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Preface

The highest form of pure thought is in Mathematics.

Plato (428 BC-348 BC)
Since mathematics forms the basis of any branch of engineering and technology,
the West Bengal University of Technology has made a commendable endeavour by
introducing different syllabi for mathematics at different semesters in the B.Tech.
level. The current book has been written as per the latest WBUT syllabus for the first-
year, first-semester B.Tech. students. Our main objective of writing this book is to help
students build upon the fundamental concepts which are also required for subjects
studied in the higher semesters. Each and every topic of the book is lucidly explained
and illustrated with different kinds of examples. Also, stepwise clarifications of differ-
ent methods of solving problems are given.

Salient Features

» Full coverage of the WBUT syllabus (2010 Regulation)

* Lucid explanation of topics like Matrix, Infinite Series, Vector Algebra, Vector
Calculus, Calculus of Functions of Several Variables

* Stepwise solutions to examples
* Solved WBUT questions from 2001-2009 incorporated within each chapter
e Solutions of WBUT examination papers from 2010-2014 are placed at the end of
the book
* Rich pedagogy:
= 400 Solved Examples
s 315 Short and Long Answer Type Questions
s 220 Multiple Choice Questions

Chapter Organisation

The contents of the book are divided into nine chapters.

In Chapter 1, we first represent the fundamentals of matrices along with the
notations and algebraic operations applicable on them. Here, we also discuss the deter-
minant of a square matrix, singular and non-singular matrices, and the method of com-
puting the inverse of a matrix along with its properties, orthogonal matrix and trace of
a matrix. Chapter 2 deals with the concept of the rank of a matrix, matrix inversion



Xiv Preface

method, Cramer’s rule, consistency and inconsistency of a system of homogeneous
and nonhomogeneous linear simultaneous equations, Eigen values and Eigen vectors,
and the Cayley—Hamilton theorem and its applications.

Chapter 3 discusses successive differentiation and Leibnitz’s theorem along with
its applications. In Chapter 4, we present the very well-known three mean-value theo-
rems, namely, Rolle’s, Lagrange’s and Cauchy’s mean-value theorems along with their
wide range of applications in various fields. The series expansion theorems and formu-
las, namely, Taylor’s and Maclaurin’s series expansion, are also discussed in this
chapter.

Chapter 5 explains the concept of reduction formulas for integration and its
applications. In Chapter 6, we introduce the concept of functions of several variables.
Also, we describe the methods of differentiations and their applications towards
optimisations of the functions. Chapter 7 deals with line integrals, double integrals
and triple integrals.

Chapter 8 basically covers preliminary ideas of real sequences and illustrative
ideas of infinite series. Chapter 9 has been divided into three parts. In the first part of
this chapter, we discuss vector algebra. The second part of the chapter deals with
vector differentiations, gradient, divergence and curl. In the third part of the chapter,
we give theorems on vector integrations (Green’s theorem, Divergence theorem,
Stokes’ theorem) and their applications to physical problems.

At the end of the each chapter, various kinds of solved examples covering all the
topics, including 2001-2009 solved WBUT questions, are given. Numerous short and
long-answer-type question and multiple-choice questions are given in the exercises of
every chapter. Solutions of 2010 to 2014 WBUT examination papers are provided at
the end of the book.
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ROADMAP TO THE SYLLABUS

Engineering Mathematics-I

This text is suitable for the Subject Code M101.

Module |
Matrix

Determinant of a square matrix; Minors and Cofactors; Laplace’s method of expansion
of a determinant; Product of two determinants; Adjoint of a determinant; Jacobi’s
theorem on adjoint of a determinant; Singular and nonsingular matrices; Adjoint of a
matrix; Inverse of a nonsingular matrix and its properties; Orthogonal matrix and its
properties, Trace of a matrix

Rank of a matrix and its determination using elementary row and column opera-
tions; Solution of simultaneous linear equations by matrix inversion method;
Consistency and inconsistency of a system of homogeneous and inhomogeneous linear
simultaneous equations; Eigen values and Eigen vectors of a square matrix (of order 2
or 3); Eigen values of APT™P; kA; AP'P; Cayley-Hamilton theorem and its
applications

CHAPTER 1 MATRIX I
CHAPTER 2  MATRIXII

Module Il

Successive Differentiation

Higher-order derivatives of a function of single variable; Leibnitz’s theorem (state-
ment only and its application; problems of the type of recurrence relations in deriva-
tives of different orders and also to find ((y,),)

Mean-Value Theorems and Expansion of Functions

Rolle’s theorem and its application; Mean-value theorems—Lagrange’s and Cauchy’s
theorems and their application; Taylor’s theorem with Lagrange’s and Cauchy’s form
of remainders and its application; Expansions of functions by Taylor’s and Maclaurin’s
theorems; Maclaurin’s infinite series expansion of the functions sinx; cosx; e
log(1+x); (a+x)", nbeing an integer or a fraction (assuming that the remainder R, — 0
as n— oo in each case)



xviii I ROADMAP TO THE SYLLABUS

Reduction Formula

Reduction formulae both for indefinite and definite integrals of types
[ sin"x; | cos™; | sin™x cos”x; | cos™x sinnx; | dx/(x2 + a*)", m, n are positive integers

CHAPTER 3 SUCCESSIVE DIFFERENTIATION

CHAPTER 4 MEAN-VALUE THEOREMS AND
EXPANSION OF FUNCTIONS

CHAPTER 5 REDUCTION FORMULA

Module Il
Calculus of Functions of Several Variables

Introduction to functions of several variables with examples; Knowledge of limit and
continuity; Partial derivatives and related problems; Homogeneous functions and
Euler’s theorem and related problems up to three variables; Chain rules; Differentiation
of implicit functions; Total differentials and their related problems; Jacobians up to
three variables and related problems; Maxima, minima and saddle points of functions
and related problems; Concept of line integrals; Double and triple integrals

CHAPTER 6 CALCULUS OF FUNCTIONS OF
SEVERAL VARIABLES

CHAPTER 7 LINE INTEGRAL, DOUBLE INTEGRAL
AND TRIPLE INTEGRAL

Module IV

Infinite Series

Preliminary ideas of sequence; Infinite series and their convergence/divergence;
Infinite series of positive terms; Tests for convergence: Comparison test; Cauchy’s
Root test; D’ Alembert’s Ratio test and Raabe’s test (statements and related problems
on these tests); Alternating series; Leibnitz’s Test (statement; definition) illustrated by
simple example; Absolute convergence and Conditional convergence

CHAPTER 8 INFINITE SERIES
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Module V

Vector Algebra and Vector Calculus

Scalar and vector fields—definition and terminologies; Dot and cross products; Scalar
and vector triple products and related problems; Equation of straight line; Plane and
sphere; Vector function of a scalar variable; Differentiation of a vector function; Scalar
and vector point functions; Gradient of a scalar point function; divergence and curl
of a vector point function; Directional derivative (related problems on these topics)
Green’s theorem; Gauss Divergence Theorem and Stokes’ theorem (statements and
applications)

CHAPTER 9 VECTOR ANALYSIS



CHAPTER

Matrix |

1.1 INTRODUCTION

Matrix algebra is a very essential part of mathematics. It has a wide range of applica-
tions in various branches of science and technology. Besides direct applications, we
also borrow the concept of matrix notations for representing various systems in a com-
pact manner.

In this chapter, we first represent the fundamentals of matrices along with the nota-
tions and algebraic operations applicable on them. Next we discuss symmetric and
skew-symmetric matrices with the help of the transpose property.

Here, we shall also discuss a very important characteristic of matrices, namely,
‘determinant’, which is very useful for dealing with physical problems in science and
technology. Here, we give different methods for computing determinants along with
the various algebraic operations.

Next, we describe the concept of singular and nonsingular matrices and the method
of computing the inverse of a matrix along with its properties.
In the last part, orthogonal matrix and trace of a matrix have been illustrated lucidly.

Definition: A rectangular array of mn elements a; into m rows and n colunms
where the elements a; belong to afield F' enclosed by a pair of brackets, is said to be

a matrix of order m xn over the field F. The m X n matrix is of the form

iy A e Ay ayy dip e gy
a a .o a a a e a

21 22 2n or 21 22 2n
At A2 - Ay Ay A2 Ay

F is said to be the field of scalars. In particular, F is the field of real or complex

numbers. The matrix is denoted by (a,«/») .
v rmXn
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For example,

31
i |5 6 is a matrix with 3 rows and 2 columns over a real field
8 0)5,
. 5109 . .
(i) 46 1 is a matrix with 2 rows and 3 columns over a real field
- 23
2 -1 9
i) |4 6 5 is a matrix with 3 rows and 3 columns over a real field
8 -7 2
3x3

1.2 DIFFERENT TYPE OF MATRICES

1

2)

3)

4)

5)

Zero Matrix or Null Matrix: A matrix is called zero matrix if every element of
itis 0. A null matrix of order m xn 1is denoted by O,,,,.

00
For example, | 0 0 | is a zero matrix of order 32 and it is denoted by Os,,.

0 0

000
Also, [0 0 0] is azero matrix of order 3x3 and it is denoted by Os,;.

00 0

Square Matrix: A matrix with equal number of rows and columns is called a
square matrix.

’ _S) is a square matrix of order 2 x2.

For example, (4
Diagonal Matrix: A square matrix is said to be a diagonal matrix if the elements
other than the diagonal elements are all zero.

1 00
For example, | 0 4 0 [ is a diagonal matrix of order 3 X 3.

0 0 3
Scalar Matrix: A diagonal matrix is said to be a scalar matrix if all the diagonal
elements are the same scalar.

300
For example, | 0 3 0| is a scalar matrix of order 3x3.

0 0 3

Identity Matrix: A scalar matrix with diagonal elements equal to 1 is called an
identity matrix.

1 00
For example, | 0 1 0| is an identity matrix of order 3% 3. It is denoted by /5
0 0 1



6)

7)
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Triangular Matrix:
a) A square matrix (a;) is said to be an upper triangular matrix if all the
elements below the diagonal are 0. Thatis, a; =0, i> j.

4 6 -8
For example, | 0 1 3| is an upper triangular matrix of order 3x3.
00 1

b) A square matrix (a;) is said to be a lower triangular matrix if all the ele-
ments above the diagonal are 0. That is, a; = 0, i<j.

4 0 0
For example, | 7 1 0| is alower triangular matrix of order 3 x 3.
-9 8 1

Row Matrix and Column Matrix:

Any matrix A= (a,-j) . is called a row matrix if m =1, i.e., the matrix has only
mxn

one row.

Soits formis A= (a” apy a3 ... a, )l><n'

Any matrix A= (a,-j) . is called a column matrix if n =1, i.e., the matrix has
mxn

only one column.

apg

ao)
Soits formis A =] as

Al mxI1.

For example, (2 -3 0 5 8) is a row matrix.

3
0
For example, A =| —6 | is a column matrix.
-3
1

1.3 ALGEBRAIC OPERATIONS ON MATRICES

1.3.1. Equality of Two Matrices

Two matrices A and B are said to be equal if A and B have the same order and
their corresponding elements are equal.

Thus if A= (alj) y and B=(b;),x, then A=B if and only if a; =b; for

i=1,2,..mj=12,.. .n
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a b c 1 23 e _ _
For example, A _(d . f) and B—(4 5 6) areequalif a=1,b=2,c=3,
d=4,e=5, f=6.

1.3.2. Multiplication by a Scalar

The product of an m xn matrix A= (a,-j) . by a scalar ¢ where c € F, the field of

scalars is a matrix B = (bi]-) 5 defined by
s rmXn

bij =cay, i=1,2,..m; j=1,2,..n and is written as B = cA.
2 -1 4 4 -2 8

For example,let A=[-3 1 0O]then2A=(-6 2 0|.
5 0 1 10 0 2

1.3.3. Addition of Matrices

If 4= (aij- )mx . and B =(b;),,«, then their sum (or difference) A+ B is the matrix
€ =)

‘ij mxnwhere o =a,+b;i=12,..m; j=1,2,. . n

ij = Yij»
Two matrices of the same order are said to be conformable for addition.

For example,

5 -1 8 75 4
I A4=| 4 2 9|and B=|-9 2 5
7 5 1 385
5-7 -1+5 8+4 -2 4 12
then A+B=| 4-9 242 9+5|=|-5 4 14
743 548 1+5) |4 13 6
" 2+i  4+5i -8+7i  3i
) It A_(3—5i —2+8i) and B_(—4+6i 7+i]

10—-6i 4+2i .
then A_B_(7—11i —9+7i) where 1—\/—_1.

