps,
where the computations are done in Zp.

(1) Alice and Bob agree to use a prime p and a primitive root a of p.

(2) Alice chooses a secret integer k1 and sends ak1 modp to Bob.

(3) Bob chooses a secret integer k2 and sends ak2 modp to Alice.

(4) Alice computes (ak2)k1 modp.

(5) Bob computes (ak1)k2 modp.

At the end of this protocol, Alice and Bob have computed their shared key, namely

(ak2)k1 modp = (ak1)k2 modp.

To analyze the security of this protocol, note that the messages sent in steps (1), (2), and
(3) are not assumed to be sent securely. We can even assume that these communications were
in the clear and that their contents are public information. So, p, a, ak1 modp, and ak2 modp
are assumed to be public information. The protocol ensures that k1, k2, and the common key
(ak2)k1 modp = (ak1)k2 modp are kept secret. To find the secret information from this pub-
lic information requires that an adversary solves instances of the discrete logarithm problem,

4.6 Cryptography 303

because the adversary would need to find k1 and k2 from ak1 modp and ak2 modp, respec-
tively. Furthermore, no other method is known for finding the shared key using just the public
information. We have remarked that this is thought to be computationally infeasible when p
and a are sufficiently large. With the computing power available now, this system is considered
unbreakable whenp has more than 300 decimal digits and k1 and k2 have more than 100 decimal
digits each.

DIGITAL SIGNATURES Not only can cryptography be used to secure the confidentiality of
a message, but it also can be used so that the recipient of the message knows that it came from
the person they think it came from. We first show how a message can be sent so that a recipient
of the message will be sure that the message came from the purported sender of the message.
In particular, we can show how this can be accomplished using the RSA cryptosystem to apply
a digital signature to a message.

Suppose thatAlice’s RSA public key is (n, e) and her private key is d.Alice encrypts a plain-
text message x using the encryption function E(n,e)(x) = xemod n. She decrypts a ciphertext
message y using the decryption function D(n,e) = xd mod n. Alice wants to send the message
M so that everyone who receives the message knows that it came from her. Just as in RSA en-
cryption, she translates the letters into their numerical equivalents and splits the resulting string
into blocks m1, m2, . . . , mk such that each block is the same size which is as large as possible
so that 0 ≤ mi ≤ n for i = 1, 2, ..., k. She then applies her decryption function D(n,e) to each
block, obtainingDn,e(mi), i = 1, 2, . . . , k. She sends the result to all intended recipients of the
message.

When a recipient receives her message, they applyAlice’s encryption functionE(n,e) to each
block, which everyone has available because Alice’s key (n, e) is public information. The result
is the original plaintext block because E(n,e)(D(n,e)(x)) = x. So, Alice can send her message
to as many people as she wants and by signing it in this way, every recipient can be sure it came
from Alice. Example 10 illustrates this protocol.

EXAMPLE 10 Suppose Alice’s public RSA cryptosystem key is the same as in Example 8. That is, n =
43 · 59 = 2537 and e = 13. Her decryption key is d = 937, as described in Example 9. She
wants to send the message “MEET AT NOON” to her friends so that they are sure it came from
her. What should she send?

Solution: Alice first translates the message into blocks of digits, obtaining 1204 0419 0019
1314 1413 (as the reader should verify). She then applies her decryption transformation
D(2537,13)(x) = x937mod 2537 to each block. Using fast modular exponentiation (with the
help of a computational aid), she finds that 1204937mod 2537 = 817, 419937mod 2537 = 555,
19937mod 2537 = 1310, 1314937mod 2537 = 2173, and 1413937mod 2537 = 1026.

So, the message she sends, split into blocks, is 0817 0555 1310 2173 1026. When one of
her friends gets this message, they apply her encryption transformationE(2537,13) to each block.
When they do this, they obtain the blocks of digits of the original message which they translate
back to English letters. ▲

We have shown that signed messages can be sent using the RSA cryptosystem.We can extend
this by sending signed secret messages. To do this, the sender applies RSA encryption using
the publicly known encryption key of an intended recipient to each block that was encrypted
using sender’s decryption transformation. The recipient then first applies his private decryption
transformation and then the sender’s public encryption transformation. (Exercise 32 asks for
this protocol to be carried out.)

304 4 / Number Theory and Cryptography

Exercises

1. Encrypt the message DO NOT PASS GO by translating
the letters into numbers, applying the given encryption
function, and then translating the numbers back into let-
ters.

a) f (p) = (p + 3) mod 26 (the Caesar cipher)
b) f (p) = (p + 13) mod 26
c) f (p) = (3p + 7) mod 26

2. Encrypt the message STOP POLLUTION by translating
the letters into numbers, applying the given encryption
function, and then translating the numbers back into let-
ters.

a) f (p) = (p + 4) mod 26
b) f (p) = (p + 21) mod 26
c) f (p) = (17p + 22) mod 26

3. Encrypt the message WATCH YOUR STEP by translat-
ing the letters into numbers, applying the given encryp-
tion function, and then translating the numbers back into
letters.

a) f (p) = (p + 14) mod 26
b) f (p) = (14p + 21) mod 26
c) f (p) = (−7p + 1) mod 26

4. Decrypt these messages that were encrypted using the
Caesar cipher.

a) EOXH MHDQV
b) WHVW WRGDB
c) HDW GLP VXP

5. Decrypt these messages encrypted using the shift cipher
f (p) = (p + 10) mod 26.

a) CEBBOXNOB XYG
b) LO WI PBSOXN
c) DSWO PYB PEX

6. Suppose that when a long string of text is encrypted using
a shift cipherf (p) = (p + k) mod 26, the most common
letter in the ciphertext is X. What is the most likely value
for k assuming that the distribution of letters in the text
is typical of English text?

7. Suppose that when a string of English text is encrypted us-
ing a shift cipher f (p) = (p + k) mod 26, the resulting
ciphertext is DY CVOOZ ZOBMRKXMO DY NBOKW.
What was the original plaintext string?

8. Suppose that the ciphertext DVE CFMV KF NFEUVI,
REU KYRK ZJ KYV JVVU FW JTZVETV was pro-
duced by encrypting a plaintext message using a shift
cipher. What is the original plaintext?

9. Suppose that the ciphertext ERC WYJJMGMIRXPC
EHZERGIH XIGLRSPSKC MW MRHMWXM-
RKYMWLEFPI JVSQ QEKMG was produced by en-
crypting a plaintext message using a shift cipher. What is
the original plaintext?

10. Determine whether there is a key for which the encipher-
ing function for the shift cipher is the same as the deci-
phering function.

11. What is the decryption function for an affine cipher if the
encryption function is c = (15p + 13) mod 26?

∗12. Find all pairs of integers keys (a, b) for affine ciphers for
which the encryption function c = (ap + b) mod 26 is
the same as the corresponding decryption function.

13. Suppose that the most common letter and the second
most common letter in a long ciphertext produced by
encrypting a plaintext using an affine cipher f (p) =
(ap + b) mod 26 are Z and J, respectively. What are the
most likely values of a and b?

14. Encrypt the message GRIZZLY BEARS using blocks
of five letters and the transposition cipher based on the
permutation of {1, 2, 3, 4, 5} with σ(1) = 3, σ(2) = 5,
σ(3) = 1, σ(4) = 2, and σ(5) = 4. For this exercise, use
the letterX as many times as necessary to fill out the final
block of fewer then five letters.

15. Decrypt the message EABW EFRO ATMR ASIN which
is the ciphertext produced by encrypting a plaintext mes-
sage using the transposition cipher with blocks of four
letters and the permutation σ of {1, 2, 3, 4} defined by
σ(1) = 3, σ(2) = 1, σ(3) = 4, and σ(4) = 2.

∗16. Suppose that you know that a ciphertext was produced
by encrypting a plaintext message with a transposition
cipher. How might you go about breaking it?

17. Suppose you have intercepted a ciphertext message and
when you determine the frequencies of letters in this mes-
sage, you find the frequencies are similar to the frequency
of letters in English text. Which type of cipher do you sus-
pect was used?

The Vigenère cipher is a block cipher, with a key that is a
string of letters with numerical equivalents k1k2 . . . km, where
ki ∈ Z26 for i = 1, 2, . . . , m. Suppose that the numerical
equivalents of the letters of a plaintext block are p1p2 . . . pm.
The corresponding numerical ciphertext block is (p1 +
k1)mod 26 (p2 + k2)mod 26 . . . (pm + km)mod 26. Finally,
we translate back to letters. For example, suppose that the
key string is RED, with numerical equivalents 17 4 3.
Then, the plaintext ORANGE, with numerical equivalents
14 17 00 13 06 04, is encrypted by first splitting it into two
blocks 14 17 00 and 13 06 04. Then, in each block we shift
the first letter by 17, the second by 4, and the third by 3. We
obtain 5 21 03 and 04 10 07. The cipherext is FVDEKH.

18. Use the Vigenère cipher with key BLUE to encrypt the
message SNOWFALL.

19. The ciphertext OIKYWVHBX was produced by encrypt-
ing a plaintext message using the Vigenère cipher with
key HOT. What is the plaintext message?

4.6 Cryptography 305

20. Express the Vigenère cipher as a cryptosystem.

To break aVigenère cipher by recovering a plaintext message from
the ciphertext message without having the key, the first step is to
figure out the length of the key string. The second step is to figure
out each character of the key string by determining the correspond-
ing shift. Exercises 21 and 22 deal with these two aspects.

21. Suppose that when a long string of text is encrypted using
a Vigenère cipher, the same string is found in the ciphertext
starting at several different positions. Explain how this infor-
mation can be used to help determine the length of the key.

22. Once the length of the key string of aVigènere cipher is known,
explain how to determine each of its characters. Assume that
the plaintext is long enough so that the frequency of its let-
ters is reasonably close to the frequency of letters in typical
English text.

∗23. Show that we can easily factor n when we know that n is the
product of two primes, p and q, and we know the value of
(p − 1)(q − 1).

In Exercises 24–27 first express your answers without computing
modular exponentiations. Then use a computational aid to com-
plete these computations.

24. Encrypt the message ATTACK using the RSA system with
n = 43 · 59 and e = 13, translating each letter into integers
and grouping together pairs of integers, as done in Example
8.

25. Encrypt the message UPLOAD using the RSA system with
n = 53 · 61 and e = 17, translating each letter into integers
and grouping together pairs of integers, as done in Example
8.

26. What is the original message encrypted using the RSA sys-
tem with n = 53 · 61 and e = 17 if the encrypted message is
3185 2038 2460 2550? (To decrypt, first find the decryption
exponent d, which is the inverse of e = 17 modulo 52 · 60.)

27. What is the original message encrypted using the RSA system
with n = 43 · 59 and e = 13 if the encrypted message is 0667
1947 0671? (To decrypt, first find the decryption exponent d
which is the inverse of e = 13 modulo 42 · 58.)

∗28. Suppose that (n, e) is an RSA encryption key,
with n = pq where p and q are large primes and
gcd(e, (p − 1)(q − 1)) = 1. Furthermore, suppose that d
is an inverse of e modulo (p − 1)(q − 1). Suppose that
C ≡ Me (mod pq). In the text we showed that RSA de-
cryption, that is, the congruence Cd ≡ M (mod pq) holds
when gcd(M, pq) = 1. Show that this decryption congruence
also holds when gcd(M, pq) > 1. [Hint: Use congruences
modulo p and modulo q and apply the Chinese remainder
theorem.]

29. Describe the steps that Alice and Bob follow when they use
the Diffie-Hellman key exchange protocol to generate a shared
key. Assume that they use the prime p = 23 and take a = 5,
which is a primitive root of 23, and that Alice selects k1 = 8
and Bob selects k2 = 5. (You may want to use some compu-
tational aid.)

30. Describe the steps that Alice and Bob follow when they use
the Diffie-Hellman key exchange protocol to generate a shared
key. Assume that they use the prime p = 101 and take a = 2,
which is a primitive root of 101, and that Alice selects k1 = 7
and Bob selects k2 = 9. (You may want to use some compu-
tational aid.)

In Exercises 31–32 suppose that Alice and Bob have these
public keys and corresponding private keys: (nAlice, eAlice) =
(2867, 7) = (61 · 47, 7), dAlice = 1183 and (nBob, eBob) =
(3127, 21) = (59 · 53, 21), dBob = 1149. First express your an-
swers without carrying out the calculations. Then, using a com-
putational aid, if available, perform the calculation to get the
numerical answers.

31. Alice wants to send to all her friends, including Bob, the mes-
sage “SELL EVERYTHING” so that he knows that she sent
it. What should she send to her friends, assuming she signs
the message using the RSA cryptosystem.

32. Alice wants to send to Bob the message “BUY NOW” so that
he knows that she sent it and so that only Bob can read it. What
should she send to Bob, assuming she signs the message and
then encrypts it using Bob’s public key?

33. We describe a basic key exchange protocol using private key
cryptography upon which more sophisticated protocols for
key exchange are based. Encryption within the protocol is
done using a private key cryptosystem (such as AES) that is
considered secure. The protocol involves three parties, Alice
and Bob, who wish to exchange a key, and a trusted third party
Cathy. Assume that Alice has a secret key kAlice that only she
and Cathy know, and Bob has a secret key kBob which only he
and Cathy know. The protocol has three steps:

(i)Alice sends the trusted third party Cathy the message “re-
quest a shared key with Bob” encrypted using Alice’s key
kAlice.

(ii) Cathy sends back to Alice a key kAlice,Bob, which she gen-
erates, encrypted using the key kAlice, followed by this same
key kAlice,Bob, encrypted using Bob’s key, kBob.

(iii)Alice sends to Bob the key kAlice,Bob encrypted using kBob,
known only to Bob and to Cathy.

Explain why this protocol allows Alice and Bob to share
the secret key kAlice,Bob, known only to them and to Cathy.

306 4 / Number Theory and Cryptography

Key Terms and Results

TERMS

a | b (a divides b): there is an integer c such that b = ac
a and b are congruent modulo m: m divides a − b

modular arithmetic: arithmetic done modulo an integer
m ≥ 2

prime: an integer greater than 1 with exactly two positive
integer divisors

composite: an integer greater than 1 that is not prime
Mersenneprime: a prime of the form 2p − 1, wherep is prime
gcd(a, b) (greatest common divisor of a and b): the largest

integer that divides both a and b
relatively prime integers: integers a and b such that

gcd(a, b) = 1
pairwise relatively prime integers: a set of integers with the

property that every pair of these integers is relatively prime
lcm(a, b) (least common multiple of a and b): the smallest

positive integer that is divisible by both a and b
a mod b: the remainder when the integer a is divided by the

positive integer b
a ≡ b (mod m) (a is congruent to b modulo m): a − b is

divisible by m
n = (akak−1 . . . a1a0)b: the base b representation of n
binary representation: the base 2 representation of an integer
octal representation: the base 8 representation of an integer
hexadecimal representation: the base 16 representation of

an integer
linear combination of a and b with integer coefficients: an

expression of the form sa + tb, where s and t are integers
Bézout coefficients of a and b: integers s and t such that the
Bézout identity sa + tb = gcd(a, b) holds

inverse of amodulom: an integer a such that aa ≡ 1 (modm)
linear congruence: a congruence of the formax ≡ b (modm),

where x is an integer variable
pseudoprime to the base b: a composite integer n such that
bn−1 ≡ 1 (mod n)

Carmichael number: a composite integer n such that n is a
pseudoprime to the base b for all positive integers b with
gcd(b, n) = 1

primitive root of a prime p: an integer r inZp such that every
integer not divisible by p is congruent modulo p to a power
of r

discrete logarithm of a to the base rmodulo p: the integer e
with 0 ≤ e ≤ p − 1 such that re ≡ a (mod p)

encryption: the process of making a message secret
decryption: the process of returning a secret message to its

original form
encryption key: a value that determines which of a family of

encryption functions is to be used
shift cipher: a cipher that encrypts the plaintext letter p as
(p + k) mod m for an integer k

affine cipher: a cipher that encrypts the plaintext letter p as
(ap + b) mod m for integers a and b with gcd(a, 26) = 1

character cipher: a cipher that encrypts characters one by one
block cipher: a cipher that encrypts blocks of characters of a

fixed size

crytanalysis: the process of recovering the plaintext from ci-
phertext without knowledge of the encryption method, or
with knowledge of the encryption method, but not the key

cryptosystem: a five-tuple (P, C,K, E,D) where P is the set
of plaintext messages, C is the set of ciphertext messages,
K is the set of keys, E is the set of encryption functions,
and D is the set of decryption functions

private key encryption: encryption where both encryption
keys and decryption keys must be kept secret

public key encryption: encryption where encryption keys are
public knowledge, but decryption keys are kept secret

RSA cryptosystem: the cryptosystem where P and C are
both Z26, K is the set of pairs k = (n, e) where n = pq
where p and q are large primes and e is a positive integer,
Ek(p) = pemod n, and Dk(c) = cd mod n where d is the
inverse of e modulo (p − 1)(q − 1)

key exchange protocol: a protocol used for two parties to
generate a shared key

digital signature: a method that a recipient can use to deter-
mine that the purported sender of a message actually sent
the message

RESULTS

division algorithm: Let a and d be integers with d positive.
Then there are unique integers q and r with 0 ≤ r < d such
that a = dq + r .

Let b be an integer greater than 1. Then if n is a pos-
itive integer, it can be expressed uniquely in the form
n = akbk + ak−1b

k−1 + · · · + a1b + a0.
The algorithm for finding the base b expansion of an integer

(see Algorithm 1 in Section 4.2)
The conventional algorithms for addition and multiplication

of integers (given in Section 4.2)
The modular exponentiation algorithm (see Algorithm 5 in

Section 4.2)
Euclidean algorithm: for finding greatest common divisors

by successively using the division algorithm (seeAlgorithm
1 in Section 4.3)

Bézout’s theorem: If a and b are positive integers, then
gcd(a, b) is a linear combination of a and b.

sieve of Eratosthenes:A procedure for finding all primes not
exceeding a specified number n, described in Section 4.3

fundamental theorem of arithmetic: Every positive integer
can be written uniquely as the product of primes, where the
prime factors are written in order of increasing size.

If a and b are positive integers, then ab = gcd(a, b)· lcm(a, b).
If m is a positive integer and gcd(a,m) = 1, then a has a

unique inverse modulo m.
Chinese remainder theorem:A system of linear congruences

modulo pairwise relatively prime integers has a unique so-
lution modulo the product of these moduli.

Fermat’s little theorem: If p is prime and p | a, then
ap−1 ≡ 1 (mod p).

Supplementary Exercises 307

Review Questions

1. Find 210 div 17 and 210 mod 17.

2. a) Define what it means for a and b to be congruent mod-
ulo 7.

b) Which pairs of the integers −11,−8,−7,−1, 0, 3,
and 17 are congruent modulo 7?

c) Show that if a and b are congruent modulo 7, then
10a + 13 and −4b + 20 are also congruent modulo 7.

3. Show that if a ≡ b (mod m) and c ≡ d (mod m), then
a + c ≡ b + d (mod m).

4. Describe a procedure for converting decimal (base 10)
expansions of integers into hexadecimal expansions.

5. Convert (1101 1001 0101 1011)2 to octal and hexadeci-
mal representations.

6. Convert (7206)8 and (A0EB)16 to a binary representation.

7. State the fundamental theorem of arithmetic.

8. a) Describe a procedure for finding the prime factoriza-
tion of an integer.

b) Use this procedure to find the prime factorization of
80,707.

9. a) Define the greatest common divisor of two integers.
b) Describe at least three different ways to find the great-

est common divisor of two integers. When does each
method work best?

c) Find the greatest common divisor of 1,234,567 and
7,654,321.

d) Find the greatest common divisor of 2335577911 and
2937557313.

10. a) How can you find a linear combination (with integer
coefficients) of two integers that equals their greatest
common divisor?

b) Express gcd(84, 119) as a linear combination of 84
and 119.

11. a) What does it mean for a to be an inverse of
a modulo m?

b) How can you find an inverse of a modulo m when m
is a positive integer and gcd(a,m) = 1?

c) Find an inverse of 7 modulo 19.

12. a) How can an inverse of amodulom be used to solve the
congruence ax ≡ b (mod m) when gcd(a,m) = 1?

b) Solve the linear congruence 7x ≡ 13 (mod 19).

13. a) State the Chinese remainder theorem.
b) Find the solutions to the system x ≡ 1 (mod 4),
x ≡ 2 (mod 5), and x ≡ 3 (mod 7).

14. Suppose that 2n−1 ≡ 1 (mod n). Is n necessarily prime?

15. Use Fermat’s little theorem to evaluate 9200 mod 19.

16. Explain how the check digit is found for a 10-digit ISBN.

17. Encrypt the message APPLES AND ORANGES using a
shift cipher with key k = 13.

18. a) What is the difference between a public key and a pri-
vate key cryptosystem?

b) Explain why using shift ciphers is a private key sys-
tem.

c) Explain why the RSA cryptosystem is a public key
system.

19. Explain how encryption and decryption are done in the
RSA cryptosystem.

20. Describe how two parties can share a secret key using the
Diffie-Hellman key exchange protocol.

Supplementary Exercises

1. The odometer on a car goes to up 100,000 miles. The
present owner of a car bought it when the odometer read
43,179 miles. He now wants to sell it; when you examine
the car for possible purchase, you notice that the odome-
ter reads 89,697 miles. What can you conclude about how
many miles he drove the car, assuming that the odometer
always worked correctly?

2. a) Explain why n div 7 equals the number of complete
weeks in n days.

b) Explain why n div 24 equals the number of complete
days in n hours.

3. Find four numbers congruent to 5 modulo 17.

4. Show that if a and d are positive integers, then there are
integers q and r such that a = dq + r where−d/2 < r ≤
d/2.

∗5. Show that if ac ≡ bc (mod m), where a, b, c, and
m are integers with m > 2, and d = gcd(m, c), then
a ≡ b (mod m/d).

6. Show that the sum of the squares of two odd integers
cannot be the square of an integer.

7. Show that if n2 + 1 is a perfect square, where n is an
integer, then n is even.

8. Prove that there are no solutions in integers x and y to
the equation x2 − 5y2 = 2. [Hint:Consider this equation
modulo 5.]

9. Develop a test for divisibility of a positive integer n by 8
based on the binary expansion of n.

10. Develop a test for divisibility of a positive integer n by 3
based on the binary expansion of n.

11. Devise an algorithm for guessing a number between 1
and 2n − 1 by successively guessing each bit in its binary
expansion.

12. Determine the complexity, in terms of the number of
guesses, needed to determine a number between 1 and
2n − 1 by successively guessing the bits in its binary ex-
pansion.

13. Show that an integer is divisible by 9 if and only if the
sum of its decimal digits is divisible by 9.

308 4 / Number Theory and Cryptography

∗∗14. Show that if a and b are positive irrational numbers such
that 1/a + 1/b = 1, then every positive integer can be
uniquely expressed as either ka or kb for some posi-
tive integer k.

15. Prove there are infinitely many primes by showing that
Qn = n! + 1 must have a prime factor greater than n
whenever n is a positive integer.

16. Find a positive integer n for which Qn = n! + 1 is not
prime.

17. Use Dirichlet’s theorem, which states there are infinitely
many primes in every arithmetic progression ak + b
where gcd(a, b) = 1, to show that there are infinitely
many primes that have a decimal expansion ending
with a 1.

18. Prove that if n is a positive integer such that the sum of
the divisors of n is n+ 1, then n is prime.

∗19. Show that every integer greater than 11 is the sum of two
composite integers.

20. Find the five smallest consecutive composite integers.

21. Show that Goldbach’s conjecture, which states that ev-
ery even integer greater than 2 is the sum of two primes,
is equivalent to the statement that every integer greater
than 5 is the sum of three primes.

22. Find an arithmetic progression of length six beginning
with 7 that contains only primes.

∗23. Prove that if f (x) is a nonconstant polynomial with inte-
ger coefficients, then there is an integer y such that f (y) is
composite. [Hint:Assume that f (x0) = p is prime. Show
that p divides f (x0 + kp) for all integers k. Obtain a con-
tradiction of the fact that a polynomial of degree n, where
n > 1, takes on each value at most n times.]

∗24. How many zeros are at the end of the binary expansion
of 10010!?

25. Use the Euclidean algorithm to find the greatest common
divisor of 10,223 and 33,341.

26. How many divisions are required to find gcd(144, 233)
using the Euclidean algorithm?

27. Find gcd(2n+ 1, 3n+ 2), where n is a positive integer.
[Hint: Use the Euclidean algorithm.]

28. a) Show that if a and b are positive inte-
gers with a ≥ b, then gcd(a, b) = a if a = b,
gcd(a, b) = 2 gcd(a/2, b/2) if a and b are even,
gcd(a, b) = gcd(a/2, b) if a is even and b is odd, and
gcd(a, b) = gcd(a − b, b) if both a and b are odd.

b) Explain how to use (a) to construct an algorithm for
computing the greatest common divisor of two posi-
tive integers that uses only comparisons, subtractions,
and shifts of binary expansions, without using any
divisions.

c) Find gcd(1202, 4848) using this algorithm.

29. Adapt the proof that there are infinitely many primes (The-
orem 3 in Section 4.3) to show that are infinitely many
primes in the arithmetic progression 6k + 5, k = 1, 2,

30. Explain why you cannot directly adapt the proof that there
are infinitely many primes (Theorem 3 in Section 4.3) to
show that there are infinitely many primes in the arith-
metic progression 3k + 1, k = 1, 2,

31. Explain why you cannot directly adapt the proof that there
are infinitely many primes (Theorem 3 in Section 4.3) to
show that are infinitely many primes in the arithmetic
progression 4k + 1, k = 1, 2,

32. Show that if the smallest prime factor p of the positive
integer n is larger than 3

√
n, then n/p is prime or equal to

1.

A set of integers is called mutually relatively prime if the
greatest common divisor of these integers is 1.

33. Determine whether the integers in each of these sets are
mutually relatively prime.

a) 8, 10, 12 b) 12, 15, 25
c) 15, 21, 28 d) 21, 24, 28, 32

34. Find a set of four mutually relatively prime integers such
that no two of them are relatively prime.

∗35. For which positive integers n is n4 + 4n prime?

36. Show that the system of congruences x ≡ 2 (mod 6) and
x ≡ 3 (mod 9) has no solutions.

37. Find all solutions of the system of congruences x ≡
4 (mod 6) and x ≡ 13 (mod 15).

∗38. a) Show that the system of congruences x ≡ a1(modm1)

and x ≡ a2 (mod m2), where a1, a2,m1, and m2 are
integers with m1 > 0 and m2 > 0, has a solution if
and only if gcd(m1,m2) | a1 − a2.

b) Show that if the system in part (a) has a solution, then
it is unique modulo lcm(m1,m2).

39. Prove that 30 divides n9 − n for every nonnegative
integer n.

40. Prove that n12 − 1 is divisible by 35 for every integer n
for which gcd(n, 35) = 1.

41. Show that if p and q are distinct prime numbers, then
pq−1 + qp−1 ≡ 1 (mod pq).

The check digit a13 for an ISBN-13 with initial digits
a1a2 . . . a12 is determined by the congruence (a1 + a3 +
· · · + a13)+ 3(a2 + a4 + · · · + a12) ≡ 0 (mod 10).

42. Determine whether each of these 13-digit numbers is a
valid ISBN-13.

a) 978-0-073-20679-1
b) 978-0-45424-521-1
c) 978-3-16-148410-0
d) 978-0-201-10179-9

43. Show that the check digit of an ISBN-13 can always detect
a single error.

44. Show that there are transpositions of two digits that are
not detected by an ISBN-13.

A routing transit number (RTN) is a bank code used in
the United States which appears on the bottom of checks.
The most common form of an RTN has nine digits, where
the last digit is a check digit. If d1d2 . . . d9 is a valid RTN,

Computer Projects 309

the congruence 3(d1 + d4 + d7)+ 7(d2 + d5 + d8)+ (d3 +
d6 + d9) ≡ 0 (mod 10) must hold.

45. Show that if d1d2 . . . d9 is a valid RTN, then d9 = 7(d1 +
d4 + d7)+ 3(d2 + d5 + d8)+ 9(d3 + d6)mod 10. Fur-
thermore, use this formula to find the check digit that
follows the eight digits 11100002 in a valid RTN.

46. Show that the check digit of an RTN can detect all single
errors and determine which transposition errors an RTN
check digit can catch and which ones it cannot catch.

47. The encrypted version of a message is LJMKG MG-
MXF QEXMW. If it was encrypted using the affine ci-
pher f (p) = (7p + 10) mod 26, what was the original
message?

Autokey ciphers are ciphers where the nth letter of the plain-
text is shifted by the numerical equivalent of the nth letter of
a keystream. The keystream begins with a seed letter; its sub-
sequent letters are constructed using either the plaintext or the
ciphertext. When the plaintext is used, each character of the

keystream, after the first, is the previous letter of the plaintext.
When the ciphertext is used, each subsequent character of the
keystream, after the first, is the previous letter of the ciphertext
computed so far. In both cases, plaintext letters are encrypted
by shifting each character by the numerical equivalent of the
corresponding keystream letter.

48. Use the autokey cipher to encrypt the message NOW IS
THE TIME TO DECIDE (ignoring spaces) using

a) the keystream with seed X followed by letters of the
plaintext.

b) the keystream with seed X followed by letters of the
ciphertext.

49. Use the autokey cipher to encrypt the message THE
DREAM OF REASON (ignoring spaces) using

a) the keystream with seed X followed by letters of the
plaintext.

b) the keystream with seed X followed by letters of the
ciphertext.

Computer Projects

Write programs with these inputs and outputs.

1. Given integers n and b, each greater than 1, find the base
b expansion of this integer.

2. Given the positive integers a, b, and m with m > 1, find
ab mod m.

3. Given a positive integer, find the Cantor expansion of this
integer (see the preamble to Exercise 48 of Section 4.2).

4. Given a positive integer, determine whether it is prime
using trial division.

5. Given a positive integer, find the prime factorization of
this integer.

6. Given two positive integers, find their greatest common
divisor using the Euclidean algorithm.

7. Given two positive integers, find their least common mul-
tiple.

8. Given positive integers a and b, find Bézout coefficients
s and t of a and b.

9. Given relatively prime positive integers a and b, find an
inverse of a modulo b.

10. Given n linear congruences modulo pairwise relatively
prime moduli, find the simultaneous solution of these con-
gruences modulo the product of these moduli.

11. Given a positive integerN , a modulusm, a multiplier a, an
increment c, and a seed x0, where 0 ≤ a < m, 0 ≤ c < m,
and 0 ≤ x0 < m, generate the sequence of N pseudo-
random numbers using the linear congruential generator
xn+1 = (axn + c) mod m.

12. Given a set of identification numbers, use a hash func-
tion to assign them to memory locations where there are
k memory locations.

13. Compute the check digit when given the first nine digits
of an ISBN-10.

14. Given a message and a positive integer k less than 26,
encrypt this message using the shift cipher with key k;
and given a message encrypted using a shift cipher with
key k, decrypt this message.

15. Given a message and positive integers a and b less than
26 with gcd(a, 26), encrypt this message using an affine
cipher with key (a, b); and given a message encrypted us-
ing the affine cipher with key (a, b), decrypt this message,
by first finding the decryption key and then applying the
appropriate decryption transformation.

16. Find the original plaintext message from the ciphertext
message produced by encrypting the plaintext message
using a shift cipher. Do this using a frequency count of
letters in the ciphertext.

∗17. Construct a valid RSA encryption key by finding two
primes p and q with 200 digits each and an integer e > 1
relatively prime to (p − 1)(q − 1).

18. Given a message and an integer n = pq where p and
q are odd primes and an integer e > 1 relatively prime
to (p − 1)(q − 1), encrypt the message using the RSA
cryptosystem with key (n, e).

19. Given a valid RSA key (n, e), and the primes p and q
with n = pq, find the associated decryption key d.

20. Given a message encrypted using the RSA cryptosystem
with key (n, e) and the associated decryption key d, de-
crypt this message.

21. Generate a shared key using the Diffie-Hellman key ex-
change protocol.

22. Given the RSA public and private keys of two parties,
send a signed secret message from one of the parties to
the other.

310 4 / Number Theory and Cryptography

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. Determine whether 2p − 1 is prime for each of the primes
not exceeding 100.

2. Test a range of large Mersenne numbers 2p − 1 to de-
termine whether they are prime. (You may want to use
software from the GIMPS project.)

3. Determine whether Qn = p1p2 · · ·pn + 1 is prime
where p1, p2, . . . , pn are the n smallest primes, for as
many positive integer n as possible.

4. Look for polynomials in one variables whose values at
long runs of consecutive integers are all primes.

5. Find as many primes of the form n2 + 1 where n is a pos-
itive integer as you can. It is not known whether there are
infinitely many such primes.

6. Find 10 different primes each with 100 digits.

7. How many primes are there less than 1,000,000, less than
10,000,000, and less than 100,000,000? Can you propose
an estimate for the number of primes less than x where x
is a positive integer?

8. Find a prime factor of each of 10 different 20-digit odd
integers, selected at random. Keep track of how long it
takes to find a factor of each of these integers. Do the
same thing for 10 different 30-digit odd integers, 10 dif-
ferent 40-digit odd integers, and so on, continuing as long
as possible.

9. Find all pseudoprimes to the base 2 that do not exceed
10,000.

Writing Projects

Respond to these with essays using outside sources.

1. Describe the Lucas–Lehmer test for determining whether
a Mersenne number is prime. Discuss the progress of the
GIMPS project in finding Mersenne primes using this test.

2. Explain how probabilistic primality tests are used in prac-
tice to produce extremely large numbers that are almost
certainly prime. Do such tests have any potential draw-
backs?

3. The question of whether there are infinitely many
Carmichael numbers was solved recently after being open
for more than 75 years. Describe the ingredients that went
into the proof that there are infinitely many such numbers.

4. Summarize the current status of factoring algorithms in
terms of their complexity and the size of numbers that can
currently be factored. When do you think that it will be
feasible to factor 200-digit numbers?

5. Describe the algorithms that are actually used by modern
computers to add, subtract, multiply, and divide positive
integers.

6. Describe the history of the Chinese remainder theorem.
Describe some of the relevant problems posed in Chi-
nese and Hindu writings and how the Chinese remainder
theorem applies to them.

7. When are the numbers of a sequence truly random num-
bers, and not pseudorandom? What shortcomings have
been observed in simulations and experiments in which
pseudorandom numbers have been used? What are the
properties that pseudorandom numbers can have that ran-
dom numbers should not have?

8. Explain how a check digit is found for an International
Bank Account Number (IBAN) and discuss the types of
errors that can be found using this check digit.

9. Describe the Luhn algorithm for finding the check digit
of a credit card number and discuss the types of errors
that can found using this check digit.

10. Show how a congruence can be used to tell the day of the
week for any given date.

11. Describe how public key cryptography is being applied.
Are the ways it is applied secure given the status of fac-
toring algorithms? Will information kept secure using
public key cryptography become insecure in the future?

12. Describe how public key cryptography can be used to
produce signed secret messages so that the recipient is
relatively sure the message was sent by the person ex-
pected to have sent it.

13. Describe the Rabin public key cryptosystem, explaining
how to encrypt and how to decrypt messages and why it
is suitable for use as a public key cryptosystem.

∗14. Explain why it would not be suitable to use p, where
p is a large prime, as the modulus for encryption in the
RSA cryptosystem. That is, explain how someone could,
without excessive computation, find a private key from
the corresponding public key if the modulus were a large
prime, rather than the product of two large primes.

15. Explain what is meant by a cryptographic hash function?
What are the important properties such a function must
have?

5

C H A P T E R

Induction and Recursion

5.1 Mathematical
Induction

5.2 Strong
Induction and
Well-Ordering

5.3 Recursive
Definitions and
Structural
Induction

5.4 Recursive
Algorithms

5.5 Program
Correctness

Many mathematical statements assert that a property is true for all positive integers.
Examples of such statements are that for every positive integer n: n! ≤ nn, n3 − n is

divisible by 3; a set with n elements has 2n subsets; and the sum of the first n positive integers
is n(n+ 1)/2. A major goal of this chapter, and the book, is to give the student a thorough
understanding of mathematical induction, which is used to prove results of this kind.

Proofs using mathematical induction have two parts. First, they show that the statement
holds for the positive integer 1. Second, they show that if the statement holds for a positive
integer then it must also hold for the next larger integer. Mathematical induction is based on the
rule of inference that tells us that if P(1) and ∀k(P (k)→ P(k + 1)) are true for the domain of
positive integers, then∀nP (n) is true. Mathematical induction can be used to prove a tremendous
variety of results. Understanding how to read and construct proofs by mathematical induction
is a key goal of learning discrete mathematics.

In Chapter 2 we explicitly defined sets and functions. That is, we described sets by listing
their elements or by giving some property that characterizes these elements. We gave formulae
for the values of functions. There is another important way to define such objects, based on
mathematical induction. To define functions, some initial terms are specified, and a rule is
given for finding subsequent values from values already known. (We briefly touched on this
sort of definition in Chapter 2 when we showed how sequences can be defined using recurrence
relations.) Sets can be defined by listing some of their elements and giving rules for constructing
elements from those already known to be in the set. Such definitions, called recursive definitions,

are used throughout discrete mathematics and computer science. Once we have defined a set
recursively, we can use a proof method called structural induction to prove results about this set.

When a procedure is specified for solving a problem, this procedure must always solve
the problem correctly. Just testing to see that the correct result is obtained for a set of input
values does not show that the procedure always works correctly. The correctness of a procedure
can be guaranteed only by proving that it always yields the correct result. The final section of
this chapter contains an introduction to the techniques of program verification. This is a formal
technique to verify that procedures are correct. Program verification serves as the basis for
attempts under way to prove in a mechanical fashion that programs are correct.

5.1 Mathematical Induction

Introduction

Suppose that we have an infinite ladder, as shown in Figure 1, and we want to know whether
we can reach every step on this ladder. We know two things:

1. We can reach the first rung of the ladder.
2. If we can reach a particular rung of the ladder, then we can reach the next rung.

Can we conclude that we can reach every rung? By (1), we know that we can reach the first
rung of the ladder. Moreover, because we can reach the first rung, by (2), we can also reach the
second rung; it is the next rung after the first rung. Applying (2) again, because we can reach
the second rung, we can also reach the third rung. Continuing in this way, we can show that we

311

312 5 / Induction and Recursion

Step 1

Step 2

Step 3

Step 4

Step k + 1

... ...

Step k

We can reach

step 1

We can reach step k + 1 if

we can reach step k

FIGURE 1 Climbing an Infinite Ladder.

can reach the fourth rung, the fifth rung, and so on. For example, after 100 uses of (2), we know
that we can reach the 101st rung. But can we conclude that we are able to reach every rung
of this infinite ladder? The answer is yes, something we can verify using an important proof
technique called mathematical induction. That is, we can show that P(n) is true for every
positive integer n, where P(n) is the statement that we can reach the nth rung of the ladder.

Mathematical induction is an extremely important proof technique that can be used to prove
assertions of this type. As we will see in this section and in subsequent sections of this chapter
and later chapters, mathematical induction is used extensively to prove results about a large
variety of discrete objects. For example, it is used to prove results about the complexity of
algorithms, the correctness of certain types of computer programs, theorems about graphs and
trees, as well as a wide range of identities and inequalities.

In this section, we will describe how mathematical induction can be used and why it is a
valid proof technique. It is extremely important to note that mathematical induction can be used
only to prove results obtained in some other way. It is not a tool for discovering formulae or
theorems.

Mathematical Induction

In general, mathematical induction ∗ can be used to prove statements that assert that P(n) is
true for all positive integers n, where P(n) is a propositional function. A proof by mathematical

∗Unfortunately, using the terminology “mathematical induction” clashes with the terminology used to describe different types
of reasoning. In logic, deductive reasoning uses rules of inference to draw conclusions from premises, whereas inductive
reasoning makes conclusions only supported, but not ensured, by evidence. Mathematical proofs, including arguments that
use mathematical induction, are deductive, not inductive.

5.1 Mathematical Induction 313

induction has two parts, a basis step, where we show that P(1) is true, and an inductive step,
where we show that for all positive integers k, if P(k) is true, then P(k + 1) is true.

PRINCIPLE OF MATHEMATICAL INDUCTION To prove that P(n) is true for all
positive integers n, where P(n) is a propositional function, we complete two steps:

BASIS STEP: We verify that P(1) is true.

INDUCTIVE STEP: We show that the conditional statement P(k)→ P(k + 1) is true for
all positive integers k.

To complete the inductive step of a proof using the principle of mathematical induction, we
assume that P(k) is true for an arbitrary positive integer k and show that under this assumption,
P(k + 1)must also be true. The assumption that P(k) is true is called the inductive hypothesis.
Once we complete both steps in a proof by mathematical induction, we have shown that P(n) is
true for all positive integers, that is, we have shown that ∀nP (n) is true where the quantification
is over the set of positive integers. In the inductive step, we show that ∀k(P (k) → P(k + 1))
is true, where again, the domain is the set of positive integers.

Expressed as a rule of inference, this proof technique can be stated as

(P (1) ∧ ∀ k(P (k)→ P(k + 1)))→ ∀ nP (n),

when the domain is the set of positive integers. Because mathematical induction is such an
important technique, it is worthwhile to explain in detail the steps of a proof using this technique.
The first thing we do to prove that P(n) is true for all positive integers n is to show that P(1) is
true. This amounts to showing that the particular statement obtained when n is replaced by 1 in
P(n) is true. Then we must show that P(k)→ P(k + 1) is true for every positive integer k. To
prove that this conditional statement is true for every positive integer k, we need to show that
P(k + 1) cannot be false when P(k) is true. This can be accomplished by assuming that P(k)
is true and showing that under this hypothesis P(k + 1) must also be true.

Remark: In a proof by mathematical induction it is not assumed that P(k) is true for all positive
integers! It is only shown that if it is assumed that P(k) is true, then P(k + 1) is also true. Thus,
a proof by mathematical induction is not a case of begging the question, or circular reasoning.

When we use mathematical induction to prove a theorem, we first show that P(1) is true. Then
we know that P(2) is true, because P(1) implies P(2). Further, we know that P(3) is true,
because P(2) implies P(3). Continuing along these lines, we see that P(n) is true for every
positive integer n.

HISTORICAL NOTE The first known use of mathematical induction is in the work of the sixteenth-century
mathematician Francesco Maurolico (1494 –1575). Maurolico wrote extensively on the works of classical
mathematics and made many contributions to geometry and optics. In his book Arithmeticorum Libri Duo,
Maurolico presented a variety of properties of the integers together with proofs of these properties. To prove
some of these properties, he devised the method of mathematical induction. His first use of mathematical
induction in this book was to prove that the sum of the first n odd positive integers equals n2. Augustus De
Morgan is credited with the first presentation in 1838 of formal proofs using mathematical induction, as well
as introducing the terminology “mathematical induction.” Maurolico’s proofs were informal and he never used
the word “induction.” See [Gu11] to learn more about the history of the method of mathematical induction.

314 5 / Induction and Recursion

FIGURE 2 Illustrating How Mathematical Induction Works Using Dominoes.

WAYS TO REMEMBER HOW MATHEMATICAL INDUCTION WORKS Thinking of
the infinite ladder and the rules for reaching steps can help you remember how mathematical
induction works. Note that statements (1) and (2) for the infinite ladder are exactly the basis
step and inductive step, respectively, of the proof that P(n) is true for all positive integers n,
where P(n) is the statement that we can reach the nth rung of the ladder. Consequently, we can
invoke mathematical induction to conclude that we can reach every rung.

Another way to illustrate the principle of mathematical induction is to consider an infinite
row of dominoes, labeled 1, 2, 3, . . . , n, . . . , where each domino is standing up. Let P(n) be
the proposition that domino n is knocked over. If the first domino is knocked over—i.e., if P(1)
is true—and if, whenever the kth domino is knocked over, it also knocks the (k + 1)st domino
over—i.e., if P(k)→ P(k + 1) is true for all positive integers k—then all the dominoes are
knocked over. This is illustrated in Figure 2.

WhyMathematical Induction is Valid

Why is mathematical induction a valid proof technique? The reason comes from the well-
ordering property, listed in Appendix 1, as an axiom for the set of positive integers, which
states that every nonempty subset of the set of positive integers has a least element. So, suppose
we know that P(1) is true and that the proposition P(k)→P(k + 1) is true for all positive
integers k. To show that P(n) must be true for all positive integers n, assume that there is at
least one positive integer for which P(n) is false. Then the set S of positive integers for which
P(n) is false is nonempty. Thus, by the well-ordering property, S has a least element, which
will be denoted bym. We know thatm cannot be 1, because P(1) is true. Becausem is positive
and greater than 1, m− 1 is a positive integer. Furthermore, because m− 1 is less than m, it is
not in S, so P(m− 1) must be true. Because the conditional statement P(m− 1)→P(m) is
also true, it must be the case that P(m) is true. This contradicts the choice of m. Hence, P(n)
must be true for every positive integer n.

The Good and the Bad of Mathematical Induction

An important point needs to be made about mathematical induction before we commence a
study of its use. The good thing about mathematical induction is that it can be used to prove

5.1 Mathematical Induction 315

a conjecture once it is has been made (and is true). The bad thing about it is that it cannotYou can prove
a theorem by
mathematical
induction
even if you do
not have the
slightest idea
why it is true!

be used to find new theorems. Mathematicians sometimes find proofs by mathematical in-
duction unsatisfying because they do not provide insights as to why theorems are true. Many
theorems can be proved in many ways, including by mathematical induction. Proofs of these the-
orems by methods other than mathematical induction are often preferred because of the insights
they bring.

Examples of Proofs by Mathematical Induction

Many theorems assert that P(n) is true for all positive integers n, where P(n) is a propositional
function. Mathematical induction is a technique for proving theorems of this kind. In other words,
mathematical induction can be used to prove statements of the form ∀nP (n), where the domain
is the set of positive integers. Mathematical induction can be used to prove an extremely wide
variety of theorems, each of which is a statement of this form. (Remember, many mathematical
assertions include an implicit universal quantifier. The statement “if n is a positive integer, then
n3 − n is divisible by 3” is an example of this. Making the implicit universal quantifier explicit
yields the statement “for every positive integer n, n3 − n is divisible by 3.)

We will use how theorems are proved using mathematical induction. The theorems we will
prove include summation formulae, inequalities, identities for combinations of sets, divisibility
results, theorems about algorithms, and some other creative results. In this section and in later
sections, we will employ mathematical induction to prove many other types of results, including
the correctness of computer programs and algorithms. Mathematical induction can be used to
prove a wide variety of theorems, not just summation formulae, inequalities, and other types of
examples we illustrate here. (For proofs by mathematical induction of many more interesting
and diverse results, see the Handbook of Mathematical Induction by David Gunderson [Gu11].
This book is part of the extensive CRC Series in Discrete Mathematics, many of which may be
of interest to readers. The author is the Series Editor of these books).

Note that there are many opportunities for errors in induction proofs. We will describe some
incorrect proofs by mathematical induction at the end of this section and in the exercises. To
avoid making errors in proofs by mathematical induction, try to follow the guidelines for such
proofs given at the end of this section.

SEEINGWHERETHEINDUCTIVEHYPOTHESIS ISUSED To help the reader understand
each of the mathematical induction proofs in this section, we will note where the inductive

Look for the
IH= symbol to

see where the inductive
hypothesis is used.

hypothesis is used. We indicate this use in three different ways: by explicit mention in the text,
by inserting the acronym IH (for inductive hypothesis) over an equals sign or a sign for an
inequality, or by specifying the inductive hypothesis as the reason for a step in a multi-line
display.

PROVINGSUMMATIONFORMULAE We begin by using mathematical induction to prove
several summation formulae. As we will see, mathematical induction is particularly well suited
for proving that such formulae are valid. However, summation formulae can be proven in other
ways. This is not surprising because there are often different ways to prove a theorem. The major
disadvantage of using mathematical induction to prove a summation formula is that you cannot
use it to derive this formula. That is, you must already have the formula before you attempt to
prove it by mathematical induction.

Examples 1–4 illustrate how to use mathematical induction to prove summation formulae.
The first summation formula we will prove by mathematical induction, in Example 1, is a closed
formula for the sum of the smallest n positive integers.

316 5 / Induction and Recursion

EXAMPLE 1 Show that if n is a positive integer, then

1 + 2 + · · · + n = n(n+ 1)

2
.

Solution: LetP(n) be the proposition that the sum of the firstn positive integers, 1 + 2 + · · · n =
n(n+1)

2 , is n(n+ 1)/2. We must do two things to prove that P(n) is true for n = 1, 2, 3,
Namely, we must show thatP(1) is true and that the conditional statementP(k) impliesP(k + 1)
is true for k = 1, 2, 3,

BASIS STEP: P(1) is true, because 1 = 1(1 + 1)

2
. (The left-hand side of this equation is 1

because 1 is the sum of the first positive integer. The right-hand side is found by substituting 1
for n in n(n+ 1)/2.)

INDUCTIVE STEP: For the inductive hypothesis we assume that P(k) holds for an arbitrary
positive integer k. That is, we assume that

If you are rusty
simplifying algebraic
expressions, this is the
time to do some
reviewing!

1 + 2 + · · · + k = k(k + 1)

2
.

Under this assumption, it must be shown that P(k + 1) is true, namely, that

1 + 2 + · · · + k + (k + 1) = (k + 1)[(k + 1)+ 1]
2

= (k + 1)(k + 2)

2

is also true. When we add k + 1 to both sides of the equation in P(k), we obtain

1 + 2 + · · · + k + (k + 1)
IH= k(k + 1)

2
+ (k + 1)

= k(k + 1)+ 2(k + 1)

2

= (k + 1)(k + 2)

2
.

This last equation shows that P(k + 1) is true under the assumption that P(k) is true. This
completes the inductive step.

We have completed the basis step and the inductive step, so by mathematical induction we
know that P(n) is true for all positive integers n. That is, we have proven that 1 + 2 + · · · + n =
n(n+ 1)/2 for all positive integers n. ▲

As we noted, mathematical induction is not a tool for finding theorems about all positive
integers. Rather, it is a proof method for proving such results once they are conjectured. In
Example 2, using mathematical induction to prove a summation formula, we will both formulate
and then prove a conjecture.

EXAMPLE 2 Conjecture a formula for the sum of the first n positive odd integers. Then prove your conjecture
using mathematical induction.

Solution: The sums of the first n positive odd integers for n = 1, 2, 3, 4, 5 are

1 = 1, 1 + 3 = 4, 1 + 3 + 5 = 9,
1 + 3 + 5 + 7 = 16, 1 + 3 + 5 + 7 + 9 = 25.

5.1 Mathematical Induction 317

From these values it is reasonable to conjecture that the sum of the first n positive odd integers
is n2, that is, 1 + 3 + 5 + · · · + (2n− 1) = n2. We need a method to prove that this conjecture

is correct, if in fact it is.
Let P(n) denote the proposition that the sum of the first n odd positive integers is n2. Our

conjecture is that P(n) is true for all positive integers. To use mathematical induction to prove
this conjecture, we must first complete the basis step; that is, we must show that P(1) is true.
Then we must carry out the inductive step; that is, we must show that P(k + 1) is true when
P(k) is assumed to be true. We now attempt to complete these two steps.

BASIS STEP: P(1) states that the sum of the first one odd positive integer is 12. This is true
because the sum of the first odd positive integer is 1. The basis step is complete.

INDUCTIVE STEP: To complete the inductive step we must show that the proposition
P(k)→ P(k + 1) is true for every positive integer k. To do this, we first assume the inductive
hypothesis. The inductive hypothesis is the statement that P(k) is true for an arbitrary positive
integer k, that is,

1 + 3 + 5 + · · · + (2k − 1) = k2.

(Note that the kth odd positive integer is (2k − 1), because this integer is obtained by adding 2 a
total of k − 1 times to 1.) To show that ∀k(P (k)→P(k + 1)) is true, we must show that if P(k)
is true (the inductive hypothesis), then P(k + 1) is true. Note that P(k + 1) is the statement that

1 + 3 + 5 + · · · + (2k − 1)+ (2k + 1) = (k + 1)2.

So, assuming that P(k) is true, it follows that

1 + 3 + 5 + · · · + (2k − 1)+ (2k + 1) = [1 + 3 + · · · + (2k − 1)] + (2k + 1)

IH= k2 + (2k + 1)

= k2 + 2k + 1

= (k + 1)2.

This shows that P(k + 1) follows from P(k). Note that we used the inductive hypothesis P(k)
in the second equality to replace the sum of the first k odd positive integers by k2.

We have now completed both the basis step and the inductive step. That is, we have shown
thatP(1) is true and the conditional statementP(k)→ P(k + 1) is true for all positive integers k.
Consequently, by the principle of mathematical induction we can conclude that P(n) is true for
all positive integers n. That is, we know that 1 + 3 + 5 + · · · + (2n− 1) = n2 for all positive
integers n. ▲

Often, we will need to show that P(n) is true for n = b, b + 1, b + 2, . . . , where b is an
integer other than 1. We can use mathematical induction to accomplish this, as long as we change
the basis step by replacing P(1) with P(b). In other words, to use mathematical induction to
show that P(n) is true for n = b, b + 1, b + 2, . . . , where b is an integer other than 1, we show
that P(b) is true in the basis step. In the inductive step, we show that the conditional statement
P(k)→P(k + 1) is true for k = b, b + 1, b + 2, Note that b can be negative, zero, or
positive. Following the domino analogy we used earlier, imagine that we begin by knocking
down the bth domino (the basis step), and as each domino falls, it knocks down the next domino
(the inductive step). We leave it to the reader to show that this form of induction is valid (see
Exercise 83).

We illustrate this notion in Example 3, which states that a summation formula is valid for
all nonnegative integers. In this example, we need to prove that P(n) is true for n = 0, 1, 2,
So, the basis step in Example 3 shows that P(0) is true.

318 5 / Induction and Recursion

EXAMPLE 3 Use mathematical induction to show that

1 + 2 + 22 + · · · + 2n = 2n+1 − 1

for all nonnegative integers n.

Solution: Let P(n) be the proposition that 1 + 2 + 22 + · · · + 2n = 2n+1 − 1 for the integer n.

BASIS STEP: P(0) is true because 20 = 1 = 21 − 1. This completes the basis step.

INDUCTIVE STEP: For the inductive hypothesis, we assume that P(k) is true for an arbitrary
nonnegative integer k. That is, we assume that

1 + 2 + 22 + · · · + 2k = 2k+1 − 1.

To carry out the inductive step using this assumption, we must show that when we assume
that P(k) is true, then P(k + 1) is also true. That is, we must show that

1 + 2 + 22 + · · · + 2k + 2k+1 = 2(k+1)+1 − 1 = 2k+2 − 1

assuming the inductive hypothesis P(k). Under the assumption of P(k), we see that

1 + 2 + 22 + · · · + 2k + 2k+1 = (1 + 2 + 22 + · · · + 2k)+ 2k+1

IH= (2k+1 − 1)+ 2k+1

= 2 · 2k+1 − 1

= 2k+2 − 1.

Note that we used the inductive hypothesis in the second equation in this string of equalities to
replace 1 + 2 + 22 + · · · + 2k by 2k+1 − 1. We have completed the inductive step.

Because we have completed the basis step and the inductive step, by mathematical induction
we know that P(n) is true for all nonnegative integers n. That is, 1 + 2 + · · · + 2n = 2n+1 − 1
for all nonnegative integers n. ▲

The formula given in Example 3 is a special case of a general result for the sum of terms
of a geometric progression (Theorem 1 in Section 2.4). We will use mathematical induction to
provide an alternative proof of this formula.

EXAMPLE 4 Sums of Geometric Progressions Use mathematical induction to prove this formula for the
sum of a finite number of terms of a geometric progression with initial term a and common
ratio r:

n
j = 0

arj = a + ar + ar2 + · · · + arn = arn+1 − a
r − 1

when r = 1,

where n is a nonnegative integer.

Solution: To prove this formula using mathematical induction, let P(n) be the statement that
the sum of the first n+ 1 terms of a geometric progression in this formula is correct.

BASIS STEP: P(0) is true, because

ar0+1 − a
r − 1

= ar − a
r − 1

= a(r − 1)

r − 1
= a.

5.1 Mathematical Induction 319

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true, where k is an
arbitrary nonnegative integer. That is, P(k) is the statement that

a + ar + ar2 + · · · + ark = ark+1 − a
r − 1

.

To complete the inductive step we must show that if P(k) is true, then P(k + 1) is also true. To
show that this is the case, we first add ark+1 to both sides of the equality asserted by P(k). We
find that

a + ar + ar2 + · · · + ark + ark+1 IH= ark+1 − a
r − 1

+ ark+1.

Rewriting the right-hand side of this equation shows that

ark+1 − a
r − 1

+ ark+1 = ark+1 − a
r − 1

+ ark+2 − ark+1

r − 1

= ark+2 − a
r − 1

.

Combining these last two equations gives

a + ar + ar2 + · · · + ark + ark+1 = ark+2 − a
r − 1

.

This shows that if the inductive hypothesis P(k) is true, then P(k + 1) must also be true. This
completes the inductive argument.

We have completed the basis step and the inductive step, so by mathematical inductionP(n)
is true for all nonnegative integers n. This shows that the formula for the sum of the terms of a
geometric series is correct. ▲

As previously mentioned, the formula in Example 3 is the case of the formula in
Example 4 with a = 1 and r = 2. The reader should verify that putting these values for a
and r into the general formula gives the same formula as in Example 3.

PROVING INEQUALITIES Mathematical induction can be used to prove a variety of
inequalities that hold for all positive integers greater than a particular positive integer, as
Examples 5–7 illustrate.

EXAMPLE 5 Use mathematical induction to prove the inequality

n < 2n

for all positive integers n.

Solution: Let P(n) be the proposition that n < 2n.

BASIS STEP: P(1) is true, because 1 < 21 = 2. This completes the basis step.

INDUCTIVE STEP: We first assume the inductive hypothesis that P(k) is true for anarbitrary
positive integer k. That is, the inductive hypothesisP(k) is the statement that k < 2k . To complete
the inductive step, we need to show that if P(k) is true, then P(k + 1), which is the statement
that k + 1 < 2k+1, is true. That is, we need to show that if k < 2k , then k + 1 < 2k+1. To show

320 5 / Induction and Recursion

that this conditional statement is true for the positive integer k, we first add 1 to both sides of
k < 2k , and then note that 1 ≤ 2k . This tells us that

k + 1
IH
< 2k + 1 ≤ 2k + 2k = 2 · 2k = 2k+1.

This shows that P(k + 1) is true, namely, that k + 1 < 2k+1, based on the assumption that P(k)
is true. The induction step is complete.

Therefore, because we have completed both the basis step and the inductive step, by
the principle of mathematical induction we have shown that n < 2n is true for all positive
integers n. ▲

EXAMPLE 6 Use mathematical induction to prove that 2n < n! for every integer nwith n ≥ 4. (Note that this
inequality is false for n = 1, 2, and 3.)

Solution: Let P(n) be the proposition that 2n < n!.
BASIS STEP: To prove the inequality for n ≥ 4 requires that the basis step be P(4). Note that
P(4) is true, because 24 = 16 < 24 = 4!
INDUCTIVESTEP: For the inductive step, we assume thatP(k) is true for an arbitrary integer k
with k ≥ 4. That is, we assume that 2k < k! for the positive integer k with k ≥ 4. We must show
that under this hypothesis, P(k + 1) is also true. That is, we must show that if 2k < k! for an
arbitrary positive integer k where k ≥ 4, then 2k+1 < (k + 1)!. We have

2k+1 = 2 · 2k by definition of exponent

< 2 · k! by the inductive hypothesis

< (k + 1)k! because 2 < k + 1

= (k + 1)! by definition of factorial function.

This shows that P(k + 1) is true when P(k) is true. This completes the inductive step of the
proof.

We have completed the basis step and the inductive step. Hence, by mathematical induction
P(n) is true for all integers n with n ≥ 4. That is, we have proved that 2n < n! is true for all
integers n with n ≥ 4. ▲

An important inequality for the sum of the reciprocals of a set of positive integers will be
proved in Example 7.

EXAMPLE 7 An Inequality for Harmonic Numbers The harmonic numbers Hj, j = 1, 2, 3, . . . , are
defined by

Hj = 1 + 1

2
+ 1

3
+ · · · + 1

j
.

For instance,

H4 = 1 + 1

2
+ 1

3
+ 1

4
= 25

12
.

Use mathematical induction to show that

H2n ≥ 1 + n

2
,

whenever n is a nonnegative integer.

5.1 Mathematical Induction 321

Solution: To carry out the proof, let P(n) be the proposition that H2n ≥ 1 + n

2
.

BASIS STEP: P(0) is true, because H20 = H1 = 1 ≥ 1 + 0

2
.

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true, that is,

H2k ≥ 1 + k

2
, where k is an arbitrary nonnegative integer. We must show that if P(k) is true,

then P(k + 1), which states that H2k+1 ≥ 1 + k + 1

2
, is also true. So, assuming the inductive

hypothesis, it follows that

H2k+1 = 1 + 1

2
+ 1

3
+ · · · + 1

2k
+ 1

2k + 1
+ · · · + 1

2k+1
by the definition of harmonic

number

= H2k +
1

2k + 1
+ · · · + 1

2k+1
by the definition of 2k th harmonic

number

≥

1 + k

2

+ 1

2k + 1
+ · · · + 1

2k+1
by the inductive hypothesis

≥

1 + k

2

+ 2k · 1

2k+1
because there are 2k terms

each ≥ 1/2k+1

≥

1 + k

2

+ 1

2
canceling a common factor of

2k in second term

= 1 + k + 1

2
.

This establishes the inductive step of the proof.

We have completed the basis step and the inductive step. Thus, by mathematical induction
P(n) is true for all nonnegative integers n. That is, the inequalityH2n ≥ 1 + n

2 for the harmonic
numbers holds for all nonnegative integers n. ▲

Remark: The inequality established here shows that the harmonic series

1 + 1

2
+ 1

3
+ · · · + 1

n
+ · · ·

is a divergent infinite series. This is an important example in the study of infinite series.

PROVINGDIVISIBILITY RESULTS Mathematical induction can be used to prove divisibil-
ity results about integers. Although such results are often easier to prove using basic results in
number theory, it is instructive to see how to prove such results using mathematical induction,
as Examples 8 and 9 illustrate.

EXAMPLE 8 Use mathematical induction to prove that n3 − n is divisible by 3 whenever n is a posi-
tive integer. (Note that this is the statement with p = 3 of Fermat’s little theorem, which is
Theorem 3 of Section 4.4.)

Solution: To construct the proof, let P(n) denote the proposition: “n3 − n is divisible by 3.”

BASIS STEP: The statement P(1) is true because 13 − 1 = 0 is divisible by 3. This completes
the basis step.

INDUCTIVE STEP: For the inductive hypothesis we assume that P(k) is true; that is, we
assume that k3 − k is divisible by 3 for an arbitrary positive integer k. To complete the inductive

322 5 / Induction and Recursion

step, we must show that when we assume the inductive hypothesis, it follows that P(k + 1),
the statement that (k + 1)3 − (k + 1) is divisible by 3, is also true. That is, we must show that
(k + 1)3 − (k + 1) is divisible by 3. Note that

(k + 1)3 − (k + 1) = (k3 + 3k2 + 3k + 1)− (k + 1)

= (k3 − k)+ 3(k2 + k).

Using the inductive hypothesis, we conclude that the first term k3 − k is divisible by 3. The
second term is divisible by 3 because it is 3 times an integer. So, by part (i) of Theorem 1 in
Section 4.1, we know that (k + 1)3 − (k + 1) is also divisible by 3. This completes the inductive
step.

Because we have completed both the basis step and the inductive step, by the prin-
ciple of mathematical induction we know that n3 − n is divisible by 3 whenever n is a
positive integer. ▲

The next example presents a more challenging proof by mathematical induction of a divis-
ibility result.

EXAMPLE 9 Use mathematical induction to prove that 7n+2 + 82n+1 is divisible by 57 for every nonnegative
integer n.

Solution: To construct the proof, let P(n) denote the proposition: “7n+2 + 82n+1 is divisible by
57.”

BASIS STEP: To complete the basis step, we must show that P(0) is true, because we want
to prove that P(n) is true for every nonnegative integer. We see that P(0) is true because
70+2 + 82·0+1 = 72 + 81 = 57 is divisible by 57. This completes the basis step.

INDUCTIVE STEP: For the inductive hypothesis we assume that P(k) is true for an arbitrary
nonnegative integer k; that is, we assume that 7k+2 + 82k+1 is divisible by 57. To complete the
inductive step, we must show that when we assume that the inductive hypothesis P(k) is true,
then P(k + 1), the statement that 7(k+1)+2 + 82(k+1)+1 is divisible by 57, is also true.

The difficult part of the proof is to see how to use the inductive hypothesis. To take advantage
of the inductive hypothesis, we use these steps:

7(k+1)+2 + 82(k+1)+1 = 7k+3 + 82k+3

= 7 · 7k+2 + 82 · 82k+1

= 7 · 7k+2 + 64 · 82k+1

= 7(7k+2 + 82k+1)+ 57 · 82k+1.

We can now use the inductive hypothesis, which states that 7k+2 + 82k+1 is divisible by
57. We will use parts (i) and (ii) of Theorem 1 in Section 4.1. By part (ii) of this theorem, and
the inductive hypothesis, we conclude that the first term in this last sum, 7(7k+2 + 82k+1), is
divisible by 57. By part (ii) of this theorem, the second term in this sum, 57 · 82k+1, is divisible
by 57. Hence, by part (i) of this theorem, we conclude that 7(7k+2 + 82k+1)+ 57 · 82k+1 =
7k+3 + 82k+3 is divisible by 57. This completes the inductive step.

Because we have completed both the basis step and the inductive step, by the principle of
mathematical induction we know that 7n+2 + 82n+1 is divisible by 57 for every nonnegative
integer n. ▲

PROVING RESULTS ABOUT SETS Mathematical induction can be used to prove many
results about sets. In particular, in Example 10 we prove a formula for the number of subsets of
a finite set and in Example 11 we establish a set identity.

5.1 Mathematical Induction 323

X

S

X

T

a•

Ta•

X {a}

FIGURE 3 Generating Subsets of a Set with k + 1 Elements. Here T = S ∪ {a}.

EXAMPLE 10 The Number of Subsets of a Finite Set Use mathematical induction to show that if S is a
finite set with n elements, where n is a nonnegative integer, then S has 2n subsets. (We will
prove this result directly in several ways in Chapter 6.)

Solution: Let P(n) be the proposition that a set with n elements has 2n subsets.

BASIS STEP: P(0) is true, because a set with zero elements, the empty set, has exactly 20 = 1
subset, namely, itself.

INDUCTIVE STEP: For the inductive hypothesis we assume that P(k) is true for an arbitrary
nonnegative integer k, that is, we assume that every set with k elements has 2k subsets. It must
be shown that under this assumption, P(k + 1), which is the statement that every set with k + 1
elements has 2k+1 subsets, must also be true. To show this, let T be a set with k + 1 elements.
Then, it is possible to write T = S ∪ {a}, where a is one of the elements of T and S = T − {a}
(and hence |S| = k). The subsets of T can be obtained in the following way. For each subset X
of S there are exactly two subsets of T , namely,X andX ∪ {a}. (This is illustrated in Figure 3.)
These constitute all the subsets of T and are all distinct. We now use the inductive hypothesis
to conclude that S has 2k subsets, because it has k elements. We also know that there are two
subsets of T for each subset of S. Therefore, there are 2 · 2k = 2k+1 subsets of T . This finishes
the inductive argument.

Because we have completed the basis step and the inductive step, by mathematical induction
it follows that P(n) is true for all nonnegative integers n. That is, we have proved that a set
with n elements has 2n subsets whenever n is a nonnegative integer. ▲

EXAMPLE 11 Use mathematical induction to prove the following generalization of one of De Morgan’s laws:

n
j = 1

Aj =
n

j = 1

Aj

whenever A1, A2, . . . , An are subsets of a universal set U and n ≥ 2.

Solution: Let P(n) be the identity for n sets.

BASIS STEP: The statementP(2) asserts thatA1 ∩ A2 = A1 ∪ A2. This is one of De Morgan’s
laws; it was proved in Example 11 of Section 2.2.

324 5 / Induction and Recursion

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true, where k is an
arbitrary integer with k ≥ 2; that is, it is the statement that

k
j = 1

Aj =
k

j = 1

Aj

whenever A1, A2, . . . , Ak are subsets of the universal set U . To carry out the inductive step,
we need to show that this assumption implies that P(k + 1) is true. That is, we need to show
that if this equality holds for every collection of k subsets of U , then it must also hold for every
collection of k + 1 subsets of U . Suppose that A1, A2, . . . , Ak,Ak+1 are subsets of U . When
the inductive hypothesis is assumed to hold, it follows that

k+1
j = 1

Aj =
⎛
⎝ k
j = 1

Aj

⎞
⎠ ∩ Ak+1 by the definition of intersection

=
⎛
⎝ k
j = 1

Aj

⎞
⎠ ∪ Ak+1 by De Morgan’s law (where the two sets are

 k
j = 1 Aj and Ak+1)

=
⎛
⎝ k
j = 1

Aj

⎞
⎠ ∪ Ak+1 by the inductive hypothesis

=
k+1
j = 1

Aj by the definition of union.

This completes the inductive step.

Because we have completed both the basis step and the inductive step, by mathematical
induction we know that P(n) is true whenever n is a positive integer, n ≥ 2. That is, we know
that

n
j = 1

Aj =
n

j = 1

Aj

whenever A1, A2, . . . , An are subsets of a universal set U and n ≥ 2. ▲

PROVING RESULTS ABOUT ALGORITHMS Next, we provide an example (somewhat
more difficult than previous examples) that illustrates one of many ways mathematical induction
is used in the study of algorithms. We will show how mathematical induction can be used to
prove that a greedy algorithm we introduced in Section 3.1 always yields an optimal solution.

EXAMPLE 12 Recall the algorithm for scheduling talks discussed in Example 7 of Section 3.1. The input to
this algorithm is a group of m proposed talks with preset starting and ending times. The goal is
to schedule as many of these lectures as possible in the main lecture hall so that no two talks
overlap. Suppose that talk tj begins at time sj and ends at time ej . (No two lectures can proceed
in the main lecture hall at the same time, but a lecture in this hall can begin at the same time
another one ends.)

Without loss of generality, we assume that the talks are listed in order of nondecreasing
ending time, so that e1 ≤ e2 ≤ · · · ≤ em. The greedy algorithm proceeds by selecting at each
stage a talk with the earliest ending time among all those talks that begin no sooner than when

5.1 Mathematical Induction 325

the last talk scheduled in the main lecture hall has ended. Note that a talk with the earliest end
time is always selected first by the algorithm. We will show that this greedy algorithm is optimal
in the sense that it always schedules the most talks possible in the main lecture hall. To prove
the optimality of this algorithm we use mathematical induction on the variable n, the number
of talks scheduled by the algorithm. We let P(n) be the proposition that if the greedy algorithm
schedules n talks in the main lecture hall, then it is not possible to schedule more than n talks
in this hall.

BASIS STEP: Suppose that the greedy algorithm managed to schedule just one talk, t1, in
the main lecture hall. This means that no other talk can start at or after e1, the end time of t1.
Otherwise, the first such talk we come to as we go through the talks in order of nondecreasing
end times could be added. Hence, at time e1 each of the remaining talks needs to use the main
lecture hall because they all start before e1 and end after e1. It follows that no two talks can be
scheduled because both need to use the main lecture hall at time e1. This shows that P(1) is
true and completes the basis step.

INDUCTIVE STEP: The inductive hypothesis is that P(k) is true, where k is an arbitrary
positive integer, that is, that the greedy algorithm always schedules the most possible talks
when it selects k talks, where k is a positive integer, given any set of talks, no matter how
many. We must show that P(k + 1) follows from the assumption that P(k) is true, that is, we
must show that under the assumption of P(k), the greedy algorithm always schedules the most
possible talks when it selects k + 1 talks.

Now suppose that the greedy algorithm has selected k + 1 talks. Our first step in completing
the inductive step is to show there is a schedule including the most talks possible that contains
talk t1, a talk with the earliest end time. This is easy to see because a schedule that begins with
the talk ti in the list, where i > 1, can be changed so that talk t1 replaces talk ti . To see this, note
that because e1 ≤ ei , all talks that were scheduled to follow talk ti can still be scheduled.

Once we included talk t1, scheduling the talks so that as many as possible are scheduled
is reduced to scheduling as many talks as possible that begin at or after time e1. So, if we
have scheduled as many talks as possible, the schedule of talks other than talk t1 is an optimal
schedule of the original talks that begin once talk t1 has ended. Because the greedy algorithm
schedules k talks when it creates this schedule, we can apply the inductive hypothesis to conclude
that it has scheduled the most possible talks. It follows that the greedy algorithm has scheduled
the most possible talks, k + 1, when it produced a schedule with k + 1 talks, so P(k + 1) is
true. This completes the inductive step.

We have completed the basis step and the inductive step. So, by mathematical induction we
know that P(n) is true for all positive integers n. This completes the proof of optimality. That is,
we have proved that when the greedy algorithm schedules n talks, when n is a positive integer,
then it is not possible to schedule more than n talks. ▲

CREATIVE USESOFMATHEMATICAL INDUCTION Mathematical induction can often
be used in unexpected ways. We will illustrate two particularly clever uses of mathematical
induction here, the first relating to survivors in a pie fight and the second relating to tilings with
regular triominoes of checkerboards with one square missing.

EXAMPLE 13 Odd Pie Fights An odd number of people stand in a yard at mutually distinct distances.
At the same time each person throws a pie at their nearest neighbor, hitting this person. Use
mathematical induction to show that there is at least one survivor, that is, at least one person
who is not hit by a pie. (This problem was introduced by Carmony [Ca79]. Note that this result
is false when there are an even number of people; see Exercise 75.)

Solution: Let P(n) be the statement that there is a survivor whenever 2n+ 1 people stand in
a yard at distinct mutual distances and each person throws a pie at their nearest neighbor. To
prove this result, we will show that P(n) is true for all positive integers n. This follows because
as n runs through all positive integers, 2n+ 1 runs through all odd integers greater than or equal

326 5 / Induction and Recursion

to 3. Note that one person cannot engage in a pie fight because there is no one else to throw the
pie at.

BASIS STEP: When n = 1, there are 2n+ 1 = 3 people in the pie fight. Of the three people,
suppose that the closest pair are A and B, and C is the third person. Because distances between
pairs of people are different, the distance betweenA andC and the distance betweenB andC are
both different from, and greater than, the distance betweenA andB. It follows thatA andB throw
pies at each other, whileC throws a pie at eitherA orB, whichever is closer. Hence,C is not hit by
a pie. This shows that at least one of the three people is not hit by a pie, completing the basis step.

INDUCTIVE STEP: For the inductive step, assume that P(k) is true for an arbitrary odd
integer k with k ≥ 3. That is, assume that there is at least one survivor whenever 2k + 1 people
stand in a yard at distinct mutual distances and each throws a pie at their nearest neighbor. We
must show that if the inductive hypothesisP(k) is true, thenP(k + 1), the statement that there is
at least one survivor whenever 2(k + 1)+ 1 = 2k + 3 people stand in a yard at distinct mutual
distances and each throws a pie at their nearest neighbor, is also true.

So suppose that we have 2(k + 1)+ 1 = 2k + 3 people in a yard with distinct distances
between pairs of people. LetA andB be the closest pair of people in this group of 2k + 3 people.
When each person throws a pie at the nearest person,A and B throw pies at each other. We have
two cases to consider, (i) when someone else throws a pie at either A or B and (ii) when no one
else throws a pie at either A or B.

Case (i): Because A and B throw pies at each other and someone else throws a pie at either A
and B, at least three pies are thrown atA and B, and at most (2k + 3)− 3 = 2k pies are thrown
at the remaining 2k + 1 people. This guarantees that at least one person is a survivor, for if each
of these 2k + 1 people was hit by at least one pie, a total of at least 2k + 1 pies would have to be
thrown at them. (The reasoning used in this last step is an example of the pigeonhole principle
discussed further in Section 6.2.)

Case (ii): No one else throws a pie at eitherA and B. BesidesA and B, there are 2k + 1 people.
Because the distances between pairs of these people are all different, we can use the inductive
hypothesis to conclude that there is at least one survivor S when these 2k + 1 people each
throws a pie at their nearest neighbor. Furthermore, S is also not hit by either the pie thrown
by A or the pie thrown by B because A and B throw their pies at each other, so S is a survivor
because S is not hit by any of the pies thrown by these 2k + 3 people.

We have completed both the basis step and the inductive step, using a proof by cases. So by
mathematical induction it follows that P(n) is true for all positive integers n. We conclude that
whenever an odd number of people located in a yard at distinct mutual distances each throws a
pie at their nearest neighbor, there is at least one survivor. ▲

FIGURE 4 A
Right Triomino.

In Section 1.8 we discussed the tiling of checkerboards by polyominoes. Example 14 illus-
trates how mathematical induction can be used to prove a result about covering checkerboards
with right triominoes, pieces shaped like the letter “L.”

EXAMPLE 14 Let n be a positive integer. Show that every 2n × 2n checkerboard with one square removed can
be tiled using right triominoes, where these pieces cover three squares at a time, as shown in
Figure 4.

Solution: LetP(n) be the proposition that every 2n × 2n checkerboard with one square removed
can be tiled using right triominoes. We can use mathematical induction to prove that P(n) is
true for all positive integers n.

BASIS STEP: P(1) is true, because each of the four 2 × 2 checkerboards with one square
removed can be tiled using one right triomino, as shown in Figure 5.

5.1 Mathematical Induction 327

FIGURE 5 Tiling 2 × 2 Checkerboards with One Square Removed.

INDUCTIVESTEP: The inductive hypothesis is the assumption thatP(k) is true for the positive
integer k; that is, it is the assumption that every 2k × 2k checkerboard with one square removed
can be tiled using right triominoes. It must be shown that under the assumption of the inductive
hypothesis, P(k + 1)must also be true; that is, any 2k+1 × 2k+1 checkerboard with one square
removed can be tiled using right triominoes.

To see this, consider a 2k+1 × 2k+1 checkerboard with one square removed. Split this
checkerboard into four checkerboards of size 2k × 2k , by dividing it in half in both directions.
This is illustrated in Figure 6. No square has been removed from three of these four checker-
boards. The fourth 2k × 2k checkerboard has one square removed, so we now use the inductive
hypothesis to conclude that it can be covered by right triominoes. Now temporarily remove the
square from each of the other three 2k × 2k checkerboards that has the center of the original,
larger checkerboard as one of its corners, as shown in Figure 7. By the inductive hypothesis,
each of these three 2k × 2k checkerboards with a square removed can be tiled by right triomi-
noes. Furthermore, the three squares that were temporarily removed can be covered by one right
triomino. Hence, the entire 2k+1 × 2k+1 checkerboard can be tiled with right triominoes.

We have completed the basis step and the inductive step. Therefore, by mathemati-
cal induction P(n) is true for all positive integers n. This shows that we can tile every
2n × 2n checkerboard, where n is a positive integer, with one square removed, using right
triominoes. ▲
FIGURE 6 Dividing a
2k+1 × 2k+1 Checkerboard into
Four 2k × 2k Checkerboards.

FIGURE 7 Tiling the
2k+1 × 2k+1 Checkerboard
with One Square Removed.

Mistaken Proofs By Mathematical Induction

As with every proof method, there are many opportunities for making errors when using mathe-
matical induction. Many well-known mistaken, and often entertaining, proofs by mathematical

Consult Common Errors

in Discrete Mathematics

on this book’s website for
more basic mistakes.

induction of clearly false statements have been devised, as exemplified by Example 15 and
Exercises 49–51. Often, it is not easy to find where the error in reasoning occurs in such mis-
taken proofs.

328 5 / Induction and Recursion

To uncover errors in proofs by mathematical induction, remember that in every such proof,
both the basis step and the inductive step must be done correctly. Not completing the basis step
in a supposed proof by mathematical induction can lead to mistaken proofs of clearly ridiculous
statements such as “n = n+ 1 whenever n is a positive integer.” (We leave it to the reader to
show that it is easy to construct a correct inductive step in an attempted proof of this statement.)
Locating the error in a faulty proof by mathematical induction, as Example 15 illustrates, can
be quite tricky, especially when the error is hidden in the basis step.

EXAMPLE 15 Find the error in this “proof” of the clearly false claim that every set of lines in the plane, no
two of which are parallel, meet in a common point.

“Proof:" Let P(n) be the statement that every set of n lines in the plane, no two of which are
parallel, meet in a common point. We will attempt to prove that P(n) is true for all positive
integers n ≥ 2.

BASIS STEP: The statement P(2) is true because any two lines in the plane that are not parallel
meet in a common point (by the definition of parallel lines).

INDUCTIVE STEP: The inductive hypothesis is the statement thatP(k) is true for the positive
integer k, that is, it is the assumption that every set of k lines in the plane, no two of which are
parallel, meet in a common point. To complete the inductive step, we must show that if P(k) is
true, then P(k + 1) must also be true. That is, we must show that if every set of k lines in the
plane, no two of which are parallel, meet in a common point, then every set of k + 1 lines in the
plane, no two of which are parallel, meet in a common point. So, consider a set of k + 1 distinct
lines in the plane. By the inductive hypothesis, the first k of these lines meet in a common point
p1. Moreover, by the inductive hypothesis, the last k of these lines meet in a common point p2.
We will show that p1 and p2 must be the same point. If p1 and p2 were different points, all
lines containing both of them must be the same line because two points determine a line. This
contradicts our assumption that all these lines are distinct. Thus, p1 and p2 are the same point.
We conclude that the point p1 = p2 lies on all k + 1 lines. We have shown that P(k + 1) is
true assuming that P(k) is true. That is, we have shown that if we assume that every k, k ≥ 2,
distinct lines meet in a common point, then every k + 1 distinct lines meet in a common point.
This completes the inductive step.

We have completed the basis step and the inductive step, and supposedly we have a correct
proof by mathematical induction.

Solution: Examining this supposed proof by mathematical induction it appears that everything
is in order. However, there is an error, as there must be. The error is rather subtle. Carefully
looking at the inductive step shows that this step requires that k ≥ 3. We cannot show that P(2)
implies P(3). When k = 2, our goal is to show that every three distinct lines meet in a common
point. The first two lines must meet in a common point p1 and the last two lines must meet in
a common point p2. But in this case, p1 and p2 do not have to be the same, because only the
second line is common to both sets of lines. Here is where the inductive step fails. ▲

Guidelines for Proofs by Mathematical Induction

Examples 1–14 illustrate proofs by mathematical induction of a diverse collection of theorems.
Each of these examples includes all the elements needed in a proof by mathematical induction.
We have provided an example of an invalid proof by mathematical induction. Summarizing what
we have learned from these examples, we can provide some useful guidelines for constructing
correct proofs by mathematical induction. We now present these guidelines.

5.1 Mathematical Induction 329

Template for Proofs by Mathematical Induction

1. Express the statement that is to be proved in the form “for all n ≥ b, P(n)” for a fixed
integer b.

2. Write out the words “Basis Step.” Then show that P(b) is true, taking care that the correct
value of b is used. This completes the first part of the proof.

3. Write out the words “Inductive Step.”
4. State, and clearly identify, the inductive hypothesis, in the form “assume that P(k) is true

for an arbitrary fixed integer k ≥ b.”
5. State what needs to be proved under the assumption that the inductive hypothesis is true.

That is, write out what P(k + 1) says.
6. Prove the statement P(k + 1) making use the assumption P(k). Be sure that your proof

is valid for all integers k with k ≥ b, taking care that the proof works for small values
of k, including k = b.

7. Clearly identify the conclusion of the inductive step, such as by saying “this completes
the inductive step.”

8. After completing the basis step and the inductive step, state the conclusion, namely that
by mathematical induction, P(n) is true for all integers n with n ≥ b.

It is worthwhile to revisit each of the mathematical induction proofs in Examples 1–14 to see
how these steps are completed. It will be helpful to follow these guidelines in the solutions of the
exercises that ask for proofs by mathematical induction. The guidelines that we presented can
be adapted for each of the variants of mathematical induction that we introduce in the exercises
and later in this chapter.

Exercises

1. There are infinitely many stations on a train route. Sup-
pose that the train stops at the first station and suppose
that if the train stops at a station, then it stops at the next
station. Show that the train stops at all stations.

2. Suppose that you know that a golfer plays the first hole of
a golf course with an infinite number of holes and that if
this golfer plays one hole, then the golfer goes on to play
the next hole. Prove that this golfer plays every hole on
the course.

Use mathematical induction in Exercises 3–17 to prove sum-
mation formulae. Be sure to identify where you use the in-
ductive hypothesis.

3. Let P(n) be the statement that 12 + 22 + · · · + n2 =
n(n+ 1)(2n+ 1)/6 for the positive integer n.

a) What is the statement P(1)?

b) Show that P(1) is true, completing the basis step of
the proof.

c) What is the inductive hypothesis?

d) What do you need to prove in the inductive step?

e) Complete the inductive step, identifying where you
use the inductive hypothesis.

f) Explain why these steps show that this formula is true
whenever n is a positive integer.

4. Let P(n) be the statement that 13 + 23 + · · · + n3 =
(n(n+ 1)/2)2 for the positive integer n.

a) What is the statement P(1)?

b) Show that P(1) is true, completing the basis step of
the proof.

c) What is the inductive hypothesis?

d) What do you need to prove in the inductive step?

e) Complete the inductive step, identifying where you
use the inductive hypothesis.

f) Explain why these steps show that this formula is true
whenever n is a positive integer.

5. Prove that 12 + 32 + 52 + · · · + (2n+ 1)2 = (n+ 1)
(2n+ 1)(2n+ 3)/3 whenever n is a nonnegative integer.

6. Prove that 1 · 1! + 2 · 2! + · · · + n · n! = (n+ 1)! − 1
whenever n is a positive integer.

7. Prove that 3+ 3 · 5+ 3 · 52+ · · ·+ 3 · 5n=3(5n+1− 1)/4
whenever n is a nonnegative integer.

8. Prove that 2 − 2 · 7 + 2 · 72 − · · · + 2(−7)n = (1 −
(−7)n+1)/4 whenever n is a nonnegative integer.

330 5 / Induction and Recursion

9. a) Find a formula for the sum of the first n even positive
integers.

b) Prove the formula that you conjectured in part (a).

10. a) Find a formula for

1

1 · 2
+ 1

2 · 3
+ · · · + 1

n(n+ 1)

by examining the values of this expression for small
values of n.

b) Prove the formula you conjectured in part (a).

11. a) Find a formula for

1

2
+ 1

4
+ 1

8
+ · · · + 1

2n

by examining the values of this expression for small
values of n.

b) Prove the formula you conjectured in part (a).

12. Prove that
n
j=0

−1

2

 j
= 2n+1 + (−1)n

3 · 2n

whenever n is a nonnegative integer.

13. Prove that 12 − 22 + 32 − · · · + (−1)n−1n2 = (−1)n−1

n(n+ 1)/2 whenever n is a positive integer.

14. Prove that for every positive integer n,
 n
k= 1 k2k =

(n− 1)2n+1 + 2.

15. Prove that for every positive integer n,

1 · 2 + 2 · 3 + · · · + n(n+ 1) = n(n+ 1)(n+ 2)/3.

16. Prove that for every positive integer n,

1 · 2 · 3 + 2 · 3 · 4 + · · · + n(n+ 1)(n+ 2)

= n(n+ 1)(n+ 2)(n+ 3)/4.

17. Prove that
 n
j = 1 j

4 = n(n+ 1)(2n+ 1)(3n2 + 3n−1)/30
whenever n is a positive integer.

Use mathematical induction to prove the inequalities in Exer-
cises 18–30.

18. Let P(n) be the statement that n! < nn, where n is an
integer greater than 1.

a) What is the statement P(2)?
b) Show that P(2) is true, completing the basis step of

the proof.
c) What is the inductive hypothesis?
d) What do you need to prove in the inductive step?
e) Complete the inductive step.
f) Explain why these steps show that this inequality is

true whenever n is an integer greater than 1.

19. Let P(n) be the statement that

1 + 1

4
+ 1

9
+ · · · + 1

n2
< 2 − 1

n
,

where n is an integer greater than 1.

a) What is the statement P(2)?
b) Show that P(2) is true, completing the basis step of

the proof.

c) What is the inductive hypothesis?
d) What do you need to prove in the inductive step?
e) Complete the inductive step.
f) Explain why these steps show that this inequality is

true whenever n is an integer greater than 1.

20. Prove that 3n<n! if n is an integer greater than 6.

21. Prove that 2n > n2 if n is an integer greater than 4.

22. For which nonnegative integers n is n2 ≤ n!? Prove your
answer.

23. For which nonnegative integers n is 2n+ 3 ≤ 2n? Prove
your answer.

24. Prove that 1/(2n) ≤ [1 · 3 · 5 · · · · · (2n− 1)]/(2 · 4 ·
· · · · 2n) whenever n is a positive integer.

∗25. Prove that ifh > −1, then 1 + nh ≤ (1 + h)n for all non-
negative integers n. This is called Bernoulli’s inequality.

∗26. Suppose that a and b are real numbers with 0 < b < a.
Prove that if n is a positive integer, then an − bn ≤
nan−1(a − b).

∗27. Prove that for every positive integer n,

1 + 1√
2
+ 1√

3
+ · · · + 1√

n
> 2(

√
n+ 1 − 1).

28. Prove that n2 − 7n+ 12 is nonnegative whenever n is an
integer with n ≥ 3.

In Exercises 29 and 30,Hn denotes the nth harmonic number.
∗29. Prove that H2n ≤ 1 + n whenever n is a nonnegative in-

teger.
∗30. Prove that

H1 +H2 + · · · +Hn = (n+ 1)Hn − n.
Use mathematical induction in Exercises 31–37 to prove di-
visibility facts.

31. Prove that 2 divides n2 + n whenever n is a positive in-
teger.

32. Prove that 3 divides n3 + 2n whenever n is a positive
integer.

33. Prove that 5 divides n5 − n whenever n is a nonnegative
integer.

34. Prove that 6 divides n3 − n whenever n is a nonnegative
integer.

∗35. Prove that n2 − 1 is divisible by 8 whenever n is an odd
positive integer.

∗36. Prove that 21 divides 4n+1 + 52n−1 whenever n is a pos-
itive integer.

∗37. Prove that if n is a positive integer, then 133 divides
11n+1 + 122n−1.

Use mathematical induction in Exercises 38–46 to prove re-
sults about sets.

38. Prove that ifA1, A2, . . . , An andB1, B2, . . . , Bn are sets
such that Aj ⊆ Bj for j = 1, 2, . . . , n, then

n
j = 1

Aj ⊆
n

j = 1

Bj .

5.1 Mathematical Induction 331

39. Prove that ifA1, A2, . . . , An andB1, B2, . . . , Bn are sets
such that Aj ⊆ Bj for j = 1, 2, . . . , n, then

n
j = 1

Aj ⊆
n

j = 1

Bj .

40. Prove that if A1, A2, . . . , An and B are sets, then

(A1 ∩ A2 ∩ · · · ∩ An) ∪ B
= (A1 ∪ B) ∩ (A2 ∪ B) ∩ · · · ∩ (An ∪ B).

41. Prove that if A1, A2, . . . , An and B are sets, then

(A1 ∪ A2 ∪ · · · ∪ An) ∩ B
= (A1 ∩ B) ∪ (A2 ∩ B) ∪ · · · ∪ (An ∩ B).

42. Prove that if A1, A2, . . . , An and B are sets, then

(A1 − B) ∩ (A2 − B) ∩ · · · ∩ (An − B)
= (A1 ∩ A2 ∩ · · · ∩ An)− B.

43. Prove that if A1, A2, . . . , An are subsets of a universal
set U , then

n
k= 1

Ak = nk= 1 Ak.

44. Prove that if A1, A2, . . . , An and B are sets, then

(A1 − B) ∪ (A2 − B) ∪ · · · ∪ (An − B)
= (A1 ∪ A2 ∪ · · · ∪ An)− B.

45. Prove that a set with n elements has n(n− 1)/2 subsets
containing exactly two elements whenever n is an integer
greater than or equal to 2.

∗46. Prove that a set with n elements has n(n− 1)(n− 2)/6
subsets containing exactly three elements whenever n is
an integer greater than or equal to 3.

In Exercises 47 and 48 we consider the problem of placing
towers along a straight road, so that every building on the
road receives cellular service. Assume that a building receives
cellular service if it is within one mile of a tower.

47. Devise a greedy algorithm that uses the minimum number
of towers possible to provide cell service to d buildings
located at positions x1, x2, . . . , xd from the start of the
road. [Hint: At each step, go as far as possible along the
road before adding a tower so as not to leave any buildings
without coverage.]

∗48. Use mathematical induction to prove that the algorithm
you devised in Exercise 47 produces an optimal solution,
that is, that it uses the fewest towers possible to provide
cellular service to all buildings.

Exercises 49–51 present incorrect proofs using mathemati-
cal induction. You will need to identify an error in reasoning
in each exercise.

49. What is wrong with this “proof” that all horses are the
same color?
Let P(n) be the proposition that all the horses in a set
of n horses are the same color.

Basis Step: Clearly, P(1) is true.

Inductive Step: Assume that P(k) is true, so that all
the horses in any set of k horses are the same color.
Consider any k + 1 horses; number these as horses
1, 2, 3, . . . , k, k + 1. Now the first k of these horses all
must have the same color, and the last k of these must
also have the same color. Because the set of the first k
horses and the set of the last k horses overlap, all k + 1
must be the same color. This shows that P(k + 1) is true
and finishes the proof by induction.

50. What is wrong with this “proof”?
“Theorem” For every positive integer n,

 n
i= 1 i =

(n+ 1
2)

2/2.

Basis Step: The formula is true for n = 1.

Inductive Step: Suppose that
 n
i=1 i = (n+ 1

2)
2/2.

Then
 n+1
i=1 i = (

 n
i=1 i)+ (n+ 1). By the induc-

tive hypothesis,
 n+1
i=1 i = (n+ 1

2)
2/2 + n+ 1 =

(n2 + n+ 1
4)/2 + n + 1 = (n2 + 3n + 9

4)/2 =
(n+ 3

2)
2/2 = [(n+ 1)+ 1

2]2/2, completing the induc-
tive step.

51. What is wrong with this “proof”?
“Theorem” For every positive integer n, if x and y are
positive integers with max(x, y) = n, then x = y.

Basis Step: Suppose that n = 1. If max(x, y) = 1 and x
and y are positive integers, we have x = 1 and y = 1.

Inductive Step: Let k be a positive integer. Assume that
whenever max(x, y) = k and x and y are positive inte-
gers, then x = y. Now let max(x, y) = k + 1, where x
and y are positive integers. Then max(x − 1, y − 1) = k,
so by the inductive hypothesis, x − 1 = y − 1. It follows
that x = y, completing the inductive step.

52. Suppose that m and n are positive integers with m > n
and f is a function from {1, 2, . . . , m} to {1, 2, . . . , n}.
Use mathematical induction on the variable n to show
that f is not one-to-one.

∗53. Use mathematical induction to show that n people can di-
vide a cake (where each person gets one or more separate
pieces of the cake) so that the cake is divided fairly, that
is, in the sense that each person thinks he or she got at
least (1/n)th of the cake. [Hint: For the inductive step,
take a fair division of the cake among the first k people,
have each person divide their share into what this per-
son thinks are k + 1 equal portions, and then have the
(k + 1)st person select a portion from each of the k peo-
ple. When showing this produces a fair division for k + 1
people, suppose that person k + 1 thinks that person i got
pi of the cake where

 k
i=1 pi = 1.]

54. Use mathematical induction to show that given a set of
n+ 1 positive integers, none exceeding 2n, there is at
least one integer in this set that divides another integer in
the set.

∗55. A knight on a chessboard can move one space horizon-
tally (in either direction) and two spaces vertically (in
either direction) or two spaces horizontally (in either di-
rection) and one space vertically (in either direction).
Suppose that we have an infinite chessboard, made up

332 5 / Induction and Recursion

of all squares (m, n)wherem and n are nonnegative inte-
gers that denote the row number and the column number
of the square, respectively. Use mathematical induction to
show that a knight starting at (0, 0) can visit every square
using a finite sequence of moves. [Hint: Use induction
on the variable s = m+ n.]

56. Suppose that

A =

a 0
0 b

,

where a and b are real numbers. Show that

An =

an 0
0 bn

for every positive integer n.

57. (Requires calculus) Use mathematical induction to prove
that the derivative of f (x) = xn equals nxn−1 whenever
n is a positive integer. (For the inductive step, use the
product rule for derivatives.)

58. Suppose that A and B are square matrices with the prop-
erty AB = BA. Show that ABn = BnA for every positive
integer n.

59. Suppose that m is a positive integer. Use mathematical
induction to prove that if a and b are integers with a ≡ b
(modm), then ak ≡ bk (modm) whenever k is a nonneg-
ative integer.

60. Use mathematical induction to show that ¬(p1 ∨ p2 ∨
· · · ∨ pn) is equivalent to ¬p1 ∧¬p2 ∧ · · · ∧ ¬pn
whenever p1, p2, . . . , pn are propositions.

∗61. Show that

[(p1 → p2) ∧ (p2 → p3) ∧ · · · ∧ (pn−1 → pn)]
→ [(p1 ∧ p2 ∧ · · · ∧ pn−1)→ pn]

is a tautology whenever p1, p2, . . . , pn are propositions,
where n ≥ 2.

∗62. Show that n lines separate the plane into (n2 + n+ 2)/2
regions if no two of these lines are parallel and no three
pass through a common point.

∗∗63. Let a1, a2, . . . , an be positive real numbers. The arith-
metic mean of these numbers is defined by

A = (a1 + a2 + · · · + an)/n,
and the geometric mean of these numbers is defined by

G = (a1a2 · · · an)1/n.
Use mathematical induction to prove that A ≥ G.

64. Use mathematical induction to prove Lemma 3 of
Section 4.3, which states that if p is a prime
and p | a1a2 · · · an, where ai is an integer for
i = 1, 2, 3, . . . , n, then p | ai for some integer i.

65. Show that if n is a positive integer, then
{a1,...,ak}⊆{1,2,...,n}

1

a1a2 · · · ak
= n.

(Here the sum is over all nonempty subsets of the set of
the n smallest positive integers.)

∗66. Use the well-ordering property to show that the follow-
ing form of mathematical induction is a valid method to
prove that P(n) is true for all positive integers n.

Basis Step: P(1) and P(2) are true.

Inductive Step: For each positive integer k, if P(k) and
P(k + 1) are both true, then P(k + 2) is true.

67. Show that if A1, A2, . . . , An are sets where n ≥ 2, and
for all pairs of integers i and j with 1 ≤ i < j ≤ n either
Ai is a subset of Aj or Aj is a subset of Ai , then there is
an integer i, 1 ≤ i ≤ n such that Ai is a subset of Aj for
all integers j with 1 ≤ j ≤ n.

∗68. A guest at a party is a celebrity if this person is known
by every other guest, but knows none of them. There is at
most one celebrity at a party, for if there were two, they
would know each other. A particular party may have no
celebrity. Your assignment is to find the celebrity, if one
exists, at a party, by asking only one type of question—
asking a guest whether they know a second guest. Ev-
eryone must answer your questions truthfully. That is, if
Alice and Bob are two people at the party, you can ask Al-
ice whether she knows Bob; she must answer correctly.
Use mathematical induction to show that if there are n
people at the party, then you can find the celebrity, if
there is one, with 3(n− 1) questions. [Hint: First ask a
question to eliminate one person as a celebrity. Then use
the inductive hypothesis to identify a potential celebrity.
Finally, ask two more questions to determine whether that
person is actually a celebrity.]

Suppose there are n people in a group, each aware of a scandal
no one else in the group knows about. These people commu-
nicate by telephone; when two people in the group talk, they
share information about all scandals each knows about. For
example, on the first call, two people share information, so
by the end of the call, each of these people knows about two
scandals. The gossip problem asks for G(n), the minimum
number of telephone calls that are needed for all n people to
learn about all the scandals. Exercises 69–71 deal with the
gossip problem.

69. Find G(1), G(2), G(3), and G(4).

70. Use mathematical induction to prove thatG(n) ≤ 2n− 4
for n ≥ 4. [Hint: In the inductive step, have a new person
call a particular person at the start and at the end.]

∗∗71. Prove that G(n) = 2n− 4 for n ≥ 4.
∗72. Show that it is possible to arrange the numbers 1, 2, . . . , n

in a row so that the average of any two of these numbers
never appears between them. [Hint: Show that it suffices
to prove this fact when n is a power of 2. Then use math-
ematical induction to prove the result when n is a power
of 2.]

∗73. Show that if I1, I2, . . . , In is a collection of open in-
tervals on the real number line, n ≥ 2, and every pair
of these intervals has a nonempty intersection, that is,
Ii ∩ Ij = ∅ whenever 1 ≤ i ≤ n and 1 ≤ j ≤ n, then
the intersection of all these sets is nonempty, that is,
I1 ∩ I2 ∩ · · · ∩ In = ∅. (Recall that an open interval is

5.2 Strong Induction and Well-Ordering 333

the set of real numbers x with a < x < b, where a and b
are real numbers with a < b.)

Sometimes we cannot use mathematical induction to prove
a result we believe to be true, but we can use mathematical
induction to prove a stronger result. Because the inductive hy-
pothesis of the stronger result provides more to work with, this
process is called inductive loading. We use inductive loading
in Exercise 74.

74. Suppose that we want to prove that

1

2
· 3

4
· · · 2n− 1

2n
<

1√
3n

for all positive integers n.

a) Show that if we try to prove this inequality using math-
ematical induction, the basis step works, but the in-
ductive step fails.

b) Show that mathematical induction can be used to
prove the stronger inequality

1

2
· 3

4
· · · 2n− 1

2n
<

1√
3n+ 1

for all integers greater than 1, which, together with a
verification for the case where n = 1, establishes the
weaker inequality we originally tried to prove using
mathematical induction.

75. Let n be an even positive integer. Show that when n peo-
ple stand in a yard at mutually distinct distances and each

person throws a pie at their nearest neighbor, it is possible
that everyone is hit by a pie.

76. Construct a tiling using right triominoes of the 4 × 4
checkerboard with the square in the upper left corner re-
moved.

77. Construct a tiling using right triominoes of the 8 × 8
checkerboard with the square in the upper left corner re-
moved.

78. Prove or disprove that all checkerboards of these shapes
can be completely covered using right triominoes when-
ever n is a positive integer.

a) 3 × 2n b) 6 × 2n

c) 3n × 3n d) 6n × 6n

∗79. Show that a three-dimensional 2n × 2n × 2n checker-
board with one 1 × 1 × 1 cube missing can be completely
covered by 2 × 2 × 2 cubes with one 1 × 1 × 1 cube re-
moved.

∗80. Show that an n× n checkerboard with one square re-
moved can be completely covered using right triominoes
if n > 5, n is odd, and 3 | n.

81. Show that a 5 × 5 checkerboard with a corner square re-
moved can be tiled using right triominoes.

∗82. Find a 5 × 5 checkerboard with a square removed that
cannot be tiled using right triominoes. Prove that such a
tiling does not exist for this board.

83. Use the principle of mathematical induction to show that
P(n) is true for n = b, b + 1, b + 2, . . . , where b is an
integer, if P(b) is true and the conditional statement
P(k)→ P(k + 1) is true for all integers k with k ≥ b.

5.2 Strong Induction and Well-Ordering

Introduction

In Section 5.1 we introduced mathematical induction and we showed how to use it to prove a
variety of theorems. In this section we will introduce another form of mathematical induction,
called strong induction, which can often be used when we cannot easily prove a result using
mathematical induction. The basis step of a proof by strong induction is the same as a proof of
the same result using mathematical induction. That is, in a strong induction proof that P(n) is
true for all positive integers n, the basis step shows thatP(1) is true. However, the inductive steps
in these two proof methods are different. In a proof by mathematical induction, the inductive
step shows that if the inductive hypothesis P(k) is true, then P(k + 1) is also true. In a proof
by strong induction, the inductive step shows that if P(j) is true for all positive integers not
exceeding k, then P(k + 1) is true. That is, for the inductive hypothesis we assume that P(j)
is true for j = 1, 2, . . . , k.

The validity of both mathematical induction and strong induction follow from the well-
ordering property in Appendix 1. In fact, mathematical induction, strong induction, and well-
ordering are all equivalent principles (as shown in Exercises 41, 42, and 43). That is, the validity
of each can be proved from either of the other two. This means that a proof using one of these
two principles can be rewritten as a proof using either of the other two principles. Just as it is
sometimes the case that it is much easier to see how to prove a result using strong induction
rather than mathematical induction, it is sometimes easier to use well-ordering than one of the

334 5 / Induction and Recursion

two forms of mathematical induction. In this section we will give some examples of how the
well-ordering property can be used to prove theorems.

Strong Induction

Before we illustrate how to use strong induction, we state this principle again.

STRONG INDUCTION To prove that P(n) is true for all positive integers n, where P(n)
is a propositional function, we complete two steps:

BASIS STEP: We verify that the proposition P(1) is true.

INDUCTIVE STEP: We show that the conditional statement [P(1) ∧ P(2) ∧ · · · ∧
P(k)] → P(k + 1) is true for all positive integers k.

Note that when we use strong induction to prove that P(n) is true for all positive integers n,
our inductive hypothesis is the assumption that P(j) is true for j = 1, 2, . . . , k. That is, the
inductive hypothesis includes all k statements P(1), P(2), . . . , P (k). Because we can use all k
statements P(1), P(2), . . . , P (k) to prove P(k + 1), rather than just the statement P(k) as in a
proof by mathematical induction, strong induction is a more flexible proof technique. Because
of this, some mathematicians prefer to always use strong induction instead of mathematical
induction, even when a proof by mathematical induction is easy to find.

You may be surprised that mathematical induction and strong induction are equivalent.
That is, each can be shown to be a valid proof technique assuming that the other is valid. In
particular, any proof using mathematical induction can also be considered to be a proof by strong
induction because the inductive hypothesis of a proof by mathematical induction is part of the
inductive hypothesis in a proof by strong induction. That is, if we can complete the inductive
step of a proof using mathematical induction by showing that P(k + 1) follows from P(k) for
every positive integer k, then it also follows that P(k + 1) follows from all the statements P(1),
P(2), . . . , P (k), because we are assuming that not only P(k) is true, but also more, namely, that
the k − 1 statements P(1), P (2), . . . , P (k − 1) are true. However, it is much more awkward to
convert a proof by strong induction into a proof using the principle of mathematical induction.
(See Exercise 42.)

Strong induction is sometimes called the second principle of mathematical induction
or complete induction. When the terminology “complete induction” is used, the principle of
mathematical induction is called incomplete induction, a technical term that is a somewhat
unfortunate choice because there is nothing incomplete about the principle of mathematical
induction; after all, it is a valid proof technique.

STRONG INDUCTION AND THE INFINITE LADDER To better understand strong in-
duction, consider the infinite ladder in Section 5.1. Strong induction tells us that we can reach
all rungs if

1. we can reach the first rung, and
2. for every integer k, if we can reach all the first k rungs, then we can reach the (k + 1)st rung.

That is, if P(n) is the statement that we can reach the nth rung of the ladder, by strong induction
we know that P(n) is true for all positive integers n, because (1) tells us P(1) is true, completing
the basis step and (2) tells us that P(1) ∧ P(2) ∧ · · · ∧ P(k) implies P(k + 1), completing the
inductive step.

Example 1 illustrates how strong induction can help us prove a result that cannot easily be
proved using the principle of mathematical induction.

5.2 Strong Induction and Well-Ordering 335

EXAMPLE 1 Suppose we can reach the first and second rungs of an infinite ladder, and we know that if we
can reach a rung, then we can reach two rungs higher. Can we prove that we can reach every
rung using the principle of mathematical induction? Can we prove that we can reach every rung
using strong induction?

Solution: We first try to prove this result using the principle of mathematical induction.

BASIS STEP: The basis step of such a proof holds; here it simply verifies that we can reach
the first rung.

ATTEMPTED INDUCTIVE STEP: The inductive hypothesis is the statement that we can
reach the kth rung of the ladder. To complete the inductive step, we need to show that if we
assume the inductive hypothesis for the positive integer k, namely, if we assume that we can
reach the kth rung of the ladder, then we can show that we can reach the (k + 1)st rung of the
ladder. However, there is no obvious way to complete this inductive step because we do not
know from the given information that we can reach the (k + 1)st rung from the kth rung. After
all, we only know that if we can reach a rung we can reach the rung two higher.

Now consider a proof using strong induction.

BASIS STEP: The basis step is the same as before; it simply verifies that we can reach the first
rung.

INDUCTIVE STEP: The inductive hypothesis states that we can reach each of the first k rungs.
To complete the inductive step, we need to show that if we assume that the inductive hypothesis
is true, that is, if we can reach each of the first k rungs, then we can reach the (k + 1)st rung.
We already know that we can reach the second rung. We can complete the inductive step by
noting that as long as k ≥ 2, we can reach the (k + 1)st rung from the (k − 1)st rung because
we know we can climb two rungs from a rung we can already reach, and because k − 1 ≤ k,
by the inductive hypothesis we can reach the (k − 1)st rung. This completes the inductive step
and finishes the proof by strong induction.

We have proved that if we can reach the first two rungs of an infinite ladder and for every
positive integer k if we can reach all the first k rungs then we can reach the (k + 1)st rung, then
we can reach all rungs of the ladder. ▲

Examples of Proofs Using Strong Induction

Now that we have both mathematical induction and strong induction, how do we decide which
method to apply in a particular situation? Although there is no cut-and-dried answer, we can
supply some useful pointers. In practice, you should use mathematical induction when it is
straightforward to prove that P(k)→ P(k + 1) is true for all positive integers k. This is the
case for all the proofs in the examples in Section 5.1. In general, you should restrict your use of
the principle of mathematical induction to such scenarios. Unless you can clearly see that the
inductive step of a proof by mathematical induction goes through, you should attempt a proof
by strong induction. That is, use strong induction and not mathematical induction when you
see how to prove that P(k + 1) is true from the assumption that P(j) is true for all positive
integers j not exceeding k, but you cannot see how to prove that P(k + 1) follows from just
P(k). Keep this in mind as you examine the proofs in this section. For each of these proofs,
consider why strong induction works better than mathematical induction.

We will illustrate how strong induction is employed in Examples 2–4. In these examples,
we will prove a diverse collection of results. Pay particular attention to the inductive step in
each of these examples, where we show that a result P(k + 1) follows under the assumption that
P(j) holds for all positive integers j not exceeding k, where P(n) is a propositional function.

336 5 / Induction and Recursion

We begin with one of the most prominent uses of strong induction, the part of the fundamental
theorem of arithmetic that tells us that every positive integer can be written as the product of
primes.

EXAMPLE 2 Show that if n is an integer greater than 1, then n can be written as the product of primes.

Solution: Let P(n) be the proposition that n can be written as the product of primes.

BASIS STEP: P(2) is true, because 2 can be written as the product of one prime, itself. (Note
that P(2) is the first case we need to establish.)

INDUCTIVE STEP: The inductive hypothesis is the assumption that P(j) is true for all
integers j with 2 ≤ j ≤ k, that is, the assumption that j can be written as the product of primes
whenever j is a positive integer at least 2 and not exceeding k. To complete the inductive step,
it must be shown that P(k + 1) is true under this assumption, that is, that k + 1 is the product
of primes.

There are two cases to consider, namely, when k + 1 is prime and when k + 1 is composite.
If k + 1 is prime, we immediately see that P(k + 1) is true. Otherwise, k + 1 is composite and
can be written as the product of two positive integers a and b with 2 ≤ a ≤ b < k + 1. Because
both a and b are integers at least 2 and not exceeding k, we can use the inductive hypothesis to
write both a and b as the product of primes. Thus, if k + 1 is composite, it can be written as the
product of primes, namely, those primes in the factorization of a and those in the factorization
of b. ▲

Remark: Because 1 can be thought of as the empty product of no primes, we could have started
the proof in Example 2 with P(1) as the basis step. We chose not to do so because many people
find this confusing.

Example 2 completes the proof of the fundamental theorem of arithmetic, which asserts that
every nonnegative integer can be written uniquely as the product of primes in nondecreasing
order. We showed in Section 4.3 that an integer has at most one such factorization into primes.
Example 2 shows there is at least one such factorization.

Next, we show how strong induction can be used to prove that a player has a winning
strategy in a game.

EXAMPLE 3 Consider a game in which two players take turns removing any positive number of matches they
want from one of two piles of matches. The player who removes the last match wins the game.
Show that if the two piles contain the same number of matches initially, the second player can
always guarantee a win.

Solution: Let n be the number of matches in each pile. We will use strong induction to prove
P(n), the statement that the second player can win when there are initially n matches in each
pile.

BASIS STEP: When n = 1, the first player has only one choice, removing one match from one
of the piles, leaving a single pile with a single match, which the second player can remove to
win the game.

INDUCTIVE STEP: The inductive hypothesis is the statement that P(j) is true for all j with
1 ≤ j ≤ k, that is, the assumption that the second player can always win whenever there are j
matches, where 1 ≤ j ≤ k in each of the two piles at the start of the game. We need to show that
P(k + 1) is true, that is, that the second player can win when there are initially k + 1 matches in
each pile, under the assumption that P(j) is true for j = 1, 2, . . . , k. So suppose that there are
k + 1 matches in each of the two piles at the start of the game and suppose that the first player
removes r matches (1 ≤ r ≤ k) from one of the piles, leaving k + 1 − r matches in this pile.
By removing the same number of matches from the other pile, the second player creates the

5.2 Strong Induction and Well-Ordering 337

situation where there are two piles each with k + 1 − r matches. Because 1 ≤ k + 1 − r ≤ k,
we can now use the inductive hypothesis to conclude that the second player can always win.
We complete the proof by noting that if the first player removes all k + 1 matches from one of
the piles, the second player can win by removing all the remaining matches. ▲

Using the principle of mathematical induction, instead of strong induction, to prove the
results in Examples 2 and 3 is difficult. However, as Example 4 shows, some results can be
readily proved using either the principle of mathematical induction or strong induction.

Before we present Example 4, note that we can slightly modify strong induction to handle
a wider variety of situations. In particular, we can adapt strong induction to handle cases where
the inductive step is valid only for integers greater than a particular integer. Let b be a fixed
integer and j a fixed positive integer. The form of strong induction we need tells us that P(n)
is true for all integers n with n ≥ b if we can complete these two steps:

BASIS STEP: We verify that the propositions P(b), P (b + 1), . . . , P (b + j) are true.

INDUCTIVE STEP: We show that [P(b) ∧ P(b + 1) ∧ · · · ∧ P(k)] → P(k + 1) is true for
every integer k ≥ b + j .

We will use this alternative form in the strong induction proof in Example 4. That this
alternative form is equivalent to strong induction is left as Exercise 28.

EXAMPLE 4 Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and
5-cent stamps.

Solution: We will prove this result using the principle of mathematical induction. Then we will
present a proof using strong induction. Let P(n) be the statement that postage of n cents can be
formed using 4-cent and 5-cent stamps.

We begin by using the principle of mathematical induction.

BASIS STEP: Postage of 12 cents can be formed using three 4-cent stamps.

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true. That is, under
this hypothesis, postage of k cents can be formed using 4-cent and 5-cent stamps. To complete
the inductive step, we need to show that when we assume P(k) is true, then P(k + 1) is also
true where k ≥ 12. That is, we need to show that if we can form postage of k cents, then we can
form postage of k + 1 cents. So, assume the inductive hypothesis is true; that is, assume that
we can form postage of k cents using 4-cent and 5-cent stamps. We consider two cases, when at
least one 4-cent stamp has been used and when no 4-cent stamps have been used. First, suppose
that at least one 4-cent stamp was used to form postage of k cents. Then we can replace this
stamp with a 5-cent stamp to form postage of k + 1 cents. But if no 4-cent stamps were used,
we can form postage of k cents using only 5-cent stamps. Moreover, because k ≥ 12, we needed
at least three 5-cent stamps to form postage of k cents. So, we can replace three 5-cent stamps
with four 4-cent stamps to form postage of k + 1 cents. This completes the inductive step.

Because we have completed the basis step and the inductive step, we know that P(n) is
true for all n ≥ 12. That is, we can form postage of n cents, where n ≥ 12 using just 4-cent and
5-cent stamps. This completes the proof by mathematical induction.

Next, we will use strong induction to prove the same result. In this proof, in the basis step
we show that P(12), P(13), P(14), and P(15) are true, that is, that postage of 12, 13, 14,
or 15 cents can be formed using just 4-cent and 5-cent stamps. In the inductive step we show
how to get postage of k + 1 cents for k ≥ 15 from postage of k − 3 cents.

BASIS STEP: We can form postage of 12, 13, 14, and 15 cents using three 4-cent stamps, two
4-cent stamps and one 5-cent stamp, one 4-cent stamp and two 5-cent stamps, and three 5-cent
stamps, respectively. This shows that P(12), P(13), P(14), and P(15) are true. This completes
the basis step.

338 5 / Induction and Recursion

INDUCTIVESTEP: The inductive hypothesis is the statement thatP(j) is true for 12 ≤ j ≤ k,
where k is an integer with k ≥ 15. To complete the inductive step, we assume that we can form
postage of j cents, where 12 ≤ j ≤ k. We need to show that under the assumption thatP(k + 1)
is true, we can also form postage of k + 1 cents. Using the inductive hypothesis, we can assume
that P(k − 3) is true because k − 3 ≥ 12, that is, we can form postage of k − 3 cents using
just 4-cent and 5-cent stamps. To form postage of k + 1 cents, we need only add another 4-cent
stamp to the stamps we used to form postage of k − 3 cents. That is, we have shown that if the
inductive hypothesis is true, then P(k + 1) is also true. This completes the inductive step.

Because we have completed the basis step and the inductive step of a strong induction proof,
we know by strong induction that P(n) is true for all integers n with n ≥ 12. That is, we know
that every postage of n cents, where n is at least 12, can be formed using 4-cent and 5-cent
stamps. This finishes the proof by strong induction.

(There are other ways to approach this problem besides those described here. Can you find
a solution that does not use mathematical induction?) ▲

Using Strong Induction in Computational Geometry

Our next example of strong induction will come from computational geometry, the part of
discrete mathematics that studies computational problems involving geometric objects. Compu-
tational geometry is used extensively in computer graphics, computer games, robotics, scientific
calculations, and a vast array of other areas. Before we can present this result, we introduce
some terminology, possibly familiar from earlier studies in geometry.

A polygon is a closed geometric figure consisting of a sequence of line segments
s1, s2, . . . , sn, called sides. Each pair of consecutive sides, si and si+1, i = 1, 2, . . . , n− 1,
as well as the last side sn and the first side s1, of the polygon meet at a common endpoint,
called a vertex. A polygon is called simple if no two nonconsecutive sides intersect. Every sim-
ple polygon divides the plane into two regions: its interior, consisting of the points inside the
curve, and its exterior, consisting of the points outside the curve. This last fact is surprisingly
complicated to prove. It is a special case of the famous Jordan curve theorem, which tells us
that every simple curve divides the plane into two regions; see [Or00], for example.

A polygon is called convex if every line segment connecting two points in the interior of the
polygon lies entirely inside the polygon. (A polygon that is not convex is said to be nonconvex.)
Figure 1 displays some polygons; polygons (a) and (b) are convex, but polygons (c) and (d) are
not. A diagonal of a simple polygon is a line segment connecting two nonconsecutive vertices of
the polygon, and a diagonal is called an interior diagonal if it lies entirely inside the polygon, ex-
cept for its endpoints. For example, in polygon (d), the line segment connecting a andf is an inte-
rior diagonal, but the line segment connecting a and d is a diagonal that is not an interior diagonal.

One of the most basic operations of computational geometry involves dividing a simple
polygon into triangles by adding nonintersecting diagonals. This process is called triangulation.
Note that a simple polygon can have many different triangulations, as shown in Figure 2. Perhaps
the most basic fact in computational geometry is that it is possible to triangulate every simple

a
a g

f

e

d

c

b

a f

e

dc

b

b b d

a

c

c

(a) (c) (d)

af is an interior diagonal

ad is not an interior diagonal

(b)

d

FIGURE 1 Convex and Nonconvex Polygons.

5.2 Strong Induction and Well-Ordering 339

Two different triangulations of a simple polygon with seven sides into five triangles,

 shown with dotted lines and with dashed lines, respectively

FIGURE 2 Triangulations of a Polygon.

polygon, as we state in Theorem 1. Furthermore, this theorem tells us that every triangulation
of a simple polygon with n sides includes n− 2 triangles.

THEOREM 1 A simple polygon with n sides, where n is an integer with n ≥ 3, can be triangulated into
n− 2 triangles.

It seems obvious that we should be able to triangulate a simple polygon by successively
adding interior diagonals. Consequently, a proof by strong induction seems promising. However,
such a proof requires this crucial lemma.

LEMMA 1 Every simple polygon with at least four sides has an interior diagonal.

Although Lemma 1 seems particularly simple, it is surprisingly tricky to prove. In fact, as
recently as 30 years ago, a variety of incorrect proofs thought to be correct were commonly seen
in books and articles. We defer the proof of Lemma 1 until after we prove Theorem 1. It is not
uncommon to prove a theorem pending the later proof of an important lemma.

Proof (of Theorem 1): We will prove this result using strong induction. Let T (n) be the
statement that every simple polygon with n sides can be triangulated into n− 2 triangles.

BASISSTEP: T (3) is true because a simple polygon with three sides is a triangle.We do not need
to add any diagonals to triangulate a triangle; it is already triangulated into one triangle, itself.
Consequently, every simple polygon with n = 3 has can be triangulated into n− 2 = 3 − 2 = 1
triangle.

INDUCTIVE STEP: For the inductive hypothesis, we assume that T (j) is true for all
integers j with 3 ≤ j ≤ k. That is, we assume that we can triangulate a simple polygon
with j sides into j − 2 triangles whenever 3 ≤ j ≤ k. To complete the inductive step, we
must show that when we assume the inductive hypothesis, P(k + 1) is true, that is, that every
simple polygon with k + 1 sides can be triangulated into (k + 1)− 2 = k − 1 triangles.

So, suppose that we have a simple polygonP with k + 1 sides. Because k + 1 ≥ 4, Lemma 1
tells us that P has an interior diagonal ab. Now, ab splits P into two simple polygons Q, with
s sides, and R, with t sides. The sides of Q and R are the sides of P , together with the side
ab, which is a side of both Q and R. Note that 3 ≤ s ≤ k and 3 ≤ t ≤ k because both Q
and R have at least one fewer side than P does (after all, each of these is formed from P

by deleting at least two sides and replacing these sides by the diagonal ab). Furthermore, the
number of sides of P is two less than the sum of the numbers of sides of Q and the number of

340 5 / Induction and Recursion

c

d

e

a

b

p

q

T

P

g

f

T is the triangle abc

p is the vertex of P inside T such that the bap is smallest

bp must be an interior diagonal of P

FIGURE 3 Constructing an Interior Diagonal of a Simple Polygon.

sides of R, because each side of P is a side of either Q or of R, but not both, and the diagonal
ab is a side of bothQ and R, but not P . That is, k + 1 = s + t − 2.

We now use the inductive hypothesis. Because both 3 ≤ s ≤ k and 3 ≤ t ≤ k, by the induc-
tive hypothesis we can triangulate Q and R into s − 2 and t − 2 triangles, respectively. Next,
note that these triangulations together produce a triangulation of P . (Each diagonal added to
triangulate one of these smaller polygons is also a diagonal of P .) Consequently, we can trian-
gulate P into a total of (s − 2)+ (t − 2) = s + t − 4 = (k + 1)− 2 triangles. This completes
the proof by strong induction. That is, we have shown that every simple polygon with n sides,
where n ≥ 3, can be triangulated into n− 2 triangles.

We now return to our proof of Lemma 1. We present a proof published by Chung-Wu Ho
[Ho75]. Note that although this proof may be omitted without loss of continuity, it does provide
a correct proof of a result proved incorrectly by many mathematicians.

Proof: Suppose that P is a simple polygon drawn in the plane. Furthermore, suppose that b is
the point of P or in the interior of P with the least y-coordinate among the vertices with the
smallest x-coordinate. Then b must be a vertex of P , for if it is an interior point, there would
have to be a vertex of P with a smaller x-coordinate. Two other vertices each share an edge
with b, say a and c. It follows that the angle in the interior of P formed by ab and bc must be
less than 180 degrees (otherwise, there would be points of P with smaller x-coordinates than b).

Now let T be the triangle abc. If there are no vertices of P on or inside T , we can
connect a and c to obtain an interior diagonal. On the other hand, if there are vertices of P
inside T , we will find a vertex p of P on or inside T such that bp is an interior diagonal. (This
is the tricky part. Ho noted that in many published proofs of this lemma a vertex p was found
such that bp was not necessarily an interior diagonal of P . See Exercise 21.) The key is to
select a vertex p such that the angle ∠bap is smallest. To see this, note that the ray starting
at a and passing through p hits the line segment bc at a point, say q. It then follows that the
triangle baq cannot contain any vertices of P in its interior. Hence, we can connect b and p
to produce an interior diagonal of P . Locating this vertex p is illustrated in Figure 3.

Proofs Using the Well-Ordering Property

The validity of both the principle of mathematical induction and strong induction follows from
a fundamental axiom of the set of integers, the well-ordering property (see Appendix 1). The
well-ordering property states that every nonempty set of nonnegative integers has a least element.
We will show how the well-ordering property can be used directly in proofs. Furthermore, it
can be shown (see Exercises 41, 42, and 43) that the well-ordering property, the principle of
mathematical induction, and strong induction are all equivalent. That is, the validity of each of
these three proof techniques implies the validity of the other two techniques. In Section 5.1 we

5.2 Strong Induction and Well-Ordering 341

showed that the principle of mathematical induction follows from the well-ordering property.
The other parts of this equivalence are left as Exercises 31, 42, and 43.

THE WELL-ORDERING PROPERTY Every nonempty set of nonnegative integers has a
least element.

The well-ordering property can often be used directly in proofs.

EXAMPLE 5 Use the well-ordering property to prove the division algorithm. Recall that the division algorithm
states that if a is an integer and d is a positive integer, then there are unique integers q and r
with 0 ≤ r < d and a = dq + r .

Solution: Let S be the set of nonnegative integers of the form a − dq, where q is an integer. This
set is nonempty because −dq can be made as large as desired (taking q to be a negative integer
with large absolute value). By the well-ordering property, S has a least element r = a − dq0.

The integer r is nonnegative. It is also the case that r < d . If it were not, then there would
be a smaller nonnegative element in S, namely, a − d(q0 + 1). To see this, suppose that r ≥ d.
Because a = dq0 + r , it follows that a − d(q0 + 1) = (a − dq0)− d = r − d ≥ 0. Conse-
quently, there are integers q and r with 0 ≤ r < d . The proof that q and r are unique is left as
Exercise 37. ▲

EXAMPLE 6 In a round-robin tournament every player plays every other player exactly once and each match
has a winner and a loser. We say that the players p1, p2, . . . , pm form a cycle if p1 beats p2, p2
beats p3, . . . , pm−1 beats pm, and pm beats p1. Use the well-ordering principle to show that if
there is a cycle of lengthm (m ≥ 3) among the players in a round-robin tournament, there must
be a cycle of three of these players.

Solution: We assume that there is no cycle of three players. Because there is at least one cycle
in the round-robin tournament, the set of all positive integers n for which there is a cycle of
length n is nonempty. By the well-ordering property, this set of positive integers has a least
element k, which by assumption must be greater than three. Consequently, there exists a cycle
of players p1, p2, p3, . . . , pk and no shorter cycle exists.

Because there is no cycle of three players, we know that k > 3. Consider the first three
elements of this cycle, p1, p2, and p3. There are two possible outcomes of the match between
p1 and p3. If p3 beats p1, it follows that p1, p2, p3 is a cycle of length three, contradicting
our assumption that there is no cycle of three players. Consequently, it must be the case that
p1 beats p3. This means that we can omit p2 from the cycle p1, p2, p3, . . . , pk to obtain the
cycle p1, p3, p4, . . . , pk of length k − 1, contradicting the assumption that the smallest cycle
has length k. We conclude that there must be a cycle of length three. ▲

Exercises

1. Use strong induction to show that if you can run one mile
or two miles, and if you can always run two more miles
once you have run a specified number of miles, then you
can run any number of miles.

2. Use strong induction to show that all dominoes fall in an
infinite arrangement of dominoes if you know that the
first three dominoes fall, and that when a domino falls,
the domino three farther down in the arrangement also
falls.

3. Let P(n) be the statement that a postage of n cents can be
formed using just 3-cent stamps and 5-cent stamps. The

parts of this exercise outline a strong induction proof that
P(n) is true for n ≥ 8.

a) Show that the statements P(8), P(9), and P(10) are
true, completing the basis step of the proof.

b) What is the inductive hypothesis of the proof?
c) What do you need to prove in the inductive step?
d) Complete the inductive step for k ≥ 10.
e) Explain why these steps show that this statement is

true whenever n ≥ 8.

4. Let P(n) be the statement that a postage of n cents can be
formed using just 4-cent stamps and 7-cent stamps. The

342 5 / Induction and Recursion

parts of this exercise outline a strong induction proof that
P(n) is true for n ≥ 18.

a) Show statements P(18), P(19), P(20), and P(21)
are true, completing the basis step of the proof.

b) What is the inductive hypothesis of the proof?

c) What do you need to prove in the inductive step?

d) Complete the inductive step for k ≥ 21.

e) Explain why these steps show that this statement is
true whenever n ≥ 18.

5. a) Determine which amounts of postage can be formed
using just 4-cent and 11-cent stamps.

b) Prove your answer to (a) using the principle of math-
ematical induction. Be sure to state explicitly your
inductive hypothesis in the inductive step.

c) Prove your answer to (a) using strong induction. How
does the inductive hypothesis in this proof differ from
that in the inductive hypothesis for a proof using math-
ematical induction?

6. a) Determine which amounts of postage can be formed
using just 3-cent and 10-cent stamps.

b) Prove your answer to (a) using the principle of math-
ematical induction. Be sure to state explicitly your
inductive hypothesis in the inductive step.

c) Prove your answer to (a) using strong induction. How
does the inductive hypothesis in this proof differ from
that in the inductive hypothesis for a proof using math-
ematical induction?

7. Which amounts of money can be formed using just two-
dollar bills and five-dollar bills? Prove your answer using
strong induction.

8. Suppose that a store offers gift certificates in denomina-
tions of 25 dollars and 40 dollars. Determine the possible
total amounts you can form using these gift certificates.
Prove your answer using strong induction.

∗9. Use strong induction to prove that
√

2 is irrational. [Hint:

LetP(n) be the statement that
√

2 = n/b for any positive
integer b.]

10. Assume that a chocolate bar consists of n squares ar-
ranged in a rectangular pattern. The entire bar, a smaller
rectangular piece of the bar, can be broken along a vertical
or a horizontal line separating the squares. Assuming that
only one piece can be broken at a time, determine how
many breaks you must successively make to break the bar
into n separate squares. Use strong induction to prove
your answer.

11. Consider this variation of the game of Nim. The game
begins with n matches. Two players take turns removing
matches, one, two, or three at a time. The player remov-
ing the last match loses. Use strong induction to show
that if each player plays the best strategy possible, the
first player wins if n = 4j , 4j + 2, or 4j + 3 for some
nonnegative integer j and the second player wins in the
remaining case when n = 4j + 1 for some nonnegative
integer j .

12. Use strong induction to show that every positive integer n
can be written as a sum of distinct powers of two, that is,
as a sum of a subset of the integers 20 = 1, 21 = 2, 22 = 4,
and so on. [Hint: For the inductive step, separately con-
sider the case where k + 1 is even and where it is odd.
When it is even, note that (k + 1)/2 is an integer.]

∗13. A jigsaw puzzle is put together by successively joining
pieces that fit together into blocks. A move is made each
time a piece is added to a block, or when two blocks
are joined. Use strong induction to prove that no matter
how the moves are carried out, exactly n− 1 moves are
required to assemble a puzzle with n pieces.

14. Suppose you begin with a pile of n stones and split this
pile into n piles of one stone each by successively split-
ting a pile of stones into two smaller piles. Each time you
split a pile you multiply the number of stones in each
of the two smaller piles you form, so that if these piles
have r and s stones in them, respectively, you compute
rs. Show that no matter how you split the piles, the sum
of the products computed at each step equals n(n− 1)/2.

15. Prove that the first player has a winning strategy for the
game of Chomp, introduced in Example 12 in Section 1.8,
if the initial board is square. [Hint: Use strong induction
to show that this strategy works. For the first move, the
first player chomps all cookies except those in the left and
top edges. On subsequent moves, after the second player
has chomped cookies on either the top or left edge, the
first player chomps cookies in the same relative positions
in the left or top edge, respectively.]

∗16. Prove that the first player has a winning strategy for the
game of Chomp, introduced in Example 12 in Section 1.8,
if the initial board is two squares wide, that is, a 2 × n
board. [Hint: Use strong induction. The first move of the
first player should be to chomp the cookie in the bottom
row at the far right.]

17. Use strong induction to show that if a simple polygon
with at least four sides is triangulated, then at least two
of the triangles in the triangulation have two sides that
border the exterior of the polygon.

∗18. Use strong induction to show that when a simple poly-
gon P with consecutive vertices v1, v2, . . . , vn is trian-
gulated into n− 2 triangles, the n− 2 triangles can be
numbered 1, 2, . . . , n− 2 so that vi is a vertex of triangle
i for i = 1, 2, . . . , n− 2.

∗19. Pick’s theorem says that the area of a simple poly-
gon P in the plane with vertices that are all lattice
points (that is, points with integer coordinates) equals
I (P)+B(P)/2− 1, where I (P) and B(P) are the
number of lattice points in the interior of P and on the
boundary of P , respectively. Use strong induction on the
number of vertices of P to prove Pick’s theorem. [Hint:

For the basis step, first prove the theorem for rectangles,
then for right triangles, and finally for all triangles by
noting that the area of a triangle is the area of a larger
rectangle containing it with the areas of at most three tri-
angles subtracted. For the inductive step, take advantage
of Lemma 1.]

5.2 Strong Induction and Well-Ordering 343

∗∗20. Suppose that P is a simple polygon with vertices
v1, v2, . . . , vn listed so that consecutive vertices are con-
nected by an edge, and v1 and vn are connected by an edge.
A vertex vi is called an ear if the line segment connecting
the two vertices adjacent to vi is an interior diagonal of the
simple polygon. Two ears vi and vj are called nonover-
lapping if the interiors of the triangles with vertices vi
and its two adjacent vertices and vj and its two adjacent
vertices do not intersect. Prove that every simple polygon
with at least four vertices has at least two nonoverlapping
ears.

21. In the proof of Lemma 1 we mentioned that many in-
correct methods for finding a vertex p such that the
line segment bp is an interior diagonal of P have been
published. This exercise presents some of the incorrect
ways p has been chosen in these proofs. Show, by con-
sidering one of the polygons drawn here, that for each of
these choices of p, the line segment bp is not necessarily
an interior diagonal of P .

a) p is the vertex ofP such that the angle∠abp is small-
est.

b) p is the vertex of P with the least x-coordinate (other
than b).

c) p is the vertex of P that is closest to b.

b

a

p

q

r

c

s

b

a

d
c

f

g
p

e

h

Exercises 22 and 23 present examples that show inductive
loading can be used to prove results in computational geom-
etry.

∗22. Let P(n) be the statement that when nonintersecting di-
agonals are drawn inside a convex polygon with n sides,
at least two vertices of the polygon are not endpoints of
any of these diagonals.

a) Show that when we attempt to prove P(n) for all inte-
gersnwithn ≥ 3 using strong induction, the inductive
step does not go through.

b) Show that we can prove that P(n) is true for all inte-
gers n with n ≥ 3 by proving by strong induction the
stronger assertionQ(n), for n ≥ 4, whereQ(n) states
that whenever nonintersecting diagonals are drawn in-
side a convex polygon with n sides, at least two non-

adjacent vertices are not endpoints of any of these
diagonals.

23. LetE(n) be the statement that in a triangulation of a sim-
ple polygon with n sides, at least one of the triangles in
the triangulation has two sides bordering the exterior of
the polygon.

a) Explain where a proof using strong induction that
E(n) is true for all integersn ≥ 4 runs into difficulties.

b) Show that we can prove that E(n) is true for all inte-
gersn ≥ 4 by proving by strong induction the stronger
statementT (n) for all integersn ≥ 4, which states that
in every triangulation of a simple polygon, at least two
of the triangles in the triangulation have two sides bor-
dering the exterior of the polygon.

∗24. A stable assignment, defined in the preamble to Exer-
cise 60 in Section 3.1, is called optimal for suitors if no
stable assignment exists in which a suitor is paired with
a suitee whom this suitor prefers to the person to whom
this suitor is paired in this stable assignment. Use strong
induction to show that the deferred acceptance algorithm
produces a stable assignment that is optimal for suitors.

25. Suppose that P(n) is a propositional function. Determine
for which positive integers n the statement P(n)must be
true, and justify your answer, if

a) P(1) is true; for all positive integers n, if P(n) is true,
then P(n+ 2) is true.

b) P(1) and P(2) are true; for all positive integers n, if
P(n) and P(n+ 1) are true, then P(n+ 2) is true.

c) P(1) is true; for all positive integers n, if P(n) is true,
then P(2n) is true.

d) P(1) is true; for all positive integers n, if P(n) is true,
then P(n+ 1) is true.

26. Suppose that P(n) is a propositional function. Determine
for which nonnegative integersn the statementP(n)must
be true if

a) P(0) is true; for all nonnegative integers n, if P(n) is
true, then P(n+ 2) is true.

b) P(0) is true; for all nonnegative integers n, if P(n) is
true, then P(n+ 3) is true.

c) P(0) andP(1) are true; for all nonnegative integers n,
if P(n) and P(n+ 1) are true, then P(n+ 2) is true.

d) P(0) is true; for all nonnegative integers n, if P(n) is
true, then P(n+ 2) and P(n+ 3) are true.

27. Show that if the statementP(n) is true for infinitely many
positive integers n and P(n+ 1)→ P(n) is true for all
positive integers n, then P(n) is true for all positive inte-
gers n.

28. Let b be a fixed integer and j a fixed positive inte-
ger. Show that if P(b), P (b + 1), . . . , P (b + j) are true
and [P(b) ∧ P(b + 1) ∧ · · · ∧ P(k)] →P(k + 1) is true
for every integer k ≥ b + j , then P(n) is true for all
integers n with n ≥ b.

29. What is wrong with this “proof” by strong induction?

“Theorem” For every nonnegative integer n, 5n = 0.

Basis Step: 5 · 0 = 0.

Inductive Step: Suppose that 5j = 0 for all nonneg-
ative integers j with 0 ≤ j ≤ k. Write k + 1 = i + j ,
where i and j are natural numbers less than k + 1. By the
inductive hypothesis, 5(k + 1) = 5(i + j) = 5i + 5j =
0 + 0 = 0.

344 5 / Induction and Recursion

∗30. Find the flaw with the following “proof” that an = 1 for
all nonnegative integers n, whenever a is a nonzero real
number.

Basis Step: a0 = 1 is true by the definition of a0.

Inductive Step: Assume that aj = 1 for all nonnegative
integers j with j ≤ k. Then note that

ak+1 = ak · ak
ak−1

= 1 · 1

1
= 1.

∗31. Show that strong induction is a valid method of proof by
showing that it follows from the well-ordering property.

32. Find the flaw with the following “proof” that every
postage of three cents or more can be formed using just
three-cent and four-cent stamps.

Basis Step: We can form postage of three cents with a
single three-cent stamp and we can form postage of four
cents using a single four-cent stamp.

Inductive Step: Assume that we can form postage
of j cents for all nonnegative integers j with j ≤ k us-
ing just three-cent and four-cent stamps. We can then
form postage of k + 1 cents by replacing one three-cent
stamp with a four-cent stamp or by replacing two four-
cent stamps by three three-cent stamps.

33. Show that we can prove that P(n, k) is true for all pairs
of positive integers n and k if we show

a) P(1, 1) is true and P(n, k)→ [P(n+ 1, k) ∧
P(n, k + 1)] is true for all positive integers n and k.

b) P(1, k) is true for all positive integers k, and
P(n, k)→ P(n+ 1, k) is true for all positive inte-
gers n and k.

c) P(n, 1) is true for all positive integers n, and
P(n, k)→ P(n, k + 1) is true for all positive inte-
gers n and k.

34. Prove that
 n
j=1 j (j + 1)(j + 2) · · · (j + k − 1) =

n(n+ 1)(n+ 2) · · · (n+ k)/(k + 1) for all positive inte-
gers k and n. [Hint: Use a technique from Exercise 33.]

∗35. Show that ifa1, a2, . . . , an arendistinct real numbers, ex-
actly n− 1 multiplications are used to compute the prod-
uct of these n numbers no matter how parentheses are
inserted into their product. [Hint: Use strong induction
and consider the last multiplication.]

∗36. The well-ordering property can be used to show that there
is a unique greatest common divisor of two positive in-
tegers. Let a and b be positive integers, and let S be

the set of positive integers of the form as + bt , where s
and t are integers.

a) Show that S is nonempty.
b) Use the well-ordering property to show that S has a

smallest element c.
c) Show that if d is a common divisor of a and b, then d

is a divisor of c.
d) Show that c | a and c | b. [Hint: First, assume that
c | a. Then a = qc + r , where 0 < r < c. Show that
r ∈ S, contradicting the choice of c.]

e) Conclude from (c) and (d) that the greatest common
divisor of a and b exists. Finish the proof by showing
that this greatest common divisor is unique.

37. Let a be an integer and d be a positive integer. Show
that the integers q and r with a = dq + r and 0 ≤ r < d ,
which were shown to exist in Example 5, are unique.

38. Use mathematical induction to show that a rectangu-
lar checkerboard with an even number of cells and two
squares missing, one white and one black, can be covered
by dominoes.

∗∗39. Can you use the well-ordering property to prove the state-
ment: “Every positive integer can be described using no
more than fifteen English words”? Assume the words
come from a particular dictionary of English. [Hint: Sup-
pose that there are positive integers that cannot be de-
scribed using no more than fifteen English words. By
well ordering, the smallest positive integer that cannot

be described using no more than fifteen English words

would then exist.]

40. Use the well-ordering principle to show that if x and y
are real numbers with x < y, then there is a rational
number r with x < r < y. [Hint: Use the Archimedean
property, given in Appendix 1, to find a positive
integer A with A > 1/(y − x). Then show that there is
a rational number r with denominator A between x and
y by looking at the numbers x + j/A, where j is a
positive integer.]

∗41. Show that the well-ordering property can be proved when
the principle of mathematical induction is taken as an ax-
iom.

∗42. Show that the principle of mathematical induction and
strong induction are equivalent; that is, each can be shown
to be valid from the other.

∗43. Show that we can prove the well-ordering property when
we take strong induction as an axiom instead of taking
the well-ordering property as an axiom.

5.3 Recursive Definitions and Structural Induction

Introduction

Sometimes it is difficult to define an object explicitly. However, it may be easy to define this
object in terms of itself. This process is called recursion. For instance, the picture shown in
Figure 1 is produced recursively. First, an original picture is given. Then a process of successively
superimposing centered smaller pictures on top of the previous pictures is carried out.

5.3 Recursive Definitions and Structural Induction 345

FIGURE 1 A Recursively Defined Picture.

We can use recursion to define sequences, functions, and sets. In Section 2.4, and in most
beginning mathematics courses, the terms of a sequence are specified using an explicit formula.
For instance, the sequence of powers of 2 is given by an = 2n for n = 0, 1, 2, Recall from
Section 2.4 that we can also define a sequence recursively by specifying how terms of the
sequence are found from previous terms. The sequence of powers of 2 can also be defined
by giving the first term of the sequence, namely, a0 = 1, and a rule for finding a term of the
sequence from the previous one, namely, an+1 = 2an for n = 0, 1, 2, When we define a
sequence recursively by specifying how terms of the sequence are found from previous terms,
we can use induction to prove results about the sequence.

When we define a set recursively, we specify some initial elements in a basis step and
provide a rule for constructing new elements from those we already have in the recur-
sive step. To prove results about recursively defined sets we use a method called structural

induction.

Recursively Defined Functions

We use two steps to define a function with the set of nonnegative integers as its domain:

BASIS STEP: Specify the value of the function at zero.

RECURSIVE STEP: Give a rule for finding its value at an integer from its values at smaller
integers.

Such a definition is called a recursive or inductive definition. Note that a function f (n) from
the set of nonnegative integers to the set of a real numbers is the same as a sequence a0, a1, . . .

where ai is a real number for every nonnegative integer i. So, defining a real-valued sequence
a0, a1, . . . using a recurrence relation, as was done in Section 2.4, is the same as defining a
function from the set of nonnegative integers to the set of real numbers.

346 5 / Induction and Recursion

EXAMPLE 1 Suppose that f is defined recursively by

f (0) = 3,

f (n+ 1) = 2f (n)+ 3.

Find f (1), f (2), f (3), and f (4).

Solution: From the recursive definition it follows that

f (1) = 2f (0)+ 3 = 2 · 3 + 3 = 9,

f (2) = 2f (1)+ 3 = 2 · 9 + 3 = 21,

f (3) = 2f (2)+ 3 = 2 · 21 + 3 = 45,

f (4) = 2f (3)+ 3 = 2 · 45 + 3 = 93.

▲

Recursively defined functions are well defined. That is, for every positive integer, the
value of the function at this integer is determined in an unambiguous way. This means
that given any positive integer, we can use the two parts of the definition to find the value
of the function at that integer, and that we obtain the same value no matter how we ap-
ply the two parts of the definition. This is a consequence of the principle of mathemati-
cal induction. (See Exercise 56.) Additional examples of recursive definitions are given in
Examples 2 and 3.

EXAMPLE 2 Give a recursive definition of an, where a is a nonzero real number and n is a nonnegative
integer.

Solution: The recursive definition contains two parts. First a0 is specified, namely, a0 = 1. Then
the rule for finding an+1 from an, namely, an+1 = a · an, for n = 0, 1, 2, 3, . . . , is given. These
two equations uniquely define an for all nonnegative integers n. ▲

EXAMPLE 3 Give a recursive definition of

n
k= 0

ak.

Solution: The first part of the recursive definition is

0
k= 0

ak = a0.

The second part is

n+1
k= 0

ak =

n
k= 0

ak

+ an+1.

▲

In some recursive definitions of functions, the values of the function at the first k positive
integers are specified, and a rule is given for determining the value of the function at larger inte-
gers from its values at some or all of the preceding k integers. That recursive definitions defined
in this way produce well-defined functions follows from strong induction (see Exercise 57).

5.3 Recursive Definitions and Structural Induction 347

Recall from Section 2.4 that the Fibonacci numbers, f0, f1, f2, . . . , are defined by the
equations f0 = 0, f1 = 1, and

fn = fn−1 + fn−2

for n = 2, 3, 4, [We can think of the Fibonacci number fn either as the nth term of the
sequence of Fibonacci numbers f0, f1, . . . or as the value at the integer n of a function f (n).]

We can use the recursive definition of the Fibonacci numbers to prove many properties of
these numbers. We give one such property in Example 4.

EXAMPLE 4 Show that whenever n ≥ 3, fn > αn−2, where α = (1 +
√

5)/2.

Solution: We can use strong induction to prove this inequality. Let P(n) be the statement
fn > α

n−2. We want to show thatP(n) is true whenever n is an integer greater than or equal to 3.

BASIS STEP: First, note that

α < 2 = f3, α2 = (3 +
√

5)/2 < 3 = f4,

so P(3) and P(4) are true.

INDUCTIVE STEP: Assume that P(j) is true, namely, that fj > αj−2, for all integers j with
3 ≤ j ≤ k, where k ≥ 4. We must show thatP(k + 1) is true, that is, that fk+1 > α

k−1. Because
α is a solution of x2 − x − 1 = 0 (as the quadratic formula shows), it follows that α2 = α + 1.
Therefore,

αk−1 = α2 · αk−3 = (α + 1)αk−3 = α · αk−3 + 1 · αk−3 = αk−2 + αk−3.

By the inductive hypothesis, because k ≥ 4, we have

fk−1 > α
k−3, fk > α

k−2.

Therefore, it follows that

fk+1 = fk + fk−1 > α
k−2 + αk−3 = αk−1.

Hence, P(k + 1) is true. This completes the proof. ▲

Remark: The inductive step shows that whenever k ≥ 4, P(k + 1) follows from the assumption
that P(j) is true for 3 ≤ j ≤ k. Hence, the inductive step does not show that P(3)→ P(4).
Therefore, we had to show that P(4) is true separately.

We can now show that the Euclidean algorithm, introduced in Section 4.3, uses O(log b)
divisions to find the greatest common divisor of the positive integers a and b, where a ≥ b.

THEOREM 1 LAMÉ’S THEOREM Let a and b be positive integers with a ≥ b. Then the number of
divisions used by the Euclidean algorithm to find gcd(a, b) is less than or equal to five times
the number of decimal digits in b.

348 5 / Induction and Recursion

Proof: Recall that when the Euclidean algorithm is applied to find gcd(a, b) with a ≥ b, this
sequence of equations (where a = r0 and b = r1) is obtained.

r0 = r1q1 + r2 0 ≤ r2 < r1,
r1 = r2q2 + r3 0 ≤ r3 < r2,

·
·
·

rn−2 = rn−1qn−1 + rn 0 ≤ rn < rn−1,

rn−1 = rnqn.

Here n divisions have been used to find rn = gcd(a, b). Note that the quotients q1, q2, . . . , qn−1
are all at least 1. Moreover, qn ≥ 2, because rn < rn−1. This implies that

rn ≥ 1 = f2,

rn−1 ≥ 2rn ≥ 2f2 = f3,

rn−2 ≥ rn−1 + rn ≥ f3 + f2 = f4,

·
·
·

r2 ≥ r3 + r4 ≥ fn−1 + fn−2 = fn,
b = r1 ≥ r2 + r3 ≥ fn + fn−1 = fn+1.

It follows that if n divisions are used by the Euclidean algorithm to find gcd(a, b) with a ≥ b,
then b ≥ fn+1. By Example 4 we know that fn+1 > α

n−1 for n > 2, where α = (1 +
√

5)/2.
Therefore, it follows that b > αn−1. Furthermore, because log10 α ≈ 0.208 > 1/5, we see that

log10 b > (n− 1) log10 α > (n− 1)/5.

Hence, n− 1 < 5 · log10 b. Now suppose that b has k decimal digits. Then b < 10k and
log10 b < k. It follows that n− 1 < 5k, and because k is an integer, it follows that n ≤ 5k.
This finishes the proof.

Because the number of decimal digits in b, which equals log10 b + 1, is less than or equal
to log10 b + 1, Theorem 1 tells us that the number of divisions required to find gcd(a, b) with

FIBONACCI (1170–1250) Fibonacci (short for filius Bonacci, or “son of Bonacci”) was also known as
Leonardo of Pisa. He was born in the Italian commercial center of Pisa. Fibonacci was a merchant who traveled
extensively throughout the Mideast, where he came into contact with Arabian mathematics. In his book Liber
Abaci, Fibonacci introduced the European world to Arabic notation for numerals and algorithms for arithmetic.
It was in this book that his famous rabbit problem (described in Section 8.1) appeared. Fibonacci also wrote
books on geometry and trigonometry and on Diophantine equations, which involve finding integer solutions to
equations.

5.3 Recursive Definitions and Structural Induction 349

a > b is less than or equal to 5(log10 b + 1). Because 5(log10 b + 1) is O(log b), we see that
O(log b) divisions are used by the Euclidean algorithm to find gcd(a, b) whenever a > b.

Recursively Defined Sets and Structures

We have explored how functions can be defined recursively.We now turn our attention to how sets
can be defined recursively. Just as in the recursive definition of functions, recursive definitions
of sets have two parts, a basis step and a recursive step. In the basis step, an initial collection
of elements is specified. In the recursive step, rules for forming new elements in the set from
those already known to be in the set are provided. Recursive definitions may also include an
exclusion rule, which specifies that a recursively defined set contains nothing other than those
elements specified in the basis step or generated by applications of the recursive step. In our
discussions, we will always tacitly assume that the exclusion rule holds and no element belongs
to a recursively defined set unless it is in the initial collection specified in the basis step or can
be generated using the recursive step one or more times. Later we will see how we can use a
technique known as structural induction to prove results about recursively defined sets.

Examples 5, 6, 8, and 9 illustrate the recursive definition of sets. In each example, we show
those elements generated by the first few applications of the recursive step.

EXAMPLE 5 Consider the subset S of the set of integers recursively defined by

BASIS STEP: 3 ∈ S.

RECURSIVE STEP: If x ∈ S and y ∈ S, then x + y ∈ S.

The new elements found to be in S are 3 by the basis step, 3 + 3 = 6 at the first application of
the recursive step, 3 + 6 = 6 + 3 = 9 and 6 + 6 = 12 at the second application of the recursive
step, and so on. We will show in Example 10 that S is the set of all positive multiples of 3. ▲

Recursive definitions play an important role in the study of strings. (See Chapter 13 for
an introduction to the theory of formal languages, for example.) Recall from Section 2.4 that a
string over an alphabet is a finite sequence of symbols from . We can define ∗, the set of
strings over , recursively, as Definition 1 shows.

DEFINITION 1 The set ∗ of strings over the alphabet is defined recursively by

BASIS STEP: λ ∈ ∗ (where λ is the empty string containing no symbols).

RECURSIVE STEP: If w ∈ ∗ and x ∈ , then wx ∈ ∗.

GABRIEL LAMÉ (1795–1870) Gabriel Lamé entered the École Polytechnique in 1813, graduating in 1817.
He continued his education at the École des Mines, graduating in 1820.

In 1820 Lamé went to Russia, where he was appointed director of the Schools of Highways and Trans-
portation in St. Petersburg. Not only did he teach, but he also planned roads and bridges while in Russia. He
returned to Paris in 1832, where he helped found an engineering firm. However, he soon left the firm, accepting
the chair of physics at the École Polytechnique, which he held until 1844. While holding this position, he was
active outside academia as an engineering consultant, serving as chief engineer of mines and participating in
the building of railways.

Lamé contributed original work to number theory, applied mathematics, and thermodynamics. His best-
known work involves the introduction of curvilinear coordinates. His work on number theory includes proving Fermat’s last theorem
for n = 7, as well as providing the upper bound for the number of divisions used by the Euclidean algorithm given in this text.

In the opinion of Gauss, one of the most important mathematicians of all time, Lamé was the foremost French mathematician of
his time. However, French mathematicians considered him too practical, whereas French scientists considered him too theoretical.

350 5 / Induction and Recursion

The basis step of the recursive definition of strings says that the empty string belongs to ∗.
The recursive step states that new strings are produced by adding a symbol from to the end of
strings in ∗. At each application of the recursive step, strings containing one additional symbol
are generated.

EXAMPLE 6 If = {0, 1}, the strings found to be in ∗, the set of all bit strings, are λ, specified to be in ∗
in the basis step, 0 and 1 formed during the first application of the recursive step, 00, 01, 10,
and 11 formed during the second application of the recursive step, and so on. ▲

Recursive definitions can be used to define operations or functions on the elements of
recursively defined sets. This is illustrated in Definition 2 of the concatenation of two strings
and Example 7 concerning the length of a string.

DEFINITION 2 Two strings can be combined via the operation of concatenation. Let be a set of symbols
and ∗ the set of strings formed from symbols in . We can define the concatenation of two
strings, denoted by ·, recursively as follows.

BASIS STEP: If w ∈ ∗, then w · λ = w, where λ is the empty string.

RECURSIVE STEP: If w1 ∈ ∗ and w2 ∈ ∗ and x ∈ , then w1 · (w2x) = (w1 · w2)x.

The concatenation of the strings w1 and w2 is often written as w1w2 rather than w1 · w2. By
repeated application of the recursive definition, it follows that the concatenation of two strings
w1 and w2 consists of the symbols in w1 followed by the symbols in w2. For instance, the
concatenation of w1 = abra and w2 = cadabra is w1w2 = abracadabra.

EXAMPLE 7 Length of a String Give a recursive definition of l(w), the length of the string w.

Solution: The length of a string can be recursively defined by

l(λ) = 0;
l(wx) = l(w)+ 1 if w ∈ ∗ and x ∈ .

▲

Another important use of recursive definitions is to define well-formed formulae of various
types. This is illustrated in Examples 8 and 9.

EXAMPLE 8 Well-Formed Formulae in Propositional Logic We can define the set of well-formed for-
mulae in propositional logic involving T, F, propositional variables, and operators from the set
{¬,∧,∨,→,↔}.
BASIS STEP: T, F, and s, where s is a propositional variable, are well-formed formulae.

RECURSIVE STEP: If E and F are well-formed formulae, then (¬E), (E ∧ F), (E ∨ F),
(E → F), and (E ↔ F) are well-formed formulae.

For example, by the basis step we know that T, F, p, and q are well-formed formulae,
where p and q are propositional variables. From an initial application of the recursive step,
we know that (p ∨ q), (p → F), (F → q), and (q ∧ F) are well-formed formulae. A sec-
ond application of the recursive step shows that ((p ∨ q)→ (q ∧ F)), (q ∨ (p ∨ q)), and
((p → F)→ T) are well-formed formulae. We leave it to the reader to show that p¬ ∧ q,
pq∧, and ¬ ∧ pq are not well-formed formulae, by showing that none can be obtained using
the basis step and one or more applications of the recursive step. ▲

5.3 Recursive Definitions and Structural Induction 351

EXAMPLE 9 Well-Formed Formulae of Operators and Operands We can define the set of well-formed
formulae consisting of variables, numerals, and operators from the set {+,−, ∗, /,↑} (where ∗
denotes multiplication and ↑ denotes exponentiation) recursively.

BASIS STEP: x is a well-formed formula if x is a numeral or a variable.

RECURSIVE STEP: If F andG are well-formed formulae, then (F +G), (F −G), (F ∗G),
(F/G), and (F ↑G) are well-formed formulae.

For example, by the basis step we see that x, y, 0, and 3 are well-formed formulae (as is
any variable or numeral). Well-formed formulae generated by applying the recursive step once
include (x + 3), (3 + y), (x − y), (3 − 0), (x ∗ 3), (3 ∗ y), (3/0), (x/y), (3↑x), and (0↑3).
Applying the recursive step twice shows that formulae such as ((x + 3)+ 3) and (x − (3 ∗ y))
are well-formed formulae. [Note that (3/0) is a well-formed formula because we are concerned
only with syntax matters here.] We leave it to the reader to show that each of the formulae x3+,
y ∗ + x, and ∗ x/y is not a well-formed formula by showing that none of them can be obtained
from the basis step and one or more applications of the recursive step. ▲

We will study trees extensively in Chapter 11. A tree is a special type of a graph; a graph
is made up of vertices and edges connecting some pairs of vertices. We will study graphs in
Chapter 10. We will briefly introduce them here to illustrate how they can be defined recursively.

DEFINITION 3 The set of rooted trees, where a rooted tree consists of a set of vertices containing a distin-
guished vertex called the root, and edges connecting these vertices, can be defined recursively
by these steps:

BASIS STEP: A single vertex r is a rooted tree.

RECURSIVE STEP: Suppose that T1, T2, . . . , Tn are disjoint rooted trees with roots
r1, r2, . . . , rn, respectively. Then the graph formed by starting with a root r , which is not
in any of the rooted trees T1, T2, . . . , Tn, and adding an edge from r to each of the vertices
r1, r2, . . . , rn, is also a rooted tree.

In Figure 2 we illustrate some of the rooted trees formed starting with the basis step and applying
the recursive step one time and two times. Note that infinitely many rooted trees are formed at
each application of the recursive definition.

Basis step

Step 1

Step 2

• • • • • •

FIGURE 2 Building Up Rooted Trees.

352 5 / Induction and Recursion

Step 1

Step 2

Basis step ⭋

Step 3

FIGURE 3 Building Up Extended Binary Trees.

Binary trees are a special type of rooted trees. We will provide recursive definitions of
two types of binary trees—full binary trees and extended binary trees. In the recursive step of
the definition of each type of binary tree, two binary trees are combined to form a new tree
with one of these trees designated the left subtree and the other the right subtree. In extended
binary trees, the left subtree or the right subtree can be empty, but in full binary trees this is not
possible. Binary trees are one of the most important types of structures in computer science. In
Chapter 11 we will see how they can be used in searching and sorting algorithms, in algorithms
for compressing data, and in many other applications. We first define extended binary trees.

DEFINITION 4 The set of extended binary trees can be defined recursively by these steps:

BASIS STEP: The empty set is an extended binary tree.

RECURSIVE STEP: If T1 and T2 are disjoint extended binary trees, there is an extended
binary tree, denoted by T1 · T2, consisting of a root r together with edges connecting the
root to each of the roots of the left subtree T1 and the right subtree T2 when these trees are
nonempty.

Figure 3 shows how extended binary trees are built up by applying the recursive step from one
to three times.

We now show how to define the set of full binary trees. Note that the difference between
this recursive definition and that of extended binary trees lies entirely in the basis step.

5.3 Recursive Definitions and Structural Induction 353

Basis step

Step 1

Step 2

FIGURE 4 Building Up Full Binary Trees.

DEFINITION 5 The set of full binary trees can be defined recursively by these steps:

BASIS STEP: There is a full binary tree consisting only of a single vertex r .

RECURSIVE STEP: If T1 and T2 are disjoint full binary trees, there is a full binary tree,
denoted by T1 · T2, consisting of a root r together with edges connecting the root to each of
the roots of the left subtree T1 and the right subtree T2.

Figure 4 shows how full binary trees are built up by applying the recursive step one and two
times.

Structural Induction

To prove results about recursively defined sets, we generally use some form of mathematical
induction. Example 10 illustrates the connection between recursively defined sets and mathe-
matical induction.

EXAMPLE 10 Show that the set S defined in Example 5 by specifying that 3 ∈ S and that if x ∈ S and y ∈ S,
then x + y ∈ S, is the set of all positive integers that are multiples of 3.

Solution: Let A be the set of all positive integers divisible by 3. To prove that A = S, we must
show that A is a subset of S and that S is a subset of A. To prove that A is a subset of S, we
must show that every positive integer divisible by 3 is in S. We will use mathematical induction
to prove this.

Let P(n) be the statement that 3n belongs to S. The basis step holds because by the first
part of the recursive definition of S, 3 · 1 = 3 is in S. To establish the inductive step, assume
that P(k) is true, namely, that 3k is in S. Because 3k is in S and because 3 is in S, it follows
from the second part of the recursive definition of S that 3k + 3 = 3(k + 1) is also in S.

To prove that S is a subset of A, we use the recursive definition of S. First, the basis step
of the definition specifies that 3 is in S. Because 3 = 3 · 1, all elements specified to be in S in
this step are divisible by 3 and are therefore in A. To finish the proof, we must show that all
integers in S generated using the second part of the recursive definition are in A. This consists
of showing that x + y is inAwhenever x and y are elements of S also assumed to be inA. Now
if x and y are both in A, it follows that 3 | x and 3 | y. By part (i) of Theorem 1 of Section 4.1,
it follows that 3 | x + y, completing the proof. ▲

354 5 / Induction and Recursion

In Example 10 we used mathematical induction over the set of positive integers and a
recursive definition to prove a result about a recursively defined set. However, instead of using
mathematical induction directly to prove results about recursively defined sets, we can use a more
convenient form of induction known as structural induction. A proof by structural induction
consists of two parts. These parts are

BASIS STEP: Show that the result holds for all elements specified in the basis step of the
recursive definition to be in the set.

RECURSIVESTEP: Show that if the statement is true for each of the elements used to construct
new elements in the recursive step of the definition, the result holds for these new elements.

The validity of structural induction follows from the principle of mathematical induction
for the nonnegative integers. To see this, let P(n) state that the claim is true for all elements
of the set that are generated by n or fewer applications of the rules in the recursive step of
a recursive definition. We will have established that the principle of mathematical induction
implies the principle of structural induction if we can show that P(n) is true whenever n is a
positive integer. In the basis step of a proof by structural induction we show that P(0) is true.
That is, we show that the result is true of all elements specified to be in the set in the basis
step of the definition. A consequence of the recursive step is that if we assume P(k) is true,
it follows that P(k + 1) is true. When we have completed a proof using structural induction,
we have shown that P(0) is true and that P(k) implies P(k + 1). By mathematical induction it
follows that P(n) is true for all nonnegative integers n. This also shows that the result is true
for all elements generated by the recursive definition, and shows that structural induction is a
valid proof technique.

EXAMPLES OF PROOFS USING STRUCTURAL INDUCTION Structural induction can
be used to prove that all members of a set constructed recursively have a particular property.
We will illustrate this idea by using structural induction to prove results about well-formed
formulae, strings, and binary trees. For each proof, we have to carry out the appropriate basis
step and the appropriate recursive step. For example, to use structural induction to prove a
result about the set of well-formed formulae defined in Example 8, where we specify that T, F,
and every propositional variable s are well-formed formulae and where we specify that if E
and F are well-formed formulae, then (¬E), (E ∧ F), (E ∨ F), (E → F), and (E ↔ F) are
well-formed formulae, we need to complete this basis step and this recursive step.

BASIS STEP: Show that the result is true for T, F, and s whenever s is a propositional variable.

RECURSIVE STEP: Show that if the result is true for the compound propositions p and q, it
is also true for (¬p), (p ∨ q), (p ∧ q), (p → q), and (p ↔ q).

Example 11 illustrates how we can prove results about well-formed formulae using structural
induction.

EXAMPLE 11 Show that every well-formed formula for compound propositions, as defined in Example 8,
contains an equal number of left and right parentheses.

Solution:

BASIS STEP: Each of the formula T, F, and s contains no parentheses, so clearly they contain
an equal number of left and right parentheses.

RECURSIVE STEP: Assume p and q are well-formed formulae each containing an equal
number of left and right parentheses. That is, if lp and lq are the number of left parentheses
in p and q, respectively, and rp and rq are the number of right parentheses in p and q, respec-
tively, then lp = rp and lq = rq . To complete the inductive step, we need to show that each of

5.3 Recursive Definitions and Structural Induction 355

(¬p), (p ∨ q), (p ∧ q), (p → q), and (p ↔ q) also contains an equal number of left and right
parentheses. The number of left parentheses in the first of these compound propositions equals
lp + 1 and in each of the other compound propositions equals lp + lq + 1. Similarly, the number
of right parentheses in the first of these compound propositions equals rp + 1 and in each of the
other compound propositions equals rp + rq + 1. Because lp = rp and lq = rq , it follows that
each of these compound expressions contains the same number of left and right parentheses.
This completes the proof by structural induction. ▲

Suppose thatP(w) is a propositional function over the set of strings w ∈ ∗.To use structural
induction to prove that P(w) holds for all strings w ∈ ∗, we need to complete both a basis step
and a recursive step. These steps are:

BASIS STEP: Show that P(λ) is true.

RECURSIVE STEP: Assume thatP(w) is true, where w ∈ ∗. Show that if x ∈ , thenP(wx)
must also be true.

Example 12 illustrates how structural induction can be used in proofs about strings.

EXAMPLE 12 Use structural induction to prove that l(xy) = l(x)+ l(y), where x and y belong to ∗, the set
of strings over the alphabet .

Solution: We will base our proof on the recursive definition of the set ∗ given in Definition 1
and the definition of the length of a string in Example 7, which specifies that l(λ) = 0 and
l(wx) = l(w)+ 1 when w ∈ ∗ and x ∈ . Let P(y) be the statement that l(xy) = l(x)+ l(y)
whenever x belongs to ∗.

BASIS STEP: To complete the basis step, we must show that P(λ) is true. That is, we must
show that l(xλ) = l(x)+ l(λ) for all x ∈ ∗. Because l(xλ) = l(x) = l(x)+ 0 = l(x)+ l(λ)
for every string x, it follows that P(λ) is true.

RECURSIVE STEP: To complete the inductive step, we assume that P(y) is true and
show that this implies that P(ya) is true whenever a ∈ . What we need to show is that
l(xya) = l(x)+ l(ya) for every a ∈ . To show this, note that by the recursive definition of l(w)
(given in Example 7), we have l(xya) = l(xy)+ 1 and l(ya) = l(y)+ 1. And, by the inductive
hypothesis, l(xy) = l(x)+ l(y). We conclude that l(xya) = l(x)+ l(y)+ 1 = l(x)+ l(ya). ▲

We can prove results about trees or special classes of trees using structural induction. For
example, to prove a result about full binary trees using structural induction we need to complete
this basis step and this recursive step.

BASIS STEP: Show that the result is true for the tree consisting of a single vertex.

RECURSIVE STEP: Show that if the result is true for the trees T1 and T2, then it is true for
tree T1 · T2 consisting of a root r , which has T1 as its left subtree and T2 as its right subtree.

Before we provide an example showing how structural induction can be used to prove a
result about full binary trees, we need some definitions. We will recursively define the height
h(T) and the number of vertices n(T) of a full binary tree T . We begin by defining the height
of a full binary tree.

DEFINITION 6 We define the height h(T) of a full binary tree T recursively.

BASIS STEP: The height of the full binary tree T consisting of only a root r is h(T) = 0.

RECURSIVE STEP: If T1 and T2 are full binary trees, then the full binary tree T = T1 · T2
has height h(T) = 1 + max(h(T1), h(T2)).

356 5 / Induction and Recursion

If we let n(T) denote the number of vertices in a full binary tree, we observe that n(T) satisfies
the following recursive formula:

BASIS STEP: The number of vertices n(T) of the full binary tree T consisting of only a root
r is n(T) = 1.

RECURSIVE STEP: If T1 and T2 are full binary trees, then the number of vertices of the full
binary tree T = T1 · T2 is n(T) = 1 + n(T1)+ n(T2).

We now show how structural induction can be used to prove a result about full binary trees.

THEOREM 2 If T is a full binary tree T , then n(T) ≤ 2h(T)+1 − 1.

Proof: We prove this inequality using structural induction.

BASIS STEP: For the full binary tree consisting of just the root r the result is true because
n(T) = 1 and h(T) = 0, so that n(T) = 1 ≤ 20+1 − 1 = 1.

RECURSIVE STEP: For the inductive hypothesis we assume that n(T1) ≤ 2h(T1)+1 − 1 and
n(T2) ≤ 2h(T2)+1 − 1 whenever T1 and T2 are full binary trees. By the recursive formulae for
n(T) and h(T) we have n(T) = 1 + n(T1)+ n(T2) and h(T) = 1 + max(h(T1), h(T2)).

We find that

n(T) = 1 + n(T1)+ n(T2) by the recursive formula for n(T)

≤ 1 + (2h(T1)+1 − 1)+ (2h(T2)+1 − 1) by the inductive hypothesis

≤ 2 · max(2h(T1)+1, 2h(T2)+1)− 1 because the sum of two terms is at most 2
times the larger

= 2 · 2max(h(T1),h(T2))+1 − 1 because max(2x, 2y) = 2max(x,y)

= 2 · 2h(T) − 1 by the recursive definition of h(T)

= 2h(T)+1 − 1.

This completes the recursive step.

Generalized Induction

We can extend mathematical induction to prove results about other sets that have the well-
ordering property besides the set of integers. Although we will discuss this concept in detail in
Section 9.6, we provide an example here to illustrate the usefulness of such an approach.

As an example, note that we can define an ordering on N × N, the ordered pairs of non-
negative integers, by specifying that (x1, y1) is less than or equal to (x2, y2) if either x1 < x2,
or x1 = x2 and y1 < y2; this is called the lexicographic ordering. The set N × N with this
ordering has the property that every subset of N × N has a least element (see Exercise 53
in Section 9.6). This implies that we can recursively define the terms am,n, with m ∈ N and
n ∈ N, and prove results about them using a variant of mathematical induction, as illustrated in
Example 13.

5.3 Recursive Definitions and Structural Induction 357

EXAMPLE 13 Suppose that am,n is defined recursively for (m, n) ∈ N × N by a0,0 = 0 and

am,n =

am−1,n + 1 if n = 0 and m > 0

am,n−1 + n if n > 0.

Show that am,n = m+ n(n+ 1)/2 for all (m, n) ∈ N × N, that is, for all pairs of nonnegative
integers.

Solution:We can prove thatam,n = m+ n(n+ 1)/2 using a generalized version of mathematical
induction. The basis step requires that we show that this formula is valid when (m, n) = (0, 0).
The induction step requires that we show that if the formula holds for all pairs smaller than
(m, n) in the lexicographic ordering of N × N, then it also holds for (m, n).

BASIS STEP: Let (m, n) = (0, 0). Then by the basis case of the recursive definition of am,n
we have a0,0 = 0. Furthermore, when m = n = 0, m+ n(n+ 1)/2 = 0 + (0 · 1)/2 = 0. This
completes the basis step.

INDUCTIVE STEP: Suppose that am ,n = m + n (n + 1)/2 whenever (m , n) is less
than (m, n) in the lexicographic ordering of N × N. By the recursive definition, if n = 0,
then am,n = am−1,n + 1. Because (m− 1, n) is smaller than (m, n), the inductive hypoth-
esis tells us that am−1,n = m− 1 + n(n+ 1)/2, so that am,n = m− 1 + n(n+ 1)/2 + 1 =
m+ n(n+ 1)/2, giving us the desired equality. Now suppose that n > 0, so am,n = am,n−1 + n.
Because (m, n− 1) is smaller than (m, n), the inductive hypothesis tells us that am,n−1 =
m+ (n− 1)n/2, so am,n = m+ (n− 1)n/2 + n = m+ (n2 − n+ 2n)/2 = m+ n(n+ 1)/2.
This finishes the inductive step. ▲

As mentioned, we will justify this proof technique in Section 9.6.

Exercises

1. Find f (1), f (2), f (3), and f (4) if f (n) is defined recur-
sively by f (0) = 1 and for n = 0, 1, 2, . . .

a) f (n+ 1) = f (n)+ 2.
b) f (n+ 1) = 3f (n).
c) f (n+ 1) = 2f (n).
d) f (n+ 1) = f (n)2 + f (n)+ 1.

2. Find f (1), f (2), f (3), f (4), and f (5) if f (n) is defined
recursively by f (0) = 3 and for n = 0, 1, 2, . . .

a) f (n+ 1) = −2f (n).
b) f (n+ 1) = 3f (n)+ 7.
c) f (n+ 1) = f (n)2 − 2f (n)− 2.
d) f (n+ 1) = 3f (n)/3.

3. Find f (2), f (3), f (4), and f (5) if f is defined recur-
sively by f (0) = −1, f (1) = 2, and for n = 1, 2, . . .

a) f (n+ 1) = f (n)+ 3f (n− 1).
b) f (n+ 1) = f (n)2f (n− 1).
c) f (n+ 1) = 3f (n)2 − 4f (n− 1)2.
d) f (n+ 1) = f (n− 1)/f (n).

4. Find f (2), f (3), f (4), and f (5) if f is defined recur-
sively by f (0) = f (1) = 1 and for n = 1, 2, . . .

a) f (n+ 1) = f (n)− f (n− 1).
b) f (n+ 1) = f (n)f (n− 1).
c) f (n+ 1) = f (n)2 + f (n− 1)3.
d) f (n+ 1) = f (n)/f (n− 1).

5. Determine whether each of these proposed definitions is
a valid recursive definition of a function f from the set
of nonnegative integers to the set of integers. If f is well
defined, find a formula for f (n) when n is a nonnegative
integer and prove that your formula is valid.

a) f (0) = 0, f (n) = 2f (n− 2) for n ≥ 1
b) f (0) = 1, f (n) = f (n− 1)− 1 for n ≥ 1
c) f (0) = 2, f (1) = 3, f (n) = f (n− 1)− 1 for
n ≥ 2

d) f (0) = 1, f (1) = 2, f (n) = 2f (n− 2) for n ≥ 2
e) f (0) = 1, f (n) = 3f (n− 1) if n is odd and n ≥ 1

and f (n) = 9f (n− 2) if n is even and n ≥ 2

6. Determine whether each of these proposed definitions is
a valid recursive definition of a function f from the set
of nonnegative integers to the set of integers. If f is well
defined, find a formula for f (n) when n is a nonnegative
integer and prove that your formula is valid.

a) f (0) = 1, f (n) = −f (n− 1) for n ≥ 1
b) f (0) = 1, f (1) = 0, f (2) = 2, f (n) = 2f (n− 3)

for n ≥ 3
c) f (0) = 0, f (1) = 1, f (n) = 2f (n+ 1) for n ≥ 2
d) f (0) = 0, f (1) = 1, f (n) = 2f (n− 1) for n ≥ 1
e) f (0) = 2, f (n) = f (n− 1) if n is odd and n ≥ 1 and
f (n) = 2f (n− 2) if n ≥ 2

358 5 / Induction and Recursion

7. Give a recursive definition of the sequence {an}, n =
1, 2, 3, . . . if

a) an = 6n. b) an = 2n+ 1.
c) an = 10n. d) an = 5.

8. Give a recursive definition of the sequence {an}, n =
1, 2, 3, . . . if

a) an = 4n− 2. b) an = 1 + (−1)n.
c) an = n(n+ 1). d) an = n2.

9. LetF be the function such thatF(n) is the sum of the first
n positive integers. Give a recursive definition of F(n).

10. Give a recursive definition of Sm(n), the sum of the inte-
ger m and the nonnegative integer n.

11. Give a recursive definition of Pm(n), the product of the
integer m and the nonnegative integer n.

In Exercises 12–19 fn is the nth Fibonacci number.
12. Prove that f 2

1 + f 2
2 + · · · + f 2

n = fnfn+1 when n is a
positive integer.

13. Prove that f1 + f3 + · · · + f2n−1 = f2n when n is a pos-
itive integer.

∗14. Show that fn+1fn−1 − f 2
n = (−1)n when n is a positive

integer.
∗15. Show that f0f1 + f1f2 + · · · + f2n−1f2n = f 2

2n when n
is a positive integer.

∗16. Show that f0 − f1 + f2 − · · · − f2n−1 + f2n =
f2n−1 − 1 when n is a positive integer.

17. Determine the number of divisions used by the Euclidean
algorithm to find the greatest common divisor of the Fi-
bonacci numbers fn and fn+1, where n is a nonnegative
integer.Verify your answer using mathematical induction.

18. Let

A =

1 1
1 0

.

Show that

An =

fn+1 fn
fn fn−1

when n is a positive integer.

19. By taking determinants of both sides of the equation in
Exercise 18, prove the identity given in Exercise 14. (Re-

call that the determinant of the matrix

 a b

c d

 isad − bc.)
∗20. Give a recursive definition of the functions max and

min so that max(a1, a2, . . . , an) and min(a1, a2, . . . , an)

are the maximum and minimum of the n numbers
a1, a2, . . . , an, respectively.

∗21. Let a1, a2, . . . , an, and b1, b2, . . . , bn be real numbers.
Use the recursive definitions that you gave in Exercise 20
to prove these.

a) max(−a1,−a2, . . . ,−an) = −min(a1, a2, . . . , an)

b) max(a1 + b1, a2 + b2, . . . , an + bn)
≤ max(a1, a2, . . . , an)+ max(b1, b2, . . . , bn)

c) min(a1 + b1, a2 + b2, . . . , an + bn)
≥ min(a1, a2, . . . , an)+ min(b1, b2, . . . , bn)

22. Show that the set S defined by 1 ∈ S and s + t ∈ S when-
ever s ∈ S and t ∈ S is the set of positive integers.

23. Give a recursive definition of the set of positive integers
that are multiples of 5.

24. Give a recursive definition of

a) the set of odd positive integers.
b) the set of positive integer powers of 3.
c) the set of polynomials with integer coefficients.

25. Give a recursive definition of

a) the set of even integers.
b) the set of positive integers congruent to 2 modulo 3.
c) the set of positive integers not divisible by 5.

26. Let S be the subset of the set of ordered pairs of integers
defined recursively by

Basis step: (0, 0) ∈ S.

Recursive step: If (a, b) ∈ S, then (a + 2, b + 3) ∈ S
and (a + 3, b + 2) ∈ S.

a) List the elements of S produced by the first five ap-
plications of the recursive definition.

b) Use strong induction on the number of applications
of the recursive step of the definition to show that
5 | a + b when (a, b) ∈ S.

c) Use structural induction to show that 5 | a + b when
(a, b) ∈ S.

27. Let S be the subset of the set of ordered pairs of integers
defined recursively by

Basis step: (0, 0) ∈ S.

Recursive step: If (a, b) ∈ S, then (a, b + 1) ∈ S,
(a + 1, b + 1) ∈ S, and (a + 2, b + 1) ∈ S.

a) List the elements of S produced by the first four ap-
plications of the recursive definition.

b) Use strong induction on the number of applications of
the recursive step of the definition to show that a ≤ 2b
whenever (a, b) ∈ S.

c) Use structural induction to show that a ≤ 2b when-
ever (a, b) ∈ S.

28. Give a recursive definition of each of these sets of ordered
pairs of positive integers. [Hint: Plot the points in the set
in the plane and look for lines containing points in the
set.]

a) S = {(a, b) | a ∈ Z+, b ∈ Z+, and a + b is odd}
b) S = {(a, b) | a ∈ Z+, b ∈ Z+, and a | b}
c) S = {(a, b) | a ∈ Z+, b ∈ Z+, and 3 | a + b}

29. Give a recursive definition of each of these sets of or-
dered pairs of positive integers. Use structural induction
to prove that the recursive definition you found is correct.
[Hint: To find a recursive definition, plot the points in the
set in the plane and look for patterns.]

a) S = {(a, b) | a ∈ Z+, b ∈ Z+, and a + b is even}
b) S = {(a, b) | a ∈ Z+, b ∈ Z+, and a or b is odd}
c) S = {(a, b) | a ∈ Z+, b ∈ Z+, a + b is odd, and 3 | b}

30. Prove that in a bit string, the string 01 occurs at most one
more time than the string 10.

31. Define well-formed formulae of sets, variables represent-
ing sets, and operators from { ,∪,∩,−}.

5.3 Recursive Definitions and Structural Induction 359

32. a) Give a recursive definition of the function ones(s),
which counts the number of ones in a bit string s.

b) Use structural induction to prove that ones(st) =
ones(s)+ ones(t).

33. a) Give a recursive definition of the functionm(s), which
equals the smallest digit in a nonempty string of dec-
imal digits.

b) Use structural induction to prove that m(st) =
min(m(s),m(t)).

The reversal of a string is the string consisting of the symbols
of the string in reverse order. The reversal of the string w is
denoted by wR .

34. Find the reversal of the following bit strings.

a) 0101 b) 1 1011 c) 1000 1001 0111

35. Give a recursive definition of the reversal of a string.
[Hint: First define the reversal of the empty string. Then
write a string w of length n+ 1 as xy, where x is a string
of length n, and express the reversal of w in terms of xR

and y.]
∗36. Use structural induction to prove that (w1w2)

R = wR2 wR1 .

37. Give a recursive definition of wi , where w is a string and
i is a nonnegative integer. (Here wi represents the con-
catenation of i copies of the string w.)

∗38. Give a recursive definition of the set of bit strings that are
palindromes.

39. When does a string belong to the set A of bit strings de-
fined recursively by

λ ∈ A
0x1 ∈ A if x ∈ A,

where λ is the empty string?
∗40. Recursively define the set of bit strings that have more

zeros than ones.

41. Use Exercise 37 and mathematical induction to show that
l(wi) = i · l(w), where w is a string and i is a nonnegative
integer.

∗42. Show that (wR)i = (wi)R whenever w is a string and i is
a nonnegative integer; that is, show that the ith power of
the reversal of a string is the reversal of the ith power of
the string.

43. Use structural induction to show that n(T) ≥ 2h(T)+ 1,
where T is a full binary tree, n(T) equals the number of
vertices of T , and h(T) is the height of T .

The set of leaves and the set of internal vertices of a full binary
tree can be defined recursively.

Basis step: The root r is a leaf of the full binary tree with
exactly one vertex r . This tree has no internal vertices.

Recursive step: The set of leaves of the tree T = T1 · T2 is
the union of the sets of leaves of T1 and of T2. The inter-
nal vertices of T are the root r of T and the union of the
set of internal vertices of T1 and the set of internal vertices
of T2.

44. Use structural induction to show that l(T), the number
of leaves of a full binary tree T , is 1 more than i(T), the
number of internal vertices of T .

45. Use generalized induction as was done in Example 13 to
show that if am,n is defined recursively by a0,0 = 0 and

am,n =

am−1,n + 1 if n = 0 and m > 0
am,n−1 + 1 if n > 0,

then am,n = m+ n for all (m, n) ∈ N × N.

46. Use generalized induction as was done in Example 13 to
show that if am,n is defined recursively by a1,1 = 5 and

am,n =

am−1,n + 2 if n = 1 and m > 1
am,n−1 + 2 if n > 1,

then am,n = 2(m+ n)+ 1 for all (m, n) ∈ Z+ × Z+.
∗47. A partition of a positive integer n is a way to write n

as a sum of positive integers where the order of terms in
the sum does not matter. For instance, 7 = 3 + 2 + 1 + 1
is a partition of 7. Let Pm equal the number of different
partitions of m, and let Pm,n be the number of different
ways to express m as the sum of positive integers not
exceeding n.

a) Show that Pm,m = Pm.
b) Show that the following recursive definition for Pm,n

is correct:

Pm,n =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if m = 1

1 if n = 1

Pm,m if m < n

1 + Pm,m−1 if m = n > 1

Pm,n−1 + Pm−n,n if m > n > 1.

c) Find the number of partitions of 5 and of 6 using this
recursive definition.

Consider an inductive definition of a version of Ackermann’s
function. This function was named after WilhelmAckermann,
a German mathematician who was a student of the great math-
ematician David Hilbert. Ackermann’s function plays an im-
portant role in the theory of recursive functions and in the study
of the complexity of certain algorithms involving set unions.
(There are several different variants of this function. All are
called Ackermann’s function and have similar properties even
though their values do not always agree.)

A(m, n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2n if m = 0

0 if m ≥ 1 and n = 0

2 if m ≥ 1 and n = 1

A(m− 1, A(m, n− 1)) if m ≥ 1 and n ≥ 2

Exercises 48–55 involve this version of Ackermann’s func-
tion.

48. Find these values of Ackermann’s function.

a) A(1, 0) b) A(0, 1)
c) A(1, 1) d) A(2, 2)

49. Show that A(m, 2) = 4 whenever m ≥ 1.

50. Show that A(1, n) = 2n whenever n ≥ 1.

51. Find these values of Ackermann’s function.

a) A(2, 3) *b) A(3, 3)
∗52. Find A(3, 4).

360 5 / Induction and Recursion

∗∗53. Prove thatA(m, n+ 1) > A(m, n)wheneverm and n are
nonnegative integers.

∗54. Prove thatA(m+ 1, n) ≥ A(m, n)wheneverm and n are
nonnegative integers.

55. Prove that A(i, j) ≥ j whenever i and j are nonnegative
integers.

56. Use mathematical induction to prove that a function F
defined by specifying F(0) and a rule for obtaining
F(n+ 1) from F(n) is well defined.

57. Use strong induction to prove that a functionF defined by
specifying F(0) and a rule for obtaining F(n+ 1) from
the values F(k) for k = 0, 1, 2, . . . , n is well defined.

58. Show that each of these proposed recursive definitions of
a function on the set of positive integers does not produce
a well-defined function.

a) F(n) = 1 + F(n/2) for n ≥ 1 and F(1) = 1.
b) F(n) = 1 + F(n− 3) for n ≥ 2, F(1) = 2, and
F(2) = 3.

c) F(n) = 1 + F(n/2) for n ≥ 2, F(1) = 1, and
F(2) = 2.

d) F(n) = 1 + F(n/2) if n is even and n ≥ 2, F(n) =
1 − F(n− 1) if n is odd, and F(1) = 1.

e) F(n) = 1 + F(n/2) if n is even and n ≥ 2, F (n) =
F(3n− 1) if n is odd and n ≥ 3, and F(1) = 1.

59. Show that each of these proposed recursive definitions of
a function on the set of positive integers does not produce
a well-defined function.

a) F(n) = 1 + F((n+ 1)/2) for n ≥ 1 and
F(1) = 1.

b) F(n) = 1 + F(n− 2) for n ≥ 2 and F(1) = 0.
c) F(n) = 1 + F(n/3) for n ≥ 3, F (1) = 1, F(2) = 2,

and F(3) = 3.
d) F(n) = 1 + F(n/2) if n is even and n ≥ 2, F(n) =

1 + F(n− 2) if n is odd, and F(1) = 1.
e) F(n) = 1 + F(F(n− 1)) if n ≥ 2 and F(1) = 2.

Exercises 60–62 deal with iterations of the logarithm function.
Let log n denote the logarithm of n to the base 2, as usual. The
function log(k) n is defined recursively by

log(k) n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
n if k = 0

log(log(k−1) n) if log(k−1) n is defined

and positive

undefined otherwise.

The iterated logarithm is the function log∗ nwhose value atn
is the smallest nonnegative integer k such that log(k) n ≤ 1.

60. Find these values.

a) log(2) 16 b) log(3) 256

c) log(3) 265536 d) log(4) 2265536

61. Find the value of log∗ n for these values of n.

a) 2 b) 4 c) 8 d) 16
e) 256 f) 65536 g) 22048

62. Find the largest integer n such that log∗ n = 5. Determine
the number of decimal digits in this number.

Exercises 63–65 deal with values of iterated functions. Sup-
pose that f (n) is a function from the set of real numbers, or
positive real numbers, or some other set of real numbers, to
the set of real numbers such that f (n) is monotonically in-
creasing [that is, f (n) < f (m) when n < m) and f (n) < n
for all n in the domain of f .] The function f (k)(n) is defined
recursively by

f (k)(n) =

n if k = 0

f (f (k−1)(n)) if k > 0.

Furthermore, let c be a positive real number. The iterated
function f ∗

c is the number of iterations of f required to reduce
its argument to c or less, so f ∗

c (n) is the smallest nonnegative
integer k such that f k(n) ≤ c.
63. Let f (n) = n− a, where a is a positive integer. Find a

formula for f (k)(n). What is the value of f ∗
0 (n) when n

is a positive integer?

64. Let f (n) = n/2. Find a formula for f (k)(n). What is the
value of f ∗

1(n) when n is a positive integer?

65. Let f (n) = √
n. Find a formula for f (k)(n).What is the

value of f ∗
2(n) when n is a positive integer?

5.4 Recursive Algorithms

Introduction

Sometimes we can reduce the solution to a problem with a particular set of input values to the
solution of the same problem with smaller input values. For instance, the problem of finding
the greatest common divisor of two positive integers a and b, where b > a, can be reduced
to finding the greatest common divisor of a pair of smaller integers, namely, b mod a and
a, because gcd(b mod a, a) = gcd(a, b). When such a reduction can be done, the solution to

Here’s a famous
humorous quote: “To
understand recursion, you
must first understand
recursion.”

the original problem can be found with a sequence of reductions, until the problem has been
reduced to some initial case for which the solution is known. For instance, for finding the greatest
common divisor, the reduction continues until the smaller of the two numbers is zero, because
gcd(a, 0) = a when a > 0.

We will see that algorithms that successively reduce a problem to the same problem with
smaller input are used to solve a wide variety of problems.

5.4 Recursive Algorithms 361

DEFINITION 1 An algorithm is called recursive if it solves a problem by reducing it to an instance of the
same problem with smaller input.

We will describe a variety of different recursive algorithms in this section.

EXAMPLE 1 Give a recursive algorithm for computing n!, where n is a nonnegative integer.

Solution: We can build a recursive algorithm that finds n!, where n is a nonnegative integer,
based on the recursive definition of n!, which specifies that n! = n · (n− 1)! when n is a positive
integer, and that 0! = 1. To find n! for a particular integer, we use the recursive step n times,
each time replacing a value of the factorial function with the value of the factorial function at
the next smaller integer. At this last step, we insert the value of 0!. The recursive algorithm we
obtain is displayed as Algorithm 1.

To help understand how this algorithm works, we trace the steps used by the algorithm
to compute 4!. First, we use the recursive step to write 4! = 4 · 3!. We then use the recursive
step repeatedly to write 3! = 3 · 2!, 2! = 2 · 1!, and 1! = 1 · 0!. Inserting the value of 0! = 1,
and working back through the steps, we see that 1! = 1 · 1 = 1, 2! = 2 · 1! = 2, 3! = 3 · 2! =
3 · 2 = 6, and 4! = 4 · 3! = 4 · 6 = 24. ▲

ALGORITHM 1 A Recursive Algorithm for Computing n!.

procedure factorial(n: nonnegative integer)
if n = 0 then return 1
else return n · factorial(n− 1)
{output is n!}

Example 2 shows how a recursive algorithm can be constructed to evaluate a function from its
recursive definition.

EXAMPLE 2 Give a recursive algorithm for computing an, where a is a nonzero real number and n is a
nonnegative integer.

Solution: We can base a recursive algorithm on the recursive definition of an. This definition
states that an+1 = a · an for n > 0 and the initial condition a0 = 1. To find an, successively
use the recursive step to reduce the exponent until it becomes zero. We give this procedure in
Algorithm 2. ▲

ALGORITHM 2 A Recursive Algorithm for Computing an.

procedure power(a: nonzero real number, n: nonnegative integer)
if n = 0 then return 1
else return a · power(a, n− 1)
{output is an}

Next we give a recursive algorithm for finding greatest common divisors.

362 5 / Induction and Recursion

EXAMPLE 3 Give a recursive algorithm for computing the greatest common divisor of two nonnegative
integers a and b with a < b.

Solution: We can base a recursive algorithm on the reduction gcd(a, b) = gcd(b mod a, a) and
the condition gcd(0, b) = b when b > 0. This produces the procedure in Algorithm 3, which is
a recursive version of the Euclidean algorithm.

We illustrate the workings of Algorithm 3 with a trace when the input is a = 5, b = 8. With
this input, the algorithm uses the “else” clause to find that gcd(5, 8) = gcd(8 mod 5, 5) =
gcd(3, 5). It uses this clause again to find that gcd(3, 5) = gcd(5 mod 3, 3) = gcd(2, 3), then
to get gcd(2, 3) = gcd(3 mod 2, 2) = gcd(1, 2), then to get gcd(1, 2) = gcd(2 mod 1, 1) =
gcd(0, 1). Finally, to find gcd(0, 1) it uses the first step with a = 0 to find that gcd(0, 1) = 1.
Consequently, the algorithm finds that gcd(5, 8) = 1. ▲

ALGORITHM 3 A Recursive Algorithm for Computing gcd(a, b).

procedure gcd(a, b: nonnegative integers with a < b)
if a = 0 then return b
else return gcd(b mod a, a)
{output is gcd(a, b)}

EXAMPLE 4 Devise a recursive algorithm for computing bn mod m, where b, n, and m are integers with
m ≥ 2, n ≥ 0, and 1 ≤ b < m.

Solution: We can base a recursive algorithm on the fact that

bn mod m = (b · (bn−1 mod m)) mod m,

which follows by Corollary 2 in Section 4.1, and the initial condition b0 mod m = 1. We leave
this as Exercise 12 for the reader.

However, we can devise a much more efficient recursive algorithm based on the observation
that

bn modm = (bn/2 modm)2 modm

when n is even and

bn modm = (b n/2 modm)2 modm · b modm

modm

when n is odd, which we describe in pseudocode as Algorithm 4.
We trace the execution of Algorithm 4 with input b = 2, n = 5, andm = 3 to illustrate how

it works. First, because n = 5 is odd we use the “else” clause to see that mpower(2, 5, 3) =
(mpower(2, 2, 3)2 mod 3 · 2 mod 3) mod 3. We next use the “else if” clause to see that
mpower(2, 2, 3) = mpower(2, 1, 3)2 mod 3. Using the “else” clause again, we see that
mpower(2, 1, 3) = (mpower(2, 0, 3)2 mod 3 · 2 mod 3) mod 3. Finally, using the “if” clause,
we see that mpower(2, 0, 3) = 1. Working backwards, it follows that mpower(2, 1, 3) =
(12 mod 3 · 2 mod 3) mod 3 = 2, so mpower(2, 2, 3) = 22 mod 3 = 1, and finally
mpower(2, 5, 3) = (12 mod 3 · 2 mod 3)mod 3 = 2. ▲

5.4 Recursive Algorithms 363

ALGORITHM 4 Recursive Modular Exponentiation.

procedure mpower(b, n, m: integers with b > 0 and m ≥ 2, n ≥ 0)
if n = 0 then

return 1
else if n is even then

return mpower(b, n/2,m)2 mod m
else

return (mpower(b, n/2 ,m)2 mod m · b mod m) mod m
{output is bn mod m}

We will now give recursive versions of searching algorithms that were introduced in Section 3.1.

EXAMPLE 5 Express the linear search algorithm as a recursive procedure.

Solution: To search for the first occurrence of x in the sequence a1, a2, . . . , an, at the ith step of
the algorithm, x and ai are compared. If x equals ai , then the algorithm returns i, the location
of x in the sequence. Otherwise, the search for the first occurrence of x is reduced to a search in
a sequence with one fewer element, namely, the sequence ai+1, . . . , an. The algorithm returns
0 when x is never found in the sequence after all terms have been examined. We can now give
a recursive procedure, which is displayed as pseudocode in Algorithm 5.

Let search (i, j, x) be the procedure that searches for the first occurrence of x in the sequence
ai, ai+1, . . . , aj . The input to the procedure consists of the triple (1, n, x). The algorithm
terminates at a step if the first term of the remaining sequence is x or if there is only one term of
the sequence and this is not x. If x is not the first term and there are additional terms, the same
procedure is carried out but with a search sequence of one fewer term, obtained by deleting the
first term of the search sequence. If the algorithm terminates without x having been found, the
algorithm returns the value 0. ▲

ALGORITHM 5 A Recursive Linear Search Algorithm.

procedure search(i, j, x: i, j, x integers, 1 ≤ i ≤ j ≤ n)
if ai = x then

return i
else if i = j then

return 0
else

return search(i + 1, j, x)
{output is the location of x in a1, a2, . . . , an if it appears; otherwise it is 0}

EXAMPLE 6 Construct a recursive version of a binary search algorithm.

Solution: Suppose we want to locate x in the sequence a1, a2, . . . , an of integers in increasing
order. To perform a binary search, we begin by comparing x with the middle term, a (n+1)/2 .
Our algorithm will terminate if x equals this term and return the location of this term in the
sequence. Otherwise, we reduce the search to a smaller search sequence, namely, the first half
of the sequence if x is smaller than the middle term of the original sequence, and the second
half otherwise. We have reduced the solution of the search problem to the solution of the same

364 5 / Induction and Recursion

problem with a sequence at most half as long. If have we never encountered the search term x,
our algorithm returns the value 0. We express this recursive version of a binary search algorithm
as Algorithm 6. ▲

ALGORITHM 6 A Recursive Binary Search Algorithm.

procedure binary search(i, j, x: i, j, x integers, 1 ≤ i ≤ j ≤ n)
m := (i + j)/2
if x = am then

return m
else if (x < am and i < m) then

return binary search(i,m− 1, x)
else if (x > am and j > m) then

return binary search(m+ 1, j, x)
else return 0
{output is location of x in a1, a2, . . . , an if it appears; otherwise it is 0}

Proving Recursive Algorithms Correct

Mathematical induction, and its variant strong induction, can be used to prove that a recursive
algorithm is correct, that is, that it produces the desired output for all possible input values.
Examples 7 and 8 illustrate how mathematical induction or strong induction can be used to
prove that recursive algorithms are correct. First, we will show that Algorithm 2 is correct.

EXAMPLE 7 Prove that Algorithm 2, which computes powers of real numbers, is correct.

Solution: We use mathematical induction on the exponent n.

BASIS STEP: If n = 0, the first step of the algorithm tells us that power (a, 0) = 1. This is
correct because a0 = 1 for every nonzero real number a. This completes the basis step.

INDUCTIVE STEP: The inductive hypothesis is the statement that power (a, k) = ak for all
a = 0 for an arbitrary nonnegative integer k. That is, the inductive hypothesis is the statement
that the algorithm correctly computes ak . To complete the inductive step, we show that if the
inductive hypothesis is true, then the algorithm correctly computes ak+1. Because k + 1 is a
positive integer, when the algorithm computes ak+1, the algorithm sets power (a, k + 1) =
a· power (a, k). By the inductive hypothesis, we have power (a, k) = ak , so power (a, k + 1) =
a · power (a, k) = a · ak = ak+1. This completes the inductive step.

We have completed the basis step and the inductive step, so we can conclude that Algorithm
2 always computes an correctly when a = 0 and n is a nonnegative integer. ▲

Generally, we need to use strong induction to prove that recursive algorithms are correct,
rather than just mathematical induction. Example 8 illustrates this; it shows how strong induction
can be used to prove that Algorithm 4 is correct.

EXAMPLE 8 Prove that Algorithm 4, which computes modular powers, is correct.

Solution: We use strong induction on the exponent n.

BASIS STEP: Let b be an integer andm an integer withm ≥ 2. When n = 0, the algorithm sets
mpower(b, n,m) equal to 1. This is correct because b0 mod m = 1. The basis step is complete.

5.4 Recursive Algorithms 365

INDUCTIVE STEP: For the inductive hypothesis we assume that mpower(b, j,m) =
bj mod m for all integers 0 ≤ j < k whenever b is a positive integer and m is an integer with
m ≥ 2. To complete the inductive step, we show that if the inductive hypothesis is correct, then
mpower(b, k,m) = bk modm. Because the recursive algorithm handles odd and even values
of k differently, we split the inductive step into two cases.

When k is even, we have

mpower(b, k,m) = (mpower(b, k/2, m))2 mod m = (bk/2 mod m)2 mod m = bk mod m,

where we have used the inductive hypothesis to replace mpower(b, k/2,m) by bk/2 mod m.
When k is odd, we have

mpower(b, k,m) = ((mpower(b, k/2 , m))2 mod m · bmod m) mod m

= ((b k/2 mod m)2 mod m · b mod m) mod m

= b2 k/2 +1 mod m= bk modm,

using Corollary 2 in Section 4.1, because 2 k/2 + 1 = 2(k − 1)/2 + 1 = k when k is odd.
Here we have used the inductive hypothesis to replace mpower(b, k/2 ,m) by b k/2 mod m.
This completes the inductive step.

We have completed the basis step and the inductive step, so by strong induction we know
that Algorithm 4 is correct. ▲

Recursion and Iteration

A recursive definition expresses the value of a function at a positive integer in terms of the
values of the function at smaller integers. This means that we can devise a recursive algorithm to
evaluate a recursively defined function at a positive integer. Instead of successively reducing the
computation to the evaluation of the function at smaller integers, we can start with the value of the
function at one or more integers, the base cases, and successively apply the recursive definition to
find the values of the function at successive larger integers. Such a procedure is called iterative.
Often an iterative approach for the evaluation of a recursively defined sequence requires much
less computation than a procedure using recursion (unless special-purpose recursive machines
are used). This is illustrated by the iterative and recursive procedures for finding thenth Fibonacci
number. The recursive procedure is given first.

ALGORITHM 7 A Recursive Algorithm for Fibonacci Numbers.

procedure fibonacci(n: nonnegative integer)
if n = 0 then return 0
else if n = 1 then return 1
else return fibonacci(n− 1)+ fibonacci(n− 2)
{output is fibonacci(n)}

When we use a recursive procedure to find fn, we first express fn as fn−1 + fn−2. Then we
replace both of these Fibonacci numbers by the sum of two previous Fibonacci numbers, and
so on. When f1 or f0 arises, it is replaced by its value.

Note that at each stage of the recursion, until f1 or f0 is obtained, the number of Fibonacci
numbers to be evaluated has doubled. For instance, when we find f4 using this recursive algo-
rithm, we must carry out all the computations illustrated in the tree diagram in Figure 1. This

366 5 / Induction and Recursion

f4

f3 f2

f0f1f1
f2

f0f1

FIGURE 1 Evaluating f4 Recursively.

tree consists of a root labeled with f4, and branches from the root to vertices labeled with the
two Fibonacci numbers f3 and f2 that occur in the reduction of the computation of f4. Each
subsequent reduction produces two branches in the tree. This branching ends when f0 and f1
are reached. The reader can verify that this algorithm requires fn+1 − 1 additions to find fn.

Now consider the amount of computation required to find fn using the iterative approach
in Algorithm 8.

ALGORITHM 8 An Iterative Algorithm for Computing Fibonacci Numbers.

procedure iterative fibonacci(n: nonnegative integer)
if n = 0 then return 0
else

x := 0
y := 1
for i := 1 to n− 1

z := x + y
x := y
y := z

return y
{output is the nth Fibonacci number}

This procedure initializes x as f0 = 0 and y as f1 = 1. When the loop is traversed, the sum of x
and y is assigned to the auxiliary variable z. Then x is assigned the value of y and y is assigned
the value of the auxiliary variable z. Therefore, after going through the loop the first time, it
follows that x equals f1 and y equals f0 + f1 = f2. Furthermore, after going through the loop
n− 1 times, x equals fn−1 and y equals fn (the reader should verify this statement). Only n− 1
additions have been used to find fn with this iterative approach when n > 1. Consequently, this
algorithm requires far less computation than does the recursive algorithm.

We have shown that a recursive algorithm may require far more computation than an iterative
one when a recursively defined function is evaluated. It is sometimes preferable to use a recursive
procedure even if it is less efficient than the iterative procedure. In particular, this is true when
the recursive approach is easily implemented and the iterative approach is not. (Also, machines
designed to handle recursion may be available that eliminate the advantage of using iteration.)

5.4 Recursive Algorithms 367

8 2 4 6 9 7 10 1 5 3

8 2 4 6 9 7 10 1 5 3

8 2 4 6 9

8 2 4

8 2

6

7 10 1 5 3

7 10 1

7 10

5 3

1 2 3 4 5 6 7 8 9 10

2 4 6 8 9 1 3 5 7 10

2 4 8 6 9

4

8 2

6

1 7 10 3 5

7 10 1

7 10

5 32 8 9

9

FIGURE 2 The Merge Sort of 8, 2, 4, 6, 9, 7, 10, 1, 5, 3.

The Merge Sort

We now describe a recursive sorting algorithm called the merge sort algorithm. We will demon-
strate how the merge sort algorithm works with an example before describing it in generality.

EXAMPLE 9 Use the merge sort to put the terms of the list 8, 2, 4, 6, 9, 7, 10, 1, 5, 3 in increasing order.

Solution: A merge sort begins by splitting the list into individual elements by successively
splitting lists in two. The progression of sublists for this example is represented with the balanced
binary tree of height 4 shown in the upper half of Figure 2.

Sorting is done by successively merging pairs of lists. At the first stage, pairs of individual
elements are merged into lists of length two in increasing order. Then successive merges of
pairs of lists are performed until the entire list is put into increasing order. The succession of
merged lists in increasing order is represented by the balanced binary tree of height 4 shown
in the lower half of Figure 2 (note that this tree is displayed “upside down”). ▲

In general, a merge sort proceeds by iteratively splitting lists into two sublists of equal
length (or where one sublist has one more element than the other) until each sublist contains one
element. This succession of sublists can be represented by a balanced binary tree. The procedure
continues by successively merging pairs of lists, where both lists are in increasing order, into a
larger list with elements in increasing order, until the original list is put into increasing order.
The succession of merged lists can be represented by a balanced binary tree.

We can also describe the merge sort recursively. To do a merge sort, we split a list into
two sublists of equal, or approximately equal, size, sorting each sublist using the merge sort

368 5 / Induction and Recursion

algorithm, and then merging the two lists. The recursive version of the merge sort is given in
Algorithm 9. This algorithm uses the subroutine merge, which is described in Algorithm 10.

ALGORITHM 9 A Recursive Merge Sort.

procedure mergesort(L = a1, . . . , an)

if n > 1 then
m := n/2
L1 := a1, a2, . . . , am

L2 := am+1, am+2, . . . , an

L := merge(mergesort(L1), mergesort(L2))

{L is now sorted into elements in nondecreasing order}

An efficient algorithm for merging two ordered lists into a larger ordered list is needed to
implement the merge sort. We will now describe such a procedure.

EXAMPLE 10 Merge the two lists 2, 3, 5, 6 and 1, 4.

Solution: Table 1 illustrates the steps we use. First, compare the smallest elements in the two
lists, 2 and 1, respectively. Because 1 is the smaller, put it at the beginning of the merged list
and remove it from the second list. At this stage, the first list is 2, 3, 5, 6, the second is 4, and
the combined list is 1.

Next, compare 2 and 4, the smallest elements of the two lists. Because 2 is the smaller, add
it to the combined list and remove it from the first list. At this stage the first list is 3, 5, 6, the
second is 4, and the combined list is 1, 2.

Continue by comparing 3 and 4, the smallest elements of their respective lists. Because 3
is the smaller of these two elements, add it to the combined list and remove it from the first list.
At this stage the first list is 5, 6, and the second is 4. The combined list is 1, 2, 3.

Then compare 5 and 4, the smallest elements in the two lists. Because 4 is the smaller of
these two elements, add it to the combined list and remove it from the second list. At this stage
the first list is 5, 6, the second list is empty, and the combined list is 1, 2, 3, 4.

Finally, because the second list is empty, all elements of the first list can be appended to
the end of the combined list in the order they occur in the first list. This produces the ordered
list 1, 2, 3, 4, 5, 6. ▲

We will now consider the general problem of merging two ordered lists L1 and L2 into
an ordered list L. We will describe an algorithm for solving this problem. Start with an empty
list L. Compare the smallest elements of the two lists. Put the smaller of these two elements at
the right end of L, and remove it from the list it was in. Next, if one of L1 and L2 is empty,
append the other (nonempty) list to L, which completes the merging. If neither L1 nor L2 is
empty, repeat this process. Algorithm 10 gives a pseudocode description of this procedure.

TABLE 1 Merging the Two Sorted Lists 2, 3, 5, 6 and 1, 4.

First List Second List Merged List Comparison

2 3 5 6 1 4 1 < 2

2 3 5 6 4 1 2 < 4

3 5 6 4 1 2 3 < 4

5 6 4 1 2 3 4 < 5

5 6 1 2 3 4

1 2 3 4 5 6

5.4 Recursive Algorithms 369

We will need estimates for the number of comparisons used to merge two ordered lists in the
analysis of the merge sort. We can easily obtain such an estimate for Algorithm 10. Each time
a comparison of an element from L1 and an element from L2 is made, an additional element
is added to the merged list L. However, when either L1 or L2 is empty, no more comparisons
are needed. Hence, Algorithm 10 is least efficient whenm+ n− 2 comparisons are carried out,
where m and n are the number of elements in L1 and L2, respectively, leaving one element in
each of L1 and L2. The next comparison will be the last one needed, because it will make one
of these lists empty. Hence, Algorithm 10 uses no more thanm+ n− 1 comparisons. Lemma 1
summarizes this estimate.

ALGORITHM 10 Merging Two Lists.

procedure merge(L1, L2 : sorted lists)
L := empty list
while L1 and L2 are both nonempty

remove smaller of first elements of L1 and L2 from its list; put it at the right end of L
if this removal makes one list empty then remove all elements from the other list and

append them to L
return L{L is the merged list with elements in increasing order}

LEMMA 1 Two sorted lists with m elements and n elements can be merged into a sorted list using no
more than m+ n− 1 comparisons.

Sometimes two sorted lists of lengthm and n can be merged using far fewer thanm+ n− 1
comparisons. For instance, when m = 1, a binary search procedure can be applied to put the
one element in the first list into the second list. This requires only log n comparisons, which
is much smaller than m+ n− 1 = n, for m = 1. On the other hand, for some values of m
and n, Lemma 1 gives the best possible bound. That is, there are lists with m and n elements
that cannot be merged using fewer than m+ n− 1 comparisons. (See Exercise 47.)

We can now analyze the complexity of the merge sort. Instead of studying the general
problem, we will assume that n, the number of elements in the list, is a power of 2, say 2m. This
will make the analysis less complicated, but when this is not the case, various modifications can
be applied that will yield the same estimate.

At the first stage of the splitting procedure, the list is split into two sublists, of 2m−1 elements
each, at level 1 of the tree generated by the splitting. This process continues, splitting the two
sublists with 2m−1 elements into four sublists of 2m−2 elements each at level 2, and so on. In
general, there are 2k−1 lists at level k − 1, each with 2m−k+1 elements. These lists at level k − 1
are split into 2k lists at level k, each with 2m−k elements. At the end of this process, we have 2m

lists each with one element at level m.
We start merging by combining pairs of the 2m lists of one element into 2m−1 lists, at level

m− 1, each with two elements. To do this, 2m−1 pairs of lists with one element each are merged.
The merger of each pair requires exactly one comparison.

The procedure continues, so that at level k (k = m,m− 1,m− 2, . . . , 3, 2, 1), 2k lists
each with 2m−k elements are merged into 2k−1 lists, each with 2m−k+1 elements, at level k − 1.
To do this a total of 2k−1 mergers of two lists, each with 2m−k elements, are needed. But,

370 5 / Induction and Recursion

by Lemma 1, each of these mergers can be carried out using at most 2m−k + 2m−k − 1 =
2m−k+1 − 1 comparisons. Hence, going from level k to k − 1 can be accomplished using at
most 2k−1(2m−k+1 − 1) comparisons.

Summing all these estimates shows that the number of comparisons required for the merge
sort is at most

m
k= 1

2k−1(2m−k+1 − 1) =
m
k= 1

2m −
m
k= 1

2k−1 = m2m − (2m − 1) = n log n− n+ 1,

because m = log n and n = 2m. (We evaluated
 m
k= 1 2m by noting that it is the sum of m

identical terms, each equal to 2m. We evaluated
 m
k= 1 2k−1 using the formula for the sum of

the terms of a geometric progression from Theorem 1 of Section 2.4.)
Theorem 1 summarizes what we have discovered about the worst-case complexity of the

merge sort algorithm.

THEOREM 1 The number of comparisons needed to merge sort a list with n elements is O(n log n).

In Chapter 11 we will show that the fastest comparison-based sorting algorithm have
O(n log n) time complexity. (A comparison-based sorting algorithm has the comparison of
two elements as its basic operation.) Theorem 1 tells us that the merge sort achieves this best
possible big-O estimate for the complexity of a sorting algorithm. We describe another efficient
algorithm, the quick sort, in the preamble to Exercise 50.

Exercises

1. Trace Algorithm 1 when it is given n = 5 as input. That
is, show all steps used by Algorithm 1 to find 5!, as is
done in Example 1 to find 4!.

2. Trace Algorithm 1 when it is given n = 6 as input. That
is, show all steps used by Algorithm 1 to find 6!, as is
done in Example 1 to find 4!.

3. Trace Algorithm 3 when it finds gcd(8, 13). That is, show
all the steps used by Algorithm 3 to find gcd(8, 13).

4. Trace Algorithm 3 when it finds gcd(12, 17). That is,
show all the steps used byAlgorithm 3 to find gcd(12, 17).

5. Trace Algorithm 4 when it is given m = 5, n = 11, and
b = 3 as input. That is, show all the steps Algorithm 4
uses to find 311mod 5.

6. Trace Algorithm 4 when it is given m = 7, n = 10, and
b = 2 as input. That is, show all the steps Algorithm 4
uses to find 210mod 7.

7. Give a recursive algorithm for computing nx whenever n
is a positive integer and x is an integer, using just addition.

8. Give a recursive algorithm for finding the sum of the
first n positive integers.

9. Give a recursive algorithm for finding the sum of the
first n odd positive integers.

10. Give a recursive algorithm for finding the maximum of
a finite set of integers, making use of the fact that the
maximum of n integers is the larger of the last integer in
the list and the maximum of the first n− 1 integers in the
list.

11. Give a recursive algorithm for finding the minimum of a
finite set of integers, making use of the fact that the min-
imum of n integers is the smaller of the last integer in the
list and the minimum of the first n− 1 integers in the list.

12. Devise a recursive algorithm for finding xn modmwhen-
ever n, x, and m are positive integers based on the fact
that xn mod m = (xn−1 mod m · x mod m) mod m.

13. Give a recursive algorithm for finding n!modm when-
ever n and m are positive integers.

14. Give a recursive algorithm for finding a mode of a list of
integers. (A mode is an element in the list that occurs at
least as often as every other element.)

15. Devise a recursive algorithm for computing the greatest
common divisor of two nonnegative integers a and bwith
a < b using the fact that gcd(a, b) = gcd(a, b − a).

16. Prove that the recursive algorithm for finding the sum of
the first n positive integers you found in Exercise 8 is
correct.

5.4 Recursive Algorithms 371

17. Describe a recursive algorithm for multiplying two non-
negative integers x and y based on the fact that xy =
2(x · (y/2)) when y is even and xy = 2(x · y/2)+ x
when y is odd, together with the initial condition xy = 0
when y = 0.

18. Prove that Algorithm 1 for computing n! when n is a non-
negative integer is correct.

19. Prove that Algorithm 3 for computing gcd(a, b) when a
and b are positive integers with a < b is correct.

20. Prove that the algorithm you devised in Exercise 17 is
correct.

21. Prove that the recursive algorithm that you found in Ex-
ercise 7 is correct.

22. Prove that the recursive algorithm that you found in Ex-
ercise 10 is correct.

23. Devise a recursive algorithm for computing n2 where n
is a nonnegative integer, using the fact that (n+ 1)2 =
n2 + 2n+ 1. Then prove that this algorithm is correct.

24. Devise a recursive algorithm to find a2n , where a is a
real number and n is a positive integer. [Hint: Use the
equality a2n+1 = (a2n)2.]

25. How does the number of multiplications used by the al-
gorithm in Exercise 24 compare to the number of multi-
plications used by Algorithm 2 to evaluate a2n?

∗26. Use the algorithm in Exercise 24 to devise an algo-
rithm for evaluating an when n is a nonnegative integer.
[Hint: Use the binary expansion of n.]

∗27. How does the number of multiplications used by the al-
gorithm in Exercise 26 compare to the number of multi-
plications used by Algorithm 2 to evaluate an?

28. How many additions are used by the recursive and itera-
tive algorithms given in Algorithms 7 and 8, respectively,
to find the Fibonacci number f7?

29. Devise a recursive algorithm to find the nth term of the se-
quence defined by a0 = 1, a1 = 2, and an = an−1 · an−2,
for n = 2, 3, 4,

30. Devise an iterative algorithm to find the nth term of the
sequence defined in Exercise 29.

31. Is the recursive or the iterative algorithm for finding the
sequence in Exercise 29 more efficient?

32. Devise a recursive algorithm to find the nth term of
the sequence defined by a0 = 1, a1 = 2, a2 = 3, and
an = an−1 + an−2 + an−3, for n = 3, 4, 5,

33. Devise an iterative algorithm to find the nth term of the
sequence defined in Exercise 32.

34. Is the recursive or the iterative algorithm for finding the
sequence in Exercise 32 more efficient?

35. Give iterative and recursive algorithms for finding the nth
term of the sequence defined by a0 = 1, a1 = 3, a2 = 5,
and an = an−1 · a2

n−2 · a3
n−3. Which is more efficient?

36. Give a recursive algorithm to find the number of parti-
tions of a positive integer based on the recursive definition
given in Exercise 47 in Section 5.3.

37. Give a recursive algorithm for finding the reversal of a bit
string. (See the definition of the reversal of a bit string in
the preamble of Exercise 34 in Section 5.3.)

38. Give a recursive algorithm for finding the string wi , the
concatenation of i copies of w, when w is a bit string.

39. Prove that the recursive algorithm for finding the reversal
of a bit string that you gave in Exercise 37 is correct.

40. Prove that the recursive algorithm for finding the concate-
nation of i copies of a bit string that you gave in Exercise
38 is correct.

∗41. Give a recursive algorithm for tiling a 2n × 2n checker-
board with one square missing using right triominoes.

42. Give a recursive algorithm for triangulating a simple poly-
gon with n sides, using Lemma 1 in Section 5.2.

43. Give a recursive algorithm for computing values of the
Ackermann function. [Hint: See the preamble to Exer-
cise 48 in Section 5.3.]

44. Use a merge sort to sort 4, 3, 2, 5, 1, 8, 7, 6 into increasing
order. Show all the steps used by the algorithm.

45. Use a merge sort to sort b, d, a, f, g, h, z, p, o, k into al-
phabetic order. Show all the steps used by the algorithm.

46. How many comparisons are required to merge these pairs
of lists using Algorithm 10?

a) 1, 3, 5, 7, 9; 2, 4, 6, 8, 10
b) 1, 2, 3, 4, 5; 6, 7, 8, 9, 10
c) 1, 5, 6, 7, 8; 2, 3, 4, 9, 10

47. Show that for all positive integersm and n there are sorted
lists with m elements and n elements, respectively, such
that Algorithm 10 usesm+ n− 1 comparisons to merge
them into one sorted list.

∗48. What is the least number of comparisons needed to merge
any two lists in increasing order into one list in increasing
order when the number of elements in the two lists are
a) 1, 4? b) 2, 4? c) 3, 4? d) 4, 4?

∗49. Prove that the merge sort algorithm is correct.
The quick sort is an efficient algorithm. To sort
a1, a2, . . . , an, this algorithm begins by taking the first
element a1 and forming two sublists, the first contain-
ing those elements that are less than a1, in the order they
arise, and the second containing those elements greater
than a1, in the order they arise. Then a1 is put at the end
of the first sublist. This procedure is repeated recursively
for each sublist, until all sublists contain one item. The or-
dered list of n items is obtained by combining the sublists
of one item in the order they occur.

50. Sort 3, 5, 7, 8, 1, 9, 2, 4, 6 using the quick sort.

51. Let a1, a2, . . . , an be a list of n distinct real numbers.
How many comparisons are needed to form two sublists
from this list, the first containing elements less than a1
and the second containing elements greater than a1?

52. Describe the quick sort algorithm using pseudocode.

53. What is the largest number of comparisons needed to or-
der a list of four elements using the quick sort algorithm?

54. What is the least number of comparisons needed to order
a list of four elements using the quick sort algorithm?

55. Determine the worst-case complexity of the quick sort
algorithm in terms of the number of comparisons used.

372 5 / Induction and Recursion

5.5 Program Correctness

Introduction

Suppose that we have designed an algorithm to solve a problem and have written a program
to implement it. How can we be sure that the program always produces the correct answer?
After all the bugs have been removed so that the syntax is correct, we can test the program with
sample input. It is not correct if an incorrect result is produced for any sample input. But even if
the program gives the correct answer for all sample input, it may not always produce the correct
answer (unless all possible input has been tested). We need a proof to show that the program
always gives the correct output.

Program verification, the proof of correctness of programs, uses the rules of inference and
proof techniques described in this chapter, including mathematical induction. Because an incor-
rect program can lead to disastrous results, a large amount of methodology has been constructed
for verifying programs. Efforts have been devoted to automating program verification so that it
can be carried out using a computer. However, only limited progress has been made toward this
goal. Indeed, some mathematicians and theoretical computer scientists argue that it will never
be realistic to mechanize the proof of correctness of complex programs.

Some of the concepts and methods used to prove that programs are correct will be introduced
in this section. Many different methods have been devised for proving that programs are correct.
We will discuss a widely used method for program verification introduced by Tony Hoare in
this section; several other methods are also commonly used. Furthermore, we will not develop a
complete methodology for program verification in this book. This section is meant to be a brief
introduction to the area of program verification, which ties together the rules of logic, proof
techniques, and the concept of an algorithm.

Program Verification

A program is said to be correct if it produces the correct output for every possible input. A proof
that a program is correct consists of two parts. The first part shows that the correct answer is
obtained if the program terminates. This part of the proof establishes the partial correctness
of the program. The second part of the proof shows that the program always terminates.

To specify what it means for a program to produce the correct output, two propositions
are used. The first is the initial assertion, which gives the properties that the input values must
have. The second is the final assertion, which gives the properties that the output of the program
should have, if the program did what was intended. The appropriate initial and final assertions
must be provided when a program is checked.

DEFINITION 1 A program, or program segment, S is said to be partially correct with respect to the
initial assertion p and the final assertion q if whenever p is true for the input values
of S and S terminates, then q is true for the output values of S. The notation p{S}q in-
dicates that the program, or program segment, S is partially correct with respect to the initial
assertion p and the final assertion q.

Note: The notation p{S}q is known as a Hoare triple. Tony Hoare introduced the concept of
partial correctness.

Note that the notion of partial correctness has nothing to do with whether a program termi-
nates; it focuses only on whether the program does what it is expected to do if it terminates.

A simple example illustrates the concepts of initial and final assertions.

5.5 Program Correctness 373

EXAMPLE 1 Show that the program segment

y := 2
z := x + y

is correct with respect to the initial assertion p: x = 1 and the final assertion q: z = 3.

Solution: Suppose that p is true, so that x = 1 as the program begins. Then y is assigned the
value 2, and z is assigned the sum of the values of x and y, which is 3. Hence, S is correct with
respect to the initial assertion p and the final assertion q. Thus, p{S}q is true. ▲

Rules of Inference

A useful rule of inference proves that a program is correct by splitting the program into a
sequence of subprograms and then showing that each subprogram is correct.

Suppose that the program S is split into subprograms S1 and S2. Write S = S1; S2 to indicate
that S is made up of S1 followed by S2. Suppose that the correctness of S1 with respect to the
initial assertion p and final assertion q, and the correctness of S2 with respect to the initial
assertion q and the final assertion r , have been established. It follows that if p is true and S1 is
executed and terminates, then q is true; and if q is true, and S2 executes and terminates, then r
is true. Thus, if p is true and S = S1; S2 is executed and terminates, then r is true. This rule of
inference, called the composition rule, can be stated as

p{S1}q
q{S2}r

∴ p{S1; S2}r.
This rule of inference will be used later in this section.

Next, some rules of inference for program segments involving conditional statements and
loops will be given. Because programs can be split into segments for proofs of correctness, this
will let us verify many different programs.

Conditional Statements

First, rules of inference for conditional statements will be given. Suppose that a program
segment has the form

if condition then
S

where S is a block of statements. Then S is executed if condition is true, and it is not executed
when condition is false. To verify that this segment is correct with respect to the initial assertionp
and final assertion q, two things must be done. First, it must be shown that when p is true and
condition is also true, then q is true after S terminates. Second, it must be shown that when p
is true and condition is false, then q is true (because in this case S does not execute).

This leads to the following rule of inference:

(p ∧ condition){S}q
(p ∧ ¬condition)→ q

∴ p{if condition then S}q.

374 5 / Induction and Recursion

Example 2 illustrates how this rule of inference is used.

EXAMPLE 2 Verify that the program segment

if x > y then
y := x

is correct with respect to the initial assertion T and the final assertion y ≥ x.

Solution: When the initial assertion is true and x > y, the assignment y := x is carried out.
Hence, the final assertion, which asserts that y ≥ x, is true in this case. Moreover, when the
initial assertion is true and x > y is false, so that x ≤ y, the final assertion is again true. Hence,
using the rule of inference for program segments of this type, this program is correct with respect
to the given initial and final assertions. ▲

Similarly, suppose that a program has a statement of the form

if condition then
S1

else
S2

If condition is true, then S1 executes; if condition is false, then S2 executes. To verify that this
program segment is correct with respect to the initial assertion p and the final assertion q, two
things must be done. First, it must be shown that when p is true and condition is true, then q
is true after S1 terminates. Second, it must be shown that when p is true and condition is false,
then q is true after S2 terminates. This leads to the following rule of inference:

(p ∧ condition){S1}q
(p ∧ ¬condition){S2}q

∴ p{if condition then S1 else S2}q.

C. ANTHONY R. HOARE (BORN 1934) Tony Hoare was born in Colombo, Ceylon (now known as Sri
Lanka), where his father was a civil servant of the British Empire and his mother’s father owned a plantation.
He spent his early childhood in Ceylon, moving to England in 1945. Hoare studied philosophy, together with
the classics, at the University of Oxford, where he became interested in computing as a result of his fascination
with the power of mathematical logic and the certainty of mathematical truth. He received his bachelors degree
from Oxford in 1956.

Hoare learned Russian during his service in the Royal Navy, and latter studied the computer translation of
natural languages at Moscow State University. He returned to England in 1960, taking a job at a small computer manufacturer,
where he wrote a compiler for the programming language Algol. In 1968, he became Professor of Computing Science at the Queen’s
University, Belfast; in 1977, he moved to the University of Oxford as Professor of Computing; he is now Professor Emeritus. He is a
Fellow of the Royal Society and also holds a position at Microsoft Research in Cambridge.

Hoare has made many contributions to the theory of programming languages and to programming methodology. He was first
to define a programming language based on how programs could be proved correct with respect to their specifications. Hoare also
invented quick sort, one of the most commonly used sorting algorithms (see the preamble to Exercise 50 in Section 5.4). He received
the ACM Turing Award in 1980 and in 2000 he was knighted for services to education and computer science. Hoare is a noted writer
in the technical and social aspects of computer science.

5.5 Program Correctness 375

Example 3 illustrates how this rule of inference is used.

EXAMPLE 3 Verify that the program segment

if x < 0 then
abs := −x

else
abs := x

is correct with respect to the initial assertion T and the final assertion abs = |x|.

Solution: Two things must be demonstrated. First, it must be shown that if the initial assertion is
true and x < 0, then abs = |x|. This is correct, because when x < 0 the assignment statement
abs := −x sets abs = −x, which is |x| by definition when x < 0. Second, it must be shown
that if the initial assertion is true and x < 0 is false, so that x ≥ 0, then abs = |x|. This is also
correct, because in this case the program uses the assignment statement abs := x, and x is |x|
by definition when x ≥ 0, so abs := x. Hence, using the rule of inference for program segments
of this type, this segment is correct with respect to the given initial and final assertions. ▲

Loop Invariants

Next, proofs of correctness of while loops will be described. To develop a rule of inference for
program segments of the type

while condition

S

note that S is repeatedly executed until condition becomes false. An assertion that remains true
each time S is executed must be chosen. Such an assertion is called a loop invariant. In other
words, p is a loop invariant if (p ∧ condition){S}p is true.

Suppose that p is a loop invariant. It follows that if p is true before the program segment is
executed, p and ¬condition are true after termination, if it occurs. This rule of inference is

(p ∧ condition){S}p
∴ p{while condition S}(¬ condition ∧ p).

The use of a loop invariant is illustrated in Example 4.

EXAMPLE 4 A loop invariant is needed to verify that the program segment

i := 1
factorial := 1
while i < n

i := i + 1
factorial := factorial · i

terminates with factorial = n! when n is a positive integer.

376 5 / Induction and Recursion

Let p be the assertion “factorial = i! and i ≤ n.” We first prove that p is a loop invariant.
Suppose that, at the beginning of one execution of the while loop, p is true and the condition of
the while loop holds; in other words, assume that factorial = i! and that i < n. The new values
inew and factorialnew of i and factorial are inew = i + 1 and factorialnew = factorial · (i + 1) =
(i + 1)! = inew!. Because i < n, we also have inew = i + 1 ≤ n. Thus, p is true at the end of
the execution of the loop. This shows that p is a loop invariant.

Now we consider the program segment. Just before entering the loop, i = 1 ≤ n and
factorial = 1 = 1! = i! both hold, so p is true. Because p is a loop invariant, the rule of infer-
ence just introduced implied that if the while loop terminates, it terminates with p true and with
i < n false. In this case, at the end, factorial = i! and i ≤ n are true, but i < n is false; in other
words, i = n and factorial = i! = n!, as desired.

Finally, we need to check that the while loop actually terminates. At the beginning of the
program i is assigned the value 1, so after n− 1 traversals of the loop, the new value of i will
be n, and the loop terminates at that point. ▲

A final example will be given to show how the various rules of inference can be used to
verify the correctness of a longer program.

EXAMPLE 5 We will outline how to verify the correctness of the program S for computing the product of
two integers.

procedure multiply(m, n: integers)

S1

if n < 0 then a := −n
else a := n

S2

k := 0
x := 0

S3

⎧⎨
⎩

while k < a
x := x +m
k := k + 1

S4

if n < 0 then product := −x
else product := x

return product

{product equals mn}

The goal is to prove that after S is executed, product has the valuemn. The proof of correctness
can be carried out by splitting S into four segments, with S = S1; S2; S3; S4, as shown in the
listing of S. The rule of composition can be used to build the correctness proof. Here is how the
argument proceeds. The details will be left as an exercise for the reader.

Letp be the initial assertion “m andn are integers.” Then, it can be shown thatp{S1}q is true,
when q is the proposition p ∧ (a = |n|). Next, let r be the proposition q ∧ (k = 0) ∧ (x = 0). It
is easily verified that q{S2}r is true. It can be shown that “x = mk and k ≤ a” is an invariant for
the loop in S3. Furthermore, it is easy to see that the loop terminates after a iterations, with k = a,
so x = ma at this point. Because r implies that x = m · 0 and 0 ≤ a, the loop invariant is true
before the loop is entered. Because the loop terminates with k = a, it follows that r{S3}s is true
where s is the proposition “x = ma and a = |n|.” Finally, it can be shown that S4 is correct with
respect to the initial assertion s and final assertion t , where t is the proposition “product = mn.”

Putting all this together, because p{S1}q, q{S2}r , r{S3}s, and s{S4}t are all true, it fol-
lows from the rule of composition that p{S}t is true. Furthermore, because all four segments
terminate, S does terminate. This verifies the correctness of the program. ▲

Review Questions 377

Exercises

1. Prove that the program segment

y := 1
z := x + y

is correct with respect to the initial assertion x = 0 and
the final assertion z = 1.

2. Verify that the program segment

if x < 0 then x := 0

is correct with respect to the initial assertion T and the
final assertion x ≥ 0.

3. Verify that the program segment

x := 2
z := x + y
if y > 0 then
z := z+ 1

else
z := 0

is correct with respect to the initial assertion y = 3 and
the final assertion z = 6.

4. Verify that the program segment

if x < y then
min := x

else
min := y

is correct with respect to the initial assertion T and the
final assertion (x ≤ y ∧ min = x) ∨ (x > y ∧ min = y).

∗5. Devise a rule of inference for verification of partial cor-
rectness of statements of the form

if condition 1 then
S1

else if condition 2 then
S2
...

else
Sn

where S1, S2, . . . , Sn are blocks.

6. Use the rule of inference developed in Exercise 5 to verify
that the program

if x < 0 then
y := −2|x|/x

else if x > 0 then
y := 2|x|/x

else if x = 0 then
y := 2

is correct with respect to the initial assertion T and the
final assertion y = 2.

7. Use a loop invariant to prove that the following program
segment for computing the nth power, where n is a posi-
tive integer, of a real number x is correct.

power := 1
i := 1
while i ≤ n

power := power ∗ x
i := i + 1

∗8. Prove that the iterative program for finding fn given in
Section 5.4 is correct.

9. Provide all the details in the proof of correctness given in
Example 5.

10. Suppose that both the conditional statementp0 → p1 and
the program assertion p1{S}q are true. Show that p0{S}q
also must be true.

11. Suppose that both the program assertion p{S}q0 and
the conditional statement q0 → q1 are true. Show that
p{S}q1 also must be true.

12. This program computes quotients and remainders.

r := a
q := 0
while r ≥ d
r := r − d
q := q + 1

Verify that it is partially correct with respect to the ini-
tial assertion “a and d are positive integers” and the final
assertion “q and r are integers such that a = dq + r and
0 ≤ r < d .”

13. Use a loop invariant to verify that the Euclidean algorithm
(Algorithm 1 in Section 4.3) is partially correct with re-
spect to the initial assertion “a and b are positive integers”
and the final assertion “x = gcd(a, b).”

Key Terms and Results

TERMS

sequence: a function with domain that is a subset of the set of
integers

geometric progression: a sequence of the forma,ar ,ar2, . . . ,

where a and r are real numbers

arithmetic progression: a sequence of the form a, a + d,
a + 2d, . . . , where a and d are real numbers

the principle of mathematical induction: the statement
∀nP (n) is true if P(1) is true and ∀k[P(k)→ P(k + 1)]
is true.

basis step: the proof of P(1) in a proof by mathematical in-
duction of ∀nP (n)

inductive step: the proof of P(k)→ P(k + 1) for all pos-
itive integers k in a proof by mathematical induction of
∀nP (n)

378 5 / Induction and Recursion

strong induction: the statement ∀nP (n) is true if P(1) is true
and ∀k[(P (1) ∧ · · · ∧ P(k))→ P(k + 1)] is true

well-ordering property: Every nonempty set of nonnegative
integers has a least element.

recursive definition of a function: a definition of a function
that specifies an initial set of values and a rule for obtaining
values of this function at integers from its values at smaller
integers

recursive definition of a set: a definition of a set that specifies
an initial set of elements in the set and a rule for obtaining
other elements from those in the set

structural induction: a technique for proving results about
recursively defined sets

recursive algorithm: an algorithm that proceeds by reducing
a problem to the same problem with smaller input

merge sort: a sorting algorithm that sorts a list by splitting it
in two, sorting each of the two resulting lists, and merging
the results into a sorted list

iteration: a procedure based on the repeated use of operations
in a loop

program correctness: verification that a procedure always
produces the correct result

loop invariant: a property that remains true during every
traversal of a loop

initial assertion: the statement specifying the properties of the
input values of a program

final assertion: the statement specifying the properties the out-
put values should have if the program worked correctly

Review Questions

1. a) Can you use the principle of mathematical induction
to find a formula for the sum of the first n terms of a
sequence?

b) Can you use the principle of mathematical induction
to determine whether a given formula for the sum of
the first n terms of a sequence is correct?

c) Find a formula for the sum of the first n even positive
integers, and prove it using mathematical induction.

2. a) For which positive integers n is 11n+ 17 ≤ 2n?
b) Prove the conjecture you made in part (a) using math-

ematical induction.

3. a) Which amounts of postage can be formed using only
5-cent and 9-cent stamps?

b) Prove the conjecture you made using mathematical
induction.

c) Prove the conjecture you made using strong induction.
d) Find a proof of your conjecture different from the ones

you gave in (b) and (c).

4. Give two different examples of proofs that use strong in-
duction.

5. a) State the well-ordering property for the set of positive
integers.

b) Use this property to show that every positive inte-
ger greater than one can be written as the product of
primes.

6. a) Explain why a function f from the set of positive in-
tegers to the set of real numbers is well-defined if it is
defined recursively by specifying f (1) and a rule for
finding f (n) from f (n− 1).

b) Provide a recursive definition of the function f (n) =
(n+ 1)!.

7. a) Give a recursive definition of the Fibonacci numbers.
b) Show that fn > αn−2 whenever n ≥ 3, where fn is

the nth term of the Fibonacci sequence and α =
(1 +

√
5)/2.

8. a) Explain why a sequence an is well defined if it is de-
fined recursively by specifying a1 and a2 and a rule for
finding an from a1, a2, . . . , an−1 for n = 3, 4, 5,

b) Find the value of an if a1 = 1, a2 = 2, and an =
an−1 + an−2 + · · · + a1, for n = 3, 4, 5,

9. Give two examples of how well-formed formulae are de-
fined recursively for different sets of elements and oper-
ators.

10. a) Give a recursive definition of the length of a string.
b) Use the recursive definition from part (a) and struc-

tural induction to prove that l(xy) = l(x)+ l(y).
11. a) What is a recursive algorithm?

b) Describe a recursive algorithm for computing the sum
of n numbers in a sequence.

12. Describe a recursive algorithm for computing the greatest
common divisor of two positive integers.

13. a) Describe the merge sort algorithm.
b) Use the merge sort algorithm to put the list 4, 10, 1, 5,

3, 8, 7, 2, 6, 9 in increasing order.
c) Give a big-O estimate for the number of comparisons

used by the merge sort.

14. a) Does testing a computer program to see whether it
produces the correct output for certain input values
verify that the program always produces the correct
output?

b) Does showing that a computer program is partially
correct with respect to an initial assertion and a final
assertion verify that the program always produces the
correct output? If not, what else is needed?

15. What techniques can you use to show that a long computer
program is partially correct with respect to an initial as-
sertion and a final assertion?

16. What is a loop invariant? How is a loop invariant used?

Supplementary Exercises 379

Supplementary Exercises

1. Use mathematical induction to show that 2
3 + 2

9 + 2
27 +

· · · + 2
3n = 1 − 1

3n whenever n is a positive integer.

2. Use mathematical induction to show that 13 + 33 + 53 +
· · · + (2n+ 1)3 = (n+ 1)2(2n2 + 4n+ 1) whenever n
is a positive integer.

3. Use mathematical induction to show that 1 · 20 + 2 · 21 +
3 · 22 + · · · + n · 2n−1 = (n− 1) · 2n + 1 whenever n is
a positive integer.

4. Use mathematical induction to show that

1

1 · 3
+ 1

3 · 5
+ · · · + 1

(2n− 1)(2n+ 1)
= n

2n+ 1

whenever n is a positive integer.

5. Show that

1

1 · 4
+ 1

4 · 7
+ · · · + 1

(3n− 2)(3n+ 1)
= n

3n+ 1

whenever n is a positive integer.

6. Use mathematical induction to show that 2n > n2 + n
whenever n is an integer greater than 4.

7. Use mathematical induction to show that 2n > n3 when-
ever n is an integer greater than 9.

8. Find an integerN such that 2n > n4 whenever n is greater
thanN . Prove that your result is correct using mathemat-
ical induction.

9. Use mathematical induction to prove that a − b is a factor
of an − bn whenever n is a positive integer.

10. Use mathematical induction to prove that 9 divides n3 +
(n+ 1)3 + (n+ 2)3 whenever n is a nonnegative integer.

11. Use mathematical induction to prove that 43 divides
6n+1 + 72n−1 for every positive integer n.

12. Use mathematical induction to prove that 64 divides
32n+2 + 56n+ 55 for every positive integer n.

13. Use mathematical induction to prove this formula for the
sum of the terms of an arithmetic progression.

a + (a + d)+ · · · + (a + nd) =
(n+ 1)(2a + nd)/2

14. Suppose that aj ≡ bj (mod m) for j = 1, 2, . . . , n. Use
mathematical induction to prove that

a)
n

j = 1
aj ≡

n
j = 1

bj (mod m).

b)
n

j = 1
aj ≡

n
j = 1

bj (mod m).

15. Show that if n is a positive integer, then

 n
k= 1

k + 4

k(k + 1)(k + 2)
= n(3n+ 7)

2(n+ 1)(n+ 2)
.

16. For which positive integers n is n+ 6 < (n2 − 8n)/16?
Prove your answer using mathematical induction.

17. (Requires calculus) Suppose that f (x) = ex and g(x) =
xex . Use mathematical induction together with the prod-

uct rule and the fact that f (x) = ex to prove that
g(n)(x) = (x + n)ex whenever n is a positive integer.

18. (Requires calculus) Suppose that f (x) = ex and g(x) =
ecx , where c is a constant. Use mathematical induction to-
gether with the chain rule and the fact that f (x) = ex to
prove that g(n) = cnecx whenever n is a positive integer.

∗19. Formulate a conjecture about which Fibonacci numbers
are even, and use a form of mathematical induction to
prove your conjecture.

∗20. Determine which Fibonacci numbers are divisible by 3.
Use a form of mathematical induction to prove your con-
jecture.

∗21. Prove that fkfn + fk+1fn+1 = fn+k+1 for all nonnega-
tive integers n and k, where fi denotes the ith Fibonacci
number.

Recall from Example 15 of Section 2.4 that the sequence
of Lucas numbers is defined by l0 = 2, l1 = 1, and ln =
ln−1 + ln−2 for n = 2, 3, 4,

22. Show that fn + fn+2 = ln+1 whenever n is a positive in-
teger, where fi and li are the ith Fibonacci number and
ith Lucas number, respectively.

23. Show that l20 + l21 + · · · + l2n = lnln+1 + 2 whenever n is
a nonnegative integer and li is the ith Lucas number.

∗24. Use mathematical induction to show that the product of
any n consecutive positive integers is divisible by n!.
[Hint: Use the identity m(m+ 1) · · · (m+ n−
1)/n! = (m− 1)m(m+ 1) · · · (m+ n− 2)/n! +
m(m+ 1) · · · (m+ n− 2)/(n− 1)!.]

25. Use mathematical induction to show that (cos x +
i sin x)n = cos nx + i sin nx whenever n is a positive in-
teger. (Here i is the square root of −1.) [Hint: Use
the identities cos(a + b) = cos a cos b − sin a sin b and
sin(a + b) = sin a cos b + cos a sin b.]

∗26. Use mathematical induction to show that
 n
j=1 cos jx =

cos[(n+ 1)x/2] sin(nx/2)/ sin(x/2) whenever n is a
positive integer and sin(x/2) = 0.

27. Use mathematical induction to prove that
 n
j=1 j

22j =
n22n+1 − n2n+2 + 3 · 2n+1 − 6 for every positive inte-
ger n.

28. (Requires calculus) Suppose that the sequence
x1, x2, . . . , xn, . . . is recursively defined by x1 = 0 and
xn+1 = √

xn + 6.

a) Use mathematical induction to show that x1 < x2 <

· · · < xn < · · · , that is, the sequence {xn} is monoton-
ically increasing.

b) Use mathematical induction to prove that xn < 3 for
n = 1, 2,

c) Show that limn→∞ xn = 3.

29. Show if n is a positive integer with n ≥ 2, then

n
j=2

1

j2 − 1
= (n− 1)(3n+ 2)

4n(n+ 1).

380 5 / Induction and Recursion

30. Use mathematical induction to prove Theorem 1 in Sec-
tion 4.2, that is, show if b is an integer, where b > 1, and
n is a positive integer, then n can be expressed uniquely
in the form n = akbk + ak−1b

k−1 + · · · + a1b + a0.
∗31. A lattice point in the plane is a point (x, y) where both x

and y are integers. Use mathematical induction to show
that at least n+ 1 straight lines are needed to ensure
that every lattice point (x, y) with x ≥ 0, y ≥ 0, and
x + y ≤ n lies on one of these lines.

32. (Requires calculus) Use mathematical induction and the
product rule to show that if n is a positive integer and
f1(x), f2(x), . . . , fn(x), are all differentiable functions,
then

(f1(x)f2(x) · · · fn(x))
f1(x)f2(x) · · · fn(x)

= f
1(x)

f1(x)
+ f

2(x)

f2(x)
+ · · · + f

n(x)

fn(x)
.

33. (Requires material in Section 2.6) Suppose that B =
MAM−1, where A and B are n× n matrices and M is
invertible. Show that Bk = MAkM−1 for all positive in-
tegers k. (Consult both the text of Section 2.6 and the
preamble to Exercise 18 of Section 2.6.)

34. Use mathematical induction to show that if you draw lines
in the plane you only need two colors to color the regions
formed so that no two regions that have an edge in com-
mon have a common color.

35. Show that n! can be represented as the sum of n of its
distinct positive divisors whenever n ≥ 3. [Hint: Use in-
ductive loading. First try to prove this result using mathe-
matical induction. By examining where your proof fails,
find a stronger statement that you can easily prove using
mathematical induction.]

∗36. Use mathematical induction to prove that if x1, x2, . . . , xn
are positive real numbers with n ≥ 2, then
x1 + 1

x1

x2 + 1

x2

· · ·

xn +

1

xn

≥

x1 + 1

x2

x2 + 1

x3

· · ·

xn−1 + 1

xn

xn +

1

x1

37. Use mathematical induction to prove that ifn people stand
in a line, where n is a positive integer, and if the first per-
son in the line is a woman and the last person in line is a
man, then somewhere in the line there is a woman directly
in front of a man.

∗38. Suppose that for every pair of cities in a country there is a
direct one-way road connecting them in one direction or
the other. Use mathematical induction to show that there
is a city that can be reached from every other city either
directly or via exactly one other city.

39. Use mathematical induction to show that when n circles
divide the plane into regions, these regions can be col-
ored with two different colors such that no regions with a
common boundary are colored the same.

∗40. Suppose that among a group of cars on a circular track
there is enough fuel for one car to complete a lap. Use
mathematical induction to show that there is a car in the

group that can complete a lap by obtaining gas from other
cars as it travels around the track.

41. Show that if n is a positive integer, then

n
j = 1

(2j − 1)

⎛
⎝ n
k= j

1/k

⎞
⎠ = n(n+ 1)/2.

42. Use mathematical induction to show that if a, b, and c
are the lengths of the sides of a right triangle, where c is
the length of the hypotenuse, then an + bn < cn for all
integers n with n ≥ 3.

∗43. Use mathematical induction to show that if n is a posi-
tive integers, the sequence 2 mod n, 22 mod n, 222

mod n,

2222

mod n, . . . is eventually constant (that is, all terms
after a finite number of terms are all the same).

44. A unit or Egyptian fraction is a fraction of the form
1/n, where n is a positive integer. In this exercise, we
will use strong induction to show that a greedy algorithm
can be used to express every rational number p/q with
0 < p/q < 1 as the sum of distinct unit fractions. At each
step of the algorithm, we find the smallest positive integer
n such that 1/n can be added to the sum without exceed-
ing p/q. For example, to express 5/7 we first start the
sum with 1/2. Because 5/7 − 1/2 = 3/14 we add 1/5 to
the sum because 5 is the smallest positive integer k such
that 1/k < 3/14. Because 3/14 − 1/5 = 1/70, the algo-
rithm terminates, showing that 5/7 = 1/2 + 1/5 + 1/70.
Let T (p) be the statement that this algorithm terminates
for all rational numbers p/q with 0 < p/q < 1. We will
prove that the algorithm always terminates by showing
that T (p) holds for all positive integers p.

a) Show that the basis step T (1) holds.
b) Suppose that T (k) holds for positive integers k with
k < p. That is, assume that the algorithm terminates
for all rational numbers k/r , where 1 ≤ k < p. Show
that if we start with p/q and the fraction 1/n is se-
lected in the first step of the algorithm, then p/q =
p /q + 1/n, where p = np − q and q = nq. After
considering the case where p/q = 1/n, use the in-
ductive hypothesis to show that the greedy algorithm
terminates when it begins withp /q and complete the
inductive step.

The McCarthy 91 function (defined by John McCarthy, one
of the founders of artificial intelligence) is defined using the
rule

M(n) =

n− 10 if n > 100
M(M(n+ 11)) if n ≤ 100

for all positive integers n.

45. By successively using the defining rule forM(n), find

a) M(102). b) M(101). c) M(99).
d) M(97). e) M(87). f) M(76).

∗∗46. Show that the function M(n) is a well-defined function
from the set of positive integers to the set of positive inte-
gers. [Hint: Prove thatM(n) = 91 for all positive integers
n with n ≤ 101.]

Supplementary Exercises 381

47. Is this proof that

1

1 · 2
+ 1

2 · 3
+ · · · + 1

(n− 1)n
= 3

2
− 1

n
,

whenever n is a positive integer, correct? Justify your an-
swer.

Basis step: The result is true when n = 1 because

1

1 · 2
= 3

2
− 1

1
.

Inductive step: Assume that the result is true for n. Then

1

1 · 2
+ 1

2 · 3
+ · · · + 1

(n− 1)n
+ 1

n(n+ 1)

= 3

2
− 1

n
+

1

n
− 1

n+ 1

= 3

2
− 1

n+ 1
.

Hence, the result is true for n+ 1 if it is true for n. This
completes the proof.

48. Suppose that A1, A2, . . . , An are a collection of sets.
Suppose that R2 = A1 ⊕ A2 and Rk = Rk−1 ⊕ Ak for
k = 3, 4, . . . , n. Use mathematical induction to prove that
x ∈ Rn if and only if x belongs to an odd number of the
setsA1, A2, . . . , An. (Recall that S ⊕ T is the symmetric
difference of the sets S and T defined in the preamble to
Exercise 32 of Section 2.2.)

∗49. Show that n circles divide the plane into n2 − n+ 2 re-
gions if every two circles intersect in exactly two points
and no three circles contain a common point.

∗50. Show that n planes divide three-dimensional space into
(n3 + 5n+ 6)/6 regions if any three of these planes have
exactly one point in common and no four contain a com-
mon point.

∗51. Use the well-ordering property to show that
√

2 is ir-
rational. [Hint: Assume that

√
2 is rational. Show that

the set of positive integers of the form b
√

2 has a least

element a. Then show that a
√

2 − a is a smaller positive
integer of this form.]

52. A set is well ordered if every nonempty subset of this
set has a least element. Determine whether each of the
following sets is well ordered.

a) the set of integers
b) the set of integers greater than −100
c) the set of positive rationals
d) the set of positive rationals with denominator less than

100

53. a) Show that if a1, a2, . . . , an are positive integers,
then gcd(a1, a2, . . . , an−1, an) = gcd(a1, a2, . . . ,

an−2, gcd(an−1, an)).
b) Use part (a), together with the Euclidean algorithm, to

develop a recursive algorithm for computing the great-
est common divisor of a set of n positive integers.

∗54. Describe a recursive algorithm for writing the greatest
common divisor of n positive integers as a linear combi-
nation of these integers.

55. Find an explicit formula for f (n) if f (1) = 1 and f (n) =
f (n− 1)+ 2n− 1 for n ≥ 2. Prove your result using
mathematical induction.

∗∗56. Give a recursive definition of the set of bit strings that
contain twice as many 0s as 1s.

57. Let S be the set of bit strings defined recursively by λ ∈ S
and 0x ∈ S, x1 ∈ S if x ∈ S,where λ is the empty string.

a) Find all strings in S of length not exceeding five.
b) Give an explicit description of the elements of S.

58. Let S be the set of strings defined recursively by abc ∈ S,
bac ∈ S, and acb ∈ S, where a, b, and c are fixed letters;
and for all x ∈ S, abcx ∈ S; abxc ∈ S, axbc ∈ S, and
xabc ∈ S, where x is a variable representing a string of
letters.

a) Find all elements of S of length eight or less.
b) Show that every element of S has a length divisible by

three.

JOHN MCCARTHY (BORN 1927) John McCarthy was born in Boston. He grew up in Boston and in Los
Angeles. He studied mathematics as both an undergraduate and a graduate student, receiving his B.S. in 1948 from
the California Institute of Technology and his Ph.D. in 1951 from Princeton. After graduating from Princeton,
McCarthy held positions at Princeton, Stanford, Dartmouth, and M.I.T. He held a position at Stanford from 1962
until 1994, and is now an emeritus professor there. At Stanford, he was the director of the Artificial Intelligence
Laboratory, held a named chair in the School of Engineering, and was a senior fellow in the Hoover Institution.

McCarthy was a pioneer in the study of artificial intelligence, a term he coined in 1955. He worked
on problems related to the reasoning and information needs required for intelligent computer behavior. Mc-
Carthy was among the first computer scientists to design time-sharing computer systems. He developed LISP,

a programming language for computing using symbolic expressions. He played an important role in using logic to verify the correctness
of computer programs. McCarthy has also worked on the social implications of computer technology. He is currently working on
the problem of how people and computers make conjectures through assumptions that complications are absent from situations.
McCarthy is an advocate of the sustainability of human progress and is an optimist about the future of humanity. He has also begun
writing science fiction stories. Some of his recent writing explores the possibility that the world is a computer program written by
some higher force.

Among the awards McCarthy has won are the Turing Award from the Association for Computing Machinery, the Research
Excellence Award of the International Conference on Artificial Intelligence, the Kyoto Prize, and the National Medal of Science.

382 5 / Induction and Recursion

The set B of all balanced strings of parentheses is defined
recursively by λ ∈ B, where λ is the empty string; (x) ∈ B,
xy ∈ B if x, y ∈ B.

59. Show that (()()) is a balanced string of parentheses and
(())) is not a balanced string of parentheses.

60. Find all balanced strings of parentheses with exactly six
symbols.

61. Find all balanced strings of parentheses with four or fewer
symbols.

62. Use induction to show that if x is a balanced string of
parentheses, then the number of left parentheses equals
the number of right parentheses in x.

Define the function N on the set of strings of parentheses by

N(λ) = 0, N(() = 1, N()) = −1,
N(uv) = N(u)+N(v),

where λ is the empty string, and u and v are strings. It can be
shown that N is well defined.

63. Find

a) N(()). b) N()))())(().

c) N((()(()). d) N()((()))(())).
∗∗64. Show that a string w of parentheses is balanced if and only

if N(w) = 0 and N(u) ≥ 0 whenever u is a prefix of w,
that is, w = uv.

∗65. Give a recursive algorithm for finding all balanced strings
of parentheses containing n or fewer symbols.

66. Give a recursive algorithm for finding gcd(a, b), where
a and b are nonnegative integers not both zero,
based on these facts: gcd(a, b) = gcd(b, a) if a > b,
gcd(0, b) = b, gcd(a, b) = 2 gcd(a/2, b/2) if a and b are
even, gcd(a, b) = gcd(a/2, b) if a is even and b is odd,
and gcd(a, b) = gcd(a, b − a).

67. Verify the program segment

if x > y then
x := y

with respect to the initial assertion T and the final asser-
tion x ≤ y.

∗68. Develop a rule of inference for verifying recursive pro-
grams and use it to verify the recursive algorithm for com-
puting factorials given as Algorithm 1 in Section 5.4.

69. Devise a recursive algorithm that counts the number of
times the integer 0 occurs in a list of integers.

Exercises 70–77 deal with some unusual sequences, in-
formally called self-generating sequences, produced by
simple recurrence relations or rules. In particular, Exer-
cises 70–75 deal with the sequence {a(n)} defined by
a(n) = n− a(a(n− 1)) for n ≥ 1 and a(0) = 0. (This se-
quence, as well as those in Exercises 74 and 75, are defined
in Douglas Hofstader’s fascinating book Gödel, Escher, Bach

([Ho99]).

70. Find the first 10 terms of the sequence {a(n)} defined in
the preamble to this exercise.

∗71. Prove that this sequence is well defined. That is, show that
a(n) is uniquely defined for all nonnegative integers n.

∗∗72. Prove that a(n) = (n+ 1)μ whereμ = (−1 +
√

5)/2.
[Hint: First show for all n > 0 that (μn− μn)+
(μ2n− μ2n) = 1. Then show for all real numbers α
with 0 ≤ α < 1 and α = 1 − μ that (1 + μ)(1 − α) +
 α + μ = 1, considering the cases 0 ≤ α < 1 − μ and
1 − μ < α < 1 separately.]

∗73. Use the formula from Exercise 72 to show that
a(n) = a(n− 1) if μn− μn < 1 − μ and a(n) =
a(n− 1) + 1 otherwise.

74. Find the first 10 terms of each of the following self-
generating sequences:

a) a(n) = n− a(a(a(n− 1))) for n ≥ 1, a(0) = 0
b) a(n) = n− a(a(a(a(n− 1)))) for n ≥ 1, a(0) = 0
c) a(n) = a(n− a(n− 1))+ a(n− a(n− 2)) for n ≥

3, a(1) = 1 and a(2) = 1

75. Find the first 10 terms of both the sequences m(n) and
f (n) defined by the following pair of interwoven recur-
rence relations: m(n) = n− f (m(n− 1)), f (n) = n−
m(f (n− 1)) for n ≥ 1, f (0) = 1 and m(0) = 0.

Golomb’s self-generating sequence is the unique nonde-
creasing sequence of positive integers a1, a2, a3, . . . that has
the property that it contains exactly ak occurrences of k for
each positive integer k.

76. Find the first 20 terms of Golomb’s self-generating se-
quence.

∗77. Show that if f (n) is the largest integer m such
that am = n, where am is the mth term of Golomb’s
self-generating sequence, then f (n) = n

k= 1 ak and
f (f (n)) = n

k= 1 kak .

Computer Projects

Write programs with these input and output.

∗∗1. Given a 2n × 2n checkerboard with one square missing,
construct a tiling of this checkerboard using right triomi-
noes.

∗∗2. Generate all well-formed formulae for expressions in-
volving the variables x, y, and z and the operators
{+, ∗, /,−} with n or fewer symbols.

∗∗3. Generate all well-formed formulae for propositions with
n or fewer symbols where each symbol is T, F, one of

the propositional variables p and q, or an operator from
{¬,∨,∧,→,↔}.

4. Given a string, find its reversal.

5. Given a real number a and a nonnegative integer n, find
an using recursion.

6. Given a real number a and a nonnegative integer n, find
a2n using recursion.

Writing Projects 383

∗7. Given a real number a and a nonnegative integer n, find an

using the binary expansion of n and a recursive algorithm
for computing a2k .

8. Given two integers not both zero, find their greatest com-
mon divisor using recursion.

9. Given a list of integers and an element x, locate x in this
list using a recursive implementation of a linear search.

10. Given a list of integers and an element x, locate x in this
list using a recursive implementation of a binary search.

11. Given a nonnegative integer n, find the nth Fibonacci
number using iteration.

12. Given a nonnegative integer n, find the nth Fibonacci
number using recursion.

13. Given a positive integer, find the number of partitions of
this integer. (See Exercise 47 of Section 5.3.)

14. Given positive integersm andn, findA(m, n), the value of
Ackermann’s function at the pair (m, n). (See the pream-
ble to Exercise 48 of Section 5.3.)

15. Given a list of n integers, sort these integers using the
merge sort.

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. What are the largest values of n for which n! has fewer than
100 decimal digits and fewer than 1000 decimal digits?

2. Determine which Fibonacci numbers are divisible by 5,
which are divisible by 7, and which are divisible by 11.
Prove that your conjectures are correct.

3. Construct tilings using right triominoes of various 16 × 16,
32 × 32, and 64 × 64 checkerboards with one square miss-
ing.

4. Explore which m× n checkerboards can be completely

covered by right triominoes. Can you make a conjecture
that answers this question?

∗∗5. Implement an algorithm for determining whether a point
is in the interior or exterior of a simple polygon.

∗∗6. Implement an algorithm for triangulating a simple poly-
gon.

7. Which values of Ackermann’s function are small enough
that you are able to compute them?

8. Compare either the number of operations or the time
needed to compute Fibonacci numbers recursively versus
that needed to compute them iteratively.

Writing Projects

Respond to these with essays using outside sources.

1. Describe the origins of mathematical induction. Who were
the first people to use it and to which problems did they
apply it?

2. Explain how to prove the Jordan curve theorem for sim-
ple polygons and describe an algorithm for determining
whether a point is in the interior or exterior of a simple
polygon.

3. Describe how the triangulation of simple polygons is used
in some key algorithms in computational geometry.

4. Describe a variety of different applications of the Fibonacci
numbers to the biological and the physical sciences.

5. Discuss the uses ofAckermann’s function both in the theory
of recursive definitions and in the analysis of the complex-
ity of algorithms for set unions.

6. Discuss some of the various methodologies used to es-
tablish the correctness of programs and compare them to
Hoare’s methods described in Section 5.5.

7. Explain how the ideas and concepts of program correctness
can be extended to prove that operating systems are secure.

6
C H A P T E R

Counting

6.1 The Basics of
Counting

6.2 The Pigeonhole
Principle

6.3 Permutations
and
Combinations

6.4 Binomial
Coefficients
and Identities

6.5 Generalized
Permutations
and
Combinations

6.6 Generating
Permutations
and
Combinations

Combinatorics, the study of arrangements of objects, is an important part of discrete math-
ematics. This subject was studied as long ago as the seventeenth century, when combi-

natorial questions arose in the study of gambling games. Enumeration, the counting of objects
with certain properties, is an important part of combinatorics. We must count objects to solve
many different types of problems. For instance, counting is used to determine the complexity of
algorithms. Counting is also required to determine whether there are enough telephone numbers
or Internet protocol addresses to meet demand. Recently, it has played a key role in mathematical
biology, especially in sequencing DNA. Furthermore, counting techniques are used extensively
when probabilities of events are computed.

The basic rules of counting, which we will study in Section 6.1, can solve a tremendous
variety of problems. For instance, we can use these rules to enumerate the different telephone
numbers possible in the United States, the allowable passwords on a computer system, and the
different orders in which the runners in a race can finish. Another important combinatorial tool
is the pigeonhole principle, which we will study in Section 6.2. This states that when objects are
placed in boxes and there are more objects than boxes, then there is a box containing at least two
objects. For instance, we can use this principle to show that among a set of 15 or more students,
at least 3 were born on the same day of the week.

We can phrase many counting problems in terms of ordered or unordered arrangements of
the objects of a set with or without repetitions. These arrangements, called permutations and
combinations, are used in many counting problems. For instance, suppose the 100 top finishers
on a competitive exam taken by 2000 students are invited to a banquet. We can count the possible
sets of 100 students that will be invited, as well as the ways in which the top 10 prizes can be
awarded.

Another problem in combinatorics involves generating all the arrangements of a specified
kind. This is often important in computer simulations. We will devise algorithms to generate
arrangements of various types.

6.1 The Basics of Counting

Introduction

Suppose that a password on a computer system consists of six, seven, or eight characters. Each
of these characters must be a digit or a letter of the alphabet. Each password must contain at least
one digit. How many such passwords are there? The techniques needed to answer this question
and a wide variety of other counting problems will be introduced in this section.

Counting problems arise throughout mathematics and computer science. For example, we
must count the successful outcomes of experiments and all the possible outcomes of these
experiments to determine probabilities of discrete events. We need to count the number of
operations used by an algorithm to study its time complexity.

We will introduce the basic techniques of counting in this section. These methods serve as
the foundation for almost all counting techniques.

385

386 6 / Counting

Basic Counting Principles

We first present two basic counting principles, the product rule and the sum rule. Then we will
show how they can be used to solve many different counting problems.

The product rule applies when a procedure is made up of separate tasks.

THE PRODUCT RULE Suppose that a procedure can be broken down into a sequence of
two tasks. If there are n1 ways to do the first task and for each of these ways of doing the first
task, there are n2 ways to do the second task, then there are n1n2 ways to do the procedure.

Examples 1–10 show how the product rule is used.

EXAMPLE 1 A new company with just two employees, Sanchez and Patel, rents a floor of a building with
12 offices. How many ways are there to assign different offices to these two employees?

Solution: The procedure of assigning offices to these two employees consists of assigning an
office to Sanchez, which can be done in 12 ways, then assigning an office to Patel different from
the office assigned to Sanchez, which can be done in 11 ways. By the product rule, there are
12 · 11 = 132 ways to assign offices to these two employees. ▲

EXAMPLE 2 The chairs of an auditorium are to be labeled with an uppercase English letter followed by a
positive integer not exceeding 100. What is the largest number of chairs that can be labeled
differently?

Solution: The procedure of labeling a chair consists of two tasks, namely, assigning to the seat
one of the 26 uppercase English letters, and then assigning to it one of the 100 possible integers.
The product rule shows that there are 26 · 100 = 2600 different ways that a chair can be labeled.
Therefore, the largest number of chairs that can be labeled differently is 2600. ▲

EXAMPLE 3 There are 32 microcomputers in a computer center. Each microcomputer has 24 ports. How
many different ports to a microcomputer in the center are there?

Solution: The procedure of choosing a port consists of two tasks, first picking a microcomputer
and then picking a port on this microcomputer. Because there are 32 ways to choose the micro-
computer and 24 ways to choose the port no matter which microcomputer has been selected,
the product rule shows that there are 32 · 24 = 768 ports. ▲

An extended version of the product rule is often useful. Suppose that a procedure is carried
out by performing the tasks T1, T2, . . . , Tm in sequence. If each task Ti , i = 1, 2, . . . , n, can be
done in ni ways, regardless of how the previous tasks were done, then there are n1 · n2 · · · · · nm

ways to carry out the procedure. This version of the product rule can be proved by mathematical
induction from the product rule for two tasks (see Exercise 72).

EXAMPLE 4 How many different bit strings of length seven are there?

Solution: Each of the seven bits can be chosen in two ways, because each bit is either 0 or 1.
Therefore, the product rule shows there are a total of 27 = 128 different bit strings of length
seven. ▲

6.1 The Basics of Counting 387

EXAMPLE 5 How many different license plates can be made if each plate contains a sequence of three
uppercase English letters followed by three digits (and no sequences of letters are prohibited,
even if they are obscene)?

26 choices

for each

letter

10 choices

for each

digit

Solution: There are 26 choices for each of the three uppercase English letters and ten choices for
each of the three digits. Hence, by the product rule there are a total of 26 · 26 · 26 · 10 · 10 · 10 =
17,576,000 possible license plates. ▲

EXAMPLE 6 Counting Functions How many functions are there from a set with m elements to a set with
n elements?

Solution:A function corresponds to a choice of one of the n elements in the codomain for each of
the m elements in the domain. Hence, by the product rule there are n · n · · · · · n = nm functions
from a set with m elements to one with n elements. For example, there are 53 = 125 different
functions from a set with three elements to a set with five elements. ▲

EXAMPLE 7 Counting One-to-One Functions How many one-to-one functions are there from a set with
m elements to one with n elements?

Solution: First note that when m > n there are no one-to-one functions from a set with m

elements to a set with n elements.
Counting the number of
onto functions is harder.
We’ll do this in Chapter 8.

Now let m ≤ n. Suppose the elements in the domain are a1, a2, . . . , am. There are n ways
to choose the value of the function at a1. Because the function is one-to-one, the value of the
function at a2 can be picked in n− 1 ways (because the value used for a1 cannot be used again).
In general, the value of the function at ak can be chosen in n− k + 1 ways. By the product rule,
there are n(n− 1)(n− 2) · · · (n−m+ 1) one-to-one functions from a set with m elements to
one with n elements.

For example, there are 5 · 4 · 3 = 60 one-to-one functions from a set with three elements to
a set with five elements. ▲

EXAMPLE 8 The Telephone Numbering Plan The North American numbering plan (NANP) specifies the
format of telephone numbers in the U.S., Canada, and many other parts of North America. A
telephone number in this plan consists of 10 digits, which are split into a three-digit area code, a
three-digit office code, and a four-digit station code. Because of signaling considerations, there
are certain restrictions on some of these digits. To specify the allowable format, let X denote
a digit that can take any of the values 0 through 9, let N denote a digit that can take any of
the values 2 through 9, and let Y denote a digit that must be a 0 or a 1. Two numbering plans,
which will be called the old plan, and the new plan, will be discussed. (The old plan, in use in
the 1960s, has been replaced by the new plan, but the recent rapid growth in demand for new
numbers for mobile phones and devices will eventually make even this new plan obsolete. In

Current projections are
that by 2038, it will be
necessary to add one or
more digits to North
American telephone
numbers.

this example, the letters used to represent digits follow the conventions of the North American

Numbering Plan.) As will be shown, the new plan allows the use of more numbers.
In the old plan, the formats of the area code, office code, and station code are NYX, NNX, and

XXXX, respectively, so that telephone numbers had the form NYX-NNX-XXXX. In the new plan,
the formats of these codes are NXX, NXX, and XXXX, respectively, so that telephone numbers
have the form NXX-NXX-XXXX. How many different North American telephone numbers are
possible under the old plan and under the new plan?

Solution: By the product rule, there are 8 · 2 · 10 = 160 area codes with format NYX and
8 · 10 · 10 = 800 area codes with format NXX. Similarly, by the product rule, there are
8 · 8 · 10 = 640 office codes with format NNX. The product rule also shows that there are
10 · 10 · 10 · 10 = 10,000 station codes with format XXXX.

388 6 / Counting

Consequently, applying the product rule again, it follows that under the old plan there areNote that we have ignored
restrictions that rule out
N11 station codes for
most area codes.

160 · 640 · 10,000 = 1,024,000,000

different numbers available in North America. Under the new plan, there are

800 · 800 · 10,000 = 6,400,000,000

different numbers available. ▲

EXAMPLE 9 What is the value of k after the following code, where n1, n2, . . . , nm are positive integers, has
been executed?

k := 0
for i1 := 1 to n1

for i2 := 1 to n2
·
·
·

for im := 1 to nm

k := k + 1

Solution: The initial value of k is zero. Each time the nested loop is traversed, 1 is added
to k. Let Ti be the task of traversing the ith loop. Then the number of times the loop is traversed
is the number of ways to do the tasks T1, T2, . . . , Tm. The number of ways to carry out the
task Tj , j = 1, 2, . . . , m, is nj , because the j th loop is traversed once for each integer ij with
1 ≤ ij ≤ nj . By the product rule, it follows that the nested loop is traversed n1n2 · · · nm times.
Hence, the final value of k is n1n2 · · · nm. ▲

EXAMPLE 10 Counting Subsets of a Finite Set Use the product rule to show that the number of different
subsets of a finite set S is 2|S|.

Solution: Let S be a finite set. List the elements of S in arbitrary order. Recall from
Section 2.2 that there is a one-to-one correspondence between subsets of S and bit strings
of length |S|. Namely, a subset of S is associated with the bit string with a 1 in the ith position if
the ith element in the list is in the subset, and a 0 in this position otherwise. By the product rule,
there are 2|S| bit strings of length |S|. Hence, |P(S)| = 2|S|. (Recall that we used mathematical
induction to prove this fact in Example 10 of Section 5.1.) ▲

The product rule is often phrased in terms of sets in this way: If A1, A2, . . . , Am are finite
sets, then the number of elements in the Cartesian product of these sets is the product of the
number of elements in each set. To relate this to the product rule, note that the task of choosing
an element in the Cartesian product A1 × A2 × · · · × Am is done by choosing an element
in A1, an element in A2, . . . , and an element in Am. By the product rule it follows that

|A1 × A2 × · · · × Am| = |A1| · |A2| · · · · · |Am|.

EXAMPLE 11 DNA and Genomes The hereditary information of a living organism is encoded using de-
oxyribonucleic acid (DNA), or in certain viruses, ribonucleic acid (RNA). DNA and RNA are
extremely complex molecules, with different molecules interacting in a vast variety of ways to

6.1 The Basics of Counting 389

enable living process. For our purposes, we give only the briefest description of how DNA and
RNA encode genetic information.

DNA molecules consist of two strands consisting of blocks known as nucleotides. Each
nucleotide contains subcomponents called bases, each of which is adenine (A), cytosine (C),
guanine (G), or thymine (T). The two strands of DNA are held together by hydrogen bonds
connecting different bases, with A bonding only with T, and C bonding only with G. Unlike
DNA, RNA is single stranded, with uracil (U) replacing thymine as a base. So, in DNA the
possible base pairs are A-T and C-G, while in RNA they are A-U, and C-G. The DNA of a living
creature consists of multiple pieces of DNA forming separate chromosomes.A gene is a segment
of a DNA molecule that encodes a particular protein. The entirety of genetic information of an
organism is called its genome.

Sequences of bases in DNA and RNA encode long chains of proteins called amino acids.
There are 22 essential amino acids for human beings. We can quickly see that a sequence of at
least three bases are needed to encode these 22 different amino acid. First note, that because
there are four possibilities for each base in DNA, A, C, G, and T, by the product rule there are
42 = 16 < 22 different sequences of two bases. However, there are 43 = 64 different sequences
of three bases, which provide enough different sequences to encode the 22 different amino acids
(even after taking into account that several different sequences of three bases encode the same
amino acid).

The DNA of simple living creatures such as algae and bacteria have between 105 and 107

links, where each link is one of the four possible bases. More complex organisms, such as in-
sects, birds, and mammals have between 108 and 1010 links in their DNA. So, by the product
rule, there are at least 4105

different sequences of bases in the DNA of simple organisms and at
least 4108

different sequences of bases in the DNA of more complex organisms. These are both
Soon it won’t be that
costly to have your own
genetic code found.

incredibly huge numbers, which helps explain why there is such tremendous variability among
living organisms. In the past several decades techniques have been developed for determining
the genome of different organisms. The first step is to locate each gene in the DNA of an or-
ganism. The next task, called gene sequencing, is the determination of the sequence of links
on each gene. (Of course, the specific sequence of kinks on these genes depends on the partic-
ular individual representative of a species whose DNA is analyzed.) For example, the human
genome includes approximately 23,000 genes, each with 1,000 or more links. Gene sequencing
techniques take advantage of many recently developed algorithms and are based on numerous
new ideas in combinatorics. Many mathematicians and computer scientists work on problems
involving genomes, taking part in the fast moving fields of bioinformatics and computational
biology. ▲

We now introduce the sum rule.

THE SUMRULE If a task can be done either in one of n1 ways or in one of n2 ways, where
none of the set of n1 ways is the same as any of the set of n2 ways, then there are n1 + n2
ways to do the task.

Example 12 illustrates how the sum rule is used.

EXAMPLE 12 Suppose that either a member of the mathematics faculty or a student who is a mathematics major
is chosen as a representative to a university committee. How many different choices are there
for this representative if there are 37 members of the mathematics faculty and 83 mathematics
majors and no one is both a faculty member and a student?

Solution: There are 37 ways to choose a member of the mathematics faculty and there are 83
ways to choose a student who is a mathematics major. Choosing a member of the mathematics
faculty is never the same as choosing a student who is a mathematics major because no one is

390 6 / Counting

both a faculty member and a student. By the sum rule it follows that there are 37+ 83 = 120
possible ways to pick this representative. ▲

We can extend the sum rule to more than two tasks. Suppose that a task can be done in one
of n1 ways, in one of n2 ways, . . . , or in one of nm ways, where none of the set of ni ways of
doing the task is the same as any of the set of nj ways, for all pairs i and j with 1 ≤ i < j ≤ m.
Then the number of ways to do the task is n1 + n2 + · · · + nm. This extended version of the
sum rule is often useful in counting problems, as Examples 13 and 14 show. This version of the
sum rule can be proved using mathematical induction from the sum rule for two sets. (This is
Exercise 71.)

EXAMPLE 13 A student can choose a computer project from one of three lists. The three lists contain 23, 15,
and 19 possible projects, respectively. No project is on more than one list. How many possible
projects are there to choose from?

Solution: The student can choose a project by selecting a project from the first list, the second
list, or the third list. Because no project is on more than one list, by the sum rule there are
23+ 15+ 19 = 57 ways to choose a project. ▲

EXAMPLE 14 What is the value of k after the following code, where n1, n2, . . . , nm are positive integers, has
been executed?

k := 0
for i1 := 1 to n1

k := k + 1
for i2 := 1 to n2

k := k + 1
.
.
.

for im := 1 to nm

k := k + 1

Solution: The initial value of k is zero. This block of code is made up of m different loops.
Each time a loop is traversed, 1 is added to k. To determine the value of k after this code has
been executed, we need to determine how many times we traverse a loop. Note that there are
ni ways to traverse the ith loop. Because we only traverse one loop at a time, the sum rule
shows that the final value of k, which is the number of ways to traverse one of the m loops is
n1 + n2 + · · · + nm. ▲

The sum rule can be phrased in terms of sets as: If A1, A2, . . . , Am are pairwise disjoint
finite sets, then the number of elements in the union of these sets is the sum of the numbers of
elements in the sets. To relate this to our statement of the sum rule, note there are |Ai | ways to
choose an element from Ai for i = 1, 2, . . . , m. Because the sets are pairwise disjoint, when
we select an element from one of the sets Ai , we do not also select an element from a different
set Aj . Consequently, by the sum rule, because we cannot select an element from two of these
sets at the same time, the number of ways to choose an element from one of the sets, which is
the number of elements in the union, is

|A1 ∪ A2 ∪ · · · ∪ Am| = |A1| + |A2| + · · · + |Am|when Ai ∩ Aj = for all i, j.

This equality applies only when the sets in question are pairwise disjoint. The situation is much
more complicated when these sets have elements in common. That situation will be briefly
discussed later in this section and discussed in more depth in Chapter 8.

6.1 The Basics of Counting 391

More Complex Counting Problems

Many counting problems cannot be solved using just the sum rule or just the product rule.
However, many complicated counting problems can be solved using both of these rules in
combination. We begin by counting the number of variable names in the programming language
BASIC. (In the exercises, we consider the number of variable names in JAVA.) Then we will
count the number of valid passwords subject to a particular set of restrictions.

EXAMPLE 15 In a version of the computer language BASIC, the name of a variable is a string of one or
two alphanumeric characters, where uppercase and lowercase letters are not distinguished. (An
alphanumeric character is either one of the 26 English letters or one of the 10 digits.) Moreover,
a variable name must begin with a letter and must be different from the five strings of two
characters that are reserved for programming use. How many different variable names are there
in this version of BASIC?

Solution: Let V equal the number of different variable names in this version of BASIC. Let V1
be the number of these that are one character long and V2 be the number of these that are two
characters long. Then by the sum rule,V = V1 + V2. Note thatV1 = 26, because a one-character
variable name must be a letter. Furthermore, by the product rule there are 26 · 36 strings of length
two that begin with a letter and end with an alphanumeric character. However, five of these
are excluded, so V2 = 26 · 36− 5 = 931. Hence, there are V = V1 + V2 = 26+ 931 = 957
different names for variables in this version of BASIC. ▲

EXAMPLE 16 Each user on a computer system has a password, which is six to eight characters long, where
each character is an uppercase letter or a digit. Each password must contain at least one digit.
How many possible passwords are there?

Solution: Let P be the total number of possible passwords, and let P6, P7, and P8 denote
the number of possible passwords of length 6, 7, and 8, respectively. By the sum rule, P =
P6 + P7 + P8. We will now find P6, P7, and P8. Finding P6 directly is difficult. To find P6 it is
easier to find the number of strings of uppercase letters and digits that are six characters long,
including those with no digits, and subtract from this the number of strings with no digits. By
the product rule, the number of strings of six characters is 366, and the number of strings with
no digits is 266. Hence,

P6 = 366 − 266 = 2,176,782,336− 308,915,776 = 1,867,866,560.

Similarly, we have

P7 = 367 − 267 = 78,364,164,096− 8,031,810,176 = 70,332,353,920

and

P8 = 368 − 268 = 2,821,109,907,456− 208,827,064,576

= 2,612,282,842,880.

Consequently,

P = P6 + P7 + P8 = 2,684,483,063,360.

▲

EXAMPLE 17 Counting Internet Addresses In the Internet, which is made up of interconnected physical
networks of computers, each computer (or more precisely, each network connection of a com-
puter) is assigned an Internet address. In Version 4 of the Internet Protocol (IPv4), now in use,

392 6 / Counting

Bit Number

Class A

Class B

Class C

Class D

Class E

0 netid hostid

1

1

1

1

0 netid hostid

1

1

1

0 netid hostid

1

1

0 Multicast Address

1 0 Address

0 3124161 2 3 4 8

FIGURE 1 Internet Addresses (IPv4).

an address is a string of 32 bits. It begins with a network number (netid). The netid is followed
by a host number (hostid), which identifies a computer as a member of a particular network.

Three forms of addresses are used, with different numbers of bits used for netids and hostids.
Class A addresses, used for the largest networks, consist of 0, followed by a 7-bit netid and a
24-bit hostid. Class B addresses, used for medium-sized networks, consist of 10, followed by
a 14-bit netid and a 16-bit hostid. Class C addresses, used for the smallest networks, consist
of 110, followed by a 21-bit netid and an 8-bit hostid. There are several restrictions on addresses
because of special uses: 1111111 is not available as the netid of a Class A network, and the
hostids consisting of all 0s and all 1s are not available for use in any network. A computer
on the Internet has either a Class A, a Class B, or a Class C address. (Besides Class A, B,
and C addresses, there are also Class D addresses, reserved for use in multicasting when mul-
tiple computers are addressed at a single time, consisting of 1110 followed by 28 bits, and
Class E addresses, reserved for future use, consisting of 11110 followed by 27 bits. Neither
Class D nor Class E addresses are assigned as the IPv4 address of a computer on the Internet.)

The lack of available
IPv4 address has
become a crisis!

Figure 1 illustrates IPv4 addressing. (Limitations on the number of Class A and Class B netids
have made IPv4 addressing inadequate; IPv6, a new version of IP, uses 128-bit addresses to
solve this problem.)

How many different IPv4 addresses are available for computers on the Internet?

Solution: Let x be the number of available addresses for computers on the Internet, and let xA,
xB , and xC denote the number of Class A, Class B, and Class C addresses available, respectively.
By the sum rule, x = xA + xB + xC .

To find xA, note that there are 27 − 1 = 127 Class A netids, recalling that the netid
1111111 is unavailable. For each netid, there are 224 − 2 = 16,777,214 hostids, recalling that the
hostids consisting of all 0s and all 1s are unavailable. Consequently, xA = 127 · 16,777,214 =
2,130,706,178.

To find xB and xC , note that there are 214 = 16,384 Class B netids and 221 = 2,097,152
Class C netids. For each Class B netid, there are 216 − 2 = 65,534 hostids, and for each
Class C netid, there are 28 − 2 = 254 hostids, recalling that in each network the hostids
consisting of all 0s and all 1s are unavailable. Consequently, xB = 1,073,709,056 and xC =
532,676,608.

We conclude that the total number of IPv4 addresses available is x = xA + xB + xC =
2,130,706,178+ 1,073,709,056+ 532,676,608 = 3,737,091,842. ▲

The Subtraction Rule (Inclusion–Exclusion for Two Sets)

Suppose that a task can be done in one of two ways, but some of the ways to do it are common
to both ways. In this situation, we cannot use the sum rule to count the number of ways to do
the task. If we add the number of ways to do the tasks in these two ways, we get an overcount
of the total number of ways to do it, because the ways to do the task that are common to the two
ways are counted twice. To correctly count the number of ways to do the two tasks, we must

Overcounting is perhaps
the most common
enumeration error.

subtract the number of ways that are counted twice. This leads us to an important counting rule.

6.1 The Basics of Counting 393

THE SUBTRACTION RULE If a task can be done in either n1 ways or n2 ways, then the
number of ways to do the task is n1 + n2 minus the number of ways to do the task that are
common to the two different ways.

The subtraction rule is also known as the principle of inclusion–exclusion, especially when
it is used to count the number of elements in the union of two sets. Suppose that A1 and A2 are
sets. Then, there are |A1| ways to select an element from A1 and |A2| ways to select an element
from A2. The number of ways to select an element from A1 or from A2, that is, the number of
ways to select an element from their union, is the sum of the number of ways to select an element
from A1 and the number of ways to select an element from A2, minus the number of ways to
select an element that is in bothA1 andA2. Because there are |A1 ∪ A2|ways to select an element
in either A1 or in A2, and |A1 ∩ A2| ways to select an element common to both sets, we have

|A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2|.

This is the formula given in Section 2.2 for the number of elements in the union of two sets.
Example 18 illustrates how we can solve counting problems using the subtraction principle.

EXAMPLE 18 How many bit strings of length eight either start with a 1 bit or end with the two bits 00?

Solution: We can construct a bit string of length eight that either starts with a 1 bit or ends
with the two bits 00, by constructing a bit string of length eight beginning with a 1 bit or by
constructing a bit string of length eight that ends with the two bits 00. We can construct a bit
string of length eight that begins with a 1 in 27 = 128 ways. This follows by the product rule,
because the first bit can be chosen in only one way and each of the other seven bits can be
chosen in two ways. Similarly, we can construct a bit string of length eight ending with the two
bits 00, in 26 = 64 ways. This follows by the product rule, because each of the first six bits can
be chosen in two ways and the last two bits can be chosen in only one way.

Some of the ways to construct a bit string of length eight starting with a 1 are the same
as the ways to construct a bit string of length eight that ends with the two bits 00. There are
25 = 32 ways to construct such a string. This follows by the product rule, because the first
bit can be chosen in only one way, each of the second through the sixth bits can be chosen
in two ways, and the last two bits can be chosen in one way. Consequently, the number of
bit strings of length eight that begin with a 1 or end with a 00, which equals the number
of ways to construct a bit string of length eight that begins with a 1 or that ends with 00,
equals 128+ 64− 32 = 160. ▲

27 = 128 ways

1

26 = 64 ways

25 = 32 ways

1 0 0

0 0

We present an example that illustrates how the formulation of the principle of inclusion–
exclusion can be used to solve counting problems.

EXAMPLE 19 A computer company receives 350 applications from computer graduates for a job planning a
line of new Web servers. Suppose that 220 of these applicants majored in computer science, 147
majored in business, and 51 majored both in computer science and in business. How many of
these applicants majored neither in computer science nor in business?

Solution: To find the number of these applicants who majored neither in computer science nor
in business, we can subtract the number of students who majored either in computer science
or in business (or both) from the total number of applicants. Let A1 be the set of students who
majored in computer science and A2 the set of students who majored in business. Then A1 ∪ A2
is the set of students who majored in computer science or business (or both), and A1 ∩ A2 is the

394 6 / Counting

set of students who majored both in computer science and in business. By the subtraction rule
the number of students who majored either in computer science or in business (or both) equals

|A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2| = 220+ 147− 51 = 316.

We conclude that 350− 316 = 34 of the applicants majored neither in computer science nor in
business. ▲

The subtraction rule, or the principle of inclusion–exclusion, can be generalized to find the
number of ways to do one of n different tasks or, equivalently, to find the number of elements
in the union of n sets, whenever n is a positive integer. We will study the inclusion–exclusion
principle and some of its many applications in Chapter 8.

The Division Rule

We have introduced the product, sum, and subtraction rules for counting. You may wonder
whether there is also a division rule for counting. In fact, there is such a rule, which can be
useful when solving certain types of enumeration problems.

THE DIVISION RULE There are n/d ways to do a task if it can be done using a procedure
that can be carried out in n ways, and for every way w, exactly d of the n ways correspond
to way w.

We can restate the division rule in terms of sets: “If the finite set A is the union of n pairwise
disjoint subsets each with d elements, then n = |A|/d.”

We can also formulate the division rule in terms of functions: “If f is a function from A

to B where A and B are finite sets, and that for every value y ∈ B there are exactly d values
x ∈ A such that f (x) = y (in which case, we say that f is d-to-one), then |B| = |A|/d.”

We illustrate the use of the division rule for counting with an example.

EXAMPLE 20 How many different ways are there to seat four people around a circular table, where two
seatings are considered the same when each person has the same left neighbor and the same
right neighbor?

Solution: We arbitrarily select a seat at the table and label it seat 1. We number the rest of the
seats in numerical order, proceeding clockwise around the table. Note that are four ways to
select the person for seat 1, three ways to select the person for seat 2, two ways to select the
person for seat 3, and one way to select the person for seat 4. Thus, there are 4! = 24 ways to
order the given four people for these seats. However, each of the four choices for seat 1 leads
to the same arrangement, as we distinguish two arrangements only when one of the people has
a different immediate left or immediate right neighbor. Because there are four ways to choose
the person for seat 1, by the division rule there are 24/4 = 6 different seating arrangements of
four people around the circular table. ▲

Tree Diagrams

Counting problems can be solved using tree diagrams. A tree consists of a root, a number
of branches leaving the root, and possible additional branches leaving the endpoints of other
branches. (We will study trees in detail in Chapter 11.) To use trees in counting, we use a branch
to represent each possible choice. We represent the possible outcomes by the leaves, which are
the endpoints of branches not having other branches starting at them.

00
1

2nd bit

4th bit

1st bit

3rd bit

0 1 001

1 0

00 1

1 1 000

100

00
00

00
0

1
00

10
01

0
0

01
0

1
111

00
0

01
0

FIGURE 2 Bit

Strings of Length

Four without

Consecutive 1s.

Note that when a tree diagram is used to solve a counting problem, the number of choices
of which branch to follow to reach a leaf can vary (see Example 21, for example).

6.1 The Basics of Counting 395

T
eam

 1

T
eam

 1

T
eam

 1

T
eam

 2
T

eam
 2

T
eam

 2

T
eam

 1

T
eam

 1

T
eam

 1

T
eam

 2
T

eam
 2

T
eam

 1

T
eam

 1

T
eam

 2

T
eam

 1

T
eam

 2

T
eam

 1

T
eam

 2

T
eam

 1

T
eam

 2

T
eam

 2

T
eam

 2

T
eam

 1

T
eam

 2

T
eam

 1

T
eam

 1

T
eam

 1

T
eam

 2

T
eam

 2

T
eam

 1

T
eam

 2

T
eam

 1

T
eam

 2

T
eam

 2

T
eam

 2

T
eam

 2

T
eam

 1

T
eam

 1

Winning team

shown in color

Game 1

Game 2

Game 3

Game 4

Game 5

FIGURE 3 Best Three Games Out of Five Playoffs.

EXAMPLE 21 How many bit strings of length four do not have two consecutive 1s?

Solution: The tree diagram in Figure 2 displays all bit strings of length four without two con-
secutive 1s. We see that there are eight bit strings of length four without two consecutive 1s. ▲

EXAMPLE 22 A playoff between two teams consists of at most five games. The first team that wins three games
wins the playoff. In how many different ways can the playoff occur?

Solution: The tree diagram in Figure 3 displays all the ways the playoff can proceed, with the
winner of each game shown. We see that there are 20 different ways for the playoff to occur. ▲

EXAMPLE 23 Suppose that “I Love New Jersey” T-shirts come in five different sizes: S, M, L, XL, and XXL.
Further suppose that each size comes in four colors, white, red, green, and black, except for XL,
which comes only in red, green, and black, and XXL, which comes only in green and black. How
many different shirts does a souvenir shop have to stock to have at least one of each available
size and color of the T-shirt?

Solution: The tree diagram in Figure 4 displays all possible size and color pairs. It follows that
the souvenir shop owner needs to stock 17 different T-shirts. ▲

S

W R G B

M

W R G B

L

W R G B R G B

XL

W = white, R = red, G = green, B = black

G B

XXL

FIGURE 4 Counting Varieties of T-Shirts.

396 6 / Counting

Exercises

1. There are 18 mathematics majors and 325 computer sci-
ence majors at a college.

a) In how many ways can two representatives be picked
so that one is a mathematics major and the other is a
computer science major?

b) In how many ways can one representative be picked
who is either a mathematics major or a computer sci-
ence major?

2. An office building contains 27 floors and has 37 offices
on each floor. How many offices are in the building?

3. A multiple-choice test contains 10 questions. There are
four possible answers for each question.

a) In how many ways can a student answer the questions
on the test if the student answers every question?

b) In how many ways can a student answer the questions
on the test if the student can leave answers blank?

4. A particular brand of shirt comes in 12 colors, has a male
version and a female version, and comes in three sizes
for each sex. How many different types of this shirt are
made?

5. Six different airlines fly from New York to Denver and
seven fly from Denver to San Francisco. How many dif-
ferent pairs of airlines can you choose on which to book
a trip from New York to San Francisco via Denver, when
you pick an airline for the flight to Denver and an airline
for the continuation flight to San Francisco?

6. There are four major auto routes from Boston to Detroit
and six from Detroit to Los Angeles. How many major
auto routes are there from Boston to Los Angeles via De-
troit?

7. How many different three-letter initials can people have?

8. How many different three-letter initials with none of the
letters repeated can people have?

9. How many different three-letter initials are there that be-
gin with an A?

10. How many bit strings are there of length eight?

11. How many bit strings of length ten both begin and end
with a 1?

12. How many bit strings are there of length six or less, not
counting the empty string?

13. How many bit strings with length not exceeding n, where
n is a positive integer, consist entirely of 1s, not counting
the empty string?

14. How many bit strings of length n, where n is a positive
integer, start and end with 1s?

15. How many strings are there of lowercase letters of length
four or less, not counting the empty string?

16. How many strings are there of four lowercase letters that
have the letter x in them?

17. How many strings of five ASCII characters contain the
character @ (“at” sign) at least once? [Note: There are
128 different ASCII characters.

18. How many 5-element DNA sequences

a) end with A?
b) start with T and end with G?
c) contain only A and T?
d) do not contain C?

19. How many 6-element RNA sequences

a) do not contain U?
b) end with GU?
c) start with C?
d) contain only A or U?

20. How many positive integers between 5 and 31

a) are divisible by 3? Which integers are these?
b) are divisible by 4? Which integers are these?
c) are divisible by 3 and by 4? Which integers are these?

21. How many positive integers between 50 and 100

a) are divisible by 7? Which integers are these?
b) are divisible by 11? Which integers are these?
c) are divisible by both 7 and 11? Which integers are

these?

22. How many positive integers less than 1000

a) are divisible by 7?
b) are divisible by 7 but not by 11?
c) are divisible by both 7 and 11?
d) are divisible by either 7 or 11?
e) are divisible by exactly one of 7 and 11?
f) are divisible by neither 7 nor 11?
g) have distinct digits?
h) have distinct digits and are even?

23. How many positive integers between 100 and 999 inclu-
sive

a) are divisible by 7?
b) are odd?
c) have the same three decimal digits?
d) are not divisible by 4?
e) are divisible by 3 or 4?
f) are not divisible by either 3 or 4?
g) are divisible by 3 but not by 4?
h) are divisible by 3 and 4?

24. How many positive integers between 1000 and 9999 in-
clusive

a) are divisible by 9?
b) are even?
c) have distinct digits?
d) are not divisible by 3?
e) are divisible by 5 or 7?
f) are not divisible by either 5 or 7?
g) are divisible by 5 but not by 7?
h) are divisible by 5 and 7?

6.1 The Basics of Counting 397

25. How many strings of three decimal digits

a) do not contain the same digit three times?
b) begin with an odd digit?
c) have exactly two digits that are 4s?

26. How many strings of four decimal digits

a) do not contain the same digit twice?
b) end with an even digit?
c) have exactly three digits that are 9s?

27. A committee is formed consisting of one representative
from each of the 50 states in the United States, where the
representative from a state is either the governor or one
of the two senators from that state. How many ways are
there to form this committee?

28. How many license plates can be made using either three
digits followed by three uppercase English letters or three
uppercase English letters followed by three digits?

29. How many license plates can be made using either two
uppercase English letters followed by four digits or two
digits followed by four uppercase English letters?

30. How many license plates can be made using either three
uppercase English letters followed by three digits or four
uppercase English letters followed by two digits?

31. How many license plates can be made using either two
or three uppercase English letters followed by either two
or three digits?

32. How many strings of eight uppercase English letters are
there

a) if letters can be repeated?
b) if no letter can be repeated?
c) that start with X, if letters can be repeated?
d) that start with X, if no letter can be repeated?
e) that start and end with X, if letters can be repeated?
f) that start with the letters BO (in that order), if letters

can be repeated?
g) that start and end with the letters BO (in that order),

if letters can be repeated?
h) that start or end with the letters BO (in that order), if

letters can be repeated?

33. How many strings of eight English letters are there

a) that contain no vowels, if letters can be repeated?
b) that contain no vowels, if letters cannot be repeated?
c) that start with a vowel, if letters can be repeated?
d) that start with a vowel, if letters cannot be repeated?
e) that contain at least one vowel, if letters can be re-

peated?
f) that contain exactly one vowel, if letters can be re-

peated?
g) that start with X and contain at least one vowel, if

letters can be repeated?
h) that start and end with X and contain at least one

vowel, if letters can be repeated?

34. How many different functions are there from a set with
10 elements to sets with the following numbers of ele-
ments?

a) 2 b) 3 c) 4 d) 5

35. How many one-to-one functions are there from a set with
five elements to sets with the following number of ele-
ments?

a) 4 b) 5 c) 6 d) 7

36. How many functions are there from the set {1, 2, . . . , n},
where n is a positive integer, to the set {0, 1}?

37. How many functions are there from the set {1, 2, . . . , n},
where n is a positive integer, to the set {0, 1}
a) that are one-to-one?
b) that assign 0 to both 1 and n?
c) that assign 1 to exactly one of the positive integers

less than n?

38. How many partial functions (see Section 2.3) are there
from a set with five elements to sets with each of these
number of elements?

a) 1 b) 2 c) 5 d) 9

39. How many partial functions (see Definition 13 of Section
2.3) are there from a set with m elements to a set with n

elements, where m and n are positive integers?

40. How many subsets of a set with 100 elements have more
than one element?

41. A palindrome is a string whose reversal is identical to the
string. How many bit strings of length n are palindromes?

42. How many 4-element DNA sequences

a) do not contain the base T?
b) contain the sequence ACG?
c) contain all four bases A, T, C, and G?
d) contain exactly three of the four bases A, T, C, and G?

43. How many 4-element RNA sequences

a) contain the base U?
b) do not contain the sequence CUG?
c) do not contain all four bases A, U, C, and G?
d) contain exactly two of the four bases A, U, C, and G?

44. How many ways are there to seat four of a group of ten
people around a circular table where two seatings are con-
sidered the same when everyone has the same immediate
left and immediate right neighbor?

45. How many ways are there to seat six people around a cir-
cular table where two seatings are considered the same
when everyone has the same two neighbors without re-
gard to whether they are right or left neighbors?

46. In how many ways can a photographer at a wedding ar-
range 6 people in a row from a group of 10 people, where
the bride and the groom are among these 10 people, if

a) the bride must be in the picture?
b) both the bride and groom must be in the picture?
c) exactly one of the bride and the groom is in the pic-

ture?

47. In how many ways can a photographer at a wedding ar-
range six people in a row, including the bride and groom,
if

a) the bride must be next to the groom?
b) the bride is not next to the groom?
c) the bride is positioned somewhere to the left of the

groom?

398 6 / Counting

48. How many bit strings of length seven either begin with
two 0s or end with three 1s?

49. How many bit strings of length 10 either begin with three
0s or end with two 0s?

∗50. How many bit strings of length 10 contain either five con-
secutive 0s or five consecutive 1s?

∗∗51. How many bit strings of length eight contain either three
consecutive 0s or four consecutive 1s?

52. Every student in a discrete mathematics class is either a
computer science or a mathematics major or is a joint
major in these two subjects. How many students are in
the class if there are 38 computer science majors (includ-
ing joint majors), 23 mathematics majors (including joint
majors), and 7 joint majors?

53. How many positive integers not exceeding 100 are divis-
ible either by 4 or by 6?

54. How many different initials can someone have if a person
has at least two, but no more than five, different initials?
Assume that each initial is one of the 26 uppercase letters
of the English language.

55. Suppose that a password for a computer system must have
at least 8, but no more than 12, characters, where each
character in the password is a lowercase English letter,
an uppercase English letter, a digit, or one of the six spe-
cial characters ∗, >, <, !, +, and =.

a) How many different passwords are available for this
computer system?

b) How many of these passwords contain at least one oc-
currence of at least one of the six special characters?

c) Using your answer to part (a), determine how long it
takes a hacker to try every possible password, assum-
ing that it takes one nanosecond for a hacker to check
each possible password.

56. The name of a variable in the C programming language is
a string that can contain uppercase letters, lowercase let-
ters, digits, or underscores. Further, the first character in
the string must be a letter, either uppercase or lowercase,
or an underscore. If the name of a variable is determined
by its first eight characters, how many different variables
can be named in C? (Note that the name of a variable may
contain fewer than eight characters.)

57. The name of a variable in the JAVA programming lan-
guage is a string of between 1 and 65,535 characters,
inclusive, where each character can be an uppercase or a
lowercase letter, a dollar sign, an underscore, or a digit,
except that the first character must not be a digit. Deter-
mine the number of different variable names in JAVA.

58. The International Telecommunications Union (ITU)
specifies that a telephone number must consist of a coun-
try code with between 1 and 3 digits, except that the code 0
is not available for use as a country code, followed by
a number with at most 15 digits. How many available
possible telephone numbers are there that satisfy these
restrictions?

59. Suppose that at some future time every telephone in the
world is assigned a number that contains a country code
1 to 3 digits long, that is, of the form X, XX, or XXX,
followed by a 10-digit telephone number of the form
NXX-NXX-XXXX (as described in Example 8). How
many different telephone numbers would be available
worldwide under this numbering plan?

60. A key in the Vigenère cryptosystem is a string of English
letters, where the case of the letters does not matter. How
many different keys for this cryptosystem are there with
three, four, five, or six letters?

61. A wired equivalent privacy (WEP) key for a wireless fi-
delity (WiFi) network is a string of either 10, 26, or 58
hexadecimal digits. How many different WEP keys are
there?

62. Suppose thatp and q are prime numbers and that n = pq.
Use the principle of inclusion–exclusion to find the num-
ber of positive integers not exceeding n that are relatively
prime to n.

63. Use the principle of inclusion–exclusion to find the num-
ber of positive integers less than 1,000,000 that are not
divisible by either 4 or by 6.

64. Use a tree diagram to find the number of bit strings of
length four with no three consecutive 0s.

65. How many ways are there to arrange the letters a, b, c,
and d such that a is not followed immediately by b?

66. Use a tree diagram to find the number of ways that the
World Series can occur, where the first team that wins
four games out of seven wins the series.

67. Use a tree diagram to determine the number of subsets
of {3, 7, 9, 11, 24} with the property that the sum of the
elements in the subset is less than 28.

68. a) Suppose that a store sells six varieties of soft drinks:
cola, ginger ale, orange, root beer, lemonade, and
cream soda. Use a tree diagram to determine the num-
ber of different types of bottles the store must stock to
have all varieties available in all size bottles if all vari-
eties are available in 12-ounce bottles, all but lemon-
ade are available in 20-ounce bottles, only cola and
ginger ale are available in 32-ounce bottles, and all but
lemonade and cream soda are available in 64-ounce
bottles?

b) Answer the question in part (a) using counting rules.

69. a) Suppose that a popular style of running shoe is avail-
able for both men and women. The woman’s shoe
comes in sizes 6, 7, 8, and 9, and the man’s shoe
comes in sizes 8, 9, 10, 11, and 12. The man’s shoe
comes in white and black, while the woman’s shoe
comes in white, red, and black. Use a tree diagram to
determine the number of different shoes that a store
has to stock to have at least one pair of this type of
running shoe for all available sizes and colors for both
men and women.

b) Answer the question in part (a) using counting rules.
∗70. Use the product rule to show that there are 22n

different
truth tables for propositions in n variables.

6.2 The Pigeonhole Principle 399

71. Use mathematical induction to prove the sum rule for m
tasks from the sum rule for two tasks.

72. Use mathematical induction to prove the product rule
for m tasks from the product rule for two tasks.

73. How many diagonals does a convex polygon with n sides
have? (Recall that a polygon is convex if every line seg-
ment connecting two points in the interior or boundary of
the polygon lies entirely within this set and that a diago-
nal of a polygon is a line segment connecting two vertices
that are not adjacent.)

74. Data are transmitted over the Internet in datagrams,
which are structured blocks of bits. Each datagram con-
tains header information organized into a maximum
of 14 different fields (specifying many things, including
the source and destination addresses) and a data area that
contains the actual data that are transmitted. One of the
14 header fields is the header length field (denoted by
HLEN), which is specified by the protocol to be 4 bits
long and that specifies the header length in terms of 32-bit
blocks of bits. For example, if HLEN = 0110, the header

is made up of six 32-bit blocks. Another of the 14 header
fields is the 16-bit-long total length field (denoted by
TOTAL LENGTH), which specifies the length in bits
of the entire datagram, including both the header fields
and the data area. The length of the data area is the total
length of the datagram minus the length of the header.

a) The largest possible value of TOTAL LENGTH
(which is 16 bits long) determines the maximum
total length in octets (blocks of 8 bits) of an Internet
datagram. What is this value?

b) The largest possible value of HLEN (which is 4 bits
long) determines the maximum total header length
in 32-bit blocks. What is this value? What is the
maximum total header length in octets?

c) The minimum (and most common) header length is
20 octets. What is the maximum total length in octets
of the data area of an Internet datagram?

d) How many different strings of octets in the data area
can be transmitted if the header length is 20 octets
and the total length is as long as possible?

6.2 The Pigeonhole Principle

Introduction

Suppose that a flock of 20 pigeons flies into a set of 19 pigeonholes to roost. Because there are
20 pigeons but only 19 pigeonholes, a least one of these 19 pigeonholes must have at least two
pigeons in it. To see why this is true, note that if each pigeonhole had at most one pigeon in it,
at most 19 pigeons, one per hole, could be accommodated. This illustrates a general principle
called the pigeonhole principle, which states that if there are more pigeons than pigeonholes,
then there must be at least one pigeonhole with at least two pigeons in it (see Figure 1). Of
course, this principle applies to other objects besides pigeons and pigeonholes.

THEOREM 1 THE PIGEONHOLE PRINCIPLE If k is a positive integer and k + 1 or more objects
are placed into k boxes, then there is at least one box containing two or more of the objects.

(a) (b) (c)

FIGURE 1 There Are More Pigeons Than Pigeonholes.

400 6 / Counting

Proof: We prove the pigeonhole principle using a proof by contraposition. Suppose that none of
the k boxes contains more than one object. Then the total number of objects would be at most k.
This is a contradiction, because there are at least k + 1 objects.

The pigeonhole principle is also called theDirichlet drawer principle, after the nineteenth-
century German mathematician G. Lejeune Dirichlet, who often used this principle in his work.
(Dirichlet was not the first person to use this principle; a demonstration that there were at least
two Parisians with the same number of hairs on their heads dates back to the 17th century—
see Exercise 33.) It is an important additional proof technique supplementing those we have
developed in earlier chapters. We introduce it in this chapter because of its many important
applications to combinatorics.

We will illustrate the usefulness of the pigeonhole principle. We first show that it can be
used to prove a useful corollary about functions.

COROLLARY 1 A function f from a set with k + 1 or more elements to a set with k elements is not one-to-one.

Proof: Suppose that for each element y in the codomain of f we have a box that contains all
elements x of the domain of f such that f (x) = y. Because the domain contains k + 1 or more
elements and the codomain contains only k elements, the pigeonhole principle tells us that one
of these boxes contains two or more elements x of the domain. This means that f cannot be
one-to-one.

Examples 1–3 show how the pigeonhole principle is used.

EXAMPLE 1 Among any group of 367 people, there must be at least two with the same birthday, because
there are only 366 possible birthdays. ▲

EXAMPLE 2 In any group of 27 English words, there must be at least two that begin with the same letter,
because there are 26 letters in the English alphabet. ▲

EXAMPLE 3 How many students must be in a class to guarantee that at least two students receive the same
score on the final exam, if the exam is graded on a scale from 0 to 100 points?

Solution: There are 101 possible scores on the final. The pigeonhole principle shows that among
any 102 students there must be at least 2 students with the same score. ▲

G. LEJEUNE DIRICHLET (1805–1859) G. Lejeune Dirichlet was born into a Belgian family living near
Cologne, Germany. His father was a postmaster. He became passionate about mathematics at a young age. He
was spending all his spare money on mathematics books by the time he entered secondary school in Bonn at the
age of 12.At 14 he entered the Jesuit College in Cologne, and at 16 he began his studies at the University of Paris.
In 1825 he returned to Germany and was appointed to a position at the University of Breslau. In 1828 he moved
to the University of Berlin. In 1855 he was chosen to succeed Gauss at the University of Göttingen. Dirichlet
is said to be the first person to master Gauss’s Disquisitiones Arithmeticae, which appeared 20 years earlier.
He is said to have kept a copy at his side even when he traveled. Dirichlet made many important discoveries

in number theory, including the theorem that there are infinitely many primes in arithmetical progressions an+ b when a and b are
relatively prime. He proved the n = 5 case of Fermat’s last theorem, that there are no nontrivial solutions in integers to x5 + y5 = z5.
Dirichlet also made many contributions to analysis. Dirichlet was considered to be an excellent teacher who could explain ideas with
great clarity. He was married to Rebecca Mendelssohn, one of the sisters of the composer Frederick Mendelssohn.

6.2 The Pigeonhole Principle 401

The pigeonhole principle is a useful tool in many proofs, including proofs of surprising
results, such as that given in Example 4.

EXAMPLE 4 Show that for every integer n there is a multiple of n that has only 0s and 1s in its decimal
expansion.

