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Preface

The highest form of pure thought is in Mathematics.

 Plato (428 BC–348 BC)

Since mathematics forms the basis of any branch of engineering and technology, 

the West Bengal University of Technology has made a commendable endeavour by 

 introducing different syllabi for mathematics at different semesters in the B.Tech. 

level.  The current book has been written as per the latest WBUT syllabus for the first-

year, first-semester B.Tech. students. Our main objective of writing this book is to help 

students build upon the fundamental concepts which are also required for subjects 

studied in the higher semesters. Each and every topic of the book is lucidly explained 

and illustrated with different kinds of examples. Also, stepwise clarifications of differ-

ent methods of solving problems are given.

Salient Features

 Full coverage of the WBUT syllabus (2010 Regulation)

  Lucid explanation of topics like Matrix, Infinite Series, Vector Algebra, Vector 

Calculus, Calculus of Functions of Several Variables

 Stepwise solutions to examples

 Solved WBUT questions from 2001-2009 incorporated within each chapter

  Solutions of WBUT examination papers from 2010-2014 are placed at the end of 

the book 

 Rich pedagogy:

 400 Solved Examples

 315 Short and Long Answer Type Questions

 220 Multiple Choice Questions

Chapter Organisation

The contents of the book are divided into nine chapters. 

In Chapter 1, we first represent the fundamentals of matrices along with the 

 notations and algebraic operations applicable on them. Here, we also discuss the deter-

minant of a square matrix, singular and non-singular matrices, and the method of com-

puting the inverse of a matrix along with its properties, orthogonal matrix and trace of 

a matrix. Chapter 2 deals with the concept of the rank of a matrix, matrix inversion 
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method, Cramer’s rule, consistency and inconsistency of a system of homogeneous 

and nonhomogeneous linear simultaneous equations, Eigen values and Eigen vectors, 

and the Cayley–Hamilton theorem and its applications.

Chapter 3 discusses successive differentiation and Leibnitz’s theorem along with 

its applications. In Chapter 4, we present the very well-known three mean-value theo-

rems, namely, Rolle’s, Lagrange’s and Cauchy’s mean-value theorems along with their 

wide range of applications in various fields. The series expansion theorems and formu-

las, namely, Taylor’s and Maclaurin’s series expansion, are also discussed in this 

chapter.

Chapter 5 explains the concept of reduction formulas for integration and its 

 applications. In Chapter 6, we introduce the concept of functions of several variables. 

Also, we describe the methods of differentiations and their applications towards 

 optimisations of the functions. Chapter 7 deals with line integrals, double integrals 

and triple integrals. 

Chapter 8 basically covers preliminary ideas of real sequences and illustrative 

ideas of infinite series. Chapter 9 has been divided into three parts. In the first part of 

this chapter, we discuss vector algebra. The second part of the chapter deals with 

vector differentiations, gradient, divergence and curl. In the third part of the chapter, 

we give theorems on vector integrations (Green’s theorem, Divergence theorem, 

Stokes’ theorem) and their applications to physical problems.

At the end of the each chapter, various kinds of solved examples covering all the 

topics, including 2001–2009 solved WBUT questions, are given. Numerous short and 

long-answer-type question and multiple-choice questions are given in the exercises of 

every chapter. Solutions of 2010 to 2014 WBUT examination papers are provided at 

the end of the book. 
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ROADMAP TO THE SYLLABUS

Engineering Mathematics-I

This text is suitable for the Subject Code M101.

Module I

Matrix

Determinant of a square matrix; Minors and Cofactors; Laplace’s method of expansion 

of a determinant; Product of two determinants; Adjoint of a determinant; Jacobi’s 

 theorem on adjoint of a determinant; Singular and nonsingular matrices; Adjoint of a 

matrix; Inverse of a nonsingular matrix and its properties; Orthogonal matrix and its 

properties, Trace of a matrix

Rank of a matrix and its determination using elementary row and column opera-

tions; Solution of simultaneous linear equations by matrix inversion method; 

Consistency and inconsistency of a system of homogeneous and inhomogeneous linear 

simultaneous equations; Eigen values and Eigen vectors of a square matrix (of order 2 

or 3); Eigen values of APTP; kA; AP-1P; Cayley–Hamilton theorem and its 

applications

GO TO
CHAPTER 1 MATRIX I

CHAPTER 2 MATRIX II

Module II

Successive Differentiation

Higher-order derivatives of a function of single variable; Leibnitz’s theorem (state-

ment only and its application; problems of the type of recurrence relations in deriva-

tives of different orders and also to find ((yn)0)

Mean-Value Theorems and Expansion of Functions

Rolle’s theorem and its application; Mean-value theorems—Lagrange’s and Cauchy’s 

theorems and their application; Taylor’s theorem with Lagrange’s and Cauchy’s form 

of remainders and its application; Expansions of functions by Taylor’s and Maclaurin’s 

theorems; Maclaurin’s infinite series expansion of the functions sin x; cos x; ex; 

log(1 + x); (a + x )n, n being an integer or a fraction (assuming that the remainder Rn Æ 0 

as n Æ • in each case)
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Reduction Formula

Reduction formulae both for indefinite and definite integrals of types

Ú sinnx; Ú cosnx; Ú sinmx cosnx; Ú cosmx sin nx; Ú dx/(x2 + a2)n, m, n are positive integers

GO TO

CHAPTER 3 SUCCESSIVE DIFFERENTIATION

CHAPTER 4  MEAN-VALUE THEOREMS AND 

EXPANSION OF FUNCTIONS

CHAPTER 5 REDUCTION FORMULA

Module III

Calculus of Functions of Several Variables

Introduction to functions of several variables with examples; Knowledge of limit and 

continuity; Partial derivatives and related problems; Homogeneous functions and 

Euler’s theorem and related problems up to three variables; Chain rules; Differentiation 

of implicit functions; Total differentials and their related problems; Jacobians up to 

three variables and related problems; Maxima, minima and saddle points of functions 

and related problems; Concept of line integrals; Double and triple integrals

GO TO

CHAPTER 6  CALCULUS OF FUNCTIONS OF 

SEVERAL VARIABLES

CHAPTER 7  LINE INTEGRAL, DOUBLE INTEGRAL 

AND TRIPLE INTEGRAL

Module IV

Infinite Series

Preliminary ideas of sequence; Infinite series and their convergence/divergence; 

Infinite series of positive terms; Tests for convergence: Comparison test; Cauchy’s 

Root test; D’ Alembert’s Ratio test and Raabe’s test (statements and related problems 

on these tests); Alternating series; Leibnitz’s Test (statement; definition) illustrated by 

simple example; Absolute convergence and Conditional convergence

GO TO CHAPTER 8  INFINITE SERIES
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Module V

Vector Algebra and Vector Calculus

Scalar and vector fields—definition and terminologies; Dot and cross products; Scalar 

and vector triple products and related problems; Equation of straight line; Plane and 

sphere; Vector function of a scalar variable; Differentiation of a vector function; Scalar 

and vector point functions; Gradient of a scalar point function; divergence and curl 

of a vector point function; Directional derivative (related problems on these topics) 

Green’s theorem; Gauss Divergence Theorem and Stokes’ theorem (statements and 

applications)

GO TO CHAPTER 9  VECTOR ANALYSIS



1
Matrix I

1.1 INTRODUCTION

Matrix algebra is a very essential part of mathematics. It has a wide range of applica-

tions in various branches of science and technology. Besides direct applications, we 

also borrow the concept of matrix notations for representing various systems in a com-

pact manner.

In this chapter, we first represent the fundamentals of matrices  along with the nota-

tions and algebraic operations applicable on them. Next we discuss symmetric and 

skew-symmetric matrices with the help of the transpose property.

Here, we shall also discuss a very important characteristic of matrices, namely, 

‘determinant’, which is very useful for dealing with physical problems in science and 

technology. Here, we give different methods for computing determinants along with 

the various algebraic operations.

Next, we describe the concept of singular and nonsingular matrices and the method 

of computing the inverse of a matrix along with its properties.

In the last part, orthogonal matrix and trace of a matrix have been illustrated lucidly.

Definition: A rectangular array of mn  elements aij  into m  rows and n  colunms 

where the elements aij  belong to a field F  enclosed by a pair of brackets, is said to be 

a matrix of order m n×  over the field F. The m n×  matrix is of the form

a a a

a a a

a a a

n

n

m m mn

11 12 1

21 22 2

2ama

...

...

.. .. .. ..

...

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟  or 

a a a

a a a

a a a

n

n

m m mn

11 12 1

21 22 2

2ama

...

...

.. .. .. ..

...

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

F  is said to be the field of scalars. In particular, F  is the field of real or complex 

numbers. The matrix is denoted by 
m n

( )aij ×
.

CHAPTER
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For example,

(i) 5 6

8 0
3 2

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ is a matrix with 3 rows and 2 columns over a real field

(ii)
5 1 9

4 6 1
2 3

−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

is a matrix with 2 rows and 3 columns over a real field

(iii)

2 1 9

4 6 5

8 7 2
3 3

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ is a matrix with 3  rows and 3  columns over a real field

1.2 DIFFERENT TYPE OF MATRICES

1) Zero Matrix or Null Matrix: A matrix is called zero matrix if every element of 

it is 0. A null matrix of order m n×  is denoted by Om n× .

For example, 

0 0

0 0

0 0

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  is a zero matrix of order 3 2 and it is denoted by O3 2.

Also, 

0 0 0

0 0 0

0 0 0

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  is a zero matrix of order 3 3 and it is denoted by O3 3.

2) Square Matrix: A matrix with equal number of rows and columns is called a 

square matrix.

For example, 
4 5

2 9

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

 is a square matrix of order 2 2.

3) Diagonal Matrix: A square matrix is said to be a diagonal matrix if the elements 

other than the diagonal elements are all zero.

 For example, 

1 0 0

0 4 0

0 0 3

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  is a diagonal matrix of order 3 3.

4) Scalar Matrix: A diagonal matrix is said to be a  scalar matrix if all the diagonal 

elements are the same scalar.

For example, 

3 0 0

0 3 0

0 0 3

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  is a scalar matrix of order 3 3.

5) Identity Matrix: A scalar matrix with diagonal elements equal to 1 is called an 

identity matrix.

For example, 

1 0 0

0 1 0

0 0 1

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  is an identity matrix of order 3 3. It is denoted by I3.
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6) Triangular Matrix:

a) A square matrix ( )ij  is said to be an upper triangular matrix if all the 

 elements below the diagonal are 0 . That is, aij = 0,  i j .

 For example, 

4 6 8

0 1 3

0 0 1

−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  is an upper triangular matrix of order 3 3.

b) A square matrix ( )ij  is said to be a lower triangular matrix if all the ele-

ments above the diagonal are 0. That is, aij = 0,  i j .

For example, 

4 0 0

7 1 0

9 8 1−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  is a lower triangular matrix of order 3 3.

7) Row Matrix and Column Matrix:

Any matrix A
m n

( )aij ×
is called a row matrix if m = 1, i.e., the matrix has only 

one row.

 So its form is A a a a a n n
...11 12 13 1 1

( ) × .

Any matrix A
m n

( )aij ×
is called a column matrix if n = 1, i.e., the matrix has 

only one column.

 So its form is A

a

a

a

am m

=

...

11

21

31

1 1.

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

×

For example, 2 3 0 5 8( )  is a row matrix.

 For example, A =

3

0

6

3

1

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎠⎠

⎟⎟
 is a column matrix.

1.3 ALGEBRAIC OPERATIONS ON MATRICES

1.3.1. Equality of Two Matrices

Two matrices  A  and B  are said to be equal if A  and B  have the same order and 

their corresponding elements are equal.

Thus if A =  
m n

( )aij ×
 and B bij m n( ) ×  then A B  if and only if a bij ij  for 

i j n= 1,2, ;m = 1,2, .nj;m
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For example, A
a b c

d e f
=
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

 and B =
1 2 3

4 5 6

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

 are equal if a b c= 1, =b 2, ,

d e f=d 4, =f 6.

1.3.2. Multiplication by a Scalar 

The product of an m n×  matrix A
m n

( )aij ×
 by a scalar c  where c F, the field of 

scalars is a matrix B
m n

( )bij ×
defined by

b caij ij= ,caij i = 1,2, ;m  j n1 2  and is written as B cAc .cAcc

For example, let A =

2 1 4

3 1 0

5 0 1

−
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  then 2 =

4 2 8

6 2 0

10 0 2

.−
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

1.3.3. Addition of Matrices

If A
m n

( )aij ×
 and B bijb m n( ) × then their sum (or difference) A B  is the matrix 

C
m n

( )cij ×
 where c a b iij ij ij= ,a bij ijb = 1,2, ;m±  j n= 1,2, .n

Two matrices of the same order are said to be conformable for addition.

For example,

(i) If  A =

5 1 8

4 2 9

7 5 1−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  and B =

7 5 4

9 2 5

3 8 5

−
−
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

  then A B

−
+

−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

−
−
−

⎛
=

5 7− 1 5+ 8 4+
4 9− 2 2+ 9 5+
7 3+ 5 8+ 1 5+

=

2 4 12

5 4 14

4 13 6⎝⎝
⎜
⎛⎛

⎜⎝⎝⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

 (ii) If A
i i

i i
=

2 4i 5

3 5 2 8

i

i5

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

 and B
i i

i i
=

8 7 3

4 6 7

−8
−4
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

  then A B
i i

i

−⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

=
10 6 4ii 2

7 11 9i− i 7
 where i = 1.

Properties:

 a) Matrix addition is commutative, i.e., A B B AB B= .B AB

 b) Matrix addition is associative, i.e., A A B C+ B( )B C+B ( ) .

 c) Scalar multiplication is distributive over matrix addition,

  i.e., c cA cBc( )A B .cA ccc BcccAcB cAcc

 d) For any matrix Am n× ,  0 .A O=m n m n×On mO

 e) For any matrix Am n× ,  A O Am n m n m n×On mO = .Am n×
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1.3.4. Multiplication of matrices

If A =
m n

( )aij ×
 is of order m n×  and B bijb n p( ) ×  is a matrix of order n p×  then the 

product AB  is a matrix of order m p×  and AB C
m p

= C ( )cij ×
 where

c a bij k

n

ik kj ,a b
k ik kj=1

a∑∑ i = 1,2, ;m  j p= 1,2, .p

Let A
a a a

a a a
= 11 12 13

21 22 23 2 3

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

 and B

b b

b b

b b

=
11 12

21b 22

31b 32 3 2

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

Here number of columns of A = 3 =  number of rows of B. So multiplication is 

possible and the product AB  is a 2 2  matrix, given by

AB
a a a

a a a

b b

b b

b b

= .11 12 13

21 22 23

11 12

21b 22

31 32

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

= 11 11 12 21 13 31 11 12 12 22 13 32

21 11 22 21 23

a b11 11 a b12 2 a b13 33 a b11 11 a b12 2 a b13 33

a b21 11 a b22 2 a

+21+ a b12 22 +22+ a b12 22

+21+ a b22 22 b abb b a b a b31bbbbb 21 12bb 22 22b 23 32bba b22b

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

Observation:

a) The ij-th element of the product AB is obtained by multiplying the corre-

sponding elements of the i-th row of A and the j-th column of B and adding 

such products.

 b) If the number of columns of A is not equal to the number of rows of B then 

AB is not defined.

Example 1  Let us consider two matrices =
1 0 1

0 2 3
2 3

−⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

and B =

1 0

3 2

0 5
3 2

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

Since number of columns of A = 3 =  number of rows of B , the product AB  is defined 

and is given by a 2 2  matrix

AB =
1 0 1

0 2 3

1 0

3 2

0 5

−⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

=
1 1 0 3 ( 1) 0 1 0 0 ( 2) ( 1) 5

0 1 2 3 3 0 0 0 2 ( 2) 3 5

+1 +3 1)1) +0 0 - +2) 1)1)

11 ¥ + ¥3 3 ¥0 20 2)2) ¥
Ê
ËËÁ
ÊÊ
ËËËË

ˆ
¯

Ê
ËÁ
ÊÊ
ËË

ˆ
¯

=
1 5-
6 11

2 2¥

Again, since number of columns of B = 2 =  number of rows of A, the  product BA

is defined and is given by a 3 3  matrix

BA =

1 0

3 2

0 5

1 0 1

0 2 3

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟ −⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

=

1 1 0 0 1 0 0 2 1 ( 1) 0 3

3 1 ( 2) 0 3 0 ( 2) 2 3 ( 1) ( 2) 3

+1 ¥ 0 00 -( + 0

+1 2)2) +0 2)2) -( + (

0 1 500 0 0 0 5 2 0 ( 1) 5 3

=

1 0 1

3 4 9

0 10 15
3

11 ¥ 0 0 ¥5 ¥ ( ¥5

Ê

Ë

Á
ÊÊ

Á
ËË

ÁÁ
ˆ

¯

-
-4

Ê

Ë

Á
ÊÊ

Á
ËË

ÁÁ
ˆ

¯ ¥33

.
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Properties:

(1) In general, matrix multiplication is not commutative, i.e., AB BA≠ .

From the previous example, it is obvious that AB BA≠ .  Also, in this case the orders 

of AB  and BA  are different.

But in the next example we will see the fact that AB BA≠  even when the orders of 

AB  and BA  are same.

Example 2  Let A =
1 2

2 3
2 2

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

and B =
3 2

4 5
.

2 2

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

Then AB =
1 2

2 3
.

3 2

4 5
=

5 12

18 11
2 2

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ −

−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

and BA =
3 2

4 5
.

1 2

2 3
=

7 0

6 23
2 2

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

−6
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

Here though the orders of AB  and BA  are same, AB BA≠ .

But in some special cases, AB  may be same as BA, i.e., AB BA= ,BA  which follows 

from the next example:

Example 3  Let A =
1 2

0 3
2 2

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

and B =
3 2

0 5
.

2 2

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

Then AB =
1 2

0 3
.

3 2

0 5
=

3 12

0 15
2 2

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

and BA =
3 2

0 5

1 2

0 3
=

3 12

0 15
2 2

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

Here, AB BA= ,BA  which proves the above stated fact.

 (2) Matrix multiplication is associative, i.e., A AB( )BC ( ) .C

(3) Matrix multiplication is distributive over matrix addition,

  i.e., A AB AC( )B C ABC , provided both sides are defined.

 (4) Matrix addition is distributive over matrix multiplication,

  i.e., ( )A BA CB ACC)A B= ABB , provided both sides are defined.

(5) For any square matrix A of order n n× , A I I A An nI= =I A .

(6) For any square matrix A of order n n× , A O O A On n n n n n, ,n n ,= =O A .

(7) The product of two non null matrices may result to a null matrix. This will 

be evident from the following example.

Example 4  Let  A = 
1 2

2 4

Ê
ËÁ

ˆ
¯̃

 and B = 
6 4

3 2

-
-

Ê
ËÁ

ˆ
¯̃

, then

  AB = 
1 2

2 4

Ê
ËÁ

ˆ
¯̃

 
6 4

3 2

-
-

Ê
ËÁ

ˆ
¯̃

 = 
0 0

0 0

Ê
ËÁ

ˆ
¯̃

Therefore, we see that the product of two non null matrices results to a null matrix.
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Example 5  Let  A and B are two square matrices of the same order, examine 

if the following holds

(A + B)2 = A2 + 2AB + B2

Sol. Since, A and B are square matrices, A2 and B2 are both defined. Since, A and B 

are square matrices of same order, A + B and AB are both defined. Now,

 (A + B)2 = (A + B) (A + B)

= A(A + B) + B(A + B)

= A2 + AB + BA  + B2

Since, in general matrix multiplication is not commutative, i.e., AB π BA, we have

(A + B)2 π A2 + 2AB + B2

But, if the product of A and B are commutative i.e., AB = BA, then

(A + B)2 = A2 + 2AB + B2 

holds good 

1.4 TRANSPOSE OF A MATRIX

The transpose of a matrix A
m n

( )aij ×
 is a matrix A

T =
n m

( )a ji ×
 obtained by convert-

ing rows into corresponding columns and vice-versa.

For example, let us consider A =
1 5 1

2 0 3
2 3

−
−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

 

Then A
T

T

=
1 5 1

2 0 3
=

1 2

5 0

1 32 3
3 2

−
−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  

Observation:

The number of rows of A
T
= number of columns of A. 

and the number of columns of A
T
= number of rows of A.

Properties:

 (a) ( ) A) =
T T
)

(b) ( ) A B
T T

A
T

) = A
T

A

(c) ( ) = cA
T T

cA , where c  is a scalar

 (d) ( ) = cA dB
T T

cA
T+ , where c and d are scalars

 (e) ( ) = B A
T T

B
T

Verification of the Above Properties

Let us consider the two matrices, A =

1 2 1

1 3 2

5 4 1

−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  and B =

2 5 7

1 2 1

0 0 4

−
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

(a) Here, A
T

T

=

1 2 1

1 3 2

5 4 1

=

1 1 5

2 3 4

1 2 1

−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟
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  Now A
T

T

( )A
T

−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟=

1 1 5

2 3 4

1 2 1

=

1 2 1

1 3 2

5 4 1

= .A

So the property (a) is verified.

(b) Here, A B

−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ + −
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟

−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
=

1 2 1

1 3 2

5 4 1

2 5 7

1 2 1

0 0 4

=

1 7 8

2 5 1

5 4 5

⎟⎟
⎞⎞⎞⎞

⎟⎠⎠
⎟⎟⎟⎟ .

  So, ( ) =

1 7 8

2 5 1

5 4 5

=

1 2 5

7 5 4

8 1 5

.T

T−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

  Again, A B
T T

B

T T−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟ + −

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟=

1 2 1

1 3 2

5 4 1

2 5 7

1 2 1

0 0 4

=

1 1 5

2 3 4

1 2 1

2 1 0

5 2 0

7 1 4

=

1 2 5

7 5 4

8 1 5

.

−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ +
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

  Hence, ( ) = B
T T

A
T) = A

T
A .

  Similarly, we can show ( ) = .A B
T T

A
T) = .

  Therefore, the property (b) is verified.

(c) Here, cA

c c c

c c

c c

=

2

3 2c

5 4c

.

−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

  So cA

c c c

c c

c c

c c c

c c

c c c

T

T

( )
−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟=

2

3 2c

5 4c

=

5

2 3c 4

2

=

1 1 5

2 3 4

1 2 1

=c c AT
−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ ⋅ .

  Hence, the property (c) is verified.

(d) Here, cA dB

c c c

c c

c c

d d

d d d

d

+
−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ −dd+
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟=

2

3 2c

5 4c

2 5d 7

0 0 4

=

2 5 7

3 2 2

5 4

.

−
3

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

c d2+ c 5+ 5 d7

c d+ c d2 c d−
c4 c d4+

  So, cA dB

c d c d

c d c d c d

c c d

c d
T

T

+( )
−c

d

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

−c

=

2d 5 7d cd c

3 2cc 2

5 4c

=

c dcc c

d c d c

c d c d c d

d

c

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

5

2 5c 3 2cc 4

2dd



  1.9  Matrix I 

=

5

2 3 4

2

2 0

5 2 0

7 4

=

5

2 3

−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ +
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

−c c c

c3 c

c c2 c

d d

d2

d d d

c c c

c3 44

2

2 0

5 2 0

7 4

c

c c2 c

d d

d2

d d d

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ +
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟

=

1 1 5

2 3 4

1 2 1

2 1 0

5 2 0

7 1 4

=c d cA dBT TdB

−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ +

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟ + .

  Hence, the property (d) is verified.

 (e) AB
T

T

( )
−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ −
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥=

1 2 1

1 3 2

5 4 1

.

2 5 7

1 2 1

0 0 4

=

0 1 5

5 11 8

14 33 35

=

0 5 14

1 11 33

5 8 35

.

−1⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ −

−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

T

Again, B AT TA

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟
−⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟=

2 1 0

5 2 0

7 1− 4

.

1 1 5

2 3 4

1 2 1

=

0 5 14

1 11 33

5 8 35

.−
−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

So, ( ) = B A
T T

B
T  and the property (e) is verified.

1.5 SYMMETRIC AND SKEW-SYMMETRIC MATRICES

A square matrix A  is said to be symmetric if A A
T , i.e., A aij n n= ( ) ×  is symmetric 

if a aij ji .aji

Examples of symmetric matrices are

2 5 7

5 4 6

7 6 9

, ,

1 2 3 4 5 7

2 3 2 6 3
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

+
a h g

h b f

g f c

i 2 3−2 i7

i i −−

+

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟
5

4 5+ 6 4 7

7 3 5 7− 2

i

i −6 i i− +7

−3 5 i i−2

A square matrix A  is said to be skew-symmetric if A A
T , i.e., A aij n n= ( ) ×  is 

skew-symmetric if a aij ji .aji

Examples of skew-symmetric matrices are

0 5 0

5 0 6

0 6 0

,−
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

0 9 3

9 0 6

3 6 0

.

−
−
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

Properties:

(i) If A and B are two symmetric matrices of the same order then their addi-

tion A B  is also symmetric.
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(ii) Suppose A and B are two symmetric matrices of the same order, then 

their product AB is also symmetic, provided AB BA= .BA

(iii) Diagonal elements of any skew-symmetric matrix are all zero.

Theorem 1.1: For any square matrix A, A A
T

 is symmetric and A A
T

 is skew-

symmetric.

Proof: Since A A A A A
T T T

T T( )A A
T ( ) ( )A

T
A A= = , we can say that A A

T

is symmetric.

Again A A A A A
T T T

T T( )A A
T ( ) ( )A

T
A= = = (− ), therefore A A

T  is 

skew-symmetric.

Hence, the theorem is proved.

Theorem 1.2: Any square matrix can be uniquely expressed as the sum of a sym-

metric and a skew-symmetric matrix.

Proof: For any square matrix A, we can write A T T1

2

1

2
( )AA AT ( )AA ATA .

From the last theorem, we know A A
T  is symmetric, so 

1

2
( )

T  is also 

symmetric.

Also, we have from the last theorem that A A
T  is skew-symmetric and so 

1

2
( )

T  is also skew-symmetric.

Therefore, A  can be expressed as the sum of a symmetric and a skew-symmetric 

matrix.

Hence, the theorem is proved.

For example, let us express 

1 3 5

2 4 9

5 7 8

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  as the sum of symmetric and skew- symmetric 

matrices.

Here, A =

1 3 5

2 4 9

5 7 8

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  and so A

T

T

=

1 3 5

2 4 9

5 7 8

=

1 2 5

3 4 7

5 9 8

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

Now A A
T
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟ +
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟
⎛

⎝
⎜
⎛⎛

=

1 3 5

2 4 9

5 7 8

1 2 5

3 4 7

5 9 8

=

2 5 10

5 8 16

10 16 16⎜⎜⎝⎝⎝⎝
⎜⎜⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

and A A
T
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ −
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟ −
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
=

1 3 5

2 4 9

5 7 8

1 2 5

3 4 7

5 9 8

=

0 1 0

1 0 2

0 2− 0

⎟⎟
⎞⎞⎞⎞

⎟⎠⎠
⎟⎟⎟⎟ .

From the last theorem, we have 
1

2
( )

T  is symmetric and 
1

2
( )

T  is 

skew-symmetric.

Since A T T1

2
( )AA AT 1

2
( )AA AT ,A  we can write
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A =
1

2

2 5 10

5 8 16

10 16 16

1

2

0 1 0

1 0 2

0 2 0

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟ + −

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

⇒
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ + −

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟A =

1

2

2 5 10

5 8 16

10 16 16

1

2

0 1 0

1 0 2

0 2− 0

Hence, A  can be expressed as the sum of a symmetric and a skew-symmetric 

matrix.

Theorem 1.3: The product of a matrix with its transpose results in a symmetric 

matrix.

Proof: Beyond the scope of the book.

Example 6  Verify that the product of the matrix 

2

4

6

3

5

7

Ê

Ë

Á
Á

ˆ

¯

˜
˜  and its transpose results 

to a symmetric matrix.

Sol. Here we have

 A = 

2

4

6

3

5

7

Ê

Ë

Á
Á

ˆ

¯

˜
˜

and so

 AT = 
2 4 6

3 5 7

Ê
ËÁ

ˆ
¯̃

Now,

 A.AT = 

2

4

6

3

5

7

2 4 6

3 5 7

Ê

Ë

Á
Á

ˆ

¯

˜
˜
Ê
ËÁ

ˆ
¯̃

 = 

13 23 33

23 41 59

33 59 85

Ê

Ë

Á
Á

ˆ

¯

˜
˜

which is a symmetric matrix.

1.6 SOME SPECIAL TYPES OF MATRICES

(1) Idempotent Matrix: Any square matrix A  is called an idempotent matrix if 

A A
2 = .A

For example, let A =

1 1 1

3 3 3

5 5 5

− −1 1⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

Then A
2 =

1 1 1

3 3 3

5 5 5

.

1 1 1

3 3 3

5 5 5

- -1 1Ê

Ë

Á
ÊÊ

Á
ËË

ÁÁ
ˆ

¯

- -1 1Ê

Ë

Á
ÊÊ

Á
ËË

ÁÁ
ˆ

¯

=

1 1 1

3 3 3

5 5 5

= .

- -1 1Ê

Ë

Á
ÊÊ

Á
ËË

ÁÁ
ˆ

¯

A

So A  is idempotent.
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2) Nilpotent Matrix:

Any square matrix A  is called a nilpotent matrix of index p  if A O
p = ,O  where p

is the least positive integer.

For example, let A =

5 3 2

15 9 6

10 6 4

−
−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

Then A
2 =

5 3 2

15 9 6

10 6 4

.

5 3 2

15 9 6

10 6 4

−
−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ −

−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟

=

0 0 0

0 0 0

0 0 0

=

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ O

So A  is a nilpotent matrix of index 2.

3) Involutary Matrix:

A square matrix A  is said to be involutary if A I
2 = .I  

 For example, let us show that A =

5 8 0

3 5 0

1 2 1

−5

−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  is involutary.

 Here,

 A
2 =

5 8 0

3 5 0

1 2 1

5 8 0

3 5 0

1 2 1

−5

−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟
−5

−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

=

25 24 0 40 40 0 0 0 0

15 15 0 24 25 0 0 0 0

5 6 1 8 10 2 0 0

− +24 4040 00

− +15 + 0 2525 00

−5 −1 + −10 + +0 11

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

=

1 0 0

0 1 0

0 0 1

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

Therefore, the matrix A is involutary.

Example 7  If A  and B  are two matrices such that AB A=  and BA B= , then 

prove that A
T  and B

T  are idempotent.

Sol. Since AB A= ,A  we have 

 AB A B A A
T T T

B
T T

A( ) ⇒=

...(1)

Again BA B= ,B  so from (1)

 BA A A A A
T T T

A
T T

A( ) ⇒ ( )B A
T

B
T

⇒ A A
T T

A
T= (A
T by(1))

⇒ ( ) A) T) A)2
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So, it is proved that A
T  is idempotent.

 Similarly, since BA B= ,B  we have 

 BA B A B B
T T T

A
T T

B( ) ⇒=

...(2)

Again, AB A= ,A  so from (1)

 AB B B B B
T T T

B
T T

B( ) ⇒ ( )A B
T

A
T

⇒ B B
T T

B
T= (B
T by(1))

⇒ ( ) B) T) B)2
So, it is also proved that B

T  is idempotent.

1.7 DETERMINANT OF A SQUARE MATRIX

Definition Let M  be the set of all square matrices of order n n×  with real or com-

plex entries then the determinant of any matrix of M  is a function from the set M  to 

any scalar field of real or complex numbers, i.e., determinant of a square matrix  is a 

function which assigns to each matrix a scalar value.

Determinant of a square matrix A aij n n= ( ) ×  is denoted by det A  or A  and we say 

the order of the determinant is n.

Let A

a a a

a a a

a a a

n

n

n n nn

=

...

...

... ... ... ...

...

11 12 1

21 22 2

2ana

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟⎟
⎟⎟⎟⎟

⎟
⎠⎠

⎟⎟⎟⎟ ,  then det A

a a a

a a a

a a a

n

n

n n nn

=

...

...

... ... ... ...

...

.

11 12 1

21 22 2

2ana

For example, let A =

1 2 3

4 5 6

7 8 9

,

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  Then det A =

1 2 3

4 5 6

7 8 9

 is a determinant of order 3.

1.8 PROPERTIES OF THE DETERMINANTS

Property 1: When any two rows or columns of a determinant are identical then 

the value of the determinant is zero.

For example, 

1 2 3

4 5 6

1 2 3

= 0,  since 1st  and 3rd  rows are identical.

1 1 4

2 2 5

3 3 6

= 0,  since 1st  and 2nd  columns are identical.
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Property 2: If all the entries in any one of the rows or columns are zero then the 

value of the determinant is zero.

For example, 

1 2 3

4 5 6

0 0 0

= 0,  since all the elements in the 3rd  row are zero.

1 0 4

2 0 5

3 0 6

= 0,  since all the elements in the 2nd  column are zero.

Property 3: The determinant of any square matrix and its transpose have the 

same value, i.e., there will be no effect in the value of the determinant if we change 

the rows into columns and columns into rows.

For example, 

1 2 4

6 5 7

9 8 5

=

1 6 9

2 5 8

4 7 5

−  since rows and columns are interchanged.

Property 4: The value of a determinant alters its sign when any two adjacent 

rows or columns are interchanged.

For example, 

1 2 4

6 5 7

9 8 5

= ( 1)

6 5 7

1 2 4

9 8 5

−1) 1  since 1st  and 2nd  rows are 

interchanged.

1 2 4

6 5 7

9 8 5

= ( 1)

1 4 2

6 7 5

9 5 8

−
−

 since 2nd  and 3rd  columns are interchanged.

Property 5: If any row or column is multiplied by any scalar then the value of the 

determinant is multiplied by the same scalar.

For example, 

1 2 2 4

6 2 5 7

9 2 8 5

= 2

1 2 4

6 5 7

9 8 5

−2

×  since the all the elements of the 1st

column are multiplied by 2.

1 2 4

6 3 5 3 7 3

9 8 5

= 3

1 2 4

6 5 7

9 8 5

3 5 ×3 = 3  since the all the elements of the 2nd  row are 

multiplied by 3.

Property 6: When the elements of any row (or any column) of a determinant are 

expressed as a sum of two quantities, then the determinant is the sum of two  different 

determinants containing the terms of the sum as a row (or column) respectively.

For example, 

1 2 2 4

6 3 5 7

9 4 8 5

=

1 2 4

6 5 7

9 8 5

2 2 4

3 5 7

4 8 5

−2

+  since the all the elements 

of the 1st  column are expressed as a sum of two quantities.
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1 2 4

6 2 5 4 7 5

9 8 5

=

1 2 4

6 5 7

9 8 5

1 2 4

2 4 5

9 8 5

2 5 +  since the all the elements of the 

2nd  row are expressed as a sum of two quantities.

Property 7: If any row (or column) in the determinant is replaced by summation of 

two or more rows (or columns) then it does not effect the value of the determinant.

For example, 

2 2 4

3 5 7

4 8 5

=

2 3 2 5 4 7

3 5 7

4 8 5

2 4 2 −2
, 1st  row is replaced by the sum 

of 1st  and 2nd  rows. [ ]1 1 2′ +1R R1′ → R

1 2 4

6 5 7

9 8 5

=

1 2 4 4

6 5 7 7

9 8 5 5

,

2 4 1 +
+
+

 2nd  column is replaced by the sum of 2nd  and 3rd

columns. [ ].2 2 3′ +2C C2′ → 2 C3

Property 8: If any row (or column) in the determinant is a scalar multiple of any 

other row (or column) then the value of the determinant is zero.

For example, 

2 2 4

3 5 6

4 8 8

= 0, since 3rd  column is two multiples of the 1st  column.

1 2 4

3 6 12

9 8 5

= 0, 2nd  row is three multiples of the 1st  row.

1.9 MINORS AND COFACTORS OF A DETERMINANT

Let A aij n n= ( ) ×  and its determinant is given by det A

a a a a

a a a a

j n

j n

=

...

...

... ... ... ... ... ..

11 12 1 1

21 22 2 2

..

...

... ... ... ... ... ...

...

.
2

2

a a1 a a...

a a1 a a...

i i11 ij in

n n11 nj nn

1.9.1 Minor

The minor of any entry aij  of det A  is defined to be that determinant obtained by 

deleting the corresponding row and column intersecting at the entry aij . The minor of 

aij  is denoted by Mij  and is given by deleting i -th row and j -th column from det A

as follows:
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M

a a a a a

a a a a

ij

j j n

j j

=

... ...

... ..

11 12 1( 1) 1( 1) 1

21 22 2( 1) 2( 1)

− +

− + ..

... ... ... ... ... ... ...

...

2

( 1)1 ( 1)2 ( 1) (

a

a a( 1)1 a a( 1)( 1)

n

1)1 (a1)1 i j1)(1)( i1)1 ( −j1)( −1)11 ( 1) ( 1)

( 1)1 ( 1)2 ( 1) ( 1)( 1)... .

j i n

(1)1 ( i j1)( i j1)(

a

a a( 1)11)1 a a( 1)( 1)j1)(

−

1)1 (1)1 −j1)( j1)( +j1)( ...

... ... ... ... ... ... ...

... ...

( 1)

2 1) ( 1)

a

a a1 a a( 1) a

n1)

n n11 n j(( n j( + nnnn

Observation If det A  is of order n  then minor of any element aij  is of order ( 1)

1.9.2 Cofactor

The cofactor of any element aij = ( 1)− ×1)i j+  (minor of any element aij). The cofactor 

of any element aij  is denoted by Aij.

So, the cofactor corresponding to aij  is given by A Mij
i j

ij= ( 1) .− ×i j1)

Example 8

Let det A =
1 2

3 4

Minor of 1  (a11 term) is obtained by deleting 1st  row and 1st  column from det A

as M11 = 4.

Cofactor of 1  (a11 term) is given by A M11
1 1

11
1 1= ( 1) = ( 1) 4 = 4.×1 1−1) ×1 1−1)

Minor of 2  (a12 term) is obtained by deleting 1st  row and 2nd  column from 

det A  as M12 = 3.

Cofactor of 2  (a12 term) is given by A M12
1 2

12
1 2= ( 1) = ( 1) 3 = 3.×1 2−1) ×1 2−1) −

Minor of 3  (a21 term) is obtained by deleting 2nd  row and 1st  column from det A

as M21 = 2.

Cofactor of 3  (a21 term) is given by A M21
2 1

21
2 1= ( 1) = ( 1) 2 = 2.×2 1−1) ×2 1−1) −

Minor of 4  (a22 term) is obtained by deleting 2nd  row and 2nd  column from 

det A  as M22 = 1.

Cofactor of 4  (a22 term) is given by A M22
2 2

22
2 2= ( 1) = ( 1) 1 = 1.×2 2−1) ×2 2−1)

Example 9

Let det A =

1 2 3

4 5 6

7 8 9

.

Minor of 1  (a11 term) is obtained by deleting 1st  row and 1st  column from det A

as M11 =
5 6

8 9
.

Cofactor of 1  (a11 term) is given by A M11
1 1

11
1 1= ( 1) = ( 1)

5 6

8 9
.− ×1 11) − ×1 11)
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Minor of 2  (a12 term) is obtained by deleting 1st  row and 2nd  column from 

det A  as M12 =
4 6

7 9
.

Cofactor of 2  (a12 term) is given by A M12
1 2

12
1 2= ( 1) = ( 1)

4 6

7 9
.− ×1 21) − ×1 21)

Minor of 4  (a21 term) is obtained by deleting 2nd  row and 1st  column from the 

det A  as M21 =
2 3

8 9
.

Cofactor of 4  (a21 term) is given by A M21
2 1

21
2 1= ( 1) = ( 1)

2 3

8 9
.− ×2 11) − ×2 11)

1.10 EXPANSION OF A DETERMINANT

1.10.1 Case 1

Let A aij= ( ) = ( )a1 1 11 ; then det A a a=a .11 11

For example, let A = (2),  then det A = 2 = 2.

1.10.2 Case 2

Let A aij= ( )2 2; then det A
a a

a a
= .11 12

21 22

(i) Row-wise Expansion:

Expanding about the 1st  row, we get the value of the determinant as

 det A = (a11 cofactor of a11 12) (a12a12 cofactor of a a A a A12 11 11 12 12) = × A ×
Similarly, expanding about the 2nd  row we get the value of the determinant as

 det A = (a21 cofactor of a21 22) (a22a22 cofactor of a a A a A22 21 21 22 22) = .× A ×

(ii) Column-wise Expansion:

Expanding about the 1st  column, we get the value of the determinant as

 det A = (a11 cofactor of a11 21) (a21a21 cofactor of a a A a A21 11 11 21 21) = .× A ×
Similarly, expanding about the 2nd  column, we get the value of the determinant as

 det A = (a12 cofactor of a12 22) (a22a22 cofactor of a a A a A22 12 12 22 22) = .× A ×

Note: 

Any 2nd  order determinant can be evaluated directly as det A
a a

a a
= =11 12

21 22

( )a a ( )a a .11 22 12 21−)a

Example 10  Let det A =
1 2

3 4
.

Here, a11 = 1  and the corresponding cofactor A11 = 4.

  a12 = 2  and the corresponding cofactor A12 = 3
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  a21 = 3  and the corresponding cofactor A21 = 2

  a22 = 4  and the corresponding cofactor A22 = 1

(i) Row-wise expansion:

Expanding about the 1st  row, we get

 det A = (a11 cofactor of a11 12) (a12a12 cofactor of a a A a A12 11 11 12 12A) = × AAA × A12AA

   = 1 4 2 ( 3) = 2.×= 1 ×2 −3) =

Similarly, expanding about the 2nd  row, we get

 det A = (a21 cofactor of a21 22) (a22a22 cofactor of a a A a A22 21 21 22 22A) = =× AAA × A22AA =

   = 3 ( 2) 4 1 = 2.×= 3 2)2) × −1 =

(ii) Column-wise expansion:

Expanding about the 1st  column, we get

 det A = (a11 cofactor of a11 21) (a21a21 cofactor of a a A a A21 11 11A 21 21A) = × AAA × A21AA

   = 1 4 3 ( 2) = 2.×= 1 ×3 −2) =

Similarly, expanding about the 2nd  column, we get

 det A = (a12 cofactor of a12 22) (a22a22 cofactor of a a A a A22 12 12 22 22A) = =× AAA × A22AA =

   = 2 ( 3) 4 1 = 2.×= 2 3)3) × −1 =

1.10.3 Case 3

Let A aij= ( )3 3; then det A

a a a

a a a

a a a

= .
11 12 13

21 22 23

31 32 33

(i) Row-wise Expansion:

Expanding about the 1st  row, we get the value of the determinant as

 det A = (a11 cofactor of a11 12) (a12a12 cofactor of a12 13) (a13a13 cofactor of a13)

  a A a A a A11 11 12 12 13 13AA= .× AAA × AAA ×
Similarly, expansions can be done about the 2nd  row and 3rd  row.

(ii) Column-wise Expansion:

 Expanding about the 1st  column, we get the value of the determinant as

 det A = (a11 cofactor of a11 21) (a21a21 cofactor of a21 31) (a31a31 cofactor of a31)

  a A a A a A11 11 21 21 31 31AA= .× AAA × AAA ×
Similarly, expansion can be done about the 2nd  column and 3rd  column.

Example 11  Let us consider det A =

1 0 2

2 3 0

0 4 5
(i) Row-wise expansion:

Expanding about the 1st  row, we get

 det A = (a11 cofactor of a11 12) (a12a12 cofactor of a12 13) (a13a13 cofactor of a13 )

= 11 11 12 12 13 13a A11 a A12 a A13+11A +12A
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= 1 ( 1)
3 0

4 5
0 ( 1)

2 0

0 5
2 ( 1)

2 3

0 4
1 1 1 2 1 3× ( + 0 − +1)

0 5
1 2 −(

= 15 0 16 = 31.+0

Similarly, expanding about the 2nd  row and 3rd  row we can get det A = 31.

(ii) Column-wise expansion:

Expanding about the 1st  column, we get

 det A = (a11 cofactor of a11 21) (a21a21 cofactor of a21 31) (a31a31 cofactor of a31)

= 11 11 21 21 31 31a A11 a A21 a A31+11A +21A

= 1 ( 1)
3 0

4 5
2 ( 1)

0 2

4 5
0 ( 1)

0 2

3 0
1 1 2 1 3 1× ( + 2 − +1)

4 5
2 1 −(

= 15 16 0 = 311616

Similarly, expanding about the 2nd  column and 3rd  column we can get 

det A = 31.

1.10.4 Generalisation of the above Cases

A a

a a a

a a a

a a a

ij n n

n

n

n n n

= ( ) =n n

...

...

... ... ... ...

...

11 12 1

21 22 2

2ana nn

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟  then det A

a a a

a a a

a a a

n

n

n n nn

=

...

...

... ... ... ...

...

11 12 1

21 22 2

2ana

can be evaluated by expanding the determinant about any one of the n  rows or n

columns.

So we can conclude the facts by stating the following theorems.

Theorem 1.4: The determinant of any square matrix can be evaluated by adding the 

products of the elements of any row or column and their corresponding cofactors.

Theorem 1.5: If we consider the products of the elements of any row (or column) 

and the cofactors corresponding to the other row (or column), then summation of 

such products are always zero.

Proof: Beyond of scope of the book.

Example 12  Let us consider det A =

1 0 2

2 3 0

0 4 5

.

Summation of the products of the elements of the 1st  row and the cofactors cor-

responding to the 2nd  row

 = (11 cofactor of a21 12) (a12a12 cofactor of a22 13) (a13a13 cofactor of a23 )

= 11 21 12 22 13 23a A11 a A12 a A13+21A +22A

= 1 ( 1)
0 2

4 5
0 ( 1)

1 2

0 5
2 ( 1)

1 0

0 4
2 1 2 2 2 3× ( + 0 − +1)

0 5
2 2 −(

= 8 0 8 = 0.+ 0
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1.11 LAPLACE METHOD OF EXPANSION OF A DETERMINANT

1.11.1 Complementary Minor

Consider A aij n n= ( ) × . Then D A aij
n n

=Addet
×

 is a determinant of order n. If we 

delete r  number of rows and r  number of columns from D,  the remaining determe-

nant is of order ( )  and is said to be a minor of order ( )  of D.

When all the rows and columns of a minor M  are deleted from the determinant D

then the remaining determinant is called a complimentary minor of M.

Consider D

a a a a

a a a a

a a a a

a a a a

= .

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

Now if we delete the 2 ,d  3rd  rows and 3 ,d 4th  column from D,  we have the 

minor as

M
a a

a a23, 34
11 12

41 42

= .

Also, the complementary minor of M23, 34  is obtained by deleting all the rows and 

columns corresponding to M23, 34  in D.

So, complementary minor of M
a a

a a23, 34
23 24

33 34

= ,3  (obtained by deleting the 1 ,

4th  rows and 1 ,  2nd  columns from D).

a a

a a
11 12

21 22

 and 
a a

a a
33 34

43 44

 are also the examples of complementary minors.

a a

a a
31 32

41 42

 and 
a a

a a
13 14

23 24

 are also the examples of complementary minors.

1.11.2 Algebraic Complement of a Minor

Consider M  to be a minor of order r  obtained by i i ir1 2i ,2i ...,  rows and j j jr1 2j ,2j ...,

columns and M  be its complementory minor.

Then the algebraic complement of M  is ( 1) .
(
1 2

) (
1 2

)
×

+
2

+ ) +
2

+i i
1 2
+

2
i
r

j j
1

,+, j
r M

  

Consider D

a a a a

a a a a

a a a a

a a a a

=

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

. Then

 (i) Algebraic complement of 
a a

a a
11 12

41 42

 is ( 1)(1 4) (1 2) 23 24

33 34

+ +4) + a a23

a a33

(ii) Algebraic complement of 
a a

a a
11 12

21 22

 is ( 1)(1 2) (1 2) 33 34

43 44

+ +2) + a a33

a a43
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(iii) Algebraic complement of 
a a

a a
31 32

41 42

 is ( 1)(3 4) (1 2) 13 14

23 24

+ +4) + a a13

a a23

1.11.3 Laplace Expansion

The value of a determinant D aij
n n×

 can be expressed as the sum of the products of 

all minors of order r  and their respective algebraic complements.

Let us try to expand D

a a a a

a a a a

a a a a

a a a a

=

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

 by the minors of order 2 selecting 

from the first two rows as

D
a a

a a

a a

a a

a a

a a
= ( 1) (11 12

21 22

(1 2) (1 2) 33 34

43 44

11 13

21 23

× −( + ×11 13 −+ +2) + 1)11 (1 2) (1 3) 32 34

42 44

+ +2) + a a32

a a42

        + × + × −+ + +a a

a a

a a

a a

a a

a a
11 14

21 24

(1 2) (1 4) 32 33

42 43

12 13

22 23

( 1)− ( 1))(1 2) (2 3) 31 34

41 44

+ + +2) (2 a a31

a a41

        + × + × −+ + +a a

a a

a a

a a

a a

a a
12 14

22 24

(1 2) (2 4) 31 33

41 43

13 14

23 24

( 1)− ( 1)) .(1 2) (3 4) 31 32

41 42

+ +2) + a a31

a a41

Note: The above can be expanded considering minors of any order and forming from 

any set of rows. But it is always easy to expand like above.

Laplace Expansion can be done  in terms of any sets of columns also. 

Example 13  Let us calculate the determinant

D =

2 3 1 5

6 2 7 2

1 9 8 3

5 4 2 7−

 using Laplace expansion.

Expanding D =

2 3 1 5

6 2 7 2

1 9 8 3

5 4 2 7−

 as above, we have

D =
2 3

6 2
( 1)

8 3

2 7

2 1

6 7
( 1)

9 3

4 7
(1 2) (1 2) (1 2) (1 3)× ( + ×

6 7
+ +2) + + + +(1

  + × + − ×
−

+ + + + + +2 5

6 2−
( 1)− 9 8

4 2

3 1

2 7
( 1)− 1 3

5 7
(1 2) (1 4) (1 2) (2 3)

  + − ×
−

+ ×
−

+ + + + + +3 5

2 2−
( 1)− 1 8

5 2

1 5

7 2−
( 1)− 1 9

5 4
(1 2) (2 4) (1 2) (3 4)

= 22 50 8 51 15 14 23 22 4 42 37 495050 51 1414 2222 × −42 ×
= 1249.
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1.12 PRODUCT OF DETERMINANTS

Let D aij
n n

 and D bij
n n

 be two determinants of order n  Then the product 

 is a determinant of order n

1.12.1 Four Processes of Multiplication

1) Row–Columnwise Multiplication:

a b
n n

=

...

... ...

..12 1

22 2

2

12a a a

a a a

a

b bn

n

nn

×

..

... ... ...
=

1

22 2

2

b

b b b

b

n

n

nn

a b a b11 12.. ...+ + + +a b

11 12.. .. ..
nn

a b a b++ ++ ..

... ... ... ..

.. 1

a b

a b

n

n+ a b a bn n2. ...

2) Row-Row-wise Multiplication:

a b
n n

=

...

...

...

..12 1

22 2

2

12a a a

a a a

a

b bn

n

nn

×

..

...

...

=

1

22 2

2

b

b b b

b

n

n

nn

a b11 21 ...+ + + +a b nn

11 21 ..+ + + + ..

... ... ... ...

. 1

a b

a b

n

+ a b n2.

3) Column-Row wise multiplication:

D D a bij n n ij n n1 2¥ ¥¥ ¥= | | | | .

=

...

...

... ... ... ...

...

..11 12 1

21 22 2

1 2

11 12a a a

a a a

a a a

b bn

n

n n nn

×

..

...

... ... ... ...

...

=

1

21 22 2

1 2

b

b b b

b b b

n

n

n n nn

a b a b a b a b a b a b a b a bn n n n n n11 11 21 12 1 1 12 11 22 12 2 1 1 11 2.. .. ...+ + + + + 112 1

11 21 21 22 1 2 12 21 22 22 2 2

..

.. .. ..

+
+ + + +

a b

a b a b a b a b a b a b
nn n

n n n n .. ..

... ... ... ...

..

1 21 2 22 2

11 1 22 2 1

a b a b a b

a b a b a b

n n nn n

n n n nn

+ +

+ + aa b a b a b a b a b a bn n n nn n n n n nn nn12 1 22 2 1 1 2 2.. ... ..

.

+ + + +
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4) Column-column wise multiplication:

D D a bij n n ij n n1 2¥ ¥¥ ¥= | | | | .

 =

...

...

... ... ... ...

...

..11 12 1

21 22 2

1 2

11 12a a a

a a a

a a a

b bn

n

n n nn

¥

..

...

... ... ... ...

...

=

1

21 22 2

1 2

b

b b b

b b b

n

n

n n nn

a b a b a b a b a b a b a b a bn n n n n11 11 21 21 1 1 12 11 22 21 2 1 1 11 21.. .. ...+ + + + + nn nn n

n n n n

a b

a b a b a b a b a b a b
2 1

11 12 21 22 1 2 12 12 22 22 2 2

..

.. .. ..

+
+ + + + .. ..

... ... ... ...

..

1 12 21 22 2

11 1 21 2 1

a b a b a b

a b a b a b

n nn n

n n n nn

+ +

+ + aa b a b a b a b a b a bn n n nn n n n nn nn12 1 22 2 2 1 1 21 2.. ... ..+ + + +

Example 14  Let us consider D1 =

1 0 2

5 3 0

0 2 1

−  and D2 =

2 1 0

4 3 1

3 0 7

Then D D1 2D

1 0 2

5 3 0

0 2 1

2 1 0

4 3 1

3 0 7

−D2D = × 4

(i) By row–columnwise multiplication, we have

D D1 2D =

1 2 0 4 2 3 1 1 0 ( 3) 2 0 1 0 0 1 2 7

( 5) 2 3 4 0 3 ( 5) 1 3

× 2 +4 3 1 + 0 − +3) 0 1 + 0 + 2

5)5) + +4 0 5)5) + ×3××× × − × × ×
− × + × − × × ×

( 3) 0− + 0 ( 5) 0 3+ 1 0+ 7

0 2 (× + 2) 4 1+ 3 0 1 (× + 2) ( 3) 1− + 0 0 0 +++ +( 2) 1− × 1 7×

=

10 1 14

2 14 3

5 6 5

= 1541.

−
−

(ii) By row-row-wise multiplication, we have

D D1 2D =

1 2 0 1 2 0 1 4 0 ( 3) 2 1 1 3 0 0 2 7

( 5) 2 3 1 0 0 ( 5) 4 3

+2 +1 +4 0 − +3) 1 1 + 0 + 2

5)5) + 3 + 0 5)5) + ×3×× × − × +
− × + × × − × × ×

( 3) 0− + 1 ( 5) 3 3 0+ × 0 7×
0 2 (× + 2) 1 1+ 0 0 4 (+ 2) ( 3) 1− + 1 0 3+++ +( 2) 0− × 1 7×

=

2 6 17

7 29 15

2 7 7

= 1541.−7
−

−

  So we have the same result in each of the cases.

  Similarly, if we apply the other two methods of multiplication, we will get the 

same result.

Theorem 1.6: Let A and B be two square matrices of order n n× . Then

 (i) det( ) = (d )A(det
n

(ii) det( ) = (det ) (det )A B) (det
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1.13 ADJOINT OF A DETERMINANT

Let us consider D a

a a a

a a a

a a a

ij
n n

n

n

n n nn

=aij

...

...

... ... ... ...

...

11 12 1

21 22 2

2ana

×
 and Aij  be the cofactor of aij  in D.

Then adjoint of D  is defined as

D A

A A A

A A A

A A A

ij
n n

n

n

n n nn

=Aij

...

...

... ... ... ...

...

.

11 12 1

21A 22 2

2AnA

×

For example, let D =

1 0 2

2 3 0

0 4 5

.  Then the adjoint of D  is

D =

3 0

4 5

2 0

0 5

2 3

0 4

0 2

4 5

1 2

0 5

1 0

0 4

0 2

3 0

1 2

2 0

1 0

2 3

=

15 10 8

8 5 4

6 4 3

.

−

− −

−

−
−

−

Statement 1.3.1  Jacobi’s Theorem on Adjoint of a Determinant

Let D ≠ 0  be a determinant of order n and D  be its adjoint. Then D D
n

= .D
1−

Proof: Beyond the scope of this book.

Corollary: For n = 3,  the Jacobis theorem becomes D D= .D
2

Proof: Here, D

a a a

a a a

a a a

=
11 12 13

21 22 23

31 32 33

 and adjoint of D  is D

A A A

A A A

A A A

= ,
11 12 13

21 22 23

31 32 33

 where 

Aij  is the cofactor of aij  in D.

Now D D

a a a

a a a

a a a

A A A

A A A

A A A

×=
11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 333

=
11 11 12 12 13 13 11 21 12 22 13 23 11 31 12 32 13a A11 a A12 a A13 a A11 a A12 a A13 a A11 a A12 a+12+ a A12 +22+ a A12 +32+ a A12 AA

a A a A a A a A a A a A a A a A
33

21 11 22 12 23 13 21 21 22 22 23 23 21 31 22 32+ +a A12 + +a A22 + +a A32 a Aaa

a A a A a A a A a A a A a A a A
23 33

31 11 32 12 33 13 31 21 32 22 33 23 31 31 32+ +a A12 + +a A22 + 3233 33 33+ a A33

=

0 0

0 0

0 0

D

D

= .3
D
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So, D D D= 3

⇒ D = (D2 for D ≠ 0).

1.14 SINGULAR AND NON-SINGULAR MATRICES

Any square matrix A aij n n= ( ) ×  is said to be nonsingular iff det( ) = 0A a) = ij
n n×
≠ . 

Otherwise, it is singular.

For example,

(i)

1 0 2

2 3 0

0 4 5

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  is a nonsingular matrix since its determinant is nonzero

(ii)

1 0 2

2 3 0

0 0 0

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  is a singular matrix since its determinant is zero

1.15 ADJOINT OF A MATRIX

Let us consider any square matrix

A a

a a a

a a a

a a a

ij n n

n

n

n n n

= ( ) =n n

...

...

... ... ... ...

...

11 12 1

21 22 2

2ana nn

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

and Aij  be the cofactor of aij  in det A. Then adjoint of the matrix A  is denoted by 

adj( )A  and is defined as the transpose of the matrix ( ) .ij n n×

So, adj A

A A A

A A A

A A

ij n n
T

n

n

n nA

( )A = ( ) =n n
T

...

...

... ... ... ...

11 12 1

21 22 2

22 ...

.

Ann

T
⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

For example, let A =

1 0 2

2 3 0

0 4 5

.

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  Then the adjoint of the matrix A  is

adj( )A =

3 0

4 5

2 0

0 5

2 3

0 4

0 2

4 5

1 2

0 5

1 0

0 4

0 2

3 0

1 2

2 0

1 0

2 3

−

− −

−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎝⎝
⎜⎜

⎞

⎠

⎟⎟
⎞⎞⎞⎞

⎟
⎟⎟⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎠⎠
⎟⎟

−
−

−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ −
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

T

T

=

15 10 8

8 5 4

6 4 3

=

15 8 6−
10 5 4

8 4− 3

.
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1.15.1 Properties

(1) For any square matrix A, adj adj
T T

( )A
T

= [ ( )A ] .
T

(2) For any square matrix A of order n n× ,

  adj adj A
n

( )cA = [c
n

( )],
1

 where c is any scalar.

Theorem 1.7: For any square matrix A of order n n× ,  always A adj Ai [ (adj )] =

adj A A In[ ( )A ] =A det

Proof: Beyond of scope of the book.

Example 15  From the previous example, we have

A =

1 0 2

2 3 0

0 4 5

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  and adj( )A =

15 8 6

10 5 4

8 4 3

.−
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Also, it is easy to check that det A = 31.

Now A adj A A⋅
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ ×
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ ⋅[ (adj )] =

31 0 0

0 31 0

0 0 31

= 31

1 0 0

0 1 0

0 0 1

= det II3.

Again [ ( )] =

31 0 0

0 31 0

0 0 31

= 31

1 0 0

0 1 0

0 0 1

=adj A A)] A

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ ×
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ ⋅det II3.

Hence, the above theorem is verified.

1.16 INVERSE OF A NONSINGULAR MATRIX

If for a nonsingular square matrix A  of order n  there exists a non-singular square 

matrix B  of order n  such that AB BA In= =BA ,  then B  is said to be the inverse of A.  

If inverse exists for A  then we say the matrix A  is inverible and inverse of A  is 

denoted by A
−1.

Now from the last theorem we have A adj adj A A A In.[ ( )A ] = [ (adj )]. = .A .det

So, A
A

adj A
A

adj A A In⋅
1

[ (adj )] =
1

[ (adj )] =
det det

Therefore, from the definition we can say 
1

[ ( )]
det A

adj A  is the inverse of the 

matrix A.

Hence A
A

adj A
−1 =

1
[ (adj )]

det
 and it satisfies A A A A InA A−1 1AA= =A AA .

Note:

So it is obvious from the above that inverse exists for a matrix A  iff det A ≠ 0 , i.e., 

iff A  is non-singular.
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Example 16  Let us consider A =

1 0 2

2 3 0

0 4 5

.

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

From the previous example, we have det A = 31  and adj( )A =

15 8 6

10 5 4

8 4 3

.−
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Since det A = 31 0≠ , the given matrix is nonsingular and so A
−1  exists.

Now A
A

adj A
− −

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟1 =

1
[ (adj )] =

1

31

15 8 6−
10 5 4

8 4− 3

.
det

Theorem 1.8: Inverse of a nonsingular square matrix is always unique.

Proof: Beyond the scope of the syllabus.

1.16.1 Properties

(1) If A
−1

 exists for A then A
−( )A
1

= .A

(2) If A and B are two invertible matrices then AB is also invertible and 

B A( )AB
−1 1 1

A
−

A= .B A

(3) If A is invertible then A
T

 is also invertible and 
T( )A

T ( )A
−1

= .( )A

  Let us verify the above properties:

Example 17  Let us consider two matrices A =
1 0

3 2

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

 and B =
1 2

0 3
.

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

Here, det A = 2 0≠  and det B = 3 0.≠

Also adj

T

( )A =
2 3

0 1
=

2 0

3 1

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

and adj

T

( )B =
3 0

2 1
=

3 2

0 1
.

−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

So A
A

adj A
−

−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞1 =

1
[ (adj )] =

1

2

2 0

3 1det

and B
A

adj B
− ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞1 =

1
[ (adj )] =

1

3

3 2−
0 1

.
det

Verification of Property (1)

We have from above, A =
1 0

3 2

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

 and A
−

−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞1 =

1

2

2 0

3 1
.

Now det( ) = 11
A
−  and adj

T

( )A =
1 3

0 2
=

1 0

3 2
.1 ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞
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So adj A A
− −( )A

− ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞1

1

1=
1

( )A
−1

[ (adj )] =
1 0

3 2
= .A

det

Hence, the property is verified.

Verification of Property (2)

We have from above A =
1 0

3 2

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

 and B =
1 2

0 3
.

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

Also, A
−

−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞1 =

1

2

2 0

3 1
 and B

− ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞1 =

1

3

3 2−
0 1

.

Now AB =
1 0

3 2

1 2

0 3
=

1 2

3 12

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

Since det( ) = 6 0,AB  AB  is invertible.

adj

T

( )AB =
12 3

2 1
=

12 2

3 1
.

−
−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ −

−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

So ( ) =
1

( )
[ ( )] =

1

6

12 2

3 1
.1

adj AB
− −

−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

det

Again B A
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ ×

−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ −

−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞1 1

A
−

A =
1

3

3 2−
0 1

1

2

2 0

3 1
=

1

6

12 2

3 1

Hence AB B A( )−1 1 1
A
−

A=  which verifies property (2).

Verification of Property (3)

We have A =
1 0

3 2

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

, adj( )A =
2 0

3 1−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

, det A = 2  and A
−

−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞1 =

1

2

2 0

3 1
.

So, 
T( )A

− ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

=
1

2

2 3−
0 1

.

Now A
T =

1 3

0 2
,

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

 det( ) = 2 0,A
T  so A

T  is also invertible

and adj adj
T T

T

( )A
T = ( ( )A ) =T 2 0

3 1
=

2 3

0 1−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞ ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

So ( ) =
1

( )
[ ( )] =

1

2

2 3

0 1
1

adj A
T

T

T− ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

det

Hence, 
T( )A

T ( )A
−1

 and so property (3) is verified.

1.17 ORTHOGONAL MATRIX

Any square matrix A aij n n= ( ) ×  is called orthogonal if it satisfies AA I
T

n= .In

Theorem 1.9: For an orthogonal matrix An n× , always A A I
T

n= .In

Proof: Beyond the scope of the book.
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From the above, we can say for any orthogonal matrix of order n n× ,

AA A A I
T T

A n= =A A .

For example, let us consider the matrix A =
1

3

1 2 2

2 1 2

2 2 1

−1

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟

So AT =
1

3

1 2 2

2 1 2

2 2 1

.−2

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟

Now AAT =
1

3

1 2 2

2 1 2

2 2 1

1

3

1 2 2

2 1 2

2 2 1

−1

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ × −

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

=
1

9

9 0 0

0 9 0

0 0 9

=

1 0 0

0 1 0

0 0 1

= 3.

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ I

So AA I
T = .I3 Therefore, A  is an orthogonal matrix.

Again, A A
T =

1

3

1 2 2

2 1 2

2 2 1

1

3

1 2 2

2 1 2

2 2 1

−2

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ × −1

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

=
1

9

9 0 0

0 9 0

0 0 9

=

1 0 0

0 1 0

0 0 1

= 3.

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ I

Therefore, AA A A I
T T

A= =A A .3

Theorem 1.10: Any orthogonal matrix A is nonsingular and its determinant is 

given by det( ) = 1.A ± [WBUT 2003]

Proof: For any orthogonal matrix A, we have AA I
T

n= .In

So, det det( ) = (det ) = 1.I
T

n

⇒ ⋅d t det⋅ Adet⋅ T =1

⇒ ( ) = 12d

⇒ ± ≠d A = 1± 0.

So the orthogonal matrix A  is nonsingular and its determinant is given by 

det( ) = 1.A ±  Hence, the theorem is proved.

Example 18 We have from the previous example that the matrix 

A =
1

3

1 2 2

2 1 2

2 2 1

−1

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  is orthogonal.

Here, det A = 1.
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1.17.1 Inverse of an Orthogonal Matrix

From the above, it is clear that for any orthogonal matrix A , A
−1 exists since it is 

nonsingular.

Also, we have for any orthogonal matrix A of order n n× , AA A A I
T T

A n= =A A .

So, by the definition of inverse, we can say A A
T1 = .A ...

Example 19 From the previous two examples, A =
1

3

1 2 2

2 1 2

2 2 1

−1

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  is orthogonal 

and det A = 1.

So, A
−1 exists and is given by A A

T −
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟1 =A

1

3

1 2 2

2 1− 2

2 2− 1

.

Theorem 1.11: Transpose and inverse of an orthogonal matrix is again orthogonal.

Proof: Since for any orthogonal matrix A  of order n n× , AA A A I
T T

A n= =A A .

Then AA A A I
T T

A n= =A A

⇒ A A AA I
T T
A AA n= =AA

⇒ A A I
T T T T

A
T T

n( )A
T

A = ( ) =A
T T
A .

Hence by the definition, AT  is orthogonal.

Since for any orthogonal matrix A, A A
T1  holds, A−1  is also orthogonal.

Note: The product of two orthogonal matrices is again orthogonal.

1.18 TRACE OF A MATAA RIX

Let A be any square matrix of order n n× , i.e., A aij n n= ( ) .n n Then trace of A, denoted

by tr A, is the sum of the principal diagonal elements of A.

Consider A a

a a a

a a a

a a a

ij n n

n

n

n n n

= ( ) =n n

...

...

... ... ... ...

...

11 12 1

21 22 2

2ana nn

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟ ,

then tr A a a ann.11 22+ +a +
Properties:

(1) tr A tr B tr ( ).

(2) tr A tr
T

A

(3) tr ( ) = tr ( ).

Proof: Beyond the scope of this book.

Example 20 Let A =
1 0

4 3

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

and B =
1 3

0 4

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

then tr A = 1 3 = 4+  and tr B = 1 4 = 5+
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So, tr A tr B = 4 5 = 9.+

Now, A B
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

=
2 3

4 7

So, tr ( ) 2 7 = 9+) = 2

Hence tr A tr B tr ( ), which verifies the property (1).

Again AT =
1 4

0 3

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

and tr AT = 1 3 = 4.+

So, tr A tr
T

A, which verifies the property (2).

Here AB =
1 0

4 3

1 3

0 4
=

1 3

4 24

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞ ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

So, tr ( ) = 1 24 = 25+

Again BA =
1 3

0 4

1 0

4 3
=

13 9

16 12

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞ ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

So, tr ( ) = 13 12 = 25.

Hence tr ( ) = tr ( ), which verifies the property (3).

WORKED-OUT EXAMPLES

Example 1.1 Find if it is possible to form AB  and BA , stating with reasons where

the operations do not hold when,

A =
4 2 1

3 7 1

2 3

3 0

1 5

−⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ −

−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟and =B [WBUT-2004]

Sol. The order of matrices A  and B are respectively (2 3)×  and (3 2).×

Since the number of columns of the matrix A  and the number of rows of 

the matrix B are same, therefore AB  is possible and is given by the following 

2 2 matrix:

AB =
4 2 1

3 7 1

2 3

3 0

1 5

−⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ −

−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟

=
8 6 1 12 5

6 21 1 9 5
=

3 7

26 14
.

+6

2121

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

Again, since the number of columns of the matrix B and number of rows of 

the matrix A  are same, therefore BA  is also possible and is given by following 

3 3  matrix

BA =

2 3

3 0

1 5

4 2 1

3 7 1
−
−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ −⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞
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=

8 9 4 21 2 3

12 6 3

4 15 2 35 1 5

9 4 +2

− −12

−4 −2

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

=

17 17 1

12 6 3

11 37 6

−
− −12

−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

Example 1.2 Prove that P AP
t is a symmetric or a skew-symmetric matrix accord-

ing to whether A is symmetric or skew-symmetric. [WBUT-2009]

Sol. Let A  be a symmetric matrix, i.e., A A
t  and B P AP

t= .P AP

Now,

B P AP P A P AP B
t t

P
t t

P
t t t t

P( ) =t ( )P
t

P =P AP

Therefore, P AP
t  is a symmetric matrix.

Again, let A  be a skew-symmetric matrix, i.e , A A
t and B P AP

t= .P AP

Now,

B P AP P A A P AP B
t t

P
t t

P
t t t t t( ) =t ( )P

t
P = (P

t
P ) =P) =P− −A =P

Therefore, P AP
t  is a skew-symmetric matrix.

Example 1.3 Find the matrices A  and B such that 

A B
−

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

2 =B
1 3

1 2
2 =A B

1 2

4 1−
and

Sol. Here,

A B
−

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

2 =B
1 3

1 2
...(1)

and 

2 =
1 2

4 1

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

...(2)

Multiplying (2) by 2 and adding to (1), we have

( 2 ) 2(2 ) =
1 3

1 2
2

1 2

4 1
B2 A B)B2

−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ + ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

or A, 5 =
3 7

7 0

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

or A, =A

3

5

7

5
7

5
0

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟⎠⎠
⎟⎟
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From (2) we have,

B = 2

3

5

7

5
7

5
0

1 2

4 1

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟⎠⎠

⎟⎟ − ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

=

1

5

4

5
6

5
1

−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜⎝⎝

⎜⎜

⎞

⎠

⎟
⎞

⎟
⎟

⎟⎠

⎟

Example 1.4 Find the matrices A  and B  such that

A B I A B AT−3 =B 32I3 dd

Sol. Here, A I3 =B 2 3 ...(1)

and

3 = 4AT ...(2)

Multiplying (2) by 3 and adding to (1), we have

( 3 ) 3(3 ) = 2 123B3 A B A12 T)B3 ) = 2B

or, 10 = 2 123= 2 A
T

or, 5 = 63A I A
T ...(3)

Therefore, transposing both sides,

6 = 5 3A= 5 I
T T( )T −( )

or, 6 = 5 3A A= 5 I
T −

or, 6 = 53A I3 AT ...(4)

Multiplying (3) by 5  and (1) by 6  and subtracting, we have

5 5 6 6 = 30 303 3A I A I A30T T30A30( ) 6A− 6 (( )
or, 11 11 = 0311 1111

So, A I3 ...(5)

From (1) and (5), we obtain

−I + I3 33 =B 2

or, = .3B I=

Hence, 

A I B I=I

1 0 0

0 1 0

0 0 1

=I

1 0 0

0 1 0

0 0 1
3 3

−

−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟and
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Example 1.5 If A =

1 1 1

3 3 3

5 5 5

− −1 1⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ then show that A is an idempotent matrix. 

[WBUT-2003]

Sol. A matrix A  is said to be an idempotent matrix if A A
2 = .A

Here,

A
2 =

1 1 1

3 3 3

5 5 5

1 1 1

3 3 3

5 5 5

− −1 1⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

− −1 1⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

=

1 3 5 1 3 5 1 3 5

3 9 15 3 9 15 3 9 15

5 15 25 5 15 25 5 15 2

−3 −1 5 1 −
−3 +15 3 − −15 +9

1515 + −15 −5 55

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

=

1 1 1

3 3 3

5 5 5

=

− −1 1⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ A

Therefore, A is an idempotent matrix.

Example 1.6 Show that the matrix

1 1 1

3 3 3

4 4 4

− −3 3

− −4 4

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  is a nilpotent matrix.

[WBUT-2005]

Sol. Let, A =

1 1 1

3 3 3

4 4 4

− −3 3

− −4 4

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟

Now,

A
2 =

1 1 1

3 3 3

4 4 4

1 1 1

3 3 3

4 4 4

− −3 3

− −4 4

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ − −3 3

− −4 4

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

=

1 3 4 1 3 4 1 3 4

3 9 12 3 9 12 3 9 12

4 12 16 4 12 16 4 12

−3 −1 4 1 −
−3 +12 3 − −12 +9

−4 +16 4 − −16 +12 1611

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟

=

0 0 0

0 0 0

0 0 0

=

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ O

Therefore, A is a nilpotent matrix.

Example 1.7 If A  is an idempotent matrix then show that B I A−  is also 

idempotent. Hence, show that AB BA O= =BA .

Sol. Since A is an idempotent matrix, we have A A
2 = .A

Here, we are to show B B
2 = .B
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Now B2 2( )I AI A ( )I A− ( )I A−I

= 2I I A A I A A I= A A A⋅I ⋅A ⋅A − A

= 2 =2
A2 A A A+A2 (since )

= =I A B

So, B I A− is also idempotent.

Also, 

AB A A I A A A A A A O= .A A I A A A A2( )I A− ⋅ II ⋅ −A AA

and

BA A I A A A A A A A OA= A A .O2( )I A( )I AI A ⋅ ⋅A IA ⋅A −AA

Example 1.8 Show that 

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

= 1
1 1 1 1+

+

+ + + +⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

a

b

c

d

abcd
a b c d

[WBUT-2002]

Sol. Here,

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

+

+

a

b

c

d

=

1
1 1 1 1

1
1

1 1 1

1 1
1

1 1

1 1 1
1

1

abcd

a a a a

b b b b

c c c c

d d d d

+

+

+

+

[Dividing first, second, third, fourth rows

by a b c d, ,b ,  respectively]

=

1
1 1 1 1

1
1 1 1 1

1
1 1 1 1

1
1 1 1 1

1

abcd

a b c d a b c d a b c d a b c d
+ + + + + + + + + + + + + + + +

bb b b b

c c c c

d d d d

1
1 1 1

1 1
1

1 1

1 1 1
1

1

+

+

+

[ ]1 1 2 3 4′ +1 +3R R1′ → R R2 + R



 1.36   Engineering Mathematics-I 

= 1
1 1 1 1

1 1 1 1

1
1

1 1 1

1 1
1

1 1

1 1 1
1

1

abcd
a b c d

b b b b

c c c c

d d d d

+ + + +⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+

+

+

= 1
1 1 1 1

1 0 0 0

1
1 0 0

1
0 1 0

1
0 0 1

abcd
a b c d

b

c

d

+ + + +⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

[ ,2 2 1′ −2C C2′ → C ′ −C C′ → C3 3C→ 1,

′ −C C′ → C4 4C→ 1]

= 1
1 1 1 1

1 0 0

0 1 0

0 0 1

abcd
a b c d

+ + + +⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

Expanding the determinant about its first row[ ]

= 1
1 1 1 1

abcd
a b c d

+ + + +⎛
⎝⎝⎝

⎞
⎠⎟
⎞
⎠

Example 1.9 Evaluate

0

0

0

0

a b c

a d0 e

b d f

c e f

−
−b
−c −

by Laplace expansion method. 

[WBUT-2003, 2007]

Sol. Expanding the determinant by Laplace method in terms of minors of second 

order, we have,

0

0

0

0

a b c

a d0 e

b d f

c e f

−
−b
−c −

= ( 1)
0

0

0

0
( 1)

0

0
1 2 1 2 1 2 1 3−

− −0
+ (

−
−
−

+2 +1a

a

f

f

b

a d

d f

e

+
− −

+
−+ + + +( 1)−

0 0−
( 1)−

0 0−
1 2+ 1 4+ 1 2+ 2 3+

a e

d

e f−
a b

d

b f

+
−
−

+
−
−

+ + + +( 1)−
0

0
( 1)−1 2 2 4+ ++ 1 2 3 4+ +a c

e

b

c f−
b c

d e

b d−
c e−
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= )2 2 2
a f

2
abef adcf dacf abef be c(e d− +abef + −dacf bebe(

= 2 2 )2 2 2
a f

2
abef d f be c( d+2abef be(

= ( )2
af be cd− +be

Example 1.10 If Ai , Bi and Ci be the cofactors of ai , bi , ci ( = 1, 2, 3) in

Δ =
1 1 1

2 2 2

3 3 3

a b1 c

a b2 c

a b3 c

 then show that 

B C C A A B

B C C A A B

B C C A A B

1 1C 1 1AA 1 1BB

2 2B CB 2 2AA 2 2BA B

3 3B C 3 3A 3 3B

2= 2

C C1C

C C2C

C C3C

Δ

[WBUT-2003]

Sol. By Jacobi’s theorem for 3rd  order determinant, we have

A B C

A B C

A B C

1 1BB 1

2 2BB 2

3 3BB 3

2= Δ

Now,

B C C A A B

B C C A A B

B C C A A B

1 1CB 1 1A 1 1BB

2 2B CB 2 2A 2 2BB

3 3B CB 3 3A 3 3BB

C C1C

C C2C

C C3C

=
1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

1 1 1 1 1

2 2 2

B C1 A A B

B C2 A A B

B C3 A A B

C C1 A A B

C C2 A A2

+ +1A A1

+ +2A A22 2

+ +3A A3

+
+ +1A A1

+ 2 222

3 3 3 3 3

+
+ +3 3

B2

C C3 A A33 3 B3

= [ ]
1 1 1 1

2 2 2 2

3 3 3 3

3 3 1

1 1 1 1

2 2 2 2

B C1 A A1

B C2 A A22 2

B C3 A A3

C C3 C

C A1 A B1

C A2 A B2 2

+
+
+

′ −3C +
C ACC A B

C C C

3 3A 3 3BB
2 2C 1[ ]′ −C2CC

= [ ] [
1 1 1

2 2 2

3 3 3

2 2 3

1 1 1

2 2 2

3 3 3

3 3

B C1 A

B C2 A

B C3 A

C C2 C

C A1 B

C A2 B

C A3 B

C C3 C′ −2C + ′ −3C 22 ]

= ( 1) ( 1)
1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

− +
B A1 C

B A2 C

B A3 C

A C1 B

A C22 B

A C33 B

[Interchanging 2nd and 3rd  column in the first and interchanging 1st  and

2nd  column in the second determinant]

= ( 1) ( 1)2
1 1 1

2 2 2

3 3 3

2
1 1 1

2 2 2

3 3 3

− +
A B11 C

A B2 22 C

A B3 3 C

A B1 C

A B2 22 C

A B3 33 C
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[Interchanging 1st  and 2nd  column in the first and interchanging 2nd  and 

3rd  column in the second determinant ]

= 2 = 2 .
1 1 1

2 2 2

3 3 3

2

A B11 C

A B2 22 C

A B3 3 C

Δ

Example 1.11

(i) Define symmetric and skew-symmetric determinants. 

(ii) Show that every skew-symmetric determinant of odd order is zero.

[WBUT-2004]

Sol.  (i) If A be a symmetric matrix then det A is called a symmetric determinant.

If A  be a skew-symmetric matrix then det A is called a skew-symmetric 

determinant.

(ii) Let us consider a skew-symmetric matrix A aij n n= ( ) × of odd order n.

Then the skew-symmetric determinant of odd order n  is given by

det A

a a a

a a a

a a a

n

n

n n nn

=

...

...

... ... ... ...

...

11 12 1

21 22 2

2ana

=

...

...

... ... ... ...

...

11 21 1

12 22 2

1 2

− −
− −

− −

a a11 −11 a

a a12 −12 a

a a1 −1 a

n

n

n n2 nn

sincss e a aij ji

= ( 1)

...

...

... ... ... ...

...

11 21 1

12 22 2

1 2

− n

n

n

n n2 nn

a a11 a

a a12 a

a a1 a

[Taking cii ommon ) from each row]

i.e., det detA n det= ( 1)− ⋅1) ( )ATA

Since n  is odd, we have

det det Adet

i.e., 2 = 0det A

i.e., det A = 0

Hence any skew-symmetric determinant of odd order is zero.
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Example 1.12 Prove that

a a a a

a a a a

a a a a

a a a a

a a a a

+
+

+
+

+ + + ++⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

1

2

3

4

= 24 1
⎛
⎝⎜
⎛⎛
⎝⎝ 1 2 3 4

[WBUT-2004]

Sol. Here, 

a a a a

a a a a

a a a a

a a a a

+
+

+
+

1

2

3

4

= (1.2.3.4)

1
1 1 1 1

2
1

2 2 2

3 3
1

3 3

4 4 4
1

4

+

+

+

+

a a a a

a a
1

a a

a a a a

a a a a

[Dividing first, second, third, fourth

rows by 1, 2, 3, 4  respectively]

= 24

1
1 2 3 4

1
1 2 3 4

1
1 2 3 4

1
1 2 3 4

2
1

+ + + ++ + + + ++ + + + ++ + +1 + + +
a a a a a a a a a

1
a a a a

1
a a a

a
++

+

+

a a a

a a a a

a a a a

2 2 2

3 3
1

3 3

4 4 4
1

4

[ ]1 1 2 3 4′ +1 +3R R1′ → R R2 + R

= 24 1
1 2 3 4

1 1 1 1

2
1

2 2 2

3 3
1

3 3

4 4 4
1

4

+ + + ++ +⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+

+

+

a a a a

a a
1

a a

a a a a

a a a a
1
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= 24 1
1 2 3 4

1 0 0 0

2
1 0 0

3
0 1 0

4
0 0 1

+ + + ++ +⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

a a a a

a

a

a

[ ,2 2 1′ −2C C2′ → C ′ −C C′ → C3 3C→ 1,

′ −C C′ → C4 4C→ 1]

= 24 1
1 2 3 4

1 0 0

0 1 0

0 0 1

+ + + ++ +⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

a a a a
Expanding the determinant abouta its first row[ ]

= 24 1
1 2 3 4

.+ + + ++ +⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

a a a a

Example 1.13 Prove that 

( )

( )

( )

= 2 ( )

2 2 2

2 2 2

2 2 2

3

b a a

b c(2
a b)2

c c b

abc b

[WBUT-2004, 2008, 2009]

Sol.

( )

( )

( )

2 2 2

2 2 2

2 2 2

b a a

b c(2
a b)2

c c b

=

( ) ( ) ( )

( ) 0

0 ( )

2 2 2 2 2

2 2 2

2 2 2

2 2 1

b a b(2
a) b

b c(2
a b)2

c a b c)2

C C2 C

)2
a

2 −)2 2
a)

)2

+ b)2

′ −2C ,, 3 3 1′ −3C C3′ → C

=

( ) ( )( ) ( )( )

( )( ) 0

0 (

2

2

2

b b )( b b )( b

b c(2
b b

c a

) (2 )()( ) ( )()(

+ b cbb a b cc a −)( )

= ( )

( ) ( ) ( )

( ) 0

0 ( )

2

2

2

2

a b c

b b ) () ( b

b c(2
b

c a b c

+b
) (2 ) (

+ b

= ( )

2 2

( ) 0

0 ( )

( )2 2

2

1 1 2 3a b c

bc c b2

b c(2
b

c a b c

R R1+b
2c

+ b

′ −1R



  1.41  Matrix I 

=
( )

2 2 2

( ) 0

0 ( )

,
2

2

2

2 2 3

b

bc

bc cb bc

b c(2
b b

c a b c c

C b2 C C,2 cC

−2cb

+ b

′ ′ → 33

=
( )

2

1 1 1

( ) 0

0 ( )

2
2

2

b

bc
bc b c(2

b b

c a b c c

−1

+ b

= 2( )

1 0 0

( )

( )

2 2 2

2 2

2 2 1 3, 3 1b c b)2
b b b

c c b

C C2 C C1, C C3′ +2C ′ → C3

= 2( )
( )

( )

2
2

2

b

c ac bc(2
[Expanding the determinant

about ittstt first row].

= 2( ) ( )2 2( 2 2 2 2 2 2
b abc b c

2
a bc a

2
b c

2
b c

2+ + + −a bc a
2

b c
2

= 2 ( ) ( )2
abc b ) ( b

= 2 ( )3
abc b

Example 1.14 Prove without expanding

1

1

1

= 0

2

2

2

a a bc

b b ac

c c ab

−
−
−

[WBUT-2005].

Sol. Here

1

1

1

2

2

2

a a bc

b b ac

c c ab

−
−
−

=

1

0

0

2

2 2

2 2

2 2 1 3, 3 1

a a bc

b a b ac a
2

bc

c a c ab a
2

bc

R R2 R R1, R R

−
a b +2

a

a c +2
a

′ −2R ′ → 3R3

=

1

0 ( )( )

0 ( )( )

2
a a bc

b b a a b c

c a a b c

−
(b +b
(c +b

= ( )( )

1

0 1 ( )

0 1 ( )

2

b a c a

a a bc

b

b

)(a c

−
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= ( )( )
1 ( )

1 ( )
b a c a

a b c

a b c
)(a c

bb

bb
[Expanding the determinant about firsrr t column]

= ( )( )( )
1 1

1 1
b a c a a b c)(a c +b

= ( )( )( ) 0b a c a a b c)(a c +b

= 0

Example 1.15 Prove that 

bc a ca b ab c

ca b ab c bc a

ab c bc a ca b

a b c a

− a ca −
− b ab −
− c bc −

+b

2 2
b

2

2 2
b

2

2 2
b

2

3 3
bb

3= ( 3 bcbb )2

[WBUT-2006]

Sol. Let D

a b c

b c a

c a b

=

Then expanding we have D a b c b= ( 3 )abc
3 3

b
3+a

3 −c
3

Now adjoint of D  is given by

D

c a

a b

b a

c b

b c

c a

b c

a b

a c

c b

a b

c a

b c

c a

a c

b a

a b

b c

=

−

− −

−

=

2 2 2

2 2 2

2 2 2

bc a ca b ab c

ca b ab c
2

bc a

ab c bc a
2

ca b

− a ca −
− b ab −
− c bc −

Now from Jacobi’s theorem for 3rd order determinant, we have D D
2

i.e.,

bc a ca b ab c

ca b ab c bc a

ab c bc a ca b

a b

− a ca −
− b ab −
− c bc −

a

2 2b 2

2 2b 2

2 2b 2

3 3b(−= + −++⎡⎣ ⎤⎦⎤⎤c3
2

3 )abc

= ( 3 ) .3 3 3 23 )a b
3

c+3
b −

Hence the result is proved.
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Example 1.16 Prove that 

b c a a

b c a b

c c a b

a b c

2 2 2 2

2 2 2 2
b

2 2 2 2
b

2 2
b

2= 4+

[WBUT-2006]

Sol. Here

b c a a

b c a b

c c a b

2 2 2 2

2 2 2 2
b

2 2 2 2
b

+

=

2 2 2 2

2 2 2 2

2 2 2 2

b c
2

b c
2

a c a c

a b
2

a b
2

+ [Transposing the determinant]

=

2 2 2

2 2 2 2

2 2 2 2 2

1 1 2

c b2 c

c c a c

a b2 b a2 b

C C1 1 C2− +2 2c c

+

′ −1C1

=

0

2

2

2 2

2 2 2 2

2 2 2 2

1 1 3

b c2

c c a c

b b2 a b2

C C1 1 C3− +2 2 2c c

−

′ −1C1

= 2

0 2 2

2 2 2 2

2 2 2 2

+2 2 2

b c
2

c c a c

b b
2

a b
2 +

= 2

0

0

2 2

2 2 2

2 2 2

2 2 1

+
′ −

b c
2

c a c

b a02
b

C C=2 =′ C

= 2
0

2
2 2

2 2 2

2
2 2

2
−2

+
+

⎡

⎣
⎢
⎡⎡

⎢⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥b

c c

b a2 b
c
c a

b
[Expanding the determinantttt

abouta its first row.].

= 2 { ( ) }2 2 2 2 2 2 2 2 2−2 )2 −⎡
⎣
⎡⎡ ⎤

⎦
⎤⎤b {2{ a b

2 + b
2

c a b

= 2{ }2 2 2 2 2 2−2{ c a b c
2 − a b

2

= 4 2 2 2
a b

2
c
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Example 1.17 Prove that 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

= 2(

2 2 2

2 2 2

2 2 2

x y y z z x b b c c a).

 [WBUT-2008]

Sol.

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2 2

2 2 2

=

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2 2

2 2 2 2 2

2 2 2

( ) ( )

( ) ( ) ( )

− − − R3,

− R3

( 2 ( ) ( 2 )

( 2

a x 2 c x z

a y z− + )( )

( ) ( ) ( )2 2 2

)( c y z

= ( )( )

( 2 ( 2 )

( 2 ( 2x z y z

a x 2 c

a y 2 c

+
+

( )2 2 2

= ( )( )

( ) ( ) ( )

( 2 ( 2 )

( ) (2

x z y z a y 2 c

z

+
b z c)2

− R2

= ( )( )(

1 1 1

)

( ) ( ) (2 2

x z y z c

z

+
)2

= ( )( )(

1 0 0

) 2( )

( ) ( ) ( )2 2 2

x z y z a a c−
− ( )2 2−

−C1, −C1

= ( )( )( )
2( ) 2( )

( ) ( )2 2 2x z y z x y
a b

− −

    [Expanding the determinant about its first row.]



  1.45  Matrix I 

= ( )( )( )
2( ) 2( )

( )(2 ) ( )(2 )
x z y z x y

a b

a b z a b a) (b a) ( c z)(2 a c
)(z y

)(2b z − −b a) ( − a

= 2( )( )( )( )( )
1 1

(2 ) (2 )
y y b

z a b z) (2
)( )(

−a

= 2( )( )( )( )( )[(2 ) (2 )]y y b a c z a c) (2 b)( )( )[(2c z − c)

= 2( )( )( )( )( )( )y y b b)( )( )(

= 2( )( )( )( )( )( )y y b b)( )( )(

Example 1.18 Solve the equation 

x p q r

q x r p

r p x q

+
+

+
= 0

Sol.

x p q r

q x r p

r p x q

+
+

+
= 0

or

x p q r x p q r x p q r

q x r p

r p x q

R R R R, = 0 [ ]1 1 2 3R

+ +p + +r x + +q + +p +
+

+
′ +R1R

or x p q r q x r p

r p x q

, ( )

1 1 1

= 0+ +p + +r q x)

+

or x p q r q x r q p q

r p r x q r

C C C C C C, ( )

1 0 0

= 0[ ]2 2C 1, 3 3C 1+ +p +q x+ r) q p

− +r x

′ −C2CC ′ → CC

or x p q r
x r q p q

p r x q r
, ( ) = 0+ +p + + −r −

− +r x −

or x p q r x p q r pq qr rp, ( )( ) = 02 2 2 2+ +p + −r x)( 2
qq + +pq +

Therefore,

x p q r p q r pq qr rp( ) =x
2 2 2+p( + ±r) =x + +qq

2 − −pq −

Example 1.19 Prove that 

bc ca ab

bc ca ab

bc ca ab

c a a c

a a b b

c b b c

a c

a b

b

−
−

−

+
+= =

0

0

0

2 2+ 2 2

2 2 2 2
b

2 2 2 2 cc

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥

2
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Sol. Let us consider D

a c

a b

b c

=

0

0

0

Then D

a c

a b

b c

a c

a b

b c

a c

a b

b c

2

2

=

0

0

0

=

0

0

0

0

0

0

or D

c a a c

a a b b

c b b c

, =D2

2 2 2 2

2 2 2 2b
2 2 2 2

+
+ −[Multiplying ry ow wise] ...(1)

Again adjoint of D  is given by

D

bc ca ab

bc ca ab

bc ca ab

=

−
−

−

Since by Jacobi’s theorem for 3rd order determinant,

D D
2

we obtain

bc ca ab

bc ca ab

bc ca ab

a c

a b

b c

−
−

−

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥=

0

0

0

2

...(2)

Combining (1) and (2), we have

bc ca ab

bc ca ab

bc ca ab

c a a c

a a b b

c b b c

a c

a b

b

−
−

−

+
+= =

0

0

0

2 2+ 2 2

2 2 2 2
b

2 2 2 2 cc

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥

2

Example 1.20 Prove that 

1

1

1

1

=

1

1

1

2

2

2

2

2 3

2 3

bcd b c d a

cda c d a b

dab d a b c

abc a b c d

a a a

b b b

+ c

+ d

+a
+b

c ccc c

d d d

2 3
c

2 3
d1

Sol. Here, 

1

1

1

1

2

2

2

2

bcd b c d a

cda c d a b

dab d a b c

abc a b c d

+ c

+ d

+a
+b
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=

1

1

1

1

2

2

2

bcd a b c d a a

cda b c d a b b

dab c d a b c c

abc d a b c

+ b + d

+ c + a

+d −b
+a −c d ddd

2

=

1

1

1

1

12

2

2

2

bcd a b c d a

cda b c d a b

dab c d a b c

abc d a b c d

bcd+ b +
+ c +

+d

+a

−

a aaa

cda b b

dab c c

abc d d

2

2

2

2

1

1

1

= ( )

1

1

1 1

1 1

1

2

2

2

2

2 3

a b c d

bcd a1

cda b1

dab c

abc d

abcd

a abcd a a

b bcda+b −
b bbb

c cdab c c

d dabc d d

2 3
b

2 3
c

2 3
d

[Multiplying first, second, third, fourth rows by a b c d, ,b ,  respectively]

= 0

1

1

2 3

2 3

2 3

2 3

−
abcd

abcd

a a1 a

b b1 b

c c1 c

d d1 d

=

1

1

1

1

1

2 3

2 3

2 3

2 3

a a a

b b b

c c c

d d d

st d[Interchanging and c2nd olumns]

=

1

1

1

1

2 3

2 3

2 3

2 3

a a a

b b b

c c c

d d d

Example 1.21 Prove that 

1 2 2

2 1 2

2 1

= (1 )

2 2

2 2

2 2

2 2 3

+ −
−

−1

a b
2 −2

ab b

ab a b
2 +2

a

b a22 a b
2 −

2

Sol.
1 2 2

2 1 2

2 1

2 2

2 2

2 2

+ −
−

−1

a b
2 −2

ab b

ab a b
2 +2

a

b a22 a b
2 −



 1.48   Engineering Mathematics-I 

=

1 0 2

0 1 2

+
+

−
−

b

a

(1+ )

[

= (1 )

1 0 2

0 1 2

1

2

b

a

= (1 )

1 0 2

0 1 2 [ ]2

2 2

1−
b

a

a−
bR

= (1 ) − +

= (1 )3

Example 1.22 Show that 

a b

a b

b a

a ab b

b a ab

ab b a

0

0 = 2

2

2 2

Sol.

a b

a b

b a

a b

a b

b a

a b

a b

b a

0

0

0

0

0

0 [

2

By row wise multiplication

2

2

2
a ab b2

b a ab

ab b a

Example 1.23 Show that 

1

1 ( ) ( 1)

1 ( ) ( 2)

1 ( ) ( 3

2 3

3

3

n n n

n n

n n

n n

+
+
+

= 12

3

Sol.

1

1 ( ) ( 1)

1 ( ) ( 2)

1 ( ) ( 3

2 3

3

3

n n n

n n

n n

n n

+
+
+ 3

1 0 0 0

1 ( ( ) 1)

1 ( (

2
n n n

n n n

+n
+
+

2)

1 ( ( + − 3)

2

2

−
n n+ − n +
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[ ,2 2 1′ −2C C2′ → nC ′ −C C′ → nC3 3C→ 2 , ′ −C C′ → nC4 4 3−C→ nC ]

=

1 1 ( 1)

2 2( 2) 2( 2)

3 3( 3) 3( 3)

2

2

2

n (

2) 2(2) 2(

3) 3(

1 (1 (

2) 2(2) 2(2) 2(

3) 3(3) 3(

= 2 3

1 ( 1) ( 1)

1 ( 2) ( 2)

1 ( 3) ( 3)

2

2

2

⋅ ⋅3

+1) (

+ 2) (

+ 3) (

n 1) (+1) (

n 2) (+ 2) (

n 3) (+ 3) (

[ ;2 2 1′ −2R R2′ → R ′ −R R′ → R3 3→→ 1]

= 2 3

1 ( 1) ( 1)

0 1 2 3

0 2 4 8

2

⋅
+1) (n 1) (+1) (

= 2 3 [4 8 2(2 3)] = 12⋅3 88 2(2−8

Example 1.24 Without expanding, prove that 

0

0

0

= 0

a b

a c0

b c

−
−b

[WBUT-2007]

Sol. Here, D

a b

a c

b c

=

0

0

0

−
−b

=

0

0

0

− −
−

a b

a c0

b c−
[Transposing]

= −D

or D, 2 = 0

or D, =D 0.

Example 1.25 If the matrix 

0

1

1

0

3

2

3

0

-
-

-Ê

Ë

Á
ÊÊ

Á
ËË

ÁÁ
ˆ

¯l

is singular then find the value of .l

[WBUT-2004]

Sol. Since the matrix is singular, we have,

0 1 2

1 0 3 = 0

3 0

−
−l

, 1( 3 ) 2(6) = 0or 1( 3 )1( 3 )l )))

, 3 = 12or l

, = 4.or l
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Example 1.26 Find the inverse of the matrix

1 0 1

3 4 5

0 6 7

−

66

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ if it exists.

Sol. Let A =

1 0 1

3 4 5

0 6 7

.

−

66

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟

Then det A =

1 0 1

3 4 5

0 6 7

= 20 0.

−

66

≠

Since det A ≠ 0, A−1  exists.

Now the adjoint of the matrix A  is given by

adj( )A =

4 5

6 7

3 5

0 7

3 4

0 6

0 1

6 7

1 1

0 7

1 0

0 6

0 1

4 5

1 1

3 5

1 0

3

−6
−

7 0

−
−6

−

−
44

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

T

=

2 21 18

6 7 6

4 8 4

=

2 6 4

21 7 8

18 6 4

.

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ −7

−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟

T

Hence A
A
adj

−1 =
1

( )A
det

A− ⋅ −
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ − −

−

1 =
1

20

2 6 4

21 7 8−
18 6 4

=

1

10

3

10

1

5

21

20

7

20

2

5

9

10

3

10

1

55

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞

⎟
⎟

⎟
⎟

⎟
⎟

⎟
⎟

⎟
⎟

⎟
⎟

⎟
⎟

⎟
⎟

⎟
⎠

⎟

Example 1.27 For the matrix A =

2 3 4

1 0 1

0 1 4

,

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ prove that

A O
3 26 12 10 =A I

2
A .A

2
A

Hence, find A
−1.
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Sol. Here A =

2 3 4

1 0 1

0 1 4

.

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

Therefore,

A
2 =

2 3 4

1 0 1

0 1 4

2 3 4

1 0 1

0 1 4

=

1 10 21

2 4 8

1 4 15

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

−1

⎛⎛

⎝
⎜
⎛⎛⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

and

A A A3 2A =A A

1 10 21

2 4 8

1 4 15

2 3 4

1 0 1

0 1 4

=

8 24 7

⋅
−1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
−8 88

0 14 36

6 12 52−6

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Now

A I
3 26 12 10A

2
AA

2
A =

8 24 78

0 14 36

6 12 52

6

1 10 21

2 4 8

1 4 15

−8

−6

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ −

−1

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

+
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ −

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟12

2 3− 4

1 0 1

0 1− 4

10

1 0 0

0 1 0

0 0 1

=

0 0 0

0 0 0

0 0 0

=

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ O

Hence, we have 

A O
3 26 12 10 =A I

2
A .A

2
A

Now we are to find A−1.

A O
3 26 12 10 =A I

2
AA

2
A

or A I, (A 6 12 )A I = 102 − 6A

or A A I I, .A
1

10
( 6A 12 ) =2

A6
⎡
⎣⎣⎣

⎤
⎦⎦⎦

Hence by the definition of inverse, we have

A A IA
⎡
⎣⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

1 21

10
( 6A −2 12 )

A
−

−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ −

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟ +1 =

1

10

1 1− 0 21

2 4− 8

1 4− 15

6

2 3− 4

1 0 1

0 1− 4

12

1 0 0

0 1 000

0 0 1

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥

i.e., =
1

10

1 8 3

4 8 2

1 2 3

1A−
−

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
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Example 1.28 Determine the values of a b c, ,b for which the matrix

0 2b c

a b c

a b c

−
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟

is orthogonal.

Sol. Let

A

b c

a b c

a b c

=

0 2

−
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

If A  is an orthogonal matrix then AA I
T =

which implies

0 2 0

2 =

1 0 0

0 1 0

0 0 1

b c

a b c

a b c

a a

b b b

c c c

−
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟ −
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

or

b c b c b c

b c a b c a b c

b c a b c

,

4 2b c 2

2

2

2 2 2 2 2 2

2 2 2 2
b

2 2 2 2

2 2 2 2
b

b2c − b2

c a
2 + −c a

2 2

− b2 −b
2

2 2 2 2

=

1 0 0

0 1 0

0 0 1a b c+b

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟⎠⎠
⎟⎟

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

Equating the corresponding entries of 1st  row, we have

4 = 12 2
b c

2 ...(1)

2 = 02 2
b c

2 ...(2)

a b c
2 2
b

2 = 1+b
2
b ...(3)

Adding (1) and (2), we get

6 =
1

6
=

1

6

2 2= 11 b⇒ ⇒=b ±

Putting b =
1

6
± in (2), we get

c b
2 2

b =
1

3

1

3
⇒ ±c =

Putting the value of b and c in (3), we obtain

a b c
2 2

b
2 = 1

1

6

1

3
=

1

2

1

2
−b − − ⇒ ±a =

Therefore,

a b
1

2
; b

1

6
; =c

1

3
±b =b ±
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Example 1.29 Show that the matrix

cos i

sin

q qsin

q qcos

0 1 0

−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ is orthogonal and hence

find its inverse.

Sol. Let A = 0 1 0

cos i

sin

q q0 s0 in

q q0 c0 os−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

Now,

AAT = 0 1 0 0 1 0

cos i

sin

cos i

sin

q q0 s0 in

q q0 c0 os

q q0 s0 in

q q0 c0 os−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

−

⎛

⎝
⎜⎜
⎛⎛⎛⎛

⎜⎝⎝
⎜⎜⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

T

= 0 1 0 0 1 0

cos i

sin

cos i

sin

q q0 s0 in

q q0 c0 os

q q0 s0 in

q q0 c0 os−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠⎠
⎟
⎞⎞

⎟⎠⎠⎠⎠
⎟⎟

=

0 0

0 1 0

0 0

2 2

2 2

cos sin

cos sin

q q2 2
sin

q q2 2
sin

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

=

1 0 0

0 1 0

0 0 1

=

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ I

Since AA I
T = ,I A  is an orthogonal matrix.

Again for any othogonal matrix A, we know A AT1 = .A Hence,

A

T

−

−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟1 = 0 1 0 = 0 1 0

cos i

sin

cos i

sin

q q0 s0 in

q q0 c0 os

q q0 s−0 in

q q0 c0 os

⎛⎛

⎝
⎜
⎛⎛⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

Example 1.30 If A  be a skew-symmetric and ( ) be a nonsingular matrix

then show that B I A I A= ( )( ) 1− +A I
− is orthogonal. 

[WBUT-2009]

Sol. A square matrix is orthogonal if

A A IT
n=

Now,

B BT = {( )( ) }{( )( ) }1 1
I A I A

T)( )(A I
−

= ( )( ) {( ) } ( ) , ( ) =1 1
I A I A I A B A

T T( )I A
T T

B
T)(A I ) } (1

I(I− since

= ( )( ) {( ) } ( ), ( ) ( )1 1 1 1(I A I A I A A) = (1 (T T} (1
I

t T T)(A I ) } (IT} (I 1 (since

= ( )( ) ( ) ( )1 1
I A I A I A I A

T T
A

T T
A)(A I ) (A I

T
A

= ( )( ) ( ) ( ),1 1I A I A I A I A I I=T T T)(A I ) (A IT since
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= ( )( ) ( ) ( ),1 1( )I A I A I A I A A A=T)(A I ) ()A I)( since

= ( ){( )( )} ( ), ( ) =1 1 1 1
I A I A B A

1.){(A )} (I − −
A

1since

Again,

( )( ) = 2
I A A A)( + A

= ( ) ( ) = ( )( )I A I( A))A = (+ A)

Hence, from above

B B I A I A
T. =B ( )I A {( )( )} ( )I A

1
I)A {( A)} (I1−

= ( )( ) ( ) ( )1 1( )I A I A I A I A)(A I ) ()A I)(

= =I I I

Therefore, B I A I A= ( )( ) 1− +A I
− is orthogonal.

EXERCISES

Short and Long Answer Type Questions

1. Find the matrices A  and B if

A

−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟2 =BB

1 2 0

6 3− 3

5 3 1

2 =A B

2 1− 5

2 1− 6

0 1 2

and

Ans : A =

1 0 2

2 1 3

1 1 1−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

 and B =

0 1 1

2 1 0

2 1 0

−

−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

2. For the matrices A =
3 2

1 2−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

and B =
0 1

1 2−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

, verify the following:

a) ( ) A B
T T

A
T) = AT

A

b) ( ) = B AT TB T

3. Express the following matrices as the sum of symmetric and skew-symmetric

matrices.

a) 
2 4

3 2

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

Ans :Symmertric matrix:

2
7

2
7

2
2

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞

⎟
⎟

⎟
⎟
⎟
⎠
⎟

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

, Skew-symmertric matrix: 

0
1

2
1

2
0

−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥
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b)

1 2 3

4 5 6

7 8 9

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

Ans :  Symmertric matrix:

1 3 5

3 5 7

5 7 9

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

, Skew-symmertric matrix: 

0 1 2

1 0 1

2 1 0

−1

−
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

c) 

3 1 5

1 2 4

5 4 1

−
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

Ans : Symmertric matrix:

3 1 5

1 2 4

5 4 1

−
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

, Skew-symmertric matrix:

0 0 0

0 0 0

0 0 0

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

4. If A is a skew-symmetric matrix then show that A2  is symmetric. Also, verify 

this with the matrix 

A =

0 1 2

1 0 3

2 3 0

−
−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

5. If A( ) = ,
q q
q q

cosq i

sinq
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

prove that 

A A( ) ( ) = (A ) ( ) = ( )q jA) ( j q) (A j [WBUT-2006]

6. If A =

0 4 3

1 3 3

1 4 4

−3

−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟  then show that A I

2 = ,I  i.e., A is involutory.

7. If A =

1 1 1

3 3 3

5 5 5

− −1 1⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ then show that A A

2 = ,A i.e., A is idempotent.

8. If A =

1 2 3

3 2 1

4 2 1

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ then prove that A A I O

2 233 40 .O−A

9. Show that 

u v w

a h g

h b f

g f c

u

v

w

( ) ×
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ ×

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟ = 2 2 22 2 2

au bv cw huv fvw g2 wu+ +2
bv + +2huv

10. Prove without expanding the following determinants:

a) 

a b b c c a

b c c a a b

c a a b b c

b b

c c

a a

= 0.
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b)

bc a a

b ca b

c c ab

bc ab ca

ab ca bc

ca bc ab

2 2

2 2

2 2

= .

c)

1

1

1

= 0.

2

2

2

a a bc

b b ac

c c ab

−
−
−

d)

1 1 1

1 1 1

1 1 1

= 1
1 1 1

.+
+

+ + +
⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

p

q

r

pqr
p q r

e)

a b c

a b c

bc ca ab

b c c a a b bc ca ab
2 2
b

2 = ( )( )( )( ).cc)( +bcb)( +

11. Prove that ( )l + + +p q r+ +  is a factor of 

l
l

l

+
+

+

p q r

q rl + p

r p q

.

12. Solve the following for x :

(i)

x

x

x

+

+x

1 2 3

1 1x + 3

3 6− 1

= 0 Ans : x i1, 1 7±⎡
⎣
⎡⎡ ⎤

⎦
⎤⎤

(ii)

x a x x

b a b b

c a c c

3 3
a

2

3 3
a

2

3 3 2

= 0. Ans : x b c
a

bc

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

, ,c
3

13. Prove that 

a x c b

c b x a

b a c x

− = 0 if ( ) = 0.b

14. If A B C+B = p , then prove that 

−

−

1

1

1

= 0

cos

cos c−1 os

cos cos

C Bcos

C A

B Acos

15. Show that ( 3)  is a factor of the determinant 

x

x

+

+x

3 4 5

5 3x + 5

5 4− 3
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16. Show that the matrix

1

3

1

6

1

2
1

3

2

6
0

1

3

1

6

1

2

−

−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

 is an orthogonal matrix.

17. For A =

0 1 2

1 0 3

2 3 0

,−
−2

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  show that ( )( ) 1)( −  is an orthogonal matrix.

18. Verify (i) ( ) =1 1 1B A1−1 − (ii) ( ) 1) =1T
T

1 ( )1
A for the matrices 

A B=

2 1 2

1 0 4

2 0 0

=

4 1 2

1 0 3

2 4 0

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ −
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟and

19. If A =

2 1 2

3 0 4

2 0 8

,

−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  find the matrix B3 3B  for which AB I= .I3

20. Examine whether the following matrices A  and B  are conformable for addition

and multiplication. If so, find A B, AB, BA.

 (i) A B=
1 2 2

0 6 0
=

3 1

0 0

2 5

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟,

Ans : AB BA=
7 11

0 0
, =BA

3 12 6

0 0 0

2 34 4

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

(ii) A

a b

b c

c a

B

a b

c a

=

0

0

0

= 0 0

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

−

−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟,

Ans : AB

a bc ab

ab b

ac a

=

2

2

2

−a

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎣⎣

⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎦⎦

⎥⎥

21. If A I −I

−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

1 3 4

1 1 3

2 3− 1

then evaluate ( )( ))(  where I is the identity 

matrix of order 3 .
Ans :

− −
−

−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

12 12 9

6 13 4− −
3 6− 18
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22. Find the matrices A  and B  if 

2 3 =
8 3

7 6
, =

3 1

3 3
B3 A B

T⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

Ans : A =
1 0

2 3

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

⎡

⎣
⎢
⎡⎡

⎣⎣
and B =

2 1

1 0

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
⎤

⎦
⎥
⎤⎤

⎦⎦

23. If A B B
T= 2  and 3 2 = 3B2 I , find the matrices A and B .

Ans : A =

1

5
0 0

0
1

5
0

0 0
1

5

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎣⎣

⎢⎢

, B =

1

5
0 0

0
1

5
0

0 0
1

5

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞

⎟
⎟

⎟
⎟

⎟
⎟

⎟
⎟

⎟
⎠

⎟

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎦⎦

⎥⎥

24. Find the matrices A  and B  such that 

3 = 2 2 =

1 1 1

0 1 0

1 0 1
3 A2 B

T +
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞

⎟⎠
⎟and

Ans : A B=

3

5

2

5

1

5
3

5

3

5
0

1

5
0

3

5

=

1

5

9

5

3

5
6

5

1

5
0

−⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

−

− −6
and

33

5
0

1

5

−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎣⎣

⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎦⎦

⎥⎥

25. If A =

0 1 2

2 0 1

1 2 0

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ show that A I O

3
36 9A .OA Hence obtain a matrix B  such 

that BA I= 3

26. Find all real matrices A
a b

c d
=

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

 such that A O
2

Ans :
a b

c a
a bc

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

=bc
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
, 0.2where

27. Express the following matrices as the sum of symmetric and skew-symmetric

matrices.

i)

1 1

1 1

1 1

a

b

c

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ ii)

a a b
b b g
g g a

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟



  1.59  Matrix I 

28. Show that 

2 3 5

1 4 5

1 3 4

33

−
−3

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ is idempotent.

29. Show that 

1 1 3

5 2 6

2 1 3−2 −

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ is nilpotent of index 3.

30. If A =
3 4

1 1

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

, prove by the method of induction that 

A
n n

n n
n =

1 2 4

1 2

−n2⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

where n  is any positive integer.

31. Prove without expanding the following:

a)

a a

a a a a

a a a
a

3 2

2 2
6

3 3a
2
a 1

2 2 1 1

2 1a 2 1

1 3 3 1

= ( 1)+a+ 2 2a

+a1
−

b)

( )

( )

( )

= 2 ( )

2

2

2

3

b ca bc

ca b ab

bc ab

abc b

c)

p p p

p p p

p p p

p p p

3 2

3 3 3

3 3 3

3 3

1

( 1) (p
3 1) ( 1) 1p

3

( 2) (p
3 1) ( 1) 1p

3

( 3) (p
3 1) (

+p1) (3

+p2) (3

+p3) (3 ++1) 1

= 12

3

d)

b c c b b c

c a c a c a

b a a b a b

b c c

2 2 2 2

2 2 2 2

2 2 2 2
b

1 c 1

1 1 1

12 1

+c
2 +b

2

+ +a
21 + +a

21 +
+aa

2 +b
2
b

+ +++

+ +

a a b

ab bc ca

3

= ( )2

e)

a b c

x y z

p q r

y b q

x a p

z c r

x y z

p q r

a b c

== x a p

f)

y z x z x y

y z z x y x

z y z x x y

xyz

+ −z x

− +z z

y z +
= 8

g)

1 1 1

= ( )( )( )
2 2 2 2 2 2

y z z x x y

y z z x x y

y z z x x y+ +z z +
+ +2 2
z z +

)(z z
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h)

a a a

b b b

c c c

a b b c c a abc

2 3

2 3
b

2 3
c

1

1

1

= ( )( )( )( 1)

+
+
+

bb)( +abc− a)(

i)

a b b

c b c

a c a

a b c ab bc ca+
+

+b bcbc

0

0

0

= ( )( )

j)

x x y yz

y y zx

z z y xy

x y y z z x x

2 2 2

2 2 2

2 2 2

( )y z

( )z x

( )x y

= ( )( )( )(

− (y

− (z

− (x

y y)( − +x x)( y zyy x y z+ +z x +)( )2 2+ 2

k)

1 1 1

= ( )( )( )
2 2 2 2 2 2

y z z x x y

y z z x x y

x y y z z x+ +z z +
+ +2 2
z z +

)(y y

l)

a b ax by

b c bx cy

ax by bx cy

b ac ax bxy y

+
+

+ +by bx

ac axac ax

0

= ( )bxy cy+2 2 2

32. Using product of determinants, show that

a)

1 ( ) ( )

( ) 1 ( )

( ) ( ) 1

= 0

( )

cos

c)cos( c) os

a b g a
a b b g
g b g

() g

(c) os

b)

a bc c ab b ca

b ca a bc c ab

c ab b ca a bc

a

2 2 2

2 2 2

2 2 2

3

2b
2

22

2b b
2

= (

bc c
2

ca a
2

ab b
2

+++ −b c+ b
3 3
c+ 23 )abc

c)

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

= 2(

2 2 2

2 2 2

2 2 2

b

y y b y

b

x

) (

) (

) (

− −−− − − − −y y z z ax b b c c a)( )( )( )( )( )

[WBUT-2008]

33. Using Laplace method of expansion, prove the following:

a)

x y u v

y x v u

u v x y

v u y x

x v y u

−u

−v

+ −v= ( )2 2+ 2 2 2

b)

a b c d

a b c d

a b c d

a b c d

abcd
−
−a
−a −

= 8
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c)

1 2 3 4

2 3 4 5

3 4 5 6

4 5 6 7

= 0

d)

a b a b

b a b a

c d c d

d c d c

−b

−b

d c
= 4( )a bb ( )c d(c2 2

bbb
2 2
dd

e)

−

−
−

− − −

1 0 0

0 1− 0

0 0 1

1

= 1

a

b

c

x y z

ax by cz

34. Prove that the determinant 

1

1

1

2

2

2

x x

x x1

x x

is a perfect square.

35. Verify

a) andadj adjAjj
T T( )A
T = ( )

b) A adj adj A A I⋅ ( )A = (adj ) =A det

for the matrix A =

1 0 1

2 4 6

1 2 1

.

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

36. Find the adjoint of the following matrices:

a)

1 1 1

2 1 3

3 2 1−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ Ans :

−
−

−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

5 3 4

11 4 1−
7 1 3

b)

2 1 3

0 2 0

2 1 1

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ Ans :

2 4 6

0 4 0

4 4 4−4

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

37. Find the matrix A  such that det A = 2  and adj A =

2 2 0

2 5 1

0 1 1

.

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

Ans : A =

2 1 1

1 1 1

1 1 3

−1 1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦
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38. Find the inverse of the following matrices:

a)

1 1 1

1 2 3

1 4 9

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ Ans :

3
5

2

1

2
3 4 1

1
3

2

1

2

−

− −3 4

−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎠⎠
⎟⎟

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

b)

2 1 1

0 1 2

1 3 1

−

−

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ Ans :

1

11

7 2 3

2 1 4

1 5 2

−
−

−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

39. A and B are real orthogonal matrices of the same order and det det Bdet = 0.

Show that A B  is a singular matrix.

40. Determine the value of a b c, ,b so that 

0 2b c

a b c

a b c

−
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  is orthogonal.