Properties:
a) Matrix addition is commutative, i.e., 4+ B =B+ A.
b) Matrix addition is associative, i.e., A+(B+C)=(A+B)+C.
¢) Scalar multiplication is distributive over matrix addition,
i.e., c(A+B)=cA+cB.
d) For any matrix A4,,,,, 0:-A,... = O,xn-

e) For any matrix A,,.,,s Apnxn + Omxn = Amxn
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1.3.4. Multiplication of matrices
If A= (aii )an is of order mxn and B = (b;),, is a matrix of order nx p then the

product AB is a matrix of order mx p and AB=C = (c,-,-) ., Where
S Imxp

n
— ] — o} . e b
c; = E kzlaikbk_i’ i=12,..m; j=1,2,...p.
by by

a a a
Let A=( 1 12 '3) and B=|b,, by,
Qyy Ay 433 )55 b b
31 32 3%x2

Here number of columns of A =3 = number of rows of B. So multiplication is
possible and the product AB is a 2x 2 matrix, given by

by, by,
AB:(a” ap als)_ by, by
Ay Ay dy3 by, by

_(anbn +apby +asby  anbi +apby +al3b3zj
ayibyy +aynbyy +axnby  axby +aynbs +aybs,
Observation:

a) The ij-th element of the product AB is obtained by multiplying the corre-
sponding elements of the i-th row of A and the j-th column of B and adding
such products.

b) If the number of columns of A is not equal to the number of rows of B then

AB is not defined.
10 -1 o
Example 1 | Let us consider two matrices A = ( 0 2 3) and B=|3 -2
2x3 0 5

3x2
Since number of columns of A =3 = number of rows of B, the product AB is defined

and is given by a 2 X2 matrix
1 0

AB:(é (2) _;) 3 2
0 5

[1X140x3+(=1)x0  1x0+0x(-2)+(=D)x5) (1 =5)

L 0x14+2x3+3%x0  0x0+2x(-2)+3x5 | (6 11),,

Again, since number of columns of B =2 = number of rows of A, the product BA
is defined and is given by a 3 X3 matrix

1 0
BA=|3 =2 (é g _31)
0 5

Ix1+0x0 1x04+0x2 Ix(-D+0x3 ) (1 0 -1)
=3x1+(-2)x0 3x0+(-2)x2 3x(-D)+(-2)x3-=[3 -4 -9 .
0x1+5x0  0x0+5x2  0x(-H+5x3 ) (0 10 15), .
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Properties:
(1) In general, matrix multiplication is not commutative, i.e., 4B # BA.

From the previous example, it is obvious that AB # BA. Also, in this case the orders
of AB and BA are different.

But in the next example we will see the fact that AB # BA even when the orders of
AB and BA are same.

Example 2 LetA—(1 _2) andB—(3 2) .
- 2 3 2%2 4 =5 2%2
(1 =2)(3 2) (-5 12
Then AB_(z 3)'(4 —5)_(18 —11)2
x2

3 2)(1 2Y (7 0
S F RN P

Here though the orders of AB and BA are same, AB # BA.
But in some special cases, AB may be same as BA, i.e., AB = BA, which follows
from the next example:

Example 3 Let 4 —(1 _2) and B= (3 _2) .
i 0 3), 0 5o
1 2)(3 =2 3 -12
Then AB:( )( H j
0 3)\0 5 0 15),,

3 -2\1 =2 3 -12
maoa=(g 3o -6 )
X2

Here, AB = BA, which proves the above stated fact.
(2) Matrix multiplication is associative, i.e., A(BC)=(A4B)C.
(3) Matrix multiplication is distributive over matrix addition,
i.e., A(B+C)= AB+ AC, provided both sides are defined.
(4) Matrix addition is distributive over matrix multiplication,
i.e.,, (B+C)A = BA+ CA, provided both sides are defined.
(5) For any square matrix A of order nxn, A-1,=1,-A= A.
(6) For any square matrix A of order nxn, A-0,, =0, ,-A=0,,.

(7) The product of two non null matrices may result to a null matrix. This will
be evident from the following example.

Example4 | Let A= L2 and B = 6 -4 , then
i 2 4 3 2

ool 926

Therefore, we see that the product of two non null matrices results to a null matrix.
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Example 5 | Let A and B are two square matrices of the same order, examine

if the following holds
(A+B)?=A%+2AB + B2
Sol.  Since, A and B are square matrices, A? and B? are both defined. Since, A and B
are square matrices of same order, A + B and AB are both defined. Now,
(A+B?=A+B)(A+B)
=A(A+B)+B(A+B)
=A>+AB+BA + B?
Since, in general matrix multiplication is not commutative, i.e., AB # BA, we have
(A+B)*#A%+2AB + B?
But, if the product of A and B are commutative i.e., AB = BA, then
(A+B)?=A%+2AB + B2
holds good

1.4 TRANSPOSE OF A MATRIX

The transpose of a matrix 4 = (al-j) y is a matrix A" = (a ,i) y obtained by convert-
mXn b nxm

ing rows into corresponding columns and vice-versa.

For example, let us consider A = ( IS _l)
2x3

-2 0 3
T 1 -2
Then AT=( 21 3 _;) =1 5 o
2x3 -1 3 s
Observation:

The number of rows of 4”7 = number of columns of A.
and the number of columns of A”= number of rows of A.

Properties:
@ (A7) =4
) (A£B) =A4"+B"
(¢) (eA)" =cA”, where ¢ is a scalar
(d) (eA+ dB)T =cA” + dBT, where ¢ and d are scalars
(e) (AB) =B"A"

Verification of the Above Properties

-1 2 1 2 5 7
Let us consider the two matrices, A= 1 3 2| and B=[1 2 -1
5 4 1 00 4

-1 2 1y (-1 15

(a) Here, A" =| 1 3 2| =| 2 3 4

5 4 1 1 2 1
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T

Now (AT) =
So the property (a) is ver

(b) Here, A+B=

So, (A+B)| =

Again, AT+ BT =

Engineering Mathematics-I

T

Hence, (A+ B)T =AT + BT,

Therefore, the property (b) is verified.

—c
(c) Here, cA=| ¢
5¢

—c

So (cA)T =| ¢

5¢

-1

=c| 2

1

Hence, the property (c) is verified.

(d) Here, cA+dB =

So,(cA+dB)" =

-1 1 5 -1 2 1
2 3 4] =1 3 2|=A
1 2 1 5 4 1
ified.
-1 2 1 2 5 -1
1 3 2(+(1 2 —-1|=| 2
5 4 1 00 4 5
-1 7 8 (-1 25
2 5 1| = 7 5 4.
545 8 1 5
-1 21y (25 7
1 3 2 +1 2 -1
5 4 1 0 0 4
-1 1 5 2 10
= 2 3 4[+|5 2 0]=
1 2 1 7 -1 4
Similarly, we can show (A — BT =AT — BT,
2c ¢
3¢ 2c|.
4c ¢
2c ¢ ’ —-c ¢ 5c
3¢ 2c¢| =|2c¢ 3¢ 4c
4c ¢ c 2c¢ ¢
15
3 4|=c-4".
2 1
—c 2c¢ ¢ 2d 5d T7d
c 3¢ 2c|+| d 2d —-d
5¢ 4c¢ ¢ 0 0 4d
—c+2d 2c+5d c+7d
c+d 3¢+2d 2c—-d|.
5¢ 4c c+4d
—c+2d 2c+5d c+7dY
c+d 3c+2d 2c-d| =
5¢ 4c c+4d

B LY N |
—

~J
LYl \S]

—c+2d

2c+5d 3c+2d

c+7d

wn B W

c+d

2c—d

5c
4c
c+4d
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—-c ¢ 5c 2d  d 0 —-c ¢ 5c 2d  d 0
=|2¢c 3¢ 4c|+|5d 2d O0|=|2¢c 3c 4c|+|5d 2d O
c 2¢ ¢ 7d —d 4d c 2¢ ¢ 7d —-d 4d

-1 15 2 10
=c| 2 3 4l|+d|5 2 0|=cd” +dB".
1 21 7 -1 4

Hence, the property (d) is verified.

-1 2 1\(2 5 7
@ (AB) =|| 1 3 2||1 2 -
s 4 1)loo0 4
-1 =5\ (0 5 14
=5 11 8| =[-1 11 33
14 33 35 -5 8 35
2 1 0Y(-1 1 5
Again, B . 4" =|5 2 0|| 2 3 4
7 -1 4)L 1 21
0 5 14
= -1 11 33|
-5 8 35

So, (AB)T =BT A" and the property (e) is verified.

1.5 SYMMETRIC AND SKEW-SYMMETRIC MATRICES

A square matrix A is said to be symmetric if AT = A ie., A= (@ ) psxcn 1 symmetric
if a; =a
i =4

ji*
Examples of symmetric matrices are
1+i 2-3i 4+5 7i

222 ZZ‘]% 2-3i 2 —6i 3-5i
6 9 ' Tl 4+50 —6i 4 T+i

71 3-5i -T+i 2-i
A square matrix A is said to be skew-symmetric if A7 =—A, ie., A= (@ Dpsen 18
skew-symmetric if a; = —a

5
7

jit
Examples of skew-symmetric matrices are
0 50 0 9 -3
-5 0 6,9 0 6]
0 -6 0 3 -6 0

Properties:

(i) If A and B are two symmetric matrices of the same order then their addi-
tion A+ B is also symmetric.
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(ii) Suppose A and B are two symmetric matrices of the same order, then
their product AB is also symmetic, provided AB = BA.

(iii) Diagonal elements of any skew-symmetric matrix are all zero.
Theorem 1.1: For any square matrix A, 4+ A" is symmetricand A— A" is skew-
symmetric.

- r

Proof: Since (A+ AT) = (A)T + (AT) =A" + A=A+ A", we can say that A+ A"
is symmetric. , ,

Again (A —AT) = (A) - (AT) =A" —~A=—(A-A"), therefore A—AT is
skew-symmetric.

Hence, the theorem is proved.

Theorem 1.2: Any square matrix can be uniquely expressed as the sum of a sym-
metric and a skew-symmetric matrix.

1 1
Proof: For any square matrix A, we can write A4 = E(A +A )+ E(A —A").

. . 1 .
From the last theorem, we know A+AT is symmetric, so —(A+AT) is also
symmetric. 2

Also, we have from the last theorem that A—A’ is skew-symmetric and so
1 . .
E(A —AT) is also skew-symmetric.

Therefore, A can be expressed as the sum of a symmetric and a skew-symmetric
matrix.

Hence, the theorem is proved.

1 35
Forexample, letusexpress | 2 4 9 | as the sum of symmetric and skew-symmetric
matrices. 5 7 8
135 135 (125
Here, A=|2 4 9|andso A" =[2 4 9| =[3 4 7
5 7 8 5 7 8 59 8
- 1 35 1 25 2 5 10
Now A+A" =|2 4 9|+[3 4 7|=| 5 8 16
5 7 8 59 8 10 16 16
B 1 35 1 25 0 10
and A—A" =[2 4 9|-|3 4 7|=|-1 0 2
5 7 8 59 8 0 2 0

From the last theorem, we have

1
(A+AT) is symmetric and —(A - AT) s
skew-symmetric. 2

1 1
Since A= E(A+ AN+ E(A —A"), we can write
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2 510 1(0 10
A== 5 8 16|+=[-1 0 2
10 16 16 2Lo-zo

(2 510 ](o 10
=A== 5 8 16]|+—|-1 0 2
210 16 16 2to-zo

Hence, A can be expressed as the sum of a symmetric and a skew-symmetric
matrix.

Theorem 1.3: The product of a matrix with its transpose results in a symmetric
matrix.

Proof: Beyond the scope of the book.

23
Example 6 | Verify that the product of the matrix | 4 5| and its transpose results
to a symmetric matrix. 6 7
Sol.  Here we have
23
A=]45
6 7
and so (2 4 6]
AT =
Now, 357
23 13 23 33
2 46
AAT =14 5 =(23 41 59
357
6 7 33 59 &5

which is a symmetric matrix.

1.6 SOME SPECIAL TYPES OF MATRICES

(1) Idempotent Matrix: Any square matrix A is called an idempotent matrix if
A" =A -1 1 -1
For example, let A= 3 -3 3

-1 1 -1
Then A>=| 3 -3 3.| 3 -3 3
-5 5){5 -5 5)

—_
|
—_
—
|
_

-1 1 -1)
= 3 —3 3=A
5 -5 5]

So A is idempotent.
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2)

3)
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Nilpotent Matrix:
Any square matrix A is called a nilpotent matrix of index p if A" = O, where p
is the least positive integer.

5 -3 2
For example, let A=[15 -9 6
10 -6 4

5 3 2 5 3 2

Then A2=[15 -9 6|15 -9 6
10 -6 4){10 -6 4
00 0
=0 0 0|=0
00 0

So A is a nilpotent matrix of index 2.

Involutary Matrix:
A square matrix A is said to be involutary if A* =1.

-5 -8 0
For example, let us show that A=| 3 5 0] isinvolutary.
1 2 -1

Here,

-5 -8 05 -8 0

A= 3 5 0|l 3 5 o0

1 2 -1 1 2 -1
25-244+0 40-40+0 0+0+0
= -=15+15+0 -24+25+0 0+0+0
-5+6-1 -8+10-2 0+0+1

1 00
=0 1 O
0 0 1

Therefore, the matrix A is involutary.

Example 7 If A and B are two matrices such that AB=A and BA = B, then

prove that A” and B’ are idempotent.

Sol.

Since AB = A, we have
(AB) =AT = B"A" = A"

(1)
Again BA = B, so from (1)

(BA) AT =A" = A7 (BTAT)= A"
= ATAT = AT (by(1))

2
- (AT) = AT
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So, it is proved that A’ is idempotent.
Similarly, since BA = B, we have
(BAY =B" = ATB" =B’

..(2)
Again, AB = A, so from (1)

(4B) B" =B = B' (A"B" )= B’
= B"B" = B" (by(1))
- (BT )2 - B’

So, it is also proved that B’ is idempotent.

1.7 DETERMINANT OF A SQUARE MATRIX

Definition Let M be the set of all square matrices of order nxn with real or com-
plex entries then the determinant of any matrix of M is a function from the set M to
any scalar field of real or complex numbers, i.e., determinant of a square matrix is a
function which assigns to each matrix a scalar value.