Solution: Let n be a positive integer. Consider the n+ 1 integers 1, 11, 111, . . . , 11 . . . 1 (where
the last integer in this list is the integer with n+ 1 1s in its decimal expansion). Note that there
are n possible remainders when an integer is divided by n. Because there are n+ 1 integers in
this list, by the pigeonhole principle there must be two with the same remainder when divided
by n. The larger of these integers less the smaller one is a multiple of n, which has a decimal
expansion consisting entirely of 0s and 1s. ▲

The Generalized Pigeonhole Principle

The pigeonhole principle states that there must be at least two objects in the same box when
there are more objects than boxes. However, even more can be said when the number of objects
exceeds a multiple of the number of boxes. For instance, among any set of 21 decimal digits
there must be 3 that are the same. This follows because when 21 objects are distributed into
10 boxes, one box must have more than 2 objects.

THEOREM 2 THE GENERALIZED PIGEONHOLE PRINCIPLE If N objects are placed into k

boxes, then there is at least one box containing at least N/k objects.

Proof: We will use a proof by contraposition. Suppose that none of the boxes contains more
than N/k − 1 objects. Then, the total number of objects is at most

k

��
N

k

�
− 1

�
< k

��
N

k
+ 1

�
− 1

�
= N,

where the inequality N/k < (N/k)+ 1 has been used. This is a contradiction because there
are a total of N objects.

A common type of problem asks for the minimum number of objects such that at least r
of these objects must be in one of k boxes when these objects are distributed among the boxes.
When we have N objects, the generalized pigeonhole principle tells us there must be at least r
objects in one of the boxes as long as N/k ≥ r. The smallest integer N with N/k > r − 1,
namely, N = k(r − 1)+ 1, is the smallest integer satisfying the inequality N/k ≥ r . Could
a smaller value of N suffice? The answer is no, because if we had k(r − 1) objects, we could
put r − 1 of them in each of the k boxes and no box would have at least r objects.

When thinking about problems of this type, it is useful to consider how you can avoid having
at least r objects in one of the boxes as you add successive objects. To avoid adding a rth object
to any box, you eventually end up with r − 1 objects in each box. There is no way to add the
next object without putting an rth object in that box.

Examples 5–8 illustrate how the generalized pigeonhole principle is applied.

EXAMPLE 5 Among 100 people there are at least 100/12 = 9 who were born in the same month. ▲

402 6 / Counting

EXAMPLE 6 What is the minimum number of students required in a discrete mathematics class to be sure
that at least six will receive the same grade, if there are five possible grades, A, B, C, D, and F?

Solution: The minimum number of students needed to ensure that at least six students receive
the same grade is the smallest integer N such that N/5 = 6. The smallest such integer is
N = 5 · 5+ 1 = 26. If you have only 25 students, it is possible for there to be five who have re-
ceived each grade so that no six students have received the same grade. Thus, 26 is the minimum
number of students needed to ensure that at least six students will receive the same grade. ▲

EXAMPLE 7 a) How many cards must be selected from a standard deck of 52 cards to guarantee that at least
three cards of the same suit are chosen?

A standard deck of 52
cards has 13 kinds of
cards, with four cards of
each of kind, one in each
of the four suits, hearts,
diamonds, spades, and
clubs.

b) How many must be selected to guarantee that at least three hearts are selected?

Solution: a) Suppose there are four boxes, one for each suit, and as cards are selected they are
placed in the box reserved for cards of that suit. Using the generalized pigeonhole principle,
we see that if N cards are selected, there is at least one box containing at least N/4 cards.
Consequently, we know that at least three cards of one suit are selected if N/4 ≥ 3. The
smallest integer N such that N/4 ≥ 3 is N = 2 · 4+ 1 = 9, so nine cards suffice. Note that
if eight cards are selected, it is possible to have two cards of each suit, so more than eight cards
are needed. Consequently, nine cards must be selected to guarantee that at least three cards of
one suit are chosen. One good way to think about this is to note that after the eighth card is
chosen, there is no way to avoid having a third card of some suit.

b)We do not use the generalized pigeonhole principle to answer this question, because we want
to make sure that there are three hearts, not just three cards of one suit. Note that in the worst
case, we can select all the clubs, diamonds, and spades, 39 cards in all, before we select a single
heart. The next three cards will be all hearts, so we may need to select 42 cards to get three
hearts. ▲

EXAMPLE 8 What is the least number of area codes needed to guarantee that the 25 million phones in a state
can be assigned distinct 10-digit telephone numbers? (Assume that telephone numbers are of
the form NXX-NXX-XXXX, where the first three digits form the area code, N represents a
digit from 2 to 9 inclusive, and X represents any digit.)

Solution: There are eight million different phone numbers of the form NXX-XXXX (as shown
in Example 8 of Section 6.1). Hence, by the generalized pigeonhole principle, among 25 million
telephones, at least 25,000,000/8,000,000 = 4 of them must have identical phone numbers.
Hence, at least four area codes are required to ensure that all 10-digit numbers are different. ▲

Example 9, although not an application of the generalized pigeonhole principle, makes use
of similar principles.

EXAMPLE 9 Suppose that a computer science laboratory has 15 workstations and 10 servers. A cable can be
used to directly connect a workstation to a server. For each server, only one direct connection to
that server can be active at any time. We want to guarantee that at any time any set of 10 or fewer
workstations can simultaneously access different servers via direct connections. Although we
could do this by connecting every workstation directly to every server (using 150 connections),
what is the minimum number of direct connections needed to achieve this goal?

Solution: Suppose that we label the workstations W1,W2, . . . ,W15 and the servers
S1, S2, . . . , S10. Furthermore, suppose that we connect Wk to Sk for k = 1, 2, . . . , 10 and each
of W11,W12,W13,W14, and W15 to all 10 servers. We have a total of 60 direct connections.
Clearly any set of 10 or fewer workstations can simultaneously access different servers. We see
this by noting that if workstation Wj is included with 1 ≤ j ≤ 10, it can access server Sj , and
for each workstation Wk with k ≥ 11 included, there must be a corresponding workstation Wj

6.2 The Pigeonhole Principle 403

with 1 ≤ j ≤ 10 not included, so Wk can access server Sj . (This follows because there are at
least as many available servers Sj as there are workstations Wj with 1 ≤ j ≤ 10 not included.)

Now suppose there are fewer than 60 direct connections between workstations and servers.
Then some server would be connected to at most 59/10 = 5 workstations. (If all servers were
connected to at least six workstations, there would be at least 6 · 10 = 60 direct connections.)
This means that the remaining nine servers are not enough to allow the other 10 workstations to
simultaneously access different servers. Consequently, at least 60 direct connections are needed.
It follows that 60 is the answer. ▲

Some Elegant Applications of the Pigeonhole Principle

In many interesting applications of the pigeonhole principle, the objects to be placed in boxes
must be chosen in a clever way. A few such applications will be described here.

EXAMPLE 10 During a month with 30 days, a baseball team plays at least one game a day, but no more
than 45 games. Show that there must be a period of some number of consecutive days during
which the team must play exactly 14 games.

Solution: Let aj be the number of games played on or before the j th day of the month. Then
a1, a2, . . . , a30 is an increasing sequence of distinct positive integers, with 1 ≤ aj ≤ 45. More-
over, a1 + 14, a2 + 14, . . . , a30 + 14 is also an increasing sequence of distinct positive integers,
with 15 ≤ aj + 14 ≤ 59.

The 60 positive integers a1, a2, . . . , a30, a1 + 14, a2 + 14, . . . , a30 + 14 are all less than
or equal to 59. Hence, by the pigeonhole principle two of these integers are equal. Because the
integers aj , j = 1, 2, . . . , 30 are all distinct and the integers aj + 14, j = 1, 2, . . . , 30 are all
distinct, there must be indices i and j with ai = aj + 14. This means that exactly 14 games
were played from day j + 1 to day i. ▲

EXAMPLE 11 Show that among any n+ 1 positive integers not exceeding 2n there must be an integer that
divides one of the other integers.

Solution: Write each of the n+ 1 integers a1, a2, . . . , an+1 as a power of 2 times an odd integer.
In other words, let aj = 2kj qj for j = 1, 2, . . . , n+ 1, where kj is a nonnegative integer and qj
is odd. The integers q1, q2, . . . , qn+1 are all odd positive integers less than 2n. Because there
are only n odd positive integers less than 2n, it follows from the pigeonhole principle that two
of the integers q1, q2, . . . , qn+1 must be equal. Therefore, there are distinct integers i and j such
that qi = qj . Let q be the common value of qi and qj . Then, ai = 2ki q and aj = 2kj q. It follows
that if ki < kj , then ai divides aj ; while if ki > kj , then aj divides ai . ▲

A clever application of the pigeonhole principle shows the existence of an increasing or a
decreasing subsequence of a certain length in a sequence of distinct integers. We review some
definitions before this application is presented. Suppose that a1, a2, . . . , aN is a sequence of
real numbers. A subsequence of this sequence is a sequence of the form ai1, ai2, . . . , aim , where
1 ≤ i1 < i2 < · · · < im ≤ N . Hence, a subsequence is a sequence obtained from the original
sequence by including some of the terms of the original sequence in their original order, and
perhaps not including other terms. A sequence is called strictly increasing if each term is larger
than the one that precedes it, and it is called strictly decreasing if each term is smaller than the
one that precedes it.

THEOREM 3 Every sequence of n2 + 1 distinct real numbers contains a subsequence of length n+ 1 that
is either strictly increasing or strictly decreasing.

404 6 / Counting

We give an example before presenting the proof of Theorem 3.

EXAMPLE 12 The sequence 8, 11, 9, 1, 4, 6, 12, 10, 5, 7 contains 10 terms. Note that 10 = 32 + 1. There
are four strictly increasing subsequences of length four, namely, 1, 4, 6, 12; 1, 4, 6, 7;
1, 4, 6, 10; and 1, 4, 5, 7. There is also a strictly decreasing subsequence of length four,
namely, 11, 9, 6, 5. ▲

The proof of the theorem will now be given.

Proof: Let a1, a2, . . . , an2+1 be a sequence ofn2 + 1 distinct real numbers.Associate an ordered
pair with each term of the sequence, namely, associate (ik, dk) to the term ak , where ik is the
length of the longest increasing subsequence starting at ak , and dk is the length of the longest
decreasing subsequence starting at ak .

Suppose that there are no increasing or decreasing subsequences of length n+ 1. Then ik
and dk are both positive integers less than or equal to n, for k = 1, 2, . . . , n2 + 1. Hence, by the
product rule there are n2 possible ordered pairs for (ik, dk). By the pigeonhole principle, two of
these n2 + 1 ordered pairs are equal. In other words, there exist terms as and at , with s < t

such that is = it and ds = dt . We will show that this is impossible. Because the terms of the
sequence are distinct, either as < at or as > at . If as < at , then, because is = it , an increasing
subsequence of length it + 1 can be built starting at as , by taking as followed by an increasing
subsequence of length it beginning at at . This is a contradiction. Similarly, if as > at , the same
reasoning shows that ds must be greater than dt , which is a contradiction.

The final example shows how the generalized pigeonhole principle can be applied to an im-
portant part of combinatorics calledRamsey theory, after the English mathematician F. P. Ram-
sey. In general, Ramsey theory deals with the distribution of subsets of elements of sets.

EXAMPLE 13 Assume that in a group of six people, each pair of individuals consists of two friends or two
enemies. Show that there are either three mutual friends or three mutual enemies in the group.

Solution: Let A be one of the six people. Of the five other people in the group, there are either
three or more who are friends of A, or three or more who are enemies of A. This follows from
the generalized pigeonhole principle, because when five objects are divided into two sets, one
of the sets has at least 5/2 = 3 elements. In the former case, suppose that B, C, and D are
friends of A. If any two of these three individuals are friends, then these two and A form a group
of three mutual friends. Otherwise, B, C, and D form a set of three mutual enemies. The proof
in the latter case, when there are three or more enemies of A, proceeds in a similar manner. ▲

The Ramsey number R(m, n), where m and n are positive integers greater than or equal
to 2, denotes the minimum number of people at a party such that there are eithermmutual friends
or n mutual enemies, assuming that every pair of people at the party are friends or enemies.
Example 13 shows that R(3, 3) ≤ 6. We conclude that R(3, 3) = 6 because in a group of five

FRANK PLUMPTON RAMSEY (1903–1930) Frank Plumpton Ramsey, son of the president of Magdalene
College, Cambridge, was educated at Winchester and Trinity Colleges. After graduating in 1923, he was elected
a fellow of King’s College, Cambridge, where he spent the remainder of his life. Ramsey made important
contributions to mathematical logic. What we now call Ramsey theory began with his clever combinatorial
arguments, published in the paper “On a Problem of Formal Logic.” Ramsey also made contributions to the
mathematical theory of economics. He was noted as an excellent lecturer on the foundations of mathematics.
According to one of his brothers, he was interested in almost everything, including English literature and politics.
Ramsey was married and had two daughters. His death at the age of 26 resulting from chronic liver problems
deprived the mathematical community and Cambridge University of a brilliant young scholar.

6.2 The Pigeonhole Principle 405

people where every two people are friends or enemies, there may not be three mutual friends or
three mutual enemies (see Exercise 26).

It is possible to prove some useful properties about Ramsey numbers, but for the most
part it is difficult to find their exact values. Note that by symmetry it can be shown that
R(m, n) = R(n,m) (see Exercise 30). We also haveR(2, n) = n for every positive integern ≥ 2
(see Exercise 29). The exact values of only nine Ramsey numbers R(m, n) with 3 ≤ m ≤ n are
known, including R(4, 4) = 18. Only bounds are known for many other Ramsey numbers, in-
cluding R(5, 5), which is known to satisfy 43 ≤ R(5, 5) ≤ 49. The reader interested in learning
more about Ramsey numbers should consult [MiRo91] or [GrRoSp90].

Exercises

1. Show that in any set of six classes, each meeting regu-
larly once a week on a particular day of the week, there
must be two that meet on the same day, assuming that no
classes are held on weekends.

2. Show that if there are 30 students in a class, then at least
two have last names that begin with the same letter.

3. A drawer contains a dozen brown socks and a dozen black
socks, all unmatched. A man takes socks out at random
in the dark.

a) How many socks must he take out to be sure that he
has at least two socks of the same color?

b) How many socks must he take out to be sure that he
has at least two black socks?

4. A bowl contains 10 red balls and 10 blue balls. A woman
selects balls at random without looking at them.

a) How many balls must she select to be sure of having
at least three balls of the same color?

b) How many balls must she select to be sure of having
at least three blue balls?

5. Show that among any group of five (not necessarily con-
secutive) integers, there are two with the same remainder
when divided by 4.

6. Let d be a positive integer. Show that among any group of
d + 1 (not necessarily consecutive) integers there are two
with exactly the same remainder when they are divided
by d.

7. Let n be a positive integer. Show that in any set of n

consecutive integers there is exactly one divisible by n.

8. Show that if f is a function from S to T , where S and T

are finite sets with |S| > |T |, then there are elements s1
and s2 in S such that f (s1) = f (s2), or in other words, f
is not one-to-one.

9. What is the minimum number of students, each of whom
comes from one of the 50 states, who must be enrolled in
a university to guarantee that there are at least 100 who
come from the same state?

∗10. Let (xi, yi), i = 1, 2, 3, 4, 5, be a set of five distinct points
with integer coordinates in the xy plane. Show that the
midpoint of the line joining at least one pair of these
points has integer coordinates.

∗11. Let (xi, yi, zi), i = 1, 2, 3, 4, 5, 6, 7, 8, 9, be a set of nine
distinct points with integer coordinates in xyz space. Show
that the midpoint of at least one pair of these points has
integer coordinates.

12. How many ordered pairs of integers (a, b) are
needed to guarantee that there are two ordered pairs
(a1, b1) and (a2, b2) such that a1 mod 5 = a2 mod 5
and b1 mod 5 = b2 mod 5?

13. a) Show that if five integers are selected from the first
eight positive integers, there must be a pair of these
integers with a sum equal to 9.

b) Is the conclusion in part (a) true if four integers are
selected rather than five?

14. a) Show that if seven integers are selected from the first
10 positive integers, there must be at least two pairs
of these integers with the sum 11.

b) Is the conclusion in part (a) true if six integers are
selected rather than seven?

15. How many numbers must be selected from the set
{1, 2, 3, 4, 5, 6} to guarantee that at least one pair of these
numbers add up to 7?

16. How many numbers must be selected from the set
{1, 3, 5, 7, 9, 11, 13, 15} to guarantee that at least one pair
of these numbers add up to 16?

17. A company stores products in a warehouse. Storage bins
in this warehouse are specified by their aisle, location
in the aisle, and shelf. There are 50 aisles, 85 horizontal
locations in each aisle, and 5 shelves throughout the ware-
house. What is the least number of products the company
can have so that at least two products must be stored in
the same bin?

18. Suppose that there are nine students in a discrete mathe-
matics class at a small college.

a) Show that the class must have at least five male stu-
dents or at least five female students.

b) Show that the class must have at least three male stu-
dents or at least seven female students.

19. Suppose that every student in a discrete mathematics class
of 25 students is a freshman, a sophomore, or a junior.

a) Show that there are at least nine freshmen, at least
nine sophomores, or at least nine juniors in the class.

406 6 / Counting

b) Show that there are either at least three freshmen, at
least 19 sophomores, or at least five juniors in the
class.

20. Find an increasing subsequence of maximal length and
a decreasing subsequence of maximal length in the se-
quence 22, 5, 7, 2, 23, 10, 15, 21, 3, 17.

21. Construct a sequence of 16 positive integers that has no
increasing or decreasing subsequence of five terms.

22. Show that if there are 101 people of different heights
standing in a line, it is possible to find 11 people in the
order they are standing in the line with heights that are
either increasing or decreasing.

∗23. Show that whenever 25 girls and 25 boys are seated
around a circular table there is always a person both of
whose neighbors are boys.

∗∗24. Suppose that 21 girls and 21 boys enter a mathemat-
ics competition. Furthermore, suppose that each entrant
solves at most six questions, and for every boy-girl pair,
there is at least one question that they both solved. Show
that there is a question that was solved by at least three
girls and at least three boys.

∗25. Describe an algorithm in pseudocode for producing the
largest increasing or decreasing subsequence of a se-
quence of distinct integers.

26. Show that in a group of five people (where any two people
are either friends or enemies), there are not necessarily
three mutual friends or three mutual enemies.

27. Show that in a group of 10 people (where any two people
are either friends or enemies), there are either three mu-
tual friends or four mutual enemies, and there are either
three mutual enemies or four mutual friends.

28. Use Exercise 27 to show that among any group of 20
people (where any two people are either friends or ene-
mies), there are either four mutual friends or four mutual
enemies.

29. Show that if n is an integer with n ≥ 2, then the Ramsey
number R(2, n) equals n. (Recall that Ramsey numbers
were discussed after Example 13 in Section 6.2.)

30. Show that if m and n are integers with m ≥ 2 and n ≥ 2,
then the Ramsey numbersR(m, n) andR(n,m) are equal.
(Recall that Ramsey numbers were discussed after Exam-
ple 13 in Section 6.2.)

31. Show that there are at least six people in California (pop-
ulation: 37 million) with the same three initials who were
born on the same day of the year (but not necessarily in
the same year). Assume that everyone has three initials.

32. Show that if there are 100,000,000 wage earners in the
United States who earn less than 1,000,000 dollars (but
at least a penny), then there are two who earned exactly
the same amount of money, to the penny, last year.

33. In the 17th century, there were more than 800,000 inhab-
itants of Paris. At the time, it was believed that no one had
more than 200,000 hairs on their head. Assuming these
numbers are correct and that everyone has at least one hair
on their head (that is, no one is completely bald), use the
pigeonhole principle to show, as the French writer Pierre

Nicole did, that there had to be two Parisians with the
same number of hairs on their heads. Then use the gener-
alized pigeonhole principle to show that there had to be
at least five Parisians at that time with the same number
of hairs on their heads.

34. Assuming that no one has more than 1,000,000 hairs on
the head of any person and that the population of New
York City was 8,008,278 in 2010, show there had to be at
least nine people in NewYork City in 2010 with the same
number of hairs on their heads.

35. There are 38 different time periods during which classes
at a university can be scheduled. If there are 677 different
classes, how many different rooms will be needed?

36. A computer network consists of six computers. Each com-
puter is directly connected to at least one of the other com-
puters. Show that there are at least two computers in the
network that are directly connected to the same number
of other computers.

37. A computer network consists of six computers. Each com-
puter is directly connected to zero or more of the other
computers. Show that there are at least two computers in
the network that are directly connected to the same num-
ber of other computers. [Hint: It is impossible to have
a computer linked to none of the others and a computer
linked to all the others.]

38. Find the least number of cables required to connect eight
computers to four printers to guarantee that for every
choice of four of the eight computers, these four com-
puters can directly access four different printers. Justify
your answer.

39. Find the least number of cables required to connect 100
computers to 20 printers to guarantee that 2every subset
of 20 computers can directly access 20 different printers.
(Here, the assumptions about cables and computers are
the same as in Example 9.) Justify your answer.

∗40. Prove that at a party where there are at least two people,
there are two people who know the same number of other
people there.

41. An arm wrestler is the champion for a period of 75 hours.
(Here, by an hour, we mean a period starting from an
exact hour, such as 1 p.m., until the next hour.) The arm
wrestler had at least one match an hour, but no more than
125 total matches. Show that there is a period of consec-
utive hours during which the arm wrestler had exactly 24
matches.

∗42. Is the statement in Exercise 41 true if 24 is replaced by

a) 2? b) 23? c) 25? d) 30?

43. Show that iff is a function fromS toT , whereS andT are
nonempty finite sets and m = |S| / |T | , then there are at
leastm elements of S mapped to the same value of T . That
is, show that there are distinct elements s1, s2, . . . , sm ofS
such that f (s1) = f (s2) = · · · = f (sm).

44. There are 51 houses on a street. Each house has an address
between 1000 and 1099, inclusive. Show that at least two
houses have addresses that are consecutive integers.

6.3 Permutations and Combinations 407

∗45. Let x be an irrational number. Show that for some positive
integer j not exceeding the positive integer n, the absolute
value of the difference between jx and the nearest integer
to jx is less than 1/n.

46. Let n1, n2, . . . , nt be positive integers. Show that if
n1 + n2 + · · · + nt − t + 1 objects are placed into
t boxes, then for some i, i = 1, 2, . . . , t , the ith box con-
tains at least ni objects.

∗47. An alternative proof of Theorem 3 based on the general-
ized pigeonhole principle is outlined in this exercise. The
notation used is the same as that used in the proof in the
text.

a) Assume that ik ≤ n for k = 1, 2, . . . , n2 + 1. Use the
generalized pigeonhole principle to show that there
are n+ 1 terms ak1 , ak2 , . . . , akn+1 with ik1 = ik2 =
· · · = ikn+1 , where 1 ≤ k1 < k2 < · · · < kn+1.

b) Show that akj > akj+1 for j = 1, 2, . . . , n. [Hint: As-
sume that akj < akj+1 , and show that this implies that
ikj > ikj+1 , which is a contradiction.]

c) Use parts (a) and (b) to show that if there is no increas-
ing subsequence of length n+ 1, then there must be
a decreasing subsequence of this length.

6.3 Permutations and Combinations

Introduction

Many counting problems can be solved by finding the number of ways to arrange a specified
number of distinct elements of a set of a particular size, where the order of these elements
matters. Many other counting problems can be solved by finding the number of ways to select
a particular number of elements from a set of a particular size, where the order of the elements
selected does not matter. For example, in how many ways can we select three students from a
group of five students to stand in line for a picture? How many different committees of three
students can be formed from a group of four students? In this section we will develop methods
to answer questions such as these.

Permutations

We begin by solving the first question posed in the introduction to this section, as well as related
questions.

EXAMPLE 1 In how many ways can we select three students from a group of five students to stand in line for
a picture? In how many ways can we arrange all five of these students in a line for a picture?

Solution: First, note that the order in which we select the students matters. There are five ways
to select the first student to stand at the start of the line. Once this student has been selected,
there are four ways to select the second student in the line. After the first and second students
have been selected, there are three ways to select the third student in the line. By the product
rule, there are 5 · 4 · 3 = 60 ways to select three students from a group of five students to stand
in line for a picture.

To arrange all five students in a line for a picture, we select the first student in five ways,
the second in four ways, the third in three ways, the fourth in two ways, and the fifth in one
way. Consequently, there are 5 · 4 · 3 · 2 · 1 = 120 ways to arrange all five students in a line for
a picture. ▲

Example 1 illustrates how ordered arrangements of distinct objects can be counted. This leads
to some terminology.

A permutation of a set of distinct objects is an ordered arrangement of these objects.
We also are interested in ordered arrangements of some of the elements of a set. An ordered
arrangement of r elements of a set is called an r-permutation.

408 6 / Counting

EXAMPLE 2 LetS = {1, 2, 3}. The ordered arrangement 3, 1, 2 is a permutation ofS. The ordered arrangement
3, 2 is a 2-permutation of S. ▲

The number of r-permutations of a set with n elements is denoted by P(n, r). We can find
P(n, r) using the product rule.

EXAMPLE 3 Let S = {a, b, c}. The 2-permutations of S are the ordered arrangements
a, b; a, c; b, a; b, c; c, a; and c, b. Consequently, there are six 2-permutations of this set
with three elements. There are always six 2-permutations of a set with three elements. There
are three ways to choose the first element of the arrangement. There are two ways to choose the
second element of the arrangement, because it must be different from the first element. Hence,
by the product rule, we see that P(3, 2) = 3 · 2 = 6. the first element. By the product rule, it
follows that P(3, 2) = 3 · 2 = 6. ▲

We now use the product rule to find a formula for P(n, r) whenever n and r are positive integers
with 1 ≤ r ≤ n.

THEOREM 1 If n is a positive integer and r is an integer with 1 ≤ r ≤ n, then there are

P(n, r) = n(n− 1)(n− 2) · · · (n− r + 1)

r-permutations of a set with n distinct elements.

Proof: We will use the product rule to prove that this formula is correct. The first element of the
permutation can be chosen in n ways because there are n elements in the set. There are n− 1
ways to choose the second element of the permutation, because there are n− 1 elements left
in the set after using the element picked for the first position. Similarly, there are n− 2 ways
to choose the third element, and so on, until there are exactly n− (r − 1) = n− r + 1 ways to
choose the rth element. Consequently, by the product rule, there are

n(n− 1)(n− 2) · · · (n− r + 1)

r-permutations of the set.

Note that P(n, 0) = 1 whenever n is a nonnegative integer because there is exactly one
way to order zero elements. That is, there is exactly one list with no elements in it, namely the
empty list.

We now state a useful corollary of Theorem 1.

COROLLARY 1 If n and r are integers with 0 ≤ r ≤ n, then P(n, r) = n!
(n− r)! .

Proof: When n and r are integers with 1 ≤ r ≤ n, by Theorem 1 we have

P(n, r) = n(n− 1)(n− 2) · · · (n− r + 1) = n!
(n− r)!

Because
n!

(n− 0)! =
n!
n! = 1 whenever n is a nonnegative integer, we see that the formula

P(n, r) = n!
(n− r)! also holds when r = 0.

6.3 Permutations and Combinations 409

By Theorem 1 we know that if n is a positive integer, then P(n, n) = n!. We will illustrate
this result with some examples.

EXAMPLE 4 How many ways are there to select a first-prize winner, a second-prize winner, and a third-prize
winner from 100 different people who have entered a contest?

Solution: Because it matters which person wins which prize, the number of ways to pick the
three prize winners is the number of ordered selections of three elements from a set of 100
elements, that is, the number of 3-permutations of a set of 100 elements. Consequently, the
answer is

P(100, 3) = 100 · 99 · 98 = 970,200. ▲

EXAMPLE 5 Suppose that there are eight runners in a race. The winner receives a gold medal, the second-
place finisher receives a silver medal, and the third-place finisher receives a bronze medal. How
many different ways are there to award these medals, if all possible outcomes of the race can
occur and there are no ties?

Solution: The number of different ways to award the medals is the number of 3-permutations
of a set with eight elements. Hence, there are P(8, 3) = 8 · 7 · 6 = 336 possible ways to award
the medals. ▲

EXAMPLE 6 Suppose that a saleswoman has to visit eight different cities. She must begin her trip in a specified
city, but she can visit the other seven cities in any order she wishes. How many possible orders
can the saleswoman use when visiting these cities?

Solution: The number of possible paths between the cities is the number of permutations of
seven elements, because the first city is determined, but the remaining seven can be ordered
arbitrarily. Consequently, there are 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 5040 ways for the saleswoman
to choose her tour. If, for instance, the saleswoman wishes to find the path between the cities
with minimum distance, and she computes the total distance for each possible path, she must
consider a total of 5040 paths! ▲

EXAMPLE 7 How many permutations of the letters ABCDEFGH contain the string ABC ?

Solution: Because the letters ABC must occur as a block, we can find the answer by finding the
number of permutations of six objects, namely, the block ABC and the individual letters D, E,
F , G, and H . Because these six objects can occur in any order, there are 6! = 720 permutations
of the letters ABCDEFGH in which ABC occurs as a block. ▲

Combinations

We now turn our attention to counting unordered selections of objects. We begin by solving a
question posed in the introduction to this section of the chapter.

EXAMPLE 8 How many different committees of three students can be formed from a group of four students?

Solution: To answer this question, we need only find the number of subsets with three elements
from the set containing the four students. We see that there are four such subsets, one for
each of the four students, because choosing three students is the same as choosing one of the
four students to leave out of the group. This means that there are four ways to choose the
three students for the committee, where the order in which these students are chosen does not
matter. ▲

410 6 / Counting

Example 8 illustrates that many counting problems can be solved by finding the number of
subsets of a particular size of a set with n elements, where n is a positive integer.

An r-combination of elements of a set is an unordered selection of r elements from the set.
Thus, an r-combination is simply a subset of the set with r elements.

EXAMPLE 9 Let S be the set {1, 2, 3, 4}. Then {1, 3, 4} is a 3-combination from S. (Note that {4, 1, 3} is the
same 3-combination as {1, 3, 4}, because the order in which the elements of a set are listed does
not matter.) ▲

The number of r-combinations of a set with n distinct elements is denoted by C(n, r). Note
that C(n, r) is also denoted by

�
n
r

�
and is called a binomial coefficient. We will learn where

this terminology comes from in Section 6.4.

EXAMPLE 10 We see that C(4, 2) = 6, because the 2-combinations of {a, b, c, d} are the six subsets {a, b},
{a, c}, {a, d}, {b, c}, {b, d}, and {c, d}. ▲

We can determine the number of r-combinations of a set with n elements using the formula
for the number of r-permutations of a set. To do this, note that the r-permutations of a set can be
obtained by first forming r-combinations and then ordering the elements in these combinations.
The proof of Theorem 2, which gives the value of C(n, r), is based on this observation.

THEOREM 2 The number of r-combinations of a set with n elements, where n is a nonnegative integer and
r is an integer with 0 ≤ r ≤ n, equals

C(n, r) = n!
r! (n− r)! .

Proof: The P(n, r) r-permutations of the set can be obtained by forming the C(n, r)

r-combinations of the set, and then ordering the elements in each r-combination, which can be
done in P(r , r) ways. Consequently, by the product rule,

P(n, r) = C(n, r) · P(r, r).

This implies that

C(n, r) = P(n, r)

P (r, r)
= n!/(n− r)!

r!/(r − r)! =
n!

r! (n− r)! .

We can also use the division rule for counting to construct a proof of this theorem. Because the
order of elements in a combination does not matter and there areP(r, r)ways to order r elements
in an r-combination of n elements, each of the C(n, r) r-combinations of a set with n elements
corresponds to exactly P(r, r) r-permutations. Hence, by the division rule, C(n, r) = P(n,r)

P (r,r)
,

which implies as before that C(n, r) = n!
r! (n−r)! .

The formula in Theorem 2, although explicit, is not helpful when C(n, r) is computed for
large values of n and r . The reasons are that it is practical to compute exact values of factorials
exactly only for small integer values, and when floating point arithmetic is used, the formula in
Theorem 2 may produce a value that is not an integer. When computing C(n, r), first note that
when we cancel out (n− r)! from the numerator and denominator of the expression for C(n, r)

in Theorem 2, we obtain

C(n, r) = n!
r! (n− r)! =

n(n− 1) · · · (n− r + 1)

r! .

6.3 Permutations and Combinations 411

Consequently, to compute C(n, r) you can cancel out all the terms in the larger factorial in the
denominator from the numerator and denominator, then multiply all the terms that do not cancel
in the numerator and finally divide by the smaller factorial in the denominator. [When doing
this calculation by hand, instead of by machine, it is also worthwhile to factor out common
factors in the numerator n(n− 1) · · · (n− r + 1) and in the denominator r!.] Note that many
calculators have a built-in function for C(n, r) that can be used for relatively small values of n
and r and many computational programs can be used to find C(n, r). [Such functions may be
called choose(n, k) or binom(n, k)].

Example 11 illustrates how C(n, k) is computed when k is relatively small compared to n

and when k is close to n. It also illustrates a key identity enjoyed by the numbers C(n, k).

EXAMPLE 11 How many poker hands of five cards can be dealt from a standard deck of 52 cards? Also, how
many ways are there to select 47 cards from a standard deck of 52 cards?

Solution: Because the order in which the five cards are dealt from a deck of 52 cards does not
matter, there are

C(52, 5) = 52!
5!47!

different hands of five cards that can be dealt. To compute the value of C(52, 5), first divide the
numerator and denominator by 47! to obtain

C(52, 5) = 52 · 51 · 50 · 49 · 48

5 · 4 · 3 · 2 · 1 .

This expression can be simplified by first dividing the factor 5 in the denominator into the
factor 50 in the numerator to obtain a factor 10 in the numerator, then dividing the factor 4 in the
denominator into the factor 48 in the numerator to obtain a factor of 12 in the numerator, then
dividing the factor 3 in the denominator into the factor 51 in the numerator to obtain a factor
of 17 in the numerator, and finally, dividing the factor 2 in the denominator into the factor 52 in
the numerator to obtain a factor of 26 in the numerator. We find that

C(52, 5) = 26 · 17 · 10 · 49 · 12 = 2,598,960.

Consequently, there are 2,598,960 different poker hands of five cards that can be dealt from a
standard deck of 52 cards.

Note that there are

C(52, 47) = 52!
47!5!

different ways to select 47 cards from a standard deck of 52 cards. We do not need to compute
this value because C(52, 47) = C(52, 5). (Only the order of the factors 5! and 47! is different
in the denominators in the formulae for these quantities.) It follows that there are also 2,598,960
different ways to select 47 cards from a standard deck of 52 cards. ▲

In Example 11 we observed that C(52, 5) = C(52, 47). This is a special case of the useful
identity for the number of r-combinations of a set given in Corollary 2.

COROLLARY 2 Let n and r be nonnegative integers with r ≤ n. Then C(n, r) = C(n, n− r).

Proof: From Theorem 2 it follows that

C(n, r) = n!
r! (n− r)!

412 6 / Counting

and

C(n, n− r) = n!
(n− r)! [n− (n− r)]! =

n!
(n− r)! r! .

Hence, C(n, r) = C(n, n− r).

We can also prove Corollary 2 without relying on algebraic manipulation. Instead, we can
use a combinatorial proof. We describe this important type of proof in Definition 1.

DEFINITION 1 A combinatorial proof of an identity is a proof that uses counting arguments to prove that
both sides of the identity count the same objects but in different ways or a proof that is based
on showing that there is a bijection between the sets of objects counted by the two sides of
the identity. These two types of proofs are called double counting proofs and bijective proofs,
respectively.

Many identities involving binomial coefficients can be proved using combinatorial proofs. We
now show how to prove Corollary 2 using a combinatorial proof. We will provide both a double
counting proof and a bijective proof, both based on the same basic idea.

Combinatorial proofs
are almost always much
shorter and provide more
insights than proofs
based on algebraic
manipulation.

Proof: We will use a bijective proof to show that C(n, r) = C(n, n− r) for all integers n

and r with 0 ≤ r ≤ n. Suppose that S is a set with n elements. The function that maps a subset
A of S to A is a bijection between subsets of S with r elements and subsets with n− r elements
(as the reader should verify). The identity C(n, r) = C(n, n− r) follows because when there
is a bijection between two finite sets, the two sets must have the same number of elements.

Alternatively, we can reformulate this argument as a double counting proof. By definition,
the number of subsets of S with r elements equals C(n, r). But each subset A of S is also
determined by specifying which elements are not in A, and so are in A. Because the complement
of a subset of S with r elements has n− r elements, there are also C(n, n− r) subsets of S

with r elements. It follows that C(n, r) = C(n, n− r).

EXAMPLE 12 How many ways are there to select five players from a 10-member tennis team to make a trip to
a match at another school?

Solution: The answer is given by the number of 5-combinations of a set with 10 elements. By
Theorem 2, the number of such combinations is

C(10, 5) = 10!
5! 5! = 252. ▲

EXAMPLE 13 A group of 30 people have been trained as astronauts to go on the first mission to Mars. How
many ways are there to select a crew of six people to go on this mission (assuming that all crew
members have the same job)?

Solution: The number of ways to select a crew of six from the pool of 30 people is the number
of 6-combinations of a set with 30 elements, because the order in which these people are chosen
does not matter. By Theorem 2, the number of such combinations is

C(30, 6) = 30!
6! 24! =

30 · 29 · 28 · 27 · 26 · 25

6 · 5 · 4 · 3 · 2 · 1 = 593,775.

▲

6.3 Permutations and Combinations 413

EXAMPLE 14 How many bit strings of length n contain exactly r 1s?

Solution: The positions of r 1s in a bit string of length n form an r-combination of the set
{1, 2, 3, . . . , n}. Hence, there are C(n, r) bit strings of length n that contain exactly r 1s. ▲

EXAMPLE 15 Suppose that there are 9 faculty members in the mathematics department and 11 in the computer
science department. How many ways are there to select a committee to develop a discrete
mathematics course at a school if the committee is to consist of three faculty members from the
mathematics department and four from the computer science department?

Solution: By the product rule, the answer is the product of the number of 3-combinations of
a set with nine elements and the number of 4-combinations of a set with 11 elements. By
Theorem 2, the number of ways to select the committee is

C(9, 3) · C(11, 4) = 9!
3!6! ·

11!
4!7! = 84 · 330 = 27,720.

▲

Exercises

1. List all the permutations of {a, b, c}.
2. How many different permutations are there of the set
{a, b, c, d, e, f, g}?

3. How many permutations of {a, b, c, d, e, f, g} end with
a?

4. Let S = {1, 2, 3, 4, 5}.
a) List all the 3-permutations of S.
b) List all the 3-combinations of S.

5. Find the value of each of these quantities.

a) P(6, 3) b) P(6, 5)
c) P(8, 1) d) P(8, 5)
e) P(8, 8) f) P(10, 9)

6. Find the value of each of these quantities.

a) C(5, 1) b) C(5, 3)
c) C(8, 4) d) C(8, 8)
e) C(8, 0) f) C(12, 6)

7. Find the number of 5-permutations of a set with nine el-
ements.

8. In how many different orders can five runners finish a
race if no ties are allowed?

9. How many possibilities are there for the win, place, and
show (first, second, and third) positions in a horse race
with 12 horses if all orders of finish are possible?

10. There are six different candidates for governor of a state.
In how many different orders can the names of the can-
didates be printed on a ballot?

11. How many bit strings of length 10 contain

a) exactly four 1s?
b) at most four 1s?
c) at least four 1s?
d) an equal number of 0s and 1s?

12. How many bit strings of length 12 contain

a) exactly three 1s?
b) at most three 1s?
c) at least three 1s?
d) an equal number of 0s and 1s?

13. A group contains n men and n women. How many ways
are there to arrange these people in a row if the men and
women alternate?

14. In how many ways can a set of two positive integers less
than 100 be chosen?

15. In how many ways can a set of five letters be selected
from the English alphabet?

16. How many subsets with an odd number of elements does
a set with 10 elements have?

17. How many subsets with more than two elements does a
set with 100 elements have?

18. A coin is flipped eight times where each flip comes up
either heads or tails. How many possible outcomes

a) are there in total?
b) contain exactly three heads?
c) contain at least three heads?
d) contain the same number of heads and tails?

19. A coin is flipped 10 times where each flip comes up either
heads or tails. How many possible outcomes

a) are there in total?
b) contain exactly two heads?
c) contain at most three tails?
d) contain the same number of heads and tails?

20. How many bit strings of length 10 have

a) exactly three 0s?
b) more 0s than 1s?
c) at least seven 1s?
d) at least three 1s?

414 6 / Counting

21. How many permutations of the letters ABCDEFG con-
tain

a) the string BCD?
b) the string CFGA?
c) the strings BA and GF ?
d) the strings ABC and DE?
e) the strings ABC and CDE?
f) the strings CBA and BED?

22. How many permutations of the letters ABCDEFGH con-
tain

a) the string ED?
b) the string CDE?
c) the strings BA and FGH?
d) the strings AB, DE, and GH?
e) the strings CAB and BED?
f) the strings BCA and ABF ?

23. How many ways are there for eight men and five women
to stand in a line so that no two women stand next to each
other? [Hint: First position the men and then consider
possible positions for the women.]

24. How many ways are there for 10 women and six men
to stand in a line so that no two men stand next to each
other? [Hint: First position the women and then consider
possible positions for the men.]

25. One hundred tickets, numbered 1, 2, 3, . . . , 100, are sold
to 100 different people for a drawing. Four different prizes
are awarded, including a grand prize (a trip to Tahiti). How
many ways are there to award the prizes if

a) there are no restrictions?
b) the person holding ticket 47 wins the grand prize?
c) the person holding ticket 47 wins one of the prizes?
d) the person holding ticket 47 does not win a prize?
e) the people holding tickets 19 and 47 both win prizes?
f) the people holding tickets 19, 47, and 73 all win

prizes?
g) the people holding tickets 19, 47, 73, and 97 all win

prizes?
h) none of the people holding tickets 19, 47, 73, and 97

wins a prize?
i) the grand prize winner is a person holding ticket 19,

47, 73, or 97?
j) the people holding tickets 19 and 47 win prizes, but

the people holding tickets 73 and 97 do not win prizes?

26. Thirteen people on a softball team show up for a game.

a) How many ways are there to choose 10 players to take
the field?

b) How many ways are there to assign the 10 positions
by selecting players from the 13 people who show up?

c) Of the 13 people who show up, three are women. How
many ways are there to choose 10 players to take the
field if at least one of these players must be a woman?

27. A club has 25 members.

a) How many ways are there to choose four members of
the club to serve on an executive committee?

b) How many ways are there to choose a president, vice
president, secretary, and treasurer of the club, where
no person can hold more than one office?

28. A professor writes 40 discrete mathematics true/false
questions. Of the statements in these questions, 17 are
true. If the questions can be positioned in any order, how
many different answer keys are possible?

∗29. How many 4-permutations of the positive integers not ex-
ceeding 100 contain three consecutive integers k, k + 1,
k + 2, in the correct order

a) where these consecutive integers can perhaps be sep-
arated by other integers in the permutation?

b) where they are in consecutive positions in the permu-
tation?

30. Seven women and nine men are on the faculty in the
mathematics department at a school.

a) How many ways are there to select a committee of
five members of the department if at least one woman
must be on the committee?

b) How many ways are there to select a committee of
five members of the department if at least one woman
and at least one man must be on the committee?

31. The English alphabet contains 21 consonants and five
vowels. How many strings of six lowercase letters of the
English alphabet contain

a) exactly one vowel?

b) exactly two vowels?

c) at least one vowel?

d) at least two vowels?

32. How many strings of six lowercase letters from the En-
glish alphabet contain

a) the letter a?

b) the letters a and b?

c) the letters a and b in consecutive positions with a

preceding b, with all the letters distinct?

d) the letters a and b, where a is somewhere to the left
of b in the string, with all the letters distinct?

33. Suppose that a department contains 10 men and 15
women. How many ways are there to form a commit-
tee with six members if it must have the same number of
men and women?

34. Suppose that a department contains 10 men and 15
women. How many ways are there to form a commit-
tee with six members if it must have more women than
men?

35. How many bit strings contain exactly eight 0s and 10 1s
if every 0 must be immediately followed by a 1?

36. How many bit strings contain exactly five 0s and 14 1s if
every 0 must be immediately followed by two 1s?

37. How many bit strings of length 10 contain at least three
1s and at least three 0s?

38. How many ways are there to select 12 countries in the
United Nations to serve on a council if 3 are selected
from a block of 45, 4 are selected from a block of 57, and
the others are selected from the remaining 69 countries?

6.4 Binomial Coefficients and Identities 415

39. How many license plates consisting of three letters fol-
lowed by three digits contain no letter or digit twice?

A circular r-permutation of n people is a seating of r of
these n people around a circular table, where seatings are con-
sidered to be the same if they can be obtained from each other
by rotating the table.

40. Find the number of circular 3-permutations of 5 people.

41. Find a formula for the number of circular r-permutations
of n people.

42. Find a formula for the number of ways to seat r ofnpeople
around a circular table, where seatings are considered the
same if every person has the same two neighbors without
regard to which side these neighbors are sitting on.

43. How many ways are there for a horse race with three
horses to finish if ties are possible? [Note: Two or three
horses may tie.]

∗44. How many ways are there for a horse race with four horses
to finish if ties are possible? [Note: Any number of the
four horses may tie.)

∗45. There are six runners in the 100-yard dash. How many
ways are there for three medals to be awarded if ties
are possible? (The runner or runners who finish with the
fastest time receive gold medals, the runner or runners
who finish with exactly one runner ahead receive silver

medals, and the runner or runners who finish with exactly
two runners ahead receive bronze medals.)

∗46. This procedure is used to break ties in games in the cham-
pionship round of theWorld Cup soccer tournament. Each
team selects five players in a prescribed order. Each of
these players takes a penalty kick, with a player from the
first team followed by a player from the second team and
so on, following the order of players specified. If the score
is still tied at the end of the 10 penalty kicks, this proce-
dure is repeated. If the score is still tied after 20 penalty
kicks, a sudden-death shootout occurs, with the first team
scoring an unanswered goal victorious.

a) How many different scoring scenarios are possible if
the game is settled in the first round of 10 penalty
kicks, where the round ends once it is impossible for
a team to equal the number of goals scored by the
other team?

b) How many different scoring scenarios for the first
and second groups of penalty kicks are possible if
the game is settled in the second round of 10 penalty
kicks?

c) How many scoring scenarios are possible for the full
set of penalty kicks if the game is settled with no more
than 10 total additional kicks after the two rounds of
five kicks for each team?

6.4 Binomial Coefficients and Identities

As we remarked in Section 6.3, the number of r-combinations from a set with n elements is
often denoted by

�
n
r

�
. This number is also called a binomial coefficient because these numbers

occur as coefficients in the expansion of powers of binomial expressions such as (a + b)n. We
will discuss the binomial theorem, which gives a power of a binomial expression as a sum of
terms involving binomial coefficients. We will prove this theorem using a combinatorial proof.
We will also show how combinatorial proofs can be used to establish some of the many different
identities that express relationships among binomial coefficients.

The Binomial Theorem

The binomial theorem gives the coefficients of the expansion of powers of binomial expressions.
Abinomial expression is simply the sum of two terms, such as x + y. (The terms can be products
of constants and variables, but that does not concern us here.)

Example 1 illustrates how the coefficients in a typical expansion can be found and prepares
us for the statement of the binomial theorem.

EXAMPLE 1 The expansion of (x + y)3 can be found using combinatorial reasoning instead of multiplying
the three terms out. When (x + y)3 = (x + y)(x + y)(x + y) is expanded, all products of a
term in the first sum, a term in the second sum, and a term in the third sum are added. Terms of
the form x3, x2y, xy2, and y3 arise. To obtain a term of the form x3, an x must be chosen in
each of the sums, and this can be done in only one way. Thus, the x3 term in the product has
a coefficient of 1. To obtain a term of the form x2y, an x must be chosen in two of the three
sums (and consequently a y in the other sum). Hence, the number of such terms is the number
of 2-combinations of three objects, namely,

�3
2

�
. Similarly, the number of terms of the form xy2

is the number of ways to pick one of the three sums to obtain an x (and consequently take a y

416 6 / Counting

from each of the other two sums). This can be done in
�3

1

�
ways. Finally, the only way to obtain

a y3 term is to choose the y for each of the three sums in the product, and this can be done in
exactly one way. Consequently, it follows that

(x + y)3 = (x + y)(x + y)(x + y) = (xx + xy + yx + yy)(x + y)

= xxx + xxy + xyx + xyy + yxx + yxy + yyx + yyy

= x3 + 3x2y + 3xy2 + y3. ▲

We now state the binomial theorem.

THEOREM 1 THEBINOMIALTHEOREM Let x and y be variables, and letn be a nonnegative integer.
Then

(x + y)n =
n�

j=0

�
n

j

�
xn−j yj =

�
n

0

�
xn +

�
n

1

�
xn−1y + · · · +

�
n

n− 1

�
xyn−1 +

�
n

n

�
yn.

Proof: We use a combinatorial proof. The terms in the product when it is expanded are of
the form xn−j yj for j = 0, 1, 2, . . . , n. To count the number of terms of the form xn−j yj ,
note that to obtain such a term it is necessary to choose n− j xs from the n sums (so that the
other j terms in the product are ys). Therefore, the coefficient of xn−j yj is

�
n

n−j

�
, which is

equal to
�
n
j

�
. This proves the theorem.

Some computational uses of the binomial theorem are illustrated in Examples 2–4.

EXAMPLE 2 What is the expansion of (x + y)4?

Solution: From the binomial theorem it follows that

(x + y)4 =
4�

j = 0

�
4

j

�
x4−j yj

=
�

4

0

�
x4 +

�
4

1

�
x3y +

�
4

2

�
x2y2 +

�
4

3

�
xy3 +

�
4

4

�
y4

= x4 + 4x3y + 6x2y2 + 4xy3 + y4. ▲
EXAMPLE 3 What is the coefficient of x12y13 in the expansion of (x + y)25?

Solution: From the binomial theorem it follows that this coefficient is�
25

13

�
= 25!

13! 12! = 5,200,300.

▲

EXAMPLE 4 What is the coefficient of x12y13 in the expansion of (2x − 3y)25?

Solution: First, note that this expression equals (2x + (−3y))25. By the binomial theorem, we
have

(2x + (−3y))25 =
25�

j = 0

�
25

j

�
(2x)25−j (−3y)j .

6.4 Binomial Coefficients and Identities 417

Consequently, the coefficient of x12y13 in the expansion is obtained when j = 13, namely,�
25

13

�
212(−3)13 = − 25!

13! 12!2
12313.

▲

We can prove some useful identities using the binomial theorem, as Corollaries 1, 2, and 3
demonstrate.

COROLLARY 1 Let n be a nonnegative integer. Then

n�
k= 0

�
n

k

�
= 2n.

Proof: Using the binomial theorem with x = 1 and y = 1, we see that

2n = (1+ 1)n =
n�

k= 0

�
n

k

�
1k1n−k =

n�
k= 0

�
n

k

�
.

This is the desired result.

There is also a nice combinatorial proof of Corollary 1, which we now present.

Proof: A set with n elements has a total of 2n different subsets. Each subset has zero elements,
one element, two elements, . . . , or n elements in it. There are

�
n
0

�
subsets with zero elements,

�
n
1

�
subsets with one element,

�
n
2

�
subsets with two elements, . . . , and

�
n
n

�
subsets with n elements.

Therefore,

n�
k= 0

�
n

k

�

counts the total number of subsets of a set with n elements. By equating the two formulas we
have for the number of subsets of a set with n elements, we see that

n�
k= 0

�
n

k

�
= 2n.

COROLLARY 2 Let n be a positive integer. Then

n�
k= 0

(−1)k
�
n

k

�
= 0.

Proof: When we use the binomial theorem with x = −1 and y = 1, we see that

0 = 0n = ((−1)+ 1)n =
n�

k= 0

�
n

k

�
(−1)k1n−k =

n�
k= 0

�
n

k

�
(−1)k.

This proves the corollary.

418 6 / Counting

Remark: Corollary 2 implies that

�
n

0

�
+
�
n

2

�
+
�
n

4

�
+ · · · =

�
n

1

�
+
�
n

3

�
+
�
n

5

�
+ · · · .

COROLLARY 3 Let n be a nonnegative integer. Then

n�
k= 0

2k

�
n

k

�
= 3n.

Proof: We recognize that the left-hand side of this formula is the expansion of (1+ 2)n provided
by the binomial theorem. Therefore, by the binomial theorem, we see that

(1+ 2)n =
n�

k= 0

�
n

k

�
1n−k2k =

n�
k= 0

�
n

k

�
2k.

Hence

n�
k= 0

2k

�
n

k

�
= 3n.

Pascal’s Identity and Triangle

The binomial coefficients satisfy many different identities. We introduce one of the most im-
portant of these now.

THEOREM 2 PASCAL’S IDENTITY Let n and k be positive integers with n ≥ k. Then

�
n+ 1

k

�
=
�

n

k − 1

�
+
�
n

k

�
.

Proof: We will use a combinatorial proof. Suppose that T is a set containing n+ 1 elements. Let
a be an element in T , and let S = T − {a}. Note that there are

�
n+1
k

�
subsets of T containing k

elements. However, a subset of T with k elements either contains a together with k − 1 elements
of S, or contains k elements of S and does not contain a. Because there are

�
n

k−1

�
subsets of

k − 1 elements of S, there are
�

n
k−1

�
subsets of k elements of T that contain a. And there are�

n
k

�
subsets of k elements of T that do not contain a, because there are

�
n
k

�
subsets of k elements

of S. Consequently,

�
n+ 1

k

�
=
�

n

k − 1

�
+
�
n

k

�
.

Remark: It is also possible to prove this identity by algebraic manipulation from the formula
for

�
n
r

�
(see Exercise 19).

6.4 Binomial Coefficients and Identities 419

()0
0

()1
0 ()1

1

()2
0 ()2

1 ()2
2

()3
0 ()3

1 ()3
2 ()3

3

()4
0 ()4

1 ()4
2 ()4

3 ()4
4

()5
0 ()5

1 ()5
2 ()5

3 ()5
4 ()5

5

()6
0 ()6

1 ()6
2 ()6

3 ()6
4 ()6

5 ()6
6

()7
0 ()7

1 ()7
2 ()7

3 ()7
4 ()7

5 ()7
6 ()7

7

()8
0 ()8

1 ()8
2 ()8

3 ()8
4 ()8

5 ()8
6 ()8

7 ()8
8

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

By Pascal's identity:

()6
4 ()6

5 ()7
5

+ =

(a) (b)

.

FIGURE 1 Pascal’s Triangle.

Remark: Pascal’s identity, together with the initial conditions
�
n
0

� = �
n
n

� = 1 for all integers n,
can be used to recursively define binomial coefficients. This recursive definition is useful in the
computation of binomial coefficients because only addition, and not multiplication, of integers
is needed to use this recursive definition.

Pascal’s identity is the basis for a geometric arrangement of the binomial coefficients in a
triangle, as shown in Figure 1.

The nth row in the triangle consists of the binomial coefficients

�
n

k

�
, k = 0, 1, . . . , n.

This triangle is known as Pascal’s triangle. Pascal’s identity shows that when two adjacent
binomial coefficients in this triangle are added, the binomial coefficient in the next row between
these two coefficients is produced.

BLAISE PASCAL (1623–1662) Blaise Pascal exhibited his talents at an early age, although his father, who
had made discoveries in analytic geometry, kept mathematics books away from him to encourage other interests.
At 16 Pascal discovered an important result concerning conic sections. At 18 he designed a calculating machine,
which he built and sold. Pascal, along with Fermat, laid the foundations for the modern theory of probability. In
this work, he made new discoveries concerning what is now called Pascal’s triangle. In 1654, Pascal abandoned
his mathematical pursuits to devote himself to theology. After this, he returned to mathematics only once. One
night, distracted by a severe toothache, he sought comfort by studying the mathematical properties of the cycloid.
Miraculously, his pain subsided, which he took as a sign of divine approval of the study of mathematics.

420 6 / Counting

Other Identities Involving Binomial Coefficients

We conclude this section with combinatorial proofs of two of the many identities enjoyed by
the binomial coefficients.

THEOREM 3 VANDERMONDE’S IDENTITY Let m, n, and r be nonnegative integers with r not
exceeding either m or n. Then

�
m+ n

r

�
=

r�
k= 0

�
m

r − k

��
n

k

�
.

Remark: This identity was discovered by mathematician Alexandre-Théophile Vandermonde
in the eighteenth century.

Proof: Suppose that there are m items in one set and n items in a second set. Then the total
number of ways to pick r elements from the union of these sets is

�
m+ n

r

�
.

Another way to pick r elements from the union is to pick k elements from the second set
and then r − k elements from the first set, where k is an integer with 0 ≤ k ≤ r . Because there
are

�
n
k

�
ways to choose k elements from the second set and

�
m

r − k

�
ways to choose r − k elements

from the first set, the product rule tells us that this can be done in
�

m
r − k

��
n
k

�
ways. Hence, the

total number of ways to pick r elements from the union also equals
�r

k= 0

�
m

r−k

��
n
k

�
.

We have found two expressions for the number of ways to pick r elements from the
union of a set with m items and a set with n items. Equating them gives us Vandermonde’s
identity.

Corollary 4 follows from Vandermonde’s identity.

COROLLARY 4 If n is a nonnegative integer, then

�
2n

n

�
=

n�
k= 0

�
n

k

�2

.

Proof: We use Vandermonde’s identity with m = r = n to obtain

�
2n

n

�
=

n�
k= 0

�
n

n− k

��
n

k

�
=

n�
k= 0

�
n

k

�2

.

The last equality was obtained using the identity
�
n
k

� = �
n

n− k

�
.

ALEXANDRE-THÉOPHILE VANDERMONDE (1735–1796) Because Alexandre-Théophile Vandermonde was a sickly child, his
physician father directed him to a career in music. However, he later developed an interest in mathematics. His complete mathematical
work consists of four papers published in 1771–1772. These papers include fundamental contributions on the roots of equations, on
the theory of determinants, and on the knight’s tour problem (introduced in the exercises in Section 10.5). Vandermonde’s interest in
mathematics lasted for only 2 years. Afterward, he published papers on harmony, experiments with cold, and the manufacture of steel.
He also became interested in politics, joining the cause of the French revolution and holding several different positions in government.

6.4 Binomial Coefficients and Identities 421

We can prove combinatorial identities by counting bit strings with different properties, as
the proof of Theorem 4 will demonstrate.

THEOREM 4 Let n and r be nonnegative integers with r ≤ n. Then

�
n+ 1

r + 1

�
=

n�
j = r

�
j

r

�
.

Proof: We use a combinatorial proof. By Example 14 in Section 6.3, the left-hand side,
�
n+ 1
r + 1

�
,

counts the bit strings of length n+ 1 containing r + 1 ones.
We show that the right-hand side counts the same objects by considering the cases corre-

sponding to the possible locations of the final 1 in a string with r + 1 ones. This final one must
occur at position r + 1, r + 2, . . . , or n+ 1. Furthermore, if the last one is the kth bit there must
be r ones among the first k − 1 positions. Consequently, by Example 14 in Section 6.3, there
are

�
k− 1
r

�
such bit strings. Summing over k with r + 1 ≤ k ≤ n+ 1, we find that there are

n+ 1�
k= r + 1

�
k − 1

r

�
=

n�
j = r

�
j

r

�

bit strings of length n containing exactly r + 1 ones. (Note that the last step follows from the
change of variables j = k − 1.) Because the left-hand side and the right-hand side count the
same objects, they are equal. This completes the proof.

Exercises

1. Find the expansion of (x + y)4

a) using combinatorial reasoning, as in Example 1.
b) using the binomial theorem.

2. Find the expansion of (x + y)5

a) using combinatorial reasoning, as in Example 1.
b) using the binomial theorem.

3. Find the expansion of (x + y)6.
4. Find the coefficient of x5y8 in (x + y)13.
5. How many terms are there in the expansion of (x + y)100

after like terms are collected?
6. What is the coefficient of x7 in (1+ x)11?
7. What is the coefficient of x9 in (2− x)19?
8. What is the coefficient of x8y9 in the expansion of

(3x + 2y)17?
9. What is the coefficient of x101y99 in the expansion of

(2x − 3y)200?
∗10. Give a formula for the coefficient of xk in the expansion

of (x + 1/x)100, where k is an integer.
∗11. Give a formula for the coefficient of xk in the expansion

of (x2 − 1/x)100, where k is an integer.
12. The row of Pascal’s triangle containing the binomial co-

efficients
�10
k

�
, 0 ≤ k ≤ 10, is:

1 10 45 120 210 252 210 120 45 10 1

Use Pascal’s identity to produce the row immediately fol-
lowing this row in Pascal’s triangle.

13. What is the row of Pascal’s triangle containing the bino-
mial coefficients

�9
k

�
, 0 ≤ k ≤ 9?

14. Show that if n is a positive integer, then 1 = �
n
0

�
<
�
n
1

�
<

· · · < �
n

 n/2
� = �

n
 n/2

�
> · · · > �

n
n−1

�
>
�
n
n

� = 1.

15. Show that
�
n
k

� ≤ 2n for all positive integers n and all in-
tegers k with 0 ≤ k ≤ n.

16. a) Use Exercise 14 and Corollary 1 to show that if n is
an integer greater than 1, then

�
n

 n/2
� ≥ 2n/n.

b) Conclude from part (a) that if n is a positive integer,
then

�2n
n

� ≥ 4n/2n.

17. Show that if n and k are integers with 1 ≤ k ≤ n, then�
n
k

� ≤ nk/2k−1.

18. Suppose that b is an integer with b ≥ 7. Use the bino-
mial theorem and the appropriate row of Pascal’s triangle
to find the base-b expansion of (11)4

b [that is, the fourth
power of the number (11)b in base-b notation].

19. Prove Pascal’s identity, using the formula for
�
n
r

�
.

20. Suppose that k and n are integers with 1 ≤ k < n. Prove
the hexagon identity�

n− 1

k − 1

��
n

k + 1

��
n+ 1

k

�
=
�
n− 1

k

��
n

k − 1

��
n+ 1

k + 1

�
,

which relates terms in Pascal’s triangle that form a
hexagon.

422 6 / Counting

21. Prove that if n and k are integers with 1 ≤ k ≤ n, then
k
�
n
k

� = n
�
n−1
k−1

�
,

a) using a combinatorial proof. [Hint: Show that the two
sides of the identity count the number of ways to select
a subset with k elements from a set with n elements
and then an element of this subset.]

b) using an algebraic proof based on the formula for
�
n
r

�
given in Theorem 2 in Section 6.3.

22. Prove the identity
�
n
r

��
r
k

� = �
n
k

��
n−k
r−k

�
, whenever n, r , and

k are nonnegative integers with r ≤ n and k ≤ r ,

a) using a combinatorial argument.
b) using an argument based on the formula for the num-

ber of r-combinations of a set with n elements.

23. Show that if n and k are positive integers, then�
n+ 1

k

�
= (n+ 1)

�
n

k − 1

� �
k.

Use this identity to construct an inductive definition of
the binomial coefficients.

24. Show that if p is a prime and k is an integer such that
1 ≤ k ≤ p − 1, then p divides

�
p
k

�
.

25. Let n be a positive integer. Show that�
2n

n + 1

�
+
�

2n

n

�
=
�

2n+ 2

n+ 1

�
/2.

∗26. Let n and k be integers with 1 ≤ k ≤ n. Show that

n�
k= 1

�
n

k

��
n

k − 1

�
=
�

2n+ 2

n+ 1

�
/2−

�
2n

n

�
.

∗27. Prove the hockeystick identity

r�
k= 0

�
n+ k

k

�
=
�
n+ r + 1

r

�

whenever n and r are positive integers,

a) using a combinatorial argument.
b) using Pascal’s identity.

28. Show that if n is a positive integer, then
�2n

2

� = 2
�
n
2

�+ n2

a) using a combinatorial argument.
b) by algebraic manipulation.

∗29. Give a combinatorial proof that
�n

k= 1 k
�
n
k

� = n2n−1.
[Hint: Count in two ways the number of ways to select a
committee and to then select a leader of the committee.]

∗30. Give a combinatorial proof that
�n

k= 1 k
�
n
k

�2 = n
�2n−1
n−1

�
.

[Hint: Count in two ways the number of ways to select a
committee, with n members from a group of n mathemat-
ics professors and n computer science professors, such
that the chairperson of the committee is a mathematics
professor.]

31. Show that a nonempty set has the same number of subsets
with an odd number of elements as it does subsets with
an even number of elements.

∗32. Prove the binomial theorem using mathematical induc-
tion.

33. In this exercise we will count the number of paths in the
xy plane between the origin (0, 0) and point (m, n), where
m and n are nonnegative integers, such that each path is
made up of a series of steps, where each step is a move one
unit to the right or a move one unit upward. (No moves to
the left or downward are allowed.) Two such paths from
(0, 0) to (5, 3) are illustrated here.

(0, 0)

(5, 3)

(0, 0)

(5, 3)

a) Show that each path of the type described can be rep-
resented by a bit string consisting of m 0s and n 1s,
where a 0 represents a move one unit to the right and
a 1 represents a move one unit upward.

b) Conclude from part (a) that there are
�
m+ n

n

�
paths of

the desired type.

34. Use Exercise 33 to give an alternative proof of Corollary 2
in Section 6.3, which states that

�
n
k

� = �
n

n−k

�
whenever k

is an integer with 0 ≤ k ≤ n. [Hint: Consider the number
of paths of the type described in Exercise 33 from (0, 0)
to (n− k, k) and from (0, 0) to (k, n− k).]

35. Use Exercise 33 to prove Theorem 4. [Hint: Count the
number of paths with n steps of the type described in Ex-
ercise 33. Every such path must end at one of the points
(n− k, k) for k = 0, 1, 2, . . . , n.]

36. Use Exercise 33 to prove Pascal’s identity. [Hint: Show
that a path of the type described in Exercise 33
from (0, 0) to (n+ 1− k, k) passes through either
(n+ 1− k, k − 1) or (n− k, k), but not through both.]

37. Use Exercise 33 to prove the hockeystick identity from
Exercise 27. [Hint: First, note that the number of
paths from (0, 0) to (n+ 1, r) equals

�
n+ 1+ r

r

�
. Sec-

ond, count the number of paths by summing the num-
ber of these paths that start by going k units upward for
k = 0, 1, 2, . . . , r .]

38. Give a combinatorial proof that if n is a positive inte-
ger then

�n
k= 0 k

2
�
n
k

� = n(n+ 1)2n−2. [Hint: Show that
both sides count the ways to select a subset of a set ofn ele-
ments together with two not necessarily distinct elements
from this subset. Furthermore, express the right-hand side
as n(n− 1)2n−2 + n2n−1.]

∗39. Determine a formula involving binomial coefficients for
the nth term of a sequence if its initial terms are those
listed. [Hint: Looking at Pascal’s triangle will be helpful.

6.5 Generalized Permutations and Combinations 423

Although infinitely many sequences start with a specified
set of terms, each of the following lists is the start of a
sequence of the type desired.]

a) 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, . . .
b) 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, . . .

c) 1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, . . .
d) 1, 1, 2, 3, 6, 10, 20, 35, 70, 126, . . .
e) 1, 1, 1, 3, 1, 5, 15, 35, 1, 9, . . .
f) 1, 3, 15, 84, 495, 3003, 18564, 116280, 735471,

4686825, . . .

6.5 Generalized Permutations and Combinations

Introduction

In many counting problems, elements may be used repeatedly. For instance, a letter or digit may
be used more than once on a license plate. When a dozen donuts are selected, each variety can
be chosen repeatedly. This contrasts with the counting problems discussed earlier in the chapter
where we considered only permutations and combinations in which each item could be used at
most once. In this section we will show how to solve counting problems where elements may
be used more than once.

Also, some counting problems involve indistinguishable elements. For instance, to count the
number of ways the letters of the word SUCCESS can be rearranged, the placement of identical
letters must be considered. This contrasts with the counting problems discussed earlier where all
elements were considered distinguishable. In this section we will describe how to solve counting
problems in which some elements are indistinguishable.

Moreover, in this section we will explain how to solve another important class of counting
problems, problems involving counting the ways distinguishable elements can be placed in
boxes. An example of this type of problem is the number of different ways poker hands can be
dealt to four players.

Taken together, the methods described earlier in this chapter and the methods introduced
in this section form a useful toolbox for solving a wide range of counting problems. When the
additional methods discussed in Chapter 8 are added to this arsenal, you will be able to solve a
large percentage of the counting problems that arise in a wide range of areas of study.

Permutations with Repetition

Counting permutations when repetition of elements is allowed can easily be done using the
product rule, as Example 1 shows.

EXAMPLE 1 How many strings of length r can be formed from the uppercase letters of the English alphabet?

Solution: By the product rule, because there are 26 uppercase English letters, and because each
letter can be used repeatedly, we see that there are 26r strings of uppercase English letters of
length r . ▲

The number of r-permutations of a set with n elements when repetition is allowed is given
in Theorem 1.

THEOREM 1 The number of r-permutations of a set of n objects with repetition allowed is nr .

Proof: There are n ways to select an element of the set for each of the r positions in the
r-permutation when repetition is allowed, because for each choice all n objects are available.
Hence, by the product rule there are nr r-permutations when repetition is allowed.

424 6 / Counting

Combinations with Repetition

Consider these examples of combinations with repetition of elements allowed.

EXAMPLE 2 How many ways are there to select four pieces of fruit from a bowl containing apples, oranges,
and pears if the order in which the pieces are selected does not matter, only the type of fruit and
not the individual piece matters, and there are at least four pieces of each type of fruit in the
bowl?

Solution: To solve this problem we list all the ways possible to select the fruit. There are 15
ways:

4 apples 4 oranges 4 pears
3 apples, 1 orange 3 apples, 1 pear 3 oranges, 1 apple
3 oranges, 1 pear 3 pears, 1 apple 3 pears, 1 orange
2 apples, 2 oranges 2 apples, 2 pears 2 oranges, 2 pears
2 apples, 1 orange, 1 pear 2 oranges, 1 apple, 1 pear 2 pears, 1 apple, 1 orange

The solution is the number of 4-combinations with repetition allowed from a three-element set,
{apple, orange, pear}. ▲

To solve more complex counting problems of this type, we need a general method for
counting the r-combinations of an n-element set. In Example 3 we will illustrate such a method.

EXAMPLE 3 How many ways are there to select five bills from a cash box containing $1 bills, $2 bills, $5
bills, $10 bills, $20 bills, $50 bills, and $100 bills? Assume that the order in which the bills are
chosen does not matter, that the bills of each denomination are indistinguishable, and that there
are at least five bills of each type.

Solution: Because the order in which the bills are selected does not matter and seven dif-
ferent types of bills can be selected as many as five times, this problem involves counting
5-combinations with repetition allowed from a set with seven elements. Listing all possibilities
would be tedious, because there are a large number of solutions. Instead, we will illustrate the
use of a technique for counting combinations with repetition allowed.

Suppose that a cash box has seven compartments, one to hold each type of bill, as illustrated
in Figure 1. These compartments are separated by six dividers, as shown in the picture. The
choice of five bills corresponds to placing five markers in the compartments holding different
types of bills. Figure 2 illustrates this correspondence for three different ways to select five bills,
where the six dividers are represented by bars and the five bills by stars.

The number of ways to select five bills corresponds to the number of ways to arrange six
bars and five stars in a row with a total of 11 positions. Consequently, the number of ways to
select the five bills is the number of ways to select the positions of the five stars from the 11
positions. This corresponds to the number of unordered selections of 5 objects from a set of 11

$100 $50 $20 $10 $5 $2 $1

FIGURE 1 Cash Box with Seven Types of Bills.

6.5 Generalized Permutations and Combinations 425

10
0

$
10

$
$

10
0

$
10

0
$

1
$

$

10
0

$
20

$
$

10
0

$
$

50
$

$

5
$

$

10
0

$
10

$
$

10
0

$
$

2
$

$

1
$

$

* * * * *

* *

* * *

* * *

* *

FIGURE 2 Examples of Ways to Select Five Bills.

objects, which can be done in C(11, 5) ways. Consequently, there are

C(11, 5) = 11!
5! 6! = 462

ways to choose five bills from the cash box with seven types of bills. ▲

Theorem 2 generalizes this discussion.

THEOREM 2 There areC(n+ r − 1, r) = C(n+ r − 1, n− 1) r-combinations from a set withn elements
when repetition of elements is allowed.

Proof: Each r-combination of a set with n elements when repetition is allowed can be rep-
resented by a list of n− 1 bars and r stars. The n− 1 bars are used to mark off n different
cells, with the ith cell containing a star for each time the ith element of the set occurs in the
combination. For instance, a 6-combination of a set with four elements is represented with three
bars and six stars. Here

∗∗ | ∗ | | ∗ ∗ ∗

represents the combination containing exactly two of the first element, one of the second element,
none of the third element, and three of the fourth element of the set.

As we have seen, each different list containing n− 1 bars and r stars corresponds to an
r-combination of the set with n elements, when repetition is allowed. The number of such lists
is C(n− 1+ r, r), because each list corresponds to a choice of the r positions to place the r

stars from the n− 1+ r positions that contain r stars and n− 1 bars. The number of such lists
is also equal to C(n− 1+ r, n− 1), because each list corresponds to a choice of the n− 1
positions to place the n− 1 bars.

Examples 4–6 show how Theorem 2 is applied.

426 6 / Counting

EXAMPLE 4 Suppose that a cookie shop has four different kinds of cookies. How many different ways can
six cookies be chosen? Assume that only the type of cookie, and not the individual cookies or
the order in which they are chosen, matters.

Solution: The number of ways to choose six cookies is the number of 6-combinations of a set
with four elements. From Theorem 2 this equals C(4+ 6− 1, 6) = C(9, 6). Because

C(9, 6) = C(9, 3) = 9 · 8 · 7
1 · 2 · 3 = 84,

there are 84 different ways to choose the six cookies. ▲

Theorem 2 can also be used to find the number of solutions of certain linear equations where
the variables are integers subject to constraints. This is illustrated by Example 5.

EXAMPLE 5 How many solutions does the equation

x1 + x2 + x3 = 11

have, where x1, x2, and x3 are nonnegative integers?

Solution: To count the number of solutions, we note that a solution corresponds to a way of
selecting 11 items from a set with three elements so that x1 items of type one, x2 items of type
two, and x3 items of type three are chosen. Hence, the number of solutions is equal to the number
of 11-combinations with repetition allowed from a set with three elements. From Theorem 2 it
follows that there are

C(3+ 11− 1, 11) = C(13, 11) = C(13, 2) = 13 · 12

1 · 2 = 78

solutions.
The number of solutions of this equation can also be found when the variables are subject

to constraints. For instance, we can find the number of solutions where the variables are inte-
gers with x1 ≥ 1, x2 ≥ 2, and x3 ≥ 3. A solution to the equation subject to these constraints
corresponds to a selection of 11 items with x1 items of type one, x2 items of type two, and x3
items of type three, where, in addition, there is at least one item of type one, two items of type
two, and three items of type three. So, a solution corresponds to a choice of one item of type
one, two of type two, and three of type three, together with a choice of five additional items of
any type. By Theorem 2 this can be done in

C(3+ 5− 1, 5) = C(7, 5) = C(7, 2) = 7 · 6
1 · 2 = 21

ways. Thus, there are 21 solutions of the equation subject to the given constraints. ▲

Example 6 shows how counting the number of combinations with repetition allowed arises
in determining the value of a variable that is incremented each time a certain type of nested loop
is traversed.

6.5 Generalized Permutations and Combinations 427

TABLE 1 Combinations and Permutations With
andWithout Repetition.

Type Repetition Allowed? Formula

r-permutations No
n!

(n− r)!

r-combinations No
n!

r! (n− r)!

r-permutations Yes nr

r-combinations Yes
(n+ r − 1)!
r! (n− 1)!

EXAMPLE 6 What is the value of k after the following pseudocode has been executed?

k := 0
for i1 := 1 to n

for i2 := 1 to i1
·
·
·

for im := 1 to im−1
k := k + 1

Solution: Note that the initial value of k is 0 and that 1 is added to k each time the nested loop
is traversed with a sequence of integers i1, i2, . . . , im such that

1 ≤ im ≤ im−1 ≤ · · · ≤ i1 ≤ n.

The number of such sequences of integers is the number of ways to choose m integers from
{1, 2, . . . , n}, with repetition allowed. (To see this, note that once such a sequence has been
selected, if we order the integers in the sequence in nondecreasing order, this uniquely defines
an assignment of im, im−1, . . . , i1. Conversely, every such assignment corresponds to a unique
unordered set.) Hence, from Theorem 2, it follows that k = C(n+m− 1,m) after this code
has been executed. ▲

The formulae for the numbers of ordered and unordered selections of r elements, chosen
with and without repetition allowed from a set with n elements, are shown in Table 1.

Permutations with Indistinguishable Objects

Some elements may be indistinguishable in counting problems. When this is the case, care must
be taken to avoid counting things more than once. Consider Example 7.

EXAMPLE 7 How many different strings can be made by reordering the letters of the word SUCCESS?

Solution: Because some of the letters of SUCCESS are the same, the answer is not given by the
number of permutations of seven letters. This word contains three Ss, two Cs, one U , and one E.
To determine the number of different strings that can be made by reordering the letters, first note
that the three Ss can be placed among the seven positions in C(7, 3) different ways, leaving four

428 6 / Counting

positions free. Then the two Cs can be placed in C(4, 2) ways, leaving two free positions. The U

can be placed in C(2, 1) ways, leaving just one position free. Hence E can be placed in C(1, 1)
way. Consequently, from the product rule, the number of different strings that can be made is

C(7, 3)C(4, 2)C(2, 1)C(1, 1) = 7!
3! 4! ·

4!
2! 2! ·

2!
1! 1! ·

1!
1! 0!

= 7!
3! 2! 1! 1!

= 420 . ▲

We can prove Theorem 3 using the same sort of reasoning as in Example 7.

THEOREM 3 The number of different permutations of n objects, where there are n1 indistinguishable
objects of type 1, n2 indistinguishable objects of type 2, . . . , and nk indistinguishable objects
of type k, is

n!
n1! n2! · · · nk!

.

Proof: To determine the number of permutations, first note that the n1 objects of type one can be
placed among the n positions in C(n, n1) ways, leaving n− n1 positions free. Then the objects
of type two can be placed in C(n− n1, n2) ways, leaving n− n1 − n2 positions free. Continue
placing the objects of type three, . . . , type k − 1, until at the last stage, nk objects of type k

can be placed in C(n− n1 − n2 − · · · − nk−1, nk) ways. Hence, by the product rule, the total
number of different permutations is

C(n, n1)C(n− n1, n2) · · ·C(n− n1 − · · · − nk−1, nk)

= n!
n1! (n− n1)!

(n− n1)!
n2! (n− n1 − n2)!

· · · (n− n1 − · · · − nk−1)!
nk! 0!

= n!
n1! n2! · · · nk!

.

Distributing Objects into Boxes

Many counting problems can be solved by enumerating the ways objects can be placed into boxes
(where the order these objects are placed into the boxes does not matter). The objects can be
either distinguishable, that is, different from each other, or indistinguishable, that is, considered
identical. Distinguishable objects are sometimes said to be labeled, whereas indistinguishable
objects are said to be unlabeled. Similarly, boxes can be distinguishable, that is, different,
or indinguishable, that is, identical. Distinguishable boxes are often said to be labeled, while
indistinguishable boxes are said to be unlabeled. When you solve a counting problem using
the model of distributing objects into boxes, you need to determine whether the objects are
distinguishable and whether the boxes are distinguishable. Although the context of the counting
problem makes these two decisions clear, counting problems are sometimes ambiguous and it
may be unclear which model applies. In such a case it is best to state whatever assumptions you
are making and explain why the particular model you choose conforms to your assumptions.

6.5 Generalized Permutations and Combinations 429

We will see that there are closed formulae for counting the ways to distribute objects,
distinguishable or indistinguishable, into distinguishable boxes. We are not so lucky when we
count the ways to distribute objects, distinguishable or indistinguishable, into indistinguishable
boxes; there are no closed formulae to use in these cases.

DISTINGUISHABLEOBJECTS ANDDISTINGUISHABLE BOXES We first consider the
case when distinguishable objects are placed into distinguishable boxes. Consider Example 8
in which the objects are cards and the boxes are hands of players.

EXAMPLE 8 How many ways are there to distribute hands of 5 cards to each of four players from the standard
deck of 52 cards?

Solution: We will use the product rule to solve this problem. To begin, note that the first player
can be dealt 5 cards in C(52, 5) ways. The second player can be dealt 5 cards in C(47, 5) ways,
because only 47 cards are left. The third player can be dealt 5 cards in C(42, 5) ways. Finally,
the fourth player can be dealt 5 cards in C(37, 5) ways. Hence, the total number of ways to deal
four players 5 cards each is

C(52, 5)C(47, 5)C(42, 5)C(37, 5) = 52!
47! 5! ·

47!
42! 5! ·

42!
37! 5! ·

37!
32! 5!

= 52!
5! 5! 5! 5! 32! . ▲

Remark: The solution to Example 8 equals the number of permutations of 52 objects, with 5 in-
distinguishable objects of each of four different types, and 32 objects of a fifth type. This equality
can be seen by defining a one-to-one correspondence between permutations of this type and dis-
tributions of cards to the players. To define this correspondence, first order the cards from 1 to 52.
Then cards dealt to the first player correspond to the cards in the positions assigned to objects of
the first type in the permutation. Similarly, cards dealt to the second, third, and fourth players, re-
spectively, correspond to cards in the positions assigned to objects of the second, third, and fourth
type, respectively. The cards not dealt to any player correspond to cards in the positions assigned
to objects of the fifth type. The reader should verify that this is a one-to-one correspondence.

Example 8 is a typical problem that involves distributing distinguishable objects into dis-
tinguishable boxes. The distinguishable objects are the 52 cards, and the five distinguishable
boxes are the hands of the four players and the rest of the deck. Counting problems that involve
distributing distinguishable objects into boxes can be solved using Theorem 4.

THEOREM 4 The number of ways to distribute n distinguishable objects into k distinguishable boxes so
that ni objects are placed into box i, i = 1, 2, . . . , k, equals

n!
n1! n2! · · · nk!

.

Theorem 4 can be proved using the product rule. We leave the details as Exercise 47. It can also
be proved (see Exercise 48) by setting up a one-to-one correspondence between the permutations
counted by Theorem 3 and the ways to distribute objects counted by Theorem 4.

INDISTINGUISHABLE OBJECTS AND DISTINGUISHABLE BOXES Counting the
number of ways of placing n indistinguishable objects into k distinguishable boxes turns out to
be the same as counting the number of n-combinations for a set with k elements when repeti-
tions are allowed. The reason behind this is that there is a one-to-one correspondence between

430 6 / Counting

n-combinations from a set with k elements when repetition is allowed and the ways to place
n indistinguishable balls into k distinguishable boxes. To set up this correspondence, we put a
ball in the ith bin each time the ith element of the set is included in the n-combination.

EXAMPLE 9 How many ways are there to place 10 indistinguishable balls into eight distinguishable bins?

Solution: The number of ways to place 10 indistinguishable balls into eight bins equals the num-
ber of 10-combinations from a set with eight elements when repetition is allowed. Consequently,
there are

C(8+ 10− 1, 10) = C(17, 10) = 17!
10!7! = 19,448.

▲

This means that there are C(n+ r − 1, n− 1) ways to place r indistinguishable objects
into n distinguishable boxes.

DISTINGUISHABLEOBJECTSANDINDISTINGUISHABLEBOXES Counting the ways
to place n distinguishable objects into k indistinguishable boxes is more difficult than counting
the ways to place objects, distinguishable or indistinguishable objects, into distinguishable
boxes. We illustrate this with an example.

EXAMPLE 10 How many ways are there to put four different employees into three indistinguishable offices,
when each office can contain any number of employees?

Solution: We will solve this problem by enumerating all the ways these employees can be placed
into the offices. We represent the four employees by A, B, C, and D. First, we note that we can
distribute employees so that all four are put into one office, three are put into one office and
a fourth is put into a second office, two employees are put into one office and two put into a
second office, and finally, two are put into one office, and one each put into the other two offices.
Each way to distribute these employees to these offices can be represented by a way to partition
the elements A, B, C, and D into disjoint subsets.

We can put all four employees into one office in exactly one way, represented by
{{A,B,C,D}}. We can put three employees into one office and the fourth employee into
a different office in exactly four ways, represented by {{A,B,C}, {D}}, {{A,B,D}, {C}},
{{A,C,D}, {B}}, and {{B,C,D}, {A}}. We can put two employees into one office and two
into a second office in exactly three ways, represented by {{A,B}, {C,D}}, {{A,C}, {B,D}},
and {{A,D}, {B,C}}. Finally, we can put two employees into one office, and one each into each
of the remaining two offices in six ways, represented by {{A,B}, {C}, {D}}, {{A,C}, {B}, {D}},
{{A,D}, {B}, {C}}, {{B,C}, {A}, {D}}, {{B,D}}, {A}, {C}}, and {{C,D}, {A}, {B}}.

Counting all the possibilities, we find that there are 14 ways to put four different employees
into three indistinguishable offices. Another way to look at this problem is to look at the number
of offices into which we put employees. Note that there are six ways to put four different
employees into three indistinguishable offices so that no office is empty, seven ways to put four
different employees into two indistinguishable offices so that no office is empty, and one way
to put four employees into one office so that it is not empty. ▲

There is no simple closed formula for the number of ways to distribute n distinguishable
objects into j indistinguishable boxes. However, there is a formula involving a summation,
which we will now describe. Let S(n, j) denote the number of ways to distribute n distinguish-
able objects into j indistinguishable boxes so that no box is empty. The numbers S(n, j) are
called Stirling numbers of the second kind. For instance, Example 10 shows that S(4, 3) = 6,
S(4, 2) = 7, and S(4, 1) = 1. We see that the number of ways to distribute n distinguishable
objects into k indistinguishable boxes (where the number of boxes that are nonempty equals k,
k − 1, . . . , 2, or 1) equals

�k
j=1 S(n, j). For instance, following the reasoning in Example 10,

the number of ways to distribute four distinguishable objects into three indistinguishable boxes

6.5 Generalized Permutations and Combinations 431

equals S(4, 1)+ S(4, 2)+ S(4, 3) = 1+ 7+ 6 = 14. Using the inclusion–exclusion principle
(see Section 8.6) it can be shown that

S(n, j) = 1

j !
j−1�
i=0

(−1)i
�
j

i

�
(j − i)n.

Consequently, the number of ways to distribute n distinguishable objects into k indistinguishable
boxes equals

k�
j=1

S(n, j) =
k�

j=1

1

j !
j−1�
i=0

(−1)i
�
j

i

�
(j − i)n.

Remark: The reader may be curious about the Stirling numbers of the first kind.A combinatorial
definition of the signless Stirling numbers of the first kind, the absolute values of the Stirling
numbers of the first kind, can be found in the preamble to Exercise 47 in the Supplementary
Exercises. For the definition of Stirling numbers of the first kind, for more information about
Stirling numbers of the second kind, and to learn more about Stirling numbers of the first kind
and the relationship between Stirling numbers of the first and second kind, see combinatorics
textbooks such as [Bó07], [Br99], and [RoTe05], and Chapter 6 in [MiRo91].

INDISTINGUISHABLEOBJECTSAND INDISTINGUISHABLEBOXES Some counting
problems can be solved by determining the number of ways to distribute indistinguishable objects
into indistinguishable boxes. We illustrate this principle with an example.

EXAMPLE 11 How many ways are there to pack six copies of the same book into four identical boxes, where
a box can contain as many as six books?

Solution: We will enumerate all ways to pack the books. For each way to pack the books, we will
list the number of books in the box with the largest number of books, followed by the numbers
of books in each box containing at least one book, in order of decreasing number of books in a
box. The ways we can pack the books are

6
5, 1
4, 2
4, 1, 1
3, 3
3, 2, 1
3, 1, 1, 1
2, 2, 2
2, 2, 1, 1.

For example, 4, 1, 1 indicates that one box contains four books, a second box contains a single
book, and a third box contains a single book (and the fourth box is empty). We conclude that
there are nine allowable ways to pack the books, because we have listed them all. ▲

Observe that distributing n indistinguishable objects into k indistinguishable boxes is the
same as writing n as the sum of at most k positive integers in nonincreasing order. If a1 + a2 +
· · · + aj = n, where a1, a2, . . . , aj are positive integers with a1 ≥ a2 ≥ · · · ≥ aj , we say that
a1, a2, . . . , aj is a partition of the positive integer n into j positive integers. We see that if pk(n)

is the number of partitions of n into at most k positive integers, then there are pk(n) ways to
distribute n indistinguishable objects into k indistinguishable boxes. No simple closed formula
exists for this number. For more information about partitions of positive integers, see [Ro11].

432 6 / Counting

Exercises

1. In how many different ways can five elements be selected
in order from a set with three elements when repetition is
allowed?

2. In how many different ways can five elements be selected
in order from a set with five elements when repetition is
allowed?

3. How many strings of six letters are there?

4. Every day a student randomly chooses a sandwich for
lunch from a pile of wrapped sandwiches. If there are six
kinds of sandwiches, how many different ways are there
for the student to choose sandwiches for the seven days
of a week if the order in which the sandwiches are chosen
matters?

5. How many ways are there to assign three jobs to five
employees if each employee can be given more than one
job?

6. How many ways are there to select five unordered ele-
ments from a set with three elements when repetition is
allowed?

7. How many ways are there to select three unordered el-
ements from a set with five elements when repetition is
allowed?

8. How many different ways are there to choose a dozen
donuts from the 21 varieties at a donut shop?

9. A bagel shop has onion bagels, poppy seed bagels, egg
bagels, salty bagels, pumpernickel bagels, sesame seed
bagels, raisin bagels, and plain bagels. How many ways
are there to choose

a) six bagels?
b) a dozen bagels?
c) two dozen bagels?
d) a dozen bagels with at least one of each kind?
e) a dozen bagels with at least three egg bagels and no

more than two salty bagels?

10. A croissant shop has plain croissants, cherry croissants,
chocolate croissants, almond croissants, apple croissants,
and broccoli croissants. How many ways are there to
choose

a) a dozen croissants?
b) three dozen croissants?
c) two dozen croissants with at least two of each kind?
d) two dozen croissants with no more than two broccoli

croissants?
e) two dozen croissants with at least five chocolate crois-

sants and at least three almond croissants?
f) two dozen croissants with at least one plain croissant,

at least two cherry croissants, at least three choco-
late croissants, at least one almond croissant, at least
two apple croissants, and no more than three broccoli
croissants?

11. How many ways are there to choose eight coins from a
piggy bank containing 100 identical pennies and 80 iden-
tical nickels?

12. How many different combinations of pennies, nickels,
dimes, quarters, and half dollars can a piggy bank con-
tain if it has 20 coins in it?

13. A book publisher has 3000 copies of a discrete mathemat-
ics book. How many ways are there to store these books
in their three warehouses if the copies of the book are
indistinguishable?

14. How many solutions are there to the equation

x1 + x2 + x3 + x4 = 17,

where x1, x2, x3, and x4 are nonnegative integers?
15. How many solutions are there to the equation

x1 + x2 + x3 + x4 + x5 = 21,

where xi , i = 1, 2, 3, 4, 5, is a nonnegative integer such
that

a) x1 ≥ 1?
b) xi ≥ 2 for i = 1, 2, 3, 4, 5?
c) 0 ≤ x1 ≤ 10?
d) 0 ≤ x1 ≤ 3, 1 ≤ x2 < 4, and x3 ≥ 15?

16. How many solutions are there to the equation

x1 + x2 + x3 + x4 + x5 + x6 = 29,

wherexi , i = 1, 2, 3, 4, 5, 6, is a nonnegative integer such
that

a) xi > 1 for i = 1, 2, 3, 4, 5, 6?
b) x1 ≥ 1, x2 ≥ 2, x3 ≥ 3, x4 ≥ 4, x5 > 5, and x6 ≥ 6?
c) x1 ≤ 5?
d) x1 < 8 and x2 > 8?

17. How many strings of 10 ternary digits (0, 1, or 2) are there
that contain exactly two 0s, three 1s, and five 2s?

18. How many strings of 20-decimal digits are there that con-
tain two 0s, four 1s, three 2s, one 3, two 4s, three 5s, two
7s, and three 9s?

19. Suppose that a large family has 14 children, including two
sets of identical triplets, three sets of identical twins, and
two individual children. How many ways are there to seat
these children in a row of chairs if the identical triplets or
twins cannot be distinguished from one another?

20. How many solutions are there to the inequality

x1 + x2 + x3 ≤ 11,

where x1, x2, and x3 are nonnegative integers? [Hint: In-
troduce an auxiliary variable x4 such that x1 + x2 + x3 +
x4 = 11.]

21. How many ways are there to distribute six indistinguish-
able balls into nine distinguishable bins?

22. How many ways are there to distribute 12 indistinguish-
able balls into six distinguishable bins?

23. How many ways are there to distribute 12 distinguishable
objects into six distinguishable boxes so that two objects
are placed in each box?

24. How many ways are there to distribute 15 distinguish-
able objects into five distinguishable boxes so that the
boxes have one, two, three, four, and five objects in them,
respectively.

6.5 Generalized Permutations and Combinations 433

25. How many positive integers less than 1,000,000 have the
sum of their digits equal to 19?

26. How many positive integers less than 1,000,000 have ex-
actly one digit equal to 9 and have a sum of digits equal
to 13?

27. There are 10 questions on a discrete mathematics final
exam. How many ways are there to assign scores to the
problems if the sum of the scores is 100 and each question
is worth at least 5 points?

28. Show that there are C(n+ r − q1 − q2 − · · · − qr
−1, n− q1 − q2 − · · · − qr) different unordered selec-
tions of n objects of r different types that include at
least q1 objects of type one, q2 objects of type two, . . . ,
and qr objects of type r .

29. How many different bit strings can be transmitted if the
string must begin with a 1 bit, must include three ad-
ditional 1 bits (so that a total of four 1 bits is sent),
must include a total of 12 0 bits, and must have at least
two 0 bits following each 1 bit?

30. How many different strings can be made from the letters
in MISSISSIPPI, using all the letters?

31. How many different strings can be made from the letters
in ABRACADABRA, using all the letters?

32. How many different strings can be made from the letters
in AARDVARK, using all the letters, if all three As must
be consecutive?

33. How many different strings can be made from the letters
in ORONO, using some or all of the letters?

34. How many strings with five or more characters can be
formed from the letters in SEERESS?

35. How many strings with seven or more characters can be
formed from the letters in EVERGREEN?

36. How many different bit strings can be formed using
six 1s and eight 0s?

37. A student has three mangos, two papayas, and two kiwi
fruits. If the student eats one piece of fruit each day, and
only the type of fruit matters, in how many different ways
can these fruits be consumed?

38. A professor packs her collection of 40 issues of a mathe-
matics journal in four boxes with 10 issues per box. How
many ways can she distribute the journals if

a) each box is numbered, so that they are distinguish-
able?

b) the boxes are identical, so that they cannot be distin-
guished?

39. How many ways are there to travel in xyz space from the
origin (0, 0, 0) to the point (4, 3, 5) by taking steps one
unit in the positive x direction, one unit in the positive y

direction, or one unit in the positive z direction? (Moving
in the negative x, y, or z direction is prohibited, so that
no backtracking is allowed.)

40. How many ways are there to travel in xyzw space from
the origin (0, 0, 0, 0) to the point (4, 3, 5, 4) by taking
steps one unit in the positive x, positive y, positive z, or
positive w direction?

41. How many ways are there to deal hands of seven cards to
each of five players from a standard deck of 52 cards?

42. In bridge, the 52 cards of a standard deck are dealt to four
players. How many different ways are there to deal bridge
hands to four players?

43. How many ways are there to deal hands of five cards to
each of six players from a deck containing 48 different
cards?

44. In how many ways can a dozen books be placed on four
distinguishable shelves

a) if the books are indistinguishable copies of the same
title?

b) if no two books are the same, and the positions of the
books on the shelves matter? [Hint: Break this into
12 tasks, placing each book separately. Start with the
sequence 1, 2, 3, 4 to represent the shelves. Repre-
sent the books by bi , i = 1, 2, . . . , 12. Place b1 to the
right of one of the terms in 1, 2, 3, 4. Then successively
place b2, b3, . . . , and b12.]

45. How many ways can n books be placed on k distinguish-
able shelves

a) if the books are indistinguishable copies of the same
title?

b) if no two books are the same, and the positions of the
books on the shelves matter?

46. A shelf holds 12 books in a row. How many ways are
there to choose five books so that no two adjacent books
are chosen? [Hint: Represent the books that are chosen by
bars and the books not chosen by stars. Count the number
of sequences of five bars and seven stars so that no two
bars are adjacent.]

∗47. Use the product rule to prove Theorem 4, by first placing
objects in the first box, then placing objects in the second
box, and so on.

∗48. Prove Theorem 4 by first setting up a one-to-one cor-
respondence between permutations of n objects with ni

indistinguishable objects of type i, i = 1, 2, 3, . . . , k, and
the distributions of n objects in k boxes such that ni ob-
jects are placed in box i, i = 1, 2, 3, . . . , k and then ap-
plying Theorem 3.

∗49. In this exercise we will prove Theorem 2 by set-
ting up a one-to-one correspondence between the set
of r-combinations with repetition allowed of S =
{1, 2, 3, . . . , n} and the set of r-combinations of the set
T = {1, 2, 3, . . . , n+ r − 1}.
a) Arrange the elements in an r-combination, with rep-

etition allowed, of S into an increasing sequence
x1 ≤ x2 ≤ · · · ≤ xr . Show that the sequence formed
by adding k − 1 to the kth term is strictly increasing.
Conclude that this sequence is made up of r distinct
elements from T .

b) Show that the procedure described in (a) defines
a one-to-one correspondence between the set of
r-combinations, with repetition allowed, of S and
the r-combinations of T. [Hint: Show the corre-
spondence can be reversed by associating to the r-
combination {x1, x2, . . . , xr } of T , with 1 ≤ x1 <

x2 < · · · < xr ≤ n+ r − 1, the r-combination with

434 6 / Counting

repetition allowed from S, formed by subtracting
k − 1 from the kth element.]

c) Conclude that there are C(n+ r − 1, r) r-
combinations with repetition allowed from a set withn

elements.

50. How many ways are there to distribute five distinguish-
able objects into three indistinguishable boxes?

51. How many ways are there to distribute six distinguishable
objects into four indistinguishable boxes so that each of
the boxes contains at least one object?

52. How many ways are there to put five temporary employ-
ees into four identical offices?

53. How many ways are there to put six temporary employ-
ees into four identical offices so that there is at least one
temporary employee in each of these four offices?

54. How many ways are there to distribute five indistinguish-
able objects into three indistinguishable boxes?

55. How many ways are there to distribute six indistinguish-
able objects into four indistinguishable boxes so that each
of the boxes contains at least one object?

56. How many ways are there to pack eight identical DVDs
into five indistinguishable boxes so that each box contains
at least one DVD?

57. How many ways are there to pack nine identical DVDs
into three indistinguishable boxes so that each box con-
tains at least two DVDs?

58. How many ways are there to distribute five balls into
seven boxes if each box must have at most one ball
in it if

a) both the balls and boxes are labeled?
b) the balls are labeled, but the boxes are unlabeled?
c) the balls are unlabeled, but the boxes are labeled?
d) both the balls and boxes are unlabeled?

59. How many ways are there to distribute five balls into three
boxes if each box must have at least one ball in it if

a) both the balls and boxes are labeled?
b) the balls are labeled, but the boxes are unlabeled?

c) the balls are unlabeled, but the boxes are labeled?
d) both the balls and boxes are unlabeled?

60. Suppose that a basketball league has 32 teams, split into
two conferences of 16 teams each. Each conference is
split into three divisions. Suppose that the North Central
Division has five teams. Each of the teams in the North
Central Division plays four games against each of the
other teams in this division, three games against each of
the 11 remaining teams in the conference, and two games
against each of the 16 teams in the other conference. In
how many different orders can the games of one of the
teams in the North Central Division be scheduled?

∗61. Suppose that a weapons inspector must inspect each of
five different sites twice, visiting one site per day. The
inspector is free to select the order in which to visit these
sites, but cannot visit site X, the most suspicious site, on
two consecutive days. In how many different orders can
the inspector visit these sites?

62. How many different terms are there in the expansion of
(x1 + x2 + · · · + xm)n after all terms with identical sets
of exponents are added?

∗63. Prove the Multinomial Theorem: If n is a positive inte-
ger, then

(x1 + x2 + · · · + xm)n

=
�

n1 + n2 + ···+ nm = n

C(n; n1, n2, . . . , nm)x
n1
1 x

n2
2 · · · xnm

m ,

where

C(n; n1, n2, . . . , nm) = n!
n1! n2! · · · nm!

is a multinomial coefficient.

64. Find the expansion of (x + y + z)4.

65. Find the coefficient of x3y2z5 in (x + y + z)10.

66. How many terms are there in the expansion of

(x + y + z)100?

6.6 Generating Permutations and Combinations

Introduction

Methods for counting various types of permutations and combinations were described in the
previous sections of this chapter, but sometimes permutations or combinations need to be gener-
ated, not just counted. Consider the following three problems. First, suppose that a salesperson
must visit six different cities. In which order should these cities be visited to minimize total
travel time? One way to determine the best order is to determine the travel time for each of the
6! = 720 different orders in which the cities can be visited and choose the one with the smallest
travel time. Second, suppose we are given a set of six positive integers and wish to find a subset
of them that has 100 as their sum, if such a subset exists. One way to find these numbers is to
generate all 26 = 64 subsets and check the sum of their elements. Third, suppose a laboratory
has 95 employees. A group of 12 of these employees with a particular set of 25 skills is needed
for a project. (Each employee can have one or more of these skills.) One way to find such a

6.6 Generating Permutations and Combinations 435

set of employees is to generate all sets of 12 of these employees and check whether they have
the desired skills. These examples show that it is often necessary to generate permutations and
combinations to solve problems.

Generating Permutations

Any set withn elements can be placed in one-to-one correspondence with the set {1, 2, 3, . . . , n}.
We can list the permutations of any set of n elements by generating the permutations of the n

smallest positive integers and then replacing these integers with the corresponding elements.
Many different algorithms have been developed to generate the n! permutations of this set. We
will describe one of these that is based on the lexicographic (or dictionary) ordering of the set
of permutations of {1, 2, 3, . . . , n}. In this ordering, the permutation a1a2 · · · an precedes the
permutation of b1b2 · · · bn, if for some k, with 1 ≤ k ≤ n, a1 = b1, a2 = b2, . . . , ak−1 = bk−1,
and ak < bk . In other words, a permutation of the set of the n smallest positive integers precedes
(in lexicographic order) a second permutation if the number in this permutation in the first
position where the two permutations disagree is smaller than the number in that position in the
second permutation.

EXAMPLE 1 The permutation 23415 of the set {1, 2, 3, 4, 5} precedes the permutation 23514, because these
permutations agree in the first two positions, but the number in the third position in the first
permutation, 4, is smaller than the number in the third position in the second permutation, 5.
Similarly, the permutation 41532 precedes 52143. ▲

An algorithm for generating the permutations of {1, 2, . . . , n} can be based on a proce-
dure that constructs the next permutation in lexicographic order following a given permutation
a1a2 · · · an. We will show how this can be done. First, suppose that an−1 < an. Interchange an−1
and an to obtain a larger permutation. No other permutation is both larger than the original per-
mutation and smaller than the permutation obtained by interchanging an−1 and an. For instance,
the next larger permutation after 234156 is 234165. On the other hand, if an−1 > an, then a
larger permutation cannot be obtained by interchanging these last two terms in the permutation.
Look at the last three integers in the permutation. If an−2 < an−1, then the last three integers in
the permutation can be rearranged to obtain the next largest permutation. Put the smaller of the
two integers an−1 and an that is greater than an−2 in position n− 2. Then, place the remaining
integer and an−2 into the last two positions in increasing order. For instance, the next larger
permutation after 234165 is 234516.

On the other hand, if an−2 > an−1 (and an−1 > an), then a larger permutation cannot be
obtained by permuting the last three terms in the permutation. Based on these observations, a
general method can be described for producing the next larger permutation in increasing order
following a given permutation a1a2 · · · an. First, find the integers aj and aj+1 with aj < aj+1
and

aj+1 > aj+2 > · · · > an,

that is, the last pair of adjacent integers in the permutation where the first integer in the pair is
smaller than the second. Then, the next larger permutation in lexicographic order is obtained
by putting in the j th position the least integer among aj+1, aj+2, . . . , and an that is greater
than aj and listing in increasing order the rest of the integers aj , aj+1, . . . , an in positions j + 1
to n. It is easy to see that there is no other permutation larger than the permutation a1a2 · · · an but
smaller than the new permutation produced. (The verification of this fact is left as an exercise
for the reader.)

436 6 / Counting

EXAMPLE 2 What is the next permutation in lexicographic order after 362541?

Solution: The last pair of integers aj and aj+1 where aj < aj+1 is a3 = 2 and a4 = 5. The
least integer to the right of 2 that is greater than 2 in the permutation is a5 = 4. Hence, 4 is
placed in the third position. Then the integers 2, 5, and 1 are placed in order in the last three
positions, giving 125 as the last three positions of the permutation. Hence, the next permutation
is 364125. ▲

To produce the n! permutations of the integers 1, 2, 3, . . . , n, begin with the smallest permu-
tation in lexicographic order, namely, 123 · · · n, and successively apply the procedure described
for producing the next larger permutation of n! − 1 times. This yields all the permutations of
the n smallest integers in lexicographic order.

EXAMPLE 3 Generate the permutations of the integers 1, 2, 3 in lexicographic order.

Solution: Begin with 123. The next permutation is obtained by interchanging 3 and 2 to obtain
132. Next, because 3 > 2 and 1 < 3, permute the three integers in 132. Put the smaller of 3
and 2 in the first position, and then put 1 and 3 in increasing order in positions 2 and 3 to
obtain 213. This is followed by 231, obtained by interchanging 1 and 3, because 1 < 3. The next
larger permutation has 3 in the first position, followed by 1 and 2 in increasing order, namely,
312. Finally, interchange 1 and 2 to obtain the last permutation, 321. We have generated the
permutations of 1, 2, 3 in lexicographic order. They are 123, 132, 213, 231, 312, and 321. ▲

Algorithm 1 displays the procedure for finding the next permutation in lexicographic order
after a permutation that is not n n− 1 n− 2 . . . 2 1, which is the largest permutation.

ALGORITHM 1 Generating the Next Permutation in Lexicographic Order.

procedure next permutation(a1a2 . . . an: permutation of
{1, 2, . . . , n} not equal to n n− 1 . . . 2 1)

j := n− 1
while aj > aj+1

j := j − 1
{j is the largest subscript with aj < aj+1}
k := n

while aj > ak

k := k − 1
{ak is the smallest integer greater than aj to the right of aj }
interchange aj and ak

r := n

s := j + 1
while r > s

interchange ar and as

r := r − 1
s := s + 1

{this puts the tail end of the permutation after the jth position in increasing order}
{a1a2 . . . an is now the next permutation}

6.6 Generating Permutations and Combinations 437

Generating Combinations

How can we generate all the combinations of the elements of a finite set? Because a combination
is just a subset, we can use the correspondence between subsets of {a1, a2, . . . , an} and bit strings
of length n.

Recall that the bit string corresponding to a subset has a 1 in position k if ak is in the subset,
and has a 0 in this position if ak is not in the subset. If all the bit strings of length n can be listed,
then by the correspondence between subsets and bit strings, a list of all the subsets is obtained.

Recall that a bit string of length n is also the binary expansion of an integer between 0 and
2n − 1. The 2n bit strings can be listed in order of their increasing size as integers in their binary
expansions. To produce all binary expansions of length n, start with the bit string 000 . . . 00, with
n zeros. Then, successively find the next expansion until the bit string 111 . . . 11 is obtained. At
each stage the next binary expansion is found by locating the first position from the right that is
not a 1, then changing all the 1s to the right of this position to 0s and making this first 0 (from
the right) a 1.

EXAMPLE 4 Find the next bit string after 10 0010 0111.

Solution: The first bit from the right that is not a 1 is the fourth bit from the right. Change
this bit to a 1 and change all the following bits to 0s. This produces the next larger bit string,
10 0010 1000. ▲

The procedure for producing the next larger bit string after bn−1bn−2. . .b1b0 is given as
Algorithm 2.

ALGORITHM 2 Generating the Next Larger Bit String.

procedure next bit string(bn−1 bn−2. . .b1b0: bit string not equal to 11. . .11)
i := 0
while bi = 1

bi := 0
i := i + 1

bi := 1
{bn−1 bn−2. . .b1b0 is now the next bit string}

Next, an algorithm for generating the r-combinations of the set {1, 2, 3, . . . , n} will be
given. An r-combination can be represented by a sequence containing the elements in the
subset in increasing order. The r-combinations can be listed using lexicographic order on
these sequences. In this lexicographic ordering, the first r-combination is {1, 2, . . . , r − 1, r}
and the last r-combination is {n− r + 1, n− r + 2, . . . , n− 1, n}. The next r-combination
after a1a2 · · · ar can be obtained in the following way: First, locate the last element ai in the
sequence such that ai = n− r + i. Then, replace ai with ai + 1 and aj with ai + j − i + 1,
for j = i + 1, i + 2, . . . , r . It is left for the reader to show that this produces the next larger
r-combination in lexicographic order. This procedure is illustrated with Example 5.

EXAMPLE 5 Find the next larger 4-combination of the set {1, 2, 3, 4, 5, 6} after {1, 2, 5, 6}.

Solution: The last term among the terms ai with a1 = 1, a2 = 2, a3 = 5, and a4 = 6 such that
ai = 6− 4+ i is a2 = 2. To obtain the next larger 4-combination, increment a2 by 1 to obtain
a2 = 3. Then set a3 = 3+ 1 = 4 and a4 = 3+ 2 = 5. Hence the next larger 4-combination is
{1, 3, 4, 5}. ▲

438 6 / Counting

Algorithm 3 displays pseudocode for this procedure.

ALGORITHM 3 Generating the Next r-Combination in Lexicographic Order.

procedure next r-combination({a1, a2, . . . , ar }: proper subset of
{1, 2, . . . , n} not equal to {n− r + 1, . . . , n} with
a1 < a2 < · · · < ar)

i := r

while ai = n− r + i

i := i − 1
ai := ai + 1
for j := i + 1 to r

aj := ai + j − i

{{a1, a2, . . . , ar } is now the next combination}

Exercises

1. Place these permutations of {1, 2, 3, 4, 5} in lexico-
graphic order: 43521, 15432, 45321, 23451, 23514,
14532, 21345, 45213, 31452, 31542.

2. Place these permutations of {1,2,3,4,5,6} in lexico-
graphic order: 234561, 231456, 165432, 156423, 543216,
541236, 231465, 314562, 432561, 654321, 654312,
435612.

3. The name of a file in a computer directory consists of
three uppercase letters followed by a digit, where each
letter is either A, B, or C, and each digit is either 1 or 2.
List the name of these files in lexicographic order, where
we order letters using the usual alphabetic order of letters.

4. Suppose that the name of a file in a computer directory
consists of three digits followed by two lowercase letters
and each digit is 0, 1, or 2, and each letter is either a or b.
List the name of these files in lexicographic order, where
we order letters using the usual alphabetic order of letters.

5. Find the next larger permutation in lexicographic order
after each of these permutations.

a) 1432 b) 54123 c) 12453

d) 45231 e) 6714235 f) 31528764

6. Find the next larger permutation in lexicographic order
after each of these permutations.

a) 1342 b) 45321 c) 13245

d) 612345 e) 1623547 f) 23587416

7. Use Algorithm 1 to generate the 24 permutations of the
first four positive integers in lexicographic order.

8. UseAlgorithm 2 to list all the subsets of the set {1, 2, 3, 4}.
9. Use Algorithm 3 to list all the 3-combinations of
{1, 2, 3, 4, 5}.

10. Show that Algorithm 1 produces the next larger permu-
tation in lexicographic order.

11. Show that Algorithm 3 produces the next larger
r-combination in lexicographic order after a given
r-combination.

12. Develop an algorithm for generating the r-permutations
of a set of n elements.

13. List all 3-permutations of {1, 2, 3, 4, 5}.
The remaining exercises in this section develop another algo-
rithm for generating the permutations of {1, 2, 3, . . . , n}. This
algorithm is based on Cantor expansions of integers. Every
nonnegative integer less than n! has a unique Cantor expan-
sion

a11! + a22! + · · · + an−1(n− 1)!
where ai is a nonnegative integer not exceeding i, for i =
1, 2, . . . , n− 1. The integers a1, a2, . . . , an−1 are called the
Cantor digits of this integer.

Given a permutation of {1, 2, . . . , n}, let ak−1, k =
2, 3, . . . , n, be the number of integers less than k that fol-
low k in the permutation. For instance, in the permutation
43215, a1 is the number of integers less than 2 that fol-
low 2, so a1 = 1. Similarly, for this example a2 = 2, a3 = 3,
and a4 = 0. Consider the function from the set of permu-
tations of {1, 2, 3, . . . , n} to the set of nonnegative integers
less than n! that sends a permutation to the integer that has
a1, a2, . . . , an−1, defined in this way, as its Cantor digits.

14. Find the Cantor digits a1, a2, . . . , an−1 that correspond
to these permutations.

a) 246531 b) 12345 c) 654321
∗15. Show that the correspondence described in the pream-

ble is a bijection between the set of permutations of
{1, 2, 3, . . . , n} and the nonnegative integers less than n!.

Review Questions 439

16. Find the permutations of {1, 2, 3, 4, 5} that correspond
to these integers with respect to the correspondence be-
tween Cantor expansions and permutations as described
in the preamble to Exercise 14.

a) 3 b) 89 c) 111

17. Develop an algorithm for producing all permutations of a
set of n elements based on the correspondence described
in the preamble to Exercise 14.

Key Terms and Results

TERMS

combinatorics: the study of arrangements of objects
enumeration: the counting of arrangements of objects
tree diagram: a diagram made up of a root, branches leaving

the root, and other branches leaving some of the endpoints
of branches

permutation: an ordered arrangement of the elements of a set
r-permutation: an ordered arrangement of r elements of a set
P(n,r): the number of r-permutations of a set with n elements
r-combination: an unordered selection of r elements of a set
C(n,r): the number of r-combinations of a set with n elements

binomial coefficient

�
n

r

�
: also the number of r-combinations

of a set with n elements
combinatorial proof: a proof that uses counting arguments

rather than algebraic manipulation to prove a result
Pascal’s triangle: a representation of the binomial coeffi-

cients where the ith row of the triangle contains
�
i
j

�
for

j = 0, 1, 2, . . . , i
S(n, j): the Stirling number of the second kind denoting the

number of ways to distribute n distinguishable objects into
j indistinguishable boxes so that no box is empty

RESULTS

product rule for counting:The number of ways to do a proce-
dure that consists of two tasks is the product of the number
of ways to do the first task and the number of ways to do
the second task after the first task has been done.

product rule for sets: The number of elements in the Carte-
sian product of finite sets is the product of the number of
elements in each set.

sum rule for counting: The number of ways to do a task in
one of two ways is the sum of the number of ways to do
these tasks if they cannot be done simultaneously.

sum rule for sets: The number of elements in the union of
pairwise disjoint finite sets is the sum of the numbers of
elements in these sets.

subtraction rule for counting or inclusion–exclusion for

sets: If a task can be done in either n1 ways or n2 ways,
then the number of ways to do the task is n1 + n2 minus
the number of ways to do the task that are common to the
two different ways.

subtraction rule or inclusion–exclusion for sets:The number
of elements in the union of two sets is the sum of the number
of elements in these sets minus the number of elements in
their intersection.

division rule for counting: There are n/d ways to do a task
if it can be done using a procedure that can be carried out
in n ways, and for every way w, exactly d of the n ways
correspond to way w.

division rule for sets: Suppose that a finite set A is the union
of n disjoint subsets each with d elements. Then n = |A|/d.

the pigeonhole principle: When more than k objects are
placed in k boxes, there must be a box containing more
than one object.

the generalized pigeonhole principle: When N objects are
placed in k boxes, there must be a box containing at least
 N/k objects.

P(n, r) = n!
(n− r)!

C(n, r) =
�
n

r

�
= n!

r!(n− r)!

Pascal’s identity:
�
n+1
k

� = �
n

k−1

�+ �
n
k

�
the binomial theorem: (x + y)n =�n

k= 0

�
n
k

�
xn−kyk

There are nr r-permutations of a set with n elements when
repetition is allowed.

There are C(n+ r − 1, r) r-combinations of a set with n ele-
ments when repetition is allowed.

There are n!/(n1! n2! · · · nk!) permutations of n objects of k

types where there are ni indistinguishable objects of type i

for i = 1, 2, 3, . . . , k.
the algorithm for generating the permutations of the set
{1, 2, . . . , n}

Review Questions

1. Explain how the sum and product rules can be used to
find the number of bit strings with a length not exceeding
10.

2. Explain how to find the number of bit strings of length
not exceeding 10 that have at least one 0 bit.

3. a) How can the product rule be used to find the number
of functions from a set with m elements to a set with
n elements?

b) How many functions are there from a set with five
elements to a set with 10 elements?

440 6 / Counting

c) How can the product rule be used to find the number
of one-to-one functions from a set with m elements to
a set with n elements?

d) How many one-to-one functions are there from a set
with five elements to a set with 10 elements?

e) How many onto functions are there from a set with
five elements to a set with 10 elements?

4. How can you find the number of possible outcomes of a
playoff between two teams where the first team that wins
four games wins the playoff?

5. How can you find the number of bit strings of length ten
that either begin with 101 or end with 010?

6. a) State the pigeonhole principle.
b) Explain how the pigeonhole principle can be used to

show that among any 11 integers, at least two must
have the same last digit.

7. a) State the generalized pigeonhole principle.
b) Explain how the generalized pigeonhole principle can

be used to show that among any 91 integers, there are
at least ten that end with the same digit.

8. a) What is the difference between an r-combination and
an r-permutation of a set with n elements?

b) Derive an equation that relates the number of r-com-
binations and the number of r-permutations of a set
with n elements.

c) How many ways are there to select six students from
a class of 25 to serve on a committee?

d) How many ways are there to select six students from
a class of 25 to hold six different executive positions
on a committee?

9. a) What is Pascal’s triangle?
b) How can a row of Pascal’s triangle be produced from

the one above it?

10. What is meant by a combinatorial proof of an identity?
How is such a proof different from an algebraic one?

11. Explain how to prove Pascal’s identity using a combina-
torial argument.

12. a) State the binomial theorem.
b) Explain how to prove the binomial theorem using a

combinatorial argument.
c) Find the coefficient of x100y101 in the expansion of

(2x + 5y)201.

13. a) Explain how to find a formula for the number of ways
to select r objects from n objects when repetition is
allowed and order does not matter.

b) How many ways are there to select a dozen objects
from among objects of five different types if objects
of the same type are indistinguishable?

c) How many ways are there to select a dozen objects
from these five different types if there must be at least
three objects of the first type?

d) How many ways are there to select a dozen objects
from these five different types if there cannot be more
than four objects of the first type?

e) How many ways are there to select a dozen objects
from these five different types if there must be at least
two objects of the first type, but no more than three
objects of the second type?

14. a) Let n and r be positive integers. Explain why the
number of solutions of the equation x1 + x2 + · · ·+
xn = r , where xi is a nonnegative integer for i =
1, 2, 3, . . . , n, equals the number of r-combinations
of a set with n elements.

b) How many solutions in nonnegative integers are there
to the equation x1 + x2 + x3 + x4 = 17?

c) How many solutions in positive integers are there to
the equation in part (b)?

15. a) Derive a formula for the number of permutations of n
objects of k different types, where there are n1 indis-
tinguishable objects of type one, n2 indistinguishable
objects of type two, . . . , and nk indistinguishable ob-
jects of type k.

b) How many ways are there to order the letters of the
word INDISCREETNESS?

16. Describe an algorithm for generating all the permutations
of the set of the n smallest positive integers.

17. a) How many ways are there to deal hands of five cards
to six players from a standard 52-card deck?

b) How many ways are there to distribute n distinguish-
able objects into k distinguishable boxes so that ni

objects are placed in box i?

18. Describe an algorithm for generating all the combinations
of the set of the n smallest positive integers.

Supplementary Exercises

1. How many ways are there to choose 6 items from 10 dis-
tinct items when

a) the items in the choices are ordered and repetition is
not allowed?

b) the items in the choices are ordered and repetition is
allowed?

c) the items in the choices are unordered and repetition
is not allowed?

d) the items in the choices are unordered and repetition
is allowed?

2. How many ways are there to choose 10 items from 6 dis-
tinct items when

a) the items in the choices are ordered and repetition is
not allowed?

b) the items in the choices are ordered and repetition is
allowed?

c) the items in the choices are unordered and repetition
is not allowed?

d) the items in the choices are unordered and repetition
is allowed?

Supplementary Exercises 441

3. A test contains 100 true/false questions. How many dif-
ferent ways can a student answer the questions on the test,
if answers may be left blank?

4. How many strings of length 10 either start with 000 or
end with 1111?

5. How many bit strings of length 10 over the alphabet
{a, b, c} have either exactly three as or exactly four bs?

6. The internal telephone numbers in the phone system on a
campus consist of five digits, with the first digit not equal
to zero. How many different numbers can be assigned in
this system?

7. An ice cream parlor has 28 different flavors, 8 different
kinds of sauce, and 12 toppings.

a) In how many different ways can a dish of three scoops
of ice cream be made where each flavor can be used
more than once and the order of the scoops does not
matter?

b) How many different kinds of small sundaes are there
if a small sundae contains one scoop of ice cream, a
sauce, and a topping?

c) How many different kinds of large sundaes are there
if a large sundae contains three scoops of ice cream,
where each flavor can be used more than once and
the order of the scoops does not matter; two kinds of
sauce, where each sauce can be used only once and
the order of the sauces does not matter; and three top-
pings, where each topping can be used only once and
the order of the toppings does not matter?

8. How many positive integers less than 1000

a) have exactly three decimal digits?

b) have an odd number of decimal digits?

c) have at least one decimal digit equal to 9?

d) have no odd decimal digits?

e) have two consecutive decimal digits equal to 5?

f) are palindromes (that is, read the same forward and
backward)?

9. When the numbers from 1 to 1000 are written out in deci-
mal notation, how many of each of these digits are used?

a) 0 b) 1 c) 2 d) 9

10. There are 12 signs of the zodiac. How many people are
needed to guarantee that at least six of these people have
the same sign?

11. A fortune cookie company makes 213 different fortunes.
A student eats at a restaurant that uses fortunes from this
company and gives each customer one fortune cookie at
the end of a meal. What is the largest possible number
of times that the student can eat at the restaurant without
getting the same fortune four times?

12. How many people are needed to guarantee that at least
two were born on the same day of the week and in the
same month (perhaps in different years)?

13. Show that given any set of 10 positive integers not ex-
ceeding 50 there exist at least two different five-element
subsets of this set that have the same sum.

14. A package of baseball cards contains 20 cards. How many
packages must be purchased to ensure that two cards in
these packages are identical if there are a total of 550
different cards?

15. a) How many cards must be chosen from a standard deck
of 52 cards to guarantee that at least two of the four
aces are chosen?

b) How many cards must be chosen from a standard deck
of 52 cards to guarantee that at least two of the four
aces and at least two of the 13 kinds are chosen?

c) How many cards must be chosen from a standard deck
of 52 cards to guarantee that there are at least two cards
of the same kind?

d) How many cards must be chosen from a standard deck
of 52 cards to guarantee that there are at least two cards
of each of two different kinds?

∗16. Show that in any set of n+ 1 positive integers not exceed-
ing 2n there must be two that are relatively prime.

∗17. Show that in a sequence of m integers there exists one or
more consecutive terms with a sum divisible by m.

18. Show that if five points are picked in the interior of a
square with a side length of 2, then at least two of these
points are no farther than

√
2 apart.

19. Show that the decimal expansion of a rational number
must repeat itself from some point onward.

20. Once a computer worm infects a personal computer via an
infected e-mail message, it sends a copy of itself to 100 e-
mail addresses it finds in the electronic message mailbox
on this personal computer. What is the maximum number
of different computers this one computer can infect in the
time it takes for the infected message to be forwarded five
times?

21. How many ways are there to choose a dozen donuts from
20 varieties

a) if there are no two donuts of the same variety?

b) if all donuts are of the same variety?

c) if there are no restrictions?

d) if there are at least two varieties among the dozen
donuts chosen?

e) if there must be at least six blueberry-filled donuts?

f) if there can be no more than six blueberry-filled
donuts?

22. Find n if

a) P(n, 2) = 110. b) P(n, n) = 5040.

c) P(n, 4) = 12P(n, 2).

23. Find n if

a) C(n, 2) = 45. b) C(n, 3) = P(n, 2).

c) C(n, 5) = C(n, 2).

442 6 / Counting

24. Show that if n and r are nonnegative integers and n ≥ r ,
then

P(n+ 1, r) = P(n, r)(n+ 1)/(n+ 1− r).

∗25. Suppose thatS is a set withn elements. How many ordered
pairs (A,B) are there such that A and B are subsets of S
with A ⊆ B? [Hint: Show that each element of S belongs
to A, B − A, or S − B.]

26. Give a combinatorial proof of Corollary 2 of Section 6.4
by setting up a correspondence between the subsets of a
set with an even number of elements and the subsets of
this set with an odd number of elements. [Hint: Take an el-
ement a in the set. Set up the correspondence by putting a

in the subset if it is not already in it and taking it out if it
is in the subset.]

27. Let n and r be integers with 1 ≤ r < n. Show that

C(n, r − 1) = C(n+ 2, r + 1)

− 2C(n+ 1, r + 1)+ C(n, r + 1).

28. Prove using mathematical induction that
�n

j = 2 C(j, 2) =
C(n+ 1, 3) whenever n is an integer greater than 1.

29. Show that if n is an integer then
n�

k= 0

3k

�
n

k

�
= 4n.

30. Show that
�n−1

i=1

�n
j=i+1 1 = �

n
2

�
if n is an integer with

n ≥ 2.

31. Show that
�n−2

i=1

�n−1
j=i+1

�n
k=j+1 1 = �

n
3

�
if n is an in-

teger with n ≥ 3.

32. In this exercise we will derive a formula for the sum of
the squares of the n smallest positive integers. We will
count the number of triples (i, j, k) where i, j , and k are
integers such that 0 ≤ i < k, 0 ≤ j < k, and 1 ≤ k ≤ n

in two ways.

a) Show that there are k2 such triples with a fixed k. De-
duce that there are

�n
k= 1 k

2 such triples.

b) Show that the number of such triples with
0 ≤ i < j < k and the number of such triples with
0 ≤ j < i < k both equal C(n+ 1, 3).

c) Show that the number of such triples with 0 ≤ i =
j < k equals C(n+ 1, 2).

d) Combining part (a) with parts (b) and (c), conclude
that
n�

k= 1

k2 = 2C(n+ 1, 3)+ C(n+ 1, 2)

= n(n+ 1)(2n+ 1)/6.

∗33. How many bit strings of length n, where n ≥ 4, contain
exactly two occurrences of 01?

34. Let S be a set. We say that a collection of sub-
sets A1, A2, . . . , An each containing d elements, where
d ≥ 2, is 2-colorable if it is possible to assign to
each element of S one of two different colors so that

in every subset Ai there are elements that have been
assigned each color. Let m(d) be the largest integer such
that every collection of fewer than m(d) sets each con-
taining d elements is 2-colorable.

a) Show that the collection of all subsets with d elements
of a set S with 2d − 1 elements is not 2-colorable.

b) Show that m(2) = 3.
∗∗c) Show that m(3) = 7. [Hint: Show that the collec-

tion {1, 3, 5}, {1, 2, 6}, {1, 4, 7}, {2, 3, 4}, {2, 5, 7},
{3, 6, 7}, {4, 5, 6} is not 2-colorable. Then show that
all collections of six sets with three elements each are
2-colorable.]

35. A professor writes 20 multiple-choice questions, each
with the possible answer a, b, c, or d, for a discrete
mathematics test. If the number of questions with a, b, c,
and d as their answer is 8, 3, 4, and 5, respectively, how
many different answer keys are possible, if the questions
can be placed in any order?

36. How many different arrangements are there of eight peo-
ple seated at a round table, where two arrangements are
considered the same if one can be obtained from the other
by a rotation?

37. How many ways are there to assign 24 students to five
faculty advisors?

38. How many ways are there to choose a dozen apples from a
bushel containing 20 indistinguishable Delicious apples,
20 indistinguishable Macintosh apples, and 20 indistin-
guishable Granny Smith apples, if at least three of each
kind must be chosen?

39. How many solutions are there to the equation x1 + x2 +
x3 = 17, where x1, x2, and x3 are nonnegative integers
with

a) x1 > 1, x2 > 2, and x3 > 3?
b) x1 < 6 and x3 > 5?
c) x1 < 4, x2 < 3, and x3 > 5?

40. a) How many different strings can be made from the word
PEPPERCORN when all the letters are used?

b) How many of these strings start and end with the
letter P ?

c) In how many of these strings are the three letter P s
consecutive?

41. How many subsets of a set with ten elements

a) have fewer than five elements?
b) have more than seven elements?
c) have an odd number of elements?

42. A witness to a hit-and-run accident tells the police that
the license plate of the car in the accident, which contains
three letters followed by three digits, starts with the let-
ters AS and contains both the digits 1 and 2. How many
different license plates can fit this description?

43. How many ways are there to put n identical objects into
m distinct containers so that no container is empty?

44. How many ways are there to seat six boys and eight girls
in a row of chairs so that no two boys are seated next to
each other?

Supplementary Exercises 443

45. How many ways are there to distribute six objects to five
boxes if

a) both the objects and boxes are labeled?
b) the objects are labeled, but the boxes are unlabeled?
c) the objects are unlabeled, but the boxes are labeled?
d) both the objects and the boxes are unlabeled?

46. How many ways are there to distribute five objects into
six boxes if

a) both the objects and boxes are labeled?
b) the objects are labeled, but the boxes are unlabeled?
c) the objects are unlabeled, but the boxes are labeled?
d) both the objects and the boxes are unlabeled?

The signless Stirling number of the first kind c(n, k),
where k and n are integers with 1 ≤ k ≤ n, equals the number
of ways to arrange n people around k circular tables with at
least one person seated at each table, where two seatings of
m people around a circular table are considered the same if
everyone has the same left neighbor and the same right neigh-
bor.

47. Find these signless Stirling numbers of the first kind.

a) c(3,2) b) c(4,2)
c) c(4,3) d) c(5,4)

48. Show that if n is a positive integer, then
�n

j=1 c(n, j) =
n!.

49. Show that if n is a positive integer with n ≥ 3, then
c(n, n− 2) = (3n− 1)C(n, 3)/4.

∗50. Show that if n and k are integers with 1 ≤ k < n, then
c(n+ 1, k) = c(n, k − 1)+ nc(n, k).

51. Give a combinatorial proof that 2n divides n! whenever n
is an even positive integer. [Hint: Use Theorem 3 in Sec-
tion 6.5 to count the number of permutations of 2n objects
where there are two indistinguishable objects of n differ-
ent types.

52. How many 11-element RNA sequences consist of 4 As,
3Cs, 2Us, and 2Gs, and end with CAA?

Exercises 53 and 54 are based on a discussion in [RoTe09].
A method used in the 1960s for sequencing RNA chains used
enzymes to break chains after certain links. Some enzymes
break RNA chains after each G link, while others break them
after each C or U link. Using these enzymes it is sometimes
possible to correctly sequence all the bases in an RNA chain.

∗53. Suppose that when an enzyme that breaks RNA chains af-
ter each G link is applied to a 12-link chain, the fragments
obtained are G, CCG, AAAG, and UCCG, and when an
enzyme that breaks RNA chains after each C or U link
is applied, the fragments obtained are C, C, C, C, GGU,
and GAAAG. Can you determine the entire 12-link RNA
chain from these two sets of fragments? If so, what is this
RNA chain?

∗54. Suppose that when an enzyme that breaks RNA chains af-
ter each G link is applied to a 12-link chain, the fragments
obtained are AC, UG, and ACG and when an enzyme that
breaks RNA chains after each C or U link is applied,
the fragments obtained are U, GAC, and GAC. Can you
determine the entire RNA chain from these two sets of
fragments? If so, what is this RNA chain?

55. Devise an algorithm for generating all the r-permutations
of a finite set when repetition is allowed.

56. Devise an algorithm for generating all the r-combinations
of a finite set when repetition is allowed.

∗57. Show that if m and n are integers with m ≥ 3 and n ≥ 3,
then R(m, n) ≤ R(m, n− 1)+ R(m− 1, n).

∗58. Show that R(3, 4) ≥ 7 by showing that in a group of six
people, where any two people are friends or enemies, there
are not necessarily three mutual friends or four mutual en-
emies.

Computer Projects

Write programs with these input and output.

1. Given a positive integer n and a nonnegative integer not
exceeding n, find the number of r-permutations and r-
combinations of a set with n elements.

2. Given positive integers n and r , find the number of
r-permutations when repetition is allowed and r-com-
binations when repetition is allowed of a set with n el-
ements.

3. Given a sequence of positive integers, find the longest in-
creasing and the longest decreasing subsequence of the
sequence.

∗4. Given an equation x1 + x2 + · · · + xn = C, where C is a
constant, and x1, x2, . . . , xn are nonnegative integers, list
all the solutions.

5. Given a positive integer n, list all the permutations of the
set {1, 2, 3, . . . , n} in lexicographic order.

6. Given a positive integer n and a nonnegative integer r

not exceeding n, list all the r-combinations of the set
{1, 2, 3, . . . , n} in lexicographic order.

7. Given a positive integer n and a nonnegative integer r

not exceeding n, list all the r-permutations of the set
{1, 2, 3, . . . , n} in lexicographic order.

8. Given a positive integer n, list all the combinations of the
set {1, 2, 3, . . . , n}.

9. Given positive integers n and r , list all the r-permutations,
with repetition allowed, of the set {1, 2, 3, . . . , n}.

10. Given positive integersn and r , list all the r-combinations,
with repetition allowed, of the set {1, 2, 3, . . . , n}.

444 6 / Counting

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. Find the number of possible outcomes in a two-team play-
off when the winner is the first team to win 5 out of 9, 6
out of 11, 7 out of 13, and 8 out of 15.

2. Which binomial coefficients are odd? Can you formulate a
conjecture based on numerical evidence?

3. Verify that C(2n, n) is divisible by the square of a prime,
when n = 1, 2, or 4, for as many positive integers n as
you can. [The theorem that tells that C(2n, n) is divisible
by the square of a prime with n = 1, 2, or 4 was proved
in 1996 by Andrew Granville and Olivier Ramaré. Their
proof settled a conjecture made in 1980 by Paul Erdős and
Ron Graham.]

4. Find as many odd integers n less than 200 as you can for
whichC(n, n/2) is not divisible by the square of a prime.
Formulate a conjecture based on your evidence.

∗5. For each integer less than 100 determine whether C(2n, n)
is divisible by 3. Can you formulate a conjecture that tells
us for which integers n the binomial coefficient C(2n, n)
is divisible by 3 based on the digits in the base three ex-
pansion of n?

6. Generate all the permutations of a set with eight elements.

7. Generate all the 6-permutations of a set with nine elements.

8. Generate all combinations of a set with eight elements.

9. Generate all 5-combinations with repetition allowed of a
set with seven elements.

Writing Projects

Respond to these with essays using outside sources.

1. Describe some of the earliest uses of the pigeonhole prin-
ciple by Dirichlet and other mathematicians.

2. Discuss ways in which the current telephone numbering
plan can be extended to accommodate the rapid demand
for more telephone numbers. (See if you can find some
of the proposals coming from the telecommunications in-
dustry.) For each new numbering plan you discuss, show
how to find the number of different telephone numbers it
supports.

3. Discuss the importance of combinatorial reasoning in gene
sequencing and related problems involving genomes.

4. Many combinatorial identities are described in this book.
Find some sources of such identities and describe important
combinatorial identities besides those already introduced
in this book. Give some representative proofs, including
combinatorial ones, of some of these identities.

5. Describe the different models used to model the dis-
tribution of particles in statistical mechanics, including

Maxwell–Boltzmann, Bose–Einstein, and Fermi–Dirac
statistics. In each case, describe the counting techniques
used in the model.

6. Define the Stirling numbers of the first kind and describe
some of their properties and the identities they satisfy.

7. Describe some of the properties and the identities that Stir-
ling numbers of the second kind satisfy, including the con-
nection between Stirling numbers of the first and second
kinds.

8. Describe the latest discoveries of values and bounds for
Ramsey numbers.

9. Describe additional ways to generate all the permutations
of a set with n elements besides those found in Section 6.6.
Compare these algorithms and the algorithms described
in the text and exercises of Section 6.6 in terms of their
computational complexity.

10. Describe at least one way to generate all the partitions of
a positive integer n. (See Exercise 47 in Section 5.3.)

7
C H A P T E R

Discrete Probability

7.1 An
Introduction to
Discrete
Probability

7.2 Probability
Theory

7.3 Bayes’
Theorem

7.4 Expected Value
and Variance

Combinatorics and probability theory share common origins. The theory of probability was
first developed more than 300 years ago, when certain gambling games were analyzed.

Although probability theory was originally invented to study gambling, it now plays an essential
role in a wide variety of disciplines. For example, probability theory is extensively applied in
the study of genetics, where it can be used to help understand the inheritance of traits. Of course,
probability still remains an extremely popular part of mathematics because of its applicability
to gambling, which continues to be an extremely popular human endeavor.

In computer science, probability theory plays an important role in the study of the com-
plexity of algorithms. In particular, ideas and techniques from probability theory are used to
determine the average-case complexity of algorithms. Probabilistic algorithms can be used to
solve many problems that cannot be easily or practically solved by deterministic algorithms.
In a probabilistic algorithm, instead of always following the same steps when given the same
input, as a deterministic algorithm does, the algorithm makes one or more random choices,
which may lead to different output. In combinatorics, probability theory can even be used to
show that objects with certain properties exist. The probabilistic method, a technique in com-
binatorics introduced by Paul Erdős and Alfréd Rényi, shows that an object with a specified
property exists by showing that there is a positive probability that a randomly constructed object
has this property. Probability theory can help us answer questions that involve uncertainty, such
as determining whether we should reject an incoming mail message as spam based on the words
that appear in the message.

7.1 An Introduction to Discrete Probability

Introduction

Probability theory dates back to 1526 when the Italian mathematician, physician, and gambler
Girolamo Cardano wrote the first known systematic treatment of the subject in his book Liber
de Ludo Aleae (Book on Games of Chance). (This book was not published until 1663, which
may have held back the development of probability theory.) In the seventeenth century the
French mathematician Blaise Pascal determined the odds of winning some popular bets based
on the outcome when a pair of dice is repeatedly rolled. In the eighteenth century, the French
mathematician Laplace, who also studied gambling, defined the probability of an event as the
number of successful outcomes divided by the number of possible outcomes. For instance, the
probability that a die comes up an odd number when it is rolled is the number of successful
outcomes—namely, the number of ways it can come up odd—divided by the number of possible
outcomes—namely, the number of different ways the die can come up. There are a total of
six possible outcomes—namely, 1, 2, 3, 4, 5, and 6—and exactly three of these are successful
outcomes—namely, 1, 3, and 5. Hence, the probability that the die comes up an odd number is
3/6 = 1/2. (Note that it has been assumed that all possible outcomes are equally likely, or, in
other words, that the die is fair.)

In this section we will restrict ourselves to experiments that have finitely many, equally likely,
outcomes. This permits us to use Laplace’s definition of the probability of an event. We will
continue our study of probability in Section 7.2, where we will study experiments with finitely
many outcomes that are not necessarily equally likely. In Section 7.2 we will also introduce

445

446 7 / Discrete Probability

some key concepts in probability theory, including conditional probability, independence of
events, and random variables. In Section 7.4 we will introduce the concepts of the expectation
and variance of a random variable.

Finite Probability

An experiment is a procedure that yields one of a given set of possible outcomes. The sample
space of the experiment is the set of possible outcomes. An event is a subset of the sample
space. Laplace’s definition of the probability of an event with finitely many possible outcomes
will now be stated.

DEFINITION 1 If S is a finite nonempty sample space of equally likely outcomes, and E is an event, that

is, a subset of S, then the probability of E is p(E) = |E|
|S| .

The probability of an
event can never be
negative or more than
one!

According to Laplace’s definition, the probability of an event is between 0 and 1. To see this,
note that if E is an event from a finite sample space S, then 0 ≤ |E| ≤ |S|, because E ⊆ S.
Thus, 0 ≤ p(E) = |E|/|S| ≤ 1.

Examples 1–7 illustrate how the probability of an event is found.

EXAMPLE 1 An urn contains four blue balls and five red balls. What is the probability that a ball chosen at
random from the urn is blue?

Solution: To calculate the probability, note that there are nine possible outcomes, and four of
these possible outcomes produce a blue ball. Hence, the probability that a blue ball is chosen
is 4/9. ▲

EXAMPLE 2 What is the probability that when two dice are rolled, the sum of the numbers on the two dice
is 7?

Solution: There are a total of 36 equally likely possible outcomes when two dice are rolled.
(The product rule can be used to see this; because each die has six possible outcomes, the total

GIROLAMO CARDANO (1501–1576) Cardano , born in Pavia, Italy, was the illegitimate child of Fazio
Cardano, a lawyer, mathematician, and friend of Leonardo da Vinci, and Chiara Micheria, a young widow.
In spite of illness and poverty, Cardano was able to study at the universities of Pavia and Padua, from where
he received his medical degree. Cardano was not accepted into Milan’s College of Physicians because of his
illegitimate birth, as well as his eccentricity and confrontational style. Nevertheless, his medical skills were
highly regarded. One of his main accomplishments as a physician is the first description of typhoid fever.

Cardano published more than 100 books on a diverse range of subjects, including medicine, the natural
sciences, mathematics, gambling, physical inventions and experiments, and astrology. He also wrote a fascinating
autobiography. In mathematics, Cardano’s book Ars Magna, published in 1545, established the foundations of

abstract algebra. This was the most comprehensive book on abstract algebra for more than a century; it presents many novel ideas of
Cardano and of others, including methods for solving cubic and quartic equations from their coefficients. Cardano also made several
important contributions to cryptography. Cardano was an advocate of education for the deaf, believing, unlike his contemporaries,
that deaf people could learn to read and write before learning to speak, and could use their minds just as well as hearing people.

Cardano was often short of money. However, he kept himself solvent through gambling and winning money by beating others
at chess. His book about games of chance, Liber de Ludo Aleae, written in 1526 (but published in 1663), offers the first systematic
treatment of probability; it also describes effective ways to cheat. Cardano was considered to be a man of dubious moral character;
he was often described as a liar, gambler, lecher, and heretic.

7.1 An Introduction to Discrete Probability 447

number of outcomes when two dice are rolled is 62 = 36.) There are six successful outcomes,
namely, (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1), where the values of the first and second
dice are represented by an ordered pair. Hence, the probability that a seven comes up when two
fair dice are rolled is 6/36 = 1/6. ▲

Lotteries are extremely popular throughout the world. We can easily compute the odds of
winning different types of lotteries, as illustrated in Examples 3 and 4. (The odd of winning the
popular Mega Millions and Powerball lotteries are studied in the supplementary exercises.)

EXAMPLE 3 In a lottery, players win a large prize when they pick four digits that match, in the correct order,
four digits selected by a random mechanical process. A smaller prize is won if only three digits
are matched. What is the probability that a player wins the large prize? What is the probability
that a player wins the small prize?

Solution: There is only one way to choose all four digits correctly. By the product rule, there
are 104 = 10,000 ways to choose four digits. Hence, the probability that a player wins the large
prize is 1/10,000 = 0.0001.

Players win the smaller prize when they correctly choose exactly three of the four digits.
Exactly one digit must be wrong to get three digits correct, but not all four correct. By the sum
rule, to find the number of ways to choose exactly three digits correctly, we add the number of
ways to choose four digits matching the digits picked in all but the ith position, for i = 1, 2, 3, 4.

To count the number of successes with the first digit incorrect, note that there are nine
possible choices for the first digit (all but the one correct digit), and one choice for each of the
other digits, namely, the correct digits for these slots. Hence, there are nine ways to choose four
digits where the first digit is incorrect, but the last three are correct. Similarly, there are nine
ways to choose four digits where the second digit is incorrect, nine with the third digit incorrect,
and nine with the fourth digit incorrect. Hence, there is a total of 36 ways to choose four digits
with exactly three of the four digits correct. Thus, the probability that a player wins the smaller
prize is 36/10,000 = 9/2500 = 0.0036. ▲

EXAMPLE 4 There are many lotteries now that award enormous prizes to people who correctly choose a set
of six numbers out of the first n positive integers, where n is usually between 30 and 60. What
is the probability that a person picks the correct six numbers out of 40?

Solution: There is only one winning combination. The total number of ways to choose six
numbers out of 40 is

C(40, 6) = 40!
34! 6! = 3,838,380.

Consequently, the probability of picking a winning combination is 1/3,838,380 ≈ 0.00000026.
(Here the symbol ≈ means approximately equal to.) ▲

PIERRE-SIMON LAPLACE (1749–1827) Pierre-Simon Laplace came from humble origins in Normandy.
In his childhood he was educated in a school run by the Benedictines. At 16 he entered the University of Caen
intending to study theology. However, he soon realized his true interests were in mathematics. After completing
his studies, he was named a provisional professor at Caen, and in 1769 he became professor of mathematics at
the Paris Military School.

Laplace is best known for his contributions to celestial mechanics, the study of the motions of heavenly bod-
ies. HisTraité deMécaniqueCéleste is considered one of the greatest scientific works of the early nineteenth cen-
tury. Laplace was one of the founders of probability theory and made many contributions to mathematical statis-
tics. His work in this area is documented in his book Théorie Analytique des Probabilités, in which he defined

the probability of an event as the ratio of the number of favorable outcomes to the total number of outcomes of an experiment.
Laplace was famous for his political flexibility. He was loyal, in succession, to the French Republic, Napoleon, and King Louis

XVIII. This flexibility permitted him to be productive before, during, and after the French Revolution.

448 7 / Discrete Probability

Poker, and other card games, are growing in popularity. To win at these games it helps to
know the probability of different hands. We can find the probability of specific hands that arise
in card games using the techniques developed so far. A deck of cards contains 52 cards. There
are 13 different kinds of cards, with four cards of each kind. (Among the terms commonly used
instead of “kind” are “rank,” “face value,” “denomination,” and “value.”) These kinds are twos,
threes, fours, fives, sixes, sevens, eights, nines, tens, jacks, queens, kings, and aces. There are
also four suits: spades, clubs, hearts, and diamonds, each containing 13 cards, with one card of
each kind in a suit. In many poker games, a hand consists of five cards.

EXAMPLE 5 Find the probability that a hand of five cards in poker contains four cards of one kind.

Solution: By the product rule, the number of hands of five cards with four cards of one kind
is the product of the number of ways to pick one kind, the number of ways to pick the four of
this kind out of the four in the deck of this kind, and the number of ways to pick the fifth card.
This is

C(13, 1)C(4, 4)C(48, 1).

By Example 11 in Section 6.3 there are C(52, 5) different hands of five cards. Hence, the
probability that a hand contains four cards of one kind is

C(13, 1)C(4, 4)C(48, 1)

C(52, 5)
= 13 · 1 · 48

2,598,960
≈ 0.00024. ▲

EXAMPLE 6 What is the probability that a poker hand contains a full house, that is, three of one kind and
two of another kind?

Solution: By the product rule, the number of hands containing a full house is the product of the
number of ways to pick two kinds in order, the number of ways to pick three out of four for
the first kind, and the number of ways to pick two out of four for the second kind. (Note that
the order of the two kinds matters, because, for instance, three queens and two aces is different
from three aces and two queens.) We see that the number of hands containing a full house is

P(13, 2)C(4, 3)C(4, 2) = 13 · 12 · 4 · 6 = 3744.

Because there are C(52, 5) = 2,598,960 poker hands, the probability of a full house is

3744

2,598,960
≈ 0.0014. ▲

EXAMPLE 7 What is the probability that the numbers 11, 4, 17, 39, and 23 are drawn in that order from a bin
containing 50 balls labeled with the numbers 1, 2, . . . , 50 if (a) the ball selected is not returned
to the bin before the next ball is selected and (b) the ball selected is returned to the bin before
the next ball is selected?

Solution: (a) By the product rule, there are 50 · 49 · 48 · 47 · 46 = 254,251,200 ways to select
the balls because each time a ball is drawn there is one fewer ball to choose from. Consequently,
the probability that 11, 4, 17, 39, and 23 are drawn in that order is 1/254,251,200. This is an
example of sampling without replacement.

(b) By the product rule, there are 505 = 312,500,000 ways to select the balls because there are
50 possible balls to choose from each time a ball is drawn. Consequently, the probability that
11, 4, 17, 39, and 23 are drawn in that order is 1/312,500,000. This is an example of sampling
with replacement. ▲

7.1 An Introduction to Discrete Probability 449

Probabilities of Complements and Unions of Events

We can use counting techniques to find the probability of events derived from other events.

THEOREM 1 Let E be an event in a sample space S. The probability of the event E = S − E, the comple-
mentary event of E, is given by

p(E) = 1− p(E).

Proof: To find the probability of the event E = S − E, note that |E| = |S| − |E|. Hence,

p(E) = |S| − |E|
|S| = 1− |E|

|S| = 1− p(E).

There is an alternative strategy for finding the probability of an event when a direct approach
does not work well. Instead of determining the probability of the event, the probability of its
complement can be found. This is often easier to do, as Example 8 shows.

EXAMPLE 8 A sequence of 10 bits is randomly generated. What is the probability that at least one of these
bits is 0?

Solution: Let E be the event that at least one of the 10 bits is 0. Then E is the event that all the
bits are 1s. Because the sample space S is the set of all bit strings of length 10, it follows that

p(E) = 1− p(E) = 1− |E|
|S| = 1− 1

210

= 1− 1

1024
= 1023

1024
.

Hence, the probability that the bit string will contain at least one 0 bit is 1023/1024. It is quite
difficult to find this probability directly without using Theorem 1. ▲

We can also find the probability of the union of two events.

THEOREM 2 Let E1 and E2 be events in the sample space S. Then

p(E1 ∪ E2) = p(E1)+ p(E2)− p(E1 ∩ E2).

Proof: Using the formula given in Section 2.2 for the number of elements in the union of two
sets, it follows that

|E1 ∪ E2| = |E1| + |E2| − |E1 ∩ E2|.

450 7 / Discrete Probability

Hence,

p(E1 ∪ E2) =
|E1 ∪ E2|
|S|

= |E1| + |E2| − |E1 ∩ E2|
|S|

= |E1|
|S| +

|E2|
|S| −

|E1 ∩ E2|
|S|

= p(E1)+ p(E2)− p(E1 ∩ E2).

EXAMPLE 9 What is the probability that a positive integer selected at random from the set of positive integers
not exceeding 100 is divisible by either 2 or 5?

Solution: Let E1 be the event that the integer selected at random is divisible by 2, and let E2 be
the event that it is divisible by 5. Then E1 ∪ E2 is the event that it is divisible by either 2 or 5.
Also, E1 ∩ E2 is the event that it is divisible by both 2 and 5, or equivalently, that it is divisible
by 10. Because |E1| = 50, |E2| = 20, and |E1 ∩ E2| = 10, it follows that

p(E1 ∪ E2) = p(E1)+ p(E2)− p(E1 ∩ E2)

= 50

100
+ 20

100
− 10

100
= 3

5
.

▲

Probabilistic Reasoning

A common problem is determining which of two events is more likely. Analyzing the probabil-
ities of such events can be tricky. Example 10 describes a problem of this type. It discusses a
famous problem originating with the television game show Let’s Make a Deal and named after
the host of the show, Monty Hall.

EXAMPLE 10 The Monty Hall Three-Door Puzzle Suppose you are a game show contestant. You have a
chance to win a large prize. You are asked to select one of three doors to open; the large prize
is behind one of the three doors and the other two doors are losers. Once you select a door, the
game show host, who knows what is behind each door, does the following. First, whether or not
you selected the winning door, he opens one of the other two doors that he knows is a losing
door (selecting at random if both are losing doors). Then he asks you whether you would like to
switch doors. Which strategy should you use? Should you change doors or keep your original
selection, or does it not matter?

Solution: The probability you select the correct door (before the host opens a door and asks you
whether you want to change) is 1/3, because the three doors are equally likely to be the correct
door. The probability this is the correct door does not change once the game show host opens
one of the other doors, because he will always open a door that the prize is not behind.

The probability that you selected incorrectly is the probability the prize is behind one of the
two doors you did not select. Consequently, the probability that you selected incorrectly is 2/3.
If you selected incorrectly, when the game show host opens a door to show you that the prize is
not behind it, the prize is behind the other door. You will always win if your initial choice was
incorrect and you change doors. So, by changing doors, the probability you win is 2/3. In other
words, you should always change doors when given the chance to do so by the game show host.
This doubles the probability that you will win. (A more rigorous treatment of this puzzle can be
found in Exercise 15 of Section 7.3. For much more on this famous puzzle and its variations,
see [Ro09].) ▲

7.1 An Introduction to Discrete Probability 451

Exercises

1. What is the probability that a card selected at random
from a standard deck of 52 cards is an ace?

2. What is the probability that a fair die comes up six when
it is rolled?

3. What is the probability that a randomly selected integer
chosen from the first 100 positive integers is odd?

4. What is the probability that a randomly selected day of a
leap year (with 366 possible days) is in April?

5. What is the probability that the sum of the numbers on
two dice is even when they are rolled?

6. What is the probability that a card selected at random
from a standard deck of 52 cards is an ace or a heart?

7. What is the probability that when a coin is flipped six
times in a row, it lands heads up every time?

8. What is the probability that a five-card poker hand con-
tains the ace of hearts?

9. What is the probability that a five-card poker hand does
not contain the queen of hearts?

10. What is the probability that a five-card poker hand con-
tains the two of diamonds and the three of spades?

11. What is the probability that a five-card poker hand con-
tains the two of diamonds, the three of spades, the six of
hearts, the ten of clubs, and the king of hearts?

12. What is the probability that a five-card poker hand con-
tains exactly one ace?

13. What is the probability that a five-card poker hand con-
tains at least one ace?

14. What is the probability that a five-card poker hand con-
tains cards of five different kinds?

15. What is the probability that a five-card poker hand con-
tains two pairs (that is, two of each of two different kinds
and a fifth card of a third kind)?

16. What is the probability that a five-card poker hand con-
tains a flush, that is, five cards of the same suit?

17. What is the probability that a five-card poker hand con-
tains a straight, that is, five cards that have consecutive
kinds? (Note that an ace can be considered either the low-
est card of an A-2-3-4-5 straight or the highest card of a
10-J-Q-K-A straight.)

18. What is the probability that a five-card poker hand con-
tains a straight flush, that is, five cards of the same suit of
consecutive kinds?

∗19. What is the probability that a five-card poker hand con-
tains cards of five different kinds and does not contain a
flush or a straight?

20. What is the probability that a five-card poker hand con-
tains a royal flush, that is, the 10, jack, queen, king, and
ace of one suit?

21. What is the probability that a fair die never comes up an
even number when it is rolled six times?

22. What is the probability that a positive integer not exceed-
ing 100 selected at random is divisible by 3?

23. What is the probability that a positive integer not exceed-
ing 100 selected at random is divisible by 5 or 7?

24. Find the probability of winning a lottery by selecting the
correct six integers, where the order in which these inte-
gers are selected does not matter, from the positive inte-
gers not exceeding

a) 30. b) 36. c) 42. d) 48.

25. Find the probability of winning a lottery by selecting the
correct six integers, where the order in which these inte-
gers are selected does not matter, from the positive inte-
gers not exceeding

a) 50. b) 52. c) 56. d) 60.

26. Find the probability of selecting none of the correct six in-
tegers in a lottery, where the order in which these integers
are selected does not matter, from the positive integers not
exceeding

a) 40. b) 48. c) 56. d) 64.

27. Find the probability of selecting exactly one of the correct
six integers in a lottery, where the order in which these
integers are selected does not matter, from the positive
integers not exceeding

a) 40. b) 48. c) 56. d) 64.

28. In a superlottery, a player selects 7 numbers out of the
first 80 positive integers. What is the probability that a
person wins the grand prize by picking 7 numbers that
are among the 11 numbers selected at random by a com-
puter.

29. In a superlottery, players win a fortune if they choose the
eight numbers selected by a computer from the positive
integers not exceeding 100. What is the probability that a
player wins this superlottery?

30. What is the probability that a player of a lottery wins
the prize offered for correctly choosing five (but not six)
numbers out of six integers chosen at random from the
integers between 1 and 40, inclusive?

31. Suppose that 100 people enter a contest and that different
winners are selected at random for first, second, and third
prizes. What is the probability that Michelle wins one of
these prizes if she is one of the contestants?

32. Suppose that 100 people enter a contest and that different
winners are selected at random for first, second, and third
prizes. What is the probability that Kumar, Janice, and
Pedro each win a prize if each has entered the contest?

33. What is the probability that Abby, Barry, and Sylvia win
the first, second, and third prizes, respectively, in a draw-
ing if 200 people enter a contest and

a) no one can win more than one prize.
b) winning more than one prize is allowed.

34. What is the probability that Bo, Colleen, Jeff, and Rohini
win the first, second, third, and fourth prizes, respectively,
in a drawing if 50 people enter a contest and

a) no one can win more than one prize.
b) winning more than one prize is allowed.

452 7 / Discrete Probability

35. In roulette, a wheel with 38 numbers is spun. Of these, 18
are red, and 18 are black. The other two numbers, which
are neither black nor red, are 0 and 00. The probability
that when the wheel is spun it lands on any particular
number is 1/38.

a) What is the probability that the wheel lands on a red
number?

b) What is the probability that the wheel lands on a black
number twice in a row?

c) What is the probability that the wheel lands on 0 or
00?

d) What is the probability that in five spins the wheel
never lands on either 0 or 00?

e) What is the probability that the wheel lands on one of
the first six integers on one spin, but does not land on
any of them on the next spin?

36. Which is more likely: rolling a total of 8 when two dice
are rolled or rolling a total of 8 when three dice are rolled?

37. Which is more likely: rolling a total of 9 when two dice
are rolled or rolling a total of 9 when three dice are rolled?

38. Two events E1 and E2 are called independent if
p(E1 ∩ E2) = p(E1)p(E2). For each of the following
pairs of events, which are subsets of the set of all possi-
ble outcomes when a coin is tossed three times, determine
whether or not they are independent.

a) E1: tails comes up with the coin is tossed the first
time; E2: heads comes up when the coin is tossed the
second time.

b) E1: the first coin comes up tails; E2: two, and not
three, heads come up in a row.

c) E1: the second coin comes up tails; E2: two, and not
three, heads come up in a row.

(We will study independence of events in more depth in
Section 7.2.)

39. Explain what is wrong with the statement that in the
Monty Hall Three-Door Puzzle the probability that the
prize is behind the first door you select and the probabil-
ity that the prize is behind the other of the two doors that
Monty does not open are both 1/2, because there are two
doors left.

40. Suppose that instead of three doors, there are four doors
in the Monty Hall puzzle. What is the probability that you
win by not changing once the host, who knows what is
behind each door, opens a losing door and gives you the
chance to change doors? What is the probability that you
win by changing the door you select to one of the two
remaining doors among the three that you did not select?

41. This problem was posed by the Chevalier de Méré and
was solved by Blaise Pascal and Pierre de Fermat.

a) Find the probability of rolling at least one six when a
fair die is rolled four times.

b) Find the probability that a double six comes up at least
once when a pair of dice is rolled 24 times.Answer the
query the Chevalier de Méré made to Pascal asking
whether this probability was greater than 1/2.

c) Is it more likely that a six comes up at least once when
a fair die is rolled four times or that a double six comes
up at least once when a pair of dice is rolled 24 times?

7.2 Probability Theory

Introduction

In Section 7.1 we introduced the notion of the probability of an event. (Recall that an event is a
subset of the possible outcomes of an experiment.) We defined the probability of an event E as
Laplace did, that is,

p(E) = |E|
|S| ,

the number of outcomes in E divided by the total number of outcomes. This definition assumes
that all outcomes are equally likely. However, many experiments have outcomes that are not
equally likely. For instance, a coin may be biased so that it comes up heads twice as often as
tails. Similarly, the likelihood that the input of a linear search is a particular element in a list, or
is not in the list, depends on how the input is generated. How can we model the likelihood of
events in such situations? In this section we will show how to define probabilities of outcomes
to study probabilities of experiments where outcomes may not be equally likely.

Suppose that a fair coin is flipped four times, and the first time it comes up heads. Given
this information, what is the probability that heads comes up three times? To answer this and

7.2 Probability Theory 453

similar questions, we will introduce the concept of conditional probability. Does knowing that
the first flip comes up heads change the probability that heads comes up three times? If not,
these two events are called independent, a concept studied later in this section.

Many questions address a particular numerical value associated with the outcome of
an experiment. For instance, when we flip a coin 100 times, what is the probability that
exactly 40 heads appear? How many heads should we expect to appear? In this section we
will introduce random variables, which are functions that associate numerical values to the
outcomes of experiments.

Assigning Probabilities

Let S be the sample space of an experiment with a finite or countable number of outcomes. We
assign a probability p(s) to each outcome s. We require that two conditions be met:

(i) 0 ≤ p(s) ≤ 1 for each s ∈ S

and

(ii)

s∈S
p(s) = 1.

Condition (i) states that the probability of each outcome is a nonnegative real number no greater
than 1. Condition (ii) states that the sum of the probabilities of all possible outcomes should
be 1; that is, when we do the experiment, it is a certainty that one of these outcomes occurs.
(Note that when the sample space is infinite,

s∈S p(s) is a convergent infinite series.) This is

a generalization of Laplace’s definition in which each of n outcomes is assigned a probability
of 1/n. Indeed, conditions (i) and (ii) are met when Laplace’s definition of probabilities of
equally likely outcomes is used and S is finite. (See Exercise 4.)

Note that when there are n possible outcomes, x1, x2, . . . , xn, the two conditions to be met
are

(i) 0 ≤ p(xi) ≤ 1 for i = 1, 2, . . . , n

and

(ii)

n
i=1

p(xi) = 1.

The function p from the set of all outcomes of the sample space S is called a probability
distribution.

To model an experiment, the probabilityp(s) assigned to an outcome s should equal the limit
of the number of times s occurs divided by the number of times the experiment is performed,
as this number grows without bound. (We will assume that all experiments discussed have
outcomes that are predictable on the average, so that this limit exists. We also assume that the
outcomes of successive trials of an experiment do not depend on past results.)

HISTORICAL NOTE The Chevalier de Méré was a French nobleman, a famous gambler, and a bon vivant.
He was successful at making bets with odds slightly greater than 1/2 (such as having at least one six come
up in four tosses of a fair die). His correspondence with Pascal asking about the probability of having at least
one double six come up when a pair of dice is rolled 24 times led to the development of probability theory.
According to one account, Pascal wrote to Fermat about the Chevalier saying something like “He’s a good guy
but, alas, he’s no mathematician.”

454 7 / Discrete Probability

Remark: We will not discuss probabilities of events when the set of outcomes is not finite or
countable, such as when the outcome of an experiment can be any real number. In such cases,
integral calculus is usually required for the study of the probabilities of events.

We can model experiments in which outcomes are either equally likely or not equally likely
by choosing the appropriate function p(s), as Example 1 illustrates.

EXAMPLE 1 What probabilities should we assign to the outcomes H (heads) and T (tails) when a fair coin
is flipped? What probabilities should be assigned to these outcomes when the coin is biased so
that heads comes up twice as often as tails?

Solution: For a fair coin, the probability that heads comes up when the coin is flipped equals
the probability that tails comes up, so the outcomes are equally likely. Consequently, we assign
the probability 1/2 to each of the two possible outcomes, that is, p(H) = p(T) = 1/2.

For the biased coin we have

p(H) = 2p(T).

Because

p(H)+ p(T) = 1,

it follows that

2p(T)+ p(T) = 3p(T) = 1.

We conclude that p(T) = 1/3 and p(H) = 2/3. ▲

DEFINITION 1 Suppose that S is a set with n elements. The uniform distribution assigns the probability 1/n
to each element of S.

We now define the probability of an event as the sum of the probabilities of the outcomes
in this event.

DEFINITION 2 The probability of the event E is the sum of the probabilities of the outcomes in E. That is,

p(E) =

s∈E
p(s).

(Note that when E is an infinite set,

s∈E p(s) is a convergent infinite series.)

Note that when there are n outcomes in the event E, that is, if E = {a1, a2, . . . , an}, then
p(E) = n

i=1 p(ai). Note also that the uniform distribution assigns the same probability to
an event that Laplace’s original definition of probability assigns to this event. The experiment
of selecting an element from a sample space with a uniform distribution is called selecting an
element of S at random.

EXAMPLE 2 Suppose that a die is biased (or loaded) so that 3 appears twice as often as each other number
but that the other five outcomes are equally likely. What is the probability that an odd number
appears when we roll this die?

7.2 Probability Theory 455

Solution:We want to find the probability of the event E = {1, 3, 5}. By Exercise 2, we have

p(1) = p(2) = p(4) = p(5) = p(6) = 1/7;p(3) = 2/7.

It follows that

p(E) = p(1)+ p(3)+ p(5) = 1/7+ 2/7+ 1/7 = 4/7. ▲

When possible outcomes are equally likely and there are a finite number of possible out-
comes, the definition of the probability of an event given in this section (Definition 2) agrees
with Laplace’s definition (Definition 1 of Section 7.1). To see this, suppose that there are n
equally likely outcomes; each possible outcome has probability 1/n, because the sum of their
probabilities is 1. Suppose the event E contains m outcomes. According to Definition 2,

p(E) =
m
i=1

1

n
= m
n
.

Because |E| = m and |S| = n, it follows that

p(E) = m
n
= |E|
|S| .

This is Laplace’s definition of the probability of the event E.

Probabilities of Complements and Unions of Events

The formulae for probabilities of combinations of events in Section 7.1 continue to hold
when we use Definition 2 to define the probability of an event. For example, Theorem 1 of
Section 7.1 asserts that

p(E) = 1− p(E),

where E is the complementary event of the event E. This equality also holds when Definition 2
is used. To see this, note that because the sum of the probabilities of the n possible outcomes
is 1, and each outcome is either in E or in E, but not in both, we have

s S

p(s) = 1 = p(E)+ p(E).

Hence, p(E) = 1− p(E).
Under Laplace’s definition, by Theorem 2 in Section 7.1, we have

p(E1 ∪ E2) = p(E1)+ p(E2)− p(E1 ∩ E2)

whenever E1 and E2 are events in a sample space S. This also holds when we define the prob-
ability of an event as we do in this section. To see this, note that p(E1 ∪ E2) is the sum of
the probabilities of the outcomes in E1 ∪ E2. When an outcome x is in one, but not both,
of E1 and E2, p(x) occurs in exactly one of the sums for p(E1) and p(E2). When an
outcome x is in both E1 and E2, p(x) occurs in the sum for p(E1), in the sum for p(E2),
and in the sum for p(E1 ∩ E2), so it occurs 1+ 1− 1 = 1 time on the right-hand side. Conse-
quently, the left-hand side and right-hand side are equal.

456 7 / Discrete Probability

Also, note that if the events E1 and E2 are disjoint, then p(E1 ∩ E2) = 0, which implies
that

p(E1 ∪ E2) = p(E1)+ p(E2)− p(E1 ∩ E2) = p(E1)+ p(E2).

Theorem 1 generalizes this last formula by providing a formula for the probability of the
union of pairwise disjoint events.

THEOREM 1 If E1, E2, . . . is a sequence of pairwise disjoint events in a sample space S, then

p

i

Ei

=

i

p(Ei).

(Note that this theorem applies when the sequence E1, E2, . . . consists of a finite number or
a countably infinite number of pairwise disjoint events.)

We leave the proof of Theorem 1 to the reader (see Exercises 36 and 37).

Conditional Probability

Suppose that we flip a coin three times, and all eight possibilities are equally likely. Moreover,
suppose we know that the eventF , that the first flip comes up tails, occurs. Given this information,
what is the probability of the event E, that an odd number of tails appears? Because the first
flip comes up tails, there are only four possible outcomes: TTT, TTH, THT, and THH, where H
and T represent heads and tails, respectively. An odd number of tails appears only for the
outcomes TTT and THH. Because the eight outcomes have equal probability, each of the four
possible outcomes, given that F occurs, should also have an equal probability of 1/4. This
suggests that we should assign the probability of 2/4 = 1/2 to E, given that F occurs. This
probability is called the conditional probability of E given F .

In general, to find the conditional probability of E given F , we use F as the sample space.
For an outcome fromE to occur, this outcome must also belong toE ∩ F . With this motivation,
we make Definition 3.

DEFINITION 3 Let E and F be events with p(F) > 0. The conditional probability of E given F , denoted
by p(E | F), is defined as

p(E | F) = p(E ∩ F)
p(F)

.

EXAMPLE 3 A bit string of length four is generated at random so that each of the 16 bit strings of length four
is equally likely. What is the probability that it contains at least two consecutive 0s, given that
its first bit is a 0? (We assume that 0 bits and 1 bits are equally likely.)

Solution: Let E be the event that a bit string of length four contains at least two consecutive 0s,
and let F be the event that the first bit of a bit string of length four is a 0. The probability that a
bit string of length four has at least two consecutive 0s, given that its first bit is a 0, equals

p(E | F) = p(E ∩ F)
p(F)

.

7.2 Probability Theory 457

Because E ∩ F = {0000, 0001, 0010, 0011, 0100}, we see that p(E ∩ F) = 5/16. Because
there are eight bit strings of length four that start with a 0, we have p(F) = 8/16 = 1/2.
Consequently,

p(E | F) = 5/16

1/2
= 5

8
. ▲

EXAMPLE 4 What is the conditional probability that a family with two children has two boys, given they
have at least one boy? Assume that each of the possibilities BB, BG, GB, and GG is equally
likely, where B represents a boy andG represents a girl. (Note that BG represents a family with
an older boy and a younger girl while GB represents a family with an older girl and a younger
boy.)

Solution: Let E be the event that a family with two children has two boys, and let F be
the event that a family with two children has at least one boy. It follows that E = {BB},
F = {BB, BG, GB}, and E ∩ F = {BB}. Because the four possibilities are equally likely, it
follows that p(F) = 3/4 and p(E ∩ F) = 1/4. We conclude that

p(E | F) = p(E ∩ F)
p(F)

= 1/4

3/4
= 1

3
. ▲

Independence

Suppose a coin is flipped three times, as described in the introduction to our discussion of
conditional probability. Does knowing that the first flip comes up tails (event F) alter the
probability that tails comes up an odd number of times (event E)? In other words, is it the case
that p(E | F) = p(E)? This equality is valid for the events E and F , because p(E | F) = 1/2
and p(E) = 1/2. Because this equality holds, we say that E and F are independent events.
When two events are independent, the occurrence of one of the events gives no information
about the probability that the other event occurs.

Because p(E | F) = p(E ∩ F)/p(F), asking whether p(E | F) = p(E) is the same as
asking whether p(E ∩ F) = p(E)p(F). This leads to Definition 4.

DEFINITION 4 The events E and F are independent if and only if p(E ∩ F) = p(E)p(F).

EXAMPLE 5 Suppose E is the event that a randomly generated bit string of length four begins with a 1
and F is the event that this bit string contains an even number of 1s. Are E and F independent,
if the 16 bit strings of length four are equally likely?

Solution: There are eight bit strings of length four that begin with a one: 1000, 1001, 1010,
1011, 1100, 1101, 1110, and 1111. There are also eight bit strings of length four that contain
an even number of ones: 0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111. Because there are
16 bit strings of length four, it follows that

p(E) = p(F) = 8/16 = 1/2.

Because E ∩ F = {1111, 1100, 1010, 1001}, we see that

p(E ∩ F) = 4/16 = 1/4.

Because

p(E ∩ F) = 1/4 = (1/2)(1/2) = p(E)p(F),
we conclude that E and F are independent. ▲

458 7 / Discrete Probability

Probability has many applications to genetics, as Examples 6 and 7 illustrate.

EXAMPLE 6 Assume, as in Example 4, that each of the four ways a family can have two children is equally
likely. Are the events E, that a family with two children has two boys, and F , that a family with
two children has at least one boy, independent?

Solution: Because E = {BB}, we have p(E) = 1/4. In Example 4 we showed that p(F) = 3/4
and that p(E ∩ F) = 1/4. But p(E)p(F) = 1

4 · 3
4 = 3

16 . Therefore p(E ∩ F) = p(E)p(F),
so the events E and F are not independent. ▲

EXAMPLE 7 Are the events E, that a family with three children has children of both sexes, and F , that this
family has at most one boy, independent? Assume that the eight ways a family can have three
children are equally likely.

Solution: By assumption, each of the eight ways a family can have three children,
BBB, BBG, BGB, BGG, GBB, GBG, GGB, and GGG, has a probability of 1/8. Because
E = {BBG, BGB, BGG, GBB, GBG, GGB}, F = {BGG, GBG, GGB, GGG}, and
E ∩ F = {BGG, GBG, GGB}, it follows that p(E) = 6/8 = 3/4, p(F) = 4/8 = 1/2, and
p(E ∩ F) = 3/8. Because

p(E)p(F) = 3

4
· 1

2
= 3

8
,

it follows thatp(E ∩ F) = p(E)p(F), soE andF are independent. (This conclusion may seem
surprising. Indeed, if we change the number of children, the conclusion may no longer hold.
See Exercise 27.) ▲

PAIRWISE AND MUTUAL INDEPENDENCE We can also define the independence of
more than two events. However, there are two different types of independence, given in
Definition 5.

DEFINITION 5 The events E1, E2, . . . , En are pairwise independent if and only if p(Ei ∩ Ej) =
p(Ei)p(Ej) for all pairs of integers i and j with 1 ≤ i < j ≤ n. These events
are mutually independent if p(Ei1 ∩ Ei2 ∩ · · · ∩ Eim) = p(Ei1)p(Ei2) · · ·p(Eim)
whenever ij , j = 1, 2, . . . , m, are integers with 1 ≤ i1 < i2 < · · · < im ≤ n and m ≥ 2.

From Definition 5, we see that every set of n mutually independent events is also pairwise
independent. However, n pairwise independent events are not necessarily mutually independent,
as we see in Exercise 25 in the Supplementary Exercises. Many theorems about n events include
the hypothesis that these events are mutually independent, and not just pairwise independent.
We will introduce several such theorems later in this chapter.

Bernoulli Trials and the Binomial Distribution

Suppose that an experiment can have only two possible outcomes. For instance, when a bit is
generated at random, the possible outcomes are 0 and 1. When a coin is flipped, the possible
outcomes are heads and tails. Each performance of an experiment with two possible outcomes is
called aBernoulli trial, after James Bernoulli, who made important contributions to probability
theory. In general, a possible outcome of a Bernoulli trial is called a success or a failure. If p
is the probability of a success and q is the probability of a failure, it follows that p + q = 1.

Many problems can be solved by determining the probability of k successes when an ex-
periment consists of n mutually independent Bernoulli trials. (Bernoulli trials are mutually
independent if the conditional probability of success on any given trial is p, given any infor-
mation whatsoever about the outcomes of the other trials.) Consider Example 8.

7.2 Probability Theory 459

EXAMPLE 8 A coin is biased so that the probability of heads is 2/3. What is the probability that exactly four
heads come up when the coin is flipped seven times, assuming that the flips are independent?

Solution:There are 27 = 128 possible outcomes when a coin is flipped seven times. The number
of ways four of the seven flips can be heads isC(7, 4). Because the seven flips are independent, the
probability of each of these outcomes (four heads and three tails) is (2/3)4(1/3)3. Consequently,
the probability that exactly four heads appear is

C(7, 4)(2/3)4(1/3)3 = 35 · 16

37
= 560

2187
. ▲

Following the same reasoning as was used in Example 8, we can find the probability of k
successes in n independent Bernoulli trials.

THEOREM 2 The probability of exactly k successes in n independent Bernoulli trials, with probability of
success p and probability of failure q = 1− p, is

C(n, k)pkqn−k.

Proof: When n Bernoulli trials are carried out, the outcome is an n-tuple (t1, t2, . . . , tn),
where ti = S (for success) or ti = F (for failure) for i = 1, 2, . . . , n. Because the n trials are
independent, the probability of each outcome of n trials consisting of k successes and n− k
failures (in any order) is pkqn−k . Because there are C(n, k) n-tuples of S’s and F ’s that contain
exactly k S’s, the probability of exactly k successes is

C(n, k)pkqn−k.

We denote by b(k; n, p) the probability of k successes in n independent Bernoulli tri-
als with probability of success p and probability of failure q = 1− p. Considered as a
function of k, we call this function the binomial distribution. Theorem 2 tells us that
b(k; n, p) = C(n, k)pkqn−k .

EXAMPLE 9 Suppose that the probability that a 0 bit is generated is 0.9, that the probability that a 1 bit is
generated is 0.1, and that bits are generated independently. What is the probability that exactly
eight 0 bits are generated when 10 bits are generated?

Solution: By Theorem 2, the probability that exactly eight 0 bits are generated is

b(8; 10, 0.9) = C(10, 8)(0.9)8(0.1)2 = 0.1937102445. ▲

JAMES BERNOULLI (1654–1705) James Bernoulli (also known as Jacob I), was born in Basel, Switzerland.
He is one of the eight prominent mathematicians in the Bernoulli family (see Section 10.1 for the Bernoulli
family tree of mathematicians). Following his father’s wish, James studied theology and entered the ministry. But
contrary to the desires of his parents, he also studied mathematics and astronomy. He traveled throughout Europe
from 1676 to 1682, learning about the latest discoveries in mathematics and the sciences. Upon returning to Basel
in 1682, he founded a school for mathematics and the sciences. He was appointed professor of mathematics at
the University of Basel in 1687, remaining in this position for the rest of his life.

James Bernoulli is best known for the work Ars Conjectandi, published eight years after his death. In
this work, he described the known results in probability theory and in enumeration, often providing alternative

proofs of known results. This work also includes the application of probability theory to games of chance and his introduction of the
theorem known as the law of large numbers. This law states that if > 0, as n becomes arbitrarily large the probability approaches 1
that the fraction of times an event E occurs during n trials is within of p(E).

460 7 / Discrete Probability

Note that the sum of the probabilities that there are k successes when n independent Bernoulli
trials are carried out, for k = 0, 1, 2, . . . , n, equals

n
k= 0

C(n, k)pkqn−k = (p + q)n = 1,

as should be the case. The first equality in this string of equalities is a consequence of the
binomial theorem (see Section 6.4). The second equality follows because q = 1− p.

Random Variables

Many problems are concerned with a numerical value associated with the outcome of an experi-
ment. For instance, we may be interested in the total number of one bits in a randomly generated
string of 10 bits; or in the number of times tails come up when a coin is flipped 20 times. To
study problems of this type we introduce the concept of a random variable.

DEFINITION 6 A random variable is a function from the sample space of an experiment to the set of real
numbers. That is, a random variable assigns a real number to each possible outcome.

Remark: Note that a random variable is a function. It is not a variable, and it is not random!
The name random variable (the translation of variabile casuale) was introduced by the Italian
mathematician F. P. Cantelli in 1916. In the late 1940s, the mathematicians, W. Feller and
J. L. Doob flipped a coin to see whether both would use “random variable” or the more fitting
term “chance variable.” Feller won; unfortunately “random varible” was used in both books and
ever since.

EXAMPLE 10 Suppose that a coin is flipped three times. Let X(t) be the random variable that equals the
number of heads that appear when t is the outcome. Then X(t) takes on the following values:

X(HHH) = 3,

X(HHT) = X(HTH) = X(THH) = 2,

X(TTH) = X(THT) = X(HTT) = 1,

X(TTT) = 0.

▲

DEFINITION 7 The distribution of a random variableX on a sample space S is the set of pairs (r, p(X = r))
for all r ∈ X(S), where p(X = r) is the probability thatX takes the value r . (The set of pairs
in this distribution is determined by the probabilities p(X = r) for r ∈ X(S).)

EXAMPLE 11 Each of the eight possible outcomes when a fair coin is flipped three times has probability 1/8.
So, the distribution of the random variable X(t) in Example 10 is determined by the proba-
bilities P(X = 3) = 1/8, P(X = 2) = 3/8, P(X = 1) = 3/8, and P(X = 0) = 1/8. Conse-
quently, the distribution of X(t) in Example 10 is the set of pairs (3, 1/8), (2, 3/8), (1, 3/8),
and (0, 1/8). ▲

EXAMPLE 12 Let X be the sum of the numbers that appear when a pair of dice is rolled. What are the values
of this random variable for the 36 possible outcomes (i, j), where i and j are the numbers that
appear on the first die and the second die, respectively, when these two dice are rolled?

7.2 Probability Theory 461

Solution: The random variable X takes on the following values:

X((1, 1)) = 2,

X((1, 2)) = X((2, 1)) = 3,

X((1, 3)) = X((2, 2)) = X((3, 1)) = 4,

X((1, 4)) = X((2, 3)) = X((3, 2)) = X((4, 1)) = 5,

X((1, 5)) = X((2, 4)) = X((3, 3)) = X((4, 2)) = X((5, 1)) = 6,

X((1, 6)) = X((2, 5)) = X((3, 4)) = X((4, 3)) = X((5, 2)) = X((6, 1)) = 7,

X((2, 6)) = X((3, 5)) = X((4, 4)) = X((5, 3)) = X((6, 2)) = 8,

X((3, 6)) = X((4, 5)) = X((5, 4)) = X((6, 3)) = 9,

X((4, 6)) = X((5, 5)) = X((6, 4)) = 10,

X((5, 6)) = X((6, 5)) = 11,

X((6, 6)) = 12. ▲

We will continue our study of random variables in Section 7.4, where we will show how
they can be used in a variety of applications.

The Birthday Problem

A famous puzzle asks for the smallest number of people needed in a room so that it is more likely
than not that at least two of them have the same day of the year as their birthday. Most people
find the answer, which we determine in Example 13, to be surprisingly small. After we solve
this famous problem, we will show how similar reasoning can be adapted to solve a question
about hashing functions.

EXAMPLE 13 The Birthday Problem What is the minimum number of people who need to be in a room so
that the probability that at least two of them have the same birthday is greater than 1/2?

Solution: First, we state some assumptions. We assume that the birthdays of the people in the
room are independent. Furthermore, we assume that each birthday is equally likely and that
there are 366 days in the year. (In reality, more people are born on some days of the year than
others, such as days nine months after some holidays including New Year’s Eve, and only leap
years have 366 days.)

To find the probability that at least two of n people in a room have the same birthday,
we first calculate the probability pn that these people all have different birthdays. Then, the
probability that at least two people have the same birthday is 1–pn. To compute pn, we consider
the birthdays of the n people in some fixed order. Imagine them entering the room one at a time;
we will compute the probability that each successive person entering the room has a birthday
different from those of the people already in the room.

The birthday of the first person certainly does not match the birthday of someone already in
the room. The probability that the birthday of the second person is different from that of the first
person is 365/366 because the second person has a different birthday when he or she was born
on one of the 365 days of the year other than the day the first person was born. (The assumption
that it is equally likely for someone to be born on any of the 366 days of the year enters into this
and subsequent steps.)

The probability that the third person has a birthday different from both the birthdays of
the first and second people given that these two people have different birthdays is 364/366. In
general, the probability that the j th person, with 2 ≤ j ≤ 366, has a birthday different from the

462 7 / Discrete Probability

birthdays of the j − 1 people already in the room given that these j − 1 people have different
birthdays is

366− (j − 1)

366
= 367− j

366
.

Because we have assumed that the birthdays of the people in the room are independent, we
can conclude that the probability that the n people in the room have different birthdays is

pn =
365

366

364

366

363

366
· · · 367− n

366
.

It follows that the probability that among n people there are at least two people with the same
birthday is

1− pn = 1− 365

366

364

366

363

366
· · · 367− n

366
.

To determine the minimum number of people in the room so that the probability that at
least two of them have the same birthday is greater than 1/2, we use the formula we have found
for 1− pn to compute it for increasing values of n until it becomes greater than 1/2. (There are
more sophisticated approaches using calculus that can eliminate this computation, but we will
not use them here.) After considerable computation we find that for n = 22, 1− pn ≈ 0.475,
while for n = 23, 1−pn ≈ 0.506. Consequently, the minimum number of people needed so that
the probability that at least two people have the same birthday is greater than 1/2 is 23. ▲

The solution to the birthday problem leads to the solution of the question in Example 14
about hashing functions.

EXAMPLE 14 Probability of a Collision in Hashing Functions Recall from Section 4.5 that a hashing
function h(k) is a mapping of the keys (of the records that are to be stored in a database) to
storage locations. Hashing functions map a large universe of keys (such as the approximately
300 million Social Security numbers in the United States) to a much smaller set of storage
locations. A good hashing function yields few collisions, which are mappings of two different
keys to the same memory location, when relatively few of the records are in play in a given
application. What is the probability that no two keys are mapped to the same location by a
hashing function, or, in other words, that there are no collisions?

Solution: To calculate this probability, we assume that the probability that a randomly selected
key is mapped to a location is 1/m, where m is the number of available locations, that is, the
hashing function distributes keys uniformly. (In practice, hashing functions may not satisfy this
assumption. However, for a good hashing function, this assumption should be close to correct.)
Furthermore, we assume that the keys of the records selected have an equal probability to be
any of the elements of the key universe and that these keys are independently selected.

Suppose that the keys are k1, k2, . . . , kn. When we add the second record, the probability
that it is mapped to a location different from the location of the first record, that h(k2) = h(k1),
is (m− 1)/m because there are m− 1 free locations after the first record has been placed. The
probability that the third record is mapped to a free location after the first and second records
have been placed without a collision is (m− 2)/m. In general, the probability that the j th record
is mapped to a free location after the first j − 1 records have been mapped to locations h(k1),
h(k2), . . . , h(kj−1)without collisions is (m− (j − 1))/m because j − 1 of them locations are
taken.

Because the keys are independent, the probability that all n keys are mapped to different
locations is

pn =
m− 1

m
· m− 2

m
· · · · · m− n+ 1

m
.

7.2 Probability Theory 463

It follows that the probability that there is at least one collision, that is, at least two keys are
mapped to the same location, is

1− pn = 1− m− 1

m
· m− 2

m
· · · · · m− n+ 1

m
.

Techniques from calculus can be used to find the smallest value of n given a value of m such
that the probability of a collision is greater than a particular threshold. It can be shown that the
smallest integer n such that the probability of a collision is greater than 1/2 is approximately
n = 1.177

√
m. For example, when m = 1,000,000, the smallest integer n such that the proba-

bility of a collision is greater than 1/2 is 1178. ▲

Monte Carlo Algorithms

The algorithms discussed so far in this book are all deterministic. That is, each algorithm always
proceeds in the same way whenever given the same input. However, there are many situations
where we would like an algorithm to make a random choice at one or more steps. Such a
situation arises when a deterministic algorithm would have to go through a huge number, or even
an unknown number, of possible cases. Algorithms that make random choices at one or more
steps are called probabilistic algorithms. We will discuss a particular class of probabilistic
algorithms in this section, namely, Monte Carlo algorithms, for decision problems. Monte
Carlo algorithms always produce answers to problems, but a small probability remains that
these answers may be incorrect. However, the probability that the answer is incorrect decreases
rapidly when the algorithm carries out sufficient computation. Decision problems have either
“true” or “false” as their answer. The designation “Monte Carlo” is a reference to the famous

Monte Carlo methods
were invented to help
develop the first nuclear
weapons.

casino in Monaco; the use of randomness and the repetitive processes in these algorithms make
them similar to some gambling games. This name was introduced by the inventors of Monte
Carlo methods, including Stan Ulam, Enrico Fermi, and John von Neumann.

A Monte Carlo algorithm for a decision problem uses a sequence of tests. The probability
that the algorithm answers the decision problem correctly increases as more tests are carried
out. At each step of the algorithm, possible responses are “true,” which means that the answer
is “true” and no additional iterations are needed, or “unknown,” which means that the answer
could be either “true” or “false.” After running all the iterations in such an algorithm, the final
answer produced is “true” if at least one iteration yields the answer “true,” and the answer is
“false” if every iteration yields the answer “unknown.” If the correct answer is “false,” then the
algorithm answers “false,” because every iteration will yield “unknown.” However, if the correct
answer is “true,” then the algorithm could answer either “true” or “false,” because it may be
possible that each iteration produced the response “unknown” even though the correct response
was “true.” We will show that this possibility becomes extremely unlikely as the number of tests
increases.

Suppose that p is the probability that the response of a test is “true,” given that the answer
is “true.” It follows that 1−p is the probability that the response is “unknown,” given that the
answer is “true.” Because the algorithm answers “false” when all n iterations yield the answer
“unknown” and the iterations perform independent tests, the probability of error is (1−p)n.
When p = 0, this probability approaches 0 as the number of tests increases. Consequently, the
probability that the algorithm answers “true” when the answer is “true” approaches 1.

EXAMPLE 15 Quality Control (This example is adapted from [AhUl95].) Suppose that a manufacturer
orders processor chips in batches of size n, where n is a positive integer. The chip maker
has tested only some of these batches to make sure that all the chips in the batch are good
(replacing any bad chips found during testing with good ones). In previously untested batches,
the probability that a particular chip is bad has been observed to be 0.1 when random testing
is done. The PC manufacturer wants to decide whether all the chips in a batch are good. To

464 7 / Discrete Probability

do this, the PC manufacturer can test each chip in a batch to see whether it is good. However,
this requires n tests. Assuming that each test can be carried out in constant time, these tests
require O(n) seconds. Can the PC manufacturer determine whether a batch of chips has been
tested by the chip maker using less time?

Solution: We can use a Monte Carlo algorithm to determine whether a batch of chips has been
tested by the chip maker as long as we are willing to accept some probability of error. The
algorithm is set up to answer the question: “Has this batch of chips not been tested by the
chip maker?” It proceeds by successively selecting chips at random from the batch and testing
them one by one. When a bad chip is encountered, the algorithm answers “true” and stops. If
a tested chip is good, the algorithm answers “unknown” and goes on to the next chip. After
the algorithm has tested a specified number of chips, say k chips, without getting an answer of
“true,” the algorithm terminates with the answer “false”; that is, the algorithm concludes that
the batch is good, that is, that the chip maker has tested all the chips in the batch.

The only way for this algorithm to answer incorrectly is for it to conclude that an untested
batch of chips has been tested by the chip maker. The probability that a chip is good, but that
it came from an untested batch, is 1− 0.1 = 0.9. Because the events of testing different chips
from a batch are independent, the probability that all k steps of the algorithm produce the answer
“unknown,” given that the batch of chips is untested, is 0.9k .

By taking k large enough, we can make this probability as small as we like. For example,
by testing 66 chips, the probability that the algorithm decides a batch has been tested by the
chip maker is 0.966, which is less than 0.001. That is, the probability is less than 1 in 1000
that the algorithm has answered incorrectly. Note that this probability is independent of n, the
number of chips in a batch. That is, the Monte Carlo algorithm uses a constant number, orO(1),
tests and requires O(1) seconds, no matter how many chips are in a batch. As long as the PC
manufacturer can live with an error rate of less than 1 in 1000, the Monte Carlo algorithm will
save the PC manufacturer a lot of testing. If a smaller error rate is needed, the PC manufacturer
can test more chips in each batch; the reader can verify that 132 tests lower the error rate to less
than 1 in 1,000,000. ▲

EXAMPLE 16 Probabilistic PrimalityTesting In Chapter 4 we remarked that a composite integer, that is, an
integer greater than one that is not prime, passes Miller’s test (see the preamble to Exercise 44
in Section 4.4) for fewer than n/4 bases b with 1 < b < n. This observation is the basis for
a Monte Carlo algorithm to determine whether an integer greater than one is prime. Because
large primes play an essential role in public-key cryptography (see Section 4.6), being able to
generate large primes quickly has become extremely important.

The goal of the algorithm is to decide the question “Is n composite?” Given an integer n
greater than one, we select an integer b at random with 1 < b < n and determine whether n
passes Miller’s test to the base b. If n fails the test, the answer is “true” because n must be
composite, and the algorithm ends. Otherwise, we perform the test k times, where k is a positive
integer. Each time we select a random integer b and determine whether n passes Miller’s test to
the base b. If the answer is “unknown” at each step, the algorithm answers “false,” that is, it says
that n is not composite, so that it is prime. The only possibility for the algorithm to return an
incorrect answer occurs when n is composite, and the answer “unknown” is the output at each
of the k iterations. The probability that a composite integer n passes Miller’s test for a randomly
selected base b is less than 1/4. Because the integer b with 1 < b < n is selected at random at
each iteration and these iterations are independent, the probability that n is composite but the
algorithm responds that n is prime is less than (1/4)k . By taking k to be sufficiently large, we
can make this probability extremely small. For example, with 10 iterations, the probability that
the algorithm decides that n is prime when it really is composite is less than 1 in 1,000,000.
With 30 iterations, this probability drops to less than 1 in 1018, an extremely unlikely event.

A number that passes
many iterations of a
probabilistic primality
test is called an industrial
strength prime, even
though it may be
composite.

To generate large primes, say with 200 digits, we randomly choose an integer n with 200
digits and run this algorithm, with 30 iterations. If the algorithm decides that n is prime, we

7.2 Probability Theory 465

can use it as one of the two primes used in an encryption key for the RSA cryptosystem. If n is
actually composite and is used as part of the key, the procedures used to decrypt messages will
not produce the original encrypted message. The key is then discarded and two new possible
primes are used. ▲

The Probabilistic Method

We discussed existence proofs in Chapter 1 and illustrated the difference between constructive
existence proofs and nonconstructive existence proofs. The probabilistic method, introduced by
Paul Erdős and Alfréd Rényi, is a powerful technique that can be used to create nonconstructive
existence proofs. To use the probabilistic method to prove results about a set S, such as the
existence of an element in S with a specified property, we assign probabilities to the elements
of S. We then use methods from probability theory to prove results about the elements of S.
In particular, we can show that an element with a specified property exists by showing that the
probability an element x ∈ S has this property is positive. The probabilistic method is based on
the equivalent statement in Theorem 3.

THEOREM 3 THE PROBABILISTIC METHOD If the probability that an element chosen at random
from a S does not have a particular property is less than 1, there exists an element in S with
this property.

An existence proof based on the probabilistic method is nonconstructive because it does not find
a particular element with the desired property.

We illustrate the power of the probabilistic method by finding a lower bound for the Ramsey
number R(k, k). Recall from Section 6.2 that R(k, k) equals the minimum number of people at
a party needed to ensure that there are at least k mutual friends or k mutual enemies (assuming
that any two people are friends or enemies).

THEOREM 4 If k is an integer with k ≥ 2, then R(k, k) ≥ 2k/2.

Proof:We note that the theorem holds for k = 2 and k = 3 becauseR(2, 2) = 2 andR(3, 3) = 6,
as was shown in Section 6.2. Now suppose that k ≥ 4. We will use the probabilistic method to
show that if there are fewer than 2k/2 people at a party, it is possible that no k of them are mutual
friends or mutual enemies. This will show that R(k, k) is at least 2k/2.

To use the probabilistic method, we assume that it is equally likely for two people to be
friends or enemies. (Note that this assumption does not have to be realistic.) Suppose there
are n people at the party. It follows that there are

n
k

different sets of k people at this

party, which we list as S1, S2, . . . , S(nk)
. Let Ei be the event that all k people in Si are ei-

ther mutual friends or mutual enemies. The probability that there are either k mutual friends

or k mutual enemies among the n people equals p(
 (nk)
i=1Ei).

According to our assumption it is equally likely for two people to be friends or enemies.
The probability that two people are friends equals the probability that they are enemies; both
probabilities equal 1/2. Furthermore, there are

k
2

 = k(k−1)/2 pairs of people in Si because
there are k people in Si . Hence, the probability that all k people in Si are mutual friends and the
probability that all k people in Si are mutual enemies both equal (1/2)k(k−1)/2. It follows that
p(Ei) = 2(1/2)k(k−1)/2.

466 7 / Discrete Probability

The probability that there are either k mutual friends or k mutual enemies in the group of n

people equals p(
 (nk)
i=1Ei). Using Boole’s inequality (Exercise 15), it follows that

p

⎛
⎝(

n
k)
i=1

Ei

⎞
⎠ ≤ (nk)

i=1

p(Ei) =

n

k

· 2

1

2

 k(k−1)/2

.

By Exercise 17 in Section 6.4, we have

n
k

 ≤ nk/2k−1. Hence,

n

k

2

1

2

 k(k−1)/2

≤ nk

2k−1
2

1

2

 k(k−1)/2

.

Now if n < 2k/2, we have

nk

2k−1
2

1

2

 k(k−1)/2

<
2k(k/2)

2k−1
2

1

2

 k(k−1)/2

= 22−(k/2) ≤ 1,

where the last step follows because k ≥ 4.

We can now conclude that p(
 (nk)
i=1Ei) < 1 when k ≥ 4. Hence, the probability of the

complementary event, that there is no set of either k mutual friends or mutual enemies at the
party, is greater than 0. It follows that if n < 2k/2, there is at least one set such that no subset
of k people are mutual friends or mutual enemies.

Exercises

1. What probability should be assigned to the outcome of
heads when a biased coin is tossed, if heads is three times
as likely to come up as tails? What probability should be
assigned to the outcome of tails?

2. Find the probability of each outcome when a loaded die
is rolled, if a 3 is twice as likely to appear as each of the
other five numbers on the die.

3. Find the probability of each outcome when a biased die is
rolled, if rolling a 2 or rolling a 4 is three times as likely
as rolling each of the other four numbers on the die and
it is equally likely to roll a 2 or a 4.

4. Show that conditions (i) and (ii) are met under Laplace’s
definition of probability, when outcomes are equally
likely.

5. A pair of dice is loaded. The probability that a 4 appears
on the first die is 2/7, and the probability that a 3 appears
on the second die is 2/7. Other outcomes for each die
appear with probability 1/7. What is the probability of 7
appearing as the sum of the numbers when the two dice
are rolled?

6. What is the probability of these events when we randomly
select a permutation of {1, 2, 3}?
a) 1 precedes 3.
b) 3 precedes 1.
c) 3 precedes 1 and 3 precedes 2.

7. What is the probability of these events when we randomly
select a permutation of {1, 2, 3, 4}?
a) 1 precedes 4.
b) 4 precedes 1.
c) 4 precedes 1 and 4 precedes 2.
d) 4 precedes 1, 4 precedes 2, and 4 precedes 3.
e) 4 precedes 3 and 2 precedes 1.

8. What is the probability of these events when we randomly
select a permutation of {1, 2, . . . , n} where n ≥ 4?

a) 1 precedes 2.
b) 2 precedes 1.
c) 1 immediately precedes 2.
d) n precedes 1 and n−1 precedes 2.
e) n precedes 1 and n precedes 2.

9. What is the probability of these events when we randomly
select a permutation of the 26 lowercase letters of the En-
glish alphabet?

a) The permutation consists of the letters in reverse al-
phabetic order.

b) z is the first letter of the permutation.
c) z precedes a in the permutation.
d) a immediately precedes z in the permutation.
e) a immediately precedes m, which immediately pre-

cedes z in the permutation.
f) m, n, and o are in their original places in the permu-

tation.

7.2 Probability Theory 467

10. What is the probability of these events when we randomly
select a permutation of the 26 lowercase letters of the En-
glish alphabet?

a) The first 13 letters of the permutation are in alphabet-
ical order.

b) a is the first letter of the permutation and z is the last
letter.

c) a and z are next to each other in the permutation.
d) a and b are not next to each other in the permutation.
e) a and z are separated by at least 23 letters in the per-

mutation.
f) z precedes both a and b in the permutation.

11. Suppose that E and F are events such that p(E) =
0.7 and p(F) = 0.5. Show that p(E ∪ F) ≥ 0.7 and
p(E ∩ F) ≥ 0.2.

12. Suppose that E and F are events such that p(E) =
0.8 and p(F) = 0.6. Show that p(E ∪ F) ≥ 0.8 and
p(E ∩ F) ≥ 0.4.

13. Show that if E and F are events, then p(E ∩ F) ≥
p(E)+ p(F)− 1. This is known as Bonferroni’s in-
equality.

14. Use mathematical induction to prove the following gen-
eralization of Bonferroni’s inequality:

p(E1 ∩ E2 ∩ · · · ∩ En)
≥ p(E1)+ p(E2)+ · · · + p(En)− (n− 1),

where E1, E2, . . . , En are n events.
15. Show that ifE1, E2, . . . , En are events from a finite sam-

ple space, then

p(E1 ∪ E2 ∪ · · · ∪ En)
≤ p(E1)+ p(E2)+ · · · + p(En).

This is known as Boole’s inequality.
16. Show that if E and F are independent events, then E

and F are also independent events.
17. If E and F are independent events, prove or disprove

that E and F are necessarily independent events.

In Exercises 18, 20, and 21 assume that the year has 366 days
and all birthdays are equally likely. In Exercise 19 assume it
is equally likely that a person is born in any given month of
the year.
18. a) What is the probability that two people chosen at ran-

dom were born on the same day of the week?
b) What is the probability that in a group of n people

chosen at random, there are at least two born on the
same day of the week?

c) How many people chosen at random are needed to
make the probability greater than 1/2 that there are at
least two people born on the same day of the week?

19. a) What is the probability that two people chosen at ran-
dom were born during the same month of the year?

b) What is the probability that in a group of n people
chosen at random, there are at least two born in the
same month of the year?

c) How many people chosen at random are needed to
make the probability greater than 1/2 that there are at
least two people born in the same month of the year?

20. Find the smallest number of people you need to choose
at random so that the probability that at least one of them
has a birthday today exceeds 1/2.

21. Find the smallest number of people you need to choose
at random so that the probability that at least two of them
were both born on April 1 exceeds 1/2.

∗22. February 29 occurs only in leap years. Years divisible
by 4, but not by 100, are always leap years. Years divisi-
ble by 100, but not by 400, are not leap years, but years
divisible by 400 are leap years.

a) What probability distribution for birthdays should be
used to reflect how often February 29 occurs?

b) Using the probability distribution from part (a), what
is the probability that in a group of n people at least
two have the same birthday?

23. What is the conditional probability that exactly four heads
appear when a fair coin is flipped five times, given that
the first flip came up heads?

24. What is the conditional probability that exactly four heads
appear when a fair coin is flipped five times, given that
the first flip came up tails?

25. What is the conditional probability that a randomly gen-
erated bit string of length four contains at least two con-
secutive 0s, given that the first bit is a 1? (Assume the
probabilities of a 0 and a 1 are the same.)

26. Let E be the event that a randomly generated bit string
of length three contains an odd number of 1s, and let F
be the event that the string starts with 1. Are E and F
independent?

27. Let E and F be the events that a family of n children has
children of both sexes and has at most one boy, respec-
tively. Are E and F independent if

a) n = 2? b) n = 4? c) n = 5?

28. Assume that the probability a child is a boy is 0.51
and that the sexes of children born into a family are
independent. What is the probability that a family of five
children has

a) exactly three boys?
b) at least one boy?
c) at least one girl?
d) all children of the same sex?

29. A group of six people play the game of “odd person out” to
determine who will buy refreshments. Each person flips
a fair coin. If there is a person whose outcome is not the
same as that of any other member of the group, this per-
son has to buy the refreshments. What is the probability
that there is an odd person out after the coins are flipped
once?

30. Find the probability that a randomly generated bit string
of length 10 does not contain a 0 if bits are independent
and if

a) a 0 bit and a 1 bit are equally likely.
b) the probability that a bit is a 1 is 0.6.
c) the probability that the ith bit is a 1 is 1/2i for
i = 1, 2, 3, . . . , 10.

468 7 / Discrete Probability

31. Find the probability that a family with five children does
not have a boy, if the sexes of children are independent
and if

a) a boy and a girl are equally likely.

b) the probability of a boy is 0.51.

c) the probability that the ith child is a boy is
0.51− (i/100).

32. Find the probability that a randomly generated bit string
of length 10 begins with a 1 or ends with a 00 for the same
conditions as in parts (a), (b), and (c) of Exercise 30, if
bits are generated independently.

33. Find the probability that the first child of a family with
five children is a boy or that the last two children of the
family are girls, for the same conditions as in parts (a),
(b), and (c) of Exercise 31.

34. Find each of the following probabilities when n indepen-
dent Bernoulli trials are carried out with probability of
success p.

a) the probability of no successes

b) the probability of at least one success

c) the probability of at most one success

d) the probability of at least two successes

35. Find each of the following probabilities when n indepen-
dent Bernoulli trials are carried out with probability of
success p.

a) the probability of no failures

b) the probability of at least one failure

c) the probability of at most one failure

d) the probability of at least two failures

36. Use mathematical induction to prove that if
E1, E2, . . . , En is a sequence of n pairwise disjoint
events in a sample space S, where n is a positive integer,
then p(

 n
i=1 Ei) =

 n
i=1 p(Ei).

∗37. (Requires calculus) Show that ifE1, E2, . . . is an infinite
sequence of pairwise disjoint events in a sample space S,
then p(

 ∞
i=1 Ei) =

 ∞
i=1 p(Ei). [Hint:Use Exercise 36

and take limits.]

38. A pair of dice is rolled in a remote location and when you
ask an honest observer whether at least one die came up
six, this honest observer answers in the affirmative.

a) What is the probability that the sum of the numbers
that came up on the two dice is seven, given the infor-
mation provided by the honest observer?

b) Suppose that the honest observer tells us that at least
one die came up five. What is the probability the sum
of the numbers that came up on the dice is seven, given
this information?

∗∗39. This exercise employs the probabilistic method to prove a
result about round-robin tournaments. In a round-robin
tournament with m players, every two players play one
game in which one player wins and the other loses.

We want to find conditions on positive integers m
and k with k < m such that it is possible for the outcomes
of the tournament to have the property that for every set
of k players, there is a player who beats every member
in this set. So that we can use probabilistic reasoning to
draw conclusions about round-robin tournaments, we as-
sume that when two players compete it is equally likely
that either player wins the game and we assume that the
outcomes of different games are independent. Let E be
the event that for every set S with k players, where k is
a positive integer less than m, there is a player who has
beaten all k players in S.

a) Show thatp(E) ≤ (mk)j=1 p(Fj), whereFj is the event
that there is no player who beats all k players from the
j th set in a list of the

m
k

sets of k players.

b) Show that the probability of Fj is (1−2−k)m−k .
c) Conclude from parts (a) and (b) that p(E) ≤

m
k

(1− 2−k)m−k and, therefore, that there must

be a tournament with the described property if
m
k

(1−2−k)m−k < 1.

d) Use part (c) to find values of m such that there is a
tournament with m players such that for every set S
of two players, there is a player who has beaten both
players in S. Repeat for sets of three players.

∗40. Devise a Monte Carlo algorithm that determines whether
a permutation of the integers 1 through n has already been
sorted (that is, it is in increasing order), or instead, is a ran-
dom permutation. A step of the algorithm should answer
“true” if it determines the list is not sorted and “unknown”
otherwise.After k steps, the algorithm decides that the in-
tegers are sorted if the answer is “unknown” in each step.
Show that as the number of steps increases, the proba-
bility that the algorithm produces an incorrect answer is
extremely small. [Hint: For each step, test whether cer-
tain elements are in the correct order. Make sure these
tests are independent.]

41. Use pseudocode to write out the probabilistic primality
test described in Example 16.

7.3 Bayes’Theorem

Introduction

There are many times when we want to assess the probability that a particular event occurs on
the basis of partial evidence. For example, suppose we know the percentage of people who have
a particular disease for which there is a very accurate diagnostic test. People who test positive for

7.3 Bayes’ Theorem 469

this disease would like to know the likelihood that they actually have the disease. In this section
we introduce a result that can be used to determine this probability, namely, the probability that
a person has the disease given that this person tests positive for it. To use this result, we will
need to know the percentage of people who do not have the disease but test positive for it and
the percentage of people who have the disease but test negative for it.

Similarly, suppose we know the percentage of incoming e-mail messages that are spam. We
will see that we can determine the likelihood that an incoming e-mail message is spam using
the occurrence of words in the message. To determine this likelihood, we need to know the
percentage of incoming messages that are spam, the percentage of spam messages in which
each of these words occurs, and the percentage of messages that are not spam in which each of
these words occurs.

The result that we can use to answer questions such as these is called Bayes’ theorem
and dates back to the eighteenth century. In the past two decades, Bayes’ theorem has been
extensively applied to estimate probabilities based on partial evidence in areas as diverse as
medicine, law, machine learning, engineering, and software development.

Bayes’ Theorem

We illustrate the idea behind Bayes’ theorem with an example that shows that when extra
information is available, we can derive a more realistic estimate that a particular event occurs.
That is, suppose we know p(F), the probability that an event F occurs, but we have knowledge
that an event E occurs. Then the conditional probability that F occurs given that E occurs,
p(F | E), is a more realistic estimate than p(F) that F occurs. In Example 1 we will see that
we can find p(F | E) when we know p(F), p(E | F), and p(E | F).

EXAMPLE 1 We have two boxes. The first contains two green balls and seven red balls; the second contains
four green balls and three red balls. Bob selects a ball by first choosing one of the two boxes at
random. He then selects one of the balls in this box at random. If Bob has selected a red ball,
what is the probability that he selected a ball from the first box?

Solution: Let E be the event that Bob has chosen a red ball; E is the event that Bob has chosen
a green ball. Let F be the event that Bob has chosen a ball from the first box; F is the event that
Bob has chosen a ball from the second box. We want to find p(F | E), the probability that the
ball Bob selected came from the first box, given that it is red. By the definition of conditional
probability, we have p(F | E) = p(F ∩ E)/p(E). Can we use the information provided to
determine both p(F ∩ E) and p(E) so that we can find p(F | E)?

First, note that because the first box contains seven red balls out of a total of nine balls,
we know that p(E | F) = 7/9. Similarly, because the second box contains three red balls
out of a total of seven balls, we know that p(E | F) = 3/7. We assumed that Bob selects a
box at random, so p(F) = p(F) = 1/2. Because p(E | F) = p(E ∩ F)/p(F), it follows that
p(E ∩ F) = p(E | F)p(F) = 7

9 · 1
2 = 7

18 [as we remarked earlier, this is one of the quantities
we need to find to determine p(F | E)]. Similarly, because p(E | F) = p(E ∩ F)/p(F), it
follows that p(E ∩ F) = p(E | F)p(F) = 3

7 · 1
2 = 3

14 .
We can now find p(E). Note that E = (E ∩ F) ∪ (E ∩ F), where E ∩ F and E ∩ F are

disjoint sets. (If x belongs to both E ∩ F and E ∩ F , then x belongs to both F and F , which is
impossible.) It follows that

p(E) = p(E ∩ F)+ p(E ∩ F) = 7

18
+ 3

14
= 49

126
+ 27

126
= 76

126
= 38

63
.

We have now found both p(F ∩ E) = 7/18 and p(E) = 38/63. We conclude that

p(F | E) = p(F ∩ E)
p(E)

= 7/18

38/63
= 49

76
≈ 0.645.

470 7 / Discrete Probability

Before we had any extra information, we assumed that the probability that Bob selected the first
box was 1/2. However, with the extra information that the ball selected at random is red, this
probability has increased to approximately 0.645. That is, the probability that Bob selected a
ball from the first box increased from 1/2, when no extra information was available, to 0.645
once we knew that the ball selected was red. ▲

Using the same type of reasoning as in Example 1, we can find the conditional probability
that an event F occurs, given that an eventE has occurred, when we know p(E | F), p(E | F),
and p(F). The result we can obtain is called Bayes’ theorem; it is named after Thomas Bayes,
an eighteenth-century British mathematician and minister who introduced this result.

THEOREM 1 BAYES’THEOREM Suppose that E and F are events from a sample space S such that
p(E) = 0 and p(F) = 0. Then

p(F | E) = p(E | F)p(F)
p(E | F)p(F)+ p(E | F)p(F) .

Proof: The definition of conditional probability tells us that p(F | E) = p(E ∩ F)/p(E)
and p(E | F) = p(E ∩ F)/p(F). Therefore, p(E ∩ F) = p(F | E)p(E) and p(E ∩ F) =
p(E | F)p(F). Equating these two expressions for p(E ∩ F) shows that

p(F | E)p(E) = p(E | F)p(F).

Dividing both sides by p(E), we find that

p(F | E) = p(E | F)p(F)
p(E)

.

Next, we show that p(E) = p(E | F)p(F)+ p(E | F)p(F). To see this, first note
that E = E ∩ S = E ∩ (F ∪ F) = (E ∩ F) ∪ (E ∩ F). Furthermore, E ∩ F and E ∩ F
are disjoint, because if x ∈ E ∩ F and x ∈ E ∩ F , then x ∈ F ∩ F = ∅. Consequently,
p(E) = p(E ∩ F)+ p(E ∩ F). We have already shown that p(E ∩ F) = p(E | F)p(F).
Moreover, we have p(E | F) = p(E ∩ F)/p(F), which shows that p(E ∩ F) =
p(E | F)p(F). It now follows that

p(E) = p(E ∩ F)+ p(E ∩ F) = p(E | F)p(F)+ p(E | F)p(F).

To complete the proof we insert this expression for p(E) into the equation p(F | E) =
p(E | F)p(F)/p(E). We have proved that

p(F | E) = p(E | F)p(F)
p(E | F)p(F)+ p(E | F)p(F) .

APPLYING BAYES’ THEOREM Bayes’ theorem can be used to solve problems that arise
in many disciplines. Next, we will discuss an application of Bayes’ theorem to medicine. In
particular, we will illustrate how Bayes’ theorem can be used to assess the probability that
someone testing positive for a disease actually has this disease. The results obtained from
Bayes’ theorem are often somewhat surprising, as Example 2 shows.

7.3 Bayes’ Theorem 471

EXAMPLE 2 Suppose that one person in 100,000 has a particular rare disease for which there is a fairly
accurate diagnostic test. This test is correct 99.0% of the time when given to a person selected
at random who has the disease; it is correct 99.5% of the time when given to a person selected
at random who does not have the disease. Given this information can we find

(a) the probability that a person who tests positive for the disease has the disease?
(b) the probability that a person who tests negative for the disease does not have the disease?

Should a person who tests positive be very concerned that he or she has the disease?

Solution: (a) Let F be the event that a person selected at random has the disease, and let E be
the event that a person selected at random tests positive for the disease. We want to compute
p(F | E). To use Bayes’ theorem to compute p(F | E) we need to find p(E | F), p(E | F),
p(F), and p(F).

We know that one person in 100,000 has this disease, so p(F) = 1/100,000 = 0.00001 and
p(F) = 1− 0.00001 = 0.99999. Because a person who has the disease tests positive 99% of
the time, we know that p(E | F) = 0.99; this is the probability of a true positive, that a person
with the disease tests positive. It follows that p(E | F) = 1− p(E | F) = 1− 0.99 = 0.01;
this is the probability of a false negative, that a person who has the disease tests negative.

Furthermore, because a person who does not have the disease tests negative 99.5% of
the time, we know that p(E | F) = 0.995. This is the probability of a true negative, that a
person without the disease tests negative. Finally, we see that p(E | F) = 1− p(E | F) =
1− 0.995 = 0.005; this is the probability of a false positive, that a person without the disease
tests positive.

The probability that a person who tests positive for the disease actually has the disease is
p(F | E). By Bayes’ theorem, we know that

p(F | E) = p(E | F)p(F)
p(E | F)p(F)+ p(E | F)p(F)

= (0.99)(0.00001)

(0.99)(0.00001)+ (0.005)(0.99999)
≈ 0.002.

(b) The probability that someone who tests negative for the disease does not have the disease is
p(F | E). By Bayes’ theorem, we know that

p(F | E) = p(E | F)p(F)
p(E | F)p(F)+ p(E | F)p(F)

= (0.995)(0.99999)

(0.995)(0.99999)+ (0.01)(0.00001)
≈ 0.9999999.

Consequently, 99.99999% of the people who test negative really do not have the disease.

In part (a) we showed that only 0.2% of people who test positive for the disease actually
have the disease. Because the disease is extremely rare, the number of false positives on the
diagnostic test is far greater than the number of true positives, making the percentage of people
who test positive who actually have the disease extremely small. People who test positive for
the diseases should not be overly concerned that they actually have the disease. ▲

GENERALIZING BAYES’ THEOREM Note that in the statement of Bayes’ theorem, the
eventsF andF are mutually exclusive and cover the entire sample space S (that is,F ∪ F = S).
We can extend Bayes’theorem to any collection of mutually exclusive events that cover the entire
sample space S, in the following way.

472 7 / Discrete Probability

THEOREM 2 GENERALIZED BAYES’THEOREM Suppose that E is an event from a sample space
S and that F1, F2, . . . , Fn are mutually exclusive events such that

 n
i=1 Fi = S. Assume that

p(E) = 0 and p(Fi) = 0 for i = 1, 2, . . . , n. Then

p(Fj | E) =
p(E | Fj)p(Fj) n
i=1 p(E | Fi)p(Fi)

.

We leave the proof of this generalized version of Bayes’ theorem as Exercise 17.

Bayesian Spam Filters

Most electronic mailboxes receive a flood of unwanted and unsolicited messages, known as
spam. Because spam threatens to overwhelm electronic mail systems, a tremendous amount of
work has been devoted to filtering it out. Some of the first tools developed for eliminating spam
were based on Bayes’ theorem, such as Bayesian spam filters.

A Bayesian spam filter uses information about previously seen e-mail messages to guess
whether an incoming e-mail message is spam. Bayesian spam filters look for occurrences of
particular words in messages. For a particular word w, the probability that w appears in a spam
e-mail message is estimated by determining the number of times w appears in a message from
a large set of messages known to be spam and the number of times it appears in a large set of
messages known not to be spam. When we examine e-mail messages to determine whether they
might be spam, we look at words that might be indicators of spam, such as “offer,” “special,” or
“opportunity,” as well as words that might indicate that a message is not spam, such as “mom,”
“lunch,” or “Jan” (where Jan is one of your friends). Unfortunately, spam filters sometimes fail

The use of the word spam
for unsolicited e-mail
comes from a Monty
Python comedy sketch
about a cafe where the
food product Spam comes
with everything
regardless of whether
customers want it.

to identify a spam message as spam; this is called a false negative. And they sometimes identify
a message that is not spam as spam; this is called a false positive. When testing for spam, it is
important to minimize false positives, because filtering out wanted e-mail is much worse than
letting some spam through.

THOMAS BAYES (1702–1761) Thomas Bayes was the son a minister in a religious sect known as the
Nonconformists. This sect was considered heretical in eighteenth-century Great Britain. Because of the secrecy
of the Nonconformists, little is known of Thomas Bayes’ life. When Thomas was young, his family moved
to London. Thomas was likely educated privately; Nonconformist children generally did not attend school. In
1719 Bayes entered the University of Edinburgh, where he studied logic and theology. He was ordained as a
Nonconformist minister like his father and began his work as a minister assisting his father. In 1733 he became
minister of the Presbyterian Chapel in Tunbridge Wells, southeast of London, where he remained minister until
1752.

Bayes is best known for his essay on probability published in 1764, three years after his death. This essay
was sent to the Royal Society by a friend who found it in the papers left behind when Bayes died. In the

introduction to this essay, Bayes stated that his goal was to find a method that could measure the probability that an event happens,
assuming that we know nothing about it, but that, under the same circumstances, it has happened a certain proportion of times.
Bayes’ conclusions were accepted by the great French mathematician Laplace but were later challenged by Boole, who questioned
them in his book Laws of Thought. Since then Bayes’ techniques have been subject to controversy.

Bayes also wrote an article that was published posthumously: “An Introduction to the Doctrine of Fluxions, and a Defense
of the Mathematicians Against the Objections of the Author of The Analyst,” which supported the logical foundations of calculus.
Bayes was elected a Fellow of the Royal Society in 1742, with the support of important members of the Society, even though at that
time he had no published mathematical works. Bayes’ sole known publication during his lifetime was allegedly a mystical book
entitledDivine Benevolence, discussing the original causation and ultimate purpose of the universe. Although the book is commonly
attributed to Bayes, no author’s name appeared on the title page, and the entire work is thought to be of dubious provenance.
Evidence for Bayes’ mathematical talents comes from a notebook that was almost certainly written by Bayes, which contains much
mathematical work, including discussions of probability, trigonometry, geometry, solutions of equations, series, and differential
calculus. There are also sections on natural philosophy, in which Bayes looks at topics that include electricity, optics, and celestial
mechanics. Bayes is also the author of a mathematical publication on asymptotic series, which appeared after his death.

7.3 Bayes’ Theorem 473

We will develop some basic Bayesian spam filters. First, suppose we have a setB of messages
known to be spam and a set G of messages known not to be spam. (For example, users could
classify messages as spam when they examine them in their inboxes.) We next identify the
words that occur in B and in G. We count the number of messages in the set containing each
word to find nB(w) and nG(w), the number of messages containing the word w in the sets B
and G, respectively. Then, the empirical probability that a spam message contains the word w
is p(w) = nB(w)/|B|, and the empirical probability that a message that is not spam contains
the word w is q(w) = nG(w)/|G|. We note that p(w) and q(w) estimate the probabilities that
an incoming spam message, and an incoming message that is not spam, contain the word w,
respectively.

Now suppose we receive a new e-mail message containing the word w. Let S be the event
that the message is spam. LetE be the event that the message contains the wordw. The events S,
that the message is spam, and S, that the message is not spam, partition the set of all messages.
Hence, by Bayes’ theorem, the probability that the message is spam, given that it contains the
word w, is

p(S | E) = p(E | S)p(S)
p(E | S)p(S)+ p(E | S)p(S) .

To apply this formula, we first estimate p(S), the probability that an incoming message is
spam, as well as p(S), the probability that the incoming message is not spam. Without prior
knowledge about the likelihood that an incoming message is spam, for simplicity we assume
that the message is equally likely to be spam as it is not to be spam. That is, we assume that
p(S) = p(S) = 1/2. Using this assumption, we find that the probability that a message is spam,
given that it contains the word w, is

p(S | E) = p(E | S)
p(E | S)+ p(E | S) .

(Note that if we have some empirical data about the ratio of spam messages to messages that are
not spam, we can change this assumption to produce a better estimate for p(S) and for p(S);
see Exercise 22.)

Next, we estimate p(E | S), the conditional probability that the message contains the
word w given that the message is spam, by p(w). Similarly, we estimate p(E | S), the con-
ditional probability that the message contains the word w, given that the message is not spam,
by q(w). Inserting these estimates for p(E | S) and p(E | S) tells us that p(S | E) can be
estimated by

r(w) = p(w)

p(w)+ q(w) ;

that is, r(w) estimates the probability that the message is spam, given that it contains the
word w. If r(w) is greater than a threshold that we set, such as 0.9, then we classify the message
as spam.

EXAMPLE 3 Suppose that we have found that the word “Rolex” occurs in 250 of 2000 messages known to
be spam and in 5 of 1000 messages known not to be spam. Estimate the probability that an
incoming message containing the word “Rolex” is spam, assuming that it is equally likely that
an incoming message is spam or not spam. If our threshold for rejecting a message as spam
is 0.9, will we reject such messages?

Solution:We use the counts that the word “Rolex” appears in spam messages and messages that
are not spam to find that p(Rolex) = 250/2000 = 0.125 and q(Rolex) = 5/1000 = 0.005.

474 7 / Discrete Probability

Because we are assuming that it is equally likely for an incoming message to be spam as it is
not to be spam, we can estimate the probability that an incoming message containing the word
“Rolex” is spam by

r(Rolex) = p(Rolex)

p(Rolex)+ q(Rolex)
= 0.125

0.125+ 0.005
= 0.125

0.130
≈ 0.962.

Because r(Rolex) is greater than the threshold 0.9, we reject such messages as spam. ▲

Detecting spam based on the presence of a single word can lead to excessive false positives
and false negatives. Consequently, spam filters look at the presence of multiple words. For
example, suppose that the message contains the words w1 and w2. Let E1 and E2 denote the
events that the message contains the words w1 and w2, respectively. To make our computations
simpler, we assume that E1 and E2 are independent events and that E1 | S and E2 | S are
independent events and that we have no prior knowledge regarding whether or not the message
is spam. (The assumptions that E1 and E2 are independent and that E1 | S and E2 | S are
independent may introduce some error into our computations; we assume that this error is small.)
Using Bayes’ theorem and our assumptions, we can show (see Exercise 23) that p(S | E1 ∩ E2),
the probability that the message is spam given that it contains both w1 and w2, is

p(S | E1 ∩ E2) =
p(E1 | S)p(E2 | S)

p(E1 | S)p(E2 | S)+ p(E1 | S)p(E2 | S)
.

We estimate the probability p(S | E1 ∩ E2) by

r(w1,w2) =
p(w1)p(w2)

p(w1)p(w2)+ q(w1)q(w2)
.

That is, r(w1,w2) estimates the probability that the message is spam, given that it contains the
words w1 and w2. When r(w1,w2) is greater than a preset threshold, such as 0.9, we determine
that the message is likely spam.

EXAMPLE 4 Suppose that we train a Bayesian spam filter on a set of 2000 spam messages and 1000 messages
that are not spam. The word “stock” appears in 400 spam messages and 60 messages that are not
spam, and the word “undervalued” appears in 200 spam messages and 25 messages that are not
spam. Estimate the probability that an incoming message containing both the words “stock” and
“undervalued” is spam, assuming that we have no prior knowledge about whether it is spam.
Will we reject such messages as spam when we set the threshold at 0.9?

Solution: Using the counts of each of these two words in messages known to be spam
or known not to be spam, we obtain the following estimates: p(stock) = 400/2000 = 0.2,
q(stock) = 60/1000 = 0.06, p(undervalued) = 200/2000 = 0.1, and q(undervalued) =
25/1000 = 0.025. Using these probabilities, we can estimate the probability that the message
is spam by

r(stock, undervalued) = p(stock)p(undervalued)

p(stock)p(undervalued)+ q(stock)q(undervalued)

= (0.2)(0.1)

(0.2)(0.1)+ (0.06)(0.025)
≈ 0.930.

Because we have set the threshold for rejecting messages at 0.9, such messages will be rejected
by the filter. ▲

The more words we use to estimate the probability that an incoming mail message is spam,
the better is our chance that we correctly determine whether it is spam. In general, if Ei is the

7.3 Bayes’ Theorem 475

event that the message contains word wi , assuming that the number of incoming spam messages
is approximately the same as the number of incoming messages that are not spam, and that the
eventsEi | S are independent, then by Bayes’ theorem the probability that a message containing
all the words w1,w2, . . . ,wk is spam is

p(S |
k
i=1

Ei) =
 k
i=1 p(Ei | S) k

i=1 p(Ei | S)+
 k
i=1 p(Ei | S)

.

We can estimate this probability by

r(w1,w2, . . . ,wk) =
 k
i=1 p(wi) k

i=1 p(wi)+
 k
i=1 q(wi)

.

For the most effective spam filter, we choose words for which the probability that each
of these words appears in spam is either very high or very low. When we compute this value
for a particular message, we reject the message as spam if r(w1,w2, . . . ,wk) exceeds a preset
threshold, such as 0.9.

Bayesian poisoning, the
insertion of extra words to
defeat spam filters, can
use random or
purposefully selected
words.

Another way to improve the performance of a Bayesian spam filter is to look at the prob-
abilities that particular pairs of words appear in spam and in messages that are not spam. We
then treat appearances of these pairs of words as appearance of a single block, rather than as
the appearance of two separate words. For example, the pair of words “enhance performance”
most likely indicates spam, while “operatic performance” indicates a message that is not spam.
Similarly, we can assess the likelihood that a message is spam by examining the structure of a
message to determine where words appear in it. Also, spam filters look at appearances of certain
types of strings of characters rather than just words. For example, a message with the valid
e-mail address of one of your friends is less likely to be spam (if not sent by a worm) than one
containing an e-mail address that came from a country known to originate a lot of spam. There
is an ongoing war between people who create spam and those trying to filter their messages out.
This leads to the introduction of many new techniques to defeat spam filters, including inserting
into spam messages long strings of words that appear in messages that are not spam, as well as
including words inside pictures. The techniques we have discussed here are only the first steps
in fighting this war on spam.

Exercises

1. Suppose that E and F are events in a sample space and
p(E) = 1/3, p(F) = 1/2, and p(E | F) = 2/5. Find
p(F | E).

2. Suppose that E and F are events in a sample space and
p(E) = 2/3, p(F) = 3/4, and p(F | E) = 5/8. Find
p(E | F).

3. Suppose that Frida selects a ball by first picking one of
two boxes at random and then selecting a ball from this
box at random. The first box contains two white balls and
three blue balls, and the second box contains four white
balls and one blue ball. What is the probability that Frida
picked a ball from the first box if she has selected a blue
ball?

4. Suppose thatAnn selects a ball by first picking one of two
boxes at random and then selecting a ball from this box.
The first box contains three orange balls and four black
balls, and the second box contains five orange balls and

six black balls. What is the probability that Ann picked
a ball from the second box if she has selected an orange
ball?

5. Suppose that 8% of all bicycle racers use steroids, that
a bicyclist who uses steroids tests positive for steroids
96% of the time, and that a bicyclist who does not use
steroids tests positive for steroids 9% of the time. What
is the probability that a randomly selected bicyclist who
tests positive for steroids actually uses steroids?

6. When a test for steroids is given to soccer players, 98%
of the players taking steroids test positive and 12% of the
players not taking steroids test positive. Suppose that 5%
of soccer players take steroids. What is the probability
that a soccer player who tests positive takes steroids?

7. Suppose that a test for opium use has a 2% false positive
rate and a 5% false negative rate. That is, 2% of peo-
ple who do not use opium test positive for opium, and

476 7 / Discrete Probability

5% of opium users test negative for opium. Furthermore,
suppose that 1% of people actually use opium.

a) Find the probability that someone who tests negative
for opium use does not use opium.

b) Find the probability that someone who tests positive
for opium use actually uses opium.

8. Suppose that one person in 10,000 people has a rare ge-
netic disease. There is an excellent test for the disease;
99.9% of people with the disease test positive and only
0.02% who do not have the disease test positive.

a) What is the probability that someone who tests posi-
tive has the genetic disease?

b) What is the probability that someone who tests nega-
tive does not have the disease?

9. Suppose that 8% of the patients tested in a clinic are in-
fected with HIV. Furthermore, suppose that when a blood
test for HIV is given, 98% of the patients infected with
HIV test positive and that 3% of the patients not infected
with HIV test positive. What is the probability that

a) a patient testing positive for HIV with this test is in-
fected with it?

b) a patient testing positive for HIV with this test is not
infected with it?

c) a patient testing negative for HIV with this test is in-
fected with it?

d) a patient testing negative for HIV with this test is not
infected with it?

10. Suppose that 4% of the patients tested in a clinic are in-
fected with avian influenza. Furthermore, suppose that
when a blood test for avian influenza is given, 97% of the
patients infected with avian influenza test positive and
that 2% of the patients not infected with avian influenza
test positive. What is the probability that

a) a patient testing positive for avian influenza with this
test is infected with it?

b) a patient testing positive for avian influenza with this
test is not infected with it?

c) a patient testing negative for avian influenza with this
test is infected with it?

d) a patient testing negative for avian influenza with this
test is not infected with it?

11. An electronics company is planning to introduce a new
camera phone. The company commissions a marketing
report for each new product that predicts either the success
or the failure of the product. Of new products introduced
by the company, 60% have been successes. Furthermore,
70% of their successful products were predicted to be
successes, while 40% of failed products were predicted
to be successes. Find the probability that this new camera
phone will be successful if its success has been predicted.

∗12. A space probe near Neptune communicates with Earth us-
ing bit strings. Suppose that in its transmissions it sends
a 1 one-third of the time and a 0 two-thirds of the time.
When a 0 is sent, the probability that it is received cor-
rectly is 0.9, and the probability that it is received incor-
rectly (as a 1) is 0.1. When a 1 is sent, the probability that
it is received correctly is 0.8, and the probability that it is
received incorrectly (as a 0) is 0.2.

a) Find the probability that a 0 is received.

b) Use Bayes’ theorem to find the probability that a 0
was transmitted, given that a 0 was received.

13. Suppose that E, F1, F2, and F3 are events from a
sample space S and that F1, F2, and F3 are pair-
wise disjoint and their union is S. Find p(F1 | E)
if p(E | F1) = 1/8, p(E | F2)= 1/4, p(E | F3)= 1/6,
p(F1)= 1/4, p(F2)= 1/4, and p(F3) = 1/2.

14. Suppose that E, F1, F2, and F3 are events from a
sample space S and that F1, F2, and F3 are pair-
wise disjoint and their union is S. Find p(F2 | E) if
p(E | F1) = 2/7, p(E | F2) = 3/8, p(E | F3) = 1/2,
p(F1) = 1/6, p(F2) = 1/2, and p(F3) = 1/3.

15. In this exercise we will use Bayes’ theorem to solve the
Monty Hall puzzle (Example 10 in Section 7.1). Recall
that in this puzzle you are asked to select one of three
doors to open. There is a large prize behind one of the
three doors and the other two doors are losers. After you
select a door, Monty Hall opens one of the two doors you
did not select that he knows is a losing door, selecting at
random if both are losing doors. Monty asks you whether
you would like to switch doors. Suppose that the three
doors in the puzzle are labeled 1, 2, and 3. Let W be the
random variable whose value is the number of the winning
door; assume that p(W = k) = 1/3 for k = 1, 2, 3. Let
M denote the random variable whose value is the number
of the door that Monty opens. Suppose you choose door i.

a) What is the probability that you will win the prize if
the game ends without Monty asking you whether you
want to change doors?

b) Find p(M = j | W = k) for j = 1, 2, 3 and k =
1, 2, 3.

c) Use Bayes’theorem to findp(W = j | M = k)where
i and j and k are distinct values.

d) Explain why the answer to part (c) tells you whether
you should change doors when Monty gives you the
chance to do so.

16. Ramesh can get to work in three different ways: by bicy-
cle, by car, or by bus. Because of commuter traffic, there
is a 50% chance that he will be late when he drives his
car. When he takes the bus, which uses a special lane re-
served for buses, there is a 20% chance that he will be
late. The probability that he is late when he rides his bi-
cycle is only 5%. Ramesh arrives late one day. His boss
wants to estimate the probability that he drove his car to
work that day.

a) Suppose the boss assumes that there is a 1/3 chance
that Ramesh takes each of the three ways he can get to
work. What estimate for the probability that Ramesh
drove his car does the boss obtain from Bayes’ theo-
rem under this assumption?

b) Suppose the boss knows that Ramesh drives 30% of
the time, takes the bus only 10% of the time, and takes
his bicycle 60% of the time. What estimate for the
probability that Ramesh drove his car does the boss
obtain from Bayes’ theorem using this information?

7.4 Expected Value and Variance 477

∗17. Prove Theorem 2, the extended form of Bayes’ theo-
rem. That is, suppose that E is an event from a sample
space S and that F1, F2, . . . , Fn are mutually exclusive
events such that

 n
i=1 Fi = S. Assume that p(E) = 0

and p(Fi) = 0 for i = 1, 2, . . . , n. Show that

p(Fj | E) =
p(E | Fj)p(Fj) n
i=1 p(E | Fi)p(Fi)

.

[Hint: Use the fact that E = ni=1(E ∩ Fi).]
18. Suppose that a Bayesian spam filter is trained on a set of

500 spam messages and 200 messages that are not spam.
The word “exciting” appears in 40 spam messages and
in 25 messages that are not spam. Would an incom-
ing message be rejected as spam if it contains the word
“exciting” and the threshold for rejecting spam is 0.9?

19. Suppose that a Bayesian spam filter is trained on a set
of 1000 spam messages and 400 messages that are not
spam. The word “opportunity” appears in 175 spam mes-
sages and 20 messages that are not spam. Would an in-
coming message be rejected as spam if it contains the
word “opportunity” and the threshold for rejecting a mes-
sage is 0.9?

20. Would we reject a message as spam in Example 4

a) using just the fact that the word “undervalued” occurs
in the message?

b) using just the fact that the word “stock” occurs in the
message?

21. Suppose that a Bayesian spam filter is trained on a set
of 10,000 spam messages and 5000 messages that are not
spam. The word “enhancement” appears in 1500 spam

messages and 20 messages that are not spam, while the
word “herbal” appears in 800 spam messages and 200
messages that are not spam. Estimate the probability that
a received message containing both the words “enhance-
ment” and “herbal” is spam. Will the message be rejected
as spam if the threshold for rejecting spam is 0.9?

22. Suppose that we have prior information concerning
whether a random incoming message is spam. In par-
ticular, suppose that over a time period, we find that s
spam messages arrive and h messages arrive that are
not spam.

a) Use this information to estimate p(S), the probabil-
ity that an incoming message is spam, and p(S), the
probability an incoming message is not spam.

b) Use Bayes’ theorem and part (a) to estimate the prob-
ability that an incoming message containing the word
w is spam, wherep(w) is the probability thatw occurs
in a spam message and q(w) is the probability that w
occurs in a message that is not spam.

23. Suppose that E1 and E2 are the events that an incoming
mail message contains the wordsw1 andw2, respectively.
Assuming thatE1 andE2 are independent events and that
E1 | S and E2 | S are independent events, where S is the
event that an incoming message is spam, and that we have
no prior knowledge regarding whether or not the message
is spam, show that

p(S | E1 ∩ E2)

= p(E1 | S)p(E2 | S)
p(E1 | S)p(E2 | S)+ p(E1 | S)p(E2 | S)

.

7.4 Expected Value and Variance

Introduction

The expected value of a random variable is the sum over all elements in a sample space of the
product of the probability of the element and the value of the random variable at this element.
Consequently, the expected value is a weighted average of the values of a random variable. The
expected value of a random variable provides a central point for the distribution of values of
this random variable. We can solve many problems using the notion of the expected value of a
random variable, such as determining who has an advantage in gambling games and computing
the average-case complexity of algorithms. Another useful measure of a random variable is its
variance, which tells us how spread out the values of this random variable are. We can use the
variance of a random variable to help us estimate the probability that a random variable takes
values far removed from its expected value.

Expected Values

Many questions can be formulated in terms of the value we expect a random variable to take,
or more precisely, the average value of a random variable when an experiment is performed a
large number of times. Questions of this kind include: How many heads are expected to appear

478 7 / Discrete Probability

when a coin is flipped 100 times? What is the expected number of comparisons used to find an
element in a list using a linear search? To study such questions we introduce the concept of the
expected value of a random variable.

DEFINITION 1 The expected value, also called the expectation or mean, of the random variable X on the
sample space S is equal to

E(X) =

s∈S
p(s)X(s).

The deviation of X at s ∈ S is X(s)− E(X), the difference between the value of X and the
mean of X.

Note that when the sample space S has n elements S = {x1, x2, . . . , xn}, E(X) = n
i=1 p(xi)X(xi).

Remark: When there are infinitely many elements of the sample space, the expectation is de-
fined only when the infinite series in the definition is absolutely convergent. In particular, the
expectation of a random variable on an infinite sample space is finite if it exists.

EXAMPLE 1 Expected Value of a Die Let X be the number that comes up when a fair die is rolled. What
is the expected value of X?

Solution: The random variable X takes the values 1, 2, 3, 4, 5, or 6, each with probability 1/6.
It follows that

E(X) = 1

6
· 1+ 1

6
· 2+ 1

6
· 3+ 1

6
· 4+ 1

6
· 5+ 1

6
· 6 = 21

6
= 7

2
. ▲

EXAMPLE 2 A fair coin is flipped three times. Let S be the sample space of the eight possible outcomes, and
let X be the random variable that assigns to an outcome the number of heads in this outcome.
What is the expected value of X?

Solution: In Example 10 of Section 7.2 we listed the values ofX for the eight possible outcomes
when a coin is flipped three times. Because the coin is fair and the flips are independent, the
probability of each outcome is 1/8. Consequently,

E(X) = 1

8
[X(HHH)+X(HHT)+X(HTH)+X(THH)+X(TTH)

+X(THT)+X(HTT)+X(TTT)]

= 1

8
(3+ 2+ 2+ 2+ 1+ 1+ 1+ 0) = 12

8

= 3

2
.

Consequently, the expected number of heads that come up when a fair coin is flipped three times
is 3/2. ▲

When an experiment has relatively few outcomes, we can compute the expected value of
a random variable directly from its definition, as was done in Example 2. However, when an
experiment has a large number of outcomes, it may be inconvenient to compute the expected
value of a random variable directly from its definition. Instead, we can find the expected value

7.4 Expected Value and Variance 479

of a random variable by grouping together all outcomes assigned the same value by the random
variable, as Theorem 1 shows.

THEOREM 1 If X is a random variable and p(X = r) is the probability that X = r , so that p(X = r) =
s∈S,X(s)=r p(s), then

E(X) =

r∈X(S)

p(X = r)r.

Proof: Suppose that X is a random variable with range X(S), and let p(X = r) be the proba-
bility that the random variable X takes the value r . Consequently, p(X = r) is the sum of the
probabilities of the outcomes s such that X(s) = r . It follows that

E(X) =

r∈X(S)

p(X = r)r.

Example 3 and the proof of Theorem 2 will illustrate the use of this formula. In Example
3 we will find the expected value of the sum of the numbers that appear on two fair dice when
they are rolled. In Theorem 2 we will find the expected value of the number of successes when
n Bernoulli trials are performed.

EXAMPLE 3 What is the expected value of the sum of the numbers that appear when a pair of fair dice is
rolled?

Solution: Let X be the random variable equal to the sum of the numbers that appear when a
pair of dice is rolled. In Example 12 of Section 7.2 we listed the value of X for the 36 out-
comes of this experiment. The range ofX is {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. By Example 12 of
Section 7.2 we see that

p(X = 2) = p(X = 12) = 1/36,

p(X = 3) = p(X = 11) = 2/36 = 1/18,

p(X = 4) = p(X = 10) = 3/36 = 1/12,

p(X = 5) = p(X = 9) = 4/36 = 1/9,

p(X = 6) = p(X = 8) = 5/36,

p(X = 7) = 6/36 = 1/6.

Substituting these values in the formula, we have

E(X) = 2 · 1

36
+ 3 · 1

18
+ 4 · 1

12
+ 5 · 1

9
+ 6 · 5

36
+ 7 · 1

6

+ 8 · 5

36
+ 9 · 1

9
+ 10 · 1

12
+ 11 · 1

18
+ 12 · 1

36

= 7.

▲

THEOREM 2 The expected number of successes when n mutually independent Bernoulli trials are per-
formed, where p is the probability of success on each trial, is np.

480 7 / Discrete Probability

Proof: Let X be the random variable equal to the number of successes in n trials. By
Theorem 2 of Section 7.2 we see that p(X = k) = C(n, k)pkqn−k . Hence, we have

E(X) =
n
k= 1

kp(X = k) by Theorem 1

=
n
k= 1

kC(n, k)pkqn−k by Theorem 2 in Section 7.2

=
n
k= 1

nC(n− 1, k − 1)pkqn−k by Exercise 21 in Section 6.4

= np
n
k= 1

C(n− 1, k − 1)pk−1qn−k factoring np from each term

= np
n−1
j = 0

C(n− 1, j)pjqn−1−j shifting index of summation with j = k − 1

= np(p + q)n−1 by the binomial theorem

= np. because p + q = 1

This completes the proof because it shows that the expected number of successes in nmutually
independent Bernoulli trials is np.

We will also show that the hypothesis that the Bernoulli trials are mutually independent in
Theorem 2 is not necessary.

Linearity of Expectations

Theorem 3 tells us that expected values are linear. For example, the expected value of the sum
of random variables is the sum of their expected values. We will find this property exceedingly
useful.

THEOREM 3 If Xi, i = 1, 2, . . . , n with n a positive integer, are random variables on S, and if a and b are
real numbers, then

(i) E(X1 +X2 + · · · +Xn) = E(X1)+ E(X2)+ · · · + E(Xn)
(ii) E(aX + b) = aE(X)+ b.

Proof: Part (i) follows for n = 2 directly from the definition of expected value, because

E(X1 +X2) =

s∈S
p(s)(X1(s)+X2(s))

=

s∈S
p(s)X1(s)+

s∈S
p(s)X2(s)

= E(X1)+ E(X2).

The case for n random variables follows easily by mathematical induction using the case of two
random variables. (We leave it to the reader to complete the proof.)

7.4 Expected Value and Variance 481

To prove part (ii), note that

E(aX + b) = s∈S p(s)(aX(s)+ b)
= a s∈S p(s)X(s)+ b

s∈S p(s)

= aE(X)+ b because

s∈S p(s) = 1.

Examples 4 and 5 illustrate how to use Theorem 3.

EXAMPLE 4 Use Theorem 3 to find the expected value of the sum of the numbers that appear when a pair of
fair dice is rolled. (This was done in Example 3 without the benefit of this theorem.)

Solution: Let X1 and X2 be the random variables with X1((i, j)) = i and X2((i, j)) = j , so
thatX1 is the number appearing on the first die andX2 is the number appearing on the second die.
It is easy to see that E(X1) = E(X2) = 7/2 because both equal (1+ 2+ 3+ 4+ 5+ 6)/6 =
21/6 = 7/2. The sum of the two numbers that appear when the two dice are rolled is the sum
X1 +X2. By Theorem 3, the expected value of the sum is E(X1 +X2) = E(X1)+ E(X2) =
7/2+ 7/2 = 7. ▲

EXAMPLE 5 In the proof of Theorem 2 we found the expected value of the number of successes when n
independent Bernoulli trials are performed, where p is the probability of success on each trial
by direct computation. Show how Theorem 3 can be used to derive this result where the Bernoulli
trials are not necessarily independent.

Solution: Let Xi be the random variable with Xi((t1, t2, . . . , tn)) = 1 if ti is a suc-
cess and Xi((t1, t2, . . . , tn)) = 0 if ti is a failure. The expected value of Xi is E(Xi) =
1 · p + 0 · (1− p) = p for i = 1, 2, . . . , n. Let X = X1 +X2 + · · · +Xn, so that X counts
the number of successes when these n Bernoulli trials are performed. Theorem 3, applied to the
sum of n random variables, shows that E(X) = E(X1)+ E(X2)+ · · · + E(Xn) = np. ▲

We can take advantage of the linearity of expectations to find the solutions of many seemingly
difficult problems. The key step is to express a random variable whose expectation we wish to
find as the sum of random variables whose expectations are easy to find. Examples 6 and 7
illustrate this technique.

EXAMPLE 6 Expected Value in the Hatcheck Problem A new employee checks the hats of n people at a
restaurant, forgetting to put claim check numbers on the hats. When customers return for their
hats, the checker gives them back hats chosen at random from the remaining hats. What is the
expected number of hats that are returned correctly?

Solution: LetX be the random variable that equals the number of people who receive the correct
hat from the checker. Let Xi be the random variable with Xi = 1 if the ith person receives the
correct hat and Xi = 0 otherwise. It follows that

X = X1 +X2 + · · · +Xn.

Because it is equally likely that the checker returns any of the hats to this person, it follows that
the probability that the ith person receives the correct hat is 1/n. Consequently, by Theorem 1,
for all i we have

E(Xi) = 1 · p(Xi = 1)+ 0 · p(Xi = 0) = 1 · 1/n+ 0 = 1/n.

482 7 / Discrete Probability

By the linearity of expectations (Theorem 3), it follows that

E(X) = E(X1)+ E(X2)+ · · · + E(Xn) = n · 1/n = 1.

Consequently, the average number of people who receive the correct hat is exactly 1. Note
that this answer is independent of the number of people who have checked their hats!
(We will find an explicit formula for the probability that no one receives the correct hat in
Example 4 of Section 8.6.) ▲

EXAMPLE 7 Expected Number of Inversions in a Permutation The ordered pair (i, j) is called an
inversion in a permutation of the first n positive integers if i < j but j precedes i in the
permutation. For instance, there are six inversions in the permutation 3, 5, 1, 4, 2; these
inversions are

(1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (4, 5).

Let Ii,j be the random variable on the set of all permutations of the first n positive integers with
Ii,j = 1 if (i, j) is an inversion of the permutation and Ii,j = 0 otherwise. It follows that if X
is the random variable equal to the number of inversions in the permutation, then

X =

1≤ i < j ≤ n
Ii,j .

Note that it is equally likely for i to precede j in a randomly chosen permutation as it is for j to
precede i. (To see this, note that there are an equal number of permutations with each of these
properties.) Consequently, for all pairs i and j we have

E(Ii,j) = 1 · p(Ii,j = 1)+ 0 · p(Ii,j = 0) = 1 · 1/2+ 0 = 1/2.

Because there are

n
2

pairs i and j with 1 ≤ i < j ≤ n and by the linearity of expectations

(Theorem 3), we have

E(X) =

1≤ i < j ≤ n
E(Ii,j) =

n

2

· 1

2
= n(n− 1)

4
.

It follows that there are an average of n(n− 1)/4 inversions in a permutation of the first n
positive integers. ▲

Average-Case Computational Complexity

Computing the average-case computational complexity of an algorithm can be interpreted as
computing the expected value of a random variable. Let the sample space of an experiment be
the set of possible inputs aj , j = 1, 2, . . . , n, and let X be the random variable that assigns
to aj the number of operations used by the algorithm when given aj as input. Based on our
knowledge of the input, we assign a probability p(aj) to each possible input value aj . Then,
the average-case complexity of the algorithm is

E(X) =
n
j=1

p(aj)X(aj).

This is the expected value of X.

7.4 Expected Value and Variance 483

Finding the average-case computational complexity of an algorithm is usually much more
difficult than finding its worst-case computational complexity, and often involves the use of
sophisticated methods. However, there are some algorithms for which the analysis required
to find the average-case computational complexity is not difficult. For instance, in Example 8
we will illustrate how to find the average-case computational complexity of the linear search
algorithm under different assumptions concerning the probability that the element for which we
search is an element of the list.

EXAMPLE 8 Average-Case Complexity of the Linear Search Algorithm We are given a real number x
and a list of n distinct real numbers. The linear search algorithm, described in Section 3.1,
locates x by successively comparing it to each element in the list, terminating when x is located
or when all the elements have been examined and it has been determined that x is not in the
list. What is the average-case computational complexity of the linear search algorithm if the
probability that x is in the list is p and it is equally likely that x is any of the n elements in the
list? (There are n+ 1 possible types of input: one type for each of the n numbers in the list and
a last type for numbers not in the list, which we treat as a single input.)

Solution: In Example 4 of Section 3.3 we showed that 2i + 1 comparisons are used if x equals
the ith element of the list and, in Example 2 of Section 3.3, we showed that 2n+ 2 comparisons
are used if x is not in the list. The probability that x equals ai , the ith element in the list, is
p/n, and the probability that x is not in the list is q = 1− p. It follows that the average-case
computational complexity of the linear search algorithm is

E = 3p

n
+ 5p

n
+ · · · + (2n+ 1)p

n
+ (2n+ 2)q

= p
n
(3+ 5+ · · · + (2n+ 1))+ (2n+ 2)q

= p
n
((n+ 1)2 − 1)+ (2n+ 2)q

= p(n+ 2)+ (2n+ 2)q.

(The third equality follows from Example 2 of Section 5.1.) For instance, when x is guaranteed
to be in the list, we have p = 1 (so the probability that x = ai is 1/n for each i) and q = 0.
Then E = n+ 2, as we showed in Example 4 in Section 3.3.

When p, the probability that x is in the list, is 1/2, it follows that q = 1− p = 1/2,
so E = (n+ 2)/2+ n+ 1 = (3n+ 4)/2. Similarly, if the probability that x is in the list
is 3/4, we have p = 3/4 and q = 1/4, so E = 3(n+ 2)/4+ (n+ 1)/2 = (5n+ 8)/4.

Finally, when x is guaranteed not to be in the list, we have p = 0 and q = 1. It follows that
E = 2n+ 2, which is not surprising because we have to search the entire list. ▲

Example 9 illustrates how the linearity of expectations can help us find the average-case
complexity of a sorting algorithm, the insertion sort.

EXAMPLE 9 Average-Case Complexity of the Insertion Sort What is the average number of comparisons
used by the insertion sort to sort n distinct elements?

Solution:We first suppose thatX is the random variable equal to the number of comparisons used
by the insertion sort (described in Section 3.1) to sort a list a1, a2, . . . , an of n distinct elements.
Then E(X) is the average number of comparisons used. (Recall that at step i for i = 2, . . . , n,
the insertion sort inserts the ith element in the original list into the correct position in the sorted
list of the first i − 1 elements of the original list.)

484 7 / Discrete Probability

We let Xi be the random variable equal to the number of comparisons used to insert ai into
the proper position after the first i − 1 elements a1, a2, . . . , ai−1 have been sorted. Because

X = X2 +X3 + · · · +Xn,

we can use the linearity of expectations to conclude that

E(X) = E(X2 +X3 + · · · +Xn) = E(X2)+ E(X3)+ · · · + E(Xn).

To find E(Xi) for i = 2, 3, . . . , n, let pj (k) denote the probability that the largest of the
first j elements in the list occurs at the kth position, that is, that max(a1, a2, . . . , aj) = ak ,
where 1 ≤ k ≤ j . Because the elements of the list are randomly distributed, it is equally likely
for the largest element among the first j elements to occur at any position. Consequently,
pj (k) = 1/j . If Xi(k) equals the number of comparisons used by the insertion sort if ai is
inserted into the kth position in the list once a1, a2, . . . , ai−1 have been sorted, it follows
that Xi(k) = k. Because it is possible that ai is inserted in any of the first i positions, we
find that

E(Xi) =
i
k=1

pi(k) ·Xi(k) =
i
k=1

1

i
· k = 1

i
·
i
k=1

k = 1

i
· i(i + 1)

2
= i + 1

2
.

It follows that

E(X) =
n
i=2

E(Xi) =
n
i=2

i + 1

2
= 1

2

n+1
j=3

j

= 1

2

(n+ 1)(n+ 2)

2
− 1

2
(1+ 2) = n

2 + 3n− 4

4
.

To obtain the third of these equalities we shifted the index of summation, setting j = i + 1.
To obtain the fourth equality, we used the formula

 m
k=1 k = m(m+ 1)/2 (from Table 2 in

Section 2.4) with m = n+ 1, subtracting off the missing terms with j = 1 and j = 2. We
conclude that the average number of comparisons used by the insertion sort to sort n elements
equals (n2 + 3n− 4)/4, which is (n2). ▲
The Geometric Distribution

We now turn our attention to a random variable with infinitely many possible outcomes.

EXAMPLE 10 Suppose that the probability that a coin comes up tails is p. This coin is flipped repeatedly until
it comes up tails. What is the expected number of flips until this coin comes up tails?

Solution: We first note that the sample space consists of all sequences that begin with any
number of heads, denoted by H , followed by a tail, denoted by T . Therefore, the sam-
ple space is the set {T, HT, HHT, HHHT, HHHHT, . . .}. Note that this is an infinite sample
space. We can determine the probability of an element of the sample space by noting that
the coin flips are independent and that the probability of a head is 1− p. Therefore, p(T) = p,
p(HT) = (1− p)p, p(HHT)= (1− p)2p, and in general the probability that the coin is flipped
n times before a tail comes up, that is, thatn− 1 heads come up followed by a tail, is (1− p)n−1p.
(Exercise 14 asks for a verification that the sum of the probabilities of the points in the sample
space is 1.)

7.4 Expected Value and Variance 485

Now let X be the random variable equal to the number of flips in an element in the
sample space. That is, X(T) = 1, X(HT)= 2, X(HHT)= 3, and so on. Note that p(X = j) =
(1− p)j−1p. The expected number of flips until the coin comes up tails equals E(X).

Using Theorem 1, we find that

E(X) =
∞
j=1

j · p(X = j) =
∞
j=1

j (1− p)j−1p = p
∞
j=1

j (1− p)j−1 = p · 1

p2
= 1

p
.

[The third equality in this chain follows from Table 2 in Section 2.4, which tells us
that

 ∞
j=1 j (1− p)j−1 = 1/(1− (1− p))2 = 1/p2.] It follows that the expected num-

ber of times the coin is flipped until tails comes up is 1/p. Note that when the
coin is fair we have p = 1/2, so the expected number of flips until it comes up tails
is 1/(1/2) = 2. ▲

The random variable X that equals the number of flips expected before a coin comes up
tails is an example of a random variable with a geometric distribution.

DEFINITION 2 A random variable X has a geometric distribution with parameter p if p(X = k) =
(1− p)k−1p for k = 1, 2, 3, . . ., where p is a real number with 0 ≤ p ≤ 1.

Geometric distributions arise in many applications because they are used to study the time
required before a particular event happens, such as the time required before we find an object
with a certain property, the number of attempts before an experiment succeeds, the number of
times a product can be used before it fails, and so on.

When we computed the expected value of the number of flips required before a coin comes
up tails, we proved Theorem 4.

THEOREM 4 If the random variableX has the geometric distribution with parameter p, thenE(X) = 1/p.

Independent Random Variables

We have already discussed independent events.We will now define what it means for two random
variables to be independent.

DEFINITION 3 The random variables X and Y on a sample space S are independent if

p(X = r1 and Y = r2) = p(X = r1) · p(Y = r2),

or in words, if the probability thatX = r1 and Y = r2 equals the product of the probabilities
that X = r1 and Y = r2, for all real numbers r1 and r2.

EXAMPLE 11 Are the random variables X1 and X2 from Example 4 independent?

Solution: Let S = {1, 2, 3, 4, 5, 6}, and let i ∈ S and j ∈ S. Because there are 36 possible
outcomes when the pair of dice is rolled and each is equally likely, we have

p(X1 = i and X2 = j) = 1/36.

486 7 / Discrete Probability

Furthermore, p(X1 = i) = 1/6 and p(X2 = j) = 1/6, because the probability that i appears
on the first die and the probability that j appears on the second die are both 1/6. It follows that

p(X1 = i and X2 = j) =
1

36
and p(X1 = i)p(X2 = j) =

1

6
· 1

6
= 1

36
,

so X1 and X2 are independent. ▲

EXAMPLE 12 Show that the random variables X1 and X = X1 +X2, where X1 and X2 are as defined in
Example 4, are not independent.

Solution: Note that p(X1 = 1 and X = 12) = 0, because X1 = 1 means the number appear-
ing on the first die is 1, which implies that the sum of the numbers appearing on the two
dice cannot equal 12. On the other hand, p(X1 = 1) = 1/6 and p(X = 12) = 1/36. Hence
p(X1 = 1 and X = 12) = p(X1 = 1) · p(X = 12). This counterexample shows thatX1 andX
are not independent. ▲

The expected value of the product of two independent random variables is the product of
their expected values, as Theorem 5 shows.

THEOREM 5 IfX andY are independent random variables on a sample spaceS, thenE(XY) = E(X)E(Y).

Proof: To prove this formula, we use the key observation that the event XY = r is the disjoint
union of the events X = r1 and Y = r2 over all r1 ∈ X(S) and r2 ∈ Y (S) with r = r1r2. We
have

E(XY) =

r∈XY(S)
r · p(XY = r) by Theorem 1

=

r1∈X(S),r2∈Y (S)
r1r2 · p(X = r1 and Y = r2) expressing XY = r as a disjoint union

=

r1∈X(S)

r2∈Y (S)

r1r2 · p(X = r1 and Y = r2) using a double sum to order the terms

=

r1∈X(S)

r2∈Y (S)

r1r2 · p(X = r1) · p(Y = r2) by the independence of X and Y

=

r1∈X(S)

r1 · p(X = r1) ·

r2∈Y (S)

r2 · p(Y = r2)

by factoring out r1 · p(X = r1)

=

r1∈X(S)
r1 · p(X = r1) · E(Y) by the definition of E(Y)

= E(Y)
r1∈X(S)

r1 · p(X = r1)

by factoring out E(Y)

= E(Y)E(X) by the definition of E(X)

We complete the proof by noting that E(Y)E(X) = E(X)E(Y), which is a consequence of the
commutative law for multiplication.

Note that whenX and Y are random variables that are not independent, we cannot conclude
that E(XY) = E(X)E(Y), as Example 13 shows.

7.4 Expected Value and Variance 487

EXAMPLE 13 Let X and Y be random variables that count the number of heads and the number of tails when
a coin is flipped twice. Because p(X = 2) = 1/4, p(X = 1) = 1/2, and p(X = 0) = 1/4, by
Theorem 1 we have

E(X) = 2 · 1

4
+ 1 · 1

2
+ 0 · 1

4
= 1.

A similar computation shows that E(Y) = 1. We note that XY = 0 when either two heads and
no tails or two tails and no heads come up and that XY = 1 when one head and one tail come
up. Hence,

E(XY) = 1 · 1

2
+ 0 · 1

2
= 1

2
.

It follows that

E(XY) = E(X)E(Y).
This does not contradict Theorem 5 because X and Y are not independent, as the reader should
verify (see Exercise 16). ▲

Variance

The expected value of a random variable tells us its average value, but nothing about how
widely its values are distributed. For example, if X and Y are the random variables on the set
S = {1, 2, 3, 4, 5, 6}, with X(s) = 0 for all s ∈ S and Y (s) = −1 if s ∈ {1, 2, 3} and Y (s) = 1
if s ∈ {4, 5, 6}, then the expected values of X and Y are both zero. However, the random
variable X never varies from 0, while the random variable Y always differs from 0 by 1. The
variance of a random variable helps us characterize how widely a random variable is distributed.
In particular, it provides a measure of how widely X is distributed about its expected value.

DEFINITION 4 Let X be a random variable on a sample space S. The variance of X, denoted by V (X), is

V (X) =

s∈S
(X(s)− E(X))2p(s).

That is, V (X) is the weighted average of the square of the deviation of X. The standard
deviation of X, denoted σ(X), is defined to be

√
V (X).

Theorem 6 provides a useful simple expression for the variance of a random variable.

THEOREM 6 If X is a random variable on a sample space S, then V (X) = E(X2)− E(X)2.

Proof: Note that

V (X) =

s∈S
(X(s)− E(X))2p(s)

=

s∈S
X(s)2p(s)− 2E(X)

s∈S
X(s)p(s)+ E(X)2

s∈S
p(s)

= E(X2)− 2E(X)E(X)+ E(X)2

= E(X2)− E(X)2.

We have used the fact that

s∈S p(s) = 1 in the next-to-last step.

488 7 / Discrete Probability

We can use Theorems 3 and 6 to derive an alternative formula for V (X) that provides some
insight into the meaning of the variance of a random variable.

μ is the Greek letter mu.

COROLLARY 1 If X is a random variable on a sample space S and E(X) = μ, then V (X) = E((X − μ)2).

Proof: If X is a random variable with E(X) = μ, then

E((X − μ)2) = E(X2 − 2μX + μ2) expanding (X − μ)2

= E(X2)− E(2μX)+ E(μ2) by part (i) of Theorem 3

= E(X2)− 2μE(X)+ E(μ2) by part (ii) of Theorem 3, noting that μ is a constant

= E(X2)− 2μE(X)+ μ2 as E(μ2) = μ2, because μ2 is a constant

= E(X2)− 2μ2 + μ2 because E(X) = μ

= E(X2)− μ2 simplifying

= V (X) by Theorem 6 and noting that E(X) = μ.

This completes the proof.

Corollary 1 tells us that the variance of a random variable X is the expected value of the
square of the difference between X and its own expected value. This is commonly expressed
as saying that the variance of X is the mean of the square of its deviation. We also say that the
standard deviation of X is the square root of the mean of the square of its deviation (often read
as the “root mean square” of the deviation).

We now compute the variance of some random variables.

EXAMPLE 14 What is the variance of the random variable X with X(t) = 1 if a Bernoulli trial is a success
and X(t) = 0 if it is a failure, where p is the probability of success and q is the probability of
failure?

Solution: Because X takes only the values 0 and 1, it follows that X2(t) = X(t). Hence,

V (X) = E(X2)− E(X)2 = p − p2 = p(1− p) = pq. ▲

EXAMPLE 15 Variance of the Value of a Die What is the variance of the random variable X, where X is
the number that comes up when a fair die is rolled?

Solution:We have V (X) = E(X2)− E(X)2. By Example 1 we know thatE(X) = 7/2. To find
E(X2) note that X2 takes the values i2, i = 1, 2, . . . , 6, each with probability 1/6. It follows
that

E(X2) = 1

6
(12 + 22 + 32 + 42 + 52 + 62) = 91

6
.

7.4 Expected Value and Variance 489

We conclude that

V (X) = 91

6
−

7

2

 2

= 35

12
. ▲

EXAMPLE 16 What is the variance of the random variable X((i, j)) = 2i, where i is the number appearing
on the first die and j is the number appearing on the second die, when two fair dice are rolled?

Solution: We will use Theorem 6 to find the variance of X. To do so, we need to find the
expected values of X and X2. Note that because p(X = k) is 1/6 for k = 2, 4, 6, 8, 10, 12 and
is 0 otherwise,

E(X) = (2+ 4+ 6+ 8+ 10+ 12)/6 = 7,

and

E(X2) = (22 + 42 + 62 + 82 + 102 + 122)/6 = 182/3.

It follows from Theorem 6 that

V (X) = E(X2)− E(X)2 = 182/3− 49 = 35/3. ▲

Another useful property is that the variance of the sum of two or more independent random
variables is the sum of their variances. The formula that expresses this property is known as
Bienaymé’s formula, after Irenée-Jules Bienaymé, the French mathematician who discovered it
in 1853. Bienaymé’s formula is useful for computing the variance of the result of n independent
Bernoulli trials, for instance.

THEOREM 7 BIENAYMÉ’S FORMULA If X and Y are two independent random variables on
a sample space S, then V (X + Y) = V (X)+ V (Y). Furthermore, if Xi, i = 1, 2, . . . , n,
with n a positive integer, are pairwise independent random variables on S, then
V (X1 +X2 + · · · +Xn) = V (X1)+ V (X2)+ · · · + V (Xn).

IRENÉE-JULES BIENAYMÉ (1796–1878) Bienaymé, born in Paris, moved with his family to Bruges in
1803 when his father became a government administrator. Bienaymé attended the Lycée impérial in Bruges,
and when his family returned to Paris in 1811, the Lycée Louis-le-Grand. As a teenager, he helped defend Paris
during the 1814 Napoleonic Wars; in 1815, he became a student at the École Polytechnique. In 1816 he joined
the Ministry of Finances to help support his family. In 1819, he left the civil service, taking a job lecturing
mathematics at the Académie militaire de Saint-Cyr. Unhappy with conditions there, he soon returned to the
Ministry of Finances. He attained the position of inspector general, remaining until forced to retire in 1848
for political reasons. He was able to return as inspector general in 1850, but he retired a second time in 1852.
In 1851 he briefly was professor at the Sorbonne and also served as an expert statistician for Napoleon III.

Bienaymé was one of the founders of the Société Mathématique de France, and in 1875 was its president.
Bienaymé was noted for his ingenuity, but his papers frustrated readers by omitting important proofs. He published sparsely,

often in obscure journals. However, he made important contributions to probability and statistics, and to their applications to the
social sciences and to finance. Among his important contributions are the Bienaymé-Chebyshev inequality, which provides a simple
proof of the law of large numbers, a generalization of Laplace’s least square method, and Bienaymé’s formula for the variance of a
sum of random variables. He studied the extinction of aristocratic families, declining despite general population growth. Bienaymé
was a skilled linguist; he translated the works of Chebyshev, a close friend, from Russian to French. It has been suggested that his
relative obscurity results from his modesty, his lack of interest in asserting the priority of his discoveries, and the fact that his work
was often ahead of its time. He and his brother married two sisters who were daughters of a family friend. Bienaymé and his wife
had two sons and three daughters.

490 7 / Discrete Probability

Proof: From Theorem 6, we have

V (X + Y) = E((X + Y)2)− E(X + Y)2.

It follows that

V (X + Y) = E(X2 + 2XY + Y 2)− (E(X)+ E(Y))2

= E(X2)+ 2E(XY)+ E(Y 2)− E(X)2 − 2E(X)E(Y)− E(Y)2.

BecauseX and Y are independent, by Theorem 5 we haveE(XY) = E(X)E(Y). It follows that

V (X + Y) = (E(X2)− E(X)2)+ (E(Y 2)− E(Y)2)
= V (X)+ V (Y).

We leave the proof of the case for n pairwise independent random variables to the reader
(Exercise 34). Such a proof can be constructed by generalizing the proof we have given for the
case for two random variables. Note that it is not possible to use mathematical induction in a
straightforward way to prove the general case (see Exercise 33).

EXAMPLE 17 Find the variance and standard deviation of the random variable X whose value when two fair
dice are rolled isX((i, j)) = i + j , where i is the number appearing on the first die and j is the
number appearing on the second die.

Solution: Let X1 and X2 be the random variables defined by X1((i, j)) = i and
X2((i, j)) = j for a roll of the dice. Then X = X1 +X2, and X1 and X2 are independent, as
Example 11 showed. From Theorem 7 it follows that V (X) = V (X1)+ V (X2). A sim-
ple computation as in Example 16, together with Exercise 29 in the Supplementary
Exercises, tells us that V (X1) = V (X2) = 35/12. Hence, V (X) = 35/12+ 35/12 = 35/6
and σ(X) = √35/6. ▲

We will now find the variance of the random variable that counts the number of successes
when n independent Bernoulli trials are carried out.

EXAMPLE 18 What is the variance of the number of successes when n independent Bernoulli trials are per-
formed, where, on each trial, p is the probability of success and q is the probability of failure?

Solution: Let Xi be the random variable with Xi((t1, t2, . . . , tn)) = 1 if trial ti is a
success and Xi((t1, t2, . . . , tn)) = 0 if trial ti is a failure. Let X = X1 +X2 + · · · +Xn.
ThenX counts the number of successes in the n trials. From Theorem 7 it follows that V (X) =
V (X1)+ V (X2)+ · · · + V (Xn). Using Example 14 we have V (Xi) = pq for i = 1, 2, . . . , n.
It follows that V (X) = npq. ▲

PAFNUTY LVOVICH CHEBYSHEV (1821–1894) Chebyshev was born into the gentry in Okatovo, Russia.
His father was a retired army officer who had fought against Napoleon. In 1832 the family, with its nine children,
moved to Moscow, where Pafnuty completed his high school education at home. He entered the Department of
Physics and Mathematics at Moscow University. As a student, he developed a new method for approximating
the roots of equations. He graduated from Moscow University in 1841 with a degree in mathematics, and he
continued his studies, passing his master’s exam in 1843 and completing his master’s thesis in 1846.

Chebyshev was appointed in 1847 to a position as an assistant at the University of St. Petersburg. He wrote
and defended a thesis in 1847. He became a professor at St. Petersburg in 1860, a position he held until 1882.
His book on the theory of congruences written in 1849 was influential in the development of number theory. His

work on the distribution of prime numbers was seminal. He proved Bertrand’s conjecture that for every integer n > 3, there is a
prime between n and 2n− 2. Chebyshev helped develop ideas that were later used to prove the prime number theorem. Chebyshev’s
work on the approximation of functions using polynomials is used extensively when computers are used to find values of functions.
Chebyshev was also interested in mechanics. He studied the conversion of rotary motion into rectilinear motion by mechanical
coupling. The Chebyshev parallel motion is three linked bars approximating rectilinear motion.

7.4 Expected Value and Variance 491

Chebyshev’s Inequality

How likely is it that a random variable takes a value far from its expected value? Theorem 8,
called Chebyshev’s inequality, helps answer this question by providing an upper bound on the
probability that the value of a random variable differs from the expected value of the random
variable by more than a specified amount.

THEOREM 8 CHEBYSHEV’S INEQUALITY Let X be a random variable on a sample space S with
probability function p. If r is a positive real number, then

p(|X(s)− E(X)| ≥ r) ≤ V (X)/r2.

Proof: Let A be the event

A = {s ∈ S |X(s)− E(X)| ≥ r}.

What we want to prove is that p(A) ≤ V (X)/r2. Note that

V (X) =

s∈S
(X(s)− E(X))2p(s)

=

s∈A
(X(s)− E(X))2p(s)+

s ∈A
(X(s)− E(X))2p(s).

The second sum in this expression is nonnegative, because each of its summands is nonnegative.
Also, because for each element s inA, (X(s)− E(X))2 ≥ r2, the first sum in this expression is at
least

s∈A r

2p(s). Hence, V (X) ≥ s∈A r
2p(s) = r2p(A). It follows that V (X)/r2 ≥ p(A),

so p(A) ≤ V (X)/r2, completing the proof.

EXAMPLE 19 Deviation from the Mean when Counting Tails Suppose that X is the random variable
that counts the number of tails when a fair coin is tossed n times. Note that X is the number
of successes when n independent Bernoulli trials, each with probability of success 1/2, are
performed. It follows that E(X) = n/2 (by Theorem 2) and V (X) = n/4 (by Example 18).
Applying Chebyshev’s inequality with r = √n shows that

p(|X(s)− n/2| ≥ √n) ≤ (n/4)/(√n)2 = 1/4.

Consequently, the probability is no more than 1/4 that the number of tails that come up when a
fair coin is tossed n times deviates from the mean by more than

√
n. ▲

Chebyshev’s inequality, although applicable to any random variable, often fails to provide
a practical estimate for the probability that the value of a random variable exceeds its mean by
a large amount. This is illustrated by Example 20.

EXAMPLE 20 Let X be the random variable whose value is the number appearing when a fair die is rolled.
We have E(X) = 7/2 (see Example 1) and V (X) = 35/12 (see Example 15). Because the
only possible values of X are 1, 2, 3, 4, 5, and 6, X cannot take a value more than 5/2 from its
mean, E(X) = 7/2. Hence, p(|X − 7/2| ≥ r) = 0 if r > 5/2. By Chebyshev’s inequality we
know that p(|X − 7/2| ≥ r) ≤ (35/12)/r2.

For example, when r = 3, Chebyshev’s inequality tells us that p(|X − 7/2| ≥ 3) ≤
(35/12)/9 = 35/108 ≈ 0.324, which is a poor estimate, because p(|X − 7/2| ≥ 3) = 0. ▲

492 7 / Discrete Probability

Exercises

1. What is the expected number of heads that come up when
a fair coin is flipped five times?

2. What is the expected number of heads that come up when
a fair coin is flipped 10 times?

3. What is the expected number of times a 6 appears when
a fair die is rolled 10 times?

4. A coin is biased so that the probability a head comes up
when it is flipped is 0.6. What is the expected number of
heads that come up when it is flipped 10 times?

5. What is the expected sum of the numbers that appear on
two dice, each biased so that a 3 comes up twice as often
as each other number?

6. What is the expected value when a $1 lottery ticket is
bought in which the purchaser wins exactly $10 million
if the ticket contains the six winning numbers chosen from
the set {1, 2, 3, . . . , 50} and the purchaser wins nothing
otherwise?

7. The final exam of a discrete mathematics course con-
sists of 50 true/false questions, each worth two points,
and 25 multiple-choice questions, each worth four points.
The probability that Linda answers a true/false question
correctly is 0.9, and the probability that she answers a
multiple-choice question correctly is 0.8. What is her ex-
pected score on the final?

8. What is the expected sum of the numbers that appear when
three fair dice are rolled?

9. Suppose that the probability that x is in a list of n distinct
integers is 2/3 and that it is equally likely that x equals
any element in the list. Find the average number of com-
parisons used by the linear search algorithm to find x or
to determine that it is not in the list.

10. Suppose that we flip a fair coin until either it comes up
tails twice or we have flipped it six times. What is the
expected number of times we flip the coin?

11. Suppose that we roll a fair die until a 6 comes up or we
have rolled it 10 times. What is the expected number of
times we roll the die?

12. Suppose that we roll a fair die until a 6 comes up.

a) What is the probability that we roll the die n times?
b) What is the expected number of times we roll the die?

13. Suppose that we roll a pair of fair dice until the sum of
the numbers on the dice is seven. What is the expected
number of times we roll the dice?

14. Show that the sum of the probabilities of a random vari-
able with geometric distribution with parameter p, where
0 < p ≤ 1, equals 1.

15. Show that if the random variable X has the geometric
distribution with parameter p, and j is a positive integer,
then p(X ≥ j) = (1− p)j−1.

16. LetX and Y be the random variables that count the num-
ber of heads and the number of tails that come up when
two fair coins are flipped. Show that X and Y are not
independent.

17. Estimate the expected number of integers with 1000 dig-
its that need to be selected at random to find a prime,
if the probability a number with 1000 digits is prime is
approximately 1/2302.

18. Suppose that X and Y are random variables and that
X and Y are nonnegative for all points in a sample
space S. Let Z be the random variable defined by
Z(s) = max(X(s), Y (s)) for all elements s ∈ S. Show
that E(Z) ≤ E(X)+ E(Y).

19. Let X be the number appearing on the first die when two
fair dice are rolled and letY be the sum of the numbers ap-
pearing on the two dice. Show thatE(X)E(Y) = E(XY).

∗20. Show that if X1, X2, . . . , Xn are mutually independent
random variables, then E(

 n
i=1Xi) =

 n
i=1 E(Xi).

The conditional expectation of the random variable X
given the event A from the sample space S is E(X|A) =
r∈X(S) r · P(X = r|A).

21. What is expected value of the sum of the numbers ap-
pearing on two fair dice when they are rolled given that
the sum of these numbers is at least nine. That is, what
is E(X|A) where X is the sum of the numbers appearing
on the two dice and A is the event that X ≥ 9?

The law of total expectation states that if the sample
space S is the disjoint union of the events S1, S2, . . . , Sn
and X is a random variable, then E(X) = n
j=1 E(X|Sj)P (Sj).

22. Prove the law of total expectations.

23. Use the law of total expectation to find the average weight
of a breeding elephant seal, given that 12% of the breed-
ing elephant seals are male and the rest are female, and
the expected weights of a breeding elephant seal is 4,200
pounds for a male and 1,100 pounds for a female.

24. Let A be an event. Then IA, the indicator random
variable of A, equals 1 if A occurs and equals 0 oth-
erwise. Show that the expectation of the indicator ran-
dom variable of A equals the probability of A, that is,
E(IA) = p(A).

25. A run is a maximal sequence of successes in a se-
quence of Bernoulli trials. For example, in the sequence
S, S, S, F, S, S, F, F, S, where S represents success and
F represents failure, there are three runs consisting of
three successes, two successes, and one success, respec-
tively. Let R denote the random variable on the set of se-
quences of n independent Bernoulli trials that counts the
number of runs in this sequence. FindE(R). [Hint: Show
thatR = n

j=1 Ij , where Ij = 1 if a run begins at the j th
Bernoulli trial and Ij = 0 otherwise. FindE(I1) and then
find E(Ij), where 1 < j ≤ n.]

26. Let X(s) be a random variable, where X(s) is a nonneg-
ative integer for all s ∈ S, and let Ak be the event that
X(s) ≥ k. Show that E(X) = ∞

k=1 p(Ak).

27. What is the variance of the number of heads that come up
when a fair coin is flipped 10 times?

7.4 Expected Value and Variance 493

28. What is the variance of the number of times a 6 appears
when a fair die is rolled 10 times?

29. Let Xn be the random variable that equals the number
of tails minus the number of heads when n fair coins are
flipped.

a) What is the expected value of Xn?
b) What is the variance of Xn?

30. Show that if X and Y are independent random
variables, then V (XY) = E(X)2V (Y)+ E(Y)2V (X)+
V (X)V (Y)

31. Let A(X) = E(|X − E(X)|), the expected value of the
absolute value of the deviation of X, where X is a
random variable. Prove or disprove that A(X + Y) =
A(X)+ A(Y) for all random variables X and Y .

32. Provide an example that shows that the variance of the
sum of two random variables is not necessarily equal to
the sum of their variances when the random variables are
not independent.

33. Suppose that X1 and X2 are independent Bernoulli
trials each with probability 1/2, and let X3 =
(X1 +X2)mod 2.

a) Show that X1, X2, and X3 are pairwise independent,
but X3 and X1 +X2 are not independent.

b) Show that V (X1 +X2 +X3) = V (X1)+ V (X2)+
V (X3).

c) Explain why a proof by mathematical induction of
Theorem 7 does not work by considering the random
variables X1, X2, and X3.

∗34. Prove the general case of Theorem 7. That is, show that
if X1, X2, . . . , Xn are pairwise independent ran-
dom variables on a sample space S, where n is
a positive integer, then V (X1 +X2 + · · · +Xn) =
V (X1)+ V (X2)+ · · · + V (Xn). [Hint: Generalize the
proof given in Theorem 7 for two random variables. Note
that a proof using mathematical induction does not work;
see Exercise 33.]

35. Use Chebyshev’s inequality to find an upper bound on the
probability that the number of tails that come up when a
fair coin is tossed n times deviates from the mean by more
than 5

√
n.

36. Use Chebyshev’s inequality to find an upper bound on the
probability that the number of tails that come up when a
biased coin with probability of heads equal to 0.6 is tossed
n times deviates from the mean by more than

√
n.

37. Let X be a random variable on a sample space
S such that X(s) ≥ 0 for all s ∈ S. Show that
p(X(s) ≥ a) ≤ E(X)/a for every positive real num-
ber a. This inequality is calledMarkov’s inequality.

38. Suppose that the number of cans of soda pop filled in a day
at a bottling plant is a random variable with an expected
value of 10,000 and a variance of 1000.

a) Use Markov’s inequality (Exercise 37) to obtain an
upper bound on the probability that the plant will fill
more than 11,000 cans on a particular day.

b) Use Chebyshev’s inequality to obtain a lower bound
on the probability that the plant will fill between 9000
and 11,000 cans on a particular day.

39. Suppose that the number of tin cans recycled in a day at
a recycling center is a random variable with an expected
value of 50,000 and a variance of 10,000.

a) Use Markov’s inequality (Exercise 37) to find an up-
per bound on the probability that the center will recy-
cle more than 55,000 cans on a particular day.

b) Use Chebyshev’s inequality to provide a lower bound
on the probability that the center will recycle 40,000
to 60,000 cans on a certain day.

∗40. Suppose the probability that x is the ith element in a list
of n distinct integers is i/[n(n+ 1)]. Find the average
number of comparisons used by the linear search algo-
rithm to find x or to determine that it is not in the list.

∗41. In this exercise we derive an estimate of the average-case
complexity of the variant of the bubble sort algorithm
that terminates once a pass has been made with no inter-
changes. Let X be the random variable on the set of per-
mutations of a set of n distinct integers {a1, a2, . . . , an}
with a1 < a2 < · · · < an such thatX(P) equals the num-
ber of comparisons used by the bubble sort to put these
integers into increasing order.

a) Show that, under the assumption that the input is
equally likely to be any of the n! permutations of these
integers, the average number of comparisons used by
the bubble sort equals E(X).

b) Use Example 5 in Section 3.3 to show that E(X) ≤
n(n− 1)/2.

c) Show that the sort makes at least one comparison for
every inversion of two integers in the input.

d) Let I (P) be the random variable that equals the num-
ber of inversions in the permutation P . Show that
E(X) ≥ E(I).

e) Let Ij,k be the random variable with Ij,k(P) = 1 if ak
precedes aj in P and Ij,k = 0 otherwise. Show that
I (P) = k

j<k Ij,k(P).

f) Show that E(I) = k

j<k E(Ij,k).

g) Show thatE(Ij,k) = 1/2. [Hint: Show thatE(Ij,k) =
probability that ak precedes aj in a permutation P .
Then show it is equally likely for ak to precede aj as
it is for aj to precede ak in a permutation.]

h) Use parts (f) and (g) to show thatE(I) = n(n− 1)/4.

i) Conclude from parts (b), (d), and (h) that the aver-
age number of comparisons used to sort n integers is
 (n2).

∗42. In this exercise we find the average-case complexity of
the quick sort algorithm, described in the preamble to Ex-
ercise 50 in Section 5.4, assuming a uniform distribution
on the set of permutations.

a) LetX be the number of comparisons used by the quick
sort algorithm to sort a list of n distinct integers. Show
that the average number of comparisons used by the
quick sort algorithm isE(X) (where the sample space
is the set of all n! permutations of n integers).

494 7 / Discrete Probability

b) Let Ij,k denote the random variable that equals 1 if
the j th smallest element and the kth smallest element
of the initial list are ever compared as the quick sort
algorithm sorts the list and equals 0 otherwise. Show
that X = n

k=2
 k−1
j=1 Ij,k .

c) Show that E(X) = n
k=2
 k−1
j=1 p(the j th smallest

element and the kth smallest element are compared).
d) Show that p(the j th smallest element and the kth

smallest element are compared), where k > j , equals
2/(k − j + 1).

e) Use parts (c) and (d) to show that E(X) =
2(n+ 1)(

 n
i=2 1/i)− 2(n− 1).

f) Conclude from part (e) and the fact that
 n
j=1 1/j ≈

ln n+ γ , where γ = 0.57721 . . . is Euler’s constant,
that the average number of comparisons used by the
quick sort algorithm is (n log n).

∗43. What is the variance of the number of fixed elements,
that is, elements left in the same position, of a randomly
selected permutation of n elements? [Hint: Let X denote
the number of fixed points of a random permutation.Write
X = X1 +X2 + · · · +Xn, where Xi = 1 if the permu-
tation fixes the ith element and Xi = 0 otherwise.]

The covariance of two random variablesX and Y on a sample
space S, denoted by Cov(X, Y), is defined to be the expected
value of the random variable (X − E(X))(Y − E(Y)). That
is, Cov(X, Y) = E((X − E(X))(Y − E(Y))).
44. Show that Cov(X, Y) = E(XY)− E(X)E(Y), and use

this result to conclude that Cov(X, Y) = 0 ifX and Y are
independent random variables.

45. Show that V (X + Y) = V (X)+ V (Y)+ 2 Cov(X, Y).

46. Find Cov(X, Y) ifX and Y are the random variables with
X((i, j)) = 2i and Y ((i, j)) = i + j , where i and j are
the numbers that appear on the first and second of two
dice when they are rolled.

47. When m balls are distributed into n bins uniformly at
random, what is the probability that the first bin remains
empty?

48. What is the expected number of balls that fall into the first
bin when m balls are distributed into n bins uniformly at
random?

49. What is the expected number of bins that remain empty
whenm balls are distributed into n bins uniformly at ran-
dom?

Key Terms and Results

TERMS

sample space: the set of possible outcomes of an experiment

event: a subset of the sample space of an experiment

probability of an event (Laplace’s definition): the number
of successful outcomes of this event divided by the number
of possible outcomes

probability distribution: a function p from the set of all out-
comes of a sample space S for which 0 ≤ p(xi) ≤ 1 for
i = 1, 2, . . . , n and

 n
i=1 p(xi) = 1, where x1, . . . , xn are

the possible outcomes

probability of an event E: the sum of the probabilities of the
outcomes in E

p(E|F) (conditional probability of E given F): the ratio
p(E ∩ F)/p(F)

independent events: events E and F such that p(E ∩ F) =
p(E)p(F)

pairwise independent events: events E1, E2, . . . , En such
that p(Ei ∩ Ej) = p(Ei)p(Ej) for all pairs of integers i
and j with 1 ≤ j < k ≤ n

mutually independent events: events E1, E2, . . . , En such
that p(Ei1 ∩ Ei2 ∩ · · · ∩ Eim) = p(Ei1)p(Ei2) · · ·p(Eim)
whenever ij , j = 1, 2, . . . , m, are integers with 1 ≤ i1 <
i2 < · · · < im ≤ n and m ≥ 2

randomvariable: a function that assigns a real number to each
possible outcome of an experiment

distribution of a random variable X: the set of pairs
(r, p(X = r)) for r ∈ X(S)

uniform distribution: the assignment of equal probabilities
to the elements of a finite set

expected value of a random variable: the weighted av-
erage of a random variable, with values of the random
variable weighted by the probability of outcomes, that is,
E(X) = s∈S p(s)X(s)

geometric distribution: the distribution of a random variable
X such that p(X = k) = (1− p)k−1p for k = 1, 2, . . . for
some real number p with 0 ≤ p ≤ 1.

independent random variables: random variables X and Y
such that p(X = r1 and Y = r2) = p(X = r1)p(Y = r2)
for all real numbers r1 and r2

variance of a randomvariableX: the weighted average of the
square of the difference between the value of X and its ex-
pected value E(X), with weights given by the probability
of outcomes, that is, V (X) = s∈S(X(s)− E(X))2p(s)

standard deviation of a random variableX: the square root
of the variance of X, that is, σ(X) = √V (X)

Bernoulli trial: an experiment with two possible outcomes

probabilistic (or Monte Carlo) algorithm: an algorithm in
which random choices are made at one or more steps

probabilistic method: a technique for proving the existence
of objects in a set with certain properties that proceeds by
assigning probabilities to objects and showing that the prob-
ability that an object has these properties is positive

7.4 Expected Value and Variance 495

RESULTS

The probability of exactly k successes when n indepen-
dent Bernoulli trials are carried out equals C(n, k)pkqn−k ,
where p is the probability of success and q = 1− p is the
probability of failure.

Bayes’ theorem: If E and F are events from a sample space
S such that p(E) = 0 and p(F) = 0, then

p(F | E) = p(E | F)p(F)
p(E | F)p(F) + p(E | F)p(F) .

E(X) = r∈X(S) p(X = r)r .

linearity of expectations:E(X1+X2+ · · ·+Xn)=E(X1)+
E(X2)+ · · · + E(Xn) ifX1,X2, . . . , Xn are random vari-
ables

If X and Y are independent random variables, then E(XY) =
E(X)E(Y).

Bienaymé’s formula: IfX1, X2, . . . , Xn are independent ran-
dom variables, then V (X1 +X2 + · · · +Xn) = V (X1)+
V (X2)+ · · · + V (Xn).

Chebyshev’s inequality:p(|X(s)− E(X)| ≥ r) ≤ V (X)/r2,
where X is a random variable with probability function p
and r is a positive real number.

Review Questions

1. a) Define the probability of an event when all outcomes
are equally likely.

b) What is the probability that you select the six winning
numbers in a lottery if the six different winning num-
bers are selected from the first 50 positive integers?

2. a) What conditions should be met by the probabilities
assigned to the outcomes from a finite sample space?

b) What probabilities should be assigned to the outcome
of heads and the outcome of tails if heads comes up
three times as often as tails?

3. a) Define the conditional probability of an eventE given
an event F .

b) Suppose E is the event that when a die is rolled it
comes up an even number, and F is the event that
when a die is rolled it comes up 1, 2, or 3. What is the
probability of F given E?

4. a) When are two events E and F independent?
b) Suppose E is the event that an even number appears

when a fair die is rolled, and F is the event that a 5
or 6 comes up. Are E and F independent?

5. a) What is a random variable?
b) What are the possible values assigned by the random

variable X that assigns to a roll of two dice the larger
number that appears on the two dice?

6. a) Define the expected value of a random variable X.
b) What is the expected value of the random variable X

that assigns to a roll of two dice the larger number that
appears on the two dice?

7. a) Explain how the average-case computational com-
plexity of an algorithm, with finitely many possible
input values, can be interpreted as an expected value.

b) What is the average-case computational complexity
of the linear search algorithm, if the probability that
the element for which we search is in the list is 1/3,

and it is equally likely that this element is any of
the n elements in the list?

8. a) What is meant by a Bernoulli trial?
b) What is the probability of k successes inn independent

Bernoulli trials?
c) What is the expected value of the number of successes

in n independent Bernoulli trials?

9. a) What does the linearity of expectations of random vari-
ables mean?

b) How can the linearity of expectations help us find the
expected number of people who receive the correct
hat when a hatcheck person returns hats at random?

10. a) How can probability be used to solve a decision prob-
lem, if a small probability of error is acceptable?

b) How can we quickly determine whether a positive in-
teger is prime, if we are willing to accept a small prob-
ability of making an error?

11. State Bayes’ theorem and use it to find p(F | E) if
p(E | F) = 1/3, p(E | F) = 1/4, and p(F) = 2/3,
where E and F are events from a sample space S.

12. a) What does it mean to say that a random variable has a
geometric distribution with parameter p?

b) What is the mean of a geometric distribution with pa-
rameter p?

13. a) What is the variance of a random variable?
b) What is the variance of a Bernoulli trial with proba-

bility p of success?

14. a) What is the variance of the sum of n independent ran-
dom variables?

b) What is the variance of the number of successes when
n independent Bernoulli trials, each with probabilityp
of success, are carried out?

15. What does Chebyshev’s inequality tell us about the prob-
ability that a random variable deviates from its mean by
more than a specified amount?

496 7 / Discrete Probability

Supplementary Exercises

1. What is the probability that six consecutive integers will
be chosen as the winning numbers in a lottery where each
number chosen is an integer between 1 and 40 (inclusive)?

2. A player in the Mega Millions lottery picks five different
integers between 1 and 56, inclusive, and a sixth integer
between 1 and 46, which may duplicate one of the earlier
five integers. The player wins the jackpot if the first five
numbers picked match the first five numbers drawn and
the sixth number matches the sixth number drawn.

a) What is the probability that a player wins the jackpot?
b) What is the probability that a player wins $250,000,

which is the prize for matching the first five numbers,
but not the sixth number, drawn?

c) What is the probability that a player wins $150 by
matching exactly three of the first five numbers and
the sixth number or by matching four of the first five
numbers but not the sixth number?

d) What is the probability that a player wins a prize, if a
prize is given when the player matches at least three
of the first five numbers or the last number.

3. A player in the Powerball lottery picks five different in-
tegers between 1 and 59, inclusive, and a sixth integer
between 1 and 39, which may duplicate one of the earlier
five integers. The player wins the jackpot if the first five
numbers picked match the first five number drawn and
the sixth number matches the sixth number drawn.

a) What is the probability that a player wins the jackpot?
b) What is the probability that a player wins $200,000,

which is the prize for matching the first five numbers,
but not the sixth number, drawn?

c) What is the probability that a player wins $100 by
matching exactly three of the first five and the sixth
numbers or four of the first five numbers but not the
sixth number?

d) What is the probability that a player wins a prize, if a
prize is given when the player matches at least three
of the first five numbers or the last number.

4. What is the probability that a hand of 13 cards contains
no pairs?

5. What is the probability that a 13-card bridge hand contains

a) all 13 hearts?
b) 13 cards of the same suit?
c) seven spades and six clubs?
d) seven cards of one suit and six cards of a second suit?
e) four diamonds, six hearts, two spades, and one club?
f) four cards of one suit, six cards of a second suit, two

cards of a third suit, and one card of the fourth suit?

6. What is the probability that a seven-card poker hand con-
tains

a) four cards of one kind and three cards of a second
kind?

b) three cards of one kind and pairs of each of two dif-
ferent kinds?

c) pairs of each of three different kinds and a single card
of a fourth kind?

d) pairs of each of two different kinds and three cards of
a third, fourth, and fifth kind?

e) cards of seven different kinds?

f) a seven-card flush?

g) a seven-card straight?

h) a seven-card straight flush?

An octahedral die has eight faces that are numbered 1
through 8.

7. a) What is the expected value of the number that comes
up when a fair octahedral die is rolled?

b) What is the variance of the number that comes up when
a fair octahedral die is rolled?

A dodecahedral die has 12 faces that are numbered 1
through 12.

8. a) What is the expected value of the number that comes
up when a fair dodecahedral die is rolled?

b) What is the variance of the number that comes up when
a fair dodecahedral die is rolled?

9. Suppose that a pair of fair octahedral dice is rolled.

a) What is the expected value of the sum of the numbers
that come up?

b) What is the variance of the sum of the numbers that
come up?

10. Suppose that a pair of fair dodecahedral dice is rolled.

a) What is the expected value of the sum of the numbers
that come up?

b) What is the variance of the sum of the numbers that
come up?

11. Suppose that a fair standard (cubic) die and a fair octahe-
dral die are rolled together.

a) What is the expected value of the sum of the numbers
that come up?

b) What is the variance of the sum of the numbers that
come up?

12. Suppose that a fair octahedral die and a fair dodecahedral
die are rolled together.

a) What is the expected value of the sum of the numbers
that come up?

b) What is the variance of the sum of the numbers that
come up?

13. Suppose n people, n ≥ 3, play “odd person out” to de-
cide who will buy the next round of refreshments. The n
people each flip a fair coin simultaneously. If all the coins
but one come up the same, the person whose coin comes
up different buys the refreshments. Otherwise, the people
flip the coins again and continue until just one coin comes
up different from all the others.

a) What is the probability that the odd person out is de-
cided in just one coin flip?

Supplementary Exercises 497

b) What is the probability that the odd person out is de-
cided with the kth flip?

c) What is the expected number of flips needed to decide
odd person out with n people?

14. Suppose that p and q are primes and n = pq. What is the
probability that a randomly chosen positive integer less
than n is not divisible by either p or q?

∗15. Suppose that m and n are positive integers. What is the
probability that a randomly chosen positive integer less
than mn is not divisible by either m or n?

16. Suppose thatE1, E2, . . . , En aren events withp(Ei) > 0
for i = 1, 2, . . . , n. Show that

p(E1 ∩ E2 ∩ · · · ∩ En)
= p(E1)p(E2 | E1)p(E3 | E1 ∩ E2)

· · ·p(En | E1 ∩ E2 ∩ · · · ∩ En−1).

17. There are three cards in a box. Both sides of one card are
black, both sides of one card are red, and the third card
has one black side and one red side. We pick a card at
random and observe only one side.

a) If the side is black, what is the probability that the
other side is also black?

b) What is the probability that the opposite side is the
same color as the one we observed?

18. What is the probability that when a fair coin is flipped n
times an equal number of heads and tails appear?

19. What is the probability that a randomly selected bit string
of length 10 is a palindrome?

20. What is the probability that a randomly selected bit string
of length 11 is a palindrome?

21. Consider the following game. A person flips a coin re-
peatedly until a head comes up. This person receives a
payment of 2n dollars if the first head comes up at the
nth flip.

a) Let X be a random variable equal to the amount of
money the person wins. Show that the expected value
of X does not exist (that is, it is infinite). Show that
a rational gambler, that is, someone willing to pay to
play the game as long as the price to play is not more
than the expected payoff, should be willing to wager
any amount of money to play this game. (This is known
as the St. Petersburg paradox. Why do you suppose
it is called a paradox?)

b) Suppose that the person receives 2n dollars if the
first head comes up on the nth flip where n < 8 and
28 = 256 dollars if the first head comes up on or af-
ter the eighth flip. What is the expected value of the
amount of money the person wins? How much money
should a person be willing to pay to play this game?

22. Suppose that n balls are tossed into b bins so that each
ball is equally likely to fall into any of the bins and that
the tosses are independent.

a) Find the probability that a particular ball lands in a
specified bin.

b) What is the expected number of balls that land in a
particular bin?

c) What is the expected number of balls tossed until a
particular bin contains a ball?

∗d) What is the expected number of balls tossed until all
bins contain a ball? [Hint: Let Xi denote the number
of tosses required to have a ball land in an ith bin
once i − 1 bins contain a ball. FindE(Xi) and use the
linearity of expectations.]

23. Suppose that A and B are events with probabilities
p(A) = 3/4 and p(B) = 1/3.

a) What is the largest p(A ∩ B) can be? What is the
smallest it can be? Give examples to show that both
extremes for p(A ∩ B) are possible.

b) What is the largest p(A ∪ B) can be? What is the
smallest it can be? Give examples to show that both
extremes for p(A ∪ B) are possible.

24. Suppose that A and B are events with probabilities
p(A) = 2/3 and p(B) = 1/2.

a) What is the largest p(A ∩ B) can be? What is the
smallest it can be? Give examples to show that both
extremes for p(A ∩ B) are possible.

b) What is the largest p(A ∪ B) can be? What is the
smallest it can be? Give examples to show that both
extremes for p(A ∪ B) are possible.

25. Recall from Definition 5 in Section 7.2 that the
events E1, E2, . . . , En are mutually independent if
p(Ei1 ∩ Ei2 ∩ · · · ∩ Eim) = p(Ei1)p(Ei2) · · ·p(Eim)
whenever ij , j = 1, 2, . . . , m, are integers with 1 ≤ i1 <
i2 < · · · < im ≤ n and m ≥ 2.

a) Write out the conditions required for three
events E1, E2, andE3 to be mutually independent.

b) Let E1, E2, and E3 be the events that the first flip
comes up heads, that the second flip comes up tails,
and that the third flip comes up tails, respectively,
when a fair coin is flipped three times. Are E1, E2,
and E3 mutually independent?

c) Let E1, E2, and E3 be the events that the first flip
comes up heads, that the third flip comes up heads,
and that an even number of heads come up, respec-
tively, when a fair coin is flipped three times. Are E1,
E2, and E3 pairwise independent? Are they mutually
independent?

d) Let E1, E2, and E3 be the events that the first flip
comes up heads, that the third flip comes up heads,
and that exactly one of the first flip and third flip come
up heads, respectively, when a fair coin is flipped three
times. Are E1, E2, and E3 pairwise independent? Are
they mutually independent?

e) How many conditions must be checked to show that n
events are mutually independent?

26. Suppose that A and B are events from a sample
space S such that p(A) = 0 and p(B) = 0. Show that if
p(B | A) < p(B), then p(A | B) < p(A).

498 7 / Discrete Probability

In Exercise 27 we consider the two children problem, intro-
duced in 1959 by Martin Garnder is his Mathematical Games
column in Scientific American. A version of the puzzle asks:
“We meet Mr. Smith as he is walking down the street with a
young child whom he introduces as his son. He also tells us
that he has two children. What is the probability that his other
child is a son?” We will show that this puzzle is ambiguous,
leading to a paradox, by showing that there are two reasonable
answers to this problem and we will describe how to make the
puzzle unambiguous.

∗27. a) Solve this puzzle in two different ways. First, answer
the problem by considering the probability of the gen-
der of the second child. Then, determine the probabil-
ity differently, by considering the four different possi-
bilities for a family of two children.

b) Show that the answer to the puzzle becomes unam-
biguous if we also know that Mr. Smith chose his
walking companion at random from his two children.

c) Another variation of this puzzle asks “When we meet
Mr. Smith, he tells us that he has two children and
at least one is a son. What is the probability that his
other child is a son?” Solve this variation of the puzzle,
explaining why it is unambiguous.

28. In 2010, the puzzle designer Gary Foshee posed this prob-
lem: “Mr. Smith has two children, one of whom is a son
born on a Tuesday. What is the probability that Mr. Smith
has two sons?” Show that there are two different answers
to this puzzle, depending on whether Mr. Smith specifi-
cally mentioned his son because he was born on a Tues-
day or whether he randomly chose a child and reported
its gender and birth day of the week. [Hint: For the first
possibility, enumerate all the equally likely possibilities
for the gender and birth day of the week of the other child.
To do, this consider first the cases where the older child
is a boy born on a Tuesday and then the case where the
older child is not a boy born on a Tuesday.]

29. Let X be a random variable on a sample space S. Show
that V (aX + b) = a2V (X) whenever a and b are real
numbers.

30. Use Chebyshev’s inequality to show that the probability
that more than 10 people get the correct hat back when
a hatcheck person returns hats at random does not ex-
ceed 1/100 no matter how many people check their hats.
[Hint: Use Example 6 and Exercise 43 in Section 7.4.]

31. Suppose that at least one of the events Ej , j =
1, 2, . . . , m, is guaranteed to occur and no more than two
can occur. Show that if p(Ej) = q for j = 1, 2, . . . , m
and p(Ej ∩ Ek) = r for 1 ≤ j < k ≤ m, then q ≥ 1/m
and r ≤ 2/m.

32. Show that if m is a positive integer, then the probability
that the mth success occurs on the (m+ n)th trial when
independent Bernoulli trials, each with probability p of
success, are run, is

n+m−1
n

qnpm.

33. There are n different types of collectible cards you can
get as prizes when you buy a particular product. Suppose
that every time you buy this product it is equally likely
that you get any type of these cards. LetX be the random

variable equal to the number of products that need to be
purchased to obtain at least one of each type of card and
let Xj be the random variable equal to the number of ad-
ditional products that must be purchased after j different
cards have been collected until a new card is obtained
for j = 0, 1, . . . , n− 1.

a) Show that X = n−1
j = 0Xj .

b) Show that after j distinct types of cards have been ob-
tained, the card obtained with the next purchase will
be a card of a new type with probability (n− j)/n.

c) Show that Xj has a geometric distribution with pa-
rameter (n− j)/n.

d) Use parts (a) and (c) to show that E(X) =
n
 n
j=1 1/j .

e) Use the approximation
 n
j=1 1/j ≈ ln n+ γ , where

γ = 0.57721 . . . is Euler’s constant, to find the ex-
pected number of products that you need to buy to get
one card of each type if there are 50 different types of
cards.

34. The maximum satisfiability problem asks for an as-
signment of truth values to the variables in a compound
proposition in conjunctive normal form (which expresses
a compound proposition as the conjunction of clauses
where each clause is the disjunction of two or more vari-
ables or their negations) that makes as many of these
clauses true as possible. For example, three but not four
of the clauses in

(p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ r) ∧ (¬p ∨ ¬r)

can be made true by an assignment of truth values to p, q,
and r . We will show that probabilistic methods can pro-
vide a lower bound for the number of clauses that can be
made true by an assignment of truth values to the vari-
ables.

a) Suppose that there are n variables in a compound
proposition in conjunctive normal form. If we pick
a truth value for each variable randomly by flipping
a coin and assigning true to the variable if the coin
comes up heads and false if it comes up tails, what
is the probability of each possible assignment of truth
values to the n variables?

b) Assuming that each clause is the disjunction of ex-
actly two distinct variables or their negations, what is
the probability that a given clause is true, given the
random assignment of truth values from part (a)?

c) Suppose that there are D clauses in the compound
proposition. What is the expected number of these
clauses that are true, given the random assignment of
truth values of the variables?

d) Use part (c) to show that for every compound proposi-
tion in conjunctive normal form there is an assignment
of truth values to the variables that makes at least 3/4
of the clauses true.

35. What is the probability that each player has a hand con-
taining an ace when the 52 cards of a standard deck are
dealt to four players?

Supplementary Exercises 499

∗36. The following method can be used to generate a ran-
dom permutation of a sequence of n terms. First, in-
terchange the nth term and the r(n)th term where r(n)
is a randomly selected integer with 1 ≤ r(n) ≤ n.
Next, interchange the (n− 1)st term of the result-
ing sequence with its r(n− 1)st term where r(n− 1)
is a randomly selected integer with 1 ≤ r(n− 1) ≤
n− 1. Continue this process until j = n, where at
the j th step you interchange the (n− j + 1)st term

of the resulting sequence with its r(n− j + 1)st term,
where r(n− j + 1) is a randomly selected integer with
1 ≤ r(n− j + 1) ≤ n− j + 1. Show that when this
method is followed, each of the n! different permutations
of the terms of the sequence is equally likely to be gen-
erated. [Hint:Use mathematical induction, assuming that
the probability that each of the permutations of n− 1
terms produced by this procedure for a sequence of n− 1
terms is 1/(n− 1)!.]

Computer Projects

Write programs with these input and output.

1. Given a real number p with 0 ≤ p ≤ 1, generate random
numbers taken from a Bernoulli distribution with proba-
bility p.

2. Given a positive integer n, generate a random permuta-
tion of the set {1, 2, 3, . . . , n}. (See Exercise 36 in the
Supplementary Exercises.)

3. Given positive integersm and n, generatem random per-
mutations of the first n positive integers. Find the number
of inversions in each permutation and determine the av-
erage number of these inversions.

4. Given a positive integer n, simulate n repeated flips of
a biased coin with probability p of heads and determine
the number of heads that come up. Display the cumulative
results.

5. Given positive integers n andm, generatem random per-
mutations of the first n positive integers. Sort each per-
mutation using the insertion sort, counting the number
of comparisons used. Determine the average number of
comparisons used over all m permutations.

6. Given positive integers n andm, generatem random per-
mutations of the first n positive integers. Sort each permu-
tation using the version of the bubble sort that terminates

when a pass has been made with no interchanges, counting
the number of comparisons used. Determine the average
number of comparisons used over all m permutations.

7. Given a positive integerm, simulate the collection of cards
that come with the purchase of products to find the num-
ber of products that must be purchased to obtain a full
set of m different collector cards. (See Supplementary
Exercise 33.)

8. Given positive integers m and n, simulate the placement
of n keys, where a record with key k is placed at location
h(k) = k mod m and determine whether there is at least
one collision.

9. Given a positive integer n, find the probability of select-
ing the six integers from the set {1, 2, . . . , n} that were
mechanically selected in a lottery.

10. Simulate repeated trials of the Monty Hall Three-Door
problem (Example 10 in Section 7.1) to calculate the prob-
ability of winning with each strategy.

11. Given a list of words and the empirical probabilities they
occur in spam e-mails and in e-mails that are not spam,
determine the probability that a new e-mail message is
spam.

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. Find the probabilities of each type of hand in five-card
poker and rank the types of hands by their probability.

2. Find some conditions such that the expected value of buy-
ing a $1 lottery ticket in the New Jersey Pick-6 lottery has
an expected value of more than $1. To win you have to se-
lect the six numbers drawn, where order does not matter,
from the positive integers 1 to 49, inclusive. The winnings
are split evenly among holders of winning tickets. Be sure
to consider the total size of the pot going into the drawing
and the number of people buying tickets.

3. Estimate the probability that two integers selected at ran-
dom are relatively prime by testing a large number of
randomly selected pairs of integers. Look up the theorem
that gives this probability and compare your results with
the correct probability.

4. Determine the number of people needed to ensure that the
probability at least two of them have the same day of the
year as their birthday is at least 70%, at least 80%, at least
90%, at least 95%, at least 98%, and at least 99%.

500 7 / Discrete Probability

5. Generate a list of 100 randomly selected permutations of
the set of the first 100 positive integers. (See Exercise 36
in the Supplementary Exercises.)

6. Given a collection of e-mail messages, each determined to
be spam or not to be spam, develop a Bayesian filter based
on the appearance of particular words in these messages.

7. Simulate the odd-person-out procedure (described in Ex-
ercise 13 of the Supplementary Exercises) for n peo-
ple with 3 ≤ n ≤ 10. Run a large number of trials for

each value of n and use the results to estimate the ex-
pected number of flips needed to find the odd person out.
Does your result agree with that found in Exercise 29 in
Section 7.2? Vary the problem by supposing that exactly
one person has a biased coin with probability of heads
p = 0.5.

8. Given a positive integern, simulate a hatcheck person ran-
domly giving hats back to people. Determine the number
of people who get the correct hat back.

Writing Projects

Respond to these with essays using outside sources.

1. Describe the origins of probability theory and the first uses
of this theory, including those by Cardano, Pascal, and
Laplace.

2. Describe the different bets you can make when you
play roulette. Find the probability of each of these bets
in the American version where the wheel contains the
numbers 0 and 00. Which is the best bet and which is the
worst for you?

3. Discuss the probability of winning when you play the game
of blackjack versus a casino. Is there a winning strategy for
the person playing against the house?