Ans : a =
1

2
,±

⎡

⎣
⎢
⎡⎡

⎣⎣
b =

1

6
,± c =

1

3
±

⎤

⎦
⎥
⎤⎤

⎦⎦

Multiple-Choice Questions

1. The matrix

1 2 3

2 4 6

3 6 5

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟  is a

a) symmetric matrix b) skew-symmetric matrix

c) diagonal matrix d) none of these

2. If A is a non-null square matrix then A A
T is a

a) symmetric matrix b) skew-symmetric matrix

c) null matrix d) none of these

3. If A is a non-null square matrix then A A
T is a

a) symmetric matrix b) skew-symmetric matrix

c) null matrix d) none of these

4. If A =
1 1

1 1

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

then ( ) =2 T

a)
0 1

1 1

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

b) I2

c) 2A d) none of these

5. (2 3 )A 3 T is equal to

a) 2 3B3 T b) 2 3B3T T3B3

c) 4 9B9T T9B9 d) none of these
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6. ( )T  is equal to

a) A B
T T

B b) A B
T T
B

c) B A
T T
A d) none of these

7. If A =
1 0

0 1

−⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

 then A At =

a) I2 b) A

c)
0 1

1 0

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

d) none of these

8. If A =
2 1

1 3

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

 then A I
2 7 =I

a) O b) 2A c) 3A d) 5A

9. If
2

1 3

0 1

1 0
=

1 2

3 1

k⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠
⎞⎞

−
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

then the value of k is

a) −5 b) 0 c) 5 d) −1

10. If A  is a symmetric as well as skew-symmetric then A  is a/an

a) diagonal matrix b) null matrix

c) Identity matrix d) none of these

11. If A  is an idempotent matrix then I A is a/an

a) nilpotent matrix b) idempotent matrix

c) involutory matrix d) none of these

12. If A  and B  are two square matrices of same order such that 

( ) = 22 2 2
AB) =2 then

a) A B
T b) A B

2

c) AB BA= d) none of these

13. The cofactor of x in the determinant 

x 1 1

2 1 0

1 3 2

is

a) −2 b) 4 c) 2 d) 0

14. The adjoint of the determinant 
2 1

3 6
is

a)
1 2

6 3
b)

6 3

1 2
c)

−6 3

1 2−
d)

6 3

1 2−

15. The value of the determinant 

1 2 3

2 3 4

3 4 5

 is

a) 1 b) −1 c) 2 d) 0
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16. If w is the cube root of unity then the value of the determinant

1

1

1

2

2

2

w w

w w

w w2

 is

a) w 2 b) w c) 1+w d) 0

17. The value of a skew-symmetric determinant of odd order is always

a) 0 b) 1 c) −1 d) none of these

18. The roots of the equation 

x

x

+

−

1 0 0

0 2x − 0

0 0 3

= 0 are

a) 1, 2, 3 b) −1, 2, 3 c) 1, 2, 3− d) − −1, 2, 3

19.

a b ax b

b c bx c

ax b bx cb

+
+

+ +b bxbb 0

= 0  if

a) a b c, ,b  are in AP b) a b c, ,b  are in GP

c)
1

,
1

,
1

a b
,

c
are in AP d) none of these

20. If a b are the roots of the equation x
2 3 2x = 03x then 

0

1

=

a b
b a0

a a−

a) 6 b)
3

2
c) −6 d) 3 [WBUT-2007]

21. If 

1 2 3

4 6

7 8 9

= 0 then the value of a  is

a) 5 b) either −2 or 1 c) 1 d) not −2

22. If 

b c c b

c c a a

b a a b

kabc+ = ,kabc then k =

a) 3 b) 1 c) 4 d) 2

23. The value of 

100 101 102

105 106 107

110 111 112

is

a) 2 b) 0 c) 405 d) −1 [WBUT-2005]

24. If det( ) = 43 3A then det(2 )3 3 is equal to

a) 32 b) 16 c) 8 d) 4
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25. adj A(2 )3 3  is equal to

a) 32. ( )adj b) 8. ( )adj c) 4. ( )adj d) 2. ( )adj

26. adj T( )A
T  is equal to

a) 3. ( )adj b) adj ( )A
− c) adj( )A d)

T[ ]adj( )A

27. For a 3rd order determinant D, its adjoint determinant is equal to

a) D
2 b) D c) D

3 d) D
4

28. The trace of A =

3 0 0

0 1 0

0 0 2

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟ is 

a) 7 b) 5 c) 6 d) 4.

29. The trace of AT  is same as 

a) trace of A b) trace of A−1

c) [trace of A T] d) none of these

30. For an orthogonal matrix A, A
−1 is same as 

a) A b) A
T c) adjA d) none of these

31. For any nonsingular matrix A, ( )A
T

−1

 is same as 

a)
T( )A

− b) A
T c) A d) none of these

32. For any orthogonal matrix A, det A is equal to

a) 0 b) 1 c) ±1 d) −1

Answers:

1. (a) 2. (a) 3. (b) 4. (c) 5. (b) 6. (c) 7. (a) 8. (d) 9. (d)

10. (b) 11. (b) 12. (c) 13. (c) 14. (d) 15. (d) 16. (d) 17. (a) 18. (b)

19. (b) 20. (c) 21. (a) 22. (c) 23. (b) 24. (a) 25. (c) 26. (d) 27. (a)

28. (c) 29. (a) 30. (b) 31. (a) 32. (c)
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Matrix II

2.1 INTRODUCTION

In this chapter, first we deal with the concept of the rank  of a matrix  and also the 

process of determination of rank. Next, we discuss the matrix inversion method, 

Cramer’s rule and also the consistency and inconsistency of a system of homogeneous 

and nonhomogeneous linear simultaneous equations. 

Then we represent the methods of determination for Eigen values and Eigen vectors 

of a square matrix and also the Cayley–Hamilton theorem and its applications.

In the last part, we discuss the diagonalisation of a square matrix  which is included 

as further-reading, material for interested students.

2.2 RANK OF A MATRIX

Let A  be a nonzero matrix of order m n× .  The rank of A  is defined to be r  if r  is 

the greatest positive integer such that A  has at least one nonzero minor of order r.

Important Observations

(i) The rank of a null matrix is zero.

(ii) Rank of n-th order identity matrix is n.

(iii) If the rank of A be r, every minor of order greater than r is zero.

(iv) For a nonzero m n×  matrix A,  0 <  rank A m{ , }n .

(v) For an n-th order square matrix A, the rank of A is n if det( ) 0A  and 

rank of A is less than n if det( ) = 0.A

(vi) Rank of A = Rank of A
T
.

CHAPTER
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Example 1  

 Let A =
3 2

1 4
.

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

 Here, det( ) 0.A  Since highest-order nonzero minor is of order 2, 

rank of A = 2.  

Example 2

Let A =

0 2 3 4

0 5 1 1

0 0 0 0

.

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  Here, the highest-order minors are 3rd  order minors, and 

they are

0 2 3

0 5 1

0 0 0

,

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟
0 2 4

0 5 1

0 0 0

,

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  

0 3 4

0 1 1

0 0 0

,

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
2 3 4

5 1 1

0 0 0

.

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟

They are all singular matrices.

So, rank of A < 3.  So we have to search for at least one 2nd order nonzero minor if 

it exists.

Now, we have 
2 3

5 1

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

 as a 2nd order nonzero minor since 
2 3

5 1
0.≠

Hence, rank of A = 2

2.3 ELEMENTARY ROW AND COLUMN OPERATIONS

Let A  be a nonzero matrix of order m n× .  Elementary row (or column) operations on 

A  are of the following three kinds:

(i) Interchanging of any two rows (or columns) of A.

  [Notation: Rij  (or Cij ) stands for interchanging of the i th row and j th row 

(or of the i th column and j th column).]

 (ii) Multiplication of a row (or column) by a nonzero quantity.

  [Notation: d Ri  (or d Ci ) stands for multiplication of the i th row by d (or 

of the i th column by d).]

 (iii) Addition of scalar multiple of a row (or column ) to another row (or 

column).

  [Notation: R d Ri jd R⋅dd  (or C d Ci jC d C⋅dd ) stands for addition of the d multiple of 

the j th row to the i th row (or d  multiple of the j th column to the i th 

column).]

Example 3  

2 2 4 3

3 2 5 0

1 1 3 4

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ R12RR
⎯ →12⎯ →⎯ →  

3 2 5 0

2 2 4 3

1 1 3 4

,

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
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2 2 4 3

3 2 5 0

1 1 3 4

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ C23CC
⎯ →23⎯ →⎯ →  

2 4 2 3

3 5 2 0

1 3 1 4

−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

2 2 4

3 2 5

1 1 3

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ 2 2R22⎯ →2⎯ →⎯ →  

2 2 4

6 4 10

1 1 3

,

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

2 2 4

3 2 5

1 1 3

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ 3 1C1⎯ →1⎯ →⎯ →  

6 2 4

9 2 5

3 1 3

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

−

−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
2 4 3

2 5 0

1 3 4

R R2 3R RR R2
⎯ →2 3⎯⎯ →→  

−

−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
2 4 3

4 11 8−
1 3 4

,

−

−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
2 4 3

2 5 0

1 3 4

C C1 3C CC C
⎯ →1 3⎯⎯ →→  

4 4 3

2 5 0

7 3 4− −7 3

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

2.4 ROW EQUIVALENT AND COLUMN EQUIVALENT MATRICES

Suppose a matrix Bm n×  is obtained by performing a finite number of elementary row 

(or column) operations on another matrix Am nA × .  Then Am nA ×  and Bm n×  are said to be 

row equivalent (or column equivalent).

Example 4  

A =

2 2 4 3

3 2 5 0

1 1 3 4

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ R12RR
⎯ →12⎯ →⎯ →  

3 2 5 0

2 2 4 3

1 1 3 4

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

R R1 3R RR R2
⎯ →1 3⎯⎯ →→

5 4 11 8

2 2 4 3

1 1 3 4

3
3 2 5 0

5 1 13 9

1 1 3 4

=2 33
−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ ⎯ →2 3⎯ →⎯ →
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟R R32 32 33+
BB.

A  and B  are row equivalent.

Example 5

A =

2 2 4 3

3 2 5 0

1 1 3 4

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ C23CC
⎯ →23⎯ →⎯ →  

2 4 2 3

3 5 2 0

1 3 1 4

−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

C C2 3C CC C
2 0 2 3

3 9 2 0

1 5 1 4

⎯ →2 3⎯⎯ →→
−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ C C1 2C CC C
⎯ →1 2⎯⎯ →→

( )  

− −
−
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
2 4 2 3

2 5 2 0

2 3 1 4−
= .B

A  and B  are column equivalent.
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2.5 ROW-REDUCED ECHELON MATRIX

A matix A  is called a row-reduced echelon matrix  (or row-echelon matrix) if

 (i) all nonzero rows precede all zero rows of A

(ii) in a nonzero row, the first nonzero element is 1 (called the leading 1)

(iii) all the columns which contain the leading 1 of some row have all other  elements 

zero

(iv) for each nonzero row, if the leading element of row i occurs in column pi  then 

p p1 2p 3< <p2p <…

Example 6  

The following matrices are row-reduced echelon matrices.

1 0 0

0 1 0

0 0 1

,

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟
1 0 4 0

0 1 1 0

0 0 0 0

,

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  

0 1 0 3 0

0 0 1 2 0

0 0 0 0 1

0 0 0 0 0

.

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

Theorem 2.1: A matrix can be made row equivalent to a row-reduced echelon 

matrix by elementary row operations.

Proof: Beyond the scope of this book.

Theorem 2.2: Two row equivalent matrices have the same rank.

Proof: Beyond the scope of this book.

Theorem 2.3: If a row-reduced echelon matrix A has r nonzero rows then rank 
A r= .r

Proof: Beyond the scope of this book.

2.6 DETERMINATION OF RANK OF MATRIX BY ELIMENTARY 

OPERATIONS

Steps:

Step 1 Apply elementary row operations on the matrix.

Step 2 Convert the matrix to a row-reduced echelon matrix.

Step 3 Count the number of nonzero rows.

Step 4 The value obtained in Step 3 is the rank.

Example 7  Let us find the rank of A =

1 1 1

1 1 1

3 1 1

.11

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟  [WBUT 2006]

We apply elementary row operations on A  to reduce it to a row-echelon matrix.
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A
R R R R

=

1 1 1

1 1 1

3 1 1

32 1R RR 3 1R RR R3
11

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟⎯ →⎯⎯⎯⎯⎯⎯⎯ ⎯→→⎯⎯
,

1 1 1

0 2 2

0 2 2

−2

−2

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

R R R R3 2R RR 1 2R R
1

2
R R2RR RR

⎯ →⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯ ⎯→→⎯⎯
,

1 0 0

0 2 2

0 0 0

1

2

1 0 0

0 1 1

0 0 0

=222

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ −⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠⎯ →⎝ ⎠⎯⎯ →→

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟R22 B

The row-reduced echelon matrix B  has the two nonzero rows.

So, Rank B = 2  and hence Rank A = 2.

Example 8  Find the rank of A =

1 2 1 0

3 6 12 9

0 0 5 8

1 2 2 1

.

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

We apply elementary row operations on A  to reduce it to a row-echelon matrix

A =

1 2 1 0

3 6 12 9

0 0 5 8

1 2 2 1

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

R R R R2 1R RR 4 1R RR3R R
⎯ →⎯⎯⎯ ⎯⎯⎯⎯⎯→→⎯⎯

,  

1 2 1 0

0 0 9 9

0 0 5 8

0 0 1 1

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

1

9
2R22

⎯ →9⎯ →⎯ →
 

1 2 1 0

0 0 1 1

0 0 5 8

0 0 1 1

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

 R R R R R R4 2R R 3 1R RR R 1 2R RRR R
⎯ →⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯⎯→→⎯⎯

, ,R3 1R RR  

1 2 0 1

0 0 1 1

0 0 0 3

0 0 0 0

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

1

3

1 2 0 1

0 0 1 1

0 0 0 1

0 0 0 0

2R22

⎯ →3⎯ →⎯ →

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞

⎟
⎟

⎟
⎟
⎟
⎠
⎟

R R R R2 3R RR R 1 3R RR RR R
⎯ →⎯⎯⎯ ⎯⎯⎯⎯⎯→→⎯⎯

,  

1 2 0 0

0 0 1 0

0 0 0 1

0 0 0 0

= .

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

B

The row-reduced echelon matrix B  has 3 non-zero rows.

So, Rank B = 3  and hence Rank A = 3.

2.7 SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS BY MATRIX 

INVERSION METHOD

Let us consider the system of n  linear equations involving n  unknowns:

a x a x bn n11 1 12 2a x 1 1x bbn nx =+ +a x12 2a x + 

a x a x bn n21 1 22 2a x 2 2x bbn nx =+ +a x22 2a x + 
..............................

a x a x bn na nn n nb1xx 2 2x =+ +a xa 2x + 
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Let A

a a a

a a a

a a a

n

n

n n nn

= ,

11 12 1

21 22 2

2ana

…

…

… … … …

…

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

 called the coefficient matrix, X

x

x

xn

=

1

2x

…

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

 and 

B

b

b

bnb

= .

1bb

2bb

…

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

Then the above system of equations can be written in the form AX B= .B

Now if det( ) 0,A  then the system AX B=  has the unique solution X A B= .A B1−

Example 9  Let us solve the following system of equations:

2 3 4 = 4x y3 +3y3 −

   x z+ = 0

  − +y z+ 4 =z 2  [WBUT 2005]

Here, the coefficient matrix A =

2 3 4

1 0 1

0 1 4

,

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟  X

x

y

z

=

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  and B =

4

0

2

−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Then the given system of equations can be written as  AX B= .B

Now det( ) =

2 3 4

1 0 1

0 1 4

= 10 0.A ≠

So the system has a unique solution X A B= .A B1−

Here, adj( ) =

1 8 3

4 8 2

1 2 3

.A

−
−
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Now A−1 =
1

( )A
,

det
( )Aadj  or, A−

−
−
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟1 =
1

10

1 8 3

4 8 2

1 2 3

.

Hence X A B1−

or, 

x

y

z

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
−

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟=
1

10

1 8 3

4 8 2

1 2 3

4

0

2

   =
1

10

10

20

10

=

1

2

1

.

−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟
−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

So the solutions are x = 1,  y = 2,  z = 1.
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2.8 SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS BY 

CRAMER’S RULE

Let us consider the system of  linear equations involving n  unknowns:

a x a x bn n11 1 12 2a x 1 1x bbn nx =+ +a x12 2a x + 

a x a x bn n21 1 22 2a x 2 2x bbn nx =+ +a x22 2a x + 
..............................

a x a x bn na nn n nb1xx 2 2x =+ +a xa 2x + 

Let A

a a a

a a a

a a a

n

n

n n nn

= ,

11 12 1

21 22 2

2ana

…

…

… … … …

…

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞

⎟
⎟

⎟
⎟
⎟
⎠
⎟

 called the coefficient matrix, X

x

x

xn

=

1

2x

…

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

 and 

B

b

b

bnb

= .

1bb

2bb

…

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

Then the above system of equations can be written in the form AX B= .B

Now if det( ) 0,A  then there exists a unique solution of the system AX B=  and 

is given by

x
A

A

b a a

b a a

b a a

n

n

n nb a nn

1
1AA

1 12 1b ab a

2 22 2b ab a

2

= =1 1det

det detA … … … …

…

x
A

A

a b a

a b a

a b a

n

n

n nb nn

2x
2AA

11 1 1bb a

21 2 2bb a
= =2 1det

det detA … … … …

…

...............................................

x
A

A

a a b

a a b

a a b

n
nA

n n nb

= =n 1
11 12 1bb

21 22 2bb

2ana

det

det dA et

…

…

… … … …

…

Observations:

(1) When det( ) 0A  then the system AX B=  has a unique solution.

 (2) When det( ) = 0A  and at least one of det detA Adet An1 2Adet ,2det Adet ...,  is nonzero, 

then the above system has no solution.

 (3) When det( ) = 0A  and det detA Adet An1 2det Adet =Adet 2Adet = =det A 0  then the above 

system has an infinite number of solutions.
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Example 10  Let us solve the following system by Cramer’s rule:

  x y z+ 2 3y +y = 6

  2 4 = 7x y4 z+4y4

3 2 9 = 14.x y2 +2y2

If we write the above equations in the form AX B=  then

the coefficient matrix  A =

1 2 3

2 4 1

3 2 9

,

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  X

x

y

z

=

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  and B =

6

7

14

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟

Here, det A =

1 2 3

2 4 1

3 2 9

= 20 0.− ≠20

So the system has a unique solution.

Now det A1AA =

6 2 3

7 4 1

14 2 9

= 20.−

  det A2AA =

1 6 3

2 7 1

3 14 9

= 20

   det A3AA =

1 2 6

2 4 7

3 2 14

= 20

So, x
A

A
= =

20

20
= 1.1AAdet

det

−
−

  y
A

A
= =

20

20
= 1.2AAdet

det

−
−

  z
A

A
= =

20

20
= 1.2AAdet

det

−
−

Hence the solution is ,( )1, 1, 1  which is unique.

2.9 SYSTEM OF HOMOGENEOUS AND NONHOMOGENEOUS LINEAR 

EQUATIONS

Let us consider the following system of m  linear equations with n  unknowns

   a x a x bn n11 1 12 2a x 1 1x bbn nx =+ +a x12 2a x + 

  a x a x bn n21 1 22 2a x 2 2x bbn nx =+ +a x22 2a x + 
..............................

a x a x bm ma mn n mb1xx 2 2x =+ +a xa 2x + 



  2.9  Matrix II 

The above system is called a homogeneous system of linear equations if all the bib
's

are zero and the system is called a nonhomogeneous system of linear equations if at 

least one bib  is nonzero.

2.9.1. Matrix Representation of a System of Homogeneous 
and Nonhomogeneous Linear Equations

Let A

a a a

a a a

a a a

n

n

m m mn

= ,

11 12 1

21 22 2

2ama

…

…

… … … …

…

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

 called the co-efficient matrix, X

x

x

xn

=

1

2x

…

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞

⎟
⎟

⎟
⎟
⎟
⎠
⎟

 and 

B

b

b

bmb

= .

1bb

2bb

…

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞

⎟
⎟

⎟
⎟
⎟
⎠
⎟

Then the above system of equations can be written in the form AX B= .B

Here, A

a a a b

a a a b

a a a b

n

n

m m mn mb

=

11 12 1 1bbn

21 22 2 2bn

2ama

…

…

… … … … …

…

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

 is called the augmented matrix.

The system AX B=  is homogeneous for B =

0

0

0

,
…

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

 otherwise the system is 

nonhomogeneous.

So, the homogeneous system can be written in the form AX O= ,O  where O  is the 

null matrix or zero matrix.

Example 11  The following is a homogeneous system of 3 linear equations with 4 

unknowns:

 4 = 0x y3 +3y3

      x z w+ +z = 0

− +y z+ w4 2−z = 0

Here, the coefficient matrix  A =

2 3 4 0

1 0 1 1

0 1 4 2

,

1 4

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟  X

x

y

z

w

= ,
y

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟⎟
⎠⎠
⎟⎟

 B =

0

0

0

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

and augmented matrix A =

2 3 4 0 0

1 0 1 1 0

0 1 4 2 0

.

1 4

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
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Example 12  The following is a nonhomogeneous system of 3 linear equations 

with 3 unknowns:

5 4 4 = 2x y4 +4y4

            x z+ = 0

3 2 4 = 0x y z2 4+2y2

Here the coefficient matrix  A =

5 4 4

1 0 1

3 2 4

,

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  X

x

y

z

= ,y

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

 B =

2

0

0

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

and augmented matrix A =

2 3 4 2

1 0 1 0

0 1 4 0

.

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

2.10 CONSISTENCY AND INCONSISTECY OF THE SYSTEM OF LINEAR 

EQUATIONS

We say the system of linear equations is consistent if it has a solution. On the other 

hand, the system is called inconsistent if it has no solution.

For example,

i) The following system 

  5 4 = 2x y4

   x y = 0

  has the solution (2, 2). So the system is consistent.

ii) The following system 

  8 4 = 2x y4

   2 = 1x y

  has no solution. So the system is inconsistent.

2.11 EXISTENCE OF THE SOLUTION OF HOMOGENEOUS SYSTEM

Let us consider the following homogeneous system of m  linear equations with n

unknowns:

a x a xn nx11 1 12 2a x 1 = 0+ +a x12 2a x + 

a x a xn nx21 1 22 2a x 2 = 0+ +a x22 2a x + 
..............................

a x a xm ma mn n1xx 2 2x = 0+ +a xa 2x + 

It is very important to keep in mind that the homogeneous system is always 

consistent, since it has always a solution of the form x x xn1 2x ,2x .xn,( ) = ( )0 0 0,0, , , 0…0, ,0
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This solution is called a trivial solution. The solutions other than the trivial are known 

as nontrivial solutions.

Example 13  The following homogeneous system of 2 linear equations with 3 

unknowns

3 2 = 0x y2 z+2y2

  x y+ −y 3 =z 0

has a trivial solution (0, 0, 0). Also it is very interesting to see that (1, 2, 1), (2, 4, 2), 

(3, 6, 3), etc., are also the solutions of the system. In fact the system has a solution of 

the form of k(1, 2, 1).  Actually, these are nontrivial solutions.

Theorem 2.4: In a homogeneous system with m equations and n unknowns, if the 

number of equations are less than the number of unknowns (i.e.,m n< ) then the 

system has a nontrivial (non-zero) solution. In fact, there exists infinitely many 

solutions.

Proof: Beyond the scope of the book.

Example 14  Let us solve the following homogeneous system: 

  x y+ y2 =z−y 0

2 2 = 0x y z

First of all, it is clear that it has a trivial (or, zero) solution (0, 0, 0). So the system 

is consistent.

Here number of equations ( ) = 2  and number of unknowns ( ) = 3.  So, m < .n

Therefore, nontrivial solution also exists.

Now if we write the system as AX O= ,O  then A =
1 2 1

2 1 2
,

−
−

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

 X

x

y

z

=

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  and 

O =
0

0
,

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

 null matrix.

Here, we apply elementary row operations to convert A  to a row-echelon matrix.

A
R R

=
1 2 1

2 1 2

22 1R R2−
−

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
⎯ →2 1⎯ →⎯ → 1 2 1

0 3 0

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

1
3 2

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞

⎠⎯ →⎝ ⎠⎯⎯ →→
R22

1 2 1

0 1 0

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

 R R1 2R2
⎯ →1 2⎯⎯ →→

1 0 1

0 1 0
.

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

So the given system is equivalent to 
1 0 1

0 1 0
=

0

0

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

x

y

z

i.e., 

x z = 0

      y = 0
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Let we choose z k= ,k  then x k= ,k  where k  is any arbitrary constant.

Therefore, the solution is ( , , ) ( , 0, ) = (1, 0, 1),x y, z k) = ( k k) =  which is nontrivial.

Hence, the system has infinitely many solutions.

Theorem 2.5: In a homogeneous system with n equations and n unknowns, if 

the rank of the coefficient matrix is less than n then the system has a non-trivial 

(nonzero) solution. In fact, there exists infinitely many solutions.

Proof: Beyond the scope of the book.

Example 15  Solve the following homogeneous system:

    x y+ +y 3 =z 0

    2 = 0x y

3 2 4 = 0x y2 +2y2

First of all, it is clear that it has a trivial (or, zero) solution (0, 0, 0). So the system 

is consistent.

Here number of equations ( ) = 3  and number of unknowns ( ) = 3.

Now if we write the system as AX O=  then A =

1 1 3

2 1 1

3 2 4

,

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟

X

x

y

z

=

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  and O =

0

0

0

,

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  null matrix.

Here, we apply elementary row operations to convert A  to a row-echelon matrix.

A
R R

=

1 1 3

2 1 1

3 2 4

2 3R R2 12R 3 1R3
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ R RR⎯ →⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯ ⎯→→⎯⎯,
1 1 3

0 1 5

0 1 5

−1

−1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

R R3 2R⎯ →3 2⎯⎯ →→

1 1 3

0 1 5

0 0 0

−1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  ( )⎯ →( )⎯⎯ →→2R
1 1 3

0 1 5

0 0 0

2
1 0 2

0 1 5

0 0 0

.1 2
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟⎯ →1 2⎯⎯ →→
−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟R R211 2−

So, the rank of A  = 2  (< 3,  number of unknowns ).

Therefore, nontrivial solution exists.

So the given system is equivalent to 

1 0 2

0 1 5

0 0 0

=

0

0

0

−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟
x

y

z
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i.e., 

x z2 =z 0

y z+ 5 =z 0

Let us choose z k= ,k  then x k  and y k  where k  is any arbitrary constant.

Therefore, the solution is ( , , ) (2 , 5 , 2 ) = (2, 5, 2),x y, z k) = (2 k k, 2− −  which is 

nontrivial.

Hence, the system has infinitely many solutions.

2.12 EXISTENCE OF THE SOLUTION OF A NON-HOMOGENEOUS 

SYSTEM

Let us consider the following non-homogeneous system of m  linear equations with n

unknowns

a x a x bn n11 1 12 2a x 1 1x bbn nx =+ +a x12 2a x + 

a x a x bn n21 1 22 2a x 2 2x bbn nx =+ +a x22 2a x + 
..............................

a x a x bm ma mn n mb1xx 2 2x =+ +a xa 2x + 

If we write the above system of equations in the form of AX B=

then coefficient matrix A

a a a

a a a

a a a

n

n

m m mn

= ,

11 12 1

21 22 2

2ama

…

…

… … … …

…

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

 X

x

x

xn

= ,

1

2x

…

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟⎟
⎠⎠
⎟⎟

 B

b

b

bmb

=

1bb

2bb

…

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

 and

augmented matrix A

a a a b

a a a b

a a a b

n

n

m m mn mb

= .

11 12 1 1bbn

21 22 2 2bbn

2ama

…

…

… … … … …

…

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

Theorem 2.6: A nonhomogeneous system AX B=  is consistent iff rank A = rank 

A.  In other words, solution exists for a nonhomogeneous system AX B=  iff rank 

A = rank A,  otherwise the system has no solution.

Proof: Beyond the scope of the book.

Example 16  Let us consider the system 

  + 2 =y 5

2 5 = 11x y5

3 7 = 17x y7
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Here, the coefficient matrix is A =

1 2

2 5

3 7

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  and the augmented matrix  is 

A =

1 2 5

2 5 11

3 7 17

.

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Now we apply elementary row operations to the augmented matrix A

A
R R

=

1 2 5

2 5 11

3 7 17

2 3R R2 12R 3 1R3
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ R RR⎯ →⎯⎯⎯⎯⎯⎯⎯⎯ ⎯→→⎯⎯,
1 2 5

0 1 1

0 1 2

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟

R R R R1 2R 3 2R2R R2R
æ Ææææææææ ÆÆ

,

1 0 3

0 1 1

0 0 1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  R R R R1 3R 2 3R3R R3R
æ Æ

1 3 2 3
æ Ææ Æ

,

1 0 0

0 1 0

0 0 1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

So from the above, A  is row equivalent to 

1 0

0 1

0 0

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  and A  is row equivalent to 

1 0 0

0 1 0

0 0 1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟

and therefore rank of A = 2  and rank of A = 3.

Hence rank A  ≠  rank A  and correspondingly, the system is not consistent, i.e., 

the system has no solution.

Theorem 2.7: Consider a nonhomogeneous system AX B=  with m linear equa-

tions and n unknowns which is consistent (i.e., rank A = rank A). Then the follow-

ing cases hold.

 i) The sytem has a unique solution (i.e., only one solution) if rank A = rank 

A n  when m n  or m > .n

ii) The sytem has infinitely many solutions if  a) rank A = rank A n when 

m n  or m n>  and  b) rank A = rank A m when m < .n

Proof: Beyond the scope of the book.

Example 17  Let us consider the system 

    z+ +y = 1

2 2 = 1x y z

x y z+ 2 3y +y = 0
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Here, the coefficient matrix is A =

1 1 1

2 1 2

1 2 3

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟  and

the augmented matrix  is A =

1 1 1 1

2 1 2 1

1 2 3 0

.

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Now we apply elementary row operations to the augmented matrix A.

A
R R

=

1 1 1 1

2 1 2 1

1 2 3 0

2 3R R2 12R 3 1R3
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ R RR⎯ →⎯⎯⎯ ⎯⎯⎯⎯⎯⎯→→⎯⎯ ,
1 1 1 1

0 1 0 1

0 1 2 1

1 0

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

( )−⎯ →⎯⎯ →→2R
1 1 1 1

0 1 0 1

0 1 2 1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  R R R R3 2R 1 2R3R R2R⎯ →⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯ ⎯→→⎯⎯,
1 0 1 0

0 1 0 1

0 0 2 2

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

1

2
3

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎯ →
⎝ ⎠

⎯⎯ →→
R 1 0 1 0

0 1 0 1

0 0 1 1

1 3
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟ ⎯ →1 3⎯⎯ →→R R1 3−
 

1 0 0 1

0 1 0 1

0 0 1 1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

So from the above, A  is row equivalent to 

1 0 0

0 1 0

0 0 1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

and A  is row equivalent to 

1 0 0 1

0 1 0 1

0 0 1 1

.

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

and therefore, rank of A = 3  and rank of A = 3.

Hence, rank A  =  rank A  = 3  (i.e., rank A  =  rank A  =  number of unknowns) 

and according to case (i) of the above theorem, the system is consistent and the system 

has a unique solution.

Now the above system is equivalent to 

1 0 0

0 1 0

0 0 1

=

1

1

1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
x

y

z

i.e.,

x = 1

y = 1

z = 1
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Hence we have the unique solution (1, 1, −1) for the given system.

Example 18  Let us consider the system 

   x y z+ +y = 6

x y z+ 2 3y +y = 14

x y z+ 4 7y +y = 30

Here, the coefficient matrix is A =

1 1 1

1 2 3

1 4 7

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  and

the augmented matrix  is A =

1 1 1 6

1 2 3 14

1 4 7 30

.

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Now we apply elementary row operations to the augmented matrix A

A
R R R R

=

1 1 1 6

1 2 3 14

1 4 7 30

2 1R 3 1R
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟ R R1R⎯ →⎯⎯⎯⎯⎯⎯⎯⎯ →→,
1 1 1 6

0 1 2 8

0 3 6 24

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

R R R R3 2R 1 2R3R R2R⎯ →⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯ ⎯→→⎯⎯,
1 0 1 2

0 1 2 8

0 0 0 0

.

−1⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

So from the above, A  is row equivalent to 

1 0 1

0 1 2

0 0 0

−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

and A  is row equivalent to 

1 0 1 2

0 1 2 8

0 0 0 0

.

−1⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

and therefore, rank of A = 2  and rank of A = 2.

Hence, rank A  =  rank A  = 2 < 3  (i.e., rank A  =  rank A  <  number of unknowns) 

and according to case (ii) (a) of the above theorem, the system is consistent and the 

system has infinitely many solutions.

Now the above system is equivalent to 

1 0 1

0 1 2

0 0 0

=

2

8

0

−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
x

y

z

i.e.,

x zz = 2−

y z+ = 8
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Let z k= ,k  then x k 2k  and y k 8,kk  where k  is any arbitary constant.

So ( , , ) ( 2, 8, ) = ( 2, 8, 0) (1, 1, 1).x y, z k) = ( k k8,− −2 ) = (k8, −(1,

Hence we have infinitely many solutions for the given system.

Example 19  Let us consider the system 

    x y+ y2 =z+y 2

2 5 3 = 5x y5 +5y5

Here, the coefficient matrix  is A =
1 2 1

2 5 3

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

 and

the augmented matrix  is A =
1 2 1 2

2 5 3 5
.

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

Now we apply elementary row operations to the augmented matrix A

A
R R

=
1 2 1 2

2 5 3 5

22 1R⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
⎯ →2 1⎯⎯ →→ 

1 2 1 2

0 1 1 1

21 2⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
⎯ →1 2⎯⎯ →→R R211 2−

 
1 0 1 0

0 1 1 1
.

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

So from the above, A  is row equivalent to 
1 0 1

0 1 1

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

and A  is row equivalent to 
1 0 1 0

0 1 1 1
.

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

and therefore, rank of A = 2  and rank of A = 2.

Hence, rank A  =  rank A  = 2  (i.e., rank A  =  rank A  ≤  number of equations) 

and according to case (ii) (b) of the above theorem, the system is consistent and the 

system has infinitely many solutions.

Now the above system is equivalent to 
1 0 1

0 1 1
=

0

1

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

x

y

z

i.e.,

x z = 0

y z+ = 1

Let z k= ,k  then x k  and y k 1,kk  where k  is any arbitrary constant.

So ( , , ) ( , 1, ) = (0, 1, 0) (1, 1, 1).x y, z k) = ( 1,1, k(1,+ k

Hence, we have infinitely many solutions for the given system.
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2.13 EIGEN VALUES AND EIGEN VECTORS

2.13.1 Characteristic Polynomial and Characteristic Equation

Let us consider an n n× matrix A.  Then the characteristic polynomial fA( )λ)  is

defined as 

det( ) =

11 12 1

21 22 2

2

A I

a a11 a

a a21 a

a a1 a

n

n

n

n n11 nn

−

−

λ I

λ

λ

λλ

…

…

… … … …

…

where A aij n n= ( ) .n n

It is obvious from the definition that the characteristic polynomial fA( )λ)  is of n th 

degree and is of the form

f b bA
n nb n

nb ,0 1b
1

2
2

λ λb n
0bb λ λbn n1

2bb+ bbbb + +−n
λb n

where b b b bnb0 1b bb bb2 ,, b2b ...,  are constants.

Note: It can be easily shown that the constant term appears in the polynomial (i.e.,

the term bnb ) is equal to det( ).A

The characteristic equation is defined as 

det( ) = = 0.

11 12 1

21 22 2

2

A I

a a11 a

a a21 a

a a1 a

n

n

n

n n11 nn

−

−

λ I

λ

λ

λλ

…

…

… … … …

…

i.e., f b bA
n nb n

nb = 0.0 1b
1

2
2

λ λb n
0bb λ λbn n1

2bb+ bbbb + +−n
λb n

So the degree of the equation is n,  which is same as the order of the matrix A.

Example 20 Let us find the characteristic polynomial and characteristic equa-

tion of the 2 2 matrix A =
1 2

3 5
.

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

Here, characteristic polynomial is

f A IA ) =
1 2

3 5
= 1.2

2
λ λA I

λ

λλ
λ λ62

−
−λ6

It is very important to note that in the polynomial ( 1) is the constant term which

is equal to det A =
1 2

3 5
= 1.

The characteristic equation is fA( ) = 0.λ) i.e., λ λ
2

λλ 1λ = 0.λ

The degree of the equation is 2, which is same as order of the matrix A.
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2.13.2 Cayley–Hamilton Theorem

If A be a square matrix of order n n then A satisfies its own characteristic equation.

From the above theorem, we can say that if the characteristic equation of a square

matrix A  of order n n  is

b b bn = 0,+−

then we have

b A 2 + +− −

where O  is the null matrix of order n.

For example,

In the last example, the chracteristic equation is 1 =

So by Cayley–Hamilton theorem we have I .

2.13.3 Determination of Inverse of a Matrix using Cayley–
Hamilton Theorem

Let us consider a nonsingular square matrix A  of order n n and its chracteristic

equation is b b bn = 0.+

Then by Cayley–Hamilton theorem, we have

b A On
n n

2 ...(1)

Now since A is nonsingular, b A) 0 and so b−1 exists.

So from the above equation (1),

b An 2 + −

A b I0 2

Inb Ab + + )− −−2 = 

So, 

+ +b A )2
 

Example 21 Let us find the characteristic equation of A

2 1 0

0 3 2

1 0 2

and 

using Cayley–Hamilton theorem, find A 1.

The characteristic equation of A is det( ) = 0A In

i.e.,

2 1 0

0 3 2

1 0 2

= 0− −
− −λ

i.e., l4l 10 = 0.+
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By Cayley–Hamilton theorem,

A A I O
3 2

3 3O3 4A
2
A 10 =A

i.e., 3 4 = 103 23 3A33 I= 10-A3

i.e., A A I I
2

3 3I3 4A = 10- 3A( )
i.e., A A I I-A( )È

ÎÎÎ
˘
˚̇
˘̆
˚̊

1

10
3 4A =2

3I3 )˚̊̊̇ =

i.e., A A I-A( )È
ÎÎÎ

˘
˚̇
˘̆
˚̊

1 2
3

1

10
3 4A

A2 =

2 1 0

0 3 2

1 0 2

2 1 0

0 3 2

1 0 2

=

4 5 2

2 9 2

0 1 4

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ ⋅ −
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟ − −2 9

⎛⎛

⎝

⎜
⎛⎛⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟

So, ( 3 4 ) =

4 5 2

2 9 2

0 1 4

6 3 0

0 9 6

3 0 6

4 0 0
2

3A3 -A3 -2 9

Ê

Ë

Á
ÊÊ

Á
ËË

ÁÁ
ˆ

¯

-
-

Ê

Ë

Á
ÊÊ

Á
ËË

ÁÁ
ˆ

¯

- 0 400 0

0 0 4

Ê

Ë

Á
ÊÊ

Á
ËË

ÁÁ
ˆ

¯

=

6 2 2

2 4 4

3 1 6

.

-6

-2

-3

Ê

Ë

Á
ÊÊ

Á
ËË

ÁÁ
ˆ

¯

Hence, A A I-A( )È
ÎÎÎ

˘
˚̇
˘̆
˚̊

-
-
-

Ê

Ë

Á
ÊÊ

Á
ËË

ÁÁ
ˆ

¯

1 2
3

1

10
3 4A =

1

15

6 2 2

2 4 4

3 1 6

.

2.13.4 Eigen Values of a Matrix

Roots of the characteristic equation of a square matrix A are called the eigen values

of A.

Eigen values are also known as characteristic roots.

For example,

let A =
1 3

0 2
.

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

Then the characteristic equation is det( ) = 0.2A I2λ I

i.e., 
1 3

0 2
= 0

−
λ

λλ

i.e., (1 )( ) = 0−λ λ)(2 )−)(2

i.e., λ = 1, 2.

So, 1 and 2 are the eigen values.
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Theorem 2.8: 0 is always an eigen value for a singular matrix.

Proof: Let A be any singular matrix of order n n× and its characteristic equation is 

b b b bn n n
n nb b0 1bb 1

2bb
2

1 = 0.λ λ
n nb1b λ

n
λ λ+n 1

λb nb1bb +b−1

Now since A is singular, b Anb =A 0.de

So, b b bn n n
nb0 1bb 1

2bb
2

1 = 0λ λ
n nb1b λ

n
λ+n 1

λb nb1bb
− b1

−

i.e., λ λ λ λ(λλ ) = 00
1

1
2

2
3

1bλ 1 bλ
3n n

λλ λλ
1 bλ
1 n

λλλ nbλλb1
−λ1b1λλb

Therefore, λ = 0 is an eigen value.

For example,

let A =

1 0 1

2 2 3

0 0 0

.

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Clearly, det A = 0. So, A is singular.

Then the characteristic equation is det( ) = 0.3A I3λ I

i.e.,

1 0 1

2 2 3

0 0

= 0−
−

λ

λ

λλ

i.e., λ λ λ(λλ )(2λλ)(2 ) =λλ 0−λ)(2

i.e., λ = 0, 1, 2.

So, 0 is an eigen value.

Theorem 2.9: The diagonal elements are the eigen values for any diagonal matrix.

Proof: Let us consider an n n× diagonal matrix, A

d

d

dn

=

0 0

0 0

0 0

.

1

2

…

…

… … … …

…

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

Then its characteristic equation is

d

d

dn

1

2

0 0

0 0

0 0

= 0

−
−

−

λ

λ

λλ

…

…

… … … …

…

i.e., ( ) ( ) = 01 2)(d dnλ λ))(d)()()()( λ)…

i.e., λ = 1 2,d d, 2, dn, , .

Hence, the theorem is proved.

For example,

let A =

1 0 0

0 2 0

0 0 3

.

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
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The diagonal elements are 1, 2, and 3.

Then the characteristic equation is det( ) = 0.3A I3λ I

i.e., 

1 0 0

0 2 0

0 0 3

= 0−
−

λ

λ

λλ

i.e., (1 )( )(3 ) = 0− −λ λ)(2 )−)(2 λ)

i.e., λ = 1, 2, 3.

So, the eigen values are 1, 2, and 3.

2.13.5 Eigen Vectors of a Matrix

Let us consider a square matrix A  of order n n× .  Now if an n-dimensional non-null 

vector x^ = ( )x x xn1 2x xx ,2x ,…  satisfies the equation

Ax^= λxλ ^, where λ is any scalar then x^  is called an eigen vector of the matrix A.

Now if Ax^ = λxλ ^ holds, then x^ ( )nλ x^ =O.

This is nothing but a homogeneous system of n equations with n unknowns.

Since the system has a non-null solution,

we have det( ) = 0.A Inλ I

This leads to the conclusion that the scalar λ  is the eigen value corresponding to

the eigen vector x^ .

Theorem 2.10: There exists a unique eigen value corresponding to a eigen vector.

Proof: Beyond the scope of the book.

Theorem 2.11: If x^1 and x^2  are two eigen vectors corresponding to two distinct 

eigen values then x^1 and x
^

2 are independent.

Proof: Beyond the scope of the book.

Example 22 Let us find the eigen values and eigen vectors of the 

matrix A =
4 6

2 8
.

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

The characteristic equation is 
4 6

2 8
= 0

−
λ

λλ

i.e., λ λ
2

λλ 20 = 0+λ

i.e., ( )( 2) = 0λ λ10)(10)(

So, the eigen values are λ = 10  and 2, say λ1 = 10  and λ2 = 2.

Let X
^

1 = 1

2

x

x2

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

 be the eigen vector corresponding to λ1 = 10.
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Then AX
^

1= 1λ X
^

1

i.e.,
4 6

2 8
= 101

2

1

2

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

x

x2

x

x2

i.e.,

4 6 = 101 2 1x6 26 x

2 8 = 101 2 2x8 28 x2

i.e.,

−6 6+ = 01 2x6+ 26+

2 2 = 01 2x x21 22

The above system is equivalent to x x1 2x = 0.

Now if x c2x = ,c  then x c1 = ,c where c is an arbitrary real number.

So the eigen vectors are X
^

1

c

c
c= =

1

1

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

 corresponding to the eigen value

λ1λλ = 10.

Let X
^

2

x

x

1

2x
=

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
 be the eigen vector corresponding to λ2 = 2.

Then AX
^

2=λ2λ X
^

2

i.e., 
4 6

2 8
= 21

2

1

2

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

x

x2

x

x2

i.e., 

4 6 = 21 2 1x6 26 x

2 8 = 21 2 2x8 28 x2

i.e.,

2 6 = 01 2x6 26

2 6 = 01 2x6 26

The above system is equivalent to x1 2x3 =x2x 0.+

Now if x c2x = ,c then x c1 3 ,  where c  is an arbitrary real number.

So the eigen vectors are X
^

2

c

c
c=

3
=

3

1

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

 corresponding to the eigen value 

λ2λλ = 2.

Theorem 2.12: Suppose l be an eigen value of an n n× square matrix A. Then

the following hold:

(1) l is also an eigen value of A
T
.

(2) cl is also an eigen value of cA  for any scalar c.
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(3) lnll is an eigen value of A
n
.

(4) l−1 is an eigen value of A
−1

.

Proof:

(1) Since λ  is an eigen value of an n n× square matrix A,

we have ( ) = =A I A In
T TA n

T TA nλ λ I λ I  {since I In
T

n }

So, det[( ) ] = (det )A I A In
T T

nλ I λ I

i.e., det( ) = (det ).A In
T

nλ λI

Since λ  is an eigen value of an n n×  square matrix A, det( ) = 0.A Inλ I

So, det( ) = 0.A IT
nλ I

This proves the fact that λ is also an eigen value of AT .

(2) Since λ  is an eigen value of an n n× square matrix A, det( ) = 0.A Inλ I

Now det det( ) = det = ( ) = 0.c=n
n

n[ ]( )A( I )n−λ I λ

This proves the fact that cλ  is also an eigen value of cA  for any scalar c.

(3) Let us consider X  be the eigen vector corresponding to the eigen value λ.

Then AX X= .Xλ

So, A X X2 = (A ) ( )AX = ( )λ λX ) = ( λ λ(

i.e., A X X2 2X .X= λ2λ

Therefore λ2λλ is an eigen value of A2 .

Again A X A X A AXAA3 2 2 2 2= (A ) = ( ) = (2 ) = ( )Xλ2 2)X2X 2 λ λ2 (

i.e., A X X3 3X .X= λ3λ

So, λ3λλ  is an eigen value of A3.

Proceeding in the similar manner we have A X Xn nX .X= λnλ

This proves the fact that λnλλ  is an eigen value of An .

(4) Let us consider X  be the eigen vector corresponding to the eigen value λ.

Then AX X= .Xλ

So, A X1 1( )AX = (A−1 )λ

⇒ ( ) = ( )1 1X A= ( X−
λ((

⇒ I X A Xn = ( )1
λ(

⇒ −X A X= ( )1
λ(

⇒ A X− X1 1−X .X= λ
−

λ

This proves the fact that λ−
λλ

1  is an eigen value of A−1.
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Theorem 2.13: For an idempotent matrix, the eigen values are either 0 or 1.

Proof: Let λ  be an idempotent matrix A and X  be an eigen vector corresponding

to λ.

Then we have A A2  and AX X= .Xλ
So, A X( )AX = (A )λ

⇒ A X AX2 = ( )λ(

⇒ AX X= ( )λ λ(

⇒ AX X .X= 2
λ

2

So, λ λ Xλ λλ 2λλλ

⇒ ( )−2
λ λ)−2 X O=

⇒ ( )− = 02
λ λ)−2

⇒ λ λ( 1−λ λ ) = 0

⇒ λ = 0, 1.

This proves the theorem.

The following topic is included as advanced reading for interested students.

2.14 DIAGONALISATION OF A SQUARE MATRIX

2.14.1 Similar Matrices

Any matrix A  of order n is said to be similar to another matrix B of the same order 

if there exists a nonsingular n n×  matrix P such that B P AP= .P AP1−

It is easy to prove that if A  is similar to B then B also is similar to A  and

vice-versa. In this case, we say two matrices A and B  of the same order are similar.

Theorem 2.14: Two similar matrices have the same eigen values.

Proof: Let A  and B are two similar matrices of order n. Then for a n n× nonsingular 

matrix P, we have B P AP= .P AP1−

Now the characteristic polynomial of B  is

det det P AP In( )B In ( )I λ I= 1 ...(1)

Again

P In( )n ( )I P( )I Pn ( )1 1 =( )I P .InλP P−)In
1P λIλ ( )P P =

So using the above result, from (1)

det det( ) 1 1P A1 P P Pn ( )In⎡
⎣
⎡⎡ ⎤

⎦
⎤⎤1

λ I
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= 1det P 1 P( )A In−⎡
⎣
⎡⎡ ⎤

⎦
⎤⎤I

= det det detdet Pdet( )111 det ( )A In−A I

Therefore, 

det det det( )n ( )1P P1 ⋅det ( )A InAλ I

= .det det detdet = det( )n det ( )A In−A ( )A In−I I

Since A and B  have the same characteristic polynomial, they have the same

characteristic equations and correspondingly they have the same eigen values.

Note: The converse of the above theorem is not always true, i.e., the matrices having 

the same eigen values need not be always similar.

Definition: A matrix A  of order n n×  is said to be diagonalisable if and only if A  is 

similar to an n n×  diagonal matrix.

i.e., if D P AP= ,P AP1− where P is an n n× nonsingular matrix and n n×  diagonal 

matrix D is given by 

D

n

=

0 0 0

0 0 0

0 0 0

0 0 0

.

1

2

3

λ

λ

λ

λ

…

…

…

… … … … …

…

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

Since A and P AP1  have the same eigen values and also the eigen values of any 

diagonal matrix are its diagonal elements, we can say that λ λ λ λ1 2λ λλ 3λλ,2λ , , n  are the

distinct eigen values of the matrix A.

Theorem 2.15: A matrix A of order n n×  is said to be diagonalisable if and only

if there exist n eigen vectors of A which are linearly independent.

Proof: Beyond the scope of the book.

Theorem 2.16: If the eigen values of a matrix A of order n n×  are all distinct and

real, then A is diagonalisable.

Proof: Beyond the scope of the book.

2.14.2 Steps for Diagonalisation of any Square Matrix

Here we consider a square matrix A of order 3 3  and which has distinct eigen values.

Step (1) Find all three distinct eigen values of A. Suppose they are λ λ λ1 2λ λλ 3,2λ .

Step (2) Find all three eigen vectors of A corresponding to λ λ λ1 2λ λλ 3,2λ . Suppose

x

x

x

y

y

y

z

z

z

1

2x

3

1

2

3

1

2

3

,y2,

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
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are the eigen vectors corresponding to λ λ λ1 2λ λλ 3,2λ  respectively.

Step (3) Form the nonsingular matrix P

x y z

x y z

x y z

= .
1 1y 1

2 2x yx 2

3 3yx 3

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Step (4) The matrix P AP1 is the diagonal matrix D =

0 0

0 0

0 0

.

1

2

3

λ

λ

λ

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠
⎟⎟

Example 23 Let us show that A =

1 1 2

1 2 1

0 1 1

−
−

−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  is diagonalisable, and 

find P  such that P AP1  is a diagonal matrix.

The characteristic equation is det( ) = 0.3A I3λ I

i.e.,

1 1 2

1 2 1

0 1 1

= 0

−
− −1 2

− −1

λ

λ

λλ

⇒ − −(1 )( 2)( 1) =+ 0λ λ)( λ

⇒ λ = 1, 2, 1.−

So, the eigen values are 1, 2, and −1.

Let X

x

x

x

=
1

2x

3

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  be the eigen vector corresponding to λ = 1.

Then AX X= .Xλ

⇒
−

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
1 1 2

1 2 1

0 1 1

= 1
1

2

3

1

2

3

x

x2

x

x

x2

x

i.e.,

x x x1 2x 3 1x2 =x+ −x2x

− +x + x x1 2x+ 3 2x2 =+x x2x

x x x2 3x x 3=

i.e.,

x2 3x x2 =x3x 0

− + +x x+ x1 2x+ 3 = 0

x2 3x x2 =x3x 0
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So the system is equivalent to

x2 3x x2 =x3x 0

− + +x x+ x1 2x+ 3 = 0

Now if we set x k3 1,k1kk then x k2 1x kk and x k1 1kk ,  where k1  is any arbitrary 

constant.

So the eigen vector corresponding to the eigen value λ = 1  is

3

2 =

3

2

1

1

1

1

1

k1

k1

k1

k1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Similarly, the eigen vectors corresponding to the eigen value λ = 2 and λ = 1 are

k2

1

3

1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  and k3

1

0

1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  respectively, where k2 , k3 are arbitrary constants.

Since all the three eigen values of A are distinct, the eigen vectors are linearly 

independent and correspondingly A is diagonalisable.

So, we choose P =

3 1 1

2 3 0

1 1 1

,

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Also det P = 6 0,≠  so P is nonsingular.

Here adj

T

( )P =

3 2 1

0 2 2

3 2 7

=

3 0 3

2 2 2

1 2 7

−2

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞
T

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
−

−
−1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟

So, P−
−

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟1 =
1

6

3 0 3

2 2 2

1 2− 7

.

Now

P AP

−
−
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ ⋅
−

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ ⋅1 =
1

6

3 0 3

2 2 2

1 2− 7

1 1 2

1 2 1

0 1 1

3 1 1

2 3 0

1 11 111

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

=

1 0 0

0 2 0

0 0 1

=

−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ D

where D =

1 0 0

0 2 0

0 0 1

,

−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  a diagonal matrix with the eigen values as its diagonal.
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WORKED-OUT EXAMPLES

Example 2.1 Find the rank of the matrix 

− −⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

1 2 1 0

2 4 4 2

0 0 1 5

1 6 3 2

[WBUT-2002, 2008].

Sol. Let A =

1 2 1 0

2 4 4 2

0 0 1 5

1 6 3 2

− −1 2⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

Applying elementary row operations on the matrix A,  we have,

A
R R R

=

1 2 1 0

2 4 4 2

0 0 1 5

1 6 3 2

2 ,R2 12 4 1RR

− −1 2⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞

⎟
⎟

⎟
⎟
⎟
⎠
⎟

R,RRR⎯ →⎯⎯⎯⎯⎯⎯⎯⎯ ⎯→→⎯⎯

− −⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

⎯ →⎯ →⎯ →

1 2 1 0

0 8 2 2

0 0 1 5

0 8 2 2

24 2R R+24 +2

− −⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

( )−
⎯ →⎯⎯ →→

1 2 1 0

0 8 2 2

0 0 1 5

0 0 0 0

1

2
1 2

2
R R

1
11

1 2 1 0

0 4 1 1

0 0 1 5

0 0 0 0

,2 3 1 3

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

3⎯ →⎯⎯⎯ ⎯⎯⎯⎯⎯→→⎯⎯R R2 − R R1 −1

1 2 0 5

0 4 0 4

0 0 1 5

0 0 0 0

1

4
2

2 0⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟ ⎯ →⎯ →⎯ →

R

1 2 0 5

0 1 0 1

0 0 1 5

0 0 0 0

21 2

2 0⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

⎯ →1 2⎯⎯ →→R R211 2+

1 0 0 7

0 1 0 1

0 0 1 5

0 0 0 0

=

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

B
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The row-reduced echelon matrix B has the 3 nonzero rows.

So, rank of B = 3 and hence rank of A = 3.

Example 2.2 Find the rank of the matrix

1 3 4 3

3 9 12 3

1 3 4 1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ [WBUT-2005]

Sol. Let, A =

1 3 4 3

3 9 12 3

1 3 4 1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Applying elementary row operations on the matrix A, we get,

A
R R R

=

1 3 4 3

3 9 12 3

1 3 4 1

3 ,R2 13RR 3 1RR
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ RRR⎯ →⎯⎯⎯⎯⎯⎯⎯⎯ ⎯→→⎯⎯

1 3 4 3

0 0 0 6

0 0 0 2

1

6

1

2
2 3

2

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
− −1

⎯ →6 2⎯⎯ →→
R R

1
2

1 3 4 3

0 0 0 1

0 0 0 1

, 33 2 1 23
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ 2⎯ →⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯ ⎯→→⎯⎯R R3 − R33

1 3 4 0

0 0 0 1

0 0 0 0

=

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ B

The row-reduced echelon matrix B has the 2 nonzero rows.

So, rank of B = 2  and hence rank of A = 2.

Example 2.3 Find the rank of the rectangular matrix 

1 3 2 4 1

0 0 2 2 0

2 6 2 6 2

3 9 1 10 6

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

[WBUT-2006]

Sol. Let A =

1 3 2 4 1

0 0 2 2 0

2 6 2 6 2

3 9 1 10 6

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟
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Applying elementary row operations on the matrix A,  we get,

A
R R R

=

1 3 2 4 1

0 0 2 2 0

2 6 2 6 2

3 9 1 10 6

2 ,R 33 12RR 4 1RR3

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

RRR⎯ →⎯⎯⎯⎯⎯⎯⎯⎯ ⎯→→⎯⎯

1 3 2 4 1

0 0 2 2 0

0 0 2 2 0

0 0 5 2 3

1

2

1

2
2 3,

2
22

−5

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

−⎛
⎝⎝
⎛⎛
⎝⎝

⎞
⎠⎠
⎞
⎠⎯ →⎯⎯⎯⎯⎝⎝ ⎠⎠⎯⎯
R

1
R2 ,

⎛⎛⎛ ⎞⎞

⎯⎯→→⎯⎯⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠

1 3 2 4 1

0 0 1 1 0

0 0 1 1 0

0 0 5 2 3

3 2

−5

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞

⎟
⎟

⎟
⎟
⎟
⎠
⎟

⎯ →3 2⎯⎯ →→R R3 −
,

1 3 2 4 1

0 0 1 1 0

0 0 0 0 0

0 0 5 2 3

34

−5

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞

⎟
⎟

⎟
⎟
⎟
⎠
⎟

⎯ →34⎯ →⎯ →R

1 3 2 4 1

0 0 1 1 0

0 0 5 2 3

0 0 0 0 0

, 23 25 1 2

−5

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

⎯ →⎯⎯⎯ ⎯⎯⎯⎯⎯⎯→→⎯⎯R R53 5−55 R R211 2−1 .

1 3 0 2 1

0 0 1 1 0

0 0 0 3 3

0 0 0 0 0

1

3
3

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

⎯ →3⎯ →⎯ →
R

1 3 0 2 1

0 0 1 1 0

0 0 0 1 1

0 0 0 0 0

2 ,1 32 2 3

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

⎯ →⎯⎯⎯⎯⎯⎯⎯ ⎯⎯→→⎯⎯R 21 2−22 R R2 3−2 ,

1 3 0 0 1

0 0 1 0 1

0 0 0 1 1

0 0 0 0 0

=

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

B

The row-reduced echelon matrix B has the 3 nonzero rows.

So, rank of B = 3 and hence rank of A = 3.
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Example 2.4 Using elementary row operations find the inverse of the matrix

A =

1 1 2

2 4 4

3 3 7

.

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟

Sol. Let us apply elementary row operations on the matrix ( )A I| 3

R R R2 1 3 1RR=

1 1 2 1 0 0

2 4 4 0 1 0

3 3 7 0 0 1

2 ,R1R 3( )A I| 3

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ RR1R⎯ →⎯⎯⎯⎯⎯⎯⎯⎯ ⎯→→⎯⎯

1 1 2 1 0 0

0 2 0 2 1 0

0 0 1 3 0 1

1

2
2−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟
⎯ →2⎯ →⎯ →

R

1 1 2 1 0 0

0 1 0 1
1

2
0

0 0 1 3 0 1

1 2

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞

⎟
⎟

⎟
⎟
⎟
⎠
⎟

⎯ →1 2⎯⎯ →→R R1 −

1 0 2 2
1

2
0

0 1 0 1
1

2
0

0 0 1 3 0 1

21 32

−

−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

⎯ →1 3⎯⎯ →→R R211 32−

1 0 0 8
1

2
2

0 1 0 1
1

2
0

0 0 1 3 0 1

=

−
−

−

−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎠⎠

⎟⎟
( )3

1
3

Therefore,

A−

−
−

−

−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

1 =

8
1

2
2

1
1

2
0

3 0 1



  2.33  Matrix II 

Example 2.5 Solve the system of equations by matrix inversion method:

x y z+ −y = 6

2 3 = 1x y3 z+3y3

2 4 2 = 1x y4 +4y4

Sol. The above system of equations can be written as AX B=

i.e., 

1 1 1

2 3 1

2 4 2

=

6

1

1

−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
x

y

z

Therefore,

A X

x

y

z

B=

1 1 1

2 3 1

2 4 2

, =X =

6

1

1

3

−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟and

So,

det A =

1 1 1

2 3 1

2 4 2

= 2 0

−
− ≠2

Since det A ≠ 0, A−1  exists, and the system has a unique solution X A B= .A B1−

Now,

adj A =

3 1

4 2

2 1

2 2

2 3

2 4

1 1

4 2

1 1

2 2

1 1

2 4

1 1

3 1

1 1

2 1

1 1

2 3

−
−

−

−
−

−

−
−

⎛⎛

⎝

⎜
⎛⎛⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎠⎠
⎟⎟

T

=

2 2 2

2 4 6

2 3 5

−2 22

−2 −

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

T

=

2 2 2

2 4 3

2 6 5

− −2 2

− −2 4

− −2 6

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Now,

A
A

A

− −
− −
− −
− −

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

1 = =
1

2

2 2 2

2 4 3

2 6 5

=

1 1− 1

1 2−
3

2

1 3−
5

2

adj

det
⎜⎜
⎜⎜⎜⎜

⎜
⎜⎜⎜⎜

⎜
⎜⎜

⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎠⎠
⎟⎟
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Therefore,

X A B1−

x

y

z

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎠⎠
⎟⎟

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟=

1 1− 1

1 2−
3

2

1 3−
5

2

6

1

1

=

6

11

2
1111

2

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎠⎠
⎟⎟

Therefore, the solution of the system of equations is

x y= 6; =y
11

2
; =z

11

2
.

Example 2.6 If A B=

1 2 1

1 4 1

3 0 3

=

2 1 1

1 1 0

2 1 1

,

−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟and show that AB I= 6 .3

Utilize this result to solve the following system of equations

2 = 5x y

x y = 0

2 = 1x y [WBUT-2009].

Sol. Here,

AB =

1 2 1

1 4 1

3 0 3

2 1 1

1 1 0

2 1 1−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

=

2 2 2 1 2 1 1 1

2 4 2 1 4 1 1 1

6 6 3 3 3 3

22 +2 −
+4 + 4

6 3

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

=

6 0 0

0 6 0

0 0 6

= 6

1 0 0

0 1 0

0 0 1

= 6 3

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ I3

So, the first part is proved.

Now, to solve the system

2 = 5x y

x y = 0

2 = 1x y
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first we write the system in the following form

2 1 1

1 1 0

2 1 1

=

5

0

1−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
x

y

z

i.e., = C ...(1)

where,

B X

x

y

z

C=

2 1 1

1 1 0

2 1 1

, =X =

5

0

1−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟and

Now from the above relation AB I= 6 ,3  we have

1

6
= 3A B I3

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠⎠

So, from the definition of inverse, we conclude that B−1  exists and it is given by

B A1 1

6

B−

−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟1 =
1

6

1 2 1

1 4− 1

3 0 3

.

Since B−1 exists, the solution of the system (1) is given by

X B C1−

i.e., =
1

6

1 2 1

1 4 1

3 0 3

5

0

1

x

y

z

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎞

⎠

⎟
⎞⎞

⎟
⎠⎠ −

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

=
1

6

6

6

12

=

1

1

2

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Hence, the solution of the given system is

x y z= 1, =y 1, = 2.

Example 2.7 Solve by Cramer’s rule

2 = 3x y

3 2 = 5y z2

−2 =+ 4x+ [WBUT-2008]
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Sol. If we write the above equations in the form AX B=  then

the coefficient matrix A =

2 1 0

0 3 2

1 0 2

,−
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ X

x

y

z

=

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟  and B =

3

5

4

.

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

The determinant of the coefficient matrix is

det A =

2 1 0

0 3 2

1 0 2

= 10 0−
−

≠1010

Therefore, the system of equations is consistent and the system has a unique 

solution.

Now

det A1AA =

3 1 0

5 3 2

4 0 2

= 20−
−

det A2A =

2 3 0

0 5 2

1 4 2

= 10−
−

det A3AA =

2 1 3

0 3 5

1 0 4

= 10

So, the solution of the system of equations by Cramer’s rule is given by

x
A

A
= =

20

10
= 11AAdet

det

−
−

y
A

A
= =

10

10
= 12Adet

det

−
−

z
A

A
= =

10

10
= 1.3AAdet

det −

Example 2.8 Solve by Cramer’s rule

3 = 4x y

x y− +y 2 =z 6

x y+ y −2 =z−y 3 [WBUT-2009]
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Sol. If we write the above equations in the form AX B= then

the coefficient matrix A =

3 1 1

1 1 2

1 2 1

,

−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟ X

x

y

z

=

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ and B =

4

6

3

.

−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

The determinant of the coefficient matrix is 

det A =

3 1 1

1 1 2

1 2 1

= 3 0

−
− ≠3

Therefore, the system of equations is consistent and the system has a unique

solution.

Now,

det A1AA =

4 1 1

6 1 2

3 2 1

= 3

− −3 2

det A2A =

3 4 1

1 6 2

1 3 1

= 3

−3

det A3AA =

3 1 4

1 1 6

1 2 3

= 6

−

So, by Cramer’s rule, the solution of the system is given by

x
A

A
= =

3

3
= 11AAdet

det

−
−

y
A

A
= =

3

3
= 12Adet

det −

z
A

A
= =

6

3
= 2.3AAdet

det

−
−

Example 2.9 Investigate for what value of λ  and μ  the following equations

x y z+ +y = 6

x y z+ 2 3y +y = 10

x y+ y2 +y λ μ=z

have i) no solution, ii) a unique solution, and iii) an infinite number of solutions.

[WBUT-2004]
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Sol. If we write the above equations in the form AX B=  then the coefficient 

matrix A =

1 1 1

1 2 3

1 2

,

λ

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟ X

x

y

z

=

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ and B =

6

10 .

μ

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

The determinant of the coefficient matrix is

det A =

1 1 1

1 2 3

1 2 λλ

= 1(2 ) ( 3) 1(2 2)λ λ6) 1(6) − +3)

= 3λ

Now,

det A1AA =

6 1 1

10 2 3

μ λλ2

= 6(2 ) ( 3 ) 1(20 2 )λ λ6) 1(10 μ μ) 1(20 26) − +3 ))

= 2 16λ μ −μ

det A2A =

1 6 1

1 10 3

1 μ λλ

= 1(10 ) 6( 10)λ μ3 ) λ μ3) 1()μ3 3)3) −

= 4 8λ μ22

det A3AA =

1 1 6

1 2 10

1 2 μ

= 1(2 20) 1( 10)μ μ20) 1(20) −

= 10μ

[Note: The following cases will be discussed according to the observations of Section 3.8]

Case (i): The system of equations have no solution when det A = 0 = 3⇒ λ and at 

least one of det A1AA , det A2A , det A3AA is nonzero,

i.e., when λ = 3  and at least one of 

2 16 0, 4 8 0, 10 0λ μ λ μ2 μ≠ 0, 4λ + ≠8 − ≠10

i.e., when λ = 3  and μ ≠ 10.
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Case (ii): The system of equations have a unique solution when det A ≠ 0,

i.e., when λ ≠ 3.

Case (iii): The system of equations have an infinite number of solutions when

det det det detA A Adet= 0 = 3 = det = 01 2detAA = det 3AA⇒ λ and

i.e., when λ = 3 and 2 16 = 0, 4 8 = 0, 10 = 0λ μ λ μ2 μ+μ2 −

i.e., when λ = 3 and μ = 10.

Example 2.10 Determine the nature of the solution without solving the 

homogeneous system of equations:

x y+ +y 3 =z 0

2 = 0x y

3 2 4 = 0x y2 +2y2

Sol. The determinant of the coefficient matrix A is det A =

1 1 3

2 1 1

3 2 4

= 1(4 2) 1(8 3) 3(4 3) = 2 5 3 = 0.− −2) 3)3) − 3) = 2

Since the determinant of the coefficient matrix is zero for the given 

homogeneous system of equations, the system has infinitely many nontrivial

solutions.

Example 2.11 Solve by the consistency of the following system of equations and 

solve if possible

x y z+ +y = 1

2 2 = 2x y z

3 2 3 = 5x y2 +2y2 [WBUT-2006, 2008]

Sol. The system of linear equations can be written in matrix form as AX B=

i.e.,

1 1 1

2 1 2

3 2 3

=

1

2

5

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
x

y

z

The coefficient matrix of the system of equations is

A =

1 1 1

2 1 2

3 2 3

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟



 2.40   Engineering Mathematics-I 

and the augmented matrix is

A =

1 1 1 1

2 1 2 2

3 2 3 5

.

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Applying elementary row operations on the augmented matrix A,  we have,

A
R R R

=

1 1 1 1

2 1 2 2

3 2 3 5

2 ,R 32 12RR 3 1RR3
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ RRR⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯ →→

1 1 1 1

0 1 0 0

0 1 0 2

,3 2 1 2
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ ,2⎯ →⎯⎯⎯⎯⎯⎯⎯⎯ →→R R3 − R R+1

1 0 1 1

0 1 0 0

0 0 0 2

1 ,
1

2
2 3,

2
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
( )1−

⎯ →⎯⎯⎯⎯⎯⎯⎯ →→
R,

1
,

1 0 1 1

0 1 0 0

0 0 0 1

1 3
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟ ⎯ →1 3⎯⎯ →→R R11 3−

1 0 1 0

0 1 0 0

0 0 0 1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Here, rank of A is 3 and rank of A is 2. 

Since rank of A ≠ rank of A, the given system of equations is inconsistent.

In other words, the system does not have any solution.

Example 2.12 For what value of k do the following equations

x y z+ +y = 1

2 4x y z k=

4 10 = 2y z k=  have solutions? Solve them completely in each case.

[WBUT-2003]

Sol. The system of linear equations can be written in matrix form as AX B=

i.e.,

1 1 1

2 1 4

4 1 10

=

1

2

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠
⎟⎟

x

y

z

k

k
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The coefficient matrix is A =

1 1 1

2 1 4

4 1 10

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ and the augmented matrix is 

A k

k

=

1 1 1 1

2 1 4

4 1 10

.
2

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠
⎟⎟

Applying elementary row operations on the augmented matrix A,  we have

A k

k

R R R
=

1 1 1 1

2 1 4

4 1 10

2 ,R 4

2

2 12RR 3 1R
⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠
⎟⎟

RRR⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯ →→

1 1 1 1

0 1 2 2

0 3 6 4

3 ,

2

3 23 1 21 2

3 6

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠
⎟⎟

,3⎯ →⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯ ⎯→→⎯⎯k

k

R 33 −33 R R+11

1 0 3 1

0 1 2 2

0 0 0 3 22

k

kk

k k32

1 2

+k3

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠
⎟⎟

The coefficient matrix is equivalent to the matrix

1 0 3

0 1 2

0 0 0

.

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Therefore, the rank of A is 2.

The system of equations have solutions if rank A = rank A.

The matrix A has rank 2 if and only if k k k2 2k = 0 = 1, 2.k ⇒

For, k = 1, the system of equations becomes

1 0 3

0 1 2

0 0 0

=

0

1

0

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ −
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
x

y

z

The above system is equivalent to

x z+ 3 =z 0

− + −y z+ 2 =z 1

Putting z k= ,k1 we get x k1  and y k 1,1 + where k1 is an arbitrary

constant.

So the solution is ( , , ) ( 3 , 2 1, ).1, 2x y, z k) = ( 3 1,1,2, 23  In this case, the number of 

solutions is infinite.
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For k ,  the system of equations becomes

1 0 3

0 1 2

0 0 0

=

1

0

0

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
x

y

z

The above system is equivalent to 

x z+ 3 =z 1

− +y z+ 2 =z 0

Putting z k= ,k2  we get x k2 and y k ,2  where k2 is an arbitrary

constant.

So the solution is ( , , ) ( 3 , 2 , ).2 2, 2 2x y, z k) = ( 3 k k, 2  In this case also, the number of 

solutions is infinite.

Example 2.13 Determine the values of a  and b  so that the system of equations

2 3 4 = 9x y3 +3y3

x y ay2 =az+y 5

3 4 7 =x y4 z b=+4y4

have i) a unique solution, ii) many solutions, and iii) no solution.

Sol. If we write the system of linear equations in the matrix form as AX B= then 

the coefficient matrix of the system of linear equations is

A a

2 3 4

3 4 7

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

and the augmented matrix is

A a

b

2 3 4 9

5

3 4 7

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

The system of equations have unique solution when the determinant of the 

coefficient matrix is not equal to zero.

det A a

2 3 4

3 4 7

= 2( 14 4 ) 3(7 3 ) 4(4 6) = 91414 + 4(4 −a) 3(7 3−3(7 a
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Therefore, for det A a≠ ⇒ ≠ 9a⇒ ≠  the system of equations have a unique 

solution.

When a = 9,  the augmented matrix becomes

A

b

=

2 3 4 9

1 2 9 5

3 4 7

−
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Applying elementary row operations on the matrix A,  we have

A

b

R
=

2 3 4 9

1 2 9 5

3 4 7

12−
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ ⎯ →12⎯ →⎯ →

1 2 9 5

2 3 4 9

3 4 7

2 , 32 12 3 13
−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ ,2⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯ →→
b

R 22 −22 R R3 13+3

1 2 9 5

0 7 14 1

0 10 20 15

1

7
2−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎯ →
⎝ ⎠

⎯⎯ →→b

R

1 2 9 5

0 1 2
1

7
0 10 20 15

2 , 101 22 3 210−
⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

,2⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯→→⎯⎯

b

R 211 +22 R R1010−3

1 0 13
33

7

0 1 2
1

7

0 0 0 15
10

7

−

+15

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎠⎠

⎟⎟
b

The system of equations is consistent when rank A =  rank A  and this is 

possible for

b − +15
10

7
= 0

i.e., =
95

7
.b

In this case, rank A =  rank A = 2, which is less then the number of unknowns 

(= 3) and the system has infinitely many solutions.

Again, if 

b b− + ≠ ⇒ ≠15
10

7
0

95

7
.
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then rank A = 2 and rank A = 3, i.e., rank A ≠  rank A

and so the system of equations is inconsistent and correspondingly, the system

has no solution.

Summarizing the above, we have

i) the system of equations has a unique solutions when a ≠ 9

ii) the system of equations has infinitely many solutions when a = 9

and b =
95

7

iii) the system of equations has no solution when a = 9  and b ≠
95

7

Example 2.14 Solve the system of equations

x y z u+ 2 3y z+y = 1

2 4 3 = 3x y4 +4y4

3 6 4 2 = 4x y6 z u2+6y6  if possible .

Sol. The coefficient matrix of the system of equations is

A =

1 2 1 3

2 4 3 1

3 6 4 2

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟

and the augmented matrix is

A =

1 2 1 3 1

2 4 3 1 3

3 6 4 2 4

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Applying elemetary row operation on the augmented matrix A, we have 

A
R R R

=

1 2 1 3 1

2 4 3 1 3

3 6 4 2 4

2 ,R 32 12RR 3 1R3
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ RRR⎯ →⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯ ⎯→→⎯⎯

1 2 1 3 1

0 0 1 7 1

0 0 1 7 1

,3 2 1 2
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ 2⎯ →⎯⎯⎯⎯⎯⎯⎯ ⎯→→⎯⎯R R3 − R R1 −1

1 2 0 10 0

0 0 1 7 1

0 0 0 0 0

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟

Here, the equivalent matrix has two nonzero rows and rank A =  rank A = 2.

So the system of equations is consistent.
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Since, rank A = rank A = 2 < Number of unknowns ( = 4 ),

the system of equations has infinitely many solutions. 

The equivalent system of equations becomes

1 2 0 10

0 0 1 7

0 0 0 0

=

0

1

0

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

x

y

z

u

or, 2 10 = 0x y2 u−2y2

z + 7 =u 1

Taking, u k= ,k1 y k ,k2  we have x k k2k ,1 2kk2 z k7 ,k1 where k1 and

k2  are arbitrary constants.

Hence, the solution is given by

( , , ) ( 2 , 1 7 , )1 22 2 1, 1 7 1x y, z k) = (10 1 k k, 2 k k, 1− −2 12 2 1k2

where k1  and k2 are arbitrary constants.

Example 2.15  If A =

2 2 1

1 3 1

1 2 2

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ find all eigen values of A  and obtain all the 

eigen vectors corresponding to its eigen values. [WBUT-2004]

Sol. The characteristic equation of the matrix A is

det( ) = 03A I3λ I

or,

2 2 1

1 3 1

1 2 2

= 0−
−

λ

λ

λλ

or, (2 ){( )(2 ) 2} 2{(2 ) 1} {2 (3 )} = 0− ) 2{(2 − +1} − −(3λ λ){(3 )−){(3 λ) λ) λ)

or, (2 ){ 5 2} 2(1 ) ( 1 ) = 02 −2(1 −(λ λ){6 5−){6 λ
2

λ) λ)

or, (2 )( 5 ) = 02
λ λ)()( 2)( λ λ4) 3 3+ −4)

or, 2 8 4 = 02 3 2
λ λ102

λ λ5λ
3 2

λ λ3 3+λ10 − 4

or, 7 11 5 = 03 2
λ λ73 27 λ+2

λ7 27 −
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or, ( )( 6 5) = 02
λ λ1)( 2

λ1)( +

or, ( )( 5)( 1) = 0λ λ1)( λ1)( −

Therefore, the eigen values are λ = 1, 1, 5.

Let X

x

y

z
1 =

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟ be the eigen vector corresponding to the eigen value λ = 1.

Therefore, we have,

AX X1 1XX= 1⋅

or,

2 2 1

1 3 1

1 2 2

=

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
x

y

z

x

y

z

or, 2 2 =x y z x=+ 22

x y z y+ 3 =y z+y

x y z z+ y2 2+y

or, 2 = 0x y2 z+2y2

x y+ y2 =z+y 0

x y+ y2 =z+y 0

So the above system is equivalent to

x y+ y2 =z+y 0.

Let y k1 and z k2 then x k k1 2k−k1  where k1 and k2 are arbitrary 

constants.

Therefore, the eigen vector corresponding to the eigen value λ = 1  is given 

by

X

x

y

z

k k

k

k
1

1 2k kk k

1

2

= =y

2⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
− k2⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

=

2

0

1

0

1
1 2k k11 2

−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Let X

x

y

z
2 =

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  be the eigen vector corresponding to the eigen value λ = 5.
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Therefore, we have,

AX X2 2X= 5

or,

2 2 1

1 3 1

1 2 2

= 5

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
x

y

z

x

y

z

or,       2 2 = 5x y z x= 5+ 22

x y z y+ 3 =y z+y 5

x y z z+ y2 2+y = 5

or,     3 2 = 0+3x y2+

x yy2 =z+y 0

x y z+ 2 3y −y = 0

Here, the determinant of the coeficient matrix is

Δ =

3 2 1

1 2 1

1 2 3

= 0

−

−

Therefore, the system of homogeneous equations have nontrivial solutions. 

The solutions are

x y z
k

4
=

4
=

4
=

Therefore, the eigen vector corresponding to λ = 5 is

X

x

y

z

k

k

k

k2 = =y

4

4

4

= 4

1

1

1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Example 2.16 Verify that the matrix A =

0 1 2

1 0 3

2 3 0

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  satisfies its own character-

istic equation. If possible, find A−1. [WBUT-2002]

Sol. The characteristic equation of the matrix A is

det( ) = 0A Iλ I

or,

1 2

1 3

2 3

= 0

− −

−

λ

λ

λλ
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⇒ − +λ λ λ λ( 9) 1− +λ λλ ( 6) 2(3− − +λ 2 )λλ = 02
λλ

⇒ −λ λ+ λ λ+3
λλ −λ λ − + = 0

⇒ −λ λ+3
λλ = 0

⇒ −λ λ−3
λ = 01

Now,

A2 =

0 1 2

1 0 3

2 3 0

0 1 2

1 0 3

2 3 0

=

3 6 3

6 8 2

3 2 13

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟

A A A3 2A =A A

3 6 3

6 8 2

3 2 13

0 1 2

1 0 3

2 3 0

−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

=

0 12 24

12 0 36

24 36 0

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

A A3 =

0 12 24

12 0 36

24 36 0

12

0 1 2

1 0 3

2 3 0

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟ −
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

=

0 0 0

0 0 0

0 0 0

=

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ O

Since we haveA A O3 = ,O  the matrixA satifies its characteristic equation (1).

Again from (1), we have λ λ(λλ 12) = 02
λ − which implies λ = 0  is an eigen-

value, i.e., the matrix A is singular.

Therefore, A−1 does not exist.

Example 2.17 If A =

1 0 2

0 1 1

0 1 0

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  then verify that A satisfies its own characteristic

equation. Hence, find A−1 and A9. [WBUT-2007, 2008]

Sol. The characteristic equation of the matrix A  is

det( ) = 0A Iλ I
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or,

1 0 2

0 1 1

0 1

= 0−1

−

λ

λ

λλ

or, 2 1 = 0.3
λ λ23 +λ2

Now

A2 =

1 0 2

0 1 1

0 1 0

1 0 2

0 1 1

0 1 0

=

1 2 2

0 2 1

0 1 1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ −
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟⎟
⎠⎠⎠⎠

⎟⎟⎟⎟

A A A3 2A =A A

1 2 2

0 2 1

0 1 1

1 0 2

0 1 1

0 1 0

=

1 0 4

0 3 2

0 2 1

−
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
−

⎛

⎝

⎜⎜
⎛⎛⎛⎛

⎜
⎝⎝

⎜⎜⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Therefore,

A A I3 +A

=

1 0 4

0 3 2

0 2 1

2

1 0 2

0 1 1

0 1 0

1 0 0

0 1 0

0 0 1−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟ 0− 2

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ +
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

=

0 0 0

0 0 0

0 0 0

=

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ O

Since 

A A I O3 A IA ...(1)

the matrix A satisfies its own characteristic equation.

Now, from (1), we have

A A I O3 A IA

or, ( 2 )2A( I) =− 2 ) =

i.e., ( 2 )2A( I) =−⎡
⎣

⎤
⎦

So, from the definition of inverse, we have 

A A I A−A −1 2A 2( 2 )I 2

i.e., = 2

1 0 0

0 1 0

0 0 1

1 2 2

0 2 1

0 1 1

1
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟ −0 2−
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

=

1 2 2

0 0 1

0 1 1

−2⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
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Again, from (1), we obtain

A A I O3 A IA

or, =3A A= 23 I−

or, = ( ) = (2 ) = 8 69 3( 3 3 3 2A = (9 ( A A123 12 A I) = 8A + 6A

= 8(2 ) 12 6 = 22 12 92 2A I A6 I A= 22 A I92)I −A6 12

or, = 22

1 0 2

0 1 1

0 1 0

12

1 2 2

0 2 1

0 1 1

9

1 0 0

0 1 0

0 0

9A

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ − −
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟ −
11

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟

=

1 24 20

0 55 34

0 34 21

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Example 2.18 Show that the matrix A =

0 0 1

3 1 0

2 1 4−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟ satisfies the Cayley–

Hamilton theorem. [WBUT-2007]

Sol. The characteristic equation of the matrix is

det( ) = 0A Iλ I

or,

0 1

3 1 0

2 1 4

= 0

−
−

− −2 1 4

λ

λ

λλ

or, ( ){( )(4 )} {3 2(1 )} = 0− +)}− + 2(1λ λ){(1 )−){(1 λ)λ) λ)

or, ( )( 5 ) ( ) = 02− −λ λ)(λ λ)( 2)( λ λ4) (5 2 )4)

or, 5 4 5 = 03 2 − − +4λ λ53 25 λ λ2λ λ2

or, 5 6 5 = 03 2
λ λ53 25 λ+2

λ5 25

Now,

A2 =

0 0 1

3 1 0

2 1 4

0 0 1

3 1 0

2 1 4

=

2 1 4

3 1 3

5 5 14−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟
−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟⎟
⎠⎠⎠⎠

⎟⎟⎟⎟

A A A3 2A =A A

2 1 4

3 1 3

5 5 14

0 0 1

3 1 0

2 1 4

=

5 5 14

3 4 12

13

−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
−
−

− 1911 61

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
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So,

A A I3 2A5 62A 5A2A

=

5 5 14

3 4 12

13 19 61

5

2 1 4

3 1 3

5 5 14

−
−

−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ −
−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟ +
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ −
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟6

0 0 1

3 1 0

2 1 4

5

1 0 0

0 1 0

0 0 1

=

0 0 0

0 0 0

0 0 0

= 0

⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

Therefore, the matrix A  satisfies its own characteristic equation.

Example 2.19 Find the eigen values and corresponding eigen vectors of the

matrix 

1 1 2

2 2 4

3 3 6

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ [WBUT-2008].

Sol. Let A =

1 1 2

2 2 4

3 3 6

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

The characteristic equation of A is

det ( )A II = 0

or

1 1 2

2 2 4

3 3 6

= 0−2

−3 6

λλ

λ

λλ

or, (1 ){( )(6 ) 12} 1{2(6 ) 12} 2{ 6 3(2 )}} = 0−)(6 + +12} −) + −2{ +3(2λ λ){( 2 )−){( − λ) λ) λ)

or, (1 ){ 12} {12 2 12} 2{ 6 6 3 } = 02+ + +12} −2 + −2{ +6λ λ){ 12 4){ 4 λ
2

λ λ}

or, (1 )( 4 ) = 02
λ λ)( 2)()( λ λ) 4

or, {( )( 4) 4} = 0λ λ{(1 ) λ −)(λ λ +

or, { 4 4} = 02
λ λ{ λ λ42−λ2 +4

or, ( 5) = 02
λ λ(2 −

Therefore, the eigen values of the matrix A  are λ = 0, 0, 5.

Let X

x

y

z
1 =

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ be the eigen vector corresponding to the eigen value λ = 0.
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Therefore, we have

AX X= 0 ⋅

or,

1 1 2

2 2 4

3 3 6

=

0

0

0

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
x

y

z

or, 2 = 0y z

2 2 4 = 0x y2 +2y2

3 3 6 = 0x y3 +3y3

The above system is equivalent to 

x y− +y 2 =z 0

Let y k1  and z k= ,k2 then x k k2k1 2kk2  where k1 and k2 are arbitrary

constants.

Therefore, the eigen vector corresponding to the eigen value λ = 0

X

x

y

z

k k

k

k

=y=
1 2k kk k

1

2

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

=

1

0

2

0

1
1 2k1k 211

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎞

⎠

⎟
⎞

⎟
⎠

−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Let X

x

y

z
2 =

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  be the eigen vector corresponding to the eigen value λ = 5.

Therefore, we have

AX X2 2X= 5

or,

1 1 2

2 2 4

3 3 6

= 5

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟
x

y

z

x

y

z

 or,   x y z x− +y 2 =z 5

2 2 4 = 5x y2 z y= 5+2y2

3 3 6 = 5x y3 z= 5+3y3

or, 4 2 = 04 +x y−

2 7 4 = 0x y7 +7y7

3 3 = 0x y3 z+3y3
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This is a homogeneous system and the determinant of the coeficient matrix is

−4 1− 2

2 7− 4

3 3− 1

= 0.

Therefore, the system of homogeneous equations has nontrivial solutions and

the solutions are

x y z
k

10
=

20
=

30
= ,k

where k  is any arbitrary constant.

Therefore the eigen vector corresponding to the eigen value λ = 5

X

x

y

z

k

k

k

k2 = =y

10

20

30

= 10

1

2

3

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Example 2.20 Determine the eigen vectors of A =
5 4

1 2

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

 and then diagonalise 

A with the help of the basis of eigen vectors. [WBUT-2003]

Sol. The characteristic equation of the matrix A is 

det ( )A II = 0

or,
5 4

1 2
= 0

−
λ

λλ

or, (5 )( ) 4 = 0−λ λ)(2 )−)(2

or, 7 6 = 02
λ λ72 +λ7

or, ( )( 6) = 0λ λ1)(1)(

So, the eigen values of the matrix A are λ = 1, 6.

Now let X
x

y1 =
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

be an eigen vector corresponding to the eigen value λ = 1,

then

AX X1 1XX= 1⋅

or,
5 4

1 2
=

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

x

y

x

y

or, 4 4 = 0x y4+

x y+ = 0
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The above system is equivalent to 

x y+ = 0

Taking x k= ,k1  we have y k ,k1  where k1  is any arbitrary constant.

Therefore, the eigen vector corresponding to the eigen value λ = 1

X
x

y

k

k
k1

1

1
1= = =

1

1
.

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠ −

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠ −

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

Again let X
x

y2 =
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

be an eigen vector corresponding to the eigen value

λ = 6,  then

AX X2 2X= 6

or,
5 4

1 2
=

6

6

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

x

y

x

y

or, 4 = 0x y4

x y4 =y 0

The above is equivalent to

x y4 =y 0

Taking y k ,k2 we have x k ,2  where k2 is any arbitrary constant.

Therefore, the eigen vector corresponding to the eigen value λ = 6

X
x

y

k

k
k2

2

2
2= =

4
=

4

1
.

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

Since both the two eigen values of A are distinct, the eigen vectors are linearly 

independent and correspondingly A  is diagonalisable.

So, we choose P =
1 4

1 1
,

−
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

Also, det P = 5 0,≠  so P is nonsingular.

Here, adj ( ) =
1 1

4 1
=

1 4

1 1

T

−
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
T

⎠
⎟
⎞⎞
⎠⎠

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

So, P− ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

1 =
1

5

1 4−
1 1

.

Now 

P AP
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⋅⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⋅
−

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

1 =
1

5

1 4−
1 1

5 4

1 2

1 4

1 1

=
1 0

0 6
=

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

D

where D =
1 0

0 6
,

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

a diagonal matrix with the eigen values as its diagonal.
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EXERCISES

Short and Long Answer Type Questions

1. Find the rank of the following matrices:

(a)

5 4 5

4 5 7

5 7 10

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

[Ans : Rank is 2]

(b)

1 2 1 3

3 1 2 1

2 2 3 2

1 1 1 1

−

1 1

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

[Ans : Rank is 3]

(c)

2 1 0 4

1 3 2 1

1 2 4 3−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

[Ans : Rank is 3]

(d)

0 0 1 2 1

1 3 1 0 3

2 6 4 2 8

3 9 4 2 10

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

[Ans : Rank is 3]

(e)

1 3 4 3

3 9 12 3

1 3 4 1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ [WBUT-2005]

[Ans : Rank is 2]

(f)

6 1 3 8

4 2 6 1

10 3 9 7

16 4 12 15

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

[Ans : Rank is 2]

(g)

0 1 3 1

1 0 1 1

3 1 0 2

1 1 2 0

−3⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

[Ans : Rank is 2]
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(h)

1 1 2 0 4

2 3 1 5 2

1 3 1 0 3

1 7 4 1 1

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

[Ans : Rank is 4]

(i)

3 1 2

6 2 4

3 1 2

− −6 2

− −3 1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

[Ans : Rank is 1]

2. Find all values of μ  for which the rank of the following matrix is 2.

1 2 3 1

2 5 3

1 1 6 1

μ
μ +

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟

[Ans : μ = 1].

3. Using elementary row operations, find the inverse of the matrix

2 0 0

4 3 0

6 4 1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟

Ans :

1

2
0 0

2

3

1

3
0

1

3

4

3
1

−

− −1

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎣⎣

⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎦⎦

⎥⎥

4. Using elementary row operations, find the matrix A  if

A−
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟1 =

3 1− 1

1 2− 3

3 3− 4

.

Ans :

1 1 1

5 9 8

3 6 5

−
−
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥

5. Find the eigen values of the following matrices:

(a)
1 2

5 4−
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠ [Ans : 6, −1 ] 

(b)
5 4

1 2

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠ [Ans : 6, 1].
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6. Find the eigen values of the matrix

−⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

6 0 0 0

0 2− 0 0

0 0 7 0

0 0 0 1

[Ans : −6, −2, 7, 1]

7. Prove that the vector 

2

0

1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  is an eigen vector of the matrix 

3 1 4

0 2 0

0 0 5

.

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟  Mention 

the corresponding eigen value.

[Ans : Eigen value is 5]

8. Prove that the vector 

2

1

2−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ is an eigen vector of the matrix

8 6 2

6 7 4

2 4 3

− −6 7

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

corresponding to the eigen value 3.

9. Verify the Cayley–Hamilton theorem for the following matrices.

a) 

2 1 3

1 3 7

1 0 1

− −1 3

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ b)

2 1 1

2 1 1

2 2 1

−
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ c) 

1 2 4

1 4 8

5 1 8

− −1 4

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

10. If a matrix A  is invertible and its eigen values are λ λ λ1 2λ λλ ,2λ … n  and B A= ,A 1−

show that the eigen values of B are 
1

,
1

, ,
1

.
1 2λ λ

,
1 λn

[WBUT-2006]

11. Find the rank of the matrix

1 3 2 4 1

0 0 2 2 0

2 6 2 6 2

3 9 1 10 6

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

[WBUT-2006]

[Ans : Rank is 3]

12. Find all values of λ  for which the rank of the matrix

λ

λ

λ

λ

1 1 1

1 1λ 1

1 1 1

1 1 1

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

 is less than 4.

Ans : λ = 1,
1

3

−⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

13. Find the rank of the matrix 

a c b a

c a b

b a c

a b c

− ′
− ′

′
− ′ ′ ′

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

0

0

0

 where aa bb cc′ + ′ + ′ = 0.
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14. Solve the following system of equations by matrix inversion method:

  a) = 4x y z

   x y z+ y2 2+y = 5

   3 4 = 6x y z

[Ans : x y z= 1, =y 1, = 1]

 b)      x y z+ +y = 1

        x y z+ 2 3y +y = 16

   x y z+ 3 4y +y = 22

[Ans : x y z= 1, =y 3, = 3 ]

 c)    x y z+ 2 3y +y = 6

     2 4 = 7x y4 z+4y4

   3 2 9 = 14x y2 +2y2

[Ans : x y z= 1, =y 1, = 1]

15. Solve the following system of equations by Cramer’s rule:

 a)        x y z+ −y = 6

     2 3 = 1x y3 z+3y3

   3 4 2 = 1x y4 +4y4 −
[Ans : x y z3 yy 2 = 1 ]

 b)    − + +x y+ z = 2

   2 3 = 4y z

      3 2 6 = 1x y2 −2y2

Ans : x y z
9

7
=y

59

28
, =z

33

28

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

16. Examine the consistency of the following system of equations and if possible, 

solve:

a)  2 = 1x y

   x y+ +y −2 =z 1

      3 2 = 4x y2 z−2y2

[Ans : Consistent and unique solution x y z= 1, =y 0, = 1 ]

 b)   4 2 6 = 8x y2 +2y2

         x y+ −y −3 =z 1

   15 3 9 = 21x y3 z33

[Ans : Consistent and infinitely many solutions x y k k= 1, =y 3 2, =k z ]
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c)    x y− +y 2 =z 4

   3 4 = 6y z

       x y z+ +y = 2

[Ans : Inconsistent]

 d)      x y z4 7y +y = 8

     3 8 2 = 6x y8 −8y8

   7 8 26 = 31x y8 z+8y8

[Ans : Inconsistent]

 e)     x y4 =y z−y 3

    3 2 = 7x y z

    2 3 = 10x y3 z+3y3

Ans : Consistent and unique solution x y z
62

17
=y

5

17
, =z

31

17

−⎡
⎣⎣⎢
⎡⎡
⎣⎣⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

f)      2 4 = 4x y z

          x y3 =y z−y 5

     3 2 2 = 1x y2 +2y2 −
    − − −8 3+ 8 = 2x y3+

[Ans : Consistent and unique solution x y z= 1, =y 2, = 0 ]

17. Examine whether the following homogeneous system of equations have nontrivial 

solutions and find them if they exist.

 a)  x y z+ 2 3y +y = 0

   2 3 = 0x y3 z+3y3

     x y+ +y 2 =z 0

[Ans : Only trivial solution]

 b)    x y z+ 2 3y +y = 0

   3 4 5 = 0x y4 +4y4

   2 3 4 = 0x y3 +3y3

[Ans : Nontrivial solution x k y k z k= ,k , =z ]

 c)    x y wy2 =z w+y 0

   x y z w+ −y 2 3z + = 0

      4 5 8 = 0x y z 8+

Ans :  Nontrivial solution x k k y k k z k w k
5

3
=y =y

4

3
,1 kk

3
1 2k k

3
1 2w kkk− k =yk k w1 w

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎦⎥
⎤⎤
⎦⎦⎦⎦
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18. Find the values of a  and b  so that the following system of equations have

 (i) a unique solution, ii) no solution, and iii) infinitely many solutions.

 a)   2 3 5 = 9x y3 +3y3

   7 3 2 = 8x y3 −3y3

    2 3 =x y3 az b+3y3

[Ans: i) Unique solution for a b k≠ 5, =  (any constant) ii) No solution for 

a b= 5, 9b  iii) Infinitely many solutions for a b= 5, =b 9 ]

 b)        x y z b+ +y
    2 3 1x y z b=

   5 2 = 2x y2 az b+2y2

[Ans : i) unique solution for a b k≠ , =  (any constant) ii) no solution for 

a b= 8, 3, 1b 3,3,  iii) infinitely many solutions for a b= 8, =b 3, 1− ]

 c)  3 2x y2 z b=+2y2

   5 8 9 = 3x y8 +8y8

   2 = 1x y az −

Ans : i) Unique solution for any constanty

ii  No so

a b k≠ ( ), =

) lution forll

iii Infinitely my any solutions for

a b

a

,
1

3

= 3

≠b,

) ,,
1

3
b =

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

19. Find the eigen values and corresponding eigen vectors of the following matrices:

a)  

2 1 1

1 2 1

1 1 2

− −1 2

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Ans :

for

Eigen values

Eigen vectors

:

:

λ

λ

= 1, 1, 4.,

= 1,

1

0

1
1k1

−

⎛

⎝

⎜
⎛⎛

⎜⎜
⎝⎝⎝⎝

⎜⎜⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ +
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ −
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥k k2 3

1

1

0

= 1,

1

1

1

and for λ

b)  

2 1 1

2 3 4

1 1 2−1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Ans :

 for

Eigen values

Eigen v ecto s

:

:

λ

λ

= 1, 1, 3,

= 1,

1

1

0
1 −

⎛

⎝

⎜
⎛⎛

k1 ⎜⎜
⎝⎝⎝⎝

⎜⎜⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟ −
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
−
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

, = 1,

0

1

1

, = 3,

2

3

1
2 3for forλ λk2 k3

⎢⎢⎣⎣⎣⎣
⎢⎢⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥
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20. Verify Cayley–Hamilton theorem for the matrix A =

2 1 1

1 2 1

1 1 2

− −1 2

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  and find A−1

and A4.

21. If A =

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

,

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

 by Cayley–Hamilton theorem show that A A1 3A= .A

22. Find the inverse of the following matrices by finding the characteristic equation 

(using Cayley–Hamilton theorem):

  (a)
2 1

1 2−
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

Ans : A−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

1 =

2

3

1

3
1

3

2

3

  (b)

1 2 1

1 0 3

2 1 1

−
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Ans : A−

−

−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎣⎣

⎢⎢

⎤

⎦

⎥
⎤⎤

1 =

1

6

1

6

1

3
7

18

1

18

2

9
1

9

5

18

1

9

⎥⎥
⎥⎥⎥⎥

⎥
⎥⎥⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎦⎦

⎥⎥

  (c)

1 2 1

1 1 1

2 3 1−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ [WBUT-2005] 

Ans : A−

−

−

−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎣⎣

⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥1 =

2

9

5

9

1

3
1

3

1

3
0

5

9

1

9

1

3

⎥⎥
⎥⎥⎥⎥

⎥
⎦⎦

⎥⎥⎥⎥

  (d)

1 2 2

1 3 0

0 2 1

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Ans : A−
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥1 =

3 2 6

1 1 2

2 2 5
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23. Determine eigen vectors of A  and then diagonalise A  with the help of the basis 

of eigen vectors:

  (a) A =
2 0

2 3

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

  (b) A =
5 4

1 2

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

24. Find the matrices P  so that P AP1  is a diagonal matrix (i.e., find P  which 

diagonalises the following matrices):

  (i) A =

1 2 2

1 2 1

1 1 4

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Ans : P =

1 1 2

1 0 1

0 0 1

−
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥

  (ii) A =

4 2 2

2 4 2

2 2 4

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Ans : P =

1 1 0

1 0 1

1 1 111

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥

  (iii) A =

1 2 3

0 1 0

2 1 2

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟

Ans : P =

1 3 1

0 0 6

1 2 4

−
⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥

Multiple-Choice Questions

1. The rank of the matrix A =
2 1

3 4

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

 is

 a) 2 b) 3 c) 4 d) none of these

 2. For what value of λ  does the system of equations x y z+ +y = 1; x y+ y2 =z−y 2;

5 7 = 4x y7 z+7y7 λ  have a unique solution?

a) λ ≠ 2  b) λ ≠ 1  c) λ ≠ 3  d) λ ≠ 4
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3. The value of a  for which rank of the matrix 

2 0 1

5 3

0 3 1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  is less than 3?

 a) 
3

4
 b) 

3

5
 c) 

3

2
 d) 1.

 4. The value of k  for which the rank of the matrix 

1 1 1

1 1

10 1 0

k

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  is 2 is

 a) 1 b) 0 c) −1  d) 2

 5. The system of equations x y+ y2 =z−y 2;  4 8 4 = 8x y8 −8y8  has

   a) infinite many solutions  b) no solution

   c) a unique solution   d) none of these

 6. The rank of the matrix 
1

6 6 3

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

 is

 a) 2 b) 3 c) 1 d) none of these

 7. The equation x y = 0  has

   a) no solution  b) exactly one solution

   c) exactly two solutions d) infinite number of solutions

 8. All the eigen values of any nilpotent matrix are

 a) 0 b) 1 c) 2 d) none of these

 9. The sum of the eigen values of A =

1 1 3

1 5 1

3 1 1

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  is 

 a) 6 b) 5 c) 4 d) 7

[Hint : The trace of any square matrix is equal to the sum of the eigen values.]

10. The system of equations x y+ −y 3 =z 0;  3 = 0;y  2 4 = 0x y z  has

   a) a nontrivial solution  b) a trivial solution

   c) no solution  d) none of these

11. The eigen values of A =

3 0 0

0 2 0

0 0 4

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞

⎟
⎠

⎟  are 

 a) 3, 2, 4 b) 5, 4, 6 c) 4, 3, 5 d) 7, 2, 9

12. The eigen values of A =
2 2

2 2

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

 are 

 a) 2, 4 b) 0, 4 c) 0, 2 d) 0, 0.
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13. One of the eigen values of A =

3 2 2

2 1 3

3 2 2

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  is 

 a) 16 b) 15 c) 0 d) 14.

14. λ  be an eigen value of an n n×  square matrix A  then λ−
λλ

1  is an eigen value of 

 a) A2  b) 2A  c) AT  d) A−1

15. λ  be an eigen value of an n n×  square matrix A  then 2λ  is an eigen value of 

 a) A2  b) 2A  c) AT  d) A−1

16. λ  be an eigen value of an n n×  square matrix A,  then λ  is also an eigen value of 

 a) A2  b) 2A  c) AT  d) A−1

17. λ  be an eigen value of an n n×  square matrix A  then λ2λ  is an eigen value of 

 a) A2  b) 2A  c) AT  d) A−1

18. If the sum of the eigen values of the matrix A a

4 0 9

0a

7 0 2

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟  is 7, then a  is 

 a) 7 b) 1 c) 8 d) 2

19. If trace of a 3 3  matrix is 12, and two of its eigen values are 4, 6 then the third 

eigen value is 

 a) 2 b) 1 c) 8 d) 3

20. If A A2  then its eigen values are either

 a) 0 or 2 b) 0 or 1 c) 2 or 1 d) none of these.

Answers:

    1. (a)   2. (b)   3. (c)   4. (a)   5. (a)   6. (c)   7. (d)   8. (a) 

   9. (a) 10. (a) 11. (a) 12. (b) 13. (c) 14. (d) 15. (b) 16. (c)

 17. (a) 18. (b) 19. (a) 20. (b)



3
Successive  

Differentiation

3.1 INTRODUCTION

Suppose we have a differentiable function y f x= (f )  defined over an interval I .  Then 

its first-order derivative is denoted by 

dy

dx
f x

d

dx
y y, f ), , y 1.′ ( )f x( )x ′

Now suppose the first-order derivative is again differentiable on a certain interval. 

Then the second-order derivative is denoted by  

d y

dx
f x

d

dx
y y

2

2

2

2 2., f ), , y′′ ( )f x( )x ′′

In this way we can find the higher-order derivatives, differentiating the functions 

again and again, if they exist.

Basically, this leads to the formation of the present chapter named as successive 

differentiation.

3.2 SUCCESSIVE DIFFERENTIATION

Successive differentiation of a function means differentiation of a function succes-

sively or repeatedly.

Suppose any function is given and you are to find its 100-th derivative, if it exists. 

Now the question is whether you can find it without having prior knowledge of the 

1st, 2nd, ..., 99-th derivatives of the function. This means when you are finding deriva-

tives of higher orders, you should know all of its previous-order derivatives. This is a 

very laborious and time-consuming job.

CHAPTER
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So, to meet the above difficulty, if we can find a general formula for the n-th order 

derivative of a particular function, if it exists, then by putting simply the value of n,

we can get the derivative of any order as we require.

Keeping similarity with the notations as before, we denote the n-th order derivative 

of a function y f x= (f )  by

d y

dx
f x

d

dx
y y

n

n

n

n n, f ), , y( )n ( )n
.( )f x)x

3.3 n -TH DERIVATIVE OF SOME IMPORTANT FUNCTIONS

(a) Let us consider y ax b
m

) ,
m

 m is any number.

 Then 

 y m ax b am
1

1= (m )+ax(

y m m am
2

2 2= (m ) ( )ax b ⋅m 2)b −

  = ( 2 1) ( ) 2 2m( ax b a) 2m− 2 +(ax

y m m ax b am
3

3 3= (m 1))( 2) (m )m +ax(

  = ( 1)( 3 ) ( ) 3 3m( m ax b3 1) ( am−1)( 1) ⋅) 3m−

  ..................................

y m m m n an
m n n= (m 1)( 2) (m 1) ( )ax b ,m −n ⋅ (ax

if is any number.n m< ,m

Especially when m  is any +ve  integer and n < ,m

y m m m n an
m n n= (m 1))( 2) (m 1) ( )ax bm −n ⋅ (ax

  =
!

( )!
( ) .

m
a (n m n⋅a −

When n m= ,m

y m m an
m m m= (m 1))( 2) 1m ( )ax bm ⋅(ax

  = ! a! m

  = ! .a! n

When n m>  and m  is any +ve  integer,

 yn = 0.

Example 1  If y x(2 3) ,x 6  let us find y4 ,  y6  and y7 .

Here, m = 6,  a +ve  integer.

In the first case, n = 4.  So n < .m  Then

y
m

an
n m n=

!

( )m n !
( )ax b .⋅a −
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y4
4 6 4=

6!

(6 4)!
2 (4 2 3)x

−
⋅2 −

=
6!

2!
2 (2 3)4 2⋅2

In the second case, n = 6.  So n m= .m  Then

y n an
n= !n .⋅

y6
6= 6! 2 .

In the third case, n = 7.  So n > .m  Then 

y7 = 0.

Example 2  If y x ,x 2−  let us find y4 .

Here, m = 2,  a −ve  integer and n = 4.

y m m m n xn
m n= (m 1))( 2) (m 1)m −n ⋅

y x4
2 4= ( 2)( 2 1)( 2 2)( 2 3)−2)( −1)( − 2)( − −2

= 120 6⋅ −x

Example 3  If y x ,x

3

4  let us find y3.

Here, m =
3

4
,  a fraction and n = 3.

y m m m n xn
m n= (m 1))( 2) (m 1)m −n ⋅

y x4

3

4
3

=
3

4

3

4
1

3

4
2

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−

(b) Let us consider y
ax b

ax b=
1

= ( )
1

+
+ −−−−

Then

y ax b a1
2( )ax b ⋅2)b −

  = ( 1) ( ) 1 1− ⋅1) b a) 1 1 ⋅) 1 1−1

y ax b a2
3 2

a= ( 1)( 2) ( )−1)1 ( 22 ax( ⋅−33

  = ( 1) 2! ( )2 2 1 2− ⋅1) ⋅ ( b a) 2 1 ⋅− −2

y b a3
4 3

a= ( 1)( 2)( 3) ( )ax b− − −1)1 ( 2)(2 33 ⋅(ax ⋅−44

  = ( 1) 3! ( )3 3 1 3− ⋅1) ⋅ ( b a) 3 1 ⋅− −3

  ..................................

y n ax b an
n n n( 1) ! ( ) 1+ax(

  =
( 1) !

( )
.

1

1)1)
+

n n!
n

a!⋅
b
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Example 4  If y =
1

3 5x
then

y
x

n

n n

n
=

( 1) !nn 3

(3 5) 1

1)1) ⋅
+ +

y
x

4

4 4

5
=

( 1) 4! 34

(3 5)
.

1)1)

+

Example 5  If y =
1

2 3x
then

y
x

n

n n

n
=

( 1) !nn 2

(2 3) 1

1)1) ⋅
− +

y
x

3

3 3

4
=

( 1) 3! 23

(2 3)
.

1)1)

−

(c) Let us consider y ax b)

Then

y
ax b

a ax b a1
1=

1
( )

+
ax⋅a ⋅−

y ax b a2
2 2( )ax b ⋅2)b −

  = ( 1) 1! ( ) 2 2− ⋅1) ⋅ ( b a) 2 ⋅−

  = ( 1) (2 1)! ( )2 1 2 2− ⋅1) −1)! +ax b)b a) 2 ⋅) 2−

y ax b a3
3 3= ( 1)( 2) ( )−1)( ax( ⋅−

  = ( 1) 2! ( )2 3 3− ⋅1) ⋅ ( b a) 3 ⋅−

  = ( 1) (3 1)! ( )3 1 3 3− ⋅1) −1)! +ax b)b a) 3 ⋅) 3−

  ..................................

y an
n n n= ( 1) ( 1)!n ( )ax b1− ⋅1) ⋅1)! b−

  =
( 1) ( 1)!

( )
.

11)1)n n

n

n a1)!− ⋅1)!

b

Alternative Method

y ax baa( )

so, y
ax b

a1 =
1

+
⋅
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y n yn ( 1) 1− th derivative of

= ( 1)
1

n
ax b

a−
+

⋅⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

th derivative of

= ( 1)
1

n(
ax b

−n(
+

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬th derivative of

i.e.,
( 1) ( 1)!

( )

1 1

y a=
n a1)!

n

n n

n
⋅

1)1) 1)! −

    =
( 1) ( 1)!

( )

11)1)n n

n

n a1)!− ⋅1)!

Example 6  If y
x

x
=

2 1x

3

log

then

y x x3 (2 1)log lx og +x(2log

y
n

x x
n

n

n

n n

n
= 3

( 1) (n 1)! ( 1) ( 1)!n 2

(2 1)

1 1

⋅
1)1) −

−
− ⋅1) ⋅1)!

+

−

y
x x

6

6 1

6

6 1 6

6
= 3

( 1) (6 1 6 1)! ( 1) (6 1 6 1)! 2

(2 1)
⋅

1)1)
−

1)1) ⋅1)!

+

= 5!
2

(2 1)

3
.

6

6 6x x1)+
−

⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟

(d) Let us consider y e
( )ax b

Then

y e a1
( )ax b ⋅

y e a2
( )ax b 2⋅

y e a3
( )ax b 3⋅

   ............

y e an
n( )ax b ⋅

Example 7  If y e x(2 3)+  then

y en
x n= 2e x(2 3)+

y e x
5

(2 3) 5= 2e x(2 3)+

= 2 .5 (2 3)⋅e



 3.6   Engineering Mathematics-I 

(e) Let us consider y ax b)

Then

  y ax b a1 )ax ⋅

  =
2

a ax b
⎛
⎝⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

cos
π

y a ax b2
2

2
⋅a + +ax

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

sin
π

  = 2
2

2a ax b⋅2 + ax⎛
⎝⎝⎝

⎞
⎠
⎟
⎞
⎠

cos
π

y a ax b3
3= 2a3

2
a ⋅ + +⎛

⎝⎝⎝
⎞
⎠
⎟
⎞⎞
⎠⎠

si
π

  = 3
2

3 ax b⋅3 + ax⎛
⎝⎝⎝

⎞
⎠
⎟
⎞
⎠

cos
π

   .....................

y a n ax baan
n

2
.n⋅ + axaa⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

cos
π

Example 8  If y x(3 4),x2  find yn  and y4 .

Here,

y x(3 4)x2

=
1

2
1 2(3 4)+2(3[ ]cos x

=
1

2
1 (6 8)(6[ ]

yn n
=

1

2
1 (6 8)x(6x[ ]

=
6

2 2
6 8 .− ⋅ +⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

n

n 6⋅ +cos
π

y4

4

=
6

2
4

2
6 8x− ⋅ ⋅ +⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

cos
π

=
6

2
(6 8)

4

− +(6cos x

(f) Let us consider y ax b)  [WBUT 2003]

 Then

 y ax b a1 ) ⋅b)

   =
2

a ax b
⎛
⎝⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

s
π
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y a ax b2
2

2
+⋅ +⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

cos
π

  = 2
2

2a ax b⋅2 + ax⎛
⎝⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

si
π

y a ax b3
3= 2a3

2
⋅2 + +ax

⎛
⎝⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

cos
π

  = 3
2

3 ax b⋅3 + ax⎛
⎝⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

si
π

   .....................

y a n ax baan
n

2
.n⋅ + axaa⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

sin
π

Example 9  If y x(2 3) (2 3),x(2 3)x 3) (2x3)  find yn  and y8.

Here,

y x(2 3) (2 3)x(2 3)x 3) (2x3)

   =
1

2
2(2 3)sin

 =
1

2
(4 6)sin x +

yn n

1

2
[ ]x(4 6)sin +

=
4

2 2
4 6 .

n

n 4⋅ n + 44
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

sin
π

y8

8

=
4

2
8

2
4 6x⋅ ⋅8 + 4x

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

sin
π

=
4

2
(4 6)

8

+(4⋅si x

3.4 n -TH ORDER DERIVATIVE OF PRODUCT OF TWO FUNCTIONS OF 

SAME VARIABLE

First, we recall the multiplication rule of the differentiation for finding 1st  order deriv-

ative of the product of two functions.

Suppose u  and v  are two functions of x  and 1st  order derivative exists for them 

then 1st  order derivative of y u v⋅  is given by 

y u u v1 1u 1.u v u v1u 1+vv

Also, we can find the higher order derivatives of the product u v,  differentiating 

repeatedly if they exist.
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Now the question is whether we can have any general formula for finding directly 

the n-th order derivative of the product of two functions of the same variable. The 

answer is yes and it is given by the following theorem:

Leibnitz’s Theorem

Suppose u  and v  are two functions of x  and the n-th order derivative exists for both 

of them. Then the n -th order derivative of the product y u v.u  is given by 

y u u v C u v C u v C uvn nu v n
n

n
n

n
n

r nu r rv n( ) =n .1 1un 1 2C 2 2vu vn⋅vv) + C u v
n

nC 2v +C u vru rv +− −  

Proof:  Beyond the scope of the book.

Note: 

If we put n = 1  in the above formula, we obtain y u v u v v1 1u v 1 1v u v( ) =1 ,⋅ ⋅v uv 1 + ⋅uu  which is 

the multiplication rule of differentiation for finding 1st  order derivative of the product 

of two functions. So it is clear that Leibnitz’s Theorem is nothing but the generalised 

multiplication rule for finding higher-order derivatives.

Selection of u and v

In general, we can choose any function of the product as u  or v,  but if we carefully 

see formula, the order of the derivative of v  increases term by term. So, among the two 

functions, which ever has more priority of vanishing at the higher order derivatives 

should be taken as v.  Basically, the reason behind it is to make the calculation easier 

and, of course, to save time too.

Example 10  If y x x2 log  then let us find yn .

Here, we set u xlog  and v x= .x2

Then

u
n

x
n

n

n
=

( 1) (n 1)!11)1) −

and 

v x v v v1 2x 3 4vv v2 , =v2v 2, = =v4v = 0 

i.e. for, = 0, > 2nforv = 0,n

Here, it is obvious from the above that x2  has the more priority over log x  of van-

ishing at the higher order derivatives and due to that factor we have choosen x2  as v.

Now using Leibnitz’s theorem, we find the n-th derivative of y u v xu v⋅ ⋅v xv ( )x2log  as

y u u v C u v C u uvn nu v n
n

n
n

n n( ) =n 1 1un 1 2C 2 2v⋅v u vv n) + +C u vn
nCC 2v +−

i.e., yn
n

{ }xlog ⋅ ( )x2

=
( 1) ( 1)!

( )
( 1) ( 2)!

(2 )
( 1)1

2
1

2

1 2

1)1) −
⋅ (

1)1) −
⋅ (2

−

n

n

n
n

n

n
nn

x
C) 1+) n n

x
x C) 2+) n

−
−

−

⋅
⋅

3

2

( 3)!−
(2).

xn
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Example 11  If y e xx= sex in  then let us find yn .

Here, we set u ex  and v x= .xsin

Then 

u e
n

xn
x

ne
2

and svn =v in
πn
+⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

Here, it is obvious from the above that no function has the priority over another of 

vanishing at the higher order derivatives and due to that we can choose u  and v

arbitrarily.