Determinant of a square matrix A =(a;;),, is denoted by detA or |A| and we say
the order of the determinant is 7.

ayy .. Ay, aypy  dyp - gy

Let A=| % 92 = Q| qon detA= |2 922 - G

ni

3
g
Nolio) NN US I
R

a
1 2
For example,letA=|4 5
7 8

1.8 PROPERTIES OF THE DETERMINANTS

Property 1: When any two rows or columns of a determinant are identical then
the value of the determinant is zero.

1 2 3
For example, |4 5 6|=0, since lst and 3rd rows are identical.
1 2 3

=0, since 1st and 2nd columns are identical.

W N =
W N =
DN N B
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Property 2: If all the entries in any one of the rows or columns are zero then the
value of the determinant is zero.

1 2 3
For example, |4 5 6|=0, since all the elements in the 3rd row are zero.
0 0 0

=0, since all the elements in the 2nd column are zero.

[SSI SR
oS O O
N B

Property 3: The determinant of any square matrix and its transpose have the
same value, i.e., there will be no effect in the value of the determinant if we change
the rows into columns and columns into rows.

1 2 4 1 69
For example, |6 5 7|=|-2 5 8| since rows and columns are interchanged.
9 8 5 4 75

Property 4: The value of a determinant alters its sign when any two adjacent
rows or columns are interchanged.

1 -2 4 6 5 7
For example, |6 5 7|=(-1)]1 -2 4| since lst and 2nd rows are
9 8 5 9 8 5
interchanged.
1 -2 4 1 4 =2

6 5 7=(-1)|6 7 5| since 2nd and 3rd columns are interchanged.
9 8 5 9 5 8

Property 5: If any row or column is multiplied by any scalar then the value of the
determinant is multiplied by the same scalar.

Ix2 -2 4 1 2 4
For example, 6Xx2 5 7|=2x|6 5 7| since the all the elements of the 1s¢
9%2 8 5 9 8 5
column are multiplied by 2.
1 -2 4 1 2 4
6x3 5x3 7x3|=3%|6 5 7| since the all the elements of the 2nd row are
9 8 5 9 8 5

multiplied by 3.

Property 6: When the elements of any row (or any column) of a determinant are
expressed as a sum of two quantities, then the determinant is the sum of two different
determinants containing the terms of the sum as a row (or column) respectively.
1+2 -2 4/ |1 =2 4 |2 2 4
For example, [6+3 5 7/=6 5 7/+|3 5 7 since the all the elements
9+4 8 5 9 8 5 4 8 5

of the 1st column are expressed as a sum of two quantities.
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1 -2 4 1 -2 4 |1 -2 4
6+2 544 T7+5 =6 5 7|+|2 4 5| since the all the elements of the
9 8 5 9 8 5 9 8 5

2nd row are expressed as a sum of two quantities.

Property 7: If any row (or column) in the determinant is replaced by summation of
two or more rows (or columns) then it does not effect the value of the determinant.

2 -2 4 243 245 4+7
For example, |3 5 7/=| 3 5 7 |, lst row is replaced by the sum
4 8 5 4 8 5

of 1st and 2nd rows.[R - R +R,]

1 =2 4 |1 2+4 4
6 5 7/=|6 5+7 7|, 2nd column is replaced by the sum of 2nd and 3rd
9 8 5 |9 8&+5 5

columns.[C; — C, +C;].

Property 8: If any row (or column) in the determinant is a scalar multiple of any
other row (or column) then the value of the determinant is zero.

2 2 4
Forexample, |3 5 6|=0,since 3rd column is two multiples of the 1st column.
4 8 8
1 2 4
3 -6 12|=0, 2nd row is three multiples of the lst row.
9 8 5

1.9 MINORS AND COFACTORS OF A DETERMINANT

ayy ajpp ... alj ay,
anq [25%) Clzj . Ay,
Let A =(a;),x, and its determinant is given by det A =| "~ -’
’ a;  dp a;j a
lj mn
L N S O .

1.9.1 Minor

The minor of any entry a; of detA is defined to be that determinant obtained by
deleting the corresponding row and column intersecting at the entry a;. The minor of
a;; is denoted by M;; and is given by deleting i-th row and j-th column from det A
as follows:
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ay iz e Qo Qi+ e i

az) Ay e Gy Ao+ - dog
My =|ag-11 G- - Geong-n Ga-nGH) e Gi-Dn
Agent G2 o darng-n Aarng+n e Qe

A ) Au(j+)y -+ Om

Observation If det A is of order n then minor of any element a;; is of order (n—1)

1.9.2 Cofactor

The cofactor of any element a;;= (~1)""/ x (minor of any element a;;). The cofactor

of any element a;; is denoted by A;;

So, the cofactor corresponding to a;; is given by A; = (D)™ x M.

ij
Example 8

1 2
Let detA—’3 4‘

Minor of 1 (a,; term) is obtained by deleting 1st row and lsz column from det A
as M, =4.

Cofactor of 1 (a;, term) is given by A, = (—D™"' x M, = (- x4 =4.

Minor of 2 (a;, term) is obtained by deleting lst row and 2nd column from
detA as M, =3.

Cofactor of 2 (a;, term) is given by A, =(=1)""? x M,, = (-1)""* x3=-3.

Minor of 3 (a,,term) is obtained by deleting 2nd row and 1st column from det A
as M, =2.

Cofactor of 3 (ay, term) is given by A, = (=1)*"' x M,, = (-1)*"' x2 = 2.

Minor of 4 (a,,term) is obtained by deleting 2nd row and 2nd column from
detA as M,, =1.

Cofactor of 4 (a,, term) is given by A,y = (=1)**2 x M,, = (=1)*"? x1=1.

Example 9

1 2 3
Let detA=4 5 6.
7 8 9

Minor of 1 (a;, term) is obtained by deleting lst row and lst column from det A

Cofactor of 1 (a;, term) is given by A, = (=)' x M, = (=)' x

56
8 9
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Minor of 2 (a;,term) is obtained by deleting 1st row and 2nd column from

det A as M|2 =‘3 g

Cofactor of 2 (a;, term) is given by A, = (-=1)""* x M, = (-1)"*? x ‘71 g .
Minor of 4 (a,,term) is obtained by deleting 2nd row and 1st column from the
23
d = .
etA as My, g 9
I 241 w12 3
Cofactor of 4 (a, term)is given by A,; =(=1)"" XM, =(=1)"" X g of

1.10  EXPANSION OF A DETERMINANT

1.10.1 Case 1
Let A =(a;)iq = (a1); then detA=|ay|=ay.
For example, let A =(2), then detA = |2| =2.

1.10.2 Case?2

Let A =(a;)yx0; then det A = i i)

Ay Ay

(i) Row-wise Expansion:
Expanding about the 1st row, we get the value of the determinant as
det A = a;; X (cofactor of a;;)+ a;, X (cofactor of a;,) = a;; X Ay +a;, XA,
Similarly, expanding about the 2nd row we get the value of the determinant as
det A = a,; X (cofactor of a,;)+ a,, X (cofactor of a,,)=a,; X Ay, + a5 X Ay,.

(ii) Column-wise Expansion:
Expanding about the 1st column, we get the value of the determinant as
det A = a;; X (cofactor of ay;)+ a,; X (cofactor of ay;)=a;; XA;| +ay X Ay.
Similarly, expanding about the 2nd column, we get the value of the determinant as
det A = a;, X (cofactor of ay,)+ a,, X (cofactor of a,,)=a;, X Ay +ay X Ayy.

Note:

Any 2nd order determinant can be evaluated directly as detA=("1 12

ay dxp
(an X ay,) = (ary Xay).

Example 10 Let detA = ‘:1)) i’

Here, a;; =1 and the corresponding cofactor A;; = 4.
a;, =2 and the corresponding cofactor A, = -3
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a,; =3 and the corresponding cofactor A,; = -2
a,, =4 and the corresponding cofactor A, =1

(i) Row-wise expansion:
Expanding about the lst row, we get
det A = a;; X (cofactor of a;y)+ a;, X (cofactor of a;,)=a;; X4y, +a;, X 4,
=1x4+2x(-3)=-2.
Similarly, expanding about the 2nd row, we get
det A = a,, X (cofactor of a,,)+ ay, X (cofactor of ay, )= ay; X Ay + ayy X 4y,
=3Xx(-2)+4x1=-2.
(ii) Column-wise expansion:
Expanding about the 1sz column, we get
det A = a;; X (cofactor of a;;)+ a,; X (cofactor of a,;)=ay; X 41 +ay; X 4y,
=1x4+3%x(-2)=-2.
Similarly, expanding about the 2nd column, we get
det A = a;, X (cofactor of ay, )+ ay, X (cofactor of ayy)=aj, X A5 +ayy X Ayy
=2X(=3)+4x1=-2.

1.10.3 Case 3
a4
Let A=(a;)sx3; then detA=lay ay ayl.
dzy  dzp Az
(i) Row-wise Expansion:
Expanding about the 1st row, we get the value of the determinant as
det A = a;; X (cofactor of a;,)+ a;, X (cofactor of a,,)+ a;;3 X (cofactor of a;s)
=ay XAy +ap XAy a3 XA
Similarly, expansions can be done about the 2nd row and 3rd row.
(ii) Column-wise Expansion:
Expanding about the 1st column, we get the value of the determinant as
det A = a;| X (cofactor of a,;)+ a,, X(cofactor of a,;)+ as; X (cofactor of ay;)
=ay XAy +ay X Ay +az X A3
Similarly, expansion can be done about the 2nd column and 3rd column.

1 0 2
Example 11 | Letus consider detA=2 3 0
0 4 5

(i) Row-wise expansion:
Expanding about the 1st row, we get

det A = a;; X (cofactor of a;,)+ a;, x (cofactor of a,, )+ a;;3 X (cofactor of a;3)
=ay X Ay +ap XAp a3 XA
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30
4 5

=15-0+16=31.
Similarly, expanding about the 2nd row and 3rd row we can get det A =31.

+0x(=)!*? ‘2 O‘ +2x (=D

= Ix (=) o s

0 4

23‘

(ii) Column-wise expansion:
Expanding about the 1st column, we get
det A = aq;; X (cofactor of a;)+ a,; X (cofactor of a,,)+ a3, X (cofactor of as;)

= ay XA +ay X Ay a3y X Ay

Cqo/ 1|30 2+1]0 2 302
e R Dl - TG Dl i RV DG Vil 0‘
=15+16+0=31

Similarly, expanding about the 2nd column and 3rd column we can get
det A =31.

1.10.4 Generalisation of the above Cases

ayy Ay - Gy ayy dpp e Gy

_ _ |G dxnp ... dyy _ |41 dax Ary
A= (aij Dnscn = then detA =

Ay Apo e Ay, Ay Ayy oo Ay,

can be evaluated by expanding the determinant about any one of the n rows or n
columns.

So we can conclude the facts by stating the following theorems.

Theorem 1.4: The determinant of any square matrix can be evaluated by adding the
products of the elements of any row or column and their corresponding cofactors.

Theorem 1.5: If we consider the products of the elements of any row (or column)
and the cofactors corresponding to the other row (or column), then summation of
such products are always zero.

Proof: Beyond of scope of the book.

1 0 2
Example 12 | Letus consider detA=2 3 0|.
0 4 5

Summation of the products of the elements of the 1sz row and the cofactors cor-
responding to the 2nd row

= ay, X (cofactor of a,,)+ a;, X (cofactor of a,,)+ a;; X (cofactor of a,3)
=ay X Ayp +apy X Ay +ay3 X Ay

0 2 1 2
4 5

=1x(-1)*" +0x(=1)*"? 0 s

+2x (- 0 4

10‘

=8+0-8=0.
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1.11 LAPLACE METHOD OF EXPANSION OF A DETERMINANT

1.11.1 Complementary Minor
is a determinant of order n. If we

Consider A =(a;;),x,- Then D =detA = y

delete r number of rows and r number of columns from D, the remaining determe-
nant is of order (n—r) and is said to be a minor of order (n—r) of D.

a@j

When all the rows and columns of a minor M are deleted from the determinant D
then the remaining determinant is called a complimentary minor of M.

ayp dip i3 dyy

. a a a a
Consider p =|72! 22 “23 24|
azp  dzp  dzz A3y

dygy gy gz dyy
Now if we delete the 2nd, 3rd rows and 3rd, 4th column from D, we have the
minor as

ayp dap

My 34 =
’ aqp Ay

Also, the complementary minor of M,; 34 is obtained by deleting all the rows and
columns corresponding to M, 34 in D.

dz3 Ay

So, complementary minor of My; 34 = B , (obtained by deleting the 1s¢,

a3y
4th rows and lst, 2nd columns from D).

a a a a .
%120 and 73 31 are also the examples of complementary minors.

ayy  dp g3 dyg

as;, a a; a .
332 and [ "1 are also the examples of complementary minors.

ayp g dy3 Aoy

1.11.2 Algebraic Complement of a Minor

Consider M to be a minor of order r obtained by i, iy, ..., i, rows and ji, js, ..., j,

columns and M be its complementory minor.
. . (i Fig+ -+ )VH(Ji+, jo+ -+ ) —
Then the algebraic complement of M is (—1)" 2 o2 "X M.
dyp dip Gz dyy
. ay, Ay dy; d
Consider D=|2' "2 "2 "24| Then
a3y Az d3; A3y
dqy Qg A4z Ayq

Ayz Ay
Az day

ayp dap
gy dg

(i) Algebraic complement of is (=1)IFH*I+2)

i Ay azz A3y

gz Qyq

(i1) Algebraic complement of is (—1)('+2)+('+2)

dzp  dp
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asy Az a3 dig

Ay Qg

(iii) Algebraic complement of is (=1)CHH+1+D)

dyz Ay

1.11.3 Laplace Expansion

., can be expressed as the sum of the products of
nxn

The value of a determinant D =

aj
all minors of order r and their respective algebraic complements.
ayp dpp 4z dyy

a a Ay a
Let us try to expand D =| 21 "2 723 24
a3y dz  dzz d3y

gy Qqp  Ayz Ay

by the minors of order 2 selecting

from the first two rows as

a a a a a a a a
D=|M1 2|y |33 daa) (i 3| gaaeH43) (A3 A3
ayp Ay Q43 Quq| |A21  dp3 Qgp  Qyq
a a a a a a a a
4| 14| (-1 )(1+2)+(1+4) 32 33| 4 |M12 13| (-1 )(1+2)+(2+3) 31 34
Ayp Aoy Qqp  Aq3| |dyp o3 g1 Ay
a a a a a a a a
L%z D4 X(_l)(l+2)+(2+4> 31 d33), |13 14 X(_1)<l+2)+(3+4) 31 dn|
Qyy oy Q41 dg3| |doz o4 g1 dg

Note: The above can be expanded considering minors of any order and forming from
any set of rows. But it is always easy to expand like above.