4. Investigate the game of craps and discuss the probability
that the shooter wins and how close to a fair game it is.

5. Discuss issues involved in developing successful spam fil-
ters and the current situation in the war between spammers
and people trying to filter spam out.

6. Discuss the history and solution of what is known as
the Newton–Pepys problem, which asks which is most
likely: rolling at least one six when six dice are rolled,
rolling at least two sixes when 12 dice are rolled, or rolling
at least three sixes when 18 dice are rolled.

7. Explain how Erdős and Rényi first used the probabilis-
tic method and describe some other applications of this
method.

8. Discuss the different types of probabilistic algorithms and
describe some examples of each type.

8
C H A P T E R

Advanced Counting Techniques

8.1 Applications of
Recurrence
Relations

8.2 Solving Linear
Recurrence
Relations

8.3 Divide-and-
Conquer
Algorithms and
Recurrence
Relations

8.4 Generating
Functions

8.5 Inclusion–
Exclusion

8.6 Applications of
Inclusion–
Exclusion

Many counting problems cannot be solved easily using the methods discussed in Chapter 6.
One such problem is: How many bit strings of length n do not contain two consecutive

zeros? To solve this problem, let an be the number of such strings of length n. An argument can
be given that shows that the sequence {an} satisfies the recurrence relation an+1 = an + an−1
and the initial conditions a1 = 2 and a2 = 3. This recurrence relation and the initial conditions
determine the sequence {an}. Moreover, an explicit formula can be found for an from the equation
relating the terms of the sequence. As we will see, a similar technique can be used to solve many
different types of counting problems.

We will discuss two ways that recurrence relations play important roles in the study of
algorithms. First, we will introduce an important algorithmic paradigm known as dynamic
programming. Algorithms that follow this paradigm break down a problem into overlapping
subproblems. The solution to the problem is then found from the solutions to the subproblems
through the use of a recurrence relation. Second, we will study another important algorithmic
paradigm, divide-and-conquer. Algorithms that follow this paradigm can be used to solve a
problem by recursively breaking it into a fixed number of nonoverlapping subproblems until
these problems can be solved directly. The complexity of such algorithms can be analyzed using
a special type of recurrence relation. In this chapter we will discuss a variety of divide-and-
conquer algorithms and analyze their complexity using recurrence relations.

We will also see that many counting problems can be solved using formal power series,
called generating functions, where the coefficients of powers of x represent terms of the sequence
we are interested in. Besides solving counting problems, we will also be able to use generating
functions to solve recurrence relations and to prove combinatorial identities.

Many other kinds of counting problems cannot be solved using the techniques discussed in
Chapter 6, such as: How many ways are there to assign seven jobs to three employees so that
each employee is assigned at least one job? How many primes are there less than 1000? Both
of these problems can be solved by counting the number of elements in the union of sets. We
will develop a technique, called the principle of inclusion–exclusion, that counts the number of
elements in a union of sets, and we will show how this principle can be used to solve counting
problems.

The techniques studied in this chapter, together with the basic techniques of Chapter 6, can
be used to solve many counting problems.

8.1 Applications of Recurrence Relations

Introduction

Recall from Chapter 2 that a recursive definition of a sequence specifies one or more initial terms
and a rule for determining subsequent terms from those that precede them. Also, recall that a
rule of the latter sort (whether or not it is part of a recursive definition) is called a recurrence
relation and that a sequence is called a solution of a recurrence relation if its terms satisfy the
recurrence relation.

In this section we will show that such relations can be used to study and to solve counting
problems. For example, suppose that the number of bacteria in a colony doubles every hour. If
a colony begins with five bacteria, how many will be present in n hours? To solve this problem,

501

502 8 / Advanced Counting Techniques

let an be the number of bacteria at the end of n hours. Because the number of bacteria doubles
every hour, the relationship an = 2an−1 holds whenever n is a positive integer. This recurrence
relation, together with the initial condition a0 = 5, uniquely determines an for all nonnegative
integers n. We can find a formula for an using the iterative approach followed in Chapter 2,
namely that an = 5 · 2n for all nonnegative integers n.

Some of the counting problems that cannot be solved using the techniques discussed in
Chapter 6 can be solved by finding recurrence relations involving the terms of a sequence, as
was done in the problem involving bacteria. In this section we will study a variety of counting
problems that can be modeled using recurrence relations. In Chapter 2 we developed methods
for solving certain recurrence relation. In Section 8.2 we will study methods for finding explicit
formulae for the terms of sequences that satisfy certain types of recurrence relations.

We conclude this section by introducing the algorithmic paradigm of dynamic programming.
After explaining how this paradigm works, we will illustrate its use with an example.

Modeling With Recurrence Relations

We can use recurrence relations to model a wide variety of problems, such as finding compound
interest (see Example 11 in Section2.4), counting rabbits on an island, determining the number
of moves in the Tower of Hanoi puzzle, and counting bit strings with certain properties.

Example 1 shows how the population of rabbits on an island can be modeled using a
recurrence relation.

EXAMPLE 1 Rabbits and the Fibonacci Numbers Consider this problem, which was originally posed by
Leonardo Pisano, also known as Fibonacci, in the thirteenth century in his book Liber abaci. A
young pair of rabbits (one of each sex) is placed on an island. A pair of rabbits does not breed
until they are 2 months old. After they are 2 months old, each pair of rabbits produces another
pair each month, as shown in Figure 1. Find a recurrence relation for the number of pairs of
rabbits on the island after n months, assuming that no rabbits ever die.

Reproducing pairs
(at least two months old)

Young pairs
(less than two months old)

Reproducing
pairs

Young
pairsMonth

Total
pairs

1

2

3

4

5

6

0

0

1

1

2

3

1

1

1

2

3

5

1

1

2

3

5

8

FIGURE 1 Rabbits on an Island.

8.1 Applications of Recurrence Relations 503

Solution: Denote by fn the number of pairs of rabbits after n months. We will show that fn,
n = 1, 2, 3, . . . , are the terms of the Fibonacci sequence.

The rabbit population can be modeled using a recurrence relation. At the end of the first
month, the number of pairs of rabbits on the island is f1 = 1. Because this pair does not
breed during the second month, f2 = 1 also. To find the number of pairs after n months, add

The Fibonacci numbers
appear in many other
places in nature, including
the number of petals on
flowers and the number of
spirals on seedheads.

the number on the island the previous month, fn−1, and the number of newborn pairs, which
equals fn−2, because each newborn pair comes from a pair at least 2 months old.

Consequently, the sequence {fn} satisfies the recurrence relation

fn = fn−1 + fn−2

forn ≥ 3 together with the initial conditionsf1 = 1 andf2 = 1. Because this recurrence relation
and the initial conditions uniquely determine this sequence, the number of pairs of rabbits on
the island after n months is given by the nth Fibonacci number. ▲

Example 2 involves a famous puzzle.

EXAMPLE 2 The Tower of Hanoi A popular puzzle of the late nineteenth century invented by the French
mathematician Édouard Lucas, called the Tower of Hanoi, consists of three pegs mounted on
a board together with disks of different sizes. Initially these disks are placed on the first peg
in order of size, with the largest on the bottom (as shown in Figure 2). The rules of the puzzle
allow disks to be moved one at a time from one peg to another as long as a disk is never placed
on top of a smaller disk. The goal of the puzzle is to have all the disks on the second peg in
order of size, with the largest on the bottom.

Let Hn denote the number of moves needed to solve the Tower of Hanoi problem with n
disks. Set up a recurrence relation for the sequence {Hn}.

Solution: Begin with n disks on peg 1. We can transfer the top n− 1 disks, following the rules
of the puzzle, to peg 3 using Hn−1 moves (see Figure 3 for an illustration of the pegs and disks
at this point). We keep the largest disk fixed during these moves. Then, we use one move to
transfer the largest disk to the second peg. We can transfer the n− 1 disks on peg 3 to peg 2
usingHn−1 additional moves, placing them on top of the largest disk, which always stays fixed
on the bottom of peg 2. Moreover, it is easy to see that the puzzle cannot be solved using fewer

Schemes for efficiently
backing up computer files
on multiple tapes or other
media are based on the
moves used to solve the
Tower of Hanoi puzzle.

steps. This shows that

Hn = 2Hn−1 + 1.

The initial condition is H1 = 1, because one disk can be transferred from peg 1 to peg 2,
according to the rules of the puzzle, in one move.

Peg 1 Peg 2 Peg 3

FIGURE 2 The Initial Position in the Tower of Hanoi.

504 8 / Advanced Counting Techniques

Peg 1 Peg 2 Peg 3

FIGURE 3 An Intermediate Position in the Tower of Hanoi.

We can use an iterative approach to solve this recurrence relation. Note that

Hn = 2Hn−1 + 1

= 2(2Hn−2 + 1)+ 1 = 22Hn−2 + 2 + 1

= 22(2Hn−3 + 1)+ 2 + 1 = 23Hn−3 + 22 + 2 + 1
...

= 2n−1H1 + 2n−2 + 2n−3 + · · · + 2 + 1

= 2n−1 + 2n−2 + · · · + 2 + 1

= 2n − 1.

We have used the recurrence relation repeatedly to express Hn in terms of previous terms of
the sequence. In the next to last equality, the initial condition H1 = 1 has been used. The last
equality is based on the formula for the sum of the terms of a geometric series, which can be
found in Theorem 1 in Section 2.4.

The iterative approach has produced the solution to the recurrence relationHn = 2Hn−1 + 1
with the initial condition H1 = 1. This formula can be proved using mathematical induction.
This is left for the reader as Exercise 1.

A myth created to accompany the puzzle tells of a tower in Hanoi where monks are trans-
ferring 64 gold disks from one peg to another, according to the rules of the puzzle. The myth
says that the world will end when they finish the puzzle. How long after the monks started will
the world end if the monks take one second to move a disk?

From the explicit formula, the monks require

264 − 1 = 18,446,744,073,709,551,615

moves to transfer the disks. Making one move per second, it will take them more than 500 billion
years to complete the transfer, so the world should survive a while longer than it already has. ▲

Remark: Many people have studied variations of the original Tower of Hanoi puzzle discussed
in Example 2. Some variations use more pegs, some allow disks to be of the same size, and some
restrict the types of allowable disk moves. One of the oldest and most interesting variations is the
Reve’s puzzle,∗ proposed in 1907 by Henry Dudeney in his book The Canterbury Puzzles. The
Reve’s puzzle involves pilgrims challenged by the Reve to move a stack of cheeses of varying
sizes from the first of four stools to another stool without ever placing a cheese on one of smaller
diameter. The Reve’s puzzle, expressed in terms of pegs and disks, follows the same rules as the

∗Reve, more commonly spelled reeve, is an archaic word for governor.

8.1 Applications of Recurrence Relations 505

Tower of Hanoi puzzle, except that four pegs are used.You may find it surprising that no one has
been able to establish the minimum number of moves required to solve this puzzle for n disks.
However, there is a conjecture, now more than 50 years old, that the minimum number of moves
required equals the number of moves used by an algorithm invented by Frame and Stewart
in 1939. (See Exercises 38–45 and [St94] for more information.)

Example 3 illustrates how recurrence relations can be used to count bit strings of a specified
length that have a certain property.

EXAMPLE 3 Find a recurrence relation and give initial conditions for the number of bit strings of length n
that do not have two consecutive 0s. How many such bit strings are there of length five?

Solution: Let an denote the number of bit strings of length n that do not have two consecutive 0s.
To obtain a recurrence relation for {an}, note that by the sum rule, the number of bit strings of
length n that do not have two consecutive 0s equals the number of such bit strings ending with
a 0 plus the number of such bit strings ending with a 1. We will assume that n ≥ 3, so that the
bit string has at least three bits.

The bit strings of length n ending with 1 that do not have two consecutive 0s are precisely the
bit strings of length n− 1 with no two consecutive 0s with a 1 added at the end. Consequently,
there are an−1 such bit strings.

Bit strings of length n ending with a 0 that do not have two consecutive 0s must have 1
as their (n− 1)st bit; otherwise they would end with a pair of 0s. It follows that the bit strings
of length n ending with a 0 that have no two consecutive 0s are precisely the bit strings of
length n− 2 with no two consecutive 0s with 10 added at the end. Consequently, there are an−2
such bit strings.

We conclude, as illustrated in Figure 4, that

an = an−1 + an−2

for n ≥ 3.
The initial conditions are a1 = 2, because both bit strings of length one, 0 and 1 do not have

consecutive 0s, and a2 = 3, because the valid bit strings of length two are 01, 10, and 11. To
obtain a5, we use the recurrence relation three times to find that

a3 = a2 + a1 = 3 + 2 = 5,

a4 = a3 + a2 = 5 + 3 = 8,

a5 = a4 + a3 = 8 + 5 = 13. ▲

Any bit string of length n – 1 with
no two consecutive 0s

Any bit string of length n – 2 with
no two consecutive 0s 01

1

Total: a
n

= a
n–1 + a

n–2

a
n–1

a
n–2

Number of bit strings
of length n with no
two consecutive 0s:

End with a 1:

End with a 0:

FIGURE 4 Counting Bit Strings of Length n with No Two Consecutive 0s.

506 8 / Advanced Counting Techniques

Remark: Note that {an} satisfies the same recurrence relation as the Fibonacci sequence. Because
a1 = f3 and a2 = f4 it follows that an = fn+2.

Example 4 shows how a recurrence relation can be used to model the number of codewords
that are allowable using certain validity checks.

EXAMPLE 4 Codeword Enumeration A computer system considers a string of decimal digits a valid
codeword if it contains an even number of 0 digits. For instance, 1230407869 is valid,
whereas 120987045608 is not valid. Let an be the number of valid n-digit codewords. Find
a recurrence relation for an.

Solution: Note that a1 = 9 because there are 10 one-digit strings, and only one, namely, the
string 0, is not valid. A recurrence relation can be derived for this sequence by considering how
a valid n-digit string can be obtained from strings of n− 1 digits. There are two ways to form
a valid string with n digits from a string with one fewer digit.

First, a valid string of n digits can be obtained by appending a valid string of n− 1 digits
with a digit other than 0. This appending can be done in nine ways. Hence, a valid string
with n digits can be formed in this manner in 9an−1 ways.

Second, a valid string of n digits can be obtained by appending a 0 to a string of length
n− 1 that is not valid. (This produces a string with an even number of 0 digits because the
invalid string of length n− 1 has an odd number of 0 digits.) The number of ways that this can
be done equals the number of invalid (n− 1)-digit strings. Because there are 10n−1 strings of
length n− 1, and an−1 are valid, there are 10n−1 − an−1 valid n-digit strings obtained by
appending an invalid string of length n− 1 with a 0.

Because all valid strings of length n are produced in one of these two ways, it follows that
there are

an = 9an−1 + (10n−1 − an−1)

= 8an−1 + 10n−1

valid strings of length n. ▲

Example 5 establishes a recurrence relation that appears in many different contexts.

EXAMPLE 5 Find a recurrence relation forCn, the number of ways to parenthesize the product of n+ 1 num-
bers, x0 · x1 · x2 · · · · · xn, to specify the order of multiplication. For example, C3 = 5 because
there are five ways to parenthesize x0 · x1 · x2 · x3 to determine the order of multiplication:

((x0 · x1) · x2) · x3 (x0 · (x1 · x2)) · x3 (x0 · x1) · (x2 · x3)

x0 · ((x1 · x2) · x3) x0 · (x1 · (x2 · x3)).

Solution: To develop a recurrence relation for Cn, we note that however we insert parentheses
in the product x0 · x1 · x2 · · · · · xn, one “·” operator remains outside all parentheses, namely,
the operator for the final multiplication to be performed. [For example, in (x0 · (x1 · x2)) · x3,
it is the final “·”, while in (x0 · x1) · (x2 · x3) it is the second “·”.] This final operator appears
between two of the n+ 1 numbers, say, xk and xk+1. There are CkCn−k−1 ways to insert
parentheses to determine the order of the n+ 1 numbers to be multiplied when the final op-
erator appears between xk and xk+1, because there are Ck ways to insert parentheses in the
product x0 · x1 · · · · · xk to determine the order in which these k + 1 numbers are to be multi-
plied and Cn−k−1 ways to insert parentheses in the product xk+1 · xk+2 · · · · · xn to determine

8.1 Applications of Recurrence Relations 507

the order in which these n− k numbers are to be multiplied. Because this final operator can
appear between any two of the n+ 1 numbers, it follows that

Cn = C0Cn−1 + C1Cn−2 + · · · + Cn−2C1 + Cn−1C0

=
n−1
k= 0

CkCn−k−1.

Note that the initial conditions are C0 = 1 and C1 = 1. ▲

The recurrence relation in Example 5 can be solved using the method of generating func-
tions, which will be discussed in Section 8.4. It can be shown that Cn = C(2n, n)/(n+ 1) (see
Exercise 41 in Section 8.4) and that Cn ∼ 4n

n3/2√
π

(see [GrKnPa94]). The sequence {Cn} is the
sequence of Catalan numbers, named after Eugène Charles Catalan. This sequence appears
as the solution of many different counting problems besides the one considered here (see the
chapter on Catalan numbers in [MiRo91] or [Ro84a] for details).

Algorithms and Recurrence Relations

Recurrence relations play an important role in many aspects of the study of algorithms and their
complexity. In Section 8.3, we will show how recurrence relations can be used to analyze the
complexity of divide-and-conquer algorithms, such as the merge sort algorithm introduced in
Section 5.4. As we will see in Section 8.3, divide-and-conquer algorithms recursively divide a
problem into a fixed number of non-overlapping subproblems until they become simple enough
to solve directly. We conclude this section by introducing another algorithmic paradigm known
as dynamic programming, which can be used to solve many optimization problems efficiently.

An algorithm follows the dynamic programming paradigm when it recursively breaks down
a problem into simpler overlapping subproblems, and computes the solution using the solutions
of the subproblems. Generally, recurrence relations are used to find the overall solution from
the solutions of the subproblems. Dynamic programming has been used to solve important
problems in such diverse areas as economics, computer vision, speech recognition, artificial
intelligence, computer graphics, and bioinformatics. In this section we will illustrate the use of
dynamic programming by constructing an algorithm for solving a scheduling problem. Before
doing so, we will relate the amusing origin of the name dynamic programming, which was

EUGÈNE CHARLES CATALAN (1814–1894) Eugène Catalan was born in Bruges, then part of France.
His father became a successful architect in Paris while Eugène was a boy. Catalan attended a Parisian school
for design hoping to follow in his father’s footsteps. At 15, he won the job of teaching geometry to his design
school classmates. After graduating, Catalan attended a school for the fine arts, but because of his mathematical
aptitude his instructors recommended that he enter the École Polytechnique. He became a student there, but after
his first year, he was expelled because of his politics. However, he was readmitted, and in 1835, he graduated
and won a position at the Collège de Châlons sur Marne.

In 1838, Catalan returned to Paris where he founded a preparatory school with two other mathemati-
cians, Sturm and Liouville. After teaching there for a short time, he was appointed to a position at the École

Polytechnique. He received his doctorate from the École Polytechnique in 1841, but his political activity in favor of the French
Republic hurt his career prospects. In 1846 Catalan held a position at the Collège de Charlemagne; he was appointed to the Lycée
Saint Louis in 1849. However, when Catalan would not take a required oath of allegiance to the new Emperor Louis-Napoleon
Bonaparte, he lost his job. For 13 years he held no permanent position. Finally, in 1865 he was appointed to a chair of mathematics
at the University of Liège, Belgium, a position he held until his 1884 retirement.

Catalan made many contributions to number theory and to the related subject of continued fractions. He defined what are now
known as the Catalan numbers when he solved the problem of dissecting a polygon into triangles using non-intersecting diagonals.
Catalan is also well known for formulating what was known as the Catalan conjecture. This asserted that 8 and 9 are the only
consecutive powers of integers, a conjecture not solved until 2003. Catalan wrote many textbooks, including several that became
quite popular and appeared in as many as 12 editions. Perhaps this textbook will have a 12th edition someday!

508 8 / Advanced Counting Techniques

introduced by the mathematician Richard Bellman in the 1950s. Bellman was working at the
RAND Corporation on projects for the U.S. military, and at that time, the U.S. Secretary of
Defense was hostile to mathematical research. Bellman decided that to ensure funding, he
needed a name not containing the word mathematics for his method for solving scheduling and
planning problems. He decided to use the adjective dynamic because, as he said “it’s impossible
to use the word dynamic in a pejorative sense” and he thought that dynamic programming was
“something not even a Congressman could object to.”

ANEXAMPLEOFDYNAMICPROGRAMMING The problem we use to illustrate dynamic
programming is related to the problem studied in Example 7 in Section 3.1. In that problem
our goal was to schedule as many talks as possible in a single lecture hall. These talks have
preset start and end times; once a talk starts, it continues until it ends; no two talks can proceed
at the same time; and a talk can begin at the same time another one ends. We developed a
greedy algorithm that always produces an optimal schedule, as we proved in Example 12 in
Section 5.1. Now suppose that our goal is not to schedule the most talks possible, but rather to
have the largest possible combined attendance of the scheduled talks.

We formalize this problem by supposing that we have n talks, where talk j begins at
time tj , ends at time ej , and will be attended by wj students. We want a schedule that maximizes
the total number of student attendees. That is, we wish to schedule a subset of talks to maximize
the sum of wj over all scheduled talks. (Note that when a student attends more than one talk, this
student is counted according to the number of talks attended.) We denote by T (j) the maximum
number of total attendees for an optimal schedule from the first j talks, so T (n) is the maximal
number of total attendees for an optimal schedule for all n talks.

We first sort the talks in order of increasing end time. After doing this, we renumber the
talks so that e1 ≤ e2 ≤ · · · ≤ en. We say that two talks are compatible if they can be part of the
same schedule, that is, if the times they are scheduled do not overlap (other than the possibility
one ends and the other starts at the same time). We define p(j) to be largest integer i, i < j ,
for which ei ≤ sj , if such an integer exists, and p(j) = 0 otherwise. That is, talk p(j) is the
talk ending latest among talks compatible with talk j that end before talk j ends, if such a talk
exists, and p(j) = 0 if there are no such talks.

RICHARD BELLMAN (1920–1984) Richard Bellman, born in Brooklyn, where his father was a grocer,
spent many hours in the museums and libraries of New York as a child. After graduating high school, he
studied mathematics at Brooklyn College and graduated in 1941. He began postgraduate work at Johns Hopkins
University, but because of the war, left to teach electronics at the University ofWisconsin. He was able to continue
his mathematics studies at Wisconsin, and in 1943 he received his masters degree there. Later, Bellman entered
Princeton University, teaching in a special U.S. Army program. In late 1944, he was drafted into the army. He
was assigned to the Manhattan Project at Los Alamos where he worked in theoretical physics. After the war, he
returned to Princeton and received his Ph.D. in 1946.

After briefly teaching at Princeton, he moved to Stanford University, where he attained tenure. At
Stanford he pursued his fascination with number theory. However, Bellman decided to focus on mathematical questions arising from
real-world problems. In 1952, he joined the RAND Corporation, working on multistage decision processes, operations research
problems, and applications to the social sciences and medicine. He worked on many military projects while at RAND. In 1965 he
left RAND to become professor of mathematics, electrical and biomedical engineering and medicine at the University of Southern
California.

In the 1950s Bellman pioneered the use of dynamic programming, a technique invented earlier, in a wide range of settings. He
is also known for his work on stochastic control processes, in which he introduced what is now called the Bellman equation. He
coined the term curse of dimensionality to describe problems caused by the exponential increase in volume associated with adding
extra dimensions to a space. He wrote an amazing number of books and research papers with many coauthors, including many on
industrial production and economic systems. His work led to the application of computing techniques in a wide variety of areas
ranging from the design of guidance systems for space vehicles, to network optimization, and even to pest control.

Tragically, in 1973 Bellman was diagnosed with a brain tumor. Although it was removed successfully, complications left him
severely disabled. Fortunately, he managed to continue his research and writing during his remaining ten years of life. Bellman
received many prizes and awards, including the first Norbert Wiener Prize in Applied Mathematics and the IEEE Gold Medal of
Honor. He was elected to the National Academy of Sciences. He was held in high regard for his achievements, courage, and admirable
qualities. Bellman was the father of two children.

8.1 Applications of Recurrence Relations 509

Talk 7

Talk 6

Talk 5

Talk 4

Talk 3

Talk 2

Talk 1

8 a.m. 9 a.m. 10 a.m. 11 a.m. 12 noon 1 p.m. 2 p.m. 3 p.m.

p(7) = 4

p(6) = 2

p(5) = 0

p(4) = 0

p(3) = 1

p(2) = 0

p(1) = 0

FIGURE 5 A Schedule of Lectures with the Values of p(n) Shown.

EXAMPLE 6 Consider seven talks with these start times and end times, as illustrated in Figure 5.

Talk 1: start 8 a.m., end 10 a.m.

Talk 2: start 9 a.m., end 11 a.m.

Talk 3: start 10:30 a.m., end 12 noon
Talk 4: start 9:30 a.m., end 1 p.m.

Talk 5: start 8:30 a.m., end 2 p.m.

Talk 6: start 11 a.m., end 2 p.m.

Talk 7: start 1 p.m., end 2 p.m.

Find p(j) for j = 1, 2, . . . , 7.

Solution: We have p(1) = 0 and p(2) = 0, because no talks end before either of the first two
talks begin. We have p(3) = 1 because talk 3 and talk 1 are compatible, but talk 3 and talk 2
are not compatible; p(4) = 0 because talk 4 is not compatible with any of talks 1, 2, and 3;
p(5) = 0 because talk 5 is not compatible with any of talks 1, 2, 3, and 4; and p(6) = 2 because
talk 6 and talk 2 are compatible, but talk 6 is not compatible with any of talks 3, 4, and 5. Finally,
p(7) = 4, because talk 7 and talk 4 are compatible, but talk 7 is not compatible with either of
talks 5 or 6. ▲

To develop a dynamic programming algorithm for this problem, we first develop a key
recurrence relation. To do this, first note that if j ≤ n, there are two possibilities for an optimal
schedule of the first j talks (recall that we are assuming that the n talks are ordered by increasing
end time): (i) talk j belongs to the optimal schedule or (ii) it does not.

Case (i): We know that talks p(j)+ 1, . . . , j − 1 do not belong to this schedule, for none of
these other talks are compatible with talk j . Furthermore, the other talks in this optimal schedule
must comprise an optimal schedule for talks 1, 2, . . . , p(j). For if there were a better schedule
for talks 1, 2, . . . , p(j), by adding talk j , we will have a schedule better than the overall optimal
schedule. Consequently, in case (i), we have T (j) = wj + T (p(j)).
Case (ii): When talk j does not belong to an optimal schedule, it follows that an optimal
schedule from talks 1, 2, . . . , j is the same as an optimal schedule from talks 1, 2, . . . , j − 1.
Consequently, in case (ii), we have T (j) = T (j − 1). Combining cases (i) and (ii) leads us to
the recurrence relation

T (j) = max(wj + T (p(j)), T (j − 1)).

Now that we have developed this recurrence relation, we can construct an efficient algorithm,
Algorithm 1, for computing the maximum total number of attendees.We ensure that the algorithm
is efficient by storing the value of each T (j) after we compute it. This allows us to compute T (j)

510 8 / Advanced Counting Techniques

only once. If we did not do this, the algorithm would have exponential worst-case complexity.
The process of storing the values as each is computed is known as memoization and is an
important technique for making recursive algorithms efficient.

ALGORITHM 1 Dynamic Programming Algorithm for Scheduling Talks.

procedure Maximum Attendees (s1, s2, . . . , sn: start times of talks;
e1, e2, . . . , en: end times of talks; w1,w2, . . . ,wn: number of attendees to talks)
sort talks by end time and relabel so that e1 ≤ e2 ≤ · · · ≤ en

for j := 1 to n
if no job i with i < j is compatible with job j

p(j) = 0
else p(j) := max{i | i < j and job i is compatible with job j}
T (0) := 0

for j := 1 to n
T (j) := max(wj + T (p(j)), T (j − 1))

return T (n){T (n) is the maximum number of attendees}

In Algorithm 1 we determine the maximum number of attendees that can be achieved
by a schedule of talks, but we do not find a schedule that achieves this maximum. To find
talks we need to schedule, we use the fact that talk j belongs to an optimal solution for the
first j talks if and only if wj + T (p(j)) ≥ T (j − 1). We leave it as Exercise 53 to construct an
algorithm based on this observation that determines which talks should be scheduled to achieve
the maximum total number of attendees.

Algorithm 1 is a good example of dynamic programming as the maximum total atten-
dance is found using the optimal solutions of the overlapping subproblems, each of which de-
termines the maximum total attendance of the first j talks for some j with 1 ≤ j ≤ n− 1.
See Exercises 56 and 57 and Supplementary Exercises 14 and 17 for other examples of
dynamic programming.

Exercises

1. Use mathematical induction to verify the formula derived
in Example 2 for the number of moves required to com-
plete the Tower of Hanoi puzzle.

2. a) Find a recurrence relation for the number of permu-
tations of a set with n elements.

b) Use this recurrence relation to find the number of per-
mutations of a set with n elements using iteration.

3. A vending machine dispensing books of stamps accepts
only one-dollar coins, $1 bills, and $5 bills.
a) Find a recurrence relation for the number of ways

to deposit n dollars in the vending machine, where
the order in which the coins and bills are deposited
matters.

b) What are the initial conditions?
c) How many ways are there to deposit $10 for a book

of stamps?
4. A country uses as currency coins with values of 1 peso,

2 pesos, 5 pesos, and 10 pesos and bills with values of

5 pesos, 10 pesos, 20 pesos, 50 pesos, and 100 pesos. Find
a recurrence relation for the number of ways to pay a bill
of n pesos if the order in which the coins and bills are
paid matters.

5. How many ways are there to pay a bill of 17 pesos using
the currency described in Exercise 4, where the order in
which coins and bills are paid matters?

∗6. a) Find a recurrence relation for the number of strictly
increasing sequences of positive integers that have 1
as their first term and n as their last term, where n is
a positive integer. That is, sequences a1, a2, . . . , ak ,
where a1 = 1, ak = n, and aj < aj+1 for j =
1, 2, . . . , k − 1.

b) What are the initial conditions?
c) How many sequences of the type described in (a) are

there when n is an integer with n ≥ 2?

7. a) Find a recurrence relation for the number of bit strings
of length n that contain a pair of consecutive 0s.

8.1 Applications of Recurrence Relations 511

b) What are the initial conditions?
c) How many bit strings of length seven contain two

consecutive 0s?
8. a) Find a recurrence relation for the number of bit strings

of length n that contain three consecutive 0s.
b) What are the initial conditions?
c) How many bit strings of length seven contain three

consecutive 0s?
9. a) Find a recurrence relation for the number of bit strings

of length n that do not contain three consecutive 0s.
b) What are the initial conditions?
c) How many bit strings of length seven do not contain

three consecutive 0s?
∗10. a) Find a recurrence relation for the number of bit strings

of length n that contain the string 01.
b) What are the initial conditions?
c) How many bit strings of length seven contain the

string 01?
11. a) Find a recurrence relation for the number of ways to

climb n stairs if the person climbing the stairs can take
one stair or two stairs at a time.

b) What are the initial conditions?
c) In how many ways can this person climb a flight of

eight stairs?
12. a) Find a recurrence relation for the number of ways to

climb n stairs if the person climbing the stairs can take
one, two, or three stairs at a time.

b) What are the initial conditions?
c) In many ways can this person climb a flight of eight

stairs?
A string that contains only 0s, 1s, and 2s is called a ternary
string.
13. a) Find a recurrence relation for the number of ternary

strings of length n that do not contain two consecutive
0s.

b) What are the initial conditions?
c) How many ternary strings of length six do not contain

two consecutive 0s?
14. a) Find a recurrence relation for the number of

ternary strings of length n that contain two
consecutive 0s.

b) What are the initial conditions?
c) How many ternary strings of length six contain two

consecutive 0s?
∗15. a) Find a recurrence relation for the number of ternary

strings of length n that do not contain two consecutive
0s or two consecutive 1s.

b) What are the initial conditions?
c) How many ternary strings of length six do not contain

two consecutive 0s or two consecutive 1s?
∗16. a) Find a recurrence relation for the number of ternary

strings of length n that contain either two consecutive
0s or two consecutive 1s.

b) What are the initial conditions?
c) How many ternary strings of length six contain two

consecutive 0s or two consecutive 1s?

∗17. a) Find a recurrence relation for the number of ternary
strings of length n that do not contain consecutive
symbols that are the same.

b) What are the initial conditions?
c) How many ternary strings of length six do not contain

consecutive symbols that are the same?
∗∗18. a) Find a recurrence relation for the number of ternary

strings of length n that contain two consecutive sym-
bols that are the same.

b) What are the initial conditions?
c) How many ternary strings of length six contain con-

secutive symbols that are the same?

19. Messages are transmitted over a communications channel
using two signals. The transmittal of one signal requires
1 microsecond, and the transmittal of the other signal re-
quires 2 microseconds.
a) Find a recurrence relation for the number of differ-

ent messages consisting of sequences of these two
signals, where each signal in the message is imme-
diately followed by the next signal, that can be sent
in n microseconds.

b) What are the initial conditions?
c) How many different messages can be sent in 10 mi-

croseconds using these two signals?
20. A bus driver pays all tolls, using only nickels and dimes,

by throwing one coin at a time into the mechanical toll
collector.
a) Find a recurrence relation for the number of different

ways the bus driver can pay a toll of n cents (where
the order in which the coins are used matters).

b) In how many different ways can the driver pay a toll
of 45 cents?

21. a) Find the recurrence relation satisfied byRn, whereRn
is the number of regions that a plane is divided into
by n lines, if no two of the lines are parallel and no
three of the lines go through the same point.

b) Find Rn using iteration.
∗22. a) Find the recurrence relation satisfied byRn, whereRn

is the number of regions into which the surface of a
sphere is divided by n great circles (which are the in-
tersections of the sphere and planes passing through
the center of the sphere), if no three of the great circles
go through the same point.

b) Find Rn using iteration.
∗23. a) Find the recurrence relation satisfied by Sn, where Sn

is the number of regions into which three-dimensional
space is divided byn planes if every three of the planes
meet in one point, but no four of the planes go through
the same point.

b) Find Sn using iteration.

24. Find a recurrence relation for the number of bit sequences
of length n with an even number of 0s.

25. How many bit sequences of length seven contain an even
number of 0s?

512 8 / Advanced Counting Techniques

26. a) Find a recurrence relation for the number of ways to
completely cover a 2 × n checkerboard with 1 × 2
dominoes. [Hint: Consider separately the coverings
where the position in the top right corner of the
checkerboard is covered by a domino positioned hor-
izontally and where it is covered by a domino posi-
tioned vertically.]

b) What are the initial conditions for the recurrence re-
lation in part (a)?

c) How many ways are there to completely cover a
2 × 17 checkerboard with 1 × 2 dominoes?

27. a) Find a recurrence relation for the number of ways to
lay out a walkway with slate tiles if the tiles are red,
green, or gray, so that no two red tiles are adjacent and
tiles of the same color are considered indistinguish-
able.

b) What are the initial conditions for the recurrence re-
lation in part (a)?

c) How many ways are there to lay out a path of seven
tiles as described in part (a)?

28. Show that the Fibonacci numbers satisfy the recurrence
relation fn = 5fn−4 + 3fn−5 for n = 5, 6, 7, . . . , to-
gether with the initial conditions f0 = 0, f1 = 1, f2 = 1,
f3 = 2, and f4 = 3. Use this recurrence relation to show
that f5n is divisible by 5, for n = 1, 2, 3,

∗29. Let S(m, n) denote the number of onto functions from
a set with m elements to a set with n elements. Show
that S(m, n) satisfies the recurrence relation

S(m, n) = nm −
n−1
k=1

C(n, k)S(m, k)

whenever m ≥ n and n > 1, with the initial condition
S(m, 1) = 1.

30. a) Write out all the ways the product x0 · x1 · x2 · x3 · x4
can be parenthesized to determine the order of multi-
plication.

b) Use the recurrence relation developed in Example 5
to calculate C4, the number of ways to parenthesize
the product of five numbers so as to determine the or-
der of multiplication. Verify that you listed the correct
number of ways in part (a).

c) Check your result in part (b) by finding C4, using the
closed formula for Cn mentioned in the solution of
Example 5.

31. a) Use the recurrence relation developed in Example 5 to
determineC5, the number of ways to parenthesize the
product of six numbers so as to determine the order
of multiplication.

b) Check your result with the closed formula forC5 men-
tioned in the solution of Example 5.

∗32. In the Tower of Hanoi puzzle, suppose our goal is to trans-
fer all n disks from peg 1 to peg 3, but we cannot move a
disk directly between pegs 1 and 3. Each move of a disk
must be a move involving peg 2. As usual, we cannot
place a disk on top of a smaller disk.

a) Find a recurrence relation for the number of moves re-
quired to solve the puzzle for n disks with this added
restriction.

b) Solve this recurrence relation to find a formula for the
number of moves required to solve the puzzle for n
disks.

c) How many different arrangements are there of the n
disks on three pegs so that no disk is on top of a smaller
disk?

d) Show that every allowable arrangement of the n disks
occurs in the solution of this variation of the puzzle.

Exercises 33–37 deal with a variation of the Josephus

problem described by Graham, Knuth, and Patashnik in
[GrKnPa94]. This problem is based on an account by the his-
torian Flavius Josephus, who was part of a band of 41 Jewish
rebels trapped in a cave by the Romans during the Jewish-
Roman war of the first century. The rebels preferred suicide
to capture; they decided to form a circle and to repeatedly
count off around the circle, killing every third rebel left alive.
However, Josephus and another rebel did not want to be killed
this way; they determined the positions where they should
stand to be the last two rebels remaining alive. The variation
we consider begins with n people, numbered 1 to n, stand-
ing around a circle. In each stage, every second person still
left alive is eliminated until only one survives. We denote the
number of the survivor by J (n).
33. Determine the value of J (n) for each integer n with

1 ≤ n ≤ 16.
34. Use the values you found in Exercise 33 to conjecture a

formula for J (n). [Hint: Write n = 2m + k, where m is
a nonnegative integer and k is a nonnegative integer less
than 2m.]

35. Show that J (n) satisfies the recurrence relation J (2n) =
2J (n)− 1 and J (2n+ 1) = 2J (n)+ 1, for n ≥ 1, and
J (1) = 1.

36. Use mathematical induction to prove the formula you
conjectured in Exercise 34, making use of the recurrence
relation from Exercise 35.

37. Determine J (100), J (1000), and J (10,000) from your
formula for J (n).

Exercises 38–45 involve the Reve’s puzzle, the variation of
the Tower of Hanoi puzzle with four pegs and n disks. Before
presenting these exercises, we describe the Frame–Stewart al-
gorithm for moving the disks from peg 1 to peg 4 so that no
disk is ever on top of a smaller one. This algorithm, given
the number of disks n as input, depends on a choice of an
integer k with 1 ≤ k ≤ n. When there is only one disk, move
it from peg 1 to peg 4 and stop. For n > 1, the algorithm pro-
ceeds recursively, using these three steps. Recursively move
the stack of the n− k smallest disks from peg 1 to peg 2,
using all four pegs. Next move the stack of the k largest
disks from peg 1 to peg 4, using the three-peg algorithm from
the Tower of Hanoi puzzle without using the peg holding
the n− k smallest disks. Finally, recursively move the
smallest n− k disks to peg 4, using all four pegs. Frame
and Stewart showed that to produce the fewest moves using
their algorithm, k should be chosen to be the smallest integer

8.1 Applications of Recurrence Relations 513

such that n does not exceed tk = k(k + 1)/2, the kth triangu-
lar number, that is, tk−1 < n ≤ tk . The unsettled conjecture,
known as Frame’s conjecture, is that this algorithm uses the
fewest number of moves required to solve the puzzle, no mat-
ter how the disks are moved.

38. Show that the Reve’s puzzle with three disks can be solved
using five, and no fewer, moves.

39. Show that the Reve’s puzzle with four disks can be solved
using nine, and no fewer, moves.

40. Describe the moves made by the Frame–Stewart al-
gorithm, with k chosen so that the fewest moves are
required, for
a) 5 disks. b) 6 disks. c) 7 disks. d) 8 disks.

∗41. Show that if R(n) is the number of moves used by
the Frame–Stewart algorithm to solve the Reve’s puzzle
with n disks, where k is chosen to be the smallest integer
with n ≤ k(k + 1)/2, then R(n) satisfies the recurrence
relation R(n) = 2R(n− k)+ 2k − 1, with R(0) = 0
and R(1) = 1.

∗42. Show that if k is as chosen in Exercise 41, then
R(n)− R(n− 1) = 2k−1.

∗43. Show that if k is as chosen in Exercise 41, then
R(n) = k

i= 1 i2
i−1 − (tk − n)2k−1.

∗44. Use Exercise 43 to give an upper bound on the num-
ber of moves required to solve the Reve’s puzzle for all
integers n with 1 ≤ n ≤ 25.

∗45. Show that R(n) is O(
√
n2

√
2n).

Let {an} be a sequence of real numbers. The backward dif-
ferences of this sequence are defined recursively as shown
next. The first difference ∇an is

∇an = an − an−1.

The (k + 1)st difference ∇k+1an is obtained from ∇kan by

∇k+1an = ∇kan − ∇kan−1.

46. Find ∇an for the sequence {an}, where
a) an = 4. b) an = 2n.

c) an = n2. d) an = 2n.
47. Find ∇2an for the sequences in Exercise 46.

48. Show that an−1 = an − ∇an.

49. Show that an−2 = an − 2∇an + ∇2an.

∗50. Prove that an−k can be expressed in terms of an, ∇an,
∇2an, . . . ,∇kan.

51. Express the recurrence relation an = an−1 + an−2 in
terms of an,∇an, and ∇2an.

52. Show that any recurrence relation for the sequence {an}
can be written in terms of an,∇an,∇2an,The result-
ing equation involving the sequences and its differences
is called a difference equation.

∗53. Construct the algorithm described in the text after Algo-
rithm 1 for determining which talks should be scheduled
to maximize the total number of attendees and not just
the maximum total number of attendees determined by
Algorithm 1.

54. Use Algorithm 1 to determine the maximum number of
total attendees in the talks in Example 6 if wi , the number
of attendees of talk i, i = 1, 2, . . . , 7, is
a) 20, 10, 50, 30, 15, 25, 40.
b) 100, 5, 10, 20, 25, 40, 30.
c) 2, 3, 8, 5, 4, 7, 10.
d) 10, 8, 7, 25, 20, 30, 5.

55. For each part of Exercise 54, use your algorithm from
Exercise 53 to find the optimal schedule for talks so that
the total number of attendees is maximized.

56. In this exercise we will develop a dynamic program-
ming algorithm for finding the maximum sum of con-
secutive terms of a sequence of real numbers. That
is, given a sequence of real numbers a1, a2, . . . , an,
the algorithm computes the maximum sum

 k
i=j ai

where 1 ≤ j ≤ k ≤ n.
a) Show that if all terms of the sequence are nonnegative,

this problem is solved by taking the sum of all terms.
Then, give an example where the maximum sum of
consecutive terms is not the sum of all terms.

b) LetM(k) be the maximum of the sums of consecutive
terms of the sequence ending at ak . That is, M(k) =
max1≤j≤k

 k
i=j ai . Explain why the recurrence rela-

tion M(k) = max(M(k − 1)+ ak, ak) holds for k =
2, ..., n.

c) Use part (b) to develop a dynamic programming algo-
rithm for solving this problem.

d) Show each step your algorithm from part (c) uses to
find the maximum sum of consecutive terms of the
sequence 2,−3, 4, 1,−2, 3.

e) Show that the worst-case complexity in terms of the
number of additions and comparisons of your algo-
rithm from part (c) is linear.

∗57. Dynamic programming can be used to develop
an algorithm for solving the matrix-chain multi-
plication problem introduced in Section 3.3. This
is the problem of determining how the product
A1A2 · · ·An can be computed using the fewest
integer multiplications, where A1,A2, . . . ,An are
m1 ×m2,m2 ×m3, . . . , mn ×mn+1 matrices, respec-
tively, and each matrix has integer entries. Recall that
by the associative law, the product does not depend on
the order in which the matrices are multiplied.
a) Show that the brute-force method of determining the

minimum number of integer multiplications needed to
solve a matrix-chain multiplication problem has expo-
nential worst-case complexity. [Hint: Do this by first
showing that the order of multiplication of matrices
is specified by parenthesizing the product. Then, use
Example 5 and the result of part (c) of Exercise 41 in
Section 8.4.]

514 8 / Advanced Counting Techniques

b) Denote by Aij the product AiAi+1 . . . ,Aj ,
and M(i, j) the minimum number of integer mul-
tiplications required to find Aij . Show that if the
least number of integer multiplications are used to
compute Aij , where i < j , by splitting the product
into the product of Ai through Ak and the product
of Ak+1 through Aj , then the first k terms must
be parenthesized so that Aik is computed in the
optimal way using M(i, k) integer multiplications
and Ak+1,j must be parenthesized so that Ak+1,j
is computed in the optimal way using M(k + 1, j)
integer multiplications.

c) Explain why part (b) leads to the recurrence rela-
tion M(i, j) = mini≤k<j (M(i, k)+M(k + 1, j)+
mimk+1mj+1) if 1 ≤ i ≤ j < j ≤ n.

d) Use the recurrence relation in part (c) to construct
an efficient algorithm for determining the order
the n matrices should be multiplied to use the min-
imum number of integer multiplications. Store the
partial results M(i, j) as you find them so that your
algorithm will not have exponential complexity.

e) Show that your algorithm from part (d) has O(n3)

worst-case complexity in terms of multiplications of
integers.

8.2 Solving Linear Recurrence Relations

Introduction

A wide variety of recurrence relations occur in models. Some of these recurrence relations can
be solved using iteration or some other ad hoc technique. However, one important class of
recurrence relations can be explicitly solved in a systematic way. These are recurrence relations
that express the terms of a sequence as linear combinations of previous terms.

DEFINITION 1 A linear homogeneous recurrence relation of degree k with constant coefficients is a recur-
rence relation of the form

an = c1an−1 + c2an−2 + · · · + ckan−k,

where c1, c2, . . . , ck are real numbers, and ck = 0.

The recurrence relation in the definition is linear because the right-hand side is a sum of
previous terms of the sequence each multiplied by a function of n. The recurrence relation is
homogeneous because no terms occur that are not multiples of the aj s. The coefficients of the
terms of the sequence are all constants, rather than functions that depend on n. The degree
is k because an is expressed in terms of the previous k terms of the sequence.

A consequence of the second principle of mathematical induction is that a sequence satis-
fying the recurrence relation in the definition is uniquely determined by this recurrence relation
and the k initial conditions

a0 = C0, a1 = C1, . . . , ak−1 = Ck−1.

EXAMPLE 1 The recurrence relation Pn = (1.11)Pn−1 is a linear homogeneous recurrence relation of degree
one. The recurrence relation fn = fn−1 + fn−2 is a linear homogeneous recurrence relation of
degree two. The recurrence relation an = an−5 is a linear homogeneous recurrence relation of
degree five. ▲

Example 2 presents some examples of recurrence relations that are not linear homogeneous
recurrence relations with constant coefficients.

EXAMPLE 2 The recurrence relation an = an−1 + a2
n−2 is not linear. The recurrence relation Hn =

2Hn−1 + 1 is not homogeneous. The recurrence relation Bn = nBn−1 does not have constant
coefficients. ▲

8.2 Solving Linear Recurrence Relations 515

Linear homogeneous recurrence relations are studied for two reasons. First, they often occur
in modeling of problems. Second, they can be systematically solved.

Solving Linear Homogeneous Recurrence Relations
with Constant Coefficients

The basic approach for solving linear homogeneous recurrence relations is to look for solutions
of the form an = rn, where r is a constant. Note that an = rn is a solution of the recurrence
relation an = c1an−1 + c2an−2 + · · · + ckan−k if and only if

rn = c1r
n−1 + c2r

n−2 + · · · + ckrn−k.

When both sides of this equation are divided by rn−k and the right-hand side is subtracted from
the left, we obtain the equation

rk − c1r
k−1 − c2r

k−2 − · · · − ck−1r − ck = 0.

Consequently, the sequence {an} with an = rn is a solution if and only if r is a solution of this
last equation. We call this the characteristic equation of the recurrence relation. The solutions
of this equation are called the characteristic roots of the recurrence relation. As we will see,
these characteristic roots can be used to give an explicit formula for all the solutions of the
recurrence relation.

We will first develop results that deal with linear homogeneous recurrence relations with
constant coefficients of degree two. Then corresponding general results when the degree may be
greater than two will be stated. Because the proofs needed to establish the results in the general
case are more complicated, they will not be given here.

We now turn our attention to linear homogeneous recurrence relations of degree two. First,
consider the case when there are two distinct characteristic roots.

THEOREM 1 Let c1 and c2 be real numbers. Suppose that r2 − c1r − c2 = 0 has two distinct roots r1
and r2. Then the sequence {an} is a solution of the recurrence relation an = c1an−1 + c2an−2
if and only if an = α1r

n
1 + α2r

n
2 for n = 0, 1, 2, . . . , where α1 and α2 are constants.

Proof: We must do two things to prove the theorem. First, it must be shown that if r1 and r2
are the roots of the characteristic equation, and α1 and α2 are constants, then the sequence {an}
with an = α1r

n
1 + α2r

n
2 is a solution of the recurrence relation. Second, it must be shown that

if the sequence {an} is a solution, then an = α1r
n
1 + α2r

n
2 for some constants α1 and α2.

Now we will show that if an = α1r
n
1 + α2r

n
2 , then the sequence {an} is a solution

of the recurrence relation. Because r1 and r2 are roots of r2 − c1r − c2 = 0, it follows
that r2

1 = c1r1 + c2, r2
2 = c1r2 + c2.

From these equations, we see that

c1an−1 + c2an−2 = c1(α1r
n−1
1 + α2r

n−1
2)+ c2(α1r

n−2
1 + α2r

n−2
2)

= α1r
n−2
1 (c1r1 + c2)+ α2r

n−2
2 (c1r2 + c2)

= α1r
n−2
1 r2

1 + α2r
n−2
2 r2

2

= α1r
n
1 + α2r

n
2

= an.
This shows that the sequence {an} with an = α1r

n
1 + α2r

n
2 is a solution of the recurrence relation.

516 8 / Advanced Counting Techniques

To show that every solution {an} of the recurrence relation an = c1an−1 + c2an−2
has an = α1r

n
1 + α2r

n
2 for n = 0, 1, 2, . . . , for some constants α1 and α2, suppose that {an} is a

solution of the recurrence relation, and the initial conditions a0 = C0 and a1 = C1 hold. It will
be shown that there are constants α1 and α2 such that the sequence {an} with an = α1r

n
1 + α2r

n
2

satisfies these same initial conditions. This requires that

a0 = C0 = α1 + α2,

a1 = C1 = α1r1 + α2r2.

We can solve these two equations for α1 and α2. From the first equation it follows that
α2 = C0 − α1. Inserting this expression into the second equation gives

C1 = α1r1 + (C0 − α1)r2.

Hence,

C1 = α1(r1 − r2)+ C0r2.

This shows that

α1 = C1 − C0r2

r1 − r2
and

α2 = C0 − α1 = C0 − C1 − C0r2

r1 − r2
= C0r1 − C1

r1 − r2
,

where these expressions for α1 and α2 depend on the fact that r1 = r2. (When r1 = r2, this
theorem is not true.) Hence, with these values for α1 and α2, the sequence {an} with α1r

n
1 + α2r

n
2

satisfies the two initial conditions.
We know that {an} and {α1r

n
1 + α2r

n
2 } are both solutions of the recurrence relation

an = c1an−1 + c2an−2 and both satisfy the initial conditions when n = 0 and n = 1. Because
there is a unique solution of a linear homogeneous recurrence relation of degree two with two
initial conditions, it follows that the two solutions are the same, that is, an = α1r

n
1 + α2r

n
2 for

all nonnegative integers n. We have completed the proof by showing that a solution of the lin-
ear homogeneous recurrence relation with constant coefficients of degree two must be of the
form an = α1r

n
1 + α2r

n
2 , where α1 and α2 are constants.

The characteristic roots of a linear homogeneous recurrence relation with constant coeffi-
cients may be complex numbers. Theorem 1 (and also subsequent theorems in this section) still
applies in this case. Recurrence relations with complex characteristic roots will not be discussed
in the text. Readers familiar with complex numbers may wish to solve Exercises 38 and 39.

Examples 3 and 4 show how to use Theorem 1 to solve recurrence relations.

EXAMPLE 3 What is the solution of the recurrence relation

an = an−1 + 2an−2

with a0 = 2 and a1 = 7?

Solution: Theorem 1 can be used to solve this problem. The characteristic equation of the
recurrence relation is r2 − r − 2 = 0. Its roots are r = 2 and r = −1. Hence, the sequence {an}
is a solution to the recurrence relation if and only if

an = α12n + α2(−1)n,

8.2 Solving Linear Recurrence Relations 517

for some constants α1 and α2. From the initial conditions, it follows that

a0 = 2 = α1 + α2,

a1 = 7 = α1 · 2 + α2 · (−1).

Solving these two equations shows that α1 = 3 and α2 = −1. Hence, the solution to the recur-
rence relation and initial conditions is the sequence {an} with

an = 3 · 2n − (−1)n. ▲

EXAMPLE 4 Find an explicit formula for the Fibonacci numbers.

Solution: Recall that the sequence of Fibonacci numbers satisfies the recurrence relation
fn = fn−1 + fn−2 and also satisfies the initial conditions f0 = 0 and f1 = 1. The roots of the
characteristic equation r2 − r − 1 = 0 are r1 = (1 +

√
5)/2 and r2 = (1 −

√
5)/2. Therefore,

from Theorem 1 it follows that the Fibonacci numbers are given by

fn = α1

1 +

√
5

2

 n
+ α2

1 −

√
5

2

 n
,

for some constants α1 and α2. The initial conditions f0 = 0 and f1 = 1 can be used to find these
constants. We have

f0 = α1 + α2 = 0,

f1 = α1

1 +

√
5

2

+ α2

1 −

√
5

2

= 1.

The solution to these simultaneous equations for α1 and α2 is

α1 = 1/
√

5, α2 = −1/
√

5.

Consequently, the Fibonacci numbers are given by

fn = 1√
5

1 +

√
5

2

 n
− 1√

5

1 −

√
5

2

 n
.

▲

Theorem 1 does not apply when there is one characteristic root of multiplicity two. If
this happens, then an = nrn0 is another solution of the recurrence relation when r0 is a root of
multiplicity two of the characteristic equation. Theorem 2 shows how to handle this case.

THEOREM 2 Let c1 and c2 be real numbers with c2 = 0. Suppose that r2 − c1r − c2 = 0 has only one
root r0. A sequence {an} is a solution of the recurrence relation an = c1an−1 + c2an−2 if and
only if an = α1r

n
0 + α2nr

n
0 , for n = 0, 1, 2, . . . , where α1 and α2 are constants.

The proof of Theorem 2 is left as Exercise 10. Example 5 illustrates the use of this theorem.

518 8 / Advanced Counting Techniques

EXAMPLE 5 What is the solution of the recurrence relation

an = 6an−1 − 9an−2

with initial conditions a0 = 1 and a1 = 6?

Solution: The only root of r2 − 6r + 9 = 0 is r = 3. Hence, the solution to this recurrence
relation is

an = α13n + α2n3n

for some constants α1 and α2. Using the initial conditions, it follows that

a0 = 1 = α1,

a1 = 6 = α1 · 3 + α2 · 3.

Solving these two equations shows that α1 = 1 and α2 = 1. Consequently, the solution to this
recurrence relation and the initial conditions is

an = 3n + n3n.

▲

We will now state the general result about the solution of linear homogeneous recurrence
relations with constant coefficients, where the degree may be greater than two, under the as-
sumption that the characteristic equation has distinct roots. The proof of this result will be left
as Exercise 16.

THEOREM 3 Let c1, c2, . . . , ck be real numbers. Suppose that the characteristic equation

rk − c1r
k−1 − · · · − ck = 0

has k distinct roots r1, r2, . . . , rk . Then a sequence {an} is a solution of the recurrence relation

an = c1an−1 + c2an−2 + · · · + ckan−k

if and only if

an = α1r
n
1 + α2r

n
2 + · · · + αkrnk

for n = 0, 1, 2, . . . , where α1, α2, . . . , αk are constants.

We illustrate the use of the theorem with Example 6.

EXAMPLE 6 Find the solution to the recurrence relation

an = 6an−1 − 11an−2 + 6an−3

with the initial conditions a0 = 2, a1 = 5, and a2 = 15.

8.2 Solving Linear Recurrence Relations 519

Solution: The characteristic polynomial of this recurrence relation is

r3 − 6r2 + 11r − 6.

The characteristic roots are r = 1, r = 2, and r = 3, because r3 − 6r2 + 11r − 6 =
(r − 1)(r − 2)(r − 3). Hence, the solutions to this recurrence relation are of the form

an = α1 · 1n + α2 · 2n + α3 · 3n.

To find the constants α1, α2, and α3, use the initial conditions. This gives

a0 = 2 = α1 + α2 + α3,

a1 = 5 = α1 + α2 · 2 + α3 · 3,

a2 = 15 = α1 + α2 · 4 + α3 · 9.

When these three simultaneous equations are solved for α1, α2, and α3, we find that α1 = 1,
α2 = −1, and α3 = 2. Hence, the unique solution to this recurrence relation and the given initial
conditions is the sequence {an} with

an = 1 − 2n + 2 · 3n. ▲

We now state the most general result about linear homogeneous recurrence relations with
constant coefficients, allowing the characteristic equation to have multiple roots. The key point
is that for each root r of the characteristic equation, the general solution has a summand of the
form P(n)rn, where P(n) is a polynomial of degreem− 1, withm the multiplicity of this root.
We leave the proof of this result as Exercise 51.

THEOREM 4 Let c1, c2, . . . , ck be real numbers. Suppose that the characteristic equation

rk − c1r
k−1 − · · · − ck = 0

has t distinct roots r1, r2, . . . , rt with multiplicities m1,m2, . . . , mt , respectively, so
that mi ≥ 1 for i = 1, 2, . . . , t and m1 +m2 + · · · +mt = k. Then a sequence {an} is a
solution of the recurrence relation

an = c1an−1 + c2an−2 + · · · + ckan−k

if and only if

an = (α1,0 + α1,1n+ · · · + α1,m1−1n
m1−1)rn1

+ (α2,0 + α2,1n+ · · · + α2,m2−1n
m2−1)rn2

+ · · · + (αt,0 + αt,1n+ · · · + αt,mt−1n
mt−1)rnt

for n = 0, 1, 2, . . . , where αi,j are constants for 1 ≤ i ≤ t and 0 ≤ j ≤ mi − 1.

Example 7 illustrates how Theorem 4 is used to find the general form of a solution of a
linear homogeneous recurrence relation when the characteristic equation has several repeated
roots.

520 8 / Advanced Counting Techniques

EXAMPLE 7 Suppose that the roots of the characteristic equation of a linear homogeneous recurrence relation
are 2, 2, 2, 5, 5, and 9 (that is, there are three roots, the root 2 with multiplicity three, the root
5 with multiplicity two, and the root 9 with multiplicity one). What is the form of the general
solution?

Solution: By Theorem 4, the general form of the solution is

(α1,0 + α1,1n+ α1,2n
2)2n + (α2,0 + α2,1n)5n + α3,09n.

▲

We now illustrate the use of Theorem 4 to solve a linear homogeneous recurrence relation
with constant coefficients when the characteristic equation has a root of multiplicity three.

EXAMPLE 8 Find the solution to the recurrence relation

an = −3an−1 − 3an−2 − an−3

with initial conditions a0 = 1, a1 = −2, and a2 = −1.

Solution: The characteristic equation of this recurrence relation is

r3 + 3r2 + 3r + 1 = 0.

Because r3 + 3r2 + 3r + 1 = (r + 1)3, there is a single root r = −1 of multiplicity three of
the characteristic equation. By Theorem 4 the solutions of this recurrence relation are of the
form

an = α1,0(−1)n + α1,1n(−1)n + α1,2n
2(−1)n.

To find the constants α1,0, α1,1, and α1,2, use the initial conditions. This gives

a0 = 1 = α1,0,

a1 = −2 = −α1,0 − α1,1 − α1,2,

a2 = −1 = α1,0 + 2α1,1 + 4α1,2.

The simultaneous solution of these three equations is α1,0 = 1, α1,1 = 3, and α1,2 = −2.
Hence, the unique solution to this recurrence relation and the given initial conditions is the
sequence {an} with

an = (1 + 3n− 2n2)(−1)n.
▲

Linear Nonhomogeneous Recurrence Relations
with Constant Coefficients

We have seen how to solve linear homogeneous recurrence relations with constant coefficients.
Is there a relatively simple technique for solving a linear, but not homogeneous, recurrence
relation with constant coefficients, such as an = 3an−1 + 2n? We will see that the answer is yes
for certain families of such recurrence relations.

The recurrence relation an = 3an−1 + 2n is an example of a linear nonhomogeneous
recurrence relation with constant coefficients, that is, a recurrence relation of the form

an = c1an−1 + c2an−2 + · · · + ckan−k + F(n),

8.2 Solving Linear Recurrence Relations 521

where c1, c2, . . . , ck are real numbers and F(n) is a function not identically zero depending
only on n. The recurrence relation

an = c1an−1 + c2an−2 + · · · + ckan−k

is called the associated homogeneous recurrence relation. It plays an important role in the
solution of the nonhomogeneous recurrence relation.

EXAMPLE 9 Each of the recurrence relations an = an−1 + 2n, an = an−1 + an−2 + n2 + n+ 1, an =
3an−1 + n3n, and an = an−1 + an−2 + an−3 + n! is a linear nonhomogeneous recurrence re-
lation with constant coefficients. The associated linear homogeneous recurrence relations are
an = an−1, an = an−1 + an−2, an = 3an−1, and an = an−1 + an−2 + an−3, respectively. ▲

The key fact about linear nonhomogeneous recurrence relations with constant coefficients
is that every solution is the sum of a particular solution and a solution of the associated linear
homogeneous recurrence relation, as Theorem 5 shows.

THEOREM 5
If {a(p)n } is a particular solution of the nonhomogeneous linear recurrence relation with
constant coefficients

an = c1an−1 + c2an−2 + · · · + ckan−k + F(n),

then every solution is of the form {a(p)n + a(h)n }, where {a(h)n } is a solution of the associated
homogeneous recurrence relation

an = c1an−1 + c2an−2 + · · · + ckan−k.

Proof: Because {a(p)n } is a particular solution of the nonhomogeneous recurrence relation, we
know that

a
(p)
n = c1a

(p)
n−1 + c2a

(p)
n−2 + · · · + cka(p)n−k + F(n).

Now suppose that {bn} is a second solution of the nonhomogeneous recurrence relation, so that

bn = c1bn−1 + c2bn−2 + · · · + ckbn−k + F(n).

Subtracting the first of these two equations from the second shows that

bn − a(p)n = c1(bn−1 − a(p)n−1)+ c2(bn−2 − a(p)n−2)+ · · · + ck(bn−k − a(p)n−k).

It follows that {bn − apn } is a solution of the associated homogeneous linear recurrence,
say, {a(h)n }. Consequently, bn = a(p)n + a(h)n for all n.

By Theorem 5, we see that the key to solving nonhomogeneous recurrence relations with
constant coefficients is finding a particular solution. Then every solution is a sum of this solution

522 8 / Advanced Counting Techniques

and a solution of the associated homogeneous recurrence relation. Although there is no general
method for finding such a solution that works for every function F(n), there are techniques that
work for certain types of functions F(n), such as polynomials and powers of constants. This is
illustrated in Examples 10 and 11.

EXAMPLE 10 Find all solutions of the recurrence relation an = 3an−1 + 2n. What is the solution with a1 = 3?

Solution: To solve this linear nonhomogeneous recurrence relation with constant coefficients, we
need to solve its associated linear homogeneous equation and to find a particular solution for the
given nonhomogeneous equation. The associated linear homogeneous equation is an = 3an−1.
Its solutions are a(h)n = α3n, where α is a constant.

We now find a particular solution. Because F(n) = 2n is a polynomial in n of degree
one, a reasonable trial solution is a linear function in n, say, pn = cn+ d, where c and d are
constants. To determine whether there are any solutions of this form, suppose thatpn = cn+ d is
such a solution. Then the equation an = 3an−1 + 2n becomes cn+ d = 3(c(n− 1)+ d)+ 2n.
Simplifying and combining like terms gives (2 + 2c)n+ (2d − 3c) = 0. It follows that cn+ d
is a solution if and only if 2 + 2c = 0 and 2d − 3c = 0. This shows that cn+ d is a solution if
and only if c = −1 and d = −3/2. Consequently, a(p)n = −n− 3/2 is a particular solution.

By Theorem 5 all solutions are of the form

an = a(p)n + a(h)n = −n− 3

2
+ α · 3n,

where α is a constant.
To find the solution with a1 = 3, let n = 1 in the formula we obtained for the general

solution. We find that 3 = −1 − 3/2 + 3α, which implies that α = 11/6. The solution we seek
is an = −n− 3/2 + (11/6)3n. ▲

EXAMPLE 11 Find all solutions of the recurrence relation

an = 5an−1 − 6an−2 + 7n.

Solution: This is a linear nonhomogeneous recurrence relation. The solutions of its associated
homogeneous recurrence relation

an = 5an−1 − 6an−2

are a(h)n = α1 · 3n + α2 · 2n, where α1 and α2 are constants. Because F(n) = 7n, a reason-
able trial solution is a(p)n = C · 7n, where C is a constant. Substituting the terms of this se-
quence into the recurrence relation implies thatC · 7n = 5C · 7n−1 − 6C · 7n−2 + 7n. Factoring
out 7n−2, this equation becomes 49C = 35C − 6C + 49, which implies that 20C = 49, or that
C = 49/20. Hence, a(p)n = (49/20)7n is a particular solution. By Theorem 5, all solutions are
of the form

an = α1 · 3n + α2 · 2n + (49/20)7n. ▲

In Examples 10 and 11, we made an educated guess that there are solutions of a particular
form. In both cases we were able to find particular solutions. This was not an accident. Whenever
F(n) is the product of a polynomial in n and the nth power of a constant, we know exactly what
form a particular solution has, as stated in Theorem 6. We leave the proof of Theorem 6 as
Exercise 52.

8.2 Solving Linear Recurrence Relations 523

THEOREM 6 Suppose that {an} satisfies the linear nonhomogeneous recurrence relation

an = c1an−1 + c2an−2 + · · · + ckan−k + F(n),

where c1, c2, . . . , ck are real numbers, and

F(n) = (btnt + bt−1n
t−1 + · · · + b1n+ b0)s

n,

where b0, b1, . . . , bt and s are real numbers. When s is not a root of the characteristic equation
of the associated linear homogeneous recurrence relation, there is a particular solution of the
form

(ptn
t + pt−1n

t−1 + · · · + p1n+ p0)s
n.

When s is a root of this characteristic equation and its multiplicity is m, there is a particular
solution of the form

nm(ptn
t + pt−1n

t−1 + · · · + p1n+ p0)s
n.

Note that in the case when s is a root of multiplicity m of the characteristic equation of
the associated linear homogeneous recurrence relation, the factor nm ensures that the proposed
particular solution will not already be a solution of the associated linear homogeneous recurrence
relation. We next provide Example 12 to illustrate the form of a particular solution provided by
Theorem 6.

EXAMPLE 12 What form does a particular solution of the linear nonhomogeneous recurrence relation
an = 6an−1 − 9an−2 + F(n) have when F(n) = 3n, F(n) = n3n, F(n) = n22n, and F(n) =
(n2 + 1)3n?

Solution: The associated linear homogeneous recurrence relation is an = 6an−1 − 9an−2. Its
characteristic equation, r2 − 6r + 9 = (r − 3)2 = 0, has a single root, 3, of multiplicity two.
To apply Theorem 6, with F(n) of the form P(n)sn, where P(n) is a polynomial and s is a
constant, we need to ask whether s is a root of this characteristic equation.

Because s = 3 is a root with multiplicitym = 2 but s = 2 is not a root, Theorem 6 tells us that
a particular solution has the form p0n

23n if F(n) = 3n, the form n2(p1n+ p0)3n if F(n) =
n3n, the form (p2n

2 + p1n+ p0)2n if F(n) = n22n, and the form n2(p2n
2 + p1n+ p0)3n

if F(n) = (n2 + 1)3n. ▲

Care must be taken when s = 1 when solving recurrence relations of the type covered by
Theorem 6. In particular, to apply this theorem withF(n) = btnt + bt−1nt−1 + · · · + b1n+ b0,
the parameter s takes the value s = 1 (even though the term 1n does not explicitly appear). By
the theorem, the form of the solution then depends on whether 1 is a root of the character-
istic equation of the associated linear homogeneous recurrence relation. This is illustrated in
Example 13, which shows how Theorem 6 can be used to find a formula for the sum of the first
n positive integers.

EXAMPLE 13 Let an be the sum of the first n positive integers, so that

an =
n
k=1

k.

524 8 / Advanced Counting Techniques

Note that an satisfies the linear nonhomogeneous recurrence relation

an = an−1 + n.

(To obtain an, the sum of the first n positive integers, from an−1, the sum of the first n− 1
positive integers, we add n.) Note that the initial condition is a1 = 1.

The associated linear homogeneous recurrence relation for an is

an = an−1.

The solutions of this homogeneous recurrence relation are given by a
(h)
n = c(1)n = c,

where c is a constant. To find all solutions of an = an−1 + n, we need find only a single partic-
ular solution. By Theorem 6, because F(n) = n = n · (1)n and s = 1 is a root of degree one of
the characteristic equation of the associated linear homogeneous recurrence relation, there is a
particular solution of the form n(p1n+ p0) = p1n

2 + p0n.
Inserting this into the recurrence relation gives p1n

2 + p0n = p1(n− 1)2 +
p0(n− 1)+ n. Simplifying, we see that n(2p1 − 1)+ (p0 − p1) = 0, which means
that 2p1 − 1 = 0 and p0 − p1 = 0, so p0 = p1 = 1/2. Hence,

a
(p)
n = n2

2
+ n

2
= n(n+ 1)

2

is a particular solution. Hence, all solutions of the original recurrence relation an = an−1 + n are
given by an = a(h)n + a(p)n = c + n(n+ 1)/2. Becausea1 = 1, we have 1 = a1 = c + 1 · 2/2 =
c + 1, so c = 0. It follows that an = n(n+ 1)/2. (This is the same formula given in Table 2 in
Section 2.4 and derived previously.) ▲

Exercises

1. Determine which of these are linear homogeneous recur-
rence relations with constant coefficients. Also, find the
degree of those that are.
a) an = 3an−1 + 4an−2 + 5an−3
b) an = 2nan−1 + an−2 c) an = an−1 + an−4
d) an = an−1 + 2 e) an = a2

n−1 + an−2
f) an = an−2 g) an = an−1 + n

2. Determine which of these are linear homogeneous recur-
rence relations with constant coefficients. Also, find the
degree of those that are.
a) an = 3an−2 b) an = 3
c) an = a2

n−1 d) an = an−1 + 2an−3
e) an = an−1/n

f) an = an−1 + an−2 + n+ 3
g) an = 4an−2 + 5an−4 + 9an−7

3. Solve these recurrence relations together with the initial
conditions given.
a) an = 2an−1 for n ≥ 1, a0 = 3
b) an = an−1 for n ≥ 1, a0 = 2
c) an = 5an−1 − 6an−2 for n ≥ 2, a0 = 1, a1 = 0
d) an = 4an−1 − 4an−2 for n ≥ 2, a0 = 6, a1 = 8
e) an = −4an−1 − 4an−2 for n ≥ 2, a0 = 0, a1 = 1
f) an = 4an−2 for n ≥ 2, a0 = 0, a1 = 4
g) an = an−2 /4 for n ≥ 2, a0 = 1, a1 = 0

4. Solve these recurrence relations together with the initial
conditions given.
a) an = an−1 + 6an−2 for n ≥ 2, a0 = 3, a1 = 6
b) an = 7an−1 − 10an−2 for n ≥ 2, a0 = 2, a1 = 1
c) an = 6an−1 − 8an−2 for n ≥ 2, a0 = 4, a1 = 10
d) an = 2an−1 − an−2 for n ≥ 2, a0 = 4, a1 = 1
e) an = an−2 for n ≥ 2, a0 = 5, a1 = −1
f) an = −6an−1 − 9an−2 for n ≥ 2, a0 = 3, a1 = −3
g) an+2 = −4an+1 + 5an for n ≥ 0, a0 = 2, a1 = 8

5. How many different messages can be transmitted in nmi-
croseconds using the two signals described in Exercise 19
in Section 8.1?

6. How many different messages can be transmitted in n
microseconds using three different signals if one signal
requires 1 microsecond for transmittal, the other two sig-
nals require 2 microseconds each for transmittal, and a
signal in a message is followed immediately by the next
signal?

7. In how many ways can a 2 × n rectangular checkerboard
be tiled using 1 × 2 and 2 × 2 pieces?

8. A model for the number of lobsters caught per year is
based on the assumption that the number of lobsters
caught in a year is the average of the number caught in
the two previous years.

8.2 Solving Linear Recurrence Relations 525

a) Find a recurrence relation for {Ln}, where Ln is the
number of lobsters caught in year n, under the as-
sumption for this model.

b) Find Ln if 100,000 lobsters were caught in year 1 and
300,000 were caught in year 2.

9. A deposit of $100,000 is made to an investment fund at
the beginning of a year. On the last day of each year two
dividends are awarded. The first dividend is 20% of the
amount in the account during that year. The second divi-
dend is 45% of the amount in the account in the previous
year.
a) Find a recurrence relation for {Pn}, where Pn is the

amount in the account at the end ofnyears if no money
is ever withdrawn.

b) How much is in the account after n years if no money
has been withdrawn?

∗10. Prove Theorem 2.

11. The Lucas numbers satisfy the recurrence relation

Ln = Ln−1 + Ln−2,

and the initial conditions L0 = 2 and L1 = 1.
a) Show that Ln = fn−1 + fn+1 for n = 2, 3, . . . ,

where fn is the nth Fibonacci number.
b) Find an explicit formula for the Lucas numbers.

12. Find the solution to an = 2an−1 + an−2 − 2an−3
for n = 3, 4, 5, . . . , with a0 = 3, a1 = 6, and a2 = 0.

13. Find the solution to an = 7an−2 + 6an−3 with a0 = 9,
a1 = 10, and a2 = 32.

14. Find the solution to an = 5an−2 − 4an−4 with a0 = 3,
a1 = 2, a2 = 6, and a3 = 8.

15. Find the solution to an = 2an−1 + 5an−2 − 6an−3 with
a0 = 7, a1 = −4, and a2 = 8.

∗16. Prove Theorem 3.

17. Prove this identity relating the Fibonacci numbers and the
binomial coefficients:

fn+1 = C(n, 0)+ C(n− 1, 1)+ · · · + C(n− k, k),
where n is a positive integer and k = n/2 . [Hint: Let
an = C(n, 0)+ C(n− 1, 1)+ · · · + C(n− k, k). Show
that the sequence {an} satisfies the same recurrence re-
lation and initial conditions satisfied by the sequence of
Fibonacci numbers.]

18. Solve the recurrence relation an = 6an−1 − 12an−2 +
8an−3 with a0 = −5, a1 = 4, and a2 = 88.

19. Solve the recurrence relation an = −3an−1 − 3an−2 −
an−3 with a0 = 5, a1 = −9, and a2 = 15.

20. Find the general form of the solutions of the recurrence
relation an = 8an−2 − 16an−4.

21. What is the general form of the solutions of a linear homo-
geneous recurrence relation if its characteristic equation
has roots 1, 1, 1, 1,−2,−2,−2, 3, 3,−4?

22. What is the general form of the solutions of a linear homo-
geneous recurrence relation if its characteristic equation
has the roots −1,−1,−1, 2, 2, 5, 5, 7?

23. Consider the nonhomogeneous linear recurrence relation
an = 3an−1 + 2n.
a) Show that an = −2n+1 is a solution of this recurrence

relation.
b) Use Theorem 5 to find all solutions of this recurrence

relation.
c) Find the solution with a0 = 1.

24. Consider the nonhomogeneous linear recurrence relation
an = 2an−1 + 2n.
a) Show that an = n2n is a solution of this recurrence

relation.
b) Use Theorem 5 to find all solutions of this recurrence

relation.
c) Find the solution with a0 = 2.

25. a) Determine values of the constants A and B such
that an = An+ B is a solution of recurrence relation
an = 2an−1 + n+ 5.

b) Use Theorem 5 to find all solutions of this recurrence
relation.

c) Find the solution of this recurrence relation with
a0 = 4.

26. What is the general form of the particular so-
lution guaranteed to exist by Theorem 6 of
the linear nonhomogeneous recurrence relation
an = 6an−1 − 12an−2 + 8an−3 + F(n) if
a) F(n) = n2? b) F(n) = 2n?
c) F(n) = n2n? d) F(n) = (−2)n?
e) F(n) = n22n? f) F(n) = n3(−2)n?
g) F(n) = 3?

27. What is the general form of the particular solution guaran-
teed to exist by Theorem 6 of the linear nonhomogeneous
recurrence relation an = 8an−2 − 16an−4 + F(n) if
a) F(n) = n3? b) F(n) = (−2)n?
c) F(n) = n2n? d) F(n) = n24n?
e) F(n) = (n2 − 2)(−2)n? f) F(n) = n42n?
g) F(n) = 2?

28. a) Find all solutions of the recurrence relation
an = 2an−1 + 2n2.

b) Find the solution of the recurrence relation in part (a)
with initial condition a1 = 4.

29. a) Find all solutions of the recurrence relation
an = 2an−1 + 3n.

b) Find the solution of the recurrence relation in part (a)
with initial condition a1 = 5.

30. a) Find all solutions of the recurrence relation an =
−5an−1 − 6an−2 + 42 · 4n.

b) Find the solution of this recurrence relation with a1 =
56 and a2 = 278.

31. Find all solutions of the recurrence relation an =
5an−1 − 6an−2 + 2n + 3n. [Hint: Look for a particular
solution of the form qn2n + p1n+ p2, where q, p1, and
p2 are constants.]

32. Find the solution of the recurrence relation an =
2an−1 + 3 · 2n.

33. Find all solutions of the recurrence relation an =
4an−1 − 4an−2 + (n+ 1)2n.

526 8 / Advanced Counting Techniques

34. Find all solutions of the recurrence relation an =
7an−1 − 16an−2 + 12an−3 + n4n with a0 = −2,
a1 = 0, and a2 = 5.

35. Find the solution of the recurrence relation an =
4an−1 − 3an−2 + 2n + n+ 3 with a0 = 1 and a1 = 4.

36. Let an be the sum of the first n perfect squares, that
is, an = n

k= 1 k
2. Show that the sequence {an} sat-

isfies the linear nonhomogeneous recurrence relation
an = an−1 + n2 and the initial condition a1 = 1. Use
Theorem 6 to determine a formula for an by solving this
recurrence relation.

37. Let an be the sum of the first n triangular numbers, that is,
an = n

k= 1 tk , where tk = k(k + 1)/2. Show that {an}
satisfies the linear nonhomogeneous recurrence relation
an = an−1 + n(n+ 1)/2 and the initial conditiona1 = 1.
Use Theorem 6 to determine a formula for an by solving
this recurrence relation.

38. a) Find the characteristic roots of the linear homo-
geneous recurrence relation an = 2an−1 − 2an−2.
[Note: These are complex numbers.]

b) Find the solution of the recurrence relation in part (a)
with a0 = 1 and a1 = 2.

∗39. a) Find the characteristic roots of the linear homoge-
neous recurrence relation an = an−4. [Note: These
include complex numbers.]

b) Find the solution of the recurrence relation in part (a)
with a0 = 1, a1 = 0, a2 = −1, and a3 = 1.

∗40. Solve the simultaneous recurrence relations

an = 3an−1 + 2bn−1

bn = an−1 + 2bn−1

with a0 = 1 and b0 = 2.
∗41. a) Use the formula found in Example 4 for fn, the nth

Fibonacci number, to show that fn is the integer
closest to

1√
5

1 +

√
5

2

 n
.

b) Determine for which n fn is greater than

1√
5

1 +

√
5

2

 n

and for which n fn is less than

1√
5

1 +

√
5

2

 n
.

42. Show that if an = an−1 + an−2, a0 = s and a1 = t ,
where s and t are constants, then an = sfn−1 + tfn for
all positive integers n.

43. Express the solution of the linear nonhomogenous
recurrence relation an = an−1 + an−2 + 1 for n ≥ 2

where a0 = 0 and a1 = 1 in terms of the Fibonacci num-
bers. [Hint: Let bn = an + 1 and apply Exercise 42 to the
sequence bn.]

∗44. (Linear algebra required) Let An be the n× n matrix
with 2s on its main diagonal, 1s in all positions next to a
diagonal element, and 0s everywhere else. Find a recur-
rence relation for dn, the determinant of An. Solve this
recurrence relation to find a formula for dn.

45. Suppose that each pair of a genetically engineered species
of rabbits left on an island produces two new pairs of rab-
bits at the age of 1 month and six new pairs of rabbits at
the age of 2 months and every month afterward. None of
the rabbits ever die or leave the island.
a) Find a recurrence relation for the number of pairs of

rabbits on the island nmonths after one newborn pair
is left on the island.

b) By solving the recurrence relation in (a) determine
the number of pairs of rabbits on the island n months
after one pair is left on the island.

46. Suppose that there are two goats on an island initially.
The number of goats on the island doubles every year by
natural reproduction, and some goats are either added or
removed each year.
a) Construct a recurrence relation for the number of

goats on the island at the start of the nth year, as-
suming that during each year an extra 100 goats are
put on the island.

b) Solve the recurrence relation from part (a) to find the
number of goats on the island at the start of the nth
year.

c) Construct a recurrence relation for the number of
goats on the island at the start of the nth year, as-
suming that n goats are removed during the nth year
for each n ≥ 3.

d) Solve the recurrence relation in part (c) for the number
of goats on the island at the start of the nth year.

47. A new employee at an exciting new software company
starts with a salary of $50,000 and is promised that at the
end of each year her salary will be double her salary of
the previous year, with an extra increment of $10,000 for
each year she has been with the company.
a) Construct a recurrence relation for her salary for her

nth year of employment.
b) Solve this recurrence relation to find her salary for her
nth year of employment.

Some linear recurrence relations that do not have constant co-
efficients can be systematically solved. This is the case for
recurrence relations of the form f (n)an = g(n)an−1 + h(n).
Exercises 48–50 illustrate this.
∗48. a) Show that the recurrence relation

f (n)an = g(n)an−1 + h(n),

for n ≥ 1, and with a0 = C, can be reduced to a re-
currence relation of the form

bn = bn−1 +Q(n)h(n),

8.3 Divide-and-Conquer Algorithms and Recurrence Relations 527

where bn = g(n+ 1)Q(n+ 1)an, with

Q(n) = (f (1)f (2) · · · f (n− 1))/(g(1)g(2) · · · g(n)).
b) Use part (a) to solve the original recurrence relation

to obtain

an = C + n
i= 1Q(i)h(i)

g(n+ 1)Q(n+ 1)
.

∗49. Use Exercise 48 to solve the recurrence relation
(n+ 1)an = (n+ 3)an−1 + n, for n ≥ 1, with a0 = 1.

50. It can be shown that Cn, the average number of com-
parisons made by the quick sort algorithm (described in
preamble to Exercise 50 in Section 5.4), when sorting n
elements in random order, satisfies the recurrence relation

Cn = n+ 1 + 2

n

n−1
k= 0

Ck

for n = 1, 2, . . . , with initial condition C0 = 0.
a) Show that {Cn} also satisfies the recurrence relation
nCn = (n+ 1)Cn−1 + 2n for n = 1, 2,

b) Use Exercise 48 to solve the recurrence relation in
part (a) to find an explicit formula for Cn.

∗∗51. Prove Theorem 4.
∗∗52. Prove Theorem 6.
53. Solve the recurrence relation T (n) = nT 2(n/2)with ini-

tial condition T (1) = 6 when n = 2k for some inte-
ger k. [Hint: Let n = 2k and then make the substitution
ak = log T (2k) to obtain a linear nonhomogeneous re-
currence relation.]

8.3 Divide-and-Conquer Algorithms and Recurrence Relations

Introduction

Many recursive algorithms take a problem with a given input and divide it into one or more
smaller problems. This reduction is successively applied until the solutions of the smaller prob-
lems can be found quickly. For instance, we perform a binary search by reducing the search for
an element in a list to the search for this element in a list half as long. We successively apply
this reduction until one element is left. When we sort a list of integers using the merge sort, we
split the list into two halves of equal size and sort each half separately. We then merge the two
sorted halves. Another example of this type of recursive algorithm is a procedure for multiplying
integers that reduces the problem of the multiplication of two integers to three multiplications
of pairs of integers with half as many bits. This reduction is successively applied until integers
with one bit are obtained. These procedures follow an important algorithmic paradigm known

“Divide et impera”

(translation: “Divide and

conquer” - Julius Caesar

as divide-and-conquer, and are called divide-and-conquer algorithms, because they divide

a problem into one or more instances of the same problem of smaller size and they conquer

the problem by using the solutions of the smaller problems to find a solution of the original
problem, perhaps with some additional work.

In this section we will show how recurrence relations can be used to analyze the compu-
tational complexity of divide-and-conquer algorithms. We will use these recurrence relations
to estimate the number of operations used by many different divide-and-conquer algorithms,
including several that we introduce in this section.

Divide-and-Conquer Recurrence Relations

Suppose that a recursive algorithm divides a problem of size n into a subproblems, where each
subproblem is of size n/b (for simplicity, assume that n is a multiple of b; in reality, the smaller
problems are often of size equal to the nearest integers either less than or equal to, or greater
than or equal to, n/b). Also, suppose that a total of g(n) extra operations are required in the
conquer step of the algorithm to combine the solutions of the subproblems into a solution of
the original problem. Then, if f (n) represents the number of operations required to solve the
problem of size n, it follows that f satisfies the recurrence relation

f (n) = af (n/b)+ g(n).

This is called a divide-and-conquer recurrence relation.

528 8 / Advanced Counting Techniques

We will first set up the divide-and-conquer recurrence relations that can be used to study
the complexity of some important algorithms. Then we will show how to use these divide-and-
conquer recurrence relations to estimate the complexity of these algorithms.

EXAMPLE 1 Binary Search We introduced a binary search algorithm in Section 3.1. This binary search
algorithm reduces the search for an element in a search sequence of size n to the binary search
for this element in a search sequence of size n/2, when n is even. (Hence, the problem of size n
has been reduced to one problem of size n/2.) Two comparisons are needed to implement this
reduction (one to determine which half of the list to use and the other to determine whether any
terms of the list remain). Hence, if f (n) is the number of comparisons required to search for an
element in a search sequence of size n, then

f (n) = f (n/2)+ 2

when n is even. ▲

EXAMPLE 2 Finding the Maximum and Minimum of a Sequence Consider the following algorithm for
locating the maximum and minimum elements of a sequence a1, a2, . . . , an. If n = 1, then a1 is
the maximum and the minimum. If n > 1, split the sequence into two sequences, either where
both have the same number of elements or where one of the sequences has one more element
than the other. The problem is reduced to finding the maximum and minimum of each of the
two smaller sequences. The solution to the original problem results from the comparison of the
separate maxima and minima of the two smaller sequences to obtain the overall maximum and
minimum.

Let f (n) be the total number of comparisons needed to find the maximum and minimum
elements of the sequence with n elements. We have shown that a problem of size n can be
reduced into two problems of size n/2, when n is even, using two comparisons, one to compare
the maxima of the two sequences and the other to compare the minima of the two sequences.
This gives the recurrence relation

f (n) = 2f (n/2)+ 2

when n is even. ▲

EXAMPLE 3 Merge Sort The merge sort algorithm (introduced in Section 5.4) splits a list to be sorted
with n items, where n is even, into two lists with n/2 elements each, and uses fewer than n
comparisons to merge the two sorted lists of n/2 items each into one sorted list. Consequently,
the number of comparisons used by the merge sort to sort a list of n elements is less thanM(n),
where the functionM(n) satisfies the divide-and-conquer recurrence relation

M(n) = 2M(n/2)+ n. ▲

EXAMPLE 4 FastMultiplication of Integers Surprisingly, there are more efficient algorithms than the con-
ventional algorithm (described in Section 4.2) for multiplying integers. One of these algorithms,
which uses a divide-and-conquer technique, will be described here. This fast multiplication al-
gorithm proceeds by splitting each of two 2n-bit integers into two blocks, each with n bits.
Then, the original multiplication is reduced from the multiplication of two 2n-bit integers to
three multiplications of n-bit integers, plus shifts and additions.

Suppose that a and b are integers with binary expansions of length 2n (add initial bits of
zero in these expansions if necessary to make them the same length). Let

a = (a2n−1a2n−2 · · · a1a0)2 and b = (b2n−1b2n−2 · · · b1b0)2.

8.3 Divide-and-Conquer Algorithms and Recurrence Relations 529

Let

a = 2nA1 + A0, b = 2nB1 + B0,

where

A1 = (a2n−1 · · · an+1an)2, A0 = (an−1 · · · a1a0)2,

B1 = (b2n−1 · · · bn+1bn)2, B0 = (bn−1 · · · b1b0)2.

The algorithm for fast multiplication of integers is based on the fact that ab can be
rewritten as

ab = (22n + 2n)A1B1 + 2n(A1 − A0)(B0 − B1)+ (2n + 1)A0B0.

The important fact about this identity is that it shows that the multiplication of two 2n-bit
integers can be carried out using three multiplications of n-bit integers, together with additions,
subtractions, and shifts. This shows that if f (n) is the total number of bit operations needed to
multiply two n-bit integers, then

f (2n) = 3f (n)+ Cn.

The reasoning behind this equation is as follows. The three multiplications of n-bit integers are
carried out using 3f (n)-bit operations. Each of the additions, subtractions, and shifts uses a
constant multiple of n-bit operations, and Cn represents the total number of bit operations used
by these operations. ▲

EXAMPLE 5 Fast Matrix Multiplication In Example 7 of Section 3.3 we showed that multiplying two
n× n matrices using the definition of matrix multiplication required n3 multiplications and
n2(n− 1) additions. Consequently, computing the product of two n× n matrices in this way
requiresO(n3) operations (multiplications and additions). Surprisingly, there are more efficient
divide-and-conquer algorithms for multiplying two n× nmatrices. Such an algorithm, invented
by Volker Strassen in 1969, reduces the multiplication of two n× nmatrices, when n is even, to
seven multiplications of two (n/2)× (n/2)matrices and 15 additions of (n/2)× (n/2)matrices.
(See [CoLeRiSt09] for the details of this algorithm.) Hence, if f (n) is the number of operations
(multiplications and additions) used, it follows that

f (n) = 7f (n/2)+ 15n2/4

when n is even. ▲

As Examples 1–5 show, recurrence relations of the form f (n) = af (n/b)+ g(n) arise in
many different situations. It is possible to derive estimates of the size of functions that satisfy
such recurrence relations. Suppose thatf satisfies this recurrence relation whenevern is divisible
by b. Let n = bk , where k is a positive integer. Then

f (n) = af (n/b)+ g(n)
= a2f (n/b2)+ ag(n/b)+ g(n)
= a3f (n/b3)+ a2g(n/b2)+ ag(n/b)+ g(n)
...

= akf (n/bk)+
k−1
j = 0

ajg(n/bj).

530 8 / Advanced Counting Techniques

Because n/bk = 1, it follows that

f (n) = akf (1)+
k−1
j = 0

ajg(n/bj).

We can use this equation forf (n) to estimate the size of functions that satisfy divide-and-conquer
relations.

THEOREM 1 Let f be an increasing function that satisfies the recurrence relation

f (n) = af (n/b)+ c

whenever n is divisible by b, where a ≥ 1, b is an integer greater than 1, and c is a positive
real number. Then

f (n) is

O(nlogb a) if a > 1,

O(log n) if a = 1.

Furthermore, when n = bkand a = 1, where k is a positive integer,

f (n) = C1n
logb a + C2,

where C1 = f (1)+ c/(a − 1) and C2 = −c/(a − 1).

Proof: First let n = bk . From the expression for f (n) obtained in the discussion preceding the
theorem, with g(n) = c, we have

f (n) = akf (1)+
k−1
j = 0

aj c = akf (1)+ c
k−1
j = 0

aj .

When a = 1 we have

f (n) = f (1)+ ck .

Because n = bk , we have k = logb n. Hence,

f (n) = f (1)+ c logb n .

When n is not a power of b, we have bk < n < bk+1, for a positive integer k. Because f is
increasing, it follows that f (n) ≤ f (bk+1) = f (1)+ c(k + 1) = (f (1)+ c)+ ck ≤ (f (1)+
c)+ c logb n. Therefore, in both cases, f (n) is O(log n) when a = 1.

Now suppose that a > 1. First assume that n = bk , where k is a positive integer. From the
formula for the sum of terms of a geometric progression (Theorem 1 in Section 2.4), it follows
that

f (n) = akf (1)+ c(ak − 1)/(a − 1)

= ak[f (1)+ c/(a − 1)] − c/(a − 1)

= C1n
logb a + C2,

8.3 Divide-and-Conquer Algorithms and Recurrence Relations 531

because ak = alogb n = nlogb a (see Exercise 4 in Appendix 2), where C1 = f (1) + c/(a − 1)
and C2 = −c/(a − 1).

Now suppose that n is not a power of b. Then bk < n < bk+1, where k is a nonnegative
integer. Because f is increasing,

f (n) ≤ f (bk+1) = C1a
k+1 + C2

≤ (C1a)a
logb n + C2

= (C1a)n
logb a + C2,

because k ≤ logb n < k + 1.
Hence, we have f (n) is O(nlogb a).

Examples 6–9 illustrate how Theorem 1 is used.

EXAMPLE 6 Let f (n) = 5f (n/2)+ 3 and f (1) = 7. Find f (2k), where k is a positive integer. Also, estimate
f (n) if f is an increasing function.

Solution: From the proof of Theorem 1, with a = 5, b = 2, and c = 3, we see that if n = 2k ,
then

f (n) = ak[f (1)+ c/(a − 1)] + [−c/(a − 1)]
= 5k[7 + (3/4)] − 3/4

= 5k(31/4)− 3/4.

Also, if f (n) is increasing, Theorem 1 shows that f (n) is O(nlogb a) = O(nlog 5). ▲

We can use Theorem 1 to estimate the computational complexity of the binary search
algorithm and the algorithm given in Example 2 for locating the minimum and maximum of a
sequence.

EXAMPLE 7 Give a big-O estimate for the number of comparisons used by a binary search.

Solution: In Example 1 it was shown that f (n) = f (n/2)+ 2 when n is even, where f is the
number of comparisons required to perform a binary search on a sequence of size n. Hence,
from Theorem 1, it follows that f (n) is O(log n). ▲

EXAMPLE 8 Give a big-O estimate for the number of comparisons used to locate the maximum and minimum
elements in a sequence using the algorithm given in Example 2.

Solution: In Example 2 we showed that f (n) = 2f (n/2)+ 2, when n is even, where f is the
number of comparisons needed by this algorithm. Hence, from Theorem 1, it follows that f (n)
is O(nlog 2) = O(n). ▲

We now state a more general, and more complicated, theorem, which has Theorem 1 as
a special case. This theorem (or more powerful versions, including big-Theta estimates) is
sometimes known as the master theorem because it is useful in analyzing the complexity of
many important divide-and-conquer algorithms.

532 8 / Advanced Counting Techniques

THEOREM 2 MASTERTHEOREM Letf be an increasing function that satisfies the recurrence relation

f (n) = af (n/b)+ cnd

whenever n = bk , where k is a positive integer, a ≥ 1, b is an integer greater than 1, and c
and d are real numbers with c positive and d nonnegative. Then

f (n) is

⎧⎪⎨
⎪⎩
O(nd) if a < bd,

O(nd log n) if a = bd,
O(nlogb a) if a > bd.

The proof of Theorem 2 is left for the reader as Exercises 29–33.

EXAMPLE 9 Complexity of Merge Sort In Example 3 we explained that the number of comparisons used
by the merge sort to sort a list of n elements is less than M(n), where M(n) = 2M(n/2)+ n.
By the master theorem (Theorem 2) we find that M(n) is O(n log n), which agrees with the
estimate found in Section 5.4. ▲

EXAMPLE 10 Give a big-O estimate for the number of bit operations needed to multiply two n-bit integers
using the fast multiplication algorithm described in Example 4.

Solution: Example 4 shows that f (n) = 3f (n/2)+ Cn, when n is even, where f (n) is the
number of bit operations required to multiply two n-bit integers using the fast multiplication
algorithm. Hence, from the master theorem (Theorem 2), it follows that f (n) is O(nlog 3).
Note that log 3 ∼ 1.6. Because the conventional algorithm for multiplication uses O(n2) bit
operations, the fast multiplication algorithm is a substantial improvement over the conventional
algorithm in terms of time complexity for sufficiently large integers, including large integers
that occur in practical applications. ▲

EXAMPLE 11 Give a big-O estimate for the number of multiplications and additions required to multiply two
n× n matrices using the matrix multiplication algorithm referred to in Example 5.

Solution: Let f (n) denote the number of additions and multiplications used by the algorithm
mentioned in Example 5 to multiply two n× n matrices. We have f (n) = 7f (n/2)+ 15n2/4,
when n is even. Hence, from the master theorem (Theorem 2), it follows that f (n) isO(nlog 7).
Note that log 7 ∼ 2.8. Because the conventional algorithm for multiplying two n× n matrices
usesO(n3) additions and multiplications, it follows that for sufficiently large integers n, includ-
ing those that occur in many practical applications, this algorithm is substantially more efficient
in time complexity than the conventional algorithm. ▲

THE CLOSEST-PAIR PROBLEM We conclude this section by introducing a divide-and-
conquer algorithm from computational geometry, the part of discrete mathematics devoted to
algorithms that solve geometric problems.

EXAMPLE 12 The Closest-Pair Problem Consider the problem of determining the closest pair of points
in a set of n points (x1, y1), . . . , (xn, yn) in the plane, where the distance between two points

(xi, yi) and (xj , yj) is the usual Euclidean distance

(xi − xj)2 + (yi − yj)2. This problem

arises in many applications such as determining the closest pair of airplanes in the air space at a
particular altitude being managed by an air traffic controller. How can this closest pair of points
be found in an efficient way?

8.3 Divide-and-Conquer Algorithms and Recurrence Relations 533

L R

closest
pair

dL

dR

d d

In this illustration the problem of finding the
closest pair in a set of 16 points is reduced to
two problems of finding the closest pair in
a set of eight points and the problem of
determining whether there are points closer
than d = min(dL, dR) within the strip of
width 2d centered at ᐉ.

FIGURE 1 The Recursive Step of the Algorithm for Solving the Closest-Pair Problem.

Solution: To solve this problem we can first determine the distance between every pair of
points and then find the smallest of these distances. However, this approach requires O(n2)

It took researchers more
than 10 year to find an
algorithm with O(n log n)
complexity that locates
the closest pair of points
among n points.

computations of distances and comparisons because there are C(n, 2) = n(n− 1)/2 pairs of
points. Surprisingly, there is an elegant divide-and-conquer algorithm that can solve the closest-
pair problem for n points using O(n log n) computations of distances and comparisons. The
algorithm we describe here is due to Michael Samos (see [PrSa85]).

For simplicity, we assume that n = 2k , where k is a positive integer. (We avoid some
technical considerations that are needed when n is not a power of 2.) When n = 2, we have only
one pair of points; the distance between these two points is the minimum distance. At the start
of the algorithm we use the merge sort twice, once to sort the points in order of increasing x
coordinates, and once to sort the points in order of increasing y coordinates. Each of these sorts
requires O(n log n) operations. We will use these sorted lists in each recursive step.

The recursive part of the algorithm divides the problem into two subproblems, each involving
half as many points. Using the sorted list of the points by their x coordinates, we construct a
vertical line dividing the n points into two parts, a left part and a right part of equal size, each
containing n/2 points, as shown in Figure 1. (If any points fall on the dividing line , we divide
them among the two parts if necessary.) At subsequent steps of the recursion we need not sort
on x coordinates again, because we can select the corresponding sorted subset of all the points.
This selection is a task that can be done with O(n) comparisons.

There are three possibilities concerning the positions of the closest points: (1) they are both
in the left region L, (2) they are both in the right region R, or (3) one point is in the left region
and the other is in the right region. Apply the algorithm recursively to compute dL and dR ,
where dL is the minimum distance between points in the left region and dR is the minimum
distance between points in the right region. Let d = min(dL, dR). To successfully divide the
problem of finding the closest two points in the original set into the two problems of finding the
shortest distances between points in the two regions separately, we have to handle the conquer
part of the algorithm, which requires that we consider the case where the closest points lie in
different regions, that is, one point is in L and the other in R. Because there is a pair of points
at distance d where both points lie in R or both points lie in L, for the closest points to lie in
different regions requires that they must be a distance less than d apart.

For a point in the left region and a point in the right region to lie at a distance less than d apart,
these points must lie in the vertical strip of width 2d that has the line as its center. (Otherwise,
the distance between these points is greater than the difference in their x coordinates, which
exceeds d.) To examine the points within this strip, we sort the points so that they are listed in
order of increasing y coordinates, using the sorted list of the points by their y coordinates. At

534 8 / Advanced Counting Techniques

d/2

p

d/2

d/2

d/2 d/2 d/2

d/ 2 At most eight points, including p,
can lie in or on the 2d d rectangle
centered at ᐉ because at most one
point can lie in or on each of the
eight (d/2) (d/2) squares.

FIGURE 2 Showing That There Are at Most Seven Other Points to Consider for Each

Point in the Strip.

each recursive step, we form a subset of the points in the region sorted by their y coordinates
from the already sorted set of all points sorted by their y coordinates, which can be done
with O(n) comparisons.

Beginning with a point in the strip with the smallest y coordinate, we successively examine
each point in the strip, computing the distance between this point and all other points in the strip
that have larger y coordinates that could lie at a distance less than d from this point. Note that
to examine a point p, we need only consider the distances between p and points in the set that
lie within the rectangle of height d and width 2d with p on its base and with vertical sides at
distance d from .

We can show that there are at most eight points from the set, includingp, in or on this 2d × d
rectangle. To see this, note that there can be at most one point in each of the eight d/2 × d/2
squares shown in Figure 2. This follows because the farthest apart points can be on or within
one of these squares is the diagonal length d/

√
2 (which can be found using the Pythagorean

theorem), which is less than d , and each of these d/2 × d/2 squares lies entirely within the left
region or the right region. This means that at this stage we need only compare at most seven
distances, the distances between p and the seven or fewer other points in or on the rectangle,
with d .

Because the total number of points in the strip of width 2d does not exceed n (the total
number of points in the set), at most 7n distances need to be compared with d to find the
minimum distance between points. That is, there are only 7n possible distances that could be
less than d . Consequently, once the merge sort has been used to sort the pairs according to their
x coordinates and according to their y coordinates, we find that the increasing function f (n)
satisfying the recurrence relation

f (n) = 2f (n/2)+ 7n,

where f (2) = 1, exceeds the number of comparisons needed to solve the closest-pair problem
forn points. By the master theorem (Theorem 2), it follows that f (n) isO(n log n). The two sorts
of points by their x coordinates and by their y coordinates each can be done using O(n log n)
comparisons, by using the merge sort, and the sorted subsets of these coordinates at each of the
O(log n) steps of the algorithm can be done using O(n) comparisons each. Thus, we find that
the closest-pair problem can be solved using O(n log n) comparisons. ▲

8.3 Divide-and-Conquer Algorithms and Recurrence Relations 535

Exercises

1. How many comparisons are needed for a binary search
in a set of 64 elements?

2. How many comparisons are needed to locate the max-
imum and minimum elements in a sequence with 128
elements using the algorithm in Example 2?

3. Multiply (1110)2 and (1010)2 using the fast multiplica-
tion algorithm.

4. Express the fast multiplication algorithm in pseudocode.

5. Determine a value for the constant C in Example 4 and
use it to estimate the number of bit operations needed to
multiply two 64-bit integers using the fast multiplication
algorithm.

6. How many operations are needed to multiply two 32 × 32
matrices using the algorithm referred to in Example 5?

7. Suppose that f (n) = f (n/3)+ 1 when n is a positive
integer divisible by 3, and f (1) = 1. Find
a) f (3). b) f (27). c) f (729).

8. Suppose thatf (n) = 2f (n/2)+ 3 whenn is an even pos-
itive integer, and f (1) = 5. Find
a) f (2). b) f (8). c) f (64). d) f (1024).

9. Suppose that f (n) = f (n/5)+ 3n2 when n is a positive
integer divisible by 5, and f (1) = 4. Find
a) f (5). b) f (125). c) f (3125).

10. Find f (n)when n = 2k , where f satisfies the recurrence
relation f (n) = f (n/2)+ 1 with f (1) = 1.

11. Give a big-O estimate for the function f in Exercise 10
if f is an increasing function.

12. Find f (n)when n = 3k , where f satisfies the recurrence
relation f (n) = 2f (n/3)+ 4 with f (1) = 1.

13. Give a big-O estimate for the function f in Exercise 12
if f is an increasing function.

14. Suppose that there are n = 2k teams in an elimination
tournament, where there are n/2 games in the first round,
with then/2 = 2k−1 winners playing in the second round,
and so on. Develop a recurrence relation for the number
of rounds in the tournament.

15. How many rounds are in the elimination tournament de-
scribed in Exercise 14 when there are 32 teams?

16. Solve the recurrence relation for the number of rounds in
the tournament described in Exercise 14.

17. Suppose that the votes of n people for different candi-
dates (where there can be more than two candidates) for
a particular office are the elements of a sequence. A per-
son wins the election if this person receives a majority of
the votes.
a) Devise a divide-and-conquer algorithm that deter-

mines whether a candidate received a majority and,
if so, determine who this candidate is. [Hint: Assume

that n is even and split the sequence of votes into
two sequences, each with n/2 elements. Note that a
candidate could not have received a majority of votes
without receiving a majority of votes in at least one
of the two halves.]

b) Use the master theorem to give a big-O estimate for
the number of comparisons needed by the algorithm
you devised in part (a).

18. Suppose that each person in a group of n people votes for
exactly two people from a slate of candidates to fill two
positions on a committee. The top two finishers both win
positions as long as each receives more than n/2 votes.
a) Devise a divide-and-conquer algorithm that deter-

mines whether the two candidates who received the
most votes each received at least n/2 votes and, if so,
determine who these two candidates are.

b) Use the master theorem to give a big-O estimate for
the number of comparisons needed by the algorithm
you devised in part (a).

19. a) Set up a divide-and-conquer recurrence relation
for the number of multiplications required to
compute xn, where x is a real number and n is a
positive integer, using the recursive algorithm from
Exercise 26 in Section 5.4.

b) Use the recurrence relation you found in part (a) to
construct a big-O estimate for the number of mul-
tiplications used to compute xn using the recursive
algorithm.

20. a) Set up a divide-and-conquer recurrence relation for
the number of modular multiplications required to
compute an mod m, where a, m, and n are pos-
itive integers, using the recursive algorithms from
Example 4 in Section 5.4.

b) Use the recurrence relation you found in part (a) to
construct a big-O estimate for the number of modular
multiplications used to compute an mod m using the
recursive algorithm.

21. Suppose that the function f satisfies the recurrence rela-
tion f (n) = 2f (

√
n)+ 1 whenever n is a perfect square

greater than 1 and f (2) = 1.
a) Find f (16).

b) Give a big-O estimate for f (n). [Hint: Make the sub-
stitution m = log n.]

22. Suppose that the function f satisfies the recurrence re-
lation f (n) = 2f (

√
n)+ log n whenever n is a perfect

square greater than 1 and f (2) = 1.
a) Find f (16).

b) Find a big-O estimate for f (n). [Hint: Make the sub-
stitution m = log n.]

∗∗23. This exercise deals with the problem of finding the largest
sum of consecutive terms of a sequence ofn real numbers.
When all terms are positive, the sum of all terms provides

536 8 / Advanced Counting Techniques

the answer, but the situation is more complicated when
some terms are negative. For example, the maximum sum
of consecutive terms of the sequence −2, 3,−1, 6,−7, 4
is 3 + (−1)+ 6 = 8. (This exercise is based on [Be86].)
Recall that in Exercise 56 in Section 8.1 we developed a
dynamic programming algorithm for solving this prob-
lem. Here, we first look at the brute-force algorithm
for solving this problem; then we develop a divide-and-
conquer algorithm for solving it.
a) Use pseudocode to describe an algorithm that solves

this problem by finding the sums of consecutive terms
starting with the first term, the sums of consecutive
terms starting with the second term, and so on, keep-
ing track of the maximum sum found so far as the
algorithm proceeds.

b) Determine the computational complexity of the al-
gorithm in part (a) in terms of the number of sums
computed and the number of comparisons made.

c) Devise a divide-and-conquer algorithm to solve this
problem. [Hint:Assume that there are an even number
of terms in the sequence and split the sequence into
two halves. Explain how to handle the case when the
maximum sum of consecutive terms includes terms in
both halves.]

d) Use the algorithm from part (c) to find the maximum
sum of consecutive terms of each of the sequences:
−2, 4,−1, 3, 5,−6, 1, 2; 4, 1,−3, 7,−1,−5, 3,−2;
and −1, 6, 3,−4,−5, 8, −1, 7.

e) Find a recurrence relation for the number of sums
and comparisons used by the divide-and-conquer al-
gorithm from part (c).

f) Use the master theorem to estimate the computa-
tional complexity of the divide-and-conquer algo-
rithm. How does it compare in terms of computational
complexity with the algorithm from part (a)?

24. Apply the algorithm described in Example 12 for find-
ing the closest pair of points, using the Euclidean dis-
tance between points, to find the closest pair of the
points (1, 3), (1, 7), (2, 4), (2, 9), (3, 1), (3, 5), (4, 3),
and (4, 7).

25. Apply the algorithm described in Example 12 for finding
the closest pair of points, using the Euclidean distance be-
tween points, to find the closest pair of the points (1, 2),
(1, 6), (2, 4), (2, 8), (3, 1), (3, 6), (3, 10), (4, 3), (5, 1),
(5, 5), (5, 9), (6, 7), (7, 1), (7, 4), (7, 9), and (8, 6).

∗26. Use pseudocode to describe the recursive algorithm for
solving the closest-pair problem as described in Exam-
ple 12.

27. Construct a variation of the algorithm described in Ex-
ample 12 along with justifications of the steps used by
the algorithm to find the smallest distance between two
points if the distance between two points is defined to be
d((xi, yi), (xj , yj)) = max(|xi − xj |, |yi − yj |).

∗28. Suppose someone picks a number x from a set of n
numbers. A second person tries to guess the number
by successively selecting subsets of the n numbers and

asking the first person whether x is in each set. The
first person answers either “yes” or “no.” When the first
person answers each query truthfully, we can find x
using log n queries by successively splitting the sets
used in each query in half. Ulam’s problem, proposed by
Stanislaw Ulam in 1976, asks for the number of queries
required to find x, supposing that the first person is al-
lowed to lie exactly once.
a) Show that by asking each question twice, given a num-

ber x and a set with n elements, and asking one more
question when we find the lie, Ulam’s problem can be
solved using 2 log n+ 1 queries.

b) Show that by dividing the initial set of n elements into
four parts, each withn/4 elements, 1/4 of the elements
can be eliminated using two queries. [Hint: Use two
queries, where each of the queries asks whether the
element is in the union of two of the subsets with n/4
elements and where one of the subsets ofn/4 elements
is used in both queries.]

c) Show from part (b) that if f (n) equals the number
of queries used to solve Ulam’s problem using the
method from part (b) and n is divisible by 4, then
f (n) = f (3n/4)+ 2.

d) Solve the recurrence relation in part (c) for f (n).
e) Is the naive way to solve Ulam’s problem by ask-

ing each question twice or the divide-and-conquer
method based on part (b) more efficient? The most
efficient way to solve Ulam’s problem has been
determined by A. Pelc [Pe87].

In Exercises 29–33, assume that f is an increasing function
satisfying the recurrence relation f (n) = af (n/b)+ cnd ,
where a ≥ 1, b is an integer greater than 1, and c and d
are positive real numbers. These exercises supply a proof of
Theorem 2.
∗29. Show that if a = bd and n is a power of b, then f (n) =

f (1)nd + cnd logb n.

30. Use Exercise 29 to show that if a = bd , then f (n) is
O(nd log n).

∗31. Show that if a = bd and n is a power of b, then f (n) =
C1n

d + C2n
logb a , where C1 = bdc/(bd − a) and C2 =

f (1)+ bdc/(a − bd).
32. Use Exercise 31 to show that if a < bd , then f (n) is

O(nd).

33. Use Exercise 31 to show that if a > bd , then f (n) is
O(nlogb a).

34. Find f (n)when n = 4k , where f satisfies the recurrence
relation f (n) = 5f (n/4)+ 6n, with f (1) = 1.

35. Give a big-O estimate for the function f in Exercise 34
if f is an increasing function.

36. Find f (n)when n = 2k , where f satisfies the recurrence
relation f (n) = 8f (n/2)+ n2 with f (1) = 1.

37. Give a big-O estimate for the function f in Exercise 36
if f is an increasing function.

8.4 Generating Functions 537

8.4 Generating Functions

Introduction

Generating functions are used to represent sequences efficiently by coding the terms of a se-
quence as coefficients of powers of a variable x in a formal power series. Generating functions
can be used to solve many types of counting problems, such as the number of ways to select
or distribute objects of different kinds, subject to a variety of constraints, and the number of
ways to make change for a dollar using coins of different denominations. Generating functions
can be used to solve recurrence relations by translating a recurrence relation for the terms of
a sequence into an equation involving a generating function. This equation can then be solved
to find a closed form for the generating function. From this closed form, the coefficients of the
power series for the generating function can be found, solving the original recurrence relation.
Generating functions can also be used to prove combinatorial identities by taking advantage of
relatively simple relationships between functions that can be translated into identities involving
the terms of sequences. Generating functions are a helpful tool for studying many properties of
sequences besides those described in this section, such as their use for establishing asymptotic
formulae for the terms of a sequence.

We begin with the definition of the generating function for a sequence.

DEFINITION 1 The generating function for the sequence a0, a1, . . . , ak, . . . of real numbers is the infinite
series

G(x) = a0 + a1x + · · · + akxk + · · · =
∞
k= 0

akx
k.

Remark: The generating function for {ak} given in Definition 1 is sometimes called the ordinary
generating function of {ak} to distinguish it from other types of generating functions for this
sequence.

EXAMPLE 1 The generating functions for the sequences {ak} with ak = 3, ak = k + 1, and ak = 2k

are
 ∞
k= 0 3xk,

 ∞
k= 0(k + 1)xk , and

 ∞
k= 0 2kxk , respectively. ▲

We can define generating functions for finite sequences of real numbers by extending a
finite sequence a0, a1, . . . , an into an infinite sequence by setting an+1 = 0, an+2 = 0, and so
on. The generating function G(x) of this infinite sequence {an} is a polynomial of degree n
because no terms of the form ajxj with j > n occur, that is,

G(x) = a0 + a1x + · · · + anxn.

EXAMPLE 2 What is the generating function for the sequence 1, 1, 1, 1, 1, 1?

Solution: The generating function of 1, 1, 1, 1, 1, 1 is

1 + x + x2 + x3 + x4 + x5.

By Theorem 1 of Section 2.4 we have

(x6 − 1)/(x − 1) = 1 + x + x2 + x3 + x4 + x5

538 8 / Advanced Counting Techniques

when x = 1. Consequently, G(x) = (x6 − 1)/(x − 1) is the generating function of the
sequence 1, 1, 1, 1, 1, 1. [Because the powers of x are only place holders for the terms of
the sequence in a generating function, we do not need to worry that G(1) is undefined.] ▲

EXAMPLE 3 Let m be a positive integer. Let ak = C(m, k), for k = 0, 1, 2, . . . , m. What is the generating
function for the sequence a0, a1, . . . , am?

Solution: The generating function for this sequence is

G(x) = C(m, 0)+ C(m, 1)x + C(m, 2)x2 + · · · + C(m,m)xm.

The binomial theorem shows that G(x) = (1 + x)m. ▲

Useful Facts About Power Series

When generating functions are used to solve counting problems, they are usually considered to
be formal power series. Questions about the convergence of these series are ignored. However,
to apply some results from calculus, it is sometimes important to consider for which x the
power series converges. The fact that a function has a unique power series around x = 0 will
also be important. Generally, however, we will not be concerned with questions of convergence
or the uniqueness of power series in our discussions. Readers familiar with calculus can consult
textbooks on this subject for details about power series, including the convergence of the series
we consider here.

We will now state some important facts about infinite series used when working with
generating functions. A discussion of these and related results can be found in calculus texts.

EXAMPLE 4 The function f (x) = 1/(1 − x) is the generating function of the sequence 1, 1, 1, 1, . . . , be-
cause

1/(1 − x) = 1 + x + x2 + · · ·

for |x| < 1. ▲

EXAMPLE 5 The function f (x) = 1/(1 − ax) is the generating function of the sequence 1, a, a2, a3, . . . ,

because

1/(1 − ax) = 1 + ax + a2x2 + · · ·

when |ax| < 1, or equivalently, for |x| < 1/|a| for a = 0. ▲

We also will need some results on how to add and how to multiply two generating functions.
Proofs of these results can be found in calculus texts.

THEOREM 1 Let f (x) = ∞
k= 0 akx

k and g(x) = ∞
k= 0 bkx

k . Then

f (x)+ g(x) =
∞
k= 0

(ak + bk)xk and f (x)g(x) =
∞
k= 0

⎛
⎝ k
j = 0

ajbk−j

⎞
⎠ xk.

8.4 Generating Functions 539

Remark: Theorem 1 is valid only for power series that converge in an interval, as all series
considered in this section do. However, the theory of generating functions is not limited to such
series. In the case of series that do not converge, the statements in Theorem 1 can be taken as
definitions of addition and multiplication of generating functions.

We will illustrate how Theorem 1 can be used with Example 6.

EXAMPLE 6 Let f (x) = 1/(1 − x)2. Use Example 4 to find the coefficients a0, a1, a2, . . . in the expansion
f (x) = ∞

k= 0 akx
k .

Solution: From Example 4 we see that

1/(1 − x) = 1 + x + x2 + x3 + · · · .

Hence, from Theorem 1, we have

1/(1 − x)2 =
∞
k= 0

⎛
⎝ k
j = 0

1

⎞
⎠ xk =

∞
k= 0

(k + 1)xk.

▲

Remark: This result also can be derived from Example 4 by differentiation. Taking derivatives is
a useful technique for producing new identities from existing identities for generating functions.

To use generating functions to solve many important counting problems, we will need to
apply the binomial theorem for exponents that are not positive integers. Before we state an
extended version of the binomial theorem, we need to define extended binomial coefficients.

DEFINITION 2 Let u be a real number and k a nonnegative integer. Then the extended binomial coefficient
u
k

is defined by

u

k

=

u(u− 1) · · · (u− k + 1)/k! if k > 0,
1 if k = 0.

EXAMPLE 7 Find the values of the extended binomial coefficients
 −2

3

and

 1/2
3

.

Solution: Taking u = −2 and k = 3 in Definition 2 gives us

 −2

3

= (−2)(−3)(−4)

3! = −4.

Similarly, taking u = 1/2 and k = 3 gives us

1/2

3

= (1/2)(1/2 − 1)(1/2 − 2)

3!
= (1/2)(−1/2)(−3/2)/6

= 1/16. ▲

540 8 / Advanced Counting Techniques

Example 8 provides a useful formula for extended binomial coefficients when the top
parameter is a negative integer. It will be useful in our subsequent discussions.

EXAMPLE 8 When the top parameter is a negative integer, the extended binomial coefficient can be expressed
in terms of an ordinary binomial coefficient. To see that this is the case, note that

 −n
r

= (−n)(−n− 1) · · · (−n− r + 1)

r! by definition of extended binomial coefficient

= (−1)rn(n+ 1) · · · (n+ r − 1)

r! factoring out –1 from each term in the numerator

= (−1)r (n+ r − 1)(n+ r − 2) · · · n
r! by the commutative law for multiplication

= (−1)r (n+ r − 1)!
r!(n− 1)! multiplying both the numerator and denominator

by (n− 1)!

= (−1)r

n+ r − 1

r

by the definition of binomial coefficients

= (−1)rC(n+ r − 1, r). using alternative notation for binomial
coefficients

▲

We now state the extended binomial theorem.

THEOREM 2 THE EXTENDED BINOMIAL THEOREM Let x be a real number with |x| < 1 and
let u be a real number. Then

(1 + x)u =
∞
k= 0

u

k

xk.

Theorem 2 can be proved using the theory of Maclaurin series. We leave its proof to the reader
with a familiarity with this part of calculus.

Remark: When u is a positive integer, the extended binomial theorem reduces to the binomial
theorem presented in Section 6.4, because in that case

u
k

 = 0 if k > u.

Example 9 illustrates the use of Theorem 2 when the exponent is a negative integer.

EXAMPLE 9 Find the generating functions for (1 + x)−n and (1 − x)−n, where n is a positive integer, using
the extended binomial theorem.

Solution: By the extended binomial theorem, it follows that

(1 + x)−n =
∞
k= 0

 −n
k

xk.

8.4 Generating Functions 541

Using Example 8, which provides a simple formula for
 −n
k

, we obtain

(1 + x)−n =
∞
k= 0

(−1)kC(n+ k − 1, k)xk.

Replacing x by −x, we find that

(1 − x)−n =
∞
k= 0

C(n+ k − 1, k)xk.

▲

Table 1 presents a useful summary of some generating functions that arise frequently.

Remark: Note that the second and third formulae in this table can be deduced from the first
formula by substituting ax and xr for x, respectively. Similarly, the sixth and seventh formulae
can be deduced from the fifth formula using the same substitutions. The tenth and eleventh can
be deduced from the ninth formula by substituting −x and ax for x, respectively. Also, some
of the formulae in this table can be derived from other formulae using methods from calculus
(such as differentiation and integration). Students are encouraged to know the core formulae in
this table (that is, formulae from which the others can be derived, perhaps the first, fourth, fifth,
eighth, ninth, twelfth, and thirteenth formulae) and understand how to derive the other formulae
from these core formulae.

Counting Problems and Generating Functions

Generating functions can be used to solve a wide variety of counting problems. In particular, they
can be used to count the number of combinations of various types. In Chapter 6 we developed
techniques to count the r-combinations from a set with n elements when repetition is allowed
and additional constraints may exist. Such problems are equivalent to counting the solutions to
equations of the form

e1 + e2 + · · · + en = C,

where C is a constant and each ei is a nonnegative integer that may be subject to a specified
constraint. Generating functions can also be used to solve counting problems of this type, as
Examples 10–12 show.

EXAMPLE 10 Find the number of solutions of

e1 + e2 + e3 = 17,

where e1, e2, and e3 are nonnegative integers with 2 ≤ e1 ≤ 5, 3 ≤ e2 ≤ 6, and 4 ≤ e3 ≤ 7.

Solution: The number of solutions with the indicated constraints is the coefficient of x17 in the
expansion of

(x2 + x3 + x4 + x5)(x3 + x4 + x5 + x6)(x4 + x5 + x6 + x7).

542 8 / Advanced Counting Techniques

TABLE 1 Useful Generating Functions.

G(x) ak

(1 + x)n =
n
k= 0

C(n, k)xk C(n, k)

= 1 + C(n, 1)x + C(n, 2)x2 + · · · + xn

(1 + ax)n =
n
k= 0

C(n, k)akxk C(n, k)ak

= 1 + C(n, 1)ax + C(n, 2)a2x2 + · · · + anxn

(1 + xr)n =
n
k= 0

C(n, k)xrk C(n, k/r) if r | k; 0 otherwise

= 1 + C(n, 1)xr + C(n, 2)x2r + · · · + xrn

1 − xn+1

1 − x =
n
k= 0

xk = 1 + x + x2 + · · · + xn 1 if k ≤ n; 0 otherwise

1

1 − x =
∞
k= 0

xk = 1 + x + x2 + · · · 1

1

1 − ax =
∞
k= 0

akxk = 1 + ax + a2x2 + · · · ak

1

1 − xr =
∞
k= 0

xrk = 1 + xr + x2r + · · · 1 if r | k; 0 otherwise

1

(1 − x)2 =
∞
k= 0

(k + 1)xk = 1 + 2x + 3x2 + · · · k + 1

1

(1 − x)n =
∞
k= 0

C(n+ k − 1, k)xk C(n+ k − 1, k) = C(n+ k − 1, n− 1)

= 1 + C(n, 1)x + C(n+ 1, 2)x2 + · · ·

1

(1 + x)n =
∞
k= 0

C(n+ k − 1, k)(−1)kxk (−1)kC(n+ k − 1, k) = (−1)kC(n+ k − 1, n− 1)

= 1 − C(n, 1)x + C(n+ 1, 2)x2 − · · ·

1

(1 − ax)n =
∞
k= 0

C(n+ k − 1, k)akxk C(n+ k − 1, k)ak = C(n+ k − 1, n− 1)ak

= 1 + C(n, 1)ax + C(n+ 1, 2)a2x2 + · · ·

ex =
∞
k= 0

xk

k! = 1 + x + x2

2! + x3

3! + · · · 1/k!

ln(1 + x) =
∞
k= 1

(−1)k+1

k
xk = x − x2

2
+ x3

3
− x4

4
+ · · · (−1)k+1/k

Note: The series for the last two generating functions can be found in most calculus books when power series are discussed.

8.4 Generating Functions 543

This follows because we obtain a term equal to x17 in the product by picking a term in the
first sum xe1 , a term in the second sum xe2 , and a term in the third sum xe3 , where the
exponents e1, e2, and e3 satisfy the equation e1 + e2 + e3 = 17 and the given constraints.

It is not hard to see that the coefficient of x17 in this product is 3. Hence, there are
three solutions. (Note that the calculating of this coefficient involves about as much work
as enumerating all the solutions of the equation with the given constraints. However, the
method that this illustrates often can be used to solve wide classes of counting problems with
special formulae, as we will see. Furthermore, a computer algebra system can be used to
do such computations.) ▲

EXAMPLE 11 In how many different ways can eight identical cookies be distributed among three distinct
children if each child receives at least two cookies and no more than four cookies?

Solution: Because each child receives at least two but no more than four cookies, for each child
there is a factor equal to

(x2 + x3 + x4)

in the generating function for the sequence {cn}, where cn is the number of ways to distribute n
cookies. Because there are three children, this generating function is

(x2 + x3 + x4)3.

We need the coefficient of x8 in this product. The reason is that the x8 terms in the expansion
correspond to the ways that three terms can be selected, with one from each factor, that have
exponents adding up to 8. Furthermore, the exponents of the term from the first, second, and
third factors are the numbers of cookies the first, second, and third children receive, respectively.
Computation shows that this coefficient equals 6. Hence, there are six ways to distribute the
cookies so that each child receives at least two, but no more than four, cookies. ▲

EXAMPLE 12 Use generating functions to determine the number of ways to insert tokens worth $1, $2,
and $5 into a vending machine to pay for an item that costs r dollars in both the cases when
the order in which the tokens are inserted does not matter and when the order does matter. (For
example, there are two ways to pay for an item that costs $3 when the order in which the tokens
are inserted does not matter: inserting three $1 tokens or one $1 token and a $2 token. When
the order matters, there are three ways: inserting three $1 tokens, inserting a $1 token and then
a $2 token, or inserting a $2 token and then a $1 token.)

Solution: Consider the case when the order in which the tokens are inserted does not matter.
Here, all we care about is the number of each token used to produce a total of r dollars. Because
we can use any number of $1 tokens, any number of $2 tokens, and any number of $5 tokens,
the answer is the coefficient of xr in the generating function

(1 + x + x2 + x3 + · · ·)(1 + x2 + x4 + x6 + · · ·)(1 + x5 + x10 + x15 + · · ·).

(The first factor in this product represents the $1 tokens used, the second the $2 tokens used, and
the third the $5 tokens used.) For example, the number of ways to pay for an item costing $7
using $1, $2, and $5 tokens is given by the coefficient of x7 in this expansion, which equals 6.

When the order in which the tokens are inserted matters, the number of ways to insert
exactly n tokens to produce a total of r dollars is the coefficient of xr in

(x + x2 + x5)n,

544 8 / Advanced Counting Techniques

because each of the r tokens may be a $1 token, a $2 token, or a $5 token. Because any number
of tokens may be inserted, the number of ways to produce r dollars using $1, $2, or $5 tokens,
when the order in which the tokens are inserted matters, is the coefficient of xr in

1 + (x + x2 + x5)+ (x + x2 + x5)2 + · · · = 1

1 − (x + x2 + x5)

= 1

1 − x − x2 − x5
,

where we have added the number of ways to insert 0 tokens, 1 token, 2 tokens, 3 tokens, and
so on, and where we have used the identity 1/(1 − x) = 1 + x + x2 + · · · with x replaced
with x + x2 + x5. For example, the number of ways to pay for an item costing $7 using $1, $2,
and $5 tokens, when the order in which the tokens are used matters, is the coefficient of x7 in this
expansion, which equals 26. [Hint: To see that this coefficient equals 26 requires the addition
of the coefficients of x7 in the expansions (x + x2 + x5)k for 2 ≤ k ≤ 7. This can be done by
hand with considerable computation, or a computer algebra system can be used.] ▲

Example 13 shows the versatility of generating functions when used to solve problems with
differing assumptions.

EXAMPLE 13 Use generating functions to find the number of k-combinations of a set with n elements. Assume
that the binomial theorem has already been established.

Solution: Each of the n elements in the set contributes the term (1 + x) to the generating function
f (x) = n

k= 0 akx
k . Here f (x) is the generating function for {ak}, where ak represents the

number of k-combinations of a set with n elements. Hence,

f (x) = (1 + x)n.

But by the binomial theorem, we have

f (x) =
n
k= 0

n

k

xk,

where

n

k

= n!
k!(n− k)! .

Hence, C(n, k), the number of k-combinations of a set with n elements, is

n!
k!(n− k)! .

▲

Remark: We proved the binomial theorem in Section 6.4 using the formula for the number of
r-combinations of a set with n elements. This example shows that the binomial theorem, which
can be proved by mathematical induction, can be used to derive the formula for the number of
r-combinations of a set with n elements.

8.4 Generating Functions 545

EXAMPLE 14 Use generating functions to find the number of r-combinations from a set with n elements when
repetition of elements is allowed.

Solution: LetG(x) be the generating function for the sequence {ar}, where ar equals the number
of r-combinations of a set withn elements with repetitions allowed. That is,G(x) = ∞

r = 0 arx
r .

Because we can select any number of a particular member of the set with n elements
when we form an r-combination with repetition allowed, each of the n elements contributes
(1 + x + x2 + x3 + · · ·) to a product expansion forG(x). Each element contributes this factor
because it may be selected zero times, one time, two times, three times, and so on, when an
r-combination is formed (with a total of r elements selected). Because there are n elements in
the set and each contributes this same factor to G(x), we have

G(x) = (1 + x + x2 + · · ·)n.

As long as |x| < 1, we have 1 + x + x2 + · · · = 1/(1 − x), so

G(x) = 1/(1 − x)n = (1 − x)−n.

Applying the extended binomial theorem (Theorem 2), it follows that

(1 − x)−n = (1 + (−x))−n =
∞
r = 0

 −n
r

(−x)r .

The number of r-combinations of a set with n elements with repetitions allowed, when r is a
positive integer, is the coefficient ar of xr in this sum. Consequently, using Example 8 we find
that ar equals

 −n
r

(−1)r = (−1)rC(n+ r − 1, r) · (−1)r

= C(n+ r − 1, r).

▲
Note that the result in Example 14 is the same result we stated as Theorem 2 in Section 6.5.

EXAMPLE 15 Use generating functions to find the number of ways to select r objects of n different kinds if
we must select at least one object of each kind.

Solution: Because we need to select at least one object of each kind, each of the n kinds of objects
contributes the factor (x + x2 + x3 + · · ·) to the generating functionG(x) for the sequence {ar},
where ar is the number of ways to select r objects of n different kinds if we need at least one
object of each kind. Hence,

G(x) = (x + x2 + x3 + · · ·)n = xn(1 + x + x2 + · · ·)n = xn/(1 − x)n.

546 8 / Advanced Counting Techniques

Using the extended binomial theorem and Example 8, we have

G(x) = xn/(1 − x)n
= xn · (1 − x)−n

= xn
∞
r = 0

 −n
r

(−x)r

= xn
∞
r = 0

(−1)rC(n+ r − 1, r)(−1)rxr

=
∞
r = 0

C(n+ r − 1, r)xn+r

=
∞
t = n

C(t − 1, t − n)xt

=
∞
r = n

C(r − 1, r − n)xr .

We have shifted the summation in the next-to-last equality by setting t = n+ r so that t = n
when r = 0 and n+ r − 1 = t − 1, and then we replaced t by r as the index of summation in
the last equality to return to our original notation. Hence, there are C(r − 1, r − n) ways to
select r objects of n different kinds if we must select at least one object of each kind. ▲

Using Generating Functions to Solve Recurrence Relations

We can find the solution to a recurrence relation and its initial conditions by finding an explicit
formula for the associated generating function. This is illustrated in Examples 16 and 17.

EXAMPLE 16 Solve the recurrence relation ak = 3ak−1 for k = 1, 2, 3, . . . and initial condition a0 = 2.

Solution: LetG(x) be the generating function for the sequence {ak}, that is,G(x) = ∞
k= 0 akx

k .
First note that

xG(x) =
∞
k= 0

akx
k+1 =

∞
k= 1

ak−1x
k.

Using the recurrence relation, we see that

G(x)− 3xG(x) =
∞
k= 0

akx
k − 3

∞
k= 1

ak−1x
k

= a0 +
∞
k= 1

(ak − 3ak−1)x
k

= 2,

because a0 = 2 and ak = 3ak−1. Thus,

G(x)− 3xG(x) = (1 − 3x)G(x) = 2.

8.4 Generating Functions 547

Solving forG(x) shows thatG(x) = 2/(1 − 3x). Using the identity 1/(1 − ax) = ∞
k= 0 a

kxk ,
from Table 1, we have

G(x) = 2
∞
k= 0

3kxk =
∞
k= 0

2 · 3kxk.

Consequently, ak = 2 · 3k . ▲

EXAMPLE 17 Suppose that a valid codeword is an n-digit number in decimal notation containing an even
number of 0s. Let an denote the number of valid codewords of length n. In Example 4 of
Section 8.1 we showed that the sequence {an} satisfies the recurrence relation

an = 8an−1 + 10n−1

and the initial condition a1 = 9. Use generating functions to find an explicit formula for an.

Solution: To make our work with generating functions simpler, we extend this sequence
by setting a0 = 1; when we assign this value to a0 and use the recurrence relation, we
have a1 = 8a0 + 100 = 8 + 1 = 9, which is consistent with our original initial condition. (It
also makes sense because there is one code word of length 0—the empty string.)

We multiply both sides of the recurrence relation by xn to obtain

anx
n = 8an−1x

n + 10n−1xn.

Let G(x) = ∞
n= 0 anx

n be the generating function of the sequence a0, a1, a2, We sum
both sides of the last equation starting with n = 1, to find that

G(x)− 1 =
∞
n=1

anx
n =

∞
n=1

(8an−1x
n + 10n−1xn)

= 8
∞
n=1

an−1x
n +

∞
n=1

10n−1xn

= 8x
∞
n=1

an−1x
n−1 + x

∞
n=1

10n−1xn−1

= 8x
∞
n= 0

anx
n + x

∞
n= 0

10nxn

= 8xG(x)+ x/(1 − 10x),

where we have used Example 5 to evaluate the second summation. Therefore, we have

G(x)− 1 = 8xG(x)+ x/(1 − 10x).

Solving for G(x) shows that

G(x) = 1 − 9x
(1 − 8x)(1 − 10x)

.

548 8 / Advanced Counting Techniques

Expanding the right-hand side of this equation into partial fractions (as is done in the integration
of rational functions studied in calculus) gives

G(x) = 1

2

1

1 − 8x
+ 1

1 − 10x

.

Using Example 5 twice (once with a = 8 and once with a = 10) gives

G(x) = 1

2

 ∞
n= 0

8nxn +
∞
n= 0

10nxn

=
∞
n= 0

1

2
(8n + 10n)xn.

Consequently, we have shown that

an = 1

2
(8n + 10n).

▲

Proving Identities via Generating Functions

In Chapter 6 we saw how combinatorial identities could be established using combinatorial
proofs. Here we will show that such identities, as well as identities for extended binomial coef-
ficients, can be proved using generating functions. Sometimes the generating function approach
is simpler than other approaches, especially when it is simpler to work with the closed form
of a generating function than with the terms of the sequence themselves. We illustrate how
generating functions can be used to prove identities with Example 18.

EXAMPLE 18 Use generating functions to show that

n
k= 0

C(n, k)2 = C(2n, n)

whenever n is a positive integer.

Solution: First note that by the binomial theorem C(2n, n) is the coefficient of xn in (1 + x)2n.
However, we also have

(1 + x)2n = [(1 + x)n]2

= [C(n, 0)+ C(n, 1)x + C(n, 2)x2 + · · · + C(n, n)xn]2.

The coefficient of xn in this expression is

C(n, 0)C(n, n)+ C(n, 1)C(n, n− 1)+ C(n, 2)C(n, n− 2)+ · · · + C(n, n)C(n, 0).

This equals
 n
k= 0 C(n, k)

2, because C(n, n− k) = C(n, k). Because both C(2n, n) and n
k= 0 C(n, k)

2 represent the coefficient of xn in (1 + x)2n, they must be equal. ▲

Exercises 42 and 43 ask that Pascal’s identity and Vandermonde’s identity be proved using
generating functions.

8.4 Generating Functions 549

Exercises

1. Find the generating function for the finite sequence 2, 2,
2, 2, 2, 2.

2. Find the generating function for the finite sequence 1, 4,
16, 64, 256.

In Exercises 3–8, by a closed form we mean an algebraic ex-
pression not involving a summation over a range of values or
the use of ellipses.
3. Find a closed form for the generating function for each

of these sequences. (For each sequence, use the most ob-
vious choice of a sequence that follows the pattern of the
initial terms listed.)
a) 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, . . .
b) 0, 0, 0, 1, 1, 1, 1, 1, 1, . . .
c) 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, . . .
d) 2, 4, 8, 16, 32, 64, 128, 256, . . .

e)

7

0

,

7

1

,

7

2

, . . . ,

7

7

, 0, 0, 0, 0, 0, . . .

f) 2, −2, 2, −2, 2, −2, 2, −2, . . .
g) 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, . . .
h) 0, 0, 0, 1, 2, 3, 4, . . .

4. Find a closed form for the generating function for each
of these sequences. (Assume a general form for the terms
of the sequence, using the most obvious choice of such a
sequence.)
a) −1, −1, −1, −1, −1, −1, −1, 0, 0, 0, 0, 0, 0, . . .
b) 1, 3, 9, 27, 81, 243, 729, . . .
c) 0, 0, 3, −3, 3, −3, 3, −3, . . .
d) 1, 2, 1, 1, 1, 1, 1, 1, 1, . . .

e)

7

0

, 2

7

1

, 22

7

2

, . . . , 27

7

7

, 0, 0, 0, 0, . . .

f) −3, 3, −3, 3, −3, 3, . . .
g) 0, 1, −2, 4, −8, 16, −32, 64, . . .
h) 1, 0, 1, 0, 1, 0, 1, 0, . . .

5. Find a closed form for the generating function for the
sequence {an}, where
a) an = 5 for all n = 0, 1, 2,
b) an = 3n for all n = 0, 1, 2,
c) an = 2 for n = 3, 4, 5, . . . and a0 = a1 = a2 = 0.
d) an = 2n+ 3 for all n = 0, 1, 2,

e) an =

8

n

for all n = 0, 1, 2,

f) an =

n+ 4

n

for all n = 0, 1, 2,

6. Find a closed form for the generating function for the
sequence {an}, where
a) an = −1 for all n = 0, 1, 2,
b) an = 2n for n = 1, 2, 3, 4, . . . and a0 = 0.
c) an = n− 1 for n = 0, 1, 2,
d) an = 1/(n+ 1)! for n = 0, 1, 2,

e) an =

n

2

for n = 0, 1, 2,

f) an =

10

n+ 1

for n = 0, 1, 2,

7. For each of these generating functions, provide a closed
formula for the sequence it determines.
a) (3x − 4)3 b) (x3 + 1)3

c) 1/(1 − 5x) d) x3/(1 + 3x)
e) x2 + 3x + 7 + (1/(1 − x2))

f) (x4/(1 − x4))− x3 − x2 − x − 1
g) x2/(1 − x)2 h) 2e2x

8. For each of these generating functions, provide a closed
formula for the sequence it determines.
a) (x2 + 1)3 b) (3x − 1)3

c) 1/(1 − 2x2) d) x2/(1 − x)3
e) x − 1 + (1/(1 − 3x)) f) (1 + x3)/(1 + x)3
∗g) x/(1 + x + x2) h) e3x2 − 1
9. Find the coefficient of x10 in the power series of each of

these functions.
a) (1 + x5 + x10 + x15 + · · ·)3
b) (x3 + x4 + x5 + x6 + x7 + · · ·)3
c) (x4 + x5 + x6)(x3 + x4 + x5 + x6 + x7)(1 + x +
x2 + x3 + x4 + · · ·)

d) (x2 + x4 + x6 + x8 + · · ·)(x3 + x6 + x9 +
· · ·)(x4 + x8 + x12 + · · ·)

e) (1 + x2+ x4+ x6 + x8+ · · ·)(1 + x4+ x8+ x12 +
· · ·)(1 + x6 + x12 + x18 + · · ·)

10. Find the coefficient of x9 in the power series of each of
these functions.
a) (1 + x3 + x6 + x9 + · · ·)3
b) (x2 + x3 + x4 + x5 + x6 + · · ·)3
c) (x3 + x5 + x6)(x3 + x4)(x + x2 + x3 + x4 + · · ·)
d) (x + x4 + x7 + x10 + · · ·)(x2 + x4 + x6 + x8 +

· · ·)
e) (1 + x + x2)3

11. Find the coefficient of x10 in the power series of each of
these functions.
a) 1/(1 − 2x) b) 1/(1 + x)2
c) 1/(1 − x)3 d) 1/(1 + 2x)4

e) x4/(1 − 3x)3

12. Find the coefficient of x12 in the power series of each of
these functions.
a) 1/(1 + 3x) b) 1/(1 − 2x)2

c) 1/(1 + x)8 d) 1/(1 − 4x)3

e) x3/(1 + 4x)2

13. Use generating functions to determine the number of dif-
ferent ways 10 identical balloons can be given to four
children if each child receives at least two balloons.

14. Use generating functions to determine the number of dif-
ferent ways 12 identical action figures can be given to five
children so that each child receives at most three action
figures.

15. Use generating functions to determine the number of dif-
ferent ways 15 identical stuffed animals can be given to
six children so that each child receives at least one but no
more than three stuffed animals.

550 8 / Advanced Counting Techniques

16. Use generating functions to find the number of ways to
choose a dozen bagels from three varieties—egg, salty,
and plain—if at least two bagels of each kind but no more
than three salty bagels are chosen.

17. In how many ways can 25 identical donuts be distributed
to four police officers so that each officer gets at least
three but no more than seven donuts?

18. Use generating functions to find the number of ways to
select 14 balls from a jar containing 100 red balls, 100
blue balls, and 100 green balls so that no fewer than 3 and
no more than 10 blue balls are selected. Assume that the
order in which the balls are drawn does not matter.

19. What is the generating function for the sequence {ck},
where ck is the number of ways to make change for k
dollars using $1 bills, $2 bills, $5 bills, and $10 bills?

20. What is the generating function for the sequence {ck},
where ck represents the number of ways to make change
for k pesos using bills worth 10 pesos, 20 pesos, 50 pesos,
and 100 pesos?

21. Give a combinatorial interpretation of the coefficient
of x4 in the expansion (1 + x + x2 + x3 + · · ·)3. Use
this interpretation to find this number.

22. Give a combinatorial interpretation of the coefficient
of x6 in the expansion (1 + x + x2 + x3 + · · ·)n. Use
this interpretation to find this number.

23. a) What is the generating function for {ak}, where ak
is the number of solutions of x1 + x2 + x3 = k when
x1, x2, and x3 are integers with x1 ≥ 2, 0 ≤ x2 ≤ 3,
and 2 ≤ x3 ≤ 5?

b) Use your answer to part (a) to find a6.
24. a) What is the generating function for {ak}, where ak

is the number of solutions of x1 + x2 + x3 + x4 = k
when x1, x2, x3, and x4 are integers with x1 ≥ 3,
1 ≤ x2 ≤ 5, 0 ≤ x3 ≤ 4, and x4 ≥ 1?

b) Use your answer to part (a) to find a7.
25. Explain how generating functions can be used to find the

number of ways in which postage of r cents can be pasted
on an envelope using 3-cent, 4-cent, and 20-cent stamps.
a) Assume that the order the stamps are pasted on does

not matter.
b) Assume that the stamps are pasted in a row and the

order in which they are pasted on matters.
c) Use your answer to part (a) to determine the number

of ways 46 cents of postage can be pasted on an en-
velope using 3-cent, 4-cent, and 20-cent stamps when
the order the stamps are pasted on does not matter.
(Use of a computer algebra program is advised.)

d) Use your answer to part (b) to determine the num-
ber of ways 46 cents of postage can be pasted in a
row on an envelope using 3-cent, 4-cent, and 20-cent
stamps when the order in which the stamps are pasted
on matters. (Use of a computer algebra program is
advised.)

26. a) Show that 1/(1 − x − x2 − x3 − x4 − x5 − x6) is
the generating function for the number of ways that
the sum n can be obtained when a die is rolled repeat-
edly and the order of the rolls matters.

b) Use part (a) to find the number of ways to roll a total
of 8 when a die is rolled repeatedly, and the order of
the rolls matters. (Use of a computer algebra package
is advised.)

27. Use generating functions (and a computer algebra pack-
age, if available) to find the number of ways to make
change for $1 using
a) dimes and quarters.
b) nickels, dimes, and quarters.
c) pennies, dimes, and quarters.
d) pennies, nickels, dimes, and quarters.

28. Use generating functions (and a computer algebra pack-
age, if available) to find the number of ways to make
change for $1 using pennies, nickels, dimes, and quarters
with
a) no more than 10 pennies.
b) no more than 10 pennies and no more than 10 nickels.
∗c) no more than 10 coins.

29. Use generating functions to find the number of ways to
make change for $100 using
a) $10, $20, and $50 bills.
b) $5, $10, $20, and $50 bills.
c) $5, $10, $20, and $50 bills if at least one bill of each

denomination is used.
d) $5, $10, and $20 bills if at least one and no more than

four of each denomination is used.
30. If G(x) is the generating function for the sequence {ak},

what is the generating function for each of these se-
quences?
a) 2a0, 2a1, 2a2, 2a3, . . .
b) 0, a0, a1, a2, a3, . . . (assuming that terms follow the

pattern of all but the first term)
c) 0, 0, 0, 0, a2, a3, . . . (assuming that terms follow the

pattern of all but the first four terms)
d) a2, a3, a4, . . .
e) a1, 2a2, 3a3, 4a4, . . . [Hint: Calculus required here.]
f) a2

0 , 2a0a1, a2
1 + 2a0a2, 2a0a3 + 2a1a2, 2a0a4 +

2a1a3 + a2
2 , . . .

31. If G(x) is the generating function for the sequence {ak},
what is the generating function for each of these se-
quences?
a) 0, 0, 0, a3, a4, a5, . . . (assuming that terms follow the

pattern of all but the first three terms)
b) a0, 0, a1, 0, a2, 0, . . .
c) 0, 0, 0, 0, a0, a1, a2, . . . (assuming that terms follow

the pattern of all but the first four terms)
d) a0, 2a1, 4a2, 8a3, 16a4, . . .
e) 0, a0, a1/2, a2/3, a3/4, . . . [Hint: Calculus required

here.]
f) a0, a0 + a1, a0 + a1 + a2, a0 + a1 + a2 + a3, . . .

32. Use generating functions to solve the recurrence relation
ak = 7ak−1 with the initial condition a0 = 5.

33. Use generating functions to solve the recurrence relation
ak = 3ak−1 + 2 with the initial condition a0 = 1.

34. Use generating functions to solve the recurrence relation
ak = 3ak−1 + 4k−1 with the initial condition a0 = 1.

8.4 Generating Functions 551

35. Use generating functions to solve the recurrence rela-
tion ak = 5ak−1 − 6ak−2 with initial conditions a0 = 6
and a1 = 30.

36. Use generating functions to solve the recurrence relation
ak = ak−1 + 2ak−2 + 2k with initial conditions a0 = 4
and a1 = 12.

37. Use generating functions to solve the recurrence relation
ak = 4ak−1 − 4ak−2 + k2 with initial conditions a0 = 2
and a1 = 5.

38. Use generating functions to solve the recurrence re-
lation ak = 2ak−1 + 3ak−2 + 4k + 6 with initial condi-
tions a0 = 20, a1 = 60.

39. Use generating functions to find an explicit formula for
the Fibonacci numbers.

∗40. a) Show that if n is a positive integer, then

 −1/2

n

=

2n
n

(−4)n

.

b) Use the extended binomial theorem and part (a) to
show that the coefficient of xn in the expansion of
(1 − 4x)−1/2 is

 2n
n

for all nonnegative integers n.

∗41. (Calculus required) Let {Cn} be the sequence of Catalan
numbers, that is, the solution to the recurrence relation
Cn = n−1

k= 0 CkCn−k−1 with C0 = C1 = 1 (see Exam-
ple 5 in Section 8.1).
a) Show that ifG(x) is the generating function for the se-

quence of Catalan numbers, then xG(x)2 −G(x)+
1 = 0. Conclude (using the initial conditions) that
G(x) = (1 − √

1 − 4x)/(2x).
b) Use Exercise 40 to conclude that

G(x) =
∞
n= 0

1

n+ 1

2n

n

xn,

so that

Cn = 1

n+ 1

2n

n

.

c) Show that Cn ≥ 2n−1 for all positive integers n.
42. Use generating functions to prove Pascal’s identity:

C(n, r) = C(n− 1, r)+ C(n− 1, r − 1) when n and r
are positive integers with r < n. [Hint: Use the identity
(1 + x)n = (1 + x)n−1 + x(1 + x)n−1.]

43. Use generating functions to prove Vandermonde’s iden-
tity: C(m+ n, r) = r

k= 0 C(m, r − k)C(n, k), when-
ever m, n, and r are nonnegative integers with r not ex-
ceeding eitherm or n. [Hint: Look at the coefficient of xr

in both sides of (1 + x)m+n = (1 + x)m(1 + x)n.]

44. This exercise shows how to use generating functions to
derive a formula for the sum of the first n squares.
a) Show that (x2 + x)/(1 − x)4 is the gener-

ating function for the sequence {an}, where
an = 12 + 22 + · · · + n2.

b) Use part (a) to find an explicit formula for the sum
12 + 22 + · · · + n2.

The exponential generating function for the sequence {an}
is the series

∞
n= 0

an

n! x
n.

For example, the exponential generating function for the
sequence 1, 1, 1, . . . is the function

 ∞
n= 0 x

n/n! = ex .
(You will find this particular series useful in these exercises.)
Note that ex is the (ordinary) generating function for the se-
quence 1, 1, 1/2!, 1/3!, 1/4!,
45. Find a closed form for the exponential generating func-

tion for the sequence {an}, where
a) an = 2. b) an = (−1)n.
c) an = 3n. d) an = n+ 1.
e) an = 1/(n+ 1).

46. Find a closed form for the exponential generating func-
tion for the sequence {an}, where
a) an = (−2)n. b) an = −1.
c) an = n. d) an = n(n− 1).
e) an = 1/((n+ 1)(n+ 2)).

47. Find the sequence with each of these functions as its ex-
ponential generating function.
a) f (x) = e−x b) f (x) = 3x2x

c) f (x) = e3x − 3e2x d) f (x) = (1 − x)+ e−2x

e) f (x) = e−2x − (1/(1 − x))
f) f (x) = e−3x − (1 + x)+ (1/(1 − 2x))
g) f (x) = ex2

48. Find the sequence with each of these functions as its ex-
ponential generating function.
a) f (x) = e3x b) f (x) = 2e−3x+1

c) f (x) = e4x + e−4x d) f (x) = (1 + 2x)+ e3x

e) f (x) = ex − (1/(1 + x))
f) f (x) = xex g) f (x) = ex3

49. A coding system encodes messages using strings of octal
(base 8) digits.A codeword is considered valid if and only
if it contains an even number of 7s.
a) Find a linear nonhomogeneous recurrence relation for

the number of valid codewords of length n. What are
the initial conditions?

b) Solve this recurrence relation using Theorem 6 in Sec-
tion 8.2.

c) Solve this recurrence relation using generating func-
tions.

∗50. A coding system encodes messages using strings of
base 4 digits (that is, digits from the set {0, 1, 2, 3}).
A codeword is valid if and only if it contains an even
number of 0s and an even number of 1s. Let an equal
the number of valid codewords of length n. Furthermore,
letbn, cn, anddn equal the number of strings of base 4 dig-
its of length nwith an even number of 0s and an odd num-
ber of 1s, with an odd number of 0s and an even number
of 1s, and with an odd number of 0s and an odd number
of 1s, respectively.
a) Show that dn = 4n − an − bn − cn. Use this to show

that an+1 = 2an + bn + cn, bn+1 = bn − cn + 4n,
and cn+1 = cn − bn + 4n.

552 8 / Advanced Counting Techniques

b) What are a1, b1, c1, and d1?

c) Use parts (a) and (b) to find a3, b3, c3, and d3.

d) Use the recurrence relations in part (a), together with
the initial conditions in part (b), to set up three equa-
tions relating the generating functions A(x), B(x),
and C(x) for the sequences {an}, {bn}, and {cn}, re-
spectively.

e) Solve the system of equations from part (d) to get
explicit formulae for A(x), B(x), and C(x) and use
these to get explicit formulae for an, bn, cn, and dn.

Generating functions are useful in studying the number of
different types of partitions of an integer n. A partition of
a positive integer is a way to write this integer as the sum
of positive integers where repetition is allowed and the order
of the integers in the sum does not matter. For example, the
partitions of 5 (with no restrictions) are 1 + 1 + 1 + 1 + 1,
1 + 1 + 1 + 2, 1 + 1 + 3, 1 + 2 + 2, 1 + 4, 2 + 3, and 5.
Exercises 51–56 illustrate some of these uses.

51. Show that the coefficient p(n) of xn in the formal
power series expansion of 1/((1−x)(1−x2)(1−x3) · · ·)
equals the number of partitions of n.

52. Show that the coefficient po(n) of xn in the formal
power series expansion of 1/((1−x)(1−x3)(1−x5) · · ·)
equals the number of partitions of n into odd integers, that
is, the number of ways to writen as the sum of odd positive
integers, where the order does not matter and repetitions
are allowed.

53. Show that the coefficient pd(n) of xn in the formal power
series expansion of (1 + x)(1 + x2)(1 + x3) · · · equals
the number of partitions of n into distinct parts, that is,
the number of ways to write n as the sum of positive in-
tegers, where the order does not matter but no repetitions
are allowed.

54. Find po(n), the number of partitions of n into odd parts
with repetitions allowed, and pd(n), the number of par-
titions of n into distinct parts, for 1 ≤ n ≤ 8, by writing
each partition of each type for each integer.

55. Show that if n is a positive integer, then the number of
partitions of n into distinct parts equals the number
of partitions of n into odd parts with repetitions allowed;

that is, po(n) = pd(n). [Hint: Show that the generating
functions for po(n) and pd(n) are equal.]

∗∗56. (Requires calculus) Use the generating function of p(n)
to show that p(n) ≤ eC

√
n for some constant C. [Hardy

and Ramanujan showed that p(n) ∼ eπ
√

2/3
√
n/(4

√
3n),

which means that the ratio ofp(n) and the right-hand side
approaches 1 as n approaches infinity.]

Suppose thatX is a random variable on a sample space S such
that X(s) is a nonnegative integer for all s ∈ S. The proba-
bility generating function for X is

GX(x) =
∞
k= 0

p(X(s) = k)xk.

57. (Requires calculus) Show that if GX is the probability
generating function for a random variable X such that
X(s) is a nonnegative integer for all s ∈ S, then
a) GX(1) = 1. b) E(X) = G

X(1).
c) V (X) = G

X(1)+G
X(1)−G

X(1)
2.

58. Let X be the random variable whose value is n if the
first success occurs on the nth trial when independent
Bernoulli trials are performed, each with probability of
success p.
a) Find a closed formula for the probability generating

function GX .
b) Find the expected value and the variance of X using

Exercise 57 and the closed form for the probability
generating function found in part (a).

59. Let m be a positive integer. Let Xm be the random vari-
able whose value is n if the mth success occurs on the
(n+m)th trial when independent Bernoulli trials are per-
formed, each with probability of success p.
a) Using Exercise 32 in the Supplementary Exercises

of Chapter 7, show that the probability generating
functionGXm is given byGXm(x) = pm/(1 − qx)m,
where q = 1 − p.

b) Find the expected value and the variance ofXm using
Exercise 57 and the closed form for the probability
generating function in part (a).

60. Show that ifX andY are independent random variables on
a sample space S such thatX(s) and Y (s) are nonnegative
integers for all s ∈ S, then GX+Y (x) = GX(x)GY (x).

8.5 Inclusion–Exclusion

Introduction

A discrete mathematics class contains 30 women and 50 sophomores. How many students
in the class are either women or sophomores? This question cannot be answered unless more
information is provided.Adding the number of women in the class and the number of sophomores
probably does not give the correct answer, because women sophomores are counted twice. This
observation shows that the number of students in the class that are either sophomores or women is
the sum of the number of women and the number of sophomores in the class minus the number
of women sophomores. A technique for solving such counting problems was introduced in

8.5 Inclusion–Exclusion 553

Section 6.1. In this section we will generalize the ideas introduced in that section to solve
problems that require us to count the number of elements in the union of more than two sets.

The Principle of Inclusion–Exclusion

How many elements are in the union of two finite sets? In Section 2.2 we showed that the number
of elements in the union of the two sets A and B is the sum of the numbers of elements in the
sets minus the number of elements in their intersection. That is,

|A ∪ B| = |A| + |B| − |A ∩ B|.

As we showed in Section 6.1, the formula for the number of elements in the union of two sets
is useful in counting problems. Examples 1–3 provide additional illustrations of the usefulness
of this formula.

EXAMPLE 1 In a discrete mathematics class every student is a major in computer science or mathematics,
or both. The number of students having computer science as a major (possibly along with
mathematics) is 25; the number of students having mathematics as a major (possibly along with
computer science) is 13; and the number of students majoring in both computer science and
mathematics is 8. How many students are in this class?

Solution: LetA be the set of students in the class majoring in computer science and B be the set
of students in the class majoring in mathematics. Then A ∩ B is the set of students in the class
who are joint mathematics and computer science majors. Because every student in the class
is majoring in either computer science or mathematics (or both), it follows that the number of
students in the class is |A ∪ B|. Therefore,

|A ∪ B| = |A| + |B| − |A ∩ B|
= 25 + 13 − 8 = 30.

Therefore, there are 30 students in the class. This computation is illustrated in Figure 1. ▲

EXAMPLE 2 How many positive integers not exceeding 1000 are divisible by 7 or 11?

Solution: Let A be the set of positive integers not exceeding 1000 that are divisible by 7, and
let B be the set of positive integers not exceeding 1000 that are divisible by 11. Then A ∪ B
is the set of integers not exceeding 1000 that are divisible by either 7 or 11, and A ∩ B is the
set of integers not exceeding 1000 that are divisible by both 7 and 11. From Example 2 of
Section 4.1, we know that among the positive integers not exceeding 1000 there are 1000/7
integers divisible by 7 and 1000/11 divisible by 11. Because 7 and 11 are relatively prime,
the integers divisible by both 7 and 11 are those divisible by 7 · 11. Consequently, there are
 1000/(11 · 7) positive integers not exceeding 1000 that are divisible by both 7 and 11. It
follows that there are

|A ∪ B| = |A| + |B| − |A ∩ B|

=

1000

7

+

1000

11

−

1000

7 · 11

= 142 + 90 − 12 = 220

positive integers not exceeding 1000 that are divisible by either 7 or 11. This computation is
illustrated in Figure 2. ▲

554 8 / Advanced Counting Techniques

A BA B

 A B = A + B – A B = 25 + 13 – 8 = 30

 B = 13 A = 25 A B = 8

AA BBA B

FIGURE 1 The Set of Students in a

Discrete Mathematics Class.

 B = 90 A B = 12 A = 142

A BA B

 A B = A + B – A B = 142 + 90 – 12 = 220

AA BBA B

FIGURE 2 The Set of Positive Integers Not

Exceeding 1000 Divisible by Either 7 or 11.

Example 3 shows how to find the number of elements in a finite universal set that are outside
the union of two sets.

EXAMPLE 3 Suppose that there are 1807 freshmen at your school. Of these, 453 are taking a course in
computer science, 567 are taking a course in mathematics, and 299 are taking courses in both
computer science and mathematics. How many are not taking a course either in computer science
or in mathematics?

Solution: To find the number of freshmen who are not taking a course in either mathematics
or computer science, subtract the number that are taking a course in either of these subjects
from the total number of freshmen. Let A be the set of all freshmen taking a course in com-
puter science, and let B be the set of all freshmen taking a course in mathematics. It follows
that |A| = 453, |B| = 567, and |A ∩ B| = 299. The number of freshmen taking a course in
either computer science or mathematics is

|A ∪ B| = |A| + |B| − |A ∩ B| = 453 + 567 − 299 = 721.

Consequently, there are 1807 − 721 = 1086 freshmen who are not taking a course in computer
science or mathematics. ▲

We will now begin our development of a formula for the number of elements in the union
of a finite number of sets. The formula we will develop is called the principle of inclusion–
exclusion. For concreteness, before we consider unions of n sets, where n is any positive integer,
we will derive a formula for the number of elements in the union of three sets A, B, and C. To
construct this formula, we note that |A| + |B| + |C| counts each element that is in exactly one
of the three sets once, elements that are in exactly two of the sets twice, and elements in all three
sets three times. This is illustrated in the first panel in Figure 3.

To remove the overcount of elements in more than one of the sets, we subtract the number
of elements in the intersections of all pairs of the three sets. We obtain

|A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|.

This expression still counts elements that occur in exactly one of the sets once. An element that
occurs in exactly two of the sets is also counted exactly once, because this element will occur
in one of the three intersections of sets taken two at a time. However, those elements that occur
in all three sets will be counted zero times by this expression, because they occur in all three
intersections of sets taken two at a time. This is illustrated in the second panel in Figure 3.

8.5 Inclusion–Exclusion 555

1 1 1 1 1
2 1 1

10000

A B A B A B

CCCC C

1

1111 1

1111 1 12 22
3

C

1

1

(a) Count of elements by (b) Count of elements by (c) Count of elements by

FIGURE 3 Finding a Formula for the Number of Elements in the Union of Three Sets.

To remedy this undercount, we add the number of elements in the intersection of all three
sets. This final expression counts each element once, whether it is in one, two, or three of the
sets. Thus,

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C| + |A ∩ B ∩ C|.

This formula is illustrated in the third panel of Figure 3.
Example 4 illustrates how this formula can be used.

EXAMPLE 4 A total of 1232 students have taken a course in Spanish, 879 have taken a course in French,
and 114 have taken a course in Russian. Further, 103 have taken courses in both Spanish and
French, 23 have taken courses in both Spanish and Russian, and 14 have taken courses in both
French and Russian. If 2092 students have taken at least one of Spanish, French, and Russian,
how many students have taken a course in all three languages?

Solution: Let S be the set of students who have taken a course in Spanish, F the set of students
who have taken a course in French, andR the set of students who have taken a course in Russian.
Then

|S| = 1232, |F | = 879, |R| = 114,

|S ∩ F | = 103, |S ∩ R| = 23, |F ∩ R| = 14,

and

|S ∪ F ∪ R| = 2092.

When we insert these quantities into the equation

|S ∪ F ∪ R| = |S| + |F | + |R| − |S ∩ F | − |S ∩ R| − |F ∩ R| + |S ∩ F ∩ R|

we obtain

2092 = 1232 + 879 + 114 − 103 − 23 − 14 + |S ∩ F ∩ R|.

We now solve for |S ∩ F ∩ R|. We find that |S ∩ F ∩ R| = 7. Therefore, there are seven students
who have taken courses in Spanish, French, and Russian. This is illustrated in Figure 4. ▲

556 8 / Advanced Counting Techniques

S F S F

S S R R F F R

S S F F R

S F

R

S F

S R F R

S F R

S F

R

FIGURE 4 The Set of Students Who Have Taken Courses

in Spanish, French, and Russian.

We will now state and prove the inclusion–exclusion principle, which tells us how many
elements are in the union of a finite number of finite sets.

THEOREM 1 THE PRINCIPLE OF INCLUSION–EXCLUSION Let A1, A2, . . . , An be finite sets.
Then

|A1 ∪ A2 ∪ · · · ∪ An| =

1≤i≤n
|Ai | −

1≤i<j≤n

|Ai ∩ Aj |

+

1≤i<j<k≤n
|Ai ∩ Aj ∩ Ak| − · · · + (−1)n+1|A1 ∩ A2 ∩ · · · ∩ An|.

Proof: We will prove the formula by showing that an element in the union is counted exactly
once by the right-hand side of the equation. Suppose that a is a member of exactly r of the
sets A1, A2, . . . , An where 1 ≤ r ≤ n. This element is counted C(r, 1) times by |Ai |. It is
counted C(r, 2) times by |Ai ∩ Aj |. In general, it is counted C(r,m) times by the summation
involving m of the sets Ai . Thus, this element is counted exactly

C(r, 1)− C(r, 2)+ C(r, 3)− · · · + (−1)r+1C(r, r)

times by the expression on the right-hand side of this equation. Our goal is to evaluate this
quantity. By Corollary 2 of Section 6.4, we have

C(r, 0)− C(r, 1)+ C(r, 2)− · · · + (−1)rC(r, r) = 0.

Hence,

1 = C(r, 0) = C(r, 1)− C(r, 2)+ · · · + (−1)r+1C(r, r).

8.5 Inclusion–Exclusion 557

Therefore, each element in the union is counted exactly once by the expression on the right-hand
side of the equation. This proves the principle of inclusion–exclusion.

The inclusion–exclusion principle gives a formula for the number of elements in the union
of n sets for every positive integer n. There are terms in this formula for the number of ele-
ments in the intersection of every nonempty subset of the collection of the n sets. Hence, there
are 2n − 1 terms in this formula.

EXAMPLE 5 Give a formula for the number of elements in the union of four sets.

Solution: The inclusion–exclusion principle shows that

|A1 ∪ A2 ∪ A3 ∪ A4| = |A1| + |A2| + |A3| + |A4|
− |A1 ∩ A2| − |A1 ∩ A3| − |A1 ∩ A4| − |A2 ∩ A3| − |A2 ∩ A4|
− |A3 ∩ A4| + |A1 ∩ A2 ∩ A3| + |A1 ∩ A2 ∩ A4| + |A1 ∩ A3 ∩ A4|
+ |A2 ∩ A3 ∩ A4| − |A1 ∩ A2 ∩ A3 ∩ A4|.

Note that this formula contains 15 different terms, one for each nonempty subset of
{A1, A2, A3, A4}. ▲

Exercises

1. How many elements are in A1 ∪ A2 if there are 12 ele-
ments in A1, 18 elements in A2, and
a) A1 ∩ A2 = ∅? b) |A1 ∩ A2| = 1?
c) |A1 ∩ A2| = 6? d) A1 ⊆ A2?

2. There are 345 students at a college who have taken a
course in calculus, 212 who have taken a course in dis-
crete mathematics, and 188 who have taken courses in
both calculus and discrete mathematics. How many stu-
dents have taken a course in either calculus or discrete
mathematics?

3. A survey of households in the United States reveals that
96% have at least one television set, 98% have telephone
service, and 95% have telephone service and at least
one television set. What percentage of households in the
United States have neither telephone service nor a televi-
sion set?

4. A marketing report concerning personal computers states
that 650,000 owners will buy a printer for their machines
next year and 1,250,000 will buy at least one software
package. If the report states that 1,450,000 owners will
buy either a printer or at least one software package, how
many will buy both a printer and at least one software
package?

5. Find the number of elements in A1 ∪ A2 ∪ A3 if there
are 100 elements in each set and if
a) the sets are pairwise disjoint.
b) there are 50 common elements in each pair of sets and

no elements in all three sets.

c) there are 50 common elements in each pair of sets and
25 elements in all three sets.

d) the sets are equal.
6. Find the number of elements inA1 ∪ A2 ∪ A3 if there are

100 elements in A1, 1000 in A2, and 10,000 in A3 if
a) A1 ⊆ A2 and A2 ⊆ A3.
b) the sets are pairwise disjoint.
c) there are two elements common to each pair of sets

and one element in all three sets.
7. There are 2504 computer science students at a school. Of

these, 1876 have taken a course in Java, 999 have taken a
course in Linux, and 345 have taken a course in C. Fur-
ther, 876 have taken courses in both Java and Linux, 231
have taken courses in both Linux and C, and 290 have
taken courses in both Java and C. If 189 of these students
have taken courses in Linux, Java, and C, how many of
these 2504 students have not taken a course in any of
these three programming languages?

8. In a survey of 270 college students, it is found that 64 like
brussels sprouts, 94 like broccoli, 58 like cauliflower, 26
like both brussels sprouts and broccoli, 28 like both brus-
sels sprouts and cauliflower, 22 like both broccoli and
cauliflower, and 14 like all three vegetables. How many
of the 270 students do not like any of these vegetables?

9. How many students are enrolled in a course either in cal-
culus, discrete mathematics, data structures, or program-
ming languages at a school if there are 507, 292, 312,
and 344 students in these courses, respectively; 14 in both
calculus and data structures; 213 in both calculus and pro-
gramming languages; 211 in both discrete mathematics

558 8 / Advanced Counting Techniques

and data structures; 43 in both discrete mathematics and
programming languages; and no student may take cal-
culus and discrete mathematics, or data structures and
programming languages, concurrently?

10. Find the number of positive integers not exceeding 100
that are not divisible by 5 or by 7.

11. Find the number of positive integers not exceeding 100
that are either odd or the square of an integer.

12. Find the number of positive integers not exceeding 1000
that are either the square or the cube of an integer.

13. How many bit strings of length eight do not contain six
consecutive 0s?

∗14. How many permutations of the 26 letters of the English
alphabet do not contain any of the strings fish, rat or bird?

15. How many permutations of the 10 digits either begin with
the 3 digits 987, contain the digits 45 in the fifth and sixth
positions, or end with the 3 digits 123?

16. How many elements are in the union of four sets if
each of the sets has 100 elements, each pair of the sets
shares 50 elements, each three of the sets share 25 ele-
ments, and there are 5 elements in all four sets?

17. How many elements are in the union of four sets if the
sets have 50, 60, 70, and 80 elements, respectively, each
pair of the sets has 5 elements in common, each triple of
the sets has 1 common element, and no element is in all
four sets?

18. How many terms are there in the formula for the number
of elements in the union of 10 sets given by the principle
of inclusion–exclusion?

19. Write out the explicit formula given by the principle of
inclusion–exclusion for the number of elements in the
union of five sets.

20. How many elements are in the union of five sets if the
sets contain 10,000 elements each, each pair of sets has
1000 common elements, each triple of sets has 100 com-
mon elements, every four of the sets have 10 common
elements, and there is 1 element in all five sets?

21. Write out the explicit formula given by the principle of
inclusion–exclusion for the number of elements in the
union of six sets when it is known that no three of these
sets have a common intersection.

∗22. Prove the principle of inclusion–exclusion using mathe-
matical induction.

23. LetE1,E2, andE3 be three events from a sample space S.
Find a formula for the probability of E1 ∪ E2 ∪ E3.

24. Find the probability that when a fair coin is flipped five
times tails comes up exactly three times, the first and last
flips come up tails, or the second and fourth flips come
up heads.

25. Find the probability that when four numbers from 1 to
100, inclusive, are picked at random with no repetitions
allowed, either all are odd, all are divisible by 3, or all are
divisible by 5.

26. Find a formula for the probability of the union of four
events in a sample space if no three of them can occur at
the same time.

27. Find a formula for the probability of the union of five
events in a sample space if no four of them can occur at
the same time.

28. Find a formula for the probability of the union of n events
in a sample space when no two of these events can occur
at the same time.

29. Find a formula for the probability of the union of n events
in a sample space.

8.6 Applications of Inclusion–Exclusion

Introduction

Many counting problems can be solved using the principle of inclusion–exclusion. For instance,
we can use this principle to find the number of primes less than a positive integer. Many problems
can be solved by counting the number of onto functions from one finite set to another. The
inclusion–exclusion principle can be used to find the number of such functions. The famous
hatcheck problem can be solved using the principle of inclusion–exclusion. This problem asks
for the probability that no person is given the correct hat back by a hatcheck person who gives
the hats back randomly.

An Alternative Form of Inclusion–Exclusion

There is an alternative form of the principle of inclusion–exclusion that is useful in counting
problems. In particular, this form can be used to solve problems that ask for the number of
elements in a set that have none of n properties P1, P2, . . . , Pn.

Let Ai be the subset containing the elements that have property Pi . The number
of elements with all the properties Pi1, Pi2, . . . , Pik will be denoted by N(Pi1Pi2 . . . Pik).

8.6 Applications of Inclusion–Exclusion 559

Writing these quantities in terms of sets, we have

|Ai1 ∩ Ai2 ∩ · · · ∩ Aik | = N(Pi1Pi2 . . . Pik).

If the number of elements with none of the properties P1, P2, . . . , Pn is denoted by
N(P

1P

2 . . . P

n) and the number of elements in the set is denoted by N , it follows that

N(P
1P

2 . . . P

n) = N − |A1 ∪ A2 ∪ · · · ∪ An|.

From the inclusion–exclusion principle, we see that

N(P
1P

2 . . . P

n) = N −

1≤i≤n

N(Pi)+

1≤i<j≤n
N(PiPj)

−

1≤i<j<k≤n
N(PiPjPk)+ · · · + (−1)nN(P1P2 . . . Pn).

Example 1 shows how the principle of inclusion–exclusion can be used to determine the
number of solutions in integers of an equation with constraints.

EXAMPLE 1 How many solutions does

x1 + x2 + x3 = 11

have, where x1, x2, and x3 are nonnegative integers with x1 ≤ 3, x2 ≤ 4, and x3 ≤ 6?

Solution: To apply the principle of inclusion–exclusion, let a solution have property P1
if x1 > 3, property P2 if x2 > 4, and property P3 if x3 > 6. The number of solutions satis-
fying the inequalities x1 ≤ 3, x2 ≤ 4, and x3 ≤ 6 is

N(P
1P

2P

3) = N − N(P1)−N(P2)−N(P3)+N(P1P2)

+ N(P1P3)+N(P2P3)−N(P1P2P3).

Using the same techniques as in Example 5 of Section 6.5, it follows that

� N = total number of solutions = C(3 + 11 − 1, 11) = 78,
� N(P1) = (number of solutions with x1 ≥ 4) = C(3 + 7 − 1, 7) = C(9, 7) = 36,
� N(P2) = (number of solutions with x2 ≥ 5) = C(3 + 6 − 1, 6) = C(8, 6) = 28,
� N(P3) = (number of solutions with x3 ≥ 7) = C(3 + 4 − 1, 4) = C(6, 4) = 15,
� N(P1P2) = (number of solutions with x1 ≥ 4 and x2 ≥ 5) = C(3 + 2 − 1, 2) =

C(4, 2) = 6,
� N(P1P3) = (number of solutions with x1 ≥ 4 and x3 ≥ 7) = C(3 + 0 − 1, 0) = 1,
� N(P2P3) = (number of solutions with x2 ≥ 5 and x3 ≥ 7) = 0,
� N(P1P2P3) = (number of solutions with x1 ≥ 4, x2 ≥ 5, and x3 ≥ 7) = 0.

Inserting these quantities into the formula for N(P
1P

2P

3) shows that the number of solutions

with x1 ≤ 3, x2 ≤ 4, and x3 ≤ 6 equals

N(P
1P

2P

3) = 78 − 36 − 28 − 15 + 6 + 1 + 0 − 0 = 6.

▲

560 8 / Advanced Counting Techniques

The Sieve of Eratosthenes

In Section 4.3 we showed how to use the sieve of Eratosthenes to find all primes less than a
specified positive integer n. Using the principle of inclusion–exclusion, we can find the number
of primes not exceeding a specified positive integer with the same reasoning as is used in the
sieve of Eratosthenes. Recall that a composite integer is divisible by a prime not exceeding
its square root. So, to find the number of primes not exceeding 100, first note that compos-
ite integers not exceeding 100 must have a prime factor not exceeding 10. Because the only
primes not exceeding 10 are 2, 3, 5, and 7, the primes not exceeding 100 are these four primes
and those positive integers greater than 1 and not exceeding 100 that are divisible by none
of 2, 3, 5, or 7. To apply the principle of inclusion–exclusion, let P1 be the property that an
integer is divisible by 2, let P2 be the property that an integer is divisible by 3, let P3 be the
property that an integer is divisible by 5, and let P4 be the property that an integer is divisible
by 7. Thus, the number of primes not exceeding 100 is

4 +N(P
1P

2P

3P

4).

Because there are 99 positive integers greater than 1 and not exceeding 100, the principle of
inclusion–exclusion shows that

N(P
1P

2P

3P

4) = 99 −N(P1)−N(P2)−N(P3)−N(P4)

+N(P1P2)+N(P1P3)+N(P1P4)+N(P2P3)+N(P2P4)+N(P3P4)

−N(P1P2P3)−N(P1P2P4)−N(P1P3P4)−N(P2P3P4)

+N(P1P2P3P4).

The number of integers not exceeding 100 (and greater than 1) that are divisible by all the primes
in a subset of {2, 3, 5, 7} is 100/N , where N is the product of the primes in this subset. (This
follows because any two of these primes have no common factor.) Consequently,

N(P
1P

2P

3P

4) = 99 −

100

2

−

100

3

−

100

5

−

100

7

+

100

2 · 3

+

100

2 · 5

+

100

2 · 7

+

100

3 · 5

+

100

3 · 7

+

100

5 · 7

−

100

2 · 3 · 5

−

100

2 · 3 · 7

−

100

2 · 5 · 7

−

100

3 · 5 · 7

+

100

2 · 3 · 5 · 7

= 99 − 50 − 33 − 20 − 14 + 16 + 10 + 7 + 6 + 4 + 2 − 3 − 2 − 1 − 0 + 0
= 21.

Hence, there are 4 + 21 = 25 primes not exceeding 100.

The Number of Onto Functions

The principle of inclusion–exclusion can also be used to determine the number of onto functions
from a set with m elements to a set with n elements. First consider Example 2.

EXAMPLE 2 How many onto functions are there from a set with six elements to a set with three elements?

Solution: Suppose that the elements in the codomain are b1, b2, and b3. Let P1, P2, and P3 be
the properties that b1, b2, and b3 are not in the range of the function, respectively. Note that

8.6 Applications of Inclusion–Exclusion 561

a function is onto if and only if it has none of the properties P1, P2, or P3. By the inclusion–
exclusion principle it follows that the number of onto functions from a set with six elements to
a set with three elements is

N(P
1P

2P

3) = N − [N(P1)+N(P2)+N(P3)]

+ [N(P1P2)+N(P1P3)+N(P2P3)] −N(P1P2P3),

whereN is the total number of functions from a set with six elements to one with three elements.
We will evaluate each of the terms on the right-hand side of this equation.

From Example 6 of Section 6.1, it follows that N = 36. Note that N(Pi) is the number of
functions that do not have bi in their range. Hence, there are two choices for the value of the
function at each element of the domain. Therefore,N(Pi) = 26. Furthermore, there are C(3, 1)
terms of this kind. Note that N(PiPj) is the number of functions that do not have bi and bj
in their range. Hence, there is only one choice for the value of the function at each element of
the domain. Therefore, N(PiPj) = 16 = 1. Furthermore, there are C(3, 2) terms of this kind.
Also, note that N(P1P2P3) = 0, because this term is the number of functions that have none
of b1, b2, and b3 in their range. Clearly, there are no such functions. Therefore, the number of
onto functions from a set with six elements to one with three elements is

36 − C(3, 1)26 + C(3, 2)16 = 729 − 192 + 3 = 540.

▲

The general result that tells us how many onto functions there are from a set withm elements
to one with n elements will now be stated. The proof of this result is left as an exercise for the
reader.

THEOREM 1 Let m and n be positive integers with m ≥ n. Then, there are

nm − C(n, 1)(n− 1)m + C(n, 2)(n− 2)m − · · · + (−1)n−1C(n, n− 1) · 1m

onto functions from a set with m elements to a set with n elements.

An onto function from a set with m elements to a set with n elements corresponds to a
way to distribute the m elements in the domain to n indistinguishable boxes so that no box is
empty, and then to associate each of the n elements of the codomain to a box. This means that
the number of onto functions from a set withm elements to a set with n elements is the number

Counting onto functions
is much harder than
counting one-to-one
functions!

of ways to distribute m distinguishable objects to n indistinguishable boxes so that no box is
empty multiplied by the number of permutations of a set with n elements. Consequently, the
number of onto functions from a set withm elements to a set with n elements equals n!S(m, n),
where S(m, n) is a Stirling number of the second kind defined in Section 6.5. This means that
we can use Theorem 1 to deduce the formula given in Section 6.5 for S(m, n). (See Chapter 6
of [MiRo91] for more details about Stirling numbers of the second kind.)

One of the many different applications of Theorem 1 will now be described.

EXAMPLE 3 How many ways are there to assign five different jobs to four different employees if every
employee is assigned at least one job?

Solution: Consider the assignment of jobs as a function from the set of five jobs to the set of
four employees. An assignment where every employee gets at least one job is the same as an

562 8 / Advanced Counting Techniques

onto function from the set of jobs to the set of employees. Hence, by Theorem 1 it follows that
there are

45 − C(4, 1)35 + C(4, 2)25 − C(4, 3)15 = 1024 − 972 + 192 − 4 = 240

ways to assign the jobs so that each employee is assigned at least one job. ▲

Derangements

The principle of inclusion–exclusion will be used to count the permutations of n objects that
leave no objects in their original positions. Consider Example 4.

EXAMPLE 4 TheHatcheckProblem A new employee checks the hats ofn people at a restaurant, forgetting
to put claim check numbers on the hats. When customers return for their hats, the checker gives
them back hats chosen at random from the remaining hats. What is the probability that no one
receives the correct hat? ▲

Remark: The answer is the number of ways the hats can be arranged so that there is no hat in
its original position divided by n!, the number of permutations of n hats. We will return to this
example after we find the number of permutations of n objects that leave no objects in their
original position.

A derangement is a permutation of objects that leaves no object in its original position. To
solve the problem posed in Example 4 we will need to determine the number of derangements
of a set of n objects.

EXAMPLE 5 The permutation 21453 is a derangement of 12345 because no number is left in its original
position. However, 21543 is not a derangement of 12345, because this permutation leaves 4
fixed. ▲

LetDn denote the number of derangements of n objects. For instance,D3 = 2, because the
derangements of 123 are 231 and 312. We will evaluateDn, for all positive integers n, using the
principle of inclusion–exclusion.

THEOREM 2 The number of derangements of a set with n elements is

Dn = n!

1 − 1

1! + 1

2! − 1

3! + · · · + (−1)n
1

n!

.

Proof: Let a permutation have property Pi if it fixes element i. The number of derangements
is the number of permutations having none of the properties Pi for i = 1, 2, . . . , n. This means
that

Dn = N(P
1P

2 . . . P

n).

Using the principle of inclusion–exclusion, it follows that

Dn = N −

i

N(Pi)+

i<j

N(PiPj)−

i<j<k

N(PiPjPk)+ · · · + (−1)nN(P1P2 . . . Pn),

8.6 Applications of Inclusion–Exclusion 563

where N is the number of permutations of n elements. This equation states that the number of
permutations that fix no elements equals the total number of permutations, less the number that
fix at least one element, plus the number that fix at least two elements, less the number that fix
at least three elements, and so on. All the quantities that occur on the right-hand side of this
equation will now be found.

First, note thatN = n!, becauseN is simply the total number of permutations of n elements.
Also, N(Pi) = (n− 1)!. This follows from the product rule, because N(Pi) is the number of
permutations that fix element i, so the ith position of the permutation is determined, but each
of the remaining positions can be filled arbitrarily. Similarly,

N(PiPj) = (n− 2)!,

because this is the number of permutations that fix elements i and j , but where the
other n− 2 elements can be arranged arbitrarily. In general, note that

N(Pi1Pi2 . . . Pim) = (n−m)!,

because this is the number of permutations that fix elements i1, i2, . . . , im, but where the
other n−m elements can be arranged arbitrarily. Because there are C(n,m) ways to choosem
elements from n, it follows that

1≤i≤n

N(Pi) = C(n, 1)(n− 1)!,

1≤i<j≤n

N(PiPj) = C(n, 2)(n− 2)!,

and in general,

1≤i1<i2<···<im≤n

N(Pi1Pi2 . . . Pim) = C(n,m)(n−m)!.

Consequently, inserting these quantities into our formula for Dn gives

Dn = n! − C(n, 1)(n− 1)! + C(n, 2)(n− 2)! − · · · + (−1)nC(n, n)(n− n)!

= n! − n!
1!(n− 1)! (n− 1)! + n!

2!(n− 2)! (n− 2)! − · · · + (−1)n
n!
n! 0!0!.

Simplifying this expression gives

Dn = n!

1 − 1

1! + 1

2! − · · · + (−1)n
1

n!

.

HISTORICAL NOTE In rencontres (matches), an old French card game, the 52 cards in a deck are laid out
in a row. The cards of a second deck are laid out with one card of the second deck on top of each card of
the first deck. The score is determined by counting the number of matching cards in the two decks. In 1708
Pierre Raymond de Montmort (1678–1719) posed le problème de rencontres: What is the probability that no
matches take place in the game of rencontres? The solution to Montmort’s problem is the probability that a
randomly selected permutation of 52 objects is a derangement, namely, D52/52!, which, as we will see, is
approximately 1/e.

564 8 / Advanced Counting Techniques

TABLE 1 The Probability of a Derangement.

n 2 3 4 5 6 7

Dn/n! 0.50000 0.33333 0.37500 0.36667 0.36806 0.36786

It is now simple to findDn for a given positive integer n. For instance, using Theorem 2, it
follows that

D3 = 3!

1 − 1

1! + 1

2! − 1

3!

= 6

1 − 1 + 1

2
− 1

6

= 2,

as we have previously remarked.
The solution of the problem in Example 4 can now be given.

Solution: The probability that no one receives the correct hat is Dn/n!. By Theorem 2, this
probability is

Dn

n! = 1 − 1

1! + 1

2! − · · · + (−1)n
1

n! .

The values of this probability for 2 ≤ n ≤ 7 are displayed in Table 1.
Using methods from calculus it can be shown that

e−1 = 1 − 1

1! + 1

2! − · · · + (−1)n
1

n! + · · · ≈ 0.368.

Because this is an alternating series with terms tending to zero, it follows that as n grows without
bound, the probability that no one receives the correct hat converges to e−1 ≈ 0.368. In fact,
this probability can be shown to be within 1/(n+ 1)! of e−1. �

Exercises

1. Suppose that in a bushel of 100 apples there are 20 that
have worms in them and 15 that have bruises. Only those
apples with neither worms nor bruises can be sold. If there
are 10 bruised apples that have worms in them, how many
of the 100 apples can be sold?

2. Of 1000 applicants for a mountain-climbing trip in the
Himalayas, 450 get altitude sickness, 622 are not in good
enough shape, and 30 have allergies. An applicant qual-
ifies if and only if this applicant does not get altitude
sickness, is in good shape, and does not have allergies. If
there are 111 applicants who get altitude sickness and are
not in good enough shape, 14 who get altitude sickness
and have allergies, 18 who are not in good enough shape
and have allergies, and 9 who get altitude sickness, are
not in good enough shape, and have allergies, how many
applicants qualify?

3. How many solutions does the equation x1 + x2 + x3 =
13 have where x1, x2, and x3 are nonnegative integers less
than 6?

4. Find the number of solutions of the equation x1 + x2 +
x3 + x4 = 17, where xi , i = 1, 2, 3, 4, are nonnegative
integers such that x1 ≤ 3, x2 ≤ 4, x3 ≤ 5, and x4 ≤ 8.

5. Find the number of primes less than 200 using the prin-
ciple of inclusion–exclusion.

6. An integer is called squarefree if it is not divisible by
the square of a positive integer greater than 1. Find the
number of squarefree positive integers less than 100.

7. How many positive integers less than 10,000 are not the
second or higher power of an integer?

8. How many onto functions are there from a set with seven
elements to one with five elements?

9. How many ways are there to distribute six different toys
to three different children such that each child gets at least
one toy?

10. In how many ways can eight distinct balls be distributed
into three distinct urns if each urn must contain at least
one ball?

Key Terms and Results 565

11. In how many ways can seven different jobs be assigned
to four different employees so that each employee is as-
signed at least one job and the most difficult job is as-
signed to the best employee?

12. List all the derangements of {1, 2, 3, 4}.
13. How many derangements are there of a set with seven

elements?

14. What is the probability that none of 10 people receives
the correct hat if a hatcheck person hands their hats back
randomly?

15. A machine that inserts letters into envelopes goes haywire
and inserts letters randomly into envelopes. What is the
probability that in a group of 100 letters
a) no letter is put into the correct envelope?
b) exactly one letter is put into the correct envelope?
c) exactly 98 letters are put into the correct envelopes?
d) exactly 99 letters are put into the correct envelopes?
e) all letters are put into the correct envelopes?

16. A group of n students is assigned seats for each of two
classes in the same classroom. How many ways can these
seats be assigned if no student is assigned the same seat
for both classes?

∗17. How many ways can the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 be
arranged so that no even digit is in its original position?

∗18. Use a combinatorial argument to show that the sequence
{Dn}, where Dn denotes the number of derangements
of n objects, satisfies the recurrence relation

Dn = (n− 1)(Dn−1 +Dn−2)

for n ≥ 2. [Hint: Note that there are n− 1 choices for the
first element k of a derangement. Consider separately the
derangements that start with k that do and do not have 1
in the kth position.]

∗19. Use Exercise 18 to show that

Dn = nDn−1 + (−1)n

for n ≥ 1.
20. Use Exercise 19 to find an explicit formula for Dn.
21. For which positive integers n is Dn, the number of de-

rangements of n objects, even?
22. Suppose that p and q are distinct primes. Use the prin-

ciple of inclusion–exclusion to find φ(pq), the number
of positive integers not exceeding pq that are relatively
prime to pq.

∗23. Use the principle of inclusion–exclusion to derive a for-
mula for φ(n) when the prime factorization of n is

n = pa1
1 p

a2
2 · · ·pamm .

∗24. Show that if n is a positive integer, then

n! = C(n, 0)Dn + C(n, 1)Dn−1

+ · · · + C(n, n− 1)D1 + C(n, n)D0,

where Dk is the number of derangements of k objects.
25. How many derangements of {1, 2, 3, 4, 5, 6} begin with

the integers 1, 2, and 3, in some order?
26. How many derangements of {1, 2, 3, 4, 5, 6} end with the

integers 1, 2, and 3, in some order?
27. Prove Theorem 1.

Key Terms and Results

TERMS

recurrence relation: a formula expressing terms of a se-
quence, except for some initial terms, as a function of one
or more previous terms of the sequence

initial conditions for a recurrence relation: the values of the
terms of a sequence satisfying the recurrence relation before
this relation takes effect

dynamic programming: an algorithmic paradigm that finds
the solution to an optimization problem by recursively
breaking down the problem into overlapping subproblems
and combining their solutions with the help of a recurrence
relation

linear homogeneous recurrence relation with constant co-

efficients: a recurrence relation that expresses the terms of
a sequence, except initial terms, as a linear combination of
previous terms

characteristic roots of a linear homogeneous recurrence

relation with constant coefficients: the roots of the poly-
nomial associated with a linear homogeneous recurrence
relation with constant coefficients

linear nonhomogeneous recurrence relation with constant

coefficients: a recurrence relation that expresses the terms
of a sequence, except for initial terms, as a linear combina-
tion of previous terms plus a function that is not identically
zero that depends only on the index

divide-and-conquer algorithm: an algorithm that solves a
problem recursively by splitting it into a fixed number of
smaller non-overlapping subproblems of the same type

generating function of a sequence: the formal series that has
the nth term of the sequence as the coefficient of xn

sieve of Eratosthenes: a procedure for finding the primes less
than a specified positive integer

derangement: a permutation of objects such that no object is
in its original place

RESULTS

the formula for the number of elements in the union of two

finite sets:

|A ∪ B| = |A| + |B| − |A ∩ B|

566 8 / Advanced Counting Techniques

the formula for the number of elements in the union of three

finite sets:

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C|
− |B ∩ C| + |A ∩ B ∩ C|

the principle of inclusion–exclusion:

|A1 ∪ A2 ∪ · · · ∪ An| =

1≤i≤n
|Ai | −

1≤i<j≤n

|Ai ∩ Aj |

+

1≤i<j<k≤n
|Ai ∩ Aj ∩ Ak|

− · · · + (−1)n+1|A1 ∩ A2 ∩ · · · ∩ An|

the number of onto functions from a set with m elements

to a set with n elements:

nm − C(n, 1)(n− 1)m + C(n, 2)(n− 2)m

− · · · + (−1)n−1C(n, n− 1) · 1m

the number of derangements of n objects:

Dn = n!

1 − 1

1! + 1

2! − · · · + (−1)n
1

n!

Review Questions

1. a) What is a recurrence relation?

b) Find a recurrence relation for the amount of money
that will be in an account after n years if $1,000,000
is deposited in an account yielding 9% annually.

2. Explain how the Fibonacci numbers are used to solve Fi-
bonacci’s problem about rabbits.

3. a) Find a recurrence relation for the number of steps
needed to solve the Tower of Hanoi puzzle.

b) Show how this recurrence relation can be solved using
iteration.

4. a) Explain how to find a recurrence relation for the num-
ber of bit strings of length n not containing two con-
secutive 1s.

b) Describe another counting problem that has a solution
satisfying the same recurrence relation.

5. a) What is dynamic programming and how are recurrence
relations used in algorithms that follow this paradigm?

b) Explain how dynamic programming can be used to
schedule talks in a lecture hall from a set of possible
talks to maximize overall attendance.

6. Define a linear homogeneous recurrence relation of de-
gree k.

7. a) Explain how to solve linear homogeneous recurrence
relations of degree 2.

b) Solve the recurrence relation an = 13an−1 − 22an−2
for n ≥ 2 if a0 = 3 and a1 = 15.

c) Solve the recurrence relation an = 14an−1 − 49an−2
for n ≥ 2 if a0 = 3 and a1 = 35.

8. a) Explain how to find f (bk) where k is a positive inte-
ger iff (n) satisfies the divide-and-conquer recurrence
relation f (n) = af (n/b)+ g(n) whenever b divides
the positive integer n.

b) Find f (256) if f (n) = 3f (n/4)+ 5n/4 and
f (1) = 7.

9. a) Derive a divide-and-conquer recurrence relation for
the number of comparisons used to find a number in
a list using a binary search.

b) Give a big-O estimate for the number of comparisons
used by a binary search from the divide-and-conquer
recurrence relation you gave in (a) using Theorem 1
in Section 8.3.

10. a) Give a formula for the number of elements in the union
of three sets.

b) Explain why this formula is valid.

c) Explain how to use the formula from (a) to find the
number of integers not exceeding 1000 that are divis-
ible by 6, 10, or 15.

d) Explain how to use the formula from (a) to find the
number of solutions in nonnegative integers to the
equation x1 + x2 + x3 + x4 = 22 with x1 < 8, x2 <

6, and x3 < 5.

11. a) Give a formula for the number of elements in the union
of four sets and explain why it is valid.

b) Suppose the sets A1, A2, A3, and A4 each contain 25
elements, the intersection of any two of these sets con-
tains 5 elements, the intersection of any three of these
sets contains 2 elements, and 1 element is in all four
of the sets. How many elements are in the union of the
four sets?

12. a) State the principle of inclusion–exclusion.

b) Outline a proof of this principle.

13. Explain how the principle of inclusion–exclusion can be
used to count the number of onto functions from a set
with m elements to a set with n elements.

14. a) How can you count the number of ways to assign m
jobs to n employees so that each employee is assigned
at least one job?

Supplementary Exercises 567

b) How many ways are there to assign seven jobs to three
employees so that each employee is assigned at least
one job?

15. Explain how the inclusion–exclusion principle can be
used to count the number of primes not exceeding the
positive integer n.

16. a) Define a derangement.
b) Why is counting the number of ways a hatcheck per-

son can return hats to n people, so that no one receives
the correct hat, the same as counting the number of
derangements of n objects?

c) Explain how to count the number of derangements of
n objects.

Supplementary Exercises

1. A group of 10 people begin a chain letter, with each per-
son sending the letter to four other people. Each of these
people sends the letter to four additional people.
a) Find a recurrence relation for the number of letters

sent at the nth stage of this chain letter, if no person
ever receives more than one letter.

b) What are the initial conditions for the recurrence rela-
tion in part (a)?

c) How many letters are sent at the nth stage of the chain
letter?

2. A nuclear reactor has created 18 grams of a particular
radioactive isotope. Every hour 1% of this radioactive
isotope decays.
a) Set up a recurrence relation for the amount of this

isotope left n hours after its creation.
b) What are the initial conditions for the recurrence rela-

tion in part (a)?
c) Solve this recurrence relation.

3. Every hour the U.S. government prints 10,000 more $1
bills, 4000 more $5 bills, 3000 more $10 bills, 2500 more
$20 bills, 1000 more $50 bills, and the same number of
$100 bills as it did the previous hour. In the initial hour
1000 of each bill were produced.
a) Set up a recurrence relation for the amount of money

produced in the nth hour.
b) What are the initial conditions for the recurrence rela-

tion in part (a)?
c) Solve the recurrence relation for the amount of money

produced in the nth hour.
d) Set up a recurrence relation for the total amount of

money produced in the first n hours.
e) Solve the recurrence relation for the total amount of

money produced in the first n hours.
4. Suppose that every hour there are two new bacteria in a

colony for each bacterium that was present the previous
hour, and that all bacteria 2 hours old die. The colony
starts with 100 new bacteria.
a) Set up a recurrence relation for the number of bacteria

present after n hours.
b) What is the solution of this recurrence relation?
c) When will the colony contain more than 1 million bac-

teria?
5. Messages are sent over a communications channel using

two different signals. One signal requires 2 microseconds

for transmittal, and the other signal requires 3 microsec-
onds for transmittal. Each signal of a message is followed
immediately by the next signal.
a) Find a recurrence relation for the number of different

signals that can be sent in n microseconds.
b) What are the initial conditions of the recurrence rela-

tion in part (a)?
c) How many different messages can be sent in 12 mi-

croseconds?
6. A small post office has only 4-cent stamps, 6-cent

stamps, and 10-cent stamps. Find a recurrence relation
for the number of ways to form postage of n cents with
these stamps if the order that the stamps are used mat-
ters. What are the initial conditions for this recurrence
relation?

7. How many ways are there to form these postages using
the rules described in Exercise 6?
a) 12 cents b) 14 cents
c) 18 cents d) 22 cents

8. Find the solutions of the simultaneous system of recur-
rence relations

an = an−1 + bn−1

bn = an−1 − bn−1

with a0 = 1 and b0 = 2.

9. Solve the recurrence relation an = a2
n−1/an−2 if a0 = 1

and a1 = 2. [Hint: Take logarithms of both sides to
obtain a recurrence relation for the sequence log an,
n = 0, 1, 2,]

∗10. Solve the recurrence relation an = a3
n−1a

2
n−2 if a0 = 2

and a1 = 2. (See the hint for Exercise 9.)

11. Find the solution of the recurrence relation an =
3an−1 − 3an−2 + an−3 + 1 if a0 = 2, a1 = 4, and a2 =
8.

12. Find the solution of the recurrence relation an
= 3an−1 − 3an−2 + an−3 if a0 = 2, a1 = 2, and a2 = 4.

∗13. Suppose that in Example 1 of Section 8.1 a pair of rabbits
leaves the island after reproducing twice. Find a recur-
rence relation for the number of rabbits on the island in
the middle of the nth month.

∗14. In this exercise we construct a dynamic programming al-
gorithm for solving the problem of finding a subset S
of items chosen from a set of n items where item i has
a weight wi , which is a positive integer, so that the to-
tal weight of the items in S is a maximum but does not

568 8 / Advanced Counting Techniques

exceed a fixed weight limit W . Let M(j,w) denote the
maximum total weight of the items in a subset of the
first j items such that this total weight does not exceed w.
This problem is known as the knapsack problem.
a) Show that if wj > w, thenM(j,w) = M(j − 1,w).
b) Show that if wj ≤ w, then M(j,w) =

max(M(j − 1,w),wj +M(j − 1,w − wj)).
c) Use (a) and (b) to construct a dynamic programming

algorithm for determining the maximum total weight
of items so that this total weight does not exceed W .
In your algorithm store the valuesM(j,w) as they are
found.

d) Explain how you can use the values M(j,w) com-
puted by the algorithm in part (c) to find a subset of
items with maximum total weight not exceedingW .

In Exercises 15–18 we develop a dynamic programming al-
gorithm for finding a longest common subsequence of two
sequences a1, a2, . . . , am and b1, b2, . . . , bn, an important
problem in the comparison of DNA of different organisms.
15. Suppose that c1, c2, . . . , cp is a longest common

subsequence of the sequences a1, a2, . . . , am and
b1, b2, . . . , bn.
a) Show that if am = bn, then cp = am = bn and
c1, c2, . . . , cp−1 is a longest common subsequence of
a1, a2, . . . , am−1 and b1, b2, . . . , bn−1 when p > 1.

b) Suppose that am = bn. Show that if cp = am,
then c1, c2, . . . , cp is a longest common subse-
quence of a1, a2, . . . , am−1 and b1, b2, . . . , bn and
also show that if cp = bn, then c1, c2, . . . , cp is a
longest common subsequence of a1, a2, . . . , am and
b1, b2, . . . , bn−1.

16. Let L(i, j) denote the length of a longest com-
mon subsequence of a1, a2, . . . , ai and b1, b2, . . . , bj ,
where 0 ≤ i ≤ m and 0 ≤ j ≤ n. Use parts (a) and (b)
of Exercise 15 to show that L(i, j) satisfies the recur-
rence relation L(i, j) = L(i − 1, j − 1)+ 1 if both i
and j are nonzero and ai = bi , and L(i, j) =
max(L(i, j − 1), L(i − 1, j)) if both i and j are nonzero
and ai = bi , and the initial conditionL(i, j) = 0 if i = 0
or j = 0.

17. Use Exercise 16 to construct a dynamic programming
algorithm for computing the length of a longest com-
mon subsequence of two sequences a1, a2, . . . , am and
b1, b2, . . . , bn, storing the values of L(i, j) as they are
found.

18. Develop an algorithm for finding a longest com-
mon subsequence of two sequences a1, a2, . . . , am and
b1, b2, . . . , bn using the valuesL(i, j) found by the algo-
rithm in Exercise 17.

19. Find the solution to the recurrence relation f (n) =
f (n/2)+ n2 for n = 2k where k is a positive integer and
f (1) = 1.

20. Find the solution to the recurrence relation f (n) =
3f (n/5)+ 2n4, when n is divisible by 5, for n = 5k ,
where k is a positive integer and f (1) = 1.

21. Give a big-O estimate for the size of f in Exercise 20
if f is an increasing function.

22. Find a recurrence relation that describes the number of
comparisons used by the following algorithm: Find the
largest and second largest elements of a sequence of n
numbers recursively by splitting the sequence into two
subsequences with an equal number of terms, or where
there is one more term in one subsequence than in the
other, at each stage. Stop when subsequences with two
terms are reached.

23. Give a big-O estimate for the number of comparisons
used by the algorithm described in Exercise 22.

24. A sequence a1, a2, . . . , an is unimodal if and only if
there is an index m, 1 ≤ m ≤ n, such that ai < ai+1
when 1 ≤ i < m and ai > ai+1 when m ≤ i < n. That
is, the terms of the sequence strictly increase until the
mth term and they strictly decrease after it, which implies
that am is the largest term. In this exercise, am will al-
ways denote the largest term of the unimodal sequence
a1, a2, . . . , an.
a) Show that am is the unique term of the sequence that

is greater than both the term immediately preceding it
and the term immediately following it.

b) Show that if ai < ai+1 where 1 ≤ i < n,
then i + 1 ≤ m ≤ n.

c) Show that if ai > ai+1 where 1 ≤ i < n,
then 1 ≤ m ≤ i.

d) Develop a divide-and-conquer algorithm for locat-
ing the index m. [Hint: Suppose that i < m < j .
Use parts (a), (b), and (c) to determine whether
 (i+j)/2 + 1 ≤ m ≤ n, 1 ≤ m ≤ (i+j)/2 − 1,
or m = (i + j)/2 .]

25. Show that the algorithm from Exercise 24 has worst-case
time complexityO(log n) in terms of the number of com-
parisons.

Let {an} be a sequence of real numbers. The forward dif-
ferences of this sequence are defined recursively as fol-
lows: The first forward difference is an = an+1 − an; the
(k + 1)st forward difference k+1an is obtained from kan
by k+1an = kan+1 − kan.

26. Find an, where
a) an=3. b) an=4n+7. c) an=n2+n+1.

27. Let an = 3n3 + n+ 2. Find kan, where k equals
a) 2. b) 3. c) 4.

∗28. Suppose that an = P(n), where P is a polynomial of de-
gree d. Prove that d+1an = 0 for all nonnegative inte-
gers n.

29. Let {an} and {bn} be sequences of real numbers. Show
that

 (anbn) = an+1(bn)+ bn(an).

30. Show that if F(x) and G(x) are the generating func-
tions for the sequences {ak} and {bk}, respectively,
and c and d are real numbers, then (cF + dG)(x) is the
generating function for {cak + dbk}.

Supplementary Exercises 569

31. (Requires calculus) This exercise shows how generating
functions can be used to solve the recurrence relation
(n+ 1)an+1 = an + (1/n!) for n ≥ 0 with initial condi-
tion a0 = 1.
a) Let G(x) be the generating function for {an}. Show

that G (x) = G(x)+ ex and G(0) = 1.
b) Show from part (a) that (e−xG(x)) = 1, and conclude

that G(x) = xex + ex .
c) Use part (b) to find a closed form for an.

32. Suppose that 14 students receive an A on the first exam
in a discrete mathematics class, and 18 receive an A on
the second exam. If 22 students received an A on either
the first exam or the second exam, how many students
received an A on both exams?

33. There are 323 farms in Monmouth County that have at
least one of horses, cows, and sheep. If 224 have horses,
85 have cows, 57 have sheep, and 18 farms have all three
types of animals, how many farms have exactly two of
these three types of animals?

34. Queries to a database of student records at a college pro-
duced the following data: There are 2175 students at the
college, 1675 of these are not freshmen, 1074 students
have taken a course in calculus, 444 students have taken a
course in discrete mathematics, 607 students are not fresh-
men and have taken calculus, 350 students have taken
calculus and discrete mathematics, 201 students are not
freshmen and have taken discrete mathematics, and 143
students are not freshmen and have taken both calculus
and discrete mathematics. Can all the responses to the
queries be correct?

35. Students in the school of mathematics at a university ma-
jor in one or more of the following four areas: applied
mathematics (AM), pure mathematics (PM), operations
research (OR), and computer science (CS). How many
students are in this school if (including joint majors) there

are 23 students majoring in AM; 17 in PM; 44 in OR; 63
in CS; 5 in AM and PM; 8 in AM and CS; 4 in AM and
OR; 6 in PM and CS; 5 in PM and OR; 14 in OR and CS;
2 in PM, OR, and CS; 2 in AM, OR, and CS; 1 in PM,
AM, and OR; 1 in PM, AM, and CS; and 1 in all four
fields.

36. How many terms are needed when the inclusion–
exclusion principle is used to express the number of ele-
ments in the union of seven sets if no more than five of
these sets have a common element?

37. How many solutions in positive integers are there
to the equation x1 + x2 + x3 = 20 with 2 < x1 < 6,
6 < x2 < 10, and 0 < x3 < 5?

38. How many positive integers less than 1,000,000 are
a) divisible by 2, 3, or 5?
b) not divisible by 7, 11, or 13?
c) divisible by 3 but not by 7?

39. How many positive integers less than 200 are
a) second or higher powers of integers?
b) either primes or second or higher powers of integers?
c) not divisible by the square of an integer greater

than 1?
d) not divisible by the cube of an integer greater than 1?
e) not divisible by three or more primes?

∗40. How many ways are there to assign six different jobs to
three different employees if the hardest job is assigned
to the most experienced employee and the easiest job is
assigned to the least experienced employee?

41. What is the probability that exactly one person is given
back the correct hat by a hatcheck person who gives n
people their hats back at random?

42. How many bit strings of length six do not contain four
consecutive 1s?

43. What is the probability that a bit string of length six cho-
sen at random contains at least four 1s?

Computer Projects

Write programs with these input and output.

1. Given a positive integer n, list all the moves required in
the Tower of Hanoi puzzle to move n disks from one peg
to another according to the rules of the puzzle.

2. Given a positive integer n and an integer kwith 1 ≤ k ≤ n,
list all the moves used by the Frame–Stewart algorithm
(described in the preamble to Exercise 38 of Section 8.1)
to move n disks from one peg to another using four pegs
according to the rules of the puzzle.

3. Given a positive integer n, list all the bit sequences of
length n that do not have a pair of consecutive 0s.

4. Given an integer n greater than 1, write out all ways to
parenthesize the product of n+ 1 variables.

5. Given a set of n talks, their start and end times, and the
number of attendees at each talk, use dynamic program-

ming to schedule a subset of these talks in a single lecture
hall to maximize total attendance.

6. Given matrices A1,A2, . . . ,An, with dimensions m1 ×
m2,m2 ×m3, . . . , mn ×mn+1, respectively, each with
integer entries, use dynamic programming, as out-
lined in Exercise 57 in Section 8.1, to find the mini-
mum number of multiplications of integers needed to
compute A1A2 · · ·An.

7. Given a recurrence relation an = c1an−1 + c2an−2, where
c1 and c2 are real numbers, initial conditions a0 = C0 and
a1 = C1, and a positive integer k, find ak using iteration.

8. Given a recurrence relation an = c1an−1 + c2an−2 and
initial conditions a0 = C0 and a1 = C1, determine the
unique solution.

570 8 / Advanced Counting Techniques

9. Given a recurrence relation of the form f (n) =
af (n/b)+ c, where a is a real number, b is a positive
integer, and c is a real number, and a positive integer k,
find f (bk) using iteration.

10. Given the number of elements in the intersection of three
sets, the number of elements in each pairwise intersection
of these sets, and the number of elements in each set, find
the number of elements in their union.

11. Given a positive integer n, produce the formula for the
number of elements in the union of n sets.

12. Given positive integers m and n, find the number of onto
functions from a set with m elements to a set with n ele-
ments.

13. Given a positive integer n, list all the derangements of the
set {1, 2, 3, . . . , n}.

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. Find the exact value of f100, f500, and f1000, where fn is
the nth Fibonacci number.

2. Find the smallest Fibonacci number greater than
1,000,000, greater than 1,000,000,000, and greater than
1,000,000,000,000.

3. Find as many prime Fibonacci numbers as you can. It is
unknown whether there are infinitely many of these.

4. Write out all the moves required to solve the Tower of
Hanoi puzzle with 10 disks.

5. Write out all the moves required to use the Frame–Stewart
algorithm to move 20 disks from one peg to another peg
using four pegs according to the rules of the Reve’s puz-
zle.

6. Verify the Frame conjecture for solving the Reve’s puzzle
for n disks for as many integers n as possible by show-
ing that the puzzle cannot be solved using fewer moves
than are made by the Frame–Stewart algorithm with the
optimal choice of k.

7. Compute the number of operations required to multi-
ply two integers with n bits for various integers n in-
cluding 16, 64, 256, and 1024 using the fast multiplica-
tion described in Example 4 of Section 8.3 and the stan-
dard algorithm for multiplying integers (Algorithm 3 in
Section 4.2).

8. Compute the number of operations required to multiply
two n× nmatrices for various integers n including 4, 16,
64, and 128 using the fast matrix multiplication described
in Example 5 of Section 8.3 and the standard algorithm
for multiplying matrices (Algorithm 1 in Section 3.3).

9. Find the number of primes not exceeding 10,000 using
the method described in Section 8.6 to find the number of
primes not exceeding 100.

10. List all the derangements of {1, 2, 3, 4, 5, 6, 7, 8}.
11. Compute the probability that a permutation of n objects

is a derangement for all positive integers not exceeding
20 and determine how quickly these probabilities ap-
proach the number 1/e.

Writing Projects

Respond to these with essays using outside sources.

1. Find the original source where Fibonacci presented his
puzzle about modeling rabbit populations. Discuss this
problem and other problems posed by Fibonacci and give
some information about Fibonacci himself.

2. Explain how the Fibonacci numbers arise in a variety of
applications, such as in phyllotaxis, the study of arrange-
ment of leaves in plants, in the study of reflections by
mirrors, and so on.

3. Describe different variations of the Tower of Hanoi puz-
zle, including those with more than three pegs (includ-
ing the Reve’s puzzle discussed in the text and exer-
cises), those where disk moves are restricted, and those
where disks may have the same size. Include what is
known about the number of moves required to solve
each variation.

4. Discuss as many different problems as possible where the
Catalan numbers arise.

5. Discuss some of the problems in which Richard Bellman
first used dynamic programming.

6. Describe the role dynamic programming algorithms play
in bioinformatics including for DNA sequence compari-
son, gene comparison, and RNA structure prediction.

7. Describe the use of dynamic programming in economics
including its use to study optimal consumption and sav-
ing.

8. Explain how dynamic programming can be used to solve
the egg-dropping puzzle which determines from which
floors of a multistory building it is safe to drop eggs from
without breaking.

Computations and Explorations 571

9. Describe the solution of Ulam’s problem (see Exercise 28
in Section 8.3) involving searching with one lie found by
Andrzej Pelc.

10. Discuss variations of Ulam’s problem (see Exercise 28 in
Section 8.3) involving searching with more than one lie
and what is known about this problem.

11. Define the convex hull of a set of points in the plane and
describe three different algorithms, including a divide-
and-conquer algorithm, for finding the convex hull of a
set of points in the plane.

12. Describe how sieve methods are used in number theory.
What kind of results have been established using such
methods?

13. Look up the rules of the old French card game of rencon-

tres. Describe these rules and describe the work of Pierre
Raymond de Montmort on le problème de rencontres.

14. Describe how exponential generating functions can be
used to solve a variety of counting problems.

15. Describe the Polyá theory of counting and the kind of
counting problems that can be solved using this theory.

16. The problème des ménages (the problem of the house-
holds) asks for the number of ways to arrange n couples
around a table so that the sexes alternate and no husband
and wife are seated together. Explain the method used by
E. Lucas to solve this problem.

17. Explain how rook polynomials can be used to solve count-
ing problems.

9

C H A P T E R

Relations

9.1 Relations and
Their
Properties

9.2 n-ary Relations
and Their
Applications

9.3 Representing
Relations

9.4 Closures of
Relations

9.5 Equivalence
Relations

9.6 Partial
Orderings

Relationships between elements of sets occur in many contexts. Every day we deal with
relationships such as those between a business and its telephone number, an employee

and his or her salary, a person and a relative, and so on. In mathematics we study relationships
such as those between a positive integer and one that it divides, an integer and one that it is
congruent to modulo 5, a real number and one that is larger than it, a real number x and the
value f (x) where f is a function, and so on. Relationships such as that between a program and
a variable it uses, and that between a computer language and a valid statement in this language
often arise in computer science.

Relationships between elements of sets are represented using the structure called a relation,
which is just a subset of the Cartesian product of the sets. Relations can be used to solve problems
such as determining which pairs of cities are linked by airline flights in a network, finding a
viable order for the different phases of a complicated project, or producing a useful way to store
information in computer databases.

In some computer languages, only the first 31 characters of the name of a variable matter.
The relation consisting of ordered pairs of strings where the first string has the same initial
31 characters as the second string is an example of a special type of relation, known as an
equivalence relation. Equivalence relations arise throughout mathematics and computer science.
We will study equivalence relations, and other special types of relations, in this chapter.

9.1 Relations and Their Properties

Introduction

The most direct way to express a relationship between elements of two sets is to use ordered pairs
made up of two related elements. For this reason, sets of ordered pairs are called binary relations.
In this section we introduce the basic terminology used to describe binary relations. Later in this
chapter we will use relations to solve problems involving communications networks, project
scheduling, and identifying elements in sets with common properties.

DEFINITION 1 Let A and B be sets. A binary relation from A to B is a subset of A× B.

In other words, a binary relation from A to B is a set R of ordered pairs where the first element
of each ordered pair comes from A and the second element comes from B. We use the notation
a R b to denote that (a, b) ∈ R and a R b to denote that (a, b) /∈ R. Moreover, when (a, b)
belongs to R, a is said to be related to b by R.

Binary relations represent relationships between the elements of two sets. We will introduce
n-ary relations, which express relationships among elements of more than two sets, later in this
chapter. We will omit the word binary when there is no danger of confusion.

Examples 1–3 illustrate the notion of a relation.

EXAMPLE 1 Let A be the set of students in your school, and let B be the set of courses. Let R be
the relation that consists of those pairs (a, b), where a is a student enrolled in course b.
For instance, if Jason Goodfriend and Deborah Sherman are enrolled in CS518, the pairs

573

574 9 / Relations

(Jason Goodfriend, CS518) and (Deborah Sherman, CS518) belong to R. If Jason Goodfriend
is also enrolled in CS510, then the pair (Jason Goodfriend, CS510) is also in R. However,
if Deborah Sherman is not enrolled in CS510, then the pair (Deborah Sherman, CS510) is
not in R.

Note that if a student is not currently enrolled in any courses there will be no pairs in R that
have this student as the first element. Similarly, if a course is not currently being offered there
will be no pairs in R that have this course as their second element. ▲

EXAMPLE 2 Let A be the set of cities in the U.S.A., and let B be the set of the 50 states in the U.S.A.
Define the relation R by specifying that (a, b) belongs to R if a city with name a is in
the state b. For instance, (Boulder, Colorado), (Bangor, Maine), (Ann Arbor, Michigan),
(Middletown, New Jersey), (Middletown, New York), (Cupertino, California), and
(Red Bank, New Jersey) are in R. ▲

EXAMPLE 3 Let A = {0, 1, 2} and B = {a, b}. Then {(0, a), (0, b), (1, a), (2, b)} is a relation from A to B.
This means, for instance, that 0R a, but that 1 R b. Relations can be represented graphically,
as shown in Figure 1, using arrows to represent ordered pairs. Another way to represent this
relation is to use a table, which is also done in Figure 1. We will discuss representations of
relations in more detail in Section 9.3. ▲

0

1

2

b

a
R a b

0

1

2

FIGURE 1 Displaying the Ordered Pairs in the Relation R from Example 3.

Functions as Relations

Recall that a function f from a set A to a set B (as defined in Section 2.3) assigns exactly
one element of B to each element of A. The graph of f is the set of ordered pairs (a, b) such
that b = f (a). Because the graph of f is a subset of A× B, it is a relation from A to B.
Moreover, the graph of a function has the property that every element of A is the first element
of exactly one ordered pair of the graph.

Conversely, if R is a relation from A to B such that every element in A is the first element
of exactly one ordered pair of R, then a function can be defined with R as its graph. This can be
done by assigning to an element a of A the unique element b ∈ B such that (a, b) ∈ R. (Note
that the relation R in Example 2 is not the graph of a function because Middletown occurs more
than once as the first element of an ordered pair in R.)

A relation can be used to express a one-to-many relationship between the elements of the
setsA and B (as in Example 2), where an element of A may be related to more than one element
of B. A function represents a relation where exactly one element of B is related to each element
of A.

Relations are a generalization of graphs of functions; they can be used to express a much
wider class of relationships between sets. (Recall that the graph of the function f from A to B
is the set of ordered pairs (a, f (a)) for a ∈ A.)

9.1 Relations and Their Properties 575

Relations on a Set

Relations from a set A to itself are of special interest.

DEFINITION 2 A relation on a set A is a relation from A to A.

In other words, a relation on a set A is a subset of A× A.

EXAMPLE 4 Let A be the set {1, 2, 3, 4}. Which ordered pairs are in the relation R = {(a, b) | a divides b}?

Solution: Because (a, b) is in R if and only if a and b are positive integers not exceeding 4 such
that a divides b, we see that

R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}.

The pairs in this relation are displayed both graphically and in tabular form in Figure 2. ▲

Next, some examples of relations on the set of integers will be given in Example 5.

EXAMPLE 5 Consider these relations on the set of integers:

R1 = {(a, b) | a ≤ b},

R2 = {(a, b) | a > b},

R3 = {(a, b) | a = b or a = −b},

R4 = {(a, b) | a = b},

R5 = {(a, b) | a = b + 1},

R6 = {(a, b) | a + b ≤ 3}.

Which of these relations contain each of the pairs (1, 1), (1, 2), (2, 1), (1,−1), and (2, 2)?

Remark: Unlike the relations in Examples 1–4, these are relations on an infinite set.

Solution: The pair (1, 1) is in R1, R3, R4, and R6; (1, 2) is in R1 and R6; (2, 1) is in R2, R5,
and R6; (1,−1) is in R2, R3, and R6; and finally, (2, 2) is in R1, R3, and R4. ▲

It is not hard to determine the number of relations on a finite set, because a relation on a
set A is simply a subset of A× A.

1 R 1 3

1

2

3

2 4

4

2

3

4

1

2

3

4

FIGURE 2 Displaying the Ordered Pairs in

the Relation R from Example 4.

576 9 / Relations

EXAMPLE 6 How many relations are there on a set with n elements?

Solution: A relation on a set A is a subset of A× A. Because A× A has n2 elements when A
has n elements, and a set withm elements has 2m subsets, there are 2n

2
subsets ofA× A. Thus,

there are 2n
2

relations on a set with n elements. For example, there are 232
= 29 = 512 relations

on the set {a, b, c}. ▲

Properties of Relations

There are several properties that are used to classify relations on a set. We will introduce the
most important of these here.

In some relations an element is always related to itself. For instance, let R be the relation
on the set of all people consisting of pairs (x, y) where x and y have the same mother and the
same father. Then xRx for every person x.

DEFINITION 3 A relation R on a set A is called reflexive if (a, a) ∈ R for every element a ∈ A.

Remark: Using quantifiers we see that the relationR on the setA is reflexive if ∀a((a, a) ∈ R),
where the universe of discourse is the set of all elements in A.

We see that a relation on A is reflexive if every element of A is related to itself.
Examples 7–9 illustrate the concept of a reflexive relation.

EXAMPLE 7 Consider the following relations on {1, 2, 3, 4}:

R1 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)},

R2 = {(1, 1), (1, 2), (2, 1)},

R3 = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)},

R4 = {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)},

R5 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)},

R6 = {(3, 4)}.

Which of these relations are reflexive?

Solution: The relations R3 and R5 are reflexive because they both contain all pairs of the form
(a, a), namely, (1, 1), (2, 2), (3, 3), and (4, 4). The other relations are not reflexive because
they do not contain all of these ordered pairs. In particular, R1, R2, R4, and R6 are not reflexive
because (3, 3) is not in any of these relations. ▲

EXAMPLE 8 Which of the relations from Example 5 are reflexive?

Solution: The reflexive relations from Example 5 are R1 (because a ≤ a for every integer a),
R3, and R4. For each of the other relations in this example it is easy to find a pair of the
form (a, a) that is not in the relation. (This is left as an exercise for the reader.) ▲

EXAMPLE 9 Is the “divides” relation on the set of positive integers reflexive?

Solution: Because a | a whenever a is a positive integer, the “divides” relation is reflexive. (Note
that if we replace the set of positive integers with the set of all integers the relation is not reflexive
because by definition 0 does not divide 0.) ▲

9.1 Relations and Their Properties 577

In some relations an element is related to a second element if and only if the second element
is also related to the first element. The relation consisting of pairs (x, y), where x and y are
students at your school with at least one common class has this property. Other relations have
the property that if an element is related to a second element, then this second element is not
related to the first. The relation consisting of the pairs (x, y), where x and y are students at your
school, where x has a higher grade point average than y has this property.

DEFINITION 4 A relationR on a setA is called symmetric if (b, a) ∈ Rwhenever (a, b) ∈ R, for all a, b ∈ A.
A relation R on a set A such that for all a, b ∈ A, if (a, b) ∈ R and (b, a) ∈ R, then a = b
is called antisymmetric.

Remark: Using quantifiers, we see that the relation R on the set A is symmetric if
∀a∀b((a, b) ∈ R→ (b, a) ∈ R). Similarly, the relation R on the set A is antisymmetric if
∀a∀b(((a, b) ∈ R ∧ (b, a) ∈ R)→ (a = b)).

That is, a relation is symmetric if and only if a is related to b implies that b is related to a.
A relation is antisymmetric if and only if there are no pairs of distinct elements a and b with a
related to b and b related to a. That is, the only way to have a related to b and b related to a is
for a and b to be the same element. The terms symmetric and antisymmetric are not opposites,
because a relation can have both of these properties or may lack both of them (see Exercise
10). A relation cannot be both symmetric and antisymmetric if it contains some pair of the form
(a, b), where a = b.

Remark: Although relatively few of the 2n
2

relations on a set with n elements are symmetric
or antisymmetric, as counting arguments can show, many important relations have one of these
properties. (See Exercise 47.)

EXAMPLE 10 Which of the relations from Example 7 are symmetric and which are antisymmetric?

Solution: The relations R2 and R3 are symmetric, because in each case (b, a) belongs to the
relation whenever (a, b) does. For R2, the only thing to check is that both (2, 1) and (1, 2) are
in the relation. For R3, it is necessary to check that both (1, 2) and (2, 1) belong to the relation,
and (1, 4) and (4, 1) belong to the relation. The reader should verify that none of the other
relations is symmetric. This is done by finding a pair (a, b) such that it is in the relation
but (b, a) is not.

R4,R5, andR6 are all antisymmetric. For each of these relations there is no pair of elements
a and b with a = b such that both (a, b) and (b, a) belong to the relation. The reader should
verify that none of the other relations is antisymmetric. This is done by finding a pair (a, b)
with a = b such that (a, b) and (b, a) are both in the relation. ▲

EXAMPLE 11 Which of the relations from Example 5 are symmetric and which are antisymmetric?

Solution: The relationsR3,R4, andR6 are symmetric.R3 is symmetric, for if a = b or a = −b,
then b = a or b = −a. R4 is symmetric because a = b implies that b = a. R6 is symmetric
because a + b ≤ 3 implies that b + a ≤ 3. The reader should verify that none of the other
relations is symmetric.

The relations R1, R2, R4, and R5 are antisymmetric. R1 is antisymmetric because the
inequalities a ≤ b and b ≤ a imply that a = b. R2 is antisymmetric because it is impossible
that a > b and b > a. R4 is antisymmetric, because two elements are related with respect to
R4 if and only if they are equal. R5 is antisymmetric because it is impossible that a = b + 1
and b = a + 1. The reader should verify that none of the other relations is antisymmetric. ▲

578 9 / Relations

EXAMPLE 12 Is the “divides” relation on the set of positive integers symmetric? Is it antisymmetric?

Solution: This relation is not symmetric because 1 |2, but 2 | 1. It is antisymmetric, for if a
and b are positive integers with a |b and b |a, then a = b (the verification of this is left as an
exercise for the reader). ▲

Let R be the relation consisting of all pairs (x, y) of students at your school, where x has
taken more credits than y. Suppose that x is related to y and y is related to z. This means
that x has taken more credits than y and y has taken more credits than z. We can conclude
that x has taken more credits than z, so that x is related to z. What we have shown is that R has
the transitive property, which is defined as follows.

DEFINITION 5 A relation R on a set A is called transitive if whenever (a, b) ∈ R and (b, c) ∈ R,
then (a, c) ∈ R, for all a, b, c ∈ A.

Remark: Using quantifiers we see that the relation R on a set A is transitive if we have
∀a∀b∀c(((a, b) ∈ R ∧ (b, c) ∈ R)→ (a, c) ∈ R).

EXAMPLE 13 Which of the relations in Example 7 are transitive?

Solution: R4, R5, and R6 are transitive. For each of these relations, we can show that it is
transitive by verifying that if (a, b) and (b, c) belong to this relation, then (a, c) also does. For
instance,R4 is transitive, because (3, 2) and (2, 1), (4, 2) and (2, 1), (4, 3) and (3, 1), and (4, 3)
and (3, 2) are the only such sets of pairs, and (3, 1), (4, 1), and (4, 2) belong to R4. The reader
should verify that R5 and R6 are transitive.

R1 is not transitive because (3, 4) and (4, 1) belong to R1, but (3, 1) does not. R2 is
not transitive because (2, 1) and (1, 2) belong to R2, but (2, 2) does not. R3 is not transitive
because (4, 1) and (1, 2) belong to R3, but (4, 2) does not. ▲

EXAMPLE 14 Which of the relations in Example 5 are transitive?

Solution: The relationsR1,R2,R3, andR4 are transitive.R1 is transitive because a ≤ b and b ≤ c
imply that a ≤ c. R2 is transitive because a > b and b > c imply that a > c. R3 is transitive
because a = ±b and b = ±c imply that a = ±c. R4 is clearly transitive, as the reader should
verify. R5 is not transitive because (2, 1) and (1, 0) belong to R5, but (2, 0) does not. R6 is not
transitive because (2, 1) and (1, 2) belong to R6, but (2, 2) does not. ▲

EXAMPLE 15 Is the “divides” relation on the set of positive integers transitive?

Solution: Suppose that a divides b and b divides c. Then there are positive integers k and l
such that b = ak and c = bl. Hence, c = a(kl), so a divides c. It follows that this relation is
transitive. ▲

We can use counting techniques to determine the number of relations with specific proper-
ties. Finding the number of relations with a particular property provides information about how
common this property is in the set of all relations on a set with n elements.

EXAMPLE 16 How many reflexive relations are there on a set with n elements?

Solution: A relation R on a set A is a subset of A× A. Consequently, a relation is determined
by specifying whether each of the n2 ordered pairs in A× A is in R. However, if R is reflexive,
each of the n ordered pairs (a, a) for a ∈ A must be in R. Each of the other n(n− 1) ordered

9.1 Relations and Their Properties 579

pairs of the form (a, b), where a = b, may or may not be in R. Hence, by the product rule for
counting, there are 2n (n−1) reflexive relations [this is the number of ways to choose whether
each element (a, b), with a = b, belongs to R]. ▲

Formulas for the number of symmetric relations and the number of antisymmetric re-
lations on a set with n elements can be found using reasoning similar to that in Example 16
(see Exercise 47). However, no general formula is known that counts the transitive relations on a
set withn elements. Currently,T (n), the number of transitive relations on a set withn elements, is
known only for n ≤ 17. For example, T (4) = 3,994, T (5) = 154,303, and T (6) = 9,415,189.

Combining Relations

Because relations fromA toB are subsets ofA× B, two relations fromA toB can be combined
in any way two sets can be combined. Consider Examples 17–19.

EXAMPLE 17 Let A = {1, 2, 3} and B = {1, 2, 3, 4}. The relations R1 = {(1, 1), (2, 2), (3, 3)} and
R2 = {(1, 1), (1, 2), (1, 3), (1, 4)} can be combined to obtain

R1 ∪ R2 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)},

R1 ∩ R2 = {(1, 1)},

R1 − R2 = {(2, 2), (3, 3)},

R2 − R1 = {(1, 2), (1, 3), (1, 4)}.

▲

EXAMPLE 18 Let A and B be the set of all students and the set of all courses at a school, respectively.
Suppose thatR1 consists of all ordered pairs (a, b), where a is a student who has taken course b,
andR2 consists of all ordered pairs (a, b), where a is a student who requires course b to graduate.
What are the relations R1 ∪ R2, R1 ∩ R2, R1 ⊕ R2, R1 − R2, and R2 − R1?

Solution: The relation R1 ∪ R2 consists of all ordered pairs (a, b), where a is a student who
either has taken course b or needs course b to graduate, and R1 ∩ R2 is the set of all ordered
pairs (a, b), where a is a student who has taken course b and needs this course to graduate.
Also, R1 ⊕ R2 consists of all ordered pairs (a, b), where student a has taken course b but does
not need it to graduate or needs course b to graduate but has not taken it. R1 − R2 is the set of
ordered pairs (a, b), where a has taken course b but does not need it to graduate; that is, b is
an elective course that a has taken. R2 − R1 is the set of all ordered pairs (a, b), where b is a
course that a needs to graduate but has not taken. ▲

EXAMPLE 19 Let R1 be the “less than” relation on the set of real numbers and let R2 be the “greater than”
relation on the set of real numbers, that is, R1 = {(x, y) | x < y} and R2 = {(x, y) | x > y}.
What are R1 ∪ R2, R1 ∩ R2, R1 − R2, R2 − R1, and R1 ⊕ R2?

Solution: We note that (x, y) ∈ R1 ∪ R2 if and only if (x, y) ∈ R1 or (x, y) ∈ R2. Hence,
(x, y) ∈ R1 ∪ R2 if and only if x < y or x > y. Because the condition x < y or x > y is
the same as the condition x = y, it follows thatR1 ∪ R2 = {(x, y) | x = y}. In other words, the
union of the “less than” relation and the “greater than” relation is the “not equals” relation.

Next, note that it is impossible for a pair (x, y) to belong to both R1 and R2 because it is
impossible that x < y and x > y. It follows that R1 ∩ R2 = ∅. We also see that R1 − R2 = R1,
R2 − R1 = R2, and R1 ⊕ R2 = R1 ∪ R2 − R1 ∩ R2 = {(x, y) | x = y}. ▲

There is another way that relations are combined that is analogous to the composition of
functions.

580 9 / Relations

DEFINITION 6 Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite

of R and S is the relation consisting of ordered pairs (a, c), where a ∈ A, c ∈ C, and for
which there exists an element b ∈ B such that (a, b) ∈ R and (b, c) ∈ S. We denote the
composite of R and S by S ◦R.

Computing the composite of two relations requires that we find elements that are the second
element of ordered pairs in the first relation and the first element of ordered pairs in the second
relation, as Examples 20 and 21 illustrate.

EXAMPLE 20 What is the composite of the relationsR andS, whereR is the relation from {1, 2, 3} to {1, 2, 3, 4}
with R = {(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)} and S is the relation from {1, 2, 3, 4} to {0, 1, 2}
with S = {(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)}?

Solution: S ◦R is constructed using all ordered pairs in R and ordered pairs in S, where the
second element of the ordered pair in R agrees with the first element of the ordered pair
in S. For example, the ordered pairs (2, 3) in R and (3, 1) in S produce the ordered pair (2, 1)
in S ◦R. Computing all the ordered pairs in the composite, we find

S ◦R = {(1, 0), (1, 1), (2, 1), (2, 2), (3, 0), (3, 1)}. ▲

EXAMPLE 21 Composing the Parent Relation with Itself Let R be the relation on the set of all people
such that (a, b) ∈ R if person a is a parent of person b. Then (a, c) ∈ R ◦R if and only if there
is a person b such that (a, b) ∈ R and (b, c) ∈ R, that is, if and only if there is a person b such
that a is a parent of b and b is a parent of c. In other words, (a, c) ∈ R ◦R if and only if a is a
grandparent of c. ▲

The powers of a relation R can be recursively defined from the definition of a composite of
two relations.

DEFINITION 7 Let R be a relation on the set A. The powers Rn, n = 1, 2, 3, . . . , are defined recursively by

R1 = R and Rn+1 = Rn ◦R.

The definition shows that R2 = R ◦R, R3 = R2 ◦R = (R ◦R)◦R, and so on.

EXAMPLE 22 Let R = {(1, 1), (2, 1), (3, 2), (4, 3)}. Find the powers Rn, n = 2, 3, 4,

Solution: Because R2 = R ◦R, we find that R2 = {(1, 1), (2, 1), (3, 1), (4, 2)}. Further-
more, becauseR3 = R2 ◦R,R3 = {(1, 1), (2, 1), (3, 1), (4, 1)}. Additional computation shows
that R4 is the same as R3, so R4 = {(1, 1), (2, 1), (3, 1), (4, 1)}. It also follows that Rn = R3

for n = 5, 6, 7, The reader should verify this. ▲

The following theorem shows that the powers of a transitive relation are subsets of this
relation. It will be used in Section 9.4.

THEOREM 1 The relation R on a set A is transitive if and only if Rn ⊆ R for n = 1, 2, 3,

9.1 Relations and Their Properties 581

Proof: We first prove the “if” part of the theorem. We suppose that Rn ⊆ R for n = 1,
2, 3, In particular, R2 ⊆ R. To see that this implies R is transitive, note that if (a, b) ∈ R
and (b, c) ∈ R, then by the definition of composition, (a, c) ∈ R2. BecauseR2 ⊆ R, this means
that (a, c) ∈ R. Hence, R is transitive.

We will use mathematical induction to prove the only if part of the theorem. Note that this
part of the theorem is trivially true for n = 1.

Assume that Rn ⊆ R, where n is a positive integer. This is the inductive hypothesis. To
complete the inductive step we must show that this implies that Rn+1 is also a subset of R.
To show this, assume that (a, b) ∈ Rn+1. Then, because Rn+1 = Rn◦R, there is an
element x with x ∈ A such that (a, x) ∈ R and (x, b) ∈ Rn. The inductive hypothesis, namely,
that Rn ⊆ R, implies that (x, b) ∈ R. Furthermore, because R is transitive, and (a, x) ∈ R
and (x, b) ∈ R, it follows that (a, b) ∈ R. This shows that Rn+1 ⊆ R, completing the proof.

Exercises

1. List the ordered pairs in the relation R from
A = {0, 1, 2, 3, 4} to B = {0, 1, 2, 3}, where (a, b) ∈ R
if and only if

a) a = b. b) a + b = 4.

c) a > b. d) a | b.

e) gcd(a, b) = 1. f) lcm(a, b) = 2.

2. a) List all the ordered pairs in the relation
R = {(a, b) | a divides b} on the set {1, 2, 3, 4, 5, 6}.

b) Display this relation graphically, as was done in
Example 4.

c) Display this relation in tabular form, as was done in
Example 4.

3. For each of these relations on the set {1, 2, 3, 4}, decide
whether it is reflexive, whether it is symmetric, whether
it is antisymmetric, and whether it is transitive.

a) {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}

b) {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}

c) {(2, 4), (4, 2)}

d) {(1, 2), (2, 3), (3, 4)}

e) {(1, 1), (2, 2), (3, 3), (4, 4)}

f) {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)}

4. Determine whether the relation R on the set of all people
is reflexive, symmetric, antisymmetric, and/or transitive,
where (a, b) ∈ R if and only if

a) a is taller than b.

b) a and b were born on the same day.

c) a has the same first name as b.

d) a and b have a common grandparent.

5. Determine whether the relation R on the set of all Web
pages is reflexive, symmetric, antisymmetric, and/or tran-
sitive, where (a, b) ∈ R if and only if

a) everyone who has visited Web page a has also visited
Web page b.

b) there are no common links found on both Web
page a and Web page b.

c) there is at least one common link on Web page a and
Web page b.

d) there is a Web page that includes links to both Web
page a and Web page b.

6. Determine whether the relation R on the set of all real
numbers is reflexive, symmetric, antisymmetric, and/or
transitive, where (x, y) ∈ R if and only if

a) x + y = 0. b) x = ±y.
c) x − y is a rational number.
d) x = 2y. e) xy ≥ 0.
f) xy = 0. g) x = 1.
h) x = 1 or y = 1.

7. Determine whether the relationR on the set of all integers
is reflexive, symmetric, antisymmetric, and/or transitive,
where (x, y) ∈ R if and only if

a) x = y. b) xy ≥ 1.
c) x = y + 1 or x = y − 1.
d) x ≡ y (mod 7). e) x is a multiple of y.
f) x and y are both negative or both nonnegative.
g) x = y2. h) x ≥ y2.

8. Show that the relationR = ∅ on a nonempty set S is sym-
metric and transitive, but not reflexive.

9. Show that the relation R = ∅ on the empty set S = ∅ is
reflexive, symmetric, and transitive.

10. Give an example of a relation on a set that is

a) both symmetric and antisymmetric.
b) neither symmetric nor antisymmetric.

A relation R on the set A is irreflexive if for every
a ∈ A, (a, a) /∈ R. That is, R is irreflexive if no element
in A is related to itself.

11. Which relations in Exercise 3 are irreflexive?

12. Which relations in Exercise 4 are irreflexive?

13. Which relations in Exercise 5 are irreflexive?

14. Which relations in Exercise 6 are irreflexive?

15. Can a relation on a set be neither reflexive nor irreflexive?

16. Use quantifiers to express what it means for a relation to
be irreflexive.

17. Give an example of an irreflexive relation on the set of all
people.

582 9 / Relations

A relation R is called asymmetric if (a, b) ∈ R implies that
(b, a) /∈ R. Exercises 18–24 explore the notion of an asym-
metric relation. Exercise 22 focuses on the difference between
asymmetry and antisymmetry.

18. Which relations in Exercise 3 are asymmetric?

19. Which relations in Exercise 4 are asymmetric?

20. Which relations in Exercise 5 are asymmetric?

21. Which relations in Exercise 6 are asymmetric?

22. Must an asymmetric relation also be antisymmetric? Must
an antisymmetric relation be asymmetric? Give reasons
for your answers.

23. Use quantifiers to express what it means for a relation to
be asymmetric.

24. Give an example of an asymmetric relation on the set of
all people.

25. How many different relations are there from a set withm
elements to a set with n elements?

Let R be a relation from a set A to a set B. The inverse rela-

tion from B to A, denoted by R−1, is the set of ordered pairs
{(b, a) | (a, b) ∈ R}. The complementary relation R is the
set of ordered pairs {(a, b) | (a, b) /∈ R}.

26. Let R be the relation R = {(a, b) | a < b} on the set of
integers. Find

a) R−1. b) R.

27. LetR be the relationR = {(a, b) | a divides b} on the set
of positive integers. Find

a) R−1. b) R.

28. Let R be the relation on the set of all states in the United
States consisting of pairs (a, b) where state a borders
state b. Find

a) R−1. b) R.

29. Suppose that the function f from A to B is a one-to-
one correspondence. Let R be the relation that equals the
graph of f . That is,R = {(a, f (a)) | a ∈ A}. What is the
inverse relation R−1?

30. Let R1 = {(1, 2), (2, 3), (3, 4)} and R2 = {(1, 1), (1, 2),
(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4)} be rela-
tions from {1, 2, 3} to {1, 2, 3, 4}. Find

a) R1 ∪ R2. b) R1 ∩ R2.

c) R1 − R2. d) R2 − R1.

31. LetA be the set of students at your school and B the set of
books in the school library. LetR1 andR2 be the relations
consisting of all ordered pairs (a, b), where student a is
required to read book b in a course, and where student a
has read book b, respectively. Describe the ordered pairs
in each of these relations.

a) R1 ∪ R2 b) R1 ∩ R2

c) R1 ⊕ R2 d) R1 − R2

e) R2 − R1

32. LetR be the relation {(1, 2), (1, 3), (2, 3), (2, 4), (3, 1)},
and let S be the relation {(2, 1), (3, 1), (3, 2), (4, 2)}.
Find S ◦R.

33. Let R be the relation on the set of people consisting of
pairs (a, b), where a is a parent of b. Let S be the relation
on the set of people consisting of pairs (a, b), where a
and b are siblings (brothers or sisters). What are S ◦R
and R ◦ S?

Exercises 34–37 deal with these relations on the set of real
numbers:

R1 = {(a, b) ∈ R2 | a > b}, the “greater than” relation,

R2 = {(a, b) ∈ R2 | a ≥ b}, the “greater than or equal to”
relation,

R3 = {(a, b) ∈ R2 | a < b}, the “less than” relation,

R4 = {(a, b) ∈ R2 | a ≤ b}, the “less than or equal to”
relation,

R5 = {(a, b) ∈ R2 | a = b}, the “equal to” relation,

R6 = {(a, b) ∈ R2 | a = b}, the “unequal to” relation.

34. Find

a) R1 ∪ R3. b) R1 ∪ R5.

c) R2 ∩ R4. d) R3 ∩ R5.

e) R1 − R2. f) R2 − R1.

g) R1 ⊕ R3. h) R2 ⊕ R4.

35. Find

a) R2 ∪ R4. b) R3 ∪ R6.

c) R3 ∩ R6. d) R4 ∩ R6.

e) R3 − R6. f) R6 − R3.

g) R2 ⊕ R6. h) R3 ⊕ R5.

36. Find

a) R1 ◦ R1. b) R1 ◦ R2.

c) R1 ◦ R3. d) R1 ◦ R4.

e) R1 ◦ R5. f) R1 ◦ R6.

g) R2 ◦ R3. h) R3 ◦ R3.

37. Find

a) R2 ◦ R1. b) R2 ◦ R2.

c) R3 ◦ R5. d) R4 ◦ R1.

e) R5 ◦ R3. f) R3 ◦ R6.

g) R4 ◦ R6. h) R6 ◦ R6.

38. Let R be the parent relation on the set of all people (see
Example 21). When is an ordered pair in the relation R3?

39. Let R be the relation on the set of people with doctorates
such that (a, b) ∈ R if and only if a was the thesis advisor
of b. When is an ordered pair (a, b) in R2? When is an
ordered pair (a, b) in Rn, when n is a positive integer?
(Assume that every person with a doctorate has a thesis
advisor.)

40. Let R1 and R2 be the “divides” and “is a multiple of”
relations on the set of all positive integers, respectively.
That is, R1 = {(a, b) | a divides b} and R2 = {(a, b) | a

is a multiple of b}. Find

a) R1 ∪ R2. b) R1 ∩ R2.

c) R1 − R2. d) R2 − R1.

e) R1 ⊕ R2.

9.2 n-ary Relations and Their Applications 583

41. Let R1 and R2 be the “congruent modulo 3” and the
“congruent modulo 4” relations, respectively, on the set
of integers. That is, R1 = {(a, b) | a ≡ b (mod 3)} and
R2 = {(a, b) | a ≡ b (mod 4)}. Find

a) R1 ∪ R2. b) R1 ∩ R2.
c) R1 − R2. d) R2 − R1.
e) R1 ⊕ R2.

42. List the 16 different relations on the set {0, 1}.

43. How many of the 16 different relations on {0, 1} contain
the pair (0, 1)?

44. Which of the 16 relations on {0, 1}, which you listed in
Exercise 42, are

a) reflexive? b) irreflexive?
c) symmetric? d) antisymmetric?
e) asymmetric? f) transitive?

45. a) How many relations are there on the set {a, b, c, d}?
b) How many relations are there on the set {a, b, c, d}

that contain the pair (a, a)?

46. Let S be a set with n elements and let a and b be dis-
tinct elements of S. How many relations R are there on S
such that

a) (a, b) ∈ R? b) (a, b) ∈ R?
c) no ordered pair in R has a as its first element?
d) at least one ordered pair inR has a as its first element?
e) no ordered pair in R has a as its first element or b as

its second element?
f) at least one ordered pair in R either has a as its first

element or has b as its second element?
∗47. How many relations are there on a set with n elements

that are

a) symmetric? b) antisymmetric?
c) asymmetric? d) irreflexive?
e) reflexive and symmetric?
f) neither reflexive nor irreflexive?

∗48. How many transitive relations are there on a set with n
elements if

a) n = 1? b) n = 2? c) n = 3?

49. Find the error in the “proof” of the following “theorem.”

“Theorem”: Let R be a relation on a set A that is sym-
metric and transitive. Then R is reflexive.

“Proof ”: Let a ∈ A. Take an element b ∈ A such that
(a, b) ∈ R. Because R is symmetric, we also have
(b, a) ∈R. Now using the transitive property, we can con-
clude that (a, a) ∈ R because (a, b) ∈ R and (b, a) ∈ R.

50. Suppose that R and S are reflexive relations on a set A.
Prove or disprove each of these statements.

a) R ∪ S is reflexive.
b) R ∩ S is reflexive.
c) R ⊕ S is irreflexive.
d) R − S is irreflexive.
e) S ◦R is reflexive.

51. Show that the relation R on a set A is symmetric if and
only if R = R−1, where R−1 is the inverse relation.

52. Show that the relation R on a set A is antisymmetric if
and only if R ∩ R−1 is a subset of the diagonal relation
 = {(a, a) | a ∈ A}.

53. Show that the relationR on a setA is reflexive if and only
if the inverse relation R−1 is reflexive.

54. Show that the relationR on a setA is reflexive if and only
if the complementary relation R is irreflexive.

55. Let R be a relation that is reflexive and transitive. Prove
that Rn = R for all positive integers n.

56. Let R be the relation on the set {1, 2, 3, 4, 5} containing
the ordered pairs (1, 1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 1),
(3, 4), (3, 5), (4, 2), (4, 5), (5, 1), (5, 2), and (5, 4).
Find

a) R2. b) R3. c) R4. d) R5.

57. Let R be a reflexive relation on a set A. Show that Rn is
reflexive for all positive integers n.

∗58. LetR be a symmetric relation. Show thatRn is symmetric
for all positive integers n.

59. Suppose that the relation R is irreflexive. Is R2 necessar-
ily irreflexive? Give a reason for your answer.

9.2 n-ary Relations and Their Applications

Introduction

Relationships among elements of more than two sets often arise. For instance, there is a relation-
ship involving the name of a student, the student’s major, and the student’s grade point average.
Similarly, there is a relationship involving the airline, flight number, starting point, destination,
departure time, and arrival time of a flight. An example of such a relationship in mathematics
involves three integers, where the first integer is larger than the second integer, which is larger
than the third. Another example is the betweenness relationship involving points on a line, such
that three points are related when the second point is between the first and the third.

We will study relationships among elements from more than two sets in this section.These re-
lationships are called n-ary relations. These relations are used to represent computer databases.
These representations help us answer queries about the information stored in databases, such
as: Which flights land at O’Hare Airport between 3 a.m. and 4 a.m.? Which students at your

584 9 / Relations

school are sophomores majoring in mathematics or computer science and have greater than a
3.0 average? Which employees of a company have worked for the company less than 5 years
and make more than $50,000?

n-ary Relations

We begin with the basic definition on which the theory of relational databases rests.

DEFINITION 1 LetA1, A2, . . . , An be sets.An n-ary relation on these sets is a subset ofA1 × A2 × · · · × An.
The sets A1, A2, . . . , An are called the domains of the relation, and n is called its degree.

EXAMPLE 1 LetR be the relation on N× N× N consisting of triples (a, b, c), where a, b, and c are integers
witha < b < c. Then (1, 2, 3) ∈ R, but (2, 4, 3) /∈ R. The degree of this relation is 3. Its domains
are all equal to the set of natural numbers. ▲

EXAMPLE 2 Let R be the relation on Z× Z× Z consisting of all triples of integers (a, b, c) in which
a, b, and c form an arithmetic progression. That is, (a, b, c) ∈ R if and only if there is
an integer k such that b = a + k and c = a + 2k, or equivalently, such that b − a = k and
c − b = k. Note that (1, 3, 5) ∈ R because 3 = 1+ 2 and 5 = 1+ 2 · 2, but (2, 5, 9) /∈ R be-
cause 5− 2 = 3 while 9− 5 = 4. This relation has degree 3 and its domains are all equal to the
set of integers. ▲

EXAMPLE 3 LetR be the relation on Z× Z× Z+ consisting of triples (a, b,m), wherea,b, andm are integers
with m ≥ 1 and a ≡ b (modm). Then (8, 2, 3), (−1, 9, 5), and (14, 0, 7) all belong to R, but
(7, 2, 3), (−2,−8, 5), and (11, 0, 6)do not belong toR because 8 ≡ 2 (mod 3),−1 ≡ 9 (mod 5),
and 14 ≡ 0 (mod 7), but 7 ≡ 2 (mod 3), −2 ≡ −8 (mod 5), and 11 ≡ 0 (mod 6). This relation
has degree 3 and its first two domains are the set of all integers and its third domain is the set of
positive integers. ▲

EXAMPLE 4 Let R be the relation consisting of 5-tuples (A,N, S,D, T) representing airplane flights,
whereA is the airline,N is the flight number, S is the starting point,D is the destination, and T is
the departure time. For instance, if Nadir Express Airlines has flight 963 from Newark to Bangor
at 15:00, then (Nadir, 963, Newark, Bangor, 15:00) belongs to R. The degree of this relation
is 5, and its domains are the set of all airlines, the set of flight numbers, the set of cities, the set
of cities (again), and the set of times. ▲

Databases and Relations

The time required to manipulate information in a database depends on how this information is
stored. The operations of adding and deleting records, updating records, searching for records,
and combining records from overlapping databases are performed millions of times each day in a
large database. Because of the importance of these operations, various methods for representing
databases have been developed. We will discuss one of these methods, called the relational

data model, based on the concept of a relation.
A database consists of records, which are n-tuples, made up of fields. The fields are the

entries of the n-tuples. For instance, a database of student records may be made up of fields
containing the name, student number, major, and grade point average of the student. The rela-
tional data model represents a database of records as an n-ary relation. Thus, student records

9.2 n-ary Relations and Their Applications 585

TABLE 1 Students.

Student_name ID_number Major GPA

Ackermann 231455 Computer Science 3.88

Adams 888323 Physics 3.45

Chou 102147 Computer Science 3.49

Goodfriend 453876 Mathematics 3.45

Rao 678543 Mathematics 3.90

Stevens 786576 Psychology 2.99

are represented as 4-tuples of the form (Student_name, ID_number, Major, GPA). A sample
database of six such records is

(Ackermann, 231455, Computer Science, 3.88)
(Adams, 888323, Physics, 3.45)
(Chou, 102147, Computer Science, 3.49)
(Goodfriend, 453876, Mathematics, 3.45)
(Rao, 678543, Mathematics, 3.90)
(Stevens, 786576, Psychology, 2.99).

Relations used to represent databases are also called tables, because these relations are often
displayed as tables. Each column of the table corresponds to an attribute of the database. For
instance, the same database of students is displayed in Table 1. The attributes of this database
are Student Name, ID Number, Major, and GPA.

A domain of an n-ary relation is called a primary key when the value of the n-tuple from
this domain determines the n-tuple. That is, a domain is a primary key when no two n-tuples in
the relation have the same value from this domain.

Records are often added to or deleted from databases. Because of this, the property that a
domain is a primary key is time-dependent. Consequently, a primary key should be chosen that
remains one whenever the database is changed. The current collection of n-tuples in a relation
is called the extension of the relation. The more permanent part of a database, including the
name and attributes of the database, is called its intension. When selecting a primary key, the
goal should be to select a key that can serve as a primary key for all possible extensions of the
database. To do this, it is necessary to examine the intension of the database to understand the
set of possible n-tuples that can occur in an extension.

EXAMPLE 5 Which domains are primary keys for the n-ary relation displayed in Table 1, assuming that no
n-tuples will be added in the future?

Solution: Because there is only one 4-tuple in this table for each student name, the domain
of student names is a primary key. Similarly, the ID numbers in this table are unique, so the
domain of ID numbers is also a primary key. However, the domain of major fields of study
is not a primary key, because more than one 4-tuple contains the same major field of study.
The domain of grade point averages is also not a primary key, because there are two 4-tuples
containing the same GPA. ▲

Combinations of domains can also uniquely identify n-tuples in an n-ary relation. When
the values of a set of domains determine an n-tuple in a relation, the Cartesian product of these
domains is called a composite key.

586 9 / Relations

EXAMPLE 6 Is the Cartesian product of the domain of major fields of study and the domain of GPAs a
composite key for the n-ary relation from Table 1, assuming that no n-tuples are ever added?

Solution: Because no two 4-tuples from this table have both the same major and the same GPA,
this Cartesian product is a composite key. ▲

Because primary and composite keys are used to identify records uniquely in a database,
it is important that keys remain valid when new records are added to the database. Hence,
checks should be made to ensure that every new record has values that are different in
the appropriate field, or fields, from all other records in this table. For instance, it makes
sense to use the student identification number as a key for student records if no two
students ever have the same student identification number. A university should not use the
name field as a key, because two students may have the same name (such as John Smith).

Operations on n-ary Relations

There are a variety of operations on n-ary relations that can be used to form new n-ary relations.
Applied together, these operations can answer queries on databases that ask for all n-tuples that
satisfy certain conditions.

The most basic operation on an n-ary relation is determining all n-tuples in the n-ary relation
that satisfy certain conditions. For example, we may want to find all the records of all computer
science majors in a database of student records. We may want to find all students who have a
grade point average above 3.5. We may want to find the records of all computer science majors
who have a grade point average above 3.5. To perform such tasks we use the selection operator.

DEFINITION 2 LetR be an n-ary relation andC a condition that elements inRmay satisfy. Then the selection

operator sC maps the n-ary relation R to the n-ary relation of all n-tuples from R that satisfy
the condition C.

EXAMPLE 7 To find the records of computer science majors in the n-ary relation R shown in Table 1, we use
the operator sC1 , where C1 is the condition Major= “Computer Science.” The result is the two
4-tuples (Ackermann, 231455, Computer Science, 3.88) and (Chou, 102147, Computer Science,
3.49). Similarly, to find the records of students who have a grade point average above 3.5 in
this database, we use the operator sC2 , where C2 is the condition GPA > 3.5. The result is the
two 4-tuples (Ackermann, 231455, Computer Science, 3.88) and (Rao, 678543, Mathematics,
3.90). Finally, to find the records of computer science majors who have a GPA above 3.5, we
use the operator sC3 , where C3 is the condition (Major= “Computer Science” ∧ GPA > 3.5).
The result consists of the single 4-tuple (Ackermann, 231455, Computer Science, 3.88). ▲

Projections are used to form new n-ary relations by deleting the same fields in every record
of the relation.

DEFINITION 3 The projection Pi1i2,...,im where i1 < i2 < · · · < im, maps the n-tuple (a1, a2, . . . , an) to the
m-tuple (ai1 , ai2, . . . , aim), where m ≤ n.

In other words, the projection Pi1,i2,...,im deletes n−m of the components of an n-tuple, leaving
the i1th, i2th, . . . , and imth components.

9.2 n-ary Relations and Their Applications 587

TABLE 3 Enrollments.

Student Major Course

Glauser Biology BI 290

Glauser Biology MS 475

Glauser Biology PY 410

Marcus Mathematics MS 511

Marcus Mathematics MS 603

Marcus Mathematics CS 322

Miller Computer Science MS 575

Miller Computer Science CS 455

TABLE 4 Majors.

Student Major

Glauser Biology

Marcus Mathematics

Miller Computer Science

EXAMPLE 8 What results when the projection P1,3 is applied to the 4-tuples (2, 3, 0, 4),
(Jane Doe, 234111001, Geography, 3.14), and (a1, a2, a3, a4)?

Solution: The projectionP1,3 sends these 4-tuples to (2, 0), (Jane Doe, Geography), and (a1, a3),
respectively. ▲

Example 9 illustrates how new relations are produced using projections.

EXAMPLE 9 What relation results when the projection P1,4 is applied to the relation in Table 1?

Solution: When the projectionP1,4 is used, the second and third columns of the table are deleted,
and pairs representing student names and grade point averages are obtained. Table 2 displays
the results of this projection. ▲

TABLE 2 GPAs.

Student_name GPA

Ackermann 3.88

Adams 3.45

Chou 3.49

Goodfriend 3.45

Rao 3.90

Stevens 2.99

Fewer rows may result when a projection is applied to the table for a relation. This happens
when some of the n-tuples in the relation have identical values in each of the m components of
the projection, and only disagree in components deleted by the projection. For instance, consider
the following example.

EXAMPLE 10 What is the table obtained when the projection P1,2 is applied to the relation in Table 3?

Solution: Table 4 displays the relation obtained when P1,2 is applied to Table 3. Note that there
are fewer rows after this projection is applied. ▲

The join operation is used to combine two tables into one when these tables share some
identical fields. For instance, a table containing fields for airline, flight number, and gate, and
another table containing fields for flight number, gate, and departure time can be combined into
a table containing fields for airline, flight number, gate, and departure time.

DEFINITION 4 Let R be a relation of degree m and S a relation of degree n. The join Jp(R, S),
where p ≤ m and p ≤ n, is a relation of degree m+ n− p that consists of all
(m+ n− p)-tuples (a1, a2, . . . , am−p, c1, c2, . . . , cp, b1, b2, . . . , bn−p), where them-tuple
(a1, a2, . . . , am−p, c1, c2, . . . , cp) belongs to R and the n-tuple (c1, c2, . . . , cp, b1, b2, . . . ,

bn−p) belongs to S.

In other words, the join operator Jp produces a new relation from two relations by combining all
m-tuples of the first relation with all n-tuples of the second relation, where the lastp components
of the m-tuples agree with the first p components of the n-tuples.

588 9 / Relations

TABLE 5 Teaching_assignments.

Course_

Professor Department number

Cruz Zoology 335

Cruz Zoology 412

Farber Psychology 501

Farber Psychology 617

Grammer Physics 544

Grammer Physics 551

Rosen Computer Science 518

Rosen Mathematics 575

TABLE 6 Class_schedule.

Course_

Department number Room Time

Computer Science 518 N521 2:00 p.m.

Mathematics 575 N502 3:00 p.m.

Mathematics 611 N521 4:00 p.m.

Physics 544 B505 4:00 p.m.

Psychology 501 A100 3:00 p.m.

Psychology 617 A110 11:00 a.m.

Zoology 335 A100 9:00 a.m.

Zoology 412 A100 8:00 a.m.

EXAMPLE 11 What relation results when the join operator J2 is used to combine the relation displayed in
Tables 5 and 6?

Solution: The join J2 produces the relation shown in Table 7. ▲

There are other operators besides projections and joins that produce new relations from
existing relations. A description of these operations can be found in books on database theory.

SQL

The database query language SQL (short for Structured Query Language) can be used to carry
out the operations we have described in this section. Example 12 illustrates how SQL commands
are related to operations on n-ary relations.

EXAMPLE 12 We will illustrate how SQL is used to express queries by showing how SQL can be employed
to make a query about airline flights using Table 8. The SQL statement

SELECT Departure_time

FROM Flights

WHERE Destination=’Detroit’

is used to find the projection P5 (on the Departure_time attribute) of the selection of 5-tuples in
the Flights database that satisfy the condition: Destination= ‘Detroit’. The output would be a
list containing the times of flights that have Detroit as their destination, namely, 08:10, 08:47,

TABLE 7 Teaching_schedule.

Professor Department Course_number Room Time

Cruz Zoology 335 A100 9:00 a.m.

Cruz Zoology 412 A100 8:00 a.m.

Farber Psychology 501 A100 3:00 p.m.

Farber Psychology 617 A110 11:00 a.m.

Grammer Physics 544 B505 4:00 p.m.

Rosen Computer Science 518 N521 2:00 p.m.

Rosen Mathematics 575 N502 3:00 p.m.

9.2 n-ary Relations and Their Applications 589

TABLE 8 Flights.

Airline Flight_number Gate Destination Departure_time

Nadir 122 34 Detroit 08:10

Acme 221 22 Denver 08:17

Acme 122 33 Anchorage 08:22

Acme 323 34 Honolulu 08:30

Nadir 199 13 Detroit 08:47

Acme 222 22 Denver 09:10

Nadir 322 34 Detroit 09:44

and 09:44. SQL uses the FROM clause to identify the n-ary relation the query is applied to, the
WHERE clause to specify the condition of the selection operation, and the SELECT clause to
specify the projection operation that is to be applied. (Beware: SQL uses SELECT to represent
a projection, rather than a selection operation. This is an unfortunate example of conflicting
terminology.) ▲

Example 13 shows how SQL queries can be made involving more than one table.

EXAMPLE 13 The SQL statement

SELECT Professor, Time

FROM Teaching_assignments, Class_schedule

WHERE Department=’Mathematics’

is used to find the projection P1,5 of the 5-tuples in the database (shown in Table 7), which
is the join J2 of the Teaching_assignments and Class_schedule databases in Tables 5 and 6,
respectively, which satisfy the condition: Department=Mathematics. The output would consist
of the single 2-tuple (Rosen, 3:00 p.m.). The SQL FROM clause is used here to find the join of
two different databases. ▲

We have only touched on the basic concepts of relational databases in this section. More
information can be found in [AhUl95].

Exercises

1. List the triples in the relation {(a, b, c) | a, b, and c are
integers with 0 < a < b < c < 5}.

2. Which 4-tuples are in the relation {(a, b, c, d) | a, b, c,
and d are positive integers with abcd = 6}?

3. List the 5-tuples in the relation in Table 8.

4. Assuming that no new n-tuples are added, find all the
primary keys for the relations displayed in

a) Table 3. b) Table 5.

c) Table 6. d) Table 8.

5. Assuming that no new n-tuples are added, find a compos-
ite key with two fields containing the Airline field for the
database in Table 8.

6. Assuming that no new n-tuples are added, find a compos-
ite key with two fields containing the Professor field for
the database in Table 7.

7. The 3-tuples in a 3-ary relation represent the following
attributes of a student database: student ID number, name,
phone number.

a) Is student ID number likely to be a primary key?

b) Is name likely to be a primary key?

c) Is phone number likely to be a primary key?

8. The 4-tuples in a 4-ary relation represent these attributes
of published books: title, ISBN, publication date, number
of pages.

a) What is a likely primary key for this relation?

b) Under what conditions would (title, publication date)
be a composite key?

c) Under what conditions would (title, number of pages)
be a composite key?

590 9 / Relations

9. The 5-tuples in a 5-ary relation represent these attributes
of all people in the United States: name, Social Security
number, street address, city, state.

a) Determine a primary key for this relation.
b) Under what conditions would (name, street address)

be a composite key?
c) Under what conditions would (name, street address,

city) be a composite key?

10. What do you obtain when you apply the selection oper-
ator sC , where C is the condition Room = A100, to the
database in Table 7?

11. What do you obtain when you apply the selection oper-
ator sC , where C is the condition Destination = Detroit,
to the database in Table 8?

12. What do you obtain when you apply the selection op-
erator sC , where C is the condition (Project= 2)∧
(Quantity≥ 50), to the database in Table 10?

13. What do you obtain when you apply the selection oper-
ator sC , where C is the condition (Airline = Nadir) ∨
(Destination = Denver), to the database in Table 8?

14. What do you obtain when you apply the projection P2,3,5

to the 5-tuple (a, b, c, d, e)?

15. Which projection mapping is used to delete the first,
second, and fourth components of a 6-tuple?

16. Display the table produced by applying the projection
P1,2,4 to Table 8.

17. Display the table produced by applying the projection
P1,4 to Table 8.

18. How many components are there in the n-tuples in the
table obtained by applying the join operator J3 to two
tables with 5-tuples and 8-tuples, respectively?

19. Construct the table obtained by applying the join
operator J2 to the relations in Tables 9 and 10.

20. Show that if C1 and C2 are conditions that el-
ements of the n-ary relationRmay satisfy, then
sC1∧C2(R)= sC1(sC2(R)).

21. Show that if C1 and C2 are conditions that ele-
ments of the n-ary relation R may satisfy, then
sC1(sC2(R)) = sC2(sC1(R)).

22. Show that if C is a condition that elements of
the n-ary relations R and S may satisfy, then
sC(R ∪ S) = sC(R) ∪ sC(S).

23. Show that if C is a condition that elements of
the n-ary relations R and S may satisfy, then
sC(R ∩ S) = sC(R) ∩ sC(S).

24. Show that if C is a condition that elements of
the n-ary relations R and S may satisfy, then
sC(R − S) = sC(R)− sC(S).

25. Show that if R and S are both n-ary relations, then
Pi1,i2,...,im(R ∪ S) = Pi1,i2,...,im(R) ∪ Pi1,i2,...,im(S).

26. Give an example to show that if R and S are both n-ary
relations, then Pi1,i2,...,im(R ∩ S) may be different from
Pi1,i2,...,im(R) ∩ Pi1,i2,...,im(S).

27. Give an example to show that if R and S are both n-ary
relations, then Pi1,i2,...,im(R − S) may be different from
Pi1,i2,...,im(R)− Pi1,i2,...,im(S).

28. a) What are the operations that correspond to the query
expressed using this SQL statement?

SELECT Supplier

FROM Part_needs

WHERE 1000 ≤ Part_number ≤ 5000

b) What is the output of this query given the database in
Table 9 as input?

29. a) What are the operations that correspond to the query
expressed using this SQL statement?

SELECT Supplier, Project

FROM Part_needs, Parts_inventory

WHERE Quantity ≤ 10

b) What is the output of this query given the databases
in Tables 9 and 10 as input?

30. Determine whether there is a primary key for the relation
in Example 2.

31. Determine whether there is a primary key for the relation
in Example 3.

32. Show that an n-ary relation with a primary key can be
thought of as the graph of a function that maps values of
the primary key to (n− 1)-tuples formed from values of
the other domains.

TABLE 9 Part_needs.

Supplier Part_number Project

23 1092 1

23 1101 3

23 9048 4

31 4975 3

31 3477 2

32 6984 4

32 9191 2

33 1001 1

TABLE 10 Parts_inventory.

Part_number Project Quantity Color_code

1001 1 14 8

1092 1 2 2

1101 3 1 1

3477 2 25 2

4975 3 6 2

6984 4 10 1

9048 4 12 2

9191 2 80 4

9.3 Representing Relations 591

9.3 Representing Relations

Introduction

In this section, and in the remainder of this chapter, all relations we study will be binary relations.
Because of this, in this section and in the rest of this chapter, the word relation will always refer
to a binary relation. There are many ways to represent a relation between finite sets. As we have
seen in Section 9.1, one way is to list its ordered pairs. Another way to represent a relation is to
use a table, as we did in Example 3 in Section 9.1. In this section we will discuss two alternative
methods for representing relations. One method uses zero–one matrices. The other method uses
pictorial representations called directed graphs, which we will discuss later in this section.

Generally, matrices are appropriate for the representation of relations in computer programs.
On the other hand, people often find the representation of relations using directed graphs useful
for understanding the properties of these relations.

Representing Relations Using Matrices

A relation between finite sets can be represented using a zero–one matrix. Suppose that R is a
relation from A = {a1, a2, . . . , am} to B = {b1, b2, . . . , bn}. (Here the elements of the sets A
and B have been listed in a particular, but arbitrary, order. Furthermore, when A = B we use
the same ordering for A and B.) The relation R can be represented by the matrix MR = [mij],
where

mij =

1 if (ai, bj) ∈ R,

0 if (ai, bj) /∈ R.

In other words, the zero–one matrix representing R has a 1 as its (i, j) entry when ai is related
to bj , and a 0 in this position if ai is not related to bj . (Such a representation depends on the
orderings used for A and B.)

The use of matrices to represent relations is illustrated in Examples 1–6.

EXAMPLE 1 Suppose that A = {1, 2, 3} and B = {1, 2}. Let R be the relation from A to B containing (a, b)
if a ∈ A, b ∈ B, and a > b. What is the matrix representing R if a1 = 1, a2 = 2, and a3 = 3,
and b1 = 1 and b2 = 2?

Solution: Because R = {(2, 1), (3, 1), (3, 2)}, the matrix for R is

MR =

⎡
⎣0 0

1 0
1 1

⎤
⎦ .

The 1s in MR show that the pairs (2, 1), (3, 1), and (3, 2) belong to R. The 0s show that no
other pairs belong to R. ▲

EXAMPLE 2 Let A = {a1, a2, a3} and B = {b1, b2, b3, b4, b5}. Which ordered pairs are in the relation R
represented by the matrix

MR =

⎡
⎣0 1 0 0 0

1 0 1 1 0
1 0 1 0 1

⎤
⎦ ?

592 9 / Relations

Solution: Because R consists of those ordered pairs (ai, bj) with mij = 1, it follows that

R = {(a1, b2), (a2, b1), (a2, b3), (a2, b4), (a3, b1), (a3, b3), (a3, b5)}. ▲

The matrix of a relation on a set, which is a square matrix, can be used to determine whether
the relation has certain properties. Recall that a relationR onA is reflexive if (a, a) ∈ Rwhenever
a ∈ A. Thus, R is reflexive if and only if (ai, ai) ∈ R for i = 1, 2, . . . , n. Hence, R is reflexive
if and only if mii = 1, for i = 1, 2, . . . , n. In other words, R is reflexive if all the elements on
the main diagonal of MR are equal to 1, as shown in Figure 1. Note that the elements off the
main diagonal can be either 0 or 1.

1
1

1

1
1

FIGURE 1 The

Zero–One Matrix

for a Reflexive

Relation. (Off

Diagonal Ele-

ments Can

Be 0 or 1.)

The relation R is symmetric if (a, b) ∈ R implies that (b, a) ∈ R. Consequently, the
relation R on the set A = {a1, a2, . . . , an} is symmetric if and only if (aj , ai) ∈ R whenever
(ai, aj) ∈ R. In terms of the entries of MR , R is symmetric if and only if mji = 1 whenever
mij = 1. This also means mji = 0 whenever mij = 0. Consequently, R is symmetric if and
only if mij = mji , for all pairs of integers i and j with i = 1, 2, . . . , n and j = 1, 2, . . . , n.
Recalling the definition of the transpose of a matrix from Section 2.6, we see thatR is symmetric
if and only if

MR = (MR)
t ,

that is, if MR is a symmetric matrix. The form of the matrix for a symmetric relation is illustrated
in Figure 2(a).

The relation R is antisymmetric if and only if (a, b) ∈ R and (b, a) ∈ R imply that a = b.
Consequently, the matrix of an antisymmetric relation has the property that if mij = 1 with
i = j , then mji = 0. Or, in other words, either mij = 0 or mji = 0 when i = j . The form of
the matrix for an antisymmetric relation is illustrated in Figure 2(b).

1

1

0

0

(a) Symmetric

0

0

1

(b) Antisymmetric

0

0

1

FIGURE 2 The Zero–One Matrices for

Symmetric and Antisymmetric Relations.

EXAMPLE 3 Suppose that the relation R on a set is represented by the matrix

MR =

⎡
⎣1 1 0

1 1 1
0 1 1

⎤
⎦ .

Is R reflexive, symmetric, and/or antisymmetric?

Solution: Because all the diagonal elements of this matrix are equal to 1,R is reflexive. Moreover,
because MR is symmetric, it follows that R is symmetric. It is also easy to see that R is not
antisymmetric. ▲

The Boolean operations join and meet (discussed in Section 2.6) can be used to find the
matrices representing the union and the intersection of two relations. Suppose that R1 and R2

are relations on a set A represented by the matrices MR1 and MR2 , respectively. The matrix

9.3 Representing Relations 593

representing the union of these relations has a 1 in the positions where either MR1 or MR2 has
a 1. The matrix representing the intersection of these relations has a 1 in the positions where
both MR1 and MR2 have a 1. Thus, the matrices representing the union and intersection of these
relations are

MR1∪R2 = MR1 ∨ MR2 and MR1∩R2 = MR1 ∧ MR2 .

EXAMPLE 4 Suppose that the relations R1 and R2 on a set A are represented by the matrices

MR1 =

⎡
⎣1 0 1

1 0 0
0 1 0

⎤
⎦ and MR2 =

⎡
⎣1 0 1

0 1 1
1 0 0

⎤
⎦ .

What are the matrices representing R1 ∪ R2 and R1 ∩ R2?

Solution: The matrices of these relations are

MR1∪R2 = MR1 ∨ MR2 =

⎡
⎣1 0 1

1 1 1
1 1 0

⎤
⎦ ,

MR1∩R2 = MR1 ∧ MR2 =

⎡
⎣1 0 1

0 0 0
0 0 0

⎤
⎦ .

▲

We now turn our attention to determining the matrix for the composite of relations. This
matrix can be found using the Boolean product of the matrices (discussed in Section 2.6) for
these relations. In particular, suppose that R is a relation from A to B and S is a relation
from B to C. Suppose that A, B, and C have m, n, and p elements, respectively. Let the zero–
one matrices for S ◦R, R, and S be MS ◦R = [tij], MR = [rij], and MS = [sij], respectively
(these matrices have sizes m× p, m× n, and n× p, respectively). The ordered pair (ai, cj)
belongs to S ◦R if and only if there is an element bk such that (ai, bk) belongs to R and (bk, cj)
belongs to S. It follows that tij = 1 if and only if rik = skj = 1 for some k. From the definition
of the Boolean product, this means that

MS ◦R = MR MS.

EXAMPLE 5 Find the matrix representing the relations S ◦R, where the matrices representing R and S are

MR =

⎡
⎣1 0 1

1 1 0
0 0 0

⎤
⎦ and MS =

⎡
⎣0 1 0

0 0 1
1 0 1

⎤
⎦ .

Solution: The matrix for S ◦R is

MS ◦R = MR MS =

⎡
⎣1 1 1

0 1 1
0 0 0

⎤
⎦ .

▲

594 9 / Relations

The matrix representing the composite of two relations can be used to find the matrix
for MRn . In particular,

MRn = M
[n]
R ,

from the definition of Boolean powers. Exercise 35 asks for a proof of this formula.

EXAMPLE 6 Find the matrix representing the relation R2, where the matrix representing R is

MR =

⎡
⎣0 1 0

0 1 1
1 0 0

⎤
⎦ .

Solution: The matrix for R2 is

MR2 = M
[2]
R =

⎡
⎣0 1 1

1 1 1
0 1 0

⎤
⎦ .

▲

Representing Relations Using Digraphs

We have shown that a relation can be represented by listing all of its ordered pairs or by
using a zero–one matrix. There is another important way of representing a relation using a
pictorial representation. Each element of the set is represented by a point, and each ordered
pair is represented using an arc with its direction indicated by an arrow. We use such pictorial
representations when we think of relations on a finite set as directed graphs, or digraphs.

DEFINITION 1 A directed graph, or digraph, consists of a set V of vertices (or nodes) together with a set
E of ordered pairs of elements of V called edges (or arcs). The vertex a is called the initial

vertex of the edge (a, b), and the vertex b is called the terminal vertex of this edge.

An edge of the form (a, a) is represented using an arc from the vertex a back to itself. Such
an edge is called a loop.

EXAMPLE 7 The directed graph with vertices a, b, c, and d, and edges (a, b), (a, d), (b, b), (b, d), (c, a),
(c, b), and (d, b) is displayed in Figure 3. ▲

a b

d c

FIGURE 3

A Directed Graph.

The relationR on a setA is represented by the directed graph that has the elements ofA as its
vertices and the ordered pairs (a, b), where (a, b) ∈ R, as edges. This assignment sets up a one-
to-one correspondence between the relations on a set A and the directed graphs with A as their
set of vertices. Thus, every statement about relations corresponds to a statement about directed
graphs, and vice versa. Directed graphs give a visual display of information about relations. As
such, they are often used to study relations and their properties. (Note that relations from a set
A to a set B can be represented by a directed graph where there is a vertex for each element of
A and a vertex for each element of B, as shown in Section 9.1. However, when A = B, such
representation provides much less insight than the digraph representations described here.) The
use of directed graphs to represent relations on a set is illustrated in Examples 8–10.

9.3 Representing Relations 595

EXAMPLE 8 The directed graph of the relation

R = {(1, 1), (1, 3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1)}

on the set {1, 2, 3, 4} is shown in Figure 4. ▲

EXAMPLE 9 What are the ordered pairs in the relationR represented by the directed graph shown in Figure 5?

Solution: The ordered pairs (x, y) in the relation are

R = {(1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3), (4, 1), (4, 3)}.

Each of these pairs corresponds to an edge of the directed graph, with (2, 2) and (3, 3) corre-
sponding to loops. ▲

The directed graph representing a relation can be used to determine whether the relation
We will study directed

graphs extensively in

Chapter 10.

has various properties. For instance, a relation is reflexive if and only if there is a loop at every
vertex of the directed graph, so that every ordered pair of the form (x, x) occurs in the relation.
A relation is symmetric if and only if for every edge between distinct vertices in its digraph
there is an edge in the opposite direction, so that (y, x) is in the relation whenever (x, y) is
in the relation. Similarly, a relation is antisymmetric if and only if there are never two edges
in opposite directions between distinct vertices. Finally, a relation is transitive if and only if
whenever there is an edge from a vertex x to a vertex y and an edge from a vertex y to a
vertex z, there is an edge from x to z (completing a triangle where each side is a directed edge
with the correct direction).

Remark: Note that a symmetric relation can be represented by an undirected graph, which is a
graph where edges do not have directions. We will study undirected graphs in Chapter 10.

EXAMPLE 10 Determine whether the relations for the directed graphs shown in Figure 6 are reflexive, sym-
metric, antisymmetric, and/or transitive.

Solution: Because there are loops at every vertex of the directed graph of R, it is reflexive. R is
neither symmetric nor antisymmetric because there is an edge from a to b but not one from b to
a, but there are edges in both directions connecting b and c. Finally, R is not transitive because
there is an edge from a to b and an edge from b to c, but no edge from a to c.

1

4 3

2

FIGURE 4 The

Directed Graph

of the Relation R.

21

4 3

FIGURE 5 The

Directed Graph

of the Relation R.

a

b c

(a) Directed graph of R

b

(b) Directed graph of S

c

a

d

FIGURE 6 The Directed Graphs of the

Relations R and S.

596 9 / Relations

Because loops are not present at all the vertices of the directed graph of S, this relation is not
reflexive. It is symmetric and not antisymmetric, because every edge between distinct vertices
is accompanied by an edge in the opposite direction. It is also not hard to see from the directed
graph that S is not transitive, because (c, a) and (a, b) belong to S, but (c, b) does not belong
to S. ▲

Exercises

1. Represent each of these relations on {1, 2, 3}with a matrix
(with the elements of this set listed in increasing order).

a) {(1, 1), (1, 2), (1, 3)}
b) {(1, 2), (2, 1), (2, 2), (3, 3)}
c) {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}
d) {(1, 3), (3, 1)}

2. Represent each of these relations on {1, 2, 3, 4} with a
matrix (with the elements of this set listed in increasing
order).

a) {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}
b) {(1, 1), (1, 4), (2, 2), (3, 3), (4, 1)}
c) {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2),
(3, 4), (4, 1), (4, 2), (4, 3)}

d) {(2, 4), (3, 1), (3, 2), (3, 4)}

3. List the ordered pairs in the relations on {1, 2, 3} corre-
sponding to these matrices (where the rows and columns
correspond to the integers listed in increasing order).

a)

⎡
⎣1 0 1

0 1 0
1 0 1

⎤
⎦ b)

⎡
⎣0 1 0

0 1 0
0 1 0

⎤
⎦

c)

⎡
⎣1 1 1

1 0 1
1 1 1

⎤
⎦

4. List the ordered pairs in the relations on {1, 2, 3, 4} corre-
sponding to these matrices (where the rows and columns
correspond to the integers listed in increasing order).

a)

⎡
⎢⎢⎣

1 1 0 1
1 0 1 0
0 1 1 1
1 0 1 1

⎤
⎥⎥⎦ b)

⎡
⎢⎢⎣

1 1 1 0
0 1 0 0
0 0 1 1
1 0 0 1

⎤
⎥⎥⎦

c)

⎡
⎢⎢⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤
⎥⎥⎦

5. How can the matrix representing a relation R on a set A
be used to determine whether the relation is irreflexive?

6. How can the matrix representing a relation R on a set A
be used to determine whether the relation is asymmetric?

7. Determine whether the relations represented by the ma-
trices in Exercise 3 are reflexive, irreflexive, symmetric,
antisymmetric, and/or transitive.

8. Determine whether the relations represented by the ma-
trices in Exercise 4 are reflexive, irreflexive, symmetric,
antisymmetric, and/or transitive.

9. How many nonzero entries does the matrix representing
the relationR onA = {1, 2, 3, . . . , 100} consisting of the
first 100 positive integers have if R is

a) {(a, b) | a > b}? b) {(a, b) | a = b}?
c) {(a, b) | a = b + 1}? d) {(a, b) | a = 1}?
e) {(a, b) | ab = 1}?

10. How many nonzero entries does the matrix representing
the relation R on A = {1, 2, 3, . . . , 1000} consisting of
the first 1000 positive integers have if R is

a) {(a, b) | a ≤ b}?
b) {(a, b) | a = b ± 1}?
c) {(a, b) | a + b = 1000}?
d) {(a, b) | a + b ≤ 1001}?
e) {(a, b) | a = 0}?

11. How can the matrix for R, the complement of the
relation R, be found from the matrix representing R,
when R is a relation on a finite set A?

12. How can the matrix for R−1, the inverse of the
relation R, be found from the matrix representing R,
when R is a relation on a finite set A?

13. Let R be the relation represented by the matrix

MR =

⎡
⎣0 1 1

1 1 0
1 0 1

⎤
⎦ .

Find the matrix representing

a) R−1. b) R. c) R2.

14. Let R1 and R2 be relations on a set A represented by the
matrices

MR1 =

⎡
⎣0 1 0

1 1 1
1 0 0

⎤
⎦ and MR2 =

⎡
⎣0 1 0

0 1 1
1 1 1

⎤
⎦ .

Find the matrices that represent

a) R1 ∪ R2. b) R1 ∩ R2. c) R2 ◦R1.
d) R1 ◦R1. e) R1 ⊕ R2.

15. Let R be the relation represented by the matrix

MR =

⎡
⎣0 1 0

0 0 1
1 1 0

⎤
⎦ .

Find the matrices that represent

a) R2. b) R3. c) R4.

9.4 Closures of Relations 597

16. Let R be a relation on a set A with n elements. If there
are k nonzero entries in MR , the matrix representing R,
how many nonzero entries are there in MR−1 , the matrix
representing R−1, the inverse of R?

17. Let R be a relation on a set A with n elements. If there
are k nonzero entries in MR , the matrix representing R,
how many nonzero entries are there in MR , the matrix

representing R, the complement of R?

18. Draw the directed graphs representing each of the rela-
tions from Exercise 1.

19. Draw the directed graphs representing each of the rela-
tions from Exercise 2.

20. Draw the directed graph representing each of the relations
from Exercise 3.

21. Draw the directed graph representing each of the relations
from Exercise 4.

22. Draw the directed graph that represents the relation
{(a, a), (a, b), (b, c), (c, b), (c, d), (d, a), (d, b)}.

In Exercises 23–28 list the ordered pairs in the relations rep-
resented by the directed graphs.

23.
a

b c

24.

a

b c

25.
ba

c d

26.
ba

c d

27.
a b

c
d

28.

b

c d

29. How can the directed graph of a relation R on a finite
set A be used to determine whether a relation is asym-
metric?

30. How can the directed graph of a relation R on a finite
set A be used to determine whether a relation is irreflex-
ive?

31. Determine whether the relations represented by the di-
rected graphs shown in Exercises 23–25 are reflexive,
irreflexive, symmetric, antisymmetric, and/or transitive.

32. Determine whether the relations represented by the di-
rected graphs shown in Exercises 26–28 are reflexive, ir-
reflexive, symmetric, antisymmetric, asymmetric, and/or
transitive.

33. Let R be a relation on a set A. Explain how to use the di-
rected graph representing R to obtain the directed graph
representing the inverse relation R−1.

34. Let R be a relation on a set A. Explain how to use the di-
rected graph representing R to obtain the directed graph
representing the complementary relation R.

35. Show that if MR is the matrix representing the relationR,

then M
[n]
R is the matrix representing the relation Rn.

36. Given the directed graphs representing two relations, how
can the directed graph of the union, intersection, sym-
metric difference, difference, and composition of these
relations be found?

9.4 Closures of Relations

Introduction

A computer network has data centers in Boston, Chicago, Denver, Detroit, New York, and San
Diego. There are direct, one-way telephone lines from Boston to Chicago, from Boston to
Detroit, from Chicago to Detroit, from Detroit to Denver, and from New York to San Diego.
Let R be the relation containing (a, b) if there is a telephone line from the data center in a to
that in b. How can we determine if there is some (possibly indirect) link composed of one or
more telephone lines from one center to another? Because not all links are direct, such as the
link from Boston to Denver that goes through Detroit, R cannot be used directly to answer this.
In the language of relations, R is not transitive, so it does not contain all the pairs that can be
linked. As we will show in this section, we can find all pairs of data centers that have a link
by constructing a transitive relation S containing R such that S is a subset of every transitive
relation containing R. Here, S is the smallest transitive relation that contains R. This relation is
called the transitive closure of R.

In general, let R be a relation on a set A. R may or may not have some property P, such as
reflexivity, symmetry, or transitivity. If there is a relation S with property P containing R such
that S is a subset of every relation with property P containing R, then S is called the closure

598 9 / Relations

of R with respect to P. (Note that the closure of a relation with respect to a property may not
exist; see Exercises 15 and 35.) We will show how reflexive, symmetric, and transitive closures
of relations can be found.

Closures

The relationR = {(1, 1), (1, 2), (2, 1), (3, 2)} on the setA = {1, 2, 3} is not reflexive. How can
we produce a reflexive relation containing R that is as small as possible? This can be done by
adding (2, 2) and (3, 3) toR, because these are the only pairs of the form (a, a) that are not inR.
Clearly, this new relation contains R. Furthermore, any reflexive relation that contains R must
also contain (2, 2) and (3, 3). Because this relation contains R, is reflexive, and is contained
within every reflexive relation that contains R, it is called the reflexive closure of R.

As this example illustrates, given a relation R on a set A, the reflexive closure of R can be
formed by adding to R all pairs of the form (a, a) with a ∈ A, not already in R. The addition
of these pairs produces a new relation that is reflexive, contains R, and is contained within any
reflexive relation containing R. We see that the reflexive closure of R equals R ∪ , where
 = {(a, a) | a ∈ A} is the diagonal relation on A. (The reader should verify this.)

EXAMPLE 1 What is the reflexive closure of the relation R = {(a, b) | a < b} on the set of integers?

Solution: The reflexive closure of R is

R ∪ = {(a, b) | a < b} ∪ {(a, a) | a ∈ Z} = {(a, b) | a ≤ b}. ▲

The relation {(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 2)} on {1, 2, 3} is not symmetric. How
can we produce a symmetric relation that is as small as possible and contains R? To do this,
we need only add (2, 1) and (1, 3), because these are the only pairs of the form (b, a) with
(a, b) ∈ R that are not in R. This new relation is symmetric and contains R. Furthermore, any

symmetric relation that containsR must contain this new relation, because a symmetric relation
that contains R must contain (2, 1) and (1, 3). Consequently, this new relation is called the
symmetric closure of R.

As this example illustrates, the symmetric closure of a relation R can be constructed by
adding all ordered pairs of the form (b, a), where (a, b) is in the relation, that are not al-
ready present in R. Adding these pairs produces a relation that is symmetric, that contains R,
and that is contained in any symmetric relation that contains R. The symmetric closure of a
relation can be constructed by taking the union of a relation with its inverse (defined in the
preamble of Exercise 26 in Section 9.1); that is, R ∪ R−1 is the symmetric closure of R, where
R−1 = {(b, a) | (a, b) ∈ R}. The reader should verify this statement.

EXAMPLE 2 What is the symmetric closure of the relationR = {(a, b) | a > b} on the set of positive integers?

Solution: The symmetric closure of R is the relation

R ∪ R−1 = {(a, b) | a > b} ∪ {(b, a) | a > b} = {(a, b) | a = b}.

This last equality follows because R contains all ordered pairs of positive integers where the
first element is greater than the second element and R−1 contains all ordered pairs of positive
integers where the first element is less than the second. ▲

Suppose that a relation R is not transitive. How can we produce a transitive relation that
contains R such that this new relation is contained within any transitive relation that con-
tains R? Can the transitive closure of a relation R be produced by adding all the pairs of
the form (a, c), where (a, b) and (b, c) are already in the relation? Consider the relation

9.4 Closures of Relations 599

R = {(1, 3), (1, 4), (2, 1), (3, 2)} on the set {1, 2, 3, 4}. This relation is not transitive because
it does not contain all pairs of the form (a, c) where (a, b) and (b, c) are in R. The pairs of
this form not in R are (1, 2), (2, 3), (2, 4), and (3, 1). Adding these pairs does not produce a
transitive relation, because the resulting relation contains (3, 1) and (1, 4) but does not contain
(3, 4). This shows that constructing the transitive closure of a relation is more complicated than
constructing either the reflexive or symmetric closure. The rest of this section develops algo-
rithms for constructing transitive closures. As will be shown later in this section, the transitive
closure of a relation can be found by adding new ordered pairs that must be present and then
repeating this process until no new ordered pairs are needed.

Paths in Directed Graphs

We will see that representing relations by directed graphs helps in the construction of transitive
closures. We now introduce some terminology that we will use for this purpose.

A path in a directed graph is obtained by traversing along edges (in the same direction as
indicated by the arrow on the edge).

DEFINITION 1 A path from a to b in the directed graph G is a sequence of edges (x0, x1), (x1, x2),
(x2, x3), . . . , (xn−1, xn) in G, where n is a nonnegative integer, and x0 = a and xn = b,
that is, a sequence of edges where the terminal vertex of an edge is the same as the initial
vertex in the next edge in the path. This path is denoted by x0, x1, x2, . . . , xn−1, xn and has
length n. We view the empty set of edges as a path of length zero from a to a. A path of
length n ≥ 1 that begins and ends at the same vertex is called a circuit or cycle.

A path in a directed graph can pass through a vertex more than once. Moreover, an edge in
a directed graph can occur more than once in a path.

EXAMPLE 3 Which of the following are paths in the directed graph shown in Figure 1: a, b, e, d; a, e, c, d, b;
b, a, c, b, a, a, b; d, c; c, b, a; e, b, a, b, a, b, e? What are the lengths of those that are paths?
Which of the paths in this list are circuits?

Solution: Because each of (a, b), (b, e), and (e, d) is an edge, a, b, e, d is a path of length three.
Because (c, d) is not an edge, a, e, c, d, b is not a path. Also, b, a, c, b, a, a, b is a path of
length six because (b, a), (a, c), (c, b), (b, a), (a, a), and (a, b) are all edges. We see that d, c
is a path of length one, because (d, c) is an edge. Also c, b, a is a path of length two, because
(c, b) and (b, a) are edges. All of (e, b), (b, a), (a, b), (b, a), (a, b), and (b, e) are edges, so
e, b, a, b, a, b, e is a path of length six.

The two paths b, a, c, b, a, a, b and e, b, a, b, a, b, e are circuits because they begin and
end at the same vertex. The paths a, b, e, d; c, b, a; and d, c are not circuits. ▲

d e

b ca

FIGURE 1 A Directed Graph.

600 9 / Relations

The term path also applies to relations. Carrying over the definition from directed graphs to
relations, there is a path from a to b inR if there is a sequence of elements a, x1, x2, . . . , xn−1, b

with (a, x1) ∈ R, (x1, x2) ∈ R, . . . , and (xn−1, b) ∈ R. Theorem 1 can be obtained from the
definition of a path in a relation.

THEOREM 1 Let R be a relation on a set A. There is a path of length n, where n is a positive integer, from
a to b if and only if (a, b) ∈ Rn.

Proof: We will use mathematical induction. By definition, there is a path from a to b of length
one if and only if (a, b) ∈ R, so the theorem is true when n = 1.

Assume that the theorem is true for the positive integer n. This is the inductive hypothesis.
There is a path of length n+ 1 from a to b if and only if there is an element c ∈ A such that
there is a path of length one from a to c, so (a, c) ∈ R, and a path of length n from c to b,
that is, (c, b) ∈ Rn. Consequently, by the inductive hypothesis, there is a path of length n+ 1
from a to b if and only if there is an element c with (a, c) ∈ R and (c, b) ∈ Rn. But there
is such an element if and only if (a, b) ∈ Rn+1. Therefore, there is a path of length n+ 1
from a to b if and only if (a, b) ∈ Rn+1. This completes the proof.

Transitive Closures

We now show that finding the transitive closure of a relation is equivalent to determining which
pairs of vertices in the associated directed graph are connected by a path. With this in mind, we
define a new relation.

DEFINITION 2 Let R be a relation on a set A. The connectivity relation R∗ consists of the pairs (a, b) such
that there is a path of length at least one from a to b in R.

BecauseRn consists of the pairs (a, b) such that there is a path of length n from a to b, it follows
that R∗ is the union of all the sets Rn. In other words,

R∗ =

∞
n=1

Rn.

The connectivity relation is useful in many models.

EXAMPLE 4 Let R be the relation on the set of all people in the world that contains (a, b) if a has met b.
What is Rn, where n is a positive integer greater than one? What is R∗?

Solution: The relationR2 contains (a, b) if there is a person c such that (a, c) ∈ R and (c, b) ∈ R,
that is, if there is a person c such that a has met c and c has met b. Similarly, Rn consists of
those pairs (a, b) such that there are people x1, x2, . . . , xn−1 such that a has met x1, x1 has
met x2, . . . , and xn−1 has met b.

The relation R∗ contains (a, b) if there is a sequence of people, starting with a and ending
with b, such that each person in the sequence has met the next person in the sequence. (There
are many interesting conjectures about R∗. Do you think that this connectivity relation includes
the pair with you as the first element and the president of Mongolia as the second element? We
will use graphs to model this application in Chapter 10.) ▲

9.4 Closures of Relations 601

EXAMPLE 5 Let R be the relation on the set of all subway stops in New York City that contains (a, b) if it is
possible to travel from stop a to stop b without changing trains. What is Rn when n is a positive
integer? What is R∗?

Solution: The relationRn contains (a, b) if it is possible to travel from stop a to stop b by making
at most n− 1 changes of trains. The relation R∗ consists of the ordered pairs (a, b) where it is
possible to travel from stop a to stop b making as many changes of trains as necessary. (The
reader should verify these statements.) ▲

EXAMPLE 6 Let R be the relation on the set of all states in the United States that contains (a, b) if state a
and state b have a common border. What is Rn, where n is a positive integer? What is R∗?

Solution: The relation Rn consists of the pairs (a, b), where it is possible to go from state a to
state b by crossing exactly n state borders. R∗ consists of the ordered pairs (a, b), where it is
possible to go from state a to state b crossing as many borders as necessary. (The reader should
verify these statements.) The only ordered pairs not inR∗ are those containing states that are not
connected to the continental United States (i.e., those pairs containing Alaska or Hawaii). ▲

Theorem 2 shows that the transitive closure of a relation and the associated connectivity
relation are the same.

THEOREM 2 The transitive closure of a relation R equals the connectivity relation R∗.

Proof: Note that R∗ contains R by definition. To show that R∗ is the transitive closure of R
we must also show that R∗ is transitive and that R∗ ⊆ S whenever S is a transitive relation that
contains R.

First, we show that R∗ is transitive. If (a, b) ∈ R∗ and (b, c) ∈ R∗, then there are paths
from a to b and from b to c in R. We obtain a path from a to c by starting with the path
from a to b and following it with the path from b to c. Hence, (a, c) ∈ R∗. It follows that R∗ is
transitive.

Now suppose that S is a transitive relation containing R. Because S is transitive, Sn also is
transitive (the reader should verify this) and Sn ⊆ S (by Theorem 1 of Section 9.1). Furthermore,
because

S∗ =

∞
k= 1

Sk

and Sk ⊆ S, it follows that S∗ ⊆ S. Now note that if R ⊆ S, then R∗ ⊆ S∗, because any
path in R is also a path in S. Consequently, R∗ ⊆ S∗ ⊆ S. Thus, any transitive relation that
contains R must also contain R∗. Therefore, R∗ is the transitive closure of R.

Now that we know that the transitive closure equals the connectivity relation, we turn our
attention to the problem of computing this relation. We do not need to examine arbitrarily long
paths to determine whether there is a path between two vertices in a finite directed graph. As
Lemma 1 shows, it is sufficient to examine paths containing no more than n edges, where n is
the number of elements in the set.

LEMMA 1 Let A be a set with n elements, and let R be a relation on A. If there is a path of length at
least one in R from a to b, then there is such a path with length not exceeding n. Moreover,
when a = b, if there is a path of length at least one in R from a to b, then there is such a path
with length not exceeding n− 1.

602 9 / Relations

a = x0 x1 x2 xi – 1 xi = xj xj+1 xm = b

xj–1

xj–2

xi+2

xi+1

FIGURE 2 Producing a Path with Length Not Exceeding n.

Proof: Suppose there is a path from a to b in R. Let m be the length of the shortest such path.
Suppose that x0, x1, x2, . . . , xm−1, xm, where x0 = a and xm = b, is such a path.

Suppose that a = b and thatm > n, so thatm ≥ n+ 1. By the pigeonhole principle, because
there are n vertices in A, among the m vertices x0, x1, . . . , xm−1, at least two are equal (see
Figure 2).

Suppose that xi = xj with 0 ≤ i < j ≤ m− 1. Then the path contains a circuit from
xi to itself. This circuit can be deleted from the path from a to b, leaving a path, namely,
x0, x1, . . . , xi, xj+1, . . . , xm−1, xm, from a to b of shorter length. Hence, the path of shortest
length must have length less than or equal to n.

The case where a = b is left as an exercise for the reader.

From Lemma 1, we see that the transitive closure of R is the union of R, R2, R3, . . . ,

and Rn. This follows because there is a path in R∗ between two vertices if and only if there is a
path between these vertices in Ri , for some positive integer i with i ≤ n. Because

R∗ = R ∪ R2 ∪ R3 ∪ · · · ∪ Rn

and the zero–one matrix representing a union of relations is the join of the zero–one matrices of
these relations, the zero–one matrix for the transitive closure is the join of the zero–one matrices
of the first n powers of the zero–one matrix of R.

THEOREM 3 Let MR be the zero–one matrix of the relation R on a set with n elements. Then the zero–one
matrix of the transitive closure R∗ is

MR∗ = MR ∨M
[2]
R ∨M

[3]
R ∨ · · · ∨M

[n]
R .

EXAMPLE 7 Find the zero–one matrix of the transitive closure of the relation R where

MR =

⎡
⎣1 0 1

0 1 0
1 1 0

⎤
⎦ .

Solution: By Theorem 3, it follows that the zero–one matrix of R∗ is

MR∗ = MR ∨M
[2]
R ∨M

[3]
R .

Because

M
[2]
R =

⎡
⎣1 1 1

0 1 0
1 1 1

⎤
⎦ and M

[3]
R =

⎡
⎣1 1 1

0 1 0
1 1 1

⎤
⎦ ,

9.4 Closures of Relations 603

it follows that

MR∗ =

⎡
⎣1 0 1

0 1 0
1 1 0

⎤
⎦ ∨
⎡
⎣1 1 1

0 1 0
1 1 1

⎤
⎦ ∨
⎡
⎣1 1 1

0 1 0
1 1 1

⎤
⎦ =
⎡
⎣1 1 1

0 1 0
1 1 1

⎤
⎦ .

▲

Theorem 3 can be used as a basis for an algorithm for computing the matrix of the
relation R∗. To find this matrix, the successive Boolean powers of MR , up to the nth power, are
computed. As each power is calculated, its join with the join of all smaller powers is formed.
When this is done with the nth power, the matrix for R∗ has been found. This procedure is
displayed as Algorithm 1.

ALGORITHM 1 A Procedure for Computing the Transitive Closure.

procedure transitive closure (MR : zero–one n× n matrix)

A := MR

B := A

for i := 2 to n

A := A MR

B := B ∨ A

return B{B is the zero–one matrix for R∗}

We can easily find the number of bit operations used by Algorithm 1 to determine the

transitive closure of a relation. Computing the Boolean powers MR , M
[2]
R , . . . ,M

[n]
R requires

thatn− 1 Boolean products ofn× n zero–one matrices be found. Each of these Boolean products
can be found using n2(2n− 1) bit operations. Hence, these products can be computed using
n2(2n− 1)(n− 1) bit operations.

To find MR∗ from the n Boolean powers of MR , n− 1 joins of zero–one matrices need
to be found. Computing each of these joins uses n2 bit operations. Hence, (n− 1)n2 bit op-
erations are used in this part of the computation. Therefore, when Algorithm 1 is used, the
matrix of the transitive closure of a relation on a set with n elements can be found using
n2(2n− 1)(n− 1)+ (n− 1)n2 = 2n3(n− 1), which isO(n4) bit operations. The remainder of
this section describes a more efficient algorithm for finding transitive closures.

Warshall’s Algorithm

Warshall’s algorithm, named after Stephen Warshall, who described this algorithm in 1960, is
an efficient method for computing the transitive closure of a relation. Algorithm 1 can find the
transitive closure of a relation on a set with n elements using 2n3(n− 1) bit operations. However,
the transitive closure can be found by Warshall’s algorithm using only 2n3 bit operations.

Remark: Warshall’s algorithm is sometimes called the Roy–Warshall algorithm, because
Bernard Roy described this algorithm in 1959.

Suppose that R is a relation on a set with n elements. Let v1, v2, . . . , vn be an arbitrary
listing of these n elements. The concept of the interior vertices of a path is used in Warshall’s
algorithm. If a, x1, x2, . . . , xm−1, b is a path, its interior vertices are x1, x2, . . . , xm−1, that
is, all the vertices of the path that occur somewhere other than as the first and last vertices in
the path. For instance, the interior vertices of a path a, c, d, f, g, h, b, j in a directed graph

604 9 / Relations

are c, d, f, g, h, and b. The interior vertices of a, c, d, a, f, b are c, d, a, and f . (Note that the
first vertex in the path is not an interior vertex unless it is visited again by the path, except as
the last vertex. Similarly, the last vertex in the path is not an interior vertex unless it was visited
previously by the path, except as the first vertex.)

Warshall’s algorithm is based on the construction of a sequence of zero–one matrices. These
matrices are W0,W1, . . . ,Wn, where W0 = MR is the zero–one matrix of this relation, and

Wk = [w
(k)
ij], where w

(k)
ij = 1 if there is a path from vi to vj such that all the interior vertices of

this path are in the set {v1, v2, . . . , vk} (the first k vertices in the list) and is 0 otherwise. (The
first and last vertices in the path may be outside the set of the first k vertices in the list.) Note
that Wn = MR∗ , because the (i, j)th entry of MR∗ is 1 if and only if there is a path from vi
to vj , with all interior vertices in the set {v1, v2, . . . , vn} (but these are the only vertices in the
directed graph). Example 8 illustrates what the matrix Wk represents.

EXAMPLE 8 Let R be the relation with directed graph shown in Figure 3. Let a, b, c, d be a listing of the
elements of the set. Find the matrices W0,W1,W2,W3, and W4. The matrix W4 is the transitive
closure of R.a b

cd

FIGURE 3

The Directed

Graph of the

Relation R.

Solution: Let v1 = a, v2 = b, v3 = c, and v4 = d . W0 is the matrix of the relation. Hence,

W0 =

⎡
⎢⎢⎣

0 0 0 1
1 0 1 0
1 0 0 1
0 0 1 0

⎤
⎥⎥⎦ .

W1 has 1 as its (i, j)th entry if there is a path from vi to vj that has only v1 = a as an interior
vertex. Note that all paths of length one can still be used because they have no interior vertices.
Also, there is now an allowable path from b to d, namely, b, a, d. Hence,

W1 =

⎡
⎢⎢⎣

0 0 0 1
1 0 1 1
1 0 0 1
0 0 1 0

⎤
⎥⎥⎦ .

W2 has 1 as its (i, j)th entry if there is a path from vi to vj that has only v1 = a and/or v2 = b

as its interior vertices, if any. Because there are no edges that have b as a terminal vertex, no
new paths are obtained when we permit b to be an interior vertex. Hence, W2 = W1.

STEPHEN WARSHALL (1935–2006) Stephen Warshall, born in New York City, went to public school in
Brooklyn. He attended Harvard University, receiving his degree in mathematics in 1956. He never received an
advanced degree, because at that time no programs were available in his areas of interest. However, he took
graduate courses at several different universities and contributed to the development of computer science and
software engineering.

After graduating from Harvard, Warshall worked at ORO (Operation Research Office), which was set
up by Johns Hopkins to do research and development for the U.S. Army. In 1958 he left ORO to take a
position at a company called Technical Operations, where he helped build a research and development labo-
ratory for military software projects. In 1961 he left Technical Operations to found Massachusetts Computer

Associates. Later, this company became part of Applied Data Research (ADR). After the merger, Warshall sat on the board of
directors of ADR and managed a variety of projects and organizations. He retired from ADR in 1982.

During his career Warshall carried out research and development in operating systems, compiler design, language design, and
operations research. In the 1971–1972 academic year he presented lectures on software engineering at French universities. There is
an interesting anecdote about his proof that the transitive closure algorithm, now known as Warshall’s algorithm, is correct. He and
a colleague at Technical Operations bet a bottle of rum on who first could determine whether this algorithm always works. Warshall
came up with his proof overnight, winning the bet and the rum, which he shared with the loser of the bet. Because Warshall did not
like sitting at a desk, he did much of his creative work in unconventional places, such as on a sailboat in the Indian Ocean or in a
Greek lemon orchard.

9.4 Closures of Relations 605

W3 has 1 as its (i, j)th entry if there is a path from vi to vj that has only v1 = a, v2 = b,
and/or v3 = c as its interior vertices, if any. We now have paths from d to a, namely, d, c, a,
and from d to d , namely, d, c, d. Hence,

W3 =

⎡
⎢⎢⎣

0 0 0 1
1 0 1 1
1 0 0 1
1 0 1 1

⎤
⎥⎥⎦ .

Finally, W4 has 1 as its (i, j)th entry if there is a path from vi to vj that has v1 = a, v2 = b,
v3 = c, and/or v4 = d as interior vertices, if any. Because these are all the vertices of the graph,
this entry is 1 if and only if there is a path from vi to vj . Hence,

W4 =

⎡
⎢⎢⎣

1 0 1 1
1 0 1 1
1 0 1 1
1 0 1 1

⎤
⎥⎥⎦ .

This last matrix, W4, is the matrix of the transitive closure. ▲

Warshall’s algorithm computes MR∗ by efficiently computing W0 = MR , W1, W2, . . . ,

Wn = MR∗ . This observation shows that we can compute Wk directly from Wk−1: There is a
path from vi to vj with no vertices other than v1, v2, . . . , vk as interior vertices if and only if
either there is a path from vi to vj with its interior vertices among the first k− 1 vertices in the
list, or there are paths from vi to vk and from vk to vj that have interior vertices only among the
first k− 1 vertices in the list. That is, either a path from vi to vj already existed before vk was
permitted as an interior vertex, or allowing vk as an interior vertex produces a path that goes
from vi to vk and then from vk to vj . These two cases are shown in Figure 4.