Now using Leibnitz’s theorem, we find the n-th derivative of y u v e xxu v⋅ sin  as

y u u v C u v C u uvn nu v n
n

n
n

n n( ) =n 1 1un 1 2C 2 2v⋅v u vv n) + +C u vn
nCC 2v +−

i.e., y =n
n

{ }e xx ⋅

=
2

2

2
1 2e x C e1 x C2 e x ex n x n x x⋅ +x ⋅e +⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠⎠⎠

⋅2C2 +⋅ ⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
+ + ⋅si sin si s

π π
inii

n
x

πn
2

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

WORKED-OUT EXAMPLES

Example 3.1  If y
x

x
=

( 1)(x 2)( 3)x
,

2

−x
 find yn .  [WBUT 2001]

Sol. Let us consider 

 y
x

x

A B

x

C
=

( 1)(x 2)( 3)x
=

( 1) (x 2) ( 3)x

2

−x 3) (x
+

−
+

x

x

A x B x C x2

( 1)(x 2)( 3)x
=

( 2)(x 3) ( 1)(x 3) ( 1)(x 2)

( 1)x−x
x2)( B(x − +3) −x1)(

( 2)((( 3)x2)( −x2)(

⇒ − − −− x x −2 = (A 2)( 3) (− +x B 1)( 3) (x C− + 1)( 2)−x

Substituting x = 1,  2, 3, we have respectively

 1 = (1 2)(1 3)2 A − −2)(1

i.e., A =
1

2

2 = (2 1)(2 3)2 B − −1)(2

i.e., B = 4.

and

3 = (3 1)(3 2)2 C − −1)(3

i.e., C =
9

2
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Therefore,

y
x

xx 2) x

1

2

)x

4

x

9

2

)x

2

+

since y
a

n n

n

( )ax b 1+
 when y

ax b

1

+
 we get from the above,

 yn n n n
=

1

2

!n

( 1)x

!n

( 2)x

9

2

!n

( 3)x1 1
− ⋅ +

+ + +
.

Example 3.2  If axe  prove that 

y e
b

a

n
ax .1a −tbx ncos + an

Sol. Here, we have 

bxaxe os

Now differentiating w.r.t x

y a xax⋅ e

  )a xcos

Consider a r os  and r in  then

 r a b
b

a

2 2 2 1+ −and tan

So, 

r bx r bxe )sin sin

  )bx +

Again differentiating w.r.t x  we have 

 y r bax )⋅ +bx⋅ +bx

  ax bx sr in

  2 ax ⋅{ }cos + + sin

  2 )bx +

Proceeding similarly as above 

bx nr )

y
b

a

n
ax .1a ⋅ tbx ncos + an
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Example 3.3  If y e bxax ,e bxsin  prove that 

y e bx n
b

a
n

n
ax .2 1( )a b2 2b+ ⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

−si tbx nn +⎛
⎝
⎜
⎛⎛
⎝⎝

an

Sol. Follow Example 3.2.

Example 3.4  If y x xn ,xx 1− log  prove that 

y
x

n =
( 1)!n

.

Sol. Here, we have 

y x xn 1− log

Now differentiating w.r.t. x,

y n x x x
x

n n
1

2 1( 1)
1

− ⋅1) ⋅ +x ⋅− −log

i.e., = ( 1)1
1 1xy x1) x xn n1) ⋅ +x− −log

i.e., = ( 1)1
1xy n y1) xn1) + −

Now applying Leibnitz’s rule, we differentiate ( 1)  times,

 [ y x n y xn n
n

n1 1x n 1
1

1] =1n [( 1) ] [n 1 ]x nx] =1 [( ⋅ y]n 1
−

−

i.e., { } { } 1 = ( 1) ( 1)!1 1
1

1 1 2 1y x}1 1} C y{1{ n y1)n
n

n n
−

−⋅ +x 1 = (n + (

i.e., y x y y nn n n⋅ +x −( 1) =n yn− ( 1) (n yn− +yn− 1)!1 1

i.e., y x nn −nx = ( 1)!

Hence 

y
x

n =
( 1)!n

.

Example 3.5  If y x2 ( )x xcos x(  then show that ( ) = 2 .10 0
10y

Sol. It is given that 

y x2 ( )x xcos x(

  = 2 2 2cos sin cosxsin x−

  = 2 2 1sin c2 os2x2cos2cos
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Differentiating n  times, we have

 y x xn n n{ 2 } { 2 }si nn 2 }x {

  = 2
2

2 2
2

2n nn x2 n x2sin cos
π π
+⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠⎠

+n2n cos
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

  = 2
2

2
2

2n n x2 n x2sin cos
π π
+⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠
− +ncos

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬

Now putting x = 0,  we have 

 ( ) = 2
2 2

0y
n

n
n sin cos

π πn n⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬

So 

( ) = 2
10

2

10

2
10 0

10y sin cos
π10π⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬

    = 2 { 5 5 }10 5π 5cos

    = 2 {0 ( 1) }10 5− (

Hence 

( ) = 2 .10 0
10y

Example 3.6  If y
x a

=
1

,
2 2

 show that y
a

n

n

n n
=

( 1) !nn

2

1

( )x a

1

( )x a1 1

1)1)
−

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
+ +

Sol. Here, 

y
x a

=
1

=
1

( )x a ( )x a2 2 )a (x

   =
1

2

1

( )

1

( )a ( ) (
−

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦

So differentiating n  times, we have

 y
a

n

n n

=
1

2

1

( )x a

1

( )x a

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬ −

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦

  =
1

2

( 1) !

( )

( 1) !

( )1 1a

n

n

n

n

1)1)
−

1)1)⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

+ +

Hence, 

y
a

n

n

n n
=

( 1) !nn

2

1

( )x a

1

( )x a
.

1 1

1)1)
−

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
+ +
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Example 3.7  If y
x a

=
1

,
2 2+

 show that y
ia

n

n

n n
=

( 1) !nn

2

1

( )x ia

1

( )x ia1 1

1)1)
−

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
+ +

Sol. Here, 

y
x a

=
1

=
1

( )x ia ( )x ia2 2+ )ia (x

   =
1

2

1

( )

1

( )ia ) (
−

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
So differentiating n  times, we have

 y
ia

n

n n

=
1

2

1

( )x ia

1

( )x ia

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬ −

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦

  =
1

2

( 1) !

( )

( 1) !

( )1 1ia

n

n

n

n

1)1)
−

1)1)⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

+ +

Hence, 

y
ia

n

n

n n
=

( 1) !nn

2

1

( )x ia

1

( )x ia
.

1 1

1)1)
−

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
+ +

Example 3.8  If f x x( )x = tan  and n is a +ve  integer, prove with the help of 

Leibnitz’s theorem that f C f C f
nn n n (0) =
2

2
( 2)n

4
( 4n ) ⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

sin
πn

[WBUT 2001]

Sol. We have 

f x x
x

x
)x = =xtan

sin

cos

or, f x x( )x = .x⋅cos sx in

Applying Leibnitz’s theorem, we differentiate n times w.r.t x,

{ ( ) } = { }f x( xn ns} = {} = {n in

f x x C f x C f xn n n( )x ( )x ( )x ( )x ( )x1
( 1)n

2
( 2)ncos

+ + + +⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

n nC f x C f x
n

x3
( 3)−n

4
( 4−n )( )x ( )x =

2
sin cos sin 

πn

Now, putting x = 0  in the above, we get

 f C f C f
nn n n (0) =
2

.2
( 2)n

4
( 4n ) ⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

sin
πn
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Example 3.9  If x y+ = 1,  prove that the n-th derivative of x yn n  is 

n y y x y x y x xn n n n n n! ( 1) .
2

1
2

2 2
2

3 3− ( )Cn 1 ( )Cn 2 − ( )Cn 3 + ({ }−

[WBUT 2002]

Sol. Let u xn  and v y xn n=y (1 )−

Then un = !n ,  v nn
n= ( 1)) !.

Also u
n

xr
n r=

!

( )n r !
,  r n<

So, 

( ) 1 1 1 2 2 2v C u1 v C1 2u 2 2 uvn nu
n

n
n

n n+) = u vn u +2 2C2u v2 2 +−  

n n
( )x yn n { }n n= {xn x

     = !(1 )
!

1!
(1 ) ( 1)1

1n x!(1 C1

n
x n xn n n− +)x n ⋅ x −) (− x

      + ⋅ − + +n n n nC
n
x n⋅ x− x2

2 2 2!

2!
( 1)(1n − ) (−n 2 1) ( 1) !n n− ⋅

    = ! (1 ) (1 ) (1 )
2

1
2

2 2x! (1 (1 x x x)n n 1 x n)x ( )1
n ) xn 1 x ( )2C2

n −{ −

       −( ) }n n nx−) x−
2

3 3(1 ) (+−n x +3 3 1)

So, 

n y y x y x

y x

n

n n n

n n

( )x yn n − ( )Cn ( )Cn{
−( )CnC +

−

−

= !n

( 1)−

2
1

2
2 2

2
3 3 xxn}.

Example 3.10  If y x1tan−  then show that 

 (i) = 11( )1 2 y)
(ii) 2 ( 1) = 01 1( )1 2+ + +2+y) nxy n+x y1)1)n n n

Find also the value of yn  at x = 0.  [WBUT 2003, 2005]

Sol. If we differentiate y x1tan−  w.r.t x,  then 

 y
x

1 2
=

1

1+
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i.e., y1 = 1( )x21 x2 ...(1)

Applying Leibnitz’s theorem, we differentiate n  times w.r.t x,

y
n

n1 = [1]( )x21 x2⎡
⎣
⎡⎡ ⎤

⎦

⇒ ⋅( ) ⋅{ } {)+ + } (⋅− 2 ) { } (2) = 01 1 1 1 2 1 2−}⋅ (} + {{ C+) 2n
n

n
n

n

fi ( )+ + ++ 2)+ ++ ( 1) =- 01 1y)) nxy n+x y1)1)-n n n
...(2)

Now we will find ( )0.yn

From (1), 

y
x

1 2
=

1

1+

i.e., ( ) = 11 0)y

Also, from (1),

y
x

2 2
=

2
−
( )x21+

i.e., ( ) = 0.2 0)y

Now putting x = 0  in (2),

 ( ) ( 1)( ) = 01 0 1 0)y n)1 0) n y1)(n n+ −+ (n

i.e., ( ) ( 1)( )1 0 1 0)y n) =1 0) n y1)(n n+ −(n ...(3)

If we put n = 3, 5, 7,…  in the above then

 ( ) = 3 2 ( ) = 0, ( ) = 04 0) 2 0) 2 0)y y y⋅3 since

( ) = 5 4 ( ) = 0, ( ) = 06 0) 4 0) 4 0)y y y⋅5 since

( ) = 7 6 ( ) = 0, ( ) = 08 0) 6 0) 6 0)y y y−7 since

and so on.

Therefore, ( ) = 0,0yn  when n  is even.

 Again putting n = 2, 4, 6,…  in the relation (3), we have 

 ( ) = 2 1 ( ) = ( 1) 2!, ( ) = 13 0) 1 0) 1 0)y y y−2 ) = (1)(y since

( ) = 4 3 ( ) = ( 1) 4!, ( ) = ( 1) 2!5 0) 3 0)
2

3 0)y y y⋅4 ) = (3)(y − ⋅since

( ) = 6 5 ( ) = ( 1) 6!, ( ) = ( 1) 4!7 0) 5 0)
3

5 0)
2y y y⋅6 ) = (5)(y − ⋅since

Therefore, ( ) = ( 1) ( 1) ,0

1

2yn

n

- ◊1) 2

-

 when n  is odd.
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Hence, we can say 

( ) = ( 1) ( 1) ,0

1

2y nn

n

- ◊1) 2

-

! w, hen in s odd

    = 0, when is even.n

Example 3.11  Show that 

d

dx

x

x

n

x
x

n

n

n

n

n

log
log

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

− − − − − −⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠+

= ( 1)
!

1
1

2

1

3

1
.

1
 [WBUT 2003, 2008].

Sol. Here we are to find 

d

dx

x

x

d

dx x
x

n

n

n

n

log
log

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

⋅⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

=
1

        =
1

x
x
n

⋅⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠nn
⎟
⎞
⎠

log

We set u
x

=
1

,  then u
x

n

n

n
=

( 1) !nn

1

1)1)
+

 (using (b) of Art. 3.3) and

 if v x,xlogg  then v
n

x
n

n

n
=

( 1) (n 1)!11)1) −
 (using (c) of Art. 3.3)

 Now using Leibnitz’s theorem, we have

 ( ) 1 1 1 2 2 2v C u1 v C1 2u 2 2 uvn nu
n

n
n

n n+) = u vn u +2 2C2u v2 2 +−  

i.e.,
1

=
( 1) ! ( 1) ( 1)!

1 1

1

x
x

x
x C1

n

xn

n

n

n
n

n
⋅⎧

⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬

1)1)
⋅ x

1)1) −
⋅

+
log log

11

x

        +
−

⋅ −⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
+ + ⋅

− ⋅
−

−
n

n

n

n

n
C

n

x x x x
2

2

1 2

1( 1) (− ⋅−n 2 2)! 1⎛⎛⎛ 1 ( 1) ( 1)!−n

i.e.,
1

=
( 1) ! ( 1) ! ( 1) !

1 1x
x

x
x

xn

n

n

n

n

n

⋅⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬

1)1)
−

1)1)
−

1)1)
+ +

log log
xxn+

⋅
1

1

2

        − − ⋅
+

 

( 1) !− ⋅ 1
.

1

n

nx n

i.e.,
1

= ( 1)
!

1
1

2

1

3

1
.

1x
x

n

x
x

nn

n

n
⋅⎧

⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬ − − − − − −⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠+

log log  

i.e.,
d

dx

x

x

n

x
x

n

n

n

n

n

log
log

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

− − − − − −⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠+

= ( 1)
!

1
1

2

1

3

1
.

1
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Example 3.12  Show that if u ax ax= sin cos+  then 

D u a ax D
d

dx

n n n= 1an ( 1) 2n , .

1

2+ ({ }} ≡wax2 ,} here [WBUT 2003].

Sol. It is given that 

u ax ax= sin cos+

Now differentiating n  times, we have 

 u ax axn n n= { } {n }si cn ax} {n os

Using (e) and (f ) of Art. 3.3,

u a
n

ax a
n

axn
n n

2 2
sin cos

πn πn
+⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
+ +an cos

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

  =
2 2

a
n

ax
n

axn sin cos
πn πn
+⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

++ cos
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬

Squaring both sides, we have 

a
n

ax
n

axn( )un +⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

++ ⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬

2 2

2

2 2
sin cos

πn πn

    = 1 2
2 2

2a
n n

axn + +2
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

+⋅ ⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬si cax+n

⎝⎝⎝
⎞
⎠
⎟
⎞⎞
⎠⎠
⋅ os

πn πn

    = 1 2
2

2a
n

axn ++ 2
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬si

πn

    = 1 ( 2 )2a 1 ( axn ((+{ }si

    = 1 ( 1) 22a axn n+ ({ }
Hence,

u a axn
n n= 1an ( 1) 2n .

1

2+ ({ }

Example 3.13  If y cos( )x1sm in−  then prove that 

(2 1) = 02 1( )1 2− − (2 + ( )2 2−2
+ +y) x1) y 1 + (+x y)n n n .

Also, find ( )0.yn  [WBUT 2004]
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Sol. We have 

y x1sm in−

i.e. 1 1sin= x

Now differentiating w.r.t x

−

1

1

1

12 2y
1

x

Squaring both sides, we have 

m
2 2=y x y2 ...(1)

Differentiating (1) w.r.t x

2
2 22− 1 2− ( )2 1m=

Cancelling 2 1y  from both sides,

 xy m y1
2x = 0.+ ...(2)

Now Applying Leibnitz’s rule, we differentiate (2), n  times

 y m y
n n n

2 = 0.x2 − +

i.e., ( 2)2C

    − + ⋅1 =+ 0−x⋅

i.e., y n n n n+− n1
22x −

i.e., = 021 2 −+y y 1 + yn n ...(3)

Now we will find ( )0.

Putting x = 0  in y x1sm in−  we get ( ) = 1.0

We have from (1), by putting x

i.e., = 0

Again from (2), by putting x 0

i.e., .2

Now putting x = 0  in (3),

 0n−m
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i.e., )0= yn ...(4)

If we put n 1, 3, 5,  in the above then

 = 0, ( 0= y2 2m

= 0, ( 0= y2 2m

= 0, ( 0= y2 2m

and so on.

Therefore, ( ) = 0,0  when n  is odd.

 Again putting n = 2, 4 ,…  in the relation (4), we have 

 2= y m2 2m 2 2m −

,

2

=

= m

2 2m 2 2m

since

Similarly, = 2 2m ⋅ 2 2m 2 2m

and so on.

Therefore, ) .=0
2 2m− 2 2m−  

when n  is even

 Hence we can say 

 ( ) = 0,0 nwhen is odd

    = ,2 2 2 2− − …

when is even.n

Example 3.14  If y
n

1x  then prove that 

n ) =n yn 0x2 − [WBUT 2006]

Sol. We have 

y
n

1x

Now differentiating w.r.t x

x
n 1

n
−
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i.e.,
n

2x2 1x

i.e., nxy= 2x2

Again differentiating w.r.t x,

= 2 y xy1x2

i.e., y2 y = 0x2

Now Applying Leibnitz’s rule, we differentiate n  times

 y n y
n

1 = 0.2 1− −

i.e., (2)C12 −

    + − = 01+ ny1− n

i.e., y

x

n− nx n{ }
+

+ n

n− } 0

i.e., n ) =n yn 0x2 −

Example 3.15  If y
d

dx
n

n

n
= x  then prove that 

1)!−n [WBUT 2007]

Sol. Here,

y
d

dx
n

n

n
xn

=
1

1

d

dx

d

dx

n

n−
⋅ ( )x x

11

1

1d

dx
nx

x

n

n

n

−
− xlog

So, 

y
d

dx

d

dx
n

n

n

n

n
=

1

1

1

1−

−

( )nx xn 1− + ( )xn 1−

1)
1

1
n
d

dx

n

n ( )1x xn + −n
−

i.e. 1)!.−n
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Example 3.16  If x xa b ),log og  prove that 

x y yn
2

2 = 0+ n 1+n [WBUT 2007]

Sol. Here 

x xa b )l( og og

Now differentiating w.r.t x

x x

1 1
⋅ ⋅x+

i.e., xy x1 b )xa

Again differentiating w.r.t x,

y x
x
b

x
a )

1
x

1
l( og

i.e., y
x

a b
1

x x= +{ }

So,

xy y1 + −

i.e., x y y2 = 0

Now Applying Leibnitz’s rule, we differentiate n  times.

 y x
n

n n
2 x = 0.+

i.e., 2)}C1 ynx x

   + ⋅1 =+ 0−x⋅

i.e., n yn n n n+x{ n12 (nx = 0

Hence

x y yn
2

2 = 0+ n 1+n

Example 3.17  With the help of result obtained by differentiating n  times x n2 in 

two different ways, show that 

1
1

2)

3
=

(2 )!

( !)

2

2

2 2 2

2
+ + +

⋅ −
⋅

+
n n n n

.
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Sol. Let y x n2  then

 y
n

n n
x

n

n
xn

n n n=
(2 )!

(2 )!
=

(2 )!

!
.2 ...(1)

Now again we can write 

y x x xn n n=x2

Now applying Leibnitz’s rule, we differentiate n  times.

 y x xn
n n

n
⋅⎡

⎣
⎤
⎦
⎤⎤

  = ( 1)1
1

1
2

2

2x C1 n x C2 n n( x
n

n n

n

n n1

n

n{ }xn ⋅ +xn { }xn ⋅n + { }xn ⋅ −n n( ⋅
− −

−

   + { } ⋅ +
−

−n {
n

nC {{ n n x− ⋅3
3

3( 1)(−n 2)  

i.e. y n x n
n
x n x

n n
x n xn

n n n= !n
!

1!

( 1)n

2

!

2!
( 1)n1 2 2⋅ +xn ⋅ ⋅ ⋅ ⋅x n + ⋅ ⋅ n(n− −

      + ⋅ ⋅ − ⋅ +−n n n−
x n⋅ n xn

( 1)(−n 2)

3!

!

3!
( 1)(n − 2)3 3

 

i.e. y n x
n n n n

n
n= !n 1

1

( 1)n

1 2

( 1) (n 2)

1 2 3

2

2

2 2( 1)
2 22

2 2( 1) 2

2 22 2
⋅ +xn 1 +

⋅ (n
+

⋅ (n −n
⋅2

++
⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨

⎫
⎬
⎫⎫
⎬⎬
⎫⎫⎫⎫

⎭
⎬⎬
⎭⎭
⎬⎬⎬⎬ ...(2)

From (1) and (2), we have 

n
n n n nn! 1xn

1

( 1)n

1 2

( 1) (n 2)

1 2 3

2

2

2 2( 1)
2 22

2 2( 1) 2

2 22 2
+1xn +

⋅ (n
+

⋅ (n −n
⋅2

+
⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨  

⎫⎫
⎬
⎫⎫⎫⎫
⎬⎬
⎫⎫⎫⎫⎫⎫⎫

⎭
⎬⎬
⎭⎭
⎬⎬⎬⎬ =

(2 )!

!

n

n
xn

Hence,

1
1

( 1)

1 2

( 1) ( 2)

1 2 3
=

(2 )!

( !)

2

2

2 2( 1)
2 22

2 2( 1) 2

2 22 2
+ +

2

⋅ (
+

⋅ ( −
⋅2

+
n n n1) n1) (( n

 

22
.

  EXERCISES

Short and Long Answer Type Questions

1. Find the n-th derivative yn  of the following functions:

 (i) y a bx( )

1

2−

Ans : ( 1)
1 3 5 (2 3)

2
( )

1

2
⋅3⎧

⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬⋅ (

⎡

⎣
⎢
⎡⎡

⎢⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥

− +
n n

n

n

b

(ii) y x

1

2

−

Ans : ( 1)
1 3 5 (2 1)

2

1

2
⋅3⎧

⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬⋅

⎡

⎣
⎢
⎡⎡

⎢⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥

− −
n

n

n

x
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(iii) y x

3

4

Ans : ( 1)
3 1 5 9 (4 7)

4

1

3 4

4
⋅1 −9 (4

⋅
⎡

⎣
⎢
⎡⎡

⎢⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥−n

n

n
n

x
…

(iv) y
x

=
1

(5 7)−

Ans :
( 1) ! 5

(5 7) 1

1)1) ⋅
−

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

+

n n! 5
nx

(v) y a x3 4

Ans : a an n n x3 4( 1) 4n ( )a( )a⋅ ( ⋅4 ( )a⎡
⎣
⎡⎡ ⎤

⎦
⎤⎤g

(vi) y x(2 9)x

Ans :
( 1) ( 1)! 2

(2 9)

11)1) −1)!

+

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

n n

n

n

x

(vii) y
a x

a x
= log

+

Ans : ( )!
n

n

n
−

⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨

⎫
⎬
⎫⎫
⎬⎬
⎫⎫⎫⎫

⎭
⎬⎬
⎭⎭
⎬⎬⎬⎬

⎡

⎣
⎢
⎡⎡

⎢⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥

1

( )a x

( 1)−
( )a x+

(viii) y x.x3i

Ans :
1

4
3

2
3

2
3sin sin

n
x

n
xnπn πn

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

+−3 sinn ⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦

(ix) y e xx= 2e x2 sin sxx i

Ans :
1

2
2

4
10 3 32 2 1e

n
xx

n n

cos cos
πn
+⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

3+102 cos( )
⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

⎡

⎣
⎢
⎡⎡

⎢⎢⎣⎣⎣⎣
⎢⎢⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥

(x) y
x

=
1

( 1) (x 2)3 −x

Ans : ( 1) !
( 2)( 1)

2( 1)

( 1)

( 1)

1

2( 1)

1

3 2 1

+2)(

−
+ +

−
+

+ + +
n

n n n

n2)(2)(

x x1) 2(

11

( 2) 1n

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

+

(xi) y
x

x
=

( 1)(x 2)( 3)x

2

−x
 [WBUT 2001]

Ans :
1

2

( 1) !

( 1)
4

( 1) !

( 2)

9

2

( 1) !

( 3)1 1

1)1)
− ⋅4

1)1)
+

1)1)
+ +

n

n

n

n

n

n++

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

1
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(xii) y
x

1

162 +
[WBUT 2001]

An
!

8

1

)

1

)1 1
−

⎡⎡ ⎤
+ +n ni i4 i4

2. Find the n-th derivative yn  of the following functions using Leibnitz’s theorem:

 (i) xe og

Ans : e x
x x x

n

xn
+ ⋅ + +

2 3

1 1 () 1)!⎡
⎢

⎤

(ii) y x x3 cos

An x
n

x x3 2

2 2
cos cos

co

+ ⋅
( )n 1−

+

+ ⋅ cosC xn( )n
+ x

( )n
+

⎡
⎢

⎢

2 2
63

⎤

(iii) y x en x

Ans : e x x nx n + ⋅ x −n − !

(iv) xn x

Ans : n x xnx
2 2

2 2nx Cn − C ⋅ + + ⎤⎤

(v) xxe os

An e C x
nnx cos

⎧ + +⎧ + +2
2

cos
2

+
⎡ ⎤

x

(vi) y x x2 1
tan

An
n n)!

n 2)

2)

1 2

−{
− −

sin

sin n

si

cos

) (sin 2)n x+n −

cos

(vii) y x
x

x

1

1
log

+

Ans :
x n x n

x

n

n
)!

( 1) (x 1)+

⎫

⎭

⎡ ⎤

3. If x xx  then show that ( ) = 2 .0
10  [WBUT 2001]
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4. If x ,e
1tan  prove that 

 (i) = 01

(ii) = 021 2+ +yn

5. If xx = tan  and n  is a +ve  integer, prove with the help of Leibnitz’s theorem 

that f C f C f
n

(0) =
2

4
( 4) n  [WBUT 2001]

 6. If y ,x1sm in  prove that 

 (i) 021 2 y m y

(ii) = 021 2 2 2
+y y 1+ yn n

7. If y ,
2

x1  prove that 

 (i) 2 = 02 11 2− −y

(ii) = 02
21 2

+y xy n1+ yn n

8. If y x1  then show that  

 (i) = 11

(ii) = 011 2+ +y +n

Find also the value of yn  at x =  [WBUT 2003, 2005]

 9. If x

1 1

= 2  prove that 

 (i) y m y2 0x2

(ii) y ynyn 2 = 0x2 n m−n

10. If x y = 1,  prove that the n-th derivative of x yn n  is 

 n y y x y x y x xn n n n n n .
2 2 2

3 3Cn C2 Cn }−

[WBUT 2002]

11. If y
x

x
=

1

1

+
−

 prove that {2( )( = 021 − −− − n
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12. If y ,l ( )x x1x 2+1  prove that y xy nx yn n n2 1
2(yn 2 2 1)n = 0( )x2 1 (2n+ +

13. Show that 
d

dx

x

x

n

x
x

n

n

n

n

n

log
log

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

− − − − − −⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠+

= ( 1)
!

1
1

2

1

3

1
.

1
 

[WBUT 2003, 2008]

14. If y
x

x
=

1
,

3

2 −
 prove that ( ) =

0,

!,
> 1.0y

n

n n!,
nn

if is even

if is odd
for

−
⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬

15. If y
n( )x 1x2  then prove that y n yn n n12yn 2 ( 1) =n yn 0( )x2 1 −xy 1xy2 nxy2 xynxy

[WBUT 2006, 2009]

16. If y
x

x
=

1
,

1

2

−

−

sin
 prove that (2 3) ( 1) = 02 1

2( )1 2− − (2 +(+ +y) 3)3) y n(1 (+ yn n n

17. If y em x ,e
1−cos  prove that (2 1) = 02 1( )1 2− − (2 ( )2 2+2

+ +y) x1) y 1 − (+x y)n n n

18. If y
d

dx
n

n

n
=
d ( )x xn lxn og  then prove that y ny nn nnyny (nynyny 1)!1 −n(  [WBUT 2007]

19. If − ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

1 ,
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

=cos log
y

b

x

n

n

 prove that x y n xy nx yn n n
2

2 1
2(2 1) 2 =n yn
2 0+ ++ +n(2 +

20. If y a x x= (a ) (b ),cos l( og n l( og  prove that 

 x y n xyx yn n n
2

2 1(2 1) =yn 0+ ++ +n(2 + ( )n2 1+n2 [WBUT 2007]

Multiple-Choice Questions

1. If y e x3−  then yn  is given by

 a)  e x−3  b) ( 3) 3n x3−e  c) ( 3)n  d) none.

 2. If y x= 3 5−  then yn  is given by

 a) ( 1) 5 ( 3) 3 5n n5 n x3 5−g b) ( 1) ( 3) 3 5−n n( 3) xlog

c) 5 ( 3) 3 5n n( 3) xlog − d) none

3. The n-th derivative of ( )10  when n > 10  is

 a) a10  b) 10! 10a  c) 0 d) 10!  [WBUT 2007]
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4. If y x x= cx os  then yn  is given by

 a) x n xcos
π
2
+⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

b) x n x n n xcos cos
π π
2

1
2

+⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠
+ −n ncos +⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

c) cos cosn x n ncos x
π π
2

1
2

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
+ −cosn ncos +⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

d) none

5. If y x x4 4i cx4 os+  then ( )yn 0
 is given by

 a) ( 1) 4n n4  b) 4n  c) 0 d) none

 6. If y x42  then 
0

( )y4  is given by

 a) 1 b) 4 c) 0 d) none

 7. If y eax b+  then 
0

( )y6  is given by

 a) aeb  b) a eb6  c) a ea b6  d) none

 8. If y
x

x
=

1

1
log

+
−

 then ( )yn 0
 is given by

 a) 0 b) 1, when n  is even and −1,  when n  is odd  

 c) −1,  when n  is even and 0, when n  is odd d) none

 9. If y a x2 2−  then ( )yy y2 1y
2+  is

 a) 2 b) 1 c) 0 d) none

10. If y
x

x

n

=
1−

 then ( )yn 0
 is

 a) −( !)  b) ( )− n
 c) ( !)  d) none

11. If y e xx= 4e x3 si  then yn  is given by

 a) 5 4
4

3

1n x nsi t4x n an
⎛
⎝⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

− b) 5 4
4

3

1 34n xx n esi t4x n an
⎛
⎝⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−    

c) sin tan4
4

3

1 34
x n e x⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

− d) none

12. If y x x42 4+  then ( )yn 0
 is given by

 a) 120 b) 4 4
4

3

1n nsi t4 n an
⎛
⎝⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−

c) 0 d) none

13. If y x x= 3cx os  then 
0

( )y5  is given by

 a) 3 b) 15 c) 0 d) none
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14. If y x(2 3 )  then 
0

( )y6  is given by

 a) 
−( ) ⋅2

3

6

6
 b) 

−( ) ⋅3
2

6

6
 c) 1 d) none

15. If y
x

=
1

(3 5)+
 then 

0
( )y4  is given by

 a) 
3

5

4

5
 b) 

−( ) ⋅3
5

4

5
 c) 

4! 3

5

4

5

⋅
 d) none

Answers:

 1. b 2. a 3. c 4. b 5. b 6. d 7. b 8. c 9. d            

 10. a 11. b 12. d 13. c 14. b 15. c



4
Mean Value Theorems and 

Expansion of Functions

4.1 INTRODUCTION

There are some real-valued functions being continuous and derivable on a certain 

interval, which possess some special properties at any point lying in between boundary 

points of that interval. Mean-value theorems are such theorems which involve some 

particular results as stated above. 

Basically, in this chapter we discuss the very well-known three mean-value theo-

rems, namely, Rolle’s, Lagrange’s and Cauchy’s mean-value theorems along with 

their wide range of applications in various fields. 

In this chapter, we also deal with some series expansion theorems and formulas, 

namely, Taylor’s and Maclaurin’s series expansion and their application towards 

some standard functions like e
x ,  sin log( ),x x1log(, og(log( +  etc.

4.2 ROLLE’S THEOREM

4.2.1 Statement

Let f I R→  be a real-valued function where I a b[ , ]b  and f satisfies the fol-

lowing conditions:

 i) f is continious in the closed interval [ , ]a b,

CHAPTER
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 ii) f is derivable in the open interval ( , ),b,  i.e., ′f x′ )x  exists for x b∈ ( ,a ) and

 iii) f a f b)a = f )

Then there exists at least one value of x (say c), c b∈ ( ,a ),  i.e., a c b< <c  such that, 

′f c′ )c = 0. [WBUT-2003]

Proof: Since the function f  is continuous in the closed interval [ , ],a b,  it is also 

bounded there. Let us consider that m  and M  are the greatest lower bound ( . )g l. b  and 

least upper bound ( . . )l u. b  respectively for the function f .

Then there exists two points c  and d  in [ , ]a b,  such that f c m)c =  and 

f d M)d = .M

Now two cases may arise:

Case i) m M

 In this case, the function f x m)x =  is constant for all [x a b∈ , ]b  and corre-

spondingly, the derivative ′f x′ )x = 0  for all [x a b∈ , ]b .

Hence, the result is proved.

Case ii) m M≠
Since in this case f a f b)a = f )  and m M≠ ,  at least one of m  and M  is different 

from f a)a  or f b)b .

Suppose m f ( )a ;  then f c f a c a( )c ( ))≠ ⇒f )a ≠

And m f b( )b ;  then f c f b c b)c ))b≠ ⇒f )b ≠

So c  is neither a  nor b.  Therefore, a c b< <c

By hypothesis, f  is derivable in the open interval ( , ),a b,  i.e., ′f c′ )c  exists for 

a c b< <c .

Now it remains to prove ′f c′ )c = 0.

For this purpose, first consider ′f c′ )c < 0.  Then there exists an interval ( , ),1c, h+
h1 > 0,  for every point x c h∈ c( ,cc ),1  f x f c m)x < f ) = ,  which contradicts the fact 

that m  is the greatest lower bound (g · l · b)

Next we consider ′f c′ )c > 0.  Then there exists an interval ( , ),2h c  h2 > 0,  for 

every point x h c∈ ( ,c h−c ),2  f x f c m)x < f ) = ,  which is again a contradiction as 

before.

So the only possiblity is that ′f c′ )c = 0  for a c b< <c .

Hence, the theorem is proved.

Note: The theorem asserts the existence of at least one value c,  where ′f c′ )c = 0.

So, there may be more than one value of c  for which the derivative vanishes.
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4.2.2 Geomertical Interpretation

y = f(x)

y

A f(a) B

C

M N

f(b)

x

x = a x = c x = b

Figure 4.1 Rolle’s Theorem

From Fig. 4.1, it is clear that at the points A ( ( ))a f,  and B ( ( )),b f, b  the ordinates 

are same for the continuous graph y f x(f ),  i.e., the values at the points x = a and 

x b  (which are f a)a  and f b)b  respectively) are equal. 

Since the function f  is derivable in the open interval ( , ),a b,  a tangent exists at each 

point of the graph except the extreme points A ( ( ))a f,  and B ( , ( ))b f, .  Now, we can 

see in the graph that there exists a point C ( ( ))c f,  in between two extreme points A

and B, at which the tangent MN is parallel to the x -axis, i.e., gradient of the tangent at 

C ( ( ))c f,  is zero. It implies that ′f c′ )c = 0.

Correspondingly, we have a point x c  in between the points x a  and x b= ,b

such that ′f c′ )c = 0.

4.2.3 Important Observation

The conditions of Rolle’s theorem are only sufficient, they are not neccessary. 

This will be followed by three important examples:

Example 1  Verify Rolle’s theorem for the function f x x)x = 1 2−  for −1 1≤ ≤ .x

Sol. Here, we are to examine three conditions.

 i) Since, f x)x  is a polynomial in x  and all polynomials in x  are continious 

functions for all values of x R,

f x x)x = 1 2−  is continuous for all x,  where −1 1≤ ≤ .x
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 ii) Due to the same reason as above, f x)x  is also derivable for all x,  where 

−1 1≤ ≤ .x

 Moreover, ′f x′ x)x = 2− ,  which exists for all values of x  in −1 < < 1.x

 iii) f f (1) = 0.

 Thus, all the conditions of Rolle’s theorem are satisfied by f x x)x = 1 .2−  

 Now 

′ ⇒ − ⇒f c′ c)c = 0 2 =c 0 =⇒ c⇒ 0.

 Definitely, c = 0  lies between −1  and 1, i.e., −1 < < 1.c

 Hence, we can conclude that f x)x  satisfies all the conditions and as such 

there exists c ∈ ( 1− , 1)  such that ′f c′ )c = 0.  

 Therefore, Rolle’s theorem holds good.

Example 2  Verify Rolle’s theorem for the function f x x)x = ,x  −1 1≤ ≤ .x

 [WBUT-2003, 2009]

Sol. Here, f x)x  is defined as 

f x x x)x = ,x 1 <x 0,x for

         = 0 < 1.x0f ≤

 i) f x)x  is continious for all x  in −1 1≤ ≤x  except at x = 0. Now, 

x

f x x
→ + → +0 0x+ →

)x =x 0lim lf )x = im

x

f x x
→ − → −

−
0 0x− →

)x = ( ) = 0lim

and f (0) = 0

 so, f x)x  is also continious at x = 0.

 Therefore, f x)x  is continuous  for all x  in −1 1≤ ≤ .x

 ii) Here, 

′f x′ x)x = 1− , 1− < <x 0,f

     = 1 0 < < 1.for x

 So, f x)x  is derivable for all x  in −1 < < 1x  except at x = 0.

 Now we check the derivability of f x)x  at x = 0.

 Since, 

′ +
−

→ +
f

f h f

hh

(0 ) =
)h (0)

= 1
0

lim
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and ′ −
−

→ −
f

f h f

hh

(0 ) =
)h (0)

= 1−
0

lim

i.e., (0 )′ ′ −f f(0 )′ ≠)

 so, f x)x  is not derivable at x = 0.

 Therefore, f x)x  is not derivable for all x  in −1 < < 1.x

 iii) f f (1) = 1.

 Since all the conditions of Rolle’s theorem is not satisfied by f x)x ,  Rolle’s 

theorem is not applicable here.

 Here, we can observe that there exists no such c,  −1 < < 1c  for which 

′f c′ )c = 0,  i.e., Rolle’s theorem does not hold since the condition (ii) is violated.

Example 3  Verify Rolle’s theorem for the function f x
x x

x)x =
1 1

2
, 0 2.+ ≤ ≤xi

Sol. 

 (i) f x)x  is not continious for all x  in 0 2 (since it is continuous for 

0 < < 2x ).

 (ii) f x)x  is derivable in 0 < < 2,x  since

  ′
−

−f x′
x x

x)x =
1

(2 )

1
0 < < 2.

2 2
exists for

 (iii) f (0)  and f (2)  are not defined. So, f f (f 2).

 All the conditions are not satisfied by the function f x)x ,  so Rolle’s theorem is 

not applicable here.

 But it is interesting to see that 

 ′
−

−f c′
c c

)c =
1

(2 )

1
= 0

2 2

 ⇒ c = 1, 0 2hi h li b and

 i.e., there exists c  where 0 < < 2c  such that ′f c′ )c = 0.

 So, the result of Rolle’s theorem is still true, though all the conditions are not 

satisfied.

Conclusion from Examples 1 to 3:

 From Example 1 We have observed that all the conditions are satisfied, so 

Rolle’s theorem holds good.
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From Example 2 We have observed that some of the conditions are violated, 

so Rolle’s theorem does not hold.

From Example 3 We have observed that some of the conditions are violated 

but Rolle’s theorem is still true.

Summing up the above, we conclude that if all the conditions are satisfied by f x)x

in [ , ]a b,  then the result ′f c′ )c = 0,  where a c b< <c  surely occurs. But if any of the 

conditions are violated by f x)x ,  the result ′f c′ )c = 0,  where a c b< <c  may still be 

true but not in at all times. In the latter case, we can say that Rolle’s theorem is not 

applicable.

So it is clear that the conditions of Rolle’s theorem are only sufficient, by no 

way they are neccessary.

4.3 LAGRANGE’S MEAN VALUE THEOREM (LAGRANGE’S MVT)

4.3.1 Statement

Let f I R→  be a real-valued function where I a b[ , ]b  and f satisfies the fol-

lowing conditions:

 i) f is continuous in the closed interval [ , ]a b,

ii) f is derivable in the open interval ( , ),a b,  i.e., ′f x′( )x  exists for x b∈ ( ,a ).

Then there exists at least one value of x (say c), c b∈ ( ,a ),  i.e., a c b< <c  such 

that

 
f b f a

b a
f c c b

)b )a
= f ) <a < .b

− ′  [WBUT 2002, 2004] 

Proof: Let us construct a function 

φ ( )  as  φ ( ( ) , ]x f) = x k) x x a b,⋅k ∈for  (1)

where the constant k  is to be determined such that φ φ( (φ ).a b) = (φ

So, 

φ φ( (φ ) ) = )a b) = (φ f a( k f b( k b)a( += )f (

⇒ −
−

k
f b f a

b a−
)b )a

. (2)

Now since f x)x  is continuous in [ , ],a b,  φ( )  is continuous there and also since 

f x)x  is derivable in ,( )a b, b  φ( )  is derivable there.

Also φ φ( (φ ).a b) = (φ

Therefore, φ( )  satisfies all the conditions of Rolle’s theorem in [ , ].a b,  So, there 

exists a value x c= ,c  a c b< <c  such that ′φ ′( ) = 0.



  4.7  Mean Value Theorems and Expansion of Functions 

Therefore, by (1), 

′ ′ ′ −φ′( (′ ) =+ 0 ⇒ ) =c f) = c k) + f c′(′ k

Using (2) in the above, we have 

′ −
f c′ f b f a

b a−
a c b)c =

)b )a
< <c .for

Hence, the theorem is proved.

Note: If we consider f a f b)a = f )  then from the above ′f c′ )c = 0  for a c b< <c .  So, 

Lagrange’s MVT becomes Rolle’s theorem.

4.3.2 Geomertical Interpretation

y = f(x)

y

A

f(a)

B

C
M

N

f(b)

x

x = a x = c x = b

Figure 4.2 Lagrange’s MVT

Figure 4.2 represents a curve y f x(f )  which is continuous in [ , ]a b,  and derivable in 

( , ).a b,  Now we consider the chord AB joining the two points A ( ( ))a f,  and B

( ( ))b f, b  of the curve.

So, gradient of the chord AB is 

BN

AN

f b f a

b a
=

)b )a
.

−

Again since the function is derivable everywhere in ( , ),a b,  a tangent exists at every 

point between the extreme points A and B.

Now we draw a tangent MN which is parallel to the chord AB and touches the curve 

at the point C ( )).c f, c  Here the point C lies between the points A and B and corre-

spondingly x c  lies between x a  and x b= .b
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Then gradient of the tangent MN is ′f c′ )c  (Since here at C, x c ).

Since the chord AB and the tangent MN are parallel, their gradients are same. So, 

we have 

f b f a

b a
f c c b

)b )a
= f ) <a < .b

− ′ h

4.3.3 Other Forms of Lagrange’s Mean-Value Theorem

 (1) If in the statement of Section 4.3.1 we consider b a h= ,a h+  h > 0,  then the 

point c where a c a h< <c  can be repesented as

  c a= ,a < 1+θ θh,h 0 <  and correspondingly Lagrange’s MVT in the 

interval [ , ]a, h+  can be written as

f a h f a hf aa h (f ) hfh ), < 1.ah (f ′ +θ θh), 0 <

 (2) Now if we put a = 0  and h x  in the above form then Lagrange’s MVT 

in the interval [0, ]  can be written as

f x f x f x)x = f )x , < 1.′ θ θ)x , 0 <

Example 4  Verify Lagrange’s MVT for the function f x x)x = 3x 22 +x3  for 

1 2.x

Sol. Here, we are to examine two conditions.

 i) Since f x)x  is a polynomial in x  and all polynomials in x  are continuous 

functions for all values of x R,

f x x)x = 3x 22 +x3  is continuous for all x,  where 1 2.x

 ii) Due to the same reason as above, f x)x  is also derivable for all x,  where 

1 2.x

 Moreover, ′ +f x′ x)x = 2 3,  which exists for all values of x  in 1 2.x

 Since all the conditions of Lagrange’s MVT are satisfied by f x x)x = 3x 22 +x3

in 1 2,x

 there should exist c ∈ (1, 2)  such that

f f
f c

(f 1)

2 1
= f ).′

 Now the above implies

12 6

1
= 2 3.

−
+c

i.e., =
3

2
.c
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 Here, c =
3

2
 lies between 1 and 2.

 Hence Lagrange’s MVT is verified for the given function.

Example 5  Verify Lagrange’s mean-value theorem for f x x)x = ,xcos  

where 0
2

≤ ≤x
π

Sol. Here we are to examine two conditions.

 i) f x x)x = cos  is continuous for all values of x,  0
2

.≤ ≤x
π

 ii) ′f x′ x)x = s− in  exists for all values of x,  0 < <
2

.x
π

  Since all the conditions of Lagrange’s MVT are satisfied by f x x)x = cos  in 

0
2

,≤ ≤x
π

  there should exist c ∈⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

0,
2

π
 such that

f f

f c

π

π
2

(0)

2
0

= f ).

⎛
⎝⎝⎝⎝

⎞
⎠⎠⎠⎠

−
′

 Now the above implies 

cos cos

sin

π

π
2

0

2
0

=

−
− c

⇒ sin c =
2

π

⇒ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−c =
21sin
π

 Here, c =
21sin− ⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠π

 lies between 0 and 
π
2

.

 Hence Lagrange’s MVT is verified for the given function.
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4.3.4 Applications of Lagrange’s Form of Mean-Value 
Theorem

Example 6  (Estimation of numerical value)

(i) Estimate the numerical value of 174  using Lagrange’s MVT.

Sol. Let us consider the function f x x)x =

1

4  in [16,17].

i) f x x)x =

1

4  is a continuous function for all values of [x ∈16, 17]

ii) ′
−

f x′ x)x =
1

4

3

4  exists for all values of x ∈ (16,17).

Since all the conditions of Lagrange’s MVT are satisfied by f x)x ,  there should 

exist such a c ∈ (16,17)  such that

 
f b f a

b a
f c

)b )a
= f )

− ′

⇒ − ′f f− f c′(16) = (17 16) )c

Taking h b a =b a 17 16 = 1,−=a 17  c aa ,θ θh =h 16  0 < < 1θ

⇒ − ′f f− f(16) = (17 16) (16 ), < 1θ θ), 0 <

⇒ − ⋅
−

16 =
1

4
(16 ) , < 14 417

3

4θ θ) , 0 <4

Since 

(16 ) < (16) =
1

8

3

4

3

4

− −3

θ

We have from above 

17 2 <
1

4

1

8
=

1

32
4 - ◊2 <

i.e., 17 < 2
1

32
= 2

1

32
4 +

Hence, the estimate is 

2 < 17 < 2
1

32
.4

(ii) Estimate the value of log
4

3
 using Lagrange’s MVT.

Sol.  Let us consider the function f x x)x = log  in [3, 4].

i) f x)x  is continuous for all values of [x ∈3, 4].
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 ii) ′f x′
x

( )x =
1

 which exists for all values of x ∈ (3,4).

 Therefore, all the conditions of Lagrange’s MVT is satisfied by f x)x ,  and 

there should exist c ∈ (3, 4)  such that

log l g3log

(4 3)
= ) 3 < < 4

−
′f c(′ cf

log
4

3
=

1
3 < < 4

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠ c

cfor

 Since

3 < < 4
1

4
<

1
<

1

3
c

c
⇒

The estimate is given by 

1

4
<

4

3
<

1

3
.log

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

Example 7  (Proof of some standard inequalities using Lagrange’s MVT)

(i) Using Lagrange’s MVT, prove  

x

x
x

1
< >x 0.

+
l g ix(1 )x < x f

Sol. Let f x)x = (1 )xl g  for x > 0.

 It is obvious that f x)x  satisfies all the conditions of Lagrange’s MVT in 

[0, ].

 From Section 4.3.3, we have Lagrange’s MVT in the interval [0, ]  as

 f x f x f x)x = f )x , < 1.′ θ θ)x , 0 <

 Here f (0) = 1 = 0log  and ′
+

f x′
x

)x =
1

1
.

 So from above 

 log(1 ) = 0
1

1
, 0 < < 1.+) 0

+
x) 0 +) = 0

xθ
θh

 or, (1 ) =
1

l g
+
x

xθ
 Now we have 

 0 < < 1θ

 or i, 0 < < , >since 0θ x x<

 or, 1 < 1 1+ +< 1θ x x< 1+< 1
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or,
1

1
<

1

1
< 1

+ +1x x+1 θ

 Since x > 0  we have, 

1

1
<

1

1
< 1

+
⋅

+
⋅

x
x

x
x x< 1⋅< 1

θ

or,
1

<
1

<
x

x

x

x
x

+ +1x θ

 Again log(1 ) =
1

,
+
x

xθ
 therefore

or,
1

< (1 ) < .
x

x
x) <

+
l g

(ii) Using Lagrange’s MVT, prove 0 <
1 1

< 1
x

e

x

x

log  [WBUT 2002]

Sol. Let f x e
x)x = .e

 It is obvious that f x)x  satisfies all the conditions of Lagrange’s MVT in 

[0, ].

 From Section 4.3.3, we have Lagrange’s MVT in the interval [0, ]  as

 f x f x f x)x = f )x , < 1.′ θ θ)x , 0 <

 Here f e = 10  and ′f x′ e
x)x = .e

 So from above 

 e xe
x x1 , 0 < < 1.+ θ θh

 or, =
1

e
e

x

x
x

θ −

 or,
1

l g l( ) = og
e

x

x
x

θ −

 or, =
1

θ x
e

x

x

log
−

 or, =
1 1

θ
x

e

x

x

log

 Since 0 < < 1,θ we have

 0 <
1 1

< 1
x

e

x

x

log

Skar2_04_001-023.indd   12Skar2_04_001-023.indd   12 8/7/2010   7:31:00 PM8/7/2010   7:31:00 PM



  4.13  Mean Value Theorems and Expansion of Functions 

(iii) Using Lagrange’s MVT, prove 1
2 1

< 1 < 1
2

1 < < 0+
+

+ +< 1 −
x

x
x

x
x,

 [WBUT 2004]

Sol. Let f x x)x = 1 .+

 It is obvious that f x)x  satisfies all the conditions of Lagrange’s MVT 

 From Section 4.3.3, we have Lagrange’s MVT in the interval [0, ]  as

f x f x f x)x = f )x , < 1.′ θ θ)x , 0 <

 Here f (0) = 1 0 = 1  and ′
+

f x′
x

)x =
1

2 1
.

 So from above 

1 = 1
1

2 1
, 0 < < 1.+= 1

+
x x+= 1

xθ
θh

 Now we have 

0 < < 1θ

or i, 0 > > , <since 0θ x x>

or, 1 > 1 1+ +> 1θ x x> +> 1

or, 1 > 1 1+> 1+θ x x> +> 1

or, 1 <
1

1
<

1

1+ +1θ x x+1

 Since x < 0,

1
1

2
>

1

1

1

2
>

1

1

1

2
⋅ ⋅

+
⋅ ⋅

+
⋅ ⋅x

x
x

x
x

θ

or,
2 1

<
2 1

<
2

x

x

x

x

x

+ +2 1x θ

or, 1
2 1

< 1
2 1

< 1
2

+
+

+
+

+
x

x

x

x

x

θ
 Again 

1 = 1
1

2 1
+= 1

+
x x+= 1

xθ
 Hence

1
2 1

< 1 < 1
2

1 < < 0+
+

+ +< 1 −
x

x
x

x
x,
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Example 8  (Proof of some well-known properties of function using 

Lagrange’s MVT) 

(i) Suppose ′f x′ )x = 0  in [ , ].a b,  Then using Lagrange’s MVT, prove that f x)x

is constant in [ , ].a b,

Sol. Let us consider two arbitrary points x1  and x2  so that a x x b< <x < .b1 2x<

 Now since ′f x′ )x = 0  in [ , ],a b,  the function f x)x  is derivable and so continu-

ous in [ , ].a b,

 Then the function f x)x  is also continuous and derivable in [ , ].1 2, x,,

 Therefore, we can apply Lagrange’s MVT on f x)x  in [ , ],1 2, x,,  and applying 

we have

 
f x f x

x x
f c c

)x )x
= f ) <x < .x2 1f x) x

2 1x
1 2c < x

− ′ f

 Now since ′f x′ )x = 0  in [ , ],a b,  also ′f x′ )x = 0  in [ , ]1 2, x,,

 and so, ′f c′ )c = 0  for x x1 2c x< <cc .

 Therefore

 
f x f x

x x
f x f x

)x )x
= 0 )x = f )2 1f x) x

2 1x
2 1f x) = f

−
⇒

 Since x1  and x2  are two arbitrary points and we have the same functional 

value for them, i.e., f x f x)x = f ).1 2f x) = f

 Hence we can conclude that f x)x  is constant in [ , ].a b,

(ii) Suppose ′ ′f x′ g x)x = (′g )  in [ , ]a b,  then using Lagrange’s MVT prove that 

f x)x = ( )g x( + constant  in [ , ].a b,

Sol. Let φ( ( ) ( ).x f) = x g) x

 Then φ’ ’ ’
x f x g x(x (f ) (g ) = 0.

 Now in the last example using Lagrange’s MVT we have proved that if 

′f x′ )x = 0  in [ , ],a b,  then f x)x =  constant  in [ , ].a b,  

 Therefore, 

 φ( ) = [ , ]a[) = bi

 i.e., ) ( ) = [ , ]f x( g x( a b,constant in

 f x g x a b)x = (g ) [ , ]b .i
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(iii)Suppose f x)x is continuous in [ , ]a b,  then using Lagrange’s MVT, prove that 

f x)x  is increasing if ′f x′ )x > 0  and f x)x  is decreasing if ′f x′ )x < 0

Sol. Let us consider two arbitrary points x1  and x2  so that a x x b< <x .b1 2x<

Now since the function f x)x  is derivable, it is continuous in [ , ].a b,

Then the function f x)x  is also continuous and derivable in [ , ].1 2, x,,

Therefore, we can apply Lagrange’s MVT on f x)x  in [ , ],1 2, x,,  and applying we 

have

 
f x f x

x x
f c c

)x )x
= f ) <x < .x2 1f x) x

2 1x
1 2c < x

− ′ f

In the first case, since ′f x′ )x > 0  in [ , ],a b,  also ′f x′ )x > 0  in [ , ]1 2, x,,

and so, ′f c′ )c > 0  for x x1 2c x< <cc .

Therefore,

f x f x

x x
f x f x

)x )x
> 0 )x > f )2 1f x) x

2 1x
2 1f x) > f

−
⇒

So, x f x f x1 2 1 2f x< x f2x ) < )x2x  and hence the function is increasing.

In the 2nd case, since ′f x′ )x < 0  in [ , ],a b,  also ′f x′ )x < 0  in [ , ]1 2, x,,

and so, ′f c′ )c < 0  for x x1 2c x< <cc .

Therefore,

f x f x

x x
f x f x

)x )x
< 0 )x < f )2 1f x) x

2 1x
2 1f x) < f

−
⇒

So, x f x f x1 2 2 1f x< x f2x ) < )x1x  and hence the function is decreasing.

4.4 CAUCHY’S MEAN-VALUE THEOREM (CAUCHY’S MVT)

4.4.1 Statement

Let f I R→  and g I R→  be two real-valued functions where I a b[ , ]b  and 

f and g satisfy the following conditions,

 i) f and g are both continuous in the closed interval ];a b,

ii) f and g are both derivable in the open interval ( , );a b,

iii) ′ ≠g x( )x 0  for all values of x in a x b< <x ;
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Then there exists at least one value of x (say c) c b∈ ( ,a ),  i.e., a c b< <c  such 

that,

f b f a

g b g a

f c

g c
a c b

)b )a

)b ( )a
=

)c

( )c
< <c .

−
−

′
′

for  [WBUT 2001, 2003]

Proof: Let us construct a function φ( )  as 

φ( ) = ( ) ( ) , ]x f) = x) g x( b  (1)

where the constant k  is to be determined such that φ φ( (φ ).a b) = (φ
So, 

φ φ( (φ ) ) ( ( ) )a b) = (φ f a( k g a f) f) b k) g b()a( ((a f) = ) ⋅

⇒ −
−
−

k
f b f a

g b g a

)b )a

)b ( )a
.  (2)

Here, g b g a)b ( )a ,≠  otherwise it satisfies the conditions of Rolle’s theorem which 

results ′g x x b( )x = 0, <a < ,b  which contradicts the condition (iii) of the theorem. So k

is finite.

Now since f x)x  and g x( )x  both are continuous in [ , ],a b,  φ( )  is continuous there 

and also since f x)x  and g x( )x  are derivable in ,( )a b, b  φ( )  is derivable there.

Also, φ φ( (φ ).a b) = (φ
Therefore, φ( )  satisfies all the conditions of Rolle’s theorem in [ , ].a b,  So, there 

exists a value x c= ,c  a c b< <c  such that ′φ′( ) = 0.

Therefore by (1), 

′ ′ ′ ⇒
′
′

−φ′( (′ ) (⋅ ′ ) = 0
)

( )
=c f) = c k) + g c(

f c′(
g c(

k

Using (2) in the above, we have 

′ −
−

f c′ f b f a

g b g a
a c b)c =

)b )a

)b ( )a
< <c .for

Hence the theorem is proved.

Note: When, g x x( )x = ,x  Cauchy’s mean-value theorem takes the form of Lagrange’s 

mean-value theorem

f b f a

b a
f c c b

)b )a
= f ) <a <

− ′ f

4.4.2 Other Forms of Cauchy’s Mean-Value Theorem

 1) Let b a h= ;a h+  then the point c where a c a h< <c  is repesented as 

  c a= ,a < 1+θ θh,h 0 <
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  Cauchy’s mean-value theorem in the interval [ , ]a, h+  takes the form

f a h f

g a h g

f a

g a

a h ( )a

(a h ( )a
=

)a h

( )a h
, 0 < < 1

h

h

′
′

θ
θ

θ

 2) If we set a = 0  and h x  in the above form then in the interval [0, ],

Cauchy’s MVT takes the form

f x f

g x g

f x

g x

)x (0)

( )x (0)
=

)x

( )x
, 0 < < 1

−
−

′
′

θ
θ

θ

Example 9  Verify Cauchy’s mean-value theorem for 

f x g x
x

)x = (x g )
1

[1, 2]d ix(g ) =
1

n

Sol. 

 i) The functions f x x)x =  and g x
x

( )x =
1

 are both continious in [1, 2];

 ii) ′f x′
x

)x =
1

2
 and ′ −

−

g x x( )x =
1

2

3

2  which exists for all values of x ∈ (1, 2);

 iii) ′ ≠g x( )x 0  for all values of x  in 1 < < 2;x

Therefore, all the conditions of Cauchy’s MVT are satisfied by the given functions 

and so there should exist such a c ∈ (1, 2)  such that

f f

g g

f c

g c

(f 1)

(2) (g 1)
=

)c

( )c

′
′

which implies

2 1

1

2
1

=

1

2

1

2

1

2

3

2− −

−

−

c

c

or, = 2c

Here, c = 2  lies between 1 and 2.

Hence Cauchy’s MVT is verified.

Example 10  If f x e
x)x =  and g x e

x( )x = − , using Cauchy’s mean-value theorem, 

show that θ  is independent of both x  and h  and is equal to 
1

2
.   [WBUT 2003]
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Sol. 

Since f x e
x)x =  and g x e

x( )x = −  are continuous and differentiable for all real values of 

x  and ′ ≠g x
x( )x = 0− ≠−x ,

 Applying Cauchy’s MVT on the functions in [ , ]x, h+  (see Section 4.4.2) 

we have

f x h f

g x h g

f x h

g x h

x h ( )x

(x h ( )x
=

)x h

( )x h
, 0 < < 1

h

h

′
′

θ
θ

θ

or, =
( ) ( )

e e

e e
( )

e

e

x h x

x

x h

h−( − −(−e

θ

θ

or,
( 1)

1
=

e (

e

e

e

h h(
h

h

h−
−

−

θ

θ

or, =e e=h h2θ

or, =
1

2
.θ

Therefore, θ  is independent of x  and h  and is equal to 
1

2
.

 4.5 TAYLOR’S THEOREM (GENERALISED MEAN-VALUE THEOREM)

4.5.1  Taylor’s Theorem with Lagrange’s Form of 
Remainder

Statement: Let f I R→   be a real-valued function where I a b[ , ]b  and f satis-

fi es the following conditions:

 i) the ( 1)-th derivatives of f x)x ,  i.e., f x
( 1n )

)x  is continuous in [ , ];a b,

 ii) the n-th derivative of f x)x ,  i.e., f x
( )n

)x  exists in ( , )b,

Then there exists at least one value of x  (say c ) c b∈ ( ,a ),  i.e., a c b< <c  such 

that

f b f a b a f a f a f
n

)b = f ) ( ) f )
( )b a

2!
)a

( )b a

( 1n )!

2 1n
( )b a ( 1n )

b( ′ + ′′ + + ( )(( R) n

where the ( 1)-th term R
b

n
f cn

n

=
( )b a

!
)c

( )n  is called the Lagrange’s form of 

reminder after n  terms.
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4.5.2 Other Forms of Taylor’s Theorem with Lagrange’s 
Form of Remainder

(1) Let R→   be a real-valued function where I a h= [ , ]a h ,  h > 0  and f

satisfies the following conditions:

i) the ( 1)-th derivatives of f x)x ,  i.e., f x
( 1)n )x  is continuous in [ , ];a, h+

ii) the ′f x′
x

( )x =
1
, -th derivative of f x)x ,  i.e., f x

( )n )x  exists in ( , )a, h+

  Then there exists at least one value of θ ,  0 < < 1θ  such that,

f a h f a f a
h

f a
h

f a R
n

n( )a h = (f (f ) hfh )
2!

( )a
( 1n )!

( )a
2 1

( 1n )′ ′′
−

 

where R
h

n
f an

n

=
!

)a , < 1( )n θ θh)h , 0 <

(2) Putting b x= ,x  (from Section 4.5.1), we have

f x f a x a f a f a f
n

( )x = (f ) ( ) f )
( )x a

2!
)a

( )x a

( 1n )!

2 1
( 1n )

x( ′ ′′
−

 ( )(( R) n

where R
x a

n
f a x an

n
n=

( )

!
{ ( )}, 0 < < 1( )- + -q q

Note: The form (2) is known as Taylor’s expansion of f x)x  about x a  with the 

Lagrange’s form of reminder. 

Basically, this is a finite-series expansion of a function about any point. Sometimes 

we also call this as the power-series expansion of x  about a  in the finite form.

Example 11  Using Taylor’s theorem, expand f x x)x = log ,  1 < <x ∞  about 

the point x = 2 with the Lagrange’s form of remainder after 3 terms.

Sol.

 Here, f x x)x = log  for 1 < < .x

Now, ′f x′
x

( )x =
1
, ′′ −
f x′′

x
( )x =

1
,

2
′′′f x′′′

x
( )x =

2
3
  etc. all exist and continuous in 

1 < < .x

From (2) of Section 4.5.2 we have Taylor’s expansion of f x)x  about the point 

x a  with the Lagrange’s form of reminder after 3 terms as 

f x f a x a f a f a R)x = f ) ( ) f )
( )x a

2!
)a

2

3x( ′ ′′

where R
x a

f a x a3

3

=
( )

3!
{ ( )}, 0 < < 1

- ¢¢¢ + -q q
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 Here a = 2,  so the expansion becomes 

f x f x f f R)x = f 2x ) (f 2)
( 2x )

2!

2

3x ′ + ′′

where R f x3

3

=
( 2x )

3!
{ )}, < 1′′′ θ θx 2x )}, 0 <x

  Now 

f f f(2) =
1

2
, (f 2) =

1

4
l g ′ ′f(2)

1
f ′′′ −

and ′′′
+

f x′′′ +{ 2−x )} =
2

{2 ( 2−x )}3
θ

θ

 Putting the values, we have 

f x R)x = 2
1

2
( 2x )

1

4

( 2x )

2!

2

3log + (x − +

where R3

3

3
=

( 2x )

3!

2

{2 ( 2x )}
, 0 < < 1

(x+θ
θ

 So, 

log l glog 2loglog
1

2
( 2x )

( 2x )

8

( 2x )

3

1

{2 ( 2x )}
0 < < 1.

2 3( 2x )
3

+ (x − + ⋅
(x+θ

θwhere

4.5.3 Taylor’s Theorem with Cauchy’s Form of Remainder

Statement: Let f I R→  be a real-valued function where I a b[ , ]b  and f satis-

fies the following conditions:

 i) the ( 1)-th derivatives of f x)x ,  i.e., f x
( 1n )

)x  is continuous in [ , ]a b,

 ii) the n-th derivative of f x)x ,  i.e., f x
( )n

)x  exists in ( , )b,

Then there exists at least one value of x (say c) c b∈ ( ,a ),  i.e., a c b< <c  such 

that,

f b f a b a f a f a f
n

)b = f ) ( ) f )
( )b a

2!
)a

( )b a

( 1n )!

2 1n
( )b a ( 1n )

b( ′ + ′′ + + ( )(( R) n

where the ( 1)-th term R f cn

n

=
( )b a ( )b c

( 1n )!
)c

1
( )n)a (b

−

 is called the Cauchy’s 

form of remainder after n terms.
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4.5.4 Other Forms of Taylor’s Theorem with Cauchy’s Form 
of Remainder

Let f I R→  be a real-valued function where I a h[ , ]a h ,  h > 0  and f satis-

fies the following conditions:

 i) the ( 1)-th derivatives of f x)x , i.e., f x
( 1n )

)x  is continuous in [ , ]a, h+

 ii) the n-th derivative of f x)x ,  i.e., f x
( )n

)x  exists in ( , )a, h+

Then there exists at least one value of θ ,  0 < < 1θ  such that,

f a h f a hf a
h

f a
h

f a R
n

na h (f (f ) hfh )
2!

)a
( 1n )!

)a
2 1

h
n

( 1n )
ah (f ′ + ′′ + + +

where R
h

f an

n n

=
(1 )

( 1n )!
)a , < 1

1
( )n− −θ

θ θ)h , 0 <

 4.6 MACLAURIN’S THEOREM

Statement: Let f I R→  be a real-valued function where I x[0, ]  and f satis-

fies the following conditions:

 i) the ( 1)-th derivatives of f x)x  i.e f x
( 1n )

)x  is continuous in [0, ]

 ii) the n-th derivative of f x)x  i.e f x
( )n

)x  exists in (0, )

Then there exists at least one value of θ ,  0 < < 1θ  such that

f x f xfx
x

f
x

f R
n

n)x = f (0)
2!

(0)
( 1n )!

2 1
x

n
( 1n )′ + ′′ + +

where (Lagrange s form of remainder)R
x

n
f xn

n

=
!

)x , < 1
( )n θ θ)x , 0 < ′

and (Cauchy s form of remaind
x

fn

n n
(1 )

( 1n )!

1
( )n− ′

−θ
θ θ er)ee

Observation: Generally, we choose Lagrange’s form of remainder if anything is 

not mentioned.

Note: If we put a = 0  in the form (2) of Section 4.5.2, then too we can get the same 

expression of Maclaurin’s theorem as above.

This is also called Maclaurin’s finite-series expansion of a function about x = 0.

Sometimes we call this as the power-series expansion of x  in finite form.
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Example 12  Expand f x x)x = sin  in a finite series with the Lagrange’s form of 

remainder.

Sol. Here, f x x)x = sin  and so its n -th order derivative is given by 

 f x
n

x
( )n )x =

2
.sin

πn
+⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

 Thus, f x
( )n )x  exists for every order n  and also for every value of x.

 Here f
n( )n (0) =
2

.sin
πn

 Now the Maclaurin’s finite-series expansion of f x)x  with the Lagrange’s 

form of remainder is given by

 f x f xfx
x

f
x

f
x

f
n

)x = f (0)
2!

(0)
3

3!
(0)

( 1n )!

2 1n3 ( 1n )′ + ′′ + ′′′ + + (0(( ) + Rn

where R
x

n
f xn

n

=
!

)x , < 1( )n θ θ)x , 0 <

 Here, 

f f f f f(0) = 1, (0) = 1, (0) = 0( )iv′ ′f(0) 1 ′′′ ′′′ − …etc.

and f x
n

x
( )n )x =

2
.θ

πn
θsin +⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

 Putting the values, we have 

sin sinx x
x x x

R
n

n= 0 1
2!

0
3!

( 1)
( 1n )!

( 1n )

2

2 3
x

1

+ + + +1) + +
− π

where R
x

n

n
n

n

=
! 2

, < 1sin
πn

θ, 0θ x <+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠⎠⎠

 So, 

sin sin six x
x x

x
n

3! ( 1n )!

( 1n )

2 !n 2

3 1
x

n

+ + ++ sin
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

πnπ
i

x
n ⎛⎛⎛ θ where 0ee < < 1θ

 4.7 INFINITE SERIES EXPANSION OF FUNCTIONS

In this section, we check whether we can express any function f x)x  as an infinite 

series about the point x a  in the form of 

f a f a f a
n

f a
n

)a ( )x a )a
( )x a

2!
)a

( )x a

!
)a

2
( )n+ (x ′ + ′′ + + + f )a+ +  (1)

Now the first question that arises is that for any function can we always get a series 

of the above form (1). The answer is that we can construct the series iff f a
( )n )a  exists 

for each n.
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Next we have to find out whether the infinite series (1) will be convergent or not. To 

answer this question consider n -th partial sum 

S f a x a f a f a f an

n

(f ) ( (f )
( )x a

2!
)a

( )x a

( 1n )!

2 1n( ) ( 1n )−x( ′ + ′′ + + ).))

Now if 
n

nS
→∞

lim  exists and finite (= )S  then the series converges to S.

The last and most vital question is that if f  satisfies all the conditions of Taylor’s 

theorem with any form of remainder in the interval [ , ],h a h, a

i.e., 

f x f a x a f a f a f
n

)x = f ) ( ) f )
( )x a

2!
)a

( )x a

( 1n )!

2 1n( ) ( 1n )−x( ′ + ′′ + + ( )(( ,R) n

then under what conditions will the infinite series (1) be convergent to f x)x .

Now, we have from above 

f x S Rn nR)x =

i.e., ( )S f= R)n n( )f R)

Now 
n

n
n n

nSn x R
→∞ →∞ →∞

lim li li= (f )

     = ( )f x( R
n

n−
→∞

lim

Again the infinite series (1) will be convergent and converges to f x)x  iff 

n
nS fn x

→∞
lim = (f ),

which is possible from above iff  
n

nR
→∞

lim = 0.

Hence the infinite series (1) will be convergent and converges to f x)x  iff 

n
nR

→∞
lim = 0.

In this case, we can write 

f x f a x a f a f a
n

f a
n

)x = f ) ( ) f )
( )x a

2!
)a

( )x a

!
)a

2
( )n−x( ′ + ′′ + + + f )a+ +

4.7.1 Taylor’s Infinite-Series Expansion

Statement: Let f I R→  be a real valued function where I a h a h[ , ]a h− h a  and  

f satisfies the following conditions:

 i) the n
th

 derivative of f x)x ,  i.e., f x
( )n

)x  exists for all n in [ , ]h a h, a  

 ii) 
n

nR
→∞

lim = 0  where Rn  is any form of remainder after n terms in the 

Taylor’s finite expansion of f x)x  about x a= .a

Then we have Taylor’s infinite-series expansion of f x)x  about x a  as 

f x f a x a f a f a
n

f a
n

)x = f ) ( ) f )
( )x a

2!
)a

( )x a

!
)a

2
( )n−x( ′ + ′′ + + + f )a+ +
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4.7.2 Maclaurin’s Infinite-Series Expansion

Statement: Let R→  be a real-valued function where I h h[ , ]h ,  h > 0

and f satisfies the following conditions:

i) the n
th

 derivative of f x( )x ,  i.e., f x
( )n

( )x  exists for all n in [ , ]h h,  

 ii) 
n

nR
→∞
lim = 0  where Rn  is the any form of reminder after n terms in the 

Maclaurin’s finite expansion of f x( )x .

Then we have Maclaurin’s infinite-series expansion of f x( )x  as 

f x f xf
x

f
x

n
f

n

( )x = (f (0)
2!

(0)
!

(0)
2

( )n′ ′′   

Note:

If we consider a = 0  in the Taylor’s infinite series expansion of f x)x  then we have the 

Maclaurin’s infinite series expansion of f x)x .

4.7.3. Maclaurin’s Infinite-Series Expansion of sin x

Here 

f x x)x = sin

Now

f x
n

x n
( )n )x =

2
,sin

πn⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

for every

Thus, f x x)x = sin  possesses derivatives of every order for every value of x  in any 

interval [ ].h h

Here 

f
n

n
( )n (0) =

2
,sin

πn
for all

f f f f f
iv(0) = 0, (0) = 1, (0) = 0, (0) = 1, (0) = 0( )′ ′ ′ ′ ′ ′ − … and so on.

Now in the Maclaurin’s finite expansion, the remainder Rn  after n  terms in 

Lagrange’s form is 

R
x

n
f xn

n

=
!

)x( )n θ

=
! 2

, < 1
x

n

n
n

sin
πn

θ, 0 <θ x
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠⎠⎠
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Here

0
! 2

≤ ≤ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

R
x

n

n
xn

n

sin
πn

θ

  =
! 2

x

n

n
x

n

sin
πn

θ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

Again 

sin x x≤ 1 .xf ll

So, we have 

0
!

1 =
!

≤ ≤ ⋅R
x

n

x

n
n

n n

i.e.,
! !

− ≤ ≤
x

n
R

x

n

n

n

n

Again 

n

n
x

n→∞
lim

!
= 0

which implies

n

n
x

n→∞
lim

!
= 0.

Hence from above, we obtain 

n
nR

→∞
lim = 0.

Therefore, we have Maclaurin’s infinite-series expansion of f x x)x = sin  and is 

given by

f x f
x

f
x

f
x

f
x

n
f

n
n( ) = (0)

1!
(0)

2!
(0)

3!
(0)

!
(0)

2 3
( )+ ¢ + ¢¢ + ¢¢¢ + + +  

or, = 0
1!

(1)
2!

(0)
3!

( 1)
! 2

2 3

sin sinx
x x x x

n

n
n

+ + + - + + Ê
ËÁ

ˆ
¯̃ +  

p

or, =
3! 5!

3 5

sin x x=
x x

− − 



 4.26   Engineering Mathematics-I 

4.7.4. Maclaurin’s Infinite-Series Expansion of cos x

Here 

x)x = cos

Now

f x
n

x n
( )n )x =

2
,cos

πn⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

for every

Thus, f x x)x = cos  possesses derivatives of every order for every value of x  in any 

interval [ ].h h

Here 

f
n

n
( )n (0) =

2
,cos

πn
for all

f f f f f
iv(0) = 1, (0) = 0, (0) = 1, (0) = 0, (0) = 1( )′ ′ ′ − ′ ′ ′

… and so on.

Now in the Maclaurin’s finite expansion, the remainder Rn  after n  terms in 

Lagrange’s form is 

 R
x

n
f xn

n

=
!

)x( )n θ

=
! 2

, 0 < < 1
x

n

n
x

n

cos
p

q q+Ê
ËÁ

ˆ
¯̃

Here

0
! 2

£ £ +Ê
ËÁ

ˆ
¯̃R

x

n

n
xn

n

cos
p

q

=
! 2

x

n

n
x

n

cos
p

q+Ê
ËÁ

ˆ
¯̃

Again 

cos x x£ 1 .for all

So, we have 

0
!

1 =
!

£ £ ◊R
x

n

x

nn

n n

i.e.,
! !

− ≤ ≤
x

n
R

x

n

n

n

n

Again 

n

n
x

n→∞
lim

!
= 0
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which implies

n

n
x

n→∞
lim

!
= 0.

Hence from above, we obtain 

n
nR

→∞
lim = 0.

Therefore, we have Maclaurin’s infinite-series expansion of f x x)x = cos  and is 

given by

   f x f
x

f
x

f
x

f
x

f
x
n

)x = (f 0)
1!

(0)
2!

(0)
3!

(0)
4!

(0)
2 3 4

( )iv′ ′′ ′′′  

nn
f

!
(0)( )n

 

or, = 1
1!

(0)
2!

( 1)
3!

(0)
4!

(1)
! 2

2 3 4

cos cosx
x x

(0)
x x

(0)
3

x

n

n
n

1)
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
 

πn
⎠⎠
⎟
⎞⎞
⎠⎠⎠⎠

 

or, = 1
2! 4! 6!

2 4 6

cos x
x x x

− −  

4.7.5 Maclaurin’s Infinite-Series Expansion of e 
x 

 [WBUT 2004]

Here 

f x e
x)x =

Now

f x e n
x( )n )x = ,e for every

Thus, f x e
x)x =  possesses derivatives of every order and for every value of x  in 

any interval [ ].h h

Here 

f n
( )n (0) = 1, for all

f f f f f
iv(0) = 1, (0) = 1, (0) = 1, (0) = 1, (0) = 1( )′ ′ ′ ′ ′ ′

… and so on.

Now in the Maclaurin’s finite expansion, the remainder Rn  after n  terms in 

Lagrange’s form is 

R
x

n
f xn

n

=
!

)x( )n θ

=
!

, 0 < < 1( )x

n
e

n

θ
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Here

0 =
! ! !

( ) ≤= =( ) ( )x

n
e

x

n
e

x
en

n n n
xθ θ) () (x θ

Since 

0 < <θ θ< 1 0 <⇒ x x<

i.e., 0 < <θ x x<

we have

e
x xθ

< .e

Again 

n

nx

n→∞
lim

!
= 0

which implies

n

nx

n→∞
lim

!
= 0.

Hence, from above, we obtain 

n
nR

→∞
lim = 0.

Therefore, we have Maclaurin’s infinite-series expansion of f x e
x)x =  and it is 

given by

f x f
x
f

x
f

x
f

x
f

x
)x = (f 0)

1!
(0)

2!
(0)

3!
(0)

4!
(0)

2 3
x

4
( )iv+ ′ + ′′ + ′′′ + +f (0)( )iv + 

nn

n
f

!
(0)( )n + 

i.e., = 1
1!

(1)
2!

(1)
3!

(1)
4!

(1)
!

(1)
2 3 4

e
x x

(1)
x x

(1)
33

x

n

x
n

+ +(1) + +(1) + + + (1)+ +

i.e., = 1
1! 2! 3! 4! !

2 3 4

e
x x x x

3
x

n

x
n

+ + + + + + + + +

4.7.6 Maclaurin’s Infinite-Series Expansion of log (1 + x), 
-1 < x £ 1 [WBUT 2006]

Here 

)x = (1 )xl g

So,

f x
n

x

n

n

( )n
1

)x =
( 1) (n 1 1)!

(1 )
.

−n1) (

+
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Thus, f x)x = (1 )xl g  possesses derivatives of every order for every value of x

f n
n( )n 1 1)!.−n

Case I: Let 0 1

Now in the Maclaurin’s finite expansion, the remainder Rn  after n  terms in Lagrange’s 

form is 

R
x

n
f xn

n

=
!

)x( )n θ

  =
!

( 1) ( 1)!

(1 )
, 0 < < 1

1
x

n

n

x

n n( 1)
n

−1) (n

+θ
θ

  =
( 1)

(1 )

1

⋅
+

n n1−

nn

x

xθ

Now

0 =
( 1)

(1 )

1

⋅
+n

x

x
n

n n1−

nθ

  =
( 1)

(1 )

1

+

n n1−

nn

x

xθ

  =
1 1

(1 )n
x

x

n

n
⋅⋅ x

+θ

Since 0 1,  we have xn ≤ 1 and since 0 < < 1θ  and x ≥ 0,  we have 

0 < θ θ0 0 < xθ0 <⇒00

i.e., 1 < 1
1

1
< 1+ ⇒

+
θ

θ x

So

0
1

1 1≤ ≤ ⋅1R
n

n

→ → ∞0

Hence 
n

nR
→∞

lim = 0,  when 0 1.

Case II: Let −1 < < 0x

Now in the Maclaurin’s finite expansion, the remainder Rn  after n  terms in Cauchy’s 

form is 

R
x

f xn

n n

=
(1 )

( 1n )!
)x , < 1

1
( )n− −θ

θ θ)x , 0 <
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  =
(1 )

( 1)!

( 1) ( 1)!

(1 )

1 1( 1)x n

x

n n(1 )
n

−
⋅

−1) (n

+

−1 ( 1)θ
θ

  = ( 1)
1

1

1

( )

1
1

−
−

+
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−
n n1−

n

x
x

θ
θ θ(1⎠⎠⎠ +x (1⎠⎠⎠ +

Since 

0 < > 1θ θ< 1 < 0 0 >d xθ0 >< 0 x⇒

i.e., 1 > 1 > 1+ ⋅ +θ x x> 1+

we have 

1 <
1

1
<

1

1+ ⋅ +θ x x1+

Again

− ⇒1 < < 0 0 < < < 0x<d θ⇒θ θ⇒< 1 ⇒ − θ

i.e., 1−θ θ< 1+< 1

i.e.,
1

1
< 1

−
+

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

θ
θ x

Now, 
n

nR
→∞

lim = 0,  −1 < < 0x  since 

0 =
1

1

1

( )
1

1

1
[ 1 < < 0]

1−
+

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

≤ ⋅ ⋅
+

−

x=
x

x
x

xn

n
n

nθ
θ θ(1⎠⎠⎠ +(1x ⎠⎠⎠ +

→ →0 <→ 1.i→ ∞

So in the both cases 
n

nR
→∞

lim = 0.

Therefore, we have Maclaurin’s infinite series expansion of f x)x = (1 )xl g , 

− ≤1 1  and is given by

f x f
x
f

x
f

x
f

x
f

x
)x = (f 0)

1!
(0)

2!
(0)

3!
(0)

4!
(0)

2 3
x

4
( )iv+ ′ + ′′ + ′′′ + +f (0)( )iv + 

nn

n
f

!
(0)( )n + 

i.e., ( 1
1!

(1)
2!

( 1)
3!

(2!)
4!

( 3!)
2 3 4

g l(1 ) og +1l) = + ( + +(2!) +3!)

+

x x
(1)

x x
(2!)

3

xn

 

nn
nn

!
( 1) (n 1)!1 −n1) ( + 

i.e., (1 )
2 3 4

( 1)2 3 4 1( 1)
l g −) + − + + +x)) =

x x x x( 1)

n

n n1

 + +
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4.7.7 Maclaurin’s Infinite-Series Expansion of (a + x )n 
where n is a Positive Integer

Here 

f x a x
n)x = ( )+

So,

f x n n k
k n

k
k(k )x = (n 1)( 2n ) ( )( )a x−1)(n − kk −

   =
!

( )!
( )

n

k

n k

Then, f n n a
k n

k
k(k ( 1n )( 2) ( 1n kk )−n kk ⋅ −

…

      =
!

( )!

n

k
a
n k⋅

So, f x
k( )k )x  exists for all x  and 

when k n> ,n  f x
k( )k )x = 0.

Remainder Rn  in Lagranges form is 

R
x

n
f xn

n

=
!

)x .( )n θ

Now R
x

k
f xk

k
k=

!
)x = 0( )k θ  for all k n> ,n  since f x

k( )k )x = 0θ  when k n> .n

Hence 

n
nR

→∞
lim = 0.

Therefore, we have Maclaurin’s infinite-series expansion of f x a x
n)x = ( )+ , for 

positive integer n  and is given by

f x f
x
f

x
f

x
f

x
f

x
)x = (f 0)

1!
(0)

2!
(0)

3!
(0)

4!
(0)

2 3
x

4
( )iv+ ′ + ′′ + ′′′ + +f (0)( )iv + 

nn

n
f

!
(0),( )n

since all other terms vanish.

i.e., ( ) =
1!

!

( 1)! 2!

!

( 2)!

1
2

2
a x a

x n
a

x n
a

n n n n!1 x n
+ +) =x a

n ⋅
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞⎞

⎠
⎟
⎞⎞

⎠⎠
+ ⋅

⎛⎛

⎝
⎜
⎛⎛

⎝⎝
−n!nx1 ⎞⎞

⎠
⎟
⎞⎞⎞⎞

⎠⎠

      + ⋅
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
+ + ⋅ ⋅− ⎞⎞⎞x n⎛⎛⎛

a
x

n

n
a

n
n

n n−
3

3

3!

!

( 3−n )!
.

!

!

( )n n− !

i.e., ( )
( 1)

2

( 1)( 2)

3!

1 21) 2a n a x
n((

a x

n( n
a

n n n n( )1 ( 1)
x

(
a

n

) = +an na ⋅a + ⋅a

+
−1)(n

⋅

1 ( 1)(

−3 333 .⋅ +3 +x x+3 + n
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i.e., ( ) 1
1

2
2 2

3
3 3a C1 a x C a2 x C2

3 a x3

C a

n n n nC a n nC an nC n nC a

n
r

) = an a ⋅a + C2
n C ⋅ x2 ⋅a

+ +

− −1 n nC −

n rnn r nx x⋅ rx .

This is also known as binomial expansion of ( ) ,n  where n  is any positive 

integer.

4.7.8 Maclaurin’s Infinite-Series Expansion of (a + x )n 

where n is a Negative Integer or a Fraction

( )
( 1)

2

( 1)( 2)

3!

1 21) 2 3( 1)( 2) 3a n a x
n((

a x
n(( n

a x3n n n n( )1 ( 1)
x

(
a) = +an na ⋅a + ⋅a +

−1)(1)(n
⋅a +1 ( 1)(

 

    +
−

⋅ + [ ]−
n n k−

k
a x⋅n k− k( 1−n ) ( 1)

!

This is also known as binomial expansion of ( )n  where n  is a negative integer 

or a fraction and − a x a< <x .

WORKED-OUT EXAMPLES

Example 4.1  Verify Rolle’s theorem for 

f x x x)x = 5x 6 2 32 +x5 ≤ ≤x  [WBUT-2001]

Sol. Here we are to examine three conditions.

   i)  Since f x)x  is a polynomial in x  and all polynomials in x  are continuous 

functions for all values of x R,

   f x x)x = 5x 62 +x5  is continious for all x,  where 2 3.

  ii)  Due to the same reason as above, f x)x  is also derivable for all x,  where 

2 3.

   Moreover, ′ −f x′ x)x = 2 5,  which exists for all values of x  in 2 3.

 iii)  f f (3) = 0.

 Thus all the conditions of Rolle’s theorem are satisfied by f x x)x = 5x 62 +x5

in 2 3  and so there should exist at least a point c,  2 < < 3c  such that 

′f c′ )c = 0.

 Now

f c c
’ )c = 0 2 5 = 0 =

5

2
⇒ −2c ⇒

 Definitely c =
5

2
 lies between 2 and 3, i.e., 2 < < 3.c

 Therefore, Rolle’s theorem is verified.
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Example 4.2  State Rolle’s theorem. Examine whether the theorem is applicable on 

f x x x x)x = 6x 11 6 1 33 26 +x
2
x6 ≤16 ≤  [WBUT-2002]

Sol. Here,

f x x x x)x = 6x 11 6 1 33 26 +x
2
x6 ≤16 ≤

   i)  Since f x)x  is a polynomial in x  and all polynomials in x  are continuous 

functions for all values of x R,

   f x x x)x = 6x 11 63 26 +x
2
x6 −  is continuous for all x,  where 1 3.

  ii)  Due to the same reason as above, f x)x  is also derivable for all x,  where 

1 3.

     Moreover, ′ − +f x′ x x−)x = 3 12 11,2  which exists for all values of x  in 

1 3.

 iii)  f f (3) = 0.

 Thus, all the conditions of Rolle’s theorem are satisfied by 

f x x x)x = 6x 11 63 26 +x
2
x6 −   in 1 3  

 and so there should exist at least a point c,  1 < < 3c  such that ′f c′ )c = 0.

 Now

 ′ ⇒ −f c′ c)c = 0 3 1−− 2 1+c 1 = 02

 ⇒
± − ±

±c =
12 144 132

6
=

12 12

6
= 2

1

3

 Definitely c = 2
1

3
+  lies between 1 and 3, i.e., 1 < < 3.c

 Therefore, Rolle’s theorem is applicable.

Example 4.3  Show that Rolle’s theorem is not applicable to 

f x)x = [x 0 ]ix

although f f ( ).(  [WBUT-2004,  2006]

Sol. Here

 f x)x = [x 0 ].ix

 It is obvious that f x x)x = tan  is continuous everywhere in [ ,0 ],  except at 

x =
2

π
 and consequently is not derivable there.

Skar2_04_024-052.indd   33Skar2_04_024-052.indd   33 8/4/2010   1:51:02 PM8/4/2010   1:51:02 PM



 4.34   Engineering Mathematics-I 

 Also, f f ( ).(

 Since all the conditions of Rolle’s theorem are not satisfied by f x x)x = tan  in 

[0 ],⋅π  Rolle’s theorem is not applicable to f x x)x = tan  in [0 ]⋅π  although

f f ( ).(

Example 4.4  Show that Lagrange’s mean-value theorem is not applicable to the 

function 

f x
x

x
x

)x =

1
0

0 =x 0

[ 1, 1]
sin when

h

in
≠⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥  [WBUT-2005]

Sol. Here we are to check two conditions.

  i)  Since x  is continuous everywhere and sin
1

x
 is continuous everywhere 

except at x = 0,  f x x
x

)x =
1

sin  is continuous everywhere except at 

x = 0.

   Now it is easy to show that 
x

x
x

f x
→ →x

⎛
⎝⎝
⎜
⎛⎛
⎝⎝

⎞
⎠⎠
⎟
⎞⎞
⎠⎠

⇒
0→xx0 ⎝⎝⎝ ⎠⎠⎠

1
= 0 ( )x = (f 0).lim sin lim

   i.e., f x)x  is continuous at x = 0.

    Combining the above two cases, we say that f x)x  is continuous every-

where and so f x)x  is continuous in [ 1, 1].

 ii) When x ≠ 0,

′ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

f x′
x x x

)x =
1 1 1

sin c− os

 i.e., ′f x′ )x  exists for x ≠ 0.

 Now

′
→ →

f
f h+

hh

h
h

hh h→ h
(0) =

) (− f 0)
=

1

0→hh
lim lim

sin

    =
1

0h h→
lim sin which does not exist.

 So, f x)x  is not derivable at x = 0.

 Therefore, f x)x  is not derivable in ( )− .)
 Since all the conditions of Lagrange’s mean-value theorem are not satisfied, 

the theorem is not applicable to f x)x  in [ 1, 1].
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Example 4.5  If f x x( )x = ,x1sin−  0 < < 1a b< ,  use mean-value theorem to prove that 

( )

1
< <

( )

12

1 1

2a
a1

b− −

−1sin sb  [WBUT-2007, 2008]

Sol. Let f x x( )x = 1sin−  in [ , ],a b,  0 < < 1.a b<

 Here, f x)x  is continious in [ , ]a b,  and ′
−

f x′
x

)x =
1

1 2
 which exists for all 

values of x  in ( , ).a b,

 Therefore, all the conditions of Lagrange’s mean-value theorem are satisfied 

and there exists at least one value of x,  say c,  a c b< <c , such that

f b f a b a f c a c b)b )a)a = ( ) f ), < <cb− f )a = ( ′

or, =
( )

1
, < <1 1

2
sin 1−1

−
a1sin

c
c< b  ...(1)

 Now,

a c b a c b< <c < c2 2< 2⇒

⇒ − −a c b
2 2 2> >c− 2

or, 1 > 1 > 12 2> 1 2− −a c> 1−> 1 b

or, 1 > 1 > 12 2> 1 2− −a c> 1−> 1 b

or,
1

1
<

1

1
<

1

12 21 2− −a ca 1−1 b

or,
( )

1
<

( )

1
<

( )

12 21 2

b

a

b

c

b

b− − −
 ...(2)

 Therefore, from (1) and (2), we get,

( )

1
< <

( )

12

1 1

2a
a1

b− −

−1sin sb

 Hence, the required result is proved.

Example 4.6  Using mean-value theorem, prove that 

π π
6

3

15
<

3

5
<

6

1

8

1+ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

+−sin  [WBUT-2005]
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Sol. Let us consider f x x( )x = 1sin−  in 
1

2
,

3

5

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

 Since f x)x  is continuous in 
1

2
,

3

5

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

 and ′
−

f x′
x

)x =
1

1 2
 exists in 

1

2
,

3

5
,

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

all the conditions of Lagrange’s mean-value theorem are satisfied.

 So, there exists at least one value of x,  say c,  
1

2
< <

3

5
c  such that 

f f f c
3

5

1

2
=

3

5

1

2
)c

⎛
⎝⎝⎝

⎞
⎠⎠⎠

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

′

or, sin sin− ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

− ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⋅
−

1sin−i1 ⎛⎛⎛ ⎞⎞⎞
2

3

5

1

2
=

1

10

1

1 c
 ...(1)

 Now,

1

2
< <

3

5

1

2
> >

3

5

2
2

2

c>c < ⇒ −⎛
⎝
⎛⎛
⎝⎝

⎞
2

⎠
⎞⎞
⎠⎠

−>
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

⇒ − ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

− − ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

1
1

2
> 1 > 1

3

5

2
2

2

c

⇒
−

4

3
<

1

1
<

25

162
c

⇒
−

1

10

2

3
<

1

10

1

1
<

1

10

5

42
c

⇒
−

1

5 3
<

1

10

1

1
<

1

82
c

 ...(2)

 There from (1) and (2), we have 

1

5 3
<

3

5

1

2
<

1

8

131sin s1 in
3−1 ⎛

⎝⎝⎝
⎞
⎠⎠⎠

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

or,
1

5 3
<

3

5 6
<

1

8

1sin− ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−
π

or,
6

3

15
<

3

5
<

6

1

8

1 π3π 3 1+ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

+−sin

 Thus, the required result is proved.

Alternative Method of Solution 

In the last example (4.5), using Lagrange’s mean-value theorem, we have proved that 

( )

1
< <

( )

12

1 1

2a
a1

b− −

−1sin sb
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where f x x( )x = ,x1sin−  0 < < 1.a b<

Putting a =
1

2
 and b =

3

5
 in the above, we have

3

5

1

2

1
1

2

<
3

5

1

2
<

3

5

1

2

2

131

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

− ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

⎛
⎝⎝⎝

⎞
⎠⎠⎠

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−⎛
⎝− 31si s

⎛
n 1

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

− in

⎜⎜
⎛⎛⎛⎛
⎝⎝⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

− ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

1
3

5

2

⇒

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠ ⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠−

1

10

3

2

<
3

5 6⎠⎠⎠
<

1

10

4

5

1sin
π

⇒ + ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

+−π π⎛⎛⎛ ⎞⎞⎞−

6

1

5 3
<

3

5
<

6

1

8

1sin

⇒ + ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

+−π π⎛⎛⎛ ⎞⎞⎞−

6

3

15
<

3

5
<

6

1

8
.1sin

Example 4.7  Using Lagrange’s mean-value theorem, prove that

b a

b
a

b a

a
a b

+ +
−

1
<a<

1
0 < <b 2

2

1 1bbb aa
2tan tbbb an where

Sol. Let f x x( )x = 1tan−  in [ , ],a b,  0 < < 2.a b<

Here, f x)x  is continuous in [ , ]a b,  and ′
+

f x′
x

)x =
1

1 2
 which exists for all values 

of x  in ( , ).a b,

Therefore, all the conditions of Lagrange’s mean-value theorem are satisfied and 

there exists at least one value of x,  say c,  a c b< <c , such that

f b f a b a f c a c b)b )a)a = ( ) f ), < <cb− f )a = ( ′

or, =
( )

(1 )
, < <1 1

2
tan 1−1

+
a1tan

c
c< b  ...(1)

Now,

a c b< <c

or, 1 < 12 21 2+ +< 12 < 1 +a c< +< 1 b

or,
1

1
>

1

( )
>

1

12 2
>

(1 2+ +(12 (1 +a c( +(1 b
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or,
( )

1
>

( )

(1 )
>

( )

12 2(1 2a c b+ + +
 ...(2)

Therefore, from (1) and (2), we get,

b a

b
a

b a

a+ +
−

1
<a<

12

1 1bbb aa
2tan tbbb an

Hence the required result is proved.

Example 4.8  Using mean-value theorem, prove that 

x

x
x x x

1
< <x , 0 < <x

22

1

+
−tan

π

Sol. Let f x x( )x = 1tan−  for 0 < <
2

.x
π

 It is obvious that f x)x  satisfies all the conditions of Lagrange’s MVT in 

[0, ].

 From Section 4.3.3, we have Lagrange’s MVT in the interval [0, ]  as

f x f x f x)x = f )x , < 1.′ θ θ)x , 0 <

 Here, f (0) = 0 = 01tan−  and ′
+

f x′
x

)x =
1

1
.

2

 So from above 

tan− +
+ ( )

1

2
= 0

1

1
, 0 < < 1.x x+= 0 θh

or, =
1

1

2
tan−

+ ( )
x

x

 Now we have 

0 < < , > 0θ θ< 1 0 <⇒ x < xsince

or, 0 < < 1
2 2 2 2< 1 1
2 2< x< 1( )θ ⇒ 1 < 1 ( )θ x +

or,
1

1
<

1

1
< 1

2 2
<

1+ + ( )x

or since,
1

<
1

< , > 0
2 2

1

x

x

x
xsince,

+ + ( )x

 Again tan−

+ ( )
1

2
=

1
,x

x
 therefore

x

x
x x

1
< <x .

2

1

+
−

tan
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Example 4.9  Use MVT to prove that 

sin 46
1

2
1

180

 ∼ +1
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

π
 [WBUT-2003]

Sol. Let us consider f x x)x = sin  in [45 , 46 ].  46

 It is obvious that all the conditions of Lagrange’s MVT are satisfied by 

f x x)x = sin  in [45 , 46 ].  46

 Also ′f x′ x)x = .xcos

 Now Lagrange’s mean-value theorem in [ ]a a h, +  is [see alternative form (1) 

of Section 4.3.3]

f a h f a h a h( )a h = (f ) (h f ), < 1ah (f ′ +θ θh), 0 <

 Putting a = 45  and h = 1 ,  we have

   f f f6 (f 45 ) 1 (45 ), < 1  

f (f 45   

f (45  ⋅1 ′ θ θ1 ), 0 < 

or, 46 = 45 1 (45 ), < 1i s46 = in  45i   (45  +1 +θ θ1 ), 0 < ⋅

      = 45
180

( 5 ), < 1sin c45 os  (45  + (45cos(45
π

θ θ), 0 < 

 Since θ  is very small, 

sin s cos46 5
180

45  i 45  ∼ +sin 45 i 45
π

      ∼
1

2 180

1

2
+ ⋅

π

      ∼
1

2
1

180
+⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

π

Example 4.10  Estimate 283  using Lagrange’s mean-value theorem.

Sol. Let us consider the function f x x)x =

1

3  in [27, 28].

 Here, f x)x  is continuous in [27, 28]  and ′
−

f x′ x)x =
1

3

2

3  exists for all values of 

x  in (27, 28).

 So all the conditions of Lagrange’s MVT are satisfied.

 Therefore, by Lagrange’s mean-value theorem in the interval ,[ ]a a h, a h+  we 

have

f a h f a h f aa h (f ) h f ), < 1ah (f ′ +θ θh), 0 <
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 Putting a = 27,  h = 28 27 = 1

f f f(f 27) 1 (f 27 ), < 1+1 ′ +θ θ1), 0 <⋅

or, 28 = 27
1

3
(27 )3 328

2

3+ (27

−

θ

⇒ + +28 3
1

3

1

(27 )+

< 3
1

3

1

(27)

3

2

3

2

3θ

⇒ +⎛
⎝⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

28 3
⎛⎛⎛ 1

3 9⋅
= 3

1

27

3

 Again since 27 < 28 28 3 < 28,3 327 < 3⇒ ⇒27 < 28327 <  we have

3 < 28 < 3
1

27
.3

Example 4.11  If ′
−

f x′
x

)x =
1

4 2
 and f (0) = 1,  using Lagrange’s mean-value 

 theorem, estimate f (1).

Sol. Since, ′
−

f x′
x

)x =
1

4 2
 exists for all x  in (0, 1),  therefore f x)x  is continuous 

in [0, 1].

 Therefore, applying Lagrange’s mean-value theorem to f x)x  in [0, 1],  there 

exists at least one value of x,  say c,  0 < < 1c  such that

 f f f c c(f 0) = (1 0) f ), 0 < < 1(f 0) = (1 ′

 ⇒
−

f
c

c(1) 1− =
1

4
, 0 < <c 1

2

 Since 0 < < 1,c  we have 

 
1

4
< (1) 1 <

1

42
=0

2
=1−

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

−
−

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦c

f
cc c4=0 ⎣ ⎦c

 or,
1

4
< (1) 1 <

1

3
f −

 or, 1.25 < (1) < 1.33.f

 The above gives an estimate for f (1).
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Example 4.12  Find the values of a b c, ,b  for which the function

f x x)x = 3 0; ≤

  = 3 ; 0 < < 12 +x3 a x; 0 <

  = ; 1 2b x;+ ; 1; 1

satisfies the conditions of Lagrange’s mean-value theorem.

Sol. The function f x)x  will satisfy the conditions of Lagrange’s mean-value 

 theorem if

 (i) f x)x  is continuous in [0, 2]

 (ii) f x)x  is derivable in (0, 2)

 The function 

f x x)x = 3 0; ≤

   = 3 ; 0 < < 12 +x3 a x; 0 <

   = ; 1 2b x;+ ; 1; 1

 is continuous and derivable for all values of x  in [0, 2]  except at x = 0  and 

x = 1.

 Now,

 
x

f x x a
→ + → +

− +x
0 0x+ →

2( )x = ( 3 )x a+lim li

 
x

f x f
→ − → −0 0x− →

( )x = (3) = 3 (0) = 3lim li and

 Therefore, f x)x  is continuous at x = 0  if 

 
x

f x f x f
→ + → −0 0x+ →

( )x = (f ) = (0)lim li

 ⇒ a = 3  ...(1)

 Again

 
x x

f x bx c b c
→ + → +

+b+ c
1 1x+ →

( )x = ( )lim li

 
x x

f x x a a
→ − → −

− +x
1 1x→

2( )x = ( 3 )x a+ a = 2+a = 5, =a 3lim li since

 and f b c+

 Therefore, f x)x  is continuous at x = 1  if 

 
x x

f x f x f
→ + → −1 1x+ →

( )x = (f ) = (1)lim li

 ⇒ +b c+ = 5  ...(2)
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 Similarly, f x)x  is derivable at x = 1  if 

h h

f h

h

f h

h→ → −

h h

0hh →

) (f− 1)
=

) (f− 1)
lim lim

or,
( ) ( )

=
(1 ) 3( ) ( )

0

2

hh 0

b h(1 b( c

hh

h h) 3(1 b( c

h→00 → −0

)h +b( − +(1 3(1 +
lim lim

 Putting a = 3  and b c = 5,

or, =
(1 ) 3( ) 3 5

0

2

hh 0

bh

hh

h h) 3(1

h→00 → −0

− +(1 3(1 −3
lim lim

or, =
0

2

hh 0

bh

hh

h h2

h→00 → −0

−h2

lim lim

or, = 1b  ...(3)

 Therefore, from (1), (2) and (3), we have a = 3,  b = 1 and c = 4.

Example 4.13  Apply Maclaurin’s theorem to the function f x( )x = (1 )x 4  to 

deduce that 

(1 ) = 4 6 44 21 4 6 3 4+ ) 11 + 66 +x x) 4+) = 1 x4 x  [WBUT-2001]

Sol. Maclaurin’s theorem with Lagrange’s form of remainder is

f x f x f
x

f
x
f

x
f)x = f (0)

2!
(0)

3!
(0)

4!
(0)

2 3
x

4

′ + ′′ + ′′′ + ( )iv

     + + +
−x

f
x

n
f x

n n
n

1
( 1−n ) (+

x
f )

( 1−n )!
(0)

!
( )x , < 1θ)x , 0 <  ...(1)

Here,

f x x f( )x = (1 )x (0) = 14x

′ + ′f x′ x( )x = 4(1 ) (′f⇒ 0) = 43

′′ ′′f x′′ x f⇒( )x = 12(1 )+ x (0) = 122

′′′ ′′′f x′′′ x f⇒( )x = 24(1 )+ x (0) = 24

f x
( )iv ( )iv

( )x = 24 (f
( )iv⇒ 0) = 24

f x x
( )n

( )x = 0 , >n 4for all h
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 Therefore, putting the above values in (1), we have 

(1 ) = 1 4 12
2!

24
3!

24
4!

4
2 3 4

+ ) 1 + ⋅12 + ⋅24 + ⋅24x x) 4+) = 1
x x

24
x

     = 1 4 6 2 34 4+ 4 + +4 34x6 x x+3

Example 4.14  If 

f h f h f
h

f h f x
x

)h = f (0)
2!

)h , < 1, )x =
1

1

2

′ + ′′
+

θ θh)h , 0 <

and h = 7, find θ .

Sol. Here

f x
x

f( )x =
1

1
(0) = 1

+
⇒

′ −

+
⇒ ′ −f x′

x
f( )x =

1

(1 )
(0) = 1

2

′′
+

⇒ ′′
+

f x′′
x

f h′′
h

( )x =
2

(1 )
)h =

2

(1 )3 3
⇒

+
f

h
( )h

(1 )θ

So, f x)x  satisfies the conditions of Maclaurin’s theorem for x ≠ −1  in [0, ].h

The given expression 

f h f h f
h

f h)h = f (0)
2!

)h
2

′ + ′′ θ  ...(1)

is Maclaurin’s theorem with Lagrange’s form of remainder after 2 terms.

Therefore, putting the values in (1),

1

1
= 1

2

2

(1 )

2

3+
− +

+h
h

h

hθ

For h = 7,  we have 

1

8
= 1 7

49

(1 7 )3
− +7

+ θ

or, (1 7 ) = = 23+ ⇒7 ) θ8 1 7θ ) ⇒) = 8 +

⇒ θ =
1

7
(Ans.)
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Example 4.15  Expand ax  in a finite series with Lagrange’s form of remainder.

 [WBUT-2002]

Sol. Here,

     f x a e fx e x
( )x = a (0) = 1

( )eag ⇒

    ′ ′f x′ a
e

x

e
( )x = ( ) f ′x

)
( )aa

log la
e

) (⇒e f ′e xea g

    ′′ ′′f x′′ a
e

x

e
( )x = ( ) f ′′x

)2 ( )aa 2
log la

e
) (⇒e f ′′e xea g

     ..................

f x e
e

n
e

e x( )n ( )
( )x = ( )n )a

e

( ) ( )ealog la x
e

) (e fn e ⇒ ) = ( g
l

en
x ( )n

f
x

) ( )a
)aa (

x) = (fe x ⇒ea g θ

 So, it is clear from the above that the given function satisfies all the conditions 

of Maclaurin’s theorem.

 Now the Maclaurin’s series in finite form with Lagrange’s form of remainder is

f x f x f
x

f
x

f
n

)x = f (0)
2!

(0)
( 1n )!

(0)
2 1n

( 1n )′ + ′′ + +

    +
x

n
f x

n

!
)x , < 1( )n θ θ)x , 0 <  ...(1)

 Putting the values from above in (1), we have the expansion of f x a
x)x =  in a 

finite series with Lagrange’s form of remainder as

a x
x xx

e e e
1 ( )

2!
)a

e
( )

3!
( )a

e

2
2

3
3+ ⋅x +)a 2 +g

x
e

)a
e

((+ ( g  

    +
−

x x

n
e

n

e
n

n

e
n e x

1
1 ( )ea

( 1−n )!
( )

!
( )a

eg l+− x
e

n 1)a
e

!
( g

g θ

Example 4.16  Expand the function e x
x sin  in powers of x  in infinite series:

Sol. Here, 

 f x f
x)x = (e x f
x 0) = 0i

 We know from successive differentiation that if y e bx
ax= se
ax in  then 

y a b
b

a
n

n
ax( ) .e bx n

bax2 2b 2 1+ bb
⎛
⎝⎝⎝

⎞
⎠⎠⎠

bx n

 Therefore, for f x e x
x)x = ,e xsin  we have 

f x x n
n

x( )n 2 2 2 1)x = (12 ) (e
x2 1)+ 21 )2 +x( ⋅ −i tan
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   = (2)
4

2
n

x
e x

n
⋅e +⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

sin
πn

   = ( 2)
4

, .n x
e x

n
n⋅e +⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

sin
πn

for each

 Thus, f x e x
x)x = se
x in  possesses derivatives of every order and for every value 

of x  in any interval [ ].h h

 Here 

f
n

n
n( )n (0) = ( 2)

4
,⋅ ⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

sin
πn

for each

 So,

′ ⋅ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

f (0) = ( 2)
4

sin
π

′′ ⋅ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

f (0) = ( 2)
2

4

2 sin
π

… and so on.

 Now in the Maclaurin’s finite expansion, the remainder Rn  after n  terms in 

Lagrange’s form is 

R
x

n
f xn

n

=
!

)x( )n θ

    =
!

( 2)
4

, < 1
x

n
e

n
n

n x⋅ ⋅( 2) ⋅ +⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎠⎠

θ πn
θ, 0 <θ x ⎞

⎠
⎟
⎞⎞
⎠⎠

si

 Now,

0 = ( 2( 2)
! 4

+= ( 2)
⎛
⎝⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

x

n
e

n
xn

n
n

xθ πn
θsi  ...(1)

 Since 

0 < < 0 <<θ θ< 1 0 < θ⇒ ⇒<θ0 < < x x<

 we have

e e
x x xθ θ≤ < ,e which is a finite quantity.

 and 

sin
n

x
πn

θ
4

1.+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

≤
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 Also

n

nx

n
x

→∞
lim

!
= 0 for all .

 So from (1), we get

n
nR

→∞
lim = 0.

 Therefore, we have Maclaurin’s infinite-series expansion of f x e x
x)x = se
x in

and is given by

f x f
x
f

x
f

x
f

x
f

x
)x = (f 0)

1!
(0)

2!
(0)

3!
(0)

4!
(0)

2 3
x

4
( )iv+ ′ + ′′ + ′′′ + +f (0)( )iv + 

nn

n
f

!
(0)( )n + 

i.e., = 0
1!

2
4 2!

( 2)
2

4 3!
( 2)

2
2

3

e
x

2
xx sin s= 0 2x in sin+ ⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

+ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

+
π2

( 2)
2

2xπ
i

⎞⎞⎞ ⎛⎛⎛ 33

4
4

3

4

4!
( 2)

4

4

sin

sin

π

π

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

+ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

+
x

 

i.e., =
3 30

2
3 5

e x x x
x x

3
x sin + +2

x − + 

Example 4.17  Apply Maclaurin’s theorem to prove that 

sin x x x x>
1

6
, 0 < <x

2
.3− if

π

Sol. Maclaurin’s theorem with Lagrange’s form of remainder after 3 terms is

f x f x f
x

f
x

f x( )x = (f (0)
2!

(0)
3!

( )x , < 1
2 3x′ + ′′ + ′′′ θ)x , 0 <  ...(1)

 Let

f x( )x = (x f 0) = 0

′ ′f x′ x f)x (′= x f⇒ 0) = 1

′′ ′′f x′′ x f)x (′′= − x f⇒ 0) = 0i

′′′ ′′′ ( )f x′′′ x f)x = (− ′′′x f⇒ )(f⇒ (θ ((x( ) = c−x) os

 Therefore, putting the above values in (1), we have 

f x f x f
x

f
x

f x( )x = (f (0)
2!

(0)
3!

( )x , < 1
2 3x′ + ′′ + ′′′ θ)x , 0 <
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or, = 0 1
2!

0
3!

, < 1
2 3

sin = 0 1 0= 0
x x

0+ + { }cos( ) θ, 0 <})x

or, =
6

, < 1
3

sin cosx=
x ( ) θ, 0 <)x  ...(2)

 Since 

0 < < 1 0 < <
2

,θ
π

and x

 we have 

0 < <
2

0 < < 1.θ
π

x < 0 <⇒ ( )θ xθcos

 Therefore, 

x x
x

3 3
x

6
<

6
> 0cos( )xθ since

⇒ − ( ) ⇒ ( ) −
x x x

x) x
3 3

x
3 3

x

6 6 6
>

6
cos( ) − ⇒ (x

x
x

> c) − ⇒ −x> os

 Hence from (2), 

sin x x x>
1

6

3−

  EXERCISES

Short and Long Answer Type Questions

 1. Show that Rolle’s theorem holds for the following functions:

 a) f x x)x = 4 2−  in [ 2, 2]

 b) f x x)x = ( 2) ( 4x )3+ 2) (x3  in [ 2, 4]

 c) f x x e

x

)x = (x 2) 2+
−

 in [ 2, 0]

 d) f x x)x = cos  in −⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

π π
2

,
2

 e) f x x x
x)x = (e
x )sin cx os  in 

π π
4

,
3

4

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

 2. Show that Rolle’s theorem is not applicable to the following functions:

 (i) f x)x = 3x  in [0, 3].
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 (ii) f x
x

)x =
1

sin
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

 in [ 1, 1]

 (iii) f x)x = 3 ( 1x )

1

3+ (x  in [ 1, 1]

 3. If the function f x)x  is defined on [0, 1]  by 

f x x)x = 2, 0
1

3
if ≤ ≤x

   = 3,
1

3
< 1.if x

 then prove that f x)x  satisfies none of the conditions of Rolle’s theorem but ′f x′ )x

vanishes for each x∈ (0, 1).

 4. If 

f x

x

( )x = , 0 < <
2

,

sin sx in i

cos cxx os

tan tx an

θ φsin

θ φcos

θ φtan

θ φ<
π

 using Rolle’s theorem, show that ′f ( ) = 0,ψ(  where θ ψ φ<ψ .

 5. Verify Lagrange’s mean-value theorem for the following functions:

 (i) f x x)x = (x 1)( 2x )−1)(x  in 0,
1

2

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

 (ii) f x x)x =  in [9, 16]

 (iii) f x
x

x
x

( )x =

1
0

0 =x 0

[ 1, 1]
cos when

h

in
≠⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥⎦⎦
⎥⎥

 (iv) f x x)x = logsin  in 
π π
6

,
5

6

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

 (v) f x)x = 3
23− ( )x 2−x  in [4, 10]

[Ans : (i) yes (ii) yes (iii) no (iv) yes (v) no]

 6. Verify Cauchy’s MVT for the functions:

 a) f x
x

)x =
1
2

 and g x
x

( )x =
1

 in [1, 3]

 b) f x x)x = log  and g x x( )x =  in [1, ]
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 c) f x x)x =  and g x
x

( )x =
1

 in [3, 6]

 d) f x x)x = (x 2)−  and g x x( )x = 2  in [ 1, 1]

[Ans : (i) yes (ii) yes (iii) yes (iv) no]

 7. If f x x)x = ,xcos  g x x( )x = sin  in [ , ],a b,  then show that c  of Cauchy’s mean-value 

theorem for the two function is A M. .M  of a  and b.

 8. Using mean-value theorem, prove the following inequalities:

 a) 
x

x

x x

1
,

2

1

−
≥ ≥x1sin  if 0 < 1

 b) 0 <
1

(1 )

1
< 1,

log +
−

x x)
 if x > 0

 c) x
x

x

x
<

1

1
<

1
,log

− −x 1
 if 0 < < 1x

 d) 
2

1
>

1

1
> ,

2

x

x

x

x−

+
−

log  if 0 < < 1x

 e) 
2

,
x

x x
π

≤ ≤xsi  if 0
2

≤ ≤x
π

 9. Estimate cos61  using Lagrange’s form of MVT. [Ans : 0.4849]

10. Find the approximate value of 9.12  using Taylor’s theorem. [Ans : 3.0199]

11. In the mean-value theorem 

f a h f a h f aa h (f ) h f ), < 1ah (f ′ +θ θh), 0 <

 if 

f x x x x)x =
1

3

3

2
23 23

+x
2
x

 and a h0, =h 3,  show that θ  has two values.

12. Using mean-value theorem prove the following:

 (i) 101  lies between 10 and 10.05

 (ii) 
1

7
< 1.4 <

1

5
log

 (iii) 
π π
4

3

25
<

4

3
<

4

1

6

1+ +< <1−
tan
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13. Use Taylor’s theorem to expand x x x
4 3 23 2x

3 1x
3
x − +x  in powers of ( 3).

[Ans : 16 38( 3) 29( 3) 9( 3) ( 3) ]2 39( 3) 4+ −38( + −29( + 9(9( + (x x3) 9(− + 29( x 3) (33)− + (

14. Use Maclaurin’s theorem to prove the following:

 i) log(1 )
2

,
2

−) > x) >) >
x

 if x > 0

 ii) cos x
x

> 1
2

,
2

−  if 0 < <
2

x
π

 iii) e x
xx > 1
2

,
2

+ +x  if x > 0

15. Prove the following by infinite series expansion:

 (i) e e x
x = 1e ( 2x )

( 2x )

2!

( 2x )

3!

2
2 3( 2x )

+ (x + + +
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

[ ]h h2 ,h 2 + for all

 (ii) log x x x= ( 1)
( 1x )

2

( 1x )

3
0 < 2.