Laplace Expansion can be done in terms of any sets of columns also.

Example 13 | Let us calculate the determinant

2 -3 1 5
D= 61 5 ; _g using Laplace expansion.
-5 4 2 7
2 -3 1 5
Expanding D = 6 3 ; _i as above, we have
-5 4 2 17
_12 3 pas+as 8 3L 12 1 asraen (903
D_‘6 2 XD 2 7%l6 7%X( b 47
25|, asrasn |9 81 |73 1 gy |13
e ¥ 4 ot|2 D 5 7
-3 5| e | 18 (1 S| aszges| 19
NP 5 9Tl ¥ 5 4

=22%50-8x51+15%14-23%x22+4x42-37%x49
=1249.
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1.12 PRODUCT OF DETERMINANTS

Let D| = ’a” xn

and D, =|b;

y

be two determinants of order n. Then the product
n

nx

D, x D, is a determinant of order n.

1.12.1  Four Processes of Multiplication

1) Row—Columnwise Multiplication:

D, XD, =|a; b;: :

! 2 U nxn U nxn

app dip e gy byy by ... b,
_ as [253) e Aoy % b2| b22 bzn _

Ay Ayy e Ay, bnl an bnn
anby +anby +.ay,by  anby +anby +oayby o anby, tanbsy, +.ay,b,,
anbyy +anby +.ay,by  ayby +anby +.ayb,y . ayby, +anby, +.ax,b,,
anlbll +aan2] +"amzbnl anlbl2 +an3b22 g "annbn2 an|bln B anﬁbfln + “annbnn

2) Row-Row-wise Multiplication:

Dy x D, =|a; b;; ;
1 2 Yy nxn y nxn
a” alz e aln b” b12 vee bln
— az| azz azn % bz] b22 bzn —
Ay Apy ... Ay, bnl an bnn
apby +anby +.ayby,  anbyy +apby +.ay,by, o aynby, tapnb, +..ay,b,,
ay by +anby +.ay,by,  ay by +anby +.ay,by, ... ayby +anb, +.a,b,,
anlbll i anlbll + "annbln a/71b21 i anlb?_?_ g "annb2n anlbnl + an2b112 + “annbnn
3) Column-Row wise multiplication:
Dl X D2 =1 aij |n><n X Ibijlnxrz'
(111 a12 aln bll b12 b]n
— 021 6122 azn % b21 b22 bzn —
anl anz a,m bnl bn2 bnn
aybiy +ay by +.ayby,  apbi +anby +.anby, . by +a,by +ayby,
anby +axiby +..auby, by +anby +.anb,, ... ay,by +ay,by +..a,,by,

allbnl + a22bn2 + "anlbnn aleln + a22bn + "aannn alnbnl + a2nbn2 + "annbnn
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4) Column-column wise multiplication:
Dy X Dy =l agl,y, X1b;1

ij'nxn-
all 6112 aln bll b12 bln
- 6121 azz azn b21 b22 bzn —
a, Ay - Apy| by by ... by,
anbyy +anby +..a,uby  apby +ayby +.apb,y . ayby t+ayby +.a,,by
aybiy +ayby +..ayby  apbyy +anby +.apby . aybin +ayby +.a,,b,
anby, +ax by, +.a. by, apby, +apby, +..a,b,, ... ayby, +axby, +..a,,b,,
1 0 2 2 1 0
Example 14 | Letusconsider D, =|-5 3 0| and D, =|4 -3 1
0o -2 1 3 0 7

I 022 10
Then D xD,=|-5 3 0|x|4 -3 1
0 -2 1 3 07

(i) By row—columnwise multiplication, we have

IX2+0x44+2%3 IX14+0x(-3)+2x0 Ix0+0x1+2x%x7
D, XDy = |[(-5)X2+3x4+0x3 (5)X1+3%x(-3)+0x0 (-5)X0+3x1+0x7
OX24+(-2)x4+1x3 OXI+(-2)X(-3)+1x0 Ox0+(-2)x1+1x7

10 1 14
=2 —14 3]=-1541.
=5 6 5

(i) By row-row-wise multiplication, we have
I1X2+0x1+2x0 Ix4+0x(-3)+2x1 I1x34+0x0+2x%x7
D; XDy = |(-5)X24+3x1+0x0 (=5)x4+3%x(-3)+0x1 (=5)x3+3x0+0x7
OX24+(-2)X1+1x0 Ox4+(-2)xX(=3)+1x1 OX3+(2)x0+1x7

2 6 17
=|-7 29 -15|=-1541.
-2 7 7

So we have the same result in each of the cases.

Similarly, if we apply the other two methods of multiplication, we will get the
same result.

Theorem 1.6: Let A and B be two square matrices of order nxn. Then
(i) det(cAd) = c”" det(A)
(ii) det(AB)=det(A)- det(B)
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1.13 ADJOINT OF A DETERMINANT

an Gy e Ay
. anq ayy ... dy, .
Let us consider D = |al~]- = and A;; be the cofactor of a; in D.
lnxn :
Ay dpy - Apy

Then adjoint of D is defined as

Al] Al2 Aln
— A21 A22 cen Azn
D= A” nxn - ’
Anl An2 Ann
1 0 2
For example, let D ={2 3 0|. Then the adjoint of D is
0 4 5
300 |20 2 3
4 5 05 0 4 5 10 8
5__‘0 2’ ‘1 2‘ _’1 0’_ X _5 o
4 5 0 5 0 4 6 4 3
02 (12 1 0
30 2 0 2 3

Statement 1.3.1J Jacobi’s Theorem on Adjoint of a Determinant

Let D # 0 be a determinant of order n and D be its adjoint. Then D = D",

Proof: Beyond the scope of this book.
Corollary: For n=3, the Jacobis theorem becomes D = D*.

ay ap ap A Ap A
Proof: Here, D=|a,, a,, ay| andadjointof D is D=|A;; Ay Ay, where
dsy dzp  dz Asp Ap As

Ay is the cofactor of a; in D.
o |an an a] |An Ap A
Now DxD=l|ay; ay axp|X|Ay Ay Axy
ay; ayp  ap| |Ay Ay A
anAy +apAp tapA;y anAy taphy tapzAy ap Az +apAs +apAs
=|ay Ay +anAp +ayA;z Ay +anAn +aAy ay Az +anis +apAs
az Ayt apAp tazAiz a3 Ay +anhy a3y az Az +ag Ay +azAsg
D 0 O

0 D O
0 D

0
D3
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So, DxD =D’
= D= D*(for D #0).

1.14 SINGULAR AND NON-SINGULAR MATRICES

Any square matrix A =(qa;),x, is said to be nonsingular iff det(A)=
Otherwise, it is singular.

a,:]-| #0.

nxn

For example,

1 0 2
(i) |2 3 0] isanonsingular matrix since its determinant is nonzero
0 4 5
1 0 2
(i) |2 3 0/ is asingular matrix since its determinant is zero
00 0

1.15 ADJOINT OF A MATRIX

Let us consider any square matrix

ayy Ay . 4y

_ _ a21 a22 cee azn
A= (aij )nxn -

Qpy Apy - App

and A; be the cofactor of a; in detA. Then adjoint of the matrix A is denoted by

adj(A) and is defined as the transpose of the matrix (A; ),

T
Ay Ap o Aln
SO’ adl(A) = (AU )ZXn = AZI A22 AZn
Anl Anz Ann
1 0 2
For example, let A=|2 3 0 |. Then the adjoint of the matrix A is
0 4 5
30 _2 0 2 3 T
4 5 0 5 0 4 5 —10 8V 5 8 6
-6 4 3 8 4 3
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1.15.1 Properties

(1) For any square matrix A, adj(AT) = [adj(A)]T.
(2) For any square matrix A of order nxn,
adj(cA) = ! [adj(A)], where c is any scalar.

Theorem 1.7: For any square matrix A of order nxn, always A -[adj(A)]=
[adj(A)]-A=detA-I,

Proof: Beyond of scope of the book.

Example 15 | From the previous example, we have

102 15 8 —6
A=|2 3 0]|and adi(4)=|-10 5 4|
0 45 8§ -4 3

Also, it is easy to check that det A =31.

0 0 31 0 0

31 0 0 10
Again [adi(4)] - A=| 0 31 0|=31x|0 1 0|=detd I;.
0 0

31 0 0 1 00
Now A-[adj(A)]=| 0 31 0|=31x|0 1 0 |=detd-I,.
1
0
0
0 0 31 1

Hence, the above theorem is verified.

1.16 INVERSE OF A NONSINGULAR MATRIX

If for a nonsingular square matrix A of order n there exists a non-singular square
matrix B of order n such that AB=BA=1,, then B is said to be the inverse of A.
If inverse exists for A then we say the matrix A is inverible and inverse of A is
denoted by ATl

Now from the last theorem we have A.[adj(A)]=[adj(A)].A =detA.l,.
1
det 4

P N
So,A'@[adl(A)]— ladj(A)]-A=1,

Therefore, from the definition we can say [adj(A)] is the inverse of the

matrix A. det A
_ 1 . . _ _
Hence A™' = [adj(A)] and it satisfies 4- A4 =yt “A=1,.
det A
Note:

So it is obvious from the above that inverse exists for a matrix A iff detA#0, i.e.,
iff A is non-singular.
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1 0 2
Letusconsider A=[2 3 0
0 4 5
15 8 -6
From the previous example, we have det A =31 and adj(4)=|-10 5 4|
8 4 3
Since det A =31# 0, the given matrix is nonsingular and so A" exists.
15 8 -6
Now A~ = [adj(A)]:i -10 5 4|
det A 3 ¢ 4 3

Theorem 1.8: Inverse of a nonsingular square matrix is always unique.

Proof: Beyond the scope of the syllabus.

1.16.1 Properties

-1

(1) If A" exists for A then (A") = A.

(2) If A and B are two invertible matrices then AB is also invertible and
(AB) =Bl47.

- . T . . . T
(3) If A is invertible then A" is also invertible and (A ) = \A ) .
Let us verify the above properties:

Example 17 Let us consider two matrices A = (é (2)) and B= ((1) g)

Here, det A=2#0 and detB=3#0.

T
Also adj(A):(?) _3J =(_§ (D

T
and adj(B):(_; ?) :(8 _21)

So A' = . ! [aa’j(A)]=l(_2 0)

etA 23 1

_ 1 1(3 -2
and B! = dj(B)] =— .
dera UB) 3(0 1)

Verification of Property (1)

(1 0 o120
Wehavefromabove,A—(3 2) and A —2(_3 J-

T
-1y _ -y _(1-3Y (1 0
Now det(A™ )=1 and adj(A™") = (0 2) _(3 2),
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1yt 1 _ 1 0
So (A™') =——[adj(A 1)]:( ):A.
() det(A™") 32
Hence, the property is verified.
Verification of Property (2)

10 1 2
‘We have from above A—(3 2) and B_(O 3).

a_1f20 13 =2
Also, A =3l3 1 and B =3lo 1)

1 0)(1 2) (1 2
Now AB‘(3 2)(0 3)‘(3 12)

Since det(AB)=6%0, AB is invertible.

12 3\ (12 =2
adj(AB)z(_2 1) :(_3 1).

IR _1f(12 =2
So (AB) ' = B [adj(AB)] = (_3 J.

o113 =2y 12 0)_ 112 -2
Again BA —3(0 JXZ(—?’ 1)_6(—3 J

Hence ( AB)_1 =B 'A"" which verifies property (2).

Verification of Property (3)

We haVe A:(l O), ad/(A):(_§ ?J, detA=2 and Ail =%(_2 0)

32 31
12 =3
so. (1) =2(5 77}
Now AT :((1) ;), det(AT) =2%0, so AT is also invertible
2 0\ (2 -3
AT . T _ _ -
and adj(A" ) = (adj(A)) —(_3 1) _(O 1)

r-1 1 Ty 1(2 -3

T -1 —1 T . o
Hence, (A ) =(A ) and so property (3) is verified.