The first type of path exists if and only if w
[k−1]
ij = 1, and the second type of path exists if

and only if both w
[k−1]
ik and w

[k−1]
kj are 1. Hence, w

[k]
ij is 1 if and only if either w

[k−1]
ij is 1 or both

w
[k−1]
ik and w

[k−1]
kj are 1. This gives us Lemma 2.

Case 1

vi vj

All interior vertices

in {v1,v2, . . . , vk–1}

Case 2

All interior vertices

in {v1,v2, . . . , vk –1}

vi

vk

vj

FIGURE 4 Adding vk to the Set of

Allowable Interior Vertices.

606 9 / Relations

LEMMA 2 Let Wk = [w
[k]
ij] be the zero–one matrix that has a 1 in its (i, j)th position if and only if there

is a path from vi to vj with interior vertices from the set {v1, v2, . . . , vk}. Then

w
[k]
ij = w

[k−1]
ij ∨ (w

[k−1]
ik ∧ w

[k−1]
kj),

whenever i, j , and k are positive integers not exceeding n.

Lemma 2 gives us the means to compute efficiently the matrices Wk, k = 1, 2, . . . , n. We
display the pseudocode for Warshall’s algorithm, using Lemma 2, as Algorithm 2.

ALGORITHM 2 Warshall Algorithm.

procedure Warshall (MR : n× n zero–one matrix)

W : = MR

for k : = 1 to n

for i : = 1 to n

for j : = 1 to n

wij : = wij ∨ (wik ∧ wkj)

return W{W = [wij] is MR∗ }

The computational complexity of Warshall’s algorithm can easily be computed in terms of
bit operations. To find the entry w

[k]
ij from the entries w

[k−1]
ij ,w

[k−1]
ik , and w

[k−1]
kj using Lemma

2 requires two bit operations. To find all n2 entries of Wk from those of Wk−1 requires 2n2

bit operations. Because Warshall’s algorithm begins with W0 = MR and computes the se-
quence ofn zero–one matrices W1,W2, . . . ,Wn = MR∗ , the total number of bit operations used
is n · 2n2 = 2n3.

Exercises

1. Let R be the relation on the set {0, 1, 2, 3} containing
the ordered pairs (0, 1), (1, 1), (1, 2), (2, 0), (2, 2), and
(3, 0). Find the

a) reflexive closure of R. b) symmetric closure ofR.

2. Let R be the relation {(a, b) | a = b} on the set of inte-
gers. What is the reflexive closure of R?

3. Let R be the relation {(a, b) | a divides b} on the set of
integers. What is the symmetric closure of R?

4. How can the directed graph representing the reflexive clo-
sure of a relation on a finite set be constructed from the
directed graph of the relation?

In Exercises 5–7 draw the directed graph of the reflexive clo-
sure of the relations with the directed graph shown.

5.
a b

c d

6.

ba

c d

7.
a b

c d

8. How can the directed graph representing the symmetric
closure of a relation on a finite set be constructed from
the directed graph for this relation?

9. Find the directed graphs of the symmetric closures of the
relations with directed graphs shown in Exercises 5–7.

10. Find the smallest relation containing the relation in Ex-
ample 2 that is both reflexive and symmetric.

11. Find the directed graph of the smallest relation that is
both reflexive and symmetric that contains each of the
relations with directed graphs shown in Exercises 5–7.

12. Suppose that the relation R on the finite set A is rep-
resented by the matrix MR . Show that the matrix that
represents the reflexive closure of R is MR ∨ In.

9.5 Equivalence Relations 607

13. Suppose that the relation R on the finite set A is rep-
resented by the matrix MR . Show that the matrix that
represents the symmetric closure of R is MR ∨Mt

R .

14. Show that the closure of a relation R with respect to a
property P, if it exists, is the intersection of all the rela-
tions with property P that contain R.

15. When is it possible to define the “irreflexive closure”
of a relation R, that is, a relation that contains R, is ir-
reflexive, and is contained in every irreflexive relation
that contains R?

16. Determine whether these sequences of vertices are paths
in this directed graph.

a) a, b, c, e
b) b, e, c, b, e
c) a, a, b, e, d, e
d) b, c, e, d, a, a, b
e) b, c, c, b, e, d, e, d
f) a, a, b, b, c, c, b, e, d

ba c

e

d

17. Find all circuits of length three in the directed graph in
Exercise 16.

18. Determine whether there is a path in the directed graph in
Exercise 16 beginning at the first vertex given and ending
at the second vertex given.

a) a, b b) b, a c) b, b
d) a, e e) b, d f) c, d
g) d, d h) e, a i) e, c

19. Let R be the relation on the set {1, 2, 3, 4, 5} containing
the ordered pairs (1, 3), (2, 4), (3, 1), (3, 5), (4, 3), (5, 1),
(5, 2), and (5, 4). Find

a) R2. b) R3. c) R4.
d) R5. e) R6. f) R∗.

20. Let R be the relation that contains the pair (a, b) if a

and b are cities such that there is a direct non-stop airline
flight from a to b. When is (a, b) in

a) R2? b) R3? c) R∗?

21. Let R be the relation on the set of all students contain-
ing the ordered pair (a, b) if a and b are in at least one
common class and a = b. When is (a, b) in

a) R2? b) R3? c) R∗?

22. Suppose that the relation R is reflexive. Show that R∗ is
reflexive.

23. Suppose that the relation R is symmetric. Show that R∗

is symmetric.

24. Suppose that the relation R is irreflexive. Is the
relation R2 necessarily irreflexive?

25. Use Algorithm 1 to find the transitive closures of these
relations on {1, 2, 3, 4}.

a) {(1, 2), (2,1), (2,3), (3,4), (4,1)}

b) {(2, 1), (2,3), (3,1), (3,4), (4,1), (4, 3)}

c) {(1, 2), (1,3), (1,4), (2,3), (2,4), (3, 4)}

d) {(1, 1), (1,4), (2,1), (2,3), (3,1), (3, 2), (3,4), (4, 2)}

26. Use Algorithm 1 to find the transitive closures of these
relations on {a, b, c, d, e}.

a) {(a, c), (b, d), (c, a), (d, b), (e, d)}

b) {(b, c), (b, e), (c, e), (d, a), (e, b), (e, c)}

c) {(a, b), (a, c), (a, e), (b, a), (b,c), (c,a), (c,b), (d,a),

(e, d)}

d) {(a, e), (b, a), (b, d), (c,d), (d,a), (d,c), (e,a), (e,b),

(e, c), (e, e)}

27. Use Warshall’s algorithm to find the transitive closures
of the relations in Exercise 25.

28. Use Warshall’s algorithm to find the transitive closures
of the relations in Exercise 26.

29. Find the smallest relation containing the relation
{(1, 2), (1, 4), (3, 3), (4, 1)} that is

a) reflexive and transitive.

b) symmetric and transitive.

c) reflexive, symmetric, and transitive.

30. Finish the proof of the case when a = b in Lemma 1.

31. Algorithms have been devised that useO(n2.8) bit opera-
tions to compute the Boolean product of two n× n zero–
one matrices.Assuming that these algorithms can be used,
give big-O estimates for the number of bit operations us-
ingAlgorithm 1 and using Warshall’s algorithm to find the
transitive closure of a relation on a set with n elements.

∗32. Devise an algorithm using the concept of interior vertices
in a path to find the length of the shortest path between
two vertices in a directed graph, if such a path exists.

33. Adapt Algorithm 1 to find the reflexive closure of the
transitive closure of a relation on a set with n elements.

34. Adapt Warshall’s algorithm to find the reflexive closure of
the transitive closure of a relation on a set withn elements.

35. Show that the closure with respect to the property P of
the relation R = {(0, 0), (0, 1), (1, 1), (2, 2)} on the set
{0, 1, 2} does not exist if P is the property

a) “is not reflexive.”

b) “has an odd number of elements.”

9.5 Equivalence Relations

Introduction

In some programming languages the names of variables can contain an unlimited number of
characters. However, there is a limit on the number of characters that are checked when a
compiler determines whether two variables are equal. For instance, in traditional C, only the
first eight characters of a variable name are checked by the compiler. (These characters are

608 9 / Relations

uppercase or lowercase letters, digits, or underscores.) Consequently, the compiler considers
strings longer than eight characters that agree in their first eight characters the same. Let R be
the relation on the set of strings of characters such that sRt , where s and t are two strings, if s
and t are at least eight characters long and the first eight characters of s and t agree, or s = t . It
is easy to see that R is reflexive, symmetric, and transitive. Moreover, R divides the set of all
strings into classes, where all strings in a particular class are considered the same by a compiler
for traditional C.

The integers a and b are related by the “congruence modulo 4” relation when 4
divides a− b. We will show later that this relation is reflexive, symmetric, and transitive. It
is not hard to see that a is related to b if and only if a and b have the same remainder when
divided by 4. It follows that this relation splits the set of integers into four different classes.
When we care only what remainder an integer leaves when it is divided by 4, we need only
know which class it is in, not its particular value.

These two relations, R and congruence modulo 4, are examples of equivalence relations,
namely, relations that are reflexive, symmetric, and transitive. In this section we will show that
such relations split sets into disjoint classes of equivalent elements. Equivalence relations arise
whenever we care only whether an element of a set is in a certain class of elements, instead of
caring about its particular identity.

Equivalence Relations

In this section we will study relations with a particular combination of properties that allows
them to be used to relate objects that are similar in some way.

DEFINITION 1 A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and
transitive.

Equivalence relations are

important in every branch

of mathematics!

Equivalence relations are important throughout mathematics and computer science. One
reason for this is that in an equivalence relation, when two elements are related it makes sense
to say they are equivalent.

DEFINITION 2 Two elements a and b that are related by an equivalence relation are called equivalent. The
notation a ∼ b is often used to denote that a and b are equivalent elements with respect to a
particular equivalence relation.

For the notion of equivalent elements to make sense, every element should be equivalent to
itself, as the reflexive property guarantees for an equivalence relation. It makes sense to say
that a and b are related (not just that a is related to b) by an equivalence relation, because
when a is related to b, by the symmetric property, b is related to a. Furthermore, because an
equivalence relation is transitive, if a and b are equivalent and b and c are equivalent, it follows
that a and c are equivalent.

Examples 1–5 illustrate the notion of an equivalence relation.

EXAMPLE 1 Let R be the relation on the set of integers such that aRb if and only if a = b or a = −b. In
Section 9.1 we showed that R is reflexive, symmetric, and transitive. It follows that R is an
equivalence relation. ▲

EXAMPLE 2 Let R be the relation on the set of real numbers such that aRb if and only if a − b is an integer.
Is R an equivalence relation?

9.5 Equivalence Relations 609

Solution: Because a− a = 0 is an integer for all real numbers a, aRa for all real numbers a.
Hence, R is reflexive. Now suppose that aRb. Then a− b is an integer, so b− a is also an
integer. Hence, bRa. It follows that R is symmetric. If aRb and bRc, then a− b and b− c
are integers. Therefore, a− c = (a− b)+ (b− c) is also an integer. Hence, aRc. Thus, R is
transitive. Consequently, R is an equivalence relation. ▲

One of the most widely used equivalence relations is congruence modulom, wherem is an
integer greater than 1.

EXAMPLE 3 Congruence Modulo m Let m be an integer with m > 1. Show that the relation

R = {(a, b) | a ≡ b (mod m)}

is an equivalence relation on the set of integers.

Solution: Recall from Section 4.1 that a ≡ b (mod m) if and only if m divides a − b. Note
that a − a = 0 is divisible by m, because 0 = 0 ·m. Hence, a ≡ a (mod m), so congruence
modulo m is reflexive. Now suppose that a ≡ b (mod m). Then a − b is divisible by m, so
a − b = km, where k is an integer. It follows that b − a = (−k)m, so b ≡ a (mod m). Hence,
congruence modulo m is symmetric. Next, suppose that a ≡ b (mod m) and b ≡ c (mod m).
Thenm divides both a − b and b − c. Therefore, there are integers k and l with a − b = km and
b − c = lm. Adding these two equations shows that a − c = (a − b)+ (b − c) = km+ lm =
(k + l)m. Thus, a ≡ c (mod m). Therefore, congruence modulo m is transitive. It follows that
congruence modulo m is an equivalence relation. ▲

EXAMPLE 4 Suppose that R is the relation on the set of strings of English letters such that aRb if and only
if l(a) = l(b), where l(x) is the length of the string x. Is R an equivalence relation?

Solution: Because l(a) = l(a), it follows that aRa whenever a is a string, so that R is reflex-
ive. Next, suppose that aRb, so that l(a) = l(b). Then bRa, because l(b) = l(a). Hence, R
is symmetric. Finally, suppose that aRb and bRc. Then l(a) = l(b) and l(b) = l(c). Hence,
l(a) = l(c), so aRc. Consequently, R is transitive. Because R is reflexive, symmetric, and
transitive, it is an equivalence relation. ▲

EXAMPLE 5 Let n be a positive integer and S a set of strings. Suppose that Rn is the relation on S such
that sRnt if and only if s = t , or both s and t have at least n characters and the first n characters
of s and t are the same. That is, a string of fewer than n characters is related only to itself; a
string s with at least n characters is related to a string t if and only if t has at least n characters
and t begins with the n characters at the start of s. For example, let n = 3 and let S be the set
of all bit strings. Then sR3 t either when s = t or both s and t are bit strings of length 3 or more
that begin with the same three bits. For instance, 01R3 01 and 00111R3 00101, but 01 R3010
and 01011 R3 01110.

Show that for every set S of strings and every positive integer n, Rn is an equivalence
relation on S.

Solution: The relation Rn is reflexive because s = s, so that sRn s whenever s is a string in S.
If sRn t , then either s = t or s and t are both at least n characters long that begin with the
same n characters. This means that tRn s. We conclude that Rn is symmetric.

Now suppose that sRn t and tRnu. Then either s = t or s and t are at least n characters
long and s and t begin with the same n characters, and either t = u or t and u are at least n
characters long and t and u begin with the same n characters. From this, we can deduce that
either s = u or both s and u are n characters long and s and u begin with the same n characters
(because in this case we know that s, t , and u are all at least n characters long and both s and u
begin with the same n characters as t does). Consequently, Rn is transitive. It follows that Rn is
an equivalence relation. ▲

610 9 / Relations

In Examples 6 and 7 we look at two relations that are not equivalence relations.

EXAMPLE 6 Show that the “divides” relation is the set of positive integers in not an equivalence relation.

Solution: By Examples 9 and 15 in Section 9.1, we know that the “divides” relation is reflex-
ive and transitive. However, by Example 12 in Section 9.1, we know that this relation is not
symmetric (for instance, 2 | 4 but 4 | 2). We conclude that the “divides” relation on the set of
positive integers is not an equivalence relation. ▲

EXAMPLE 7 Let R be the relation on the set of real numbers such that xRy if and only if x and y are real
numbers that differ by less than 1, that is |x − y| < 1. Show thatR is not an equivalence relation.

Solution: R is reflexive because |x − x| = 0 < 1 whenever x ∈ R. R is symmetric, for if xRy,
where x and y are real numbers, then |x − y| < 1, which tells us that |y − x| = |x − y| < 1, so
that yRx. However, R is not an equivalence relation because it is not transitive. Take x = 2.8,
y = 1.9, and z = 1.1, so that |x − y| = |2.8− 1.9| = 0.9 < 1, |y − z| = |1.9− 1.1| =
0.8 < 1, but |x − z| = |2.8− 1.1| = 1.7 > 1. That is, 2.8R 1.9, 1.9R 1.1, but 2.8 R 1.1. ▲

Equivalence Classes

Let A be the set of all students in your school who graduated from high school. Consider the
relation R on A that consists of all pairs (x, y), where x and y graduated from the same high
school. Given a student x, we can form the set of all students equivalent to x with respect to R.
This set consists of all students who graduated from the same high school as x did. This subset
of A is called an equivalence class of the relation.

DEFINITION 3 Let R be an equivalence relation on a set A. The set of all elements that are related to an
element a of A is called the equivalence class of a. The equivalence class of a with respect
to R is denoted by [a]R . When only one relation is under consideration, we can delete the
subscript R and write [a] for this equivalence class.

In other words, if R is an equivalence relation on a set A, the equivalence class of the
element a is

[a]R = {s | (a, s) ∈ R}.

If b ∈ [a]R , then b is called a representative of this equivalence class. Any element of a class
can be used as a representative of this class. That is, there is nothing special about the particular
element chosen as the representative of the class.

EXAMPLE 8 What is the equivalence class of an integer for the equivalence relation of Example 1?

Solution: Because an integer is equivalent to itself and its negative in this equivalence relation,
it follows that [a] = {−a, a}. This set contains two distinct integers unless a = 0. For instance,
[7] = {−7, 7}, [−5] = {−5, 5}, and [0] = {0}. ▲

EXAMPLE 9 What are the equivalence classes of 0 and 1 for congruence modulo 4?

Solution: The equivalence class of 0 contains all integers a such that a ≡ 0 (mod 4). The integers
in this class are those divisible by 4. Hence, the equivalence class of 0 for this relation is

[0] = {. . . ,−8,−4, 0, 4, 8, . . . }.

9.5 Equivalence Relations 611

The equivalence class of 1 contains all the integers a such that a ≡ 1 (mod 4). The integers
in this class are those that have a remainder of 1 when divided by 4. Hence, the equivalence
class of 1 for this relation is

[1] = {. . . ,−7,−3, 1, 5, 9, . . . }. ▲

In Example 9 the equivalence classes of 0 and 1 with respect to congruence modulo 4
were found. Example 9 can easily be generalized, replacing 4 with any positive integer m.
The equivalence classes of the relation congruence modulo m are called the congruence

classes modulo m. The congruence class of an integer a modulo m is denoted by [a]m, so
[a]m = {. . . , a − 2m, a −m, a, a +m, a + 2m, . . .}. For instance, from Example 9 it follows
that [0]4 = {. . . ,−8,−4, 0, 4, 8, . . . } and [1]4 = {. . . ,−7,−3, 1, 5, 9, . . . }.

EXAMPLE 10 What is the equivalence class of the string 0111 with respect to the equivalence relationR3 from
Example 5 on the set of all bit strings? (Recall that sR3 t if and only if s and t are bit strings
with s = t or s and t are strings of at least three bits that start with the same three bits.)

Solution: The bit strings equivalent to 0111 are the bit strings with at least three bits that begin
with 011. These are the bit strings 011, 0110, 0111, 01100, 01101, 01110, 01111, and so on.
Consequently,

[011]R3 = {011, 0110, 0111, 01100, 01101, 01110, 01111, . . .}. ▲

EXAMPLE 11 Identifiers in the C Programming Language In the C programming language, an identifier

is the name of a variable, a function, or another type of entity. Each identifier is a nonempty
string of characters where each character is a lowercase or an uppercase English letter, a digit,
or an underscore, and the first character is a lowercase or an uppercase English letter. Identifiers
can be any length. This allows developers to use as many characters as they want to name an
entity, such as a variable. However, for compilers for some versions of C, there is a limit on the
number of characters checked when two names are compared to see whether they refer to the
same thing. For example, Standard C compilers consider two identifiers the same when they
agree in their first 31 characters. Consequently, developers must be careful not to use identifiers
with the same initial 31 characters for different things. We see that two identifiers are considered
the same when they are related by the relation R31 in Example 5. Using Example 5, we know
that R31, on the set of all identifiers in Standard C, is an equivalence relation.

What are the equivalence classes of each of the identifiers Number_of_tropical_
storms, Number_of_named_tropical_storms, and Number_of_named_tropical_storms_in_the_
Atlantic_in_2005?

Solution: Note that when an identifier is less than 31 characters long, by the definition of R31,
its equivalence class contains only itself. Because the identifier Number_of_tropical_storms is
25 characters long, its equivalence class contains exactly one element, namely, itself.

The identifier Number_of_named_tropical_storms is exactly 31 characters long. An identi-
fier is equivalent to it when it starts with these same 31 characters. Consequently, every identifier
at least 31 characters long that starts with Number_of_named_tropical_storms is equivalent to
this identifier. It follows that the equivalence class of Number_of_named_tropical_storms is the
set of all identifiers that begin with the 31 characters Number_of_named_tropical_storms.

An identifier is equivalent to the Number_of_named_tropical_storms_in_the_Atlantic_in_
2005 if and only if it begins with its first 31 characters. Because these characters
are Number_of_named_tropical_storms, we see that an identifier is equivalent to Num-
ber_of_named_tropical_storms_in_the_Atlantic_in_2005 if and only if it is equivalent to Num-
ber_of_named_tropical_storms. It follows that these last two identifiers have the same equiva-
lence class. ▲

612 9 / Relations

Equivalence Classes and Partitions

Let A be the set of students at your school who are majoring in exactly one subject, and let R
be the relation on A consisting of pairs (x, y), where x and y are students with the same major.
Then R is an equivalence relation, as the reader should verify. We can see that R splits all
students in A into a collection of disjoint subsets, where each subset contains students with
a specified major. For instance, one subset contains all students majoring (just) in computer
science, and a second subset contains all students majoring in history. Furthermore, these sub-
sets are equivalence classes of R. This example illustrates how the equivalence classes of an
equivalence relation partition a set into disjoint, nonempty subsets. We will make these notions
more precise in the following discussion.

Let R be a relation on the set A. Theorem 1 shows that the equivalence classes of two
elements of A are either identical or disjoint.

THEOREM 1 Let R be an equivalence relation on a set A. These statements for elements a and b of A are
equivalent:

(i) aRb (ii) [a] = [b] (iii) [a] ∩ [b] = ∅

Proof: We first show that (i) implies (ii). Assume that aRb. We will prove that [a] = [b] by
showing [a] ⊆ [b] and [b] ⊆ [a]. Suppose c ∈ [a]. Then aRc. Because aRb andR is symmetric,
we know that bRa. Furthermore, because R is transitive and bRa and aRc, it follows that bRc.
Hence, c ∈ [b]. This shows that [a] ⊆ [b]. The proof that [b] ⊆ [a] is similar; it is left as an
exercise for the reader.

Second, we will show that (ii) implies (iii). Assume that [a] = [b]. It follows that
[a] ∩ [b] = ∅ because [a] is nonempty (because a ∈ [a] because R is reflexive).

Next, we will show that (iii) implies (i). Suppose that [a] ∩ [b] = ∅. Then there is an
element c with c ∈ [a] and c ∈ [b]. In other words, aRc and bRc. By the symmetric
property, cRb. Then by transitivity, because aRc and cRb, we have aRb.

Because (i) implies (ii), (ii) implies (iii), and (iii) implies (i), the three statements, (i), (ii),
and (iii), are equivalent.

We are now in a position to show how an equivalence relation partitions a set. Let R be an
equivalence relation on a set A. The union of the equivalence classes of R is all of A, because
an element a of A is in its own equivalence class, namely, [a]R . In other words,

a∈A

[a]R = A.

In addition, from Theorem 1, it follows that these equivalence classes are either equal or disjoint,
so

[a]R ∩ [b]R = ∅,

when [a]R = [b]R .
These two observations show that the equivalence classes form a partition of A, becauseRecall that an index set is

a set whose members

label, or index, the

elements of a set.

they splitA into disjoint subsets. More precisely, a partition of a set S is a collection of disjoint
nonempty subsets of S that have S as their union. In other words, the collection of subsets Ai ,
i ∈ I (where I is an index set) forms a partition of S if and only if

Ai = ∅ for i ∈ I,

Ai ∩ Aj = ∅ when i = j,

9.5 Equivalence Relations 613

A1

A7

A4

A2

A3

A6

A5

A9

A8

FIGURE 1 A Partition of a Set.

and

i∈I

Ai = S.

(Here the notation

i∈I Ai represents the union of the sets Ai for all i ∈ I .) Figure 1 illustrates

the concept of a partition of a set.

EXAMPLE 12 Suppose that S = {1, 2, 3, 4, 5, 6}. The collection of sets A1 = {1, 2, 3}, A2 = {4, 5}, and
A3 = {6} forms a partition of S, because these sets are disjoint and their union is S. ▲

We have seen that the equivalence classes of an equivalence relation on a set form a partition
of the set. The subsets in this partition are the equivalence classes. Conversely, every partition
of a set can be used to form an equivalence relation. Two elements are equivalent with respect
to this relation if and only if they are in the same subset of the partition.

To see this, assume that {Ai | i ∈ I } is a partition on S. LetR be the relation on S consisting
of the pairs (x, y), where x and y belong to the same subset Ai in the partition. To show that R
is an equivalence relation we must show that R is reflexive, symmetric, and transitive.

We see that (a, a) ∈ R for every a ∈ S, because a is in the same subset as itself. Hence, R
is reflexive. If (a, b) ∈ R, then b and a are in the same subset of the partition, so that (b, a) ∈ R
as well. Hence, R is symmetric. If (a, b) ∈ R and (b, c) ∈ R, then a and b are in the same
subsetX in the partition, and b and c are in the same subsetY of the partition. Because the subsets
of the partition are disjoint and b belongs to X and Y , it follows that X = Y . Consequently, a
and c belong to the same subset of the partition, so (a, c) ∈ R. Thus, R is transitive.

It follows that R is an equivalence relation. The equivalence classes of R consist of subsets
of S containing related elements, and by the definition ofR, these are the subsets of the partition.
Theorem 2 summarizes the connections we have established between equivalence relations and
partitions.

THEOREM 2 LetR be an equivalence relation on a set S. Then the equivalence classes ofR form a partition
of S. Conversely, given a partition {Ai | i ∈ I } of the set S, there is an equivalence relation
R that has the sets Ai , i ∈ I , as its equivalence classes.

Example 13 shows how to construct an equivalence relation from a partition.

EXAMPLE 13 List the ordered pairs in the equivalence relation R produced by the partition A1 = {1, 2, 3},
A2 = {4, 5}, and A3 = {6} of S = {1, 2, 3, 4, 5, 6}, given in Example 12.

614 9 / Relations

Solution: The subsets in the partition are the equivalence classes ofR. The pair (a, b) ∈ R if and
only if a and b are in the same subset of the partition. The pairs (1, 1), (1, 2), (1, 3), (2, 1), (2, 2),
(2, 3), (3, 1), (3, 2), and (3, 3) belong to R because A1 = {1, 2, 3} is an equivalence class; the
pairs (4, 4), (4, 5), (5, 4), and (5, 5) belong to R because A2 = {4, 5} is an equivalence class;
and finally the pair (6, 6) belongs to R because {6} is an equivalence class. No pair other than
those listed belongs to R. ▲

The congruence classes modulo m provide a useful illustration of Theorem 2. There
are m different congruence classes modulo m, corresponding to the m different remainders
possible when an integer is divided by m. These m congruence classes are denoted by
[0]m, [1]m, . . . , [m− 1]m. They form a partition of the set of integers.

EXAMPLE 14 What are the sets in the partition of the integers arising from congruence modulo 4?

Solution: There are four congruence classes, corresponding to [0]4, [1]4, [2]4, and [3]4. They
are the sets

[0]4 = {. . . ,−8,−4, 0, 4, 8, . . . },

[1]4 = {. . . ,−7,−3, 1, 5, 9, . . . },

[2]4 = {. . . ,−6,−2, 2, 6, 10, . . . },

[3]4 = {. . . ,−5,−1, 3, 7, 11, . . . }.

These congruence classes are disjoint, and every integer is in exactly one of them. In other
words, as Theorem 2 says, these congruence classes form a partition. ▲

We now provide an example of a partition of the set of all strings arising from an equivalence
relation on this set.

EXAMPLE 15 LetR3 be the relation from Example 5. What are the sets in the partition of the set of all bit strings
arising from the relation R3 on the set of all bit strings? (Recall that sR3 t , where s and t are bit
strings, if s = t or s and t are bit strings with at least three bits that agree in their first three bits.)

Solution: Note that every bit string of length less than three is equivalent only to itself.
Hence [λ]R3 = {λ}, [0]R3 = {0}, [1]R3 = {1}, [00]R3 = {00}, [01]R3 = {01}, [10]R3 = {10}, and
[11]R3 = {11}. Note that every bit string of length three or more is equivalent to one of the eight
bit strings 000, 001, 010, 011, 100, 101, 110, and 111. We have

[000]R3 = {000, 0000, 0001, 00000, 00001, 00010, 00011, . . .},

[001]R3 = {001, 0010, 0011, 00100, 00101, 00110, 00111, . . .},

[010]R3 = {010, 0100, 0101, 01000, 01001, 01010, 01011, . . .},

[011]R3 = {011, 0110, 0111, 01100, 01101, 01110, 01111, . . .},

[100]R3 = {100, 1000, 1001, 10000, 10001, 10010, 10011, . . .},

[101]R3 = {101, 1010, 1011, 10100, 10101, 10110, 10111, . . .},

[110]R3 = {110, 1100, 1101, 11000, 11001, 11010, 11011, . . .},

[111]R3 = {111, 1110, 1111, 11100, 11101, 11110, 11111, . . .}.

These 15 equivalence classes are disjoint and every bit string is in exactly one of them. As
Theorem 2 tells us, these equivalence classes partition the set of all bit strings. ▲

9.5 Equivalence Relations 615

Exercises

1. Which of these relations on {0, 1, 2, 3} are equivalence
relations? Determine the properties of an equivalence re-
lation that the others lack.

a) {(0, 0), (1, 1), (2, 2), (3, 3)}

b) {(0, 0), (0, 2), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)}

c) {(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}

d) {(0, 0), (1, 1), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2),
(3, 3)}

e) {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0),
(2, 2), (3, 3)}

2. Which of these relations on the set of all people are equiv-
alence relations? Determine the properties of an equiva-
lence relation that the others lack.

a) {(a, b) | a and b are the same age}

b) {(a, b) | a and b have the same parents}

c) {(a, b) | a and b share a common parent}

d) {(a, b) | a and b have met}

e) {(a, b) | a and b speak a common language}

3. Which of these relations on the set of all functions from Z

to Z are equivalence relations? Determine the properties
of an equivalence relation that the others lack.

a) {(f, g) | f (1) = g(1)}

b) {(f, g) | f (0) = g(0) or f (1) = g(1)}

c) {(f, g) | f (x) − g(x) = 1 for all x ∈ Z}

d) {(f, g) | for some C ∈ Z, for all x ∈ Z, f (x) −

g(x) = C}

e) {(f, g) | f (0) = g(1) and f (1) = g(0)}

4. Define three equivalence relations on the set of students
in your discrete mathematics class different from the re-
lations discussed in the text. Determine the equivalence
classes for each of these equivalence relations.

5. Define three equivalence relations on the set of buildings
on a college campus. Determine the equivalence classes
for each of these equivalence relations.

6. Define three equivalence relations on the set of classes of-
fered at your school. Determine the equivalence classes
for each of these equivalence relations.

7. Show that the relation of logical equivalence on the set
of all compound propositions is an equivalence relation.
What are the equivalence classes of F and of T?

8. Let R be the relation on the set of all sets of real numbers
such that S R T if and only if S and T have the same
cardinality. Show that R is an equivalence relation. What
are the equivalence classes of the sets {0, 1, 2} and Z?

9. Suppose thatA is a nonempty set, and f is a function that
hasA as its domain. LetR be the relation onA consisting
of all ordered pairs (x, y) such that f (x) = f (y).

a) Show that R is an equivalence relation on A.

b) What are the equivalence classes of R?

10. Suppose thatA is a nonempty set andR is an equivalence
relation onA. Show that there is a function f withA as its
domain such that (x, y) ∈ R if and only if f (x) = f (y).

11. Show that the relationR consisting of all pairs (x, y) such
that x and y are bit strings of length three or more that
agree in their first three bits is an equivalence relation on
the set of all bit strings of length three or more.

12. Show that the relationR consisting of all pairs (x, y) such
that x and y are bit strings of length three or more that
agree except perhaps in their first three bits is an equiva-
lence relation on the set of all bit strings of length three
or more.

13. Show that the relationR consisting of all pairs (x, y) such
that x and y are bit strings that agree in their first and third
bits is an equivalence relation on the set of all bit strings
of length three or more.

14. Let R be the relation consisting of all pairs (x, y) such
that x and y are strings of uppercase and lowercase En-
glish letters with the property that for every positive in-
teger n, the nth characters in x and y are the same letter,
either uppercase or lowercase. Show that R is an equiva-
lence relation.

15. Let R be the relation on the set of ordered pairs of posi-
tive integers such that ((a, b), (c, d)) ∈ R if and only if
a + d = b + c. Show that R is an equivalence relation.

16. Let R be the relation on the set of ordered pairs of posi-
tive integers such that ((a, b), (c, d)) ∈ R if and only if
ad = bc. Show that R is an equivalence relation.

17. (Requires calculus)

a) Show that the relationR on the set of all differentiable
functions from R to R consisting of all pairs (f, g)
such that f (x) = g (x) for all real numbers x is an
equivalence relation.

b) Which functions are in the same equivalence class as
the function f (x) = x2?

18. (Requires calculus)

a) Let n be a positive integer. Show that the relation
R on the set of all polynomials with real-valued
coefficients consisting of all pairs (f, g) such that
f (n)(x) = g(n)(x) is an equivalence relation. [Here
f (n)(x) is the nth derivative of f (x).]

b) Which functions are in the same equivalence class as
the function f (x) = x4, where n = 3?

19. Let R be the relation on the set of all URLs (or Web ad-
dresses) such that x R y if and only if the Web page at
x is the same as the Web page at y. Show that R is an
equivalence relation.

20. Let R be the relation on the set of all people who have
visited a particular Web page such that x R y if and only
if person x and person y have followed the same set of
links starting at this Web page (going from Web page to
Web page until they stop using the Web). Show that R is
an equivalence relation.

616 9 / Relations

In Exercises 21–23 determine whether the relation with the
directed graph shown is an equivalence relation.

21.

a b

c d

22.

a b

d c

23.

a b

cd

24. Determine whether the relations represented by these
zero–one matrices are equivalence relations.

a)

⎡
⎣1 1 1

0 1 1
1 1 1

⎤
⎦ b)

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎤
⎥⎥⎦ c)

⎡
⎢⎢⎣

1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 1

⎤
⎥⎥⎦

25. Show that the relation R on the set of all bit strings such
that s R t if and only if s and t contain the same number
of 1s is an equivalence relation.

26. What are the equivalence classes of the equivalence rela-
tions in Exercise 1?

27. What are the equivalence classes of the equivalence rela-
tions in Exercise 2?

28. What are the equivalence classes of the equivalence rela-
tions in Exercise 3?

29. What is the equivalence class of the bit string 011 for the
equivalence relation in Exercise 25?

30. What are the equivalence classes of these bit strings for
the equivalence relation in Exercise 11?

a) 010 b) 1011 c) 11111 d) 01010101

31. What are the equivalence classes of the bit strings
in Exercise 30 for the equivalence relation from
Exercise 12?

32. What are the equivalence classes of the bit strings
in Exercise 30 for the equivalence relation from
Exercise 13?

33. What are the equivalence classes of the bit strings in Ex-
ercise 30 for the equivalence relation R4 from Exam-
ple 5 on the set of all bit strings? (Recall that bit strings s
and t are equivalent underR4 if and only if they are equal
or they are both at least four bits long and agree in their
first four bits.)

34. What are the equivalence classes of the bit strings in Ex-
ercise 30 for the equivalence relationR5 from Example 5
on the set of all bit strings? (Recall that bit strings s and
t are equivalent under R5 if and only if they are equal or
they are both at least five bits long and agree in their first
five bits.)

35. What is the congruence class [n]5 (that is, the equiva-
lence class of n with respect to congruence modulo 5)
when n is

a) 2? b) 3? c) 6? d) −3?

36. What is the congruence class [4]m when m is

a) 2? b) 3? c) 6? d) 8?

37. Give a description of each of the congruence classes
modulo 6.

38. What is the equivalence class of each of these strings with
respect to the equivalence relation in Exercise 14?

a) No b) Yes c) Help

39. a) What is the equivalence class of (1, 2)with respect to
the equivalence relation in Exercise 15?

b) Give an interpretation of the equivalence classes for
the equivalence relationR in Exercise 15. [Hint: Look
at the difference a − b corresponding to (a, b).]

40. a) What is the equivalence class of (1, 2) with respect
to the equivalence relation in Exercise 16?

b) Give an interpretation of the equivalence classes for
the equivalence relationR in Exercise 16. [Hint: Look
at the ratio a/b corresponding to (a, b).]

41. Which of these collections of subsets are partitions of
{1, 2, 3, 4, 5, 6}?

a) {1, 2}, {2, 3, 4}, {4, 5, 6} b) {1}, {2, 3, 6}, {4}, {5}
c) {2, 4, 6}, {1, 3, 5} d) {1, 4, 5}, {2, 6}

42. Which of these collections of subsets are partitions of
{−3,−2,−1, 0, 1, 2, 3}?

a) {−3,−1, 1, 3}, {−2, 0, 2}
b) {−3,−2,−1, 0}, {0, 1, 2, 3}
c) {−3, 3}, {−2, 2}, {−1, 1}, {0}
d) {−3,−2, 2, 3}, {−1, 1}

43. Which of these collections of subsets are partitions of the
set of bit strings of length 8?

a) the set of bit strings that begin with 1, the set of bit
strings that begin with 00, and the set of bit strings
that begin with 01

b) the set of bit strings that contain the string 00, the set
of bit strings that contain the string 01, the set of bit
strings that contain the string 10, and the set of bit
strings that contain the string 11

c) the set of bit strings that end with 00, the set of bit
strings that end with 01, the set of bit strings that end
with 10, and the set of bit strings that end with 11

d) the set of bit strings that end with 111, the set of bit
strings that end with 011, and the set of bit strings that
end with 00

e) the set of bit strings that contain 3k ones for some
nonnegative integer k; the set of bit strings that con-
tain 3k + 1 ones for some nonnegative integer k; and
the set of bit strings that contain 3k + 2 ones for some
nonnegative integer k.

44. Which of these collections of subsets are partitions of the
set of integers?

a) the set of even integers and the set of odd integers
b) the set of positive integers and the set of negative in-

tegers

9.5 Equivalence Relations 617

c) the set of integers divisible by 3, the set of integers
leaving a remainder of 1 when divided by 3, and the
set of integers leaving a remainder of 2 when divided
by 3

d) the set of integers less than −100, the set of integers
with absolute value not exceeding 100, and the set of
integers greater than 100

e) the set of integers not divisible by 3, the set of even
integers, and the set of integers that leave a remainder
of 3 when divided by 6

45. Which of these are partitions of the set Z× Z of ordered
pairs of integers?

a) the set of pairs (x, y), where x or y is odd; the set
of pairs (x, y), where x is even; and the set of pairs
(x, y), where y is even

b) the set of pairs (x, y), where both x and y are odd;
the set of pairs (x, y), where exactly one of x and y
is odd; and the set of pairs (x, y), where both x and y
are even

c) the set of pairs (x, y), where x is positive; the set of
pairs (x, y), where y is positive; and the set of pairs
(x, y), where both x and y are negative

d) the set of pairs (x, y), where 3 | x and 3 | y; the set
of pairs (x, y), where 3 | x and 3 | y; the set of pairs
(x, y), where 3 | x and 3 | y; and the set of pairs
(x, y), where 3 | x and 3 | y

e) the set of pairs (x, y), where x > 0 and y > 0; the
set of pairs (x, y), where x > 0 and y ≤ 0; the set of
pairs (x, y), where x ≤ 0 and y > 0; and the set of
pairs (x, y), where x ≤ 0 and y ≤ 0

f) the set of pairs (x, y), where x = 0 and y = 0; the set
of pairs (x, y), where x = 0 and y = 0; and the set of
pairs (x, y), where x = 0 and y = 0

46. Which of these are partitions of the set of real numbers?

a) the negative real numbers, {0}, the positive real
numbers

b) the set of irrational numbers, the set of rational
numbers

c) the set of intervals [k, k + 1], k = . . . ,−2,−1, 0,
1, 2, . . .

d) the set of intervals (k, k + 1), k = . . . ,−2,−1, 0,
1, 2, . . .

e) the set of intervals (k, k + 1], k = . . . ,−2,−1, 0,
1, 2, . . .

f) the sets {x + n | n ∈ Z} for all x ∈ [0, 1)

47. List the ordered pairs in the equivalence relations pro-
duced by these partitions of {0, 1, 2, 3, 4, 5}.

a) {0}, {1, 2}, {3, 4, 5}

b) {0, 1}, {2, 3}, {4, 5}

c) {0, 1, 2}, {3, 4, 5}

d) {0}, {1}, {2}, {3}, {4}, {5}

48. List the ordered pairs in the equivalence relations pro-
duced by these partitions of {a, b, c, d, e, f, g}.

a) {a, b}, {c, d}, {e, f, g}

b) {a}, {b}, {c, d}, {e, f }, {g}

c) {a, b, c, d}, {e, f, g}

d) {a, c, e, g}, {b, d}, {f }

A partition P1 is called a refinement of the partition P2 if
every set in P1 is a subset of one of the sets in P2.

49. Show that the partition formed from congruence classes
modulo 6 is a refinement of the partition formed from
congruence classes modulo 3.

50. Show that the partition of the set of people living in the
United States consisting of subsets of people living in the
same county (or parish) and same state is a refinement of
the partition consisting of subsets of people living in the
same state.

51. Show that the partition of the set of bit strings of length 16
formed by equivalence classes of bit strings that agree on
the last eight bits is a refinement of the partition formed
from the equivalence classes of bit strings that agree on
the last four bits.

In Exercises 52 and 53, Rn refers to the family of equivalence
relations defined in Example 5. Recall that s Rn t , where s
and t are two strings if s = t or s and t are strings with at least
n characters that agree in their first n characters.

52. Show that the partition of the set of all bit strings formed
by equivalence classes of bit strings with respect to the
equivalence relation R4 is a refinement of the partition
formed by equivalence classes of bit strings with respect
to the equivalence relation R3.

53. Show that the partition of the set of all identifiers in C
formed by the equivalence classes of identifiers with re-
spect to the equivalence relation R31 is a refinement of
the partition formed by equivalence classes of identifiers
with respect to the equivalence relation R8. (Compilers
for “old” C consider identifiers the same when their names
agree in their first eight characters, while compilers in
standard C consider identifiers the same when their names
agree in their first 31 characters.)

54. Suppose that R1 and R2 are equivalence relations on a
set A. Let P1 and P2 be the partitions that correspond to
R1 and R2, respectively. Show that R1 ⊆ R2 if and only
if P1 is a refinement of P2.

55. Find the smallest equivalence relation on the set
{a, b, c, d, e} containing the relation {(a, b), (a, c),

(d, e)}.

56. Suppose that R1 and R2 are equivalence relations on the
set S. Determine whether each of these combinations
of R1 and R2 must be an equivalence relation.

a) R1 ∪ R2 b) R1 ∩ R2 c) R1 ⊕ R2

57. Consider the equivalence relation from Example 2,
namely, R = {(x, y) | x − y is an integer}.

a) What is the equivalence class of 1 for this equivalence
relation?

b) What is the equivalence class of 1/2 for this equiva-
lence relation?

618 9 / Relations

∗58. Each bead on a bracelet with three beads is either red,
white, or blue, as illustrated in the figure shown.

Bead 1

Red

Bead 3

Blue

Bead 2

White

Define the relation R between bracelets as: (B1, B2),
where B1 and B2 are bracelets, belongs to R if and only
if B2 can be obtained from B1 by rotating it or rotating it
and then reflecting it.

a) Show that R is an equivalence relation.

b) What are the equivalence classes of R?
∗59. LetR be the relation on the set of all colorings of the 2× 2

checkerboard where each of the four squares is colored
either red or blue so that (C1, C2), where C1 and C2 are
2× 2 checkerboards with each of their four squares col-
ored blue or red, belongs to R if and only if C2 can be
obtained from C1 either by rotating the checkerboard or
by rotating it and then reflecting it.

a) Show that R is an equivalence relation.

b) What are the equivalence classes of R?

60. a) Let R be the relation on the set of functions from Z+

to Z+ such that (f, g) belongs to R if and only if f
is (g) (see Section 3.2). Show that R is an equiva-
lence relation.

b) Describe the equivalence class containing f (n) = n2

for the equivalence relation of part (a).

61. Determine the number of different equivalence relations
on a set with three elements by listing them.

62. Determine the number of different equivalence relations
on a set with four elements by listing them.

∗63. Do we necessarily get an equivalence relation when we
form the transitive closure of the symmetric closure of
the reflexive closure of a relation?

∗64. Do we necessarily get an equivalence relation when we
form the symmetric closure of the reflexive closure of the
transitive closure of a relation?

65. Suppose we use Theorem 2 to form a partition P from
an equivalence relation R. What is the equivalence rela-
tion R that results if we use Theorem 2 again to form an
equivalence relation from P ?

66. Suppose we use Theorem 2 to form an equivalence rela-
tion R from a partition P . What is the partition P that
results if we use Theorem 2 again to form a partition
from R?

67. Devise an algorithm to find the smallest equivalence re-
lation containing a given relation.

∗68. Let p(n) denote the number of different equivalence
relations on a set with n elements (and by Theo-
rem 2 the number of partitions of a set with n ele-
ments). Show that p(n) satisfies the recurrence relation

p(n) =
 n−1
j=0 C(n− 1, j)p(n− j − 1) and the initial

condition p(0) = 1. (Note: The numbers p(n) are called
Bell numbers after the American mathematician E. T.
Bell.)

69. Use Exercise 68 to find the number of different equiv-
alence relations on a set with n elements, where n is a
positive integer not exceeding 10.

9.6 Partial Orderings

Introduction

We often use relations to order some or all of the elements of sets. For instance, we order words
using the relation containing pairs of words (x, y), where x comes before y in the dictionary.
We schedule projects using the relation consisting of pairs (x, y), where x and y are tasks in
a project such that x must be completed before y begins. We order the set of integers using
the relation containing the pairs (x, y), where x is less than y. When we add all of the pairs
of the form (x, x) to these relations, we obtain a relation that is reflexive, antisymmetric, and
transitive. These are properties that characterize relations used to order the elements of sets.

DEFINITION 1 A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisym-
metric, and transitive. A set S together with a partial ordering R is called a partially ordered

set, or poset, and is denoted by (S, R). Members of S are called elements of the poset.

We give examples of posets in Examples 1–3.

EXAMPLE 1 Show that the “greater than or equal” relation (≥) is a partial ordering on the set of integers.

9.6 Partial Orderings 619

Solution: Because a ≥ a for every integer a, ≥ is reflexive. If a ≥ b and b ≥ a, then a = b.
Hence, ≥ is antisymmetric. Finally, ≥ is transitive because a ≥ b and b ≥ c imply that a ≥ c.
It follows that ≥ is a partial ordering on the set of integers and (Z, ≥) is a poset. ▲

EXAMPLE 2 The divisibility relation | is a partial ordering on the set of positive integers, because it is
reflexive, antisymmetric, and transitive, as was shown in Section 9.1. We see that (Z+, |) is a
poset. Recall that (Z+ denotes the set of positive integers.) ▲

EXAMPLE 3 Show that the inclusion relation ⊆ is a partial ordering on the power set of a set S.

Solution: BecauseA ⊆ AwheneverA is a subset of S,⊆ is reflexive. It is antisymmetric because
A ⊆ B andB ⊆ A imply thatA = B. Finally,⊆ is transitive, becauseA ⊆ B andB ⊆ C imply
that A ⊆ C. Hence, ⊆ is a partial ordering on P(S), and (P (S),⊆) is a poset. ▲

Example 4 illustrates a relation that is not a partial ordering.

EXAMPLE 4 Let R be the relation on the set of people such that xRy if x and y are people and x is older
than y. Show that R is not a partial ordering.

Solution: Note that R is antisymmetric because if a person x is older than a person y, then y
is not older than x. That is, if xRy, then y Rx. The relation R is transitive because if person x
is older than person y and y is older than person z, then x is older than z. That is, if xRy
and yRz, then xRz. However, R is not reflexive, because no person is older than himself or
herself. That is, x Rx for all people x. It follows that R is not a partial ordering. ▲

In different posets different symbols such as ≤, ⊆, and |, are used for a partial ordering.
However, we need a symbol that we can use when we discuss the ordering relation in an
arbitrary poset. Customarily, the notation a � b is used to denote that (a, b) ∈ R in an arbitrary
poset (S, R). This notation is used because the “less than or equal to” relation on the set of real
numbers is the most familiar example of a partial ordering and the symbol � is similar to the≤
symbol. (Note that the symbol � is used to denote the relation in any poset, not just the “less
than or equals” relation.) The notation a ≺ b denotes that a � b, but a = b. Also, we say “a is
less than b” or “b is greater than a” if a ≺ b.

When a and b are elements of the poset (S, �), it is not necessary that either a � b
or b � a. For instance, in (P (Z),⊆), {1, 2} is not related to {1, 3}, and vice versa, because
neither set is contained within the other. Similarly, in (Z+, |), 2 is not related to 3 and 3 is not
related to 2, because 2 | 3 and 3 | 2. This leads to Definition 2.

DEFINITION 2 The elements a and b of a poset (S, �) are called comparable if either a � b or b � a. When
a and b are elements of S such that neither a � b nor b � a, a and b are called incomparable.

EXAMPLE 5 In the poset (Z+, |), are the integers 3 and 9 comparable? Are 5 and 7 comparable?

Solution: The integers 3 and 9 are comparable, because 3 | 9. The integers 5 and 7 are incom-
parable, because 5 | 7 and 7 | 5. ▲

The adjective “partial” is used to describe partial orderings because pairs of elements may
be incomparable. When every two elements in the set are comparable, the relation is called a
total ordering.

DEFINITION 3 If (S, �) is a poset and every two elements of S are comparable, S is called a totally ordered

or linearly ordered set, and � is called a total order or a linear order. A totally ordered set
is also called a chain.

620 9 / Relations

EXAMPLE 6 The poset (Z,≤) is totally ordered, because a ≤ b or b ≤ a whenever a and b are integers. ▲

EXAMPLE 7 The poset (Z+, |) is not totally ordered because it contains elements that are incomparable, such
as 5 and 7. ▲

In Chapter 6 we noted that (Z+,≤) is well-ordered, where≤ is the usual “less than or equal
to” relation. We now define well-ordered sets.

DEFINITION 4 (S, �) is a well-ordered set if it is a poset such that � is a total ordering and every nonempty
subset of S has a least element.

EXAMPLE 8 The set of ordered pairs of positive integers, Z+× Z+, with (a1, a2) � (b1, b2) if a1 < b1, or if
a1 = b1 and a2 ≤ b2 (the lexicographic ordering), is a well-ordered set. The verification of this
is left as Exercise 53. The set Z, with the usual ≤ ordering, is not well-ordered because the set
of negative integers, which is a subset of Z, has no least element. ▲

At the end of Section 5.3 we showed how to use the principle of well-ordered induction
(there called generalized induction) to prove results about a well-ordered set. We now state and
prove that this proof technique is valid.

THEOREM 1 THE PRINCIPLE OF WELL-ORDERED INDUCTION Suppose that S is a well-
ordered set. Then P(x) is true for all x ∈ S, if

INDUCTIVE STEP: For every y ∈ S, if P(x) is true for all x ∈ S with x ≺ y, then P(y)
is true.

Proof: Suppose it is not the case that P(x) is true for all x ∈ S. Then there is an element
y ∈ S such that P(y) is false. Consequently, the set A = {x ∈ S | P(x) is false} is nonempty.
Because S is well ordered, A has a least element a. By the choice of a as a least element of A,
we know that P(x) is true for all x ∈ S with x ≺ a. This implies by the inductive step P(a) is
true. This contradiction shows that P(x) must be true for all x ∈ S.

Remark: We do not need a basis step in a proof using the principle of well-ordered induction
because if x0 is the least element of a well ordered set, the inductive step tells us that P(x0)

is true. This follows because there are no elements x ∈ S with x ≺ x0, so we know (using a
vacuous proof) that P(x) is true for all x ∈ S with x ≺ x0.

The principle of well-ordered induction is a versatile technique for proving results about
well-ordered sets. Even when it is possible to use mathematical induction for the set of positive
integers to prove a theorem, it may be simpler to use the principle of well-ordered induction, as
we saw in Examples 5 and 6 in Section 6.2, where we proved a result about the well-ordered
set (N× N, �) where � is lexicographic ordering on N× N.

Lexicographic Order

The words in a dictionary are listed in alphabetic, or lexicographic, order, which is based on the
ordering of the letters in the alphabet. This is a special case of an ordering of strings on a set

9.6 Partial Orderings 621

constructed from a partial ordering on the set. We will show how this construction works in any
poset.

First, we will show how to construct a partial ordering on the Cartesian product of two
posets, (A1, � 1) and (A2, � 2). The lexicographic ordering � on A1 × A2 is defined by
specifying that one pair is less than a second pair if the first entry of the first pair is less than
(in A1) the first entry of the second pair, or if the first entries are equal, but the second entry of
this pair is less than (in A2) the second entry of the second pair. In other words, (a1, a2) is less
than (b1, b2), that is,

(a1, a2) ≺ (b1, b2),

either if a1 ≺1 b1 or if both a1 = b1 and a2 ≺2 b2.
We obtain a partial ordering � by adding equality to the ordering ≺ on A1 × A2. The

verification of this is left as an exercise.

EXAMPLE 9 Determine whether (3, 5) ≺ (4, 8), whether (3, 8) ≺ (4, 5), and whether (4, 9) ≺ (4, 11) in the
poset (Z× Z, �), where � is the lexicographic ordering constructed from the usual≤ relation
on Z.

Solution: Because 3 < 4, it follows that (3, 5) ≺ (4, 8) and that (3, 8) ≺ (4, 5). We have
(4, 9) ≺ (4, 11), because the first entries of (4, 9) and (4, 11) are the same but 9 < 11. ▲

In Figure 1 the ordered pairs in Z+× Z+ that are less than (3, 4) are highlighted.
A lexicographic ordering can be defined on the Cartesian product of n posets (A1, � 1),
(A2, � 2), . . . , (An, �n). Define the partial ordering � on A1 × A2 × · · · × An by

(a1, a2, . . . , an) ≺ (b1, b2, . . . , bn)

if a1≺1 b1, or if there is an integer i > 0 such that a1 = b1, . . . , ai = bi , and ai+1 ≺i+1 bi+1.
In other words, one n-tuple is less than a second n-tuple if the entry of the first n-tuple in the
first position where the two n-tuples disagree is less than the entry in that position in the second
n-tuple.

(1, 7)

(1, 6)

(1, 5)

(1, 4)

(1, 3)

(1, 2)

(1, 1)

(2, 7)

(2, 6)

(2, 5)

(2, 4)

(2, 3)

(2, 2)

(2, 1)

(3, 7)

(3, 6)

(3, 5)

(3, 4)

(3, 3)

(3, 2)

(3, 1)

(4, 7)

(4, 6)

(4, 5)

(4, 4)

(4, 3)

(4, 2)

(4, 1)

(5, 7)

(5, 6)

(5, 5)

(5, 4)

(5, 3)

(5, 2)

(5, 1)

(6, 7)

(6, 6)

(6, 5)

(6, 4)

(6, 3)

(6, 2)

(6, 1)

(7, 7)

(7, 6)

(7, 5)

(7, 4)

(7, 3)

(7, 2)

(7, 1)

. . .

.
 .

.

.
 .

.

.
 .

.

.
 .

.

.
 .

.

.
 .

.

.
 .

.

. . .

. . .

. . .

. . .

. . .

. . .

FIGURE 1 The Ordered Pairs Less Than (3, 4) in Lexicographic Order.

622 9 / Relations

EXAMPLE 10 Note that (1, 2, 3, 5) ≺ (1, 2, 4, 3), because the entries in the first two positions of these 4-tuples
agree, but in the third position the entry in the first 4-tuple, 3, is less than that in the second
4-tuple, 4. (Here the ordering on 4-tuples is the lexicographic ordering that comes from the
usual “less than or equals” relation on the set of integers.) ▲

We can now define lexicographic ordering of strings. Consider the strings a1a2 . . . am and
b1b2 . . . bn on a partially ordered set S. Suppose these strings are not equal. Let t be the minimum
of m and n. The definition of lexicographic ordering is that the string a1a2 . . . am is less than
b1b2 . . . bn if and only if

(a1, a2, . . . , at) ≺ (b1, b2, . . . , bt), or

(a1, a2, . . . , at) = (b1, b2, . . . , bt) and m < n,

where ≺ in this inequality represents the lexicographic ordering of St . In other words, to de-
termine the ordering of two different strings, the longer string is truncated to the length of the
shorter string, namely, to t = min(m, n) terms. Then the t-tuples made up of the first t terms of
each string are compared using the lexicographic ordering on St . One string is less than another
string if the t-tuple corresponding to the first string is less than the t-tuple of the second string,
or if these two t-tuples are the same, but the second string is longer. The verification that this is
a partial ordering is left as Exercise 38 for the reader.

EXAMPLE 11 Consider the set of strings of lowercase English letters. Using the ordering of letters in the
alphabet, a lexicographic ordering on the set of strings can be constructed. A string is less than
a second string if the letter in the first string in the first position where the strings differ comes
before the letter in the second string in this position, or if the first string and the second string
agree in all positions, but the second string has more letters. This ordering is the same as that
used in dictionaries. For example,

discreet ≺ discrete,

because these strings differ first in the seventh position, and e ≺ t . Also,

discreet ≺ discreetness,

because the first eight letters agree, but the second string is longer. Furthermore,

discrete ≺ discretion,

because

discrete ≺ discreti.

▲
Hasse Diagrams

Many edges in the directed graph for a finite poset do not have to be shown because they must be
present. For instance, consider the directed graph for the partial ordering {(a, b) | a ≤ b} on the
set {1, 2, 3, 4}, shown in Figure 2(a). Because this relation is a partial ordering, it is reflexive,
and its directed graph has loops at all vertices. Consequently, we do not have to show these loops
because they must be present; in Figure 2(b) loops are not shown. Because a partial ordering is
transitive, we do not have to show those edges that must be present because of transitivity. For
example, in Figure 2(c) the edges (1, 3), (1, 4), and (2, 4) are not shown because they must be
present. If we assume that all edges are pointed “upward” (as they are drawn in the figure), we
do not have to show the directions of the edges; Figure 2(c) does not show directions.

In general, we can represent a finite poset (S, �) using this procedure: Start with the
directed graph for this relation. Because a partial ordering is reflexive, a loop (a, a) is present at
every vertex a. Remove these loops. Next, remove all edges that must be in the partial ordering
because of the presence of other edges and transitivity. That is, remove all edges (x, y) for
which there is an element z ∈ S such that x ≺ z and z ≺ x. Finally, arrange each edge so that

9.6 Partial Orderings 623

(a) (b) (c)

4

3

2

1

4

3

2

1

4

3

2

1

FIGURE 2 Constructing the Hasse Diagram

for ({1, 2, 3, 4},≤).

its initial vertex is below its terminal vertex (as it is drawn on paper). Remove all the arrows on
the directed edges, because all edges point “upward” toward their terminal vertex.

These steps are well defined, and only a finite number of steps need to be carried out for
a finite poset. When all the steps have been taken, the resulting diagram contains sufficient
information to find the partial ordering, as we will explain later. The resulting diagram is called
theHassediagramof (S, �), named after the twentieth-century German mathematician Helmut
Hasse who made extensive use of them.

Let (S, �) be a poset. We say that an element y ∈ S covers an element x ∈ S if x ≺ y
and there is no element z ∈ S such that x ≺ z ≺ y. The set of pairs (x, y) such that y
covers x is called the covering relation of (S, �). From the description of the Hasse diagram of
a poset, we see that the edges in the Hasse diagram of (S, �) are upwardly pointing edges cor-
responding to the pairs in the covering relation of (S, �). Furthermore, we can recover a poset
from its covering relation, because it is the reflexive transitive closure of its covering relation.
(Exercise 31 asks for a proof of this fact.) This tells us that we can construct a partial ordering
from its Hasse diagram.

EXAMPLE 12 Draw the Hasse diagram representing the partial ordering {(a, b) |a divides b} on
{1, 2, 3, 4, 6, 8, 12}.

Solution: Begin with the digraph for this partial order, as shown in Figure 3(a). Remove all
loops, as shown in Figure 3(b). Then delete all the edges implied by the transitive property.
These are (1, 4), (1, 6), (1, 8), (1, 12), (2, 8), (2, 12), and (3, 12). Arrange all edges to point
upward, and delete all arrows to obtain the Hasse diagram. The resulting Hasse diagram is shown
in Figure 3(c). ▲

EXAMPLE 13 Draw the Hasse diagram for the partial ordering {(A,B) | A ⊆ B} on the power set P(S)where
S = {a, b, c}.

HELMUT HASSE (1898–1979) Helmut Hasse was born in Kassel, Germany. He served in the German
navy after high school. He began his university studies at Göttingen University in 1918, moving in 1920 to
Marburg University to study under the number theorist Kurt Hensel. During this time, Hasse made fundamental
contributions to algebraic number theory. He became Hensel’s successor at Marburg, later becoming director
of the famous mathematical institute at Göttingen in 1934, and took a position at Hamburg University in 1950.
Hasse served for 50 years as an editor of Crelle’s Journal, a famous German mathematics periodical, taking over
the job of chief editor in 1936 when the Nazis forced Hensel to resign. During World War II Hasse worked on
applied mathematics research for the German navy. He was noted for the clarity and personal style of his lectures
and was devoted both to number theory and to his students. (Hasse has been controversial for connections with
the Nazi party. Investigations have shown he was a strong German nationalist but not an ardent Nazi.)

624 9 / Relations

8 12

4 6

2 3

1

(a)

8 12

4 6

2 3

1

(b)

8 12

4 6

2 3

1

(c)

FIGURE 3 Constructing the Hasse Diagram of ({1, 2, 3, 4, 6, 8, 12}, |).

Solution: The Hasse diagram for this partial ordering is obtained from the associated digraph by
deleting all the loops and all the edges that occur from transitivity, namely, (∅, {a, b}), (∅, {a, c}),
(∅, {b, c}), (∅, {a, b, c}), ({a}, {a, b, c}), ({b}, {a, b, c}), and ({c}, {a, b, c}). Finally all edges
point upward, and arrows are deleted. The resulting Hasse diagram is illustrated in Figure 4. ▲

Maximal and Minimal Elements

Elements of posets that have certain extremal properties are important for many applications.
An element of a poset is called maximal if it is not less than any element of the poset. That is, a
is maximal in the poset (S, �) if there is no b ∈ S such that a ≺ b. Similarly, an element of a
poset is called minimal if it is not greater than any element of the poset. That is, a is minimal

if there is no element b ∈ S such that b ≺ a. Maximal and minimal elements are easy to spot
using a Hasse diagram. They are the “top” and “bottom” elements in the diagram.

EXAMPLE 14 Which elements of the poset ({2, 4, 5, 10, 12, 20, 25}, |) are maximal, and which are minimal?

Solution: The Hasse diagram in Figure 5 for this poset shows that the maximal elements
are 12, 20, and 25, and the minimal elements are 2 and 5. As this example shows, a poset
can have more than one maximal element and more than one minimal element. ▲

Sometimes there is an element in a poset that is greater than every other element. Such an
element is called the greatest element. That is, a is the greatest element of the poset (S, �)

{a, b, c}

{a, b}
{b, c}{a, c}

{b}{a}
{c}

∅

FIGURE 4 The Hasse Diagram

of (P ({a, b, c}),⊆).

12

4

2

20

10

5

25

FIGURE 5 The Hasse

Diagram of a Poset.

9.6 Partial Orderings 625

c

a

b d d e

a b

c

a b

d

c

d

b c

a

(a) (b) (c) (d)

FIGURE 6 Hasse Diagrams of Four Posets.

if b � a for all b ∈ S. The greatest element is unique when it exists [see Exercise 40(a)].
Likewise, an element is called the least element if it is less than all the other elements in the
poset. That is, a is the least element of (S, �) if a � b for all b ∈ S. The least element is unique
when it exists [see Exercise 40(b)].

EXAMPLE 15 Determine whether the posets represented by each of the Hasse diagrams in Figure 6 have a
greatest element and a least element.

Solution: The least element of the poset with Hasse diagram (a) is a. This poset has no greatest
element. The poset with Hasse diagram (b) has neither a least nor a greatest element. The poset
with Hasse diagram (c) has no least element. Its greatest element is d. The poset with Hasse
diagram (d) has least element a and greatest element d. ▲

EXAMPLE 16 Let S be a set. Determine whether there is a greatest element and a least element in the poset
(P (S),⊆).

Solution: The least element is the empty set, because ∅ ⊆ T for any subset T of S. The set S is
the greatest element in this poset, because T ⊆ S whenever T is a subset of S. ▲

EXAMPLE 17 Is there a greatest element and a least element in the poset (Z+, |)?

Solution: The integer 1 is the least element because 1|nwhenever n is a positive integer. Because
there is no integer that is divisible by all positive integers, there is no greatest element. ▲

Sometimes it is possible to find an element that is greater than or equal to all the elements
in a subset A of a poset (S, �). If u is an element of S such that a � u for all elements a ∈ A,
then u is called an upper bound of A. Likewise, there may be an element less than or equal to
all the elements in A. If l is an element of S such that l � a for all elements a ∈ A, then l is
called a lower bound of A.

EXAMPLE 18 Find the lower and upper bounds of the subsets {a, b, c}, {j, h}, and {a, c, d, f } in the poset
with the Hasse diagram shown in Figure 7.

Solution: The upper bounds of {a, b, c} are e, f, j , and h, and its only lower bound is a. There
are no upper bounds of {j, h}, and its lower bounds are a, b, c, d, e, and f . The upper bounds
of {a, c, d, f } are f , h, and j , and its lower bound is a. ▲

a

cb

ed

fg

j
h

FIGURE 7 The

Hasse Diagram of

a Poset.

The element x is called the least upper bound of the subset A if x is an upper bound that
is less than every other upper bound of A. Because there is only one such element, if it exists,
it makes sense to call this element the least upper bound [see Exercise 42(a)]. That is, x is the
least upper bound of A if a � x whenever a ∈ A, and x � z whenever z is an upper bound of
A. Similarly, the element y is called the greatest lower bound of A if y is a lower bound of
A and z � y whenever z is a lower bound of A. The greatest lower bound of A is unique if it
exists [see Exercise 42(b)]. The greatest lower bound and least upper bound of a subset A are
denoted by glb(A) and lub(A), respectively.

626 9 / Relations

EXAMPLE 19 Find the greatest lower bound and the least upper bound of {b, d, g}, if they exist, in the poset
shown in Figure 7.

Solution: The upper bounds of {b, d, g} are g and h. Because g ≺ h, g is the least upper bound.
The lower bounds of {b, d, g} are a and b. Because a ≺ b, b is the greatest lower bound. ▲

EXAMPLE 20 Find the greatest lower bound and the least upper bound of the sets {3, 9, 12} and {1, 2, 4, 5, 10},
if they exist, in the poset (Z+, |).

Solution: An integer is a lower bound of {3, 9, 12} if 3, 9, and 12 are divisible by this integer.
The only such integers are 1 and 3. Because 1 | 3, 3 is the greatest lower bound of {3, 9, 12}.
The only lower bound for the set {1, 2, 4, 5, 10} with respect to | is the element 1. Hence, 1 is
the greatest lower bound for {1, 2, 4, 5, 10}.

An integer is an upper bound for {3, 9, 12} if and only if it is divisible by 3, 9, and 12.
The integers with this property are those divisible by the least common multiple of 3, 9, and
12, which is 36. Hence, 36 is the least upper bound of {3, 9, 12}. A positive integer is an upper
bound for the set {1, 2, 4, 5, 10} if and only if it is divisible by 1, 2, 4, 5, and 10. The integers
with this property are those integers divisible by the least common multiple of these integers,
which is 20. Hence, 20 is the least upper bound of {1, 2, 4, 5, 10}. ▲

Lattices

A partially ordered set in which every pair of elements has both a least upper bound and a
greatest lower bound is called a lattice. Lattices have many special properties. Furthermore,
lattices are used in many different applications such as models of information flow and play an
important role in Boolean algebra.

EXAMPLE 21 Determine whether the posets represented by each of the Hasse diagrams in Figure 8 are lattices.

Solution: The posets represented by the Hasse diagrams in (a) and (c) are both lattices because
in each poset every pair of elements has both a least upper bound and a greatest lower bound,
as the reader should verify. On the other hand, the poset with the Hasse diagram shown in (b)
is not a lattice, because the elements b and c have no least upper bound. To see this, note that
each of the elements d , e, and f is an upper bound, but none of these three elements precedes
the other two with respect to the ordering of this poset. ▲

f

a

b

d

e

c

(a)

f

a

c

ed

(b)

b

h

a

d

ge

(c)

b d

g

FIGURE 8 Hasse Diagrams of Three Posets.

9.6 Partial Orderings 627

EXAMPLE 22 Is the poset (Z+, |) a lattice?

Solution: Let a and b be two positive integers. The least upper bound and greatest lower bound
of these two integers are the least common multiple and the greatest common divisor of these
integers, respectively, as the reader should verify. It follows that this poset is a lattice. ▲

EXAMPLE 23 Determine whether the posets ({1, 2, 3, 4, 5}, |) and ({1, 2, 4, 8, 16}, |) are lattices.

Solution: Because 2 and 3 have no upper bounds in ({1, 2, 3, 4, 5}, |), they certainly do not have
a least upper bound. Hence, the first poset is not a lattice.

Every two elements of the second poset have both a least upper bound and a greatest lower
bound. The least upper bound of two elements in this poset is the larger of the elements and the
greatest lower bound of two elements is the smaller of the elements, as the reader should verify.
Hence, this second poset is a lattice. ▲

EXAMPLE 24 Determine whether (P (S),⊆) is a lattice where S is a set.

Solution: Let A and B be two subsets of S. The least upper bound and the greatest lower bound
of A and B are A ∪ B and A ∩ B, respectively, as the reader can show. Hence, (P (S),⊆) is a
lattice. ▲

EXAMPLE 25 The Lattice Model of Information Flow In many settings the flow of information from one
person or computer program to another is restricted via security clearances. We can use a lattice
model to represent different information flow policies. For example, one common information
flow policy is the multilevel security policy used in government and military systems. Each
piece of information is assigned to a security class, and each security class is represented by a
pair (A,C) where A is an authority level and C is a category. People and computer programs
are then allowed access to information from a specific restricted set of security classes.

The typical authority levels used in the U.S. government are unclassified (0), confidential (1),
secret (2), and top secret (3). (Information is said to be classified if it is confidential, secret,

There are billions of

pages of classified U.S.

government documents.

or top secret.) Categories used in security classes are the subsets of a set of all compartments

relevant to a particular area of interest. Each compartment represents a particular subject area.
For example, if the set of compartments is {spies, moles, double agents}, then there are eight
different categories, one for each of the eight subsets of the set of compartments, such as
{spies, moles}.

We can order security classes by specifying that (A1, C1) � (A2, C2) if and only if
A1 ≤ A2 and C1 ⊆ C2. Information is permitted to flow from security class (A1, C1) into
security class (A2, C2) if and only if (A1, C1) � (A2, C2). For example, information is
permitted to flow from the security class (secret, {spies, moles}) into the security class
(top secret, {spies, moles, double agents}), whereas information is not allowed to flow from
the security class (top secret, {spies, moles}) into either of the security classes (secret, {spies,

moles, double agents}) or (top secret, {spies}).
We leave it to the reader (see Exercise 48) to show that the set of all security classes with

the ordering defined in this example forms a lattice. ▲

Topological Sorting

Suppose that a project is made up of 20 different tasks. Some tasks can be completed only after
others have been finished. How can an order be found for these tasks? To model this problem
we set up a partial order on the set of tasks so that a ≺ b if and only if a and b are tasks where b

628 9 / Relations

cannot be started until a has been completed. To produce a schedule for the project, we need to
produce an order for all 20 tasks that is compatible with this partial order. We will show how
this can be done.

We begin with a definition. A total ordering � is said to be compatible with the partial
ordering R if a � b whenever aRb. Constructing a compatible total ordering from a partial
ordering is called topological sorting.∗ We will need to use Lemma 1.

LEMMA 1 Every finite nonempty poset (S, �) has at least one minimal element.

Proof:Choose an element a0 of S. If a0 is not minimal, then there is an element a1 with a1 ≺ a0.
If a1 is not minimal, there is an element a2 with a2 ≺ a1. Continue this process, so that if an is
not minimal, there is an element an+1 with an+1 ≺ an. Because there are only a finite number
of elements in the poset, this process must end with a minimal element an.

The topological sorting algorithm we will describe works for any finite nonempty poset.
To define a total ordering on the poset (A, �), first choose a minimal element a1; such an
element exists by Lemma 1. Next, note that (A− {a1}, �) is also a poset, as the reader should
verify. (Here by � we mean the restriction of the original relation � on A to A− {a1}.) If it is
nonempty, choose a minimal element a2 of this poset. Then remove a2 as well, and if there are
additional elements left, choose a minimal element a3 inA− {a1, a2}. Continue this process by
choosing ak+1 to be a minimal element in A− {a1, a2, . . . , ak}, as long as elements remain.

Because A is a finite set, this process must terminate. The end product is a sequence of
elements a1, a2, . . . , an. The desired total ordering �t is defined by

a1 ≺t a2 ≺t · · · ≺t an.

This total ordering is compatible with the original partial ordering. To see this, note that if b ≺ c
in the original partial ordering, c is chosen as the minimal element at a phase of the algorithm
where b has already been removed, for otherwise cwould not be a minimal element. Pseudocode
for this topological sorting algorithm is shown in Algorithm 1.

ALGORITHM 1 Topological Sorting.

procedure topological sort ((S, �): finite poset)

k := 1

while S = ∅

ak : = a minimal element of S {such an element exists by Lemma 1}

S : = S − {ak}

k : = k + 1

return a1, a2, . . . , an {a1, a2, . . . , an is a compatible total ordering of S}

EXAMPLE 26 Find a compatible total ordering for the poset ({1, 2, 4, 5, 12, 20}, |).

∗“Topological sorting” is terminology used by computer scientists; mathematicians use the terminology “linearization of a

partial ordering” for the same thing. In mathematics, topology is the branch of geometry dealing with properties of geometric

figures that hold for all figures that can be transformed into one another by continuous bijections. In computer science, a

topology is any arrangement of objects that can be connected with edges.

9.6 Partial Orderings 629

Minimal

element

chosen

51 2 4 12

20

4

12 12

20

201220

4

12

2

20

4

12

2 5

20

4

12

2
5

1

FIGURE 9 A Topological Sort of ({1, 2, 4, 5, 12, 20}, |).

Solution: The first step is to choose a minimal element. This must be 1, because it is the only
minimal element. Next, select a minimal element of ({2, 4, 5, 12, 20}, |).There are two minimal
elements in this poset, namely, 2 and 5. We select 5. The remaining elements are {2, 4, 12, 20}.
The only minimal element at this stage is 2. Next, 4 is chosen because it is the only minimal
element of ({4, 12, 20}, |). Because both 12 and 20 are minimal elements of ({12, 20}, |), either
can be chosen next. We select 20, which leaves 12 as the last element left. This produces the
total ordering

1 ≺ 5 ≺ 2 ≺ 4 ≺ 20 ≺ 12.

The steps used by this sorting algorithm are displayed in Figure 9. ▲

Topological sorting has an application to the scheduling of projects.

EXAMPLE 27 A development project at a computer company requires the completion of seven tasks. Some of
these tasks can be started only after other tasks are finished. A partial ordering on tasks is set up
by considering taskX ≺ task Y if task Y cannot be started until taskX has been completed. The
Hasse diagram for the seven tasks, with respect to this partial ordering, is shown in Figure 10.
Find an order in which these tasks can be carried out to complete the project.

Solution: An ordering of the seven tasks can be obtained by performing a topolog-
ical sort. The steps of a sort are illustrated in Figure 11. The result of this sort,
A ≺ C ≺ B ≺ E ≺ F ≺ D ≺ G, gives one possible order for the tasks. ▲

C E

B

FD

A

G

FIGURE 10 The

Hasse Diagram for

Seven Tasks.

B

Minimal

element

chosen

CA B E D G

A C E

F

G

D

B

C E

F

G

D

B

E

F

G

D

E

F

G

D

G

D

G

F

F

G

D

FIGURE 11 A Topological Sort of the Tasks.

630 9 / Relations

Exercises

1. Which of these relations on {0, 1, 2, 3} are partial order-
ings? Determine the properties of a partial ordering that
the others lack.

a) {(0, 0), (1, 1), (2, 2), (3, 3)}

b) {(0, 0), (1, 1), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)}

c) {(0, 0), (1, 1), (1, 2), (2, 2), (3, 3)}

d) {(0, 0), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}

e) {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0),
(2, 2), (3, 3)}

2. Which of these relations on {0, 1, 2, 3} are partial order-
ings? Determine the properties of a partial ordering that
the others lack.

a) {(0, 0), (2, 2), (3, 3)}

b) {(0, 0), (1, 1), (2, 0), (2, 2), (2, 3), (3, 3)}

c) {(0, 0), (1, 1), (1, 2), (2, 2), (3, 1), (3, 3)}

d) {(0, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 2), (2, 3),
(3, 0), (3, 3)}

e) {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2),
(1, 3), (2, 0), (2, 2), (3, 3)}

3. Is (S, R) a poset if S is the set of all people in the world
and (a, b) ∈ R, where a and b are people, if

a) a is taller than b?

b) a is not taller than b?

c) a = b or a is an ancestor of b?

d) a and b have a common friend?

4. Is (S, R) a poset if S is the set of all people in the world
and (a, b) ∈ R, where a and b are people, if

a) a is no shorter than b?

b) a weighs more than b?

c) a = b or a is a descendant of b?

d) a and b do not have a common friend?

5. Which of these are posets?

a) (Z,=) b) (Z, =) c) (Z,≥) d) (Z, |)

6. Which of these are posets?

a) (R,=) b) (R, <) c) (R,≤) d) (R, =)

7. Determine whether the relations represented by these
zero–one matrices are partial orders.

a)

⎡
⎣1 1 1

1 1 0
0 0 1

⎤
⎦ b)

⎡
⎣1 1 1

0 1 0
0 0 1

⎤
⎦

c)

⎡
⎢⎢⎣

1 1 1 0
0 1 1 0
0 0 1 1
1 1 0 1

⎤
⎥⎥⎦

8. Determine whether the relations represented by these
zero–one matrices are partial orders.

a)

⎡
⎣1 0 1

1 1 0
0 0 1

⎤
⎦ b)

⎡
⎣1 0 0

0 1 0
1 0 1

⎤
⎦

c)

⎡
⎢⎢⎣

1 0 1 0
0 1 1 0
0 0 1 1
1 1 0 1

⎤
⎥⎥⎦

In Exercises 9–11 determine whether the relation with the
directed graph shown is a partial order.

9.

a b

c d

10.

a b

c d

11.
a b

c d

12. Let (S, R) be a poset. Show that (S,R−1) is also a poset,
where R−1 is the inverse of R. The poset (S,R−1) is
called the dual of (S, R).

13. Find the duals of these posets.

a) ({0, 1, 2},≤) b) (Z,≥)

c) (P (Z),⊇) d) (Z+, |)

14. Which of these pairs of elements are comparable in the
poset (Z+, |)?

a) 5, 15 b) 6, 9 c) 8, 16 d) 7, 7

15. Find two incomparable elements in these posets.

a) (P({0, 1, 2}),⊆) b) ({1, 2, 4, 6, 8}, |)

16. Let S = {1, 2, 3, 4}. With respect to the lexicographic or-
der based on the usual “less than” relation,

a) find all pairs in S × S less than (2, 3).

b) find all pairs in S × S greater than (3, 1).

c) draw the Hasse diagram of the poset (S × S, �).

17. Find the lexicographic ordering of these n-tuples:

a) (1, 1, 2), (1, 2, 1) b) (0, 1, 2, 3), (0, 1, 3, 2)

c) (1, 0, 1, 0, 1), (0, 1, 1, 1, 0)

18. Find the lexicographic ordering of these strings of lower-
case English letters:

a) quack, quick, quicksilver, quicksand, quacking

b) open, opener, opera, operand, opened

c) zoo, zero, zoom, zoology, zoological

19. Find the lexicographic ordering of the bit strings 0, 01,
11, 001, 010, 011, 0001, and 0101 based on the ordering
0 < 1.

20. Draw the Hasse diagram for the “greater than or equal to”
relation on {0, 1, 2, 3, 4, 5}.

9.6 Partial Orderings 631

21. Draw the Hasse diagram for the “less than or equal to”
relation on {0, 2, 5, 10, 11, 15}.

22. Draw the Hasse diagram for divisibility on the set

a) {1, 2, 3, 4, 5, 6}. b) {3, 5, 7, 11, 13, 16, 17}.

c) {2, 3, 5, 10, 11, 15, 25}. d) {1, 3, 9, 27, 81, 243}.

23. Draw the Hasse diagram for divisibility on the set

a) {1, 2, 3, 4, 5, 6, 7, 8}. b) {1, 2, 3, 5, 7, 11, 13}.

c) {1, 2, 3, 6, 12, 24, 36, 48}.

d) {1, 2, 4, 8, 16, 32, 64}.

24. Draw the Hasse diagram for inclusion on the set P(S),
where S = {a, b, c, d}.

In Exercises 25–27 list all ordered pairs in the partial ordering
with the accompanying Hasse diagram.

25.
c d

a

b

26.

a

cb

de

27.

a cb

fd e

g

28. What is the covering relation of the partial ordering
{(a, b) | a divides b} on {1, 2, 3, 4, 6, 12}?

29. What is the covering relation of the partial order-
ing {(A,B) | A ⊆ B} on the power set of S, where
S = {a, b, c}?

30. What is the covering relation of the partial ordering for
the poset of security classes defined in Example 25?

31. Show that a finite poset can be reconstructed from its cov-
ering relation. [Hint: Show that the poset is the reflexive
transitive closure of its covering relation.]

32. Answer these questions for the partial order represented
by this Hasse diagram.

b

fd

gi

j

a c

e

h

k

ml

a) Find the maximal elements.

b) Find the minimal elements.

c) Is there a greatest element?

d) Is there a least element?

e) Find all upper bounds of {a, b, c}.

f) Find the least upper bound of {a, b, c}, if it exists.

g) Find all lower bounds of {f, g, h}.

h) Find the greatest lower bound of {f, g, h}, if it exists.

33. Answer these questions for the poset ({3, 5, 9, 15,
24, 45}, |).

a) Find the maximal elements.

b) Find the minimal elements.

c) Is there a greatest element?

d) Is there a least element?

e) Find all upper bounds of {3, 5}.

f) Find the least upper bound of {3, 5}, if it exists.

g) Find all lower bounds of {15, 45}.

h) Find the greatest lower bound of {15, 45}, if it exists.

34. Answer these questions for the poset ({2, 4, 6, 9, 12,
18, 27, 36, 48, 60, 72}, |).

a) Find the maximal elements.

b) Find the minimal elements.

c) Is there a greatest element?

d) Is there a least element?

e) Find all upper bounds of {2, 9}.

f) Find the least upper bound of {2, 9}, if it exists.

g) Find all lower bounds of {60, 72}.

h) Find the greatest lower bound of {60, 72}, if it exists.

35. Answer these questions for the poset ({{1}, {2}, {4},
{1, 2}, {1, 4}, {2, 4}, {3, 4}, {1, 3, 4}, {2, 3, 4}}, ⊆).

a) Find the maximal elements.

b) Find the minimal elements.

c) Is there a greatest element?

d) Is there a least element?

e) Find all upper bounds of {{2}, {4}}.

f) Find the least upper bound of {{2}, {4}}, if it exists.

g) Find all lower bounds of {{1, 3, 4}, {2, 3, 4}}.

h) Find the greatest lower bound of {{1, 3, 4}, {2, 3, 4}},
if it exists.

36. Give a poset that has

a) a minimal element but no maximal element.

b) a maximal element but no minimal element.

c) neither a maximal nor a minimal element.

37. Show that lexicographic order is a partial ordering on the
Cartesian product of two posets.

38. Show that lexicographic order is a partial ordering on the
set of strings from a poset.

39. Suppose that (S, �1) and (T , �2) are posets. Show that
(S × T , �) is a poset where (s, t) � (u, v) if and only if
s �1 u and t �2 v.

632 9 / Relations

40. a) Show that there is exactly one greatest element of a
poset, if such an element exists.

b) Show that there is exactly one least element of a poset,
if such an element exists.

41. a) Show that there is exactly one maximal element in a
poset with a greatest element.

b) Show that there is exactly one minimal element in a
poset with a least element.

42. a) Show that the least upper bound of a set in a poset is
unique if it exists.

b) Show that the greatest lower bound of a set in a poset
is unique if it exists.

43. Determine whether the posets with these Hasse diagrams
are lattices.

a)

a

b

d

c

e

f

g
b)

a

b

d

c

e

f g

h
c)

a

b

d

c

e

f g

h

i

44. Determine whether these posets are lattices.

a) ({1, 3, 6, 9, 12}, |) b) ({1, 5, 25, 125}, |)

c) (Z,≥)

d) (P (S),⊇), where P(S) is the power set of a set S

45. Show that every nonempty finite subset of a lattice has a
least upper bound and a greatest lower bound.

46. Show that if the poset (S, R) is a lattice then the dual
poset (S, R−1) is also a lattice.

47. In a company, the lattice model of information flow is used
to control sensitive information with security classes rep-
resented by ordered pairs (A,C). Here A is an authority
level, which may be nonproprietary (0), proprietary (1),
restricted (2), or registered (3).A categoryC is a subset of
the set of all projects {Cheetah, Impala, Puma}. (Names
of animals are often used as code names for projects in
companies.)

a) Is information permitted to flow from (Proprietary,
{Cheetah, Puma}) into (Restricted, {Puma})?

b) Is information permitted to flow from (Restricted,
{Cheetah}) into (Registered, {Cheetah, Impala})?

c) Into which classes is information from (Proprietary,
{Cheetah,Puma}) permitted to flow?

d) From which classes is information permitted to flow
into the security class (Restricted, {Impala, Puma})?

48. Show that the set S of security classes (A,C) is a lattice,
where A is a positive integer representing an authority
class and C is a subset of a finite set of compartments,
with (A1, C1) � (A2, C2) if and only if A1 ≤ A2 and
C1 ⊆ C2. [Hint: First show that (S, �) is a poset and then
show that the least upper bound and greatest lower bound
of (A1, C1) and (A2, C2) are (max(A1, A2), C1 ∪ C2)

and (min(A1, A2), C1 ∩ C2), respectively.]

∗49. Show that the set of all partitions of a set S with the re-
lation P1 � P2 if the partition P1 is a refinement of the
partition P2 is a lattice. (See the preamble to Exercise 49
of Section 9.5.)

50. Show that every totally ordered set is a lattice.

51. Show that every finite lattice has a least element and a
greatest element.

52. Give an example of an infinite lattice with

a) neither a least nor a greatest element.

b) a least but not a greatest element.

c) a greatest but not a least element.

d) both a least and a greatest element.

53. Verify that (Z+×Z+, �) is a well-ordered set, where �
is lexicographic order, as claimed in Example 8.

54. Determine whether each of these posets is well-ordered.

a) (S,≤), where S = {10, 11, 12, . . .}

b) (Q ∩ [0, 1],≤) (the set of rational numbers between
0 and 1 inclusive)

c) (S,≤), where S is the set of positive rational numbers
with denominators not exceeding 3

d) (Z−,≥), where Z− is the set of negative integers

A poset (R, �) is well-founded if there is no infinite de-
creasing sequence of elements in the poset, that is, elements
x1, x2, . . . , xn such that · · · ≺ xn ≺ · · · ≺ x2 ≺ x1. A poset
(R, �) is dense if for all x ∈ S and y ∈ S with x ≺ y, there
is an element z ∈ R such that x ≺ z ≺ y.

55. Show that the poset (Z, �), where x ≺ y if and only if
|x| < |y| is well-founded but is not a totally ordered set.

56. Show that a dense poset with at least two elements that
are comparable is not well-founded.

57. Show that the poset of rational numbers with the usual
“less than or equal to” relation, (Q,≤), is a dense poset.

∗58. Show that the set of strings of lowercase English let-
ters with lexicographic order is neither well-founded nor
dense.

59. Show that a poset is well-ordered if and only if it is totally
ordered and well-founded.

60. Show that a finite nonempty poset has a maximal element.

61. Find a compatible total order for the poset with the Hasse
diagram shown in Exercise 32.

62. Find a compatible total order for the divisibility relation
on the set {1, 2, 3, 6, 8, 12, 24, 36}.

63. Find all compatible total orderings for the poset
({1, 2, 4, 5, 12, 20}, |} from Example 26.

64. Find all compatible total orderings for the poset with the
Hasse diagram in Exercise 27.

65. Find all possible orders for completing the tasks in the
development project in Example 27.

Key Terms and Results 633

66. Schedule the tasks needed to build a house, by specifying
their order, if the Hasse diagram representing these tasks
is as shown in the figure.

Completion

Exterior fixtures

Exterior painting

Exterior siding

Roof

Framing

Foundation

Carpeting

Flooring

Plumbing Wiring
Wall-board

Interior painting

Interior fixtures

67. Find an ordering of the tasks of a software project if the
Hasse diagram for the tasks of the project is as shown.

Set up
test sites

Determine user needs

Write
documentation

Completion

β testβ

Develop module A

Write functional requirements

Develop system
requirements

Develop module B

Develop module C

Integrate modules

β testα

Key Terms and Results

TERMS

binary relation from A to B: a subset of A× B
relation on A: a binary relation from A to itself (i.e., a subset

of A× A)
S ◦R: composite of R and S
R−1: inverse relation of R
Rn: nth power of R
reflexive: a relation R on A is reflexive if (a, a) ∈ R for all
a ∈ A

symmetric: a relationR onA is symmetric if (b, a) ∈ Rwhen-
ever (a, b) ∈ R

antisymmetric: a relation R on A is antisymmetric if a = b
whenever (a, b) ∈ R and (b, a) ∈ R

transitive: a relation R on A is transitive if (a, b) ∈ R and
(b, c) ∈ R implies that (a, c) ∈ R

n-ary relation on A1,A2, . . . ,An: a subset of A1× A2 ×

· · · × An
relational data model: a model for representing databases us-

ing n-ary relations
primary key: a domain of an n-ary relation such that an n-

tuple is uniquely determined by its value for this domain

composite key: the Cartesian product of domains of an n-ary
relation such that an n-tuple is uniquely determined by its
values in these domains

selection operator: a function that selects the n-tuples in an
n-ary relation that satisfy a specified condition

projection: a function that produces relations of smaller de-
gree from an n-ary relation by deleting fields

join: a function that combines n-ary relations that agree on
certain fields

directed graph or digraph: a set of elements called vertices
and ordered pairs of these elements, called edges

loop: an edge of the form (a, a)

closure of a relation R with respect to a property P: the re-
lation S (if it exists) that contains R, has property P, and
is contained within any relation that contains R and has
property P

path in a digraph: a sequence of edges (a, x1), (x1, x2), . . . ,

(xn−2, xn−1), (xn−1, b) such that the terminal vertex of each
edge is the initial vertex of the succeeding edge in the se-
quence

circuit (or cycle) in a digraph: a path that begins and ends at
the same vertex

R∗ (connectivity relation): the relation consisting of those
ordered pairs (a, b) such that there is a path from a to b

equivalence relation: a reflexive, symmetric, and transitive
relation

equivalent: if R is an equivalence relation, a is equivalent to
b if aRb

[a]R (equivalence class of a with respect toR): the set of all
elements of A that are equivalent to a

[a]m (congruence class modulo m): the set of integers con-
gruent to a modulo m

partition of a set S: a collection of pairwise disjoint nonempty
subsets that have S as their union

partial ordering: a relation that is reflexive, antisymmetric,
and transitive

poset (S, R): a set S and a partial ordering R on this set

comparable: the elements a and b in the poset (A, �) are
comparable if a � b or b � a

incomparable: elements in a poset that are not comparable

total (or linear) ordering: a partial ordering for which every
pair of elements are comparable

totally (or linearly) ordered set: a poset with a total (or linear)
ordering

well-ordered set: a poset (S, �), where � is a total order
and every nonempty subset of S has a least element

634 9 / Relations

lexicographic order: a partial ordering of Cartesian products
or strings

Hasse diagram: a graphical representation of a poset where
loops and all edges resulting from the transitive property
are not shown, and the direction of the edges is indicated
by the position of the vertices

maximal element: an element of a poset that is not less than
any other element of the poset

minimal element: an element of a poset that is not greater than
any other element of the poset

greatest element: an element of a poset greater than all other
elements in this set

least element: an element of a poset less than all other elements
in this set

upper bound of a set: an element in a poset greater than all
other elements in the set

lower bound of a set: an element in a poset less than all other
elements in the set

least upper bound of a set: an upper bound of the set that is
less than all other upper bounds

greatest lower bound of a set: a lower bound of the set that
is greater than all other lower bounds

lattice: a partially ordered set in which every two elements
have a greatest lower bound and a least upper bound

compatible total ordering for a partial ordering: a total or-
dering that contains the given partial ordering

topological sort: the construction of a total ordering compat-
ible with a given partial ordering

RESULTS

The reflexive closure of a relationR on the setA equalsR ∪ ,
where = {(a, a) | a ∈ A}.

The symmetric closure of a relation R on the set A equals
R ∪ R−1, where R−1 = {(b, a) | (a, b) ∈ R}.

The transitive closure of a relation equals the connectivity re-
lation formed from this relation.

Warshall’s algorithm for finding the transitive closure of a re-
lation

Let R be an equivalence relation. Then the following three
statements are equivalent: (1) a R b; (2) [a]R ∩ [b]R = ∅;
(3) [a]R = [b]R .

The equivalence classes of an equivalence relation on a set A
form a partition of A. Conversely, an equivalence relation
can be constructed from any partition so that the equivalence
classes are the subsets in the partition.

The principle of well-ordered induction
The topological sorting algorithm

Review Questions

1. a) What is a relation on a set?

b) How many relations are there on a set with n elements?

2. a) What is a reflexive relation?

b) What is a symmetric relation?

c) What is an antisymmetric relation?

d) What is a transitive relation?

3. Give an example of a relation on the set {1, 2, 3, 4} that is

a) reflexive, symmetric, and not transitive.

b) not reflexive, symmetric, and transitive.

c) reflexive, antisymmetric, and not transitive.

d) reflexive, symmetric, and transitive.

e) reflexive, antisymmetric, and transitive.

4. a) How many reflexive relations are there on a set with n
elements?

b) How many symmetric relations are there on a set with
n elements?

c) How many antisymmetric relations are there on a set
with n elements?

5. a) Explain how an n-ary relation can be used to represent
information about students at a university.

b) How can the 5-ary relation containing names of stu-
dents, their addresses, telephone numbers, majors, and
grade point averages be used to form a 3-ary relation
containing the names of students, their majors, and
their grade point averages?

c) How can the 4-ary relation containing names of stu-
dents, their addresses, telephone numbers, and majors
and the 4-ary relation containing names of students,
their student numbers, majors, and numbers of credit
hours be combined into a single n-ary relation?

6. a) Explain how to use a zero–one matrix to represent a
relation on a finite set.

b) Explain how to use the zero–one matrix representing a
relation to determine whether the relation is reflexive,
symmetric, and/or antisymmetric.

7. a) Explain how to use a directed graph to represent a re-
lation on a finite set.

b) Explain how to use the directed graph representing a
relation to determine whether a relation is reflexive,
symmetric, and/or antisymmetric.

8. a) Define the reflexive closure and the symmetric closure
of a relation.

b) How can you construct the reflexive closure of a rela-
tion?

c) How can you construct the symmetric closure of a re-
lation?

d) Find the reflexive closure and the symmetric closure
of the relation {(1, 2), (2, 3), (2, 4), (3, 1)} on the set
{1, 2, 3, 4}.

9. a) Define the transitive closure of a relation.

b) Can the transitive closure of a relation be obtained by
including all pairs (a, c) such that (a, b) and (b, c) be-
long to the relation?

Supplementary Exercises 635

c) Describe two algorithms for finding the transitive clo-
sure of a relation.

d) Find the transitive closure of the relation
{(1,1), (1,3), (2,1), (2,3), (2,4), (3,2), (3,4), (4,1)}.

10. a) Define an equivalence relation.
b) Which relations on the set {a, b, c, d} are equivalence

relations and contain (a, b) and (b, d)?

11. a) Show that congruence modulom is an equivalence re-
lation whenever m is a positive integer.

b) Show that the relation {(a, b) | a ≡ ±b (mod 7)} is an
equivalence relation on the set of integers.

12. a) What are the equivalence classes of an equivalence re-
lation?

b) What are the equivalence classes of the “congruent
modulo 5” relation?

c) What are the equivalence classes of the equivalence
relation in Question 11(b)?

13. Explain the relationship between equivalence relations on
a set and partitions of this set.

14. a) Define a partial ordering.
b) Show that the divisibility relation on the set of positive

integers is a partial order.

15. Explain how partial orderings on the sets A1 and A2 can
be used to define a partial ordering on the set A1 × A2.

16. a) Explain how to construct the Hasse diagram of a partial
order on a finite set.

b) Draw the Hasse diagram of the divisibility relation on
the set {2, 3, 5, 9, 12, 15, 18}.

17. a) Define a maximal element of a poset and the greatest
element of a poset.

b) Give an example of a poset that has three maximal
elements.

c) Give an example of a poset with a greatest element.

18. a) Define a lattice.

b) Give an example of a poset with five elements that is
a lattice and an example of a poset with five elements
that is not a lattice.

19. a) Show that every finite subset of a lattice has a greatest
lower bound and a least upper bound.

b) Show that every lattice with a finite number of elements
has a least element and a greatest element.

20. a) Define a well-ordered set.

b) Describe an algorithm for producing a totally ordered
set compatible with a given partially ordered set.

c) Explain how the algorithm from (b) can be used to or-
der the tasks in a project if tasks are done one at a time
and each task can be done only after one or more of
the other tasks have been completed.

Supplementary Exercises

1. Let S be the set of all strings of English letters. Determine
whether these relations are reflexive, irreflexive, symmet-
ric, antisymmetric, and/or transitive.

a) R1 = {(a, b) | a and b have no letters in common}

b) R2 = {(a, b) | a and b are not the same length}

c) R3 = {(a, b) | a is longer than b}

2. Construct a relation on the set {a, b, c, d} that is

a) reflexive, symmetric, but not transitive.

b) irreflexive, symmetric, and transitive.

c) irreflexive, antisymmetric, and not transitive.

d) reflexive, neither symmetric nor antisymmetric, and
transitive.

e) neither reflexive, irreflexive, symmetric, antisymmet-
ric, nor transitive.

3. Show that the relation R on Z×Z defined by
(a, b) R (c, d) if and only if a + d = b + c is an equiva-
lence relation.

4. Show that a subset of an antisymmetric relation is also
antisymmetric.

5. LetR be a reflexive relation on a setA. Show thatR ⊆ R2.

6. Suppose that R1 and R2 are reflexive relations on a setA.
Show that R1 ⊕ R2 is irreflexive.

7. Suppose that R1 and R2 are reflexive relations on a setA.
Is R1 ∩ R2 also reflexive? Is R1 ∪ R2 also reflexive?

8. Suppose that R is a symmetric relation on a set A. Is R
also symmetric?

9. Let R1 and R2 be symmetric relations. Is R1 ∩ R2 also
symmetric? Is R1 ∪ R2 also symmetric?

10. A relationR is called circular if aRb and bRc imply that
cRa. Show that R is reflexive and circular if and only if
it is an equivalence relation.

11. Show that a primary key in an n-ary relation is a primary
key in any projection of this relation that contains this key
as one of its fields.

12. Is the primary key in an n-ary relation also a primary
key in a larger relation obtained by taking the join of this
relation with a second relation?

13. Show that the reflexive closure of the symmetric closure
of a relation is the same as the symmetric closure of its
reflexive closure.

14. Let R be the relation on the set of all mathematicians that
contains the ordered pair (a, b) if and only if a and b have
written a published mathematical paper together.

a) Describe the relation R2.

b) Describe the relation R∗.

c) The Erdős number of a mathematician is 1 if this
mathematician wrote a paper with the prolific Hun-
garian mathematician Paul Erdős, it is 2 if this math-
ematician did not write a joint paper with Erdős but
wrote a joint paper with someone who wrote a joint
paper with Erdős, and so on (except that the Erdős
number of Erdős himself is 0). Give a definition of the
Erdős number in terms of paths in R.

636 9 / Relations

15. a) Give an example to show that the transitive closure
of the symmetric closure of a relation is not necessar-
ily the same as the symmetric closure of the transitive
closure of this relation.

b) Show, however, that the transitive closure of the sym-
metric closure of a relation must contain the symmetric
closure of the transitive closure of this relation.

16. a) Let S be the set of subroutines of a computer pro-
gram. Define the relation R by PRQ if subroutine P

calls subroutine Q during its execution. Describe the
transitive closure of R.

b) For which subroutines P does (P,P) belong to the
transitive closure of R?

c) Describe the reflexive closure of the transitive closure
of R.

17. Suppose thatR and S are relations on a setAwithR ⊆ S
such that the closures of R and S with respect to a prop-
erty P both exist. Show that the closure of R with respect
to P is a subset of the closure of S with respect to P.

18. Show that the symmetric closure of the union of two re-
lations is the union of their symmetric closures.

∗19. Devise an algorithm, based on the concept of interior ver-
tices, that finds the length of the longest path between two
vertices in a directed graph, or determines that there are
arbitrarily long paths between these vertices.

20. Which of these are equivalence relations on the set of all
people?

a) {(x, y) | x and y have the same sign of the zodiac}

b) {(x, y) | x and y were born in the same year}

c) {(x, y) | x and y have been in the same city}
∗21. How many different equivalence relations with exactly

three different equivalence classes are there on a set with
five elements?

22. Show that {(x, y) | x − y ∈ Q} is an equivalence relation
on the set of real numbers, where Q denotes the set of
rational numbers. What are [1], [1

2
], and [π]?

23. Suppose that P1 = {A1, A2, . . . , Am} and P2 =

{B1, B2, . . . , Bn} are both partitions of the set S. Show
that the collection of nonempty subsets of the form
Ai ∩ Bj is a partition of S that is a refinement of both P1

and P2 (see the preamble to Exercise 49 of Section 9.5).

∗24. Show that the transitive closure of the symmetric closure
of the reflexive closure of a relation R is the smallest
equivalence relation that contains R.

25. Let R(S) be the set of all relations on a set S. Define the
relation � on R(S) by R1 � R2 if R1 ⊆ R2, where R1

andR2 are relations on S. Show that (R(S), �) is a poset.

26. Let P(S) be the set of all partitions of the set S. Define the
relation � on P(S) by P1 � P2 if P1 is a refinement of
P2 (see Exercise 49 of Section 9.5). Show that (P(S), �)
is a poset.

PAUL ERDŐS (1913–1996) Paul Erdős, born in Budapest, Hungary, was the son of two high school mathe-
matics teachers. He was a child prodigy; at age 3 he could multiply three-digit numbers in his head, and at 4 he
discovered negative numbers on his own. Because his mother did not want to expose him to contagious diseases,
he was mostly home-schooled. At 17 Erdős entered Eőtvős University, graduating four years later with a Ph.D.
in mathematics. After graduating he spent four years at Manchester, England, on a postdoctoral fellowship. In
1938 he went to the United States because of the difficult political situation in Hungary, especially for Jews.
He spent much of his time in the United States, except for 1954 to 1962, when he was banned as part of the
paranoia of the McCarthy era. He also spent considerable time in Israel.

Erdős made many significant contributions to combinatorics and to number theory. One of the discoveries
of which he was most proud is his elementary proof (in the sense that it does not use any complex analysis) of the prime number
theorem, which provides an estimate for the number of primes not exceeding a fixed positive integer. He also participated in the
modern development of the Ramsey theory.

Erdős traveled extensively throughout the world to work with other mathematicians, visiting conferences, universities, and
research laboratories. He had no permanent home. He devoted himself almost entirely to mathematics, traveling from one mathe-
matician to the next, proclaiming “My brain is open.” Erdős was the author or coauthor of more than 1500 papers and had more
than 500 coauthors. Copies of his articles are kept by Ron Graham, a famous discrete mathematician with whom he collaborated
extensively and who took care of many of his worldly needs.

Erdős offered rewards, ranging from $10 to $10,000, for the solution of problems that he found particularly interesting, with the
size of the reward depending on the difficulty of the problem. He paid out close to $4000. Erdős had his own special language, using
such terms as “epsilon” (child), “boss” (woman), “slave” (man), “captured” (married), “liberated” (divorced), “Supreme Fascist”
(God), “Sam” (United States), and “Joe” (Soviet Union). Although he was curious about many things, he concentrated almost all
his energy on mathematical research. He had no hobbies and no full-time job. He never married and apparently remained celibate.
Erdős was extremely generous, donating much of the money he collected from prizes, awards, and stipends for scholarships and to
worthwhile causes. He traveled extremely lightly and did not like having many material possessions.

Supplementary Exercises 637

27. Schedule the tasks needed to cook a Chinese meal by
specifying their order, if the Hasse diagram representing
these tasks is as shown here.

Serve

Cut
fish

Clean
fish

Cut ginger
and garlic

Make
garnishes

Steam
 rice

Find recipe

Buy groceries

Buy seafood

Arrange on platters

Cook in wok

 Chop
 water
chestnuts

Wash
vegetables

Wash
shellfish

A subset of a poset such that every two elements of this sub-
set are comparable is called a chain. A subset of a poset is
called an antichain if every two elements of this subset are
incomparable.

28. Find all chains in the posets with the Hasse diagrams
shown in Exercises 25–27 in Section 9.6.

29. Find all antichains in the posets with the Hasse diagrams
shown in Exercises 25–27 in Section 9.6.

30. Find an antichain with the greatest number of elements
in the poset with the Hasse diagram of Exercise 32 in
Section 9.6.

31. Show that every maximal chain in a finite poset (S, �)
contains a minimal element of S. (A maximal chain is a
chain that is not a subset of a larger chain.)

∗∗32. Show that every finite poset can be partitioned into k
chains, where k is the largest number of elements in an
antichain in this poset.

∗33. Show that in any group ofmn+ 1 people there is either a
list ofm+ 1 people where a person in the list (except for
the first person listed) is a descendant of the previous per-
son on the list, or there are n+ 1 people such that none of
these people is a descendant of any of the other n people.
[Hint: Use Exercise 32.]

Suppose that (S, �) is a well-founded partially ordered set.
The principle of well-founded induction states that P(x) is
true for all x ∈ S if ∀x(∀y(y ≺ x → P(y))→ P(x)).

34. Show that no separate basis case is needed for the prin-
ciple of well-founded induction. That is, P(u) is true for
all minimal elements u in S if ∀x(∀y(y ≺ x → P(y))→

P(x)).

∗35. Show that the principle of well-founded induction is valid.

A relation R on a set A is a quasi-ordering on A if R is
reflexive and transitive.

36. Let R be the relation on the set of all functions from
Z+ to Z+ such that (f, g) belongs to R if and only if f
is O(g). Show that R is a quasi-ordering.

37. Let R be a quasi-ordering on a setA. Show that R ∩ R−1

is an equivalence relation.

∗38. Let R be a quasi-ordering and let S be the relation on the
set of equivalence classes of R ∩ R−1 such that (C,D)
belongs to S, where C and D are equivalence classes
of R, if and only if there are elements c of C and d of
D such that (c, d) belongs to R. Show that S is a partial
ordering.

LetL be a lattice. Define the meet (∧) and join (∨) operations
by x ∧ y = glb(x, y) and x ∨ y = lub(x, y).

39. Show that the following properties hold for all elements
x, y, and z of a lattice L.

a) x ∧ y = y ∧ x and x ∨ y = y ∨ x (commutative

laws)

b) (x ∧ y) ∧ z = x ∧ (y ∧ z) and (x ∨ y) ∨ z = x ∨

(y ∨ z) (associative laws)

c) x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x (absorption

laws)

d) x ∧ x = x and x ∨ x = x (idempotent laws)

40. Show that if x and y are elements of a lattice L, then
x ∨ y = y if and only if x ∧ y = x.

A lattice L is bounded if it has both an upper bound, de-
noted by 1, such that x � 1 for all x ∈ L and a lower bound,
denoted by 0, such that 0 � x for all x ∈ L.

41. Show that if L is a bounded lattice with upper bound
1 and lower bound 0 then these properties hold for all
elements x ∈ L.

a) x ∨ 1 = 1 b) x ∧ 1 = x

c) x ∨ 0 = x d) x ∧ 0 = 0

42. Show that every finite lattice is bounded.

A lattice is called distributive if x ∨ (y ∧ z) = (x ∨ y)∧
(x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all x, y, and
z in L.

∗43. Give an example of a lattice that is not distributive.

44. Show that the lattice (P (S),⊆) where P(S) is the power
set of a finite set S is distributive.

45. Is the lattice (Z+, |) distributive?

The complement of an element a of a bounded lattice L with
upper bound 1 and lower bound 0 is an element b such that
a ∨ b = 1 and a ∧ b = 0. Such a lattice is complemented if
every element of the lattice has a complement.

46. Give an example of a finite lattice where at least one el-
ement has more than one complement and at least one
element has no complement.

47. Show that the lattice (P (S),⊆) where P(S) is the power
set of a finite set S is complemented.

638 9 / Relations

∗48. Show that if L is a finite distributive lattice, then an ele-
ment of L has at most one complement.

The game of Chomp, introduced in Example 12 in Section 1.8,
can be generalized for play on any finite partially ordered set
(S,)with a least element a. In this game, a move consists of
selecting an element x in S and removing x and all elements
larger than it from S. The loser is the player who is forced to
select the least element a.

49. Show that the game of Chomp with cookies arranged in
an m× n rectangular grid, described in Example 12 in
Section 1.8, is the same as the game of Chomp on the
poset (S, |), where S is the set of all positive integers that
divide pm−1qn−1, where p and q are distinct primes.

50. Show that if (S,) has a greatest element b, then a win-
ning strategy for Chomp on this poset exists. [Hint: Gen-
eralize the argument in Example 12 in Section 1.8.]

Computer Projects

Write programs with these input and output.

1. Given the matrix representing a relation on a finite set, de-
termine whether the relation is reflexive and/or irreflexive.

2. Given the matrix representing a relation on a finite set,
determine whether the relation is symmetric and/or anti-
symmetric.

3. Given the matrix representing a relation on a finite set,
determine whether the relation is transitive.

4. Given a positive integer n, display all the relations on a set
with n elements.

∗5. Given a positive integer n, determine the number of tran-
sitive relations on a set with n elements.

∗6. Given a positive integer n, determine the number of equiv-
alence relations on a set with n elements.

∗7. Given a positive integer n, display all the equivalence re-
lations on the set of the n smallest positive integers.

8. Given an n-ary relation, find the projection of this relation
when specified fields are deleted.

9. Given anm-ary relation and an n-ary relation, and a set of
common fields, find the join of these relations with respect
to these common fields.

10. Given the matrix representing a relation on a finite set,
find the matrix representing the reflexive closure of this
relation.

11. Given the matrix representing a relation on a finite set,
find the matrix representing the symmetric closure of this
relation.

12. Given the matrix representing a relation on a finite set,
find the matrix representing the transitive closure of this
relation by computing the join of the Boolean powers of
the matrix representing the relation.

13. Given the matrix representing a relation on a finite set,
find the matrix representing the transitive closure of this
relation using Warshall’s algorithm.

14. Given the matrix representing a relation on a finite set, find
the matrix representing the smallest equivalence relation
containing this relation.

15. Given a partial ordering on a finite set, find a total ordering
compatible with it using topological sorting.

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. Display all the different relations on a set with four ele-
ments.

2. Display all the different reflexive and symmetric relations
on a set with six elements.

3. Display all the reflexive and transitive relations on a set
with five elements.

∗4. Determine how many transitive relations there are on a set
with n elements for all positive integers n with n ≤ 7.

5. Find the transitive closure of a relation of your choice on
a set with at least 20 elements. Either use a relation that

corresponds to direct links in a particular transportation
or communications network or use a randomly generated
relation.

6. Compute the number of different equivalence relations on a
set with n elements for all positive integers n not exceeding
20.

7. Display all the equivalence relations on a set with seven
elements.

∗8. Display all the partial orders on a set with five elements.
∗9. Display all the lattices on a set with five elements.

Writing Projects 639

Writing Projects

Respond to these with essays using outside sources.

1. Discuss the concept of a fuzzy relation. How are fuzzy
relations used?

2. Describe the basic principles of relational databases, go-
ing beyond what was covered in Section 9.2. How widely
used are relational databases as compared with other types
of databases?

3. Look up the original papers by Warshall and by Roy (in
French) in which they develop algorithms for finding tran-
sitive closures. Discuss their approaches. Why do you
suppose that what we call Warshall’s algorithm was dis-
covered independently by more than one person?

4. Describe how equivalence classes can be used to define
the rational numbers as classes of pairs of integers and
how the basic arithmetic operations on rational numbers
can be defined following this approach. (See Exercise 40
in Section 9.5.)

5. Explain how Helmut Hasse used what we now call Hasse
diagrams.

6. Describe some of the mechanisms used to enforce infor-
mation flow policies in computer operating systems.

7. Discuss the use of the Program Evaluation and Review
Technique (PERT) to schedule the tasks of a large com-
plicated project. How widely is PERT used?

8. Discuss the use of the Critical Path Method (CPM) to find
the shortest time for the completion of a project. How
widely is CPM used?

9. Discuss the concept of duality in a lattice. Explain how
duality can be used to establish new results.

10. Explain what is meant by a modular lattice. Describe
some of the properties of modular lattices and describe
how modular lattices arise in the study of projective ge-
ometry.

10
C H A P T E R

Graphs

10.1 Graphs and
Graph Models

10.2 Graph
Terminology
and Special
Types of
Graphs

10.3 Representing
Graphs and
Graph
Isomorphism

10.4 Connectivity

10.5 Euler and
Hamilton
Paths

10.6 Shortest-Path
Problems

10.7 Planar Graphs

10.8 Graph
Coloring

Graphs are discrete structures consisting of vertices and edges that connect these vertices.
There are different kinds of graphs, depending on whether edges have directions, whether

multiple edges can connect the same pair of vertices, and whether loops are allowed. Problems
in almost every conceivable discipline can be solved using graph models. We will give examples
to illustrate how graphs are used as models in a variety of areas. For instance, we will show how
graphs are used to represent the competition of different species in an ecological niche, how
graphs are used to represent who influences whom in an organization, and how graphs are used
to represent the outcomes of round-robin tournaments. We will describe how graphs can be used
to model acquaintanceships between people, collaboration between researchers, telephone calls
between telephone numbers, and links between websites. We will show how graphs can be used
to model roadmaps and the assignment of jobs to employees of an organization.

Using graph models, we can determine whether it is possible to walk down all the streets
in a city without going down a street twice, and we can find the number of colors needed to
color the regions of a map. Graphs can be used to determine whether a circuit can be imple-
mented on a planar circuit board. We can distinguish between two chemical compounds with the
same molecular formula but different structures using graphs. We can determine whether two
computers are connected by a communications link using graph models of computer networks.
Graphs with weights assigned to their edges can be used to solve problems such as finding the
shortest path between two cities in a transportation network. We can also use graphs to schedule
exams and assign channels to television stations. This chapter will introduce the basic concepts
of graph theory and present many different graph models. To solve the wide variety of problems
that can be studied using graphs, we will introduce many different graph algorithms. We will
also study the complexity of these algorithms.

10.1 Graphs and Graph Models

We begin with the definition of a graph.

DEFINITION 1 A graph G = (V ,E) consists of V , a nonempty set of vertices (or nodes) and E, a set of
edges. Each edge has either one or two vertices associated with it, called its endpoints. An
edge is said to connect its endpoints.

Remark: The set of vertices V of a graph G may be infinite. A graph with an infinite vertex
set or an infinite number of edges is called an infinite graph, and in comparison, a graph with
a finite vertex set and a finite edge set is called a finite graph. In this book we will usually
consider only finite graphs.

Now suppose that a network is made up of data centers and communication links between
computers. We can represent the location of each data center by a point and each communications
link by a line segment, as shown in Figure 1.

This computer network can be modeled using a graph in which the vertices of the graph
represent the data centers and the edges represent communication links. In general, we visualize

641

642 10 / Graphs

San Francisco

Los Angeles

Denver

Detroit

Chicago

New York

Washington

FIGURE 1 A Computer Network.

graphs by using points to represent vertices and line segments, possibly curved, to represent
edges, where the endpoints of a line segment representing an edge are the points representing
the endpoints of the edge. When we draw a graph, we generally try to draw edges so that they do
not cross. However, this is not necessary because any depiction using points to represent vertices
and any form of connection between vertices can be used. Indeed, there are some graphs that
cannot be drawn in the plane without edges crossing (see Section 10.7). The key point is that
the way we draw a graph is arbitrary, as long as the correct connections between vertices are
depicted.

Note that each edge of the graph representing this computer network connects two different
vertices. That is, no edge connects a vertex to itself. Furthermore, no two different edges connect
the same pair of vertices. A graph in which each edge connects two different vertices and where
no two edges connect the same pair of vertices is called a simple graph. Note that in a simple
graph, each edge is associated to an unordered pair of vertices, and no other edge is associated
to this same edge. Consequently, when there is an edge of a simple graph associated to {u, v},
we can also say, without possible confusion, that {u, v} is an edge of the graph.

A computer network may contain multiple links between data centers, as shown in Figure 2.
To model such networks we need graphs that have more than one edge connecting the same
pair of vertices. Graphs that may have multiple edges connecting the same vertices are called
multigraphs. When there arem different edges associated to the same unordered pair of vertices
{u, v}, we also say that {u, v} is an edge of multiplicity m. That is, we can think of this set of
edges as m different copies of an edge {u, v}.

San Francisco

Los Angeles

Denver

Detroit
Chicago New York

Washington

FIGURE 2 A Computer Network with Multiple Links between Data Centers.

Sometimes a communications link connects a data center with itself, perhaps a feedback
loop for diagnostic purposes. Such a network is illustrated in Figure 3. To model this network we

San Francisco

Los Angeles

Denver

Detroit
Chicago New York

Washington

FIGURE 3 A Computer Network with Diagnostic Links.

10.1 Graphs and Graph Models 643

San Francisco

Los Angeles

Denver

Detroit
Chicago New York

Washington

FIGURE 4 A Communications Network with One-Way Communications Links.

need to include edges that connect a vertex to itself. Such edges are called loops, and sometimes
we may even have more than one loop at a vertex. Graphs that may include loops, and possibly
multiple edges connecting the same pair of vertices or a vertex to itself, are sometimes called
pseudographs.

So far the graphs we have introduced are undirected graphs. Their edges are also said
to be undirected. However, to construct a graph model, we may find it necessary to assign
directions to the edges of a graph. For example, in a computer network, some links may operate
in only one direction (such links are called single duplex lines). This may be the case if there is
a large amount of traffic sent to some data centers, with little or no traffic going in the opposite
direction. Such a network is shown in Figure 4.

To model such a computer network we use a directed graph. Each edge of a directed graph
is associated to an ordered pair. The definition of directed graph we give here is more general
than the one we used in Chapter 9, where we used directed graphs to represent relations.

DEFINITION 2 A directed graph (or digraph) (V ,E) consists of a nonempty set of vertices V and a set of
directed edges (or arcs) E. Each directed edge is associated with an ordered pair of vertices.
The directed edge associated with the ordered pair (u, v) is said to start at u and end at v.

When we depict a directed graph with a line drawing, we use an arrow pointing from u to v to
indicate the direction of an edge that starts at u and ends at v. A directed graph may contain loops
and it may contain multiple directed edges that start and end at the same vertices.A directed graph
may also contain directed edges that connect vertices u and v in both directions; that is, when a
digraph contains an edge from u to v, it may also contain one or more edges from v to u. Note that
we obtain a directed graph when we assign a direction to each edge in an undirected graph. When
a directed graph has no loops and has no multiple directed edges, it is called a simple directed
graph. Because a simple directed graph has at most one edge associated to each ordered pair
of vertices (u, v), we call (u, v) an edge if there is an edge associated to it in the graph.

In some computer networks, multiple communication links between two data centers may
be present, as illustrated in Figure 5. Directed graphs that may have multiple directed edges
from a vertex to a second (possibly the same) vertex are used to model such networks. We called
such graphs directed multigraphs. When there are m directed edges, each associated to an
ordered pair of vertices (u, v), we say that (u, v) is an edge of multiplicity m.

San Francisco

Los Angeles

Denver

Detroit
Chicago New York

Washington

FIGURE 5 A Computer Network with Multiple One-Way Links.

644 10 / Graphs

TABLE 1 Graph Terminology.

Type Edges Multiple Edges Allowed? Loops Allowed?

Simple graph Undirected No No

Multigraph Undirected Yes No

Pseudograph Undirected Yes Yes

Simple directed graph Directed No No

Directed multigraph Directed Yes Yes

Mixed graph Directed and undirected Yes Yes

For some models we may need a graph where some edges are undirected, while others are
directed.A graph with both directed and undirected edges is called amixed graph. For example,
a mixed graph might be used to model a computer network containing links that operate in both
directions and other links that operate only in one direction.

This terminology for the various types of graphs is summarized in Table 1. We will some-
times use the term graph as a general term to describe graphs with directed or undirected edges
(or both), with or without loops, and with or without multiple edges. At other times, when the
context is clear, we will use the term graph to refer only to undirected graphs.

Because of the relatively modern interest in graph theory, and because it has applications to a
wide variety of disciplines, many different terminologies of graph theory have been introduced.
The reader should determine how such terms are being used whenever they are encountered.
The terminology used by mathematicians to describe graphs has been increasingly standardized,
but the terminology used to discuss graphs when they are used in other disciplines is still quite
varied. Although the terminology used to describe graphs may vary, three key questions can
help us understand the structure of a graph:

� Are the edges of the graph undirected or directed (or both)?

� If the graph is undirected, are multiple edges present that connect the same pair of vertices?
If the graph is directed, are multiple directed edges present?

� Are loops present?

Answering such questions helps us understand graphs. It is less important to remember the
particular terminology used.

Graph Models

Graphs are used in a wide variety of models. We began this section by describing how to construct
graph models of communications networks linking data centers. We will complete this section
by describing some diverse graph models for some interesting applications. We will return to
many of these applications later in this chapter and in Chapter 11. We will introduce additional
graph models in subsequent sections of this and later chapters. Also, recall that directed graph

Can you find a subject to

which graph theory has

not been applied?

models for some applications were introduced in Chapter 9. When we build a graph model, we
need to make sure that we have correctly answered the three key questions we posed about the
structure of a graph.

SOCIAL NETWORKS Graphs are extensively used to model social structures based on dif-
ferent kinds of relationships between people or groups of people. These social structures, and the
graphs that represent them, are known as social networks. In these graph models, individuals
or organizations are represented by vertices; relationships between individuals or organizations
are represented by edges. The study of social networks is an extremely active multidisciplinary
area, and many different types of relationships between people have been studied using them.

10.1 Graphs and Graph Models 645

Jan Todd

Eduardo

Kamlesh

Lila

Liz

Kari Shaquira

Joel

Koko

ChingKamini
Amy

Gail

Steve

Paula

FIGURE 6 AnAcquaintanceship Graph.

Linda Brian

Deborah Fred Yvonne

FIGURE 7 An Influence Graph.

We will introduce some of the most commonly studied social networks here. More information
about social networks can be found in [Ne10] and [EaKl10].

EXAMPLE 1 Acquaintanceship and Friendship Graphs We can use a simple graph to represent whether
two people know each other, that is, whether they are acquainted, or whether they are friends
(either in the real world in the virtual world via a social networking site such as Facebook).
Each person in a particular group of people is represented by a vertex. An undirected edge is
used to connect two people when these people know each other, when we are concerned only
with acquaintanceship, or whether they are friends. No multiple edges and usually no loops are
used. (If we want to include the notion of self-knowledge, we would include loops.) A small
acquaintanceship graph is shown in Figure 6. The acquaintanceship graph of all people in the
world has more than six billion vertices and probably more than one trillion edges! We will
discuss this graph further in Section 10.4. ▲

EXAMPLE 2 Influence Graphs In studies of group behavior it is observed that certain people can influence
the thinking of others. A directed graph called an influence graph can be used to model this
behavior. Each person of the group is represented by a vertex. There is a directed edge from
vertex a to vertex bwhen the person represented by vertex a can influence the person represented
by vertex b. This graph does not contain loops and it does not contain multiple directed edges.
An example of an influence graph for members of a group is shown in Figure 7. In the group
modeled by this influence graph, Deborah cannot be influenced, but she can influence Brian,
Fred, and Linda. Also, Yvonne and Brian can influence each other. ▲

EXAMPLE 3 Collaboration Graphs A collaboration graph is used to model social networks where two
people are related by working together in a particular way. Collaboration graphs are simple
graphs, as edges in these graphs are undirected and there are no multiple edges or loops. Vertices
in these graphs represent people; two people are connected by an undirected edge when the
people have collaborated. There are no loops nor multiple edges in these graphs. TheHollywood
graph is a collaborator graph that represents actors by vertices and connects two actors with
an edge if they have worked together on a movie or television show. The Hollywood graph is a
huge graph with more than 1.5 million vertices (as of early 2011). We will discuss some aspects
of the Hollywood graph later in Section 10.4.

In an academic collaboration graph, vertices represent people (perhaps restricted to mem-
bers of a certain academic community), and edges link two people if they have jointly published
a paper. The collaboration graph for people who have published research papers in mathematics
was found in 2004 to have more than 400,000 vertices and 675,000 edges, and these numbers
have grown considerably since then. We will have more to say about this graph in Section 10.4.
Collaboration graphs have also been used in sports, where two professional athletes are consid-
ered to have collaborated if they have ever played on the same team during a regular season of
their sport. ▲

646 10 / Graphs

COMMUNICATIONNETWORKS We can model different communications networks using
vertices to represent devices and edges to represent the particular type of communications links
of interest. We have already modeled a data network in the first part of this section.

EXAMPLE 4 Call Graphs Graphs can be used to model telephone calls made in a network, such as a long-
distance telephone network. In particular, a directed multigraph can be used to model calls where
each telephone number is represented by a vertex and each telephone call is represented by a
directed edge. The edge representing a call starts at the telephone number from which the call
was made and ends at the telephone number to which the call was made. We need directed edges
because the direction in which the call is made matters. We need multiple directed edges because
we want to represent each call made from a particular telephone number to a second number.

A small telephone call graph is displayed in Figure 8(a), representing seven telephone
numbers. This graph shows, for instance, that three calls have been made from 732-555-1234
to 732-555-9876 and two in the other direction, but no calls have been made from 732-555-4444
to any of the other six numbers except 732-555-0011. When we care only whether there has been
a call connecting two telephone numbers, we use an undirected graph with an edge connecting
telephone numbers when there has been a call between these numbers. This version of the call
graph is displayed in Figure 8(b).

Call graphs that model actual calling activities can be huge. For example, one call graph
studied at AT&T, which models calls during 20 days, has about 290 million vertices and 4 billion
edges. We will discuss call graphs further in Section 10.4. ▲

INFORMATION NETWORKS Graphs can be used to model various networks that link
particular types of information. Here, we will describe how to model the World Wide Web using
a graph. We will also describe how to use a graph to model the citations in different types of
documents.

EXAMPLE 5 TheWeb Graph The World Wide Web can be modeled as a directed graph where each Web
page is represented by a vertex and where an edge starts at the Web page a and ends at the
Web page b if there is a link on a pointing to b. Because new Web pages are created and others
removed somewhere on the Web almost every second, the Web graph changes on an almost
continual basis. Many people are studying the properties of the Web graph to better understand
the nature of the Web. We will return to Web graphs in Section 10.4, and in Chapter 11 we will
explain how the Web graph is used by the Web crawlers that search engines use to create indexes
of Web pages. ▲

EXAMPLE 6 Citation Graphs Graphs can be used to represent citations in different types of documents,
including academic papers, patents, and legal opinions. In such graphs, each document is rep-
resented by a vertex, and there is an edge from one document to a second document if the

(a)

732-555-1234

732-555-1001

732-555-6666

732-555-0011

732-555-4444

732-555-9876

(b)

732-555-1234

732-555-1001

732-555-6666

732-555-0069732-555-0069

732-555-0011

732-555-4444

732-555-9876

FIGURE 8 A Call Graph.

10.1 Graphs and Graph Models 647

first document cites the second in its citation list. (In an academic paper, the citation list is the
bibliography, or list of references; in a patent it is the list of previous patents that are cited; and
in a legal opinion it is the list of previous opinions cited.) A citation graph is a directed graph
without loops or multiple edges. ▲

SOFTWARE DESIGN APPLICATIONS Graph models are useful tools in the design of
software. We will briefly describe two of these models here.

EXAMPLE 7 ModuleDependencyGraphs One of the most important tasks in designing software is how to
structure a program into different parts, or modules. Understanding how the different modules of
a program interact is essential not only for program design, but also for testing and maintenance
of the resulting software.Amodule dependency graph provides a useful tool for understanding
how different modules of a program interact. In a program dependency graph, each module is
represented by a vertex. There is a directed edge from a module to a second module if the second
module depends on the first. An example of a program dependency graph for a web browser is
shown in Figure 9. ▲

EXAMPLE 8 Precedence Graphs and Concurrent Processing Computer programs can be executed more
rapidly by executing certain statements concurrently. It is important not to execute a statement
that requires results of statements not yet executed. The dependence of statements on previous
statements can be represented by a directed graph. Each statement is represented by a vertex,
and there is an edge from one statement to a second statement if the second statement cannot
be executed before the first statement. This resulting graph is called a precedence graph. A
computer program and its graph are displayed in Figure 10. For instance, the graph shows that
statement S5 cannot be executed before statements S1, S2, and S4 are executed. ▲

TRANSPORTATION NETWORKS We can use graphs to model many different types of
transportation networks, including road, air, and rail networks, as well shipping networks.

EXAMPLE 9 Airline Routes We can model airline networks by representing each airport by a vertex. In
particular, we can model all the flights by a particular airline each day using a directed edge
to represent each flight, going from the vertex representing the departure airport to the vertex
representing the destination airport. The resulting graph will generally be a directed multigraph,
as there may be multiple flights from one airport to some other airport during the same day. ▲

EXAMPLE 10 Road Networks Graphs can be used to model road networks. In such models, vertices repre-
sent intersections and edges represent roads. When all roads are two-way and there is at most
one road connecting two intersections, we can use a simple undirected graph to model the road
network. However, we will often want to model road networks when some roads are one-way
and when there may be more than one road between two intersections. To build such models,
we use undirected edges to represent two-way roads and we use directed edges to represent

main

page network

parserdisplay protocol

abstract
syntax tree

FIGURE 9 A Module Dependency Graph.

S1

S2

S3

S4

S5

S6

a := 0

b := 1

c := a + 1

d := b + a

e := d + 1

e := c + d

S1

S6

S5

S4
S3

S2

FIGURE 10 A Precedence Graph.

648 10 / Graphs

one-way roads. Multiple undirected edges represent multiple two-way roads connecting the
same two intersections. Multiple directed edges represent multiple one-way roads that start at
one intersection and end at a second intersection. Loops represent loop roads. Mixed graphs are
needed to model road networks that include both one-way and two-way roads. ▲

BIOLOGICAL NETWORKS Many aspects of the biological sciences can be modeled using
graphs.

EXAMPLE 11 NicheOverlapGraphs in Ecology Graphs are used in many models involving the interaction
of different species of animals. For instance, the competition between species in an ecosystem
can be modeled using a niche overlap graph. Each species is represented by a vertex. An
undirected edge connects two vertices if the two species represented by these vertices compete
(that is, some of the food resources they use are the same). A niche overlap graph is a simple
graph because no loops or multiple edges are needed in this model. The graph in Figure 11
models the ecosystem of a forest. We see from this graph that squirrels and raccoons compete
but that crows and shrews do not. ▲

EXAMPLE 12 Protein Interaction Graphs A protein interaction in a living cell occurs when two or more
proteins in that cell bind to perform a biological function. Because protein interactions are
crucial for most biological functions, many scientists work on discovering new proteins and
understanding interactions between proteins. Protein interactions within a cell can be modeled
using a protein interaction graph (also called a protein–protein interaction network), an
undirected graph in which each protein is represented by a vertex, with an edge connecting the
vertices representing each pair of proteins that interact. It is a challenging problem to determine
genuine protein interactions in a cell, as experiments often produce false positives, which con-
clude that two proteins interact when they really do not. Protein interaction graphs can be used
to deduce important biological information, such as by identifying the most important proteins
for various functions and the functionality of newly discovered proteins.

Because there are thousands of different proteins in a typical cell, the protein interaction
graph of a cell is extremely large and complex. For example, yeast cells have more than 6,000
proteins, and more than 80,000 interactions between them are known, and human cells have
more than 100,000 proteins, with perhaps as many as 1,000,000 interactions between them.
Additional vertices and edges are added to a protein interaction graph when new proteins and
interactions between proteins are discovered. Because of the complexity of protein interac-
tion graphs, they are often split into smaller graphs called modules that represent groups of
proteins that are involved in a particular function of a cell. Figure 12 illustrates a module of
the protein interaction graph described in [Bo04], comprising the complex of proteins that de-
grade RNA in human cells. To learn more about protein interaction graphs, see [Bo04], [Ne10],
and [Hu07]. ▲

Hawk Owl
Raccoon

Crow
Opossum

Squirrel

WoodpeckerShrew
Mouse

FIGURE 11 A Niche Overlap Graph.

Q9Y3A5

RRP42

RRP41

RRP40

RRP46PM/Sci2

RRP44

RRP4

RRP43

FIGURE 12 A Module of a Protein Interaction Graph.

10.1 Graphs and Graph Models 649

Team

1

Team

2

Team

5

Team

4

Team

3

Team

6

FIGURE 13 A Graph

Model of a Round-Robin

Tournament.

Stanford

Georgia
Stanford

Xavier

Stanford

Oklahoma

Connecticut

Stanford

Game winners shown in blue

Oklahoma

Kentucky

Oklahoma

Notre Dame

Xavier

Gonzaga

Kentucky

Nebraska

Connecticut

Iowa State
Connecticut

Florida State

Connecticut

Baylor
Baylor

Tennessee
Baylor

Duke

Florida State

Mississippi State

Duke

San Diego State

FIGURE 14 A Single-Elimination Tournament.

TOURNAMENTS We now give some examples that show how graphs can also be used to
model different kinds of tournaments.

EXAMPLE 13 Round-Robin Tournaments A tournament where each team plays every other team exactly
once and no ties are allowed is called a round-robin tournament. Such tournaments can be
modeled using directed graphs where each team is represented by a vertex. Note that (a, b) is
an edge if team a beats team b. This graph is a simple directed graph, containing no loops or
multiple directed edges (because no two teams play each other more than once). Such a directed
graph model is presented in Figure 13. We see that Team 1 is undefeated in this tournament,
and Team 3 is winless. ▲

EXAMPLE 14 Single-EliminationTournaments A tournament where each contestant is eliminated after one
loss is called a single-elimination tournament. Single-elimination tournaments are often used
in sports, including tennis championships and the yearly NCAA basketball championship. We
can model such a tournament using a vertex to represent each game and a directed edge to connect
a game to the next game the winner of this game played in. The graph in Figure 14 represents
the games played by the final 16 teams in the 2010 NCAA women’s basketball tournament. ▲

Exercises

1. Draw graph models, stating the type of graph (from Ta-
ble 1) used, to represent airline routes where every day
there are four flights from Boston to Newark, two flights
from Newark to Boston, three flights from Newark to Mi-
ami, two flights from Miami to Newark, one flight from
Newark to Detroit, two flights from Detroit to Newark,
three flights from Newark to Washington, two flights from
Washington to Newark, and one flight from Washington
to Miami, with

a) an edge between vertices representing cities that have
a flight between them (in either direction).

b) an edge between vertices representing cities for each
flight that operates between them (in either direction).

c) an edge between vertices representing cities for each
flight that operates between them (in either direction),

plus a loop for a special sightseeing trip that takes off
and lands in Miami.

d) an edge from a vertex representing a city where a flight
starts to the vertex representing the city where it ends.

e) an edge for each flight from a vertex representing a
city where the flight begins to the vertex representing
the city where the flight ends.

2. What kind of graph (from Table 1) can be used to model
a highway system between major cities where

a) there is an edge between the vertices representing
cities if there is an interstate highway between them?

b) there is an edge between the vertices representing
cities for each interstate highway between them?

c) there is an edge between the vertices representing
cities for each interstate highway between them, and
there is a loop at the vertex representing a city if there
is an interstate highway that circles this city?

650 10 / Graphs

For Exercises 3–9, determine whether the graph shown has
directed or undirected edges, whether it has multiple edges,
and whether it has one or more loops. Use your answers to
determine the type of graph in Table 1 this graph is.

3. a b

c d

4. a b

c d

5. a b

c d

6. a b

c d

e

7. b

c

de
a

8. a e

d

cb

9. b

c

d
e

f

a

10. For each undirected graph in Exercises 3–9 that is not
simple, find a set of edges to remove to make it simple.

11. LetG be a simple graph. Show that the relation R on the
set of vertices of G such that uRv if and only if there
is an edge associated to {u, v} is a symmetric, irreflexive
relation on G.

12. LetG be an undirected graph with a loop at every vertex.
Show that the relation R on the set of vertices of G such
that uRv if and only if there is an edge associated to {u, v}
is a symmetric, reflexive relation on G.

13. The intersection graph of a collection of sets A1,
A2, . . . , An is the graph that has a vertex for each of these
sets and has an edge connecting the vertices representing
two sets if these sets have a nonempty intersection. Con-
struct the intersection graph of these collections of sets.

a) A1 = {0, 2, 4, 6, 8}, A2 = {0, 1, 2, 3, 4},
A3 = {1, 3, 5, 7, 9}, A4 = {5, 6, 7, 8, 9},
A5 = {0, 1, 8, 9}

b) A1 = {. . . ,−4,−3,−2,−1, 0},
A2 = {. . . ,−2,−1, 0, 1, 2, . . .},
A3 = {. . . ,−6,−4,−2, 0, 2, 4, 6, . . .},
A4 = {. . . ,−5,−3,−1, 1, 3, 5, . . .},
A5 = {. . . ,−6,−3, 0, 3, 6, . . .}

c) A1 = {x | x < 0},
A2 = {x | −1 < x < 0},
A3 = {x | 0 < x < 1},
A4 = {x | −1 < x < 1},
A5 = {x | x > −1},
A6 = R

14. Use the niche overlap graph in Figure 11 to determine the
species that compete with hawks.

15. Construct a niche overlap graph for six species of birds,
where the hermit thrush competes with the robin and
with the blue jay, the robin also competes with the
mockingbird, the mockingbird also competes with the
blue jay, and the nuthatch competes with the hairy wood-
pecker.

16. Draw the acquaintanceship graph that represents that Tom
and Patricia, Tom and Hope, Tom and Sandy, Tom and
Amy, Tom and Marika, Jeff and Patricia, Jeff and Mary,
Patricia and Hope, Amy and Hope, and Amy and Marika
know each other, but none of the other pairs of people
listed know each other.

17. We can use a graph to represent whether two people were
alive at the same time. Draw such a graph to represent
whether each pair of the mathematicians and computer
scientists with biographies in the first five chapters of
this book who died before 1900 were contemporaneous.
(Assume two people lived at the same time if they were
alive during the same year.)

18. Who can influence Fred and whom can Fred influence in
the influence graph in Example 2?

19. Construct an influence graph for the board members of a
company if the President can influence the Director of Re-
search and Development, the Director of Marketing, and
the Director of Operations; the Director of Research and
Development can influence the Director of Operations;
the Director of Marketing can influence the Director of
Operations; and no one can influence, or be influenced
by, the Chief Financial Officer.

20. Which other teams did Team 4 beat and which teams beat
Team 4 in the round-robin tournament represented by the
graph in Figure 13?

21. In a round-robin tournament the Tigers beat the Blue Jays,
the Tigers beat the Cardinals, the Tigers beat the Orioles,
the Blue Jays beat the Cardinals, the Blue Jays beat the
Orioles, and the Cardinals beat the Orioles. Model this
outcome with a directed graph.

22. Construct the call graph for a set of seven telephone
numbers 555-0011, 555-1221, 555-1333, 555-8888,
555-2222, 555-0091, and 555-1200 if there were three
calls from 555-0011 to 555-8888 and two calls from
555-8888 to 555-0011, two calls from 555-2222 to
555-0091, two calls from 555-1221 to each of the
other numbers, and one call from 555-1333 to each of
555-0011, 555-1221, and 555-1200.

23. Explain how the two telephone call graphs for calls made
during the month of January and calls made during the
month of February can be used to determine the new tele-
phone numbers of people who have changed their tele-
phone numbers.

10.2 Graph Terminology and Special Types of Graphs 651

24. a) Explain how graphs can be used to model electronic
mail messages in a network. Should the edges be di-
rected or undirected? Should multiple edges be al-
lowed? Should loops be allowed?

b) Describe a graph that models the electronic mail sent
in a network in a particular week.

25. How can a graph that models e-mail messages sent in a
network be used to find people who have recently changed
their primary e-mail address?

26. How can a graph that models e-mail messages sent in
a network be used to find electronic mail mailing lists
used to send the same message to many different e-mail
addresses?

27. Describe a graph model that represents whether each per-
son at a party knows the name of each other person at the
party. Should the edges be directed or undirected? Should
multiple edges be allowed? Should loops be allowed?

28. Describe a graph model that represents a subway system
in a large city. Should edges be directed or undirected?
Should multiple edges be allowed? Should loops be al-
lowed?

29. For each course at a university, there may be one or more
other courses that are its prerequisites. How can a graph
be used to model these courses and which courses are pre-
requisites for which courses? Should edges be directed or
undirected? Looking at the graph model, how can we find
courses that do not have any prerequisites and how can
we find courses that are not the prerequisite for any other
courses?

30. Describe a graph model that represents the positive rec-
ommendations of movie critics, using vertices to repre-

sent both these critics and all movies that are currently
being shown.

31. Describe a graph model that represents traditional mar-
riages between men and women. Does this graph have
any special properties?

32. Which statements must be executed before S6 is executed
in the program in Example 8? (Use the precedence graph
in Figure 10.)

33. Construct a precedence graph for the following program:

S1: x := 0

S2: x := x + 1

S3: y := 2

S4: z := y
S5: x := x + 2

S6: y := x + z
S7: z := 4

34. Describe a discrete structure based on a graph that can
be used to model airline routes and their flight times.
[Hint: Add structure to a directed graph.]

35. Describe a discrete structure based on a graph that can be
used to model relationships between pairs of individuals
in a group, where each individual may either like, dislike,
or be neutral about another individual, and the reverse
relationship may be different. [Hint: Add structure to a
directed graph. Treat separately the edges in opposite di-
rections between vertices representing two individuals.]

36. Describe a graph model that can be used to represent all
forms of electronic communication between two people
in a single graph. What kind of graph is needed?

10.2 Graph Terminology and Special Types of Graphs

Introduction

We introduce some of the basic vocabulary of graph theory in this section. We will use this vo-
cabulary later in this chapter when we solve many different types of problems. One such problem
involves determining whether a graph can be drawn in the plane so that no two of its edges cross.
Another example is deciding whether there is a one-to-one correspondence between the vertices
of two graphs that produces a one-to-one correspondence between the edges of the graphs. We
will also introduce several important families of graphs often used as examples and in models.
Several important applications will be described where these special types of graphs arise.

Basic Terminology

First, we give some terminology that describes the vertices and edges of undirected graphs.

DEFINITION 1 Two vertices u and v in an undirected graph G are called adjacent (or neighbors) in G if u
and v are endpoints of an edge e of G. Such an edge e is called incident with the vertices u
and v and e is said to connect u and v.

652 10 / Graphs

We will also find useful terminology describing the set of vertices adjacent to a particular vertex
of a graph.

DEFINITION 2 The set of all neighbors of a vertex v of G = (V ,E), denoted by N(v), is called the neigh-

borhood of v. If A is a subset of V , we denote by N(A) the set of all vertices in G that are
adjacent to at least one vertex in A. So, N(A) = v∈A N(v).

To keep track of how many edges are incident to a vertex, we make the following definition.

DEFINITION 3 The degree of a vertex in an undirected graph is the number of edges incident with it, except
that a loop at a vertex contributes twice to the degree of that vertex. The degree of the
vertex v is denoted by deg(v).

EXAMPLE 1 What are the degrees and what are the neighborhoods of the vertices in the graphs G and H
displayed in Figure 1?

Solution: In G, deg(a) = 2, deg(b) = deg(c) = deg(f) = 4, deg(d) = 1, deg(e) = 3, and
deg(g) = 0. The neighborhoods of these vertices are N(a) = {b, f }, N(b) = {a, c, e, f },
N(c) = {b, d, e, f }, N(d) = {c}, N(e) = {b, c, f }, N(f) = {a, b, c, e}, and N(g) = ∅. In
H , deg(a) = 4, deg(b) = deg(e) = 6, deg(c) = 1, and deg(d) = 5. The neighborhoods of
these vertices are N(a) = {b, d, e}, N(b) = {a, b, c, d, e}, N(c) = {b}, N(d) = {a, b, e}, and
N(e) = {a, b, d}. ▲

b c d

f e ga

G

a b c

e d

H

FIGURE 1 The Undirected Graphs G and H .

A vertex of degree zero is called isolated. It follows that an isolated vertex is not adjacent
to any vertex. Vertex g in graph G in Example 1 is isolated. A vertex is pendant if and only
if it has degree one. Consequently, a pendant vertex is adjacent to exactly one other vertex.
Vertex d in graph G in Example 1 is pendant.

Examining the degrees of vertices in a graph model can provide useful information about
the model, as Example 2 shows.

EXAMPLE 2 What does the degree of a vertex in a niche overlap graph (introduced in Example 11 in Sec-
tion 10.1) represent? Which vertices in this graph are pendant and which are isolated? Use the
niche overlap graph shown in Figure 11 of Section 10.1 to interpret your answers.

Solution: There is an edge between two vertices in a niche overlap graph if and only if the two
species represented by these vertices compete. Hence, the degree of a vertex in a niche overlap
graph is the number of species in the ecosystem that compete with the species represented by
this vertex. A vertex is pendant if the species competes with exactly one other species in the

10.2 Graph Terminology and Special Types of Graphs 653

ecosystem. Finally, the vertex representing a species is isolated if this species does not compete
with any other species in the ecosystem.

For instance, the degree of the vertex representing the squirrel in the niche overlap graph
in Figure 11 in Section 10.1 is four, because the squirrel competes with four other species: the
crow, the opossum, the raccoon, and the woodpecker. In this niche overlap graph, the mouse is
the only species represented by a pendant vertex, because the mouse competes only with the
shrew and all other species compete with at least two other species. There are no isolated vertices
in the graph in this niche overlap graph because every species in this ecosystem competes with
at least one other species. ▲

What do we get when we add the degrees of all the vertices of a graph G = (V ,E)? Each
edge contributes two to the sum of the degrees of the vertices because an edge is incident with
exactly two (possibly equal) vertices. This means that the sum of the degrees of the vertices
is twice the number of edges. We have the result in Theorem 1, which is sometimes called
the handshaking theorem (and is also often known as the handshaking lemma), because of the
analogy between an edge having two endpoints and a handshake involving two hands.

THEOREM 1 THE HANDSHAKING THEOREM Let G = (V ,E) be an undirected graph with m
edges. Then

2m =

v∈V

deg(v).

(Note that this applies even if multiple edges and loops are present.)

EXAMPLE 3 How many edges are there in a graph with 10 vertices each of degree six?

Solution: Because the sum of the degrees of the vertices is 6 · 10 = 60, it follows that 2m = 60
where m is the number of edges. Therefore, m = 30. ▲

Theorem 1 shows that the sum of the degrees of the vertices of an undirected graph is even.
This simple fact has many consequences, one of which is given as Theorem 2.

THEOREM 2 An undirected graph has an even number of vertices of odd degree.

Proof: Let V1 and V2 be the set of vertices of even degree and the set of vertices of odd degree,
respectively, in an undirected graph G = (V ,E) with m edges. Then

2m =

v∈V

deg(v) =

v∈V1

deg(v)+

v∈V2

deg(v).

Because deg(v) is even for v ∈ V1, the first term in the right-hand side of the last equality is
even. Furthermore, the sum of the two terms on the right-hand side of the last equality is even,
because this sum is 2m. Hence, the second term in the sum is also even. Because all the terms in
this sum are odd, there must be an even number of such terms. Thus, there are an even number
of vertices of odd degree.

Terminology for graphs with directed edges reflects the fact that edges in directed graphs
have directions.

654 10 / Graphs

DEFINITION 4 When (u, v) is an edge of the graphG with directed edges, u is said to be adjacent to v and v

is said to be adjacent from u. The vertex u is called the initial vertex of (u, v), and v is called
the terminal or end vertex of (u, v). The initial vertex and terminal vertex of a loop are the
same.

Because the edges in graphs with directed edges are ordered pairs, the definition of the degree
of a vertex can be refined to reflect the number of edges with this vertex as the initial vertex and
as the terminal vertex.

DEFINITION 5 In a graph with directed edges the in-degree of a vertex v, denoted by deg−(v), is the number
of edges with v as their terminal vertex. The out-degree of v, denoted by deg+(v), is the
number of edges with v as their initial vertex. (Note that a loop at a vertex contributes 1 to
both the in-degree and the out-degree of this vertex.)

EXAMPLE 4 Find the in-degree and out-degree of each vertex in the graph G with directed edges shown in
Figure 2.

e d f

a

b

c

G

FIGURE 2 The Directed Graph G.

Solution: The in-degrees in G are deg−(a) = 2, deg−(b) = 2, deg−(c) = 3, deg−(d) = 2,
deg−(e) = 3, and deg−(f) = 0. The out-degrees are deg+(a) = 4, deg+(b) = 1, deg+(c) = 2,
deg+(d) = 2, deg+(e) = 3, and deg+(f) = 0. ▲

Because each edge has an initial vertex and a terminal vertex, the sum of the in-degrees and
the sum of the out-degrees of all vertices in a graph with directed edges are the same. Both of
these sums are the number of edges in the graph. This result is stated as Theorem 3.

THEOREM 3 Let G = (V ,E) be a graph with directed edges. Then

v∈V

deg−(v) =

v∈V

deg+(v) = |E|.

There are many properties of a graph with directed edges that do not depend on the direction
of its edges. Consequently, it is often useful to ignore these directions. The undirected graph that
results from ignoring directions of edges is called the underlying undirected graph. A graph
with directed edges and its underlying undirected graph have the same number of edges.

Some Special Simple Graphs

We will now introduce several classes of simple graphs. These graphs are often used as examples
and arise in many applications.

10.2 Graph Terminology and Special Types of Graphs 655

EXAMPLE 5 Complete Graphs A complete graph on n vertices, denoted by Kn, is a simple graph
that contains exactly one edge between each pair of distinct vertices. The graphs Kn, for
n = 1, 2, 3, 4, 5, 6, are displayed in Figure 3. A simple graph for which there is at least one
pair of distinct vertex not connected by an edge is called noncomplete. ▲

K1 K2 K3 K4 K5 K6

FIGURE 3 The Graphs Kn for 1 ≤ n ≤ 6.

EXAMPLE 6 Cycles A cycle Cn, n ≥ 3, consists of n vertices v1, v2, . . . , vn and edges {v1, v2},
{v2, v3}, . . . , {vn−1, vn}, and {vn, v1}. The cycles C3, C4, C5, and C6 are displayed in
Figure 4. ▲

C3 C4 C5 C6

FIGURE 4 The Cycles C3, C4, C5, and C6.

EXAMPLE 7 Wheels We obtain a wheel Wn when we add an additional vertex to a cycle Cn, for n ≥ 3,
and connect this new vertex to each of the n vertices in Cn, by new edges. The wheelsW3,W4,
W5, andW6 are displayed in Figure 5. ▲

W3 W4 W5 W6

FIGURE 5 TheWheelsW3,W4,W5, andW6.

EXAMPLE 8 n-Cubes Ann-dimensional hypercube, orn-cube, denoted byQn, is a graph that has vertices
representing the 2n bit strings of length n. Two vertices are adjacent if and only if the bit strings
that they represent differ in exactly one bit position. We displayQ1,Q2, andQ3 in Figure 6.

Note that you can construct the (n+ 1)-cube Qn+1 from the n-cube Qn by making two
copies ofQn, prefacing the labels on the vertices with a 0 in one copy ofQn and with a 1 in the
other copy of Qn, and adding edges connecting two vertices that have labels differing only in
the first bit. In Figure 6,Q3 is constructed fromQ2 by drawing two copies ofQ2 as the top and
bottom faces ofQ3, adding 0 at the beginning of the label of each vertex in the bottom face and
1 at the beginning of the label of each vertex in the top face. (Here, by face we mean a face of
a cube in three-dimensional space. Think of drawing the graph Q3 in three-dimensional space
with copies ofQ2 as the top and bottom faces of a cube and then drawing the projection of the
resulting depiction in the plane.) ▲

656 10 / Graphs

Q1 Q2

0 1

00 01

10 11

Q3

000 001

100 101

111110

010 011

FIGURE 6 The n-cubeQn, n = 1, 2, 3.

Bipartite Graphs

Sometimes a graph has the property that its vertex set can be divided into two disjoint subsets
such that each edge connects a vertex in one of these subsets to a vertex in the other subset.
For example, consider the graph representing marriages between men and women in a village,
where each person is represented by a vertex and a marriage is represented by an edge. In this
graph, each edge connects a vertex in the subset of vertices representing males and a vertex in
the subset of vertices representing females. This leads us to Definition 5.

DEFINITION 6 A simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint
sets V1 and V2 such that every edge in the graph connects a vertex in V1 and a vertex in V2

(so that no edge in G connects either two vertices in V1 or two vertices in V2). When this
condition holds, we call the pair (V1, V2) a bipartition of the vertex set V of G.

In Example 9 we will show that C6 is bipartite, and in Example 10 we will show that K3 is
not bipartite.

EXAMPLE 9 C6 is bipartite, as shown in Figure 7, because its vertex set can be partitioned into the two sets
V1 = {v1, v3, v5} and V2 = {v2, v4, v6}, and every edge of C6 connects a vertex in V1 and a
vertex in V2. ▲

EXAMPLE 10 K3 is not bipartite. To verify this, note that if we divide the vertex set of K3 into two disjoint
sets, one of the two sets must contain two vertices. If the graph were bipartite, these two vertices
could not be connected by an edge, but in K3 each vertex is connected to every other vertex by
an edge. ▲

EXAMPLE 11 Are the graphs G and H displayed in Figure 8 bipartite?

V1 V2
v1

v3

v5

v2

v4

v6

FIGURE 7 Showing That C6 Is

Bipartite.

a b

c

e d

f

g

G

a b

e d

H

f c

FIGURE 8 The Undirected Graphs G and H .

10.2 Graph Terminology and Special Types of Graphs 657

Solution: Graph G is bipartite because its vertex set is the union of two disjoint sets, {a, b, d}
and {c, e, f, g}, and each edge connects a vertex in one of these subsets to a vertex in the other
subset. (Note that forG to be bipartite it is not necessary that every vertex in {a, b, d} be adjacent
to every vertex in {c, e, f, g}. For instance, b and g are not adjacent.)

Graph H is not bipartite because its vertex set cannot be partitioned into two subsets so
that edges do not connect two vertices from the same subset. (The reader should verify this by
considering the vertices a, b, and f .) ▲

Theorem 4 provides a useful criterion for determining whether a graph is bipartite.

THEOREM 4 A simple graph is bipartite if and only if it is possible to assign one of two different colors to
each vertex of the graph so that no two adjacent vertices are assigned the same color.

Proof: First, suppose thatG = (V ,E) is a bipartite simple graph. Then V = V1 ∪ V2, where V1

and V2 are disjoint sets and every edge in E connects a vertex in V1 and a vertex in V2. If we
assign one color to each vertex in V1 and a second color to each vertex in V2, then no two
adjacent vertices are assigned the same color.

Now suppose that it is possible to assign colors to the vertices of the graph using just two
colors so that no two adjacent vertices are assigned the same color. Let V1 be the set of vertices
assigned one color and V2 be the set of vertices assigned the other color. Then, V1 and V2

are disjoint and V = V1 ∪ V2. Furthermore, every edge connects a vertex in V1 and a vertex
in V2 because no two adjacent vertices are either both in V1 or both in V2. Consequently, G
is bipartite.

We illustrate how Theorem 4 can be used to determine whether a graph is bipartite in
Example 12.

EXAMPLE 12 Use Theorem 4 to determine whether the graphs in Example 11 are bipartite.

Solution: We first consider the graph G. We will try to assign one of two colors, say red and
blue, to each vertex in G so that no edge in G connects a red vertex and a blue vertex. Without
loss of generality we begin by arbitrarily assigning red to a. Then, we must assign blue to c, e,
f , and g, because each of these vertices is adjacent to a. To avoid having an edge with two blue
endpoints, we must assign red to all the vertices adjacent to either c, e, f , or g. This means that
we must assign red to both b and d (and means that a must be assigned red, which it already has
been). We have now assigned colors to all vertices, with a, b, and d red and c, e, f , and g blue.
Checking all edges, we see that every edge connects a red vertex and a blue vertex. Hence, by
Theorem 4 the graph G is bipartite.

Next, we will try to assign either red or blue to each vertex in H so that no edge in H
connects a red vertex and a blue vertex. Without loss of generality we arbitrarily assign red to a.
Then, we must assign blue to b, e, and f , because each is adjacent to a. But this is not possible
because e and f are adjacent, so both cannot be assigned blue. This argument shows that we
cannot assign one of two colors to each of the vertices of H so that no adjacent vertices are
assigned the same color. It follows by Theorem 4 that H is not bipartite. ▲

Theorem 4 is an example of a result in the part of graph theory known as graph colorings.
Graph colorings is an important part of graph theory with important applications. We will study
graph colorings further in Section 10.8.

Another useful criterion for determining whether a graph is bipartite is based on the notion
of a path, a topic we study in Section 10.4. A graph is bipartite if and only if it is not possible
to start at a vertex and return to this vertex by traversing an odd number of distinct edges. We
will make this notion more precise when we discuss paths and circuits in graphs in Section 10.4
(see Exercise 63 in that section).

658 10 / Graphs

EXAMPLE 13 Complete Bipartite Graphs A complete bipartite graphKm,n is a graph that has its vertex
set partitioned into two subsets of m and n vertices, respectively with an edge between two
vertices if and only if one vertex is in the first subset and the other vertex is in the second subset.
The complete bipartite graphs K2,3, K3,3, K3,5, and K2,6 are displayed in Figure 9. ▲

K2,3 K3,3

K3,5 K2,6

FIGURE 9 Some Complete Bipartite Graphs.

Bipartite Graphs and Matchings

Bipartite graphs can be used to model many types of applications that involve matching the
elements of one set to elements of another, as Example 14 illustrates.

EXAMPLE 14 Job Assignments Suppose that there are m employees in a group and n different jobs that
need to be done, where m ≥ n. Each employee is trained to do one or more of these n jobs. We
would like to assign an employee to each job. To help with this task, we can use a graph to model
employee capabilities. We represent each employee by a vertex and each job by a vertex. For
each employee, we include an edge from that employee to all jobs that the employee has been
trained to do. Note that the vertex set of this graph can be partitioned into two disjoint sets, the
set of employees and the set of jobs, and each edge connects an employee to a job. Consequently,
this graph is bipartite, where the bipartition is (E, J) where E is the set of employees and J is
the set of jobs. We now consider two different scenarios.

First, suppose that a group has four employees: Alvarez, Berkowitz, Chen, and Davis;
and suppose that four jobs need to be done to complete Project 1: requirements, architecture,
implementation, and testing. Suppose that Alvarez has been trained to do requirements and
testing; Berkowitz has been trained to do architecture, implementation, and testing; Chen has
been trained to do requirements, architecture, and implementation; and Davis has only been
trained to do requirements. We model these employee capabilities using the bipartite graph in
Figure 10(a).

Second, suppose that a group has second group also has four employees: Washington, Xuan,
Ybarra, and Ziegler; and suppose that the same four jobs need to be done to complete Project 2 as
are needed to complete Project 1. Suppose that Washington has been trained to do architecture;
Xuan has been trained to do requirements, implementation, and testing;Ybarra has been trained
to do architecture; and Ziegler has been trained to do requirements, architecture and testing. We
model these employee capabilities using the bipartite graph in Figure 10(b).

To complete Project 1, we must assign an employee to each job so that every job has an
employee assigned to it, and so that no employee is assigned more than one job. We can do this
by assigning Alvarez to testing, Berkowitz to implementation, Chen to architecture, and Davis
to requirements, as shown in Figure 10(a) (where blue lines show this assignment of jobs).

To complete Project 2, we must also assign an employee to each job so that every job has
an employee assigned to it and no employee is assigned more than one job. However, this is

10.2 Graph Terminology and Special Types of Graphs 659

Alvarez Berkowitz Chen Davis

requirements architecture implementation testing

Washington Xuan Ybarra Ziegler

requirements architecture implementation testing

(a) (b)

FIGURE 10 Modeling the Jobs for Which Employees Have Been Trained.

impossible because there are only two employees, Xuan and Ziegler, who have been trained for
at least one of the three jobs of requirements, implementation, and testing. Consequently, there
is no way to assign three different employees to these three job so that each job is assigned an
employee with the appropriate training. ▲

Finding an assignment of jobs to employees can be thought of as finding a matching in the
graph model, where a matching M in a simple graph G = (V ,E) is a subset of the set E of
edges of the graph such that no two edges are incident with the same vertex. In other words, a
matching is a subset of edges such that if {s, t} and {u, v} are distinct edges of the matching,
then s, t , u, and v are distinct. A vertex that is the endpoint of an edge of a matchingM is said to
bematched inM; otherwise it is said to be unmatched. Amaximum matching is a matching
with the largest number of edges. We say that a matching M in a bipartite graph G = (V ,E)
with bipartition (V1, V2) is a complete matching from V1 to V2 if every vertex in V1 is the
endpoint of an edge in the matching, or equivalently, if |M| = |V1|. For example, to assign jobs
to employees so that the largest number of jobs are assigned employees, we seek a maximum
matching in the graph that models employee capabilities. To assign employees to all jobs we
seek a complete matching from the set of jobs to the set of employees. In Example 14, we found
a complete matching from the set of jobs to the set of employees for Project 1, and this matching
is a maximun matching, and we showed that no complete matching exists from the set of jobs
to the employees for Project 2.

We now give an example of how matchings can be used to model marriages.

EXAMPLE 15 Marriages on an Island Suppose that there aremmen and nwomen on an island. Each person
has a list of members of the opposite gender acceptable as a spouse. We construct a bipartite
graph G = (V1, V2) where V1 is the set of men and V2 is the set of women so that there is an
edge between a man and a woman if they find each other acceptable as a spouse. A matching in
this graph consists of a set of edges, where each pair of endpoints of an edge is a husband-wife
pair. A maximum matching is a largest possible set of married couples, and a complete matching
of V1 is a set of married couples where every man is married, but possibly not all women. ▲

NECESSARY AND SUFFICIENT CONDITIONS FOR COMPLETE MATCHINGS We
now turn our attention to the question of determining whether a complete matching from V1

to V2 exists when (V1, V2) is a bipartition of a bipartite graphG = (V ,E). We will introduce a
theorem that provides a set of necessary and sufficient conditions for the existence of a complete
matching. This theorem was proved by Philip Hall in 1935.

Hall’s marriage theorem

is an example of a

theorem where obvious

necessary conditions are

sufficient too.

THEOREM 5 HALL’S MARRIAGE THEOREM The bipartite graph G = (V ,E) with bipartition
(V1, V2) has a complete matching from V1 to V2 if and only if |N(A)| ≥ |A| for all subsets
A of V1.

660 10 / Graphs

Proof: We first prove the only if part of the theorem. To do so, suppose that there is a complete
matching M from V1 to V2. Then, if A ⊆ V1, for every vertex v ∈ A, there is an edge in M
connecting v to a vertex in V2. Consequently, there are at least as many vertices in V2 that are
neighbors of vertices in V1 as there are vertices in V1. It follows that |N(A)| ≥ |A|.

To prove the if part of the theorem, the more difficult part, we need to show that if
|N(A)| ≥ |A| for all A ⊆ V1, then there is a complete matching M from V1 to V2. We will
use strong induction on |V1| to prove this.

Basis step: If |V1| = 1, then V1 contains a single vertex v0. Because |N({v0})| ≥ |{v0}| = 1,
there is at least one edge connecting v0 and a vertex w0 ∈ V2. Any such edge forms a complete
matching from V1 to V2.

Inductive step: We first state the inductive hypothesis.

Inductive hypothesis: Let k be a positive integer. If G = (V ,E) is a bipartite graph with bipar-
tition (V1, V2), and |V1| = j ≤ k, then there is a complete matchingM from V1 to V2 whenever
the condition that |N(A)| ≥ |A| for all A ⊆ V1 is met.

Now suppose that H = (W, F) is a bipartite graph with bipartition (W1,W2) and |W1| =
k + 1. We will prove that the inductive holds using a proof by cases, using two case. Case (i)

applies when for all integers j with 1 ≤ j ≤ k, the vertices in every set of j elements fromW1 are
adjacent to at least j + 1 elements ofW2. Case (ii) applies when for some j with 1 ≤ j ≤ k there
is a subsetW

1 of j vertices such that there are exactly j neighbors of these vertices inW2. Because
either Case (i) or Case (ii) holds, we need only consider these cases to complete the inductive step.

Case (i): Suppose that for all integers j with 1 ≤ j ≤ k, the vertices in every subset of j elements
fromW1 are adjacent to at least j + 1 elements ofW2. Then, we select a vertex v ∈ W1 and an
element w ∈ N({v}), which must exist by our assumption that |N({v}| ≥ |{v}| = 1. We delete
v and w and all edges incident to them from H . This produces a bipartite graph H with
bipartition (W1 − {v},W2 − {w}). Because |W1 − {v}| = k, the inductive hypothesis tells us
there is a complete matching from W1 − {v} to W2 − {w}. Adding the edge from v to w to this
complete matching produces a complete matching fromW1 toW2.

Case (ii): Suppose that for some j with 1 ≤ j ≤ k, there is a subset W
1 of j vertices such that

there are exactly j neighbors of these vertices inW2. LetW
2 be the set of these neighbors. Then,

by the inductive hypothesis there is a complete matching from W
1 to W

2. Remove these 2j
vertices fromW1 andW2 and all incident edges to produce a bipartite graph K with bipartition
(W1 −W

1,W2 −W
2).

We will show that the graph K satisfies the condition |N(A)| ≥ |A| for all subsets A of
W1 −W

1. If not, there would be a subset of t vertices of W1 −W
1 where 1 ≤ t ≤ k + 1 − j

such that the vertices in this subset have fewer than t vertices ofW2 −W
2 as neighbors. Then,

the set of j + t vertices of W1 consisting of these t vertices together with the j vertices we
removed from W1 has fewer than j + t neighbors in W2, contradicting the hypothesis that
|N(A)| ≥ |A| for all A ⊆ W1.

PHILIP HALL (1904–1982) Philip Hall grew up in London, where his mother was a dressmaker. He won a
scholarship for board school reserved for needy children, and later a scholarship to King’s College of Cambridge
University. He received his bachelors degree in 1925. In 1926, unsure of his career goals, he took a civil service
exam, but decided to continue his studies at Cambridge after failing.

In 1927 Hall was elected to a fellowship at King’s College; soon after, he made his first important discovery
in group theory. The results he proved are now known as Hall’s theorems. In 1933 he was appointed as a Lecturer
at Cambridge, where he remained until 1941. During World War II he worked as a cryptographer at Bletchley
Park breaking Italian and Japanese codes. At the end of the war, Hall returned to King’s College, and was soon
promoted. In 1953 he was appointed to the Sadleirian Chair. His work during the 1950s proved to be extremely

influential to the rapid development of group theory during the 1960s.
Hall loved poetry and recited it beautifully in Italian and Japanese, as well as English. He was interested in art, music, and

botany. He was quite shy and disliked large groups of people. Hall had an incredibly broad and varied knowledge, and was respected
for his integrity, intellectual standards, and judgement. He was beloved by his students.

10.2 Graph Terminology and Special Types of Graphs 661

Hence, by the inductive hypothesis, the graphK has a complete matching. Combining this
complete matching with the complete matching fromW

1 toW
2, we obtain a complete matching

fromW1 toW2.

We have shown that in both cases there is a complete matching from W1 to W2. This
completes the inductive step and completes the proof.

We have used strong induction to prove Hall’s marriage theorem. Although our proof is
elegant, it does have some drawbacks. In particular, we cannot construct an algorithm based on
this proof that finds a complete matching in a bipartite graph. For a constructive proof that can
be used as the basis of an algorithm, see [Gi85].

Some Applications of Special Types of Graphs

We conclude this section by introducing some additional graph models that involve the special
types of graph we have discussed in this section.

EXAMPLE 16 Local Area Networks The various computers in a building, such as minicomputers and per-
sonal computers, as well as peripheral devices such as printers and plotters, can be connected
using a local area network. Some of these networks are based on a star topology, where all
devices are connected to a central control device. A local area network can be represented using
a complete bipartite graph K1,n, as shown in Figure 11(a). Messages are sent from device to
device through the central control device.

(a) (b) (c)

FIGURE 11 Star, Ring, and Hybrid Topologies for Local Area Networks.

Other local area networks are based on a ring topology, where each device is connected to
exactly two others. Local area networks with a ring topology are modeled using n-cycles, Cn,
as shown in Figure 11(b). Messages are sent from device to device around the cycle until the
intended recipient of a message is reached.

Finally, some local area networks use a hybrid of these two topologies. Messages may be
sent around the ring, or through a central device. This redundancy makes the network more
reliable. Local area networks with this redundancy can be modeled using wheelsWn, as shown
in Figure 11(c). ▲

EXAMPLE 17 Interconnection Networks for Parallel Computation For many years, computers executed
programs one operation at a time. Consequently, the algorithms written to solve problems were
designed to perform one step at a time; such algorithms are called serial. (Almost all algorithms
described in this book are serial.) However, many computationally intense problems, such as
weather simulations, medical imaging, and cryptanalysis, cannot be solved in a reasonable
amount of time using serial operations, even on a supercomputer. Furthermore, there is a physical
limit to how fast a computer can carry out basic operations, so there will always be problems
that cannot be solved in a reasonable length of time using serial operations.

Parallel processing, which uses computers made up of many separate processors, each
with its own memory, helps overcome the limitations of computers with a single processor.
Parallel algorithms, which break a problem into a number of subproblems that can be solved

662 10 / Graphs

P1 P2 P3 P4 P5 P6

FIGURE 12 A Linear

Array for Six Processors.

P(0, 0) P(0, 1) P(0, 2) P(0, 3)

P(1, 0) P(1, 1) P(1, 2) P(1, 3)

P(2, 0) P(2, 1) P(2, 2) P(2, 3)

P(3, 0) P(3, 1) P(3, 2) P(3, 3)

FIGURE 13 A Mesh Network for

16 Processors.

concurrently, can then be devised to rapidly solve problems using a computer with multiple
processors. In a parallel algorithm, a single instruction stream controls the execution of the
algorithm, sending subproblems to different processors, and directs the input and output of
these subproblems to the appropriate processors.

When parallel processing is used, one processor may need output generated by another
processor. Consequently, these processors need to be interconnected. We can use the appropriate
type of graph to represent the interconnection network of the processors in a computer with
multiple processors. In the following discussion, we will describe the most commonly used
types of interconnection networks for parallel processors. The type of interconnection network
used to implement a particular parallel algorithm depends on the requirements for exchange of
data between processors, the desired speed, and, of course, the available hardware.

The simplest, but most expensive, network-interconnecting processors include a two-way
link between each pair of processors. This network can be represented by Kn, the complete
graph on n vertices, when there are n processors. However, there are serious problems with
this type of interconnection network because the required number of connections is so large.
In reality, the number of direct connections to a processor is limited, so when there are a large
number of processors, a processor cannot be linked directly to all others. For example, when
there are 64 processors, C(64, 2) = 2016 connections would be required, and each processor
would have to be directly connected to 63 others.

On the other hand, perhaps the simplest way to interconnect n processors is to use an
arrangement known as a linear array. Each processor Pi , other than P1 and Pn, is connected to
its neighbors Pi−1 and Pi+1 via a two-way link. P1 is connected only to P2, and Pn is connected
only to Pn−1. The linear array for six processors is shown in Figure 12. The advantage of a
linear array is that each processor has at most two direct connections to other processors. The
disadvantage is that it is sometimes necessary to use a large number of intermediate links, called
hops, for processors to share information.

The mesh network (or two-dimensional array) is a commonly used interconnection net-
work. In such a network, the number of processors is a perfect square, say n = m2. The n
processors are labeled P(i, j), 0 ≤ i ≤ m− 1, 0 ≤ j ≤ m− 1. Two-way links connect proces-
sor P(i, j) with its four neighbors, processors P(i ± 1, j) and P(i, j ± 1), as long as these
are processors in the mesh. (Note that four processors, on the corners of the mesh, have only
two adjacent processors, and other processors on the boundaries have only three neighbors.
Sometimes a variant of a mesh network in which every processor has exactly four connections
is used; see Exercise 72.) The mesh network limits the number of links for each processor. Com-
munication between some pairs of processors requiresO(

√
n) = O(m) intermediate links. (See

Exercise 73.) The graph representing the mesh network for 16 processors is shown in Figure 13.

One important type of interconnection network is the hypercube. For such a network, the
number of processors is a power of 2, n = 2m. The n processors are labeled P0, P1, . . . , Pn−1.
Each processor has two-way connections to m other processors. Processor Pi is linked to the
processors with indices whose binary representations differ from the binary representation of i

10.2 Graph Terminology and Special Types of Graphs 663

in exactly one bit. The hypercube network balances the number of direct connections for each
processor and the number of intermediate connections required so that processors can com-
municate. Many computers have been built using a hypercube network, and many parallel
algorithms have been devised that use a hypercube network. The graph Qm, the m-cube, rep-
resents the hypercube network with n = 2m processors. Figure 14 displays the hypercube net-
work for eight processors. (Figure 14 displays a different way to draw Q3 than was shown in
Figure 6.) ▲

New Graphs from Old

Sometimes we need only part of a graph to solve a problem. For instance, we may care only
about the part of a large computer network that involves the computer centers in New York,
Denver, Detroit, and Atlanta. Then we can ignore the other computer centers and all telephone
lines not linking two of these specific four computer centers. In the graph model for the large
network, we can remove the vertices corresponding to the computer centers other than the four
of interest, and we can remove all edges incident with a vertex that was removed. When edges
and vertices are removed from a graph, without removing endpoints of any remaining edges, a
smaller graph is obtained. Such a graph is called a subgraph of the original graph.

DEFINITION 7 A subgraph of a graph G = (V ,E) is a graph H = (W, F), where W ⊆ V and F ⊆ E. A
subgraph H of G is a proper subgraph of G if H = G.

Given a set of vertices of a graph, we can form a subgraph of this graph with these vertices
and the edges of the graph that connect them.

DEFINITION 8 LetG = (V ,E) be a simple graph. The subgraph induced by a subsetW of the vertex set V
is the graph (W, F), where the edge set F contains an edge inE if and only if both endpoints
of this edge are inW .

EXAMPLE 18 The graph G shown in Figure 15 is a subgraph of K5. If we add the edge connecting c and e to
G, we obtain the subgraph induced byW = {a, b, c, e}. ▲

REMOVINGORADDING EDGESOF AGRAPH Given a graphG = (V ,E) and an edge
e ∈ E, we can produce a subgraph ofG by removing the edge e. The resulting subgraph, denoted
by G− e, has the same vertex set V as G. Its edge set is E − e. Hence,

G− e = (V ,E − {e}).

Similarly, if E is a subset of E, we can produce a subgraph of G by removing the edges in E
from the graph. The resulting subgraph has the same vertex set V as G. Its edge set is E − E .

P0 P7P1 P2 P3 P4 P5 P6

FIGURE 14 A Hypercube Network for Eight Processors.

d c

a

be

c

a

b
e

FIGURE 15 A Subgraph of K5.

664 10 / Graphs

d e

ba c

G1

(a)

d

ba

G2

c

f

(b)

d

ba c

e f

G1 G2

FIGURE 16 (a) The Simple Graphs G1 and G2; (b) Their Union G1 ∪G2.

We can also add an edge e to a graph to produce a new larger graph when this edge connects
two vertices already inG. We denote byG+ e the new graph produced by adding a new edge e,
connecting two previously nonincident vertices, to the graph G Hence,

G+ e = (V ,E ∪ {e}).

The vertex set of G+ e is the same as the vertex set of G and the edge set is the union of the
edge set of G and the set {e}.

EDGE CONTRACTIONS Sometimes when we remove an edge from a graph, we do not
want to retain the endpoints of this edge as separate vertices in the resulting subgraph. In such
a case we perform an edge contraction which removes an edge e with endpoints u and v and
merges u and w into a new single vertex w, and for each edge with u or v as an endpoint replaces
the edge with one with w as endpoint in place of u or v and with the same second endpoint.
Hence, the contraction of the edge e with endpoints u and v in the graphG = (V ,E) produces a
new graphG = (V , E) (which is not a subgraph ofG), where V = V − {u, v} ∪ {w} and E
contains the edges in E which do not have either u or v as endpoints and an edge connecting w

to every neighbor of either u or v in V . For example, the contraction of the edge connecting the
vertices e and c in the graph G1 in Figure 16 produces a new graph G

1 with vertices a, b, d,
and w. As in G1, there is an edge in G

1 connecting a and b and an edge connecting a and d.
There also is an edge inG

1 that connects b and w that replaces the edges connecting b and c and
connecting b and e inG1 and an edge inG

1 that connects d and w replacing the edge connecting
d and e in G1.

REMOVING VERTICES FROM A GRAPH When we remove a vertex v and all edges
incident to it from G = (V ,E), we produce a subgraph, denoted by G− v. Observe that
G− v = (V − v, E), where E is the set of edges of G not incident to v. Similarly, if V
is a subset of V , then the graph G− V is the subgraph (V − V , E), where E is the set of
edges of G not incident to a vertex in V .

GRAPHUNIONS Two or more graphs can be combined in various ways. The new graph that
contains all the vertices and edges of these graphs is called the union of the graphs. We will
give a more formal definition for the union of two simple graphs.

DEFINITION 9 The union of two simple graphsG1 = (V1, E1) andG2 = (V2, E2) is the simple graph with
vertex set V1 ∪ V2 and edge set E1 ∪ E2. The union of G1 and G2 is denoted by G1 ∪G2.

EXAMPLE 19 Find the union of the graphs G1 and G2 shown in Figure 16(a). ▲

10.2 Graph Terminology and Special Types of Graphs 665

Solution: The vertex set of the union G1 ∪G2 is the union of the two vertex sets, namely,
{a, b, c, d, e, f }. The edge set of the union is the union of the two edge sets. The union is
displayed in Figure 16(b).

Exercises

In Exercises 1–3 find the number of vertices, the number of
edges, and the degree of each vertex in the given undirected
graph. Identify all isolated and pendant vertices.

1. a b c

f e d

2. a b

e d
c

3. a b c d

i h g ef

4. Find the sum of the degrees of the vertices of each graph
in Exercises 1–3 and verify that it equals twice the number
of edges in the graph.

5. Can a simple graph exist with 15 vertices each of degree
five?

6. Show that the sum, over the set of people at a party, of
the number of people a person has shaken hands with, is
even. Assume that no one shakes his or her own hand.

In Exercises 7–9 determine the number of vertices and edges
and find the in-degree and out-degree of each vertex for the
given directed multigraph.

7.

a

b

cd

8. a b

d c

9.

cd

ba

e

10. For each of the graphs in Exercises 7–9 determine the
sum of the in-degrees of the vertices and the sum of the
out-degrees of the vertices directly. Show that they are
both equal to the number of edges in the graph.

11. Construct the underlying undirected graph for the graph
with directed edges in Figure 2.

12. What does the degree of a vertex represent in the acquain-
tanceship graph, where vertices represent all the people
in the world? What does the neighborhood a vertex in this
graph represent? What do isolated and pendant vertices
in this graph represent? In one study it was estimated that
the average degree of a vertex in this graph is 1000. What
does this mean in terms of the model?

13. What does the degree of a vertex represent in an academic
collaboration graph? What does the neighborhood of a
vertex represent? What do isolated and pendant vertices
represent?

14. What does the degree of a vertex in the Hollywood graph
represent? What does the neighborhood of a vertex repre-
sent?What do the isolated and pendant vertices represent?

15. What do the in-degree and the out-degree of a vertex in a
telephone call graph, as described in Example 4 of Sec-
tion 10.1, represent? What does the degree of a vertex in
the undirected version of this graph represent?

16. What do the in-degree and the out-degree of a vertex in
the Web graph, as described in Example 5 of Section 10.1,
represent?

17. What do the in-degree and the out-degree of a vertex in a
directed graph modeling a round-robin tournament rep-
resent?

18. Show that in a simple graph with at least two vertices
there must be two vertices that have the same degree.

19. Use Exercise 18 to show that in a group of people, there
must be two people who are friends with the same number
of other people in the group.

20. Draw these graphs.

a) K7 b) K1,8 c) K4,4
d) C7 e) W7 f) Q4

In Exercises 21–25 determine whether the graph is bipartite.
You may find it useful to apply Theorem 4 and answer the
question by determining whether it is possible to assign either
red or blue to each vertex so that no two adjacent vertices are
assigned the same color.

21. a b

c d

e

22. b c

a

e

d

666 10 / Graphs

23. b c

ef

a d

24. a b

cf

e d

25. b

a

f

e

d

c

26. For which values of n are these graphs bipartite?

a) Kn b) Cn c) Wn d) Qn

27. Suppose that there are four employees in the computer
support group of the School of Engineering of a large
university. Each employee will be assigned to support
one of four different areas: hardware, software, network-
ing, and wireless. Suppose that Ping is qualified to support
hardware, networking, and wireless; Quiggley is qualified
to support software and networking; Ruiz is qualified to
support networking and wireless, and Sitea is qualified to
support hardware and software.

a) Use a bipartite graph to model the four employees and
their qualifications.

b) Use Hall’s theorem to determine whether there is an
assignment of employees to support areas so that each
employee is assigned one area to support.

c) If an assignment of employees to support areas so that
each employee is assigned to one support area exists,
find one.

28. Suppose that a new company has five employees: Zamora,
Agraharam, Smith, Chou, and Macintyre. Each employee
will assume one of six responsiblities: planning, public-
ity, sales, marketing, development, and industry relations.
Each employee is capable of doing one or more of these
jobs: Zamora could do planning, sales, marketing, or in-
dustry relations; Agraharam could do planning or devel-
opment; Smith could do publicity, sales, or industry re-
lations; Chou could do planning, sales, or industry rela-
tions; and Macintyre could do planning, publicity, sales,
or industry relations.

a) Model the capabilities of these employees using a bi-
partite graph.

b) Find an assignment of responsibilites such that each
employee is assigned one responsibility.

c) Is the matching of responsibilities you found in part
(b) a complete matching? Is it a maximum matching?

29. Suppose that there are five young women and five young
men on an island. Each man is willing to marry some of
the women on the island and each woman is willing to
marry any man who is willing to marry her. Suppose that
Sandeep is willing to marry Tina and Vandana; Barry is
willing to marry Tina, Xia, and Uma; Teja is willing to
marry Tina and Zelda; Anil is willing to marry Vandana
and Zelda; and Emilio is willing to marry Tina and Zelda.
Use Hall’s theorem to show there is no matching of the
young men and young women on the island such that each
young man is matched with a young woman he is willing
to marry.

30. Suppose that there are five young women and six young
men on an island. Each woman is willing to marry some
of the men on the island and each man is willing to marry
any woman who is willing to marry him. Suppose that
Anna is willing to marry Jason, Larry, and Matt; Barbara
is willing to marry Kevin and Larry; Carol is willing to
marry Jason, Nick, and Oscar; Diane is willing to marry
Jason, Larry, Nick, and Oscar; and Elizabeth is willing to
marry Jason and Matt.

a) Model the possible marriages on the island using a
bipartite graph.

b) Find a matching of the young women and the young
men on the island such that each young woman is
matched with a young man whom she is willing to
marry.

c) Is the matching you found in part (b) a complete
matching? Is it a maximum matching?

∗31. Suppose there is an integer k such that every man on a
desert island is willing to marry exactly k of the women
on the island and every woman on the island is willing to
marry exactly k of the men. Also, suppose that a man is
willing to marry a woman if and only if she is willing to
marry him. Show that it is possible to match the men and
women on the island so that everyone is matched with
someone that they are willing to marry.

∗32. In this exercise we prove a theorem of Øystein Ore.
Suppose thatG = (V ,E) is a bipartite graph with bipar-
tition (V1, V2) and thatA ⊆ V1. Show that the maximum
number of vertices of V1 that are the endpoints of a
matching of G equals |V1| − maxA⊆V1 def(A), where
def(A) = |A| − |N(A)|. (Here, def(A) is called the de-
ficiency of A.) [Hint: Form a larger graph by adding
maxA⊆V1 def(A) new vertices to V2 and connect all of
them to the vertices of V1.]

33. For the graph G in Exercise 1 find

a) the subgraph induced by the vertices a, b, c, and f .

b) the new graphG1 obtained fromG by contracting the
edge connecting b and f .

34. Let n be a positive integer. Show that a subgraph induced
by a nonempty subset of the vertex set ofKn is a complete
graph.

10.2 Graph Terminology and Special Types of Graphs 667

35. How many vertices and how many edges do these graphs
have?

a) Kn b) Cn c) Wn
d) Km,n e) Qn

The degree sequence of a graph is the sequence of the de-
grees of the vertices of the graph in nonincreasing order. For
example, the degree sequence of the graphG in Example 1 is
4, 4, 4, 3, 2, 1, 0.

36. Find the degree sequences for each of the graphs in
Exercises 21–25.

37. Find the degree sequence of each of the following
graphs.

a) K4 b) C4 c) W4
d) K2,3 e) Q3

38. What is the degree sequence of the bipartite graph Km,n
wherem andn are positive integers? Explain your answer.

39. What is the degree sequence of Kn, where n is a positive
integer? Explain your answer.

40. How many edges does a graph have if its degree sequence
is 4, 3, 3, 2, 2? Draw such a graph.

41. How many edges does a graph have if its degree sequence
is 5, 2, 2, 2, 2, 1? Draw such a graph.

A sequence d1, d2, . . . , dn is called graphic if it is the degree
sequence of a simple graph.

42. Determine whether each of these sequences is graphic.
For those that are, draw a graph having the given degree
sequence.

a) 5, 4, 3, 2, 1, 0 b) 6, 5, 4, 3, 2, 1 c) 2, 2, 2, 2, 2, 2
d) 3, 3, 3, 2, 2, 2 e) 3, 3, 2, 2, 2, 2 f) 1, 1, 1, 1, 1, 1
g) 5, 3, 3, 3, 3, 3 h) 5, 5, 4, 3, 2, 1

43. Determine whether each of these sequences is graphic.
For those that are, draw a graph having the given degree
sequence.

a) 3, 3, 3, 3, 2 b) 5, 4, 3, 2, 1 c) 4, 4, 3, 2, 1
d) 4, 4, 3, 3, 3 e) 3, 2, 2, 1, 0 f) 1, 1, 1, 1, 1

∗44. Suppose that d1, d2, . . . , dn is a graphic sequence. Show
that there is a simple graph with vertices v1, v2, . . . , vn
such that deg(vi) = di for i = 1, 2, . . . , n and v1 is adja-
cent to v2, . . . , vd1+1.

∗45. Show that a sequence d1, d2, . . . , dn of nonnegative inte-
gers in nonincreasing order is a graphic sequence if and
only if the sequence obtained by reordering the terms
of the sequence d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn so
that the terms are in nonincreasing order is a graphic
sequence.

∗46. Use Exercise 45 to construct a recursive algorithm for de-
termining whether a nonincreasing sequence of positive
integers is graphic.

47. Show that every nonincreasing sequence of nonnegative
integers with an even sum of its terms is the degree se-
quence of a pseudograph, that is, an undirected graph
where loops are allowed. [Hint: Construct such a graph
by first adding as many loops as possible at each vertex.
Then add additional edges connecting vertices of odd
degree. Explain why this construction works.]

48. How many subgraphs with at least one vertex does K2

have?

49. How many subgraphs with at least one vertex does K3

have?

50. How many subgraphs with at least one vertex does W3

have?

51. Draw all subgraphs of this graph.

ba

c d

52. Let G be a graph with v vertices and e edges. Let M be
the maximum degree of the vertices of G, and let m be
the minimum degree of the vertices of G. Show that

a) 2e/v ≥ m. b) 2e/v ≤ M .

A simple graph is called regular if every vertex of this graph
has the same degree. A regular graph is called n-regular if
every vertex in this graph has degree n.

53. For which values of n are these graphs regular?

a) Kn b) Cn c) Wn d) Qn

54. For which values of m and n is Km,n regular?

55. How many vertices does a regular graph of degree four
with 10 edges have?

In Exercises 56–58 find the union of the given pair of simple
graphs. (Assume edges with the same endpoints are the same.)

56. a

d

b

c

f

e

f b

d

57. a b

c d

e

a b

c d

e

f

g

58. a b

c d

a e

f g

h

59. The complementary graph G of a simple graph G has
the same vertices as G. Two vertices are adjacent in G if
and only if they are not adjacent in G. Describe each of
these graphs.

a) Kn b) Km,n c) Cn d) Qn

60. IfG is a simple graph with 15 edges andG has 13 edges,
how many vertices does G have?

668 10 / Graphs

61. If the simple graph G has v vertices and e edges, how
many edges does G have?

62. If the degree sequence of the simple graph G is
4, 3, 3, 2, 2, what is the degree sequence of G?

63. If the degree sequence of the simple graph G is
d1, d2, . . . , dn, what is the degree sequence of G?

∗64. Show that ifG is a bipartite simple graph with v vertices
and e edges, then e ≤ v2/4.

65. Show that ifG is a simple graph with n vertices, then the
union of G and G is Kn.

∗66. Describe an algorithm to decide whether a graph is bipar-
tite based on the fact that a graph is bipartite if and only
if it is possible to color its vertices two different colors
so that no two vertices of the same color are adjacent.

The converse of a directed graph G = (V ,E), denoted
by Gconv, is the directed graph (V , F), where the set F
of edges of Gconv is obtained by reversing the direction of
each edge in E.

67. Draw the converse of each of the graphs in Exercises 7–9
in Section 10.1.

68. Show that (Gconv)conv = G whenever G is a directed
graph.

69. Show that the graphG is its own converse if and only if the
relation associated withG (see Section 9.3) is symmetric.

70. Show that if a bipartite graphG = (V ,E) is n-regular for
some positive integer n (see the preamble to Exercise 53)
and (V1, V2) is a bipartition of V , then |V1| = |V2|. That
is, show that the two sets in a bipartition of the vertex set
of an n-regular graph must contain the same number of
vertices.

71. Draw the mesh network for interconnecting nine parallel
processors.

72. In a variant of a mesh network for interconnectingn = m2

processors, processorP(i, j) is connected to the four pro-
cessors P((i ± 1) mod m, j) and P(i, (j ± 1) mod m),
so that connections wrap around the edges of the mesh.
Draw this variant of the mesh network for 16 processors.

73. Show that every pair of processors in a mesh network
of n = m2 processors can communicate usingO(

√
n) =

O(m) hops between directly connected processors.

10.3 Representing Graphs and Graph Isomorphism

Introduction

There are many useful ways to represent graphs. As we will see throughout this chapter, in
working with a graph it is helpful to be able to choose its most convenient representation. In
this section we will show how to represent graphs in several different ways.

Sometimes, two graphs have exactly the same form, in the sense that there is a one-to-one
correspondence between their vertex sets that preserves edges. In such a case, we say that the
two graphs are isomorphic. Determining whether two graphs are isomorphic is an important
problem of graph theory that we will study in this section.

Representing Graphs

One way to represent a graph without multiple edges is to list all the edges of this graph. Another
way to represent a graph with no multiple edges is to use adjacency lists, which specify the
vertices that are adjacent to each vertex of the graph.

EXAMPLE 1 Use adjacency lists to describe the simple graph given in Figure 1.

Solution: Table 1 lists those vertices adjacent to each of the vertices of the graph. ▲

b

a c

e d

FIGURE 1 A Simple Graph.

TABLE 1 AnAdjacency List
for a Simple Graph.

Vertex Adjacent Vertices

a b, c, e

b a

c a, d, e

d c, e

e a, c, d

10.3 Representing Graphs and Graph Isomorphism 669

b

a c

e d

FIGURE 2 A Directed Graph.

TABLE 2 AnAdjacency List for a
Directed Graph.

Initial Vertex Terminal Vertices

a b, c, d, e

b b, d

c a, c, e

d

e b, c, d

EXAMPLE 2 Represent the directed graph shown in Figure 2 by listing all the vertices that are the terminal
vertices of edges starting at each vertex of the graph.

Solution: Table 2 represents the directed graph shown in Figure 2. ▲

a b

c d

FIGURE 3

Simple Graph.

Adjacency Matrices

Carrying out graph algorithms using the representation of graphs by lists of edges, or by adja-
cency lists, can be cumbersome if there are many edges in the graph. To simplify computation,
graphs can be represented using matrices. Two types of matrices commonly used to represent
graphs will be presented here. One is based on the adjacency of vertices, and the other is based
on incidence of vertices and edges.

Suppose that G = (V ,E) is a simple graph where |V | = n. Suppose that the vertices of
G are listed arbitrarily as v1, v2, . . . , vn. The adjacency matrix A (or AG) of G, with respect
to this listing of the vertices, is the n x n zero–one matrix with 1 as its (i, j)th entry when vi
and vj are adjacent, and 0 as its (i, j)th entry when they are not adjacent. In other words, if its
adjacency matrix is A = [aij], then

aij =

1 if {vi , vj } is an edge of G,

0 otherwise.

EXAMPLE 3 Use an adjacency matrix to represent the graph shown in Figure 3.

Solution: We order the vertices as a, b, c, d. The matrix representing this graph is

⎡
⎢⎢⎣

0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

⎤
⎥⎥⎦ .

▲

EXAMPLE 4 Draw a graph with the adjacency matrix

⎡
⎢⎢⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎥⎦

with respect to the ordering of vertices a, b, c, d.

a b

d c

FIGURE 4

A Graph with the

Given Adjacency

Matrix. Solution: A graph with this adjacency matrix is shown in Figure 4. ▲

670 10 / Graphs

Note that an adjacency matrix of a graph is based on the ordering chosen for the vertices.
Hence, there may be as many as n! different adjacency matrices for a graph with n vertices,
because there are n! different orderings of n vertices.

The adjacency matrix of a simple graph is symmetric, that is, aij = aji , because both of
these entries are 1 when vi and vj are adjacent, and both are 0 otherwise. Furthermore, because
a simple graph has no loops, each entry aii, i = 1, 2, 3, . . . , n, is 0.

Adjacency matrices can also be used to represent undirected graphs with loops and with
multiple edges. A loop at the vertex vi is represented by a 1 at the (i, i)th position of the
adjacency matrix. When multiple edges connecting the same pair of vertices vi and vj , or
multiple loops at the same vertex, are present, the adjacency matrix is no longer a zero–one
matrix, because the (i, j)th entry of this matrix equals the number of edges that are associated
to {vi , vj }. All undirected graphs, including multigraphs and pseudographs, have symmetric
adjacency matrices.

EXAMPLE 5 Use an adjacency matrix to represent the pseudograph shown in Figure 5.

a b

d c

FIGURE 5

A Pseudograph.

Solution: The adjacency matrix using the ordering of vertices a, b, c, d is

⎡
⎢⎢⎣

0 3 0 2
3 0 1 1
0 1 1 2
2 1 2 0

⎤
⎥⎥⎦ .

▲

We used zero–one matrices in Chapter 9 to represent directed graphs. The matrix for a
directed graph G = (V ,E) has a 1 in its (i, j)th position if there is an edge from vi to vj ,
where v1, v2, . . . , vn is an arbitrary listing of the vertices of the directed graph. In other words,
if A = [aij] is the adjacency matrix for the directed graph with respect to this listing of the
vertices, then

aij =

1 if (vi , vj) is an edge of G,

0 otherwise.

The adjacency matrix for a directed graph does not have to be symmetric, because there may
not be an edge from vj to vi when there is an edge from vi to vj .

Adjacency matrices can also be used to represent directed multigraphs.Again, such matrices
are not zero–one matrices when there are multiple edges in the same direction connecting two
vertices. In the adjacency matrix for a directed multigraph, aij equals the number of edges that
are associated to (vi , vj).

TRADE-OFFS BETWEEN ADJACENCY LISTS AND ADJACENCY MATRICES When
a simple graph contains relatively few edges, that is, when it is sparse, it is usually preferable
to use adjacency lists rather than an adjacency matrix to represent the graph. For example, if
each vertex has degree not exceeding c, where c is a constant much smaller than n, then each
adjacency list contains c or fewer vertices. Hence, there are no more than cn items in all these
adjacency lists. On the other hand, the adjacency matrix for the graph has n2 entries. Note,
however, that the adjacency matrix of a sparse graph is a sparse matrix, that is, a matrix with
few nonzero entries, and there are special techniques for representing, and computing with,
sparse matrices.

Now suppose that a simple graph is dense, that is, suppose that it contains many edges, such
as a graph that contains more than half of all possible edges. In this case, using an adjacency
matrix to represent the graph is usually preferable over using adjacency lists. To see why, we
compare the complexity of determining whether the possible edge {vi , vj } is present. Using an
adjacency matrix, we can determine whether this edge is present by examining the (i, j)th entry

10.3 Representing Graphs and Graph Isomorphism 671

in the matrix. This entry is 1 if the graph contains this edge and is 0 otherwise. Consequently,
we need make only one comparison, namely, comparing this entry with 0, to determine whether
this edge is present. On the other hand, when we use adjacency lists to represent the graph, we
need to search the list of vertices adjacent to either vi or vj to determine whether this edge is
present. This can require (|V |) comparisons when many edges are present.

Incidence Matrices

Another common way to represent graphs is to use incidence matrices. Let G = (V ,E) be an
undirected graph. Suppose that v1, v2, . . . , vn are the vertices and e1, e2, . . . , em are the edges
of G. Then the incidence matrix with respect to this ordering of V and E is the n×m matrix
M = [mij], where

mij =

1 when edge ej is incident with vi ,

0 otherwise.

EXAMPLE 6 Represent the graph shown in Figure 6 with an incidence matrix.

v1 v2 v3

v5v4

e6

e3

e5e4

e2

e1

FIGURE 6 An

Undirected

Graph.

Solution: The incidence matrix is

⎡
⎢⎢⎢⎢⎣

e1 e2 e3 e4 e5 e6

v1 1 1 0 0 0 0
v2 0 0 1 1 0 1
v3 0 0 0 0 1 1
v4 1 0 1 0 0 0
v5 0 1 0 1 1 0

⎤
⎥⎥⎥⎥⎦.

▲

Incidence matrices can also be used to represent multiple edges and loops. Multiple edges
are represented in the incidence matrix using columns with identical entries, because these edges
are incident with the same pair of vertices. Loops are represented using a column with exactly
one entry equal to 1, corresponding to the vertex that is incident with this loop.

EXAMPLE 7 Represent the pseudograph shown in Figure 7 using an incidence matrix.

Solution: The incidence matrix for this graph is

⎡
⎢⎢⎢⎢⎣

e1 e2 e3 e4 e5 e6 e7 e8

v1 1 1 1 0 0 0 0 0
v2 0 1 1 1 0 1 1 0
v3 0 0 0 1 1 0 0 0
v4 0 0 0 0 0 0 1 1
v5 0 0 0 0 1 1 0 0

⎤
⎥⎥⎥⎥⎦.

▲

v5
v4

v1 v2 v3
e4

e5e6

e8

e3e1

e2

e7

FIGURE 7

A Pseudograph.

Isomorphism of Graphs

We often need to know whether it is possible to draw two graphs in the same way. That is, do
the graphs have the same structure when we ignore the identities of their vertices? For instance,
in chemistry, graphs are used to model chemical compounds (in a way we will describe later).
Different compounds can have the same molecular formula but can differ in structure. Such
compounds can be represented by graphs that cannot be drawn in the same way. The graphs
representing previously known compounds can be used to determine whether a supposedly new
compound has been studied before.

672 10 / Graphs

There is a useful terminology for graphs with the same structure.

DEFINITION 1 The simple graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there exists a one-
to-one and onto function f from V1 to V2 with the property that a and b are adjacent inG1 if
and only if f (a) and f (b) are adjacent inG2, for all a and b in V1. Such a function f is called
an isomorphism.∗ Two simple graphs that are not isomorphic are called nonisomorphic.

In other words, when two simple graphs are isomorphic, there is a one-to-one correspondence
between vertices of the two graphs that preserves the adjacency relationship. Isomorphism of
simple graphs is an equivalence relation. (We leave the verification of this as Exercise 45.)

EXAMPLE 8 Show that the graphs G = (V ,E) and H = (W, F), displayed in Figure 8, are isomorphic.

Solution: The function f with f (u1) = v1, f (u2) = v4, f (u3) = v3, and f (u4) = v2 is a one-
to-one correspondence between V andW . To see that this correspondence preserves adjacency,
note that adjacent vertices inG areu1 andu2, u1 andu3,u2 andu4, andu3 andu4, and each of the
pairs f (u1) = v1 and f (u2) = v4, f (u1) = v1 and f (u3) = v3, f (u2) = v4 and f (u4) = v2,
and f (u3) = v3 and f (u4) = v2 consists of two adjacent vertices in H . ▲

u1 u2

u3 u4
G

v1 v2

v3 v4
H

FIGURE 8 The

Graphs G and H .

Determining whether Two Simple Graphs are Isomorphic

It is often difficult to determine whether two simple graphs are isomorphic. There are n! possible
one-to-one correspondences between the vertex sets of two simple graphs withn vertices. Testing
each such correspondence to see whether it preserves adjacency and nonadjacency is impractical
if n is at all large.

Sometimes it is not hard to show that two graphs are not isomorphic. In particular, we can
show that two graphs are not isomorphic if we can find a property only one of the two graphs
has, but that is preserved by isomorphism. A property preserved by isomorphism of graphs is
called a graph invariant. For instance, isomorphic simple graphs must have the same number
of vertices, because there is a one-to-one correspondence between the sets of vertices of the
graphs.

Isomorphic simple graphs also must have the same number of edges, because the one-to-one
correspondence between vertices establishes a one-to-one correspondence between edges. In
addition, the degrees of the vertices in isomorphic simple graphs must be the same. That is, a
vertex v of degree d in G must correspond to a vertex f (v) of degree d in H , because a vertex
w in G is adjacent to v if and only if f (v) and f (w) are adjacent in H .

EXAMPLE 9 Show that the graphs displayed in Figure 9 are not isomorphic.

Solution: BothG andH have five vertices and six edges. However,H has a vertex of degree one,
namely, e, whereasG has no vertices of degree one. It follows thatG andH are not isomorphic.

▲

The number of vertices, the number of edges, and the number of vertices of each degree
are all invariants under isomorphism. If any of these quantities differ in two simple graphs,
these graphs cannot be isomorphic. However, when these invariants are the same, it does not
necessarily mean that the two graphs are isomorphic. There are no useful sets of invariants
currently known that can be used to determine whether simple graphs are isomorphic.

∗The word isomorphism comes from the Greek roots isos for “equal” and morphe for “form.”

10.3 Representing Graphs and Graph Isomorphism 673

a c

e d

G

b

a c

e d

H

b

FIGURE 9 The Graphs G and H .

a b

d c

g

f
e

h

G

s t

v u

y

w

z

H

x

FIGURE 10 The Graphs G and H .

EXAMPLE 10 Determine whether the graphs shown in Figure 10 are isomorphic.

Solution: The graphsG and H both have eight vertices and 10 edges. They also both have four
vertices of degree two and four of degree three. Because these invariants all agree, it is still
conceivable that these graphs are isomorphic.

b

f

h

d

s

w

z

v

FIGURE 11 The

Subgraphs of G

and H Made Up

of Vertices of De-

gree Three and

the Edges Con-

necting Them.

However, G and H are not isomorphic. To see this, note that because deg(a) = 2 in G, a
must correspond to either t , u, x, or y in H , because these are the vertices of degree two in H .
However, each of these four vertices in H is adjacent to another vertex of degree two in H ,
which is not true for a in G.

Another way to see that G and H are not isomorphic is to note that the subgraphs of G
and H made up of vertices of degree three and the edges connecting them must be isomorphic
if these two graphs are isomorphic (the reader should verify this). However, these subgraphs,
shown in Figure 11, are not isomorphic. ▲

To show that a function f from the vertex set of a graphG to the vertex set of a graphH is an
isomorphism, we need to show that f preserves the presence and absence of edges. One helpful
way to do this is to use adjacency matrices. In particular, to show that f is an isomorphism, we
can show that the adjacency matrix of G is the same as the adjacency matrix of H , when rows
and columns are labeled to correspond to the images under f of the vertices in G that are the
labels of these rows and columns in the adjacency matrix of G. We illustrate how this is done
in Example 11.

EXAMPLE 11 Determine whether the graphs G and H displayed in Figure 12 are isomorphic.

Solution: BothG andH have six vertices and seven edges. Both have four vertices of degree two
and two vertices of degree three. It is also easy to see that the subgraphs ofG andH consisting
of all vertices of degree two and the edges connecting them are isomorphic (as the reader should
verify). Because G and H agree with respect to these invariants, it is reasonable to try to find
an isomorphism f .

u1

u5

u2

u6

u3u4

G

v1

v2

v3

v6

v4v5

H

FIGURE 12 Graphs G and H .

674 10 / Graphs

We now will define a function f and then determine whether it is an isomorphism. Because
deg(u1) = 2 and because u1 is not adjacent to any other vertex of degree two, the image of u1

must be either v4 or v6, the only vertices of degree two in H not adjacent to a vertex of degree
two. We arbitrarily set f (u1) = v6. [If we found that this choice did not lead to isomorphism,
we would then try f (u1) = v4.] Because u2 is adjacent to u1, the possible images of u2 are v3

and v5. We arbitrarily set f (u2) = v3. Continuing in this way, using adjacency of vertices and
degrees as a guide, we set f (u3) = v4, f (u4) = v5, f (u5) = v1, and f (u6) = v2. We now have
a one-to-one correspondence between the vertex set of G and the vertex set of H , namely,
f (u1) = v6, f (u2) = v3, f (u3) = v4, f (u4) = v5, f (u5) = v1, f (u6) = v2. To see whether f
preserves edges, we examine the adjacency matrix of G,

AG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u1 u2 u3 u4 u5 u6

u1 0 1 0 1 0 0

u2 1 0 1 0 0 1

u3 0 1 0 1 0 0

u4 1 0 1 0 1 0

u5 0 0 0 1 0 1

u6 0 1 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

and the adjacency matrix of H with the rows and columns labeled by the images of the corre-
sponding vertices in G,

AH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v6 v3 v4 v5 v1 v2

v6 0 1 0 1 0 0

v3 1 0 1 0 0 1

v4 0 1 0 1 0 0

v5 1 0 1 0 1 0

v1 0 0 0 1 0 1

v2 0 1 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Because AG = AH , it follows that f preserves edges. We conclude that f is an isomorphism,
so G and H are isomorphic. Note that if f turned out not to be an isomorphism, we would
not have established that G and H are not isomorphic, because another correspondence of the
vertices in G and H may be an isomorphism. ▲

ALGORITHMSFORGRAPHISOMORPHISM The best algorithms known for determining
whether two graphs are isomorphic have exponential worst-case time complexity (in the number
of vertices of the graphs). However, linear average-case time complexity algorithms are known
that solve this problem, and there is some hope, but also skepticism, that an algorithm with
polynomial worst-case time complexity for determining whether two graphs are isomorphic can
be found. The best practical general purpose software for isomorphism testing, called NAUTY,
can be used to determine whether two graphs with as many as 100 vertices are isomorphic
in less than a second on a modern PC. NAUTY software can be downloaded over the Internet
and experimented with. Practical algorithms for determining whether two graphs are isomorphic
exist for graphs that are restricted in various ways, such as when the maximum degree of vertices
is small. The problem of determining whether any two graphs are isomorphic is of special interest
because it is one of only a few NP problems (see Exercise 72) not known to be either tractable
or NP-complete (see Section 3.3).

APPLICATIONS OF GRAPH ISOMORPHISMS Graph isomorphisms, and functions that
are almost graph isomorphisms, arise in applications of graph theory to chemistry and to the
design of electronic circuits, and other areas including bioinformatics and computer vision.

10.3 Representing Graphs and Graph Isomorphism 675

Chemists use multigraphs, known as molecular graphs, to model chemical compounds. In these
graphs, vertices represent atoms and edges represent chemical bonds between these atoms.
Two structural isomers, molecules with identical molecular formulas but with atoms bonded
differently, have nonisomorphic molecular graphs. When a potentially new chemical compound
is synthesized, a database of molecular graphs is checked to see whether the molecular graph
of the compound is the same as one already known.

Electronic circuits are modeled using graphs in which vertices represent components and
edges represent connections between them. Modern integrated circuits, known as chips, are
miniaturized electronic circuits, often with millions of transistors and connections between
them. Because of the complexity of modern chips, automation tools are used to design them.
Graph isomorphism is the basis for the verification that a particular layout of a circuit produced
by an automated tool corresponds to the original schematic of the design. Graph isomorphism
can also be used to determine whether a chip from one vendor includes intellectual property
from a different vendor. This can be done by looking for large isomorphic subgraphs in the
graphs modeling these chips.

Exercises

In Exercises 1–4 use an adjacency list to represent the given
graph.

1. a b

c d

2. b

d e

a c

3. a b

dc

4. a b

ed

c

5. Represent the graph in Exercise 1 with an adjacency ma-
trix.

6. Represent the graph in Exercise 2 with an adjacency ma-
trix.

7. Represent the graph in Exercise 3 with an adjacency ma-
trix.

8. Represent the graph in Exercise 4 with an adjacency ma-
trix.

9. Represent each of these graphs with an adjacency matrix.

a) K4 b) K1,4 c) K2,3

d) C4 e) W4 f) Q3

In Exercises 10–12 draw a graph with the given adjacency
matrix.

10.
⎡
⎣0 1 0

1 0 1
0 1 0

⎤
⎦ 11.

⎡
⎢⎢⎣

0 0 1 1
0 0 1 0
1 1 0 1
1 1 1 0

⎤
⎥⎥⎦

12.
⎡
⎢⎢⎣

1 1 1 0
0 0 1 0
1 0 1 0
1 1 1 0

⎤
⎥⎥⎦

In Exercises 13–15 represent the given graph using an adja-
cency matrix.

13. ba

dc

14. a b

c d

15.

a

c

b

d

In Exercises 16–18 draw an undirected graph represented by
the given adjacency matrix.

16.
⎡
⎣1 3 2

3 0 4
2 4 0

⎤
⎦ 17.

⎡
⎢⎢⎣

1 2 0 1
2 0 3 0
0 3 1 1
1 0 1 0

⎤
⎥⎥⎦

18.
⎡
⎢⎢⎢⎢⎣

0 1 3 0 4
1 2 1 3 0
3 1 1 0 1
0 3 0 0 2
4 0 1 2 3

⎤
⎥⎥⎥⎥⎦

676 10 / Graphs

In Exercises 19–21 find the adjacency matrix of the given
directed multigraph with respect to the vertices listed in al-
phabetic order.

19.

d

ba

c

20.

d

ba

c

21. b

c

a

d

In Exercises 22–24 draw the graph represented by the given
adjacency matrix.

22.
⎡
⎣1 0 1

0 0 1
1 1 1

⎤
⎦ 23.

⎡
⎣1 2 1

2 0 0
0 2 2

⎤
⎦ 24.

⎡
⎢⎢⎣

0 2 3 0
1 2 2 1
2 1 1 0
1 0 0 2

⎤
⎥⎥⎦

25. Is every zero–one square matrix that is symmetric and
has zeros on the diagonal the adjacency matrix of a sim-
ple graph?

26. Use an incidence matrix to represent the graphs in Exer-
cises 1 and 2.

27. Use an incidence matrix to represent the graphs in Exer-
cises 13–15.

∗28. What is the sum of the entries in a row of the adjacency
matrix for an undirected graph? For a directed graph?

∗29. What is the sum of the entries in a column of the adjacency
matrix for an undirected graph? For a directed graph?

30. What is the sum of the entries in a row of the incidence
matrix for an undirected graph?

31. What is the sum of the entries in a column of the incidence
matrix for an undirected graph?

∗32. Find an adjacency matrix for each of these graphs.

a) Kn b) Cn c)Wn d) Km,n e)Qn

∗33. Find incidence matrices for the graphs in parts (a)–(d) of
Exercise 32.

In Exercises 34–44 determine whether the given pair of graphs
is isomorphic. Exhibit an isomorphism or provide a rigorous
argument that none exists.

34.

u1 u5u2 u3 u4

v1 v2

v4 v5

v3

35.

u2

u1

u5 u4

u3

v2

v1 v3

v4v5

36. v1

v5

v4 v3

v2

u2u1

u3u4

u5

37. v1u1 u2

u7 u3

u4u6

u5

v7

v6

v5
v4

v3

v2

38. u1 u2

u5 u4 u3

v1
v2

v3

v4

v5

39. u1
v1 v2

v4 v3

v6

v5

u2u6

u3u5

u4

40.

u5

u1 u2

u4

v1 v2

v6 v3

v5 v4

u6 u3

10.3 Representing Graphs and Graph Isomorphism 677

41. u1 u2 u3 u5 u6 u8

u4 u7

v1 v2 v4 v5 v6 v8

v3 v7

42.

u1 u2 u3 u4 u5

u6 u7

u8 u9 u10

v6 v7

v1 v2 v3 v4 v5

v8 v9 v10

43.

u1

u2

u3

u4u5

u6

u7

u8

u9
u10

v1

v2

v3

v4

v5

v6 v7 v9

v10

v8

44.

u7

u8

u1

u2

u3

u4

u5

u6

v7

v8

v1

v2

v3

v4

v5

v6

45. Show that isomorphism of simple graphs is an equiva-
lence relation.

46. Suppose that G and H are isomorphic simple graphs.
Show that their complementary graphsG andH are also
isomorphic.

47. Describe the row and column of an adjacency matrix of
a graph corresponding to an isolated vertex.

48. Describe the row of an incidence matrix of a graph cor-
responding to an isolated vertex.

49. Show that the vertices of a bipartite graph with two or
more vertices can be ordered so that its adjacency matrix

has the form

0 A

B 0

,

where the four entries shown are rectangular blocks.

A simple graph G is called self-complementary if G and G
are isomorphic.

50. Show that this graph is self-complementary.

d c

a b

51. Find a self-complementary simple graph with five ver-
tices.

∗52. Show that if G is a self-complementary simple graph
with v vertices, then v ≡ 0 or 1 (mod 4).

53. For which integers n is Cn self-complementary?

54. How many nonisomorphic simple graphs are there with n
vertices, when n is

a) 2? b) 3? c) 4?

55. How many nonisomorphic simple graphs are there with
five vertices and three edges?

56. How many nonisomorphic simple graphs are there with
six vertices and four edges?

57. Are the simple graphs with the following adjacency ma-
trices isomorphic?

a)
⎡
⎣0 0 1

0 0 1
1 1 0

⎤
⎦ ,
⎡
⎣0 1 1

1 0 0
1 0 0

⎤
⎦

b)
⎡
⎢⎢⎣

0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0

⎤
⎥⎥⎦ ,
⎡
⎢⎢⎣

0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0

⎤
⎥⎥⎦

c)
⎡
⎢⎢⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎥⎦ ,
⎡
⎢⎢⎣

0 1 0 1
1 0 0 0
0 0 0 1
1 0 1 0

⎤
⎥⎥⎦

58. Determine whether the graphs without loops with these
incidence matrices are isomorphic.

a)
⎡
⎣1 0 1

0 1 1
1 1 0

⎤
⎦ ,
⎡
⎣1 1 0

1 0 1
0 1 1

⎤
⎦

b)
⎡
⎢⎢⎣

1 1 0 0 0
1 0 1 0 1
0 0 0 1 1
0 1 1 1 0

⎤
⎥⎥⎦ ,
⎡
⎢⎢⎣

0 1 0 0 1
0 1 1 1 0
1 0 0 1 0
1 0 1 0 1

⎤
⎥⎥⎦

59. Extend the definition of isomorphism of simple graphs to
undirected graphs containing loops and multiple edges.

60. Define isomorphism of directed graphs.

678 10 / Graphs

In Exercises 61–64 determine whether the given pair of di-
rected graphs are isomorphic. (See Exercise 60.)

61. u1 u2

u3 u4

v1 v2

v3 v4

62. u1 u2

u3 u4

v1 v2

v3 v4

63. u1

u2 u3

u4

v1

v2 v3

v4

64. u1 u2 u3

u5u4 u6

v1 v2

v4v5

v6 v3

65. Show that if G and H are isomorphic directed graphs,
then the converses of G and H (defined in the preamble
of Exercise 67 of Section 10.2) are also isomorphic.

66. Show that the property that a graph is bipartite is an iso-
morphic invariant.

67. Find a pair of nonisomorphic graphs with the same de-
gree sequence (defined in the preamble to Exercise 36
in Section 10.2) such that one graph is bipartite, but the
other graph is not bipartite.

∗68. How many nonisomorphic directed simple graphs are
there with n vertices, when n is

a) 2? b) 3? c) 4?

∗69. What is the product of the incidence matrix and its trans-
pose for an undirected graph?

∗70. How much storage is needed to represent a simple graph
with n vertices and m edges using

a) adjacency lists?

b) an adjacency matrix?

c) an incidence matrix?

A devil’s pair for a purported isomorphism test is a pair of
nonisomorphic graphs that the test fails to show that they are
not isomorphic.

71. Find a devil’s pair for the test that checks the degree se-
quence (defined in the preamble to Exercise 36 in Sec-
tion 10.2) in two graphs to make sure they agree.

72. Suppose that the function f from V1 to V2 is an isomor-
phism of the graphs G1 = (V1, E1) and G2 = (V2, E2).
Show that it is possible to verify this fact in time polyno-
mial in terms of the number of vertices of the graph, in
terms of the number of comparisons needed.

10.4 Connectivity

Introduction

Many problems can be modeled with paths formed by traveling along the edges of graphs. For
instance, the problem of determining whether a message can be sent between two computers
using intermediate links can be studied with a graph model. Problems of efficiently planning
routes for mail delivery, garbage pickup, diagnostics in computer networks, and so on can be
solved using models that involve paths in graphs.

Paths

Informally, a path is a sequence of edges that begins at a vertex of a graph and travels from
vertex to vertex along edges of the graph. As the path travels along its edges, it visits the vertices
along this path, that is, the endpoints of these edges.

10.4 Connectivity 679

A formal definition of paths and related terminology is given in Definition 1.

DEFINITION 1 Let n be a nonnegative integer and G an undirected graph. A path of length n from u

to v in G is a sequence of n edges e1, . . . , en of G for which there exists a sequence
x0 = u, x1, . . . , xn−1, xn = v of vertices such that ei has, for i = 1, . . . , n, the endpoints xi−1

and xi . When the graph is simple, we denote this path by its vertex sequence x0, x1, . . . , xn
(because listing these vertices uniquely determines the path). The path is a circuit if it begins
and ends at the same vertex, that is, if u = v, and has length greater than zero. The path or cir-
cuit is said to pass through the vertices x1, x2, . . . , xn−1 or traverse the edges e1, e2, . . . , en.
A path or circuit is simple if it does not contain the same edge more than once.

When it is not necessary to distinguish between multiple edges, we will denote a path
e1, e2, . . . , en, where ei is associated with {xi−1, xi} for i = 1, 2, . . . , n by its vertex sequence
x0, x1, . . . , xn. This notation identifies a path only as far as which vertices it passes through.
Consequently, it does not specify a unique path when there is more than one path that passes
through this sequence of vertices, which will happen if and only if there are multiple edges
between some successive vertices in the list. Note that a path of length zero consists of a single
vertex.

Remark: There is considerable variation of terminology concerning the concepts defined
in Definition 1. For instance, in some books, the term walk is used instead of path,
where a walk is defined to be an alternating sequence of vertices and edges of a graph,
v0, e1, v1, e2, . . . , vn−1, en, vn, where vi−1 and vi are the endpoints of ei for i = 1, 2, . . . , n.
When this terminology is used, closed walk is used instead of circuit to indicate a walk that
begins and ends at the same vertex, and trail is used to denote a walk that has no repeated
edge (replacing the term simple path). When this terminology is used, the terminology path is
often used for a trail with no repeated vertices, conflicting with the terminology in Definition 1.
Because of this variation in terminology, you will need to make sure which set of definitions are
used in a particular book or article when you read about traversing edges of a graph. The text
[GrYe06] is a good reference for the alternative terminology described in this remark.

EXAMPLE 1 In the simple graph shown in Figure 1, a, d, c, f , e is a simple path of length 4, because {a, d},
{d, c}, {c, f }, and {f, e} are all edges. However, d, e, c, a is not a path, because {e, c} is not an
edge. Note that b, c, f , e, b is a circuit of length 4 because {b, c}, {c, f }, {f, e}, and {e, b} are
edges, and this path begins and ends at b. The path a, b, e, d , a, b, which is of length 5, is not
simple because it contains the edge {a, b} twice. ▲

Paths and circuits in directed graphs were introduced in Chapter 9. We now provide more
general definitions.

a b c

d e f

FIGURE 1 A Simple Graph.

680 10 / Graphs

DEFINITION 2 Let n be a nonnegative integer andG a directed graph. A path of length n from u to v inG is a
sequence of edges e1, e2, . . . , en ofG such that e1 is associated with (x0, x1), e2 is associated
with (x1, x2), and so on, with en associated with (xn−1, xn), where x0 = u and xn = v. When
there are no multiple edges in the directed graph, this path is denoted by its vertex sequence
x0, x1, x2, . . . , xn. A path of length greater than zero that begins and ends at the same vertex
is called a circuit or cycle. A path or circuit is called simple if it does not contain the same
edge more than once.

Remark: Terminology other than that given in Definition 2 is often used for the concepts defined
there. In particular, the alternative terminology that uses walk, closed walk, trail, and path

(described in the remarks following Definition 1) may be used for directed graphs. See [GrYe05]
for details.

Note that the terminal vertex of an edge in a path is the initial vertex of the next edge in the
path. When it is not necessary to distinguish between multiple edges, we will denote a path
e1, e2, . . . , en, where ei is associated with (xi−1, xi) for i = 1, 2, . . . , n, by its vertex sequence
x0, x1, . . . , xn. The notation identifies a path only as far as which the vertices it passes through.
There may be more than one path that passes through this sequence of vertices, which will
happen if and only if there are multiple edges between two successive vertices in the list.

Paths represent useful information in many graph models, as Examples 2–4 demonstrate.

EXAMPLE 2 Paths in Acquaintanceship Graphs In an acquaintanceship graph there is a path between
two people if there is a chain of people linking these people, where two people adjacent in
the chain know one another. For example, in Figure 6 in Section 10.1, there is a chain of six
people linking Kamini and Ching. Many social scientists have conjectured that almost every
pair of people in the world are linked by a small chain of people, perhaps containing just five or
fewer people. This would mean that almost every pair of vertices in the acquaintanceship graph
containing all people in the world is linked by a path of length not exceeding four. The play Six

Degrees of Separation by John Guare is based on this notion. ▲

EXAMPLE 3 Paths in Collaboration Graphs In a collaboration graph, two people a and b are connected
by a path when there is a sequence of people starting with a and ending with b such that the
endpoints of each edge in the path are people who have collaborated. We will consider two
particular collaboration graphs here. First, in the academic collaboration graph of people who
have written papers in mathematics, the Erdős number of a person m (defined in terms of
relations in Supplementary Exercise 14 in Chapter 9) is the length of the shortest path between
m and the extremely prolific mathematician Paul Erdős (who died in 1996). That is, the Erdős
number of a mathematician is the length of the shortest chain of mathematicians that begins
with Paul Erdős and ends with this mathematician, where each adjacent pair of mathematicians
have written a joint paper. The number of mathematicians with each Erdős number as of early
2006, according to the Erdős Number Project, is shown in Table 1.

In the Hollywood graph (see Example 3 in Section 10.1) two actors a and b are linked when
there is a chain of actors linking a and b, where every two actors adjacent in the chain have
acted in the same movie. In the Hollywood graph, the Bacon number of an actor c is defined
to be the length of the shortest path connecting c and the well-known actor Kevin Bacon. As
new movies are made, including new ones with Kevin Bacon, the Bacon number of actors can
change. In Table 2 we show the number of actors with each Bacon number as of early 2011

Replace Kevin Bacon by

your own favorite actor to

invent a new party game

using data from the Oracle of Bacon website. The origins of the Bacon number of an actor
dates back to the early 1990s, when Kevin Bacon remarked that he had worked with everyone
in Hollywood or someone who worked with them. This lead some people to invent a party

10.4 Connectivity 681

TABLE 1 The Number
of Mathematicians
with a Given Erdős
Number (as of early
2006).

Erdős Number

Number of People

0 1

1 504

2 6,593

3 33,605

4 83,642

5 87,760

6 40,014

7 11,591

8 3,146

9 819

10 244

11 68

12 23

13 5

TABLE 2 The Number
of Actors with a Given
Bacon Number (as of
early 2011).

Bacon Number

Number of People

0 1

1 2,367

2 242,407

3 785,389

4 200,602

5 14,048

6 1,277

7 114

8 16

game where participants where challenged to find a sequence of movies leading from each actor
named to Kevin Bacon. We can find a number similar to a Bacon number using any actor as the
center of the acting universe. ▲

Connectedness in Undirected Graphs

When does a computer network have the property that every pair of computers can share infor-
mation, if messages can be sent through one or more intermediate computers? When a graph
is used to represent this computer network, where vertices represent the computers and edges
represent the communication links, this question becomes: When is there always a path between
two vertices in the graph?

DEFINITION 3 An undirected graph is called connected if there is a path between every pair of distinct
vertices of the graph. An undirected graph that is not connected is called disconnected. We
say that we disconnect a graph when we remove vertices or edges, or both, to produce a
disconnected subgraph.

Thus, any two computers in the network can communicate if and only if the graph of this network
is connected.

EXAMPLE 4 The graph G1 in Figure 2 is connected, because for every pair of distinct vertices there is a
path between them (the reader should verify this). However, the graph G2 in Figure 2 is not
connected. For instance, there is no path in G2 between vertices a and d. ▲

We will need the following theorem in Chapter 11.

682 10 / Graphs

a b

g e

f d

a b

c

c

d f

e

G2G1

FIGURE 2 The Graphs G1 and

G2.

a c

b
d e

h g

f

H1

H2
H3

H

FIGURE 3 The Graph H and Its

Connected Components H1, H2, and H3.

THEOREM 1 There is a simple path between every pair of distinct vertices of a connected undirected graph.

Proof: Let u and v be two distinct vertices of the connected undirected graphG = (V ,E). Be-
causeG is connected, there is at least one path between u and v. Let x0, x1, . . . , xn, where x0 = u
and xn = v, be the vertex sequence of a path of least length. This path of least length is simple. To
see this, suppose it is not simple. Then xi = xj for some i and j with 0 ≤ i < j . This means that
there is a path from u to v of shorter length with vertex sequence x0, x1, . . . , xi−1, xj , . . . , xn
obtained by deleting the edges corresponding to the vertex sequence xi, . . . , xj−1.

CONNECTEDCOMPONENTS A connected component of a graphG is a connected sub-
graph ofG that is not a proper subgraph of another connected subgraph ofG. That is, a connected
component of a graphG is a maximal connected subgraph ofG. A graphG that is not connected
has two or more connected components that are disjoint and have G as their union.

EXAMPLE 5 What are the connected components of the graph H shown in Figure 3?

Solution: The graphH is the union of three disjoint connected subgraphsH1,H2, andH3, shown
in Figure 3. These three subgraphs are the connected components of H . ▲

EXAMPLE 6 ConnectedComponents of Call Graphs Two vertices x and y are in the same component of a
telephone call graph (see Example 4 in Section 10.1) when there is a sequence of telephone calls
beginning at x and ending at y. When a call graph for telephone calls made during a particular
day in the AT&T network was analyzed, this graph was found to have 53,767,087 vertices,
more than 170 million edges, and more than 3.7 million connected components. Most of these
components were small; approximately three-fourths consisted of two vertices representing pairs
of telephone numbers that called only each other. This graph has one huge connected component
with 44,989,297 vertices comprising more than 80% of the total. Furthermore, every vertex in
this component can be linked to any other vertex by a chain of no more than 20 calls. ▲

How Connected is a Graph?

Suppose that a graph represents a computer network. Knowing that this graph is connected tells
us that any two computers on the network can communicate. However, we would also like to
understand how reliable this network is. For instance, will it still be possible for all computers to
communicate after a router or a communications link fails? To answer this and similar questions,
we now develop some new concepts.

10.4 Connectivity 683

Sometimes the removal from a graph of a vertex and all incident edges produces a subgraph
with more connected components. Such vertices are called cut vertices (or articulation points).
The removal of a cut vertex from a connected graph produces a subgraph that is not connected.
Analogously, an edge whose removal produces a graph with more connected components than
in the original graph is called a cut edge or bridge. Note that in a graph representing a computer
network, a cut vertex and a cut edge represent an essential router and an essential link that cannot
fail for all computers to be able to communicate.

EXAMPLE 7 Find the cut vertices and cut edges in the graph G1 shown in Figure 4.

Solution: The cut vertices of G1 are b, c, and e. The removal of one of these vertices (and its
adjacent edges) disconnects the graph. The cut edges are {a, b} and {c, e}. Removing either one
of these edges disconnects G1. ▲

VERTEX CONNECTIVITY Not all graphs have cut vertices. For example, the complete
graph Kn, where n ≥ 3, has no cut vertices. When you remove a vertex from Kn and all edges
incident to it, the resulting subgraph is the complete graphKn−1, a connected graph. Connected
graphs without cut vertices are called nonseparable graphs, and can be thought of as more
connected than those with a cut vertex. We can extend this notion by defining a more granulated
measure of graph connectivity based on the minimum number of vertices that can be removed
to disconnect a graph.

a d f

b c e

a

g

h

b c

a g f

d

e

b c

h g f

d

e

b c

a

g

f

d

e

G1

a c d

f

b

e

G2

G3
G4

G5

FIGURE 4 Some Connected Graphs

684 10 / Graphs

A subset V of the vertex set V ofG = (V ,E) is a vertex cut, or separating set, ifG− V
is disconnected. For instance, in the graph in Figure 1, the set {b, c, e} is a vertex cut with three
vertices, as the reader should verify. We leave it to the reader (Exercise 51) to show that every
connected graph, except a complete graph, has a vertex cut. We define the vertex connectivity
of a noncomplete graph G, denoted by κ(G), as the minimum number of vertices in a vertex
cut.

κ is the lowercase Greek

letter kappa. WhenG is a complete graph, it has no vertex cuts, because removing any subset of its vertices
and all incident edges still leaves a complete graph. Consequently, we cannot define κ(G) as the
minimum number of vertices in a vertex cut whenG is complete. Instead, we set κ(Kn) = n− 1,
the number of vertices needed to be removed to produce a graph with a single vertex.

Consequently, for every graph G, κ(G) is minimum number of vertices that can be re-
moved from G to either disconnect G or produce a graph with a single vertex. We have
0 ≤ κ(G) ≤ n− 1 if G has n vertices, κ(G) = 0 if and only if G is disconnected or G = K1,
and κ(G) = n− 1 if and only if G is complete [see Exercise 52(a)].

The larger κ(G) is, the more connected we consider G to be. Disconnected graphs and K1

have κ(G) = 0, connected graphs with cut vertices and K2 have κ(G) = 1, graphs without cut
vertices that can be disconnected by removing two vertices and K3 have κ(G) = 2, and so
on. We say that a graph is k-connected (or k-vertex-connected), if κ(G) ≥ k. A graph G is 1-
connected if it is connected and not a graph containing a single vertex; a graph is 2-connected, or
biconnected, if it is nonseparable and has at least three vertices. Note that ifG is a k-connected
graph, then G is a j -connected graph for all j with 0 ≤ j ≤ k.

EXAMPLE 8 Find the vertex connectivity for each of the graphs in Figure 4.

Solution: Each of the five graphs in Figure 4 is connected and has more than vertex, so each
of these graphs has positive vertex connectivity. Because G1 is a connected graph with a cut
vertex, as shown in Example 7, we know that κ(G1) = 1. Similarly, κ(G2) = 1, because c is a
cut vertex of G2.

The reader should verify that G3 has no cut vertices. but that {b, g} is a vertex cut. Hence,
κ(G3) = 2. Similarly, because G4 has a vertex cut of size two, {c, f }, but no cut vertices. It
follows that κ(G4) = 2. The reader can verify thatG5 has no vertex cut of size two, but {b, c, f }
is a vertex cut of G5. Hence, κ(G5) = 3. ▲

EDGE CONNECTIVITY We can also measure the connectivity of a connected graph G =
(V ,E) in terms of the minimum number of edges that we can remove to disconnect it. If a graph
has a cut edge, then we need only remove it to disconnect G. If G does not have a cut edge,
we look for the smallest set of edges that can be removed to disconnect it. A set of edges E
is called an edge cut of G if the subgraph G− E is disconnected. The edge connectivity

λ is the lowercase Greek

letter lambda. of a graph G, denoted by λ(G), is the minimum number of edges in an edge cut of G. This
defines λ(G) for all connected graphs with more than one vertex because it is always possible
to disconnect such a graph by removing all edges incident to one of its vertices. Note that
λ(G) = 0 if G is not connected. We also specify that λ(G) = 0 if G is a graph consisting of a
single vertex. It follows that if G is a graph with n vertices, then 0 ≤ λ(G) ≤ n− 1. We leave
it to the reader [Exercise 52(b)] to show that λ(G) = n− 1 where G is a graph with n vertices
if and only ifG = Kn, which is equivalent to the statement that λ(G) ≤ n− 2 whenG is not a
complete graph.

EXAMPLE 9 Find the edge connectivity of each of the graphs in Figure 4.

Solution: Each of the five graphs in Figure 4 is connected and has more than one vertex, so we
know that all of them have positive edge connectivity. As we saw in Example 7, G1 has a cut
edge, so λ(G1) = 1.

10.4 Connectivity 685

The graphG2 has no cut edges, as the reader should verify, but the removal of the two edges
{a, b} and {a, c} disconnects it. Hence, λ(G2) = 2. Similarly, λ(G3) = 2, because G3 has no
cut edges, but the removal of the two edges {b, c} and {f, g} disconnects it.

The reader should verify that the removal of no two edges disconnectsG4, but the removal
of the three edges {b, c}, {a, f }, and {f, g} disconnects it. Hence, λ(G4) = 3. Finally, the reader
should verify that λ(G5) = 3, because the removal of any two of its edges does not disconnect
it, but the removal of {a, b}, {a, g}, and {a, h} does. ▲

AN INEQUALITY FOR VERTEX CONNECTIVITY AND EDGE CONNECTIVITY

WhenG = (V ,E) is a noncomplete connected graph with at least three vertices, the minimum
degree of a vertex of G is an upper bound for both the vertex connectivity of G and the edge
connectivity of G. That is, κ(G) ≤ minv∈V deg(v) and λ(G) ≤ minv∈V deg(v). To see this,
observe that deleting all the neighbors of a fixed vertex of minimum degree disconnectsG, and
deleting all the edges that have a fixed vertex of minimum degree as an endpoint disconnectsG.

In Exercise 55, we ask the reader to show that κ(G) ≤ λ(G) when G is a connected non-
complete graph. Note also that κ(Kn) = λ(Kn) = minv∈V deg(v) = n− 1 when n is a positive
integer and that κ(G) = λ(G) = 0 whenG is a disconnected graph. Putting these facts together,
establishes that for all graphs G,

κ(G) ≤ λ(G) ≤ minv∈V deg(v).

APPLICATIONS OF VERTEX AND EDGE CONNECTIVITY Graph connectivity plays
an important role in many problems involving the reliability of networks. For instance, as we
mentioned in our introduction of cut vertices and cut edges, we can model a data network using
vertices to represent routers and edges to represent links between them. The vertex connectivity
of the resulting graph equals the minimum number of routers that disconnect the network when
they are out of service. If fewer routers are down, data transmission between every pair of routers
is still possible. The edge connectivity represents the minimum number of fiber optic links that
can be down to disconnect the network. If fewer links are down, it will still be possible for data
to be transmitted between every pair of routers.

We can model a highway network, using vertices to represent highway intersections and
edges to represent sections of roads running between intersections. The vertex connectivity of the
resulting graph represents the minimum number of intersections that can be closed at a particular
time that makes it impossible to travel between every two intersections. If fewer intersections
are closed, travel between every pair of intersections is still possible. The edge connectivity
represents the minimum number of roads that can be closed to disconnect the highway network.
If fewer highways are closed, it will still be possible to travel between any two intersections.
Clearly, it would be useful for the highway department to take this information into account
when planning road repairs.

Connectedness in Directed Graphs

There are two notions of connectedness in directed graphs, depending on whether the directions
of the edges are considered.

DEFINITION 4 A directed graph is strongly connected if there is a path from a to b and from b to a whenever
a and b are vertices in the graph.

For a directed graph to be strongly connected there must be a sequence of directed edges
from any vertex in the graph to any other vertex. A directed graph can fail to be strongly
connected but still be in “one piece.” Definition 5 makes this notion precise.

686 10 / Graphs

DEFINITION 5 A directed graph is weakly connected if there is a path between every two vertices in the
underlying undirected graph.

That is, a directed graph is weakly connected if and only if there is always a path between
two vertices when the directions of the edges are disregarded. Clearly, any strongly connected
directed graph is also weakly connected.

EXAMPLE 10 Are the directed graphs G and H shown in Figure 5 strongly connected? Are they weakly
connected?

Solution: G is strongly connected because there is a path between any two vertices in this
directed graph (the reader should verify this). Hence, G is also weakly connected. The graph
H is not strongly connected. There is no directed path from a to b in this graph. However, H is
weakly connected, because there is a path between any two vertices in the underlying undirected
graph of H (the reader should verify this). ▲

STRONGCOMPONENTSOFADIRECTEDGRAPH The subgraphs of a directed graphG
that are strongly connected but not contained in larger strongly connected subgraphs, that is,
the maximal strongly connected subgraphs, are called the strongly connected components or
strong components ofG. Note that if a and b are two vertices in a directed graph, their strong
components are either the same or disjoint. (We leave the proof of this last fact as Exercise 17.)

EXAMPLE 11 The graph H in Figure 5 has three strongly connected components, consisting of the vertex a;
the vertex e; and the subgraph consisting of the vertices b, c, and d and edges (b, c), (c, d), and
(d, b). ▲

EXAMPLE 12 The Strongly Connected Components of the Web Graph The Web graph introduced in
Example 5 of Section 10.1 represents Web pages with vertices and links with directed edges. A
snapshot of the Web in 1999 produced a Web graph with over 200 million vertices and over 1.5
billion edges (numbers that have now grown considerably). (See [Br00] for details.)

The underlying undirected graph of this Web graph is not connected, but it has a connected
component that includes approximately 90% of the vertices in the graph. The subgraph of the

In 2010 the Web graph

was estimated to have at

least 55 billion vertices

and one trillion edges.

This implies that more

than 40 TB of computer

memory would have been

needed to represent its

adjacency matrix.

original directed graph corresponding to this connected component of the underlying undirected
graph (that is, with the same vertices and all directed edges connecting vertices in this graph)
has one very large strongly connected component and many small ones. The former is called
the giant strongly connected component (GSCC) of the directed graph. A Web page in this
component can be reached following links starting at any other page in this component. The
GSCC in the Web graph produced by this study was found to have over 53 million vertices.
The remaining vertices in the large connected component of the undirected graph represent
three different types of Web pages: pages that can be reached from a page in the GSCC, but
do not link back to these pages following a series of links; pages that link back to pages in the

a b

e d

c

G

a b

e d

H

c

FIGURE 5 The Directed Graphs G and H .

10.4 Connectivity 687

GSCC following a series of links, but cannot be reached by following links on pages in the
GSCC; and pages that cannot reach pages in the GSCC and cannot be reached from pages in
the GSCC following a series of links. In this study, each of these three other sets was found to
have approximately 44 million vertices. (It is rather surprising that these three sets are close to
the same size.) ▲

Paths and Isomorphism

There are several ways that paths and circuits can help determine whether two graphs are
isomorphic. For example, the existence of a simple circuit of a particular length is a useful
invariant that can be used to show that two graphs are not isomorphic. In addition, paths can be
used to construct mappings that may be isomorphisms.

As we mentioned, a useful isomorphic invariant for simple graphs is the existence of a
simple circuit of length k, where k is a positive integer greater than 2. (The proof that this is an
invariant is left as Exercise 60.) Example 13 illustrates how this invariant can be used to show
that two graphs are not isomorphic.

EXAMPLE 13 Determine whether the graphs G and H shown in Figure 6 are isomorphic.

Solution: Both G and H have six vertices and eight edges. Each has four vertices of degree
three, and two vertices of degree two. So, the three invariants—number of vertices, number of
edges, and degrees of vertices—all agree for the two graphs. However, H has a simple circuit
of length three, namely, v1, v2, v6, v1, whereas G has no simple circuit of length three, as
can be determined by inspection (all simple circuits in G have length at least four). Because
the existence of a simple circuit of length three is an isomorphic invariant, G and H are not
isomorphic. ▲

We have shown how the existence of a type of path, namely, a simple circuit of a particular
length, can be used to show that two graphs are not isomorphic. We can also use paths to find
mappings that are potential isomorphisms.

EXAMPLE 14 Determine whether the graphs G and H shown in Figure 7 are isomorphic.

Solution: BothG andH have five vertices and six edges, both have two vertices of degree three
and three vertices of degree two, and both have a simple circuit of length three, a simple circuit
of length four, and a simple circuit of length five. Because all these isomorphic invariants agree,
G and H may be isomorphic.

u6

u5

u2

u3

u1

u4

G

v6

v5

v2

v3

v1

v4

H

FIGURE 6 The Graphs G and H .

H

v4 v3

v5 v2

v1

G

u5 u4

u1 u3

u2

FIGURE 7 The Graphs G and H .

688 10 / Graphs

To find a possible isomorphism, we can follow paths that go through all vertices so that the
corresponding vertices in the two graphs have the same degree. For example, the paths u1, u4,
u3, u2, u5 in G and v3, v2, v1, v5, v4 in H both go through every vertex in the graph; start at a
vertex of degree three; go through vertices of degrees two, three, and two, respectively; and end
at a vertex of degree two. By following these paths through the graphs, we define the mapping f
with f (u1) = v3, f (u4) = v2, f (u3) = v1, f (u2) = v5, and f (u5) = v4. The reader can show
that f is an isomorphism, soG andH are isomorphic, either by showing that f preserves edges
or by showing that with the appropriate orderings of vertices the adjacency matrices ofG andH
are the same. ▲

Counting Paths Between Vertices

The number of paths between two vertices in a graph can be determined using its adjacency
matrix.

THEOREM 2 Let G be a graph with adjacency matrix A with respect to the ordering v1, v2, . . . , vn of
the vertices of the graph (with directed or undirected edges, with multiple edges and loops
allowed). The number of different paths of length r from vi to vj , where r is a positive integer,
equals the (i, j)th entry of Ar .

Proof: The theorem will be proved using mathematical induction. Let G be a graph with adja-
cency matrixA (assuming an ordering v1, v2, . . . , vn of the vertices ofG). The number of paths
from vi to vj of length 1 is the (i, j)th entry of A, because this entry is the number of edges
from vi to vj .

Assume that the (i, j)th entry of Ar is the number of different paths of length r from vi
to vj . This is the inductive hypothesis. Because Ar+1 = ArA, the (i, j)th entry of Ar+1 equals

bi1a1j + bi2a2j + · · · + binanj ,
where bik is the (i, k)th entry of Ar . By the inductive hypothesis, bik is the number of paths of
length r from vi to vk .

A path of length r + 1 from vi to vj is made up of a path of length r from vi to some
intermediate vertex vk , and an edge from vk to vj . By the product rule for counting, the number
of such paths is the product of the number of paths of length r from vi to vk , namely, bik , and
the number of edges from vk to vj , namely, akj . When these products are added for all possible
intermediate vertices vk , the desired result follows by the sum rule for counting.

EXAMPLE 15 How many paths of length four are there from a to d in the simple graph G in Figure 8?

a b

d c

FIGURE 8 The

Graph G.

Solution: The adjacency matrix of G (ordering the vertices as a, b, c, d) is

A =

⎡
⎢⎢⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎥⎦ .

Hence, the number of paths of length four from a to d is the (1, 4)th entry of A4. Because

A4 =

⎡
⎢⎢⎣

8 0 0 8
0 8 8 0
0 8 8 0
8 0 0 8

⎤
⎥⎥⎦ ,

10.4 Connectivity 689

there are exactly eight paths of length four from a to d . By inspection of the graph, we see that
a, b, a, b, d; a, b, a, c, d; a, b, d, b, d; a, b, d, c, d; a, c, a, b, d; a, c, a, c, d; a, c, d, b, d; and
a, c, d, c, d are the eight paths of length four from a to d. ▲

Theorem 2 can be used to find the length of the shortest path between two vertices of a
graph (see Exercise 56), and it can also be used to determine whether a graph is connected (see
Exercises 61 and 62).

Exercises

1. Does each of these lists of vertices form a path in the
following graph? Which paths are simple? Which are cir-
cuits? What are the lengths of those that are paths?

a) a, e, b, c, b b) a, e, a, d, b, c, a

c) e, b, a, d, b, e d) c, b, d, a, e, c

a b c

d e

2. Does each of these lists of vertices form a path in the
following graph? Which paths are simple? Which are cir-
cuits? What are the lengths of those that are paths?

a) a, b, e, c, b b) a, d, a, d, a

c) a, d, b, e, a d) a, b, e, c, b, d, a

a b c

d e

In Exercises 3–5 determine whether the given graph is con-
nected.

3.

4.

5.

6. How many connected components does each of the
graphs in Exercises 3–5 have? For each graph find each
of its connected components.

7. What do the connected components of acquaintanceship
graphs represent?

8. What do the connected components of a collaboration
graph represent?

9. Explain why in the collaboration graph of mathematicians
(see Example 3 in Section 10.1) a vertex representing a
mathematician is in the same connected component as the
vertex representing Paul Erdős if and only if that mathe-
matician has a finite Erdős number.

10. In the Hollywood graph (see Example 3 in Section 10.1),
when is the vertex representing an actor in the same con-
nected component as the vertex representing Kevin Ba-
con?

11. Determine whether each of these graphs is strongly con-
nected and if not, whether it is weakly connected.

a) a b c

e d

b) a b

c

e d

c)
a

b
c

ef

g d

690 10 / Graphs

12. Determine whether each of these graphs is strongly con-
nected and if not, whether it is weakly connected.

a) ba

e df

c

b)

a c

f d

b

e

c) ba c

dg

ef

13. What do the strongly connected components of a tele-
phone call graph represent?

14. Find the strongly connected components of each of these
graphs.

a) a b c

e d

b) a b c

f e d

c)
a b c

i h g

d

f

e

15. Find the strongly connected components of each of these
graphs.

a) a b

f e

c

d

b) a b c

h g f

d

e

c) a b c

i h g

d

f

e

Suppose thatG = (V ,E) is a directed graph. A vertex w ∈ V
is reachable from a vertex v ∈ V if there is a directed path
from v to w. The vertices v and w are mutually reachable if
there are both a directed path from v to w and a directed path
from w to v in G.

16. Show that ifG = (V ,E) is a directed graph and u, v, and
w are vertices in V for which u and v are mutually reach-
able and v and w are mutually reachable, then u and w

are mutually reachable.

17. Show that if G = (V ,E) is a directed graph, then the
strong components of two vertices u and v of V are either
the same or disjoint. [Hint: Use Exercise 16.]

18. Show that all vertices visited in a directed path connecting
two vertices in the same strongly connected component
of a directed graph are also in this strongly connected
component.

19. Find the number of paths of length n between two differ-
ent vertices in K4 if n is

a) 2. b) 3. c) 4. d) 5.

20. Use paths either to show that these graphs are not isomor-
phic or to find an isomorphism between these graphs.

u1 u2

u4

u5 u6

u8

G

u7

u3

v1 v2

v4

v5 v6

v8

H

v7

v3

21. Use paths either to show that these graphs are not isomor-
phic or to find an isomorphism between them.

u1 u2

u3

u4

u8

u7

u5u6

G

v1 v2

v3

v4

v8

v7

v5v6

H

10.4 Connectivity 691

22. Use paths either to show that these graphs are not isomor-
phic or to find an isomorphism between them.

u1 u2

u3

u4

u8

u7

u5u6

G

v1 v2

v3

v4

v8

v7

v5v6

H

23. Use paths either to show that these graphs are not isomor-
phic or to find an isomorphism between them.

u1 v1

v3

v2v4

v5

v6

v7
v8u8

u2

u3

u4u5

u7u6

G H

24. Find the number of paths of length n between any two ad-
jacent vertices in K3,3 for the values of n in Exercise 19.

25. Find the number of paths of length n between any two
nonadjacent vertices in K3,3 for the values of n in Exer-
cise 19.

26. Find the number of paths between c and d in the graph in
Figure 1 of length

a) 2. b) 3. c) 4. d) 5. e) 6. f) 7.

27. Find the number of paths from a to e in the directed graph
in Exercise 2 of length

a) 2. b) 3. c) 4. d) 5. e) 6. f) 7.

∗28. Show that every connected graph with n vertices has at
least n− 1 edges.

29. LetG = (V ,E) be a simple graph. Let R be the relation
on V consisting of pairs of vertices (u, v) such that there
is a path from u to v or such that u = v. Show that R is
an equivalence relation.

∗30. Show that in every simple graph there is a path from every
vertex of odd degree to some other vertex of odd degree.

In Exercises 31–33 find all the cut vertices of the given graph.

31. a d e

b c f

32. a

b c d e

f

33. a b f

d i h

c g
e

34. Find all the cut edges in the graphs in Exercises 31–33.

∗35. Suppose that v is an endpoint of a cut edge. Prove that v

is a cut vertex if and only if this vertex is not pendant.

∗36. Show that a vertex c in the connected simple graph G is
a cut vertex if and only if there are vertices u and v, both
different from c, such that every path between u and v

passes through c.

∗37. Show that a simple graph with at least two vertices has at
least two vertices that are not cut vertices.

∗38. Show that an edge in a simple graph is a cut edge if and
only if this edge is not part of any simple circuit in the
graph.

39. A communications link in a network should be provided
with a backup link if its failure makes it impossible for
some message to be sent. For each of the communications
networks shown here in (a) and (b), determine those links
that should be backed up.

a)

San Francisco

Los Angeles

Denver

Chicago

Washington

New York

Boston

b)

San
Francisco

Los
Angeles

Salt Lake
City

Chicago

Washington

New York

Boston

Denver

Seattle Portland

Kansas City

Bangor
Burlington

Atlanta

A vertex basis in a directed graph G is a minimal set B of
vertices of G such that for each vertex v of G not in B there
is a path to v from some vertex B.

40. Find a vertex basis for each of the directed graphs in Ex-
ercises 7–9 of Section 10.2.

41. What is the significance of a vertex basis in an influence
graph (described in Example 2 of Section 10.1)? Find a
vertex basis in the influence graph in that example.

42. Show that if a connected simple graph G is the union of
the graphs G1 and G2, then G1 and G2 have at least one
common vertex.

∗43. Show that if a simple graph G has k connected compo-
nents and these components have n1, n2, . . . , nk vertices,
respectively, then the number of edges of G does not ex-
ceed

k
i=1

C(ni, 2).

692 10 / Graphs

∗44. Use Exercise 43 to show that a simple graph with n
vertices and k connected components has at most (n−
k)(n− k + 1)/2 edges. [Hint: First show that

k
i=1

n2
i ≤ n2 − (k − 1)(2n− k),

where ni is the number of vertices in the ith connected
component.]

∗45. Show that a simple graph G with n vertices is connected
if it has more than (n− 1)(n− 2)/2 edges.

46. Describe the adjacency matrix of a graph with n con-
nected components when the vertices of the graph are
listed so that vertices in each connected component are
listed successively.

47. How many nonisomorphic connected simple graphs are
there with n vertices when n is

a) 2? b) 3? c) 4? d) 5?

48. Show that each of the following graphs has no cut ver-
tices.

a) Cn where n ≥ 3

b) Wn where n ≥ 3

c) Km,n where m ≥ 2 and n ≥ 2

d) Qn where n ≥ 2

49. Show that each of the graphs in Exercise 48 has no cut
edges.

50. For each of these graphs, find κ(G), λ(G), and
minv∈V deg(v), and determine which of the two inequal-
ities in κ(G) ≤ λ(G) ≤ minv∈V deg(v) are strict.

a)

d

ca

e

b

b) b d

h f

c ea g

c) a b

f

j

e

i

d

h

c

g

lk

d)

b c

fd e

a

51. Show that ifG is a connected graph, then it is possible to
remove vertices to disconnect G if and only if G is not a
complete graph.

52. Show that ifG is a connected graph with n vertices then

a) κ(G) = n− 1 if and only if G = Kn.

b) λ(G) = n− 1 if and only if G = Kn.

53. Find κ(Km,n) and λ(Km,n), where m and n are positive
integers.

54. Construct a graph G with κ(G) = 1, λ(G) = 2, and
minv∈V deg(v) = 3.

∗55. Show that if G is a graph, then κ(G) ≤ λ(G).
56. Explain how Theorem 2 can be used to find the length of

the shortest path from a vertex v to a vertex w in a graph.

57. Use Theorem 2 to find the length of the shortest path
between a and f in the graph in Figure 1.

58. Use Theorem 2 to find the length of the shortest path from
a to c in the directed graph in Exercise 2.

59. Let P1 and P2 be two simple paths between the vertices u
and v in the simple graphG that do not contain the same
set of edges. Show that there is a simple circuit in G.

60. Show that the existence of a simple circuit of length k,
where k is an integer greater than 2, is an invariant for
graph isomorphism.

61. Explain how Theorem 2 can be used to determine whether
a graph is connected.

62. Use Exercise 61 to show that the graph G1 in Figure 2
is connected whereas the graph G2 in that figure is not
connected.

63. Show that a simple graph G is bipartite if and only if it
has no circuits with an odd number of edges.

64. In an old puzzle attributed to Alcuin ofYork (735–804), a
farmer needs to carry a wolf, a goat, and a cabbage across
a river. The farmer only has a small boat, which can carry
the farmer and only one object (an animal or a vegetable).
He can cross the river repeatedly. However, if the farmer
is on the other shore, the wolf will eat the goat, and, simi-
larly, the goat will eat the cabbage. We can describe each
state by listing what is on each shore. For example, we can
use the pair (FG,WC) for the state where the farmer and
goat are on the first shore and the wolf and cabbage are
on the other shore. [The symbol ∅ is used when nothing
is on a shore, so that (FWGC, ∅) is the initial state.]

a) Find all allowable states of the puzzle, where neither
the wolf and the goat nor the goat and the cabbage are
left on the same shore without the farmer.

b) Construct a graph such that each vertex of this graph
represents an allowable state and the vertices repre-
senting two allowable states are connected by an edge
if it is possible to move from one state to the other us-
ing one trip of the boat.

c) Explain why finding a path from the vertex represent-
ing (FWGC, ∅) to the vertex representing (∅,FWGC)
solves the puzzle.

d) Find two different solutions of the puzzle, each using
seven crossings.

e) Suppose that the farmer must pay a toll of one dollar
whenever he crosses the river with an animal. Which
solution of the puzzle should the farmer use to pay the
least total toll?

10.5 Euler and Hamilton Paths 693

∗65. Use a graph model and a path in your graph, as in Exer-
cise 64, to solve the jealous husbands problem. Two
married couples, each a husband and a wife, want to
cross a river. They can only use a boat that can carry
one or two people from one shore to the other shore.
Each husband is extremely jealous and is not willing
to leave his wife with the other husband, either in the
boat or on shore. How can these four people reach the
opposite shore?

66. Suppose that you have a three-gallon jug and a five-gallon
jug. You may fill either jug with water, you may empty
either jug, and you may transfer water from either jug
into the other jug. Use a path in a directed graph to
show that you can end up with a jug containing exactly
one gallon. [Hint: Use an ordered pair (a, b) to indicate
how much water is in each jug. Represent these ordered
pairs by vertices. Add an edge for each allowable opera-
tion with the jugs.]

10.5 Euler and Hamilton Paths

Introduction

Can we travel along the edges of a graph starting at a vertex and returning to it by traversing
each edge of the graph exactly once? Similarly, can we travel along the edges of a graph starting
at a vertex and returning to it while visiting each vertex of the graph exactly once? Although
these questions seem to be similar, the first question, which asks whether a graph has an Euler

circuit, can be easily answered simply by examining the degrees of the vertices of the graph,
while the second question, which asks whether a graph has a Hamilton circuit, is quite difficult
to solve for most graphs. In this section we will study these questions and discuss the difficulty
of solving them. Although both questions have many practical applications in many different
areas, both arose in old puzzles. We will learn about these old puzzles as well as modern
practical applications.

Euler Paths and Circuits

The town of Königsberg, Prussia (now called Kaliningrad and part of the Russian republic),
was divided into four sections by the branches of the Pregel River. These four sections included
the two regions on the banks of the Pregel, Kneiphof Island, and the region between the two
branches of the Pregel. In the eighteenth century seven bridges connected these regions. Figure 1
depicts these regions and bridges.

Only five bridges connect

Kaliningrad today. Of

these, just two remain

from Euler’s day.

The townspeople took long walks through town on Sundays. They wondered whether it was
possible to start at some location in the town, travel across all the bridges once without crossing
any bridge twice, and return to the starting point.

The Swiss mathematician Leonhard Euler solved this problem. His solution, published
in 1736, may be the first use of graph theory. (For a translation of Euler’s original paper see
[BiLlWi99].) Euler studied this problem using the multigraph obtained when the four regions
are represented by vertices and the bridges by edges. This multigraph is shown in Figure 2.

C

A

B

D

FIGURE 1 The Seven Bridges of Königsberg.

A

C

B

D

FIGURE 2 Multigraph Model

of the Town of Königsberg.

694 10 / Graphs

The problem of traveling across every bridge without crossing any bridge more than once
can be rephrased in terms of this model. The question becomes: Is there a simple circuit in this
multigraph that contains every edge?

DEFINITION 1 An Euler circuit in a graph G is a simple circuit containing every edge of G. An Euler path

in G is a simple path containing every edge of G.

Examples 1 and 2 illustrate the concept of Euler circuits and paths.

EXAMPLE 1 Which of the undirected graphs in Figure 3 have an Euler circuit? Of those that do not, which
have an Euler path?

Solution: The graph G1 has an Euler circuit, for example, a, e, c, d, e, b, a. Neither of the
graphs G2 or G3 has an Euler circuit (the reader should verify this). However, G3 has
an Euler path, namely, a, c, d, e, b, d, a, b. G2 does not have an Euler path (as the reader
should verify). ▲

EXAMPLE 2 Which of the directed graphs in Figure 4 have an Euler circuit? Of those that do not, which have
an Euler path?

Solution: The graph H2 has an Euler circuit, for example, a, g, c, b, g, e, d, f, a. Neither H1

nor H3 has an Euler circuit (as the reader should verify). H3 has an Euler path, namely,
c, a, b, c, d, b, but H1 does not (as the reader should verify). ▲

NECESSARY AND SUFFICIENT CONDITIONS FOR EULER CIRCUITS AND PATHS

There are simple criteria for determining whether a multigraph has an Euler circuit or an Euler
path. Euler discovered them when he solved the famous Königsberg bridge problem. We will
assume that all graphs discussed in this section have a finite number of vertices and edges.

What can we say if a connected multigraph has an Euler circuit? What we can show is that
every vertex must have even degree. To do this, first note that an Euler circuit begins with a
vertex a and continues with an edge incident with a, say {a, b}. The edge {a, b} contributes one
to deg(a). Each time the circuit passes through a vertex it contributes two to the vertex’s degree,
because the circuit enters via an edge incident with this vertex and leaves via another such edge.
Finally, the circuit terminates where it started, contributing one to deg(a). Therefore, deg(a)
must be even, because the circuit contributes one when it begins, one when it ends, and two
every time it passes through a (if it ever does). A vertex other than a has even degree because
the circuit contributes two to its degree each time it passes through the vertex. We conclude that
if a connected graph has an Euler circuit, then every vertex must have even degree.

Is this necessary condition for the existence of an Euler circuit also sufficient? That is, must
an Euler circuit exist in a connected multigraph if all vertices have even degree? This question
can be settled affirmatively with a construction.

a b

d c

e

a b

d c

a b

c d e

G1 G2 G3

e

FIGURE 3 The Undirected Graphs G1, G2, and G3.

a b

d c

a b

f c

e d

g

c d

a b

H1 H2 H3

FIGURE 4 The Directed GraphsH1,H2, andH3.

10.5 Euler and Hamilton Paths 695

a b

f

c d

e

c d

e

G H

FIGURE 5 Constructing an Euler Circuit in G.

Suppose that G is a connected multigraph with at least two vertices and the degree of
every vertex of G is even. We will form a simple circuit that begins at an arbitrary vertex a
of G, building it edge by edge. Let x0 = a. First, we arbitrarily choose an edge {x0, x1} inci-
dent with a which is possible because G is connected. We continue by building a simple path
{x0, x1}, {x1, x2}, . . . , {xn−1, xn}, successively adding edges one by one to the path until we
cannot add another edge to the path. This happens when we reach a vertex for which we have
already included all edges incident with that vertex in the path. For instance, in the graph G in
Figure 5 we begin at a and choose in succession the edges {a, f }, {f, c}, {c, b}, and {b, a}.

The path we have constructed must terminate because the graph has a finite number of
edges, so we are guaranteed to eventually reach a vertex for which no edges are available to add
to the path. The path begins at a with an edge of the form {a, x}, and we now show that it must
terminate at a with an edge of the form {y, a}. To see that the path must terminate at a, note that
each time the path goes through a vertex with even degree, it uses only one edge to enter this
vertex, so because the degree must be at least two, at least one edge remains for the path to leave
the vertex. Furthermore, every time we enter and leave a vertex of even degree, there are an even
number of edges incident with this vertex that we have not yet used in our path. Consequently,
as we form the path, every time we enter a vertex other than a, we can leave it. This means that
the path can end only at a. Next, note that the path we have constructed may use all the edges
of the graph, or it may not if we have returned to a for the last time before using all the edges.

An Euler circuit has been constructed if all the edges have been used. Otherwise, consider
the subgraph H obtained from G by deleting the edges already used and vertices that are not
incident with any remaining edges. When we delete the circuit a, f, c, b, a from the graph in
Figure 5, we obtain the subgraph labeled as H .

BecauseG is connected,H has at least one vertex in common with the circuit that has been
deleted. Let w be such a vertex. (In our example, c is the vertex.)

LEONHARD EULER (1707–1783) Leonhard Euler was the son of a Calvinist minister from the vicinity of
Basel, Switzerland. At 13 he entered the University of Basel, pursuing a career in theology, as his father wished.
At the university Euler was tutored by Johann Bernoulli of the famous Bernoulli family of mathematicians.
His interest and skills led him to abandon his theological studies and take up mathematics. Euler obtained his
master’s degree in philosophy at the age of 16. In 1727 Peter the Great invited him to join the Academy at
St. Petersburg. In 1741 he moved to the Berlin Academy, where he stayed until 1766. He then returned to St.
Petersburg, where he remained for the rest of his life.

Euler was incredibly prolific, contributing to many areas of mathematics, including number theory, com-
binatorics, and analysis, as well as its applications to such areas as music and naval architecture. He wrote

over 1100 books and papers and left so much unpublished work that it took 47 years after he died for all his work to be published.
During his life his papers accumulated so quickly that he kept a large pile of articles awaiting publication. The Berlin Academy
published the papers on top of this pile so later results were often published before results they depended on or superseded. Euler
had 13 children and was able to continue his work while a child or two bounced on his knees. He was blind for the last 17 years of
his life, but because of his fantastic memory this did not diminish his mathematical output. The project of publishing his collected
works, undertaken by the Swiss Society of Natural Science, is ongoing and will require more than 75 volumes.

696 10 / Graphs

Every vertex inH has even degree (because inG all vertices had even degree, and for each
vertex, pairs of edges incident with this vertex have been deleted to form H). Note that H may
not be connected. Beginning at w, construct a simple path in H by choosing edges as long as
possible, as was done inG. This path must terminate at w. For instance, in Figure 5, c, d, e, c is
a path in H . Next, form a circuit in G by splicing the circuit in H with the original circuit inG
(this can be done because w is one of the vertices in this circuit). When this is done in the graph
in Figure 5, we obtain the circuit a, f, c, d, e, c, b, a.

Continue this process until all edges have been used. (The process must terminate because
there are only a finite number of edges in the graph.) This produces an Euler circuit. The
construction shows that if the vertices of a connected multigraph all have even degree, then the
graph has an Euler circuit.

We summarize these results in Theorem 1.

THEOREM 1 A connected multigraph with at least two vertices has an Euler circuit if and only if each of
its vertices has even degree.

We can now solve the Königsberg bridge problem. Because the multigraph representing
these bridges, shown in Figure 2, has four vertices of odd degree, it does not have an Euler
circuit. There is no way to start at a given point, cross each bridge exactly once, and return to
the starting point.

Algorithm 1 gives the constructive procedure for finding Euler circuits given in the discus-
sion preceding Theorem 1. (Because the circuits in the procedure are chosen arbitrarily, there
is some ambiguity. We will not bother to remove this ambiguity by specifying the steps of the
procedure more precisely.)

ALGORITHM 1 Constructing Euler Circuits.

procedure Euler(G: connected multigraph with all vertices of

even degree)

circuit := a circuit in G beginning at an arbitrarily chosen

vertex with edges successively added to form a path that

returns to this vertex

H := G with the edges of this circuit removed

while H has edges

subcircuit := a circuit in H beginning at a vertex in H that

also is an endpoint of an edge of circuit

H := H with edges of subcircuit and all isolated vertices

removed

circuit := circuit with subcircuit inserted at the appropriate

vertex

return circuit {circuit is an Euler circuit}

Algorithm 1 provides an efficient algorithm for finding Euler circuits in a connected multi-
graph G with all vertices of even degree. We leave it to the reader (Exercise 66) to show that
the worst case complexity of this algorithm is O(m), where m is the number of edges of G.

Example 3 shows how Euler paths and circuits can be used to solve a type of puzzle.

10.5 Euler and Hamilton Paths 697

a

b

e

d

c

f
i

g

j

k

h

G

FIGURE 6 Mohammed’s Scimitars.

EXAMPLE 3 Many puzzles ask you to draw a picture in a continuous motion without lifting a pencil so that
no part of the picture is retraced. We can solve such puzzles using Euler circuits and paths.
For example, can Mohammed’s scimitars, shown in Figure 6, be drawn in this way, where the
drawing begins and ends at the same point?

Solution: We can solve this problem because the graphG shown in Figure 6 has an Euler circuit.
It has such a circuit because all its vertices have even degree. We will useAlgorithm 1 to construct
an Euler circuit. First, we form the circuit a, b, d, c, b, e, i, f, e, a. We obtain the subgraph H
by deleting the edges in this circuit and all vertices that become isolated when these edges are
removed. Then we form the circuit d, g, h, j, i, h, k, g, f, d inH . After forming this circuit we
have used all edges in G. Splicing this new circuit into the first circuit at the appropriate place
produces the Euler circuit a, b, d, g, h, j, i, h, k, g, f, d, c, b, e, i, f, e, a. This circuit gives a
way to draw the scimitars without lifting the pencil or retracing part of the picture. ▲

Another algorithm for constructing Euler circuits, called Fleury’s algorithm, is described in
the premble to Exercise 50.

We will now show that a connected multigraph has an Euler path (and not an Euler circuit) if
and only if it has exactly two vertices of odd degree. First, suppose that a connected multigraph
does have an Euler path from a to b, but not an Euler circuit. The first edge of the path contributes
one to the degree of a. A contribution of two to the degree of a is made every time the path
passes through a. The last edge in the path contributes one to the degree of b. Every time the
path goes through b there is a contribution of two to its degree. Consequently, both a and b have
odd degree. Every other vertex has even degree, because the path contributes two to the degree
of a vertex whenever it passes through it.

Now consider the converse. Suppose that a graph has exactly two vertices of odd degree,
say a and b. Consider the larger graph made up of the original graph with the addition of an
edge {a, b}. Every vertex of this larger graph has even degree, so there is an Euler circuit. The
removal of the new edge produces an Euler path in the original graph. Theorem 2 summarizes
these results.

THEOREM 2 A connected multigraph has an Euler path but not an Euler circuit if and only if it has exactly
two vertices of odd degree.

EXAMPLE 4 Which graphs shown in Figure 7 have an Euler path?

Solution:G1 contains exactly two vertices of odd degree, namely, b and d. Hence, it has an Euler
path that must have b and d as its endpoints. One such Euler path is d, a, b, c, d, b. Similarly,G2

has exactly two vertices of odd degree, namely, b and d. So it has an Euler path that must have
b and d as endpoints. One such Euler path is b, a, g, f, e, d, c, g, b, c, f, d. G3 has no Euler
path because it has six vertices of odd degree. ▲

Returning to eighteenth-century Königsberg, is it possible to start at some point in the
town, travel across all the bridges, and end up at some other point in town? This question can

698 10 / Graphs

a b a g f e

b c dcd

a b

f c

e d

g

G3G2G1

FIGURE 7 Three Undirected Graphs.

be answered by determining whether there is an Euler path in the multigraph representing the
bridges in Königsberg. Because there are four vertices of odd degree in this multigraph, there
is no Euler path, so such a trip is impossible.

Necessary and sufficient conditions for Euler paths and circuits in directed graphs are given
in Exercises 16 and 17.

APPLICATIONSOF EULER PATHSANDCIRCUITS Euler paths and circuits can be used
to solve many practical problems. For example, many applications ask for a path or circuit that
traverses each street in a neighborhood, each road in a transportation network, each connection
in a utility grid, or each link in a communications network exactly once. Finding an Euler path
or circuit in the appropriate graph model can solve such problems. For example, if a postman
can find an Euler path in the graph that represents the streets the postman needs to cover, this
path produces a route that traverses each street of the route exactly once. If no Euler path exists,
some streets will have to be traversed more than once. The problem of finding a circuit in a graph
with the fewest edges that traverses every edge at least once is known as the Chinese postman

problem in honor of Guan Meigu, who posed it in 1962. See [MiRo91] for more information
on the solution of the Chinese postman problem when no Euler path exists.

Among the other areas where Euler circuits and paths are applied is in the layout of circuits,
in network multicasting, and in molecular biology, where Euler paths are used in the sequencing
of DNA.

Hamilton Paths and Circuits

We have developed necessary and sufficient conditions for the existence of paths and circuits
that contain every edge of a multigraph exactly once. Can we do the same for simple paths and
circuits that contain every vertex of the graph exactly once?

DEFINITION 2 A simple path in a graphG that passes through every vertex exactly once is called a Hamilton

path, and a simple circuit in a graphG that passes through every vertex exactly once is called
a Hamilton circuit. That is, the simple path x0, x1, . . . , xn−1, xn in the graphG = (V ,E) is a
Hamilton path if V = {x0, x1, . . . , xn−1, xn} and xi = xj for 0 ≤ i < j ≤ n, and the simple
circuit x0, x1, . . . , xn−1, xn, x0 (with n > 0) is a Hamilton circuit if x0, x1, . . . , xn−1, xn is
a Hamilton path.

This terminology comes from a game, called the Icosian puzzle, invented in 1857 by the
Irish mathematician Sir William Rowan Hamilton. It consisted of a wooden dodecahedron [a
polyhedron with 12 regular pentagons as faces, as shown in Figure 8(a)], with a peg at each
vertex of the dodecahedron, and string. The 20 vertices of the dodecahedron were labeled with
different cities in the world. The object of the puzzle was to start at a city and travel along the
edges of the dodecahedron, visiting each of the other 19 cities exactly once, and end back at the
first city. The circuit traveled was marked off using the string and pegs.

10.5 Euler and Hamilton Paths 699

(a) (b)

FIGURE 8 Hamilton’s “A Voyage Round the

World” Puzzle.

FIGURE 9 A Solution to

the “A Voyage Round the

World” Puzzle.

Because the author cannot supply each reader with a wooden solid with pegs and string, we
will consider the equivalent question: Is there a circuit in the graph shown in Figure 8(b) that
passes through each vertex exactly once? This solves the puzzle because this graph is isomorphic
to the graph consisting of the vertices and edges of the dodecahedron. A solution of Hamilton’s
puzzle is shown in Figure 9.

EXAMPLE 5 Which of the simple graphs in Figure 10 have a Hamilton circuit or, if not, a Hamilton path?

Solution:G1 has a Hamilton circuit: a, b, c, d, e, a. There is no Hamilton circuit inG2 (this can
be seen by noting that any circuit containing every vertex must contain the edge {a, b} twice),
but G2 does have a Hamilton path, namely, a, b, c, d. G3 has neither a Hamilton circuit nor a
Hamilton path, because any path containing all vertices must contain one of the edges {a, b},
{e, f }, and {c, d} more than once. ▲

a b

e c

d

G1

a b

d c

G2

a b

d c

G3

g

e f

FIGURE 10 Three Simple Graphs.

CONDITIONS FORTHE EXISTENCEOFHAMILTONCIRCUITS Is there a simple way
to determine whether a graph has a Hamilton circuit or path? At first, it might seem that there
should be an easy way to determine this, because there is a simple way to answer the similar
question of whether a graph has an Euler circuit. Surprisingly, there are no known simple
necessary and sufficient criteria for the existence of Hamilton circuits. However, many theorems
are known that give sufficient conditions for the existence of Hamilton circuits. Also, certain
properties can be used to show that a graph has no Hamilton circuit. For instance, a graph with a
vertex of degree one cannot have a Hamilton circuit, because in a Hamilton circuit, each vertex
is incident with two edges in the circuit. Moreover, if a vertex in the graph has degree two, then
both edges that are incident with this vertex must be part of any Hamilton circuit. Also, note
that when a Hamilton circuit is being constructed and this circuit has passed through a vertex,
then all remaining edges incident with this vertex, other than the two used in the circuit, can be
removed from consideration. Furthermore, a Hamilton circuit cannot contain a smaller circuit
within it.

700 10 / Graphs

a

G H

d e

b c

a

c

d

b e

FIGURE 11 Two Graphs That Do Not Have a Hamilton Circuit.

EXAMPLE 6 Show that neither graph displayed in Figure 11 has a Hamilton circuit.

Solution: There is no Hamilton circuit in G because G has a vertex of degree one, namely, e.
Now consider H . Because the degrees of the vertices a, b, d, and e are all two, every edge
incident with these vertices must be part of any Hamilton circuit. It is now easy to see that no
Hamilton circuit can exist in H , for any Hamilton circuit would have to contain four edges
incident with c, which is impossible. ▲

EXAMPLE 7 Show that Kn has a Hamilton circuit whenever n ≥ 3.

Solution: We can form a Hamilton circuit in Kn beginning at any vertex. Such a circuit can be
built by visiting vertices in any order we choose, as long as the path begins and ends at the same
vertex and visits each other vertex exactly once. This is possible because there are edges in Kn
between any two vertices. ▲

Although no useful necessary and sufficient conditions for the existence of Hamilton circuits
are known, quite a few sufficient conditions have been found. Note that the more edges a graph
has, the more likely it is to have a Hamilton circuit. Furthermore, adding edges (but not vertices)
to a graph with a Hamilton circuit produces a graph with the same Hamilton circuit. So as we
add edges to a graph, especially when we make sure to add edges to each vertex, we make it

WILLIAM ROWAN HAMILTON (1805–1865) William Rowan Hamilton, the most famous Irish scien-
tist ever to have lived, was born in 1805 in Dublin. His father was a successful lawyer, his mother came
from a family noted for their intelligence, and he was a child prodigy. By the age of 3 he was an excel-
lent reader and had mastered advanced arithmetic. Because of his brilliance, he was sent off to live with
his uncle James, a noted linguist. By age 8 Hamilton had learned Latin, Greek, and Hebrew; by 10 he had
also learned Italian and French and he began his study of oriental languages, including Arabic, Sanskrit, and
Persian. During this period he took pride in knowing as many languages as his age. At 17, no longer de-
voted to learning new languages and having mastered calculus and much mathematical astronomy, he began
original work in optics, and he also found an important mistake in Laplace’s work on celestial mechanics.

Before entering Trinity College, Dublin, at 18, Hamilton had not attended school; rather, he received private tutoring. At Trinity, he
was a superior student in both the sciences and the classics. Prior to receiving his degree, because of his brilliance he was appointed
the Astronomer Royal of Ireland, beating out several famous astronomers for the post. He held this position until his death, living
and working at Dunsink Observatory outside of Dublin. Hamilton made important contributions to optics, abstract algebra, and
dynamics. Hamilton invented algebraic objects called quaternions as an example of a noncommutative system. He discovered the
appropriate way to multiply quaternions while walking along a canal in Dublin. In his excitement, he carved the formula in the stone
of a bridge crossing the canal, a spot marked today by a plaque. Later, Hamilton remained obsessed with quaternions, working to
apply them to other areas of mathematics, instead of moving to new areas of research.

In 1857 Hamilton invented “The Icosian Game” based on his work in noncommutative algebra. He sold the idea for 25 pounds
to a dealer in games and puzzles. (Because the game never sold well, this turned out to be a bad investment for the dealer.) The
“Traveler’s Dodecahedron,” also called “A Voyage Round the World,” the puzzle described in this section, is a variant of that game.

Hamilton married his third love in 1833, but his marriage worked out poorly, because his wife, a semi-invalid, was unable to
cope with his household affairs. He suffered from alcoholism and lived reclusively for the last two decades of his life. He died from
gout in 1865, leaving masses of papers containing unpublished research. Mixed in with these papers were a large number of dinner
plates, many containing the remains of desiccated, uneaten chops.

10.5 Euler and Hamilton Paths 701

increasingly likely that a Hamilton circuit exists in this graph. Consequently, we would expect
there to be sufficient conditions for the existence of Hamilton circuits that depend on the degrees
of vertices being sufficiently large. We state two of the most important sufficient conditions here.
These conditions were found by Gabriel A. Dirac in 1952 and Øystein Ore in 1960.

THEOREM 3 DIRAC’S THEOREM If G is a simple graph with n vertices with n ≥ 3 such that the
degree of every vertex in G is at least n/2, then G has a Hamilton circuit.

THEOREM 4 ORE’S THEOREM If G is a simple graph with n vertices with n ≥ 3 such that
deg(u)+ deg(v) ≥ n for every pair of nonadjacent vertices u and v in G, then G has a
Hamilton circuit.

The proof of Ore’s theorem is outlined in Exercise 65. Dirac’s theorem can be proved as a
corollary to Ore’s theorem because the conditions of Dirac’s theorem imply those of Ore’s
theorem.

Both Ore’s theorem and Dirac’s theorem provide sufficient conditions for a connected simple
graph to have a Hamilton circuit. However, these theorems do not provide necessary conditions
for the existence of a Hamilton circuit. For example, the graph C5 has a Hamilton circuit but
does not satisfy the hypotheses of either Ore’s theorem or Dirac’s theorem, as the reader can
verify.

The best algorithms known for finding a Hamilton circuit in a graph or determining that
no such circuit exists have exponential worst-case time complexity (in the number of vertices
of the graph). Finding an algorithm that solves this problem with polynomial worst-case time

GABRIEL ANDREW DIRAC (1925–1984) Gabriel Dirac was born in Budapest. He moved to England in
1937 when his mother married the famous physicist and Nobel Laureate Paul Adrien Maurice Dirac, who
adopted him. Gabriel A. Dirac entered Cambridge University in 1942, but his studies were interrupted by
wartime service in the aviation industry. He obtained his Ph.D. in mathematics in 1951 from the University of
London. He held university positions in England, Canada, Austria, Germany, and Denmark, where he spent his
last 14 years. Dirac became interested in graph theory early in his career and help raise its status as an important
topic of research. He made important contributions to many aspects of graph theory, including graph coloring
and Hamilton circuits. Dirac attracted many students to graph theory and was noted as an excellent lecturer.

Dirac was noted for his penetrating mind and held unconventional views on many topics, including politics
and social life. Dirac was a man with many interests and held a great passion for fine art. He had a happy family life with his wife
Rosemari and his four children.

ØYSTEIN ORE (1899–1968) Ore was born in Kristiania (the old name for Oslo, Norway). In 1922 he received
his bachelors degree and in 1925 his Ph.D. in mathematics from Kristiania University, after studies in Germany
and in Sweden. In 1927 he was recruited to leave his junior position at Kristiania and join Yale University. He
was promoted rapidly at Yale, becoming full professor in 1929 and Sterling Professor in 1931, a position he
held until 1968.

Ore made many contributions to number theory, ring theory, lattice theory, graph theory, and probability
theory. He was a prolific author of papers and books. His interest in the history of mathematics is reflected in
his biographies of Abel and Cardano, and in his popular textbook Number Theory and its History. He wrote
four books on graph theory in the 1960s.

During and after World War II Ore played a major role supporting his native Norway. In 1947 King Haakon VII of Norway
gave him the Knight Order of St. Olaf to recognize these efforts. Ore possessed deep knowledge of painting and sculpture and was
an ardent collector of ancient maps. He was married and had two children.

702 10 / Graphs

complexity would be a major accomplishment because it has been shown that this problem
is NP-complete (see Section 3.3). Consequently, the existence of such an algorithm would
imply that many other seemingly intractable problems could be solved using algorithms with
polynomial worst-case time complexity.

Applications of Hamilton Circuits

Hamilton paths and circuits can be used to solve practical problems. For example, many appli-
cations ask for a path or circuit that visits each road intersection in a city, each place pipelines
intersect in a utility grid, or each node in a communications network exactly once. Finding a
Hamilton path or circuit in the appropriate graph model can solve such problems. The famous
traveling salesperson problem or TSP (also known in older literature as the traveling sales-
man problem) asks for the shortest route a traveling salesperson should take to visit a set of
cities. This problem reduces to finding a Hamilton circuit in a complete graph such that the total
weight of its edges is as small as possible. We will return to this question in Section 10.6.

We now describe a less obvious application of Hamilton circuits to coding.

EXAMPLE 8 Gray Codes The position of a rotating pointer can be represented in digital form. One way to
do this is to split the circle into 2n arcs of equal length and to assign a bit string of length n to
each arc. Two ways to do this using bit strings of length three are shown in Figure 12.

The digital representation of the position of the pointer can be determined using a set of n
contacts. Each contact is used to read one bit in the digital representation of the position. This
is illustrated in Figure 13 for the two assignments from Figure 12.

When the pointer is near the boundary of two arcs, a mistake may be made in reading its
position. This may result in a major error in the bit string read. For instance, in the coding
scheme in Figure 12(a), if a small error is made in determining the position of the pointer, the
bit string 100 is read instead of 011. All three bits are incorrect! To minimize the effect of an
error in determining the position of the pointer, the assignment of the bit strings to the 2n arcs
should be made so that only one bit is different in the bit strings represented by adjacent arcs.
This is exactly the situation in the coding scheme in Figure 12(b). An error in determining the
position of the pointer gives the bit string 010 instead of 011. Only one bit is wrong.

AGray code is a labeling of the arcs of the circle such that adjacent arcs are labeled with bit
strings that differ in exactly one bit. The assignment in Figure 12(b) is a Gray code. We can find
a Gray code by listing all bit strings of length n in such a way that each string differs in exactly
one position from the preceding bit string, and the last string differs from the first in exactly one
position. We can model this problem using the n-cubeQn. What is needed to solve this problem
is a Hamilton circuit in Qn. Such Hamilton circuits are easily found. For instance, a Hamilton

001110

010101

111

(a) (b)

000

100 011

001101

011
111

100 000

110 010

FIGURE 12 Converting the Position of a Pointer into Digital Form.

10.5 Euler and Hamilton Paths 703

Second bit is 1 here

Third bit is 1 here

First bit is 1 here

Third bit is 1 here

Third bit is 1 here

First bit is 1 here

Third bit is 1 here

Second bit is 1 here

Third bit is 1 here

Third bit is 1 here

Second bit is 1 here

FIGURE 13 The Digital Representation of the

Position of the Pointer.

110 111

101
100

000 001

011
010

FIGURE 14 A Hamilton

Circuit forQ3.

circuit forQ3 is displayed in Figure 14. The sequence of bit strings differing in exactly one bit
produced by this Hamilton circuit is 000, 001, 011, 010, 110, 111, 101, 100.

Gray codes are named after Frank Gray, who invented them in the 1940s at AT&T Bell
Laboratories to minimize the effect of errors in transmitting digital signals. ▲

Exercises

In Exercises 1–8 determine whether the given graph has an
Euler circuit. Construct such a circuit when one exists. If
no Euler circuit exists, determine whether the graph has an
Euler path and construct such a path if one exists.

1. b c

e

da

2. b ca

d
e

f

h ig

3. ba

dc

e

4.

b

ce

d

f

a

5. a b

de

c

704 10 / Graphs

6.

b c

h g

a i d e

f

7.

cba d

ghi fe

8. cba d

hgf i

e

j

mlk n o

9. Suppose that in addition to the seven bridges of Königs-
berg (shown in Figure 1) there were two additional
bridges, connecting regions B and C and regions B and
D, respectively. Could someone cross all nine of these
bridges exactly once and return to the starting point?

10. Can someone cross all the bridges shown in this map ex-
actly once and return to the starting point?

11. When can the centerlines of the streets in a city be painted
without traveling a street more than once? (Assume that
all the streets are two-way streets.)

12. Devise a procedure, similar to Algorithm 1, for construct-
ing Euler paths in multigraphs.

In Exercises 13–15 determine whether the picture shown can
be drawn with a pencil in a continuous motion without lifting
the pencil or retracing part of the picture.

13. 14.

15.

∗16. Show that a directed multigraph having no isolated ver-
tices has an Euler circuit if and only if the graph is weakly
connected and the in-degree and out-degree of each vertex
are equal.

∗17. Show that a directed multigraph having no isolated ver-
tices has an Euler path but not an Euler circuit if and
only if the graph is weakly connected and the in-degree
and out-degree of each vertex are equal for all but two
vertices, one that has in-degree one larger than its out-
degree and the other that has out-degree one larger than
its in-degree.

In Exercises 18–23 determine whether the directed graph
shown has an Euler circuit. Construct an Euler circuit if one
exists. If no Euler circuit exists, determine whether the di-
rected graph has an Euler path. Construct an Euler path if one
exists.

18. a b

c d

19. a b

d c

20. a b

d e

c

21. a b

d e

c

22. a b c

ef d

10.5 Euler and Hamilton Paths 705

23.

d f
e

ba

g i
h

j l
k

c

∗24. Devise an algorithm for constructing Euler circuits in di-
rected graphs.

25. Devise an algorithm for constructing Euler paths in di-
rected graphs.

26. For which values of n do these graphs have an Euler cir-
cuit?

a) Kn b) Cn c) Wn d) Qn

27. For which values of n do the graphs in Exercise 26 have
an Euler path but no Euler circuit?

28. For which values of m and n does the complete bipartite
graph Km,n have an

a) Euler circuit?
b) Euler path?

29. Find the least number of times it is necessary to lift a
pencil from the paper when drawing each of the graphs
in Exercises 1–7 without retracing any part of the graph.

In Exercises 30–36 determine whether the given graph has a
Hamilton circuit. If it does, find such a circuit. If it does not,
give an argument to show why no such circuit exists.

30. a

c

b

f

d

e

31. a b

e d

c

32. a b

d e

c

f

33. a b g

e c d f

34. a b c

e f g

d h

n l

i k

o q

j

p

m

35. a b

ec

d

36. a b c

f

ihg

d
e

37. Does the graph in Exercise 30 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

38. Does the graph in Exercise 31 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

39. Does the graph in Exercise 32 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

40. Does the graph in Exercise 33 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

∗41. Does the graph in Exercise 34 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

42. Does the graph in Exercise 35 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

43. Does the graph in Exercise 36 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

44. For which values of n do the graphs in Exercise 26 have
a Hamilton circuit?

45. For which values of m and n does the complete bipartite
graph Km,n have a Hamilton circuit?

706 10 / Graphs

∗46. Show that thePetersen graph, shown here, does not have
a Hamilton circuit, but that the subgraph obtained by
deleting a vertex v, and all edges incident with v, does
have a Hamilton circuit.

a

be

d c

j

i h

g

f

47. For each of these graphs, determine (i) whether Dirac’s
theorem can be used to show that the graph has a Hamilton
circuit, (ii) whether Ore’s theorem can be used to show
that the graph has a Hamilton circuit, and (iii) whether
the graph has a Hamilton circuit.

a) b)

c) d)

48. Can you find a simple graph with n vertices with n ≥ 3
that does not have a Hamilton circuit, yet the degree of
every vertex in the graph is at least (n− 1)/2?

∗49. Show that there is a Gray code of order n whenever n is
a positive integer, or equivalently, show that the n-cube
Qn, n > 1, always has a Hamilton circuit. [Hint: Use
mathematical induction. Show how to produce a Gray
code of order n from one of order n− 1.]

Fleury’s algorithm, published in 1883, constructs Euler cir-
cuits by first choosing an arbitrary vertex of a connected multi-
graph, and then forming a circuit by choosing edges succes-
sively. Once an edge is chosen, it is removed. Edges are cho-
sen successively so that each edge begins where the last edge
ends, and so that this edge is not a cut edge unless there is no
alternative.

50. Use Fleury’s algorithm to find an Euler circuit in the graph
G in Figure 5.

∗51. Express Fleury’s algorithm in pseudocode.

∗∗52. Prove that Fleury’s algorithm always produces an Euler
circuit.

∗53. Give a variant of Fleury’s algorithm to produce Euler
paths.

54. A diagnostic message can be sent out over a computer
network to perform tests over all links and in all devices.
What sort of paths should be used to test all links? To test
all devices?

55. Show that a bipartite graph with an odd number of vertices
does not have a Hamilton circuit.

JULIUS PETER CHRISTIAN PETERSEN (1839–1910) Julius Petersen was born in the Danish town of
Sorø. His father was a dyer. In 1854 his parents were no longer able to pay for his schooling, so he became an
apprentice in an uncle’s grocery store. When this uncle died, he left Petersen enough money to return to school.
After graduating, he began studying engineering at the Polytechnical School in Copenhagen, later deciding to
concentrate on mathematics. He published his first textbook, a book on logarithms, in 1858. When his inheritance
ran out, he had to teach to make a living. From 1859 until 1871 Petersen taught at a prestigious private high
school in Copenhagen. While teaching high school he continued his studies, entering Copenhagen University
in 1862. He married Laura Bertelsen in 1862; they had three children, two sons and a daughter.

Petersen obtained a mathematics degree from Copenhagen University in 1866 and finally obtained his
doctorate in 1871 from that school. After receiving his doctorate, he taught at a polytechnic and military academy. In 1887 he was
appointed to a professorship at the University of Copenhagen. Petersen was well known in Denmark as the author of a large series
of textbooks for high schools and universities. One of his books, Methods and Theories for the Solution of Problems of Geometrical
Construction, was translated into eight languages, with the English language version last reprinted in 1960 and the French version
reprinted as recently as 1990, more than a century after the original publication date.

Petersen worked in a wide range of areas, including algebra, analysis, cryptography, geometry, mechanics, mathematical
economics, and number theory. His contributions to graph theory, including results on regular graphs, are his best-known work.
He was noted for his clarity of exposition, problem-solving skills, originality, sense of humor, vigor, and teaching. One interesting
fact about Petersen was that he preferred not to read the writings of other mathematicians. This led him often to rediscover results
already proved by others, often with embarrassing consequences. However, he was often angry when other mathematicians did not
read his writings!

Petersen’s death was front-page news in Copenhagen. A newspaper of the time described him as the Hans Christian Andersen
of science—a child of the people who made good in the academic world.

10.6 Shortest-Path Problems 707

A knight is a chess piece that can move either two spaces
horizontally and one space vertically or one space horizon-
tally and two spaces vertically. That is, a knight on square
(x, y) can move to any of the eight squares (x ± 2, y ± 1),
(x ± 1, y ± 2), if these squares are on the chessboard, as il-
lustrated here.

A knight’s tour is a sequence of legal moves by a knight start-
ing at some square and visiting each square exactly once. A
knight’s tour is called reentrant if there is a legal move that
takes the knight from the last square of the tour back to where
the tour began. We can model knight’s tours using the graph
that has a vertex for each square on the board, with an edge
connecting two vertices if a knight can legally move between
the squares represented by these vertices.

56. Draw the graph that represents the legal moves of a knight
on a 3 × 3 chessboard.

57. Draw the graph that represents the legal moves of a knight
on a 3 × 4 chessboard.

58. a) Show that finding a knight’s tour on an m× n chess-
board is equivalent to finding a Hamilton path on the
graph representing the legal moves of a knight on that
board.

b) Show that finding a reentrant knight’s tour on an
m× n chessboard is equivalent to finding a Hamil-
ton circuit on the corresponding graph.

∗59. Show that there is a knight’s tour on a 3 × 4 chessboard.

∗60. Show that there is no knight’s tour on a 3 × 3 chessboard.

∗61. Show that there is no knight’s tour on a 4 × 4 chessboard.

62. Show that the graph representing the legal moves of a
knight on an m× n chessboard, whenever m and n are
positive integers, is bipartite.

63. Show that there is no reentrant knight’s tour on anm× n
chessboard whenm and n are both odd. [Hint: Use Exer-
cises 55, 58b, and 62.]

∗64. Show that there is a knight’s tour on an 8 × 8 chessboard.
[Hint: You can construct a knight’s tour using a method
invented by H. C. Warnsdorff in 1823: Start in any square,
and then always move to a square connected to the fewest
number of unused squares.Although this method may not
always produce a knight’s tour, it often does.]

65. The parts of this exercise outline a proof of Ore’s theo-
rem. Suppose that G is a simple graph with n vertices,
n ≥ 3, and deg(x)+ deg(y) ≥ n whenever x and y are
nonadjacent vertices inG. Ore’s theorem states that under
these conditions, G has a Hamilton circuit.

a) Show that ifG does not have a Hamilton circuit, then
there exists another graph H with the same vertices
asG, which can be constructed by adding edges toG
such that the addition of a single edge would produce
a Hamilton circuit in H . [Hint: Add as many edges
as possible at each successive vertex of G without
producing a Hamilton circuit.]

b) Show that there is a Hamilton path in H .

c) Let v1, v2, . . . , vn be a Hamilton path in H . Show
that deg(v1)+ deg(vn) ≥ n and that there are at most
deg(v1) vertices not adjacent to vn (including vn it-
self).

d) Let S be the set of vertices preceding each vertex adja-
cent to v1 in the Hamilton path. Show that S contains
deg(v1) vertices and vn /∈ S.

e) Show that S contains a vertex vk , which is adjacent
to vn, implying that there are edges connecting v1 and
vk+1 and vk and vn.

f) Show that part (e) implies that v1, v2, . . . , vk−1,

vk, vn, vn−1, . . . , vk+1, v1 is a Hamilton circuit in G.
Conclude from this contradiction that Ore’s theorem
holds.

∗66. Show that the worst case computational complexity ofAl-
gorithm 1 for finding Euler circuits in a connected graph
with all vertices of even degree is O(m), where m is the
number of edges of G.

10.6 Shortest-Path Problems

Introduction

Many problems can be modeled using graphs with weights assigned to their edges. As an
illustration, consider how an airline system can be modeled. We set up the basic graph model
by representing cities by vertices and flights by edges. Problems involving distances can be
modeled by assigning distances between cities to the edges. Problems involving flight time can
be modeled by assigning flight times to edges. Problems involving fares can be modeled by

708 10 / Graphs

Boston

New York
Chicago

Miami

Atlanta

Denver

Los Angeles

San Francisco

MILEAGE
1855

2534

908

2451
834349

957
606

5
9
5

1
0
9
0

76
0

722

191
860

Boston

New York
Chicago

Miami

Atlanta

Denver

Los Angeles

San Francisco

FLIGHT TIMES
2:55

4:05

2:10

3:50
2:0

01:15

2:20
1:40

1
:3

0

2
:4

5

1:
55

1:50

0:50
2:10

Boston

New York
Chicago

Miami

Atlanta

Denver

Los Angeles

San Francisco

FARES
$99

$129

$69

$129
$89$39

$89
$99

$
6
9

$
9
9

$7
9

$59

$39
$79

FIGURE 1 Weighted Graphs Modeling an Airline System.

assigning fares to the edges. Figure 1 displays three different assignments of weights to the
edges of a graph representing distances, flight times, and fares, respectively.

Graphs that have a number assigned to each edge are called weighted graphs. Weighted
graphs are used to model computer networks. Communications costs (such as the monthly cost
of leasing a telephone line), the response times of the computers over these lines, or the distance
between computers, can all be studied using weighted graphs. Figure 2 displays weighted graphs
that represent three ways to assign weights to the edges of a graph of a computer network,
corresponding to distance, response time, and cost.

Several types of problems involving weighted graphs arise frequently. Determining a path
of least length between two vertices in a network is one such problem. To be more specific, let
the length of a path in a weighted graph be the sum of the weights of the edges of this path. (The
reader should note that this use of the term length is different from the use of length to denote the
number of edges in a path in a graph without weights.) The question is: What is a shortest path,
that is, a path of least length, between two given vertices? For instance, in the airline system

10.6 Shortest-Path Problems 709

Boston

New York

Chicago

Denver

Los Angeles

San Francisco

DISTANCE

1855

908

349

191
860

722

Dallas

645

79
8

1235

1736 1372

Boston

New York

Chicago

Denver

Los Angeles

San Francisco

RESPONSE TIME

5 sec

6 sec

3 sec

2 sec3 sec

4 sec

Dallas

4 sec

5
se

c

5 sec

7 sec

6 se
c

Boston

New York

Chicago

Denver

Los Angeles

San Francisco

LEASE RATES (PER MONTH)

$1500

$500

$400

$300$900

$700

Dallas

$600

$8
00

$1100

$1400

$1200

957

4 sec

$1000

FIGURE 2 Weighted Graphs Modeling a Computer Network.

represented by the weighted graph shown in Figure 1, what is a shortest path in air distance
between Boston and Los Angeles? What combinations of flights has the smallest total flight
time (that is, total time in the air, not including time between flights) between Boston and Los
Angeles? What is the cheapest fare between these two cities? In the computer network shown in
Figure 2, what is a least expensive set of telephone lines needed to connect the computers in San
Francisco with those in New York? Which set of telephone lines gives a fastest response time
for communications between San Francisco and New York? Which set of lines has a shortest
overall distance?

Another important problem involving weighted graphs asks for a circuit of shortest total
length that visits every vertex of a complete graph exactly once. This is the famous traveling

salesperson problem, which asks for an order in which a salesperson should visit each of the
cities on his route exactly once so that he travels the minimum total distance. We will discuss
the traveling salesperson problem later in this section.

A Shortest-Path Algorithm

There are several different algorithms that find a shortest path between two vertices in a weighted
graph. We will present a greedy algorithm discovered by the Dutch mathematician Edsger Di-

710 10 / Graphs

b c

d e

za

3

3

12

24

3

FIGURE 3 AWeighted Simple Graph.

jkstra in 1959. The version we will describe solves this problem in undirected weighted graphs
where all the weights are positive. It is easy to adapt it to solve shortest-path problems in directed
graphs.

Before giving a formal presentation of the algorithm, we will give an illustrative example.

EXAMPLE 1 What is the length of a shortest path between a and z in the weighted graph shown in Figure 3?

Solution: Although a shortest path is easily found by inspection, we will develop some ideas
useful in understanding Dijkstra’s algorithm. We will solve this problem by finding the length
of a shortest path from a to successive vertices, until z is reached.

The only paths starting at a that contain no vertex other than a are formed by adding an
edge that has a as one endpoint. These paths have only one edge. They are a, b of length 4 and
a, d of length 2. It follows that d is the closest vertex to a, and the shortest path from a to d has
length 2.

We can find the second closest vertex by examining all paths that begin with the shortest
path from a to a vertex in the set {a, d}, followed by an edge that has one endpoint in {a, d} and
its other endpoint not in this set. There are two such paths to consider, a, d, e of length 7 and
a, b of length 4. Hence, the second closest vertex to a is b and the shortest path from a to b has
length 4.

To find the third closest vertex to a, we need examine only the paths that begin with the
shortest path from a to a vertex in the set {a, d, b}, followed by an edge that has one endpoint
in the set {a, d, b} and its other endpoint not in this set. There are three such paths, a, b, c of
length 7, a, b, e of length 7, and a, d, e of length 5. Because the shortest of these paths is a, d, e,
the third closest vertex to a is e and the length of the shortest path from a to e is 5.

EDSGER WYBE DIJKSTRA (1930–2002) Edsger Dijkstra, born in the Netherlands, began programming
computers in the early 1950s while studying theoretical physics at the University of Leiden. In 1952, realizing that
he was more interested in programming than in physics, he quickly completed the requirements for his physics
degree and began his career as a programmer, even though programming was not a recognized profession. (In
1957, the authorities in Amsterdam refused to accept “programming” as his profession on his marriage license.
However, they did accept “theoretical physicist” when he changed his entry to this.)

Dijkstra was one of the most forceful proponents of programming as a scientific discipline. He has made
fundamental contributions to the areas of operating systems, including deadlock avoidance; programming lan-
guages, including the notion of structured programming; and algorithms. In 1972 Dijkstra received the Turing

Award from the Association for Computing Machinery, one of the most prestigious awards in computer science. Dijkstra became
a Burroughs Research Fellow in 1973, and in 1984 he was appointed to a chair in Computer Science at the University of Texas,
Austin.

10.6 Shortest-Path Problems 711

To find the fourth closest vertex to a, we need examine only the paths that begin with the
shortest path from a to a vertex in the set {a, d, b, e}, followed by an edge that has one endpoint
in the set {a, d, b, e} and its other endpoint not in this set. There are two such paths, a, b, c of
length 7 and a, d, e, z of length 6. Because the shorter of these paths is a, d, e, z, the fourth
closest vertex to a is z and the length of the shortest path from a to z is 6. ▲

Example 1 illustrates the general principles used in Dijkstra’s algorithm. Note that a shortest
path from a to z could have been found by a brute force approach by examining the length of
every path from a to z. However, this brute force approach is impractical for humans and even
for computers for graphs with a large number of edges.

We will now consider the general problem of finding the length of a shortest path between
a and z in an undirected connected simple weighted graph. Dijkstra’s algorithm proceeds by
finding the length of a shortest path from a to a first vertex, the length of a shortest path from
a to a second vertex, and so on, until the length of a shortest path from a to z is found. As a
side benefit, this algorithm is easily extended to find the length of the shortest path from a to all
other vertices of the graph, and not just to z.

The algorithm relies on a series of iterations. A distinguished set of vertices is constructed
by adding one vertex at each iteration. A labeling procedure is carried out at each iteration. In
this labeling procedure, a vertex w is labeled with the length of a shortest path from a to w that
contains only vertices already in the distinguished set. The vertex added to the distinguished set
is one with a minimal label among those vertices not already in the set.

We now give the details of Dijkstra’s algorithm. It begins by labeling a with 0 and the
other vertices with ∞. We use the notation L0(a) = 0 and L0(v) = ∞ for these labels before
any iterations have taken place (the subscript 0 stands for the “0th” iteration). These labels are
the lengths of shortest paths from a to the vertices, where the paths contain only the vertex a.
(Because no path from a to a vertex different from a exists, ∞ is the length of a shortest path
between a and this vertex.)

Dijkstra’s algorithm proceeds by forming a distinguished set of vertices. Let Sk denote this
set after k iterations of the labeling procedure. We begin with S0 = ∅. The set Sk is formed
from Sk−1 by adding a vertex u not in Sk−1 with the smallest label.

Once u is added to Sk , we update the labels of all vertices not in Sk , so that Lk(v), the
label of the vertex v at the kth stage, is the length of a shortest path from a to v that contains
vertices only in Sk (that is, vertices that were already in the distinguished set together with u).
Note that the way we choose the vertex u to add to Sk at each step is an optimal choice at each
step, making this a greedy algorithm. (We will prove shortly that this greedy algorithm always
produces an optimal solution.)

Let v be a vertex not in Sk . To update the label of v, note thatLk(v) is the length of a shortest
path from a to v containing only vertices in Sk . The updating can be carried out efficiently when
this observation is used: A shortest path from a to v containing only elements of Sk is either a
shortest path from a to v that contains only elements of Sk−1 (that is, the distinguished vertices
not including u), or it is a shortest path from a to u at the (k − 1)st stage with the edge {u, v}
added. In other words,

Lk(a, v) = min{Lk−1(a, v), Lk−1(a, u)+ w(u, v)},

where w(u, v) is the length of the edge with u and v as endpoints. This procedure is iterated by
successively adding vertices to the distinguished set until z is added. When z is added to the
distinguished set, its label is the length of a shortest path from a to z.

Dijkstra’s algorithm is given in Algorithm 1. Later we will give a proof that this algorithm
is correct. Note that we can find the length of the shortest path from a to all other vertices of the
graph if we continue this procedure until all vertices are added to the distinguished set.

712 10 / Graphs

ALGORITHM 1 Dijkstra’s Algorithm.

procedure Dijkstra(G: weighted connected simple graph, with

all weights positive)

{G has vertices a = v0, v1, . . . , vn = z and lengths w(vi , vj)

where w(vi , vj) = ∞ if {vi , vj } is not an edge in G}
for i := 1 to n

L(vi) := ∞
L(a) := 0

S := ∅
{the labels are now initialized so that the label of a is 0 and all

other labels are ∞, and S is the empty set}
while z ∈ S

u := a vertex not in S with L(u) minimal

S := S ∪ {u}
for all vertices v not in S

if L(u)+ w(u, v) < L(v) then L(v) := L(u)+ w(u, v)

{this adds a vertex to S with minimal label and updates the

labels of vertices not in S}
return L(z) {L(z) = length of a shortest path from a to z}

Example 2 illustrates how Dijkstra’s algorithm works. Afterward, we will show that this
algorithm always produces the length of a shortest path between two vertices in a weighted
graph.

EXAMPLE 2 Use Dijkstra’s algorithm to find the length of a shortest path between the vertices a and z in the
weighted graph displayed in Figure 4(a).

Solution: The steps used by Dijkstra’s algorithm to find a shortest path between a and z are shown
in Figure 4. At each iteration of the algorithm the vertices of the set Sk are circled. A shortest
path from a to each vertex containing only vertices in Sk is indicated for each iteration. The
algorithm terminates when z is circled. We find that a shortest path from a to z is a, c, b, d, e, z,
with length 13. ▲

Remark: In performing Dijkstra’s algorithm it is sometimes more convenient to keep track of
labels of vertices in each step using a table instead of redrawing the graph for each step.

Next, we use an inductive argument to show that Dijkstra’s algorithm produces the length
of a shortest path between two vertices a and z in an undirected connected weighted graph. Take
as the inductive hypothesis the following assertion: At the kth iteration

(i) the label of every vertex v in S is the length of a shortest path from a to this vertex, and

(ii) the label of every vertex not in S is the length of a shortest path from a to this vertex that
contains only (besides the vertex itself) vertices in S.

When k = 0, before any iterations are carried out, S = ∅, so the length of a shortest path from
a to a vertex other than a is ∞. Hence, the basis case is true.

10.6 Shortest-Path Problems 713

b d

c e

za

5

10 32

64

20 ⬁1 8

⬁ ⬁

⬁ ⬁

(a)

b d

c e

za

5

10 32

64

20 ⬁1 8

4 (a) ⬁

2 (a) ⬁

(b)

b d

c e

za

5

10 32

64

20 ⬁1 8

3 (a, c) 10 (a, c)

2 (a) 12 (a, c)

(c)

d

c e

za

5

10 32

64

20 ⬁1 8

3 (a, c) 8 (a, c, b)

2 (a) 12 (a, c)

(d)

b

c e

za

5

10 32

64

20 14 (a, c, b, d)1 8

3 (a, c) 8 (a, c, b)

2 (a) 10 (a, c, b, d)

(e)

b d

c

a

5

10 32

64

20 13 (a, c, b, d, e)1 8

3 (a, c) 8 (a, c, b)

2 (a) 10 (a, c, b, d)

(g)

b d

c

za

5

10 32

64

20 13 (a, c, b, d, e)1 8

3 (a, c) 8 (a, c, b)

2 (a) 10 (a, c, b, d)

(f)

b d

e e

z

FIGURE 4 Using Dijkstra’s Algorithm to Find a Shortest Path from a to z.

Assume that the inductive hypothesis holds for the kth iteration. Let v be the vertex added
to S at the (k + 1)st iteration, so v is a vertex not in S at the end of the kth iteration with the
smallest label (in the case of ties, any vertex with smallest label may be used).

From the inductive hypothesis we see that the vertices in S before the (k + 1)st iteration
are labeled with the length of a shortest path from a. Also, v must be labeled with the length of
a shortest path to it from a. If this were not the case, at the end of the kth iteration there would
be a path of length less than Lk(v) containing a vertex not in S [because Lk(v) is the length of a
shortest path from a to v containing only vertices in S after the kth iteration]. Let u be the first
vertex not in S in such a path. There is a path with length less than Lk(v) from a to u containing
only vertices of S. This contradicts the choice of v. Hence, (i) holds at the end of the (k + 1)st
iteration.

Let u be a vertex not in S after k + 1 iterations. A shortest path from a to u containing only
elements of S either contains v or it does not. If it does not contain v, then by the inductive
hypothesis its length is Lk(u). If it does contain v, then it must be made up of a path from a to v

of shortest possible length containing elements of S other than v, followed by the edge from v

to u. In this case, its length would be Lk(v)+ w(v, u). This shows that (ii) is true, because
Lk+1(u) = min{Lk(u), Lk(v)+ w(v, u)}.

We now state the thereom that we have proved.

THEOREM 1 Dijkstra’s algorithm finds the length of a shortest path between two vertices in a connected
simple undirected weighted graph.

714 10 / Graphs

Saginaw

Grand Rapids

Kalamazoo

Toledo

Detroit

98

56

133

167

137

135

147

142

113

58

FIGURE 5 The Graph Showing the Distances between Five Cities.