2 3( 1x )
− −1) + ≤x0 <− fo

 (iii) sin x x x1
1

2! 2

1

4! 2

2 4
1

−x⎛
⎝
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

−x+ ⎛
⎝
⎛⎛
⎝⎝

⎞
4

⎠
⎟
⎞⎞
⎠⎠

−
π π1⎞⎞⎞ ⎛⎛⎛

 

16. Find the binomial expansion of (1 ) ,+ x n  when n  is a positive integer.

[Ans : 1+  nC x1 +x  nC x2
2 +x
2  nC x3

3 +x
3 +  n r

r nC xr x+rx + ]

Multiple-Choice Questions

 1. Maclaurin’s expansion for the function f x x)x = 4  in [ 1, 1]  is

 a) applicable b) not applicable

 c) partially suitable d) none of these

 2. Lagrange’s MVT is obtained from Cauchy’s MVT for the function f x)x  and g x( )x

by putting g x( )x =

 a) x  b) 0 c) 1 d) none of these

 3. Which of the following functions does not satisfy the conditions of Rolle’s  theorem 

in [ 1, 1]  ?

 a) x2  b) 
1

24
x +

 c) 
1

x
 d) x

2 3+
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  4.51  Mean Value Theorems and Expansion of Functions 

 4. Which of the following pair of functions do not satisfy the conditions of Cauchy’s 

MVT in [ 2, 2] ?

 a) x2 , log x  b) sin x2 , x

 c) x − 4 , x
2 4+  d) 1 ,2 x

x
2 4+

 5. log(1 )  can be expanded in an infinite series on the interval

 a) ( 1, 1]  b) [ 1, 1]  c) [ 1, 1)  d) ( 1, 1)

 6. The region of validity of the expansion log(1 5 )x  is

 a) −5 < < 5x  b) 
−

≤ ≤
1

5

1

5
x

 c) 
−1

5
< <

1

5
x  d) 

−
≤

1

5
<

1

5
x

 7. If a function f x)x  satisfies all the conditions of Rolle’s theorem on [ , ]a b,  then 

′f x′ )x  vanishes

 a) every where on ( , )a b,  b) at exactly one point of ( , )a b,

 c) at least one point of ( , )a b,  d) none of these

 8. Let f x)x  be a differentiable function on (7, 9).  Then f x)x  satisfies the condi-

tions of Lagrange’s mean-value theorem on [7, 9]  if

 a) f x)x  is continious on (7, 9)  b) f x)x  is continious at [7, 9]

 c) f x)x  is continious at x = 7  d) none of these

 9. If f x)x  is continious in [ , ]a, h+  and derivable in ( , )a, h+  then f a h f aa h ( )ah

h f a hh f ),′ +θ where

 a) θ  is any real number b) 0 < < 1θ

 c) θ > 1 d) θ  is an integer

10. The region of validity of the expansion 
elog (1 2 )x+  in Maclaurin’s infinite series is

 a) − ≤1 < 1x  b) 
−

≤
1

2
<

1

2
x

 c) 0 2  d) none of these
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11. If the Maclaurin’s expansion of sin x  is

sin x x
x x

k3!

3 5
x

− + − ∞

 then the value of k  is

 a) 4!  b) 5!  c) −5!  d) 6

12. For a function f x)x  the expression 

h
f a h

n n
n(1 )

( 1n )!
)a h

1− −θ
θ

 is known as

 a) Lagrange’s remainder b) Cauchy’s remainder

 c) Maclaurin’s remainder d) Taylor’s remainder

13. f x)x  has derivative of every order in a neighbourhood of zero. Then f x)x  can be 

expanded in an infinite series if

 a) f x
( )n )x = 0  for some n  and x

 b) remainder Rn  exists for all n

 c) remainder Rn → 0  as n → ∞
 d) none of these

14. Which of the following statements is true?

 a) Two conditions are necessary for Rolle’s theorem.

 b)  If ′f c′ )c = 0,  a c b< <c  then f x)x  satisfies all the conditions of Rolle’s  theorem 

in [ , ].a b,

 c) If ′f c′ )c = 0,  a c b< <c  then f x)x  must be continious in [ , ].a b,

 d) Two conditions are necessary for Lagrange’s mean-value theorem.

15. Cauchy’s mean-value theorem can not be applied on the two functions f x x)x = 3

and g x x( )x = 4  on the interval [ 2, 2]  because

 a) x4  is not derivable at apoint in the interval ( 2, 2)

 b) f x)x  is an odd function

 c) 4 = 03
x  at x = 0

 d) g x( )x  is an even function

Answers:

 1. (b) 2. (a) 3. (c) 4. (a) 5. (a) 6. (d) 7. (c) 8. (c) 9. (b)

 10. (b) 11. (b) 12. (b) 13. (c) 14. (d) 15. (c)
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5
Reduction Formula

5.1 INTRODUCTION 

In the present chapter, we deal with the concept of reduction formula for integration. 

Basically, reduction formula allow us to express an integration involving higher powers 

of a function by another integration which involves comparatively lower powers of the 

same function. Also, by means of reduction formula we are able to compute indefinite 

as well as definite integrals.

Here in the chapter first we develop reduction formulas for some standard integra-

tions and then we apply those formulas to evaluate the integrations. Each of the items 

are illustrated with suitable examples.

5.2 REDUCTION FORMULA FOR 

(a) sin , where ositive integern
x dx n, where (>1) is a p∫

(b) here is a positive integersin ,n
dx nwhere , ( )>1∫0∫∫ 2

ππππ

[WBUT 2006]

(a) Let us consider 

I x dxn

nsi∫∫
= 1sin s1 inn

xsin dx
−∫

Integrating by parts taking sinn x
−1

 as the first function and sin x  as the second function, 

we have

CHAPTER
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I x x dx
d x

dx
xdx dxn

n

n

=
( )1

1

sin sin
sin

sin−
−

−
⎧
⎨
⎪

⎩⎪

⎫
⎬⎪

⎭
⎪
⎪⎪

∫∫

= ( ) ( 1) ( )1 2c( os sin c2 osn n
xc( os n 1)sin x ( dx

−)xcos ∫
= 1 2 2− +− −∫sin c1 os ( )1 sin c2n osn n

xcos ∫)1− sin x dx

= ( 1) 11 2 2− + −− ∫sin c1 os sin (2− sin )2n n
xcos n 1)− ∫ sin x dx)

= ( 1) ( 1)1 2− + − −− −∫ ∫sin c1 os sin sinn n n
xcos n xdx x1)∫ sin dx

⇒ − + − −I x− −
x n+ I − In

n

n n( 1) ( 1)−n1
2sin cx os

⇒ − +−
−I x n I−n

n

n( 1)1
2sin cxn 1 os

i.e.,  I
x

n n
In

n

n=
( 1)n

1

2

−
+

−

−
sin cx

n 1
os

 ...(1)

Therefore, (1) represents the reduction formula for I xdxn

nsi∫∫  where n  is any 

positive integer

(b) Let us consider 

J x dxn

n = .
0

/2

0
i [ ]In∫0

π
π

Now taking limits on both sides of (1), we have

x

n n

n

[ ]In
−⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

+ [ ]In

−

0
2

1

0

2

0
2=

( 1)n −
π

π
π

sin cxn 1 os

i.e., J
n

Jn n=
( 1)n

2⋅ −  ...(2)

Therefore (2) represents the reduction formula for J x dxn
n

0
sin .

π

∫0

Calculation of the Value of the Definite Integral

J xd nn

n ,x (> 1)
0

2 i wxdx,xdx here is a positive integer.

p

ÚÚ0

From (2), we have the reduction formula for above as 

J
n

Jn n=
( 1)n

2⋅ − ...(3)

Now replacing n  by n − 2,  we get from (3) 

J Jn n− −⋅2 4=
( 3)n −
( 2)n −

...(4)
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From (3) and (4), we obtain 

J
n

n
Jn n=

( 1) (n 3)

( 2)n
4⋅

−
⋅ − ...(5)

Again replacing n  by n − 2,  we get from (4)

J Jn n− −⋅4 6=
( 5)n −
( 4n − )

...(6)

From (5) and (6), we have 

J
n

n
Jn n=

( 1) (n 3)

( 2)n

( 5)n

( 4n )
6⋅

−
⋅ ⋅ −

Similarly proceeding as above, we have the following cases:

Case (i) n is even.

J
n

n
Jn =

( 1) (n 3)

( 2)n

( 5)n

( 4n )

3

4

1

2
0⋅

−
⋅ ⋅ ⋅ 

Again 

J dx0
0

/2

0

/2
= =

2
.

π π π
∫ ∫xdx

0

0

/2

0
=sin

π

Hence 

J
n

n
nn =

( 1) (n 3)

( 2)n

( 5)n

( 4)n

3

4

1

2 2
,

−n1) (
 

π
when is even.

Case (ii) n is odd.

J
n

n
Jn =

( 1) (n 3)

( 2)n

( 5)n

( 4n )

4

5

2

3
1⋅

−
⋅ ⋅ ⋅ 

Again 

J xdx1
0

=xdx 1.i

π

∫0

Hence 

J
n

n
nn =

( 1) (n 3)

( 2)n

( 5)n

( 4)n

4

5

2

3
,

−n1) (
 when is odd.

Alternative method of finding reduction formula for 

sin x dx,xn

0
2

ππππ

∫0  where n(> 1) is any positive integer

Let 

J x dxn

n

0
i

π

∫0
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= [ ]
( )1

0
/2

1

0
2sin s1 in sinn

n

xsin dx
d x( 1n

dx
x dx dx

− ∫∫ ∫∫0
−

⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨

⎫
⎬
⎫⎫
⎬⎬
⎫⎫⎫⎫

⎭
⎬⎬
⎭⎭
⎬⎬⎬⎬

π
π

= [ ] ( 1)1
0

/2
0

/2 2 2− −− −sin c1 os sin c2 osn n
xcos n xdx

π π

= 0 ( 1) (1 )2 2(1

0

2

+ ( ∫∫1) x d) xdd
n (1(1

π

= ( 1) ( 1)2

0

2

0

2

n x1) dx x1) dx
n n−−∫ ∫sin sin

π π

i.e., J n J Jn n n= ( 1) ( 1)n2J−1) −

⇒ −J
n

Jn n=
( 1)−n

2

Therefore, the reduction formula of J xn

n

0
i

π

∫0
 dx,  where n  is any positive 

integer is

J
n

Jn n=
( 1)n

.2−

Example 1  Using reduction formula, find sin .4
d∫

Sol. If we consider 

I x dxn

nsi∫∫
Then the reduction formula is 

I
x

n n
In

n

n=
( 1)n

1

2

−
+

−

−
sin cxn 1 os

We are to calculate

I x dx4
4si .∫

Here 

I
x

I4

3

2=
4

3

4
.

−
+

sin cx3 os

Again

I x dx
x

I2
2

0=x dx
2

1

2
si

sin cx os−
+∫

and 

I x dx dx x0
0 =x dx =si ∫∫

Therefore, we have

I
x

I4

3

2=
4

3

4

−
+

sin cx3 os
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=
4

3

4 2

1

2

3

0

−
+

−
+⎧

⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬

sin c3 os sin cosxcos xcos
I0

=
4

3

4 2

1

2

3−
+

−
+⎧

⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬

sin c3 os sin cosxcos xcos
x

=
4

3

4 2

3

8

3−
− +

sin c3 os sin cosxcos xcos
x

Example 2  Using reduction formula, find sin .5

0
2 d

π

∫0
 [WBUT 2006]

Sol. If we consider

 J x dxn

n

0
i

π

∫0

Then the reduction formula is 

J
n

Jn n=
( 1)n

2⋅ −

We are to calculate 

J x dx5
5

0
i

π

∫∫0

Here,

J J5 3J JJ
4

5

Again 

J x dx J3
3

1
0

=
2

3
i ⋅∫0

π

and

J xdx1
0

=xdx 1i

π

∫0

Therefore,

J x dx5
5

0
=

4

5

2

3
1 =

8

15
i ⋅ ⋅∫0

π

Example 3  Evaluate sin .6

0
2 d

π

∫0

Sol. Let us consider

J x dxn

n

0
i

π

∫0
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So, we are to calculate 

J x dx6
6

0
i .

π

∫∫0

Here n = 6,  an even integer.

 Now we have the value of Jn ,  when n  is even as 

 J
n

n
n =

( 1) (n 3)

( 2)n

( 5)n

( 4n )

3

4

1

2 2
⋅

−
⋅ ⋅ ⋅ 

π

Hence, 

J6 =
5

6

3

4

1

2 2
⋅ ⋅ ⋅

π

=
5

32
.

π

5.3 REDUCTION FORMULA FOR

(a) is a positive integern
cos x dxdd , (wheren > 1)∫

(b) is a positive integercosn
x dx , (herenwhere > 1)

0
2

ππππ

∫0

[WBUT 2008]

(a) Let us consider 

I x dxn

ncos∫∫
= 1cos c1 osn

xcos dx
−∫

Integrating by parts, we have

I x x dx
d x

dx
xdx dxn

n

n( )x1
1

cos cx os cos−
⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨

⎫
⎬
⎫⎫
⎬⎬
⎫⎫⎫⎫

⎭
⎬⎬
⎭⎭
⎬⎬⎬⎬∫∫∫

= ( 1)1 2cos s1 in cos s2cos in sinn n
xsin n 1)cos x xsin dx

− −− − 1)cos∫
= ( 1)1 2 2cos s1 i cos s2 inn n

xs n xdx
− −⋅ +sin xsin cos−1)∫

= ( 1) (1 )1 2 2cos s1 in cos c(12 osn n
xsin cosn 1) x d) xdd

− −+ −(n ∫
= ( 1) ( 1)1 2cos s1 in cos cosn n n

xsin n x xcos1) dx
− −+ −(n − ( ∫∫

i.e., I x x n I In

n

n n( 1) ( 1)n
1

2cos sx in −+ −n( n

i.e., n I x n In

n

n= ( 1)1
2cos sxn 1 in−

−+ n(
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⇒ +
−

−I
x

n n
In

n

n=
( 1)−n

1

2

cos sx
n 1

in
 ...(1)

Therefore, (1) represents the reduction formula of I x dxn

ncos ,∫  where n  is any 

positive integer.

(b) Let us consider 

J xdxn

n =
0
2

0
[ ]In∫0

ππ

Now taking limits on both sides of (1), we have

x x

n n

n

[ ]In

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
+ [ ]In

−

0
2

1

0

2

0
2=

( 1)n −
π

π
π

cos sin

i.e., =
( 1)

2J
n

Jn n⋅ − ...(2)

Therefore, (2) represents the reduction formula for J x dn

n

0
.x dx

π

∫0

Calculation of the value of the Definite Integral

J xd nn

n ,x (> 1)
0

wxdx,xdx here is a positive integer.

π

∫0

It is very interesting to see that 

J x d x dx x dxn

n n n

20
2

00
cx dx = 2 os s

ππ ππ

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠⎠⎠∫0 ∫0∫0

So, the values of two definite integrations cosn x
0
2

π

∫0
dx  and sinn x

0
2

π

∫0
dx  are 

same.

Hence from the last section 5.2, we have the value of J xdxn

n

0

π

∫0  as the 

following 

Case (i) When n is even.

J
n

n
n =

( 1n ) ( 3)

( 2)n

( 5)n

( 4)n

3

4

1

2 2

−n1) (
 

ππππ
.

Case (ii) When n is odd.

J
n

n
n =

( 1) (n 3)

( 2)n

( 5)n

( 4)n

4

5

2

3
.

−n1) (
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Alternative method of finding Reduction Formula for 

cos ,
n

d
0
2

ππππ

∫0  where n (> 1)  is any positive integer.

Let

J xdx

x dx

n

n

n=

0

1

0
2 cos cx

n 1 os

π

π

∫0

∫0

−

Using integration by parts,

J x xdx
d x

dx
xdxn

n

n( )x1

0

2
1

0
cx os cos- Ú ÚcÈ

ÎÎÎ
˘
˚̇
˘̆
˚̊

-
Ï
Ì
ÏÏ
ÌÌ
ÏÏÏÏ

Ó
ÌÌ
ÓÓ
ÌÌÌÌ

¸
˝
¸̧
˝̋
¸̧̧̧

˛
˝̋
˛̨
˝̋̋̋

p p

22Ú0
dx˝̋

= 0 2

0
2+ 2 ⋅−∫0

( )1− cos s2 in sinx x⋅⋅s⋅ in sin dx
n

π

= ( 1) 2 2

0
2n xdx

n− −∫0
cos s2

x
n ⋅ in

π

= ( 1) 12 2

0
2n x dxdd

n− −∫0
cos (2

x
n− cos )2

x

π

i.e., J n xdxn

n= ( 1)
0 0

2− ∫ ∫x
n ( 1)n

2

0
2

0

− cos

π π

i.e., J n J Jn n n= ( 1) ( 1)n2J−1) −

i.e., J
n

Jn n=
( 1)n

2−

Therefore the reduction formula of J xn

n=
0
2 cos

π

∫0
 dx, where n(> 1) is any positive 

integer is given by 

J
n

Jn n=
( 1)n

.2−

Example 4  Using reduction formula, find cos4
x∫ dx.

Sol. If we consider 

I xdxn

ncos∫∫
then the reduction formula is 

I
x x

n n
In

n

n=
( 1)n

1

2

−

−+cos sin

We are to calculate

I x dx4
4cos .∫
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Here

I xdx
x

I4
4

3

2
4

3

4
cos

cos sx3 in
= +∫

I xdx
x

I2
2

0
2

1

2
cos

cos sx in
= +∫

I dx x0 dxdx∫
Therefore,

I xdx
x

I4
4

3

2=xdx
4

3

4
cos

cos sx3 in
∫ +

=
4

3

4 2

1

2

3

0

cos s3 in cos sinxsin xsin
I0+ +⎧

⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬

=
4

3

4 2

1

2

3cos s3 in cos sinxsin xsin
x+ +⎧

⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬

Example 5  Using reduction formula, find cos .6

0
2 d

π

∫0

Sol. If we consider

J xdxn

n

0

π

∫0

Then the reduction formula is 

J
n

Jn n=
( 1)n

2⋅ −

We are to calculate 

J x dx6
6

0

π

∫∫0

Here,

J J6 4J J
5

6

Again 

J J4 2J JJ
3

4

and 

J J2 0J JJ J
1

2

But 

J dx0
0 2

=∫0

ππ
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Therefore, 

J6 =
5

6

3

4

1

2 2
=

5

32
⋅ ⋅ ⋅

π π5

5.4 REDUCTION FORMULA FOR 

(a) are positive

integers

sin cosm ncos xcosncos dx, (where m > 1) (andand )∫

(b) are

positive integer

sin cosm ncos xcosncos dx , (where m > 1) (a dand )
0
2

ππππ

∫0

ss [WBUT 2008]

(a) Let 

I x x dxm n

m n

, = sin cos∫
= 1cos (s n cos )n m1 (1 sin(sin x dx)∫

Integrating by parts, we have

I x xdx
d x

dx
xdxm n

n m

n

m

,
1

1

=
( )x

cos sx
n in cos sin cxm os−

⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨

⎫
⎬
⎫⎫
⎬⎬
⎫⎫⎫⎫

⎭
⎬⎬
⎭⎭
⎬⎬⎬⎬∫ dxdd∫∫

=
1

( 1)
1

1
1

2
1

cos
sin

cos s2 in
sinn

m

n

m

x
x

m
1)cos x

x

m
dx

−
+

−
+

+
− −

+∫

=
1

11
1

2 2cos
sin (1 )

( )1
sin cos sinn

m

m ncosx
m

n
xcos xdx

−
+

−

+
+

−
∫

=
1

( 1)

( 1)
(1 )1

1
2 2cos

sin
sin cos cosn

m

m ncosx
x

m
xcos x d) xdd

−
+

−

+
+ −∫

so, I x
x

m
x xdx

m
m n

n

m

m n

,
1

1
2=

1

( 1)n

( 1)m
cos

sin
sin cxm os

( )n 1

(

−
+

−

+
+ −

++ ∫∫ 1)
sin cosm ncos xcos dx

⇒
+

+−
+( )+

( 1)+
=

1

( 1)−
( 1)+,

1
1

, 2−
+

I x
x

m
Im n,

n

m

m,cos
sin

⇒ +I
x

Im n

n−

m,

1 1++

, 2−n=
( 1)−n

( )+m n+
cos sx

n
x

( )+m n+
 ...(1)

If we write 

I x x dxm n

m n

, = sin cos∫
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= 1sin (cos sin )m n1 (1 cos(cos x dx)∫
Then we can get 

I
x x

Im n

m

m n,

1 1

2,=
( 1)m

( )m n
− +

1 n
sin x

m
xx

( )m n+
 ...(2)

Therefore, the reduction formula of I x x dxm n

m n

, = sin cos∫   is given by both the 

formulas (1) and (2).

(b) Let us consider 

J x x dx Im n

m n

m n,
0
2

0

2

= s2 in cos .,⎡⎣⎡⎡ ⎤⎦⎤⎤∫0

π
π

Now taking limits on both sides of (1), we have

I
x

Im n

n m

m n, 0
2

1 1

0

2

,=
( )m n

( 1)n

( )m n
⎡⎣⎡⎡ ⎤⎦⎤⎤

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

+
1 m

−

π
π

cos sxn in
22 0

2⎡⎣⎡⎡ ⎤⎦⎤⎤
π

i.e., J Jm n m n, , 2=
( 1)n

( )m n
− ...(3)

Again taking limits on both sides of (2), we have

I
x

Im n

m n

m, 0
2

1 1

0

2

2=
( )m n

( 1m )

( )m n
⎡⎣⎡⎡ ⎤⎦⎤⎤ −

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

+
− +n1 n

−

π
π

sin cxm os
,, 0

2
n

⎡⎣⎡⎡ ⎤⎦⎤⎤
π

i.e., J Jm n m n, 2,=
( 1m )

( )m n
...(4)

Therefore, both the formulas (3) and (4) represent the reduction formula of 

I x dm n

m n

,
0
2= s2 in cos .x dx

n

π

∫0

Observation:

J x xdxm n

m n

,
0
2= s2 in cos

π

∫0

=
2 20

2 sin cosm n
x dx

π ππ ⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

−cos
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠∫0

= ,Jn m,

Calculation of the Value of the Definite Integral

J x dm n

m n

,
0
2= s2 in cos .x dx

n

π

∫0
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Let us consider the reduction formula (4), i.e.,

J J Jm n m n m n, 2, 2,=
( 1m )

( )m n
=

( 1m )

( )n m
...(5)

Now replacing m  by m − 2,  we get from (5) 

J Jm n m n2, 4,=
( 3)m −

( 2)n m+ −m
...(6)

From (5) and (6), we obtain 

J Jm n m n, 4,=
( 1m )

( )n m

( 3)m

( 2)n m
⋅

m
⋅ ...(7)

Again replacing m  by m − 2,  we get from (6)

J Jm n m n4, 6,=
( 5)m −

( 4)n m+ −m
...(8)

From (7) and (8), we have 

J Jm n m n, 6,=
( 1m )

( )n m

( 3)m

( 2)n m

( 5)m

( 4)n m
⋅

m
⋅

m
...(9)

Similarly proceeding, we have the following cases:

Case (i) m is odd and n is any (odd or even) integer

J Jm n, 1,=
( 1m )

( )n m

( 3)m

( 2)n m

( 5)m

( 4)n m

4

( 5n )

2

( 3)n
⋅

m
⋅

m
⋅ nn

Again

J x x dxn

n

1,
0

i cos

π

∫∫0

= =
1

( 1)
.

1

0

2

−
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦⎦⎦

+cos

( )1+

n
x

(⎦⎦⎦)1+

π

Hence

Jm n, =
( 1)m

( )n m

( 3)m

( 2n m )

( 5)m

( 4n m )

4

( 5)n

2

( 3)n

1

(m m 5) (n
 

nn+ 1)

=
2 4 6 ( 3) ( 1)

( 1) ( 3) ( )
.

i4

…

m 3) (i

n1) (

3) (i

+1) (n1) (

Case (ii) m and n both are even integers

J Jm n, 0,=
( 1m )

( )n m

( 3)m

( 2)n m

( 5)m

( 4)n m

3

( 4)n

1

( 2n )
⋅

m
⋅

m
⋅ nn
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Again

J x dxn

n

0,
0
2= c2 os

π

∫0

Since n  is even we have from section 5.3,

J
n

n
n0, =

( 1) (n 3)

( 2)n

( 5)n

( 4n )

3

4

1

2 2
⋅

−
⋅ ⋅ ⋅ 

π
.

Hence

J
n

n
m n, =

( 1)m

( )n m

( 3)m

( 2n m )

3

( 4)n

1

( 2)n

( 1) (n

m 4) (n

⎡

⎣⎢
⎡⎡

⎣⎣

⎤

⎦⎥
⎤⎤

⎦⎦

−n1) (
 

3)33

( 2)

3

4

1

2 2
.

⎡

⎣⎢
⎡⎡

⎣⎣

⎤

⎦⎥
⎤⎤

⎦⎦
 

ππππ

=
1 3 5 ( 3) ( 1) 1 3 5 ( 3) ( 1)

2 4 6 ( ) 2

i3 i

i4
i

…m 3) (i n3) (

n m

(3) i[ ] −n3) ([ ]
+

ππππ

Example 6  Using reduction formula, find sin cos3 2cos xcos dx∫
Sol. The reduction formula of I x x dxm n

m n

, = sin cos∫  is given by

 I
x

Im n

n m

m,

1 1

, 2n=
( )m n

( 1)n

( )m n

cos sxn in− +m1 m

+

Here, m = 3, =n 2

Now

I
x

I3, 2

4

3, 0=
5

1

5

cos sx in
+

and I x dx3, 0
21( cos )x2 sin∫ ∫d

3is n x dx
3 =x dx −

= 2sin cos sinx
2cosd xcos x dx⋅xcos∫∫∫

=
3

3

− +cos
cos

x
x

Therefore,

I
x

I3, 2

4

3, 0=
5

1

5

cos sx in
+

=
5

1

5 3

4 3cos sin
cos

cosxsin
x

x
+ − +

⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨

⎫
⎬
⎫⎫
⎬⎬
⎫⎫⎫⎫

⎭
⎬⎬
⎭⎭
⎬⎬⎬⎬

Example 7  Using reduction formula, find sin cos3 2cos
0
2 xcos dx

π

∫0

Sol. Since

J xdx
m

n n m
m n

m n

,
0
2=

2 4 6 ( 1)

( 1)(n 3)( 5n ) ( )
sin cxm os =

⋅4 −
+n1)( +n5) (∫0

π
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when  is odd and n  may be odd or even integers.

 Here, m = 3  (odd), n = 2 (even)

 Therefore,

 
J x dx3, 2

3 2

0
2=

=
2

3.5
=

2

15

sin cx3 os

π

∫0

Example 8  Using reduction formula, find sin cos2 2cos
0
2 xcos dx

π

∫0

Sol. Since

J xdx
m n

m n

m n

,
0
2= =

1 3 5...( 1) 1 3 5...( 1)

2 4 6...(
sin cxm os

π

∫0

⋅3 − ⋅1) ⋅3 −
⋅4 m nmm + ) 2

π

when both m n,  are even integers.

 Here, m = 2  (even), n = 2 (even).

 Therefore, 

 
J x dx2, 2

2 2

0
2=

=
1 1

2 4 2
=

16

sin cx
2 os∫0

π

π π

5.5 REDUCTION FORMULA FOR

(a) here and are

positive integers.

cos sim
x nsin x dnn x mwheredd n,∫

(b) he e and are

positive integers.

cos sinm
x nsin x dnn x mwheredd ,

0
2

ππππ

∫0

(a) Let

I x nx dxm n

m

, = cos sin∫
Integrating by parts, we have

I x nx dx

d

dx
nx dx dxm n

m

, cos sin sin−
( )xmcos⎧

⎨
⎪
⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪
⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

∫∫∫

= 1cos
cos

cos s1 in cosm m
x

nx

n

m

n
xsin nx dx

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

− ⋅−∫
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Since

sin sin cos os si sin( 1)nx nxcos n nx nxs cos n

I x
nx

n

m

n
nx x dx

m 1cos
cos x sx in n }−∫

−
∫

cos
cos sin

m

mnxcos

n

m

n
xdx −sin s x− dx

[ ]1

−
−

cos nxcos

n

m

n
−

⇒
−

+ 1

+
n

I
nx

n

m

n
Im n

m

m

cos x

⇒ +I
nx

m n+
m

m n+
Im n

m

m 1−n
cos x

Therefore, the reduction formula of I x nx dxm n

m= cos sin  where m n are positive 

integers is given by 

I
x

m n

m

m n
Im n

m

m 1

−
+

cos x
 ...(1)

(b) Let us consider 

J nx dx Im n

m

m n
2

0
2= =cos sx in∫

Now taking limits on both sides of (1), we have

I
nx

m n

m

m n
Im n

m

0
2

0

2

1 0
2

−⎡ ⎤
+ −

i.e., J
m n

m

m n
Jm n m 1

1
+ ⋅⋅  ...(2)

Therefore, (2) represents the reduction formula for cos .x dxsin2∫
Alternative Method of Finding Reduction  

Formula for co m s n x dx2∫
Let

J x nx dxm n

m= cos sin

=
0

2 2cos sinm
nxdsin

d x

dx
nxdx dx∫∫

cosm
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=

0

2
1−⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

− −cos cos
cos s cos s1cos in ( )1

m

m mnxcos

n

m

n
x nxdsin x − cosdd x)1− dx

π

00
2

0
2

ππ

∫00∫0

⎡

⎣
⎢
⎡⎡

⎢⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥

⇒
−⎡

⎣
⎢
⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

+ −
( )+

=,

0

2

1, 1

+
n

J
nx

n

m

n
Jm n,

m

m n−1,

cos cxm os

π

⇒
−

+

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

+
+ −J

nx

m n+
m

m n+
Jm n

m

m n−,

0

2

1, 1=
cos cxm os

π

⇒
+

+
+

J
m n+

m

m n+
Jm n m−, 1, 1−n=

1

Therefore, the reduction formula of J x nx dxm n

m

,
0
2= c2 os sin

π

∫0
 where m n,  are 

positive integers is given by 

J
m n

m

m n
Jm n m, 1, 1n=

1

+
+

+ n

Example 9  Using reduction formula, find cos sin3

0
2 2

π

∫0
xsin 2 dx

Sol. The reduction formula of J x nx dxm n

m

,
0
2= c2 os sin

π

∫0
 where m n,  are positive 

integers is

 J
m n

m

m n
Jm n m, 1, 1n=

1

+
+

+ n

Here, m = 3  and n = 2.

Now,

J J J3, 2 2,1 2,1=
1

3 2

3

3 2
=

1

5

3

5
,+ +

J J J2,1 1, 0 1, 0=
1

2 1

2

2 1
=

1

3

2

3+
+

+
+

and J dx1, 0
0

0=∫∫0

π

Therefore,

J J3, 2 2,1

1

5

3

5

=
1

5

3

5

1

3
=

2

5
+ ⋅
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5.6 REDUCTION FORMULA FOR

(a) is a positive integer
dx

n( )x a
, (where n > 1)

2 2
a

∫

(b) is a positive integer
dx

n( )x a
, (where n > 1)

2 2
a0∫0

∞∞∞∞

(a) Let us consider 

I
dx

dxn n
=

( )x a

1

( )x a

1
2 2

⋅∫ ∫
dx

n( )x a

=
2 2

Now integrating by parts, we have

I
d

dx
dx dxn n n

=
1

( )x a

1

( )x a

1
2 2 2 2

⋅
⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬⋅

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

∫ ∫dx1 −dx1 ∫

=
1

( )
( )

2

( )
( )

2 2 2 2 1

n x2
x dx)

n n
⋅ +( ) ⋅∫ +

=
( )

2
( )2 2

2

2 2 1

x
n

x
dx

n n
+ ⋅2n ∫ +

=
( )

2
( )2 2

2 2 2

2 2 1

x
n

x a a
dx

n n
+ ⋅2n

+ −2
a

∫ +

=
( )

2
1

( )

1

( )2 2 2 2

2

2 2 1

x
n dx a dx

n n n
+ ⋅2n − ⋅a

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
∫ ∫ +

⇒ + −⎡
⎣

⎤
⎦
⎤⎤+I

x
n I⋅ ⎡

⎣
⎡⎡ a I⋅n n n na I=

( )+x a+
2

2 2+
2

1

⇒ ⋅ ++2 =⋅ ⋅ +
( )+

(2 1)2
1 2 2+

a⋅
x

+
n I− ⋅1)n n n

Now replacing n  by n −1,  we have from above

2 ( 1) =
( )

(2 3)
2

2 2 1 1n a1) I
x

n I3)n n n+ (2n
− −ia  ...(1)

So (1) represents the reduction formula for

I
dx

n n
=

( )x a

, (n > 1)
2 2

h is a positive integer.

(b) Let us consider 

J
dx

n n
=

( )x a
2 20

∞

∫0
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so, Jn .
0

[ ]I[ ]nInI ∞

Now taking limits on both sides of (1), we have

2( 1) =
( )

(2 3)2

0 2 2 1
0

0
n a1)

x
n 3)

n
1) ⋅[ ]In

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
+ (2n [ ]1In

∞
−

∞
∞

2( 1) =
( )

0 (2 3)2

2 2 1 1n a1) J
x

J3)n
x

n n1) ⋅ −
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦

⎤⎤

⎦⎦
(2

→∞ − −lim ...(2)

Again 

x
n

x

→∞ −

∞
∞

lim
( )x a+

.
2 2+ 1

is an indeterminate form of

So using L’Hospital’s rule, we have

x
n

x n

x

d

dx

d

dx

→∞ − →∞ −⎡
⎣
⎡⎡ ⎤

⎦
⎤⎤

lim lim
( )x a+

=

( )x

( )x a+
2 2+ 1

2 2+ 1

=
1

( 1) ( ) 22 2 2
x

n
x1) ( a x) 2→∞ 1)1) + )2

a )
lim

i.e.,
x

n

x

→∞ −lim
( )x a+

= 0.
2 2+ 1

...(3)

Using the result (3) in (2), we have 

2( 1) = (2 3)2
1n a1) J = (2J (2 Jn n1) ⋅ J = (2 ⋅ −

i.e., J
a n

Jn n=
1 (2 3)n

(2 2)2 1
i i

− −  ...(4)

Hence (4) is the reduction formula for 

J
dx

n n
=

( )x a

, ( )
2 20

∞

∫0
where i(n > 1) s a positive integer.

Calculation of the Value of the Definite Integral 

J
dx

n n
=

( )x a

, (n > 1)
2 20

∞

∫0
is a positive integer.

From (4), we have the reduction formula for above as 

J

a n
Jn n=

1 (2 3)n

(2 2)2 1⋅
−

⋅ − ...(5)

Now replacing n  by n −1,  we get from (5) 
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J

a n
Jn n− −⋅

−
⋅1 2 2=

1 (2 5)n −
(2 4)

...(6)

From (5) and (6), we obtain 

J

a n a n
Jn n=

1 (2 3)n

(2 2)

1 (2 5)n

(2 4)2 2 2⋅
−

⋅ ⋅
−

⋅ −

i.e., J
a a

n

n

n

n
Jn n=

1 1 (2 3)

(2 2)

(2 5)

(2 4)2 2 2⋅⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⋅
−
−

⋅
−
−

⋅ − ...(7)

Again replacing n  by n −1,  we get from (6)

J

a n
Jn n− −⋅

−
⋅2 2 3=

1 (2 7)n −
(2 6)

...(8)

From (7) and (8), we have 

J

a a a n

n

n

n

n
n =

1 1 1 (2 3)n

(2 2)

(2 5)

(2 4)

(2 7)

(2 62 2 2
⋅ ⋅⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⋅
−

⋅
−
−

⋅
−
− ))

3⋅ −Jn ...(9)

Similarly proceeding as above 

J

a a a n
n =

1 1 1 (2 3)n

(2 2)2 2 2

( 1)n

⋅

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎝⎝
⎜⎜
⎝⎝⎝⎝

⎞

⎠

⎟
⎞⎞

⎟
⎟
⎟⎟

⎠⎠
⎟⎟
⎠⎠⎠⎠

⋅
−

 

            

terms

⋅⋅
−
−

⋅
−
−

⋅ ⋅ ⋅
(2 5)

(2 4)

(2 7)

(2 6)

5

6

3

4

1

2
1

n

n

n

n
J1 

=
1 (2 3)

(2 2)

(2 5)

(2 4)

(2 7)

(2 6)

5

6

3

4

1

22( 1)
a n

n

n

n

nn−
⋅

−
⋅

−
−

⋅
−
−

⋅ ⋅ ⋅ JJ1 ...(10)

Again 

J
dx

1 2 20
=

( )x a
2 2

∞

∫0

=
1 1

0a

x

a
⋅⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

−
∞

tan

=
1

2
.

a
⋅
π

So putting the value of J1  in (10), we have 

J

a n

n

n

n

n
n n

=
1 (2 3)n

(2 2)

(2 5)

(2 4)

(2 7)

(2 6)

5

6

3

4

1
2( 1)− −

−
−

−
−
 

22

1

2a

ππππ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

=
1 (2 3)

(2 2)

(2 5)

(2 4)

(2 7)

(2 6)

5

6

3

4

1

2 22 1
a n

n

n

n

nn −
−
−

−
−
 

ππππ

Alternative Method for Computation 

I
dx

n n
=

( )x a

, (n > 1)
2 20

∞

∫0
is a positive integer.
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Let 

x a dx a d= 2tan secθ θ θthen

Putting the above values in integration, we have 

I
a d

a a
n n

=
( )

2

2 2 20
2

sec

tan

θ θd
θ

π

+∫0

=
1

2 1

2 2

0
2

a

d
n

n∫0
cos θ θd

π

We have from Section 5.3 if J x dn

n

0
cos ,x dx

π

∫0
 then

J
n

n
nn =

( 1) (n 3)

( 2)n

( 5)n

( 4n )

3

4

1

2 2
⋅

−
⋅ ⋅ ⋅ 

π
., when in s even

Since 2 2n  is always even, using the result of Section 5.3, we have

I

a

dn n

n=
1

2 1n

2 2n

0
2∫0

cos θ θd
π

=
1 (2 3)

(2 2)

(2 5)

(2 4)

(2 7)

(2 6)

3

4

1

2 22 1
a n

n

n

n

nn −
⋅

−
−

⋅
−
−

⋅ ⋅
⎡

⎣
⎢
⎣⎣

⎤
 

π

⎦⎦
⎥
⎤⎤

⎦⎦⎦⎦

Example 10  Find 
dx

( )x a
2 2 2∫ .

Sol. We have the reduction formula for 

I
dx

n n
=

( )x a

, (n > 1)
2 2

is a positive integer.

as

2 ( 1) =
( )

(2 3) .2

2 2 1 1n a1) I
x

n I3)n n n1) ⋅ + (2n
− −

Here we are to find I2 .

By putting n = 2  in the above formula we get 

 2(2 1) =
( )

(2 2 3) .2
2 2 2 2 1 2 11)1) + ⋅(2 3)3)

x

i.e., 2 =
( )

.2
2 2 2 1a I

2
2

x
I+

Again 

I
dx

a
a1 2 2

1=
( )x a

2 2
=

1
.−tan
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Hence 

I
x

x a a

a2 2 2 2 3

1=
1

2 (a
2 )

1

2
.⋅

+
+ ⋅

3

−
tan

WORKED-OUT EXAMPLES

Example 5.1  If I dn = 2 1n

0
2 sin ,n2 1n∫0

θ θdd
π

 where n  is a positive integer, show that 

I
n

n
In n=

2

2 1n
.1−

Use this to evaluate sin7

0
2 θ θ
π

∫0
dθθ .  [WBUT 2001]

Sol. Here 

I dn

n=
0

2

0
2 sin i∫ ∫d

n =2 1n

0
2

0
sin d θ θsin θ

π π

Integrating by parts, taking sin2nθ  as the first function and sinθ as the second 

function, we have

 =
( )2

0

2

0
2sin2 i sinn

n

d
d

d
d dθ θ2 s2 in θ

θ
θ θd θ

π π

∫0 ∫∫0
−

⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨

⎫
⎬dd
⎫⎫
⎬⎬
⎫⎫⎫⎫

⎭
⎬⎬
⎭⎭
⎬⎬⎬⎬

= [ ] 20
2 2 1 2

0

2

− ∫sin d
n nθ θ θ θ2 θ

π
π

s] 2nθ in

= 0 2 (1 )2 1 2

0

2

+ ∫n d
nsin θ (1 θ

π

= 2

0

2
2 1

0

2

n d
2 1s∫ ∫22 1

d
2 1

ns d θ θd

π π

= 2 21nI nIn n21 nI−

⇒ + −(2 1) = 2 1n I+1) nIn n2nI

⇒
+ −I
n

n
In n=

2

(2 1)
.1

To evaluate sin7

0

2

θ θ

π

dθθ∫  by the above reduction formula, we have
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I d I I3
7

2 2I II I

0

2 2 3

(2 3 1)

6

7
s θ θd

π

=
⋅3∫

Similarly, 

I d I I2
5

1 1I II I

0

2

=
2 2

(2 2 1)

4

5
s θ θdd

π

⋅2∫

I d I I1
3

0 0I II I

0

2

=
2 1

(2 1 1)

2

3
s θ θdd

π

⋅1∫

I d0 0
/2

0

2

[ ] = 1s = [θdθ θddd θ π

π

∫

Therefore, from the above relations, we have

I d I I I3
7

2 1I II I 0

0

2

=
6

7

6

7

4

5
=

6

7

4

5

2

3
=

16

35
s θ θdd

π

∫

Example 5.2  Show that 

x

x

dx

6

2
0

1

1
=

5

32−
∫ π [WBUT 2003]

Sol. Let

x = sin θ

then dx d= cosθ θd

Then

x

x

dx

6

2
0

1

1−
∫

=
6

0

2 sin6

cos

θ θcos

θ
θ

π

∫ dθ

= 6

0

2

sin θ θ

π

dθθ∫
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Now from Section 5.2, we have if J x dxn
n= ,x dx

0

2

∫

π

 then 

 J
n

n
nn =

( 1) (n 3)

( 2)n

( 5)n

( 4n )

3

4

1

2 2
,⋅

−
⋅ ⋅ ⋅ 

π
is even.

Since here n = 6,  using the result of Section 5.2, 

 sin6

0

2

=
5

6

3

4

1

2 2
=

5

32
.θ θ

π π5

π

dθθ ⋅ ⋅ ⋅∫

Hence 

x

x

dx

6

2
0

1

1
=

5

32
.

−
∫ π

Example 5.3  Prove that if u x x dxn

n 1

0

1

tan−∫  then

( 1) ( 1) =
2

1
.21)1) n u1)

n
n n1)1)1) −=2u1) −

π
[WBUT 2002]

Sol. Here 

u x xdx x x dxn

n n1 1

0

1

0

1

tan xdx
1− ⋅x∫∫∫

Performing integration by parts, we have

u x
x

n x

x

n
dxn

n n

1

1

1 1

1
1

0

1

2

1

0

1

tan−
+ +

+

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

−
+ +∫

=
4

1

1

1

1 1

2

2

1

0

1π
⋅

+
−

+ +∫
n n1+

x

x

x dx
1−n

=
4

1

1

1

1
1

1

1 2

1

0

1π
⋅

+
−

+
−

+
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠∫

n n1+ x

x dx
1−n

So,

u
n n

x dx
n x

x dxn

n n=
4

1

1

1

1

1

1

1

1

1

2

1

0

1

0

1π
⋅

+
−

+
+

+ +∫∫
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u
n n

x

n n
x x xn

n

n n=
4

1

1

1

1

1

1
( 1)n

0

1

1 1

0

1π
⋅

+
−

+

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

+
+

⎡
⎣
⎡⎡ ⎤

⎦
⎤⎤ − (n−1 −tan 2 122

0

1

tan∫
⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

xdx

Hence from above 

u
n n n n

n

n
x xdxn

n=
4

1

1

1

1

1 1

1 4

1

1

2 1

0

1π π
⋅

+
−

+
+

+
−

−
+

−2∫ tan

i.e., u
n n

n

n
x x dxn

n=
1

21

1n1

1

2 1

0

1

+
−⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

−
+

−2∫
π

tan

i.e., u
n n

n

n
un n=

1

1 2

1n1

1
2+

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

−
+ −

π

Therefore, 

( 1) ( 1) =
2

1
.21)1) n u1)

n
n n1)1)1) −=2u1) −

π

Example 5.4  If u dn

n

0

4

n ,θdd

π

∫  prove that

n n n( )u un = 1.1ununu [WBUT 2003]

Sol. Here

u d dn

n n 2 2

0

4

0

4

t= anθdθ θdd θ θ2tan θ

ππ

−∫∫

= 2 2

0

/4

tan (2 c )12n
d∫ (sesec2c(sec θ

π

= ( )2

0

4
2

0

4

tann n
d d

−−∫ ∫θ(t( an θ θd

π π

From above, we can write

u
n

un

n

n=
1

1

0

4

2

−

−−
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
−tan θ

π

i.e., u
n

un n=
1

1
2−

− −

Replacing n  by n +1  in the above expression, we have
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u
n

un n+ −−1 1=
1

i.e., n n n( )u un = 1.1ununu

Hence the result is proved.

Example 5.5  If I
n

dn =
sin

sin
,

θn
θ

θ  show that

( 1)( ) = 2 ( 1) .2I1)( I nn nI−I1)( −− θ [WBUT 2004]

Sol. We have 

I
n

dn =
sin

sin

θn
θ

θ

So, 

I dn−
( )n −

∫2 =
sin

sin

θ
θ

θ

Now

I I
n

d dn nI I −
( )n −

− ∫∫2 =
sin

sin

sin

sin

θn
θ

θ
θ

θ
θ

=
sin sin

sin

sin
d

θθ θ
θ

θ
sin ( )2n −n

∫

=
2 ( 1)( 1) i

sin
d

1)
∫

θ θsin

θ
θ

= 2 ( 1)cos n d1)∫ θ θd

Therefore 

I I
n

n nI I
−−2 = 2

( 1)n −
1

sin θ

i.e., ( 1)( ) = 2 ( 1) .2n 1)( n n1)( sin

Hence the result is proved.

Example 5.6  If I
n

dn =
cos

cos
,

θn
θ

θ∫  show that

( 1) ( ) = 2 ( 1)2I1) ( I nn nI+I1) ( n −− θ

Hence evaluate 

(4 3)2cos θ θ3)∫ dθθ [WBUT 2005]
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Sol. We have 

I
n

dn =
cos

cos

θ
θ

θ∫ ...(1)

So, 

I dn−
( )n −

∫2 =
cos

cos

θ
θ

θ

Now

I I
n

dn nI I
( )n −

− ∫ ∫
n

d +2 =
cos

cos

cos

cos

θ
θ

θ
θ

θ

=
cos cos

cos

cos
d

θ θ
θ

θ
+ coscos ( )2n −n

∫

=
2 ( 1)( 1)

cos
d

1)
∫

θ θcos

θ
θ

= 2 ( 1)cos n d1)∫ θ θd

Therefore 

I I
n

n nI I
−−2 = 2

( 1)n −
1

sin θ

i.e., ( 1)( ) = 2 ( 1) .2n 1)( n n1)( sin ...(2)

Hence, the result is proved.

Now we are to evaluate 

(4 3)2cos θ θ3)∫ dθθ

using the above result.

For this purpose, if we put n = 3  in (1), then

 I d3

3

=
3 (4 3 )cos

cos

cos3

cos

θ
θ

θ 33

θ
θ∫ ∫d

3
=

cos

cos

θ
θ

θ

= (4 3)2 θ3)∫ dθθ

Basically, we are to find I3.

Putting n = 3  in (2), we have

(3 1)( ) = 2 (3 1)3 3 2−1)( −sin θ

i.e., ( ) = 23 1 si θ
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Again I d d1 = .
cos

cos

θ
θ

θ θd θ∫∫
So, 

I3 = 2si θ θ

i.e., (4 3) = 22cos si .θ θ3) θ θ∫ dθθ

Example 5.7  If I x dn

n

0

2

π

∫ sin ,x dx  (n > 1)  then prove that

I n nn n

n

n
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠

−

( 1) =n Inn −
2

.2

1π
[WBUT 2008]

Sol. Here we have 

I x x dxn

n

0

2

sin

π

∫
Integrating by parts, we obtain 

I x x n x xdxn

n n

0

2 1

0

2

⎡
⎣

⎤
⎦

−∫cos cos

π
π

= 0 ( 1) ( )1

0

2 2

0

2

− ⎡
⎣

⎤
⎦

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

− ∫n x−⎡
⎣
⎡⎡⎢ x (2⎤

⎦
⎤⎤ − ( x(− dx

n nsin sin

π
π

=
2

( 1)

1
2

0

2

n n x1) x dx

n

nπ
π

⎛
⎝
⎛⎛
⎝⎝

⎞
n

⎠
⎞⎞
⎠⎠

(n

−
−∫ sin

Therefore, 

I n n In

n

n
2

( 1)n

1

2

π⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠

− n n
−

−

i.e., I n nn n

n

n
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞
⎠

−

( 1) =n Inn −
2

2

1π

Hence the result is proved.

Example 5.8  If I x dm n

m

,

0

2

= cos cos ,nx dx

π

∫  then prove that
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I
m

m n
Im n m, 1, 1n= .

+ n

Hence show that

n

n
x nx dx
n

cos cos =nx dx

2
.

1
0

2 π
π

+∫

Sol. Here

I x nx dxm n

m

,

0

2

= cos cos

π

∫ ...(1)

= ( )

0

2
1

0

2m
mx nx

n
m x

nx

n
dx

cos sin
cos s(1m

x in
sin⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
− −∫

π π

i.e., I
m

n
nx x dxm n

m

,
1

0

2

= ( )scos x
m 1 ( in sin−∫

π

...(2)

Again 

cos cos cos cos sin sin( 1) = ( ) nx xcos cos) = x+

Then from (2) 

I
m

n
n x nx x dxm n

m

,
1

0

2

= (( 1)cos cx
m 1 osos cos cnxnx os− −n[ ]∫

π

= ( 1)1

0

2

0

2
m

n
n( x dx

m

n
x nx dx

m mcos c1
x

m os cos x
m− − −1)x dx∫ ∫

π π

i.e., I
m

n
I

m

n
Im n m m n, 1, 1n ,= n −

i.e., 1 =, 1, 1
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠⎠⎠

m

n

m

n
Im n, m 1,−1

Hence

I
m

m n
Im n m, 1, 1n= .

+ n ...(3)

So the first part is proved.

To prove the second part, let

J x nx dxn

n .

0

2

cx os

π

∫
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So it is clear from (1) that J In nJ I n, .

Therefore, from (3), we have 

J I
n

n n
I Jn nJ I n n nJ=I

1

2
, 1, 1n 1+ −1 n − ...(4)

Now from (4) 

J J Jn nJ J n

1

2
=

1

2

1

2
1 2− −⋅

=
1

2

1

2

1

2
3⋅ ⋅ −Jn

         ..............

J Jn

n

n n=
1

2

1

2

1

2

1

2
⋅ ⋅  

                      

terms

i.e., J Jn n

1

2
0

Again

J dx0

0

2

0

2

=dx
2

.

π π

π
∫ ∫dx

0 0x
0 =cx os

Hence 

J Jn n n n

1

2
=

1

2 2
=

2
.0 1

⋅
+

π π

Example 5.9  If I x dxn

n= ( )1

0

1

si∫  then prove that

I nn n

n

n
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠

( 1) =n Inn −
2

.2

π

Sol. Let 

J dxn

n( )x1i∫
Putting x v= ,vsin  i.e., dx vdv= ,vdvcos  we have from the above,

 J v v dvn

n cv
n os∫∫

= 1
v vdv
n nsi s1

nv
nn v in−∫

= ( 1)1 2
v v n v n( v dv
n n nsin v− n ( )vcos− −n( ( )vcos⎡

⎣
⎤
⎦
⎤⎤− −∫

J v v n n v vdvn

n n n( 1)1 2sin cv nv os cos+ −vn 1 cnv
n 1 os −− −∫
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i.e., J v v n n Jn

n n

n( 1)1
2sin cv nv os+ −vn 1 cnv

n 1 os −−
−

= 1 ( 1)
1

2
2

−
−( )1sin− ⋅ + ( )1sin− ⋅ −1 (x) ⋅ n (sin x n− J1)

n n

n

Now

I dxn

n

=
0

1

0

1

( )x1si [ ]Jn∫

= 1 ( 1)
0

1
1

2

0

1

2

−
−( )1sin−⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

+ ( )1sin− ⋅ −1
⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦
⎤⎤
⎦⎦

( [x) ⋅ n (sin x n
⎤
⎦⎥
⎤⎤
⎦⎦

− J1)[
n n

n ]]
0

1

=
2

0 ( 1) 2

π⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

+ 0 − −

n

nn( In

Hence 

I nn n

n

n
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠

( 1) =n Inn −
2

.2

π

Example 5.10  If I x nxdxm n

m

,

0

2

= sin cos

π

∫  and J x nxdxm n

m

,

0

2

i sin

π

∫∫  then prove 

that

( ) =
2

., 1, 1I mJ
n

m n, m 1,)I 1 sin
πn

Sol. Here we have 

I x nxdxm n

m

,

0

2

= sin cos

π

∫

= ( )

0

2
1

0

2m
mx nx

n

m

n
x nxdx

sin sin
sin c(1m

x( os sin
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
− −∫

π π

=
1

2
( )1

0

2

n

n m

n
x( dx

msi sn in i
πn

π

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎞
⎠

−∫
Again 

sin sin sin cos cos sin( 1) = ( ) nx xsin cos) = x−

So, 

I
n

n m

n
x nx x dxm n

m

,
1

0

2

=
1

2
( 1)sin sin si cxn( 1)n os sin

πn
π

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

+( )−∫
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=
1

2
( 1)1

0

2

0

2

n

n m

n
(x xdx

m

n
x nxdx

m msin sin sin sin cos
πn

π π

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

−−∫ ∫∫
Therefore, 

I
n

n m

n
J

m

n
Im n m m n, 1, 1n ,=

1

2
sin

πn⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

− −J 1 1n

i.e., nI
n

mJ mIm n m m n, 1, 1n ,=
2

sin
πn⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

− −mJ 1 1n

Hence we have

( ) =
2

., 1, 1I mJ
n

m n, m 1,)I 1 sin
πn

Example 5.11 If I dxn

n

0

1

( )x1 2∫  then prove that

(2 1) = 2 .1n I1) nIn n2nI −

Sol. Here

I dxn

n

1

0

1

( )x1 2 ⋅∫

 = ( 2 )
0

1
1

0

1

( )1 2−⎡
⎣⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

− ( )1 2 −(
−

∫x) ⋅ n (11∫ x) ⋅ dx
n n

 = 0 2
1

0

1

− 2 ( )1 2 ⋅ ( )2−
−

∫∫ (1−1n∫ dx)2
n

 = 2
1

0

1

2 ( )1 2 ( )1 2−1⎡
⎣

⎤
⎦

−

∫ (11n∫ dx1)2 − ⎤
⎦
⎤⎤n

i.e., I n dxn

n n

2

0

1
1

0

1

n ( ) ( )x1 2−1∫dx n
n

dx∫ ( )x1 x
21 n

−

i.e., I nI nIn nI n n2 2 1nInI −

i.e., (2 1) = 2 .11)1) n n2 −

Hence the result is proved.

Example 5.12 If I dxm n

m n

,

0

1

(x
m= 1 )x∫  then prove that

I
n

m n
Im m, 1n , 2n=

1
.

−
+
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Sol. Here we have 

I x dxm

m n

, 1n

1

0

1

x
m −( )x1−∫

= (1 ) 1

0

1

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦
⎤⎤∫ x) ⎤

⎦
⎤⎤ ⋅ ⎡

⎣
⎡⎡ dx

n m1 ⎤ ⎡−

Integrating by parts,

I
x

m

x

m
m

n

m

n

m

, 1n

1
1

0

1

2
1

= (1 )x
1

( 1) (n 1 )x ( 1)−
+

−
+

⋅)x
+

⎡

⎣
⎢
⎡⎡

⎣⎣⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

− (n )x ( ⋅
+11

0

1

dx∫

= 0
1

1
(1 ) 2 1

0

1

+
−
+

− 2∫
n

m
x x) ⋅) dx
n m−2

=
1

1
(1 ) ( )2

0

1

−
−
+

− −∫
n

m
x)) x dx)n m2

=
1

1
(1 ) 2

0

1

−
−
+

− ( )1−1⎡⎣ ⎤⎦⎤⎤∫
n

m
x)) dx1) − ⎤⎤⎤n m2

=
1

1
(1 )

1

1
(1 )1

0

1
2

0

1

−
−
+

− +
−
+

−∫ ∫
n

m
x x) ⋅)

n

m
x x) ⋅)n m1− n m2−

Therefore,

I
n

m
I

n

m
Im m m, 1n , 1n , 2n=

1

1

1

1
−

−
+

+
−
+

i.e., 1
1

1
=

1

1
, 1 , 2+

−
+

⎛
⎝⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−
+

n

m
I

n

m
Im, m,

i.e.,
m n

m
I

n

m
Im m

+
+

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−
+1

=
1

1
, 1n− , 2n−

i.e., I
n

m n
Im m, 1n , 2n=

1
.

−
+

Hence the result is proved.

Example 5.13 If I
n

dn =
1

1
0

−
−∫
cos

cos
,

θn
θ

θ
π

 where n  is a positive integer or zero then 

prove that

I I In nI I n+1= 2 .

Sol. Here, we have

I
n

d I dn n=
1

1
=

1

1
.

0

2

0

−
−

( )n 2nn

−∫ ∫+
cos

cos

cos

cos

θn
θ

θ
θ

θ
θ

π π

d so
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Therefore,

I I dn nI I
( )n

−∫
0

=
1− ( +n

1

cos

cos

θ θn+ −1 cos

θ
θ

π

=
2

1
.

0

( )2⎡⎣⎡⎡ ⎤⎦⎤⎤

−∫
cos( )2

cos

)2
d

θ θ+ c+ cosnc+ os

θ
θ

π

Since

cos cos cos cosA Bcos
A B A B⎛

⎝
⎛⎛
⎝⎝

⎞
⎠⎠
⎞⎞
⎠⎠

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

= 2
2 2⎠⎠⎠ ⎝⎝⎝

,

we obtain from above

I I dn nI I
− ( )+

−∫
0

=
2 2−

1

cos( )n +n

cos

θ θc⋅ os

θ
θ

π

= 2
1 1

1
0

( )1−1⎡⎣⎡⎡ ⎤⎦⎤⎤ ( )1

−∫
c1) − ⎤⎤ os

cos

θ

θ
θ

π

dθ

= 2
1

2
1

1
0 0

( )1− ⋅ ( )1+

−
+

( )1

−∫ ∫
c) ⋅ os

cos

cos

cos

θ
θ

θ
θ

θ
θ

π π

dθ dθ

i.e., I I d In nI I n+( )n∫ 1

0

= 2 2+cos θdθ θdd
π

= 2
1

2

0

1

sin

n
In

( )1n +

+

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
+ +

θ
π

= 0 2 .1+ +n

Hence 

I I In nI I n+1= 2 .

Example 5.14 If I x x dxn

n 1x
n 2

0

1

−∫  then prove that

I
n

n
In n=

1

2
2

−
+ −

Sol. Here

I x x dxn

n 1x
n 2

0

1

−∫

= 1

0

1

x dx
n ( )1 21 x1 x⋅x∫
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=
3

( 1)
3

1

3

2

0

1

2

3

2

0

1

x x1) dx
n n− −( )1 2

x−

−

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

− (
( )1 2

x−

−∫

I x x dxn

n= 0
( 1)n

3
12 2

0

1

+ ( )x1 x
21 −−∫

=
( 1)

3
1

( 1)

3
12 21

0

1
2

0

1

x x1 dx x x1 dx
n n−x dx

−∫ ∫

i.e., I I In n n=
( 1)n

3

( 1)n

3
2 −−

i.e., 1
1

3
=

( 1)

3
2+

−⎛
⎝⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−
n

I In n

i.e., I In n

( )n +
−

3
=

( 1)n −
3

2

i.e., I
n

n
In n=

1

2
.2

−
+ −

Hence, the result is proved.

Example 5.15 Show that

cos sn

n

n n

x nxdxsin
n

0

2

1

2 3 1

=
1

2
2

2

2

2

3

2

( 1)n

2
.

π

∫ +
+ + + + +

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

where m  is any positive integer.

Sol. From Article 5.5, we have the reduction formula for

 J x nxdxm n

m

,

0

2

= cos sin

π

∫
as below

J
m n

m

m n
Jm n m, 1, 1n=

1

+
+

+
⋅ n ...(1)

Now let

I x nxdxn

n

0

2

cos sx in

π

∫
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So it is obvious that

I Jn nI J n .JnJ n,

and from (1), we obtain 

I J
n n

n

n n
Jn nI J n n=J

1
, 1, 1n+

+
+

⋅ −1 n

i.e., I
n

In n=
1

2

1

2
1+ ⋅ −

Now

I
n

In n=
1

2

1

2

1

2

1

2
2+ ⋅

( )n 1n
+ ⋅

⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟−

=
1

2

1

2 ( 1)

1

22 2 2
n n

In+
−

+ ⋅
2 −

I
n n

In n=
1

2

1

2 ( 1)

1

2

1

2

1

22 2 3+
−

+ ⋅
2 ( )n 2n

+ ⋅
⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟−

=
1

2

1

2 ( 1)

1

2

1

22 3 3 3
n n 1) 2

In+ +
( )2n

+ ⋅
3 −

Proceeding in a similar manner, we obtain 

I
n n

In n n
=

1

2

1

2 ( 1)

1

2

1

2 2n

1

22 3 1 1n 1+ +
( )n 2n

+ + + ⋅
1n

...(2)

Again 

I x xdx1

0

2

=
1

2
.cos sx in

π

∫

Hence from (2), we have

I
n n

n n n
=

1

2

1

2 ( 1)

1

2

1

2 3n

1

2 2n

1

2

1

22 3 2 1nn 1
+ +

( )n 2n

+ + + + ⋅
1n −

=
1

2

1

2 ( 1)

1

2

1

2 3

1

2 2

1

22 3 2 1n n 1) 2 n 3 22 3 2 n
+ +

( )2n

+ + + +
3 2

=
1

2

2 2

( 1)

2 2

3

2

2
2

1

1 221 2 3 22
n

n n2 n

n (+

−1 2
+ +

( )2n −
+ + + +

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

Hence 

cos sn

n

n n

x nxdxsin
n

0

2

1

2 3 1

=
1

2
2

2

2

2

3

2

( 1)n

2
.

π

∫ +
+ + + + +

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦
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  EXERCISES

Short and Long Answer Type Questions

1. Obtain the reduction formula for

cosn xdx n

0

2

, ( )

π

∫ i(n > 1) s a positive integer

and evaluate cos .5

0

2

d

π

∫  [WBUT 2007, 2008]

 Ans : 2nd Part.
8

15
.

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

2. Evaluate:

(i) cos6

0

2

xdx

π

∫   (ii) cos7

0

2

xdx

π

∫

Ans : (i)
5

32
,

16

35

π
(ii)

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

3. Obtain a reduction formula for

sinn xdx n

0

2

, ( )

π

∫ i(n > 1) s a positive integer

and evaluate sin .5

0

2

d

π

∫  [WBUT 2006, 2009]

 Ans : 2nd Part.
8

15
.

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

4. Evaluate:

(i) sin8

0

2

xdx

π

∫   (ii) sin9

0

2

xdx

π

∫  

 Ans : (i)
35

256
,

428

315

π
(ii)

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

5. If I
n x

x
dxn =

(2 1)

0

2 sin

sin
,∫

π

 show that

 I I
n

n nI I =
1

2 .nxsin
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6. If I xdn

n2

0

2

sin ,xdx

π

∫  show that 

 I
n

n
In n=

2 1n

2
.1−

7. If I dn = 2 1n

0

2

sin ,n2 1n∫ θ θdd

π

 where n  is a positive integer, show that 

 I
n

n
In n=

2

2 1n
.1−

Use this to evaluate sin .7

0

2

θ θ

π

dθθ∫  [WBUT 2001]

 Ans : 2nd Part.
16

35
.

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

8. If I x dn

n

0

2

cos ,xdx
n

π

∫  where n  is a positive integer, show that 

 I
n

n
I

n
n n=

1 1
I .2 2

−
−−

9. Show that 

(a) 
x

x

dx

6

2
0

1

1
=

5

32−
∫ π  [WBUT 2003]

           [ put ]Hint : x = sinθ

(b) 
x

x

dx

5

2
0

1

1
=

8

15−
∫  [ put ]Hint : x = sinθ

(c) 
x

dx

4

4
0

=
32( )x

21+

∞

∫
π

 [ put ]Hint : x = tanθ

10. If I
nx

x
dxn =

1
0

2
cos

cos
,

−∫
π

 then prove that

 I In nI I = 2 .π
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11. Obtain the reduction formula for 

sin cosm ncos xcos dx

0

2

, ( ) (n > 1)

π

∫ where a(m > 1) are positive integers.

Hence evaluate sin cos4 8cos

0

2

xcos dx

π

∫  [WBUT 2008]

 Ans : 2nd Part.
35

1280
.

π⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

12. Evaluate:

(i) sin cos5 6cos

0

2

xcos dx

π

∫   (ii) sin cos6 8cos

0

2

xcos dx

π

∫  

 Ans : (i) (ii)
8

693

5

4096

π⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

13. If I dxn

n

0

1

( )x1cos∫  then prove that

 I n nn n

n

n
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠

−

( 1) =n Inn −
2

.2

1π

14. If u dn

n

0

4

n ,θdd

π

∫  prove that

 n n n( )u un = 1.1ununu [WBUT 2003]

15. If I
n x

x
dxn =

(2 1)sin

sin∫  and J
nx

x

dxn =
2

2

sin

sin
,  where n  is any integer then prove 

that

 J J In nJ J n+1= .In+1

16. If I
n

dn =
sin

sin
,

θn
θ

θ∫  show that

 ( 1)( ) = 2 ( 1) .2I1)( I n) = 2 (2n nI−I1)( −− θ [WBUT 2004]

17. If I
n

dn =
cos

cos
,

θn
θ

θ∫  show that

 ( 1)( ) = 2 ( 1)2I1)( I n) = 2 (2n nI+I1)( n −− θ
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Hence evaluate θ( )4 2cos θ 3∫ dθθ  [WBUT 2005]

18. If I x dn

n

0

2

sin ,xdx

π

∫  (n 1)>  then prove that

 I n nn n

n

n
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠

−

( 1) =n Inn −
2

.2

1π
[WBUT 2008]

19. Obtain the reduction formula for I xdxn

n2

0

2

cos

π

∫  and hence show that 

 cos2

2
0

2

=
!

2
.n

xdx
( )2

( )2 !n

⋅∫
π

π

Ans : First part I
n

n
In n=

2 1n

2
.1

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

−

20. Prove that if u x xdxn

n 1

0

1

tan−∫  then

 ( 1) ( 1) =
2

1
.21)1) n u1)

n
n n1)1)1) −=2u1) −

π
[WBUT 2002]

21. If I x dxn

n= (x
n )

0

2

sin cx os ,+∫

π

 show that 

 I n nn n

n

n +⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞
⎠

−

( 1) =n Inn −
2 2⎠⎠⎠⎝⎝⎝

.2

1π π⎞⎞⎞⎛⎛⎛

22. If I x xdxn

n 1

0

1

cot−∫  then prove that

 ( 1) ( 1)
2

1
.21)1) n I1)

n
n n1) +=2I1) n−

π

23. Obtain the reduction formula for 

I
dx

n n
=

( )x a

, ( )
2 2

0

∞

∫ where i(n > 1) s a positive integer
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and hence show that 

dx

a( )x a

=
4

.
2 2 2 240

∞

∫
π

Ans : First part I
a n

In n=
1 (2 3)n

(2 2)
.

2 1⋅
−

⋅
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
−

Multiple-Choice Questions

1. The value of sin6

0

2

xdx

π

∫  is

 a) 
7

32

π
 b) 

7

16

π
 c) 

5

32

π
 d) 

5

16

π

2. The value of cos7

0

2

xdx

π

∫  is

 a) 
8

35
  b) 

16

35
 c) 

16

35

π
 d) 

8

35

π

3. The reduction formula for I xdxn

n

0

2

cos

π

∫  is

 a) I
n

n
In n=

1
2

−
−  b) I

n

n
In n=

1
1

−
−

c) I
n

n
In n=

1
2− −  d) I

n

n
In n=

1
1− −  [WBUT 2007]

 4. The value of sinn xdx

0

2

π

∫  is same as

 a) cosn xdx2

0

π

∫   b) cosn xdx

0

π

∫

c) 
1

2
0

2

cosn xdx

π

∫   d) cosn xdx

0

2

π

∫  
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5. The reduction formula for I x xdxm n

m n

,

0

2

si cos

π

∫∫   is

 a) I
n

m n
Im n m n, 2,=

1−
+

 b) I
m

m n
Im n m n, 2,=

1−
+

c) I
m

m n
Im n m n, , 2=

1−
+ −  d) I

n

m n
Im n m, 2, 2n=

1−
+ n

6. The value of sin cosm ncos xcos dx

0

2

π

∫  is same as

 a) cos sinm nsin xsin dx
+ s∫ 1 1−nsin

0

2

π

 b) cos sinm nsin xsin dxs∫ 1 1+nsin

0

2

π

c) cos sm nsin xsin dx

0

2

π

∫  d) none of these.

 7. The reduction formula for I x nxdxm n

m

,

0

2

= cos sin

π

∫   is

 a) I
m n

m

m n
Im n m, 1, 1n=

1

+
+

+ n  b) I
m n

Im n m, 1, 1n=
1

+ n

c) I
m

m n
Im n m, 1, 1n=

+ n  d) none of these.

 8. The value of cos sin4

0

2

3xsin 3 dx

π

∫  is

 a) 
13

35

π
 b) 

7

16
 c) 

13

35
 d) 

7

16

π

9. The value of 
dx

2
0 ( )x a

2 2+

∞

∫  is

 a) 
π
a

2
 b) 

π
4 2
a

 c) 
π

2 2
a

 d) 
π

3 2
a
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10. The reduction formula for u xdxn

n

0

4

tan

π

∫  is

 a) u
n

un n=
1

1
2−

− −  b) u
n

un n=
1

1
1−

− −

c) u
n

un n=
1

2
2−

− −  d) u
n

un n=
1

2
1−

− −

11. The value of sin cos5 6cos

0

2

xcos dx

π

∫  is

 a) 
2

693
 b) 

8

693
 c) 

4

693
 (d) 

8

693

π

12. The value of sin cos2 4cos

0

2

xcos dx

π

∫  is

 a) 
π
16

 b) 
1

16
 c) 

1

32
 d) 

π
32

ANSWERS:

1. c 2. b 3. a 4. d 5. b 6. c

7. a 8. c 9. b 10. a 11. b 12. d



6
Calculus of Functions of 

Several Variables

6.1 INTRODUCTION

In the earlier two chapters (chapters 3 and 4), we have dealt with the functions of single 

varable only. But we also require the fuctions of two or more variables to solve various 

problems in different branches of science and technology. Also, the derivatives and 

integrations of functions of two or more variables have a wide range of applications.

Basically, in this chapter, we first discuss briefly the limit and continuity of the 

functions of two or more variables. Then we describe the methods of differentiations 

and their applications towards the optimisation of the functions.

6.2 FUNCTIONS OF SEVERAL VARIABLES

A real function of a single variable f R R→  is defined by y f x= (f )  where x R

and y R

Example 1  

y f x x= (f ) = .2  Here, y  is a function of a single variable x.

A real function of two variables f R R2 →  is defined as z f x y= (f , )y  where 

( , ) 2x y, R∈  and z R.

Example 2  

z f x y x y xy= (f , )y = .2 2+ +y2  Here, z  is a function of two variables, x  and y.

The domain D  of a function f  of two variables is any closed curve on the two-

dimensional plane, namely, rectangular, square, circular, etc.

A real function of three variables f R R3 →  is defined as z f x x x= (f , )1 2x, x 3  where 

( , , )1 2, 3
3x, 2, R)  and z R.

CHAPTER
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Example 3  

z f x x x x= (f , ) 2 3x 4 .x x1 2x, x 3 1x) x 2x
2

1 3x+x3x2  Here, z  is a function of three variables, 

x x1 2x  and x3.

A real function of n  variables f R Rn →  is defined as z f x x x xn= (f , , , )1 2x, x 3

where ( , , , , )1 2, 3x, 2, x , ,3 Rn
n

… ∈  and z R.

Example 4  

z f x x x x x x x xn n= (f , , , ) = .1 2x, x 3 1 2 3x x+ +x2x + +  Here, z  is a function of n

variables, x x x xn1 2x 3,2x , , .

6.3 LIMIT AND CONTINUITY

To describe the analytical concept of limit of a function, first we define two types of 

δ -neighbourhood (or δ -nbd) of a point ( , )a b,  in the two-dimensional plane.

(i) Square δ -neighbourhood 

Any square region consisting of the points ( , )x y,  and satisfying 

 x a ya < , < , > 0δ δy by, < δfor

is called the square δ -nbd of the point ( , ).a b,

(ii) Circular δ -neighbourhood 

Any circular region consisting of the points ( , )x y,  and satisfying

 0 < ( ) ( ) < > 02 2 2y+)2 δ δ2

is called the circular δ -nbd of the point ( , ).a b,

Suppose ( , )x y,  be any variable point lying in any neighbourhood of a fixed point 

( , )a b,  in a two-dimensional plane. Also, let f x y( ,x )  be a function defined on a certain 

neighbourhood of the point ( , ).a b,  Now we will check whether the function f x y( ,x )

tends to a real value l  as ( , )x y,  tends to ( , ).a b,

6.3.1 Limit of a Function of Two Variables

General Definition

Let f x y( ,x )  be a function of two independent variables, x  and y.  If the function 

f  tends to a real value l  as ( , ) ( , )x y, a b,  then we write

( , ) ( , )

,
x y, a b,

f x( y l) =lim

or, f x y l y b( ,x ) (l , )y ( ,a )→x(asl , )y

or, ( , ) = .
x a
y b

f x y l( , ) =( , ) =
→

where l  is called the limit.
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Analytical Definition:

Let f x y( ,x )  be a function of two independent variables x  and y. The function f  is 

said to tend to limit l  as ( , ) ( , )x y, a b,  if for an arbitrary small positive number ε ,

no matter how small, there exists a positive number δ, such that 

f x y l( ,x ) <l ε
for every point ( , )x y,  which lies in any δ -nbd N  of the point ( , ).a b,

N  may be a square δ -nbd of the point ( , ),a b,  i.e., 

x a ya < , < , > 0δ δy by, < δfor

or, N  may be a circular δ -nbd of the point ( , ),a b,  i.e.,

0 < ( ) ( ) < > 02 2 2y+)2 δ δ2

or N  may be any other δ -nbd.

Symbolically, 

( , ) ( , )

, .
x y, a b,

f x( y l) =lim

Example 5  

Find 
( , ) (2, 3)

2 2( )2 2 .
x y,

y y2
lim

Sol. 
( , ) (2, 3)

2 2( )2 2

x y,

y y2
lim

  = ( ) ( ) ( )
( , ) (2, 3)

2

( , ) (2, 3)

2

( , ) (2, 3)x y, x y, x y,

x y xy

  = 4 9 6 = 19.+ 9

Example 6  

Justify the following by analytical definition

( , ) (0, 0)

2 2

2 2
= 0x y,

x y

x y+
lim

Sol. To prove the existance of the limit, for a given ε > 0  we are to find δ > 0  

such that in any δ -nbd N  of (0 0),,  

f x y l( ,x ) <l ε

or, 0 <
2 2

2 2

x y

x y+
ε

or, <
2 2

2 2

x y

x y+
ε .  ...(1)

 Now 

x x y y x y2 2 2 2 2 2< <+ +and
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So

x y

x y x y

2 2

2 2 2 2
<

+

( )x y2 2+ ( )x y2 2+

+

= <2 2x y ε (consider)

if

0 < ( 0) ( 0) < , = .2 2 2x y0) (0)0)0) − δ δ,2 ε
Here we are getting a circular δ -nbd of (0, 0).

So, the condition (1) is satisfied and hence the result is proved.

6.3.2 Observations

1) l is called limit or double limit or simultaneous limit.

2) The definition

( , ) ( , )

,
x y, a b,

f x( y l) =lim

is equvalent to 

  
x a y b

f x b l f a y l
→

lim lim,x ) ,aor,

3) Uniqueness of the Limit:

Now the variable point ( , )x y,  may approach the fixed point ( , )a b,  by any path 

(e.g., straight line, parabolic, etc.), but the simultaneous limit should be unique in 

all the cases.

4) Non-existence of Limit:

If we get different values of the limit choosing different paths, i.e., if the limit 

is not unique then the simultaneous limit l  does not exist.

Example 7  Show that 

( , ) (0, 0)

2

2 4

2

x y,

xy

x y+
lim does not exist.

Sol. Let us consider the parabolic path x y= ;mym 2  then as x→ 0,  y → 0  and we 

obtain from above

 
( , ) (0, 0)

2

2 4
0

4

2 4

2
=

2

(1 )x y, y

xy

x y

my

m y)→+ +
lim lim

=
2

10
2

y

m

m→ +
lim

=
2

1
.

2

m

m+
which is different for different values of m,  i.e., choosing different parabolic 

paths for different values of m,  we get different limits.

 So the limit is not unique. Hence, the limit does not exist.
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5) Repeated Limits:

A repeated limit of f x y,x )  as y b  and then x a→  is defined as

x y b x a

f x y x l say
→a y →

lim lim li,x ) ( )x = (l )1ϕ

A repeated limit of f x y,x )  as x a→  and then y b  is defined as

y b a y b

f x y y l say
→bx

lim lim li,x ) ( )y = (l )2ψ

These two repeated limits may not be equal.

6) In case the simultaneous limit exists, the repeated limits if they exist are neces-

sarily equal, but the converse is not always true,

i.e., even when both the repeated limits exist and are equal, the simultaneous 

limit may not exist.

Example 8  Show that for the function

f x y
xy

x y
x y( , ) = , ( , )

2 2+
 π (0, 0)

= 0, ( , ) = (0, 0)x y,

the repeated limits are equal but simultaneous limit does not exist.

Sol. The repeated limits are,

y x y

f x y
→ →x →0 0→x 0

( ,x ) = (0) = 0lim lim lim

x y x

f x y
→ →y →0 0→y 0

( ,x ) = (0) = 0lim lim lim

but, along the path (straight line) y mx

( , ) (0, 0) ( , ) (0, 0)
2 2

, ) =
x y, x y,

f x( y
xy

x y+
lim lim

=
0

2

2 2 2
x

mx

x m x→ +
lim

=
1 2

m

m+
which is different for different values of m.

Therefore, the repeated limits are equal but the simultaneous limit does not exist.

7) If the repeated limits are not equal, the simultaneous limit cannot exist.

Example 9  Show that for the function

f x y
y x

y x

x

y
x y,x ) =

1

1
, ( , )y (0, 0)

+
+
+

≠

= 0, ( , ) = (0, 0)x y,

the repeated limits are not equal and limit does not exist.
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Sol. The repeated limits are,

y x y

f x y
y→ →x → +

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠0 0→x 0

( ,x ) =
1

1
= 1lim lim lim

x y x

f x y
x

→ →y →
−

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠0 0→y 0

( ,x ) =
1

1
= 1−lim lim lim

Here, the repated limits are not equal. So simultaneous limit cannot exist. 

Also, this is obvious from the following:

Along the path y mx

( , ) (0, 0) ( , ) (0, 0)

, ) =
1

1x y, x y,

f x( y
y x

y x

x

y+
+
+

lim lim

=
1

1

1

10x

m

m

x

mx→

−
+

+
+

lim

=
1

1
.

m

m

−
+

which is different for different values of m.

Therefore,the repeated limits are not equal and so simultaneous limit does not exist.

6.3.3 Continuity of a Function of Two Variables

Definition: Let z f x y= (f , )y  be a function of two independent variables x  and y. The 

function f  is said to be continuous at a point ( , )a b,  of its domain of definition if the 

double limit or simultaneous limit 
( , ) ( , )

, )
x y, a b,

f x( ylim  exists and is equal to the func-

tional value of f x y( ,x )  at ( , ).a b,  i.e., 

 
( , ) ( , )

, ( , )
x y, a b,

f x( y f) = a b,lim

Example 10   Show that the function 

 f x y x y xy x y( , ) = , ( , ) (2, 3)2 2+ + π

= 10, ( , ) = (2, 3)x y

is continuous at (0, 0)  but discontinuous at (2, 3).

Sol. First, we find the limit 

 
) (0, 0) ( , ) (0, 0)

2 2, ) =
x y, x y,

f x( y y ylim lim ( )2 2
x y xyx+ +2

y

= 0 0 0 = 0.+ 0

Again 

f (0, 0) = 0 0 0 = 0+0

So,

( , ) (0, 0)

( , ) = 0 = (0, 0)
x y

f x y f
Æ

lim
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Then the function is continuous at (0, 0).

Again 

( , ) (2, 3) ( , ) (2, 3)

2 2, ) =
x y, x y,

f x( y y ylim lim ( )2 2
x y xyxx+ +2

y

= 4 9 6 = 19.+ 9

But 

f x y y( ,x ) = 10, ( ,x ) = (2, 3)when

i.e., (2, 3) = 10f

So, 

( , ) (2, 3)

, (2, 3).
x y,

f x( y f)lim

Hence the function is not continuous at (2, 3).

6.3.4 Observations

(1) If at a point, limit does not exist then the function cannnot be continuous 

there.

(2) A function which is not continuous at a point is called discontinious there.

(3) A function is said to be continuous in a region if it is continuous at every 

point in the region.

6.4 PARTIAL DERIVATIVES

6.4.1 First-Order Partial Derivatives

(i) Consider f x y( ,x )  to be a function of two independent variables, x  and y.

The first-order partial derivative of f x y( ,x )  with respect to x,  (treating y  as con-

stant) is denoted by 

∂
∂

∂
∂

f x y

x

f

x
f x y fx x

( , )
, , ( , ) or

and is defined as

 
∂

∂ →

f x∂ y

x∂∂
f

f x h y f x y

h
x

h

,x )
= =f

+x h )− f , )y
,

0
lim provided the limit exists..

Similarly, the first-order partial derivative of f x y( ,x )  with respect to y  (treating x

as constant) denoted by 

∂
∂

∂
∂

f x y

y

f

y
f x y fy y

( , )
, , ( , ) or

and is defined as

 
∂

∂ →

f x∂ y

y∂
f

f x y k+ f x y

k
y

k

( ,x )
= =f

( ,x ) (− f , )y
,

0
lim provided the limit exists..



 6.8   Engineering Mathematics-I 

(ii) Consider f x y z( ,x , )z  be a function of three independent variables x,  y and z.

The first-order partial derivative of f x y z( ,x , )z  with respect to x,  (treating y  and 

z  as constant) is denoted by 

∂
∂

∂
∂

f x∂ y z

x∂∂
f∂
x∂∂

f x y z fx x

( ,x , )z
, ,
∂

( ,x , )z or

and is defined as

∂
∂ →

f x∂ y z

x∂∂
f

f x h y z f− x y

h
x

h

,x , )z
= =f

+x h , z ( ,x , )z
,

0
lim provided the limit existsee .

The first-order partial derivative of f x y z( ,x , )z  with respect to y,  (treating x  and 

z  as constant) denoted by 

∂
∂

∂
∂

f x∂ y z

y∂
f∂
y∂

f x y z fy y

( ,x , )z
, ,
∂

( ,x , )z or

and is defined as

∂
∂ →

f x∂ y z

y∂
f

f x y k+ z f− x y

k
y

k

,x , )z
= =f

,x , z ( ,x , )z
,

0
lim provided the limit existsee .

Similarly, the first-order partial derivative of f x y z( ,x , )z  with respect to z,  (treating 

x  and y  as constant) denoted by 

∂
∂

∂
∂

f x∂ y z

z∂∂
f∂
z∂∂

f x y z fz z

( ,x , )z
, ,
∂

( ,x , )z or

may be defined.

Note: 

(1) Always keep in mind that determination of partial derivative of a function 

w.r.t. any of its independent variables is equivalent to ordinary derivative of the 

function w.r.t. the same variable, keeping all other variables as constant.

(2) Partial derivatives may exist at a point where the function may not be even 

continuous.

Example 11  

Let f x y x y xy xx y( ,x ) .2 2+ +y2 + +x  Then 

f
f

x x
x y xy x yx = =

f
( )2 2∂

∂
∂
∂

+ +y2 + +x

= ( ) ( ) ( ) ( ) ( )2 2∂
∂

∂
∂

∂
∂

∂
∂

∂
∂x∂∂

x
x∂∂

y
x∂∂

xy
x∂∂

x
x∂∂

y

= 2 0 1 1 0x y0 1+ 00 ⋅ +y (keeping ay s constant)

= 2 1x y+ +y
and

f
f

y y
x y xy x yy = = ( )2 2∂

∂
∂
∂

+ +y
2 + +x

= ( ) ( ) ( ) ( ) ( )2 2∂
∂

∂
∂

∂
∂

∂
∂

∂
∂y∂

x
y∂

y
y∂

xy
y∂

x
y∂

y
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= 0 2 1 0 1+ +2 ⋅1y x+ (keeping ax s constant)

= 2 1.y x+ +x

Example 12  

From definition, find fx (0, 0)  and f y (0, 0)  for the function

 f x y
x y

x y
x y,x ) = ( ,x ) (0, 0)

2 2+
+

, if

= 0, ( , ) = (0, 0)x y,

Sol. From definition,

∂
∂ →

f x∂ y

x∂∂
f

f x h y f x y

h
x h

,x )
= =f

+x h )− f , )y
,

0
lim provided the limit exists..

So,

∂
∂

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

−
→

f x∂ y

x∂∂
f

f h f

h
x

h

,x )
= (fx 0, 0) =

,h 0) (0, 0)

(0, 0)
0

lim

=

0

= 1 = 1
0

2

0h h

h

h

h→ →

−
lim li

Again

∂
∂ →

f x∂ y

y∂
f

f x y k+ f x y

k
y

k

,x )
= =f

,x )− f , )y
,

0
lim provided the limit exists..

Then,

∂
∂

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦

−
→

f x∂ y

y∂
f

f k f

k
y

k

,x )
= (fy 0, 0) =

)k (0, 0)

(0, 0)
0

lim

=

0

= 1
0

2

k

k

k

k→

−
lim

Example 13  

If z y x y( )x y 2 2+x)y 2  then show that 

 
∂
∂

−
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
−
∂
∂

−
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

z∂∂
x∂∂

z∂∂
y∂

z∂∂
x∂∂

z∂∂
y∂

2

= 4 1

Sol.  Here, it is given that 

z y x y( )x y .x y2 2+x)y x2 ...(1)

Differentiating partially w.r.t x,  we obtain

 
∂
∂

[ ] ∂
∂

+⎡
⎣
⎡⎡ ⎤

⎦
⎤⎤

x∂∂ x∂∂
x y++ = 2 2+
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or, ( ) ( ) = ( ) ( )2 2∂
∂

+(
∂
∂

+
∂
∂

+
∂
∂

z∂
x∂∂

x y+
x∂∂

x y+
x∂∂ x∂∂

y

or keeping as constant., ( ) (1 0) = 2 0,
∂
∂

+ ) (1
z∂
x∂∂

x y+ (1 0) = 2(1 y

⇒
∂
∂
z∂∂
x∂∂

x z−
y

=
(2 )

( )+x y+
Similarly, differentiating partially w.r.t y,  we have

 
∂
∂
z∂∂
y∂

y z−
y

=
(2 )

( )+x y+
Now 

∂
∂

−
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
−

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞

⎠

z∂∂
x∂∂

z∂∂
y∂

x z−
y

y z−
y

2 2

=
(2 )

( )+x y+
(2 )

( )+x y+

= 4 ,

2
x y

x y
z

+
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞
2

⎠
⎟
⎞⎞

⎠⎠
putting the value of from (1)

and 

4 1−
∂
∂

−
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞

⎠

z∂∂
x∂∂

z∂∂
y∂

= 4 1
(2 )

( )

(2 )

( )
,− −

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

x z−
y

y z−
y

zputting the value of from (1)))

= 4

2
x y

x y+
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞
2

⎠
⎟
⎞⎞

⎠⎠
Hence the result is proved.

6.4.2 Second-Order Partial Derivatives

The second-order partial derivative of f x yx ( ,x )  with respect to x  is denoted by 

 
∂
∂

( ) ∂
∂

∂
∂x∂∂ x∂∂

f
f x y

x∂∂
fx xx,) ( )fx ,

( ,x )2

2
or

and is defined at a point ( , )a b,  as

 ∂
∂

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦ →

2

2

( , )
0

, )
= , ) =

,+ ) − , )f x( y

x∂∂
f a(

f a( h b, f a(

h
a b,

xx
h

x x
lim ,, provided the limit exists.

Similarly, the second-order partial derivative of f x yy ( ,x )  with respect to y  is 

denoted by

 
∂
∂

( ) ∂
∂

∂
∂y∂ y∂

f
f x y

y∂
fy yy,) ( )f y ,

( ,x )2

2
or

and is defined at a point ( , )a b,  as
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∂⎡ ⎤
→

2

2

)
0

, )
, ) =

, −( y

y
(

( + (

kk
lim ,, provided the limit exists.

The second-order partial derivative of yx )  with respect to y  is denoted by 

 
∂ ∂ ∂
y y

y
f,) ( )f ,

x )2

or

and is defined at a point )  as

∂ ⎤
→

2

)
0

, )
= , ) =

, −( y
(

( + (

k
lim , provided the limit exists.

The second-order partial derivative of yx )  with respect to x  is denoted by 

 
∂ ∂ ∂
x x

y
f, ( )f ,

x )2

or

and is defined at a point )  as

∂ ⎤
→

2

)
0

, )
= , )

+ − , )( y
(

( (

h
lim , provided the limit exists.

Note: f  and f  are known as mixed partial derivative.

Example 14  

Let us consider the function 

 z x y .2 2

Then 

∂ ∂z

x
xy

y
y= 2 2

z
z

x x

z

x

z

y y y
xx = 2 z

2

2

2

2

∂ ∂
∂

∂ ∂ 2x x

z
z

x

z

y
xyxy = = = 2

2∂
x

∂ ∂

and z
z

y

z
xyyx = 2

2∂ ∂ ∂

Example 15  

Let us consider the function is 

 y
xy

x y
x ) =

( )x y
y (0, 0)

2 2
≠

= 0, ( 0, 0).,
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From the definition, find fxy (0, 0)  and f yx (0, 0).  Also examine their equality.

 [WBUT 2003]

Sol. By the definition of Section 6.4.2, we have 

 f
f h f

h
xy

h

y y
(0, 0) =

,h 0) (0, 0)

0→

−
lim ...(1)

Now by the definition of Section 6.4.1, 

f h
f h k f h

k
y

k
,h 0) =

,h (f , 0)

0→
lim

=

( ) 0( 0 )

0
0

2 2

2 2

2 20
2 20

k

hk h
2

h k
2

h h0(

h

k→

−
−h0(

+lim

=
( )

( )
=

0

2 2

2 2k

h h(

h
2

h
→

lim

Also by the definition of Section 6.4.1

f
f k f

k
y

k
(0, 0) =

)k (0, 0)

0→

−
lim

=
0 0

= 0
0k k→

lim

Using the above two results in (1), we obtain

f
f h f

h
xy

h

y y
(0, 0) =

,h 0) (0, 0)

0→

−
lim

=
0

= 1
0h

h

h→

−
lim ...(2)

Again by the definition of Section 6.4.2, we have 

f
f k f

k
yx

k

x x(0, 0) =
)k (0, 0)

0→

−
lim ...(3)

Now by the definition of Section 6.4.1, 

f k
f h k f k

h
x

h
)k =

,h (f 0, )

0→
lim

=

( )
0

0

2 2

2 2

h

hk h
2

h k
2

h→

−
lim

=
( )

( )
=

0

2 2

2 2h

k h(

h
2

k
→

−lim

Also, by the definition of Section 6.4.1

f
f h f

h
x

h
(0, 0) =

,h 0) (0, 0)

0→

−
lim
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=
0 0

= 0
0h h→

lim

Using the above two results in (3), we obtain

f
f k f

k
yx

k

x x(0, 0) =
)k (0, 0)

0→

−
lim

=
0

= 1
0k

k

k→

− −k
lim ...(4)

From (2) and (4), we have 

f fxy yx(0, 0) (f yx 0, 0)

Hence we have the result.

Note: It is clear from the last example that the mixed partial derivatives may not be 

same always.

6.4.3 Results on the Equality of Mixed Partial Derivatives

Here we represent the two famous theorems on the equality of mixed partial deriva-

tives without proof.

Theorem 6.1: (Schwarz Theorem)

If yff  exists in a certain neighbourhood of a point ( , )a b,  of the domain of defi-

nition of a function f x y,x )  and fyxff  is continuous at ( , )a b, then f a bxyff ,a )  exists 

and equal to f a byxff ,a ),  i.e., f a b f a bxyff yxff,a ( ,a ).

Proof: Beyond the scope of the book.

Theorem 6.2: (Young’s Theorem)

If fxff  and fyff  both exist in a certain neighbourhood of a point ( , )a b,  and if 

both fxff  and fyff  are differentiable at the point ( , )a b,  of the domain of definition 

of a function f x y,x )  then f a b f a bxyff yxff,a ( ,a ).

Proof: Beyond the scope of the book.

 6.5 COMPOSITE FUNCTIONS

Let us consider the function z f x y= (f , )y  where x,  y  are not independent variables 

but functions of an independent variable t,

i.e., x t= ( )ϕ  and y t( ).ψ
Then, the composite function z f x y= (f , )y  is written as

 z f x y f= (f , )y = f ( )t) ( )tϕ ψt),

Let us consider the function z f x y= (f , )y  where x y  are not independent variables 

but functions of the independent variable u  and v.

i.e., x u= ( , )vϕ  and y u( , )v .ψ



 6.14   Engineering Mathematics-I 

Then, the composite function z f x y= (f , )y  is written as

 z f x y f u u= (f , )y = f ), ( , )vϕ ψu, )v ,( )

6.5.1 Partial Derivatives of Composite functions 
(Chain Rules) 

First, we recall the chain rule for an ordinary derivative. 

Theorem 6.3: 

Let us consider 

i) the function z f x(f )  to be a differentiable function of x,  and

 ii) x is not an independent variable but a differentiable function of the inde-

pendent variable t,  i.e., x t= ( ).ϕ  

Then,

 
dz

dt

dz

dx

dx

dt
= .

Theorem 6.4: 

Let us consider 

i) the function z f x y(f , )y  to be a differentiable function of x y,y  and 

 ii) x y are not independent variables but differentiable functions of the 

 independent variable t,  i.e., x t= ( )ϕ  and y t( ).ψ
Then,

dz

dt

z

x

dx

dt

z

y

dy

dt
=
∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

+

Corollary of Theorem 6.4:

In particular, suppose x a ht+  and y b kt;b kt+  where a b h k, ,b ,  are constants.

Then from above

 
dz

dt
h

z

x
k

z

y
h

x
k

y
z= =

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

+ +
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

and,

d z

dt
h

x
k

y
z

n

n

n

=
∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

+
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

Theorem 6.5: 

Let us consider 

i) the function z f u(f )  to be a differentiable function of u,  and

 ii) u is not an independent variable but differentiable functions of indepen-

dent variables x and y.

Then,

 ∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

z∂∂
x∂∂

dz

du

u

x∂∂
z∂∂
y∂∂∂

dz

du

u

y∂∂∂
= =and
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Theorem 6.6: 

Let us consider 

i) the function z f x y(f , )y  to be a differentiable function of x y, ;y  and

 ii) x y  are not independent variables but differentiable functions of inde-

pendent variables u  and v,  i.e., x u= ( , )vϕ  and y u( , )v .ψ
Then,

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

z∂∂
u

z∂∂
x∂∂

x∂∂
u

z∂∂
y∂∂∂

y∂∂∂
u

z∂∂
v

z∂∂
x∂∂

x∂∂
v

z∂∂
y∂∂∂

y∂∂∂
v

= , =+ +and

Theorem 6.7: Let us consider 

i) the function r f x y z(f ,y )  to be a differentiable function of x y z,y ,  and

 ii) x y z,y  are not independent variables but differentiable functions of inde-

pendent variables u, v w, .w

Then,

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

r∂∂
u

r∂∂
x∂∂

x∂∂
u

r∂∂
y∂∂∂

y∂∂∂
u

r∂∂
z∂∂

z∂∂
u

= + +
y

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

r∂∂
v

r∂∂
x∂∂

x∂∂
v

r∂∂
y∂∂∂

y∂∂∂
v

r∂∂
z∂∂

z∂∂
v

= + +
y

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

r∂∂
w

r∂∂
x∂∂

x∂∂
w

r∂∂
y∂∂∂

y∂∂∂
w

r∂∂
z∂∂

z∂∂
w

= + +
y

Example 16  

If z uv= ( )  where 

 u x x3 2 and lv og

find 
dz

dx
.  [WBUT 2004]

Sol. By chain rule

dz

dx

z

u

du

dx

z

v

dv

dx
=
∂
∂

+
∂
∂

or,
dz

dx u

d

dx v

d

dx
=
∂ ( )uv

∂

( )x3 2

+
∂ ( )uv

∂
( )x

= ( ) 6 ( )
1

uv x( ) 6 u (
x

uv( ) + ⋅u ⋅cos

= ( ) 6uv vx
u

x
+⎛

⎝⎝⎝
⎞
⎠
⎟
⎞
⎠
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Example 17  

If f v v y v,v x , )v z = 0,2 2 2 2 2 2−vx  where v  is a function of x y z,y  then show 

that

 
1 1 1

=
1

x

v

x y

v

y z

v

z v

∂
∂

+
∂
∂

+
∂
∂

[WBUT 2005]

Sol. Let α = ,2 2v x  β = 2 2v y  and γ = 2 2v z  then,

 f
f

x
( , ) = 0 = 0α β( , γ and also

∂
∂

...(1)

Using chain rules, we have,

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

f∂
x∂∂

f∂
x∂∂

f∂
x∂∂α

α
β

β
γ

γ
= 0

or, 2 2 2 0 2 0
∂
∂

∂
∂

-Ê
Ë
ÊÊ
ËË

ˆ
¯ +

∂
∂

∂
∂

-Ê
Ë
ÊÊ
ËË

ˆ
¯

∂
∂

∂
∂

-Ê
Ë
ÊÊ
ËË

ˆf∂
v
v

x
x

f∂
v
v

x

f∂
v
v

xa b g ¯̄
ˆ̂̂̂

= 0

or, =
v

x

v

x

f

f f f

∂
∂

∂
∂

∂
∂

+
∂
∂

+
∂
∂

α

α β∂ γ

...(2)

Similarly, from (1) 
∂
∂
f∂
y∂

= 0,

Using chain rules we have,

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

f∂
y∂

f∂
y∂

f∂
y∂α

α
β

β
γ

γ
= 0

⇒
∂
∂

∂
∂

∂
∂

+
∂
∂

+
∂
∂

v

y

v

y∂

f∂

f f∂
+
∂ f∂

=
β

α β∂ γ

...(3)

Similarly, from (1) 
∂
∂
f∂
z∂∂

= 0,

Using chain rules, we have,

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

f∂
z∂∂

f∂
z∂∂

f∂
z∂∂α

α
β

β
γ

γ
= 0

⇒
∂
∂

∂
∂

∂
∂

+
∂
∂

+
∂
∂

v

z

v

z∂∂

f∂

f f∂
+
∂ f∂

=
γ

α β∂ γ

...(4)

Adding (2), (3) and (4), we obtain
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v

x

v

x

v

y

v

y

v

z

v

z

f f f

f f f

∂
∂

+
∂
∂

+
∂
∂

∂
∂

+
∂
∂

+
∂
∂

∂
∂

+
∂
∂

+
∂
∂

= = 1
α β∂ γ

α β∂ γ

or,
1 1 1

= .
x

v

x y

v

y z

v

z
v

∂
∂

+
∂
∂

+
∂
∂

Hence the result is proved.

6.6. HOMOGENEOUS FUNCTION AND EULER’S THEOREM

6.6.1 Homogeneous Functions

Definition: A fuction f x y( ,x )  is said to be a homogeneous function of degree n  if

f t ty ttt f x yn( ,txtt ) ( ,x )

Alternatively, A function f x y( ,x )  is said to be a homogeneous function of degree 

n  if

f x y x
y

x

n( ,x ) ϕ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

Definition: A function f x y z( ,x , )z  is said to be a homogeneous function of degree 

n  if

f t ty ttt f x y zn( ,txtt , )tztt = (t fn , y )

Alternatively, a function f x y z( ,x , )z  is said to be a homogeneous function of degree 

n  if

f x y z x
y

x

z

x

n( ,x , )z ,
y

= x ϕ ⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

Generalised Definition: A function f x y z( ,x ,z )…  is said to be a homogeneous func-

tion of degree n  if

 f t ty ttt z tt f x y zn( ,txtt ,tztt ) = ( ,x ,z )… …

Alternatively, a function f x y z( ,x , )z  is said to be a homogeneous function of degree 

n  if

f x y z x
y

x

z

x

n( ,x ,z ) = , ,… …ϕ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

Example 18  

Let f x y x y( ,x ) ;2 2+  then 

f t ty ttt x t y( ,txtt ) 2 2 2 2

= ( , ).2 f x y,

So, this is a homogeneous function of degree 2.
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Example 19  

Let f x y x y xyx( ,x ) ,2 3 2+ +y3  then 

f t ty ttt x t y t xy( ,txtt ) 2 2 3 3 3 2t y3

= ( )2 2( 3 2x(( ty txyx+2x(( +
So this is not a homogeneous function.

6.6.2 Euler’s Theorem

Theorem 6.8: (First Order)

Let f x y,x )  be a homogeneous function of degree n.  Then 

 x
f x y

x
y

f x y

y
n f x y

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

,x ) f∂∂∂ , )y
= (n f , )y+

Theorem 6.9: (First Order)

Let f x y z,x , )z  be a homogeneous function of degree n.  Then 

 x
f x y z

x
y

f x y z

y
z

f x y z

z
n f x y z

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

,x , )z ,x , )z ,x , )z
= (n f ,y )+ +

Theorem 6.10: (Second Order)

Let f x y,x )  be a homogeneous function of degree n.  Then 

 x
f x y

x
y

f x y

y
n f x y

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

,x ) f∂∂∂ , )y
= (n 1) ,x )

2

+
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

− i

Theorem 6.11: (Second Order)

Let f x y z,x , )z  be a homogeneous function of degree n.  Then 

 x
f x y z

x
y

f x y z

y
z

f x y z

z
n f x y

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

,x , )z ,x , )z ,x , )z
= (n 1) ,x

2

+ +
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

− i ,, )z

Example 20  If 

 u
x y

x y
= 1

3 3
− +

tan

Using Euler’s theorem prove that

x
u

x
y

u

y
u

∂
∂

+
∂
∂

= 2si [WBUT 2006]

Sol. Let 

tanu
x y

x y
v y= =

y
( ,x )

3 3+⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟
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Now,

v tytt
t y

t y
t

y

y
x y( ,txtt ) =

( )x y

( )x y
=

( )x y

( )x y
= (t v , )y .

3 3( 3
2

3 3
2

Therefore, v y( ,x )  is a homogeneous function of degree 2.

By Euler’s theorem 

x
v y

x
y

x

y
v y

∂
∂

+
∂

∂
⋅

( ,x ) (
y

v
+

∂ , )y
= 2 ( ,x )

or, = 2x
x

y
y

∂ ( )u
∂

+
∂ ( )u

∂
( )u)u ∂ (

or, = 22
sec u x2 u

x
y

u

y

∂
∂

+
∂
∂

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬ ( )tanu

or, = 2x
u

x
y

u

y

∂
∂

+
∂
∂

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬ ( )u ( )2u2

= 2 = 2sin cos siucos u

Hence

x
u

x
y

u

y
u

∂
∂

+
∂
∂

= 2si

Example 21  If 

 u xfx
y

x
g

y

x

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
+ ⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

then show that,

i) x
u

x
y
u

y
xf

y

x

∂
∂

+
∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠

=

ii) x
u

x
xy

u

x y
y

u

y

2
2

2

2
2

2

2
2 = 0

∂
∂

+
∂
∂ ∂xx y

+
∂
∂

[WBUT 2004, 2007]

Sol. i) Let, u v w+  where 

 v y xfx
y

x
w y g

y

x
( ,x ) ( ,x ) .

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

and

Now

v ty ttt xftt
ty

tx
x y( ,txtt ) = (t v , )y1⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

and 

w ty gt
ty

tx
x y( ,txtt ) = (t w , )y0⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
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Therefore, v  and w  are homogeneous functions of degree 1 and 0 respectively.

 Therefore, by Euler’s theorem

x
v

x
y

v

y
v

∂
∂

+
∂
∂

⋅= 1

and x
w

x
y

w

y
w

∂
∂

+
∂
∂

⋅= 0

Now,

x
u

x
y

u

y
x

x
y

y

∂
∂

+
∂
∂

∂ +
∂

+
∂ +

∂
=

( )w+v ( )w+v

= x
v

x
y

v

y
x

w

x
y

w

y

∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
+

∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

= 0 =v0 = xf
y

x

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

Hence 

x
u

x
y

u

y
xf

y

x

∂
∂

+
∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

= ...(1)

ii) Differentiating (1) partially w.r.t x,  we get

x
u

x

u

x
y

u

x y
f

y

x
xf

y

x

y

x

∂
∂

+
∂
∂

+
∂
∂ ∂x yx y

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
+ ′⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

2

2

2

2
=

or, =
2

2

2

x
u

x

u

x
y

u

x y
f
y

x

y

x
f

y

x

∂
∂

+
∂
∂

+
∂
∂ ∂x yx y

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
− ′⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

...(2)

Differentiating (1) partially w.r.t y,  we get

x
u

y x

u

y
y

u

y
xf

y

x x

∂
∂ ∂y xy x

+
∂
∂

+
∂
∂

′⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

2 2

2
=

1

or, =
2 2

2
x

u

y x

u

y
y

u

y
f

y

x

∂
∂ ∂y xy x

+
∂
∂

+
∂
∂

′⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

  ...(3)

Multiplying (2) by x  and (3) by y  and then adding, we get

 x
u

x
xy

u

x y
y

u

y
x

u

x
y

u

y
xf

y2
2

2

2
2

2

2
2 =

∂
∂

+
∂
∂ ∂x yx y

+
∂
∂

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦
+

∂
∂

+
∂
∂

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦ xx
yf

y

x
yf

y

x

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
− ′⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
+ ′⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

or, x
u

x
xy

u

x y
y

u

y
xf

y

x
xf

y

x

2
2

2

2
2

2

2
2 =

∂
∂

+
∂
∂ ∂x yx y

+
∂
∂

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦
+ ⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞⎞
⎠
⎟
⎞⎞⎞⎞
⎠⎠

or, x
u

x
xy

u

x y
y

u

y

2
2

2

2
2

2

2
2 = 0

∂
∂

+
∂
∂ ∂x yx y

+
∂
∂

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

Hence, the result is proved.
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6.7 DIFFERENTIATION OF IMPLICIT FUNCTIONS

6.7.1 Implicit Functions

Definition: Let us consider the equation F y z( ,x , )z = 0  where z  is a function of 

two independent variables x  and y.  In this case, z  is called an implicit function of x

and y.

For example, x z xyz xy z2 2 2 = 0+ +xyz2  is an implicit function.

6.7.2 Derivative of Implicit Functions

Theorem 6.12: (Two Variables)

If F y( ,x ) = 0  be an equation of two variables x and y where y is an implicit 

function of x; then

 
dy

dx

F

x

F

y

F

F
F

F

y

xFF

yFF
yFF= = , = 0

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

− ≠

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

provided

Theorem 6.13: (Three Variables)

If F y z( ,x , )z = 0  be an equation of three variables x, y and z where z is an 

implicit function of x and y then

 i) provided
∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

z∂∂
x∂∂

F∂∂
x∂∂

F∂∂
z∂∂

F

F
F

F∂∂
z∂∂

xFF

zFF
zFF= = , = 0

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

− ≠

ii) provided
∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂
∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

z∂∂
y∂∂∂

F∂∂
y∂∂∂
F∂∂
z∂∂

F

F
F

F∂∂
z∂∂

yFF

zFF
zFF= = , = 0

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞
⎠

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞
⎠

− ≠

Example 22  

Find 
dy

dx
,  if x y xy y3 3 23 =xy y2 0.+ −y3

Sol. Here F y x y xy y( ,x ) 3 ,xy yx3 3 2+ −y3  so y  is an implicit function of x.

∂
∂

∂ −
∂

F∂∂
x∂∂

y xy y

x∂∂
x y−=

( 3+ −x y+ )
= 3 3 ,y

3 3+ 2
2

∂
∂

∂ −
∂

F∂∂
y∂

y xy y

y∂
y x− y=

( 3+ −x y+ )
= 3 3 2−x

3 3+ 2
2
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Therefore,

dy

dx

F

x

F

y

F

F

y x

y x y

xFF

yFF
= = =

(3 3 )x

(3 3 2x )
.

2

2

∂
∂

⎛
⎝⎝
⎜
⎛⎛
⎝⎝

⎞
⎠⎠
⎟
⎞⎞
⎠⎠

∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

−
x

6.8 TOTAL DIFFERENTIALS

6.8.1 Condition of Differentiability of a Function

Let us consider z f x y= (f , )y  be a function of two independent variables x  and y.

f x y( ,x )  is said to be differentiable if the increment ΔzΔΔ  is expressed as 

Δ Δz fΔ ΔΔ f x x y y f x y=fΔ { (f , )Δy yΔ ( ,x )}+ ΔΔΔ

=
∂
∂

∂
∂

+
f∂
x∂∂

x
f∂
y∂

y x+ yΔ Δ+
∂

xx
f∂

Δ Δ+x +xx

where a d as dη →a d →0dd →κand 0Δ Δandx ya d Δand

6.8.1 First-order Total Differential

The expression 

dz
f

x
dx

f

y
dy=

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

+

is called the total differential of z  or f x y( ,x ).

Example 23  Show that z f x y xy y= (f , )y = 2xy  is differentiable.

Sol. Here,

 
∂
∂

∂
∂

f∂
x∂∂

y
f∂
y∂

== y
f

( 2)−xand

Therefore,

Δ Δz fΔ ΔΔ f x x y y f x y=fΔ { (f , )Δy yΔ ( ,x )}+ ΔΔΔ

= ( )( ) 2( ) 2x x y y y y xy y+ x 2(2( − +xyΔ Δ)( +)(xx y

= 2Δ Δ Δ Δ ΔxyΔΔ x y x yΔ ΔΔ yΔ+ΔyΔ −

= ( )y x y2) x yΔ( 2)x y2) Δ Δx yx y(x +

= ( )
1

2

1

2
y x y) y x x yΔ( 2)x y2) Δ Δyy ΔΔxx(x + ⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠⎠

+ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠⎠⎠

= ( )
1

2
=

1

2
y x y) x y y xΔ( 2)x y2) Δ Δ Δ(x + Δ ⎛

⎝⎝⎝
⎞
⎠⎠⎠

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

η xxΔx η κwhere a=
1

yΔ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

η nd
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=
1

2
=

1

2

∂
∂

∂
∂

+ ⎛
⎝⎝⎝

⎞
⎠⎠⎠

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

f∂
x∂∂

x
f∂
y∂

y x+ y y xΔ Δ+
∂

x
f∂

yy Δ Δ+ Δx +x η κwhere a=
1⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

yΔη nd

Now,η =
1

2
0ΔyΔ⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠
→  and κ =

1

2
0Δx⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
→  as Δx→ 0  and ΔyΔ → 0.

Therefore, the function z f x y xy y= (f , )y = 2xy  is differentiable.

 The total differential is,

 dz
f

x
dx

f

y
dy ydx x dy= = 2)x

∂
∂

+
∂
∂

x

Theorem 6.14: Let z f x x x(f , )1 2x, x 3  then the total differential of z is

 dz
z

x
dx

z

x
dx

z

x
dx=

1
1

2
2

3
3

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

+ +dx2

Theorem 6.15: Let f x x x cn,x , , ) =1 2x,  (constant) then df = 0.

6.8.2 Second-order Total Differentials

Theorem 6.16: Let z f x y(f , )y  have continuous second-order derivatives. Then 

the second-order differential is 

 d z
x

dx
y

dy z2

2

=
∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

+
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

Theorem 6.17: Let z f x x x(f , )1 2x, x 3 have continuous second-order derivatives. 

Then the second-order differential is

 d z
x

dx
x

dx
x

dx z2

1
1

2
2

3
3

2

=
∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

+ +dx2

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

6.9 JACOBIANS AND THEIR PROPERTIES

6.9.1 Definitions

1) Let u y1( )x y,  and u y2 ( ,x )  be two functions of independent variables x and y, 

having first-order partial derivatives. Then the determinant 

 
∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

( )
= =1 2 1 2

1 1∂∂∂∂

2 2∂∂∂∂
J

u u1

x y,

u

x∂∂
u

y∂∂∂
u

x∂∂
u

y∂∂∂

1)2 J
u1

( )x y,

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

is called the Jacobian of u u1 2u  with respect to x y.y

2) Let u y z1( ,x y ),  u y z2 ( ,x , )z  and u y z3 ( ,x , )z  be three functions of independent 

variables x, y and z, having first-order partial derivatives. Then the determinant 
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( ,
=

,

2 3,

1 1 1

u

, z

u

x y z

u

( ),, z

3 3 3

x y z

u

x y z

is called the Jacobian of u3  with respect to x y  and z

3) Let u x xn1 ),  u x xn1 x )  be n  functions 

of independent variables x1 , x xn  having first-order partial derivatives. 

Then the determinant 

 J
u

x

u

x

u

x

u

x

u

x

u

x
n

n

n

1

1

1

2

1

2

1

2

2

,

, ,
=

 

    

u

x

u

x

u

x

n

n n n

n

2

1 2

is called the Jacobian of un,  with respect to , n

6.9.2 Properties of Jacobians

Property 1 Let u x y  and u yx )  be two functions of independent variables 

x  and y,  having first-order partial derivatives; then 

 J
x y

J
x y

1

Property 2 (Chain Rule for Jacobians)

Let u x y  and u yx )  be two functions of variables x and y having first-

order partial derivatives, while x and y are functions of r and s; then

 J
r s

J
x y

J
x y

r s
= i

Property 3 (Chain Rule for Jacobians)

Let u x y ),  u x z  and u x z  be three functions of x, y, z having 

first-order partial derivatives, while x, y and z are functions of r, s and t; then

 J
u

t
J

z
J

z

t

3,
=

,

,
i

Property 4 (Chain Rule for Jacobians)

Let u1   and  u2   are functions of  and  are functions of x    and y; then
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J
u u

x y
J

u u
J

x y
J

u u1 2u 1 2u 1 2u
=

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠
+

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
αα β,αα βββ

αα β,αα βββ
ββ γ,ββ γγγ ⎠⎠⎟

⎞⎞
⎠⎠⎠⎠

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠
+

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

J
x y

J
u u

J
x y

ββ γββ γγγ
γγ αγγ ααα

γγ αγγ αααββ 1 2u,

Example 24  

If  f x y
x y

xy
g x y x y( ,x ) =

1
( ,x ) 1 1+

−
−1and t n tx1x + an . find 

∂
∂ ( )

( , )
.

f g,
 [WBUT 2006].

Sol. Here

 
∂
∂ ( )

∂
∂

∂
∂

∂
∂

∂
∂

( , )
=

f g,

f∂
x∂∂

f∂
y∂

g∂
x∂∂

g∂
y∂

...(1)

Now,

∂
∂

+
−

∂
∂

+
−

f∂
x∂∂

y

xy

f∂
y∂

x

xy
=

1

(1 )
=

1

(1 )

2

2

2

2
and

Also

∂
∂ +

∂
∂ +

g∂
x∂∂ x

g∂
y∂ y

=
1

1
=

1

12 2
and

So from (1), we have

∂
∂ ( )

+
−

+
−

+ +

( , )
=

1

(1 )

1

(1 )

1

1

1

1

2

2

2

2

2 2

f g,

y

xy

x

xy

x y+

=
1

(1 )

1

(1 )
= 0

2 2−
−

−xy xy

Hence the result is proved.

6.10 MAXIMA AND MINIMA

6.10.1 Maxima and Minima of Explicit Functions

Stationary Point or Critical Point 

All the points satisfying yx ( ,x ) = 0  and f x yy ( ,x ) = 0  are called stationary or critical 

points.

Necessary Condition for Maxima and Minima 

The necessary condition for f x y,x )  to have maxima and minima at ( , )a b,  is

 f a b f a bxff yf,a (fyff , )b = 0, provided they exist.
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Note: The above condition reflects the fact that both the partial derivatives f x yx ( ,x )

and f x yy ( ,x )  being zero at a point does not gurantee that at that point the function will 

always, have maxima or minima

i.e., the function may not have the extremum at all the stationary points.

Saddle Point

A point ( , )a b,  is called a saddle point of the function z f x y= (f , )y  if it is a point of 

neither maximum nor minimum though f a bx ( ,a ) = 0  and f a by ( ,a ) = 0.

Sufficient Condition for Maxima and Minima

Let f x y,x )  be a continuous function having second-order partial derivatives. The suf-

ficient condition for f x y,x )  to have extremum at ( , )a b,  is

 f a b f a bxff yf,a (fyff , )b = 0, provided they exist

and 

f a b f a b f a bxxff yyf xyff,a (fyyff , )b ,a ) > 0
2

− ⎡⎣⎡⎡ ⎤⎦
and this extreme value is

i) a maxima according as 

f a b f a bxxff yyf,a (fyyff , )b < 0

ii) a minima according as 

f a b f a bxxff yyf,a (fyyff , )b > 0

Note:

Let f x y( ,x )  be a continuous function having second-order partial derivatives such that 

 f a b fx y( ,a (f y , )and ,a(f y , )b = 0 provided they exist

Now if (i) 

f a b f a f a bxx yy xy( ,a ) (f yy , )b ( ,a ) < 0,
2

−a(f )b ⎡⎣⎡⎡ ⎤⎦
Then f x y( ,x )  has no extreme value at ( , ),a b,  i.e., ( , )a b,  is a saddle point.

and if (ii) 

 f a b f a f a bxx yy xy( ,a ) (f yy , )b ( ,a ) = 0
2

−a(f )b ⎡⎣⎡⎡ ⎤⎦
Then f x y( ,x )  may or may not have extreme value at ( , ),a b,  i.e., the case is 

 undecided and further investigation is required.

Alternate Conditions of Maxima and Minima

Let z f x y(f , )y  be a continuous function having second-order partial 

derivatives.