1.17 ORTHOGONAL MATRIX

Any square matrix A =(a;),y, is called orthogonal if it satisfies AAT =1,
Theorem 1.9: For an orthogonal matrix A,,,, always A" A=1,.

Proof: Beyond the scope of the book.
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From the above, we can say for any orthogonal matrix of order nXn,
AAT =ATA=1,.

(12 2
For example, let us consider the matrix A=—|2 -1 -2
32 2 1

1 22
So AT ==| 2 -1 2.

2 -2 1

T2 2y (1 o202
Now AAT =—|2 -1 =2|x-|-2 -1 2

a2 2 1) 32 21

(o 00 1 00

==[0 9 0|=|0 1 0|=1

%o 0 9) lo o1

2y (2 2

Again, AAA=—]-2 -1 2|x-|2 -1 -2
32 22 1) 32 2
(90 0) (100
-—|o 9 o|=|0o 1 o|=1
o 0 9) (o o1

Therefore, AAT =ATA = I5.
Theorem 1.10: Any orthogonal matrix A is nonsingular and its determinant is
given by det(A4) =*1. [WBUT 2003]
Proof: For any orthogonal matrix A, we have AA” =7

So, det(AA” ) =det(1,) =1.

=detd-detd” =1

= (det A’ =1

=detA=21=0.

So the orthogonal matrix A is nonsingular and its determinant is given by
det(A) = =1. Hence, the theorem is proved.

Example 18 | We have from the previous example that the matrix

ne

1 1 2 2
A=—2 -1 =2/ isorthogonal.
32 2

Here, detA=1.
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1.17.1 Inverse of an Orthogonal Matrix
From the above, it is clear that for any orthogonal matrix A , A" exists since it is
nonsingular.

Also, we have for any orthogonal matrix A of order nxn, AA" =ATA=1,.

So, by the definition of inverse, we can say Al=AT.

1 -2 2

1
Example 19 | From the previous two examples, A = 3 2 -1 -2 isorthogonal
and detA=1. 2021
| 1 2 2
So, A™! exists and is given by Atl=AT=—| 2 -1 2
2 22

Theorem 1.11: Transpose and inverse of an orthogonal matrix is again orthogonal.

Proof: Since for any orthogonal matrix A of order nxn, AA" = ATA = I,.
Then AA" =ATA=1,
=>ATA=4A" =1,
= ATANH =AY AT =1,
Hence by the definition, A” is orthogonal.
Since for any orthogonal matrix A, A" = A" holds, A™' is also orthogonal.
Note: The product of two orthogonal matrices is again orthogonal.

1.18 TRACE OF A MATRIX

Let A be any square matrix of order nXn,i.e., A=(aj),x,- Then trace of A, denoted
by tr A, is the sum of the principal diagonal elements of A.

a“ a12 Clln

; ayp dpp ... oy
Consider A =(a),x, = ,

Ay Apy - Gy

then tr A=ay +ay +--+a,,.
Properties:

WtrA+tr B=tr (A+B).
QA =wA

3) tr(AB)=tr (BA).

Proof: Beyond the scope of this book.

1 0 1 3
ExampleZO LetA—(4 3) and B_(O 4]

then r A=1+3=4 and tr B=1+4=5
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So, trA+trB=4+5=0.

2 3
Now, A+B—(4 7)

So, tr(A+B)=2+7=9
Hence tr A+tr B =tr (A+ B), which verifies the property (1).

Again A7 =((1) ‘3‘) and r AT =143 =4,

So, tr A" =tr A, which verifies the property (2).

1 oY1 3) (1 3
Here AB‘(4 3)(0 4)‘(4 24)

So, tr (AB)=1+24 =25

. 1 3)(1 0) (13 9
Again BA_(O 4)(4 3)_(16 12)

So, tr (BA)=13+12=25.
Hence tr (AB) = tr (BA), which verifies the property (3).

* WORKED-OUT EXAMPLES
Example 1.1 | Find if it is possible to form AB and BA, stating with reasons where

the operations do not hold when,

4 2 -1 23
A= andB=|-3 0 [WBUT-2004]
3 -7 1 1 s

Sol. The order of matrices A and B are respectively (2x3) and (3x2).

Since the number of columns of the matrix A and the number of rows of
the matrix B are same, therefore AB is possible and is given by the following

2 X 2 matrix:
2 3
HENEE
-1 5

_(8-6+1 12-5) (3 7
“\6+21-1 9+5) (26 14)
Again, since the number of columns of the matrix B and number of rows of

the matrix A are same, therefore BA is also possible and is given by following
3% 3 matrix
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8+9 4-21 -2+3

= -12 -6 -3
—4+15 —2-35 145
17 -17 1
=|-12 -6 -3
11 =37 6
Example 1.2 | Prove that P’ AP is a symmetric or a skew-symmetric matrix accord-
ing to whether A is symmetric or skew-symmetric. [WBUT-2009]

Sol.  Let A be a symmetric matrix, i.e., A° = A and B= P'AP.

Now,

B'=(P'AP) =P'A"(P') =P'AP=B

Therefore, P’ AP is a symmetric matrix.

Again, let A be a skew-symmetric matrix,ie, A’ =—A and B= P'AP.
Now,

B' =(P'AP)' =P'A"(P') =P'(-A)P=-P'AP=-B

Therefore, P’AP is a skew-symmetric matrix.

Example 1.3 | Find the matrices A and B such that

avp=( | 3Jmara-n=(, 3)

-1 2 4 -1
Sol. Here,
1 3
A+2B—(_1 2) (D)
and
1 2
2A—B—(4 —l) ..(2)

Multiplying (2) by 2 and adding to (1), we have

(A+2B)+2(2A—B)=(l 3)+2(1 2)

-1 2 4 -1
(3 7
0r,5A—(7 0)

or,A=

Dn|Iwn|w
S Wwm
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From (2) we have,

3

o W

5
7
5

Example 1.4 | Find the matrices A and B such that

A+3B=2Iyand34—-B=44"
Here, A+3B =21,
and
3A-B=4A"
Multiplying (2) by 3 and adding to (1), we have
(A+3B)+3(BA-B)=2I,+12A"
or, 10A =27 + 124"
or,5A—1; =6A"
Therefore, transposing both sides,
6(AT)T =(54-15)
or,6A=5A" — I,
or,6A+1;=54"
Multiplying (3) by 5 and (1) by 6 and subtracting, we have
5(5A-15)-6(6A+1;)=30A" 304"

or,-11A-11I; =0

So, A=-1I;
From (1) and (5), we obtain
—1;+3B=2I;
or, B=1;.
Hence,
-1 0 O

A=-I;=| 0 -1 OlandB=1I;=
0 0 -1

S O =
S = O
—_ O O

| 1.33

(1)

(2)

.3

(4

..(5)
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-1 1 -1
Example1.5| If A=| 3 -3 3| then show that A is an idempotent matrix.
>SS [WBUT-2003]
Sol. A matrix A is said to be an idempotent matrix if A% = A.

Here,

1+3-5 -1-3+5 1+3-5
=|-3-9+15 3+49-15 -3-9+15
5-15+25 5+415-25 —-5-15+425

-1 1 -1

=l 3 -3 3|=A
5 5 5

Therefore, A is an idempotent matrix.

1 -1 1

Example 1.6 | Show that the matrix | =3 3 -3 is a nilpotent matrix.

-4 4 -4

[WBUT-2005]
1 -1 1

Sol. Let, A=|-3 3 -3
4 4 -4

143-4  —1-3+4  1+3-4
=| 3-9+412 3+9-12 —3-9+12
—4-12+16 4+12-16 —4-12+16

00 0
=0 0 0f=0
000

Therefore, A is a nilpotent matrix.

Example 1.7 | If A is an idempotent matrix then show that B=7-A is also

idempotent. Hence, show that AB = BA = 0.

Sol. Since A is an idempotent matrix, we have A = A
Here, we are to show B> =B.
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Now B2 =(I—-A4)" =(I-A4)-(I- A)

=]—-T- A-A-T+A A=1-A- A+ A*

=1 —2A+ A(sinceA’ = A)

=I-A=B

So, B=1-A is also idempotent.

Also,
AB=A(I-A)=A-T-A4-A=A-A=4-A4=0
and
BA=(I1-A)-A=1 - A-A-A=A-A>=A4-A4=0.

Example 1.8 | Show that

I+a 1 1

1
L (s R UL [WBUT-2002]
1 1 1+¢ 1 a b ¢ d
1 1 1 1+d
Sol Here,
I+a 1 1 1
1 1+b 1 1
1 1 1+c¢ 1
1 1 1 1+d
1111
a a a a
1 1 1 1
— 1+_ — —
=abcd 117 lb bl 117 [Dividing first, second, third, fourth rows
- — I+—= = | by a,b,c, d respectively]
c c c c
1 1 1 1
— — — 1+_
d d d d
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
I+—+—4+—+— I+—+—4+—+— I+—+—+—+— l+—+—+—+—
a b ¢ d a b ¢ d a b ¢ d a b c
1 1 1 1
b 5 b b
=abcd 1 | | 1
— — 1+_ —
c c c c
1 1 1 1
— — 1+_
d d d d

[Rl > R +R,+R; +R,]
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1 1 1 1
1 1 1 1
» 'y b b
(1 1 1 1
=abcd| 1+ —+—+—+—|{|1 1 1 1
U a' b ¢ d)- - 1+= =
C C C C
1 1 1 1
— — — 1+_
d d d d
1 0 00
l 1 0 0
= abcd 1+l+l+l+l [f [C5—>C,-C, C; >C3-C
= 0 b e a2 0 1 o' 2~ G3 30
C
1 Ci—>Cy—C]
E 0 0 1

1 00
(1 1 1 1
=abcd Ikl +—+—+—+—10 1 0| [Expanding the determinant about its first row|

a b ¢ 00 1

=ubcd(1+l+l+l+l)

a b c d
0 a b c
Example 1.9 Evaluate _Z 2 g ;by Laplace expansion method.
e e o0 [WBUT-2003, 2007]
Sol. Expanding the determinant by Laplace method in terms of minors of second
order, we have,
0 a b ¢
—-a 0 d e
-b -d 0 f
- —e —f 0
_ 24142 0 a| 0 f 24143 0 bj|-d f
=D —-a 0 |-f 0+( D —a d||-e 0
a0 cf|=d O] Giosisla bI=D S
=D —a e||—e —f+( D 0 dj|-¢ 0
224414 C =b 0 424344 b c|-b —d
=D 0 el|l—c —f+( D d el|-c -—e
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= azf2 —abef + adcf + dacf — abef + (be — cd)?
= azf2 —2abef +2adcf + (be — cd)?

= (af —be+cd)?

Example 1.10 | If A;, B;and C; be the cofactors of a;, b;,, ¢; (i=1,2,3) in

a; b] & Bl + Cl Cl + Al Al + B]
A=|a, b, c,| thenshow that |B,+C, C,+A, A, +B,|=2A"
as bg C3 33 + Cg C3 + Ag A3 + B’;
[WBUT-2003]
Sol. By Jacobi’s theorem for 3rd order determinant, we have
A B G
Ay B, C|=A°
Ay By Cy

Now,

B, +C, C,+A A+B
B,+C, C;+A, A, +B,
B;+C; C3+A; A3+ B;

B, C+A A+B| |C, C+A A+B
= B2 C2 + A2 A2 + B2 + Cz C2 + A2 A2 + B2
By C3+A; A3+ Byl |C; C3+A; A3+ By
=B, C,+A, A, [C3’%C3—C1]+ C, A A+B [CéﬁCz—Cl]
B C A C A B
=|B, C, Al|C; =C,-GCl+|Cy Ay B)|[C; = C3—C,]
B A C A C B
=(=D|B, A4 G+(=Dl4, G B

[Interchanging 2nd and 3rd column in the first and interchanging lst and
2nd column in the second determinant]

A B G A B C
=(-’|4, B, G|+(-1’|A, B, G,
Ay By G Ay By Gy
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[Interchanging 1st and 2nd column in the first and interchanging 2nd and
3rd column in the second determinant |

A B G
= 2 A2 82 C2 = 2A2.
A3 B3 C3

Example 1.11

(i) Define symmetric and skew-symmetric determinants.
(i) Show that every skew-symmetric determinant of odd order is zero.

[WBUT-2004]

Sol. (i) If A be a symmetric matrix then det A is called a symmetric determinant.

If A be a skew-symmetric matrix then detA is called a skew-symmetric
determinant.

(ii) Let us consider a skew-symmetric matrix A =(a;;),, of odd order n.