We can now estimate the computational complexity of Dijkstra’s algorithm (in terms of
additions and comparisons). The algorithm uses no more than n− 1 iterations where n is the
number of vertices in the graph, because one vertex is added to the distinguished set at each
iteration. We are done if we can estimate the number of operations used for each iteration. We
can identify the vertex not in Sk with the smallest label using no more than n− 1 comparisons.
Then we use an addition and a comparison to update the label of each vertex not in Sk . It follows
that no more than 2(n− 1) operations are used at each iteration, because there are no more
than n− 1 labels to update at each iteration. Because we use no more than n− 1 iterations, each
using no more than 2(n− 1) operations, we have Theorem 2.

THEOREM 2 Dijkstra’s algorithm usesO(n2) operations (additions and comparisons) to find the length of
a shortest path between two vertices in a connected simple undirected weighted graph with n
vertices.

The Traveling Salesperson Problem

We now discuss an important problem involving weighted graphs. Consider the following prob-
lem: A traveling salesperson wants to visit each of n cities exactly once and return to his starting
point. For example, suppose that the salesperson wants to visit Detroit, Toledo, Saginaw, Grand
Rapids, and Kalamazoo (see Figure 5). In which order should he visit these cities to travel the
minimum total distance? To solve this problem we can assume the salesperson starts in Detroit
(because this must be part of the circuit) and examine all possible ways for him to visit the other
four cities and then return to Detroit (starting elsewhere will produce the same circuits). There
are a total of 24 such circuits, but because we travel the same distance when we travel a circuit in
reverse order, we need only consider 12 different circuits to find the minimum total distance he
must travel. We list these 12 different circuits and the total distance traveled for each circuit. As
can be seen from the list, the minimum total distance of 458 miles is traveled using the circuit
Detroit–Toledo–Kalamazoo–Grand Rapids–Saginaw–Detroit (or its reverse).

10.6 Shortest-Path Problems 715

Route Total Distance (miles)

Detroit–Toledo–Grand Rapids–Saginaw–Kalamazoo–Detroit 610

Detroit–Toledo–Grand Rapids–Kalamazoo–Saginaw–Detroit 516

Detroit–Toledo–Kalamazoo–Saginaw–Grand Rapids–Detroit 588

Detroit–Toledo–Kalamazoo–Grand Rapids–Saginaw–Detroit 458

Detroit–Toledo–Saginaw–Kalamazoo–Grand Rapids–Detroit 540

Detroit–Toledo–Saginaw–Grand Rapids–Kalamazoo–Detroit 504

Detroit–Saginaw–Toledo–Grand Rapids–Kalamazoo–Detroit 598

Detroit–Saginaw–Toledo–Kalamazoo–Grand Rapids–Detroit 576

Detroit–Saginaw–Kalamazoo–Toledo–Grand Rapids–Detroit 682

Detroit–Saginaw–Grand Rapids–Toledo–Kalamazoo–Detroit 646

Detroit–Grand Rapids–Saginaw–Toledo–Kalamazoo–Detroit 670

Detroit–Grand Rapids–Toledo–Saginaw–Kalamazoo–Detroit 728

We just described an instance of the traveling salesperson problem. The traveling sales-
person problem asks for the circuit of minimum total weight in a weighted, complete, undirected
graph that visits each vertex exactly once and returns to its starting point. This is equivalent to

An 1832 handbook Der

Handlungsreisende (The

Traveling Salesman)

mentions the traveling

salesman problem, with

sample tours through

Germany and

Switzerland.

asking for a Hamilton circuit with minimum total weight in the complete graph, because each
vertex is visited exactly once in the circuit.

The most straightforward way to solve an instance of the traveling salesperson problem is
to examine all possible Hamilton circuits and select one of minimum total length. How many
circuits do we have to examine to solve the problem if there are n vertices in the graph? Once a
starting point is chosen, there are (n− 1)! different Hamilton circuits to examine, because there
are n− 1 choices for the second vertex, n− 2 choices for the third vertex, and so on. Because a
Hamilton circuit can be traveled in reverse order, we need only examine (n− 1)!/2 circuits to find
our answer. Note that (n− 1)!/2 grows extremely rapidly. Trying to solve a traveling salesperson
problem in this way when there are only a few dozen vertices is impractical. For example, with
25 vertices, a total of 24!/2 (approximately 3.1 × 1023) different Hamilton circuits would have
to be considered. If it took just one nanosecond (10−9 second) to examine each Hamilton circuit,
a total of approximately ten million years would be required to find a minimum-length Hamilton
circuit in this graph by exhaustive search techniques.

Because the traveling salesperson problem has both practical and theoretical importance,
a great deal of effort has been devoted to devising efficient algorithms that solve it. However,
no algorithm with polynomial worst-case time complexity is known for solving this problem.
Furthermore, if a polynomial worst-case time complexity algorithm were discovered for the
traveling salesperson problem, many other difficult problems would also be solvable using
polynomial worst-case time complexity algorithms (such as determining whether a proposition
in n variables is a tautology, discussed in Chapter 1). This follows from the theory of NP-
completeness. (For more information about this, consult [GaJo79].)

A practical approach to the traveling salesperson problem when there are many vertices
to visit is to use an approximation algorithm. These are algorithms that do not necessarily
produce the exact solution to the problem but instead are guaranteed to produce a solution
that is close to an exact solution. (Also, see the preamble to Exercise 46 in the Supplmentary
Exercises of Chapter 3.) That is, they may produce a Hamilton circuit with total weightW such
that W ≤ W ≤ cW , where W is the total length of an exact solution and c is a constant. For
example, there is an algorithm with polynomial worst-case time complexity that works if the
weighted graph satisfies the triangle inequality such that c = 3/2. For general weighted graphs
for every positive real number k no algorithm is known that will always produce a solution at
most k times a best solution. If such an algorithm existed, this would show that the class P would
be the same as the class NP, perhaps the most famous open question about the complexity of
algorithms (see Section 3.3).

716 10 / Graphs

In practice, algorithms have been developed that can solve traveling salesperson problems
with as many as 1000 vertices within 2% of an exact solution using only a few minutes of
computer time. For more information about the traveling salesperson problem, including his-
tory, applications, and algorithms, see the chapter on this topic in Applications of Discrete

Mathematics [MiRo91] also available on the website for this book.

Exercises

1. For each of these problems about a subway system, de-
scribe a weighted graph model that can be used to solve
the problem.

a) What is the least amount of time required to travel
between two stops?

b) What is the minimum distance that can be traveled to
reach a stop from another stop?

c) What is the least fare required to travel between two
stops if fares between stops are added to give the total
fare?

In Exercises 2–4 find the length of a shortest path between a
and z in the given weighted graph.

2. b d

c e

za

5

5

43

22

2 1

3. b f

c g

za

5

6

43

74

2 1 2

5

5

d

e

3

4.
b

h

d

k

z
a

1

4
4

1

22

4

3

2

3

2

e

g

2
23

c f

5

6
2

1

2

1
2

2 2

8

5
8

3

2
6

4
6

33

3 6
3

54

8 o

r

1

1

3 i

j

m

n
q

l
p s

t

5. Find a shortest path between a and z in each of the
weighted graphs in Exercises 2–4.

6. Find the length of a shortest path between these pairs of
vertices in the weighted graph in Exercise 3.

a) a and d

b) a and f

c) c and f

d) b and z

7. Find shortest paths in the weighted graph in Exercise 3
between the pairs of vertices in Exercise 6.

8. Find a shortest path (in mileage) between each of the
following pairs of cities in the airline system shown in
Figure 1.

a) New York and Los Angeles

b) Boston and San Francisco

c) Miami and Denver

d) Miami and Los Angeles

9. Find a combination of flights with the least total air time
between the pairs of cities in Exercise 8, using the flight
times shown in Figure 1.

10. Find a least expensive combination of flights connecting
the pairs of cities in Exercise 8, using the fares shown in
Figure 1.

11. Find a shortest route (in distance) between computer cen-
ters in each of these pairs of cities in the communications
network shown in Figure 2.

a) Boston and Los Angeles

b) New York and San Francisco

c) Dallas and San Francisco

d) Denver and New York

12. Find a route with the shortest response time between the
pairs of computer centers in Exercise 11 using the re-
sponse times given in Figure 2.

13. Find a least expensive route, in monthly lease charges, be-
tween the pairs of computer centers in Exercise 11 using
the lease charges given in Figure 2.

14. Explain how to find a path with the least number of edges
between two vertices in an undirected graph by consid-
ering it as a shortest path problem in a weighted graph.

15. Extend Dijkstra’s algorithm for finding the length of a
shortest path between two vertices in a weighted simple
connected graph so that the length of a shortest path be-
tween the vertex a and every other vertex of the graph is
found.

16. Extend Dijkstra’s algorithm for finding the length of a
shortest path between two vertices in a weighted simple
connected graph so that a shortest path between these
vertices is constructed.

10.6 Shortest-Path Problems 717

17. The weighted graphs in the figures here show some major
roads in New Jersey. Part (a) shows the distances between
cities on these roads; part (b) shows the tolls.

Trenton

30 60

42

40

55

85

75

45

35

20

Camden

Newark

Woodbridge

Asbury Park

Atlantic City

Cape May

(a)

Trenton

$0.70 $0.00

$1.00

$1.25

$0.00 $0.75

Camden

Newark

Woodbridge

Asbury Park

Atlantic City

Cape May

(b)

$1.25

$0.75
$0.00

$0.60

a) Find a shortest route in distance between Newark and
Camden, and between Newark and Cape May, using
these roads.

b) Find a least expensive route in terms of total tolls us-
ing the roads in the graph between the pairs of cities
in part (a) of this exercise.

18. Is a shortest path between two vertices in a weighted graph
unique if the weights of edges are distinct?

19. What are some applications where it is necessary to find
the length of a longest simple path between two vertices
in a weighted graph?

20. What is the length of a longest simple path in the weighted
graph in Figure 4 between a and z? Between c and z?

Floyd’s algorithm, displayed as Algorithm 2, can be used to
find the length of a shortest path between all pairs of vertices
in a weighted connected simple graph. However, this algo-
rithm cannot be used to construct shortest paths. (We assign
an infinite weight to any pair of vertices not connected by an
edge in the graph.)

21. Use Floyd’s algorithm to find the distance between all
pairs of vertices in the weighted graph in Figure 4(a).

∗22. Prove that Floyd’s algorithm determines the shortest dis-
tance between all pairs of vertices in a weighted simple
graph.

∗23. Give a big-O estimate of the number of operations (com-
parisons and additions) used by Floyd’s algorithm to de-
termine the shortest distance between every pair of ver-
tices in a weighted simple graph with n vertices.

∗24. Show that Dijkstra’s algorithm may not work if edges can
have negative weights.

ALGORITHM 2 Floyd’s Algorithm.

procedure Floyd(G: weighted simple graph)

{G has vertices v1, v2, . . . , vn and weights w(vi , vj)

with w(vi , vj) = ∞ if {vi , vj } is not an edge}
for i := 1 to n

for j := 1 to n

d(vi , vj) := w(vi , vj)

for i := 1 to n

for j := 1 to n

for k := 1 to n

if d(vj , vi)+ d(vi , vk) < d(vj , vk)
then d(vj , vk) := d(vj , vi)+ d(vi , vk)

return

d(vi , vj)

 {d(vi , vj) is the length of a shortest

path between vi and vj for 1 ≤ i ≤ n, 1 ≤ j ≤ n}

25. Solve the traveling salesperson problem for this graph
by finding the total weight of all Hamilton circuits and
determining a circuit with minimum total weight.

a b

d c

5
4

7

3

62

26. Solve the traveling salesperson problem for this graph
by finding the total weight of all Hamilton circuits and
determining a circuit with minimum total weight.

a 3 b

ce

d

2

5
4 9

8

61

107

718 10 / Graphs

27. Find a route with the least total airfare that visits each of
the cities in this graph, where the weight on an edge is the
least price available for a flight between the two cities.

New
York

Detroit

DenverLos Angeles

San
Francisco

$329

$359

$349

$189

$229
$279

$379
$209

$69

$179

28. Find a route with the least total airfare that visits each of
the cities in this graph, where the weight on an edge is the
least price available for a flight between the two cities.

New
York

Boston

Seattle

New OrleansPhoenix

$389

$379

$319

$2
39

$429

$309

$409

$109

$229

$119

29. Construct a weighted undirected graph such that the total
weight of a circuit that visits every vertex at least once
is minimized for a circuit that visits some vertices more
than once. [Hint: There are examples with three vertices.]

30. Show that the problem of finding a circuit of minimum
total weight that visits every vertex of a weighted graph
at least once can be reduced to the problem of finding a
circuit of minimum total weight that visits each vertex
of a weighted graph exactly once. Do so by constructing
a new weighted graph with the same vertices and edges
as the original graph but whose weight of the edge con-
necting the vertices u and v is equal to the minimum total
weight of a path from u to v in the original graph.

∗31. The longest path problem in a weighted directed graph
with no simple circuits asks for a path in this graph such
that the sum of its edge weights is a maximum. De-
vise an algorithm for solving the longest path problem.
[Hint: First find a topological ordering of the vertices of
the graph.]

10.7 Planar Graphs

Introduction

Consider the problem of joining three houses to each of three separate utilities, as shown in
Figure 1. Is it possible to join these houses and utilities so that none of the connections cross?
This problem can be modeled using the complete bipartite graph K3,3. The original question
can be rephrased as: Can K3,3 be drawn in the plane so that no two of its edges cross?

In this section we will study the question of whether a graph can be drawn in the plane
without edges crossing. In particular, we will answer the houses-and-utilities problem.

There are always many ways to represent a graph. When is it possible to find at least one
way to represent this graph in a plane without any edges crossing?

FIGURE 1 Three Houses and Three Utilities.

10.7 Planar Graphs 719

FIGURE 2 The

Graph K4.

FIGURE 3 K4 Drawn

with No Crossings.

FIGURE 4 The

GraphQ3.

FIGURE 5 A Planar

Representation ofQ3.

DEFINITION 1 A graph is called planar if it can be drawn in the plane without any edges crossing (where
a crossing of edges is the intersection of the lines or arcs representing them at a point other
than their common endpoint). Such a drawing is called a planar representation of the graph.

A graph may be planar even if it is usually drawn with crossings, because it may be possible
to draw it in a different way without crossings.

EXAMPLE 1 Is K4 (shown in Figure 2 with two edges crossing) planar?

Solution: K4 is planar because it can be drawn without crossings, as shown in Figure 3. ▲

EXAMPLE 2 IsQ3, shown in Figure 4, planar?

Solution: Q3 is planar, because it can be drawn without any edges crossing, as shown in
Figure 5. ▲

We can show that a graph is planar by displaying a planar representation. It is harder to
show that a graph is nonplanar. We will give an example to show how this can be done in an ad
hoc fashion. Later we will develop some general results that can be used to do this.

EXAMPLE 3 Is K3,3, shown in Figure 6, planar?

Solution: Any attempt to draw K3,3 in the plane with no edges crossing is doomed. We now
show why. In any planar representation ofK3,3, the vertices v1 and v2 must be connected to both
v4 and v5. These four edges form a closed curve that splits the plane into two regions, R1 and
R2, as shown in Figure 7(a). The vertex v3 is in either R1 or R2. When v3 is in R2, the inside
of the closed curve, the edges between v3 and v4 and between v3 and v5 separate R2 into two
subregions, R21 and R22, as shown in Figure 7(b).

v1 v2

v6

v3

v5v4

FIGURE 6 The Graph K3,3.

v1

v4

v5

v2

v1

v4

v5

v2

v3R2 R1 R1

R21

(a) (b)

R22

FIGURE 7 Showing that K3,3 Is Nonplanar.

720 10 / Graphs

Next, note that there is no way to place the final vertex v6 without forcing a crossing. For
if v6 is in R1, then the edge between v6 and v3 cannot be drawn without a crossing. If v6 is in
R21, then the edge between v2 and v6 cannot be drawn without a crossing. If v6 is in R22, then
the edge between v1 and v6 cannot be drawn without a crossing.

A similar argument can be used when v3 is in R1. The completion of this argument is left
for the reader (see Exercise 10). It follows that K3,3 is not planar. ▲

Example 3 solves the utilities-and-houses problem that was described at the beginning of
this section. The three houses and three utilities cannot be connected in the plane without a
crossing. A similar argument can be used to show that K5 is nonplanar. (See Exercise 11.)

APPLICATIONS OF PLANAR GRAPHS Planarity of graphs plays an important role in the
design of electronic circuits. We can model a circuit with a graph by representing components
of the circuit by vertices and connections between them by edges. We can print a circuit on a
single board with no connections crossing if the graph representing the circuit is planar. When
this graph is not planar, we must turn to more expensive options. For example, we can partition
the vertices in the graph representing the circuit into planar subgraphs. We then construct the
circuit using multiple layers. (See the preamble to Exercise 30 to learn about the thickness of a
graph.) We can construct the circuit using insulated wires whenever connections cross. In this
case, drawing the graph with the fewest possible crossings is important. (See the preamble to
Exercise 26 to learn about the crossing number of a graph.)

The planarity of graphs is also useful in the design of road networks. Suppose we want
to connect a group of cities by roads. We can model a road network connecting these cities
using a simple graph with vertices representing the cities and edges representing the highways
connecting them. We can built this road network without using underpasses or overpasses if the
resulting graph is planar.

Euler’s Formula

A planar representation of a graph splits the plane into regions, including an unbounded region.
For instance, the planar representation of the graph shown in Figure 8 splits the plane into six
regions. These are labeled in the figure. Euler showed that all planar representations of a graph
split the plane into the same number of regions. He accomplished this by finding a relationship
among the number of regions, the number of vertices, and the number of edges of a planar graph.

THEOREM 1 EULER’S FORMULA Let G be a connected planar simple graph with e edges and v

vertices. Let r be the number of regions in a planar representation ofG. Then r = e − v + 2.

Proof: First, we specify a planar representation ofG. We will prove the theorem by constructing
a sequence of subgraphsG1,G2, . . . ,Ge = G, successively adding an edge at each stage. This
is done using the following inductive definition. Arbitrarily pick one edge of G to obtain G1.
ObtainGn fromGn−1 by arbitrarily adding an edge that is incident with a vertex already inGn−1,

R2

R1

R3

R5

R4
R6

FIGURE 8 The Regions of the Planar Representation of a Graph.

10.7 Planar Graphs 721

adding the other vertex incident with this edge if it is not already in Gn−1. This construction
is possible because G is connected. G is obtained after e edges are added. Let rn, en, and vn
represent the number of regions, edges, and vertices of the planar representation ofGn induced
by the planar representation of G, respectively.

a1 b1

R1

FIGURE 9 The

Basis Case of the

Proof of Euler’s

Formula.

The proof will now proceed by induction. The relationship r1 = e1 − v1 + 2 is true forG1,
because e1 = 1, v1 = 2, and r1 = 1. This is shown in Figure 9.

Now assume that rk = ek − vk + 2. Let {ak+1, bk+1} be the edge that is added to Gk to
obtain Gk+1. There are two possibilities to consider. In the first case, both ak+1 and bk+1 are
already in Gk . These two vertices must be on the boundary of a common region R, or else
it would be impossible to add the edge {ak+1, bk+1} to Gk without two edges crossing (and
Gk+1 is planar). The addition of this new edge splits R into two regions. Consequently, in this
case, rk+1 = rk + 1, ek+1 = ek + 1, and vk+1 = vk . Thus, each side of the formula relating the
number of regions, edges, and vertices increases by exactly one, so this formula is still true. In
other words, rk+1 = ek+1 − vk+1 + 2. This case is illustrated in Figure 10(a).

In the second case, one of the two vertices of the new edge is not already in Gk . Suppose
that ak+1 is inGk but that bk+1 is not. Adding this new edge does not produce any new regions,
because bk+1 must be in a region that has ak+1 on its boundary. Consequently, rk+1 = rk .
Moreover, ek+1 = ek + 1 and vk+1 = vk + 1. Each side of the formula relating the number
of regions, edges, and vertices remains the same, so the formula is still true. In other words,
rk+1 = ek+1 − vk+1 + 2. This case is illustrated in Figure 10(b).

We have completed the induction argument. Hence, rn = en − vn + 2 for all n. Because the
original graph is the graph Ge, obtained after e edges have been added, the theorem is true.

Euler’s formula is illustrated in Example 4.

EXAMPLE 4 Suppose that a connected planar simple graph has 20 vertices, each of degree 3. Into how many
regions does a representation of this planar graph split the plane?

Solution: This graph has 20 vertices, each of degree 3, so v = 20. Because the sum of the degrees
of the vertices, 3v = 3 · 20 = 60, is equal to twice the number of edges, 2e, we have 2e = 60,
or e = 30. Consequently, from Euler’s formula, the number of regions is

r = e − v + 2 = 30 − 20 + 2 = 12.

▲

Euler’s formula can be used to establish some inequalities that must be satisfied by planar
graphs. One such inequality is given in Corollary 1.

an + 1

bn + 1

bn + 1

an + 1

R

R

(b)(a)

FIGURE 10 Adding an Edge to Gn to Produce Gn+1.

722 10 / Graphs

c

b d

e

f

a

g

3R1

R2

R3

6

7

FIGURE 11 The Degrees of Regions.

COROLLARY 1 If G is a connected planar simple graph with e edges and v vertices, where v ≥ 3, then
e ≤ 3v − 6.

Before we prove Corollary 1 we will use it to prove the following useful result.

COROLLARY 2 If G is a connected planar simple graph, then G has a vertex of degree not exceeding five.

Proof: IfGhas one or two vertices, the result is true. IfGhas at least three vertices, by Corollary 1
we know that e ≤ 3v − 6, so 2e ≤ 6v − 12. If the degree of every vertex were at least six, then
because 2e = v∈V deg(v) (by the handshaking theorem), we would have 2e ≥ 6v. But this
contradicts the inequality 2e ≤ 6v − 12. It follows that there must be a vertex with degree no
greater than five.

The proof of Corollary 1 is based on the concept of the degree of a region, which is defined
to be the number of edges on the boundary of this region. When an edge occurs twice on the
boundary (so that it is traced out twice when the boundary is traced out), it contributes two to
the degree. We denote the degree of a region R by deg(R). The degrees of the regions of the
graph shown in Figure 11 are displayed in the figure.

The proof of Corollary 1 can now be given.

Proof: A connected planar simple graph drawn in the plane divides the plane into regions,
say r of them. The degree of each region is at least three. (Because the graphs discussed here
are simple graphs, no multiple edges that could produce regions of degree two, or loops that
could produce regions of degree one, are permitted.) In particular, note that the degree of the
unbounded region is at least three because there are at least three vertices in the graph.

Note that the sum of the degrees of the regions is exactly twice the number of edges in
the graph, because each edge occurs on the boundary of a region exactly twice (either in two
different regions, or twice in the same region). Because each region has degree greater than or
equal to three, it follows that

2e =

all regions R

deg(R) ≥ 3r.

Hence,

(2/3)e ≥ r.

10.7 Planar Graphs 723

a

dc e

b a

dc e

b a

dc e

b

f

g

h

g

i
k

j

G2 G3G1

FIGURE 12 Homeomorphic Graphs.

Using r = e − v + 2 (Euler’s formula), we obtain

e − v + 2 ≤ (2/3)e.

It follows that e/3 ≤ v − 2. This shows that e ≤ 3v − 6.

This corollary can be used to demonstrate that K5 is nonplanar.

EXAMPLE 5 Show that K5 is nonplanar using Corollary 1.

Solution: The graph K5 has five vertices and 10 edges. However, the inequality e ≤ 3v − 6 is
not satisfied for this graph because e = 10 and 3v − 6 = 9. Therefore, K5 is not planar. ▲

It was previously shown thatK3,3 is not planar. Note, however, that this graph has six vertices
and nine edges. This means that the inequality e = 9 ≤ 12 = 3 · 6 − 6 is satisfied. Consequently,
the fact that the inequality e ≤ 3v − 6 is satisfied does not imply that a graph is planar. However,
the following corollary of Theorem 1 can be used to show that K3,3 is nonplanar.

COROLLARY 3 If a connected planar simple graph has e edges and v vertices with v ≥ 3 and no circuits of
length three, then e ≤ 2v − 4.

The proof of Corollary 3 is similar to that of Corollary 1, except that in this case the fact that
there are no circuits of length three implies that the degree of a region must be at least four. The
details of this proof are left for the reader (see Exercise 15).

EXAMPLE 6 Use Corollary 3 to show that K3,3 is nonplanar.

Solution: BecauseK3,3 has no circuits of length three (this is easy to see because it is bipartite),
Corollary 3 can be used. K3,3 has six vertices and nine edges. Because e = 9 and 2v − 4 = 8,
Corollary 3 shows that K3,3 is nonplanar. ▲

KAZIMIERZ KURATOWSKI (1896–1980) Kazimierz Kuratowski, the son of a famous Warsaw lawyer,
attended secondary school in Warsaw. He studied in Glasgow, Scotland, from 1913 to 1914 but could not return
there after the outbreak of World War I. In 1915 he entered Warsaw University, where he was active in the Polish
patriotic student movement. He published his first paper in 1919 and received his Ph.D. in 1921. He was an active
member of the group known as the Warsaw School of Mathematics, working in the areas of the foundations
of set theory and topology. He was appointed associate professor at the Lwów Polytechnical University, where
he stayed for seven years, collaborating with the important Polish mathematicians Banach and Ulam. In 1930,
while at Lwów, Kuratowski completed his work characterizing planar graphs.

In 1934 he returned to Warsaw University as a full professor. Until the start of World War II, he was active
in research and teaching. During the war, because of the persecution of educated Poles, Kuratowski went into hiding under an
assumed name and taught at the clandestine Warsaw University. After the war he helped revive Polish mathematics, serving as
director of the Polish National Mathematics Institute. He wrote over 180 papers and three widely used textbooks.

724 10 / Graphs

a b

g

i c

a b

g

i c

K5HG

d

e
f

a b

g

i c

d

e
f

h

j

k

FIGURE 13 The Undirected Graph G, a Subgraph H Homeomorphic to K5, and K5.

Kuratowski’s Theorem

We have seen that K3,3 and K5 are not planar. Clearly, a graph is not planar if it contains either
of these two graphs as a subgraph. Surprisingly, all nonplanar graphs must contain a subgraph
that can be obtained from K3,3 or K5 using certain permitted operations.

If a graph is planar, so will be any graph obtained by removing an edge {u, v} and adding a
new vertex w together with edges {u,w} and {w, v}. Such an operation is called an elementary
subdivision. The graphs G1 = (V1, E1) and G2 = (V2, E2) are called homeomorphic if they
can be obtained from the same graph by a sequence of elementary subdivisions.

EXAMPLE 7 Show that the graphs G1, G2, and G3 displayed in Figure 12 are all homeomorphic.

Solution: These three graphs are homeomorphic because all three can be obtained from G1 by
elementary subdivisions. G1 can be obtained from itself by an empty sequence of elementary
subdivisions. To obtain G2 from G1 we can use this sequence of elementary subdivisions:
(i) remove the edge {a, c}, add the vertex f , and add the edges {a, f } and {f, c}; (ii) remove
the edge {b, c}, add the vertex g, and add the edges {b, g} and {g, c}; and (iii) remove the edge
{b, g}, add the vertex h, and add the edges {g, h} and {b, h}. We leave it to the reader to determine
the sequence of elementary subdivisions needed to obtain G3 from G1. ▲

The Polish mathematician Kazimierz Kuratowski established Theorem 2 in 1930, which
characterizes planar graphs using the concept of graph homeomorphism.

THEOREM 2 A graph is nonplanar if and only if it contains a subgraph homeomorphic to K3,3 or K5.

It is clear that a graph containing a subgraph homeomorphic toK3,3 orK5 is nonplanar. However,
the proof of the converse, namely that every nonplanar graph contains a subgraph homeomorphic
to K3,3 or K5, is complicated and will not be given here. Examples 8 and 9 illustrate how
Kuratowski’s theorem is used.

EXAMPLE 8 Determine whether the graph G shown in Figure 13 is planar.

Solution: G has a subgraph H homeomorphic to K5. H is obtained by deleting h, j , and k and
all edges incident with these vertices. H is homeomorphic to K5 because it can be obtained
from K5 (with vertices a, b, c, g, and i) by a sequence of elementary subdivisions, adding the
vertices d, e, and f . (The reader should construct such a sequence of elementary subdivisions.)
Hence, G is nonplanar. ▲

10.7 Planar Graphs 725

a

b

cd

e

f

h

gj

i

f d j

hie

f d
j

hi

c

a g

(a) (b) H (c) K3,3

e

FIGURE 14 (a) The Petersen Graph, (b) a Subgraph H Homeomorphic to K3,3, and (c) K3,3.

EXAMPLE 9 Is the Petersen graph, shown in Figure 14(a), planar? (The Danish mathematician Julius Petersen
studied this graph in 1891; it is often used to illustrate various theoretical properties of graphs.)

Solution: The subgraph H of the Petersen graph obtained by deleting b and the three edges
that have b as an endpoint, shown in Figure 14(b), is homeomorphic to K3,3, with vertex sets
{f, d, j} and {e, i, h}, because it can be obtained by a sequence of elementary subdivisions,
deleting {d, h} and adding {c, h} and {c, d}, deleting {e, f } and adding {a, e} and {a, f }, and
deleting {i, j} and adding {g, i} and {g, j}. Hence, the Petersen graph is not planar. ▲

Exercises

1. Can five houses be connected to two utilities without con-
nections crossing?

In Exercises 2–4 draw the given planar graph without any
crossings.

2. 3.

4.

In Exercises 5–9 determine whether the given graph is planar.
If so, draw it so that no edges cross.

5. a

e fd

b c

6. a b c

d e f

7. a b

c

d

f

e

8. a b

d

c

e

h

g

f

9.
i

a

c

e

h

g

f

b

d

10. Complete the argument in Example 3.

11. Show that K5 is nonplanar using an argument similar to
that given in Example 3.

12. Suppose that a connected planar graph has eight vertices,
each of degree three. Into how many regions is the plane
divided by a planar representation of this graph?

13. Suppose that a connected planar graph has six vertices,
each of degree four. Into how many regions is the plane
divided by a planar representation of this graph?

14. Suppose that a connected planar graph has 30 edges. If a
planar representation of this graph divides the plane into
20 regions, how many vertices does this graph have?

726 10 / Graphs

15. Prove Corollary 3.

16. Suppose that a connected bipartite planar simple graph
has e edges and v vertices. Show that e ≤ 2v − 4 if v ≥ 3.

∗17. Suppose that a connected planar simple graph with e
edges and v vertices contains no simple circuits of length
4 or less. Show that e ≤ (5/3)v − (10/3) if v ≥ 4.

18. Suppose that a planar graph has k connected components,
e edges, and v vertices. Also suppose that the plane is
divided into r regions by a planar representation of the
graph. Find a formula for r in terms of e, v, and k.

19. Which of these nonplanar graphs have the property that
the removal of any vertex and all edges incident with that
vertex produces a planar graph?

a) K5 b) K6 c) K3,3 d) K3,4

In Exercises 20–22 determine whether the given graph is
homeomorphic to K3,3.

20.
a b

f

d

g

e

h

c

21. a b c

g h

d e f

22. a

g

b

c

e

fh

k

l

j

i

d

In Exercises 23–25 use Kuratowski’s theorem to determine
whether the given graph is planar.

23. a b c d

e f g h

24.

a b c

dh

i

g

f

e

25. b c

da

g

ef

The crossing number of a simple graph is the minimum num-
ber of crossings that can occur when this graph is drawn in the
plane where no three arcs representing edges are permitted to
cross at the same point.

26. Show that K3,3 has 1 as its crossing number.
∗∗27. Find the crossing numbers of each of these nonplanar

graphs.

a) K5 b) K6 c) K7

d) K3,4 e) K4,4 f) K5,5

∗28. Find the crossing number of the Petersen graph.
∗∗29. Show that ifm and n are even positive integers, the cross-

ing number of Km,n is less than or equal to mn(m− 2)
(n− 2)/16. [Hint: Place m vertices along the x-axis so
that they are equally spaced and symmetric about the ori-
gin and place n vertices along the y-axis so that they are
equally spaced and symmetric about the origin. Now con-
nect each of the m vertices on the x-axis to each of the
vertices on the y-axis and count the crossings.]

The thickness of a simple graph G is the smallest number of
planar subgraphs of G that have G as their union.

30. Show that K3,3 has 2 as its thickness.
∗31. Find the thickness of the graphs in Exercise 27.

32. Show that ifG is a connected simple graph with v vertices
and e edges, where v ≥ 3, then the thickness of G is at
least e/(3v − 6) .

∗33. Use Exercise 32 to show that the thickness of Kn is at
least (n+ 7)/6 whenever n is a positive integer.

34. Show that ifG is a connected simple graph with v vertices
and e edges, where v ≥ 3, and no circuits of length three,
then the thickness of G is at least e/(2v − 4) .

35. Use Exercise 34 to show that the thickness ofKm,n, where
m and n are not both 1, is at least mn/(2m+ 2n− 4)
whenever m and n are positive integers.

∗36. Draw K5 on the surface of a torus (a doughnut-shaped
solid) so that no edges cross.

∗37. DrawK3,3 on the surface of a torus so that no edges cross.

10.8 Graph Coloring 727

A

B

C D

E

F

G

A

D

B

C

E

FIGURE 1 Two Maps.

10.8 Graph Coloring

Introduction

Problems related to the coloring of maps of regions, such as maps of parts of the world, have
generated many results in graph theory. When a map∗ is colored, two regions with a common
border are customarily assigned different colors. One way to ensure that two adjacent regions
never have the same color is to use a different color for each region. However, this is inefficient,
and on maps with many regions it would be hard to distinguish similar colors. Instead, a small
number of colors should be used whenever possible. Consider the problem of determining the
least number of colors that can be used to color a map so that adjacent regions never have the
same color. For instance, for the map shown on the left in Figure 1, four colors suffice, but three
colors are not enough. (The reader should check this.) In the map on the right in Figure 1, three
colors are sufficient (but two are not).

Each map in the plane can be represented by a graph. To set up this correspondence,
each region of the map is represented by a vertex. Edges connect two vertices if the regions
represented by these vertices have a common border. Two regions that touch at only one point
are not considered adjacent. The resulting graph is called the dual graph of the map. By the way
in which dual graphs of maps are constructed, it is clear that any map in the plane has a planar
dual graph. Figure 2 displays the dual graphs that correspond to the maps shown in Figure 1.

The problem of coloring the regions of a map is equivalent to the problem of coloring the
vertices of the dual graph so that no two adjacent vertices in this graph have the same color. We
now define a graph coloring.

DEFINITION 1 A coloring of a simple graph is the assignment of a color to each vertex of the graph so that
no two adjacent vertices are assigned the same color.

A

B

D

C

F

G

E

A

D

B

E
C

FIGURE 2 Dual Graphs of the Maps in Figure 1.

∗We will assume that all regions in a map are connected. This eliminates any problems presented by such geographical entities

as Michigan.

728 10 / Graphs

A graph can be colored by assigning a different color to each of its vertices. However, for most
graphs a coloring can be found that uses fewer colors than the number of vertices in the graph.
What is the least number of colors necessary?

DEFINITION 2 The chromatic number of a graph is the least number of colors needed for a coloring of
this graph. The chromatic number of a graph G is denoted by χ(G). (Here χ is the Greek
letter chi.)

Note that asking for the chromatic number of a planar graph is the same as asking for the
minimum number of colors required to color a planar map so that no two adjacent regions are
assigned the same color. This question has been studied for more than 100 years. The answer is
provided by one of the most famous theorems in mathematics.

THEOREM 1 THE FOURCOLORTHEOREM The chromatic number of a planar graph is no greater
than four.

The four color theorem was originally posed as a conjecture in the 1850s. It was finally
proved by the American mathematicians Kenneth Appel and Wolfgang Haken in 1976. Prior to
1976, many incorrect proofs were published, often with hard-to-find errors. In addition, many
futile attempts were made to construct counterexamples by drawing maps that require more than
four colors. (Proving the five color theorem is not that difficult; see Exercise 36.)

Perhaps the most notorious fallacious proof in all of mathematics is the incorrect proof of
the four color theorem published in 1879 by a London barrister and amateur mathematician,
Alfred Kempe. Mathematicians accepted his proof as correct until 1890, when Percy Heawood
found an error that made Kempe’s argument incomplete. However, Kempe’s line of reasoning
turned out to be the basis of the successful proof given by Appel and Haken. Their proof relies
on a careful case-by-case analysis carried out by computer. They showed that if the four color
theorem were false, there would have to be a counterexample of one of approximately 2000
different types, and they then showed that none of these types exists. They used over 1000
hours of computer time in their proof. This proof generated a large amount of controversy,
because computers played such an important role in it. For example, could there be an error in a
computer program that led to incorrect results? Was their argument really a proof if it depended
on what could be unreliable computer output? Since their proof appeared, simpler proofs that
rely on checking fewer types of possible counterexamples have been found and a proof using
an automated proof system has been created. However, no proof not relying on a computer has
yet been found.

Note that the four color theorem applies only to planar graphs. Nonplanar graphs can have
arbitrarily large chromatic numbers, as will be shown in Example 2.

Two things are required to show that the chromatic number of a graph is k. First, we must
show that the graph can be colored with k colors. This can be done by constructing such a
coloring. Second, we must show that the graph cannot be colored using fewer than k colors.
Examples 1–4 illustrate how chromatic numbers can be found.

ALFRED BRAY KEMPE (1849–1922) Kempe was a barrister and a leading authority on ecclesiastical law.
However, having studied mathematics at Cambridge University, he retained his interest in it, and later in life
he devoted considerable time to mathematical research. Kempe made contributions to kinematics, the branch
of mathematics dealing with motion, and to mathematical logic. However, Kempe is best remembered for his
fallacious proof of the four color theorem.

10.8 Graph Coloring 729

b e

fc

da g

H

b e

fc

da g

G

FIGURE 3 The Simple Graphs G and H .

EXAMPLE 1 What are the chromatic numbers of the graphs G and H shown in Figure 3?

Solution: The chromatic number of G is at least three, because the vertices a, b, and c must
be assigned different colors. To see if G can be colored with three colors, assign red to a, blue
to b, and green to c. Then, d can (and must) be colored red because it is adjacent to b and c.
Furthermore, e can (and must) be colored green because it is adjacent only to vertices colored
red and blue, and f can (and must) be colored blue because it is adjacent only to vertices colored
red and green. Finally, g can (and must) be colored red because it is adjacent only to vertices
colored blue and green. This produces a coloring of G using exactly three colors. Figure 4
displays such a coloring.

The graph H is made up of the graph G with an edge connecting a and g. Any attempt to
colorH using three colors must follow the same reasoning as that used to colorG, except at the
last stage, when all vertices other than g have been colored. Then, because g is adjacent (in H)
to vertices colored red, blue, and green, a fourth color, say brown, needs to be used. Hence, H
has a chromatic number equal to 4. A coloring of H is shown in Figure 4. ▲

b Blue Green e

H

b Blue e Green

f Bluec Green

da

Red

g Red

G

Red a

Red

g

 Brown
d Red

f Bluec Green

FIGURE 4 Colorings of the Graphs G and H .

HISTORICAL NOTE In 1852, an ex-student of Augustus De Morgan, Francis Guthrie, noticed that the
counties in England could be colored using four colors so that no adjacent counties were assigned the same
color. On this evidence, he conjectured that the four color theorem was true. Francis told his brother Frederick,
at that time a student of De Morgan, about this problem. Frederick in turn asked his teacher De Morgan about
his brother’s conjecture. De Morgan was extremely interested in this problem and publicized it throughout the
mathematical community. In fact, the first written reference to the conjecture can be found in a letter from De
Morgan to Sir William Rowan Hamilton. Although De Morgan thought Hamilton would be interested in this
problem, Hamilton apparently was not interested in it, because it had nothing to do with quaternions.

HISTORICAL NOTE Although a simpler proof of the four color theorem was found by Robertson, Sanders,
Seymour, and Thomas in 1996, reducing the computational part of the proof to examining 633 configurations,
no proof that does not rely on extensive computation has yet been found.

730 10 / Graphs

a Red b Blue

c Green

d Yellow

Brown e

FIGURE 5 A Coloring of K5.

d Blue e Blue f Blue

c Redb Reda Red

g Blue

FIGURE 6 A Coloring of K3,4.

EXAMPLE 2 What is the chromatic number of Kn?

Solution: A coloring of Kn can be constructed using n colors by assigning a different color
to each vertex. Is there a coloring using fewer colors? The answer is no. No two vertices can
be assigned the same color, because every two vertices of this graph are adjacent. Hence, the
chromatic number of Kn is n. That is, χ(Kn) = n. (Recall that Kn is not planar when n ≥ 5,
so this result does not contradict the four color theorem.) A coloring of K5 using five colors is
shown in Figure 5. ▲

EXAMPLE 3 What is the chromatic number of the complete bipartite graphKm,n, wherem and n are positive
integers?

Solution: The number of colors needed may seem to depend onm and n. However, as Theorem 4
in Section 10.2 tells us, only two colors are needed, because Km,n is a bipartite graph. Hence,
χ(Km,n) = 2. This means that we can color the set of m vertices with one color and the set of
n vertices with a second color. Because edges connect only a vertex from the set of m vertices
and a vertex from the set of n vertices, no two adjacent vertices have the same color. A coloring
of K3,4 with two colors is displayed in Figure 6. ▲

EXAMPLE 4 What is the chromatic number of the graph Cn, where n ≥ 3? (Recall that Cn is the cycle with
n vertices.)

Solution: We will first consider some individual cases. To begin, let n = 6. Pick a vertex and
color it red. Proceed clockwise in the planar depiction ofC6 shown in Figure 7. It is necessary to
assign a second color, say blue, to the next vertex reached. Continue in the clockwise direction;
the third vertex can be colored red, the fourth vertex blue, and the fifth vertex red. Finally, the
sixth vertex, which is adjacent to the first, can be colored blue. Hence, the chromatic number of
C6 is 2. Figure 7 displays the coloring constructed here.

Red Blue

Blue Red

Red Blue

a

c

e d

b

f

a b

Red

Red

Blue

Yellow

Blue

d

e c

C5C6

FIGURE 7 Colorings of C5 and C6.

10.8 Graph Coloring 731

Next, let n = 5 and consider C5. Pick a vertex and color it red. Proceeding clockwise, it
is necessary to assign a second color, say blue, to the next vertex reached. Continuing in the
clockwise direction, the third vertex can be colored red, and the fourth vertex can be colored blue.
The fifth vertex cannot be colored either red or blue, because it is adjacent to the fourth vertex
and the first vertex. Consequently, a third color is required for this vertex. Note that we would
have also needed three colors if we had colored vertices in the counterclockwise direction. Thus,
the chromatic number of C5 is 3. A coloring of C5 using three colors is displayed in Figure 7.

In general, two colors are needed to color Cn when n is even. To construct such a coloring,
simply pick a vertex and color it red. Proceed around the graph in a clockwise direction (using
a planar representation of the graph) coloring the second vertex blue, the third vertex red, and
so on. The nth vertex can be colored blue, because the two vertices adjacent to it, namely
the(n− 1)st and the first vertices, are both colored red.

When n is odd and n > 1, the chromatic number of Cn is 3. To see this, pick an initial
vertex. To use only two colors, it is necessary to alternate colors as the graph is traversed in
a clockwise direction. However, the nth vertex reached is adjacent to two vertices of different
colors, namely, the first and (n− 1)st. Hence, a third color must be used.

We have shown that χ(Cn) = 2 if n is an even positive integer with n ≥ 4 and χ(Cn) = 3
if n is an odd positive integer with n ≥ 3. ▲

The best algorithms known for finding the chromatic number of a graph have exponential
worst-case time complexity (in the number of vertices of the graph). Even the problem of finding
an approximation to the chromatic number of a graph is difficult. It has been shown that if there
were an algorithm with polynomial worst-case time complexity that could approximate the
chromatic number of a graph up to a factor of 2 (that is, construct a bound that was no more
than double the chromatic number of the graph), then an algorithm with polynomial worst-case
time complexity for finding the chromatic number of the graph would also exist.

Applications of Graph Colorings

Graph coloring has a variety of applications to problems involving scheduling and assignments.
(Note that because no efficient algorithm is known for graph coloring, this does not lead to
efficient algorithms for scheduling and assignments.) Examples of such applications will be
given here. The first application deals with the scheduling of final exams.

EXAMPLE 5 Scheduling Final Exams How can the final exams at a university be scheduled so that no
student has two exams at the same time?

Solution: This scheduling problem can be solved using a graph model, with vertices representing
courses and with an edge between two vertices if there is a common student in the courses they
represent. Each time slot for a final exam is represented by a different color. A scheduling of
the exams corresponds to a coloring of the associated graph.

For instance, suppose there are seven finals to be scheduled. Suppose the courses are num-
bered 1 through 7. Suppose that the following pairs of courses have common students: 1 and 2,
1 and 3, 1 and 4, 1 and 7, 2 and 3, 2 and 4, 2 and 5, 2 and 7, 3 and 4, 3 and 6, 3 and 7, 4 and 5,
4 and 6, 5 and 6, 5 and 7, and 6 and 7. In Figure 8 the graph associated with this set of classes
is shown. A scheduling consists of a coloring of this graph.

Because the chromatic number of this graph is 4 (the reader should verify this), four time
slots are needed. A coloring of the graph using four colors and the associated schedule are shown
in Figure 9. ▲

732 10 / Graphs

1

2

36

7

5 4

FIGURE 8 The Graph

Representing the Scheduling

of Final Exams.

Time Period

I

II

III

IV

Courses

1, 6

2

3, 5

4, 7

1 Red

2 Blue

3 Green

4 Brown5 Green

Red 6

Brown 7

FIGURE 9 Using a Coloring to Schedule Final Exams.

Now consider an application to the assignment of television channels.

EXAMPLE 6 Frequency Assignments Television channels 2 through 13 are assigned to stations in North
America so that no two stations within 150 miles can operate on the same channel. How can the
assignment of channels be modeled by graph coloring?

Solution: Construct a graph by assigning a vertex to each station. Two vertices are connected by
an edge if they are located within 150 miles of each other.An assignment of channels corresponds
to a coloring of the graph, where each color represents a different channel. ▲

An application of graph coloring to compilers is considered in Example 7.

EXAMPLE 7 Index Registers In efficient compilers the execution of loops is speeded up when frequently
used variables are stored temporarily in index registers in the central processing unit, instead
of in regular memory. For a given loop, how many index registers are needed? This problem
can be addressed using a graph coloring model. To set up the model, let each vertex of a graph
represent a variable in the loop. There is an edge between two vertices if the variables they
represent must be stored in index registers at the same time during the execution of the loop.
Thus, the chromatic number of the graph gives the number of index registers needed, because
different registers must be assigned to variables when the vertices representing these variables
are adjacent in the graph. ▲

Exercises

In Exercises 1–4 construct the dual graph for the map shown.
Then find the number of colors needed to color the map so
that no two adjacent regions have the same color.

1.

A

B

C
D E

2.

A B C D

10.8 Graph Coloring 733

3.

B

C
D

A

F

E

4.

B

C

D
A F

E

In Exercises 5–11 find the chromatic number of the given
graph.

5. a b

dc

6.

a

f e

d

b c

g

7. a

db

c

8.

dc

a b

f

e

9. a

e c

d

b

10. a

e

g

h

i

c

b

d

f

11.

a j

f gd

e i n o

m

lkcb

h

12. For the graphs in Exercises 5–11, decide whether it is
possible to decrease the chromatic number by removing
a single vertex and all edges incident with it.

13. Which graphs have a chromatic number of 1?

14. What is the least number of colors needed to color a map
of the United States? Do not consider adjacent states
that meet only at a corner. Suppose that Michigan is
one region. Consider the vertices representingAlaska and
Hawaii as isolated vertices.

15. What is the chromatic number ofWn?

16. Show that a simple graph that has a circuit with an odd
number of vertices in it cannot be colored using two col-
ors.

17. Schedule the final exams for Math 115, Math 116,
Math 185, Math 195, CS 101, CS 102, CS 273, and
CS 473, using the fewest number of different time slots,
if there are no students taking both Math 115 and CS 473,
both Math 116 and CS 473, both Math 195 and CS 101,
both Math 195 and CS 102, both Math 115 and Math 116,
both Math 115 and Math 185, and both Math 185 and
Math 195, but there are students in every other pair of
courses.

18. How many different channels are needed for six stations
located at the distances shown in the table, if two sta-
tions cannot use the same channel when they are within
150 miles of each other?

1 2 3 4 5 6

1 — 85 175 200 50 100

2 85 — 125 175 100 160

3 175 125 — 100 200 250

4 200 175 100 — 210 220

5 50 100 200 210 — 100

6 100 160 250 220 100 —

19. The mathematics department has six committees, each
meeting once a month. How many different meeting times
must be used to ensure that no member is scheduled to
attend two meetings at the same time if the committees
are C1 = {Arlinghaus, Brand, Zaslavsky}, C2 = {Brand,
Lee, Rosen}, C3 = {Arlinghaus, Rosen, Zaslavsky},
C4 = {Lee, Rosen, Zaslavsky}, C5 = {Arlinghaus,
Brand}, and C6 = {Brand, Rosen, Zaslavsky}?

734 10 / Graphs

20. A zoo wants to set up natural habitats in which to exhibit
its animals. Unfortunately, some animals will eat some of
the others when given the opportunity. How can a graph
model and a coloring be used to determine the number of
different habitats needed and the placement of the animals
in these habitats?

An edge coloring of a graph is an assignment of colors to
edges so that edges incident with a common vertex are as-
signed different colors. The edge chromatic number of a
graph is the smallest number of colors that can be used in an
edge coloring of the graph. The edge chromatic number of a
graph G is denoted by χ (G).
21. Find the edge chromatic number of each of the graphs in

Exercises 5–11.

22. Suppose that n devices are on a circuit board and that
these devices are connected by colored wires. Express
the number of colors needed for the wires, in terms of the
edge chromatic number of the graph representing this cir-
cuit board, under the requirement that the wires leaving
a particular device must be different colors. Explain your
answer.

23. Find the edge chromatic numbers of

a) Cn, where n ≥ 3.

b) Wn, where n ≥ 3.

24. Show that the edge chromatic number of a graph must be
at least as large as the maximum degree of a vertex of the
graph.

25. Show that if G is a graph with n vertices, then no more
than n/2 edges can be colored the same in an edge color-
ing of G.

∗26. Find the edge chromatic number of Kn when n is a posi-
tive integer.

27. Seven variables occur in a loop of a computer program.
The variables and the steps during which they must be
stored are t : steps 1 through 6; u: step 2; v: steps 2 through
4; w: steps 1, 3, and 5; x: steps 1 and 6; y: steps 3 through
6; and z: steps 4 and 5. How many different index registers
are needed to store these variables during execution?

28. What can be said about the chromatic number of a graph
that has Kn as a subgraph?

This algorithm can be used to color a simple graph: First, list
the vertices v1, v2, v3, . . . , vn in order of decreasing degree
so that deg(v1) ≥ deg(v2) ≥ · · · ≥ deg(vn). Assign color 1 to
v1 and to the next vertex in the list not adjacent to v1 (if one
exists), and successively to each vertex in the list not adjacent
to a vertex already assigned color 1. Then assign color 2 to
the first vertex in the list not already colored. Successively
assign color 2 to vertices in the list that have not already been
colored and are not adjacent to vertices assigned color 2. If
uncolored vertices remain, assign color 3 to the first vertex in
the list not yet colored, and use color 3 to successively color
those vertices not already colored and not adjacent to vertices
assigned color 3. Continue this process until all vertices are
colored.

29. Construct a coloring of the graph shown using this algo-
rithm.

a b c

g h i j

d
e f

∗30. Use pseudocode to describe this coloring algorithm.

∗31. Show that the coloring produced by this algorithm may
use more colors than are necessary to color a graph.

A connected graphG is called chromatically k-critical if the
chromatic number of G is k, but for every edge of G, the
chromatic number of the graph obtained by deleting this edge
from G is k − 1.

32. Show thatCn is chromatically 3-critical whenever n is an
odd positive integer, n ≥ 3.

33. Show that Wn is chromatically 4-critical whenever n is
an odd integer, n ≥ 3.

34. Show thatW4 is not chromatically 3-critical.

35. Show that if G is a chromatically k-critical graph, then
the degree of every vertex of G is at least k − 1.

A k-tuple coloring of a graph G is an assignment of a set
of k different colors to each of the vertices of G such that no
two adjacent vertices are assigned a common color. We de-
note by χk(G) the smallest positive integer n such thatG has
a k-tuple coloring using n colors. For example, χ2(C4) = 4.
To see this, note that using only four colors we can assign two
colors to each vertex of C4, as illustrated, so that no two ad-
jacent vertices are assigned the same color. Furthermore, no
fewer than four colors suffice because the vertices v1 and v2

each must be assigned two colors, and a common color cannot
be assigned to both v1 and v2. (For more information about
k-tuple coloring, see [MiRo91].)

{red, blue} v1

{green, yellow} v4

v2 {green, yellow}

v3 {red, blue}

36. Find these values:

a) χ2(K3) b) χ2(K4) c) χ2(W4)

d) χ2(C5) e) χ2(K3,4) f) χ3(K5)

∗g) χ3(C5) h) χ3(K4,5)

Key Terms and Results 735

∗37. Let G and H be the graphs displayed in Figure 3. Find

a) χ2(G). b) χ2(H).
c) χ3(G). d) χ3(H).

38. What is χk(G) ifG is a bipartite graph and k is a positive
integer?

39. Frequencies for mobile radio (or cellular) telephones are
assigned by zones. Each zone is assigned a set of fre-
quencies to be used by vehicles in that zone. The same
frequency cannot be used in different zones when inter-
ference can occur between telephones in these zones. Ex-
plain how a k-tuple coloring can be used to assign k fre-
quencies to each mobile radio zone in a region.

∗40. Show that every planar graphG can be colored using six
or fewer colors. [Hint: Use mathematical induction on
the number of vertices of the graph. Apply Corollary 2 of
Section 10.7 to find a vertex v with deg(v) ≤ 5. Consider
the subgraph of G obtained by deleting v and all edges
incident with it.]

∗∗41. Show that every planar graphG can be colored using five
or fewer colors. [Hint: Use the hint provided for Exer-
cise 40.]

The famous Art Gallery Problem asks how many guards are
needed to see all parts of an art gallery, where the gallery is the
interior and boundary of a polygon with n sides. To state this
problem more precisely, we need some terminology.A point x
inside or on the boundary of a simple polygon P covers or
sees a point y inside or onP if all points on the line segment xy
are in the interior or on the boundary of P . We say that a set
of points is a guarding set of a simple polygon P if for every
point y inside P or on the boundary of P there is a point x in
this guarding set that sees y. Denote by G(P) the minimum
number of points needed to guard the simple polygon P . The
art gallery problem asks for the function g(n), which is the
maximum value ofG(P) over all simple polygons with n ver-
tices. That is, g(n) is the minimum positive integer for which

it is guaranteed that a simple polygon with n vertices can be
guarded with g(n) or fewer guards.

42. Show that g(3) = 1 and g(4) = 1 by showing that all tri-
angles and quadrilaterals can be guarded using one point.

∗43. Show that g(5) = 1. That is, show that all pentagons can
be guarded using one point. [Hint: Show that there are ei-
ther 0, 1, or 2 vertices with an interior angle greater than
180 degrees and that in each case, one guard suffices.]

∗44. Show that g(6) = 2 by first using Exercises 42 and 43 as
well as Lemma 1 in Section 5.2 to show that g(6) ≤ 2
and then find a simple hexagon for which two guards are
needed.

∗45. Show that g(n) ≥ n/3 . [Hint: Consider the polygon
with 3k vertices that resembles a comb with k prongs,
such as the polygon with 15 sides shown here.]

∗46. Solve the art gallery problem by proving the art gallery
theorem, which states that at most n/3 guards are
needed to guard the interior and boundary of a simple
polygon with n vertices. [Hint: Use Theorem 1 in Section
5.2 to triangulate the simple polygon into n− 2 triangles.
Then show that it is possible to color the vertices of the
triangulated polygon using three colors so that no two
adjacent vertices have the same color. Use induction and
Exercise 23 in Section 5.2. Finally, put guards at all ver-
tices that are colored red, where red is the color used least
in the coloring of the vertices. Show that placing guards
at these points is all that is needed.]

Key Terms and Results

TERMS

undirected edge: an edge associated to a set {u, v}, where u
and v are vertices

directed edge: an edge associated to an ordered pair (u, v),
where u and v are vertices

multiple edges: distinct edges connecting the same vertices

multiple directed edges: distinct directed edges associated
with the same ordered pair (u,v),where u and v are vertices

loop: an edge connecting a vertex with itself

undirected graph: a set of vertices and a set of undirected
edges each of which is associated with a set of one or two
of these vertices

simple graph: an undirected graph with no multiple edges or
loops

multigraph: an undirected graph that may contain multiple
edges but no loops

pseudograph: an undirected graph that may contain multiple
edges and loops

directed graph: a set of vertices together with a set of directed
edges each of which is associated with an ordered pair of
vertices

directed multigraph: a graph with directed edges that may
contain multiple directed edges

simple directed graph: a directed graph without loops or mul-
tiple directed edges

adjacent: two vertices are adjacent if there is an edge between
them

incident: an edge is incident with a vertex if the vertex is an
endpoint of that edge

deg v (degree of the vertex v in an undirected graph): the
number of edges incident with v with loops counted twice

736 10 / Graphs

deg−(v) (the in-degree of the vertex v in a graph with di-

rected edges): the number of edges with v as their terminal
vertex

deg+ (v) (the out-degree of the vertex v in a graph with di-

rected edges): the number of edges with v as their initial
vertex

underlying undirected graph of a graph with directed

edges: the undirected graph obtained by ignoring the di-
rections of the edges

Kn (complete graph onn vertices): the undirected graph with
n vertices where each pair of vertices is connected by an
edge

bipartite graph: a graph with vertex set that can be partitioned
into subsets V1 and V2 so that each edge connects a vertex
in V1 and a vertex in V2. The pair (V1, V2) is called a bi-
partition of V .

Km,n (complete bipartite graph): the graph with vertex set
partitioned into a subset ofm elements and a subset of n el-
ements with two vertices connected by an edge if and only
if one is in the first subset and the other is in the second
subset

Cn (cycle of size n), n ≥ 3: the graph with n vertices
v1, v2, . . . , vn and edges {v1, v2}, {v2, v3}, . . . , {vn−1, vn},
{vn, v1}

Wn (wheel of size n), n ≥ 3: the graph obtained from Cn by
adding a vertex and edges from this vertex to the original
vertices in Cn

Qn (n-cube), n ≥ 1: the graph that has the 2n bit strings of
length n as its vertices and edges connecting every pair of
bit strings that differ by exactly one bit

matching in a graphG: a set of edges such that no two edges
have a common endpoint

complete matchingM from V1 to V2: a matching such that
every vertex in V1 is an endpoint of an edge inM

maximum matching: a matching containing the most edges
among all matchings in a graph

isolated vertex: a vertex of degree zero

pendant vertex: a vertex of degree one

regular graph: a graph where all vertices have the same degree

subgraph of a graphG = (V,E): a graph (W, F), whereW
is a subset of V and F is a subset of E

G1 ∪G2 (union of G1 and G2): the graph (V1 ∪ V2, E1 ∪
E2), where G1 = (V1, E1) and G2 = (V2, E2)

adjacency matrix: a matrix representing a graph using the
adjacency of vertices

incidence matrix: a matrix representing a graph using the in-
cidence of edges and vertices

isomorphic simple graphs: the simple graphsG1 = (V1, E1)

and G2 = (V2, E2) are isomorphic if there exists a
one-to-one correspondence f from V1 to V2 such that
{f (v1), f (v2)} ∈ E2 if and only if {v1, v2} ∈ E1 for all v1

and v2 in V1

invariant for graph isomorphism: a property that isomorphic
graphs either both have or both do not have

path from u to v in an undirected graph: a sequence of
edges e1, e2, . . . , en, where ei is associated to {xi, xi+1}
for i = 0, 1, . . . , n, where x0 = u and xn+1 = v

path from u to v in a graph with directed edges: a sequence
of edges e1, e2, . . . , en, where ei is associated to (xi, xi+1)

for i = 0, 1, . . . , n, where x0 = u and xn+1 = v

simple path: a path that does not contain an edge more than
once

circuit: a path of length n ≥ 1 that begins and ends at the same
vertex

connected graph: an undirected graph with the property that
there is a path between every pair of vertices

cut vertex of G: a vertex v such that G− v is disconnected

cut edge of G: an edge e such that G− e is disconnected

nonseparable graph: a graph without a cut vertex

vertex cut of G: a subset V of the set of vertices of G such
that G− V is disconnected

κ(G) (the vertex connectivity of G): the size of a smallest
vertex cut of G

k-connected graph: a graph that has a vertex connectivity no
smaller than k

edge cut of G: a set of edges E of G such that G− E is
disconnected

λ(G) (the edge connectivity ofG): the size of a smallest edge
cut of G

connected component of a graph G: a maximal connected
subgraph of G

strongly connected directed graph: a directed graph with the
property that there is a directed path from every vertex to
every vertex

strongly connected component of a directed graph G: a
maximal strongly connected subgraph of G

Euler path: a path that contains every edge of a graph exactly
once

Euler circuit: a circuit that contains every edge of a graph
exactly once

Hamilton path: a path in a graph that passes through each
vertex exactly once

Hamilton circuit: a circuit in a graph that passes through each
vertex exactly once

weighted graph: a graph with numbers assigned to its edges

shortest-path problem: the problem of determining the path
in a weighted graph such that the sum of the weights of
the edges in this path is a minimum over all paths between
specified vertices

traveling salesperson problem: the problem that asks for the
circuit of shortest total length that visits every vertex of a
weghted graph exactly once

planar graph: a graph that can be drawn in the plane with no
crossings

regions of a representation of a planar graph: the regions
the plane is divided into by the planar representation of the
graph

elementary subdivision: the removal of an edge {u, v} of an
undirected graph and the addition of a new vertex w together
with edges {u,w} and {w, v}

homeomorphic: two undirected graphs are homeomorphic if
they can be obtained from the same graph by a sequence of
elementary subdivisions

graph coloring: an assignment of colors to the vertices of a
graph so that no two adjacent vertices have the same color

Review Questions 737

chromatic number: the minimum number of colors needed
in a coloring of a graph

RESULTS

The handshaking theorem: If G = (V ,E) be an undirected
graph with m edges, then 2m = v∈V deg(v).

Hall’s marriage theorem: The bipartite graph G = (V ,E)
with bipartition (V1, V2) has a complete matching from V1

to V2 if and only if |N(A)| ≥ |A| for all subsets A of V1.
There is an Euler circuit in a connected multigraph if and only

if every vertex has even degree.
There is an Euler path in a connected multigraph if and only if

at most two vertices have odd degree.

Dijkstra’s algorithm: a procedure for finding a shortest path
between two vertices in a weighted graph (see Section 10.6).

Euler’s formula: r = e − v + 2 where r , e, and v are the num-
ber of regions of a planar representation, the number of
edges, and the number of vertices, respectively, of a con-
nected planar graph.

Kuratowski’s theorem:A graph is nonplanar if and only if it
contains a subgraph homeomorphic to K3,3 or K5. (Proof
beyond scope of this book.)

The four color theorem: Every planar graph can be colored
using no more than four colors. (Proof far beyond the scope
of this book!)

Review Questions

1. a) Define a simple graph, a multigraph, a pseudograph,
a directed graph, and a directed multigraph.

b) Use an example to show how each of the types of graph
in part (a) can be used in modeling. For example, ex-
plain how to model different aspects of a computer
network or airline routes.

2. Give at least four examples of how graphs are used in
modeling.

3. What is the relationship between the sum of the degrees
of the vertices in an undirected graph and the number of
edges in this graph? Explain why this relationship holds.

4. Why must there be an even number of vertices of odd
degree in an undirected graph?

5. What is the relationship between the sum of the in-degrees
and the sum of the out-degrees of the vertices in a directed
graph? Explain why this relationship holds.

6. Describe the following families of graphs.

a) Kn, the complete graph on n vertices

b) Km,n, the complete bipartite graph onm and n vertices

c) Cn, the cycle with n vertices

d) Wn, the wheel of size n

e) Qn, the n-cube

7. How many vertices and how many edges are there in each
of the graphs in the families in Question 6?

8. a) What is a bipartite graph?

b) Which of the graphs Kn, Cn, andWn are bipartite?

c) How can you determine whether an undirected graph
is bipartite?

9. a) Describe three different methods that can be used to
represent a graph.

b) Draw a simple graph with at least five vertices and
eight edges. Illustrate how it can be represented using
the methods you described in part (a).

10. a) What does it mean for two simple graphs to be iso-
morphic?

b) What is meant by an invariant with respect to isomor-
phism for simple graphs? Give at least five examples
of such invariants.

c) Give an example of two graphs that have the same
numbers of vertices, edges, and degrees of vertices,
but that are not isomorphic.

d) Is a set of invariants known that can be used to effi-
ciently determine whether two simple graphs are iso-
morphic?

11. a) What does it mean for a graph to be connected?

b) What are the connected components of a graph?

12. a) Explain how an adjacency matrix can be used to rep-
resent a graph.

b) How can adjacency matrices be used to determine
whether a function from the vertex set of a graphG to
the vertex set of a graph H is an isomorphism?

c) How can the adjacency matrix of a graph be used to
determine the number of paths of length r , where r is
a positive integer, between two vertices of a graph?

13. a) Define an Euler circuit and an Euler path in an undi-
rected graph.

b) Describe the famous Königsberg bridge problem and
explain how to rephrase it in terms of an Euler circuit.

c) How can it be determined whether an undirected graph
has an Euler path?

d) How can it be determined whether an undirected graph
has an Euler circuit?

14. a) Define a Hamilton circuit in a simple graph.

b) Give some properties of a simple graph that imply that
it does not have a Hamilton circuit.

15. Give examples of at least two problems that can be solved
by finding the shortest path in a weighted graph.

16. a) Describe Dijkstra’s algorithm for finding the shortest
path in a weighted graph between two vertices.

b) Draw a weighted graph with at least 10 vertices and
20 edges. Use Dijkstra’s algorithm to find the shortest
path between two vertices of your choice in the graph.

738 10 / Graphs

17. a) What does it mean for a graph to be planar?

b) Give an example of a nonplanar graph.

18. a) What is Euler’s formula for connected planar graphs?

b) How can Euler’s formula for planar graphs be used to
show that a simple graph is nonplanar?

19. State Kuratowski’s theorem on the planarity of graphs and
explain how it characterizes which graphs are planar.

20. a) Define the chromatic number of a graph.

b) What is the chromatic number of the graph Kn when
n is a positive integer?

c) What is the chromatic number of the graph Cn when
n is an integer greater than 2?

d) What is the chromatic number of the graphKm,n when
m and n are positive integers?

21. State the four color theorem. Are there graphs that cannot
be colored with four colors?

22. Explain how graph coloring can be used in modeling. Use
at least two different examples.

Supplementary Exercises

1. How many edges does a 50-regular graph with 100 ver-
tices have?

2. How many nonisomorphic subgraphs does K3 have?

In Exercises 3–5 determine whether two given graphs are iso-
morphic.

3.

v1 v2

v4 v3

v6 v7

v5 v8

u1 u2 u3 u4

u5 u6 u7 u8

4. u1

u5

u6

u7 u3

u4

u8 u2

v1

v5

v6

v7 v3

v4

v8 v2

∗5.

u1

u5

u6

u7 u3

u4

u8 u2

v1 v2

v6v5

v7v8

v3v4

The completem-partite graphKn1,n2,...,nm has vertices par-
titioned into m subsets of n1, n2, . . . , nm elements each, and
vertices are adjacent if and only if they are in different subsets
in the partition.

6. Draw these graphs.

a) K1,2,3 b) K2,2,2 c) K1,2,2,3

∗7. How many vertices and how many edges does the com-
plete m-partite graph Kn1,n2,...,nm have?

8. Prove or disprove that there are always two vertices of
the same degree in a finite multigraph having at least two
vertices.

9. Let G = (V ,E) be an undirected graph and let A ⊆ V
and B ⊆ V . Show that

a) N(A ∪ B) = N(A) ∪N(B).
b) N(A ∩ B) ⊆ N(A) ∩N(B), and give an example

where N(A ∩ B) = N(A) ∩N(B).

Supplementary Exercises 739

10. Let G = (V ,E) be an undirected graph. Show that

a) |N(v)| ≤ deg(v) for all v ∈ V .

b) |N(v)| = deg v for all v ∈ V if and only ifG is a simple
graph.

Suppose that S1, S2, . . . , Sn is a collection of subsets of
a set S where n is a positive integer. A system of dis-

tinct representatives (SDR) for this family is an ordered
n-tuple (a1, a2, . . . , an) with the property that ai ∈ Si for
i = 1, 2, . . . , n and ai = aj for all i = j .

11. Find a SDR for the sets S1 = {a, c,m, e}, S2 =
{m, a, c, e}, S3 = {a, p, e, x}, S4 = {x, e, n, a}, S5 =
{n, a,m, e}, and S6 = {e, x, a,m}.

12. Use Hall’s marriage theorem to show that a collection
of finite subsets S1, S2, . . . , Sn of a set S has a SDR
(a1, a2, . . . , an) if and only if | i∈I Si | ≥ |I | for all sub-
sets I of {1, 2, . . . , n}.

13. a) Use Exercise 12 to show that the collection of sets
S1 = {a, b, c}, S2 = {b, c, d}, S3 = {a, b, d}, S4 =
{b, c, d} has a SDR without finding one explicitly.

b) Find a SDR for the family of four sets in part (a).

14. Use Exercise 12 to show that collection of sets S1 =
{a, b, c}, S2 = {a, c}, S3 = {c, d, e}, S4 = {b, c}, S5 =
{d, e, f }, S6 = {a, c, e}, and S7 = {a, b} does not have
a SDR.

The clustering coefficient C(G) of a simple graph G is the
probability that if u and v are neighbors and v and w are neigh-
bors, then u and w are neighbors, where u, v, and w are distinct
vertices of G.

15. We say that three vertices u, v, and w of a simple graph
G form a triangle if there are edges connecting all three
pairs of these vertices. Find a formula for C(G) in terms
of the number of triangles in G and the number of paths
of length two in the graph. [Hint: Count each triangle
in the graph once for each order of three vertices that
form it.]

16. Find the clustering coefficient of each of the graphs in
Exercise 20 of Section 10.2

17. Explain what the clustering coefficient measures in each
of these graphs.

a) the Hollywood graph

b) the graph of Facebook friends

c) the academic collaboration graph for researchers in
graph theory

d) the protein interaction graph for a human cell

e) the graph representing the routers and communica-
tions links that make up the worldwide Internet

18. For each of the graphs in Exercise 17, explain whether
you would expect its clustering coefficient to be closer to
0.01 or to 0.10 and why you expect this.

A clique in a simple undirected graph is a complete subgraph
that is not contained in any larger complete subgraph. In Ex-
ercises 19–21 find all cliques in the graph shown.

19. a b

d e

g

c

f

20. a f

c

e
b g

h

id

21. b

k d

a c

j
i

e

h g f

A dominating set of vertices in a simple graph is a set of
vertices such that every other vertex is adjacent to at least one
vertex of this set. A dominating set with the least number of
vertices is called a minimum dominating set. In Exercises
22–24 find a minimum dominating set for the given graph.

22.
a b

c d

e

23.
a e

c d

fb

24. a b c d

i j k l

e f g h

740 10 / Graphs

A simple graph can be used to determine the minimum number
of queens on a chessboard that control the entire chessboard.
Ann× n chessboard hasn2 squares in ann× n configuration.
A queen in a given position controls all squares in the same
row, the same column, and on the two diagonals containing
this square, as illustrated. The appropriate simple graph has
n2 vertices, one for each square, and two vertices are adjacent
if a queen in the square represented by one of the vertices
controls the square represented by the other vertex.

The Squares

Controlled

by a Queen

25. Construct the simple graph representing the n× n chess-
board with edges representing the control of squares by
queens for

a) n = 3. b) n = 4.

26. Explain how the concept of a minimum dominating set
applies to the problem of determining the minimum num-
ber of queens controlling an n× n chessboard.

∗∗27. Find the minimum number of queens controlling an n× n
chessboard for

a) n = 3. b) n = 4. c) n = 5.

28. Suppose that G1 and H1 are isomorphic and that G2 and
H2 are isomorphic. Prove or disprove that G1 ∪ G2 and
H1 ∪H2 are isomorphic.

29. Show that each of these properties is an invariant that iso-
morphic simple graphs either both have or both do not
have.

a) connectedness

b) the existence of a Hamilton circuit

c) the existence of an Euler circuit

d) having crossing number C

e) having n isolated vertices

f) being bipartite

30. How can the adjacency matrix of G be found from the
adjacency matrix of G, where G is a simple graph?

31. How many nonisomorphic connected bipartite simple
graphs are there with four vertices?

∗32. How many nonisomorphic simple connected graphs with
five vertices are there

a) with no vertex of degree more than two?

b) with chromatic number equal to four?

c) that are nonplanar?

A directed graph is self-converse if it is isomorphic to its
converse.

33. Determine whether the following graphs are self-
converse.

a) a

c

d

e

b

b)
a

c

d

e

b

34. Show that if the directed graph G is self-converse and
H is a directed graph isomorphic to G, then H is also
self-converse.

An orientation of an undirected simple graph is an assign-
ment of directions to its edges such that the resulting di-
rected graph is strongly connected. When an orientation of
an undirected graph exists, this graph is called orientable. In
Exercises 35–37 determine whether the given simple graph is
orientable.

35. a b c

e d

36. f

d eb c

a

37. e

f

h g

a b

c

d

Supplementary Exercises 741

38. Because traffic is growing heavy in the central part of a
city, traffic engineers are planning to change all the streets,
which are currently two-way, into one-way streets. Ex-
plain how to model this problem.

∗39. Show that a graph is not orientable if it has a cut edge.

A tournament is a simple directed graph such that if u and
v are distinct vertices in the graph, exactly one of (u, v) and
(v, u) is an edge of the graph.

40. How many different tournaments are there with n ver-
tices?

41. What is the sum of the in-degree and out-degree of a ver-
tex in a tournament?

∗42. Show that every tournament has a Hamilton path.

43. Given two chickens in a flock, one of them is dominant.
This defines the pecking order of the flock. How can a
tournament be used to model pecking order?

44. Suppose that a connected graphG has n vertices and ver-
tex connectivity κ(G) = k. Show that G must have at
least kn/2 edges.

A connected graph G = (V ,E) with n vertices and m edges
is said to have optimal connectivity if κ(G) = λ(G) =
minv∈V deg v = 2m/n.

45. Show that a connected graph with optimal connectivity
must be regular.

46. Show these graphs have optimal connectivity.

a) Cn for n ≥ 3

b) Kn for n ≥ 3

c) Kr,r for r ≥ 2

∗47. Find the two nonisomorphic simple graphs with six ver-
tices and nine edges that have optimal connectivity.

48. Suppose thatG is a connected multigraph with 2k vertices
of odd degree. Show that there exist k subgraphs that have
G as their union, where each of these subgraphs has an
Euler path and where no two of these subgraphs have an
edge in common. [Hint: Add k edges to the graph con-
necting pairs of vertices of odd degree and use an Euler
circuit in this larger graph.]

In Exercises 49 and 50 we consider a puzzle posed by Petković
in [Pe09] (based on a problem in [AvCh80]). Suppose that
King Arthur has gathered his 2n knights of the Round Table
for an important council. Every two knights are either friends
or enemies, and each knight has no more than n− 1 enemies
among the other 2n− 1 knights. The puzzle asks whether
King Arthur can seat his knights around the Round Table so
that each knight has two friends for his neighbors.

49. a) Show that the puzzle can be reduced to determining
whether there is a Hamilton circuit in the graph in
which each knight is represented by a vertex and two
knights are connected in the graph if they are friends.

b) Answer the question posed in the puzzle. [Hint: Use
Dirac’s theorem.]

50. Suppose that are eight knights Alynore, Bedivere, De-
gore, Gareth, Kay, Lancelot, Perceval, and Tristan. Their

lists of enemies are A (D, G, P), B (K, P, T), D (A, G,
L), G (A, D, T), K (B, L, P), L (D, K, T), P (A, B, K),
T (B, G, L), where we have represented each knight by
the first letter of his name and shown the list of enemies
of that knight following this first letter. Draw the graph
representing these eight knight and their friends and find
a seating arrangement where each knight sits next to two
friends.

∗51. LetG be a simple graph with n vertices. The bandwidth
ofG, denoted byB(G), is the minimum, over all permuta-
tionsa1, a2, . . . , an of the vertices ofG, of max{|i − j | ai
and aj are adjacent}. That is, the bandwidth is the mini-
mum over all listings of the vertices of the maximum dif-
ference in the indices assigned to adjacent vertices. Find
the bandwidths of these graphs.

a) K5 b) K1,3 c) K2,3

d) K3,3 e) Q3 f) C5

∗52. The distance between two distinct vertices v1 and v2 of a
connected simple graph is the length (number of edges) of
the shortest path between v1 and v2. The radius of a graph
is the minimum over all vertices v of the maximum dis-
tance from v to another vertex. The diameter of a graph
is the maximum distance between two distinct vertices.
Find the radius and diameter of

a) K6. b) K4,5. c) Q3. d) C6.

∗53. a) Show that if the diameter of the simple graph G is at
least four, then the diameter of its complement G is
no more than two.

b) Show that if the diameter of the simple graph G is at
least three, then the diameter of its complement G is
no more than three.

∗54. Suppose that a multigraph has 2m vertices of odd degree.
Show that any circuit that contains every edge of the graph
must contain at least m edges more than once.

55. Find the second shortest path between the vertices a and
z in Figure 3 of Section 10.6.

56. Devise an algorithm for finding the second shortest path
between two vertices in a simple connected weighted
graph.

57. Find the shortest path between the vertices a and z that
passes through the vertex f in the weighted graph in Ex-
ercise 3 in Section 10.6.

58. Devise an algorithm for finding the shortest path between
two vertices in a simple connected weighted graph that
passes through a specified third vertex.

∗59. Show that ifG is a simple graph with at least 11 vertices,
then either G or G, the complement of G, is nonplanar.

A set of vertices in a graph is called independent if no two
vertices in the set are adjacent. The independence number of
a graph is the maximum number of vertices in an independent
set of vertices for the graph.

∗60. What is the independence number of

a) Kn? b) Cn? c) Qn? d) Km,n?

742 10 / Graphs

61. Show that the number of vertices in a simple graph is less
than or equal to the product of the independence number
and the chromatic number of the graph.

62. Show that the chromatic number of a graph is less than or
equal to n− i + 1, where n is the number of vertices in
the graph and i is the independence number of this graph.

63. Suppose that to generate a random simple graph with n
vertices we first choose a real number p with 0 ≤ p ≤ 1.
For each of the C(n, 2) pairs of distinct vertices we gen-
erate a random number x between 0 and 1. If 0 ≤ x ≤ p,
we connect these two vertices with an edge; otherwise
these vertices are not connected.

a) What is the probability that a graph with m edges
where 0 ≤ m ≤ C(n, 2) is generated?

b) What is the expected number of edges in a randomly
generated graph with n vertices if each edge is in-
cluded with probability p?

c) Show that if p = 1/2 then every simple graph with n
vertices is equally likely to be generated.

A property retained whenever additional edges are added to
a simple graph (without adding vertices) is called monotone
increasing, and a property that is retained whenever edges are

removed from a simple graph (without removing vertices) is
called monotone decreasing.

64. For each of these properties, determine whether it is
monotone increasing and determine whether it is mono-
tone decreasing.

a) The graph G is connected.

b) The graph G is not connected.

c) The graph G has an Euler circuit.

d) The graph G has a Hamilton circuit.

e) The graph G is planar.

f) The graph G has chromatic number four.

g) The graph G has radius three.

h) The graph G has diameter three.

65. Show that the graph property P is monotone increasing if
and only if the graph propertyQ is monotone decreasing
whereQ is the property of not having property P .

∗∗66. Suppose thatP is a monotone increasing property of sim-
ple graphs. Show that the probability a random graph with
n vertices has property P is a monotonic nondecreasing
function of p, the probability an edge is chosen to be in
the graph.

Computer Projects

Write programs with these input and output.

1. Given the vertex pairs associated to the edges of an undi-
rected graph, find the degree of each vertex.

2. Given the ordered pairs of vertices associated to the edges
of a directed graph, determine the in-degree and out-
degree of each vertex.

3. Given the list of edges of a simple graph, determine
whether the graph is bipartite.

4. Given the vertex pairs associated to the edges of a graph,
construct an adjacency matrix for the graph. (Produce a
version that works when loops, multiple edges, or directed
edges are present.)

5. Given an adjacency matrix of a graph, list the edges of this
graph and give the number of times each edge appears.

6. Given the vertex pairs associated to the edges of an undi-
rected graph and the number of times each edge appears,
construct an incidence matrix for the graph.

7. Given an incidence matrix of an undirected graph, list its
edges and give the number of times each edge appears.

8. Given a positive integer n, generate a simple graph with n
vertices by producing an adjacency matrix for the graph
so that all simple graphs with n vertices are equally likely
to be generated.

9. Given a positive integer n, generate a simple directed
graph with n vertices by producing an adjacency matrix
for the graph so that all simple directed graphs with n
vertices are equally likely to be generated.

10. Given the lists of edges of two simple graphs with no
more than six vertices, determine whether the graphs are
isomorphic.

11. Given an adjacency matrix of a graph and a positive inte-
ger n, find the number of paths of length n between two
vertices. (Produce a version that works for directed and
undirected graphs.)

∗12. Given the list of edges of a simple graph, determine
whether it is connected and find the number of connected
components if it is not connected.

13. Given the vertex pairs associated to the edges of a multi-
graph, determine whether it has an Euler circuit and, if
not, whether it has an Euler path. Construct an Euler path
or circuit if it exists.

∗14. Given the ordered pairs of vertices associated to the edges
of a directed multigraph, construct an Euler path or Euler
circuit, if such a path or circuit exists.

∗∗15. Given the list of edges of a simple graph, produce a Hamil-
ton circuit, or determine that the graph does not have such
a circuit.

∗∗16. Given the list of edges of a simple graph, produce a Hamil-
ton path, or determine that the graph does not have such
a path.

17. Given the list of edges and weights of these edges of a
weighted connected simple graph and two vertices in this
graph, find the length of a shortest path between them
using Dijkstra’s algorithm. Also, find a shortest path.

Writing Projects 743

18. Given the list of edges of an undirected graph, find a color-
ing of this graph using the algorithm given in the exercise
set of Section 10.8.

19. Given a list of students and the courses that they are en-

rolled in, construct a schedule of final exams.

20. Given the distances between pairs of television stations
and the minimum allowable distance between stations,
assign frequencies to these stations.

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. Display all simple graphs with four vertices.

2. Display a full set of nonisomorphic simple graphs with
six vertices.

3. Display a full set of nonisomorphic directed graphs with
four vertices.

4. Generate at random 10 different simple graphs each with
20 vertices so that each such graph is equally likely to be
generated.

5. Construct a Gray code where the code words are bit strings
of length six.

6. Construct knight’s tours on chessboards of various sizes.

7. Determine whether each of the graphs you generated in
Exercise 4 of this set is planar. If you can, determine the
thickness of each of the graphs that are not planar.

8. Determine whether each of the graphs you generated in
Exercise 4 of this set is connected. If a graph is not con-
nected, determine the number of connected components
of the graph.

9. Generate at random simple graphs with 10 vertices. Stop
when you have constructed one with an Euler circuit. Dis-
play an Euler circuit in this graph.

10. Generate at random simple graphs with 10 vertices. Stop
when you have constructed one with a Hamilton circuit.
Display a Hamilton circuit in this graph.

11. Find the chromatic number of each of the graphs you
generated in Exercise 4 of this set.

∗∗12. Find the shortest path a traveling salesperson can take to
visit each of the capitals of the 50 states in the United
States, traveling by air between cities in a straight line.

∗13. Estimate the probability that a randomly generated simple
graph withnvertices is connected for each positive integer
n not exceeding ten by generating a set of random simple
graphs and determining whether each is connected.

∗∗14. Work on the problem of determining whether the crossing
number ofK7,7 is 77, 79, or 81. It is known that it equals
one of these three values.

Writing Projects

Respond to these with essays using outside sources.

1. Describe the origins and development of graph theory
prior to the year 1900.

2. Discuss the applications of graph theory to the study of
ecosystems.

3. Discuss the applications of graph theory to sociology and
psychology.

4. Discuss what can be learned by investigating the proper-
ties of the Web graph.

5. Explain what community structure is in a graph repre-
senting a network, such as a social network, a computer
network, an information network, or a biological network.
Define what a community in such a graph is, and explain
what communities represent in graphs representing the
types of networks listed.

6. Describe some of the algorithms used to detect commu-
nities in graphs representing networks of the types listed
in Question 5.

7. Describe algorithms for drawing a graph on paper or on
a display given the vertices and edges of the graph. What

considerations arise in drawing a graph so that it has the
best appearance for understanding its properties?

8. Explain how graph theory can help uncover networks
of criminals or terrorists by studying relevant social and
communication networks.

9. What are some of the capabilities that a software tool
for inputting, displaying, and manipulating graphs should
have? Which of these capabilities do available tools have?

10. Describe some of the algorithms available for determining
whether two graphs are isomorphic and the computational
complexity of these algorithms. What is the most efficient
such algorithm currently known?

11. What is the subgraph isomorphism problem and what
are some of its important applications, including those to
chemistry, bioinformatics, electronic circuit design, and
computer vision?

12. Explain what the area of graph mining, an important area
of data mining, is and describe some of the basic tech-
niques used in graph mining.

744 10 / Graphs

13. Describe how Euler paths can be used to help determine
DNA sequences.

14. Define de Bruijn sequences and discuss how they arise
in applications. Explain how de Bruijn sequences can be
constructed using Euler circuits.

15. Describe the Chinese postman problem and explain how
to solve this problem.

16. Describe some of the different conditions that imply that
a graph has a Hamilton circuit.

17. Describe some of the strategies and algorithms used to
solve the traveling salesperson problem.

18. Describe several different algorithms for determining
whether a graph is planar. What is the computational com-
plexity of each of these algorithms?

19. In modeling, very large scale integration (VLSI) graphs
are sometimes embedded in a book, with the vertices on

the spine and the edges on pages. Define the book num-

ber of a graph and find the book number of various graphs
including Kn for n = 3, 4, 5, and 6.

20. Discuss the history of the four color theorem.

21. Describe the role computers played in the proof of the
four color theorem. How can we be sure that a proof that
relies on a computer is correct?

22. Describe and compare several different algorithms for
coloring a graph, in terms of whether they produce a col-
oring with the least number of colors possible and in terms
of their complexity.

23. Explain how graph multicolorings can be used in a variety
of different models.

24. Describe some of the applications of edge colorings.

25. Explain how the theory of random graphs can be used in
nonconstructive existence proofs of graphs with certain
properties.

11

C H A P T E R

Trees

11.1 Introduction
to Trees

11.2 Applications
of Trees

11.3 Tree Traversal

11.4 Spanning
Trees

11.5 Minimum
Spanning
Trees

Aconnected graph that contains no simple circuits is called a tree. Trees were used as long
ago as 1857, when the English mathematician Arthur Cayley used them to count certain

types of chemical compounds. Since that time, trees have been employed to solve problems in
a wide variety of disciplines, as the examples in this chapter will show.

Trees are particularly useful in computer science, where they are employed in a wide range
of algorithms. For instance, trees are used to construct efficient algorithms for locating items in
a list. They can be used in algorithms, such as Huffman coding, that construct efficient codes
saving costs in data transmission and storage. Trees can be used to study games such as checkers
and chess and can help determine winning strategies for playing these games. Trees can be used
to model procedures carried out using a sequence of decisions. Constructing these models can
help determine the computational complexity of algorithms based on a sequence of decisions,
such as sorting algorithms.

Procedures for building trees containing every vertex of a graph, including depth-first search
and breadth-first search, can be used to systematically explore the vertices of a graph. Explor-
ing the vertices of a graph via depth-first search, also known as backtracking, allows for the
systematic search for solutions to a wide variety of problems, such as determining how eight
queens can be placed on a chessboard so that no queen can attack another.

We can assign weights to the edges of a tree to model many problems. For example, using
weighted trees we can develop algorithms to construct networks containing the least expensive
set of telephone lines linking different network nodes.

11.1 Introduction to Trees

In Chapter 10 we showed how graphs can be used to model and solve many problems. In
this chapter we will focus on a particular type of graph called a tree, so named because such
graphs resemble trees. For example, family trees are graphs that represent genealogical charts.
Family trees use vertices to represent the members of a family and edges to represent parent–
child relationships. The family tree of the male members of the Bernoulli family of Swiss
mathematicians is shown in Figure 1. The undirected graph representing a family tree (restricted
to people of just one gender and with no inbreeding) is an example of a tree.

Nikolaus

(1623–1708)

Nikolaus

(1662–1716)

Nikolaus I

(1687–1759)

Daniel

(1700–1782)

Nikolaus II

(1695–1726)

Johann II

(1710–1790)

Johann I

(1667–1748)
Jacob I

(1654–1705)

Johann III

(1746–1807)

Jacob II

(1759–1789)

FIGURE 1 The Bernoulli Family of Mathematicians. 745

746 11 / Trees

a b

c d

e f

a b

c

d

e f

a b

c d

e f

a b

c

d

e f

G1 G2 G3 G4

FIGURE 2 Examples of Trees and Graphs That Are Not Trees.

DEFINITION 1 A tree is a connected undirected graph with no simple circuits.

Because a tree cannot have a simple circuit, a tree cannot contain multiple edges or loops.
Therefore any tree must be a simple graph.

EXAMPLE 1 Which of the graphs shown in Figure 2 are trees?

Solution:G1 andG2 are trees, because both are connected graphs with no simple circuits.G3 is
not a tree because e, b, a, d, e is a simple circuit in this graph. Finally, G4 is not a tree because
it is not connected. ▲

Any connected graph that contains no simple circuits is a tree. What about graphs containing
no simple circuits that are not necessarily connected? These graphs are called forests and have
the property that each of their connected components is a tree. Figure 3 displays a forest.

Trees are often defined as undirected graphs with the property that there is a unique simple
path between every pair of vertices. Theorem 1 shows that this alternative definition is equivalent
to our definition.

THEOREM 1 An undirected graph is a tree if and only if there is a unique simple path between any two of
its vertices.

This is one graph with three connected components.

FIGURE 3 Example of a Forest.

11.1 Introduction to Trees 747

Proof: First assume that T is a tree. Then T is a connected graph with no simple circuits. Let x
and y be two vertices of T . Because T is connected, by Theorem 1 of Section 10.4 there is a
simple path between x and y. Moreover, this path must be unique, for if there were a second
such path, the path formed by combining the first path from x to y followed by the path from y
to x obtained by reversing the order of the second path from x to y would form a circuit. This
implies, using Exercise 59 of Section 10.4, that there is a simple circuit in T . Hence, there is a
unique simple path between any two vertices of a tree.

Now assume that there is a unique simple path between any two vertices of a graph T .
Then T is connected, because there is a path between any two of its vertices. Furthermore, T
can have no simple circuits. To see that this is true, suppose T had a simple circuit that contained
the vertices x and y. Then there would be two simple paths between x and y, because the simple
circuit is made up of a simple path from x to y and a second simple path from y to x. Hence, a
graph with a unique simple path between any two vertices is a tree.

Rooted Trees

In many applications of trees, a particular vertex of a tree is designated as the root. Once we
specify a root, we can assign a direction to each edge as follows. Because there is a unique path
from the root to each vertex of the graph (by Theorem 1), we direct each edge away from the
root. Thus, a tree together with its root produces a directed graph called a rooted tree.

DEFINITION 2 A rooted tree is a tree in which one vertex has been designated as the root and every edge is
directed away from the root.

Rooted trees can also be defined recursively. Refer to Section 5.3 to see how this can be done.
We can change an unrooted tree into a rooted tree by choosing any vertex as the root. Note that
different choices of the root produce different rooted trees. For instance, Figure 4 displays the
rooted trees formed by designating a to be the root and c to be the root, respectively, in the
tree T . We usually draw a rooted tree with its root at the top of the graph. The arrows indicating
the directions of the edges in a rooted tree can be omitted, because the choice of root determines
the directions of the edges.

The terminology for trees has botanical and genealogical origins. Suppose that T is a rooted
tree. If v is a vertex in T other than the root, the parent of v is the unique vertex u such that there
is a directed edge from u to v (the reader should show that such a vertex is unique). When u is
the parent of v, v is called a child of u. Vertices with the same parent are called siblings. The
ancestors of a vertex other than the root are the vertices in the path from the root to this vertex,
excluding the vertex itself and including the root (that is, its parent, its parent’s parent, and so
on, until the root is reached). The descendants of a vertex v are those vertices that have v as

a

b

c

e

gf

d

a

b
c

d

egf

a

c

d

e

b

gf

T With root a With root c

FIGURE 4 A Tree and Rooted Trees Formed by Designating Two Different Roots.

748 11 / Trees

a

f
b g

j
i

hc

d e k l m

T

FIGURE 5 A Rooted Tree T .

g

j
i

h

k l m

FIGURE 6 The

Subtree Rooted at g.

an ancestor. A vertex of a rooted tree is called a leaf if it has no children. Vertices that have
children are called internal vertices. The root is an internal vertex unless it is the only vertex
in the graph, in which case it is a leaf.

If a is a vertex in a tree, the subtree with a as its root is the subgraph of the tree consisting
of a and its descendants and all edges incident to these descendants.

EXAMPLE 2 In the rooted tree T (with root a) shown in Figure 5, find the parent of c, the children of g, the
siblings of h, all ancestors of e, all descendants of b, all internal vertices, and all leaves. What
is the subtree rooted at g?

Solution: The parent of c is b. The children of g are h, i, and j . The siblings of h are i and j .
The ancestors of e are c, b, and a. The descendants of b are c, d, and e. The internal vertices
are a, b, c, g, h, and j . The leaves are d , e, f , i, k, l, and m. The subtree rooted at g is shown
in Figure 6. ▲

Rooted trees with the property that all of their internal vertices have the same number of
children are used in many different applications. Later in this chapter we will use such trees to
study problems involving searching, sorting, and coding.

DEFINITION 3 A rooted tree is called an m-ary tree if every internal vertex has no more than m children.
The tree is called a full m-ary tree if every internal vertex has exactly m children. An m-ary
tree with m = 2 is called a binary tree.

EXAMPLE 3 Are the rooted trees in Figure 7 full m-ary trees for some positive integer m?

T1 T2 T3 T4

FIGURE 7 Four Rooted Trees.

11.1 Introduction to Trees 749

Solution: T1 is a full binary tree because each of its internal vertices has two children. T2 is a
full 3-ary tree because each of its internal vertices has three children. In T3 each internal vertex
has five children, so T3 is a full 5-ary tree. T4 is not a fullm-ary tree for anym because some of
its internal vertices have two children and others have three children. ▲

ORDERED ROOTED TREES An ordered rooted tree is a rooted tree where the children
of each internal vertex are ordered. Ordered rooted trees are drawn so that the children of each
internal vertex are shown in order from left to right. Note that a representation of a rooted tree in
the conventional way determines an ordering for its edges. We will use such orderings of edges
in drawings without explicitly mentioning that we are considering a rooted tree to be ordered.

In an ordered binary tree (usually called just a binary tree), if an internal vertex has two
children, the first child is called the left child and the second child is called the right child.
The tree rooted at the left child of a vertex is called the left subtree of this vertex, and the tree
rooted at the right child of a vertex is called the right subtree of the vertex. The reader should
note that for some applications every vertex of a binary tree, other than the root, is designated
as a right or a left child of its parent. This is done even when some vertices have only one child.
We will make such designations whenever it is necessary, but not otherwise.

Ordered rooted trees can be defined recursively. Binary trees, a type of ordered rooted trees,
were defined this way in Section 5.3.

EXAMPLE 4 What are the left and right children of d in the binary tree T shown in Figure 8(a) (where the
order is that implied by the drawing)? What are the left and right subtrees of c?

Solution: The left child of d is f and the right child is g. We show the left and right subtrees
of c in Figures 8(b) and 8(c), respectively. ▲

a

b

d

f g j k
l

e h i

c

m

j

i
h

k
l

m

(a) (b) (c)

T

FIGURE 8 A Binary Tree T and Left and Right Subtrees of the Vertex c.

Just as in the case of graphs, there is no standard terminology used to describe trees, rooted
trees, ordered rooted trees, and binary trees. This nonstandard terminology occurs because trees
are used extensively throughout computer science, which is a relatively young field. The reader
should carefully check meanings given to terms dealing with trees whenever they occur.

Trees as Models

Trees are used as models in such diverse areas as computer science, chemistry, geology, botany,
and psychology. We will describe a variety of such models based on trees.

750 11 / Trees

H

CH H

C

CH H

CH H

H

H H

H

C

H

H C

CH H

H

C

H

H

H

H

Butane Isobutane

FIGURE 9 The Two Isomers of Butane.

EXAMPLE 5 SaturatedHydrocarbons andTrees Graphs can be used to represent molecules, where atoms
are represented by vertices and bonds between them by edges. The English mathematicianArthur
Cayley discovered trees in 1857 when he was trying to enumerate the isomers of compounds of
the form CnH2n+2, which are called saturated hydrocarbons.

In graph models of saturated hydrocarbons, each carbon atom is represented by a vertex
of degree 4, and each hydrogen atom is represented by a vertex of degree 1. There are 3n+ 2
vertices in a graph representing a compound of the form CnH2n+2. The number of edges in such a
graph is half the sum of the degrees of the vertices. Hence, there are (4n+ 2n+ 2)/2 = 3n+ 1
edges in this graph. Because the graph is connected and the number of edges is one less than
the number of vertices, it must be a tree (see Exercise 15).

The nonisomorphic trees with n vertices of degree 4 and 2n+ 2 of degree 1 represent the
different isomers of CnH2n+2. For instance, when n = 4, there are exactly two nonisomorphic
trees of this type (the reader should verify this). Hence, there are exactly two different isomers
of C4H10. Their structures are displayed in Figure 9. These two isomers are called butane and
isobutane. ▲

EXAMPLE 6 Representing Organizations The structure of a large organization can be modeled using a
rooted tree. Each vertex in this tree represents a position in the organization. An edge from one
vertex to another indicates that the person represented by the initial vertex is the (direct) boss
of the person represented by the terminal vertex. The graph shown in Figure 10 displays such a
tree. In the organization represented by this tree, the Director of Hardware Development works
directly for the Vice President of R&D. ▲

EXAMPLE 7 Computer File Systems Files in computer memory can be organized into directories. A
directory can contain both files and subdirectories. The root directory contains the entire file

ARTHUR CAYLEY (1821–1895) Arthur Cayley, the son of a merchant, displayed his mathematical talents
at an early age with amazing skill in numerical calculations. Cayley entered Trinity College, Cambridge, when
he was 17. While in college he developed a passion for reading novels. Cayley excelled at Cambridge and
was elected to a 3-year appointment as Fellow of Trinity and assistant tutor. During this time Cayley began
his study of n-dimensional geometry and made a variety of contributions to geometry and to analysis. He
also developed an interest in mountaineering, which he enjoyed during vacations in Switzerland. Because no
position as a mathematician was available to him, Cayley left Cambridge, entering the legal profession and
gaining admittance to the bar in 1849. Although Cayley limited his legal work to be able to continue his
mathematics research, he developed a reputation as a legal specialist. During his legal career he was able to

write more than 300 mathematical papers. In 1863 Cambridge University established a new post in mathematics and offered it to
Cayley. He took this job, even though it paid less money than he made as a lawyer.

11.1 Introduction to Trees 751

President

VP

Marketing

VP

R&D

VP

Services

VP

Finance

Director

Research

Director

Software

Development

Director

Hardware

Development

AVP

Sales

Chief

Field

Operations

AVP

Marketing

Director

Material

Management

Director

Accounting

Director

MIS

FIGURE 10 An Organizational Tree for a Computer Company.

system. Thus, a file system may be represented by a rooted tree, where the root represents the
root directory, internal vertices represent subdirectories, and leaves represent ordinary files or
empty directories. One such file system is shown in Figure 11. In this system, the file khr is in
the directory rje. (Note that links to files where the same file may have more than one pathname
can lead to circuits in computer file systems.) ▲

usr bin tmp

bin lsrje spool mail who junk

khrnroff vied opr uucp

printer file

The root is the root directory /

Internal vertices are directories

Leaves are files

/

FIGURE 11 A Computer File System.

EXAMPLE 8 Tree-Connected Parallel Processors In Example 17 of Section 10.2 we described several
interconnection networks for parallel processing. A tree-connected network is another impor-
tant way to interconnect processors. The graph representing such a network is a complete binary
tree, that is, a full binary tree where every root is at the same level. Such a network interconnects
n = 2k − 1 processors, where k is a positive integer. A processor represented by the vertex v

that is not a root or a leaf has three two-way connections—one to the processor represented by
the parent of v and two to the processors represented by the two children of v. The processor
represented by the root has two two-way connections to the processors represented by its two
children. A processor represented by a leaf v has a single two-way connection to the parent of v.
We display a tree-connected network with seven processors in Figure 12.

P1

P4 P5 P6 P7

P2 P3

FIGURE 12 A

Tree-Connected

Network of Seven

Processors.

We now illustrate how a tree-connected network can be used for parallel computation. In
particular, we show how the processors in Figure 12 can be used to add eight numbers, using
three steps. In the first step, we add x1 and x2 using P4, x3 and x4 using P5, x5 and x6 using P6,

752 11 / Trees

and x7 and x8 usingP7. In the second step, we add x1 + x2 and x3 + x4 usingP2 and x5 + x6 and
x7 + x8 using P3. Finally, in the third step, we add x1 + x2 + x3 + x4 and x5 + x6 + x7 + x8

using P1. The three steps used to add eight numbers compares favorably to the seven steps
required to add eight numbers serially, where the steps are the addition of one number to the
sum of the previous numbers in the list. ▲

Properties of Trees

We will often need results relating the numbers of edges and vertices of various types in trees.

THEOREM 2 A tree with n vertices has n− 1 edges.

Proof: We will use mathematical induction to prove this theorem. Note that for all the trees here
we can choose a root and consider the tree rooted.

BASIS STEP: When n = 1, a tree with n = 1 vertex has no edges. It follows that the theorem
is true for n = 1.

INDUCTIVE STEP: The inductive hypothesis states that every tree with k vertices has k − 1
edges, where k is a positive integer. Suppose that a tree T has k + 1 vertices and that v is a
leaf of T (which must exist because the tree is finite), and let w be the parent of v. Removing
from T the vertex v and the edge connecting w to v produces a tree T with k vertices, because
the resulting graph is still connected and has no simple circuits. By the inductive hypothesis, T

has k − 1 edges. It follows that T has k edges because it has one more edge than T , the edge
connecting v and w. This completes the inductive step.

Recall that a tree is a connected undirected graph with no simple circuits. So, whenG is an
undirected graph with n vertices, Theorem 2 tells us that the two conditions (i) G is connected
and (ii) G has no simple circuits, imply (iii) G has n− 1 edges. Also, when (i) and (iii) hold,
then (ii) must also hold, and when (ii) and (iii) hold, (i) must also hold. That is, ifG is connected
and G has n− 1 edges, then G has no simple circuits, so that G is a tree (see Exercise 15(a)),
and ifG has no simple circuits andG has n− 1 edges, thenG is connected, and so is a tree (see
Exercise 15(b)). Consequently, when two of (i), (ii), and (iii) hold, the third condition must also
hold, and G must be a tree.

COUNTINGVERTICES IN FULL m-ARY TREES The number of vertices in a full m-ary
tree with a specified number of internal vertices is determined, as Theorem 3 shows. As in
Theorem 2, we will use n to denote the number of vertices in a tree.

THEOREM 3 A full m-ary tree with i internal vertices contains n = mi + 1 vertices.

Proof: Every vertex, except the root, is the child of an internal vertex. Because each of the i
internal vertices has m children, there are mi vertices in the tree other than the root. Therefore,
the tree contains n = mi + 1 vertices.

Suppose that T is a fullm-ary tree. Let i be the number of internal vertices and l the number
of leaves in this tree. Once one of n, i, and l is known, the other two quantities are determined.
Theorem 4 explains how to find the other two quantities from the one that is known.

11.1 Introduction to Trees 753

THEOREM 4 A full m-ary tree with

(i) n vertices has i = (n− 1)/m internal vertices and l = [(m− 1)n+ 1]/m leaves,

(ii) i internal vertices has n = mi + 1 vertices and l = (m− 1)i + 1 leaves,

(iii) l leaves has n = (ml − 1)/(m− 1) vertices and i = (l − 1)/(m− 1) internal ver-
tices.

Proof: Let n represent the number of vertices, i the number of internal vertices, and l the number
of leaves. The three parts of the theorem can all be proved using the equality given in Theorem 3,
that is, n = mi + 1, together with the equality n = l + i, which is true because each vertex is
either a leaf or an internal vertex. We will prove part (i) here. The proofs of parts (ii) and (iii)
are left as exercises for the reader.

Solving for i in n = mi + 1 gives i = (n− 1)/m. Then inserting this expression for i into
the equation n = l + i shows that l = n− i = n− (n− 1)/m = [(m− 1)n+ 1]/m.

Example 9 illustrates how Theorem 4 can be used.

EXAMPLE 9 Suppose that someone starts a chain letter. Each person who receives the letter is asked to send
it on to four other people. Some people do this, but others do not send any letters. How many
people have seen the letter, including the first person, if no one receives more than one letter
and if the chain letter ends after there have been 100 people who read it but did not send it out?
How many people sent out the letter?

Solution: The chain letter can be represented using a 4-ary tree. The internal vertices correspond
to people who sent out the letter, and the leaves correspond to people who did not send it
out. Because 100 people did not send out the letter, the number of leaves in this rooted tree is
l = 100. Hence, part (iii) of Theorem 4 shows that the number of people who have seen the letter
is n = (4 · 100 − 1)/(4 − 1) = 133. Also, the number of internal vertices is 133 − 100 = 33,
so 33 people sent out the letter. ▲

BALANCED m-ARY TREES It is often desirable to use rooted trees that are “balanced” so
that the subtrees at each vertex contain paths of approximately the same length. Some definitions
will make this concept clear. The level of a vertex v in a rooted tree is the length of the unique
path from the root to this vertex. The level of the root is defined to be zero. The height of a
rooted tree is the maximum of the levels of vertices. In other words, the height of a rooted tree
is the length of the longest path from the root to any vertex.

EXAMPLE 10 Find the level of each vertex in the rooted tree shown in Figure 13. What is the height of this
tree?

Solution: The root a is at level 0. Vertices b, j , and k are at level 1. Vertices c, e, f , and l are at
level 2. Vertices d, g, i,m, and n are at level 3. Finally, vertex h is at level 4. Because the largest
level of any vertex is 4, this tree has height 4. ▲

A rooted m-ary tree of height h is balanced if all leaves are at levels h or h− 1.

a

j k
b

f l
e

c

d
g

h

i m n

FIGURE 13 A

Rooted Tree.

EXAMPLE 11 Which of the rooted trees shown in Figure 14 are balanced?

Solution: T1 is balanced, because all its leaves are at levels 3 and 4. However, T2 is not balanced,
because it has leaves at levels 2, 3, and 4. Finally, T3 is balanced, because all its leaves are at
level 3. ▲

754 11 / Trees

T1 T2 T3

FIGURE 14 Some Rooted Trees.

ABOUNDFORTHENUMBEROFLEAVES INANm-ARYTREE It is often useful to have
an upper bound for the number of leaves in an m-ary tree. Theorem 5 provides such a bound in
terms of the height of the m-ary tree.

THEOREM 5 There are at most mh leaves in an m-ary tree of height h.

Proof: The proof uses mathematical induction on the height. First, consider m-ary trees of
height 1. These trees consist of a root with no more than m children, each of which is a leaf.
Hence, there are no more thanm1 = m leaves in anm-ary tree of height 1. This is the basis step
of the inductive argument.

Now assume that the result is true for allm-ary trees of height less thanh; this is the inductive
hypothesis. Let T be an m-ary tree of height h. The leaves of T are the leaves of the subtrees
of T obtained by deleting the edges from the root to each of the vertices at level 1, as shown in
Figure 15.

Each of these subtrees has height less than or equal to h− 1. So by the inductive hypothesis,
each of these rooted trees has at most mh−1 leaves. Because there are at most m such subtrees,
each with a maximum of mh−1 leaves, there are at most m ·mh−1 = mh leaves in the rooted
tree. This finishes the inductive argument.

COROLLARY 1 If an m-ary tree of height h has l leaves, then h ≥ logm l . If the m-ary tree is full and
balanced, then h = logm l . (We are using the ceiling function here. Recall that x is the
smallest integer greater than or equal to x.)

Proof: We know that l ≤ mh from Theorem 5. Taking logarithms to the base m shows that
logm l ≤ h. Becauseh is an integer, we haveh ≥ logm l . Now suppose that the tree is balanced.

1st

subtree

of height

ⱕ h – 1

2nd

subtree

of height

 ⱕ h – 1

3rd

subtree

of height

ⱕ h – 1

(m – 1)st

subtree

of height

ⱕ h – 1

m th

subtree

of height

ⱕ h – 1

• • •

FIGURE 15 The Inductive Step of the Proof.

11.1 Introduction to Trees 755

Then each leaf is at levelh orh− 1, and because the height ish, there is at least one leaf at levelh.
It follows that there must be more thanmh−1 leaves (see Exercise 30). Because l ≤ mh, we have
mh−1 < l ≤ mh. Taking logarithms to the base m in this inequality gives h− 1 < logm l ≤ h.
Hence, h = logm l .

Exercises

1. Which of these graphs are trees?

a) b)

c) d)

e) f)

2. Which of these graphs are trees?

a) b)

c) d)

e) f)

3. Answer these questions about the rooted tree illustrated.

u

ts

r
q

ponml

e g i k

dcb

a

hf j

a) Which vertex is the root?
b) Which vertices are internal?
c) Which vertices are leaves?
d) Which vertices are children of j?
e) Which vertex is the parent of h?
f) Which vertices are siblings of o?
g) Which vertices are ancestors of m?
h) Which vertices are descendants of b?

4. Answer the same questions as listed in Exercise 3 for the
rooted tree illustrated.

b

a

d
c

e g h i
f

j k l m n
o

p

srq

b

a

d
c

e g h i
f

j k l m n
o

p

srq

5. Is the rooted tree in Exercise 3 a full m-ary tree for some
positive integer m?

6. Is the rooted tree in Exercise 4 a full m-ary tree for some
positive integer m?

7. What is the level of each vertex of the rooted tree in Ex-
ercise 3?

8. What is the level of each vertex of the rooted tree in Ex-
ercise 4?

9. Draw the subtree of the tree in Exercise 3 that is rooted
at

a) a. b) c. c) e.

10. Draw the subtree of the tree in Exercise 4 that is rooted
at

a) a. b) c. c) e.

11. a) How many nonisomorphic unrooted trees are there
with three vertices?

b) How many nonisomorphic rooted trees are there
with three vertices (using isomorphism for directed
graphs)?

∗12. a) How many nonisomorphic unrooted trees are there
with four vertices?

b) How many nonisomorphic rooted trees are there
with four vertices (using isomorphism for directed
graphs)?

756 11 / Trees

∗13. a) How many nonisomorphic unrooted trees are there
with five vertices?

b) How many nonisomorphic rooted trees are there with
five vertices (using isomorphism for directed graphs)?

∗14. Show that a simple graph is a tree if and only if it is
connected but the deletion of any of its edges produces a
graph that is not connected.

15.∗ Let G be a simple graph with n vertices. Show that

a) G is a tree if and only if it is connected and has n− 1
edges.

b) G is a tree if and only ifG has no simple circuits and
has n− 1 edges. [Hint: To show that G is connected
if it has no simple circuits and n− 1 edges, show that
G cannot have more than one connected component.]

16. Which complete bipartite graphs Km,n, where m and n
are positive integers, are trees?

17. How many edges does a tree with 10,000 vertices have?

18. How many vertices does a full 5-ary tree with 100 internal
vertices have?

19. How many edges does a full binary tree with 1000 internal
vertices have?

20. How many leaves does a full 3-ary tree with 100 vertices
have?

21. Suppose 1000 people enter a chess tournament. Use a
rooted tree model of the tournament to determine how
many games must be played to determine a champion, if
a player is eliminated after one loss and games are played
until only one entrant has not lost. (Assume there are no
ties.)

22. A chain letter starts when a person sends a letter to five
others. Each person who receives the letter either sends it
to five other people who have never received it or does not
send it to anyone. Suppose that 10,000 people send out
the letter before the chain ends and that no one receives
more than one letter. How many people receive the letter,
and how many do not send it out?

23. A chain letter starts with a person sending a letter out
to 10 others. Each person is asked to send the letter out
to 10 others, and each letter contains a list of the previous
six people in the chain. Unless there are fewer than six
names in the list, each person sends one dollar to the first
person in this list, removes the name of this person from
the list, moves up each of the other five names one posi-
tion, and inserts his or her name at the end of this list. If
no person breaks the chain and no one receives more than
one letter, how much money will a person in the chain
ultimately receive?

∗24. Either draw a fullm-ary tree with 76 leaves and height 3,
where m is a positive integer, or show that no such tree
exists.

∗25. Either draw a fullm-ary tree with 84 leaves and height 3,
where m is a positive integer, or show that no such tree
exists.

∗26. A full m-ary tree T has 81 leaves and height 4.

a) Give the upper and lower bounds for m.

b) What is m if T is also balanced?

A completem-ary tree is a fullm-ary tree in which every leaf
is at the same level.

27. Construct a complete binary tree of height 4 and a com-
plete 3-ary tree of height 3.

28. How many vertices and how many leaves does a complete
m-ary tree of height h have?

29. Prove

a) part (ii) of Theorem 4.

b) part (iii) of Theorem 4.

30. Show that a fullm-ary balanced tree of height h has more
than mh−1 leaves.

31. How many edges are there in a forest of t trees containing
a total of n vertices?

32. Explain how a tree can be used to represent the table of
contents of a book organized into chapters, where each
chapter is organized into sections, and each section is or-
ganized into subsections.

33. How many different isomers do these saturated hydro-
carbons have?

a) C3H8 b) C5H12 c) C6H14

34. What does each of these represent in an organizational
tree?

a) the parent of a vertex

b) a child of a vertex

c) a sibling of a vertex

d) the ancestors of a vertex

e) the descendants of a vertex

f) the level of a vertex

g) the height of the tree

35. Answer the same questions as those given in Exercise 34
for a rooted tree representing a computer file system.

36. a) Draw the complete binary tree with 15 vertices that
represents a tree-connected network of 15 processors.

b) Show how 16 numbers can be added using the 15 pro-
cessors in part (a) using four steps.

37. Let n be a power of 2. Show that n numbers can be added
in log n steps using a tree-connected network of n− 1
processors.

∗38. A labeled tree is a tree where each vertex is assigned a
label. Two labeled trees are considered isomorphic when
there is an isomorphism between them that preserves the
labels of vertices. How many nonisomorphic trees are
there with three vertices labeled with different integers
from the set {1, 2, 3}? How many nonisomorphic trees
are there with four vertices labeled with different inte-
gers from the set {1, 2, 3, 4}?

11.2 Applications of Trees 757

The eccentricity of a vertex in an unrooted tree is the length
of the longest simple path beginning at this vertex. A vertex is
called a center if no vertex in the tree has smaller eccentricity
than this vertex. In Exercises 39–41 find every vertex that is a
center in the given tree.

39. a

b

f
g

j k l

ih

c

ed

40. a d f

b e h g

c
i j k

41. a

 e

 f
g

b

d c h

m

k

i
j

l

n

42. Show that a center should be chosen as the root to produce
a rooted tree of minimal height from an unrooted tree.

∗43. Show that a tree has either one center or two centers that
are adjacent.

44. Show that every tree can be colored using two colors.

The rooted Fibonacci trees Tn are defined recursively in the
following way. T1 and T2 are both the rooted tree consisting
of a single vertex, and for n = 3, 4, . . . , the rooted tree Tn is
constructed from a root with Tn−1 as its left subtree and Tn−2

as its right subtree.

45. Draw the first seven rooted Fibonacci trees.
∗46. How many vertices, leaves, and internal vertices does the

rooted Fibonacci tree Tn have, where n is a positive inte-
ger? What is its height?

47. What is wrong with the following “proof” using mathe-
matical induction of the statement that every tree with n
vertices has a path of length n− 1. Basis step: Every tree
with one vertex clearly has a path of length 0. Inductive

step: Assume that a tree with n vertices has a path of
length n− 1, which has u as its terminal vertex. Add a
vertex v and the edge from u to v. The resulting tree has
n+ 1 vertices and has a path of length n. This completes
the inductive step.

48.∗ Show that the average depth of a leaf in a binary tree
with n vertices is (log n).

11.2 Applications of Trees

Introduction

We will discuss three problems that can be studied using trees. The first problem is: How should
items in a list be stored so that an item can be easily located? The second problem is: What
series of decisions should be made to find an object with a certain property in a collection of
objects of a certain type? The third problem is: How should a set of characters be efficiently
coded by bit strings?

Binary Search Trees

Searching for items in a list is one of the most important tasks that arises in computer science.
Our primary goal is to implement a searching algorithm that finds items efficiently when the
items are totally ordered. This can be accomplished through the use of a binary search tree,
which is a binary tree in which each child of a vertex is designated as a right or left child, no
vertex has more than one right child or left child, and each vertex is labeled with a key, which
is one of the items. Furthermore, vertices are assigned keys so that the key of a vertex is both
larger than the keys of all vertices in its left subtree and smaller than the keys of all vertices in
its right subtree.

This recursive procedure is used to form the binary search tree for a list of items. Start with
a tree containing just one vertex, namely, the root. The first item in the list is assigned as the
key of the root. To add a new item, first compare it with the keys of vertices already in the tree,
starting at the root and moving to the left if the item is less than the key of the respective vertex
if this vertex has a left child, or moving to the right if the item is greater than the key of the

758 11 / Trees

respective vertex if this vertex has a right child. When the item is less than the respective vertex
and this vertex has no left child, then a new vertex with this item as its key is inserted as a
new left child. Similarly, when the item is greater than the respective vertex and this vertex has
no right child, then a new vertex with this item as its key is inserted as a new right child. We
illustrate this procedure with Example 1.

EXAMPLE 1 Form a binary search tree for the words mathematics, physics, geography, zoology, meteorology,

geology, psychology, and chemistry (using alphabetical order).

Solution: Figure 1 displays the steps used to construct this binary search tree. The word mathe-

matics is the key of the root. Because physics comes after mathematics (in alphabetical order),
add a right child of the root with key physics. Because geography comes before mathemat-

ics, add a left child of the root with key geography. Next, add a right child of the vertex with
key physics, and assign it the key zoology, because zoology comes after mathematics and after
physics. Similarly, add a left child of the vertex with key physics and assign this new vertex the
key meteorology. Add a right child of the vertex with key geography and assign this new vertex
the key geology. Add a left child of the vertex with key zoology and assign it the key psychology.
Add a left child of the vertex with key geography and assign it the key chemistry. (The reader
should work through all the comparisons needed at each step.) ▲

Once we have a binary search tree, we need a way to locate items in the binary search tree,
as well as a way to add new items. Algorithm 1, an insertion algorithm, actually does both of
these tasks, even though it may appear that it is only designed to add vertices to a binary search
tree. That is, Algorithm 1 is a procedure that locates an item x in a binary search tree if it is
present, and adds a new vertex with x as its key if x is not present. In the pseudocode, v is the
vertex currently under examination and label(v) represents the key of this vertex. The algorithm
begins by examining the root. If x equals the key of v, then the algorithm has found the location
of x and terminates; if x is less than the key of v, we move to the left child of v and repeat the
procedure; and if x is greater than the key of v, we move to the right child of v and repeat the
procedure. If at any step we attempt to move to a child that is not present, we know that x is not
present in the tree, and we add a new vertex as this child with x as its key.

mathematics mathematics mathematics

mathematics

physicsgeographyphysics

physics > mathematics geography < mathematics

zoology > mathematics

zoology > physics

physics
geography

zoology
meteorology

meteorology > mathematics

meteorology < physics

mathematics

physics
geography

zoology

meteorology

geology

mathematics

physics
geography

zoology

geology < mathematics

geology > geography

mathematics

physics
geography

zoology
meteorology

geology

psychology

psychology > mathematics

psychology > physics

psychology < zoology

mathematics

physics
geography

zoology

meteorology

geology

psychology

chemistry

chemistry < mathematics

chemistry < geography

FIGURE 1 Constructing a Binary Search Tree.

11.2 Applications of Trees 759

ALGORITHM 1 Locating an Item in or Adding an Item to a Binary Search Tree.

procedure insertion(T : binary search tree, x: item)

v := root of T

{a vertex not present in T has the value null }

while v = null and label(v) = x

if x < label(v) then

if left child of v = null then v := left child of v

else add new vertex as a left child of v and set v := null

else

if right child of v = null then v := right child of v

else add new vertex as a right child of v and set v := null

if root of T = null then add a vertex v to the tree and label it with x

else if v is null or label(v) = x then label new vertex with x and let v be this new vertex

return v {v = location of x}

Example 2 illustrates the use of Algorithm 1 to insert a new item into a binary search tree.

EXAMPLE 2 Use Algorithm 1 to insert the word oceanography into the binary search tree in Example 1.

Solution: Algorithm 1 begins with v, the vertex under examination, equal to the root of T , so
label(v) = mathematics. Because v = null and label(v) = mathematics < oceanography, we
next examine the right child of the root. This right child exists, so we set v, the vertex under
examination, to be this right child. At this step we have v = null and label(v) = physics >

oceanography, so we examine the left child of v. This left child exists, so we set v, the vertex under
examination, to this left child. At this step, we also have v = null and label(v) = metereology <

oceanography, so we try to examine the right child of v. However, this right child does not exist,
so we add a new vertex as the right child of v (which at this point is the vertex with the key
metereology) and we set v := null. We now exit the while loop because v = null. Because the
root of T is not null and v = null, we use the else if statement at the end of the algorithm to
label our new vertex with the key oceanography. ▲

We will now determine the computational complexity of this procedure. Suppose we have
a binary search tree T for a list of n items. We can form a full binary tree U from T by adding
unlabeled vertices whenever necessary so that every vertex with a key has two children. This is
illustrated in Figure 2. Once we have done this, we can easily locate or add a new item as a key
without adding a vertex.

The most comparisons needed to add a new item is the length of the longest path in U from
the root to a leaf. The internal vertices ofU are the vertices of T . It follows thatU has n internal
vertices. We can now use part (ii) of Theorem 4 in Section 11.1 to conclude that U has n+ 1
leaves. Using Corollary 1 of Section 11.1, we see that the height of U is greater than or equal to
h = log(n+ 1) . Consequently, it is necessary to perform at least log(n+ 1) comparisons
to add some item. Note that if U is balanced, its height is log(n+ 1) (by Corollary 1 of
Section 11.1). Thus, if a binary search tree is balanced, locating or adding an item requires no
more than log(n+ 1) comparisons. A binary search tree can become unbalanced as items
are added to it. Because balanced binary search trees give optimal worst-case complexity for
binary searching, algorithms have been devised that rebalance binary search trees as items are
added. The interested reader can consult references on data structures for the description of such
algorithms.

760 11 / Trees

UT

Unlabeled vertices circled

FIGURE 2 Adding Unlabeled Vertices to Make a Binary Search Tree Full.

Decision Trees

Rooted trees can be used to model problems in which a series of decisions leads to a solution.
For instance, a binary search tree can be used to locate items based on a series of comparisons,
where each comparison tells us whether we have located the item, or whether we should go
right or left in a subtree. A rooted tree in which each internal vertex corresponds to a decision,
with a subtree at these vertices for each possible outcome of the decision, is called a decision

tree. The possible solutions of the problem correspond to the paths to the leaves of this rooted
tree. Example 3 illustrates an application of decision trees.

EXAMPLE 3 Suppose there are seven coins, all with the same weight, and a counterfeit coin that weighs less
than the others. How many weighings are necessary using a balance scale to determine which
of the eight coins is the counterfeit one? Give an algorithm for finding this counterfeit coin.

Solution: There are three possibilities for each weighing on a balance scale. The two pans can
have equal weight, the first pan can be heavier, or the second pan can be heavier. Consequently,
the decision tree for the sequence of weighings is a 3-ary tree. There are at least eight leaves in
the decision tree because there are eight possible outcomes (because each of the eight coins can
be the counterfeit lighter coin), and each possible outcome must be represented by at least one
leaf. The largest number of weighings needed to determine the counterfeit coin is the height of
the decision tree. From Corollary 1 of Section 11.1 it follows that the height of the decision tree
is at least log3 8 = 2. Hence, at least two weighings are needed.

It is possible to determine the counterfeit coin using two weighings. The decision tree that
illustrates how this is done is shown in Figure 3. ▲

THE COMPLEXITY OF COMPARISON-BASED SORTING ALGORITHMS Many dif-
ferent sorting algorithms have been developed. To decide whether a particular sorting algorithm
is efficient, its complexity is determined. Using decision trees as models, a lower bound for the
worst-case complexity of sorting algorithms that are based on binary comparisons can be found.

We can use decision trees to model sorting algorithms and to determine an estimate for the
worst-case complexity of these algorithms. Note that given n elements, there are n! possible
orderings of these elements, because each of the n! permutations of these elements can be the
correct order. The sorting algorithms studied in this book, and most commonly used sorting
algorithms, are based on binary comparisons, that is, the comparison of two elements at a time.
The result of each such comparison narrows down the set of possible orderings. Thus, a sorting
algorithm based on binary comparisons can be represented by a binary decision tree in which
each internal vertex represents a comparison of two elements. Each leaf represents one of the n!
permutations of n elements.

11.2 Applications of Trees 761

BalanceLighter Lighter

4

1

2

1 3 2

BalanceLighter Lighter7 8

7 Impossible 8

BalanceLighter Lighter4 5

4 56

5 6Balance1 2 3 LighterLighter

4 5 61 2 3

2 7 8 4 5

1

FIGURE 3 A Decision Tree for Locating a Counterfeit Coin. The counterfeit coin is shown in color

below each final weighing.

EXAMPLE 4 We display in Figure 4 a decision tree that orders the elements of the list a, b, c. ▲

a : b

c > a > b

a : c

a > b

b : c

a < b

b : c

a < ca > c

a > c > b

b < c

a > b > c

b > c

c > b > aa : c

b < cb > c

b > c > a

a < c

b > a > c

a > c

FIGURE 4 A Decision Tree for Sorting Three Distinct Elements.

The complexity of a sort based on binary comparisons is measured in terms of the number
of such comparisons used. The largest number of binary comparisons ever needed to sort a list
with n elements gives the worst-case performance of the algorithm. The most comparisons used
equals the longest path length in the decision tree representing the sorting procedure. In other
words, the largest number of comparisons ever needed is equal to the height of the decision
tree. Because the height of a binary tree with n! leaves is at least log n! (using Corollary 1 in
Section 11.1), at least log n! comparisons are needed, as stated in Theorem 1.

THEOREM 1 A sorting algorithm based on binary comparisons requires at least log n! comparisons.

We can use Theorem 1 to provide a big-Omega estimate for the number of comparisons used
by a sorting algorithm based on binary comparison. We need only note that by Exercise 72 in
Section 3.2 we know that log n! is (n log n), one of the commonly used reference functions
for the computational complexity of algorithms. Corollary 1 is a consequence of this estimate.

762 11 / Trees

COROLLARY 1 The number of comparisons used by a sorting algorithm to sort n elements based on binary
comparisons is (n log n).

A consequence of Corollary 1 is that a sorting algorithm based on binary comparisons that
uses (n log n) comparisons, in the worst case, to sort n elements is optimal, in the sense that
no other such algorithm has better worst-case complexity. Note that by Theorem 1 in Section 5.4
we see that the merge sort algorithm is optimal in this sense.

We can also establish a similar result for the average-case complexity of sorting algorithms.
The average number of comparisons used by a sorting algorithm based on binary comparisons is
the average depth of a leaf in the decision tree representing the sorting algorithm. By Exercise 48
in Section 11.1 we know that the average depth of a leaf in a binary tree with N vertices
is (logN). We obtain the following estimate when we letN = n! and note that a function that
is (log n!) is also (n log n) because log n! is (n log n).

THEOREM 2 The average number of comparisons used by a sorting algorithm to sort n elements based on
binary comparisons is (n log n).

Prefix Codes

Consider the problem of using bit strings to encode the letters of the English alphabet (where
no distinction is made between lowercase and uppercase letters). We can represent each letter
with a bit string of length five, because there are only 26 letters and there are 32 bit strings of
length five. The total number of bits used to encode data is five times the number of characters
in the text when each character is encoded with five bits. Is it possible to find a coding scheme
of these letters such that, when data are coded, fewer bits are used? We can save memory and
reduce transmittal time if this can be done.

Consider using bit strings of different lengths to encode letters. Letters that occur more
frequently should be encoded using short bit strings, and longer bit strings should be used to
encode rarely occurring letters. When letters are encoded using varying numbers of bits, some
method must be used to determine where the bits for each character start and end. For instance,
if e were encoded with 0, a with 1, and t with 01, then the bit string 0101 could correspond to
eat, tea, eaea, or tt.

One way to ensure that no bit string corresponds to more than one sequence of letters is
to encode letters so that the bit string for a letter never occurs as the first part of the bit string
for another letter. Codes with this property are called prefix codes. For instance, the encoding
of e as 0, a as 10, and t as 11 is a prefix code. A word can be recovered from the unique bit
string that encodes its letters. For example, the string 10110 is the encoding of ate. To see this,
note that the initial 1 does not represent a character, but 10 does represent a (and could not be
the first part of the bit string of another letter). Then, the next 1 does not represent a character,
but 11 does represent t. The final bit, 0, represents e.

A prefix code can be represented using a binary tree, where the characters are the labels of
the leaves in the tree. The edges of the tree are labeled so that an edge leading to a left child is
assigned a 0 and an edge leading to a right child is assigned a 1. The bit string used to encode
a character is the sequence of labels of the edges in the unique path from the root to the leaf
that has this character as its label. For instance, the tree in Figure 5 represents the encoding of
e by 0, a by 10, t by 110, n by 1110, and s by 1111.

1

1

1

10

0

0

0

t

s

a

e

n

FIGURE 5 A

Binary Tree with a

Prefix Code.
The tree representing a code can be used to decode a bit string. For instance, consider the

word encoded by 11111011100 using the code in Figure 5. This bit string can be decoded by
starting at the root, using the sequence of bits to form a path that stops when a leaf is reached.

11.2 Applications of Trees 763

Each 0 bit takes the path down the edge leading to the left child of the last vertex in the path, and
each 1 bit corresponds to the right child of this vertex. Consequently, the initial 1111 corresponds
to the path starting at the root, going right four times, leading to a leaf in the graph that has s
as its label, because the string 1111 is the code for s. Continuing with the fifth bit, we reach a
leaf next after going right then left, when the vertex labeled with a, which is encoded by 10, is
visited. Starting with the seventh bit, we reach a leaf next after going right three times and then
left, when the vertex labeled with n, which is encoded by 1110, is visited. Finally, the last bit, 0,
leads to the leaf that is labeled with e. Therefore, the original word is sane.

We can construct a prefix code from any binary tree where the left edge at each internal
vertex is labeled by 0 and the right edge by a 1 and where the leaves are labeled by characters.
Characters are encoded with the bit string constructed using the labels of the edges in the unique
path from the root to the leaves.

HUFFMAN CODING We now introduce an algorithm that takes as input the frequencies
(which are the probabilities of occurrences) of symbols in a string and produces as output a
prefix code that encodes the string using the fewest possible bits, among all possible binary
prefix codes for these symbols. This algorithm, known as Huffman coding, was developed by
David Huffman in a term paper he wrote in 1951 while a graduate student at MIT. (Note that this
algorithm assumes that we already know how many times each symbol occurs in the string, so we
can compute the frequency of each symbol by dividing the number of times this symbol occurs
by the length of the string.) Huffman coding is a fundamental algorithm in data compression,
the subject devoted to reducing the number of bits required to represent information. Huffman
coding is extensively used to compress bit strings representing text and it also plays an important
role in compressing audio and image files.

Algorithm 2 presents the Huffman coding algorithm. Given symbols and their frequencies,
our goal is to construct a rooted binary tree where the symbols are the labels of the leaves. The
algorithm begins with a forest of trees each consisting of one vertex, where each vertex has
a symbol as its label and where the weight of this vertex equals the frequency of the symbol
that is its label. At each step, we combine two trees having the least total weight into a single
tree by introducing a new root and placing the tree with larger weight as its left subtree and the
tree with smaller weight as its right subtree. Furthermore, we assign the sum of the weights of
the two subtrees of this tree as the total weight of the tree. (Although procedures for breaking
ties by choosing between trees with equal weights can be specified, we will not specify such
procedures here.) The algorithm is finished when it has constructed a tree, that is, when the
forest is reduced to a single tree.

DAVID A. HUFFMAN (1925–1999) David Huffman grew up in Ohio. At the age of 18 he received his B.S.
in electrical engineering from The Ohio State University. Afterward he served in the U.S. Navy as a radar
maintenance officer on a destroyer that had the mission of clearing mines in Asian waters after World War II.
Later, he earned his M.S. from Ohio State and his Ph.D. in electrical engineering from MIT. Huffman joined
the MIT faculty in 1953, where he remained until 1967 when he became the founding member of the computer
science department at the University of California at Santa Cruz. He played an important role in developing this
department and spent the remainder of his career there, retiring in 1994.

Huffman is noted for his contributions to information theory and coding, signal designs for radar and
for communications, and design procedures for asynchronous logical circuits. His work on surfaces with zero

curvature led him to develop original techniques for folding paper and vinyl into unusual shapes considered works of art by many
and publicly displayed in several exhibits. However, Huffman is best known for his development of what is now called Huffman
coding, a result of a term paper he wrote during his graduate work at MIT.

Huffman enjoyed exploring the outdoors, hiking, and traveling extensively. He became certified as a scuba diver when he was
in his late 60s. He kept poisonous snakes as pets.

764 11 / Trees

ALGORITHM 2 Huffman Coding.

procedure Huffman(C: symbols ai with frequencies wi , i = 1, . . . , n)

F := forest of n rooted trees, each consisting of the single vertex ai and assigned weight wi
while F is not a tree

Replace the rooted trees T and T of least weights from F with w(T) ≥ w(T) with a tree

having a new root that has T as its left subtree and T as its right subtree. Label the new

edge to T with 0 and the new edge to T with 1.

Assign w(T)+ w(T) as the weight of the new tree.

{the Huffman coding for the symbol ai is the concatenation of the labels of the edges in the

unique path from the root to the vertex ai}

Example 5 illustrates how Algorithm 2 is used to encode a set of five symbols.

EXAMPLE 5 Use Huffman coding to encode the following symbols with the frequencies listed: A: 0.08, B:
0.10, C: 0.12, D: 0.15, E: 0.20, F: 0.35. What is the average number of bits used to encode a
character?

Solution: Figure 6 displays the steps used to encode these symbols. The encoding produced
encodes A by 111, B by 110, C by 011, D by 010, E by 10, and F by 00. The average number
of bits used to encode a symbol using this encoding is

3 · 0.08 + 3 · 0.10 + 3 · 0.12 + 3 · 0.15 + 2 · 0.20 + 2 · 0.35 = 2.45. ▲

Note that Huffman coding is a greedy algorithm. Replacing the two subtrees with the
smallest weight at each step leads to an optimal code in the sense that no binary prefix code
for these symbols can encode these symbols using fewer bits. We leave the proof that Huffman
codes are optimal as Exercise 32.

There are many variations of Huffman coding. For example, instead of encoding single
Huffman coding is used

in JPEG image coding symbols, we can encode blocks of symbols of a specified length, such as blocks of two symbols.
Doing so may reduce the number of bits required to encode the string (see Exercise 30). We can
also use more than two symbols to encode the original symbols in the string (see the preamble
to Exercise 28). Furthermore, a variation known as adaptive Huffman coding (see [Sa00]) can
be used when the frequency of each symbol in a string is not known in advance, so that encoding
is done at the same time the string is being read.

Game Trees

Trees can be used to analyze certain types of games such as tic-tac-toe, nim, checkers, and chess.
In each of these games, two players take turns making moves. Each player knows the moves
made by the other player and no element of chance enters into the game. We model such games
using game trees; the vertices of these trees represent the positions that a game can be in as it
progresses; the edges represent legal moves between these positions. Because game trees are
usually large, we simplify game trees by representing all symmetric positions of a game by the
same vertex. However, the same position of a game may be represented by different vertices

11.2 Applications of Trees 765

B

A

0

0.18

1

A

0.08

B

0.10

C

0.12

D

0.15

E

0.20

F

Initial
forest

Step 1

Step 2

0.35

C

0.12

D

0.15

E

0.20

F

0.35

B

0

0.18

1

A

E

0.20

F

0.35

D

0

0.27

1

C

Step 3

0

0.38

1

E

F

0.35

0 1

AB

D

0

0.27

1

C

Step 4

0

0.38

1 1

E
0 1 0 1

AB

0

0.62

F

D C

Step 5

0

1.00

0

0 1
F E

0 1

1

1

CD

0 1

AB

FIGURE 6 Huffman Coding of Symbols in Example 4.

if different sequences of moves lead to this position. The root represents the starting position.
The usual convention is to represent vertices at even levels by boxes and vertices at odd levels
by circles. When the game is in a position represented by a vertex at an even level, it is the first
player’s move; when the game is in a position represented by a vertex at an odd level, it is the
second player’s move. Game trees may be infinite when the games they represent never end,
such as games that can enter infinite loops, but for most games there are rules that lead to finite
game trees.

The leaves of a game tree represent the final positions of a game. We assign a value to each
leaf indicating the payoff to the first player if the game terminates in the position represented
by this leaf. For games that are win–lose, we label a terminal vertex represented by a circle with
a 1 to indicate a win by the first player and we label a terminal vertex represented by a box with
a −1 to indicate a win by the second player. For games where draws are allowed, we label a
terminal vertex corresponding to a draw position with a 0. Note that for win–lose games, we
have assigned values to terminal vertices so that the larger the value, the better the outcome for
the first player.

In Example 6 we display a game tree for a well-known and well-studied game.

766 11 / Trees

–1 –1

+1 +1 +1 +1 +1 +1

–1 –1

Terminal vertices are labeled

with +1 if the first player wins

and –1 if the second player wins–1

–1

2 2 1

2 2

2 1 1 1 1

2 1 1

2 1

1 1 11 1

2 1 1 1 1 1 12

1 1 1 1 1

2 1 1 1

2 1

2 1 1 1

FIGURE 7 The Game Tree for a Game of Nim.

EXAMPLE 6 Nim In a version of the game of nim, at the start of a game there are a number of piles of
stones. Two players take turns making moves; a legal move consists of removing one or more

Although nim is an

ancient game, Charles

Bouton coined its modern

name in 1901 after an

archaic English word

meaning “to steal.”

stones from one of the piles, without removing all the stones left. A player without a legal move
loses. (Another way to look at this is that the player removing the last stone loses because the
position with no piles of stones is not allowed.) The game tree shown in Figure 7 represents this
version of nim given the starting position where there are three piles of stones containing two,
two, and one stone each, respectively. We represent each position with an unordered list of the
number of stones in the different piles (the order of the piles does not matter). The initial move
by the first player can lead to three possible positions because this player can remove one stone
from a pile with two stones (leaving three piles containing one, one, and two stones); two stones
from a pile containing two stones (leaving two piles containing two stones and one stone); or
one stone from the pile containing one stone (leaving two piles of two stones). When only one
pile with one stone is left, no legal moves are possible, so such positions are terminal positions.
Because nim is a win–lose game, we label the terminal vertices with +1 when they represent
wins for the first player and −1 when they represent wins for the second player. ▲

EXAMPLE 7 Tic-tac-toe The game tree for tic-tac-toe is extremely large and cannot be drawn here, although
a computer could easily build such a tree.We show a portion of the game tic-tac-toe in Figure 8(a).
Note that by considering symmetric positions equivalent, we need only consider three possible
initial moves, as shown in Figure 8(a). We also show a subtree of this game tree leading to
terminal positions in Figure 8(b), where a player who can win makes a winning move. ▲

We can recursively define the values of all vertices in a game tree in a way that enables
us to determine the outcome of this game when both players follow optimal strategies. By a
strategy we mean a set of rules that tells a player how to select moves to win the game. An
optimal strategy for the first player is a strategy that maximizes the payoff to this player and for
the second player is a strategy that minimizes this payoff. We now recursively define the value
of a vertex.

11.2 Applications of Trees 767

XX

X

• • •

• • •• • •

• • •

X

O

X

X

O X

X X

O

XX

O

X

O

X

O

X

O

X OOX

(a)

X

O

•
•

•

XX

X

O wins O wins

X winsdraw

XXX

X X O

O

X O X

X O

O O

X O X

X O

O O X

X O X

X O

X O O

X O X

X O

O X

O O X

X O

X O

OO X

X O

O O

X O X

X X O

X

O X

X O

X O

O X

X

(b)

X O

O

O X

FIGURE 8 Some of the Game Tree for Tic-Tac-Toe.

DEFINITION 1 The value of a vertex in a game tree is defined recursively as:

(i) the value of a leaf is the payoff to the first player when the game terminates in the
position represented by this leaf.

(ii) the value of an internal vertex at an even level is the maximum of the values of its
children, and the value of an internal vertex at an odd level is the minimum of the
values of its children.

The strategy where the first player moves to a position represented by a child with maximum
value and the second player moves to a position of a child with minimum value is called the
minmax strategy. We can determine who will win the game when both players follow the
minmax strategy by calculating the value of the root of the tree; this value is called the value of
the tree. This is a consequence of Theorem 3.

THEOREM 3 The value of a vertex of a game tree tells us the payoff to the first player if both players follow
the minmax strategy and play starts from the position represented by this vertex.

Proof: We will use induction to prove this theorem.

BASIS STEP: If the vertex is a leaf, by definition the value assigned to this vertex is the payoff
to the first player.

768 11 / Trees

–1 –1

+1–1 –1 –1 –1 –1+1 +1 +1

+1

+1

+1 +1
–1 –1+1+1 +1 +1

–1 –1

+1 +1

–1 –1

max

min

max

min

–1

2 2 1

2 2

2 1 1 1 1

2 1 1

2 1

1 1 11 1

2 1 1 1 1 1 12

1 1 1 1 1

2 1 1 1

2 1

2 1 1 1

FIGURE 9 Showing the Values of Vertices in the Game of Nim.

INDUCTIVE STEP: The inductive hypothesis is the assumption that the values of the children
of a vertex are the payoffs to the first player, assuming that play starts at each of the positions
represented by these vertices. We need to consider two cases, when it is the first player’s turn
and when it is the second player’s turn.

When it is the first player’s turn, this player follows the minmax strategy and moves to the
position represented by the child with the largest value. By the inductive hypothesis, this value
is the payoff to the first player when play starts at the position represented by this child and
follows the minmax strategy. By the recursive step in the definition of the value of an internal
vertex at an even level (as the maximum value of its children), the value of this vertex is the
payoff when play begins at the position represented by this vertex.

When it is the second player’s turn, this player follows the minmax strategy and moves to
the position represented by the child with the least value. By the inductive hypothesis, this value
is the payoff to the first player when play starts at the position represented by this child and
both players follow the minmax strategy. By the recursive definition of the value of an internal
vertex at an odd level as the minimum value of its children, the value of this vertex is the payoff
when play begins at the position represented by this vertex.

Remark: By extending the proof of Theorem 3, it can be shown that the minmax strategy is the
optimal strategy for both players.

Example 8 illustrates how the minmax procedure works. It displays the values assigned to
the internal vertices in the game tree from Example 6. Note that we can shorten the computation
required by noting that for win–lose games, once a child of a square vertex with value +1
is found, the value of the square vertex is also +1 because +1 is the largest possible payoff.
Similarly, once a child of a circle vertex with value −1 is found, this is the value of the circle
vertex also.

EXAMPLE 8 In Example 6 we constructed the game tree for nim with a starting position where there are
three piles containing two, two, and one stones. In Figure 9 we show the values of the vertices
of this game tree. The values of the vertices are computed using the values of the leaves and
working one level up at a time. In the right margin of this figure we indicate whether we use
the maximum or minimum of the values of the children to find the value of an internal vertex at

11.2 Applications of Trees 769

each level. For example, once we have found the values of the three children of the root, which
are 1, −1, and −1, we find the value of the root by computing max(1,−1,−1) = 1. Because
the value of the root is 1, it follows that the first player wins when both players follow a minmax
strategy. ▲

Game trees for some well-known games can be extraordinarily large, because these games
have many different possible moves. For example, the game tree for chess has been estimated to
have as many as 10100 vertices! It may be impossible to use Theorem 3 directly to study a game
because of the size of the game tree. Therefore, various approaches have been devised to help
determine good strategies and to determine the outcome of such games. One useful technique,
called alpha-beta pruning, eliminates much computation by pruning portions of the game tree
that cannot affect the values of ancestor vertices. (For information about alpha-beta pruning,
consult [Gr90].)Another useful approach is to use evaluation functions, which estimate the value

Chess programs on

smartphones can now play

at the grandmaster level.

of internal vertices in the game tree when it is not feasible to compute these values exactly. For
example, in the game of tic-tac-toe, as an evaluation function for a position, we may use the
number of files (rows, columns, and diagonals) containing no Os (used to indicate moves of the
second player) minus the number of files containing no Xs (used to indicate moves of the first
player). This evaluation function provides some indication of which player has the advantage in
the game. Once the values of an evaluation function are inserted, the value of the game can be
computed following the rules used for the minmax strategy. Computer programs created to play
chess, such as the famous Deep Blue program, are based on sophisticated evaluation functions.
For more information about how computers play chess see [Le91].

Exercises

1. Build a binary search tree for the words banana, peach,

apple, pear, coconut, mango, and papaya using alphabet-
ical order.

2. Build a binary search tree for the words oenology,

phrenology, campanology, ornithology, ichthyology, lim-

nology, alchemy, and astrology using alphabetical order.

3. How many comparisons are needed to locate or to add
each of these words in the search tree for Exercise 1, start-
ing fresh each time?

a) pear b) banana

c) kumquat d) orange

4. How many comparisons are needed to locate or to add
each of the words in the search tree for Exercise 2, start-
ing fresh each time?

a) palmistry b) etymology

c) paleontology d) glaciology

5. Using alphabetical order, construct a binary search tree
for the words in the sentence “The quick brown fox jumps

over the lazy dog.”

6. How many weighings of a balance scale are needed to find
a lighter counterfeit coin among four coins? Describe an
algorithm to find the lighter coin using this number of
weighings.

7. How many weighings of a balance scale are needed to
find a counterfeit coin among four coins if the counter-
feit coin may be either heavier or lighter than the others?

Describe an algorithm to find the counterfeit coin using
this number of weighings.

∗8. How many weighings of a balance scale are needed to
find a counterfeit coin among eight coins if the coun-
terfeit coin is either heavier or lighter than the others?
Describe an algorithm to find the counterfeit coin using
this number of weighings.

∗9. How many weighings of a balance scale are needed to
find a counterfeit coin among 12 coins if the counterfeit
coin is lighter than the others? Describe an algorithm to
find the lighter coin using this number of weighings.

∗10. One of four coins may be counterfeit. If it is counterfeit,
it may be lighter or heavier than the others. How many
weighings are needed, using a balance scale, to determine
whether there is a counterfeit coin, and if there is, whether
it is lighter or heavier than the others? Describe an algo-
rithm to find the counterfeit coin and determine whether
it is lighter or heavier using this number of weighings.

11. Find the least number of comparisons needed to sort four
elements and devise an algorithm that sorts these elements
using this number of comparisons.

∗12. Find the least number of comparisons needed to sort five
elements and devise an algorithm that sorts these elements
using this number of comparisons.

770 11 / Trees

The tournament sort is a sorting algorithm that works by
building an ordered binary tree. We represent the elements to
be sorted by vertices that will become the leaves. We build up
the tree one level at a time as we would construct the tree repre-
senting the winners of matches in a tournament. Working left
to right, we compare pairs of consecutive elements, adding a
parent vertex labeled with the larger of the two elements under
comparison. We make similar comparisons between labels of
vertices at each level until we reach the root of the tree that is
labeled with the largest element. The tree constructed by the
tournament sort of 22, 8, 14, 17, 3, 9, 27, 11 is illustrated in
part (a) of the figure. Once the largest element has been de-
termined, the leaf with this label is relabeled by −∞, which
is defined to be less than every element. The labels of all ver-
tices on the path from this vertex up to the root of the tree are
recalculated, as shown in part (b) of the figure. This produces
the second largest element. This process continues until the
entire list has been sorted.

27 is largest element

(a)

22

22 17

22 8 14 17 3 9 27 11

9 27

27

27

22 is second largest element

(b)

22

22

22 17

22 8 14 17 3 9 ⫺⬁ 11

9 11

11

13. Complete the tournament sort of the list 22, 8, 14, 17, 3,
9, 27, 11. Show the labels of the vertices at each step.

14. Use the tournament sort to sort the list 17, 4, 1, 5, 13, 10,
14, 6.

15. Describe the tournament sort using pseudocode.

16. Assuming that n, the number of elements to be sorted,
equals 2k for some positive integer k, determine the num-
ber of comparisons used by the tournament sort to find
the largest element of the list using the tournament sort.

17. How many comparisons does the tournament sort use to
find the second largest, the third largest, and so on, up to
the (n− 1)st largest (or second smallest) element?

18. Show that the tournament sort requires (n log n) com-
parisons to sort a list of n elements. [Hint: By inserting
the appropriate number of dummy elements defined to be
smaller than all integers, such as−∞, assume thatn = 2k

for some positive integer k.]

19. Which of these codes are prefix codes?

a) a: 11, e: 00, t : 10, s: 01

b) a: 0, e: 1, t : 01, s: 001

c) a: 101, e: 11, t : 001, s: 011, n: 010

d) a: 010, e: 11, t : 011, s: 1011, n: 1001, i: 10101

20. Construct the binary tree with prefix codes representing
these coding schemes.

a) a: 11, e: 0, t : 101, s: 100

b) a: 1, e: 01, t : 001, s: 0001, n: 00001

c) a: 1010, e: 0, t : 11, s: 1011, n: 1001, i: 10001

21. What are the codes for a, e, i, k, o, p, and u if the coding
scheme is represented by this tree?

0

0

0

1

1

1

1

1

1

10

0

10
ea

k o

p u

i

22. Given the coding scheme a: 001, b: 0001, e: 1, r: 0000,
s: 0100, t : 011, x: 01010, find the word represented by

a) 01110100011. b) 0001110000.

c) 0100101010. d) 01100101010.

23. Use Huffman coding to encode these symbols with given
frequencies: a: 0.20, b: 0.10, c: 0.15, d: 0.25, e: 0.30.
What is the average number of bits required to encode a
character?

24. Use Huffman coding to encode these symbols with given
frequencies: A: 0.10, B: 0.25, C: 0.05, D: 0.15, E: 0.30,
F: 0.07, G: 0.08. What is the average number of bits re-
quired to encode a symbol?

25. Construct two different Huffman codes for these symbols
and frequencies: t : 0.2, u: 0.3, v: 0.2, w: 0.3.

26. a) Use Huffman coding to encode these symbols with
frequencies a: 0.4, b: 0.2, c: 0.2, d: 0.1, e: 0.1 in two
different ways by breaking ties in the algorithm dif-
ferently. First, among the trees of minimum weight
select two trees with the largest number of vertices
to combine at each stage of the algorithm. Second,
among the trees of minimum weight select two trees
with the smallest number of vertices at each stage.

b) Compute the average number of bits required to en-
code a symbol with each code and compute the vari-
ances of this number of bits for each code. Which
tie-breaking procedure produced the smaller variance
in the number of bits required to encode a symbol?

11.2 Applications of Trees 771

27. Construct a Huffman code for the letters of the English al-
phabet where the frequencies of letters in typical English
text are as shown in this table.

Letter Frequency Letter Frequency

A 0.0817 N 0.0662

B 0.0145 O 0.0781

C 0.0248 P 0.0156

D 0.0431 Q 0.0009

E 0.1232 R 0.0572

F 0.0209 S 0.0628

G 0.0182 T 0.0905

H 0.0668 U 0.0304

I 0.0689 V 0.0102

J 0.0010 W 0.0264

K 0.0080 X 0.0015

L 0.0397 Y 0.0211

M 0.0277 Z 0.0005

Suppose that m is a positive integer with m ≥ 2. An m-ary
Huffman code for a set ofN symbols can be constructed anal-
ogously to the construction of a binary Huffman code. At the
initial step, ((N − 1) mod (m− 1))+ 1 trees consisting of a
single vertex with least weights are combined into a rooted
tree with these vertices as leaves. At each subsequent step,
the m trees of least weight are combined into an m-ary tree.

28. Describe the m-ary Huffman coding algorithm in
pseudocode.

29. Using the symbols 0, 1, and 2 use ternary (m = 3)
Huffman coding to encode these letters with the given
frequencies: A: 0.25, E: 0.30, N: 0.10, R: 0.05, T: 0.12,
Z: 0.18.

30. Consider the three symbols A, B, and C with frequencies
A: 0.80, B: 0.19, C: 0.01.

a) Construct a Huffman code for these three symbols.

b) Form a new set of nine symbols by grouping together
blocks of two symbols, AA, AB, AC, BA, BB, BC,
CA, CB, and CC. Construct a Huffman code for these
nine symbols, assuming that the occurrences of sym-
bols in the original text are independent.

c) Compare the average number of bits required to en-
code text using the Huffman code for the three sym-
bols in part (a) and the Huffman code for the nine
blocks of two symbols constructed in part (b). Which
is more efficient?

31. Given n+ 1 symbols x1, x2, . . . , xn, xn+1 appearing 1,
f1, f2, . . . , fn times in a symbol string, respectively,
where fj is the j th Fibonacci number, what is the max-
imum number of bits used to encode a symbol when all
possible tie-breaking selections are considered at each
stage of the Huffman coding algorithm?

∗32. Show that Huffman codes are optimal in the sense that
they represent a string of symbols using the fewest bits
among all binary prefix codes.

33. Draw a game tree for nim if the starting position consists
of two piles with two and three stones, respectively. When
drawing the tree represent by the same vertex symmetric
positions that result from the same move. Find the value
of each vertex of the game tree. Who wins the game if
both players follow an optimal strategy?

34. Draw a game tree for nim if the starting position consists
of three piles with one, two, and three stones, respectively.
When drawing the tree represent by the same vertex sym-
metric positions that result from the same move. Find the
value of each vertex of the game tree. Who wins the game
if both players follow an optimal strategy?

35. Suppose that we vary the payoff to the winning player
in the game of nim so that the payoff is n dollars when
n is the number of legal moves made before a terminal
position is reached. Find the payoff to the first player if
the initial position consists of

a) two piles with one and three stones, respectively.

b) two piles with two and four stones, respectively.

c) three piles with one, two, and three stones,
respectively.

36. Suppose that in a variation of the game of nim we allow a
player to either remove one or more stones from a pile or
merge the stones from two piles into one pile as long as at
least one stone remains. Draw the game tree for this vari-
ation of nim if the starting position consists of three piles
containing two, two, and one stone, respectively. Find the
values of each vertex in the game tree and determine the
winner if both players follow an optimal strategy.

37. Draw the subtree of the game tree for tic-tac-toe begin-
ning at each of these positions. Determine the value of
each of these subtrees.

a) X

X

X

X

O

O O

b) X

X

X

X

O

O

O

c) X

XX

O

O O

d) X

X

X

O

O

O

38. Suppose that the first four moves of a tic-tac-toe game are
as shown. Does the first player (whose moves are marked
by Xs) have a strategy that will always win?

a) X XO

O

b) X XO

O

c)

X

X

O

O d)

X

X

O

O

772 11 / Trees

39. Show that if a game of nim begins with two piles contain-
ing the same number of stones, as long as this number is at
least two, then the second player wins when both players
follow optimal strategies.

40. Show that if a game of nim begins with two piles con-
taining different numbers of stones, the first player wins
when both players follow optimal strategies.

41. How many children does the root of the game tree for
checkers have? How many grandchildren does it have?

42. How many children does the root of the game tree for
nim have and how many grandchildren does it have if the
starting position is

a) piles with four and five stones, respectively.

b) piles with two, three, and four stones, respectively.

c) piles with one, two, three, and four stones, respec-
tively.

d) piles with two, two, three, three, and five stones, re-
spectively.

43. Draw the game tree for the game of tic-tac-toe for the lev-
els corresponding to the first two moves. Assign the value
of the evaluation function mentioned in the text that as-
signs to a position the number of files containing no Os
minus the number of files containing no Xs as the value of
each vertex at this level and compute the value of the tree
for vertices as if the evaluation function gave the correct
values for these vertices.

44. Use pseudocode to describe an algorithm for determin-
ing the value of a game tree when both players follow a
minmax strategy.

11.3 Tree Traversal

Introduction

Ordered rooted trees are often used to store information. We need procedures for visiting each
vertex of an ordered rooted tree to access data. We will describe several important algorithms
for visiting all the vertices of an ordered rooted tree. Ordered rooted trees can also be used
to represent various types of expressions, such as arithmetic expressions involving numbers,
variables, and operations. The different listings of the vertices of ordered rooted trees used to
represent expressions are useful in the evaluation of these expressions.

Universal Address Systems

Procedures for traversing all vertices of an ordered rooted tree rely on the orderings of children.
In ordered rooted trees, the children of an internal vertex are shown from left to right in the
drawings representing these directed graphs.

We will describe one way we can totally order the vertices of an ordered rooted tree. To
produce this ordering, we must first label all the vertices. We do this recursively:

1. Label the root with the integer 0. Then label its k children (at level 1) from left to right
with 1, 2, 3, . . . , k.

2. For each vertex v at level n with label A, label its kv children, as they are drawn from left
to right, with A.1, A.2, . . . , A.kv.

Following this procedure, a vertex v at level n, for n ≥ 1, is labeled x1.x2.xn, where the
unique path from the root to v goes through the x1st vertex at level 1, the x2nd vertex at level 2,
and so on. This labeling is called the universal address system of the ordered rooted tree.

We can totally order the vertices using the lexicographic ordering of their labels in the univer-
sal address system. The vertex labeled x1.x2.xn is less than the vertex labeled y1.y2.ym
if there is an i, 0 ≤ i ≤ n, with x1 = y1, x2 = y2, . . . , xi−1 = yi−1, and xi < yi ; or if n < m
and xi = yi for i = 1, 2, . . . , n.

11.3 Tree Traversal 773

0

1 2 3 4 5

1.1 1.2 1.3
5.1

5.2 5.3
3.1

3.2 4.1

3.1.2

3.1.3
3.1.1 5.1.1

3.1.2.1 3.1.2.3

3.1.2.2 3.1.2.4

FIGURE 1 The Universal Address System of an Ordered Rooted Tree.

EXAMPLE 1 We display the labelings of the universal address system next to the vertices in the ordered rooted
tree shown in Figure 1. The lexicographic ordering of the labelings is

0 < 1 < 1.1 < 1.2 < 1.3 < 2 < 3 < 3.1 < 3.1.1 < 3.1.2 < 3.1.2.1 < 3.1.2.2
< 3.1.2.3 < 3.1.2.4 < 3.1.3 < 3.2 < 4 < 4.1 < 5 < 5.1 < 5.1.1 < 5.2 < 5.3

▲

Traversal Algorithms

Procedures for systematically visiting every vertex of an ordered rooted tree are called traversal
algorithms. We will describe three of the most commonly used such algorithms, preorder
traversal, inorder traversal, and postorder traversal. Each of these algorithms can be defined
recursively. We first define preorder traversal.

DEFINITION 1 Let T be an ordered rooted tree with root r . If T consists only of r , then r is the preorder

traversal of T . Otherwise, suppose that T1, T2, . . . , Tn are the subtrees at r from left to right
in T . The preorder traversal begins by visiting r . It continues by traversing T1 in preorder,
then T2 in preorder, and so on, until Tn is traversed in preorder.

The reader should verify that the preorder traversal of an ordered rooted tree gives the same
ordering of the vertices as the ordering obtained using a universal address system. Figure 2
indicates how a preorder traversal is carried out.

Example 2 illustrates preorder traversal.

EXAMPLE 2 In which order does a preorder traversal visit the vertices in the ordered rooted tree T shown in
Figure 3?

Solution: The steps of the preorder traversal of T are shown in Figure 4. We traverse T in
preorder by first listing the root a, followed by the preorder list of the subtree with root b, the
preorder list of the subtree with root c (which is just c) and the preorder list of the subtree with
root d.

774 11 / Trees

r

T1 T2 Tn

Step 2:

Visit T1

in preorder

Step 3:

Visit T2

in preorder

Step n + 1:

Visit Tn
in preorder

. . .

Step 1: Visit r

Preorder traversal

FIGURE 2 Preorder Traversal.

b

a

e

j

o

m

f h i

c
d

g

n p

l

k

T

FIGURE 3 The Ordered

Rooted Tree T .

a b e j k n o p f c d g l m h i

a b e j k f c d g l m h i

n o p

n o p

k

j

a b e f c d g h i

l m

n o p

k
j

e g

l m

a b c d

f h i

n o p

k
j

e

b

f

a

c

h i

d

l m

Preorder traversal: Visit root,

visit subtrees left to right

g

FIGURE 4 The Preorder Traversal of T .

11.3 Tree Traversal 775

r

T1 T2 Tn

Step 1:

Visit T1 in

inorder

Step 3:

Visit T2 in

inorder

Step n + 1:

Visit Tn in

inorder

• • •

Step 2: Visit r

Inorder traversal

FIGURE 5 Inorder Traversal.

The preorder list of the subtree with root b begins by listing b, then the vertices of the
subtree with root e in preorder, and then the subtree with root f in preorder (which is just f).
The preorder list of the subtree with root d begins by listing d, followed by the preorder list of
the subtree with root g, followed by the subtree with root h (which is just h), followed by the
subtree with root i (which is just i).

The preorder list of the subtree with root e begins by listing e, followed by the preorder
listing of the subtree with root j (which is just j), followed by the preorder listing of the subtree
with root k. The preorder listing of the subtree with root g is g followed by l, followed by m.
The preorder listing of the subtree with root k is k, n, o, p. Consequently, the preorder traversal
of T is a, b, e, j , k, n, o, p, f , c, d, g, l, m, h, i. ▲

We will now define inorder traversal.

DEFINITION 2 Let T be an ordered rooted tree with root r . If T consists only of r , then r is the inorder

traversal of T . Otherwise, suppose that T1, T2, . . . , Tn are the subtrees at r from left to right.
The inorder traversal begins by traversing T1 in inorder, then visiting r . It continues by
traversing T2 in inorder, then T3 in inorder, . . . , and finally Tn in inorder.

Figure 5 indicates how inorder traversal is carried out. Example 3 illustrates how inorder
traversal is carried out for a particular tree.

EXAMPLE 3 In which order does an inorder traversal visit the vertices of the ordered rooted tree T in Figure 3?

Solution: The steps of the inorder traversal of the ordered rooted tree T are shown in Figure 6.
The inorder traversal begins with an inorder traversal of the subtree with root b, the root a, the
inorder listing of the subtree with root c, which is just c, and the inorder listing of the subtree
with root d .

The inorder listing of the subtree with root b begins with the inorder listing of the subtree
with root e, the root b, and f . The inorder listing of the subtree with root d begins with the
inorder listing of the subtree with root g, followed by the root d, followed by h, followed by i.

The inorder listing of the subtree with root e is j , followed by the root e, followed by the
inorder listing of the subtree with root k. The inorder listing of the subtree with root g is l, g,m.
The inorder listing of the subtree with root k is n, k, o, p. Consequently, the inorder listing of
the ordered rooted tree is j , e, n, k, o, p, b, f , a, c, l, g, m, d, h, i. ▲

776 11 / Trees

j e n k o p b f a c l g m d h i

j e k b f a c l g m d h i

n o p

n o p

k

j

e b a c g d h i

l m

n o p

k
j

e g

l m

b c d

f h i

n o p

k
j

e

b

f

a

c
g

i

d

l m

Inorder traversal: Visit leftmost

subtree, visit root, visit other

subtrees left to right

f

a

h

T

FIGURE 6 The Inorder Traversal of T .

We now define postorder traversal.

DEFINITION 3 Let T be an ordered rooted tree with root r . If T consists only of r , then r is the postorder

traversal of T . Otherwise, suppose that T1, T2, . . . , Tn are the subtrees at r from left to
right. The postorder traversal begins by traversing T1 in postorder, then T2 in postorder, . . . ,
then Tn in postorder, and ends by visiting r .

Figure 7 illustrates how postorder traversal is done. Example 4 illustrates how postorder
traversal works.

11.3 Tree Traversal 777

r

T1 T2 Tn

Step 1:

Visit T1

in postorder

Step 2:

Visit T2

in postorder

Step n:

Visit Tn

 in postorder

• • •

Step n + 1: Visit r

Postorder traversal

FIGURE 7 Postorder Traversal.

EXAMPLE 4 In which order does a postorder traversal visit the vertices of the ordered rooted tree T shown
in Figure 3?

Solution: The steps of the postorder traversal of the ordered rooted tree T are shown in Figure 8.
The postorder traversal begins with the postorder traversal of the subtree with rootb, the postorder
traversal of the subtree with root c, which is just c, the postorder traversal of the subtree with
root d , followed by the root a.

The postorder traversal of the subtree with root b begins with the postorder traversal of the
subtree with root e, followed by f , followed by the root b. The postorder traversal of the rooted
tree with root d begins with the postorder traversal of the subtree with root g, followed by h,
followed by i, followed by the root d.

The postorder traversal of the subtree with root e begins with j , followed by the postorder
traversal of the subtree with root k, followed by the root e. The postorder traversal of the subtree
with root g is l, m, g. The postorder traversal of the subtree with root k is n, o, p, k. Therefore,
the postorder traversal of T is j , n, o, p, k, e, f , b, c, l, m, g, h, i, d, a. ▲

There are easy ways to list the vertices of an ordered rooted tree in preorder, inorder, and
postorder. To do this, first draw a curve around the ordered rooted tree starting at the root, moving
along the edges, as shown in the example in Figure 9. We can list the vertices in preorder by
listing each vertex the first time this curve passes it. We can list the vertices in inorder by listing
a leaf the first time the curve passes it and listing each internal vertex the second time the curve
passes it. We can list the vertices in postorder by listing a vertex the last time it is passed on the
way back up to its parent. When this is done in the rooted tree in Figure 9, it follows that the
preorder traversal gives a, b, d, h, e, i, j , c, f , g, k, the inorder traversal gives h, d, b, i, e, j ,
a, f , c, k, g; and the postorder traversal gives h, d, i, j , e, b, f , k, g, c, a.

Algorithms for traversing ordered rooted trees in preorder, inorder, or postorder are most
easily expressed recursively.

ALGORITHM 1 Preorder Traversal.

procedure preorder(T : ordered rooted tree)

r := root of T

list r

for each child c of r from left to right

T (c) := subtree with c as its root

preorder(T (c))

778 11 / Trees

j n o p k e f b c l m g h

a

d a

j k e f b c l m g h i d

n o p

n o p

k

j

e f c g h i d

l m

n o p

k
j

e g

l

b d

f h i

n o p

k
j

e

b

f

a

c
g

i

d

l m

Postorder traversal: Visit

subtrees left to right; visit root

b

c

h

T

a

i

a

m

FIGURE 8 The Postorder Traversal of T .

a

b

d

h i j k

e

f

g

c

FIGURE 9 A Shortcut for Traversing an Ordered

Rooted Tree in Preorder, Inorder, and Postorder.

11.3 Tree Traversal 779

ALGORITHM 2 Inorder Traversal.

procedure inorder(T : ordered rooted tree)

r := root of T

if r is a leaf then list r

else

l := first child of r from left to right

T (l) := subtree with l as its root

inorder(T (l))

list r

for each child c of r except for l from left to right

T (c) := subtree with c as its root

inorder(T (c))

ALGORITHM 3 Postorder Traversal.

procedure postorder(T : ordered rooted tree)

r := root of T

for each child c of r from left to right

T (c) := subtree with c as its root

postorder(T (c))

list r

Note that both the preorder traversal and the postorder traversal encode the structure of
an ordered rooted tree when the number of children of each vertex is specified. That is, an
ordered rooted tree is uniquely determined when we specify a list of vertices generated by a
preorder traversal or by a postorder traversal of the tree, together with the number of children
of each vertex (see Exercises 26 and 27). In particular, both a preorder traversal and a postorder
traversal encode the structure of a full orderedm-ary tree. However, when the number of children
of vertices is not specified, neither a preorder traversal nor a postorder traversal encodes the
structure of an ordered rooted tree (see Exercises 28 and 29).

Infix, Prefix, and Postfix Notation

We can represent complicated expressions, such as compound propositions, combinations of
sets, and arithmetic expressions using ordered rooted trees. For instance, consider the repre-
sentation of an arithmetic expression involving the operators + (addition), − (subtraction), ∗
(multiplication), / (division), and ↑ (exponentiation). We will use parentheses to indicate the
order of the operations. An ordered rooted tree can be used to represent such expressions, where
the internal vertices represent operations, and the leaves represent the variables or numbers.
Each operation operates on its left and right subtrees (in that order).

EXAMPLE 5 What is the ordered rooted tree that represents the expression ((x + y)↑2)+ ((x − 4)/3)?

Solution: The binary tree for this expression can be built from the bottom up. First, a sub-
tree for the expression x + y is constructed. Then this is incorporated as part of the larger
subtree representing (x + y)↑2. Also, a subtree for x − 4 is constructed, and then this is incor-
porated into a subtree representing (x − 4)/3. Finally the subtrees representing (x + y) ↑ 2

780 11 / Trees

+ –

x y 4

+ 2

x y

/

– 3

4

+ 2

x y

/

– 3

x 4

+

x

x

FIGURE 10 A Binary Tree Representing ((x + y) ↑ 2)+ ((x − 4)/3).

and (x − 4)/3 are combined to form the ordered rooted tree representing ((x + y) ↑ 2)+
((x − 4)/3). These steps are shown in Figure 10. ▲

An inorder traversal of the binary tree representing an expression produces the original
expression with the elements and operations in the same order as they originally occurred, except
for unary operations, which instead immediately follow their operands. For instance, inorder
traversals of the binary trees in Figure 11, which represent the expressions (x + y)/(x + 3),
(x + (y/x))+ 3, and x + (y/(x + 3)), all lead to the infix expression x + y/x + 3. To make
such expressions unambiguous it is necessary to include parentheses in the inorder traversal
whenever we encounter an operation. The fully parenthesized expression obtained in this way
is said to be in infix form.

We obtain the prefix form of an expression when we traverse its rooted tree in preorder.
Expressions written in prefix form are said to be in Polish notation, which is named after the
Polish logician Jan ,,Lukasiewicz. An expression in prefix notation (where each operation has
a specified number of operands), is unambiguous, so no parentheses are needed in such an
expression. The verification of this is left as an exercise for the reader.

EXAMPLE 6 What is the prefix form for ((x + y) ↑ 2)+ ((x − 4)/3)?

Solution:We obtain the prefix form for this expression by traversing the binary tree that represents
it in preorder, shown in Figure 10. This produces + ↑ + x y 2 / − x 4 3. ▲

In the prefix form of an expression, a binary operator, such as +, precedes its two operands.
Hence, we can evaluate an expression in prefix form by working from right to left. When
we encounter an operator, we perform the corresponding operation with the two operands

/

+

x 3

+

+

/

y x

3

+

+

x y

+

x 3

/

x y

x

FIGURE 11 Rooted Trees Representing (x + y)/(x + 3), (x + (y/x))+ 3, and

x + (y/(x + 3)).

11.3 Tree Traversal 781

+ – * 2 3 5 / ≠ 2 3 4

+ – * 2 3 5 / 8 4

+ – * 2 3 5 2

+ – 6 5 2

+ 1 2

2 ≠ 3 = 8

8 / 4 = 2

2 * 3 = 6

6 – 5 = 1

1 + 2 = 3

Value of expression: 3

FIGURE 12 Evaluating a Prefix

Expression.

7 2 3 * – 4 ≠ 9 3 / +

2 * 3 = 6

7 – 6 = 1

14 = 1

9 / 3 = 3

1 + 3 = 4

7 6 – 4 ≠ 9 3 / +

1 4 ≠ 9 3 / +

1 9 3 / +

1 3 +

Value of expression: 4

FIGURE 13 Evaluating a Postfix

Expression.

immediately to the right of this operand. Also, whenever an operation is performed, we consider
the result a new operand.

EXAMPLE 7 What is the value of the prefix expression + − ∗ 2 3 5/↑ 2 3 4?

Solution: The steps used to evaluate this expression by working right to left, and performing
operations using the operands on the right, are shown in Figure 12. The value of this expression
is 3. ▲

We obtain the postfix form of an expression by traversing its binary tree in postorder.
Reverse polish notation

was first proposed in 1954

by Burks, Warren, and

Wright.

Expressions written in postfix form are said to be in reverse Polish notation. Expressions in
reverse Polish notation are unambiguous, so parentheses are not needed. The verification of this
is left to the reader. Reverse polish notation was extensively used in electronic calculators in
the 1970s and 1980s.

EXAMPLE 8 What is the postfix form of the expression ((x + y) ↑ 2)+ ((x − 4)/3)?

Solution: The postfix form of the expression is obtained by carrying out a postorder traversal of
the binary tree for this expression, shown in Figure 10. This produces the postfix expression: x
y + 2 ↑ x 4 − 3 / +. ▲

In the postfix form of an expression, a binary operator follows its two operands. So, to
evaluate an expression from its postfix form, work from left to right, carrying out operations
whenever an operator follows two operands. After an operation is carried out, the result of this
operation becomes a new operand.

EXAMPLE 9 What is the value of the postfix expression 7 2 3 ∗ − 4 ↑ 9 3/+?

Solution: The steps used to evaluate this expression by starting at the left and carrying out
operations when two operands are followed by an operator are shown in Figure 13. The value
of this expression is 4. ▲

782 11 / Trees

p q p q

p q p q

p q p q

FIGURE 14 Constructing the Rooted Tree for a Compound Proposition.

Rooted trees can be used to represent other types of expressions, such as those representing
compound propositions and combinations of sets. In these examples unary operators, such as
the negation of a proposition, occur. To represent such operators and their operands, a vertex
representing the operator and a child of this vertex representing the operand are used.

EXAMPLE 10 Find the ordered rooted tree representing the compound proposition (¬(p ∧ q))↔ (¬p ∨ ¬q).
Then use this rooted tree to find the prefix, postfix, and infix forms of this expression.

Solution: The rooted tree for this compound proposition is constructed from the bottom up. First,
subtrees for ¬p and ¬q are formed (where ¬ is considered a unary operator). Also, a subtree
for p ∧ q is formed. Then subtrees for ¬(p ∧ q) and (¬p) ∨ (¬q) are constructed. Finally,
these two subtrees are used to form the final rooted tree. The steps of this procedure are shown
in Figure 14.

The prefix, postfix, and infix forms of this expression are found by traversing this rooted tree
in preorder, postorder, and inorder (including parentheses), respectively. These traversals give
↔ ¬∧ pq ∨ ¬p¬q, pq ∧ ¬p¬q¬ ∨ ↔, and (¬(p ∧ q))↔ ((¬p) ∨ (¬q)), respectively. ▲

Because prefix and postfix expressions are unambiguous and because they can be evaluated
easily without scanning back and forth, they are used extensively in computer science. Such
expressions are especially useful in the construction of compilers.

JAN ,,LUKASIEWICZ (1878–1956) Jan ,,Lukasiewicz was born into a Polish-speaking family in Lvov. At that
time Lvov was part of Austria, but it is now in the Ukraine. His father was a captain in the Austrian army.
,,Lukasiewicz became interested in mathematics while in high school. He studied mathematics and philosophy
at the University of Lvov at both the undergraduate and graduate levels. After completing his doctoral work
he became a lecturer there, and in 1911 he was appointed to a professorship. When the University of Warsaw
was reopened as a Polish university in 1915, ,,Lukasiewicz accepted an invitation to join the faculty. In 1919 he
served as the Polish Minister of Education. He returned to the position of professor at Warsaw University where
he remained from 1920 to 1939, serving as rector of the university twice.

,,Lukasiewicz was one of the cofounders of the famous Warsaw School of Logic. He published his famous
text, Elements of Mathematical Logic, in 1928. With his influence, mathematical logic was made a required course for mathematics
and science undergraduates in Poland. His lectures were considered excellent, even attracting students of the humanities.

,,Lukasiewicz and his wife experienced great suffering during World War II, which he documented in a posthumously published
autobiography. After the war they lived in exile in Belgium. Fortunately, in 1949 he was offered a position at the Royal Irish Academy
in Dublin.

,,Lukasiewicz worked on mathematical logic throughout his career. His work on a three-valued logic was an important contribution
to the subject. Nevertheless, he is best known in the mathematical and computer science communities for his introduction of
parenthesis-free notation, now called Polish notation.

11.3 Tree Traversal 783

Exercises

In Exercises 1–3 construct the universal address system for the
given ordered rooted tree. Then use this to order its vertices
using the lexicographic order of their labels.

1.

2.

3.

4. Suppose that the address of the vertex v in the ordered
rooted tree T is 3.4.5.2.4.

a) At what level is v?

b) What is the address of the parent of v?

c) What is the least number of siblings v can have?

d) What is the smallest possible number of vertices in T
if v has this address?

e) Find the other addresses that must occur.

5. Suppose that the vertex with the largest address in an or-
dered rooted tree T has address 2.3.4.3.1. Is it possible to
determine the number of vertices in T ?

6. Can the leaves of an ordered rooted tree have the follow-
ing list of universal addresses? If so, construct such an
ordered rooted tree.

a) 1.1.1, 1.1.2, 1.2, 2.1.1.1, 2.1.2, 2.1.3, 2.2, 3.1.1,
3.1.2.1, 3.1.2.2, 3.2

b) 1.1, 1.2.1, 1.2.2, 1.2.3, 2.1, 2.2.1, 2.3.1, 2.3.2,
2.4.2.1, 2.4.2.2, 3.1, 3.2.1, 3.2.2

c) 1.1, 1.2.1, 1.2.2, 1.2.2.1, 1.3, 1.4, 2, 3.1, 3.2, 4.1.1.1

In Exercises 7–9 determine the order in which a preorder
traversal visits the vertices of the given ordered rooted tree.

7. a

c

gf

e
d

b

8. a

b c

d
e

f g
h

i
j

k
l

ponm

9. a

b d
c

f

k

i
e g

l m
n

r s

jh

o p q

10. In which order are the vertices of the ordered rooted tree
in Exercise 7 visited using an inorder traversal?

11. In which order are the vertices of the ordered rooted tree
in Exercise 8 visited using an inorder traversal?

12. In which order are the vertices of the ordered rooted tree
in Exercise 9 visited using an inorder traversal?

13. In which order are the vertices of the ordered rooted tree
in Exercise 7 visited using a postorder traversal?

14. In which order are the vertices of the ordered rooted tree
in Exercise 8 visited using a postorder traversal?

15. In which order are the vertices of the ordered rooted tree
in Exercise 9 visited using a postorder traversal?

784 11 / Trees

16. a) Represent the expression ((x+ 2) ↑ 3) ∗
(y−(3+ x))− 5 using a binary tree.

Write this expression in

b) prefix notation.
c) postfix notation.
d) infix notation.

17. a) Represent the expressions (x + xy)+ (x/y) and
x + ((xy + x)/y) using binary trees.

Write these expressions in

b) prefix notation.
c) postfix notation.
d) infix notation.

18. a) Represent the compound propositions ¬(p ∧ q)↔

(¬p ∨ ¬q) and (¬p ∧ (q ↔ ¬p)) ∨ ¬q using or-
dered rooted trees.

Write these expressions in

b) prefix notation.
c) postfix notation.
d) infix notation.

19. a) Represent (A ∩ B)− (A ∪ (B − A)) using an or-
dered rooted tree.

Write this expression in

b) prefix notation.
c) postfix notation.
d) infix notation.

∗20. In how many ways can the string ¬p ∧ q ↔ ¬p ∨ ¬q

be fully parenthesized to yield an infix expression?
∗21. In how many ways can the stringA ∩ B − A ∩ B − A be

fully parenthesized to yield an infix expression?

22. Draw the ordered rooted tree corresponding to each of
these arithmetic expressions written in prefix notation.
Then write each expression using infix notation.

a) + ∗ + − 5 3 2 1 4
b) ↑ + 2 3 − 5 1
c) ∗ / 9 3 + ∗ 2 4 − 7 6

23. What is the value of each of these prefix expressions?

a) − ∗ 2 / 8 4 3
b) ↑ − ∗ 3 3 ∗ 4 2 5
c) + − ↑ 3 2 ↑ 2 3 / 6 − 4 2
d) ∗ + 3 + 3 ↑ 3 + 3 3 3

24. What is the value of each of these postfix expressions?

a) 5 2 1 − − 3 1 4 ++ ∗
b) 9 3 / 5 + 7 2 − ∗
c) 3 2 ∗ 2 ↑ 5 3 − 8 4 / ∗ −

25. Construct the ordered rooted tree whose preorder traver-
sal is a, b, f, c, g, h, i, d, e, j, k, l, where a has four children,
c has three children, j has two children, b and e have one
child each, and all other vertices are leaves.

∗26. Show that an ordered rooted tree is uniquely determined
when a list of vertices generated by a preorder traversal
of the tree and the number of children of each vertex are
specified.

∗27. Show that an ordered rooted tree is uniquely determined
when a list of vertices generated by a postorder traversal
of the tree and the number of children of each vertex are
specified.

28. Show that preorder traversals of the two ordered rooted
trees displayed below produce the same list of vertices.
Note that this does not contradict the statement in Ex-
ercise 26, because the numbers of children of internal
vertices in the two ordered rooted trees differ.

a

b e

dc
f

hg

a

b

ec

f

hgd

29. Show that postorder traversals of these two ordered rooted
trees produce the same list of vertices. Note that this does
not contradict the statement in Exercise 27, because the
numbers of children of internal vertices in the two ordered
rooted trees differ.

a

f

bc

e

hgd

a

dc

e

hf g

b

Well-formed formulae in prefix notation over a set of sym-
bols and a set of binary operators are defined recursively by
these rules:

(i) if x is a symbol, then x is a well-formed formula in
prefix notation;
(ii) if X and Y are well-formed formulae and ∗ is an
operator, then ∗ XY is a well-formed formula.

30. Which of these are well-formed formulae over the sym-
bols {x, y, z} and the set of binary operators {×,+, ◦}?

a) × + + x y x

b) ◦ x y × x z

c) × ◦ x z× × x y

d) × + ◦ x x ◦ x x x

∗31. Show that any well-formed formula in prefix notation
over a set of symbols and a set of binary operators contains
exactly one more symbol than the number of operators.

32. Give a definition of well-formed formulae in postfix no-
tation over a set of symbols and a set of binary operators.

33. Give six examples of well-formed formulae with three or
more operators in postfix notation over the set of symbols
{x, y, z} and the set of operators {+,×, ◦}.

34. Extend the definition of well-formed formulae in prefix
notation to sets of symbols and operators where the op-
erators may not be binary.

11.4 Spanning Trees 785

Etna Old Town

Hampden

Herman
Orono

Bangor

(a)

Etna Old Town

Hampden

Herman
Orono

Bangor

(b)

FIGURE 1 (a) A Road System and (b) a Set

of Roads to Plow.

a b c d

e
f

g

FIGURE 2 The

Simple Graph G.

11.4 Spanning Trees

Introduction

Consider the system of roads in Maine represented by the simple graph shown in Figure 1(a).
The only way the roads can be kept open in the winter is by frequently plowing them. The
highway department wants to plow the fewest roads so that there will always be cleared roads
connecting any two towns. How can this be done?

At least five roads must be plowed to ensure that there is a path between any two towns.
Figure 1(b) shows one such set of roads. Note that the subgraph representing these roads is a
tree, because it is connected and contains six vertices and five edges.

This problem was solved with a connected subgraph with the minimum number of edges
containing all vertices of the original simple graph. Such a graph must be a tree.

DEFINITION 1 Let G be a simple graph. A spanning tree of G is a subgraph of G that is a tree containing
every vertex of G.

A simple graph with a spanning tree must be connected, because there is a path in the
spanning tree between any two vertices. The converse is also true; that is, every connected
simple graph has a spanning tree. We will give an example before proving this result.

EXAMPLE 1 Find a spanning tree of the simple graph G shown in Figure 2.

Solution: The graph G is connected, but it is not a tree because it contains simple circuits.
Remove the edge {a, e}. This eliminates one simple circuit, and the resulting subgraph is still
connected and still contains every vertex of G. Next remove the edge {e, f } to eliminate a
second simple circuit. Finally, remove edge {c, g} to produce a simple graph with no simple
circuits. This subgraph is a spanning tree, because it is a tree that contains every vertex of G.
The sequence of edge removals used to produce the spanning tree is illustrated in Figure 3.

a b c d

e
f

g

Edge removed: {a, e}

(a)

a b c d

e
f

g

{e, f}

(b)

a b c d

e
f

g

{c, g}

(c)

FIGURE 3 Producing a Spanning Tree for G by Removing Edges That Form Simple Circuits.

786 11 / Trees

a b c d

e
f

g

a b c d

e f g

a b c d

e
f

g

a b c d

e f g

FIGURE 4 Spanning Trees of G.

The tree shown in Figure 3 is not the only spanning tree ofG. For instance, each of the trees
shown in Figure 4 is a spanning tree of G. ▲

THEOREM 1 A simple graph is connected if and only if it has a spanning tree.

Proof: First, suppose that a simple graphG has a spanning tree T . T contains every vertex ofG.
Furthermore, there is a path in T between any two of its vertices. Because T is a subgraph ofG,
there is a path in G between any two of its vertices. Hence, G is connected.

Now suppose thatG is connected. IfG is not a tree, it must contain a simple circuit. Remove
an edge from one of these simple circuits. The resulting subgraph has one fewer edge but still
contains all the vertices of G and is connected. This subgraph is still connected because when
two vertices are connected by a path containing the removed edge, they are connected by a path
not containing this edge. We can construct such a path by inserting into the original path, at
the point where the removed edge once was, the simple circuit with this edge removed. If this
subgraph is not a tree, it has a simple circuit; so as before, remove an edge that is in a simple
circuit. Repeat this process until no simple circuits remain. This is possible because there are
only a finite number of edges in the graph. The process terminates when no simple circuits
remain. A tree is produced because the graph stays connected as edges are removed. This tree
is a spanning tree because it contains every vertex of G.

Spanning trees are important in data networking, as Example 2 shows.

EXAMPLE 2 IP Multicasting Spanning trees play an important role in multicasting over Internet Protocol
(IP) networks. To send data from a source computer to multiple receiving computers, each of
which is a subnetwork, data could be sent separately to each computer. This type of networking,
called unicasting, is inefficient, because many copies of the same data are transmitted over the
network. To make the transmission of data to multiple receiving computers more efficient, IP
multicasting is used. With IP multicasting, a computer sends a single copy of data over the
network, and as data reaches intermediate routers, the data are forwarded to one or more other
routers so that ultimately all receiving computers in their various subnetworks receive these data.
(Routers are computers that are dedicated to forwarding IP datagrams between subnetworks in
a network. In multicasting, routers use Class D addresses, each representing a session that
receiving computers may join; see Example 17 in Section 6.1.)

For data to reach receiving computers as quickly as possible, there should be no loops
(which in graph theory terminology are circuits or cycles) in the path that data take through the
network. That is, once data have reached a particular router, data should never return to this

11.4 Spanning Trees 787

Source

IP network

(a)

Subnetwork

Router

Subnetwork with a receiving station

Source

Multicast spanning tree

(b)

FIGURE 5 A Multicast Spanning Tree.

router. To avoid loops, the multicast routers use network algorithms to construct a spanning tree
in the graph that has the multicast source, the routers, and the subnetworks containing receiving
computers as vertices, with edges representing the links between computers and/or routers.
The root of this spanning tree is the multicast source. The subnetworks containing receiving
computers are leaves of the tree. (Note that subnetworks not containing receiving stations are
not included in the graph.) This is illustrated in Figure 5. ▲

Depth-First Search

The proof of Theorem 1 gives an algorithm for finding spanning trees by removing edges from
simple circuits. This algorithm is inefficient, because it requires that simple circuits be identified.
Instead of constructing spanning trees by removing edges, spanning trees can be built up by
successively adding edges. Two algorithms based on this principle will be presented here.

We can build a spanning tree for a connected simple graph using depth-first search. We
will form a rooted tree, and the spanning tree will be the underlying undirected graph of this
rooted tree. Arbitrarily choose a vertex of the graph as the root. Form a path starting at this
vertex by successively adding vertices and edges, where each new edge is incident with the last
vertex in the path and a vertex not already in the path. Continue adding vertices and edges to this
path as long as possible. If the path goes through all vertices of the graph, the tree consisting of
this path is a spanning tree. However, if the path does not go through all vertices, more vertices
and edges must be added. Move back to the next to last vertex in the path, and, if possible, form
a new path starting at this vertex passing through vertices that were not already visited. If this
cannot be done, move back another vertex in the path, that is, two vertices back in the path, and
try again.

Repeat this procedure, beginning at the last vertex visited, moving back up the path one
vertex at a time, forming new paths that are as long as possible until no more edges can be
added. Because the graph has a finite number of edges and is connected, this process ends with
the production of a spanning tree. Each vertex that ends a path at a stage of the algorithm will
be a leaf in the rooted tree, and each vertex where a path is constructed starting at this vertex
will be an internal vertex.

788 11 / Trees

a

b g

d i j

khe

f
c

FIGURE 6 The Graph G.

g

h

k

f

j

(a)

f

g

h

k

f

j

i

(b) (c)

g

h

k

f

j

i

(d)

e

c

d

a

g

h

k

f

j

i

(e)

e

c

d

ab

FIGURE 7 Depth-First Search of G.

The reader should note the recursive nature of this procedure. Also, note that if the vertices
in the graph are ordered, the choices of edges at each stage of the procedure are all determined
when we always choose the first vertex in the ordering that is available. However, we will not
always explicitly order the vertices of a graph.

Depth-first search is also called backtracking, because the algorithm returns to vertices
previously visited to add paths. Example 3 illustrates backtracking.

EXAMPLE 3 Use depth-first search to find a spanning tree for the graph G shown in Figure 6.

Solution: The steps used by depth-first search to produce a spanning tree of G are shown in
Figure 7. We arbitrarily start with the vertex f . A path is built by successively adding edges
incident with vertices not already in the path, as long as this is possible. This produces a path
f , g, h, k, j (note that other paths could have been built). Next, backtrack to k. There is no
path beginning at k containing vertices not already visited. So we backtrack to h. Form the
path h, i. Then backtrack to h, and then to f . From f build the path f , d , e, c, a. Then backtrack
to c and form the path c, b. This produces the spanning tree. ▲

The edges selected by depth-first search of a graph are called tree edges. All other edges
of the graph must connect a vertex to an ancestor or descendant of this vertex in the tree. These
edges are called back edges. (Exercise 43 asks for a proof of this fact.)

EXAMPLE 4 In Figure 8 we highlight the tree edges found by depth-first search starting at vertexf by showing
them with heavy colored lines. The back edges (e, f) and (f, h) are shown with thinner black
lines. ▲

We have explained how to find a spanning tree of a graph using depth-first search. However,
our discussion so far has not brought out the recursive nature of depth-first search. To help
make the recursive nature of the algorithm clear, we need a little terminology. We say that we

a d

b g

i j

khe

f
c

FIGURE 8 The Tree Edges and Back Edges

of the Depth-First Search in Example 4.

11.4 Spanning Trees 789

explore from a vertex v when we carry out the steps of depth-first search beginning when v is
added to the tree and ending when we have backtracked back to v for the last time. The key
observation needed to understand the recursive nature of the algorithm is that when we add an
edge connecting a vertex v to a vertex w, we finish exploring from w before we return to v to
complete exploring from v.

In Algorithm 1 we construct the spanning tree of a graphG with vertices v1, . . . , vn by first
selecting the vertex v1 to be the root. We initially set T to be the tree with just this one vertex.
At each step we add a new vertex to the tree T together with an edge from a vertex already
in T to this new vertex and we explore from this new vertex. Note that at the completion of
the algorithm, T contains no simple circuits because no edge is ever added that connects two
vertices in the tree. Moreover, T remains connected as it is built. (These last two observations
can be easily proved via mathematical induction.) Because G is connected, every vertex in G
is visited by the algorithm and is added to the tree (as the reader should verify). It follows
that T is a spanning tree of G.

ALGORITHM 1 Depth-First Search.

procedure DFS(G: connected graph with vertices v1, v2, . . . , vn)

T := tree consisting only of the vertex v1

visit(v1)

procedure visit(v: vertex of G)

for each vertex w adjacent to v and not yet in T

add vertex w and edge {v,w} to T

visit(w)

We now analyze the computational complexity of the depth-first search algorithm. The key
observation is that for each vertex v, the procedure visit(v) is called when the vertex v is first
encountered in the search and it is not called again. Assuming that the adjacency lists for G are
available (see Section 10.3), no computations are required to find the vertices adjacent to v. As
we follow the steps of the algorithm, we examine each edge at most twice to determine whether
to add this edge and one of its endpoints to the tree. Consequently, the procedure DFS constructs
a spanning tree usingO(e), orO(n2), steps where e and n are the number of edges and vertices
in G, respectively. [Note that a step involves examining a vertex to see whether it is already in
the spanning tree as it is being built and adding this vertex and the corresponding edge if the
vertex is not already in the tree. We have also made use of the inequality e ≤ n(n− 1)/2, which
holds for any simple graph.]

Depth-first search can be used as the basis for algorithms that solve many different problems.
For example, it can be used to find paths and circuits in a graph, it can be used to determine
the connected components of a graph, and it can be used to find the cut vertices of a connected
graph. As we will see, depth-first search is the basis of backtracking techniques used to search
for solutions of computationally difficult problems. (See [GrYe05], [Ma89], and [CoLeRiSt09]
for a discussion of algorithms based on depth-first search.)

Breadth-First Search

We can also produce a spanning tree of a simple graph by the use of breadth-first search.
Again, a rooted tree will be constructed, and the underlying undirected graph of this rooted tree
forms the spanning tree. Arbitrarily choose a root from the vertices of the graph. Then add all

790 11 / Trees

km

j
h

i

d

a b c l

ge f

FIGURE 9 A Graph G.

edges incident to this vertex. The new vertices added at this stage become the vertices at level 1
in the spanning tree. Arbitrarily order them. Next, for each vertex at level 1, visited in order,
add each edge incident to this vertex to the tree as long as it does not produce a simple circuit.
Arbitrarily order the children of each vertex at level 1. This produces the vertices at level 2
in the tree. Follow the same procedure until all the vertices in the tree have been added. The
procedure ends because there are only a finite number of edges in the graph. A spanning tree is
produced because we have produced a tree containing every vertex of the graph. An example of
breadth-first search is given in Example 5.

EXAMPLE 5 Use breadth-first search to find a spanning tree for the graph shown in Figure 9.

Solution: The steps of the breadth-first search procedure are shown in Figure 10. We choose
the vertex e to be the root. Then we add edges incident with all vertices adjacent to e, so edges
from e to b, d, f , and i are added. These four vertices are at level 1 in the tree. Next, add the
edges from these vertices at level 1 to adjacent vertices not already in the tree. Hence, the edges
from b to a and c are added, as are edges from d to h, from f to j and g, and from i to k. The
new vertices a, c, h, j , g, and k are at level 2. Next, add edges from these vertices to adjacent
vertices not already in the graph. This adds edges from g to l and from k to m. ▲

We describe breadth-first search in pseudocode asAlgorithm 2. In this algorithm, we assume
the vertices of the connected graphG are ordered as v1, v2, . . . , vn. In the algorithm we use the
term “process” to describe the procedure of adding new vertices, and corresponding edges, to
the tree adjacent to the current vertex being processed as long as a simple circuit is not produced.

ml

kg j

e e

b d f i

e

b d f i

ha c kg j

e

b d f i

ha c

FIGURE 10 Breadth-First Search of G.

11.4 Spanning Trees 791

ALGORITHM 2 Breadth-First Search.

procedure BFS (G: connected graph with vertices v1, v2, . . . , vn)

T := tree consisting only of vertex v1

L := empty list

put v1 in the list L of unprocessed vertices

while L is not empty

remove the first vertex, v, from L

for each neighbor w of v

if w is not in L and not in T then

add w to the end of the list L

add w and edge {v,w} to T

We now analyze the computational complexity of breadth-first search. For each vertex v in
the graph we examine all vertices adjacent to v and we add each vertex not yet visited to the
tree T . Assuming we have the adjacency lists for the graph available, no computation is required
to determine which vertices are adjacent to a given vertex. As in the analysis of the depth-first
search algorithm, we see that we examine each edge at most twice to determine whether we
should add this edge and its endpoint not already in the tree. It follows that the breadth-first
search algorithm uses O(e) or O(n2) steps.

Breadth-first search is one of the most useful algorithms in graph theory. In particular, it can
serve as the basis for algorithms that solve a wide variety of problems. For example, algorithms
that find the connected components of a graph, that determine whether a graph is bipartite, and
that find the path with the fewest edges between two vertices in a graph can all be built using
breadth-first search.

Backtracking Applications

There are problems that can be solved only by performing an exhaustive search of all possible
solutions. One way to search systematically for a solution is to use a decision tree, where each
internal vertex represents a decision and each leaf a possible solution. To find a solution via
backtracking, first make a sequence of decisions in an attempt to reach a solution as long as this
is possible. The sequence of decisions can be represented by a path in the decision tree. Once
it is known that no solution can result from any further sequence of decisions, backtrack to the
parent of the current vertex and work toward a solution with another series of decisions, if this is
possible. The procedure continues until a solution is found, or it is established that no solution
exists. Examples 6 to 8 illustrate the usefulness of backtracking.

EXAMPLE 6 Graph Colorings How can backtracking be used to decide whether a graph can be colored
using n colors?

Solution: We can solve this problem using backtracking in the following way. First pick some
vertex a and assign it color 1. Then pick a second vertex b, and if b is not adjacent to a, assign
it color 1. Otherwise, assign color 2 to b. Then go on to a third vertex c. Use color 1, if possible,
for c. Otherwise use color 2, if this is possible. Only if neither color 1 nor color 2 can be used
should color 3 be used. Continue this process as long as it is possible to assign one of the n
colors to each additional vertex, always using the first allowable color in the list. If a vertex is
reached that cannot be colored by any of the n colors, backtrack to the last assignment made and
change the coloring of the last vertex colored, if possible, using the next allowable color in the
list. If it is not possible to change this coloring, backtrack farther to previous assignments, one
step back at a time, until it is possible to change a coloring of a vertex. Then continue assigning

792 11 / Trees

e d

a cb

a red, b blue

a red

a red, b blue, c red

a red, b blue, c red, d green

a red, b blue, c green

a red, b blue, c green, d red

a red, b blue, c green, d red, e green

FIGURE 11 Coloring a Graph Using Backtracking.

colors of additional vertices as long as possible. If a coloring using n colors exists, backtracking
will produce it. (Unfortunately this procedure can be extremely inefficient.)

In particular, consider the problem of coloring the graph shown in Figure 11 with three
colors. The tree shown in Figure 11 illustrates how backtracking can be used to construct a
3-coloring. In this procedure, red is used first, then blue, and finally green. This simple example
can obviously be done without backtracking, but it is a good illustration of the technique.

In this tree, the initial path from the root, which represents the assignment of red to a, leads
to a coloring with a red, b blue, c red, and d green. It is impossible to color e using any of
the three colors when a, b, c, and d are colored in this way. So, backtrack to the parent of the
vertex representing this coloring. Because no other color can be used for d , backtrack one more
level. Then change the color of c to green. We obtain a coloring of the graph by then assigning
red to d and green to e. ▲

EXAMPLE 7 The n-Queens Problem The n-queens problem asks how n queens can be placed on an n× n

chessboard so that no two queens can attack one another. How can backtracking be used to solve
the n-queens problem?

Solution: To solve this problem we must find n positions on an n× n chessboard so that no
two of these positions are in the same row, same column, or in the same diagonal [a diagonal
consists of all positions (i, j) with i + j = m for some m, or i − j = m for some m]. We will
use backtracking to solve the n-queens problem. We start with an empty chessboard. At stage
k + 1 we attempt putting an additional queen on the board in the (k + 1)st column, where there
are already queens in the first k columns. We examine squares in the (k + 1)st column starting
with the square in the first row, looking for a position to place this queen so that it is not in the
same row or on the same diagonal as a queen already on the board. (We already know it is not
in the same column.) If it is impossible to find a position to place the queen in the (k + 1)st
column, backtrack to the placement of the queen in the kth column, and place this queen in the
next allowable row in this column, if such a row exists. If no such row exists, backtrack further.

In particular, Figure 12 displays a backtracking solution to the four-queens problem. In this
solution, we place a queen in the first row and column. Then we put a queen in the third row of
the second column. However, this makes it impossible to place a queen in the third column. So
we backtrack and put a queen in the fourth row of the second column. When we do this, we can
place a queen in the second row of the third column. But there is no way to add a queen to the
fourth column. This shows that no solution results when a queen is placed in the first row and
column. We backtrack to the empty chessboard, and place a queen in the second row of the first
column. This leads to a solution as shown in Figure 12. ▲

11.4 Spanning Trees 793

X

X

X X

X

X

X

X

X

X X

X

X X

X

X

X

X

X represents a queen

FIGURE 12 A Backtracking Solution of the Four-Queens Problem.

EXAMPLE 8 Sums of Subsets Consider this problem. Given a set of positive integers x1, x2, . . . , xn, find
a subset of this set of integers that hasM as its sum. How can backtracking be used to solve this
problem?

Solution: We start with a sum with no terms. We build up the sum by successively adding terms.
An integer in the sequence is included if the sum remains less thanM when this integer is added
to the sum. If a sum is reached such that the addition of any term is greater thanM , backtrack
by dropping the last term of the sum.

Figure 13 displays a backtracking solution to the problem of finding a subset of
{31, 27, 15, 11, 7, 5} with the sum equal to 39. ▲

∅

Sum = 0

{31}

Sum = 31

{31, 7}

Sum = 38

{31, 5}

Sum = 36

{27}

Sum = 27

{27, 11}

Sum = 38

{27, 7}

Sum = 34

{27, 7, 5}

Sum = 39

FIGURE 13 Find a Sum Equal to 39 Using Backtracking.

794 11 / Trees

a
a d i

h

l

k

j

b

f

e

c

g

e
f g

h

b c d

i j

(a) (b)

k l

FIGURE 14 Depth-First Search of a Directed Graph.

Depth-First Search in Directed Graphs

We can easily modify both depth-first search and breadth-first search so that they can run given
a directed graph as input. However, the output will not necessarily be a spanning tree, but rather
a spanning forest. In both algorithms we can add an edge only when it is directed away from
the vertex that is being visited and to a vertex not yet added. If at a stage of either algorithm we
find that no edge exists starting at a vertex already added to one not yet added, the next vertex
added by the algorithm becomes the root of a new tree in the spanning forest. This is illustrated
in Example 9.

EXAMPLE 9 What is the output of depth-first search given the graph G shown in Figure 14(a) as input?

Solution: We begin the depth-first search at vertex a and add vertices b, c, and g and the
corresponding edges where we are blocked. We backtrack to c but we are still blocked, and then
backtrack to b, where we add vertices f and e and the corresponding edges. Backtracking takes
us all the way back to a. We then start a new tree at d and add vertices h, l, k, and j and the
corresponding edges. We backtrack to k, then l, then h, and back to d. Finally, we start a new
tree at i, completing the depth-first search. The output is shown in Figure 14(b). ▲

Depth-first search in directed graphs is the basis of many algorithms (see [GrYe05], [Ma89],
and [CoLeRiSt09]). It can be used to determine whether a directed graph has a circuit, it can
be used to carry out a topological sort of a graph, and it can also be used to find the strongly
connected components of a directed graph.

We conclude this section with an application of depth-first search and breadth-first search
to search engines on the Web.

EXAMPLE 10 Web Spiders To index websites, search engines such as Google and Yahoo systematically
explore the Web starting at known sites. These search engines use programs called Web spiders
(or crawlers or bots) to visit websites and analyze their contents. Web spiders use both depth-first
searching and breadth-first searching to create indices.As described in Example 5 in Section 10.1,
Web pages and links between them can be modeled by a directed graph called the Web graph.
Web pages are represented by vertices and links are represented by directed edges. Using depth-
first search, an initial Web page is selected, a link is followed to a second Web page (if there is
such a link), a link on the second Web page is followed to a third Web page, if there is such a
link, and so on, until a page with no new links is found. Backtracking is then used to examine

11.4 Spanning Trees 795

links at the previous level to look for new links, and so on. (Because of practical limitations, Web
spiders have limits to the depth they search in depth-first search.) Using breadth-first search, an
initial Web page is selected and a link on this page is followed to a second Web page, then a
second link on the initial page is followed (if it exists), and so on, until all links of the initial
page have been followed. Then links on the pages one level down are followed, page by page,
and so on. ▲

Exercises

1. How many edges must be removed from a connected
graph with n vertices andm edges to produce a spanning
tree?

In Exercises 2–6 find a spanning tree for the graph shown by
removing edges in simple circuits.

2. a b c

d e

3.

a
b c

g
f

d

e

4. a

h

b c

g f e

i j
d

5. a b

c
d

e

g

j

i k

h

lf

6.
d

b

e

g j

ha

c

f

i l

k

7. Find a spanning tree for each of these graphs.

a) K5 b) K4,4 c) K1,6

d) Q3 e) C5 f) W5

In Exercises 8–10 draw all the spanning trees of the given
simple graphs.

8. a

b c

9. a b f g

c d e h

10. c

d

b ea f

∗11. How many different spanning trees does each of these
simple graphs have?

a) K3 b) K4 c) K2,2 d) C5

∗12. How many nonisomorphic spanning trees does each of
these simple graphs have?

a) K3 b) K4 c) K5

In Exercises 13–15 use depth-first search to produce a span-
ning tree for the given simple graph. Choose a as the root of
this spanning tree and assume that the vertices are ordered
alphabetically.

13. e

f

dc

g j

h i

b

a

14. d

h

k

e fb

a

c

m

i

l n

g

j

796 11 / Trees

15.

s

qhg i

p

t

r

lo

je

k

a

b

c

d

f

mn

16. Use breadth-first search to produce a spanning tree for
each of the simple graphs in Exercises 13–15. Choose a
as the root of each spanning tree.

17. Use depth-first search to find a spanning tree of each of
these graphs.

a) W6 (see Example 7 of Section 10.2), starting at the
vertex of degree 6

b) K5

c) K3,4, starting at a vertex of degree 3

d) Q3

18. Use breadth-first search to find a spanning tree of each of
the graphs in Exercise 17.

19. Describe the trees produced by breadth-first search and
depth-first search of the wheel graph Wn, starting at the
vertex of degree n, where n is an integer with n ≥ 3. (See
Example 7 of Section 10.2.) Justify your answers.

20. Describe the trees produced by breadth-first search and
depth-first search of the complete graphKn, where n is a
positive integer. Justify your answers.

21. Describe the trees produced by breadth-first search and
depth-first search of the complete bipartite graph Km,n,
starting at a vertex of degreem, wherem andn are positive
integers. Justify your answers.

22. Describe the tree produced by breadth-first search and
depth-first search for the n-cube graph Qn, where n is a
positive integer.

23. Suppose that an airline must reduce its flight schedule to
save money. If its original routes are as illustrated here,
which flights can be discontinued to retain service be-
tween all pairs of cities (where it may be necessary to
combine flights to fly from one city to another)?

Boston

Bangor

New York

Washington

Atlanta

Dallas
San Diego

Los
Angeles

San
Francisco

Seattle
Chicago

Detroit

Denver

St. Louis

24. Explain how breadth-first search or depth-first search can
be used to order the vertices of a connected graph.

∗25. Show that the length of the shortest path between ver-
tices v and u in a connected simple graph equals the level
number of u in the breadth-first spanning tree of G with
root v.

26. Use backtracking to try to find a coloring of each of the
graphs in Exercises 7–9 of Section 10.8 using three col-
ors.

27. Use backtracking to solve the n-queens problem for these
values of n.

a) n = 3 b) n = 5 c) n = 6

28. Use backtracking to find a subset, if it exists, of the set
{27, 24, 19, 14, 11, 8} with sum

a) 20. b) 41. c) 60.

29. Explain how backtracking can be used to find a Hamilton
path or circuit in a graph.

30. a) Explain how backtracking can be used to find the way
out of a maze, given a starting position and the exit
position. Consider the maze divided into positions,
where at each position the set of available moves in-
cludes one to four possibilities (up, down, right, left).

b) Find a path from the starting position marked by X to
the exit in this maze.

X

Exit

A spanning forest of a graphG is a forest that contains every
vertex of G such that two vertices are in the same tree of the
forest when there is a path in G between these two vertices.

31. Show that every finite simple graph has a spanning forest.

32. How many trees are in the spanning forest of a graph?

33. How many edges must be removed to produce the span-
ning forest of a graph with n vertices, m edges, and c
connected components?

34. LetG be a connected graph. Show that if T is a spanning
tree of G constructed using breadth-first search, then an
edge ofG not in T must connect vertices at the same level
or at levels that differ by 1 in this spanning tree.

35. Explain how to use breadth-first search to find the length
of a shortest path between two vertices in an undirected
graph.

36. Devise an algorithm based on breadth-first search that de-
termines whether a graph has a simple circuit, and if so,
finds one.

37. Devise an algorithm based on breadth-first search for find-
ing the connected components of a graph.

38. Explain how breadth-first search and how depth-first
search can be used to determine whether a graph is bipar-
tite.

39. Which connected simple graphs have exactly one span-
ning tree?

40. Devise an algorithm for constructing the spanning for-
est of a graph based on deleting edges that form simple
circuits.

11.5 Minimum Spanning Trees 797

41. Devise an algorithm for constructing the spanning forest
of a graph based on depth-first searching.

42. Devise an algorithm for constructing the spanning forest
of a graph based on breadth-first searching.

43. Let G be a connected graph. Show that if T is a span-
ning tree of G constructed using depth-first search, then
an edge of G not in T must be a back edge, that is, it
must connect a vertex to one of its ancestors or one of its
descendants in T .

44. When must an edge of a connected simple graph be in
every spanning tree for this graph?

45. For which graphs do depth-first search and breadth-first
search produce identical spanning trees no matter which
vertex is selected as the root of the tree? Justify your an-
swer.

46. Use Exercise 43 to prove that ifG is a connected, simple
graph with n vertices and G does not contain a simple
path of length k then it contains at most (k − 1)n edges.

47. Use mathematical induction to prove that breadth-first
search visits vertices in order of their level in the result-
ing spanning tree.

48. Use pseudocode to describe a variation of depth-first
search that assigns the integer n to the nth vertex vis-
ited in the search. Show that this numbering corresponds
to the numbering of the vertices created by a preorder
traversal of the spanning tree.

49. Use pseudocode to describe a variation of breadth-first
search that assigns the integerm to themth vertex visited
in the search.

∗50. Suppose that G is a directed graph and T is a spanning
tree constructed using breadth-first search. Show that ev-
ery edge of G has endpoints that are at the same level or
one level higher or lower.

51. Show that if G is a directed graph and T is a spanning
tree constructed using depth-first search, then every edge
not in the spanning tree is a forward edge connecting
an ancestor to a descendant, a back edge connecting a
descendant to an ancestor, or a cross edge connecting a
vertex to a vertex in a previously visited subtree.

∗52. Describe a variation of depth-first search that assigns the
smallest available positive integer to a vertex when the
algorithm is totally finished with this vertex. Show that in
this numbering, each vertex has a larger number than its

children and that the children have increasing numbers
from left to right.

Let T1 and T2 be spanning trees of a graph. The distance be-
tween T1 and T2 is the number of edges in T1 and T2 that are
not common to T1 and T2.

53. Find the distance between each pair of spanning trees
shown in Figures 3(c) and 4 of the graph G shown in
Figure 2.

∗54. Suppose that T1, T2, and T3 are spanning trees of the
simple graph G. Show that the distance between T1

andT3 does not exceed the sum of the distance betweenT1

and T2 and the distance between T2 and T3.

∗∗55. Suppose that T1 and T2 are spanning trees of a simple
graph G. Moreover, suppose that e1 is an edge in T1 that
is not in T2. Show that there is an edge e2 in T2 that is not
in T1 such that T1 remains a spanning tree if e1 is removed
from it and e2 is added to it, and T2 remains a spanning
tree if e2 is removed from it and e1 is added to it.

∗56. Show that it is possible to find a sequence of spanning
trees leading from any spanning tree to any other by suc-
cessively removing one edge and adding another.

A rooted spanning tree of a directed graph is a rooted tree
containing edges of the graph such that every vertex of the
graph is an endpoint of one of the edges in the tree.

57. For each of the directed graphs in Exercises 18–23 of Sec-
tion 10.5 either find a rooted spanning tree of the graph
or determine that no such tree exists.

∗58. Show that a connected directed graph in which each ver-
tex has the same in-degree and out-degree has a rooted
spanning tree. [Hint: Use an Euler circuit.]

∗59. Give an algorithm to build a rooted spanning tree for con-
nected directed graphs in which each vertex has the same
in-degree and out-degree.

∗60. Show that if G is a directed graph and T is a spanning
tree constructed using depth-first search, thenG contains
a circuit if and only if G contains a back edge (see Exer-
cise 51) relative to the spanning tree T .

∗61. Use Exercise 60 to construct an algorithm for determining
whether a directed graph contains a circuit.

11.5 Minimum Spanning Trees

Introduction

A company plans to build a communications network connecting its five computer centers. Any
pair of these centers can be linked with a leased telephone line. Which links should be made to
ensure that there is a path between any two computer centers so that the total cost of the network
is minimized? We can model this problem using the weighted graph shown in Figure 1, where
vertices represent computer centers, edges represent possible leased lines, and the weights on
edges are the monthly lease rates of the lines represented by the edges. We can solve this problem

798 11 / Trees

New York

Atlanta

Chicago

San Francisco

$2000

$1200

$2200

$1400

$1600$1300
$900

$1000

$700

$8
00Denver

FIGURE 1 AWeighted Graph Showing Monthly Lease

Costs for Lines in a Computer Network.

by finding a spanning tree so that the sum of the weights of the edges of the tree is minimized.
Such a spanning tree is called a minimum spanning tree.

Algorithms for Minimum Spanning Trees

A wide variety of problems are solved by finding a spanning tree in a weighted graph such that
the sum of the weights of the edges in the tree is a minimum.

DEFINITION 1 A minimum spanning tree in a connected weighted graph is a spanning tree that has the
smallest possible sum of weights of its edges.

We will present two algorithms for constructing minimum spanning trees. Both proceed by
successively adding edges of smallest weight from those edges with a specified property that
have not already been used. Both are greedy algorithms. Recall from Section 3.1 that a greedy
algorithm is a procedure that makes an optimal choice at each of its steps. Optimizing at each step
does not guarantee that the optimal overall solution is produced. However, the two algorithms
presented in this section for constructing minimum spanning trees are greedy algorithms that
do produce optimal solutions.

The first algorithm that we will discuss was originally discovered by the Czech mathe-
matician Vojtěch Jarník in 1930, who described it in a paper in an obscure Czech journal. The
algorithm became well known when it was rediscovered in 1957 by Robert Prim. Because of
this, it is known as Prim’s algorithm (and sometimes as the Prim-Jarník algorithm). Begin
by choosing any edge with smallest weight, putting it into the spanning tree. Successively add to
the tree edges of minimum weight that are incident to a vertex already in the tree, never forming
a simple circuit with those edges already in the tree. Stop when n− 1 edges have been added.

Later in this section, we will prove that this algorithm produces a minimum spanning tree for
any connected weighted graph. Algorithm 1 gives a pseudocode description of Prim’s algorithm.

ROBERT CLAY PRIM (BORN 1921) Robert Prim, born in Sweetwater, Texas, received his B.S. in electrical
engineering in 1941 and his Ph.D. in mathematics from Princeton University in 1949. He was an engineer at
the General Electric Company from 1941 until 1944, an engineer and mathematician at the United States Naval
Ordnance Lab from 1944 until 1949, and a research associate at Princeton University from 1948 until 1949.
Among the other positions he has held are director of mathematics and mechanics research at Bell Telephone
Laboratories from 1958 until 1961 and vice president of research at Sandia Corporation. He is currently retired.

11.5 Minimum Spanning Trees 799

New York

Atlanta

Chicago

San Francisco

$2000

$1200

$2200

$1400

$1600$1300
$900

$1000

$700

$8
00Denver

EdgeChoice Cost

{Chicago, Atlanta}

{Atlanta, New York}

{Chicago, San Francisco}

{San Francisco, Denver}

1

2

3

4

700

800

1200

900

$

$

$

$

3600$Total:

FIGURE 2 A Minimum Spanning Tree for the Weighted

Graph in Figure 1.

a b c d2 3 1

4 3 3

3 3 1

3

4

5

3

2

4

1

2

i j k l

f g
he

FIGURE 3 AWeighted Graph.

ALGORITHM 1 Prim’s Algorithm.

procedure Prim(G: weighted connected undirected graph with n vertices)

T := a minimum-weight edge

for i := 1 to n− 2

e := an edge of minimum weight incident to a vertex in T and not forming a

simple circuit in T if added to T

T := T with e added

return T {T is a minimum spanning tree of G}

Note that the choice of an edge to add at a stage of the algorithm is not determined when there
is more than one edge with the same weight that satisfies the appropriate criteria. We need to
order the edges to make the choices deterministic. We will not worry about this in the remainder
of the section. Also note that there may be more than one minimum spanning tree for a given
connected weighted simple graph. (See Exercise 9.) Examples 1 and 2 illustrate how Prim’s
algorithm is used.

EXAMPLE 1 Use Prim’s algorithm to design a minimum-cost communications network connecting all the
computers represented by the graph in Figure 1.

Solution: We solve this problem by finding a minimum spanning tree in the graph in Figure 1.
Prim’s algorithm is carried out by choosing an initial edge of minimum weight and successively
adding edges of minimum weight that are incident to a vertex in the tree and that do not form
simple circuits. The edges in color in Figure 2 show a minimum spanning tree produced by
Prim’s algorithm, with the choice made at each step displayed. ▲

EXAMPLE 2 Use Prim’s algorithm to find a minimum spanning tree in the graph shown in Figure 3.

Solution: A minimum spanning tree constructed using Prim’s algorithm is shown in Figure 4.
The successive edges chosen are displayed. ▲

The second algorithm we will discuss was discovered by Joseph Kruskal in 1956, although
the basic ideas it uses were described much earlier. To carry out Kruskal’s algorithm, choose
an edge in the graph with minimum weight.

800 11 / Trees

a b c d2 3 1

4 3 3

3 3 1

3

4

5

3

2

4

1

2

i j k l

f g
he

Choice Edge Weight

1

2

3

4

5

6

7

8

9

10

11

b, f

a, b

f, j

a, e

i, j

f, g

c, g

c, d

g, h

h, l

k, l

1

2

2

3

3

3

2

1

3

3

1

{

{

{

{

{

{

{

{

{

{

{

}

}

}

}

}

}

}

}

}

}

}

24Total:

(b)(a)

FIGURE 4 A Minimum Spanning Tree Produced Using Prim’s Algorithm.

Successively add edges with minimum weight that do not form a simple circuit with those
edges already chosen. Stop after n− 1 edges have been selected.

The proof that Kruskal’s algorithm produces a minimum spanning tree for every connected
weighted graph is left as an exercise. Pseudocode for Kruskal’s algorithm is given inAlgorithm 2.

ALGORITHM 2 Kruskal’s Algorithm.

procedure Kruskal(G: weighted connected undirected graph with n vertices)

T := empty graph

for i := 1 to n− 1

e := any edge in G with smallest weight that does not form a simple circuit

when added to T

T := T with e added

return T {T is a minimum spanning tree of G}

JOSEPH BERNARD KRUSKAL (1928–2010) Joseph Kruskal was born in New York City, where his father
was a fur dealer and his mother promoted the art of origami on early television. Kruskal attended the University
of Chicago and received his Ph.D. from Princeton University in 1954. He was an instructor in mathematics
at Princeton and at the University of Wisconsin, and later he was an assistant professor at the University of
Michigan. In 1959 he became a member of the technical staff at Bell Laboratories, where he worked until his
retirement in the late 1990s. Kruskal discovered his algorithm for producing minimum spanning trees when

he was a second-year graduate student. He was not sure his 2
1
2 -page paper on this subject was worthy of

publication, but was convinced by others to submit it. His research interests included statistical linguistics
and psychometrics. Besides his work on minimum spanning trees, Kruskal is also known for contributions to
multidimensional scaling. It is noteworthy that Joseph Kruskal’s two brothers, Martin and William, also were
well known mathematicians.

HISTORICAL NOTE Joseph Kruskal and Robert Prim developed their algorithms for constructing minimum
spanning trees in the mid-1950s. However, they were not the first people to discover such algorithms. For
example, the work of the anthropologist Jan Czekanowski, in 1909, contains many of the ideas required to find
minimum spanning trees. In 1926, Otakar Boruvka described methods for constructing minimum spanning trees
in work relating to the construction of electric power networks, and as mentioned in the text what is now called
Prim’s algorithm was discovered by Vojtěch Jarník in 1930.

11.5 Minimum Spanning Trees 801

a b c d2 3 1

4 3 3

3 3 1

3

4

5

3

2

4

1

2

i j k l

f g
he

Choice Edge Weight

1

2

3

4

5

6

7

8

9

10

11

c, d

k, l

b, f

c, g

a, b

f, j

b, c

j, k

g, h

i, j

a, e

1

1

1

2

2

2

3

3

3

3

3

{

{

{

{

{

{

{

{

{

{

{

}

}

}

}

}

}

}

}

}

}

}

24Total:

(b)(a)

FIGURE 5 A Minimum Spanning Tree Produced by Kruskal’s Algorithm.

The reader should note the difference between Prim’s and Kruskal’s algorithms. In Prim’s
algorithm edges of minimum weight that are incident to a vertex already in the tree, and not
forming a circuit, are chosen; whereas in Kruskal’s algorithm edges of minimum weight that
are not necessarily incident to a vertex already in the tree, and that do not form a circuit, are
chosen. Note that as in Prim’s algorithm, if the edges are not ordered, there may be more than
one choice for the edge to add at a stage of this procedure. Consequently, the edges need to be
ordered for the procedure to be deterministic. Example 3 illustrates how Kruskal’s algorithm is
used.

EXAMPLE 3 Use Kruskal’s algorithm to find a minimum spanning tree in the weighted graph shown in
Figure 3.

Solution:A minimum spanning tree and the choices of edges at each stage of Kruskal’s algorithm
are shown in Figure 5. ▲

We will now prove that Prim’s algorithm produces a minimum spanning tree of a connected
weighted graph.

Proof: Let G be a connected weighted graph. Suppose that the successive edges chosen by
Prim’s algorithm are e1, e2, . . . , en−1. Let S be the tree with e1, e2, . . . , en−1 as its edges, and
let Sk be the tree with e1, e2, . . . , ek as its edges. Let T be a minimum spanning tree of G
containing the edges e1, e2, . . . , ek , where k is the maximum integer with the property that a
minimum spanning tree exists containing the first k edges chosen by Prim’s algorithm. The
theorem follows if we can show that S = T .

Suppose that S = T , so that k < n− 1. Consequently, T contains e1, e2, . . . , ek , but
not ek+1. Consider the graph made up of T together with ek+1. Because this graph is con-
nected and has n edges, too many edges to be a tree, it must contain a simple circuit. This simple
circuit must contain ek+1 because there was no simple circuit in T . Furthermore, there must be
an edge in the simple circuit that does not belong to Sk+1 because Sk+1 is a tree. By starting
at an endpoint of ek+1 that is also an endpoint of one of the edges e1, . . . , ek , and following
the circuit until it reaches an edge not in Sk+1, we can find an edge e not in Sk+1 that has an
endpoint that is also an endpoint of one of the edges e1, e2, . . . , ek .

By deleting e from T and adding ek+1, we obtain a tree T with n− 1 edges (it is a tree be-
cause it has no simple circuits). Note that the tree T contains e1, e2, . . . , ek, ek+1. Furthermore,
because ek+1 was chosen by Prim’s algorithm at the (k + 1)st step, and e was also available at
that step, the weight of ek+1 is less than or equal to the weight of e. From this observation, it
follows that T is also a minimum spanning tree, because the sum of the weights of its edges

802 11 / Trees

does not exceed the sum of the weights of the edges of T . This contradicts the choice of k as
the maximum integer such that a minimum spanning tree exists containing e1, . . . , ek . Hence,
k = n− 1, and S = T . It follows that Prim’s algorithm produces a minimum spanning tree.

It can be shown (see [CoLeRiSt09]) that to find a minimum spanning tree of a graph withm
edges and n vertices, Kruskal’s algorithm can be carried out using O(m logm) operations and
Prim’s algorithm can be carried out usingO(m log n) operations. Consequently, it is preferable
to use Kruskal’s algorithm for graphs that are sparse, that is, wherem is very small compared to
C(n, 2) = n(n− 1)/2, the total number of possible edges in an undirected graph with n vertices.
Otherwise, there is little difference in the complexity of these two algorithms.

Exercises

1. The roads represented by this graph are all unpaved. The
lengths of the roads between pairs of towns are repre-
sented by edge weights. Which roads should be paved
so that there is a path of paved roads between each
pair of towns so that a minimum road length is paved?
(Note: These towns are in Nevada.)

Dyer Goldfield
25

Beatty

Gold

Point

Deep Springs

Oasis

Silver Pea

Lida

Tonopah

Manhattan

Warm Springs

20

30

45

70
12

10

25

2
3

20

35

40

25

55

60

80

21

In Exercises 2–4 use Prim’s algorithm to find a minimum
spanning tree for the given weighted graph.

2. a b1

4 3

1c d

e

3

2
3

2

3. a c5

2 3

4g i

e

5

1

3

7

6

8 4
6 4

h

4

2

3

b

d f

4.

a c1

1 3

f

3

2b

e

d

1

h

m on p

1

2 3 2

3 4 3

2 2 3

2 43 3

3 34 2

g

j k
i l

2

2

2

2

5. Use Kruskal’s algorithm to design the communications
network described at the beginning of the section.

6. Use Kruskal’s algorithm to find a minimum spanning tree
for the weighted graph in Exercise 2.

7. Use Kruskal’s algorithm to find a minimum spanning tree
for the weighted graph in Exercise 3.

8. Use Kruskal’s algorithm to find a minimum spanning tree
for the weighted graph in Exercise 4.

9. Find a connected weighted simple graph with the fewest
edges possible that has more than one minimum spanning
tree.

10. A minimum spanning forest in a weighted graph is a
spanning forest with minimal weight. Explain how Prim’s
and Kruskal’s algorithms can be adapted to construct min-
imum spanning forests.

A maximum spanning tree of a connected weighted undi-
rected graph is a spanning tree with the largest possible weight.

11. Devise an algorithm similar to Prim’s algorithm for
constructing a maximum spanning tree of a connected
weighted graph.

12. Devise an algorithm similar to Kruskal’s algorithm for
constructing a maximum spanning tree of a connected
weighted graph.

13. Find a maximum spanning tree for the weighted graph in
Exercise 2.

14. Find a maximum spanning tree for the weighted graph in
Exercise 3.

Key Terms and Results 803

15. Find a maximum spanning tree for the weighted graph in
Exercise 4.

16. Find the second least expensive communications network
connecting the five computer centers in the problem posed
at the beginning of the section.

∗17. Devise an algorithm for finding the second shortest span-
ning tree in a connected weighted graph.

∗18. Show that an edge with smallest weight in a connected
weighted graph must be part of any minimum spanning
tree.

19. Show that there is a unique minimum spanning tree in a
connected weighted graph if the weights of the edges are
all different.

20. Suppose that the computer network connecting the cities
in Figure 1 must contain a direct link between New York
and Denver. What other links should be included so that
there is a link between every two computer centers and
the cost is minimized?

21. Find a spanning tree with minimal total weight contain-
ing the edges {e, i} and {g, k} in the weighted graph in
Figure 3.

22. Describe an algorithm for finding a spanning tree with
minimal weight containing a specified set of edges in a
connected weighted undirected simple graph.

23. Express the algorithm devised in Exercise 22 in pseu-
docode.

Sollin’s algorithm produces a minimum spanning tree from
a connected weighted simple graph G = (V ,E) by succes-
sively adding groups of edges. Suppose that the vertices in V
are ordered. This produces an ordering of the edges where
{u0, v0} precedes {u1, v1} if u0 precedes u1 or if u0 = u1

and v0 precedes v1. The algorithm begins by simultaneously
choosing the edge of least weight incident to each vertex. The
first edge in the ordering is taken in the case of ties. This pro-
duces a graph with no simple circuits, that is, a forest of trees
(Exercise 24 asks for a proof of this fact). Next, simultaneously
choose for each tree in the forest the shortest edge between a
vertex in this tree and a vertex in a different tree.Again the first
edge in the ordering is chosen in the case of ties. (This pro-
duces a graph with no simple circuits containing fewer trees
than were present before this step; see Exercise 24.) Continue
the process of simultaneously adding edges connecting trees
until n− 1 edges have been chosen. At this stage a minimum
spanning tree has been constructed.

∗24. Show that the addition of edges at each stage of Sollin’s
algorithm produces a forest.

25. Use Sollin’s algorithm to produce a minimum spanning
tree for the weighted graph shown in

a) Figure 1.

b) Figure 3.
∗26. Express Sollin’s algorithm in pseudocode.

∗∗27. Prove that Sollin’s algorithm produces a minimum span-
ning tree in a connected undirected weighted graph.

∗28. Show that the first step of Sollin’s algorithm produces a
forest containing at least n/2 edges when the input is
an undirected graph with n vertices.

∗29. Show that if there are r trees in the forest at some interme-
diate step of Sollin’s algorithm, then at least r/2 edges
are added by the next iteration of the algorithm.

∗30. Show that when given as input an undirected graph with n
vertices, no more than n/2k trees remain after the first
step of Sollin’s algorithm has been carried out and the
second step of the algorithm has been carried out k − 1
times.

∗31. Show that Sollin’s algorithm requires at most log n iter-
ations to produce a minimum spanning tree from a con-
nected undirected weighted graph with n vertices.

32. Prove that Kruskal’s algorithm produces minimum span-
ning trees.

33. Show that if G is a weighted graph with distinct edge
weights, then for every simple circuit of G, the edge of
maximum weight in this circuit does not belong to any
minimum spanning tree of G.

When Kruskal invented the algorithm that finds minimum
spanning trees by adding edges in order of increasing weight
as long as they do not form a simple circuit, he also invented
another algorithm sometimes called the reverse-delete al-

gorithm. This algorithm proceeds by successively deleting
edges of maximum weight from a connected graph as long as
doing so does not disconnect the graph.

34. Express the reverse-delete algorithm in pseudocode.

35. Prove that the reverse-delete algorithm always produces
a minimum spanning tree when given as input a weighted
graph with distinct edge weights. [Hint: Use Exercise 33.]

Key Terms and Results

TERMS

tree: a connected undirected graph with no simple circuits

forest: an undirected graph with no simple circuits

rooted tree: a directed graph with a specified vertex, called the
root, such that there is a unique path to every other vertex
from this root

subtree: a subgraph of a tree that is also a tree

parent of v in a rooted tree: the vertex u such that (u, v) is an
edge of the rooted tree

child of a vertex v in a rooted tree: any vertex with v as its
parent

sibling of a vertex v in a rooted tree: a vertex with the same
parent as v

ancestor of a vertex v in a rooted tree: any vertex on the path
from the root to v

804 11 / Trees

descendant of a vertex v in a rooted tree: any vertex that has
v as an ancestor

internal vertex: a vertex that has children
leaf: a vertex with no children
level of a vertex: the length of the path from the root to this

vertex
height of a tree: the largest level of the vertices of a tree
m-ary tree: a tree with the property that every internal vertex

has no more than m children
full m-ary tree: a tree with the property that every internal

vertex has exactly m children
binary tree: an m-ary tree with m = 2 (each child may be

designated as a left or a right child of its parent)
ordered tree: a tree in which the children of each internal

vertex are linearly ordered
balanced tree: a tree in which every leaf is at level h or h− 1,

where h is the height of the tree
binary search tree: a binary tree in which the vertices are la-

beled with items so that a label of a vertex is greater than
the labels of all vertices in the left subtree of this vertex and
is less than the labels of all vertices in the right subtree of
this vertex

decision tree: a rooted tree where each vertex represents a
possible outcome of a decision and the leaves represent the
possible solutions of a problem

game tree: a rooted tree where vertices represents the possi-
ble positions of a game as it progresses and edges represent
legal moves between these positions

prefix code: a code that has the property that the code of a
character is never a prefix of the code of another character

minmax strategy: the strategy where the first player and sec-
ond player move to positions represented by a child with
maximum and minimum value, respectively

value of a vertex in a game tree: for a leaf, the payoff to the
first player when the game terminates in the position repre-
sented by this leaf; for an internal vertex, the maximum or
minimum of the values of its children, for an internal vertex
at an even or odd level, respectively

tree traversal: a listing of the vertices of a tree
preorder traversal: a listing of the vertices of an ordered

rooted tree defined recursively—the root is listed, followed
by the first subtree, followed by the other subtrees in the
order they occur from left to right

inorder traversal: a listing of the vertices of an ordered rooted
tree defined recursively—the first subtree is listed, followed
by the root, followed by the other subtrees in the order they
occur from left to right

postorder traversal: a listing of the vertices of an ordered
rooted tree defined recursively—the subtrees are listed in
the order they occur from left to right, followed by the root

infix notation: the form of an expression (including a full set
of parentheses) obtained from an inorder traversal of the
binary tree representing this expression

prefix (or Polish) notation: the form of an expression ob-
tained from a preorder traversal of the tree representing this
expression

postfix (or reverse Polish) notation: the form of an expression
obtained from a postorder traversal of the tree representing
this expression

spanning tree: a tree containing all vertices of a graph
minimum spanning tree: a spanning tree with smallest pos-

sible sum of weights of its edges

RESULTS

A graph is a tree if and only if there is a unique simple path
between every pair of its vertices.

A tree with n vertices has n− 1 edges.
A full m-ary tree with i internal vertices has mi + 1 vertices.
The relationships among the numbers of vertices, leaves, and

internal vertices in a fullm-ary tree (see Theorem 4 in Sec-
tion 11.1)

There are at most mh leaves in an m-ary tree of height h.
If an m-ary tree has l leaves, its height h is at least logm l . If

the tree is also full and balanced, then its height is logm l .
Huffman coding: a procedure for constructing an optimal bi-

nary code for a set of symbols, given the frequencies of
these symbols

depth-first search, or backtracking: a procedure for con-
structing a spanning tree by adding edges that form a path
until this is not possible, and then moving back up the path
until a vertex is found where a new path can be formed

breadth-first search: a procedure for constructing a spanning
tree that successively adds all edges incident to the last set
of edges added, unless a simple circuit is formed

Prim’s algorithm: a procedure for producing a minimum
spanning tree in a weighted graph that successively adds
edges with minimal weight among all edges incident to a
vertex already in the tree so that no edge produces a simple
circuit when it is added

Kruskal’s algorithm: a procedure for producing a minimum
spanning tree in a weighted graph that successively adds
edges of least weight that are not already in the tree such
that no edge produces a simple circuit when it is added

Review Questions

1. a) Define a tree. b) Define a forest.

2. Can there be two different simple paths between the ver-
tices of a tree?

3. Give at least three examples of how trees are used in mod-
eling.

4. a) Define a rooted tree and the root of such a tree.

b) Define the parent of a vertex and a child of a vertex in
a rooted tree.

c) What are an internal vertex, a leaf, and a subtree in a
rooted tree?

d) Draw a rooted tree with at least 10 vertices, where the
degree of each vertex does not exceed 3. Identify the

Supplementary Exercises 805

root, the parent of each vertex, the children of each
vertex, the internal vertices, and the leaves.

5. a) How many edges does a tree with n vertices have?
b) What do you need to know to determine the number

of edges in a forest with n vertices?

6. a) Define a full m-ary tree.
b) How many vertices does a full m-ary tree have if it

has i internal vertices? How many leaves does the tree
have?

7. a) What is the height of a rooted tree?
b) What is a balanced tree?
c) How many leaves can anm-ary tree of height h have?

8. a) What is a binary search tree?
b) Describe an algorithm for constructing a binary search

tree.
c) Form a binary search tree for the words vireo, warbler,

egret, grosbeak, nuthatch, and kingfisher.

9. a) What is a prefix code?
b) How can a prefix code be represented by a binary tree?

10. a) Define preorder, inorder, and postorder tree traversal.
b) Give an example of preorder, postorder, and inorder

traversal of a binary tree of your choice with at
least 12 vertices.

11. a) Explain how to use preorder, inorder, and postorder
traversals to find the prefix, infix, and postfix forms of
an arithmetic expression.

b) Draw the ordered rooted tree that represents
((x − 3)+ ((x/4)+ (x − y) ↑ 3)).

c) Find the prefix and postfix forms of the expression in
part (b).

12. Show that the number of comparisons used by a sorting
algorithm to sort a list of n elements is at least log n! .

13. a) Describe the Huffman coding algorithm for construct-
ing an optimal code for a set of symbols, given the
frequency of these symbols.

b) Use Huffman coding to find an optimal code for
these symbols and frequencies: A: 0.2, B: 0.1, C: 0.3,
D: 0.4.

14. Draw the game tree for nim if the starting position consists
of two piles with one and four stones, respectively. Who
wins the game if both players follow an optimal strategy?

15. a) What is a spanning tree of a simple graph?

b) Which simple graphs have spanning trees?

c) Describe at least two different applications that require
that a spanning tree of a simple graph be found.

16. a) Describe two different algorithms for finding a span-
ning tree in a simple graph.

b) Illustrate how the two algorithms you described in
part (a) can be used to find the spanning tree of a sim-
ple graph, using a graph of your choice with at least
eight vertices and 15 edges.

17. a) Explain how backtracking can be used to determine
whether a simple graph can be colored using n colors.

b) Show, with an example, how backtracking can be used
to show that a graph with a chromatic number equal
to 4 cannot be colored with three colors, but can be
colored with four colors.

18. a) What is a minimum spanning tree of a connected
weighted graph?

b) Describe at least two different applications that require
that a minimum spanning tree of a connected weighted
graph be found.

19. a) Describe Kruskal’s algorithm and Prim’s algorithm
for finding minimum spanning trees.

b) Illustrate how Kruskal’s algorithm and Prim’s algo-
rithm are used to find a minimum spanning tree, using
a weighted graph with at least eight vertices and 15
edges.

Supplementary Exercises

∗1. Show that a simple graph is a tree if and only if it contains
no simple circuits and the addition of an edge connecting
two nonadjacent vertices produces a new graph that has
exactly one simple circuit (where circuits that contain the
same edges are not considered different).

∗2. How many nonisomorphic rooted trees are there with six
vertices?

3. Show that every tree with at least one edge must have at
least two pendant vertices.

4. Show that a tree with n vertices that has n− 1 pendant
vertices must be isomorphic to K1,n−1.

5. What is the sum of the degrees of the vertices of a tree
with n vertices?

∗6. Suppose that d1, d2, . . . , dn are n positive integers with
sum 2n− 2. Show that there is a tree that has n vertices
such that the degrees of these vertices are d1, d2, . . . , dn.

7. Show that every tree is a planar graph.

8. Show that every tree is bipartite.

9. Show that every forest can be colored using two colors.

A B-tree of degree k is a rooted tree such that all its leaves
are at the same level, its root has at least two and at most k
children unless it is a leaf, and every internal vertex other than
the root has at least k/2 , but no more than k, children. Com-
puter files can be accessed efficiently when B-trees are used
to represent them.

10. Draw three different B-trees of degree 3 with height 4.

∗11. Give an upper bound and a lower bound for the number
of leaves in a B-tree of degree k with height h.

∗12. Give an upper bound and a lower bound for the height of
a B-tree of degree k with n leaves.

The binomial trees Bi , i = 0, 1, 2, . . . , are ordered rooted
trees defined recursively:

806 11 / Trees

Basis step: The binomial tree B0 is the tree with a single
vertex.

Recursive step: Let k be a nonnegative integer. To con-
struct the binomial treeBk+1, add a copy ofBk to a second
copy of Bk by adding an edge that makes the root of the
first copy ofBk the leftmost child of the root of the second
copy of Bk .

13. Draw Bk for k = 0, 1, 2, 3, 4.

14. How many vertices doesBk have? Prove that your answer
is correct.

15. Find the height of Bk . Prove that your answer is correct.

16. How many vertices are there in Bk at depth j , where
0 ≤ j ≤ k? Justify your answer.

17. What is the degree of the root of Bk? Prove that your
answer is correct.

18. Show that the vertex of largest degree in Bk is the root.

A rooted tree T is called an Sk-tree if it satisfies this recursive
definition. It is an S0-tree if it has one vertex. For k > 0, T is
an Sk-tree if it can be built from two Sk−1-trees by making the
root of one the root of the Sk-tree and making the root of the
other the child of the root of the first Sk−1-tree.

19. Draw an Sk-tree for k = 0, 1, 2, 3, 4.

20. Show that an Sk-tree has 2k vertices and a unique vertex
at level k. This vertex at level k is called the handle.

∗21. Suppose that T is an Sk-tree with handle v. Show that T
can be obtained from disjoint trees T0, T1, . . . , Tk−1,
with roots r0, r1, . . . , rk−1, respectively, where v is not
in any of these trees, where Ti is an Si-tree for i =
0, 1, . . . , k − 1, by connecting v to r0 and ri to ri+1 for
i = 0, 1, . . . , k − 2.

The listing of the vertices of an ordered rooted tree in level

order begins with the root, followed by the vertices at level 1
from left to right, followed by the vertices at level 2 from left
to right, and so on.

22. List the vertices of the ordered rooted trees in Figures 3
and 9 of Section 11.3 in level order.

23. Devise an algorithm for listing the vertices of an ordered
rooted tree in level order.

∗24. Devise an algorithm for determining if a set of universal
addresses can be the addresses of the leaves of a rooted
tree.

25. Devise an algorithm for constructing a rooted tree from
the universal addresses of its leaves.

A cut set of a graph is a set of edges such that the removal of
these edges produces a subgraph with more connected com-
ponents than in the original graph, but no proper subset of this
set of edges has this property.

26. Show that a cut set of a graph must have at least one edge
in common with any spanning tree of this graph.

A cactus is a connected graph in which no edge is in more
than one simple circuit not passing through any vertex other
than its initial vertex more than once or its initial vertex other
than at its terminal vertex (where two circuits that contain the
same edges are not considered different).

27. Which of these graphs are cacti?

a)

b)

c)

28. Is a tree necessarily a cactus?

29. Show that a cactus is formed if we add a circuit containing
new edges beginning and ending at a vertex of a tree.

∗30. Show that if every circuit not passing through any vertex
other than its initial vertex more than once in a connected
graph contains an odd number of edges, then this graph
must be a cactus.

A degree-constrained spanning tree of a simple graph G
is a spanning tree with the property that the degree of a ver-
tex in this tree cannot exceed some specified bound. Degree-
constrained spanning trees are useful in models of transporta-
tion systems where the number of roads at an intersection is
limited, models of communications networks where the num-
ber of links entering a node is limited, and so on.

In Exercises 31–33 find a degree-constrained spanning
tree of the given graph where each vertex has degree less than
or equal to 3, or show that such a spanning tree does not exist.

31.

a
b

c

d f
e

32.
c

d

e

a
b

f

g

h i

Supplementary Exercises 807

33.

d
e

f

a b c

i h g

34. Show that a degree-constrained spanning tree of a simple
graph in which each vertex has degree not exceeding 2
consists of a single Hamilton path in the graph.

35. A tree with n vertices is called graceful if its vertices
can be labeled with the integers 1, 2, . . . , n such that the
absolute values of the difference of the labels of adja-
cent vertices are all different. Show that these trees are
graceful.

a) b)

c) d)

A caterpillar is a tree that contains a simple path such that
every vertex not contained in this path is adjacent to a vertex
in the path.

36. Which of the graphs in Exercise 35 are caterpillars?

37. How many nonisomorphic caterpillars are there with six
vertices?

∗∗38. a) Prove or disprove that all trees whose edges form a
single path are graceful.

b) Prove or disprove that all caterpillars are graceful.

39. Suppose that in a long bit string the frequency of occur-
rence of a 0 bit is 0.9 and the frequency of a 1 bit is 0.1
and bits occur independently.

a) Construct a Huffman code for the four blocks of two
bits, 00, 01, 10, and 11. What is the average number
of bits required to encode a bit string using this code?

b) Construct a Huffman code for the eight blocks of three
bits. What is the average number of bits required to en-
code a bit string using this code?

40. Suppose that G is a directed graph with no circuits. De-
scribe how depth-first search can be used to carry out a
topological sort of the vertices of G.

∗41. Suppose that e is an edge in a weighted graph that is in-
cident to a vertex v such that the weight of e does not
exceed the weight of any other edge incident to v. Show
that there exists a minimum spanning tree containing this
edge.

42. Three couples arrive at the bank of a river. Each of the
wives is jealous and does not trust her husband when he
is with one of the other wives (and perhaps with other

people), but not with her. How can six people cross to the
other side of the river using a boat that can hold no more
than two people so that no husband is alone with a woman
other than his wife? Use a graph theory model.

∗43. Show that if no two edges in a weighted graph have the
same weight, then the edge with least weight incident to
a vertex v is included in every minimum spanning tree.

44. Find a minimum spanning tree of each of these graphs
where the degree of each vertex in the spanning tree does
not exceed 2.

a)

b

a c

e

f d

2 1

3 1

2

2

3 2

b)

b
a

c

e
d

6

2

1

5
3

4

2

gf

6

2

4

LetG = (V ,E) be a directed graph and let r be a vertex inG.
An arborescence of G rooted at r is a subgraph T = (V , F)

ofG such that the underlying undirected graph of T is a span-
ning tree of the underlying undirected graph ofG and for every
vertex v ∈ V there is a path from r to v in T (with directions
taken into account).

45. Show that a subgraph T = (V , F) of the graph G =

(V ,E) is an arborescence of G rooted at r if and only
if T contains r , T has no simple circuits, and for every
vertex v ∈ V other than r , deg−(v) = 1 in T .

46. Show that a directed graph G = (V ,E) has an arbores-
cence rooted at the vertex r if and only if for every vertex
v ∈ V , there is a directed path from r to v.

47. In this exercise we will develop an algorithm to find the
strong components of a directed graph G = (V ,E). Re-
call that a vertex w ∈ V is reachable from a vertex v ∈ V

if there is a directed path from v to w.

a) Explain how to use breadth-first search in the directed
graphG to find all the vertices reachable from a vertex
v ∈ G.

b) Explain how to use breadth-first search inGconv to find
all the vertices from which a vertex v ∈ G is reachable.
(Recall thatGconv is the directed graph obtained from
G by reversing the direction of all its edges.)

c) Explain how to use parts (a) and (b) to construct an al-
gorithm that finds the strong components of a directed
graph G, and explain why your algorithm is correct.

808 11 / Trees

Computer Projects

Write programs with these input and output.

1. Given the adjacency matrix of an undirected simple graph,
determine whether the graph is a tree.

2. Given the adjacency matrix of a rooted tree and a vertex in
the tree, find the parent, children, ancestors, descendants,
and level of this vertex.

3. Given the list of edges of a rooted tree and a vertex in the
tree, find the parent, children, ancestors, descendants, and
level of this vertex.

4. Given a list of items, construct a binary search tree con-
taining these items.

5. Given a binary search tree and an item, locate or add this
item to the binary search tree.

6. Given the ordered list of edges of an ordered rooted tree,
find the universal addresses of its vertices.

7. Given the ordered list of edges of an ordered rooted tree,
list its vertices in preorder, inorder, and postorder.

8. Given an arithmetic expression in prefix form, find its
value.

9. Given an arithmetic expression in postfix form, find its
value.

10. Given the frequency of symbols, use Huffman coding to
find an optimal code for these symbols.

11. Given an initial position in the game of nim, determine
an optimal strategy for the first player.

12. Given the adjacency matrix of a connected undirected
simple graph, find a spanning tree for this graph using
depth-first search.

13. Given the adjacency matrix of a connected undirected
simple graph, find a spanning tree for this graph using
breadth-first search.

14. Given a set of positive integers and a positive integer N ,
use backtracking to find a subset of these integers that
have N as their sum.

∗15. Given the adjacency matrix of an undirected simple graph,
use backtracking to color the graph with three colors, if
this is possible.

∗16. Given a positive integer n, solve the n-queens problem
using backtracking.

17. Given the list of edges and their weights of a weighted
undirected connected graph, use Prim’s algorithm to find
a minimum spanning tree of this graph.

18. Given the list of edges and their weights of a weighted
undirected connected graph, use Kruskal’s algorithm to
find a minimum spanning tree of this graph.

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. Display all trees with six vertices.

2. Display a full set of nonisomorphic trees with seven ver-
tices.

∗3. Construct a Huffman code for the symbols with ASCII
codes given the frequency of their occurrence in represen-
tative input.

4. Compute the number of different spanning trees ofKn for
n = 1, 2, 3, 4, 5, 6. Conjecture a formula for the number
of such spanning trees whenever n is a positive integer.

5. Compare the number of comparisons needed to sort lists of
n elements for n = 100, 1000, and 10,000 from the set of
positive integers less than 1,000,000, where the elements

are randomly selected positive integers, using the selec-
tion sort, the insertion sort, the merge sort, and the quick
sort.

6. Compute the number of different ways n queens can be
arranged on an n× n chessboard so that no two queens
can attack each other for all positive integers n not
exceeding 10.

∗7. Find a minimum spanning tree of the graph that connects
the capital cities of the 50 states in the United States to
each other where the weight of each edge is the distance
between the cities.

8. Draw the complete game tree for a game of checkers on a
4 × 4 board.

Writing Projects

Respond to these with essays using outside sources.

1. Explain how Cayley used trees to enumerate the number
of certain types of hydrocarbons.

2. Explain how trees are used to represent ancestral relations
in the study of evolution.

3. Discuss hierarchical cluster trees and how they are used.

4. Define AVL-trees (sometimes also known as height-

balanced trees). Describe how and why AVL-trees are
used in a variety of different algorithms.

Writing Projects 809

5. Define quad trees and explain how images can be repre-
sented using them. Describe how images can be rotated,
scaled, and translated by manipulating the corresponding
quad tree.

6. Define a heap and explain how trees can be turned into
heaps. Why are heaps useful in sorting?

7. Describe dynamic algorithms for data compression based
on letter frequencies as they change as characters are suc-
cessively read, such as adaptive Huffman coding.

8. Explain how alpha-beta pruning can be used to simplify
the computation of the value of a game tree.

9. Describe the techniques used by chess-playing programs
such as Deep Blue.

10. Define the type of graph known as a mesh of trees. Ex-
plain how this graph is used in applications to very large
system integration and parallel computing.

11. Discuss the algorithms used in IP multicasting to avoid
loops between routers.

12. Describe an algorithm based on depth-first search for find-
ing the articulation points of a graph.

13. Describe an algorithm based on depth-first search to find
the strongly connected components of a directed graph.

14. Describe the search techniques used by the crawlers and
spiders in different search engines on the Web.

15. Describe an algorithm for finding the minimum spanning
tree of a graph such that the maximum degree of any ver-
tex in the spanning tree does not exceed a fixed constant k.

16. Compare and contrast some of the most important sorting
algorithms in terms of their complexity and when they are
used.

17. Discuss the history and origins of algorithms for con-
structing minimum spanning trees.

18. Describe algorithms for producing random trees.

12
C H A P T E R

Boolean Algebra

12.1 Boolean

Functions

12.2 Representing

Boolean

Functions

12.3 Logic Gates

12.4 Minimization

of Circuits

The circuits in computers and other electronic devices have inputs, each of which is either

a 0 or a 1, and produce outputs that are also 0s and 1s. Circuits can be constructed using

any basic element that has two different states. Such elements include switches that can be

in either the on or the off position and optical devices that can be either lit or unlit. In 1938

Claude Shannon showed how the basic rules of logic, first given by George Boole in 1854 in his

The Laws of Thought, could be used to design circuits. These rules form the basis for Boolean

algebra. In this chapter we develop the basic properties of Boolean algebra. The operation of a

circuit is defined by a Boolean function that specifies the value of an output for each set of inputs.

The first step in constructing a circuit is to represent its Boolean function by an expression built

up using the basic operations of Boolean algebra. We will provide an algorithm for producing

such expressions. The expression that we obtain may contain many more operations than are

necessary to represent the function. Later in the chapter we will describe methods for finding an

expression with the minimum number of sums and products that represents a Boolean function.

The procedures that we will develop, Karnaugh maps and the Quine–McCluskey method, are

important in the design of efficient circuits.

12.1 Boolean Functions

Introduction

Boolean algebra provides the operations and the rules for working with the set {0, 1}. Electronic

and optical switches can be studied using this set and the rules of Boolean algebra. The three

operations in Boolean algebra that we will use most are complementation, the Boolean sum, and

the Boolean product. The complement of an element, denoted with a bar, is defined by 0 = 1

and 1 = 0. The Boolean sum, denoted by + or by OR, has the following values:

1+ 1 = 1, 1+ 0 = 1, 0+ 1 = 1, 0+ 0 = 0.

The Boolean product, denoted by · or by AND, has the following values:

1 · 1 = 1, 1 · 0 = 0, 0 · 1 = 0, 0 · 0 = 0.

When there is no danger of confusion, the symbol · can be deleted, just as in writing algebraic

products. Unless parentheses are used, the rules of precedence for Boolean operators are: first,

all complements are computed, followed by all Boolean products, followed by all Boolean sums.

This is illustrated in Example 1.

EXAMPLE 1 Find the value of 1 · 0+ (0+ 1).

Solution: Using the definitions of complementation, the Boolean sum, and the Boolean product,

it follows that

1 · 0+ (0+ 1) = 0+ 1

= 0+ 0

= 0.

▲

811

812 12 / Boolean Algebra

The complement, Boolean sum, and Boolean product correspond to the logical operators,

¬,∨, and∧, respectively, where 0 corresponds to F (false) and 1 corresponds to T (true). Equal-

ities in Boolean algebra can be directly translated into equivalences of compound propositions.

Conversely, equivalences of compound propositions can be translated into equalities in Boolean

algebra. We will see later in this section why these translations yield valid logical equivalences

and identities in Boolean algebra. Example 2 illustrates the translation from Boolean algebra to

propositional logic.

EXAMPLE 2 Translate 1 · 0+ (0+ 1) = 0, the equality found in Example 1, into a logical equivalence.

Solution: We obtain a logical equivalence when we translate each 1 into a T, each 0 into

an F, each Boolean sum into a disjunction, each Boolean product into a conjunction, and each

complementation into a negation. We obtain

(T ∧ F) ∨ ¬(T ∨ F) ≡ F. ▲

Example 3 illustrates the translation from propositional logic to Boolean algebra.

EXAMPLE 3 Translate the logical equivalence (T ∧ T) ∨ ¬F ≡ T into an identity in Boolean algebra.

Solution: We obtain an identity in Boolean algebra when we translate each T into a 1, each F

into a 0, each disjunction into a Boolean sum, each conjunction into a Boolean product, and

each negation into a complementation. We obtain

(1 · 1)+ 0 = 1. ▲

Boolean Expressions and Boolean Functions

Let B = {0, 1}. Then Bn = {(x1, x2, . . . , xn) | xi ∈ B for 1 ≤ i ≤ n} is the set of all possible

n-tuples of 0s and 1s. The variable x is called a Boolean variable if it assumes values only

from B, that is, if its only possible values are 0 and 1. A function from Bn to B is called a

Boolean function of degree n.

CLAUDE ELWOOD SHANNON (1916–2001) Claude Shannon was born in Petoskey, Michigan, and grew up
in Gaylord, Michigan. His father was a businessman and a probate judge, and his mother was a language teacher
and a high school principal. Shannon attended the University of Michigan, graduating in 1936. He continued
his studies at M.I.T., where he took the job of maintaining the differential analyzer, a mechanical computing
device consisting of shafts and gears built by his professor, Vannevar Bush. Shannon’s master’s thesis, written
in 1936, studied the logical aspects of the differential analyzer. This master’s thesis presents the first application
of Boolean algebra to the design of switching circuits; it is perhaps the most famous master’s thesis of the
twentieth century. He received his Ph.D. from M.I.T. in 1940. Shannon joined Bell Laboratories in 1940, where
he worked on transmitting data efficiently. He was one of the first people to use bits to represent information. At

Bell Laboratories he worked on determining the amount of traffic that telephone lines can carry. Shannon made many fundamental
contributions to information theory. In the early 1950s he was one of the founders of the study of artificial intelligence. He joined
the M.I.T. faculty in 1956, where he continued his study of information theory.

Shannon had an unconventional side. He is credited with inventing the rocket-powered Frisbee. He is also famous for riding a
unicycle down the hallways of Bell Laboratories while juggling four balls. Shannon retired when he was 50 years old, publishing
papers sporadically over the following 10 years. In his later years he concentrated on some pet projects, such as building a motorized
pogo stick. One interesting quote from Shannon, published in Omni Magazine in 1987, is “I visualize a time when we will be to
robots what dogs are to humans. And I am rooting for the machines.”

12.1 Boolean Functions 813

EXAMPLE 4 The function F(x, y) = xy from the set of ordered pairs of Boolean variables to the set {0, 1} is

a Boolean function of degree 2 with F(1, 1) = 0, F(1, 0) = 1, F(0, 1) = 0, and F(0, 0) = 0.

We display these values of F in Table 1. ▲

TABLE 1

x y F(x, y)

1 1 0

1 0 1

0 1 0

0 0 0

Boolean functions can be represented using expressions made up from variables and Boolean

operations. The Boolean expressions in the variables x1, x2, . . . , xn are defined recursively as

0, 1, x1, x2, . . . , xn are Boolean expressions;

if E1 and E2 are Boolean expressions, then E1, (E1E2), and (E1 + E2) are Boolean ex-

pressions.

Each Boolean expression represents a Boolean function. The values of this function are obtained

by substituting 0 and 1 for the variables in the expression. In Section 12.2 we will show that

every Boolean function can be represented by a Boolean expression.

EXAMPLE 5 Find the values of the Boolean function represented by F(x, y, z) = xy + z.

Solution: The values of this function are displayed in Table 2. ▲

TABLE 2

x y z xy z F(x, y, z) = xy + z

1 1 1 1 0 1

1 1 0 1 1 1

1 0 1 0 0 0

1 0 0 0 1 1

0 1 1 0 0 0

0 1 0 0 1 1

0 0 1 0 0 0

0 0 0 0 1 1

Note that we can represent a Boolean function graphically by distinguishing the vertices of

the n-cube that correspond to the n-tuples of bits where the function has value 1.

EXAMPLE 6 The function F(x, y, z) = xy + z from B3 to B from Example 5 can be represented by distin-

guishing the vertices that correspond to the five 3-tuples (1, 1, 1), (1, 1, 0), (1, 0, 0), (0, 1, 0),

and (0, 0, 0), where F(x, y, z) = 1, as shown in Figure 1. These vertices are displayed using

solid black circles. ▲

110 111

011

101

010

100

000 001

FIGURE 1

Boolean functions F and G of n variables are equal if and only if F(b1, b2, . . . , bn) =

G(b1, b2, . . . , bn)whenever b1, b2, . . . , bn belong toB. Two different Boolean expressions that

represent the same function are called equivalent. For instance, the Boolean expressions xy,

xy + 0, and xy · 1 are equivalent. The complement of the Boolean functionF is the function F ,

where F(x1, . . . , xn) = F(x1, . . . , xn). Let F and G be Boolean functions of degree n. The

Boolean sum F +G and the Boolean product FG are defined by

(F +G)(x1, . . . , xn) = F(x1, . . . , xn)+G(x1, . . . , xn),

(FG)(x1, . . . , xn) = F(x1, . . . , xn)G(x1, . . . , xn).

A Boolean function of degree two is a function from a set with four elements, namely,

pairs of elements from B = {0, 1}, to B, a set with two elements. Hence, there are 16 different

Boolean functions of degree two. In Table 3 we display the values of the 16 different Boolean

functions of degree two, labeled F1, F2, . . . , F16.

814 12 / Boolean Algebra

TABLE 3 The 16 Boolean Functions of Degree Two.

x y F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

EXAMPLE 7 How many different Boolean functions of degree n are there?

Solution: From the product rule for counting, it follows that there are 2n different n-tuples

of 0s and 1s. Because a Boolean function is an assignment of 0 or 1 to each of these 2n different

n-tuples, the product rule shows that there are 22n different Boolean functions of degree n. ▲

Table 4 displays the number of different Boolean functions of degrees one through six. The

number of such functions grows extremely rapidly.

TABLE 4 The Number of Boolean
Functions of Degree n.

Degree Number

1 4

2 16

3 256

4 65,536

5 4,294,967,296

6 18,446,744,073,709,551,616

Identities of Boolean Algebra

There are many identities in Boolean algebra. The most important of these are displayed in

Table 5. These identities are particularly useful in simplifying the design of circuits. Each of

the identities in Table 5 can be proved using a table. We will prove one of the distributive laws

in this way in Example 8. The proofs of the remaining properties are left as exercises for the

reader.

EXAMPLE 8 Show that the distributive law x(y + z) = xy + xz is valid.

Solution: The verification of this identity is shown in Table 6. The identity holds because the

last two columns of the table agree. ▲

The reader should compare the Boolean identities in Table 5 to the logical equivalences

in Table 6 of Section 1.3 and the set identities in Table 1 in Section 2.2. All are special cases

of the same set of identities in a more abstract structure. Each collection of identities can

be obtained by making the appropriate translations. For example, we can transform each of

the identities in Table 5 into a logical equivalence by changing each Boolean variable into a

propositional variable, each 0 into a F, each 1 into a T, each Boolean sum into a disjunction, each

Boolean product into a conjunction, and each complementation into a negation, as we illustrate

in Example 9.

12.1 Boolean Functions 815

TABLE 5 Boolean Identities.

Identity Name

x = x Law of the double complement

x + x = x Idempotent laws

x · x = x

x + 0 = x Identity laws

x · 1 = x

x + 1 = 1 Domination laws

x · 0 = 0

x + y = y + x Commutative laws

xy = yx

x + (y + z) = (x + y)+ z Associative laws

x(yz) = (xy)z

x + yz = (x + y)(x + z) Distributive laws

x(y + z) = xy + xz

(xy) = x + y De Morgan’s laws

(x + y) = x y

x + xy = x Absorption laws

x(x + y) = x

x + x = 1 Unit property

xx = 0 Zero property

Compare these Boolean

identities with the logical

equivalences in Section

1.3 and the set identities

in Section 2.2.

EXAMPLE 9 Translate the distributive law x + yz = (x + y)(x + z) in Table 5 into a logical equivalence.

Solution: To translate a Boolean identity into a logical equivalence, we change each Boolean

variable into a propositional variable. Here we will change the Boolean variables x, y, and z into

the propositional variablesp, q, and r . Next, we change each Boolean sum into a disjunction and

each Boolean product into a conjunction. (Note that 0 and 1 do not appear in this identity and

TABLE 6 Verifying One of the Distributive Laws.

x y z y + z xy xz x(y + z) xy + xz

1 1 1 1 1 1 1 1

1 1 0 1 1 0 1 1

1 0 1 1 0 1 1 1

1 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0

816 12 / Boolean Algebra

complementation also does not appear.) This transforms the Boolean identity into the logical

equivalence

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).

This logical equivalence is one of the distributive laws for propositional logic in Table 6 in

Section 1.3. ▲

Identities in Boolean algebra can be used to prove further identities. We demonstrate this

in Example 10.

EXAMPLE 10 Prove the absorption law x(x + y) = x using the other identities of Boolean algebra shown in

Table 5. (This is called an absorption law because absorbing x + y into x leaves x unchanged.)

Solution: We display steps used to derive this identity and the law used in each step:

x(x + y) = (x + 0)(x + y) Identity law for the Boolean sum

= x + 0 · y Distributive law of the Boolean sum over the

Boolean product

= x + y · 0 Commutative law for the Boolean product

= x + 0 Domination law for the Boolean product

= x Identity law for the Boolean sum. ▲

Duality

The identities in Table 5 come in pairs (except for the law of the double complement and the unit

and zero properties). To explain the relationship between the two identities in each pair we use

the concept of a dual. The dual of a Boolean expression is obtained by interchanging Boolean

sums and Boolean products and interchanging 0s and 1s.

EXAMPLE 11 Find the duals of x(y + 0) and x · 1+ (y + z).

Solution: Interchanging · signs and + signs and interchanging 0s and 1s in these expressions

produces their duals. The duals are x + (y · 1) and (x + 0)(yz), respectively. ▲

The dual of a Boolean function F represented by a Boolean expression is the function

represented by the dual of this expression. This dual function, denoted byFd , does not depend on

the particular Boolean expression used to representF . An identity between functions represented

by Boolean expressions remains valid when the duals of both sides of the identity are taken.

(See Exercise 30 for the reason why this is true.) This result, called the duality principle, is

useful for obtaining new identities.

EXAMPLE 12 Construct an identity from the absorption law x(x + y) = x by taking duals.

Solution: Taking the duals of both sides of this identity produces the identity x + xy = x, which

is also called an absorption law and is shown in Table 5. ▲

12.1 Boolean Functions 817

The Abstract Definition of a Boolean Algebra

In this section we have focused on Boolean functions and expressions. However, the results we

have established can be translated into results about propositions or results about sets. Because

of this, it is useful to define Boolean algebras abstractly. Once it is shown that a particular

structure is a Boolean algebra, then all results established about Boolean algebras in general

apply to this particular structure.

Boolean algebras can be defined in several ways. The most common way is to specify the

properties that operations must satisfy, as is done in Definition 1.

DEFINITION 1 A Boolean algebra is a set B with two binary operations ∨ and ∧, elements 0 and 1, and a

unary operation such that these properties hold for all x, y, and z in B:

x ∨ 0 = x

x ∧ 1 = x

�
Identity laws

x ∨ x = 1

x ∧ x = 0

�
Complement laws

(x ∨ y) ∨ z = x ∨ (y ∨ z)

(x ∧ y) ∧ z = x ∧ (y ∧ z)

�
Associative laws

x ∨ y = y ∨ x

x ∧ y = y ∧ x

�
Commutative laws

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

�
Distributive laws

Using the laws given in Definition 1, it is possible to prove many other laws that hold for every

Boolean algebra, such as idempotent and domination laws. (See Exercises 35–42.)

From our previous discussion, B = {0, 1} with the OR and AND operations and the com-

plement operator, satisfies all these properties. The set of propositions in n variables, with the ∨

and∧ operators, F and T, and the negation operator, also satisfies all the properties of a Boolean

algebra, as can be seen from Table 6 in Section 1.3. Similarly, the set of subsets of a universal

set U with the union and intersection operations, the empty set and the universal set, and the

set complementation operator, is a Boolean algebra as can be seen by consulting Table 1 in

Section 2.2. So, to establish results about each of Boolean expressions, propositions, and sets,

we need only prove results about abstract Boolean algebras.

Boolean algebras may also be defined using the notion of a lattice, discussed in Chapter 9.

Recall that a lattice L is a partially ordered set in which every pair of elements x, y has a least

upper bound, denoted by lub(x, y) and a greatest lower bound denoted by glb(x, y). Given two

elements x and y of L, we can define two operations ∨ and ∧ on pairs of elements of L by

x ∨ y = lub(x, y) and x ∧ y = glb(x, y).

For a latticeL to be a Boolean algebra as specified in Definition 1, it must have two properties.

First, it must be complemented. For a lattice to be complemented it must have a least element 0

and a greatest element 1 and for every element x of the lattice there must exist an element x such

that x ∨ x = 1 and x ∧ x = 0. Second, it must be distributive. This means that for every x, y,

and z in L, x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). Showing

that a complemented, distributive lattice is a Boolean algebra has been left as Supplementary

Exercise 39 in Chapter 9.

818 12 / Boolean Algebra

Exercises

1. Find the values of these expressions.

a) 1 · 0 b) 1+ 1 c) 0 · 0 d) (1+ 0)

2. Find the values, if any, of the Boolean variable x that

satisfy these equations.

a) x · 1 = 0 b) x + x = 0

c) x · 1 = x d) x · x = 1

3. a) Show that (1 · 1)+ (0 · 1+ 0) = 1.

b) Translate the equation in part (a) into a propositional

equivalence by changing each 0 into an F, each 1

into a T, each Boolean sum into a disjunction, each

Boolean product into a conjunction, each complemen-

tation into a negation, and the equals sign into a propo-

sitional equivalence sign.

4. a) Show that (1 · 0)+ (1 · 0) = 1.

b) Translate the equation in part (a) into a propositional

equivalence by changing each 0 into an F, each 1

into a T, each Boolean sum into a disjunction, each

Boolean product into a conjunction, each complemen-

tation into a negation, and the equals sign into a propo-

sitional equivalence sign.

5. Use a table to express the values of each of these Boolean

functions.

a) F(x, y, z) = xy

b) F(x, y, z) = x + yz

c) F(x, y, z) = xy + (xyz)

d) F(x, y, z) = x(yz+ y z)

6. Use a table to express the values of each of these Boolean

functions.

a) F(x, y, z) = z

b) F(x, y, z) = xy + yz

c) F(x, y, z) = xyz+ (xyz)

d) F(x, y, z) = y(xz+ x z)

7. Use a 3-cube Q3 to represent each of the Boolean func-

tions in Exercise 5 by displaying a black circle at each

vertex that corresponds to a 3-tuple where this function

has the value 1.

8. Use a 3-cube Q3 to represent each of the Boolean func-

tions in Exercise 6 by displaying a black circle at each

vertex that corresponds to a 3-tuple where this function

has the value 1.

9. What values of the Boolean variables x and y satisfy

xy = x + y?

10. How many different Boolean functions are there of de-

gree 7?

11. Prove the absorption law x + xy = x using the other laws

in Table 5.

12. Show that F(x, y, z) = xy + xz+ yz has the value 1 if

and only if at least two of the variables x, y, and z have

the value 1.

13. Show that xy + yz+ xz = xy + yz+ xz.

Exercises 14–23 deal with the Boolean algebra {0, 1}with ad-

dition, multiplication, and complement defined at the begin-

ning of this section. In each case, use a table as in Example 8.

14. Verify the law of the double complement.

15. Verify the idempotent laws.

16. Verify the identity laws.

17. Verify the domination laws.

18. Verify the commutative laws.

19. Verify the associative laws.

20. Verify the first distributive law in Table 5.

21. Verify De Morgan’s laws.

22. Verify the unit property.

23. Verify the zero property.

The Boolean operator ⊕, called the XOR operator, is defined

by 1⊕ 1 = 0, 1⊕ 0 = 1, 0⊕ 1 = 1, and 0⊕ 0 = 0.

24. Simplify these expressions.

a) x ⊕ 0 b) x ⊕ 1
c) x ⊕ x d) x ⊕ x

25. Show that these identities hold.

a) x ⊕ y = (x + y)(xy)

b) x ⊕ y = (xy)+ (xy)

26. Show that x ⊕ y = y ⊕ x.

27. Prove or disprove these equalities.

a) x ⊕ (y ⊕ z) = (x ⊕ y)⊕ z

b) x + (y ⊕ z) = (x + y)⊕ (x + z)

c) x ⊕ (y + z) = (x ⊕ y)+ (x ⊕ z)

28. Find the duals of these Boolean expressions.

a) x + y b) x y

c) xyz+ x y z d) xz+ x · 0+ x · 1

∗29. Suppose that F is a Boolean function represented by a

Boolean expression in the variables x1, . . . , xn. Show that

Fd(x1, . . . , xn) = F(x1, . . . , xn).
∗30. Show that if F and G are Boolean functions represented

by Boolean expressions in n variables and F = G, then

Fd = Gd , where Fd and Gd are the Boolean functions

represented by the duals of the Boolean expressions rep-

resenting F and G, respectively. [Hint: Use the result of

Exercise 29.]
∗31. How many different Boolean functions F(x, y, z) are

there such that F(x, y, z) = F(x, y, z) for all values of

the Boolean variables x, y, and z?
∗32. How many different Boolean functions F(x, y, z) are

there such thatF(x, y, z) = F(x, y, z) = F(x, y, z) for

all values of the Boolean variables x, y, and z?

33. Show that you obtain De Morgan’s laws for propositions

(in Table 6 in Section 1.3) when you transform De Mor-

gan’s laws for Boolean algebra in Table 6 into logical

equivalences.

34. Show that you obtain the absorption laws for proposi-

tions (in Table 6 in Section 1.3) when you transform the

absorption laws for Boolean algebra in Table 6 into logi-

cal equivalences.

12.2 Representing Boolean Functions 819

In Exercises 35–42, use the laws in Definition 1 to show that

the stated properties hold in every Boolean algebra.

35. Show that in a Boolean algebra, the idempotent laws

x ∨ x = x and x ∧ x = x hold for every element x.

36. Show that in a Boolean algebra, every element x has a

unique complement x such thatx ∨ x = 1 andx ∧ x = 0.

37. Show that in a Boolean algebra, the complement of the

element 0 is the element 1 and vice versa.

38. Prove that in a Boolean algebra, the law of the double

complement holds; that is, x = x for every element x.

39. Show that De Morgan’s laws hold in a Boolean algebra.

That is, show that for all x and y, (x ∨ y) = x ∧ y and

(x ∧ y) = x ∨ y.

40. Show that in a Boolean algebra, the modular properties

hold. That is, show that x ∧ (y ∨ (x ∧ z)) = (x ∧ y) ∨

(x ∧ z) and x ∨ (y ∧ (x ∨ z)) = (x ∨ y) ∧ (x ∨ z).

41. Show that in a Boolean algebra, if x ∨ y = 0, then x = 0

and y = 0, and that if x ∧ y = 1, then x = 1 and y = 1.

42. Show that in a Boolean algebra, the dual of an iden-

tity, obtained by interchanging the ∨ and ∧ operators

and interchanging the elements 0 and 1, is also a valid

identity.

43. Show that a complemented, distributive lattice is a

Boolean algebra.

12.2 Representing Boolean Functions

Two important problems of Boolean algebra will be studied in this section. The first problem

is: Given the values of a Boolean function, how can a Boolean expression that represents this

function be found? This problem will be solved by showing that any Boolean function can be

represented by a Boolean sum of Boolean products of the variables and their complements. The

solution of this problem shows that every Boolean function can be represented using the three

Boolean operators ·,+, and . The second problem is: Is there a smaller set of operators that

can be used to represent all Boolean functions? We will answer this question by showing that

all Boolean functions can be represented using only one operator. Both of these problems have

practical importance in circuit design.

Sum-of-Products Expansions

We will use examples to illustrate one important way to find a Boolean expression that represents

a Boolean function.

EXAMPLE 1 Find Boolean expressions that represent the functionsF(x, y, z) andG(x, y, z), which are given

in Table 1.

Solution: An expression that has the value 1 when x = z = 1 and y = 0, and the value 0 other-

wise, is needed to represent F . Such an expression can be formed by taking the Boolean product

of x, y, and z. This product, xyz, has the value 1 if and only if x = y = z = 1, which holds if

and only if x = z = 1 and y = 0.
TABLE 1

x y z F G

1 1 1 0 0

1 1 0 0 1

1 0 1 1 0

1 0 0 0 0

0 1 1 0 0

0 1 0 0 1

0 0 1 0 0

0 0 0 0 0

To representG, we need an expression that equals 1 when x = y = 1 and z = 0, or x = z =

0 and y = 1. We can form an expression with these values by taking the Boolean sum of two

different Boolean products. The Boolean product xyz has the value 1 if and only if x = y = 1

and z = 0. Similarly, the product xyz has the value 1 if and only if x = z = 0 and y = 1. The

Boolean sum of these two products, xyz+ xyz, represents G, because it has the value 1 if and

only if x = y = 1 and z = 0, or x = z = 0 and y = 1. ▲

Example 1 illustrates a procedure for constructing a Boolean expression representing a

function with given values. Each combination of values of the variables for which the function

has the value 1 leads to a Boolean product of the variables or their complements.

820 12 / Boolean Algebra

DEFINITION 1 A literal is a Boolean variable or its complement. A minterm of the Boolean variables

x1, x2, . . . , xn is a Boolean product y1y2 · · · yn, where yi = xi or yi = xi . Hence, a minterm

is a product of n literals, with one literal for each variable.

A minterm has the value 1 for one and only one combination of values of its variables. More

precisely, the minterm y1y2 . . . yn is 1 if and only if each yi is 1, and this occurs if and only

if xi = 1 when yi = xi and xi = 0 when yi = xi .

EXAMPLE 2 Find a minterm that equals 1 if x1 = x3 = 0 and x2 = x4 = x5 = 1, and equals 0 otherwise.

Solution: The minterm x1x2x3x4x5 has the correct set of values. ▲

By taking Boolean sums of distinct minterms we can build up a Boolean expression with a

specified set of values. In particular, a Boolean sum of minterms has the value 1 when exactly

one of the minterms in the sum has the value 1. It has the value 0 for all other combinations of

values of the variables. Consequently, given a Boolean function, a Boolean sum of minterms

can be formed that has the value 1 when this Boolean function has the value 1, and has the

value 0 when the function has the value 0. The minterms in this Boolean sum correspond to

those combinations of values for which the function has the value 1. The sum of minterms that

represents the function is called the sum-of-products expansion or the disjunctive normal

form of the Boolean function.

(See Exercise 42 in Section 1.3 for the development of disjunctive normal form in propo-

sitional calculus.)

EXAMPLE 3 Find the sum-of-products expansion for the function F(x, y, z) = (x + y)z.

Solution: We will find the sum-of-products expansion of F(x, y, z) in two ways. First, we will

use Boolean identities to expand the product and simplify. We find that

F(x, y, z) = (x + y)z

= xz+ yz Distributive law

= x1z+ 1yz Identity law

= x(y + y)z+ (x + x)yz Unit property

= xyz+ xy z+ xyz+ xyz Distributive law

= xyz+ xy z+ xy z. Idempotent law

Second, we can construct the sum-of-products expansion by determining the values of F for

all possible values of the variables x, y, and z. These values are found in Table 2. The sum-of-

products expansion of F is the Boolean sum of three minterms corresponding to the three rows

of this table that give the value 1 for the function. This gives

F(x, y, z) = xyz+ xy z+ xyz.

▲

It is also possible to find a Boolean expression that represents a Boolean function by taking

a Boolean product of Boolean sums. The resulting expansion is called the conjunctive normal

form or product-of-sums expansion of the function. These expansions can be found from

sum-of-products expansions by taking duals. How to find such expansions directly is described

in Exercise 10.

12.2 Representing Boolean Functions 821

TABLE 2

x y z x + y z (x + y)z

1 1 1 1 0 0

1 1 0 1 1 1

1 0 1 1 0 0

1 0 0 1 1 1

0 1 1 1 0 0

0 1 0 1 1 1

0 0 1 0 0 0

0 0 0 0 1 0

Functional Completeness

Every Boolean function can be expressed as a Boolean sum of minterms. Each minterm is the

Boolean product of Boolean variables or their complements. This shows that every Boolean

function can be represented using the Boolean operators ·,+, and −. Because every Boolean

function can be represented using these operators we say that the set {·,+,− } is functionally

complete. Can we find a smaller set of functionally complete operators? We can do so if one

of the three operators of this set can be expressed in terms of the other two. This can be done

using one of De Morgan’s laws. We can eliminate all Boolean sums using the identity

x + y = x y,

which is obtained by taking complements of both sides in the second De Morgan law, given in

Table 5 in Section 12.1, and then applying the double complementation law. This means that

the set {·,− } is functionally complete. Similarly, we could eliminate all Boolean products using

the identity

xy = x + y,

which is obtained by taking complements of both sides in the first De Morgan law, given in

Table 5 in Section 12.1, and then applying the double complementation law. Consequently

{+,− } is functionally complete. Note that the set {+, ·} is not functionally complete, be-

cause it is impossible to express the Boolean function F(x) = x using these operators (see

Exercise 19).

We have found sets containing two operators that are functionally complete. Can we find

a smaller set of functionally complete operators, namely, a set containing just one opera-

tor? Such sets exist. Define two operators, the | or NAND operator, defined by 1 | 1 = 0 and

1 | 0 = 0 | 1 = 0 | 0 = 1; and the ↓ or NOR operator, defined by 1 ↓ 1 = 1 ↓ 0 = 0 ↓ 1 = 0

and 0 ↓ 0 = 1. Both of the sets { | } and { ↓ } are functionally complete. To see that { | } is

functionally complete, because {·,− } is functionally complete, all that we have to do is show

that both of the operators · and − can be expressed using just the | operator. This can be done as

x = x | x,

xy = (x | y) | (x | y).

The reader should verify these identities (see Exercise 14). We leave the demonstration that { ↓ }

is functionally complete for the reader (see Exercises 15 and 16).

822 12 / Boolean Algebra

Exercises

1. Find a Boolean product of the Boolean variables x, y,

and z, or their complements, that has the value 1 if and

only if

a) x = y = 0, z = 1. b) x = 0, y = 1, z = 0.
c) x = 0, y = z = 1. d) x = y = z = 0.

2. Find the sum-of-products expansions of these Boolean

functions.

a) F(x, y) = x + y b) F(x, y) = x y
c) F(x, y) = 1 d) F(x, y) = y

3. Find the sum-of-products expansions of these Boolean

functions.

a) F(x, y, z) = x + y + z
b) F(x, y, z) = (x + z)y
c) F(x, y, z) = x
d) F(x, y, z) = x y

4. Find the sum-of-products expansions of the Boolean

function F(x, y, z) that equals 1 if and only if

a) x = 0. b) xy = 0.
c) x + y = 0. d) xyz = 0.

5. Find the sum-of-products expansion of the Boolean func-

tion F(w, x, y, z) that has the value 1 if and only if an

odd number of w, x, y, and z have the value 1.

6. Find the sum-of-products expansion of the Boolean func-

tion F(x1, x2, x3, x4, x5) that has the value 1 if and only

if three or more of the variables x1, x2, x3, x4, and x5 have

the value 1.

Another way to find a Boolean expression that represents a

Boolean function is to form a Boolean product of Boolean

sums of literals. Exercises 7–11 are concerned with represen-

tations of this kind.

7. Find a Boolean sum containing either x or x, either y

or y, and either z or z that has the value 0 if and only if

a) x = y = 1, z = 0. b) x = y = z = 0.
c) x = z = 0, y = 1.

8. Find a Boolean product of Boolean sums of literals that

has the value 0 if and only if x = y = 1 and z = 0,

x = z = 0 and y = 1, or x = y = z = 0. [Hint: Take the

Boolean product of the Boolean sums found in parts (a),

(b), and (c) in Exercise 7.]

9. Show that the Boolean sum y1 + y2 + · · · + yn, where

yi = xi or yi = xi , has the value 0 for exactly one combi-

nation of the values of the variables, namely, when xi = 0

if yi = xi and xi = 1 if yi = xi . This Boolean sum is

called a maxterm.

10. Show that a Boolean function can be represented as

a Boolean product of maxterms. This representation is

called the product-of-sums expansion or conjunctive

normal form of the function. [Hint: Include one max-

term in this product for each combination of the variables

where the function has the value 0.]

11. Find the product-of-sums expansion of each of the

Boolean functions in Exercise 3.

12. Express each of these Boolean functions using the oper-

ators · and −.

a) x + y + z b) x + y(x + z)

c) x + y d) x(x + y + z)

13. Express each of the Boolean functions in Exercise 12 us-

ing the operators + and .

14. Show that

a) x = x | x. b) xy = (x | y) | (x | y).

c) x + y = (x | x) | (y | y).

15. Show that

a) x = x ↓ x.

b) xy = (x ↓ x) ↓ (y ↓ y).

c) x + y = (x ↓ y) ↓ (x ↓ y).

16. Show that { ↓ } is functionally complete using Exer-

cise 15.

17. Express each of the Boolean functions in Exercise 3 using

the operator | .

18. Express each of the Boolean functions in Exercise 3 using

the operator ↓.

19. Show that the set of operators {+, ·} is not functionally

complete.

20. Are these sets of operators functionally complete?

a) {+,⊕} b) { ,⊕} c) {·,⊕}

12.3 Logic Gates

Introduction

Boolean algebra is used to model the circuitry of electronic devices. Each input and each output

of such a device can be thought of as a member of the set {0, 1}. A computer, or other electronic

device, is made up of a number of circuits. Each circuit can be designed using the rules of

Boolean algebra that were studied in Sections 12.1 and 12.2. The basic elements of circuits

12.3 Logic Gates 823

x
x + y

y

x

y

x xy

(a) Inverter (b) OR gate (c) AND gate

x

FIGURE 1 Basic Types of Gates.

are called gates, and were introduced in Section 1.2. Each type of gate implements a Boolean

operation. In this section we define several types of gates. Using these gates, we will apply the

rules of Boolean algebra to design circuits that perform a variety of tasks. The circuits that we

will study in this chapter give output that depends only on the input, and not on the current

state of the circuit. In other words, these circuits have no memory capabilities. Such circuits are

called combinational circuits or gating networks.

We will construct combinational circuits using three types of elements. The first is an

inverter, which accepts the value of one Boolean variable as input and produces the complement

of this value as its output. The symbol used for an inverter is shown in Figure 1(a). The input to

the inverter is shown on the left side entering the element, and the output is shown on the right

side leaving the element.

The next type of element we will use is the OR gate. The inputs to this gate are the values

of two or more Boolean variables. The output is the Boolean sum of their values. The symbol

used for an OR gate is shown in Figure 1(b). The inputs to the OR gate are shown on the left

side entering the element, and the output is shown on the right side leaving the element.

The third type of element we will use is theAND gate. The inputs to this gate are the values

of two or more Boolean variables. The output is the Boolean product of their values. The symbol

used for an AND gate is shown in Figure 1(c). The inputs to the AND gate are shown on the left

side entering the element, and the output is shown on the right side leaving the element.

We will permit multiple inputs to AND and OR gates. The inputs to each of these gates are

shown on the left side entering the element, and the output is shown on the right side. Examples

of AND and OR gates with n inputs are shown in Figure 2.

•
•

•

•
•

•

x1
x2

xn

x1x2 • • • xn

x1
x2

xn

x1 + x2 + • • • + xn

FIGURE 2 Gates with n Inputs.

Combinations of Gates

Combinational circuits can be constructed using a combination of inverters, OR gates, and AND

gates. When combinations of circuits are formed, some gates may share inputs. This is shown in

one of two ways in depictions of circuits. One method is to use branchings that indicate all the

gates that use a given input. The other method is to indicate this input separately for each gate.

Figure 3 illustrates the two ways of showing gates with the same input values. Note also that

output from a gate may be used as input by one or more other elements, as shown in Figure 3.

Both drawings in Figure 3 depict the circuit that produces the output xy + xy.

EXAMPLE 1 Construct circuits that produce the following outputs: (a) (x + y)x, (b) x (y + z), and (c) (x +

y + z)(x y z).

Solution: Circuits that produce these outputs are shown in Figure 4. ▲

824 12 / Boolean Algebra

x
x

xy + xy

y

x xy

y

xy

x

xy + xy

y

x xy

xy

FIGURE 3 Two Ways to Draw the Same Circuit.

(c)

y

x

x

x + y

x

(x + y) x

y

x

y + z

x (y + z)

x

(y + z)

z
z

(x + y + z)x y z

xyz

x

y

z

x

y

z

x

y

z

 x + y + z

(b)

(a)

FIGURE 4 Circuits that Produce the Outputs Specified in Example 1.

12.3 Logic Gates 825

Examples of Circuits

We will give some examples of circuits that perform some useful functions.

EXAMPLE 2 A committee of three individuals decides issues for an organization. Each individual votes either

yes or no for each proposal that arises. A proposal is passed if it receives at least two yes votes.

Design a circuit that determines whether a proposal passes.

Solution: Let x = 1 if the first individual votes yes, and x = 0 if this individual votes no;

let y = 1 if the second individual votes yes, and y = 0 if this individual votes no; let z = 1

if the third individual votes yes, and z = 0 if this individual votes no. Then a circuit must be

designed that produces the output 1 from the inputs x, y, and z when two or more of x, y,

and z are 1. One representation of the Boolean function that has these output values is

xy + xz+ yz (see Exercise 12 in Section 12.1). The circuit that implements this function is

shown in Figure 5. ▲

x

y

x

z

y

z

xy

xz

yz

xy + xz + yz

FIGURE 5 A Circuit for Majority Voting.

EXAMPLE 3 Sometimes light fixtures are controlled by more than one switch. Circuits need to be designed

so that flipping any one of the switches for the fixture turns the light on when it is off and turns

the light off when it is on. Design circuits that accomplish this when there are two switches and

when there are three switches.

TABLE 1

x y F(x, y)

1 1 1

1 0 0

0 1 0

0 0 1

Solution: We will begin by designing the circuit that controls the light fixture when two different

switches are used. Let x = 1 when the first switch is closed and x = 0 when it is open, and let

y = 1 when the second switch is closed and y = 0 when it is open. Let F(x, y) = 1 when the

light is on and F(x, y) = 0 when it is off. We can arbitrarily decide that the light will be on

when both switches are closed, so that F(1, 1) = 1. This determines all the other values of F .

When one of the two switches is opened, the light goes off, so F(1, 0) = F(0, 1) = 0. When

the other switch is also opened, the light goes on, so F(0, 0) = 1. Table 1 displays these values.

Note that F(x, y) = xy + x y. This function is implemented by the circuit shown in Figure 6.

x

y

xy

xy + xy
x

y

x

y

xy

FIGURE 6 A Circuit for a Light Controlled by Two Switches.

826 12 / Boolean Algebra

xyz

x

y

y

x

z
y
x

z

x

z

x

y

z

y xyz

y

z

z

x

xyz

xyz

xyz + xyz + xyz + xyz

FIGURE 7 A Circuit for a Fixture Controlled by Three Switches.

We will now design a circuit for three switches. Let x, y, and z be the Boolean variables that

indicate whether each of the three switches is closed. We let x = 1 when the first switch is closed,

and x = 0 when it is open; y = 1 when the second switch is closed, and y = 0 when it is open;

and z = 1 when the third switch is closed, and z = 0 when it is open. LetF(x, y, z) = 1 when the

light is on and F(x, y, z) = 0 when the light is off. We can arbitrarily specify that the light be on

when all three switches are closed, so that F(1, 1, 1) = 1. This determines all other values of F .

When one switch is opened, the light goes off, so F(1, 1, 0) = F(1, 0, 1) = F(0, 1, 1) = 0.

When a second switch is opened, the light goes on, soF(1, 0, 0) = F(0, 1, 0) = F(0, 0, 1) = 1.

Finally, when the third switch is opened, the light goes off again, so F(0, 0, 0) = 0. Table 2

shows the values of this function.

TABLE 2

x y z F(x, y, z)

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

0 0 0 0

TABLE 3
Input and
Output for the
Half Adder.

Input Output

x y s c

1 1 0 1

1 0 1 0

0 1 1 0

0 0 0 0

The function F can be represented by its sum-of-products expansion as F(x, y, z) =

xyz+ xy z+ xyz+ x yz. The circuit shown in Figure 7 implements this function. ▲
Adders

We will illustrate how logic circuits can be used to carry out addition of two positive integers

from their binary expansions. We will build up the circuitry to do this addition from some

component circuits. First, we will build a circuit that can be used to find x + y, where x and y

are two bits. The input to our circuit will be x and y, because these each have the value 0 or the

value 1. The output will consist of two bits, namely, s and c, where s is the sum bit and c is the

carry bit. This circuit is called a multiple output circuit because it has more than one output.

The circuit that we are designing is called the half adder, because it adds two bits, without

considering a carry from a previous addition. We show the input and output for the half adder

in Table 3. From Table 3 we see that c = xy and that s = xy + xy = (x + y)(xy). Hence, the

circuit shown in Figure 8 computes the sum bit s and the carry bit c from the bits x and y.

We use the full adder to compute the sum bit and the carry bit when two bits and a carry

are added. The inputs to the full adder are the bits x and y and the carry ci . The outputs are the

sum bit s and the new carry ci+1. The inputs and outputs for the full adder are shown in Table 4.

12.3 Logic Gates 827

xy
(xy)

Sum = (x + y)(xy)

x + y

Carry = xy

x

y

FIGURE 8 The Half Adder.

(x + y)(xy)
Half

adder

Half

adder

 s = xyci + xyci + xyci + xyci

xy

ci+1 = xyci + xyci +

 xyci + xyci

ci

x

y

FIGURE 9 A Full Adder.

The two outputs of the full adder, the sum bit s and the carry ci+1, are given by the sum-

of-products expansions xyci + xy ci + xyci + x yci and xyci + xyci + xyci + xyci , respec-

tively. However, instead of designing the full adder from scratch, we will use half adders to

produce the desired output. A full adder circuit using half adders is shown in Figure 9.

TABLE 4
Input and
Output for
the Full Adder.

Input Output

x y ci s ci+1

1 1 1 1 1

1 1 0 0 1

1 0 1 0 1

1 0 0 1 0

0 1 1 0 1

0 1 0 1 0

0 0 1 1 0

0 0 0 0 0

Finally, in Figure 10 we show how full and half adders can be used to add the two three-bit

integers (x2x1x0)2 and (y2y1y0)2 to produce the sum (s3s2s1s0)2. Note that s3, the highest-order

bit in the sum, is given by the carry c2.

Full

adder

y1

x2

Half

adder

x0

y0

Full

adder

c0

ci
s2

s1

s0

c2 = s3

x1

y2

FIGURE 10 Adding Two Three-Bit

Integers with Full and Half Adders.

Exercises

In Exercises 1–5 find the output of the given circuit.

1. x

y

y

2. x

y

3.

z

y

x

x

4. x

y

z

x

y

z

828 12 / Boolean Algebra

5.

x

y

z

z

y

x

z

y

x

6. Construct circuits from inverters, AND gates, and OR

gates to produce these outputs.

a) x + y b) (x + y)x

c) xyz+ x y z d) (x + z)(y + z)

7. Design a circuit that implements majority voting for five

individuals.

8. Design a circuit for a light fixture controlled by four

switches, where flipping one of the switches turns the

light on when it is off and turns it off when it is on.

9. Show how the sum of two five-bit integers can be found

using full and half adders.

10. Construct a circuit for a half subtractor using AND gates,

OR gates, and inverters. A half subtractor has two bits

as input and produces as output a difference bit and a

borrow.

11. Construct a circuit for a full subtractor using AND gates,

OR gates, and inverters. A full subtractor has two bits

and a borrow as input, and produces as output a difference

bit and a borrow.

12. Use the circuits from Exercises 10 and 11 to find the dif-

ference of two four-bit integers, where the first integer is

greater than the second integer.

∗13. Construct a circuit that compares the two-bit integers

(x1x0)2 and (y1y0)2, returning an output of 1 when the

first of these numbers is larger and an output of 0 other-

wise.
∗14. Construct a circuit that computes the product of the two-

bit integers (x1x0)2 and (y1y0)2. The circuit should have

four output bits for the bits in the product.

Two gates that are often used in circuits are NAND and NOR

gates. When NAND or NOR gates are used to represent cir-

cuits, no other types of gates are needed. The notation for these

gates is as follows:

x

y

x

y

x NAND y x NOR y

∗15. Use NAND gates to construct circuits with these out-

puts.

a) x b) x + y

c) xy d) x ⊕ y

∗16. Use NOR gates to construct circuits for the outputs given

in Exercise 15.

∗17. Construct a half adder using NAND gates.

∗18. Construct a half adder using NOR gates.

A multiplexer is a switching circuit that produces as output

one of a set of input bits based on the value of control bits.

19. Construct a multiplexer using AND gates, OR gates, and

inverters that has as input the four bits x0, x1, x2, and x3

and the two control bits c0 and c1. Set up the circuit so

that xi is the output, where i is the value of the two-bit

integer (c1c0)2.

The depth of a combinatorial circuit can be defined by spec-

ifying that the depth of the initial input is 0 and if a gate

has n different inputs at depths d1, d2, . . . , dn, respectively,

then its outputs have depth equal to max(d1, d2, . . . , dn)+ 1;

this value is also defined to be the depth of the gate. The depth

of a combinatorial circuit is the maximum depth of the gates

in the circuit.

20. Find the depth of

a) the circuit constructed in Example 2 for majority vot-

ing among three people.

b) the circuit constructed in Example 3 for a light con-

trolled by two switches.

c) the half adder shown in Figure 8.

d) the full adder shown in Figure 9.

12.4 Minimization of Circuits

Introduction

The efficiency of a combinational circuit depends on the number and arrangement of its gates.The

process of designing a combinational circuit begins with the table specifying the output for each

combination of input values. We can always use the sum-of-products expansion of a circuit to

find a set of logic gates that will implement this circuit. However, the sum-of-products expansion

12.4 Minimization of Circuits 829

x

y

z

x

y

z

x

z

xz

xyz

xyz

xyz + xyz

y

FIGURE 1 Two Circuits with the Same Output.

may contain many more terms than are necessary. Terms in a sum-of-products expansion that

differ in just one variable, so that in one term this variable occurs and in the other term the

complement of this variable occurs, can be combined. For instance, consider the circuit that has

output 1 if and only if x = y = z = 1 or x = z = 1 and y = 0. The sum-of-products expansion

of this circuit is xyz+ xyz. The two products in this expansion differ in exactly one variable,

namely, y. They can be combined as

xyz+ xyz = (y + y)(xz)

= 1 · (xz)

= xz.

Hence, xz is a Boolean expression with fewer operators that represents the circuit. We show

two different implementations of this circuit in Figure 1. The second circuit uses only one gate,

whereas the first circuit uses three gates and an inverter.

This example shows that combining terms in the sum-of-products expansion of a circuit

leads to a simpler expression for the circuit. We will describe two procedures that simplify

sum-of-products expansions.

The goal of both procedures is to produce Boolean sums of Boolean products that represent

a Boolean function with the fewest products of literals such that these products contain the

fewest literals possible among all sums of products that represent a Boolean function. Finding

such a sum of products is called minimization of the Boolean function. Minimizing a Boolean

function makes it possible to construct a circuit for this function that uses the fewest gates and

fewest inputs to the AND gates and OR gates in the circuit, among all circuits for the Boolean

expression we are minimizing.

Until the early 1960s logic gates were individual components. To reduce costs it was impor-

tant to use the fewest gates to produce a desired output. However, in the mid-1960s, integrated

circuit technology was developed that made it possible to combine gates on a single chip. Even

though it is now possible to build increasingly complex integrated circuits on chips at low cost,

minimization of Boolean functions remains important.

Reducing the number of gates on a chip can lead to a more reliable circuit and can reduce

the cost to produce the chip. Also, minimization makes it possible to fit more circuits on the

same chip. Furthermore, minimization reduces the number of inputs to gates in a circuit. This

reduces the time used by a circuit to compute its output. Moreover, the number of inputs to a

gate may be limited because of the particular technology used to build logic gates.

The first procedure we will introduce, known as Karnaugh maps (or K-maps), was designed

in the 1950s to help minimize circuits by hand. K-maps are useful in minimizing circuits with

up to six variables, although they become rather complex even for five or six variables. The

830 12 / Boolean Algebra

second procedure we will describe, the Quine–McCluskey method, was invented in the 1960s.

It automates the process of minimizing combinatorial circuits and can be implemented as a

computer program.

COMPLEXITYOF BOOLEAN FUNCTIONMINIMIZATION Unfortunately, minimizing

Boolean functions with many variables is a computationally intensive problem. It has been shown

that this problem is an NP-complete problem (see Section 3.3 and [Ka93]), so the existence of a

polynomial-time algorithm for minimizing Boolean circuits is unlikely. The Quine–McCluskey

method has exponential complexity. In practice, it can be used only when the number of liter-

als does not exceed ten. Since the 1970s a number of newer algorithms have been developed

for minimizing combinatorial circuits (see [Ha93] and [KaBe04]). However, with the best al-

gorithms yet devised, only circuits with no more than 25 variables can be minimized. Also,

heuristic (or rule-of-thumb) methods can be used to substantially simplify, but not necessarily

minimize, Boolean expressions with a larger number of literals.

Karnaugh Maps

To reduce the number of terms in a Boolean expression representing a circuit, it is necessary

to find terms to combine. There is a graphical method, called a Karnaugh map or K-map,

for finding terms to combine for Boolean functions involving a relatively small number of

variables. The method we will describe was introduced by Maurice Karnaugh in 1953. His

method is based on earlier work by E. W. Veitch. (This method is usually applied only when

the function involves six or fewer variables.) K-maps give us a visual method for simplifying

sum-of-products expansions; they are not suited for mechanizing this process. We will first

illustrate how K-maps are used to simplify expansions of Boolean functions in two variables.

We will continue by showing how K-maps can be used to minimize Boolean functions in three

variables and then in four variables. Then we will describe the concepts that can be used to

extend K-maps to minimize Boolean functions in more than four variables.

There are four possible minterms in the sum-of-products expansion of a Boolean function

in the two variables x and y. A K-map for a Boolean function in these two variables consists

of four cells, where a 1 is placed in the cell representing a minterm if this minterm is present

in the expansion. Cells are said to be adjacent if the minterms that they represent differ in

exactly one literal. For instance, the cell representing xy is adjacent to the cells representing xy

and x y. The four cells and the terms that they represent are shown in Figure 2.

x xy

x xy

 y y

xy

xy

FIGURE 2

K-maps in Two

Variables.

EXAMPLE 1 Find the K-maps for (a) xy + xy, (b) xy + xy, and (c) xy + xy + x y.

Solution: We include a 1 in a cell when the minterm represented by this cell is present in the

sum-of-products expansion. The three K-maps are shown in Figure 3. ▲

We can identify minterms that can be combined from the K-map. Whenever there are 1s

in two adjacent cells in the K-map, the minterms represented by these cells can be combined

into a product involving just one of the variables. For instance, xy and x y are represented by

adjacent cells and can be combined into y, because xy + x y = (x + x)y = y. Moreover, if 1s

MAURICE KARNAUGH (BORN 1924) Maurice Karnaugh, born in New York City, received his B.S. from
the City College of New York and his M.S. and Ph.D. from Yale University. He was a member of the technical
staff at Bell Laboratories from 1952 until 1966 and Manager of Research and Development at the Federal
Systems Division of AT&T from 1966 to 1970. In 1970 he joined IBM as a member of the research staff.
Karnaugh has made fundamental contributions to the application of digital techniques in both computing and
telecommunications. His current interests include knowledge-based systems in computers and heuristic search
methods.

12.4 Minimization of Circuits 831

x

x

 y y

1

1

x

x

 y y

1

1 x

x

 y y

1

1

1

(a) (b) (c)

FIGURE 3 K-maps for the Sum-of-Products Expansions in Example 1.

are in all four cells, the four minterms can be combined into one term, namely, the Boolean

expression 1 that involves none of the variables. We circle blocks of cells in the K-map that

represent minterms that can be combined and then find the corresponding sum of products. The

goal is to identify the largest possible blocks, and to cover all the 1s with the fewest blocks using

the largest blocks first and always using the largest possible blocks.

EXAMPLE 2 Simplify the sum-of-products expansions given in Example 1.

Solution: The grouping of minterms is shown in Figure 4 using the K-maps for these expansions.

Minimal expansions for these sums-of-products are (a) y, (b) xy + xy, and (c) x + y. ▲

x

x

 y

1

1

y

1

1 x

x

 y y

1

1

1

(a) (b) (c)

y

x

x

FIGURE 4 Simplifying the Sum-of-Products Expansions from Example 2.

A K-map in three variables is a rectangle divided into eight cells. The cells represent the

eight possible minterms in three variables. Two cells are said to be adjacent if the minterms that

they represent differ in exactly one literal. One of the ways to form a K-map in three variables

is shown in Figure 5(a). This K-map can be thought of as lying on a cylinder, as shown in

Figure 5(b). On the cylinder, two cells have a common border if and only if they are adjacent.

(a)

(b)

xyz

xyz

xyz

xyz

xyz

xyz

xyz

xyz

yz yz yz yz

x

x

xyz

xyz xyz

xyz

xyz xyz
xyz xyz

FIGURE 5 K-maps in Three Variables.

832 12 / Boolean Algebra

(a)

yz yz yz yz

yz = xyz + xyz

(b)

yz yz yz yz

x

x

xz = xyz + xyz

(c)

yz yz yz yz

x

x

z = xyz + xyz + xyz + xyz

(d)

yz yz yz yz

x

x

x = xyz + xyz + xyz + xyz

(e)

yz yz yz yz

x

x

1 = xyz + xyz + xyz + xyz +

 xyz + xyz + xyz + xyz

x

x

FIGURE 6 Blocks in K-maps in Three Variables.

To simplify a sum-of-products expansion in three variables, we use the K-map to iden-

tify blocks of minterms that can be combined. Blocks of two adjacent cells represent pairs of

minterms that can be combined into a product of two literals; 2× 2 and 4× 1 blocks of cells

represent minterms that can be combined into a single literal; and the block of all eight cells

represents a product of no literals, namely, the function 1. In Figure 6, 1× 2, 2× 1, 2× 2, 4×1,

and 4× 2 blocks and the products they represent are shown.

The product of literals corresponding to a block of all 1s in the K-map is called an implicant

of the function being minimized. It is called a prime implicant if this block of 1s is not contained

in a larger block of 1s representing the product of fewer literals than in this product.

The goal is to identify the largest possible blocks in the map and cover all the 1s in the map

with the least number of blocks, using the largest blocks first. The largest possible blocks are

always chosen, but we must always choose a block if it is the only block of 1s covering a 1 in

the K-map. Such a block represents an essential prime implicant. By covering all the 1s in the

map with blocks corresponding to prime implicants we can express the sum of products as a

sum of prime implicants. Note that there may be more than one way to cover all the 1s using

the least number of blocks.

Example 3 illustrates how K-maps in three variables are used.

EXAMPLE 3 Use K-maps to minimize these sum-of-products expansions.

(a) xyz+ xy z+ xyz+ x y z

(b) xyz+ xy z+ xyz+ x yz+ x y z

(c) xyz+ xyz+ xyz+ xy z+ xyz+ x yz+ x y z

(d) xyz+ xy z+ x yz+ x y z

Solution: The K-maps for these sum-of-products expansions are shown in Figure 7. The group-

ing of blocks shows that minimal expansions into Boolean sums of Boolean products are

(a) xz+ y z+ xyz, (b) y + xz, (c) x + y + z, and (d) xz+ x y. In part (d) note that the prime

implicants xz and x y are essential prime implicants, but the prime implicant y z is a

prime implicant that is not essential, because the cells it covers are covered by the other two

prime implicants. ▲

12.4 Minimization of Circuits 833

(a)

yz yz yz yz

(b)

yz yz yz yz

x

x

(c) (d)

yz yz yz yz

x

x

x

x 1 1

11

yz yz yz yz

x

x 1

11

1

11

11

1

11

1 11

11

FIGURE 7 Using K-maps in Three Variables.

A K-map in four variables is a square that is divided into 16 cells. The cells represent the 16

possible minterms in four variables. One of the ways to form a K-map in four variables is shown

in Figure 8.

Two cells are adjacent if and only if the minterms they represent differ in one literal. Con-

sequently, each cell is adjacent to four other cells. The K-map of a sum-of-products expansion

in four variables can be thought of as lying on a torus, so that adjacent cells have a common

boundary (see Exercise 28). The simplification of a sum-of-products expansion in four variables

is carried out by identifying those blocks of 2, 4, 8, or 16 cells that represent minterms that can be

combined. Each cell representing a minterm must either be used to form a product using fewer

literals, or be included in the expansion. In Figure 9 some examples of blocks that represent

products of three literals, products of two literals, and a single literal are illustrated.

As is the case in K-maps in two and three variables, the goal is to identify the largest

blocks of 1s in the map that correspond to the prime implicants and to cover all the 1s using

the fewest blocks needed, using the largest blocks first. The largest possible blocks are always

used. Example 4 illustrates how K-maps in four variables are used.

yz yz yz yz

wx

wx

wx

wx

wxyz wxyz wxyz wxyz

wxyz wxyz wxyz wxyz

wxyz wxyz wxyz wxyz

wxyz wxyz wxyz wxyz

FIGURE 8 K-maps in Four Variables.

834 12 / Boolean Algebra

yz

wx

wxz = wxyz + wxyz wx = wxyz + wxyz +

wxyz + wxyz

(b)(a)

xz = wxyz + wxyz +

wxyz + wxyz

z = wxyz + wxyz + wxyz +

wxyz + wxyz + wxyz + wxyz + wxyz

(d)(c)

yz yz yz

wx

wx

wx

yz

wx

yz yz yz

wx

wx

wx

yz

wx

yz yz yz

wx

wx

wx

yz

wx

yz yz yz

wx

wx

wx

FIGURE 9 Blocks in K-maps in Four Variables.

EXAMPLE 4 Use K-maps to simplify these sum-of-products expansions.

(a) wxyz+ wxyz+ wxy z+ wxyz+ wx yz+ wx y z+ wxyz +

w xyz+ w xyz

(b) wxy z+ wxyz+ wxyz+ wx y z+ wxy z+ w xyz+ w x y z

(c) wxyz+ wxy z+ wxyz+ wxyz+ wx y z+ wxyz+ wxyz+ wxy z +

wxyz+ w xyz+ w x y z

Solution: The K-maps for these expansions are shown in Figure 10. Using the blocks shown

leads to the sum of products (a) wyz+ wxz+ wx y + w xy + wxyz, (b) y z+ wxy + x z, and

(c) z+ wx + wxy. The reader should determine whether there are other choices of blocks in

each part that lead to different sums of products representing these Boolean functions. ▲

K-maps can realistically be used to minimize Boolean functions with five or six variables,

but beyond that, they are rarely used because they become extremely complicated. However, the

concepts used in K-maps play an important role in newer algorithms. Furthermore, mastering

these concepts helps you understand these newer algorithms and the computer-aided design

(CAD) programs that implement them.As we develop these concepts, we will be able to illustrate

them by referring back to our discussion of minimization of Boolean functions in three and in

four variables.