If df = 0  at ( , )a b,  then

 i) ( , )a b,  is a point of maximum if d f2
< 0,  and

 ii) ( , )a b,  is a point of minimum if d f2
> 0.
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Example 25  

Find the maxima and minima of the function x y x y3 3 3 12x 20.+ −y3 +y12  Find also the 

saddle points. [WBUT 2001, 2005]

Sol. Here, f x y( ,x ) =  x y x y3 3 3 12x 20.+ −y3 +y12  Then

f x y x f x y yx y( ,x ) 3 3x ( ,x ) 3 12,2 2 −,

f x y x f x y y f x yxx yy xy,x ) 6 ,x ,x ) 6 (y f , )y = 0

Solving, 

f x y xx ( ,x ) 3 3x = 02

and f x y yy ( ,x ) 3 12 =y 02

we obtain,

x y1 = 2y =1 d

Therefore, the (stationary points) critical points are (1, 2), (1, 2), ( 1, 2)2) (  and 

( 1, 2).11

Now,

f x y f x y f x y xyxxx yy xy( ,x ) (f yy , )y ( ,x ) 36
2

−x(f )y ⎡⎣⎡⎡ ⎤⎦
At the point (1, 2)

f f fxx yy xy(1, 2) (f yy 1, 2) (1, 2) = 72 > 0,
2

−(f 1 2) ⎡⎣⎡⎡ ⎤⎦

f fxx yy(1, 2) = 6 > 0 (f yy 1, 2) = 12 > 0

Therefore, f x y( ,x )  has minimum at (1, 2)  and the minimum value is 

f (1, 2) = 2.

At the point ( 1, 2)

f f fxx yy xy( 1, 2) (f yy 1, 2) ( 1, 2) = 72 < 0
2

− −1 2) ⎡⎣⎡⎡ ⎤⎦ −

Therefore, f x y( ,x )  has neither maximum nor minimum at ( 1, 2) .

 At the point (1, 2)

f f fxx yy xy(1, 2) (f yy 1, 2) (1, 2) = 72 < 0
2

−(f 1 f (1− ⎡⎣⎡⎡ ⎤⎦ −

Therefore, f x y( ,x )  has neither maximum nor minimum at (1, 2) .

 At the point ( 1, 2)11

f f fxx yy xy( 1, 2) (f yy 1, 2) ( 1, 2) = 72 > 0
2

− −1 − f (⎡⎣⎡⎡ ⎤⎦

f fxx yy( 1, 2) = 6 < 0 (f yy 1, 2) = 12 < 011 − − − 2) =

Therefore, f x y( ,x )  has maximum at ( 1, 2)11  and the minimum value is 

f ( 1, 2) = 38.11
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We have, from the above, that at the stationary points ( 1, 2)  and (1, 2),  the func-

tion does not have any extreme values. So the saddle points are ( 1, 2)  and (1, 2).

The following topic is included for further reading by interested students.

6.10.2 Maxima and Minima of Implicit Functions: 
(Lagrange’s Multiplier Method)

For Functions of Two Variables:

Let f x y( ,x )  be a function of two variables x  and y,  subject to the constraint con-

ditions φ( ,φ ) = 0.x y,

Let L y f x y( ,x ( ,x )+λφ( ,φ ),x y,  where λ  is called the Lagrangian multiplier. 

The critical points can be found by solving 

 φ( ,φ ) = 0, = 0 = 0x y,
L

x

L

y

∂
∂

∂
∂

and

i) the critical point is a point of maxima according as d f2 < 0  where d f2  is 

determined considering y  is dependent on x

  or, the critical point is a point of maxima according as d L2 < 0

ii) the critical point is a point of minima according as d f2 > 0  where d f2  is 

determined considering y  is dependent on x

  or, the critical point is a point of minima according as d L2 > 0

For Functions of Three Variables:

Let f x y z( ,x , )z  be a function of two variables x y  and z,  subject to the constraint 

conditions φ( ,φ , ) = 0.x y,

Let L y z f x y z( ,x , )z = (f , y )+λφ( ,φ , ),x y,  where λ  is called the Lagrangian 

multiplier. 

The critical points can be found by solving 

 φ( ,φ , ) = 0, = 0, = 0 = 0.x y,
L

x

L

y

L

z

∂
∂

∂
∂

∂
∂

and

i) the critical point is a point of maxima according as d f2 < 0  where d f2  is 

determined considering z  is dependent on x  and y

  or, the critical point is a point of maxima according as d L2 < 0

ii) the critical point is a point of minima according as d f2 > 0  where d f2  is 

determined considering z  is dependent on x  and y

  or, the critical point is a point of minima according as d L2 > 0.

Example 26  

Find the optimum value of f x y x y( ,x ) ,2 2  subject to the condition x y+ = 1  using 

Lagrangian multiplier method.

Sol. Let 

 φ( ,φ ) = 1 = 0.x y, x y+ −y ...(1)

Now L y f x y x y( ,x ( ,x ) ( ,x ),λ φ. (  where λ  is the Lagrangian multiplier.
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So, 

L y f x y x y( ,x ( ,x ) ( ,x )λ φ. (

= ( 1)2 2
y x y+ −yλ

Then 

∂
∂

+
L∂∂
x∂∂

xy= 2 2 λ

and 

∂
∂

+
L∂∂
y∂

x y= 2 2 λ

Now solving 
∂
∂
L∂∂
x∂∂

= 0,  
∂
∂
L∂∂
y∂

= 0  and (1) we have 

x y
1

2
=

1

2
.and

So the critical point is 
1

2
,

1

2
.

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

Now 

d f
x
dx

y
dy f2

2

=
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞
2

⎠
⎟
⎞⎞

⎠⎠

= 2
2

2

2
2

2

2
2∂

∂
( ) +

∂
∂

( ) +
∂
∂ ∂

⋅
f

x∂∂
f

y∂
f

x y∂ ∂∂
dx dy ...(2)

Again 

∂
∂

∂
∂

∂
∂ ∂

2

2

2
2

2

2
2

= 2 , =
2

2 ,2 = 4
f

x∂∂
y

f

y∂
f

x y∂ ∂∂
xy

and x y dx dy+ ⇒y −1 =

Putting the values in (2), we have 

d f
f

x

f

y

f

x y
dx dy2

2

2

2
2

2

2
2

= 2
∂
∂

( )dx +
∂
∂

( )dy +
∂
∂ ∂xx y

⋅

= 2 2 2 4 ( )2 2 2 2
y2 x y d dx( )dxdd + 22 ( )dx ⋅2 −

= (2 8 )2 22
2

y x2 y−2 22x2 ( )dx

Since 

1

2
,

1

2

2
= 2

1

4
2

1

4
8

1

2

1

2
( )d f2 ⋅ + ⋅ − ⋅ ⋅⎛

⎝⎝⎝
⎞
⎠
⎟
⎞
⎠
( )dx⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

= < 0
2( )

the function f x y x y( ,x ) 2 2  attains maximum value at the point 
1

2
,

1

2
.

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

The maximum value of f x y( ,x )  is 
1

16
.
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WORKED-OUT EXAMPLES

Example 6.1  Show that the function 

f x y xyx
x y

x y
x y( ,x ) , ( , )y (0, 0)

2 2

2 2+
≠

= 0, ( , ) = (0, 0)x y,

is continuous at (0, 0).

Sol. To prove the continuity at (0, 0),  we are to show 

 
( , ) (0, 0)

, (0, 0)
x y,

f x( y f) =lim

i.e.,
( , ) (0, 0)

2 2

2 2
= 0

x y,

xy
x y

x y+
lim

Now to prove the existence of the above limit, for a given ε > 0  we are to find 

δ > 0  such that in any δ -nbd N  of (0 0),,  

xy
x y

x y

2 2

2 2
0 <

+
− ε

or, x y
x y

x y

2 2

2 2
<

+
ε ...(1)

We know 

x y y x y x y x y< ,x y < <2 2 2 2 2 2 2 2+ − +y x<2 2and

So 

x y
x y

x y

x y x y

x y

2 2

2 2

2 2 2 2

2 2
<

+

+ ⋅y2 + ⋅y2 ( )x y2 2+

+

= <2 2x y ε (consider)

if 0 < ( 0) ( 0) < , = .2 2 2x y0) (0)0)0) − δ δ,2 ε
Here we are getting a circular δ -nbd of (0,0).

So, the condition for existence of the limit is satisfied and correspondingly, we 

have 

( , ) (0, 0)

2 2

2 2
= 0

x y,

xy
x y

x y+
lim

i.e.,
( , ) (0, 0)

, (0, 0)
x y,

f x( y f) =lim

Hence the given function is continuous at (0, 0).
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Example 6.2  If 

f x y
xy

xy x y
,x ) = , (0, 0)

+ −x
( )x yx ≠when

            = 0, ( , ) = (0, 0)when x y,

Show that both the repeated limits exist and are equal but the double limit does not 

exist.

Sol. The repeated limits are 

x y x y x

f x y
xy

xy x y x→ →y → →y →+ −x +0 0→y 0 0→y 0

( ,x ) = =
0

0
= 0lim lim lim lim lim

and

y x y x y

f x y
xy

xy x y y→ →x → →x →+ −x −0 0→x 0 0→x 0

( ,x ) = =
0

0
= 0.lim lim lim lim lim

Therefore we have

x y y x

f x y f x y
→ →y → →x0 0→y 0 0→x

( ,x ( ,x ) = 0lim lim

Hence the repeated limits exist and are equal.

Along the x -axis (i.e., y = 0 )

 
( , ) (0, 0) 0 0

, ( , 0) =
0

= 0
x y, x x

f x( y f) =
x→ →

lim lim

Along the path y x

( , ) (0,0) ( , ) (0, 0) 0

, ) = =
x y, x y, x

f x( y
xy

xy x y

x x

x x x→+ −x ⋅ +x
lim lim lim

− →x

x

xx

= = 1.
0

2

2lim

We see that along two different paths, the limits are different. So, the double 

limit does not exist.

Example 6.3  If

f x y
x y

x y
x y,x ) = ,

3 3+
≠when

= 0, ( , ) = (0, 0)x y,

Examine whether the repeated limits and double limit exist and are equal. Is the 

function continuous at (0, 0) .

Sol. The repeated limits are 

 
x y x y x

f x y
x y

x y

x

x→ →y → →y →

+
0 0→y 0 0→y

3 3+
0

3

( ,x ) = = 0lim lim lim lim lim=

and
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y x y x y

f x y
x y

x y

y

y→ →x → →x → −yy →0 0→x 0 0→x

3 3+
0

3

( ,x ) = =
y

= 0lim lim lim lim lim

Therefore,

x y y x

f x y f x y
→ →y → →x0 0→y 0 0→x

( ,x ( ,x ) = 0lim lim

Hence the repeated limits exist and are equal.

Along the curve y x mx ,x mx3  we have 

 
( , ) (0, 0) ( , ) (0, 0)

3 3

0

3

, ) = =
x y, x y, x

f x( y
x y

x y

x

→

+
lim lim lim

( )3x mx−x(( 3

3mx

= =
1

=
2

0

3 3
3

3
0

3

x x

x x

mx m m→ →

+ 3x ( )1 2mx−1 ( )1 2mx−1
lim lim

which is different for different values of m.  So, the limit is not unique.

 Hence the double limit does not exist at (0, 0)  and correspondingly, f x y( ,x )

is not continious at (0, 0).

Example 6.4  Show that for the function

f x y
x y

x y
x y( ,x ) = ,( , )y (0, 0)

2 2

2 2+
≠

= 0, ( , ) = (0, 0)x y,

f fxy yx (0, 0)  [WBUT-2008]

Sol. By the definition in Section 6.4.2, we have 

f
f h f

h
xy

h

y y
(0, 0) =

( ,h 0) (0, 0)

0→

−
lim ...(1)

Now by the definition of Section 6.4.1, 

f h
f h k f h

k

h k

h k

k
y

k k

( ,h 0) =
( ,h ) (f , 0)

=

0

0 0

2 2k
2 2k

→ →

−
lim lim

= = 0
0

2

2 2
k

h k2

h k2→
lim

Also, by the definition of Section 6.4.1

f
f k f

k k
y

k k

(0, 0) =
(0, )k (0, 0)

=
0 0

= 0
0 0→ →

−
lim lim

Using the above two results in (1), we obtain
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f
f h f

h h
xy

h

y y

h

(0, 0) =
( ,h 0) (0, 0)

=
0 0

= 0
0 0→ →

−
lim lim ...(2)

Again by the definition of Section 6.4.2, we have 

f
f k f

k
yx

k

x x(0, 0) =
(0, )k (0, 0)

0→

−
lim ...(3)

Now by the definition of Section 6.4.1, 

f k
f h k f k

h

h k

h k

h
x

h h

(0, )k =
( ,h ) (f 0, )

=

0

0 0

2 2k
2 2k

→ →

−
lim lim

= = 0
0

2

2 2
h

hk

h k2→
lim

Also, by the definition of Section 6.4.1

f
f h f

h h
x

h h

(0, 0) =
( ,h 0) (0, 0)

=
0 0

= 0
0 0→ →

−
lim lim

Using the above two results in (3), we obtain

f
f k f

k k
yx

k

x x

k

(0, 0) =
(0, )k (0, 0)

=
0 0

= 0
0 0→ →

−
lim lim ...(4)

From (2) and (4), we have 

f fxy yx (0, 0)

Hence we have the result.

Example 6.5  If u xyx , find the value of 

∂
∂

+
∂
∂

2

2

2

2

u

x∂∂
u

y∂
[WBUT-2001]

Sol. Here,

∂
∂

∂
∂

u

x∂∂ x
y

u

y∂ y
x=

1

2
=

1

2
and

Similarly,

∂
∂

− ∂
∂

−2

2 3
2

2

2 3
2

=
4

=
1

4

u

x∂∂

y

x

u

y∂
x

y

and

Therefore,

∂
∂

+
∂
∂

−⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎜⎜
⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟ +
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞

⎟
⎟
⎟
⎠
⎟

− +2

2

2

2 3
2

3
2

2 2+
3

=
1

4

1

4
=

1

4

u

x∂∂
u

y∂

y

x

x

y

x y+

x22
3
2y

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟
⎟
⎠⎠
⎟⎟
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Example 6.6  If 

f x y x
y

x
y

x

y
,x ) 2 1 2 1ta t

y
y2n 1 an

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
verify that f fxy yx .f yx

Sol. Differentiating f x y( ,x )  partially with respect to x,  we have

 f x
y

x
x

y

x

y

x
y

x

y

x

1

1

1

1

2y1

2 2

2tan− ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
+

+ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞
⎠

⋅
−⎛

⎝
⎜
⎛⎛ ⎞

⎠
⎟
⎞⎞
⎠⎠
−

+
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞

⎠

22

1
⋅
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠y

= 2 = 21
2

2 2

3

2 2

1x
y

x

x y

x y

y

x y
x

y

x

y
tan tan− −⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
−

+
−

+
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠
−
( )2 2x y+

x yxx2 2+

= 2 1x
y

x
ytan− ⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠
−

Again differentiating fx  partially with respect to y,  we have

  f x
y

x

x

x

x y

x y

x y
yx

1

1

1
1 =

2
1 =

2

2

2 2

2 2

2 2

+ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

⋅⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
−

+
−

+
 ...(1)

Now differentiating f x y( ,x )  partially with respect to y,  we have

 f x
y

x

x
y

x

y
y

x

y

y

1

1

1
2

1

1

2

2

1 2x
2

+ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

⋅⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
−

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
−

+
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞
2

⎠
⎟
⎞⎞

⎠⎠

⋅−tan −−
⎛

⎝
⎜
⎛⎛

⎝⎝
⎜⎜
⎝⎝⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
⎟⎟
⎠⎠⎠⎠

x

y
2

= 2
3

2 2

1
2

2 2

x

x y
y

x

y

xy

x y+

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞

⎠
+

+
−tan

= 2 1x y2
x

y

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
−tan

Differentiating f y  partially with respect to x,  we have

 f y
x

y

y

y

x y

x y

x y
xy

1

1

1
= 1

2
=

2

2

2 2

2 2

2 2

+
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞
2

⎠
⎟
⎞⎞

⎠⎠

⋅
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞

⎠
−

+ +
...(2)

From (1) and (2), it is verified that f fxy yx .f yx
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Example 6.7  If u f x yz yyy zx2f x , 2y2 2yzyy2 , y( ), show that 

 
u

x

u

y

u

z
= 0( )y zxzz2 ∂

∂
+ ( )x yzyy2 −x2 ∂

∂
+ ( )z xyx2 −z2 ∂

∂
[WBUT-2001]

Sol. Let 

X x yz Y y zx= 2x = 2y2 2and

Therefore

u f x yz yy zx f X2f x 2y = (f , )Y2 2yzyy2 , y( )
Now,

∂
∂

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂

∂
∂

u

x∂∂
u

X∂∂
X∂∂
x∂∂

u

Y

Y

x∂∂
x

u

X∂∂
z

u

Y
= = 2 2

∂
+x

u

∂
∂

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂

∂
∂

u

y∂
u

X∂∂
X∂∂
y∂

u

Y

Y

y∂
u

X∂∂
y

u

Y
= = 2 2

∂
+z

u

∂
∂

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂

∂
∂

u

z∂∂
u

X∂∂
X∂∂
z∂∂

u

Y

Y

z∂∂
y

u

X∂∂
x

u

Y
= = 2 2

∂
+y

u

Therefore,

u

x

u

y

u

z
( )y zxzz2 ∂

∂
+ ( )x yzyy2 −x2 ∂

∂
+ ( )z xyx2 −z2 ∂

∂

= 2 2 2 2x2
u

X
z

u

Y
z2

u

X
y

u

Y
( )2y zxzz

∂
∂

+
∂
∂

⎛
⎝⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
+ ( )2x yzyy−2x

∂
∂

+
∂
∂

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

  +( )−
∂
∂

∂
∂

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

− y) ⎛
⎝
⎜
⎛⎛
⎝⎝

u

X∂∂
x

u

Y
2 2

∂
+y

u

= 2 2 2 22 22 2 22 2 22
∂
∂

− 22 − 22 −( )u

X∂∂
xy zx x z yz yz xy

  +
∂
∂

− + − +( )u

Y
y x x y y x x y2 −y z 2 −x y 2 2−xz2 22 2 22 2 22

= 0 0 = 0
∂
∂

+0
∂
∂

⋅
u

X∂∂
u

Y

Example 6.8  If 

u x y z xyz33 3 3log + +y3 −( )
then show that

i) 
∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞

⎠ + +x y∂∂ ∂ z∂∂
u

x y+ z
=

3
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ii) 
∂
∂

+
∂

+
∂
∂

−
2

2

2

2

2

2 2
=

3

( )x y z
u

iii) 
∂
∂

+
∂

+
∂

x y z
u

2

9

( )z
[WBUT-2003].

Sol. We know,

z x3 =z z−( )( )ωz z+

where  is the cube root of unity.

 Therefore,

        u x xyz33 )
i.e., u 2 2x ) x +x )z+ z

Now,

∂
+
(

+
)

u

+ x
=

1

+ y z+
1 1

+ z ωz+
...(1)

∂
+
(

+
)

u

x
=

1

)+ y z

2

+ z ωz
...(2)

∂
+
(

+
)

u

x

1

+ y z + z ωz
...(3)

i) Adding (1), (2) and (3), we get 

∂
+
∂

+
∂

+
(

+
)

u

x

u

y

u

+ x
=

3

+ y z

1 1+

+ z

+

ωz

Since 1 = 0,  we have

 
∂
+

∂
+

∂
x y z

u
z

3

ii) Now, from (1), we have 

∂
∂

∂
+

∂
+

∂2

2

1

+
1

( )

1

(

u

x + x x x y+ z + z )

       =
1

( )

1 1
2 2 2( )x+ z ωz

 ...(4)
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Since 4  from (2), we get

 
∂ ∂

+
∂

( ) ⎠
+

∂2

2
=

1

)+
u

y y y x y++ z +( )z

=
1

( )2 2 2( )+ z ωz
...(5)

Since 4  from (3), we obtain

 
∂ ∂

+
∂
∂ ( )

+
∂
∂

2

2
=

1

+
u

z z z x y+ z ( )⎝
⎜

⎠z

1

( )2 2

2

2( )x+ z z

...(6)

Adding (4), (5) and (6), we have

∂
∂

+
∂

+
∂
∂

− −
( )

( )
−

2

2

2

2

2

2 2 2

3u

x

u

y

u

z +

+

+ z

21 +

( )+ + z
2

or, 
∂

+
∂

+
∂
∂

−
2

2

2

2

2

2 2
=

3

( )
since = 0

x y z
u +

iii)

∂
∂

+
∂

+
∂ ∂

∂
+

∂
+

∂
∂

∂
+

∂
+

∂
x y z

u
x y z x y z

u

2

=

3
,

∂
+

∂
+

∂
∂x y z x

by (1)

= 3
1 1

)

1∂
∂

+
∂

+
∂
∂y

= 3
1 1 1

( )2 2 2

=
9

( )2
−

Example 6.9  If f y  where vu ue ev  show that

 y
z

u

z

v
e

y

u∂
∂

+ ⋅x
∂
∂

∂2 [WBUT-2006, 2009]
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Sol. Here f y where u ue vv = e

By chain rules

∂
∂ ∂

∂
+

∂
∂
∂

∂z

u

z

x

x

u

z

y

y

u

z z

y

u= = ⋅v

and

∂ ∂
+

∂
∂ ∂z

v

z

x

x

v

z

y

y

v

z

x y

u u= +v e

Therefore,

y
z

u v

∂
∂

+ ⋅x
∂
∂

= e v
x y x

u u u uv e v ee v
∂

ve
∂

v
y

∂

= 2 2 2 2e v e v
z

e v e v
zu u u uv os si v v in cosv( ) ∂ + ( ) ∂
y

= =2 2e v
z

y
e

y

uv os ) ∂ ∂

Example 6.10  Show that the transformation x ct  v x ct+  reduces the 

equation 

 
∂
∂

∂
∂

2

2

2
2

2
=

z

t
c

z

x
  to the equation 

∂2 z

v

Sol. Here,

ct z z vx u )v x and

Now,

∂ ∂
∂
∂

+
∂
∂

∂
∂ ∂

+
∂

z

t

z

u

u

t

z

v

v

t

z

u

z

v
= ( )c

or,
∂
∂

∂
∂

∂z

t
c

u v
z=

or, 
∂
∂

−
∂
∂

−
∂

t
c

u v
=

Therefore,

∂
∂

∂
∂

∂ ∂
∂

∂
+
∂

⎤2

2

2
2

2
2

2

2 2

2
= 2

t
c

u v
c

u v v

⇒
∂
∂

∂
∂

∂
+
∂

⎤2

2

2

2

2 2

2

z

t

z

u

z

v

z

v
...(1)
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Again,

∂
∂

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂

+
∂
∂

z∂∂
x∂∂

z∂∂
u

u

x∂∂
z∂∂
v

v

x∂∂
z∂∂
u

z∂∂
v

= =

or, 
∂
∂

∂
∂

+
∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

z∂∂
x u∂∂ ∂⎝⎝⎝ v

z=

or, 
∂
∂

∂
∂

+
∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠x u∂∂ ∂⎝⎝⎝ v

=

Therefore,

∂
∂

∂
∂

+
∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

∂
∂

+
∂
∂ ∂

+
∂
∂

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

2

2

2 2

2

2 2∂
2

= = 2
x∂∂ u v∂ u v∂ v

⇒
∂
∂

∂
∂

∂
∂ ∂

+
∂
∂

⎡

⎣
⎢
⎡⎡
⎢
⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

2

2

2

2

2 2∂
2

2
∂

+= ⎢ 2

z

x∂∂
z

u

z

v∂
z

v
...(2)

Using (1) and (2) in the given equation 

∂
∂

∂
∂

2

2

2
2

2
=

z

t
c

z

x∂∂
we obtain 

c
z

u

z

v

z

v
c

z

u

z

v

z

v

2
2

2

2 2

2

2
2

2

2 2

2
2 = 2

∂
∂

−
∂
∂ ∂u

+
∂
∂

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

∂
∂

+
∂
∂ ∂u

+
∂
∂

⎡

⎣⎣
⎢
⎡⎡

⎣⎣⎣⎣
⎢⎢
⎣⎣⎣⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

Simplifying, we get 

4 = 0 = 0.
2 2∂

∂ ∂
⇒

∂
∂ ∂

z

v∂
z

v∂
Hence, the required result is proved.

Example 6.11  If u  be a function of x  and y,  prove that

a) 

 
∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

+
∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

u

r r

u u⎞⎞⎞ ∂⎛⎛⎛
x∂∂

u

y∂

2

2

2 2∂⎛ ⎞⎞
2

1
=

θ

b)

∂
∂

+
∂
∂

∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

2

2 2

2

2
=

1 1∂u

x∂∂
u

y∂
u

r r

u

r r

u

θ

where x rcosθs  and y rsin= .rsinθn  [WBUT-2002, 2008]

Sol. Here,

 x rcos y rsin=θs θnand

a) By chain rules, we have 

∂
∂

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂

∂
∂

u

r

u

x∂∂
x∂∂
r

u

y∂
y∂
r

u

x∂∂
u

y∂
= = cos iθ θ+

∂u
s+ in ...(1)
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and 

∂
∂

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂

∂
∂

u u∂ x u∂∂ ∂
y∂

y u∂ ∂
x∂∂

u

y∂θ θ∂ ∂x∂∂ θ
+
∂u

= = ( )−r θθ ( )θ+θ r

or,
1

=
r

u u

x

u

y

∂
∂

−
∂
∂

∂
∂θ

θ θ
u

+
∂

sinθ + ...(2)

Therefore, from (1) and (2), we have

∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

+
∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

∂
∂

∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
+ −

∂
∂

u

r r

u∂u ⎞⎞⎞ ⎛⎛⎛
x∂∂

u

y∂
u

x∂∂

2

2

2 2
1

=
θ

θ θ+
∂u

cosθ + i sinii θ θcos
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

u

y∂

2

= 22
2

2

2

2cos s2 in sin sinθ θ θ θcos θ
∂
∂

⎛
⎝
⎛⎛
⎝⎝

⎞
2

⎠
⎞⎞
⎠⎠

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞
2

⎠
⎟
⎞⎞

⎠⎠
+

∂
∂

∂
∂

+
u

x∂∂
u

y∂
u

x∂∂
u

y∂
∂∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

u

x∂∂

2

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
−

∂
∂

∂
∂

cos sin cos2

2

2θ θ θ
u

y∂
u

x∂∂
u

y∂

=

2 2
∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞
2

⎠
⎟
⎞⎞

⎠⎠

u

x∂∂
u

y∂

b) From (1), we have the operator 
∂
∂r

 as 

 
∂
∂

∂
∂

∂
∂r x∂∂ y∂

= cos iθ θ
∂
+ sin ...(A)

and from (2), we have the operator 
∂
∂θ

 as 

 
∂
∂

−
∂
∂

∂
∂θ

θ θ
∂
+= r

x∂∂ y∂
sinθ + ...(B)

Now, 

∂
∂

∂
∂

∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

∂
∂

∂
∂

∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

2

2
= =

⎛
⎜
⎛⎛ ⎞

⎟
⎞⎞u

r r

u

r r⎠⎠⎠ ∂
u

x∂∂
u

y∂
cos iθ θ+

∂u
s+ in

= cos sinθ θ
∂
∂

∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠
+

∂
∂

∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠r

u

x r∂∂ ⎠⎠ ∂
u

y∂

= cos sinθ θcos θ
∂
∂

+
∂
∂

⎛

⎝
⎜
⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠x y∂∂ ∂

u

x∂∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
sin sinθ θ

⎛
⎜
⎛⎛

c
⎛
⎜
⎛⎛

os θ
x y∂∂ ∂

u

y∂
, using operator (A)

Since 
∂
∂ ∂

∂
∂ ∂

2 2∂
= ,
∂ ∂

u

x y∂ ∂∂
u

y x∂ ∂∂
∂
∂

∂
∂

∂
∂ ∂

∂
∂

2

2

2
2

2

2
2

2

2
=

u

r

u

x∂∂
u

x y∂ ∂∂
u

y∂
cos i cos sinθ θ

∂
+

2
2

u
sin θ θ

∂
+ 2u

sin ...(3)
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Similarly,

∂
∂ ∂

∂
∂

∂ ∂2

2

u u u

x
r

u

y∂
sin + r

=
∂ ∂

∂
∂ ∂

r
u

x

u

x
r

u

y
cos sr in sin c+ r os

∂
∂u
y

= −
∂ ∂ ∂

∂
∂

+r
u

x

u

y
r

u

x
rcos sr in sin cos

∂
∂u
y

= −
∂ ∂ ∂

+r
u

x

u

y
r

x
cos sin sr− in

y

u

x
cos

∂ ∂

+
∂
+

∂ ∂
x

r
y

u

y
cossr− in , using operator (B)

= 2 2
2

2

2
2∂

∂
+

∂
∂

∂
r

u

r
r

u

x
r

u
in sin cos

∂
+

∂
r

u
r

u

y

2
2

2 2
2

2
cos cossin

Since 
∂2 2

= ,
u u

 we get from above

 
∂
∂

−
∂
∂

+
∂

−
∂

+
∂2

2

2 2
2

2

2
2

2 2
2

= 2
u

r
u

r
r

u

x
r

u
r

u
sin cos sin cos 2

i.e., 
∂
∂

+
∂
∂

∂ ∂ ∂2

2

2 2
2

2u
r

u

r
r

u

x

u u
n − si cn os

⎤

y2

i.e., 
1 1
2 2

2 2
2

r r

u

r

u u

∂
+

∂
∂

∂
∂

∂ ∂
sin − si cn os

2

u

y
...(4)

Adding (3) and (4), we have

∂
∂

+
∂

+
∂
∂

2

2 2

2

2

1 1∂u

r r r r

u

= 2
2

2

2 2

2cos cos2sin
∂ ∂ ∂u

x

u u

y

+
∂ ∂ ∂2

2

2

2 2

2sin sin− 2cos +
u

x

u u

y

= .
2 2

2

∂ ∂u

x

u

y

Hence both the results are proved.
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Example 6.12  If u
x y

x y
= 1cos−

+

+

⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟  then prove that 

 x
u

x
y

u

y
u

∂
∂

+
∂
∂

+
1

2
= 0cot [WBUT-2009]

Sol. Let 

cosu
x y

x y
v y= = ( ,x )

+

+

⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞
⎟
⎠
⎟

Now,

v tytt
tx ty

tx ty
t

x y

x y
t v x y( ,txtt ) = = = ( ,x ).

1

2

1

2
+

+

+

+

⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟

Therefore, v y( ,x )  is a homogeneous function of degree 
1

2
.

 By Euler’s theorem 

x
v

x
y

v

y
v

∂
∂

+
∂
∂

⋅=
1

2

or, x
x

y
y

∂ ( )
∂

+
∂ ( )u

∂
⋅( )u)u ∂ (

=
1

2

or, −
∂
∂

+
∂
∂

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬ ⋅( )sinu x⋅ ⎨

u

x∂∂
y

u

y∂
=

1

2

or, x
u

x
y

u

y

u

u
u

∂
∂

+
∂
∂

− ⋅⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−=
1

2
=

1

2

cos

sin
cot

Hence

x
u

x
y

u

y
u

∂
∂

+
∂
∂

+
1

2
= 0cot

Example 6.13  If U
x y

x y

= 1

1

3

1

3

1

2

1

2

1

2

sin− +

+

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎣⎣

⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎦⎦

⎥⎥  show that 

 x U xyU y U
U

xx xy yy
2 22 =

144
.+ +xyUxy2 ( )U213+

tan
[WBUT-2001, 2008]
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Sol. Here,

U
x y

x y

U
x y

x y

= =1

1

3

1

3

1

2

1

2

1

2

2

1

3

1

3

1

2

1

2

sin sin− +

+

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎣⎣

⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎦⎦

⎥⎥ ⇒
+

+

Here, sin2U  is a homogeneous function of degree 
−⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

1

6
.

Therefore, by Euler’s theorem

x
x

y
y

∂ ( )U

∂
+

∂ ( )U

∂
− ( )U

)U ∂ (
=

1

6

or, x U U
U

x
y U U

U

y
U⋅

∂
∂

⎛
⎝⎝⎝

⎞
⎠
⎟
⎞
⎠
+ y ⋅

∂
∂

⎛

⎝

⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

−
2 2 =

1

6

2i cU os i cU os sin

or, x
U

x
y

U

y U U
U U

∂
∂

+
∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠⎠⎠

−
=

1

2

1

6

1

12

2

i cU os
sin U2 ...(1)

Differentiating (1) partially with respect to x  and y,  we have respectively

∂
∂

+
∂
∂

+
∂
∂ ∂

− ∂
∂

U

x∂∂
x

U

x∂∂
y

U

x y∂ ∂∂
U

U

x∂∂

2

2

2
2=

12
sec ...(2)

x
U

y x

U

y
y

U

y
U

U

y

∂
∂ ∂y xy x

+
∂
∂

+
∂
∂

− ∂
U

∂

2 2

2

2=
12

sec ...(3)

Multiplying (2) by x  and (3) by y  and adding, we have

x
U

x
y

U

y
x

U

x
xy

U

x y
y

U

y

∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞

⎠
+

∂
∂

+
∂
∂ ∂x yx y

+
∂
∂

2
2

2

2
2

2

2
2

=
12

=2
2 2− ∂1 2

∂
+

∂
∂

⎛

⎝
⎜
⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

∂
∂ ∂

∂
∂ ∂

⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟sec U x

⎛
⎜
⎛⎛ U

x∂∂
y

U

y∂
U

x y∂ ∂∂
U

y x∂ ∂∂
since

or, 
− ∂

∂
+

∂
∂ ∂

+
∂
∂

⎛

⎝

⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟

−1

12
2 =

1

12

2
2

2

2
2

2

2

2tan secU x+
⎛
⎜
⎛⎛
⎜⎜

U

x∂∂
xy

U

x y∂ ∂∂
y

U

y∂
U UUU

−⎛
⎝⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

1

12

or, x
U

x
xy

U

x y
y

U

y
U U U2

2

2

2
2

2

2

22 =
1

144

1

12

∂
∂

+
∂
∂ ∂xx y

+
∂
∂

+tanU tan

=
144

=
144

tan tanU U( )122sec U + ( )132tan U +

Hence 

x U xyU y U
U

xx xy yy
2 2 22 =

144
(13 )U2 .+ +xyUxy2

tan
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Example 6.14  If yx ) = 0,  show that 

 
d y

dx

f f

2

2 2

3
=

−

( )f

Sol. Here yx ) = 0  defines y  as an implicit function of x .

 Therefore,

 
dy

dx

f

f

and

d y

dx

d

dx

dy

dx

d

dx

f

f

f
d

f
d

2
=

y

( )y 2
...(1)

Now,

d

dx x

dx

dx y

dy

dx

f

f
( )f

∂
∂

( )f +
∂

f= = ...(2)

and

d

dx x

dx

dx y

dy f

f
( )f

∂ ( )f +
∂

f = ...(3)

Using (2) and (3) in (1) and assuming  we have

 
d y

dx

f

f

f

f
x

y

2

−

( )2

=

2 2

3

−

( )
f f

Example 6.15  If u xyx )  where 3 =x 1,  find 
du

dx

Sol. Let 

y xx = 0

This is an implicit function of x  and y.  Then,

 f x y xy3y = 32 2+

Therefore, 

dy

dx f

x y

y x

2

2

− x
−
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Here 

u xy= (x )g

Now using chain rule,

du

dx

u

x

dx

dx

u

y

dy

dx
=
∂
∂

+
∂
∂

= 1 ( )
1

1
1 2

2
⋅ +( ) ⋅ ⋅

⎡

⎣
⎢
⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
+1 ⋅ ⋅
⎛

⎝

⎛⎛

⎝⎝

⎞

⎠
⎟
⎞

⎠
−

+
+

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

log y x
xy

y x
⎦
⎥
⎦⎦
⋅ +1

⎛

⎝
⎜
⎛⎛

⎝⎝ xy
x

x y+
y x+

= 1 ( )+ −( )
( )2 +

( )2 +
log y

x (
y (

Example 6.16  If f x y( ,x ) = 0  and ϕ ( , ) = 0,z,  show that 

 
∂
∂

⋅
∂
∂

⋅
∂
∂

∂
∂

f∂
x z∂∂ ∂∂

d

dy

f∂
y x∂ ∂∂

ϕ ϕ∂ ∂dz f∂
=

Sol. We have,

f x y( ,x ) = 0

Therefore,

df = 0

or, 
∂
∂

+
∂
∂

f∂
x∂∂
dx

f∂
y∂
dy = 0

or,
∂
∂

−
∂
∂

f∂
y∂

f∂
x∂∂
dx

dy
= ...(1)

Again,

ϕ( , ) = 0x y,

Therefore,

dφ = 0

or, 
∂
∂

+
∂
∂

φ φ
+
∂

x∂∂
dx

z∂∂
dz = 0

⇒
∂
∂

−
∂
∂

φ φ∂
x z∂∂ ∂∂

dz

dy
= ...(2)

Multiplying (1) and (2), we have 

∂
∂

∂
∂

∂
∂

⋅
∂
∂

⋅
f∂
y x∂ ∂∂

f∂
x z∂∂ ∂∂

dz

dy

ϕ ϕ∂ ∂f∂
=

Example 6.17  If f p v( ,p , )t = 0  prove that 

 
dp

dt

dt

dv

dv

dpv pdv
t

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠vv
⎟
⎞⎞
⎠⎠
×⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

×
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠tt
⎟
⎞

⎠
= 1− [WBUT-2003]
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Sol. Here,

f p v( ,p , )t = 0

Therefore,

df
f

p
dp

f

v
dv

f

t
dt= 0 = 0⇒

∂
∂

+
∂
∂

+
∂
∂

...(1)

Let p  be constant. Then dp = 0  and from (1), we get 

 
dt

dv

f

v
f

t
p

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−

∂
∂
∂
∂

= ...(2)

Let v  be constant; then dv = 0  and from (1) we get 

 
dp

dt

f

t
f

p
v

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠vv
⎟
⎞⎞
⎠⎠

−

∂
∂
∂
∂

= ...(3)

Let t  be constant; then dt = 0  and from (1) we get 

 
dv

dp

f

p

f

v
t

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠tt
⎟
⎞⎞

⎠⎠
−

∂
∂
∂
∂

= ...(4)

Multiplying (2), (3) and (4), we get 

dp

dt

dt

dv

dv

dpv pdv
t

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠vv
⎟
⎞⎞
⎠⎠
×⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

×
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠tt
⎟
⎞

⎠
= 1−

Example 6.18  If f x y z w( ,x ,z ) = 0  prove that

 
∂
∂

×
∂
∂

×
∂
∂

×
∂
∂

x∂∂
y∂

y∂
z∂∂

z∂∂
w

w

x∂∂
= 1 [WBUT-2005]

Sol. Here,

f x y z w( ,x ,z ) = 0 ...(1)

represents an implicit function involving 4 variables, x y z,y  and w .

 Using the property of differentiation of implicit functions, we have

 
∂
∂
x∂∂
y∂

f

f
w

y

x

= ,−
f

y
considering az nd as constants. ...(2)
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Similarly, we obtain

∂
∂
y∂
z∂∂

f

f
wz

y

= ,−
f

f

z considering ax nd as constants. ...(3)

∂
∂
z∂∂
w

f

f
x yw

z

= ,−
f

f

w considering ax nd as constants. ...(4)

∂
∂
w

x∂∂
f

f
y zx

w

= ,−
f

f

x considering ay nd as constants. ...(5)

Multiplying (2), (3), (4) and (5), we get 

∂
∂

×
∂
∂

×
∂
∂

×
∂
∂

−
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
× −
⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟ × −

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
×

x∂∂
y∂

y∂
z

z

w

w

x∂∂

f

f

f

f

f

f

y

x

z

y

w

z

= −−
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

f

f

x

w

= 1

Example 6.19  If z  is a function of x  and y  defined by 

 x y z x y z2 2 2 1 = 0,+ +y2 + +x + +z

find d z2  at (1, 0, 1).

Sol. Here 

x y z x y z2 2 2 1 = 0+ +y2 + +x + +z ...(1)

We have from the first- and second-order total differentials,

dz
z

x
dx

z

y
dy

x
dx

y
dy z= =

∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞

⎠
and

d z
x
dx

y
dy z2

2

=
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞
2

⎠
⎟
⎞⎞

⎠⎠

= ( ) 2 ( )
2

2

2
2 2

2

2∂
∂

∂
∂ ∂

+
∂
∂

z

x∂∂
dx

z

x y∂ ∂∂
dxdy

z

y∂
dy ...(2)

Here 

x y z x y z2 2 2 1 = 0+ +y2 + +x + +z
Differentiating (1) partially with respect to x,  we have 

 2 2 1 = 0 =
2 1

2 1
x z2

z

x

z

x

z

x

x

z

∂
∂

+ +1
∂
∂

⇒
∂
∂

−
+
+

∂
∂

−
+

∂
∂

+
−

+2

2 2

2 2

=

(2 1) 2 (2 1) 2+ ⋅

(2 1)
=

(2 1) 2 (+ (2 1) 2+ ⋅2

(

z

x∂∂

z + ⋅1) 2 (− 2
z∂∂
x∂∂

z

z + ⋅1) 2 (+ 2

2 1)22 3

So,
∂
∂

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

−2

2

(1, 0,1)

=
4

3

z

x∂∂
...(3)
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Differentiating (1) partially with respect to y,  we have

 2 2 1 = 0 =
2 1

2 1
y z2

z

y

z

y

z

y

y

z

∂
∂

+ +1
∂
∂

⇒
∂
∂

−
+
+

∂
∂

−
+

∂
∂

+
−

+ ⋅2

2 2

2 2

=

(2 1) 2 (2 1) 2+ ⋅

(2 1)
=

(2 1) 2 (+ 2 1) 2+ ⋅2

(

z

y∂

z y+ ⋅1) 2 (− 2
z∂∂
y∂

z

z y

2 1)22 3

So,
∂
∂

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

−2

2

(1, 0,1)

=
20

27

z

y∂
...(4)

Also 

∂
∂ ∂

+
+

⋅
∂
∂

− ⋅
+
+

⋅
+2

2 2
=

(2 1)

(2 1)
2 =
∂

2
(2 1)

(2 1)

2 1+
2 1+

z

x y∂ ∂∂
y

z

z∂∂∂
x∂∂

y

z

x

So,
∂
∂ ∂

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

−2

(1, 0,1)

=
2

9

z

x y∂ ∂∂
...(5)

Using (3), (4) and (5) in (2), we have

d z
z

x
dx

z

x y

2

(1, 0,1)

2

2

(1, 0,1)

2
2

= ( ) 22⎡
⎣
⎡⎡ ⎤

⎦
⎤⎤ ∂

∂

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

∂
∂ ∂x yx y

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦(1, 0(( ,1)

2

2

(1, 0,1)

2( )dxdy
z

y
dy+

∂
∂

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

=
4

3
( )

4

9

20

27
( )2 2−

− −d dxdy dy

Example 6.20  If f u v( ,u ) = 3 ,uv2 g u v u v( ,u ) = 2 2−  find the Jacobian 
∂
∂
( , )

( , )
.

f g,

v,

[WBUT-2004]

Sol. Here 

f u v uv g v u v( ,u ) 3uvuv ( ,u ) =2 2 2

Therefore

∂
∂

∂
∂

f∂
u

v
f∂
v

uv= 3 , =
∂
f

62

and
∂
∂

∂
∂

−
g∂
u

u
g∂
v

v= 2 , =
∂
g

2

Hence

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

( )

( , )
= =∂ ∂ 3 6

2 2
= 6−

2
3 212

f g,

v,

f∂
u

f∂
v

g∂
u

g∂
v

uv6

u v2−
v u−12 v
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Example 6.21  Show that the functions 

u x y z v x y z w x y z yz= ,x y z 22 2 2+ yy − +y + +y
2 −and

are dependent. Find the relation between them.

Sol. The given functions u v,  and w  of independent variables x y z,y  will be 

functionally dependent if 
∂
∂
( , , )

( , , )
= 0,

v, )

x y,
 otherwise independent.

 Now,

 
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

( , , )

( , , )
=

v, ))

x y,

u

x∂∂
u

y∂
u

z∂∂
v

x∂∂
v

y∂
v

z∂∂
w

x∂∂
w

y∂
w

z∂∂

=

1 1 1

1 1 1

2 2( ) 2( )
3 3 2

−

−
′ +3[ ]

y2(2( z) 2(z) 2() 2( y

C C3′ → 3 C2

=

1 1 0

1 1 0

2 2( ) 0

= 0

y2(2(

Therefore, the functions u v w, ,v  are functionally dependent.

 The relation between them is 

 ( ) ( ) 4 2 42 2 2 2 2x y z y2 z w= 4y+)2 +2x) = 42 + −2z( )
or, u v w2 2 2 =w 0+ −v2

Example 6.22  Find the extrema of the following function:

f x y x y y x( ,x ) 3 3xy 4x3 23 2 23+ 3xy3 3x3 [WBUT-2004, 2007, 2009]

Sol. Here,

f x y x xy y x( ,x ) 3 3xy 4x3 23 2 23+ 3xy3 3x3

Then

f x y x f xy yx y3 6y , f 6xyx ,2 23+ 3y3

f x f x f yxx yy xy6, 6,−xf− 6

Now,

f x y x x y xx 3 6 0 2 = 02 23 2 2xx − ⇒x6 =x 0 + −y2 ...(1)



 6.50   Engineering Mathematics-I 

and f xy y y yy 6 = 0 = 0xyxxyx ⇒ −xy ...(2)

Solving equations (1) and (2) the critical points are (2, 0), (1, 1), (0, 0).

Now,

f f f x yxx yy xy− { }x y− −( )f 6 6) (x − − 6 )y 36{2 2 2

At the point (2, 0)

f fxx yy(2, 0) (f yy 2, 0) = 36 > 0
2

−{ }fxy (2, 0)

and ,f fxx yy( 0) = 6 > 0, (f yy 2, 0) = 6 > 0

Therefore, f x y( ,x )  is minimum at (2, 0).

At the point (1, 1)

f fxx yy(1, 1) (f yy 1, 1) = 36 < 0
2

−{ }fxy (1, 1) −

Therefore, f x y( ,x )  has no extreme value at (1, 1)

At the point (0, 0)

f fxx yy(0, 0) (f yy 0, 0) = 36 > 0
2

−{ }fxy (0, 0)

and ,f fxx yy( 0) = 6 < 0, (f yy 0, 0) = 6 < 0

Therefore, f x y( ,x )  is maximum at (0, 0).

Example 6.23  Find the maximum and minimum of the function 

f x y x y axy( ,x ) 33 3+ −y3 [WBUT-2002, 2008]

Sol. Here,

f x y x y axy( ,x ) 33 3+ −y3

Then

f x y f y axx y3ay f 3y2 2− ,

f x f y f axx yy xy, f ,y

Now,

f x ay x ayx 3 = 0 = 02 2xx ⇒ −x2 ...(1)

and f y ax y axy 3 = 0 = 02 2yy ⇒ −y2 ...(2)

Solving equations (1) and (2), the critical points are (0, 0)  and ( , )a,

Now,

f f f xy axx yy xy− ( )f 9xyx2 2
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At the point )a

a aa f a > 0
2 2aa

and 

a a 0 >a 0

6 < 0a a

a a 0 >a 0

< 0a a

Hence yx )  is maximum at )a  if a < 0  and minimum at )a  if 

a > 0.

At the point (0, 0)

(f 0, 0) = 9 <a 0
2

f (0, 0)

Hence yx ) is neither maximum nor minimum at (0, 0).

Example 6.24  Find the maxima and minima of the function 

y xx .y+
Find also the saddle points.

Sol. Here, 

y xx .x+
Then

y xx 12 (x y f y = 3 ,2

x x x y f y = 12

Now to find the critical points, we solve 

yx 12x 1 4x ...(1)

and x,x 12x 1 4 = 0 ...(2)

Subtracting (1) from (2) we obtain,

) = 0

this implies or, ( 4) = 0

So from above we have two pairs of equations 

( ) = 0

0

( 4) = 0

02 2and

Solving the above, we obtain the (stationary points) critical points as 

( 7, 7), (3, 3), (5, 1)  and ( 1, 5).

Now,

yx x 144
2

− −
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At the point ( 7, 7)77

f f fxx yy xy) (f yy 7, 7) ( 7, 7) = 1620 > 0,
2

−(f − −7) 77⎡⎣⎡⎡ ⎤⎦
f fxx yy( 7, 7) = 42 < 0 ( 7, 7) = 42 < 077 − −7) =and

Therefore, f x y( ,x )  has maximum at ( 7, 7)77  and the maximum value is 

f (1, 2) = 2.

At the point (3, 3)

f f fxx yy xy(3, 3) (f yy 3, 3) (3, 3) = 180 > 0
2

−(f 3 3) ⎡⎣⎡⎡ ⎤⎦

f fxx yy(3, 3) = 18 > 0 (3, 3) = 18 > 0and

Therefore, f x y( ,x )  has minimum at (3, 3)  and the minimum value is 

f (3, 3) = 216.−

At both the the points (5, 1)  and ( 1, 5)

f f fxx yy xy(5, 1) (f yy 5, 1) (5, 1) = 324 < 0
2

−(f 5 f (5− ⎡⎣⎡⎡ ⎤⎦ −

and f f fxx yy xy( 1, 5) (fyy 1, 5) ( 1, 5) = 324 < 0
2

−(f − f (⎡⎣⎡⎡ ⎤⎦ −

Therefore, f x y( ,x )  has neither maximum nor minimum at both the the points 

(5, 1)  and ( 1, 5).  So, these are the saddle points.

Example 6.25  Find the point in the plane x y z+ 2 3y +y = 13  nearest to the point 

(1, 1, 1)  using Lagrange’s multiplier method. [WBUT-2001,2002]

Sol. Let P y z( ,x , )z  be any point on the plane x y z+ 2 3y +y = 13.

The distance between the point P y z( ,x , )z  and A(1, 1, 1)  is

 D x y z(( 1) ( 1) (y 1)2 2 2− +1)2 1) −

Let us consider 

f x y z x y z x y( ,x , )z = (D , y ) = ( 1) (x 1) ( 1z )2 2 2 2( 1)1) − +1)2

Here, we have to find the point P y z( ,x , )z  such that f x y z( ,x , )z  or D y z2 ( ,x , )z

is minimum subject to 

φ( ,φ , ) = 2 3 13x y, x) = y z3+2y

Let 

L y z f x y z x y z( ,x , )z = (f , y ) ( ,y )λφ(

= ( 1) ( 1) ( 1) ( 2 3 13)2 2 2x y1) ( z 1) ( y z3+1)21) 1)1) +1)21) +2y −λ(

Now,

∂
∂

∂
∂

+
∂
∂

L∂∂
x∂∂

f∂
x x∂∂ ∂∂

== +
f

0λ
φ
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or, 2( 1) = 0x − +1) λ ...(1)

∂
∂

∂
∂

+
∂
∂

L∂∂
y∂

f∂
y y∂ ∂

== +
f

0λ
φ

or, 2( 1) 2 = 0y − +1) λ ...(2)

∂
∂

∂
∂

+
∂
∂

L∂∂
z∂∂

f∂
z z∂∂ ∂∂

== +
f

0λ
φ

or, 2( 1) 3 = 0z − +1) λ ...(3)

The critical points are found by solving,

∂
∂

∂
∂

∂
∂

L∂∂
x∂∂

L∂
y∂

L∂∂
z∂∂

x y= 0, =
∂
∂
L∂∂

0, = 0 ( ,x , )z = 0and φ(

Putting the values of x y z,y  from (1), (2) and (3) in φ( ,φ , ) = 0,x y,  we get

 
−

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠⎠

−
+⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠⎠⎠

λ
λ

λ
2

1 2( 1) 3
⎞
⎠
⎟
⎞
⎠
+ − + +λ

3

2
1 1
⎞
⎠
⎟
⎞⎞
⎠⎠
− 3 = 0

or, λ = 1

Putting the value of λ  in (1), (2) and (3) we have 

 x y z
3

2
=y 2, =

5

2

Therefore the required point on the plane is 
3

2
, 2,

5

2
.

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

Now,

d f
x
dx

y
dy

z
dz f2

2

=
∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞
2

⎠
⎟
⎞⎞

⎠⎠

= ( ) ( ) ( )
2

2

2
2

2

2
2

2

2∂
∂

∂
∂

∂
∂

f

x∂∂
dx

f

y∂
dy

f

z∂∂
dz

+
∂
∂ ∂

+
∂
∂ ∂

+
∂
∂ ∂

2 2 2
2 2 2f

x y∂ ∂∂
dxdy

f

y z∂ ∂∂
dydz

f

x∂ ∂∂ ∂
dzdx

Again,

∂
∂

∂
∂

∂
∂

f∂
x∂∂

f∂
y∂

y
f∂
z∂∂

= 2( 1),−x = 2( 1),−y = 2( 1−z )

∂
∂

∂
∂

∂
∂

2

2

2

2

2

2
= 2, =

∂
∂ 2

2, = 2
f

x∂∂
f

y∂
f

z∂∂
and

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

2 2 2

= 0, =
∂
∂ ∂

0, = 0
f

x y∂ ∂∂
f

y z∂ ∂∂
f

x∂ ∂∂ ∂
Therefore,

d f d dy2 2 2 2d= 2 ( )dx ( )d( )dy ( )dzd > 0+2+ ( )dy{ }
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So,

d y d
3
2

, 2, 5
2

.

2 2d 2= 2 ( )dx ( )dyd ( )dz > 0( )d f2 + +2( )dyd{ }( )
Therefore, f x y z( ,x , )z  or D y z2 ( ,x , )z  is minimum at 

3

2
, 2,

5

2

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

Hence 
3

2
, 2,

5

2

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

 is the point in the plane x y z+ 2 3y +y = 13  nearest to the point 

(1, 1, 1).

Example 6.26  If xyz a= 3, find the critical points of xy y zx+ +yz  using Lagrange’s 

multiplier method.

Sol. Here 

 f x y z xy yz zx( ,x , )z = + +yz

subject to

φ( ,φ , ) = 3x y, xyz a−
Let,

L y z f x y z x y z xy yx z zyy x( ,x , )z = (f , y ) ( ,y ) = + + +zxzz ( )xyz a3−λφ( λ
 Now,

∂
∂

∂
∂

+
∂
∂

L∂∂
x∂∂

f∂
x x∂∂ ∂∂

== +
f

0λ
φ

or, ( ) = 0y yzλ( ...(1)

∂
∂

∂
∂

+
∂
∂

L∂∂
y∂

f∂
y y∂ ∂

== +
f

0λ
φ

or, ( ) = 0xzλ( ...(2)

∂
∂

∂
∂

+
∂
∂

L∂∂
z∂∂

f∂
z z∂∂ ∂∂

== +
f

0λ
φ

or, ( ) = 0y xyλ( ...(3)

The critical points are found by solving,

∂
∂

∂
∂

∂
∂

L∂∂
x∂∂

L∂
y∂

L∂∂
z∂∂

x y= 0, =
∂
∂
L∂∂

0, = 0 ( ,x , )z = 0and φ(

From (1), (2) and (3), we have

1 1 1 1
=

1 1

y z z x x y
+ += + −= λ ...(4)

or, 2
1 1 1

= 3
x y z
+ +

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
λ ...(5)

From (4) and (5), we get 

x y
2

=y
2

, =z
2− −2 −

λ λ
yy

λ
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Putting the values of x y z,y  in φ( ,φ , ) = 0x y,  we get

 x y z a=y

Therefore, the critical point is ( , , ).a, ,

Example 6.27  Prove that the volume of the greatest rectangular parallelepiped 

that can be inscribed in the ellipsoid 

x

a

y

b

z

c

2

2

2

2

2

2
1+ +

y
2

=

is 
8

3 3
.

abc
 [WBUT 2002]

Sol. The volume of the rectangular parallelepiped is 

 V x y z xyz2 2 2y = 8⋅2y

The problem is to find the maximum volume subject to the condition 

x

a

y

b

z

c

2

2

2

2

2

2
= 1+ +

y
2

Here,

f xy z V xyz x y
x

a

y

b

z

c
(xyx ) = = 8 ( ,x , )z = 1

2

2

2

2

2

2
and φ( + +

y
2

−

Let,

L y z f xy zx x y xyz
x

a

y

b

z

c
( ,x , )z = (f , )z ( ,x , )z = 8 1

2

2

2

2

2

2
+ + + +

y
2

−
⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟λφ( λ

Now,

∂
∂

∂
∂

+
∂
∂

L∂∂
x∂∂

f∂
x x∂∂ ∂∂

== +
f

0λ
φ

or, 8
2

= 0
2

yz
x

a
+

λ
...(1)

∂
∂

∂
∂

+
∂
∂

L∂∂
y∂

f∂
y y∂ ∂

== +
f

0λ
φ

or, 8
2

= 0
2

zx
y

b
+

λ
...(2)

∂
∂

∂
∂

+
∂
∂

L∂∂
z∂∂

f∂
z z∂∂ ∂∂

== +
f

0λ
φ

or, 8
2

= 0
2

xy
z

c
+

λ
...(3)

Multiplying (1), (2), (3) by x y z,y  respectively and adding we have 

 24 2 = 0
2

2

2

2

2

2
xyz

x

a

y

b

z

c
+

2
+ 2 +

⎛

⎝

⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟λ
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or, 24 2 = 0xyz + λ
or, λ = 12xyz ...(4)

From (1), we have 

8
2

= 0
2

yz
x

a
+

λ

or, 8
2( 12 )

= 0
2

yz
xyz x

a
+

−

or, x
a2

2

=
3

or, x
a

=
3

±

Since x > 0,  we consider

 x
a

=
3

Similarly from (2) and (3),

y
b

z
c abc

=
3

, =z
3

=
4

3
and λ

−

Therefore, the critical point is 
a b c

3
,

3
,

3

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
Again,

d L
d

a

d

b

d

c
ydzdx zdd dxdy xdydzdd2

2

2

2

2

2

2
= 2

( )dx ( )dy ( )dz
16(λ + +

y
2

( )y⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦
+ +ydzdxdd16( + )) ...(5)

Also from,

x

a

y

b

z

c

2

2

2

2

2

2
1 = 0+ +

y
2

−

we get

xdx

a

ydy

b

zdz

c2 2b 2
= 0+ +

y y
2

or,
1

3
= 0

dx

a

dy

b

dz

c
+ +

y⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

or,
dx

a

dy

b

dz

c
+ +

y
= 0 ...(6)

From (6) 

dx

a

dy

b

dz

c
+⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

2 2

=

or, 2 =

2 2 2
dxdy

ab

dz

c

dx

a

dy

b

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

− ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

− ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠
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Similarly from (6), we obtain

2 =

2 2 2
dydz

bc

dx

a

dy

b

dz

c

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

− ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

− ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

and 2 =

2 2 2
dxdz

ac

dy

b

dx

a

dz

c

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

− ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

− ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

Therefore using the above results in (5)

d L
abc d

a

dy

b

d

c

2
2

2

2

2

2

2
=

16

3

( )dx ( )dy ( )dz
< 0− + +

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

Hence at 
a b c

3
,

3
,

3
,

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
 f x y z( ,x , )z  is maximum and correspondingly 

volume V  is maximum.

The maximum volume is given by 

V xyz
abc

= 8 =
8

3 3
.

  EXERCISES

Short and Long Answer Type Questions

1. Show that the function 

f x y xyx
x y

x y
x y( ,x ) , ( , )y (0, 0)

2 2

2 2+
≠

= 0, ( , ) = (0, 0)x y,

is continuous at (0, 0).

2. Show that the function 

f x y
x y

x y
x y,x ) = , ( , )y (0, 0)

3 3+
≠

= 0, ( , ) = (0, 0)x y,

is not continuous at (0, 0).

3. Show that the function 

f x y xyx
x y

x y
x y( ,x ) , ( , )y (0, 0)

2

4 2
≠

= 0, ( , ) = (0, 0)x y,

is not continuous at (0, 0).
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4. Show that the function 

f x y xyx
x y

x y
x y( ,x ) , ( , )y (0, 0)

2 2

2 2+
≠

= 0, ( , ) = (0, 0)x y,

is differentiable at (0, 0).

5. a) If u
x y z

=
1

,
2 2 2+ +y2

 prove that 

 
∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

2

2
= 0

u

x∂∂
u

y∂
u

z∂∂

b) If u f ax by= (f ),+  prove that 

b
u

x
a

u

y

∂
∂

−
∂
∂

= 0

c) If u
y

x
= ,

y1cot−
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞
⎠

 prove that 

∂
∂

+
∂
∂

2

2

2

2
= 0

u

x∂∂
u

y∂

d) If u xyx= ,xyx  prove that 

∂
∂

+
∂
∂

−
+

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟
2

2

2

2

1

2

3

2

1

2

3

2

=
1

4

u

x∂∂
u

y∂
y

x

x

y

e) If u ax y y ax( ) ( ) ,

3

2+ y)  prove that 

∂
∂

∂
∂

2

2

2
2

2
=

u

x∂∂
a

u

y∂

6. a) If u
x y

x y
= ,1

5

2

5

2

tan− +
⎧

⎨
⎪
⎧⎧

⎨⎨

⎩
⎪
⎨⎨

⎩⎩

⎫

⎬
⎪
⎫⎫

⎬⎬

⎭
⎪
⎬⎬

⎭⎭

 show that 

x
u

x
y

u

y
u

∂
∂

+
∂
∂

= 2 .si
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b) If u
x y

x y
= ,1cot−

+

+

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

 show that 

x
u

x
y

u

y

∂
∂

+
∂
∂

−
=

1

4
2 .usin

c) If u
x y

x y
= ,1

2 2

sin−

+

⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨

⎫
⎬
⎫⎫
⎬⎬
⎫⎫⎫⎫

⎭
⎬⎬
⎭⎭
⎬⎬⎬⎬  show that 

x
u

x
y

u

y
u

∂
∂

+
∂
∂

= 3tan

d) If u
x y

x y
= ,

3 3

2
log

+⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨

⎫
⎬
⎫⎫
⎬⎬
⎫⎫⎫⎫

⎭
⎬⎬
⎭⎭
⎬⎬⎬⎬  show that 

x
u

x
y

u

y

∂
∂

+
∂
∂

= 0

e) If u x y
x

y
x y,4 4 1sin l

x1 og log
⎛

⎝
⎜
⎝⎝

⎞

⎠
⎟
⎠

−xlog  prove that 

x
u

x
y

u

y
x y

x

y

∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
−= 8 4 4 1sin

7. a) If u
x y

x y
= ,1

3 3

tan− +
+

 show that 

x
u

x
xy

u

x y
y

u

y
u2

2

2

2
2

2

2
2 = 2

∂
∂

+
∂
∂ ∂x yx y

+
∂
∂

( )21 4 s)u2 in

b) If u x y= ,x y2 2+  show that 

x
u

x
xy

u

x y
y

u

y

2
2

2

2
2

2

2
2 = 0

∂
∂

+
∂
∂ ∂x yx y

+
∂
∂

c) If u
y

x
x y= ,2 2φ

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠
+ +x2  show that 

x
u

x
xy

u

x y
y

u

y

2
2

2

2
2

2

2
2 = 0

∂
∂

+
∂
∂ ∂x yx y

+
∂
∂

d) If u x y ,1 2 2sin− +  show that

x
u

x
xy

u

x y
y

u

y
u2

2

2

2
2

2

2

32 =
∂
∂

+
∂
∂ ∂x yx y

+
∂
∂

tan
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e) If u
x y

x y
= ,

3 3

2 2
log

+
+

⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟ show that 

x
u

x
xy

u

x y
y

u

y

2
2

2

2
2

2

2
2 = 1

∂
∂

+
∂
∂ ∂x yx y

+
∂
∂

−

8. If f lx mll y nm z x y z+ +mym + +y( ), = 0,2 2+ 2  prove that 

 ( ) ( ) ( ) = 0y
y

x
y

y

z
+)

∂
∂

+ (
∂
∂

9. If f x y xyz( ,x y z ) = 0,y  prove that 

 x y
z

x
y

z

y
x y( )y z ( )x = (z ).

∂
∂

+ y(z
∂
∂

−

10. If u f x y y z z x,f x y , ,z x2 2 2 2 2 2yy( )  prove that 

 
1 1 1

= 0
x

u

x y

u

y z

u

z

∂
∂

+
∂
∂

+
∂
∂

11. a) If u x y2 2+  and v xyxy= ,xyx  prove that 
∂
∂ ( )( , )

( , )
= 2 .

v,

x y,
−

b) If u a x y x y, ,cosh cos sy v a, inh sx in  prove that 

∂
∂

−
( , )

( , )
=

1

2
( 2 2 )2v,

x y,
x2a ( yh cos

c) If u
yz

x
v

xz

y
w

xy

z
= ,
y

= , = ,
y

 show that 
∂
∂
( , , )

( , , )
= 4.

v, )

x y,

d) If u x y z v x y z w x y z yz= ,x y z = ,x y z 2 ,2 2 2+ yy +yy + +y2 −  show that 

∂
∂
( , , )

( , , )
= 0.

v,

x y,

e) If u
x y z

x
v

x y z

y
w

x y z

z
= , = , = ,

2 2 2 2 2 2 2 2 2+ +y2 + +y2 + +y2

 show that 

∂
∂ + +( )
( , , )

( , , )
= .

2 2 2

2 2+ 2
2

v, )

x y,

x y z

x y+ z

12. Find the maxima and minima of the following functions:

a) x y x xy yx2 4 2 22 4x2 2+ −y4 xyx4  Ans: Minimun at and( )2 2, ( )2 2,−⎡
⎣
⎡⎡ ⎤

⎦
⎤⎤
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b) 4 4 42 2 3 3x xy y4x x y xy+ +3x y −  

 Ans : Minimum at and maximun at(0, 0)
3

2
,

3

2
,

3

2
,

3

2

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎡⎡

⎣
⎢
⎡⎡⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦

c) y y x xyx3 2 23 4x2+ +y2  Ans : Minimum at
2

3
,

4

3

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
d) xy

x y
+ +

8 8
 [Ans : Minimum at (2, 2) ]

 e) xy a
x y

+ +a
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
3 1 1

 [Ans : Minimum at ( , )]a,

13. Show that the function f x y x xy y x y x( ,x ) 22 2 3 3 7+xy+ 2 + +xx3 +  has neither a maxi-

mum or minimum at the origin.

14. Find the minimum value of x y z2 2 2+ +y2  subject to the condition x y z a+ +y 3 .

[Ans : Minimum value is 3 2a  at ( , , )a, , ]

15. Find the minimum value of x y z2 2 2+ +y2 subject to the condition xyz = 8.

[Ans : Minimum value is 12 at (2, 2, 2), ( 2, 2, 2), ( 2, 2, 2), (2, 2, 2)22 2) ( 2) (2 ]

16. Find the extreme value of 4 9x y9  subject to the condition xy = 4.

[Ans : Maximum value is −24  and minimum value is 24]

17. Find the extreme value of 7 82 2x8 y yx +8x8 yx  subject to the condition x y2 2 = 1.+

[Ans : Maximum value is 9 and minimum value is −1 ]

18. Find the extreme value of x y2 2+ subject to the condition 3 4 6 = 140.2 2x4 y y6x +4x4 yx

[Ans : Maximum value is 70 and minimum value is 20]

19. Find the minimum distance of the point (1, 2, 3)  from the plane x y+ −y 4 =z 9.

[Ans : Minimum distance is 9]

20. Find the extreme value of u a x b y c z3 2 3 2 3 2+b y3 2 where 
1 1 1

= 1
x y z
+ +

[Ans : Extreme value is ( )3 ]
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Multiple-Choice Questions

1. 
( , ) (0, 0)

2 2

2 2
=

x y,

x y

x y+
lim

a) 0 b) 1 c) 
1

2
 d) none of these

 2. f x y
x x y

x y
,x ) =

3 2

+
 is a homogeneous function of degree

a) 
3

2
 b) 

5

2
 c) 

1

2
 d) 2

 3. f x y
x y x y

x x y
( ,x ) =

3 2 2

2

+

+ +x
 is a homogeneous function of degree

a) 0 b) 2 c) 
1

2
 d) none of these

 4. If u y
x y

x y
( ,x ) =

3 3+

+
 then xu yux yyu+ =

a) 
1

2
 b) 

5

2
 c) 

5

2
u  d) 

1

2
u

5. If u y x y
x y

x y
( ,x ) 2 2

5

2

5

2

+ +y2 +

+
 then xu yux yyu+ =

a) 2 b) 
3

2
 c) 2u  d) 

3

2
u

6. If u y( ,x ) log ( )x y2 2+  then the value ux  at (1, 1)  is

 a) 
1

2
 b) 1 c) 0 d) none of these

 7. If u y
x

y

y

x
( ,x ) = ,+  then xu yux yyu+ =

a) 0 b) −1  c) 2 d) u

8. If u log ( )x y2 2+  then u uxx yy+ =

a) 0 b) 
x

y
 c) 

y

x
 d) 1
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9. 
∂
∂

∂
∂

( , )

( , )

( , )

( , )
=

v,

x y,

x y,

v,

a) 1 b) 0 c) −1  d) none of these

10. If x = cr osθ  and y r= sr inθ  then 
∂
∂

( , )

( , )
=

x y,

θ

a) r  b) 1 c) 
1

r
 d) 0

11. sin−

+
1

3 3+x y+
x y+

 is a homogeneous function of degree

a) 2 b) 1 c) 
1

2
 d) none of these

12. If f x y( ,x )  is a homogeneous function of degree 3 then x
f

x
y

f

y
k f x y

∂
∂

+
∂
∂

= (k f , )y

where k =

a) 3 b) 2 c) 0 d) none of these

13. If f x y( ,x )  is a homogeneous function of degree 
1

2
 then 

 x
f

x
y

f

y
xy

f

x y
k f x y2

2

2

2
2

2

2

2 =xy
f

( ,x )
∂
∂

+
∂
∂

+
∂
∂ ∂xx y

where k =

a) 
1

2
 b) 

1

3
 c) 

−1

4
 d) 4

14. If φ( ,φ ) = 0x y,  then 
dy

dx
=

a) 
φ
φ
x

y

 b) 
φ
φ
y

x

 c) φy  d) none of these

15. If f x y x y( ,x ) 2 2+  then f x yxy ( ,x ) =

a) 1 b) 0 c) 2 d) +

16. If f x y x y( ,x ) 2  then df =

a) 2 2x dx dy2  b) x dy  c) x dy  d) 2 2xydx xdd dy+

17. If a function f x y( ,x )  has maximum or minimum value at the point (3, 4)  then 

fx (3, 4)

a) ≥ 0  b) < 0  c) = 0  d) none of these
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18. If f a b f bx y( ,a ( ,a ) = 0  then ( , )a b,  is

 a) saddle point  b) point of extreme

 c) critical point  d) isolated point

19. The critical point of the function f x y xyx( ,x )  is

 a) (1, 1)  b) (1, 1)  c) ( 1, 1)  d) (0, 0)

20. f x y( ,x )  is such that f a b f bx y( ,a ( ,a ) = 0.  Then ( , )a b,  is a saddle point if

 a) f a b f axx yy( ,a ) (f yy , )b = 0
2

−{ }f a bxy ( ,a )

b) f a b f axx yy( ,a ) (f yy , )b < 0
2

−{ }f a bxy ( ,a )

c) f a bxx ( ,a ) < 0

d) none of these

Answers:

1. (a) 2. (b) 3. (d) 4. (c) 5. (c) 6. (b) 7. (a) 8. (a) 9. (a)

10. (c) 11. (d) 12. (a) 13. (a) 14. (d) 15. (b) 16. (d) 17. (b) 18. (c)

19. (d) 20. (b)



7
Line Integral, Double Integral 

and Triple Integral

CHAPTER

7.1 DEFINITION OF LINE INTEGRALS

Let f x y( ,x )  be defined over the region R,  which contains the curve C.  The line 

 integral of f x y( ,x )  over C  is defined by 

f x y dx f x y x
n

m my m

m

n

C

( ,x dxdx ( ,x )
1→∞ =
∑∫ Δ where ( , )x y,m my, are  coordinates  of  arbitrary n

points  in  the  curve C and Δx xΔΔ x
m m

x
m 1− − .

The line integral exists if the limit exists and is finite.

7.1.1 Properties of Line Integrals

1. Let z x y= (F , )y  be a continuous function at every point on a plane curve in the xy 

plane whose parametric equation is x t= ( ) ( )φφ ψt y( ),φφ ψψψ  for some real value of t.

 Then

 a) F y dx F d t

t

t

C

( ,x dxdx { ( ) ( )} (d )

0

1

φφ ψt( ),φφ ψ φ( )t } dψψ φφφ∫∫

b) F y dy F d t

t

t

C

( ,x dydy { ( ) ( )t } (d )

0

1

φφ ψt( ),φφ ψ ψ( )t } dψψ ψψψ∫∫

2. Let the equation of the curve be y f x x x xn(f ), ;0 ≤ ≤x  then

 F y dx F x f x dx

x

x
n

C

( ,x dxdx { ,x ( )x }

0

∫∫
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3. Let the equation of the curve be x y yn), ;  then

 F F y y dy

y

y
n

C

x dy { ( }

0

∫

4. If (f y  and z = ( ,  are integrable along C then y x,x y

are also integrable and 

{ ) (( y dx f)} , , dx

CCC

∫

5. If cAB arcAC ar B+  then

 F F x x

CBACAB

x dx x dx F , y∫

and

  F F x y

CBACAB

x dy x dy F , y∫

7.1.2 Evaluation of the Line Integral 

{ }f dy

C

x x g y∫

1. Let the plane curve C be given by y x b), x

Then, { , ) } = { , ( ( }( x g) ( )) x x)

a

b

C

∫ ))x

2. Let the plane curve C be given by x y), d

Then, { , ) } = { , }( x g) , y)

c

d

C

∫ ),y( y y

3. Let the parametric equation of the plane curve C be given by 

x t y tx y ),

Then, 

{ , ) } = [{ ( ( ))}( x g) , ( ), t x t) { x (′ dt

t

t

C

t ]

0

1

∫

4. If , ) }( x g) ,  can be expressed as 

 ) } = (( x g) , ,  then 
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{ , ( , ) } = 0f x( y dx g) x y, dy

C

∫  

where C is a closed curve.

Example 1  Evaluate {2 ( }2 2xydx (dd y dy)2

C

+ ((∫  where C is the line segment 

AB  from A(0, 0)  to B(2, 1).

Sol. The equation of the line segment AB from A(0, 0)  to B(2, 1)  is 

 
x y

y x
−y

⇒
0

2
=

0

1

1

2

Therefore,

{2 ( }2 2xydx (dd y dy)2

C

+ ((∫

= 2
1

2

1

2

1

2

2
2

0

2

x x dx x x dx
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

+ −2x
⎛
⎝
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

⎛

⎝
⎜
⎛⎛

⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟
⎠⎠
⎟⎟

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

∫

=
3

8

2
2

0

2

x dx2 x
dx+

⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟∫

=
11

8
=

11

8 3
=

11

3

2
3

0

2

0

2

x dx2 x⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

∫

Example 2  Evaluate xy dx

C

2∫  where C is the circle x y2 2 = 1.+

Sol.  The parametric equation of the circle x y2 2 = 1+  is 

 x y 0cos iθ θy sy = in θ π2where ≤ θ

Therefore,

xy dx d

C

2 2

0

2

= ( ) (d )i cosθ2(s( in θ
π

∫∫

= 3

0

2

− ∫ sin3 θ θcos θ
π

d

= ( )3

0

2

∫ i θ(s( in

π

d

=
4

4

0

2

−
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

sin θ
π

= 0
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7.2 DOUBLE INTEGRALS

The double integral may be considered as the definite integrals of functions of two 

variables.

Let f x y( ,x )  be defined over the region R.

Then the double integral of f x y( ,x )  over R is defined by 

 f x y dxdy f x y x y
n

m my m my
m

n

R

( ,x dxdydxdy ( ,x )
1→∞ =

∑∫∫ Δ Δx

where ( , )x y,m my,  are coordinates of arbitrary n  points in the region R.

The double integral exists if the limit exists and is finite.

Observations

1. A double integral is improper if either the domain of integration is an 

infinite region or the integrand has an infinite discontinuity at a point of 

the region.

2. The continuity of f x y,x )  over R  ensures the existence of the double 

 integral but, the existence of the integral does not always follow the conti-

nuity of f x y,x ).

7.2.1 Evaluation of Double Integrals

The most convinient method of evaluation of double integrals is the method of evalu-

ation by iterated integrals. In the first stage, integration is done with respect to exactly 

one variable, keeping the other variable fixed. And in the second stage, the resulting 

function is integrated with respect to the remaining variable.

The selection of the proper order of integration is based on the configuration on the 

domain of integration R.

Case 1: Evaluation of Double Integrals when R is Rectangular

y=d

y

x

x=a

y=c

(a, 0)

(0, c)

O

R

(0, d )

(b, 0)

x=b

Figure 7.1
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Let R y a x b d= {( ,x ) : , }c y d≤ x y  

Then

 f x y dxdy f x y dx dy

x a

x b

y c

y d

R

( ,x dxdydxdy ( ,x )∫∫∫∫
⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

or

f x y dxdy f x y dy dx

y c

y d

x a

x b

R

( ,x dxdydxdy ( ,x )∫∫∫∫
⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

In particular, if f x y y( ,x ) ( ) ( )yφ ψx( )x ψψ  then

 f x y dxdy x d y dy

y c

y d

x a

x b

R

( ,x dxdydxdy ) (yφ ψx dx)x ∫∫∫∫

Example 3   Evaluate 
dxdy

x y(1 ) (1 )y2 2) (10

1

0

1

− x
∫∫

Sol. Here, R y x y= {( ,x ) : 0 1, 0x 1}x ≤ ≤y

dxdy

x y(1 ) (1 )y2 2) (10

1

0

1

− x
∫∫

=
(1 ) (1 )2 2) (10

1

0

1

dy
dx

x y) (1− x ) (1
∫∫

=
1

1 2

1

0

1

0

1

−
⎡
⎣
⎡⎡ ⎤

⎦
−∫

y
dy

0
x⎤

⎦
⎤⎤sin

=
2

1

1 2
0

1π

−
∫

y
dy

=
2

1

0

1π
sin−⎡

⎣
⎡⎡ ⎤

⎦
⎤⎤y

=
2 2

=
4

2π π π
⋅
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Case 2:  Evaluation of Double Integrals when R has Two Linear Boundaries 

Parallel to the y-axis

y

x

y=ϕ2(x )

y=ϕ1(x )

x=a

x=b

(a, 0)O

R

(b, 0)

Figure 7.2 

 Let R y a x b x= {( ,x ) : , ( ) ( )}2≤ x φ φx y( ) y1 y  where φ 1( )  and φ 2( )  are 

continuous functions over [ , ]a b,

Then f x y dxdy f x y dy dx

y x

y x

x a

x b

R

( ,x =dxdy ( ,x )

( )

( )

1

2

φ

φ

∫∫∫∫
⎧
⎨
⎪
⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪
⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

Example 4  Evaluate 4 2 2x y dxdy∫∫  over the triangle formed by the straight 

lines y = 0, x = 1  and y x.x  [WBUT-2002, 2005]

Sol. 

 

y

x

y=x

y=0

x=1

A(1, 0)

B (1, 1)

O

R

Figure 7.3 



  7.7  Line Integral, Double Integral and Triple Integral 

The region R is the triangle OAB formed by the lines = 0,  x = 1 and y x

and R has two linear boundaries parallel to y-axis.

Here, R y x y x= {( ,x ) : 0 1, 0x }x ≤ ≤y

Therefore,

4 2 2x y dxdy

R

∫∫

= 4 2 2

00

1

x y dy dx

x⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

∫∫

=
2

4
4

2 2

2 2
2

1

00

1
y

x y
x y1

x
dx

x

− +2y
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

∫ sin

=
2

3 2
1

2
(2 0)2 22 1 2 1

0

1
x

x2 x dx0)2 1⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎦⎦

−∫ sin s(21 x2⎞
⎠
⎟
⎞⎞
⎠⎠

−

=
3

2 3

2

0

1

+
⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟∫

π
x dx2

=
3

2 3 3

3

0

1

+
⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞
⎟
⎠
⎟

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

π x

=
1

18
( )3 3 2+

Case 3:  Evaluation of Double Integrals when R has Two Linear Boundaries 

Parallel to x-axis:

y

x

y=c

x=Ψ1(y )

x=Ψ2(y )

y=d

(0, c)

(0, d )

O

R

Figure 7.4 
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Let R y y d= {( ,x ) : ( ) ( )y , }c y d2ψ ψy x( )y1 ≤ ≤x y  where ψ 1( )y  and ψ 2 ( )y  are 

continuous functions over [ , ]c d,  

 Then

 f x y dxdy f x y dx dy

x y

x y

y c

y d

R

( ,x =dxdy ( ,x )

( )

( )

1

2

ψ

ψ

∫∫∫∫
⎧
⎨
⎪
⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪
⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

Example 5   Evaluate x ydxdy

y

y
2

1

0

1
2 +

∫∫

Sol. Here, R y y x y y= {( ,x ) : 1 0 1}y2≤ ≤x +1 0

Therefore,

x ydxdy

y

y
2

1

0

1
2 +

∫∫

= 2
1

0

1
2

x ydx dy

y

y +

∫∫
⎧
⎨
⎪
⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪
⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

=
3

3
1

0

1
2

yx
dy

y

y
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

+

∫

=
1

3
[ ( 1)2 31) 4

0

1

y y( y dy]4+ −1)31)∫

=
1

3
( 37 53 3 4

0

1

y y3 y y y dy)4+53y33∫

=
1

3 8 2

3

4 2 5

8 6 4 2 5

0

1

y y y y y
+ +

y
+ −

y⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

=
1

3

1

8

1

2

3

4

1

2

1

5
=

67

120
+ + + −⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

Case 4:  Evaluation of Double Integrals when R is Enclosed by a Curve

Let R be a region enclosed by a closed curve φ( , ) = 0.x y,

Let

φ( , ) = 0x y,

be reduced to either y f x= (f )1  or x f y= (f ).2
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Suppose y  is determined in terms of x  and limits of y  so obtained are 

y y y y,y1 2.y y,

Putting y = 0  in the equation of the curve φ( , ) = 0x y,  gives the limits of x, 

say x x x x= ,x1 2x x,

Then, evaluate the integral according to the order of integration by the way the 

limits are determined

f x y dxdy f x y dy dx

y y

y y

x x

x x

R

( ,x =dxdy ( ,x )

1

2

1

2
x

∫∫∫∫
⎧
⎨
⎪
⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪
⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

Example 6  Evaluate xydxdydd

R

,∫∫  where R  is the quadrant of the circle 

x y a2 2 2=+  where x ≥ 0  and y ≥ 0.

Sol. 
y

x

y=0 A (a, 0)O

B

R
dy

dx

y=(a2 −x2)

1

2

Figure 7.5 

 Here, the region R  is enclosed by the first quadrant of the circle 

x y a2 2 2= .a+

Now,

x y a y a x2 2 2 2 2=y+ ⇒y a2 2= a

Therefore, 

0 2 2≤ ≤ −y a≤ x
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Now putting y = 0  in x y a2 2 2= ,a+  we have 

 0 ≤ ≤x a≤

Therefore,

xydxdy dxdd xydydd

a xa

R 00

2 2

∫∫∫∫

=
2

2

00

2 2

xdx
y

a xa ⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

∫

=
1

2
( )2 2

0

x( dx)2
a

∫

=
1

2 2 4

2
2 4

0

a
x x

a

−
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

=
1

2 2 4
=

8

4 4 4a a a
−

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

7.2.2 Transformation of Double Integrals

Let us consider the integral

f x y dxdy

R

( ,x∫∫

where f x y( ,x )  is defined over the region R.

Let us take the transformation 

 x u v y u= ( , )v = ( , )vφ ψand

Then the Jacobian of the transformation is defined by 

J
x y

v

x

u

x

v
y

u

y

v

=
( ,x )

( ,u )
=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

The transformation is invertible if J ≠ 0.

If x u v y u= ( , )v = ( , )vφ ψand

is an invertible transformation then

f x y dxdy f u u J dudv

RR

,x ) =dxdy ), ( , )v )

1

φφ ψu, )v ,φφ ψψψ i∫∫∫∫

where R1  is the region in the new coordinate system.
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Example 7  Evaluate y x y dydxdd

a xa
2 2 2

0

2 2

0

+∫∫
by transforming to polar coordinates.

Sol. 
y

x

y=0

x=0
q =0

O

R
y=(a2 −x2)

1

2

q =
2
π

Figure 7.6 

 Let x r y= ,r cos iθ θy, sy r, in  be the transform from Cartesian to polar 

coordinates.

 The Jacobian of the transformation is 

 J
x y

x

r

x

y

r

y
=

( ,x )

( ,r )
= =r = 0r

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

≠
θ

θ

θ

θ θ
θ θ

cosθ r− i

sinθ r

The domain of integration R x y x a y a x= ( , )y : 0 ;0 ,2 2≤ ≤x ≤ ≤y{ }  i.e., the 

first quadrant of the circle x y a2 2 2= .a+

Under the transformation the domain of integration is R r1 = ( , ) : 0 ≤⎧
⎨
⎧⎧
⎩
⎨⎨

r a;0
2

θ
π

≤r ≤ ≤θ ⎫
⎬
⎫⎫
⎭
⎬⎬

Therefore,

y x y dydx

r d d

a xa

a

2 2 2

00

3 2

00

2

2 2

=

+∫∫

∫∫ sin θ θrdrd

π



 7.12   Engineering Mathematics-I 

sin2 4

00

2

5 5

4 5 20

q q

p p5

p

rq dr

ap5

a

= ¥ =

ÚÚ

7.3 TRIPLE INTEGRALS

 The concept of triple integrals may be considered as the definite integral of functions 

of three variables.

Let f (x, y, z) be defined over the closed three dimensional region R  of volume V .

Then the triple integral of f x y z( ,x , )z  over R is defined by 

 f x y z dxdydz f x y z y z
n

m my m mxx m mz
m

n

R

( ,x , )z (f= , yy )
1→∞ =

∑∫∫∫ Δ Δx yxx Δ

where ( , , )x y,m my, m  are coordinates of arbitrary n  points in the volume V .

The triple integral exists if the limit exists and is finite.

Observations

The triple integral is said to be improper if either R is of infinite volume or 

f (x,y,z) has a singularity over R.

7.3.1 Evaluation of Triple Integrals

The most convenient method of evaluation of triple integrals is the method of evalua-

tion by iterated integrals in three stages. In the first stage, the integral turns to be double 

integral with respect to exactly one variable, and in the second stage, the resulting 

integral is integrated with respect to the remaining variables as a double integral.

The selection of the proper order of integration is based on the configuration on the 

domain of integration R.

Case 1: Evaluation of Triple Integral when R is a Rectangular Parallelpiped

          Let R y z y y= {( ,x , )z : ;x x ; }z z1 2x x 1 2y y 1 2z z≤ ≤xx ≤ ≤yy zz

          Then f x y z dxdydz f x y z dz dy

z z

z z

y y

y y

( ,x , )z = , y )

1

2

1

2

∫∫
⎧
⎨
⎪
⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪
⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

⎡

⎣

⎢
⎡⎡

⎢⎢
⎢⎢⎢⎢

⎢⎣⎣
⎢⎢⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥⎦⎦
⎥⎥∫∫∫∫ dx

x x

x x

R
1

2
x

          In particular, if f x y z f x y f z( ,x , )z = (f ) (f ) (f )1 2f x ff) ff 3yf )ff  then 

 
f x y z dxdydz f x d f y dy f z dz

z z

z z

y y

y y

x

,x , )z = f ) dx f ) dy f )1 2 3

=
1

2

1

2

ÚÚ
xx

x x

R
1

2

ÚÚÚÚ
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Example 8  Evaluate e dxdydzddx z+ +y∫∫∫
0

1

0

1

0

1

Sol. 

Here,

e dxdydz edd dx e dy e dzx z x zeydy+ +y e dy× dy ∫∫∫∫∫∫
0

1

0

1

0

1

0

1

0

1

0

1

= [ ]0
1

0

1

0

1

e ]0 e ex y]1 e] z⎡
⎣

⎤
⎦
⎤⎤ × ⎡

⎣
⎡⎡ ⎤

⎦
⎤⎤

= ( 1) ( 1) ( 1)e e e1) ( 1) (×1)1) 1)1)1) −

= ( 1)3e −

Case 2: Evaluation of Triple Integral when Exactly Two Variables have Constant 

Limits

Let R y z y y= {( ,x , )z : ;x x ; }z z1 2x x 1 2y y 1 2z z≤ ≤xx ≤ ≤yy zz  and let x x y1 2x 1,2x  and 

y2  are constants. Then 

f x y z dxdydz f x y z dz dy

z z

z z

y y

y y

( ,x , )z = , y )

1

2

1

2

∫∫
⎧
⎨
⎪
⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪
⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

⎡

⎣

⎢
⎡⎡

⎢⎢
⎢⎢⎢⎢

⎢⎣⎣
⎢⎢⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥⎦⎦
⎥⎥∫∫∫∫ dx

x x

x x

R
1

2
x

or

f x y z dxdydz f x y z dz dx

z z

z z

x x

x x

( ,x , )z = , y )

1

2

1

2
x

∫∫
⎧
⎨
⎪
⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪
⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

⎡

⎣

⎢
⎡⎡

⎢⎢
⎢⎢⎢⎢

⎢⎣⎣
⎢⎢⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥⎦⎦
⎥⎥∫∫∫∫ dy

y y

y y

R
1

2

Example 9  Evaluate x y zdzdydxdd

yxa

3 2
y

000

ÚÚÚ
Sol. 

x y zdzdydx xdd y zdz dy dx

yxayx

3 2
y

3 2
y

000000

}ÚÚÚÚÚ
Ï

Ì
Ô
ÏÏ

ÌÌ

ÓÔ
ÌÌ

ÓÓ

¸

˝
Ô
¸̧

˝̋
Ǫ̂
˝̋

˛̨

È

Î

Í
ÈÈ

Í
ÎÎ

˘

˚

˙
˘̆

˙
˚̊

˙̇
aa

Ú

=
2

3 2
2

000

x y
3 z

dy dx

yxa
È

Î
Í
ÈÈ

ÎÎ

˘

˚
˙
˘̆

˚̊

È

Î

Í
ÈÈ

Í
ÎÎ

ÍÍ
˘

˚

˙
˘̆

˙
˚̊

˙̇ÚÚ

=
1

2
3 4

00

x y
3

dy dx

xa

ÚÚ
È

Î

Í
ÈÈ

Í
ÎÎ

ÍÍ
˘

˚

˙
˘̆

˙
˚̊

˙̇

=
1

2 5

1

10
=

90

3 5

00

8
9

0

x y
x dx8 a

xa a⎡

⎣⎣⎣

⎤

⎦⎦⎦
∫=

1

10
dx∫ 5

x y⎡
⎢
⎡⎡
⎢⎢

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦
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Case 3: Evaluation of Triple Integral when Exactly One Variable has a Constant 

Limit

Let y z b x x y z y= {( ,x , )z : ;a x b ( ) ( )x ; ( , )y ( ,x )}2 1 2≤ ≤x ≤ ≤zφ φy( )x1 ≤ ≤y ψ; ψ

Then

f x y z dxdydz f x y z dz dy

z x y

x y

y

( ,x , )z = , y )

= ( , )y

( ,x )

=
1

2

1
ψ=

ψ

φ
∫

⎧
⎨
⎪
⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪
⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭( )((

( )
2

x a=

b

R

dx

φ

∫∫∫∫∫
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Case 4: Evaluation of Triple Integrals when R is Enclosed by a Curve

Let the domain of integration R is enclosed by the surface φ( , , ) = 0.x y,

Let

φ( , , ) = 0x y,

is expressed as

z x y= ( , )y

Thus the limits of z  are determined as z z1  and z z2

Putting z = 0  in the equation of the curve φ( , , ) = 0,x y,  express

 y x( )ρ

Thus the limits of y are determined as y y1  and y y2

Putting z y =y 0  in the equation of the curve φ( , , ) = 0,x y,  the limits of x

are determined as x x1  and x x2x

Therefore, we evaluate the triple integral following the order of integration as

f x y z dxdydz f x y z dz dy

z z

z z

y y

y y

( ,x , )z = , y )

1

2

1

2

∫∫
⎧
⎨
⎪
⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪
⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

⎡

⎣

⎢
⎡⎡

⎢⎢
⎢⎢⎢⎢

⎢⎣⎣
⎢⎢⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥⎦⎦
⎥⎥∫∫∫∫ dx

x x

x x

R
1

2
x

Example 10  Evaluate ( 2 2 2y z dxdyd)2 zdd∫∫∫  where R is the region bounded 

by x y z= 0; =y 0; = 0 and x y z a+ +y = (a > 0)

Sol. 

Here

x y z a+ +y = (a > 0)

or, =z a= x y− x

Therefore, the lower and upper limits of z  are z = 0  and z a x y− x

Putting z = 0  in x y z a+ +y = (a > 0),  we have

x y a+ =

or, y a= x−
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y

x

y=0

x+y=a

x=aO

Figure 7.7 

 Therefore, the lower and upper limits of y are y = 0  and y a x−

Putting z y= 0; =y 0  in x y z a+ +y = (a > 0),  we have

x a

Therefore, the lower and upper limits of x  are x = 0  and x a= .a

Therefore,

( )2 2 2 2 2 2

=0=0=0

y z dxdyd)2 z dx dy x= (dd y z dz

z

a x y

y

a x

x

a

+ +2y

−x

∫∫∫∫∫∫

=
3

2 2
3

0=0=0

dx dy x z y
z

a x y

y

a x

x

a

+ +2y z
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

−x

∫∫

= ( ) ( )
( )

3

2 2 2 3
3

=0=0

dx x a( x) y a( x y) y
y

dy

y

a x

x

a

− x) −(a( − +3y
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

∫∫

= ( )
2

( )

3 4

( )

12

2
2 2 3 4 4

0=0

a( x y)x y)
x y y y y

dx

a x

x

a

− −x y) + − −
⎡

⎣
⎢
⎡⎡

⎣⎣⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

∫

=
( )

2

( )

6
=0

2 2( ) 4

x

a
x ( ) (

dx∫ +
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

=
1

2 3 4 10

( )

30

2
3 4 6 6

0

a
x ax x

a

− + −
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

=
20

5a
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7.3.2 Transformation of Triple Integrals

Let us consider the integral 

f x y z dxdydz

R

( ,x , )z∫∫∫
where f x y z( ,x , )z  is defined over the region R.

Let us take the transformation 

x u v w y u v z u v w= ( , ,v ) =y ( ,u , )w = ( , ,v )φ ψ ρand

Then the Jacobian of the transformation is defined by 

J
x y

v

x

u

x

v

x

w
y

u

y

v

y

w
z

u

z

v

z

w

=
( ,x , )z

( ,u , )w
=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

 The transformation is invertible if J ≠ 0.

 If x u w y u w d v= ( ; ;v ), ( ; ;v ) =and z ( ;u ; )wφ ψ ρ

is an invertible transformation then

f x y z dxdydz f u v w u v w u v w Jdudvdw

RR

( , , ) ( ( , , ), ( , , ), ( , , ))= ÚÚÚÚ f rY

1

ÚÚÚ
where R1 is the region in new coordinate system

Example 11  Evaluate ( 2 2 2y z dxdyd)2 zdd∫∫∫  taken over the volume enclosed 

by the sphere x y z2 2 2 = 1.+ +y2

Sol. Let us transform the given integral into spherical polar coordinates by putting 

x y r z r= ;r = ;rsi si i cosθ φ θ φin θ

Then

J
x y

v

x

u

x

v

x

w
y

u

y

v

y

w
z

u

z

v

z

w

r=
( ,x , )z

( ,u , )w
= = 2∂

∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

siss nθ ≠ 0

Under this transformation, the domain of integration is 

R1 = {( ,r , ) : 0 1;0 ;0 2 }θ φ, ) θ φ π2≤ ≤r

Therefore,

( 2 2 2y z dxdyd)2 zdd∫∫∫
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= ( )2 2(

0

1

0

2

0

r( d d drsin θ θ) d φd

ππ

∫∫∫

= 4

0

1

00

2

d d r dr4φ θ θ
ππ

∫∫∫

=
50

2

0

5

0

1

0

2π π[ ]φ [ ]θ ×
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

r

=
2

5

p

WORKED-OUT EXAMPLES

Example 7.1  Evaluate sin ( )

00

2

x y dxdy+∫∫
π

π

 [WBUT-2001, 2009]

Sol. 

 sin ( )

00

2

x y dxdy+∫∫
π

π

= ( )

00

2

x y dx dy+
⎡

⎣
⎢
⎡⎡

⎢⎣⎣

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥∫∫

π
π

=
0

0

2

[ ]( )+(∫ + dy
π

π

= ( )

0

2

+([ ]∫ c)+(( osπ(((

π

y y) c) − os dy

= 2

0

2

cos ydy

π

∫

= 2 = 2
0
2[ ]sin y

π

Example 7.2  Evaluate xy y dxdy( )x y∫∫  over the area bounded by y x2 and 

y x [WBUT-2001]
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Sol. 

y=x

y=x2

x=1

(1, 1)

O

y

x

R

Figure 7.8 

 The region R is shown in Fig. 7.8 by the shaded portion.

  Therefore,

 xy y dxdy

R

( )x y∫∫

= ( ) ( )

=0=0

1

=0=0

1 2

y x y dxdy xy x y dxdy

y

x

xy

x

x

+ −)y dxdy +∫∫∫∫

=
2 3 2 3

2 2 3

0

2 2 3

0=0

1

=0

1
2

x y xy
dx

x y xy
dx

x x

xx

+
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

+
y

−
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

∫∫

=
5

6 2 3

4
6 7

=0

1

0

1

x dx4 x x
dx

xx

+−
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

∫∫
=

=
1

6

1

14

1

24
+− ⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

=
3

56

Example 7.3  Evaluate ( )2 2

00

2 2

y dydx

a ya

∫∫  by changing to polar coordinates.

 [WBUT-2002]

Sol. Let x r y= ,r cos iθ θy, sy r, in  be the transform from cartesian to polar 

coordinates.
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The Jacobian of the transformation is 

J
x y

x

r

x

y

r

y
=

( ,x )

( ,r )
= =r = 0r

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

≠
θ

θ

θ

θ θ
θ θ

cosθ r− i

sinθ r

The domain of integration R y x a y a x= {( ,x ) : 0 ;x a 0 }2 2x ≤ ≤y  i.e., the 

first quardant of the circle x y a2 2 2= .a+

Under the transformation the domain of integration is R r1 = ( , ) : 0 ≤⎧
⎨
⎧⎧
⎩
⎨⎨

r a;0
2

θ
π

≤r ≤ ≤θ ⎫
⎬
⎫⎫
⎭
⎬⎬

Therefore,

( ) =2 2 2

=0=0

2

0

2 2

0

y dydx r rdrd

r

aa ya

∫∫∫∫ θ
θ

π

=
4

4

0=0

2 r
d

a
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

∫ θ
θ

π

=
4

4

=0

2a
dθ

θ

π

∫

=
4 2

=
8

4 4a a
×

π π

Example 7.4  Evaluate x y zdzdydxdd

yxa
3 2

000

∫∫∫  [WBUT-2003]

Sol. 

 x y zdzdydx

yxa
3 2

000

∫∫∫

= 3 2

000

x y zdz dy dx

yxa

∫∫∫
⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

⎡

⎣
⎢
⎡⎡

⎢⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥

=
2

3 2 2

000

x y z
dy dx

yxa ⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥∫∫

=
2

3 4

00

x y
dy dx

xa

∫∫
⎡

⎣
⎢
⎡⎡

⎢⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥
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=
10

3 5

00

x y
dx

xa ⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

∫

=
1

10
=

90

8
9

0

x dx8 a
a

∫

Example 7.5  Evaluate ( 4y z dxdyd1)4 zdd∫∫∫  over the region defined by 

x y z x y z≥y≥ ≥ +x + ≤z0 0, 0, 1 [WBUT-2003]

Sol. 

O

B

A

z

C

y

x

Figure 7.9 

  The plane x y z+ +y = 1  cuts X Y,  and Z  axes at A B(1, 0, 0), (0, 1, 0)  and

C(0, 0, 1).

Therefore, the upper limit and lower limit of z  are 0 and 1 .y

Putting z = 0  in x y z+ +y = 1  we have the upper limit and lower limit of y

are 0 and 1 .

Putting z = 0  and y = 0,  we have the upper limit and lower limit of x  are 0 

and 1.

 Therefore,

 ( 1)4y z d1)4 xdyddd zdd∫∫∫

= ( 4

0

1

0

1

0

1

x y z dxdyd1)4 zdd

x yx

+ +y

−x−

∫∫∫
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=
( 1)

5

5

0

1

0

1

0

1
y

dxdy

x yx ⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

−x−

∫∫

=
1

5
32 ( 1)5

0

1

0

1

− (⎡
⎣
⎡⎡ ⎤

⎦
⎤⎤

−

∫∫ y dxdy

x

=
1

5
32

( 1)

6

6

0

1

0

1

y
y

dx

x

−
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

−

∫

=
1

5
32(1 )

32

3

( 1)

6

6

0

1

−) +
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

∫ dx

=
1

5
32 32

2

32

3

( 1)

42

2 7

0

1

x
x

x− −32 +
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

=
1

5
32 16

32

3

64

21
=

117

70
− −16 +⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

Example 7.6  Evaluate 
1

2 2x y
dxdy

R +
∫∫  where xR y= { 1; 1}≤ ≤y1;

[WBUT-2004]

Sol. Here R x y x y x y= { 1; 1} {( ,x ) : 1 1; 1x 1}≤y≤ 1; 1 1;1; ≤ ≤y

Therefore,

1
=

1

2 2 2 2
= 1

1

= 1

1

x y
dxdy

x y
dxdy

yxR + +
∫∫∫∫

   Since is an even function
1

2 2x y+

   = 4
1

2 2
0

1

0

1

x y
dxdy

+
∫∫

   = 4 ( 2 2

0

1

0

1

log y x y dx2+ +2x⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎦⎦∫

   = 4 (1 1 )2

0

1

log log+ 1⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦∫ x) log− dx

   = 4 (1 1 )
(1 1 ) 1

2

0

1 2

2 2) 1
0

1

0

1

x
x

x) 1
dxlog + 1⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎧
⎨
⎧⎧

⎩
⎨⎨ −

+ 1 +
−[ ]x x xlog −x x∫
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= 4 (1 2)
1

1
1

2

2

2

2
0

1

log + −2)
+

−
+

⎡

⎣
⎢
⎡⎡

⎢⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥ +

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

∫
x

x

x

x
dx

= 4 (1 2) 1 1
1

1 2
0

1

log + +2) −1
+

⎛

⎝

⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

∫
x

dx

= 4{ (1 2) 1 ( 1 )2

0

1

log2) − +1⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

(x log− x

= 4 { (1 2) 1 (1 (1 2)}log2) − −(1 +

= 8 (1 2)log +

Example 7.7  Evaluate 
1

1

2 2

2 2

−
+ +2∫∫

x y−
x y+

dxdy  over the positive quadrant of the 

circle x y2 2 = 1+  [WBUT-2006]

Sol. Let x r y= ,r cos iθ θy, sy r, in  be the transform from Cartesian to polar 

coordinates.

 The Jacobian of the transformation is 

 j
x y

x

r

x

y

r

y
=

( ,x )

( ,r )
= =r = 0r

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

≠
θ

θ

θ

θ θ
θ θ

cosθ r− i

sinθ r

The domain of integration R y x a y a x= {( ,x ) : 0 ;x a 0 },2 2x ≤ ≤y  i.e., the 

first quardant of the circle x y a2 2 2= .a+

Under the transformation, the domain of integration is 

R r r a1 = ( , ) : 0 ;0
2

θ
π

≤ ≤r ≤ ≤θ⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬

Therefore,

1

1
=

1

1

2 2

2 2

2

2

1

−
+ +2

−
+∫∫∫∫

x y−
x y+

dxdy
r

r
rdrd

RR

θ

          =
1

1

2

2
=0

2

=0

1 −
+∫∫

r

r
rdrd

r

θ
θ

π

          =
1

1

2

2
=0

1

=0

2

d
r

r
rdr

r

θ
θ

π

−
+∫∫
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=
2

(1 )

1

2

4
=0

1
p -

-
Ú

r

r

rdr

r

=

==

p p

2 1 2 14

3

4
0

1

0

1
rdr

r

r dr

rrr -
-

-
ÚÚ

= 
p p p p

2 3 4 3

1 2

0

1 2

sin-È
Î

˘
˚
-

-r =

Example 7.8  Evaluate (3 )2xydx ydd dy

C

∫  where C is the arc of the parabola 

y x2 2  from (0, 0)  to (1, 2)  [WBUT-2007]

Sol. Here, y x dy xdx2 = 42 ⇒

Therefore,

(3 )2xydx ydd dy

C

∫

= {3 2 (2 ) 4 }2 2(2 2

=0

1

x2 dxdx x x) 4 dx

x

−x2 dx∫

= (6 16 )3 51616

=0

1

1616 dx

x

∫

= 6
4

16
6

4

0

1
6

0

1

x x
16

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎦⎦
⎥⎥
⎦⎦⎦⎦

−
⎡

⎣
⎢
⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

=
6

4

16

6
=

7

6
−

−

  EXERCISES

Short and Long Answer Type Questions

1 Evaluate [( ]2 2 2x xy dx x) (x y dy)2

C

+ xy)x +∫  where  C is the square formed by the lines 

x y1 y 1.±y1 =y [Ans : 0]

2. Evaluate [( ) ]cos sin sin cosx ysin xy dx x ycos dy

C

− +)xy dx∫  where C is the circle x y2 2 = 1+  

 Ans :
−⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

14

3

3. Evaluate {( ) 2 },2 2x y d xydydd

C

+ )2y∫  where C is the rectangle in the xy plane 

bounded by x a y y a= 0, =x ; =y 0, .a

[Ans : − 2 ]2b
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4. Evaluate the line integral {(2 ) ( },2 2y x dx x) (2 y dy)2

C

dx)∫  where C is the closed 

curve of the region bounded by y x y x,x .x2 2

Ans :
1

30

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

5. Evaluate the following double integrals:

a) xy y dydx( )x y

0

1

0

4

∫∫  [Ans : 8]

b) a x y dxdy

a ya
2 2 2

00

2 2

−x∫∫  Ans :
a3

6

π⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

c) r drd

a

s

cos

θ θdrd

θπ

00

∫∫  Ans :
a2

6

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

d) ( )2 2

0

1

y dydx

x

x

∫∫  Ans :
3

35

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

e)
dydx

x y

x

1 2 2
0

1 2

0

1

+ +x2

+

∫∫  Ans :
π
4

log ( )2 1
⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

6. Evaluate a x y dxdy2 2 2−x∫∫  over the semicircle x y a2 2 2=+  in the positive 

quardant. Ans :
a5

5

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

7. Transform the integral to Cartesian form and hence evaluate r drd

a
3

00

s θ θcos θ
π

∫∫

[Ans : 0]

8. Evaluate the following integrals:

a) ( 2 2 2

1

1

0

1

0

2

y z dxdyd)2 zdd

−
∫∫∫  [Ans : 6]

b) xyzdzdydx

x y2 2

2

0

1

0

1

+

∫∫∫  Ans :
3

8

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

c) xyzdzdydx

xy

x

01

1

1

3

∫∫∫  Ans :
13

9

1

6
3−⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

log
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9.  Evaluate ( y z dxdyd) zdd

R

∫∫∫  where R y z x y= {( ,x , )z : 0 1;1 2;2y 3}≤ ≤x y ≤ ≤z

Ans :
9

2

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

10. Evaluate ( y z dxdyd) zdd

R

∫∫  over the tetrahedron bounded by the planes 

x y z= 0, =y 0, = 0  and x y z+ +y = 1.  Ans :
1

8

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

11. Evaluate ydxdydd

R

∫∫  where R is the region of the first quardant bounded by the 

ellipse 
x

a

y

b

2

2

2

2
= 1+  [WBUT-2008]

12. Evaluate z dxdydzdd2∫∫∫  over the region defined by z x y z a+x≥ + ≤z0, 2 2+ 2 2≤

[WBUT-2004]

Multiple-Choice Questions

1. The value of the integral [( ) ( )

(0, 0)

(1,1)

x y d y x dy+ )y∫  is independent of the path.

 a) True b) False

 2. The value of the integral dxdy

R

∫∫  where R y x y= {( ,x ) : 1}+ ≤y  is

 a) 2    b) 2    c) 4   d) 3

 3. xyzdxdydz

0

1

0

1

0

1

∫∫∫  is equal to

a) 1    b) 0   c) 
1

8
   d) 4

 4. The value of the line integral 
1

2
( )xdx ydy

C

∫  along any closed curve C is

 a) 
1

2
    b) 1  c) 0  d) none of these

 5. The value of ( ),xdx dy

C

∫  where C is the line joining (0, 1) to (1, 0) is

 a) 
3

2
    b) 

1

2
   c) 0   d) 

2

3



 7.26   Engineering Mathematics-I 

6. r drd3

00

2

=θ
θ

π
cos

∫∫

a) 
π
64

   b) 
π
32

   c) 
3

64

π
   d) 

5

64

π

7. ( ) =2 2

0

1

0

1

y dxdy∫∫

a) 
1

3
    b) 0   c) 

2

3
   d) none of these

 8. The value of the integral xdy

C

∫  where C is the arc cut off from the parabola y x
2

from the point (0, 0) to (1, −1) is

a) 
−1

3
   b) 

1

3
   c) 0   d) none of these

Answers: 

 1. (b)  2. (a)  3. (c)  4. (c)  5. (a)  6. (c)  7. (c)  8. (a) 



8
Infinite Series

8.1 INTRODUCTION

This chapter basically deals with preliminary ideas of real sequences and illustrative 

ideas of infinite series.

The first few sections elaborate the ideas of a sequence; different types of sequences, 

including bounded and monotone sequences, and their convergence and divergence. 

Each of the items are illustrated with various kinds of examples.

In the later sections, we discuss the different kinds of infinite series including 

alternating series and also the tests of convergence of these series. Here too, useful 

examples are cited to illustrate the facts. 

Further, solutions of some important problems given in university examinations are 

provided in the last section.

8.2 PRELIMINARY IDEAS OF SEQUENCES

A sequence in R  or a real sequence is a mapping f N R→  where N  is the set of 

natural numbers and R  is the set of real numbers. So for each n N ,  there exists 

f n( )n  and the sequence is denoted by .{ }f n( )n  

We often denote a sequence by { }an  or { }xn , etc. A sequence is also denoted by 

.{ }a a a1 2a 3,2a ,

Example 1  

Let f N R→   is defined by f n n n N)n = ,n ;3 ∈  then f f f(2) = 2 , (3) = 3 ,3 3 3
…

The sequence is denoted by { }n3  or {1 , 2 , 3 , }.3 32 3

CHAPTER
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Note: For our convenience, we replace { }f n( )n  by { }an  where an  is the n-th term of 

the sequence.

8.3 DIFFERENT TYPES OF SEQUENCES:

1) Finite Sequence: A sequence { }an  having a finite number of terms is called a 

finite sequence, for example,

 { }2, 5, 6, 9  is a finite sequence of four terms.

2) Infinite Sequence: A sequence { }an  having infinite number of terms is called 

an infinite sequence, for example, 

 { }n { }= {  is an infinite sequence.

3) Harmonic Sequence: A sequence { }an  where a
n

n =
1
,  n N  is a well-known 

harmonic sequence.

4) Constant Sequence: A sequence { }an  where a kn = ,k  n ∈N  for any real 

number k  is called a constant sequence.

8.4 BOUNDED SEQUENCE

The real sequence { }an  is said to be a bounded sequence if there exits real numbers 

m  and M  such that m a Mn≤ ≤an , for example,

1,
1

2
,
1

3
, ,

1
,…, ,

n

⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬  is a bounded sequence since 0

1
1.≤ ≤

1

n

(a) A sequence { }an is bounded above if there exists a real number M  such that 

a Mn  for all n N .  M  is called the upper bound of the sequence.

Example 2  

The sequence 
n

n
{ }an

−⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬=

1

2
 is bounded above since 

n

n

−1
2

<
1

2
 for all n N .

Therefore M =
1

2
 is the upper bound.

 (b) A sequence{ }an  is bounded below if there exists a real number m  such that 

a mn ≥  for all n N ,  and m  is called the lower bound of the sequence.

Example 3  

The sequence { }an { }n  is bounded below since n2 1≥  for all n N .  Therefore, 

m =1  is the lower bound.
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8.5 MONOTONE SEQUENCE

(a) A sequence {{ }an{{ }}}  is said to be monotonic increasing if and only if a an na≥
for all n N.

Example 4  

The sequence 
n

n
{ }an +

⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬=

1
 is a monotonic increasing sequence since

( 1)

( 2) ( 1)
=

1

( 1)( 2)
> 0, .

n

n ) ( n
n N−

+1) (1) ( +
for all

(b) A sequence { }an  is said to be monotonic decreasing if and only if a an na≤
for all n N.

Example 5  

The sequence 
n

{ }an
⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬=

1
 is a monotonic decreasing sequence since

1

1

1
=

1

( 1)
< 0, .

n n1 n(
n N

+
−

−
for all

Observations

1) A sequence{ }an is said to be strictly monotonic increasing if and only if 

a an na>  for all n N.

Example 6  

The sequence 
n

n
{ }an +

⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬=

1
 is a strictly monotonic increasing sequence.

 2) A sequence { }an  is said to be strictly monotonic decreasing if and only if 

a an na<  for all n N.

Example 7  

The sequence 
n

{ }an
⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬=

1
 is a strictly monotonic decreasing sequence.

 3) A sequence { }an  is said to be monotone if { }an  is either monotonic 

increasing or monotonic decreasing.

 4) If a sequence { }an  is monotonic increasing then { }−  is monotonic 

decreasing.

 5) A sequence { }an  need not always be monotone.
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Example 8  

2, 0, 2, 0, 2, 0…{ }  is neither monotonic increasing nor monotonic decreasing.

8.6 LIMIT OF A SEQUENCE

A real number l  is said to be a limit of a sequence { }an  if for any pre-assigned posi-

tive ε ,  however small, there exists a natural number n0  depending on ε  such that

a l n nn ≥< .0ε for all

We write 
n

na ln
→∞
lim = .l

Observation 

To establish the limit l  of a sequence { }an ,  we take εεεε  as an arbitrary positive 

number and then find some positive integer n0  such that the numerical magni-

tude of the  difference ( )ln  is less than εεεε  for every an  where n n> 0 .

Example 9  

To establish 
n

n

n→∞ +
lim

2 1n +
1

= 2,  let us consider a pre-assigned positive number ε ,  how-

ever small, such that

2 1

1
2 <

n

n

+
+

− ε

⇒
+
1

1
<

n
ε

⇒ +1 >
1

ε

⇒ −>
1

1.
ε

Taking n0 =
1

1 ,
ε

−⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎦⎦

 i.e., the integral part of 
1

1
ε

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

 we have 

2 1

1
2 < .0

n

n
n n

+
+

− ≥ε for all

8.7 CONVERGENT SEQUENCE

A sequence { }an  is called a convergent sequence if it has a finite real number l  as its 

limit. We say the sequence { }an converges to l.  
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Example 10  

The sequence 
n

n

2

2

1+⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨

⎫
⎬
⎫⎫
⎬⎬
⎫⎫⎫⎫

⎭
⎬⎬
⎭⎭
⎬⎬⎬⎬  is a convergent sequence and converges to the limit 1.

Observations

 1) A convergent sequence has at most one limit.

 2) A convergent sequence is bounded.

 3) Every bounded sequence is not convergent.

8.8 DIVERGENT SEQUENCE

If for any pre-asssigned positive number K ,  however large, there exists a natural 

number n0  such that a Kn  for all n n≥ 0 ,  then { }an  is said to diverge to ∞.
We write 

n
na

→∞
lim = .∞

If for any pre-asssigned positive number K ,  however large, there exists a natural 

number n0  such that a Kn  for all n n≥ 0  then { }an  is said to diverge to − ∞.
We write 

n
na

→∞
lim = .−∞

A sequence { }an  is said to be a divergent sequence if { }an  either diverges to ∞
or diverges to −∞.

Example 11  The sequence { }n2  is a divergent sequence and diverges to the limit 

∞,  since
n

n
→∞
lim 2 =∞.

Note: There are also some sequences which are neither convergent nor divergent, 

known as oscillatory sequences.

Example 12  2, 2, 2, 2,{ }( 2) − −2 2{ }…  is a common example of an oscillatory 

sequence.

8.9 INFINITE SERIES 

Consider an  be a sequence of real numbers. Then a a an1 2a 3+ +a2a + + + ∞a +  is 

said to be the infinite series generated by the sequence { }an .  The infinite series is 

denoted by an
n

.
1=

∞

∑
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Example 13  
nn n

∞ ∞

∑ ∑an + + +
1 1n=

1
= 1

1

2

1

3
  is a series generated by the sequence 

n
{ }an

⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬

⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬=

1
= 1,

⎧
⎨
⎧⎧
⎩
⎨⎨

1

2
,
1

3
, .⎬

⎭
⎬⎬

8.10 CONVERGENCE AND DIVERGENCE OF INFINITE SERIES

Let a an n .1 2a 3+ +aa + + The sequence { }n  is called the sequence of partial 

sums of the series an
n

.
=

∞

∑
1

 The infinite series an
n=

∞

∑
1

 is convergent or divergent accord-

ing to whether { }n  is convergent or divergent.

If 
n

nS Sn
→∞
lim  then S  is the sum of the series an

n=

∞

∑
1

 and if 
n

nS
→∞

∞lim =  ( )

then the infinite series is said to diverge to ∞  (or, −∞).  

Example 14  

Let { }
( )n(

n =
⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬

1
 be a sequence of real numbers, n N .

So,

an
n=

∞

∑ + + +
1

=
1

1 2⋅
1

2 3⋅
1

3 4⋅
 

The sequence of partial sums of the series is { }n  where

S
n

n =
1

1 2

1

2 3

1

3 4

1

( 1)n
+ + + +

= 1
1

2

1

2

1

3

1 1

1
−⎛

⎝⎝⎝
⎞
⎠
⎟
⎞
⎠

−+ ⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
+ + −

−
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠n n

=1
1

1
−

−n

From the above, we have

n
nS

→∞
lim = 1

Therefore, the infinite series an
n=

∞

∑
1

 is convergent and converges to 1.
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Example 15  

Let { }an ={ }n3  be a sequence of real numbers, n N .  