Then the skew-symmetric determinant of odd order » is given by

ayy Ay e 4y
e
Apy App oee Apy
—ay  —ay ... —ay
I
—ay, —Qyy . —Ayy,
ayy ay ... Ay

=(-1)" %2 92 Gn2 [Taking common (—1) from each row]

Ay oy - dpy
ic..detd=(-1)" det(4")
Since n is odd, we have
detA=—-detA
1e.,2detA=0
ie,det4=0

Hence any skew-symmetric determinant of odd order is zero.
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Example 1.12 | Prove that

a+1 a a a
@ ar2 a a =24(1+£+£+£+3) [WBUT-2004]
a a a+3 a 1 2 3 4
a a a a+4
a+1 a a a
Sol. Here, a a+2 a a
a a+3 a
a a a a+4
a a a a
1+- - — —
1 1 1 1
L e g
=(1.2.3.4) p u 4 p [Dividing first, second, third, fourth
3 3 3 3 rows by 1,2,3,4 respectively]
a a a a
— — — 1+_
4 4 4 4
a a a a a a a a a a a a
I+—+—+—+— —t—t—t— I+t —t—F— I+—F—+—+—
2 3 4 1 2 4 2 3 4 1 2 4
a a a a
— 1+— — —
=24 2 2 2 2
a a a a
— — 1+_ —
3 3 3 3
a a a a
— — — 1+_
4 4 4 4
[Rl > R +R,+R; +R,]
1 1 1 1
a a a a
2 "2 2 2
=24(1+%+§+§+%)a a 1+a a
3 3 3 3
a a a a
— — — 1+_
4 4 4
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1 0 0 O
2100
I{ a a a a 2 , ,
=24k1+T+5+§+Z 40 1 o226 GGG,
3 C = C,—C
a
— 0 0 1
4
a a a O O
=24 1+—+—+—+—[0 1 O [Expanding the determinant about its first row]
2 3 4
0 0 1
=24(1+£+£+ﬁ+ﬁ
U123 4
(b+ c)2 a’ a’
Example 1.13| Prove that | »*>  (c+a)>  b* |=2abc(a+b+c)’
? 2 (a+ b)2
[WBUT-2004, 2008, 2009]
(h+ c)2 a’ a’
Sol. > (c+a) b
¢ c? (a+ by’

(b+c) a>=(b+c)? a®—(b+c)
= b2 (C+(,[)2—b2 0 Cé%Cz_C],Cg,HCg_C]

c? 0 (a+b)* —¢?

(b+¢)* (a+b+c)a-b-c) (a+b+c)a-b—-c)
=| b*  (c+a+b)c+a-b) 0

? 0 (a+b+c)a+b—c)

(b+c¢)* (a=b-c) (a—b-c)

=(a-i—b+c)2 b* (c+a-b) 0
2

c 0 (a+b-c)
2bc -2c -2b
=(a+b+c)?|b> (c+a-b) 0 |R{ >R -(R,+R;)

? 0 (a+b—c)
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b 5 |2bc —2cb —2bc

=% b (c+a—b)b 0 |C=bCy,Cl—cCy

¢ c? 0 (a+b—c)c

1 -1 -1
2

_@rbr O pelb?  (c+a—byb 0

¢ 2 0 (a+b-c)c

1 0 0
=2a+b+0c) b (cb+ab) b |3 > C+C,C; = Cy+C
c? c? (ac+bc)
2
=2(a+b+c)’ (cb -’;ab) b [Expanding the determinant
c (ac+bc)

about its first row].
=2(a+b+ C)2 (abc2 +b%? +a’be+ ab*c — b*c? )
=2abc(a+b+c¢) (a+b+0)

=2abc(a+b+ 0)3

1 a a*—bhc

Example 1.14 | Prove without expanding |l b b* —ac|=0 [WBUT-2005].

1 ¢ Z-ab

1 a a’*—bc
Sol. Here [l b b*-ac

1 ¢ —ab

2

a a” —bc

=0 b—a b*—ac—a*+bc|R; — Ry — R, R, = Ry — R,
0 c—a c¢?—ab—a*+bc

1 a a’ —be
=0 b—a ((b-a)a+b+c)
0 c—a (c—a)a+b+c)

1 a a°-be
=(b—-a)c—a)l0 1 (a+b+c¢)
0 1 (a+b+c)
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o |l (@+b+o) . .
=(b-a)c—a) I (a+b+0c) [Expanding the determinant about first column]
11
=(b—a)(c—a)(a+b-i—c)1 |

=(b—-a)c—a)a+b+c)x0
=0

2 2 2
bc—a® ca—-b" ab-c

Example 1.15 | Prove that ca—b> ab—c’ bc—a’|=(a’ +b’ +¢* —3abc)’

ab—c* bc—a* ca-b*
[WBUT-2006]

Sol. LetD =

o S Q

b
c
a

SR O

Then expanding we have D = —(a® +b* + ¢ = 3abc)

Now adjoint of D is given by

c a a c
b b c

= |10 c c b
D= b c b c
¢l la ¢ a

c a b a b ¢

bc—a* ca-b* ab-c?

2 2

=lca-b* ab-c® bc-a

ab—c* bc-a* ca-b?

Now from Jacobi’s theorem for 3rd order determinant, we have D =D
bc—a®> ca-b> ab-c? s

ie,lca—b? ab—c* be—d?|= [—(a3 +B 4 - 3abc)]
ab—c* be—da* ca-b*

= (@’ +b*+ =3abe)*.

Hence the result is proved.
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b*+c? a’ a’
Example 1.16 | Provethat | »* > +d>  b* |=4ab’c?
¢? ¢ a* +b’
[WBUT-2006]
b* +c? a’ a*
Sol. Here | b* +a’ b?
? ? a’ +b*
b +c? b’ ?
= a* A +a® ? [Transposing the determinant]
a’ b a’ +b*
? b? ¢
=| - +d (o= Y e oA
a - b d+D
0 b* c?
=|-2¢* A +d’ c? Cl = C -G
26> B d+b
0o b ¢
=2\ I +d ¢
b a b
0 »
=-2|* a* G =0C,-C
> 0 da+b’
[ ,|e? 2 L @
==2\=b" , Lt , [Expanding the determinant
L b™ a"+b b= 0 about its first row.]

- —2[—b2 (2@ +b*)— b2ty - c2a2b2]

= 2{-c*a’b* — *a’b*)

=4a’bc?
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Example 1.17 | Prove that

(x—a)* (x=b) (x—c)’
-a (-b? (y-cf|=2x—y)(y—2)Nz—x)a—b)b-c)c—a).
(z—a)* (z=b) (z-c¢)

[WBUT-2008]
(x—a)* (x=b)* (x—c)’

Sol. v-a (y-b’ (y-c¢f
(z-aP (z-b? (z-¢)

(x—a)’ —(z—a)* (x=b)’ —(z=b)* (x—c)* —(z—c¢)’
=|y—a)* —(z—a)* (-b*-(z-b’ (- -(z—c)?*| R =R -Rs,

(z-ay’ (z=by’ @' | Bo>R R
(x+z-2a)x—2) (x+z-2b)(x—2) (x+z-2c)(x—2)

=|(y+z=-2a)y—-2) (y+z-2b)(y—-2) (y+z-2c)y—2)
(z—a)* (z—=b)* (z—c¢)?

(x+z-2a) (x+z-2b) (x+z—-2c¢)
=(x—2)(y—2)|(y+z-2a) (y+z-2b) (y+z-2c)
(Z—a)2 (Z.—b)2 (z—c)2

(x—y) (x—y) (x—y)
=(x—-20-2|y+z-2a) (y+z-2b) (y+z-2¢c) R/ >R —-R,
(z—a)’ (z—b)* (z—c)?

1 1 1
=(x-2Q@-2x-y)|(y+z-2a) (y+z-2b) (y+z-20)
(z-a)  (z=bY  (z-c)

1 0 0
=(x—z2)y—2)(x—y)|(y+z—2a) 2(a—h) 2(a—c)
(z—a? (z=b’—(z-a)* (z-¢)*-(z—-a)*

€L —Cs—C,, € —6;—-C,

2(a—b) 2(a—c)

=0T DEIN 2 g (- - (e—a)?

[Expanding the determinant about its first row.]
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2(a—b) 2(a—c)
-b)2z—a-b) (a—c)2z—a—c)

- (x—z)(y—z)(x—y)‘(a

1 1

=2(x—2)(y—2)(x—y)a—b)a—c) Qz—a-b) Qz—da—c)

=2(x-2)(y—)(x=y)Na=b)a-c)[(2z-a-c)-2z-a—Db)]
=2(x-2)(y—)(x=y)a=b)a—c)b-c)

=2(z=x)(y—2)(x=y)a-b)b-c)c—a)

X+p q r

Example 1.18 | Solve the equation | ¢ x+r p [=0
r p  x+gq
x+p q r
Sol. q x+r p |=0
r p  x+gq

x+p+q+r x+p+q+r x+p+q+r
or, q xX+r P =O[R],%R1+R2+R3]
r P x+q

or,(x+p+q+r)|qg x+r p |=0

1 0 0
or,(x+p+g+r)|qg x+r—q p-q |=0[C;—>C,-C| C;—C5-C]
r p-r x+tq-r

x+tr-q p-q
p—r x+tq-r

or,(x+p+q+r) =0

0r,(x+p—i—q—i—r)()c2 —pz—q2 —r2+pq+qr+rp)=0

Therefore,

X=—(P+q+r)orx=i\/p2+q2+r2_pq_qr_rp

Example 1.19 Prove that

bc —ca ab +ad a* c? a 0 ¢ g
bc ca —abl=| da° a’® +b* b* |=lla b 0O
—-bc ca ab 2 b2 b+ c? 0 b ¢
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Sol.
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a 0 ¢
Letus consider D=|a b
0 b c
a 0 c2 a 0 clla 0 c
Then D> =|a b O =la b Olla b 0
0 b ¢ 0 b ¢[|0 b ¢
+a® a’ c?
or,D* =| a* +b? b* |[Multiplying row—wise]
c? b? b*+c?

Again adjoint of D is given by

B bc —ca ab
D=| bc ca -—ab
-bc ca ab

Since by Jacobi’s theorem for 3rd order determinant,
D=D’
we obtain

bc —ca ab
bc ca —ab|=
—bc ca ab

S Q
SO
o O 0

Combining (1) and (2), we have
2 2 2

bc —ca ab ’+a a c a 0 c
bc ca —abl=| da* a’ +b? pr |=lla b 0O
—-bc ca ab e b2 b+ 2 0 b c
1 bed b+c+d a*| 1 a d
2 2
Example 1.20 | Prove that I cda ctdta b2 = bb b2
= 1 dab d+a+b ¢ 1 ¢ ¢
1 abc a+b+c d*| |l d?

Sol.

bed b+c+d d
cda c+d+a b*
dab d+a+b c*
abc a+b+c d?

Here,

—_ = = =

(1)

-.(2)
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1 bed a+b+c+d—a a°
|l cda b+c+d+a-b b
1 dab c+d+a+b—c o>
1 abc d+a+b+c-d d°
1 bed a+b+c+d a*| |l bed a d°
[l cda b+c+d+a | |l cda b b
1 dab c+d+a+b | |l dab ¢ c°
1 abc d+a+b+c d*| [l abc d d°
1 bed 1 a° a abcd o> o
Carbrera)| el b*| 1 |b beda b* b
1 dab 1 ¢*| abed|c cdab & &
1 abe 1 d° d dabc d* &°
[Multiplying first, second, third, fourth rows by a, b, ¢, d respectively]
a 1 a&
_o_bedlp 1 b b
abcd|ec 1 c2 c3
d 1 & &°
1 a a& &
2 3
=1 b b2 bz [Interchanging lst and 2nd columns]
C C [
1 d & &
1 a & &
tbp »p
1 ¢ & ¢
1 d & &

Example 1.21 | Prove that

Sol.

2ab
2b

2ab
2b

1+a®> -b°

1+a® - b*

2ab —2b
1—a® +1? 2 |=(1+d*+b*)
—2a 1-a* —b*
2ab —-2b
1—a®+b° 2a
—2a 1-a®>-b°
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1+a’> +b° 0 -2b

= 0 1+a® +b> 2a  |[C] = C, -bC;,C; — Cy +aCs]

b(1+a*+b*) —-a(l+a’*+b*) 1-a*>-b°

1 0 —2b
=(1+a*>+b)*0 1 2a
b -a l-a®-b?
1 0 —2b
=(1+a®+bh*)*0 1 2a  |[R; — Ry—bR,]
0 —a 1-a*+b?

=(1+a’ +b>)[1-a® +b* +24°]

=(1+a*+b*)

a b OF |a* 2ab b?
Example 1.22 | Show that [0 a b| =|b> a° 2ab
b 0 a 2ab b*
a b O la b Ola b 0
Sol. 0 a b =|0 a b||0 a b|[Byrow—wise multiplication]
b 0 a b 0 allb 0 a
a 2ab b’
=|b* & 2ab
2ab B> d
1 n n’ n’

2 3

Example 123 | Show that [ *+1 (1D Dy,
- 1 (n+2) (1+27> (n+2)
1 (n+3) (n+2* (n+3)°

n I’Lz I’l3

1
2 3
Sol. 1 (n+1) (n+])1 (n+1)3
1 (n+2) (n+2) (n+2)
1

n+3) (n+2? n+3)°

1 0 0 0

1 (n+)=n (m+1)* =n(n+1) @+1)’ —nn+1)*
1 (n+2)—n (need)? = nn+2) (n+2)3 —n(n+2)2
1 (n+3)—n (11-}-2)2 —n(n+3) (n+3)3 —n(n+3)2
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[Cé —>C2 —nCl, C:; %Cg —f’lCZ, Céi %C4 —nC3]

1 n+l  (m+1)?
=2 2m+2) 2n+2)
3 3(n+3) 3(n+3)

1 (n+1) (n+1)?
=231 (n+2) (n+2)?| [RR >R, —R;; R — Ry —Ry]
1 (n+3) (n+3)°

1 (n+1) (n+1)
=230 1 2n+3
0o 2 4n+8

=2.3-[4n+8-2(2n+3)]=12

0O a b
Example 1.24 | Without expanding, prove that |-¢ 0 ¢|/=0 [WBUT-2007]
b —c 0
0O a b
Sol. Here, D=|-a 0 ¢
b — 0
0O a b
=—|-a 0 c|[Transposing]
b - 0
=-D
or,2D=0
or,D=0.
0 1 -2)
Example 1.25 | If the matrix | -1 0 3 - is singular then find the value of A.
A -30)
[WBUT-2004]
0o 1 -2
Sol. Since the matrix is singular, we have,|-1 0  3|=0
A -3 0

or,—1(-34)-2(6)=0
or,34=12

or, A=4.
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1 0 -1
Find the inverse of the matrix| 3 4 5| if it exists.
] 0 -6 -7
1 0 -1
Sol. Let A=|3 4 5]
0o -6 -7
1 0 -1
Then detA=(3 4 5/=20=0.
0o -6 -7

Since detA =0, A7 exists.