The K-maps we used to minimize Boolean functions in two, three, and four variables are

built using 2× 2, 2× 4, and 4× 4 rectangles, respectively. Furthermore, corresponding cells in

the top row and bottom row and in the leftmost column and rightmost column in each of these

12.4 Minimization of Circuits 835

(b)(a)

yz

wx

yz yz yz

wx

wx

wx

yz

wx

yz yz yz

wx

wx

wx

1

1

1 1

1 1

1 1

1

1 1

1

1

1

1

1

(c)

yz

wx

yz yz yz

wx

wx

wx

1 1

1 1

11

1

1

1

1

1

FIGURE 10 Using K-maps in Four Variables.

cases are considered adjacent because they represent minterms differing in only one literal. We

can build K-maps for minimizing Boolean functions in more than four variables in a similar

way. We use a rectangle containing 2 n/2 rows and 2 n/2 columns. (These K-maps contain

2n cells because n/2 + n/2 = n.) The rows and columns need to be positioned so that the

cells representing minterms differing in just one literal are adjacent or are considered adjacent

by specifying additional adjacencies of rows and columns. To help (but not entirely) achieve

this, the rows and columns of a K-map are arranged using Gray codes (see Section 10.5), where

we associate bit strings and products by specifying that a 1 corresponds to the appearance of

a variable and a 0 with the appearance of its complement. For example, in a 10-dimensional

K-map, the Gray code 01110 used to label a row corresponds to the product x1x2x3x4x5.

EXAMPLE 5 The K-maps we used to minimize Boolean functions with four variables have four rows and

four columns. Both the rows and the columns are arranged using the Gray code 11,10,00,01.

The rows represent products wx, wx, w x, and wx, respectively, and the columns correspond to

the products yz, yz, y z, and yz, respectively. Using Gray codes and considering cells adjacent

in the first and last rows and in the first and last columns, we ensured that minterms that differ

in only one variable are always adjacent. ▲

EXAMPLE 6 To minimize Boolean functions in five variables we use K-maps with 23 = 8 columns and

22 = 4 rows. We label the four rows using the Gray code 11,10,00,01, corresponding to

x1x2, x1x2, x1x2, and x1x2, respectively. We label the eight columns using the Gray code

111,110,100,101,001,000,010,011 corresponding to the terms x3x4x5, x3x4x5, x3x4x5, x3x4x5,

x3x4x5, x3x4x5, x3x4x5, and x3x4x5, respectively. Using Gray codes to label columns and rows

ensures that the minterms represented by adjacent cells differ in only one variable. However,

to make sure all cells representing products that differ in only one variable are considered ad-

jacent, we consider cells in the top and bottom rows to be adjacent, as well as cells in the first

and eighth columns, the first and fourth columns, the second and seventh columns, the third and

sixth columns, and the fifth and eighth columns (as the reader should verify). ▲

To use a K-map to minimize a Boolean function in n variables, we first draw a K-map of

the appropriate size. We place 1s in all cells corresponding to minterms in the sum-of-products

expansion of this function. We then identify all prime implicants of the Boolean function. To do

this we look for the blocks consisting of 2k clustered cells all containing a 1, where 1 ≤ k ≤ n.

These blocks correspond to the product of n− k literals. (Exercise 33 asks the reader to verify

this.) Furthermore, a block of 2k cells each containing a 1 not contained in a block of 2k+1

cells each containing a 1 represents a prime implicant. The reason that this implicant is a prime

implicant is that no product obtained by deleting a literal is also represented by a block of cells

all containing 1s.

836 12 / Boolean Algebra

EXAMPLE 7 A block of eight cells representing a product of two literals in a K-map for minimizing Boolean

functions in five variables all containing 1s is a prime implicant if it is not contained in a larger

block of 16 cells all containing 1s representing a single literal. ▲

Once all prime implicants have been identified, the goal is to find the smallest possible subset

of these prime implicants with the property that the cells representing these prime implicants

cover all the cells containing a 1 in the K-map. We begin by selecting the essential prime

implicants because each of these is represented by a block that covers a cell containing a 1 that

is not covered by any other prime implicant. We add additional prime implicants to ensure that

all 1s in the K-map are covered. When the number of variables is large, this last step can become

exceedingly complicated.

Don’t Care Conditions

In some circuits we care only about the output for some combinations of input values, be-

cause other combinations of input values are not possible or never occur. This gives us freedom

in producing a simple circuit with the desired output because the output values for all those

combinations that never occur can be arbitrarily chosen. The values of the function for these

combinations are called don’t care conditions. A d is used in a K-map to mark those com-

binations of values of the variables for which the function can be arbitrarily assigned. In the

minimization process we can assign 1s as values to those combinations of the input values that

lead to the largest blocks in the K-map. This is illustrated in Example 8.

EXAMPLE 8 One way to code decimal expansions using bits is to use the four bits of the binary expansion

of each digit in the decimal expansion. For instance, 873 is encoded as 100001110011. This

encoding of a decimal expansion is called a binary coded decimal expansion. Because there

are 16 blocks of four bits and only 10 decimal digits, there are six combinations of four bits that

are not used to encode digits. Suppose that a circuit is to be built that produces an output of 1 if

the decimal digit is 5 or greater and an output of 0 if the decimal digit is less than 5. How can

this circuit be simply built using OR gates, AND gates, and inverters?

Solution: Let F(w, x, y, z) denote the output of the circuit, where wxyz is a binary expansion

of a decimal digit. The values of F are shown in Table 1. The K-map for F , with ds in the

don’t care positions, is shown in Figure 11(a). We can either include or exclude squares with

ds from blocks. This gives us many possible choices for the blocks. For example, excluding

all squares with ds and forming blocks, as shown in Figure 11(b), produces the expression

wx y + wxy + wxz. Including some of the ds and excluding others and forming blocks, as

TABLE 1

Digit w x y z F

0 0 0 0 0 0

1 0 0 0 1 0

2 0 0 1 0 0

3 0 0 1 1 0

4 0 1 0 0 0

5 0 1 0 1 1

6 0 1 1 0 1

7 0 1 1 1 1

8 1 0 0 0 1

9 1 0 0 1 1

12.4 Minimization of Circuits 837

yz yz yz yz

wx

wx

wx

wx

d d d d

d d 1 1

1 1 1

yz yz yz yz

wx

wx

wx

wx

d d d d

d d 1 1

1 1 1

yz yz yz yz

wx

wx

wx

wx

d d d d

d d 1 1

1 1 1

yz yz yz yz

wx

wx

wx

wx

d d d d

d d 1 1

1 1 1

(a) (b)

(c) (d)

FIGURE 11 The K-map for F Showing Its Don’t Care Positions.

shown in Figure 11(c), produces the expression wx + wxy + xyz. Finally, including all the ds

and using the blocks shown in Figure 11(d) produces the simplest sum-of-products expansion

possible, namely, F(x, y, z) = w+ xy + xz. ▲

The Quine–MCCluskey Method

We have seen that K-maps can be used to produce minimal expansions of Boolean functions

as Boolean sums of Boolean products. However, K-maps are awkward to use when there are

more than four variables. Furthermore, the use of K-maps relies on visual inspection to identify

terms to group. For these reasons there is a need for a procedure for simplifying sum-of-products

expansions that can be mechanized. The Quine–McCluskey method is such a procedure. It can

be used for Boolean functions in any number of variables. It was developed in the 1950s by

W. V. Quine and E. J. McCluskey, Jr. Basically, the Quine–McCluskey method consists of two

EDWARD J. MCCLUSKEY (BORN 1929) Edward McCluskey attended Bowdoin College and M.I.T., where
he received his doctorate in electrical engineering in 1956. He joined Bell Telephone Laboratories in 1955,
remaining there until 1959. McCluskey was professor of electrical engineering at Princeton University from
1959 until 1966, also serving as director of the Computer Center at Princeton from 1961 to 1966. In 1967 he
took a position as professor of computer science and electrical engineering at Stanford University, where he also
served as director of the Digital Systems Laboratory from 1969 to 1978. McCluskey has worked in a variety of
areas in computer science, including fault-tolerant computing, computer architecture, testing, and logic design.
He is the director of the Center for Reliable Computing at Stanford University where he is now an emeritus
professor. McCluskey is also an ACM Fellow.

838 12 / Boolean Algebra

TABLE 2

Minterm Bit String Number of 1s

xyz 111 3

xyz 101 2

xyz 011 2

x yz 001 1

x y z 000 0

parts. The first part finds those terms that are candidates for inclusion in a minimal expansion

as a Boolean sum of Boolean products. The second part determines which of these terms to

actually use. We will use Example 9 to illustrate how, by successively combining implicants

into implicants with one fewer literal, this procedure works.

EXAMPLE 9 We will show how the Quine–McCluskey method can be used to find a minimal expansion

equivalent to

xyz+ xyz+ xyz+ x yz+ x y z.

We will represent the minterms in this expansion by bit strings. The first bit will be 1 if x

occurs and 0 if x occurs. The second bit will be 1 if y occurs and 0 if y occurs. The third bit

will be 1 if z occurs and 0 if z occurs. We then group these terms according to the number of 1s

in the corresponding bit strings. This information is shown in Table 2.

Minterms that can be combined are those that differ in exactly one literal. Hence, two terms

that can be combined differ by exactly one in the number of 1s in the bit strings that represent

them. When two minterms are combined into a product, this product contains two literals. A

product in two literals is represented using a dash to denote the variable that does not occur. For

instance, the minterms xyz and x yz, represented by bit strings 101 and 001, can be combined

into yz, represented by the string –01. All pairs of minterms that can be combined and the

product formed from these combinations are shown in Table 3.

Next, all pairs of products of two literals that can be combined are combined into one

literal. Two such products can be combined if they contain literals for the same two variables,

and literals for only one of the two variables differ. In terms of the strings representing the

products, these strings must have a dash in the same position and must differ in exactly one

of the other two slots. We can combine the products yz and yz, represented by the strings –11

and –01, into z, represented by the string – –1. We show all the combinations of terms that can

be formed in this way in Table 3.

TABLE 3

Step 1 Step 2

Term Bit String Term String Term String

1 xyz 111 (1,2) xz 1–1 (1,2,3,4) z – –1

2 xyz 101 (1,3) yz –11

3 xyz 011 (2,4) yz –01

4 x yz 001 (3,4) xz 0–1

5 x y z 000 (4,5) x y 00–

12.4 Minimization of Circuits 839

TABLE 4

xyz xyz xyz x yz x y z

z X X X X

x y X X

In Table 3 we also indicate which terms have been used to form products with fewer literals;

these terms will not be needed in a minimal expansion. The next step is to identify a minimal

set of products needed to represent the Boolean function. We begin with all those products that

were not used to construct products with fewer literals. Next, we form Table 4, which has a row

for each candidate product formed by combining original terms, and a column for each original

term; and we put an X in a position if the original term in the sum-of-products expansion was

used to form this candidate product. In this case, we say that the candidate product covers

the original minterm. We need to include at least one product that covers each of the original

minterms. Consequently, whenever there is only one X in a column in the table, the product

corresponding to the row this X is in must be used. From Table 4 we see that both z and x y are

needed. Hence, the final answer is z+ x y. ▲

As was illustrated in Example 9, the Quine–McCluskey method uses this sequence of steps

to simplify a sum-of-products expression.

1. Express each minterm in n variables by a bit string of length n with a 1 in the ith position

if xi occurs and a 0 in this position if xi occurs.

2. Group the bit strings according to the number of 1s in them.

3. Determine all products in n− 1 variables that can be formed by taking the Boolean sum

of minterms in the expansion. Minterms that can be combined are represented by bit

strings that differ in exactly one position. Represent these products in n− 1 variables

with strings that have a 1 in the ith position if xi occurs in the product, a 0 in this position

if xi occurs, and a dash in this position if there is no literal involving xi in the product.

WILLARDVAN ORMAN QUINE (1908–2000) Willard Quine, born inAkron, Ohio, attended Oberlin College
and later Harvard University, where he received his Ph.D. in philosophy in 1932. He became a Junior Fellow
at Harvard in 1933 and was appointed to a position on the faculty there in 1936. He remained at Harvard
his entire professional life, except for World War II, when he worked for the U.S. Navy decrypting messages
from German submarines. Quine was always interested in algorithms, but not in hardware. He arrived at his
discovery of what is now called the Quine–McCluskey method as a device for teaching mathematical logic,
rather than as a method for simplifying switching circuits. Quine was one of the most famous philosophers of
the twentieth century. He made fundamental contributions to the theory of knowledge, mathematical logic and
set theory, and the philosophies of logic and language. His books, including New Foundations of Mathematical

Logic published in 1937 and Word and Object published in 1960, have had a profound impact. Quine retired from Harvard in 1978
but continued to commute from his home in Beacon Hill to his office there. He used the 1927 Remington typewriter on which he
prepared his doctoral thesis for his entire life. He even had an operation performed on this machine to add a few special symbols,
removing the second period, the second comma, and the question mark. When asked whether he missed the question mark, he
replied, “Well, you see, I deal in certainties.” There is even a word quine, defined in the New Hacker’s Dictionary as a program
that generates a copy of its own source code as its complete output. Producing the shortest possible quine in a given programming
language is a popular puzzle for hackers.

840 12 / Boolean Algebra

4. Determine all products in n− 2 variables that can be formed by taking the Boolean sum

of the products in n− 1 variables found in the previous step. Products in n− 1 variables

that can be combined are represented by bit strings that have a dash in the same position

and differ in exactly one position.

5. Continue combining Boolean products into products in fewer variables as long as possible.

6. Find all the Boolean products that arose that were not used to form a Boolean product in

one fewer literal.

7. Find the smallest set of these Boolean products such that the sum of these products

represents the Boolean function. This is done by forming a table showing which minterms

are covered by which products. Every minterm must be covered by at least one product.

The first step in using this table is to find all essential prime implicants. Each essential

prime implicant must be included because it is the only prime implicant that covers one of

the minterms. Once we have found essential prime implicants, we can simplify the table

by eliminating the rows for minterms covered by these prime implicants. Furthermore,

we can eliminate any prime implicants that cover a subset of minterms covered by another

prime implicant (as the reader should verify). Moreover, we can eliminate from the table

the row for a minterm if there is another minterm that is covered by a subset of the

prime implicants that cover this minterm. This process of identifying essential prime

implicants that must be included, followed by eliminating redundant prime implicants

and identifying minterms that can be ignored, is iterated until the table does not change.

At this point we use a backtracking procedure to find the optimal solution where we add

prime implicants to the cover to find possible solutions, which we compare to the best

solution found so far at each step.

A final example will illustrate how this procedure is used to simplify a sum-of-products

expansion in four variables.

EXAMPLE 10 Use the Quine–McCluskey method to simplify the sum-of-products expansion wxyz+ wxyz+

wxyz+ wxyz+ wxyz+ w xyz+ w x yz.

Solution: We first represent the minterms by bit strings and then group these terms together

according to the number of 1s in the bit strings. This is shown in Table 5. All the Boolean

products that can be formed by taking Boolean sums of these products are shown in Table 6.

The only products that were not used to form products in fewer variables are wz, wyz,

wxy, and xyz. In Table 7 we show the minterms covered by each of these products. To cover

these minterms we must include wz and wyz, because these products are the only products that

cover wxyz and wxyz, respectively. Once these two products are included, we see that only

one of the two products left is needed. Consequently, we can take either wz+ wyz+ wxy or

wz+ wyz+ xyz as the final answer. ▲

TABLE 5

Term Bit String Number of 1s

wxyz 1110 3

wxyz 1011 3

wxyz 0111 3

wxyz 1010 2

wxyz 0101 2

w xyz 0011 2

w x yz 0001 1

12.4 Minimization of Circuits 841

TABLE 6

Step 1 Step 2

Term Bit String Term String Term String

1 wxyz 1110 (1,4) wyz 1–10 (3,5,6,7) wz 0 – –1

2 wxyz 1011 (2,4) wxy 101–

3 wxyz 0111 (2,6) xyz –011

4 wxyz 1010 (3,5) wxz 01–1

5 wxyz 0101 (3,6) wyz 0–11

6 w xyz 0011 (5,7) w yz 0–01

7 w x yz 0001 (6,7) w xz 00–1

TABLE 7

wxyz wxyz wxyz wxyz wxyz w xyz w x yz

wz X X X X

wyz X X

wxy X X

xyz X X

Exercises

1. a) Draw a K-map for a function in two variables and put

a 1 in the cell representing xy.

b) What are the minterms represented by cells adjacent

to this cell?

2. Find the sum-of-products expansions represented by each

of these K-maps.

a)

x

x

 y y

1

1 1

b)

x

x

 y y

11

c)

x

x

 y y

1

1

1

1

3. Draw the K-maps of these sum-of-products expansions

in two variables.

a) xy b) xy + x y

c) xy + xy + xy + x y

4. Use a K-map to find a minimal expansion as a Boolean

sum of Boolean products of each of these functions of the

Boolean variables x and y.

a) xy + x y

b) xy + xy

c) xy + xy + xy + x y

5. a) Draw a K-map for a function in three variables. Put a

1 in the cell that represents xyz.

b) Which minterms are represented by cells adjacent to

this cell?

6. Use K-maps to find simpler circuits with the same output

as each of the circuits shown.

a) x
y

z

x

xyz

xyz

xyz + xyz

x
y

z

b) x
y

z

x
y

z

x
y

z

x
y

z

z

y

z

x

z

x
y

z

xyz

xyz

xyz

xyz

xyz + xyz + xyz + xyz

842 12 / Boolean Algebra

c) x
y

z

x

z

z

z

y

xyz

x + z

y + z

xyz[(x + z) + (y + z)]

(x + z) + (y + z)

z

x

y

7. Draw the K-maps of these sum-of-products expansions

in three variables.

a) xy z b) xyz+ x y z

c) xyz+ xyz+ xyz+ x yz

8. Construct a K-map for F(x, y, z) = xz+ yz+ xyz. Use

this K-map to find the implicants, prime implicants, and

essential prime implicants of F(x, y, z).

9. Construct a K-map for F(x, y, z) = xz+ xyz+ yz. Use

this K-map to find the implicants, prime implicants, and

essential prime implicants of F(x, y, z).

10. Draw the 3-cube Q3 and label each vertex with the

minterm in the Boolean variables x, y, and z associated

with the bit string represented by this vertex. For each

literal in these variables indicate the 2-cube Q2 that is a

subgraph of Q3 and represents this literal.

11. Draw the 4-cube Q4 and label each vertex with the

minterm in the Boolean variables w, x, y, and z asso-

ciated with the bit string represented by this vertex. For

each literal in these variables, indicate which 3-cube Q3

that is a subgraph of Q4 represents this literal. Indicate

which 2-cube Q2 that is a subgraph of Q4 represents the

products wz, xy, and y z.

12. Use a K-map to find a minimal expansion as a Boolean

sum of Boolean products of each of these functions in the

variables x, y, and z.

a) xyz+ x yz

b) xyz+ xyz+ xyz+ xyz

c) xyz+ xyz+ xy z+ xyz+ x yz

d) xyz+ xyz+ xy z+ xyz+ xyz+ x y z

13. a) Draw a K-map for a function in four variables. Put a

1 in the cell that represents wxyz.

b) Which minterms are represented by cells adjacent to

this cell?

14. Use a K-map to find a minimal expansion as a Boolean

sum of Boolean products of each of these functions in the

variables w, x, y, and z.
a) wxyz + wxyz + wxy z +wxyz + wx yz

b) wxyz + wxyz + wxyz + wxyz + w xyz + w x yz

c) wxyz + wxyz + wxyz + wx yz + wx y z +

wxyz + w xyz + w x yz

d) wxyz + wxyz + wxyz + wxyz + wxyz +

wxyz + w xyz + w xyz + w x yz

15. Find the cells in a K-map for Boolean functions with five

variables that correspond to each of these products.

a) x1x2x3x4 b) x1x3x5 c) x2x4

d) x3x4 e) x3 f) x5

16. How many cells in a K-map for Boolean functions

with six variables are needed to represent x1, x1x6,

x1x2x6, x2x3x4x5, and x1x2x4x5, respectively?

17. a) How many cells does a K-map in six variables have?

b) How many cells are adjacent to a given cell in a K-map

in six variables?

18. Show that cells in a K-map for Boolean functions in

five variables represent minterms that differ in exactly

one literal if and only if they are adjacent or are in cells

that become adjacent when the top and bottom rows and

cells in the first and eighth columns, the first and fourth

columns, the second and seventh columns, the third and

sixth columns, and the fifth and eighth columns are con-

sidered adjacent.

19. Which rows and which columns of a 4× 16 map for

Boolean functions in six variables using the Gray codes

1111, 1110, 1010, 1011, 1001, 1000, 0000, 0001, 0011,

0010, 0110, 0111, 0101, 0100, 1100, 1101 to label the

columns and 11, 10, 00, 01 to label the rows need to be

considered adjacent so that cells that represent minterms

that differ in exactly one literal are considered adjacent?

∗20. Use K-maps to find a minimal expansion as a Boolean

sum of Boolean products of Boolean functions that have

as input the binary code for each decimal digit and pro-

duce as output a 1 if and only if the digit corresponding

to the input is

a) odd. b) not divisible by 3.

c) not 4, 5, or 6.

∗21. Suppose that there are five members on a committee, but

that Smith and Jones always vote the opposite of Marcus.

Design a circuit that implements majority voting of the

committee using this relationship between votes.

22. Use the Quine–McCluskey method to simplify the sum-

of-products expansions in Example 3.

23. Use the Quine–McCluskey method to simplify the sum-

of-products expansions in Exercise 12.

24. Use the Quine–McCluskey method to simplify the sum-

of-products expansions in Example 4.

25. Use the Quine–McCluskey method to simplify the sum-

of-products expansions in Exercise 14.

∗26. Explain how K-maps can be used to simplify product-of-

sums expansions in three variables. [Hint: Mark with a 0

all the maxterms in an expansion and combine blocks of

maxterms.]

27. Use the method from Exercise 26 to simplify the product-

of-sums expansion (x + y + z)(x + y + z)(x + y + z)

(x + y + z)(x + y + z).

∗28. Draw a K-map for the 16 minterms in four Boolean vari-

ables on the surface of a torus.

Key Terms and Results 843

29. Build a circuit using OR gates, AND gates, and inverters

that produces an output of 1 if a decimal digit, encoded

using a binary coded decimal expansion, is divisible by

3, and an output of 0 otherwise.

In Exercises 30–32 find a minimal sum-of-products expan-

sion, given the K-map shown with don’t care conditions indi-

cated with ds.

30. yzyz yz yz

wx

wx

wx

wx

d 1 d

d

1

1

1

d

d

d

31. yzyz yz yz

wx

wx

wx

wx

d 1

1 1

1 d

d d

32. yzyz yz yz

wx

wx

wx

wx

d 1

1

d

d d

d d

111

33. Show that products of k literals correspond to 2n−k-

dimensional subcubes of the n-cube Qn, where the ver-

tices of the cube correspond to the minterms represented

by the bit strings labeling the vertices, as described in

Example 8 of Section 10.2.

Key Terms and Results

TERMS

Boolean variable: a variable that assumes only the values 0

and 1

x (complement of x): an expression with the value 1 when x

has the value 0 and the value 0 when x has the value 1

x · y (or xy) (Boolean product or conjunction of x and y):

an expression with the value 1 when both x and y have the

value 1 and the value 0 otherwise

x + y (Boolean sum or disjunction of x and y): an expres-

sion with the value 1 when either x or y, or both, has the

value 1, and 0 otherwise

Boolean expressions: the expressions obtained recursively by

specifying that 0, 1, x1, . . . , xn are Boolean expressions and

E1, (E1 + E2), and (E1E2) are Boolean expressions if E1

and E2 are

dual of a Boolean expression: the expression obtained by in-

terchanging + signs and · signs and interchanging 0s and

1s

Boolean function of degree n: a function fromBn toB where

B = {0, 1}

Boolean algebra: a set B with two binary operations∨ and∧,

elements 0 and 1, and a complementation operator that

satisfies the identity, complement, associative, commuta-

tive, and distributive laws

literal of the Boolean variable x: either x or x

minterm of x1, x2, . . . , xn: a Boolean product y1y2 · · · yn,

where each yi is either xi or xi

sum-of-products expansion (or disjunctive normal form):

the representation of a Boolean function as a disjunction of

minterms

functionally complete: a set of Boolean operators is called

functionally complete if every Boolean function can be rep-

resented using these operators

x | y (or x NAND y): the expression that has the value 0 when

both x and y have the value 1 and the value 1 otherwise

x ↓ y (or x NOR y): the expression that has the value 0 when

either x or y or both have the value 1 and the value 0 other-

wise

inverter: a device that accepts the value of a Boolean variable

as input and produces the complement of the input

OR gate: a device that accepts the values of two or more

Boolean variables as input and produces their Boolean sum

as output

AND gate: a device that accepts the values of two or more

Boolean variables as input and produces their Boolean prod-

uct as output

half adder: a circuit that adds two bits, producing a sum bit

and a carry bit

full adder: a circuit that adds two bits and a carry, producing

a sum bit and a carry bit

K-map forn variables: a rectangle divided into 2n cells where

each cell represents a minterm in the variables

minimization of a Boolean function: representing a Boolean

function as the sum of the fewest products of literals

such that these products contain the fewest literals possi-

ble among all sums of products that represent this Boolean

function

implicant of a Boolean function: a product of literals with the

property that if this product has the value 1, then the value

of this Boolean function is 1

prime implicant of a Boolean function: a product of literals

that is an implicant of the Boolean function and no product

obtained by deleting a literal is also an implicant of this

function

essential prime implicant of a Boolean function: a prime

implicant of the Boolean function that must be included in

a minimization of this function

don’t care condition: a combination of input values for a cir-

cuit that is not possible or never occurs

RESULTS

The identities for Boolean algebra (see Table 5 in Section 12.1).

844 12 / Boolean Algebra

An identity between Boolean functions represented by Boolean

expressions remains valid when the duals of both sides of

the identity are taken.

Every Boolean function can be represented by a sum-of-

products expansion.

Each of the sets {+,−} and {·,−} is functionally complete.

Each of the sets { ↓ } and { | } is functionally complete.

The use of K-maps to minimize Boolean expressions.

The Quine–McCluskey method for minimizing Boolean ex-

pressions.

Review Questions

1. Define a Boolean function of degree n.

2. How many Boolean functions of degree two are there?

3. Give a recursive definition of the set of Boolean expres-

sions.

4. a) What is the dual of a Boolean expression?

b) What is the duality principle? How can it be used to

find new identities involving Boolean expressions?

5. Explain how to construct the sum-of-products expansion

of a Boolean function.

6. a) What does it mean for a set of operators to be func-

tionally complete?

b) Is the set {+, ·} functionally complete?

c) Are there sets of a single operator that are functionally

complete?

7. Explain how to build a circuit for a light controlled by

two switches using OR gates, AND gates, and inverters.

8. Construct a half adder using OR gates, AND gates, and

inverters.

9. Is there a single type of logic gate that can be used to build

all circuits that can be built using OR gates, AND gates,

and inverters?

10. a) Explain how K-maps can be used to simplify sum-of-

products expansions in three Boolean variables.

b) Use a K-map to simplify the sum-of-products expan-

sion xyz+ xyz+ xy z+ xyz+ x y z.

11. a) Explain how K-maps can be used to simplify sum-of-

products expansions in four Boolean variables.

b) Use a K-map to simplify the sum-of-products ex-

pansion wxyz+ wxyz+ wxyz+ wxy z+ wxyz+

wx yz+ wxyz+ w xyz+ w xyz.

12. a) What is a don’t care condition?

b) Explain how don’t care conditions can be used to build

a circuit using OR gates, AND gates, and inverters

that produces an output of 1 if a decimal digit is 6 or

greater, and an output of 0 if this digit is less than 6.

13. a) Explain how to use the Quine–McCluskey method to

simplify sum-of-products expansions.

b) Use this method to simplify xyz+ xy z+ xyz+

x yz+ x y z.

Supplementary Exercises

1. For which values of the Boolean variables x, y, and z does

a) x + y + z = xyz?

b) x(y + z) = x + yz?

c) x y z = x + y + z?

2. Let x and y belong to {0, 1}. Does it necessarily follow

that x = y if there exists a value z in {0, 1} such that

a) xz = yz? b) x + z = y + z?

c) x ⊕ z = y ⊕ z? d) x ↓ z = y ↓ z?

e) x | z = y | z?

A Boolean function F is called self-dual if and only if

F(x1, . . . , xn) = F(x1, . . . , xn).

3. Which of these functions are self-dual?

a) F(x, y) = x b) F(x, y) = xy + x y

c) F(x, y) = x + y d) F(x, y) = xy + xy

4. Give an example of a self-dual Boolean function of three

variables.

∗5. How many Boolean functions of degree n are self-dual?

We define the relation ≤ on the set of Boolean functions

of degree n so that F ≤ G, where F and G are Boolean

functions if and only if G(x1, x2, . . . , xn) = 1 whenever

F(x1, x2, . . . , xn) = 1.

6. Determine whether F ≤ G or G ≤ F for the following

pairs of functions.

a) F(x, y) = x,G(x, y) = x + y

b) F(x, y) = x + y,G(x, y) = xy

c) F(x, y) = x,G(x, y) = x + y

7. Show that if F and G are Boolean functions of degree n,

then

a) F ≤ F +G. b) FG ≤ F .

8. Show that ifF ,G, andH are Boolean functions of degree

n, then F +G ≤ H if and only if F ≤ H and G ≤ H .

∗9. Show that the relation≤ is a partial ordering on the set of

Boolean functions of degree n.

∗10. Draw the Hasse diagram for the poset consisting of the

set of the 16 Boolean functions of degree two (shown in

Table 3 of Section 12.1) with the partial ordering ≤.

∗11. For each of these equalities either prove it is an identity

or find a set of values of the variables for which it does

not hold.

a) x | (y | z) = (x | y) | z

b) x ↓ (y ↓ z) = (x ↓ y) ↓ (x ↓ z)

c) x ↓ (y | z) = (x ↓ y) | (x ↓ z)

Computer Projects 845

Define the Boolean operator as follows: 1 1 = 1, 1 0 =

0, 0 1 = 0, and 0 0 = 1.

12. Show that x y = xy + x y.

13. Show that x y = (x ⊕ y).

14. Show that each of these identities holds.

a) x x = 1 b) x x = 0

c) x y = y x

15. Is it always true that (x y) z = x (y z)?

∗16. Determine whether the set { } is functionally complete.

∗17. How many of the 16 Boolean functions in two variables

x and y can be represented using only the given set of

operators, variables x and y, and values 0 and 1?

a) { } b) {·} c) {+} d) {·,+}

The notation for an XOR gate, which produces the output

x ⊕ y from x and y, is as follows:

x y
x

y

18. Determine the output of each of these circuits.

a)

x

y

b)
x

y

x

z

y

z

19. Show how a half adder can be constructed using fewer

gates than are used in Figure 8 of Section 12.3 when XOR

gates can be used in addition to OR gates, AND gates, and

inverters.

20. Design a circuit that determines whether three or more

of four individuals on a committee vote yes on an issue,

where each individual uses a switch for the voting.

A threshold gate produces an output y that is either 0

or 1 given a set of input values for the Boolean variables

x1, x2, . . . , xn. A threshold gate has a threshold value T ,

which is a real number, and weights w1,w2, . . . ,wn, each of

which is a real number. The output y of the threshold gate is 1

if and only if w1x1 + w2x2 + · · · + wnxn ≥ T . The threshold

gate with threshold value T and weights w1,w2, . . . ,wn is rep-

resented by the following diagram. Threshold gates are useful

in modeling in neurophysiology and in artificial intelligence.

•
•

• •
•

•

w1

w2

x2

x1

wn

T y

xn

21. A threshold gate represents a Boolean function. Find a

Boolean expression for the Boolean function represented

by this threshold gate.

–1

1

x1

2

1

2
y

x3

x2

22. A Boolean function that can be represented by a thresh-

old gate is called a threshold function. Show that each

of these functions is a threshold function.

a) F(x) = x b) F(x, y) = x + y

c) F(x, y) = xy d) F(x, y) = x | y

e) F(x, y) = x ↓ y f) F(x, y, z) = x + yz

g) F(w, x, y, z) = w+ xy + z

h) F(w, x, y, z) = wxz+ xyz

∗23. Show that F(x, y) = x ⊕ y is not a threshold function.

∗24. Show that F(w, x, y, z) = wx + yz is not a threshold

function.

Computer Projects

Write programs with these input and output.

1. Given the values of two Boolean variables x and y, find

the values of x + y, xy, x ⊕ y, x | y, and x ↓ y.

2. Construct a table listing the set of values of all 256

Boolean functions of degree three.

3. Given the values of a Boolean function in n variables,

where n is a positive integer, construct the sum-of-

products expansion of this function.

4. Given the table of values of a Boolean function, express

this function using only the operators · and .

5. Given the table of values of a Boolean function, express

this function using only the operators + and .

∗6. Given the table of values of a Boolean function, express

this function using only the operator | .

846 12 / Boolean Algebra

∗7. Given the table of values of a Boolean function, express

this function using only the operator ↓.

8. Given the table of values of a Boolean function of degree

three, construct its K-map.

9. Given the table of values of a Boolean function of degree

four, construct its K-map.

∗∗10. Given the table of values of a Boolean function, use the

Quine–McCluskey method to find a minimal sum-of-

products representation of this function.

11. Given a threshold value and a set of weights for a thresh-

old gate and the values of the n Boolean variables in the

input, determine the output of this gate.

12. Given a positive integer n, construct a random Boolean

expression in n variables in disjunctive normal form.

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. Compute the number of Boolean functions of degrees

seven, eight, nine, and ten.

2. Construct a table of the Boolean functions of degree three.

3. Construct a table of the Boolean functions of degree four.

4. Express each of the different Boolean expressions in three

variables in disjunctive normal form with just the NAND

operator, using as few NAND operators as possible. What

is the largest number of NAND operators required?

5. Express each of the different Boolean expressions in dis-

junctive normal form in four variables using just the NOR

operator, with as few NOR operators as possible. What is

the largest number of NOR operators required?

6. Randomly generate 10 different Boolean expressions in

four variables and determine the average number of steps

required to minimize them using the Quine–McCluskey

method.

7. Randomly generate 10 different Boolean expressions in

five variables and determine the average number of steps

required to minimize them using the Quine–McCluskey

method.

Writing Projects

Respond to these with essays using outside sources.

1. Describe some of the early machines devised to solve

problems in logic, such as the Stanhope Demonstrator,

Jevons’s Logic Machine, and the Marquand Machine.

2. Explain the difference between combinational circuits

and sequential circuits. Then explain how flip-flops are

used to build sequential circuits.

3. Define a shift register and discuss how shift registers are

used. Show how to build shift registers using flip-flops

and logic gates.

4. Show how multipliers can be built using logic gates.

5. Find out how logic gates are physically constructed. Dis-

cuss whether NAND and NOR gates are used in building

circuits.

6. Explain how dependency notation can be used to describe

complicated switching circuits.

7. Describe how multiplexers are used to build switching

circuits.

8. Explain the advantages of using threshold gates to con-

struct switching circuits. Illustrate this by using threshold

gates to construct half and full adders.

9. Describe the concept of hazard-free switching circuits and

give some of the principles used in designing such circuits.

10. Explain how to use K-maps to minimize functions of six

variables.

11. Discuss the ideas used by newer methods for minimiz-

ing Boolean functions, such as Espresso. Explain how

these methods can help solve minimization problems in

as many as 25 variables.

12. Describe what is meant by the functional decomposition

of a Boolean function of n variables and discuss proce-

dures for decomposing Boolean functions into a compo-

sition of Boolean functions with fewer variables.

13
C H A P T E R

Modeling Computation

13.1 Languages

and

Grammars

13.2 Finite-State

Machines

with Output

13.3 Finite-State

Machines

with No

Output

13.4 Language

Recognition

13.5 Turing

Machines

Computers can perform many tasks. Given a task, two questions arise. The first is: Can it

be carried out using a computer? Once we know that this first question has an affirmative

answer, we can ask the second question: How can the task be carried out? Models of computation

are used to help answer these questions.

We will study three types of structures used in models of computation, namely, grammars,

finite-state machines, and Turing machines. Grammars are used to generate the words of a

language and to determine whether a word is in a language. Formal languages, which are

generated by grammars, provide models both for natural languages, such as English, and for

programming languages, such as Pascal, Fortran, Prolog, C, and Java. In particular, grammars

are extremely important in the construction and theory of compilers. The grammars that we will

discuss were first used by the American linguist Noam Chomsky in the 1950s.

Various types of finite-state machines are used in modeling. All finite-state machines have

a set of states, including a starting state, an input alphabet, and a transition function that assigns

a next state to every pair of a state and an input. The states of a finite-state machine give it

limited memory capabilities. Some finite-state machines produce an output symbol for each

transition; these machines can be used to model many kinds of machines, including vending

machines, delay machines, binary adders, and language recognizers. We will also study finite-

state machines that have no output but do have final states. Such machines are extensively used

in language recognition. The strings that are recognized are those that take the starting state

to a final state. The concepts of grammars and finite-state machines can be tied together. We

will characterize those sets that are recognized by a finite-state machine and show that these are

precisely the sets that are generated by a certain type of grammar.

Finally, we will introduce the concept of a Turing machine. We will show how Turing

machines can be used to recognize sets. We will also show how Turing machines can be used

to compute number-theoretic functions. We will discuss the Church–Turing thesis, which states

that every effective computation can be carried out using a Turing machine. We will explain

how Turing machines can be used to study the difficulty of solving certain classes of problems.

In particular, we will describe how Turing machines are used to classify problems as tractable

versus intractable and solvable versus unsolvable.

13.1 Languages and Grammars

Introduction

Words in the English language can be combined in various ways. The grammar of English tells

us whether a combination of words is a valid sentence. For instance, the frog writes neatly is

a valid sentence, because it is formed from a noun phrase, the frog, made up of the article the

and the noun frog, followed by a verb phrase, writes neatly, made up of the verb writes and the

adverb neatly. We do not care that this is a nonsensical statement, because we are concerned

only with the syntax, or form, of the sentence, and not its semantics, or meaning. We also note

that the combination of words swims quickly mathematics is not a valid sentence because it does

not follow the rules of English grammar.

The syntax of a natural language, that is, a spoken language, such as English, French,

German, or Spanish, is extremely complicated. In fact, it does not seem possible to specify all

the rules of syntax for a natural language. Research in the automatic translation of one language

847

848 13 / Modeling Computation

to another has led to the concept of a formal language, which, unlike a natural language, is

specified by a well-defined set of rules of syntax. Rules of syntax are important not only in

linguistics, the study of natural languages, but also in the study of programming languages.

We will describe the sentences of a formal language using a grammar. The use of grammars

helps when we consider the two classes of problems that arise most frequently in applications

to programming languages: (1) How can we determine whether a combination of words is a

valid sentence in a formal language? (2) How can we generate the valid sentences of a formal

language? Before giving a technical definition of a grammar, we will describe an example of

a grammar that generates a subset of English. This subset of English is defined using a list of

rules that describe how a valid sentence can be produced. We specify that

1. a sentence is made up of a noun phrase followed by a verb phrase;

2. a noun phrase is made up of an article followed by an adjective followed by a noun,

or

3. a noun phrase is made up of an article followed by a noun;

4. a verb phrase is made up of a verb followed by an adverb, or

5. a verb phrase is made up of a verb;

6. an article is a, or

7. an article is the;

8. an adjective is large, or

9. an adjective is hungry;

10. a noun is rabbit, or

11. a noun is mathematician;

12. a verb is eats, or

13. a verb is hops;

14. an adverb is quickly, or

15. an adverb is wildly.

From these rules we can form valid sentences using a series of replacements until no more rules

can be used. For instance, we can follow the sequence of replacements:

sentence

noun phrase verb phrase

article adjective noun verb phrase

article adjective noun verb adverb

the adjective noun verb adverb

the large noun verb adverb

the large rabbit verb adverb

the large rabbit hops adverb

the large rabbit hops quickly

to obtain a valid sentence. It is also easy to see that some other valid sentences are: a hungry

mathematician eats wildly, a large mathematician hops, the rabbit eats quickly, and so on. Also,

we can see that the quickly eats mathematician is not a valid sentence.

Phrase-Structure Grammars

Before we give a formal definition of a grammar, we introduce a little terminology.

13.1 Languages and Grammars 849

DEFINITION 1 A vocabulary (or alphabet) V is a finite, nonempty set of elements called symbols. A word (or

sentence) over V is a string of finite length of elements of V . The empty string or null string,

denoted by λ, is the string containing no symbols. The set of all words over V is denoted

by V ∗. A language over V is a subset of V ∗.

Note that λ, the empty string, is the string containing no symbols. It is different from ∅, the

empty set. It follows that {λ} is the set containing exactly one string, namely, the empty string.

Languages can be specified in various ways. One way is to list all the words in the language.

Another is to give some criteria that a word must satisfy to be in the language. In this section, we

describe another important way to specify a language, namely, through the use of a grammar,

such as the set of rules we gave in the introduction to this section. A grammar provides a

set of symbols of various types and a set of rules for producing words. More precisely, a

grammar has a vocabularyV , which is a set of symbols used to derive members of the language.

Some of the elements of the vocabulary cannot be replaced by other symbols. These are called

terminals, and the other members of the vocabulary, which can be replaced by other symbols,

are called nonterminals. The sets of terminals and nonterminals are usually denoted by T

and N , respectively. In the example given in the introduction of the section, the set of terminals

is {a, the, rabbit, mathematician, hops, eats, quickly, wildly}, and the set of nonterminals is

{sentence, noun phrase, verb phrase, adjective, article, noun, verb, adverb}. There is a

special member of the vocabulary called the start symbol, denoted by S, which is the element

of the vocabulary that we always begin with. In the example in the introduction, the start symbol
The notion of a

phrase-structure

grammar extends

the concept of a

rewrite system

devised by Axel Thue

in the early 20th

century.

is sentence. The rules that specify when we can replace a string from V ∗, the set of all strings

of elements in the vocabulary, with another string are called the productions of the grammar.

We denote by z0 → z1 the production that specifies that z0 can be replaced by z1 within a

string. The productions in the grammar given in the introduction of this section were listed.

The first production, written using this notation, is sentence → noun phrase verb phrase. We

summarize this terminology in Definition 2.

DEFINITION 2 A phrase-structure grammar G = (V , T , S, P) consists of a vocabulary V , a subset T

of V consisting of terminal symbols, a start symbol S from V , and a finite set of pro-

ductions P . The set V − T is denoted by N . Elements of N are called nonterminal symbols.

Every production in P must contain at least one nonterminal on its left side.

EXAMPLE 1 Let G = (V , T , S, P), where V = {a, b,A,B, S}, T = {a, b}, S is the start symbol, and P =

{S → ABa,A → BB,B → ab,AB → b}. G is an example of a phrase-structure grammar. ▲

We will be interested in the words that can be generated by the productions of a phrase-

structure grammar.

DEFINITION 3 Let G = (V , T , S, P) be a phrase-structure grammar. Let w0 = lz0r (that is, the concate-

nation of l, z0, and r) and w1 = lz1r be strings over V . If z0 → z1 is a production of G,

we say that w1 is directly derivable from w0 and we write w0⇒w1. If w0,w1, . . . ,wn are

strings over V such that w0⇒w1,w1⇒w2, . . . ,wn−1⇒wn, then we say that wn is derivable

from w0, and we write w0
∗
⇒ wn. The sequence of steps used to obtain wn from w0 is called

a derivation.

850 13 / Modeling Computation

EXAMPLE 2 The string Aaba is directly derivable from ABa in the grammar in Example 1 because

B → ab is a production in the grammar. The string abababa is derivable from ABa be-

causeABa⇒Aaba⇒BBaba⇒Bababa⇒ abababa, using the productionsB → ab,A → BB,

B → ab, and B → ab in succession. ▲

DEFINITION 4 Let G = (V , T , S, P) be a phrase-structure grammar. The language generated by G (or the

language of G), denoted by L(G), is the set of all strings of terminals that are derivable from

the starting state S. In other words,

L(G) = {w ∈ T ∗ | S ∗
⇒ w}.

In Examples 3 and 4 we find the language generated by a phrase-structure grammar.

EXAMPLE 3 Let G be the grammar with vocabulary V = {S,A, a, b}, set of terminals T = {a, b}, starting

symbol S, and productions P = {S → aA, S → b, A → aa}. What is L(G), the language of

this grammar?

Solution: From the start state S we can derive aA using the production S → aA. We can

also use the production S → b to derive b. From aA the production A → aa can be used to

derive aaa. No additional words can be derived. Hence, L(G) = {b, aaa}. ▲

EXAMPLE 4 Let G be the grammar with vocabulary V = {S, 0, 1}, set of terminals T = {0, 1}, starting sym-

bol S, and productions P = {S → 11S, S → 0}. What is L(G), the language of this grammar?

Solution: From S we can derive 0 using S → 0, or 11S using S → 11S. From 11S we can

derive either 110 or 1111S. From 1111S we can derive 11110 and 111111S. At any stage of a

derivation we can either add two 1s at the end of the string or terminate the derivation by adding

a 0 at the end of the string. We surmise that L(G) = {0, 110, 11110, 1111110, . . . }, the set of

all strings that begin with an even number of 1s and end with a 0. This can be proved using

an inductive argument that shows that after n productions have been used, the only strings of

terminals generated are those consisting of n − 1 concatenations of 11 followed by 0. (This is

left as an exercise for the reader.) ▲

The problem of constructing a grammar that generates a given language often arises. Ex-

amples 5, 6, and 7 describe problems of this kind.

EXAMPLE 5 Give a phrase-structure grammar that generates the set {0n1n | n = 0, 1, 2, . . . }.

Solution: Two productions can be used to generate all strings consisting of a string of 0s followed

by a string of the same number of 1s, including the null string. The first builds up successively

longer strings in the language by adding a 0 at the start of the string and a 1 at the end. The second

production replaces S with the empty string. The solution is the grammar G = (V , T , S, P),

where V = {0, 1, S}, T = {0, 1}, S is the starting symbol, and the productions are

S → 0S1

S → λ.

The verification that this grammar generates the correct set is left as an exercise for the

reader. ▲

13.1 Languages and Grammars 851

Example 5 involved the set of strings made up of 0s followed by 1s, where the number

of 0s and 1s are the same. Example 6 considers the set of strings consisting of 0s followed

by 1s, where the number of 0s and 1s may differ.

EXAMPLE 6 Find a phrase-structure grammar to generate the set {0m1n | m and n are nonnegative integers}.

Solution: We will give two grammars G1 and G2 that generate this set. This will illustrate that

two grammars can generate the same language.

The grammarG1 has alphabetV = {S, 0, 1}; terminalsT = {0, 1}; and productionsS → 0S,

S → S1, and S → λ. G1 generates the correct set, because using the first production m times

puts m 0s at the beginning of the string, and using the second production n times puts n 1s at

the end of the string. The details of this verification are left to the reader.

The grammar G2 has alphabet V = {S,A, 0, 1}; terminals T = {0, 1}; and productions

S → 0S, S → 1A, S → 1, A → 1A, A → 1, and S → λ. The details that this grammar gen-

erates the correct set are left as an exercise for the reader. ▲

Sometimes a set that is easy to describe can be generated only by a complicated grammar.

Example 7 illustrates this.

EXAMPLE 7 One grammar that generates the set {0n1n2n | n = 0, 1, 2, 3, . . . } is G = (V , T , S, P)

with V = {0, 1, 2, S,A,B,C}; T = {0, 1, 2}; starting state S; and productions S → C,

C → 0CAB, S → λ, BA → AB, 0A → 01, 1A → 11, 1B → 12, and 2B → 22. We leave

it as an exercise for the reader (Exercise 12) to show that this statement is correct. The grammar

given is the simplest type of grammar that generates this set, in a sense that will be made clear

later in this section. ▲

Types of Phrase-Structure Grammars

Phrase-structure grammars can be classified according to the types of productions that are al-

lowed. We will describe the classification scheme introduced by Noam Chomsky. In Section 13.4

we will see that the different types of languages defined in this scheme correspond to the classes

of languages that can be recognized using different models of computing machines.

A type 0 grammar has no restrictions on its productions. A type 1 grammar can have

productions of the form w1 → w2, where w1 = lAr and w2 = lwr, where A is a nonterminal

symbol, l and r are strings of zero or more terminal or nonterminal symbols, and w is a nonempty

string of terminal or nonterminal symbols. It can also have the production S → λ as long

as S does not appear on the right-hand side of any other production. A type 2 grammar can

have productions only of the form w1 → w2, where w1 is a single symbol that is not a terminal

symbol. A type 3 grammar can have productions only of the form w1 → w2 with w1 = A and

either w2 = aB or w2 = a, where A and B are nonterminal symbols and a is a terminal symbol,

or with w1 = S and w2 = λ.

Type 2 grammars are called context-free grammars because a nonterminal symbol that is

the left side of a production can be replaced in a string whenever it occurs, no matter what else is

in the string.A language generated by a type 2 grammar is called a context-free language. When

there is a production of the form lw1r → lw2r (but not of the form w1 → w2), the grammar is

called type 1 or context-sensitive because w1 can be replaced by w2 only when it is surrounded

by the strings l and r . A language generated by a type 1 grammar is called a context-sensitive

language. Type 3 grammars are also called regular grammars. A language generated by a

regular grammar is called regular. Section 13.4 deals with the relationship between regular

languages and finite-state machines.

Of the four types of grammars we have defined, context-sensitive grammars have the most

complicated definition. Sometimes, these grammars are defined in a different way. A production

of the form w1 → w2 is called noncontracting if the length of w1 is less than or equal to the

852 13 / Modeling Computation

length of w2. According to our characterization of context-senstive languages, every production

in a type 1 grammar, other than the productionS → λ, if it is present, is noncontracting. It follows

that the lengths of the strings in a derivation in a context-sensitive language are nondecreasing

unless the production S → λ is used. This means that the only way for the empty string to belong

to the language generated by a context-sensitive grammar is for the production S → λ to be

part of the grammar. The other way that context-sensitive grammars are defined is by specifying

that all productions are noncontracting. A grammar with this property is called noncontracting

or monotonic. The class of noncontracting grammars is not the same as the class of context-

sensitive grammars. However, these two classes are closely related; it can be shown that they

define the same set of languages except that noncontracting grammars cannot generate any

language containing the empty string λ.

EXAMPLE 8 From Example 6 we know that {0m1n | m, n = 0, 1, 2, . . . } is a regular language, because it can

be generated by a regular grammar, namely, the grammar G2 in Example 6. ▲

Context-free and regular grammars play an important role in programming languages.

Context-free grammars are used to define the syntax of almost all programming languages.

These grammars are strong enough to define a wide range of languages. Furthermore, efficient

algorithms can be devised to determine whether and how a string can be generated. Regular

grammars are used to search text for certain patterns and in lexical analysis, which is the process

of transforming an input stream into a stream of tokens for use by a parser.

EXAMPLE 9 It follows from Example 5 that {0n1n | n = 0, 1, 2, . . . } is a context-free language, because the

productions in this grammar are S → 0S1 and S → λ. However, it is not a regular language.

This will be shown in Section 13.4. ▲

EXAMPLE 10 The set {0n1n2n | n = 0, 1, 2, . . . } is a context-sensitive language, because it can be generated

by a type 1 grammar, as Example 7 shows, but not by any type 2 language. (This is shown in

Exercise 28 in the supplementary exercises at the end of the chapter.) ▲

Table 1 summarizes the terminology used to classify phrase-structure grammars.

Derivation Trees

A derivation in the language generated by a context-free grammar can be represented graphically

using an ordered rooted tree, called a derivation, or parse tree. The root of this tree represents

the starting symbol. The internal vertices of the tree represent the nonterminal symbols that

arise in the derivation. The leaves of the tree represent the terminal symbols that arise. If the

production A → w arises in the derivation, where w is a word, the vertex that represents A has

as children vertices that represent each symbol in w, in order from left to right.

TABLE 1 Types of Grammars.

Type Restrictions on Productions w1 → w2

0 No restrictions

1 w1 = lAr and w2 = lwr, where A ∈ N , l, r,w ∈ (N ∪ T)∗ and w = λ;

or w1 = S and w2 = λ as long as S is not on the right-hand side of another production

2 w1 = A, where A is a nonterminal symbol

3 w1 = A and w2 = aB or w2 = a, where A ∈ N , B ∈ N , and a ∈ T ; or w1 = S and w2 = λ

13.1 Languages and Grammars 853

sentence

noun phrase verb phrase

adjectivearticle noun verb adverb

hungrythe rabbit eats quickly

FIGURE 1 A Derivation Tree.

EXAMPLE 11 Construct a derivation tree for the derivation of the hungry rabbit eats quickly, given in the

introduction of this section.

Solution: The derivation tree is shown in Figure 1. ▲

The problem of determining whether a string is in the language generated by a context-free

grammar arises in many applications, such as in the construction of compilers. Two approaches

to this problem are indicated in Example 12.

EXAMPLE 12 Determine whether the word cbab belongs to the language generated by the grammar G =

(V , T , S, P), where V = {a, b, c, A,B,C, S}, T = {a, b, c}, S is the starting symbol, and the

productions are

S → AB

A → Ca

B → Ba

B → Cb

B → b

C → cb

C → b.

Solution: One way to approach this problem is to begin with S and attempt to derive cbab using a

series of productions. Because there is only one production with S on its left-hand side, we must

start with S⇒AB. Next we use the only production that has A on its left-hand side, namely,

A → Ca, to obtain S⇒AB ⇒CaB. Because cbab begins with the symbols cb, we use the

production C → cb. This gives us S⇒AB ⇒CaB ⇒ cbaB. We finish by using the production

B → b, to obtain S⇒AB ⇒CaB ⇒ cbaB ⇒ cbab. The approach that we have used is called

top-down parsing, because it begins with the starting symbol and proceeds by successively

applying productions.

There is another approach to this problem, called bottom-up parsing. In this approach, we

work backward. Because cbab is the string to be derived, we can use the production C → cb, so

AVRAM NOAM CHOMSKY (BORN 1928) Noam Chomsky, born in Philadelphia, is the son of a Hebrew
scholar. He received his B.A., M.A., and Ph.D. in linguistics, all from the University of Pennsylvania. He was
on the staff of the University of Pennsylvania from 1950 until 1951. In 1955 he joined the faculty at M.I.T.,
beginning his M.I.T. career teaching engineers French and German. Chomsky is currently the Ferrari P. Ward
Professor of foreign languages and linguistics at M.I.T. He is known for his many fundamental contributions
to linguistics, including the study of grammars. Chomsky is also widely known for his outspoken political
activism.

854 13 / Modeling Computation

that Cab⇒ cbab. Then, we can use the productionA → Ca, so thatAb⇒Cab⇒ cbab. Using the

productionB → b givesAB ⇒Ab⇒Cab⇒ cbab. Finally, using S → AB shows that a complete

derivation for cbab is S⇒AB ⇒Ab⇒ Cab⇒ cbab. ▲

Backus–Naur Form

There is another notation that is sometimes used to specify a type 2 grammar, called the

Backus–Naur form (BNF), after John Backus, who invented it, and Peter Naur, who refined

it for use in the specification of the programming language ALGOL. (Surprisingly, a notation
The ancient Indian

grammarian Pan. ini

specified Sanskrit using

3959 rules; Backus-Naur

form is sometimes called

Backus-Pan. ini form.

quite similar to the Backus–Naur form was used approximately 2500 years ago to describe

the grammar of Sanskrit.) The Backus–Naur form is used to specify the syntactic rules of

many computer languages, including Java. The productions in a type 2 grammar have a single

nonterminal symbol as their left-hand side. Instead of listing all the productions separately,

we can combine all those with the same nonterminal symbol on the left-hand side into one

statement. Instead of using the symbol → in a production, we use the symbol ::=. We enclose

all nonterminal symbols in brackets, , and we list all the right-hand sides of productions in

the same statement, separating them by bars. For instance, the productions A → Aa, A → a,

and A → AB can be combined into A ::= A a | a | A B .

Example 13 illustrates how the Backus–Naur form is used to describe the syntax of pro-

gramming languages. Our example comes from the original use of Backus–Naur form in the

description of ALGOL 60.

JOHN BACKUS (1924–2007) John Backus was born in Philadelphia and grew up in Wilmington, Delaware.
He attended the Hill School in Pottstown, Pennsylvania. He needed to attend summer school every year because
he disliked studying and was not a serious student. But he enjoyed spending his summers in New Hampshire
where he attended summer school and amused himself with summer activities, including sailing. He obliged
his father by enrolling at the University of Virginia to study chemistry. But he quickly decided chemistry was
not for him, and in 1943 he entered the army, where he received medical training and worked in a neurosurgery
ward in an army hospital. Ironically, Backus was soon diagnosed with a bone tumor in his skull and was fitted
with a metal plate. His medical work in the army convinced him to try medical school, but he abandoned this
after nine months because he disliked the rote memorization required. After dropping out of medical school,

he entered a school for radio technicians because he wanted to build his own high fidelity set. A teacher in this school recognized his
potential and asked him to help with some mathematical calculations needed for an article in a magazine. Finally, Backus found what
he was interested in: mathematics and its applications. He enrolled at Columbia University, from which he received both bachelor’s
and master’s degrees in mathematics. Backus joined IBM as a programmer in 1950. He participated in the design and development
of two of IBM’s early computers. From 1954 to 1958 he led the IBM group that developed FORTRAN. Backus became a staff
member at the IBM Watson Research Center in 1958. He was part of the committees that designed the programming language
ALGOL, using what is now called the Backus–Naur form for the description of the syntax of this language. Later, Backus worked
on the mathematics of families of sets and on a functional style of programming. Backus became an IBM Fellow in 1963, and he
received the National Medal of Science in 1974 and the prestigious Turing Award from the Association of Computing Machinery in
1977.

PETER NAUR (BORN 1928) Peter Naur was born in Frederiksberg, near Copenhagen. As a boy he became
interested in astronomy. Not only did he observe heavenly bodies, but he also computed the orbits of comets
and asteroids. Naur attended Copenhagen University, receiving his degree in 1949. He spent 1950 and 1951 in
Cambridge, where he used an early computer to calculate the motions of comets and planets. After returning to
Denmark he continued working in astronomy but kept his ties to computing. In 1955 he served as a consultant
to the building of the first Danish computer. In 1959 Naur made the switch from astronomy to computing as
a full-time activity. His first job as a full-time computer scientist was participating in the development of the
programming language ALGOL. From 1960 to 1967 he worked on the development of compilers for ALGOL
and COBOL. In 1969 he became professor of computer science at Copenhagen University, where he has worked

in the area of programming methodology. His research interests include the design, structure, and performance of computer programs.
Naur has been a pioneer in both the areas of software architecture and software engineering. He rejects the view that computer
programming is a branch of mathematics and prefers that computer science be called datalogy.

13.1 Languages and Grammars 855

EXAMPLE 13 In ALGOL 60 an identifier (which is the name of an entity such as a variable) consists of a string

of alphanumeric characters (that is, letters and digits) and must begin with a letter. We can use

these rules in Backus–Naur to describe the set of allowable identifiers:

 identifier ::= letter | identifier letter | identifier digit

 letter ::= a | b | · · · | y | z the ellipsis indicates that all 26 letters are included

 digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

For example, we can produce the valid identifier x99a by using the first rule to replace identifier

by identifier letter , the second rule to obtain identifier a, the first rule twice to obtain

 identifier digit digit a, the third rule twice to obtain identifier 99a, the first rule to obtain

 letter 99a, and finally the second rule to obtain x99a. ▲

EXAMPLE 14 What is the Backus–Naur form of the grammar for the subset of English described in the

introduction to this section?

Solution: The Backus–Naur form of this grammar is

 sentence ::= noun phrase verb phrase

 noun phrase ::= article adjective noun | article noun

 verb phrase ::= verb adverb | verb

 article ::= a | the

 adjective ::= large | hungry

 noun ::= rabbit | mathematician

 verb ::= eats | hops

 adverb ::= quickly | wildly

▲

EXAMPLE 15 Give the Backus–Naur form for the production of signed integers in decimal notation. (A signed

integer is a nonnegative integer preceded by a plus sign or a minus sign.)

Solution: The Backus–Naur form for a grammar that produces signed integers is

 signed integer ::= sign integer

 sign ::= + | −

 integer ::= digit | digit integer

 digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

▲

The Backus–Naur form, with a variety of extensions, is used extensively to specify the

syntax of programming languages, such as Java and LISP; database languages, such as SQL;

and markup languages, such as XML. Some extensions of the Backus–Naur form that are

commonly used in the description of programming languages are introduced in the preamble to

Exercise 34.

Exercises

Exercises 1–3 refer to the grammar with start symbol sen-

tence, set of terminals T = {the, sleepy, happy, tortoise, hare,

passes, runs, quickly, slowly}, set of nonterminals N = {noun

phrase, transitive verb phrase, intransitive verb phrase,

article, adjective, noun, verb, adverb}, and productions:

sentence → noun phrase transitive verb phrase

noun phrase

sentence → noun phrase intransitive verb phrase

noun phrase → article adjective noun

noun phrase → article noun

transitive verb phrase → transitive verb

intransitive verb phrase → intransitive verb adverb

intransitive verb phrase → intransitive verb

article → the

856 13 / Modeling Computation

adjective → sleepy

adjective → happy

noun → tortoise

noun → hare

transitive verb → passes

intransitive verb → runs

adverb → quickly

adverb → slowly

1. Use the set of productions to show that each of these sen-

tences is a valid sentence.

a) the happy hare runs

b) the sleepy tortoise runs quickly

c) the tortoise passes the hare

d) the sleepy hare passes the happy tortoise

2. Find five other valid sentences, besides those given in

Exercise 1.

3. Show that the hare runs the sleepy tortoise is not a valid

sentence.

4. Let G = (V , T , S, P) be the phrase-structure grammar

with V = {0, 1, A, S}, T = {0, 1}, and set of produc-

tions P consisting of S → 1S, S → 00A, A → 0A,

and A → 0.

a) Show that 111000 belongs to the language generated

by G.

b) Show that 11001 does not belong to the language gen-

erated by G.

c) What is the language generated by G?

5. Let G = (V , T , S, P) be the phrase-structure grammar

with V = {0, 1, A, B, S}, T = {0, 1}, and set of pro-

ductions P consisting of S → 0A, S → 1A, A → 0B,

B → 1A, B → 1.

a) Show that 10101 belongs to the language generated

by G.

b) Show that 10110 does not belong to the language gen-

erated by G.

c) What is the language generated by G?

∗6. Let V = {S,A,B, a, b} and T = {a, b}. Find the lan-

guage generated by the grammar (V , T , S, P) when the

set P of productions consists of

a) S → AB, A → ab, B → bb.

b) S → AB, S → aA, A → a, B → ba.

c) S → AB, S → AA, A → aB, A → ab, B → b.

d) S → AA, S → B, A → aaA, A → aa, B → bB,

B → b.

e) S → AB, A → aAb, B → bBa, A → λ, B → λ.

7. Construct a derivation of 0313 using the grammar given

in Example 5.

8. Show that the grammar given in Example 5 generates the

set {0n1n | n = 0, 1, 2, . . . }.

9. a) Construct a derivation of 0214 using the grammar G1

in Example 6.

b) Construct a derivation of 0214 using the grammar G2

in Example 6.

10. a) Show that the grammar G1 given in Example 6 gen-

erates the set {0m1n | m, n = 0, 1, 2, . . . }.

b) Show that the grammar G2 in Example 6 generates

the same set.

11. Construct a derivation of 021222 in the grammar given in

Example 7.
∗12. Show that the grammar given in Example 7 generates the

set {0n1n2n | n = 0, 1, 2, . . . }.

13. Find a phrase-structure grammar for each of these lan-

guages.

a) the set consisting of the bit strings 0, 1, and 11

b) the set of bit strings containing only 1s

c) the set of bit strings that start with 0 and end with 1

d) the set of bit strings that consist of a 0 followed by an

even number of 1s

14. Find a phrase-structure grammar for each of these lan-

guages.

a) the set consisting of the bit strings 10, 01, and 101

b) the set of bit strings that start with 00 and end with

one or more 1s

c) the set of bit strings consisting of an even number

of 1s followed by a final 0

d) the set of bit strings that have neither two consecutive

0s nor two consecutive 1s

∗15. Find a phrase-structure grammar for each of these lan-

guages.

a) the set of all bit strings containing an even number

of 0s and no 1s

b) the set of all bit strings made up of a 1 followed by an

odd number of 0s

c) the set of all bit strings containing an even number

of 0s and an even number of 1s

d) the set of all strings containing 10 or more 0s and no

1s

e) the set of all strings containing more 0s than 1s

f) the set of all strings containing an equal number of 0s

and 1s

g) the set of all strings containing an unequal number

of 0s and 1s

16. Construct phrase-structure grammars to generate each of

these sets.

a) {1n | n ≥ 0} b) {10n | n ≥ 0}

c) {(11)n | n ≥ 0}

17. Construct phrase-structure grammars to generate each of

these sets.

a) {0n | n ≥ 0} b) {1n0 | n ≥ 0}

c) {(000)n | n ≥ 0}

18. Construct phrase-structure grammars to generate each of

these sets.

a) {012n | n ≥ 0}

b) {0n12n | n ≥ 0}

c) {0n1m0n | m ≥ 0 and n ≥ 0}

19. Let V = {S,A,B, a, b} and T = {a, b}. Determine

whether G = (V , T , S, P) is a type 0 grammar but not

a type 1 grammar, a type 1 grammar but not a type 2

grammar, or a type 2 grammar but not a type 3 grammar

if P, the set of productions, is

a) S → aAB, A → Bb, B → λ.

13.1 Languages and Grammars 857

b) S → aA, A → a, A → b.
c) S → ABa, AB → a.
d) S → ABA, A → aB, B → ab.
e) S → bA, A → B, B → a.
f) S → aA, aA → B, B → aA, A → b.
g) S → bA, A → b, S → λ.
h) S → AB, B → aAb, aAb → b.
i) S → aA, A → bB, B → b, B → λ.
j) S → A, A → B, B → λ.

20. A palindrome is a string that reads the same backward

as it does forward, that is, a string w, where w = wR ,

where wR is the reversal of the string w. Find a context-

free grammar that generates the set of all palindromes

over the alphabet {0, 1}.
∗21. Let G1 and G2 be context-free grammars, generating

the languages L(G1) and L(G2), respectively. Show

that there is a context-free grammar generating each of

these sets.

a) L(G1) ∪ L(G2) b) L(G1)L(G2)
c) L(G1)*

22. Find the strings constructed using the derivation trees

shown here.
sentence

noun phrase verb phrase

adjectivearticle noun verb adverb

largea mathematician hops wildly

signed integer

sign integer

+ digit integer

9 integer

digit

digit

8

7

23. Construct derivation trees for the sentences in Exercise 1.

24. Let G be the grammar with V = {a, b, c, S}; T =

{a, b, c}; starting symbol S; and productions S → abS,

S → bcS, S → bbS, S → a, and S → cb. Construct

derivation trees for

a) bcbba. b) bbbcbba.
c) bcabbbbbcb.

∗25. Use top-down parsing to determine whether each of the

following strings belongs to the language generated by

the grammar in Example 12.

a) baba b) abab

c) cbaba d) bbbcba

∗26. Use bottom-up parsing to determine whether the strings

in Exercise 25 belong to the language generated by the

grammar in Example 12.

27. Construct a derivation tree for −109 using the grammar

given in Example 15.

28. a) Explain what the productions are in a grammar if the

Backus–Naur form for productions is as follows:

 expression ::= (expression) |

 expression + expression |

 expression ∗ expression |

 variable

 variable ::= x | y

b) Find a derivation tree for (x ∗ y) + x in this grammar.

29. a) Construct a phrase-structure grammar that generates

all signed decimal numbers, consisting of a sign, ei-

ther + or −; a nonnegative integer; and a decimal

fraction that is either the empty string or a decimal

point followed by a positive integer, where initial ze-

ros in an integer are allowed.

b) Give the Backus–Naur form of this grammar.

c) Construct a derivation tree for −31.4 in this grammar.

30. a) Construct a phrase-structure grammar for the set of all

fractions of the form a/b, where a is a signed integer

in decimal notation and b is a positive integer.

b) What is the Backus–Naur form for this grammar?

c) Construct a derivation tree for +311/17 in this gram-

mar.

31. Give production rules in Backus–Naur form for an iden-

tifier if it can consist of

a) one or more lowercase letters.

b) at least three but no more than six lowercase letters.

c) one to six uppercase or lowercase letters beginning

with an uppercase letter.

d) a lowercase letter, followed by a digit or an under-

score, followed by three or four alphanumeric char-

acters (lower or uppercase letters and digits).

32. Give production rules in Backus–Naur form for the name

of a person if this name consists of a first name, which is

a string of letters, where only the first letter is uppercase;

a middle initial; and a last name, which can be any string

of letters.

33. Give production rules in Backus–Naur form that gener-

ate all identifiers in the C programming language. In C

an identifier starts with a letter or an underscore (_) that

is followed by one or more lowercase letters, uppercase

letters, underscores, and digits.

858 13 / Modeling Computation

Several extensions to Backus–Naur form are commonly used

to define phrase-structure grammars. In one such extension, a

question mark (?) indicates that the symbol, or group of sym-

bols inside parentheses, to its left can appear zero or once (that

is, it is optional), an asterisk (*) indicates that the symbol to

its left can appear zero or more times, and a plus (+) indi-

cates that the symbol to its left can appear one or more times.

These extensions are part of extended Backus–Naur form

(EBNF), and the symbols ?, *, and + are called metacharac-

ters. In EBNF the brackets used to denote nonterminals are

usually not shown.

34. Describe the set of strings defined by each of these sets

of productions in EBNF.

a) string ::= L+D?L+

L ::= a | b | c

D ::= 0 | 1

b) string ::= sign D+ | D+

sign ::= + | −

D ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

c) string ::= L∗(D+)?L∗

L ::= x | y

D ::= 0 | 1

35. Give production rules in extended Backus–Naur form that

generate all decimal numerals consisting of an optional

sign, a nonnegative integer, and a decimal fraction that

is either the empty string or a decimal point followed by

an optional positive integer optionally preceded by some

number of zeros.

36. Give production rules in extended Backus–Naur form that

generate a sandwich if a sandwich consists of a lower slice

of bread; mustard or mayonnaise; optional lettuce; an op-

tional slice of tomato; one or more slices of either turkey,

chicken, or roast beef (in any combination); optionally

some number of slices of cheese; and a top slice of bread.

37. Give production rules in extended Backus–Naur form for

identifiers in the C programming language (see Exer-

cise 33).

38. Describe how productions for a grammar in extended

Backus–Naur form can be translated into a set of pro-

ductions for the grammar in Backus–Naur form.

This is the Backus–Naur form that describes the syntax of

expressions in postfix (or reverse Polish) notation.

 expression ::= term | term term addOperator

 addOperator ::= + | −

 term ::= factor | factor factor mulOperator

 mulOperator ::= ∗ | /

 factor ::= identifier | expression

 identifier ::= a | b | · · · | z

39. For each of these strings, determine whether it is gener-

ated by the grammar given for postfix notation. If it is,

find the steps used to generate the string

a) abc∗+ b) xy++

c) xy−z∗ d) wxyz−∗/

e) ade−∗

40. Use Backus–Naur form to describe the syntax of expres-

sions in infix notation, where the set of operators and

identifiers is the same as in the BNF for postfix expres-

sions given in the preamble to Exercise 39, but parenthe-

ses must surround expressions being used as factors.

41. For each of these strings, determine whether it is gener-

ated by the grammar for infix expressions from Exercise

40. If it is, find the steps used to generate the string.

a) x + y + z b) a/b + c/d

c) m ∗ (n + p) d) +m − n + p − q

e) (m + n) ∗ (p − q)

42. Let G be a grammar and let R be the relation contain-

ing the ordered pair (w0,w1) if and only if w1 is directly

derivable from w0 in G. What is the reflexive transitive

closure of R?

13.2 Finite-State Machines with Output

Introduction

Many kinds of machines, including components in computers, can be modeled using a structure

called a finite-state machine. Several types of finite-state machines are commonly used in models.

All these versions of finite-state machines include a finite set of states, with a designated starting

state, an input alphabet, and a transition function that assigns a next state to every state and input

pair. Finite-state machines are used extensively in applications in computer science and data

networking. For example, finite-state machines are the basis for programs for spell checking,

grammar checking, indexing or searching large bodies of text, recognizing speech, transforming

text using markup languages such as XML and HTML, and network protocols that specify how

computers communicate.

In this section, we will study those finite-state machines that produce output. We will show

how finite-state machines can be used to model a vending machine, a machine that delays input,

a machine that adds integers, and a machine that determines whether a bit string contains a

specified pattern.

13.2 Finite-State Machines with Output 859

TABLE 1 State Table for a Vending Machine.

Next State Output

Input Input

State 5 10 25 O R 5 10 25 O R

s0 s1 s2 s5 s0 s0 n n n n n

s1 s2 s3 s6 s1 s1 n n n n n

s2 s3 s4 s6 s2 s2 n n 5 n n

s3 s4 s5 s6 s3 s3 n n 10 n n

s4 s5 s6 s6 s4 s4 n n 15 n n

s5 s6 s6 s6 s5 s5 n 5 20 n n

s6 s6 s6 s6 s0 s0 5 10 25 OJ AJ

Before giving formal definitions, we will show how a vending machine can be modeled. A

vending machine accepts nickels (5 cents), dimes (10 cents), and quarters (25 cents). When a

total of 30 cents or more has been deposited, the machine immediately returns the amount in

excess of 30 cents. When 30 cents has been deposited and any excess refunded, the customer

can push an orange button and receive an orange juice or push a red button and receive an

apple juice. We can describe how the machine works by specifying its states, how it changes

states when input is received, and the output that is produced for every combination of input

and current state.
Finite-state machines with

output are often called

finite-state transducers.

The machine can be in any of seven different states si, i = 0, 1, 2, . . . , 6, where si is the

state where the machine has collected 5i cents. The machine starts in state s0, with 0 cents

received. The possible inputs are 5 cents, 10 cents, 25 cents, the orange button (O), and the red

button (R). The possible outputs are nothing (n), 5 cents, 10 cents, 15 cents, 20 cents, 25 cents,

an orange juice, and an apple juice.

We illustrate how this model of the machine works with this example. Suppose that a student

puts in a dime followed by a quarter, receives 5 cents back, and then pushes the orange button

for an orange juice. The machine starts in state s0. The first input is 10 cents, which changes

the state of the machine to s2 and gives no output. The second input is 25 cents. This changes

the state from s2 to s6, and gives 5 cents as output. The next input is the orange button, which

changes the state from s6 back to s0 (because the machine returns to the start state) and gives

an orange juice as its output.

We can display all the state changes and output of this machine in a table. To do this we

need to specify for each combination of state and input the next state and the output obtained.

Table 1 shows the transitions and outputs for each pair of a state and an input.

Another way to show the actions of a machine is to use a directed graph with labeled edges,

where each state is represented by a circle, edges represent the transitions, and edges are labeled

with the input and the output for that transition. Figure 1 shows such a directed graph for the

vending machine.

Finite-State Machines with Outputs

We will now give the formal definition of a finite-state machine with output.

DEFINITION 1 A finite-state machineM = (S, I,O, f, g, s0) consists of a finite set S of states, a finite input

alphabet I, a finite output alphabet O, a transition function f that assigns to each state and

input pair a new state, an output function g that assigns to each state and input pair an output,

and an initial state s0.

860 13 / Modeling Computation

s0 s1 s2 s3 s4 s5 s6
Start 5, n 5, n 5, n 5, n 5, n 5, n

10, n 10, n 10, n 10, n 10, n

R, n
O, n

R, n
O, n

R, n
O, n

R, n
O, n

R, n
O, n

R, n
O, n

25, n

25, n 25, 5 25, 20

10, 525, 15
25, 10

25, 25

5, 5

10, 10

O, orange juice

R, apple juice

FIGURE 1 A Vending Machine.

Let M = (S, I,O, f, g, s0) be a finite-state machine. We can use a state table to represent the

values of the transition function f and the output function g for all pairs of states and input. We

previously constructed a state table for the vending machine discussed in the introduction to

this section.

EXAMPLE 1 The state table shown in Table 2 describes a finite-state machine with S = {s0, s1, s2, s3},

I = {0, 1}, and O = {0, 1}. The values of the transition function f are displayed in the first

two columns, and the values of the output function g are displayed in the last two columns. ▲

Another way to represent a finite-state machine is to use a state diagram, which is a directed

graph with labeled edges. In this diagram, each state is represented by a circle. Arrows labeled

with the input and output pair are shown for each transition.

EXAMPLE 2 Construct the state diagram for the finite-state machine with the state table shown in Table 2.

Solution: The state diagram for this machine is shown in Figure 2. ▲

EXAMPLE 3 Construct the state table for the finite-state machine with the state diagram shown in Figure 3.

Solution: The state table for this machine is shown in Table 3. ▲

s2

s3s0

s11, 0

0, 1

1, 1

1, 0

0, 1

0, 0

0, 0

1, 1

Start

FIGURE 2 The State Diagram for the

Finite-State Machine Shown in Table 2.

TABLE 2

f g

Input Input

State 0 1 0 1

s0 s1 s0 1 0

s1 s3 s0 1 1

s2 s1 s2 0 1

s3 s2 s1 0 0

13.2 Finite-State Machines with Output 861

s0

s1

0, 1

Start

s3

1, 0

s2

s4

0, 0

1, 1

1, 0

0, 0
1, 0

0,
 0

0, 1

1, 0

FIGURE 3 A Finite-State Machine.

TABLE 3

f g

Input Input

State 0 1 0 1

s0 s1 s3 1 0

s1 s1 s2 1 1

s2 s3 s4 0 0

s3 s1 s0 0 0

s4 s3 s4 0 0

An input string takes the starting state through a sequence of states, as determined by the

transition function. As we read the input string symbol by symbol (from left to right), each input

symbol takes the machine from one state to another. Because each transition produces an output,

an input string also produces an output string.

Suppose that the input string is x = x1x2 . . . xk . Then, reading this input takes the machine

from state s0 to state s1, where s1 = f (s0, x1), then to state s2, where s2 = f (s1, x2), and so on,

with sj = f (sj−1, xj) for j = 1, 2, . . . , k, ending at state sk = f (sk−1, xk). This sequence of

transitions produces an output string y1y2 . . . yk , where y1 = g(s0, x1) is the output correspond-

ing to the transition from s0 to s1, y2 = g(s1, x2) is the output corresponding to the transition

from s1 to s2, and so on. In general, yj = g(sj−1, xj) for j = 1, 2, . . . , k. Hence, we can extend

the definition of the output function g to input strings so that g(x) = y, where y is the output

corresponding to the input string x. This notation is useful in many applications.

EXAMPLE 4 Find the output string generated by the finite-state machine in Figure 3 if the input string

is 101011.

Solution: The output obtained is 001000. The successive states and outputs are shown in

Table 4. ▲

We can now look at some examples of useful finite-state machines. Examples 5, 6, and 7

illustrate that the states of a finite-state machine give it limited memory capabilities. The states

can be used to remember the properties of the symbols that have been read by the machine.

However, because there are only finitely many different states, finite-state machines cannot be

used for some important purposes. This will be illustrated in Section 13.4.

EXAMPLE 5 An important element in many electronic devices is a unit-delay machine, which produces as

output the input string delayed by a specified amount of time. How can a finite-state machine

be constructed that delays an input string by one unit of time, that is, produces as output the bit

string 0x1x2 . . . xk−1 given the input bit string x1x2 . . . xk?

Solution: A delay machine can be constructed that has two possible inputs, namely, 0 and 1. The

machine must have a start state s0. Because the machine has to remember whether the previous

TABLE 4

Input 1 0 1 0 1 1 —

State s0 s3 s1 s2 s3 s0 s3

Output 0 0 1 0 0 0 —

862 13 / Modeling Computation

Start

1, 1

0, 0

1, 0 0, 1

1, 0

0, 0

s0

s1

s2

FIGURE 4 A Unit-Delay Machine.

11, 0

00, 1

10, 1

Start

10, 0

11, 100, 0 s0 s1

01, 1 01, 0

FIGURE 5 A Finite-State Machine for

Addition.

input was a 0 or a 1, two other states s1 and s2 are needed, where the machine is in state s1 if the

previous input was 1 and in state s2 if the previous input was 0. An output of 0 is produced for

the initial transition from s0. Each transition from s1 gives an output of 1, and each transition

from s2 gives an output of 0. The output corresponding to the input of a string x1 . . . xk is the

string that begins with 0, followed by x1, followed by x2, . . . , ending with xk−1. The state

diagram for this machine is shown in Figure 4. ▲

EXAMPLE 6 Produce a finite-state machine that adds two positive integers using their binary expansions.

Solution: When (xn . . . x1x0)2 and (yn . . . y1y0)2 are added, the following procedure (as de-

scribed in Section 4.2) is followed. First, the bits x0 and y0 are added, producing a sum bit z0

and a carry bit c0. This carry bit is either 0 or 1. Then, the bits x1 and y1 are added, together

with the carry c0. This gives a sum bit z1 and a carry bit c1. This procedure is continued until

the nth stage, where xn, yn, and the previous carry cn−1 are added to produce the sum bit zn and

the carry bit cn, which is equal to the sum bit zn+1.

A finite-state machine to carry out this addition can be constructed using just two states.

For simplicity we assume that both the initial bits xn and yn are 0 (otherwise we have to make

special arrangements concerning the sum bit zn+1). The start state s0 is used to remember that

the previous carry is 0 (or for the addition of the rightmost bits). The other state, s1, is used to

remember that the previous carry is 1.

Because the inputs to the machine are pairs of bits, there are four possible inputs. We

represent these possibilities by 00 (when both bits are 0), 01 (when the first bit is 0 and the

second is 1), 10 (when the first bit is 1 and the second is 0), and 11 (when both bits are 1).

The transitions and the outputs are constructed from the sum of the two bits represented by

the input and the carry represented by the state. For instance, when the machine is in state s1

and receives 01 as input, the next state is s1 and the output is 0, because the sum that arises is

0 + 1 + 1 = (10)2. The state diagram for this machine is shown in Figure 5. ▲

EXAMPLE 7 In a certain coding scheme, when three consecutive 1s appear in a message, the receiver of the

message knows that there has been a transmission error. Construct a finite-state machine that

gives a 1 as its current output bit if and only if the last three bits received are all 1s.

Solution: Three states are needed in this machine. The start state s0 remembers that the previous

input value, if it exists, was not a 1. The state s1 remembers that the previous input was a 1,

but the input before the previous input, if it exists, was not a 1. The state s2 remembers that the

previous two inputs were 1s.

An input of 1 takes s0 to s1, because now a 1, and not two consecutive 1s, has been read; it

takes s1 to s2, because now two consecutive 1s have been read; and it takes s2 to itself, because

at least two consecutive 1s have been read. An input of 0 takes every state to s0, because this

breaks up any string of consecutive 1s. The output for the transition from s2 to itself when a 1

13.2 Finite-State Machines with Output 863

Start

s0 s1 s2

1, 0

0, 0

0, 0

1, 0

0, 0

1, 1

FIGURE 6 A Finite-State Machine That Gives an Output of 1

If and Only If the Input String Read So Far Ends with 111.

is read is 1, because this combination of input and state shows that three consecutive 1s have

been read. All other outputs are 0. The state diagram of this machine is shown in Figure 6. ▲

The final output bit of the finite-state machine we constructed in Example 7 is 1 if and only

if the input string ends with 111. Because of this, we say that this finite-state machine recognizes

the set of bit strings that end with 111. This leads us to Definition 2.

DEFINITION 2 Let M = (S, I,O, f, g, s0) be a finite-state machine and L ⊆ I ∗. We say that M recognizes

(or accepts) L if an input string x belongs to L if and only if the last output bit produced by

M when given x as input is a 1.

TYPES OF FINITE-STATEMACHINES Many different kinds of finite-state machines have

been developed to model computing machines. In this section we have given a definition of one

type of finite-state machine. In the type of machine introduced in this section, outputs correspond

to transitions between states. Machines of this type are known as Mealy machines, because

they were first studied by G. H. Mealy in 1955. There is another important type of finite-state

machine with output, where the output is determined only by the state. This type of finite-state

machine is known as a Moore machine, because E. F. Moore introduced this type of machine

in 1956. Moore machines are considered in a sequence of exercises.

In Example 7 we showed how a Mealy machine can be used for language recognition.

However, another type of finite-state machine, giving no output, is usually used for this purpose.

Finite-state machines with no output, also known as finite-state automata, have a set of final

states and recognize a string if and only if it takes the start state to a final state. We will study

this type of finite-state machine in Section 13.3.

Exercises

1. Draw the state diagrams for the finite-state machines with

these state tables.

a)
f g

Input Input

State 0 1 0 1

s0 s1 s0 0 1

s1 s0 s2 0 1

s2 s1 s1 0 0

b) f g

Input Input

State 0 1 0 1

s0 s1 s0 0 0

s1 s2 s0 1 1

s2 s0 s3 0 1

s3 s1 s2 1 0

864 13 / Modeling Computation

c) f g

Input Input

State 0 1 0 1

s0 s0 s4 1 1

s1 s0 s3 0 1

s2 s0 s2 0 0

s3 s1 s1 1 1

s4 s1 s0 1 0

2. Give the state tables for the finite-state machines with

these state diagrams.

a)

Start

0,1

0,1

0,0

1,1

1,01,0 0,1 1,0

s0

s2 s3

s1

b)

Start s0

s1

s2

1,0

0,0

1,1

1,0

0,0

0,1

c)

Start s0

s2 s3

s1

0,0

1,1

1,1

0,0
0,0

0,0

1,1

1,0

3. Find the output generated from the input string 01110 for

the finite-state machine with the state table in

a) Exercise 1(a).

b) Exercise 1(b).

c) Exercise 1(c).

4. Find the output generated from the input string 10001 for

the finite-state machine with the state diagram in

a) Exercise 2(a).

b) Exercise 2(b).

c) Exercise 2(c).

5. Find the output for each of these input strings when given

as input to the finite-state machine in Example 2.

a) 0111 b) 11011011 c) 01010101010

6. Find the output for each of these input strings when given

as input to the finite-state machine in Example 3.

a) 0000 b) 101010 c) 11011100010

7. Construct a finite-state machine that models an old-

fashioned soda machine that accepts nickels, dimes, and

quarters. The soda machine accepts change until 35 cents

has been put in. It gives change back for any amount

greater than 35 cents. Then the customer can push but-

tons to receive either a cola, a root beer, or a ginger ale.

8. Construct a finite-state machine that models a newspa-

per vending machine that has a door that can be opened

only after either three dimes (and any number of other

coins) or a quarter and a nickel (and any number of other

coins) have been inserted. Once the door can be opened,

the customer opens it and takes a paper, closing the door.

No change is ever returned no matter how much extra

money has been inserted. The next customer starts with

no credit.

9. Construct a finite-state machine that delays an input string

two bits, giving 00 as the first two bits of output.

10. Construct a finite-state machine that changes every other

bit, starting with the second bit, of an input string, and

leaves the other bits unchanged.

11. Construct a finite-state machine for the log-on procedure

for a computer, where the user logs on by entering a user

identification number, which is considered to be a single

input, and then a password, which is considered to be a

single input. If the password is incorrect, the user is asked

for the user identification number again.

12. Construct a finite-state machine for a combination lock

that contains numbers 1 through 40 and that opens only

when the correct combination, 10 right, 8 second left, 37

right, is entered. Each input is a triple consisting of a num-

ber, the direction of the turn, and the number of times the

lock is turned in that direction.

13. Construct a finite-state machine for a toll machine that

opens a gate after 25 cents, in nickels, dimes, or quar-

ters, has been deposited. No change is given for overpay-

ment, and no credit is given to the next driver when more

than 25 cents has been deposited.

14. Construct a finite-state machine for entering a security

code into an automatic teller machine (ATM) that imple-

ments these rules: A user enters a string of four digits,

one digit at a time. If the user enters the correct four dig-

its of the password, the ATM displays a welcome screen.

When the user enters an incorrect string of four digits, the

ATM displays a screen that informs the user that an incor-

rect password was entered. If a user enters the incorrect

password three times, the account islocked.

15. Construct a finite-state machine for a restricted telephone

switching system that implements these rules. Only calls

to the telephone numbers 0, 911, and the digit 1 followed

by 10-digit telephone numbers that begin with 212, 800,

866, 877, and 888 are sent to the network.All other strings

of digits are blocked by the system and the user hears an

error message.

16. Construct a finite-state machine that gives an output of

1 if the number of input symbols read so far is divisible

by 3 and an output of 0 otherwise.

13.3 Finite-State Machines with No Output 865

17. Construct a finite-state machine that determines whether

the input string has a 1 in the last position and a 0 in the

third to the last position read so far.

18. Construct a finite-state machine that determines whether

the input string read so far ends in at least five consecutive

1s.

19. Construct a finite-state machine that determines whether

the word computer has been read as the last eight char-

acters in the input read so far, where the input can be any

string of English letters.

A Moore machine M = (S, I,O, f, g, s0) consists of a fi-

nite set of states, an input alphabet I , an output alphabet O,

a transition function f that assigns a next state to every pair

of a state and an input, an output function g that assigns an

output to every state, and a starting state s0. A Moore machine

can be represented either by a table listing the transitions for

each pair of state and input and the outputs for each state,

or by a state diagram that displays the states, the transitions

between states, and the output for each state. In the diagram,

transitions are indicated with arrows labeled with the input,

and the outputs are shown next to the states.

20. Construct the state diagram for the Moore machine with

this state table.

f

Input

State 0 1 g

s0 s0 s2 0

s1 s3 s0 1

s2 s2 s1 1

s3 s2 s0 1

21. Construct the state table for the Moore machine with the

state diagram shown here. Each input string to a Moore

machine M produces an output string. In particular, the

output corresponding to the input string a1a2 . . . ak is

the stringg(s0)g(s1) . . . g(sk), where si = f (si−1, ai) for

i = 1, 2, . . . , k.

Start s0

s1

s2

0

1

0

1

0

1
0

1

1

22. Find the output string generated by the Moore machine

in Exercise 20 with each of these input strings.

a) 0101 b) 111111 c) 11101110111

23. Find the output string generated by the Moore ma-

chine in Exercise 21 with each of the input strings in

Exercise 22.

24. Construct a Moore machine that gives an output of 1

whenever the number of symbols in the input string read

so far is divisible by 4 and an output of 0 otherwise.

25. Construct a Moore machine that determines whether an

input string contains an even or odd number of 1s. The

machine should give 1 as output if an even number of 1s

are in the string and 0 as output if an odd number of 1s

are in the string.

13.3 Finite-State Machines with No Output

Introduction

One of the most important applications of finite-state machines is in language recognition.

This application plays a fundamental role in the design and construction of compilers for pro-

gramming languages. In Section 13.2 we showed that a finite-state machine with output can be

used to recognize a language, by giving an output of 1 when a string from the language has

been read and a 0 otherwise. However, there are other types of finite-state machines that are

specially designed for recognizing languages. Instead of producing output, these machines have

final states. A string is recognized if and only if it takes the starting state to one of these final

states.

Set of Strings

Before discussing finite-state machines with no output, we will introduce some important back-

ground material on sets of strings. The operations that will be defined here will be used exten-

sively in our discussion of language recognition by finite-state machines.

866 13 / Modeling Computation

DEFINITION 1 Suppose that A and B are subsets of V ∗, where V is a vocabulary. The concatenation of A

and B, denoted by AB, is the set of all strings of the form xy, where x is a string in A and y

is a string in B.

EXAMPLE 1 Let A = {0, 11} and B = {1, 10, 110}. Find AB and BA.

Solution: The set AB contains every concatenation of a string in A and a string in B. Hence,

AB = {01, 010, 0110, 111, 1110, 11110}. The set BA contains every concatenation of a string

in B and a string in A. Hence, BA = {10, 111, 100, 1011, 1100, 11011}. ▲

Note that it is not necessarily the case that AB = BA when A and B are subsets of V ∗,

where V is an alphabet, as Example 1 illustrates.

From the definition of the concatenation of two sets of strings, we can define An, for

n = 0, 1, 2, This is done recursively by specifying that

A0 = {λ},

An+1 = AnA for n = 0, 1, 2,

EXAMPLE 2 Let A = {1,00}. Find An for n = 0, 1, 2, and 3.

Solution: We have A0 = {λ} and A1 = A0A = {λ}A = {1, 00}. To find A2 we take concate-

nations of pairs of elements of A. This gives A2 = {11, 100, 001, 0000}. To find A3 we

take concatenations of elements in A2 and A; this gives A3 = {111, 1100, 1001, 10000,

0011, 00100, 00001, 000000}. ▲

DEFINITION 2 Suppose that A is a subset of V ∗. Then the Kleene closure of A, denoted by A∗, is the set

consisting of concatenations of arbitrarily many strings from A. That is, A∗ =
�∞

k=0 A
k .

EXAMPLE 3 What are the Kleene closures of the sets A = {0}, B = {0, 1}, and C = {11}?

Solution: The Kleene closure of A is the concatenation of the string 0 with itself an arbitrary

finite number of times. Hence, A∗ = {0n | n = 0, 1, 2, . . . }. The Kleene closure of B is the

concatenation of an arbitrary number of strings, where each string is either 0 or 1. This is the set

of all strings over the alphabet V = {0, 1}. That is, B∗ = V ∗. Finally, the Kleene closurebreak

of C is the concatenation of the string 11 with itself an arbitrary number of times. Hence, C∗ is

the set of strings consisting of an even number of 1s. That is, C∗ = {12n | n = 0, 1, 2, . . . }. ▲

Finite-State Automata

] We will now give a definition of a finite-state machine with no output. Such machines are also

called finite-state automata, and that is the terminology we will use for them here. (Note: The

singular of automata is automaton.) These machines differ from the finite-state machines studied

in Section 13.2 in that they do not produce output, but they do have a set of final states. As we

will see, they recognize strings that take the starting state to a final state.

13.3 Finite-State Machines with No Output 867

TABLE 1

f

Input

State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s0

s3 s2 s1

s1

s3

s2

s0

1 1

Start 1
0

00, 1

0

FIGURE 1 The State Diagram for a

Finite-State Automaton.

DEFINITION 3 A finite-state automaton M = (S, I, f, s0, F) consists of a finite set S of states, a finite input

alphabet I, a transition function f that assigns a next state to every pair of state and input

(so that f : S × I → S), an initial or start state s0, and a subset F of S consisting of final

(or accepting states).

We can represent finite-state automata using either state tables or state diagrams. Final states

are indicated in state diagrams by using double circles.

EXAMPLE 4 Construct the state diagram for the finite-state automaton M = (S, I, f, s0, F), where S =

{s0, s1, s2, s3}, I = {0, 1}, F = {s0, s3}, and the transition function f is given in Table 1.

Solution: The state diagram is shown in Figure 1. Note that because both the inputs 0 and 1

take s2 to s0, we write 0,1 over the edge from s2 to s0. ▲

EXTENDING THE TRANSITION FUNCTION The transition function f of a finite-state

machine M = (S, I, f, s0, F) can be extended so that it is defined for all pairs of states and

strings; that is, f can be extended to a function f : S × I ∗ → S. Let x = x1x2 . . . xk be a string

in I ∗. Then f (s1, x) is the state obtained by using each successive symbol of x, from left to

right, as input, starting with state s1. From s1 we go on to state s2 = f (s1, x1), then to state

s3 = f (s2, x2), and so on, with f (s1, x) = f (sk, xk). Formally, we can define this extended

transition function f recursively for the deterministic finite-state machine M = (S, I, f, s0, F)

by

(i) f (s, λ) = s for every state s ∈ S; and

(ii) f (s, xa) = f (f (s, x), a) for all s ∈ S, x ∈ I∗, and a ∈ I .

STEPHEN COLE KLEENE (1909–1994) Stephen Kleene was born in Hartford, Connecticut. His mother,
Alice Lena Cole, was a poet, and his father, GustavAdolph Kleene, was an economics professor. Kleene attended
Amherst College and received his Ph.D. from Princeton in 1934, where he studied under the famous logician
Alonzo Church. Kleene joined the faculty of the University of Wisconsin in 1935, where he remained except for
several leaves, including stays at the Institute for Advanced Study in Princeton. During World War II he was a
navigation instructor at the Naval Reserve’s Midshipmen’s School and later served as the director of the Naval
Research Laboratory. Kleene made significant contributions to the theory of recursive functions, investigating
questions of computability and decidability, and proved one of the central results of automata theory. He served
as the Acting Director of the Mathematics Research Center and as Dean of the College of Letters and Sciences

at the University of Wisconsin. Kleene was a student of natural history. He discovered a previously undescribed variety of butterfly
that is named after him. He was an avid hiker and climber. Kleene was also noted as a talented teller of anecdotes, using a powerful
voice that could be heard several offices away.

868 13 / Modeling Computation

We can use structural induction and this recursive definition to prove properties of this extended

transition function. For example, in Exercise 15 we ask you to prove that

f (s, xy) = f (f (s, x), y)

for every state s ∈ S and strings x ∈ I∗ and y ∈ I ∗.

Language Recognition by Finite-State Machines

Next, we define some terms that are used when studying the recognition by finite-state automata

of certain sets of strings.

DEFINITION 4 A string x is said to be recognized or accepted by the machine M = (S, I, f, s0, F) if it takes

the initial state s0 to a final state, that is, f (s0, x) is a state in F . The language recognized

or accepted by the machine M , denoted by L(M), is the set of all strings that are recognized

by M . Two finite-state automata are called equivalent if they recognize the same language.

In Example 5 we will find the languages recognized by several finite-state automata.

EXAMPLE 5 Determine the languages recognized by the finite-state automata M1, M2, and M3 in Figure 2.

s0
Start

M1

s1
0

1
0, 1

s0
Start

s1
0

s2
1

s3
0, 1

0, 1

0

1

M2

s0
Start

s1

0

s2
1

0, 1

0

s3
0, 1

1

M3

FIGURE 2 Some Finite-State Automata.

13.3 Finite-State Machines with No Output 869

Solution: The only final state of M1 is s0. The strings that take s0 to itself are those consisting

of zero or more consecutive 1s. Hence, L(M1) = {1n | n = 0, 1, 2, . . . }.

The only final state of M2 is s2. The only strings that take s0 to s2 are 1 and 01. Hence,

L(M2) = {1, 01}.

The final states ofM3 are s0 and s3.The only strings that take s0 to itself areλ, 0, 00, 000, . . . ,

that is, any string of zero or more consecutive 0s. The only strings that take s0 to s3 are a string

of zero or more consecutive 0s, followed by 10, followed by any string. Hence, L(M3) =

{0n, 0n10x | n = 0, 1, 2, . . . , and x is any string}. ▲

DESIGNING FINITE-STATEAUTOMATA We can often construct a finite-state automaton

that recognizes a given set of strings by carefully adding states and transitions and determining

which of these states should be final states. When appropriate we include states that can keep

track of some of the properties of the input string, providing the finite-state automaton with

limited memory. Examples 6 and 7 illustrate some of the techniques that can be used to construct

finite-state automata that recognize particular types of sets of strings.

EXAMPLE 6 Construct deterministic finite-state automata that recognize each of these languages.

(a) the set of bit strings that begin with two 0s

(b) the set of bit strings that contain two consecutive 0s

(c) the set of bit strings that do not contain two consecutive 0s

(d) the set of bit strings that end with two 0s

(e) the set of bit strings that contain at least two 0s

Solution: (a) Our goal is to construct a deterministic finite-state automaton that recog-

nizes the set of bit strings that begin with two 0s. Besides the start state s0, we include a

nonfinal state s1; we move to s1 from s0 if the first bit is a 0. Next, we add a final state s2, which

we move to from s1 if the second bit is a 0. When we have reached s2 we know that the first two

input bits are both 0s, so we stay in the state s2 no matter what the succeeding bits (if any) are.

We move to a nonfinal state s3 from s0 if the first bit is a 1 and from s1 if the second bit is a 1.

The reader should verify that the finite-state automaton in Figure 3(a) recognizes the set of bit

strings that begin with two 0s.

s0
Start

s1

(a)

0 0
s2

1

1

s3

0, 1

0, 1

s0

Start
s1

(c)

0

0

s2

1

1

0, 1

s0
Start

s1

(b)

0

0

s2

1

1

0, 1

s0
Start

s1

(d)

00
0

s2

1

1
1

s0
Start

s1

(e)

00
s2

1 1

0, 1

FIGURE 3 Deterministic Finite-State Automata Recognizing the Languages in Example 6.

870 13 / Modeling Computation

(b) Our goal is to construct a deterministic finite-state automaton that recognizes the set of

bit strings that contain two consecutive 0s. Besides the start state s0, we include a nonfinal

state s1, which tells us that the last input bit seen is a 0, but either the bit before it was a 1, or

this bit was the initial bit of the string. We include a final state s2 that we move to from s1 when

the next input bit after a 0 is also a 0. If a 1 follows a 0 in the string (before we encounter two

consecutive 0s), we return to s0 and begin looking for consecutive 0s all over again. The reader

should verify that the finite-state automaton in Figure 3(b) recognizes the set of bit strings that

contain two consecutive 0s.

(c) Our goal is to construct a deterministic finite-state automaton that recognizes the set of

bit strings that do not contain two consecutive 0s. Besides the start state s0, which should

be a final state, we include a final state s1, which we move to from s0 when 0 is the first

input bit. When an input bit is a 1, we return to, or stay in, state s0. We add a state s2, which

we move to from s1 when the input bit is a 0. Reaching s2 tells us that we have seen two

consecutive 0s as input bits. We stay in state s2 once we have reached it; this state is not final.

The reader should verify that the finite-state automaton in Figure 3(c) recognizes the set of bit

strings that do not contain two consecutive 0s. [The astute reader will notice the relationship

between the finite-state automaton constructed here and the one constructed in part (b). See

Exercise 39.]

(d) Our goal is to construct a deterministic finite-state automaton that recognizes the set of bit

strings that end with two 0s. Besides the start state s0, we include a nonfinal state s1, which

we move to if the first bit is 0. We include a final state s2, which we move to from s1 if the

next input bit after a 0 is also a 0. If an input of 0 follows a previous 0, we stay in state s2

because the last two input bits are still 0s. Once we are in state s2, an input bit of 1 sends us back

to s0, and we begin looking for consecutive 0s all over again. We also return to s0 if the next

input is a 1 when we are in state s1. The reader should verify that the finite-state automaton in

Figure 3(d) recognizes the set of bit strings that end with two 0s.

(e) Our goal is to construct a deterministic finite-state automaton that recognizes the set of bit

strings that contain two 0s. Besides the start state, we include a state s1, which is not final; we

stay in s0 until an input bit is a 0 and we move to s1 when we encounter the first 0 bit in the input.

We add a final state s2, which we move to from s1 once we encounter a second 0 bit. Whenever

we encounter a 1 as input, we stay in the current state. Once we have reached s2, we remain

there. Here, s1 and s2 are used to tell us that we have already seen one or two 0s in the input

string so far, respectively. The reader should verify that the finite-state automaton in Figure 3(e)

recognizes the set of bit strings that contain two 0s. ▲

EXAMPLE 7 Construct a deterministic finite-state automaton that recognizes the set of bit strings that contain

an odd number of 1s and that end with at least two consecutive 0s.

Solution: We can build a deterministic finite-state automaton that recognizes the specified set

by including states that keep track of both the parity of the number of 1 bits and whether we

have seen no, one, or at least two 0s at the end of the input string.

The start state s0 can be used to tell us that the input read so far contains an even number

of 1s and ends with no 0s (that is, is empty or ends with a 1). Besides the start state, we include

five more states. We move to states s1, s2, s3, s4, and s5, respectively, when the input string read

so far contains an even number of 1s and ends with one 0; when it contains an even number

of 1s and ends with at least two 0s; when it contains an odd number of 1s and ends with no 0s;

when it contains an odd number of 1s and ends with one 0; and when it contains an odd number

of 1s and ends with two 0s. The state s5 is a final state.

The reader should verify that the finite-state automaton in Figure 4 recognizes the set of bit

strings that contain an odd number of 1s and end with at least two consecutive 0s. ▲

13.3 Finite-State Machines with No Output 871

s0
Start

s1

Number of

1s

even even even odd odd odd

0 0 1

0

s2

1

1 1 1

1

s3
0

s4
0 0

s5

Number of

0s at end

0 1 ≥2 0 1 ≥2

FIGURE 4 A Deterministic Finite-State Automaton Recognizing the Set of Bit Strings Containing an Odd

Number of 1s and Ending with at Least Two 0s.

EQUIVALENT FINITE-STATE AUTOMATA In Definition 4 we specified that two finite-

state automata are equivalent if they recognize the same language. Example 8 provides an

example of two equivalent deterministic finite-state machines.

EXAMPLE 8 Show that the two finite-state automata M0 and M1 shown in Figure 5 are equivalent.

Solution: For a string x to be recognized by M0, x must take us from s0 to the final state s1 or

the final state s4. The only string that takes us from s0 to s1 is the string 1. The strings that take

us from s0 to s4 are those strings that begin with a 0, which takes us from s0 to s2, followed by

zero or more additional 0s, which keep the machine in state s2, followed by a 1, which takes us

from state s2 to the final state s4. All other strings take us from s0 to a state that is not final. (We

leave it to the reader to fill in the details.) We conclude that L(M0) is the set of strings of zero

or more 0 bits followed by a final 1.

For a string x to be recognized by M1, x must take us from s0 to the final state s1. So, for x

to be recognized, it must begin with some number of 0s, which leave us in state s0, followed by

s0

s1

0, 1

s2

s3

s4

0, 1

0, 1

1

0

1

0

s0
Start

s1

0

Start

s2
0, 1

0, 1
1

M0

M1

FIGURE 5 M0 and M1 Are Equivalent Finite-State Automata.

872 13 / Modeling Computation

a 1, which takes us to the final state s1. A string of all zeros is not recognized because it leaves us

in state s0, which is not final. All strings that contain a 0 after 1 are not recognized because they

take us to state s2, which is not final. It follows that L(M1) is the same as L(M0). We conclude

that M0 and M1 are equivalent.

Note that the finite-state machine M1 only has three states. No finite state machine with

fewer than three states can be used to recognize the set of all strings of zero or more 0 bits

followed by a 1 (see Exercise 37). ▲

As Example 8 shows, a finite-state automaton may have more states than one equivalent

to it. In fact, algorithms used to construct finite-state automata to recognize certain languages

may have many more states than necessary. Using unnecessarily large finite-state machines to

recognize languages can make both hardware and software applications inefficient and costly.

This problem arises when finite-state automata are used in compilers, which translate computer

programs to a language a computer can understand (object code).

Exercises 58–61 develop a procedure that constructs a finite-state automaton with the fewest

states possible among all finite-state automata equivalent to a given finite-state automaton. This

procedure is known as machine minimization. The minimization procedure described in these

exercises reduces the number of states by replacing states with equivalence classes of states with

respect to an equivalence relation in which two states are equivalent if every input string either

sends both states to a final state or sends both to a state that is not final. Before the minimization

procedure begins, all states that cannot be reached from the start state using any input string are

first removed; removing these does not change the language recognized.

GRACE BREWSTER MURRAY HOPPER (1906–1992) Grace Hopper, born in NewYork City, displayed an
intense curiosity as a child with how things worked.At the age of seven, she disassembled alarm clocks to discover
their mechanisms. She inherited her love of mathematics from her mother, who received special permission to
study geometry (but not algebra and trigonometry) at a time when women were actively discouraged from such
study. Hopper was inspired by her father, a successful insurance broker, who had lost his legs from circulatory
problems. He told his children they could do anything if they put their minds to it. He inspired Hopper to pursue
higher education and not conform to the usual roles for females. Her parents made sure that she had an excellent
education; she attended private schools for girls in NewYork. Hopper entered Vassar College in 1924, where she
majored in mathematics and physics; she graduated in 1928. She received a masters degree in mathematics from

Yale University in 1930. In 1930 she also married an English instructor at the New York School of Commerce; she later divorced and
did not have children. Hopper was a mathematics professor at Vassar from 1931 until 1943, earning a Ph.D. from Yale in 1934.

After the attack on Pearl Harbor, Hopper, coming from a family with strong military traditions, decided to leave her academic
position and join the Navy WAVES. To enlist, she needed special permission to leave her strategic position as a mathematics professor,
as well as a waiver for weighing too little. In December 1943, she was sworn into the Navy Reserve and trained at the Midshipman’s
School for Women. Hopper was assigned to work at the Naval Ordnance Laboratory] at Harvard University. She wrote programs for
the world’s first large-scale automatically sequenced digital computer, which was used to help aim Navy artillery in varying weather.
Hopper has been credited with coining the term “bug” to refer to a hardware glitch, but it was used at Harvard prior to her arrival
there. However, it is true that Hopper and her programming team found a moth in one of the relays in the computer hardware that
shut the system down. This famous moth was pasted into a lab book. In the 1950s Hopper coined the term “debug” for the process
of removing programming errors.

In 1946, when the Navy told her that she was too old for active service, Hopper chose to remain at Harvard as a civilian research
fellow. In 1949 she left Harvard to join the Eckert–Mauchly Computer Corporation, where she helped develop the first commercial
computer, UNIVAC. Hopper remained with this company when it was taken over by Remington Rand and when Remington Rand
merged with the Sperry Corporation. She was a visionary for the potential power of computers; she understood that computers would
become widely used if tools that were both programmer-friendly and application-friendly could be developed. In particular, she
believed that computer programs could be written in English, rather than using machine instructions. To help achieve this goal, she
developed the first compiler. She published the first research paper on compilers in 1952. Hopper is also known as the mother of the
computer language COBOL; members of Hopper’s staff helped to frame the basic language design for COBOL using their earlier
work as a basis.

In 1966, Hopper retired from the Navy Reserve. However, only seven months later, the Navy recalled her from retirement to
help standardize high-level naval computer languages. In 1983 she was promoted to the rank of Commodore by special Presidential
appointment, and in 1985 she was elevated to the rank of Rear Admiral. Her retirement from the Navy, at the age of 80, was held on
the USS Constitution.

13.3 Finite-State Machines with No Output 873

Nondeterministic Finite-State Automata

The finite-state automata discussed so far are deterministic, because for each pair of state and

input value there is a unique next state given by the transition function. There is another important

type of finite-state automaton in which there may be several possible next states for each pair

of input value and state. Such machines are called nondeterministic. Nondeterministic finite-

state automata are important in determining which languages can be recognized by a finite-state

automaton.

DEFINITION 5 A nondeterministic finite-state automaton M = (S, I, f, s0, F) consists of a set S of states,

an input alphabet I, a transition function f that assigns a set of states to each pair of state and

input (so that f : S × I → P(S)), a starting state s0, and a subset F of S consisting of the

final states.

We can represent nondeterministic finite-state automata using state tables or state diagrams.

When we use a state table, for each pair of state and input value we give a list of possible

next states. In the state diagram, we include an edge from each state to all possible next states,

labeling edges with the input or inputs that lead to this transition.

EXAMPLE 9 Find the state diagram for the nondeterministic finite-state automaton with the state table shown

in Table 2. The final states are s2 and s3.

Solution: The state diagram for this automaton is shown in Figure 6. ▲

EXAMPLE 10 Find the state table for the nondeterministic finite-state automaton with the state diagram shown

in Figure 7.

Solution: The state table is given as Table 3. ▲

What does it mean for a nondeterministic finite-state automaton to recognize a string

x = x1x2 . . . xk? The first input symbol x1 takes the starting state s0 to a set S1 of states. The

next input symbol x2 takes each of the states in S1 to a set of states. Let S2 be the union of these

sets. We continue this process, including at a stage all states obtained using a state obtained

at the previous stage and the current input symbol. We recognize, or accept, the string x if

there is a final state in the set of all states that can be obtained from s0 using x. The language

recognized by a nondeterministic finite-state automaton is the set of all strings recognized by

this automaton.

TABLE 2

f

Input

State 0 1

s0 s0, s1 s3

s1 s0 s1, s3

s2 s0, s2

s3 s0, s1, s2 s1

s1

s3

s2

s0

0, 1

Start

0

01

0
1

0

1

1

1

0

FIGURE 6 The Nondeterministic

Finite-State Automaton with State

Table Given in Table 2.

874 13 / Modeling Computation

s0

s1

Start

s2

s3

s4

0

0, 1

1

1

0

1

0
0

FIGURE 7 A Nondeterministic Finite-State

Automaton.

TABLE 3

f

Input

State 0 1

s0 s0, s2 s1

s1 s3 s4

s2 s4

s3 s3

s4 s3 s3

EXAMPLE 11 Find the language recognized by the nondeterministic finite-state automaton shown in Figure 7.

Solution: Because s0 is a final state, and there is a transition from s0 to itself when 0 is the input,

the machine recognizes all strings consisting of zero or more consecutive 0s. Furthermore,

because s4 is a final state, any string that has s4 in the set of states that can be reached from s0

with this input string is recognized. The only such strings are strings consisting of zero or more

consecutive 0s followed by 01 or 11. Because s0 and s4 are the only final states, the language

recognized by the machine is {0n, 0n01, 0n11 | n ≥ 0}. ▲

One important fact is that a language recognized by a nondeterministic finite-state automaton

is also recognized by a deterministic finite-state automaton. We will take advantage of this fact in

Section 13.4 when we will determine which languages are recognized by finite-state automata.

THEOREM 1 If the language L is recognized by a nondeterministic finite-state automaton M0, then L is

also recognized by a deterministic finite-state automaton M1.

Proof: We will describe how to construct the deterministic finite-state automaton M1 that rec-

ognizes L from M0, the nondeterministic finite-state automaton that recognizes this language.

Each state in M1 will be made up of a set of states in M0. The start symbol of M1 is {s0}, which

is the set containing the start state of M0. The input set of M1 is the same as the input set of M0.

Given a state {si1, si2, . . . , sik } of M1, the input symbol x takes this state to the union

of the sets of next states for the elements of this set, that is, the union of the sets f (si1, x),

f (si2, x), . . . , f (sik , x). The states of M1 are all the subsets of S, the set of states of M0, that are

obtained in this way starting with s0. (There are as many as 2n states in the deterministic machine,

where n is the number of states in the nondeterministic machine, because all subsets may occur

as states, including the empty set, although usually far fewer states occur.) The final states

of M1 are those sets that contain a final state of M0.

Suppose that an input string is recognized by M0. Then one of the states that can be reached

from s0 using this input string is a final state (the reader should provide an inductive proof of

this). This means that in M1, this input string leads from {s0} to a set of states of M0 that contains

a final state. This subset is a final state of M1, so this string is also recognized by M1. Also, an

input string not recognized by M0 does not lead to any final states in M0. (The reader should

provide the details that prove this statement.) Consequently, this input string does not lead from

{s0} to a final state in M1.

EXAMPLE 12 Find a deterministic finite-state automaton that recognizes the same language as the nondeter-

ministic finite-state automaton in Example 10.

13.3 Finite-State Machines with No Output 875

Start

0

0, 1

1

1

0

0

1

1

1

0

0, 1

0, 1

0

{s0, s2} {s1, s4}

{s3, s4}{s0}

{s1} {s4}

{s3}∅

FIGURE 8 A Deterministic Automaton Equivalent to the

Nondeterministic Automaton in Example 10.

Solution: The deterministic automaton shown in Figure 8 is constructed from the nonde-

terministic automaton in Example 10. The states of this deterministic automaton are sub-

sets of the set of all states of the nondeterministic machine. The next state of a subset un-

der an input symbol is the subset containing the next states in the nondeterministic ma-

chine of all elements in this subset. For instance, on input of 0, {s0} goes to {s0, s2},

because s0 has transitions to itself and to s2 in the nondeterministic machine; the set {s0, s2}

goes to {s1, s4} on input of 1, because s0 goes just to s1 and s2 goes just to s4 on input of 1 in

the nondeterministic machine; and the set {s1, s4} goes to {s3} on input of 0, because s1 and s4

both go to just s3 on input of 0 in the deterministic machine. All subsets that are obtained in

this way are included in the deterministic finite-state machine. Note that the empty set is one of

the states of this machine, because it is the subset containing all the next states of {s3} on input

of 1. The start state is {s0}, and the set of final states are all those that include s0 or s4. ▲

Exercises

1. Let A = {0, 11} and B = {00, 01}. Find each of these

sets.

a) AB b) BA c) A2 d) B3

2. Show that if A is a set of strings, then A∅ = ∅A = ∅.

3. Find all pairs of sets of strings A and B for which

AB = {10, 111, 1010, 1000, 10111, 101000}.

4. Show that these equalities hold.

a) {λ}∗ = {λ}

b) (A∗)∗ = A∗ for every set of strings A

5. Describe the elements of the set A∗ for these values of A.

a) {10} b) {111} c) {0, 01} d) {1, 101}

6. Let V be an alphabet, and let A and B be subsets of V ∗.

Show that |AB| ≤ |A||B|.

7. Let V be an alphabet, and let A and B be subsets of V ∗

with A ⊆ B. Show that A∗ ⊆ B∗.

8. Suppose that A is a subset of V ∗, where V is an alphabet.

Prove or disprove each of these statements.

a) A ⊆ A2 b) if A = A2, then λ ∈ A

c) A{λ} = A d) (A∗)∗ = A∗

e) A∗A = A∗ f) |An| = |A|n

9. Determine whether the string 11101 is in each of these

sets.

a) {0, 1}∗ b) {1}∗{0}∗{1}∗

c) {11} {0}∗{01} d) {11}∗{01}∗

e) {111}∗{0}∗{1} f) {11, 0} {00, 101}

10. Determine whether the string 01001 is in each of these

sets.

a) {0, 1}∗ b) {0}∗{10}{1}∗

c) {010}∗{0}∗{1} d) {010, 011} {00, 01}

e) {00} {0}∗{01} f) {01}∗{01}∗

11. Determine whether each of these strings is recognized by

the deterministic finite-state automaton in Figure 1.

a) 111 b) 0011 c) 1010111 d) 011011011

12. Determine whether each of these strings is recognized by

the deterministic finite-state automaton in Figure 1.

a) 010 b) 1101 c) 1111110 d) 010101010

13. Determine whether all the strings in each of these sets are

recognized by the deterministic finite-state automaton in

Figure 1.

a) {0}∗ b) {0} {0}∗ c) {1} {0}∗

d) {01}∗ e) {0}∗{1}∗ f) {1} {0, 1}∗

14. Show that ifM = (S, I, f, s0, F) is a deterministic finite-

state automaton and f (s, x) = s for the state s ∈ S and

the input string x ∈ I∗, then f (s, xn) = s for every non-

negative integer n. (Here xn is the concatenation of n

copies of the string x, defined recursively in Exercise 37

in Section 5.3.)

876 13 / Modeling Computation

15. Given a deterministic finite-state automaton M =

(S, I, f, s0, F), use structural induction and the recursive

definition of the extended transition function f to prove

that f (s, xy) = f (f (s, x), y) for all states s ∈ S and all

strings x ∈ I∗ and y ∈ I ∗.

In Exercises 16–22 find the language recognized by the given

deterministic finite-state automaton.

16.

s0
Start

s1
1

s2
0 1

0, 1

0

17.
s0

Start s1
1 0, 1

0, 1 s2

0

18.

s0
Start s1

0 s2
0

0, 1

1

1

19.

s0
Start s1

1 s2
0

0, 1

1

0

20.

s0
Start s1

0 s2
1 0, 1

0

1

s3

0, 1

21.

s0 s5

s1

1

0, 1

0, 1

s2

s3

s4

0

1

0 0

1

0

1

Start

22.

s0 s5

s1

0

0, 1

s2

s3

s4

0

11

0

1

0 1

0

1

Start

23. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings beginning with 01.

24. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings that end with 10.

25. Construct a deterministic finite-state automaton that

recognizes the set of all bit strings that contain the

string 101.

26. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings that do not contain three

consecutive 0s.

27. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings that contain exactly

three 0s.

28. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings that contain at least

three 0s.

29. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings that contain three consec-

utive 1s.

30. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings that begin with 0 or

with 11.

31. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings that begin and end with 11.

32. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings that contain an even num-

ber of 1s.

33. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings that contain an odd number

of 0s.

34. Construct a deterministic finite-state automaton that rec-

ognizes the set of all bit strings that contain an even num-

ber of 0s and an odd number of 1s.

35. Construct a finite-state automaton that recognizes the set

of bit strings consisting of a 0 followed by a string with

an odd number of 1s.

36. Construct a finite-state automaton with four states that

recognizes the set of bit strings containing an even num-

ber of 1s and an odd number of 0s.

37. Show that there is no finite-state automaton with two

states that recognizes the set of all bit strings that have

one or more 1 bits and end with a 0.

38. Show that there is no finite-state automaton with three

states that recognizes the set of bit strings containing an

even number of 1s and an even number of 0s.

13.3 Finite-State Machines with No Output 877

39. Explain how you can change the deterministic finite-state

automaton M so that the changed automaton recognizes

the set I ∗ − L(M).

40. Use Exercise 39 and finite-state automata constructed in

Example 6 to find deterministic finite-state automata that

recognize each of these sets.

a) the set of bit strings that do not begin with two 0s

b) the set of bit strings that do not end with two 0s

c) the set of bit strings that contain at most one 0 (that

is, that do not contain at least two 0s)

41. Use the procedure you described in Exercise 39 and the

finite-state automata you constructed in Exercise 25 to

find a deterministic finite-state automaton that recognizes

the set of all bit strings that do not contain the string 101.

42. Use the procedure you described in Exercise 39 and the

finite-state automaton you constructed in Exercise 29 to

find a deterministic finite-state automaton that recognizes

the set of all bit strings that do not contain three consec-

utive 1s.

In Exercises 43–49 find the language recognized by the given

nondeterministic finite-state automaton.

43.
s0

Start s1
0, 1 s2

1

0

44. Start
s1

0, 1 s2
0

1

1

s0

45.

s0
Start s1

0 s2
1 1

0

0

46.
s0

Start s1
1 s2

0

0, 1

47.

s0 s1 s2 s3
Start 1 0 0, 1

0

0

1

0

48.

s0 s5

s1

0, 1

0

s2

s3

s4

1

0

01

0, 1

0, 1

1

0, 1Start

0

0

49.

s0 s5

s1

0

0

10

1, 0

s2

s3

s4

0, 1

0, 1
0

1

0, 1

Start

0, 1

1

50. Find a deterministic finite-state automaton that recog-

nizes the same language as the nondeterministic finite-

state automaton in Exercise 43.

51. Find a deterministic finite-state automaton that recog-

nizes the same language as the nondeterministic finite-

state automaton in Exercise 44.

52. Find a deterministic finite-state automaton that recog-

nizes the same language as the nondeterministic finite-

state automaton in Exercise 45.

53. Find a deterministic finite-state automaton that recog-

nizes the same language as the nondeterministic finite-

state automaton in Exercise 46.

54. Find a deterministic finite-state automaton that recog-

nizes the same language as the nondeterministic finite-

state automaton in Exercise 47.

55. Find a deterministic finite-state automaton that recog-

nizes each of these sets.

a) {0} b) {1, 00}

c) {1n | n = 2, 3, 4, . . . }

56. Find a nondeterministic finite-state automaton that recog-

nizes each of the languages in Exercise 55, and has fewer

states, if possible, than the deterministic automaton you

found in that exercise.

∗57. Show that there is no finite-state automaton that recog-

nizes the set of bit strings containing an equal number

of 0s and 1s.

In Exercises 58–62 we introduce a technique for construct-

ing a deterministic finite-state machine equivalent to a given

deterministic finite-state machine with the least number of

states possible. Suppose that M = (S, I, f, s0, F) is a finite-

state automaton and that k is a nonnegative integer. Let Rk be

the relation on the set S of states of M such that sRkt if and

only if for every input string x with l(x) ≤ k [where l(x) is the

length of x, as usual], f (s, x) and f (t, x) are both final states

878 13 / Modeling Computation

or both not final states. Furthermore, let R∗ be the relation on

the set of states of M such that sR∗t if and only if for every

input string x, regardless of length, f (s, x) and f (t, x) are

both final states or both not final states.
∗58. a) Show that for every nonnegative integer k, Rk is an

equivalence relation on S. We say that two states s

and t are k-equivalent if sRkt .
b) Show that R∗ is an equivalence relation on S. We say

that two states s and t are *-equivalent if sR∗t .
c) Show that if s and t are two k-equivalent states of M ,

where k is a positive integer, then s and k are also

(k − 1)-equivalent
d) Show that the equivalence classes of Rk are a refine-

ment of the equivalence classes of Rk−1 if k is a pos-

itive integer. (The refinement of a partition of a set is

defined in the preamble to Exercise 49 in Section 9.5.)
e) Show that if s and t are k-equivalent for every non-

negative integer k, then they are ∗-equivalent.
f) Show that all states in a given R∗-equivalence class

are final states or all are not final states.
g) Show that if s and t are R∗-equivalent, then f (s, a)

and f (t, a) are also R∗-equivalent for all a ∈ I .
∗59. Show that there is a nonnegative integer n such that the set

of n-equivalence classes of states of M is the same as the

set of (n + 1)-equivalence classes of states of M . Then

show for this integer n, the set of n-equivalence classes

of states of M equals the set of ∗-equivalence classes of

states of M .

The quotient automaton M of the deterministic finite-state

automaton M = (S, I, f, s0, F) is the finite-state automaton

(S, I, f , [s0]R∗ , F), where the set of states S is the set of

∗-equivalence classes of S, the transition function f is de-

fined by f ([s]R∗ , a) = [f (s, a)]R∗ for all states [s]R∗ of M

and input symbols a ∈ I , and F is the set consisting of R∗-

equivalence classes of final states of M .

∗60. a) Show that s and t are 0-equivalent if and only if either

both s and t are final states or neither s nor t is a final

state. Conclude that each final state of M , which is an

R∗-equivalence class, contains only final states of M .

b) Show that if k is a positive integer, then s and t are k-

equivalent if and only if s and t are (k − 1)-equivalent

and for every input symbol a ∈ I , f (s, a) and f (t, a)

are (k − 1)-equivalent. Conclude that the transition

function f is well-defined.

c) Describe a procedure that can be used to construct the

quotient automaton of a finite-automaton M .

∗∗61. a) Show that if M is a finite-state automaton, then the

quotient automaton M recognizes the same language

as M .

b) Show that if M is a finite-state automaton with the

property that for every state s of M there is a string

x ∈ I ∗ such that f (s0, x) = s, then the quotient au-

tomaton M has the minimum number of states of any

finite-state automaton equivalent to M .

62. Answer these questions about the finite-state automaton

M shown here.

s0

s1

1

1

s2

s3

s4

s5

s6

0

0

0

1

1

0

1 1
0

01

0
Start

a) Find the k-equivalence classes of M for k = 0, 1, 2,

and 3. Also, find the ∗-equivalence classes of M .

b) Construct the quotient automaton M of M .

13.4 Language Recognition

Introduction

We have seen that finite-state automata can be used as language recognizers. What sets can be

recognized by these machines? Although this seems like an extremely difficult problem, there

is a simple characterization of the sets that can be recognized by finite state automata. This

problem was first solved in 1956 by the American mathematician Stephen Kleene. He showed

that there is a finite-state automaton that recognizes a set if and only if this set can be built

up from the null set, the empty string, and singleton strings by taking concatenations, unions,

and Kleene closures, in arbitrary order. Sets that can be built up in this way are called regular

sets. Regular grammars were defined in Section 13.1. Because of the terminology used, it is

not surprising that there is a connection between regular sets, which are the sets recognized

by finite-state automata, and regular grammars. In particular, a set is regular if and only if it is

generated by a regular grammar.

Finally, there are sets that cannot be recognized by any finite-state automata. We will give

an example of such a set. We will briefly discuss more powerful models of computation, such as

pushdown automata and Turing machines, at the end of this section. The regular sets are those

13.4 Language Recognition 879

that can be formed using the operations of concatenation, union, and Kleene closure in arbitrary

order, starting with the empty set, the set consisting of the empty string, and singleton sets. We

will see that the regular sets are those that can be recognized using a finite-state automaton. To

define regular sets we first need to define regular expressions.

DEFINITION 1 The regular expressions over a set I are defined recursively by:

the symbol ∅ is a regular expression;

the symbol λ is a regular expression;

the symbol x is a regular expression whenever x ∈ I ;

the symbols (AB), (A ∪ B), and A∗ are regular expressions whenever A

and B are regular expressions.

Each regular expression represents a set specified by these rules:

∅ represents the empty set, that is, the set with no strings;

λ represents the set {λ}, which is the set containing the empty string;

x represents the set {x} containing the string with one symbol x;

(AB) represents the concatenation of the sets represented by A and by B;

(A ∪ B) represents the union of the sets represented by A and by B;

A∗ represents the Kleene closure of the set represented by A.

Sets represented by regular expressions are called regular sets. Henceforth regular expressions

will be used to describe regular sets, so when we refer to the regular set A, we will mean the

regular set represented by the regular expression A. Note that we will leave out outer parentheses

from regular expressions when they are not needed.

Example 1 shows how regular expressions are used to specify regular sets.

EXAMPLE 1 What are the strings in the regular sets specified by the regular expressions 10∗, (10)∗, 0 ∪ 01,

0(0 ∪ 1)∗, and (0∗1)∗?

Solution: The regular sets represented by these expressions are given in Table 1, as the reader

should verify. ▲

Finding a regular expression that specifies a given set can be quite tricky, as Example 2

illustrates.

EXAMPLE 2 Find a regular expression that specifies each of these sets:

(a) the set of bit strings with even length

(b) the set of bit strings ending with a 0 and not containing 11

(c) the set of bit strings containing an odd number of 0s

TABLE 1

Expression Strings

10∗ a 1 followed by any number of 0s (including no zeros)

(10)∗ any number of copies of 10 (including the null string)

0 ∪ 01 the string 0 or the string 01

0(0 ∪ 1)∗ any string beginning with 0

(0∗1)∗ any string not ending with 0

880 13 / Modeling Computation

Solution: (a) To construct a regular expression for the set of bit strings with even length, we

use the fact that such a string can be obtained by concatenating zero or more strings each

consisting of two bits. The set of strings of two bits is specified by the regular expression

(00 ∪ 01 ∪ 10 ∪ 11). Consequently, the set of strings with even length is specified by

(00 ∪ 01 ∪ 10 ∪ 11) ∗ .

(b) A bit string ending with a 0 and not containing 11 must be the concatenation of one or

more strings where each string is either a 0 or a 10. (To see this, note that such a bit string must

consist of 0 bits or 1 bits each followed by a 0; the string cannot end with a single 1 because

we know it ends with a 0.) It follows that the regular expression (0 ∪ 10)∗ (0 ∪ 10) specifies the

set of bit strings that do not contain 11 and end with a 0. [Note that the set specified by (0 ∪

10)∗ includes the empty string, which is not in this set, because the empty string does not end

with a 0.]

(c) A bit string containing an odd number of 0s must contain at least one 0, which tells us

that it starts with zero or more 1s, followed by a 0, followed by zero or more 1s. That is, each

such bit string begins with a string of the form 1j01k for nonnegative integers j and k. Because

the bit string contains an odd number of 0s, additional bits after this initial block can be split into

blocks each starting with a 0 and containing one more 0. Each such block is of the form 01p01q ,

where p and q are nonnegative integers. Consequently, the regular expression 1∗01∗(01∗01∗)∗

specifies the set of bit strings with an odd number of 0s. ▲

Kleene’s Theorem

In 1956 Kleene proved that regular sets are the sets that are recognized by a finite-state automaton.

Consequently, this important result is called Kleene’s theorem.

THEOREM 1 KLEENE’S THEOREM A set is regular if and only if it is recognized by a finite-state

automaton.

Kleene’s theorem is one of the central results in automata theory. We will prove the only if part of

this theorem, namely, that every regular set is recognized by a finite-state automaton. The proof

of the if part, that a set recognized by a finite-state automaton is regular, is left as an exercise

for the reader.

Proof: Recall that a regular set is defined in terms of regular expressions, which are defined

recursively. We can prove that every regular set is recognized by a finite-state automaton if we

can do the following things.

1. Show that ∅ is recognized by a finite-state automaton.

2. Show that {λ} is recognized by a finite-state automaton.

3. Show that {a} is recognized by a finite-state automaton whenever a is a symbol in I .

4. Show that AB is recognized by a finite-state automaton whenever both A and B are.

5. Show that A ∪ B is recognized by a finite-state automaton whenever both A and B are.

6. Show that A∗ is recognized by a finite-state automaton whenever A is.

We now consider each of these tasks. First, we show that ∅ is recognized by a nondeterministic

finite-state automaton. To do this, all we need is an automaton with no final states. Such an

automaton is shown in Figure 1(a).

13.4 Language Recognition 881

s0Start s0 s0Start s1
a

Start

(a) (b) (c)

FIGURE 1 Nondeterministic Finite-State Automata That Recognize Some Basic Sets.

Second, we show that {λ} is recognized by a finite-state automaton. To do this, all we need

is an automaton that recognizes λ, the null string, but not any other string. This can be done by

making the start state s0 a final state and having no transitions, so that no other string takes s0

to a final state. The nondeterministic automaton in Figure 1(b) shows such a machine.

Third, we show that {a} is recognized by a nondeterministic finite-state automaton. To do

this, we can use a machine with a starting state s0 and a final state s1. We have a transition from

s0 to s1 when the input is a, and no other transitions. The only string recognized by this machine

is a. This machine is shown in Figure 1(c).

Next, we show that AB and A ∪ B can be recognized by finite-state automata if A and B

are languages recognized by finite-state automata. Suppose that A is recognized by MA =

(SA, I, fA, sA, FA) and B is recognized by MB = (SB, I, fB, sB, FB).

We begin by constructing a finite-state machineMAB = (SAB, I, fAB, sAB, FAB) that recog-

nizes AB, the concatenation of A and B. We build such a machine by combining the machines

for A and B in series, so a string in A takes the combined machine from sA, the start state

of MA, to sB , the start state of MB . A string in B should take the combined machine from sB to

a final state of the combined machine. Consequently, we make the following construction.

Let SAB be SA ∪ SB . [Note that we can assume that SA and SB are disjoint.] The start-

ing state sAB is the same as sA. The set of final states, FAB , is the set of final states of

MB with sAB included if and only if λ ∈ A ∩ B. The transitions in MAB include all tran-

sitions in MA and in MB , as well as some new transitions. For every transition in MA

that leads to a final state, we form a transition in MAB from the same state to sB , on the

same input. In this way, a string in A takes MAB from sAB to sB , and then a string in B

takes sB to a final state of MAB . Moreover, for every transition from sB we form a transition

in MAB from sAB to the same state. Figure 2(a) contains an illustration of this construction.

We now construct a machine MA∪B = (SA∪B, I, fA∪B, sA∪B, FA∪B) that recognizes

A ∪ B. This automaton can be constructed by combining MA and MB in parallel, using a

new start state that has the transitions that both sA and sB have. Let SA∪B = SA ∪ SB ∪ {sA∪B},

where sA∪B is a new state that is the start state of MA∪B . Let the set of final states FA∪B be

FA ∪ FB ∪ {sA∪B} if λ ∈ A ∪ B, and FA ∪ FB otherwise. The transitions in MA∪B include all

those in MA and in MB . Also, for each transition from sA to a state s on input i we include a

transition from sA∪B to s on input i, and for each transition from sB to a state s on input i we

include a transition from sA∪B to s on input i. In this way, a string in A leads from sA∪B to

a final state in the new machine, and a string in B leads from sA∪B to a final state in the new

machine. Figure 2(b) illustrates the construction of MA∪B .

Finally, we construct M
A

∗ = (S
A

∗, I, f
A

∗, s
A

∗, F
A

∗), a machine that recognizes A∗, the

Kleene closure of A. Let S
A

∗ include all states in SA and one additional state s
A

∗ , which is

the starting state for the new machine. The set of final states F
A

∗ includes all states in FA

as well as the start state s
A

∗ , because λ must be recognized. To recognize concatenations of

arbitrarily many strings from A, we include all the transitions in MA, as well as transitions

from s
A

∗ that match the transitions from sA, and transitions from each final state that match the

transitions from sA. With this set of transitions, a string made up of concatenations of strings

from A will take s
A

∗ to a final state when the first string in A has been read, returning to a

final state when the second string in A has been read, and so on. Figure 2(c) illustrates the

construction we used.

A nondeterministic finite-state automaton can be constructed for any regular set using the

procedure described in this proof. We illustrate how this is done with Example 3.

882 13 / Modeling Computation

sA

i
sB

Start MA i MB

sA
i MA

Start

sB

i

MB

sA

i

MA
sA*

Start i
MA*

(a)

(b)

(c)

Transition to final state in MA produces a transition to sB.

Transition from sB in MB produces a transition from sAB = sA.

Transitions from sA produce A transitions from sA* and all final states of MA.

MAB

i

Start state is sAB = sA, which is final if sA and sB are final. Final states include all final states of MB.

sA B

MA B

Final states are the final states in MA and MB.

sA B is the new start state, which is final if sA or sB is final.

sA* is the new start state, which is a final state. Final states include all final states in MA.

i

i

i

i

FIGURE 2 Building Automata to Recognize Concatenations, Unions, and Kleene Closures.

EXAMPLE 3 Construct a nondeterministic finite-state automaton that recognizes the regular set 1∗ ∪ 01.

Solution: We begin by building a machine that recognizes 1∗. This is done using the machine

that recognizes 1 and then using the construction for M
A

∗ described in the proof. Next, we

build a machine that recognizes 01, using machines that recognize 0 and 1 and the construction

in the proof for MAB . Finally, using the construction in the proof for MA∪B , we construct the

machine for 1∗ ∪ 01. The finite-state automata used in this construction are shown in Figure 3.

The states in the successive machines have been labeled using different subscripts, even when a

state is formed from one previously used in another machine. Note that the construction given

here does not produce the simplest machine that recognizes 1∗ ∪ 01. A much simpler machine

that recognizes this set is shown in Figure 3(b). ▲

Regular Sets and Regular Grammars

In Section 13.1 we introduced phrase-structure grammars and defined different types of gram-

mars. In particular we defined regular, or type 3, grammars, which are grammars of the

13.4 Language Recognition 883

s3
Start

s4 s5
1 1

1

s6
Start

s7
0

s1
Start

s2
1

s8
Start

s9 s10
0

0

s11
1

s13 s14 s15

1

1

Start

s16 s17 s18
0

0

s19
1

s0
Start

s1

1

s2 s3
1

0

1

1

Machine(a)

(b)

1

0
0

s12

Set recognized

1

1*

0

01

1* 01

1* 01

FIGURE 3 Nondeterministic Finite-State Automata Recognizing 1∗ ∪ 01.

form G = (V , T , S, P), where each production is of the form S → λ, A → a, or A → aB,

where a is a terminal symbol, and A and B are nonterminal symbols. As the terminology

suggests, there is a close connection between regular grammars and regular sets.

THEOREM 2 A set is generated by a regular grammar if and only if it is a regular set.

884 13 / Modeling Computation

Proof: First we show that a set generated by a regular grammar is a regular set. Suppose

thatG = (V , T , S, P) is a regular grammar generating the setL(G). To show thatL(G) is regular

we will build a nondeterministic finite-state machineM = (S, I, f, s0, F) that recognizesL(G).

Let S, the set of states, contain a state sA for each nonterminal symbol A of G and an additional

state sF , which is a final state. The start state s0 is the state formed from the start symbol S.

The transitions of M are formed from the productions of G in the following way. A transition

from sA to sF on input of a is included if A → a is a production, and a transition from sA to sB
on input of a is included if A → aB is a production. The set of final states includes sF and also

includes s0 if S → λ is a production in G. It is not hard to show that the language recognized

by M equals the language generated by the grammar G, that is, L(M) = L(G). This can be

done by determining the words that lead to a final state. The details are left as an exercise for

the reader.

Before giving the proof of the converse, we illustrate how a nondeterministic machine is

constructed that recognizes the same set as a regular grammar.

EXAMPLE 4 Construct a nondeterministic finite-state automaton that recognizes the language generated by

the regular grammarG = (V , T , S, P), whereV = {0, 1, A, S},T = {0, 1}, and the productions

in P are S → 1A, S → 0, S → λ, A → 0A, A → 1A, and A → 1.

Solution: The state diagram for a nondeterministic finite-state automaton that recognizes L(G)

is shown in Figure 4. This automaton is constructed following the procedure described in the

proof. In this automaton, s0 is the state corresponding to S, s1 is the state corresponding to A,

and s2 is the final state. ▲

s1

s2

s0
Start

0, 1

1

0

1

FIGURE 4 A

Nondeterministic

Finite-State

Automaton

Recognizing L(G).

s0
Start

1

0

s1

s2

0

1

1

0

FIGURE 5

A Finite-State

Automaton.

We now complete the proof of Theorem 2.

Proof: We now show that if a set is regular, then there is a regular grammar that generates

it. Suppose that M is a finite-state machine that recognizes this set with the property that s0,

the starting state of M , is never the next state for a transition. (We can find such a machine

by Exercise 20.) The grammar G = (V , T , S, P) is defined as follows. The set V of symbols

of G is formed by assigning a symbol to each state of S and each input symbol in I . The

set T of terminal symbols of G is the set I . The start symbol S is the symbol formed

from the start state s0. The set P of productions in G is formed from the transitions in

M . In particular, if the state s goes to a final state under input a, then the production

As → a is included in P , where As is the nonterminal symbol formed from the state s.

If the state s goes to the state t on input a, then the production As → aAt is included

in P . The production S → λ is included in P if and only if λ ∈ L(M). Because the productions

of G correspond to the transitions of M and the productions leading to terminals correspond to

transitions to final states, it is not hard to show that L(G) = L(M). We leave the details as an

exercise for the reader.

Example 5 illustrates the construction used to produce a grammar from an automaton that

generates the language recognized by this automaton.

EXAMPLE 5 Find a regular grammar that generates the regular set recognized by the finite-state automaton

shown in Figure 5.

Solution: The grammar G = (V , T , S, P) generates the set recognized by this automaton where

V = {S,A,B, 0, 1}, the symbols S,A, and B correspond to the states s0, s1, and s2, respec-

tively, T = {0, 1}, S is the start symbol; and the productions are S → 0A, S → 1B, S → 1,

S → λ, A → 0A, A → 1B, A → 1, B → 0A, B → 1B, and B → 1. ▲

13.4 Language Recognition 885

s2s1s0Start sNsi s2N
0 0 0 0 0 0 1 1

0

0

0 0

0

0

si+2 sj–2

si+1 sj–1

FIGURE 6 The Path Produced by 0N1N .

A Set Not Recognized by a Finite-State Automaton

We have seen that a set is recognized by a finite state automaton if and only if it is regular. We

will now show that there are sets that are not regular by describing one such set. The technique

used to show that this set is not regular illustrates an important method for showing that certain

sets are not regular.

EXAMPLE 6 Show that the set {0n1n | n = 0, 1, 2, . . . }, made up of all strings consisting of a block of 0s

followed by a block of an equal number of 1s, is not regular.

Solution: Suppose that this set were regular. Then there would be a nondeterministic finite-state

automaton M = (S, I, f, s0, F) recognizing it. Let N be the number of states in this machine,

that is, N = |S|. Because M recognizes all strings made up of a number of 0s followed by an

equal number of 1s, M must recognize 0N1N . Let s0, s1, s2, . . . , s2N be the sequence of states

that is obtained starting at s0 and using the symbols of 0N1N as input, so that s1 = f (s0, 0),

s2 = f (s1, 0), . . . , sN = f (sN−1, 0), sN+1 = f (sN, 1), . . . , s2N = f (s2N−1, 1). Note that s2N

is a final state.

Because there are only N states, the pigeonhole principle shows that at least two of the

first N + 1 of the states, which are s0, . . . , sN , must be the same. Say that si and sj are two

such identical states, with 0 ≤ i < j ≤ N . This means that f (si, 0t) = sj , where t = j − i. It

follows that there is a loop leading from si back to itself, obtained using the input 0 a total of t

times, in the state diagram shown in Figure 6.

Now consider the input string 0N0t1N = 0N+t1N . There are t more consecutive 0s at the

start of this block than there are consecutive 1s that follow it. Because this string is not of the

form 0n1n (because it has more 0s than 1s), it is not recognized by M . Consequently,

f (s0, 0N+t1N) cannot be a final state. However, when we use the string 0N+t1N as input,

we end up in the same state as before, namely, s2N . The reason for this is that the extra t 0s in

this string take us around the loop from si back to itself an extra time, as shown in Figure 6.

Then the rest of the string leads us to exactly the same state as before. This contradiction shows

that {0n1n | n = 0, 1, 2, . . . } is not regular. ▲

More Powerful Types of Machines

Finite-state automata are unable to carry out many computations. The main limitation of these

machines is their finite amount of memory. This prevents them from recognizing languages that

are not regular, such as {0n1n | n = 0, 1, 2, . . . }. Because a set is regular if and only if it is the

language generated by a regular grammar, Example 6 shows that there is no regular grammar

886 13 / Modeling Computation

that generates the set {0n1n | n = 0, 1, 2, . . . }. However, there is a context-free grammar that

generates this set. Such a grammar was given in Example 5 in Section 13.1.

Because of the limitations of finite-state machines, it is necessary to use other, more pow-

erful, models of computation. One such model is the pushdown automaton. A pushdown

automaton includes everything in a finite-state automaton, as well as a stack, which provides

unlimited memory. Symbols can be placed on the top or taken off the top of the stack. A set is

recognized in one of two ways by a pushdown automaton. First, a set is recognized if the set

consists of all the strings that produce an empty stack when they are used as input. Second, a

set is recognized if it consists of all the strings that lead to a final state when used as input. It

can be shown that a set is recognized by a pushdown automaton if and only if it is the language

generated by a context-free grammar.

However, there are sets that cannot be expressed as the language generated by a context-

free grammar. One such set is {0n1n2n | n = 0, 1, 2, . . . }. We will indicate why this set cannot

be recognized by a pushdown automaton, but we will not give a proof, because we have not

developed the machinery needed. (However, one method of proof is given in Exercise 28 of the

supplementary exercises at the end of this chapter.) The stack can be used to show that a string

begins with a sequence of 0s followed by an equal number of 1s by placing a symbol on the

stack for each 0 (as long as only 0s are read), and removing one of these symbols for each 1 (as

long as only 1s following the 0s are read). But once this is done, the stack is empty, and there

is no way to determine that there are the same number of 2s in the string as 0s.

There are other machines called linear bounded automata, more powerful than push-

down automata, that can recognize sets such as {0n1n2n | n = 0, 1, 2, . . . }. In particular, linear

bounded automata can recognize context-sensitive languages. However, these machines cannot

recognize all the languages generated by phrase-structure grammars. To avoid the limitations

of special types of machines, the model known as a Turing machine, named after the British
Alan Turing invented

Turning machines before

modern computers

existed!

mathematician Alan Turing, is used. A Turing machine is made up of everything included in a

finite-state machine together with a tape, which is infinite in both directions. A Turing machine

has read and write capabilities on the tape, and it can move back and forth along this tape. Tur-

ing machines can recognize all languages generated by phrase-structure grammars. In addition,

Turing machines can model all the computations that can be performed on a computing ma-

chine. Because of their power, Turing machines are extensively studied in theoretical computer

science. We will briefly study them in Section 13.5.

ALAN MATHISON TURING (1912–1954) Alan Turing was born in London, although he was conceived in
India, where his father was employed in the Indian Civil Service. As a boy, he was fascinated by chemistry,
performing a wide variety of experiments, and by machinery. Turing attended Sherborne, an English boarding
school. In 1931 he won a scholarship to King’s College, Cambridge. After completing his dissertation, which
included a rediscovery of the central limit theorem, a famous theorem in statistics, he was elected a fellow of
his college. In 1935 Turing became fascinated with the decision problem, a problem posed by the great German
mathematician Hilbert, which asked whether there is a general method that can be applied to any assertion to
determine whether the assertion is true. Turing enjoyed running (later in life running as a serious amateur in
competitions), and one day, while resting after a run, he discovered the key ideas needed to solve the decision

problem. In his solution, he invented what is now called a Turing machine as the most general model of a computing machine.
Using these machines, he found a problem, involving what he called computable numbers, that could not be decided using a general
method.

From 1936 to 1938 Turing visited Princeton University to work with Alonzo Church, who had also solved Hilbert’s decision
problem. In 1939 Turing returned to King’s College. However, at the outbreak of World War II, he joined the Foreign Office,
performing cryptanalysis of German ciphers. His contribution to the breaking of the code of the Enigma, a mechanical German
cipher machine, played an important role in winning the war.

After the war, Turing worked on the development of early computers. He was interested in the ability of machines to think,
proposing that if a computer could not be distinguished from a person based on written replies to questions, it should be considered
to be “thinking.” He was also interested in biology, having written on morphogenesis, the development of form in organisms. In 1954
Turing committed suicide by taking cyanide, without leaving a clear explanation. Legal troubles related to a homosexual relationship
and hormonal treatments mandated by the court to lessen his sex drive may have been factors in his decision to end his life.

13.4 Language Recognition 887

Exercises

1. Describe in words the strings in each of these regular sets.

a) 1∗0 b) 1*00*

c) 111 ∪ 001 d) (1 ∪ 00)∗

e) (00∗1)∗ f) (0 ∪ 1)(0 ∪ 1)∗00

2. Describe in words the strings in each of these regular sets.

a) 001∗ b) (01)*

c) 01 ∪ 001∗ d) 0(11 ∪ 0)∗

e) (101∗)∗ f) (0∗∪1)11

3. Determine whether 0101 belongs to each of these regular

sets.

a) 01∗0∗ b) 0(11)∗(01)∗

c) 0(10)∗1∗ d) 0∗10(0 ∪ 1)

e) (01)∗(11)∗ f) 0∗(10 ∪ 11)∗

g) 0∗(10)∗11 h) 01(01 ∪ 0)1∗

4. Determine whether 1011 belongs to each of these regular

sets.

a) 10∗1∗ b) 0∗(10 ∪ 11)∗

c) 1(01)∗1∗ d) 1∗01(0 ∪ 1)

e) (10)∗(11)∗ f) 1(00)∗(11)∗

g) (10)∗1011 h) (1 ∪ 00)(01 ∪ 0)1∗

5. Express each of these sets using a regular expression.

a) the set consisting of the strings 0, 11, and 010

b) the set of strings of three 0s followed by two or

more 0s

c) the set of strings of odd length

d) the set of strings that contain exactly one 1

e) the set of strings ending in 1 and not containing 000

6. Express each of these sets using a regular expression.

a) the set containing all strings with zero, one, or two

bits

b) the set of strings of two 0s, followed by zero or

more 1s, and ending with a 0

c) the set of strings with every 1 followed by two 0s

d) the set of strings ending in 00 and not containing 11

e) the set of strings containing an even number of 1s

7. Express each of these sets using a regular expression.

a) the set of strings of one or more 0s followed by a 1

b) the set of strings of two or more symbols followed by

three or more 0s

c) the set of strings with either no 1 preceding a 0 or

no 0 preceding a 1

d) the set of strings containing a string of 1s such that

the number of 1s equals 2 modulo 3, followed by an

even number of 0s

8. Construct deterministic finite-state automata that recog-

nize each of these sets from I∗, where I is an alphabet.

a) ∅ b) {λ} c) {a}, where a ∈ I

9. Construct nondeterministic finite-state automata that rec-

ognize each of the sets in Exercise 8.

10. Construct nondeterministic finite-state automata that rec-

ognize each of these sets.

a) {λ, 0} b) {0, 11} c) {0, 11, 000}

∗11. Show that if A is a regular set, then AR , the set of all

reversals of strings in A, is also regular.

12. Using the constructions described in the proof of Kleene’s

theorem, find nondeterministic finite-state automata that

recognize each of these sets.

a) 01∗ b) (0 ∪ 1)1∗ c) 00(1∗ ∪ 10)

13. Using the constructions described in the proof of Kleene’s

theorem, find nondeterministic finite-state automata that

recognize each of these sets.

a) 0∗1∗ b) (0 ∪ 11)∗ c) 01∗ ∪ 00∗1

14. Construct a nondeterministic finite-state automaton that

recognizes the language generated by the regular gram-

mar G = (V , T , S, P), where V = {0, 1, S,A,B}, T =

{0, 1}, S is the start symbol, and the set of productions is

a) S → 0A, S → 1B, A → 0, B → 0.

b) S → 1A, S → 0, S → λ, A → 0B, B → 1B,

B → 1.

c) S → 1B, S → 0, A → 1A, A → 0B, A → 1,

A → 0, B → 1.

In Exercises 15–17 construct a regular grammar G =

(V , T , S, P) that generates the language recognized by the

given finite-state machine.

15.
s0

Start
s1

0 s2
0, 1

0, 1

1

16.
s1

s2

s0

1

0

1

0

0

1
Start

17.
s0

Start

s2

s1

s3

1

0

1

0, 1

1

0

0

18. Show that the finite-state automaton constructed from a

regular grammar in the proof of Theorem 2 recognizes

the set generated by this grammar.

19. Show that the regular grammar constructed from a finite-

state automaton in the proof of Theorem 2 generates the

set recognized by this automaton.

888 13 / Modeling Computation

20. Show that every nondeterministic finite-state automaton

is equivalent to another such automaton that has the prop-

erty that its starting state is never revisited.
∗21. Let M = (S, I, f, s0, F) be a deterministic finite-state

automaton. Show that the language recognized by

M,L(M), is infinite if and only if there is a word x rec-

ognized by M with l(x) ≥ |S|.
∗22. One important technique used to prove that certain sets are

not regular is the pumping lemma. The pumping lemma

states that ifM = (S, I, f, s0, F) is a deterministic finite-

state automaton and if x is a string in L(M), the language

recognized by M , with l(x) ≥ |S|, then there are strings

u, v, and w in I ∗ such that x = uvw, l(uv) ≤ |S| and

l(v) ≥ 1, and uviw ∈ L(M) for i = 0, 1, 2, Prove

the pumping lemma. [Hint: Use the same idea as was

used in Example 5.]
∗23. Show that the set {02n1n | n = 0, 1, 2, . . .} is not regular

using the pumping lemma given in Exercise 22.

∗24. Show that the set {1n
2

| n = 0, 1, 2, . . . } is not regular

using the pumping lemma from Exercise 22.
∗25. Show that the set of palindromes over {0, 1} is not reg-

ular using the pumping lemma given in Exercise 22.

[Hint: Consider strings of the form 0N10N .]
∗∗26. Show that a set recognized by a finite-state automaton is

regular. (This is the if part of Kleene’s theorem.)

Suppose that L is a subset of I ∗, where I is a nonempty set of

symbols. If x ∈ I ∗, we let L/x = {z ∈ I ∗ | xz ∈ L}. We say

that the strings x ∈ I∗ and y ∈ I ∗ are distinguishable with

respect to L if L/x = L/y. A string z for which xz ∈ L but

yz /∈ L, or xz /∈ L, but yz ∈ L is said to distinguish x and y

with respect to L. When L/x = L/y, we say that x and y are

indistinguishable with respect to L.

27. Let L be the set of all bit strings that end with 01. Show

that 11 and 10 are distinguishable with respect to L and

that the strings 1 and 11 are indistinguishable with respect

to L.

28. Suppose that M = (S, I, f, s0, F) is a deterministic

finite-state machine. Show that if x and y are two strings

in I∗ that are distinguishable with respect to L(M), then

f (s0, x) = f (s0, y).

∗29. Suppose that L is a subset of I ∗ and for some positive

integer n there are n strings in I ∗ such that every two of

these strings are distinguishable with respect to L. Prove

that every deterministic finite-state automaton recogniz-

ing L has at least n states.

∗30. LetLn be the set of strings with at least n bits in which the

nth symbol from the end is a 0. Use Exercise 29 to show

that a deterministic finite-state machine recognizing Ln

must have at least 2n states.

∗31. Use Exercise 29 to show that the language consisting of

all bit strings that are palindromes (that is, strings that

equal their own reversals) is not regular.

13.5 Turing Machines

Introduction

The finite-state automata studied earlier in this chapter cannot be used as general models of

computation. They are limited in what they can do. For example, finite-state automata are able

to recognize regular sets, but are not able to recognize many easy-to-describe sets, including

{0n1n | n ≥ 0}, which computers recognize using memory. We can use finite-state automata to

compute relatively simple functions such as the sum of two numbers, but we cannot use them to

compute functions that computers can, such as the product of two numbers. To overcome these

deficiencies we can use a more powerful type of machine known as a Turing machine, after Alan

Turing, the famous mathematician and computer scientist who invented them in the 1930s.

Basically, a Turing machine consists of a control unit, which at any step is in one of finitely

many different states, together with a tape divided into cells, which is infinite in both directions.

Turing machines have read and write capabilities on the tape as the control unit moves back and

forth along this tape, changing states depending on the tape symbol read. Turing machines are

more powerful than finite-state machines because they include memory capabilities that finite-

state machines lack. We will show how to use Turing machines to recognize sets, including

sets that cannot be recognized by finite-state machines. We will also show how to compute
“Machines take me by

surprise with great

frequency” – Alan Turing

functions using Turing machines. Turing machines are the most general models of computation;

essentially, they can do whatever a computer can do. Note that Turing machines are much more

powerful than real computers, which have finite memory capabilities.

13.5 Turing Machines 889

B 1 0B 1 0 1 B 1 B

Tape is infinite in both directions.

Only finitely many nonblank cells at any time.

s4

B

s0

s3 s2

s1

Read/Write Head

Control

Unit

FIGURE 1 A Representation of a Turing Machine.

Definition of Turing Machines

We now give the formal definition of a Turing machine. Afterward we will explain how this

formal definition can be interpreted in terms of a control head that can read and write symbols

on a tape and move either right or left along the tape.

DEFINITION 1 A Turing machine T = (S, I, f, s0) consists of a finite set S of states, an alphabet I containing

the blank symbolB, a partial function f from S × I to S × I × {R,L}, and a starting state s0.

Recall from Section 2.3 that a partial function is defined only for those elements in its domain

of definition. This means that for some (state, symbol) pairs the partial function f may be

undefined, but for a pair for which it is defined, there is a unique (state, symbol, direction)

triple associated to this pair. We call the five-tuples corresponding to the partial function in the

definition of a Turing machine the transition rules of the machine.

To interpret this definition in terms of a machine, consider a control unit and a tape divided

into cells, infinite in both directions, having only a finite number of nonblank symbols on it at

any given time, as pictured in Figure 1. The action of the Turing machine at each step of its

operation depends on the value of the partial function f for the current state and tape symbol.

At each step, the control unit reads the current tape symbol x. If the control unit is in state s

and if the partial function f is defined for the pair (s, x) with f (s, x) = (s , x , d), the control

unit

1. enters the state s ,

2. writes the symbol x in the current cell, erasing x, and

3. moves right one cell if d = R or moves left one cell if d = L.

We write this step as the five-tuple (s, x, s , x , d). If the partial function f is undefined for the

pair (s, x), then the Turing machine T will halt.

A common way to define a Turing machine is to specify a set of five-tuples of the form

(s, x, s , x , d). The set of states and input alphabet is implicitly defined when such a definition

is used.

At the beginning of its operation a Turing machine is assumed to be in the initial state s0

and to be positioned over the leftmost nonblank symbol on the tape. If the tape is all blank, the

control head can be positioned over any cell. We will call the positioning of the control head

over the leftmost nonblank tape symbol the initial position of the machine.

Example 1 illustrates how a Turing machine works.

EXAMPLE 1 What is the final tape when the Turing machine T defined by the seven five-

tuples (s0, 0, s0, 0, R), (s0, 1, s1, 1, R), (s0, B, s3, B,R), (s1, 0, s0, 0, R), (s1, 1, s2, 0, L)

(s1, B, s3, B,R), and (s2, 1, s3, 0, R) is run on the tape shown in Figure 2(a)?

890 13 / Modeling Computation

B 0 0B 1 0 0 0 B B

Machine Halts

Initial Position

B 0 0B 1 0 1 1 B B

s0(a)

B 0 0B 1 0 1 1 B B

(b)

B 0 0B 1 0 1 1 B B

s1(c)

B 0 0B 1 0 1 1 B B

(d)

B 0 0B 1 0 1 1 B B

(e)

B 0 0B 1 0 1 0 B B

(f)

s3

s2

s1

s0

s0

(g)

FIGURE 2 The Steps Produced by Running T on the Tape in Figure 1.

Solution: We start the operation with T in state s0 and with T positioned over the leftmost

nonblank symbol on the tape. The first step, using the five-tuple (s0, 0, s0, 0, R), reads the 0 in

the leftmost nonblank cell, stays in state s0, writes a 0 in this cell, and moves one cell right.

The second step, using the five-tuple (s0, 1, s1, 1, R), reads the 1 in the current cell, enters

state s1, writes a 1 in this cell, and moves one cell right. The third step, using the five-tuple

(s1, 0, s0, 0, R), reads the 0 in the current cell, enters state s0, writes a 0 in this cell, and moves

one cell right. The fourth step, using the five-tuple (s0, 1, s1, 1, R), reads the 1 in the current

cell, enters state s1, writes a 1 in this cell, and moves right one cell. The fifth step, using the

five-tuple (s1, 1, s2, 0, L), reads the 1 in the current cell, enters state s2, writes a 0 in this cell,

and moves left one cell. The sixth step, using the five-tuple (s2, 1, s3, 0, R), reads the 1 in the

current cell, enters the state s3, writes a 0 in this cell, and moves right one cell. Finally, in the

seventh step, the machine halts because there is no five-tuple beginning with the pair (s3, 0) in

the description of the machine. The steps are shown in Figure 2.

Note that T changes the first pair of consecutive 1s on the tape to 0s and then halts. ▲

13.5 Turing Machines 891

Using Turing Machines to Recognize Sets

Turing machines can be used to recognize sets. To do so requires that we define the concept of

a final state as follows. A final state of a Turing machine T is a state that is not the first state in

any five-tuple in the description of T using five-tuples (for example, state s3 in Example 1).

We can now define what it means for a Turing machine to recognize a string. Given a string,

we write consecutive symbols in this string in consecutive cells.

DEFINITION 2 Let V be a subset of an alphabet I . A Turing machine T = (S, I, f, s0) recognizes a string x

in V ∗ if and only if T , starting in the initial position when x is written on the tape, halts in

a final state. T is said to recognize a subset A of V ∗ if x is recognized by T if and only if x

belongs to A.

Note that to recognize a subset A of V ∗ we can use symbols not in V . This means that the input

alphabet I may include symbols not in V . These extra symbols are often used as markers (see

Example 3).

When does a Turing machine T not recognize a string x in V ∗? The answer is that x is

not recognized if T does not halt or halts in a state that is not final when it operates on a tape

containing the symbols of x in consecutive cells, starting in the initial position. (The reader

should understand that this is one of many possible ways to define how to recognize sets using

Turing machines.)

We illustrate this concept with Example 2.

EXAMPLE 2 Find a Turing machine that recognizes the set of bit strings that have a 1 as their second bit, that

is, the regular set (0 ∪ 1)1(0 ∪ 1)∗.

Solution: We want a Turing machine that, starting at the leftmost nonblank tape cell, moves

right, and determines whether the second symbol is a 1. If the second symbol is 1, the machine

should move into a final state. If the second symbol is not a 1, the machine should not halt or it

should halt in a nonfinal state.

To construct such a machine, we include the five-tuples (s0, 0, s1, 0, R) and (s0, 1, s1, 1, R)

to read in the first symbol and put the Turing machine in state s1. Next, we include the five-tuples

(s1, 0, s2, 0, R) and (s1, 1, s3, 1, R) to read in the second symbol and either move to state s2 if

this symbol is a 0, or to state s3 if this symbol is a 1. We do not want to recognize strings that

have a 0 as their second bit, so s2 should not be a final state. We want s3 to be a final state. So, we

can include the five-tuple (s2, 0, s2, 0, R). Because we do not want to recognize the empty string

or a string with one bit, we also include the five-tuples (s0, B, s2, 0, R) and (s1, B, s2, 0, R).

The Turing machine T consisting of the seven five-tuples listed here will terminate in the

final state s3 if and only if the bit string has at least two bits and the second bit of the input string

is a 1. If the bit string contains fewer than two bits or if the second bit is not a 1, the machine

will terminate in the nonfinal state s2. ▲

Given a regular set, a Turing machine that always moves to the right can be built to recognize

this set (as in Example 2). To build the Turing machine, first find a finite-state automaton that

recognizes the set and then construct a Turing machine using the transition function of the

finite-state machine, always moving to the right.

We will now show how to build a Turing machine that recognizes a nonregular set.

EXAMPLE 3 Find a Turing machine that recognizes the set {0n1n | n ≥ 1}.

Solution: To build such a machine, we will use an auxiliary tape symbol M as a marker. We have

V = {0, 1} and I = {0, 1,M}. We wish to recognize only a subset of strings in V ∗. We will

have one final state, s6. The Turing machine successively replaces a 0 at the leftmost position of

892 13 / Modeling Computation

the string with an M and a 1 at the rightmost position of the string with an M , sweeping back

and forth, terminating in a final state if and only if the string consists of a block of 0s followed

by a block of the same number of 1s.

Although this is easy to describe and is easily carried out by a Turing machine, the machine

we need to use is somewhat complicated. We use the marker M to keep track of the leftmost

and rightmost symbols we have already examined. The five-tuples we use are (s0, 0, s1,M,R),

(s1, 0, s1, 0, R), (s1, 1, s1, 1, R), (s1,M, s2,M,L), (s1, B, s2, B, L), (s2, 1, s3,M,L),

(s3, 1, s3, 1, L), (s3, 0, s4, 0, L), (s3,M, s5,M,R), (s4, 0, s4, 0, L), (s4,M, s0,M,R), and

(s5,M, s6,M,R). For example, the string 000111 would successively become M00111,

M0011M , MM011M , MM01MM , MMM1MM , MMMMMM as the machine operates

until it halts. Only the changes are shown, as most steps leave the string unaltered.

We leave it to the reader (Exercise 13) to explain the actions of this Turing machine and to

explain why it recognizes the set {0n1n | n ≥ 1}. ▲

It can be shown that a set can be recognized by a Turing machine if and only if it can be

generated by a type 0 grammar, or in other words, if the set is generated by a phrase-structure

grammar. The proof will not be presented here.

Computing Functions with Turing Machines

A Turing machine can be thought of as a computer that finds the values of a partial function.

To see this, suppose that the Turing machine T , when given the string x as input, halts with

the string y on its tape. We can then define T (x) = y. The domain of T is the set of strings

for which T halts; T (x) is undefined if T does not halt when given x as input. Thinking of a

Turing machine as a machine that computes the values of a function on strings is useful, but

how can we use Turing machines to compute functions defined on integers, on pairs of integers,

on triples of integers, and so on?

To consider a Turing machine as a computer of functions from the set of k-tuples of non-

negative integers to the set of nonnegative integers (such functions are called number-theoretic

functions), we need a way to represent k-tuples of integers on a tape. To do so, we use unary rep-

resentations of integers. We represent the nonnegative integer n by a string of n + 1 1s so that,

for instance, 0 is represented by the string 1 and 5 is represented by the string 111111. To repre-

sent the k-tuple (n1, n2, . . . , nk), we use a string of n1 + 1 1s, followed by an asterisk, followed

by a string of n2 + 1 1s, followed by an asterisk, and so on, ending with a string of nk + 1 1s.

For example, to represent the four-tuple (2, 0, 1, 3) we use the string111 ∗ 1 ∗ 11 ∗ 1111.

We can now consider a Turing machine T as computing a sequence of number-theoretic

functions T , T 2, . . . , T k, The function T k is defined by the action of T on k-tuples of

integers represented by unary representations of integers separated by asterisks.

EXAMPLE 4 Construct a Turing machine for adding two nonnegative integers.

Solution: We need to build a Turing machine T that computes the function f (n1, n2) = n1 + n2.

The pair (n1, n2) is represented by a string of n1 + 1 1s followed by an asterisk followed

by n2 + 1 1s. The machine T should take this as input and produce as output a tape with

n1 + n2 + 1 1s. One way to do this is as follows. The machine starts at the leftmost 1 of the

input string, and carries out steps to erase this 1, halting if n1 = 0 so that there are no more 1s

before the asterisk, replaces the asterisk with the leftmost remaining 1, and then halts. We can use

these five-tuples to do this: (s0, 1, s1, B,R), (s1, ∗, s3, B,R), (s1, 1, s2, B,R), (s2, 1, s2, 1, R),

and (s2, ∗, s3, 1, R). ▲

Unfortunately, constructing Turing machines to compute relatively simple functions can

be extremely demanding. For example, one Turing machine for multiplying two nonnegative

integers found in many books has 31 five-tuples and 11 states. If it is challenging to construct

Turing machines to compute even relatively simple functions, what hope do we have of building

13.5 Turing Machines 893

Turing machines for more complicated functions? One way to simplify this problem is to use a

multitape Turing machine that uses more than one tape simultaneously and to build up multitape

Turing machines for the composition of functions. It can be shown that for any multitape Turing

machine there is a one-tape Turing machine that can do the same thing.

Different Types of Turing Machines

There are many variations on the definition of a Turing machine. We can expand the capabilities

of a Turing machine in a wide variety of ways. For example, we can allow a Turing machine to

move right, left, or not at all at each step. We can allow a Turing machine to operate on multiple

tapes, using (2 + 3n)-tuples to describe the Turing machine when n tapes are used. We can allow

the tape to be two-dimensional, where at each step we move up, down, right, or left, not just right

or left as we do on a one-dimensional tape. We can allow multiple tape heads that read different

cells simultaneously. Furthermore, we can allow a Turing machine to be nondeterministic, by

allowing a (state, tape symbol) pair to possibly appear as the first elements in more than one

five-tuple of the Turing machine. We can also reduce the capabilities of a Turing machine in

different ways. For example, we can restrict the tape to be infinite in only one dimension or we

can restrict the tape alphabet to have only two symbols. All these variations of Turing machines

have been studied in detail.

The crucial point is that no matter which of these variations we use, or even which combi-

nation of variations we use, we never increase or decrease the power of the machine. Anything

that one of these variations can do can be done by the Turing machine defined in this section,

and vice versa. The reason that these variations are useful is that sometimes they make doing

some particular job much easier than if the Turing machine defined in Definition 1 were used.

They never extend the capability of the machine. Sometimes it is useful to have a wide variety

of Turing machines with which to work. For example, one way to show that for every nonde-

terministic Turing machine, there is a deterministic Turing machine that recognizes the same

language is to use a deterministic Turing machine with three taps. (For details on variations of

Turing machines and demonstrations of their equivalence, see [HoMoUl01].)

Besides introducing the notion of a Turing machine, Turing also showed that it is possible to

construct a single Turing machine that can simulate the computations of every Turing machine

when given an encoding of this target Turing machine and its input. Such a machine is called a

universal Turing machine. (See a book on the theory of computation, such as [Si06], for more

about universal Turing machines.)

The Church–Turing Thesis

Turing machines are relatively simple. They can have only finitely many states and they can

read and write only one symbol at a time on a one-dimensional tape. But it turns out that Turing

machines are extremely powerful.We have seen that Turing machines can be built to add numbers

and to multiply numbers. Although it may be difficult to actually construct a Turing machine to

compute a particular function that can be computed with an algorithm, such a Turing machine

can always be found. This was the original goal of Turing when he invented his machines.

Furthermore, there is a tremendous amount of evidence for the Church–Turing thesis, which

states that given any problem that can be solved with an effective algorithm, there is a Turing

machine that can solve this problem. The reason this is called a thesis rather than a theorem is that

the concept of solvability by an effective algorithm is informal and imprecise, as opposed to the

notion of solvability by a Turing machine, which is formal and precise. Certainly, though, any

problem that can be solved using a computer with a program written in any language, perhaps

using an unlimited amount of memory, should be considered effectively solvable. (Note that

Turing machines have unlimited memory, unlike computers in the real world, which have only

a finite amount of memory.)

894 13 / Modeling Computation

Many different formal theories have been developed to capture the notion of effective

computability. These include Turing’s theory and Church’s lambda-calculus, as well as theories

proposed by Stephen Kleene and by E. L. Post. These theories seem quite different on the surface.

The surprising thing is that they can be shown to be equivalent by demonstrating that they define

exactly the same class of functions. With this evidence, it seems that Turing’s original ideas,

formulated before the invention of modern computers, describe the ultimate capabilities of these

machines. The interested reader should consult books on the theory of computation, such as

[HoMoUl01] and [Si96], for a discussion of these different theories and their equivalence.

For the remainder of this section we will briefly explore some of the consequences of the

Church–Turing thesis and we will describe the importance of Turing machines in the study of the

complexity of algorithms. Our goal will be to introduce some important ideas from theoretical

computer science to entice the interested student to further study. We will cover a lot of ground

quickly without providing explicit details. Our discussion will also tie together some of the

concepts discussed in previous parts of the book with the theory of computation.

Computational Complexity, Computability, and Decidability

Throughout this book we have discussed the computational complexity of a wide variety of

problems. We described the complexity of these problems in terms of the number of operations

used by the most efficient algorithms that solve them. The basic operations used by algorithms

differ considerably; we have measured the complexity of different algorithms in terms of bit

operations, comparisons of integers, arithmetic operations, and so on. In Section 3.3, we defined

various classes of problems in terms of their computational complexity. However, these defini-

tions were not precise, because the types of operations used to measure their complexity vary so

drastically. Turing machines provide a way to make the concept of computational complexity

precise. If the Church–Turing thesis is true, it would then follow that if a problem can be solved

using an effective algorithm, then there is a Turing machine that can solve this problem. When

a Turing machine is used to solve a problem, the input to the problem is encoded as a string

of symbols that is written on the tape of this Turing machine. How we encode input depends

on the domain of this input. For example, as we have seen, we can encode a positive integer

using a string of 1s. We can also devise ways to express pairs of integers, negative integers, and

so on. Similarly, for graph algorithms, we need a way to encode graphs as strings of symbols.

This can be done in many ways and can be based on adjacency lists or adjacency matrices.

(We omit the details of how this is done.) However, the way input is encoded does not matter

as long as it is relatively efficient, as a Turing machine can always change one encoding into

another encoding. We will now use this model to make precise some of the notions concerning

computational complexity that were informally introduced in Section 3.3.

The kind of problems that are most easily studied by using Turing machines are those

problems that can be answered either by a “yes” or by a “no.”

DEFINITION 3 A decision problem asks whether statements from a particular class of statements are true.

Decision problems are also known as yes-or-no problems.

Given a decision problem, we would like to know whether there is an algorithm that can

determine whether statements from the class of statements it addresses are true. For example,

consider the class of statements each of which asks whether a particular integer n is prime.

This is a decision problem because the answer to the question “Is n prime?” is either yes or no.

Given this decision problem, we can ask whether there is an algorithm that can decide whether

each of the statements in the decision problem is true, that is, given an integer n, deciding

whether n is prime. The answer is that there is such an algorithm. In particular, in Section 3.5

we discussed the algorithm that determines whether a positive integer n is prime by checking

whether it is divisible by primes not exceeding its square root. (There are many other algorithms

for determining whether a positive integer is prime.) The set of inputs for which the answer to

13.5 Turing Machines 895

the yes–no problem is “yes” is a subset of the set of possible inputs, that is, it is a subset of the

set of strings of the input alphabet. In other words, solving a yes–no problem is the same as

recognizing the language consisting of all bit strings that represent input values to the problem

leading to the answer “yes.” Consequently, solving a yes–no problem is the same as recognizing

the language corresponding to the input values for which the answer to the problem is “yes.”

DECIDABILITY When there is an effective algorithm that decides whether instances of a

decision problem are true, we say that this problem is solvable or decidable. For instance, the

problem of determining whether a positive integer is prime is a solvable problem. However, if no

effective algorithm exists for solving a problem, then we say the problem is unsolvable or un-

decidable. To show that a decision problem is solvable we need only construct an algorithm that

can determine whether statements of the particular class are true. On the other hand, to show

that a decision problem is unsolvable we need to prove that no such algorithm exists. (The fact

that we tried to find such an algorithm but failed, does not prove the problem is unsolvable.)

By studying only decision problems, it may seem that we are studying only a small set of

problems of interest. However, most problems can be recast as decision problems. Recasting the

types of problems we have studied in this book as decision problems can be quite complicated,

so we will not go into the details of this process here. The interested reader can consult references

on the theory of computation, such as [Wo87], which, for example, explains how to recast the

traveling salesperson problem (described in Section 9.6) as a decision problem. (To recast the

traveling salesman problem as a decision problem, we first consider the decision problem that

asks whether there is a Hamilton circuit of weight not exceeding k, where k is a positive integer.

With some additional effort it is possible to use answers to this question for different values

of k to find the smallest possible weight of a Hamilton circuit.)

In Section 3.1 we introduced the halting problem and proved that it is an unsolvable problem.

That discussion was somewhat informal because the notion of a procedure was not precisely

defined. A precise definition of the halting problem can be made in terms of Turing machines.

DEFINITION 4 The halting problem is the decision problem that asks whether a Turing machine T eventually

halts when given an input string x.

With this definition of the halting problem, we have Theorem 1.

THEOREM 1 The halting problem is an unsolvable decision problem. That is, no Turing machine exists

that, when given an encoding of a Turing machine T and its input string x as input, can

determine whether T eventually halts when started with x written on its tape.

The proof of Theorem 1 given in Section 3.1 for the informal definition of the halting problem

still applies here.

Other examples of unsolvable problems include:

(i) the problem of determining whether two context-free grammars generate the same set

of strings;

(ii) the problem of determining whether a given set of tiles can be used with repetition

allowed to cover the entire plane without overlap; and

(iii) Hilbert’s Tenth Problem, which asks whether there are integer solutions to a given

polynomial equation with integer coefficients. (This question occurs tenth on the famous

list of 23 problems Hilbert posed in 1900. Hilbert envisioned that the work done to

solve these problems would help further the progress of mathematics in the twentieth

century. The unsolvability of Hilbert’s Tenth Problem was established in 1970 by Yuri

Matiyasevich.)

896 13 / Modeling Computation

COMPUTABILITY A function that can be computed by a Turing machine is called com-

putable and a function that cannot be computed by a Turing machine is called uncomputable.

It is fairly straightforward, using a countability argument, to show that there are number-theoretic

functions that are not computable (see Exercise 39 in Section 2.5). However, it is not so easy

to actually produce such a function. The busy beaver function defined in the preamble to Ex-

ercise 31 is an example of an uncomputable function. One way to show that the busy beaver

function is not computable is to show that it grows faster than any computable function. (See

Exercise 32.)

Note that every decision problem can be reformulated as the problem of computing a

function, namely, the function that has the value 1 when the answer to the problem is “yes” and

that has the value 0 when the answer to the problem is “no.” A decision problem is solvable if

and only if the corresponding function constructed in this way is computable.

THECLASSESPANDNP In Section 3.3 we informally defined the classes of problems called

P and NP. We are now able to define these concepts precisely using the notions of deterministic

and nondeterministic Turing machines.

We first elaborate on the difference between a deterministic Turing machine and a nonde-

terministic Turing machine. The Turing machines we have studied in this section have all been

deterministic. In a deterministic Turing machine T = (S, I, f, s0), transition rules are defined

by the partial function f from S × I to S × I × {R,L}. Consequently, when transition rules

of the machine are represented as five-tuples of the form (s, x, s , x , d), where s is the current

state, x is the current tape symbol, s is the next state, x is the symbol that replaces x on the

tape, and d is the direction the machine moves on the tape, no two transition rules begin with

the same pair (s, x).

In a nondeterministic Turing machine, allowed steps are defined using a relation consisting

of five-tuples rather than using a partial function. The restriction that no two transition rules

begin with the same pair (s, x) is eliminated; that is, there may be more than one transition

rule beginning with each (state, tape symbol) pair. Consequently, in a nondeterministic Turing

machine, there is a choice of transitions for some pairs of the current state and the tape symbol

being read. At each step of the operation of a nondeterministic Turing machine, the machine

picks one of the different choices of the transition rules that begin with the current state and

tape symbol pair. This choice can be considered to be a “guess” of which step to use. Just

as for deterministic Turing machines, a nondeterministic Turing machine halts when there is

no transition rule in its definition that begins with the current state and tape symbol. Given

a nondeterministic Turing machine T , we say that a string x is recognized by T if and only

if there exists some sequence of transitions of T that ends in a final state when the machine

starts in the initial position with x written on the tape. The nondeterministic Turing machine T

recognizes the set A if x is recognized by T if and only if x ∈ A. The nondeterministic Turing

machine T is said to solve a decision problem if it recognizes the set consisting of all input

values for which the answer to the decision problem is yes.

DEFINITION 5 A decision problem is in P, the class of polynomial-time problems, if it can be solved by a

deterministic Turing machine in polynomial time in terms of the size of its input. That is, a

decision problem is in P if there is a deterministic Turing machine T that solves the decision

problem and a polynomial p(n) such that for all integers n, T halts in a final state after no

more than p(n) transitions whenever the input to T is a string of length n. A decision problem

is in NP, the class of nondeterministic polynomial-time problems, if it can be solved by a

nondeterministic Turing machine in polynomial time in terms of the size of its input. That

is, a decision problem is in NP if there is a nondeterministic Turing machine T that solves

the problem and a polynomial p(n) such that for all integers n, T halts for every choice of

transitions after no more than p(n) transitions whenever the input to T is a string of length n.

13.5 Turing Machines 897

Problems in P are called tractable, whereas problems not in P are called intractable. For

a problem to be in P, a deterministic Turing machine must exist that can decide in polynomial

time whether a particular statement of the class addressed by the decision problem is true. For

example, determining whether an item is in a list of n elements is a tractable problem. (We

will not provide details on how this fact can be shown; the basic ideas used in the analyses

of algorithms earlier in the text can be adapted when Turing machines are employed.) For a

problem to be in NP, it is necessary only that there be a nondeterministic Turing machine that,

when given a true statement from the set of statements addressed by the problem, can verify its

truth in polynomial time by making the correct guess at each step from the set of allowable steps

corresponding to the current state and tape symbol. The problem of determining whether a given

graph has a Hamilton circuit is an NP problem, because a nondeterministic Turing machine can

easily verify that a simple circuit in a graph passes through each vertex exactly once. It can

do this by making a series of correct guesses corresponding to successively adding edges to

form the circuit. Because every deterministic Turing machine can also be considered to be a

nondeterministic Turing machine where each (state, tape symbol) pair occurs in exactly one

transition rule defining the machine, every problem in P is also in NP. In symbols, P ⊆ NP.

One of the most perplexing open questions in theoretical computer science is whether every

problem in NP is also in P, that is, whether P = NP. As mentioned in Section 3.3, there is an

important class of problems, the class of NP-complete problems, such that a problem is in this

class if it is in the class NP and if it can be shown that if it is also in the class P, then every problem

in the class NP must also be in the class P. That is, a problem is NP-complete if the existence of

a polynomial-time algorithm for solving it implies the existence of a polynomial-time algorithm

for every problem in NP. In this book we have discussed several different NP-complete problems,

such as determining whether a simple graph has a Hamilton circuit and determining whether a

proposition in n-variables is a tautology.

Exercises

1. Let T be the Turing machine defined by the five-

tuples: (s0, 0, s1, 1, R), (s0, 1, s1, 0, R), (s0, B, s1, 0, R),

(s1, 0, s2, 1, L), (s1, 1, s1, 0, R), and (s1, B, s2, 0, L).

For each of these initial tapes, determine the final

tape when T halts, assuming that T begins in initial

position.

a) · · · B B 0 0 1 1 B B · · ·

b) · · · B B 1 0 1 B B B · · ·

c) · · · B B 1 1 B 0 1 B · · ·

d) · · · B B B B B B B B · · ·

2. Let T be the Turing machine defined by the five-

tuples: (s0, 0, s1, 0, R), (s0, 1, s1, 0, L), (s0, B, s1, 1, R),

(s1, 0, s2, 1, R), (s1, 1, s1, 1, R), (s1, B, s2, 0, R), and

(s2, B, s3, 0, R). For each of these initial tapes, deter-

mine the final tape when T halts, assuming that T begins

in initial position.

a) · · · B B 0 1 0 1 B B · · ·

b) · · · B B 1 1 1 B B B · · ·

c) · · · B B 0 0 B 0 0 B · · ·

d) · · · B B B B B B B B · · ·

ALONZO CHURCH (1903–1995) Alonzo Church was born in Washington, D.C. He studied at Göttingen
under Hilbert and later in Amsterdam. He was a member of the faculty at Princeton University from 1927 until
1967 when he moved to UCLA. Church was one of the founding members of the Association for Symbolic
Logic. He made many substantial contributions to the theory of computability, including his solution to the
decision problem, his invention of the lambda-calculus, and, of course, his statement of what is now known
as the Church–Turing thesis. Among Church’s students were Stephen Kleene and Alan Turing. He published
articles past his 90th birthday.

898 13 / Modeling Computation

3. What does the Turing machine described by the five-

tuples (s0, 0, s0, 0, R), (s0, 1, s1, 0, R), (s0, B, s2, B,R),

(s1, 0, s1, 0, R), (s1, 1, s0, 1, R), and (s1, B, s2, B,R) do

when given

a) 11 as input?

b) an arbitrary bit string as input?

4. What does the Turing machine described by the five-

tuples (s0, 0, s0, 1, R), (s0, 1, s0, 1, R), (s0, B, s1, B, L),

(s1, 1, s2, 1, R), do when given

a) 101 as input?

b) an arbitrary bit string as input?

5. What does the Turing machine described by the five-

tuples (s0, 1, s1, 0, R), (s1, 1, s1, 1, R), (s1, 0, s2, 0, R),

(s2, 0, s3, 1, L), (s2, 1, s2, 1, R), (s3, 1, s3, 1, L),

(s3, 0, s4, 0, L), (s4, 1, s4, 1, L), and (s4, 0, s0, 1, R) do

when given

a) 11 as input?

b) a bit string consisting entirely of 1s as input?

6. Construct a Turing machine with tape symbols 0, 1,

and B that, when given a bit string as input, adds a 1

to the end of the bit string and does not change any of the

other symbols on the tape.

7. Construct a Turing machine with tape symbols 0, 1,

and B that, when given a bit string as input, replaces

the first 0 with a 1 and does not change any of the other

symbols on the tape.

8. Construct a Turing machine with tape symbols 0, 1,

and B that, given a bit string as input, replaces all 0s

on the tape with 1s and does not change any of the 1s on

the tape.

9. Construct a Turing machine with tape symbols 0, 1,

and B that, given a bit string as input, replaces all but

the leftmost 1 on the tape with 0s and does not change

any of the other symbols on the tape.

10. Construct a Turing machine with tape symbols 0, 1,

andB that, given a bit string as input, replaces the first two

consecutive 1s on the tape with 0s and does not change

any of the other symbols on the tape.

11. Construct a Turing machine that recognizes the set of all

bit strings that end with a 0.

12. Construct a Turing machine that recognizes the set of all

bit strings that contain at least two 1s.

13. Construct a Turing machine that recognizes the set of all

bit strings that contain an even number of 1s.

14. Show at each step the contents of the tape of the Turing

machine in Example 3 starting with each of these strings.

a) 0011 b) 00011 c) 101100 d) 000111

15. Explain why the Turing machine in Example 3 recognizes

a bit string if and only if this string is of the form 0n1n

for some positive integer n.

∗16. Construct a Turing machine that recognizes the set

{02n1n | n ≥ 0}.

∗17. Construct a Turing machine that recognizes the set

{0n1n2n | n ≥ 0}.

18. Construct a Turing machine that computes the function

f (n) = n + 2 for all nonnegative integers n.

19. Construct a Turing machine that computes the function

f (n) = n − 3 if n ≥ 3 and f (n) = 0 for n = 0, 1, 2 for

all nonnegative integers n.

20. Construct a Turing machine that computes the function

f (n) = n mod 3 for every nonnegative integer n.

21. Construct a Turing machine that computes the function

f (n) = 3 if n ≥ 5 and f (n) = 0 if n = 0, 1, 2, 3, or 4.

22. Construct a Turing machine that computes the function

f (n) = 2n for all nonnegative integers n.

23. Construct a Turing machine that computes the function

f (n) = 3n for all nonnegative integers n.

24. Construct a Turing machine that computes the function

f (n1, n2) = n2 + 2 for all pairs of nonnegative integers

n1 and n2.

∗25. Construct a Turing machine that computes the function

f (n1, n2) = min(n1, n2) for all nonnegative integers n1

and n2.

26. Construct a Turing machine that computes the function

f (n1, n2) = n1 + n2 + 1 for all nonnegative integers n1

and n2.

Suppose that T1 and T2 are Turing machines with disjoint sets

of states S1 and S2 and with transition functions f1 and f2,

respectively. We can define the Turing machineT1T2, the com-

posite of T1 and T2, as follows. The set of states of T1T2 is

S1 ∪ S2. T1T2 begins in the start state of T1. It first executes

the transitions of T1 using f1 up to, but not including, the step

at which T1 would halt. Then, for all moves for which T1 halts,

it executes the same transitions of T1 except that it moves to

the start state of T2. From this point on, the moves of T1T2 are

the same as the moves of T2.

27. By finding the composite of the Turing machines you

constructed in Exercises 18 and 22, construct a Turing

machine that computes the function f (n) = 2n + 2.

28. By finding the composite of the Turing machines you

constructed in Exercises 18 and 23, construct a Turing

machine that computes the function f (n) = 3(n + 2) =

3n + 6.

29. Which of the following problems is a decision problem?

a) What is the smallest prime greater than n?

b) Is a graph G bipartite?

c) Given a set of strings, is there a finite-state automaton

that recognizes this set of strings?

d) Given a checkerboard and a particular type of poly-

omino (see Section 1.8), can this checkerboard be tiled

using polyominoes of this type?

30. Which of the following problems is a decision problem?

a) Is the sequence a1, a2, . . . , an of positive integers in

increasing order?

13.5 Turing Machines 899

b) Can the vertices of a simple graph G be colored using

three colors so that no two adjacent vertices are the

same color?

c) What is the vertex of highest degree in a graph G?

d) Given two finite-state machines, do these machines

recognize the same language?

LetB(n) be the maximum number of 1s that a Turing machine

with n states with the alphabet {1, B} may print on a tape that

is initially blank. The problem of determining B(n) for partic-

ular values of n is known as the busy beaver problem. This

problem was first studied by Tibor Rado in 1962. Currently it

is known that B(2) = 4, B(3) = 6, and B(4) = 13, but B(n)

is not known for n ≥ 5. B(n) grows rapidly; it is known that

B(5) ≥ 4098 and B(6) ≥ 3.5 × 1018267.

∗31. Show that B(2) is at least 4 by finding a Turing machine

with two states and alphabet {1, B} that halts with four

consecutive 1s on the tape.

∗∗32. Show that the function B(n) cannot be computed by any

Turing machine. [Hint: Assume that there is a Turing ma-

chine that computes B(n) in binary. Build a Turing ma-

chine T that, starting with a blank tape, writes n down

in binary, computes B(n) in binary, and converts B(n)

from binary to unary. Show that for sufficiently large n,

the number of states of T is less than B(n), leading to a

contradiction.]

Key Terms and Results

TERMS

alphabet (or vocabulary): a set that contains elements used

to form strings

language: a subset of the set of all strings over an alphabet

phrase-structure grammar (V, T, S, P): a description of a lan-

guage containing an alphabet V , a set of terminal symbols

T , a start symbol S, and a set of productions P

the production w → w1: w can be replaced by w1 whenever

it occurs in a string in the language

w1⇒w2 (w2 is directly derivable from w1): w2 can be ob-

tained from w1 using a production to replace a string in w1

with another string

w1
∗
⇒ w2 (w2 is derivable from w1): w2 can be obtained from

w1 using a sequence of productions to replace strings by

other strings

type 0 grammar: any phrase-structure grammar

type 1 grammar: a phrase-structure grammar in which every

production is of the form w1 → w2, where w1 = lAr and

w2 = lwr, where A ∈ N , l, r,w ∈ (N ∪ T)∗ and w = λ, or

w1 = S and w2 = λ as long as S is not on the right-hand

side of another production

type 2, or context-free, grammar: a phrase-structure gram-

mar in which every production is of the form A → w1,

where A is a nonterminal symbol

type 3, or regular, grammar: a phrase-structure grammar

where every production is of the form A → aB, A → a, or

S → λ, where A and B are nonterminal symbols, S is the

start symbol, and a is a terminal symbol

derivation (or parse) tree: an ordered rooted tree where the

root represents the starting symbol of a type 2 grammar,

internal vertices represent nonterminals, leaves represent

terminals, and the children of a vertex are the symbols on

the right side of a production, in order from left to right,

where the symbol represented by the parent is on the left-

hand side

Backus–Naur form: a description of a context-free grammar

in which all productions having the same nonterminal as

their left-hand side are combined with the different right-

hand sides of these productions, each separated by a bar,

with nonterminal symbols enclosed in angular brackets and

the symbol → replaced by ::=

finite-state machine (S, I,O, f, g, s0) (or a Mealy ma-

chine): a six-tuple containing a set S of states, an input

alphabet I , an output alphabet O, a transition function f

that assigns a next state to every pair of a state and an input,

an output function g that assigns an output to every pair of

a state and an input, and a starting state s0

AB (concatenation of A and B): the set of all strings formed

by concatenating a string in A and a string in B in that order

A∗ (Kleene closure of A): the set of all strings made up by

concatenating arbitrarily many strings from A

deterministic finite-state automaton (S, I, f, s0, F): a five-

tuple containing a set S of states, an input alphabet I , a

transition function f that assigns a next state to every pair

of a state and an input, a starting state s0, and a set of final

states F

nondeterministic finite-state automaton (S, I, f, s0, F): a

five-tuple containing a set S of states, an input alphabet I ,

a transition function f that assigns a set of possible next

states to every pair of a state and an input, a starting state

s0, and a set of final states F

language recognized by an automaton: the set of input strings

that take the start state to a final state of the automaton

regular expression: an expression defined recursively by spec-

ifying that ∅, λ, and x, for all x in the input alphabet, are

regular expressions, and that (AB), (A ∪ B), and A∗ are

regular expressions when A and B are regular expressions

regular set: a set defined by a regular expression (see page 820)

Turing machineT = (S, I, f, s0): a four-tuple consisting of a

finite setS of states, an alphabet I containing the blank sym-

bol B, a partial function f from S × I to S × I × {R,L},

and a starting state s0

nondeterministic Turing machine: a Turing machine that

may have more than one transition rule corresponding to

each (state, tape symbol) pair

900 13 / Modeling Computation

decision problem: a problem that asks whether statements

from a particular class of statements are true

solvable problem: a problem with the property that there is

an effective algorithm that can solve all instances of the

problem

unsolvable problem: a problem with the property that no ef-

fective algorithm exists that can solve all instances of the

problem

computable function: a function whose values can be com-

puted using a Turing machine

uncomputable function: a function whose values cannot be

computed using a Turing machine

P, the class of polynomial-time problems: the class of prob-

lems that can be solved by a deterministic Turing machine

in polynomial time in terms of the size of the input

NP, the class of nondeterministic polynomial-time prob-

lems: the class of problems that can be solved by a nonde-

terministic Turing machine in polynomial time in terms of

the size of the input

NP-complete: a subset of the class of NP problems with the

property that if any one of them is in the class P, then all

problems in NP are in the class P

RESULTS

For every nondeterministic finite-state automaton there is a de-

terministic finite-state automaton that recognizes the same

set.

Kleene’s theorem: A set is regular if and only if there is a

finite-state automaton that recognizes it.

A set is regular if and only if it is generated by a regular gram-

mar.

The halting problem is unsolvable.

Review Questions

1. a) Define a phrase-structure grammar.

b) What does it mean for a string to be derivable from a

string w by a phrase-structure grammar G?

2. a) What is the language generated by a phrase-structure

grammar G?

b) What is the language generated by the grammarGwith

vocabulary {S, 0, 1}, set of terminalsT = {0, 1}, start-

ing symbol S, and productions S → 000S, S → 1?

c) Give a phrase-structure grammar that generates the set

{01n | n = 0, 1, 2, . . . }.

3. a) Define a type 1 grammar.

b) Give an example of a grammar that is not a type 1

grammar.

c) Define a type 2 grammar.

d) Give an example of a grammar that is not a type 2

grammar but is a type 1 grammar.

e) Define a type 3 grammar.

f) Give an example of a grammar that is not a type 3

grammar but is a type 2 grammar.

4. a) Define a regular grammar.

b) Define a regular language.

c) Show that the set {0m1n | m, n = 0, 1, 2, . . . } is a reg-

ular language.

5. a) What is Backus–Naur form?

b) Give an example of the Backus–Naur form of the

grammar for a subset of English of your choice.

6. a) What is a finite-state machine?

b) Show how a vending machine that accepts only quar-

ters and dispenses a soft drink after 75 cents has been

deposited can be modeled using a finite-state machine.

7. Find the set of strings recognized by the deterministic

finite-state automaton shown here.

s0
Start

s1
0 0 0, 1

s2

1
1

s3 0, 1

8. Construct a deterministic finite-state automaton that rec-

ognizes the set of bit strings that start with 1 and end

with 1.

9. a) What is the Kleene closure of a set of strings?

b) Find the Kleene closure of the set {11, 0}.

10. a) Define a finite-state automaton.

b) What does it mean for a string to be recognized by a

finite-state automaton?

11. a) Define a nondeterministic finite-state automaton.

b) Show that given a nondeterministic finite-state au-

tomaton, there is a deterministic finite-state automaton

that recognizes the same language.

12. a) Define the set of regular expressions over a set I .

b) Explain how regular expressions are used to represent

regular sets.

13. State Kleene’s theorem.

14. Show that a set is generated by a regular grammar if and

only if it is a regular set.

15. Give an example of a set not recognized by a finite-state

automaton. Show that no finite-state automaton recog-

nizes it.

16. Define a Turing machine.

17. Describe how Turing machines are used to recognize sets.

18. Describe how Turing machines are used to compute

number-theoretic functions.

19. What is an unsolvable decision problem? Give an example

of such a problem.

Supplementary Exercises 901

Supplementary Exercises

∗1. Find a phrase-structure grammar that generates each of

these languages.

a) the set of bit strings of the form 02n13n, where n is a

nonnegative integer

b) the set of bit strings with twice as many 0s as 1s

c) the set of bit strings of the form w2, where w is a bit

string

∗2. Find a phrase-structure grammar that generates the set

{02n | n ≥ 0}.

For Exercises 3 and 4, letG = (V , T , S, P)be the context-free

grammar with V = {(,), S,A,B}, T = {(,)}, starting sym-

bol S, and productions S → A,A → AB,A → B,B → (A),

and B → (), S → λ.

3. Construct the derivation trees of these strings.

a) (()) b) ()(()) c) ((()()))

∗4. Show that L(G) is the set of all balanced strings of paren-

theses, defined in the preamble to Supplementary Exer-

cise 55 in Chapter 4.

A context-free grammar is ambiguous if there is a word in

L(G) with two derivations that produce different derivation

trees, considered as ordered, rooted trees.

5. Show that the grammar G = (V , T , S, P) with V =

{0,S}, T = {0}, starting stateS, and productionsS → 0S,

S → S0, and S → 0 is ambiguous by constructing two

different derivation trees for 03.

6. Show that the grammar G = (V , T , S, P) with V =

{0,S}, T = {0}, starting state S, and productions S → 0S

and S → 0 is unambiguous.

7. Suppose that A and B are finite subsets of V ∗, where V

is an alphabet. Is it necessarily true that |AB| = |BA|?

8. Prove or disprove each of these statements for subsets A,

B, and C of V ∗, where V is an alphabet.

a) A(B ∪ C) = AB ∪ AC

b) A(B ∩ C) = AB ∩ AC

c) (AB)C = A(BC)

d) (A ∪ B)∗ = A∗ ∪ B∗

9. Suppose that A and B are subsets of V ∗, where V is an

alphabet. Does it follow that A ⊆ B if A∗ ⊆ B∗?

10. What set of strings with symbols in the set {0, 1, 2} is

represented by the regular expression (2∗)(0 ∪ (12∗))∗?

The star height h(E) of a regular expression over the set I is

defined recursively by

h(∅) = 0;

h(x) = 0 if x ∈ I ;

h((E1 ∪ E2)) = h((E1E2)) = max(h(E1), h(E2))

if E1 and E2 are regular expressions;

h(E∗) = h(E) + 1 if E is a regular expression.

11. Find the star height of each of these regular expressions.

a) 0∗1

b) 0∗1∗

c) (0∗01)∗

d) ((0∗1)∗)∗

e) (010∗)(1∗01∗)∗((01)∗(10)∗)∗

f) (((((0∗)1)∗0)∗)1)∗

∗12. For each of these regular expressions find a regular ex-

pression that represents the same language with minimum

star height.

a) (0∗1∗)∗

b) (0(01∗0)∗)∗

c) (0∗ ∪ (01)∗ ∪ 1∗)∗

13. Construct a finite-state machine with output that produces

an output of 1 if the bit string read so far as input contains

four or more 1s. Then construct a deterministic finite-state

automaton that recognizes this set.

14. Construct a finite-state machine with output that produces

an output of 1 if the bit string read so far as input contains

four or more consecutive 1s. Then construct a determin-

istic finite-state automaton that recognizes this set.

15. Construct a finite-state machine with output that produces

an output of 1 if the bit string read so far as input ends

with four or more consecutive 1s. Then construct a deter-

ministic finite-state automaton that recognizes this set.

16. A state s in a finite-state machine is said to be reach-

able from state s if there is an input string x such that

f (s, x) = s . A state s is called transient if there is no

nonempty input string x with f (s, x) = s. A state s is

called a sink if f (s, x) = s for all input strings x. An-

swer these questions about the finite-state machine with

the state diagram illustrated here.

s0

s1

Start

s6

s2

s4

0

0

1

1 1

1

0

0

1

0, 1

0, 1

0

s5 s3

a) Which states are reachable from s0?

b) Which states are reachable from s2?

c) Which states are transient?

d) Which states are sinks?

∗17. Suppose that S, I , and O are finite sets such that |S| = n,

|I | = k, and |O| = m.

a) How many different finite-state machines (Mealy ma-

chines) M = (S, I,O, f, g, s0) can be constructed,

where the starting state s0 can be arbitrarily chosen?

b) How many different Moore machines M =

(S, I,O, f, g, s0) can be constructed, where the start-

ing state s0 can be arbitrarily chosen?

∗18. Suppose that S and I are finite sets such that |S| = n

and |I | = k. How many different finite-state automata

M = (S, I, f, s0, F) are there where the starting state s0

902 13 / Modeling Computation

and the subset F of S consisting of final states can be

chosen arbitrarily

a) if the automata are deterministic?

b) if the automata may be nondeterministic? (Note: This

includes deterministic automata.)

19. Construct a deterministic finite-state automaton that is

equivalent to the nondeterministic automaton with the

state diagram shown here.

s0 s1 s2 s3

0
0

0

1

0

1 11

00

Start

20. What is the language recognized by the automaton in Ex-

ercise 19?

21. Construct finite-state automata that recognize these sets.

a) 0∗(10)∗

b) (01 ∪ 111)∗10∗(0 ∪ 1)

c) (001 ∪ (11)∗)∗

∗22. Find regular expressions that represent the set of all strings

of 0s and 1s

a) made up of blocks of even numbers of 1s interspersed

with odd numbers of 0s.

b) with at least two consecutive 0s or three consecutive

1s.

c) with no three consecutive 0s or two consecutive 1s.

∗23. Show that if A is a regular set, then so is A.

∗24. Show that if A and B are regular sets, then so is A ∩ B.

∗25. Find finite-state automata that recognize these sets of

strings of 0s and 1s.

a) the set of all strings that start with no more than three

consecutive 0s and contain at least two consecutive 1s

b) the set of all strings with an even number of symbols

that do not contain the pattern 101

c) the set of all strings with at least three blocks of two

or more 1s and at least two 0s

∗26. Show that {02n | n ∈ N} is not regular. You may use the

pumping lemma given in Exercise 22 of Section 13.4.

∗27. Show that {1p | p is prime} is not regular. You may use

the pumping lemma given in Exercise 22 of Section 13.4.

∗28. There is a result for context-free languages analogous to

the pumping lemma for regular sets. Suppose that L(G)

is the language recognized by a context-free language G.

This result states that there is a constant N such that if z

is a word in L(G) with l(z) ≥ N , then z can be written

as uvwxy, where l(vwx) ≤ N , l(vx) ≥ 1, and uviwxiy

belongs to L(G) for i = 0, 1, 2, 3, Use this result

to show that there is no context-free grammar G with

L(G) = {0n1n2n | n = 0, 1, 2, . . . }.

∗29. Construct a Turing machine that computes the function

f (n1, n2) = max(n1, n2).

∗30. Construct a Turing machine that computes the function

f (n1, n2) = n2 − n1 if n2 ≥ n1 and f (n1, n2) = 0 if

n2 < n1.

Computer Projects

Write programs with these input and output.

1. Given the productions in a phrase-structure grammar, de-

termine which type of grammar this is in the Chomsky

classification scheme.

2. Given the productions of a phrase-structure grammar, find

all strings that are generated using twenty or fewer appli-

cations of its production rules.

3. Given the Backus–Naur form of a type 2 grammar, find

all strings that are generated using twenty or fewer appli-

cations of the rules defining it.

∗4. Given the productions of a context-free grammar and a

string, produce a derivation tree for this string if it is in

the language generated by this grammar.

5. Given the state table of a Moore machine and an input

string, produce the output string generated by the ma-

chine.

6. Given the state table of a Mealy machine and an input

string, produce the output string generated by the ma-

chine.

7. Given the state table of a deterministic finite-state automa-

ton and a string, decide whether this string is recognized

by the automaton.

8. Given the state table of a nondeterministic finite-state au-

tomaton and a string, decide whether this string is recog-

nized by the automaton.

∗9. Given the state table of a nondeterministic finite-state au-

tomaton, construct the state table of a deterministic finite-

state automaton that recognizes the same language.

∗∗10. Given a regular expression, construct a nondeterminis-

tic finite-state automaton that recognizes the set that this

expression represents.

11. Given a regular grammar, construct a finite-state automa-

ton that recognizes the language generated by this gram-

mar.

12. Given a finite-state automaton, construct a regular gram-

mar that generates the language recognized by this au-

tomaton.

∗13. Given a Turing machine, find the output string produced

by a given input string.

Writing Projects 903

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. Solve the busy beaver problem for two states by test-

ing all possible Turing machines with two states and

alphabet {1, B}.

∗2. Solve the busy beaver problem for three states by testing

all possible Turing machines with three states and alphabet

{1, B}.

∗∗3. Find a busy beaver machine with four states by testing

all possible Turing machines with four states and alphabet

{1, B}.

∗∗4. Make as much progress as you can toward finding a busy

beaver machine with five states.

∗∗5. Make as much progress as you can toward finding a busy

beaver machine with six states.

Writing Projects

Respond to these with essays using outside sources.

1. Describe how the growth of certain types of plants can be

modeled using a Lidenmeyer system. Such a system uses

a grammar with productions modeling the different ways

plants can grow.

2. Describe the Backus–Naur form (and extended Backus–

Naur form) rules used to specify the syntax of a program-

ming language, such as Java, LISP, orAda, or the database

language SQL.

3. Explain how finite-state machines are used by spell-

checkers.

4. Explain how finite-state machines are used in the study

of network protocols.

5. Explain how finite-state machines are used in speech

recognition programs.

6. Compare the use of Moore machines versus Mealy ma-

chines in the design of hardware systems and computer

software.

7. Explain the concept of minimizing finite-state automata.

Give an algorithm that carries out this minimization.

8. Give the definition of cellular automata. Explain their ap-

plications. Use the Game of Life as an example.

9. Define a pushdown automaton. Explain how pushdown

automata are used to recognize sets. Which sets are rec-

ognized by pushdown automata? Provide an outline of a

proof justifying your answer.

10. Define a linear-bounded automaton. Explain how linear-

bounded automata are used to recognize sets. Which sets

are recognized by linear-bounded automata? Provide an

outline of a proof justifying your answer.

11. Look up Turing’s original definition of what we now call

a Turing machine. What was his motivation for defining

these machines?

12. Describe the concept of the universal Turing machine.

Explain how such a machine can be built.

13. Explain the kinds of applications in which nondetermin-

istic Turing machines are used instead of deterministic

Turing machines.

14. Show that a Turing machine can simulate any action of a

nondeterministic Turing machine.

15. Show that a set is recognized by a Turing machine if and

only if it is generated by a phrase-structure grammar.

16. Describe the basic concepts of the lambda-calculus and

explain how it is used to study computability of functions.

17. Show that a Turing machine as defined in this chapter can

do anything a Turing machine with n tapes can do.

18. Show that a Turing machine with a tape infinite in one

direction can do anything a Turing machine with a tape

infinite in both directions can do.

1
A P P E N D I X

Axioms for the Real Numbers
and the Positive Integers

In this book we have assumed an explicit set of axioms for the set of real numbers and for

the set of positive integers. In this appendix we will list these axioms and we will illustrate

how basic facts, also used without proof in the text, can be derived using them.

Axioms for Real Numbers

The standard axioms for real numbers include both the field (or algebraic) axioms, used to

specify rules for basic arithmetic operations, and the order axioms, used to specify properties

of the ordering of real numbers.

THE FIELD AXIOMS We begin with the field axioms. As usual, we denote the sum and

product of two real numbers x and y by x + y and x · y, respectively. (Note that the product of

x and y is often denoted by xy without the use of the dot to indicate multiplication. We will not

use this abridged notation in this appendix, but will within the text.) Also, by convention, we

performmultiplications before additions unless parentheses are used.Although these statements

are axioms, they are commonly called laws or rules. The first two of these axioms tell us that

when we add or multiply two real numbers, the result is again a real number; these are the

closure laws.

� Closure law for addition For all real numbers x and y, x + y is a real number.

� Closure law for multiplication For all real numbers x and y, x · y is a real number.

The next two axioms tell us that when we add or multiply three real numbers, we get the

same result regardless of the order of operations; these are the associative laws.

� Associative law for addition For all real numbers x, y, and z, (x + y) + z =

x + (y + z).

� Associative law for multiplication For all real numbers x, y, and z, (x · y) · z=

x · (y · z).

Two additional algebraic axioms tell us that the order in which we add or multiply two

numbers does not matter; these are the commutative laws.

� Commutative law for addition For all real numbers x and y, x + y = y + x.

� Commutative law for multiplication For all real numbers x and y, x · y = y · x.

The next two axioms tell us that 0 and 1 are additive and multiplicative identities for the set

of real numbers. That is, when we add 0 to a real number or multiply a real number by 1 we do

not change this real number. These laws are called identity laws.

� Additive identity law For every real number

x, x + 0 = 0 + x = x.

� Multiplicative identity law For every real number x, x · 1 = 1 · x = x.

Although it seems obvious, we also need the following axiom.

� Identity elements axiom The additive identity 0 and the multiplicative identity 1 are

distinct, that is 0 = 1.

A-1

A-2 Appendix 1 / Axioms for the Real Numbers and the Positive Integers

Two additional axioms tell us that for every real number, there is a real number that can be

added to this number to produce 0, and for every nonzero real number, there is a real number

by which it can be multiplied to produce 1. These are the inverse laws.

� Inverse law for addition For every real number x, there exists a real number−x (called

the additive inverse of x) such that x + (−x) = (−x) + x = 0.

� Inverse law for multiplication For every nonzero real number x, there exists a real

number 1/x (called the multiplicative inverse of x) such that x · (1/x) = (1/x) · x = 1.

The final algebraic axioms for real numbers are the distributive laws, which tell us that

multiplication distributes over addition; that is, that we obtain the same result when we first add

a pair of real numbers and then multiply by a third real number or when we multiply each of

these two real numbers by the third real number and then add the two products.

� Distributive laws For all real numbers x, y, and z, x · (y + z) = x · y + x · z and

(x + y) · z = x · z + y · z.

ORDER AXIOMS Next, we will state the order axioms for the real numbers, which specify

properties of the “greater than” relation, denoted by >, on the set of real numbers. We write

x > y (and y < x) when x is greater than y, and we write x ≥ y (and y ≤ x) when x > y

or x = y. The first of these axioms tells us that given two real numbers, exactly one of three

possibilities occurs: the two numbers are equal, the first is greater than the second, or the second

is greater than the first. This rule is called the trichotomy law.

� Trichotomy law For all real numbers x and y, exactly one of x = y, x > y, or y > x

is true.

Next, we have an axiom, called the transitivity law, that tells us that if one number is greater

than a second number and this second number is greater than a third, then the first number is

greater than the third.

� Transitivity law For all real numbers x, y, and z, if x > y and y > z, then x > z.

We also have two compatibility laws, which tell us that when we add a number to both sides

in a greater than relationship, the greater than relationship is preserved and when we multiply

both sides of a greater than relationship by a positive real number (that is, a real number x with

x > 0), the greater than relationship is preserved.

� Additive compatibility law For all real numbers x, y, and z, if x > y, then x + z >

y + z.

� Multiplicative compatibility law For all real numbers x, y, and z, if x > y and z > 0,

then x · z > y · z.

We leave it to the reader (see Exercise 15) to prove that for all real numbers x, y, and z, if

x > y and z < 0, then x · z < y · z. That is, multiplication of an inequality by a negative real

number reverses the direction of the inequality.

The final axiom for the set of real numbers is the completeness property. Before we state

this axiom, we need some definitions. First, given a nonempty set A of real numbers, we say

that the real number b is an upper bound of A if for every real number a in A, b ≥ a. A real

number s is a least upper bound of A if s is an upper bound of A and whenever t is an upper

bound of A, then we have s ≤ t .

� Completeness property Every nonempty set of real numbers that is bounded above

has a least upper bound.

Appendix 1 / Axioms for the Real Numbers and the Positive Integers A-3

Using Axioms to Prove Basic Facts

The axioms we have listed can be used to prove many properties that are often used without

explicit mention. We give several examples of results we can prove using axioms and leave the

proof of a variety of other properties as exercises.Although the results we will prove seem quite

obvious, proving them using only the axioms we have stated can be challenging.

THEOREM 1 The additive identity element 0 of the real numbers is unique.

Proof:To show that the additive identity element 0 of the real numbers is unique, suppose that 0

is also an additive identity for the real numbers. This means that 0 + x = x + 0 = x whenever

x is a real number. By the additive identity law, it follows that 0 + 0 = 0 . Because 0 is an

additive identity, we know that 0 + 0 = 0. It follows that 0 = 0 , because both equal 0 + 0 .

This shows that 0 is the unique additive identity for the real numbers.

THEOREM 2 The additive inverse of a real number x is unique.

Proof: Let x be a real number. Suppose that y and z are both additive inverses of x. Then,

y = 0 + y by the additive identity law

= (z + x) + y because z is an additive inverse of x

= z + (x + y) by the associative law for addition

= z + 0 because y is an additive inverse of x

= z by the additive identity law.

It follows that y = z.

Theorems 1 and 2 tell us that the additive identity and additive inverses are unique. Theo-

rems 3 and 4 tell us that the multiplicative identity and multiplicative inverses of nonzero real

numbers are also unique. We leave their proofs as exercises.

THEOREM 3 The multiplicative identity element 1 of the real numbers is unique.

THEOREM 4 The multiplicative inverse of a nonzero real number x is unique.

THEOREM 5 For every real number x, x · 0 = 0.

Proof: Suppose that x is a real number. By the additive inverse law, there is a real number y that

is the additive inverse of x · 0, so we have x · 0 + y = 0. By the additive identity law, 0 + 0 = 0.

Using the distributive law, we see that x · 0 = x · (0 + 0) = x · 0 + x · 0. It follows that

0 = x · 0 + y = (x · 0 + x · 0) + y.

A-4 Appendix 1 / Axioms for the Real Numbers and the Positive Integers

Next, note that by the associative law for addition and because x · 0 + y = 0, it follows that

(x · 0 + x · 0) + y = x · 0 + (x · 0 + y) = x · 0 + 0.

Finally, by the additive identity law, we know that x · 0 + 0 = x · 0. Consequently,

x · 0 = 0.

THEOREM 6 For all real numbers x and y, if x · y = 0, then x = 0 or y = 0.

Proof: Suppose that x and y are real numbers and x · y = 0. If x = 0, then, by the multiplicative

inverse law, x has a multiplicative inverse 1/x, such that x · (1/x) = (1/x) · x = 1. Because

x · y = 0, we have (1/x) · (x · y) = (1/x) · 0 = 0 by Theorem 5. Using the associate law for

multiplication, we have ((1/x) · x) · y = 0. This means that 1 · y = 0. By the multiplicative

identity rule, we see that 1 · y = y, so y = 0. Consequently, either x = 0 or y = 0.

THEOREM 7 The multiplicative identity element 1 in the set of real numbers is greater than the additive

identity element 0.

Proof: By the trichotomy law, either 0 = 1, 0 > 1, or 1 > 0.We know by the identity elements

axiom that 0 = 1.

So, assume that 0 > 1. We will show that this assumption leads to a contradiction.

By the additive inverse law, 1 has an additive inverse −1 with 1 + (−1) = 0. The addi-

tive compatibility law tells us that 0 + (−1) > 1 + (−1) = 0; the additive identity law tells

us that 0 + (−1) = −1. Consequently, −1 > 0, and by the multiplicative compatibility law,

(−1) · (−1) > (−1) · 0. By Theorem 5 the right-hand side of last inequality is 0. By the dis-

tributive law, (−1) · (−1) + (−1) · 1 = (−1) · (−1 + 1) = (−1) · 0 = 0. Hence, the left-hand

side of this last inequality, (−1) · (−1), is the unique additive inverse of −1, so this side of

the inequality equals 1. Consequently this last inequality becomes 1 > 0, contradicting the

trichotomy law because we had assumed that 0 > 1.

Because we know that 0 = 1 and that it is impossible for 0 > 1, by the trichotomy law, we

conclude that 1 > 0.

ARCHIMEDES (287 b.c.e.–212 b.c.e.) Archimedes was one of the greatest scientists and mathematicians of
ancient times. He was born in Syracuse, a Greek city-state in Sicily. His father, Phidias, was an astronomer.
Archimedes was educated in Alexandria, Egypt. After completing his studies, he returned to Syracuse, where
he spent the rest of his life. Little is known about his personal life; we do not know whether he was ever married
or had children. Archimedes was killed in 212 b.c.e. by a Roman soldier when the Romans overran Syracuse.

Archimedes made many important discoveries in geometry. His method for computing the area under a
curvewas described two thousand years before his ideaswere re-invented as part of integral calculus.Archimedes
also developed a method for expressing large integers inexpressible by the usual Greek method. He discov-
ered a method for computing the volume of a sphere, as well as of other solids, and he calculated an ap-
proximation of π . Archimedes was also an accomplished engineer and inventor; his machine for pumping
water, now called Archimedes’ screw, is still in use today. Perhaps his best known discovery is the principle of

buoyancy, which tells us that an object submerged in liquid becomes lighter by an amount equal to the weight it displaces. Some
histories tell us that Archimedes was an early streaker, running naked through the streets of Syracuse shouting “Eureka” (which
means “I have found it”) when he made this discovery. He is also known for his clever use of machines that held off Roman forces
sieging Syracuse for several years during the Second Punic War.

Appendix 1 / Axioms for the Real Numbers and the Positive Integers A-5

The next theorem tells us that for every real number there is an integer (where by an integer,

we mean 0, the sum of any number of 1s, and the additive inverses of these sums) greater than

this real number. This result is attributed to the Greek mathematician Archimedes. The result

can be found in Book V of Euclid’s Elements.

THEOREM 8 ARCHIMEDEAN PROPERTY For every real number x there exists an integer n such

that n > x.

Proof: Suppose that x is a real number such that n ≤ x for every integer n. Then x is an upper

bound of the set of integers. By the completeness property it follows that the set of integers has a

least upper boundM . BecauseM − 1 < M andM is a least upper bound of the set of integers,

M − 1 is not an upper bound of the set of integers. This means that there is an integer n with

n > M − 1. This implies that n + 1 > M , contradicting the fact that M is an upper bound of

the set of integers.

Axioms for the Set of Positive Integers

The axioms we now list specify the set of positive integers as

the subset of the set of integers satisfying four key properties. We assume the truth of these

axioms in this textbook.

� Axiom 1 The number 1 is a positive integer.

� Axiom 2 If n is a positive integer, then n + 1, the successor of n, is also a positive

integer.

� Axiom 3 Every positive integer other than 1 is the successor of a positive integer.

� Axiom 4 The Well-Ordering Property Every nonempty subset of the set of positive

integers has a least element.

In Sections 5.1 and 5.2 it is shown that the well-ordering principle is equivalent to the

principle of mathematical induction.

� Mathematical induction axiom If S is a set of positive integers such that 1 ∈ S and

for all positive integers n if n ∈ S, then n + 1 ∈ S, then S is the set of positive integers.

Most mathematicians take the real number system as already existing, with the real numbers

satisfying the axiomswe have listed in this appendix. However,mathematicians in the nineteenth

century developed techniques to construct the set of real numbers, starting with more basic sets

of numbers. (The process of constructing the real numbers is sometimes studied in advanced

undergraduate mathematics classes. A treatment of this can be found in [Mo91], for instance.)

The first step in the process is the construction of the set of positive integers using axioms 1–3

and either the well-ordering property or the mathematical induction axiom. Then, the operations

of addition and multiplication of positive integers are defined. Once this has been done, the set

of integers can be constructed using equivalence classes of pairs of positive integers where

(a, b) ∼ (c, d) if and only if a + d = b + c; addition and multiplication of integers can be

defined using these pairs (see Exercise 21). (Equivalence relations and equivalence classes

are discussed in Chapter 9.) Next, the set of rational numbers can be constructed using the

equivalence classes of pairs of integers where the second integer in the pair is not zero, where

(a, b) ≈ (c, d) if and only if a · d = b · c; addition and multiplication of rational numbers can

be defined in terms of these pairs (see Exercise 22). Using infinite sequences, the set of real

numbers can then be constructed from the set of rational numbers. The interested reader will

find it worthwhile to read through the many details of the steps of this construction.

A-6 Appendix 1 / Axioms for the Real Numbers and the Positive Integers

Exercises

Use only the axioms and theorems in this appendix in the

proofs in your answers to these exercises.

1. Prove Theorem 3, which states that the multiplicative

identity element of the real numbers is unique.

2. Prove Theorem 4, which states that for every nonzero real

number x, the multiplicative inverse of x is unique.

3. Prove that for all real numbers x and y, (−x) · y =

x · (−y) = −(x · y).

4. Prove that for all real numbers x and y, −(x + y) =

(−x) + (−y).

5. Prove that for all real numbers x and y, (−x) · (−y) =

x · y.

6. Prove that for all real numbers x, y, and z, if x + z =

y + z, then x = y.

7. Prove that for every real number x, −(−x) = x.

Define the difference x − y of real numbers x and y by

x − y = x + (−y), where −y is the additive inverse of y,

and the quotient x/y, where y = 0, by x/y = x · (1/y),

where 1/y is the multiplicative inverse of y.

8. Prove that for all real numbers x and y, x = y if and only

if x − y = 0.

9. Prove that for all real numbers x and y,−x − y = −(x +

y).

10. Prove that for all nonzero real numbers x and y,

1/(x/y) = y/x, where 1/(x/y) is the multiplicative in-

verse of x/y.

11. Prove that for all real numbers w, x, y, and z, if x = 0

and z = 0, then (w/x) + (y/z) = (w · z + x · y)/(x · z).

12. Prove that for every positive real number x, 1/x is also a

positive real number.

13. Prove that for all positive real numbers x and y, x · y is

also a positive real number.

14. Prove that for all real numbers x and y, if x > 0 and

y < 0, then x · y < 0.

15. Prove that for all real numbers x, y, and z, if x > y and

z < 0, then x · z < y · z.

16. Prove that for every real number x, x = 0 if and only if

x2 > 0.

17. Prove that for all real numbers w, x, y, and z, if w < x

and y < z, then w + y < x + z.

18. Prove that for all positive real numbers x and y, if x < y,

then 1/x > 1/y.

19. Prove that for every positive real number x, there exists

a positive integer n such that n · x > 1.

∗20. Prove that between every two distinct real numbers there

is a rational number (that is, a number of the form x/y,

where x and y are integers with y = 0).

Exercises 21 and 22 involve the notion of an equivalence re-

lation, discussed in Chapter 9 of the text.

∗21. Define a relation ∼ on the set of ordered pairs of pos-

itive integers by (w, x) ∼ (y, z) if and only if w + z =

x + y. Show that the operations [(w, x)]∼ + [(y, z)]∼ =

[(w + y, x + z)]∼ and [(w, x)]∼ · [(y, z)]∼ = [(w · y +

x · z, x · y + w · z)]∼ arewell-defined, that is, they do not

depend on the representative of the equivalence classes

chosen for the computation.

∗22. Define a relation ≈ on ordered pairs of integers with sec-

ond entry nonzero by (w, x) ≈ (y, z) if andonly ifw · z =

x · y. Show that the operations [(w, x)]≈ + [(y, z)]≈ =

[(w·z + x ·y, x ·z)]≈ and [(w, x)]≈ · [(y, z)]≈ = [(w·y,

x · z)]≈ are well-defined, that is, they do not depend on

the representative of the equivalence classes chosen for

the computation.

2
A P P E N D I X

Exponential and Logarithmic
Functions

In this appendix we review some of the basic properties of exponential functions and log-

arithms. These properties are used throughout the text. Students requiring further review

of this material should consult precalculus or calculus books, such as those mentioned in the

Suggested Readings.

Exponential Functions

Let n be a positive integer, and let b be a fixed positive real number. The function fb(n) = bn

is defined by

fb(n) = bn = b · b · b · · · · · b,

where there are n factors of b multiplied together on the right-hand side of the equation.

We can define the functionfb(x) = bx for all real numbers x using techniques from calculus.

The function fb(x) = bx is called the exponential function to the base b. We will not discuss

how to find the values of exponential functions to the base b when x is not an integer.

Two of the important properties satisfied by exponential functions are given in Theorem 1.

Proofs of these and other related properties can be found in calculus texts.

THEOREM 1 Let b be a positive real number and x and y real numbers. Then

1. bx+y
= bxby , and

2. (bx)y = bxy .

We display the graphs of some exponential functions in Figure 1.

Logarithmic Functions

Suppose that b is a real number with b > 1. Then the exponential function bx is strictly increasing

(a fact shown in calculus). It is a one-to-one correspondence from the set of real numbers to the set

of nonnegative real numbers. Hence, this function has an inverse logb x, called the logarithmic

function to the base b. In other words, if b is a real number greater than 1 and x is a positive

real number, then

blogb x = x.

The value of this function at x is called the logarithm of x to the base b.

From the definition, it follows that

logbb
x
= x.

We give several important properties of logarithms in Theorem 2.

A-7

A-8 Appendix 2 / Exponential and Logarithmic Functions

10

9

8

7

6

5

4

3

2

1

0 1 2

y = 5 x

y

x

y = 2x

y =
x1

2

FIGURE 1 Graphs of the Exponential Functions to the Bases 1
2

, 2, and 5.

THEOREM 2 Let b be a real number greater than 1. Then

1. logb(xy) = logb x + logb y whenever x and y are positive real numbers, and

2. logb(x
y) = y logb x whenever x is a positive real number and y is a real number.

Proof: Because logb(xy) is the unique real number with blogb(xy) = xy, to prove part 1 it suffices

to show that blogb x+logb y = xy. By part 1 of Theorem 1, we have

blogb x+logb y = blogb xblogb y

= xy.

To prove part 2, it suffices to show that by logb x = xy . By part 2 of Theorem 1, we have

by logb x = (blogb x)y

= xy.

The following theorem relates logarithms to two different bases.

THEOREM 3 Let a and b be real numbers greater than 1, and let x be a positive real number. Then

loga x = logb x/logb a.

Proof: To prove this result, it suffices to show that

bloga x · logb a = x.

Appendix 2 / Exponential and Logarithmic Functions A-9

3

2

1

1 2 3 4 5

y = log x

x

y

FIGURE 2 The Graph of f (x) = log x.

By part 2 of Theorem 1, we have

bloga x · logb a = (blogb a)loga x

= aloga x

= x.

This completes the proof.

Because the base used most often for logarithms in this text is b = 2, the notation log x is

used throughout the test to denote log2 x.

The graph of the function f (x) = log x is displayed in Figure 2. From Theorem 3, when a

base b other than 2 is used, a function that is a constant multiple of the function log x, namely,

(1/ log b) log x, is obtained.

Exercises

1. Express each of the following quantities as powers of 2.

a) 2 · 22 b) (22)3 c) 2(22)

2. Find each of the following quantities.

a) log2 1024 b) log2 1/4 c) log4 8

3. Suppose that log4 x = y where x is a positive real number.

Find each of the following quantities.

a) log2 x b) log8 x c) log16 x

4. Let a, b, and c be positive real numbers. Show that alogb c
=

clogb a .

5. Draw the graph of f (x) = bx for all real numbers x if b

is

a) 3. b) 1/3. c) 1.

6. Draw the graph of f (x) = logb x for positive real numbers

x if b is

a) 4. b) 100. c) 1000.

3

A P P E N D I X

Pseudocode

The algorithms in this text are described both in English and in pseudocode. Pseudocode is

an intermediate step between an English language description of the steps of a procedure

and a specification of this procedure using an actual programming language. The advantages

of using pseudocode include the simplicity with which it can be written and understood and

the ease of producing actual computer code (in a variety of programming languages) from the

pseudocode. We will describe the particular types of statements, or high-level instructions, of

the pseudocode that we will use. Each of these statements in pseudocode can be translated into

one or more statements in a particular programming language, which in turn can be translated

into one or more (possibly many) low-level instructions for a computer.

This appendix describes the format and syntax of the pseudocode used in the text. This

pseudocode is designed so that its basic structure resembles that of commonly used programming

languages, such as C++ and Java, which are currently the most commonly taught programming

languages. However, the pseudocode we use will be a lot looser than a formal programming

language because a lot of English language descriptions of steps will be allowed.

This appendix is not meant for formal study. Rather, it should serve as a reference guide for

students when they study the descriptions of algorithms given in the text and when they write

pseudocode solutions to exercises.

Procedure Statements

The pseudocode for an algorithm begins with a procedure statement that gives the name of

an algorithm, lists the input variables, and describes what kind of variable each input is. For

instance, the statement

procedure maximum(L: list of integers)

is the first statement in the pseudocode description of the algorithm, which we have named

maximum, that finds the maximum of a list L of integers.

Assignments and Other Types of Statements

An assignment statement is used to assign values to variables. In an assignment statement the

left-hand side is the name of the variable and the right-hand side is an expression that involves

constants, variables that have been assigned values, or functions defined by procedures. The

right-hand side may contain any of the usual arithmetic operations. However, in the pseudocode

in this book it may include any well-defined operation, even if this operation can be carried out

only by using a large number of statements in an actual programming language.

The symbol := is used for assignments. Thus, an assignment statement has the form

variable := expression

A-11

A-12 Appendix 3 / Pseudocode

For example, the statement

max := a

assigns the value of a to the variable max. A statement such as

x := largest integer in the list L

can also be used.This setsx equal to the largest integer in the listL.To translate this statement into

an actual programming language would require more than one statement. Also, the instruction

interchange a and b

can be used to interchange a and b. We could also express this one statement with several

assignment statements (see Exercise 2), but for simplicity, we will often prefer this abbreviated

form of pseudocode.

Comments

In the pseudocode in this book, statements enclosed in curly braces are not executed. Such

statements serve as comments or reminders that help explain how the procedure works. For

instance, the statement

{x is the largest element in L}

can be used to remind the reader that at that point in the procedure the variable x equals the

largest element in the list L.

Conditional Constructions

The simplest form of the conditional construction that we will use is

if condition then statement

or

if condition then

block of statements

Appendix 3 / Pseudocode A-13

Here, the condition is checked, and if it is true, then the statement or block of statements given

is carried out. In particular, the pseudocode

if condition then

statement 1

statement 2

statement 3

·

·

·

statement n

tells us that the statements in the block are executed sequentially if the condition is true.

For example, in Algorithm 1 in Section 3.1, which finds the maximum of a set of integers,

we use a conditional statement to check whether max < ai for each variable; if it is, we assign

the value of ai to max.

Often, we require the use of a more general type of construction. This is used when we wish

to do one thing when the indicated condition is true, but another when it is false. We use the

construction

if condition then statement 1

else statement 2

Note that either one or both of statement 1 and statement 2 can be replaced with a block of

statements.

Sometimes, we require the use of an even more general form of a conditional. The general

form of the conditional construction that we will use is

if condition 1 then statement 1

else if condition 2 then statement 2

else if condition 3 then statement 3

·

·

·

else if condition n then statement n

else statement n+ 1

When this construction is used, if condition 1 is true, then statement 1 is carried out, and the

program exits this construction. In addition, if condition 1 is false, the program checks whether

condition 2 is true; if it is, statement 2 is carried out, and so on. Thus, if none of the first n− 1

conditions hold, but condition n does, statement n is carried out. Finally, if none of condition

1, condition 2, condition 3, . . . , condition n is true, then statement n+ 1 is executed. Note that

any of the n+ 1 statements can be replaced by a block of statements.

A-14 Appendix 3 / Pseudocode

Loop Constructions

There are two types of loop construction in the pseudocode in this book. The first is the “for”

construction, which has the form

for variable := initial value to final value

statement

or

for variable := initial value to final value

block of statements

where initial value and final value are integers. Here, at the start of the loop, variable is assigned

initial value if initial value is less than or equal to final value, and the statements at the end of

this construction are carried out with this value of variable. Then variable is increased by one,

and the statement, or the statements in the block, are carried out with this new value of variable.

This is repeated until variable reaches final value. After the instructions are carried out with

variable equal to final value, the algorithm proceeds to the next statement. When initial value

exceeds final value, none of the statements in the loop is executed.

We can use the “for” loop construction to find the sum of the positive integers from 1 to n

with the following pseudocode.

sum := 0

for i := 1 to n

sum := sum + i

Also, the more general “for” statement, of the form

for all elements with a certain property

is used in this text. This means that the statement or block of statements that follow are carried

out successively for the elements with the given property.

The second type of loop construction that we will use is the “while” construction. This has

the form

while condition

statement

or

while condition

block of statements

When this construction is used, the condition given is checked, and if it is true, the statements that

follow are carried out, which may change the values of the variables that are part of the condition.

Appendix 3 / Pseudocode A-15

If the condition is still true after these instructions have been carried out, the instructions are

carried out again. This is repeated until the condition becomes false. As an example, we can

find the sum of the integers from 1 to n using the following block of pseudocode including a

“while” construction.

sum := 0

while n > 0

sum := sum + n

n := n− 1

Note that any “for” construction can be turned into a “while” construction (see Exercise 3).

However, it is often easier to understand the “for” construction. So, when it makes sense, we

will use the “for” construction in preference to the corresponding “while” construction.

Loops within Loops

Loops or conditional statements are often used within other loops or conditional statements.

In the pseudocode used in this book, we use successive levels of indentation to indicate nested

loops, which are loops within loops, and which blocks of commands correspond to which loops.

Using Procedures in Other Procedures

We can use a procedure from within another procedure (or within itself in a recursive program)

simply by writing the name of this procedure followed by the inputs to this procedure. For

instance,

max(L)

will carry out the procedure max with the input list L. After all the steps of this procedure have

been carried out, execution carries on with the next statement in the procedure.

Return Statements

We use a return statement to show where a procedure produces output. A return statement of

the form

return x

produces the current value of x as output. The output x can involve the value of one or more

functions, including the same function under evaluation, but at a smaller value. For instance,

the statement

return f (n− 1)

is used to call the algorithm with input of n− 1. This means that the algorithm is run again with

input equal to n− 1.

A-16 Appendix 3 / Pseudocode

Exercises

1. What is the difference between the following blocks of two

assignment statements?

a := b

b := c

and

b := c

a := b

2. Give a procedure using assignment statements to inter-

change the values of the variables x and y. What is the

minimum number of assignment statements needed to do

this?

3. Show how a loop of the form

for i := initial value to final value

statement

can be written using the “while” construction.

Suggested Reading

Among the resources available for learning more about the topics covered in this book are printed materials

and relevant websites. Printed resources are described in this section of suggested readings. Readings

are listed by chapter and keyed to particular topics of interest. Some general references also deserve special

mention. A book you may find particularly useful is the Handbook of Discrete and Combinatorial Mathematics

by Rosen [Ro00], a comprehensive reference book.Additional applications of discrete mathematics can be found

in Michaels and Rosen [MiRo91], which is also available online on the companion website for this book. Deeper

coverage of many topics in computer science, including those discussed in this book, can be found in Gruska

[Gr97]. Biographical information about many of the mathematicians and computer scientists mentioned in this

book can be found in Gillispie [Gi70] and on the MacTutor website at http://www-history.mcs.st-and.ac.uk/ .

To find pertinent websites, consult the links found in the Web Resources Guide on the companion website

for this book. Its address is www.mhhe.com/rosen.

CHAPTER 1

An entertaining way to study logic is to read Lewis Carroll’s book

[Ca78]. General references for logic include M. Huth and M. Ryan

[HuRy04], Mendelson [Me09], Stoll [St74], and Suppes [Su87].A

comprehensive treatment of logic in discrete mathematics can be

found in Gries and Schneider [GrSc93]. System specifications are

discussed in Ince [In93]. Smullyan’s knights and knaves puzzles

were introduced in [Sm78]. He has written many fascinating books

on logic puzzles including [Sm92] and [Sm98]. Prolog is discussed

in depth in Nilsson and Maluszynski [NiMa95] and in Clocksin

and Mellish [ClMe94]. The basics of proofs are covered in Cu-

pillari [Cu05], Morash [Mo91], Solow [So09], Velleman [Ve06],

and Wolf [Wo98]. The science and art of constructing proofs is

discussed in a delightful way in three books by Pólya: [Po62],

[Po71], and [Po90]. Problems involving tiling checkerboards us-

ing dominoes and polyominoes are discussed in Golomb [Go94]

and Martin [Ma91].

CHAPTER 2

Lin and Lin [LiLi81] is an easily read text on sets and their applica-

tions. Axiomatic developments of set theory can be found in Hal-

mos [Ha60], Monk [Mo69], and Stoll [St74]. Brualdi [Br09], and

Reingold, Nievergelt, and Deo [ReNiDe77] contain introductions

to multisets. Fuzzy sets and their application to expert systems

and artificial intelligence are treated in Negoita [Ne85] and Zim-

merman [Zi91]. Calculus books, such as Apostol [Ap67], Spivak

[Sp94], and Thomas and Finney [ThFi96], contain discussions

of functions. The best printed source of information about inte-

ger sequences is Sloan and Plouffe [SlPl95]. Books on proofs,

such as [Ve06], often cover countability in some depth. Stanat and

McAllister [StMc77] has a thorough section on countability. Chap-

ter 17 of Aigner, Ziegler, and Hoffman [AiZiHo09] provides an

excellent discussion of cardinality and the continuum hypothesis.

Discussions of the mathematical foundations needed for computer

science can be found inArbib, Kfoury, and Moll [ArKfMo80], Bo-

brow and Arbib [BoAr74], Beckman [Be80], and Tremblay and

Manohar [TrMa75]. Matrices and their operations are covered in

all linear algebra books, such as Curtis [Cu84] and Strang [St09].

CHAPTER 3

The articles by Knuth [Kn77] and Wirth [Wi84] are accessible

introductions to the subject of algorithms. Among the best intro-

ductions to algorithms are Cormen, Leierson, Rivest, and Stein

[CoLeRiSt09] and Kleinberg and Tardos [KlTa05]. Extensive ma-

terial on big-O estimates of functions can be found in Knuth

[Kn97a]. General references for algorithms and their complex-

ity include Aho, Hopcroft, and Ullman [AhHoUl74]; Baase and

Van Gelder [BaGe99]; Cormen, Leierson, Rivest, and Stein [Co-

LeRiSt09]; Gonnet [Go84]; Goodman and Hedetniemi [GoHe77];

Harel [Ha87]; Horowitz and Sahni [HoSa82]; Kreher and Stin-

son [KrSt98]; the famous series of books by Knuth on the art of

computer programming [Kn97a], [Kn97b], and [Kn98]; Kronsjö

[Kr87]; Levitin [Le06]; Manber [Ma89]; Pohl and Shaw [PoSh81];

Purdom and Brown [PuBr85]; Rawlins [Ra92]; Sedgewick [Se03];

Wilf [Wi02]; and Wirth [Wi76]. Sorting and searching algorithms

and their complexity are studied in detail in Knuth [Kn98].

CHAPTER 4

References for number theory include Hardy and Wright [HaWr-

WiHe08]; LeVeque [Le77]; Rosen [Ro10]; and Stark [St78]. More

about the history of number theory can be found in Ore [Or88].Al-

gorithms for computer arithmetic are discussed in Knuth [Kn97b]

and Pohl and Shaw [PoSh81]. More information about algorithms

for finding primes and for factorization can be found in Crandall

B-1

B-2 Suggested Reading

and Pomerance [CrPo10]. Applications of number theory to cryp-

tography are covered in Denning [De82]; Menezes, van Oorschot,

and Vanstone [MeOoVa97]; Rosen [Ro10]; Seberry and Pieprzyk

[SePi89]; Sinkov [Si66]; and Stinson [St05]. The RSA public-

key system was described by Rivest, Shamir, and Adleman in

[RiShAd78]; its discovery by Cocks is described in [Si99], which

also provides an appealing account of the history of cryptography.

CHAPTER 5

An accessible introduction to mathematical induction can be found

[Gu10] and in Sominskii [So61]. Books that contain thorough

treatments of mathematical induction and recursive definitions in-

clude Liu [Li85]; Sahni [Sa85]; Stanat and McAllister [StMc77];

and Tremblay and Manohar [TrMa75]. Computational geometry

is covered in [DeOr11] and [Or00]. The Ackermann function, in-

troduced in 1928 by W. Ackermann, arises in the theory of re-

cursive function (see Beckman [Be80] and McNaughton [Mc82],

for instance) and in the analysis of the complexity of certain set

theoretic algorithms (see Tarjan [Ta83]). Recursion is studied in

Roberts [Ro86]; Rohl [Ro84]; and Wand [Wa80]. Discussions of

program correctness and the logical machinery used to prove that

programs are correct can be found in Alagic and Arbib [AlAr78];

Anderson [An79]; Backhouse [Ba86]; Sahni [Sa85]; and Stanat

and McAllister [StMc77].

CHAPTER 6

General references for counting techniques and their applications

includeAllenby and Slomson [AlSl10];Anderson [An89]; Berman

and Fryer [BeFr72]; Bogart [Bo00]; Bona [Bo07]; Bose and Man-

vel [BoMa86]; Brualdi [Br09]; Cohen [Co78]; Grimaldi [Gr03];

Gross [Gr07]; Liu [Li68]; Pólya, Tarjan, and Woods [PoTaWo83];

Riordan [Ri58]; Roberts and Tesman [RoTe03]; Tucker [Tu06];

and Williamson [Wi85]. Vilenkin [Vi71] contains a selection of

combinatorial problems and their solutions. A selection of more

difficult combinatorial problems can be found in Lovász [Lo79].

Information about Internet protocol addresses and datagrams can

be found in Comer [Co05]. Applications of the pigeonhole prin-

ciple can be found in Brualdi [Br09]; Liu [Li85]; and Roberts and

Tesman [RoTe03].A wide selection of combinatorial identities can

be found in Riordan [Ri68] and in Benjamin and Quinn [BeQu03].

Combinatorial algorithms, including algorithms for generating

permutations and combinations, are described by Even [Ev73];

Lehmer [Le64]; and Reingold, Nievergelt, and Deo [ReNiDe77].

CHAPTER 7

Useful references for discrete probability theory include Feller

[Fe68], Nabin [Na00], and Ross [Ro09a]. Ross [Ro02], which fo-

cuses on the application of probability theory to computer science,

provides examples of average case complexity analysis and cov-

ers the probabilistic method. Aho and Ullman [AhUl95] includes

a discussion of various aspects of probability theory important in

computer science, including programming applications of proba-

bility. The probabilistic method is discussed in a chapter inAigner,

Ziegler, and Hoffman [AiZiHo09], a monograph devoted to clever,

insightful, and brilliant proofs, that is, proofs that Paul Erdős de-

scribed as coming from “The Book.” Extensive coverage of the

probabilistic method can be found in Alon and Spencer [AlSp00].

Bayes’ theorem is covered in [PaPi01]. Additional material on

spam filters can be found in [Zd05].

CHAPTER 8

Many different models using recurrence relations can be found

in Roberts and Tesman [RoTe03] and Tucker [Tu06]. Exhaus-

tive treatments of linear homogeneous recurrence relations with

constant coefficients, and related inhomogeneous recurrence re-

lations, can be found in Brualdi [Br09], Liu [Li68], and Mattson

[Ma93]. Divide-and-conquer algorithms and their complexity are

covered in Roberts and Tesman [RoTe03] and Stanat and McAl-

lister [StMc77]. Descriptions of fast multiplication of integers and

matrices can be found in Aho, Hopcroft, and Ullman [AhHoUl74]

and Knuth [Kn97b]. An excellent introduction to generating func-

tions can be found in Pólya, Tarjan, and Woods [PoTaWo83]. Gen-

erating functions are studied in detail in Brualdi [Br09]; Cohen

[Co78]; Graham, Knuth, and Patashnik [GrKnPa94]; Grimaldi

[Gr03]; and Roberts and Tesman [RoTe03]. Additional applica-

tions of the principle of inclusion–exclusion can be found in Liu

[Li85] and [Li68]; Roberts and Tesman [RoTe03]; and Ryser

[Ry63].

CHAPTER 9

General references for relations, including treatments of equiv-

alence relations and partial orders, include Bobrow and Ar-

bib [BoAr74]; Grimaldi [Gr03]; Sanhi [Sa85]; and Tremblay

and Manohar [TrMa75]. Discussions of relational models for

databases are given in Date [Da82] andAho and Ullman [AhUl95].

The original papers by Roy and Warshall for finding transitive clo-

sures can be found in [Ro59] and [Wa62], respectively. Directed

graphs are studied in Chartrand, Lesniak, and Zhang [ChLeZh05];

Gross and Yellen [GrYe05]; Robinson and Foulds [RoFo80];

Roberts and Tesman [RoTe03]; and Tucker [Tu06]. The applica-

tion of lattices to information flow is treated in Denning [De82].

CHAPTER 10

General references for graph theory include Agnarsson and

Greenlaw [AgGr06]; Aldous, Wilson, and Best [AlWiBe00]; Be-

hzad and Chartrand [BeCh71]; Chartrand, Lesniak, and Zhang

[ChLeZh05]; Chartrand and Zhang [ChZh04]; Bondy and Murty

[BoMu10]; Chartrand and Oellermann [ChOe93]; Graver and

Watkins [GrWa77]; Roberts and Tesman [RoTe03]; Tucker

[Tu06]; West [We00]; Wilson [Wi85]; and Wilson and Watkins

[WiWa90]. A wide variety of applications of graph theory can be

found in Chartrand [Ch77]; Deo [De74]; Foulds [Fo92]; Roberts

Suggested Reading B-3

and Tesman [RoTe03]; Roberts [Ro76]; Wilson and Beineke

[WiBe79]; and McHugh [Mc90]. In depth treatments of the use of

graph theory to study social networks, and other types of networks,

appears in Easley and Kleinberg [EaKl10] and Newman [Ne10].

Applications involving large graphs, including the Web graph, are

discussed in Hayes [Ha00a] and [Ha00b].

A comprehensive description of algorithms in graph the-

ory can be found in Gibbons [Gi85] and in Kocay and Kre-

her [KoKr04]. Other references for algorithms in graph theory

include Buckley and Harary [BuHa90]; Chartrand and Oeller-

mann [ChOe93]; Chachra, Ghare, and Moore [ChGhMo79]; Even

[Ev73] and [Ev79]; Hu [Hu82]; and Reingold, Nievergelt, and

Deo [ReNiDe77]. A translation of Euler’s original paper on the

Königsberg bridge problem can be found in Euler [Eu53]. Di-

jkstra’s algorithm is studied in Gibbons [Gi85]; Liu [Li85]; and

Reingold, Nievergelt, and Deo [ReNiDe77]. Dijkstra’s original

paper can be found in [Di59]. A proof of Kuratowski’s theorem

can be found in Harary [Ha69] and Liu [Li68]. Crossing num-

bers and thicknesses of graphs are studied in Chartrand, Lesniak,

and Zhang [ChLeZh05]. References for graph coloring and the

four-color theorem are included in Barnette [Ba83] and Saaty and

Kainen [SaKa86]. The original conquest of the four-color theo-

rem is reported in Appel and Haken [ApHa76]. Applications of

graph coloring are described by Roberts and Tesman [RoTe03].

The history of graph theory is covered in Biggs, Lloyd, and Wilson

[BiLlWi86]. Interconnection networks for parallel processing are

discussed in Akl [Ak89] and Siegel and Hsu [SiHs88].

CHAPTER 11

Trees are studied in Deo [De74], Grimaldi [Gr03], Knuth [Kn97a],

Roberts and Tesman [RoTe03], and Tucker [Tu06]. The use of

trees in computer science is described by Gotlieb and Gotlieb

[GoGo78], Horowitz and Sahni [HoSa82], and Knuth [Kn97a,

98]. Roberts and Tesman [RoTe03] covers applications of trees to

many different areas. Prefix codes and Huffman coding are cov-

ered in Hamming [Ha80]. Backtracking is an old technique; its

use to solve maze puzzles can be found in the 1891 book by Lu-

cas [Lu91]. An extensive discussion of how to solve problems

using backtracking can be found in Reingold, Nievergelt, and Deo

[ReNiDe77]. Gibbons [Gi85] and Reingold, Nievergelt, and

Deo [ReNiDe77] contain discussions of algorithms for construct-

ing spanning trees and minimal spanning trees. The background

and history of algorithms for finding minimal spanning trees is cov-

ered in Graham and Hell [GrHe85]. Prim and Kruskal described

their algorithms for finding minimal spanning trees in [Pr57] and

[Kr56], respectively. Sollin’s algorithm is an example of an al-

gorithm well suited for parallel processing; although Sollin never

published a description of it, his algorithm has been described by

Even [Ev73] and Goodman and Hedetniemi [GoHe77].

CHAPTER 12

Boolean algebra is studied in Hohn [Ho66], Kohavi [Ko86], and

Tremblay and Manohar [TrMa75]. Applications of Boolean al-

gebra to logic circuits and switching circuits are described by

Hayes [Ha93], Hohn [Ho66], Katz and Borriello [KaBo04], and

Kohavi [Ko86]. The original papers dealing with the minimization

of sum-of-products expansions using maps are Karnaugh [Ka53]

and Veitch [Ve52]. The Quine-McCluskey method was introduced

in McCluskey [Mc56] and Quine [Qu52] and [Qu55]. Threshold

functions are covered in Kohavi [Ko86].

CHAPTER 13

General references for formal grammars, automata theory, and

the theory of computation include Davis, Sigal, and Weyuker

[DaSiWe94]; Denning, Dennis, and Qualitz [DeDeQu81];

Hopcroft, Motwani, and Ullman [HoMoUl06]; Hopkin and Moss

[HoMo76]; Lewis and Papadimitriou [LePa97]; McNaughton

[Mc82]; and Sipser [Si06]. Mealy machines and Moore machines

were originally introduced in Mealy [Me55] and Moore [Mo56].

The original proof of Kleene’s theorem can be found in [Kl56].

Powerful models of computation, including pushdown automata

and Turing machines, are discussed in Brookshear [Br89], Hen-

nie [He77], Hopcroft and Ullman [HoUl79], Hopkin and Moss

[HoMo76], Martin [Ma03], Sipser [Si06], and Wood [Wo87]. Bar-

wise and Etchemendy [BaEt93] is an excellent introduction to Tur-

ing machines. Interesting articles about the history and application

of Turing machines and related machines can be found in Herken

[He88]. Busy beaver machines were first introduced by Rado in

[Ra62], and information about them can be found in Dewdney

[De84] and [De93], the article by Brady in Herken [He88], and in

Wood [Wo87].

APPENDIXES

A discussion of axioms for the real number and for the integers can

be found in Morash [Mo91]. Detailed treatments of exponential

and logarithmic functions can be found in calculus books such as

Apostol [Ap67], Spivak [Sp94], and Thomas and Finney [ThFi96].

Pohl and Shaw [PoSh81] use a form of pseudocode that has the

same features as those described in Appendix 3. Most textbooks

on algorithms, such as Cormen, Leierson, Rivest, and Stein [Co-

LeRiSt09] and Kleinberg and Tardos [KlTa05], use versions of

pseudocode similar to the pseudocode in this text.

REFERENCES

[AgGr06] G. Agnarsson and R. Greenlaw, Graph Theory: Mod-

eling, Applications, and Algorithms, Prentice Hall, Englewood

Cliffs, NJ, 2006.

[AhHoUl74] A.V.Aho, J. E. Hopcroft, and J. D. Ullman,TheDe-

sign and Analysis of Computer Algorithms, Addison- Wesley,

Reading, MA, 1974.

[AhUl95] Alfred V. Aho and Jeffrey D. Ullman, Foundations of

Computer Science, C Edition, Computer Science Press, New

York, 1995.

B-4 Suggested Reading

[AiZiHo09] Martin Aigner, Günter M. Ziegler, and Karl H. Hof-

mann,Proofs fromTHEBOOK, 4th ed., Springer, Berlin, 2009.

[Ak89] S. G. Akl, The Design and Analysis of Parallel Algo-

rithms, Prentice Hall, Englewood Cliffs, NJ, 1989.

[AlAr78] S. Alagic and M. A. Arbib, The Design of Well-

Structured and Correct Programs, Springer-Verlag, NewYork,

1978.

[AlWiBe00] J. M. Aldous, R. J. Wilson, and S. Best, Graphs and

Applications: An Introductory Approach, Springer, New York,

2000.

[AlSl10] R.B.J.T. Allenby and A. Slomson,How to Count: An In-

troduction to Combinatorics, 2d. ed., Chapman and Hall/CRC,

Boca Raton, Florida, 2010.

[AlSp00] Noga Alon and Joel H. Spencer, The Probabilistic

Method, 2d ed., Wiley, New York, 2000.

[An89] I. Anderson,A First Course in Combinatorial Mathemat-

ics, 2d. ed., Oxford University Press, New York, 1989.

[An79] R. B. Anderson, Proving Programs Correct, Wiley, New

York, 1979.

[Ap67] T. M. Apostol, Calculus, Vol. I, 2d ed., Wiley, New York,

1967.

[ApHa76] K. Appel and W. Haken, “Every Planar Map Is 4-

colorable,” Bulletin of the AMS, 82 (1976), 711–712.

[ArKfMo80] M. A. Arbib, A. J. Kfoury, and R. N. Moll, A Basis

for Theoretical Computer Science, Springer-Verlag, NewYork,

1980.

[AvCh90] B. Averbach and O. Chein, Problem Solving Through

Recreational Mathematics, W.H. Freeman, San Francisco,

1980.

[BaGe99] S. Baase and A. Van Gelder, Computer Algorithms:

Introduction to Design and Analysis, 3d ed., Addison-Wesley,

Reading, MA, 1999.

[Ba86] R. C. Backhouse,ProgramConstruction andVerification,

Prentice-Hall, Englewood Cliffs, NJ, 1986.

[Ba83] D. Barnette, Map Coloring, Polyhedra, and the Four-

Color Problem, Mathematical Association of America, Wash-

ington, DC, 1983.

[BaEt93] Jon Barwise and John Etchemendy, Turing’sWorld 3.0

for the Macintosh, CSLI Publications, Stanford, CA, 1993.

[Be80] F. S. Beckman, Mathematical Foundations of Program-

ming, Addison-Wesley, Reading, MA, 1980.

[BeCh71] M. Behzad and G. Chartrand, Introduction to the

Theory of Graphs, Allyn & Bacon, Boston, 1971.

[BeQu03] A. Benjamin and J. J. Quine,Proofs that Really Count,

Mathematical Association of America, Washington, DC, 2003.

[Be86] J. Bentley, Programming Pearls, Addison-Wesley, Read-

ing, MA, 1986.

[BeFr72] G. Berman and K. D. Fryer, Introduction to Combina-

torics, Academic Press, New York, 1972.

[BiLlWi99] N. L. Biggs, E. K. Lloyd, and R. J. Wilson, Graph

Theory 1736–1936, Oxford University Press, Oxford, England,

1999.

[BoAr74] L. S. Bobrow and M. A. Arbib, Discrete Mathematics,

Saunders, Philadelphia, 1974.

[Bo00] K. P. Bogart, Introductory Combinatorics, 3d ed. Aca-

demic Press, San Diego, 2000.

[Bo07] M. Bona, Enumerative Combinatorics, McGraw-Hill,

New York, 2007.

[BoMu10] J. A. Bondy and U. S. R. Murty, Graph Theory with

Applications, Springer, New York, 2010.

[Bo04] P. Bork, L. J. Jensen, C. von Mering, A. K. Ramani, I.

Lee, and E. M. Marcotte, “Protein interaction networks from

yeast to human,” Current Opinion in Structural Biology, 14

(2004), 292–299.

[BoMa86] R. C. Bose and B. Manvel, Introduction to Combina-

torial Theory, Wiley, New York, 1986.

[Bo00] A. Brodera, R. Kumar, F. Maghoula, P. Raghavan, S. Ra-

jagopalan, R. Statac, A. Tomkins, and Janet Wiener, “Graph

structure in the Web,” Computer Networks, 33 (2000), 309–

320.

[Br89] J. G. Brookshear, Theory of Computation, Benjamin

Cummings, Redwood City, CA, 1989.

[Br09] R. A. Brualdi, Introductory Combinatorics, 5th ed.,

Prentice-Hall, Englewood Cliffs, NJ, 2009.

[BuHa90] F. Buckley and F. Harary, Distance in Graphs,

Addison-Wesley, Redwood City, CA, 1990.

[Ca79] L. Carmony, “Odd Pie Fights,” Mathematics Teacher 72

(January, 1979), 61–64.

[Ca78] L. Carroll, Symbolic Logic, Crown, New York, 1978.

[ChGhMo79] V. Chachra, P. M. Ghare, and J. M. Moore, Ap-

plications of Graph Theory Algorithms, North-Holland, New

York, 1979.

[Ch77] G. Chartrand, Graphs as Mathematical Models, Prindle,

Weber & Schmidt, Boston, 1977.

[ChLeZh10] G. Chartrand, L. Lesniak, and P. Zhang, Graphs

and Digraphs, 5th ed., Chapman and Hall/CRC, Boca Raton,

2010.

[ChOe93] G. Chartrand and O. R. Oellermann, Applied Algo-

rithmic Graph Theory, McGraw-Hill, New York, 1993.

[ChZh04] G. Chartrand and P. Zhang, Introduction to Graph

Theory, McGraw-Hill, New York, 2004.

[ClMe94] W. F. Clocksin and C. S. Mellish, Programming in

Prolog, 4th ed., Springer-Verlag, New York, 1994.

[Co78] D. I. A. Cohen, Basic Techniques of Combinatorial The-

ory, Wiley, New York, 1978.

[Co05] D. Comer, Internetworking with TCP/IP, Principles, Pro-

tocols, and Architecture, Vol. 1, 5th ed., Prentice-Hall, Engle-

wood Cliffs, NJ, 2005.

[CoLeRiSt09] T. H. Cormen, C. E. Leierson, R. L. Rivest, and

C. Stein, Introduction to Algorithms, 3rd ed., MIT Press, Cam-

bridge, MA, 2009.

[CrPo10] Richard Crandall and Carl Pomerance, 2d ed., Prime

Numbers: AComputational Perspective, Springer-Verlag, New

York, 2010.

Suggested Reading B-5

[Cu05] Antonella Cupillari, The Nuts and Bolts of Proofs, 3d ed.,

Academic Press, San Diego, 2005.

[Cu84] C.W. Curtis,LinearAlgebra, Springer-Verlag, NewYork,

1984.

[Da82] C. J. Date, An Introduction to Database Systems, 3d ed.,

Addison-Wesley, Reading, MA, 1982.

[DaSiWe94] M. Davis, R. Sigal, and E. J. Weyuker, Computabil-

ity, Complexity, and Languages, 2d ed., Academic Press, San

Diego, 1994.

[Da10] T. Davis, “The Mathematics of Sudoku,” November,

2010, available at http://geometer.org/mathcircles/sudoku.pdf

[De82] D. E. R. Denning, Cryptography and Data Security,

Addison-Wesley, Reading, MA, 1982.

[DeDeQu81] P. J. Denning, J. B. Dennis, and J. E. Qualitz, Ma-

chines, Languages, and Computation, Prentice-Hall, Engle-

wood Cliffs, NJ, 1981.

[De74] N. Deo, Graph Theory with Applications to Engineering

and Computer Science, Prentice-Hall, Englewood Cliffs, NJ,

1974.

[DeOr11] S. L. Devadoss and J. O’Rourke,Discrete andCompu-

tational Geometry, Princeton University Press, Princeton, NJ,

2011.

[De02] K. Devlin, The Millennium Problems: The Seven Great-

est Unsolved Mathematical Puzzles of Our Time, Basic Book,

New York, 2002.

[De84] A. K. Dewdney, “Computer Recreations,” Scientific

American, 251, no. 2 (August 1984), 19–23; 252, no. 3 (March

1985), 14–23; 251, no. 4 (April 1985), 20–30.

[De93] A. K. Dewdney, The New Turing Omnibus: Sixty-Six Ex-

cursions in Computer Science, W. H. Freeman, New York,

1993.

[Di59] E. Dijkstra, “Two Problems in Connexion with Graphs,”

Numerische Mathematik, 1 (1959), 269–271.

[EaKl10] D. Easley and J. Kleinberg, Networks, Crowds, and

Markets: Reasoning About a Highly Connected World, Cam-

bridge University Press, New York, 2010.

[Eu53] L. Euler, “The Koenigsberg Bridges,” Scientific Ameri-

can, 189, no. 1 (July 1953), 66–70.

[Ev73] S. Even, Algorithmic Combinatorics, Macmillan, New

York, 1973.

[Ev79] S. Even, Graph Algorithms, Computer Science Press,

Rockville, MD, 1979.

[Fe68] W. Feller, An Introduction to Probability Theory and Its

Applications, Vol. 1, 3d ed., Wiley, New York, 1968.

[Fo92] L. R. Foulds, Graph Theory Applications, Springer-

Verlag, New York, 1992.

[GaJo79] Michael R. Garey and David S. Johnson, Computers

and Intractability: A Guide to NP-Completeness, Freeman,

New York, 1979.

[Gi85] A. Gibbons, Algorithmic Graph Theory, Cambridge Uni-

versity Press, Cambridge, England, 1985.

[Gi70] C. C. Gillispie, ed., Dictionary of Scientific Biography,

Scribner’s, New York, 1970.

[Go94] S. W. Golomb, Polyominoes, Princeton University Press,

Princeton, NJ, 1994.

[Go84] G. H. Gonnet, Handbook of Algorithms and Data Struc-

tures, Addison-Wesley, London, 1984.

[GoHe77] S. E. Goodman and S. T. Hedetniemi, Introduction

to the Design and Analysis of Algorithms, McGraw-Hill, New

York, 1977.

[GoGo78] C. C. Gotlieb and L. R. Gotlieb,DataTypes and Struc-

tures, Prentice-Hall, Englewood Cliffs, NJ, 1978.

[GrHe85] R. L. Graham and P. Hell, “On the History of the Min-

imum Spanning Tree Problem,” Annals of the History of Com-

puting, 7 (1985), 43–57.

[GrKnPa94] R. L. Graham, D. E. Knuth, and O. Patashnik,Con-

crete Mathematics, 2d ed., Addison-Wesley, Reading, MA,

1994.

[GrRoSp90] Ronald L. Graham, Bruce L. Rothschild, and Joel

H. Spencer, Ramsey Theory, 2d ed., Wiley, New York, 1990.

[GrWa77] J. E. Graver and M. E. Watkins, Combinatorics with

Emphasis on theTheory ofGraphs, Springer-Verlag, NewYork,

1977.

[GrSc93] D. Gries and F. B. Schneider, A Logical Approach to

Discrete Math, Springer-Verlag, New York, 1993.

[Gr03] R. P. Grimaldi, Discrete and Combinatorial Mathemat-

ics, 5th ed., Addison-Wesley, Reading, MA, 2003.

[Gr07] J. L. Gross, Combinatorial Methods with Computer Ap-

plications, Chapman and Hall/CRC, Boca Raton, FL, 2007.

[GrYe05] J. L. Gross and J. Yellen, Graph Theory and Its Appli-

cations, 2d ed., CRC Press, Boca Raton, FL, 2005.

[GrYe03] J. L. Gross and J. Yellen, Handbook of Graph Theory,

CRC Press, Boca Raton, FL, 2003.

[Gr90] Jerrold W. Grossman, Discrete Mathematics: An Intro-

duction to Concepts, Methods, and Applications, Macmillan,

New York, 1990.

[Gr97] J. Gruska, Foundations of Computing, International

Thomsen Computer Press, London, 1997.

[Gu10] D. A. Gunderson, Handbook of Mathematical Induction,

Chapman and Hall/CRC, Boca Raton, Florida, 2010.

[Ha60] P. R. Halmos, Naive Set Theory, D. Van Nostrand, New

York, 1960.

[Ha80] R. W. Hamming, Coding and Information Theory,

Prentice-Hall, Englewood Cliffs, NJ, 1980.

[Ha69] F. Harary,GraphTheory,Addison-Wesley, Reading, MA,

1969.

[HaWrWiHe08] G. H. Hardy, E. M. Wright, A. Wiles, and R.

Heath-Brown, An Introduction to the Theory of Numbers, 6th

ed., Oxford University Press, USA, New York, 2008.

[Ha87] D. Harel, Algorithmics, The Spirit of Computing,

Addison-Wesley, Reading, MA, 1987.

[Ha00a] Brian Hayes, “Graph-Theory in Practice, Part I,” Amer-

ican Scientist, 88, no. 1 (2000), 9–13.

[Ha00b] Brian Hayes, “Graph-Theory in Practice, Part II,”Amer-

ican Scientist, 88, no. 2 (2000), 104–109.

B-6 Suggested Reading

[Ha93] John P. Hayes, Introduction to Digital Logic Design,

Addison-Wesley, Reading, MA, 1993.

[He77] F. Hennie, Introduction to Computability, Addison-

Wesley, Reading, MA, 1977.

[He88] R. Herken, The Universal Turing Machine, A Half-

Century Survey, Oxford University Press, New York, 1988.

[Ho76] C. Ho, “Decomposition of a Polygon into Triangles,”

Mathematical Gazette, 60 (1976), 132–134.

[Ho99] D. Hofstadter, Gödel, Escher, Bach: An Internal Golden

Braid, Basic Books, New York, 1999.

[Ho66] F. E. Hohn,Applied BooleanAlgebra, 2d ed., Macmillan,

New York, 1966.

[HoMoUl06] J. E. Hopcroft, R Motwani, and J. D. Ullman, In-

troduction to Automata Theory, Languages, and Computation,

3d ed., Addison-Wesley, Boston, MA, 2006.

[HoMo76] D. Hopkin and B. Moss, Automata, Elsevier, North-

Holland, New York, 1976.

[HoSa82] E. Horowitz and S. Sahni, Fundamentals of Computer

Algorithms, Computer Science Press, Rockville, MD, 1982.

[Hu82] T.C. Hu, Combinatorial Algorithms, Addison-Wesley,

Reading, MA, 1982.

[Hu07] W. Huber, V. J. Carey, L. Long, S. Falcon, and R. Gen-

tleman, “Graphs in molecular biology,” BMC Bioinformatics,

8 (Supplement 6) (2007).

[HuRy04] M. Huth and M. Ryan, Logic in Computer Science, 2d

ed., Cambridge University Press, Cambridge, England, 2004.

[In93] D. C. Ince,An Introduction to Discrete Mathematics, For-

mal System Specification, and Z, 2d ed., Oxford, New York,

1993.

[KaMo64] D. Kalish and R. Montague,Logic:Techniques ofFor-

mal Reasoning, Harcourt, Brace, Jovanovich, NewYork, 1964.

[Ka53] M. Karnaugh, “The Map Method for Synthesis of Com-

binatorial Logic Circuits,” Transactions of the AIEE, part I, 72

(1953), 593–599.

[KaBo04] R. H. Katz and G. Borriello, Contemporary Logic De-

sign, Prentice-Hall, Englewood Cliffs, NJ, 2004.

[Kl56] S. C. Kleene, “Representation of Events by Nerve Nets,”

in Automata Studies, 3–42, Princeton University Press, Prince-

ton, NJ, 1956.

[KlTa05] J. Kleinberg and E. Tardos, Algorithm Design,

Addison-Wesley, Boston, 2005

[Kn77] D. E. Knuth, “Algorithms,” Scientific American, 236, no.

4 (April 1977), 63–80.

[Kn97a] D. E. Knuth, The Art of Computer Programming, Vol.

I: Fundamental Algorithms, 3d ed., Addison-Wesley, Reading,

MA, 1997.

[Kn97b] D. E. Knuth,TheArt of Computer Programming,Vol. II:

Seminumerical Algorithms, 3d ed., Addison-Wesley, Reading,

MA, 1997.

[Kn98] D. E. Knuth,TheArt of Computer Programming,Vol. III:

Sorting and Searching, 2d ed., Addison-Wesley, Reading, MA,

1998.

[KoKr04] W. Kocay and D. L. Kreher, Graph Algorithms and

Optimization, Chapman and Hall/CRC, Boca Raton, Florida,

2004.

[Ko86] Z. Kohavi, Switching andFiniteAutomataTheory, 2d ed.,

McGraw-Hill, New York, 1986.

[KrSt98] Donald H. Kreher and Douglas R. Stinson,Combinato-

rial Algorithms: Generation, Enumeration, and Search, CRC

Press, Boca Raton, FL, 1998.

[Kr87] L. Kronsjö,Algorithms: Their Complexity and Efficiency,

2d ed., Wiley, New York, 1987.

[Kr56] J. B. Kruskal, “On the Shortest Spanning Subtree of a

Graph and the Traveling Salesman Problem,” Proceedings of

the AMS, 1 (1956), 48–50.

[La10] J. C. Lagarias (ed.), The Ultimate Challenge: The 3x + 1

Problem, The American Mathematical Society, Providence,

2010.

[Le06] A. V. Levitin, Introduction to the Design and Analysis of

Algorithms, 2d, ed., Addison-Wesley, Boston, MA, 2006.

[Le64] D. H. Lehmer, “The Machine Tools of Combinatorics,” in

E. F. Beckenbach (ed.), Applied Combinatorial Mathematics,

Wiley, New York, 1964.

[Le77] W. J. LeVeque, Fundamentals of Number Theory,

Addison-Wesley, Reading, MA, 1977.

[LePa97] H. R. Lewis and C. H. Papadimitriou, Elements of

the Theory of Computation, 2d ed., Prentice-Hall, Englewood

Cliffs, NJ, 1997.

[LiLi81] Y. Lin and S. Y. T. Lin, Set Theory with Applications,

2d ed., Mariner, Tampa, FL, 1981.

[Li68] C. L. Liu, Introduction to Combinatorial Mathematics,

McGraw-Hill, New York, 1968.

[Li85] C. L. Liu, Elements of Discrete Mathematics, 2d ed.,

McGraw-Hill, New York, 1985.

[Lo79] L. Lovász, Combinatorial Problems and Exercises,

North-Holland, Amsterdam, 1979.

[Lu91] E. Lucas, Récréations Mathématiques, Gauthier-Villars,

Paris, 1891.

[Ma89] U. Manber, Introduction to Algorithms: A Creative Ap-

proach, Addison-Wesley, Reading, MA, 1989.

[Ma91] G. E. Martin,Polyominoes:AGuide toPuzzles andProb-

lems inTiling, MathematicalAssociation ofAmerica,Washing-

ton, DC, 1991.

[Ma03] J. C. Martin, Introduction to Languages and the Theory

of Computation, 3d ed., McGraw-Hill, NewYork, 2003.

[Ma93] H. F. Mattson, Jr., Discrete Mathematics with Applica-

tions, Wiley, New York, 1993.

[Mc56] E. J. McCluskey, Jr., “Minimization of Boolean Func-

tions,” Bell System Technical Journal, 35 (1956), 1417–1444.

[Mc90] J.A. McHugh,AlgorithmicGraphTheory, Prentice-Hall,

Englewood Cliffs, NJ, 1990.

[Mc82] R. McNaughton, Elementary Computability, Formal

Languages, and Automata, Prentice-Hall, Englewood Cliffs,

NJ, 1982.

Suggested Reading B-7

[Me55] G. H. Mealy, “A Method for Synthesizing Sequential Cir-

cuits,” Bell System Technical Journal, 34 (1955), 1045–1079.

[Me09] E. Mendelson, Introduction to Mathematical Logic, 5th

ed., Chapman and Hall/CRC Press, Boca Raton, 2009.

[MeOoVa97] A. J. Menezes, P. C. van Oorschoot, S.A.Vanstone,

Handbook of Applied Cryptography, CRC Press, Boca Raton,

FL, 1997.

[MiRo91] J. G. Michaels and K. H. Rosen, Applications of Dis-

crete Mathematics, McGraw-Hill, New York, 1991.

[Mo69] J. R. Monk, Introduction to Set Theory, McGraw-Hill,

New York, 1969.

[Mo91] R. P. Morash,Bridge toAbstractMathematics, McGraw-

Hill, New York, 1991.

[Mo56] E. F. Moore, “Gedanken-Experiments on Sequential Ma-

chines,” in Automata Studies, 129–153, Princeton University

Press, Princeton, NJ, 1956.

[Na00] Paul J. Nabin,Duelling Idiots andOther Probability Puz-

zlers, Princeton University Press, Princeton, NJ, 2000.

[Ne85] C. V. Negoita, Expert Systems and Fuzzy Systems, Ben-

jamin Cummings, Menlo Park, CA, 1985.

[Ne10] M. Newman, Networks: An Introduction, Oxford Univer-

sity Press, New York, 2010.

[NiMa95] Ulf Nilsson and Jan Maluszynski, Logic, Program-

ming, and Prolog, 2d ed., Wiley, Chichester, England, 1995.

[Or00] J. O’Rourke, Computational Geometry in C, Cambridge

University Press, New York, 2000.

[Or63] O. Ore, Graphs and Their Uses, Mathematical Associa-

tion of America, Washington, DC, 1963.

[0r88] O. Ore,Number Theory and its History, Dover, NewYork,

1988.

[PaPi01] A. Papoulis and S. U. Pillai, Probability, RandomVari-

ables, and Stochastic Processes, McGraw-Hill, New York,

2001.

[Pe87] A. Pelc, “Solution of Ulam’s Problem on Searching with

a Lie,” Journal of Combinatorial Theory, Series A, 44 (1987),

129–140.

[Pe09] M. S. Petrović,Famous Puzzles of GreatMathematicians,

American Mathematical Society, Providence, 2009.

[PoSh81] I. Pohl and A. Shaw, The Nature of Computation: An

Introduction to Computer Science, Computer Science Press,

Rockville, MD, 1981.

[Po62] George Pólya, Mathematical Discovery, Vols. 1 and 2,

Wiley, New York, 1962.

[Po71] George Pólya, How to Solve It, Princeton University

Press, Princeton, NJ, 1971.

[Po90] George Pólya, Mathematics and Plausible Reasoning,

Princeton University Press, Princeton, NJ, 1990.

[PoTaWo83] G. Pólya, R. E. Tarjan, and D. R. Woods, Notes on

Introductory Combinatorics, Birkhäuser, Boston, 1983.

[Pr57] R. C. Prim, “Shortest Connection Networks and Some

Generalizations,” Bell System Technical Journal, 36 (1957),

1389–1401.

[PuBr85] P. W. Purdom, Jr. and C. A. Brown, The Analysis of

Algorithms, Holt, Rinehart & Winston, New York, 1985.

[Qu52] W. V. Quine, “The Problem of Simplifying Truth Func-

tions,” American Mathematical Monthly, 59 (1952), 521–531.

[Qu55] W.V. Quine, “A Way to Simplify Truth Functions,”Amer-

ican Mathematical Monthly, 62 (1955), 627–631.

[Ra62] T. Rado, “On Non-Computable Functions,” Bell System

Technical Journal (May 1962), 877–884.

[Ra92] Gregory J. E. Rawlins, Compared toWhat? An Introduc-

tion to the Analysis of Algorithms, Computer Science Press,

New York, 1992.

[ReNiDe77] E. M. Reingold, J. Nievergelt, and N. Deo, Combi-

natorial Algorithms: Theory and Practice, Prentice-Hall, En-

glewood Cliffs, NJ, 1977.

[Ri58] J. Riordan, An Introduction to Combinatorial Analysis,

Wiley, New York, 1958.

[Ri68] J. Riordan, Combinatorial Identities, Wiley, New York,

1968.

[RiShAd78] R. Rivest, A. Shamir, and L. Adleman, “A Method

for Obtaining Digital Signatures and Public-Key Cryptosys-

tems,” Communications of the Association for Computing Ma-

chinery, 31, no. 2 (1978), 120–128.

[Ro86] E. S. Roberts, Thinking Recursively, Wiley, New York,

1986.

[Ro76] F. S. Roberts, Discrete Mathematics Models, Prentice-

Hall, Englewood Cliffs, NJ, 1976.

[RoTe03] F. S. Roberts and B. Tesman, Applied Combinatorics,

2d ed., Prentice-Hall, Englewood Cliffs, NJ, 2003.

[RoFo80] D. F. Robinson and L. R. Foulds, Digraphs: Theory

and Techniques, Gordon and Breach, New York, 1980.

[Ro84] J. S. Rohl, Recursion via Pascal, Cambridge University

Press, Cambridge, England, 1984.

[Ro10] K. H. Rosen, Elementary Number Theory and Its Appli-

cations, 6th ed., Pearson, Boston, 2010.

[Ro00] K. H. Rosen, Handbook of Discrete and Combinatorial

Mathematics, CRC Press, Boca Raton, FL, 2000.

[Ro09] Jason Rosenhouse, The Monty Hall Problem, Oxford

University Press, New York, 2009.

[Ro09a] Sheldon M. Ross, A First Course in Probability Theory,

7th ed., Prentice-Hall, Englewood Cliffs, NJ, 2009.

[Ro02] Sheldon M. Ross, Probability Models for Computer Sci-

ence, Harcourt/Academic Press, San Diego, 2002.

[Ro59] B. Roy, “Transitivité et Connexité,”C.R. Acad. Sci. Paris,

249 (1959), 216.

[Ry63] H. Ryser,CombinatorialMathematics, MathematicalAs-

sociation of America, Washington, DC, 1963.

[SaKa86] T. L. Saaty and P. C. Kainen,The Four-Color Problem:

Assaults and Conquest, Dover, New York, 1986.

[Sa85] S. Sahni, Concepts in Discrete Mathematics, Camelot,

Minneapolis, 1985.

[Sa00] K. Sayood, Introduction to Data Compression, 2d ed.,

Academic Press, San Diego, 2000.

B-8 Suggested Reading

[SePi89] J. Seberry and J. Pieprzyk, Cryptography: An Introduc-

tion to Computer Security, Prentice-Hall, Englewood Cliffs,

NJ, 1989.

[Se03] R. Sedgewick, Algorithms in Java, 3d ed., Addison-

Wesley, Reading, MA, 2003.

[SiHs88] H. J. Siegel andW. T. Hsu, “Interconnection Networks,”

in Computer Architectures, V. M. Milutinovic (ed.), North-

Holland, New York, 1988, pp. 225–264.

[Si99] S. Singh, The Code Book, Doubleday, New York, 1999.

[Si66] A. Sinkov, Elementary Cryptanalysis, Mathematical As-

sociation of America, Washington, DC, 1966.

[Si06] M. Sipser, Introduction to the Theory of Computation,

Course Technology, Boston, 2006

[SlPl95] N. J. A. Sloane and S. Plouffe, The Encyclopedia of

Integer Sequences, Academic Press, New York, 1995.

[Sm78] Raymond Smullyan, What Is the Name of This Book?:

The Riddle of Dracula and Other Logical Puzzles, Prentice-

Hall, Englewood Cliffs, NJ, 1978.

[Sm92] Raymond Smullyan, Lady or the Tiger?AndOther Logic

Puzzles Including aMathematicalNovelThat FeaturesGodel’s

Great Discovery, Times Book, New York, 1992.

[Sm98] Raymond Smullyan, The Riddle of Scheherazade: And

Other Amazing Puzzles, Ancient & Modern, Harvest Book,

Fort Washington, PA, 1998.

[So09] Daniel Solow, How to Read and Do Proofs: An Introduc-

tion to Mathematical Thought Processes, 5th ed., Wiley, New

York, 2009.

[So61] I. S. Sominskii,Method ofMathematical Induction, Blais-

dell, New York, 1961.

[Sp94] M. Spivak, Calculus, 3d ed., Publish or Perish, Wilming-

ton, DE, 1994.

[StMc77] D. Stanat and D. F. McAllister, Discrete Mathemat-

ics in Computer Science, Prentice-Hall, Englewood Cliffs, NJ,

1977.

[St78] H. M. Stark, An Introduction to Number Theory, MIT

Press, Cambridge, MA, 1978.

[St05] Douglas R. Stinson, Cryptography, Theory and Practice,

3d ed., Chapman and Hall/CRC, Boca Raton, FL, 2005.

[St94] P. K. Stockmeyer, “Variations on the Four-Post Tower of

Hanoi Puzzle,” Congressus Numerantrum 102 (1994), 3–12.

[St74] R. R. Stoll, Sets, Logic, and Axiomatic Theories, 2d ed.,

W. H. Freeman, San Francisco, 1974.

[St09] G. W. Strang, LinearAlgebra and Its Applications, 4th ed.,

Wellesley Cambridge Press, Wellesley, MA, 2009

[Su87] P. Suppes, Introduction to Logic, D.Van Nostrand, Prince-

ton, NJ, 1987.

[Ta83] R. E. Tarjan, Data Structures and Network Algorithms,

Society for Industrial and Applied Mathematics, Philadelphia,

1983.

[ThFi96] G. B. Thomas and R. L. Finney, Calculus and Analytic

Geometry, 9th ed., Addison-Wesley, Reading, MA, 1996.

[TrMa75] J. P. Tremblay and R. P. Manohar, Discrete Math-

ematical Structures with Applications to Computer Science,

McGraw-Hill, New York, 1975.

[Tu06] Alan Tucker,Applied Combinatorics, 5th ed., Wiley, New

York, 2006.

[Ve52] E. W. Veitch, “A Chart Method for Simplifying Truth

Functions,” Proceedings of the ACM (1952), 127–133.

[Ve06] David Velleman,How to Prove It: A StructuredApproach,

Cambridge University Press, New York, 2006.

[Vi71] N. Y. Vilenkin, Combinatorics, Academic Press, New

York, 1971.

[Wa80] M. Wand, Induction, Recursion, and Programming,

North-Holland, New York, 1980.

[Wa62] S. Warshall, “A Theorem on Boolean Matrices,” Journal

of the ACM, 9 (1962), 11–12.

[We00] D. B. West, Introduction to Graph Theory, 2d ed., Pren-

tice Hall, Englewood Cliffs, NJ, 2000.

[Wi02] Herbert S. Wilf, Algorithms and Complexity, 2d ed., A.

K. Peters, Natick, MA, 2002.

[Wi85] S. G. Williamson, Combinatorics for Computer Science,

Computer Science Press, Rockville, MD, 1985.

[Wi85a] R. J. Wilson, Introduction to Graph Theory, 3d ed.,

Longman, Essex, England, 1985.

[WiBe79] R. J. Wilson and L. W. Beineke,Applications of Graph

Theory, Academic Press, London, 1979.

[WiWa90] R. J. Wilson and J. J. Watkins, Graphs, An Introduc-

tory Approach, Wiley, New York, 1990.

[Wi76] N. Wirth, Algorithms + Data Structures = Programs,

Prentice-Hall, Englewood Cliffs, NJ, 1976.

[Wi84] N. Wirth, “Data Structures and Algorithms,” Scientific

American, 251 (September 1984), 60–69.

[Wo98] Robert S. Wolf,Proof, Logic, and Conjecture: TheMath-

ematician’s Toolbox, W. H. Freeman, New York, 1998.

[Wo87] D. Wood, Theory of Computation, Harper & Row, New

York, 1987.

[Zd05] J. Zdziarski, Ending Spam: Bayesian Content Filtering

and the Art of Statistical Language Classification, No Starch

Press, San Francisco, 2005.

[Zi91] H. J. Zimmermann,Fuzzy Set Theory and ItsApplications,

2d ed., Kluwer, Boston, 1991.

Answers to Odd-Numbered Exercises

CHAPTER 1

Section 1.1

1. a) Yes, T b) Yes, F c) Yes, T d) Yes, F e) No f) No

3. a) Mei does not have an MP3 player. b) There is pollution

in New Jersey. c) 2+ 1 = 3. d) The summer in Maine is not

hot or it is not sunny. 5. a) Steve does not have more than

100 GB free disk space on his laptop b) Zach does not block

e-mails from Jennifer, or he does not block texts from Jennifer

c) 7 · 11 · 13 = 999 d) Diane did not ride her bike 100 miles

on Sunday 7. a) F b) T c) T d) T e) T 9. a) Sharks have

not been spotted near the shore. b) Swimming at the New

Jersey shore is allowed, and sharks have been spotted near the

shore. c) Swimming at the New Jersey shore is not allowed,

or sharks have been spotted near the shore. d) If swimming

at the New Jersey shore is allowed, then sharks have not been

spotted near the shore. e) If sharks have not been spotted near

the shore, then swimming at the New Jersey shore is allowed.

f) If swimming at the New Jersey shore is not allowed, then

sharks have not been spotted near the shore. g) Swimming

at the New Jersey shore is allowed if and only if sharks have

not been spotted near the shore. h) Swimming at the New

Jersey shore is not allowed, and either swimming at the New

Jersey shore is allowed or sharks have not been spotted near

the shore. (Note that we were able to incorporate the paren-

theses by using the word “either” in the second half of the

sentence.) 11. a) p ∧ q b) p ∧ ¬q c) ¬p ∧ ¬q d) p∨ q
e) p→ q f) (p ∨ q) ∧ (p→¬q) g) q ↔ p 13. a) ¬p
b) p ∧¬q c) p→ q d) ¬p→¬q e) p→ q f) q ∧¬p
g) q→ p 15. a) r∧¬p b) ¬p∧q∧r c) r→ (q ↔¬p)
d) ¬ q∧¬p∧ r e) (q→(¬r ∧¬p))∧¬((¬r ∧¬p)→ q)

f) (p ∧ r) → ¬q 17. a) False b) True c) True d) True

19. a) Exclusive or: You get only one beverage. b) Inclusive

or: Long passwords can have any combination of symbols.

c) Inclusive or: A student with both courses is even more qual-

ified. d) Either interpretation possible; a traveler might wish

to pay with a mixture of the two currencies, or the store may

not allow that. 21. a) Inclusive or: It is allowable to take

discrete mathematics if you have had calculus or computer

science, or both. Exclusive or: It is allowable to take discrete

mathematics if you have had calculus or computer science,

but not if you have had both. Most likely the inclusive or is

intended. b) Inclusive or: You can take the rebate, or you can

get a low-interest loan, or you can get both the rebate and a

low-interest loan. Exclusive or: You can take the rebate, or

you can get a low-interest loan, but you cannot get both the

rebate and a low-interest loan. Most likely the exclusive or is

intended. c) Inclusive or: You can order two items from col-

umn A and none from column B, or three items from column

B and none from column A, or five items including two from

column A and three from column B. Exclusive or: You can

order two items from column A or three items from column

B, but not both. Almost certainly the exclusive or is intended.

d) Inclusive or: More than 2 feet of snow or windchill below

−100, or both, will close school. Exclusive or: More than 2

feet of snow or windchill below−100, but not both, will close

school. Certainly the inclusive or is intended. 23. a) If the

wind blows from the northeast, then it snows. b) If it stays

warm for a week, then the apple trees will bloom. c) If the Pis-

tons win the championship, then they beat the Lakers. d) If

you get to the top of Long’s Peak, then you must have walked

8 miles. e) If you are world-famous, then you will get tenure

as a professor. f) If you drive more than 400 miles, then you

will need to buy gasoline. g) If your guarantee is good, then

you must have bought your CD player less than 90 days ago.

h) If the water is not too cold, then Jan will go swimming.

25. a) You buy an ice cream cone if and only if it is hot out-

side. b) You win the contest if and only if you hold the only

winning ticket. c) You get promoted if and only if you have

connections. d) Your mind will decay if and only if you watch

television. e) The train runs late if and only if it is a day I

take the train. 27. a) Converse: “I will ski tomorrow only

if it snows today.” Contrapositive: “If I do not ski tomorrow,

then it will not have snowed today.” Inverse: “If it does not

snow today, then I will not ski tomorrow.” b) Converse: “If I

come to class, then there will be a quiz.” Contrapositive: “If I

do not come to class, then there will not be a quiz.” Inverse:

“If there is not going to be a quiz, then I don’t come to class.”

c) Converse: “A positive integer is a prime if it has no divisors

other than 1 and itself.” Contrapositive: “If a positive integer

has a divisor other than 1 and itself, then it is not prime.” In-

verse: “If a positive integer is not prime, then it has a divisor

other than 1 and itself.” 29. a) 2 b) 16 c) 64 d) 16

31. a) p ¬p p ∧ ¬p

T F F
F T F

b) p ¬p p ∨ ¬p

T F T
F T T

c) p q ¬q p ∨ ¬q (p ∨ ¬q)→ q

T T F T T
T F T T F
F T F F T
F F T T F

d) p q p ∨ q p ∧ q (p ∨ q)→ (p ∧ q)

T T T T T
T F T F F
F T T F F
F F F F T

S-1

S-2 Answers to Odd-Numbered Exercises

e) (p→ q)↔

p q p→ q ¬q ¬p ¬q → ¬p (¬q → ¬p)

T T T F F T T
T F F T F F T
F T T F T T T
F F T T T T T

f) (p→ q)→

p q p→ q q → p (q → p)

T T T T T
T F F T T
F T T F F
F F T T T

33. For parts (a), (b), (c), (d), and (f) we have this table.

p q (p ∨ q)→ (p ⊕ q) (p ⊕ q)→ (p ∧ q) (p ∨ q)⊕ (p ∧ q) (p↔ q)⊕ (¬p↔ q) (p ⊕ q)→ (p ⊕¬q)

T T F T F T T
T F T F T T F
F T T F T T F
F F T T F T T

For part (e) we have this table.

p q r ¬p ¬r p↔ q ¬p↔ ¬r (p↔ q)⊕ (¬p↔ ¬r)

T T T F F T T F
T T F F T T F T
T F T F F F T T
T F F F T F F F
F T T T F F F F
F T F T T F T T
F F T T F T F T
F F F T T T T F

35. (p→ q)∨ (p→ q)∧ (p↔ q)∨ (¬p↔ ¬q)↔

p q p→ ¬q ¬p↔ q (¬p→ q) (¬p→ q) (¬p↔ q) (p↔ q)

T T F F T T T T
T F T T T F T T
F T T T T T T T
F F T F T F T T

37. (p→ q)∨ (p→ q)∧ (p↔ q)∨ (¬p↔ ¬q)↔

p q r p→ (¬q ∨ r) ¬p→ (q → r) (¬p→ r) (¬p→ r) (¬q ↔ r) (q ↔ r)

T T T T T T T T T
T T F F T T T T F
T F T T T T F T T
T F F T T T F F F
F T T T T T T F F
F T F T F T F T T
F F T T T T T T F
F F F T T T F T T

Answers to Odd-Numbered Exercises S-3

39. (p↔ q)↔

p q r s p↔ q r ↔ s (r ↔ s)

T T T T T T T
T T T F T F F
T T F T T F F
T T F F T T T
T F T T F T F
T F T F F F T
T F F T F F T
T F F F F T F
F T T T F T F
F T T F F F T
F T F T F F T
F T F F F T F
F F T T T T T
F F T F T F F
F F F T T F F
F F F F T T T

41. The first clause is true if and only if at least one ofp, q, and

r is true. The second clause is true if and only if at least one of

the three variables is false. Therefore the entire statement is

true if and only if there is at least one T and one F among the

truth values of the variables, in other words, that they don’t all

have the same truth value. 43. a) Bitwise OR is 111 1111;

bitwise AND is 000 0000; bitwise XOR is 111 1111. b) Bitwise

OR is 1111 1010; bitwise AND is 1010 0000; bitwise XOR is

0101 1010. c) Bitwise OR is 10 0111 1001; bitwise AND is

00 0100 0000; bitwise XOR is 10 0011 1001. d) Bitwise OR

is 11 1111 1111; bitwise AND is 00 0000 0000; bitwise XOR

is 11 1111 1111. 45. 0.2, 0.6 47. 0.8, 0.6 49. a) The

99th statement is true and the rest are false. b) Statements

1 through 50 are all true and statements 51 through 100 are

all false. c) This cannot happen; it is a paradox, showing that

these cannot be statements.

Section 1.2

1. e→ a 3. g → (r ∧ (¬m) ∧ (¬b)) 5. e→ (a ∧ (b ∨
p)∧ r) 7. a) q → p b) q ∧¬p c) q → p d) ¬q →¬p
9. Not consistent 11. Consistent 13. NEW AND JER-

SEY AND BEACHES, (JERSEY AND BEACHES) NOT

NEW 15. “If I were to ask you whether the right branch

leads to the ruins, would you answer yes?” 17 If the first

professor did not want coffee, then he would know that the an-

swer to the hostess’s question was “no.” Therefore the hostess

and the remaining professors know that the first professor did

want coffee. Similarly, the second professor must want coffee.

When the third professor said “no,” the hostess knows that the

third professor does not want coffee. 19. A is a knight and

B is a knave. 21. A is a knight and B is a knight. 23. A is

a knave andB is a knight. 25. A is the knight,B is the spy,C

is the knave. 27. A is the knight,B is the spy,C is the knave.

29. Any of the three can be the knight, any can be the spy, any

can be the knave. 31. No solutions 33. In order of de-

creasing salary: Fred, Maggie, Janice 35. The detective can

determine that the butler and cook are lying but cannot deter-

mine whether the gardener is telling the truth or whether the

handyman is telling the truth. 37. The Japanese man owns

the zebra, and the Norwegian drinks water. 39. One honest,

49 corrupt 41. a) ¬(p∧(q∨¬r))b) ((¬p)∧(¬q))∨(p∧r)
43. p

r

q

p

q

r

Section 1.3

1. The equivalences follow by showing that the appropriate

pairs of columns of this table agree.

p p ∧ T p ∨ F p ∧ F p ∨ T p ∨ p p ∧ p

T T T F T T T
F F F F T F F

3. a) p q p ∨ q q ∨ p

T T T T
T F T T
F T T T
F F F F

b) p q p ∧ q q ∧ p

T T T T
T F F F
F T F F
F F F F

5. (p ∧ q)∨

p q r q ∨ r p ∧ (q ∨ r) p ∧ q p ∧ r (p ∧ r)

T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

7. a) Jan is not rich, or Jan is not happy. b) Carlos will not

bicycle tomorrow, and Carlos will not run tomorrow. c) Mei

does not walk to class, and Mei does not take the bus to class.

d) Ibrahim is not smart, or Ibrahim is not hard working.

9. a) p q p ∧ q (p ∧ q)→ p

T T T T
T F F T
F T F T
F F F T

S-4 Answers to Odd-Numbered Exercises

b) p q p ∨ q p→ (p ∨ q)

T T T T
T F T T
F T T T
F F F T

c) p q ¬p p→ q ¬p→ (p→ q)

T T F T T
T F F F T
F T T T T
F F T T T

d) p q p ∧ q p→ q (p ∧ q)→ (p→ q)

T T T T T
T F F F T
F T F T T
F F F T T

e) p q p→ q ¬(p→ q) ¬(p→ q)→ p

T T T F T
T F F T T
F T T F T
F F T F T

f) p q p→ q ¬(p→ q) ¬q ¬(p→ q)→ ¬q

T T T F F T
T F F T T T
F T T F F T
F F T F T T

11. In each case we will show that if the hypothesis is true,

then the conclusion is also. a) If the hypothesis p ∧ q is true,

then by the definition of conjunction, the conclusion p must

also be true. b) If the hypothesis p is true, by the definition

of disjunction, the conclusion p ∨ q is also true. c) If the

hypothesis¬p is true, that is, if p is false, then the conclusion

p → q is true. d) If the hypothesis p ∧ q is true, then both

p and q are true, so the conclusion p→ q is also true. e) If

the hypothesis ¬(p → q) is true, then p → q is false, so

the conclusion p is true (and q is false). f) If the hypothesis

¬(p → q) is true, then p → q is false, so p is true and q is

false. Hence, the conclusion ¬q is true. 13. That the fourth

column of the truth table shown is identical to the first column

proves part (a), and that the sixth column is identical to the

first column proves part (b).

p q p ∧ q p ∨ (p ∧ q) p ∨ q p ∧ (p ∨ q)

T T T T T T
T F F T T T
F T F F T F
F F F F F F

15. It is a tautology. 17. Each of these is true precisely when

p and q have opposite truth values. 19. The proposition

¬p ↔ q is true when ¬p and q have the same truth val-

ues, which means that p and q have different truth values.

Similarly, p ↔ ¬q is true in exactly the same cases. There-

fore, these two expressions are logically equivalent. 21. The

proposition ¬(p ↔ q) is true when p ↔ q is false, which

means that p and q have different truth values. Because this is

precisely when ¬p↔ q is true, the two expressions are logi-

cally equivalent. 23. For (p→ r)∧(q→ r) to be false, one

of the two conditional statements must be false, which hap-

pens exactly when r is false and at least one of p and q is true.

But these are precisely the cases in which p∨q is true and r is

false, which is precisely when (p ∨ q)→ r is false. Because

the two propositions are false in exactly the same situations,

they are logically equivalent. 25. For (p → r) ∨ (q → r)

to be false, both of the two conditional statements must be

false, which happens exactly when r is false and both p and

q are true. But this is precisely the case in which p ∧ q is

true and r is false, which is precisely when (p ∧ q) → r

is false. Because the two propositions are false in exactly the

same situations, they are logically equivalent. 27. This fact

was observed in Section 1 when the biconditional was first

defined. Each of these is true precisely when p and q have the

same truth values. 29. The last column is all Ts.

(p→ q)∧

(p→ q)∧ (q → r)→

p q r p→ q q → r (q → r) p→ r (p→ r)

T T T T T T T T
T T F T F F F T
T F T F T F T T
T F F F T F F T
F T T T T T T T
F T F T F F T T
F F T T T T T T
F F F T T T T T

31. These are not logically equivalent because when p, q, and

r are all false, (p → q) → r is false, but p → (q → r) is

true. 33. Many answers are possible. If we let r be true and

p, q, and s be false, then (p→ q)→ (r → s) will be false,

but (p→ r)→ (q → s) will be true. 35. a) p ∨ ¬q ∨ ¬r
b) (p∨ q ∨ r)∧ s c) (p∧T)∨(q∧F) 37. If we take duals

twice, every ∨ changes to an ∧ and then back to an ∨, every

∧ changes to an ∨ and then back to an ∧, every T changes to

an F and then back to a T, every F changes to a T and then

back to an F. Hence, (s∗)∗ = s. 39. Let p and q be equiv-

alent compound propositions involving only the operators ∧,

∨, and ¬, and T and F. Note that ¬p and ¬q are also equiv-

alent. Use De Morgan’s laws as many times as necessary to

push negations in as far as possible within these compound

propositions, changing ∨s to ∧s, and vice versa, and chang-

ing Ts to Fs, and vice versa. This shows that ¬p and ¬q are

the same as p∗ and q∗ except that each atomic proposition

pi within them is replaced by its negation. From this we can

conclude that p∗ and q∗ are equivalent because ¬p and ¬q

Answers to Odd-Numbered Exercises S-5

are. 41. (p ∧ q ∧ ¬r) ∨ (p ∧ ¬q ∧ r) ∨ (¬p ∧ q ∧ r)
43. Given a compound proposition p, form its truth table

and then write down a proposition q in disjunctive nor-

mal form that is logically equivalent to p. Because q in-

volves only ¬, ∧, and ∨, this shows that these three op-

erators form a functionally complete set. 45. By Exercise

43, given a compound proposition p, we can write down a

proposition q that is logically equivalent to p and involves

only ¬, ∧, and ∨. By De Morgan’s law we can eliminate all

the ∧’s by replacing each occurrence of p1 ∧ p2 ∧ · · · ∧ pn
with ¬(¬p1 ∨ ¬p2 ∨ · · · ∨ ¬pn). 47. ¬(p ∧ q) is true

when either p or q, or both, are false, and is false

when both p and q are true. Because this was the defi-

nition of p | q, the two compound propositions are logi-

cally equivalent. 49. ¬(p ∨ q) is true when both p and

q are false, and is false otherwise. Because this was

the definition of p ↓ q, the two are logically equivalent.

51. ((p ↓ p) ↓ q) ↓ ((p ↓ p) ↓ q) 53. This follows im-

mediately from the truth table or definition of p | q.

55. 16 57. If the database is open, then either the sys-

tem is in its initial state or the monitor is put in a closed

state. 59. All nine 61. a) Satisfiable b) Not satisfiable

c) Not satisfiable 63. Use the same propositions as were

given in the text for a 9 × 9 Sudoku puzzle, with the vari-

ables indexed from 1 to 4, instead of from 1 to 9, and

with a similar change for the propositions for the 2 × 2

blocks:
 1
r=0

 1
s=0

 4
n=1

 2
i=1

 2
j=1 p(2r + i, 2s + j, n)

65.
 9
i=1 p(i, j, n) asserts that column j contains the number

n, so
 9
n=1

 9
i=1 p(i, j, n) asserts that column j contains all

9 numbers; therefore
 9
j=1

 9
n=1

 9
i=1 p(i, j, n) asserts that

every column contains every number.

Section 1.4

1. a) T b) T c) F 3. a) T b) F c) F d) F 5. a) There

is a student who spends more than 5 hours every weekday

in class. b) Every student spends more than 5 hours ev-

ery weekday in class. c) There is a student who does not

spend more than 5 hours every weekday in class. d) No

student spends more than 5 hours every weekday in class.

7. a) Every comedian is funny. b) Every person is a funny

comedian. c) There exists a person such that if she or he is

a comedian, then she or he is funny. d) Some comedians

are funny. 9. a) ∃x(P (x) ∧Q(x)) b) ∃x(P (x) ∧ ¬Q(x))
c) ∀x(P (x)∨Q(x)) d) ∀x¬(P (x)∨Q(x)) 11. a) T b) T

c) F d) F e) T f) F 13. a) T b) T c) T d) T 15. a) T

b) F c) T d) F 17. a) P(0) ∨ P(1) ∨ P(2) ∨ P(3) ∨ P(4)
b) P(0)∧P(1)∧P(2)∧P(3)∧P(4) c) ¬P(0)∨¬P(1)∨
¬P(2) ∨ ¬P(3) ∨ ¬P(4) d) ¬P(0) ∧ ¬P(1) ∧
¬P(2) ∧¬P(3) ∧ ¬P(4) e) ¬(P (0) ∨ P(1) ∨ P(2) ∨
P(3) ∨ P(4)) f) ¬(P (0) ∧ P(1) ∧ P(2) ∧ P(3) ∧ P(4))
19. a) P(1)∨P(2)∨P(3)∨P(4)∨P(5) b) P(1)∧P(2)∧
P(3)∧P(4)∧P(5) c) ¬(P (1)∨P(2)∨P(3)∨P(4)∨P(5))
d) ¬(P (1) ∧ P(2) ∧ P(3) ∧ P(4) ∧ P(5)) e) (P (1) ∧
P(2) ∧ P(4) ∧ P(5)) ∨ (¬P(1) ∨ ¬P(2) ∨ ¬P(3) ∨

¬P(4) ∨ ¬P(5)) 21. Many answers are possible. a) All

students in your discrete mathematics class; all students in

the world b) All United States senators; all college football

players c) George W. Bush and Jeb Bush; all politicians

in the United States d) Bill Clinton and George W. Bush;

all politicians in the United States 23. Let C(x) be the

propositional function “x is in your class.” a) ∃xH(x) and

∃x(C(x) ∧ H(x)), where H(x) is “x can speak Hindi”

b) ∀xF(x) and ∀x(C(x)→ F(x)), where F(x) is “x is

friendly” c) ∃x¬B(x) and ∃x(C(x)∧¬B(x)), where B(x) is

“x was born in California” d) ∃xM(x) and ∃x(C(x)∧M(x)),
where M(x) is “x has been in a movie” e) ∀x¬L(x) and

∀x(C(x) → ¬L(x)), where L(x) is “x has taken a course

in logic programming” 25. Let P(x) be “x is perfect”;

let F(x) be “x is your friend”; and let the domain be all

people. a) ∀x ¬P(x) b) ¬∀x P (x) c) ∀x(F (x)→ P(x))

d) ∃x(F (x) ∧ P(x)) e) ∀x(F (x) ∧ P(x)) or (∀x F(x)) ∧
(∀x P (x)) f) (¬∀x F(x)) ∨ (∃x ¬P(x)) 27. Let Y (x) be

the propositional function that x is in your school or class, as

appropriate. a) If we let V (x) be “x has lived in Vietnam,”

then we have ∃xV (x) if the domain is just your schoolmates,

or ∃x(Y (x) ∧ V (x)) if the domain is all people. If we let

D(x, y) mean that person x has lived in country y, then we

can rewrite this last one as ∃x(Y (x)∧D(x,Vietnam)). b) If

we let H(x) be “x can speak Hindi,” then we have ∃x¬H(x)
if the domain is just your schoolmates, or ∃x(Y (x)∧¬H(x))
if the domain is all people. If we let S(x, y) mean that per-

son x can speak language y, then we can rewrite this last

one as ∃x(Y (x) ∧ ¬S(x, Hindi)). c) If we let J (x), P(x),

and C(x) be the propositional functions asserting x’s knowl-

edge of Java, Prolog, and C++, respectively, then we have

∃x(J (x) ∧ P(x) ∧ C(x)) if the domain is just your school-

mates, or ∃x(Y (x) ∧ J (x) ∧ P(x) ∧ C(x)) if the domain

is all people. If we let K(x, y) mean that person x knows

programming language y, then we can rewrite this last one as

∃x(Y (x)∧K(x, Java)∧K(x,Prolog)∧K(x, C++)). d) If

we let T (x) be “x enjoys Thai food,” then we have ∀x T (x)
if the domain is just your classmates, or ∀x(Y (x) → T (x))

if the domain is all people. If we let E(x, y) mean that

person x enjoys food of type y, then we can rewrite this

last one as ∀x(Y (x) → E(x, Thai)). e) If we let H(x)

be “x plays hockey,” then we have ∃x ¬H(x) if the do-

main is just your classmates, or ∃x(Y (x) ∧ ¬H(x)) if

the domain is all people. If we let P(x, y) mean that per-

son x plays game y, then we can rewrite this last one as

∃x(Y (x) ∧ ¬P(x, hockey)). 29. Let T (x) mean that x is a
tautology andC(x)mean that x is a contradiction. a) ∃x T (x)
b) ∀x(C(x)→ T (¬x)) c) ∃x∃y(¬T (x)∧¬C(x)∧¬T (y)∧
¬C(y)∧T (x ∨ y)) d) ∀x∀y((T (x) ∧T (y)) → T (x∧y))
31. a)Q(0,0,0) ∧ Q(0,1,0) b)Q(0,1,1) ∨Q(1, 1, 1) ∨
Q(2, 1, 1) c) ¬Q(0, 0, 0)∨¬Q(0, 0, 1) d) ¬Q(0, 0, 1)∨
¬Q(1, 0, 1)∨¬Q(2,0,1) 33. a) Let T (x) be the predicate

that x can learn new tricks, and let the domain be old dogs.

Original is ∃x T (x). Negation is ∀x ¬T (x): “No old dogs can

learn new tricks.” b) Let C(x) be the predicate that x knows

calculus, and let the domain be rabbits. Original is¬∃x C(x).

S-6 Answers to Odd-Numbered Exercises

Negation is ∃x C(x): “There is a rabbit that knows calculus.”

c) Let F(x) be the predicate that x can fly, and let the domain

be birds. Original is∀x F(x). Negation is ∃x ¬F(x): “There is

a bird who cannot fly.” d) Let T (x) be the predicate that x can

talk, and let the domain be dogs. Original is¬∃x T (x). Nega-

tion is ∃x T (x): “There is a dog that talks.” e) Let F(x) and

R(x) be the predicates that x knows French and knows Rus-

sian, respectively, and let the domain be people in this class.

Original is¬∃x(F (x)∧R(x)). Negation is ∃x(F (x)∧R(x)):
“There is someone in this class who knows French and Rus-

sian.” 35. a) There is no counterexample. b) x= 0 c) x= 2

37. a) ∀x((F (x, 25,000) ∨ S(x, 25))→ E(x)), where E(x)

is “Person x qualifies as an elite flyer in a given year,” F(x, y)

is “Person x flies more than y miles in a given year,” and

S(x, y) is “Person x takes more than y flights in a given year”

b) ∀x(((M(x)∧T (x, 3))∨(¬M(x)∧ T (x, 3.5)))→Q(x)),

where Q(x) is “Person x qualifies for the marathon,”
M(x) is “Person x is a man,” and T (x, y) is “Person x

has run the marathon in less than y hours” c)M →
((H(60) ∨ (H(45) ∧ T)) ∧ ∀y G(B, y)), where M is the

proposition “The student received a masters degree,” H(x) is

“The student took at least x course hours,” T is the proposition

“The student wrote a thesis,” and G(x, y) is “The person got

grade x or higher in course y” d) ∃x ((T (x, 21)∧G(x, 4.0)),
where T (x, y) is “Person x took more than y credit hours”

and G(x, p) is “Person x earned grade point average p”

(we assume that we are talking about one given semester)

39. a) If there is a printer that is both out of service and

busy, then some job has been lost. b) If every printer is

busy, then there is a job in the queue. c) If there is a job

that is both queued and lost, then some printer is out of ser-

vice. d) If every printer is busy and every job is queued,

then some job is lost. 41. a) (∃x F(x, 10)) → ∃x S(x),
where F(x, y) is “Disk x has more than y kilobytes of

free space,” and S(x) is “Mail message x can be saved”

b) (∃x A(x))→ ∀x(Q(x)→ T (x)), where A(x) is “Alert x

is active,”Q(x) is “Message x is queued,” and T (x) is “Mes-

sage x is transmitted” c) ∀x((x = main console)→ T (x)),
where T (x) is “The diagnostic monitor tracks the status of

system x” d) ∀x(¬L(x)→ B(x)), where L(x) is “The host

of the conference call put participant x on a special list” and

B(x) is “Participant x was billed” 43. They are not equiva-

lent. Let P(x) be any propositional function that is sometimes

true and sometimes false, and let Q(x) be any propositional

function that is always false. Then ∀x(P (x)→ Q(x)) is false

but ∀xP (x) → ∀xQ(x) is true. 45. Both statements are

true precisely when at least one of P(x) and Q(x) is true for

at least one value of x in the domain. 47. a) If A is true,

then both sides are logically equivalent to ∀xP (x). If A is

false, the left-hand side is clearly false. Furthermore, for every

x, P(x) ∧ A is false, so the right-hand side is false. Hence,

the two sides are logically equivalent. b) If A is true, then

both sides are logically equivalent to ∃x P (x). If A is false,

the left-hand side is clearly false. Furthermore, for every x,

P(x) ∧ A is false, so ∃x(P (x) ∧ A) is false. Hence, the two

sides are logically equivalent. 49. We can establish these

equivalences by arguing that one side is true if and only if the

other side is true. a) Suppose that A is true. Then for each x,

P(x)→ A is true; therefore the left-hand side is always true

in this case. By similar reasoning the right-hand side is always

true in this case. Therefore, the two propositions are logically

equivalent when A is true. On the other hand, suppose that A

is false. There are two subcases. If P(x) is false for every x,
then P(x) → A is vacuously true, so the left-hand side is

vacuously true. The same reasoning shows that the right-hand

side is also true, because in this subcase ∃xP (x) is false. For

the second subcase, suppose thatP(x) is true for some x. Then

for that x,P(x)→ A is false, so the left-hand side is false. The

right-hand side is also false, because in this subcase ∃xP (x)
is true but A is false. Thus in all cases, the two propositions

have the same truth value. b) If A is true, then both sides

are trivially true, because the conditional statements have

true conclusions. If A is false, then there are two subcases. If
P(x) is false for some x, then P(x) → A is vacuously true

for that x, so the left-hand side is true. The same reasoning

shows that the right-hand side is true, because in this subcase

∀xP (x) is false. For the second subcase, suppose that P(x) is
true for every x. Then for every x, P(x)→ A is false, so the

left-hand side is false (there is no x making the conditional

statement true). The right-hand side is also false, because it is

a conditional statement with a true hypothesis and a false con-

clusion. Thus in all cases, the two propositions have the same
truth value. 51. To show these are not logically equivalent,

let P(x) be the statement “x is positive,” and let Q(x) be

the statement “x is negative” with domain the set of integers.