So, 

an
n=

∞

∑ + +
1

3 3+ 3= 1 2 3+3
 

The sequence of partial sums of the series is { }n  where

S nn =1 2 33 32 3 3+ 22 + +

=
( 1)

2

2
n(⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

From the above, we have

n
nS

→∞
∞lim =

Therefore, the infinite series an
n=

∞

∑
1

 is divergent and diverges to ∞.

8.10.1 The p -Series

The infinite series a
n

n

n
p p P p

n=

∞

=

∞

∑ ∑+ + + ∞
1 1

=
1

1

1

2

1

3
=

1
 is convergent if p > 1  and 

divergent if p ≤ 1.

(1)
1

=
1

1

1

2

1

32 21 2 231 nn

+ +
2

+
=

∞

∑   is convergent, since it is a p-series where p = 2.

 (2) 
1
=
1

1

1

2

1

31 nn

+ + +
=

∞

∑   is divergent, since  it is a p-series where p = 1.

8.10.2 Geometric Series

A series of the form 1 2 3+ + + +3 + +r+ + + n
 ++  is called a geometric series with 

common ratio r.

The above series is 

(i) convergent for r < 1,  i.e., −1 < < 1r

(ii) divergent for r ≥ 1

(iii) oscillatory for r ≤ −1
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8.11 PROPERTIES OF CONVERGENCE OF INFINITE SERIES

1) If an
n=

∞

∑
1

 and bn
n=

∞

∑
1

 are two convergent infinite series and they converge 

to p  and q  respectively then the series ( )
1

c a d bn nd b
n

+
=

∞

∑  is also conver-

gent and converges to c p d qp d+ .

2) If an infinite series an
n=

∞

∑
1

 is convergent then 
n

na
→∞∞∞∞

lim = 0

Example 16  

1
2

1 nn=

∞

∑  is convergent, so we have 
n n→∞
lim

1
= 0.

2

The converse is not true.

Example 17  

n n→∞
lim

1
= 0,  but 

1

1 nn=

∞

∑  is a divergent series.

 3) If 
n

na
→

≠
∞∞∞∞

lim 0  for an infinite series an
n=

∞

∑
1

 then the series cannot be convergent.

 4) If the sequence of partial sum { }Sn  is not bounded then { }Sn  being a 

monotone increasing sequence, diverges to ∞∞∞∞.

  In this case, the series an
n=

∞

∑
1

 diverges to ∞∞∞∞.

5) Addition or removal of a finite number of terms does not effect the conver-

gence of an infinite series.

8.11.1 Series of Positive Terms 

An infinite series an
n=

∞

∑
1

 is called a series of positive terms if an > 0  for all n N .

Theorem 8.1: The necessary and sufficient condition for an infinite series of posi-

tive terms an
n=
∑

1

∞∞∞∞

 to be convergent is that the sequence of partial sums { }Sn  is 

bounded.

Proof: Beyond the scope of the book.
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Theorem 8.2: An infinite series of positive terms either converges or diverges to 
∞∞∞.  This kind of series cannot diverge to −∞∞∞∞  and cannot be oscillatory.

Proof: Beyond the scope of the book.

8.12 DIFFERENT TESTS OF CONVERGENCE OF INFINITE SERIES

8.12.1 Comparison Test

Consider an
n=

∞

∑
1

 and bnb
n=

∞

∑
1

 are two infinite series of positive terms.

If for all n m≥ ,  
a

b
kn

nb
≤ ,  k  being a fixed positive number then

 i) an
n=

∞

∑
1

 is convergent if bnb
n=

∞

∑
1

 is convergent

 ii) bnb
n=

∞

∑
1

 is divergent if an
n=

∞

∑
1

 is divergent

8.12.2 Limit Form of Comparison Test 

Consider an
n=

∞

∑
1

 and bnb
n=

∞

∑
1

 be two infinite series of positive terms and 
n

n

n

a

bn
l

→∞
lim = ,l

where l  is a nonzero finite number.

Then an
n=

∞

∑
1

and bnb
n=

∞

∑
1

 converge and diverge together. [WBUT-2008]

Example 18  

Consider the following two series: 

an
n=

∞

∑ +
+

+
+

+ ∞
1

3 3
+

3
=
1 2+
2

1 2+ 3

3

1 2 3 4+ +
4

and

bnb
n=

∞

∑ + + + + ∞
1

= 1
1

2

1

3

1

4
 

Here 

a
n

n n
b

n
n nb=

( 1)(n 2)

2( 1)
=

( 2n )

2( 1)
=
1

3 2

+n1)(

+ +
and
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Now, 

n

n

n n

a

b

n

n +
lim lim=

( 2)n +

2( 1)
=

1

2
,

2
a nonzernn o finite value.

Since 
nn n

∞ ∞

∑ ∑bnb
1 1n=

1
 is a divergent series, by comparison test the series an

n=

∞

∑
1

 is 

also divergent.

Example 19  

Test the convergence of the infinite series an
n=

∞

∑
1

 where a n nn = ( 1) .3

1

3+ −1)3

[WBUT 2003, 2007]

Sol. Here, we have

   a n nn = ( 1)3

1

3+ −1)3

    = 1
13

3

1

3
n

n
n+⎛

⎝⎝⎝
⎞
⎠
⎟
⎞
⎠

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬ −

    = 1
1
3

1

3
n

n
n+1⎛

⎝⎝⎝
⎞
⎠
⎟
⎞⎞
⎠⎠

⎧
⎨
⎪
⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪
⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

−

 i.e., = 1
1

3

1

1

3

1

3
1

2!

1
3 3

2

a n=
n n

n + +
3

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

+ ∞

⎧

⎨
⎪
⎧⎧

⎪
⎨⎨
⎪⎪

⎩
⎪
⎨⎨

⎪⎩⎩
⎪⎪

⎫

⎬
⎪
⎫⎫

⎪
⎬⎬
⎪⎪

⎭
⎪
⎬⎬

⎪⎭⎭
⎪⎪
−− n

     =
1 1

3

1

9

1
2 3n n3 9

− +
3

∞⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬ 

Let us consider the series bnb
n=

∞

∑
1

 where b
n

nb =
1
2

Now 

n

n

n n

a

bn n→∞ →∞
− + ∞⎧

⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬lim lim=

1

3

1

9

1
=
1

3
,

3
 a nonzernn o finite value.

Since, bnb
n=

∞

∑
1

 is a convergent series, by comparison test, an
n=

∞

∑
1

 is also 

convergent.
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Example 20  

Test the convergence of the infinite series

1
1

2

2

3

3

4

4

52

2

3

3

4

4

5
+ +

2
+ + ++

4 5
∞ [WBUT 2005].

Sol. We know that addition and removal of finite number of terms does not affect 

the convergence of an infinite series.

So, removing the first term from the given series, the resulting series is

an
n=

∞

∑ + + + ++
1

2

2

3

3

4

4

5
=

1

2

2

3

3

4

4

5
 

where a
n

n

n

n
=
( 1)n

.
1+

Let us consider the series bnb
n=

∞

∑
1

,  where b
n

nb =
1
.  Now 

 
n

n

n n

n

n

a

bn

n

→∞ →∞

+

+
lim lim=

( 1)n +
=1,

1

1
a nonzernn o finite value.

Since, bnb
n=

∞

∑
1

 is a divergent series, by comparison test, an
n=

∞

∑
1

 is divergent.

 Therefore, correspondingly the given series 

 1
1

2

2

3

3

4

4

52

2

3

3

4

4

5
+ +

2
+ + ++

4 5
 

is also divergent.

8.12.3 D’Alembert’s Ratio Test

Let an
n=

∞

∑
1

 be an infinite series of positive terms and 

n

n

n

a

a
l

→∞
+lim 1 = ,l any real value.

Then, the series an
n=

∞

∑
1

i) converges if l < 1

ii) diverges if l > 1

iii) the test fails if l = 1
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Example 21  

Examine the convergence of the infinite series

1 2

1!

2 3

2!

3 4

3!

2 22 2 23 2 24
+ + + ∞

Sol. If we write the given series in the form of an
n=

∞

∑
1

 then

 a
n

n
a

n
n n=

( 1)n

!
=
( 1) (n 2)

( 1)!n
.

2 2( 1)
1

2 2( 2)+
+and

Now, 

n

n

n n

a

a

n

n→∞

+

→∞
lim lim1

2

2
=

( 2n + ) (2 !)

( 1)!n +

     =
( 2)

( 1)

2

2n n1)→∞
lim

     = 0 < 1.

Therefore, by D’ Alembert’s ratio test, the series is convergent.

Example 22  

Examine the convergence of the infinite series

1

3

1 2

3 5

1 2 3

3 5 7

2 2 2
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

+ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

+
⋅2
⋅5

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠

+ [WBUT 2002, 2007]

Sol. If we write the given series in the form of an
n=

∞

∑
1

 then

 a
n

n =
1 2 3

3 5 7 (2 1)n

2
⋅2

⋅5
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞
2

⎠
⎟
⎞⎞

⎠⎠

…

and so a
n

n+
⋅ +n

⋅
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
1

2

=
1 2⋅ 3 (n 1)

3 5⋅ 7 (2 1) (n + 2 3)n +

Now,
n

n

n n

a

a

n

→∞
+

→∞

⋅ +n

⋅
⎛

⎝
⎜
⎛⎛

⎝⎝
lim lim1 =

1 2⋅ 3 (n 1)

3 5⋅ 7 (2 1) (n + 2 3)n +
⎞⎞

⎠
⎟
⎞⎞⎞⎞

⎠⎠

⋅
⋅

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

2

2
1 2⋅ 3

3 5⋅ 7 (2 1)+
…n
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        =
1

2 3

2

n

n

→∞

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

lim

        =
1

2
=
1

4
< 1.

2
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

Therefore, by D’ Alembert’s ratio test, the given series is convergent.

8.12.4 Cauchy’s Root Test

Let an
n=

∞

∑
1

 be an infinite series of positive terms and 
n

n ln

→∞
lim ( )nan = .l

1

Then the series an
n=

∞

∑
1

i) converges if l < 1

ii) diverges if l > 1

iii) the test fails if l =1  [WBUT 2004]

Example 23  

Examine the convergence of the infinite series

2

1

2

1

3

2

3

2

4

3

4

3

2

2

1
3

3

2
4

4

3

−
⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟ −

3
+
⎛

⎝

⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟ −

4
+
⎛

⎝

⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟ +

− − −

 [WBUT 2001]

Sol. Let us consider 

an
n=

∞ − −

∑ −
⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞
−

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟ −+

⎛

⎝

⎛⎛
⎜
⎝⎝
⎜⎜

⎞
−

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟ −+

⎛

⎝

⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

1

2

2

1
3

3

2
4

4
=

2

1

2

1

3

2

3

2

4

3

4

3 ⎟⎟ +
−3

 

Then

a
n

n

n

n
n

n
n

=
1 1n

n 1+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
nn

⎠
⎟
⎞
⎠

− ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

+ −

Now, 

n
n

n

n

n
n

n

n

n

n→∞ →∞

+ −
+⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞
⎠

− ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

⎡

⎣

⎢
⎡⎡

lim lim( )na =
1 1

n
n

+
⎞
n +⎛

1 1

⎢⎢
⎢⎢⎢⎢

⎣⎣
⎢⎢⎢⎢
⎣⎣⎣⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

1

n
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     =
1 1

1
1

n

n
n

n

n

n→∞

+ −
+⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠

− ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

lim

     = 1
1

1
1

1

1

n

n

n n→∞

−

+⎛
⎝⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠

−
⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

⎡

⎣
⎢
⎡⎡

⎢⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥lim

     = ( 1) < 1.1e − −

Therefore, by Cauchy’s root test, an
n=

∞

∑
1

 is convergent.

Example 24  

Examine the convergence of the infinite series 1
1

3

2

+
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞

⎠

−

n

n

 [WBUT 2004]

Sol. Let 

 
nn

n

n=

∞ −

=

∞

∑ ∑an +
⎛

⎝
⎜
⎝⎝

⎞
−

⎠
⎟
⎞⎞

⎠⎠1

3

2

1

1∑⎛
⎜
⎛⎛ 1

then

a
n

n

n

= 1
1

.

3

2

+
⎛

⎝
⎜
⎝⎝

⎞

⎠
⎟
⎞

⎠

−

Now,

n
n

n

n

n

n

n→∞ →∞

−

+
⎛

⎝
⎜
⎝⎝

⎞
−

⎠
⎟
⎞⎞

⎠⎠

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢
⎣⎣

⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎦⎦

⎥⎥
lim li( )na = 1

⎛
⎜
⎛⎛⎢

⎢
⎢⎢lim

1
1

3

2

1

      = 1
1

n

n

n→∞

−

+
⎛

⎝
⎜
⎝⎝

⎞
−

⎠
⎟
⎞⎞

⎠⎠

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥li

      =
1
< 1.

e

Therefore, by Cauchy’s root test, an
n=

∞

∑
1

 is convergent.
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8.12.5 Raabe’s Test

Let an
n=

∞

∑
1

 be an infinite series of positive terms and 
n

n

n

n
a

a
l

→∞ +
−

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠

⎞⎞
⎟
⎠⎠

lim
1

1 =
⎞
⎟
⎞⎞

.  

Then the series an
n=

∞

∑
1

 

 i) converges if l > 1

ii) diverges if l < 1

iii) the test fails if l =1

Example 25  

Examine the convergence of the infinite series

1
1

2

1

3

1 3

2 4

1

5

1 3 5

2 4 6

1

7
+ ⋅ + ⋅ +

⋅3
⋅4

⋅ + 

Sol. Since addition or removal of a finite number of terms does not affect the con-

vergence of an infinite series, by removing the first term of the given series, let 

the resulting infinite series be 

an

n=

Â ◊ + +
◊

◊
+

1

=
1

2

1

3

1 3◊

2 4◊

1

5

1 3◊ 5

2 4◊ 6

1

7
 

Then

a
n

n =
1 3 5 (2 3)n

2 4 6 (2 2)n

1

(2 1)

⋅3
⋅4

⋅
−

and so a
n

n n
n+

⋅ −n

⋅
⋅

+1 =
1 3⋅ 5 (2 3)(2n 1)

2 4⋅ 6 (2 2)2n

1

(2 1)

Now 

n

n

n n

a

a

n

→∞

+

→∞

−
lim lim1

2

=
(2 1)

2 (n 2 1)n +
=1

Therefore, D’ Alembert’s ratio test fails.

But 

n

n

n n
n

a

a
n

n→∞ + →∞
−

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠ −
−

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
lim lim

1
2

1 =
⎞
⎟
⎞⎞ 2 (n 2 1)n +

(2 1)
1

        =
6

(2 1)
=
3

2
> 1

2

2n

n n

n→∞ −
lim

Therefore, by Raabe’s test, the series an
n=

∞

∑
1

 is convergent.
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8.13 ALTERNATING SERIES 

The infinite series of the form ( ) ,−

=

∞

∑ 1

1

n
n

n

a  where an > 0  for all n N  is called an 

alternating series.

Example 26  

Let us consider the series 

( 1)
1

= 1
1

2

1

3

1

4

1

2 2
1

2 2 241

−1) = 1 + −
2

+−

=

∞

∑ n

n n
 

Here an > 0  for all n N .  So this is an alternating series.

8.13.1  Test of Convergence of Alternating  
Series (Leibnitz’s Test)

Let ( ) −

=

∞

∑ 1

1

n
n

n

a  be an alterenating series with an > 0  for all n N .  Then the series 

converges if

 i) an n< ,ana  i.e., { }n  is a monotonic decreasing sequence 

 ii) 
n

na
→∞
lim = 0

[WBUT-2009]

Example 27  

Examine the convergence of the alternating series

2
3

2

4

3

5

4
− + − + 

Sol. If we write the series in the form of ( 1) 1

1

−

=

∞

∑ n
n

n

a  then

 a
n

a
n

n
n n=

( 1)n
=

2

1
.1

+
++and

Now

a a
n n

n na −
++1 =

( 1) 2n n+ +
1

     =
1

( 1)
> 0

n(
nfor all

So a an na> 1+ ,  i.e., { }n  is a monotonic decreasing sequence.
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But

n
n

n
a

n→∞ →∞
lim lim=

( 1)n +
=1

i.e., 0.
n

n
→∞
li

Therefore, by Leibnitz’s test, the alternating series is not convergent.

Example 28  

Examine the convergence of the alternating series 
cosn

nn

πn
2

1 1
.

+=

∞

∑  [WBUT 2002]

Sol. Since cosn nπn = ( 1) ,−  the alternating series can be written as

 
cosn

n n nn

n

n

n

n

π
2

1
2

1
2

11

( 1)

1
= ( 1)

1

1
.

+ +
−

+=

∞

=

∞

=

∞

∑ ∑cosnπn
2 1

=
+

∑

Then,

a
n

an n=
1

1
=

1

( 1) 1n2 1 2+
+and so

Now

a a
n

n na
+

−+1 2 2
=

1

1

1

( 1) 1n + +2

     =
(2 1)

( 1)(( 1) 1)
> 0

2 2

n

n1)((

+
+1)((n1)(( +

The above implies that { }n  is a monotonic decreasing sequence.

 Also
n

n
n

a
n→∞ →∞ +

lim lim=
1

1
= 0

2

Therefore, 
cosn

nn

πn
2

1 1+=

∞

∑  is convergent by Leibnitz’s test.

8.14 ABSOLUTE CONVERGENCE

Let an
n=

∞

∑
1

 be an infinite series. The series is said to be absolutely convergent if an
n=

∞

∑
1

is convergent.
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Suppose ( 1) 1

1

−

=

∞

∑ n
n

n

a  be an alternating series. The alternating series is said to be 

absolutely convergent if

1

1 1=

∞

=

∞

∑ ∑( 1) =1

n

n

n

a∑=

is convergent. [WBUT-2009]

Note: An absolutely convergent series is convergent, but the converse is not always 

true.

Example 29  

Examine the absolute convergence of the alternating series
cosn

nn

πn
2

1

.
=

∞

∑

Sol. Since cosn nπn = ( 1) ,−  the alternating series can be written as

 
cosn

n n nn

n

n

n

n

π
2

1
2

1
2

1

( 1)
= ( 1)

1
.

=

∞

=

∞

=

∞

∑ ∑cosnπn
2

= ∑ −

Here, a
n

n =
1
.

2
 Then

 
nn n

∞

=

∞

∑ ∑an
1

2
1

1
.

But the series 
1
2

1 nn=

∞

∑  is a p-series with p = 2  .( )> 1  So the series is 

convergent.

 Correspondingly, an
n=

∞

∑
1

 is also convergent.

 Hence the given series 
cosn

nn

πn
2

1=

∞

∑  is absolutely convergent.

8.15 CONDITIONAL CONVERGENCE

Let an
n=

∞

∑
1

 be an infinite series. The series is said to be conditionally convergent if 

an
n=

∞

∑
1

 is convergent but not absolutely convergent, i.e., an
n=

∞

∑
1

 is not convergent.
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An alternating series ( 1) 1

1

−

=

∞

∑ n
n

n

a  is said to be conditionally convergent if 

( 1) 1

1

−

=

∞

∑ n
n

n

a  is convergent but an
n=

∞

∑
1

 is not convergent. [WBUT-2009]

Example 30  

Examine the conditional convergence of the alternating series

1
1

2

1

3

1

4

1

5
− + − + − ∞

Sol. This is an alternating series of the form ( 1)
1
.1

1

1

1=

∞
−

=

∞

∑ ∑( 1) =1

n

n

n n

Here 

a
n

a
n

n n=
1

=
1

1
1and so + +

Let us apply Leibnitz’s test for checking convergence.

Now 

a a
n n n

n na −a
n++1 =

1 1

1
=

1

( 1)n +n
> 0

This proves that { }n  is a monotonic decreasing sequence.

 Again, 
n

n
n

a
n→∞ →∞

lim lim=
1
= 0.

Therefore, ( 1)
11

1

1

1=

∞
−

=

∞

∑ ∑( 1) =1

n

n

n n
 is a convergent series.

Now we consider an
n=

∞

∑
1

 which is 

 1
1

2

1

3

1

4

1

5
=

1
.

1

+ + + + +
=

∞

∑ 

nn

This is a p-series with p =1,  and so the series is divergent.

 Since, ( 1) 1

1

−

=

∞

∑ n
n

n

a  is convergent and an
n=

∞

∑
1

 is divergent, 

 ( 1)
11

1

1

1=

∞
−

=

∞

∑ ∑( 1) =1

n

n

n n
 is conditionally convergent.
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WORKED-OUT EXAMPLES

Example 8.1  Examine the convergence of the infinite series

n n
n

4 4

1

1 1n4+1{ }
=

∞

∑ [WBUT 2008]

Sol. Let 

n n
n n

∞

=

∞

∑ ∑an + − −{ }
1

4 4

1

1n∑ +{ 4 1

This is an infinite series of positive terms. Here

a n nn = 1n 14 4−1 −{ }

  =

1 1 1 1

1 1

4 4 4 4

4 4

n n1 n n1

n n1

+11{ } +11{ }
+11{ }

  =
2

1 14 4
n n1+11{ }

Let us consider the series 
nn n

∞

=

∞

∑ ∑bnb
1

2
1

1
,  which is convergent since it is a 

p-series for p = 2.

Now,

n

n

n n

a

bn

n

n n
→∞ →∞ +{ }
lim lim=

2

1 1n+ − .

2

4 4

     = 1, a nonzero finite value.

Since 
nn n

∞

=

∞

∑ ∑bnb
1

2
1

1
 is a convergent series, by comparison test, we can 

 conclude that

 n n
n n

∞

=

∞

∑ ∑an + − −{ }
1

4 4

1

1n∑ +{ 4 1

is also convergent.
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Example 8.2  Examine the convergence of the infinite series

x
x x x

+ + + +
2 3 4

2 3 4
 

Sol. Let us consider 

x

nn

n

n=

∞ ∞

∑ ∑an
1 1n=

where 

a
x

n
a

x

n
n

n

n

n

= =
1
.1

1

and +

+

+

Now, 

n

n

n n

n

n

a

a

x nn

xn
x

→∞

+

→∞

+

lim lim1
1

=
( 1)n +

= .x

Then  by D’Alembert’s ratio test, we have 

  i) If x < 1,  the infinite series is convergent

  ii) If x > 1,  the infinite series is divergent

 iii) If x =1,  the test fails

 For x =1,  the series becomes 

 1
1

2

1

3

1

4
=

1
.

1

+ + + +
=

∞

∑ 

nn

Since 
1

1 nn=

∞

∑  is a divergent series, the infinite series 
x

n

n

n=

∞

∑
1

 diverges for x ≥ 1

and converges for x < 1.

Example 8.3  Examine the convergence of the infinite series

1
2 5 10

2 3

+ + + +
x x x

 [WBUT-2009]

Sol. We know that addition or removal of a finite number of terms does not alter 

the convergence of an infinite series.

So, removing the first term, we have the series of the form 

x x x

2 5 10

2 3

+ + + 
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Suppose we write the series in the form 

x

nn

n

n=

∞

=

∞

∑ ∑an
+1

2
1 1

Then 

a
x

n
a

x
n

n

n

n

=
1

=
( 1) 1n

.
2 1

1

2+
+

+

and so

Here,

n

n

n n

n na

a

x x

n→∞

+

→∞

+

+
lim lim1

1

2 2
=

( 1) 1n + +2 + 1

      =
1

( 1) 1
=

2

2
x

n
x

n
⋅

+
1)1)→∞

lim

So by D’Alembert’s ratio test, we can conclude that

  i) If x < 1,  the infinite series is convergent

  ii) If x > 1,  the infinite series is divergent

 iii) If x =1,  the test fails

 For x =1,  the series becomes 

 
1

2

1

5

1

10
=

1

12
1 1

+ + +
+=

∞

=

∞

∑ ∑1

1
=

2 +
 

n
b

n

nb
n

Here, b
n

nb =
1

1
.

2 +

Consider the series 
nn n

∞

=

∞

∑ ∑cn
1

2
1

1
,  which is convergent. Now

 
n

n

n
n

b

c

n

n→∞ →∞ +
lim lim=

1
= 1,

2

2
a nonzero finite number.

Therefore, by comparison test, 
1

12
1 nn +=

∞

∑  is a convergent series.

 Hence,
x

nn

n

n=

∞

=

∞

∑ ∑an
+1

2
1 1

 is convergent for x ≤ 1  and divergent for x > 1.
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Example 8.4  Examine the convergence of the infinite series 
n

n

n

n
n

! 2
.

1=

∞

∑  [WBUT 2003]

Sol. Let us consider 

 
n

nn

n

n
n=

∞ ∞

∑ ∑an
1 1n=

! 2⋅

Then 

a
n

n
an

n

n n

n

n
=

!2
=
( 1)!2n

( 1)n
1

1

1
and so +

+

+

Here 

lim lim
a

a

n

n

n

n n

n

n

n

n

+

→∞

+

+
1

1

1
=

( 1)!2n +
( 1)n +

!2

      =
2

1
1

=
2
< 1

n n

n

e→∞
+⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠

lim

Therefore by D’Alembert’s ratio test, the series 
n

n

n

n
n

! 2

1=

∞

∑  is convergent.

Example 8.5  Test the convergence of the series

1 1

1 n nn

sin
=

∞

∑ [WBUT-2001]

Sol. Let us consider the given infinite series

n nn n

∞ ∞

∑ ∑an
1 1n=

1 1
sin

then 

a
n n

n =
1 1

sin

Let us consider the series

n
n n

∞

=

∞

∑ ∑bnb
1

3

2
1

1

Then

b

n

nb =
1
3

2

Now,

n

n

n n n

a

bn

n n

n

n

n

→∞ →∞ →∞
lim lim

sin

lim

sin

=

1 1
i

1
=

1

1
= 1

3

2



 8.24  Engineering Mathematics-I 

Since 

n
n n

∞

=

∞

∑ ∑bnb
1

3

2
1

1

is a convergent series, by comparison test 

n nn n

∞ ∞

∑ ∑an
1 1n=

1 1
sin

is a convergent series.

Example 8.6  Test the convergence of the series

1
2 1

1! 2! 3!

2 3

+ +
( )2 1

+
( )2 1

+ ∞ [WBUT-2001]

Sol. Since addition or removal of a finite number of terms does not affect the 

convergence of an infinite series, by removing the first term of the given series, 

let the resulting infinite series be 

nn

n

n=

∞ ∞

∑ ∑an
( )

1 1n=

−

!

Then 

a
n

an

n

n

n

=
!

=
( 1)!n

1

1( )2 1 ( )2 1

+

+

and

Now,

n

n

n n

n

n n

a

a

n

→∞

+

→∞

+

→∞

( )

( )
( )

lim lim lim1

1

=

−

( 1)!n +

−

!

=
−

( 1)n +
= 0== < 1

Therefore, by D’ Alembert’s ratio test, 

nn

n

n=

∞ ∞

∑ ∑an
( )

1 1n=

−

!

is convergent.



8
Infinite Series

8.1 INTRODUCTION

This chapter basically deals with preliminary ideas of real sequences and illustrative 

ideas of infinite series.

The first few sections elaborate the ideas of a sequence; different types of sequences, 

including bounded and monotone sequences, and their convergence and divergence. 

Each of the items are illustrated with various kinds of examples.

In the later sections, we discuss the different kinds of infinite series including 

alternating series and also the tests of convergence of these series. Here too, useful 

examples are cited to illustrate the facts. 

Further, solutions of some important problems given in university examinations are 

provided in the last section.

8.2 PRELIMINARY IDEAS OF SEQUENCES

A sequence in R  or a real sequence is a mapping f N R→  where N  is the set of 

natural numbers and R  is the set of real numbers. So for each n N ,  there exists 

f n( )n  and the sequence is denoted by .{ }f n( )n  

We often denote a sequence by { }an  or { }xn , etc. A sequence is also denoted by 

.{ }a a a1 2a 3,2a ,

Example 1  

Let f N R→   is defined by f n n n N)n = ,n ;3 ∈  then f f f(2) = 2 , (3) = 3 ,3 3 3
…

The sequence is denoted by { }n3  or {1 , 2 , 3 , }.3 32 3

CHAPTER
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Note: For our convenience, we replace { }f n( )n  by { }an  where an  is the n-th term of 

the sequence.

8.3 DIFFERENT TYPES OF SEQUENCES:

1) Finite Sequence: A sequence { }an  having a finite number of terms is called a 

finite sequence, for example,

 { }2, 5, 6, 9  is a finite sequence of four terms.

2) Infinite Sequence: A sequence { }an  having infinite number of terms is called 

an infinite sequence, for example, 

 { }n { }= {  is an infinite sequence.

3) Harmonic Sequence: A sequence { }an  where a
n

n =
1
,  n N  is a well-known 

harmonic sequence.

4) Constant Sequence: A sequence { }an  where a kn = ,k  n ∈N  for any real 

number k  is called a constant sequence.

8.4 BOUNDED SEQUENCE

The real sequence { }an  is said to be a bounded sequence if there exits real numbers 

m  and M  such that m a Mn≤ ≤an , for example,

1,
1

2
,
1

3
, ,

1
,…, ,

n

⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬  is a bounded sequence since 0

1
1.≤ ≤

1

n

(a) A sequence { }an is bounded above if there exists a real number M  such that 

a Mn  for all n N .  M  is called the upper bound of the sequence.

Example 2  

The sequence 
n

n
{ }an

−⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬=

1

2
 is bounded above since 

n

n

−1
2

<
1

2
 for all n N .

Therefore M =
1

2
 is the upper bound.

 (b) A sequence{ }an  is bounded below if there exists a real number m  such that 

a mn ≥  for all n N ,  and m  is called the lower bound of the sequence.

Example 3  

The sequence { }an { }n  is bounded below since n2 1≥  for all n N .  Therefore, 

m =1  is the lower bound.
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8.5 MONOTONE SEQUENCE

(a) A sequence {{ }an{{ }}}  is said to be monotonic increasing if and only if a an na≥
for all n N.

Example 4  

The sequence 
n

n
{ }an +

⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬=

1
 is a monotonic increasing sequence since

( 1)

( 2) ( 1)
=

1

( 1)( 2)
> 0, .

n

n ) ( n
n N−

+1) (1) ( +
for all

(b) A sequence { }an  is said to be monotonic decreasing if and only if a an na≤
for all n N.

Example 5  

The sequence 
n

{ }an
⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬=

1
 is a monotonic decreasing sequence since

1

1

1
=

1

( 1)
< 0, .

n n1 n(
n N

+
−

−
for all

Observations

1) A sequence{ }an is said to be strictly monotonic increasing if and only if 

a an na>  for all n N.

Example 6  

The sequence 
n

n
{ }an +

⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬=

1
 is a strictly monotonic increasing sequence.

 2) A sequence { }an  is said to be strictly monotonic decreasing if and only if 

a an na<  for all n N.

Example 7  

The sequence 
n

{ }an
⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬=

1
 is a strictly monotonic decreasing sequence.

 3) A sequence { }an  is said to be monotone if { }an  is either monotonic 

increasing or monotonic decreasing.

 4) If a sequence { }an  is monotonic increasing then { }−  is monotonic 

decreasing.

 5) A sequence { }an  need not always be monotone.
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Example 8  

2, 0, 2, 0, 2, 0…{ }  is neither monotonic increasing nor monotonic decreasing.

8.6 LIMIT OF A SEQUENCE

A real number l  is said to be a limit of a sequence { }an  if for any pre-assigned posi-

tive ε ,  however small, there exists a natural number n0  depending on ε  such that

a l n nn ≥< .0ε for all

We write 
n

na ln
→∞
lim = .l

Observation 

To establish the limit l  of a sequence { }an ,  we take εεεε  as an arbitrary positive 

number and then find some positive integer n0  such that the numerical magni-

tude of the  difference ( )ln  is less than εεεε  for every an  where n n> 0 .

Example 9  

To establish 
n

n

n→∞ +
lim

2 1n +
1

= 2,  let us consider a pre-assigned positive number ε ,  how-

ever small, such that

2 1

1
2 <

n

n

+
+

− ε

⇒
+
1

1
<

n
ε

⇒ +1 >
1

ε

⇒ −>
1

1.
ε

Taking n0 =
1

1 ,
ε

−⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎦⎦

 i.e., the integral part of 
1

1
ε

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

 we have 

2 1

1
2 < .0

n

n
n n

+
+

− ≥ε for all

8.7 CONVERGENT SEQUENCE

A sequence { }an  is called a convergent sequence if it has a finite real number l  as its 

limit. We say the sequence { }an converges to l.  
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Example 10  

The sequence 
n

n

2

2

1+⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨

⎫
⎬
⎫⎫
⎬⎬
⎫⎫⎫⎫

⎭
⎬⎬
⎭⎭
⎬⎬⎬⎬  is a convergent sequence and converges to the limit 1.

Observations

 1) A convergent sequence has at most one limit.

 2) A convergent sequence is bounded.

 3) Every bounded sequence is not convergent.

8.8 DIVERGENT SEQUENCE

If for any pre-asssigned positive number K ,  however large, there exists a natural 

number n0  such that a Kn  for all n n≥ 0 ,  then { }an  is said to diverge to ∞.
We write 

n
na

→∞
lim = .∞

If for any pre-asssigned positive number K ,  however large, there exists a natural 

number n0  such that a Kn  for all n n≥ 0  then { }an  is said to diverge to − ∞.
We write 

n
na

→∞
lim = .−∞

A sequence { }an  is said to be a divergent sequence if { }an  either diverges to ∞
or diverges to −∞.

Example 11  The sequence { }n2  is a divergent sequence and diverges to the limit 

∞,  since
n

n
→∞
lim 2 =∞.

Note: There are also some sequences which are neither convergent nor divergent, 

known as oscillatory sequences.

Example 12  2, 2, 2, 2,{ }( 2) − −2 2{ }…  is a common example of an oscillatory 

sequence.

8.9 INFINITE SERIES 

Consider an  be a sequence of real numbers. Then a a an1 2a 3+ +a2a + + + ∞a +  is 

said to be the infinite series generated by the sequence { }an .  The infinite series is 

denoted by an
n

.
1=

∞

∑
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Example 13  
nn n

∞ ∞

∑ ∑an + + +
1 1n=

1
= 1

1

2

1

3
  is a series generated by the sequence 

n
{ }an

⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬

⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬=

1
= 1,

⎧
⎨
⎧⎧
⎩
⎨⎨

1

2
,
1

3
, .⎬

⎭
⎬⎬

8.10 CONVERGENCE AND DIVERGENCE OF INFINITE SERIES

Let a an n .1 2a 3+ +aa + + The sequence { }n  is called the sequence of partial 

sums of the series an
n

.
=

∞

∑
1

 The infinite series an
n=

∞

∑
1

 is convergent or divergent accord-

ing to whether { }n  is convergent or divergent.

If 
n

nS Sn
→∞
lim  then S  is the sum of the series an

n=

∞

∑
1

 and if 
n

nS
→∞

∞lim =  ( )

then the infinite series is said to diverge to ∞  (or, −∞).  

Example 14  

Let { }
( )n(

n =
⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬

1
 be a sequence of real numbers, n N .

So,

an
n=

∞

∑ + + +
1

=
1

1 2⋅
1

2 3⋅
1

3 4⋅
 

The sequence of partial sums of the series is { }n  where

S
n

n =
1

1 2

1

2 3

1

3 4

1

( 1)n
+ + + +

= 1
1

2

1

2

1

3

1 1

1
−⎛

⎝⎝⎝
⎞
⎠
⎟
⎞
⎠

−+ ⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
+ + −

−
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠n n

=1
1

1
−

−n

From the above, we have

n
nS

→∞
lim = 1

Therefore, the infinite series an
n=

∞

∑
1

 is convergent and converges to 1.
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Example 15  

Let { }an ={ }n3  be a sequence of real numbers, n N .  

So, 

an
n=

∞

∑ + +
1

3 3+ 3= 1 2 3+3
 

The sequence of partial sums of the series is { }n  where

S nn =1 2 33 32 3 3+ 22 + +

=
( 1)

2

2
n(⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

From the above, we have

n
nS

→∞
∞lim =

Therefore, the infinite series an
n=

∞

∑
1

 is divergent and diverges to ∞.

8.10.1 The p -Series

The infinite series a
n

n

n
p p P p

n=

∞

=

∞

∑ ∑+ + + ∞
1 1

=
1

1

1

2

1

3
=

1
 is convergent if p > 1  and 

divergent if p ≤ 1.

(1)
1

=
1

1

1

2

1

32 21 2 231 nn

+ +
2

+
=

∞

∑   is convergent, since it is a p-series where p = 2.

 (2) 
1
=
1

1

1

2

1

31 nn

+ + +
=

∞

∑   is divergent, since  it is a p-series where p = 1.

8.10.2 Geometric Series

A series of the form 1 2 3+ + + +3 + +r+ + + n
 ++  is called a geometric series with 

common ratio r.

The above series is 

(i) convergent for r < 1,  i.e., −1 < < 1r

(ii) divergent for r ≥ 1

(iii) oscillatory for r ≤ −1
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8.11 PROPERTIES OF CONVERGENCE OF INFINITE SERIES

1) If an
n=

∞

∑
1

 and bn
n=

∞

∑
1

 are two convergent infinite series and they converge 

to p  and q  respectively then the series ( )
1

c a d bn nd b
n

+
=

∞

∑  is also conver-

gent and converges to c p d qp d+ .

2) If an infinite series an
n=

∞

∑
1

 is convergent then 
n

na
→∞∞∞∞

lim = 0

Example 16  

1
2

1 nn=

∞

∑  is convergent, so we have 
n n→∞
lim

1
= 0.

2

The converse is not true.

Example 17  

n n→∞
lim

1
= 0,  but 

1

1 nn=

∞

∑  is a divergent series.

 3) If 
n

na
→

≠
∞∞∞∞

lim 0  for an infinite series an
n=

∞

∑
1

 then the series cannot be convergent.

 4) If the sequence of partial sum { }Sn  is not bounded then { }Sn  being a 

monotone increasing sequence, diverges to ∞∞∞∞.

  In this case, the series an
n=

∞

∑
1

 diverges to ∞∞∞∞.

5) Addition or removal of a finite number of terms does not effect the conver-

gence of an infinite series.

8.11.1 Series of Positive Terms 

An infinite series an
n=

∞

∑
1

 is called a series of positive terms if an > 0  for all n N .

Theorem 8.1: The necessary and sufficient condition for an infinite series of posi-

tive terms an
n=
∑

1

∞∞∞∞

 to be convergent is that the sequence of partial sums { }Sn  is 

bounded.

Proof: Beyond the scope of the book.
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Theorem 8.2: An infinite series of positive terms either converges or diverges to 
∞∞∞.  This kind of series cannot diverge to −∞∞∞∞  and cannot be oscillatory.

Proof: Beyond the scope of the book.

8.12 DIFFERENT TESTS OF CONVERGENCE OF INFINITE SERIES

8.12.1 Comparison Test

Consider an
n=

∞

∑
1

 and bnb
n=

∞

∑
1

 are two infinite series of positive terms.

If for all n m≥ ,  
a

b
kn

nb
≤ ,  k  being a fixed positive number then

 i) an
n=

∞

∑
1

 is convergent if bnb
n=

∞

∑
1

 is convergent

 ii) bnb
n=

∞

∑
1

 is divergent if an
n=

∞

∑
1

 is divergent

8.12.2 Limit Form of Comparison Test 

Consider an
n=

∞

∑
1

 and bnb
n=

∞

∑
1

 be two infinite series of positive terms and 
n

n

n

a

bn
l

→∞
lim = ,l

where l  is a nonzero finite number.

Then an
n=

∞

∑
1

and bnb
n=

∞

∑
1

 converge and diverge together. [WBUT-2008]

Example 18  

Consider the following two series: 

an
n=

∞

∑ +
+

+
+

+ ∞
1

3 3
+

3
=
1 2+
2

1 2+ 3

3

1 2 3 4+ +
4

and

bnb
n=

∞

∑ + + + + ∞
1

= 1
1

2

1

3

1

4
 

Here 

a
n

n n
b

n
n nb=

( 1)(n 2)

2( 1)
=

( 2n )

2( 1)
=
1

3 2

+n1)(

+ +
and
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Now, 

n

n

n n

a

b

n

n +
lim lim=

( 2)n +

2( 1)
=

1

2
,

2
a nonzernn o finite value.

Since 
nn n

∞ ∞

∑ ∑bnb
1 1n=

1
 is a divergent series, by comparison test the series an

n=

∞

∑
1

 is 

also divergent.

Example 19  

Test the convergence of the infinite series an
n=

∞

∑
1

 where a n nn = ( 1) .3

1

3+ −1)3

[WBUT 2003, 2007]

Sol. Here, we have

   a n nn = ( 1)3

1

3+ −1)3

    = 1
13

3

1

3
n

n
n+⎛

⎝⎝⎝
⎞
⎠
⎟
⎞
⎠

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬ −

    = 1
1
3

1

3
n

n
n+1⎛

⎝⎝⎝
⎞
⎠
⎟
⎞⎞
⎠⎠

⎧
⎨
⎪
⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪
⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

−

 i.e., = 1
1

3

1

1

3

1

3
1

2!

1
3 3

2

a n=
n n

n + +
3

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

+ ∞

⎧

⎨
⎪
⎧⎧

⎪
⎨⎨
⎪⎪

⎩
⎪
⎨⎨

⎪⎩⎩
⎪⎪

⎫

⎬
⎪
⎫⎫

⎪
⎬⎬
⎪⎪

⎭
⎪
⎬⎬

⎪⎭⎭
⎪⎪
−− n

     =
1 1

3

1

9

1
2 3n n3 9

− +
3

∞⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬ 

Let us consider the series bnb
n=

∞

∑
1

 where b
n

nb =
1
2

Now 

n

n

n n

a

bn n→∞ →∞
− + ∞⎧

⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬lim lim=

1

3

1

9

1
=
1

3
,

3
 a nonzernn o finite value.

Since, bnb
n=

∞

∑
1

 is a convergent series, by comparison test, an
n=

∞

∑
1

 is also 

convergent.
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Example 20  

Test the convergence of the infinite series

1
1

2

2

3

3

4

4

52

2

3

3

4

4

5
+ +

2
+ + ++

4 5
∞ [WBUT 2005].

Sol. We know that addition and removal of finite number of terms does not affect 

the convergence of an infinite series.

So, removing the first term from the given series, the resulting series is

an
n=

∞

∑ + + + ++
1

2

2

3

3

4

4

5
=

1

2

2

3

3

4

4

5
 

where a
n

n

n

n
=
( 1)n

.
1+

Let us consider the series bnb
n=

∞

∑
1

,  where b
n

nb =
1
.  Now 

 
n

n

n n

n

n

a

bn

n

→∞ →∞

+

+
lim lim=

( 1)n +
=1,

1

1
a nonzernn o finite value.

Since, bnb
n=

∞

∑
1

 is a divergent series, by comparison test, an
n=

∞

∑
1

 is divergent.

 Therefore, correspondingly the given series 

 1
1

2

2

3

3

4

4

52

2

3

3

4

4

5
+ +

2
+ + ++

4 5
 

is also divergent.

8.12.3 D’Alembert’s Ratio Test

Let an
n=

∞

∑
1

 be an infinite series of positive terms and 

n

n

n

a

a
l

→∞
+lim 1 = ,l any real value.

Then, the series an
n=

∞

∑
1

i) converges if l < 1

ii) diverges if l > 1

iii) the test fails if l = 1
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Example 21  

Examine the convergence of the infinite series

1 2

1!

2 3

2!

3 4

3!

2 22 2 23 2 24
+ + + ∞

Sol. If we write the given series in the form of an
n=

∞

∑
1

 then

 a
n

n
a

n
n n=

( 1)n

!
=
( 1) (n 2)

( 1)!n
.

2 2( 1)
1

2 2( 2)+
+and

Now, 

n

n

n n

a

a

n

n→∞

+

→∞
lim lim1

2

2
=

( 2n + ) (2 !)

( 1)!n +

     =
( 2)

( 1)

2

2n n1)→∞
lim

     = 0 < 1.

Therefore, by D’ Alembert’s ratio test, the series is convergent.

Example 22  

Examine the convergence of the infinite series

1

3

1 2

3 5

1 2 3

3 5 7

2 2 2
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

+ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

+
⋅2
⋅5

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠

+ [WBUT 2002, 2007]

Sol. If we write the given series in the form of an
n=

∞

∑
1

 then

 a
n

n =
1 2 3

3 5 7 (2 1)n

2
⋅2

⋅5
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞
2

⎠
⎟
⎞⎞

⎠⎠

…

and so a
n

n+
⋅ +n

⋅
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
1

2

=
1 2⋅ 3 (n 1)

3 5⋅ 7 (2 1) (n + 2 3)n +

Now,
n

n

n n

a

a

n

→∞
+

→∞

⋅ +n

⋅
⎛

⎝
⎜
⎛⎛

⎝⎝
lim lim1 =

1 2⋅ 3 (n 1)

3 5⋅ 7 (2 1) (n + 2 3)n +
⎞⎞

⎠
⎟
⎞⎞⎞⎞

⎠⎠

⋅
⋅

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

2

2
1 2⋅ 3

3 5⋅ 7 (2 1)+
…n
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        =
1

2 3

2

n

n

→∞

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

lim

        =
1

2
=
1

4
< 1.

2
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

Therefore, by D’ Alembert’s ratio test, the given series is convergent.

8.12.4 Cauchy’s Root Test

Let an
n=

∞

∑
1

 be an infinite series of positive terms and 
n

n ln

→∞
lim ( )nan = .l

1

Then the series an
n=

∞

∑
1

i) converges if l < 1

ii) diverges if l > 1

iii) the test fails if l =1  [WBUT 2004]

Example 23  

Examine the convergence of the infinite series

2

1

2

1

3

2

3

2

4

3

4

3

2

2

1
3

3

2
4

4

3

−
⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟ −

3
+
⎛

⎝

⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟ −

4
+
⎛

⎝

⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟ +

− − −

 [WBUT 2001]

Sol. Let us consider 

an
n=

∞ − −

∑ −
⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞
−

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟ −+

⎛

⎝

⎛⎛
⎜
⎝⎝
⎜⎜

⎞
−

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟ −+

⎛

⎝

⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

1

2

2

1
3

3

2
4

4
=

2

1

2

1

3

2

3

2

4

3

4

3 ⎟⎟ +
−3

 

Then

a
n

n

n

n
n

n
n

=
1 1n

n 1+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
nn

⎠
⎟
⎞
⎠

− ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

+ −

Now, 

n
n

n

n

n
n

n

n

n

n→∞ →∞

+ −
+⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞
⎠

− ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

⎡

⎣

⎢
⎡⎡

lim lim( )na =
1 1

n
n

+
⎞
n +⎛

1 1

⎢⎢
⎢⎢⎢⎢

⎣⎣
⎢⎢⎢⎢
⎣⎣⎣⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

1

n
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     =
1 1

1
1

n

n
n

n

n

n→∞

+ −
+⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠

− ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

lim

     = 1
1

1
1

1

1

n

n

n n→∞

−

+⎛
⎝⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠

−
⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

⎡

⎣
⎢
⎡⎡

⎢⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥lim

     = ( 1) < 1.1e − −

Therefore, by Cauchy’s root test, an
n=

∞

∑
1

 is convergent.

Example 24  

Examine the convergence of the infinite series 1
1

3

2

+
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞

⎠

−

n

n

 [WBUT 2004]

Sol. Let 

 
nn

n

n=

∞ −

=

∞

∑ ∑an +
⎛

⎝
⎜
⎝⎝

⎞
−

⎠
⎟
⎞⎞

⎠⎠1

3

2

1

1∑⎛
⎜
⎛⎛ 1

then

a
n

n

n

= 1
1

.

3

2

+
⎛

⎝
⎜
⎝⎝

⎞

⎠
⎟
⎞

⎠

−

Now,

n
n

n

n

n

n

n→∞ →∞

−

+
⎛

⎝
⎜
⎝⎝

⎞
−

⎠
⎟
⎞⎞

⎠⎠

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢
⎣⎣

⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎦⎦

⎥⎥
lim li( )na = 1

⎛
⎜
⎛⎛⎢

⎢
⎢⎢lim

1
1

3

2

1

      = 1
1

n

n

n→∞

−

+
⎛

⎝
⎜
⎝⎝

⎞
−

⎠
⎟
⎞⎞

⎠⎠

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥li

      =
1
< 1.

e

Therefore, by Cauchy’s root test, an
n=

∞

∑
1

 is convergent.
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8.12.5 Raabe’s Test

Let an
n=

∞

∑
1

 be an infinite series of positive terms and 
n

n

n

n
a

a
l

→∞ +
−

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠

⎞⎞
⎟
⎠⎠

lim
1

1 =
⎞
⎟
⎞⎞

.  

Then the series an
n=

∞

∑
1

 

 i) converges if l > 1

ii) diverges if l < 1

iii) the test fails if l =1

Example 25  

Examine the convergence of the infinite series

1
1

2

1

3

1 3

2 4

1

5

1 3 5

2 4 6

1

7
+ ⋅ + ⋅ +

⋅3
⋅4

⋅ + 

Sol. Since addition or removal of a finite number of terms does not affect the con-

vergence of an infinite series, by removing the first term of the given series, let 

the resulting infinite series be 

an

n=

Â ◊ + +
◊

◊
+

1

=
1

2

1

3

1 3◊

2 4◊

1

5

1 3◊ 5

2 4◊ 6

1

7
 

Then

a
n

n =
1 3 5 (2 3)n

2 4 6 (2 2)n

1

(2 1)

⋅3
⋅4

⋅
−

and so a
n

n n
n+

⋅ −n

⋅
⋅

+1 =
1 3⋅ 5 (2 3)(2n 1)

2 4⋅ 6 (2 2)2n

1

(2 1)

Now 

n

n

n n

a

a

n

→∞

+

→∞

−
lim lim1

2

=
(2 1)

2 (n 2 1)n +
=1

Therefore, D’ Alembert’s ratio test fails.

But 

n

n

n n
n

a

a
n

n→∞ + →∞
−

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠ −
−

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
lim lim

1
2

1 =
⎞
⎟
⎞⎞ 2 (n 2 1)n +

(2 1)
1

        =
6

(2 1)
=
3

2
> 1

2

2n

n n

n→∞ −
lim

Therefore, by Raabe’s test, the series an
n=

∞

∑
1

 is convergent.
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8.13 ALTERNATING SERIES 

The infinite series of the form ( ) ,−

=

∞

∑ 1

1

n
n

n

a  where an > 0  for all n N  is called an 

alternating series.

Example 26  

Let us consider the series 

( 1)
1

= 1
1

2

1

3

1

4

1

2 2
1

2 2 241

−1) = 1 + −
2

+−

=

∞

∑ n

n n
 

Here an > 0  for all n N .  So this is an alternating series.

8.13.1  Test of Convergence of Alternating  
Series (Leibnitz’s Test)

Let ( ) −

=

∞

∑ 1

1

n
n

n

a  be an alterenating series with an > 0  for all n N .  Then the series 

converges if

 i) an n< ,ana  i.e., { }n  is a monotonic decreasing sequence 

 ii) 
n

na
→∞
lim = 0

[WBUT-2009]

Example 27  

Examine the convergence of the alternating series

2
3

2

4

3

5

4
− + − + 

Sol. If we write the series in the form of ( 1) 1

1

−

=

∞

∑ n
n

n

a  then

 a
n

a
n

n
n n=

( 1)n
=

2

1
.1

+
++and

Now

a a
n n

n na −
++1 =

( 1) 2n n+ +
1

     =
1

( 1)
> 0

n(
nfor all

So a an na> 1+ ,  i.e., { }n  is a monotonic decreasing sequence.
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But

n
n

n
a

n→∞ →∞
lim lim=

( 1)n +
=1

i.e., 0.
n

n
→∞
li

Therefore, by Leibnitz’s test, the alternating series is not convergent.

Example 28  

Examine the convergence of the alternating series 
cosn

nn

πn
2

1 1
.

+=

∞

∑  [WBUT 2002]

Sol. Since cosn nπn = ( 1) ,−  the alternating series can be written as

 
cosn

n n nn

n

n

n

n

π
2

1
2

1
2

11

( 1)

1
= ( 1)

1

1
.

+ +
−

+=

∞

=

∞

=

∞

∑ ∑cosnπn
2 1

=
+

∑

Then,

a
n

an n=
1

1
=

1

( 1) 1n2 1 2+
+and so

Now

a a
n

n na
+

−+1 2 2
=

1

1

1

( 1) 1n + +2

     =
(2 1)

( 1)(( 1) 1)
> 0

2 2

n

n1)((

+
+1)((n1)(( +

The above implies that { }n  is a monotonic decreasing sequence.

 Also
n

n
n

a
n→∞ →∞ +

lim lim=
1

1
= 0

2

Therefore, 
cosn

nn

πn
2

1 1+=

∞

∑  is convergent by Leibnitz’s test.

8.14 ABSOLUTE CONVERGENCE

Let an
n=

∞

∑
1

 be an infinite series. The series is said to be absolutely convergent if an
n=

∞

∑
1

is convergent.
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Suppose ( 1) 1

1

−

=

∞

∑ n
n

n

a  be an alternating series. The alternating series is said to be 

absolutely convergent if

1

1 1=

∞

=

∞

∑ ∑( 1) =1

n

n

n

a∑=

is convergent. [WBUT-2009]

Note: An absolutely convergent series is convergent, but the converse is not always 

true.

Example 29  

Examine the absolute convergence of the alternating series
cosn

nn

πn
2

1

.
=

∞

∑

Sol. Since cosn nπn = ( 1) ,−  the alternating series can be written as

 
cosn

n n nn

n

n

n

n

π
2

1
2

1
2

1

( 1)
= ( 1)

1
.

=

∞

=

∞

=

∞

∑ ∑cosnπn
2

= ∑ −

Here, a
n

n =
1
.

2
 Then

 
nn n

∞

=

∞

∑ ∑an
1

2
1

1
.

But the series 
1
2

1 nn=

∞

∑  is a p-series with p = 2  .( )> 1  So the series is 

convergent.

 Correspondingly, an
n=

∞

∑
1

 is also convergent.

 Hence the given series 
cosn

nn

πn
2

1=

∞

∑  is absolutely convergent.

8.15 CONDITIONAL CONVERGENCE

Let an
n=

∞

∑
1

 be an infinite series. The series is said to be conditionally convergent if 

an
n=

∞

∑
1

 is convergent but not absolutely convergent, i.e., an
n=

∞

∑
1

 is not convergent.
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An alternating series ( 1) 1

1

−

=

∞

∑ n
n

n

a  is said to be conditionally convergent if 

( 1) 1

1

−

=

∞

∑ n
n

n

a  is convergent but an
n=

∞

∑
1

 is not convergent. [WBUT-2009]

Example 30  

Examine the conditional convergence of the alternating series

1
1

2

1

3

1

4

1

5
− + − + − ∞

Sol. This is an alternating series of the form ( 1)
1
.1

1

1

1=

∞
−

=

∞

∑ ∑( 1) =1

n

n

n n

Here 

a
n

a
n

n n=
1

=
1

1
1and so + +

Let us apply Leibnitz’s test for checking convergence.

Now 

a a
n n n

n na −a
n++1 =

1 1

1
=

1

( 1)n +n
> 0

This proves that { }n  is a monotonic decreasing sequence.

 Again, 
n

n
n

a
n→∞ →∞

lim lim=
1
= 0.

Therefore, ( 1)
11

1

1

1=

∞
−

=

∞

∑ ∑( 1) =1

n

n

n n
 is a convergent series.

Now we consider an
n=

∞

∑
1

 which is 

 1
1

2

1

3

1

4

1

5
=

1
.

1

+ + + + +
=

∞

∑ 

nn

This is a p-series with p =1,  and so the series is divergent.

 Since, ( 1) 1

1

−

=

∞

∑ n
n

n

a  is convergent and an
n=

∞

∑
1

 is divergent, 

 ( 1)
11

1

1

1=

∞
−

=

∞

∑ ∑( 1) =1

n

n

n n
 is conditionally convergent.
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WORKED-OUT EXAMPLES

Example 8.1  Examine the convergence of the infinite series

n n
n

4 4

1

1 1n4+1{ }
=

∞

∑ [WBUT 2008]

Sol. Let 

n n
n n

∞

=

∞

∑ ∑an + − −{ }
1

4 4

1

1n∑ +{ 4 1

This is an infinite series of positive terms. Here

a n nn = 1n 14 4−1 −{ }

  =

1 1 1 1

1 1

4 4 4 4

4 4

n n1 n n1

n n1

+11{ } +11{ }
+11{ }

  =
2

1 14 4
n n1+11{ }

Let us consider the series 
nn n

∞

=

∞

∑ ∑bnb
1

2
1

1
,  which is convergent since it is a 

p-series for p = 2.

Now,

n

n

n n

a

bn

n

n n
→∞ →∞ +{ }
lim lim=

2

1 1n+ − .

2

4 4

     = 1, a nonzero finite value.

Since 
nn n

∞

=

∞

∑ ∑bnb
1

2
1

1
 is a convergent series, by comparison test, we can 

 conclude that

 n n
n n

∞

=

∞

∑ ∑an + − −{ }
1

4 4

1

1n∑ +{ 4 1

is also convergent.
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Example 8.2  Examine the convergence of the infinite series

x
x x x

+ + + +
2 3 4

2 3 4
 

Sol. Let us consider 

x

nn

n

n=

∞ ∞

∑ ∑an
1 1n=

where 

a
x

n
a

x

n
n

n

n

n

= =
1
.1

1

and +

+

+

Now, 

n

n

n n

n

n

a

a

x nn

xn
x

→∞

+

→∞

+

lim lim1
1

=
( 1)n +

= .x

Then  by D’Alembert’s ratio test, we have 

  i) If x < 1,  the infinite series is convergent

  ii) If x > 1,  the infinite series is divergent

 iii) If x =1,  the test fails

 For x =1,  the series becomes 

 1
1

2

1

3

1

4
=

1
.

1

+ + + +
=

∞

∑ 

nn

Since 
1

1 nn=

∞

∑  is a divergent series, the infinite series 
x

n

n

n=

∞

∑
1

 diverges for x ≥ 1

and converges for x < 1.

Example 8.3  Examine the convergence of the infinite series

1
2 5 10

2 3

+ + + +
x x x

 [WBUT-2009]

Sol. We know that addition or removal of a finite number of terms does not alter 

the convergence of an infinite series.

So, removing the first term, we have the series of the form 

x x x

2 5 10

2 3

+ + + 
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Suppose we write the series in the form 

x

nn

n

n=

∞

=

∞

∑ ∑an
+1

2
1 1

Then 

a
x

n
a

x
n

n

n

n

=
1

=
( 1) 1n

.
2 1

1

2+
+

+

and so

Here,

n

n

n n

n na

a

x x

n→∞

+

→∞

+

+
lim lim1

1

2 2
=

( 1) 1n + +2 + 1

      =
1

( 1) 1
=

2

2
x

n
x

n
⋅

+
1)1)→∞

lim

So by D’Alembert’s ratio test, we can conclude that

  i) If x < 1,  the infinite series is convergent

  ii) If x > 1,  the infinite series is divergent

 iii) If x =1,  the test fails

 For x =1,  the series becomes 

 
1

2

1

5

1

10
=

1

12
1 1

+ + +
+=

∞

=

∞

∑ ∑1

1
=

2 +
 

n
b

n

nb
n

Here, b
n

nb =
1

1
.

2 +

Consider the series 
nn n

∞

=

∞

∑ ∑cn
1

2
1

1
,  which is convergent. Now

 
n

n

n
n

b

c

n

n→∞ →∞ +
lim lim=

1
= 1,

2

2
a nonzero finite number.

Therefore, by comparison test, 
1

12
1 nn +=

∞

∑  is a convergent series.

 Hence,
x

nn

n

n=

∞

=

∞

∑ ∑an
+1

2
1 1

 is convergent for x ≤ 1  and divergent for x > 1.
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Example 8.4  Examine the convergence of the infinite series 
n

n

n

n
n

! 2
.

1=

∞

∑  [WBUT 2003]

Sol. Let us consider 

 
n

nn

n

n
n=

∞ ∞

∑ ∑an
1 1n=

! 2⋅

Then 

a
n

n
an

n

n n

n

n
=

!2
=
( 1)!2n

( 1)n
1

1

1
and so +

+

+

Here 

lim lim
a

a

n

n

n

n n

n

n

n

n

+

→∞

+

+
1

1

1
=

( 1)!2n +
( 1)n +

!2

      =
2

1
1

=
2
< 1

n n

n

e→∞
+⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠

lim

Therefore by D’Alembert’s ratio test, the series 
n

n

n

n
n

! 2

1=

∞

∑  is convergent.

Example 8.5  Test the convergence of the series

1 1

1 n nn

sin
=

∞

∑ [WBUT-2001]

Sol. Let us consider the given infinite series

n nn n

∞ ∞

∑ ∑an
1 1n=

1 1
sin

then 

a
n n

n =
1 1

sin

Let us consider the series

n
n n

∞

=

∞

∑ ∑bnb
1

3

2
1

1

Then

b

n

nb =
1
3

2

Now,

n

n

n n n

a

bn

n n

n

n

n

→∞ →∞ →∞
lim lim

sin

lim

sin

=

1 1
i

1
=

1

1
= 1

3

2
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Since 

n
n n

∞

=

∞

∑ ∑bnb
1

3

2
1

1

is a convergent series, by comparison test 

n nn n

∞ ∞

∑ ∑an
1 1n=

1 1
sin

is a convergent series.

Example 8.6  Test the convergence of the series

1
2 1

1! 2! 3!

2 3

+ +
( )2 1

+
( )2 1

+ ∞ [WBUT-2001]

Sol. Since addition or removal of a finite number of terms does not affect the 

convergence of an infinite series, by removing the first term of the given series, 

let the resulting infinite series be 

nn

n

n=

∞ ∞

∑ ∑an
( )

1 1n=

−

!

Then 

a
n

an

n

n

n

=
!

=
( 1)!n

1

1( )2 1 ( )2 1

+

+

and

Now,

n

n

n n

n

n n

a

a

n

→∞

+

→∞

+

→∞

( )

( )
( )

lim lim lim1

1

=

−

( 1)!n +

−

!

=
−

( 1)n +
= 0== < 1

Therefore, by D’ Alembert’s ratio test, 

nn

n

n=

∞ ∞

∑ ∑an
( )

1 1n=

−

!

is convergent.
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Example 8.7 Test the convergence of the series

1 2

1

2 2

2

3 2

3

2

4

2

4

2
2

4

3
+ + + ∞x x

4
+ x [WBUT-2002]

Sol. Let the given infinite series be 

n
x

n

n

n=

∞

=

∞

∑ ∑an
1

2

4
1

( 2)n +
2

Then

a
n

x a xn
n

n
n=

( 2)n
=

( 1)n

2

4 1

2

4

1
+

+and
{ }( 1) 2(n

Now,

n

n

n
n

n

n
n

a

a

n
x

n
x

n

→∞

+

→∞

+

→∞

+ +

lim lim lim1

2

4

1

2

4

=

{( 1) 2}

( 1)n +
( 2)n +2

=
( + +++

+ +
1) 2

2 ( 1)

2

2

4

4n

n

n
x

=

1
1 2

1
2

1

1
1

2

2

2

4n

n n

n n

x x=
→∞

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

+

+ +⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
4

⎠
⎟
⎞⎞
⎠⎠

lim

By D’Alembert’s ratio test,

 (i) If x < 1, the infinite series is convergent

(ii) If x > 1, the infinite series is divergent

(iii) If x =1, the test fails

For x =1,  the infinite series becomes

1 2

1

2 2

2

3 2

3

2

4

2

4

2

4
+ + + ∞

Here,

a
n

n =
( 2)n2

4

Consider the series

nn n

∞

=

∞

∑ ∑bnb
1

2
1

1
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Then 

n

n

n
n

a

bn

n

n→∞ →∞ +
lim lim=

1
= 1 .

2

2
(a nonzero finite number)

Since

nn n

∞

=

∞

∑ ∑bnb
1

2
1

1

is a convergent series, by comparison test

( 2)2

4
1 nn=

∞

∑

is also a convergent series.

Therefore,

n
x

n

n

n=

∞

=

∞

∑ ∑an
1

2

4
1

( 2)n +2

is convergent for x ≤ 1  and divergent for x > 1.

Example 8.8  Examine the convergence of the series

1
2 5 10

2 3

+ + + + ∞
x x x

 [WBUT-2004]

Sol. Since addition or removal of a finite number of terms does not affect the

convergence of an infnite series, by removing the first term of the given series,

Let the resulting infinite series be

x

nn

n

n=

∞

=

∞

∑ ∑an
+1

2
1 1

Then 

a
x

n
a

x
n

n

n

n

=
1

=
( 1) 1n2 1

1

2+
+

+

and so

Now,

n

n

n
n

n

n n

a

a

x

x

n

n
x

→∞

+

→∞

+

→∞

+

+
lim lim lim1

1

2

2

2

2
=

( 1) 1n + +2

1

=
1

( 1) 1n + +2

=
1

2 2
=

1
1

1
2 2

2

2

2

2

n n

n

n n2
x n

n n

x x=
→∞ →∞

+
+ 22

+

+ +
lim lim
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Therefore, by D’Alembert’s ratio test,

 i) If x < 1, the infinite series is convergent

ii) If x > 1, the infinite series is divergent

iii) If x =1, the test fails

For x =1,  the series becomes

nn n

∞

=

∞

∑ ∑an
+1

2
1

1

1

Consider the series

nn n

∞

=

∞

∑ ∑bnb
1

2
1

1

Then

n

n

n
n

a

b

n

n→∞ →∞ +
lim lim=

1
= 1 .

2

2
(a nonzero finite number)

Since 

nn n

∞

=

∞

∑ ∑bnb
1

2
1

1

is a convergent series, by comparison test 

nn n

∞

=

∞

∑ ∑an
+1

2
1

1

1

is also a convergent series.

Therefore, 

x

nn

n

n=

∞

=

∞

∑ ∑an
+1

2
1 1

is convergent for x ≤ 1  and divergent for x > 1.

Example 8.9 Test the convergence of the series

1 2 3
3

2

3

2

3

2a b12 a b22 a b3212

+

22

+

32

+ ∞ ( )> 0a [WBUT-2004]

Sol.  Let the infinite series be

n

a n b
n

⋅ +n
=

∞

∑ 3

2
1

where

a
n

a n b

n = 3

2⋅ +n2
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Consider the divergent series 

nn n

∞ ∞

∑ ∑bnb
1 1n=

1
.

Now,

n

n

n
n n

a

bn

n

a n b

n

n

a n b
→∞ →∞ →∞

⋅ +n

⋅ +n

lim lim lim=
1

=

3

2

3

2

3

2

=
1

=
1

3

2

n
a

b

n

a→∞ +
lim (a nonzernn o finite number)

Therefore, by comparison test 

n

a n b
n

⋅ +n
=

∞

∑ 3

2
1

i.e,
1 2 3

3

3

2

3

2

3

2a b12 a b22 a b3212

+

22

+

32

+ ∞

is a divergent series.

Example 8.10  Test the convergence of the series

1
2

3

2 4

3 5

2 4 6

3 5 7
, 1

2

2

2 24
2 25

2
2 24 2

2 25 2

3+ +
2

+
⋅4

⋅5
+x x

2 2
+ x ,+ ∞ [WBUT-2004, 2009]

Sol. Since addition or removal of finite number of terms does not effect the conver-

gence of an infinite series, by removing the first term of the given series, 

Let the resulting infinite series be 

x
n

n

n=

∞

=

∞

∑ ∑an
⋅

⋅1

2 2 2 2

2 2 2 2
1

2 4⋅2 6 (2 2 )n

3 5⋅2 7 (2 2 1)n +
.

Then

a xn
n=

2 4 6 (2 )n

3 5 7 (2 1)n

2 24 2 2(2 )
2 25 2 2

⋅4

⋅5

and so a
n

xn
n

+
+⋅ +

⋅
1

2 2 2 2 2

2 2 2 2 3

1=
2 4⋅2 6 (2 2 )n (2 2)

3 5⋅2 7 (2 2 1) (n + 2 2 3)n +n
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Now,

n

n

n
n

a

a

n

→∞

+

→∞

⋅ +
⋅

lim lim1

2 2 2 2 2

2 2 2 2

=

2 4⋅2 6 (2 2 )n (2 2)

3 5⋅2 7 (2 2 1) (n + 2 2nn
x

x

n

n

+
⋅

⋅

+

3)

2 4⋅ 6 (2 )n

3 5⋅ 7 (2 1)n +

3

1

2 24 2 2(2 )
2 25 2 2

=
(2 2)

(2 3)

2

2n

n

n
x x=

→∞

+
+

lim

Therefore, by D’Alembert’s ratio test,

i) If x < 1, the infinite series is convergent

ii) If x > 1, the infinite series is divergent

Example 8.11 Test the convergence of the series

sin sin sin sin
1

1

1

2

1

3

1
3

2

3

2

3

2

⎛

⎝

⎜
⎛⎛

⎜⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟⎟
⎠⎠
⎟⎟ +

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟
⎟
⎠⎠
⎟⎟ +

⎛

⎝

⎜
⎛⎛

⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟
⎠⎠
⎟⎟ +

44

3

2

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟
⎟
⎠⎠
⎟⎟ + ∞ [WBUT-2005]

Sol.  Let the infinite series be of the form

n
n n

∞

=

∞

∑ ∑an

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞

⎟
⎟

⎟
⎠
⎟

1
3

2
1

1
.sin

Then

a

n

n =
1
3

2

sin

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞

⎟
⎟

⎟
⎠
⎟

Consider the p-series for p =
3

2
as

n
n n

∞

=

∞

∑ ∑bnb
1

3

2
1

1

where,

b

n

nb =
1
3

2

Now,

n

n

n
n

a

b

n

n

→∞ →∞

⎛

⎝⎝

⎜
⎛⎛

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠⎠

⎟
⎞⎞

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

lim lim

sin

=

1

1

= 1,

3

2

3

2

a nonzero foo inite value.



 8.30  Engineering Mathematics-I 

Since

n
n n

∞

=

∞

∑ ∑bnb
1

3

2
1

1

is a convergent series, by comparison test,

n
n n

∞

=

∞

∑ ∑an

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞

⎟
⎟

⎟
⎠
⎟

1
3

2
1

1
sin

is also convergent.

Example 8.12  Test the convergence of the series n e n

n

4 2

1

−

=

∞

∑ [WBUT-2005]

Sol.  Let the infinite series be of the form

n e
n

n

n=

∞
−

=

∞

∑ ∑an
1

4 2

1

.n e∑
Then

a n e a en
n

n
n= ( 1)n4 2

1
4 (e 1)2−

+
+n(and so

Now,

n

n

n
n

n

n n

a

a

e

n e

n

n→∞

+

→∞

+n

− →∞

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

lim lim lim1
4 (e− 1)2

4 2

4

=
( 1)n +

=
1 1⎞

4

ee n( 1)n 2 21)2

= 1
1 1

= 0 < 1

4

2 1n nn e→∞
+⎛

⎝⎝⎝
⎞
4

⎠
⎟
⎞⎞
⎠⎠

li

Therefore, by D’Alembert’s ratio test, the series is convergent.

Example 8.13 Test the convergence of the series
n

n
xn

n

2

2
1

1

1
; >x 0

−
+=

∞

∑
[WBUT-2006]

Sol.  Let the infinite series be of the form

n

n
x

n

n

n=

∞

=

∞

∑ ∑an
−
+1

2

2
1

1

1
.

Then 

a
n

n
x a xn
n

n
n=

1

1
=
( 1) 1n

( 1) 1n

2

2 1

2

2

1−
+

1)1)

1)1)
+

+and
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Now,

n

n

n
n

n

n
n

a

a

x

n

n
x

n

→∞

+

→∞

+

→∞−
+

lim lim lim1

2

2

1

2

2

=

( 1) 1n + −2

( 1) 1n + +2

1

1

=
( 2 222

2 2

)( 1)2

( 22 2)( 1)2

+ 2 )( 2

+2

)()(

n22
x

=

1
2

1
1

1
2 2

1
1

2

2 2
1

n

n n

n n n

x x=
→∞

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠

+ +⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞ −⎛
⎝
⎜
⎛⎛ ⎞

⎠
⎟
⎞⎞
⎠⎠

lim

Therefore, by D’Alembert’s ratio test, the series is 

 (i) convergent if x < 1

(ii) divergent if x > 1  and

(iii) the test fails for x =1

For x =1,  the series becomes

n

nn n

∞

=

∞

∑ ∑an
−
+1

2

2
1

1

1

Now,

n
n

n
a

n

n→∞ →∞

−
+

≠lim lim=
1

1
= 1 0

2

2

So the series is divergent for x =1.

Hence, the series is convergent for x < 1 and divergent for x ≥ 1.

Example 8.14 For what values of x  is the following series convergent?

x x x

1 3 3 5 5 7

2 3

+ + + ∞ [WBUT-2006]

Sol.  Let the infinite series be of the form

x

n nn

n

n=

∞ ∞

∑ ∑an − +n1 1n= (2 1)(2 1)
.

Then

a
x

n n
a

x

n n
n

n

n

n

=
(2 1)(2 1)

=
(2 1)(2 3)

1

1

+n1)(2 +n+1)(2+

+

and so



 8.32  Engineering Mathematics-I 

 Now,

n

n

n
n

n

n

a

a

x

n n

x

n n

→∞

+

→∞

+

+n+

− +n

lim lim1

1

=
(2 1)(2 3)

(2 1)(2 1)

=
(2 1)

(2 3)n

n

n
x x=

→∞

−
+

lim

Therefore, by D’Alembert’s ratio test, the series is

  (i) convergent if x < 1

 (ii) divergent if x > 1 and 

(iii) the test fails for x =1

For x =1, the series becomes

n nn n

∞ ∞

∑ ∑an − +n1 1n=

1

(2 1)(2 1)

Consider another series

nn n

∞

=

∞

∑ ∑bnb
1

2
1

1

where,

b
n

nb =
1
2

Now,

n

n

n
n n

a

bn

n n

n

n

n n→∞ →∞ →∞

+n
− +n

lim lim lim=

1

(2 1)(2 1)

1
=

(2 1)(2 1)
2

2

=
1

2
1

2
1

=
1

4n

n n

→∞
−⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

lim (a nonzero finite value)

Since

nn n

∞

=

∞

∑ ∑bnb
1

2
1

1

being a p-series for p = 2, is a convergent series,
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By comparison test

n nn n

∞ ∞

∑ ∑an − +n1 1n=

1

(2 1)(2 1)

is also convergent.

Therefore, the given series is convergent for x ≤ 1.

Example 8.15 Examine the convergence of the series
nx

n

n

n +
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞
⎠=

∞

∑
10

Sol. Since addition or removal of a finite number of terms does not affect the con-

vergence of an infnite series, by removing the first term of the given series, 

Let the resulting infinite series be

nx

nn

n

n=

∞ ∞

∑ ∑an +
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠1 1n= 1

Then

a
nx

n
n

n

=
1+

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠

Now,

n
n
n

n

n n

n

nx

n

nx

n→∞ →∞ →∞+
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞
⎠

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭ +

⎛
⎝
⎜
⎛⎛
⎝⎝

lim lim lim( )na =
1

=
1

1
1

⎞⎞
⎠
⎟
⎞⎞
⎠

=
1

1
1n

n

x x=
→∞ +

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜
⎜
⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟
⎟
⎠⎠
⎟⎟

lim

Therefore, by Cauchy’s root test, the series is

 (i) convergent for x < 1

(ii) divergent for x > 1

(iii) test fails for x =1

For x =1,  the series becomes

n

nn

n

n=

∞ ∞

∑ ∑an +
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠1 1n= 1

Now,

n
n

n

n

n n
a

n

n

n

e→∞ →∞ →∞+
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞
⎠

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠

≠lim lim lim=
1

=
1

1
1

=
1

0
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Therefore, the series is divergent in this case.

Hence the given series is convergent for x < 1  and divergent for x ≥ 1.

Example 8.16 Examine the convergence of the series 
(1 )

1

+

=

∞

∑ nx

n

n

n
n

Sol.  Let the infinite series be of the form

nx

nn

n

n
n=

∞ ∞

∑ ∑an
+

1 1n=

(1 )
.

Then a
nx

n
n

n

n
=
(1 )+

Now,

n
n
n

n

n

n

n

n

nx

n

nx

n→∞ →∞ →∞

+⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨

⎫
⎬
⎫⎫
⎬⎬
⎫⎫⎫⎫

⎭
⎬⎬
⎭⎭
⎬⎬⎬⎬

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

lim lim lim( )na =
(1 )

=
1

1
1

=
1

n n
x x=

→∞
+⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

lim

Therefore, by Cauchy’s root test, the series is

  (i) convergent for x < 1

 (ii) divergent for x > 1

(iii) test fails for x =1

For x =1, the series becomes 

n

nn

n

n=

∞ ∞

∑ ∑an
+⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠1 1n=

1

Now,

n
n

n

n

n

n

a
n

n n
e

→∞ →∞ →∞

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞
⎠

+⎛
⎝⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠

≠lim lim li=
1

= 1
⎛
⎝
⎜
⎛⎛
⎝⎝

lim
1

= 0e ≠

Therefore, the series is divergent in this case.

Hence, the series is convergent for x < 1 and divergent for x ≥ 1.

Example 8.17  Examine the convergence of the series

1

2

2

3

3

4

4

5

2
2

3
3+ + ⎛

⎝
⎛⎛
⎝⎝

⎞
2

⎠
⎞⎞
⎠⎠

+ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
3

⎠
⎟
⎞⎞
⎠⎠

+ ∞xx + ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

x

Sol. Since addition or removal of a finite number of terms does not affect the con-

vergence of an infnite series, by removing the first term of the given series,
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Let the resulting series be 

n

n
x

n

n
n

n=

∞ ∞

∑ ∑an
+
+

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠1 1n=

1

2
.

Then

a
n

n
xn

n
n=

1

2

+
+

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠

Now,

n
n
n

n

n
n

n

n

n

n
x

n

n→∞ →∞ →∞

+
+

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

+
+

lim lim lim( )na =
1

2
=

1
1

1

22

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬x x=⎬

Therefore, by Cauchy’s root test, the series is

 (i) convergent for x < 1

(ii) divergent for x > 1

(iii) test fails for x =1

For x =1,  the series becomes

n

nn

n

n=

∞ ∞

∑ ∑an
+
+

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠1 1n=

1

2

Now,

n
n

n

n

n n
a

n

n

n

→∞ →∞ →∞

+
+

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠

+
+

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠

lim lim lim=
1

2
=

1

1
1

1

=

1
1

1

1
1

1

=
1

0
1n n

n

n

e→∞ +

+
+

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

+
+

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠

≠lim

Therefore, the series is divergent in this case.

Hence, the series is convergent for x < 1 and divergent for x ≥ 1.

Example 8.18 Examine the convergence of the series
1

52
2

+
+=

∞

∑ n n

nn

log

Sol. Since the addition or removal of finite number of terms does not effect the 

convergence of an infnite series, by adding
1 1 1

1 52

⋅1 log
 as the first term to the

given series, 
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Let the resulting series be

n n

nn n

∞

=

∞

∑ ∑an
+

+1
2

1

1

5
.

log

Then 

a
n n

n
n =

1

52

+
+
log

Consider the well-known divergent series 

nn n

∞ ∞

∑ ∑bnb
1 1n=

1

where 

b
n

nb =
1

Now,

n

n

n
n n

a

bn

n n

n

n

n n n

n→∞ →∞ →∞

+
+ +

+
lim lim

log

lim
log

=

1

5
1

=
5

2 2

2

=

1

1
5

=

2

n

n
n

n

→∞

+

+
∞lim

log

Therefore, by comparison test, the series

1

52
1

+
+=

∞

∑ n n

nn

log

is divergent.

Example 8.19  Examine the convergence of the series

1

2

3

4

1 3 5

2 4 6

1 3 5 7

2 4 6 8

2

2

2

2

2

2
+

⋅3
⋅4

+
⋅3
⋅4

+ ∞

Sol. Since addition or removal of a finite number of terms does not affect the con-

vergence of an infinite series, by removing the first term of the given series, let 

the resulting infinite series be 

n

n nn n

∞

=

∞

∑ ∑an
⋅ +n
⋅ +1

2

2
1

1 3⋅ 5 (2 1)(2n 1)

2 4⋅ 6 2 (2 2)…

Then, a
n

n n
n =

1 3 5 (2 1)(2n 1)

2 4 6 2 (2 2)

2

2

⋅3 +n1)(2

⋅4 +…
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and so a
n

n
n+

⋅ +n
⋅ +n

1

2

2
=
1 3⋅ 5 (2 1)(2n + 3)

2 4⋅ 6 (2 2)(2n + 4)

Now,

n

n

n
n

a

a

n n

n n→∞

+

→∞

+ +n
+n+

lim lim1
2

2
=

(2 3) (2 2)

(2 4) (2 1)

=

2
3

2
2

2
4

2
1

= 1

2

2n

n n

n n

→∞

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

lim

So, it is obvious from the above that D’Alembert’s ratio test fails.

Therefore, we apply Raabe’s test.

Now,

n

n

n
n

n
a

a
n

n n

n n→∞ + →∞
−

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬

+n+
+n+

−
⎧

lim lim
1

2

2
1 =
⎫
⎬
⎫⎫ (2 4) (2 1)

(2 3) (2 2)
1⎨⎨

⎧⎧⎧⎧⎧⎧
⎨⎨⎨⎨
⎧⎧⎧⎧⎧⎧⎧

⎩
⎨⎨⎨⎨
⎩⎩
⎨⎨⎨⎨⎨⎨⎨

⎫
⎬
⎫⎫
⎬⎬
⎫⎫⎫⎫

⎭
⎬⎬
⎭⎭
⎬⎬⎬⎬

=
4 6 2

(2 3) (2 2)

3 26
2n

n6 n

n n3) (2→∞

−26n6

+ +3) (22 n3) (2

⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨

⎫
⎬
⎫⎫
⎬⎬
⎫⎫⎫⎫

⎭
⎬⎬
⎭⎭
⎬⎬⎬⎬lim

=

4
6 2

2
2

2
3

=
4

8
=
1

2
< 1

2

2n

n n

n n

→∞

+ −

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

lim

Therefore, by Raabe’s test, the given series is divergent.

Example 8.20 Test the convergence of the following series:

x x x x
2

2
4

2 2
6

2 2 2
82

3 4

2 42

3 4 5 6

2 42 6

3 4 5 6 7 8
, >x 0+ +

⋅4
+

⋅4

⋅4 ⋅6
+ ∞

Sol.  Let the infinite series be of the form

n

n
x

n

n

n=

∞

=

∞

∑ ∑an ⋅ +n1

2 2 2
2 2n+

1

2 4⋅2 (2 )

3 4⋅ 5 6⋅ (2 2)

…

…

where

a
n

n
xn

n=
2 4 (2 )

3 4 5 6 (2 2)

2 24 2
2 2n

⋅4 +n6 (2

…

…
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and a
n

n n n
xn

n

+ ⋅ +n +n+1

2 2 2 2
2 4n+=

2 4⋅2 (2 ) (2 2 2)n ++
3 4⋅ 5 6⋅ (2 2)(2 3)(2 4)

…

…

Now,

n

n

n
n

a

a

n

n n
x x

→∞

+

→∞

+
+n+

lim lim1
2

2 2=
(2 2)

(2 3)(2 4)

By D’Alembert’s ratio test, the series is

  (i) convergent if x2 < 1, i.e., 0 < < 1x

 (ii) divergent if x2 > 1 i.e., x > 1

(iii) The test fails for x =1.

For x =1, the series becomes 

n

n
n n

∞

=

∞

∑ ∑an ⋅ +n1

2 2 2

1

2 4⋅2 (2 )

3 4⋅ 5 6⋅ (2 2)

…

…

Then

a
n

n
n =

2 4 (2 )

3 4 5 6 (2 2)

2 24 2

⋅4 +n6 (2

…

…

and a
n

n n n
n+ ⋅ +n + +n1

2 2 2 2

=
2 4⋅2 (2 ) (2 2 2)n ++

3 4⋅ 5 6⋅ (2 2)(2 3)(2 4)

…

…

Now,

n

n

n
n

n
a

a
n

n n

n→∞ + →∞
−

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

+n+
+

−
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
lim lim

1
2

1 =
⎞
⎟
⎞⎞ (2 3)(2 4)

(2 2)
1

=
(6 8)

(2 2)
=
6

4
=
3

2
> 1

2n

n n(6

n→∞

+
+

lim

Therefore, by Raabe’s test, the series is convergent for x =1.

Example 8.21 Test the convergence of the series

sin(2 1)
2

( 1)1n=

∞

∑
π

Sol.  Since

sin(2 1)
2
= ( 1) 1n−1) = ( −π

the given series can be represented as

( 1)
1

( 1)

1

1

1

1=

∞
−

=

∞

∑ ∑( 1) =1

n

n

n

So, this is an alternating series and we apply Leibnitz’s test for testing its

convergence.
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Here 

a an n=
1

( 1)n
=

1

( 2n )
1+and so

Now,

a a
n n n

n Nn na +
−

+ ++1 =
1

1

1

2
=

1

( 1)(n +n 2)
> 0 for all

Since, an n< ,ana  so { }n is monotonically decreasing.

Also,

n
n

n
a

n→∞ →∞ +
lim lim=

1

1
= 0

Therefore, by Leibnitz’s test the alternating series is convergent.

Example 8.22 Test the convergence of the series

1

1 2

1 2

2 3

1 3

3 4

1 2 3 4

4 53

2 22
3

2 22 2

3

2 22 2 24
3

−
+

+
+ +222

−
+ 22

+ ∞

Sol.  The given series can be represented as

( 1)
(1 2 3 4 )

( 1)

1

1

1
2 22 2 24 2

3
1

+ 22 +424

=

∞
−

=

∞

∑ ∑( 1) =1

n

n

n

n

n(

 

Then

a
n n

n

n

n
n =

( 1)(2n 1)

6 (n 1)
=

(2 1)

6( 1)3 2

+n1)(2

+
+
+

So, this is an alternating series and we apply Leibnitz’s test for testing its 

convergence.

Now,

a

a

n

n

n

n

+ +
+

1
2

2
=
(2 3)( 1)n +n
(2 1)( 2n +n )

=
2 7 8 3

2 9 12 4

3 27
3 29

n7

n9 n

+27n7

+29n9 +

=1
2 4 1

2 9 12 4
< 1

2

3 29
−

+4

+9 29 +
n n44

n99 n

Since an n< ,ana  so { }n  is monotonically decreasing.

Also

n
n

n
a

n

n→∞ →∞

+
+

lim lim=
(2 1)

6( 1)
= 0

2

Hence by Leibnitz’s test, the alternating series is convergent.
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Example 8.23 Test the convergence of the following two series: 

a)
6 1

( 3)1 1enn
n

n=

∞

=

∞

∑ ∑and b)
6
n

Sol.

a) The series can be written as

6
=

6 6 6 6
2 3 4

1 e e e e en
n

+ +
2

+ +
4

∞
=

∞

∑ �

=
6

1
1 1 1

.
2 3e e e e

+ + + +
3

∞⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

�

Now

1
1 1 1

2 3
+ + + +

3
∞

e e e
� …(1)

is a geometric series whose common ratio is r
e

=
1

< 1.

Hence the series (1) is convergent and converges to 
1

1
1

=
1

.

− −
e

e

e

Consequently, the series
6

1 e
n

n=

∞

∑  is also convergent and converges to 

6

1
=

6

1
.

e

e

e e1

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠ −

b) The series can be written as

1

( 3)
=

1

3

1

( 3)

1

( 3)2 3( 3)1 lnn
n

+ +
2

+ ∞
=

∞

∑

=
1

3
1

1

3

1

( 3)2ln ln l
+ + + ∞

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞

⎠

Now 

1
1

3

1

( 3)2
+ + + ∞

ln l
…(2)

is a geometric series whose common ratio r =
1

3
> 1.

ln

Therefore, the series (2) is divergent and consequently, the series 
1

( 3)1
n

n=

∞

∑
is also divergent.
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Example 8.24 Show that the following series is divergent:

1 2 2 3 3 4 4 5+2 +3 +4 +5 ∞�

Sol. The given series is

n
n n

∞ ∞

∑ ∑an +
1 1n=

(n∑ 1)

Now,

n
n

n
an n

→∞ →∞
+ ∞lim = (nlim 1)

Therefore, the given series is divergent.

Example 8.25 Test the convergence of the following series:

6

1 3 5

8

3 5 7

10

5 7 9⋅3
+

⋅5
+

77
+ ∞ [WBUT-2008]

Sol. Let the given series be

n

n n nn n

∞ ∞

∑ ∑an − +n +1 1n=

2 4n +
(2 1)(2 1)(2 3)

.

Then

a
n

n n n
n =

2 4n

(2 1)(2 1)(2 3)+n1)(2 +

Consider the convergent series 

nn n

∞

=

∞

∑ ∑bnb
1

2
1

1

where

b
n

nb =
1
2

Now,

n

n

n
n

a

bn

n

n n n

n

→∞ →∞

+
+n +

lim lim=

2 4n +
(2 1)(2 1)(2 3)

1
2

=
(2 4)

(2 1)(2 1)(2 3)

2

n

n n4)

n n1)(2 n→∞

+
− +1)(2n1)(2 +

lim
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=

2
4

2
1

2
1

2
3

=
1

4n

n

n n n

→∞

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

−⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

lim (a nonzero foo inite value)

Therefore, by comparison test

n

n n nn n

∞ ∞

∑ ∑an − +n +1 1n=

2 4n +
(2 1)(2 1)(2 3)

is convergent.

Example 8.26 Test the convergence of the following series:

1
2

2!

3

3!

4

4!
+ + + + ∞

p p3 p

� [WBUT-2008]

Sol. Let the given series be

n

nn

p

n=

∞ ∞

∑ ∑an
1 1n= !

.

Then 

a
n

n
an

p

n

p

=
!

=
( 1)n

( 1)!n
1and so +

Now,

n

n

n n

p

p n

p

p

a

a n

n

np→∞

+

→∞ →∞
lim lim lim1 =

( 1)n +
( 1)!n +

!

=
( 1) !pn np+

( 1)!n +

= 1
1 1

1
= 0 < 1

n

p

n n→∞
+⎛

⎝⎝⎝
⎞
⎠
⎟
⎞⎞
⎠⎠ +

li

Therefore, by D’ Alembert’s ratio test, 
n

nn

p

n=

∞ ∞

∑ ∑an
1 1n= !

is convergent.

Example 8.27 Test the convergence of the alternating series:

1
1

2

1

3

1

42 23 2
− +

2
− +

2
∞� [WBUT-2009]
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Sol. The alternating series can be written as

( 1)
1

.1 1

2
1=

∞
−

=

∞

∑ ∑( 1) =1

n

n

n n

Here, a
n

n =
1
2

 and so an+
( )n +

1 2
=

1
.

Then

a

a

n

n
n Nn

n

+ ( )n +

( )n +
1

2

2

2

2
=

1

1
= < 1 .for all

Since, an n< ,ana  so { }n is monotonically decreasing.

Also

n
n

n
a

n→∞ →∞
lim lim=

1
= 0

2

Hence, by Leibnitz’s test, the alternating series is convergent.

Example 8.28 Show that the series
cosnx

nn
2

1=

∞

∑ is absolutely convergent.

[WBUT-2004, 2009]

Sol. Let the given series be

nx

nn n

∞

=

∞

∑ ∑an
1

2
1

.∑ 2

cos

Then

a
nx

n
n = .

2

cos

Therefore,

nx

nn n

∞

=

∞

∑ ∑an
1

2
1

.∑ 2

cos

Since cosnx < 1 for all n, x we have

a
n

nx
n

n =
1

<
1

.
2 2

cos

Now we consider the series

nn n

∞

=

∞

∑ ∑bnb
1

2
1

1
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which is a p-series with p = 2 ( )> 1 and so convergent.

Here

b
n

nb =
1
2

Therefore, for all n N ,

a b
a

b
n nb

n

nb
<b

n
1.⇒

So, by comparison test, an
n=

∞

∑
1

 is convergent.

Hence, the given series
nx

nn n

∞

=

∞

∑ ∑an
1

2
1

cos
 is absolutely convergent.

Example 8.29 Prove that the infinite series

x
x x x x

n

n
n

− + − + +n+
2 3 4

1

2 3 4
( 1)−� �

is absolutely convergent when x < 1 and conditionally convergent when x = 1.

[WBUT 2001, 2007]

Sol. Let the given series be 

x

nn

n
n

n=

∞
+

=

∞

∑ ∑an −
1

1

1

(∑ 1) …(1)

where 

a
x

n
n

n
n

= ( 1) .1− +

Now we consider the series

an
n=

∞

∑
1

…(2)

where 

a
x

n

x

n
n

n
n n

= ( 1) = .1− +

So,

a
x

n

x

n
n

n
n n

+
+

+ +

−
+ +n1

2
1 1

= ( 1)
1

=
1

.
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Therefore 

n

n

n
n

a

a

n
x

→∞

+

→∞
lim lim

1
=

( 1)n +

=
1

1
1

= .
n

n

x x=
→∞

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

lim

Then by D’Alembert’s ratio test, we have

i) If x < 1, the infinite series (2) is convergent 

ii) If x > 1, the infinite series (2) is divergent

Hence, the given series (1) is absolutely convergent for x < 1.

For x = 1,  the series becomes

1
1

2

1

3

1

4
− + − +�

which is conditionally convergent. (For proof see the example 30 of 

Article 8.15).

Example 8.30 Test the convergence of the series:

1
1

2

1

3

1

4
− + − + ∞

p p3 p
� [WBUT-2003]

Sol. The given series can be written as

( 1)
1

.1

1

1

1=

∞
−

=

∞

∑ ∑( 1) =1

n

n

p
n n

So this is an alternating series and

a
n

an p n p
=

1
=

1
.1and +

( )n 1+

Then

a

a

n

n
p n Nn

n

p

p

p

p

+ ( )n +

( )n +
∈1 =

1

1
= < 1 .for ap > 0 nd

Since, a an na< for p > 0,  so { }n is monotonically decreasing for p > 0.
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Also, for p > 0

n
n

n p
a

n→∞ →∞
lim lim=

1
= 0

Hence by Leibnitz’s test, the alternating series is convergent for p > 0.

But for p < 0,

n
n

n p
a

n→∞ →∞
lim lim=

1
= .∞

Therefore, the series can’t be convergent for p < 0.

EXERCISES

Short and Long Answer Type Questions

(A) Test the convergence of the following series:

1)
1

1 3

1

3 5

1

5 7
+ + + ∞

[Ans : Convergent]

2)
1 2

1!

2 3

2!

3 4

3!

2 22 2 23 2 24
+ + + ∞

[Ans : Convergent]

3)
n

n n

n=1

1 1n∞

∑ +1

[Ans : Convergent]

4)
1

1 2

1

1 2

1

1 2

1

1 21 21 2 3 41 2
+ + + + ∞

−1 1 2 −3 1 2

[Ans : Divergent]

5)
1

2

3

2

7

2

15

22 3 42 2
+ +

2
+ +

4
∞�

[Ans : Divergent]

6)
n

n

n=1
3

2∞

∑
[Ans : Convergent]

7)
n

n

n=1

3

2

1
1∞ −

∑ +
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

[WBUT-2004]

[Ans : Convergent]
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8)
n

n

n

n

n=1

!2∞

∑
[Ans : Convergent]

9)
1

3

1 2

3 5

1 2 3

3 5 7

2 2 2
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

+ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞⎞
⎠⎠

+
⋅2

⋅5

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
2

⎠
⎟
⎞
⎠

+ ∞ [WBUT-2002, 2007]

[Ans : Convergent]

10)
n n

nn

3

1

1

!

− +n

=

∞

∑
[Ans : Convergent]

11)
n

nn

+

=

∞

∑ 1
6

1

[Ans : Convergent]

12)
n

enn

4

2
1=

∞

∑
[Ans : Convergent]

(B) Examine the convergence of the following series for different values of x :

13)
n

n
xn

n
2

1 1+=

∞

∑
[Ans : Convergent if − ≤1 <≤ 1,x  divergent if x ≥ 1 or x < 1]

14)
1

, > 0
1 x xn n

n +=

∞

∑
[Ans : Convergent if x > 1  or 0 < < 1x ]

15)
nx

n

n

n +
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠=

∞

∑
11

[Ans : Convergent if x < 1,  divergent if x ≥ 1]

16)
n

n
xn

n +=

∞

∑
11

[Ans : Convergent if x < 1, divergent if x ≥ 1]

17) Prove that 

( 1) 1 2

3

2
1

−

=

∞

∑
n

n

nx

n

cos

is absolutely convergent.
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18) Prove that 

( 1)

( )

1

2
1

−

=

∞

∑
n

n n( g

is absolutely convergent.

(C) Test the convergence of the following series:

1)
n

nnn

!

1=

∞

∑
[Ans : convergent]

2)
1

2
n

n ( )logn=

∞

∑
[Ans : convergent]

3) sin
1

1 nn=

∞

∑
[Ans : divergent]

4)
1 2

1

2 2

2

3 2

3

2

4

2

4

2
2

4

3+ + + ∞x x
4

+ x [WBUT-2002]

[Ans : Convergent if x ≤ 1,  divergent if x > 1]

5) 1
1

2

1

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠=

∞

∑
n

n

n

[Ans : divergent]

6) 1
2 5 10

2 3

+ + + + ∞
x x x

� [WBUT-2004]

[Ans : Convergent if x ≤ 1,  divergent if x > 1]

7)
n n

np
n

+

=

∞

∑ 1

1

Ans :  Convergent if divergent if  p p>
1

2
,

1

2
≤⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

8) 1
2

3

2 4

3 5

2 4 6

3 5 7
, 1

2

2

2 24
2 25

2
2 24 2

2 25 2

3+ +
2

+
⋅4

⋅5
+x x

2 2
+ x ,+ ∞ [WBUT-2004, 2009]

[Ans : Convergent if x < 1,  divergent if x > 1]

9)
2

1

3

2

4

3

5

4

p

q

p

q

p

q

p

q
+ + + + ∞ ( ), > 0p q,�

[Ans : Convergent if q p> 1,p divergent if q p≤ +p 1]
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10)
x x x

1 3 3 5 5 7

2 3

+ + + ∞ [WBUT-2006]

[Ans : Convergent if x ≤ 1,  divergent if x > 1]

11)
5

2

7

4

9

6

11

8
− + −+ + ∞

[Ans : Not convergent]

12)

sin(2 1)
2

( 1)1n=

∞

∑
π

[Ans : Convergent]

13) 1 2 2 3 3 4 4 5+2 +3 +4 +5 ∞�

[Ans : Divergent]

14) x x x x2
2

4
2 2

6
2 2 2

82

3 4

2 42

3 4 5 6

2 42 6

3 4 5 6 7 8
, >x 0+ +

⋅4
+

⋅4

⋅4 ⋅6 7
+ ∞

[Ans : Convergent if 0 < 1,x ≤  divergent if x > 1]

15)
n

n

n

n

n
n

n

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
n

⎠
⎟
⎞⎞
⎠⎠

−
⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

+ −

=

∞

∑ 1 1n
n
⎞
n ++1

1

[Ans : Convergent]

16)
1 1

1 n nn

sin
=

∞

∑ [WBUT-2001]

[Ans : convergent]

17)
1

2

2

3

3

4

4

5

2
2

3
3+ + ⎛

⎝
⎛⎛
⎝⎝

⎞
2

⎠
⎞⎞
⎠⎠

+ ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
3

⎠
⎟
⎞⎞
⎠⎠

+ ∞xx + ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

x

[Ans : Convergent if x < 1, divergent if x ≥ 1]

18)
a x+

+
( )a x+

+
( )a x+

+ ∞
1! 2! 3!

, >x 0

2 3

Ans : Convergent if divergent if 
1 1

e
x

e
≥⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

19) 1
1

2 1 1

1

2 2 1

1

2 3 12 2 2
+

+12
+

+22
+

+32
+ ∞

[Ans : Convergent]

20)
2

1 3

3

2 5

4

3 7

3 3 3

p p3 p p5 p p7
+ + + ∞

[Ans : Convergent if p > 4,  divergent if p ≤ 4]
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21) 1
1

2

2!

3

3!

4

4!

5
, > 0

2

2

3

3

4

4+ + + +2

3

3 + ∞x x
2

+
2

x x
4

+

[Ans : Convergent if 0 < < ,x < divergent if x e≥ ]

(D) Examine the convergence of the following alternating series: 

22)
1 1

3

1 1

5log l2 og log l4 og
− + − + ∞�

[Ans : Convergent]

23) 1
1

2

1

3

1

42 23 2
− +

2
− +

2
∞� [WBUT-2009]

[Ans : Convergent]

24)
( 1) 21

2
1=

∞

∑
n n21

n n

[Ans : Divergent]

25)
( 1)

, 0 < < 1
1

2
1=

∞

∑
n n1−

n

x

n n−
x

[Ans : Convergent]

26)
1

2 1

1

3 1

1

4 1

1

5 1
− + − + ∞

[Ans : Convergent]

27)
1

6

2

11

3

16

4

21
− + − +− ∞�

[Ans : Not convergent]

28)
u

u

u

u

u

u

u

u
u

+
−

+
+

+
−

+
+ ∞

1 1 1u + 1
, 0 < <u 1

2

2

3

3

4

4

[Ans : Convergent]

(E) Prove that the following series are absolutely convergent:

29) 1
2

3

3

3

4

32 33
− + − +

3
∞�

30) x
x x x

e
− + − + ∞ ≠x ±

2

2!

3

3!

4

4!
,

12 2 3 3 4 4

�

(F ) Prove that the following series are conditionally convergent:

31) 1
1

2

1

3

1

4

1

53 3 3 3
− +

3
− +

3
− ∞
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32) 
1

2

2

5

3

10

4

17

5

26
− + − + − ∞

Multiple Choice Questions

1. The series 
1

1 n
p

n=

∞

∑ is convergent if

a) p < 1 b) p > 0 c) p > 1 d) p < 0

2. The series 
1

1

1

2

1

3

1

45 51 5 5
+ + + + ∞� is

a) divergent b) convergent c) oscillatory d) none of these

3. The series 
1

1

1

2

1

3

1

453 53 53 53
+ + + + ∞�  is

a) convergent b) oscillatory c) divergent d) none of these

4. The sequence {( 1) 2 }− ⋅1)n n2  is

a) monotone b) bounded c) convergent d) oscillatory infinitely

5. The sequence 
1

n
nsin

⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬  is

a) oscillatory b) divergent to∞
c) convergent with limit 1 d) convergent with limit 0

6. The sequence
1

4 3

⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬

n
 is

a) decreasing and unbounded b) increasing and bounded

c) decreasing and bounded d) none of these

7. The sequence 3 ( 1)
1

−(⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬

n

n
 is

a) oscillatory b) monotone

c) convergent d) bounded but not convergent

8. The sequence 
n

n

3

2

1+⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨

⎫
⎬
⎫⎫
⎬⎬
⎫⎫⎫⎫

⎭
⎬⎬
⎭⎭
⎬⎬⎬⎬ is

a) bounded b) divergent to ∞
c) convergent d) none of these
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9. Which of the following sequence is convergent?

a)
1

4
2

n
n+⎧

⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬ b)

n

n

4

3

1+⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨

⎫
⎬
⎫⎫
⎬⎬
⎫⎫⎫⎫

⎭
⎬⎬
⎭⎭
⎬⎬⎬⎬

c)
1

2

1

4n n4
+⎧

⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬ d) {1 ( 1) }+ ( n

10. The series
n

nn

+

=

∞

∑ 1

1

is

a) convergent b) divergent to ∞
c) oscillatory d) none of these

11. If an
n=

∞

∑
1

 is convergent then

a) { }n  is monotone b) { }n  is convergent with limit 0

c)
n

na
→∞

lim = 1 d)
n

n

n

a

a→∞

+lim 1 < 1.

12. The series
1

( 1)1
n

n=

∞

∑  is

a) divergent to ∞ b) convergent

c) oscillatory d) none of these

13. The series
n

( )n n
=

∞

∑ n +
1

is

a) convergent b) divergent

c) oscillatory d) none of these.

14. The series
n

np
n

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠=

∞

∑ 1

1

is convergent if

a) p > 2 b) p > 1 c) p ≤ 2 d) p > 0

15. Which of the following infinite series is convergent?

a)
1

4
2

1 nn

+⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠=

∞

∑ b)
8

51

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠=

∞

∑
n

n

c) 1
1

2

1

3

1

44 43 4
+ +

4
+ +

4
∞� d)

3 1

4 1

2

3
1 nn=

∞

∑
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16. The infinite series

1

1

1

2

1

3

1

42 22 2 24+
−

+
+

+
−

+
+ ∞

x x2 + x x4 +
is convergent

a) only for − ≤1 1≤ ≤x b) only for x = 0

c) for no real values of x d) for all real values of x

17. The infinite series

1
1

2

1

3

1

4
− + − + ∞�

is

a) absolutely convergent b) oscillatory

c) conditionally convergent d) none of these

18. The series 
n

nnn

!

1

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠=

∞

∑ is

a) convergent b) divergent

c) neither convergent nor divergent d) none of these

19. Let an∑  be an infinite series of positive terms. If 
n

n
n

→∞
lim ( )na =

4

3

1

then an∑  is

a) convergent b) divergent

c) oscillate infinitely d) none of these

20. If an > 0  for all n and a a1 2a 3≥ ≥a2a ≥� and
n

n na
→∞

lim ( )nan = 0 then the series

( 1) 1

1

−

=

∞

∑ n
n

n

a

a) oscillates infinitely b) is divergent to −∞
c) is convergent d) none of these

Answers:

1. (c) 2. (a) 3. (a) 4. (d) 5. (d) 6. (c) 7. (c) 8. (b) 9. (c)

10. (b) 11. (b) 12. (b) 13. (b) 14. (a) 15. (c) 16. (d) 17. (c) 18. (a)

19. (b) 20. (c)
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Vector Analysis

9.1 INTRODUCTION 

Vectors are very important part of any branch of science and technology. Vectors and their 

differentiation and integrations have wide range of applications for solving  problems in 

many practical situations. Basically, we shall divide the chapter into three parts.

In the first part of this chapter, we discuss Vector Algebra which includes  various 

kinds of vectors, different terminologies, different kinds of products of vectors, equa-

tions of straight line, plane and sphere in vector form and of course their  applications too.

In the second part of the chapter, we deal with vector differentiations, gradient, 

divergence, curl, directional derivative along with their applications. 

In the third part of the chapter, we give theorems on vector integrations (Green’s 

theorem, Divergence theorem, Stoke’s theorem) and their applications to physical 

problems.

PART-I (VECTOR ALGEBRA)

9.2 SCALARS AND VECTORS

Any physical quantity which has magnitude only is known as a scalar. The examples 

of scalars are area, volume, mass, speed, etc.

Any physical quantity which has magnitude as well as direction is known as a 

vector. The examples of vectors are displacement, velocity, force, etc.

Generally, a vector is represented by a directed line segment. Any vector from point 

A  to point B  is denoted by AB
      

.  Let us consider any vector AB a
       

= ,a  where the length 

of the line segment AB  is a  (which is always positive). Then the magnitude or abso-

lute value of the vector is denoted by AB
      

,  and is given by AB a a
       

= a .  

CHAPTER
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9.2.1 Different Kinds of Vectors

Here we give a few definitions.

(1) Like Vectors: Vectors having the same direction are known as like vectors.

(2) Null Vector or Zero Vector: Any vector having the magnitude zero is known as 

a null vector or zero vector. It is generally denoted by 
 
0  or θ .

(3) Unit Vector: Any non-null vector of unit length (or, having the unit magnitude) 

is known as a unit vector.

Let 
 
a  be any non-null vector. Then the unit vector in the direction of 

 
a  is given 

by â  = 

 

 
a

a
 or 

 
a

a
.

In the three-dimentional Cartesian coordinate system, the unit vectors along the 

x-axis, y-axis and z-axis are ˆ ˆi j,  and k̂  respectively. These are called fundamental 

unit vectors.

(4) Equal Vectors: Two vectors 
 
a  and 

 
b  are called equal if they have the same 

magnitudes as well as the same direction. Then we write 
 

a b
 
= .b  Two parallel vec-

tors having the same magnitude are equal.

(5) Negative of a Vector: Let AB a
       

=  be a vector. Then a vector having the same 

magnitude but opposite direction is known as the negative of AB
      

 and is given by 

BA AB a
             

= =AB .−=AB

(6) Position Vector: The position of a point P  with respect to any arbitrary point 

O  is represented by a vector OP
      

.  Here, O  is called the initial point or the vector 

origin and the vector OP
      

 is called the position vector w.r.t O.

9.2.2 Addition and Subtraction of Vectors

Additon of Vectors using Triangle Law

A B

C

 
a

 
c

 
b

Figure 9.1 Triangle Law
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Let AB a
       

= ,a  BC b
       

=  and AC c
       

= .c  Then by Triangle Law, (see Fig. 9.1) we have 

 AB BC AC
                  

+ =

or, = .
  

a b
 

c

Additon of Vectors using Parallelogram Law

A B

CD

 
b

 
a

 
a

 
c

 
b

Figure 9.2 Parallelogram Law

Let AB a
       

= ,a  AD b
       

=  and AC c
       

= .c  Then by Parallelogram Law (see Fig. 9.2), we 

have 

AB AD AC
                  

+ =

 or, =
  

a b
 

c

Properties of Vector Addition

(i) Addition of vectors is commutative, i.e., 
    
a b
 

b a
 
ab b= .b ab

(ii) Addition of vectors is associative, i.e., ( ) = ( ).
      

b
 

c = b c
 

+) (b

Subtraction of Vectors

Let AB
       

= ;a  BC b
       

= ;b  then their subtraction is given by 

AB BC BC
                        

− BC −= (AB +AB )

i.e.,
  

a b
 

bb = (a
 
a ).

9.2.3 Scalar Multiplication of a Vector

Multiplication of a vector 
 
a  by any scalar m, +ve  or −ve,  is denoted by the vector ma

 
.

Now ma m a
  
= ,m a  i.e., magnitude of the vector ma

 
 is m  multiple of magnitude 

of the vector 
 
a.
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Direction of the vector ma
 

 is same or opposite of the direction of the vector 
 
a,

accordingly as m  is positive or negative.

In particular, if m = 0  then ma a
   
= 0 = 0.⋅

Properties 

(i) ( ) a ma na+) a m= a
   

(ii) m b ma mb( )a b
    

+mab

(iii) m mna m( )na =mna ( )na
  
)

 

9.2.4 Collinear Vectors 

Any set of vectors having the same or different magnitudes is said to be collinear if all 

of them have the same directions. 

In particular, when two vectors 
 
a  and 

 
b  are collinear then we can write 

 
a b
 λ

for any scalar λ.

Here, we state a theorem on the collinearity of three points.

Theorem 9.1: Any set of three distinct points A,  B  and C  will be collinear (i.e., 

lie on the same line) iff there exists three scalars αααα ,  ββββ ,  γγγγ  (not all zero) such that 

αα βαα β γββ γγγ αα βαα β γββ γγγ
   

ββββββββ cββββ ββββ= 0 = 0and

where 
 
a,  

 
b  and 

 
c  are the position vectors of A,  B  and C  respectively w.r.t 

a vector origin.

Proof: Beyond the scope of the book.

9.2.5 Coplanar Vectors

Any set of vectors are called coplanar if all of them are parallel to the same plane.

Here, we state a theorem on the coplanarity of four points.

Theorem 9.2: Any set of four distinct points ,  B,  C  and D  (no three of them 

are collinear) will be coplanar (i.e., lie on the same plane) iff there exists four 

scalars αααα ,  ββββ ,  γγγγ ,  δδδδ  (not all zero) such that 

αα βαα β γββ γ δγγ δδδ αα βαα β γββ γ δγγ δδδ
   

ββββ dδδδδββββ γγγγ= 0 = 0and

where 
 
a,  

 
b,  

 
c  and 

 
d  are the position vectors of A,  B,  C  and D  respectively 

w.r.t a vector origin.

Proof: Beyond the scope of the book.
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9.2.6 Resolution of Vectors in Rectangular Cartesian 
coordinate System 

Figure 9.3

X
N

Y

P

Z

O

M

 
k

 
i

 
j

Let the unit vectors along the three axes OX ,  OY  and OZ  be ˆ,i  ˆ,j  k̂  respectively 

and P( , , )x y,  be any point.

From Fig. 9.3, it clear that PN  is perpendicular to the XY  plane and MN  is paral-

lel to Y -axis.

So, OM x= ,x  MN y= ,y  NP z=  and correspondingly, 
     

ˆ= ,OM xi=  
     

ˆ,MN yj=
    

ˆ.NP zk=

Now from ΔOMNMM ,  
    

ˆ ˆ.ON xi yj+= +

So from ΔONPNN ,  we have 
    

ˆˆ ˆ .OP xi yj zk+ += + +

Hence we can say for any point P ( , , ),x y,  the position vector OP
      

 w.r.t some 

vector origin O  is given by 
    

ˆˆ ˆ ,OP xi yj zk+ += + +  where the vector components of OP
      

along the directions of X-axis, Y-axis, and Z-axis are respectively ˆ,xi  ˆyj  and ˆ.zk

Now OP x y z
      

= .2 2 2+ +y2

So, the unit vector along the direction of OP
      

 is 
+ +

    

    
2 2 2+ +

ˆˆ ˆ
= .

OP xi yj zk+ +

OP x y z+ +

Observation: 

Let us consider the two points A  and B  whose coordinates are ( , , )1 1 1x y,1,  and 

( , , ).2 2 2x y,2 ,  So the position vectors of A  and B  are 
    

1 1 1
ˆˆ ˆOA x i y j z k+ +1 1 11+ +=  and 

    

2 2 2
ˆˆ ˆOB x i y j z k+ +2 2 22+ +=  respectively. 

So the vector AB
      

,  joining two points A  and B  is given by 

( ) ( ) ( )
            

2 1 2 1 2 1) ( ) ( ˆˆ ˆ( ) .AB OB OA x x i y y j z z k( ) ( ) ( )− − + − + −− + − +( ) ( ) (2 1 2 1 2 11 2 1 2) ( ) (− + − + −− + − ++ − +) ( ) (= −
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9.3 SCALAR PRODUCT OR DOT PRODUCT OF VECTORS

9.3.1 Definition

The scalar product or dot product of two vectors a
 

 and b
 
,  where θ  is the smallest 

angle between their directions, is defined by 

    
a b
 

b
 

c= a b os θ

where 
 
a and

 
b  are magnitudes of a

 
 and b

 
 respectively (see Fig. 9.4).

Figure 9.4

N

θ

O A

B

 
b

 
a

9.3.2 Geometrical Interpretations

The scalar product of two vectors is nothing but the product of the length of one vector 

and the projection of the other to the former one.

9.3.3 Properties of Scalar Product

1) The scalar product of two vectors always yields a scalar quantity.

2) The scalar product of two vectors is commutative, i.e.,
    
a b
 

b a
 
a= .b a

3) Two non-null vectors a
 

 and b
 

 are perpendicular if and only if 
  
a b
 

= 0.

4)
      
a a a aa a a a2 2

a a 0cos

5) Here, 
22ˆ ˆ ˆ ˆ2= = = 1.2i i = ==2  Similarly, 2 2ˆˆ = 1.2j k2 =  Again, ˆˆ ˆ ˆ ˆi j j k= =j = =

ˆ ˆˆ = 0,k i  where ˆ,i  ˆ,j  k̂  respectively are the unit vectors along the three 

coordinate axes.

 6) Let 1 2 3
ˆˆ ˆ ,a a i a j a k1 2 32= a ja j222

 
 and 1 2 3

ˆˆ ˆb b i b j b k1 2 32= b jb j222

 
 

  1 2 3 1 2 3
ˆ ˆˆ ˆ ˆ ˆˆThen, a b a i a j a k b i b j b k1 2 3 1 2 32 3 1 2 3= ( ) ( ) =a j a k b i b ja j a k b i b j2 3 1 22 3 1 22 3 1 2) (

  
 a1b1 + a2b2 + a3b3
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7) The angle between the vectors a
 

 and b
 

 is given by 

  θ = 1cos−
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

  

  
a b
 

a b
 

    

= 1 1 1 2 2 3 3

1
2

2
2

3
2

1
2

2
2

3
2

cos-
+ +

+ + + +

Ê

Ë
Á
Á

ˆ

¯
˜
˜

a b a b a b

a a a b b b

 8) Distributive property: 

  
       
a b
 

a b a
 

c( )
 

b c a b)c

9) Component of 
 
a  along 

 
b  is given by 

  
  

  

  

  

 aa
a b
 

a b
 

a b
 

b
cos

| |a
 

| |b
θθ =a

10) If 
    
a b
 

a c=  then 
   
a b
 

( )
 

b c = 0  implies the following facts.

  
  
a = 0  or 

   
b c

 
= 0  or 

 
a  is perpendicular to 

  
b c

 
.

  i.e., 
  
a = 0  or 

  
b c

 
 or 

 
a  is perpendicular to 

  
b c

 
.

Example 1  

If 
 
α = 3  and 

 
β = 4,  then find the values of the scalar μ  for which the vectors 

  
α μβ+  and 

  
α μβ  will be perpendicular to each other. [WBUT 2005]

Sol. The vectors 
  
α μβ+  and 

  
α μβ  will be perpendicular to each other if

 ( ) = 0
   

μ( β α) (
 

μβ)

i.e.,
  
α μ β2 2 2

= 0

or, = =
9

16

2

2

2
μ

α

β

 

 

or, =
3

4
μ ±

9.4 VECTOR OR CROSS PRODUCTS OF VECTORS

9.4.1 Definition

The cross product, or vector product, of two vectors 
 
a  and 

 
b,  where θ  is the smallest 

angle between their directions, is defined by 

a b a b n¥
   

 = sin | | | | q
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where 
 
a  and 

 
b  are magnitudes of 

 
a  and 

 
b  respectively and n̂  is a unit vector 

perpendicular to both 
 
a  and 

 
b  and the direction of n̂  is same as the direction of the 

motion of a right-handed screw rotating from 
 
a  to 

 
b  (see Fig. 9.5).