Now the adjoint of the matrix A is given by
T

4 5 35 ‘3 4
-6 -7 0 -7 |0 -6
adi(A)=| |0 -1 |1 -1 |1 ©
-6 -7 |0 -7 0 -6
o -1 1 -1 1 0
4 35 3 4
2 21 -18Y 2 6 4
=l6 -7 6| =| 21 -7 =8
4 -8 4 -18 6 4
1
Hence A~! = adj(A
det A (A
31
100 10 5
1( 2 6 4
A‘1=%- 21 =7 -8 |={21 -7 =2
L—IS 6 4) 120 20 5
-2 3 1
10 10 5
2 -3 4
Example 1.27 | For the matrix 4=| 1 0 1|, prove that
0 -1 4

A —6A% +124-101 = 0.
Hence, find AL
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2 -3 4
Sol. Here A=|1 0 1].
0 -1 4
Therefore,
2 -3 4\(2 -3 4 1 -10 21
A2=[1 o 1|1 o0 1|=| 2 -4 38
0 -1 4)lo -1 -1 -4 15
and
1 -10 21)2 -3 4\ (-8 -24 78
A=A 4= 2 -4 8|1 1l=| 0 -14 36
-1 -4 150 -1 4] |-6 -12 52
Now
-8 24 78 1 —10 21
A’ —6A% +124-101 = 0 14 36
-12 52 1 4
1 00
010
00 1

-3 4
+121 0 1|-10
-1 4
0
0
0

0
0{=0
0

1l
S O O

Hence, we have
A’ —6A% +12A-101 = O.
Now we are to find A~
AP —6A% +12A-101 =0
or, A(A> —6A+121)=101
1 5, 1
or, A.|] —(A —6A+121)J =
10
Hence by the definition of inverse, we have
A= i(AZ —6A+121)
10
1 -10 21 2 -3

4
Al=—|] 2 -4 8|-6/1 0 1]|+12
-1 -4 15 0 -1 4

S O =
S = O
- o O
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0 2b ¢
Example 1.28 | Determine the values of a, b, ¢ for whichthe matrix |a b —c
] a —-b ¢
is orthogonal.
Sol. Let
0 2b ¢
A=|la b -—c
a -b ¢
If A is an orthogonal matrix then AA” =7
which implies
0 20 ¢ 0 a a 1 00
a b —c||2b b -b|=|0 1
a -b ¢ c —-c ¢ 0 0 1
4b* +¢* 2P -t 2bh 4+ 1 0 0
or, 262 = A +br+ A== =01 0
26 +c* A? b - a +b +c 0 01
2 2 2 2
Equating the corresponding entries of 1st row, we have
4%+ =1 (1)
26— =0 (2
a+b*+c =1 (3)

Adding (1) and (2), we get
6b> = 1= b” =L = =t

6 G

1
Putting b =+ — in (2), we get
J6

1 1
C2=2b2=§:>C=i—

V3

Putting the value of » and ¢ in (3), we obtain

02=1—b2—62=1—l—l=l:a=ii
6 3 2 NG

Therefore,
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cosd 0 sinéd
Show that the matrix 0 1 0 | is orthogonal and hence
—sind 0 cosé
find its inverse.
cosd 0 siné
Sol. Let A= 0 1 0
—sind 0 cosé
Now,
coséf sin@)( cos® 0 sing)
44" = 0 0 0 1 0

—siné cos@ J\ —sin@ 0 cosé@

0
1
0
cosf 0 sind\(cosf# 0 —sinéf
1
0

= 0 0 0 1 0
—siné cos@ )\ sind 0 cosé@
cos@+sin’@ 0 0

= 0 1 0

0 0 cos’@+sin’6
1 00

=[{0 1 0|=1

0 0 1

Since AAT =17 , A is an orthogonal matrix.
Again for any othogonal matrix A, we know A7 = A4". Hence,

cos@ 0 sind r cos@ 0 -—sind
A= 0 1 o |=] 0 1 o0
—sin@ 0 cosé@ sind 0 cosé

Example 1.30 | If A be a skew-symmetric and (/ + A) be a nonsingular matrix

then show that B=(I — A)(I + A)fI is orthogonal.

[WBUT-2009]
Sol. A square matrix is orthogonal if
A-AT =1,
Now,

B-B" ={U - AU +A) " HUT-AT+4)"Y
=(I-A)I+A) T +A ™Y (- A, since(AB)T = BT AT
=(I-A)I+A) Ha+4)" 1 a" =AY, since (A7) ' =a™HT
=(I-AT+A)a"+ATY " - AT
=(I—-AI+A)"T+AY "' (1-A"),since 1" =1
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=(I-A)YI+A) "I -A) " (I +A),since AT =—A
= (I - AU = AT +A)) (I +A),since (AB) =B "™
Again,

(T-A)T+A)=1+A-A—-A?
=(I+A)]—-I+A)A=I+A)I-A)

Hence, from above
BB =(I- A){(I+A)I - A)}_l(l+ A)

=(I-AI-A)'T+A)7'U+A)
=7-1=1

Therefore, B =(I— A)(I+ A) 'is orthogonal.

EXERCISES

Short and Long Answer Type Questions

1. Find the matrices A and B if

1 20 2 -1 5
A+2B=| 6 -3 3|and2A-B=(2 -1 6
=5 3 1 0 1 2

1 0 2 0 1 -1

Ans: A=| 2 -1 3)and B=| 2 -1 O

-1 11 -2 1 0

. 32 0 1 . .
2. For the matrices A=| | 2 and B = 1 2 , verify the following:

a) (A+B) =A" +B"
b) (4B =BT . A"

3. Express the following matrices as the sum of symmetric and skew-symmetric
matrices.

o[ 3)

Ans : Symmertric matrix: , Skew-symmertric matrix: 1

NN
o N

N2 o
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1 23
ml4 5 6
7 8 9
1 35 0 -1 -2
Ans: Symmertric matrix:[ 3 5 7 |, Skew-symmertric matrix: [ 1 0 -1
579 2 1 0
3 -1 5
of|-1 2 4
5 4 1
3 -1 5 0 0 O
Ans : Symmertric matrix: | —1 2 4, Skew-symmertric matrix: 0 0 O
5 4 1 000

4. If A is a skew-symmetric matrix then show that A% is symmetric. Also, verify
this with the matrix

0o 1 =2
A=|-1 0 3
2 -3 0
_[cos@ —siné
5. If A(8)= (sinH cosd ), prove that
A(@)A(p) = A(p)A(B) = A8+ @) [WBUT-2006]
0 4 3
6. If A=| 1 —3 —3| thenshow that A> =1, i.e., A is involutory.
-1 4 4
-1 1 -1
7.1f A=| 3 =3 3| then show that A% = A, i.e., A is idempotent.
5 5 5
1 2 3
8. If A=|3 —2 1] then prove that A* —23A-401 = 0.
4 21
9. Show that

a h
(u v w)x h b = au® +bv? +ew? + 2huv + 2 fow + 2gwu
g f

o
X
= < =

10. Prove without expanding the following determinants:
a-b b-
a) |b—c

c—
c—a a-—

=0.

S Qo
S O
o S Q8
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11.

12.

13.

14.

15.

be a* d bc ab ca
b) b* ca b*|=|ab ca bc|.
2 2 oabl |ca bc ab
1 a a*-bc
oll b b*—acl=0.
1 ¢ —ab
I+p 1 1
d)| 1 I+g 1 |= pqr(
1 1 I+r
a b ¢
e)la® b
bc ca ab
Prove that (1+ p+¢q+7r) is a factor of
Solve the following for x:
x+1 2 3
|1 x+1 3 (=0
3 -6 x+1
©-a® P x
Gi) PP -a® p* b|=0.
33 2
c—a ¢ ¢

Show that (x+3) is a factor of the determinant

Engineering Mathematics-I

1 1
T+—+—+—

P q

=0 if (a+b+c)=0.

-1
If A+ B+ C =, then prove that |cosC
cosB cosA

1

r

}

Al= (b—c)(c—a)a—b)bc+ca+ ab).

A+p

q
r

cosC cosB
cosAl=0

r

p
A+q

Ans:x=—l,—1ii\/7
[ ]

I:Ans:x=b, c,

4 5
x+3 5
-4 x+3

3

C

d



16.

17.

18.

19.

20.

21.
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Show that the matrix is an orthogonal matrix.

Sl-&Gl-&l-
Sl- &L &~
S- = &L

0 1 2
For A=| -1 0 3|, show that (7— A)(7+ A)~' is an orthogonal matrix.
-2 -3 0

. . -1 —1 —1 .. T\—1 -1 T .
Verify 1) (4B) ' =B -4 (i) (A") =(A ) for the matrices

2 1 2 4 1 2
A=|-1 0 4jand B=| -1 0 3
-2 0 0 -2 40
2 1 2
If A=| 3 0 4/, find the matrix Bs,; for which AB=1;.
-2 0 8

Examine whether the following matrices A and B are conformable for addition
and multiplication. If so, find A+ B, AB, BA.

301
(i)A=((]) é 3),3: 0 0
25

3 12 6
Ans:AB—(g 13}3/1: 0 0 0
2 34 4
a b —a b
(i) A=(b ¢ O, B=| 0 O
0 a —-c a
—a®> —bc 2ab
Ans: AB= —ab b
—ac a*
1 3 4
If A+I=| -1 1 3| then evaluate (A+7)(A—1I) where [ is the identity
-2 -3 1
matrix of order 3. 12 -12 9

Ans:| -6 -13 -4
3 -6 -18
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22. Find the matrices A and B if

(8 3 r (31
2A+3B_(7 6),A+B _(3 3)

s YJour )

23. If A+ B=2B" and 3A+2B = I, find the matrices A and B .

1 0 0 1 0 0
5 5
1 1
Ans: 4=|0 - 0 [,B=|0 = 0
5 5
0 0 ! 0 0 1
L 5 5 -
24. Find the matrices A and B such that
1 11
3A-B" =2I;and2A+B=[0 1 0
1 01
" 321 19 3
5 5 5 5 5 5
Ans:A:E 3 0 andB:_—6 - 0
5 5 5 5
1 -
Ty 3 3
| 5 5 5 5 )]
01 2
25.If A=|2 0 1| show that A3—6A—9I3 = 0. Hence obtain a matrix B such
1 20

26. Find all real matrices A = (i Z) such that A> =0

|:Ans :(a b} where a® +bc = 0.:|
c —a

27. Express the following matrices as the sum of symmetric and skew-symmetric
matrices.

1 a 1 o o
Db 1 1 iy | g B
yov

RN ™
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2 -3 -5
28. Show that | -1 4 5] is idempotent.
1 3 4
1 1 3
29. Showthat | 5 2 6] is nilpotent of index 3.
-2 -1 3
3 4 . .
30. If A= L 1) prove by the method of induction that
1+2n  —4n
A" =
( n 1- ZnJ

where n is any positive integer.
31. Prove without expanding the following:
a 3a* 3a 1
a) a’> d’>+2a 2a+1 1:(a_1)6
a 2a+1 a+2 1
1 3 3 1

(a+ b)2 ca bc
b) ca b+ c)2 ab |=2abc(a+b+ 0)3
bc ab (c+ a)2

P’ P’ p

(p+1)’ (p+1)' (p+1)°
(p+27° (p+1)’ (p+1)
(p+3’ (p+1)’ (p+1)’
et +1 t+1 b +1 b+c
c2+1 a2+c2+1 a2+1 c+a

b*+1 a?+1  a®+b*>+1 a+b
b+c c+a a+b 3

c) =12

O

d) =(ab+bc+ ca)2

y Xy z
e) |x y zl=|x a pl=|p
rl |z ¢ r|l |a

g2 | ytz  z+tx x+y |[=0-2E-x)(x—Y)
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a a* a+1

h b b* b +1|=(a-b)b-c)c—a)abc+1)

c & A+

a+b 0 b
| c b+c 0 |=(a+b+c)ab+ bc+ca)
0 a c+a

X -2 ¥z

PP Y- == - D)x+y+ )y +27)
2 2 2
7 ==y xy
1 1 1
k) | y+z 7+ X x+y [=(x=y)(y—2)(z—x)
yz+z2 Zz+x2 x2+y2
a b ax+ by
D b c bx +cy| = (b* —ac)(ax® + 2bxy +cy?)
ax+by bx+cy 0

32. Using product of determinants, show that

1 cos(ar — ff) cos(y —ox)
a) |cos(ax—/f3) 1 cos(B—-y) =0
cos(y —«&) cos(fB-7) 1

a’>+2bc ?+2ab b*+2ca

2 2 2 3,33, .3 2
b) |b"+2ca a” +2bc c”+2ab|=(a’+b” +c’ —3abc)
c+2ab b*+2ca a*+2bc

(x—a) (x=-b" (x—c¢)
o |v=a (=0 (y—¢)|=2(x—y)y—2Nz—x}a—b)b-c)c—a)
(z—a)* (z=b) (z—c¢)

[WBUT-2008]
33. Using Laplace method of expansion, prove the following:

X y -u -v

a)y
u v X

X v o u
= (2 +vE -y Py

-V —u y X

a b d
-a b ¢ d

b) —a —b a= 8abcd
-a -b - d



34.