Then ∃x P (x) ∧ ∃x Q(x) is true, but ∃x(P (x) ∧ Q(x)) is

false. 53. a) True b) False, unless the domain consists of

just one element c) True 55. a) Yes b) No c) juana, kiko

d) math273, cs301 e) juana, kiko 57. sibling(X,Y)

:- mother(M,X), mother(M,Y), father(F,X),

father(F,Y) 59. a) ∀x(P (x) → ¬Q(x))
b) ∀x(Q(x) → R(x)) c) ∀x(P (x) → ¬R(x)) d) The

conclusion does not follow. There may be vain profes-

sors, because the premises do not rule out the possibil-

ity that there are other vain people besides ignorant ones.

61. a) ∀x(P (x) → ¬Q(x)) b) ∀x(R(x) → ¬S(x))
c) ∀x(¬Q(x)→S(x)) d) ∀x(P (x) → ¬R(x)) e) The

conclusion follows. Suppose x is a baby. Then by the first

premise, x is illogical, so by the third premise, x is despised.

The second premise says that if x could manage a crocodile,

then x would not be despised. Therefore, x cannot manage a

crocodile.

Section 1.5

1. a) For every real number x there exists a real number y

such that x is less than y. b) For every real number x and real

number y, if x and y are both nonnegative, then their product

is nonnegative. c) For every real number x and real number

y, there exists a real number z such that xy = z. 3. a) There

Answers to Odd-Numbered Exercises S-7

is some student in your class who has sent a message to

some student in your class. b) There is some student in your

class who has sent a message to every student in your class.

c) Every student in your class has sent a message to at least

one student in your class. d) There is a student in your class

who has been sent a message by every student in your class.

e) Every student in your class has been sent a message from

at least one student in your class. f) Every student in the class

has sent a message to every student in the class. 5. a) Sarah

Smith has visited www.att.com. b) At least one person has

visited www.imdb.org. c) Jose Orez has visited at least one

website. d) There is a website that both Ashok Puri and

Cindy Yoon have visited. e) There is a person besides David

Belcher who has visited all the websites that David Belcher

has visited. f) There are two different people who have visited

exactly the same websites. 7. a) Abdallah Hussein does not

like Japanese cuisine. b) Some student at your school likes

Korean cuisine, and everyone at your school likes Mexican

cuisine. c) There is some cuisine that either Monique Ar-

senault or Jay Johnson likes. d) For every pair of distinct

students at your school, there is some cuisine that at least one

them does not like. e) There are two students at your school

who like exactly the same set of cuisines. f) For every pair

of students at your school, there is some cuisine about which

they have the same opinion (either they both like it or they

both do not like it). 9. a) ∀xL(x, Jerry) b) ∀x∃yL(x, y)
c) ∃y∀xL(x, y) d) ∀x∃y¬L(x, y) e) ∃x¬L(Lydia, x)

f) ∃x∀y¬L(y, x) g) ∃x(∀yL(y, x) ∧ ∀z((∀wL(w, z)) →
z = x)) h) ∃x∃y(x = y ∧ L(Lynn, x) ∧ L(Lynn, y) ∧
∀z(L(Lynn, z)→ (z = x ∨ z= y))) i) ∀xL(x, x) j) ∃x ∀ y
(L(x,y) ↔ x = y) 11. a) A(Lois, Professor Michaels)

b) ∀x(S(x)→ A(x, Professor Gross)) c) ∀x(F (x)→ (A(x,

Professor Miller) ∨ A(Professor Miller, x))) d) ∃x(S(x) ∧
∀y(F (y) → ¬A(x, y))) e) ∃x(F (x) ∧ ∀y(S(y) →
¬A(y,x))) f) ∀y(F (y)→∃x(S(x)∨A(x,y))) g) ∃x(F (x)∧
∀y((F (y) ∧ (y = x)) →A(x,y))) h) ∃x(S(x) ∧
∀y(F (y) → ¬A(y, x))) 13. a) ¬M (Chou, Koko)

b) ¬M(Arlene,Sarah)∧¬T (Arlene, Sarah) c) ¬M (Debo-

rah, Jose) d) ∀xM(x, Ken) e) ∀x¬T (x, Nina) f) ∀x(T -x,Avi)

∨M(x, Avi)) g) ∃x∀y(y = x → M(x, y)) h) ∃x∀y(y =
x → (M(x, y) ∨ T (x, y))) i) ∃x∃y(x = y ∧ M(x, y) ∧
M(y, x)) j) ∃xM(x, x) k) ∃x∀y(x = y → (¬M(x, y) ∧
¬T (y, x))) l) ∀x(∃y(x = y ∧ (M(y, x) ∨ T (y, x))))
m) ∃x∃y(x = y ∧ M(x, y) ∧ T (y, x)) n) ∃x∃y(x = y ∧
∀z((z = x ∧ z = y) → (M (x, z) ∨ M (y, z) ∨ T (x, z) ∨
T (y, z)))) 15. a) ∀xP (x), where P(x) is “x needs a course
in discrete mathematics” and the domain consists of all com-

puter science students b) ∃xP (x), where P(x) is “x owns

a personal computer” and the domain consists of all students
in this class c) ∀x∃yP (x, y), where P(x, y) is “x has taken

y,” the domain for x consists of all students in this class,

and the domain for y consists of all computer science classes

d) ∃x∃yP (x, y), where P(x, y) and domains are the same as

in part (c) e) ∀x∀yP (x, y), where P(x, y) is “x has been

in y,” the domain for x consists of all students in this class,

and the domain for y consists of all buildings on campus

f) ∃x∃y∀z(P (z, y) → Q(x, z)), where P(z, y) is “z is in

y” and Q(x, z) is “x has been in z”; the domain for x con-

sists of all students in the class, the domain for y consists

of all buildings on campus, and the domain of z consists of

all rooms. g) ∀x∀y∃z(P (z, y) ∧ Q(x, z)), with same en-

vironment as in part (f) 17. a) ∀u∃m(A(u, m) ∧ ∀n(n =
m → ¬A(u, n))), where A(u, m) means that user u has

access to mailbox m b) ∃p∀e(H(e) ∧ S(p, running))

→ S (kernel, working correctly), where H(e) means that

error condition e is in effect and S(x, y) means that the

status of x is y c) ∀u∀s(E(s, .edu) → A(u, s)), where

E(s, x) means that website s has extension x, and A(u, s)

means that user u can access website s d) ∃x∃y(x =
y ∧ ∀z((∀s M(z,s)) ↔ (z = x ∨ z = y))),

whereM(a, b)means that system a monitors remote server b

19. a) ∀x∀y((x < 0) ∧ (y < 0)→ (x + y < 0)) b) ¬∀x∀y
((x > 0) ∧ (y > 0) → (x − y > 0)) c) ∀x∀y (x2 + y2 ≥
(x+ y)2) d) ∀x∀y (|xy| = |x||y|) 21. ∀x∃a∃b∃c∃d ((x >
0) → x = a2 + b2 + c2 + d2), where the domain consists

of all integers 23. a) ∀x ∀y ((x < 0) ∧ (y < 0) → (xy >

0)) b) ∀x(x − x = 0) c) ∀x∃a∃b(a = b ∧ ∀c(c2 = x ↔
(c = a ∨ c = b))) d) ∀x((x < 0) → ¬∃y(x = y2))

25. a) There is a multiplicative identity for the real numbers.

b) The product of two negative real numbers is always a pos-

itive real number. c) There exist real numbers x and y such

that x2 exceeds y but x is less than y. d) The real numbers are

closed under the operation of addition. 27. a) True b) True

c) True d) True e) True f) False g) False h) True i) False

29. a) P(1,1) ∧ P(1,2) ∧ P(1,3) ∧ P(2,1) ∧ P(2,2) ∧
P(2, 3) ∧ P(3, 1) ∧ P(3, 2) ∧ P(3, 3) b) P(1, 1) ∨
P(1, 2)∨ P(1, 3)∨ P(2, 1)∨ P(2, 2)∨ P(2, 3)∨ P(3,1)∨
P(3, 2) ∨ P(3, 3) c) (P (1, 1) ∧ P(1, 2) ∧ P(1, 3)) ∨
(P (2 , 1)∧P(2, 2)∧P(2, 3))∨(P (3, 1)∧P(3, 2)∧P(3, 3))
d) (P (1, 1) ∨ P(2, 1) ∨ P(3, 1)) ∧ (P (1, 2) ∨ P(2, 2) ∨
P(3, 2))∧ (P (1, 3)∨P(2, 3)∨P(3, 3)) 31. a) ∃x∀y∃z¬T
(x, y, z) b) ∃x∀y¬P(x, y) ∧ ∃x∀y ¬ Q(x, y) c) ∃x∀y
(¬P(x, y)∨∀z¬R(x, y, z)) d) ∃x∀y(P (x, y)∧¬Q(x, y))
33. a) ∃x∃y¬P(x, y) b) ∃y∀x¬P(x, y) c) ∃y∃x(¬P(x,
y) ∧ ¬Q(x, y)) d) (∀x∀yP (x, y)) ∨ (∃x∃y¬Q(x, y))
e) ∃x(∀y∃z¬P(x,y,z) ∨ ∀z∃y¬P(x, y, z)) 35. Any do-

main with four or more members makes the statement true;

any domain with three or fewer members makes the state-

ment false. 37. a) There is someone in this class such

that for every two different math courses, these are not

the two and only two math courses this person has taken.

b) Every person has either visited Libya or has not visited

a country other than Libya. c) Someone has climbed ev-

ery mountain in the Himalayas. d) There is someone who

has neither been in a movie with Kevin Bacon nor has been

in a movie with someone who has been in a movie with

Kevin Bacon. 39. a) x = 2, y = −2 b) x = −4

c) x = 17, y = −1 41. ∀x ∀y ∀ z((x·y) ·z = x · (y · z))
43. ∀m∀b(m = 0 → ∃x(mx + b = 0 ∧ ∀w(mw + b =
0 → w = x))) 45. a) True b) False c) True

47. ¬(∃x∀yP (x, y))↔∀x(¬∀yP (x, y)) ↔ ∀x∃y¬P(x,y)
49. a) Suppose that∀xP (x) ∧ ∃xQ(x) is true. Then P(x) is

S-8 Answers to Odd-Numbered Exercises

true for all x and there is an element y for whichQ(y) is true.
BecauseP(x)∧Q(y) is true for all x and there is a y for which

Q(y) is true, ∀x∃y(P (x) ∧ Q(y)) is true. Conversely, sup-

pose that the second proposition is true. Let x be an element

in the domain. There is a y such thatQ(y) is true, so ∃xQ(x)
is true. Because ∀xP (x) is also true, it follows that the first

proposition is true. b) Suppose that ∀xP (x) ∨ ∃xQ(x) is

true. Then either P(x) is true for all x, or there exists a y for

which Q(y) is true. In the former case, P(x) ∨ Q(y) is true
for all x, so ∀x∃y(P (x) ∨ Q(y)) is true. In the latter case,

Q(y) is true for a particular y, so P(x) ∨Q(y) is true for all

x and consequently ∀x∃y(P (x) ∨Q(y)) is true. Conversely,

suppose that the second proposition is true. If P(x) is true for

all x, then the first proposition is true. If not, P(x) is false for

some x, and for this x there must be a y such thatP(x)∨Q(y)
is true. Hence, Q(y) must be true, so ∃yQ(y) is true. It fol-

lows that the first proposition must hold. 51. We will show

how an expression can be put into prenex normal form (PNF)

if subexpressions in it can be put into PNF. Then, working

from the inside out, any expression can be put in PNF. (To

formalize the argument, it is necessary to use the method of

structural induction that will be discussed in Section 5.3.) By

Exercise 45 of Section 1.4, we can assume that the proposition

uses only ∨ and ¬ as logical connectives. Now note that any

proposition with no quantifiers is already in PNF. (This is the

basis case of the argument.) Now suppose that the proposition

is of the formQxP(x), whereQ is a quantifier. BecauseP(x)

is a shorter expression than the original proposition, we can
put it into PNF. ThenQx followed by this PNF is again in PNF

and is equivalent to the original proposition. Next, suppose

that the proposition is of the form¬P . If P is already in PNF,

we slide the negation sign past all the quantifiers using the

equivalences in Table 2 in Section 1.4. Finally, assume that

proposition is of the form P ∨Q,where each of P andQ is in

PNF. If only one of P andQ has quantifiers, then we can use

Exercise 46 in Section 1.4 to bring the quantifier in front of

both. If both P and Q have quantifiers, we can use Exercise

45 in Section 1.4, Exercise 48, or part (b) of Exercise 49 to

rewrite P ∨Q with two quantifiers preceding the disjunction

of a proposition of the form R ∨ S, and then put R ∨ S into

PNF.

Section 1.6

1. Modus ponens; valid; the conclusion is true, because

the hypotheses are true. 3. a) Addition b) Simplification

c) Modus ponens d) Modus tollens e) Hypothetical syllo-

gism 5. Let w be “Randy works hard,” let d be “Randy is a

dull boy,” and let j be “Randy will get the job.” The hypothe-

ses are w,w → d, and d →¬j . Using modus ponens and the

first two hypotheses, d follows. Using modus ponens and the

last hypothesis, ¬j , which is the desired conclusion, “Randy

will not get the job,” follows. 7. Universal instantiation is

used to conclude that “If Socrates is a man, then Socrates is

mortal.” Modus ponens is then used to conclude that Socrates

is mortal. 9. a) Valid conclusions are “I did not take Tues-

day off,” “I took Thursday off,” “It rained on Thursday.” b) “I

did not eat spicy foods and it did not thunder” is a valid con-

clusion. c) “I am clever” is a valid conclusion. d) “Ralph

is not a CS major” is a valid conclusion. e) “That you buy

lots of stuff is good for the U.S. and is good for you” is a

valid conclusion. f) “Mice gnaw their food” and “Rabbits

are not rodents” are valid conclusions. 11. Suppose that

p1, p2, . . . , pn are true. We want to establish that q → r

is true. If q is false, then we are done, vacuously. Otherwise,

q is true, so by the validity of the given argument form (that

whenever p1, p2, . . . , pn, q are true, then r must be true), we

know that r is true. 13. a) Let c(x) be “x is in this class,”

j (x) be “x knows how to write programs in JAVA,” and h(x)

be “x can get a high-paying job.” The premises are c(Doug),

j (Doug), ∀x(j (x) → h(x)). Using universal instantiation

and the last premise, j (Doug)→ h(Doug) follows. Applying

modus ponens to this conclusion and the second premise,

h(Doug) follows. Using conjunction and the first premise,

c(Doug) ∧ h(Doug) follows. Finally, using existential gener-

alization, the desired conclusion, ∃x(c(x) ∧ h(x)) follows.

b) Let c(x) be “x is in this class,” w(x) be “x enjoys whale

watching,” and p(x) be “x cares about ocean pollution.”

The premises are ∃x(c(x) ∧ w(x)) and ∀x(w(x) → p(x)).

From the first premise, c(y) ∧ w(y) for a particular per-

son y. Using simplification, w(y) follows. Using the sec-

ond premise and universal instantiation, w(y) → p(y)

follows. Using modus ponens, p(y) follows, and by con-

junction, c(y) ∧ p(y) follows. Finally, by existential gen-

eralization, the desired conclusion, ∃x(c(x) ∧ p(x)), fol-

lows. c) Let c(x) be “x is in this class,” p(x) be “x owns

a PC,” and w(x) be “x can use a word-processing pro-

gram.” The premises are c(Zeke), ∀x(c(x) → p(x)), and

∀x(p(x)→ w(x)). Using the second premise and universal

instantiation, c(Zeke) → p(Zeke) follows. Using the first

premise and modus ponens, p(Zeke) follows. Using the third

premise and universal instantiation, p(Zeke)→ w(Zeke)

follows. Finally, using modus ponens, w(Zeke), the desired

conclusion, follows. d) Let j (x) be “x is in New Jersey,”

f (x) be “x lives within 50 miles of the ocean,” and s(x) be

“x has seen the ocean.” The premises are ∀x(j (x) → f (x))

and ∃x(j (x) ∧ ¬s(x)). The second hypothesis and existen-

tial instantiation imply that j (y) ∧ ¬s(y) for a particular

person y. By simplification, j (y) for this person y. Using

universal instantiation and the first premise, j (y)→ f (y),

and by modus ponens, f (y) follows. By simplification,¬s(y)
follows from j (y)∧¬s(y). So f (y)∧¬s(y) follows by con-

junction. Finally, the desired conclusion, ∃x(f (x) ∧ ¬s(x)),
follows by existential generalization. 15. a) Correct, using

universal instantiation and modus ponens b) Invalid; fallacy

of affirming the conclusion c) Invalid; fallacy of denying

the hypothesis d) Correct, using universal instantiation and

modus tollens 17. We know that some x exists that makes

Answers to Odd-Numbered Exercises S-9

H(x) true, but we cannot conclude that Lola is one such x.

19. a) Fallacy of affirming the conclusion b) Fallacy of beg-

ging the question c) Valid argument using modus tollens

d) Fallacy of denying the hypothesis 21. By the second

premise, there is some lion that does not drink coffee. Let

Leo be such a creature. By simplification we know that Leo

is a lion. By modus ponens we know from the first premise

that Leo is fierce. Hence, Leo is fierce and does not drink

coffee. By the definition of the existential quantifier, there

exist fierce creatures that do not drink coffee, that is, some

fierce creatures do not drink coffee. 23. The error occurs in

step (5), because we cannot assume, as is being done here,

that the c that makes P true is the same as the c that makesQ

true. 25. We are given the premises ∀x(P (x)→Q(x)) and

¬Q(a). We want to show ¬P(a). Suppose, to the contrary,

that ¬P(a) is not true. Then P(a) is true. Therefore by uni-

versal modus ponens, we haveQ(a). But this contradicts the

given premise ¬Q(a). Therefore our supposition must have

been wrong, and so ¬P(a) is true, as desired.

27. Step Reason

1. ∀x(P (x) ∧ R(x)) Premise
2. P(a) ∧ R(a) Universal instantiation from (1)
3. P(a) Simplification from (2)
4. ∀x(P (x)→ Premise
(Q(x) ∧ S(x)))

5.Q(a) ∧ S(a) Universal modus ponens from (3)
and (4)

6. S(a) Simplification from (5)
7. R(a) Simplification from (2)
8. R(a) ∧ S(a) Conjunction from (7) and (6)
9. ∀x(R(x) ∧ S(x)) Universal generalization from (5)

29. Step Reason

1. ∃x¬P(x) Premise
2. ¬P(c) Existential instantiation from (1)
3. ∀x(P (x) ∨Q(x)) Premise
4. P(c) ∨Q(c) Universal instantiation from (3)
5.Q(c) Disjunctive syllogism from (4)

and (2)
6. ∀x(¬Q(x) ∨ S(x)) Premise
7. ¬Q(c) ∨ S(c) Universal instantiation from (6)
8. S(c) Disjunctive syllogism from (5)

and (7)
9. ∀x(R(x)→ ¬S(x)) Premise
10. R(c)→ ¬S(c) Universal instantiation from (9)
11. ¬R(c) Modus tollens from (8) and (10)
12. ∃x¬R(x) Existential generalization from

(11)

31. Letp be “It is raining”; let q be “Yvette has her umbrella”;

let r be “Yvette gets wet.” Assumptions are¬p∨q,¬q∨¬r ,
and p ∨ ¬r . Resolution on the first two gives ¬p ∨ ¬r . Res-

olution on this and the third assumption gives ¬r , as desired.

33. Assume that this proposition is satisfiable. Using resolu-

tion on the first two clauses enables us to conclude q ∨ q; in

other words, we know that q has to be true. Using resolution on

the last two clauses enables us to conclude ¬q ∨¬q; in other

words, we know that¬q has to be true. This is a contradiction.

So this proposition is not satisfiable. 35. Valid

Section 1.7

1. Let n = 2k + 1 and m = 2l + 1 be odd inte-

gers. Then n+m= 2(k+ l+ 1) is even. 3. Suppose that

n is even. Then n = 2k for some integer k. Therefore,

n2 = (2k)2 = 4k2 = 2(2k2). Because we have written n2

as 2 times an integer, we conclude that n2 is even. 5. Direct

proof: Suppose thatm+n and n+p are even. Thenm+n = 2s

for some integer s and n + p = 2t for some integer t . If we

add these, we getm+p+2n = 2s+2t . Subtracting 2n from

both sides and factoring, we have m + p = 2s + 2t − 2n =
2(s + t − n). Because we have written m + p as 2 times

an integer, we conclude that m + p is even. 7. Because n

is odd, we can write n = 2k + 1 for some integer k. Then

(k+1)2−k2 = k2+2k+1−k2 = 2k+1 = n. 9. Suppose

that r is rational and i is irrational and s = r + i is rational.

Then by Example 7, s+(−r) = i is rational, which is a contra-

diction. 11. Because
√

2 ·
√

2 = 2 is rational and
√

2 is irra-

tional, the product of two irrational numbers is not necessarily

irrational. 13. Proof by contraposition: If 1/x were rational,

then by definition 1/x = p/q for some integers p and q with

q = 0. Because 1/x cannot be 0 (if it were, then we’d have

the contradiction 1 = x ·0 by multiplying both sides by x), we

know thatp = 0. Now x = 1/(1/x) = 1/(p/q) = q/p by the

usual rules of algebra and arithmetic. Hence, x can be written

as the quotient of two integers with the denominator nonzero.

Thus by definition, x is rational. 15. Assume that it is not

true that x ≥ 1 or y ≥ 1. Then x < 1 and y < 1. Adding these

two inequalities, we obtain x + y < 2, which is the negation

of x+y ≥ 2. 17. a) Assume that n is odd, so n = 2k+1 for

some integer k. Then n3+5 = 2(4k3+6k2+3k+3). Because

n3 + 5 is two times some integer, it is even. b) Suppose that

n3 + 5 is odd and n is odd. Because n is odd and the prod-

uct of two odd numbers is odd, it follows that n2 is odd and

then that n3 is odd. But then 5 = (n3 + 5) − n3 would have

to be even because it is the difference of two odd numbers.

Therefore, the supposition that n3 + 5 and n were both odd is

wrong. 19. The proposition is vacuously true because 0 is

not a positive integer. Vacuous proof. 21. P(1) is true be-
cause (a + b)1 = a + b ≥ a1 + b1 = a + b. Direct proof.

23. If we chose 9 or fewer days on each day of the week, this

would account for at most 9 · 7 = 63 days. But we chose 64

days. This contradiction shows that at least 10 of the days we

chose must be on the same day of the week. 25. Suppose by

way of contradiction that a/b is a rational root, where a and b

are integers and this fraction is in lowest terms (that is, a and

b have no common divisor greater than 1). Plug this proposed

root into the equation to obtain a3/b3 + a/b + 1 = 0. Mul-

tiply through by b3 to obtain a3 + ab2 + b3 = 0. If a and b

are both odd, then the left-hand side is the sum of three odd

numbers and therefore must be odd. If a is odd and b is even,

then the left-hand side is odd + even + even, which is again

odd. Similarly, if a is even and b is odd, then the left-hand

S-10 Answers to Odd-Numbered Exercises

side is even + even + odd, which is again odd. Because the

fraction a/b is in simplest terms, it cannot happen that both

a and b are even. Thus in all cases, the left-hand side is odd,

and therefore cannot equal 0. This contradiction shows that
no such root exists. 27. First, assume that n is odd, so that

n = 2k+1 for some integer k. Then 5n+6 = 5(2k+1)+6 =
10k + 11 = 2(5k + 5) + 1. Hence, 5n + 6 is odd. To prove
the converse, suppose that n is even, so that n = 2k for some

integer k. Then 5n+ 6 = 10k + 6 = 2(5k + 3), so 5n+ 6 is

even. Hence, n is odd if and only if 5n+ 6 is odd. 29. This

proposition is true. Suppose that m is neither 1 nor −1. Then
mn has a factor m larger than 1. On the other hand, mn = 1,

and 1 has no such factor. Hence, m = 1 or m = −1. In the

first case n = 1, and in the second case n = −1, because

n = 1/m. 31. We prove that all these are equivalent to x

being even. If x is even, then x = 2k for some integer k. There-

fore 3x+2 = 3 ·2k+2 = 6k+2 = 2(3k+1), which is even,

because it has been written in the form 2t , where t = 3k + 1.

Similarly, x + 5 = 2k + 5 = 2k + 4 + 1 = 2(k + 2) + 1,

so x + 5 is odd; and x2 = (2k)2 = 2(2k2), so x2

is even. For the converses, we will use a proof by contra-

position. So assume that x is not even; thus x is odd and

we can write x = 2k + 1 for some integer k. Then
3x+2 = 3(2k+1)+2 = 6k+5 = 2(3k+2)+1, which is odd

(i.e., not even), because it has been written in the form 2t + 1,

where t = 3k+ 2. Similarly, x + 5 = 2k+ 1+ 5 = 2(k+ 3),

so x + 5 is even (i.e., not odd). That x2 is odd was already

proved in Example 1. 33. We give proofs by contraposition

of (i)→ (ii), (ii)→ (i), (i) → (iii), and (iii) → (i).

For the first of these, suppose that 3x + 2 is rational, namely,
equal to p/q for some integers p and q with q = 0. Then we

can write x = ((p/q) − 2)/3 = (p − 2q)/(3q), where

3q = 0. This shows that x is rational. For the second condi-

tional statement, suppose that x is rational, namely, equal to

p/q for some integers p and q with q = 0. Then we can write

3x+2 = (3p+2q)/q, where q = 0. This shows that 3x+2 is

rational. For the third conditional statement, suppose that x/2

is rational, namely, equal to p/q for some integers p and q

with q = 0. Then we can write x = 2p/q, where q = 0. This

shows that x is rational. And for the fourth conditional state-

ment, suppose that x is rational, namely, equal top/q for some

integersp and q with q = 0. Then we can write x/2= p/(2q),
where 2q = 0. This shows that x/2 is rational. 35. No

37. Suppose that p1 → p4 → p2 → p5 → p3 → p1. To

prove that one of these propositions implies any of the others,

just use hypothetical syllogism repeatedly. 39. We will give

a proof by contradiction. Suppose that a1, a2, . . . , an are all

less than A, where A is the average of these numbers. Then

a1 + a2 + · · · + an < nA. Dividing both sides by n shows

that A = (a1 + a2 + · · · + an)/n < A, which is a contradic-

tion. 41. We will show that the four statements are equiv-

alent by showing that (i) implies (ii), (ii) implies (iii), (iii)

implies (iv), and (iv) implies (i). First, assume that n is even.

Then n = 2k for some integer k. Then n + 1 = 2k + 1, so

n + 1 is odd. This shows that (i) implies (ii). Next, suppose

that n + 1 is odd, so n + 1 = 2k + 1 for some integer k.

Then 3n + 1 = 2n + (n + 1) = 2(n + k) + 1, which

shows that 3n+1 is odd, showing that (ii) implies (iii). Next,

suppose that 3n + 1 is odd, so 3n + 1 = 2k + 1 for some

integer k. Then 3n = (2k + 1) − 1 = 2k, so 3n is even.

This shows that (iii) implies (iv). Finally, suppose that n is

not even. Then n is odd, so n = 2k + 1 for some integer k.

Then 3n = 3(2k+1) = 6k+3 = 2(3k+1)+1, so 3n is odd.

This completes a proof by contraposition that (iv) implies (i).

Section 1.8

1. 12 + 1 = 2 ≥ 2 = 21; 22 + 1 = 5 ≥ 4 = 22; 32 + 1 =
10 ≥ 8 = 23; 42 + 1 = 17 ≥ 16 = 24 3. If x ≤ y,

then max(x, y) + min(x, y) = y + x = x + y. If x ≥ y,

then max(x, y) + min(x, y) = x + y. Because these are

the only two cases, the equality always holds. 5. Because

|x − y| = |y − x|, the values of x and y are interchange-

able. Therefore, without loss of generality, we can assume that

x ≥ y. Then (x + y − (x − y))/2 = (x + y − x + y)/2 =
2y/2 = y = min(x, y). Similarly, (x + y + (x − y))/2 =
(x + y + x − y)/2 = 2x/2 = x = max(x, y).

7. There are four cases. Case 1: x ≥ 0 and y ≥ 0. Then

|x| + |y| = x + y = |x + y|. Case 2: x < 0 and y < 0.

Then |x| + |y| = −x + (−y) = −(x + y) = |x + y| because

x+y < 0. Case 3: x ≥ 0 and y < 0. Then |x|+|y| = x+(−y).
If x ≥ −y, then |x+y| = x+y. But because y < 0,−y > y,

so |x| + |y| = x+ (−y) > x+ y = |x+ y|. If x < −y, then

|x+y| = −(x+y) = −x+(−y). But because x ≥ 0, x ≥ −x,

so |x|+|y| = x+ (−y)≥−x+ (−y)= |x+y|. Case 4: x < 0

and y ≥ 0. Identical to Case 3 with the roles of x and y re-

versed. 9. 10,001, 10,002, . . . , 10,100 are all nonsquares,

because 1002 = 10,000 and 1012 = 10,201; constructive.

11. 8 = 23 and 9 = 32 13. Let x = 2 and y =
√

2. If

xy = 2
√

2 is irrational, we are done. If not, then letx = 2
√

2 and

y =
√

2/4. Then xy = (2
√

2)
√

2/4 = 2
√

2·(
√

2)/4 = 21/2 =
√

2.

15. a) This statement asserts the existence of x with a certain

property. If we let y = x, then we see that P(x) is true. If y

is anything other than x, then P(x) is not true. Thus, x is the

unique element that makes P true. b) The first clause here

says that there is an element that makes P true. The second

clause says that whenever two elements both make P true,

they are in fact the same element. Together these say that P

is satisfied by exactly one element. c) This statement asserts

the existence of an x that makes P true and has the further

property that whenever we find an element that makes P true,

that element is x. In other words, x is the unique element that

makes P true. 17. The equation |a − c| = |b− c| is equiv-

alent to the disjunction of two equations: a − c = b − c or

a − c = −b + c. The first of these is equivalent to a = b,
which contradicts the assumptions made in this problem, so

the original equation is equivalent to a − c = −b + c. By

adding b + c to both sides and dividing by 2, we see that this
equation is equivalent to c = (a + b)/2. Thus, there is a

Answers to Odd-Numbered Exercises S-11

unique solution. Furthermore, this c is an integer, because the

sum of the odd integers a and b is even. 19. We are being
asked to solve n = (k − 2) + (k + 3) for k. Using the usual,

reversible, rules of algebra, we see that this equation is equiv-

alent to k = (n − 1)/2. In other words, this is the one and

only value of k that makes our equation true. Because n is odd,

n− 1 is even, so k is an integer. 21. If x is itself an integer,

then we can take n = x and = 0. No other solution is

possible in this case, because if the integer n is greater than x,

then n is at least x + 1, which would make ≥ 1. If x is not

an integer, then round it up to the next integer, and call that

integer n. Let = n − x. Clearly 0 ≤ < 1; this is the

only that will work with this n, and n cannot be any larger,

because is constrained to be less than 1. 23. The harmonic

mean of distinct positive real numbers x and y is always less

than their geometric mean. To prove 2xy/(x + y) < √
xy,

multiply both sides by (x + y)/(2√xy) to obtain the equiv-

alent inequality
√
xy < (x + y)/2, which is proved in Ex-

ample 14. 25. The parity (oddness or evenness) of the sum

of the numbers written on the board never changes, because

j + k and |j − k| have the same parity (and at each step we

reduce the sum by j + k but increase it by |j − k|). There-

fore the integer at the end of the process must have the same

parity as 1 + 2 + · · · + (2n) = n(2n + 1), which is odd

because n is odd. 27. Without loss of generality we can as-

sume that n is nonnegative, because the fourth power of an

integer and the fourth power of its negative are the same. We

divide an arbitrary positive integer n by 10, obtaining a quo-

tient k and remainder l, whence n = 10k + l, and l is an

integer between 0 and 9, inclusive. Then we compute n4 in

each of these 10 cases. We get the following values, where X

is some integer that is a multiple of 10, whose exact value we

do not care about. (10k + 0)4 = 10,000k4 = 10,000k4 + 0,

(10k + 1)4 = 10,000k4 + X · k3 + X · k2 + X · k + 1,

(10k + 2)4 = 10,000k4 + X · k3 + X · k2 + X · k + 16,

(10k + 3)4 = 10,000k4 + X · k3 + X · k2 + X · k + 81,

(10k + 4)4 = 10,000k4 + X · k3 + X · k2 + X · k + 256,

(10k + 5)4 = 10,000k4 + X · k3 + X · k2 + X · k + 625,

(10k + 6)4 = 10,000k4 + X · k3 + X · k2 + X · k + 1296,

(10k + 7)4 = 10,000k4 + X · k3 + X · k2 + X · k + 2401,

(10k + 8)4 = 10,000k4 + X ·k3 + X · k2 + X · k + 4096,

(10k + 9)4 = 10,000k4 + X · k3 + X · k2 + X · k + 6561.

Because each coefficient indicated by X is a multiple of 10,
the corresponding term has no effect on the ones digit of the

answer. Therefore the ones digits are 0, 1, 6, 1, 6, 5, 6, 1, 6,

1, respectively, so it is always a 0, 1, 5, or 6. 29. Because

n3 > 100 for all n > 4, we need only note that n = 1,

n = 2, n = 3, and n = 4 do not satisfy n2 + n3 = 100.

31. Because 54 = 625, both x and y must be less than 5.

Then x4 + y4 ≤ 44 + 44 = 512 < 625. 33. If it is not

true that a ≤ 3
√
n, b ≤ 3

√
n, or c ≤ 3

√
n, then a > 3

√
n,

b > 3
√
n, and c > 3

√
n. Multiplying these inequalities of

positive numbers together we obtain abc < (3
√
n)3 = n,

which implies the negation of our hypothesis that n = abc.
35. By finding a common denominator, we can assume that

the given rational numbers are a/b and c/b, where b is a pos-

itive integer and a and c are integers with a < c. In particular,
(a+ 1)/b ≤ c/b. Thus, x = (a+ 1

2

√
2)/b is between the two

given rational numbers, because 0 <
√

2 < 2. Furthermore, x

is irrational, because if x were rational, then 2(bx− a) =
√

2

would be as well, in violation of Example 10 in Section 1.7.

37. a) Without loss of generality, we can assume that the x

sequence is already sorted into nondecreasing order, because

we can relabel the indices. There are only a finite number of

possible orderings for the y sequence, so if we can show that

we can increase the sum (or at least keep it the same) when-

ever we find yi and yj that are out of order (i.e., i < j but

yi > yj) by switching them, then we will have shown that

the sum is largest when the y sequence is in nondecreasing

order. Indeed, if we perform the swap, then we have added

xiyj + xjyi to the sum and subtracted xiyi + xjyj . The

net effect is to have added xiyj + xjyi − xiyi − xjyj =
(xj − xi)(yi − yj), which is nonnegative by our ordering as-

sumptions. b) Similar to part (a) 39. a) 6 → 3 → 10 →
5 → 16 → 8 → 4 → 2 → 1 b) 7 → 22 → 11 → 34 →
17 → 52 → 26 → 13 → 40 → 20 → 10 → 5 → 16 →
8 → 4 → 2 → 1 c) 17 → 52 → 26 → 13 → 40 →
20 →10 → 5 → 16 → 8 → 4 → 2 → 1

d) 21 → 64 →32 → 16 → 8 → 4 → 2 → 1 41. Without

loss of generality, assume that the upper left and upper right

corners of the board are removed. Place three dominoes hor-

izontally to fill the remaining portion of the first row, and fill

each of the other seven rows with four horizontal dominoes.

43. Because there is an even number of squares in all, either

there is an even number of squares in each row or there is an

even number of squares in each column. In the former case,

tile the board in the obvious way by placing the dominoes hor-

izontally, and in the latter case, tile the board in the obvious

way by placing the dominoes vertically. 45. We can rotate

the board if necessary to make the removed squares be 1 and

16. Square 2 must be covered by a domino. If that domino is

placed to cover squares 2 and 6, then the following domino

placements are forced in succession: 5-9, 13-14, and 10-11,

at which point there is no way to cover square 15. Otherwise,

square 2 must be covered by a domino placed at 2-3. Then

the following domino placements are forced: 4-8, 11-12, 6-7,

5-9, and 10-14, and again there is no way to cover square 15.

47. Remove the two black squares adjacent to a white corner,

and remove two white squares other than that corner. Then no

domino can cover that white corner.

49. a)

(1) (2) (3) (4) (5)

S-12 Answers to Odd-Numbered Exercises

b) The picture shows tilings for the first four patterns.

1 3

2 4

To show that pattern 5 cannot tile the checkerboard, label the

squares from 1 to 64, one row at a time from the top, from left

to right in each row. Thus, square 1 is the upper left corner,

and square 64 is the lower right. Suppose we did have a tiling.

By symmetry and without loss of generality, we may suppose

that the tile is positioned in the upper left corner, covering

squares 1, 2, 10, and 11. This forces a tile to be adjacent to

it on the right, covering squares 3, 4, 12, and 13. Continue in

this manner and we are forced to have a tile covering squares

6, 7, 15, and 16. This makes it impossible to cover square 8.

Thus, no tiling is possible.

Supplementary Exercises

1. a) q → p b) q ∧ p c) ¬q ∨ ¬p d) q ↔ p 3. a) The

proposition cannot be false unless ¬p is false, so p is true. If

p is true and q is true, then ¬q ∧ (p → q) is false, so the

conditional statement is true. If p is true and q is false, then

p→ q is false, so ¬q ∧ (p→ q) is false and the conditional

statement is true. b) The proposition cannot be false unless

q is false. If q is false and p is true, then (p ∨ q) ∧ ¬p is

false, and the conditional statement is true. If q is false and p

is false, then (p ∨ q)∧¬p is false, and the conditional state-

ment is true. 5. ¬q → ¬p; p → q; ¬p → ¬q 7. (p ∧
q ∧ r ∧ ¬s) ∨ (p ∧ q ∧ ¬r ∧ s) ∨ (p ∧ ¬q ∧ r ∧ s)∨
(¬p ∧ q ∧ r ∧ s) 9. Translating these statements into

symbols, using the obvious letters, we have ¬t → ¬g,

¬g → ¬q, r → q, and ¬t ∧ r . Assume the state-

ments are consistent. The fourth statement tells us that ¬t
must be true. Therefore by modus ponens with the first state-

ment, we know that ¬g is true, hence (from the second state-

ment), that ¬q is true. Also, the fourth statement tells us

that r must be true, and so again modus ponens (third state-

ment) makes q true. This is a contradiction: q ∧ ¬q. Thus

the statements are inconsistent. 11. Reject-accept-reject-

accept, accept-accept-accept-accept, accept-accept-reject-

accept, reject-reject-reject-reject, reject-reject-accept-reject,

and reject-accept-accept-accept 13. Aaron is a knave and

Crystal is a knight; it cannot be determined what Bohan is.

15. Brenda 17. The premises cannot both be true, because

they are contradictory. Therefore it is (vacuously) true that

whenever all the premises are true, the conclusion is also

true, which by definition makes this a valid argument. Be-

cause the premises are not both true, we cannot conclude

that the conclusion is true. 19. Use the same propositions

as were given in Section 1.3 for a 9 × 9 Sudoku puzzle,

with the variables indexed from 1 to 16, instead of from 1

to 9, and with a similar change for the propositions for the

4 × 4 blocks:
 3
r=0

 3
s=0

 16
n=1

 4
i=1

 4
j=1 p(4r + i, 4s +

j, n). 21. a) F b) T c) F d) T e) F f) T 23. Many an-

swers are possible. One example is United States senators.

25. ∀x∃y∃z (y = z ∧ ∀w(P (w, x) ↔ (w = y ∨ w = z)))

27. a) ¬∃xP (x) b) ∃x(P (x) ∧ ∀y(P (y) → y = x))

c) ∃x1∃x2(P (x1) ∧ P(x2) ∧ x1 = x2 ∧ ∀y (P (y) → (y =
x1∨y = x2))) d) ∃x1 ∃ x2 ∃ x3(P (x1)∧P(x2)∧P(x3)∧x1 =
x2 ∧ x1 = x3 ∧ x2 = x3 ∧ ∀y(P (y) →
(y = x1 ∨ y = x2 ∨ y = x3))) 29. Suppose that

∃x(P (x)→ Q(x)) is true. Then either Q(x0) is true for

some x0, in which case ∀xP (x)→ ∃x Q(x) is true; or P(x0)

is false for some x0, in which case ∀xP (x)→ ∃xQ(x) is

true. Conversely, suppose that ∃x(P (x)→ Q(x)) is false.

That means that ∀x(P (x) ∧ ¬Q(x)) is true, which implies

∀xP (x) and ∀x(¬Q(x)). This latter proposition is equivalent

to ¬∃xQ(x). Thus, ∀xP (x)→ ∃xQ(x) is false. 31. No

33. ∀x ∀z ∃y T (x, y, z), where T (x, y, z) is the statement

that student x has taken class y in department z, where

the domains are the set of students in the class, the set of

courses at this university, and the set of departments in the

school of mathematical sciences 35. ∃!x∃!y T (x, y) and

∃x∀z((∃y∀w(T (z,w)↔ w = y))↔ z = x), where T (x, y)

means that student x has taken class y and the domain is all

students in this class 37. P(a)→ Q(a) andQ(a)→ R(a)

by universal instantiation; then ¬Q(a) by modus tollens and

¬P(a) by modus tollens 39. We give a proof by contraposi-

tion and show that if
√
x is rational, thenx is rational, assuming

throughout that x ≥ 0. Suppose that
√
x = p/q is rational,

q = 0. Then x = (√x)2 = p2/q2 is also rational (q2 is again

nonzero). 41. We can give a constructive proof by letting

m = 10500+1. Thenm2 = (10500+1)2 > (10500)2 = 101000.

43. 23 cannot be written as the sum of eight cubes. 45. 223

cannot be written as the sum of 36 fifth powers.

CHAPTER 2

Section 2.1

1. a) {−1,1} b) {1,2,3,4,5,6,7,8,9,10,11} c) {0,1,4, 9, 16,

25, 36, 49, 64, 81} d) ∅ 3. a) The first is a subset of the

second, but the second is not a subset of the first. b) Neither

is a subset of the other. c) The first is a subset of the sec-

ond, but the second is not a subset of the first. 5. a) Yes

b) No c) No 7. a) Yes b) No c) Yes d) No e) No f) No

9. a) False b) False c) False d) True e) False f) False g) True

11. a) True b) True c) False d) True e) True f) False

Answers to Odd-Numbered Exercises S-13

13.

January

May

June
July

August
November

December

September October

March

February

April

15. The dots in certain regions indicate that those regions are

not empty.

C

U

B
A

17. Suppose that x ∈ A. Because A ⊆ B, this implies that

x ∈ B. Because B ⊆ C, we see that x ∈ C. Because

x ∈ A implies that x ∈ C, it follows that A⊆C. 19. a) 1

b) 1 c) 2 d) 3 21. a) {∅, {a}} b) {∅, {a}, {b}, {a, b}}
c) {∅, {∅}, {{∅}}, {∅, {∅}}} 23. a) 8 b) 16 c) 2 25. For

the “if” part, given A ⊆ B, we want to show that that

P(A) ⊆ P(B), i.e., if C ⊆ A then C ⊆ B. But this fol-

lows directly from Exercise 17. For the “only if” part, given

that P(A) ⊆ P(B), we want to show that A ⊆ B. Suppose

a ∈ A. Then {a} ⊆ A, so {a} ∈ P(A). Since P(A) ⊆ P(B),

it follows that {a} ∈ P(B), which means that {a} ⊆ B.

But this implies a ∈ B, as desired. 27. a) {(a, y), (b, y),
(c, y), (d, y), (a, z), (b, z), (c, z), (d, z)} b) {(y, a), (y, b),
(y, c), (y, d), (z, a), (z, b), (z, c), (z, d)} 29. The set of

triples (a, b, c), where a is an airline and b and c are cities.

A useful subset of this set is the set of triples (a, b, c) for

which a flies between b and c. 31. ∅ × A = {(x, y) | x ∈
∅ and y ∈ A} = ∅ = {(x, y) | x ∈ A and y ∈ ∅} = A × ∅
33. a) {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (1, 3), (3, 0), (3, 1),

(3, 3)} b) {(1, 1), (1, 2), (1, a), (1, b), (2, 1), (2, 2), (2, a),

(2, b), (a, 1), (a, 2), (a, a), (a, b), (b, 1), (b, 2), (b, a), (b, b)}

35. mn 37. mn 39. The elements of A × B × C consist

of 3-tuples (a, b, c), where a ∈ A, b ∈ B, and c ∈ C, whereas

the elements of (A × B) × C look like ((a, b), c)—ordered

pairs, the first coordinate of which is again an ordered pair.

41. a) The square of a real number is never−1. True b) There

exists an integer whose square is 2. False c) The square of

every integer is positive. False d) There is a real number equal

to its own square. True 43. a) {−1, 0, 1} b) Z−{0, 1} c) ∅
45. We must show that {{a}, {a, b}} = {{c}, {c, d}} if and

only if a = c and b = d. The “if” part is immediate. So

assume these two sets are equal. First, consider the case when

a = b. Then {{a}, {a, b}} contains exactly two elements, one

of which contains one element. Thus, {{c}, {c, d}} must have

the same property, so c = d and {c} is the element containing

exactly one element. Hence, {a} = {c}, which implies that

a = c. Also, the two-element sets {a, b} and {c, d} must be

equal. Because a = c and a = b, it follows that b = d.

Second, suppose that a = b. Then {{a}, {a, b}} = {{a}}, a set

with one element. Hence, {{c}, {c, d}} has only one element,

which can happen only when c = d, and the set is {{c}}. It then

follows that a = c and b = d. 47. Let S = {a1, a2, . . . , an}.
Represent each subset of S with a bit string of length n, where

the ith bit is 1 if and only if ai ∈ S. To generate all subsets of

S, list all 2n bit strings of length n (for instance, in increasing

order), and write down the corresponding subsets.

Section 2.2

1. a) The set of students who live within one mile of school

and walk to classes b) The set of students who live within

one mile of school or walk to classes (or do both) c) The

set of students who live within one mile of school but

do not walk to classes d) The set of students who walk

to classes but live more than one mile away from school

3. a) {0,1,2,3,4,5,6} b) {3} c) {1, 2, 4,5} d) {0, 6} 5. A =
{x | ¬(x ∈ A)} = {x |¬(¬x ∈ A)} = {x | x ∈ A} = A
7. a) A ∪ U = {x | x ∈ A ∨ x ∈ U} = {x | x ∈ A ∨ T} =
{x | T} =U b) A ∩ ∅= {x | x ∈ A ∧ x ∈ ∅} = {x | x ∈
A ∧ F} = {x | F} = ∅ 9. a) A∪A={x | x ∈A∨x ∈A}=U
b) A ∩ A = {x | x ∈ A ∧ x ∈ A} = ∅ 11. a) A ∪
B = {x | x ∈ A ∨ x ∈ B} = {x | x ∈ B ∨ x ∈ A} = B ∪A
b) A ∩ B = {x | x ∈ A ∧ x ∈ B}= {x | x ∈ B ∧ x ∈ A} =
B ∩ A 13. Suppose x ∈ A ∩ (A ∪ B). Then x ∈ A and

x ∈ A ∪ B by the definition of intersection. Because x ∈ A,

we have proved that the left-hand side is a subset of the right-

hand side. Conversely, let x ∈ A. Then by the definition of

union, x ∈ A ∪ B as well. Therefore x ∈ A ∩ (A ∪ B)
by the definition of intersection, so the right-hand side is

a subset of the left-hand side. 15. a) x ∈ A ∪ B ≡
x ∈A ∪ B ≡ ¬(x ∈ A ∨ x ∈ B) ≡ ¬(x ∈ A) ∧ ¬(x ∈ B) ≡
x ∈ A ∧ x ∈ B ≡ x ∈ A ∧ x ∈ B ≡ x ∈ A ∩ B

b)
A B A ∪ B A ∪ B A B A ∩ B

1 1 1 0 0 0 0
1 0 1 0 0 1 0
0 1 1 0 1 0 0
0 0 0 1 1 1 1

17. a) x ∈A ∩ B ∩ C ≡ x ∈A ∩ B ∩ C ≡ x ∈ A ∨ x ∈
B ∨ x ∈C ≡ x ∈A∨ x ∈B ∨ x ∈ C ≡ x ∈A ∪ B ∪ C

b)
A B C A ∩ B ∩ C A ∩ B ∩ C A B C A ∪ B ∪ C

1 1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 1 1
1 0 1 0 1 0 1 0 1
1 0 0 0 1 0 1 1 1
0 1 1 0 1 1 0 0 1
0 1 0 0 1 1 0 1 1
0 0 1 0 1 1 1 0 1
0 0 0 0 1 1 1 1 1

S-14 Answers to Odd-Numbered Exercises

19. a) Both sides equal {x | x ∈ A∧x ∈ B}. b) A = A∩U =
A∩ (B ∪B) = (A∩B)∪ (A∩B) 21. x ∈ A∪ (B ∪C) ≡
(x ∈ A) ∨ (x ∈ (B ∪ C)) ≡ (x ∈ A) ∨ (x ∈ B ∨ x ∈
C) ≡ (x ∈ A ∨ x ∈ B) ∨ (x ∈ C) ≡ x ∈ (A ∪ B) ∪ C
23. x ∈ A ∪ (B ∩ C) ≡ (x ∈ A) ∨ (x ∈ (B ∩ C)) ≡
(x ∈ A) ∨ (x ∈ B ∧ x ∈ C) ≡ (x ∈ A ∨ x ∈
B) ∧ (x ∈ A ∨ x ∈ C) ≡ x ∈ (A ∪ B) ∩ (A ∪ C)
25. a) {4,6} b) {0,1,2,3,4,5,6,7,8,9,10} c) {4, 5, 6, 8, 10}
d) {0,2,4, 5,6,7,8,9,10} 27. a) The double-shaded portion

is the desired set.

A B

C

b) The desired set is the entire shaded portion.

BA

C

c) The desired set is the entire shaded portion.

A B

C

29. a) B ⊆ A b) A ⊆ B c) A ∩ B = ∅ d) Nothing, because

this is always true e) A = B 31. A ⊆ B ≡ ∀x(x ∈ A→
x ∈ B) ≡ ∀x(x ∈ B → x ∈ A) ≡ ∀x(x ∈ B → x ∈
A) ≡ B ⊆ A 33. The set of students who are computer

science majors but not mathematics majors or who are math-

ematics majors but not computer science majors 35. An

element is in (A ∪ B) − (A ∩ B) if it is in the union of A

and B but not in the intersection of A and B, which means

that it is in either A or B but not in both A and B. This is

exactly what it means for an element to belong to A ⊕ B.

37. a) A ⊕ A = (A − A) ∪ (A − A) = ∅ ∪ ∅ = ∅
b) A⊕∅ = (A−∅)∪ (∅−A) = A∪∅ = A c) A⊕U =
(A− U) ∪ (U − A) = ∅ ∪ A = A d) A⊕ A = (A− A)∪
(A − A) = A ∪ A = U 39. B = ∅ 41. Yes 43. Yes

45. IfA∪Bwere finite, then it would haven elements for some

natural number n. But A already has more than n elements,

because it is infinite, andA∪B has all the elements thatA has,

so A∪B has more than n elements. This contradiction shows

that A ∪B must be infinite. 47. a) {1, 2, 3, . . . , n} b) {1}
49. a) An b) {0, 1} 51. a) Z, {−1, 0, 1} b) Z − {0}, ∅
c) R, [−1, 1] d) [1,∞), ∅ 53. a) {1, 2, 3, 4, 7, 8, 9, 10}
b) {2, 4, 5, 6, 7} c) {1, 10} 55. The bit in the ith position of

the bit string of the difference of two sets is 1 if the ith bit

of the first string is 1 and the ith bit of the second string is 0,

and is 0 otherwise. 57. a) 11 1110 0000 0000 0000 0000

0000 ∨ 01 1100 1000 0000 0100 0101 0000 = 11 1110 1000

0000 0100 0101 0000, representing {a, b, c, d, e, g, p, t, v}

b) 11 1110 0000 0000 0000 0000 0000 ∧ 01 1100 1000 0000

0100 0101 0000 = 01 1100 0000 0000 0000 0000 0000,

representing {b, c, d} c) (11 1110 0000 0000 0000 0000

0000 ∨ 00 0110 0110 0001 1000 0110 0110) ∧ (01 1100

1000 0000 0100 0101 0000 ∨ 00 1010 0010 0000 1000 0010

0111) = 11 1110 0110 0001 1000 0110 0110 ∧ 01 1110

1010 0000 1100 0111 0111= 01 1110 0010 0000 1000 0110

0110, representing {b, c, d, e, i, o, t, u, x, y} d) 11 1110

0000 0000 0000 0000 0000 ∨ 01 1100 1000 0000 0100 0101

0000 ∨ 00 1010 0010 0000 1000 0010 0111 ∨ 00 0110 0110

0001 1000 0110 0110 = 11 1110 1110 0001 1100 0111

0111, representing {a,b,c,d,e,g,h,i,n,o,p,t,u,v,x,y,z}
59. a) {1, 2, 3, {1, 2, 3}} b) {∅} c) {∅, {∅}} d) {∅, {∅},
{∅, {∅}}} 61. a) {3 · a, 3 · b, 1 · c, 4 · d} b) {2 · a, 2 · b}
c) {1 · a, 1 · c} d) {1 · b, 4 · d} e) {5 · a, 5 · b, 1 · c, 4 · d}
63. F = {0.4 Alice, 0.1 Brian, 0.6 Fred, 0.9 Oscar, 0.5 Rita},
R = {0.6 Alice, 0.2 Brian, 0.8 Fred, 0.1 Oscar, 0.3 Rita}
65. {0.4 Alice, 0.8 Brian, 0.2 Fred, 0.1 Oscar, 0.5 Rita}

Section 2.3

1. a) f (0) is not defined. b) f (x) is not defined for x < 0.

c) f (x) is not well-defined because there are two distinct

values assigned to each x. 3. a) Not a function b) A func-

tion c) Not a function 5. a) Domain the set of bit strings;

range the set of integers b) Domain the set of bit strings;

range the set of even nonnegative integers c) Domain the

set of bit strings; range the set of nonnegative integers not

exceeding 7 d) Domain the set of positive integers; range

the set of squares of positive integers = {1, 4, 9, 16, . . .}
7. a) Domain Z+×Z+; range Z+ b) Domain Z+; range

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} c) Domain the set of bit strings;

range N d) Domain the set of bit strings; range N 9. a) 1

b) 0 c) 0 d) −1 e) 3 f) −1 g) 2 h) 1 11. Only the

function in part (a) 13. Only the functions in parts (a) and

(d) 15. a) Onto b) Not onto c) Onto d) Not onto e) Onto

17. a) Depends on whether teachers share offices b) One-

to-one assuming only one teacher per bus c) Most likely not

one-to-one, especially if salary is set by a collective bargain-

ing agreement d) One-to-one 19. Answers will vary. a) Set

of offices at the school; probably not onto b) Set of buses

going on the trip; onto, assuming every bus gets a teacher

chaperone c) Set of real numbers; not onto d) Set of strings

of nine digits with hyphens after third and fifth digits; not

onto 21. a) The function f (x) with f (x) = 3x + 1 when

x ≥ 0 and f (x) = −3x + 2 when x < 0 b) f (x)= |x| + 1

c) The function f (x) with f (x) = 2x + 1 when x ≥ 0 and

f (x) = −2x when x < 0 d) f (x) = x2 + 1 23. a) Yes

b) No c) Yes d) No 25. Suppose that f is strictly decreas-

ing. This means that f (x) > f (y) whenever x < y. To

show that g is strictly increasing, suppose that x < y. Then

g(x) = 1/f (x) < 1/f (y) = g(y). Conversely, suppose that g

is strictly increasing. This means that g(x) < g(y) whenever

x < y. To show that f is strictly decreasing, suppose that

x < y. Then f (x) = 1/g(x) > 1/g(y) = f (y). 27. a) Let

f be a given strictly decreasing function from R to itself. If

Answers to Odd-Numbered Exercises S-15

a < b, then f (a) > f (b); if a > b, then f (a) < f (b).

Thus if a = b, then f (a) = f (b). b) Answers will vary; for

example, f (x) = 0 for x < 0 and f (x) = −x for x ≥ 0.

29. The function is not one-to-one, so it is not invertible. On

the restricted domain, the function is the identity function on

the nonnegative real numbers, f (x) = x, so it is its own in-

verse. 31. a) f (S) = {0, 1, 3} b) f (S) = {0, 1, 3, 5, 8}
c) f (S) = {0, 8, 16, 40} d) f (S) = {1, 12, 33, 65}
33. a) Let x and y be distinct elements ofA. Because g is one-

to-one, g(x) and g(y) are distinct elements ofB. Because f is

one-to-one, f (g(x)) = (f ◦ g)(x) and f (g(y)) = (f ◦ g)(y)
are distinct elements of C. Hence, f ◦g is one-to-one. b) Let

y ∈ C. Because f is onto, y = f (b) for some b ∈ B.

Now because g is onto, b = g(x) for some x ∈ A. Hence,

y = f (b)= f (g(x))= (f ◦g)(x). It follows thatf ◦g is onto.

35. No. For example, suppose that A = {a}, B = {b, c}, and

C = {d}. Let g(a) = b, f (b) = d , and f (c) = d. Then f and

f ◦ g are onto, but g is not. 37. (f + g)(x) = x2 + x + 3,

(fg)(x) = x3 + 2x2 + x + 2 39. f is one-to-one because

f (x1) = f (x2)→ ax1 + b= ax2+b→ ax1 = ax2 → x1 =
x2. f is onto because f ((y−b)/a) = y.f−1(y)= (y− b)/a.

41. a) A = B = R, S = { x | x > 0}, T = { x | x < 0},
f (x)= x2 b) It suffices to show thatf (S)∩f (T)⊆ f (S∩T).
Let y ∈ B be an element of f (S) ∩ f (T). Then y ∈ f (S),
so y = f (x1) for some x1 ∈ S. Similarly, y = f (x2)

for some x2 ∈ T . Because f is one-to-one, it follows that

x1 = x2. Therefore x1 ∈ S ∩ T , so y ∈ f (S ∩ T).
43. a) {x | 0 ≤ x < 1} b) {x | −1 ≤ x < 2} c) ∅
45. f−1(S) = {x ∈ A | f (x) ∈ S} = {x ∈ A | f (x) ∈ S}
= f−1(S) 47. Let x = x + , where is a real number

with 0 ≤ < 1. If < 1
2 , then x − 1 < x − 1

2 < x , so

 x − 1
2 = x and this is the integer closest to x. If > 1

2 ,

then x < x − 1
2 < x + 1, so x − 1

2 = x + 1 and

this is the integer closest to x. If = 1
2 , then x − 1

2 = x ,
which is the smaller of the two integers that surround x and

are the same distance from x. 49. Write the real number x

as x + , where is a real number with 0 ≤ < 1. Because

 = x − x , it follows that 0 ≤ − x < 1. The first two

inequalities, x−1 < x and x ≤ x, follow directly. For the

other two inequalities, write x = x − , where 0 ≤ < 1.

Then 0 ≤ x − x < 1, and the desired inequality follows.

51. a) If x < n, because x ≤ x, it follows that x < n.

Suppose that x ≥ n. By the definition of the floor function, it

follows that x ≥ n. This means that if x < n, then x < n.

b) If n < x, then because x ≤ x , it follows that n ≤ x .
Suppose that n ≥ x. By the definition of the ceiling function,

it follows that x ≤ n. This means that if n < x , then

n < x. 53. If n is even, then n = 2k for some integer k.

Thus, n/2 = k = k = n/2. If n is odd, then n = 2k + 1

for some integer k. Thus, n/2 = k+ 1
2 = k = (n− 1)/2.

55. Assume that x ≥ 0. The left-hand side is −x and the

right-hand side is − x . If x is an integer, then both sides

equal −x. Otherwise, let x = n + , where n is a natu-

ral number and is a real number with 0 ≤ < 1. Then

 −x = −n − = −n and − x = − n + = −n
also. When x < 0, the equation also holds because it can

be obtained by substituting −x for x. 57. b − a − 1

59. a) 1 b) 3 c) 126 d) 3600 61. a) 100 b) 256 c) 1030

d) 30,200

63.

–2

–1

0–1–2 2 431

1

3

2

4

65.

–2

–1

0–1–2

1

2 31

3

2

–3

67. a) 3

2

1

–2–4 2 4

–2

–3

–1

b) 3

2

1

–2

–3

–1–2 1 2
–1

c) 3

2

1

–2

–3

–1
–6–12 –3–9 6 123 9

d)
3

2

1

4

–2

–3

–1
–1 1

e)
3

2

1

4

–2

–3

–4

–1
–2 –1 21

f)

3

2

1

4

5

–2 –1 1 2

–2

–3

–1

–4

g) See part (a). 69. f−1(y) = (y−1)1/3 71. a) fA∩B(x) =
1 ↔ x ∈ A ∩ B ↔ x ∈ A and x ∈ B ↔ fA(x) = 1 and

fB(x) = 1 ↔ fA(x)fB(x) = 1 b) fA∪B(x) = 1 ↔ x ∈
A ∪ B ↔ x ∈ A or x ∈ B ↔ fA(x) = 1

or fB(x) = 1 ↔ fA(x) + fB(x) − fA(x)fB(x) = 1

c) fA(x)= 1↔ x ∈A↔ x ∈A↔ fA(x)= 0↔ 1−fA(x) =
1 d) fA⊕B(x) = 1 ↔ x ∈ A⊕ B ↔ (x ∈ A and x ∈ B) or

(x ∈ A and x ∈ B) ↔ fA(x) + fB(x) − 2fA(x)fB(x) = 1

73. a) True; because x is already an integer, x = x .
b) False; x = 1

2 is a counterexample. c) True; if x or y is an

integer, then by property 4b in Table 1, the difference is 0. If

S-16 Answers to Odd-Numbered Exercises

neither x nor y is an integer, then x = n+ and y = m+ δ,
where n andm are integers and and δ are positive real num-

bers less than 1. Then m + n < x + y < m + n + 2, so

 x+y is eitherm+n+1 orm+n+2. Therefore, the given

expression is either (n+ 1)+ (m+ 1)− (m+ n+ 1) = 1 or

(n+ 1)+ (m+ 1)− (m+ n+ 2) = 0, as desired. d) False;

x = 1
4 and y = 3 is a counterexample. e) False; x = 1

2 is
a counterexample. 75. a) If x is a positive integer, then the

two sides are equal. So suppose that x = n2 +m+ , where

n2 is the largest perfect square less than x,m is a nonnegative
integer, and 0 < ≤ 1. Then both

√
x and

√ x =
√
n2 +m

are between n and n + 1, so both sides equal n. b) If x is a

positive integer, then the two sides are equal. So suppose that

x = n2 − m − , where n2 is the smallest perfect square

greater than x,m is a nonnegative integer, and is a real num-

ber with 0 < ≤ 1. Then both
√
x and

√ x =
√
n2 −m

are between n − 1 and n. Therefore, both sides of the equa-

tion equal n. 77. a) Domain is Z; codomain is R; domain of

definition is the set of nonzero integers; the set of values for

which f is undefined is {0}; not a total function. b) Domain

is Z; codomain is Z; domain of definition is Z; set of values

for which f is undefined is ∅; total function. c) Domain is

Z×Z; codomain is Q; domain of definition is Z× (Z−{0});
set of values for which f is undefined is Z × {0}; not a total

function. d) Domain is Z × Z; codomain is Z; domain of

definition is Z × Z; set of values for which f is undefined

is ∅; total function. e) Domain is Z × Z; codomain is Z;

domain of definitions is {(m, n) | m > n}; set of values

for which f is undefined is {(m, n) | m ≤ n}; not a total

function. 79. a) By definition, to say that S has cardinality

m is to say that S has exactly m distinct elements. Therefore

we can assign the first object to 1, the second to 2, and so on.

This provides the one-to-one correspondence. b) By part (a),

there is a bijection f from S to {1, 2, . . . , m} and a bijection

g from T to {1, 2, . . . , m}. Then the composition g−1 ◦ f is

the desired bijection from S to T .

Section 2.4

1. a) 3 b) −1 c) 787 d) 2639 3. a) a0 = 2, a1 = 3,

a2 = 5, a3 = 9 b) a0 = 1, a1 = 4, a2 = 27, a3 = 256

c) a0 = 0, a1 = 0, a2 = 1, a3 = 1 d) a0 = 0, a1 = 1,

a2 = 2, a3 = 3 5. a) 2, 5, 8, 11, 14, 17, 20, 23, 26, 29

b) 1, 1, 1, 2, 2, 2, 3, 3, 3, 4 c) 1, 1, 3, 3, 5, 5, 7, 7, 9, 9

d) −1, −2, −2, 8, 88, 656, 4912, 40064, 362368,

3627776 e) 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536

f) 2, 4, 6, 10, 16, 26, 42, 68, 110, 178 g) 1, 2, 2, 3, 3, 3, 3, 4,

4, 4 h) 3, 3, 5, 4, 4, 3, 5, 5, 4, 3 7. Each term could be

twice the previous term; the nth term could be obtained from

the previous term by adding n − 1; the terms could be the

positive integers that are not multiples of 3; there are in-

finitely many other possibilities. 9. a) 2, 12, 72, 432, 2592

b) 2, 4, 16, 256, 65,536 c) 1, 2, 5, 11, 26 d) 1, 1, 6, 27, 204

e) 1, 2, 0, 1, 3 11. a) 6, 17, 49, 143, 421 b) 49 =
5 · 17 − 6 · 6, 143 = 5 · 49 − 6 · 17, 421 =
5 · 143 − 6 · 49 c) 5an−1 − 6an−2 =5(2n−1 + 5 ·

3n−1) − 6(2n−2 + 5 · 3n−2) = 2n−2(10 − 6) +
3n−2(75− 30) = 2n−2 · 4 + 3n−2 · 9 · 5 = 2n + 3n · 5 = an
13. a) Yes b) No c) No d) Yes e) Yes f) Yes g) No h) No

15. a) an−1 + 2an−2 + 2n − 9 = −(n − 1) + 2 + 2

[−(n − 2) + 2] + 2n − 9 = −n +2 = an b) an−1 +
2an−2+ 2n− 9 = 5(−1)n−1 − (n− 1)+ 2+ 2[5(−1)n−2−
(n− 2)+ 2] + 2n− 9= 5(−1)n − 2(−1+ 2)− n+ 2 = an
c) an−1+ 2an−2+ 2n−9= 3(−1)n−1+2n−1− (n−1)+ 2+
2[3(−1)n−2 + 2n−2 − (n− 2) + 2] + 2n− 9 = 3(−1)n−2

(−1 + 2) + 2n−2 (2 + 2) − n + 2 = an d) an−1 +
2an−2 + 2n− 9 = 7 · 2n−1 − (n− 1) + 2 + 2[7 · 2n−2−
(n − 2) + 2] + 2n− 9 = 2n−2(7 · 2+ 2 · 7)−n + 2 = an
17. a) an = 2 · 3n b) an = 2n+ 3 c) an = 1+ n(n+ 1)/2

d) an = n2 + 4n + 4 e) an = 1 f) an = (3n+1 − 1)/2

g) an = 5n! h) an = 2nn! 19. a) an= 3an−1 b) 5,904,900

21. a) an = n + an−1, a0 = 0 b) a12 = 78

c) an = n(n+ 1)/2 23. B(k) = [1+ (0.07/12)]B(k− 1)−
100, with B(0) = 5000 25. a) One 1 and one 0, followed

by two 1s and two 0s, followed by three 1s and three 0s,

and so on; 1, 1, 1 b) The positive integers are listed in in-

creasing order with each even positive integer listed twice;

9, 10, 10. c) The terms in odd-numbered locations are the

successive powers of 2; the terms in even-numbered loca-

tions are all 0; 32, 0, 64. d) an = 3 · 2n−1; 384, 768, 1536

e) an = 15 − 7(n − 1) = 22 − 7n; −34, −41, −48

f) an = (n2 + n + 4)/2; 57, 68, 80 g) an = 2n3;

1024, 1458, 2000 h) an = n! + 1; 362881, 3628801,

39916801 27. Among the integers 1, 2, . . . , an, where an
is the nth positive integer not a perfect square, the nonsquares

are a1,a2, . . . ,an and the squares are 12,22, . . . ,k2, where k

is the integer with k2 < n + k < (k + 1)2. Consequently,

an = n + k, where k2 < an < (k + 1)2. To find k, first note

that k2 < n+ k < (k + 1)2, so k2+1 ≤ n+k ≤ (k+1)2−1.

Hence, (k− 1
2)

2+ 3
4 = k2−k+1 ≤ n ≤ k2+k = (k+ 1

2)
2− 1

4 .

It follows that k − 1
2 <

√
n < k + 1

2 , so k = {√n}
and an = n + k = n + {√n}. 29. a) 20 b) 11 c) 30

d) 511 31. a) 1533 b) 510 c) 4923 d) 9842 33. a) 21

b) 78 c) 18 d) 18 35.
 n
j=1(aj − aj−1) = an − a0

37. a) n2 b) n(n + 1)/2 39. 15150 41.
n(n+1)(2n+1)

3 +
n(n+1)

2 + (n+ 1)(m − (n + 1)2 + 1), where n = √m − 1

43. a) 0 b) 1680 c) 1 d) 1024 45. 34

Section 2.5

1. a) Countably infinite, −1,−2,−3, −4, . . . b) Countably

infinite, 0, 2, −2, 4, −4, . . . c) Countably infinite,

99, 98, 97, . . . d) Uncountable e) Finite f) Countably infi-

nite, 0, 7,−7, 14,−14, . . . 3. a) Countable: match n with

the string of n 1s. b) Countable. To find a correspondence,

follow the path in Example 4, but omit fractions in the top

three rows (as well as continuing to omit fractions not in low-

est terms). c) Uncountable d) Uncountable 5. Supposem

new guests arrive at the fully occupied hotel. Move the guest

in Room n to Room m + n for n = 1, 2, 3, . . .; then the new

guests can occupy rooms 1 tom. 7. For n = 1, 2, 3, . . ., put

Answers to Odd-Numbered Exercises S-17

the guest currently in Room 2n into Room n, and the guest

currently in Room 2n − 1 into Room n of the new build-

ing. 9. Move the guess currently Room i to Room 2i + 1

for i = 1, 2, 3, Put the j th guest from the kth bus into

Room 2k(2j + 1). 11. a) A = [1, 2] (closed interval of

real numbers from 1 to 2), B = [3, 4] b) A = [1, 2] ∪ Z+,

B = [3, 4]∪Z+ c) A = [1, 3],B = [2, 4] 13. Suppose that

A is countable. Then either A has cardinality n for some non-

negative integer n, in which case there is a one-to-one function

from A to a subset of Z+ (the range is the first n positive in-

tegers), or there exists a one-to-one correspondence f from

A to Z+; in either case we have satisfied Definition 2. Con-

versely, suppose that |A| ≤ |Z+|. By definition, this means

that there is a one-to-one function from A to Z+, so A has the

same cardinality as a subset of Z+ (namely the range of that

function). By Exercise 16 we conclude that A is countable.

15. Assume that B is countable. Then the elements of B can

be listed as b1, b2, b3, BecauseA is a subset ofB, taking

the subsequence of {bn} that contains the terms that are in A

gives a listing of the elements of A. Because A is uncount-

able, this is impossible. 17. Assume thatA−B is countable.

Then, because A = (A − B) ∪ (A ∩ B), the elements of A

can be listed in a sequence by alternating elements of A− B
and elements of A∩B. This contradicts the uncountability of

A. 19. We are given bijections f from A to B and g from

C to D. Then the function from A × C to B × D that sends

(a, c) to (f (a), g(c)) is a bijection. 21. By the definition

of |A| ≤ |B|, there is a one-to-one function f : A→ B. Simi-

larly, there is a one-to-one functiong : B→ C. By Exercise 33

in Section 2.3, the composition g ◦ f : A→ C is one-to-one.

Therefore by definition |A| ≤ |C|. 23. Using the Axiom of

Choice from set theory, choose distinct elements a1, a2, a3,

…ofA one at a time (this is possible becauseA is infinite). The

resulting set {a1, a2, a3, . . .} is the desired infinite subset ofA.

25. The set of finite strings of characters over a finite alphabet

is countably infinite, because we can list these strings in al-

phabetical order by length. Therefore the infinite set S can be

identified with an infinite subset of this countable set, which

by Exercise 16 is also countably infinite. 27. Suppose that

A1, A2, A3, . . . are countable sets. Because Ai is countable,

we can list its elements in a sequence as ai1, ai2, ai3, The

elements of the set
 n
i=1 Ai can be listed by listing all terms

aij with i + j = 2, then all terms aij with i + j = 3, then

all terms aij with i + j = 4, and so on. 29. There are a

finite number of bit strings of length m, namely, 2m. The set

of all bit, strings is the union of the sets of bit strings of length

m for m = 0, 1, 2, Because the union of a countable

number of countable sets is countable (see Exercise 27), there

are a countable number of bit strings. 31. It is clear from

the formula that the range of values the function takes on for a

fixed value ofm+ n, saym+ n = x, is (x − 2)(x − 1)/2+ 1

through (x − 2)(x − 1)/2+ (x − 1), because m can assume

the values 1, 2, 3, . . . , (x − 1) under these conditions, and

the first term in the formula is a fixed positive integer when

m + n is fixed. To show that this function is one-to-one and

onto, we merely need to show that the range of values for

x + 1 picks up precisely where the range of values for x

left off, i.e., that f (x − 1, 1) + 1 = f (1, x). We have

f (x−1, 1)+1 = (x−2)(x− 1)
2 + (x−1)+1 = x2 − x+ 2

2 =
(x− 1)x

2 +1 = f (1, x). 33. By the Schröder-Bernstein theo-

rem, it suffices to find one-to-one functionsf : (0, 1)→ [0, 1]
and g : [0, 1] → (0, 1). Let f (x) = x and g(x) = (x + 1)/3.

35. Each element A of the power set of the set of positive

integers (i.e., A ⊆ Z+) can be represented uniquely by the

bit string a1a2a3 . . ., where ai = 1 if i ∈ A and ai = 0

if i /∈ A. Assume there were a one-to-one correspondence

f : Z+ → P(Z+). Form a new bit string s = s1s2s3 . . . by set-

ting si to be 1 minus the ith bit of f (i). Then because s differs

in the i bit from f (i), s is not in the range of f , a contradiction.

37. For any finite alphabet there are a finite number of strings

of length n, whenever n is a positive integer. It follows by the

result of Exercise 27 that there are only a countable number

of strings from any given finite alphabet. Because the set of

all computer programs in a particular language is a subset of

the set of all strings of a finite alphabet, which is a countable

set by the result from Exercise 16, it is itself a countable set.

39. Exercise 37 shows that there are only a countable number

of computer programs. Consequently, there are only a count-

able number of computable functions. Because, as Exercise

38 shows, there are an uncountable number of functions, not

all functions are computable.

Section 2.6

1. a) 3× 4 b)

⎡
⎣1

4
3

⎤
⎦ c)

2 0 4 6

d) 1

e)
⎡
⎢⎢⎣

1 2 1
1 0 1
1 4 3
3 6 7

⎤
⎥⎥⎦

3. a)

1 11
2 18

b)
⎡
⎣2 −2 −3

1 0 2
9 −4 4

⎤
⎦

c)
⎡
⎢⎢⎣
−4 15 −4 1
−3 10 2 −3
0 2 −8 6
1 −8 18 −13

⎤
⎥⎥⎦

5.

9/5 −6/5
−1/5 4/5

7. 0+A= 0+ aij = aij + 0
 = 0+A 9. A+(B+C)=

aij + (bij + cij)
 = (aij + bij) + cij = (A+B) + C

11. The number of rows of A equals the number of

columns of B, and the number of columns of A

equals the number of rows of B. 13. A(BC) =
qaiq

rbqrcrl

 =

q

raiqbqrcrl

=

r

qaiqbqrcrl

=

r

qaiqbqr

crl

= (AB)C

15. An =

1 n

0 1

17. a) Let A = [aij] and

B = [bij]. Then A + B = [aij + bij]. We have

(A + B)t = [aji + bji] = [aji] + [bji] = At + Bt .

b) Using the same notation as in part (a), we have BtAt =

S-18 Answers to Odd-Numbered Exercises

q bqiajq

=

q ajqbqi

= (AB)t , because the

(i, j)th entry is the (j, i)th entry of AB. 19. The result fol-

lows because

a b

c d

d −b
−c a

=

ad−bc 0

0 ad−bc

=

(ad − bc)I2 =

d −b
−c a

a b

c d

. 21. An(A−1)n =

A(A · · ·(A(AA−1)A−1) · · ·A−1)A−1 by the associative law.

Because AA−1 = I, working from the inside shows that

An(A−1)n = I. Similarly (A−1)nAn = I. Therefore

(An)−1 = (A−1)n. 23. The (i, j)th entry of A + At

is aij + aji , which equals aji + aij , the (j, i)th entry of

A+ At , so by definition A+ At is symmetric. 25. x1 = 1,

x2 = −1, x3 = −2

27. a)
⎡
⎣1 1 1

1 1 1
1 0 1

⎤
⎦

b)
⎡
⎣0 0 1

1 0 0
0 0 1

⎤
⎦

c)
⎡
⎣1 1 1

1 1 1
1 0 1

⎤
⎦

29. a)
⎡
⎣1 0 0

1 1 0
1 0 1

⎤
⎦

b)
⎡
⎣1 0 0

1 0 1
1 1 0

⎤
⎦

c)
⎡
⎣1 0 0

1 1 1
1 1 1

⎤
⎦

31. a) A∨B= [aij ∨ bij] = [bij ∨aij]=B∨A b) A ∧ B =
[aij ∧ bij] = [bij ∧ aij] = B ∧ A 33. a) A ∨ (B ∧ C) =
[aij] ∨ [bij ∧ cij] = [aij ∨ (bij ∧ cij)] = [(aij ∨ bij) ∧
(aij ∨ cij)] = [aij ∨ bij] ∧ [aij ∨ cij] = (A∨B)∧ (A∨C)

b) A ∧ (B ∨ C) = [aij] ∧ [bij ∨ cij] = [aij ∧ (bij ∨ cij)] =
[(aij ∧ bij) ∨ (aij ∧ cij)] = [aij ∧ bij] ∨ [aij ∧
cij] = (A ∧ B) ∨ (A ∧ C) 35. A (B C) =

qaiq ∧

r

bqr ∧ crl

 = q r aiq ∧ bqr ∧crl

=

r

q

aiq ∧bqr ∧crl

 =

r

q

aiq ∧ bqr

 ∧ crl

=

(A B) C

Supplementary Exercises

1. a) A b) A ∩ B c) A − B d) A ∩ B e) A ⊕ B 3. Yes

5. A−(A−B) = A−(A ∩ B) = A ∩ (A∩B) =A ∩ (A ∪
B) = (A ∩ A) ∪ (A∩B) = ∅ ∪ (A∩B) = A ∩ B 7. Let

A = {1}, B = ∅, C = {1}. Then (A − B) − C = ∅, but

A − (B − C) = {1}. 9. No. For example, let A = B =
{a, b}, C = ∅, and D = {a}. Then (A− B)− (C −D) =
∅ − ∅ = ∅, but (A − C) − (B − D) = {a, b} − {b} = {a}.
11. a) |∅| ≤ |A ∩ B| ≤ |A| ≤ |A ∪ B| ≤ |U | b) |∅| ≤
|A − B| ≤ |A ⊕ B| ≤ |A∪B| ≤ |A| + |B| 13. a) Yes, no

b) Yes, no c) f has inverse with f−1(a) = 3, f−1(b) = 4,

f−1(c) = 2, f−1(d)= 1; g has no inverse. 15. If f is one-

to-one, then f provides a bijection between S and f (S), so

they have the same cardinality. If f is not one-to-one, then

there exist elements x and y in S such that f (x) = f (y).

Let S = {x, y}. Then |S| = 2 but |f (S)| = 1. 17. Let

x ∈ A. Then Sf ({x}) = {f (y) | y ∈ {x}} = {f (x)}. By

the same reasoning, Sg({x}) = {g(x)}. Because Sf = Sg ,

we can conclude that {f (x)} = {g(x)}, and so necessarily

f (x) = g(x). 19. The equation is true if and only if the

sum of the fractional parts of x and y is less than 1. 21. The

equation is true if and only if either both x and y are in-

tegers, or x is not an integer but the sum of the fractional

parts of x and y is less than or equal to 1. 23. If x is an

integer, then x + m − x = x + m − x = m. Oth-

erwise, write x in terms of its integer and fractional parts:

x = n+ , where n = x and 0 < < 1. In this case x +
 m− x = n+ + m− n− = n+m− n− 1=m− 1.

25. Write n = 2k + 1 for some integer k. Then n2 = 4k2 +
4k+1, so n2/4 = k2+k+ 1

4 . Therefore, n2/4 = k2+k+1.

But (n2+3)/4 = (4k2+4k+1+3)/4 = k2+k+1. 27. Let

x = n+ (r/m)+ , where n is an integer, r is a nonnegative

integer less thanm, and is a real number with 0 ≤ < 1/m.

The left-hand side is nm+ r +m = nm+ r . On the right-

hand side, the terms x through x+ (m+ r − 1)/m are all

just n and the terms from x + (m− r)/m on are all n+ 1.

Therefore, the right-hand side is (m−r)n+r(n+1) = nm+r ,
as well. 29. 101 31. a1 = 1; a2n+1 = n · a2n for all

n > 0; and a2n = n + a2n−1 for all n > 0. The next

four terms are 5346, 5353, 37471, and 37479. 33. If each

f−1(j) is countable, then S = f−1(1) ∪ f−1(2) ∪ · · · is

the countable union of countable sets and is therefore count-

able by Exercise 27 in Section 2.5. 35. Because there is

a one-to-one correspondence between R and the open inter-

val (0, 1) (given by f (x) = 2 arctan(x)/π), it suffices to

shows that |(0, 1) × (0, 1)| = |(0, 1)|. By the Schröder-

Bernstein theorem it suffices to find injective functions f :
(0, 1) → (0, 1) × (0, 1) and g : (0, 1) × (0, 1) → (0, 1).

Let f (x) = (x, 1
2). For g we follow the hint. Suppose

(x, y) ∈ (0, 1)× (0, 1), and represent x and y with their deci-

mal expansions x = 0.x1x2x3 . . . and y = 0.y1y2y3 . . ., never

choosing the expansion of any number that ends in an infinite

string of 9s. Let g(x, y) be the decimal expansion obtained by

interweaving these two strings, namely 0.x1y1x2y2x3y3

37. A4n =

1 0
0 1

, A4n+1 =

0 1
−1 0

, A4n+2 =

 −1 0
0 −1

, A4n+3 =

0 −1
1 0

, for n ≥ 0 39. Suppose

that A =

a b

c d

. Let B =

0 1
0 0

. Because AB = BA,

it follows that c = 0 and a = d. Let B =

0 0
1 0

. Because

AB = BA, it follows that b = 0. Hence, A =

a 0
0 a

= aI.

41. a) Let A 0 =
bij

. Then bij = (ai1 ∧ 0)

∨ · · ·∨ (aip∧0) = 0. Hence, A 0 = 0. Similarly 0 A = 0.

b) A ∨ 0 = aij ∨ 0
 = aij = A. Hence A ∨ 0 = A.

Similarly 0∨A = A. c) A∧0 = aij ∧ 0
 = [0] = 0. Hence

A ∧ 0 = 0. Similarly 0 ∧ A = 0.

Answers to Odd-Numbered Exercises S-19

CHAPTER 3

Section 3.1

1. max := 1, i := 2, max := 8, i := 3, max := 12, i := 4,

i := 5, i := 6, i := 7, max := 14, i := 8, i := 9, i := 10,

i := 11

3. procedure AddUp(a1, . . . , an: integers)

sum : = a1

for i : = 2 to n

sum := sum + ai
return sum

5. procedure duplicates(a1, a2, . . . , an: integers in

nondecreasing order)

k := 0 {this counts the duplicates}
j := 2

while j ≤ n
if aj = aj−1 then

k := k + 1

ck := aj
while j ≤ n and aj = ck
j := j + 1

j := j + 1

{c1, c2, . . . , ck is the desired list}
7. procedure last even location(a1,a2, . . . ,an: integers)

k := 0

for i := 1 to n

if ai is even then k := i
return k {k = 0 if there are no evens}

9. procedure palindrome check(a1a2 . . . an: string)

answer := true

for i := 1 to n/2
if ai = an+1−i then answer := false

return answer

11. procedure interchange(x, y: real numbers)

z := x
x := y
y := z

The minimum number of assignments needed is three.

13. Linear search: i := 1, i := 2, i := 3, i := 4, i := 5,

i := 6, i := 7, location := 7; binary search: i := 1, j := 8,

m := 4, i := 5,m := 6, i := 7,m := 7, j := 7, location := 7

15. procedure insert(x, a1, a2, . . . , an: integers)

{the list is in order: a1 ≤ a2 ≤ · · · ≤ an}
an+1 := x + 1

i := 1

while x > ai
i := i + 1

for j := 0 to n− i
an−j+1 := an−j
ai := x
{x has been inserted into correct position}

17. procedure first largest(a1, . . . , an: integers)

max := a1

location := 1

for i := 2 to n

if max < ai then

max := ai
location := i

return location

19. procedure mean-median-max-min(a, b, c: integers)

mean := (a + b + c)/ 3

{the six different orderings of a, b, c with respect

to ≥ will be handled separately}
if a ≥ b then

if b ≥ c then median := b;max := a;min := c
...

(The rest of the algorithm is similar.)

21. procedure first-three(a1, a2, . . . , an: integers)

if a1 > a2 then interchange a1 and a2

if a2 > a3 then interchange a2 and a3

if a1 > a2 then interchange a1 and a2

23. procedure onto(f : function from A to B where

A = {a1, . . . , an}, B = {b1, . . . , bm}, a1, . . . , an,

b1, . . . , bm are integers)

for i := 1 to m

hit(bi) := 0

count := 0

for j := 1 to n

if hit(f (aj)) = 0 then

hit(f (aj)) := 1

count := count+ 1

if count = m then return true else return false

25. procedure ones(a: bit string, a = a1a2 . . . an)

count:= 0

for i := 1 to n

if ai := 1 then

count := count+ 1

return count

27. procedure ternary search(s: integer, a1,a2, . . . , an:

increasing integers)

i := 1

j := n
while i < j − 1

l := (i + j)/3
u := 2(i + j)/3
if x > au then i := u+ 1

else if x > al then

i := l + 1

j := u
else j := l

if x = ai then location := i
else if x = aj then location := j

S-20 Answers to Odd-Numbered Exercises

else location := 0

return location {0 if not found}

29. procedure find a mode(a1, a2, . . . , an: nondecreasing

integers)

modecount := 0

i := 1

while i ≤ n
value := ai
count := 1

while i ≤ n and ai = value

count := count+ 1

i := i + 1

if count > modecount then

modecount := count

mode := value

return mode

31. procedure find duplicate(a1, a2, . . . , an: integers)

location := 0

i := 2

while i ≤ n and location = 0

j := 1

while j < i and location = 0

if ai = aj then location := i
else j := j + 1

i := i + 1

return location

{location is the subscript of the first value that

repeats a previous value in the sequence}
33. procedure find decrease(a1, a2, . . . , an: positive

integers)

location := 0

i := 2

while i ≤ n and location = 0

if ai < ai−1 then location := i
else i := i + 1

return location

{location is the subscript of the first value less than

the immediately preceding one}
35. At the end of the first pass: 1, 3, 5, 4, 7; at the end of the

second pass: 1, 3, 4, 5, 7; at the end of the third pass: 1, 3, 4,

5, 7; at the end of the fourth pass: 1, 3, 4, 5, 7

37. procedure better bubblesort(a1, . . . , an: integers)

i : = 1; done : = false

while i < n and done = false

done : = true

for j : = 1 to n− i
if aj > aj+1 then

interchange aj and aj+1

done : = false

i : = i + 1

{a1, . . . , an is in increasing order}
39.At the end of the first, second, and third passes: 1, 3, 5, 7, 4;

at the end of the fourth pass: 1, 3, 4, 5, 7 41. a) 1, 5, 4, 3,

2; 1, 2, 4, 3, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5 b) 1, 4, 3, 2,

5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5 c) 1, 2, 3, 4,

5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5 43. We carry

out the linear search algorithm given as Algorithm 2 in this

section, except that we replace x = ai by x < ai , and

we replace the else clause with else location := n + 1.

45. 2 + 3 + 4 + · · · + n = (n2 + n − 2)/2 47. Find the

location for the 2 in the list 3 (one comparison), and insert it

in front of the 3, so the list now reads 2, 3, 4, 5, 1, 6. Find

the location for the 4 (compare it to the 2 and then the 3),

and insert it, leaving 2, 3, 4, 5, 1, 6. Find the location for the

5 (compare it to the 3 and then the 4), and insert it, leaving

2, 3, 4, 5, 1, 6. Find the location for the 1 (compare it to the

3 and then the 2 and then the 2 again), and insert it, leaving

1, 2, 3, 4, 5, 6. Find the location for the 6 (compare it to the

3 and then the 4 and then the 5), and insert it, giving the final

answer 1, 2, 3, 4, 5, 6.

49. procedure binary insertion sort(a1, a2, . . . , an:

real numbers with n ≥ 2)

for j := 2 to n

{binary search for insertion location i}
left := 1

right := j − 1

while left < right

middle := (left+ right)/2
if aj > amiddle then left := middle+ 1

else right := middle

if aj < aleft then i := left else i := left+ 1

{insert aj in location i by moving ai through aj−1

toward back of list}
m := aj
for k := 0 to j − i − 1

aj−k := aj−k−1

ai := m
{a1, a2, . . . , an are sorted}

51. The variation from Exercise 50 53. a) Two quarters, one

penny b) Two quarters, one dime, one nickel, four pennies

c) A three quarters, one penny d) Two quarters, one dime

55. Greedy algorithm uses fewest coins in parts (a), (c), and

(d). a) Two quarters, one penny b) Two quarters, one dime,

nine pennies c) Three quarters, one penny d) Two quarters,

one dime 57. The 9:00–9:45 talk, the 9:50–10:15 talk, the

10:15–10:45 talk, the 11:00–11:15 talk 59. a) Order the

talks by starting time. Number the lecture halls 1, 2, 3, and

so on. For each talk, assign it to lowest numbered lecture hall

that is currently available. b) If this algorithm uses n lecture

halls, then at the point the nth hall was first assigned, it had

to be used (otherwise a lower-numbered hall would have been

assigned), which means that n talks were going on simulta-

neously (this talk just assigned and the n − 1 talks currently

in halls 1 through n− 1). 61. Here we assume that the men

are the suitors and the women the suitees.

procedure stable(M1,M2, . . . ,Ms,W1,W2, . . . ,Ws:

preference lists)

for i := 1 to s

mark man i as rejected

for i := 1 to s

set man i’s rejection list to be empty

for j := 1 to s

Answers to Odd-Numbered Exercises S-21

set woman j ’s proposal list to be empty

while rejected men remain

for i := 1 to s

if man i is marked rejected then add i to the

proposal list for the woman j who ranks highest

on his preference list but does not appear on his

rejection list, and mark i as not rejected

for j := 1 to s

if woman j ’s proposal list is nonempty then

remove from j ’s proposal list all men i

except the man i0 who ranks highest on her

preference list, and for each such man i mark

him as rejected and add j to his rejection list

for j := 1 to s

match j with the one man on j ’s proposal list

{This matching is stable.}
63. If the assignment is not stable, then there is a manm and a

woman w such that m prefers w to the woman w with whom

he is matched, and w prefers m to the man with whom she is

matched. But m must have proposed to w before he proposed

to w , because he prefers the former. Because m did not end

up matched with w, she must have rejected him. Women re-

ject a suitor only when they get a better proposal, and they

eventually get matched with a pending suitor, so the woman

with whom w is matched must be better in her eyes than m,

contradicting our original assumption. Therefore the marriage

is stable. 65. Run the two programs on their inputs concur-

rently and report which one halts.

Section 3.2

1. The choices of C and k are not unique. a) C = 1, k = 10

b) C = 4, k = 7c) Nod) C = 5, k = 1e) C = 1, k = 0 f) C =
1, k = 2 3. x4+9x3+4x+7 ≤ 4x4 for all x > 9; witnesses

C = 4, k = 9 5. (x2+1)/(x+1) = x−1+2/(x+1) < x

for all x > 1; witnesses C = 1, k = 1 7. The choices of C

and k are not unique. a) n = 3, C = 3, k = 1 b) n = 3,

C = 4, k = 1 c) n = 1,C = 2, k = 1 d) n = 0,C = 2, k = 1

9. x2 + 4x + 17 ≤ 3x3 for all x > 17, so x2 + 4x + 17 is

O(x3), with witnesses C = 3, k = 17. However, if x3 were

O(x2 + 4x + 17), then x3 ≤ C(x2 + 4x + 17) ≤ 3Cx2 for

someC, for all sufficiently large x, which implies that x ≤ 3C

for all sufficiently large x, which is impossible. Hence, x3 is

notO(x2+ 4x+ 17). 11. 3x4+ 1 ≤ 4x4 = 8(x4/2) for all

x > 1, so 3x4 + 1 is O(x4/2), with witnesses C = 8, k = 1.

Also x4/2 ≤ 3x4+1 for all x > 0, so x4/2 isO(3x4+1), with

witnessesC = 1, k = 0. 13. Because 2n ≤ 3n for all n > 0,

it follows that 2n is O(3n), with witnesses C = 1, k = 0.

However, if 3n wereO(2n), then for some C, 3n ≤ C · 2n for

all sufficiently large n. This says that C ≥ (3/2)n for all suffi-

ciently large n, which is impossible. Hence, 3n is not O(2n).

15. All functions for which there exist real numbers k and C

with |f (x)| ≤ C for x > k. These are the functions f (x) that

are bounded for all sufficiently large x. 17. There are con-

stants C1, C2, k1, and k2 such that |f (x)| ≤ C1|g(x)| for all

x > k1 and |g(x)| ≤ C2|h(x)| for all x > k2. Hence, for x >

max(k1, k2) it follows that |f (x)| ≤ C1|g(x)| ≤ C1C2|h(x)|.
This shows that f (x) is O(h(x)). 19. 2n+1 is O(2n);

22n is not. 21. 1000 log n,
√
n, n log n, n2/1000000, 2n,

3n, 2n! 23. The algorithm that uses n log n operations

25. a) O(n3) b) O(n5) c) O(n3 · n!) 27. a) O(n2 log n)

b) O(n2(log n)2) c) O(n2n) 29. a) Neither (x2) nor

 (x2) b) (x2) and (x2) c) Neither (x2) nor (x2)

d) (x2), but not (x2) e) (x2), but not (x2) f) (x2)

and (x2) 31. If f (x) is (g(x)), then there exist con-

stants C1 and C2 with C1|g(x)| ≤ |f (x)| ≤ C2|g(x)|.
It follows that |f (x)| ≤ C2|g(x)| and |g(x)| ≤ (1/C1)|f (x)|
for x > k. Thus, f (x) is O(g(x)) and g(x) is O(f (x)). Con-

versely, suppose that f (x) is O(g(x)) and g(x) is O(f (x)).

Then there are constantsC1,C2, k1, and k2 such that |f (x)| ≤
C1|g(x)| for x > k1 and |g(x)| ≤ C2|f (x)| for x > k2. We can

assume thatC2 > 0 (we can always makeC2 larger). Then we

have (1/C2)|g(x)| ≤ |f (x)| ≤ C1|g(x)| for x > max(k1, k2).

Hence, f (x) is (g(x)). 33. If f (x) is (g(x)), then f (x)

is both O(g(x)) and (g(x)). Hence, there are positive con-

stants C1, k1, C2, and k2 such that |f (x)| ≤ C2|g(x)| for

all x > k2 and |f (x)| ≥ C1|g(x)| for all x > k1. It fol-

lows that C1|g(x)| ≤ |f (x)| ≤ C2|g(x)| whenever x > k,

where k = max(k1,k2). Conversely, if there are positive con-

stants C1, C2, and k such that C1|g(x)| ≤ |f (x)| ≤ C2|g(x)|
for x > k, then taking k1 = k2 = k shows that f (x) is both

O(g(x)) and (g(x)).

35.

k x

y C2g(x)

C1g (x)

f (x)

37. If f (x) is (1), then |f (x)| is bounded between pos-

itive constants C1 and C2. In other words, f (x) cannot

grow larger than a fixed bound or smaller than the nega-

tive of this bound and must not get closer to 0 than some

fixed bound. 39. Because f (x) is O(g(x)), there are con-

stants C and k such that |f (x)| ≤ C|g(x)| for x > k.

Hence, |f n(x)| ≤ Cn|gn(x)| for x > k, so f n(x) is

O(gn(x)) by taking the constant to be Cn. 41. Because

f (x) and g(x) are increasing and unbounded, we can assume

f (x) ≥ 1 and g(x) ≥ 1 for sufficiently large x. There are

constants C and k with f (x) ≤ Cg(x) for x > k. This

implies that log f (x) ≤ log C + log g(x) < 2 log g(x)

for sufficiently large x. Hence, log f (x) is O(log g(x)).

43. By definition there are positive constraints C1, C 1,

C2, C 2, k1, k 1, k2, and k 2 such that f1(x) ≥ C1|g(x)|
for all x > k1, f1(x) ≤ C 1|g(x)| for all x > k 1,

f2(x) ≥ C2|g(x)| for all x > k2, and f2(x) ≤ C 2|g(x)|
for all x > k 2. Adding the first and third inequalities shows

that f1(x) + f2(x) ≥ (C1 + C2)|g(x)| for all x > k where

S-22 Answers to Odd-Numbered Exercises

k = max(k1, k2). Adding the second and fourth inequalities

shows that f1(x) + f2(x) ≤ (C 1 + C 2)|g(x)| for all x > k

where k = max(k 1, k

2). Hence, f1(x) + f2(x) is (g(x)).

This is no longer true if f1 and f2 can assume negative values.

45. This is false. Let f1 = x2 + 2x, f2(x) = x2 + x,

and g(x) = x2. Then f1(x) and f2(x) are both O(g(x)),

but (f1 − f2)(x) is not. 47. Take f (n) to be the func-

tion with f (n) = n if n is an odd positive integer and

f (n) = 1 if n is an even positive integer and g(n) to be the

function with g(n) = 1 if n is an odd positive integer and

g(n) = n if n is an even positive integer. 49. There are

positive constants C1, C2, C 1, C 2, k1, k 1, k2, and k 2 such that

|f1(x)| ≥ C1|g1(x)| for all x > k1, |f1(x)| ≤ C 1|g1(x)|
for all x ≥ k 1, |f2(x)| > C2|g2(x)| for all x > k2, and

|f2(x)| ≤ C 2|g2(x)| for all x > k 2. Because f2 and g2

are never zero, the last two inequalities can be rewritten as

|1/f2(x)| ≤ (1/C2)|1/g2(x)| for all x > k2 and |1/f2(x)| ≥
(1/C 2)|1/g2(x)| for all x > k 2. Multiplying the first and

rewritten fourth inequalities shows that |f1(x)/f2(x)| ≥
(C1/C

2)|g1(x)/g2(x)| for all x > max(k1, k

2), and mul-

tiplying the second and rewritten third inequalities

gives |f1(x)/f2(x)| ≤ (C 1/C2)|g1(x)/g2(x)| for all x >

max(k 1, k2). It follows that f1/f2 is big-Theta of g1/g2.

51. There exist positive constants C1, C2, k1, k2, k

1, k

2

such that |f (x, y)| ≤ C1|g(x, y)| for all x > k1 and y > k2

and |f (x, y)| ≥ C2|g(x, y)| for all x > k 1 and y > k 2.

53. (x2 + xy + x log y)3 < (3x2y3) = 27x6y3 for

x > 1 and y > 1, because x2 < x2y, xy < x2y, and

x log y < x2y. Hence, (x2 + xy + x log y)3 is O(x6y3).

55. For all positive real numbers x and y, xy ≤ xy.

Hence, xy is O(xy) from the definition, taking C = 1

and k1 = k2 = 0. 57. Clearly nd < nc for all n ≥ 2;

therefore nd is O(nc). The ratio nd/nc = nd−c is un-

bounded so there is no constant C such that nd ≤ Cnc for

large n. 59. If f and g are positive-valued functions such

that limn→∞ f (x)/g(x) = C <∞, then f (x) < (C+1)g(x)

for large enough x, so f (n) is O(g(n)). If that limit is ∞,

then clearly f (n) is not O(g(n)). Here repeated applica-

tions of L’Hôpital’s rule shows that limx→∞ xd/bx = 0

and limx→∞ bx/xd = ∞. 61. a) limx→∞ x2/x3 =
limx→∞ 1/x = 0 b) limx→∞

x log x

x2 = limx→∞
log x
x

=
limx→∞ 1

x ln 2 = 0 (using L’Hôpital’s rule) c) limx→∞ x2

2x =
limx→∞ 2x

2x ·ln 2 = limx→∞ 2
2x ·(ln 2)2

= 0 (using L’Hôpital’s

rule) d) limx→∞ x2+x+1
x2 = limx→∞

1+ 1

x
+ 1
x2

= 1 = 0

63.

x

y

x log x
x log x

x2

x log x

x2
= 0lim

x ⬁

x2

65. No. Take f (x) = 1/x2 and g(x) = 1/x. 67. a) Be-

cause limx→∞ f (x)/g(x) = 0, |f (x)|/|g(x)| < 1 for

sufficiently large x. Hence, |f (x)| < |g(x)| for x > k

for some constant k. Therefore, f (x) is O(g(x)). b) Let

f (x) = g(x) = x. Then f (x) is O(g(x)), but f (x) is

not o(g(x)) because f (x)/g(x) = 1. 69. Because f2(x) is

o(g(x)), from Exercise 67(a) it follows that f2(x) isO(g(x)).

By Corollary 1, we have f1(x)+f2(x) isO(g(x)). 71. We

can easily show that (n− i)(i+ 1)≥ n for i= 0,1, . . . , n− 1.

Hence, (n!)2 = (n · 1)((n − 1) · 2) · ((n − 2) · 3) · · · (2 · (n −
1)) · (1 ·n)≥ nn. Therefore, 2 log n! ≥ n log n. 73. Compute

that log 5! ≈ 6.9 and (5 log 5)/4 ≈ 2.9, so the in-

equality holds for n = 5. Assume n ≥ 6. Because n!
is the product of all the integers from n down to 1, we

have n! > n(n − 1)(n − 2) · · · n/2 (because at least

the term 2 is missing). Note that there are more than n/2

terms in this product, and each term is at least as big as

n/2. Therefore the product is greater than (n/2)(n/2). Tak-

ing the log of both sides of the inequality, we have log n! >
log

n
2

 n/2 = n
2 log n2 = n

2 (log n− 1) > (n log n)/4, because

n > 4 implies log n − 1 > (log n)/2. 75. All are not

asymptotic.

Section 3.3

1. O(1) 3. O(n2) 5. 2n− 1 7. Linear 9. O(n)

11. a) procedure disjointpair(S1, S2, . . . , Sn :
subsets of {1, 2, . . . , n})

answer := false

for i := 1 to n

for j := i + 1 to n

disjoint := true

for k := 1 to n

if k ∈ Si and k ∈ Sj then disjoint := false

if disjoint then answer := true

return answer

b) O(n3) 13. a) power := 1, y := 1; i := 1,

power := 2, y := 3; i := 2, power := 4, y := 15

b) 2nmultiplications andn additions 15. a) 2109 ≈103× 108

b) 109 c) 3.96 × 107 d) 3.16 × 104 e) 29 f) 12

17. a) 2260·1012

b) 260·1012
c) 2

√
60·106 ≈ 2 × 102331768

d) 60,000,000 e) 7,745,966 f) 45 g) 6 19. a) 36 years

b) 13 days c) 19 minutes 21. a) Less than 1 millisec-

ond more b) 100 milliseconds more c) 2n + 1 milliseconds

more d) 3n2 + 3n+ 1 milliseconds more e) Twice as much

time f) 22n+1 times as many milliseconds g) n + 1 times

as many milliseconds 23. The average number of compar-

isons is (3n+ 4)/2. 25. O(log n) 27. O(n) 29. O(n2)

31. O(n) 33. O(n) 35. O(log n) comparisons; O(n2)

swaps 37. O(n22n) 39. a) doubles b) increases by 1

41. Use Algorithm 1, where A and B are now n × n up-

per triangular matrices, by replacing m by n in line 1, and

Answers to Odd-Numbered Exercises S-23

having q iterate only from i to j , rather than from 1 to k.

43. n(n+ 1)(n+ 2)/6 45. A((BC)D)

Supplementary Exercises

1. a) procedure last max(a1, . . . , an: integers)

max := a1

last := 1

i := 2

while i ≤ n
if ai ≥ max then

max := ai
last := i
i := i + 1

return last

b) 2n− 1 = O(n) comparisons

3. a) procedure pair zeros(b1b2 . . . bn: bit string, n ≥ 2)

x := b1

y := b2

k := 2

while k < n and (x = 0 or y = 0)

k := k + 1

x := y
y := bk

if x = 0 and y = 0 then print “YES”

else print “NO”

b) O(n)

5. a) and b)

procedure smallest and largest(a1, a2, . . . , an: integers)

min := a1

max := a1

for i := 2 to n

if ai < min then min := ai
if ai > max then max := ai
{min is the smallest integer among the input, and max is the

largest}
c) 2n− 2

7. Before any comparisons are done, there is a possibility

that each element could be the maximum and a possibility

that it could be the minimum. This means that there are 2n

different possibilities, and 2n − 2 of them have to be elimi-

nated through comparisons of elements, because we need to

find the unique maximum and the unique minimum. We clas-

sify comparisons of two elements as “virgin” or “nonvirgin,”

depending on whether or not both elements being compared

have been in any previous comparison. A virgin comparison

eliminates the possibility that the larger one is the minimum

and that the smaller one is the maximum; thus each virgin

comparison eliminates two possibilities, but it clearly cannot

do more. A nonvirgin comparison must be between two ele-

ments that are still in the running to be the maximum or two

elements that are still in the running to be the minimum, and

at least one of these elements must not be in the running for

the other category. For example, we might be comparing x

and y, where all we know is that x has been eliminated as

the minimum. If we find that x > y in this case, then only

one possibility has been ruled out—we now know that y is

not the maximum. Thus in the worst case, a nonvirgin com-

parison eliminates only one possibility. (The cases of other

nonvirgin comparisons are similar.) Now there are at most

 n/2 comparisons of elements that have not been compared

before, each removing two possibilities; they remove 2 n/2
possibilities altogether. Therefore we need 2n − 2 − 2 n/2
more comparisons that, as we have argued, can remove only

one possibility each, in order to find the answers in the worst

case, because 2n− 2 possibilities have to be eliminated. This

gives us a total of 2n − 2 − 2 n/2 + n/2 comparisons in

all. But 2n− 2− 2 n/2 + n/2 = 2n− 2− n/2 = 2n−
2 + −n/2 = 2n − n/2 − 2 = 3n/2 − 2, as desired.

9. The following algorithm has worst-case complexityO(n4).

procedure equal sums(a1, a2, . . . , an)

for i := 1 to n

for j := i + 1 to n {since we want i < j}

for k := 1 to n

for l := k + 1 to n {since we want k < l}

if ai + aj = ak + al and (i, j) = (k, l)
then output these pairs

11. At end of first pass: 3, 1, 4, 5, 2, 6; at end of second

pass: 1, 3, 2, 4, 5, 6; at end of third pass: 1, 2, 3, 4, 5, 6;

fourth pass finds nothing to exchange and algorithm termi-

nates 13. There are possibly as many as n passes through

the list, and each pass uses O(n) comparisons. Thus there

are O(n2) comparisons in all. 15. Because log n < n, we

have (n log n + n2)3 ≤ (n2 + n2)3 ≤ (2n2)3 = 8n6 for

all n > 0. This proves that (n log n + n2)3 is O(n6), with

witnesses C = 8 and k = 0. 17. O(x22x) 19. Note that
n!
2n = n

2 · n−1
2 · · · 3

2 · 22 · 12 >n2 ·1·1 · · · 1· 12 = n
4 . 21. All of these

functions are of the same order. 23. 2107 25. (log n)2,

2
√

log2 n, n(log n)1001, n1.0001, 1.0001n, nn 27. For exam-

ple, f (n) = n2 n/2 +1 and g(n) = n2 n/2

29. a)

procedure brute(a1, a2, . . . , an : integers)

for i := 1 to n− 1

for j := i + 1 to n

for k := 1 to n

if ai + aj = ak then return true else return false

b) O(n3)

31. For m1: w1 and w2; for m2: w1 and w3; for m3: w2 and

w3; for w1: m1 and m2; for w2: m1 and m3; for w3: m2 and

m3 33. A matching in which each woman is assigned her

valid partner ranking highest on her preference list is female

optimal; a matching in which each man is assigned his valid

partner ranking lowest on his preference list is male pessi-

mal. 35. a) Modify the preamble to Exercise 60 in Sec-

tion 3.1 so that there are s menm1,m2, . . . , ms and t women

w1,w2, . . . ,wt . A matching will contain min(s, t)marriages.

The definition of “stable marriage” is the same, with the un-

derstanding that each person prefers any mate to being un-

matched. b) Create |s − t | fictitious people (men or women,

S-24 Answers to Odd-Numbered Exercises

whichever is in shorter supply) so that the number of men

and the number of women become the same, and put these

fictitious people at the bottom of everyone’s preference lists.

c) This follows immediately from Exercise 63 in Section 3.1.

37. 5; 15 39. The first situation in Exercise 37 41. a) For

each subset S of {1, 2, . . . , n}, compute

j∈S wj . Keep track

of the subset giving the largest such sum that is less than or

equal to W , and return that subset as the output of the algo-

rithm. b) The food pack and the portable stove 43. a) The

makespan is always at least as large as the load on the proces-

sor assigned to do the lengthiest job, which must be at least

maxj=1,2,...,n tj . Therefore the minimum makespan satisfies

this inequality. b) The total amount of time the processors

need to spend working on the jobs (the total load) is
 n
j=1 tj .

Therefore the average load per processor is 1
p

 n
j=1 tj . The

maximum load cannot be any smaller than the average, so the

minimum makespan is always at least this large. 45. Pro-

cessor 1: jobs 1, 4; processor 2: job 2; processor 3: jobs 3, 5

CHAPTER 4

Section 4.1

1. a) Yes b) No c) Yes d) No 3. Suppose that a | b. Then

there exists an integer k such that ka = b. Because a(ck) = bc
it follows that a | bc. 5. If a | b and b | a, there are integers

c and d such that b = ac and a = bd. Hence, a = acd.

Because a = 0 it follows that cd = 1. Thus either c = d = 1

or c = d = −1. Hence, either a = b or a = −b. 7. Because

ac | bc there is an integer k such that ack = bc. Hence, ak = b,
so a | b. 9. a) 2, 5 b) −11, 10 c) 34, 7 d) 77, 0 e) 0, 0

f) 0, 3 g) −1, 2 h) 4, 0 11. a) 7:00 b) 8:00 c) 10:00

13. a) 10 b) 8 c) 0 d) 9 e) 6 f) 11 15. If a modm =
b mod m, then a and b have the same remainder when di-

vided by m. Hence, a = q1m + r and b = q2m + r , where

0 ≤ r < m. It follows that a−b = (q1−q2)m, som | (a−b).
It follows that a ≡ b (mod m). 17. There is some b with

(b − 1)k < n ≤ bk. Hence, (b − 1)k ≤ n − 1 < bk. Divide

by k to obtain b− 1 < n/k ≤ b and b− 1 ≤ (n− 1)/k < b.

Hence, n/k = b and (n− 1)/k = b− 1. 19. x mod m

if x modm ≤ m/2 and (x mod m) − m if x mod m >

 m/2 21. a) 1 b) 2 c) 3 d) 9 23. a) 1, 109 b) 40,

89 c) −31, 222 d) −21, 38259 25. a) −15 b) −7 c) 140

27. −1,−26,−51,−76, 24, 49, 74, 99 29. a) No b) No

c) Yes d) No 31. a) 13 a) 6 33. a) 9 b) 4 c) 25 d) 0

35. Let m = tn. Because a ≡ b (mod m) there exists an

integer s such that a = b + sm. Hence, a = b + (st)n,

so a ≡ b (mod n). 37. a) Let m = c = 2, a = 0,

and b = 1. Then 0 = ac ≡ bc = 2 (mod 2), but

0 = a ≡ b = 1 (mod 2). b) Let m = 5, a = b = 3, c = 1,

and d = 6. Then 3 ≡ 3 (mod 5) and 1 ≡ 6 (mod 5), but

31 = 3 ≡ 4 ≡ 729 = 36 (mod 5). 39. By Exercise 38 the

sum of two squares must be either 0 + 0 = 0, 0 + 1 = 1,

or 1 + 1 = 2, modulo 4, never 3, and therefore not of the

form 4k + 3. 41. Because a ≡ b (modm), there exists an

integer s such that a = b + sm, so a − b = sm. Then

ak − bk = (a − b)(ak−1 + ak−2b + · · · + abk−2 + bk−1),

k ≥ 2, is also a multiple ofm. It follows that ak ≡ bk (modm).

43. To prove closure, note that a ·m b = (a ·b)modm, which

by definition is an element of Zm. Multiplication is associa-

tive because (a ·m b) ·m c and a ·m (b ·m c) both equal

(a · b · c) mod m and multiplication of integers is associa-

tive. Similarly, multiplication in Zm is commutative because

multiplication in Z is commutative, and 1 is the multiplicative

identity for Zm because 1 is the multiplicative identity for Z.

45. 0+50 = 0, 0+51 = 1, 0+52 = 2, 0+53 = 3, 0+54 =
4; 1+51 = 2, 1+52 = 3, 1+53 = 4, 1+54 = 0; 2+52 =
4, 2+53 = 0, 2+54 = 1; 3+53 = 1, 3+54 = 2; 4+44 = 3

and 0·50 = 0, 0·51 = 0, 0·52 = 0, 0·53 = 0, 0·54 = 0; 1·51 =
1, 1·52 = 2, 1·53 = 3, 1·54 = 4; 2·52 = 4, 2·53 = 1, 2·54 =
3; 3·53 = 4, 3·54 = 2; 4·54 = 1 47. f is onto but not

one-to-one (unless d = 1); g is neither.

Section 4.2

1. a) 1110 0111 b) 1 0001 1011 0100 c) 1 0111 11010110

1100 3. a) 31 b) 513 c) 341 d) 26,896 5. a) 1 0111

1010 b) 11 1000 0100 c) 1 0001 0011 d) 101 0000

1111 7. a) 1000 0000 1110 b) 1 0011 0101 1010 1011

c) 10101011 1011 1010 d) 1101 1110 1111 1010 11001110

1101 9. 1010 1011 1100 1101 1110 1111 11. (B7B)16

13. Adding up to three leading 0s if necessary, write the binary

expansion as (. . . b23b22b21b20b13b12b11b10b03b02b01b00)2.

The value of this numeral is b00 + 2b01 + 4b02 + 8b03 +
24b10 + 25b11 + 26b12 + 27b13 + 28b20 + 29b21 + 210b22 +
211b23 + · · · , which we can rewrite as b00 +
2b01 + 4b02 + 8b03 + (b10 + 2b11 + 4b12 + 8b13) ·
24 + (b20 + 2b21 + 4b22 + 8b23) · 28 + · · · . Now

(bi3bi2bi1bi0)2 translates into the hexadecimal digit hi .

So our number is h0 + h1 · 24 + h2 · 28 + · · · =
h0 + h1 · 16 + h2 · 162 + · · · , which is the hex-

adecimal expansion (. . . h1h1h0)16. 15 Adding up to

two leading 0s if necessary, write the binary expansion as

(. . . b22b21b20b12b11b10b02b01b00)2. The value of this nu-

meral is b00+2b01+4b02+23b10+24b11+25b12+26b20+
27b21 + 28b22 + · · · , which we can rewrite as b00 + 2b01 +
4b02+(b10+2b11+4b12) ·23+(b20+2b21+4b22) ·26+· · · .
Now (bi2bi1bi0)2 translates into the octal digithi . So our num-

ber is h0+h1 ·23+h2 ·26+· · · = h0+h1 ·8+h2 ·82+· · · ,
which is the octal expansion (. . . h1h1h0)8. 17. 1 1101

1100 1010 1101 0001, 1273)8 19. Convert the given octal

numeral to binary, then convert from binary to hexadecimal

using Example 7. 21. a) 1011 1110, 10 0001 0000 0001

b) 1 1010 1100, 1011 0000 0111 0011 c) 100 1001 1010,

101 0010 1001 0110 0000 d) 110 0000 0000,

1000 0000 0001 1111 1111 23. a) 1132, 144,305 b) 6273,

2,134,272 c) 2110, 1,107,667 d) 57,777, 237,326,216

25. 436 27. 27 29. The binary expansion of the integer is

the unique such sum. 31. Let a = (an−1an−2 . . . a1a0)10.

Then a = 10n−1an−1 + 10n−2an−2 + · · · + 10a1 + a0

≡ an−1 + an−2 + · · · + a1 + a0 (mod 3), because

Answers to Odd-Numbered Exercises S-25

10j ≡ 1 (mod 3)) for all nonnegative integers j . It fol-

lows that 3 | a if and only if 3 divides the sum of the dec-

imal digits of a. 33. Let a = (an−1an−2 . . . a1a0)2. Then

a = a0 + 2a1 + 22a2 + · · · + 2n−1an−1 ≡ a0 − a1 + a2−
a3 + · · · ± an−1 (mod 3). It follows that a is divisible by

3 if and only if the sum of the binary digits in the even-

numbered positions minus the sum of the binary digits in the

odd-numbered positions is divisible by 3. 35. a) −6 b) 13

c) −14 d) 0 37. The one’s complement of the sum is found

by adding the one’s complements of the two integers except

that a carry in the leading bit is used as a carry to the last bit

of the sum. 39. If m ≥ 0, then the leading bit an−1 of the

one’s complement expansion of m is 0 and the formula reads

m = n−2
i=0 ai2

i . This is correct because the right-hand side

is the binary expansion ofm. Whenm is negative, the leading

bit an−1 of the one’s complement expansion of m is 1. The

remaining n− 1 bits can be obtained by subtracting−m from

111 . . . 1 (where there are n− 1 1s), because subtracting a bit

from 1 is the same as complementing it. Hence, the bit string

an−2 . . . a0 is the binary expansion of (2n−1 − 1) − (−m).
Solving the equation (2n−1 − 1) − (−m) = n−2

i=0 ai2
i for

m gives the desired equation because an−1 = 1. 41. a) −7

b) 13 c) −15 d) −1 43. To obtain the two’s complement

representation of the sum of two integers, add their two’s

complement representations (as binary integers are added)

and ignore any carry out of the leftmost column. However,

the answer is invalid if an overflow has occurred. This happens

when the leftmost digits in the two’s complement representa-

tion of the two terms agree and the leftmost digit of the answer

differs. 45. If m ≥ 0, then the leading bit an−1 is 0 and the

formula reads m = n−2
i=0 ai2

i . This is correct because the

right-hand side is the binary expansion of m. If m < 0, its

two’s complement expansion has 1 as its leading bit and the

remainingn−1 bits are the binary expansion of 2n−1 − (−m).
This means that (2n−1)− (−m) = n−2

i=0 ai2
i . Solving form

gives the desired equation because an−1 = 1. 47. 4n

49. procedure Cantor(x: positive integer)

n := 1; f := 1

while (n+ 1) · f ≤ x
n := n+ 1

f := f · n
y := x
while n > 0

an := y/f
y := y − an · f
f := f/n
n := n− 1

{x = ann! + an−1(n− 1)! + · · · + a11!}

51. First step: c = 0, d = 0, s0 = 1; second step: c = 0,

d = 1, s1 = 0; third step: c = 1, d = 1, s2 = 0; fourth step:

c = 1, d = 1, s3 = 0; fifth step: c = 1, d = 1, s4 = 1; sixth

step: c = 1, s5 = 1

53. procedure subtract(a, b: positive integers, a > b,

a = (an−1an−2 . . . a1a0)2,

b = (bn−1bn−2 . . . b1b0)2)

B := 0 {B is the borrow}
for j := 0 to n− 1

if aj ≥ bj + B then

sj := aj − bj − B
B := 0

else

sj := aj + 2− bj − B
B := 1

{(sn−1sn−2 . . . s1s0)2 is the difference}
55. procedure compare(a, b: positive integers,

a = (anan−1 . . . a1a0)2,

b = (bnbn−1 . . . b1b0)2)

k := n
while ak = bk and k > 0

k := k − 1

if ak = bk then print “a equals b”

if ak > bk then print “a is greater than b”

if ak < bk then print “a is less than b”

57. O(log n) 59. The only time-consuming part of the al-

gorithm is the while loop, which is iterated q times. The work

done inside is a subtraction of integers no bigger than a, which

has log a bits. The result now follows from Example 9.

Section 4.3

1. 29, 71, 97 prime; 21, 111, 143 not prime 3. a) 23 · 11

b) 2 · 32 · 7 c) 36 d) 7 · 11 · 13 e) 11 · 101 f) 2 · 33·
5 · 7 · 13 · 37 5. 28 · 34 · 52 · 7
7. procedure primetester(n : integer greater than 1)

isprime := true

d := 2

while isprime and d ≤ √n
if n mod d = 0 then isprime := false

else d := d + 1

return isprime

9. Write n = rs, where r > 1 and s > 1. Then 2n − 1 =
2rs−1 = (2r)s−1 = (2r−1)((2r)s−1+(2r)s−2+(2r)s−3+
· · · + 1). The first factor is at least 22 − 1 = 3 and the second

factor is at least 22 + 1 = 5. This provides a factoring of

2n− 1 into two factors greater than 1, so 2n− 1 is composite.

11. Suppose that log2 3 = a/b where a, b ∈ Z+ and b = 0.

Then 2a/b = 3, so 2a = 3b. This violates the fundamental

theorem of arithmetic. Hence, log2 3 is irrational. 13. 3, 5,

and 7 are primes of the desired form. 15. 1, 7, 11, 13, 17,

19, 23, 29 17. a) Yes b) No c) Yes d) Yes 19. Suppose

that n is not prime, so that n = ab, where a and b are inte-

gers greater than 1. Because a > 1, by the identity in the hint,

2a−1 is a factor of 2n−1 that is greater than 1, and the second

S-26 Answers to Odd-Numbered Exercises

factor in this identity is also greater than 1. Hence, 2n − 1 is

not prime. 21. a) 2 b) 4 c) 12 23. φ(pk) = pk − pk−1

25. a) 35 · 53 b) 1 c) 2317 d) 41 · 43 · 53 e) 1 f) 1111

27. a) 211 · 37 · 59 · 73 b) 29 · 37 · 55 · 73 · 11 ·
13 · 17 c) 2331 d) 41 · 43 · 53 e) 212313517721 f) Undefined

29. gcd (92928, 123552) = 1056; lcm(92928, 123552) =
10,872,576; both products are 11,481,440,256. 31. Because

min(x, y) + max(x, y) = x + y, the exponent of pi in

the prime factorization of gcd(a, b) · lcm(a, b) is the sum of

the exponents of pi in the prime factorizations of a and b.

33. a) 6 b) 3 c) 11 d) 3 e) 40 f) 12 35. 9 37. By Exer-

cise 36 it follows that gcd(2b − 1, (2a − 1)mod (2b − 1)) =
gcd(2b − 1, 2a mod b − 1). Because the exponents involved

in the calculation are b and amod b, the same as the quan-

tities involved in computing gcd(a, b), the steps used by the

Euclidean algorithm to compute gcd(2a − 1, 2b − 1) run in

parallel to those used to compute gcd(a, b) and show that

gcd(2a − 1, 2b − 1) = 2gcd(a,b) − 1. 39. a) 1 =
(−1) · 10 + 1 · 11 b) 1 = 21 · 21 + (−10) · 44

c) 12 = (−1) · 36 + 48 d) 1 = 13 · 55 + (−21) · 34

e) 3 = 11·213+(−20)·117 f) 223 = 1·0+1·223 g) 1= 37·
2347 + (−706) · 123 h) 2= 1128 · 3454 +(−835) · 4666

i) 1= 2468 · 9999+(−2221)·11111 41. (−3)·26+1·91=
13 43. 34 · 144+ (−55) · 89 = 1

45. procedure extended Euclidean(a, b: positive integers)

x := a
y := b
oldolds := 1

olds := 0

oldoldt := 0

oldt := 1

while y = 0

q := x div y

r := x mod y

x := y
y := r
s := oldolds− q · olds

t := oldoldt− q · oldt

oldolds := olds

oldoldt := oldt

olds := s
oldt := t
{gcd(a, b) is x, and (oldolds)a+ (oldoldt)b = x}

47. a) an = 1 if n is prime and an = 0 otherwise. b) an is the

smallest prime factor of nwith a1 = 1. c) an is the number of

positive divisors of n. d) an = 1 if n has no divisors that are

perfect squares greater than 1 and an = 0 otherwise. e) an is

the largest prime less than or equal to n. f) an is the product of

the first n − 1 primes. 49. Because every second integer is

divisible by 2, the product is divisible by 2. Because every third

integer is divisible by 3, the product is divisible by 3. Therefore

the product has both 2 and 3 in its prime factorization and is

therefore divisible by 3·2 = 6. 51. n = 1601 is a counterex-

ample. 53 Setting k = a+b+1 will produce the composite

number a(a+b+1)+b = a2+ab+a+b = (a+1)(a+b).

55. Suppose that there are only finitely many primes of the

form 4k + 3, namely q1, q2, . . . , qn, where q1 = 3, q2 = 7,

and so on. LetQ = 4q1q2 · · · qn−1. Note thatQ is of the form

4k + 3 (where k = q1q2 · · · qn − 1). If Q is prime, then we

have found a prime of the desired form different from all those

listed. IfQ is not prime, thenQ has at least one prime factor

not in the list q1, q2, . . . , qn, because the remainder when Q

is divided by qj is qj − 1, and qj − 1 = 0. Because all odd

primes are either of the form 4k+1 or of the form 4k+3, and

the product of primes of the form 4k + 1 is also of this form

(because (4k+1)(4m+1) = 4(4km+k+m)+1), there must

be a factor ofQ of the form 4k + 3 different from the primes

we listed. 57. Given a positive integer x, we show that there

is exactly one positive rational numberm/n (in lowest terms)

such thatK(m/n)= x. From the prime factorization ofx, read

off them and n such thatK(m/n) = x. The primes that occur

to even powers are the primes that occur in the prime factor-

ization ofm, with the exponents being half the corresponding

exponents in x; and the primes that occur to odd powers are

the primes that occur in the prime factorization of n, with the

exponents being half of one more than the exponents in x.

Section 4.4

1. 15 · 7 = 105 ≡ 1 (mod 26) 3. 7 5. a) 7 b) 52 c) 34

d) 73 7. Suppose that b and c are both inverses of a modulo

m. Then ba ≡ 1 (mod m) and ca ≡ 1 (mod m). Hence,

ba ≡ ca (mod m). Because gcd(a,m) = 1 it follows by The-

orem 7 in Section 4.3 that b ≡ c (mod m). 9. 8 11. a) 67

b) 88 c) 146 13. 3 and 6 15. Let m = m/ gcd(c, m).

Because all the common factors ofm and c are divided out of

m to obtain m , it follows that m and c are relatively prime.

Because m divides ac − bc = (a − b)c, it follows that m

divides (a − b)c. By Lemma 3 in Section 4.3, we see that

m divides a − b, so a ≡ b (mod m). 17. Suppose that

x2 ≡ 1 (mod p). Then p divides x2 − 1 = (x + 1)(x − 1).

By Lemma 2 it follows that p | x + 1 or p | x − 1, so

x ≡ −1 (mod p) or x ≡ 1 (mod p). 19. a) Suppose that

ia ≡ ja (mod p), where 1 ≤ i < j < p. Then p divides

ja− ia = a(j − i). By Theorem 1, because a is not divisible

by p, p divides j − i, which is impossible because j − i is

a positive integer less than p. b) By part (a), because no two

of a, 2a, . . . , (p − 1)a are congruent modulo p, each must be

congruent to a different number from 1 top−1. It follows that

a ·2a ·3a · · · · · (p−1) ·a ≡ 1 ·2 ·3 · · · · · (p−1) (mod p). It

follows that (p−1)! ·ap−1 ≡ p−1 (mod p). c) By Wilson’s

theorem and part (b), if p does not divide a, it follows that

(−1) · ap−1 ≡ −1 (mod p). Hence, ap−1 ≡ 1 (mod p). d) If

p | a, then p | ap . Hence, ap ≡ a ≡ 0 (mod p). If p does not

divide a, then ap−1 ≡ a (mod p), by part (c). Multiplying

both sides of this congruence by a gives ap ≡ a (mod p).

21. All integers of the form 323+ 330k, where k is an integer

23. All integers of the form 53+ 60k, where k is an integer

Answers to Odd-Numbered Exercises S-27

25. procedure chinese(m1,m2, . . . , mn : relatively

prime positive integers ; a1, a2, . . . , an : integers)

m := 1

for k := 1 to n

m := m ·mk
for k := 1 to n

Mk := m/mk
yk := M−1

k mod mk
x := 0

for k := 1 to n

x := x + akMkyk
while x ≥ m
x := x −m

return x {the smallest solution to the system

{x ≡ ak (mod mk), k = 1, 2, . . . , n }}
27. All integers of the form 16 + 252k, where k is an inte-

ger 29. Suppose that p is a prime appearing in the prime

factorization of m1m2 · · ·mn. Because the mis are relatively

prime, p is a factor of exactly one of the mis, say mj . Be-

cause mj divides a − b, it follows that a − b has the fac-
tor p in its prime factorization to a power at least as large

as the power to which it appears in the prime factoriza-

tion of mj . It follows that m1m2 · · · mn divides a − b, so

a ≡ b (mod m1m2 · · ·mn). 31. x ≡ 1 (mod 6) 33. 7

35. ap−2 · a = a · ap−2 = ap−1 ≡ 1 (mod p) 37. a) By

Fermat’s little theorem, we have 210 ≡ 1 (mod 11). Hence,

2340 = (210)34 ≡ 134 = 1 (mod 11). b) Because 32 ≡ 1

(mod 31), it follows that 2340 = (25)68 = 3268 ≡ 168 = 1

(mod 31). c) Because 11 and 31 are relatively prime, and

11 · 31 = 341, it follows by parts (a) and (b) and Exer-

cise 29 that 2340 ≡ 1 (mod 341). 39. a) 3, 4, 8 b) 983

41. Suppose that q is an odd prime with q | 2p−1. By Fermat’s

little theorem, q | 2q−1− 1. From Exercise 37 in Section 4.3,
gcd(2p−1, 2q−1−1) = 2gcd(p,q−1)−1. Because q is a com-
mon divisor of 2p−1 and 2q−1−1, gcd(2p−1, 2q−1−1) > 1.

Hence, gcd(p, q−1) = p, because the only other possibility,

namely, gcd(p, q−1)= 1, gives us gcd(2p−1, 2q−1−1)= 1.

Hence, p | q − 1, and therefore there is a positive integer

m such that q − 1 = mp. Because q is odd, m must be
even, say, m = 2k, and so every prime divisor of 2p − 1

is of the form 2kp + 1. Furthermore, the product of num-

bers of this form is also of this form. Therefore, all divisors
of 2p − 1 are of this form. 43.M11 is not prime; M17

is prime. 45. First, 2047 = 23 · 89 is composite. Write

2047 − 1 = 2046 = 2 · 1023, so s = 1 and t = 1023 in
the definition. Then 21023 = (211)93 = 204893 ≡ 193 = 1

(mod 2047), as desired. 47. We must show that b2820 ≡ 1

(mod 2821) for all b relatively prime to 2821. Note that

2821 = 7 · 13 · 31, and if gcd(b, 2821) = 1, then

gcd(b, 7) = gcd(b, 13) = gcd(b, 31) = 1. Using Fermat’s lit-

tle theorem we find that b6 ≡ 1 (mod 7), b12 ≡ 1 (mod 13),

and b30 ≡ 1 (mod 31). It follows that b2820 ≡ (b6)470 ≡ 1

(mod 7), b2820 ≡ (b12)235 ≡ 1 (mod 13), and b2820 ≡
(b30)94 ≡ 1 (mod 31). By Exercise 29 (or the Chinese re-

mainder theorem) it follows that b2820 ≡ 1 (mod 2821), as

desired. 49. a) If we multiply out this expression, we get

n = 1296m3 + 396m2 + 36m + 1. Clearly 6m | n − 1,

12m | n−1, and 18m | n−1. Therefore, the conditions of Ex-

ercise 48 are met, and we conclude that n is a Carmichael

number. b) Letting m = 51 gives n = 172,947,529.

51. 0 = (0, 0), 1 = (1, 1), 2 = (2, 2), 3 = (0, 3),

4 = (1, 4), 5 = (2, 0), 6 = (0, 1), 7 = (1, 2), 8 = (2, 3),

9 = (0, 4), 10 = (1, 0), 11 = (2, 1), 12 = (0, 2), 13 = (1, 3),
14 = (2, 4) 53. We have m1 = 99, m2 = 98, m3 = 97,

and m4 = 95, so m = 99 · 98 · 97 · 95 = 89,403,930. We

find thatM1 = m/m1 = 903,070,M2 = m/m2 = 912,285,

M3 = m/m3 = 921,690, and M4 = m/m4 = 941,094.

Using the Euclidean algorithm, we compute that y1 = 37,

y2 = 33, y3 = 24, and y4 = 4 are inverses of Mk modulo

mk for k = 1, 2, 3, 4, respectively. It follows that the solu-

tion is 65 · 903,070 · 37 + 2 · 912,285 · 33 + 51 ·921,690 ·
24 + 10 · 941,094 · 4 = 3,397,886,480 ≡ 537,140

(mod 89,403,930). 55. log2 5 = 16, log2 6 = 14

57. log3 1 = 0, log3 2 = 14, log3 3 = 1, log3 4 = 12,

log3 5 = 5, log3 6 = 15, log3 7 = 11, log3 8 = 10, log3 9 = 2,

log3 10 = 3, log3 11 = 7, log3 12 = 13, log3 13 = 4,

log3 14 = 9, log3 15 = 6, log3 16 = 8 59. Assume that s is

a solution of x2 ≡ a (mod p). Then because (−s)2 = s2, −s
is also a solution. Furthermore, s ≡ −s (mod p). Otherwise,

p | 2s, which implies that p | s, and this implies, using

the original assumption, that p | a, which is a contradiction.

Furthermore, if s and t are incongruent solutions modulo p,

then because s2 ≡ t2 (mod p), p | s2 − t2. This implies that

p | (s + t)(s − t), and by Lemma 3 in Section 4.3, p | s − t
or p | s + t , so s ≡ t (mod p) or s ≡ −t (mod p). Hence,

there are at most two solutions. 61. The value of

a
p

de-

pends only on whether a is a quadratic residue modulo p, that

is, whether x2 ≡ a (mod p) has a solution. Because this de-

pends only on the equivalence class of a modulo p, it follows

that

a
p

 = b
p

if a ≡ b (mod p). 63. By Exercise 62,

a
p

b
p

 = a(p−1)/2b(p−1)/2 = (ab)(p−1)/2 ≡ ab
p

(mod p).

65. x ≡ 8, 13, 22, or 27 (mod 35) 67. Compute re mod p

for e = 0, 1, 2, . . . , p − 2 until we get the answer a. Worst

case and average case time complexity are O(p logp).

Section 4.5

1. 91, 57, 21, 5 3. a) 7, 19, 7, 7, 18, 0 b) Take the next

available space mod 31. 5. 1, 5, 4, 1, 5, 4, 1, 5, 4, . . .

7. 2, 6, 7, 10, 8, 2, 6, 7, 10, 8, . . . 9. 2357, 5554, 8469,

7239, 4031, 2489, 1951, 8064 11. 2, 1, 1, 1, . . . 13. Only

string (d) 15. 4 17. Correctly, of course 19. a) Not

valid b) Valid c) Valid d) Not valid 21. a) No b) 5 c) 7 d) 8

23. Transposition errors involving the last digit 25. a) Yes

b) No c) Yes d) No 27. Transposition errors will be de-

tected if and only if the transposed digits are an odd num-

ber of positions apart and do not differ by 5. 29. a) Valid

b) Not valid c) Valid d) Valid 31. Yes, as long as the

two digits do not differ by 7 33. a) Not valid b) Valid

c) Valid d) Not valid 35. The given congruence is equiva-

lent to 3d1+ 4d2+ 5d3+ 6d4+ 7d5+ 8d6+ 9d7+ 10d8 ≡ 0

(mod 11). Transposing adjacent digits x and y (with x on the

S-28 Answers to Odd-Numbered Exercises

left) causes the left-hand side to increase by x − y. Because

x ≡ y (mod 11), the congruence will no longer hold. There-

fore errors of this type are always detected.

Section 4.6

1. a) GR QRW SDVV JR b) QBABG CNFF TB c) QX UXM

AHJJ ZX 3. a) KOHQV MCIF GHSD b) RVBXP TJPZ

NBZX c) DBYNE PHRM FYZA 5. a) SURRENDER

NOW b) BE MY FRIEND c) TIME FOR FUN 7. TO

SLEEP PERCHANCE TO DREAM 9. ANY SUFFI-

CIENTLY ADVANCED TECHNOLOGY IS INDISTIN-

GUISHABLE FROM MAGIC 11. p = 7c + 13 mod 26

13. a = 18, b = 5 15. BEWARE OF MARTIANS

17. Presumably something like an affine cipher

19. HURRICANE 21. The length of the key may well be

the greatest common divisor of the distances between the starts

of the repeated string (or a factor of the gcd). 23. Suppose

we know both n = pq and (p−1)(q−1). To findp and q, first

note that (p−1)(q−1) = pq−p−q+1 = n− (p+q)+1.

From this we can find s = p + q. Because q = s − p,

we have n = p(s − p). Hence, p2 − ps + n = 0. We

now can use the quadratic formula to find p. Once we have

found p, we can find q because q = n/p. 25. 2545 2757

1211 27. SILVER 29. Alice sends 58 mod 23 = 16 to

Bob. Bob sends 55 mod 23 = 20 to Alice. Alice computes

208 mod 23 = 6 and Bob computes 165 mod 23 = 6. The

shared key is 6. 31. 2186 2087 1279 1251 0326 0816 1948

33. Alice can decrypt the first part of Cathy’s message to

learn the key, and Bob can decrypt the second part of Cathy’s

message, which Alice forwarded to him, to learn the key. No

one else besides Cathy can learn the key, because all of these

communications use secure private keys.

Supplementary Exercises

1. The actual number of miles driven is 46518+ 100000k for

some natural number k. 3. 5, 22,−12,−29 5. Because

ac ≡ bc (mod m) there is an integer k such that ac = bc+
km. Hence, a − b = km/c. Because a − b is an integer,

c | km. Letting d = gcd(m, c), write c = de. Because no

factor of e divides m/d, it follows that d | m and e | k. Thus

a − b = (k/e)(m/d), where k/e ∈ Z and m/d ∈ Z. There-

fore a ≡ b (mod m/d). 7. Proof of the contrapositive:

If n is odd, then n = 2k + 1 for some integer k. Therefore

n2 + 1 = (2k + 1)2 + 1 = 4k2 + 4k + 2 ≡ 2 (mod 4). But

perfect squares of even numbers are congruent to 0 modulo 4

(because (2m)2 = 4m2), and perfect squares of odd numbers

are congruent to 1 or 3 modulo 4, so n2 + 1 is not a perfect

square. 9. n is divisible by 8 if and only if the binary expan-

sion of n ends with 000. 11. We assume that someone has

chosen a positive integer less than 2n, which we are to guess.

We ask the person to write the number in binary, using leading

0s if necessary to make it n bits long. We then ask “Is the first

bit a 1?”, “Is the second bit a 1?”, “Is the third bit a 1?”, and so

on. After we know the answers to these n questions, we will

know the number, because we will know its binary expansion.

13. (anan−1 . . . a1a0)10 =
 n
k=0 10kak ≡

 n
k=0 ak (mod 9)

because 10k ≡ 1 (mod 9) for every nonnegative integer k.

15. Because for all k ≤ n, when Qn is divided by k the re-

mainder will be 1, it follows that no prime number less than

or equal to n is a factor ofQn. Thus by the fundamental theo-

rem of arithmetic,Qn must have a prime factor greater than n.

17. Takea = 10 andb = 1 in Dirichlet’s theorem. 19. Every

number greater than 11 can be written as either 8+2n or 9+2n

for some n ≥ 2. 21. Assume that every even integer greater

than 2 is the sum of two primes, and let n be an integer greater

than 5. If n is odd, write n = 3 + (n − 3) and decompose

n− 3 = p + q into the sum of two primes; if n is even, then

write n = 2 + (n − 2) and decompose n − 2 = p + q into

the sum of two primes. For the converse, assume that every

integer greater than 5 is the sum of three primes, and let n be

an even integer greater than 2. Write n+ 2 as the sum of three

primes, one of which is necessarily 2, so n+ 2 = 2+ p + q,

whence n = p + q. 23. Recall that a nonconstant poly-

nomial can take on the same value only a finite number of

times. Thus f can take on the values 0 and ±1 only finitely

many times, so if there is not some y such that f (y) is com-

posite, then there must be some x0 such that±f (x0) is prime,

say p. Look at f (x0 + kp). When we plug x0 + kp in for x

in the polynomial and multiply it out, every term will contain

a factor of p except for the terms that form f (x0). Therefore

f (x0+kp) = f (x0)+mp = (m±1)p for some integerm. As

k varies, this value can be 0,p, or−p only finitely many times;

therefore it must be a composite number for some values of k.

25. 1 27. 1 29. If not, then suppose that q1, q2, . . . , qn are

all the primes of the form 6k + 5. LetQ = 6q1q2 · · · qn − 1.

Note thatQ is of the form 6k+ 5, where k = q1q2 · · · qn− 1.

LetQ = p1p2 · · ·pt be the prime factorization ofQ. No pi is

2, 3, or any qj , because the remainder whenQ is divided by 2

is 1, by 3 is 2, and by qj is qj −1. All odd primes other than 3

are of the form 6k+ 1 or 6k+ 5, and the product of primes of

the form 6k + 1 is also of this form. Therefore at least one of

thepi’s must be of the form 6k+5, a contradiction. 31. The

product of numbers of the form 4k + 1 is of the form 4k + 1,

but numbers of this form might have numbers not of this form

as their only prime factors. For example, 49 = 4 · 12+ 1, but

the prime factorization of 49 is 7 · 7 = (4 · 1+ 3)(4 · 1+ 3).

33. a) Not mutually relatively prime b) Mutually relatively

prime c) Mutually relatively prime d) Mutually relatively

prime 35 1 37. x ≡ 28 (mod 30) 39. By the Chinese

remainder theorem, it suffices to show that n9 − n ≡ 0

(mod 2), n9 − n ≡ 0 (mod 3), and n9 − n ≡ 0 (mod 5).

Each in turn follows from applying Fermat’s little theorem.

41. By Fermat’s little theorem,pq−1 ≡ 1 (mod q) and clearly

qp−1 ≡ 0 (mod q). Therefore pq−1 + qp−1 ≡ 1 + 0 = 1

(mod q). Similarly, pq−1 + qp−1 ≡ 1 (mod p). It follows

from the Chinese remainder theorem that pq−1 + qp−1 ≡ 1

(mod pq). 43. If ai is changed from x to y, then the change

in the left-hand side of the congruence is either y − x or

3(y−x), modulo 10, neither of which can be 0 because 1 and

Answers to Odd-Numbered Exercises S-29

3 are relatively prime to 10. Therefore the sum can no longer

be 0 modulo 10. 45. Working modulo 10, solve for d9.

The check digit for 11100002 is 5. 47. PLEASE SEND

MONEY 49. a) QAL HUVEM AT WVESGB b) QXB

EVZZL ZEVZZRFS

CHAPTER 5

Section 5.1

1. Let P(n) be the statement that the train stops at sta-

tion n. Basis step: We are told that P(1) is true. Induc-

tive step: We are told that P(n) implies P(n + 1) for each

n ≥ 1. Therefore by the principle of mathematical induc-

tion, P(n) is true for all positive integers n. 3. a) 12 =
1 · 2 · 3/6 b) Both sides of P(1) shown in part (a) equal 1.

c) 12 + 22 + · · · + k2 = k(k + 1)(2k + 1)/6 d) For each

k ≥ 1 that P(k) implies P(k + 1); in other words, that as-

suming the inductive hypothesis [see part (c)] we can show

12 + 22 + · · · + k2 + (k + 1)2 = (k + 1)(k + 2)(2k + 3)/6

e) (12 + 22 + · · · + k2) + (k + 1)2 = [k(k + 1)(2k +
1)/6] + (k + 1)2 = [(k + 1)/6][k(2k + 1) + 6(k +
1)] = [(k + 1)/6](2k2 + 7k + 6) = [(k + 1)/6](k +
2)(2k+3) = (k+1)(k+2)(2k+3)/6 f) We have completed

both the basis step and the inductive step, so by the principle

of mathematical induction, the statement is true for every pos-

itive integer n. 5. Let P(n) be “12+32+· · ·+ (2n+1)2 =
(n+ 1)(2n+ 1)(2n+ 3)/3.” Basis step: P(0) is true because

12 = 1 = (0+1)(2·0+1)(2·0+3)/3. Inductive step:Assume

that P(k) is true. Then 12+32+· · ·+ (2k+1)2+[2(k+1)+
1]2 = (k+1)(2k+1)(2k+3)/3+ (2k+3)2 = (2k+3)[(k+
1)(2k+1)/3+(2k+3)] = (2k+3)(2k2+9k+10)/3 = (2k+
3)(2k+5)(k+2)/3= [(k+1)+1][2(k+1)+1][2(k+1)+3]/3.

7. Let P(n) be “
 n
j=0 3 · 5j = 3(5n+1 − 1)/4.” Basis step:

P(0) is true because
 0
j=0 3 · 5j = 3 = 3(51 − 1)/4.

Inductive step: Assume that
 k
j=0 3 · 5j = 3(5k+1 − 1)/4.

Then
 k+1
j=0 3 · 5j = (k

j=0 3 · 5j) + 3 · 5k+1 = 3(5k+1 −
1)/4+ 3 · 5k+1 = 3(5k+1+ 4 · 5k+1− 1)/4 = 3(5k+2− 1)/4.

9. a) 2+4+6+· · ·+2n= n(n+1) b) Basis step: 2= 1·(1+1)

is true. Inductive step: Assume that 2 + 4 + 6 + · · · + 2k =
k(k + 1). Then (2 + 4 + 6 + · · · + 2k) + 2(k + 1) =
k(k+1)+2(k+1) = (k+1)(k+2). 11. a)

 n
j=1 1/2j =

(2n − 1)/2n b) Basis step: P(1) is true because 1
2 = (21−

1)/21. Inductive step:Assume that
 k
j=1 1/2j = (2k−1)/2k .

Then
 k+1
j=1

1
2j
= (
 k
j=1

1
2j
) + 1

2k+1 = 2k−1
2k

+ 1
2k+1 =

2k+1−2+1
2k+1 = 2k+1−1

2k+1 . 13. Let P(n) be “12 − 22 + 32 −
· · · + (−1)n−1n2 = (−1)n−1n(n + 1)/2.” Basis step: P(1)

is true because 12 = 1 = (−1)012. Inductive step: Assume

that P(k) is true. Then 12 − 22 + 32 − · · · + (−1)k−1k2 +
(−1)k(k + 1)2 = (−1)k−1k(k + 1)/2 + (−1)k(k + 1)2 =
(−1)k(k+ 1)[−k/2+ (k+ 1)] = (−1)k(k+ 1)[(k/2)+ 1] =
(−1)k(k+1)(k+2)/2. 15. Let P(n) be “1 ·2+2 ·3+· · ·+
n(n+1)= n(n+1)(n+2)/3.” Basis step:P(1) is true because

1·2= 2= 1(1+1)(1+2)/3. Inductive step:Assume thatP(k)

is true. Then 1·2+2·3+· · ·+k(k+1)+(k+1)(k+2)= [k(k+
1)(k+ 2)/3]+ (k+ 1)(k+ 2) = (k+ 1)(k+ 2)[(k/3)+ 1] =
(k+1)(k+2)(k+3)/3. 17. Let P(n) be the statement that

14+24+34+· · · + n4 = n(n+1)(2n+1)(3n2+3n−1)/30.

P(1) is true because 1 · 2 · 3 · 5/30 = 1. Assume that P(k)

is true. Then (14 + 24 + 34 + · · · + k4) + (k + 1)4 =
k(k + 1)(2k + 1)(3k2 + 3k − 1)/30 + (k + 1)4 = [(k +
1)/30][k(2k + 1)(3k2 + 3k − 1) + 30(k + 1)3] = [(k +
1)/30](6k4 + 39k3 + 91k2 + 89k + 30) = [(k + 1)/30](k +
2)(2k+ 3)[3(k+ 1)2+ 3(k+ 1)− 1]. This demonstrates that

P(k + 1) is true. 19. a) 1 + 1
4 < 2 − 1

2 b) This is true

because 5/4 is less than 6/4. c) 1+ 1
4 + · · · + 1

k2 < 2 − 1
k

d) For each k ≥ 2 that P(k) implies P(k+1); in other words,

we want to show that assuming the inductive hypothesis [see

part (c)] we can show 1+ 1
4 + · · · + 1

k2 + 1
(k+1)2

< 2− 1
k+1

e) 1+ 1
4+ · · · + 1

k2 + 1
(k+1)2

< 2 − 1
k
+ 1

(k+1)2
=

2− 1
k
− 1
(k+1)2

 = 2− k2+2k+1−k
k(k+1)2

 = 2− k2+k
k(k+1)2

− 1
k(k+1)2

=
2 − 1

k+1 − 1
k(k+1)2

< 2 − 1
k+1 f) We have completed both

the basis step and the inductive step, so by the principle of

mathematical induction, the statement is true for every inte-

ger n greater than 1. 21. Let P(n) be “2n > n2.” Basis

step: P(5) is true because 25 = 32 > 25 = 52. Induc-

tive step: Assume that P(k) is true, that is, 2k > k2. Then

2k+1 = 2 · 2k > k2+ k2 > k2+ 4k ≥ k2+ 2k+ 1 = (k+ 1)2

because k > 4. 23. By inspection we find that the inequality

2n+ 3 ≤ 2n does not hold for n = 0, 1, 2, 3. Let P(n) be the

proposition that this inequality holds for the positive integer n.

P(4), the basis case, is true because 2 ·4+3 = 11 ≤ 16 = 24.

For the inductive step assume thatP(k) is true. Then, by the in-

ductive hypothesis, 2(k+1)+3= (2k+3)+2< 2k+2. But be-

cause k ≥ 1, 2k+2 ≤ 2k+2k = 2k+1. This shows thatP(k+1)

is true. 25. Let P(n) be “1 + nh ≤ (1 + h)n, h > −1.”

Basis step: P(0) is true because 1+0 ·h = 1 ≤ 1 = (1+h)0.

Inductive step: Assume 1 + kh ≤ (1 + h)k . Then because

(1+h) > 0, (1+h)k+1 = (1+h)(1+h)k ≥ (1+h)(1+kh) =
1 + (k + 1)h + kh2 ≥ 1 + (k + 1)h. 27. Let P(n) be

“1/
√

1 + 1/
√

2 + 1/
√

3 + · · · + 1/
√
n > 2

 √
n+ 1− 1

.”

Basis step: P(1) is true because 1 > 2
 √

2− 1

. Induc-

tive step: Assume that P(k) is true. Then 1 + 1/
√

2 + · · · +
1/
√
k + 1/

√
k + 1 > 2

 √
k + 1− 1

 + 1/
√
k + 1. If we

show that 2
 √
k + 1− 1

 + 1/
√
k + 1 > 2

 √
k + 2− 1

,

it follows that P(k + 1) is true. This inequality is equiv-

alent to 2
 √
k + 2−√k + 1

< 1/

√
k + 1, which is

equivalent to 2
 √
k + 2−√k + 1

 √
k + 2+ √

k + 1

<√

k + 1/
√
k + 1 + √

k + 2/
√
k + 1. This is equivalent to

2 < 1 + √k + 2/
√
k + 1, which is clearly true. 29. Let

P(n) be “H2n ≤ 1 + n.” Basis step: P(0) is true be-

cause H20 = H1 = 1 ≤ 1 + 0. Inductive step: Assume

that H2k ≤ 1 + k. Then H2k+1 = H2k+
 2k+1

j=2k+1
1
j
≤

1 + k + 2k

1
2k+1

< 1 + k + 1 = 1 + (k + 1). 31. Basis

step: 12 + 1 = 2 is divisible by 2. Inductive step: Assume
the inductive hypothesis, that k2 + k is divisible by 2. Then

(k+1)2+(k+1) = k2+2k+1+k+1 = (k2+k)+2(k+1),

S-30 Answers to Odd-Numbered Exercises

the sum of a multiple of 2 (by the inductive hypothesis) and a

multiple of 2 (by definition), hence, divisible by 2. 33. Let

P(n) be “n5 − n is divisible by 5.” Basis step: P(0) is true

because 05 − 0 = 0 is divisible by 5. Inductive step: As-

sume that P(k) is true, that is, k5 − 5 is divisible by 5. Then

(k+1)5−(k+1)= (k5+5k4+10k3+10k2+5k+1)−(k+1)=
(k5 − k) + 5(k4 + 2k3 + 2k2 + k) is also divisible by 5,

because both terms in this sum are divisible by 5. 35. Let

P(n) be the proposition that (2n − 1)2 − 1 is divisible by

8. The basis case P(1) is true because 8 | 0. Now as-

sume that P(k) is true. Because [(2(k + 1) − 1]2 − 1 =
[(2k− 1)2 − 1] + 8k, P (k+ 1) is true because both terms on

the right-hand side are divisible by 8. This shows that P(n)

is true for all positive integers n, so m2 − 1 is divisible by

8 whenever m is an odd positive integer. 37. Basis step:

111+1+122·1−1 = 121+12 = 133 Inductive step:Assume the

inductive hypothesis, that 11n+1+122n−1 is divisible by 133.

Then 11(n+1)+1 + 122(n+1)−1 = 11 · 11n+1 + 144 · 122n−1 =
11 · 11n+1 + (11+ 133) · 122n−1 = 11(11n+1 + 122n−1)+
133 · 122n−1. The expression in parentheses is divisible by

133 by the inductive hypothesis, and obviously the second

term is divisible by 133, so the entire quantity is divisible by

133, as desired. 39. Basis step:A1 ⊆ B1 tautologically im-

plies that
 1
j=1 Aj ⊆

 1
j=1 Bj . Inductive step: Assume the

inductive hypothesis that if Aj ⊆ Bj for j = 1, 2, . . . , k,

then
 k
j=1 Aj ⊆

 k
j=1 Bj . We want to show that if Aj ⊆ Bj

for j = 1, 2, . . . , k + 1, then
 k+1
j=1 Aj ⊆

 k+1
j=1 Bj . Let x

be an arbitrary element of
 k+1
j=1 Aj =

 k
j=1 Aj

∩ Ak+1.

Because x ∈ kj=1 Aj , we know by the inductive hypothe-

sis that x ∈ kj=1 Bj ; because x ∈ Ak+1, we know from

the given fact that Ak+1 ⊆ Bk+1 that x ∈ Bk+1. There-

fore, x ∈
 k

j=1 Bj

∩Bk+1 =

 k+1
j=1 Bj . 41. Let P(n) be

“(A1∪A2∪· · ·∪An)∩B = (A1∩B)∪(A2∩B)∪· · ·∪(An ∩
B).” Basis step: P(1) is trivially true. Inductive step: Assume

that P(k) is true. Then (A1 ∪ A2 ∪ · · · ∪ Ak ∪ Ak+1) ∩ B =
[(A1∪A2∪· · ·∪Ak)∪Ak+1]∩B = [(A1∪A2∪· · ·∪Ak)∩
B] ∪ (Ak+1 ∩ B) = [(A1 ∩ B) ∪ (A2 ∩ B) ∪ · · · ∪ (Ak ∩
B)] ∪ (Ak+1 ∩ B) = (A1 ∩ B) ∪ (A2 ∩ B) ∪· · ·∪ (Ak ∩
B)∪ (Ak+1 ∩B). 43. Let P(n) be “

 n
k=1 Ak =

 n
k=1 Ak .”

Basis step: P(1) is trivially true. Inductive step: Assume that

P(k) is true. Then
 k+1
j=1 Aj =

 k
j=1 Aj

∪ Ak+1 = k

j=1 Aj

∩ Ak+1 =

 k
j=1 Aj

∩ Ak+1 = k+1

j=1 Aj .

45. Let P(n) be the statement that a set with n elements has

n(n− 1)/2 two-element subsets. P(2), the basis case, is true,

because a set with two elements has one subset with two

elements—namely, itself—and 2(2 − 1)/2 = 1. Now as-

sume that P(k) is true. Let S be a set with k + 1 elements.

Choose an element a in S and let T = S−{a}. A two-element

subset of S either contains a or does not. Those subsets not

containing a are the subsets of T with two elements; by the

inductive hypothesis there are k(k−1)/2 of these. There are k

subsets of S with two elements that contain a, because such a

subset contains a and one of the k elements in T . Hence, there

are k(k−1)/2+k = (k+1)k/2 two-element subsets of S. This

completes the inductive proof. 47. Reorder the locations if

necessary so that x1 ≤ x2 ≤ x3 ≤ · · · ≤ xd . Place the first

tower at position t1 = x1+1. Assume tower k has been placed

at position tk . Then place tower k+1 at position tk+1 = x+1,

where x is the smallest xi greater than tk + 1. 49. The two

sets do not overlap if n+ 1 = 2. In fact, the conditional state-

ment P(1)→ P(2) is false. 51. The mistake is in applying

the inductive hypothesis to look at max(x−1, y−1), because

even though x and y are positive integers, x − 1 and y − 1

need not be (one or both could be 0). 53. For the basis step

(n = 2) the first person cuts the cake into two portions that she

thinks are each 1/2 of the cake, and the second person chooses

the portion he thinks is at least 1/2 of the cake (at least one of

the pieces must satisfy that condition). For the inductive step,

suppose there are k + 1 people. By the inductive hypothesis,

we can suppose that the first k people have divided the cake

among themselves so that each person is satisfied that he got

at least a fraction 1/k of the cake. Each of them now cuts his

or her piece into k+1 pieces of equal size. The last person gets

to choose one piece from each of the first k people’s portions.

After this is done, each of the first k people is satisfied that

she still has (1/k)(k/(k + 1)) = 1/(k + 1) of the cake. To

see that the last person is satisfied, suppose that he thought

that the ith person (1 ≤ i ≤ k) had a portion pi of the

cake, where
 k
i=1 pi = 1. By choosing what he thinks is the

largest piece from each person, he is satisfied that he has at

least
 k
i=1 pi/(k+1) = (1/(k+1))

 k
i=1 pi = 1/(k+1) of

the cake. 55. We use the notation (i, j) to mean the square
in row i and column j and use induction on i+ j to show that

every square can be reached by the knight. Basis step: There

are six base cases, for the cases when i + j ≤ 2. The

knight is already at (0, 0) to start, so the empty sequence of

moves reaches that square. To reach (1, 0), the knight moves

(0, 0)→ (2, 1)→ (0, 2)→ (1, 0). Similarly, to reach (0, 1),

the knight moves (0, 0) → (1, 2) → (2, 0) → (0, 1). Note

that the knight has reached (2, 0) and (0, 2) in the process.

For the last basis step there is (0, 0) → (1, 2) → (2, 0) →
(0, 1) → (2, 2) → (0, 3) → (1, 1). Inductive step: Assume

the inductive hypothesis, that the knight can reach any square

(i, j) for which i + j = k, where k is an integer greater

than 1. We must show how the knight can reach each square

(i, j) when i + j = k + 1. Because k + 1 ≥ 3, at least one

of i and j is at least 2. If i ≥ 2, then by the inductive hypoth-

esis, there is a sequence of moves ending at (i − 2, j + 1),

because i − 2 + j + 1 = i + j − 1 = k; from there

it is just one step to (i, j); similarly, if j ≥ 2. 57. Basis

step: The base cases n = 0 and n = 1 are true because

the derivative of x0 is 0 and the derivative of x1 = x is 1.

Inductive step: Using the product rule, the inductive hypoth-

esis, and the basis step shows that d
dx
xk+1 = d

dx
(x · xk) =

x · d
dx
xk+xk d

dx
x = x ·kxk−1+xk ·1 = kxk+xk = (k+1)xk .

59. Basis step: For k = 0, 1 ≡ 1 (mod m). Inductive step:

Suppose that a ≡ b (mod m) and ak ≡ bk (mod m); we

must show that ak+1 ≡ bk+1 (mod m). By Theorem 5 from

Section 4.1, a · ak ≡ b · bk (mod m), which by defini-

Answers to Odd-Numbered Exercises S-31

tion says that ak+1 ≡ bk+1 (mod m). 61. Let P(n) be
“[(p1 → p2) ∧ (p2 → p3) ∧ · · · ∧ (pn−1 → pn)] →
[(p1 ∧ · · · ∧ pn−1)→ pn].” Basis step: P(2) is true because

(p1 → p2) → (p1 → p2) is a tautology. Inductive step:

Assume P(k) is true. To show [(p1 → p2) ∧ · · · ∧ (pk−1 →
pk) ∧ (pk → pk+1)] → [(p1 ∧ · · · ∧ pk−1 ∧ pk)→ pk+1]
is a tautology, assume that the hypothesis of this conditional

statement is true. Because both the hypothesis and P(k) are

true, it follows that (p1 ∧ · · · ∧ pk−1) → pk is true. Be-

cause this is true, and because pk → pk+1 is true (it is part

of the assumption) it follows by hypothetical syllogism that

(p1 ∧ · · · ∧ pk−1) → pk+1 is true. The weaker statement

(p1 ∧ · · · ∧ pk−1 ∧ pk)→ pk+1 follows from this. 63. We

will first prove the result when n is a power of 2, that is, if

n = 2k , k = 1, 2, Let P(k) be the statement A ≥ G,

where A and G are the arithmetic and geometric means, re-

spectively, of a set of n = 2k positive real numbers. Basis

step: k = 1 and n = 21 = 2. Note that (
√
a1 −√a2)

2 ≥ 0.

Expanding this shows that a1 − 2
√
a1a2 + a2 ≥ 0, that is,

(a1+ a2)/2 ≥ (a1a2)
1/2. Inductive step: Assume that P(k) is

true, with n = 2k . We will show that P(k+1) is true. We have

2k+1 = 2n. Now (a1 + a2 + · · · + a2n)/(2n) = [(a1 + a2 +
· · · + an)/n+ (an+1 + an+2 + · · · + a2n)/n]/2 and similarly

(a1a2 · · · a2n)
1/(2n) = [(a1 · · · an)1/n(an+1 · · · a2n)

1/n]1/2. To

simplify the notation, letA(x, y, . . .) andG(x, y, . . .) denote

the arithmetic mean and geometric mean of x, y, . . . , respec-

tively. Also, if x ≤ x , y ≤ y , and so on, then A(x, y, . . .) ≤
A(x , y , . . .) and G(x, y, . . .) ≤ G(x , y , . . .). Hence,

A(a1, . . . , a2n) = A(A(a1, . . . , an), A(an+1, . . . , a2n)) ≥
A(G(a1, . . . , an), G(an+1, . . . , a2n)) ≥ G(G(a1, . . . , an),

G(an+1, . . . , a2n)) = G(a1, . . . , a2n). This finishes

the proof for powers of 2. Now if n is not a power

of 2, let m be the next higher power of 2, and let

an+1, . . . , am all equal A(a1, . . . , an) = a. Then we

have [(a1a2 · · · an)am−n]1/m ≤ A(a1, . . . , am), because m is

a power of 2. Because A(a1, . . . , am) = a, it follows

that (a1 · · · an)1/ma1−n/m ≤ an/m. Raising both sides to the

(m/n)th power gives G(a1, . . . , an) ≤ A(a1, . . . , an).

65. Basis step: For n = 1, the left-hand side is just 1
1 , which

is 1. For n = 2, there are three nonempty subsets {1}, {2},
and {1, 2}, so the left-hand side is 1

1 + 1
2 + 1

1·2 = 2. Inductive

step: Assume that the statement is true for k. The set of the

first k + 1 positive integers has many nonempty subsets, but

they fall into three categories: a nonempty subset of the first

k positive integers together with k + 1, a nonempty subset of

the first k positive integers, or just {k + 1}. By the inductive

hypothesis, the sum of the first category is k. For the second

category, we can factor out 1/(k + 1) from each term of the

sum and what remains is just k by the inductive hypothesis,

so this part of the sum is k/(k + 1). Finally, the third cate-

gory simply yields 1/(k + 1). Hence, the entire summation

is k + k/(k + 1) + 1/(k + 1) = k + 1. 67. Basis step:

If A1 ⊆ A2, then A1 satisfies the condition of being a sub-

set of each set in the collection; otherwise A2 ⊆ A1, so A2

satisfies the condition. Inductive step: Assume the inductive

hypothesis, that the conditional statement is true for k sets,

and suppose we are given k + 1 sets that satisfy the given

conditions. By the inductive hypothesis, there must be a set

Ai for some i ≤ k such that Ai ⊆ Aj for 1 ≤ j ≤ k.

If Ai ⊆ Ak+1, then we are done. Otherwise, we know that

Ak+1 ⊆ Ai , and this tells us that Ak+1 satisfies the condition

of being a subset of Aj for 1 ≤ j ≤ k + 1. 69. G(1) = 0,

G(2) = 1, G(3) = 3, G(4) = 4 71. To show that 2n − 4

calls are sufficient to exchange all the gossip, select persons 1,

2, 3, and 4 to be the central committee. Every person outside

the central committee calls one person on the central commit-

tee. At this point the central committee members as a group

know all the scandals. They then exchange information among

themselves by making the calls 1-2, 3-4, 1-3, and 2-4 in that

order. At this point, every central committee member knows

all the scandals. Finally, again every person outside the central

committee calls one person on the central committee, at which

point everyone knows all the scandals. [The total number of

calls is (n− 4)+ 4+ (n− 4) = 2n− 4.] That this cannot be

done with fewer than 2n−4 calls is much harder to prove; see

Sandra M. Hedetniemi, Stephen T. Hedetniemi, and Arthur L.

Liestman, “A survey of gossiping and broadcasting in com-

munication networks,” Networks 18 (1988), no. 4, 319–349,

for details. 73. We prove this by mathematical induction.

The basis step (n = 2) is true tautologically. For n = 3,

suppose that the intervals are (a, b), (c, d), and (e, f), where

without loss of generality we can assume that a ≤ c ≤ e.

Because (a, b)∩(e, f) = ∅, we must have e < b; for a similar

reason, e < d. It follows that the number halfway between e

and the smaller of b and d is common to all three intervals.

Now for the inductive step, assume that whenever we have k

intervals that have pairwise nonempty intersections then there

is a point common to all the intervals, and suppose that we are

given intervals I1, I2, . . . , Ik+1 that have pairwise nonempty

intersections. For each i from 1 to k, let Ji = Ii ∩ Ik+1. We

claim that the collection J1, J2, . . . , Jk satisfies the inductive

hypothesis, that is, that Ji1 ∩ Ji2 = ∅ for each choice of sub-

scripts i1 and i2. This follows from the n = 3 case proved

above, using the sets Ii1 , Ii2 , and Ik+1. We can now invoke the

inductive hypothesis to conclude that there is a number com-

mon to all of the sets Ji for i = 1, 2, . . . , k, which perforce

is in the intersection of all the sets Ii for i = 1, 2, . . . , k + 1.

75. Pair up the people. Have the people stand at mutually dis-

tinct small distances from their partners but far away from

everyone else. Then each person throws a pie at his or her

partner, so everyone gets hit.

77.

79. LetP(n) be the statement that every 2n×2n×2n checker-

board with a 1× 1× 1 cube removed can be covered by tiles

S-32 Answers to Odd-Numbered Exercises

that are 2× 2× 2 cubes each with a 1× 1× 1 cube removed.

The basis step,P(1), holds because one tile coincides with the

solid to be tiled. Now assume thatP(k) holds. Now consider a

2k+1×2k+1×2k+1 cube with a 1×1×1 cube removed. Split

this object into eight pieces using planes parallel to its faces

and running through its center. The missing 1 × 1 × 1 piece

occurs in one of these eight pieces. Now position one tile with

its center at the center of the large object so that the missing

1 × 1 × 1 cube lies in the octant in which the large object is

missing a 1×1×1 cube. This creates eight 2k×2k×2k cubes,

each missing a 1 × 1 × 1 cube. By the inductive hypothesis

we can fill each of these eight objects with tiles. Putting these

tilings together produces the desired tiling.

81.

83. LetQ(n) be P(n+b−1). The statement that P(n) is true

for n = b, b + 1, b + 2, . . . is the same as the statement that

Q(m) is true for all positive integersm. We are given thatP(b)

is true [i.e., that Q(1) is true], and that P(k) → P(k + 1)

for all k ≥ b [i.e., that Q(m) → Q(m + 1) for all posi-

tive integers m]. Therefore, by the principle of mathematical

induction,Q(m) is true for all positive integers m.

Section 5.2

1. Basis step: We are told we can run one mile, so P(1) is

true. Inductive step: Assume the inductive hypothesis, that we

can run any number of miles from 1 to k. We must show that

we can run k + 1 miles. If k = 1, then we are already told

that we can run two miles. If k > 1, then the inductive hy-

pothesis tells us that we can run k − 1 miles, so we can run

(k − 1) + 2 = k + 1 miles. 3. a) P(8) is true, because we

can form 8 cents of postage with one 3-cent stamp and one

5-cent stamp. P(9) is true, because we can form 9 cents of

postage with three 3-cent stamps. P(10) is true, because we

can form 10 cents of postage with two 5-cent stamps. b) The

statement that using just 3-cent and 5-cent stamps we can form

j cents postage for all j with 8 ≤ j ≤ k, where we assume

that k ≥ 10 c) Assuming the inductive hypothesis, we can

form k + 1 cents postage using just 3-cent and 5-cent stamps

d) Because k ≥ 10, we know that P(k−2) is true, that is, that

we can form k−2 cents of postage. Put one more 3-cent stamp

on the envelope, and we have formed k + 1 cents of postage.

e) We have completed both the basis step and the inductive

step, so by the principle of strong induction, the statement is

true for every integer n greater than or equal to 8. 5. a) 4,

8, 11, 12, 15, 16, 19, 20, 22, 23, 24, 26, 27, 28, and all values

greater than or equal to 30 b) Let P(n) be the statement that

we can form n cents of postage using just 4-cent and 11-cent

stamps. We want to prove that P(n) is true for all n ≥ 30.

For the basis step, 30 = 11 + 11 + 4 + 4. Assume that

we can form k cents of postage (the inductive hypothesis);

we will show how to form k + 1 cents of postage. If the k

cents included an 11-cent stamp, then replace it by three 4-

cent stamps. Otherwise, k cents was formed from just 4-cent

stamps. Because k ≥ 30, there must be at least eight 4-cent

stamps involved. Replace eight 4-cent stamps by three 11-cent

stamps, and we have formed k + 1 cents in postage. c) P(n)

is the same as in part (b). To prove that P(n) is true for all

n ≥ 30, we check for the basis step that 30 = 11+11+4+4,

31 = 11+4+4+4+4+4, 32 = 4+4+4+4+4+4+4+4,

and 33 = 11+ 11+ 11. For the inductive step, assume the in-

ductive hypothesis, thatP(j) is true for all j with 30 ≤ j ≤ k,
where k is an arbitrary integer greater than or equal to 33. We

want to show that P(k + 1) is true. Because k − 3 ≥ 30, we

know that P(k − 3) is true, that is, that we can form k − 3
cents of postage. Put one more 4-cent stamp on the envelope,

and we have formed k+ 1 cents of postage. In this proof, our

inductive hypothesis was that P(j) was true for all values of
j between 30 and k inclusive, rather than just that P(30) was

true. 7. We can form all amounts except $1 and $3. LetP(n)

be the statement that we can form n dollars using just 2-dollar

and 5-dollar bills. We want to prove that P(n) is true for all

n ≥ 5. (It is clear that $1 and $3 cannot be formed and that

$2 and $4 can be formed.) For the basis step, note that 5 = 5

and 6 = 2+2+2. Assume the inductive hypothesis, thatP(j)

is true for all j with 5 ≤ j ≤ k, where k is an arbitrary integer

greater than or equal to 6. We want to show that P(k + 1) is
true. Because k−1 ≥ 5, we know that P(k−1) is true, that is,

that we can form k− 1 dollars. Add another 2-dollar bill, and

we have formed k+ 1 dollars. 9. Let P(n) be the statement

that there is no positive integer b such that
√

2 = n/b. Basis

step: P(1) is true because
√

2 > 1 ≥ 1/b for all positive

integers b. Inductive step: Assume that P(j) is true for all

j ≤ k, where k is an arbitrary positive integer; we prove that

P(k+1) is true by contradiction.Assume that
√

2 = (k+1)/b

for some positive integer b. Then 2b2 = (k+ 1)2, so (k+ 1)2

is even, and hence, k + 1 is even. So write k + 1 = 2t for

some positive integer t , whence 2b2 = 4t2 and b2 = 2t2. By

the same reasoning as before, b is even, so b = 2s for some

positive integer s. Then
√

2 = (k + 1)/b = (2t)/(2s) = t/s.
But t ≤ k, so this contradicts the inductive hypothesis, and

our proof of the inductive step is complete. 11. Basis step:

There are four base cases. If n = 1 = 4 ·0+1, then clearly the

second player wins. If there are two, three, or four matches

(n = 4·0+2, n = 4·0+3, or n = 4·1), then the first player can

win by removing all but one match. Inductive step: Assume

the strong inductive hypothesis, that in games with k or fewer

matches, the first player can win if k ≡ 0, 2, or 3 (mod 4) and

the second player can win if k ≡ 1 (mod 4). Suppose we have

a game with k+1 matches, with k ≥ 4. If k+1≡ 0 (mod 4),

then the first player can remove three matches, leaving k − 2

matches for the other player. Because k− 2 ≡ 1 (mod 4), by

the inductive hypothesis, this is a game that the second player

Answers to Odd-Numbered Exercises S-33

at that point (who is the first player in our game) can win. Sim-

ilarly, if k + 1 ≡ 2 (mod 4), then the first player can remove

one match; and if k + 1 ≡ 3 (mod 4), then the first player

can remove two matches. Finally, if k+ 1 ≡ 1 (mod 4), then

the first player must leave k, k − 1, or k − 2 matches for the

other player. Because k ≡ 0 (mod 4), k − 1 ≡ 3 (mod 4),

and k − 2 ≡ 2 (mod 4), by the inductive hypothesis, this is

a game that the first player at that point (who is the second

player in our game) can win. 13. Let P(n) be the statement

that exactly n − 1 moves are required to assemble a puzzle

with n pieces. Now P(1) is trivially true. Assume that P(j)

is true for all j ≤ k, and consider a puzzle with k + 1 pieces.

The final move must be the joining of two blocks, of size j

and k + 1 − j for some integer j with 1 ≤ j ≤ k. By the

inductive hypothesis, it required j − 1 moves to construct the

one block, and k+ 1− j − 1 = k− j moves to construct the

other. Therefore, 1+(j−1)+(k−j) = kmoves are required

in all, so P(k+ 1) is true. 15. Let the Chomp board have n

rows and n columns. We claim that the first player can win the

game by making the first move to leave just the top row and

leftmost column. Let P(n) be the statement that if a player

has presented his opponent with a Chomp configuration con-

sisting of just n cookies in the top row and n cookies in the

leftmost column, then he can win the game. We will prove

∀nP (n) by strong induction. We know that P(1) is true, be-

cause the opponent is forced to take the poisoned cookie at

his first turn. Fix k ≥ 1 and assume that P(j) is true for all

j ≤ k. We claim that P(k + 1) is true. It is the opponent’s

turn to move. If she picks the poisoned cookie, then the game

is over and she loses. Otherwise, assume she picks the cookie

in the top row in column j , or the cookie in the left column in

row j , for some j with 2 ≤ j ≤ k + 1. The first player now

picks the cookie in the left column in row j , or the cookie in

the top row in column j , respectively. This leaves the position

covered by P(j −1) for his opponent, so by the inductive hy-

pothesis, he can win. 17. Let P(n) be the statement that if a

simple polygon with n sides is triangulated, then at least two

of the triangles in the triangulation have two sides that border

the exterior of the polygon. We will prove ∀n ≥ 4P(n). The

statement is clearly true for n = 4, because there is only one

diagonal, leaving two triangles with the desired property. Fix

k ≥ 4 and assume that P(j) is true for all j with 4 ≤ j ≤ k.
Consider a polygon with k + 1 sides, and some triangulation

of it. Pick one of the diagonals in this triangulation. First sup-

pose that this diagonal divides the polygon into one triangle

and one polygon with k sides. Then the triangle has two sides

that border the exterior. Furthermore, the k-gon has, by the

inductive hypothesis, two triangles that have two sides that

border the exterior of that k-gon, and only one of these trian-

gles can fail to be a triangle that has two sides that border the

exterior of the original polygon. The only other case is that

this diagonal divides the polygon into two polygons with j

sides and k + 3 − j sides for some j with 4 ≤ j ≤ k − 1.

By the inductive hypothesis, each of these two polygons has

two triangles that have two sides that border their exterior, and

in each case only one of these triangles can fail to be a trian-

gle that has two sides that border the exterior of the original

polygon. 19. Let P(n) be the statement that the area of a

simple polygon with n sides and vertices all at lattice points

is given by I (P) + B(P)/2 − 1. We will prove P(n) for all

n ≥ 3. We begin with an additivity lemma: If P is a simple

polygon with all vertices at lattice points, divided into poly-

gons P1 and P2 by a diagonal, then I (P) + B(P)/2 − 1 =
[I (P1)+ B(P1)/2 − 1] + [I (P2)+ B(P2)/2 − 1]. To prove

this, suppose there are k lattice points on the diagonal, not

counting its endpoints. Then I (P) = I (P1)+ I (P2)+ k and

B(P) = B(P1) + B(P2) − 2k − 2; and the result follows

by simple algebra. What this says in particular is that if Pick’s

formula gives the correct area for P1 and P2, then it must give

the correct formula for P , whose area is the sum of the areas

forP1 andP2; and similarly if Pick’s formula gives the correct

area for P and one of the Pi’s, then it must give the correct

formula for the other Pi . Next we prove the theorem for rect-

angles whose sides are parallel to the coordinate axes. Such a

rectangle necessarily has vertices at (a, b), (a, c), (d, b), and

(d, c), where a, b, c, and d are integers with b < c and a < d.

Its area is (c − b)(d − a). Also, B = 2(c − b + d − a) and

I = (c−b−1)(d−a−1)= (c−b)(d−a)−(c−b)−(d−a)+1.

Therefore, I + B/2− 1 = (c − b)(d − a)− (c − b)− (d −
a) + 1 + (c − b + d − a) − 1 = (c − b)(d − a), which is

the desired area. Next consider a right triangle whose legs are

parallel to the coordinate axes. This triangle is half a rectangle

of the type just considered, for which Pick’s formula holds, so

by the additivity lemma, it holds for the triangle as well. (The

values of B and I are the same for each of the two triangles,

so if Picks’s formula gave an answer that was either too small

or too large, then it would give a correspondingly wrong an-

swer for the rectangle.) For the next step, consider an arbitrary

triangle with vertices at lattice points that is not of the type al-

ready considered. Embed it in as small a rectangle as possible.

There are several possible ways this can happen, but in any

case (and adding one more edge in one case), the rectangle

will have been partitioned into the given triangle and two or

three right triangles with sides parallel to the coordinate axes.

Again by the additivity lemma, we are guaranteed that Pick’s

formula gives the correct area for the given triangle. This com-

pletes the proof of P(3), the basis step in our strong induction

proof. For the inductive step, given an arbitrary polygon, use

Lemma 1 in the text to split it into two polygons. Then by

the additivity lemma above and the inductive hypothesis, we

know that Pick’s formula gives the correct area for this poly-

gon. 21. a) In the left figure ∠abp is smallest, but bp is not

an interior diagonal. b) In the right figure bd is not an interior

diagonal. c) In the right figure bd is not an interior diagonal.

23. a) When we try to prove the inductive step and find a tri-

angle in each subpolygon with at least two sides bordering the

exterior, it may happen in each case that the triangle we are

guaranteed in fact borders the diagonal (which is part of the

boundary of that polygon). This leaves us with no triangles

guaranteed to touch the boundary of the original polygon.

b) We proved the stronger statement ∀n ≥ 4 T (n) in Exercise

17. 25. a) The inductive step here allows us to conclude that

S-34 Answers to Odd-Numbered Exercises

P(3),P(5), . . . are all true, but we can conclude nothing about

P(2),P(4), b) P(n) is true for all positive integers n, us-

ing strong induction. c) The inductive step here enables us to

conclude that P(2), P(4), P(8), P(16), …are all true, but we

can conclude nothing about P(n) when n is not a power of 2.

d) This is mathematical induction; we can conclude that P(n)

is true for all positive integers n. 27. Suppose, for a proof

by contradiction, that there is some positive integer n such that

P(n) is not true. Letm be the smallest positive integer greater

than n for which P(m) is true; we know that such anm exists

because P(m) is true for infinitely many values of m. But we

know that P(m)→ P(m−1), so P(m−1) is also true. Thus,

m− 1 cannot be greater than n, so m− 1 = n and P(n) is in

fact true. This contradiction shows that P(n) is true for all n.

29. The error is in going from the base case n = 0 to the next

case, n = 1; we cannot write 1 as the sum of two smaller

natural numbers. 31. Assume that the well-ordering prop-

erty holds. Suppose that P(1) is true and that the conditional

statement [P(1)∧P(2)∧ · · ·∧P(n)] → P(n+ 1) is true for

every positive integer n. Let S be the set of positive integers

n for which P(n) is false. We will show S = ∅. Assume that

S = ∅. Then by the well-ordering property there is a least

integer m in S. We know that m cannot be 1 because P(1) is

true. Because n = m is the least integer such thatP(n) is false,

P(1), P (2), . . . , P (m− 1) are true, and m− 1 ≥ 1. Because

[P(1) ∧ P(2) ∧ · · · ∧ P(m− 1)] → P(m) is true, it follows

that P(m)must also be true, which is a contradiction. Hence,

S = ∅. 33. In each case, give a proof by contradiction based

on a “smallest counterexample,” that is, values of n and k such

that P(n, k) is not true and n and k are smallest in some sense.

a) Choose a counterexample with n+ k as small as possible.

We cannot have n = 1 and k = 1, because we are given

that P(1, 1) is true. Therefore, either n > 1 or k > 1. In the

former case, by our choice of counterexample, we know that

P(n− 1, k) is true. But the inductive step then forces P(n, k)

to be true, a contradiction.The latter case is similar. So our

supposition that there is a counterexample mest be wrong,

and P(n, k) is true in all cases. b) Choose a counterexample

with n as small as possible. We cannot have n = 1, because

we are given that P(1, k) is true for all k. Therefore, n > 1.

By our choice of counterexample, we know that P(n− 1, k)

is true. But the inductive step then forces P(n, k) to be true,

a contradiction. c) Choose a counterexample with k as small

as possible. We cannot have k = 1, because we are given that

P(n, 1) is true for all n. Therefore, k > 1. By our choice of

counterexample, we know that P(n, k − 1) is true. But the

inductive step then forces P(n, k) to be true, a contradiction.

35. Let P(n) be the statement that if x1, x2, . . . , xn are n dis-

tinct real numbers, then n− 1 multiplications are used to find

the product of these numbers no matter how parentheses are

inserted in the product. We will prove that P(n) is true using

strong induction. The basis caseP(1) is true because 1−1 = 0

multiplications are required to find the product of x1, a product

with only one factor. Suppose that P(k) is true for 1 ≤ k ≤ n.

The last multiplication used to find the product of the n + 1

distinct real numbers x1, x2, . . . , xn, xn+1 is a multiplication

of the product of the first k of these numbers for some k and

the product of the last n + 1 − k of them. By the inductive

hypothesis, k − 1 multiplications are used to find the product

of k of the numbers, no matter how parentheses were inserted

in the product of these numbers, and n− k multiplications are

used to find the product of the other n + 1 − k of them, no

matter how parentheses were inserted in the product of these

numbers. Because one more multiplication is required to find

the product of all n + 1 numbers, the total number of multi-

plications used equals (k − 1) + (n − k) + 1 = n. Hence,

P(n + 1) is true. 37. Assume that a = dq + r = dq + r
with 0 ≤ r < d and 0 ≤ r < d. Then d(q − q) = r − r .
It follows that d divides r − r . Because −d < r − r < d,

we have r − r = 0. Hence, r = r . It follows that q = q .
39. This is a paradox caused by self-reference. The answer is

clearly “no.” There are a finite number of English words, so

only a finite number of strings of 15 words or fewer; there-

fore, only a finite number of positive integers can be so de-

scribed, not all of them. 41. Suppose that the well-ordering

property were false. Let S be a nonempty set of nonnegative

integers that has no least element. Let P(n) be the statement

“i ∈ S for i = 0, 1, . . . , n.”P(0) is true because if 0 ∈ S then

S has a least element, namely, 0. Now suppose that P(n) is

true. Thus, 0 ∈ S, 1 ∈ S, . . . , n ∈ S. Clearly, n+ 1 cannot be

in S, for if it were, it would be its least element. ThusP(n+1)

is true. So by the principle of mathematical induction, n ∈ S
for all nonnegative integers n. Thus, S = ∅, a contradiction.

43. Strong induction implies the principle of mathematical in-

duction, for if one has shown that P(k)→ P(k + 1) is true,

then one has also shown that [P(1)∧· · ·∧P(k)] → P(k+1) is

true. By Exercise 41, the principle of mathematical induction

implies the well-ordering property. Therefore by assuming

strong induction as an axiom, we can prove the well-ordering

property.

Section 5.3

1. a) f (1) = 3, f (2) = 5, f (3) = 7, f (4) = 9 b) f (1) = 3,

f (2) = 9, f (3) = 27, f (4) = 81 c) f (1) = 2, f (2) = 4,

f (3) = 16, f (4) = 65,536 d) f (1) = 3, f (2) = 13, f (3)=
183, f (4) = 33,673 3. a) f (2) = −1, f (3) = 5, f (4) = 2,

f (5)= 17 b) f (2)=−4,f (3)= 32,f (4)=−4096,f (5)=
536,870,912 c) f (2) = 8, f (3) = 176, f (4) =92,672,

f (5) = 25,764, 174, 848 d) f (2) = − 1
2 , f (3) = −4,

f (4) = 1
8 , f (5) = −32 5. a) Not valid b) f (n) =

1 − n. Basis step: f (0) = 1 = 1 − 0. Inductive step: if

f (k) = 1− k, then f (k + 1) = f (k)− 1 = 1− k − 1 = 1−
(k + 1). c) f (n) = 4 − n if n > 0, and f (0) = 2. Basis

step: f (0) = 2 and f (1) = 3 = 4 − 1. Inductive step (with
k ≥ 1): f (k + 1) = f (k)− 1 = (4− k)− 1 = 4− (k + 1).

d) f (n) = 2 (n+1)/2 . Basis step: f (0) = 1 = 2 (0+1)/2

and f (1) = 2 = 2 (1+1)/2 . Inductive step (with k ≥ 1):

f (k+1)= 2f (k−1)= 2·2 k/2 = 2 k/2 +1 = 2 ((k+1)+1)/2 .
e) f (n) = 3n. Basis step: Trivial. Inductive step: For odd

n, f (n) = 3f (n − 1) = 3 · 3n−1 = 3n; and for even

n > 1, f (n) = 9f (n − 2) = 9 · 3n−2 = 3n. 7. There

Answers to Odd-Numbered Exercises S-35

are many possible correct answers. We will supply relatively

simple ones. a) an+1 = an + 6 for n ≥ 1 and a1 = 6

b) an+1 = an + 2 for n ≥ 1 and a1 = 3 c) an+1 = 10an
for n ≥ 1 and a1 = 10 d) an+1 = an for n ≥ 1 and

a1 = 5 9. F(0) = 0, F (n) = F(n − 1) + n for n ≥ 1

11. Pm(0) = 0, Pm(n + 1) = Pm(n) + m 13. Let P(n)

be “f1 + f3 + · · · + f2n−1 = f2n.” Basis step: P(1) is

true because f1 = 1 = f2. Inductive step: Assume that

P(k) is true. Then f1 + f3 + · · · + f2k−1 + f2k+1 =
f2k + f2k+1 = f2k+2 + f2(k+1). 15. Basis step:

f0f1 + f1f2 = 0 · 1 + 1 · 1 = 12 = f 2
2 . Inductive

step: Assume that f0f1 + f1f2 + · · · + f2k−1f2k = f 2
2k .

Then f0f1 + f1f2 + · · · + f2k−1f2k + f2kf2k+1 +
f2k+1f2k+2 = f 2

2k + f2kf2k+1 + f2k+1f2k+2 =
f2k(f2k+f2k+1)+ f2k+1f2k+2 = f2kf2k+2+f2k+1f2k+2 =
(f2k + f2k+1)f2k+2 = f 2

2k+2. 17. The number of divisions

used by the Euclidean algorithm to find gcd(fn+1, fn) is 0 for

n = 0, 1 for n = 1, and n−1 for n ≥ 2. To prove this result for

n ≥ 2 we use mathematical induction. For n = 2, one division

shows that gcd(f3, f2) = gcd(2, 1) = gcd(1, 0) = 1. Now

assume that k − 1 divisions are used to find gcd(fk+1, fk).

To find gcd(fk+2, fk+1), first divide fk+2 by fk+1 to ob-

tain fk+2 = 1 · fk+1 + fk . After one div- ision we

have gcd(fk+2, fk+1) = gcd(fk+1, fk). By the induc-

tive hypothesis it follows that exactly k − 1 more di-

visions are required. This shows that k divisions are re-

quired to find gcd(fk+2, fk+1), finishing the inductive proof.

19. |A| = −1. Hence, |An| = (−1)n. It follows that

fn+1fn−1 − f 2
n = (−1)n. 21. a) Proof by induction. Ba-

sis step: For n = 1, max(−a1) = −a1 = − min(a1).

For n = 2, there are two cases. If a2 ≥ a1, then

−a1 ≥ −a2, so max(−a1,−a2) = −a1 = −min(a1, a2).

If a2 < a1, then −a1 < −a2, so max(−a1, −a2) =
−a2 = − min(a1, a2). Inductive step: Assume true for

k with k ≥ 2. Then max(−a1, −a2, . . . , −ak, −ak+1) =
max(max(−a1, . . . ,−ak),−ak+1)=max(−min(a1, . . . , ak),

−ak+1) = −min(min(a1, . . . , ak), ak+1) = −min(a1, . . . ,

ak+1). b) Proof by mathematical induction. Basis step: For

n = 1, the result is the identity a1 + b1 = a1 + b1. For

n = 2, first consider the case in which a1 + b1 ≥ a2 + b2.

Then max(a1 + b1, a2 + b2) = a1 + b1. Also note

that a1 ≤ max(a1, a2) and b1 ≤ max(b1, b2), so

a1 + b1 ≤ max(a1, a2) + max(b1, b2). Therefore,

max(a1+b1, a2+b2)= a1+b1 ≤max(a1, a2)+max(b1, b2).

The case with a1 + b1 < a2 + b2 is similar. In-

ductive step: Assume that the result is true for k. Then

max(a1 + b1, a2 + b2, . . . , ak + bk, ak+1 + bk+1) =
max(max(a1 + b1, a2 + b2, . . . , ak + bk), ak+1 +
bk+1) ≤ max(max(a1, a2, . . . , ak) + max(b1, b2, . . . , bk),

ak+1 + bk+1) ≤ max(max(a1, a2, . . . , ak),

ak+1) + max(max(b1, b2, . . . , bk), bk+1) =
max(a1, a2, . . . , ak, ak+1) + max(b1, b2, . . . , bk, bk+1).

c) Same as part (b), but replace every occurrence of “max” by

“min” and invert each inequality. 23. 5 ∈ S, and x + y ∈ S
if x, y ∈ S. 25. a) 0 ∈ S, and if x ∈ S, then x + 2 ∈ S
and x − 2 ∈ S. b) 2 ∈ S, and if x ∈ S, then x + 3 ∈ S.

c) 1 ∈ S, 2 ∈ S, 3 ∈ S, 4 ∈ S, and if x ∈ S, then x + 5 ∈ S.

27. a) (0, 1), (1, 1), (2, 1); (0, 2), (1, 2), (2, 2), (3, 2), (4, 2);

(0, 3), (1, 3), (2, 3), (3, 3), (4, 3), (5, 3), (6, 3); (0, 4), (1, 4),

(2, 4), (3, 4), (4, 4), (5, 4), (6, 4), (7, 4), (8, 4) b) Let P(n)

be the statement that a ≤ 2b whenever (a, b) ∈ S is obtained

byn applications of the recursive step. Basis step:P(0) is true,

because the only element of S obtained with no applications

of the recursive step is (0, 0), and indeed 0 ≤ 2 · 0. Inductive

step: Assume that a ≤ 2b whenever (a, b) ∈ S is obtained

by k or fewer applications of the recursive step, and consider

an element obtained with k + 1 applications of the recursive

step. Because the final application of the recursive step to

an element (a, b) must be applied to an element obtained

with fewer applications of the recursive step, we know that

a ≤ 2b. Add 0 ≤ 2, 1 ≤ 2, and 2 ≤ 2, respectively, to obtain

a ≤ 2(b + 1), a + 1 ≤ 2(b + 1), and a + 2 ≤ 2(b + 1), as

desired. c) This holds for the basis step, because 0 ≤ 0. If this

holds for (a, b), then it also holds for the elements obtained

from (a, b) in the recursive step, because adding 0 ≤ 2, 1 ≤ 2,

and 2 ≤ 2, respectively, to a ≤ 2b yields a ≤ 2(b + 1),

a + 1 ≤ 2(b + 1), and a + 2 ≤ 2(b + 1). 29. a) Define

S by (1, 1) ∈ S, and if (a, b) ∈ S, then (a + 2, b) ∈ S,

(a, b + 2) ∈ S, and (a + 1, b + 1) ∈ S. All elements put

in S satisfy the condition, because (1, 1) has an even sum of

coordinates, and if (a, b) has an even sum of coordinates, then

so do (a+2, b), (a, b+2), and (a+1, b+1). Conversely, we

show by induction on the sum of the coordinates that if a+ b
is even, then (a, b) ∈ S. If the sum is 2, then (a, b) = (1, 1),
and the basis step put (a, b) into S. Otherwise the sum is

at least 4, and at least one of (a − 2, b), (a, b − 2), and

(a − 1, b − 1) must have positive integer coordinates whose

sum is an even number smaller than a+b, and therefore must

be in S. Then one application of the recursive step shows that

(a, b) ∈ S. b) Define S by (1, 1), (1, 2), and (2, 1) are in S,

and if (a, b) ∈ S, then (a + 2, b) and (a, b + 2) are in S. To

prove that our definition works, we note first that (1, 1), (1, 2),

and (2, 1) all have an odd coordinate, and if (a, b) has an odd

coordinate, then so do (a + 2, b) and (a, b + 2). Conversely,

we show by induction on the sum of the coordinates that if

(a, b) has at least one odd coordinate, then (a, b) ∈ S. If

(a, b) = (1, 1) or (a, b) = (1, 2) or (a, b) = (2, 1), then

the basis step put (a, b) into S. Otherwise either a or b is

at least 3, so at least one of (a − 2, b) and (a, b − 2) must

have positive integer coordinates whose sum is smaller than

a + b, and therefore must be in S. Then one application of

the recursive step shows that (a, b) ∈ S. c) (1, 6) ∈ S and

(2, 3) ∈ S, and if (a, b) ∈ S, then (a + 2, b) ∈ S and

(a, b + 6) ∈ S. To prove that our definition works, we note

first that (1, 6) and (2, 3) satisfy the condition, and if (a, b)

satisfies the condition, then so do (a + 2, b) and (a, b + 6).

Conversely we show by induction on the sum of the coordi-

nates that if (a, b) satisfies the condition, then (a, b) ∈ S.

For sums 5 and 7, the only points are (1, 6), which the basis

step put into S, (2, 3), which the basis step put into S, and

(4, 3) = (2 + 2, 3), which is in S by one application of the

recursive definition. For a sum greater than 7, either a ≥ 3, or

S-36 Answers to Odd-Numbered Exercises

a ≤ 2 and b ≥ 9, in which case either (a− 2, b) or (a, b− 6)

must have positive integer coordinates whose sum is smaller

than a + b and satisfy the condition for being in S. Then

one application of the recursive step shows that (a, b) ∈ S.

31. If x is a set or a variable representing a set, then x is a

well-formed formula. If x and y are well-formed formulae,

then so are x, (x ∪ y), (x ∩ y), and (x − y). 33. a) If

x ∈ D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, then m(x) = x; if

s = tx, where t ∈ D∗ and x ∈ D, thenm(s) = min(m(s), x).

b) Let t = wx, where w ∈ D∗ and x ∈ D. If w = λ, then

m(st) = m(sx) = min(m(s), x) = min(m(s), m(x)) by

the recursive step and the basis step of the definition of m.

Otherwise, m(st) = m((sw)x) = min(m(sw), x) by the

definition of m. Now m(sw) = min(m(s), m(w)) by the

inductive hypothesis of the structural induction, so m(st) =
min(min(m(s), m(w)), x) = min(m(s),min(m(w), x)) by

the meaning of min. But min(m(w), x) = m(wx) = m(t)

by the recursive step of the definition of m. Thus, m(st) =
min(m(s),m(t)). 35. λR = λ and (ux)R = xuR for x ∈ ,

u ∈ ∗. 37. w0 = λ and wn+1 = wwn. 39. When the

string consists of n 0s followed by n 1s for some non- negative

integer n 41. Let P(i) be “l(wi) = i · l(w).” P(0) is true

because l(w0) = 0 = 0 · l(w). Assume P(i) is true. Then

l(wi+1) = l(wwi) = l(w) + l(wi) = l(w) + i · l(w) =
(i + 1) · l(w). 43. Basis step: For the full binary tree con-

sisting of just a root the result is true because n(T) = 1

and h(T) = 0, and 1 ≥ 2 · 0 + 1. Inductive step: As-

sume that n(T1) ≥ 2h(T1) + 1 and n(T2) ≥ 2h(T2) + 1.

By the recursive definitions of n(T) and h(T), we have

n(T) = 1+n(T1)+n(T2) and h(T) = 1+max(h(T1), h(T2)).

Therefore n(T) = 1 + n(T1) + n(T2) ≥ 1 + 2h(T1) +
1 + 2h(T2) + 1 ≥ 1 + 2 · max(h(T1), h(T2)) + 2 =
1 + 2(max(h(T1), h(T2)) + 1) = 1 + 2h(T). 45. Basis

step: a0,0 = 0 = 0 + 0. Inductive step: Assume that

am ,n = m + n whenever (m , n) is less than (m, n)

in the lexicographic ordering of N × N. If n = 0 then

am,n = am−1,n + 1 = m − 1 + n + 1 = m + n. If n > 0,

then am,n = am,n−1 + 1 = m + n − 1 + 1 = m + n.

47. a) Pm,m = Pm because a number exceeding m cannot be

used in a partition of m. b) Because there is only one way to

partition 1, namely, 1 = 1, it follows that P1,n = 1. Because

there is only one way to partition m into 1s, Pm,1 = 1. When

n >m it follows that Pm,n = Pm,m because a number exceed-

ingm cannot be used. Pm,m = 1+Pm,m−1 because one extra

partition, namely,m = m, arises whenm is allowed in the par-

tition.Pm,n = Pm,n−1+Pm−n,n ifm> n because a partition of

m into integers not exceeding n either does not use any ns and

hence, is counted in Pm,n−1 or else uses an n and a partition of

m− n, and hence, is counted in Pm−n,n. c) P5 = 7, P6 = 11

49. Let P(n) be “A(n, 2) = 4.” Basis step: P(1) is true

because A(1, 2) = A(0, A(1, 1)) = A(0, 2) = 2 · 2 = 4.

Inductive step: Assume that P(n) is true, that is,A(n, 2) = 4.

Then A(n + 1, 2) = A(n, A(n + 1, 1)) = A(n, 2) = 4.

51. a) 16 b) 65,536 53. Use a double induction argument

to prove the stronger statement: A(m, k) > A(m, l) when

k > l. Basis step: When m = 0 the statement is true because

k > l implies that A(0, k) = 2k > 2l = A(0, l). Inductive

step: Assume that A(m, x) > A(m, y) for all nonnegative

integers x and y with x > y. We will show that this implies

that A(m + 1, k) > A(m + 1, l) if k > l. Basis steps: When

l = 0 and k > 0,A(m+ 1, l) = 0 and eitherA(m+ 1, k) = 2

or A(m + 1, k) = A(m, A(m + 1, k − 1)). If m = 0,

this is 2A(1, k − 1) = 2k . If m > 0, this is greater than 0

by the inductive hypothesis. In all cases, A(m + 1, k) > 0,

and in fact, A(m + 1, k) ≥ 2. If l = 1 and k > 1, then

A(m+ 1, l) = 2 and A(m+ 1, k) = A(m,A(m+ 1, k− 1)),

with A(m + 1, k − 1) ≥ 2. Hence, by the inductive hypoth-

esis, A(m, A(m + 1, k − 1)) ≥ A(m, 2) > A(m, 1) = 2.

Inductive step: Assume that A(m + 1, r) > A(m + 1, s) for

all r > s, s = 0, 1, . . . , l. Then if k+1 > l+1 it follows that

A(m+1, k+1) = A(m,A(m+1, k)) > A(m,A(m+1, k)) =
A(m + 1, l + 1). 55. From Exercise 54 it follows that

A(i, j) ≥ A(i − 1, j) ≥ · · · ≥ A(0, j) = 2j ≥ j .

57. Let P(n) be “F(n) is well-defined.” Then P(0) is true

because F(0) is specified. Assume that P(k) is true for all

k < n. Then F(n) is well-defined at n because F(n) is

given in terms of F(0), F (1), . . . , F (n− 1). So P(n) is true

for all integers n. 59. a) The value of F(1) is ambiguous.

b) F(2) is not defined because F(0) is not defined. c) F(3)

is ambiguous and F(4) is not defined because F(4
3) makes

no sense. d) The definition of F(1) is ambiguous because

both the second and third clause seem to apply. e) F(2)

cannot be computed because trying to compute F(2) gives

F(2) = 1+ F(F(1)) = 1+ F(2). 61. a) 1 b) 2 c) 3

d) 3 e) 4 f) 4 g) 5 63. f ∗0 (n) = n/a 65. f ∗2 (n) =
 log log n for n ≥ 2, f ∗2 (1) = 0

Section 5.4

1. First, we use the recursive step to write 5! = 5 · 4!. We

then use the recursive step repeatedly to write 4! = 4 · 3!,
3! = 3 · 2!, 2! = 2 · 1!, and 1! = 1 · 0!. Inserting the value

of 0! = 1, and working back through the steps, we see that

1! = 1 · 1 = 1, 2! = 2 · 1! = 2 · 1 = 2, 3! = 3 · 2! = 3 · 2 = 6,

4! = 4 · 3! = 4 · 6 = 24, and 5! = 5 · 4! = 5 · 24 = 120.

3. With this input, the algorithm uses the else clause to find

that gcd(8, 13) = gcd(13 mod 8, 8) = gcd(5, 8). It uses this

clause again to find that gcd(5, 8) = gcd(8 mod 5, 5) =
gcd(3, 5), then to get gcd(3, 5) = gcd(5 mod 3, 3) =
gcd(2, 3), then gcd(2, 3) = gcd(3 mod 2, 2) = gcd(1, 2),

and once more to get gcd(1, 2) = gcd(2 mod 1, 1) =
gcd(0, 1). Finally, to find gcd(0, 1) it uses the first step

with a = 0 to find that gcd(0, 1) = 1. Consequently,

the algorithm finds that gcd(8, 13) = 1. 5. First, be-

cause n = 11 is odd, we use the else clause to see

that mpower(3, 11, 5) = (mpower (3, 5, 5)2 mod 5 ·
3 mod 5) mod 5. We next use the else clause again to see

that mpower (3, 5, 5) = (mpower (3, 2, 5)2 mod 5 · 3

mod 5) mod 5. Then we use the else if clause to see

that mpower (3, 2, 5) = mpower (3, 1, 5)2 mod 5. Us-

ing the else clause again, we have mpower (3, 1, 5) =
(mpower (3, 0, 5)2 mod 5 · 3 mod 5) mod 5. Finally, us-

Answers to Odd-Numbered Exercises S-37

ing the if clause, we see that mpower (3, 0, 5) = 1.

Working backward it follows that mpower (3, 1, 5) =
(12 mod 5 · 3 mod 5) mod 5 = 3, mpower (3, 2, 5) =
32 mod 5 = 4, mpower (3, 5, 5) = (42 mod 5 ·
3 mod 5) mod 5 = 3, and finally mpower (3, 11, 5) =
(32 mod 5 · 3 mod 5) mod 5 = 2. We conclude that

311 mod 5 = 2.

7. procedure mult(n: positive integer, x: integer)

if n = 1 then return x

else return x + mult (n− 1, x)

9. procedure sum of odds(n: positive integer)

if n = 1 then return 1

else return sum of odds (n− 1)+ 2n− 1

11. procedure smallest(a1, . . . , an: integers)

if n = 1 then return a1

else return

min(smallest (a1, . . . , an−1), an)

13. procedure modfactorial(n, m: positive integers)

if n = 1 then return 1

else return

(n · modfactorial(n− 1,m)) mod m

15. procedure gcd(a, b: nonnegative integers)

{a < b assumed to hold}

if a = 0 then return b

else if a = b − a then return a

else if a < b − a then return gcd(a, b − a)
else return gcd(b − a, a)

17. procedure multiply(x, y: nonnegative integers)

if y = 0 then return 0

else if y is even then

return 2 · multiply (x, y/2)

else return 2 · multiply (x, (y−1)/2)+ x
19. We use strong induction on a. Basis step: If a = 0, we

know that gcd(0, b) = b for all b > 0, and that is precisely

what the if clause does. Inductive step: Fix k > 0, assume

the inductive hypothesis—that the algorithm works correctly

for all values of its first argument less than k—and consider

what happens with input (k, b), where k < b. Because k > 0,

the else clause is executed, and the answer is whatever the

algorithm gives as output for inputs (b mod k, k). Because

b mod k < k, the input pair is valid. By our inductive hy-

pothesis, this output is in fact gcd(b mod k, k), which equals

gcd(k, b) by Lemma 1 in Section 4.3. 21. If n = 1, then

nx = x, and the algorithm correctly returns x. Assume that

the algorithm correctly computes kx. To compute (k + 1)x it

recursively computes the product of k + 1 − 1 = k and x,

and then adds x. By the inductive hypothesis, it computes that

product correctly, so the answer returned is kx+x = (k+1)x,

which is correct.

23. procedure square(n: nonnegative integer)

if n = 0 then return 0

else return square (n− 1)+ 2(n− 1)+ 1

Let P(n) be the statement that this algorithm correctly com-

putes n2. Because 02 = 0, the algorithm works correctly

(using the if clause) if the input is 0. Assume that the algo-

rithm works correctly for input k. Then for input k + 1, it

gives as output (because of the else clause) its output when

the input is k, plus 2(k + 1 − 1) + 1. By the inductive

hypothesis, its output at k is k2, so its output at k + 1 is

k2 + 2(k+ 1− 1)+ 1 = k2 + 2k+ 1 = (k+ 1)2, as desired.

25. n multiplications versus 2n 27. O(log n) versus n

29. procedure a(n: nonnegative integer)

if n = 0 then return 1

else if n = 1 then return 2

else return a(n− 1) · a(n− 2)

31. Iterative

33. procedure iterative(n: nonnegative integer)

if n = 0 then z := 1

else if n = 1 then z := 2

else

x := 1

y := 2

z := 3

for i := 1 to n− 2

w := x + y + z
x := y
y := z
z := w

return z {z is the nth term of the sequence}

35. We first give a recursive procedure and then an iterative

procedure.

procedure r(n: nonnegative integer)

if n < 3 then return 2n+ 1

else return r(n− 1) · (r(n− 2))2 · (r(n− 3))3

procedure i(n: nonnegative integer)

if n = 0 then z := 1

else if n = 1 then z := 3

else

x := 1

y := 3

z := 5

for i := 1 to n− 2

w := z · y2 · x3

x := y
y := z
z := w

return z {z is the nth term of the sequence}

The iterative version is more efficient.

37. procedure reverse(w: bit string)

n := length(w)

if n ≤ 1 then return w

else return

substr(w, n, n)reverse (substr (w, 1, n− 1))

{substr(w, a, b) is the substring of w consisting of

the symbols in the ath through bth positions}
39. The procedure correctly gives the reversal of λ as λ (basis

step), and because the reversal of a string consists of its last

character followed by the reversal of its first n − 1 charac-

ters (see Exercise 35 in Section 5.3), the algorithm behaves

correctly when n > 0 by the inductive hypothesis. 41. The

S-38 Answers to Odd-Numbered Exercises

algorithm implements the idea of Example 14 in Section 5.1.

If n = 1 (basis step), place the one right triomino so that its

armpit corresponds to the hole in the 2×2 board. If n > 1, then

divide the board into four boards, each of size 2n−1 × 2n−1,

notice which quarter the hole occurs in, position one right tri-

omino at the center of the board with its armpit in the quarter

where the missing square is (see Figure 7 in Section 5.1), and

invoke the algorithm recursively four times—once on each of

the 2n−1×2n−1 boards, each of which has one square missing

(either because it was missing to begin with, or because it is

covered by the central triomino).

43. procedure A(m, n: nonnegative integers)

if m = 0 then return 2n

else if n = 0 then return 0

else if n = 1 then return 2

else return A(m− 1, A(m, n− 1))

45. bdafghzpok

bdafg

bda fg

hzpok

hzp ok

h zb d

f g hz p kbd a o

hzbd

abd fg hpz ko

abdfg hkopz

abdfghkopz

47. Let the two lists be 1, 2, . . . , m − 1, m + n − 1 and

m, m + 1, . . . , m + n − 2, m + n, respectively. 49. If

n = 1, then the algorithm does nothing, which is correct be-

cause a list with one element is already sorted. Assume that

the algorithm works correctly for n = 1 through n = k. If

n = k+1, then the list is split into two lists,L1 andL2. By the

inductive hypothesis, mergesort correctly sorts each of these

sublists; furthermore, merge correctly merges two sorted lists

into one because with each comparison the smallest element

in L1 ∪L2 not yet put into L is put there. 51. O(n) 53. 6

55. O(n2)

Section 5.5

1. Suppose that x = 0. The program segment first assigns the

value 1 to y and then assigns the value x + y = 0+ 1 = 1 to

z. 3. Suppose that y = 3. The program segment assigns the

value 2 to x and then assigns the value x+y = 2+3 = 5 to z.

Because y = 3 > 0 it then assigns the value z+1 = 5+1 = 6

to z.

5. (p∧ condition1){S1}q
(p∧ ¬condition1 ∧ condition2){S2}q

·
·
·

(p∧ ¬condition1 ∧ ¬condition2
· · · ∧ ¬condition(n− 1){Sn}q

∴ p{if condition1 then S1;
else if condition2 then S2; . . . ; else Sn}q

7. We will show that p : “power = xi−1 and i ≤ n + 1” is a

loop invariant. Note that p is true initially, because before the

loop starts, i = 1 and power= 1 = x0 = x1−1. Next, we must

show that if p is true and i ≤ n after an execution of the loop,

then p remains true after one more execution. The loop incre-

ments i by 1. Hence, because i ≤ n before this pass, i ≤ n+1

after this pass. Also the loop assigns power · x to power. By

the inductive hypothesis we see that power is assigned the

value xi−1 · x = xi . Hence, p remains true. Furthermore, the

loop terminates after n traversals of the loop with i = n + 1

because i is assigned the value 1 prior to entering the loop, is

incremented by 1 on each pass, and the loop terminates when

i > n. Consequently, at termination power = xn, as desired.

9. Suppose that p is “m and n are integers.” Then if the con-

dition n < 0 is true, a = −n = |n| after S1 is executed. If the

condition n < 0 is false, then a = n = |n| after S1 is executed.

Hence, p{S1}q is true where q is p ∧ (a = |n|). Because S2

assigns the value 0 to both k and x, it is clear that q{S2}r is

true where r is q ∧ (k = 0)∧ (x = 0). Suppose that r is true.

Let P(k) be “x = mk and k ≤ a.” We can show that P(k) is a

loop invariant for the loop in S3. P(0) is true because before

the loop is entered x = 0 = m·0 and 0 ≤ a. Now assumeP(k)

is true and k < a. Then P(k+1) is true because x is assigned

the value x +m = mk+m = m(k+ 1). The loop terminates

when k = a, and at that point x = ma. Hence, r{S3}s is true

where s is “a = |n| and x = ma.” Now assume that s is

true. Then if n < 0 it follows that a = −n, so x = −mn.

In this case S4 assigns −x = mn to product. If n > 0 then

x = ma = mn, so S4 assigns mn to product. Hence, s{S4}t
is true. 11. Suppose that the initial assertion p is true. Then

because p{S}q0 is true, q0 is true after the segment S is exe-

cuted. Because q0 → q1 is true, it also follows that q1 is true

after S is executed. Hence, p{S}q1 is true. 13. We will use

the proposition p, “gcd(a, b) = gcd(x, y) and y ≥ 0,” as the

loop invariant. Note that p is true before the loop is entered,

because at that point x = a, y = b, and y is a positive inte-

ger, using the initial assertion. Now assume that p is true and

y > 0; then the loop will be executed again. Inside the loop, x

and y are replaced by y and xmod y, respectively. By Lemma

1 of Section 4.3, gcd(x, y) = gcd(y, x mod y). Therefore,

after execution of the loop, the value of gcd(x, y) is the same

as it was before. Moreover, because y is the remainder, it is

at least 0. Hence, p remains true, so it is a loop invariant.

Furthermore, if the loop terminates, then y = 0. In this case,

we have gcd(x, y) = x, the final assertion. Therefore, the

program, which gives x as its output, has correctly computed

Answers to Odd-Numbered Exercises S-39

gcd(a, b). Finally, we can prove the loop must terminate, be-

cause each iteration causes the value of y to decrease by at

least 1. Therefore, the loop can be iterated at most b times.

Supplementary Exercises

1. Let P(n) be the statement that this equation holds. Basis

step: P(1) says 2/3 = 1 − (1/31), which is true. Inductive

step: Assume that P(k) is true. Then 2/3 + 2/9 + 2/27 +
· · · + 2/3n + 2/3n+1 = 1− 1/3n + 2/3n+1 (by the inductive

hypothesis), and this equals 1 − 1/3n+1, as desired. 3. Let

P(n) be “1 · 1 + 2 · 2 + · · · + n · 2n−1 = (n − 1)2n + 1.”

Basis step: P(1) is true because 1 · 1 = 1 = (1 − 1)21 + 1.

Inductive step: Assume that P(k) is true. Then 1 · 1+ 2 · 2+
· · · + k · 2k−1 + (k + 1) · 2k = (k − 1)2k + 1+ (k + 1)2k =
2k · 2k + 1 = [(k + 1) − 1]2k+1 + 1. 5. Let P(n) be

“1/(1 · 4) + · · · + 1/[(3n − 2)(3n + 1)] = n/(3n + 1).”

Basis step: P(1) is true because 1/(1 · 4) = 1/4. Inductive

step: Assume P(k) is true. Then 1/(1 · 4) + · · · + 1/[(3k −
2)(3k+ 1)]+ 1/[(3k+ 1)(3k+ 4)] = k/(3k+ 1)+1/[(3k+
1)(3k + 4)] = [k(3k + 4) + 1]/[(3k + 1)(3k + 4)] =
[(3k + 1)(k + 1)]/[(3k + 1)(3k + 4)] = (k + 1)/(3k + 4).

7. Let P(n) be “2n > n3.” Basis step: P(10) is true because

1024 > 1000. Inductive step: Assume P(k) is true. Then

(k + 1)3 = k3 + 3k2 + 3k + 1 ≤ k3 + 9k2 ≤ k3 + k3 =
2k3 < 2 · 2k = 2k+1. 9. Let P(n) be “a − b is a factor

of an − bn.” Basis step: P(1) is trivially true. Assume P(k)

is true. Then ak+1 − bk+1 = ak+1 − abk + abk − bk+1 =
a(ak − bk) + bk(a − b). Then because a − b is a factor of

ak − bk and a − b is a factor of a − b, it follows that a − b
is a factor of ak+1 − bk+1. 11. Basis step: When n = 1,

6n+1 + 72n−1 = 36 + 7 = 43. Inductive step: Assume the

inductive hypothesis, that 43 divides 6n+1 + 72n−1; we must

show that 43 divides 6n+2 + 72n+1. We have 6n+2 + 72n+1 =
6 · 6n+1 + 49 · 72n−1 = 6 · 6n+1 + 6 · 72n−1 + 43 · 72n−1 =
6(6n+1 + 72n−1) + 43 · 72n−1. By the inductive hypothesis

the first term is divisible by 43, and the second term is clearly

divisible by 43; therefore the sum is divisible by 43. 13. Let

P(n) be “a+(a+d)+· · ·+(a+nd) = (n+1)(2a+nd)/2.”

Basis step: P(1) is true because a + (a + d) = 2a + d =
2(2a + d)/2. Inductive step: Assume that P(k) is true. Then

a + (a + d) + · · · + (a + kd) + [a + (k + 1)d] =
(k + 1)(2a + kd)/2+ a + (k + 1)d = 1

2 (2ak + 2a + k2d +
kd + 2a + 2kd + 2d) = 1

2 (2ak + 4a + k2d + 3kd + 2d) =
1
2 (k + 2)[2a + (k + 1)d]. 15. Basis step: This is true for

n = 1 because 5/6 = 10/12. Inductive step: Assume that

the equation holds for n = k, and consider n = k + 1. Then k+1
i=1

i+4
i(i+1)(i+2) =

 k
i=1

i+4
i(i+1)(i+2) + k+5

(k+1)(k+2)(k+3) =
k(3k+7)

2(k+1)(k+2) + k+5
(k+1)(k+2)(k+3) (by the inductive hypothesis)

= 1
(k+1)(k+2) · (k(3k+7)

2 + k+5
k+3) = 1

2(k+1)(k+2)(k+3) ·
[k(3k + 7) (k + 3) + 2(k + 5)] = 1

2(k+1)(k+2)(k+3) ·
(3k3+16k2 + 23k+ 10) = 1

2(k+1)(k+2)(k+3) · (3k+ 10)(k+
1)2 = 1

2(k+2)(k+3) · (3k+10)(k+1) = (k+1)(3(k+1)+7)
2((k+1)+1)((k+1)+2) , as

desired. 17. Basis step: The statement is true for n = 1 be-

cause the derivative of g(x) = xex is x · ex + ex = (x + 1)ex

by the product rule. Inductive step: Assume that the state-

ment is true for n = k, i.e., the kth derivative is given by

g(k) = (x+k)ex . Differentiating by the product rule gives the

(k+1)st derivative: g(k+1) = (x+k)ex+ex = [x+(k+1)]ex ,

as desired. 19. We will use strong induction to show that fn
is even if n ≡ 0 (mod 3) and is odd otherwise. Basis step: This

follows because f0 = 0 is even and f1 = 1 is odd. Inductive

step: Assume that if j ≤ k, then fj is even if j ≡ 0 (mod 3)

and is odd otherwise. Now suppose k + 1 ≡ 0 (mod 3). Then

fk+1 = fk + fk−1 is even because fk and fk−1 are both odd.

If k + 1 ≡ 1 (mod 3), then fk+1 = fk + fk−1 is odd because

fk is even and fk−1 is odd. Finally, if k+ 1 ≡ 2 (mod 3), then

fk+1 = fk + fk−1 is odd because fk is odd and fk−1 is even.

21. LetP(n) be the statement thatfkfn+fk+1fn+1 = fn+k+1

for every nonnegative integer k. Basis step: This consists of

showing that P(0) and P(1) both hold. P(0) is true because

fkf0 + fk+1f1 = fk+1 · 0 + fk+1 · 1 = f1. Because

fkf1 + fk+1f2 = fk + fk+1 = fk+2, it follows that P(1)

is true. Inductive step: Now assume that P(j) holds. Then,

by the inductive hypothesis and the recursive definition of the

Fibonacci numbers, it follows that fk+1fj+1 + fk+2fj+2 =
fk(fj−1+ fj)+ fk+1(fj + fj+1) = (fkfj−1 + fk+1fj)+
(fkfj +fk+1fj+1) = fj−1+k+1+fj+k+1 = fj+k+2. This

shows that P(j + 1) is true. 23. Let P(n) be the statement

l20 + l21 + · · · + l2n = lnln+1 + 2. Basis step: P(0) and P(1)

both hold because l20 = 22 = 2 · 1 + 2 = l0l1 + 2 and

l20 + l21 = 22 + 12 = 1 · 3 + 2 = l1l3 + 2. Inductive

step: Assume that P(k) holds. Then by the inductive hypoth-

esis l20 + l21 + · · · + l2k + l2k+1 = lklk+1 + 2 + l2k+1 =
lk+1(lk + lk+1) + 2 = lk+1lk+2 + 2. This shows that

P(k + 1) holds. 25. Let P(n) be the statement that the

identity holds for the integer n. Basis step: P(1) is obvi-

ously true. Inductive step: Assume that P(k) is true. Then

cos((k+1)x)+i sin((k+1)x)= cos(kx+x)+i sin(kx+x)=
cos kx cos x − sin kx sin x + i(sin kx cos x + cos kx sin x) =
cos x(cos kx + i sin kx)(cos x + i sin x) = (cos x +
i sin x)k(cos x + i sin x) = (cos x + i sin x)k+1. It fol-

lows that P(k + 1) is true. 27. Rewrite the right-hand side

as 2n+1(n2−2n+3)−6. For n = 1 we have 2 = 4 ·2−6. As-

sume that the equation holds forn= k, and considern= k+1.

Then
 k+1
j=1 j

22j = k
j=1 j

22j + (k+ 1)22k+1 = 2k+1(k2−
2k + 3) − 6 + (k2 + 2k + 1)2k+1 (by the inductive hypo-

thesis) = 2k+1(2k2 + 4) − 6 = 2k+2(k2 + 2) − 6 =
2k+2[(k + 1)2 − 2(k + 1) + 3] − 6. 29. Let P(n) be the

statement that this equation holds. Basis step: In P(2) both

sides reduce to 1/3. Inductive step: Assume that P(k) is true.

Then
 k+1
j=1 1/(j2− 1) =

 k
j=1 1/(j2 − 1)

+ 1/[(k +

1)2 − 1] = (k − 1)(3k + 2)/[4k(k + 1)] + 1/[(k + 1)2 − 1]
by the inductive hypothesis. This simplifies to (k − 1)(3k +
2)/[4k(k+ 1)]+ 1/(k2+ 2k) = (3k3+ 5k2)/[4k(k+ 1)(k+
2)] = {[(k+1)−1][3(k+1)+2]}/[4(k+1)(k+2)], which is

exactly whatP(k+1) asserts. 31. LetP(n) be the assertion

that at least n+1 lines are needed to cover the lattice points in

the given triangular region. Basis step: P(0) is true, because

S-40 Answers to Odd-Numbered Exercises

we need at least one line to cover the one point at (0, 0). Induc-

tive step: Assume the inductive hypothesis, that at least k+ 1

lines are needed to cover the lattice points with x ≥ 0, y ≥ 0,

and x + y ≤ k. Consider the triangle of lattice points defined

by x ≥ 0, y ≥ 0, and x+y ≤ k+1. By way of contradiction,

assume that k + 1 lines could cover this set. Then these lines

must cover the k + 2 points on the line x + y = k + 1.

But only the line x + y = k + 1 itself can cover more than

one of these points, because two distinct lines intersect in at

most one point. Therefore none of the k + 1 lines that are

needed (by the inductive hypothesis) to cover the set of lattice

points within the triangle but not on this line can cover more

than one of the points on this line, and this leaves at least one

point uncovered. Therefore our assumption that k + 1 lines

could cover the larger set is wrong, and our proof is complete.

33. Let P(n) be Bk = MAkM−1. Basis step: Part of the given

conditions. Inductive step: Assume the inductive hypothesis.

Then Bk+1 = BBk = MAM−1Bk = MAM−1MAkM−1 (by

the inductive hypothesis) = MAIAkM−1 = MAAkM−1 =
MAk+1M−1. 35. We prove by mathematical induction the

following stronger statement: For every n ≥ 3, we can write

n! as the sum of n of its distinct positive divisors, one of which

is 1. That is, we can write n! = a1+a2+· · ·+an, where each

ai is a divisor of n!, the divisors are listed in strictly decreasing

order, and an = 1. Basis step: 3! = 3+ 2+ 1. Inductive step:

Assume that we can write k! as a sum of the desired form, say

k! = a1 + a2 + · · · + ak , where each ai is a divisor of n!,
the divisors are listed in strictly decreasing order, and an = 1.

Consider (k + 1)!. Then we have (k + 1)! = (k + 1)k! =
(k+ 1)(a1+ a2+ · · · + ak) = (k+ 1)a1+ (k+ 1)a2+ · · ·+
(k + 1)ak = (k + 1)a1 + (k + 1)a2 + · · · + k · ak + ak . Be-

cause each ai was a divisor of k!, each (k+1)ai is a divisor of

(k+1)!. Furthermore, k ·ak = k, which is a divisor of (k+1)!,
and ak = 1, so the new last summand is again 1. (Notice also

that our list of summands is still in strictly decreasing order.)

Thus we have written (k+1)! in the desired form. 37. When

n = 1 the statement is vacuously true. Assume that the state-

ment is true for n = k, and consider k + 1 people standing

in a line, with a woman first and a man last. If the kth person

is a woman, then we have that woman standing in front of the

man at the end. If the kth person is a man, then the first k peo-

ple in line satisfy the conditions of the inductive hypothesis

for the first k people in line, so again we can conclude that

there is a woman directly in front of a man somewhere in the

line. 39. Basis step: When n = 1 there is one circle, and

we can color the inside blue and the outside red to satisfy the

conditions. Inductive step: Assume the inductive hypothesis

that if there are k circles, then the regions can be 2-colored

such that no regions with a common boundary have the same

color, and consider a situation with k+1 circles. Remove one

of the circles, producing a picture with k circles, and invoke

the inductive hypothesis to color it in the prescribed manner.

Then replace the removed circle and change the color of ev-

ery region inside this circle. The resulting figure satisfies the

condition, because if two regions have a common boundary,

then either that boundary involved the new circle, in which

case the regions on either side used to be the same region and

now the inside portion is different from the outside, or else

the boundary did not involve the new circle, in which case

the regions are colored differently because they were colored

differently before the new circle was restored. 41. If n = 1

then the equation reads 1 · 1 = 1 · 2/2, which is true. Assume

that the equation is true for n and consider it for n+ 1. Then n+1
j=1(2j − 1)

 n+1
k=j

1
k

= n

j=1(2j − 1)
 n+1

k=j
1
k

+

[2(n+ 1)− 1] · 1
n+1 =

 n
j=1(2j − 1)

1
n+1 +

 n
k=j

1
k

+

2n+1
n+1 =

1
n+1

 n
j=1(2j − 1)

+
 n

j=1(2j − 1) n
k=j

1
k

+ 2n+1

n+1 =

1
n+1 · n2

+ n(n+1)

2 + 2n+1
n+1

(by the inductive hypothesis) = 2n2+n(n+1)2+(4n+2)
2(n+1) =

2(n+1)2+n(n+1)2

2(n+1) = (n+1)(n+2)
2 . 43. Let T (n) be the state-

ment that the sequence of towers of 2 is eventually constant

modulo n. We use strong induction to prove that T (n) is true

for all positive integers n. Basis step: When n = 1 (and n = 2),

the sequence of towers of 2 modulo n is the sequence of all 0s.

Inductive step: Suppose that k is an integer with k ≥ 2. Sup-

pose that T (j) is true for 1 ≤ j ≤ k − 1. In the proof of the

inductive step we denote the rth term of the sequence mod-

ulo n by ar . First suppose k is even. Let k = 2sq where s ≥ 1

and q < k is odd. When j is large enough, aj−2 ≥ s, and for

such j , aj = 22
aj−2

is a multiple of 2s . It follows that for suffi-

ciently large j , aj ≡ 0 (mod 2s). Hence, for large enough i, 2s

divides ai+1−ai . By the inductive hypothesis T (q) is true, so

the sequence a1, a2, a3, . . . is eventually constant modulo q.

This implies that for large enough i, q divides ai+1 − ai . Be-

cause gcd(q, 2s) = 1 and for sufficiently large i both q and

2s divide ai+1−ai , k = 2sq divides ai+1−ai for sufficiently

large i. Hence, for sufficiently large i, ai+1−ai ≡ 0 (mod k).

This means that the sequence is eventually constant modulo k.

Finally, suppose k is odd. Then gcd(2, k) = 1, so by Euler’s

theorem (found in elementary number theory books, such as

[Ro10]), we know that 2φ(k) ≡ 1 (mod k). Let r = φ(k). Be-

cause r < k, by the inductive hypothesis T (r), the sequence

a1, a2, a3, . . . is eventually constant modulo r , say equal to c.

Hence for large enough i, for some integer ti , ai = ti r + c.
Hence ai+1 = 2ai = 2ti r+c = (2r)ti2c ≡ 2c (mod k).

This shows that a1, a2, . . . is eventually constant modulo k.

45. a) 92 b) 91 c) 91 d) 91 e) 91 f) 91 47. The

basis step is incorrect because n = 1 for the sum shown.

49. LetP(n) be “the plane is divided into n2−n+2 regions by

n circles if every two of these circles have two common points

but no three have a common point.” Basis step: P(1) is true

because a circle divides the plane into 2 = 12−1+2 regions.

Inductive step: Assume that P(k) is true, that is, k circles

with the specified properties divide the plane into k2 − k + 2

regions. Suppose that a (k + 1)st circle is added. This cir-

cle intersects each of the other k circles in two points, so

these points of intersection form 2k new arcs, each of which

splits an old region. Hence, there are 2k regions split, which

shows that there are 2k more regions than there were pre-

viously. Hence, k + 1 circles satisfying the specified prop-

Answers to Odd-Numbered Exercises S-41

erties divide the plane into k2 − k + 2 + 2k = (k2+
2k + 1) − (k + 1) + 2 = (k + 1)2 − (k + 1) + 2 re-

gions. 51. Suppose
√

2 were rational. Then
√

2 = a/b,

where a and b are positive integers. It follows that the set

S = {n
√

2 | n ∈ N}∩N is a nonempty set of positive integers,

because b
√

2 = a belongs to S. Let t be the least element of S,

which exists by the well-ordering property. Then t = s
√

2 for

some integer s. We have t−s = s
√

2−s = s(
√

2−1), so t−s
is a positive integer because

√
2 > 1. Hence, t−s belongs toS.

This is a contradiction because t−s = s
√

2−s < s. Hence,
√

2

is irrational. 53. a) Let d = gcd(a1, a2, . . . , an). Then d is

a divisor of each ai and so must be a divisor of gcd(an−1, an).

Hence, d is a common divisor of a1, a2, . . . , an−2, and

gcd(an−1, an). To show that it is the greatest common divisor

of these numbers, suppose that c is a common divisor of them.

Then c is a divisor of ai for i = 1, 2, . . . , n− 2 and a divisor

of gcd(an−1, an), so it is a divisor of an−1 and an. Hence, c

is a common divisor of a1, a2, . . . , an−1, and an. Hence, it is

a divisor of d, the greatest common divisor of a1, a2, . . . , an.

It follows that d is the greatest common divisor, as claimed.

b) If n = 2, apply the Euclidean algorithm. Otherwise, ap-

ply the Euclidean algorithm to an−1 and an, obtaining d =
gcd(an−1, an), and then apply the algorithm recursively to a1,

a2, . . . , an−2, d. 55. f (n) = n2. Let P(n) be “f (n) = n2.”

Basis step:P(1) is true becausef (1)= 1= 12, which follows

from the definition of f . Inductive step: Assume f (n) = n2.

Then f (n+ 1) = f ((n+ 1) − 1)+ 2(n+ 1)− 1 = f (n)+
2n + 1 = n2 + 2n + 1 = (n + 1)2. 57. a) λ, 0, 1, 00,

01, 11, 000, 001, 011, 111, 0000, 0001, 0011, 0111, 1111,

00000, 00001, 00011, 00111, 01111, 11111 b) S = {αβ | α
is a string of m 0s and β is a string of n 1s, m ≥ 0, n ≥ 0}
59. Apply the first recursive step to λ to get () ∈ B. Apply

the second recursive step to this string to get ()() ∈ B. Ap-

ply the first recursive step to this string to get (()()) ∈ B.

By Exercise 62, (())) is not in B because the number of left

parentheses does not equal the number of right parentheses.

61. λ, (), (()), ()() 63. a) 0 b) −2 c) 2 d) 0

65.

procedure generate(n: nonnegative integer)

if n is odd then

S := S(n− 1) {the S constructed by generate(n− 1)}
T := T (n− 1) {the T constructed by generate(n− 1)}

else if n = 0 then

S := ∅
T := {λ}

else

S := S(n− 2) {the S constructed by generate(n− 2)}
T := T (n− 2) {the T constructed by generate(n− 2)}
T := T ∪ {(x)|x ∈ T ∪ S ∧ length(x) = n− 2}
S := S ∪ {xy|x ∈ T ∧ y ∈ T ∪ S ∧ length(xy) = n}

{T ∪ S is the set of balanced strings of length at most n}
67. If x ≤ y initially, then x := y is not executed, so x ≤ y
is a true final assertion. If x > y initially, then x := y is

executed, so x ≤ y is again a true final assertion.

69. procedure zerocount(a1, a2, . . . , an: list of integers)

if n = 1 then

if a1 = 0 then return 1

else return 0

else

if an = 0 then return zerocount (a1, a2, . . . , an−1)+ 1

else return zerocount (a1, a2, . . . , an−1)

71. We will prove that a(n) is a natural number and a(n) ≤ n.

This is true for the base case n = 0 because a(0) = 0. Now

assume that a(n−1) is a natural number and a(n−1) ≤ n−1.

Then a(a(n−1)) is a applied to a natural number less than or

equal to n − 1. Hence, a(a(n − 1)) is also a natural number

minus than or equal to n− 1. Therefore, n− a(a(n− 1)) is n

minus some natural number less than or equal ton−1, which is

a natural number less than or equal to n. 73. From Exercise

72, a(n) = (n+1)μ and a(n−1) = nμ . Becauseμ < 1,

these two values are equal or they differ by 1. First suppose that

μn− μn < 1−μ. This is equivalent toμ(n+1) < 1+ μn .
If this is true, then μ(n + 1) = μn . On the other hand,

if μn − μn ≥ 1 − μ, then μ(n + 1) ≥ 1 + μn ,
so μ(n + 1) = μn + 1, as desired. 75. f (0) = 1,

m(0) = 0; f (1) = 1, m(1) = 0; f (2) = 2, m(2) = 1;

f (3) = 2, m(3) = 2; f (4) = 3, m(4) = 2; f (5) = 3,

m(5) = 3; f (6) = 4, m(6) = 4; f (7) = 5, m(7) = 4;

f (8) = 5, m(8) = 5; f (9) = 6, m(9) = 6 77. The last

occurrence of n is in the position for which the total number of

1s, 2s, . . . , ns all together is that position number. But because

ak is the number of occurrences of k, this is just
 n
k=1 ak , as

desired. Because f (n) is the sum of the first n terms of the

sequence, f (f (n)) is the sum of the first f (n) terms of the

sequence. But because f (n) is the last term whose value is n,

this means that the sum is the sum of all terms of the sequence

whose value is at most n. Because there are ak terms of the

sequence whose value is k, this sum is
 n
k=1 k · ak , as desired

CHAPTER 6

Section 6.1

1. a) 5850 b) 343 3. a) 410 b) 510 5. 42 7. 263

9. 676 11. 28 13. n + 1 (counting the empty string)

15. 475,255 (counting the empty string) 17. 1,321,368,961

19. a) 729 b) 256 c) 1024 d) 64 21. a) Seven: 56,

63, 70, 77, 84, 91, 98 b) Five: 55, 66, 77, 88, 99

c) One: 77 23. a) 128 b) 450 c) 9 d) 675 e) 450

f) 450 g) 225 h) 75 25. a) 990 b) 500 c) 27 27. 350

29. 52,457,600 31. 20,077,200 33. a) 37,822,859,361

b) 8,204,716,800 c) 40,159,050, 880 d) 12,113,640,000

e) 171,004,205,215 f) 72,043,541,640 g) 6,230,721,635

h) 223,149,655 35. a) 0 b) 120 c) 720 d) 2520 37. a) 2

if n = 1, 2 if n = 2, 0 if n ≥ 3 b) 2n−2 for n > 1; 1 if

n = 1 c) 2(n − 1) 39. (n + 1)m 41. If n is even, 2n/2;

if n is odd, 2(n+1)/2 43. a) 175 b) 248 c) 232 d) 84

45. 60 47. a) 240 b) 480 c) 360 49. 352 51. 147

53. 33 55. a) 9,920,671,339,261,325,541,376 ≈ 9.9 ×
1021 b) 6,641,514,961,387,068,437,760 ≈ 6.6 ×
1021 c) About 314,000 years 57. 54(6465536 − 1)/63

S-42 Answers to Odd-Numbered Exercises

59. 7,104,000,000,000 61. 1610 + 1626 + 1658

63. 666,667 65. 18 67. 17 69. 22 71. Let P(m) be

the sum rule for m tasks. For the basis case take m = 2. This

is just the sum rule for two tasks. Now assume that P(m) is

true. Consider m + 1 tasks, T1, T2, . . . ,Tm, Tm+1, which can

be done in n1, n2, . . . , nm, nm+1 ways, respectively, such that

no two of these tasks can be done at the same time. To do one

of these tasks, we can either do one of the first m of these or

do task Tm+1. By the sum rule for two tasks, the number of

ways to do this is the sum of the number of ways to do one of

the first m tasks, plus nm+1. By the inductive hypothesis, this

is n1 + n2 + · · · + nm + nm+1, as desired. 73. n(n− 3)/2

Section 6.2

1. Because there are six classes, but only five weekdays, the

pigeonhole principle shows that at least two classes must be

held on the same day. 3. a) 3 b) 14 5. Because there are

four possible remainders when an integer is divided by 4,

the pigeonhole principle implies that given five integers, at

least two have the same remainder. 7. Let a, a + 1, . . . ,

a + n − 1 be the integers in the sequence. The integers

(a + i) mod n, i = 0, 1, 2, . . . , n − 1, are distinct, because

0 < (a+ j)− (a+ k) < n whenever 0 ≤ k < j ≤ n− 1. Be-

cause there are n possible values for (a + i)mod n and there

are n different integers in the set, each of these values is taken

on exactly once. It follows that there is exactly one integer in

the sequence that is divisible by n. 9. 4951 11. The mid-

point of the segment joining the points (a, b, c) and (d, e, f)

is ((a+d)/2, (b+e)/2, (c+f)/2). It has integer coefficients

if and only if a and d have the same parity, b and e have the

same parity, and c and f have the same parity. Because there

are eight possible triples of parity [such as (even, odd, even)],

by the pigeonhole principle at least two of the nine points have

the same triple of parities. The midpoint of the segment join-

ing two such points has integer coefficients. 13. a) Group

the first eight positive integers into four subsets of two inte-

gers each so that the integers of each subset add up to 9: {1, 8},
{2, 7}, {3, 6}, and {4, 5}. If five integers are selected from the

first eight positive integers, by the pigeonhole principle at least

two of them come from the same subset. Two such integers

have a sum of 9, as desired. b) No. Take {1, 2, 3, 4}, for exam-

ple. 15. 4 17. 21,251 19. a) If there were fewer than 9

freshmen, fewer than 9 sophomores, and fewer than 9 juniors

in the class, there would be no more than 8 with each of these

three class standings, for a total of at most 24 students, con-

tradicting the fact that there are 25 students in the class. b) If

there were fewer than 3 freshmen, fewer than 19 sophomores,

and fewer than 5 juniors, then there would be at most 2 fresh-
men, at most 18 sophomores, and at most 4 juniors, for a total

of at most 24 students. This contradicts the fact that there are

25 students in the class. 21. 4, 3, 2, 1, 8, 7, 6, 5, 12, 11,

10, 9, 16, 15, 14, 13 23. Number the seats around the table

from 1 to 50, and think of seat 50 as being adjacent to seat 1.

There are 25 seats with odd numbers and 25 seats with even

numbers. If no more than 12 boys occupied the odd-numbered

seats, then at least 13 boys would occupy the even-numbered

seats, and vice versa. Without loss of generality, assume that

at least 13 boys occupy the 25 odd-numbered seats. Then at

least two of those boys must be in consecutive odd-numbered

seats, and the person sitting between them will have boys as

both of his or her neighbors.

25. procedure long(a1, . . . , an: positive integers)

{first find longest increasing subsequence}
max := 0; set := 00 . . . 00 {n bits}
for i := 1 to 2n

last := 0; count := 0, OK := true

for j := 1 to n

if set(j) = 1 then

if aj > last then last := aj
count := count + 1

else OK := false

if count > max then

max := count

best := set

set := set+ 1 (binary addition)

{max is length and best indicates the sequence}
{repeat for decreasing subsequence with only

changes being aj < last instead of aj > last

and last := ∞ instead of last := 0}
27. By symmetry we need prove only the first statement. Let

A be one of the people. EitherA has at least four friends, orA

has at least six enemies among the other nine people (because

3 + 5 < 9). Suppose, in the first case, that B, C, D, and E

are all A’s friends. If any two of these are friends with each

other, then we have found three mutual friends. Otherwise

{B, C, D, E} is a set of four mutual enemies. In the second

case, let {B, C, D, E, F, G} be a set of enemies of A. By

Example 11, among B, C, D, E, F , and G there are either
three mutual friends or three mutual enemies, who form, with

A, a set of four mutual enemies. 29. We need to show two
things: that if we have a group of n people, then among them

we must find either a pair of friends or a subset of n of them
all of whom are mutual enemies; and that there exists a group

of n − 1 people for which this is not possible. For the first

statement, if there is any pair of friends, then the condition is
satisfied, and if not, then every pair of people are enemies, so

the second condition is satisfied. For the second statement, if
we have a group of n− 1 people all of whom are enemies of
each other, then there is neither a pair of friends nor a subset

of n of them all of whom are mutual enemies. 31. There

are 6,432,816 possibilities for the three initials and a birthday.

So, by the generalized pigeonhole principle, there are at least

 37,000,000/6,432,816 = 6 people who share the same

initials and birthday. 33. Because 800,001 > 200,000, the

pigeonhole principle guarantees that there are at least two

Parisians with the same number of hairs on their heads. The

generalized pigeonhole principle guarantees that there are at

least 800,001/200,000 = 5 Parisians with the same num-

ber of hairs on their heads. 35. 18 37. Because there are

six computers, the number of other computers a computer is

connected to is an integer between 0 and 5, inclusive. How-

ever, 0 and 5 cannot both occur. To see this, note that if some

Answers to Odd-Numbered Exercises S-43

computer is connected to no others, then no computer is con-

nected to all five others, and if some computer is connected

to all five others, then no computer is connected to no others.

Hence, by the pigeonhole principle, because there are at most

five possibilities for the number of computers a computer is

connected to, there are at least two computers in the set of six

connected to the same number of others. 39. Label the com-

putersC1 throughC100, and label the printers P1 through P20.

If we connect Ck to Pk for k = 1, 2, . . . , 20 and connect each

of the computers C21 through C100 to all the printers, then we

have used a total of 20+80 ·20 = 1620 cables. Clearly this is

sufficient, because if computersC1 throughC20 need printers,

then they can use the printers with the same subscripts, and if

any computers with higher subscripts need a printer instead of

one or more of these, then they can use the printers that are not

being used, because they are connected to all the printers. Now

we must show that 1619 cables is not enough. Because there

are 1619 cables and 20 printers, the average number of com-

puters per printer is 1619/20, which is less than 81. Therefore

some printer must be connected to fewer than 81 computers.

That means it is connected to 80 or fewer computers, so there

are 20 computers that are not connected to it. If those 20 com-

puters all needed a printer simultaneously, then they would be

out of luck, because they are connected to at most the 19 other

printers. 41. Let ai be the number of matches completed by

hour i. Then 1 ≤ a1 < a2 < · · · < a75 ≤ 125. Also

25 ≤ a1 + 24 < a2 + 24 < · · · < a75 + 24 ≤ 149. There

are 150 numbers a1, . . . , a75, a1 + 24, . . . , a75 + 24. By the

pigeonhole principle, at least two are equal. Because all the

ais are distinct and all the (ai + 24)s are distinct, it follows

that ai = aj + 24 for some i > j . Thus, in the period from

the (j + 1)st to the ith hour, there are exactly 24 matches.

43. Use the generalized pigeonhole principle, placing the |S|
objects f (s) for s ∈ S in |T | boxes, one for each element of

T . 45. Let dj be jx − N(jx), where N(jx) is the integer

closest to jx for 1 ≤ j ≤ n. Each dj is an irrational num-

ber between −1/2 and 1/2. We will assume that n is even;

the case where n is odd is messier. Consider the n intervals

{x | j/n < x < (j + 1)/n}, {x | −(j + 1)/n < x < −j/n}
for j = 0, 1, . . . , (n/2) − 1. If dj belongs to the interval

{x | 0 < x < 1/n} or to the interval {x | −1/n < x < 0}
for some j , we are done. If not, because there are n − 2 in-

tervals and n numbers dj , the pigeonhole principle tells us

that there is an interval {x | (k − 1)/n < x < k/n} con-

taining dr and ds with r < s. The proof can be finished by

showing that (s − r)x is within 1/n of its nearest integer.

47. a) Assume that ik ≤ n for all k. Then by the generalized

pigeonhole principle, at least (n2 + 1)/n = n + 1 of the

numbers i1, i2, . . . , in2+1 are equal. b) If akj < akj+1 , then the

subsequence consisting of akj followed by the increasing sub-

sequence of length ikj+1 starting at akj+1 contradicts the fact

that ikj = ikj+1 . Hence, akj > akj+1 . c) If there is no increas-

ing subsequence of length greater than n, then parts (a) and

(b) apply. Therefore, we have akn+1 > akn > · · · > ak2 > ak1 ,

a decreasing sequence of length n+ 1.

Section 6.3

1. abc, acb, bac, bca, cab, cba 3. 720 5. a) 120

b) 720 c) 8 d) 6720 e) 40,320 f) 3,628,800 7. 15,120

9. 1320 11. a) 210 b) 386 c) 848 d) 252 13. 2(n!)2
15. 65,780 17. 2100 − 5051 19. a) 1024 b) 45

c) 176 d) 252 21. a) 120 b) 24 c) 120 d) 24

e) 6 f) 0 23. 609,638,400 25. a) 94,109,400 b) 941,094

c) 3,764,376 d) 90,345,024 e) 114,072 f) 2328 g) 24

h) 79,727,040 i) 3,764,376 j) 109,440 27. a) 12,650

b) 303,600 29. a) 37,927 b) 18,915 31. a) 122,523,030

b) 72,930,375 c) 223,149,655 d) 100,626,625 33. 54,600

35. 45 37. 912 39. 11,232,000 41. n!/(r(n − r)!)
43. 13 45. 873

Section 6.4

1. x4 + 4x3y + 6x2y2 + 4xy3 + y4 3. x6 +
6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6

5. 101 7. −210
 19

9

 = −94,595,072 9. −2101399
 200

99

11. (−1)(200−k)/3 100

(200−k)/3

if k ≡ 2 (mod 3) and −100 ≤
k ≤ 200; 0 otherwise 13. 1 9 36 84 126 126 84

36 9 1 15. The sum of all the positive numbers

n
k

, as

k runs from 0 to n, is 2n, so each one of them is no big-

ger than this sum. 17.

n
k

 = n(n−1)(n−2)···(n−k+1)
k(k−1)(k−2)···2 ≤

n·n·····n
2·2·····2 = nk/2k−1 19.

n
k−1

 + n
k

 = n!
(k−1)!(n−k+ 1)! +

n!
k!(n−k)! = n!

k!(n−k+1)! · [k+ (n− k+1)] = (n+1)!
k!(n+1−k)! =

n+1
k

21. a) We show that each side counts the number of ways

to choose from a set with n elements a subset with k ele-

ments and a distinguished element of that set. For the left-

hand side, first choose the k-set (this can be done in

n
k

ways)

and then choose one of the k elements in this subset to be

the distinguished element (this can be done in k ways). For

the right-hand side, first choose the distinguished element out

of the entire n-set (this can be done in n ways), and then

choose the remaining k − 1 elements of the subset from the

remaining n− 1 elements of the set (this can be done in

n−1
k−1

ways). b) k

n
k

 = k · n!
k!(n−k)! = n·(n−1)!

(k−1)!(n−k)! = n

n−1
k−1

23.

n+1
k

 = (n+1)!
k!(n+1−k)! = (n+1)

k
n!

(k−1)![n−(k−1)]! = (n+ 1)
n
k−1

/k. This identity together with

n
0

 = 1 gives a recursive

definition. 25.
 2n
n+1

 + 2n
n

 = 2n+1
n+1

 = 1
2

 2n+1
n+1

 + 2n+1
n+1

 = 1
2

 2n+1
n+1

 + 2n+1
n

 = 1
2

 2n+2
n+1

27. a)

n+r+1
r

counts the number of ways to choose a sequence of r 0s and

n+ 1 1s by choosing the positions of the 0s. Alternately, sup-

pose that the (j + 1)st term is the last term equal to 1, so that

n≤ j ≤ n+r . Once we have determined where the last 1 is, we

decide where the 0s are to be placed in the j spaces before the

last 1. There are n 1s and j−n 0s in this range. By the sum rule

it follows that there are
 n+r
j=n

j
j−n
 = r

k=0

n+k
k

ways to do

this. b) LetP(r) be the statement to be proved. The basis step

is the equation

n
0

 = n+1
0

, which is just 1 = 1. Assume that

P(r) is true. Then
 r+1
k=0

n+k
k

 = r
k=0

n+k
k

 + n+r+1
r+1

 =
n+r+1
r

 + n+r+1
r+1

 = n+r+2
r+1

, using the inductive hypothesis

S-44 Answers to Odd-Numbered Exercises

and Pascal’s identity. 29. We can choose the leader first in

n different ways. We can then choose the rest of the commit-

tee in 2n−1 ways. Hence, there are n2n−1 ways to choose the

committee and its leader. Meanwhile, the number of ways to

select a committee with k people is

n
k

. Once we have cho-

sen a committee with k people, there are k ways to choose

its leader. Hence, there are
 n
k=1 k

n
k

ways to choose the

committee and its leader. Hence,
 n
k=1 k

n
k

 = n2n−1.

31. Let the set have n elements. From Corollary 2 we have
n
0

 − n1 + n2 − · · · + (−1)n

n
n

 = 0. It follows that
n
0

 + n2 + n4 +· · · = n1 + n3 + n5 +· · · .The left-hand side

gives the number of subsets with an even number of elements,

and the right-hand side gives the number of subsets with an

odd number of elements. 33. a) A path of the desired type

consists of m moves to the right and n moves up. Each such

path can be represented by a bit string of length m + n with

m 0s and n 1s, where a 0 represents a move to the right and a

1 a move up. b) The number of bit strings of length m + n
containing exactly n 1s equals

m+n
n

 = m+n
m

because such a

string is determined by specifying the positions of the n 1s or

by specifying the positions of them 0s. 35. By Exercise 33

the number of paths of length n of the type described in that

exercise equals 2n, the number of bit strings of lengthn. On the

other hand, a path of length n of the type described in Exercise

33 must end at a point that has n as the sum of its coordinates,

say (n−k, k) for some k between 0 and n, inclusive. By Exer-

cise 33, the number of such paths ending at (n− k, k) equals
n−k+k
k

 = n
k

. Hence,

 n
k=0

n
k

 = 2n. 37. By Exercise 33

the number of paths from (0, 0) to (n + 1, r) of the type de-

scribed in that exercise equals

n+r+1
r

. But such a path starts

by going j steps vertically for some j with 0 ≤ j ≤ r . The

number of these paths beginning with j vertical steps equals

the number of paths of the type described in Exercise 33 that

go from (1, j) to (n+ 1, r). This is the same as the number of

such paths that go from (0, 0) to (n, r−j), which by Exercise

33 equals

n+r−j
r−j

. Because

 r
j=0

n+r−j
r−j
 = r

k=0

n+k
k

, it

follows that
 r
k=1

n+k
k

 = n+r−1
r

. 39. a)

n+1

2

b)

n+2

3

c)
 2n−2
n−1

d)

n−1
 (n−1)/2)

e) Largest odd entry in nth row of

Pascal’s triangle f)
 3n−3
n−1

Section 6.5

1. 243 3. 266 5. 125 7. 35 9. a) 1716 b) 50,388

c) 2,629,575 d) 330 11. 9 13. 4,504,501 15. a) 10,626

b) 1,365 c) 11,649 d) 106 17. 2,520 19. 302,702,400

21. 3003 23. 7,484,400 25. 30,492 27. C(59, 50)

29. 35 31. 83,160 33. 63 35. 19,635 37. 210

39. 27,720 41. 52!/(7!517!) 43. Approximately 6.5× 1032

45. a) C(k + n − 1, n)b) (k + n − 1)!/(k − 1)! 47. There

are C(n, n1) ways to choose n1 objects for the first box.

Once these objects are chosen, there are C(n− n1, n2)

ways to choose objects for the second box. Similarly,

there are C(n − n1 − n2, n3) ways to choose objects

for the third box. Continue in this way until there is

C(n − n1 − n2 − · · · − nk−1, nk) = C(nk, nk) =
1 way to choose the objects for the last box (because

n1 + n2 + · · · + nk = n). By the product rule, the number

of ways to make the entire assignment is C(n, n1)C(n −
n1, n2)C(n − n1 − n2, n3) · · · C(n − n1 − n2 − · · · −
nk−1, nk), which equalsn!/(n1!n2! · · · nk!), as straightforward

simplification shows. 49. a) Because x1 ≤ x2 ≤ · · · ≤ xr ,
it follows that x1 + 0 < x2 + 1 < · · · < xr + r − 1.

The inequalities are strict because xj + j − 1 < xj+1 + j
as long as xj ≤ xj+1. Because 1 ≤ xj ≤ n+ r − 1, this se-

quence is made up of r distinct elements from T . b) Suppose

that 1 ≤ x1 < x2 < · · · < xr ≤ n + r − 1. Let

yk = xk− (k−1). Then it is not hard to see that yk ≤ yk+1 for

k = 1, 2, . . . , r − 1 and that 1 ≤ yk ≤ n for k = 1, 2, . . . r .

It follows that {y1, y2, . . . , yr } is an r-combination with rep-

etitions allowed of S. c) From parts (a) and (b) it follows

that there is a one-to-one correspondence of r-combinations

with repetitions allowed of S and r-combinations of T , a

set with n + r − 1 elements. We conclude that there are

C(n + r − 1, r) r-combinations with repetitions allowed

of S. 51. 65 53. 65 55. 2 57. 3 59. a) 150 b) 25

c) 6 d) 2 61. 90,720 63. The terms in the expansion are

of the form x
n1
1 x

n2
2 · · · xnmm , where n1 + n2 + · · · + nm = n.

Such a term arises from choosing the x1 in n1 factors, the

x2 in n2 factors, . . . , and the xm in nm factors. This can be

done in C(n; n1, n2, . . . , nm) ways, because a choice is a

permutation of n1 labels “1,” n2 labels “2,” . . . , and nm labels

“m.” 65. 2520

Section 6.6

1. 14532, 15432, 21345, 23451, 23514, 31452, 31542,

43521, 45213, 45321 3. AAA1, AAA2, AAB1, AAB2,

AAC1, AAC2, ABA1, ABA2, ABB1, ABB2, ABC1, ABC2,

ACA1, ACA2, ACB1, ACB2, ACC1, ACC2, BAA1, BAA2,

BAB1, BAB2, BAC1, BAC2, BBA1, BBA2, BBB1, BBB2,

BBC1, BBC2, BCA1, BCA2, BCB1, BCB2, BCC1, BCC2,

CAA1, CAA2, CAB1, CAB2, CAC1, CAC2, CBA1,

CBA2, CBB1, CBB2, CBC1, CBC2, CCA1, CCA2, CCB1,

CCB2, CCC1, CCC2 5. a) 2134 b) 54132 c) 12534

d) 45312) 7.1234, 1243, 1324, 1342, 1423, 1432, 2134,

2143, 2314, 2341, 2413, 2431, 3124, 3142, 3214, 3241, 3412,

3421, 4123, 4132, 4213, 4231, 4312, 4321 9. {1, 2, 3},
{1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4},
{2, 3, 5}, {2, 4, 5}, {3, 4, 5} 11. The bit string representing

the next larger r-combination must differ from the bit string

representing the original one in position i because positions

i + 1, . . . , r are occupied by the largest possible numbers.

Also ai + 1 is the smallest possible number we can put in

position i if we want a combination greater than the original

one. Then ai+2, . . . , ai+r− i+1 are the smallest allowable

numbers for positions i + 1 to r . Thus, we have produced

the next r-combination. 13. 123, 132, 213, 231, 312, 321,

124, 142, 214, 241, 412, 421, 125, 152, 215, 251, 512, 521,

134, 143, 314, 341, 413, 431, 135, 153, 315, 351, 513, 531,

145, 154, 415, 451, 514, 541, 234, 243, 324, 342, 423, 432,

Answers to Odd-Numbered Exercises S-45

235, 253, 325, 352, 523, 532, 245, 254, 425, 452, 524, 542,

345, 354, 435, 453, 534, 543 15. We will show that it is a

bijection by showing that it has an inverse. Given a positive

integer less than n!, let a1, a2, . . . , an−1 be its Cantor digits.

Put n in position n − an−1; then clearly, an−1 is the number

of integers less than n that follow n in the permutation. Then

put n − 1 in free position (n − 1) − an−2, where we have

numbered the free positions 1, 2, . . . , n − 1 (excluding the

position that n is already in). Continue until 1 is placed in

the only free position left. Because we have constructed an

inverse, the correspondence is a bijection.

17. procedure Cantor permutation(n, i: integers with

n ≥ 1 and 0 ≤ i < n!)
x := n
for j := 1 to n

pj := 0

for k := 1 to n− 1

c := x/(n− k)! ; x := x − c(n− k)!; h := n
while ph = 0

h := h− 1

for j := 1 to c

h := h− 1

while ph = 0

h := h− 1

ph := n− k + 1

h := 1

while ph = 0

h := h+ 1

ph := 1

{p1p2 . . . pn is the permutation corresponding

to i}

Supplementary Exercises

1. a) 151,200 b) 1,000,000 c) 210 d) 5005 3. 3100

5. 24,600 7. a) 4060 b) 2688 c) 25,009,600 9. a) 192

b) 301 c) 300 d) 300 11. 639 13. The maximum pos-

sible sum is 240, and the minimum possible sum is 15. So

the number of possible sums is 226. Because there are 252

subsets with five elements of a set with 10 elements, by

the pigeonhole principle it follows that at least two have

the same sum. 15. a) 50 b) 50 c) 14 d) 17 17. Let a1,

a2, . . . , am be the integers, and let di =
 i
j=1 aj . If di ≡ 0

(mod m) for some i, we are done. Otherwise d1 mod m,

d2 mod m, . . . , dm mod m are m integers with values in

{1, 2, . . . , m − 1}. By the pigeonhole principle dk = dl
for some 1 ≤ k < l ≤ m. Then

 l
j=k+1 aj = dl − dk ≡ 0

(mod m). 19. The decimal expansion of the rational num-

ber a/b can be obtained by division of b into a, where a is

written with a decimal point and an arbitrarily long string of 0s

following it. The basic step is finding the next digit of the quo-

tient, namely, r/b , where r is the remainder with the next

digit of the dividend brought down. The current remainder is

obtained from the previous remainder by subtracting b times

the previous digit of the quotient. Eventually the dividend has

nothing but 0s to bring down. Furthermore, there are only

b possible remainders. Thus, at some point, by the pigeon-

hole principle, we will have the same situation as had pre-

viously arisen. From that point onward, the calculation must

follow the same pattern. In particular, the quotient will re-

peat. 21. a) 125,970 b) 20 c) 141,120,525 d) 141,120,505

e) 177,100 f) 141,078,021 23. a) 10 b) 8 c) 7 25. 3n

27. C(n + 2, r + 1) = C(n + 1, r + 1) + C(n + 1, r) =
2C(n + 1, r + 1) − C(n + 1, r + 1) + C(n + 1, r) =
2C(n + 1, r + 1) − (C(n, r + 1) + C(n, r)) + (C(n, r) +
C(n, r − 1))= 2C(n+ 1, r + 1)−C(n, r + 1)+C(n, r−1)

29. Substitute x = 1 and y = 3 into the binomial theorem.

31. Both sides count the number of ways to choose a subset

of three distinct numbers {i, j, k} with i < j < k from

{1, 2, . . . , n}. 33. C(n+ 1, 5) 35. 3,491,888,400 37. 524

39. a) 45 b) 57 c) 12 41. a) 386 b) 56 43. 0 if n < m;

C(n − 1, n − m) if n ≥ m 45. a) 15,625 b) 202 c) 210

d) 10 47. a) 3 b) 11 c) 6 d) 10 49. There are two pos-

sibilities: three people seated at one table with everyone else

sitting alone, which can be done in 2C(n, 3)ways (choose the

three people and seat them in one of two arrangements), or two

groups of two people seated together with everyone else sit-

ting alone, which can be done in 3C(n, 4) ways (choose four

people and then choose one of the three ways to pair them

up). Both 2C(n, 3)+ 3C(n, 4) and (3n− 1)C(n, 3)/4 equal

n4/8 − 5n3/12 + 3n2/8 − n/12. 51. The number of per-

mutations of 2n objects of n different types, two of each type,

is (2n)!/2n. Because this must be an integer, the denominator

must divide the numerator. 53. CCGGUCCGAAAG

55. procedure next permutation(n: positive integer,

a1, a2, . . . , ar : positive integers not exceeding

n with a1a2 . . . ar = nn . . . n)

i := r
while ai = n
ai := 1

i := i − 1

ai := ai + 1

{a1a2 . . . ar is the next permutation in lexicographic

order}
57. We must show that if there areR(m, n−1)+R(m−1, n)

people at a party, then there must be at leastmmutual friends

or nmutual enemies. Consider one person; let’s call him Jerry.

Then there areR(m−1, n)+R(m, n−1)−1 other people at

the party, and by the pigeonhole principle there must be at least

R(m− 1, n) friends of Jerry or R(m, n− 1) enemies of Jerry

among these people. First let’s suppose there are R(m− 1, n)

friends of Jerry. By the definition of R, among these people

we are guaranteed to find either m − 1 mutual friends or n

mutual enemies. In the former case, thesem−1mutual friends

together with Jerry are a set of m mutual friends; and in the

latter case, we have the desired set of n mutual enemies. The

other situation is similar: Suppose there are R(m, n− 1) ene-

mies of Jerry; we are guaranteed to find among them eitherm

mutual friends or n − 1 mutual enemies. In the former case,

we have the desired set of m mutual friends, and in the latter

case, these n− 1 mutual enemies together with Jerry are a set

of n mutual enemies.

S-46 Answers to Odd-Numbered Exercises

CHAPTER 7

Section 7.1

1. 1/13 3. 1/2 5. 1/2 7. 1/64 9. 47/52 11. 1/C(52, 5)

13. 1 − [C(48, 5)/C(52, 5)] 15. C(13, 2)C(4, 2)C(4, 2)

C(44, 1)/C(52, 5) 17. 10,240/C(52, 5) 19. 1,302,540/

C(52, 5) 21. 1/64 23. 8/25 25. a) 1/ C(50, 6) =
1/15,890,700 b) 1/C(52, 6) = 1/20,358,520

c) 1/C(56, 6) = 1/32,468,436 d) 1/C(60, 6) = 1/

50,063,860 27. a) 139,128/319,865 b) 212, 667/511,313

c) 151,340/386,529 d) 163,647/446,276 29. 1/C(100, 8)

31. 3/100 33. a) 1/7,880,400 b) 1/8,000,000

35. a) 9/19 b) 81/361 c) 1/19 d) 1,889,568/2,476,099

e) 48/361 37. Three dice 39. The door the contestant

chooses is chosen at random without knowing where the

prize is, but the door chosen by the host is not chosen at

random, because he always avoids opening the door with the

prize. This makes any argument based on symmetry invalid.

41. a) 671/1296 b) 1− 3524/3624; no c) The former

Section 7.2

1. p(T) = 1/4, p(H) = 3/4 3. p(1) = p(3) = p(5) =
p(6) = 1/16; p(2) = p(4) = 3/8 5. 9/49 7. a) 1/2

b) 1/2 c) 1/3 d) 1/4 e) 1/4 9. a) 1/26! b) 1/26 c) 1/2

d) 1/26 e) 1/650 f) 1/15,600 11. Clearly, p(E ∪ F) ≥
p(E) = 0.7. Also, p(E ∪ F) ≤ 1. If we apply Theorem 2

from Section 7.1, we can rewrite this as p(E) + p(F) −
p(E ∩ F) ≤ 1, or 0.7 + 0.5 − p(E ∩ F) ≤ 1. Solv-

ing for p(E ∩ F) gives p(E ∩ F) ≥ 0.2. 13. Because

p(E ∪ F) = p(E)+ p(F)− p(E ∩ F) and p(E ∪ F) ≤ 1,

it follows that 1 ≥ p(E) + p(F) − p(E ∩ F). From this

inequality we conclude that p(E) + p(F) ≤ 1 + p(E ∩ F).
15. We will use mathematical induction to prove that the in-

equality holds for n ≥ 2. Let P(n) be the statement that

p(
 n
j=1 Ej) ≤

 n
j=1 p(Ej). Basis step: P(2) is true be-

cause p(E1 ∪ E2) = p(E1) + p(E2) − p(E1 ∩ E2) ≤
p(E1)+p(E2). Inductive step: Assume that P(k) is true. Us-

ing the basis case and the inductive hypothesis, it follows that

p(
 k+1
j=1 Ej) ≤ p(

 k
j=1 Ej) + p(Ek+1) ≤

 k+1
j=1 p(Ej).

This shows thatP(k+1) is true, completing the proof by math-

ematical induction. 17. Because E ∪E is the entire sample

space S, the event F can be split into two disjoint events:

F = S ∩ F = (E ∪E) ∩ F = (E ∩ F) ∪ (E ∩ F), using the

distributive law. Therefore, p(F) = p((E ∩F)∪ (E ∩F)) =
p(E ∩ F) + p(E ∩ F), because these two events are dis-

joint. Subtracting p(E ∩ F) from both sides, using the fact

that p(E ∩ F) = p(E) · p(F) (the hypothesis that E

and F are independent), and factoring, we have p(F)[1−
p(E)] = p(E ∩ F). Because 1 − p(E) = p(E), this

says that p(E ∩F) = p(E) ·p(F), as desired. 19. a) 1/12

b) 1− 11
12 · 10

12 · · · · · 13−n
12 c) 5 21. 614 23. 1/4 25. 3/8

27. a) Not independent b) Not independent c) Not inde-

pendent 29. 3/16 31. a) 1/32 = 0.03125 b) 0.495 ≈

0.02825 c) 0.03795012 33. a) 5/8 b) 0.627649 c) 0.6431

35. a) pn b) 1 − pn c) pn + n · pn−1 · (1 −
p) d) 1− [pn + n · pn−1 · (1− p)] 37. p(

 ∞
i=1 Ei) is

the sum of p(s) for each outcome s in
 ∞
i=1 Ei . Because

the Eis are pairwise disjoint, this is the sum of the proba-

bilities of all the outcomes in any of the Eis, which is what ∞
i=1 p(Ei) is. (We can rearrange the summands and still get

the same answer because this series converges absolutely.)

39. a) E = (mk)
j=1 Fj , so the given inequality now follows

from Boole’s Inequality (Exercise 15). b) The probability that

a particular player not in the j th set beats all k of the players

in the j th set is (1/2)k = 2−k . Therefore, the probability

that this player does not do so is 1 − 2−k , so the probability

that all m − k of the players not in the j th set are unable to

boast of a perfect record against everyone in the j th set is

(1−2−k)m−k . That is precisely p(Fj). c) The first inequality

follows immediately, because all the summands are the same

and there are

m
k

of them. If this probability is less than 1,

then it must be possible that E fails, i.e., that E happens. So

there is a tournament that meets the conditions of the problem

as long as the second inequality holds. d) m ≥ 21 for k = 2,

and m ≥ 91 for k = 3

41. procedure probabilistic prime(n, k)

composite := false

i := 0

while composite = false and i < k

i := i + 1

choose b uniformly at random with 1 < b < n

apply Miller’s test to base b

if n fails the test then composite := true

if composite = true then print (“composite”)

else print (“probably prime”)

Section 7.3

NOTE: In the answers for Section 7.3, all probabili-

ties given in decimal form are rounded to three decimal

places. 1. 3/5 3. 3/4 5. 0.481 7. a) 0.999 b) 0.324

9. a) 0.740 b) 0.260 c) 0.002 d) 0.998 11. 0.724

13. 3/17 15. a) 1/3 b) p(M = j | W = k) = 1

if i, j , and k are distinct; p(M = j | W = k) = 0

if j = k or j = i; p(M = j | W = k) = 1/2

if i = k and j = i c) 2/3 d) You should change

doors, because you now have a 2/3 chance to win by switch-

ing. 17. The definition of conditional probability tells us

that p(Fj | E) = p(E ∩ Fj)/p(E). For the numerator,

again using the definition of conditional probability, we have

p(E ∩Fj) = p(E | Fj)p(Fj), as desired. For the denomina-

tor, we show that p(E) = n
i=1 p(E | Fi)p(Fi). The events

E∩Fi partition the eventE; that is, (E∩Fi1)∩ (E∩Fi2) = ∅
when ii = i2 (because the Fi’s are mutually exclusive), and n
i=1(E ∩ Fi1) = E (because the

 n
i=1 Fi = S). Therefore,

p(E) = n
i=1 p(E∩Fi) =

 n
i=1 p(E | Fi)p(Fi). 19. No

21. Yes 23. By Bayes’ theorem, p(S | E1 ∩E2) = p(E1 ∩
E2 | S)p(S)/[p(E1 ∩ E2 | S)p(S) + p(E1 ∩ E2 | S)p(S)].

Answers to Odd-Numbered Exercises S-47

Because we are assuming no prior knowledge about whether

a message is or is not spam, we set p(S) = p(S) = 0.5,

and so the equation above simplifies to p(S | E1 ∩ E2) =
p(E1 ∩ E2 | S)/[p(E1 ∩ E2 | S) + p(E1 ∩ E2 | S)].
Because of the assumed independence of E1, E2, and S, we

have p(E1 ∩ E2 | S) = p(E1 | S) · p(E2 | S), and similarly

for S.

Section 7.4

1. 2.5 3. 5/3 5. 336/49 7. 170 9. (4n + 6)/3

11. 50,700,551/10,077,696 ≈ 5.03 13. 6 15. p(X ≥
j) = ∞

k=j p(X = k) = ∞
k=j (1 − p)k−1p =

p(1−p)j−1
 ∞
k=0(1−p)k = p(1−p)j−1/(1− (1−p)) =

(1 − p)j−1 17. 2302 19. (7/2) · 7 = 329/12 21. 10

23. 1472 pounds 25. p + (n − 1)p(1 − p) 27. 5/2

29. a) 0 b) n 31. This is not true. For example, let X be

the number of heads in one flip of a fair coin, and let Y be

the number of heads in one flip of a second fair coin. Then

A(X) + A(Y) = 1 but A(X + Y) = 0.5. 33. a) We

are told that X1 and X2 are independent. To see that X1

and X3 are independent, we enumerate the eight possi-

bilities for (X1, X2, X3) and find that (0, 0, 0), (1, 0, 1),

(0, 1, 1), (1, 1, 0) each have probability 1/4 and the others

have probability 0 (because of the definition of X3). Thus,

p(X1 = 0 ∧ X3 = 0) = 1/4, p(X1 = 0) = 1/2, and

p(X3 = 0) = 1/2, so it is true that p(X1 = 0 ∧ X3 =
0) = p(X1 = 0)p(X3 = 0). Essentially the same calculation

shows that p(X1 = 0 ∧ X3 = 1) = p(X1 = 0)p(X3 = 1),

p(X1 = 1 ∧ X3 = 0) = p(X1 = 1)p(X3 = 0), and

p(X1 = 1 ∧ X3 = 1) = p(X1 = 1)p(X3 = 1). There-

fore by definition, X1 and X3 are independent. The same

reasoning shows that X2 and X3 are independent. To see

that X3 and X1 + X2 are not independent, we observe that

p(X3 = 1∧X1+X2 = 2) = 0. But p(X3 = 1)p(X1+X2 =
2) = (1/2)(1/4) = 1/8. b) We see from the calculation in

part (a) that X1, X2, and X3 are all Bernoulli random vari-

ables, so the variance of each is (1/2)(1/2) = 1/4. Therefore,

V (X1) + V (X2) + V (X3) = 3/4. We use the calculations

in part (a) to see that E(X1 + X2 + X3) = 3/2, and then

V (X1 +X2 +X3) = 3/4. c) In order to use the first part of

Theorem 7 to show that V ((X1+X2+ · · · +Xk)+Xk+1) =
V (X1 +X2 + · · · +Xk)+ V (Xk+1) in the inductive step of

a proof by mathematical induction, we would have to know

that X1 + X2 + · · · + Xk and Xk+1 are independent, but we

see from part (a) that this is not necessarily true. 35. 1/100

37. E(X)/a = r (r/a) ·p(X = r) ≥

r≥a 1 ·p(X = r) =

p(X ≥ a) 39. a) 10/11 b) 0.9999 41. a) Each of the

n! permutations occurs with probability 1/n!, so E(X) is the

number of comparisons, averaged over all these permutations.

b) Even if the algorithm continues n − 1 rounds, X will be

at most n(n − 1)/2. It follows from the formula for expec-

tation that E(X) ≤ n(n − 1)/2. c) The algorithm proceeds

by comparing adjacent elements and then swapping them

if necessary. Thus, the only way that inverted elements can

become uninverted is for them to be compared and swapped.

d) Because X(P) ≥ I (P) for all P , it follows from the

definition of expectation that E(X) ≥ E(I). e) This sum-

mation counts 1 for every instance of an inversion. f) This

follows from Theorem 3. g) By Theorem 2 with n = 1, the

expectation of Ij,k is the probability that ak precedes aj in

the permutation. This is clearly 1/2 by symmetry. h) The

summation in part (f) consists ofC(n, 2) = n(n−1)/2 terms,

each equal to 1/2, so the sum is n(n − 1)/4. i) From part

(a) and part (b) we know that E(X), the object of interest, is

at most n(n − 1)/2, and from part (d) and part (h) we know

that E(X) is at least n(n − 1)/4, both of which are (n2).

43. 1 45. V (X + Y) = E((X + Y)2) − E(X + Y)2 =
E(X2 + 2XY + Y 2) − [E(X) + E(Y)]2 = E(X2) +
2E(XY) + E(Y 2) − E(X)2 − 2E(X)E(Y) − E(Y)2 =
E(X2) − E(X)2 + 2[E(XY) − E(X)E(Y)] + E(Y 2) −
E(Y)2 = V (X) + 2 Cov(X, Y) + V (Y) 47. [(n − 1)/n]m
49. (n− 1)m/nm−1

Supplementary Exercises

1. 1/109,668 3. a) 1/195,249,054 b) 1/5,138,133

c) 45/357,599 d) 18,285/18,821 5. a) 1/C(52, 13)

b) 4/C(52, 13) c) 2,944,656/C(52, 13) d) 35,335,872/

C(52, 13) 7. a) 9/2 b) 21/4 9. a) 9 b) 21/2 11. a) 8

b) 49/6 13. a) n/2n−1 b) p(1−p)k−1, where p = n/2n−1

c) 2n−1/n 15.
(m−1)(n−1)+gcd(m,n)−1

mn−1 17. a) 2/3 b) 2/3

19. 1/32 21. a) The probability that one wins 2n dollars

is 1/2n, because that happens precisely when the player gets

n−1 tails followed by a head. The expected value of the win-

nings is therefore the sum of 2n times 1/2n as n goes from 1 to

infinity. Because each of these terms is 1, the sum is infinite.

In other words, one should be willing to wager any amount of

money and expect to come out ahead in the long run. b) $9, $9

23. a) 1/3 when S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
A = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and B = {1, 2, 3, 4};
1/12 when S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
A = {4, 5, 6, 7, 8, 9, 10, 11, 12}, and B = {1, 2, 3, 4}
b) 1 when S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
A = {4, 5, 6, 7, 8, 9, 10, 11, 12}, and B = {1, 2, 3, 4};
3/4 when S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
A = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and B = {1, 2, 3, 4}
25. a) p(E1 ∩ E2) = p(E1)p(E2), p(E1 ∩ E3) =
p(E1)p(E3), p(E2∩E3) = p(E2)p(E3), p(E1∩E2∩E3) =
p(E1) p(E2)p(E3) b) Yes c) Yes; yes d) Yes; no e) 2n−n−1

27. a) 1/2 under first interpretation; 1/3 under second inter-

pretation b) Let M be the event that both of Mr. Smith’s

children are boys and let B be the event that Mr. Smith chose

a boy for today’s walk. Then p(M) = 1/4, p(B | M) = 1,

and p(B | M) = 1/3. Apply Bayes’ theorem to compute

p(M | B) = 1/2. c) This variation is equivalent to the

second interpretation discussed in part (a), so the answer is

unambiguously 1/3. 29. V (aX + b) = E((aX + b)2) −
E(aX + b)2 = E(a2X2 + 2abX + b2) − [aE(X) + b]2 =
E(a2X2)+E(2abX)+E(b2)−[a2E(X)2+2abE(X)+b2] =
a2E(X2)+ 2abE(X)+ b2 − a2E(X)2 − 2abE(X)− b2 =

S-48 Answers to Odd-Numbered Exercises

a2[E(X2) − E(X)2] = a2V (X) 31. To count every el-

ement in the sample space exactly once, we must include

every element in each of the sets and then take away the

double counting of the elements in the intersections. Thus

p(E1 ∪E2 ∪ · · · ∪Em) = p(E1)+ p(E2)+ · · · + p(Em)−
p(E1∩E2)−p(E1∩E3)−· · ·−p(E1∩Em)−p(E2∩E3)−
p(E2 ∩ E4)− · · · − p(E2 ∩ Em)− · · · − p(Em−1 ∩ Em) =
qm − (m(m − 1)/2)r , because C(m, 2) terms are being

subtracted. But p(E1 ∪ E2 ∪ · · · ∪ Em) = 1, so we have

qm−[m(m−1)/2]r = 1. Because r ≥ 0, this equation tells us

that qm ≥ 1, so q ≥ 1/m. Because q ≤ 1, this equation also

implies that [m(m−1)/2]r = qm−1 ≤ m−1, from which it

follows that r ≤ 2/m. 33. a) We purchase the cards until we

have gotten one of each type. That means we have purchased

X cards in all. On the other hand, that also means that we

purchasedX0 cards until we got the first type we got, and then

purchasedX1 more cards until we got the second type we got,

and so on. Thus,X is the sum of theXj ’s. b) Once j distinct

types have been obtained, there are n− j new types available

out of a total of n types available. Because it is equally likely

that we get each type, the probability of success on the next

purchase (getting a new type) is (n − j)/n. c) This follows

immediately from the definition of geometric distribution, the

definition ofXj , and part (b). d) From part (c) it follows that

E(Xj) = n/(n− j). Thus by the linearity of expectation and

part (a), we haveE(X) = E(X0)+ E(X1)+ · · · + E(Xn−1)

= n
n
+ n
n−1 + · · · + n

1 = n

1
n
+ 1
n−1 + · · · + 1

1

. e) About

224.46 35. 24 · 134/(52 · 51 · 50 · 49)

CHAPTER 8

Section 8.1

1. LetP(n) be “Hn = 2n−1.” Basis step:P(1) is true because

H1 = 1. Inductive step: Assume that Hn = 2n − 1. Then be-

causeHn+1 = 2Hn+1, it follows thatHn+1 = 2(2n−1)+1=
2n+1 − 1. 3. a) an = 2an−1 + an−5 for n ≥ 5 b) a0 = 1,

a1 = 2, a2 = 4, a3 = 8, a4 = 16 c) 1217 5. 9494

7. a) an = an−1 + an−2 + 2n−2 for n ≥ 2 b) a0 = 0, a1 = 0

c) 94 9. a) an = an−1+ an−2+ an−3 for n ≥ 3 b) a0 = 1,

a1 = 2, a2 = 4 c) 81 11. a) an = an−1 + an−2 for n ≥ 2

b) a0 = 1, a1 = 1 c) 34 13. a) an = 2an−1 + 2an−2 for

n ≥ 2 b) a0 = 1, a1 = 3 c) 448 15. a) an = 2an−1+an−2

for n ≥ 2 b) a0 = 1, a1 = 3 c) 239 17. a) an = 2an−1 for

n ≥ 2 b) a1 = 3 c) 96 19. a) an = an−1+ an−2 for n ≥ 2

b) a0 = 1, a1 = 1 c) 89 21. a) Rn = n + Rn−1, R0 = 1

b) Rn = n(n+1)/2+1 23. a) Sn = Sn−1+(n2−n+2)/2,

S0 = 1 b) Sn = (n3 + 5n + 6)/6 25. 64 27. a) an =
2an−1 + 2an−2 b) a0 = 1, a1 = 3 c) 1224 29. Clearly,

S(m, 1) = 1 for m ≥ 1. If m ≥ n, then a function that

is not onto from the set with m elements to the set with n

elements can be specified by picking the size of the range,

which is an integer between 1 and n − 1 inclusive, picking

the elements of the range, which can be done inC(n, k)ways,

and picking an onto function onto the range, which can be

done in S(m, k)ways. Hence, there are
 n−1
k=1 C(n, k)S(m, k)

func- tions that are not onto. But there are nm functions

altogether, so S(m, n) = nm − n−1
k=1 C(n, k)S(m, k).

31. a) C5 = C0C4 + C1C3 + C2C2 + C3C1 + C4C0 =
1 · 14+ 1 · 5+ 2 · 2+ 5 · 1+ 14 · 1 = 42 b) C(10, 5)/6 = 42

33. J (1) = 1, J (2) = 1, J (3) = 3, J (4) = 1, J (5) = 3,

J (6) = 5, J (7) = 7, J (8) = 1, J (9) = 3, J (10) = 5,

J (11) = 7, J (12) = 9, J (13) = 11, J (14) = 13, J (15) = 15,

J (16) = 1 35. First, suppose that the number of people is
even, say 2n. After going around the circle once and returning

to the first person, because the people at locations with even

numbers have been eliminated, there are exactly n people left

and the person currently at location i is the person who was

originally at location 2i−1. Therefore, the survivor [originally

in location J (2n)] is now in location J (n); this was the person

who was at location 2J (n) − 1. Hence, J (2n) = 2J (n) − 1.

Similarly, when there are an odd number of people, say 2n+1,

then after going around the circle once and then eliminating

person 1, there are n people left and the person currently at lo-

cation i is the person who was at location 2i+1. Therefore, the

survivor will be the player currently occupying location J (n),

namely, the person who was originally at location 2J (n)+ 1.

Hence, J (2n + 1) = 2J (n) + 1. The basis step is J (1) = 1.

37. 73, 977, 3617 39. These nine moves solve the puzzle:

Move disk 1 from peg 1 to peg 2; move disk 2 from peg 1 to

peg 3; move disk 1 from peg 2 to peg 3; move disk 3 from

peg 1 to peg 2; move disk 4 from peg 1 to peg 4; move disk 3

from peg 2 to peg 4; move disk 1 from peg 3 to peg 2; move

disk 2 from peg 3 to peg 4; move disk 1 from peg 2 to peg 4.

To see that at least nine moves are required, first note that at

least seven moves are required no matter how many pegs are

present: three to unstack the disks, one to move the largest

disk 4, and three more moves to restack them. At least two

other moves are needed, because to move disk 4 from peg 1

to peg 4 the other three disks must be on pegs 2 and 3, so at

least one move is needed to restack them and one move to

unstack them. 41. The base cases are obvious. If n > 1,

the algorithm consists of three stages. In the first stage, by the

inductive hypothesis, R(n− k)moves are used to transfer the

smallest n− k disks to peg 2. Then using the usual three-peg

Tower of Hanoi algorithm, it takes 2k−1 moves to transfer the

rest of the disks (the largest k disks) to peg 4, avoiding peg 2.

Then again by the inductive hypothesis, it takes R(n − k)
moves to transfer the smallest n − k disks to peg 4; all the

pegs are available for this, because the largest disks, now on

peg 4, do not interfere. This establishes the recurrence rela-

tion. 43. First note that R(n) = n
j=1[R(j) − R(j − 1)]

[which follows because the sum is telescoping andR(0) = 0].

By Exercise 42, this is the sum of 2k
 −1 for this range of val-

ues of j . Therefore, the sum is
 k
i=1 i2

i−1, except that if

n is not a triangular number, then the last few values when

i = k are missing, and that is what the final term in the

given expression accounts for. 45. By Exercise 43, R(n) is

no larger than
 k
i=1 i2

i−1. It can be shown that this sum equals

(k+1)2k−2k+1+1, so it is no greater than (k+1)2k . Because

n > k(k−1)/2, the quadratic formula can be used to show that

Answers to Odd-Numbered Exercises S-49

k < 1+
√

2n for all n > 1. Therefore,R(n) is bounded above

by (1+
√

2n+ 1)21+
√

2n < 8
√
n2
√

2n for all n > 2. Hence,

R(n) is O(
√
n2
√

2n). 47. a) 0 b) 0 c) 2 d) 2n−1 − 2n−2

49. an−2∇an+∇2an = an−2(an−an−1)+(∇an−∇an−1)=
−an + 2an−1 + [(an − an−1) − (an−1 − an−2)] =
−an + 2an−1 + (an − 2an−1 + an−2) = an−2 51. an =
an−1 + an−2 = (an − ∇an) + (an − 2∇an + ∇2an) =
2an − 3∇an + ∇2an, or an = 3∇an − ∇2an 53. Insert

S(0) := ∅ after T (0) := 0 (where S(j) will record the

optimal set of talks among the first j talks), and replace the

statement T (j) := max(wj + T (p(j)), T (j − 1)) with the

following code:

if wj + T (p(j)) > T (j − 1) then

T (j) := wj + T (p(j))
S(j) := S(p(j)) ∪ {j}

else

T (j) := T (j − 1)

S(j) := S(j − 1)

55. a) Talks 1, 3, and 7 b) Talks 1 and 6, or talks 1, 3,

and 7 c) Talks 1, 3, and 7 d) Talks 1 and 6 57. a) This

follows immediately from Example 5 and Exercise 41c in

Section 8.4. b) The last step in computing Aij is to mul-

tiply Aik by Ak+1,j for some k between i and j − 1 in-

clusive, which will require mimk+1mj+1 integer multiplica-

tions, independent of the manner in which Aik and Ak+1,j

are computed. Therefore to minimize the total number of

integer multiplications, each of those two factors must be

computed in the most efficient manner. c) This follows im-

mediately from part (b) and the definition of M(i, j).

d) procedure matrix order(m1, . . . , mn+1:

positive integers)

for i := 1 to n

M(i, i) := 0

for d := 1 to n− 1

for i := 1 to n− d
min := 0

for k := i to i + d
new :=M(i, k)+M(k+ 1, i+ d)+mimk+1mi+d+1

if new < min then

min := new

where(i, i + d) := k
M(i, i + d) := min

e) The algorithm has three nested loops, each of which is in-

dexed over at most n values.

Section 8.2

1. a) Degree 3 b) No c) Degree 4 d) No e) No f) Degree

2 g) No 3. a) an = 3 · 2n b) an = 2 c) an =
3 · 2n − 2 · 3n d) an = 6 · 2n − 2 · n2n e) an = n(−2)n−1

f) an = 2n − (−2)n g) an = (1/2)n+1 − (−1/2)n+1

5. an = 1√
5

1+
√

5
2

 n+1
− 1√

5

1−
√

5
2

 n+1
7. [2n+1+(−1)n]/3

9. a) Pn = 1.2Pn−1 + 0.45Pn−2, P0 = 100,000, P1 =
120,000 b) Pn = (250,000/3)(3/2)n+(50,000/3)(−3/10)n

11. a) Basis step: For n = 1 we have 1 = 0 + 1, and

for n = 2 we have 3 = 1 + 2. Inductive step: As-

sume true for k ≤ n. Then Ln+1 = Ln + Ln−1 =
fn−1+fn+1+fn−2+fn = (fn−1+ fn−2)+ (fn+1+fn) =
fn + fn+2. b) Ln =

1+
√

5
2

 n
+

1−
√

5
2

 n
13. an =

8(−1)n − 3(−2)n + 4 · 3n 15. an = 5 + 3(−2)n − 3n

17. Let an = C(n, 0)+C(n−1, 1)+· · ·+C(n−k, k)where

k = n/2 . First, assume that n is even, so that k = n/2,

and the last term is C(k, k). By Pascal’s identity we have

an = 1+C(n− 2, 0)+C(n− 2, 1)+C(n− 3, 1)+C(n−
3, 2) + · · · + C(n − k, k − 2) + C(n − k, k − 1) + 1 =
1+C(n−2, 1)+C(n−3, 2)+· · ·+C(n−k, k−1)+C(n−
2, 0)+C(n−3, 1)+· · ·+C(n−k, k−2)+1 = an−1+an−2

because (n − 1)/2 = k − 1 = (n − 2)/2 . A sim-

ilar calculation works when n is odd. Hence, {an} satisfies

the recurrence relation an = an−1 + an−2 for all posi-

tive integers n, n ≥ 2. Also, a1 = C(1, 0) = 1 and

a2 = C(2, 0) + C(1, 1) = 2, which are f2 and f3. It

follows that an = fn+1 for all positive integers n. 19. an =
(n2+3n+5)(−1)n 21. (a1,0+a1,1n+a1,2n

2+a1,3n
3)+

(a2,0+a2,1n+a2,2n
2)(−2)n+ (a3,0+a3,1n)3

n+a4,0(−4)n

23. a) 3an−1 + 2n = 3(−2)n + 2n = 2n(−3 + 1) =
−2n+1 = an b) an = α3n − 2n+1 c) an = 3n+1 − 2n+1

25. a) A = −1, B = −7 b) an = α2n − n − 7

c) an = 11 · 2n − n − 7 27. a) p3n
3 + p2n

2 + p1n + p0

b) n2p0(−2)n c) n2(p1n+p0)2
n d) (p2n

2+p1n+p0)4
n

e) n2(p2n
2 + p1n + p0)(−2)n f) n2(p4n

4 + p3n
3 +

p2n
2 + p1n + p0)2

n g) p0 29. a) an = α2n + 3n+1

b) an = −2 · 2n + 3n+1 31. an = α2n + β3n − n ·
2n+1 + 3n/2 + 21/4 33. an = (α + βn + n2 + n3/6)2n

35. an = −4 · 2n − n2/4 − 5n/2 + 1/8 + (39/8)3n

37. an = n(n + 1)(n + 2)/6 39. a) 1,−1, i, −i b) an =
1
4 − 1

4 (−1)n + 2+i
4 i

n + 2−i
4 (−i)n 41. a) Using the formula

for fn, we see that
 fn − 1√

5

1+
√

5
2

 n = 1√
5

1−
√

5
2

 n <
1/
√

5 < 1/2. This means that fn is the integer clos-

est to 1√
5

1+
√

5
2

 n
. b) Less when n is even; greater

when n is odd 43. an = fn−1 + 2fn − 1

45. a) an = 3an−1 + 4an−2, a0 = 2, a1 = 6 b) an =
[4n+1 + (−1)n]/5 47. a) an = 2an+1 + (n − 1)10,000

b) an = 70,000 · 2n−1 − 10,000n − 10,000 49. an =
5n2/12 + 13n/12 + 1 51. See Chapter 11, Section 5 in

[Ma93]. 53. 6n · 4n−1/n

Section 8.3

1. 14 3. The first step is (1110)2(1010)2 = (24 +
22)(11)2 (10)2 + 22[(11)2 − (10)2][(10)2 − (10)2] +
(22 + 1)(10)2 · (10)2. The product is (10001100)2.

5. C = 50, 665C + 729 = 33,979 7. a) 2 b) 4

c) 7 9. a) 79 b) 48,829 c) 30,517,579 11. O(log n)

13. O(nlog3 2) 15. 5 17. a) Basis step: If the sequence has

just one element, then the one person on the list is the winner.

Recursive step: Divide the list into two parts—the first half

and the second half—as equally as possible. Apply the algo-

rithm recursively to each half to come up with at most two

S-50 Answers to Odd-Numbered Exercises

names. Then run through the entire list to count the number of

occurrences of each of those names to decide which, if either,

is the winner. b) O(n log n) 19. a) f (n) = f (n/2) + 2

b) O(log n) 21. a) 7 b) O(log n)

23. a) procedure largest sum(a1, . . . , an)

best := 0 {empty subsequence has sum 0}
for i := 1 to n

sum := 0

for j := i + 1 to n

sum := sum+ aj
if sum > best then best := sum

{best is the maximum possible sum of numbers

in the list}
b) O(n2) c) We divide the list into a first half and a second

half and apply the algorithm recursively to find the largest

sum of consecutive terms for each half. The largest sum of

consecutive terms in the entire sequence is either one of these

two numbers or the sum of a sequence of consecutive terms

that crosses the middle of the list. To find the largest possi-

ble sum of a sequence of consecutive terms that crosses the

middle of the list, we start at the middle and move forward

to find the largest possible sum in the second half of the list,

and move backward to find the largest possible sum in the

first half of the list; the desired sum is the sum of these two

quantities. The final answer is then the largest of this sum

and the two answers obtained recursively. The base case is

that the largest sum of a sequence of one term is the larger of

that number and 0. d) 11, 9, 14 e) S(n) = 2S(n/2) + n,

C(n) = 2C(n/2) + n + 2, S(1) = 0, C(1) = 1

f) O(n log n), better than O(n2) 25. (1, 6) and (3, 6) at

distance 2 27. The algorithm is essentially the same as the

algorithm given in Example 12. The central strip still has width

2d but we need to consider just two boxes of size d×d rather

than eight boxes of size (d/2)×(d/2). The recurrence relation

is the same as the recurrence relation in Example 12, except

that the coefficient 7 is replaced by 1. 29. With k = logb n, it

follows that f (n) = akf (1)+ k−1
j=0a

j c(n/bj)d = akf (1)+ k−1
j=0 cn

d = akf (1)+ kcnd = alogb nf (1)+ c(logb n)n
d =

nlogb af (1) + cnd logb n = ndf (1) + cnd logb n. 31. Let

k = logb n where n is a power of b. Basis step: If n = 1

and k = 0, then c1n
d + c2nlogb a = c1 + c2 = bdc/

(bd − a) + f (1) + bdc/(a − bd) = f (1). Inductive step:

Assume true for k, where n = bk . Then for n = bk+1, f (n) =
af (n/b) + cnd = a{[bdc/(bd − a)](n/b)d + [f (1) + bdc/
(a − bd)] · (n/b)logb a)} + cnd = bdc/(bd − a)nda/bd +
[f (1) + bdc/(a − bd)]nlogb a + cnd = nd [ac/(bd − a) +
c(bd − a)/(bd − a)] + [f (1) + bdc/(a − bdc)]nlogb a =
[bdc/(bd − a)]nd + [f (1) + bdc/(a − bd)]nlogb a . 33. If

a > bd , then logb a > d, so the second term dominates,

giving O(nlogb a). 35. O(nlog4 5) 37. O(n3)

Section 8.4

1. f (x) = 2(x6−1)/(x−1) 3. a) f (x) = 2x(1−x6)/(1−
x) b) x3/(1− x) c) x/(1− x3) d) 2/(1− 2x) e) (1+ x)7
f) 2/(1+x) g) [1/(1−x)]−x2 h) x3/(1−x)2 5. a) 5/(1−x)
b) 1/(1−3x) c) 2x3/(1−x) d) (3−x)/ (1−x)2 e) (1+x)8
7. a) a0 = −64, a1 = 144, a2 = −108, a3 = 27, and an = 0

for all n ≥ 4 b) The only nonzero coefficients are a0 = 1,

a3 = 3, a6 = 3, a9 = 1. c) an = 5n d) an = (−3)n−3 for

n ≥ 3, and a0 = a1 = a2 = 0 e) a0 = 8, a1 = 3, a2 = 2,

an = 0 for odd n greater than 2 and an = 1 for even n greater

than 2 f) an = 1 if n is a positive multiple 4, an = −1 if n < 4,

and an = 0 otherwise g) an = n−1 forn ≥ 2 and a0 = a1 = 0

h) an = 2n+1/n! 9. a) 6 b) 3 c) 9 d) 0 e) 5 11. a) 1024

b) 11 c) 66 d) 292,864 e) 20,412 13. 10 15. 50 17. 20

19. f (x) = 1/[(1 − x)(1 − x2) (1 − x5)(1 − x10)]
21. 15 23. a) x4(1 + x + x2 + x3)2/ (1 − x) b) 6

25. a) The coefficient of xr in the power series expansion of

1/[(1−x3)(1−x4)(1−x20)] b) 1/(1−x3−x4−x20) c) 7

d) 3224 27. a) 3 b) 29 c) 29 d) 242 29. a) 10 b) 49 c) 2

d) 4 31. a) G(x)− a0 − a1x − a2x
2 b) G(x2) c) x4G(x)

d) G(2x) e)
 x

0
G(t)dt f) G(x)/(1−x) 33. ak = 2·3k−1

35. ak = 18 ·3k−12 ·2k 37. ak = k2+8k+20+(6k−18)2k

39. LetG(x) = ∞
k=0 fkx

k . After shifting indices of summa-

tion and adding series, we see thatG(x)−xG(x)−x2G(x) =
f0 + (f1 − f0)x +

 ∞
k=2(fk − fk−1 − fk−2)x

k =
0 + x + ∞

k=2 0xk . Hence, G(x) − xG(x) − x2G(x) =
x. Solving for G(x) gives G(x) = x/(1 − x − x2).

By the method of partial fractions, it can be shown that

x/(1 − x − x2) = (1/
√

5)[1/(1 − αx) − 1/(1 − βx)],
where α = (1 +

√
5)/2 and β = (1 −

√
5)/2. Using the

fact that 1/(1 − αx) = ∞
k=0 α

kxk , it follows that G(x) =
(1/
√

5) · ∞
k=0(α

k−βk)xk . Hence, fk = (1/
√

5) · (αk−βk).
41. a) Let G(x) = ∞

n=0 Cnx
n be the generating func-

tion for {Cn}. Then G(x)2 = ∞
n=0(
 n
k=0 CkCn−k) x

n = ∞
n=1 (

 n−1
k=0 Ck Cn−1−k)xn−1 = ∞

n=1 Cnx
n−1. Hence,

xG(x)2 = ∞
n=1 Cnx

n, which implies that xG(x)2 −
G(x) + 1 = 0. Applying the quadratic formula shows that

G(x) = 1±√1−4x
2x . We choose the minus sign in this for-

mula because the choice of the plus sign leads to a division

by zero. b) By Exercise 40, (1 − 4x)−1/2 = ∞
n=0

 2n
n

xn.

Integrating term by term (which is valid by a theorem from cal-

culus) shows that
 x

0 (1−4t)−1/2dt = ∞
n=0

1
n+1

 2n
n

xn+1 =

x
 ∞
n=0

1
n+1

 2n
n

xn. Because

 x
0 (1−4t)−1/2dt = 1−√1−4x

2 =
xG(x), equating coefficients shows that Cn = 1

n+1

 2n
n

.

c) Verify the basis step for n = 1, 2, 3, 4, 5. Assume

the inductive hypothesis that Cj ≥ 2j−1 for 1 ≤ j <

n, where n ≥ 6. Then Cn = n−1
k=0 CkCn−k−1 ≥ n−2

k=1 CkCn−k−1 ≥ (n− 2)2k−12n−k−2 = (n− 2)2n−1/4 ≥
2n−1. 43. Applying the binomial theorem to the equality

(1 + x)m+n = (1 + x)m(1 + x)n, shows that
 m+n
r=0 C(m +

n, r)xr= m
r=0 C(m, r)x

r · r=0 C(n, r) x
r = m+n

r=0

 r
k=0 C (m, r − k) C (n, k)

xr . Comparing coeffi-

cients gives the desired identity. 45. a) 2ex b) e−x c) e3x

d) xex + ex 47. a) an = (−1)n b) an = 3 · 2n

Answers to Odd-Numbered Exercises S-51

c) an = 3n − 3 · 2n d) an = (−2)n for n ≥ 2, a1 = −3,

a0 = 2 e) an = (−2)n + n! f) an = (−3)n + n! · 2n

for n ≥ 2, a0 = 1, a1 = −2 g) an = 0 if n is odd and

an = n!/(n/2)! if n is even 49. a) an = 6an−1 + 8n−1

for n ≥ 1, a0 = 1 b) The general solution of the associ-

ated linear homogeneous recurrence relation is a
(h)
n = α6n.

A particular solution is a
(p)
n = 1

2 · 8n. Hence, the general

solution is an = α6n + 1
2 · 8n. Using the initial condition,

it follows that α = 1
2 . Hence, an = (6n + 8n)/2. c) Let

G(x) = ∞
k=0 akx

k . Using the recurrence relation for {ak}, it

can be shown thatG(x)−6xG(x)= (1−7x)/(1−8x). Hence,

G(x) = (1− 7x)/[(1− 6x)(1− 8x)]. Using partial fractions,

it follows that G(x) = (1/2)/(1 − 6x) + (1/2)/(1 − 8x).

With the help of Table 1, it follows that an = (6n + 8n)/2.

51. 1
1−x · 1

1−x2 · 1
1−x3 · · · 53. (1+ x)(1+ x)2(1+ x)3 · · ·

55. The generating functions obtained in Exercises 52 and 53

are equal because (1+x)(1+x2)(1+x3) · · · = 1−x2

1−x · 1−x4

1−x2 ·
1−x6

1−x3 · · · = 1
1−x · 1

1−x3 · 1
1−x5 · · · . 57. a) GX(1) = ∞

k=0 p(X = k) · 1k = ∞
k=0 P(X = k) = 1 b) G X(1) =

d
dx

 ∞
k=0 p(X = k)·xk|x=1 =

 ∞
k=0 p(X = k)·k·xk−1|x=1 = ∞

k=0 p(X = k) · k = E(X) c) G X(1) = d2

dx2

 ∞
k=0 p(X =

k) · xk|x=1 =
 ∞
k=0 p(X = k) · k(k − 1) · xk−2|x=1 = ∞

k=0 p(X = k)·(k2−k)= V (X)+E(X)2−E(X). Combin-

ing this with part (b) gives the desired results. 59. a) G(x)=
pm/(1− qx)m b) V (x) = mq/p2

Section 8.5

1. a) 30 b) 29 c) 24 d) 18 3. 1% 5. a) 300 b) 150 c) 175

d) 100 7. 492 9. 974 11. 55 13. 248 15. 50,138 17. 234

19. |A1 ∪A2 ∪A3 ∪A4 ∪A5| = |A1|+ |A2|+ |A3|+ |A4|+
|A5|−|A1∩A2|−|A1∩A3|−|A1∩A4|−|A1∩A5|−|A2∩
A3|− |A2∩A4|− |A2∩A5|− |A3∩A4|− |A3∩A5|− |A4∩
A5|+|A1∩A2∩A3|+|A1∩A2∩A4|+|A1∩A2∩A5|+|A1∩
A3∩A4|+|A1∩A3∩A5|+|A1∩A4∩A5|+|A2∩A3∩A4|+
|A2∩A3∩A5|+|A2∩A4∩A5|+|A3∩A4∩A5|−|A1∩A2∩
A3∩A4|−|A1∩A2∩A3∩A5|−|A1∩A2∩A4∩A5|−|A1∩
A3∩A4∩A5|−|A2∩A3∩A4∩A5|+|A1∩A2∩A3∩A4∩A5|
21. |A1∪A2∪A3∪A4∪A5∪A6| = |A1|+|A2|+|A3|+|A4|+
|A5|+|A6|−|A1∩A2|−|A1∩A3|−|A1∩A4|−|A1∩A5|−
|A1∩A6|−|A2∩A3|−|A2∩A4|−|A2∩A5|−|A2∩A6|−|A3∩
A4|−|A3∩A5|−|A3∩A6|−|A4∩A5|−|A4∩A6|−|A5∩A6|
23. p(E1 ∪ E2 ∪ E3) = p(E1)+ p(E2)+ p(E3)− p(E1 ∩
E2) − p(E1 ∩ E3) − p(E2 ∩ E3) + p(E1 ∩ E2 ∩ E3)

25. 4972/71,295 27. p(E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5) =
p(E1)+ p(E2)+ p(E3)+ p(E4)+ p(E5)− p(E1 ∩E2)−
p(E1∩E3)−p(E1∩E4)−p(E1∩E5)−p(E2∩E3)−p(E2∩
E4)−p(E2∩E5)−p(E3∩E4)−p(E3∩E5)−p(E4∩E5)+
p(E1∩E2∩E3)+p(E1∩E2∩E4)+p(E1∩E2∩E5)+p(E1∩
E3∩E4)+p(E1∩E3∩E5)+p(E1∩E4∩E5)+p(E2∩E3∩
E4)+P(E2∩E3∩E5)+p(E2∩E4∩E5)+p(E3∩E4∩E5)

29. p
 n

i=1 Ei
 = 1≤i≤np(Ei)−

1≤i<j≤np(Ei ∩Ej)+

1≤i<j<k≤n p(Ei ∩Ej ∩Ek)− · · · + (−1)n+1p
 n

i=1 Ei

Section 8.6

1. 75 3. 6 5. 46 7. 9875 9. 540 11. 2100 13. 1854

15. a) D100/100! b) 100D99/100! c) C(100,2)/100!
d) 0 e) 1/100! 17. 2,170,680 19. By Exercise 18 we

have Dn − nDn−1 = −[Dn−1 − (n − 1)Dn−2]. Iterat-

ing, we have Dn − nDn−1 = −[Dn−1−(n−1)Dn−2] =
−[−(Dn−2 − (n − 2)Dn−3)] = Dn−2 − (n − 2)Dn−3 =
· · · = (−1)n(D2 − 2D1) = (−1)n because D2 = 1 and

D1 = 0. 21. When n is odd 23. φ(n) = n − m
i=1

n
pi
+

1≤i<j≤m
n
pipj

−· · ·± n
p1p2···pm = n

 m
i=1

a − 1

pi

25. 4

27. There are nm functions from a set with m elements to a

set with n elements, C(n, 1)(n − 1)m functions from a set

with m elements to a set with n elements that miss exactly

one element, C(n, 2)(n − 2)m functions from a set with m

elements to a set with n elements that miss exactly two el-

ements, and so on, with C(n, n − 1) · 1m functions from a

set withm elements to a set with n elements that miss exactly

n−1elements. Hence, by the principle of inclusion–exclusion,

there are nm − C(n, 1)(n− 1)m + C(n, 2)(n− 2)m − · · · +
(−1)n−1C(n, n− 1) · 1m onto functions.

Supplementary Exercises

1. a) An = 4An−1 b) A1 = 40 c) An = 10 · 4n

3. a)Mn = Mn−1 + 160,000 b)M1 = 186,000 c)Mn =
160,000n + 26,000 d) Tn = Tn−1 + 160,000n + 26,000

e) Tn = 80,000n2 + 106,000n 5. a) an = an−2 + an−3

b) a1 = 0, a2 = 1, a3 = 1 c) a12 = 12 7. a) 2 b) 5 c) 8

d) 16 9. an = 2n 11. an = 2 + 4n/3 + n2/2 + n3/6

13. an = an−2 + an−3 15. a) Under the given conditions,

one longest common subsequence clearly ends at the last term

in each sequence, so am = bn = cp . Furthermore, a longest

common subsequence of what is left of the a-sequence and the

b-sequence after those last terms are deleted has to form the

beginning of a longest common subsequence of the original

sequences. b) If cp = am, then the longest common subse-

quence’s appearance in the a-sequence must terminate before

the end; therefore the c-sequence must be a longest common

subsequence of a1, a2, . . . , am−1 and b1, b2, . . . , bn. The

other half is similar.