Figure 9.5

O

B

A

θ

 
a

 
b

n̂

9.4.2 Geometrical Interpretations

We have θ
    

ˆ.a b×
 

= sinsin θ ⋅
 

ˆ  

So, 
  

a b
 

a b
 
a b OA OB⋅ ⋅ ×== a b = 2sin sinθ θ area of ΔOAB  = area of the paralle-

logram with the adjacent sides OA  and OB  (see Fig. 9.5).

Hence, 
 

a b
 

 represents the vector area of the parallelogram whose adjacent sides 

are the vectors 
 
a  and 

 
b.

9.4.3 Properties of Cross Products of Vectors

1) The cross product of two vectors always yields a vector quantity.

2) Let 
 
a  and b

 
 be any two vectors. Then, ( ) = ( )

    
b

 
b a

 
) = (b ,  i.e., cross prod-

uct is non-commutative.

 3) Two non-null vectors 
 
a  and 

 
b  are parallel or collinear if and only if 

  
a b
 

= 0.

4) For any vector 
 
a,  we have 

   
a a×××× = 0.

5) Here, 
 

ˆ ˆˆ ˆ ˆ ˆ = 0.i i j j k k= ==i = ===  Again ˆˆ ˆ ,i j k=  ˆˆ ˆˆ ,j k i=  ˆ ˆ ˆ,k i j=  where 

ˆ,i ˆ,j  k̂  respectively are the unit vectors along the three coordinate axes.
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6) Let 1 2 3
ˆˆ ˆ ,a a i a j a k1 2 32= a ja j222

 
 and 1 2 3

ˆˆ ˆb b i b j b k1 2 32= b jb j222

 
 

  Then, 

  
  

1 2 3

1 2 3

ˆˆ ˆi j k

a b a a a
 

1 22=

b b b1 2 32

     2 3 3 2 3 1 1 3 1 2 2 1
ˆˆ ˆ= (a b a b i a b a b j a b a b k2 3 3 2 3 1 1 3 1 2 2 1) ( ) ( )) ( ) (2 3 3 2 3 1 1 3 1 2 2 13 1 1 33 3 2 3 1 1 3 1 2 2) ( ) () ( ) () ( ) (3 2 3 1 1 3 1 23 1 1 33 2 3 1 1 3 13 2 3 1 1 3 1 2

7) The unit vector ˆ,n  which is perpendicular to both 
 
a  and 

 
b,  is given by 

  

  

  ˆ =
a b
 

n
a b
 

8) The angle between the vectors 
 
a  and 

 
b  is given by 

  θθθθ = .1sin−
⎛

⎝
⎜
⎛⎛

⎜⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞

⎟⎠⎠
⎟⎟

  

  

a b
 

a b
 

9) Distributive property:

  
       
a b
 

a b a c
  
a( )

 
b cb a b×a × b××)cc

10) If 
    
a b
 

a c×b a ×××  then 
   
a b
 

( )
 

b c = 0  implies the following facts.

  
  
a = 0  or 

   
b c

 
= 0  or 

 
a  is parallel to 

  
b c

 

  i.e., 
  
a = 0  or 

  
b c

 
 or 

 
a  is parallel to 

  
b c

 
.

Example 2  

Find a unit vector perpendicular to each of the vectors ˆˆ ˆ2i j k2− +  and ˆˆ ˆ3i j k+ −  and 

obtain the angle between them.

Sol. Let 
 ˆˆ ˆa i j k
 

= 2 2− +  and 
 

ˆˆ ˆ .b i j k= 3 + −
Now,

  

ˆˆ ˆ

= 2 1 2−
3 1 1−

i j k

a b×
 

    ˆ ˆˆ ˆ ˆ ˆ= (1 2) ( 2 6) (2 3) = 8 5i j k i j k(1 2) ( 2 6) (2 3) = 8 5(1 2) ( 2 6) (2 3) = 8− − − − + + − + +− − − + + − +− − + + − +

So,
  2 2 2ˆˆ ˆ = 1 8 5 = 908 5 1 + ++2 2 22+ ++a b i j k×

 
8 58 58 58 5− + +− + ++ +
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Therefore, the unit vector is given by

  

  

ˆˆ ˆ 5
ˆ = =

90

a b i j k× − +−
 

8 5+
n

a b×
 

Now, the angle is given by 

θ =
90

2 1 2 3 1 1

1 1

2 21 2 2 2 21 1
sin s=1 in− −

+121 +11

  

 

a b×
 

a b
 

  =
3 10

3 11

10

11
.1 1sin s=1 in− − ⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟

Example 3  

Show that 
  

a b
 ( ) a b

 
a

2 2 2
 

2= (a b
 

−2 2b ) .2

Sol. For any vector 
 
a,  we have 

  
a a2 2

= .a  So,

 
 

a b
 ( ) a b

 2 2
=

     =
2 2 2

 
a b

2 
⋅b sin θ

     = (1 )
2 2 2

 

     =
2 2 2 2 2

  
a b

2 
a b

2 
−b ⋅b cos θ

     = ( ) .2 2 2
  

a b
 
(a

9.5 SCALAR TRIPLE PRODUCTS

9.5.1 Definition

Let 
 

a b
 
,  and 

 
c  be three vectors. Then the scalar triple product of 

 
a b
 
,  and 

 
c  is 

defined as 
 

a
 
( )

 
b c×b .

It is always a scalar quantity and is denoted by [ ].
  
b
  

Geometrically, it represents the volume of a parallelepiped whose coterminus edges 

are 
 

a b
 
,  and c

 
.
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9.5.2 Properties of Scalar Triple Product

1) Let 1 2 3
ˆˆ ˆ ,a a i a j a k1 2 32= a ja j222

 
 1 2 3

ˆˆ ˆb b i b j b k1 2 32= b jb j222

 
 and 1 2 3

ˆˆ ˆc c i c j c k1 2 32= c jc j222

 
 then 

  
   
abc
  

a a a

b b b

c c c

⎡⎣⎡⎡ ⎤⎦⎤⎤ =
1 2a 3

1 2bb 3

1 2c 3

2) [ ] = [ ] = [ ] = [ ] = [ ] = [ ].
                  
b

  
bc
 
a] = [ b

  
acb
  
acb b

  
cba
  

−] =[acb

3) ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆ[ , , ] = [ , , ] = [ , , ] = 1,i j k j k i k i j, , ] = [ , , ] = [ , ,, , ] = [ , , ] = [ , ,  where ˆ,i  ˆ,j  k̂  respectively are the unit 

 vectors along the three coordinate axes.

 4) The three nonzero vectors 
  
a b
 
,  and c

 
 are coplanar if and only if

  
      
abc
  

a b
 ⎡⎣⎡⎡ ⎤⎦⎤⎤ = 0 ( )

 
b c× = 0i.e.,

9.6 VECTOR TRIPLE PRODUCTS

9.6.1 Definition

Let 
 

a b
 
,  and 

 
c  be three vectors in three dimensions. Then the vector triple product of 

 
a b
 
,  and 

 
c  is defined as

         
a b
 

a c b
 

a b
 

c( )
 

b c×b = ( ) (b − )

9.6.2 Properties of Vector Triple Products

1) Let 
  
a b
 
, and c

 
 be three nonzero vectors. Then, 

      
a b
 

b c
 

( )
 

b c×b × c×× ( )
 
a b×a × b×× .≠

2) If any two of the nonzero vectors 
  
a b
 
,  and 

 
c are parallel or equal then,

  
   
a b
 

( )
 

b c×b ××× = 0

3) ( ) = ( ) = ( ) ( ) .
   

)
    

) (
   

(
  

b
 

a b c
 

b
 

c ( c b)
 

×) × =a =×× (b

9.7 STRAIGHT LINE

9.7.1  Equation of a Line Passing Through a Given Point 
and Parallel to a Given Vector

Let A  be the given point whose position vector is 
 
a  w.r.t the origin O,  and also sup-

pose the line is parallel to the given vector 
 
b.  Let P  be any point on the line and its 

position vector is given by 
 
r .

Then the equation of the required line in vector form is given by 
   
r a tb= ,a tb+  where 

t  is any scalar.
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Figure 9.6

O

A
P

 
a

 
r

 
b

Note: The equation of the line passing through the origin is 
  
r t
 

b= ,tb  since 
  
a = 0.

Example 4  Find the equation of the line through the point ( 2, 1, 0)  and paral-

lel to the vector ˆˆ ˆ5 3 4 .j3 43 4− +

Sol. Here, the given point is ( 2, 1, 0),  whose position vector is 
 
a  and the vector 

 
ˆˆ ˆ5b i j k= 5 3 43− +  represents the point (5, 3, 4).

Also, 
 
r  is the position vector of any arbitrary point ( , , ).x y,

We have from the above section, the equation of the line as 
   
r a tb+  for any 

scalar t.

Therefore,

( , , ) = ( 2, 1, 0) (5, 3, 4)x y, t− +2, 1, 0)

which implies

x y z
t

+ −y
−

−2

5
=

1

3
=

0

4
=

Hence the required equation of the line is

x y z+ −y
−

2

5
=

1

3
=
4
.

9.7.2 Equation of a Line Passing Through Two Points

Let A  and B  be the given points whose position vectors are 
 
a  and 

 
b  respec-

tively w.r.t the origin O.  Let P  be any point on the line and its position vector is 

given by 
 
r .
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Figure 9.7

O

A
PB

 
a

 
b

 
r

Then the equation of the required line in vector form is given by

   
r t
 

at b
 
ta
 
tt ( )t1 …(1)

where t  is any scalar.

Note: Let the coordinate of the points A  and B  are ( , , )2 2 2x y,2 ,  and ( , , )1 1 1x y,1,

w.r.t the rectangular Cartesian coordinate system. Also, P y z( ,x , )z  be any point on 

the line. Then, from (1) we have 

( , , ) = ( , ) ( , , )2 2 2 1 1 1,x y, ) = x y2 , z )2 x y,1( )1 t11

which gives

x x

x x

y y

y y

z z

z z
t1

2 1x x

1

2 1y

1

2 1z
= =

y y1 = .t

This is the equation of a line through two given points in three-dimensional Cartesian 

coordinate system.

Example 5  Find the equation of the line through the points (2, 3, 4)  and 

(3, 4, 5).

Sol. Here, ( , , ) (2, 3, 4)1 1 1x y,1, ≡  and ( , , ) (3, 4, 5).2 2 2x y,2 , ≡

Hence the required equation of the line is

x x

x x

y y

y y

z z

z z

1

2 1x x

1

2 1y

1

2 1z
= =

y y1

or,
x y z− −2

3 2−
=

3

4 3−
=

4

5 4−

or, x y z−y −2 3 = 4.
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9.8 PLANE

9.8.1  Equation of a Plane Perpendicular to the Unit Vector 
n̂  and Passing Through a Point whose Position 
Vector is 

 
a

Figure 9.8

A

N

P

r −a

O

 
a

  

 
r

n̂

Let A  be the given point whose position vector is 
 
a.  Suppose ON

      
 is perpendicular 

to the plane and ON p
      

= ,p  length of the perpendicular from the origin. Also, consider 

P  to be any point on the plane whose position vector is 
 
r .  Here 

    
ˆON p n⋅ ˆ=  and 

OP r
       

= .r

Then the required equation of the plane is given by 
  
r n p= .p  This is known as 

normal form of the equation of the plane.

Note: If the plane passes through the origin then the equation becomes 
  
r n = 0.

9.8.2 Equation of a Plane Passing Through a Point whose 
Position Vector is 

 
a  and Parallel to Two Vectors 

 
b  

and 
 
c

Let P  be any point on the plane whose position vector is 
 
r .

Then the required equation of the plane is [ ] = [ ].
    

] [
  

b
  

abc
  

9.8.3 Equation of a Plane Passing Through Three Given 
Points

Let the position vectors of three points be 
 
a , 

 
b  and 

 
c  respectively. Then 

  
b a

 

and 
  
c a  lie in the same plane. So, ( )  

b a
 
×( )  

c a−c  is perpendicular to the plane. 
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Let P  be any point on the plane whose position vector is 
 
r .  Then also 

  
r a  is per-

pendicular to ( )  
b a

 
×( )  

c a−c .

So,

( )  
r a ⋅ ( )  

b a
 

b × ( )  
c a−c{ } = 0

which implies 

     
r u abc

  
= [ ]

where 

       
u a b b c c a.× b × +c ×

is the required equation of the plane.

Example 6  Find the equation of the plane through the points A(2, 1, 4),

B(3, 4, 7)  and C( 2, 3, 1).2 32 3

Sol. Here AB
      

= (1, 5, 3)  and AC
      

= ( 4, 4, 5).− −4 4

Let P y z( ,x , )z  be any point on the plane.

 Here AB AC
            

× −AC −= ( 37, 7, 24)  is perpendicular to the plane and 

AP x y z
      

= ( 2 1, 4)+y2 −  lies on the plane.

So, AP
      

 is perpendicular to AB AC
            

× .  Therefore

           AP
      

⋅{ }AB AC
            

×AB = 0

or, ( 37, 7, 24) ( 2, 1, 4) = 0− −37 ⋅( 1,1,y2,2,

 or, − ( ) +37( 2) 7( + 24( 4) =− 0.x − − (2) 7(
This is the required equation of the plane.

9.8.4 Distance of a Point from a Plane

Let the position vector of the given point be 
 
a  and the equation of the plane be 

  
r n p= ,p  where 

 
n  is normal to the plane.

Then the required distance is 

p a n

n

⋅a
  

 .
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9.9 SPHERE

9.9.1 General Equation of a Sphere

Figure 9.9

O

C

P

r −c

 
c

  

 
r

Let the radious of the sphere be a,  and 
 
c  be the position vector of its centre C.  Also, 

let P  be any point on the sphere whose position vector is 
 
r .

It is clear from the figure that CP r c
        

= .r c

Again CP a
      2

2= .a  Therefore 

a( )  
r c

2 2=

i.e., 
  
r c a( ) r ⋅ +c ( ) c −2 2 22 = 0

This is the required equation of the sphere.

Note:

(1) If the centre of the sphere is the origin, i.e., 
 
c  = 0

 
 then the equation of the 

sphere becomes 

  a( ) r 2 2= .a

(2) If the origin lies on the sphere then a( ) c 2 2= ,a  and correspondingly the equa-

tion becomes 

  
  
r c( ) r 2

2 =
  
r c⋅ 0.

9.9.2 Equation of the Sphere with Given Diameter Ends

Let 
 
a  and 

 
b  be the position vectors of the ends of the diameter of the sphere.



  9.17  Vector Analysis 

Then the equation of the sphere is given by 

( ) ( ) = 0
    

b
 

⋅)

where 
 
r  is the position vector of any arbitrary point on the sphere.

WORKED-OUT EXAMPLES

Example 9.1  Given two vectors 
 
α ˆ ˆ= 3i j− and 

 
β ˆˆ ˆ= 2 3 ,i j k33+ −  express 

 
β  in 

the form of 
  
β β2β ββ ,  where 

 
β1  is parallel to 

 
α and 

 
β2  is perpendicular to 

 
α .  

 [WBUT-2005]

Sol. Since β
  

1  is parallel to 
 
α and 

 
β2  is perpendicular to 

 
α  then 

 
  
β α

 
β α

 
ββ ββαα kand wβ α

 
ββ = 0 here is any scalar

Now,
     
β β β β α β

 
=1 ββ 2+ kα

Therefore,
    
β α

 
α α β α

 
α α + β= ββββkα

or,
  
β α

 
α=

2
k

or, =
2

k

 

 

β α.
 

α

2 2

ˆˆ ˆ ˆ ˆˆ(2 3 )(3 ) 5 1
or, = = =

10 2(3) 1+2 +

j j3 )(33 )(3+ − −−
k

Therefore,

 
β1 α 1 ˆ ˆ)

2

1
j= (3α −

1

2

and

   
β β β1β ββ β−

1 1 3ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ1 1 31ˆ= (2
2 2 2

i j k i j i j k
1 1 3

j 3 ) (3 ) = 33 ) (3 ) =+ − − − + −− −− − − +
1 1 31

2 2 2
( )( )

Example 9.2  Let 
  

α β
 

γ,β  be unit vectors satisfying 
 

α β
 

= 0  and 
  
α γ = 0.  If 

the angle between 
 
β and 

 
γ  is 

π
6

 then show that 
  

α β
 

γ )
 

β γ .β

Sol. Here 
  

α β
 

γ=β =1

Since, 
   

α β
 

α γ= 0 = 0.and
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Therefore 
 
α  is perpendicular to 

 
β and 

 
γ

Therefore,
  

α β
 

γ )β γ ), beingt a scalar

Therefore,

  
α β
 

γ2 2
)×

or, 1 =
6

2
2

t
 
β γ

 π
sin

⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬

or, 1 = 1 1
1

2

2
2

t ⋅ ⋅1⎧
⎨
⎧⎧
⎩
⎨⎨

⎫
⎬
⎫⎫
⎭
⎬⎬

or, t2 2 = 2⇒ ±t =

Hence
  

α β
 

γ )
 

β γβ

Example 9.3  If ˆˆ ˆ, ,a b cˆ ˆ, ,  are unit vectors such that 
1ˆ ˆ1

ˆ ˆ( ) = ,
2

a b c b×
1

ˆ ˆ( ) =) =×
1

ˆ  find the angles 

which â  makes with b̂  and ˆ.c

Sol. 

Here,

1ˆ ˆ1
ˆ ˆ( )

2
a b c b×

1
ˆ ˆ( ) =× ˆ

Therefore,

1ˆ ˆ ˆ1
ˆ ˆ ˆ ˆ( ) ( ) =

2
a c b a b c b

1
ˆ ˆ ˆ ˆˆ) ( ) =) ( )⋅ ⋅ − ⋅ ⋅⋅ − ⋅⋅ − ⋅ˆ ˆ ˆ ˆˆ̂

Equating coefficients of b̂  and ˆ,c  we get

 
1

ˆ ˆ( ) =ˆ ˆ
2

⋅ …(1)

and 

ˆˆ( ) = 0bˆ ⋅ˆ …(2)

From (1),

ˆ ˆa c cosθ θ
1

2
where iθ s the angle between ˆ ˆanda cand

    
πθ 1 1

ˆ ˆor, = cos = since = = 1
πθ −1 1

ˆ ˆ
2 3

==
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From (2), 

ˆa b cos iφ he angle between ˆa band

   or,
π
2

Therefore, the angle between â  and b̂  is 
2

 and the angle between â  and ĉ  is 
3
.

Example 9.4  Given three vectors c, prove that 
  

a
 

a
 

c× b

 
) .

 
c⋅  [WBUT-2005]

Sol. Let 

 ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆa a k
 

3=

Now,

3

3

ˆˆ ˆi j k

b c b×

    ˆˆ ˆ )= 2 3 1

Therefore,

1 2 3

ˆˆ ˆ

)

i j k

a× =× a a

      ˆ= 2 1 2

      ˆ )]3

      + ˆ )]2

      ˆ ˆ= ]a2 2 1 1+ + + +[(

      + ˆ ˆ ]1+ + + +

      ˆˆ ]31 1+ + + +

      ˆˆ ˆ
2 2 + + + +

      ˆˆ ˆ )k3+ + + +
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      ˆˆ ˆ ˆ ˆ ˆ ˆ= {( )k3

      − ˆˆ ˆ ˆ ˆ ˆ ˆ ).k3

      = (
    

b c⋅

Example 9.5  Find the constant m  such that the vectors ˆˆ ˆ 
− +

 
ˆˆ ˆ ,3+ − ˆˆ ˆ k= 3 5+ +  are coplanar. [WBUT-2004].

Sol. 

The three nonzero vectors 
 

a b  and c
 

 are coplanar if and only if [ ] = 0,
 

which implies 

2 1 1

1 2 3

3 5

−

or, 2(10 (5 1( 6) = 0+ + m

or 7 28 = 0m +

or, = 4−

Example 9.6  If 
  

c  are three vectors, show that

[
   
c ab = a c .2  [WBUT 2006, 2009]

Sol. 

 

   = { }( )
  

c a×

   = { ), )p a= b
          

⋅ c c ×where

   = ( )
    

) c a×c

   = (
     

b c⋅

  , [ ] = 0⋅
     

a

   = {
 

c

   = [
   
c a

   = [ = [ ]2
    

a b
 

c
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PART-II (VECTOR DIFFERENTIATION  
AND GRADIENT, DIVERGENCE, CURL)

9.10 VECTOR FUNCTION OF A SCALAR VARVV IABLE

9.10.1 Definition

If for each value of a scalar variable t, there corresponds a unique vector f
�

then f
�

 is 

called a vector function of the scalar variable t  and is denoted by f
�
( ).

If the components of a vector function f
�
( ) along the coordinate axes be

f
�

1(t), f
�

2(t), f
�

3(t) then the vector function f
�
( )  is written as

� � � ��

3
ˆˆ ˆ

��
( ) ( ) ( ) ( ) .t t i t j t k3) ( ) ( ) ( )) ( ) ( ) ( )1 2 3f f f f( ) ( ) ( )) ( ) ( )( ) ( ) 3( ) ( )) ( )( ) ( )( )1 2

The position vector of a point P in three-dimensional space with respect to a 

vector origin is a function of a scalar variable t  and is denoted by,
� ˆˆ ˆ .r t x t i y t j z t k
�
( ) ( ) ( ) ( )) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )

9.10.2 Limit and Continuity of a Vector Function

Limit of a Vector Function

A Vector function f
�
( ) is said to tend to a limit 

�
a  as t  tends to s,  if for any pre-

assigned positive number ε ,  there exists a small positive number δ , such that

f
� �
( ) < , <a

�
) t s δwhen

Limit of a vector function is denoted by

t s
a

→
lim f

� �
( )t

Continuity of a Vector Function

A vector function 
�
f ( )  is said to be continuous at a point s if

t s
s

→
lim

� �
f f( )tt = (f )

9.11 DIFFERENTIATION OF VECTOR FUNCTIONS

The ordinary derivative of a single-valued function 
�
f ( )  with respect to t  is defined as

d t

dt tt

� � �
f f)( )tt

=
)t( )t t ( )t

0δ
δ
δ→

−)tlim

provided the limit exists.
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9.11.1 General Rules for Differentiation

1)
d a

dt

da

dt

db

dt

( )a b
=

� � �

±

2)
d a b

dt
a

db

dt
b

da

dt

( )a b
=

� �
�

�
�

�

⋅ + ⋅

3)
d a b

dt
a

db

dt

da

dt
b

( )a b
=

� �
�

� �
�

× + ×

4)
d

dt
a b

da

dt
b c a

db

dt
c a b

d
[ ,a , ]c = ,

d
, ,c a , ,c a ,

� �
�

� � �
�

� � �
�

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦
+
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
+

cc

dt

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

5)
d

dt
a b c

da

dt
b c a

db

dt
c a b

dc

d
{ (a )} = (

da

d
)

� �
�

� � �
)

�
� � �

�

×b b( + ×a ×
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞

⎠
+ ×a ×

tt

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

6)
d a

dt

da

dt

( )a
=

φ( a
φ φ
da

d

� �
d)

where iφ s any scalar

9.12 SCALAR AND VECTOR POINT FUNCTION

If for every position of a point in space, a physical quantity has one or more definite 

values assigned to it then it is said to be a point function. If the point function has only

one value at each point then the function is called a single-valued function.

9.12.1 Scalar Point Function

f is said to be a scalar point function of
�
r  if for every value of 

�
r , there corresponds 

a definite scalar quantity f .  The scalar point function is denoted by

f r f x y z)r ( ,x , )zor

where
�
r  is the position vector corresponding to any point P ( , , )x y, in the space. 

The scalar point function will constitute a scalar field, for example,

f x y z x y xyz( ,x , )z = .x y xyz2 + +yy

9.12.2 Vector Point Function
�
F  is said to be a vector point function of 

�
r  if for every value of 

�
r ,  there

corresponds a definite vector quantity
�
F. The vector point function is denoted by

� �
F F( )

�
( )
�

( , , )F) ( y z,o

where
�
r  is the position vector corresponding to any point P ( , , )x y,  in the space.

The vector point function will constitute a vector field, for example,
�
F( , , ) .2 2

x y, x) = i yz j z k
2ˆ ˆ ˆ+yz j
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9.13 GRADIENT OF A SCALAR POINT FUNCTION

9.13.1 Definition

Let , ),  be a scalar point function differentiable at each point in a certain region

R of space. Then the gradient of ,  denoted by grad  is defined by,

grad φ , )z

= , )
x
i

y z
x(k ,ˆ+ +

=
x y z

k̂

9.13.2 roperties of Gradient of a Scalar Point Function

1) The necessary and sufficient condition for a scalar point function , ),  to 

be a constant is
�

, ) = 0,

2) If , ) and , ),  are two scalar point functions then,
� � �

)} , )( ,, x , x ,

3) If , ), and , ),  are two scalar point functions then,
� �

,( , )} = ( , , ) (, , , x

4) If , ), and , )  are two scalar point functions then,

�
� �

, )

,

, z

z

, )}2

5) If c is a constant and , ),  is a scalar point function, then

�
c( )c x z x, )

Example 7 If r r
�

 where 
�

x zˆ ˆ ˆ prove that

i)

�

∇ −
1

3r

r

r

ii) ∇ −2
nr r= [WBUT 2004]
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Sol. Here,
�
r xi yj zyy k= ,xi yj zyy kˆ ˆ ˆyjyyjy  so r r x y z x y z=r .2 2 2 2 2 2 2�

+ +y2 ⇒ +r x=2 2 +

i)
�
∇⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
+

∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
+

∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

1
=

1 1⎞ ∂ ⎛ 1

r
i

x r∂∂ ⎝⎝⎝
j

y r∂ ⎝⎝⎝
k

z r⎝⎝⎝
ˆ ∂ ⎛ 1 ⎞ ˆ

=
2 2 2

ˆ ˆi
r x

j
r

r

y
k

r

r

z

− ∂11

∂
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞
⎠
+

− ∂1

∂
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
+

− ∂1

∂
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

=
1 1 1
2 2 2

− − −ˆ 1 ˆi
r

x

r
j

r

y

r
k

r

z

r

=
1

( ) =
3 3

−
−

r
yj k

r

r

ˆ ˆ ˆ

�

ii) Since r x y z2 2 2 2 ,+ +y2 we have

2 = 2 =
r

x
x

r

x

x

r

∂
∂

⇒
∂
∂

Similarly, and
∂
∂

∂
∂

r

y

y

r

r

z

z

r
= =and

�
∇

∂
∂

∂
∂

∂
∂

( ) = (
∂
∂

) (
∂
∂

) (
∂
∂

)) =
x∂∂

r j)+
y∂

r k)+
z

r
n n n nˆ ˆ∂ ˆ

= 1 1 1ˆ ˆ1 ˆi nr
r

x
j nr

r

y
k nr

r

z

n n n∂
∂

+ j
∂
∂

+ k
∂
∂

− − −

= 1 1 1ˆ ˆ1 ˆi nr
x

r
j nr

y

r
k nr

z

r

n n n+1
nr

n +1
nr

yn− − −

= ( ) =2 2
xi yj zk nr r

n n−+ +yjˆ ˆ ˆ
�

9.14 LEVEL SURFACE

Let f r )r  or f x y z( ,x , )z be a scalar point function over a region in space. Then the 

points ( , , )x y,  in the region satisfying the equation f x y z c( ,x , )z = constitute a family 

of surfaces.This family of surfaces is called a level surface determined by f , for 

example, x y3 2 2 =z 5+ −y2  is a level surface, determined by the function f x y z( ,x , )z =

x y z3 2 2+ −y2  for c = 5.

9.15 DIRECTIONAL DERIVATIVE OF A SCALAR POINT FUNCTION

9.15.1 Definition

Let φ( , , )x y, be a scalar point function possessing first-order derivatives. Then the 

directional derivative of φ( , , )x y, at P y z( ,x , )z  along the unit vector a� , where
�
a a i a j a k1 2i a 3

ˆ ˆ ˆa j2a  is given by
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∇∇∇∇
∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

φφφφ
φφ φ∂∂∂∂φφ φ φ∂∂∂∂φφ φφφ�

a
x∂∂

i
y∂∂∂

j
z∂∂

k a i a j a k= ( ).1 2i a 3

φ∂∂∂∂φφφ ˆ ˆ ˆ ˆ+ +
φφφφ

j
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎠⎠

a j2a

= 1 2 3a
x y

a
z

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

φφ φ∂∂∂∂φφ φ φ
a

∂∂∂∂φφ φφφ
+ +2a

φ
a

φφφ

9.15.2 Observations

1) Directional derivative is the rate of change of φφφφ  at ( , , )x y, in the direction 

of a� .

2) The directional derivative along along any straight line can be expressed in 

terms of those along the coordinate axes.

3) The directional derivative at P y z( ,x , )z along the reverse direction will be

d

ds
a

x
a

y
a

z

φφ φ
a

φφ φ φ
a

φφ φ φ
a

φφ φφφ
= 1 2a 3− −a1 −

∂∂φφ∂∂
∂∂∂∂

∂∂φφ∂∂
∂∂∂∂

∂∂φφ∂∂
∂∂∂∂

Example 8 Find the directional derivative of φ( , , ) 2 2x y, x) = y zx x z+

at (1,1,2) in the direction (2 2 ).ˆ ˆ ˆi j k−j

Sol. Here, 

�
∇

∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
φ

φ φ
+
∂ φ

( , , ) =x y,
x∂∂

i
y

j
z

kˆφ∂ ˆ

= ( 2 ) 2 ( )2 2 2
y z i y j x( y xx k+ +2 )i +2

x( yxˆ ˆ ˆ

Now, 
�
∇ +φ(1, 1, 2) = 6 4 2 .ˆ ˆ ˆi j4+ k

The unit vector in the direction (2 2 )ˆ ˆ ˆi j k−j  is

ˆ
ˆ ˆ ˆ

ˆ ˆ ˆa
i j k

i j k=
(2 2 )k

2 1 2
=

2

3

1

3

2

32 211 2

−j

111
−j

The directional derivative is 

�
∇ ⋅ + ⋅ −⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

φ(1, 1, 2) =⋅ (6 4 )
2

3

1

3

2

3
= 4ˆ ˆ ˆ ˆ ˆ ˆ1 ˆi= (6 j k2+ i j+

1

3
k

9.15.3 Properties of Directional Derivative of a Scalar Point
Function

Theorem 9.3: The directional derivative of a scalar field φφφφ at a point P y z( ,x , )z

in the direction of the unit vector â  is given by

d

ds
a

φφφφ
φφφφ=

�
∇∇ ⋅φφφφ∇∇ ˆ
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where s is the distance of the point P y z( ,x , )z from some fixed point in the direction 

of 
�
a.

Theorem 9.4: The directional derivatives of a scalar point function φφφφ ( ,φ , )x y, in

the directions of X Y,  and Z-axes are

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

φφ φ∂∂∂∂φφ φ φ∂∂∂∂φφ φφφ

x y∂∂ ∂∂∂∂ z∂∂
, and
∂∂∂∂
φ∂∂∂∂φφφ

respectively.

Theorem 9.5: Let n̂ be a unit normal vector to the level surface φφφφ ( ,φ , )x y, = c  at

a point P y z( ,x , )z , n  being the distance of P y z( ,x , )z  measured from a fixed 

point in the direction of n̂.  Then,

�
∇∇∇∇φφφφ

φφφφ
=

d

dn
n

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

ˆ

i.e., the direction of 
�
∇∇∇∇φφφφ  is normal to the level surface.

Theorem 9.6: The directional derivative of a scalar field function φφφφ ( ,φ , )x y,  is maxi-

mum along the normal to the level surface φφφφ ( ,φ , )x y, = ,c and the maximum value is

�
∇∇∇∇φφφφφ

φφ φφφ φφφ
==

d

dn
nn

dφφ

dn

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

Example 9 Find the maximum value of the directional derivative of 

φ( , , ) 2 2 2x y, x) = z y+ −2z at the point (1, 3, 2).

Sol. Here,

�
∇

∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
φ

φ φ
+
∂ φ

( , , ) =x y,
x∂∂

i
y∂

j
z

kˆφ∂ ˆ

= 2 2 2 .xi yj zkˆ ˆ ˆ− 2

At (1, 3, 2),
�
∇ +φ(1, 3, 2) = 2 6 4ˆ ˆ ˆi j6− k is the direction in which the direc-

tional derivative is maximum.

The maximum value of the directional derivative is

�
∇ + +φ(1, 3, 2) = 2 6 4 2 6+ 4 = 2 142 26+ 2ˆ ˆ ˆi j6− k

9.16 TANGENT PLANE AND NORMAL TO A LEVEL SURFACE

Let φ( , , )x y, = c be the equation of a level surface. Then,

i) the equation of tangent plane at P y z( ,x , )z is

( ) ( ) ( ) = 0
x

y
y z

+) +)
∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

φφ φ
( )+ )

∂∂∂∂φφ φ φ
( )+

∂∂∂∂φφ φφφ
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ii) the equation of the normal at P y z( ,x , )z  is

( )
=

( )
=

( )
.

x

y

y z

) (

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

φφ φ∂∂∂∂φφ φ φ∂∂∂∂φφ φφφ

Example 10 Find the equation of the tangent plane to the surface xyz = 4 at the 

point (1, 2, 2). Find also the equation of the normal line at that point.

Sol. The equation of the level surface is φ( , , ) 4 = 0.x y, xyz≡ −xyz

Now,

∂
∂

∂
∂

∂
∂

φ φ∂ φ

x∂∂
y

y∂
zx

z∂∂
xy= ,yz = ,zx =

and d
∂
∂

∂
∂

∂
∂

φ φ φ

x∂∂ y∂ z∂∂
(1, 2, 2) = 4, (1, 2, 2) = 2 (and

∂
∂
φ

1, 2, 2) = 2.

The equation of the tangent plane at (1, 2, 2) is

( ) ( ) ( ) = 0
x

y
y z

∂
∂

+ (
∂
∂

+ (
∂
∂

φ φ
( )+ (

∂ φ

or, ( 1)4 ( 2)2 ( 2)2 = 0x y1)4 ( z1)41)4 − 2)2 −
or, 4 2 2 12 = 0x y z+ 22 −

 The equation of the normal at (1, 2, 2)  is

( )
=

( )
=

( )

x

y

y z

∂
∂

∂
∂

∂
∂

φ φ∂ φ

or,
( 1)

4
=

( 2)

2
=

( 2)

2

x y1)
=

(1) (

Example 11 Find a unit normal to the surface x y z2 2 = 2 (1, 1, 2)− +y2 at

Sol. The surface is given by φ( , , ) 2.2 2x y, x) = y z− +2y −
Therefore,

�
∇

∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
φ

φ φ
+
∂ φ

( , , ) = 2x y,
x∂∂

i
y

j
z

k x
⎞
⎟
⎞⎞

= 2 i y− 2− j k+yyˆφ∂ ˆ ˆ ˆ ˆ

and
�
∇ − +φ(1, 1, 2) =− 2 2 .ˆ ˆ ˆi j+ 2+ k

The unit normal to the surface is

2 2

2 1
=

2

3

2

3

1

3
.

2 22 2

ˆ ˆ ˆ
ˆ ˆ2 ˆi j2 k
i j

2

3
k

+j2

+ +222
+j

Another unit normal is − +⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

2

3

2

3

1

3
ˆ ˆ2 ˆi j+

2

3
k  in the other side of the surface.
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9.17 DIVERGENCE AND CURL OF A VECTOR POINT FUNCTION

9.17.1 Definition

Let 
�
F F i F j F k1 2FF i F 3FFˆ ˆ ˆF j2FF  be any continuously differentiable vector point function.

The divergence of the vector point function is defined by

div
� � �
F F

x
i

y
j

z
k F i F j F k=F ( )1 2FF i F 3FF∇∇∇∇∇∇∇∇

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

ˆ ˆ∂∂∂∂ ˆ ˆ ˆ ˆ+ +j
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎠⎠

F j2FF

= .1 2 3∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

F1∂∂
x∂∂

F2∂
y∂∂∂

F3∂∂
z∂∂

+ +2

div
�
F  can also be written in the summation form as 

� � �
�

∇⋅
∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞

⎠
⋅
∂
∂∑F

x∂∂
i

y∂
j

z
k F
⎞
⎟
⎞
⋅ i∑∑ F

x∂∂
= = ,ˆ ˆ∂ ˆ ˆ

the summation being taken over all î , ĵ and k̂.

The curl of the vector point function is defined by

curl
� � �
F F

x
i

y
j

z
k F i F j F k∇∇∇∇

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

+F i +
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎠⎠

F i( )1 2i FFFF i 3FFˆ ˆ∂∂∂∂ ˆ ˆ ˆ ˆ

=

1 2 3

i j k

x y z

F F1 2 F3

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

curl
�
F  can also be written in the summation form as 

� � �
�

∇×
∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞

⎠⎠
⋅×

∂
∂∑F

x∂∂
i

y∂
j

z
k F
⎞
⎟
⎞⎞
× i∑∑ F

x∂∂
= ,ˆ ˆ∂ ˆ ˆ

the summation being taken over all î , ĵ and k̂.

9.17.2 Properties of Divergence and Curl

1) If 
�
F and 

�
G be two differentiable vector point functions then,

i) div div i( =
� � � �

F Gdivdiv F

ii) curl curl( =
� � � �

F Gcurl

Proof:

(i) div ( = (
� � � �
F G

x
i

y
j

z
k F( G

∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞

⎠
±) )ˆ ˆ∂ ˆ

= (ˆ ˆ
x

F G i
F

x

G

x

∂
∂

⋅=G i
∂
∂

±
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
∑∑

� �
� �

)
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= i
G

∂
± ⋅i

∂
∂∑

� �

.
� � � � � �
∇⋅ ±∇ ⋅ ±

(ii) ˆcurl ( )
z

∂ˆ ˆ k () =
� ��

= (ˆ ˆ F

x

G∂
×G i

∂
∂

±
∂
∂

�
� �

ˆ ˆi
G

x
×
∂

± ×i
∂∑

�

= cur
�

curl

2) If F  be vector point function and  be a scalar point function. Then 

i) div div
� � � �

F

ii) curl curl
�

F WBUT-2004]

Proof

(i) di φ
�
F) k̂

z
ˆ ˆ F(

= î ⋅
∂∑

�

= ˆ ˆi F i
F

x

∂
∂

∂
∂⎝ ⎠

∑ φ
�

�

= î
F∂
∂

i F

=
� � �

⋅ Fφ+

(ii) curl
�

= k̂
z

∂ˆ ˆ (

ˆ )F
∂ �

= ˆ ˆi
F

×
∂ ⎫

×i
∂∑

�

= ˆ ˆi
F

x

∂
∂

× ×i
∂
∂∑

�
�
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ˆ ˆi
x

F∂
∂

× ×
∂
∂∑
�

=
� � �

× F⋅+

3) If F and 
�
G be two differentiable vector point functions, then

i) grad
� � � � � � � � � �

FG curl curl+ +

ii) div
� � � � � �

curl curl=

iii) curl
� � � � � � � � � � � �

div div + ) [WBUT-2003].

Proof:

(i) grad ( )
�

) = ( )
� � � � �

(
∂∑G⋅ i
x

ˆ

ˆ ˆi F
G

x

F
F

G

x

F

x

�
�

� �
�

�
∂
∂

+ ⋅
∂
∂⎝ ⎠

∂
⋅
∂
∂∑∑ i

=

�
� �

F i
G

x
F G×

∂
∂

+
∂� �

i × ˆ ∂ˆ F

x

�

= (
� � � � � � � � �
F F +

(ii) div ( ) = ( )
� � � �
F G i

x

∂
∂∑ ˆ

= î
F

x

G∂
∂

× ×
∂⎧

∑
�

� �

= ˆ ˆi
F

x

G

x

∂
× ×i

∂∑
� �

�

= ˆ
x

G

x
F⋅

∂
∂

×∑ i G× ⋅
� �

= ˆ
x

F×i
∂

⎠
∑ i G× ⋅

� �
�G

=
� � � �

G F F G

(iii) curl ( )
�

)
�

F G×

= ˆ ˆi
x

i
F G

x
×

∂
×

∂
× ×

∂
∂∑

� � � �
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= ( )}ˆ×∑ i G× ×
�

� �

= ( )ˆ ˆ ˆi G
x

F G

x
F

∂
∂
∂

⋅i
∂

⎠

�
�

� ∂
( )ˆ ⋅

G

x

�
�

=
F

x
G

∂
∂∑( )i G −
�

�
�

∂
∂⎩

⋅i

�
G

x
⋅F

=
�

�

G
x

i
F

x

G

x
ˆ ˆ∂

⋅
∂
∂

i F
∂
∂∑

�
F F− i

x
Gˆ

(
� � � � � � �

G GF+G−

9.17.3 Irrotational and Solenoidal Vectors

A vector point function 
�
F is said to be irrotational if curl

�
F = 0  and solenoidal if 

div
�
F = 0.

Example 12 If the vectors
�
A  and B are irrotational then show that the vectors 

� �
A B  is solenoidal. [WBUT 2004, 2006]

Sol If the vector functions 
�
A and B are irrotational then 

curl and curlA B
�� �

= 0 = 0

Now,

div ) = B 0
�� �� � �� �� � �� �� ��

) = A 0 = 0

Since, div ( ) = 0A B
�� ��

 therefore ( )
�� ��

 is solenoidal.

9.17.4 Some Results on Second-Order Differential 
Operators

Laplacian Operator

The Laplacian operator is defined as

∇
∂

+
∂

+
∂
∂

2
2

2

2

2

2

2x y z

If ,  be a scalar point function then

∇
∂

∂
2

2

2 2 2
=

φ φ φ∂ ∂
x y z

is a scalar quantity.

If 
�
v x z be a vector point function then

∇
∂

+ +2
2

2 2 2
=

�
� �

v
v

x

v

y

v

z
is a vector quantity.
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The equation ∇2 = 0ϕ  is known as the Laplace Equation

i) Let , be a scalar point function then, div grad
� �

Proof:

di ivgrad
f f f

i
x y

k
z

∂
∂ ∂

+
∂
∂

= i
x

i
x

j
y

k
z∂

∂
∂ ∂

+
∂
∂∑ ˆ ∂

=
2

2 2

2

2

∂
+
∂φ ϕ∂

x x x

=
2

2

2

2

2

2

∂
∂

+
∂

+
∂

x x x
= ∇

ii)  Let , ),  be a scalar point function then,

curl grad = 0,
� � �

[WBUT-2005]

Proof:

curl ( )grad

= curl ˆ ˆi j
y

k
z∂

+
∂
∂

ˆ ∂

= ˆi i
x

j
y

k
z

×
∂

∂
∂

+
∂
∂∑

=
2∂

+
∂

+
∂

i j
x

ˆ ˆ ∂
x

k
2

ˆ

= 0

iii) Let 
� �
F F kx z =  be a vector point function then,

div curl
� �

F F) = 0

Proof:

div curl F

}
�
F k̂

div
∂
∂

−
∂

+
∂
∂

−
∂

+
∂

−
F

y z
i

F

z x
j

F

x x
ˆ ˆ k̂

=
∂

−
∂

+
∂

∂
− +

∂
−

∂x

F

y z y

F

z x z

F

x x

= 0
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iv) Let
� � � �
F y z F i F j F k( ,x , )z = 1 2F iF F 3FFˆ ˆ

�
ˆ+ +F jFF  be a vector point function then,

curl curl
� � � � � � � �
F F F( ) ∇ ∇ × ∇ ∇ −∇= (∇× ) = ( )F∇ 2

Proof:
� � �
∇× ∇( )∇×

= ×
∂
∂

×
∂
∂

+ ×
∂
∂

+ ×
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
∑ ˆ ˆ∂ ⎛ ˆ ˆi

x∂∂
i

F

x∂∂
j

F

y
k

F

z

� � �

=
2

2

2 2

ˆ ˆ ˆ ˆi i
F

x
j

F

x y
k

F

x z
×i
∂
∂

+ ×j
∂
∂ ∂xx y

+ ×k
∂
∂ ∂xx

⎛

⎝

⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟∑

� �
2

�

=
2

2

2

2

2

ˆ ˆ ˆ ˆ ˆi
F

x
i i i

F

x
i

F

x y
⋅
∂
∂

⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞
⎟
⎠
⎟ ⋅ i ⋅

∂
∂

⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟ +

∂
∂ ∂x yx y

⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

� � �
⎞⎞

⎠
⎟
⎞⎞⎞⎞
⎟
⎠⎠
⎟⎟

∂
∂ ∂

⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞
⎟
⎠
⎟

⎡

⎣
⎢
⎡⎡

⎢⎣⎣
⎢⎢∑ ˆ ˆ ˆj i− j

F

x y∂ ∂∂
( )⋅i j

2
�

+
∂
∂ ∂

⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟

∂
∂ ∂

⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞
⎟
⎠
⎟
⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥ˆ ˆ ˆ ˆi

F

x z∂ ∂∂
k i− k

F

x z∂ ∂∂

2 2

( )⋅i k

� �

Using the formula a a c a b c
� � � � � � � � �

⋅c a ⋅( )b c×b = ( ) (b − ) and since ˆ ˆ ˆ ˆ ˆ ˆi i j j k ki = =j jj = 1,

ˆ ˆ ˆ ˆ ˆ ˆi j j k k ij = =j kj = 0, we have from above

� � �
∇× ∇( )∇×

=
2

2

2 2

ˆ ˆ ˆ ˆ ˆi
F

x
i i

F

x y
j i

F

x z
⋅
∂
∂

⎛

⎝
⎜
⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟ ⋅ i

∂
∂ ∂x yx y

⎛

⎝

⎛⎛
⎜
⎝⎝
⎜⎜

⎞

⎠
⎟
⎞⎞
⎟
⎠⎠
⎟⎟

∂
∂ ∂xx

⎛

⎝

⎛⎛
⎜
⎝⎝

� �
2⎞ ⎛

�
⎞⎞

⎠
⎟
⎞⎞⎞⎞
⎟
⎠⎠
⎟⎟ −

∂
∂

∑ ∑k̂
F

x∂∂

2

2

�

= 2ˆ ˆ ˆ ˆi
x

i
F

x
j

F

y
k

F

z
F

∂
∂

⋅i⋅
∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
−∇∑

� � �
�

= ( ) 2
� � � �

2∇ ∇( ⋅ ∇ F2F) −) ∇

WORKED-OUT EXAMPLES

Example 9.7 If φ = xy y zx+ +yz  and
�
A x yi y zj zz xk

2 2
i

2ˆ ˆ2 ˆ+ y zjz
2 then find a) A

�� ��
⋅∇φ∇∇

b)φ ⋅ ∇ ⋅(
� �

A)  c)
�
∇φ ×

�
A at the point (3, 1, 2)

Sol.

Here,

φ = xy y zx+ +yz
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Now,

�
∇

∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
φ =

x∂∂
i

y∂
j

z
k x
⎞
⎟
⎞⎞

y yˆ ˆ∂ ˆ )+ +(xy y+x z z+ xzz

= ( ) ( ) ( )y z x( )z j) x y k+ )z + z) +ˆ ˆ ˆ

� �
∇⋅

∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
+A

x∂∂
i

y∂
j

z
k x
⎞
⎟
⎞⎞

yi y zj z+z xk= ( )
2 2+i

2ˆ ˆ∂ ˆ ˆ ˆ2 ˆ

= ( ) ( ) ( )2 2 2∂
∂

∂
∂

∂
∂x∂∂

x y
y∂

y z
z∂∂

z x

= 2( )y y

At the point (3, 1, 2)
� �
∇ − −φ (3, 1, 2) =− 2+ˆ ˆ ˆ ˆ ˆ ˆi j+ 5 k and A j k+(3, 1, 2) =− 9 2+i

Therefore,

a)
� �
A j k⋅∇ kφ = ( 2+9 2i +i ) (⋅ )ˆ ˆ ˆ ˆ ˆ ˆi j+ 5 k

= 9 10 24 = 25+9 +

b) φ ⋅ ∇ ⋅ + +( )) ( )+ +( = 2( )+ +( 2
� �

A xy y+x z z+ ⋅x) (z y y+ + ) = 2( y y+ +) = 2(

Therefore,

φ ⋅ ∇ ⋅ −( = 22
� �

A)(3, 1, 2) =− 2( 3 2 6− + )

c)
� �
∇ ×

−
φ A

i j k

= 1 5 2

9 2 12

ˆ ˆ ˆ

= (60 4) (12 18) (2 45)ˆ ˆ ˆi j(60 4) k4) + +18) +

= 56 30 47ˆ ˆ ˆj3030 k30

Example 9.8 If A x i yzj xz k
��

2 22 2ˆ ˆ ˆ+yzj and f z x y3−  find a) A f
��

b)

A f
��

grad at (1, 1, 1)

Sol.

Here,

grad f
x

i
y

j
z

k z x y=
∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞

⎠
−ˆ ˆ∂ ˆ ( )

3

= 3 2 33x yi x− j k2+ˆ ˆ3 ˆ

Therefore,
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a)
�
A f y x y−x x= (2 2x i 3 )ˆ ˆ ˆ ˆ

26 z

At (1, 1,1)
�
A f = 6

b)
�
A f

i j k

x yz xz

3 2

2 2

2 3

6 )5ˆ ˆ ˆ( ) x + −

At (1, 1,1)
�
A f i j k−= 5 8ˆ ˆ ˆ

Example 9.9 Find div
�
F  and curl F  where 

�
F x 3 )xyz

3 −

[WBUT-2001, 2009]

Sol.

Here,

F x 3 )xyz
3

( 3 )3 3ˆ ˆz j
y

z xyz+
∂
∂

+
∂
∂

+k̂
z

z xyz( 3 )3

3 y k)xzˆ ˆ ˆ

Therefore,

div F i j
y

k
z

z{(3 (3 (32 2 2ˆ ˆ ˆ ˆ ˆ
∂

+
∂
∂

+
∂
∂

i xz −3 ) }k̂

)
∂

x y z
3 y

z

and

curl F i j
y

k
z

iyzˆ ˆ ˆ ˆ
∂

+
∂
∂

+
∂
∂

x }− ) − )ˆ ˆ
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=

(3 3 ) (3 3 ) (3 3 )2 2 2

ˆ ˆ ˆi j k

x y z

x y3 z y) (3 z 3 y

∂
∂

∂
∂

∂
∂

−3 y) (3

= ( 3 3 ) ( 3 3 ) ( 3 3 ) = 0−3 3 −3x3 i y( 3−( )y j)) z z3 kˆ ˆ ˆ

Example 9.10 Find the directional derivative of f x y z x y z,x , )z = 2 2 23 2+y+ 3 23  at the

point (2, 1, 3) in the direction of the vector ˆ ˆi k.k [WBUT-2001]

Sol. Here,

f x y z x y z,x , )z = 2 2 23 2+y+ 3 23

Therefore,

�
∇

∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎠⎠

+ +f∇
x∂∂

i
y∂

j
z

k x
⎞
⎟
⎞⎞

y z+ yj zk= (2 3+x ) = 4 6+xi 22 23+ 2ˆ ˆ∂ ˆ ˆ ˆ ˆ

At the point (2,1, 3)
�
∇f i∇ j k+8 6+i 6

If â  is the unit vector in the direction of ˆ ˆi k2 ,k then

ˆ
ˆ ˆ

ˆ ˆa
i k

i k=
5

=
1

5

2

5
Therefore, the required directional derivative is 

�
∇ ⋅ −

⎛

⎝
⎜
⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

−
f a∇ ⋅ i j+ k i

⎛
⎜
⎛⎛

k=a⋅ (8 6 6+j )
1

5

2

5
=

4

5
ˆ ˆ ˆ

Example 9.11 Show that 
�
A y i x z j y k= (6 )xy zx (3 ) (j 3xz y

3 2
i x) (3 2
i)z i) − z jˆ ˆ2 ˆ  is irrotational. 

Find the scalar function φ such that 
� �
A = .∇φ [WBUT-2002, 2004]

Sol.

Here,

curl
�
A

i j k

x y z

xy z xz yxx

=

(6 ) (3 )x z (3 )3 2) (3 2

ˆ ˆ ˆ

∂
∂

∂
∂

∂
∂

+ z x
3) (3x

= (3 ) (3 ) (3 ) (6 )2 2 2 3ˆ ˆ
y

y
z

x z j
x

y
z

xy z
∂
∂

−)
∂
∂

⎡

⎣⎣⎣

⎤

⎦⎦⎦

∂
∂

−)
∂
∂

+⎡
⎣⎣⎣⎣⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

+
∂
∂

∂
∂

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
k̂

x∂∂
x z−

y∂
y(3 ) (−

∂
∂

6 )+xy z
2 3

= ( 1 1) (3 3 ) (6 6 ) = 02 23ˆ ˆ ˆi j( 1 1) z z3 k(6 x1 (3 (6

Therefore,
�
A y i x z j y k= (6 )xy zx (3 ) (j 3xz y

3 2
i x) (3 2
i)z i) − z jˆ ˆ2 ˆ  is irrotational.
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Since

� �
A i

x
j

y
k

z
∇∇

∂
∂

+
∂
∂

+
∂
∂

φ
φ φ

j+
∂ φˆ ∂φ ˆ

therefore,

∂
∂

∂
∂

∂
∂

φ φ φ

x∂∂
y

y∂
x z−

z
y= (6 )+xy z , =

∂
(3 ), = (3 )−xz y

3 2 2

Now,

d
x

dx
y

dy
z

dzφd
φ φ

dx
φ

=
∂
∂

+
∂
∂

+
∂
∂

or, = (6 ) (3 ) (33 2 2
d x= (6 y zx d dy xz y dz)φ + )3

z +) dy −

or, = (6 3 ) ( 3 ) ( )2 3) ( 2
d xydx 3dd y dx x33

z d
2

xx z x) (dd dy ydzφ + +3 ))3 )x3 z d
2

xx z)dd +

or, ( ) ( )] ( )2 2) 3 3
d y= 3[ d x( x dy z] [2

dx xd x)] ( dy ydzφd + x dy]2 ( )]+ xd )] +

or, = 3 ( ) ( ) ( )2 3
d d= 3 x y d(x( z d)3

xx yzφ x( z )3
xx

Integrating, we get

φ( , , ) 3 2 3
x y, x) = 3 y xz yxx z c

3
xzxx + where ic s arbitrary constant.

Example 9.12 Show that curl grad f = 0  where f x y z x y xy z,x , )z = 2x y .2 2+xy2

[WBUT-2003]

Sol. Here,

f x y z x y xy z,x , )z = 2x y
2 2+xy2

Now,

grad f
x

i
y

j
z

k x y xy= ( 2 )xy zx
2 2∂

∂
+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
+ 2xyxˆ ˆ∂ ˆ

= (2 2) ( 2 ) 22
y x( j)x j) zk2) + +2 j)ˆ ˆ2 ˆ

Therefore,

curl grad f

i j k

x y z

xy x z

=

(2 2) ( 2x ) 22

ˆ ˆ ˆ

∂
∂

∂
∂

∂
∂

+ 2) (x

= (0 0) (0 0) ( 2 2 2) = 0ˆ ˆ ˆi j(0 0) k x(20) 0) −2

Example 9.13 In what direction from the point ( , , )1 1, is the directional deriva-

tive of φ( , , ) = 2 42 22 2
x y, x) = y z4+2 22y a maximum? Obtain the magnitude of the direc-

tional derivative. [WBUT-2003, 2006, 2007]
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Sol. Directional derivative of φ  is maximum in the direction of 
�
∇φ.

Here, 

φ( , , ) = 2 42 22 2
x y, x) = y z4+2 22y

Therefore,

�
∇

∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞

⎠⎠
−φ = ( 4+ )2 22 2

x∂∂
i

y∂
j

z
k x
⎞
⎟
⎞⎞
( y z+ 4+ˆ ˆ∂ ˆ

= 2 4 8xi yj zkˆ ˆ ˆ− 4

At (1,1, 1)
�
∇ ⋅ −φ (1,1, 1) =− 2 4 8ˆ ˆ ˆi j4− k

Therefore, the directional derivative is maximum along 2 4 8 .ˆ ˆ ˆi j4 k−j4

The magnitude of the directional derivative is 

�
∇ + −φ ( 4) (− + 8) = 2 212 2+ ( 4) 2

Example 9.14 In what direction from the point ( , , )1 2,  is the directional deriva-

tive of f x y z2x y
2 2 2

y a maximum? Also find the value of this maximum directional

derivative. [WBUT-2004]

Sol. Directional derivative of f  is maximum in the direction of 
�
∇f∇ .

Here, 

f x y z x y z,x , )z = 2x y
2 2 2

y

Therefore,

�
∇

∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
− +f∇

x∂∂
i

y∂
j

z
k x
⎞
⎟
⎞⎞

y z+= ( 2 )z
2 2 2ˆ ˆ∂ ˆ

= 2 2 4xi yj zkˆ ˆ ˆ− 2

At ( , , )1 2,

�
∇ ⋅ +φ ( , , )1 2, 3 =) 2 4 12i j− 4− k

Therefore, the directional derivative is maximum along 2 4 12 .ˆ ˆ ˆi j4 k+j4

The magnitude of the directional derivative is 

�
∇ +f∇ ( 4) (− + 12) = 1622 2+ ( 4) 2

Example 9.15 If 
�
r xi yj zyy kˆ ˆ ˆyjy and r r

�
,  show that grad f r r)r =× � θ  where 

θ is the null vector. [WBUT-2005]

Sol. Here, r r x y z=r
2 2 2� + +y

2
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Now,

grad f r
f

x
i

f

y
j

f

z
k)r =

∂
∂

+
∂∂
∂

+
∂
∂

ˆfˆ ∂ ˆ

Since f is a function of r

Therefore,

∂
∂

∂
∂

f∂
x∂∂

df

dr

r

x∂∂
=

= )
1

2

1
2

2 2 2
′

+ +2
⋅f r(′

x y+ z
x

=
( )xf

r

′

Similarly,

∂
∂

∂
∂

′f∂
y∂

df

dr

r

y∂
yf

r
= =

( )r

and

∂
∂

∂
∂

′f∂
z

df

dr

r

z

zf

r
= =

( )r

Therefore,

grad f r
f

x
i

f

y
j

f

z
k)r =

∂
∂

+
∂∂
∂

+
∂
∂

ˆfˆ ∂ ˆ

=
( ) ( ) ( )xf

r
i

yf

r
j

zf

r
k

′
+

′
+

′ˆ ˆ( )yf ˆ

=
)
( )

′f r(′
r

yj k

=
)′f r(′

r
r
�

Now,

grad f r r
f r

r
r r)r =

)r
×

′⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠
×� �f )r⎛⎛⎛ �

=
)
( ) =

′f r(′
r

� � θ

Example 9.16 If
� � �
v w r= ,w r× prove that 

� �
w =

1

2
curl v  where

�
w  is a constant vector.

Sol. Let,
�
r xi yj zyy k w

�
i w j w k1 2i w 3

ˆ ˆ ˆ ˆ ˆ ˆyjy w j2w

Therefore,

curl curl
� �

l
�

v wcurl ×r
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= 3

�
∇×

i j k

w

x y z

= ( )
�

w( 1 kˆ ˆ ˆ

=

( ) ( ) ( )

ˆ ˆ ˆi j k

x y z

∂ ∂
∂

∂
∂

= ( ) ( )ˆ
y z

∂
∂

∂ ⎤ ∂ ∂
∂

⎤
ĵ

x z
( ) ( )

+
∂

−
∂

k̂
x y

( ) ( )

)3 3
ˆ ˆ ˆw( w (

= 2[ ] = 2w k wˆ ˆ ˆ �

Therefore,

w =
1

2
v

Example 9.17 Find a unit normal to the surface x y
2 2 = 4+ at the point 

(2, 2, 3).

Sol. Let

4, = −xz

Now,

�
∇

∂
∂

+ +
∂
∂

, ) )−2,
x

i
y

j
z

k xˆ ˆ ˆ

= ( xkˆ ˆ ˆ

At the point (2, 2, 3), the normal to the given surface is − + 4ˆ ˆ ˆ4+ k

The unit normal to the surface is

+
± +

4 1

3
− 2 )

ˆ ˆ ˆ
ˆ4+ k

+

Example 9.18 Determine the constant a so that the vector 
�
v x ++ ˆ

az ky )+ˆ ˆ is solenoidal.

Sol. Since the vector 
�
v is solenoidal div

�
v = 0
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or,
∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠⎠⎠
+

x∂∂
i

y∂
j

z
k x y
⎞

⎠
⎟
⎞⎞

⎠⎠
+ i y+ z j x a+ z kˆ ˆ∂ ˆ ˆ ˆ ˆ)y ( 2−y ) (+j ) }k = 0

or,
∂
∂

∂
∂

− +
∂
∂x∂∂

x y
y∂

y z−
z

( 3+x + ) (+
∂
∂

2 )z ( )+x a+ z = 0

or,1 1 = 0+1 a

or, a = 2

Example 9.19 A particle moves on a curve x t y t t2 , y 42 2
t −  and z t3 5−

where t denotes time. Find the components of velocity and acceleration at time t t = 1

in the direction ˆ ˆ ˆ.i j k3 2j +j [WBUT-2002, 2009]

Sol. Let 
�
r be the position vector of any point on the given curve. Then

�
r xi yj zyy k t t t j t kxi zk 2 (t i 4 )t (3 5)2 2

t(iˆ ˆ ˆ ˆ ˆ2 ˆyjyyjy −t
2

t + t(3

Therefore, velocity of the particle is 

�
�

v
dr
�

dt
j k= = 4 (ti 2 4) 3t jˆ ˆ ˆ(2t

At t = 1, the velocity is

1
ˆˆ ˆ[ tv i j k1] = 4 2 3] = 4 2=1t 22

The acceleration of the particle is

�
�

a
d r

�

dt
i j= = 4 2i

2

2
ˆ ˆ

 At t = 1,  the acceleration is
�
a i
�

jt] =t 4 2i1
ˆ ˆ

Let
�
α = 3 2ˆ ˆ ˆi j3 k+j3

Therefore, the component of velocity along 
�
α is

� �

�
v i
� �

j k i j k−i k i

α
=

(4 2 j )( 3 2j + )

14
=

8 14

7

ˆ ˆ ˆ ˆ ˆ ˆ

 Therefore, the component of acceleration along
�
α  is

� �

�
a i
� �

i j i j k+i j −α
α

=
(4 2 )j ( 3i − )k

14
=

14

7

ˆ ˆ ˆ ˆ ˆ

Example 9.20 Evaluate[ , , ]
� �

r, ′ ′�� � ′′′ where ˆˆ ˆ .r a ui a uj buk= cos sincos sinsinsinsin

[WBUT-2008]

Sol.

Here

ˆˆ ˆ .r a ui a uj buk= cos sincos sinsinsinsin
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ˆˆ ˆdr
bk= =

du
ucos

ˆ ˆd r
ujsin

du

Therefore,

, ]

0

r

bu

b

−

u a

u a

a−

}u bua a usin cosu su in

2 2 2 2 2 2− +ba bacosu cu os +u u

a u=su in

Example 9.21 Find the angle between the surfaces z
3 3 = 5 and

x y z x
2 5 =xyz 8− at the point (1,0,1). [WBUT-2008]

Sol.

Let

z xyz,x z 3 53+

5 82, x x xyz− −
Now

�
+ +

∂
f

f

x
i

y
j

f

z
k= ˆ ˆ ˆ

( 3( (2 )+ xˆ ˆ ˆ

�
j k+3î ˆ ˆ

�
∇

∂
∂

+
∂
∂x y

j
z

kˆ ˆ

= ( 2
z) y k)x xˆ ˆ ˆ

�
∇ , 0,1) = +ˆ ˆ ˆ4 k

Let  be the angle between the surfaces. Then

1cos
∇

� �

� �

1

2

ˆ ˆ(3 )
= cos

2− 4

=
21

27 21
=

7

3

1 1cos cos−
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Example 9.22 Find the directional derivative of f x y z x yz xz,x , )z = 4x yz
2 24  at the 

point (1, 2, 1)  in the direction of the vector 2 2ˆ ˆ ˆi j k [WBUT-2008]

Sol.

Here,

f x y z x yz xz,x , )z = 4x yz
2 24

�
∇

∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
f∇

f∂
x∂∂

i
f∂
y∂

j
f∂
z

k= ˆ ˆ∂f∂ ˆ

= (2 4 ) ( 8 )2 2) 2
xyz

2 )z ) j x( y x8 z k)4z )2 ) +2
x( yˆ ˆ2 ˆ

Therefore,
�
∇ −f∇ j k( , 1) = 6− −ĵ ˆ

Therefore, the directional derivative in the direction 2 2ˆ ˆ ˆi j k is 

�
∇ − = =f∇

i j k

i j k
j k j k( , )− )(− j k− ( )i j k

2 2−i j−

2 2−i j−

1

3
−i j−

13

33

Example 9.23 Find the equation of the tangent plane and normal line to the surface

2 3 4 = 72
z xy x−3xy  at the point ( , , ).1 1,

Sol. Here,

φ( , , ) 2 3 4 72
x y, x) = 2 z x3 y x43 −

Therefore,

∂
∂

∂
∂

−
∂
∂

φ φ φ

x∂∂
z y−

y∂ z
xz= 2 3 4, =−

∂
∂
φ

y 3 ,x = 42

At the point (1 1, 2)., −

∂
∂

−
∂
∂

−
∂
∂

−
φ φ φ

x∂∂ y∂ z
(1 1, 2) = 7, (

∂
∂
φ

1 1, 2) =− 3, (1 1, 2) = 8, ,

The equation of the tangent plane at the point (1 1, 2), −  is given by

∂
∂

∂
∂

+ +
∂
∂

φ φ φ∂
+ +

∂
x∂∂ y∂

y
z

( 1) (− +
∂
φφ

+
∂

x 1) ( 2) =−z 0

or, 7( 1) 3( 1) 8( 2) = 0y1) 3(1) 3(1)1) 1)1)

or, 7 3 8 = 26x y3 z33

The equation of the normal to the surface at (1 1, 2), − is given by

( 1)
=

( 1)
=

( 2)

x

y

y z

∂
∂

∂
∂

∂
∂

φ φ∂ φ

or,
( 1)

7
=

( 1)

3
=

( 2)

8

x y1) (1) (1) (

−
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Example 9.24  Prove 
d

dt
r

dr

dt

d r

dt
r

dr

dt

d r

dt

� � �
d �

� �
d

, ,
d

= ,r ,
2

2

3

3

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

Sol. Now,

d

dt
r

dr

dt

d r

dt

�
��

d
, ,

d

2

2

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

= , , , ,
2

2

2

2

2

2

dr

dt

dr

dt

d r
2

dt
r

d r
2

dt

d r
2

dt
r

� �
d

�
�

� �
d

2
�⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦
+
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦
+ ,, ,

3

3

dr

dt

d
3

d r
3

dt

� �
d

3⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

= , , , , =
3

3

2

2

�
� � � � �

r
dr
�

dt

d
3

d r
3�3

dt

dr
�

dt

dr
�

dt

d r
2�

dt

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

since 0,00 , , = 0
2

2

2

2

�
� �

r
d r

2�

dt

d r
2�2

dt

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

Example 9.25 Find the constants a and b  so that the surface ax byz a x
2 = ( 2)− +byz a(

will be orthogonal to the surface 4 = 42 3
x y z at the point (1, 1, 2).

Sol. Since, (1, 1, 2) lies on the surface ax byz a x
2 = ( 2) .− +byz a(

Therefore,

a b a bb a ⇒bb =b 1

Let the given surfaces are,

f x y z by a x,x , )z = (ax byz 2)2
byz +

and

φ( , , ) 4 42 3
x y, x) = 4 y z −3

z

Therefore,

�
∇

∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
−f x∇ y z i

x∂∂
j

y∂
k

z
ax byz −,x , )z = { ( 2) }+a x

2ˆ ˆ∂ ˆ

= {2 ( 2)}a i2)} zj yk(a − −zjˆ ˆ ˆ

�
∇

∂
∂

+
∂
∂

+
∂
∂

⎛

⎝

⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
φ( , , ) (4 4)+ −2 3+x y, i

⎛

⎝
⎜
⎛⎛

⎝⎝
) =

x∂∂
j

y
k

z
yˆ ˆ∂ ˆ

= 8 4 2 23xyi 4 j z33 kˆ ˆ2 ˆ4

Now,
� �
∇ − + ∇ −f∇ i j j k+(1, 1, 2− ) = ( 2−a ) 2i − (1, 1, 2− ) = 8 4+iˆ ˆ ˆ ˆ ˆ ˆφ

Since the surfaces are orthogonal
� �
∇ − ∇ −f∇ (1, 1, 2− ) (∇ , 1, 2) = 0φ

or,{( 2) 2 }{ 8 4 12 } = 02) j k i j4 k2) −}{k +j4ˆ ˆ ˆ ˆ ˆ ˆ

or, 8( 2) 8 12 = 08( +8
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or, =
5

2
a

Therefore, a =
5

2
and b = 1.

Example 9.26 Show that 2 ˆˆ ˆF y z x i x z yz j xy z y k= ( sin sin ) ( sin 2 ) ( cos )sin sin ) ( sin 2 ) ( cos 2sin ) ( sin 2 ) ( cos) ( sin 2 ) ( cossin ) ( sin 2 ) ( cos
�

is irrotational. Find a scalar function φ  such that 
� �
F = .∇φ

Sol.

Here,

2 ˆˆ ˆF y z x i x z yz j xy z y k= ( sin sin ) ( sin 2 ) ( cos )sin sin ) ( sin 2 ) ( cos 2sin ) ( sin 2 ) ( cos) ( sin 2 ) ( cossin ) ( sin 2 ) ( cos
�

Now,

curl
�
F

i j k

x y z

y z x z yz xy zx y

=

( ) ( 2x z ) ( )2

ˆ ˆ ˆ

sin sz in i cos

∂
∂

∂
∂

∂
∂
+

ˆˆ ˆ= ( cos 2 cos 2 ) ( cos cos ) (sin sin ) = 0y y y y jcos 2 cos 2 ) ( cos cos ) (sin sin )cos 2 cos 2 ) ( cos cos ) (sin sin )2 cos 2 ) ( cos cos ) (sincos 2 ) ( cos cos ) (sin2 cos 2 ) ( cos cos ) (sin

Therefore, 
�
F is irrotational.

Since,
� �
F = .∇φ

2 ˆˆ ˆor, (y z x i x z yz j xy z y ksin sin ) ( sin 2 ) ( cos ) =sin sin ) ( sin 2 ) ( cos )2sin ) ( sin 2 ) ( cos) ( sin 2 ) ( cossin ) ( sin 2 ) ( cos
x

∂
∂
φ

î
y

+
∂
∂
φ

+
∂

ĵ
z

+
∂
∂
φ

k̂

Therefore,

∂
∂

∂
∂

+
∂
∂

φ φ φ

x∂∂
y z x

y∂
x z y

z
y y= ( ), = ( 2 )yz , =

∂
( )+xy z y+ 2sin s−z in sin

Now,

d
x

dx
y

dy
z

dzφd
φ φ

dx
φ

=
∂
∂

+
∂φ
∂

+
∂
∂

= ( ) ( 2 ) ( 2
y z x dx x) ( z y2 z d) y x(d y y d)2

zddsin sz i sinx)− sin + +22 d) ydd

= (6 3 ) ( 3 ) ( )2 3) ( 2
y x3 dy z dx x33

d
2 ) ( dy ydz3 )2 )x3 dy )3 )

= 3 ( ( ) )2 3
d x( y d) d y(−( )d

Integrating, we get,

φ( , , ) 3 2 3
x y, x) = 3 y xz yxx z c

3
xz

3
xx +

where c  is an arbitrary constant.
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PART-III (VECTOR INTEGRATION)

9.18 GREEN’S THEOREM IN A PLANE

9.18.1 Cartesian Form

Let us consider two continuous functions M y( ,x ) and N y( ,x )  of x and y  possess-

ing continuous partial derivatives
∂
∂
M

y∂
and

∂
∂
N

x∂∂
in a region R on the two-dimensional 

xy  plane bounded by a closed curve C.

Then, Green’s theorem states that

{ ( , ( , ) } =x( y dx N) x y, dy
N

x

M

y
dxdy

RC

−
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠∫∫∫

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂�∫∫

where the line integral along the curve C is taken in the anticlockwise direction.

9.18.2 Vector Form

Let 
�
F x y= (M , )y î N x y( ,x ) ĵ  and 

�
r xî y ĵ where M  and N have continuous

partial derivatives in a region R  on the xy plane bounded by a closed curve C .

Then,Green’s theorem states that
� � � �

�Fdr F
�

k dxdy

RC

(= )∇× ⋅∫∫∫�� ˆ

Note: Using Green’s theorem, we are able to transform a double integral over a closed 

region into a line integral along the boundary of the region and vice-versa.

Example 13 Verify Green’s theorem in the plane for {( }2 2
xy y dx x)2 ) dy

C

+ y )2 )∫�∫∫
where C is the closed curve of the region bounded byC y= x andx y= x2.

[WBUT 2001, 2003]

Sol. We have Green’s theorem as

{ ( , ( , ) } = .x( y dx N) x y, dy
N

x

M

y
dxdy

RC

∂
∂

−
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
∫∫∫�∫∫

So, for the given problem

M y xy y N y x( ,x ) ( )xy yxx ( ,x ) .2 2and

Then

∂
∂

∂
∂

M

y∂
x y

N

x∂∂
x= 2+x + = 2 .and
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Figure 9.10

XO

A

C1: y =x2

C2: y =x

R

(1, 1)

Y

From Fig. 9.10, it is clear that 

( ) = ( )

1 2

d dy Mdx Ndy

C CC

(Mdx∫ ∫( )Md Nd∫ ∫( )y∫ ( )Mdx Ndy�∫∫

where C y x1
2=y  and C y x2 =y . So,

{( } {( }2 2

1

2 2

2

y y dx x)2 ) dy y y dx x)2 ) dy

C C C

}2
x dy dx))∫ ∫( )d d∫ ∫( )y ∫∫�∫∫ ( ) =

Now, on the curve C y x1
2=y , dy x dx= 2 and on the curve C y x2 =y ,

dy dx= .dx

Then from above 

( )d dy

C

∫�∫∫

= {( ) 2 } {( ) }2 4 2

0

1

2 2)

1

0

dx x)4 {(xdx} x{( x x d
2◊2

x ◊x{( + )2 )xÚ Ú

= (3 ) 33 4 2

1

0

0

1

dx x dx
2+) dx ÚÚ

=
3

4 5
[ ]

1

20

4 5

0

1

3
1
0x x

+
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦
+ −[ ] =1

0

Now, we find the double integral

∂
∂

−
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
+∫∫ ∫∫

N

x∂∂
M

y∂
dxdy x y dxdy

R y x

y x

= {∫∫ 2 (x − 2y

0

1

2
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= ( 2 ) = [

0

1
2

0

1

2

2
x y2 dydx xy y dx]2

2

y x=

y x=

y x=

y x==−∫∫ ∫

= ( ) =
1

20

4 3

0

1

x x d
−

∫
In both the cases, we have the same value for the integrals. Hence the Green’s 

theorem is verified.

Example 14 Evaluate using Green’s theorem

{( ) }cos sin sin cosx ysin xy dx x ycos dy

C

− +)xy dx∫�∫∫

where C  is the circle x y
2 2 = 1.+ [WBUT 2004]

Sol. Let M x y xyx= ( )sx in and N x y.x yi cxx os

Now by Green’s theorem, we have

{ ( , ( , ) } =x( y dx N) x y, dy
N

x

M

y
dxdy

RC

∂
∂

−
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
∫∫∫�∫∫

Now,

∂
∂

−
∂
∂

M

y∂
x y x

N

x∂∂
x y= =cos cx os cos cx osand

So,

{( ) }cos sin sin cosx ysin xy dx x ycos dy

C

− +)xy dx∫�∫∫

= ( )cos cos cosx ycos x ycos x dxd) ydd

R

− +cos cos ycos∫∫

= xdxdy

R

∫∫ …(1)

Let x r= cr osθ  and y r .r sinθ

Then (1)  becomes

{( ) }cos sin sin cosx ysin xy dx x ycos dy

C

− +)xy dx∫�∫∫

=
0

2

=0

1
xdxdy r=

0
dr

R
r∫∫ ∫ ∫=0

2

0 rθ∫∫
π

θ θrd⋅cos

= ( )0

2

θ

π
∫ =0

2

θ

π
θ θ ( )=0

1 2∫θθ ∫∫∫

= 0
1

3
= 0×
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9.19 GAUSS’ DIVERGENCE THEOREM 

9.19.1 Cartesian Form

Let 
�
F F i F j F k.1 2FF i F 3FFˆ ˆ ˆF j2FF  Then Gauss’ divergence theorem can be written as 

 
∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

F∂∂
x∂∂

F∂
y∂∂∂

F∂∂
z∂∂

dxdydz F dydz F dzdx F dxdy

V C

1 2∂∂∂∂FF FF∂∂ 3FF
1 2F dydz FF dydz F 3FF= ( )+ +2⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+F dzdx2FF∫∫∫ ∫∫∫∫∫∫
where V  is the volume enclosed by the closed surface S.

9.19.2 Vector Form

Let 
�
F  be a vector point function possessing continuous first-order partial derivatives 

in the volume V  bounded by a closed surface S.  Then Gauss’ divergence theorem 

states that

 
�
◊ÚÚÚ Ú

� �
—◊ ÚÚ FÚÚ n dS◊

V S

ˆ

where n̂  is the outward drawn unit normal vector to the surface S.

Example 15 Evaluate the volume integral 
� �
∇⋅∫∫∫ FdV

V

where 
�
F x z xyj y k= ( ) 2i ( )y z(2 2 2− z i + (yˆ ˆ ˆ  bounded by the planes x y z=y = 0

and x y z= = = 1.

Sol.  Here, 

 
�
F x z xyj y k= ( ) 2i ( )y z(2 2 2− z i + (yˆ ˆ ˆ

and 

� �
∇⋅

∂
∂

−
∂
∂

+
∂
∂

F
x∂∂

x z−
y∂

y
z

y= (
∂
∂

) (+
∂
∂

2 )xy ( )+y z+2 2 2

      = 2 2 1 = 4 1x x x+ 22 +
Therefore,

—◊ +ÚÚÚ ÚÚÚFdV x dxdydz

V

= (4 1)

0

1

0

1

0

1

      = [2 ]2
0
1

0

1

0

1

dydz∫∫

      = 3 = 3

0

1

0

1

dydz∫∫
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Example 16 Verify the divergence theorem for the vector function 
�
F xzixx y j yzk4 2ˆ ˆ2 ˆ− +y j  taken over a cube bounded by x = 0, =x 1;  y y= 0, =y 1;

z = 0, =z 1.  [WBUT2002]

Sol. 

Figure 9.13 

A

F

Z

C D

G

Y

B

E

O

X

Here in Fig. 9.13, 

x = 0  and x = 1  are the equations of the planes OBDC  and AGEF.

y = 0  and y = 1 are the equations of the planes OAFC  and BGED.

z = 0  and z = 1  are the equations of the planes OAGB  and CFED.

From the divergence theorem, 

� � �
—◊ ◊ ◊ÚÚÚÚÚ FdV F n dS

SV

= ˆ

 Here, 

 
�
F xzixx y j yzk4 2ˆ ˆ2 ˆ− +y j

and 

� �
∇⋅

∂
∂

−
∂
∂

+
∂
∂

F
x∂∂ y∂

y
z

y= (
∂
∂

4 )xz ( )y ( )yz
2

     = 4 2 = 4z y y z= 4 y22 −

Then

� �
∇⋅∫∫∫ ∫∫∫ z∫∫FdV ∫ y dxdydz

V

(∫∫∫ ∫∫∫ 4 −z y

0

1

0

1

0

1
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       = [2 ] )

0

1

0

1
2

0
1

0

1

0

1

∫∫ ∫∫yz d]0
1

y(2xdy = ∫∫dd dxdy

       = (2 =
3

2
.

0

1

0

1

0

1

y dy)(2∫ ∫d∫

Again, let S1  be side FEGAGG ,  S2  be the side BDCO,  S3  be side BDEG,

S4  be the side OAFC,  S5  be side DCFE,  S6  be the side BGAO.  Then

� � � � �
F ndS F ndS F ndS F ndS F ndS

S S S S S

⋅F⋅ndS ⋅F+ ⋅F+ ⋅F+∫∫ ∫∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫∫ˆ ˆFˆF dSˆF dSˆdS ∫∫ ∫∫ ∫∫=

1 2 3 4

+ ⋅++ + ⋅∫∫ ∫∫
� �

∫∫F ndS F ndS

S S

ˆ ˆ∫∫dS F

5 6

On the surface S1,  x = 1  and the normal ˆ ˆn iˆ = ,i  so

 
�
F ndS zi y j yzk idydz

S yz

⋅ − + yzk∫∫ ∫∫ˆ ˆ ˆ ˆ ˆ

1

= (∫∫ 4 )2

=0

1

=0

1

     = [2 ] = 2 = 2.

=0

1

=0

1
2

0
1

=0

1

=0

1

[2 dy dy

yz y y

∫ ∫4 =zdydz =∫ ∫

On the surface S2,  x = 0  and the normal ˆ ˆn iˆ = ,i  so

 
�
F ndS i y j yzk i dydzdd

S yz

⋅ ⋅yzk∫∫ ∫∫ˆ ˆ ˆ ˆ ˆ

2

= (∫∫ 0 ) ( i− = 02

=0

1

=0

1

 On the surface S3,  y = 1 and the normal ˆ ˆn jˆ ,j  so

 
�
F ndS j k j dxdz

S xz

⋅ ⋅∫∫ ∫∫ˆ ˆ ˆ ˆ ˆ

3

(∫= ∫ 4 )xzi j zk+ zk ( j

=0

1

=0

1

      = ( 1) = 1

=0

1

=0

1

=−1)∫∫ dxdz

xz

 On the surface S4,  y = 0  and the normal ˆ ˆn jˆ ,j  so 

 
�
F ndS zi j zk j dxdz

S xz

⋅ +j −∫∫ ∫∫ˆ ˆ ˆ ˆ ˆ

4

= (∫∫ 4 0xzi ) (⋅ =dxdz 0

=0

1

=0

1

On the surface S5,  z = 1  and the normal ˆ ˆn kˆ = ,k  so

 
�
F ndS xi y j yk k dxdy

S xy

⋅ − +j ⋅∫∫ ∫∫ˆ ˆ ˆ ˆ ˆ

5

= (∫∫ 4 ) (k2

=0

1

=0

1

      = =
1

2
=0

1

=0

1

ydxdydd

xy

∫∫
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On the surface S6,  z = 0  and the normal ˆ ˆn kˆ = ,k  so

 
�
F ndS y j k k dxdy

S xy

⋅∫∫ ∫∫ˆ ˆ ˆ ˆ ˆ

6

= (∫∫ 4 0xi y j− +j ) ( ) =dxdy 02

=0

1

=0

1

Therefore,

�
F ndS

S

⋅ −ndS +∫∫ ˆ = 2 1
1

2
=

3

2

So, we have
� � �
∇⋅ ⋅∫∫∫ ∫∫FdV F∫∫ ndS

V S

ˆ

Hence the theorem is verified.

9.20 STOKE’S THEOREM

Let 
�
F  be a continuously differentiable vector point function and S  be the surface 

bounded by a closed curve C.  Then Stoke’s theorem states that
�

� F nds

C S

◊Ú Ú
� �

��F dr
�

Ú cÚÚ u l ˆ

where the curve C  is described in the anticlockwise sense and n̂  being the unit normal 

at any point of S  is drawn with a similar sense, in which a right-handed screw would 

move when rotated in the sense of description of C.

Example 17 Verify Stoke’s theorem for 

�
F x y i xyj= ( ) 2i

2 2+ y î ˆ

taken around the rectangle bounded by the lines x a= ,a±  y = 0,  y b.b

[WBUT 2003]

Sol. 

Figure 9.16 

E

x=−a

y=0

y=b

x=a

D

A

B

X

Y
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Stoke’s theorem states that

� � �

�F dr F
�

n ds

SC

=dr curl ⋅n∫∫∫�� ˆ

Here,
�
F x y i xyj= ( ) 2i

2 2+ y î ˆ

then 

curl
�
F

i j k

x y z

x y y

yk=

2 0xy

= 4

2 2

ˆ ˆ ˆ

ˆ∂
∂

∂
∂

∂
∂

+

Now for the surface S,  ˆ ˆn kˆ

curl
�
F n yk k yn ⋅kˆ ˆ ˆ= 4−

Therefore,

curl
�
F n ds ydxdy ab

S x a

a

y

b

⋅n ydxdy∫∫ ∫∫
=−=

ˆ 4−∫= ∫ .2

0

Again

� y i yj d i dy j

C C

−∫ ∫
� �

��
�

F d {����∫�������� ( )x y+x 2 }xyj2 }xyjxyj { }dx i dy j⋅dx dydy
2 2+ ˆ ˆ ˆ ˆ

    = {( ) 2 }2 2
y dx xydy

C

−)dx∫∫

Now from Fig. 9.16, it is obvious that

{( ) 2 } {( 2 } {( 22 2 2 2 2 2
x y d xydy x} = {(dd d)2

y d) xydy x} {(dd y d)2
xdd xyd

C EAEE

+ )2
y + y )2 {({( −∫ ∫�∫∫ ��∫∫ yydddd

AB

}∫∫

+ + −∫ ∫{( ) 2− } {+ ∫ ( + 2 }2 2+ 2 2+x y+ d xydy x∫} {+ ∫ (d y d)2
xdd xydy

BD DE

�∫∫ ∫∫∫∫ ...(1)

{( ) 2 } = 02 2 2
x y d xydy x} =dd dx y dy= 0,

EA a

a

+ )2
y∫ ∫

−
�∫∫ (since )

            =
2

3

3
a

{( ) 2 = , = 02 2

0

x y d xydy ay dy x} = ( 2 )dd a dx,

AB

b

+ )2
y∫ ∫�∫∫ )

            = 2−ab
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{( ) 2 } ( = , = 02 2 2 2
x y d xydy x} = (dd b dx y)2

b d, ydd

BD a

a

+ )2
y∫ ∫

−

�∫∫ )

            =
2

3
2

3
2− −

a
ab

{( ) 2 = , = 02 2
0

x y d xydy ay dy x} = 2dd a dx,

DE b

+ )2
y −∫ ∫�∫∫ )

             = 2−ab

So from (1), we have 

{( ) 22 2 2
x y d xydy ab} = 4dd

C

+ )2
y∫�∫∫

Therefore,
�

� � F� n ds

C S

⋅n∫ ∫
�

� �� �F d b
�

��
�

ˆ

Hence Stoke’s theorem is verified.

Example 18 Apply Stoke’s theorem to evaluate ( )ydx zdy xdz

C

+zdy∫�∫∫  where C

is the curve of intersection of x y z a
2 2 2 2+ +y

2  and x z a+ = .a  [WBUT-2001]

Sol. 

Figure 9.17 

Y

X

Z

R

C

A (a, 0, 0 )

B (0, 0, a)

Since the intersection of x y z a
2 2 2 2+ +y

2  and x z a+ =  is a circle, here the 

curve C is a circle with diameter AB where A and B have coordinates ( , 0, 0)

and (0, 0, ) respectively.

 Therefore, the radius of the circle is 
a

2
.
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We can write 

( )( ) =ydx zdy xdz y) = ( i z j xk dxi)( dyj dzkyy F dr

C C C

+zdy z j + dyjy∫ ∫∫�∫∫ �
� �ˆ ˆ ˆ ˆ ˆ ˆ ∫∫���� ...(1)

where d
� �
F = ( ) =and

�
( )yi z j xk d

��
dxi dyj dzkˆ ˆ ˆ ˆ ˆ ˆ+ +z j +dyj

By Stoke’s theorem, we have

�

� nds

C S

∫ ∫
� �

��Fdr ∫∫∫ ⋅c∫∫∫ url F ˆ …(2)

The unit normal to the surface is 

ˆ
ˆ ˆ ˆ ˆ

n
i k i k

=
1 i

2
=

2 2

i
+

By (1) and (2), we can write 

( )
2 2

ydx zdy xdz y) = ( i z j xk
i k

ds

C S

+zdy z j +⋅
⎛

⎝

⎛⎛

⎝⎝
⎜⎜
⎝⎝⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
⎟⎟
⎠⎠⎠⎠

∫ ∫∫∫∫�∫∫ ˆ ˆ ˆ
ˆ ˆ

...(3)

Now,

curl l
�
F yi z j xk

i j k

x y z

y z x

i j k(lcurl ) = = ( )ˆ ˆ ˆ ˆ ˆ ˆz j
∂
∂

∂
∂

∂
∂

i( + ...(4)

Therefore, from (3) and (4) we have 

( )ydx zdy xdz

C

+zdy∫�∫∫

= ( )
2 2

( ++ )
⎛

⎝

⎛⎛

⎝⎝
⎜⎜
⎝⎝⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
⎟⎟
⎠⎠⎠⎠

∫∫ ˆ ˆ ˆ
ˆ ˆ

i j+ k
i k

ds

S

=
2

2
,

−
∫∫ds

S

since ds

S

=∫∫  area of circle bounded by C
a

=
2

2

π ⎛
⎝
⎜
⎛⎛

⎝⎝

⎞
2

⎠
⎟
⎞

⎠

=
2

22

2
− ⎛

⎝
⎜
⎛⎛

⎝⎝

⎞
2

⎠
⎟
⎞⎞

⎠⎠
π

a

=
2

2−πa
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WORKED-OUT EXAMPLES

Example 9.27 Verify Green’s theorem for [(3 8 ) (4 6 ) ]2
x y8 dx y x6 y dy)

C

− +8 )8 dx∫�∫∫

where C is the boundary of the region bounded by x y= 0, =y 0,  and x y+ = 1.  

 [WBUT-2002]

Sol.  

Figure 9.11 

O
X

Y

R

x+y =1

B(0, 1)

A(1, 0)

Green’s theorem states that 

N

x

M

y
dxdy

C R

∂
∂

−
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
∫ ∫( ) =d dy ∫∫∫�∫∫

where R  is the region bounded by the closed curve C  constisting of the lines 

OA,  AB  and BO,  where A  and B  are the points (1, 0)  and (0,1)

respectively.

Here,

M y x y N x y y xyx
N

x
y

M

y
y( ,x ) (3 8 )y , (N , )y = (4 6y ) =

N
6 ,y = 162−

∂
∂

−
∂
∂

d

Now,

[(3 8 ) (4 6 ) ]2
x y8 dx y x6 y dy)

C C

+ −(4y∫ ∫( )d d∫ ∫( )y� �∫ ∫∫ ∫( ) =

= [(3 8 ) (4 6 ) 8 6 ) ]2 2
x y8 dx y x6 x[(3y dy) ] y dx y) (42

y dy

OA AB

− +8 )8 dx 66 dy) ] −8 dx) −∫ ∫

   + − + −∫ [(3 8 ) (4 6 ) ]2
x y−8 dx y x−6 y dy)

BO
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On OA,  y = 0,  so dy = 0.  On AB,  x y+ = 1,  so dy dx= .dx  On BO,  x = 0,

so dx = 0.

Therefore, 

( )d dy

C

∫�∫∫

= [{3 8(1 ) } {4(1 ) 6 (1 )}( )] 4

=0

1
2

=1

0

[{3[{3 d) }2
x d) } x x{4(1dd x x(1 d y

x x

∫ ∫3xdx [{3 − +x d) } xdd )x )}(x ⋅4 dydd

y=1

0

∫

= 3
1

2
( 14 29 12) 4

1

2
=

5

3
=1

0
2⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

(+ −29 +
−⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠∫

x

x2929 dx

Again,

∂
∂

−
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
−∫∫ ∫∫

N

x∂∂
M

y∂
dxdy y y dxdy

R R

= (∫∫ 6 16 )+y y+

         =
1

2
(1 ) =

5

3
=0

1

=0

1
2

=0

1

x
2

(1 d

y

x

x x

−

∫ ∫10 =ydxdy =∫
Hence Green’s theorem is verified.

Example 9.28 Verify Green’s theorem in the plane for ( )2
d

2
xydy

C

∫�∫∫
where C is the square in the xy plane given by x y x a y a a= 0, =y 0, = ,a = (a > 0).  

 [WBUT-2005]

Sol. 

Figure 9.12

O A

B
C

R

x=a

y=a

Green’s theorem states that 

N

x

M

y
dxdy

C R

∂
∂

−
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
∫ ∫( ) =d dy ∫∫∫�∫∫
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where R  is the region bounded by the closed curve C.

Here,

M y x x y xyxx
N

x
y

M

y
( ,x ) , (N , )y = , = 02 and

∂
∂

∂
∂

Now,

( )2
x dx

2
xydydd

C C

+∫ ∫( )d d∫ ∫( )y�∫∫ ( ) =

        = ( )2
x( dx xydyd

OA AB

+)+ xydydd∫ ∫( )2
x dx

2
xydy)d+ )xydy)dd

          ( )2
x( d xydy

BC CO

∫ ∫( )2
d

2
xydy)+))

  On OA,  y = 0,  so dy = 0.  On AB,  x a= ,a  so dx = 0.  On BC,  y a,a  so 

dy = 0.  On CO,  x = 0,  so dx = 0

Therefore, 

02

=0 =0

2
0 0

x dx aydy x
2

x dx ydy

C x

a

y

a

x a= y a=

+2
x dx ⋅∫ ∫( ) =d dy ∫ ∫aydyaydy ∫�∫∫

       =
3 2 3

3

0

2

0

3
0

x
a

y x
a a

a

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥ +

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢

⎤

⎦
⎥
⎦⎦
⎥⎥
⎦⎦⎦⎦
+
⎡

⎣
⎢
⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

       =
3 2 3

=
2

3 3 3 3
a a

3
a a

3

+ −

Again,

∂
∂

−
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
∫∫ ∫∫

N

x∂∂
M

y∂
dxdy y d− xdydd

R R

= (∫∫

         =
2

=0=0

2

0=0

y
dx

y

a

x

a a

x

a

∫ ∫=ydxdydd∫
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

         =
2

=
2

2 3

=0

a
dx

a

x

a

∫
Hence, Green’s theorem is verified.

Example 9.29 Verify Gauss’s divergence theorem for 
�
F yi xj zx k

2ˆ ˆ ˆxjx  over the 

cylindrical region bounded by x y z
2 2 = 9, =z 0, = 2.+   [WBUT-2003, 2007]
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Sol. 

Figure 9.14 

X

O

Y

Z

V

x2+y2=9

z=2

Gauss’s divergence theorem states that

� � �
∇⋅ ⋅∫∫∫ ∫∫F dv F∫∫ n ds

V S

ˆ

where the volume V  bounded by a closed surface S  and n̂  is the outward 

drawn unit normal vector to the surface S.

Here, V  is the volume bounded by surface S x y z=x y 9 = 0, =z 2.2 2

Now
�
F yi xj zx k

2ˆ ˆ ˆxjx

So

� �
∇⋅

∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠⎠⎠
F

x∂∂
i

y∂
j

z
k y
⎞

⎠
⎟
⎞⎞

⎠⎠
i x+ j z+x k z= )2ˆ ˆ∂ ˆ ˆ ˆ ˆ

For a particular z,  x y
2 2 = 9+  is a circle. Therefore, −3 3.≤ ≤

and for a particular value of x,  − − ≤ ≤ −9 92 2
x y≤ x

Therefore,

� �
∇⋅

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

∫∫ ∫∫∫
−

F dv zdxdydz
z

d

V z
y x−

x

x

= 2 = 2
2

=0

2

9−

9

= 3−

3 2

0

2

2

2

xdyddxxdddd

y x

x

x
9

9

= 3

3

2

2−

∫∫

     = 4 = 4[

9

9

= 3

3

9

9

= 3

3

2

2

2

2

dxdy y dx] 9

2

y x= 9

x

x
x

x

x
9

−

− −9
∫∫ ∫
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     = 4 2 9 = 16
9

2

9

2 3

2

= 3

3 2
1

0

3

− +
⎡

⎣
⎢
⎡⎡

⎢⎣⎣
⎢⎢

⎤

⎦
⎥
⎤⎤

⎥⎦⎦
⎥⎥−∫ x dx

2 x x9− x

x

sin

     = 16
9

2
1 = 361sin−

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎦⎦

π …(1)

Now 

� � �
F nds F nds F nds F nds

S S S S

⋅F⋅nds ⋅F+ ⋅F+∫∫ ∫∫∫∫ ∫∫ ∫∫ˆFˆd ∫∫ ˆ ˆ ˆd F∫∫=

1 2 3

…(2)

where S1  is the circular base in the plane z = 0,  S2  is the circular top in the 

plane z = 2  and S3  is the curved surface of the cylinder, given by x y
2 2 = 9.+

In the integral 
�
F nds

S

⋅∫∫ ˆ ,

1

 n̂  is normal to S1,  so ˆ ˆn kˆ and z = 0.  Therefore 

 
�
F nds k kdxdy

S S

⋅ ( )yi xj+ + ⋅k∫∫ ∫∫ˆ ˆ ˆ .

1 1

= = 0 …(3)

In the integral 
�
F nds

S

⋅∫∫ ˆ ,

2

 n̂  is normal to S2,  so ˆ ˆn kˆ and z = 2.  Therefore 

 
�
F nds yi xj k kdxdy

S S

+yi⋅nds + ⋅( )∫∫ ∫∫ˆ ˆ ˆ ˆ ˆ)
2

2

2

2

    = 4 = 4 2

2

dxdy

S
2

◊ÚÚ (Area of )2S2

    = 4 (3) = 362⋅π π(3) = 36  …(4)

Again S3  is represented by x y
2 2 9 = 0.+ −y

2  So, 
�
∇( 9+ − )2 2+ y+  is normal 

vector on S3.  So the unit normal vector, 

 ˆ
ˆ ˆ

n
y

y

xi yj

x y
=

( 9x y )

( 9x y )
=

2 2xi

4 4x

2 2

2 2 2 24

�

�
∇(x

2

∇(x
2

  =
2 2

36
= 92 2xi yj

x y
ˆ ˆ

+[since ]

  =
3

xi yjˆ ˆ+

Therefore, 

�
F nds yi xj z k

xi yj
ds

S S

⋅ + + z( ) +
∫∫ ∫∫ˆ ˆ ˆ ˆ

ˆ ˆ

3 3

2=
3

     =
2

3
3

xyds

S

∫∫
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On S3,  x y
2 2 = 9,+  let x = 3 ,cosθ  y = 3sinθ  and ds dzd= 3 .θd  So, for the 

entire surface, θ  varies from 0 to 2π  and z  varies from 0 to 2 

 
�
F nds xyds

S S

⋅∫∫ ∫∫ˆ

3 3

=
2

3

     =
2

3
27

=0

2

=0

2

sinθ θcos θ
θ

π

d dzθ
z

∫∫

     = 18 2 ]0
2

=0

2

i θ θ
θ

π

d zθθ∫

     = 36
2

2
= 0

0

2

−⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

cos θ π

 …(5)

Using (3), (4) and (5) in (1),

�
F nds

S

⋅ +nds +∫∫ ˆ = 0 36 0 36 .π π+ 0 = 36 …(6)

From (1) and (6), it is clear that Gauss’s divergence theorem is verified.

Example 9.30 Evaluate by divergence theorem 

{ 2 ( }2 2
x dydz y

2
dzdx z( y y d) xdydd

S

+2
y dzdx∫∫

where S  is the surface of the cube 0 1, 0 1, 0 1.≤ ≤x y1, 0 ≤ z   [WBUT-2005]

Sol.  

Figure 9.15 

Z

D

X

F
E

O

G

Y

B (0, 1, 0)A (1, 0, 0)

C (0, 0, 1)
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If 
�
F F i F j F k1 2FF i F 3FFˆ ˆ ˆF j2FF  then the divergence theorem can be written as 

 
∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞

⎠
+∫∫∫ ∫

F

x∂∂
F

y∂
F

z
dxdydz F dydz F+ dzdx F dxdy

V S

1 2+
∂FF FF 3FF

1 2F dydz FF dydz F+ 3FF= (∫ )∫∫∫∫∫∫∫∫∫∫

where V  is the volume enclosed by the closed surface S.

Here,

F x F y F z y y1FF
2

2FF
2

3FF= ,x ,y 2 ( )xy x yx

and
∂
∂

∂
∂

∂
∂

F

x∂∂
x

F

y∂
y

F

z
y y1FF 2FF 3FF

= 2 , =
∂

2 ,y = 2( )−xy x y−

Therefore,

{ 2 ( }2 2
x dydz y

2
dzdx z( y y d) xdydd

S

+2
y dzdx∫∫

= {2 2 2( )}x y2 xy x y dxdydz

V

+2y2 − x∫∫∫

= {2 2 2( )}

=0

1

=0

1

=0

1

x y2 xy x y dxdydz

zyx

+2y2 − x∫∫∫

= 2 2 [ ]

=0

1

=0

1

=0

1

0
1

=0

1

=0

1

xydxdyd x2z = y z[x dxdy

zyx yx

∫∫∫ ∫∫∫∫

=
2

=
2

=
1

2

2

0

1

=0

1

=0

1 2

0

1

y
xdx

x

x x

⎡

⎣⎣⎣

⎤

⎦⎦⎦

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

∫=dx∫ 2
2

x
y⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

Example 9.31 Using divergence theorem, evaluate 
�
u nds

�

S

⋅∫∫  where 
�
u xi yj zyy kˆ ˆ ˆyjy

and S  is the sphere x y z
2 2 2 = 9+ +y

2  and 
�
n  is outward normal to S. [WBUT-2006]

Sol.  Let V  be the volume of the sphere x y z
2 2 2 = 9+ +y

2  with a radius of 3.

 By the divergence theorem, 

 
� �
u udv

�

S V

⋅ ∇nds
� ⋅∫∫ ∫∫∫

Now,

� �∇⋅
∂
∂

+
∂
∂

+
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎠

u
x∂∂

i
y∂

j
z

k x
⎞
⎟
⎞

i y+ j z+yy k= ( )ˆ ˆ∂ ˆ ˆ ˆ ˆ

   = ( ) ( ) ( ) = 3
∂
∂

∂
∂

∂
∂x∂∂

x
y

y
z

z
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Therefore,

� �
u udv

�
dv dxdydz

S V V V

⋅ ∇nds
�

∫∫ ∫∫∫∫∫∫ ∫∫∫ ∫∫∫=udv∇⋅ 3 =dv 3

     = 3 3 )× (volume of the sphere of radius = i

     = 3
4

3
3 1083×⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠⎠⎠

π= 108π3
⎠⎠⎠

Example 9.32 Use Stoke’s theorem to prove div curl
�
F = 0.  [WBUT-2002]

Sol. 

Figure 9.18 

VS2

S1

Let V  be any volume enclosed by a closed surface S.

Let us divide V  by a plane into two surfaces S1  and S2,  and let C  denote 

the common closed curve bounding both the portions.

 Therefore, by Stoke’s theorem

 div curl
� �
Fdv Fcurl nds

V S

∫∫∫ ∫∫ ⋅ ˆ

        =

1 2

curl curl
� �
F nds F nds

S S

⋅ +nds ⋅∫∫ ∫∫ˆ ˆ

        = = 0
� �
F dr

�

C C

⋅∫ ∫
� �
F dr

�
dr

where negative sign is taken in the second integral as it is traversed in the 

direction opposite to that of the first.

Since the above result is true for every volume element V ,  we have 

 div curl
�
F = 0

Example 9.33 Verify Stoke’s theorem for 
�
A yi x j z k2 3 2ˆ ˆ ˆx j  where S  is the 

upper half surface of the sphere x y z
2 2 2 = 9+ +y

2  and C  is its boundary. 

 [WBUT-2004]
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Sol. 

Figure 9.19 

Z

X

Y

R
C

S

Stoke’s theorem states that for any vector function 
�
A  

 
�

� A nds

C S

∫ ∫
� �

�� Adr
�

∫∫∫ ⋅ ,curl ˆ

where n̂  being the outward drawn unit normal at any point of S. 

 The boundary of C of S is a circle in xy plane whose equation is x2 + y2 = 9, z = 0.

 Let the parametric equation of C  be x t y t= 3 , y 3 ,t 0 2tt y, y i .t π
Therefore,

� y xj zx k dxi dyj dzkyy

C C

∫ ∫
� �

��
�

Ad xjx + dyjy(��∫���� 2 3yi )( )2ˆ ˆ ˆ ˆ ˆ ˆ

    = (2 )2
ydx x3 dy z d

2
zdd

C

−x3 dy∫∫

    = 9 ( 2 3 ) = 92 23

0

2
22

=
∫ si 2

t 3333+ dt

t

π
π

 …(1)

Now,

curl
�
A

i j k

x y z

y x z

i j k k=

2 3y

= (i 0) (0) (k 3 )

2

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ∂
∂

∂
∂

∂
∂
−

j(0)

Therefore,

curl
�
A nds k n

dxdy

k n
dxdy

S R R

⋅nds k∫∫ ∫∫ ∫∫ˆ ˆ ˆ
ˆ ˆ

= =

where R  is the region enclosed by the circle x y
2 2 = 9.+  So,

 dxdy x y

R

= ( = 9)2 2Area of the circle +∫∫

    = (3) = 9 .2 π(3) = 92
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Therefore, 

curl
�
A nds

S

⋅∫∫ ˆ = 9 .π

From (1) and (2), it is clear that Stoke’s theorem is verified.

Example 9.34 Verify Stokes theorem for 
�
F y i yz j y zk= (2 )x y

2 2
j−iy ˆ ˆ2 ˆ  where S  is 

the upper half surface of the sphere x y z
2 2 2 = 1+ +y

2  and C  is its boundary.

 [WBUT-2006]

Sol.  

Figure 9.20 

Z

X

Y

R
C

S

Stoke’s theorem states that for any vector function 
�
F  

 
�

� F nds

C S

∫ ∫
� �

��Fdr
�

∫∫∫ ⋅ ,curl ˆ

where n̂  being the outward drawn unit normal at any point of S.  

 Here, the boundary C  of S  is a circle in the xy  plane whose equation is 

x y
2 2 = 1, =z 0.+

Let the parametric equation of C  is 

 x t y t z t,t ,t = 0, 0 2t y,t i ≤ ≤t π

Now

� x y i yz j y zk dxi dyj dzk

C C

∫ ∫
� �

��
�

Fd −i− y dxiy zk +{��∫���� (2 ) }( )2 2
jˆ ˆ2 ˆ ˆ ˆ ˆ

    = {(2 ) }2 2
x y dx yz dy y zdz

C

−)y dx −∫

    = (2 ) , = 0, = 0y dx C z, dz

C

∫ [since, on ]
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    = (2 )( )
1 2

2
0

2

0

2

i i
cos

t2st dt)) = i
t

dt)( +t2
⎛
⎝⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠∫ ∫

π π

    =
2

2 2

2

4
=

0

2
cos s2 int t t

+ −⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

π

π  …(1)

Again,

curl
�
F

i j k

x y z

x y yz y z

k=

2

=

2 2

ˆ ˆ ˆ

ˆ∂
∂

∂
∂

∂
∂

−y −

Therefore,

curl
�
F nds

S

⋅∫∫ ˆ

= curl where is the region bounded by the ci
�
F n

dxdy

n k
Rˆ

ˆ ˆ
rclerr C

R

∫∫

= ( ) =ˆ ˆk n̂
dxdy

n kˆ
dxdy

R R

∫∫ ∫∫

= (1) ( = 1) =2 2 2 πarea of the circle x y+ …(2)

Therefore by (1) and (2), Stoke’s theorem is verified.

Example 9.35 Verify Stoke’s theorem for 
�
A y z i y j xzkxx( 2) ( 4)yz− z + (yzˆ ˆ ˆ  over 

the surface of the cube x y z=y = 0  and x y z=y = 2  above xy  plane.

 [WBUT-2007]

Sol. 

Figure 9.21 

X

E (2, 0, 0)

A (2, 0, 2)
B (2, 2, 2)

G (0, 2, 0)

D (0, 0, 2) C (0, 2, 2)

F(2, 2, 0)

Y
O

Z
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Let us denote S S S S1 2 3 4S S, S2  and S5  as the five faces ABFE, DCGO,  ABCDC ,

BCGF and ADOE respectively above XOY plane.

 Therefore, the boundary of the surface is the square EFGO.

Stoke’s theorem states that 

curl
� � �
A nds A dr

EFGOS S S S S

⋅ ∫∫∫
+S +S

ˆ =

1 2 3 4
S S+ S

5

…(1)

Now,

curl
�
A

i j k

x y z

xz

=

ˆ ˆ ˆ

∂
∂

∂
∂

∂
∂

( )y z 2− +z ( )yz 4yz −

    = ( 1) −y z j1)−1) kˆ ˆ ˆ

Therefore,

curl since on ,
�
A nds y z j k i d S n, i

S

⋅ =nds −j∫∫ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

1

1{ (yi− +yi 1) } ,i ds⋅i =

SS
1

∫∫

       = [ ] = 2
2

= 4

0

2

0

2

0
2

0

2 2

0

2
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

∫ ∫∫ y−∫== z d]0
2

ydd
y

Similarly,

curl since on
�
A nds yi j k i d S n

S

⋅ −nds +∫∫ ˆ ˆ ˆ ˆ ˆ ˆ

2

2= { ( 1) }z j kz − k ( ,i ds⋅i ) , =n ==

2

−∫∫ î

S

      = = 4

0

2

0

2

ydydz∫∫

curl since on
�
A nds yi j k k ds S n

S

⋅ −nds + ⋅∫∫ ˆ ˆ ˆ ˆ ˆ ˆ

3

3= { ( 1) }z j kz − k ( )k ,, since on S3 = ˆ̂k

S
3

∫∫

        = = 4

0

2

0

2

−=∫∫ dxdy

curl since on
�
A nds yi j k j ds S n

S

⋅ −nds + ⋅∫∫ ˆ ˆ ˆ ˆ ˆ ˆ

4

4= { ( 1)z j kz − k )j ,, since on S4 = ˆ̂j

S
4

∫∫

       = ( ) = 0

0

2

0

2

z dxdz1)∫∫
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curl since on 
�
A nds yi j k j ds S n

S

⋅ −nds + ⋅∫∫ ˆ ˆ ˆ ˆ ˆ ˆ

5

5= { ( 1)z j kz − k )jj , =n −−∫∫ ĵ

S
5

       = ( ) = 0

0

2

0

2

(∫∫ z dxdz1)−

Therefore,

curl curl curl
� � �
A nds A nds A nds

S S S S S S

⋅ ⋅ + ⋅curl A

+S +S

∫∫ ∫∫ˆ ˆ ˆ

1 2 3 4
S S+ S

5 1

=

SS
2

∫∫

            + ⋅ + ⋅ + ⋅∫∫ ∫∫ ∫∫curl curl curl
� � �
A nds A nds A nds

S S S

ˆ ˆ ˆ

3 4 5

           = 4 4 4 0 0 = 4+4 4 04 0 …(2)

Now,

y yz j xzkxx dxi dyj dzk

EFGO EFGO

j+ +dyj∫ ∫
� �
A dr {∫ ( 2y z− ) (i +i 4) }{ )ˆ ˆ ˆ ˆ ˆ ˆ

= {( 2) ( 4) }y d yz dy xzdz

EFGO

+(yz −∫

= {( 2) ( 4) }y d yz dy xzdz

OE

+(yz −∫

  + − + +∫ {( 2) ( 4) }+ −y z− dx y dy d

EF

  + − + +∫ {( 2) ( 4) }+ −y z− dx y dy d

FG

  + − + +∫ {( 2) ( 4) }+ −y z− dx y dy d

GO

= 4 4 4

0

2

=0

2

2

0

=2

0

dx ddy

x y=0 x y=2

∫ ∫ ∫2 4dx dy ∫∫ 4 −=4+ ∫ …(3)

Therefore, From (1) and (2) we conclude that Stoke’s theorem (1) is 

satisfied.

Example 9.36 If
�
A y i y j k= (3 6x ) 14 20 ,i yz j xz kxx

2 2
y6 î ˆ ˆ  evaluate 

� �
A dr

C

∫  from (0, 0, 0) 

to (1, 1, 1) along the path C given by x t y t= ,t 2 and z t .t
3  [WBUT-2002].

Sol.  Let 
�
r xi yj zyy kˆ ˆ ˆyjy  then dr dxi dyj dzk

�
= .ˆ ˆ ˆ+dyj
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  Therefore,

x y i yz j xz kxx dxi dyj dzk

C C

+ − yz j +dyj∫ ∫
� �
A dr [(3 6 )y 14 20 ]( )2 2ˆ ˆ ˆ ˆ ˆ ˆ

    = [(3 6 ) 14 20 ]2 2
x y6 dx yzdy xz dz

C

+ −6 )6 dx +∫

    = [(3 6 ) 14 (2 ) 20 (3 )]2 26 5 7 2

0

1

t 62 6 dt t t(25
dt (3 d−)66 dt∫

    = [9 28 60 ]2 62828 9

0

1

282828 dt]2828∫

    = 9
3

28
7

60
10

3 7 10

0

1

t t
28

3
t

− +28
⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

    = 3 4 6 = 5.− 4

  EXERCISES

Short and Long Answer Type Questions

1. Show that the vector ˆ ˆ ˆj k  is perpendicular to the vector 4 6 5 .ˆ ˆ ˆi j6 +j6

2. Determine λ  so that λˆ ˆ ˆi jλλ k4 3j +j  and 3 2j k� λ ˆ ˆ  are perpendicular. 

 [Ans : λ = 6]

3. Find the angle between the vectors ˆ ˆ ˆi j k2 2j −j and 2 2 .ˆ ˆ ˆi j k  

 Ans : cos−
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
1 4

3

4. Find a vector of magnitude 5, perpendicular to both the vectors 2 3ˆ ˆ ˆj k  and 

ˆ ˆ ˆ.i j k+j2  Ans :
−⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦

5

3
( )+j+ k

5. If 
� �

a b
�

c, ,b  be three vectors such that 
� �

a b
�

c+b = 0,  show that

 a) 
� � � � �

a b
�

b c
�

c a+b +c
−

=
3

2

b) 
� � � � �

a b
�

b c
�

c ab b ×=cb

6. If 
� �

a b
�

c, ,b  be three vectors such that 
� �

a b
�

c+b = 0,  
� �

a b
�

c= 3, =b 4, = 5,  show that
� � � � �

a b
�

b c
�

c a+b +c −a = 25.
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7. If 
��

=b 4,  find the values of  for which the vectors
�

a b  and 
�

a b

will be perpendicular to each other. Ans :
3

4
8. Prove that the following vectors are coplanar:

a) ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ k̂+k+ i + , 3

b) ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ++ 3 , j

9. Determine the value of the constant λ  so that the vectors +
and k+  are coplanar.

10. Prove that

 a) , ] = [ , ] [ , ,
� � � � � � � �� �

e c ,
�

f c][c e]

b) [ , ]
� �
b

c) 
� � �

c× +c×b
� �

a
�

b×a = 0

11. If a  and c  are perpendicular to each other then show that 
��

c×  and 

(
� ��

c×b  are also perpendicular to each other.

12. Find the volume of the parallelepiped whose edges are along +ˆ ˆ ˆ
�

î ˆ ˆ  and c i
�

.ˆ ˆ ˆ

13. If 
� � � �� �

γ α×  and 
� � �
γ α  then show that 

� ��
γ,  are mutually 

perpendicular.

14. If 
�

= ( 1)ˆ ˆ ˆ  and 
�

= ( ,ˆ ˆ ˆ  find 
d

dt

d

dt

�
�

×  at t = 2.

15. If 
�

nt b nta os +  then prove that = ( )
dr

r n a b
dt

× ×
�

�� �
 and 

d r

dt
n r

2

2 = 0.
�+

16. If 
� ��

c d
�

 be vectors such that 
� �� �
b c  then show that ( )

�
and ( )

�

are collinear.

17. Show that ˆ ˆ ˆ ˆ ˆ ˆ .i × +i×a k×a

18. If 
�
r x e x yx xˆ ˆ ˆ  then show that the value of 

∂
×
∂

2

2 2

r

x

r

y
 at (1, 0)  is − 12 )+ˆ ˆ ˆ .12+

19. If 
�

z kˆ ˆ ˆ  and 
�

zi x k̂+ −  then show that the value of 

∂2 �
×  at (1, 0, 2)  is ˆ ˆ+ 2

20. Find the directional derivative of , = xz  at the point (1, 2,1)  in 

the direction of 2 2 .ˆ ˆ k

21. Find the angle of intersection of the spheres z
2 = 29  and 

2 7 =z 0x  at (4, 3, 2).
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22. Find the equations of the tangent line and normal plane to the curve of intersection 

of the surfaces x y z
2 2 2 = 9+ +y

2  and z x y= 3x y
2 2

y  at the point (2, 1, 2).

23. Show that the vector yi x jˆ ˆ+  is both solenoidal and irrotational.

24. If f x y z,x , )z  be a scalar point function such that 
�
∇2 , , ) = 0,f x( y z,  then show that 

�
∇2

f  is irrotational as well as solenoidal.

25. If 
�
r xi yj zyy kyjy  and r r= ,r

�
 prove that

 a) 
�
∇ ⋅�( )⋅� − =

12

2
⋅

r
b) div( ) = 0

� �
a r×  where 

�
a  is a constant vector.

 c) div grad )grad = ( 1) 2) = n r1)n n+ −

d) div

� �

�
a r

r
n

×⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

= 0

e) curl( ) = 01�

f) curl( ) = 03�

26. Verify Green’s theorem in the plane for [( ) ]y x d xdy

C

)∫ i )x)x  where C is the 

triangle whose vertices are (0, 0),  
π
2

, 0
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

 and 
π
2

,1 .
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

27. Evaluate by Green’s theorem in the plane for ( )e ydx e ydy
x x

C

− −+∫ sin cydx e
x+ os  where C 

is the rectangle with vertices (0, 0),  ( , 0), ,
2

π( , 0),
π⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

 and 0,
2

π⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
[Ans : 2( 1)e

− −π ]

28. Verify Stoke’s theorem for 
�
F x y i xyj= ( ) 2i

2 2+ y î ˆ  taken round the rectangle 

bounded x a y y b= ,a = 0, =y .±

29. Evaluate by Stoke’s theorem ( ),yzdx zxdy xydzdd

C

+ +zxdy∫  where C is the curve 

x y z y
2 2 2= 1, =z .+

[Ans : 0]

30. Verify Gauss’s divergence theorem for 
�
F yi x j z k

2ˆ ˆ ˆx j  over the cylindrical 

region bounded by x y a z
2 2 2= ,a = 0+  and z h.h

31. Evaluate
�
F nds

S

⋅∫∫ ˆ  where 
�
F xzixx y j yzk= 3 32ˆ ˆ2 ˆ+ −y j  and S is the surface of the cube 

bounded by x y y z= 0, =x 2; 0 yy 2; = 0, =z 2  and n̂  is the outward drawn unit 

normal to the surface S.