17. procedure howlong(a1, . . . , am, b1, . . . , bn: sequences)

for i := 1 to m

L(i, 0) := 0

for j := 1 to n

L(0, j) := 0

for i := 1 to m

for j := 1 to n

if ai = bj then L(i, j) := L(i − 1, j − 1)+ 1

else L(i, j) := max(L(i, j − 1), L(i − 1, j))

return L(m, n)

S-52 Answers to Odd-Numbered Exercises

19. f (n) = (4n2−1)/3 21. O(n4) 23. O(n) 25. Using

just two comparisons, the algorithm is able to narrow the

search for m down to the first half or the second half of the

original sequence. Since the length of the sequence is cut in

half each time, only about 2 log2 n comparisons are needed

in all. 27. a) 18n + 18 b) 18 c) 0 29. (anbn) =
an+1bn+1− anbn = an+1(bn+1 − bn) + bn(an+1 − an) =
an+1 bn + bn an 31. a) Let G(x) = ∞

n=0 anx
n. Then

G (x) = ∞
n=1 nanx

n−1 = ∞
n=0(n+ 1)an+1x

n. Therefore,

G (x)−G(x)= ∞
n=0[(n+1)an+1−an]xn =

n=0 x

n/n! =
ex , as desired. That G(0) = a0 = 1 is given. b) We have

[e−xG(x)] = e−xG (x)−e−xG(x) = e−x[G (x)−G(x)] =
e−x · ex = 1. Hence, e−xG(x) = x+ c, where c is a constant.

Consequently, G(x) = xex + cex . Because G(0) = 1, it

follows that c = 1. c) We have G(x) = ∞
n=0 x

n+1/n!+ ∞
n=0 x

n/n! = ∞
n=1 x

n/(n−1)!+ ∞
n=0 x

n/n!. Therefore,

an = 1/(n − 1)! + 1/n! for all n ≥ 1, and a0 = 1. 33. 7

35. 110 37. 0 39. a) 19 b) 65 c) 122 d) 167 e) 168

41. Dn−1/(n− 1)! 43. 11/32

CHAPTER 9

Section 9.1

1. a) {(0, 0), (1, 1), (2, 2), (3, 3)} b) {(1, 3), (2, 2),

(3, 1), (4, 0)} c) {(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2),

(4, 0), (4, 1), (4, 2), (4, 3)} d) {(1, 0), (1, 1), (1, 2), (1, 3),

(2, 0), (2, 2), (3, 0), (3, 3), (4, 0)} e) {(0, 1), (1, 0), (1, 1),

(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2), (4, 1), (4, 3)}
f) {(1, 2), (2, 1), (2, 2)} 3. a) Transitive b) Reflexive,

symmetric, transitive c) Symmetric d) Antisymmetric

e) Reflexive, symmetric, antisymmetric, transitive

f) None of these properties 5. a) Reflexive, tran-

sitive b) Symmetric c) Symmetric d) Symmetric

7. a) Symmetric b) Symmetric, transitive c) Symmetric

d) Reflexive, symmetric, transitive e) Reflexive, transi-

tive f) Reflexive, symmetric, transitive g) Antisymmetric

h) Antisymmetric, transitive 9. Each of the three properties

is vacuously satisfied. 11. (c), (d), (f) 13. a) Not irreflex-

ive b) Not irreflexive c) Not irreflexive d) Not irreflexive

15. Yes, for instance {(1, 1)} on {1, 2} 17. (a, b) ∈ R

if and only if a is taller than b 19. (a) 21. None

23. ∀a∀b [(a, b) ∈ R → (b, a) /∈ R] 25. 2mn

27. a) {(a, b) | b divides a} b) {(a, b) | a does not divide

b} 29. The graph of f−1 31. a) {(a, b) | a is required to

read or has read b} b) {(a, b) | a is required to read and has

read b} c) {(a, b) | either a is required to read b but has not

read it or a has read b but is not required to} d) {(a, b) | a
is required to read b but has not read it} e) {(a, b) | a has

read b but is not required to} 33. S ◦R = {(a, b) | a is a

parent of b and b has a sibling}, R ◦ S = {(a, b) | a is an aunt

or uncle of b} 35. a) R2 b) R6 c) R3 d) R3 e) ∅ f) R1

g) R4 h) R4 37. a) R1 b) R2 c) R3 d) R2 e) R3 f) R2

g) R2 h) R2 39. b got his or her doctorate under someone

who got his or her doctorate under a; there is a sequence

of n + 1 people, starting with a and ending with b, such

that each is the advisor of the next person in the sequence

41. a) {(a, b) | a − b ≡ 0, 3, 4, 6, , 8, or 9 (mod 12)}
b) {(a, b) | a ≡ b (mod 12)} c) {(a, b) | a − b ≡ 3, 6,

or 9 (mod 12)} d) {(a, b) | a − b ≡ 4 or 8 (mod 12)}
e) {(a, b) | a − b ≡ 3, 4, 6, 8, or 9 (mod 12)} 43. 8

45. a) 65,536 b) 32,768 47. a) 2n(n+1)/2 b) 2n3n(n−1)/2

c) 3n(n−1)/2 d) 2n(n−1) e) 2n(n−1)/2 f) 2n
2 − 2 · 2n(n−1)

49. There may be no such b. 51. If R is symmetric and

(a, b) ∈ R, then (b, a) ∈ R, so (a, b) ∈ R−1. Hence,

R ⊆ R−1. Similarly, R−1 ⊆ R. So R = R−1. Conversely, if

R = R−1 and (a, b) ∈ R, then (a, b) ∈ R−1, so (b, a) ∈ R.

Thus R is symmetric. 53. R is reflexive if and only if

(a, a) ∈ R for all a ∈ A if and only if (a, a) ∈ R−1 [because

(a, a) ∈ R if and only if (a, a) ∈ R−1] if and only ifR−1 is re-

flexive. 55. Use mathematical induction. The result is trivial

for n = 1. Assume Rn is reflexive and transitive. By Theorem

1,Rn+1 ⊆ R. To see thatR ⊆ Rn+1 = Rn ◦R, let (a, b) ∈ R.

By the inductive hypothesis, Rn = R and hence, is reflexive.

Thus (b, b) ∈ Rn. Therefore (a, b) ∈ Rn+1. 57. Use math-

ematical induction. The result is trivial for n = 1. Assume Rn

is reflexive. Then (a, a) ∈ Rn for all a ∈ A and (a, a) ∈ R.

Thus (a, a) ∈ Rn ◦ R = Rn+1 for all a ∈ A. 59. No, for

instance, take R = {(1, 2), (2, 1)}.

Section 9.2

1. {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)} 3. (Nadir, 122,

34, Detroit, 08:10), (Acme, 221, 22, Denver, 08:17), (Acme,

122, 33,Anchorage, 08:22), (Acme, 323, 34, Honolulu 08:30),

(Nadir, 199, 13, Detroit, 08:47), (Acme, 222, 22, Denver,

09:10), (Nadir, 322, 34, Detroit, 09:44) 5. Airline and flight

number, airline and departure time 7. a) Yes b) No c) No

9. a) Social Security number b) There are no two people with

the same name who happen to have the same street address.

c) There are no two people with the same name living together.

11. (Nadir, 122, 34, Detroit, 08 : 10), (Nadir, 199, 13, Detroit,

08 : 47), (Nadir, 322, 34, Detroit, 09 : 44) 13. (Nadir, 122,

34, Detroit, 08 : 10), (Nadir, 199, 13, Detroit, 08 : 47), (Nadir,

322, 34, Detroit, 09 : 44), (Acme, 221, 22, Denver, 08 : 17),

(Acme, 222, 22, Denver, 09 : 10) 15. P3.5.6

17. Airline Destination

Nadir Detroit
Acme Denver
Acme Anchorage
Acme Honolulu

Answers to Odd-Numbered Exercises S-53

19. Part_ Color_

Supplier number Project Quantity code

23 1092 1 2 2
23 1101 3 1 1
23 9048 4 12 2
31 4975 3 6 2
31 3477 2 25 2
32 6984 4 10 1
32 9191 2 80 4
33 1001 1 14 8

21. Both sides of this equation pick out the subset of R con-

sisting of those n-tuples satisfying both conditionsC1 andC2.

23. Both sides of this equation pick out the set of n-tuples

that are in R, are in S, and satisfy condition C. 25. Both

sides of this equation pick out the m-tuples consisting of

i1th, i2th, . . . , imth components of n-tuples in either R or S.

27. Let R = {(a, b)} and S = {(a, c)}, n = 2, m = 1,

and i1 = 1; P1(R − S) = {(a)}, but P1(R) − P1(S) = ∅.

29. a) J2 followed byP1,3 b) (23, 1), (23, 3), (31, 3), (32, 4)

31. There is no primary key.

Section 9.3

1. a)
⎡
⎣1 1 1

0 0 0
0 0 0

⎤
⎦ b)

⎡
⎣0 1 0

1 1 0
0 0 1

⎤
⎦

c)
⎡
⎣1 1 1

0 1 1
0 0 1

⎤
⎦ d)

⎡
⎣0 0 1

0 0 0
1 0 0

⎤
⎦

3. a) (1, 1), (1, 3), (2, 2), (3, 1), (3, 3) b) (1, 2), (2, 2),

(3, 2) c) (1, 1), (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2),

(3, 3) 5. The relation is irreflexive if and only if the main di-

agonal of the matrix contains only 0s. 7. a) Reflexive, sym-

metric, transitive b) Antisymmetric, transitive c) Symmetric

9. a) 4950 b) 9900 c) 99 d) 100 e) 1 11. Change each 0

to a 1 and each 1 to a 0.

13. a)
⎡
⎣0 1 1

1 1 0
1 0 1

⎤
⎦ b)

⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦ c)

⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦

15. a)
⎡
⎣0 0 1

1 1 0
0 1 1

⎤
⎦ b)

⎡
⎣1 1 0

0 1 1
1 1 1

⎤
⎦ c)

⎡
⎣0 1 1

1 1 1
1 1 1

⎤
⎦

17. n2 − k
19. a) 1 4

32

b)

32

1 4

c) 1 4

32

d) 1 4

32

21. For simplicity we have indicated pairs of edges between

the same two vertices in opposite directions by using a double

arrowhead, rather than drawing two separate lines.

a)
1 2

43

b)
1 2

43

c)1 2

43

23. {(a, b), (a, c), (b, c), (c, b)} 25. (a, c), (b, a), (c, d),

(d, b) 27. {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a),
(c, b), (d, d)} 29. The relation is asymmetric if and only

if the directed graph has no loops and no closed paths of

length 2. 31. Exercise 23: irreflexive. Exercise 24: reflex-

ive, antisymmetric, transitive. Exercise 25: irreflexive, anti-

symmetric. 33. Reverse the direction on every edge in the

digraph for R. 35. Proof by mathematical induction. Basis

step: Trivial for n = 1. Inductive step: Assume true for k.

Because Rk+1 = Rk ◦ R, its matrix is MR MRk . By the

inductive hypothesis this is MR M
[k]
R = M

[k+1]
R .

Section 9.4

1. a) {(0, 0), (0, 1), (1, 1), (1, 2), (2, 0), (2, 2), (3, 0), (3, 3)}
b) {(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1),

(2, 2), (3, 0)} 3. {(a, b) | a divides b or b divides a}
5. a b

c d

7. a b

c d

9. a) a b

c d

b) a b

c d

c) a b

c d

11. a) a b

c d

b) a b

c d

c)
a b

c d

13. The symmetric closure of R is R ∪ R−1. MR∪R−1 =
MR ∨MR−1 = MR ∨Mt

R . 15. Only when R is irreflexive,

S-54 Answers to Odd-Numbered Exercises

in which case it is its own closure. 17. a, a, a, a; a, b, e, a;

a, d, e, a; b, c, c, b; b, e, a, b; c, b, c, c; c, c, b, c; c, c, c, c; d,

e, a, d; d, e, e, d; e, a, b, e; e, a, d, e; e, d, e, e; e, e, d, e; e, e,

e, e 19. a) {(1, 1), (1, 5), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4),
(4, 1), (4, 5), (5, 3), (5, 4)} b) {(1, 1), (1, 2), (1, 3), (1, 4),

(2, 1), (2, 5), (3, 1), (3, 3), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3),

(4, 4), (5, 1), (5, 3), (5, 5)} c) {(1, 1), (1, 3), (1, 4), (1, 5),

(2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5),

(4, 1), (4, 3), (4, 4), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5)}
d) {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 3), (2, 4),

(2, 5), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3),

(4, 4), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5)} e) {(1, 1),

(1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5),

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 4),

(4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5)} f) {(1, 1), (1, 2),

(1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 1),

(3, 2), (3, 3), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5),

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5)} 21. a) If there is a stu-

dent c who shares a class with a and a class with b b) If

there are two students c and d such that a and c share a class,

c and d share a class, and d and b share a class c) If there

is a sequence s0, . . . , sn of students with n ≥ 1 such that

s0 = a, sn = b, and for each i = 1, 2, . . . , n, si and

si−1 share a class 23. The result follows from (R∗)−1 = ∞
n=1 R

n
 −1 = ∞n=1(R

n)−1 = ∞n=1 R
n = R∗.

25. a)
⎡
⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎦

b)
⎡
⎢⎢⎣

0 0 0 0
1 0 1 1
1 0 1 1
1 0 1 1

⎤
⎥⎥⎦

c)
⎡
⎢⎢⎣

0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

d)
⎡
⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎦

27. Answers same as for Exercise 25. 29. a) {(1, 1), (1, 2),
(1, 4), (2, 2), (3, 3), (4, 1), (4, 2), (4, 4)} b) {(1, 1),

(1, 2), (1, 4), (2, 1), (2, 2), (2, 4), (3, 3), (4, 1), (4, 2),

(4, 4)} c) {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 4), (3, 3),

(4, 1), (4, 2), (4, 4)} 31. Algorithm 1: O(n3.8); Algorithm

2: O(n3) 33. Initialize with A := MR ∨ In and loop only

for i := 2 to n − 1. 35. a) Because R is reflexive, every

relation containing it must also be reflexive. b) Both {(0, 0),
(0, 1), (0, 2), (1, 1), (2, 2)} and {(0, 0), (0, 1), (1, 0), (1, 1),
(2, 2)} contain R and have an odd number of elements, but

neither is a subset of the other.

Section 9.5

1. a) Equivalence relation b) Not reflexive, not transitive

c) Equivalence relation d) Not transitive e) Not symme- tric,

not transitive 3. a) Equivalence relation b) Not transitive

c) Not reflexive, not symmetric, not transitive d) Equivalence

relation e) Not reflexive, not transitive 5. Many answers

are possible. (1) Two buildings are equivalent if they were

opened during the same year; an equivalence class consists of

the set of buildings opened in a given year (as long as there

was at least one building opened that year). (2) Two build-

ings are equivalent if they have the same number of stories;

the equivalence classes are the set of 1-story buildings, the

set of 2-story buildings, and so on (one class for each n for

which there is at least one n-story building). (3) Every build-

ing in which you have a class is equivalent to every building in

which you have a class (including itself), and every building

in which you don’t have a class is equivalent to every building

in which you don’t have a class (including itself); there are

two equivalence classes—the set of buildings in which you

have a class and the set of buildings in which you don’t have a

class (assuming these are nonempty). 7. The statement “p

is equivalent to q" means that p and q have the same entries

in their truth tables. R is reflexive, because p has the same

truth table as p. R is symmetric, for if p and q have the same

truth table, then q and p have the same truth table. If p and q

have the same entries in their truth tables and q and r have the

same entries in their truth tables, then p and r also do, so R is

transitive. The equivalence class of T is the set of all tautolo-

gies; the equivalence class of F is the set of all contradictions.

9. a) (x, x) ∈ R because f (x) = f (x). Hence, R is reflexive.

(x, y) ∈ R if and only if f (x) = f (y), which holds if and

only if f (y) = f (x) if and only if (y, x) ∈ R. Hence, R is

symmetric. If (x, y) ∈ R and (y, z) ∈ R, then f (x) = f (y)
and f (y) = f (z). Hence, f (x) = f (z). Thus, (x, z) ∈ R.

It follows that R is transitive. b) The sets f−1(b) for b in

the range of f 11. Let x be a bit string of length 3 or more.

Because x agrees with itself in the first three bits, (x, x) ∈ R.

Hence, R is reflexive. Suppose that (x, y) ∈ R. Then x and y

agree in the first three bits. Hence, y and x agree in the first

three bits. Thus, (y, x) ∈ R. If (x, y) and (y, z) are in R, then

x and y agree in the first three bits, as do y and z. Hence, x

and z agree in the first three bits. Hence, (x, z) ∈ R. It follows

thatR is transitive. 13. This follows from Exercise 9, where

f is the function that takes a bit string of length 3 or more to

the ordered pair with its first bit as the first component and

the third bit as its second component. 15. For reflexivity,
((a, b), (a, b)) ∈ R because a + b = b+ a. For symmetry, if

((a, b), (c, d)) ∈ R, then a + d = b + c, so c + b = d + a,

so ((c, d), (a, b)) ∈ R. For transitivity, if ((a, b), (c, d)) ∈ R
and ((c, d), (e, f)) ∈ R, then a+d = b+c and c+e = d+f ,
so a + d + c + e = b + c + d + f , so a + e = b + f ,

so ((a, b), (e, f)) ∈ R. An easier solution is to note that by

algebra, the given condition is the same as the condition that

f ((a, b)) = f ((c, d)), where f ((x, y)) = x−y; therefore by

Exercise 9 this is an equivalence relation. 17. a) This fol-

lows from Exercise 9, where the function f from the set of

differentiable functions (from R to R) to the set of functions

(from R to R) is the differentiation operator. b) The set of all

functions of the form g(x) = x2 + C for some constant C

19. This follows from Exercise 9, where the function f from

the set of all URLs to the set of all Web pages is the func-

tion that assigns to each URL the Web page for that URL.

21. No 23. No 25. R is reflexive because a bit string s

Answers to Odd-Numbered Exercises S-55

has the same number of 1s as itself. R is symmetric because

s and t having the same number of 1s implies that t and s do.

R is transitive because s and t having the same number of 1s,

and t and u having the same number of 1s implies that s and
u have the same number of 1s. 27. a) The sets of people of

the same age b) The sets of people with the same two parents

29. The set of all bit strings with exactly two 1s. 31. a) The

set of all bit strings of length 3 b) The set of all bit strings

of length 4 that end with a 1 c) The set of all bit strings of

length 5 that end 11 d) The set of all bit strings of length 8

that end 10101 33. Each of the 15 bit strings of length less

than four is in an equivalence class by itself: [λ]R4 = {λ},
[0]R4 = {0}, [1]R4 = {1}, [00]R4 = {00}, [01]R4 = {01},
…, [111]R4 = {111}. The remaining 16 equivalence classes
are determined by the bit strings of length 4: [0000]R4 =
{0000, 00000, 00001, 000000, 000001, 000010, 000011,

0000000, . . .}, [0001]R4 = {0001, 00010, 00011, 000100,

000101, 000110, 000111, 0001000, . . .}, …, [1111]R4 =
{1111, 11110, 11111, 111100, 111101, 111110, 111111,

1111000, . . .} 35. a) [2]5 = {i | i≡2 (mod 5)} =
{. . . ,−8,−3, 2, 7, 12, . . .} b) [3]5 = {i | i ≡ 3 (mod 5)} =
{. . . ,−7,−2, 3, 8, 13, . . .} c) [6]5 = {i | i ≡ 6 (mod 5)} =
{. . . , −9, −4, 1, 6, 11, . . .} d) [−3]5 = {i | i ≡ −3

(mod 5)} = {. . . ,−8,−3, 2, 7, 12, . . .} 37. {6n+k | n ∈ Z}
for k ∈ {0, 1, 2, 3, 4, 5} 39. a) [(1, 2)] = {(a, b) | a − b =
−1} = {(1, 2), (3, 4), (4, 5), (5, 6), . . .} b) Each equiva-

lence class can be interpreted as an integer (negative, positive,

or zero); specifically, [(a, b)] can be interpreted as a − b.
41. a) No b) Yes c) Yes d) No 43. (a), (c), (e) 45. (b), (d),

(e) 47. a) {(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4),
(3, 5), (4, 3), (4, 4), (4, 5), (5, 3), (5, 4), (5, 5)} b) {(0, 0),

(0, 1), (1, 0), (1, 1), (2, 2), (2, 3), (3, 2), (3, 3), (4, 4),

(4, 5), (5, 4), (5, 5)} c) {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1),

(1, 2), (2, 0), (2, 1), (2, 2), (3, 3), (3, 4), (3, 5), (4, 3),

(4, 4), (4, 5), (5, 3), (5, 4), (5, 5)} d) {(0, 0), (1, 1), (2, 2),

(3, 3), (4, 4), (5, 5)} 49. [0]6 ⊆ [0]3, [1]6 ⊆ [1]3,

[2]6 ⊆ [2]3, [3]6 ⊆ [0]3, [4]6 ⊆ [1]3, [5]6 ⊆ [2]3 51. Let

A be a set in the first partition. Pick a particular element x

ofA. The set of all bit strings of length 16 that agree with x on

the last four bits is one of the sets in the second partition, and

clearly every string inA is in that set. 53. We claim that each

equivalence class [x]R31 is a subset of the equivalence class

[x]R8 . To show this, choose an arbitrary element y ∈ [x]R31 .

Then y is equivalent to x underR31, so either y = x or y and x

are each at least 31 characters long and agree on their first 31

characters. Because strings that are at least 31 characters long

and agree on their first 31 characters perforce are at least 8

characters long and agree on their first 8 characters, we know

that either y = x or y and x are each at least 8 characters

long and agree on their first 8 characters. This means that y is

equivalent to x under R8, so y ∈ [x]R8 . 55. {(a, a), (a, b),
(a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c), (d, d), (d, e),

(e, d), (e, e)} 57. a) Z b) {n + 1
2 | n ∈ Z} 59. a) R is

reflexive because any coloring can be obtained from itself via

a 360-degree rotation. To see that R is symmetric and tran-

sitive, use the fact that each rotation is the composition of

two reflections and conversely the composition of two reflec-

tions is a rotation. Hence, (C1, C2) belongs to R if and only

if C2 can be obtained from C1 by a composition of reflec-

tions. So if (C1, C2) belongs to R, so does (C2, C1) because

the inverse of the composition of reflections is also a com-

position of reflections (in the opposite order). Hence, R is

symmetric. To see that R is transitive, suppose (C1, C2) and

(C2, C3) belong to R. Taking the composition of the reflec-

tions in each case yields a composition of reflections, showing

that (C1, C3) belongs to R. b) We express colorings with se-

quences of length four, with r and b denoting red and blue,

respectively. We list letters denoting the colors of the upper

left square, upper right square, lower left square, and lower

right square, in that order. The equivalence classes are: {rrrr},
{bbbb}, {rrrb, rrbr, rbrr, brrr}, {bbbr, bbrb, brbb, rbbb},
{rbbr, brrb}, {rrbb, brbr, bbrr, rbrb}. 61. 5 63. Yes

65. R 67. First form the reflexive closure of R, then form

the symmetric closure of the reflexive closure, and finally

form the transitive closure of the symmetric closure of the

reflexive closure. 69. p(0) = 1, p(1) = 1, p(2) = 2,

p(3) = 5, p(4) = 15, p(5) = 52, p(6) = 203, p(7) = 877,

p(8) = 4140, p(9) = 21147, p(10) = 115975

Section 9.6

1. a) Is a partial ordering b) Not antisymmetric, not transitive

c) Is a partial ordering d) Is a partial ordering e) Not anti-

symmetric, not transitive 3. a) No b) No c) Yes 5. a) Yes

b) No c) Yes d) No 7. a) No b) Yes c) No 9. No

11. Yes 13. a) {(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2)}
b) (Z, ≤) c) (P (Z), ⊆) d) (Z+, “is a multiple of”)

15. a) {0} and {1}, for instance b) 4 and 6, for instance

17. a) (1, 1, 2) < (1, 2, 1) b) (0, 1, 2, 3) < (0, 1, 3, 2)

c) (0, 1, 1, 1, 0) < (1, 0, 1, 0, 1) 19. 0 < 0001 < 001 <

01 < 010 < 0101 < 011 < 11

21. 15

11

10

5

2

0

23. a) 8

4

2

6

3 5 7

1

b) 2 3 5 7 11 13

1

S-56 Answers to Odd-Numbered Exercises

c) 48

24

12

6

32

1

36

d) 64

32

16

8

4

2

1

25. (a, b), (a, c), (a, d), (b, c), (b, d), (a, a), (b, b), (c, c),

(d, d) 27. (a, a), (a, g), (a, d), (a, e), (a, f), (b, b), (b, g),

(b, d), (b, e), (b, f), (c, c), (c, g), (c, d), (c, e), (c, f), (g, d),

(g, e), (g, f), (g, g), (d, d), (e, e), (f, f) 29. (∅, {a}),
(∅, {b}), (∅, {c}), ({a}, {a, b}), ({a}, {a, c}), ({b}, {a, b}),
({b}, {b, c}), ({c}, {a, c}), ({c}, {b, c}), ({a, b}, {a, b, c}),
({a, c}, {a, b, c})({b, c}, {a, b, c}) 31. Let (S, �) be a fi-

nite poset. We will show that this poset is the reflexive transi-

tive closure of its covering relation. Suppose that (a, b) is in

the reflexive transitive closure of the covering relation. Then

a = b or a ≺ b, so a � b, or else there is a sequence

a1, a2, . . . , an such that a ≺ a1 ≺ a2 ≺ · · · ≺ an ≺ b, in

which case again a � b by the transitivity of � . Conversely,

suppose that a ≺ b. If a = b then (a, b) is in the reflex-

ive transitive closure of the covering relation. If a ≺ b and

there is no z such that a ≺ z ≺ b, then (a, b) is in the cov-

ering relation and therefore in its reflexive transitive closure.

Otherwise, let a ≺ a1 ≺ a2 ≺ · · · ≺ an ≺ b be a longest

possible sequence of this form (which exists because the poset

is finite). Then no intermediate elements can be inserted, so

each pair (a, a1), (a1, a2), . . . , (an, b) is in the covering re-

lation, so again (a, b) is in its reflexive transitive closure.

33. a) 24, 45 b) 3, 5 c) No d) No e) 15, 45 f) 15 g) 15,
5, 3 h) 15 35. a) {1, 2}, {1, 3, 4}, {2, 3, 4} b) {1}, {2}, {4}
c) No d) No e) {2, 4}, {2, 3, 4} f) {2, 4} g) {3, 4}, {4}
h) {3, 4} 37. Because (a, b)� (a, b), � is reflexive. If

(a1, a2) � (b1, b2) and (a1, a2) = (b1, b2), either a1 ≺ b1, or

a1 = b1 and a2 ≺ b2. In either case, (b1, b2) is not less than or

equal to (a1, a2). Hence, � is antisymmetric. Suppose that
(a1, a2) ≺ (b1, b2) ≺ (c1, c2). Then if a1 ≺ b1 or b1 ≺ c1,

we have a1 ≺ c1, so (a1, a2) ≺ (c1, c2), but if a1 = b1 = c1,

then a2 ≺ b2 ≺ c2, which implies that (a1, a2) ≺ (c1, c2).
Hence, � is transitive. 39. Because (s, t) � (s, t), � is re-

flexive. If (s, t) � (u, v) and (u, v) � (s, t), then s � u � s
and t � v � t ; hence, s = u and t = v. Hence, � is

antisymmetric. Suppose that (s, t) � (u, v) � (w, x). Then

s � u, t � v, u � w, and v � x. It follows that s � w

and t � x. Hence, (s, t) � (w, x). Hence, � is transitive.

41. a) Suppose that x is maximal and that y is the largest

element. Then x � y. Because x is not less than y, it fol-

lows that x = y. By Exercise 40(a) y is unique. Hence, x is

unique. b) Suppose that x is minimal and that y is the small-

est element. Then x � y. Because x is not greater than y, it

follows that x = y. By Exercise 40(b) y is unique. Hence, x is

unique. 43. a) Yes b) No c) Yes 45. Use mathematical

induction. Let P(n) be “Every subset with n elements from a

lattice has a least upper bound and a greatest lower bound.”

Basis step: P(1) is true because the least upper bound and

greatest lower bound of {x} are both x. Inductive step: As-

sume that P(k) is true. Let S be a set with k + 1 elements.

Let x ∈ S and S = S − {x}. Because S has k elements,

by the inductive hypothesis, it has a least upper bound y and

a greatest lower bound a. Now because we are in a lattice,

there are elements z = lub(x, y) and b = glb(x, a). We

are done if we can show that z is the least upper bound of

S and b is the greatest lower bound of S. To show that z is

the least upper bound of S, first note that if w ∈ S, then

w = x or w ∈ S . If w = x then w � z because z is the
least upper bound of x and y. If w ∈ S , then w � z be-

cause w � y, which is true because y is the least upper bound

of S , and y � z, which is true because z = lub(x, y). To

see that z is the least upper bound of S, suppose that u is an

upper bound of S. Note that such an element u must be an

upper bound of x and y, but because z = lub(x, y), it follows

that z � u. We omit the similar argument that b is the great-

est lower bound of S. 47. a) No b) Yes c) (Proprietary,

{Cheetah, Puma}), (Restricted, {Cheetah, Puma}), (Reg-

istered, {Cheetah, Puma}), (Proprietary, {Cheetah, Puma,

Impala}), (Restricted, {Cheetah, Puma, Impala}), (Registered,

{Cheetah, Puma, Impala}) d) (Non- proprietary, {Impala,

Puma}), (Proprietary, {Impala, Puma}), (Restricted, {Impala,

Puma}), (Nonproprietary, {Impala}), (Proprietary, {Impala}),
(Restricted, {Impala}), (Nonproprietary, {Puma}), (Propri-

etary, {Puma}), (Restricted, {Puma}), (Nonproprietary, ∅),

(Proprietary, ∅), (Restricted, ∅) 49. Let be the set of all

partitions of a set S with P1 � P2 if P1 is a refinement of P2,

that is, if every set inP1 is a subset of a set inP2. First, we show
that (, �) is a poset. Because P � P for every partition P ,

� is reflexive. Now suppose that P1 � P2 and P2 � P1. Let

T ∈ P1. Because P1 � P2, there is a set T ∈ P2 such that

T ⊆ T . Because P2 � P1 there is a set T ∈ P1 such that

T ⊆ T . It follows that T ⊆ T . But becauseP1 is a partition,

T = T , which implies that T = T because T ⊆ T ⊆ T .
Thus, T ∈ P2. By reversing the roles of P1 and P2 it follows

that every set in P2 is also in P1. Hence, P1 = P2 and � is

antisymmetric. Next, suppose thatP1 � P2 andP2 � P3. Let

T ∈ P1. Then there is a set T ∈ P2 such that T ⊆ T . Because

P2 � P3 there is a set T ∈ P3 such that T ⊆ T . This means

that T ⊆ T . Hence, P1 � P3. It follows that � is transitive.

The greatest lower bound of the partitions P1 and P2 is the

partition P whose subsets are the nonempty sets of the form

T1 ∩ T2 where T1 ∈ P1 and T2 ∈ P2. We omit the justification

of this statement here. The least upper bound of the partitions

P1 and P2 is the partition that corresponds to the equivalence

relation in which x ∈ S is related to y ∈ S if there is a

sequence x = x0, x1, x2, . . . , xn = y for some nonnegative

integer n such that for each i from 1 to n, xi−1 and xi are in the

same element of P1 or of P2. We omit the details that this is

an equivalence relation and the details of the proof that this is

Answers to Odd-Numbered Exercises S-57

the least upper bound of the two partitions. 51. By Exercise

45 there is a least upper bound and a greatest lower bound for

the entire finite lattice. By definition these elements are the

greatest and least elements, respectively. 53. The least ele-

ment of a subset of Z+ ×Z+ is that pair that has the smallest

possible first coordinate, and, if there is more than one such

pair, that pair among those that has the smallest second co-

ordinate. 55. If x is an integer in a decreasing sequence of

elements of this poset, then at most |x| elements can follow x

in the sequence, namely, integers whose absolute values are

|x| − 1, |x| − 2, …, 1, 0. Therefore there can be no infinite

decreasing sequence. This is not a totally ordered set, because

5 and−5, for example, are incomparable. 57. To find which

of two rational numbers is larger, write them with a positive

common denominator and compare numerators. To show that

this set is dense, suppose that x < y are two rational num-

bers. Then their average, i.e., (x + y)/2, is a rational number

between them. 59. Let (S,�) be a partially ordered set. It

is enough to show that every nonempty subset of S contains a

least element if and only if there is no infinite decreasing se-

quence of elements a1, a2, a3, . . . in S (i.e., where ai+1 ≺ ai
for all i). An infinite decreasing sequence of elements clearly

has no least element. Conversely, let A be any nonempty sub-

set of S that has no least element. Because A is nonempty,

choose a1 ∈ A. Because a1 is not the least element of A,

choose a2 ∈ A with a2 ≺ a1. Because a2 is not the least

element of A, choose a3 ∈ A with a3 ≺ a2. Continue in

this manner, producing an infinite decreasing sequence in S.

61. a ≺t b ≺t c ≺t d ≺t e ≺t f ≺t g ≺t h ≺t i ≺t
j ≺t k ≺t l ≺t m 63. 1 ≺ 5 ≺ 2 ≺ 4 ≺ 12 ≺ 20,

1 ≺ 2 ≺ 5 ≺ 4 ≺ 12 ≺ 20, 1 ≺ 2 ≺ 4 ≺ 5 ≺ 12 ≺ 20,

1 ≺ 2 ≺ 4 ≺ 12 ≺ 5 ≺ 20, 1 ≺ 5 ≺ 2 ≺ 4 ≺ 20 ≺ 12,

1 ≺ 2 ≺ 5 ≺ 4 ≺ 20 ≺ 12, 1 ≺ 2 ≺ 4 ≺ 5 ≺ 20 ≺ 12

65. A ≺ C ≺ E ≺ B ≺ D ≺ F ≺ G, A ≺ E ≺ C ≺
B ≺ D ≺ F ≺ G, C ≺ A ≺ E ≺ B ≺ D ≺ F ≺ G,

C ≺ E ≺ A ≺ B ≺ D ≺ F ≺ G, E ≺ A ≺ C ≺ B ≺
D ≺ F ≺ G, E ≺ C ≺ A ≺ B ≺ D ≺ F ≺ G, A ≺ C ≺
B ≺ E ≺ D ≺ F ≺ G, C ≺ A ≺ B ≺ E ≺ D ≺ F ≺ G,

A ≺ C ≺ B ≺ D ≺ E ≺ F ≺ G, C ≺ A ≺ B ≺
D ≺ E ≺ F ≺ G, A ≺ C ≺ E ≺ B ≺ F ≺ D ≺ G,

A ≺ E ≺ C ≺ B ≺ F ≺ D ≺ G, C ≺ A ≺ E ≺
B ≺ F ≺ D ≺ G, C ≺ E ≺ A ≺ B ≺ F ≺ D ≺ G,

E ≺ A ≺ C ≺ B ≺ F ≺ D ≺ G, E ≺ C ≺ A ≺
B ≺ F ≺ D ≺ G, A ≺ C ≺ B ≺ E ≺ F ≺ D ≺ G,

C ≺ A ≺ B ≺ E ≺ F ≺ D ≺ G 67. Determine user

needs ≺Write functional requirements ≺ Set up test sites ≺
Develop system requirements ≺Write documentation ≺ De-

velop module A ≺ Develop module B ≺ Develop module

C ≺ Integrate modules ≺ α test ≺ β test ≺ Completion

Supplementary Exercises

1. a) Irreflexive (we do not include the empty string), symmet-

ric b) Irreflexive, symmetric c) Irreflexive, antisymmetric,

transitive 3. ((a, b), (a, b)) ∈ R because a + b = a + b.
Hence,R is reflexive. If ((a, b), (c, d)) ∈ R then a+d = b+c,
so that c + b = d + a. It follows that ((c, d), (a, b)) ∈ R.

Hence, R is symmetric. Suppose that ((a, b), (c, d)) and

((c, d), (e, f)) belong to R. Then a + d = b + c and

c + f = d + e. Adding these two equations and sub-

tracting c + d from both sides gives a + f = b + e.

Hence, ((a, b), (e, f)) belongs to R. Hence, R is transitive.

5. Suppose that (a, b) ∈ R. Because (b, b) ∈ R it follows that

(a, b) ∈ R2. 7. Yes, yes 9. Yes, yes 11. Two records

with identical keys in the projection would have identical keys

in the original. 13. (∪ R)−1 = −1 ∪ R−1 = ∪ R−1

15. a) R = {(a, b), (a, c)}. The transitive closure of the

symmetric closure of R is {(a, a), (a, b), (a, c), (b, a),
(b, b), (b, c), (c, a), (c, b), (c, c)} and is different from the

symmetric closure of the transitive closure of R, which is

{(a, b), (a, c), (b, a), (c, a)}. b) Suppose that (a, b) is in

the symmetric closure of the transitive closure of R. We must

show that (a, b) is in the transitive closure of the symmetric

closure of R. We know that at least one of (a, b) and (b, a)

is in the transitive closure of R. Hence, there is either a path

from a to b in R or a path from b to a in R (or both). In the

former case, there is a path from a to b in the symmetric clo-

sure of R. In the latter case, we can form a path from a to b

in the symmetric closure of R by reversing the directions of

all the edges in a path from b to a, going backward. Hence,

(a, b) is in the transitive closure of the symmetric closure ofR.

17. The closure of S with respect to property P is a relation

with property P that contains R because R ⊆ S. Hence, the

closure of S with respect to property P contains the closure

of R with respect to property P. 19. Use the basic idea of

Warshall’s algorithm, except let w
[k]
ij equal the length of the

longest path from vi to vj using interior vertices with sub-

scripts not exceeding k, and equal to −1 if there is no such

path. To find w
[k]
ij from the entries of Wk−1, determine for each

pair (i, j) whether there are paths from vi to vk and from vk
to vj using no vertices labeled greater than k. If either w

[k−1]
ik

or w
[k−1]
kj is −1, then such a pair of paths does not exist, so

set w
[k]
ij = w

[k−1]
ij . If such a pair of paths exists, then there are

two possibilities. If w
[k−1]
kk > 0, there are paths of arbitrary

long length from vi to vj , so set w
[k]
ij = ∞. If w

[k−1]
kk = 0,

set w
[k−1]
ij = max(w

[k−1]
ij , w

[k−1]
ik + w

[k−1]
kj). (Initially take

W0 = MR .) 21. 25 23. Because Ai ∩ Bj is a subset of

Ai and of Bj , the collection of subsets is a refinement of each

of the given partitions. We must show that it is a partition. By

construction, each of these sets is nonempty. To see that their

union is S, suppose that s ∈ S. Because P1 and P2 are parti-

tions ofS, there are setsAi andBj such that s ∈ Ai and s ∈ Bj .
Therefore s ∈ Ai ∩Bj . Hence, the union of these sets is S. To

see that they are pairwise disjoint, note that unless i = i and

j = j , (Ai∩Bj)∩(Ai ∩Bj) = (Ai∩Ai)∩(Bj ∩Bj) = ∅.

25. The subset relation is a partial ordering on any collection

of sets, because it is reflexive, antisymmetric, and transitive.

Here the collection of sets is R(S). 27. Find recipe ≺ Buy

S-58 Answers to Odd-Numbered Exercises

seafood ≺ Buy groceries ≺Wash shellfish ≺ Cut ginger and

garlic ≺ Clean fish ≺ Steam rice ≺ Cut fish ≺ Wash veg-

etables ≺ Chop water chestnuts ≺ Make garnishes ≺ Cook

in wok ≺ Arrange on platter ≺ Serve 29. a) The only an-

tichain with more than one element is {c, d}. b) The only

antichains with more than one element are {b, c}, {c, e}, and

{d, e}. c) The only antichains with more than one element

are {a, b}, {a, c}, {b, c}, {a, b, c}, {d, e}, {d, f }, {e, f }, and

{d, e, f }. 31. Let (S, �) be a finite poset, and let A be a

maximal chain. Because (A, �) is also a poset it must have

a minimal element m. Suppose that m is not minimal in S.

Then there would be an element a of S with a ≺ m. How-

ever, this would make the set A ∪ {a} a larger chain than A.

To show this, we must show that a is comparable with every

element of A. Because m is comparable with every element

of A and m is minimal, it follows that m ≺ x when x is in

A and x = m. Because a ≺ m and m ≺ x, the transitive

law shows that a ≺ x for every element of A. 33. Let aRb

denote that a is a descendant of b. By Exercise 32, if no set

of n + 1 people none of whom is a descendant of any other

(an antichain) exists, then k ≤ n, so the set can be partitioned

into k ≤ n chains. By the pigeonhole principle, at least one of

these chains contains at leastm+1 people. 35. We prove by

contradiction that if S has no infinite decreasing sequence and

∀x {∀y[y ≺ x → P(y)]} → P(x)

, then P(x) is true for all

x ∈ S. If it does not hold that P(x) is true for all x ∈ S, let

x1 be an element of S such that P(x1) is not true. Then by

the conditional statement already given, it must be the case

that ∀y[y ≺ x1 → P(y)] is not true. This means that there

is some x2 with x2 ≺ x1 such that P(x2) is not true. Again
invoking the conditional statement, we get an x3 ≺ x2 such

that P(x3) is not true, and so on forever. This contradicts the

well-foundedness of our poset. Therefore, P(x) is true for all

x ∈ S. 37. Suppose that R is a quasi-ordering. Because R

is reflexive, if a ∈ A, then (a, a) ∈ R. This implies that

(a, a) ∈ R−1. Hence, a ∈ R∩R−1. It follows thatR∩R−1 is

reflexive. R ∩ R−1 is symmetric for any relation R because,
for any relation R, if (a, b) ∈ R then (b, a) ∈ R−1 and

vice versa. To show that R ∩ R−1 is transitive, suppose that

(a, b) ∈ R ∩R−1 and (b, c) ∈ R ∩ R−1. Because (a, b) ∈ R
and (b, c) ∈ R, (a, c) ∈ R, because R is transitive. Simi-

larly, because (a, b) ∈ R−1 and (b, c) ∈ R−1, (b, a) ∈ R
and (c, b) ∈ R, so (c, a) ∈ R and (a, c) ∈ R−1. Hence,

(a, c) ∈ R ∩ R−1. It follows that R ∩ R−1 is an equiva-

lence relation. 39. a) Because glb(x, y) = glb(y, x) and

lub(x, y) = lub(y, x), it follows that x ∧ y = y ∧ x and
x ∨ y = y ∨ x. b) Using the definition, (x ∧ y) ∧ z is

a lower bound of x, y, and z that is greater than every other

lower bound. Because x, y, and z play interchangeable roles,

x ∧ (y ∧ z) is the same element. Similarly, (x ∨ y) ∨ z is

an upper bound of x, y, and z that is less than every other
upper bound. Because x, y, and z play interchangeable roles,

x∨(y∨z) is the same element. c) To show that x∧(x∨y) = x
it is sufficient to show that x is the greatest lower bound of
x, and x ∨ y. Note that x is a lower bound of x, and be-

cause x ∨ y is by definition greater than x, x is a lower bound

for it as well. Therefore, x is a lower bound. But any lower

bound of x has to be less than x, so x is the greatest lower

bound. The second statement is the dual of the first; we omit

its proof. d) x is a lower, and an upper, bound for itself and it-

self, and the greatest, and least, such bound. 41. a) Because

1 is the only element greater than or equal to 1, it is the only

upper bound for 1 and therefore the only possible value of

the least upper bound of x and 1. b) Because x � 1, x is a

lower bound for both x and 1 and no other lower bound can

be greater than x, so x ∧ 1 = x. c) Because 0 � x, x is

an upper bound for both x and 0 and no other bound can be

less than x, so x ∨ 0 = x. d) Because 0 is the only element

less than or equal to 0, it is the only lower bound for 0 and

therefore the only possible value of the greatest lower bound

of x and 0. 43. L = (S,⊆) where S = {∅, {1}, {2}, {3},
{1, 2}, {2, 3}, {1, 2, 3}} 45. Yes 47. The complement of a

subset X ⊆ S is its complement S − X. To prove this, note

that X ∨ (S − X) = 1 and X ∧ (S − X) = 0 because

X ∪ (S − X) = S and X ∩ (S − X) = ∅. 49. Think of the

rectangular grid as representing elements in a matrix. Thus we

number from top to bottom and within that from left to right.

The partial order is that (a, b) (c, d) iff a ≤ c and b ≤ d.

Note that (1, 1) is the least element under this relation. The

rules for Chomp as explained in Chapter 1 coincide with the

rules stated in the preamble here. But now we can identify the

point (a, b)with the natural number pa−1qb−1 for all a and b

with 1 ≤ a ≤ m and 1 ≤ b ≤ n. This identifies the points in

the rectangular grid with the set S in this exercise, and the par-

tial order just described is the same as the divides relation,

because pa−1qb−1 | pc−1qd−1 if and only if the exponent of

p on the left does not exceed the exponent of p on the right,

and similarly for q.

CHAPTER 10

Section 10.1

1. a)

Detroit
Boston

Newark

Miami

Washington

b)
Detroit

Boston

Newark

Miami

Washington

Answers to Odd-Numbered Exercises S-59

c)
Detroit

Boston

Newark

Miami

Washington

d)
Detroit

Boston

Newark

Miami

Washington

e)
Detroit

Boston

Newark

Miami

Washington

3. Simple graph 5. Pseudograph 7. Directed graph

9. Directed multigraph 11. If uRv, then there is an edge

associated with {u, v}. But {u, v} = {v, u}, so this edge is

associated with {v, u} and therefore vRu. Thus, by definition,

R is a symmetric relation. A simple graph does not allow

loops; therefore, uRu never holds, and so by definition R is

irreflexive.

13. a) A1

A5 A3

A4

A2

b) A1

A5 A3

A4

A2

c)

A3A6

A4A5

A1 A2

15.
Hermit thrush Robin

Hairy
woodpecker

NuthatchMockingbird Blue jay

17.

Lamé

Gauss

Stirling

Dodgson

Boole

Lovelace

De Morgan

Fermat

Mersenne

Descartes

Goldbach

Bézout

Aristotle Euclid Eratosthenes

Fibonacci Maurolico

al-Khowarizmi

19. President

Chief financial
officer

Director,
operations

Director,
R and D

Director,
marketing

21. Tigers Blue jays

Orioles Cardinals

23. We find the telephone numbers in the call graph for Febru-

ary that are not present in the call graph for January and vice

versa. For each number we find, we make a list of the num-

bers they called or were called by using the edges in the call

graph. We examine these lists to find new telephone num-

bers in February that had similar calling patterns to defunct

telephone numbers in January. 25. We use the graph model

that has e-mail addresses as vertices and for each message

sent, an edge from the e-mail address of the sender to the

e-mail address of the recipient. For each e-mail address, we

can make a list of other addresses they sent messages to and

a list of other addresses from which they received messages.

If two e-mail addresses had almost the same pattern, we con-

clude that these addresses might have belonged to the same

S-60 Answers to Odd-Numbered Exercises

person who had recently changed his or her e-mail address.

27. Let V be the set of people at the party. Let E be the set

of ordered pairs (u, v) in V × V such that u knows v’s name.

The edges are directed, but multiple edges are not allowed.

Literally, there is a loop at each vertex, but for simplicity, the

model could omit the loops. 29. Vertices are the courses;

edges are directed; edge uv means that course u is prerequisite

for course v; courses without prerequisites are vertices with

in-degree 0; courses that are not prerequisite for any other

courses are vertices with out-degree 0. 31. Let the set of

vertices be a set of people, and two vertices are joined by an

edge if the two people were ever married. Ignoring complica-

tions, this graph has the property that there are two types of

vertices (men and women), and every edge joins vertices of

opposite types.

33.

S5

S2

S1 S7S3

S6

S4

35. Represent people in the group by vertices. Put a directed

edge into the graph for every pair of vertices. Label the edge

from the vertex representing A to the vertex representing B

with a + (plus) if A likes B, a − (minus) if A dislikes B, and

a 0 if A is neutral about B.

Section 10.2

1. v = 6; e = 6; deg(a) = 2, deg(b) = 4, deg(c) = 1,

deg(d) = 0, deg(e) = 2, deg(f) = 3; c is pendant; d is

isolated. 3. v = 9; e = 12; deg(a) = 3, deg(b) = 2,

deg(c) = 4, deg(d) = 0, deg(e) = 6, deg(f) = 0;

deg(g) = 4; deg(h) = 2; deg(i) = 3; d and f are isolated.

5. No 7. v = 4; e = 7; deg−(a) = 3, deg−(b) = 1,

deg−(c) = 2, deg−(d) = 1, deg+(a) = 1, deg+(b) = 2,

deg+(c) = 1, deg+(d) = 3 9. 5 vertices, 13 edges;

deg−(a) = 6, deg+(a) = 1, deg−(b) = 1, deg+(b) = 5,

deg−(c) = 2, deg+(c) = 5, deg−(d) = 4, deg+(d) = 2,

deg−(e) = 0, deg+(e) = 0

11.

a b c

fde

13. The number of coauthors that person has; that per-

son’s coauthors; a person who has no coauthors; a per-

son who has only one coauthor 15. In the directed graph

deg−(v) = number of calls v received, deg+(v) = number of

calls v made; in the undirected graph, deg(v) is the number of

calls either made or received by v. 17. (deg+(v), deg−(v))
is the win–loss record of v. 19. In the undirected graph

model in which the vertices are people in the group and

two vertices are adjacent if those two people are friends,

the degree of a vertex is the number of friends in the

group that person has. By Exercise 18, there are two ver-

tices with the same degree, which means that there are two

people in the group with the same number of friends in

the group. 21. Bipartite 23. Not bipartite 25. Not bi-

partite 27. a) Parts {h, s, n, w} and {P, Q, R, S}, E =
{{P, n}, {P,w}, {Q, s}, {Q,n}, {R, n}, {R,w}, {S, h}, {S, s}}
b) There is. c) {Pw,Qs, Rn, Sh} among others 29. Only

Barry is willing to marry Uma and Xia. 31. Model this with

an undirected bipartite graph, with an edge between a man

and a woman if they are willing to marry each other. By Hall’s

theorem, it is enough to show that for every set S of women,

the set N(S) of men willing to marry them has cardinality

at least |S|. Let m be the number of edges between S and

N(S). Since every vertex in S has degree k, it follows that

m = k|S|. Because these edges are incident toN(S), it follows

that m ≤ k|N(S)|. Therefore k|S| ≤ k|N(S)|, so |N(S)| ≥
|S|. 33. a) ({a, b, c, f }, {{a, b}, {a, f }, {b, c}, {b, f }})
b) ({a, x, c, f }, {{a, x}, {c, x}, {e, x}}) 35. a) n vertices,

n(n−1)/2 edges b) n vertices, n edges c) n+1 vertices, 2n

edges d) m+n vertices, mn edges e) 2n vertices, n2n−1 edges

37. a) 3, 3, 3, 3 b) 2, 2, 2, 2 c) 4, 3, 3, 3, 3 d) 3, 3, 2, 2, 2

e) 3, 3, 3, 3, 3, 3, 3, 3 39. Each of the n vertices is adjacent

to each of the other n − 1 vertices, so the degree sequence is

n− 1, n− 1, . . . , n− 1 (n terms).

41. 7

43. a) Yes

b) No c) No d) No

e) Yes

f) No. 45. First, suppose that d1, d2, . . . , dn is graphic. We

must show that the sequence whose terms are d2−1, d3−1,…,

dd1+1−1, dd1+2, dd1+3,…, dn is graphic once it is put into non-

increasing order. In Exercise 44 it is proved that if the original

sequence is graphic, then in fact there is a graph having this

degree sequence in which the vertex of degree d1 is adjacent

to the vertices of degrees d2, d3,…, dd1+1. Remove from this

graph the vertex of highest degree (d1). The resulting graph

has the desired degree sequence. Conversely, suppose that d1,

d2,…, dn is a nonincreasing sequence such that the sequence

Answers to Odd-Numbered Exercises S-61

d2 − 1, d3 − 1,…, dd1+1 − 1, dd1+2, dd1+3,…, dn is graphic

once it is put into nonincreasing order. Take a graph with this

latter degree sequence, where vertex vi has degree di − 1 for

2 ≤ i ≤ d1+1 and vertex vi has degree di for d1+2 ≤ i ≤ n.

Adjoin one new vertex (call it v1), and put in an edge from v1

to each of the vertices v2, v3,…, vd1+1. The resulting graph

has degree sequence d1, d2,…, dn. 47. Let d1, d2,…, dn be a

nonincreasing sequence of nonnegative integers with an even

sum. Construct a graph as follows: Take vertices v1, v2,…, vn
and put di/2 loops at vertex vi , for i = 1, 2, . . . , n. For

each i, vertex vi now has degree either di or di − 1. Because

the original sum was even, the number of vertices for which

deg(vi) = di − 1 is even. Pair them up arbitrarily, and put in

an edge joining the vertices in each pair. 49. 17

51. a

c d

b a

c d

b a

c d

b a

c d

b

a

c d

ba

c d

ba

c d

ba

c d

b

a

c

b a

c

b a

c

b

a

d

ba

d

ba

d

ba

d

b

a

c d

a

c d

a

c d

a

c d

a

c

a ba b

c d

b

a

c

a

d

a

d c

b

ba

c dd

b

c d

a

c

b

53. a) For all n ≥ 1 b) For all n ≥ 3 c) For n = 3 d) For

all n ≥ 0 55. 5

57. a f b

c g d

e

59. a) The graph with n vertices and no edges b) The disjoint

union of Km and Kn c) The graph with vertices {v1, . . . , vn}

with an edge between vi and vj unless i ≡ j ± 1 (mod n)

d) The graph whose vertices are represented by bit strings of

length n with an edge between two vertices if the associated

bit strings differ in more than one bit 61. v(v − 1)/2 − e
63. n − 1 − dn, n − 1 − dn−1,…, n − 1 − d2, n − 1 − d1

65. The union of G andG contains an edge between each pair

of the n vertices. Hence, this union is Kn.

67. Exercise 7: b

c

d

e

a

Exercise 8:

a e

d

cb

Exercise 9:

b

c

d
e

f

a

69. A directed graph G = (V , E) is its own converse if and

only if it satisfies the condition (u, v) ∈ E if and only if

(v, u) ∈ E. But this is precisely the condition that the associ-

ated relation must satisfy to be symmetric.

71. P(0, 0) P(0, 1) P(0, 2)

P(1, 0) P(1, 1) P(1, 2)

P(2, 0) P(2, 1) P(2, 2)

73. We can connect P(i, j) and P(k, l) by using |i − k| hops

to connect P(i, j) and P(k, j) and |j − l| hops to connect

P(k, j) and P(k, l). Hence, the total number of hops required

to connectP(i, j) andP(k, l) does not exceed |i−k|+|j−l|.
This is less than or equal to m+m = 2m, which is O(m).

Section 10.3

1. Adjacent

Vertex Vertices

a b, c, d

b a, d

c a, d

d a, b, c

3. Terminal

Vertex Vertices

a a, b, c, d

b d

c a, b

d b, c, d

5.
⎡
⎢⎢⎣

0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0

⎤
⎥⎥⎦

7.
⎡
⎢⎢⎣

1 1 1 1
0 0 0 1
1 1 0 0
0 1 1 1

⎤
⎥⎥⎦

9. a)
⎡
⎢⎢⎣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎥⎦

S-62 Answers to Odd-Numbered Exercises

b)
⎡
⎢⎢⎢⎢⎣

0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

⎤
⎥⎥⎥⎥⎦

c)
⎡
⎢⎢⎢⎢⎣

0 0 1 1 1
0 0 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

⎤
⎥⎥⎥⎥⎦

d)
⎡
⎢⎢⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤
⎥⎥⎦

e)
⎡
⎢⎢⎢⎢⎣

0 1 0 1 1
1 0 1 0 1
0 1 0 1 1
1 0 1 0 1
1 1 1 1 0

⎤
⎥⎥⎥⎥⎦

f)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

11. d b

a c

13. ⎡
⎢⎢⎣

0 0 1 0
0 0 1 2
1 1 0 1
0 2 1 0

⎤
⎥⎥⎦

15.
⎡
⎢⎢⎣

1 0 2 1
0 1 1 2
2 1 1 0
1 2 0 1

⎤
⎥⎥⎦

17. a b

d c

19.
⎡
⎢⎢⎣

0 1 0 0
0 1 1 0
0 1 1 1
1 0 0 0

⎤
⎥⎥⎦

21.
⎡
⎢⎢⎣

1 1 2 1
1 0 0 2
1 0 1 1
0 2 1 0

⎤
⎥⎥⎦

23.
a

c
b

25. Yes

27. Exercise 13: ⎡
⎢⎢⎣

1 0 0 0 0
0 1 1 1 0
1 1 0 0 1
0 0 1 1 1

⎤
⎥⎥⎦

Exercise 14: ⎡
⎢⎢⎣

1 1 1 1 0 0 0 0
1 1 1 0 1 0 0 0
0 0 0 0 1 1 1 1
0 0 0 1 0 1 1 1

⎤
⎥⎥⎦

Exercise 15:
⎡
⎢⎢⎣

1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0
0 1 1 0 0 1 0 0 1 0
0 0 0 1 0 0 1 1 0 1

⎤
⎥⎥⎦

29. deg(v)− number of loops at v; deg−(v) 31. 2 if e is not

a loop, 1 if e is a loop

33. a)
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1 0 · · · 0
1 0 · · · 0 1 · · · 0
0 1 · · · 0 1 · · · 0
...

...
...

...
...

0 0 · · · 0 0 · · · 1
0 0 · · · 1 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

b)
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 1
1 1 · · · 0 0
0 1 · · · 0 0
...

...
...

...

0 0 · · · 1 0
0 0 · · · 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

c)
⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1 1 · · · 1
1 0 · · · 0

B 0 1 · · · 0
...

...
...

0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

where B is the answer to (b)

d)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1 0 · · · 0
0 0 · · · 0 1 · · · 0
...

...
...

...
...

0 0 · · · 0 0 · · · 1
1 0 · · · 0 1 · · · 0
0 1 · · · 0 0 · · · 1
...

...
...

...
...

0 0 · · · 1 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

35. Isomorphic 37. Isomorphic 39. Isomorphic 41. Not

isomorphic 43. Isomorphic 45. G is isomorphic to itself

by the identity function, so isomorphism is reflexive. Suppose

that G is isomorphic to H . Then there exists a one-to-one

correspondence f from G to H that preserves adjacency and

nonadjacency. It follows that f−1 is a one-to-one correspon-

dence from H to G that preserves adjacency and nonadja-

cency. Hence, isomorphism is symmetric. If G is isomorphic

to H and H is isomorphic to K , then there are one-to-one

correspondences f and g fromG to H and from H to K that

preserve adjacency and nonadjacency. It follows that g ◦ f is

a one-to-one correspondence from G to K that preserves ad-

jacency and nonadjacency. Hence, isomorphism is transitive.

47. All zeros 49. Label the vertices in order so that all of the

vertices in the first set of the partition of the vertex set come

first. Because no edges join vertices in the same set of the par-

tition, the matrix has the desired form. 51. C5 53. n = 5

only 55. 4 57. a) Yes b) No c) No 59. G = (V1, E1)

is isomorphic toH = (V2, E2) if and only if there exist func-

tions f from V1 to V2 and g from E1 to E2 such that each is

a one-to-one correspondence and for every edge e in E1 the

endpoints of g(e) are f (v) and f (w) where v and w are the

Answers to Odd-Numbered Exercises S-63

endpoints of e. 61. Yes 63. Yes 65. If f is an isomor-

phism from a directed graphG to a directed graph H , then f

is also an isomorphism fromGconv to Hconv. To see this note

that (u, v) is an edge of Gconv if and only if (v, u) is an edge

of G if and only if (f (v), f (u)) is an edge of H if and only

if (f (u), f (v)) is an edge of Hconv. 67. Many answers are

possible; for example, C6 and C3 ∪ C3. 69. The product is

[aij] where aij is the number of edges from vi to vj when

i = j and aii is the number of edges incident to vi . 71. The

graphs in Exercise 41 provide a devil’s pair.

Section 10.4

1. a) Path of length 4; not a circuit; not simple b) Not a path

c) Not a path d) Simple circuit of length 5 3. No 5. No

7. Maximal sets of people with the property that for any two

of them, we can find a string of acquaintances that takes us

from one to the other 9. If a person has Erdős number n,

then there is a path of length n from that person to Erdős in

the collaboration graph, so by definition, that means that that

person is in the same component as Erdős. If a person is in the

same component as Erdős, then there is a path from that person

to Erdős, and the length of the shortest such path is that per-

son’s Erdős number. 11. a) Weakly connected b) Weakly

connected c) Not strongly or weakly connected 13. The

maximal sets of phone numbers for which it is possible to

find directed paths between every two different numbers in

the set 15. a) {a, b, f }, {c, d, e} b) {a, b, c, d, e, h}, {f },
{g} c) {a, b, d, e, f, g, h, i}, {c} 17. Suppose the strong

components of u and v are not disjoint, say with vertex w in

both. Suppose x is a vertex in the strong component of u.

Then x is also in the strong component of v, because there

is a path from x to v (namely the path from x to u fol-

lowed by the path from u to w followed by the path from

w to v) and vice versa. Thus x is in the strong component

of v. This shows that the strong component of u is a sub-

graph of the strong component of v, and equality follows by

symmetry. 19. a) 2 b) 7 c) 20 d) 61 21. Not isomor-

phic (G has a triangle; H does not) 23. Isomorphic (the

path u1, u2, u7, u6, u5, u4, u3, u8, u1 corresponds to the path

v1, v2, v3, v4, v5, v8, v7, v6, v1) 25. a) 3 b) 0 c) 27 d) 0

27. a) 1 b) 0 c) 2 d) 1 e) 5 f) 3 29. R is reflexive by

definition. Assume that (u, v) ∈ R; then there is a path from

u to v. Then (v, u) ∈ R because there is a path from v to

u, namely, the path from u to v traversed backward. Assume

that (u, v) ∈ R and (v,w) ∈ R; then there are paths from u

to v and from v to w. Putting these two paths together gives

a path from u to w. Hence, (u, w) ∈ R. It follows that R is

transitive. 31. c 33. b, c, e, i 35. If a vertex is pendant

it is clearly not a cut vertex. So an endpoint of a cut edge that

is a cut vertex is not pendant. Removal of a cut edge produces

a graph with more connected components than in the original

graph. If an endpoint of a cut edge is not pendant, the con-

nected component it is in after the removal of the cut edge

contains more than just this vertex. Consequently, removal of

that vertex and all edges incident to it, including the original

cut edge, produces a graph with more connected components

than were in the original graph. Hence, an endpoint of a cut

edge that is not pendant is a cut vertex. 37. Assume there

exists a connected graphG with at most one vertex that is not

a cut vertex. Define the distance between the vertices u and

v, denoted by d(u, v), to be the length of the shortest path

between u and v in G. Let s and t be vertices in G such that

d(s, t) is a maximum. Either s or t (or both) is a cut vertex,

so without loss of generality suppose that s is a cut vertex.

Let w belong to the connected component that does not con-

tain t of the graph obtained by deleting s and all edges inci-

dent to s from G. Because every path from w to t contains s,

d(w, t) > d(s, t), which is a contradiction. 39. a) Denver–

Chicago, Boston–New York b) Seattle–Portland, Portland–

San Francisco, Salt Lake City–Denver, New York–Boston,

Boston–Burlington, Boston–Bangor 41. A minimal set of

people who collectively influence everyone (directly or indi-

rectly); {Deborah} 43. An edge cannot connect two vertices

in different connected components. Because there are at most

C(ni, 2) edges in the connected component with ni vertices,

it follows that there are at most
 k
i=1 C(ni, 2) edges in the

graph. 45. Suppose that G is not connected. Then it has a

component of k vertices for some k, 1 ≤ k ≤ n − 1.

The most edges G could have is C(k, 2) + C(n − k, 2) =
[k(k − 1)+ (n− k)(n− k − 1)]/2 = k2 − nk + (n2 − n)/2.

This quadratic function of f is minimized at k = n/2 and

maximized at k = 1 or k = n − 1. Hence, if G is not

connected, the number of edges does not exceed the value of

this function at 1 and at n − 1, namely, (n − 1)(n − 2)/2.

47. a) 1 b) 2 c) 6 d) 21 49. a) Removing an edge from a

cycle leaves a path, which is still connected. b) Removing an

edge from the cycle portion of the wheel leaves that portion

still connected and the central vertex still connected to it as

well. Removing a spoke leaves the cycle intact and the central

vertex still connected to it as well. c) Any four vertices, two

from each part of the bipartition, are connected by a 4-cycle;

removing one edge does not disconnect them. d) Deleting

the edge joining (b1, b2, . . . , bi−1, 0, bi+1, . . . , bn)

and (b1, b2, . . . , bi−1, 1, bi+1, . . . , bn) does not dis-

connect the graph because these two vertices are still

joined via the path (b1, b2, . . . , bi−1, 0, bi+1, . . . , 0),

(b1, b2, . . . , bi−1, 0, bi+1, . . . , 1), (b1, b2, . . . , bi−1, 1,

bi+1, . . . , 1), (b1, b2, . . . , bi−1, 1, bi+1, . . . , 0) if n < 2

and bn = 0, and similarly in the other three cases. 51. If

G is complete, then removing vertices one by one leaves a

complete graph at each step, so we never get a disconnected

graph. Conversely, if edge uv is missing fromG, then remov-

ing all the vertices exceptu and v creates a disconnected graph.

53. Both equal min(m, n). 55. LetG be a graph with n ver-

tices; then κ(G) ≤ n−1. LetC be a smallest edge cut, leaving

a nonempty proper subset S of the vertices ofG disconnected

from the complementary set S = V −S. If xy is an edge ofG

for every x ∈ S and y ∈ S , then the size ofC is |S||S |, which

is at least n − 1, so κ(G) ≤ λ(G). Otherwise, let x ∈ S and

y ∈ S be nonadjacent vertices. Let T consist of all neighbors

of x in S together with all vertices of S − {x} with neighbors

S-64 Answers to Odd-Numbered Exercises

in S . Then T is a vertex cut, because it separates x and y.

Now look at the edges from x to T ∩ S and one edge from

each vertex of T ∩S to S ; this gives us |T | distinct edges that

lie in C, so λ(G) = |C| ≥ |T | ≥ κ(G). 57. 2 59. Let

the simple paths P1 and P2 be u = x0, x1, . . . , xn = v and

u = y0, y1, . . . , ym = v, respectively. The paths thus start out

at the same vertex. Since the paths do not contain the same set

of edges, they must diverge eventually. If they diverge only

after one of them has ended, then the rest of the other path is

a simple circuit from v to v. Otherwise we can suppose that

x0 = y0, x1 = y1, …, xi = yi , but xi+1 = yi+1. To form our

simple circuit, we follow the path yi , yi+1, yi+2, and so on,

until it once again first encounters a vertex on P1 (possibly as

early as yi+1, no later than ym). Once we are back on P1, we

follow it along—forwards or backwards, as necessary—to re-

turn to xi . Since xi = yi , this certainly forms a circuit. It must

be a simple circuit, since no edge among the xks or the yls

can be repeated (P1 and P2 are simple by hypothesis) and no

edge among the xks can equal one of the edges yl that we used,

since we abandoned P2 for P1 as soon as we hit P1. 61. The

graphG is connected if and only if every off-diagonal entry of

A+A2+A3+· · ·+An−1 is positive, whereA is the adjacency

matrix of G. 63. If the graph is bipartite, say with parts A

and B, then the vertices in every path must alternately lie in

A and B. Therefore a path that starts in A, say, will end in B

after an odd number of steps and inA after an even number of

steps. Because a circuit ends at the same vertex where it starts,

the length must be even. Conversely, suppose that all circuits

have even length; we must show that the graph is bipartite.

We can assume that the graph is connected, because if it is

not, then we can just work on one component at a time. Let

v be a vertex of the graph, and let A be the set of all vertices

to which there is a path of odd length starting at v, and let

B be the set of all vertices to which there is a path of even

length starting at v. Because the component is connected, ev-

ery vertex lies in A or B. No vertex can lie in both A and B,

because if one did, then following the odd-length path from v

to that vertex and then back along the even-length path from

that vertex to v would produce an odd circuit, contrary to the

hypothesis. Thus, the set of vertices has been partitioned into

two sets. To show that every edge has endpoints in different

parts, suppose that xy is an edge, where x ∈ A. Then the

odd-length path from v to x followed by xy produces an even-

length path from v to y, so y ∈ B. (Similarly, if x ∈ B.)

65. (H1W1H2W2"boat#, ∅) → (H2W2, H1W1"boat#) →
(H1H2W2"boat#, W1) → (W2, H1W1H2"boat#) →
(H2W2"boat#, H1W1)→ (∅, H1W1H2W2"boat#)

Section 10.5

1. Neither 3. No Euler circuit; a, e, c, e, b, e, d, b, a, c, d

5. a, b, c, d, c, e, d, b, e, a, e, a 7. a, i, h, g, d, e, f, g, c, e, h, d,

c, a, b, i, c, b, h, a 9. No,A still has odd degree. 11. When

the graph in which vertices represent intersections and edges

streets has an Euler path 13. Yes 15. No 17. If there is

an Euler path, then as we follow it each vertex except the

starting and ending vertices must have equal in-degree and

out-degree, because whenever we come to a vertex along an

edge, we leave it along another edge. The starting vertex must

have out-degree 1 larger than its in-degree, because we use

one edge leading out of this vertex and whenever we visit

it again we use one edge leading into it and one leaving it.

Similarly, the ending vertex must have in-degree 1 greater

than its out-degree. Because the Euler path with directions

erased produces a path between any two vertices, in the un-

derlying undirected graph, the graph is weakly connected.

Conversely, suppose the graph meets the degree conditions

stated. If we add one more edge from the vertex of deficient

out-degree to the vertex of deficient in-degree, then the graph

has every vertex with equal in-degree and out-degree. Be-

cause the graph is still weakly connected, by Exercise 16 this

new graph has an Euler circuit. Now delete the added edge to

obtain the Euler path. 19. Neither 21. No Euler circuit;

a, d, e, d, b, a, e, c, e, b, c, b, e 23. Neither 25. Follow

the same procedure as Algorithm 1, taking care to follow the

directions of edges. 27. a) n = 2 b) None c) None

d) n = 1 29. Exercise 1:1 time; Exercises 2–7: 0 times

31. a, b, c, d, e, a is a Hamilton circuit. 33. No Hamilton

circuit exists, because once a purported circuit has reached e

it would have nowhere to go. 35. No Hamilton circuit ex-

ists, because every edge in the graph is incident to a vertex of

degree 2 and therefore must be in the circuit. 37. a, b, c, f,

d, e is a Hamilton path. 39. f, e, d, a, b, c is a Hamilton path.

41. No Hamilton path exists. There are eight vertices of degree

2, and only two of them can be end vertices of a path. For each

of the other six, their two incident edges must be in the path. It

is not hard to see that if there is to be a Hamilton path, exactly

one of the inside corner vertices must be an end, and that this

is impossible. 43. a, b, c, f, i, h, g, d, e is a Hamilton path.

45. m = n ≥ 2 47. a) (i) No, (ii) No, (iii) Yes b) (i) No,

(ii) No, (iii)Yes c) (i)Yes, (ii)Yes, (iii)Yes d) (i)Yes, (ii)Yes,

(iii) Yes 49. The result is trivial for n = 1: code is 0, 1. As-

sume we have a Gray code of order n. Let c1, . . . , ck, k = 2n

be such a code. Then 0c1, . . . , 0ck, 1ck, . . . , 1c1 is a Gray

code of order n+ 1.

51. procedure Fleury(G = (V , E): connected multigraph

with the degrees of all vertices even, V = {v1, . . . , vn})
v := v1

circuit := v

H := G
while H has edges

e := first edge with endpoint v in H (with respect

to listing of V) such that e is not a cut edge of H , if

one exists, and simply the first edge in H with

endpoint v otherwise

w := other endpoint of e

circuit := circuit with e, w added

v := w

H := H − e
return circuit {circuit is an Euler circuit}

Answers to Odd-Numbered Exercises S-65

53. If G has an Euler circuit, then it also has an Euler path.

If not, add an edge between the two vertices of odd degree

and apply the algorithm to get an Euler circuit. Then delete

the new edge. 55. SupposeG = (V ,E) is a bipartite graph

with V = V1 ∪ V2, where V1 ∩ V2 = ∅ and no edge

connects a vertex in V1 and a vertex in V2. Suppose that G

has a Hamilton circuit. Such a circuit must be of the form

a1, b1, a2, b2, . . . , ak, bk, a1, where ai ∈ V1 and bi ∈ V2

for i = 1, 2, . . . , k. Because the Hamilton circuit visits each

vertex exactly once, except for v1, where it begins and ends,

the number of vertices in the graph equals 2k, an even num-

ber. Hence, a bipartite graph with an odd number of vertices

cannot have a Hamilton circuit.

57. 1 2 3 4

5 6 7

9 10 11

8

12

59. We represent the squares of a 3×4 chessboard as follows:

1 2 3 4

5 6 7 8

9 10 11 12

A knight’s tour can be made by following the moves 8, 10, 1,

7, 9, 2, 11, 5, 3, 12, 6, 4. 61. We represent the squares of a

4× 4 chessboard as follows:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

There are only two moves from each of the four corner squares.

If we include all the edges 1–10, 1–7, 16–10, and 16–7, a cir-

cuit is completed too soon, so at least one of these edges must

be missing. Without loss of generality, assume the path starts

1–10, 10–16, 16–7. Now the only moves from square 3 are

to squares 5, 10, and 12, and square 10 already has two inci-

dent edges. Therefore, 3–5 and 3–12 must be in the Hamilton

circuit. Similarly, edges 8–2 and 8–15 must be in the circuit.

Now the only moves from square 9 are to squares 2, 7, and

15. If there were edges from square 9 to both squares 2 and

15, a circuit would be completed too soon. Therefore the edge

9–7 must be in the circuit giving square 7 its full complement

of edges. But now square 14 is forced to be joined to squares

5 and 12, completing a circuit too soon (5–14–12–3–5). This

contradiction shows that there is no knight’s tour on the 4× 4

board. 63. Because there aremn squares on anm×n board,

if both m and n are odd, there are an odd number of squares.

Because by Exercise 62 the corresponding graph is bipartite,

by Exercise 55 it has no Hamilton circuit. Hence, there is no

reentrant knight’s tour. 65. a) If G does not have a Hamil-

ton circuit, continue as long as possible adding missing edges

one at a time in such a way that we do not obtain a graph

with a Hamilton circuit. This cannot go on forever, because

once we’ve formed the complete graph by adding all miss-

ing edges, there is a Hamilton circuit. Whenever the process

stops, we have obtained a (necessarily noncomplete) graphH

with the desired property. b) Add one more edge to H . This

produces a Hamilton circuit, which uses the added edge. The

path consisting of this circuit with the added edge omitted is

a Hamilton path in H . c) Clearly v1 and vn are not adjacent

in H , because H has no Hamilton circuit. Therefore they are

not adjacent in G. But the hypothesis was that the sum of

the degrees of vertices not adjacent in G was at least n. This

inequality can be rewritten as n − deg(vn) ≤ deg(v1). But

n− deg(vn) is just the number of vertices not adjacent to vn.

d) Because there is no vertex following vn in the Hamilton

path, vn is not in S. Each one of the deg(v1) vertices adjacent

to v1 gives rise to an element of S, so S contains deg(v1) ver-

tices. e) By part (c) there are at most deg(v1)−1 vertices other

than vn not adjacent to vn, and by part (d) there are deg(v1)

vertices in S, none of which is vn. Therefore at least one vertex

of S is adjacent to vn. By definition, if vk is this vertex, thenH

contains edges vkvn and v1vk+1, where 1 < k < n−1. f) Now

v1, v2, . . . , vk−1, vk, vn, vn−1, . . . , vk+1, v1 is a Hamilton cir-

cuit inH , contradicting the construction ofH . Therefore, our

assumption that G did not originally have a Hamilton circuit

is wrong, and our proof by contradiction is complete.

Section 10.6

1. a) Vertices are the stops, edges join adjacent stops, weights

are the times required to travel between adjacent stops.

b) Same as part (a), except weights are distances between ad-

jacent stops. c) Same as part (a), except weights are fares

between stops. 3. 16 5. Exercise 2: a, b, e, d, z; Ex-

ercise 3: a, c, d, e, g, z; Exercise 4: a, b, e, h, l, m, p, s, z

7. a) a, c, d b) a, c, d, f c) c, d, f e) b, d, e, g, z 9. a) Direct

b) Via NewYork c) ViaAtlanta and Chicago d) Via NewYork

11. a) Via Chicago b) Via Chicago c) Via LosAngeles d) Via

Chicago 13. a) Via Chicago b) Via Chicago c) Via LosAn-

geles d) Via Chicago 15. Do not stop the algorithm when

z is added to the set S. 17. a) Via Woodbridge, via Wood-

bridge and Camden b) Via Woodbridge, via Woodbridge and

Camden 19. For instance, sightseeing tours, street cleaning

S-66 Answers to Odd-Numbered Exercises

21. a b c d e z

a 4 3 2 8 10 13
b 3 2 1 5 7 10
c 2 1 2 6 8 11
d 8 5 6 4 2 5
e 10 7 8 2 4 3
z 13 10 11 5 3 6

23. O(n3) 25. a–c–b–d–a (or the same circuit starting at

some other point and/or traversing the vertices in reverse

order) 27. San Francisco–Denver–Detroit–New York–Los

Angeles–San Francisco (or the same circuit starting at some

other point and/or traversing the vertices in reverse order)

29. Consider this graph:

a

b c
100

1 2

The circuit a-b-a-c-a visits each vertex at least once (and the

vertex a twice) and has total weight 6. Every Hamilton circuit

has total weight 103. 31. Let v1, v2, . . . , vn be a topological

ordering of the vertices of the given directed acyclic graph. Let

w(i, j) be the weight of edge vivj . Iteratively defineP(i)with

the intent that it will be the weight of a longest path ending at

vi and C(i) with the intent that it will be the vertex preceding

vi in some longest path: For i from 1 to n, let P(i) be the

maximum of P(j) + w(j, i) over all j < i such that vj vi is

an edge in the directed graph (and if such a j exists let C(i)

be a value of j for which this maximum is achieved) and let

P(i) = 0 if there are no such values of j . At the conclusion

of this loop, a longest path can be found by choosing i that

maximizes P(i) and following the C links back to the start of

the path.

Section 10.7

1. Yes 3. b

a d

c

e

5. No

7. Yes a d

e

c f

b

9. No 11. A triangle is formed by the planar representation

of the subgraph of K5 consisting of the edges connecting v1,

v2, and v3. The vertex v4 must be placed either within the tri-

angle or outside of it. We will consider only the case when

v4 is inside the triangle; the other case is similar. Drawing the

three edges from v1, v2, and v3 to v4 forms four regions. No

matter which of these four regions v5 is in, it is possible to

join it to only three, and not all four, of the other vertices.

13. 8 15. Because there are no loops or multiple edges and

no simple circuits of length 3, and the degree of the unbounded

region is at least 4, each region has degree at least 4. Thus

2e ≥ 4r , or r ≤ e/2. But r = e − v + 2, so we have

e − v + 2 ≤ e/2, which implies that e ≤ 2v − 4. 17. As in

the argument in the proof of Corollary 1, we have 2e ≥ 5r and

r = e− v+ 2. Thus e− v+ 2 ≤ 2e/5, which implies that e ≤
(5/3)v−(10/3). 19. Only (a) and (c) 21. Not homeomor-

phic to K3,3 23. Planar 25. Nonplanar 27. a) 1 b) 3

c) 9 d) 2 e) 4 f) 16 29. Draw Km,n as described in the

hint. The number of crossings is four times the number in

the first quadrant. The vertices on the x-axis to the right of

the origin are (1, 0), (2, 0), . . . , (m/2, 0) and the vertices on

the y-axis above the origin are (0, 1), (0, 2), . . . , (0, n/2).

We obtain all crossings by choosing any two numbers a and

b with 1 ≤ a < b ≤ m/2 and two numbers r and s

with 1 ≤ r < s ≤ n/2; we get exactly one crossing

in the graph between the edge connecting (a, 0) and (0, s)

and the edge connecting (b, 0) and (0, r). Hence, the number

of crossings in the first quadrant is C

m
2 , 2
 · C n2 , 2 =

(m/2)(m/2−1)
2 · (n/2)(n/2−1)

2 . Hence, the total number of cross-

ings is 4 · mn(m − 2)(n − 2)/64 = mn(m − 2)(n − 2)/16.

31. a) 2 b) 2 c) 2 d) 2 e) 2 f) 2 33. The formula is valid

for n ≤ 4. If n > 4, by Exercise 32 the thickness of Kn is

at least C(n, 2)/(3n − 6) = (n + 1 + 2
n−2)/6 rounded up.

Because this quantity is never an integer, it equals (n+7)/6 .
35. This follows from Exercise 34 becauseKm,n hasmn edges

andm+n vertices and has no triangles because it is bipartite.

37.

Section 10.8

1. Four colors

A

B

D

C

E

3. Three colors

A

F
B

C

D

E

5. 3 7. 3 9. 2 11. 3 13. Graphs with no edges 15. 3

if n is even, 4 if n is odd 17. Period 1: Math 115, Math 185;

period 2: Math 116, CS 473; period 3: Math 195, CS 101;

period 4: CS 102; period 5: CS 273 19. 5 21. Exercise 5:

3 Exercise 6: 6 Exercise 7: 3 Exercise 8: 4 Exercise 9: 3

Exercise 10: 6 Exercise 11: 4 23. a) 2 if n is even, 3 if n is

odd b) n 25. Two edges that have the same color share no

endpoints. Therefore if more than n/2 edges were colored the

Answers to Odd-Numbered Exercises S-67

same, the graph would have more than 2(n/2) = n vertices.

27. 5 29. Color 1: e, f, d; color 2: c, a, i, g; color 3: h, b, j

31. Color C6 33. Four colors are needed to colorWn when

n is an odd integer greater than 1, because three colors are

needed for the rim (see Example 4), and the center vertex, be-

ing adjacent to all the rim vertices, will require a fourth color.

To see that the graph obtained fromWn by deleting one edge

can be colored with three colors, consider two cases. If we

remove a rim edge, then we can color the rim with two colors,

by starting at an endpoint of the removed edge and using the

colors alternately around the portion of the rim that remains.

The third color is then assigned to the center vertex. If we

remove a spoke edge, then we can color the rim by assigning

color #1 to the rim endpoint of the removed edge and colors

#2 and #3 alternately to the remaining vertices on the rim,

and then assign color #1 to the center. 35. Suppose that G

is chromatically k-critical but has a vertex v of degree k − 2

or less. Remove from G one of the edges incident to v. By

definition of “k-critical,” the resulting graph can be colored

with k − 1 colors. Now restore the missing edge and use this

coloring for all vertices except v. Because we had a proper

coloring of the smaller graph, no two adjacent vertices have

the same color. Furthermore, v has at most k−2 neighbors, so

we can color v with an unused color to obtain a proper (k−1)-

coloring of G. This contradicts the fact that G has chromatic

number k. Therefore, our assumption was wrong, and every

vertex of G must have degree at least k − 1. 37. a) 6 b) 7

c) 9 d) 11 39. Represent frequencies by colors and zones

by vertices. Join two vertices with an edge if the zones these

vertices represent interfere with one another. Then a k-tuple

coloring is precisely an assignment of frequencies that avoids

interference. 41. We use induction on the number of ver-

tices of the graph. Every graph with five or fewer vertices can

be colored with five or fewer colors, because each vertex can

get a different color. That takes care of the basis case(s). So

we assume that all graphs with k vertices can be 5-colored

and consider a graphG with k+ 1 vertices. By Corollary 2 in

Section 10.7,G has a vertex v with degree at most 5. Remove

v to form the graph G . Because G has only k vertices, we

5-color it by the inductive hypothesis. If the neighbors of v

do not use all five colors, then we can 5-colorG by assigning

to v a color not used by any of its neighbors. The difficulty

arises if v has five neighbors, and each has a different color in

the 5-coloring of G . Suppose that the neighbors of v, when

considered in clockwise order around v, are a, b, c,m, and p.

(This order is determined by the clockwise order of the curves

representing the edges incident to v.) Suppose that the colors

of the neighbors are azure, blue, chartreuse, magenta, and pur-

ple, respectively. Consider the azure-chartreuse subgraph (i.e.,

the vertices inG colored azure or chartreuse and all the edges

between them). If a and c are not in the same component of

this graph, then in the component containing a we can inter-

change these two colors (make the azure vertices chartreuse

and vice versa), and G will still be properly colored. That

makes a chartreuse, so we can now color v azure, and G has

been properly colored. If a and c are in the same component,

then there is a path of vertices alternately colored azure and

chartreuse joining a and c. This path together with edges av

and vc divides the plane into two regions, with b in one of them

and m in the other. If we now interchange blue and magenta

on all the vertices in the same region as b, we will still have a

proper coloring of G , but now blue is available for v. In this

case, too, we have found a proper coloring of G. This com-

pletes the inductive step, and the theorem is proved. 43. We

follow the hint. Because the measures of the interior angles of

a pentagon total 540◦, there cannot be as many as three inte-

rior angles of measure more than 180◦ (reflex angles). If there

are no reflex angles, then the pentagon is convex, and a guard

placed at any vertex can see all points. If there is one reflex

angle, then the pentagon must look essentially like figure (a)

below, and a guard at vertex v can see all points. If there are

two reflex angles, then they can be adjacent or nonadjacent

(figures (b) and (c)); in either case, a guard at vertex v can see

all points. [In figure (c), choose the reflex vertex closer to the

bottom side.] Thus for all pentagons, one guard suffices, so

g(5) = 1.

(a)

v

(b)
v

(c)

v

45. The figure suggested in the hint (generalized to have k

prongs for any k ≥ 1) has 3k vertices. The sets of locations

from which the tips of different prongs are visible are dis-

joint. Therefore, a separate guard is needed for each of the

k prongs, so at least k guards are needed. This shows that

g(3k) ≥ k = 3k/3 . If n = 3k + i, where 0 ≤ i ≤ 2, then

g(n) ≥ g(3k) ≥ k = n/3 .

Supplementary Exercises

1. 2500 3. Yes 5. Yes 7.
 m
i=1 ni vertices,

t<j ninj

edges 9. a) If x ∈ N(A ∪ B), then x is adjacent to

some vertex v ∈ A ∪ B. WOLOG suppose v ∈ A; then

x ∈ N(A) and therefore also in N(A) ∪ N(B). Conversely,

if x ∈ N(A) ∪ N(B), then WOLOG suppose x ∈ N(A).
Thus x is adjacent to some vertex v ∈ A ⊆ A ∪ B, so

x ∈ N(A ∪ B). b) If x ∈ N(A ∩ B), then x is adjacent to

some vertex v ∈ A∩B. Since both v ∈ A and v ∈ B, it follows

that x ∈ N(A) and x ∈ N(B), whence x ∈ N(A) ∩ N(B).
For the counterexample, let G = ({u, v,w}, {{u, v}, {v,w}}),
A = {u}, and B = {w}. 11. (c, a, p, x, n, m) and many

others 13. (c, d, a, b) and many others 15. 6 times the

S-68 Answers to Odd-Numbered Exercises

number of triangles divided by the number of paths of length 2

17. a) The probability that two actors each of whom has ap-

peared in a film with a randomly chosen actor have ap-

peared in a film together b) The probability that two of a

randomly chosen person’s Facebook friends are themselves

Facebook friends c) The probability that two of a randomly

chosen person’s coauthors are themselves coauthors d) The

probability that two proteins that each interact with a ran-

domly chosen protein interact with each other e) The prob-

ability that two routers each of which has a communica-

tions link to a randomly chosen router are themselves linked

19. Complete subgraphs containing the following sets of ver-

tices: {b, c, e, f }, {a, b, g}, {a, d, g}, {d, e, g}, {b, e, g}
21. Complete subgraphs containing the following sets of ver-

tices: {b, c, d, j, k}, {a, b, j, k}, {e, f, g, i}, {a, b, i}, {a, i, j},
{b, d, e}, {b, e, i}, {b, i, j}, {g, h, i}, {h, i, j} 23. {c, d} is a

minimum dominating set.

25. a)

b)

27. a) 1 b) 2 c) 3 29. a) A path from u to v in a graph

G induces a path from f (u) to f (v) in an isomorphic

graph H . b) Suppose f is an isomorphism from G to

H . If v0, v1, . . . , vn, v0 is a Hamilton circuit in G, then

f (v0), f (v1), . . . , f (vn), f (v0) must be a Hamilton circuit

in H because it is still a circuit and f (vi) = f (vj) for

0 ≤ i < j ≤ n. c) Suppose f is an isomorphism from

G to H . If v0, v1, . . . , vn, v0 is an Euler circuit in G, then

f (v0), f (v1), . . . , f (vn), f (v0) must be an Euler circuit in

H because it is a circuit that contains each edge exactly once.

d) Two isomorphic graphs must have the same crossing num-

ber because they can be drawn exactly the same way in the

plane. e) Suppose f is an isomorphism from G to H . Then

v is isolated in G if and only if f (v) is isolated in H . Hence,

the graphs must have the same number of isolated vertices.

f) Suppose f is an isomorphism from G to H . If G is bipar-

tite, then the vertex set ofG can be partitioned into V1 and V2

with no edge connecting vertices within V1 or vertices within

V2. Then the vertex set of H can be partitioned into f (V1)

and f (V2) with no edge connecting vertices within f (V1) or

vertices within f (V2). 31. 3 33. a) Yes b) No 35. No

37. Yes 39. If e is a cut edge with endpoints u and v, then

if we direct e from u to v, there will be no path in the di-

rected graph from v to u, or else e would not have been a

cut edge. Similar reasoning works if we direct e from v to u.

41. n − 1 43. Let the vertices represent the chickens. We

include the edge (u, v) in the graph if and only if chicken u

dominates chicken v. 45. By the handshaking theorem, the

average vertex degree is 2m/n, which equals the minimum de-

gree; it follows that all the vertex degrees are equal. 47. K3,3

and the skeleton of a triangular prism 49. a) A Hamilton

circuit in the graph exactly corresponds to a seating of the

knights at the Round Table such that adjacent knights are

friends. b) The degree of each vertex in this graph is at least

2n− 1− (n− 1) = n ≥ (2n/2), so by Dirac’s theorem, this

graph has a Hamilton circuit. c) a, b, d, f, g, z 51. a) 4

b) 2 c) 3 d) 4 e) 4 f) 2 53. a) Suppose thatG = (V ,E).
Let a, b ∈ V . We must show that the distance between a and

b inG is at most 2. If {a, b} ∈ E this distance is 1, so assume

{a, b} ∈ E. Because the diameter ofG is greater than 3, there

are vertices u and v such that the distance in G between u

and v is greater than 3. Either u or v, or both, is not in the set

{a, b}. Assume that u is different from both a and b. Either

{a, u} or {b, u} belongs to E; otherwise a, u, b would be a

path in G of length 2. So, without loss of generality, assume

{a, u} ∈ E. Thus v cannot be a or b, and by the same rea-

soning either {a, v} ∈ E or {b, v} ∈ E. In either case, this

gives a path of length less than or equal to 3 from u to v in

G, a contradiction. b) Suppose G = (V , E). Let a, b ∈ V .

We must show that the distance between a and b in G does

not exceed 3. If {a, b} ∈ E, the result follows, so assume that

{a, b} ∈ E. Because the diameter ofG is greater than or equal

to 3, there exist vertices u and v such that the distance in G

between u and v is greater than or equal to 3. Either u or v, or

both, is not in the set {a, b}. Assume u is different from both

a and b. Either {a, u} ∈ E or {b, u} ∈ E; otherwise a, u, b

is a path of length 2 in G. So, without loss of generality, as-

sume {a, u} ∈ E. Thus v is different from a and from b. If

{a, v} ∈ E, then u, a, v is a path of length 2 inG, so {a, v} ∈ E
and thus {b, v} ∈ E (or else there would be a path a, v, b of

length 2 in G). Hence, {u, b} ∈ E; otherwise u, b, v is a path

of length 2 in G. Thus, a, v, u, b is a path of length 3 in G,

as desired. 55. a, b, e, z 57. a, c, d, f, g, z 59. If G is

planar, then because e ≤ 3v − 6, G has at most 27 edges.

(If G is not connected it has even fewer edges.) Similarly, G

has at most 27 edges. But the union ofG andG isK11, which

has 55 edges, and 55 > 27 + 27. 61. Suppose that G is

colored with k colors and has independence number i. Be-

cause each color class must be an independent set, each color

class has no more than i elements. Thus there are at most ki

Answers to Odd-Numbered Exercises S-69

vertices. 63. a) C(n,m)pm(1 − p)n−m b) np c) To gen-

erate a labeled graph G, as we apply the process to pairs of

vertices, the random number x chosen must be less than or

equal to 1/2 whenG has an edge between that pair of vertices

and greater than 1/2 when G has no edge there. Hence, the

probability of making the correct choice is 1/2 for each edge

and 1/2C(n,2) overall. Hence, all labeled graphs are equally

likely. 65. Suppose P is monotone increasing. If the prop-

erty of not having P were not retained whenever edges are

removed from a simple graph, there would be a simple graph

G not having P and another simple graph G with the same

vertices but with some of the edges of G missing that has P .

But P is monotone increasing, so because G has P , so does

G obtained by adding edges toG . This is a contradiction. The

proof of the converse is similar.

CHAPTER 11

Section 11.1

1. (a), (c), (e) 3. a) a b) a, b, c, d, f , h, j , q, t c) e, g, i, k,

l,m, n, o,p, r , s, u d) q, r e) c f) p g) f , b, a h) e, f , l,m, n

5. No 7. Level 0: a; level 1: b, c, d; level 2: e through k (in

alphabetical order); level 3: l through r; level 4: s, t ; level 5:

u 9. a) The entire tree b) c, g, h, o, p and the four edges

cg, ch, ho, hp c) e alone 11. a) 1 b) 2 13. a) 3 b) 9

15. a) The “only if” part is Theorem 2 and the definition of a

tree. Suppose G is a connected simple graph with n vertices

and n − 1 edges. If G is not a tree, it contains, by Exercise

14, an edge whose removal produces a graphG , which is still

connected. If G is not a tree, remove an edge to produce a

connected graph G . Repeat this procedure until the result is

a tree. This requires at most n−1 steps because there are only

n − 1 edges. By Theorem 2, the resulting graph has n − 1

edges because it has n vertices. It follows that no edges were

deleted, soG was already a tree. b) Suppose thatG is a tree.

By part (a),G has n−1 edges, and by definition,G has no sim-

ple circuits. Conversely, suppose thatG has no simple circuits

and has n − 1 edges. Let c equal the number of components

ofG, each of which is necessarily a tree, say with ni vertices,

where
 c
i=1 ni = n. By part (a), the total number of edges in

G is
 c
i=1(ni−1) = n−c. Since we are given that this equals

n − 1, it follows that c = 1, i.e., G is connected and there-

fore satisfies the definition of a tree. 17. 9999 19. 2000

21. 999 23. 1,000,000 dollars 25. No such tree exists by

Theorem 4 because it is impossible for m = 2 or m = 84.

27. Complete binary tree of height 4:

Complete 3-ary tree of height 3:

29. a) By Theorem 3 it follows that n = mi + 1. Because

i+l = n, we have l = n−i, so l = (mi+1)−i = (m−1)i+1.

b) We have n = mi + 1 and i + l = n. Hence, i = n − l.
It follows that n = m(n − l) + 1. Solving for n gives

n = (ml − 1)/(m − 1). From i = n − l we obtain

i = [(ml − 1)/(m− 1)] − l = (l − 1)/(m− 1). 31. n− t
33. a) 1 b) 3 c) 5 35. a) The parent directory b) A subdi-

rectory or contained file c) A subdirectory or contained file in

the same parent directory d) All directories in the path name

e) All subdirectories and files continued in the directory or

a subdirectory of this directory, and so on f) The length of

the path to this directory or file g) The depth of the system,

i.e., the length of the longest path 37. Let n = 2k , where

k is a positive integer. If k = 1, there is nothing to prove

because we can add two numbers with n − 1 = 1 processor

in log 2 = 1 step. Assume we can add n = 2k numbers in

log n steps using a tree-connected network of n − 1 proces-

sors. Let x1, x2, . . . , x2n be 2n = 2k+1 numbers that we

wish to add. The tree-connected network of 2n−1 processors

consists of the tree-connected network of n − 1 processors

together with two new processors as children of each leaf. In

one step we can use the leaves of the larger network to find

x1 + x2, x3 + x4, . . . , x2n−1 + x2n, giving us n numbers,

which, by the inductive hypothesis, we can add in log n steps

using the rest of the network. Because we have used log n+ 1

steps and log(2n) = log 2+ log n = 1+ log n, this completes

the proof. 39. c only 41. c and h 43. Suppose a tree T

has at least two centers. Let u and v be distinct centers, both

with eccentricity e, with u and v not adjacent. Because T is

connected, there is a simple path P from u to v. Let c be any

other vertex on this path. Because the eccentricity of c is at

least e, there is a vertex w such that the unique simple path

from c to w has length at least e. Clearly, this path cannot

contain both u and v or else there would be a simple circuit.

In fact, this path from c to w leaves P and does not return

to P once it, possibly, follows part of P toward either u or v.

Without loss of generality, assume this path does not follow

P toward u. Then the path from u to c to w is simple and of

length more than e, a contradiction. Hence, u and v are adja-

cent. Now because any two centers are adjacent, if there were

more than two centers, T would contain K3, a simple circuit,

as a subgraph, which is a contradiction.

S-70 Answers to Odd-Numbered Exercises

45. T1 T2 T3 T4

T5
T6

T7

47. The statement is that every tree with n vertices has a path

of length n− 1, and it was shown only that there exists a tree

with n vertices having a path of length n− 1.

Section 11.2

1. banana

apple

coconut

peach

pear

mango

papaya

3. a) 3 b) 1 c) 4 d) 5

5. the

quick

brown

fox

dog
jumps

over

lazy

7. At least log3 4 = 2 weighings are needed, because there

are only four outcomes (because it is not required to determine

whether the coin is lighter or heavier). In fact, two weighings

suffice. Begin by weighing coin 1 against coin 2. If they bal-

ance, weigh coin 1 against coin 3. If coin 1 and coin 3 are the

same weight, coin 4 is the counterfeit coin, and if they are not

the same weight, then coin 3 is the counterfeit coin. If coin 1

and coin 2 are not the same weight, again weigh coin 1 against

coin 3. If they balance, coin 2 is the counterfeit coin; if they

do not balance, coin 1 is the counterfeit coin. 9. At least

 log3 13 = 3 weighings are needed. In fact, three weighings

suffice. Start by putting coins 1, 2, and 3 on the left-hand side

of the balance and coins 4, 5, and 6 on the right-hand side.

If equal, apply Example 3 to coins 1, 2, 7, 8, 9, 10, 11, and

12. If unequal, apply Example 3 to 1, 2, 3, 4, 5, 6, 7, and 8.

11. The least number is five. Call the elements a, b, c, and d.

First compare a and b; then compare c and d. Without loss of

generality, assume that a < b and c < d. Next compare a

and c. Whichever is smaller is the smallest element of the set.

Again without loss of generality, suppose a < c. Finally, com-

pare bwith both c and d to completely determine the ordering.

13. The first two steps are shown in the text. After 22 has been

identified as the second largest element, we replace the leaf

22 by −∞ in the tree and recalculate the winner in the path

from the leaf where 22 used to be up to the root. Next, we see

that 17 is the third largest element, so we repeat the process:

replace the leaf 17 by −∞ and recalculate. Next, we see that

14 is the fourth largest element, so we repeat the process: re-

place the leaf 14 by−∞ and recalculate. Next, we see that 11

is the fifth largest element, so we repeat the process: replace

the leaf 11 by −∞ and recalculate. The process continues in

this manner. We determine that 9 is the sixth largest element,

8 is the seventh largest element, and 3 is the eighth largest

element. The trees produced in all steps, except the second to

last, are shown here.

–⬁–⬁

17

17 11

17 1198

17 1198 314

–⬁–⬁–⬁

14

14 11

14 1198

1198 314

–⬁–⬁

11

8 11

1198

1198 3–⬁ –⬁

–⬁

Answers to Odd-Numbered Exercises S-71

–⬁–⬁

9

8 9

98

98 3–⬁ –⬁

–⬁

–⬁

–⬁

–⬁–⬁

3

3

–⬁ –⬁

–⬁

–⬁

–⬁–⬁–⬁

–⬁–⬁ 3

3

15. The value of a vertex is the list element currently there,

and the label is the name (i.e., location) of the leaf responsible

for that value.

procedure tournament sort(a1, . . . , an)

k := log n
build a binary tree of height k

for i := 1 to n

set the value of the ith leaf to be ai and its label to

be itself

for i := n+ 1 to 2k

set the value of the ith leaf to be −∞ and its label to

be itself

for i := k − 1 downto 0

for each vertex v at level i

set the value of v to the larger of the values of its

children and its label to be the label of the child

with the larger value

for i := 1 to n

ci := value at the root

let v be the label of the root

set the value of v to be −∞
while the label at the root is still v

v := parent(v)

set the value of v to the larger of the values of its

children and its label to be the label of the child

with the larger value

{c1, . . . , cn is the list in nonincreasing order}
17. k − 1, where n = 2k 19. a) Yes b) No c) Yes d) Yes

21. a: 000, e: 001, i: 01, k: 1100, o: 1101, p: 11110, u: 11111

23. a: 11; b: 101; c: 100; d: 01; e: 00; 2.25 bits (Note: This

coding depends on how ties are broken, but the average num-

ber of bits is always the same.) 25. There are four possible

answers in all, the one shown here and three more obtained

from this one by swapping t and v and/or swapping u and w.

0

0 1

0 1

t v

u

w

1

27. A:0001; B:101001; C:11001; D:00000; E:100;

F:001100; G:001101; H:0101; I:0100; J:110100101;

K:1101000; L:00001; M:10101; N:0110; O:0010; P:101000;

Q:1101001000; R:1011; S:0111; T:111; U:00111; V:110101;

W:11000; X:11010011; Y:11011; Z:1101001001 29. A:2;

E:1; N:010; R:011; T:02; Z:00 31. n 33. Because the tree

is rather large, we have indicated in some places to “see text.”

Refer to Figure 9; the subtree rooted at these square or circle

vertices is exactly the same as the corresponding subtree in

Figure 9. First player wins.

32

+1

–1

–1

–1

–1

+1

–1 –1 +1

+1

–1 –1see
text
+1

see
text
–1

see
text
+1

see
text
+1

21 11 131

1

1 2

31 322122

21 1

max

max

min

min

35. a) $1 b) $3 c) −$3 37. See the figures shown next.

a) 0 b) 0 c) 1 d) This position cannot have occurred in a

game; this picture is impossible.

a)

X

X X

XX

X

XX

XX

X

X

XX

X

X

XX

X

X

XX

O

O

O

OO

O

O

O

O

O

O

OO

O

O

O

O

O

O

00

draw

0

draw

0

0

b)

0+1

draw

0

X wins

+1

0

X

X

X

X

X

X

X

X

X

X

O

OO

O

O

OO

O

X

X

X

X

X

X

X

X

O

OO

O

O

OO

O

X

X

X

X

O

O

O

S-72 Answers to Odd-Numbered Exercises

c)

O O

X X

XX

O

O O O

X X

XX

O

O O

O

X X

XX

O

O O

X

X

X

X

OO

O O

O

X X

X

X

X

O

O O

X

XX

X

X

OO

O O

O

X X

X

X

X

O

O O

O

X

X

X

X

O

O O

X

XX

X

O

O O

X

XX

O

O O

X

XXX

O

0+10–1

draw draw

X wins

0

X wins

O wins
+10

+10

+1

–1

39. Proof by strong induction: Basis step: When there are

n = 2 stones in each pile, if first player takes two stones

from a pile, then second player takes one stone from the re-

maining pile and wins. If first player takes one stone from

a pile, then second player takes two stones from the other

pile and wins. Inductive step: Assume inductive hypothesis

that second player can always win if the game starts with two

piles of j stones for all 2 ≤ j ≤ k, where k ≥ 2, and

consider a game with two piles containing k + 1 stones each.

If first player takes all the stones from one of the piles, then

second player takes all but one stone from the remaining pile

and wins. If first player takes all but one stone from one of the

piles, then second player takes all the stones from the other pile

and wins. Otherwise first player leaves j stones in one pile,

where 2 ≤ j ≤ k, and k + 1 stones in the other pile. Second

player takes the same number of stones from the larger pile,

also leaving j stones there. At this point the game consists of

two piles of j stones each. By the inductive hypothesis, the

second player in that game, who is also the second player in

our actual game, can win, and the proof by strong induction

is complete. 41. 7; 49 43. Value of tree is 1. Note: The

second and third trees are the subtrees of the two children of

the root in the first tree whose subtrees are not shown because

of space limitations. They should be thought of as spliced into

the first picture.

X

5 – 4 = 1 6 – 4 = 2

6 – 5 = 1 5 – 5 = 0 4 – 5 = –1 6 – 5 = 1 5 – 5 = 0

+1

–2+1–1

–1

X

O O
X X

X X

O

X

O

X

O

OXOX

X

O

X

O

OX

X

X

O

X

O

X

4 – 6 = –2 6 – 6 = 0 5 – 6 = –1 6 – 6 = 0 5 – 6 = –1

–2

Answers to Odd-Numbered Exercises S-73

Section 11.3

1. 0

1
2 3

1.1 1.2

0 < 1 < 1.1 <1.2 < 2 < 3

3. 0

1 2

1.2 2.1
1.1

1.2.1
1.2.2

1.2.3

1.2.1.1
1.2.1.2 1.2.3.1 1.2.3.2

1.2.3.3

1.2.3.2.1 1.2.3.2.2

0 < 1 < 1.1 < 1.2 < 1.2.1 < 1.2.1.1 <
1.2.1.2 < 1.2.2 < 1.2.3 < 1.2.3.1 <
1.2.3.2 < 1.2.3.2.1 < 1.2.3.2.2 <
1.2.3.3 < 2 < 2.1

5. No 7. a, b, d, e, f, g, c 9. a, b, e, k, l, m, f, g, n, r,

s, c, d, h, o, i, j, p, q 11. d, b, i, e,m, j, n, o, a, f, c, g, k,

h, p, l 13. d, f, g, e, b, c, a 15. k, l, m, e, f, r, s, n, g, b,

c, o, h, i, p, q, j, d, a

17. a) +

+

*x

x/

yx

yx

+

+

* x

/

y

yx

b) ++x∗xy/xy,+x/+∗xyxy c) xxy∗+xy/+,xxy∗x+y/+
d) ((x + (x ∗ y))+ (x/y)), (x + (((x ∗ y)+ x)/y))
19. a) –

∩

BA A –

∪

AB

b) − ∩ AB ∪ A− B A c) AB ∩ AB A− ∪−
d) ((A∩B)− (A∪ (B −A))) 21. 14 23. a) 1 b) 1 c) 4

d) 2205

25. a

b c d e

f g h i

k l

j

27. Use mathematical induction. The result is trivial for a list

with one element. Assume the result is true for a list with

n elements. For the inductive step, start at the end. Find the

sequence of vertices at the end of the list starting with the

last leaf, ending with the root, each vertex being the last child

of the one following it. Remove this leaf and apply the in-

ductive hypothesis. 29. c, d, b, f, g, h, e, a in each case

31. Proof by mathematical induction. LetS(X) andO(X) rep-

resent the number of symbols and number of operators in the

well-formed formulaX, respectively. The statement is true for

well-formed formulae of length 1, because they have 1 sym-

bol and 0 operators. Assume the statement is true for all well-

formed formulae of length less than n. A well-formed formula

of length n must be of the form ∗XY , where ∗ is an operator

and X and Y are well-formed formulae of length less than n.

Then by the inductive hypothesis S(∗XY) = S(X)+ S(Y) =
[O(X) + 1] + [O(Y) + 1] = O(X) + O(Y) + 2. Because

O(∗XY) = 1 + O(X) + O(Y), it follows that S(∗XY) =
O(∗XY) + 1. 33. x y+ z x ◦+ x ◦, xyz++ yx++,

xyxy◦◦xy◦◦z◦+, xz×, zz+◦, yyyy◦◦◦, zx+yz+◦, for in-

stance

Section 11.4

1. m− n+ 1

3. a b c

g f e

d

5. ba

c
d e

h

l

j
g

f

i k

7. a) b)

c)

d) e) f)

S-74 Answers to Odd-Numbered Exercises

9. a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

11. a) 3 b) 16 c) 4 d) 5

13. a e h i

b f g j

c d

15.
a

b

c

d

e

f

g h i

j

k

l

mn

o
p

q

r

s

t

17. a) A path of length 6 b) A path of length 5 c) A path

of length 6 d) Depends on order chosen to visit the vertices;

may be a path of length 7 19. With breadth-first search, the

initial vertex is the middle vertex, and the n spokes are added

to the tree as this vertex is processed. Thus, the resulting tree

is K1,n. With depth-first search, we start at the vertex in the

middle of the wheel and visit a neighbor—one of the vertices

on the rim. From there we move to an adjacent vertex on the

rim, and so on all the way around until we have reached every

vertex. Thus, the resulting spanning tree is a path of length n.

21. With breadth-first search, we fan out from a vertex of de-

gree m to all the vertices of degree n as the first step. Next,

a vertex of degree n is processed, and the edges from it to all

the remaining vertices of degree m are added. The result is

a K1,n−1 and a K1,m−1 with their centers joined by an edge.

With depth-first search, we travel back and forth from one

partite set to the other until we can go no further. If m = n
or m = n − 1, then we get a path of length m + n − 1. Oth-

erwise, the path ends while some vertices in the larger partite

set have not been visited, so we back up one link in the path to

a vertex v and then successively visit the remaining vertices in

that set from v. The result is a path with extra pendant edges

coming out of one end of the path. 23. A possible set of

flights to discontinue are: Boston–NewYork, Detroit–Boston,

Boston–Washington, New York–Washington, New York–

Chicago, Atlanta–Washington, Atlanta–Dallas, Atlanta–Los

Angeles, Atlanta–St. Louis, St. Louis–Dallas, St. Louis–

Detroit, St. Louis–Denver, Dallas–San Diego, Dallas–LosAn-

geles, Dallas–San Francisco, San Diego–Los Angeles, Los

Angeles–San Francisco, San Francisco–Seattle. 25. Proof

by induction on the length of the path: If the path has length 0,

then the result is trivial. If the length is 1, then u is adjacent to

v, so u is at level 1 in the breadth-first spanning tree. Assume

that the result is true for paths of length l. If the length of a

path is l + 1, let u be the next-to-last vertex in a shortest

path from v to u. By the inductive hypothesis, u is at level

l in the breadth-first spanning tree. If u were at a level not

exceeding l, then clearly the length of the shortest path from

v to u would also not exceed l. So u has not been added to

the breadth-first spanning tree yet after the vertices of level l

have been added. Because u is adjacent to u , it will be added

at level l + 1 (although the edge connecting u and u is not

necessarily added). 27. a) No solution

Answers to Odd-Numbered Exercises S-75

b) c)

29. Start at a vertex and proceed along a path without repeat-

ing vertices as long as possible, allowing the return to the start

after all vertices have been visited. When it is impossible to

continue along a path, backtrack and try another extension of

the current path. 31. Take the union of the spanning trees

of the connected components of G. They are disjoint, so the

result is a forest. 33. m−n+c 35. Assume that we wish

to find the length of a shortest path from v1 to every other

vertex ofG using Algorithm 1. In line 2 of that algorithm, add

L(v1) := 0, and add the following as a third step in the then

clause at the end:L(w) := 1+L(v). 37. Add an instruction

to the BFS algorithm to mark each vertex as it is encoun-

tered. When BFS terminates we have found (all the vertices

of) one component of the graph. Repeat, starting at an un-

marked vertex, and continue in this way until all vertices

have been marked. 39. Trees 41. Use depth-first search

on each component. 43. If an edge uv is not followed while

we are processing vertex u during the depth-first search pro-

cess, then it must be the case that the vertex v had already been

visited. There are two cases. If vertex v was visited after we

started processing u, then, because we are not finished pro-

cessing u yet, v must appear in the subtree rooted at u (and

hence, must be a descendant of u). On the other hand, if the

processing of v had already begun before we started process-

ing u, then why wasn’t this edge followed at that time? It must

be that we had not finished processing v, in other words, that

we are still forming the subtree rooted at v, sou is a descendant

of v, and hence, v is an ancestor ofu. 45. Certainly these two

procedures produce the identical spanning trees if the graph

we are working with is a tree itself, because in this case there

is only one spanning tree (the whole graph). This is the only

case in which that happens, however. If the original graph has

any other edges, then by Exercise 43 they must be back edges

and hence, join a vertex to an ancestor or descendant, whereas

by Exercise 34, they must connect vertices at the same level

or at levels that differ by 1. Clearly these two possibilities

are mutually exclusive. Therefore there can be no edges other

than tree edges if the two spanning trees are to be the same.

47. Because the edges not in the spanning tree are not followed

in the process, we can ignore them. Thus we can assume that

the graph was a rooted tree to begin with. The basis step is

trivial (there is only one vertex), so we assume the inductive

hypothesis that breadth-first search applied to trees with n ver-

tices have their vertices visited in order of their level in the

tree and consider a tree T with n+ 1 vertices. The last vertex

to be visited during breadth-first search of this tree, say v, is

the one that was added last to the list of vertices waiting to

be processed. It was added when its parent, say u, was being

processed. We must show that v is at the lowest (bottom-most,

i.e., numerically greatest) level of the tree. Suppose not; say

vertex x, whose parent is vertex w, is at a lower level. Then w

is at a lower level than u. Clearly v must be a leaf, because any

child of v could not have been seen before v is seen. Consider

the tree T obtained from T by deleting v. By the inductive

hypothesis, the vertices in T must be processed in order of

their level in T (which is the same as their level in T , and the

absence of v in T has no effect on the rest of the algorithm).

Therefore umust have been processed before w, and therefore

v would have joined the waiting list before x did, a contradic-

tion. Therefore v is at the bottom-most level of the tree, and

the proof is complete. 49. We modify the pseudocode given

in Algorithm 2 by initializing m to be 0 at the beginning of

the algorithm, and adding the statements “m := m+ 1” and

“assignm to vertex v” after the statement that removes vertex

v fromL. 51. If a directed edge uv is not followed while we

are processing its tail u during the depth-first search process,

then it must be the case that its head v had already been visited.

There are three cases. If vertex v was visited after we started

processing u, then, because we are not finished processing u

yet, v must appear in the subtree rooted at u (and hence, must

be a descendant of u), so we have a forward edge. Otherwise,

the processing of v must have already begun before we started

processingu. If it had not yet finished (i.e., we are still forming

the subtree rooted at v), then u is a descendant of v, and hence,

v is an ancestor of u (we have a back edge). Finally, if the pro-

cessing of v had already finished, then by definition we have

a cross edge. 53. Let T be the spanning tree constructed in

Figure 3 and T1, T2, T3, and T4 the spanning trees in Figure 4.

Denote by d(T , T) the distance between T and T . Then

d(T , T1) = 6, d(T , T2) = 4, d(T , T3) = 4, d(T , T4) = 2,

d(T1, T2) = 4, d(T1, T3) = 4, d(T1, T4) = 6, d(T2, T3) = 4,

d(T2, T4) = 2, and d(T3, T4) = 4. 55. Suppose e1 = {u, v}
is as specified. Then T2 ∪ {e1} contains a simple circuit C

containing e1. The graph T1−{e1} has two connected compo-

nents; the endpoints of e1 are in different components. Travel

C from u in the direction opposite to e1 until you come to the

first vertex in the same component as v. The edge just crossed

is e2. Clearly, T2 ∪ {e1} − {e2} is a tree, because e2 was on C.

Also T1 − {e1} ∪ {e2} is a tree, because e2 reunited the two

components.

57. Exercise 18:

c

a

d

b

Exercise 19:

b

c

a

d

Exercise 20:

ba

d e

c

S-76 Answers to Odd-Numbered Exercises

Exercise 21:

a b c

d e

Exercise 22:

a cb

f de

Exercise 23:

d

c if l

a g

e kb h

j

59. First construct an Euler circuit in the directed graph. Then

delete from this circuit every edge that goes to a vertex pre-

viously visited. 61. According to Exercise 60, a directed

graph contains a circuit if and only if there are any back edges.

We can detect back edges as follows. Add a marker on each

vertex v to indicate what its status is: not yet seen (the initial

situation), seen (i.e., put into T) but not yet finished (i.e.,

visit(v) has not yet terminated), or finished (i.e., visit(v) has

terminated). A few extra lines in Algorithm 1 will accomplish

this bookkeeping. Then to determine whether a directed graph

has a circuit, we just have to check when looking at edge uv

whether the status of v is “seen.” If that ever happens, then we

know there is a circuit; if not, then there is no circuit.

Section 11.5

1. Deep Springs–Oasis, Oasis–Dyer, Oasis–Silver Peak, Sil-

ver Peak–Goldfield, Lida–Gold Point, Gold Point–Beatty,

Lida–Goldfield, Goldfield–Tonopah, Tonopah–Manhattan,

Tonopah–Warm Springs 3. {e, f }, {c, f }, {e, h}, {h, i},
{b, c}, {b, d}, {a, d}, {g, h}
5.

San Francisco

Denver

Chicago

Atlanta

New York
$1200

$900

$700 $8
00

7. {e, f }, {a, d}, {h, i}, {b, d}, {c, f }, {e, h}, {b, c}, {g, h}
9.

1

a

1

1b c

11. Instead of choosing minimum-weight edges at each stage,

choose maximum-weight edges at each stage with the same

properties.

13. a b

c d

e
4 3

3
3

15.

a b c d

e

f
g

h

i j k

l

m n o p

2

2 3

2

33

4 3
343

3
343

17. First find a minimum spanning tree T of the graphGwith

n edges. Then for i = 1 to n − 1, delete only the ith edge of

T fromG and find a minimum spanning tree of the remaining

graph. Pick the one of thesen−1 trees with the shortest length.

19. If all edges have different weights, then a contradiction is

obtained in the proof that Prim’s algorithm works when an

edge ek+1 is added to T and an edge e is deleted, instead of

possibly producing another spanning tree.

21. a b c d

e f g h

i j k l

13 2

24 4

3

1

3 12

23. Same as Kruskal’s algorithm, except start with T := this

set of edges and iterate from i = 1 to i = n− 1− s, where s

is the number of edges you start with.

25. a)
San Francisco

Denver

Chicago

Atlanta

New York
$1200

$900

$700 $8
00

b) 1a b c d

e
f

g
h

i j k l

2

1

2 3

33

3

3 1 2

27. By Exercise 24, at each stage of Sollin’s algorithm a forest

results. Hence, after n − 1 edges are chosen, a tree results. It

remains to show that this tree is a minimum spanning tree.

Let T be a minimum spanning tree with as many edges in

common with Sollin’s tree S as possible. If T = S, then there

is an edge e ∈ S − T added at some stage in the algorithm,

where prior to that stage all edges in S are also in T . T ∪ {e}
contains a unique simple circuit. Find an edge e ∈ S − T
and an edge e ∈ T − S on this circuit and “adjacent” when

viewing the trees of this stage as “supervertices.” Then by the

algorithm, w(e) ≤ w(e). So replace T by T − {e } ∪ {e }
to produce a minimum spanning tree closer to S than T was.

29. Each of the r trees is joined to at least one other tree by

a new edge. Hence, there are at most r/2 trees in the result

(each new tree contains two or more old trees). To accomplish

this, we need to add r − (r/2) = r/2 edges. Because the

number of edges added is integral, it is at least r/2 . 31. If

k ≥ log n, then n/2k ≤ 1, so n/2k = 1, so by Exer-

cise 30 the algorithm is finished after at most log n iterations.

33. Suppose that a minimum spanning tree T contains edge

e = uv that is the maximum weight edge in simple circuit C.

Delete e from T . This creates a forest with two components,

one containing u and the other containing v. Follow the edges

of the path C − e, starting at u. At some point this path must

jump from the component of T − e containing u to the com-

ponent of T − e containing v, say using edge f . This edge

cannot be in T , because e can be the only edge of T joining

the two components (otherwise there would be a simple cir-

cuit in T). Because e is the edge of greatest weight in C, the

Answers to Odd-Numbered Exercises S-77

weight of f is smaller. The tree formed by replacing e by f

in T therefore has smaller weight, a contradiction. 35. The

reverse-delete algorithm must terminate and produce a span-

ning tree, because the algorithm never disconnects the graph

and upon termination there can be no more simple circuits.

The edge deleted at each stage of the algorithm must have

been the edge of maximum weight in whatever circuits it was

a part of. Therefore by Exercise 33 it cannot be in any mini-

mum spanning tree. Since only edges that could not have been

in any minimum spanning tree have been deleted, the result

must be a minimum spanning tree.

Supplementary Exercises

1. Suppose T is a tree. Then clearly T has no simple circuits.

If we add an edge e connecting two nonadjacent vertices u and

v, then obviously a simple circuit is formed, because when e

is added to T the resulting graph has too many edges to be a

tree. The only simple circuit formed is made up of the edge e

together with the unique path in T from v to u. Suppose T sat-

isfies the given conditions. All that is needed is to show that T

is connected, because there are no simple circuits in the graph.

Assume that T is not connected. Then let u and v be in separate

connected components. Adding e = {u, v} does not satisfy

the conditions. 3. Suppose that a tree T has n vertices of

degrees d1, d2, . . . , dn, respectively. Because 2e = n
i=1 di

and e = n − 1, we have 2(n − 1) = n
i=1 di . Because each

di ≥ 1, it follows that 2(n− 1) = n+ n
i=1(di − 1), or that

n− 2 = n
i=1(di − 1). Hence, at most n− 2 of the terms of

this sum can be 1 or more. Hence, at least two of them are 0.

It follows that di = 1 for at least two values of i. 5. 2n− 2

7. A tree has no circuits, so it cannot have a subgraph homeo-

morphic toK3,3 orK5. 9. Color each connected component

separately. For each of these connected components, first root

the tree, then color all vertices at even levels red and all ver-

tices at odd levels blue. 11. Upper bound: kh; lower bound:

2 k / 2 h−1

13.

B0 B1 B2 B3 B4

15. BecauseBk+1 is formed from two copies ofBk , one shifted

down one level, the height increases by 1 as k increases by 1.

Because B0 had height 0, it follows by induction that Bk has

height k. 17. Because the root of Bk+1 is the root of Bk
with one additional child (namely the root of the other Bk),

the degree of the root increases by 1 as k increases by 1. Be-

cause B0 had a root with degree 0, it follows by induction that

Bk has a root with degree k.

19.
S0 S1 S2 S3

S4

21. Use mathematical induction. The result is trivial for k = 0.

Suppose it is true for k−1. Tk−1 is the parent tree for T . By in-

duction, the child tree forT can be obtained fromT0, . . . , Tk−2

in the manner stated. The final connection of rk−2 to rk−1 is

as stated in the definition of Sk-tree.

23. procedure level(T : ordered rooted tree with root r)

queue := sequence consisting of just the root r

while queue contains at least one term

v := first vertex in queue

list v

remove v from queue and put children of v onto

the end of queue

25. Build the tree by inserting a root for the address 0, and

then inserting a subtree for each vertex labeled i, for i a posi-

tive integer, built up from subtrees for each vertex labeled i.j

for j a positive integer, and so on. 27. a) Yes b) No c) Yes

29. The resulting graph has no edge that is in more than one

simple circuit of the type described. Hence, it is a cactus.

31. a b c

d e f

33. a b c

d e
f

i h g

35. a) 1 4 2 3 b) 1 5 3 4

2

c) 1 6 3 5

2 4

d) 3 1 7 2 6

5

4

37. 6 39. a) 0 for 00, 11 for 01, 100 for 10, 101 for 11 (exact

coding depends on how ties were broken, but all versions are

equivalent); 0.645n for string of length n b) 0 for 000, 100 for

001, 101 for 010, 110 for 100, 11100 for 011, 11101 for 101,

11110 for 110, 11111 for 111 (exact coding depends on how

ties were broken, but all versions are equivalent); 0.5326n for

string of length n 41. LetG be the graph obtained by delet-

S-78 Answers to Odd-Numbered Exercises

ing fromG the vertex v and all edges incident to v.A minimum

spanning tree ofG can be obtained by taking an edge of min-

imal weight incident to v together with a minimum spanning

tree ofG . 43. Suppose that edge e is the edge of least weight

incident to vertex v, and suppose that T is a spanning tree that

does not include e. Add e to T , and delete from the simple cir-

cuit formed thereby the other edge of the circuit that contains

v. The result will be a spanning tree of strictly smaller weight

(because the deleted edge has weight greater than the weight of

e). This is a contradiction, so T must include e. 45. Because

paths in trees are unique, an arborescenceT of a directed graph

G is just a subgraph ofG that is a tree rooted at r , containing

all the vertices ofG, with all the edges directed away from the

root. Thus the in-degree of each vertex other than r is 1. For

the converse, it is enough to show that for each v ∈ V there is a

unique directed path from r to v. Because the in-degree of each

vertex other than r is 1, we can follow the edges of T back-

wards from v. This path can never return to a previously visited

vertex, because that would create a simple circuit. Therefore

the path must eventually stop, and it can stop only at r , whose

in-degree is not necessarily 1. Following this path forward

gives the path from r to v required by the definition of ar-

borescence. 47. a) Run the breadth-first search algorithm,

starting from v and respecting the directions of the edges,

marking each vertex encountered as reachable. b) Running

breadth-first search on Gconv, again starting at v, respecting

the directions of the edges, and marking each vertex encoun-

tered, will identify all the vertices from which v is reachable.

c) Choose a vertex v1 and using parts (a) and (b) find the strong

component containing v1, namely all vertices w such that w

is reachable from v1 and v1 is reachable from w. Then choose

another vertex v2 not yet in a strong component and find the

strong component of v2. Repeat until all vertices have been in-

cluded. The correctness of this algorithm follows from the def-

inition of strong component and Exercise 17 in Section 10.4.

CHAPTER 12

Section 12.1

1. a) 1 b) 1 c) 0 d) 0 3. a) (1 · 1) + (0 · 1 + 0) =
1+ (0 + 0)= 1+ (1 + 0) = 1 + 1 = 1 b) (T ∧ T) ∨
(¬(F ∧ T) ∨ F) ≡ T

5. a) x y z xy

1 1 1 0
1 1 0 0
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 1
0 0 1 0
0 0 0 0

b) x y z x + yz

1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 1
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

c) x y z xy + xyz

1 1 1 0
1 1 0 1
1 0 1 1
1 0 0 1
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

d) x y z x(yz+ y z)

1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

7. a) 110 111

011

101

010

100

000 001

b) 110 111

011

101

010

100

000 001

c) 110 111

011

101

010

100

000 001

d) 110 111

011

101

010

100

000 001

9. (0, 0) and (1, 1) 11. x+xy = x ·1+xy = x(1+y) =
x(y + 1) = x · 1 = x

13.
xy + yz xy + yz

x y z xy yz xz + xz xy yz xz + xz

1 1 1 0 0 0 0 0 0 0 0

1 1 0 0 1 0 1 0 0 1 1

1 0 1 1 0 0 1 0 1 0 1

1 0 0 1 0 0 1 0 0 1 1

0 1 1 0 0 1 1 1 0 0 1

0 1 0 0 1 0 1 1 0 0 1

0 0 1 0 0 1 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0

15. x x + x x · x

0 0 0
1 1 1

17. x x + 1 x · 0

0 1 0
1 1 0

Answers to Odd-Numbered Exercises S-79

19. x + (x + y)

x y z y + z (y + z) x + y + z yz x(yz) xy (xy)z

1 1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 0 0 1 0

1 0 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 0 0 0 0

0 1 1 1 1 1 1 1 0 0 0

0 1 0 1 1 1 1 0 0 0 0

0 0 1 1 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

21.
x y xy (xy) x y x + y x + y (x + y) x y

1 1 1 0 0 0 0 1 0 0

1 0 0 1 0 1 1 1 0 0

0 1 0 1 1 0 1 1 0 0

0 0 0 1 1 1 1 0 1 1

23. 0 · 0 = 0 · 1 = 0; 1 · 1 = 1 · 0 = 0

25.
x y x ⊕ y x + y xy (xy) (x + y)(xy) xy xy xy + xy

1 1 0 1 1 0 0 0 0 0

1 0 1 1 0 1 1 1 0 1

0 1 1 1 0 1 1 0 1 1

0 0 0 0 0 1 0 0 0 0

27. a) True, as a table of values can show b) False; take x = 1,

y = 1, z = 1, for instance c) False; take x = 1, y = 1, z = 0,

for instance 29. By De Morgan’s laws, the complement of

an expression is like the dual except that the complement of

each variable has been taken. 31. 16 33. If we replace

each 0 by F, 1 by T, Boolean sum by ∨, Boolean product

by ∧, and by ¬ (and x by p and y by q so that the vari-

ables look like they represent propositions, and the equals

sign by the logical equivalence symbol), then xy = x + y
becomes ¬(p ∧ q) ≡ ¬p ∨ ¬q and x + y = x y becomes

¬(p∨ q) ≡ ¬p∧¬q. 35. By the domination, distributive,

and identity laws, x∨x = (x∨x)∧1 = (x∨x)∧(x∨x) = x ∨
(x ∧ x) = x ∨ 0 = x. Similarly, x ∧ x = (x ∧ x) ∨ 0= (x ∧
x) ∨ (x ∧ x) = x ∧ (x ∨ x) = x ∧ 1 = x. 37. Because

0 ∨ 1 = 1 and 0 ∧ 1 = 0 by the identity and commutative

laws, it follows that 0 = 1. Similarly, because 1 ∨ 0 = 1 and

1∧0 = 1, it follows that 1 = 0. 39. First, note that x∧0 = 0

and x ∨ 1 = 1 for all x, as can easily be proved. To prove the

first identity, it is sufficient to show that (x ∨ y)∨ (x ∧ y) = 1

and (x ∨ y) ∧ (x ∧ y) = 0. By the associative, commutative,

distributive, domination, and identity laws, (x ∨ y)∨(x∧y) =
y ∨ [x ∨ (x ∧ y)] = y ∨[(x ∨ x) ∧ (x ∨ y)] = y ∨ [1 ∧
(x ∨ y)] = y ∨ (x ∨ y)= (y ∨ y) ∨ x = 1 ∨ x = 1 and (x ∨
y)∧(x ∧ y)= y ∧ [x∧(x∨y)]=y∧[(x ∧ x)∨(x ∧ y)]= y ∧
[0∨(x∧ y)] = y∧(x∧y) = x ∧ (y ∧ y) = x∧0 = 0. The

second identity is proved in a similar way. 41. Using the

hypotheses, Exercise 35, and the distributive law it follows

that x = x ∨ 0 = x ∨ (x ∨ y) = (x ∨ x) ∨ y = x ∨ y = 0.

Similarly, y = 0. To prove the second statement, note that

x = x∧1 = x∧(x∧y) = (x∧x)∧y = x∧y = 1. Similarly,

y = 1. 43. Use Exercises 39 and 41 in the Supplementary

Exercises in Chapter 9 and the definition of a complemented,

distributed lattice to establish the five pairs of laws in the

definition.

Section 12.2

1. a) x yz b) xyz c) xyz d) x y z 3. a) xyz + xyz +
xyz + xy z + xyz + xyz + x yz b) xyz + xyz + xyz
c) xyz + xyz + xyz + xy z d) xyz + xy z 5. wxyz +
wxyz + wxyz + wxyz + wxy z + w x yz + w xyz +
wx y z 7. a) x + y + z b) x + y + z c) x + y + z
9. y1 + y2 + · · · + yn = 0 if and only if yi = 0 for i = 1,

2, . . . , n. This holds if and only if xi = 0 when yi = xi and

xi = 1 when yi = xi . 11. a) x + y + z b) (x + y + z)
(x + y + z)(x + y + z)(x + y + z)(x + y + z) c) (x +
y + z)(x + y + z)(x + y + z)(x + y + z) d) (x+ y+ z)
(x + y + z) (x + y + z) (x + y + z) (x + y + z) (x +
y + z) 13. a) x + y + z b) x + [y + (x + z)] c) (x + y)
d) [x + (x + y + z)]

15. a) x x x ↓ x

1 0 0
0 1 1

b) x y xy x ↓ x y ↓ y (x ↓ x) ↓ (y ↓ y)

1 1 1 0 0 1
1 0 0 0 1 0
0 1 0 1 0 0
0 0 0 1 1 0

c) x y x + y (x ↓ y) (x ↓ y) ↓ (x ↓ y)

1 1 1 0 1
1 0 1 0 1
0 1 1 0 1
0 0 0 1 0

17. a) {[(x | x) | (y | y)] | [(x | x) | (y | y)]} |
(z | z) b) {[(x | x) | (z | z)] | y} | {[(x | x) | (z | z)] | y}
c) x d) [x | (y | y)] | [x | (y | y)] 19. It is impossible to

represent x using + and · because there is no way to get the

value 0 if the input is 1.

Section 12.3

1. (x + y)y 3. (xy) + (z + x) 5. (x + y + z) +
(x + y + z)+ (x + y + z)

S-80 Answers to Odd-Numbered Exercises

7.

vwx

vwy

vwz

vxy

vxz

wxy

wxz

wyz

xyz

vwx + vwy + vwz + vxy + vxz +

vyz + wxy + wxz + wyz + xyz

v
w
x

v
w
y

v
w
z

v
x
y

v
x
z

w
x
y

w
x
z

w
y
z

x
y
z

v
y
z

vyz

9. HA

FA

FA

FA

FA

FA

s0

s1

s2

s3

s4

s5

s6

FA = full adder
HA = half adder

x0

y0

x1
y1

x2
y2

x3
y3

x4
y4

x5
y5

11.
x
y

bi

x
y

bi

x
y

bi

x
y

bi

d

x
y

bi

x
y

bi

x
y

bi

x
y

bi

bi+1

13.
x1

y1

x1

y1

x1

y1

x0
y0

x1y1 + x0 y0(x1y1 + x1y1)

15. a) x

x
x

b) x

x

x + y

y

y

c) x

y

xy

x

y

d)
x

x

y

y

x y

y

x

Answers to Odd-Numbered Exercises S-81

17.

Sum = x y

x

y

Carry = xy

Circuit

from

15 (d)

Circuit

from

15 (c)

19. c0
c1
x3

c0
c1
x2

c0
c1
x1

c0
c1
x0

Section 12.4

1. a) y y

x 1

x

b) xy and x y

3. a)

x

x

 y y

1

b)

x

x

 y y

1

1

c)

x

x

 y y

1

11

1

5. a) yz yz

x 1

yz yz

x

b) xyz, x y z, xyz

7. a) yz yz yz yz

x

x

1

b) yz yz yz yz

x

x 11

c) yz yz yz yz

x

x 1

111

9. Implicants: xyz, xyz, x y z, xyz, xy, xz, yz; prime impli-

cants: xy, xz, yz; essential prime implicants: xy, xz, yz

yz yz yz yz

x

x 1

111

11. The 3-cube on the right corresponds to w; the 3-cube given

by the top surface of the whole figure represents x; the 3-cube

given by the back surface of the whole figure represents y; the

3-cube given by the right surfaces of both the left and the right

3-cube represents z. In each case, the opposite 3-face repre-

sents the complemented literal. The 2-cube that represents wz

is the right face of the 3-cube on the right; the 2-cube that

represents xy is bottom rear; the 2-cube that represents y z is

front left.

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

S-82 Answers to Odd-Numbered Exercises

13. a) yz yz

wx

yz yz

wx

wx 1

wx

b) wxyz, w xyz, wxy z, wxy z

15. a)

x1x2

x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5

x1x2

x1x2

x1x2

1 1

b)

x1x2

x1x2

x1x2

x1x2 1

1

1

1

x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5

c)

x1x2

x1x2

x1x2

x1x2 1 1

1 1

1 1

1 1

x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5

d)

x1x2

x1x2

x1x2

x1x2 1 1

1 1

1 1

1 1

x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5

e)

x1x2

x1x2

x1x2

x1x2 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5

f)

x1x2

x1x2

x1x2

x1x2 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5

17. a) 64 b) 6 19. Rows 1 and 4 are considered adjacent.

The pairs of columns considered adjacent are: columns 1 and

4, 1 and 12, 1 and 16, 2 and 11, 2 and 15, 3 and 6, 3 and 10, 4

and 9, 5 and 8, 5 and 16, 6 and 15, 7 and 10, 7 and 14, 8 and

13, 9 and 12, 11 and 14, 13 and 16.

21. Smith
Jones

Adams

Smith
Jones

Burton

Marcus
Adams
Burton

23. a) xz b) y c) xz + xz + yz d) xz + xy + y z

25. a) wxz + wxy + wyz + wxyz b) xyz + w yz +
wxyz + wxyz + w xyz c) yz + wxy + wx y + w xyz

d) wy + yz+ xy + wxz+ w xz 27. x(y + z)

Answers to Odd-Numbered Exercises S-83

29.
z
y
x

z
y
x

z
y
x

z
w

w

31. x z+xz 33. We use induction on n. If n = 1, then we are

looking at a line segment, labeled 0 at one end and 1 at the other

end. The only possible value of k is also 1, and if the literal

is x1, then the subcube we have is the 0-dimensional subcube

consisting of the endpoint labeled 1, and if the literal is x1, then

the subcube we have is the 0-dimensional subcube consisting

of the endpoint labeled 0. Now assume that the statement is

true for n; we must show that it is true for n + 1. If the lit-

eral xn+1 (or its complement) is not part of the product, then

by the inductive hypothesis, the product when viewed in the

setting of n variables corresponds to an (n − k)-dimensional

subcube of the n-dimensional cube, and the Cartesian product

of that subcube with the line segment [0, 1] gives us a sub-

cube one dimension higher in our given (n+ 1)-dimensional

cube, namely having dimension (n+1)−k, as desired. On the

other hand, if the literal xn+1 (or its complement) is part of the

product, then the product of the remaining k − 1 literals cor-

responds to a subcube of dimension n− (k−1) = (n+1)−k
in the n-dimensional cube, and that slice, at either the 1-end

or the 0-end in the last variable, is the desired subcube.

Supplementary Exercises

1. a) x = 0, y = 0, z = 0; x = 1, y = 1, z = 1 b) x = 0,

y = 0, z = 0; x = 0, y = 0, z = 1; x = 0, y = 1, z = 0;

x = 1, y = 0, z = 1; x = 1, y = 1, z = 0; x = 1, y = 1,

z = 1 c) No values 3. a) Yes b) No c) No d) Yes 5. 22n−1

7. a) If F(x1, . . . , xn) = 1, then (F + G)(x1, . . . , xn) =
F(x1, . . . , xn) + G(x1, . . . , xn) = 1 by the dominance law.

Hence, F ≤ F + G. b) If (FG)(x1, . . . , xn) = 1, then

F(x1, . . . , xn) ·G(x1, . . . , xn)= 1. Hence,F(x1, . . . , xn) =
1. It follows that FG ≤ F . 9. Because F(x1, . . . , xn) = 1

implies that F(x1, . . . , xn) = 1, ≤ is reflexive. Suppose that

F ≤ G and G ≤ F . Then F(x1, . . . , xn) = 1 if and only

if G(x1, . . . , xn) = 1. This implies that F = G. Hence,

≤ is antisymmetric. Suppose that F ≤ G ≤ H . Then if

F(x1, . . . , xn) = 1, it follows thatG(x1, . . . , xn) = 1, which

implies that H(x1, . . . , xn) = 1. Hence, F ≤ H , so ≤
is transitive. 11. a) x = 1, y = 0, z = 0 b) x = 1,

y = 0, z = 0 c) x = 1, y = 0, z = 0

13.
x y x y x ⊕ y (x ⊕ y)

1 1 1 0 1
1 0 0 1 0
0 1 0 1 0
0 0 1 0 1

15. Yes, as a truth table shows 17. a) 6 b) 5 c) 5 d) 6

19. x

y
Sum = x 䊝 y

Carry = xy

21. x3 + x2x1 23. Suppose it were with weights a and b.

Then there would be a real number T such that xa + yb ≥ T
for (1,0) and (0,1), but with xa + yb < T for (0,0) and (1,1).

Hence, a ≥ T , b ≥ T , 0 < T , and a + b < T . Thus, a

and b are positive, which implies that a + b > a ≥ T , a

contradiction.

CHAPTER 13

Section 13.1

1. a) sentence⇒ noun phrase intransitive verb phrase

⇒ article adjective noun intransitive verb phrase⇒

article adjective noun intransitive verb⇒ . . .

(after 3 steps) . . .⇒ the happy hare runs.
b) sentence⇒ noun phrase intransitive verb phrase

⇒ article adjective noun intransitive verb phrase

⇒ article adjective noun intransitive verb

adverb…(after 4 steps)…⇒ the sleepy tortoise runs

quickly

c) sentence⇒ noun phrase transitive verb phrase

noun phrase⇒ article noun transitive verb phrase

noun phrase⇒ article noun transitive verb noun

phrase⇒ article noun transitive verb article

noun⇒ . . . (after 4 steps)…⇒ the tortoise passes the hare

d) sentence⇒ noun phrase transitive verb phrase

noun phrase⇒ article adjective noun transitive

verb phrase noun phrase⇒ article adjective noun

transitive verb noun phrase⇒ article adjective
noun transitive verb article adjective noun

⇒ . . . (after 6 steps)…⇒ the sleepy hare passes the happy

tortoise
3. The only way to get a noun, such as tortoise, at the end is to

have a noun phrase at the end, which can be achieved only via

the production sentence → noun phrase transitive verb

phrase noun phrase. However, transitive verb phrase→
transitive verb→ passes, and this sentence does not contain

passes.

5. a) S⇒ 1A⇒ 10B⇒ 101A⇒ 1010B⇒ 10101 b) Because

of the productions in this grammar, every 1 must be followed

by a 0 unless it occurs at the end of the string. c) All strings

consisting of a 0 or a 1 followed by one or more repetitions of

01

S-84 Answers to Odd-Numbered Exercises

7. S ⇒ 0S1 ⇒ 00S11 ⇒ 000S111 ⇒ 000111

9. a) S ⇒ 0S ⇒ 00S ⇒ 00S1 ⇒ 00S11 ⇒

00S111⇒ 00S1111⇒ 001111 b) S⇒ 0S⇒ 00S⇒

001A ⇒ 0011A ⇒ 00111A ⇒ 001111 11. S ⇒ 0SAB ⇒

00SABAB ⇒ 00ABAB ⇒ 00 AABB ⇒ 001ABB ⇒

0011BB ⇒ 00112B ⇒ 001122 13. a) S → 0, S → 1,

S → 11 b) S → 1S, S → λ c) S → 0A1, A → 1A,

A → 0A, A → λ d) S → 0A, A → 11A, A → λ

15. a) S → 00S, S → λ b) S → 10A, A → 00A, A → λ

c) S → AAS, S → BBS, AB → BA, BA→ AB, S → λ,

A → 0, B → 1 d) S → 0000000000A,A → 0A,A → λ

e) S → AS, S → ABS, S → A, AB → BA, BA → AB,

A → 0, B → 1 f) S → ABS, S → λ, AB → BA,

BA → AB, A → 0, B → 1 g) S → ABS, S → T ,

S→ U , T → AT , T → A, U → BU , U → B,AB → BA,

BA → AB, A → 0, B → 1 17. a) S → 0S, S → λ

b) S → A0, A → 1A, A → λ c) S → 000S, S → λ

19. a) Type 2, not type 3 b) Type 3 c) Type 0, not type 1

d) Type 2, not type 3 e) Type 2, not type 3 f) Type 0, not

type 1 g) Type 3 h) Type 0, not type 1 i) Type 2, not type 3

j) Type 2, not type 3 21. Let S1 and S2 be the start symbols

of G1 and G2, respectively. Let S be a new start symbol.

a) Add S and productions S → S1 and S → S2. b) Add S

and production S → S1S2. c) Add S and production S → λ

and S → S1S.

23. a) sentence

noun phrase intransitive verb phrase

article intransitive verb

the happy hare runs

adjective noun

b) c)sentence

noun phrase intransitive verb phrase

article

intransitive

verb

the tortoise runs

adjective noun

sleepy

adverb

quickly

sentence

noun phrase transitive verb phrase

article

the tortoise the

noun

hare

noun phrase

article noun

passes

transitive verb

Answers to Odd-Numbered Exercises S-85

d) sentence

noun phrase transitive verb phrase

article

the hare

noun

noun phrase

passes

transitive verbadjective

sleepy

article

the tortoise

nounadjective

happy

25. a) Yes b) No c) Yes d) No

27. signed integer

sign

0 digit

integer

integer

digit

9

integer1

digit–

29. a) S → "sign#"integer#
S → "sign#"integer# . "positive integer#
"sign# → +
"sign# → −
"integer# → "digit#
"integer# → "integer#"digit#
"digit# → i, i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 0

"positive integer# → "integer#"nonzero digit#
"positive integer# → "nonzero digit#"integer#
"positive integer# → "integer#"nonzero digit#
"integer#

"positive integer# → "nonzero digit#
"nonzero digit# → i, i = 1, 2, 3, 4, 5, 6, 7, 8, 9

b) "signed decimal number# ::= "sign#"integer# |
"sign#"integer# . "positive integer#

"sign# ::= +|−
"integer# ::= "digit# | "integer#"digit#
"digit# ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

"nonzero digit# ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

"positive integer# ::= "integer#"nonzero digit# |
"nonzero digit#"integer# | "integer#
"nonzero integer#"integer# | "nonzero digit#

c) signed decimal number

sign

–

digit 1

integer

integer

3

digit nonzero digit

positive integer

4

S-86 Answers to Odd-Numbered Exercises

31. a) "identifier# ::= "lcletter# | "identifier#"lcletter#
"lcletter# ::= a | b | c | · · · | z

b) "identifier# ::= "lcletter#"lcletter#"lcletter# | "lcletter#"lcletter#"lcletter#"lcletter# |
"lcletter#"lcletter#"lcletter#"lcletter#"lcletter# |
"lcletter#"lcletter#"lcletter#"lcletter#"lcletter#"lcletter#

"lcletter# ::= a | b | c | · · · | z
c) "identifier# ::= "ucletter# | "ucletter#"letter# | "ucletter#"letter#"letter# |

"ucletter#"letter#"letter#"letter# | "ucletter#"letter#"letter#"letter#"letter# |
"ucletter#"letter#"letter#"letter#"letter#"letter#

"letter# ::= "lcletter# | "ucletter#
"lcletter# ::= a | b | c | · · · | z
"ucletter# ::= A | B | C | · · · | Z

d) "identifier# ::= "lcletter#"digitorus#"alphanumeric#"alphanumeric#"alphanumeric# |
"lcletter#"digitorus#"alphanumeric#"alphanumeric#"alphanumeric#"alphanumeric#

"digitorus# ::= "digit# | _

"alphanumeric# ::= "letter# | "digit#
"letter# ::= "lcletter# | "ucletter#
"lcletter# ::= a | b | c | · · · | z
"ucletter# ::= A | B | C | · · · | Z
"digit# ::= 0 | 1 | 2 | · · · | 9

33. "identifier# ::= "letterorus# | "identifier#"symbol#
"letterorus# ::= "letter# | _

"symbol# ::= "letterorus# | "digit#
"letter# ::= "lcletter# | "ucletter#
"lcletter# ::= a | b | c | · · · | z
"ucletter# ::= A | B | C | · · · | Z
"digit# ::= 0 | 1 | 2 | · · · | 9

35. numeral ::= sign? nonzerodigit digit∗ decimal? | sign? 0 decimal?

sign ::= + | −
nonzerodigit ::= 1 | 2 | · · · | 9

digit ::= 0 | nonzerodigit

decimal ::= .digit∗
37. identifier ::= letterorus symbol∗

letterorus ::= letter | _

symbol ::= letterorus | digit

letter ::= lcletter | ucletter

lcletter ::= a | b | c | · · · | z
ucletter ::= A | B | C | · · · | Z
digit ::= 0 | 1 | 2 | · · · | 9

39. a) "expression#
"term#"term#"addOperator#
"factor#"factor#"factor#"mulOperator#"addOperator#
"identifier#"identifier#"identifier#"mulOperator#"addOperator#
a b c ∗+

b) Not generated

c) "expression#
"term#
"factor#"factor#"mulOperator#
"expression#"factor#"mulOperator#
"term#"term#"addOperator#"factor#"mulOperator#
"factor#"factor#"addOperator#"factor#"mulOperator#
"identifier#"identifier#"addOperator#"identifier#"mulOperator#
x y− z ∗

Answers to Odd-Numbered Exercises S-87

d) "expression#
"term#
"factor#"factor#"mulOperator#
"factor#"expression#"mulOperator#
"factor#"term#"mulOperator#
"factor#"factor#"factor#"mulOperator#"mulOperator#
"factor#"factor#"expression#"mulOperator#"mulOperator#
"factor#"factor#"term#"term#"addOperator#"mulOperator#"mulOperator#
"factor#"factor#"factor#"factor#"addOperator#"mulOperator#"mulOperator#
"identifier#"identifier#"identifier#"identifier#"addOperator#"mulOperator#"mulOperator#
w x y z−∗ /

e) "expression#
"term#
"factor#"factor#"mulOperator#
"factor#"expression#"mulOperator#
"factor#"term#"term#"addOperator#"mulOperator#
"factor#"factor#"factor#"addOperator#"mulOperator#
"identifier#"identifier#"identifier#"addOperator#"mulOperator#
a d e−∗

41. a) Not generated

b) "expression#
"term#"addOperator#"term#
"factor#"mulOperator#"factor#"addOperator#"factor#"mulOperator#"factor#
"identifier#"mulOperator#"identifier#"addOperator#"identifier#"mulOperator#"identifier#
a/b + c/d

c) "expression#
"term#
"factor#"mulOperator#"factor#
"factor#"mulOperator#("expression#)
"factor#"mulOperator#("term#"addOperator#"term#)
"factor#"mulOperator#("factor#"addOperator#"factor#)
"identifier#"mulOperator#("identifier#"addOperator#"identifier#)
m ∗ (n+ p)

d) Not generated

e) "expression#
"term#
"factor#"mulOperator#"factor#
("expression#)"mulOperator#("expression#)
("term#"addOperator#"term#)"mulOperator#("term#"addOperator#"term#) ("factor#"addOperator#"factor#)"mulOperator#("factor#"addOperator

("identifier#"addOperator#"identifier#)"mulOperator#("identifier#"addOperator#"identifier#)
(m+ n) ∗ (p − q)

S-88 Answers to Odd-Numbered Exercises

Section 13.2

1. a)

s2

s0

s11, 1

0, 0

0, 0
1, 0 1, 1Start 0, 0

b)

s0

1, 0

s1

s3 s2

1, 1

0, 0

1, 0

1, 1

0, 1

0,
 1

0, 0

Start

c)

s4

s0

s10, 1

s3

s2

1, 0

0, 0

1, 0

1, 1
0, 1

0, 0 1, 1

1, 1

0, 1

Start

3. a) 01010 b) 01000 c) 11011 5. a) 1100 b) 00110110 c) 11111111111

7.

s0 s1 s2 s3 s4 s5 s6
5, 0 5, 0 5, 0 5, 0 5, 0 5, 0

10,0 10, 0 10, 0 10, 0 10, 0

25, 0 25, 0 25, 5 25, 20

10, 5

25, 25

x, 0 x, 0 x, 0 x, 0 x, 0 x, 0

x, soda pop

Start

x, 0

5, 0

10,0

25, 0

s7 5, 5

10, 10

x 僆{ }

= cola
= root beer
= ginger ale

25, 10 25, 15

, ,

9.

Start

0, 1

0, 1

1, 0

1, 0
0,

 0

0, 0

0, 0

1, 0

1, 1

1,
 1

s0

s2

s1 s3

s4

11.

s0

s1

s3

s2

v,
 b

q,
 a p, c

Start

x, a

i, b
x, c

v = Valid ID

i = Invalid ID

p = Valid password

q = Invalid password

a = "Enter user ID"

b = "Enter password"

c = Prompt

x = Any input

Answers to Odd-Numbered Exercises S-89

13.

s0 s1 s2 s3 s4

{5, 10, 25}, open

Start

25, open

5, nothing

10, nothing

5, nothing

10, nothing

5, nothing

10, nothing

5, nothing

25, open

10, open

25, open

25, open

15. Let s0 be the start state and let s1 be the state representing

a successful call. From s0, inputs of 2, 3, 4, 5, 6, 7, or 8 send

the machine back to s0 with output of an error message for the

user. From s0 an input of 0 sends the machine to state s1, with

the output being that the 0 is sent to the network. From s0 an

input of 9 sends the machine to state s2 with no output; from

there an input of 1 sends the machine to state s3 with no out-

put; from there an input of 1 sends the machine to state s1 with

the output being that the 911 is sent to the network. All other

inputs while in states s2 or s3 send the machine back to s0 with

output of an error message for the user. From s0 an input of 1

sends the machine to state s4 with no output; from s4 an input

of 2 sends the machine to state s5 with no output; and this path

continues in a similar manner to the 911 path, looking next

for 1, then 2, then any seven digits, at which point the machine

goes to state s1 with the output being that the ten-digit input

is sent to the network. Any “incorrect” input while in states s5
or s6 (that is, anything except a 1 while in s5 or a 2 while in

s6) sends the machine back to s0 with output of an error mes-

sage for the user. Similarly, from s4 an input of 8 followed by

appropriate successors drives us eventually to s1, but inappro-

priate outputs drive us back to s0 with an error message. Also,

inputs while in state s4 other than 2 or 8 send the machine

back to state s0 with output of an error message for the user.

17.

s0

s1

Start

s2

s3

s4

0, 0

0, 0

0, 0

1, 0

1, 0

s5

s6

1, 1

1, 10,
 0

1,
 0

1, 0

0, 0 0, 0

1, 0

0,0

S-90 Answers to Odd-Numbered Exercises

19.

s0 s1 s2 s3 s4 s5 s6
Start

s7
C, 0 O, 0 M, 0 P, 0 U, 0 T, 0 E, 0

R, 1
 – {C}, 0Σ

Σ

 – {M}, 0Σ

 – {P}, 0Σ

 – {U}, 0Σ

 – {T}, 0Σ

 – {E}, 0Σ

 – {R}, 0Σ

 – {O}, 0

21. f

Input

State 0 1 g

s0 s1 s2 1
s1 s1 s0 1
s2 s1 s2 0

23. a) 11111
b) 1000000
c) 100011001100

25.

s0
Start s3

1

1

0

1

0

1

1
0

s1

1 0

s2

00

Section 13.3

1. a) {000,001,1100,1101} b) {000,0011,010,0111}
c) {00, 011, 110, 1111} d) {000000, 000001, 000100,

000101, 010000, 010001, 010100, 010101} 3. A={1, 101},
B = {0,11,000}; A= {10,111,1010,1000,10111,101000},
B = {λ}; A = {λ, 10}, B = {10, 111, 1000} or A = {λ},
B = {10, 111, 1010, 1000, 10111, 101000} 5. a) The set

of strings consisting of zero or more consecutive bit pairs 10

b) The set of strings consisting of all 1s such that the number

of 1s is divisible by 3, including the null string c) The set of

strings in which every 1 is immediately preceded by a 0 d) The

set of strings that begin and end with a 1 and have at least two

1s between every pair of 0s 7. A string is in A∗ if and only

if it is a concatenation of an arbitrary number of strings in A.

Because each string inA is also inB, it follows that a string in

A∗ is also a concatenation of strings in B. Hence, A∗ ⊆ B∗.
9. a) Yes b) Yes c) No d) No e) Yes f) Yes 11. a) Yes

b) No c) Yes d) No 13. a) Yes b) Yes c) No d) No e) No

f) No 15. We use structural induction on the input string y.

The basis step considers y = λ, and for the inductive step we

write y = wa, where w ∈ I ∗ and a ∈ I . For the basis step, we

have xy = x, so we must show that f (s, x) = f (f (s, x), λ).
But part (i) of the definition of the extended transition func-

tion says that this is true. We then assume the inductive

hypothesis that the equation holds for w and prove that

f (s, xwa) = f (f (s, x), wa). By part (ii) of the definition,

the left-hand side of this equation equals f (f (s, xw), a).

By the inductive hypothesis, f (s, xw) = f (f (s, x), w),

so f (f (s, xw), a) = f (f (f (s, x), w), a). The right-

hand side of our desired equality is, by part (ii) of the

definition, also equal to f (f (f (s, x), w), a), as desired.

17. {0, 10, 11}{0, 1}∗ 19. {0m1n | m ≥ 0 and n ≥ 1}
21. {λ}∪ {0}{1} ∗ {0}∪ {10,11}{0, 1} ∗ ∪ {0}{1} ∗ {01}{0, 1}∗ ∪
{0}{1}∗{00}{0}∗{1}{0, 1}∗ 23. Let s2 be the only final state,

and put transitions from s2 to itself on either input. Put a tran-

sition from the start state s0 to s1 on input 0, and a transition

from s1 to s2 on input 1. Create state s3, and have the other

transitions from s0 and s1 (as well as both transitions from s3)

lead to s3. 25. Start state s0, only final state s3; transitions

from s0 to s0 on 0, from s0 to s1 on 1, from s1 to s2 on 0,

from s1 to s1 on 1, from s2 to s0 on 0, from s2 to s3 on 1,

from s3 to s3 on 0, from s3 to s3 on 1 27. Have five states,

with only s3 final. For i = 0, 1, 2, 3, transition from si to

itself on input 1 and to si+1 on input 0. Both transitions from

s4 are to itself. 29. Have four states, with only s3 final. For

i = 0, 1, 2, transition from si to si+1 on input 1 but back to

s0 on input 0. Both transitions from s3 are to itself.

Answers to Odd-Numbered Exercises S-91

31.

Start

0 0

1 1 1

0

11 0
0

1

0, 1

0

s0

s3

s1

s4

s5 s6

s2

33. Start state s0, only final state s1; transitions from s0 to s0
on 1, from s0 to s1 on 0, from s1 to s1 on 1; from s1 to s0 on 0

35. Start

1

0

0 0

1

1

0, 1

s0

s3

s1 s2

37. Suppose that such a machine exists, with start state s0
and other state s1. Because the empty string is not in the

language but some strings are accepted, we must have s1
as the only final state, with at least one transition from s0

to s1. Because the string 0 is not in the language, the tran-

sition from s0 on input 0 must be to itself, so the transi-

tion from s0 on input 1 must be to s1. But this contradicts

the fact that 1 is not in the language. 39. Change each fi-

nal state to a nonfinal state and vice versa. 41. Same ma-

chine as in Exercise 25, but with s0, s1, and s2 as the final

states 43. {0,01,11} 45. {λ,0} ∪ {0m1n |m≥ 1, n ≥ 1}
47. {10n | n ≥ 0} ∪ {10n10m | n,m ≥ 0} 49. The union of

the set of all strings that start with a 0 and the set of all strings

that have no 0s

51.
s0

s2

s3 s4

s5

Start 0

0

1

1

0

1
0, 1

0, 1

0, 1

s1

53. Add a nonfinal state s3 with transitions to s3 from s0 on

input 0, from s1 on input 1, and from s3 on input 0 or 1.

55. a)
s0

Start

0, 1

s1

s2

0

1 0, 1

b)
s0 s1

s4s2

s3

Start 1

1

0

0

0, 1

0, 1

0, 1

c)

s0 s1 s2

s3

1 1

0
00

0,1

1

Start

57. Suppose that M is a finite-state automaton that accepts

the set of bit strings containing an equal number of 0s and 1s.

SupposeM has n states. Consider the string 0n+11n+1. By the

pigeonhole principle, as M processes this string, it must en-

counter the same state more than once as it reads the first n+1

0s; so let s be a state it hits at least twice. Then k 0s in the input

takes M from state s back to itself for some positive integer

k. But thenM ends up exactly at the same place after reading

0n+1+k1n+1 as it will after reading 0n+11n+1. Therefore, be-

causeM accepts 0n+11n+1 it also accepts 0n+k+11n+1, which

is a contradiction. 59. We know from Exercise 58d that the

equivalence classes of Rk are a refinement of the equivalence

classes of Rk−1 for each positive integer k. The equivalence

classes are finite sets, and finite sets cannot be refined indef-

initely (the most refined they can be is for each equivalence

class to contain just one state). Therefore this sequence of re-

finements must remain unchanged from some point onward.

It remains to show that as soon as we have Rn = Rn+1, then

Rn = Rm for all m > n, from which it follows that Rn = R∗,
and so the equivalence classes for these two relations will be

the same. By induction, it suffices to show that if Rn = Rn+1,

then Rn+1 = Rn+2. Suppose that Rn+1 = Rn+2. This means

that there are states s and t that are (n+ 1)-equivalent but not

S-92 Answers to Odd-Numbered Exercises

(n + 2)-equivalent. Thus there is a string x of length n + 2

such that, say, f (s, x) is final but f (t, x) is nonfinal. Write

x = aw, where a ∈ I . Then f (s, a) and f (t, a) are not

(n + 1)-equivalent, because w drives the first to a final state

and the second to a nonfinal state. But f (s, a) and f (t, a)

are n-equivalent, because s and t are (n+ 1)-equivalent. This

contradicts the fact that Rn = Rn+1. 61. a) By the way the

machine M was constructed, a string will drive M from the

start state to a final state if and only if that string drivesM from

the start state to a final state. b) For a proof of this theorem, see

a source such as Introduction to Automata Theory, Languages,

and Computation (2nd Edition) by John E. Hopcroft, Rajeev

Motwani, and Jeffrey D. Ullman (Addison-Wesley, 2000).

Section 13.4

1. a) Any number of 1s followed by a 0 b) Any number of

1s followed by one or more 0s c) 111 or 001 d) A string

of any number of 1s or 00s or some of each in a row e) λ

or a string that ends with a 1 and has one or more 0s be-

fore each 1 f) A string of length at least 3 that ends with 00

3. a) No b) No c) Yes d) Yes e) Yes f) No g) No h) Yes

5. a) 0 ∪ 11 ∪ 010 b) 000000∗ c) (0 ∪ 1)((0 ∪ 1)(0 ∪ 1))∗

d) 0∗10∗ e) (1∪01∪001)∗ 7. a) 00∗1 b) (0∪1)(0∪1)(0∪
1)∗0000∗ c) 0∗1∗ ∪1∗0∗ d) 11(111)∗(00)∗ 9. a) Have the

start state s0, nonfinal, with no transitions. b) Have the start

state s0, final, with no transitions. c) Have the nonfinal start

state s0 and a final state s1 and the transition from s0 to s1

on input a. 11. Use an inductive proof. If the regular ex-

pression for A is ∅, λ, or x, the result is trivial. Otherwise,

suppose the regular expression for A is BC. Then A = BC
whereB is the set generated by B andC is the set generated by

C. By the inductive hypothesis there are regular expressions

B and C that generate BR and CR , respectively. Because

AR = (BC)R = CRBR,C B is a regular expression for AR .

If the regular expression for A is B ∪ C, then the regular ex-

pression forAR is B ∪C because (B ∪C)R = (BR)∪ (CR).
Finally, if the regular expression for A is B∗, then it is easy to

see that (B)∗ is a regular expression for AR .

13. a)

s0 s1 s2 s3 s4 s5
Start

0 1

0
0

0
1

0 0 1
1

Answers to Odd-Numbered Exercises S-93

b)

Start s0 s1

s2 s3

s5s4 s6 s7

0

0

0

1

1

1

1

1

1

1
1 0

1

1

1

0

c)

s0

s1 s2 s3 s4 s5

s10s9s8s7s6

s11 s12

0 1

0

0

0

1

1

0

0

0

0 0
0

00

1

00

Start

15. S → 0A, S → 1B, S → 0, A→ 0B, A→ 1B, B →
0B, B → 1B 17. S → 0C, S → 1A, S → 1, A → 1A,

A → 0C, A → 1, B → 0B, B → 1B, B → 0, B → 1,

C → 0C, C → 1B, C → 1. 19. This follows because

input that leads to a final state in the automaton corresponds

uniquely to a derivation in the grammar. 21. The “only if”

part is clear because I is finite. For the “if” part let the states be

si0 , si1 , si2 , . . . , sin , where n = l(x). Because n ≥ |S|, some

state is repeated by the pigeonhole principle. Let y be the part

of x that causes the loop, so that x = uyv and y sends sj to

sj , for some j . Then uykv ∈ L(M) for all k. Hence, L(M)

is infinite. 23. Suppose that L = {02n1n, n = 0, 1, 2 . . .}
were regular. Let S be the set of states of a finite-state machine

recognizing this set. Let z = 02n1n where 3n ≥ |S|. Then

by the pumping lemma, z = 02n1n = uvw, l(v) ≥ 1, and

uviw ∈ {02n1n | n ≥ 0}. Obviously v cannot contain both

0 and 1, because v2 would then contain 10. So v is all 0s or

all 1s, and hence, uv2w contains too many 0s or too many

1s, so it is not in L. This contradiction shows that L is not

regular. 25. Suppose that the set of palindromes over {0, 1}

were regular. Let S be the set of states of a finite-state machine

recognizing this set. Let z = 0n10n, where n > |S|. Apply the

pumping lemma to get uviw ∈ L for all nonnegative integers

i where l(v) ≥ 1, and l(uv) ≤ |S|, and z = 0n10n = uvw.

Then v must be a string of 0s (because n > |S|), so uv2w is

not a palindrome. Hence, the set of palindromes is not regu-

lar. 27. Let z = 1; then 111 /∈ L but 101 ∈ L, so 11 and

10 are distinguishable. For the second question, the only way

for 1z to be in L is for z to end with 01, and that is also the

only way for 11z to be inL, so 1 and 11 are indistinguishable.

29. This follows immediately from Exercise 28, because the n

distinguishable strings must drive the machine from the start

state to n different states. 31. Any two distinct strings of the

same length are distinguishable with respect to the language

P of all palindromes, because if x and y are distinct strings

of length n, then xxR ∈ P but yxR /∈ P . Because there

are 2n different strings of length n, Exercise 29 tells us that

any deterministic finite-state automaton for recognizing palin-

dromes must have at least 2n states. Because n is arbitrary, this

is impossible.

S-94 Answers to Odd-Numbered Exercises

Section 13.5

1. a) The nonblank portion of the tape contains the string 1111

when the machine halts. b) The nonblank portion of the tape

contains the string 011 when the machine halts. c) The non-

blank portion of the tape contains the string 00001 when the

machine halts. d) The nonblank portion of the tape contains

the string 00 when the machine halts. 3. a) The machine

halts (and accepts) at the blank following the input, having

changed the tape from 11 to 01. b) The machine changes ev-

ery other occurrence of a 1, if any, starting with the first, to

a 0, and otherwise leaves the string unchanged; it halts (and

accepts) when it comes to the end of the string. 5. a) Halts

with 01 on the tape, and does not accept b) The first 1 (if any)

is changed to a 0 and the others are left alone. The input is not

accepted.

7. (s0, 0, s1, 1, R), (s0, 1, s0, 1, R) 9. (s0, 0, s0, 0, R),

(s0, 1, s1, 1, R), (s1, s1, 0, R), (s1, 1, s1, 0, R) 11. (s0, 0,

s1, 0, R), (s0, 1, s0, 0, R), (s1, 0, s1, 0, R), (s1, 1, s0, 0, R),

(s1, B, s2, B, R) 13. (s0, 0, s0, 0, R), (s0, 1, s1, 1, R),

(s1, 0, s1, 0, R), (s1, 1, s0, 1, R), (s0, B, s2, B, R) 15. If

the input string is blank or starts with a 1 the machine halts in

nonfinal state s0. Otherwise, the initial 0 is changed to an M

and the machine skips past all the intervening 0s and 1s until

it either comes to the end of the input string or else comes to

anM . At this point, it backs up one square and enters state s2.

Because the acceptable strings must have a 1 at the right for

each 0 at the left, there must be a 1 here if the string is accept-

able. Therefore, the only transition out of s2 occurs when this

square contains a 1. If it does, the machine replaces it with

an M and makes its way back to the left; if it does not, the

machine halts in nonfinal state s2. On its way back, it stays in

s3 as long as it sees 1s, then stays in s4 as long as it sees 0s.

Eventually either it encouters a 1 while in s4 at which point it

halts without accepting or else it reaches the rightmostM that

had been written over a 0 at the start of the string. If it is in

s3 when this happens, then there are no more 0s in the string,

so it had better be the case that there are no more 1s either;

this is accomplished by the transitions (s3,M, s5,M,R) and

(s5, M, s6, M, R), and s6 is a final state. Otherwise the ma-

chine halts in nonfinal state s5. If it is in s4 when this M is

encountered, things start all over again, except now the string

will have had its leftmost remaining 0 and its rightmost re-

maining 1 replaced byMs. So the machine moves, staying in

state s4, to the leftmost remaining 0 and goes back into state

s0 to repeat the process.

17. (s0, B, s9, B, L), (s0, 0, s1, 0, L), (s1, B, s2, E, R),

(s2, M, s2, M, R), (s2, 0, s3, M, R), (s3, 0, s3, 0, R),

(s3, M, s3, M, R), (s3, 1, s4, M, R), (s4, 1, s4, 1, R),

(s4, M, s4, M, R), (s4, 2, s5, M, R), (s5, 2, s5, 2, R),

(s5, B, s6, B, L), (s6, M, s8, M, L), (s6, 2, s7, 2, L),

(s7, 0, s7, 0, L), (s7, 1, s7, 1, L), (s7, 2, s7, 2, L),

(s7, M, s7, M, L), (s7, E, s2, E, R), (s8, M, s8, M, L),

(s8, E, s9, E,L)whereM andE are markers, withEmarking

the left end of the input

19. (s0, 1, s1, B, R), (s1, 1, s2, B, R), (s2, 1, s3, B, R),

(s3, 1, s4, 1, R), (s1, B, s4, 1, R), (s2, B, s4, 1, R),

(s3, B, s4, 1, R)

21. (s0, 1, s1, B, R), (s1, 1, s2, B, R), (s1, B, s6, B, R),

(s2, 1, s3, B, R), (s2, B, s6, B, R), (s3, 1, s4, B, R),

(s3, B, s6, B, R), (s4, 1, s5, B, R), (s4, B, s6, B, R),

(s6, B, s10, 1, R), (s5, 1, s5, B, R), (s5, B, s7, 1, R),

(s7, B, s8, 1, R), (s8, B, s9, 1, R), (s9, B, s10, 1, R)

23. (s0, 1, s0, 1, R), (s0, B, s1, B, L), (s1, 1, s2, 0, L),

(s2, 0, s2, 0, L), (s2, 1, s3, 0, R), (s2, B, s6, B, R),

(s3, 0, s3, 0, R), (s3, 1, s3, 1, R), (s3, B, s4, 1, R),

(s4, B, s5, 1, L), (s5, 1, s5, 1, L), (s5, 0, s2, 0, L),

(s6, 0, s6, 1, R), (s6, 1, s7, 1, R), (s6, B, s7, B,R)

25. (s0, 0, s0, 0, R), (s0, ∗, s5, B, R), (s3, ∗, s3, ∗, L),
(s3, 0, s3, 0, L), (s3, 1, s3, 1, L), (s3, B, s0, B, R),

(s5, 1, s5, B, R), (s5, 0, s5, B, R), (s5, B, s6, B, L),

(s6, B, s6, B, L), (s6, 0, s7, 1, L), (s7, 0, s7, 1, L),

(s0, 1, s1, 0, R), (s1, 1, s1, 1, R), (s1, ∗, s2, ∗, R),
(s2, 0, s2, 0, R), (s2, 1, s3, 0, L), (s2, B, s4, B, L),

(s4, 0, s4, 1, L), (s4, ∗, s8, B, L), (s8, 0, s8, B, L),

(s8, 1, s8, B, L)

27. Suppose that sm is the only halt state for the Turing ma-

chine in Exercise 22, where m is the largest state number,

and suppose that we have designed that machine so that when

the machine halts the tape head is reading the leftmost 1 of

the answer. Renumber each state in the machine for Exer-

cise 18 by adding m to each subscript, and take the union of

the two sets of five-tuples. 29. a) No b) Yes c) Yes d) Yes

31. (s0, B, s1, 1, L), (s0, 1, s1, 1, R), (s1, B, s0, 1, R)

Supplementary Exercises

1. a) S → 00S111, S → λ b) S → AABS, AB → BA,

BA → AB, A → 0, B → 1, S → λ c) S → ET, T →
0TA, T → 1T B, T → λ, 0A→ A0, 1A→ A1, 0B → B0,

1B → B1, EA→ E0, EB → E1, E→ λ

3. S S

A

B

A

B

A

B

A

A

B

B

((

((

((

((

((

S

A

B

A

B

A

((

((

BA

B

((

((

Answers to Odd-Numbered Exercises S-95

5.

0

S

S

S 0

0

S

S 0

0

0S

7. No, take A = {1, 10} and B = {0, 00}. 9. No, take A =
{00, 000, 00000} and B = {00, 000}. 11. a) 1 b) 1 c) 2

d) 3 e) 2 f) 4

13.

Start 1, 0 1, 0 1, 0 1, 1

1, 1

0, 0 0, 0 0, 0 0, 0 0, 1

s0 s1 s2 s3 s4

Start 1 1 1 1

1

0 0 0 0 0

s0 s1 s2 s3 s4

15.

Start 1, 0 1, 0 1, 0 1, 1

0, 0

s0 s1 s2 s3 s4

1, 1
0, 0

0, 0
0, 0

0, 0

Start 1 1 1 1

0

s0 s1 s2 s3 s4 1

0
0

0
0

17. a) nnk+1mnk b) nnk+1mn

19.

{s0, s1, s2, s3}

{s0, s1, s2,} {s0, s1, s3,} {s0, s2, s3,} {s1, s2, s3,}

{s0, s1} {s0, s2} {s0, s3} {s1, s2} {s1, s3} {s2, s3}

{s0} {s1} {s2} {s3}

0

0,1

0 0 0

0
1

1 1 1

0
0

0

0

0 0

1

1 1 1 1
1

1
0 0 0

1 1 1

1

0, 1

Start

21. a)

Start s0 s1 s2
1 0

0

1

b)
s0 s4 s5

s1 s2 s3

Start 1 0, 1

0

1

11
0

1

c)

Start 0 0

1

1

s0 s1 s2

23. Construct the deterministic finite automaton for A with

states S and final states F . For A use the same automaton but

with final states S − F .

25. a) Start

0, 1

s0 s1 s2 s3

s6s4

s5

0 0 0

11 1 1

0

1

1

0

S-96 Answers to Odd-Numbered Exercises

b)

s1 s2 s3

s4 s5 s6 s7

s0

0 1

1 0 1

1
11

00
0

Start

0

c)
Start s0 s1 s2

s3 s4 s5

s6 s7 s8

s9 s10 s11

s12 s13 s14

s15 s16 s17

s18 s19 s20

00

1 0 1 0 1

1 1 1

0

0

00

1 0 1 0 1

1 1 1

0

0

00

1 0 1 0 1

1 1 1

0

0

1 1 0, 1

00

27. Suppose thatL = {1p | p is prime} is regular, and let S be

the set of states in a finite-state automaton recognizing L. Let

z = 1p where p is a prime with p > |S| (such a prime exists

because there are infinitely many primes). By the pumping

lemma it must be possible to write z = uvw with l(uv) ≤ |S|,
l(v) ≥ 1, and for all nonnegative integers i, uviw ∈ L.

Because z is a string of all 1s, u = 1a , v = 1b, and w = 1c,

where a + b+ c = p, a + b ≤ n, and b ≥ 1. This means that

uviw = 1a1bi1c = 1(a+b+c)+b(i−1) = 1p+b(i−1). Now take

i = p+1.Thenuviw= 1p(1+b). Becausep(1+b) is not prime,

uviw ∈ L, which is a contradiction. 29. (s0, ∗, s5, B, L),
(s0, 0, s0, 0, R), (s0, 1, s1, 0, R), (s1, ∗, s2, ∗, R),
(s1, 1, s1, 1, R), (s2, 0, s2, 0, R), (s2, 1, s3, 0, L), (s2, B, s4,

B, L), (s3, ∗, s3, ∗, L), (s3, 0, s3, 0, L), (s3, 1, s3, 1, L),

(s3, B, s0, B, R), (s4, ∗, s8, B, L), (s4, 0, s4, B, L), (s5, 0,

s5, B, L), (s5, B, s6, B, R), (s6, 0, s7, 1, R),

(s6, B, s6, B, R), (s7, 0, s7, 1, R), (s7,1,s7, 1, R),

(s8, 0, s8, 1, L), (s8, 1, s8,1,L)

APPENDIXES

Appendix 1

1. Suppose that 1 is also a multiplicative identity for the real

numbers. Then, by definition, we have both 1 · 1 = 1 and

1 ·1 = 1 , so 1 = 1. 3. For the first part, it suffices to show

that [(−x) · y] + (x · y) = 0, because Theorem 2 guarantees

that additive inverses are unique. Thus [(−x) · y] + (x · y) =
(−x + x) · y (by the distributive law) = 0 · y (by the inverse

law) = y · 0 (by the commutative law) = 0 (by Theorem 5).

The second part is almost identical. 5. It suffices to show

that [(−x) · (−y)] + [−(x · y)] = 0, because Theorem 2

guarantees that additive inverses are unique: [(−x) · (−y)]+
[−(x · y)] = [(−x) · (−y)] + [(−x) · y] (by Exercise 3)

= (−x) · [(−y) + y] (by the distributive law) = (−x) · 0

(by the inverse law) = 0 (by Theorem 5). 7. By definition,

−(−x) is the additive inverse of −x. But −x is the additive

inverse of x, so x is the additive inverse of −x. Therefore

−(−x) = x by Theorem 2. 9. It suffices to show that

(−x − y) + (x + y) = 0, because Theorem 2 guarantees

that additive inverses are unique: (−x − y) + (x + y) =
[(−x) + (−y)] + (x + y) (by definition of subtraction) =
[(−y) + (−x)] + (x + y) (by the commutative law) =
(−y)+ [(−x)+ (x + y)] (by the associative law) = (−y)+
[(−x + x)+ y] (by the associative law) = (−y)+ (0+ y)
(by the inverse law) = (−y) + y (by the identity law) =
0 (by the inverse law). 11. By definition of division and

uniqueness of multiplicative inverses (Theorem 4) it suffices

to prove that [(w/x) + (y/z)] · (x · z) = w · z + x · y.

But this follows after several steps, using the distributive law,

the associative and commutative laws for multiplication, and

the definition that division is the same as multiplication by

the inverse. 13. We must show that if x > 0 and y > 0,

then x · y > 0. By the multiplicative compatibility law, the

commutative law, and Theorem 5, we have x · y > 0 · y = 0.

15. First note that if z < 0, then−z > 0 (add−z to both sides

of the hypothesis). Now given x > y and −z > 0, we have

x · (−z) > y · (−z) by the multiplicative compatibility law.

But by Exercise 3 this is equivalent to −(x · z) > −(y · z).
Then add x · z and y · z to both sides and apply the various

laws in the obvious ways to yield x · z < y · z. 17. The

additive compatibility law tells us that w+y < x+y and (to-

gether with the commutative law) that x + y < x + z. By the

transitivity law, this gives the desired conclusion. 19. By

Theorem 8, applied to 1/x in place of x, there is an inte-

ger n (necessarily positive, because 1/x is positive) such that

n > 1/x. By the multiplicative compatibility law, this means

thatn·x > 1. 21. We must show that if (w, x)∼ (w , x) and

(y, z) ∼ (y , z), then (w+ y, x + z) ∼ (w + y , x + z) and

that (w ·y+x ·z, x ·y+w ·z) ∼ (w · y +x · z , x ·y +w · z).
Thus we are given that w+x = x+w and that y+z = z+y ,
and we want to show that w+y+x +z = x+z+w +y and

that w·y+x·z+x ·y +w ·z = x·y+w·z+w ·y +x ·z . For the

first of the desired conclusions, add the two given equations.

Answers to Odd-Numbered Exercises S-97

For the second, rewrite the given equations as w−x = w −x
and y − z = y − z , multiply them, and do the algebra.

Appendix 2

1. a) 23 b) 26 c) 24 3. a) 2y b) 2y/3 c) y/2

5.

2

4

6

8

10

(a)

−1 2−2

2

4

6

8

10

(b)

−1 2−2

2

4

6

8

10

(c)

−1 2−2

Appendix 3

1. After the first block is executed, a has been assigned the

original value of b and b has been assigned the original value

of c, whereas after the second block is executed, b is assigned

the original value of c and a the original value of c as well.

3. The following construction does the same thing.

i := initial value

while i ≤ final value

statement

i := i + 1

Photo Credits

CHAPTER 1 Page 2: © National Library of Medicine; p. 5: Library of Congress, Prints and Photographs

Division [LC-USZ62-61664]; p. 11: © University Archives. Department of Rare Books and

Special Collections. Princeton University Library; p. 20: Courtesy Indiana University Archives;

p. 29: By permission of the London Mathematical Society; p. 31: © Mary Evans Picture Li-

brary; p. 34: Imaging Department © President and Fellows of Harvard College: Mabel Lisle

Ducasse. Henry Maurice Sheffer (1883-1964), 20th century Pastel on paper; sight: 60.9 x 46.9 cm

(24 x 18 1/2 in.) Harvard Art Museums/Fogg Art Museum, Harvard University Portrait Collection,

Department of Philosophy, CNA1; p. 38: © Bettman/Corbis; p. 50: © The Granger Collection,

NewYork; p. 97, 98: © Master and Fellows of Trinity College, Cambridge.

CHAPTER 2 Page 117: Library of Congress, Prints and Photographs Division [LC-USZ62-74393]; p. 119: Li-

brary of Congress, Prints and Photographs Division [LC-USZ62-49535]; p. 120: © The Royal

Society; p. 122: Scientists and Inventors Portrait File Collection, Archives Center, National Mu-

seum of American History, Smithsonian Institution; p. 163: Courtesy Neil Sloane and AT&T

Shannon Lab; p. 171: © AIP Emilio Segre Visual Archives, Lande Collection.

CHAPTER 3 Page 192: © from THE SCIENTISTS OF THE ANCIENT WORLD, by Anderson/

Stephenson. pg. 90. Illustration by Marie le Glatin Keis; p. 207(top): Bachmann,

Paul. Die Arithmetik Der Quadratischen Formen. Verlag und Druck von BG Teubner.

Leipzig. Berlin. 1923; p. 207(bottom): Smith Collection, Rare Book & Manuscript Library,

Columbia University in the City of New York; p. 208: © Stanford University News Service;

p. 227: Photo courtesy of Dr. Stephen Cook/Photo byYvonne Heath.

CHAPTER 4 Page 241: Scientists and Inventors Portrait File Collection, Archives Center, National Museum of

American History, Smithsonian Institution; p. 259: From Math Tutor Archive; p. 261: © Mary

Evans Picture Library; p. 263: © Reed Hutchinson/UCLA; p. 267: Scientists and Inventors

Portrait File Collection,Archives Center, National Museum ofAmerican History, Smithsonian Insti-

tution; p. 269: ©Académie des sciences-Institut de France; p. 282: From A History of Science,

Technology and Philosophy in the 16th and 17th Centuries, byAbrahamWolf. Reprinted by permis-

sion of Harper Collins Publishers Ltd. ©AbrahamWolf; p. 283: © The MathematicalAssociation

of America 2011. All rights reserved; p. 299: © David Meyer, ZDNet UK; p. 300(top): Cour-

tesy Ronald L. Rivest; p. 300(middle): © Kristen Tsolis; p. 300(bottom): Courtesy Leonard

Adleman.

CHAPTER 5 Page 348: © The Granger Collection, New York; p. 349: © Mary Evans Picture Library;

p. 374: Courtesy Tony Hoare; p. 381: © Matthew Naythons/TimePix/Getty Images.

CHAPTER 6 Page 400: © The Granger Collection, New York; p. 404: Courtesy Mrs. Jane Burch;

p. 419: © National Library of Medicine.

CHAPTER 7 Page 446: © Roger-Viollet/The Image Works; p. 447: From A Concise History of Mathe-

matics by Dirk Struik, 1967, Dover Publications; p. 459: © The Granger Collection, New

York; p. 472: Courtesy Stephen Stigler; p. 489: © Académie des sciences-Institut de France;

p. 490: Smith Collection, Rare Book &Manuscript Library, Columbia University in the City of New

York.

CHAPTER 8 Page 507: © KIK-IRPA, Brussels; p. 508: Photo courtesy of SIAM.

C-1

C-2 Photo Credits

CHAPTER 9 Page 604: Courtesy Stephen Warshall; p. 623: © Deutsches Museum; p. 636: © The Royal

Society.

CHAPTER 10 Page 660: © The Royal Society; p. 695: Scientists and Inventors Portrait File Collection,Archives

Center, NationalMuseum ofAmericanHistory, Smithsonian Institution; p. 700: ©Master and Fel-

lows of Trinity College, Cambridge; p. 701(top): © Rosemarie Dirac; p. 701(bottom): © Rev-

erence to University History Photobase; p. 706: Julius Petersen:Metoder og Teorier. Edition no. 6,

Det Schoenbergske Forlag, Copenhagen 1912. Photo courtesy Bjarne Toft; p. 710: Courtesy, Eds-

ger W. Dijkstra; p. 723: Courtesy, the Archive of Polish Mathematicians, at the Institute of Math-

ematics of the Polish Academy of Sciences; p. 728: By permission of the London Mathematical

Society.

CHAPTER 11 Page 750: © Master and Fellows of Trinity College, Cambridge; p. 763: Courtesy, California

State University, Santa Cruz; p. 782: Courtesy, the Archive of Polish Mathematicians, at the

Institute of Mathematics of the PolishAcademy of Sciences; p. 798: Courtesy, Robert Clay Prim;

p. 800: Courtesy Joseph B. Kruskal. Photo by Rachel Kruskal.

CHAPTER 12 Page 812: Courtesy MIT Museum; p. 830: Courtesy Maurice Karnaugh; p. 837: Courtesy

Edward J. McCluskey; p. 839: Courtesy the Quine Family.

CHAPTER 13 Page 853: © Donna Coveney/MIT; p. 854(top): Courtesy IBM, Almaden Research Center;

p. 854(bottom): Courtesy Peter Naur; p. 867: Photo from I Have a Photographic Memory by Paul

Halmos (1987),American Mathematical Society; p. 872: © Bettman/Corbis; p. 886: © Science

Photo Library/Photo Researchers, Inc.; p. 897: © UniversityArchives. Department of Rare Books

and Special Collections. Princeton University Library.

APPENDIX 1 Page A-4: © Hulton-Deutsch Collection/Corbis.

Index of Biographies

Ada, Augusta (Countess of Lovelace), 31
Adleman, Leonard, 300
al-Khowarizmi, Abu Ja‘far Mohammed Ibn Musa, 192
Archimedes, A–4
Aristotle, 2

Bachmann, Paul Gustav Heinrich, 207
Backus, John, 854
Bayes, Thomas, 472
Bellman, Richard, 508
Bernoulli, James, 459
Bézout, Étienne, 269
Bienaymé, Irenée-Jules, 489
Boole, George, 5

Cantor, Georg, 117
Cardano, Girolamo, 446
Carmichael, Robert Daniel, 283
Carroll, Lewis (Charles Dodgson), 50
Catalan, Eugène Charles, 507
Cayley, Arthur, 750
Chebyshev, Pafnuty Lvovich, 490
Chomsky, Avram Noam, 853
Church, Alonzo, 897
Cocks, Clifford, 299
Cook, Stephen, 227

De Morgan, Augustus, 29
Descartes, René, 122
Dijkstra, Edsger Wybe, 710
Dirac, Gabriel Andrew, 701
Dirichlet, G. Lejeune, 500
Dodgson, Charles (Lewis Carroll), 50

Eratosthenes, 259
Erdős, Paul, 636
Euclid, 267
Euler, Leonhard, 695

Fermat, Pierre de, 282
Fibonacci, 348

Gauss, Karl Friedrich, 241
Goldbach, Christian, 264

Hall, Philip, 660
Hamilton, William Rowan, 700
Hardy, Godfrey Harold, 97
Hasse, Helmut, 623
Hilbert, David, 171
Hoare, C. Anthony R., 374

Hopper, Grace Brewster Murray, 872
Huffman, David A., 763

Karnaugh, Maurice, 830
Kempe, Alfred Bray, 728
Kleene, Stephen Cole, 867
Knuth, Donald E., 208
Kruskal, Joseph Bernard, 800
Kuratowski, Kazimierz, 723

Lamé, Gabriel, 349
Landau, Edmund, 207
Laplace, Pierre-Simon, 447
,,Lukasiewicz, Jan, 782

McCarthy, John, 381
McCluskey, Edward J., 837
Mersenne, Marin, 261

Naur, Peter, 854

Ore, Øystein, 701

Pascal, Blaise, 419
Peirce, Charles Sanders, 38
Petersen, Julius Peter Christian, 706
Prim, Robert Clay, 798

Quine, Willard van Orman, 839

Ramanujan, Srinivasa, 98
Ramsey, Frank Plumpton, 404
Rivest, Ronald, 300
Russell, Bertrand, 110

Shamir, Adi, 300
Shannon, Claude Elwood, 812
Sheffer, Henry Maurice, 34
Sloane, Neil, 163
Smullyan, Raymond, 20
Stirling, James, 151

Tao, Terence, 263
Tukey, John Wilder, 11
Turing, Alan Mathison, 886

Vandermonde, Alexandre-Théophile, 420
Venn, John, 120

Warshall, Stephen, 604
I-1

Index

3x + 1 conjecture, 107
23 problems

Hilbert’s list, 171, 895

Absorption laws, 27
for Boolean algebra, 815, 816
for lattices, 637
for propositions, 27
for sets, 129

Abstract definition of Boolean algebra, 817
Academic collaboration graph, 645
Academic papers, 645
Academy, Plato’s, 2
Accepted language, 868
Accepted strings, 868
Accepting state

finite-state automaton, 867
Ackermann’s function, 359
Ackermann, Wilhelm, 359
Acquaintanceship graph, 645

paths in, 680
Actors, 645
Ada, Augusta (Countess of Lovelace), 29, 31
Adapting proofs, 101
Adders, 826–827

full, 826, 843
half, 826, 843

Adding an edge to a graph, 664
Addition,

algorithm for, 250
finite-state machine for, 862
of functions, 141
of matrices, 178
of multisets, 138
of subsets, 793
of term in a geometric progression, 318–319

Addition (rule of inference), 71
Additive Compatibility Law, A-2
Additive inverses

for integers modulo m, 243
Address system, universal, 772–773
Adjacency list, 668
Adjacency matrices, 669–671, 736

counting paths between vertices by, 688–689
Adjacent cells, 830
Adjacent vertices, 651, 654, 735
Adjective, 848
Adleman, Leonard, 299, 300
Advanced Encryption Standard (AES), 298
Adverb, 848
Affine cipher, 296, 306

decryption, 296
encryption, 296

Affine transformation, 296
Affirming the conclusion

fallacy of, 75
Agrawal, Manindra, 262
Airline routes, 647
Airline system, weighted graphs modeling, 708
Airline ticket identification numbers, 293
Al-Khowarizmi, Abu Ja’far Mohammed ibn Musa,

192
Alcuin ofYork, 692
Aleph null, 171
Alexander the Great, 2

Algebra
fundamental theorem of, 241
origin of term, 192

Algebra, Boolean
abstract definition of, 817
definition of, 843
identities of, 814–816

ALGOL, 854
Algorithm(s), 191–202, 218–229, 232,

div and mod, 253
addition, 250
approximation, 235, 715
binary search, 194
binary search tree, 757–769
Boolean product of zero–one matrices, 223
brute-force, 224
brute-force for closest pair of points, 225
coloring graphs, 731, 734
complexity of, 218–229

average-case, 482–484
of breadth-first search algorithms, 791
of depth-first search algorithms, 789
of Dijkstra’s algorithm, 714
of merge sort, 532

computer time used by, 228
constructing base b expansions, 248
correctness of, 193
deferred acceptance, 204, 343
definition of, 191
definiteness of, 193
describing using English, 192
Dijkstra’s, 709–714, 737
divide-and-conquer, 527, 565
division, 239, 306
division, 239
effectiveness of, 193
Euclidean, 267, 347
Euler circuits, 696–697
Euler paths, 697–698
evaluating polynomials, 230
extended Euclidean, 270, 273
fast integer multiplication, 528–529
fast matrix multiplication, 528
Fibonacci numbers, 365–367
finding maximum element, 193
finiteness of, 193
Fleury’s, 697, 706
Floyd’s, 717
Gale–Shapley, 204
generality of, 193
generating combinations, 437–438
generating permutations, 434–436
greedy, 198, 232, 324–325, 764, 798, 804
greedy change-making, 199
history of word, 192
Huffman coding, 763–764
inorder traversal, 779
input to an, 193
iterative, for Fibonacci numbers, 366
Kruskal’s, 799–801, 804
linear search, 194, 232
matrix multiplication, 222
merge sort, 367–370
minimum spanning trees, 798–802
modular exponentiation, 253
Monte Carlo, 463–465

multiplication, 251
optimal, 230
origin of term, 246
output of an, 193
parallel, 661
postorder traversal, 779
preorder traversal, 777
Prim’s, 798–799, 804
probabilistic, 445, 463–465, 494
properties of, 193
proving primality, 262
pseudocode, 192–193
reverse delete, 803
recursive, 360–370, 378

binary search, 363
correctness of, 364–367
for computing an, 361
for computing greatest common divisor, 362
for Fibonacci numbers, 365
linear search, 363
modular exponentiation, 363

searching, 194–196, 232
binary, 528
breadth-first, 789–791, 804
depth-first, 787–789, 804
linear average-case complexity of, 483–484
linear recursive sequential, 363

sequential search, 194
serial, 661
shortest-path, 709–714
Sollin’s, 803
sorting, 196–198

topological, 627–629, 634
spanning trees, 798–802
specifying, 192
ternary search, 203
topological sorting, 628
transitive closure, 603
traversal, 773–779
Warshall’s, 603–606, 634

Algorithm for finding maximum
time complexity of, 219

Algorithmic paradigm, 224, 232
backtracking, 224
brute force, 224
divide-and-conquer, 224
dynamic programming, 224, 507
greedy algorithms, 198, 224
probabilistic algorithms, 224, CH7

Alice, 302, 303, 305
Alice in Wonderland, 50
Alpha-beta pruning, 769, 809
Alphabet, 849, 899
Alphanumeric character, 391
A Mathematician’s Apology, 97
Ambiguous context-free grammar, 901
Amino acids, 389
Analytic Engine, 31
Ancestors of vertex, 747, 803
AND, 18
AND gate, 21, 823, 843
Antecedent of a conditional statement, 6
Antichain, 637

I-2

Index I-3

Antisymmetric relation, 577–578, 633
representing

using digraphs, 595
using matrices, 591–592

Appel, Kenneth, 728
Application(s)

of backtracking, 791–793
of Bayes’ theorem, 471–472
of congruences, 287
of graphs colorings, 731–732
of graph theory, 644–649, 658–663, 680–681, 687,

698, 702, 731–732
of inclusion–exclusion, 558–564
of pigeonhole principle, 403–405
of propositional logic, 16–22
of satisfiability, 32–34
of trees, 757–769

Approximation algorithm, 235, 715
Arborescence, 807
Archimedean property, A-5
Archimedes, A-4
Archimedes’ screw, A-4
Argument, 69, 110

Cantor diagonalization, 173, 186
premises of, 69
propositional logic, 70
valid, 69, 110

Argument form, 70, 110
valid, 70, 110

Aristotle, 2, 3
Arithmetic

fundamental theorem of, 306, 336–337
modular, 240–306
modulo m, 243

Arithmetic mean, 100, 332
Arithmeticorum Libri Duo (Maurolico), 313
Arithmetic progression, 186

of primes, 262, 263
Array linear, 662

two-dimensional, 662
Arrow, Peirce, 36
Ars Conjectandi (Bernoulli), 459
Art Gallery

problem, 735
theorem, 735

Article, 848
Articulation points, 683
Artificial intelligence, 138, 380

fuzzy logic in, 16
Assertion

final, 372, 378
initial, 372, 378

Assignment, stable, 343
optimal, 343

Assignment of jobs, 565
Assignments, frequency, 732
Assignment statements, A-11–A-12
Associated homogenous recurrence relations, 520
Associative laws, 27

for addition, A-1
for Boolean algebra, 815, 818
for lattices, 637
for multiplication, A-1
for propositions, 27
for sets, 129

Associativity
for integers modulo m, 243

Asymmetric relation, 582
Asymptotic functions, 218
Asynchronous transfer mode (ATM), 149
AT&T network, 682
Autokey cipher

keystream, 309

Autokey ciphers, 309
Automated theorem proving, 114
Automaton

deterministic, 872, 873
deterministic finite-state, 899
finite-state, 866–872

nondeterministic, 873
linear bounded, 886
nondeterministic, 873
nondeterministic finite-state, 899
pushdown, 886
quotient, 878
set not recognized by, 885

Average-case complexity of algorithms, 482–484
Average-case time complexity, 220, 232

of linear search, 221
Avian influenza, 476
AVL-trees, 808
Award

Turing, 854
Axiom(s), 185, A-1–A-5

Completeness, A-2
field, A-1
for real numbers, A-1–A-2
for set of positive integers, A-5
in proving basic facts, A-3–A-5
of Mathematical Induction, A-5
order, A-2
Zermelo–Fraenkel, 176

B-tree of degree k, 805
Bézout coefficients, 270, 306
Bézout’s identity, 270
Bézout’s theorem, 269, 306
Bézout, Étienne, 269
Bachmann, Paul, 206
Bachmann, Paul Gustav Heinrich, 207
Back edges, 788
Back substitution

solving systems of linear congruences using, 279
Backtracking, 787–789, 804

applications of, 791–793
in directed graphs, 793

Backus, John, 854
Backus–Naur form, 899
Backus–Naur form (BNF), 854
Backward differences, 513
Backward substitution

iteration using, 160
Bacon, Kevin, 680–681
Bacon number, 680
Bacteria, 168, 501
Balanced rooted trees, 753, 804
Balanced strings of parentheses, 382
Balanced ternary expansions, 256
Bandwidth of graph, 741
Bar

chocolate, 342
Barber paradox, 16
Base b

expansions, 246, 306
algorithm for constructing, 248

Miller’s test for, 286
pseudoprime to the, 282
strong pseudoprime to, 286

Base-10 expansions, 246
Base conversion, 247
Bases of DNA molecules, 389
BASIC, 391
Basis, vertex, 691
Basis step, 313, 333, 349, 377, 752, 767
Basketball, 434

Bayes’ theorem, 468–475
generalized, 472

Bayes, Thomas, 470, 472
Bayesian spam filters, 472–475
Begging the question, 90, 110
Bell, E. T., 618
Bellman, Richard, 508
Bell numbers, 618
Bernoulli’s inequality, 330
Bernoulli, James, 458, 459
Bernoulli family tree, 745
Bernoulli trial, 479, 494

and binomial distribution, 458–460
Bernstein, Felix, 175
Bi-implication, 9
Biconditional, 9–10, 110

implicit use of, 10
statement, 9
truth tables for, 9

Biconnected graph, 684
Bicycle racers, 475
Bidirectional bubble sort, 233
Bienaymé’s formula, 489
Bienaymé, Irenée-Jules, 489
big-O estimates

for combinations of functions, 212
for exponential functions, 212
of important functions, 209
of n!, 210
for polynomials, 209,212
for products of functions, 213
for sums of functions, 212
of logarithms, 212

Big-O notation, 205–232
careless use of, 216
origin of, 206

Big-O relationship
witnesses to, 205

big-Omega () notation, 214, 232
big-Theta () notation, 215, 232
Big-Theta estimates for polynomials, 216
Bigit, 11
Bijection, 144, 186
Bijective proofs, 412
Binary coded decimal expansion, 836
Binary digit, 11
Binary expansions, 246
Binary insertion sort, 196, 203
Binary relation, 573, 633
Binary representation, 306
Binary search

worst-case complexity, 220
Binary search algorithm, 194, 232, 528

recursive, 363
Binary search trees, 757–759, 804
Binary trees, 352–353, 748, 749

definition of, 804
extended, 352

full, 352–353
height of, 355

number of vertices of, 355
with prefix code, 762–763

Binit, 11
Binomial coefficients, 410, 415–421, 439

extended, 539
Binomial distribution, 458–460
Binomial expression, 415
Binomial theorem, 415–418, 439

extended, 540
Binomial trees, 805
Bipartite graphs, 656–658, 736

coloring of, 657
Bird flu, 476
Birthday problem, 461–463

I-4 Index

Bit, 11, 110
origin of term, 11
parity check, 290

Bit operation(s), 11,110
Bits, 149
Bit string, 12, 110 subitem representing set with, 134
Bit strings

counting, 388
without consecutive 0s, 505

decoding, 762–763
generating next largest, 437
in interstellar communication, 476
length of, 505

Bitwise operation, 110
Bitwise operators, 12
Block

Sudoku, 32
Block cipher, 297, 306
Blocks of statements, A-14–A-15
BNF (Backus–Naur form), 854
Boat, 692
Bob, 302, 305
Bonferroni’s inequality, 467
Book number of graph, 744
Boole’s inequality, 467
Boole, George, 3, 5, 472, 811
Boolean algebra, 811–846

abstract definition of, 815
definition of, 843
identities, 27
identities of, 814–816

Boolean expressions, 812–814, 843
dual of, 816, 843

Boolean functions, 811–819, 843
dual of, 816, 843
functionally complete set of operators for, 821
implicant of, 832
minimization of, 828–840, 843
representing, 813–821
self–dual, 844
threshold, 845

Boolean power of a square zero–one matrix, 183
Boolean product, 811–812, 821, 843

of two zero–one matrices, 182
Boolean product of zero–one matrices

algorithm for, 223
Boolean searches, 18
Boolean sum, 811–812, 821, 843
Boolean variable, 11, 110, 814, 820, 843
Boruvka, Otakar, 800
Bots, 794
Bottom-up parsing, 853
Bound

greatest lower, 634
least upper, 634, A-2

of poset, 625
of lattice, 637

of poset, 625–626, 634
of poset, 625–626, 634
upper, A-2

Bounded lattices, 637
Bound occurrence of variable, 44
Bound variable, 44, 110
Boxes, distributing objects into, 428–431

distinguishable, 428
indistinguishable, 428

Breadth-first search, 789–791, 804
Breaking codes, 296
Bridge, in graphs, 683
Bridge problem, Königsberg, 693–694, 696, 697
Brute-force algorithm, 224
Brute-force algorithm for closest pair of points, 225
Brute-force paradigm, 232

Bubble sort, 196, 232
bidirectional, 233
worst-case complexity, 221

Bug, computer, 872
Building arguments using rules of inference, 73
Buoyancy, principle of, A-4
Busy beaver function, 896, 899
Butane, 750
Byte, 149

Cabbage, 692
Cactus, 806
CAD programs, 834
Caesar, Julius, 294
Caesar cipher, 294

decryption, 295
encryption, 294
key, 295

Cake, division of, 331
Calculus

predicate, 40
propositional, 3

Call graphs, 646
connected components of, 682

Canterbury Puzzles, The (Dudeney), 504
Cantor’s theorem, 177
Cantor, Georg, 117, 118, 173, 176
Cantor diagonalization argument, 173, 186
Cantor digits, 438
Cantor expansion, 256, 438
Cardano, Girolamo, 445
Card hands, 411, 429
Cardinality, 121, 170–175, 185, 186

of a countable set (ℵ0), 171, 186
of union of sets, 128

Cardinality of the set of real numbers, 186
Cardinal number, 121
Carmichael, Robert Daniel, 283
Carmichael number, 283, 306
Carroll, Lewis (Charles Dodgson), 50
Carry, 250
Cartesian product, 123
Cartesian product of more than two sets, 123
Cases, proof by, 92–110
Cash box, 424–425
Catalan, Eugène Charles, 507
Catalan numbers, 507
Caterpillar, 807
Cathy, 305
Cayley, Arthur, 745, 750
Ceiling function, 149, 186

properties of, 150
Celebrity problem, 332
Cells, adjacent, 830
Center, 757
Ceres, 241
Chain, 637
Chain letter, 753
Character cipher, 297, 306
Characteristic equation, 515
Characteristic roots, 515
Chebyshev’s inequality, 491, 495
Chebyshev, Pafnuty Lvovich, 490, 491
Checkerboard

tiles, 103
Check digit, 289–292

for airline ticket identification numbers, 293
ISBN, 291
ISBN-13, 308
ISSN, 293
RTN, 308
UPC, 290

Checkerboard, 103

Checkerboard, tiling of, 326, 333
Cheese, in Reve’s puzzle, 504
Chen, J. R., 264
Chess, game tree for, 769
Chessboard
n-queens problem on, 792–793
knight’s tour on, 707
squares controlled by queen on, 740

Chi (Greek letter), 728
Chickens, 741
Child of vertex, 747, 803
Chinese meal, preparing, 635
Chinese postman problem, 698, 744
Chinese remainder theorem, 277, 306
Chocolate bar, 342
Chomp, 98, 342, 638

winning strategy for, 98
Chomsky, Avram Noam, 847, 851, 853
Chomsky classification of grammars, 851–852
Chromatic number, 728, 737
k-critical, 734
edge, 734
of graph, 728

Chung-Wu Ho, 340
Church, Alonzo, 897
Church–Turing thesis, 893
Cipher

affine, 296, 306
autokey, 309
block, 306
Caesar, 294
character, 297, 306
monoalphabetic, 297
shift, 295, 306
transposition, 297
Vigenère, 304

Cipher block, 297
Circuits

combinational, 823
depth of, 828
examples of, 823–825
minimization of, 828–840

digital, 21
Euler, 693–698, 736
Hamilton, 698–703, 736
in directed graph, 599, 633
in graph, 679
logic, 20, 110
multiple output, 826
simple, 679

Circular permutation, 415
Circular reasoning, 90, 110
Circular relation, 636
Circular table, 394
Citation graphs, 646
Civil War, 38
C language identifier, 857
Class

congruence, 241
equivalence, 610–611, 633

and partitions, 612–614
definition of, 610
representative of, 610

of nondeterministic polynomial-time problems,
900

NP, 227, 896
of NP-complete problems, 897, 900
of polynomial-time problems, 227, 896, 900
Class P, 227, 896, 900

Class A addresses, 392
Class B addresses, 392
Class C addresses, 392
Class D addresses, 392
Class E addresses, 392
Clause, 74

Index I-5

Climbing rock, 163
Clique, 739
Clock, 240
Closed formula

for terms of a sequence, 159
Closed interval, 117
Closed walk, 679
Closest-pair problem, 532–535
Closure

for integers modulo m, 243
Kleene, 899

closure
Kleene(, 866

Closure, Kleene, 866
Closure laws

for addition, A-1
for multiplication, A-1

Closures of relations, 597–606, 633
reflexive, 598, 633
symmetric, 598, 634
transitive, 597, 600–603, 634

computing, 603–606
Coast Survey, U. S., 38
COBOL, 854, 872
Cocks, Clifford, 299
Code

breaking, 296
Codes, Gray, 702–703
Codes, prefix, 762–764, 804
Codeword enumeration, 506
Coding, Huffman, 763–764, 804
Codomain

of a function, 139, 186
of partial function, 152

Coefficient(s)
Bézout, 270, 306
binomial, 409, 415–421, 439
constant

linear homogenous recurrent relations with,
515–520, 565

linear nonhomogenous recurrent relations with,
520–524, 565

extended, 539
multinomial, 434

Collaboration graphs, 645
paths in, 680

Collatz problem, 107
Collection of sets

intersection of, 133
union of, 133

Collision
in hashing, 288
in hashing functions, probability of, 462–463

Coloring
chromatic number in, 728
of bipartite graphs, 657
of graphs, 727–732, 736
of maps, 727

Combinational circuits, 823
depth of, 828
examples of, 823–825
minimization of, 828–840

Combinations, 409–413
generating, 437–438
of events, 449–450, 455–456
with repetition, 424–427

Combinatorial identities, 417–421
Combinatorial proof, 412, 439
Combinatorics, 385, 404, 431, 439
Comments in pseudocode, A-12
Common difference, 157

Common errors
with exhaustive proofs, 95
with proofs by cases, 95

Common ratio, 157
Commutative group, 244
Commutative laws, 27

for addition, A-1
for Boolean algebra, 815, 818
for lattices, 637
for multiplication, A-1
for sets, 129

Commutative ring, 244
Commutativity

for integers modulo m, 243
Comparable elements in poset, 619, 633
Compatibility laws, A-2
Compatible total ordering, 628, 634
Compilers, 611, 872
Complement, 811, 843

double, law of, in Boolean algebra, 815, 818, 819
of Boolean function, 811

Complementary event, 449
Complementary graph, 667
Complementary relation, 582
Complementation law, 129
Complemented lattice, 637, 817
Complement law, 129
Complement of a fuzzy set, 138
Complement of a set, 128, 129, 186
Complete m-ary tree, 756
Complete m-partite graph, 738
Complete bipartite graph, 658, 736
Complete graphs, 655, 736
Complete induction, 334
Complexity

computational, 219
constant, 225
exponential, 225
factorial, 225
linear, 225
linearithmic, 225
logarithmic, 225
of algorithm for Boolean product of zero–one

matrices, 223
of matrix multiplication, 223
polynomial, 225
space, 219, 232
time, 219, 232

Complexity of algorithms, 218–229
average-case, 482–484
computational

of Dijkstra’s algorithm, 714
of breadth-first search algorithms, 791
of depth-first search algorithms, 789
of merge sort, 532

Complexity of merge sort, 532
Complex numbers

set of, 116
Components of graphs, connected, 682–685

strongly, 686, 736
Composite, 257
Composite integer, 306
Composite key, 585, 633
Composite of relations, 580, 633
Composition of functions, 146, 186
Composition rule, 373
Compound interest, 160
Compound proposition, 25, 109

dual of, 35
satisfiable, 30, 110

Compound propositions, 3
consistent, 110
equivalences of, in Boolean algebra, 812

equivalent, 8
logically equivalent, 25, 110
truth tables of, 10
well-formed formula for, 354

Computable
function, 175

Computable function, 177, 186, 896, 900
Computable numbers, 886
Computation, models of, 847–897
Computational complexity, 219
Computational complexity of algorithms

of Dijkstra’s algorithm, 714
Turing machine in making precise, 894

Computational geometry, 338–340, 532–535
Computer-aided design (CAD) programs, 834
Computer arithmetic with large integers, 279
Computer debugging, 872
Computer file systems, 750
Computer network, 641

interconnection networks, 661–663
local area networks, 661
multicasting over, 786
with diagnostic lines, 642
with multiple lines, 642
with multiple one-way lines, 642
with one-way lines, 643

Computer programming, 854
Computer representation of sets, 134
Computer science, 854
Computer time used by algorithms, 228
Computer virus

invention of term, 300
transmission, 441

Concatenation, 350, 866, 899
Conclusion, 70, 110
Conclusion of a condition statement, 6
Concurrent processing, 647
Condition

necessary, 6
sufficient, 6

Conditional constructions, A-12–A-13
Conditional probability, 453, 456–457, 494
Conditional statement(s), 6–9

contrapositive, 110
contrapositive of, 8
converse, 110
converse of, 8
for program correctness, 373–375
inverse of, 8
truth table for, 6

Conditions
don’t care, 836–837
initial, 158, 565

Congruence, 240, 306
applications of, 287–292
linear, 275, 306

Congruence class, 241
Congruence modulo m, 609–610, 633
Congruence quadratic, 285
Congruent to, 240, 306
Conjecture, 81, 110

3x + 1, 107
Frame’s, 513
Goldbach’s, 264
twin prime, 264

Conjectures about primes, 263
Conjunction, 4, 110, 843

distributive law of disjunction over, 27
negating, 28
truth table for, 4

Conjunction (rule of inference), 71
Conjunctive normal form, 820
Connected components of graphs, 682–685

strongly, 686, 736

I-6 Index

Connected graphs, 678–689
directed, 685–687
planar simple, 719–723
strongly, 685
undirected, 681–685
weakly, 686

Connecting vertices, 651
Connectives

logical, 4
Connectivity

edge, 684
vertex, 684

Connectivity relation, 600, 633
Consequence of a condition statement, 6
Consistent compound propositions, 110
Consistent system specifications, 18
Constant coefficients

linear homogenous recurrent relations with,
515–520, 565

linear nonhomogenous recurrent relations with,
520–524, 565

Constant complexity, 225
Constructing logical equivalences, 29
Construction

automaton that recognizes a regular set, 881
Construction of the real numbers, A-5
Constructions

conditional, A-12–A-13
loop, A-14–A-15

Constructive existence proof, 96, 110
Contains, 116
Context-free grammar(s), 851, 886

ambiguous, 901
Context-free language, 851
Context-sensitive grammars, 851
Context-sensitive languages, 886
Contingency, 25, 110
Continuum hypothesis, 175, 186
Contraction, edge, 664
Contradiction, 25, 110

proof by, 110
Contradiction, proof by, 86
Contraposition, 83

proof by, 110
Contrapositive, 8, 110

of a conditional statement, 110
Control unit

Turing machine, 889
Converse, 8, 110

of a conditional statement, 110
of directed graph, 668

Conversion
between bases, 247
between binary and hexadecimal, 249
between binary and octal, 249

Convex polygon, 338
Cook, Stephen, 227
Cook–Levin theorem, 227
Cookie, 426
Corollary, 110
Correctness

of an algorithm, 193
of programs, 372–378

conditional statements for, 373–375
loop invariants for, 375–376
partial, 372
program verification for, 372–373
rules of inference for, 373

of recursive algorithms, 364–365
Correspondence

one-to-one, 144, 186
Countability of set of rational numbers, 172

Countable set, 171, 186
cardinality of, 186

Counterexample(s), 88, 102, 110
Counting, 385–444, 501–571

basic principles of, 385–390
bit strings, 388

without consecutive 0s, 505
Boolean functions, 814
by distributing objects into boxes, 428–431
combinations, 409–413
derangements, 562, 566
functions, 387
generating functions for, 541–546
Internet addresses, 392
one-to-one functions, 387
onto functions, 560–562, 566
passwords, 391
paths between vertices, 688–689
permutations, 407–409
pigeonhole principle and, 399–405
reflexive relations, 578
relations, 578–579
subsets of finite set, 388
telephone numbers, 387
tree diagrams for, 394–395
variable names, 391
with repetition, 423

Covariance, 494
Covering relation, 623, 631
Covers, 631
CPM (Critical Path Method), 639
C programming language, 398, 611
Crawlers, 794
Cricket, 97
Criterion

Euler’s, 286
Critical Path Method (CPM), 639
Crossing number, 726
Cryptanalysis, 296, 306

for shift cipher, 296
Vigenère cipher, 305

Cryptographic protocols, 302
Cryptosystem, 297–306

definition of, 297
private key, 298, 306
public key, 298
RSA, 299, 306
shift cipher, 298

Cunningham numbers, 262
Cut

edge, 683, 684
set, 806
vertex, 683, 684

Cycle
in directed graph, 599, 633
with n vertices, 655

Cylinder, 831
Czekanowski, Jan, 800

Database
composite key of, 585
intension of, 585
primary key of, 585
records in, 584
relational model of, 584–586, 633

Database query language, 588–589
Data compression, 763
Datagrams, 399
Datalogy, 854
Datatype, 117
David Hilbert, 171
de Bruijn sequences, 744
Debugging, 872

Decidable problem, 895
Decimal expansion of a real number, 174
Decimal expansions, 246
Decision problems, 894, 900
Decision trees, 760–762, 804
Deck, standard, 402
Decreasing function, 143
Decryption, 295, 306

affine cipher, 296
Caesar cipher, 295
RSA, 300

Decryption key
RSA system, 301

Dedekind, Richard, 175
Deductive reasoning, 312
Deep-Blue, 769
Deferred acceptance algorithm, 204, 343
Definiteness

of an algorithm, 193
Definition

recursive, 311, 344–357
Degree

of n-ary relations, 584
of linear homogenous recurrence relations, 514
of region, 722
of vertex in undirected graph, 652

Degree-constrained spanning tree, 806
Degree of membership in a fuzzy set, 138
de la Vallée-Poussin, Charles-Jean-Gustave-Nicholas,

262
Delay machine, 861–862
de Méré, Chevalier, 452
De Morgan’s laws, 26, 27

for Boolean algebra, 815, 819
for propositions, 31, 28–31
for quantifiers, 47
for sets, 129
proving by mathematical induction, 323–324

De Morgan, Augustus, 26, 29, 729
Dense

graph, 670
poset, 632

Denying the hypothesis, fallacy of, 75
Dependency notation, 846
Depth-first search, 787–789, 804

applications of, 794–795
in directed graphs, 794–795

Depth of combinatorial circuit, 828
Derangements, 562–565

number of, 562, 566
Derivable, 899

directly, 899
Derivable from, 849
Derivation, 849
Derivation tree, 899
Derivation trees, 852–854
Descartes René, 122
Descendants of vertex, 747, 804
Describing a set

by listing its members, 116
by the roster method, 116
using set builder notation, 116

Designing finite-state automata, 869
Detachment

laws of, 71
Deterministic finite-state automata, 872, 899
Deviation, standard, 487
Devil’s pair, 678
Diagnostic test results, 471–472
Diagonalization argument, Cantor, 173, 186
Diagonal of a polygon, 338
Diagonal of a square matrix, 181
Diagonal relation, 598

Index I-7

Diagrams
Hasse, 622–626, 634
state, for finite-state machine, 860
tree, 394–395, 439
Venn, 118, 185

Diameter of graph, 741
Dice, 446
Dictionary ordering, 435
Die, 468, 488–489

dodecahedral, 496
octahedral, 496

Difference, A-6
backward, 513
common, 157
forward, 568

Difference equation, 513
Difference of multisets, 138
Difference of sets, 128, 186
Diffie, Whitfield, 302
Diffie–Helman key agreement protocol, 302
Digit

binary, 11
Digital circuit(s), 20–21
Digitial signatures, 303, 306
Digitial signatures in RSA system, 303
Digits

Cantor, 438
Digraphs, 633, 643, 735

circuit (cycle) in, 599, 633
connectedness in, 685–687
converse of, 668
depth-first search in, 794–795
edges of, 643, 653–654
Euler circuit of, 694
loops in, 594, 633
paths in, 599–600, 633, 736
representing relations using, 594–596
self–converse, 740
vertex of, 641, 654

Dijkstra’s algorithm, 709–714, 737
Dijkstra, Edsger Wybe, 710
Dimes, 199
Diophantus, 106
Dirac’s theorem, 701
Dirac, G. A., 701
Directed edges, 644, 653–654, 735
Directed graphs, 633, 643, 735

circuit (cycle) in, 599, 633
connectedness in, 685–687
converse of, 668
depth-first search in, 794–795
edges of, 643, 653–654
Euler circuit of, 694
loops in, 594, 633
paths in, 599–600, 633, 736
representing relations using, 594–596
self–converse, 740
vertex of, 641, 654

Directed multigraph, 643, 735
paths in, 679

Directly derivable, 849, 899
Direct proof, 82, 110
Dirichlet, G. Lejeune, 262, 400
Dirichlet drawer principle, 400
Discrete logarithm, 284, 306
Discrete logarithm problem, 284
Discrete mathematics

definition of, vii, viii, xviii
problems studied in, xviii
reasons to study, xviii

Discrete probability, 445–500
assigning, 453–455
conditional, 453, 456–457, 494

finite, 445–448
Laplace’s definition of, 445
of collision in hashing functions, 462–463
of combinations of events, 449–450, 455–456

Disjoint sets, 128
Disjunction(s), 4, 109, 843

associative law of, 27
distributive law of, over conjunction, 27
negating, 28
truth table for, 4

Disjunctive normal form, 35
for Boolean variables, 820

Disjunctive syllogism, 71
Disquisitiones Arithmeticae (Gauss), 241
Distance

between distinct vertices, 741
between spanning trees, 797

Distinguishable
boxes, 428
objects, 428
strings, 888

Distributing objects into boxes, 428–431
Distribution

binomial, 458–460
of random variable, 460, 494

geometric, 484–485, 494
probability, 453
uniform, 454, 494

Distributive lattice, 637, 817
Distributive laws, 27

for Boolean algebra, 815, 818
for propositions, 27
for sets, 129

Distributivity
for integers modulo m, 243

Divide-and-conquer
algorithms, 527, 565
recurrence relations, 527–535

Dividend, 238, 239
Divides, 238, 306
Divine Benevolence (Bayes), 472
Divisibility facts, proving, by mathematical

induction, 321
Divisibility relation, 619
Division

of integers, 238–240
trial, 258

Division algorithm, 239, 306
Division of a cake, 331
Division rule, 394
Division rule for counting, 394
Divisor, 238, 239

greatest common, 265–267, 306
DNA (deoxyribonucleic acid), 388
DNA sequencing, 698
Dodecahedral die, 496
Dodgson, Charles Lutwidge (Lewis Carroll), 50
Domain

of n-ary relation, 584
of a function, 139, 186
of a quantifier, 40
of partial function, 152
of relation, 584
restricted

of quantifier, 44
Domain of definition

of partial function, 152
Domain of discourse, 40, 110
Dominating set, 739
Domination laws, 27

for Boolean algebra, 815
for sets, 129

Domino(s), 103, 314
Don’t care conditions, 836–837
Double complement, law of, in Boolean algebra, 815,

819
Double counting proofs, 412
Double hashing, 292
Double negation law, 27
Drug testing, 475
Dual

of a compound proposition, 35
of Boolean expression, 816
of Boolean function, 816
of poset, 630

Dual graph, 727
Duality in lattice, 639
Duality principle, for Boolean identities, 816
Dudeney, Henry, 504
Dynamic programming, 507

Ear(s), 343
nonoverlapping, 343

Earth, 476
EBNF (extended Backus–Naur form), 858
Eccentricity of vertex, 757
Ecology, niche overlap graph in, 648
Edge

adding from a graph, 664
removing a vertices from, 664
removing from a graph, 663

Edge chromatic number, 734
Edge coloring, 734
Edge connectivity, 684
Edge contraction, 664
Edge(s)

cut, 683, 684
directed, 644, 654, 735
endpoints of, 651
incident, 651, 735
multiple, 642, 643, 735
of directed graph, 643, 653–654
of directed multigraph, 643
of multigraph, 642
of pseudograph, 643
of simple graph, 642, 667
of undirected graph, 644, 654
undirected, 644, 735

Edge vertex, 594
Effectiveness

of an algorithm, 193
Egyptian (unit) fraction, 380
Einstein, Albert, 24
Electronic mail, 472
Element

image of, 186
pre-image of, 186

Elementary subdivision, 724, 736
Element of a set, 116, 185
Elements

comparable, in partially ordered set, 619, 633
equivalent, 608
fixed, 494
greatest, of partially ordered set, 625, 634
incomparable, in partially ordered set, 619, 633
least, of partially ordered set, 625, 634
maximal, of partially ordered set, 624, 634
minimal, of partially ordered set, 624, 625, 634

Elements of Mathematical Logic (,,Lukasiewicz), 782
Ellipses (. . .), 116
Empty folder, 118
Empty set, 118, 185
Empty string(s), 157, 186, 849

I-8 Index

Encryption, 294, 306
affine transformation, 296
public key, 306
RSA, 299

Encryption key, 306
Encrytion

Caesar cipher, 294
Endpoints of edge, 651
Engine

Analytic, 31
Entry of a matrix, 178
Enumeration, 392, 439

codeword, 506
Equal functions, 139
Equality

of sets, 117, 185
Equal matrices, 178
Equation

characteristic, 515
difference, 513

Equivalence
proof of, 87

Equivalence(s)
logical, 27

Equivalence classes, 610–611, 633
and partitions, 612–614
definition of, 610
representative of, 610

Equivalence relations, 607–614, 633
definition of, 608

Equivalent
compound propositions, 8
logically

compound propositions, 25
Equivalent Boolean expressions, 813
Equivalent elements, 608
Equivalent finite-state automata, 868, 871–872
Eratosthenes, 259, 560

sieve of, 259, 306, 565
Erdős, Paul, 260, 263, 635, 636, 680
Erdős number, 635, 680, 689
Erdős number Project, 680
Error

single, 291
transposition, 291

Errors,
in exhaustive proofs, 95
in proofs by cases, 95
in proofs by mathematical induction 328–329

Essential prime implicant, 832, 843
Euclid, 267
Euclidean algorithm, 267, 347
Euler φ-function, 272
Euler’s criterion, 286
Euler’s formula, 720–723, 737
Euler’s formula“Eureka,”, A-4
Euler, Leonhard, 693, 695
Euler circuits, 693–698, 736
Euler paths, 693–698, 736
Evaluation functions, 769
Even, 83
Event(s), 446

combinations of, 449–450, 455–456
complementary, 449
independent, 452, 457–458, 494
mutually independent, 497

Exams, scheduling, 731, 732
Exchange

key, 302
Exclusion rule, 349
Exclusive or, 5, 6, 110

truth table for, 6

Exercises
difficult, xix
extremely challenging, xix
result used in book, xix
routine, xix

Exhaustive proof, 93, 110
common errors with, 95

Existence proof(s), 96
constructive, 96, 110
nonconstructive, 96, 110

Existential generalization, 76
Existential instantiation, 76
Existential quantification, 42, 110
Existential quantifier, 42
Expansion(s)

balanced ternary, 256
base-b, 246
binary, 246
binary coded decimal, 836
Cantor, 256
decimal, 246
hexadecimal, 246
octal, 246

Expected values, 477–480, 494
in hatcheck problem, 481
linearity of, 477–484, 494
of inversions in permutation, 482–484

Experiment, 446
Exponential complexity, 225
Exponential functions, A-7

big-O estimates for, 212
Exponential generating function, 551
Exponentiation

modular, 253
recursive, 363

Expression(s)
binomial, 415
Boolean, 812–814, 843
infix form of, 780
postfix form of, 781
prefix form of, 780
regular, 879, 899

Expressions
logically equivalent, 110

extended Backus–Naur form, 858
Extended binary trees, 352
Extended binomial coefficients, 539
Extended binomial theorem, 540
Extended Euclidean algorithm, 270, 273
Extended transition function, 867
Extension

of transition function, 867
Exterior of simple polygon, 338

Facebook, 645
Factor, 238
Factorial complexity, 225
Factorial function, 151
Factorials, recursive procedure for, 361
Factoring, 262
Factorization

prime, 259
Failure, 458
Fairy, tooth, 112
Fallacies, 69, 75, 110

of affirming the conclusion, 75
of denying the hypothesis, 75

False
negative, 471, 472
positive, 471, 472

Family trees, 745
Farmer, 692

Fast multiplication
of integers, 528–529
of matrices, 529

Female pessimal, 234
Fermat’s last theorem, 106, 349
Fermat’s little theorem, 281, 306

proof of, 285
Fermat, Pierre de, 106, 281, 282
Fibonacci, 348
Fibonacci numbers, 347

and Huffman coding, 771
formula for, 517
iterative algorithm for, 366
rabbits and, 502–503
recursive algorithms for, 365

Fibonacci sequence, 158
Fibonacci trees, rooted, 757
Field axioms, A-1
Fields, 584
Fields Medal, 263
Filter, spam, 472–475
Final assertion, 372, 378
Final exams, scheduling, 731, 732
Final state

finite-state automaton, 867
of a Turing machine, 891
Turing machine, 891

Final value, A-14
Finding maximum element in a sequence

algorithm for, 192
Finite-state automata, 866–872

accepting state, 867
designing, 869
deterministic, 872, 899
equivalent, 868
final state, 867
initial state, 867
minimization, 872
nondeterministic, 873, 899
set not recognized by, 885

Finite-state machine, 847, 858, 885, 899
for addition, 862
input string, 861
output string, 861
transition function extension, 867
transition function extension in, 867
with output, 859, 865
with outputs, 859, 863

Finite-state transducer, 859
Finite graph, 641
Finiteness

of an algorithm, 193
Finite probability, 445–448
Finite set, 121, 185
Finite sets, 553, 565

number of subsets, 323
subsets of

counting, 388
number of, 323

union of three, number of elements in, 554–556,
566

union of two, number of elements in, 553, 565
First difference, 513
First forward difference, 568
Fixed elements, 494
Fixture controlled by three switches, circuit for, 825
Flavius Josephus, 512
Fleury’s algorithm, 697, 706
Flip-flops, 846
Floor function, 149, 186

properties of, 150
Floyd’s algorithm, 717

Index I-9

Folder
empty, 118

Forbidden pairs, 234
Forests, 746

definition of, 803
minimum spanning, 802
spanning, 796

Form
argument, 70
Backus–Naur, 854, 899
conjunctive normal, 820
disjunctive normal

for Boolean variables, 820
extended Backus–Naur form, 858
infix, 780
postfix, 781
prefix, 780

Form, argument, 110
Formal language, 848
Formal power series, 538
Formula(s)

Euler’s, 720–723, 737
for compound propositions, 354
for Fibonacci numbers, 517
of operators and operands, 351
Stirling’s, 151
summation, 315
well-formed, 350

FORTRAN, 854
Fortune cookie, 441
Forward differences, 568
Forward reasoning, 100
Forward substitution

iteration using, 160
Four color theorem, 728–731, 737
Fraction, unit (Egyptian), 380
Frame’s conjecture, 513
Free variable, 44, 110
Frend, Sophia, 29
Frequency assignments, 732
Friendship graph, 645
Frisbee, rocket-powered, 812
Full m-ary tree, 748, 752, 804

complete, 756
Full adder, 826, 843
Full binary trees, 352–353

height of, 355
number of vertices of, 355

Full subtractor, 828
Function(s), 139, 186

Addition of, 141
Ackermann’s, 359
asymptotic, 218
as relations, 574
big-O estimates of, 209
bijective, 144
Boolean, 811–819, 843

dual of, 816
functionally complete set of operators for, 821
implicant of, 832
minimization of, 828–840, 843
representing, 813–821
self–dual, 844
threshold, 845

busy beaver, 896,899
ceiling, 149, 186
codomain of, 139
codomain of a, 186
composition of, 146, 186
computable, 175, 177, 186, 896, 900
counting, 387
decreasing, 143
domain of, 186

equal, 139
Euler φ, 272
evaluation, 769
exponential, A-7
factorial, 151
floor, 149, 186
generating, 537–548, 565

exponential, 551
for counting, 541–546
for proving identities, 548
for recurrence relations, 546–548
probability, 552

graph of, 148
greatest integer, 149
growth of, 209
growth of combinations of, 212–214
hashing, 287

collision in, probability of, 462–463
identity, 144
increasing, 143
injective, 141

counting, 387
integer-valued, 140
inverse, 145
inverse of, 186
invertible, 145
iterated, 360
iterated logarithm, 360
logarithmic, A-7–A-9
McCarthy, 380
multiplication of functions, 141
number-theoretic, 892
mod, 239, 306
one-to-one, 141, 186
onto, 186

number of, 560–562, 566
partial, 152, 186, 889
probing, 288
propositional, 110
range of, 186
real-valued, 140
recursive, 345–349, 378
strictly decreasing, 143
strictly increasing, 143
surjective, 143
threshold, 845
total, 152
transition, 859
Turing machines computing, 892–893
uncomputable, 175, 186, 896, 900

Functional completeness, 821
Functional decomposition, 846
Functionally complete logical operators, 35
Functionally complete set of operators

for Boolean functions, 821, 843
Fundamental theorem of algebra, 241
Fundamental theorem of arithmetic, 258, 306

proof of, 271
Fuzzy logic, 16
Fuzzy set(s), 138

complement of, 138
degree of membership, 138
intersection of, 138
union of, 138

Gödel, Escher, Bach (Hofstader), 382
Gale–Shapley algorithm, 204
Gambling, 445
Game

obligato, 112
Game trees, 764–769, 804
Gates, logic, 21, 110, 822–827

AND, 21, 823, 843
combination of, 823

NAND, 828
NOR, 828
OR, 21, 823, 843
threshold, 845

Gating networks, 822–823
depth of, 828
examples of, 823–825
minimization of, 828–840

Gauss, Karl Friedrich, 241
Gecko, Gordon, 198
Gene, 389
Generality

of an algorithm, 193
Generalization

existential, 76
universal, 76

Generalized combinations, 423–427
Generalized induction, 356–357
Generalized permutations, 423
Generalized pigeonhole principle, 401–403, 439
Generating functions, 537–548, 565

exponential, 551
for counting, 541–546
for proving identities, 548
for recurrence relations, 546–548
probability, 552

Generator, power, 292
Gene sequencing, 389
Genome, 389
Geometric distribution, 484–485, 494
Geometric mean, 100, 332
Geometric progression, 157, 186

sum of terms of, 164
Geometric progression(s)

sums of, 318–319
Geometric series, 164
Geometry, computational, 338–340, 532–535
Giant strongly connected components (GSCC), 686
GIMPS (Great Internet Mersenne Prime Search, 261
Givens

in Sudoku, 32
Goat, 692
Goldbach’s conjecture, 264
Goldbach, Christian, 264
Golomb’s self-generating sequence, 382
Golomb, Solomon, 105
Google, 18, 794
Gossip problem, by mathematical induction, 332
Government Communications Headquarters

(GCHQ), U.K, 299
Government Communications Headquarters

(GCHQ), U.K., 299
Graceful trees, 807
Graham, Ron, 636
Grammar(s), 848

Backus–Naur form of, 854
context-free, 886
context-free (type 2), 851
context-sensitive, 851
language generated by, 850
language of, 850
monotonic, 852
noncontracting, 852
productions, 849
phrase-structure, 849–854, 899
regular, 884, 899
regular (type 3), 851
type 0, 851, 899
type 1, 851, 899
type 2, 851, 899
type 3, 851, 883, 899

Grand Hotel, Hilbert’s, 171

I-10 Index

Graph(s), 641–744
k-connected, 684
n-regular, 667
academic collaboration, 645
acquaintanceship, 645
airline route, 647
bandwidth of, 741
biconnected, 684
bipartite, 656–658, 736
book number of, 744
call, 646

connected components of, 682
chromatically k-critical, 734
chromatic number of, 728
citation, 646
collaboration, 645
coloring, 727–732, 736
complementary, 667
complete, 655, 736
complete m-partite, 738
complete bipartite, 658, 736
connected components of, 682–685, 736
connectedness in, 678–689
cut set of, 806
definition of, 643
diameter of, 741
directed, 633, 643, 735

circuit (cycle) in, 599, 633
connectedness in, 685–687
converse of, 668
dense, 670
depth-first search in, 794–795
edges of, 643, 653–654
Euler circuit of, 694
loops in, 594, 633
paths in, 599–600, 633, 736
representing relations using, 594–596
self–converse, 740
simple, 643
vertex of, 641, 654

directed multigraph, 644, 735
dual, 727
finite, 641
friendship, 645
Hollywood, 645
homeomorphic, 724–725, 736
independence number of, 741
infinite, 641
influence, 645
in roadmap modeling, 647
intersection, 650
isomorphic, 668, 671–675, 736

paths and, 687–688
matching in, 659
mixed, 644
models, 644–649
module dependency, 647
monotone decreasing property of, 742
monotone increasing property of, 742
multigraphs, 642, 644, 735
niche overlap, 648
nonplanar, 724–725
nonseparable, 683
orientable, 740
paths in, 678–681
planar, 718–725, 736
precedence, 647
protein interaction, 648
pseudograph, 643, 644, 735
radius of, 741
regular, 667, 736
representing, 668–675
self-complementary, 677

simple, 642, 654–655, 735
coloring of, 727
connected planar, 719–723
crossing number of, 726
dense, 670
edges of, 642, 663
isomorphic, 671–675, 736
orientation of, 740
paths in, 785
random, 742
self-complementary, 677
sparse, 670
thickness of, 726
vertices of, 642, 663
with spanning trees, 785–787

simple directed, 643
sparse, 670, 802
strongly directed connected, 685
subgraph of, 663, 736
terminology of, 651–654
undirected, 644, 653, 736

connectedness in, 681–685
Euler circuit of, 694
Euler path of, 698
orientation of, 740
paths in, 679, 736
underlying, 654, 736

union of, 664, 736
very large scale integration, 744
Web, 646–647

strongly connected components of, 686
weighted, 736

shortest path between, 707–714
traveling salesman problem with, 714–716

wheel, 655, 736
Graph of a function, 148
Gray, Frank, 703
Gray codes, 702–703
“Greater than or equal” relation, 618–619
Greatest common divisor, 265–267, 306

as linear combination, 269
Greatest element of poset, 625, 634
Greatest integer function, 149
Greatest lower bound, 634

of poset, 625
Great Internet Mersenne Prime Search (GIMPS), 261
Greedy algorithm(s), 198, 232, 235, 325, 764, 798,

804
definition of, 198
for making change, 199
for minimizing maximum lateness of a job, 235
for scheduling talks, 200

Green, Ben, 263
Green–Tao theorem, 263
Group commutative, 244
Growth of functions, 209
GSCC (giant strongly connected components), 686
Guarding set, 735
Guare, John, 680
Guidelines for mathematical induction, 328
Guthrie, Francis, 729

Hadamard, Jacques, 262
Haken, Wolfgang, 728
Half adder, 826, 843
Half subtractor, 828
Hall’s marriage theorem, 659
Hall, Philip, 659, 660
Halting problem, 201, 895, 900
Hamilton’s “Voyage Around the World” Puzzle, 700
Hamilton, Sir William Rowan, 698, 700
Hamilton, William Rowan, 729
Hamilton circuits, 698–703, 736

Hamilton paths, 698–703, 736
Handle, 806
Handshaking theorem, 653
Hanoi, tower of, 503–504
Hardware systems, 17
Hardy, Godfrey Harold, 97
Hardy, Godrey Harold, 97
Hardy–Weinberg law, 97
Harmonic mean, 108
Harmonic number(s)

inequality of, 320–321
Harmonic series, 321
Hashing

collision in, 288
double, 292
function, 287

key, 287
Hashing functions

collision in, probability of, 462–463
Hasse’s algorithm, 107
Hasse, Helmut, 623
Hasse diagrams, 622–626, 634
Hatcheck problem, 481, 562
Hazard-free switching circuits, 846
Heaps, 809
Heawood, Percy, 728
Height, star, 901
Height-balanced trees, 808
Height of full binary tree, 355
Height of rooted tree, 753, 804
Hellman, Martin, 302
Hexadecimal expansions, 246
Hexadecimal representation, 306
Hexagon identity, 421
Hilbert’s 23 problems, 171, 895
Hilbert’s Grand Hotel, 171
Hilbert’s Tenth Problem, 895
Hilbert, David, 171, 176, 895
HIV, 476
Ho, Chung-Wu, 340
Hoare, C. Anthony R., 372, 374
Hoare triple, 372
Hofstader, Douglas, 382
Hollywood graph, 645

paths in, 680–681
Homeomorphic graphs, 724–725, 736
Hopper, Grace Brewster Murray, 872
Hops, 662
Horner’s method, 230
Horse races, 31
Host number (hostid), 392
HTML, 858
Huffman, David A., 763
Huffman coding, 763–764, 804

variations of, 764
Human genome, 389
Husbands, jealous, 693
Hybrid topology for local area network, 661
Hydrocarbons, trees modeling, 750
Hypercube, 662
Hypothesis

continuum, 175, 186
inductive, 313

Hypothesis of a conditional statement, 6
Hypothetical syllogism, 71

“Icosian Game,”, 700
Icosian Puzzle, 698
Idempotent laws

for Boolean algebra, 815, 819
for lattices, 637
for propositions, 27
for sets, 129

Index I-11

Identification number
single error in, 291

Identification number(s)
for airline tickets, 293

Identification numbers
for money orders, 293

Identifier, 611
ALGOL, 855
C language, 857

Identifying a sequence from its initial terms, 161
Identities

Boolean algebra, 27
set, 129
set(, 129
set), 132

Identities, combinatorial, 417–421
Identities for Boolean algebra, 129
Identity

Bézout’s, 270
combinatorial, proof of, 412, 439
hexagon, 421
proving, generating functions for, 548
Vandermonde’s, 420–421

Identity element(s)
for integers modulo m, 243

Identity elements axiom, A-1
identity function, 144
Identity laws, 27

additive, A-1
for Boolean algebra, 815, 816, 818
for sets, 129
multiplicative, A-1

Identity matrix, 180, 186
If–then construction, 8
If then statement, 6
If and only if, 9
Iff, 9
Image of an element, 139, 186
Image of a set, 141
Implicant, 832

essential, 832
prime, 832

Implication, 6, 110
Implicit use of biconditionals, 10
In-degree of vertex, 654, 736
Incidence matrices, 671, 736
Incident edge, 651
Inclusion–exclusion principle, 128, 392–394,

553–557, 566
alternative form of, 558–559
applications with, 558–564

Inclusion relation, 619
Inclusive or, 5
Incomparable elements in poset, 619, 633
Incomplete induction, 334
Incorrect proof by mathematical induction, 757
Increasing function, 143
Increment

for linear congruential method, 288
Independence number, 741
Independent events, 452, 453, 457–458, 494
Independent random variables, 485–487, 494
Independent set of vertices, 741
Index of summation, 163
Index registers, 732
Indicator random variable, 492
Indirect proofs, 83
Indistinguishable

boxes, 428–431
objects, 428–431
objects, permutations with, 428
strings, 888

Induction
complete, 334
generalized, 356–357
incomplete, 334
mathematical, 29, 311–329
principle of, 377
proofs by, 315–329
second principle of, 334
strong, 333–335, 378
structural, 353–356, 378
validity of, 326
well-ordered, 620, 634

Inductive definitions, 345–357
of functions, 345–349, 378
of sets, 349–356, 378
of strings, 350
of structures, 349–356

Inductive hypothesis, 313
Inductive loading, 333, 343, 380
Inductive reasoning, 312
Inductive step, 313, 377, 752, 768
Inequality

Bernoulli’s, 330
Bonferroni’s, 467
Boole’s, 467
Chebyshev’s, 491, 495
Markov’s, 493
of harmonic numbers, 320–321
proving by mathematical induction, 319–320
triangle, 108

Inference
for program correctness, 373
rule of, 110
rules of, 69–71

Infinite graph, 641
Infinite ladder, 311

by strong induction, 334
Infinite series, 167
Infinite set, 121
Infinitude of primes, 260
Infix form, 780
Infix notation, 779–782, 804
Influence graphs, 645
Information flow, lattice model of, 627
Initial assertion, 372, 378
Initial conditions, 158, 565
Initial position

of a Turing machine, 889
Initial state, 859

finite-state automaton, 867
of a Turing machine, 889

Initial terms
identifying a sequence using, 161

Initial value, A-14
Initial vertex, 594, 654
Injection, 141, 186
Injective (one-to-one) function

counting, 387
Injective function, 141
Inorder traversal, 773, 775, 778, 804
Input

to an algorithm, 193
Input alphabet, 859
Input string

finite-state machine, 861
Insertion sort, 196, 197, 232

average-case complexity of, 483–484
worst-case complexity, 222

Instantiation
existential, 76
universal, 75

Integer
composite, 257, 306

perfect, 272
prime, 257
signed, 855

Integer(s)
linear combination of, 306

Integer-valued function, 140
Integers

axioms for, A-5
division of, 238–240
multiplication of

fast, 528–529
pairwise relatively prime, 306
partition of, 359
relatively prime, 306
set of, 116
squarefree, 564

Integer sequences, 162
Integers modulo m, 243

additive inverses, 243
associativity, 243
closure, 243
commutativity, 243
distributivity, 243
identity elements, 243

Intension, of database, 585
Interconnection networks for parallel computation,

661–663
Interest, compound, 160
Interior of simple polygon, 338
Interior vertices, 603
Internal vertices, 748, 804
International Mathematical Olympiad (IMO), 263,

299
International Standard Book Number (ISBN), 291
International Standard Serial Number (ISSN), 293
Internet, search engines on, 794
Internet addresses, counting, 392
Internet datagram, 399
Internet Movie Database, 645
Internet Protocol (IP) multicasting, 786
Intersection

of fuzzy sets, 138
Intersection graph, 650
Intersection of a collection of sets, 133
Intersection of multisets, 138
Intersection of sets, 127, 185
Interval(s), 117

closed, 117
open, 117, 332

Intractable
problems, 226

Intractable problem, 232, 897
Invariant for graph isomorphism, 672, 736
Invariants, loop, 375–376, 378
Inverse, 8

modular, 275, 306
Inverse, multiplicative, 60
Inverse function, 145, 186
Inverse law

for addition, A-2
for multiplication, A-2

Inverse of a square matrix, 184
Inverse relation, 582
Inversions, in permutation, expected number of,

482–484
Inverter, 21, 823, 843
invertible function, 145
Invertible matrix, 184
IP multicasting, 786
Irrationality of

√
2, 342, 381

Irrational number(s), 85, 116
Irreflexive relation, 581
ISBN-10, 291
ISBN-13, 291

check digit, 308

I-12 Index

ISBN check digit, 291
Isobutane, 750
Isolated vertex, 652, 736
Isomorphic graphs, 668, 671–675, 736

paths and, 687–688
Iterated function, 360
Iterated logarithm, 360
Iteration, 160, 360

using to solve recurrence relations, 159
Iteration using backward substitution, 160
Iteration using forward substitution, 160
Iterative algorithm, for Fibonacci numbers, 366
Iterative procedure, for factorials, 366
Iwaniec, Henryk, 264

Jacobean rebellion, 151
Jacquard loom, 31
Jarník, Vojtěch, 798
Java, 855
Jealous husband problem, 693
Jersey crags, 163
Jewish–Roman wars, 512
Jigsaw puzzle, 342
Job(s)

assignment of, 565, 658
lateness of, 235
slackness of, 235

Join, in lattice, 637
Join of n-ary relations, 588
Join of zero–one matrices, 181
Joint authorship, 645
Jordan curve theorem, 338
Josephus, Flavius, 512
Josephus problem, 512
Jug, 109, 693

k-connected graph, 684
k-tuple graph coloring, 734
K-maps, 830–836, 843
Königsberg, 171
Königsberg bridge problem, 693–694, 696, 697
Kakutani’s problem, 107
Kaliningrad, Russia, 693
Karnaugh, 830–836
Karnaugh, Maurice, 830
Karnaugh maps, 830–836, 843
Kayal, Neeraj, 262
Kempe, Alfred Bray, 728
Key, 295

composite, 585
encryption, 306
for Caesar cipher, 295
hashing function, 287
primary, 585–586
public, 299

Key exchange, 302
Key exchange protocol, 305, 306
Keystream

autokey cipher, 309
King Hermeas, 2
Kissing problem, 163
Kleene’s theorem, 880, 900
Kleene, Stephen Cole, 867, 878
Kleene closure, 866, 899
Knapsack problem, 235, 568
Kneiphof Island, 693
Knight’s tour, 707

reentrant, 707
Knights, knaves, and normals puzzles, 112
Knights, knaves, and spies puzzles, 112
Knights and knaves puzzles, 19
Knuth, Donald, 196, 206
Knuth, Donald E., 208

Kruskal’s algorithm, 799–801, 804
Kruskal, Joseph Bernard, 799, 800
Kuratowski’s theorem, 724–725, 737
Kuratowski, Kazimierz, 724

Löb’s paradox, 112
Labeled tree, 756
Ladder, infinite, 311–334
Lady Byron, Annabella Millbanke, 31
Lagarias, Jeffrey, 107
Lamé’s theorem, 347
Lamé, Gabriel, 349
Landau, Edmund, 206, 207
Landau symbol, 206
Language, 847–899

context-free, 851
context-sensitive, 886
formal, 848
generated by grammar, 850
natural, 847–848
of a grammar, 850
recognized

by nondeterministic finite-state automaton, 873
recognized by an automaton, 899
recognized by finite-state automata, 868
regular, 851

Language recognizer, 863
Laplace’s definition of probability, 446
Laplace, Pierre Simon, 445, 447, 472
Large integers

computer arithmetic with, 279
Large numbers, law of, 459
Lateness of a job, 235
Lattice model of information flow, 627
Lattice point, 380
Lattices, 626–627, 634

absorption laws for, 637
associative laws for, 637
bounded, 637
commutative laws for, 637
complemented, 637
distributive, 637
duality in, 639
idempotent laws for, 637
join in, 637
meet in, 637
modular, 639

Law
complement, 129
complementation, 129
Hardy–Weinberg, 97

Law(s)
absorption

for Boolean algebra, 815, 816
for lattices, 637
for propositions, 27

associative
for addition, A-1
for Boolean algebra, 815, 818
for lattices, 637
for multiplication, A-1
for propositions, 27

closure
for addition, A-1
for multiplication, A-1

commutative
for addition, A-1
for Boolean algebra, 815, 818
for lattices, 637
for multiplication, A-1

compatibility
additive, A-2
multiplicative, A-2

completeness, A-2
De Morgan’s

for Boolean algebra, 815, 819
for propositions, 28
proving by mathematical induction, 323–324

distributive, A-2
for Boolean algebra, 815, 818
for propositions, 27

domination
for Boolean algebra, 815

idempotent
for Boolean algebra, 815, 819
for lattices, 637
for propositions, 27

identity
additive, A-1
for Boolean algebra, 815, 816, 818
multiplicative, A-1

inverse
for addition, A-2
for multiplication, A-2

of detachment, 71
of double complement, in Boolean algebra, 815,

818
of large numbers, 459
of mathematical induction, A-5
transitivity, A-2
trichotomy, A-2
used to prove basic facts, A-3–A-5

Law of total expectation, 492
Laws

De Morgan’s, 26
Laws of propositional logic, 27

absorption, 27
associative, 27
commutative, 27
De Morgan’s, 27
distributive, 27
domination, 27
double negation, 27
identity, 27

Laws of Thought, The (Boole), 472, 811
Leaf, 746, 804
Least common multiple, 266, 306
Least element of poset, 625, 634
Least upper bound, 634, A-2

of poset, 625
Left child of vertex, 749
Left subtree, 749
Lemma, 81, 110

pumping, 888
Length of bit string, 505
Length of path

in directed graph, 599
in weighted graph, 708

Length of string
recursive definition of, 350

“Less than or equals” relation, 619
Letters of English

relative frequency, 296
Level of vertex, 753, 804
Level order of vertex, 806
Levin, Leonid, 227
Lewis Carroll (C. L. Dodgson), 50
Lexicographic ordering, 356, 435, 620–622
Liber Abaci (Fibonacci), 348
Library sort, 196
Light fixture controlled by three switches, circuit for,

825
Limit, definition of, 61

Index I-13

Linear array, 662
Linear bounded automata, 886
Linear combination of integers, 269, 306
Linear complexity, 225
Linear congruence, 275, 306

systems of, 277–279
Linear congruence(s)

solving, 277
Linear congruential method, 288

increment, 288
modulus, 288
multiplier, 288
seed, 288

Linear homogenous recurrence relations, 514–520,
565

Linearithmic complexity, 225
Linearity of expectations, 477–484, 494
Linearly ordered set, 619, 633
Linear nonhomogenous recurrence relations,

520–524, 565
Linear ordering, 619, 633
Linear probing function, 288
Linear search

average-case time complexity, 221
Linear search algorithm, 194, 232

average-case complexity of, 482–484
recursive, 363
time complexity of, 220

LISP, 855
List of 23 problems

David Hilbert, 176
Lists, merging two, 368
Literal, 820, 843
Little-o notation, 218
Littlewood, John E., 97
Load balancing problem, 235
Loading, inductive, 333, 343, 380
Load of a processor, 235
Loan, 169
Lobsters, 524
Local area networks, 661
Logarithm

discrete, 284
Logarithm, iterated, 360
Logarithm discrete, 306
Logarithmic complexity, 225
Logarithmic function, A-7–A-9
logarithms

big-O estimates of, 212
Logic, 1

fuzzy, 16
predicate, 37
propositional, 3

Logical connectives, 4
Logical equivalences, 27

constructing, 29
Logical Expression(s)

translating English sentences into, 62–63
Logical expressions

translating English sentences into, 16–17
translating mathematical statements into, 60, 61

Logically equivalent compound propositions, 25, 110
Logically equivalent expressions, 110
Logically equivalent statements, 45
Logical operators, 109

functionally complete, 35
precedence of, 11

Logic circuit, 20, 110
Logic gates, 21, 110, 822–827

AND, 21, 823, 843
combination of, 823
NAND, 828
NOR, 828

OR, 21,823, 843
threshold, 845

Logic programming, 51
Logic puzzles, 19–20
Long-distance telephone network, 646
Longest common subsequence problem, 568
Loom, Jacquard, 31
Loop constructions, A-14–A-15
Loop invariants, 375–376, 378
Loops

in directed graphs, 594, 633
nested, 58
within loops, A-15

Lord Byron, 31
Lottery, 447

Mega Millions, 496
Powerball, 496

Lovelace, Countess of (Augusta Ada), 29, 31
Lower bound

of lattice, 637
of poset, 625, 634

Lower limit of a summation, 163
Lucas, Edouard, 503
Lucas, François Édouard, 162
Lucas numbers, 379, 525
Lucas sequence, 162
Lucky numbers, 570
,,Lukasiewicz, Jan, 780, 782

m-ary tree, 748, 804
complete, 756
full, 748, 752
height of, 754–755

m-tuple, 586
Ménages, probl‘eme des, 571
Machine

finite-state, 899
Mealy, 863, 899
Moore, 863, 865
Turing, 899

machine
unit-delay, 861

Machine(s)
delay, 861–862
finite-state, 847, 858–859

with no output, 865
with outputs, 859–863

Turing, 847, 886, 888, 889, 893
computing functions with, 892–893
definition of, 889
nondeterministic, 893
sets recognized by, 891–892
types of, 893

Machine minimization, 872
vending, 858–859

MAD Magazine, 208
Magic tricks, 20
Majority voting, circuit for, 825
Makespan, 235
Making change

greedy algorithm, 199
Male optimal, 234
Mappings, 139
Maps

coloring of, 727
Markov’s inequality, 493
markup languages, 858
Massachusetts Institute of Technology (M.I.T.), 299
Master theorem, 532
Matching, 659

maximum, 659
stable, 204
string, 231

Matchings with forbidden pairs, 234
Mathematical induction, 29, 311–329

Axiom of, A-5
errors in, 328–329
generalized, 356–357
guidelines for, 328
incorrect proof by, 757
inductive loading with, 333
principle of, 377
proofs by, 315–329

errors in, 328–329
of divisibility facts, 321
of inequalities, 319–320
of results about algorithms, 324
of results about sets, 323–324
of summation formulae, 315

second principle of, 334
strong, 333–335, 378
structural, 353–356, 378
template for, 328
template for proofs, 329
validity of, 328

Matrix (matrices)
addition, 178
adjacency, 669–671, 736

counting paths between vertices by, 688–689
entry of, 178
equal, 178
identity, 180, 186
incidence, 671, 736
invertible,
multiplication

algorithm for, 222
complexity of, 223
noncommutativity of, 179
fast, 529

representing relations using, 591–594
row of a, 178
sparse, 670
square, 178
symmetric, 181, 186
transpose of, 181, 186
upper triangular, 231
zero–one, 181, 186

of transitive closure, 602–603
representing relations using, 591–594
Warshall’s algorithm and, 604–606

Matrix-chain multiplication, 223
Matrix-chain multiplication problem, 513
Matrix product, 179
Maurolico, Francesco, 313
Maximal element of poset, 624, 634
Maximum, of sequence, 528
Maximum element

algorithm for finding, 193
in finite sequence, 192

Maximum matching, 659
Maximum satisfiability problems, 498
Maximum spanning tree, 802
Maxterm, 822
McCarthy

function, 380
McCarthy, John, 381
McCluskey, Edward J., 837
Mealy, G. H., 863
Mealy machine, 863, 899
Mean, 203

arithmetic, 100, 332
deviation from, 491
geometric, 100, 332
harmonic, 108
quadratic, 108

Median, 203
Meet, in lattice, 637
Meet of zero–one matrices, 181

I-14 Index

Mega Millions, Lottery, 496
Meigu, Guan, 698
Member of a set, 185
Membership table, 186
Members of a set, 116
memoization, 510
Merge sort, 196, 367–370, 378, 528

complexity of, 532
recursive, 368

Merging two lists, 368
Mersenne, Marin, 261
Mersenne primes, 261, 306
Mesh network, 662–663
Mesh of trees, 809
metacharacters, 858
Metafont, 208
Method

middle-square, 292
roster, 116

Method(s)
Critical Path, 639
Horner’s, 230
probabilistic, 465–466, 494
Quine–McCluskey, 830, 837–840

Method(s) of proof, 82
by cases, 92, 95
by contradiction, 86
by contraposition, 83
by exhaustion, 93
direct, 82
exhaustive, 93
proofs of equivalence, 87
trivial, 84
vacuous, 84

Method roster, 185
Middle-square method, 292
Millennium Prize problems, 227
Miller’s test, 286
Miller’s test for base b, 286
Minimal element of poset, 624, 634
Minimization

of Boolean functions, 828–840, 843
of combinational circuits, 828–840

Minimization of a finite-state machine, 872
Minimizing maximum lateness

greedy algorithm for, 235
Minimum, of sequence, 528
Minimum dominating set, 739
Minimum spanning forest, 802
Minimum spanning trees, 797–802, 804
Minmax strategy, 767, 804
Minterm, 820, 843
Mistakes in proofs, 89–90
Mixed graph, 644
mod function, 239, 306
Mode, 203
Modeling

computation, 847–897
with graphs, 644–649
with recurrence relations, 502–507
with trees, 749–752

Modular arithmetic, 240–306
Modular exponentiation, 253

algorithm for, 253
recursive, 363

Modular inverse, 275, 306
Modular lattice, 639
Modular properties, in Boolean algebra, 819
Module dependency graphs, 647
Modulus

for linear congruential method, 288
Modus ponens, 71

universal, 77

Modus tollens, 71
universal, 77

Mohammed’s scimitars, 697
Molecules, trees modeling, 750
Money orders

identification numbers for, 293
Monoalphabetic cipher, 297
Monotone decreasing property of graph, 742
Monotone increasing property of graph, 742
Monotonic grammars, 852
Monte Carlo algorithms, 463–465
Montmort, Pierre Raymond de, 563, 571
Monty Hall Three Door Puzzle, 450, 452, 476, 499
Monty Python, 472
Moore, E. F., 863
Moore machine, 863, 865
Moth, 872
Motorized pogo stick, 812
Mr. Fix-It, 263
Muddy children puzzle, 19
Multicasting, 786
Multigraphs, 642, 644, 735

Euler circuit of, 697
Euler path of, 697
undirected, 644

Multinomial coefficient, 434
Multinomial theorem, 434
Multiple, 238

least common, 266, 306
Multiple edges, 642–644, 735
Multiple output circuit, 826
Multiplexer, 828
Multiplication

of function, 141
matrix-chain, 223
of integers

fast, 528–529
of matrices

fast, 529
Multiplication algorithm, 251
Multiplicative Compatibility Law, A-2
Multiplicative inverse, 60
Multiplicities of elements in a multiset, 138
Multiplier

for linear congruential method, 288
Multiset, 138

multiplicities of elements, 138
Multisets

difference of, 138
intersection of, 138

Mutually independent events, 497
Mutually independent trials, 458

n-ary relations, 583–589, 633
domain of, 584
operations on, 586–588

n-cubes, 655
n-queens problem, 792–793
n-regular graph, 667
n-tuple

ordered, 122
n-tuples, 584–585
Naive set theory, 118
Namagiri, 98
NAND, 821, 843
NAND gate, 828
Natural language, 847–848
Natural numbers

set of, 116
Naur, Peter, 854

NAUTY, 674
Naval Ordnance Laboratory, 872
Navy WAVES, 872
Necessary and sufficient conditions, 9
Necessary condition, 6

expressing a conditional statement using, 6
Necessary for, 6
Negating conjunctions, 28
Negating disjunctions, 28
Negating Quantified Expressions, 46
Negation, 109

of a proposition, 3
of nested quantifiers, 63–64
truth table for, 4

Negation operator, 4
Negative

false, 471
true, 471

Neighbors in graphs, 651
Neptune, 476
Nested loops, 58
Nested quantifiers, 57–64

negating, 63–64
Network(s)

computer, 641
interconnection networks, 661–663
local area networks, 661
multicasting over, 786
with diagnostic lines, 642
with multiple lines, 642
with multiple one-way lines, 642
with one-way lines, 643

gating, 822–823
depth of, 828
examples of, 823–825
minimization of, 828–840

social, 644
tree-connected, 751–752

Network number (netid), 392
Newton–Pepys problem, 500
Niche overlap graph, 648
Nickels, 199
Nim, 766, 768
Nobel Prize, 119
Nodes, 594, 641
Noncommutativity of matrix multiplication, 179
Nonconformists, 472
Nonconstructive existence proof, 96, 110
Noncontracting grammar, 851
Nondeterministic finite-state automaton, 873, 899

equivalent finite-state automaton, 874
language recognized by, 873

Nondeterministic polynomial-time problems, 227
class of, 900

item Nondeterministic Turing machine, 893, 899
Nonoverlapping ears, 343
Nonplanar graphs, 724–725
Nonregular set, 891

recognition by Turing machine, 891
Nonresidue

quadratic, 286
Nonseparable graph, 683
Nonterminals, 849
NOR, 821, 843
NOR gate, 828
Normal form

disjunction, 35
prenex, 68

NOT, 18

Index I-15

Notation
big-O, 205, 232
big-Omega (), 214, 232
big-Theta, 215
big-Theta (), 232
dependency, 846
for products

well-formed formula in, 784
infix, 779–782, 804
little-o, 218
Polish, 780, 804
postfix, 779–782, 804, 858
prefix, 779–782, 804
product, 186
reverse Polish, 781, 804, 858
set builder, 116, 185
summation, 162, 186

NOT gate, 21
Noun, 848
Noun phrase, 848
Nova, 107
NP, class of nondeterministic polynomial-time

problems, 900
NP-complete problems, 227, 715, 830, 900
Null quantification, 56
Null set, 185
Null string, 849
Number(s)

Bacon, 680
Bell, 618
cardinal, 121
Carmichael, 283, 306
Catalan, 507
chromatic, 728, 737

edge, 734
crossing, 726
computable, 886
Cunningham, 262
Erdős, 635, 680, 689
Fibonacci, 347, 365–367, 771

formula for, 517
iterative algorithm for, 366
rabbits and, 502–503
recursive algorithms for, 365

harmonic
inequality of, 320–321

independence, 741
irrational, 85, 116
large, law of, 459
Lucas, 379, 525
lucky, 570
natural, 116
pseudorandom, 288
Ramsey, 404
rational, 85, 116
real, A-1–A-5
Stirling, of the first kind, 431

signless, 443
Stirling, of the second kind, 430
Ten Most Wanted, 262
Ulam, 188

Number-theoretic functions, 892
Numbering plan, 387
Number theory, 237

definition of, 237

Object, 118
Object(s)

distinguishable, 428
and distinguishable boxes, 428–429
and indistinguishable boxes, 428–431

indistinguishable, 428
and indistinguishable boxes, 428–431

unlabeled, 428
Obligato game, 112
Octahedral die, 496
Octal expansions, 246, 306
Octal representation, 246, 306
Odd, 83
Odd pie fights, 325
Odlyzko, Andrew, 163
Odometer, 307
One’s complement representations, 256
One-to-one (injective) function

counting, 387
One-to-one correspondence, 144, 186
One-to-one function, 141, 143, 186
On-Line Encyclopedia of Integer Sequences (OEIS),

162
Only if, expressing conditional statement using, 7
Onto (surjective) function, 143, 186

number of, 560–562, 566
Open interval, 117, 332
Open problems, 106, 263–264
Operands, well-formed formula of, 351
Operation(s)

bit, 11, 110
bitwise, 110
set, 127

Operations
on n-ary relations, 586–588

Operator(s)
bitwise, 12
logical, 109
negation, 4
logical, 109
selection, 586
well-formed formula of, 351

Opium, 475
Optimal algorithm, 230
Optimal for suitors, stable assignment, 343
Optimal solution, 198
Optimization problems, 198
OR, 18
Or

exclusive, 5, 6
inclusive, 5

Oracle of Bacon, 680
Order, 207

of quantifiers, 58
Ordered n-tuple, 122
Ordered rooted tree, 749, 804, 806
Ordering

dictionary, 435
lexicographic, 356, 435, 620–622
linear, 619
partial, 618–629, 633
quasi-ordering, 637
total, 619, 633

Ordered pair
defined using sets, 126

Ordinary generating function, 537
Ore’s theorem, 701, 707
Ore, O., 701
Organizational tree, 750
OR gate, 21, 823, 843
Orientable graphs, 740
Orientation of undirected graph, 740
Out-degree of vertex, 654, 736
Output

to an algorithm, 193

Output alphabet, 859
Outputs

finite-state machines with, 859–863
finite-state machines without, 865

Output string
finite-state machine, 861

P(n, r), 439
P, class of polynomial-time problems, 900
P=NP problem, 897
Pair, devil’s, 678
Pairs, forbidden, 234
Pairwise relatively prime integers, 306
Palindrome(s), 202, 397, 857

set of, 888
Paradigm

Algorithmic, 224, 232
Paradox, 118, 185

barber, 16
Löb’s, 112
Russell’s, 126
St. Petersburg, 497

Parallel algorithms, 661
Parallel edges, 642
Parallel processing, 229, 661

tree-connected, 751–752
Parentheses, balanced strings of, 382
Parent of vertex, 747, 803
Parent relation, 580
Parity

same, 83
Parity check bit, 290
Parse tree, 852–854, 899
Parsing

bottom-up, 853
top-down, 853

Partial correctness, 372
Partial function, 152, 186, 889

codomain of, 152
domain of, 152
domain of definition, 152
undefined values, 152

Partially ordered set, 618
antichain in, 637
chain in, 637
comparable elements in, 622, 633
dense, 632
dual of, 630
greatest element of, 625, 634
Hasse diagram of, 622–624, 634
incomparable elements in, 622, 633
least element of, 625, 634
lower bound of, 625, 634
maximal element of, 624, 634
minimal element of, 624, 625, 634
upper bound of, 625, 634
well-founded, 632

Partial orderings, 618–629, 633
compatible total ordering from, 634

Partition, 552
of positive integer, 359, 431
of set, 612–614, 633
refinement of, 617

Partner
valid, 234

Pascal’s identity, 418–419, 439
Pascal’s triangle, 419, 439
Pascal, Blaise, 282, 419, 445, 452
Passwords, 66, 391

I-16 Index

Paths, 678–681
and graph isomorphism, 687–688
counting between vertices, 688–689
Euler, 693–698, 736
Hamilton, 698–703, 736
in acquantanceship graphs, 680
in collaboration graphs, 680
in directed graphs, 599–600, 633, 736
in directed multigraphs, 679
in Hollywood graph, 680–681
in simple graphs, 679
in undirected graphs, 679
length of, in weighted graph, 708
of length n, 680
shortest, 707–716, 736
terminology of, 679

Payoff, 765
Pearl Harbor, 872
Pecking order, 741
Peirce, Charles Sanders, 38
Peirce arrow, 36
Pelc, A., 536
Pendant vertex, 652, 736
Pennies, 199
Perfect integer, 272
Perfect power, 93
Perfect square, 83
Peripatetics, 2
Permutation, circular, 415
Permutations, 407–409, 439

generating, 434–436
generating random, 499
inversions in, expected number of, 482–484
with indistinguishable objects, 427–428
with repetition, 423

PERT (Program Evaluation and Review Technique),
639

Petersen, Julius Peter Christian, 706
Phrase-structure grammar, 849, 899
Phrase-structure grammars, 849–854
Pick’s theorem, 342
Pie fights, odd, 325
Pigeonhole principle, 86, 399–405, 439

applications with, 403–405
generalized, 401–403, 439

Planar graphs, 718–725, 736
Plato, 2
Plato’s Academy, 2, 259
PNF (prenex normal form, 68
Pogo stick, motorized, 812
Pointer, position of, digital representation of,

702–703
Poisonous snakes, 763
Poker hands, 411
Polish notation, 780, 804
Polygon, 338

convex, 338
diagonal of, 338
exterior of, 338
interior of, 338
nonconvex, 338
sides of, 338
simple, 338
vertices of, 338
with nonoverlapping ears, 343

Polynomial-time algorithm for primality, 262
Polynomial-time problems

class of, 900
Polynomial complexity, 225
Polynomials

big-O estimates for, 212
big-O estimates of, 209
big-Theta estimates for, 216

Polynomials, rook, 571
Polyominoes, 105, 326
Ponens

modus, 71
Population of the world, 168
Poset, 618, 633

antichain in, 637
chain in, 637
comparable elements in, 619, 633
dense, 632
dual of, 630
greatest element of, 625, 634
Hasse diagram of, 622–624, 634
incomparable elements in, 619, 633
least element of, 625, 634
lower bound of, 625, 634
maximal element of, 624, 634
minimal element of, 624, 625, 634
upper bound of, 625, 634
well-founded, 632

Positive
false, 471
true, 471

Positive integers
axioms for, A-5

Postcondition, 372
Postconditions, 39
Postfix form, 781
Postfix notation, 779–782, 804, 858
Postorder traversal, 773, 776–778, 804
Postulates, 81
Potrzebie System of Weights and Measures, 208
Powerball, Lottery, 496
Power generator, 292
Powers

of relation, 580–581, 633
Power series, 538–541

formal, 538
Power set, 121, 185
Pre-image of an element, 139, 186
Precedence

of logical operators, 11
of quantifiers, 44

Precedence graphs, 647
Precondition(s), 39, 372
Predicate, 110

truth set of, 125
Predicate calculus, 40
Predicate logic, 37
Prefix codes, 762–764, 804
Prefix form, 780
Prefix notation, 779–782, 804

well-formed formula in, 784
Premise of a condition statement, 6, 110
Premises of an argument, 69, 70
Prenex normal form (PNF), 68
Preorder traversal, 773–775, 778, 804
Prim’s algorithm, 798–799, 804
Prim, Robert Clay, 798, 800
Primality testing, 464–465
Primary key, 585–586, 633
Prime, 257, 306

Mersenne, 306
primitive root of a, 306
probability positive integer less than n is, 262

Prime(s)
arithmetic progression of, 263
conjectures about, 263
distribution of, 261
in arithmetic progressions, 262
infinitude of, 260
Mersenne, 261, 306
of form n2 + 1, 264

primitive root of a, 306
probability positive integer less than n is, 262
twin, 264

Prime factorization, 259
Prime implicant, 832, 843

essential, 832
Prime number theorem, 262, 636
Primitive root of a prime, 284, 306
Prince of Mathematics, 241
Princess of Parallelograms, 31
Principia Mathematica (Whitehead and Russell), 34
Principia Mathematica, 119
Principle(s)

duality, for Boolean identities, 816
of buoyancy, A-4
of counting, 385–390
of inclusion–exclusion, 392–394, 553–557, 566

alternative form of, 559
applications with, 558–564

of mathematical induction, 377
of well-founded induction, 635
of well-ordered induction, 620
pigeonhole, 86, 399–405, 439

applications with, 403–405
generalized, 401–403, 439

Principle of inclusion–exclusion, 128
Private key

cryptosystem, 298, 306
RSA system, 301

Prize, Nobel, 119
Probabilistic algorithms, 445, 463–465, 494
Probabilistic method, 465–466, 494
Probabilistic primality testing, 464–465
Probabilistic reasoning, 450
Probability, discrete, 445–500

assigning, 453–455
conditional, 453, 456–457, 494
finite, 445–448
in medical test results, 471–472
Laplace’s definition of, 446
of collision in hashing functions, 462–463
of combinations of events, 449–450, 455–456

Probability distribution, 453
Probability generating function, 552
Probability positive integer less than n is prime, 262
Probability theory, 445, 452–466
Probing function, 288
Problem(s)
n-queens, 792–793
art gallery, 735
birthday, 461–463
bridge, 693–694, 696, 697
celebrity, 332
Chinese postman, 698
class of NP-complete, 897
class P, 896
closest-pair, 532–535
Collatz, 107
decidable, 895
decision, 894, 900
discrete logarithm, 284
halting, 201, 895, 900
hatcheck, 481, 562
Hilbert’s 23, 895
Hilbert’s Tenth Problem, 895
intractable, 226, 232, 897
jealous husband, 693
Josephus, 512
Kakutani’s, 107
kissing, 163
knapsack, 235, 568
load balancing, 235
longest common subsequence, 568
matrix-chain multiplication, 513
maximum satisfiability, 498

Index I-17

Millennium Prize, 227
Newton–Pepys, 500
NP, 227, 896
NP-complete, 227, 715, 830, 900
P, 227
P=NP, 897
P versus NP, 227
open, 106, 263–264
optimization, 198
problem, two children, 498
satisfiability, 34, 227
Satisfiability

solving, 34
scheduling greedy algorithm for

final exams, 731, 732
searching, 194
shortest-path, 707–716, 736
solvable, 226, 232, 895, 900
Syracuse, 107
tiling, 895
tractable, 226, 232, 897
traveling salesman, 714–716, 736
traveling salesperson, 702, 709
two children, 498
Ulam’s, 107
undecidable, 895
unsolvable, 226, 232, 895, 900
utilities-and-houses, 718
yes-or-no, 894

Probl‘eme de rencontres, 563, 571
Probl‘eme des ménages, 571
Procedure statements, A-11
Processing

concurrent, 647
parallel, 229, 661

tree-connected, 751–752
Product

Boolean, 811–812, 821, 843
matrix, 179

Product-of-sums expansion, 820
Production, 899
Productions, 849

of grammar, 849
Product notation, 186
Product rule, 386
Program correctness, 372–378

conditional statements for, 373–375
loop invariants for, 375–376
partial, 372
program verification for, 372–373
rules of inference for, 373

Program Evaluation and Review Technique (PERT),
639

Programming
logic, 51

Programming, dynamic, 507
Programming languages, 398, 611
Program verification, 372–373
Progression

arithmetic, 186
geometric, 157, 186

sums of, 318–319
Projection of n-ary relations, 586, 633
Prolog, 51, 74
Proof(s), 81, 110

adapting, 101
by cases, 92–110

common errors with, 95
by contradiction, 86, 110
by contraposition, 83, 110
by exhaustion, 93
by mathematical induction, 315–329
by structural induction, 353

combinatorial, 412, 439
constructive existence, 96
direct, 82, 1180
existence, 96
indirect, 83
mistakes in, 89
nonconstructive existence, 96
of equivalence, 87
of recursive algorithms, 364–367
trivial, 84, 110
uniqueness, 99, 110
vacuous, 84, 110

Proof strategy, 85, 100–106
Proper subset, 185
Properties

of algorithms, 193
Property

Archimedean, A-5
Completeness, A-2
Well-ordering, 340–341, 378, A-5

Proposition(s), 2, 81, 109
compound, 3, 25, 27 109
negation of, 3, 109

Propositional equivalences, 129
Propositional calculus, 3
Propositional function, 110
Propositional logic, 3

applications of, 16
argument, 70
rules of inference for, 71

Propositional variable(s), 2, 109
Protein interaction graph, 648
Protestant Noncomformists, 472
Protocol(s)

cryptographic, 302
Diffie–Helman key agreement, 302
key exchange, 305, 306

Pseudocode, 192, A-11–A-15
Pseudograph, 643, 644, 735
Pseudoprime, 282, 306

strong, 286
to the base b, 282

Pseudorandom numbers, 288
generated by linear congruential method, 288
middle-square generator, 292
power generator for, 292
pure multiplicative generator of, 289

Public key
cryptosystem, 298
encryption, 306
RSA system, 299

Pumping lemma, 888
Pure multiplicative generator, 289
Pushdown automaton, 886
Puzzle

“Voyage Around the World,”, 700
Birthday Problem, 461–463
Icosian, 698
jigsaw, 342
knights, knaves, and normals, 112
knights, knaves, and spies, 112
knights and knaves, 19
the lady or the tiger, 24
logic(, 19
logic), 20
Monty Hall Three Door, 450, 452, 476, 499
muddy children, 19
Reve’s, 504
river crossing, 692
Sudoku, 32
Sun-Tsu’s, 277
Tower of Hanoi, 503–504
zebra, 24

P versus NP problem, 227
Pythagorean triples, 106
Pan. ini, 854

Quadratic congruence, 285
Quadratic mean, 108
Quadratic nonresidue, 286
Quadratic residue, 286
Quad trees, 809
Quality control, 463
Quantification, 40

as loops, 58
existential, 42, 110
null, 56
universal, 110

Quantification, universal, 40
Quantified Expressions

negating, 46
Quantified statement(s)

restricted domain, 124
rules of inference for, 75
rules of inference for), 77

Quantifier
existential, 42
scope of, 45, 110
uniqueness, 44
universal, 40

Quantifiers
De Morgan’s law, 47
nested

negating, 63–64
nested(, 57
nested), 64
order of, 58
precedence of, 44
use in system specifications, 50

Quarters, 199
Quasi-ordering, 637
Queen of mathematics, 241
Queen of the sciences, 241
Queens on chessboard, 740
Question, begging the, 90, 110
Quick sort, 196, 371
Quine, Willard van Orman, 837, 839
Quine–McCluskey method, 830, 837–840
Quotient, 238, 239, A-6
Quotient automaton, 878

r-combination, 410, 439
r-permutation, 407, 439
Rabbits, 502–503
Races, horse, 31
Radius of graph, 741
Rado, Tibor, 899
Ramanujan, Srinivasa, 97, 98
Ramaré, O., 264
Ramsey, Frank Plumpton, 404
Ramsey number, 404
Ramsey theory, 404
Random permutation, generating, 499
Random simple graph, 742
Random variables, 454, 460–461

covariance of, 494
definition of, 494
distribution of, 460, 494

geometric, 484–485
expected values of, 477–480, 491, 494
independent, 485–487, 494
indicator, 492
standard deviation of, 487
variance of, 477–480, 494

Range of a function, 139, 186
Ratio

common, 157

I-18 Index

Rational number(s), 85, 116
countability of, 172

Reachable, 807
Reachable state, 901
Real-valued function, 140
Real number

decimal expansion of a, 174
Real numbers

constructing, A-5
least upper bound, A-2
set of, 116
upper bound, A-2

Reasoning
circular, 90, 110
deductive, 312
forward, 100
inductive, 312
probabilistic, 450

Recognized language, 868
Recognized strings, 868
Recognizer

language, 863
Rencontres, 563, 571
Records, 584
Recurrence relation(s), 158, 186, 501–510

associated homogenous, 520
definition of, 158, 565
divide-and-conquer, 527–535
initial condition for, 158
linear homogenous, 514–520, 565
linear nonhomogenous, 520–524, 565
modeling with, 502–507
simultaneous, 526
solution of, 158
solving, 514–524

generating functions for, 546–548
solving using iteration, 159

Recursion, 344
Recursive algorithms, 360–370, 378

correctness of, 364
for binary search, 363
for computing an, 361
for computing greatest common divisor, 362
for factorials, 361
for Fibonacci numbers, 365
for linear search, 363
for modular exponentiation, 363
proving correct, 364–367
trace of, 361, 362

Recursive definitions, 311, 345–357
of extended binary trees, 352
of factorials, 361
of functions, 345–349, 378
of a sequence, 158
of sets, 349–356, 378
of strings, 349
of structures, 349–356

Recursive merge sort, 368
Recursive modular exponentiation, 363
Recursive sequential search algorithm, 363
Recursive step, 349
Reentrant knight’s tour, 707
Refinement, of partition, 617
Reflexive closure of relation, 598, 634
Reflexive relation, 576, 633

representing
using digraphs, 594–596
using matrices, 591

Regions of planar representation graphs, 719, 736
Regular expression, 899
Regular expressions, 879
Regular grammar(s), 851, 884, 899, 900
Regular graph, 667

Regular language, 851
Regular set(s), 878–879, 884, 899, 900

constructing automaton to recognize, 881
Relation, 124

recurrence, 158, 186
Relation(s), 573–639
n-ary, 583–589, 633

domain of, 584
operations on, 586–588

“greater than or equal,”, 618–619
“less than or equals,”, 619
antisymmetric, 577–578, 633
asymmetric, 582
binary, 573, 633
circular, 635
closures of, 597–606, 633

reflexive, 598, 633
symmetric, 598, 634
transitive, 597, 600–603, 634

combining, 579–580
complementary, 582
composite of, 580, 633
connectivity, 600, 633
counting, 578–579
covering, 623, 631
diagonal, 598
divide-and-conquer recurrence, 527
divisibility, 619
domains of, 584
equivalence, 607–614, 633
functions as, 574
inclusion, 619
inverse, 582, 633
irreflexive, 581
on set, 575–576
parent, 580
paths in, 599–600
powers of, 580–633
properties of, 576–579
reflexive, 576, 633
representing

using digraphs, 594–596
using matrices, 591–594

symmetric, 577–578, 634
transitive, 578–580, 633

Relational database model, 584–586, 633
Relation on a set, 124
Relative frequency

letters of English, 296
Relatively prime integers, 306
Remainder, 239, 306
Removing and edge from a graph, 663
Removing an edge from a vertices, 664
Repetition

combinations with, 424–427
permutations with, 423

Replacement
sampling with, 448
sampling without, 448

Representation
base b, 306
binary, 306
octal, 306
unary, 892

Representation hexadecimal, 306
Representations

one’s complement, 256
two’s complement, 256

Representative, of equivalence class, 610
Residue

quadratic, 286
Resolution, 74
Resolution (rule of inference), 71

Restricted domain
of quantified statement, 124
quantifier with, 44

return statement, A-15
Reve’s puzzle, 504
Reverse-delete algorithm, 803
Reverse Polish notation, 781, 804
reverse Polish notation, 858
Right child of vertex, 749
Right subtree, 749
Right triominoes, 326, 333
Ring commutative, 244
Ring topology for local area network, 661
River crossing puzzle, 692
Rivest

Ronald, 300
Rivest, Ronald, 299
RNA (ribonucleic acid), 388
RNA chain sequencing, 443
Roadmaps, 647
Rock climbing, 163
Rocket-powered Frisbee, 812
Rook polynomials, 571
Root

primitive, 284
Rooted Fibonacci trees, 757
Rooted spanning tree, 797
Rooted trees, 351, 747–749
Sk -tree, 806
B-tree of degree k, 805
balanced, 753, 804
binomial, 805
decision trees, 760–762
definition of, 803
height of, 753, 804
level order of vertices of, 806
ordered, 749, 804, 806

Roots, characteristic, 515
Roster method, 116, 185
Round-robin tournaments, 341, 649
Routing transit number (RTN), 308

check digit, 308
Row of a matrix, 178
Roy, Bernard, 603
Roy–Warshall algorithm, 603–606
RSA system, 299

cryptosystem, 299, 301, 306
decryption, 300
decryption key, 301
digital signatures, 303
encryption 299
private key, 301
public key, 301

Rule
division, 394
product, 386
subtraction, 393
sum, 386, 389, 439

Rule(s) of inference, 69–71, 110
addition, 71
building arguments using, 73
conjunction, 71
disjunctive syllogism, 71
for program correctness, 373
for propositional logic, 71
for quantified statements, 75–77
hypothetical syllogism, 71
modus ponens, 71
modus tollens, 71
resolution, 71, 74
simplification, 71

Run, 492
Russell’s paradox, 126
Russell, Bertrand, 118, 119

Index I-19

Sk -tree, 806
Same parity, 83
Samos, Michael, 533
Sample space, 446
Sampling

without replacement, 448
with replacement, 448

Sandwich, 858
Sanskrit, 854
Satisfiability, 30
Satisfiability problem, 227

solving, 34
modeling Sudoku puzzle as, 32

Satisfiability problem, maximum, 498
Satisfiable compound proposition, 30, 110
Saturated hydrocarbons, trees modeling, 750
Saxena, Nitin, 262
Scheduling problems

final exams, 731, 732
greedy algorithm for, 324–325
software projects, 633
talks, 200
tasks, 629

Schröder, Ernst, 175
Schröder–Bernstein theorem, 174
Scimitars, Mohammed’s, 697
Scope of a quantifier, 45, 110
Screw, Archimedes, A-4
Search

binary, 194
linear, 194
sequential, 194

Search engines, 794
Searches

Boolean, 18
Searching algorithms, 194–196, 232

binary, 528
breadth-first, 789–791, 804
depth-first, 787–789, 804

applications with, 794–795
in directed graphs, 794–795

linear
average-case complexity of, 482–484
recursive, 363

recursive binary, 363
recursive linear, 363
recursive sequential, 363

Searching problems, 194
Search trees, binary, 757–759, 804
Searcing

web pages, 18
Second principle of mathematical induction, 334
Secret key

exchange, 302
Seed

for linear congruential method, 288
Sees, 735
Selection operator, 586, 633
Selection sort, 196, 203
Self-complementary graph, 677
Self-converse directed graph, 740
Self-dual, 844
Self-generating sequences, 382
Semantics, 847
Sentence, 848, 849
Separating set, 684
Sequence(s), 156, 186

de Bruijn, 744
Fibonacci, 158
finding maximum and minimum of, 528
generating functions for, 537

integer, 162
Lucas, 162
recursive definition of, 158
self-generating, 382
strictly decreasing, 403
strictly increasing, 403
unimodal, 568

Sequencing
RNA chains, 443

Sequential search algorithm, 194
Serial algorithms, 661
Series

geometric, 164
harmonic, 321
infinite, 167
power, 538–541

formal, 538
Set(s), 185

Cartesian product of, 123
complement of, 128, 129, 186
computer representation of, 134
countable, 171, 186
cut, 806
difference of, 128, 186
disjoint, 128
dominating, 739
element of, 185
elements of a, 116
empty, 118, 185
finite, 121, 185, 553, 565

combinations of, 437–438
counting of subsets, 388
number of subsets of, 323
union of three, number of elements in, 554–556,

566
union of two, number of elements in, 553, 565

fuzzy, 138
guarding, 735
image of, 141
infinite, 121
linearly ordered, 619, 633
member of, 185
members of a, 116
nonregular, 891
not recognized by finite-set automata, 885
null, 185
of complex numbers, 116
of irrational numbers, 116
of natural numbers, 116
of palindromes, 888
of rational numbers, 116
of real numbers, 116
partially ordered, 618, 633

antichain in, 637
chain in, 637
comparable elements in, 619, 633
dense, 632
dual of, 630
greatest element of, 625, 634
Hasse diagram of, 622–624, 634
incomparable elements in, 619, 622, 633
least element of, 625, 634
lower bound of, 625, 634
maximal element of, 624, 634
minimal element of, 624, 625, 634
upper bound of, 625, 634
well-founded, 632

partition of, 612–613, 633
power, 121, 185
proofs of facts about, by mathematical induction,

321
recognized by Turing machines, 891–892
recursively defined, 349–356, 378
regular, 878, 879, 884, 899
relation on, 575–576

relation on, 124
representing with a bit string, 134
separating, 684
singleton, 118
successor of, 137
symmetric difference of, 186
totally ordered, 619, 633
uncountable, 186
union of, 127, 185
universal, 118, 185
well-ordered, 381, 620, 633

Set builder notation, 116, 185
Set description

by listing its members, 116
by the roster method, 116
using set builder notation, 116

Set equality, 117, 185
Set identities, 129–132

absorption laws, 129
associative laws for, 129
Cartesian product of, 123
commutative laws for, 129
De Morgan’s laws for, 129
difference of, 128, 186
distributive laws for, 129
domination laws for, 129
idempotent laws for, 129
identity laws for, 129
intersection of, 127, 185

Set of real numbers
cardinality of, 186
uncountability of, 173

Set operations, 127
Sex, 458
Shamir, Adi, 299, 300
Shannon, Claude, 20
Shannon, Claude Elwood, 811, 812
Sheffer, Henry Maurice, 34
Sheffer stroke, 34, 36
Shift cipher, 295, 306

cryptanalysis, 296
Shift ciphers

cryptosystem, 298
Shifting, 252
Shifting index of summation, 164
Shift register, 846
Shortest-path algorithm, 709–714
Shortest-path problems, 707–716, 736
Showing two sets are equal, 121
Sibling of vertex, 747, 803
Sides of a polygon, 338
Sieve of Eratosthenes, 259, 306, 560, 565
Signature

digital, 306
Signatures

digital, 303
Signed integer, 855
Simple circuit, 679
Simple directed graph, 643
Simple graphs, 642, 654–658, 735

coloring of, 727
connected planar, 719–723
crossing number of, 726
dense, 670
edges of, 642, 663
isomorphic, 671–675, 736
orientation of, 740
paths in, 679
random, 742
self-complementary, 677
sparse, 670
thickness of, 726
vertices of, 642, 663
with spanning trees, 785–787

I-20 Index

Simple polygon, 338
triangulation of, 338

Simplification (rule of inference), 71
Single-elimination tournament, 649
Single error in an identification number, 291
Singleton set, 118
Sink, 901
Six Degrees of Separation (Guare), 680
Slackness of a job, 235
Sloane

Neil, 162
Sloane, Neil, 163
Smullyan, Raymond, 19, 20
Snakes, poisonous, 763
Sneakers, 300
Soccer players, 475
Social networks, 644
Socks, 405
Software

origin of term, 11
Software systems, 17
Sollin’s algorithm, 803
Solution

optimal, 198
Solution of a recurrence relation, 158
Solvable problem, 232, 895, 900
Solvable problems, 226
Solving linear congruences, 277
Solving satisfiability problems, 34
Solving Sudoku puzzles, 32
Solving systems of linear congruences, 277–279

by back substitution, 279
Solving using generating functions

counting problems, 541–546
recurrence relations, 546–548

Sort
binary insertion, 203
binary insertion sort, 196
bubble, 196, 232

bidirectional, 233
insertion, 196, 197, 232

average-case complexity of, 483–484
library, 196
Merge, 196
merge, 367–370, 378, 528

complexity of, 532
recursive, 368

quick, 196, 371
selection, 196, 203
tournament, 196, 770

Sorting, 196–198, 232
Sorting algorithms, 196, 198

topological, 627–629, 634
Space, sample, 446
Space Complexity, 232
Space complexity, 219
Space probe, 476
Spam, 472–475
Spam filters, Bayesian, 472–475
Spanning forest, 796

minimum, 802
Spanning trees, 785–795, 804

building
by breadth-first search, 789–791
by depth-first search, 787–789

definition of, 785
degree-constrained, 806
distance between, 797
in IP multicasting, 786
maximum, 802
minimum, 797–802, 804
rooted, 797

Sparse graphs, 670, 802

Sparse matrix, 670
Specification

of a Turing machine, 889
Specifications

system, 17
Specifying

algorithms, 192
Spiders, Web, 794
Spies, 112
SQL, 588–589, 855
Square

perfect, 83
Squarefree integer, 564
Square Matrix

diagonal of, 181
inverse of, 184

Square zero–one matrix
Boolean power of, 183

St. Petersburg Paradox, 497
Stable assignment, 343
Stable matching, 204
Stable matching problem

variations on, 234
Standard deck, 402
Standard deviation, 487
Star Height, 901
Star topology for local area network, 661
Start symbol, 849
State

accepting
finite-state automaton, 867

final
finite-state automaton, 867

initial, 859
finite-state automaton, 867

reachable, 901
transient, 901

State diagram
for finite-state machine, 860

Strategy
proof, 102

Statement
conditional, XX
biconditional, 9

Statement(s), A-11
if then, 6
procedure, A-11
assignment, A-11–A-12
blocks of, A-14–A-15
conditional, 6–9
for program correctness, 373–375

Statement, return, A-15
Statements

logically equivalent, 45
Statement variables, 2
States, 859
State table

for finite-state machine, 860
Stephen Cook, 227
Steroids, 475
Stirling’s formula, 151
Stirling, James, 151
Stirling numbers of the first kind, 431

signless, 443
Stirling numbers of the second kind, 430
Strategies

minmax, 767, 804
proof(, 100, 106

Strategy
proof, 85

Strictly decreasing function, 143
Strictly decreasing sequence, 403
Strictly increasing function, 143

Strictly increasing sequence, 403
String, 186

bit, 110
empty, 186, 849
null, 849
recognized

by Turing machine, 891
String(s)

bit, 12
String matching, 231
Strings, 157

concatenation, 866
concatenation of, 350
counting, 388

without consecutive 0s, 505
decoding, 762–763
distinguishable, 888
generating next largest, 437
indistinguishable, 888
length of, 505

recursive definition of, 350
lexicographic ordering of, 620
of parentheses, balanced, 382
recognized (accepted), 868
recursively defined, 349
ternary, 511

Stroke
Sheffer, 34

Stroke, Sheffer, 36
Strong induction, 333–335, 378
Strongly connected components of graphs, 686, 736
Strongly connected graphs, 685
Strong pseudoprime, 286
Structural induction, 353–356, 378

proof by, 353
Structured query language, 588–589
Structures, recursively defined, 349–356
Stuarts, 151
Subgraph, 663, 739
Subsequence, 403
Subset, 119, 185

proper, 185
Subsets

of finite set counting, 388
number of, 323

sums of, 793
Subtraction rule, 393
Subtractors

full, 828
half, 828

Subtree, 746, 748, 803
Success, 458
Successor

of integer, A-5
Successor of a set, 137
Sudoku

modeling as a satisfiability problem, 32
Sudoku puzzle, 32
Sufficient

necessary and, 9
Sufficient condition, 6

expressing a conditional statement using, 6
Sufficient for, 6
Suitees, 204
Suitors, 204, 343

optimal for, 343
Sum(s)

Boolean, 811–812, 821, 843
of first n positive integers, 315
of first n positive integers, 317
of geometric progressions, 318–319
of subsets, 793

Sum-of-products expansions, 820–821, 843
simplifying, 828–840

Index I-21

Summation
index of, 163
lower limit, 163
notation, 162, 186
shifting index of, 164
upper limit, 163

Summation formulae
proving by mathematical induction, 315–318

Sum of multisets, 138
Sum of terms of a geometric progression, 164
Sum rule, 386, 389, 439
Sun-Tsu, 277
Superman, 80
Surjection, 143, 186
Surjective (onto) function

number of, 560–562, 566
Surjective function, 143
Switching circuits, hazard-free, 846
Symbol(s), 849

start, 849
terminal, 849

Symbol, Landau, 206
Symbolic Logic (Venn), 120
Symmetric closure of relation, 598, 634
Symmetric difference

of two sets, 186
Symmetric matrix, 181, 186
Symmetric relation, 577–578, 633

representing
using digraphs, 595
using matrices, 591–592

Syntax, 847
System

RSA, 299
Systems

hardware, 17
software, 17

Systems of linear congruence, 277–279
System specifications, 17, 50

consistent, 18

T-shirts, 395
Table

truth, 4, 109
Table(s)

state
for finite-state machine, 860

Table, circular, 394
Table membership, 186
Tao, Terence, 263
Tape

Turing machine, 889
Tautology, 25, 110
Tee-shirts, 395
Telephone call graph, 682
Telephone calls, 646
Telephone lines

computer network with diagnostic, 642
computer network with multiple, 642
computer network with multiple one-way, 642
computer network with one-way, 643

Telephone network, 646, 682
Telephone number, 646
Telephone numbering plan, 387
Template for proofs by mathematical induction, 329
“Ten Most Wanted” numbers, 262
Terminals, 849
Terminal vertex, 594, 654
Terms of a sequence

closed formula for, 159
Ternary search algorithm, 203
Ternary string, 511

Test
Miller’s, 286
primality, 464–465
probabilistic primality, 464–465

Tetromino, 109
TeX, 208
The Art of Computer Programming (Donald Knuth),

196
THE BOOK, 260
The Elements, 260
The Elements(Euclid), 267
The lady or the tiger puzzle, 24
Theorem(s), 81, 110

alternate names for, 81
Archimedean property, A-5
art gallery, 735
Bayes’, 468–475
Bézout’s, 269, 306
binomial, 415–418, 439
Cantor’s, 177
Chinese remainder, 277, 306
Cook–Levin, 227
Dirac’s, 701
extended binomial, 540
Fermat’s last, 106
Fermat’s little, 281, 306
four color, 728–731, 737
fundamental, theorem of arithmetic, 258, 336–337
Green–Tao, 263
Hall’s marriage, 659
handshaking, 653
Jordan curve, 338
Kleene’s, 880, 900
Kuratowski’s, 724–725, 737
Lamé’s, 347
master, 532
methods of proof, 82
multinomial, 434
Ore’s, 701, 707
Pick’s, 342
prime number, 262
proving, automated, 114
Schröder–Bernstein, 174
Wilson’s, 285

Theory, naive set, 118
Theory, Ramsey, 404
Thesis, Church–Turing, 893
Thickness of a graph, 726
Threshold function, 845
Threshold gate, 845
Threshold value, 845
Thue, Axel, 849
Tic-tac-toe, 766
Tiger, 24
Tiling(s), 103
Tiling of checkerboard, 326
Time complexity, 219, 232

average-case time, 232
average case, 220
of algorithm for finding maximum, 219
of linear search algorithm, 220
worst case, 220, 232

Tooth fairy, 112
Top-down parsing, 853
Topological sorting, 627–629, 634
Topology for local area network

hybrid, 661
ring, 661
star, 661

Torus, 726
Total expectation, law of, 492
Total function, 152
Totally ordered set, 619, 633

Total ordering, 619, 633
compatible, 628, 634

Tournament, 741
round-robin, 468, 649
single-elimination, 649

Tournament sort, 196, 770
Tower of Hanoi, 503–504
Trace of recursive algorithm, 361, 362
Tractable problem(s), 226, 232, 897
Trail, 679
Transducer(s)

finite-state, 859
Transformation

affine, 296
Transformations, 139
Transient state, 901
Transition function, 859

extended, 867
extending, 867
extension, 867

Transition rule(s)
Turing machine, 889

Transitive closure of relation, 597, 600–603, 634
computing, 603–606

Transitive relation, 578–580, 633
representing, using digraphs, 596

Transitivity law, A-2
Translating

English sentences to logical expressions, 16–17,
62–63

mathematical statements to logical expressions, 60,
61

nested quantifiers into English, 61–62
logical statements into English, 61–62

Transpose of a matrix, 181, 186
Transposition cipher, 297

decryption, 297
encryption, 297

Transposition error, 291
“Traveler’s Dodecahedron,”, 698, 700
Traveling salesperson problem, 702, 709, 714–716,

736
Traversal of tree, 772–782, 804

inorder, 773, 775, 778, 804
level-order, 806
postorder, 773, 776–778, 804
preorder, 773–775, 778, 804

Tree
derivation, 899
parse, 899

Tree(s), 745–802
m-ary, 748, 804

complete, 756
height of, 754–755

applications of, 757–769
as models, 749–752
AVL, 808
binary, 352–353, 748, 749

extended, 352
full, 352–353

binary search, 757–759, 804
binomial, 805
caterpillar, 807
decision, 760–762, 804
definition of, 746
derivation, 852–854
extended binary, 352
family, 745
full m-ary, 748, 752, 804
full binary, 352
game, 764–769
graceful, 807
height-balanced, 808
labeled, 756
mesh of, 809

I-22 Index

Tree(s)—Cont.

parse, 852
properties of, 752–755
quad, 809
rooted, 351, 747–749
Sk -tree, 806
B-tree of degree k, 805
balanced, 753, 804
binomial, 805
decision trees, 760–762
definition of, 803
height of, 753, 804
level order of vertices of, 806
ordered, 749, 804, 806

rooted Fibonacci, 757
spanning, 785–795, 804

definition of, 785
degree-constrained, 806
distance between, 797
in IP multicasting, 786
maximum, 802
minimum, 797–802, 804
rooted, 797

Tree-connected network, 751–752
Tree-connected parallel processors, 751–752
Tree diagrams, 394–395, 439
Tree edges, 788
Tree traversal, 772–782, 804

inorder, 773, 775, 778, 804
postorder, 773, 776–778, 804
preorder, 773–775, 778, 804

Trial division, 258
Triangle inequality, 108
Triangle, Pascal’s, 419, 439
Triangulation, 338
Trichotomy Law, A-2
Tricks, magic, 20
Triomino(es), 105, 326, 333

Right, 105, 333
straight, 105

Trivial proof, 84, 110
True negative, 471
True positive, 471
Truth set

of a predicate, 125
Truth table(s), 4, 109

for biconditional statements, 9
for conditional statement, 6
for conjuction, 4
for disjunction, 4
for exclusive or, 6
for logical equivalences, 27
for negation, 4
for XOR, 6
of compound propositions, 10

Truth value, 3, 109
of implication, 6

Tukey, John Wilder, 11
coining words, 11

Turing, Alan Mathison, 226, 886
Turing Award, 854
Turing machine, 847, 886, 888, 889, 893, 899

computing functions with, 892–893
control unit, 889
definition of, 889
final state, 891
halts, 891
in computational complexity, 894
initial position, 889
initial state, 889
nondeterministic, 893, 899
recognition of nonregular set, 891
sets recognized by, 891, 892

specification, 889
string recognition by, 891
tape, 889
transition rules, 889
types of, 893

Twin prime conjecture, 264
Twin primes, 264
Two’s complement representations, 256
Two-dimensional array, 662–663
Two children problem, 498
Type, 117
Type 0 grammar, 851, 899
Type 1 grammar, 851, 899
Type 2 grammar, 851, 899
Type 3 grammar, 851, 883, 899

U. S. Coast Survey, 38
Ulam’s problem, 536
Ulam, Stanislaw, 536
Ulam numbers, 188
Unary representations, 892
Uncomputable function, 175, 186, 896, 900
Uncountability

set of real numbers, 173
Uncountable set, 186
Undecidable problem, 895
Undefined values

of partial function, 152
Underlying undirected graph, 654, 736
Undirected edges, 644, 735

of simple graph, 643
Undirected graphs, 644, 653, 735

connectedness in, 681–685
Euler circuit of, 694
Euler path of, 698
orientation of, 740
paths in, 679, 736
underlying, 654, 736

Unicasting, 786
Unicorns, 112
Unicycle, 812
Uniform distribution, 454, 494
Unimodal sequence, 568
Union

of graphs, 664
of three finite sets, number of elements in,

554–556, 566
of two finite sets, number of elements in, 553, 565

Union of
fuzzy sets, 138

Union of a collection of sets, 133
Union of multisets, 138
Union of sets, 127, 185
Uniqueness proof, 110
Uniqueness quantifier, 44
Uniquness

proof, 99
Unit (Egyptian) fraction, 380
Unit-delay machine, 861–862
unit-delay machine, 861
United States Coast Survey, 38
Unit property, in Boolean algebra, 815
UNIVAC, 872
Univeral quantification, 110
Universal address system, 772–773
Universal generalization, 76
Universal instantiation, 75
Universal modus ponens, 77
Universal modus tollens, 77
Universal product code (UPC), 290
Universal quantification, 40
Universal quantifier, 40
Universal set, 118, 185

Universe of discourse, 40, 110
Unlabeled

boxes, 428
objects, 428

Unless, 6
expressing conditional statement using, 7

Unsatisfiable compound proposition, 30
Unsolvable problem, 232, 895, 900
Unsolvable problems, 226
UPC check digit, 290
Upper bound, A-2

of lattice, 637
of poset, 625, 634

Upper limit of a summation, 163
Upper triangular matrix, 231
Utilities-and-houses problem, 718
Uzbekistan, 192

Vacuous proof, 84, 110
Valid argument, 69, 110
Valid argument form, 70, 110
Valid partner, 234
Value

truth, 3, 109
Value(s)

expected, 477–480, 491, 494
in hatcheck problem, 495
linearity of, 477–484, 494
of inversions in permutation, 482–484

final, A-14
initial, A-14
of tree, 767
of vertex in game tree, 767–769, 804
threshold, 845

Vandermonde’s identity, 420–421
Vandermonde, Alexandre-Théophile, 420
Variable(s)

Boolean, 11, 110, 814, 820, 843
bound, 44, 110
free, 44, 110
propositional, 2, 109
random, 454, 460–461

covariance of, 494
definition of, 494
distribution of, 460, 494
expected values of geometric, 477–480
geometric, 484–485
geometric expected values of, 491, 494
independent, 485–487, 494
indicator, 492
standard deviation of, 487
variance of, 477–480, 494

statement, 2
Variance, 477, 487–490, 494
Veitch, E. W., 830
Vending machine, 858–859
Venn, John, 118, 120
Venn diagrams, 118, 185
Verb, 848
Verb phrase, 848
Vertex (vertices), 594

adjacent, 651, 654, 735
ancestor of, 747, 803
basis, 691
child of, 747, 749, 803
connecting, 651
connectivity, 684
counting paths between, 688–689
cut, 683, 684
degree of, 652
degree of, in undirected graph, 652
descendant of, 747, 804
distance between, 741
eccentricity of, 757
end, 654

Index I-23

Vertex (vertices)—Cont.

in-degree of, 654, 736
independent set of, 741
initial, 594, 654
interior, 603
internal, 748, 804
isolated, 652, 736
level of, 753, 804
level order of, 806
number of, of full binary tree, 355
of directed graph, 643, 654
of directed multigraph, 644
of multigraph, 642
of polygon, 338
of pseudograph, 643
of simple graph, 642, 668
of undirected graph, 644, 652, 654
out-degree of, 654, 736
parent of, 747, 803
pendant, 652, 736
sibling of, 747, 803
terminal, 594, 654
value of, in game tree, 767–769, 804

Vertex set, 338
bipartition of, 656

Very large scale integration (VLSI) graphs, 744
Vigenère cipher, 304

cryptanalysis, 305
Vocabulary, 849, 899
“Voyage Around the World” Puzzle, 700

Walk, 679
closed, 679

Wall Street, 198
Warshall’s algorithm, 603–606
Warshall, Stephen, 603, 604

WAVES, Navy, 872
Weakly connected graphs, 686
Web crawlers, 646
Web graph, 646–647, 794

strongly connected components of, 686
Web page(s), 646, 686, 794

searching, 18
Web spiders, 794
Weighted graphs, 736

minimum spanning tree for, 798–802
shortest path between, 707–714
traveling salesperson problem with, 714–716

Well-formed expressions, 354
Well-formed formula, 350

for compound propositions, 354
in prefix notation, 784
of operators and operands, 351
structural induction and, 354

Well-founded induction, principle of, 635
Well-founded poset, 632
Well-ordered induction, 634

principle of, 620
Well-ordered set, 381, 620, 633
Well-ordering property, 340–341, 378, A-5
WFF’N PROOF, The Game of Modern Logic (Allen),

80, 114
Wheels, 655, 736
Wiles, Andrew, 107
Williamson, Malcolm, 302
Wilson’s theorem, 285
Winning strategy

for chomp, 98
Without loss of Generality (WLOG), 95, 110
Witness(es)

to big-O relationship, 205, 232
to an existence proof, 96

Witnesses to a big-O relationship, 232
WLOG (without loss of generality), 95
Word, 849
Word and Object (Quine), 839
World’s record, for twin primes, 264
World Cup soccer tournament, 415
World population, 168
World Wide Web graph, 646–647
Worst-case complexity

insertion sort, 222
of binary search, 220
of bubble sort, 221

Worst-case time complexity, 232
Worst case

time complexity, 220

XML, 855, 858
XOR, 110

Yahoo, 794
Yes-or-no problems, 894

Zebra puzzle, 24
Zermelo–Fraenel axioms, 176
Zero–one matrices

Boolean product of, 182
join of, 181
meet of, 181
of transitive closure, 602–603
representing relations using, 591–594

Zero–one matrix, 181
Zero–one matrix, 186
Zero property, in Boolean algebra, 815
Ziegler’s Giant Bar, 208
Zodiac, signs of, 441

	Title
	Contents
	1 The Foundations: Logic and Proofs
	1.1 Propositional Logic
	1.2 Applications of Propositional Logic
	1.3 Propositional Equivalences
	1.4 Predicates and Quantifiers
	1.5 Nested Quantifiers
	1.6 Rules of Inference
	1.7 Introduction to Proofs
	1.8 Proof Methods and Strategy
	End-of-Chapter Material

	2 Basic Structures: Sets, Functions, Sequences, Sums, and Matrices .
	2.1 Sets
	2.2 Set Operations
	2.3 Functions
	2.4 Sequences and Summations
	2.5 Cardinality of Sets
	2.6 Matrices
	End-of-Chapter Material

	3 Algorithms
	3.1 Algorithms
	3.2 The Growth of Functions
	3.3 Complexity of Algorithms
	End-of-Chapter Material

	4 Number Theory and Cryptography
	4.1 Divisibility and Modular Arithmetic
	4.2 Integer Representations and Algorithms
	4.3 Primes and Greatest Common Divisors
	4.4 Solving Congruences
	4.5 Applications of Congruences
	4.6 Cryptography
	End-of-Chapter Material

	5 Induction and Recursion
	5.1 Mathematical Induction
	5.2 Strong Induction andWell-Ordering
	5.3 Recursive Definitions and Structural Induction
	5.4 Recursive Algorithms
	5.5 Program Correctness
	End-of-Chapter Material

	6 Counting
	6.1 The Basics of Counting
	6.2 The Pigeonhole Principle
	6.3 Permutations and Combinations
	6.4 Binomial Coefficients and Identities
	6.5 Generalized Permutations and Combinations
	6.6 Generating Permutations and Combinations
	End-of-Chapter Material

	7 Discrete Probability
	7.1 An Introduction to Discrete Probability
	7.2 Probability Theory
	7.3 Bayes’ Theorem
	7.4 Expected Value and Variance
	End-of-Chapter Material

	8 Advanced Counting Techniques
	8.1 Applications of Recurrence Relations
	8.2 Solving Linear Recurrence Relations
	8.3 Divide-and-Conquer Algorithms and Recurrence Relations
	8.4 Generating Functions
	8.5 Inclusion–Exclusion
	8.6 Applications of Inclusion–Exclusion
	End-of-Chapter Material

	9 Relations
	9.1 Relations and Their Properties
	9.2 n-ary Relations and Their Applications
	9.3 Representing Relations
	9.4 Closures of Relations
	9.5 Equivalence Relations
	9.6 Partial Orderings
	End-of-Chapter Material

	10 Graphs
	10.1 Graphs and Graph Models
	10.2 Graph Terminology and Special Types of Graphs
	10.3 Representing Graphs and Graph Isomorphism
	10.4 Connectivity
	10.5 Euler and Hamilton Paths
	10.6 Shortest-Path Problems
	10.7 Planar Graphs
	10.8 Graph Coloring
	End-of-Chapter Material

	11 Trees
	11.1 Introduction to Trees
	11.2 Applications of Trees
	11.3 Tree Traversal
	11.4 Spanning Trees
	11.5 Minimum Spanning Trees
	End-of-Chapter Material

	12 Boolean Algebra
	12.1 Boolean Functions
	12.2 Representing Boolean Functions
	12.3 Logic Gates
	12.4 Minimization of Circuits
	End-of-Chapter Material

	13 Modeling Computation
	13.1 Languages and Grammars
	13.2 Finite-State Machines with Output
	13.3 Finite-State Machines with No Output
	13.4 Language Recognition
	13.5 Turing Machines
	End-of-Chapter Material

	14 Appendixes
	1 Axioms for the Real Numbers and the Positive Integers
	2 Exponential and Logarithmic Functions
	3 Pseudocode

	Suggested Readings
	Answers to Odd-Numbered Exercises
	Photo Credits
	Index of Biographies
	Index