32. Evaluate 
�
Fdv

V

∫∫∫  where 
�
F zi x j yk2 ˆ ˆ ˆx j  and V is the region bounded by the 

surfaces x y x y z x= 0, =y 0, = 2, =y 4, 2  and z = 2.

Ans :
32

15
(3 5 )ˆ ˆi j5

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦
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33. Evaluate 
�
Fdv

v

∫∫∫  where 
�
F z xyj xk= (2 3x ) 2i 42

z3 i −  and V is the region bounded 

by the surfaces x y z= 0, =y 0, = 0, and  2 2 = 4.x y2 z+2y2

Ans :
8

3

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

34. Evaluate ( )sin sinzdx xcos dy ydz

C

+xcos dy∫  by Stoke’s theorem where C is the 

 boundary of the rectangle 0 , 0 1, = 3.x y, 0

[Ans : 2]

35. Evaluate {( ) 3 }2
z x dydz xydxdz z3 dxdz

S

−)x dydz +∫∫  where S is the surface of the closed 

region bounded by y z
2 4  and the planes x z= 0, =x 3, = 0.

[Ans : 16]

Multiple-Choice Questions

1. The value of  for which the vectors 
�
a i
�

j k4iλî ˆ ˆj4  and 
�
b i j k3ˆ ˆ ˆj+ λλ  are 

perpendicular to each other is

 a) –6  b) 6  c) 3  d) 2

 2. A unit vector perpendicular to each of the vectors  and j k  is

 a) 
1

3
( )j k  b) 

1

3
( )j k  c) 

1

3
( )j k  d) 

1

3
( )j k

3. If for the vectors 
�
a  and 

� � � � �
b a

�
b

�
a b, =a b+ −b ab  then 

�
a  and 

�
b  are

 a) parallel  b) collinear c) perpendicular d) none of these

 4. If 
�
a  and 

�
b  are two mutually perpendicular vectors then 

�
a b
�

=

a) 
�

a b
�

  b) 
�

a b
�

   c) 
�

a b
�

  d) 0

 5. ( ) ( ) =
� �
b

�
b

�×)

a) 2( )
�

a b
�

  b) 
�

a b
�

  c) 2( )
�

a b
�

 d) 0

 6. The value of λ  for which the vectors 
� �
a i
�

j k b i j= ,i j k 4ˆ ˆ ˆ ˆ ˆ+ jj −  and 
�
c
�

j k= i jˆ ˆ ˆjλ
are coplanar is

a) 
3

5
  b) 

1

5
  c) 

2

5
  d) 

5

3

7. If 
� �
a i
�

j k b i k= 3 2 ,j k ,ˆ ˆ ˆ ˆ ˆ− 2 j −  then ( ) =
� �
b

�
a⋅)

a) ˆ ˆ ˆi j k+j   b) ˆ ˆi k   c) 0  d) 2

 8. The vector xi yj zkˆ ˆ ˆ+ +yj  is perpendicular to the vector 2 5 11ˆ ˆ ˆi j5 k+j5  when

 a) x y z= 2, =y 3, = 11  b) x y z= 2, =y 3, = 11−
c) x y z= 2, =y 3, = 11 d) x y z= 2, =y 3, = 1−
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9. The angle between the vectors 2 2ˆ ˆ ˆi j2 k−j2  and 3 4ˆ ˆi k4  is

 a) cos−
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

1 1

15
 b) cos−

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

1 2

5
 c) cos−

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

1 2

15
 d) none of these

10. If 
�

a b
� 2 2

= ,b  then the vectors 
�

a b
�

 and 
�

a b
�

 are

 a) parallel b) perpendicular

 c) inclined at an angle 30�  with each other d) none of these

11. If
�
a t
�

i t j t k= 3 2 3
i t j tˆ ˆ ˆt jt j  and ˆ ˆ,b ti t j= sin 2cos2cos

�
 then 

d

dt
b( )a b
�

 at t =
2

π
 is

 a) 
π 3

2

4

3

4
ˆ2ˆ 3 ˆi jπ 23

4
k−jπ  b) 

π 3
2

4

3

4
ˆ2ˆ 3 ˆi jπ 23

4
k+jπ 2

c) 
π 3

2

4

3

4
ˆ2ˆ 3 ˆi jπ 23

4
k+jπ 2  d) none of these

12. If 
�
r t
�

i t j t k2
1

3

2 3
j t

1ˆ ˆ2 ˆt j
2

j  then the value of 
dr

dt

d r

dt

��
d

×
2

2
 at t = 1  is

 a) 2 4 4ˆ ˆ ˆi j4 k+j4  b) 2 4 4ˆ ˆ ˆi j4 k+j4  c) − +2 4 4ˆ ˆ ˆi j4+ k  d) 2 4 4ˆ ˆ ˆi j4 k−j4

13. If f x y z x yz,x , )z = x
3 2

y3  then grad f  at (1,1,1)  is

 a) 3 3 3ˆ ˆ ˆi j3 k+j3  b) ˆ ˆ ˆi j k+j 2  c) 3 3 6ˆ ˆ ˆi j3 k+j3  d) none of these

14. A normal vector to the plane x y z+ −2 3y +y 1 = 0  is

 a) 2 3ˆ ˆ ˆj k  b) ˆ ˆ ˆi j k2 3j +j  c) ˆ ˆ ˆi j k2 3j −j  d) ˆ ˆ ˆi j k2 3j −j

15. If φ = 3 23x y33 z  then 
�
∇2ϕ  is

 a) x y+ 6   b) 6x y+  c) 6 6x y6  d) x y+

16. If
�
r xi yj zyy kˆ ˆ ˆyjy  then curl

�
r =

a) 3î   b) 0  c) ˆ ˆ ˆi j k+j  d) none of these

17. The magnitude of the vector drawn in the direction perpendicular to the surface 

x y z
2 2 2 =z

2 2 7+ 2y
2  at (1, –1, 2) is

a) 
2

3
  b) 

3

2
  c) 3  d) 6

18. If r x y z
2 2 2 2+ +y

2  then 
�
∇2 ( ) =l

a) 
1
2

r
  b) 

1

r
  c) r2  d) r

19. If 
�
F xyi yz j zxk= ˆ ˆ ˆ+ yz j  then curl

�
F =

a) xi yj zkˆ ˆ ˆ+ +yj  b) yi z j kˆ ˆ ˆ+ +z j  c) − − −yi z j xkˆ ˆ ˆ  d) yi z j xkˆ ˆ ˆ+ +z j
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20. The value of t  for which 
�
F txytt z t x j t xz k= ( ) (i 2) (1 )3 2 2− z i x j

2ˆ ˆ2 ˆ  is irrotational is

 a) 0   b) 4  c) –4  d) 2

21. The value of  for which 
�
F x y i y z j x az k= ( 3 )3y ( 2y ) (j )+i+ 3y z2 ) j +ˆ ˆ ˆ  is solenoidal is

 a) 2   b) –2  c) 0  d) none of these

22. The directional derivative of = xyz  at (1,1,1)  in the direction ĵ is

 a) 3   b)1  c) 2  d) 4

23. If 
� � �
v w r×  where 

�
w  is a constant vector and 

�
r xi yj zjyy k= ,xi yj zyy kˆ ˆ ˆyjyyjy  then div

�
v =

a) 1   b) 0  c) 2  d) none of these

24. The value of grad( )y z d) r
�

 from (0,1, 1)  to (1, 2, 0)  is

 a) 3   b) –1  c) 1  d) 2

25. If ( , , )x y, c) =  represent the equation of a surface then normal to this surface is

 a) grad φ  b) div grad )grad φ)  c) curl grad( )grad φ)  d) none of these

Answers:

  1. (a)  2. (b) 3. (c)  4. (c)  5. (c)  6. (d)  7. (c)  8. (d)

  9. (c) 10. (b) 11. (a) 12. (a) 13. (c) 14. (b) 15. (c) 16. (b)

 17. (d) 18. (a) 19. (c) 20. (b) 21. (b) 22. (b) 23. (b) 24. (a)

 25. (a)



B.TECH SEM-1 (NEW) 2010

MATHEMATICS-I (M 101)

Time Alloted: 3 Hours Full Marks: 70

GROUP-A (Multiple-Choice Type)

1. Choose the correct alternative for any ten of the following: (10 ¥ 1 = 10)

 *(i) If a, b are the roots of the equation x2 – 3x + 2 = 0 then

0

0 0

1

a b

b

a a-
 is

 (a) 6 (b) 
3

2
 (c) – 6 (d) 3

 Solution: Since a, b are the roots of the equation, we have

    a + b = 3 and ab = 2.

  Now

    

0

0 0

1

a b

b

a a-

 = – ab (a + b) = – 6

  Hence, the correct alternative is (c) -6 .

 *(ii) If y = eax + b then (y5)0 =

    (a) aeb (b) a5eb (c) abeax (d) none of these

 Solution: Here, y = eax + b fi y5 = a
5eax + b; therefore (y5) 0 = a5eb.

  Hence, the correct alternative is (b) a 5
e

b .

 *(iii) If Rolle’s theorem is applied to f (x) = x (x2 – 1) in [0, 1] then c =

  (a)  1 (b) 0 (c) – 
1

3
 (d) 

1

3

  Solution: If Rolle’s theorem is applied to f (x) = x (x2 – 1), we have

 f ¢(c) = 0 fi 3c2 – 1 = 0 fi c = ± 
1

3
.

SOLUTION OF UNIVERSITY QUESTIONS 
(W.B.U.T.) 

Level of difficulty:- *Low, **Medium, ***High.
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   Since by the conditions of Rolle’s theorem 0 < c < 1, we take c = 
1

3
.

   Hence, the alternative option is (d)
1

3
.

 **(iv) If u + v = x, uv = y then 
∂
∂

( , )

( , )

u v

x y
 =

   (a) 
1

u v-
 (b) uv (c) u + v (d) 

u

v
.

  Solution: We know

    
∂
∂

( , )

( , )

u v

x y
 = 

1

∂
∂

( , )

( , )

x y

u v
  Now

    
∂
∂

( , )

( , )

x y

u v
 = 

∂
∂

∂
∂

∂
∂

∂
∂

x

u

x

v

y

u

y

v

 = 
1 1

v u
 = u – v.

  So, 
∂
∂
( , )

( , )

u v

x y
 is (a)

1

u v-
.

 *(v) The value of sin7

2

2

q q

p

p

d

-

Ú  is

   (a) 
6 4 2

7 5 3 1

. .

. . .
 (b) 

6

7

!

!
 (c) 0 (d) 

2 6 4 2

7 5 3 1

.( . . )

. . .

  Solution: The correct alternative is (c) 0 , since sin7 q is an odd function of q.

 *(vi) The sequence ( )-{ }1
1n

n
 is

   (a) convergent (b) oscillatory (c) divergent (d) none of these

  Solution: The correct alternative is (b) oscillatory .  

 **(vii) If 


a  = 3î  – 2 ĵ  + k̂ , 


b  = 2î  – k̂  then ( )




a b¥ . 


a  is equal to

   (a) î  + ĵ  + k̂    (b) î  + k̂

  (c)  î  – k̂    (d) 0

  Solution: Here,

  


a  ¥ 


b  = 

ˆ ˆ ˆi j k

3 2 1

2 0 1

-
-

 = 2î  + 5ĵ + 4k̂ .
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  Therefore,

  ( )




a b¥ ◊


a  = 2.3 + 5.(–2) + 4.1 = 0.

   Hence the correct alternative is (d) 0 .

 ***(viii)  The matrix 
cos sin

sin cos

q q

q q-
È

Î
Í

˘

˚
˙  is

   (a) symmetric   (b) skew-symmetric 

   (c) singular   (d) orthogonal

  Solution: Here,

    
cos sin

sin cos

q q

q q-
È

Î
Í

˘

˚
˙  

cos sin

sin cos

q q

q q-
È

Î
Í

˘

˚
˙

T

 = 
cos sin

sin cos

q q

q q-
È

Î
Í

˘

˚
˙

cos sin

sin cos

q q

q q

-È

Î
Í

˘

˚
˙

     = 
1 0

0 1

È

Î
Í

˘

˚
˙

   Hence, the correct alternative is (d) orthogonal .

 **(ix) The value of t for which

   


f  = (x + 3y) î  + (y – 2z) ĵ  + (x + tz) k̂

  is solenoidal is

   (a) 2 (b) – 2 (c) 0 (d) 1

  Solution: The correct alternative is (b) - 2 . See Example 9.18.

 ***(x) The distance between two parallel planes x + 2y – z = 4 and 2x + 4y – 2z = 3 is

   (a) 
5

24
 (b) 

5

24
 (c) 

11

24
 (d) none of these

  Solution: The correct alternative is (a)
5

24
.

 **(xi) In the MV Theorem,

  f  (h) = f (0) + hf ¢(qh); 0 < q < 1.

   If f (x) = 
1

1 + x
 and h = 3 then value of q is

   (a) 1 (b) 
1

3
 (c) 

1

2
 (d) none of these

  Solution: Here, f (x) = 
1

1 + x
 and h = 3, so by given relation

    f (h) = f (0) + hf ¢(qh); 0 < q < 1
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  or 
1

1 + h
 = 1 + h -

+

È

Î
Í
Í

˘

˚
˙
˙

1

1 2( )qh

   Putting h = 3, we have

    
1

4
 = 1 – 

3

1 3 2( )+ q
 fi (1 + 3q)2 = 4

  fi 1 + 3q = ± 2 fi q = 
1

3
, – 1

   Since 0 < q < 1, we take q = 
1

3
.

   Hence the correct alternative is (b)
1

3
.

 *(xii) The series 
1

n
pÂ  is convergent if

   (a) p ≥ 1 (b) p > 1  (c) p < 1 (d) p £ 1

  Solution: The correct alternative is (b) p > 1 .

GROUP-B (Short-Answer type Questions)

Answer any three of the following: (3 ¥ 5 = 15)

 **2. If y = (x2 – 1)n then show that

    (x2 – 1) yn + 2 + 2xyn  + 1 – n (n + 1)yn = 0.

   Hence, find yn (0).

  Solution: See Example 3.14.

 **3. Using MVT, prove that

    x > tan–1 x > 
x

x1 2+
, 0 < x < 

p
2

.

  Solution: See Example 4.8.

 ***4. Show that

    

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

+
+

+
+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

a

b

c

d

 = abcd 1
1 1 1 1+ + + +Ê

ËÁ
ˆ
¯̃a b c d

  Solution: See Example 1.8.
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 ***5. Test the nature of the series

  
1

3

2
Ê
ËÁ

ˆ
¯̃

 + 
1 2

3 5

2
.

.

Ê
ËÁ

ˆ
¯̃  + 

1 2 3

3 5 7

2
. .

. .

Ê
ËÁ

ˆ
¯̃

 + …

  Solution: See Example 22 of Chapter 8.

 **6. If 


a, 


b, 


c are three vectors then show that

    


 

  

a b b c c a¥ ¥ ¥ÈÎ ˘̊  = 






a b cÈÎ ˘̊
2

  Solution: See Example 9.6.

 *7. If u = tan–1 
x y

x y

2 2-
-

 then show that

  x
∂
∂

u

x
 + y

∂
∂

u

y
 = 

1

2
 sin 2u.

  Solution: See Example 20 of Chapter 6.

GROUP-C (Long-Answer type Questions)

Answer any three of the following: (3 ¥ 15 = 45)

 ***8. (a) Determine the conditions under which the system of equations

  x + y + z = 1, x + 2y – z = b, 5x + 7y + az = b2

    admits

 (i) only one solution

 (ii) no solution

 (iii) many solutions

   Solution: If we write the system of linear equations in the matrix form as 

AX = B then the coefficient matrix of the system of linear equations is

    A = 

1 1 1

1 2 1

5 7

-
Ê

Ë

Á
Á

ˆ

¯

˜
˜

a

    And the augmented matrix is

    A = (A|B) = 

1 1 1 1

1 2 1

5 7 2

-

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

b

a b

    The system of equations has only one solution when the determinant of 

the coefficient matrix is not equal to zero.
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    det A = 

1 1 1

1 2 1

5 7

-
a

 = a – 1

    Therefore, for det A π 0 fi a π 1 the system of equations has only one 

solution.

    For a = 1, the system has either no solution or many solutions. When 

a = 1, the augmented matrix becomes

  A = 

1 1 1 1

1 2 1

5 7 1 2

-

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

b

b

    Appling elementary row operations on the matrix A, we have

    A = 

1 1 1 1

1 2 1

5 7 1

5

2

2 1 3 1-

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

- -b

b

R R R R,
� ������������������

     1 1 1 1

0 1 2 1

0 2 4 5

2

2

1 2 3 1- -

- -

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

- -b

b

R R R R,
� �������������������

     
1 0 3 2

0 1 2 1

0 0 0 2 32

- +
- -

- -

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

b

b

b b

    The system of equations is consistent when Rank A = Rank A and this 

is possible for

    b2 – 2b – 3 = 0

   i.e., b = – 1, 3.

    In this case, Rank A = Rank A = 2, which is less then number of 

unknowns (= 3) and the system has infinitely many solutions.

    Again, if

   b2 – 2b – 3 π 0 fi b π – 1, 3.

   then Rank A = 2 and Rank A = 3, i.e., Rank A π Rank A and so the system 

of equations is inconsistent and corestpondingly, the system has no 

solution.

   Summarising the above,

 (i) the system of equations has only one solution when a π 1
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 (ii) the system of equations has infinitely many solutions when a = 1, 

b = –1 or a = 1, b = 3

 (iii) the system of equations has no solution when a = 1 and b π –1, 3

 ***(b) Find the eigen values and corresponding eigen vectors of the matrix

  A = 

2 1 1

1 2 1

0 0 1

Ê

Ë

Á
Á

ˆ

¯

˜
˜ .

     Solution: The characteristic equation of A is

      det (A – lI) = 0

     or, 

2 1 1

1 2 1

0 0 1

-
-

-

l

l

l

 = 0

     or, (1 – l){(2 – l)2 – 1} = 0

     or, (1 – l)2 (3 – l) = 0

     or, l = 1, 1, 3.

      Therefore, the eigen values of the matrix A are l = 1, 1, 3.

      Let X1 = 

x

y

z

Ê

Ë

Á
Á

ˆ

¯

˜
˜

 be the eigen vector corresponding to the eigen value l = 1.

      Then, by the difinition of eigen vector, we have

      AX = 1.X

     or, 

2 1 1

1 2 1

0 0 1

Ê

Ë

Á
Á

ˆ

¯

˜
˜  

x

y

z

Ê

Ë

Á
Á

ˆ

¯

˜
˜  = 

x

y

z

Ê

Ë

Á
Á

ˆ

¯

˜
˜

     or, 2x + y + z = x

      x + 2y + z = y

      z = z

      The above system is equivalent to

      x + y + z = 0

      Let y = k1 and z = k2, then x = – k1 – k2 where k1 and k2 are arbitray 

constants.

      Therefore, the eigen vector corresponding to the eigen value l = 1
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      X = 

x

y

z

Ê

Ë

Á
Á

ˆ

¯

˜
˜  = 

- -Ê

Ë

Á
ÁÁ

ˆ

¯

˜
˜̃

k k

k

k

1 2

1

2

       = k1

-Ê

Ë

Á
Á

ˆ

¯

˜
˜

1

1

0

 + k2 

-Ê

Ë

Á
Á

ˆ

¯

˜
˜

1

0

1

      Again, let X2 = 

x

y

z

Ê

Ë

Á
Á

ˆ

¯

˜
˜  be the eigen vector corresponding to the eigen value 

l = 3.

     Therefor, we have

     AX2 = 3X2

    or, 

2 1 1

1 2 1

0 0 1

Ê

Ë

Á
Á

ˆ

¯

˜
˜

x

y

z

Ê

Ë

Á
Á

ˆ

¯

˜
˜

 = 3 

x

y

z

Ê

Ë

Á
Á

ˆ

¯

˜
˜

    or, 2x + y + z = 3x

     x + 2y + z = 3y

     z = 3z

    or, –x + y + z = 0

     x –y + z = 0

     2z = 0

     The above system is equivalent to

     x – y + z = 0, z = 0

     which imples the system

      x – y = 0, z = 0

      Let y = k1, then x = k1 where k1 is any arbitrary constant.

      Therefore, the eigen vector corresponding to the eigen value l = 3

      X = 

x

y

z

Ê

Ë

Á
Á

ˆ

¯

˜
˜

 = 

k

k

1

1

0

Ê

Ë

Á
Á

ˆ

¯

˜
˜

       = k1

1

1

0

Ê

Ë

Á
Á

ˆ

¯

˜
˜
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 **(c) Find whether the following series is convergent:

     
2

1

2

1

2

2

1

-
Ê

ËÁ
ˆ

¯̃

-

 + 
3

2

3

2

3

3

2

-
Ê

ËÁ
ˆ

¯̃

-

 + 
4

3

4

3

4

4

3

-
Ê

ËÁ
ˆ

¯̃

-

 + …

     Solution: See Example 23 of Chapter 8.

 *9. (a) If f (x) = x2, g(x) = x3 on [1, 2], is Cauchy’s mean value theorem applica-

ble? It so find x.

    Solution: (i) The functions f (x) = x2 and g(x) = x3 are both being poly-

nomials, continuous in [1, 2];

     (ii) f ¢(x) = 2x and g¢(x) = 3x2 which exists for all values of 

xŒ(1, 2); and

     (iii) g¢(x) π 0 for all values of x in 1 < x < 2.

     Since all the conditions of Cauchy’s MVT are satisfied by the given 

functions, Cauchy’s MVT is applicable and so there should exist such a 

xŒ(1, 2) such that

     
f f

g g

( ) ( )

( ) ( )

2 1

2 1

-
-

 = 
f

g

¢
¢
( )

( )

x

x
    which implies

     
4 1

8 1

-
-

 = 
2

3 2

x

x
 fi x = 

14

9
.

     So, x = 
14

9
, which lies between 1 and 2.

 **(b) If In = 
cos

cos

nq

qÚ  dq, show that

     (n – 1) (In + In – 2) = 2 sin (n – 1)q.

    Hence, evaluate Ú (4 cos2 q – 3) dq.

    Solution: See Example 5.6.

 **(c) If r = | |


r , where 


r  = xî  + yĵ + zk̂ , prove that

     —
��

(rn) = n◊rn – 2 ◊


r .

    Solution: See Example 7 of Chapter 9.

 *10. (a) Find 
∂(
∂

u v

r

, )

( , )q
 where u = x2 – 2y2, v = 2x2 – y2 and x = r cos q, y = sin q.

    Solution: By chain rule for Jacobians, we have

     
∂(
∂

u v

r

, )

( , )q
 = 

∂(
∂

u v

x y

, )

( , )
◊

∂(
∂

x y

r

, )

( , )q
. (1)
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     Now by the definition of a Jacobian

     
∂(
∂

u v

x y

, )

( , )
 = 

∂
∂

∂
∂

∂
∂

∂
∂

u

x

u

y

v

x

v

y

 = 
2 4

4 2

x y

x y

-
-

 = 12xy.

     Also, we have

     
∂
∂

( , )

( , )

x y

r q
 = 

∂
∂

∂
∂

∂
∂

∂
∂

x

r

y

r

y

x

q

q

 = 
cos sin

cos

q q

q

- r

0
 = cos2 q.

     Putting the above results in (1), we obtain

     
∂
∂

( , )

( , )

u v

r q
 = 

∂
∂

( , )

( , )

u v

x y
◊ ∂

∂
( , )

( , )

x y

r q
 = 12xy ◊ cos2 q

      = 12 ◊ r cos q  ◊ sin q ◊ cos2 q = 12r sin q cos3 q.

 **(b) Verify Green’s theorem for

     


F = (xy + y2) î  + x2 ĵ

    where the curve C is bounded by y = x and y = x2.

    Solution: See Example 13 of Chapter 9.

 ***(c) Evaluate:

    

0 0

3 2

0

a x y

x y zÚ Ú Ú  dz dy dx.

    Solution:

     

0 0

3 2

0

a x y

x y zÚ Ú Ú  dz dy dx = x y zdz dy

yxa

3 2

000

ÚÚÚ
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î

Í
Í

˘

˚

˙
˙

dx

      = x y
z

dy

yxa

3 2
2

000
2

È

Î
Í

˘

˚
˙

È

Î

Í
Í

˘

˚

˙
˙ÚÚ dx

      = 
1

2
3 4

00

x y dy

xa

ÚÚ
È

Î

Í
Í

˘

˚

˙
˙

dx

      = 
1

2 5

3 5

00

x y
xa È

Î
Í
Í

˘

˚
˙
˙Ú  dx = 

1

10
8

0

x dx

a

Ú  = 
a

9

90
.

 ***11. (a) Find the maxima and minima of the function

    x3 + y3 – 3x + 12y + 20.
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     Also, find the saddle point.

    Solution:  See Example 25 of Chapter 6.

 **(b) State Cayley–Hamilton theorem and verify the same for the matrix

     A = 
1 2

2 1-
È

Î
Í

˘

˚
˙ .

     Find A–1 and A8.

    Solution: The characteristic equation of A is det (A – l In) = 0

    i.e., 
1 2

2 1

-
- -

l

l
 = 0

    i.e., l2 – 5 = 0.

     By Cayley–Hamilton theorem, we know that every square matrix satis-

fies its own characteristic eqation. Therefore,

     A2 – 5I2 = O (1)

    i.e., A2 = 5I2 fi A 
1

5
A

Ê
ËÁ

ˆ
¯̃

 = I2

    i.e., A–1 = 
1

5
 A

     Therefore,

     A–1 = 
1

5
 A = 

1

5

1 2

2 1-
È

Î
Í

˘

˚
˙ .

     Again, by (1), we have

     A2 = 5I2

    fi (A2)4 = (5I2)
4

    fi A8 = 54 (I2)
4 = 625I2

    fi A8 = 625 
1 0

0 1

È

Î
Í

˘

˚
˙ = 

625 0

0 625

È

Î
Í

˘

˚
˙.

  (c) Show that Curl 


— f = 0, where f (x, y, z) = x2y + 2xy + z2.

    Solution: See Example 9.12.

 ***12. (a) Given the function

     f (x, y) = 

xy x y

x y
x y

x y

( )
, ( , ) ( , )

, ( , )

2 2

2 2
0 0

0

-
+

π
Ï

Ì
Ô

Ó
Ô

¸

˝
Ô

˛
Ô

= (0,0)

     Find from the definition fxy (0, 0) and fyx (0, 0). Is fxy = fyx?

    Solution: See Example 15 of Chapter 6.
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 ***(b) Integrate by changing the order of integration:

    xy dy dx

x

a

a xa

2

2

0

-

ÚÚ

    Solution: By the given form of integration, it is clear that we have to inte-

grate first w.r.t y which varies from y = 
x

a

2

 to y = 2a – x and then we are to 

integrate w.r.t x which varies from x = 0 to x = a.

     Here, y = 
x

a

2

 fi x2 = ay (representing a parabola) and y = 2a – x (rep-

resenting a strainght line) itersects at the point (a, a).

    

R1

R1

),0( a

)0,2( a

O

),( aa

Y

X

)0,(a

)2,0( a

ayx =

2

xay −= 2

R2

    Fig. Q. 1

     The region of integration is the area bounded by x2 = ay (parabola), y = 

2a – x (straight line) and y-axis as shown in the figure by the shaded 

portion.

     Now when we change the order of integration, i.e., first we integrate 

w.r.t x and then w.r.t y, for taking limits we subdivide the region of integra-

tion ito two parts as R1 and R2. So we take the integration separately into 

the two subregions R1 and R2.

     Here, in the region R1,

  • x varies from y-axis to the parabola x2 = ay (fi x = ay ), i.e., 

x varies from 0 to ay
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  • y varies from x-axis to the line y = a, i.e., y varies from 0 to a

    Now, in the region R2,

  • x varies from y-axis to the straight line y = 2a – x (fi x = 2a – y), 

i.e., x varies from 0 to 2a – y

  • y varies from the line y = a to the line y = 2a, i.e., y varies from a 

to 2a

    Changing the order of integration, we have

     xy dy dx

x

a

a xa

2

2

0

-

ÚÚ  = 

0

a

Ú xy dx dy

R

ay

0

1( )Region

Ú  + xy dx dy

R

a y

a

a

0

22

2( )Region

-

ÚÚ

      = y
x

aya
2

00
2

È

Î
Í

˘

˚
˙Ú  dy + y

x
a y

a

a
2

0

22

2

È

Î
Í

˘

˚
˙

-

Ú  dy

      = 
a

y dy

a

2
2

0

Ú  + 
1

2

2

y

a

a

Ú  (2a – y)2 dy

      = 
a

2

y
a

3

0
3

È

Î
Í
Í

˘

˚
˙
˙

 + 
1

2
a

a2

Ú [4a2y – 4ay2 + y3] dy

      = 
a

4

6
 + 

1

2
4

2
4

3 4
2

2
2

3
2

4
2

a
y

a
y y

a

a

a

a

a

a
È

Î
Í
Í

˘

˚
˙
˙

-
È

Î
Í
Í

˘

˚
˙
˙

+
È

Î
Í
Í

˘

˚
˙
˙

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂Ô

      = 
a

4

6
 + 

1

2
6

28

3

15

4
4 4 4

a a a- +{ } = 
3

8
 a4.

 **(c) If F (p, v, t) = 0, show that

    
dp

dt
v

Ê
ËÁ

ˆ
¯̃

constant

 ¥ 
dv

dp
t

Ê
ËÁ

ˆ
¯̃

constant

 ¥ dt

dv
p

Ê
ËÁ

ˆ
¯̃

constant

 = –1.

    Soltion: See Example 6.17.
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MaTheMaTicS-i (M 101)

Time Alloted: 3 Hours Full Marks: 70

Group-a (Multiple choice Type Questions)

1. Choose the correct alternatives for any ten of the following: (10 ¥ 1 = 10)

 (i) The least upper bound of the sequence 
n

n +

Ï
Ì
Ó

¸
˝
˛1

 is

   (a) 0 (b) 
1

2
 (c) 1 (d) 2

   Solution: The correct alternative is ( )c 1

 (ii) The value of 

2000 2001 2002

2003 2004 2005

2006 2007 2008

 is

   (a) 2000   (b) 0

   (c) 45   (d) none of these

   Solution: The correct alternative is ( )b 0

 (iii) If l3 – 6l2 + 9l – 4 = 0 is the characteristic equation of a square matrix A then 

A–1 is equal to 

   (a) A2 – 6A + 9I   (b) 
1

4
A2 – 

3

2
A + 

9

4
I 

   (c) A2 – 6A + 9   (d) 
1

4
A2 – 

3

2
A + 

9

4

   Solution: The correct alternative is ( )b
1

4

3

2

9

4

2
A A I- +

 (iv) If x = r cos q, y = r sin q, then 
∂

∂

( , )

( , )

r

x y

q
 is

   (a) r   (b) 1

   (c) 
1

r
   (d) none of these

SoluTioNS of uNiverSiTy QueSTioNS 
(w.B.u.T.) 
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   Solution: The correct alternative is ( )c
1

r

 (v) f (x, y) = 
y x

y x

+

+
 is a homogeneous function of degree

   (a) 
1

2
 (b) –

1

2
 (c) 1 (d) 2

   Solution: The correct alternative is ( )b -
1

2

 (vi) If 
�
a ◊ ( )

� �
b g¥  = 0, then 

� � �
a b g, ,  are

   (a) coplanar   (b) independent

   (c) collinear   (d) none of these

   Solution: The correct alternative is ( )a coplanar

 (vii) The nth derivative of (ax + b)10 is (where n > 10)

   (a) a10 (b) 10!a10 (c) 0 (d) 10!

   Solution: The correct alternative is ( )c 0

 (viii) If for any two vectors 
�
a and 

�

b,

  
� �

a b+  = 
� �

a b-

   then 
�
a and 

�

b are

   (a) parallel   (b) collinear

   (c) perpendicular   (d) none of these

   Solution: The correct alternative is ( )d orthogonal

 (ix) If A–1 = 
1

7

3 1

1 2-

È

Î
Í

˘

˚
˙  then A =

   (a) 
3 1

1 2-

È

Î
Í

˘

˚
˙  (b) 

2 1

1 3-

È

Î
Í

˘

˚
˙   (c) 

1

7

2 1

1 3

-È

Î
Í

˘

˚
˙  (d) 

2 1

1 3

-È

Î
Í

˘

˚
˙

   Solution: The correct alternative is ( )b
2 1

1 3-

È

Î
Í

˘

˚
˙
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 (x) The reduction formula of In = cos
n
xdx

0

2

p

Ú is 

   (a) In = 
n

n

-Ê
ËÁ

ˆ
¯̃

1
In – 1   (b) In = 

n

n -
Ê
ËÁ

ˆ
¯̃1

In

   (c) In = 
n

n

-Ê
ËÁ

ˆ
¯̃

1
In – 2   (d) none of these

   Solution: The correct alternative is ( )c =I
n

n
In n

-Ê
ËÁ

ˆ
¯̃ -

1
2

 (xi) The series 
n

n
n

2

2

1
2 1+

Â
=

 is 

   (a) convergent   (b) divergent

   (c) oscillatory   (d) none of these

   Solution: The correct alternative is ( )b divergent

 (xii) Lagrange’s Mean value Theorem is obtained from Cauchy’s Theorem for two 

functions f (x) and g (x) by putting g (x) =

   (a) 1 (b) x2 (c) x (d) 
1

x

   Solution: The correct alternative is ( )c x

Group-B (Short-answer Type Questions)

Answer any three of the following: (3 ¥ 5 = 15)

 2. Prove that every square matrix can be expressed as the sum of a symmetric 

matrix and a skew-symmetric matrix.

  Solution: See Theorem 1.2 of Page 1.10.

 3. By Laplace’s method, prove that

  

a b c d

b a d c

c d a b

d c b a

- -

- -

- -

 = (a2 + b2 + c2 + d2)2

  (consider minors of order 2).
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  Solution: Here, we expand the given determinant by Laplace’s method of 

expansion in terms of a minor of order 2 considering the first two rows as 

follows:

  

a b c d

b a d c

c d a b

d c b a

- -

- -

- -

 

   = 
a b

b a-
 ¥ (–1)(1 + 2) + (1 + 2) a b

b a-
 + 

a c

b d-
 ¥ (–1)(1 + 2) + (1 + 3) -d b

c a
  

   + 
a d

b c- -
 ¥ (–1)(1 + 2) + (1 + 4) -

-

d a

c b
 + 

b c

a d
 ¥ (–1)(1 + 2) + (2 + 3) 

-

-

c b

d a
 

    + 
b d

a c-
 ¥ (–1)(1 + 2) + (2 + 4) -

- -

c a

d b
 + 

c d

d c-
 ¥ (–1)(1 + 2) + (3 + 4) - -

-

c d

d c

   = (a2 + b2) (a2 + b2) + (ad + bc) (ad + bc) 

   + (–ac + bd) (–ac + bd) + (bd – ac) (bd – ac)

    + (bc + ad) (bc + ad) + (c2 + d2) (c2 + d2)

   = (a2 + b2)2 + 2(ad + bc)2 + 2(– ac + bd)2

+ (c2 + d2)2 

   = (a2 + b2)2 + 2[(ad + bc)2 + (– ac + bd)2]

+ (c2 + d2)2

   = (a2 + b2)2 + 2[a2 d2 + b2 c2 – 2adbc + a2 c2

+ b2 d2 – 2acbd] + (c2 + d2)2

   = (a2 + b2)2 + 2(a2 + b2) (c2 + d2) + (c2 + d2)2

   = (a2 + b2 + c2 + d2)2

 4. If 2x = ym
1

 + y m
-

1

 then prove that

   (x2 – 1)yn + 2 + (2n + 1)xyn +1 + (n2 – m2)yn = 0
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   Solution: Here, we have

     2x = ym
1

 + y m
-

1

  or,   ym

1

 – 2x + 
1
1

ym

 = 0

  or,   ym

1
2

Ê

Ë
Á
Á

ˆ

¯
˜
˜

 – 2x ym

1Ê

Ë
Á
Á

ˆ

¯
˜
˜

 + 1 = 0

   Applying the rule for finding solution of the above quadratic equation, we 

get

  ym

1

 = 
2 2 4 1 1

2

2
x x± -( ) . .

 = x x± -( )2
1

 fi y = x x

m

± -( )2
1  (i)

   Differentiating (i) w.r.t. x, we have

  y1 = m x x

m

± -( )
-

2
1

1 ◊ 1
1

2

1

1

2
2

± ◊
-

◊
Ê

Ë
Á
Á

ˆ

¯
˜
˜x

x

   = m x x

x x

x

m

± -( ) ◊
- ±

-

Ê

Ë
Á
Á

ˆ

¯
˜
˜

-
2

1 2

2

1
1

1

   = ± ± -( ) ◊
± -( )

-

-

m x x

x x

x

m

2
1

2

2

1

1

1

 i.e., y1 = ± m
x x

x

m

± -( )
-

2

2

1

1

 = ±
my

x
2

1-
 (ii)

 Squaring (ii) and simplifying, we get

  (y1)
2 (x2 – 1) = m2 y2 (iii)

 Again differentiating (iii) w.r.t. x, we have

  2y1 y2(x
2 – 1) + (y1)

2 2x = m2 2y ◊ y1

 fi y2(x
2 – 1) + y1x – m2y = 0 (iv)
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  Now applying Leibnitz’s theorem, we differentiate (iv) n times w.r.t. x,

  {y2(x
2 – 1)}n + {y1x}n – {m2y}n = 0

 fi [{y2}n ◊ (x
2 – 1) + nC1{y2}n – 1 ◊ (2x) + nC2{y2}n – 2 ◊ (2)] 

  + [{y1}n ◊ x + nC1{y1}n – 1 ◊ 1] – m2yn = 0

 fi (x2 – 1)yn + 2 + 2nxyn + 1 + n(n – 1)yn + xyn + 1 + nyn – m2yn = 0

 fi (x2 – 1)yn + 2 + (2n + 1)xyn + 1 + (n2 – m2)yn = 0

 5. If u = x f
y

x

Ê
ËÁ

ˆ
¯̃

 + g y

x

Ê
ËÁ

ˆ
¯̃

 then show that

 x2 ∂

∂

2

2

u

x

 + 2xy
∂

∂ ∂

2
u

x y
 + y2 ∂

∂

2

2

u

y

 = 0.

  Solution: See Example 21 of Page 6.19.

 6. Show that the area bounded by a simple closed curve C is given by 

1

2
C

�Ú (xdy – ydx).

  Solution: We know that Green’s theorem states the following:

 

C

�Ú {M(x, y) dx + N (x, y) dy} = 
∂
∂

-
∂
∂

Ê
ËÁ

ˆ
¯̃ÚÚ

N

x

M

y
R

dx dy (i)

  where the region R on the two-dimensional xy plane is bounded by a simple 

closed curve C and the line integral along the curve C is taken in the anti-

clockwise direction. 

   Here, comparing LHS of (i) with 

C

�Ú (xdy – ydx), we have

 M = –y, N = x fi 
∂

∂

M

y
 = –1, 

∂

∂

N

x

 = 1 (ii) 

   Therefore using (ii) in (i), we get

 
C

�Ú (xdy – ydx) = 

R

ÚÚ [1 – (–1)] dx dy

  = 2

R

ÚÚdx dy

  = 2 ¥ [Area bounded by C]

   fi Area bounded by C = 
1

2
C

�Ú (xdy – ydx) 

   Hence, the area bounded by a simple closed curve C is given by 

1

2
C

�Ú (xdy – ydx).
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Group-c (long-answer Type Questions)

Answer any three of the following: (3 ¥ 15 = 45)

 7.  (i) If

     f (x, y) = x2 tan–1 y

x

Ê
ËÁ

ˆ
¯̃  – y2 tan–1 x

y

Ê
ËÁ

ˆ
¯̃

,

    verify fxy = fyx.

    Solution: See Example 6.6 of Page 6.34.

  (ii) State Rolle’s theorem and examine if you can apply the same for  

f (x) = tan x in [0, p].

    Solution: See Example 4.3 of Page 4.33.

  (iii) Find the value of l and m for which

     x + y + z = 3

     2x – y + 3z = 4

     5x – y + lz = m

    has (a) a unique solution, (b) many solutions (c) no solution.

    Solution: If we write the system of linear equations in the matrix form as 

AX = B then the coefficient matrix of the system of linear equations is

 A = 

1 1 1

2 1 3

5 1

-
-

Ê

Ë

Á
Á

ˆ

¯

˜
˜

l

    and the augmented matrix is

 A  = 

1 1 1 3

2 1 3 4

5 1

-
-

Ê

Ë

Á
Á

ˆ

¯

˜
˜

l m

     The system of equations has a unique solution when the determinant of 

the coefficient matrix is not equal to zero.

     det A = 

1 1 1

2 1 3

5 1

-

- l

      = 1(–l + 3) – 1(2l – 15) + 1(– 2 + 5) = – 3l + 21 

     Therefore, for det A π 0 fi –3l + 21 π 0 fi l π 7, the system of equa-

tions have unique solution.



 SQP2.8   Engineering Mathematics-I 

     When l = 7, the augmented matrix becomes

  A = 

1 1 1 3

2 1 3 4

5 1 7

-
-

Ê

Ë

Á
Á

ˆ

¯

˜
˜

m

     Applying elementary row operations on the matrix A, we have

A = 

1 1 1 3

2 1 3 4

5 1 7

-
-

Ê

Ë

Á
Á

ˆ

¯

˜
˜

m

R R R R2 1 3 12 5- -,
� �������������������

1 1 1 3

0 3 1 2

0 6 2 15

- -
- -

Ê

Ë

Á
Á

ˆ

¯

˜
˜

m

R R3 22-
� ���������

 

1 1 1 3

0 3 1 2

0 0 0 11

- -
-

Ê

Ë

Á
Á

ˆ

¯

˜
˜

m

 -ÊËÁ
ˆ
¯̃

1

3
2R

� ���������

1 1 1 3

0 1
1

3

2

3

0 0 0 11

-

-

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜m

 

R R1 2-
� �������

1 0
4

3

7

3

0 1
1

3

2

3

0 0 0 11

-

-

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜m

      The system of equations is consistent when Rank A = Rank A and this 

is possible for

    m – 11 = 0 fi m = 11.

     In this case, Rank A = Rank A = 2, which is less then number of 

unknowns (= 3) and the system has infinitely many solutions.

     Again, if 

     m – 11 π 0 fi m π 11.

    then Rank A = 2 and Rank A = 3, i.e., Rank A π Rank A, and so the 

system of equations is inconsistent and correspondingly the system has 

no solution.

     Summarizing the above, the system of equations has

     (a) a unique solution when l π 7

     (b) infinitely many solutions when l = 7 and m = 11

     (c) no solution when l = 7 and m π 11.
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 8.  (i) Find the maxima and minima of the function

     f (x, y) = x3 + y3 – 63(x + y) + 12xy

    Find also the saddle points.

    Solution: See Example 6.24 of Page 6.51.

   (ii) State Leibnitz’s test for alternating series and apply it to examine the 

convergence of

    1
1

2

1

3

1

4
2 2 2

- + - +

    Solution: See Example 8.27 of Page 8.42.

   (iii) Applying Lagrange’s Mean value Theorem, prove that

  
x

x1+
 £ log(1 + x) £ x, for all x > 0. 

    Solution: See Example 7 of Page 4.11.

 9.  (i) If y = em sin–1 x, show that

    (1 – x2)yn + 2 – (2n + 1)xyn + 1 – (n2 + m2)yn = 0.

    Hence, find yn when x = 0.

    Solution: Here, we are given that

     y = em sin–1 x (i)

    Differentiating (i) w.r.t. x, we have

     y1 = em sin–1 x ◊ m
1

1
2-

Ê

ËÁ
ˆ

¯̃x

    i.e., y1 = 
my

x1
2-

 (ii)

    Squaring (ii) and simplifying, we get

     (y1)
2 (1 – x2) = m2 y2 (iii)

    Again differentiating (iii) w.r.t. x, we have

     2y1 y2(1 – x2) + (y1)
2 (–2x) = m2 2y ◊ y1

    fi y2(1 – x2) – y1x – m2y = 0 (iv)

    Now applying Leibnitz’s theorem, we differentiate (iv) n times w.r.t. x,

     {y2(1 – x2)}n – {y1x}n – {m2y}n = 0.

    fi [{y2}n ◊ (1 – x2) + nC1{y2}n – 1 ◊ (– 2x) + nC2{y2}n – 2 ◊ (–2)]  

     – [{y1}n ◊ x + nC1{y1}n – 1 ◊ 1] – m2 yn = 0
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    fi (1 – x2)yn + 2 – 2nxyn +1 – n(n – 1)yn – xyn +1 – nyn – m2yn = 0

    fi (1 – x2)yn + 2 – (2n + 1)xyn +1 – (n2 + m2)yn = 0 (v)

    Calculation of yn when  x = 0, i.e., (yn)0:

    Putting x = 0 in (v), we have

    (yn + 2)0 = (n2 + m2) (yn)0

    Replacing n by n – 2, we get

     (yn)0 = [(n – 2)2 + m2] (yn – 2)0 (vi)

    Replacing n by n – 2 in (vi), we get

     (yn – 2)0 = [(n – 4)2 + m2] (yn – 4)0 (vii)

    Using (vii) in (vi),

     (yn)0 = [(n – 2)2 + m2] [(n – 4)2 + m2] (yn – 4)0

    Similarly, we have

     (yn)0 = [(n – 2)2 + m2] [(n – 4)2 + m2] [(n – 6)2 + m2] (yn – 6)0 (viii)

     Proceeding in a similar manner we have from (viii), when n is odd as 

the following:

     (yn)0 = [(n – 2)2 + m2] [(n – 4)2 + m2] … [32 + m2] [12 + m2] (y1)0 (ix)

     From (ii), we have (y1)0 = m. Using this in (ix), we get

  (yn)0 = [(n – 2)2 + m2] [(n – 4)2 + m2] … [32 + m2] 

[12 + m2] m, when n is odd.

     Also proceeding in a similar manner we have from (viii), when n is 

even as the following:

     (yn)0 = [(n – 2)2 + m2] [(n – 4)2 + m2] … [42 + m2] [22 + m2] (y2)0 (x)

     From (iv), we have (y2)0 = m2. Using this in (x), we get

     (yn)0 = [(n – 2)2 + m2] [(n – 4)2 + m2] … [42 + m2]  

[22 + m2]m2, when n is even.

   (ii)  Prove that 
� � � � � �
a b b c c a+ + +ÈÎ ˘̊ = 2

� � �
a b cÈÎ ˘̊ , where 

�
a  

�

b 
�
c are three 

vectors.

    Solution: Using the definition of scalar triple product, we write

     
� � � � � �
a b b c c a+ + +ÈÎ ˘̊ = 

� � � � � �
a b b c c a+( ) ◊ +( ) ¥ +( )È

Î
˘
˚

      = 
� � � � � � � �
a b b c c b c a+( ) ◊ +( ) ¥ + +( ) ¥È

Î
˘
˚

      = 
� � � � � � � � � �
a b b c c c b a c a+( ) ◊ ¥( ) + ¥( ) + ¥( ) + ¥( )È

Î
˘
˚
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      = 
� � � � � � � �
a b b c b a c a+( ) ◊ ¥( ) + ¥( ) + ¥( )È

Î
˘
˚ ,

    since 
�
c  ¥ 

�
c  = 

�

0

      = 
� � � � � � � � � � � �
a b c a b a a c a b b c◊ ¥( ) + ◊ ¥( ) + ◊ ¥( ) + ◊ ¥( )

+ ◊ ¥( ) + ◊ ¥( )
� � � � � �
b b a b c a

      = � � � � � � � � � � � �
a b c a b a a c a b b cÈÎ ˘̊ + ÈÎ ˘̊ + [ ]+ ÈÎ ˘̊

+ ÈÎ ˘̊ + ÈÎ ˘̊
� � � � � �
b b a b c a

     By the property of scalar triple product of vectors, we have 
� � �
a b aÈÎ ˘̊  = 

0, 
� � �
a c a[ ] = 0, 

� � �
b b cÈÎ ˘̊  = 0, 

� � �
b b aÈÎ ˘̊ = 0 (since two vectors in the product 

are same) and 
� � �
b c aÈÎ ˘̊  = 

� � �
a b cÈÎ ˘̊ .

     Using this in the above, we get

    
� � � � � �
a b b c c a+ + +ÈÎ ˘̊ = 

� � �
a b cÈÎ ˘̊ + 0 + 0 + 0 + 0 + 

� � �
a b cÈÎ ˘̊  = 2

� � �
a b cÈÎ ˘̊

  (iii)  Find the directional derivative of f = xyz at (1, 1, 1) in the direction 

2 2ˆ ˆ ˆi j k- -  .

    Solution: Here, it is given that f = xyz. Then

     
�

—f  = 
∂
∂

+
∂
∂

+
∂
∂

Ê
ËÁ

ˆ
¯̃x

i
y

j
z

k fˆ ˆ ˆ

      = 
∂
∂

+
∂
∂

+
∂
∂

Ê
ËÁ

ˆ
¯̃

f

x
i

f

y
j

f

z
kˆ ˆ ˆ

      = yzi xzj xykˆ ˆ ˆ+ +

    So, 
�

—ÈÎ ˘̊f
( , , )1 1 1

 = ˆ ˆ ˆi j k+ +

     Here we are to find the directional derivative in the direction 2 2ˆ ˆ ˆi j k- -  . 

The unit vector in the direction of 2 2ˆ ˆ ˆi j k- -  is given by

  â = 
2 2

2 1 2
2 2 2

ˆ ˆ ˆ

( ) ( )

i j k- -

+ - + -

 = 
2 2

3

ˆ ˆ ˆi j k- -

     Then the required directional derivative of f = xyz at (1, 1, 1) in the 

direction of 2 2ˆ ˆ ˆi j k- -  is given by

    
�

—ÈÎ ˘̊f
( , , )1 1 1

 ◊ â = ˆ ˆ ˆi j k+ +( ) ◊ 2 2

3

ˆ ˆ ˆi j k- -Ê
ËÁ

ˆ
¯̃

 = -
1

3
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 10.  (i) Prove that

  

b c a a

b c a b

c c a b

2 2 2 2

2 2 2 2

2 2 2 2

+

+

+

 = 4a2 b2 2

    Solution: See Example 1.16 of Page 1.43.

   (ii) State the Divergence Theorem of Gauss. verify divergence theorem for 
�

F  

= yi xj z kˆ ˆ ˆ+ + 2  over the cylindrical region bounded by x2 + y2 = 9, z = 0, 

z = 2. 

    Solution: See Example 9.29 of Page 9.58.

   (iii) Test the series for convergence:

  
1

2

2

3

3

4

p

q

p

q

p

q
+ + +º

    Solution: Let us consider the given series as

     a
n

n=1

Â  = 
1

2

2

3

3

4

p

q

p

q

p

q
+ + +º

    Then

     an = 
n

n

p

q
( )+ 1

 = 
n

n
n

p

q

q

1
1

+Ê
ËÁ

ˆ
¯̃

 = 
1

1
1

n
n

q p

q

- +Ê
ËÁ

ˆ
¯̃

    Let us consider another series

  bn

n=

Â
1

 = 
1

1
n
q p

n

-

=

Â

    which is convergent for q – p > 1 and divergent for q – p £ 1.

    Now we have

  lim
n

n

n

a

b
 = lim

n
q

n
+Ê

ËÁ
ˆ
¯̃

1

1
1

 = 1.

     Since bn

n=1

Â  is convergent for q – p > 1 and divergent for q – p £ 1, by 

comparison test, a
n

n=1

Â  is convergent for q – p > 1 and divergent for 

q – p £ 1.
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 11.  (i) Obtain a reduction formula for 

0

2

p

Ú sinn  x dx. Hence obtain 

0

2

p

Ú sin9 x dx.

    Solution: See Section 5.2 of Page 5.1.

   (ii) Given two vectors 
�
a  = 3

�

i  – 
�

j , 
�

b  = 2
�

i  + 
�

j  – 3
�

k . Express 
�

b  in the form 
�

b1 + 
�

b2, where 
�

b1  is parallel to 
�
a  and 

�

b2 is perpendicular to 
�
a .

    Solution: See Example 9.1 of Page 9.17.

   (iii) Show that 
�

A = (6xy + z3)î  + (3x2 – z) ĵ  + (3xz2 – y)k̂  is irrotational. Find 

the scalar function f, such that 
�

A  = 
�

—f .

    Solution: See Example 9.11 of Page 9.36.



B.TECH SEM-1 (NEW) 2012

MATHEMATICS-II (M 101)

Time Alloted: 3 Hours Full Marks: 70

GROUP-A (Multiple Choice Type Questions)

 1. Choose the correct alternatives for any ten of the following: (10 ¥ 1 = 10)

 *(i) The sequence ( )-{ }1
1n

n
 is

 (a) convergent (b) oscillatory 

 (c) divergent (d) none of these

 *(ii) The matrix 
cos sin

sin cos

q q

q q-
È
ÎÍ

˘
˚̇

 is

 (a) symmetric (b) skew-symmetric

 (c) singular  (d) orthogonal

 **(iii) The value of t for which


f = (x + 3y) i+ (y − 2z) j  + (x + tz) k

  is solenoidal is

 (a) 2 (b) −2 (c) 0 (d) 1

 *(iv) The series 
1

n
p

Â  is convergent if

 (a) p ≥ 1 (b) p £ 1 (c) p > 1 (d) p < 1

 **(v) The two eigenvalues of the matrix

   A  = 

2 2 2

1 1 1

1 2 1

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

SOLUTIONS OF UNIVERSITY QUESTIONS 
(W.B.U.T.) 

Level of difficulty:- *Low, **Medium, ***High.
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  are 2 and −2. The third eigenvalue is

 (a) 1 (b) 0 (c) 3 (d) 2

 *(vi) If Rolle’s theorem is applied to f(x) = x(x2 − 1) in [0, 1] then c =

 (a) 1 (b) 0 (c) -
1

3
 (d) 

1

3

 *(vii) If u = 
x y

x y

3 3

2 2

+

+
, find the value of n so that xux + yuy = nu.

 (a) 0 (b) 2

 (c) 
1

2

 (d) none of these

 **(viii) The nth derivative of sin(5x + 3) is

 (a) 5n cos(5x + 3) (b) 5n sin( np

2
+ 5x + 3)

 (c) 5n cos(
np

2
+ 5x + 3) (d) none of these

 **(ix) The value of ( )xdx dy

C

-Ú where C is a line joining (0, 1) to (1, 0) is

 (a) 0 (b) 
3

2
 (c) 

1

2

 (d) 
2

3

 *(x) The value of sin
7

2

2

q q
p

p

d

-

Ú is

 (a) 0 (b) 
6 4 2

7 5 3 1

. .

. . .

 (c) 
6

7

!

!
 (d) none of these

 *(xi) If the characteristic equation of a matrix A is X3 + 3X2 + 5X + 9 = 0 then 

determinant of the matix is

 (a) 7 (b) 5 (c) 6 (d) 9

 *(xii) Let A and B be two square matrices and A−1, B−1 exist. Then (AB)−1 is

 a) A−1B−1 b) B−1A−1

 c) AB d) none of these

Answers

 (i) (b) (ii) (d)  (iii) (b) (iv) (c)

 (v) (d) (vi) (d) (vii) (b) (viii) (b)

 (ix) (b)  (x) (a) (xi) (d) (xii) (b)
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GROUP B (Short Answer Type Questions)

Answer any three of the following: (3 × 15 = 45)

 **2. Verify Rolle’s theorem for the function

    f (x) = |x|, −1 £ x £ 1

  Solution: See Example 2 of Page 4.4.

 ***3. A and B are orthogonal matrices and |A| + |B| = 0. Prove that A + B is singular.

  Solution: Since A and B are orthogonal, |A| = ±1 π 0, |B| = ±1 π 0. Also,  

ATA = AAT = I and BTB = BBT = I.

  Let us consider C = A + B. Then

  CT = (A + B)T = AT + BT

 fi CTA = ATA + BTA

 fi CTA = I + BTA

 fi  BCTA = BI + BBT A

 fi BCTA = B + IA

 fi BCTA = B + A = A + B

  Now,

  |A + B|  = |BCTA| = |B||CT||A|

   = −|A| |C| |A| , since |A| + |B| = 0 and |CT|  = |C|

   = −{|A|}2 |C| = −|C|, since |A| = ±1

   = −|A + B|

 \  2 |A + B| = 0

 \  |A + B| = 0.

  Hence, A + B is singular.

 **4. Find the nth derivative of 
x

x x x

2 1

1 2 3

+
- - -( )( )( )

  Solution: Let us consider

  y  = 
x

x x x

A

x

B

x

C

x

2 1

1 2 3 1 2 3

+
- - -

=
-

+
-

+
-( )( )( ) ( ) ( ) ( )

  
x

x x x

2 1

1 2 3

+
- - -( )( )( )

 = 
A x x B x x C x x

x x x

( )( ) ( )( ) ( )( )

( )( )( )

- - + - - + - -
- - -

2 3 1 3 1 2

1 2 3

 fi  x2 + 1  = A(x − 2)(x − 3) + B(x − 1)(x − 3) + C(x − 1)(x − 2)
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  Substituting x = 1, 2, 3 we have respectively

  2 = A(1 − 2)(1 − 3)

 i.e.,  A = 1

  5 = B(2 − 1)(2 − 3)

 i.e., B = −5.

 and

  10 = C(3 − 1)(3 − 2)

 i.e., C = 5

 Therefore,

  y = 
x

x x x

2

1 2 3( )( )( )- - -
= 

1

1( )x -
 – 

5

2( )x -
 + 

5

3( )x -

  since yn = 
( ) . !.

( )

-
+ +

1
1

n n

n

n a

ax b
 when y = 

1

ax b+
, we get from the above,

  yn = 
( ) . !

( )

( ) . !

( )

( ) . !

( )

-

-
-

-

-
+

-

-+ + +

1

2
5

1

2
5

1

31 1 1

n

n

n

n

n

n

n

x

n

x

n

x

 **5. Let

  f(x, y) = 

xy

x y

x y

x y

+
π

=

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

2
0 0

0 0 0

, ( , ) ( , )

, ( , ) ( , )

  Evaluate fxy(0, 0) and fyx(0, 0).

  Solution: We have

  fxy(0, 0) = lim
( , ) ( , )

h

y yf h f

hÆ

-
0

0 0 0
 (1)

  Now,

  fy(h, 0) = lim
( , ) ( , )

lim

.

k k

f h k f h

k

hk

h k

h

h

kÆ Æ

-
= +

-
+

0 0

2 20

0

0

   = lim
k

h

h kÆ +0
2

= 1

  and

  fy(0, 0) = lim
( , ) ( , )

lim
k k

f k f

k kÆ Æ

-
=

-
=

0 0

0 0 0 0 0
0

  Using the above two results in (1), we obtain

  fxy(0, 0) = lim
( , ) ( , )

lim lim
h

y y

h h

f h f

h h hÆ Æ Æ

-
=

-
=

0 0 0

0 0 0 1 0 1

  which does not exist. Again, we have
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  fyx(0, 0) = lim
( , ) ( , )

k

x xf k f

kÆ

-
0

0 0 0
 (2)

  Now,

  fx(0, k) = lim
( , ) ( , )

lim
h h

f h k f k

h

hk

h k

hÆ Æ

-
= +

-

0 0

20
0

    = lim
h

k

h k kÆ +
=

0
2

1

  and

  fx(0, 0) = lim
( , ) ( , )

lim
h h

f h f

h hÆ Æ

-
=

-
=

0 0

0 0 0 0 0
0

  Using the above two results in (2), we obtain

  fyx(0, 0) = lim
( , ) ( , )

k

xf k f

kÆ

-
0

0 0 0

   = lim lim
k k

k

k kÆ Æ

-
=

0 0
2

1
0

1

  which also does not exist.

 **6. Find div


F , and curl


F  where

  


F  = grad(x3 + y3 + z3 − 3xyz)

  Solution: See Example 9.9 of Page 9.35.

GROUP C (Long Answer Type Questions)

Answer any three of the following:  (3 × 15 = 45)

   ***7. (a) If u = x2 − 2y, v = x + y + z, w = x − 2y + 3z, find 
∂
∂
( , , )

( , , )

u v w

x y z

   Solution: Here,

  
∂
∂
( , , )

( , , )

u v w

x y z
 = 

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

u

x

u

y

u

z

v

x

v

y

v

z

w

x

w

y

w

z

   = 

2 2 0

1 1 1

1 2 3

x -

-

= 10x + 4
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 **(b) Prove that 

1

1

1

2

2

2

a a bg

b b ga

g g ab

-

-

-

= 0

  Solution: See Example 1.14 of Page 1.41.

 **(c) If v = f (x2
 + 2yz, y2

 + 2zx), prove that

  (y2 − zx) ∂
∂
v

x

+ (x2 – yz)
∂
∂
v

y

 + (z2 – xy)
∂
∂
v

z

 = 0 

  Solution: See Example 6.7 of Page 6.35.

    ***8.   (a)  If  q = tn e

r

t

- 2

4 , find what value of n will make

1

2

2

r r

r

r t

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

q q
.

  Solution: Since q = tn e

r

t

- 2

4 , we have

  
∂
∂

= ◊
-Ê

ËÁ
ˆ
¯̃ = -

-
q q

r

t e
r

t

r

t

n

r

t

2

4
2

4 2
.

  Now,

     
1

2

2

r r
r

r

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

q
  = 

1

2

1

2
2 2

3

r r

r
r

t r r

r

t

∂
∂

◊ -Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃ =

∂
∂

-
Ê
ËÁ

ˆ
¯̃

q q

      = -
∂
∂

- = -Ê
ËÁ

ˆ
¯̃ -

1

2

1 3

2

1

2 2

1 3

2
2

3

2

2

2

3

2

2

r

r

t r r

r

t r

r

t

r

t r

r

t

q q q q

      = 
q qr

t t

2

2
4

3

2
-

  Again,

     
∂
∂
q

t
 = nt e t e t e

r

t

n

t

r

t

t

r

t n

r

t n

r

t-
- - -

+ + ◊
Ê
ËÁ

ˆ
¯̃

= +1 4 4 4

2

2

2

2

2 2 2

4 4

q q

  By the given condition, we have

  
1

2

2

r r

r

r t

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃ =

∂
∂

q q

  
q q q qr

t t

n

t

r

t

2

2

2

2
4

3

2 4
- = +

  which implies n = -
3

2
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 **(b) Using the mean-value theorem, prove that

  0
1 1

1<
-Ê

ËÁ
ˆ
¯̃

<
x

e

x

x

log

  Solution: See Example 7 (ii) of Page 4.12.

 **(c) If In = x
n

0

2

p

Ú  sin x dx (n > 1) then show that

   In + n(n − 1)In − 2 = n
np

2

1

Ê
Ë

ˆ
¯

-
 

  Solution: See Example 5.7 of Page 5.27.

     **9. (a) State D’Alembert’s ratio test for convergence of an infinite series.   

  Examine the convergence or divergence of the series

   

1

3

1 2

3 5

1 2 3

3 5 7

2 2 2

Ê
Ë

ˆ
¯ + Ê

Ë
ˆ
¯ + Ê

Ë
ˆ
¯

.

.

. .

. .


  Solution: See Example 22 of Page 8.12.

  **(b) If y = etan−1 x then show that

  (1 + x2)yn + 2 + (2nx + 2x − 1)yn + 1 + n(n + 1)yn = 0

  Solution:

  We have

  y = e tan−1 x

  Now, differentiating w.r.t. x,

  y1 = e
x

y

x

xtan
-

◊
+

=
+

1 1

1 1
2 2

 fi (1 + x2)y1 = y   (1)

  Again, differentiating (1) w.r.t. x,

  (1 + x2)y2 + (2x)y1 = y1

  fi (1 + x2)y1 + (2x − 1)y1 = 0    (2)

  Now, differentiating (2) n times by Leibnitz’s rule, we have

     [y2.(1 + x2)]n + [y1.(2x − 1)]n = 0.

    i.e.,  [{y2}n.(1 + x2) + nC1{y2}n−1.(2x) + nC2{y2}n−2.(2)] 

      +[{y1}n.(2x − 1) + nC1{y1}n−1.2] = 0

   i.e., [yn+2.(1 + x2) + 2nx.yn+1. + n(n − 1)yn] + [(2x − 1).yn+1 + 2n.yn] = 0
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  i.e., (1 + x2)yn+2 + (2nx + 2x − 1)yn+1 + n(n + 1)yn = 0

  **(c) Find the extreme value of the function

  f(x, y) = x3 + y3 − 3x − 12y + 20.

  Solution: See Example 25 of Page 6.27.

   ***10. (a) If A = 

1 0 2

0 1 1

0 1 0

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

then verify that A satisfies its own characteristic  

  equation.

  Hence, find A−1 and A9.

  Solution: See Example 2.17 of Page 2.48.

   **(b) If u = tan−1 x y

x y

3 3+
-

then show that

  x
u

x

xy
u

x y
y

u

y

2
2

2

2
2

2

2
2

∂
∂

+
∂
∂ ∂

+
∂
∂

= (1 –  sin2u) sin 2u

  Solution: We have

  u = tan–1 x y

x y

3 3+
-

 fi tan u = 
x y

x y

3 3+
-

Ê
ËÁ

ˆ
¯̃

 = v(x, y), (say)

 Here, 

  v(tx, ty) = 
t x y

t x y
t

x y

x y

3 3 3
2

3 3( )

( ) ( )

+
-

=
+
-

= t2v(x, y).

  Therefore, v(x, y) is a homogeneous function of degree 2. Now, by Euler’s 

theorem,

  x
v x y

x
y

v x y

y

∂
∂

+
∂

∂
( , ) ( , )

 = 2.v(x, y)

  or, 
∂

∂
+

∂
∂

(tan ) (tan )u

x
y

u

y
 = 2 (tan u)

  or, sec2u. x
u

x
y

u

y

∂
∂

+
∂
∂

Ï
Ì
Ó

¸
˝
˛

 = 2 (tan u)

  or, x
∂
∂

+
∂
∂

u

x
y

u

y

 = sin 2u (1)

  Now, differentiating (1) partially w.r.t. x we get,

   x
u

x

u

x
y

u

x y

∂
∂

+
∂
∂

+
∂
∂ ∂

2

2

2

  = 2 cos 2u
∂
∂
u

x
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  or, x
u

x

y
u

x y

∂
∂

+
∂
∂ ∂

2

2

2

 = 2(cos 2u –1) 
∂
∂
u

x

  (2)

 Again, differentiating (1) partially w.r.t. y we get,

  x
u

y x

u

y
y

u

x y

∂
∂ ∂

+
∂
∂

+
∂
∂ ∂

2 2

 = 2 cos 2u 
∂
∂
u

y
 

or, x
u

y x
y

u

y

∂
∂ ∂

+
∂
∂

2 2

2
 = (2 cos 2u – 1)

∂
∂
u

y
 (3)

 Multiplying (2) by x and (3) by y and then adding we get,

            x
u

x

xy
u

x y
y

u

y

2
2

2

2
2

2

2
2

∂
∂

+
∂
∂ ∂

+
∂
∂

È

Î
Í

˘

˚
˙  = (2 cos 2u – 1) x

u

x
y

u

y

∂
∂

+
∂
∂

È
ÎÍ

˘
˚̇

     or, x
u

x

xy
u

x y
y

u

y

2
2

2

2
2

2

2
2

∂
∂

+
∂
∂ ∂

+
∂
∂

È

Î
Í

˘

˚
˙  = (2 cos 2u − 1) sin 2u = (1 – 4 sin2u)sin 2u 

Hence, the result is proved.

 ***(c) Given the system of equations:

 x1 + 4x2 + 2x3 = 1, 2x1 + 7x2 + 5x3 = k, 4x1 + mx2 + 10x3 = 2k + 1.

  Find for what values of k and m, the system has (i) an unique solution, (ii) 

no solution, and (iii) many solutions.

  Solution: If we write the system of linear equations in the matrix form as  

AX = B then the coefficient matrix of the system of linear equations is

  A = 

1 4 2

2 7 5

4 10m

Ê

Ë

Á
Á

ˆ

¯

˜
˜

  and the augmented matrix is

  A  = 

1 4 2 1

2 7 5

4 10 2 1

k

m k +

Ê

Ë

Á
Á

ˆ

¯

˜
˜

  The system of equations has a unique solution when the determinant of 

the coefficient matrix is not equal to zero.

  det A = 

1 4 2

2 7 5

4 10m

 = −m + 14
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  Therefore, for det A π 0 fi m π 14, the system of equations has a unique 

solution.

  When m = 14, the augmented matrix becomes

  A  = 

1 4 2 1

2 7 5

4 14 10 2 1

k

k +

Ê

Ë

Á
Á

ˆ

¯

˜
˜

  Applying elementary row operations on the matrix A , we have

           A  = 

1 4 2 1

2 7 5

4 14 10 2 1

k

k +

Ê

Ë

Á
Á

ˆ

¯

˜
˜

R R R R2 1 3 12 4- -æ Æææææææ,

1 4 2 1

0 1 1 2

0 2 2 2 3

- -
- -

Ê

Ë

Á
Á

ˆ

¯

˜
˜

k

k

 
R R
3 2

2-æ Ææææ

                           

1 4 2 1

0 1 1 2

0 0 0 2 3 2 2

- -
- - -

Ê

Ë

Á
Á

ˆ

¯

˜
˜

k

k k( ) ( )

 = 

1 4 2 1

0 1 1 2

0 0 0 1

- -
Ê

Ë

Á
Á

ˆ

¯

˜
˜

k

  Here, Rank A = 2 and Rank A  = 3, i.e., Rank A π Rank A . So the system 

of equations is inconsistent and correspondingly, the system has no 

solution. 

  Summarizing the above, we have 

 i) the system of equations has a unique solution when m π 14

 ii) the system of equations has no solution when m = 14

 iii) it is not possible that the system of equations has many solutions

   **11.    (a)  Show that —
��

rn = nrn–2 r


= nrn−2 r


, where r


 = xi+ y j+ zk.

  Solution: See Example 7 of Page 9.23.

 **(b) Evaluate 4
2 2

x y-ÚÚ dxdy over the triangle formed by the straight lines 

y = 0, x = 1, and y = x.

  Solution: See Example 4 of Page 7.6.

 ***(c) Verify Stokes’ theorem for

  F
��

 = (2x − y) i  − yz2 j− y2z k,

  where S is the upper half surface of the sphere x2 + y2 + z2 = 1 and C is its 

boundary.

  Solution: See Example 9.34 of Page 9.65.



B.TECH SEM-I (NEW) 2013

MATHEMATICS-I (M 101)

Time Alloted: 3 Hours Full Marks: 70

GROUP-A (Multiple Choice Type Questions)

 1. Choose the correct alternatives for any ten of the following: (10 ¥ 1 = 10)

 *(i) The value of the determinant 

100 101 102

105 106 107

110 111 112

is

 (a) 0 (b) 10 (c) 100 (d) 1000

 *(ii) The equation x + y + z = 0 has

 (a) infinite solutions (b) no solution

 (c) unique solution (d) two solutions

 **(iii) The value of x y dxdy+( ) =ÚÚ
0

1

1

0

 (a) 2 (b) 3  (c) 1 (d) 0

 *(iv) f(x, y) = 
y x

y x

+
+

  is a homogeneous function of degree

 (a) 1

2

  (b)  -
1

2

 (c) 1 (d) 2

 **(v) In the MVT

  f(h) = f(0) + hf ¢(qh), 0 < q  < 1

  if  f(x) =
1

1+ x
 and h = 3 if then the value of  q is

 (a) 1 (b) 
1

3

 (c) 
1

2
 (d) none of these

SOLUTIONS OF UNIVERSITY QUESTIONS 
(W.B.U.T.) 

Level of difficulty:- *Low, **Medium, ***High.
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 **(vi) If y = eax+b, then (y5)0 =

 (a) aeb (b) a5eb

 (c) abeax (d) none of these

 *(vii) The series Â
+( )
1

2 1n
n

is

 (a) convergent (b) divergent

 (c) oscillatory (d) none of these

 *(viii) cos
6

0

2

p

Ú xdx is equal to 

 (a)  7

12

p  (b)  
5

32

p
 (c) p

32

  (d)   
3

16

p

 **(ix) If [ ]






a b c  = 0 then the vectors 






a b c, , , are

 (a) colinear (b) coplanar

 (c) orthogonal (d) none of these

 *(x) If u(x, y) = tan
- Ê
ËÁ

ˆ
¯̃

1 y

x
, then the value of x

u

x
y

u

y

∂
∂

+
∂
∂

is

 (a) 0 (b) 2u(x, y) 

 (c) u(x, y) (d) none of these.

 (xi) The centre of the sphere given by the equation

a(x2 + y2 + z2) + 2bx + 2cy + 2dz + w = 0

  is

 (a) - - -Ê
ËÁ

ˆ
¯̃

b

a

c

a

d

a
, ,  (b) (–b, –c, –d)

 (c) - - -Ê
ËÁ

ˆ
¯̃

b

a

c

a

d

a2 2 2
, ,  (d) 

b

a

c

a

d

a2 2 2
, ,

Ê
ËÁ

ˆ
¯̃   

Answers

 (i) (a) (ii) (a) (iii) (c) (iv) (b)

 (v) (b) (vi) (b) (vii) (a) (viii) (b)

 (ix) (b) (x) (a) (xi) (a)  
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GROUP B (Short Answer Type Questions)

Answer any three of the following: (3 × 5 = 15)

 *2. Prove that every square matrix can be expressed as the sum of a symmetric 

matrix and a skew-symmetric matrix.

  Solution: See Theorem 1.2 of Page 1.10.

 **3. Show that

  
�

� � �f xy z i x z j xz y k= + + - + -( ) ( ) ( )6 3 32 2 2

  is irrotational. Hence, find a scalar function  f such that 
 

f = —f .

  Solution: See Example 9.11 of Page 9.36.

 **4. Using mean-value theorem, prove that

 x x
x

x
< <

-
-

sin
1

2
1

, 0 < x < 1

  Solution: Let f(x) = sin−1 x in [0, x] where 0 < x < 1. Then, f(x) is continuous in 

[0, x] and ¢ =
-

f x
x

( )
1

1 2
  exists in (0, 1).

  Hence, by Lagrange’s MVT, we have,

  f(x) = f(0) + xf ¢(q x), 0 <  q < 1

   or,  sin
- =

-
1

2 2
1

x
x

xq
 (i)

  Now,

    0 < q  < 1

   or,  0 <  qx < x  [x > 0]

   or,  1 > 1 −  q2x2 > 1 − x2

   or,  1 > 1 1
2 2 2- > -q x x

   or,  1 < 
1

1

1

1
2 2 2-

<
-q x x

   or,  x < 
x

x

x

x1 1
2 2 2-

<
-q

 (ii)

  Therefore, from (i) and (ii), we have,

  

x x
x

x
x< <

-
< <-

sin ,
1

2
1

0 1
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 **5. Show that the area bounded by a simple closed curve C is given by 

1

2
( )xdy ydx-Ú

  Solution: See Problem 6 of Page SQP 2.6.

 **6. Prove that the function

  f(x, y) = x2 − 2xy + y2 − x3 − y3 + x5

  has neither maxima nor minima at the origin.

  Solution: Here,

  f(x, y) = x2 − 2xy + y2 − x3 − y3 + x5

  and

  fx  = 5x4 − 3x2 + 2x − 2y and fy = −3y2 + 2y − 2x

  fxx = 20x3 − 6x + 2, fxy = −2, fyy = −6y + 2

  Since

  fx(0, 0) = 0 = fy(0, 0)

  therefore, (0, 0) is a stationary point. Also,

  fxx(0, 0) = 2, fxy(0, 0) = −2, fyy(0, 0) = 2

  We have,

   fxx(0, 0)fyy(0, 0) − (fxy)
2 (0, 0) = 4 − 4 = 0

  Hence, f(x, y) has neither maxima nor minima at the origin.

GROUP C (Long Answer Type Questions)

Answer any three of the following:  (3 × 15 = 45)

      *7. (a) If 




f r=  where, 
� � � �r xi yj zk= + + , prove that

—Ê
Ë

ˆ
¯ = -

1

3r

r

r



  Solution: See Example 7 of Page 9.23.

 **(b) Prove that 

     

b c a a

b c a b

c c a b

a b c

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2
4

+

+

+

=

  Solution: See Example 1.16 of Pages 1.43.

 *(c) If y = cos−1(msin−1 x) then prove that
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  (1 − x2)yn+2 − (2n + 1)xyn+1 + (m2 − n2)yn = 0

  Solution: See Example 3.13 of Page 3.17.

     *8. (a) If the vector functions 


F and 


G are irrotational, prove that 


F  ¥ 


G is 

solenoidal. 

  Solution: See Example 12 of Page 9.31.

 **(b) If f x y x
y

x
y

x

y
( , ) tan tan= Ê

Ë
ˆ
¯ -

Ê
ËÁ

ˆ
¯̃

- -2 1 2 1
, verify that fxy = fyx.

  Solution:See Example 6.6 of Page 6.34.

 **(c) Find the maxima and minima of the function

x3 + y3 − 3x + 12y + 20

  Also, find the saddle point.

  Solution: See Example 25 of Page 6.27

 **9.    (a) Evaluate  

0

0

0

0

a b c

a d e

b d f

c e f

-
- -
- - -

  by the Laplace expansion method.

  Solution: See Example 1.9 of Page 1.36.

 **(b) Verify Green’s theorem for

   [( ) ( ) ]3 8 4 62x y dx y x dy
C

- + -Ú
  where C is the region bounded by x = 0, y = 0, and x + y = 1.

  Solution: See Example 9.27 of Page 9.56.

  ***(c)  For what values of l  and m does the system of equations

  x + y + z = 6

  x + 2y + 3z = 10

  x + 2y + lz = m

  has (i) a unique solution, (ii) no solution, and (iii) infinite solutions.

  Solution: See Example 2.9 of Page 2.37.

 **10.    (a) If un = Ú
0

2

p

tann q dq  then prove that

  n(un+1 + un−1) = 1

  Solution:See Example 5.4 of Page 5.24.
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 ***(b) Prove that if 0 < a < b,

  
( )

( )
tan tan

( )

( )

b a

b
b a

b a

a

-
+

< - <
-
+

- -

1 12

1 1

2

  Hence, show that

  
p p

4

3

25

4

3 4

1

6

1+ < < +-
tan

  Solution: For first part, see Example 4.7 of Page 4.37.

  Let a = 1, b =
4

3

  so that 0 < a < b < 1 is satisfied. Substituting these 

values in the above result, we have,

    

4

3
1

1
4

3

4

3
1

4

3
1

1 12

1 1

2

-

+ ÊË
ˆ
¯

< Ê
Ë

ˆ
¯ - <

-

+
- -tan tan

( )

 or,  

4

3
1

1
4

3

4

3 4

4

3
1

1 12

1

2

-

+ ÊË
ˆ
¯

< Ê
Ë

ˆ
¯ - <

-

+
-tan

( )

p

 or, 
p p

4

3

25

4

3 4

1

6

1+ < < +-
tan

 **(c) Test the convergence of the series

    
6

1 3 5

8

3 5 7

10

5 7 9. . . . . .
+ + +

  Solution: See Example 8.25 of Page 8.41.

 **11.   (a) State Leibnitz’s theorem for convergence of an alternating series. Hence, 

test the convergence of the following series:

     1
1

2

1

3

1

4

1

5

1

6
2 2 2 2 2

- + - + - +

  Solution: For the statement of Leibnitz’s theorem, see Article 8.13.1 of 

Page 8.16. For the solution of the problem, see Example 8.27 of Page 

8.42.

 **(b)  If z = f(x, y), where, x = eucos v and y = ev sin u, show that

    y
z

u
x

z

v
e

z

y

u∂
∂

+
∂
∂

=
∂
∂

2

  Solution: See Example 6.9 of Page 6.37.
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 (c) Evaluate e dxdydzx y z
x yx

a

+ ++

ÚÚÚ 00

0

  Solution: Here,

  I = e dxdydz e e dz dy dxx y z x y z
x yx

a

x yx

a

+ + + ++
= È

ÎÍ
˘
˚̇ }{ ÚÚÚÚÚÚ 00

0

00

0

   = e e dy dx e e dy dxx y
x

z

a

x y x y
x

a

x y
+ + +ÚÚ ÚÚÈÎ ˘̊{ } = -{ }+

0 0

0

0

0

1[ ]

   = [ ] [ ]( )e e dy dx e
e

e ex y x y
x

a

x
y x

x y x2

0

0
2

2

0

0
2

+ +-{ } =
È

Î
Í

˘

˚
˙ -

Ï
Ì
Ô

ÓÔ

¸
˝ÚÚ ÔÔ

Ǫ̂
Ú dx
a

0

   = e
e

e e dx
x

x

x x

a

2
20

2

1

2
1-

È

Î
Í

˘

˚
˙ - -

Ï
Ì
Ó

¸
˝
˛Ú [ ]

   = 
e e

e e dx

x x

x x

a

4 2

2
0

2 2
- - +

Ï
Ì
Ó

¸
˝
˛Ú

   = 
e e

e

x

a

x

a

x

a

4 0 2 0

0

8

3

4

È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚
˙ + [ ]

   = 
3

8 8

3

4

4 2

- + -
e e

e

a a

a  



B.TECH SEM-I (NEW) 2014

MATHEMATICS-I (M 101)

Time Alloted: 3 Hours Full Marks: 70

GROUP-A (Multiple Choice Type Questions)

 *1. Answer any ten questions: (10 ¥ 1 = 10)

 (i) sin
5

0

2

p

q qÚ d =

 (a) 8

15

 (b) 
8

15

p
 (c) 

8

15
 (d) 

4

15

 *(ii) If u(x, y) = yf 
x

y

2

2

Ê
ËÁ

ˆ
¯̃

 then x
∂
∂

+
∂
∂

u

x
y

u

y

=

 (a) 0 (b) 2u(x, y) (c) u(x, y) (d) 2

 **(iii) The value of ( )xdx dy
C

-Ú , where C is the line joining (0, 1), to (1, 0) is

 (a) 
3

2

 (b) 
1

2

 (c) 0 (d) 
2

3

 

 **(iv) The component of the vector 2 5 7i j k  + + on i j k  - +2 2 is

 (a) 78  (b) 3 (c) 6 (d) 2

 *(v) The value of t for which ( ) ( ) ( )x y i y z j x tz k+ + - + +3 2    is solenoidal is

 (a) 2 (b) −2 c) 0 d) 1

 *(vi) If x = r cos q and y = r sin q then, 
∂
∂
( , )

( , )

r

x y

q
= 

 (a) r (b) 1 (c) 
1

r
 (d) 0

 *(vii) f (x, y) = 
x y

x y

3 3

2 2

+

+
is a homogeneous function of degree

 (a) 0 (b) 2 (c) 1 (d) 
1

2

SOLUTIONS OF UNIVERSITY QUESTIONS 
(W.B.U.T.) 

Level of difficulty:- *Low, **Medium, ***High.
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 **(viii) If A = 

- -
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 1 1

3 3 3

5 5 5

then A is

 (a) idempotent (b) nilpotent 

 (c) involutary (d) none of these

 *(ix) If y = tan−1 x then

 (a) (1 + x2)y1 = 1 (b) (1 + x2)y2 = 1

 (c) (1 + x2)y1 = 0 (d) (1 + x2)y1 = 2

 *(x) If A is a real skew-symmetric matrix such that A2 + I = 0 then A is

 (a) singular (b) a unit matrix 

 (c) orthogonal (d) none of these

 *(xi) The sequence 1
1

3

1

3

1

3
2

, , , , 

n
•{ } is

 (a) divergent (b) oscillatory 

 (c) convergent (d) none of these

 *(xii) For a function f(x), the expression 
h

n
f a h

n n
n( )

( )!
( )

1

1

1-
-

+
-q

q is known as

 (a) Lagrange’s remainder (b) Cauchy’s remainder

 (c) Maclaurin’s remainder (d) Taylor’s remainder

Answers

 (i) (a), (c) (ii) (c) (iii) (a) (iv) (d)

 (v) (b) (vi) (c) (vii) (b)  (viii) (a)

 (ix) (a) (x) (d) (xi) (c) (xii) (b)

GROUP B (Short Answer Type Questions)

Answer any three Questions: (3 × 5 = 15)

 **2. Using the Laplace method of expansion, prove that

   

x y u v

y x v u

u v x y

v u y x

- -

- -

= (x2 + v2 − y2 − u2)2

  Solution: Using the Laplace method of expansion, we have
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x y u v

y x v u

u v x y

v u y x

- -

- -

 = 
x y

y x
 ¥ (−1)(1 + 2) + (1 + 2)

x y

y x

    + 
x u

y v

-
 ¥ (−1)(1 + 2) + (1 + 3)

v y

u x-

   + 
x v

y u

-
 ¥ (−1)(1 + 2) + (1 + 4)

v x

u y-

   + - -u v

v u

 ¥ (−1)(1 + 2) + (3 + 4)

u v

v u- -

   + 
x v

y u

-
 ¥ (−1)(1 + 2) + (1 + 4) 

v x

u y-

   + 
y u

x v

-
 ¥ (−1)(1 + 2) + (2 + 3) 

u y

v x-

  = (x2 − y2)2 − (yu + xv)2 + (xu + vy)2 + (v2 − u2)2

  = (x2 + 2 − y2 − u2)2

 **3. For what values of x is the following infinite seriens convergent?

 
( )n x

n

n n

n

n

+
+

=

•

Â
1

1
1

, x > 0

 Solution: Let

  an = 
( )n x

n

n n

n

+
+
1

1
, x > 0

  Applying the Cauchy root test,

  lim ( )
n

n

n
a

Æ•

1

 = lim
( )

n

n n

n

nn x

nÆ• +
+Ê

ËÁ
ˆ
¯̃

1
1

1

   = 
lim

( )

.
n

n

n x

n n

Æ•

+
Ê

Ë

Á
Á

ˆ

¯

˜
˜

1
1  = lim

n

n

n

x

n

Æ•

+Ê
Ë

ˆ
¯

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

1
1

1  = x

  Therefore, by Cauchy root test, the series is convergent when x < 1 and diver-

gent when x > 1. The test fails when x = 1.

When x = 1,

  an = 
( )n

n

n

n

+
+
1
1

= 1
1 1

+Ê
ËÁ

ˆ
¯̃n n

n
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  Consider a series b
nn=

•Â 1
, where bn = 

1

n
.

Now,

 lim lim
n

n

n
n

n
a

b n
e

Æ• Æ•
= +Ê

ËÁ
ˆ
¯̃ = >1

1
1

  Since b
nn=

•Â 1 is a divergent series. So by comparison test, the series is 

divergent.

  Therefore, the infinite series is convergent for x < 1.

 *4. If a, b, g are the angles which a vector makes with the coordinate axes, prove 

that

   sin2 a + sin2 b + sin2 g = 2

  Solution: Let

   
� � � �r xi y j zk= + +

  then,

  cos a = 
x

x y z
2 2 2+ +

; cos b = 
y

x y z
2 2 2+ +

; cos g = 
z

x y z
2 2 2+ +

  Now,

    sin2 a + sin2 b + sin2 g  = (1 − cos2a) + (1 − cos2 b) + (1 − cos2 g) 

     = 3
2 2 2

2 2 2
-

+ +
+ +

x y z

x y z

 = 3 − 1 = 2

 **5. If y = xn−1 log x, using Leibnitz’s theorem, show that yn = 
( )!n

x

-1
.

  Solution: See Example 3.4 of Page 3.11.

 **6. Using Green’s theorem, evaluate 
CÚ {(cos x sin y − xy) dx + sin x cos ydy} 

where C is the circle x2 + y2 = 1.

  Solution:See Example 14 of Page 9.48

GROUP C (Long Answer Type Questions)

Answer any three of the following:  (3 × 15 = 45)

 **7. (a) If A = 

1 2 2

2 1 2

2 2 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 then show that A2 − 4A − 5I3 = 0. Hence, find A−1.

  Solution: Here,

  A2 = 

1 2 2

2 1 2

2 2 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 ¥ 
1 2 2

2 1 2

2 2 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
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   = 

9 8 8

8 9 8

8 8 9

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 

  Therefore,

 A2 − 4A − 5I3 = 

9 8 8

8 9 8

8 8 9

4

1 2 2

2 1 2

2 2 1

5

1 0 0

0 1 0

0 0 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-
È

Î

Í
Í
Í

˘

˚

˙̇
˙
˙

   = 

0 0 0

0 0 0

0 0 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 = 0

  Since

 A2 − 4A − 5I3 = 0

or, A−1 (A2 − 4A − 5I3) = 0

or, A − 4I3 − 5A−1 = 0

or, A−1 = 
1

5

[A – 4I3]

or, A−1 = 
1

5

1 2 2

2 1 2

2 2 1

4

1 0 0

0 1 0

0 0 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

   = 
1

5

3 2 2

2 3 2

2 2 3

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 **(b) If y = em sin−1 x then show that

  (i) (1 − x2)y2 − xy1 − m2y = 0

 (ii) (1 − x2)yn+2 − (2n + 1)xyn+1 − (n2 + m2)yn = 0. Also, find (yn)0.

  Solution: See Example 9(i) of Pages SQP 2.9.

 **(c) Is Rolle’s theorem applicable to the function f(x) = (x − p)m(x − q)n,  

x Œ [p, q] where m, n are positive integers? If so, find the constant c of 

Rolle’s theorem, where c has its usual meaning.

  Solution: Here,

  f(x) = (x − p)m(x − q)n, x Œ [p, q]

  where m, n are positive integers. Now,

 (i) 

  f(p) = 0 = f(q)
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  (ii) Since f(x) is a polynomial, f(x) is continuous in [p, q]

  (iii) 

  f ¢(x) = m(x − p)m−1(x − q)n + n(x − p)m(x − q)n−1

  exists in (p, q).

  Therefore, Rolle’s theorem is applicable to the function f(x) and there exists  

c Œ (p, q) such that

    f ¢(c) = 0

   or,  m(c − p)m−1(c − q)n + n(c − p)m(c − q)n−1 = 0

   or, (c − p)m−1(c − q)n−1 {m(c − q) + n(c − p)} = 0

   or, {m(c − q) + n(c − p)} = 0

   or, c = 
mq np

m n

+
+

    **8. (a) State D’ Alembert’s ratio test. Applying this test, examine the conver-

gence of the following series:

 
1

2

2

3

3

4

4
0+ + + + • >

a a a

a
! ! !

,

  Solution: See Example 8.26 of Page 8.42.

 **(b) Show that

 
     
a b b c c a+ + +ÈÎ ˘̊, ,  = 2

  
a b c, ,ÈÎ ˘̊

  Solution: See Problem 9(ii) of Page SQP 2.10.

 **(c) If f(v2 − x2, v2 − y2, v2 − z2) = 0, where v is a function of x, y, z then show 

that

  
1 1 1

x

v

x y

v

y z

v

z

∂
∂

+
∂
∂

+
∂
∂

= 
1

v

  Solution: See Example 17 of Page 6.16.

 ***9. (a) Determine the conditions under which the system of equations

  x + y + z = 1

  x + 2y − z = k

  5x + 7y + az = k2

  admits (i) only one solution, (ii) no solution, and (iii) many solutions.

  Solution: See Problem 8(a) of Page SQP1.5.

 ***(b) Verify the divergence theorem for the vector function 
�

� �F xzi y j= -4
2  

� � �y j yzk= - + taken over a cube bounded by x = 0, x = 1; y = 0, y = 1; z = 0,  

z = 1.
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  Solution: See Example 16 of Page 9.50.

 **(c) If In = x
n

0

2

p

Ú sin xdx(n > 1) then prove that

  In + n(n − 1)In−2 = n
p

2

1

Ê
ËÁ

ˆ
¯̃

-n

  

  Solution: See Example 5.7 of Page 5.27.

  **10. (a) Verify Lagrange’s mean-value theorem at [−1, 1] for

  f(x) = x sin 1

x
, x π 0

   = 0, x = 0

  Solution: See Example 4.4 of Page 4.34.

 ***(b) If u = xf 
y

x
g

y

x

Ê
ËÁ

ˆ
¯̃ + Ê

ËÁ
ˆ
¯̃

 then show that

  x
u

x
y

u

y

∂
∂

+
∂
∂

 = xf
y

x

Ê
ËÁ

ˆ
¯̃  and x

u

x

xy
u

x y
y

u

y

2

2

2

2

2

2

2
2 0

∂
∂

+
∂
∂ ∂

+
∂
∂

=

  Solution: See Example 21 of Page 6.19.

 **(c) Find the rank of the following matrix 

2 3 16 5

4 5 6 7

2 0 1 3

8 8 23 15

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

  Solution: Let us apply elementary row operations on the matrix; then

    

2 3 16 5

4 5 6 7

2 0 1 3

8 8 23 15

2 3 16 5

4 5 6 7

8 8 23

1 2 3

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

æ Æææææ+ +R R R

115

8 8 23 15

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

    

R R R R

R R
4 3 2 1

3 1

2 3 16 5

4 5 6 7

8 8 23 15

0 0 0 0

2

4

- -
-

æ Ææææ

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

æ Ææææ

22 3 16 5

0 1 26 3

0 4 41 5

0 0 0 0

- - -
- - -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

    

( )

( )

-
-

-
-

æ Æææ

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1

1

3

4
2

3

1 2

3

2 3 16 5

0 1 26 3

0 4 41 5

0 0 0 0

R

R

R R

R R22

2 0 62 4

0 1 26 3

0 0 63 7

0 0 0 0

æ Ææææ

- -

- -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
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1

2

1

7

1

3

1 0 31 2

0 1 26 3

0 0 9 1

0 0 0 0

Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

æ Ææææ

- -È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

R

R

RR R

R R
1 3

2 3

2

3

1 0 13 0

0 1 1 0

0 0 9 1

0 0 0 0

+
-

æ Ææææ

-
-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

  Since the number of nonzero rows of the reduced matrix is 3, therefore, 

the rank of the matrix is 3.

   ** 11. (a) Find the extremum of the following function:

  x3 + y3 − 3axy

  Solution: See Example 6.23 of Page 6.50.

 **(b) Show that 

— f is irrotational, where   f = x2y + 2xy + z2.

  Solution: Now,

  

— f   =  i

x
j

y
k

z
  ∂

∂
+

∂
∂

+
∂
∂

Ê
ËÁ

ˆ
¯̃

f f f

   = (2xy + 2y) i  + (x2 + 2x) j  + 2zk

  and

  curl


—( )f  = 

i j k

x y z

xy y x x z

∂
∂

∂
∂

∂
∂

+ +( ) ( )2 2 2 22

   = i j k x x  ( ) ( ) ( )0 0 0 0 2 2 2 2- - - + + - -
   = 0

  Therefore, 

— f   is irrotational.

 **(c) Evaluate x y zdxdydz
yxa

3 2

000
ÚÚÚ

  Solution: See Example 7.4 of Page 7.19.



B.TECH SEM-1 (NEW) 2011

MATHEMATICS-I (M 101)

Time Alloted: 3 Hours Full Marks: 70

GROUP-A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following: (10 ¥ 1 = 10)

 *(i) The least upper bound of the sequence 
n

n +
Ï
Ì
Ó

¸
˝
˛1

 is

   (a) 0 (b) 
1

2
 (c) 1 (d) 2

   Solution: The correct alternative is ( )c 1

 *(ii) The value of 

2000 2001 2002

2003 2004 2005

2006 2007 2008

 is

   (a) 2000   (b) 0

   (c) 45   (d) none of these

   Solution: The correct alternative is ( )b 0

 **(iii) If l3 – 6l2 + 9l – 4 = 0 is the characteristic equation of a square matrix A then 

A–1 is equal to 

   (a) A2 – 6A + 9I   (b) 
1

4
A2 – 

3

2
A + 

9

4
I 

   (c) A2 – 6A + 9   (d) 
1

4
A2 – 

3

2
A + 

9

4

   Solution: The correct alternative is ( )b
1

4

3

2

9

4

2
A A I- +

 *(iv) If x = r cos q, y = r sin q, then 
∂
∂

( , )

( , )

r

x y

q
 is

   (a) r   (b) 1

   (c) 
1

r
   (d) none of these

SOLUTIONS OF UNIVERSITY QUESTIONS 
(W.B.U.T.) 

Level of difficulty:- *Low, **Medium, ***High.
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   Solution: The correct alternative is ( )c
1

r

 *(v) f (x, y) = 
y x

y x

+
+

 is a homogeneous function of degree

   (a) 
1

2
 (b) –

1

2
 (c) 1 (d) 2

   Solution: The correct alternative is ( )b -
1

2

 **(vi) If 

a ◊ ( )

 
b g¥  = 0, then 

  
a b g, ,  are

   (a) coplanar   (b) independent

   (c) collinear   (d) none of these

   Solution: The correct alternative is ( )a coplanar

 **(vii) The nth derivative of (ax + b)10 is (where n > 10)

   (a) a10 (b) 10!a10 (c) 0 (d) 10!

   Solution: The correct alternative is ( )c 0

 ***(viii) If for any two vectors 

a and 



b,

  
 

a b+  = 
 

a b-

   then 

a and 



b are

   (a) parallel   (b) collinear

   (c) perpendicular   (d) none of these

   Solution: The correct alternative is ( )d orthogonal

 **(ix) If A–1 = 
1

7

3 1

1 2-
È

Î
Í

˘

˚
˙  then A =

   (a) 
3 1

1 2-
È

Î
Í

˘

˚
˙  (b) 

2 1

1 3-
È

Î
Í

˘

˚
˙   (c) 

1

7

2 1

1 3

-È

Î
Í

˘

˚
˙  (d) 

2 1

1 3

-È

Î
Í

˘

˚
˙

   Solution: The correct alternative is ( )b
2 1

1 3-
È

Î
Í

˘

˚
˙
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 *(x) The reduction formula of In = cosn
xdx

0

2

p

Ú is 

   (a) In = 
n

n

-Ê
ËÁ

ˆ
¯̃

1
In – 1   (b) In = 

n

n -
Ê
ËÁ

ˆ
¯̃1

In

   (c) In = 
n

n

-Ê
ËÁ

ˆ
¯̃

1
In – 2   (d) none of these

   Solution: The correct alternative is ( )c =I
n

n
In n

-Ê
ËÁ

ˆ
¯̃ -

1
2

 **(xi) The series 
n

n
n

2

2
1

2 1+

•

Â
=

 is 

   (a) convergent   (b) divergent

   (c) oscillatory   (d) none of these

   Solution: The correct alternative is ( )b divergent

 *(xii) Lagrange’s Mean Value Theorem is obtained from Cauchy’s Theorem for two 

functions f (x) and g (x) by putting g (x) =

   (a) 1 (b) x2 (c) x (d) 
1

x

   Solution: The correct alternative is ( )c x

GROUP-B (Short-Answer Type Questions)

Answer any three of the following: (3 ¥ 5 = 15)

 *2. Prove that every square matrix can be expressed as the sum of a symmetric 

matrix and a skew-symmetric matrix.

  Solution: See Theorem 1.2 of Page 1.10.

 ***3. By Laplace’s method, prove that

  

a b c d

b a d c

c d a b

d c b a

- -
- -
- -

 = (a2 + b2 + c2 + d2)2

  (consider minors of order 2).
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  Solution: Here, we expand the given determinant by Laplace’s method of 

expansion in terms of a minor of order 2 considering the first two rows as 

follows:

  

a b c d

b a d c

c d a b

d c b a

- -
- -
- -

 

   = 
a b

b a-
 ¥ (–1)(1 + 2) + (1 + 2) a b

b a-
 + 

a c

b d-
 ¥ (–1)(1 + 2) + (1 + 3) -d b

c a
  

   + 
a d

b c- -
 ¥ (–1)(1 + 2) + (1 + 4) -

-
d a

c b
 + 

b c

a d
 ¥ (–1)(1 + 2) + (2 + 3) 

-
-

c b

d a
 

    + 
b d

a c-
 ¥ (–1)(1 + 2) + (2 + 4) -

- -
c a

d b
 + 

c d

d c-
 ¥ (–1)(1 + 2) + (3 + 4) - -

-
c d

d c

   = (a2 + b2) (a2 + b2) + (ad + bc) (ad + bc) 

   + (–ac + bd) (–ac + bd) + (bd – ac) (bd – ac)

    + (bc + ad) (bc + ad) + (c2 + d2) (c2 + d2)

   = (a2 + b2)2 + 2(ad + bc)2 + 2(– ac + bd)2

+ (c2 + d2)2 

   = (a2 + b2)2 + 2[(ad + bc)2 + (– ac + bd)2]

+ (c2 + d2)2

   = (a2 + b2)2 + 2[a2 d2 + b2 c2 – 2adbc + a2 c2

+ b2 d2 – 2acbd] + (c2 + d2)2

   = (a2 + b2)2 + 2(a2 + b2) (c2 + d2) + (c2 + d2)2

   = (a2 + b2 + c2 + d2)2

 ***4. If 2x = y m

1

 + y m
-

1

 then prove that

   (x2 – 1)yn + 2 + (2n + 1)xyn +1 + (n2 – m2)yn = 0
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   Solution: Here, we have

     2x = y m

1

 + y m
-

1

  or,   y m

1

 – 2x + 
1
1

y m

 = 0

  or,   y m

1
2

Ê

Ë
Á
Á

ˆ

¯
˜
˜

 – 2x y m

1Ê

Ë
Á
Á

ˆ

¯
˜
˜

 + 1 = 0

   Applying the rule for finding solution of the above quadratic equation, we 

get

  y m

1

 = 
2 2 4 1 1

2

2
x x± -( ) . .

 = x x± -( )2 1

 fi y = x x
m

± -( )2 1  (i)

   Differentiating (i) w.r.t. x, we have

  y1 = m x x
m

± -( ) -
2

1

1 ◊ 1
1

2

1

1
2

2
± ◊

-
◊

Ê

Ë
Á
Á

ˆ

¯
˜
˜x

x

   = m x x
x x

x

m

± -( ) ◊
- ±

-

Ê

Ë
Á
Á

ˆ

¯
˜
˜

-
2

1 2

2
1

1

1

   = ± ± -( ) ◊
± -( )

-

-
m x x

x x

x

m
2

1 2

2
1

1

1

 i.e., y1 = ± m
x x

x

m

± -( )
-

2

2

1

1

 = ±
my

x
2 1-

 (ii)

 Squaring (ii) and simplifying, we get

  (y1)
2 (x2 – 1) = m2 y2 (iii)

 Again differentiating (iii) w.r.t. x, we have

  2y1 y2(x
2 – 1) + (y1)

2 2x = m2 2y ◊ y1

 fi y2(x
2 – 1) + y1x – m2y = 0 (iv)
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  Now applying Leibnitz’s theorem, we differentiate (iv) n times w.r.t. x,

  {y2(x
2 – 1)}n + {y1x}n – {m2y}n = 0

 fi [{y2}n ◊ (x2 – 1) + nC1{y2}n – 1 ◊ (2x) + nC2{y2}n – 2 ◊ (2)] 

  + [{y1}n ◊ x + nC1{y1}n – 1 ◊ 1] – m2yn = 0

 fi (x2 – 1)yn + 2 + 2nxyn + 1 + n(n – 1)yn + xyn + 1 + nyn – m2yn = 0

 fi (x2 – 1)yn + 2 + (2n + 1)xyn + 1 + (n2 – m2)yn = 0

 **5. If u = x f
y

x

Ê
ËÁ

ˆ
¯̃

 + g y

x

Ê
ËÁ

ˆ
¯̃

 then show that

 x2 ∂
∂

2

2

u

x
 + 2xy

∂
∂ ∂

2
u

x y
 + y2 ∂

∂

2

2

u

y
 = 0.

  Solution: See Example 21 of Page 6.19.

 **6. Show that the area bounded by a simple closed curve C is given by  

1

2
C

Ú (xdy – ydx).

  Solution: We know that Green’s theorem states the following:

 

C

Ú {M(x, y) dx + N (x, y) dy} = 
∂
∂

-
∂
∂

Ê
ËÁ

ˆ
¯̃ÚÚ

N

x

M

y
R

dx dy (i)

  where the region R on the two-dimensional xy plane is bounded by a simple 

closed curve C and the line integral along the curve C is taken in the anti-

clockwise direction. 

   Here, comparing LHS of (i) with 

C

Ú (xdy – ydx), we have

 M = –y, N = x fi 
∂
∂
M

y
 = –1, 

∂
∂
N

x
 = 1 (ii) 

   Therefore using (ii) in (i), we get

 
C

Ú (xdy – ydx) = 

R

ÚÚ [1 – (–1)] dx dy

  = 2

R

ÚÚdx dy

  = 2 ¥ [Area bounded by C]

   fi Area bounded by C = 
1

2
C

Ú (xdy – ydx) 

   Hence, the area bounded by a simple closed curve C is given by  

1

2
C

Ú (xdy – ydx).
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GROUP-C (Long-Answer Type Questions)

Answer any three of the following: (3 ¥ 15 = 45)

 ***7.  (i) If

     f (x, y) = x2 tan–1 y

x

Ê
ËÁ

ˆ
¯̃  – y2 tan–1 x

y

Ê
ËÁ

ˆ
¯̃

,

    verify fxy = fyx.

    Solution: See Example 6.6 of Page 6.34.

 *(ii) State Rolle’s theorem and examine if you can apply the same for  

f (x) = tan x in [0, p].

    Solution: See Example 4.3 of Page 4.33.

 ***(iii) Find the value of l and m for which

     x + y + z = 3

     2x – y + 3z = 4

     5x – y + lz = m

    has (a) a unique solution, (b) many solutions (c) no solution.

    Solution: If we write the system of linear equations in the matrix form as 

AX = B then the coefficient matrix of the system of linear equations is

 A = 

1 1 1

2 1 3

5 1

-
-

Ê

Ë

Á
Á

ˆ

¯

˜
˜

l

    and the augmented matrix is

 A  = 

1 1 1 3

2 1 3 4

5 1

-
-

Ê

Ë

Á
Á

ˆ

¯

˜
˜

l m

     The system of equations has a unique solution when the determinant of 

the coefficient matrix is not equal to zero.

     det A = 

1 1 1

2 1 3

5 1

-
- l

      = 1(–l + 3) – 1(2l – 15) + 1(– 2 + 5) = – 3l + 21 

     Therefore, for det A π 0 fi –3l + 21 π 0 fi l π 7, the system of equa-

tions have unique solution.
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     When l = 7, the augmented matrix becomes

  A = 

1 1 1 3

2 1 3 4

5 1 7

-
-

Ê

Ë

Á
Á

ˆ

¯

˜
˜

m

     Applying elementary row operations on the matrix A, we have

A = 

1 1 1 3

2 1 3 4

5 1 7

-
-

Ê

Ë

Á
Á

ˆ

¯

˜
˜

m

R R R R2 1 3 12 5- -,
� �������������������

1 1 1 3

0 3 1 2

0 6 2 15

- -
- -

Ê

Ë

Á
Á

ˆ

¯

˜
˜

m

R R3 22-
� ���������

 

1 1 1 3

0 3 1 2

0 0 0 11

- -
-

Ê

Ë

Á
Á

ˆ

¯

˜
˜

m

 -Ê
ËÁ

ˆ
¯̃

1

3
2R

� ���������

1 1 1 3

0 1
1

3

2

3

0 0 0 11

-

-

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜m

 

R R1 2-
� �������

1 0
4

3

7

3

0 1
1

3

2

3

0 0 0 11

-

-

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜m

      The system of equations is consistent when Rank A = Rank A and this 

is possible for

    m – 11 = 0 fi m = 11.

     In this case, Rank A = Rank A = 2, which is less then number of 

unknowns (= 3) and the system has infinitely many solutions.

     Again, if 

     m – 11 π 0 fi m π 11.

    then Rank A = 2 and Rank A = 3, i.e., Rank A π Rank A, and so the 

system of equations is inconsistent and correspondingly the system has 

no solution.

     Summarizing the above, the system of equations has

     (a) a unique solution when l π 7

     (b) infinitely many solutions when l = 7 and m = 11

     (c) no solution when l = 7 and m π 11.
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 **8.  (i) Find the maxima and minima of the function

     f (x, y) = x3 + y3 – 63(x + y) + 12xy

    Find also the saddle points.

    Solution: See Example 6.24 of Page 6.51.

 **(ii)  State Leibnitz’s test for alternating series and apply it to examine the 

convergence of

    1
1

2

1

3

1

42 2 2
- + - + º •

    Solution: See Example 8.27 of Page 8.42.

 *(iii) Applying Lagrange’s Mean Value Theorem, prove that

  
x

x1+
 £ log(1 + x) £ x, for all x > 0. 

    Solution: See Example 7 of Page 4.11.

 *9.  (i) If y = em sin–1 x, show that

    (1 – x2)yn + 2 – (2n + 1)xyn + 1 – (n2 + m2)yn = 0.

    Hence, find yn when x = 0.

    Solution: Here, we are given that

     y = em sin–1 x (i)

    Differentiating (i) w.r.t. x, we have

     y1 = em sin–1 x ◊ m 1

1 2-

Ê

ËÁ
ˆ

¯̃x

    i.e., y1 = 
my

x1 2-
 (ii)

    Squaring (ii) and simplifying, we get

     (y1)
2 (1 – x2) = m2 y2 (iii)

    Again differentiating (iii) w.r.t. x, we have

     2y1 y2(1 – x2) + (y1)
2 (–2x) = m2 2y ◊ y1

    fi y2(1 – x2) – y1x – m2y = 0 (iv)

    Now applying Leibnitz’s theorem, we differentiate (iv) n times w.r.t. x,

     {y2(1 – x2)}n – {y1x}n – {m2y}n = 0.

    fi [{y2}n ◊ (1 – x2) + nC1{y2}n – 1 ◊ (– 2x) + nC2{y2}n – 2 ◊ (–2)]  

     – [{y1}n ◊ x + nC1{y1}n – 1 ◊ 1] – m2 yn = 0
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    fi (1 – x2)yn + 2 – 2nxyn +1 – n(n – 1)yn – xyn +1 – nyn – m2yn = 0

    fi (1 – x2)yn + 2 – (2n + 1)xyn +1 – (n2 + m2)yn = 0 (v)

    Calculation of yn when  x = 0, i.e., (yn)0:

    Putting x = 0 in (v), we have

    (yn + 2)0 = (n2 + m2) (yn)0

    Replacing n by n – 2, we get

     (yn)0 = [(n – 2)2 + m2] (yn – 2)0 (vi)

    Replacing n by n – 2 in (vi), we get

     (yn – 2)0 = [(n – 4)2 + m2] (yn – 4)0 (vii)

    Using (vii) in (vi),

     (yn)0 = [(n – 2)2 + m2] [(n – 4)2 + m2] (yn – 4)0

    Similarly, we have

     (yn)0 = [(n – 2)2 + m2] [(n – 4)2 + m2] [(n – 6)2 + m2] (yn – 6)0 (viii)

     Proceeding in a similar manner we have from (viii), when n is odd as 

the following:

     (yn)0 = [(n – 2)2 + m2] [(n – 4)2 + m2] … [32 + m2] [12 + m2] (y1)0 (ix)

     From (ii), we have (y1)0 = m. Using this in (ix), we get

  (yn)0 = [(n – 2)2 + m2] [(n – 4)2 + m2] … [32 + m2] 

[12 + m2] m, when n is odd.

     Also proceeding in a similar manner we have from (viii), when n is 

even as the following:

     (yn)0 = [(n – 2)2 + m2] [(n – 4)2 + m2] … [42 + m2] [22 + m2] (y2)0 (x)

     From (iv), we have (y2)0 = m2. Using this in (x), we get

     (yn)0 = [(n – 2)2 + m2] [(n – 4)2 + m2] … [42 + m2]  

[22 + m2]m2, when n is even.

 *(ii)  Prove that 
     
a b b c c a+ + +ÈÎ ˘̊ = 2

  
a b cÈÎ ˘̊ , where 


a  



b 

c are three 

vectors.

    Solution: Using the definition of scalar triple product, we write

     
     
a b b c c a+ + +ÈÎ ˘̊ = 

     
a b b c c a+( ) ◊ +( ) ¥ +( )ÈÎ ˘̊

      = 
       
a b b c c b c a+( ) ◊ +( ) ¥ + +( ) ¥ÈÎ ˘̊

      = 
         
a b b c c c b a c a+( ) ◊ ¥( ) + ¥( ) + ¥( ) + ¥( )ÈÎ ˘̊
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      = 
       
a b b c b a c a+( ) ◊ ¥( ) + ¥( ) + ¥( )ÈÎ ˘̊ ,

    since 

c  ¥ 


c  = 



0

      = 
           
a b c a b a a c a b b c◊ ¥( ) + ◊ ¥( ) + ◊ ¥( ) + ◊ ¥( )

+ ◊ ¥( ) + ◊ ¥( )
     
b b a b c a

      =            
a b c a b a a c a b b cÈÎ ˘̊ + ÈÎ ˘̊ + [ ]+ ÈÎ ˘̊

+ ÈÎ ˘̊ + ÈÎ ˘̊
     
b b a b c a

     By the property of scalar triple product of vectors, we have 
  
a b aÈÎ ˘̊  = 

0, 
  
a c a[ ] = 0, 

  
b b cÈÎ ˘̊  = 0, 

  
b b aÈÎ ˘̊ = 0 (since two vectors in the product 

are same) and 
  
b c aÈÎ ˘̊  = 

  
a b cÈÎ ˘̊ .

     Using this in the above, we get

    
     
a b b c c a+ + +ÈÎ ˘̊ = 

  
a b cÈÎ ˘̊ + 0 + 0 + 0 + 0 + 

  
a b cÈÎ ˘̊  = 2

  
a b cÈÎ ˘̊

 *(iii)  Find the directional derivative of f = xyz at (1, 1, 1) in the direction 

2 2ˆ ˆ ˆi j k- -  .

    Solution: Here, it is given that f = xyz. Then

     


—f  = 
∂
∂

+
∂
∂

+
∂
∂

Ê
ËÁ

ˆ
¯̃x

i
y

j
z

k fˆ ˆ ˆ

      = 
∂
∂

+
∂
∂

+
∂
∂

Ê
ËÁ

ˆ
¯̃

f

x
i

f

y
j

f

z
kˆ ˆ ˆ

      = yzi xzj xykˆ ˆ ˆ+ +

    So, 


—ÈÎ ˘̊f
( , , )1 1 1

 = ˆ ˆ ˆi j k+ +

     Here we are to find the directional derivative in the direction 2 2ˆ ˆ ˆi j k- -  . 

The unit vector in the direction of 2 2ˆ ˆ ˆi j k- -  is given by

  â = 
2 2

2 1 22 2 2

ˆ ˆ ˆ

( ) ( )

i j k- -

+ - + -
 = 

2 2

3

ˆ ˆ ˆi j k- -

     Then the required directional derivative of f = xyz at (1, 1, 1) in the 

direction of 2 2ˆ ˆ ˆi j k- -  is given by

    


—ÈÎ ˘̊f
( , , )1 1 1

 ◊ â = ˆ ˆ ˆi j k+ +( ) ◊ 2 2

3

ˆ ˆ ˆi j k- -Ê
ËÁ

ˆ
¯̃

 = -
1

3
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 **10.  (i) Prove that

  

b c a a

b c a b

c c a b

2 2 2 2

2 2 2 2

2 2 2 2

+

+

+

 = 4a2 b2 2

    Solution: See Example 1.16 of Page 1.43.

 ***(ii) State the Divergence Theorem of Gauss. Verify divergence theorem for 


F  

= yi xj z kˆ ˆ ˆ+ + 2  over the cylindrical region bounded by x2 + y2 = 9, z = 0, 

z = 2. 

    Solution: See Example 9.29 of Page 9.58.

 **(iii) Test the series for convergence:

  
1

2

2

3

3

4

p

q

p

q

p

q
+ + +º

    Solution: Let us consider the given series as

     an

n=1

•

Â  = 
1

2

2

3

3

4

p

q

p

q

p

q
+ + +º

    Then

     an = 
n

n

p

q( )+ 1
 = 

n

n
n

p

q
q

1
1

+Ê
ËÁ

ˆ
¯̃

 = 
1

1
1

n
n

q p
q

- +Ê
ËÁ

ˆ
¯̃

    Let us consider another series

  bn

n=

•

Â
1

 = 
1

1
n

q p

n

-
=

•

Â
    which is convergent for q – p > 1 and divergent for q – p £ 1.

    Now we have

  lim
n

n

n

a

bÆ•
 = lim

n q

n

Æ•
+Ê

ËÁ
ˆ
¯̃

1

1
1

 = 1.

     Since bn

n=1

•

Â  is convergent for q – p > 1 and divergent for q – p £ 1, by 

comparison test, an

n=1

•

Â  is convergent for q – p > 1 and divergent for 

q – p £ 1.



  SQP2.13   Solutions of University Questions (W.B.U.T.)

 *11.  (i) Obtain a reduction formula for 

0

2

p

Ú sinn  x dx. Hence obtain 

0

2

p

Ú sin9 x dx.

    Solution: See Section 5.2 of Page 5.1.

 **(ii) Given two vectors 

a  = 3



i  – 


j , 


b  = 2


i  + 


j  – 3


k . Express 


b  in the form 


b1 + 


b2, where 


b1  is parallel to 

a  and 



b2 is perpendicular to 

a .

    Solution: See Example 9.1 of Page 9.17.

 **(iii) Show that 


A = (6xy + z3)î  + (3x2 – z) ĵ  + (3xz2 – y)k̂  is irrotational. Find 

the scalar function f, such that 


A  = 


—f .

    Solution: See Example 9.11 of Page 9.36.
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