35.
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1 2 3 4
2 3 4 5
93 4 5 670
4 5 6 7
a —-b -a b
b a -b -al o 2.0 »
d) e -d ¢ _d—4(a +b)c"+d)
d c d c
-1 0 0 a
0O -1 0 b
e) 0 0 -1 C—l—ax—by—cz
x y z -1
1 x X2

Prove that the determinant [x*> 1 x|isa perfect square.

x x> 1
Verify
a) adj(A") = (adjA)" and
b) A-adj(A) = adj(A)- A=det 4-1

1 0 1
for the matrix A=(2 4 6/.
1 2 1

36. Find the adjoint of the following matrices:
11 1 [ -5 3 4]
a) |2 -1 3 Ans:[ 11 -4 -1
3 2 -1 i 71 =3
2 1 3 [ 2 4 —6)]
b) [0 2 0 Ans:[ 0 —4 0
2 1 (4 4
2. 20
37. Find the matrix A such that detA=2 and adjA=|2 5 1.
01 1
2 -1 1
Ans: 4=|-1 1 -1
1 -1
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38.

39.

40.

Find the inverse of the following matrices:
-5 1
111 M
a) |l 2 3 Ans:| -3 4 -1
149 o 201
2 2
2 1 -1 (723 1
b [0 1 2 Ans:—| 2 1 4
13 -1 s 2

A and B are real orthogonal matrices of the same order and det A+det B =0.
Show that A+ B is a singular matrix.

0 2b ¢
Determine the value of a,b,c sothat | @ b —c | is orthogonal.

a -b c

# Multiple-Choice Questions

1 2 3
. Thematrix |2 4 6]|isa
3 65
a) symmetric matrix b) skew-symmetric matrix
¢) diagonal matrix d) none of these
If A is anon-null square matrix then A+ AT isa
a) symmetric matrix b) skew-symmetric matrix
¢) null matrix d) none of these
. If A is anon-null square matrix then A — AT isa
a) symmetric matrix b) skew-symmetric matrix
¢) null matrix d) none of these
If A= G U then (A%)" =
0 -1
a) ( | - J b) I,
c) 2A d) none of these
(2A+3B)" is equal to
a) 2A+3B! b) 247 +3BT

c) 4A" +9B" d) none of these



11.

12.

13.

14.

15.

Matrix I
. (AB)T is equal to
a) AT +B" b) ATBT
c) BTAT d) none of these
_ _1 O t _
.IfA—(O 1JthenAA
a) I, b) A
c) 01 d) none of these
1 0
1t A=(2 7Y then A% 477 =
1 3
a) O b) 2A c) 3A d) 5A

2 k)0 1N_( 12 '
= (1 3](_1 OJ_(_3 Jthenthevalueofkls

10.

a) -5 b) 0 c) 5 d) -1
If A is asymmetric as well as skew-symmetric then A is a/an
a) diagonal matrix b) null matrix

c) Identity matrix d) none of these

If A is an idempotent matrix then 7/ —A is a/an

a) nilpotent matrix b) idempotent matrix
¢) involutory matrix d) none of these

If A and B are two square matrices of same order such that
(A+B)> = A + B> +2AB then

a) A=BT b) A’=B

¢) AB=BA d) none of these

X 1 1
The cofactor of x in the determinant |2 —1 Q| is

1 3 2
a) 2 b) 4 c) 2 d 0
The adjoint of the determinant is
1 2 6 3 -6 3 6 -3
Vs 3 R )‘1—2‘ d)‘—l 2‘
1 23
The value of the determinant |2 3 4/ is
3 45

a) 1 b) -1 c) 2 d) 0

| 1.63
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1 o o
16. If @ is the cube root of unity then the value of the determinant| @ o> 1 |is
o’ o 1
a) @’ b) @ o) l+w d 0
17. The value of a skew-symmetric determinant of odd order is always
a) 0 b) 1 c) —1 d) none of these
x+1 0 0
18. The roots of the equation | 0 x—-2 0 |=0are
0 0 x-3
a) 1,2,3 b) —-1,2,3 c) 1,-2,3 d -1,-2,3
a b ax+b
19. b c bx+c|=0 if
ax+b bx+c 0
a) a,b,c arein AP b) a,b,c are in GP
1 11
¢) —,—,— arein AP d) none of these
a C
0 o p
20. If @, B are the roots of the equation x* —3x+2=0 then | 0 o=
1 -0 o
a) 6 b) — c) —6 d 3 [WBUT-2007]
1 23
21. If |[4 a4 6|=0 then the value of a is
7 8 9
a) 5 b) either —2 or 1 c) 1 d) not -2
b+c c b
2. If| ¢ c+a a |=kabc, then k =
b a a+b
a) 3 b) 1 c) 4 d 2
100 101 102
23. The value of {105 106 107|is
110 111 112
a) 2 b) 0 c) 405 d) -1 [WBUT-2005]

24. If det(A;y3) =4 then det(2A;,;) is equal to
a) 32 b) 16 c) 8 d) 4
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25. adj(2A3,4)1s equal to

a) 32.adj(A) b) 8.adj(A) c) 4.adj(A) d) 2.adj(A)
26. adj(AT) is equal to

a) 3.adj(A)  b) adj(A”) ¢) adj(A) d) [adj(A)]
27. For a 3rd order determinant D, its adjoint determinant is equal to

a) D’ b) D c) D’ d) D*

300
28. Thetraceof A=|0 1 0} is
0 0 2

a) 7 b) 5 c) 6 d) 4.
29. The trace of A” is same as

a) trace of A b) trace of A~

¢) [trace of A]T d) none of these
30. For an orthogonal matrix A, A™" is same as

a) A b) AT c) adjA d) none of these

-1
31. For any nonsingular matrix A, (AT) is same as
-1\7 T

a) (A ) b) A c) A d) none of these
32. For any orthogonal matrix A, detA is equal to

a) 0 b) 1 c) *1 d -1
Answers:

1. (a) 2.(a) 3.b) 4.(c) 5 6.(c)y 7T.(a 8@ 9.()
10. (b) 11.(b) 12.(c) 13.(c) 14.(d) 15.(d) 16.(d) 17.(a) 18.(b)
19. (b) 20.(c) 2l.(a) 22.(c) 23.(b) 24.(a) 25.(c) 26.(d) 27.(a)
28. (c) 29.(a) 30.(b) 31.(a) 32.(c)



CHAPTER

Matrix Il

2.1 INTRODUCTION

In this chapter, first we deal with the concept of the rank of a matrix and also the
process of determination of rank. Next, we discuss the matrix inversion method,
Cramer’s rule and also the consistency and inconsistency of a system of homogeneous
and nonhomogeneous linear simultaneous equations.

Then we represent the methods of determination for Eigen values and Eigen vectors
of a square matrix and also the Cayley—Hamilton theorem and its applications.

In the last part, we discuss the diagonalisation of a square matrix which is included
as further-reading, material for interested students.

2.2 RANK OF A MATRIX

Let A be a nonzero matrix of order mxn. The rank of 4 is defined to be r if r is
the greatest positive integer such that A4 has at least one nonzero minor of order r.

Important Observations
(i) The rank of a null matrix is zero.
(ii) Rank of n-th order identity matrix is n.
(iii) If the rank of A be r, every minor of order greater than r is zero.
(iv) For a nonzero mxn matrix A, 0< rank A <min{m,n}.
(v) For an n-th order square matrix A, the rank of A is n if det(4)=0 and
rank of A is less than n if det(4)=0.

(vi) Rank of 4= Rank of A”.
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Example 1

[\)I

Let 4= G 4 ) Here, det(4)# 0. Since highest-order nonzero minor is of order 2,
rank of 4=2.
Example 2
0 2 3 4
Let A=]10 5 1 1 | Here, the highest-order minors are 3rd order minors, and
0 0 0 O
they are

They are all singular matrices.

So, rank of 4 < 3. So we have to search for at least one 2nd order nonzero minor if
it exists.

3;&0.

5 1

2 3 . .
Now, we have ( 5 as a 2nd order nonzero minor since

Hence, rank of 4 =2

2.3 ELEMENTARY ROW AND COLUMN OPERATIONS

Let A be anonzero matrix of order mxn. Elementary row (or column) operations on
A are of the following three kinds:
(i) Interchanging of any two rows (or columns) of A.
[Notation: R; (or C;) stands for interchanging of the ith row and ;th row
(or of the i th column and jth column).]
(ii) Multiplication of a row (or column) by a nonzero quantity.
[Notation: d-R; (or d-C;) stands for multiplication of the ith row by d (or
of the i th column by d).]
(iii) Addition of scalar multiple of a row (or column ) to another row (or
column).

[Notation: R; +d-R; (or C;+d-C;) stands for addition of the d multiple of
the jth row to the ith row (or d multiple of the jth column to the ith

column).]
Example 3
2 -2 4 3 3 25 0
325 0|_Ry (2 24 3}
1 1 3 -4 1 1 3 -4
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2 2 4 3 2 4 2 3

325 0 Cs .35 2 0

1 1 3 —4 1 3 1 —4

2 2 4 2 2 4

32 5|_28% |6 4 10

1 1 3 1 1 3

2 -2 4 6 —2 4

3 25 3G 9 2 5

1 1 3 313

2 4 3 2 4 3
25 0 RA2R, | 4 11 -8
1 3 —4 1 3 —4

2 4 3 4 4 3
25 0|_G*HG 125 0
1 3 —4 -7 3 -4

2.4 ROW EQUIVALENT AND COLUMN EQUIVALENT MATRICES

Suppose a matrix B,,, is obtained by performing a finite number of elementary row
(or column) operations on another matrix A,,,. Then 4,,, and B, are said to be
row equivalent (or column equivalent).

Example 4

2 2 4 3 3 25 0
A=[3 2 5 0 Ro 12 2 4 3
1 1 3 -4 1 1 3 -4
5 4 11 -8 32 5 0
RH2R, 1y 5 4 3| BB 05 1 13 9|5
1 1 3 -4 1 1 3 -4
A and B are row equivalent.
Example 5
2 2 4 3 2 4 2 3
A=[3 25 0| _GCs |35 2 0
1 1 3 -4 1 3 1 -4
20 =2 3 -2 4 -2 3
G263 9 5 G+(=DG, -2 5 2 0|=B
1 5 -4 -2 3 1 -4

A and B are column equivalent.
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2.5 ROW-REDUCED ECHELON MATRIX

A matix A is called a row-reduced echelon matrix (or row-echelon matrix) if
(i) all nonzero rows precede all zero rows of A
(ii) in a nonzero row, the first nonzero element is 1 (called the leading 1)

(iii) all the columns which contain the leading 1 of some row have all other elements
Zero

(iv) for each nonzero row, if the leading element of row i occurs in column p; then
DL <Py <p3=<..

Example 6

The following matrices are row-reduced echelon matrices.

1 00Y(104°0)(01030
001 20
01 0[]0 1 10} .
00 1/loooof|®0001
00000

Theorem 2.1: A matrix can be made row equivalent to a row-reduced echelon
matrix by elementary row operations.

Proof: Beyond the scope of this book.
Theorem 2.2: Two row equivalent matrices have the same rank.
Proof: Beyond the scope of this book.

Theorem 2.3: If a row-reduced echelon matrix A has r nonzero rows then rank
A=r.

Proof: Beyond the scope of this book.

2.6 DETERMINATION OF RANK OF MATRIX BY ELIMENTARY
OPERATIONS

Steps:

Step 1 Apply elementary row operations on the matrix.
Step 2 Convert the matrix to a row-reduced echelon matrix.
Step 3 Count the number of nonzero rows.

Step 4 The value obtained in Step 3 is the rank.

I 1 1

Example 7 _ Letus find the rank of A={1 -1 -1 | [WBUT 2006]

31 1

We apply elementary row operations on A to reduce it to a row-echelon matrix.
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11 1)RRR3R 11 1
A=|1 -1 —1|—2—123 770510 -2 -2
301 1 0 2 -2

] 10 0 ] 100
BBy Rt By o 2 2| (5% Jo 1 1]-8
0 0 of /0 0 0

The row-reduced echelon matrix B has the two nonzero rows.
So, Rank B =2 and hence Rank 4 =2.

12 10
. |13 6 12 9

Example 8 _ Find the rank of 4= o0 5 gl
12 21

We apply elementary row operations on A to reduce it to a row-echelon matrix

12 10 1210
36 12 9 0099

4= R,—3R. R,—R

00 5 8 =110 0 5 8

12 21 00 11
1210 120 -1

T, |00 1 U} p_p R-SR R-R, |0 0 1

9% lo 0 58 000 3
00 1 1 000 0
120 -1 1200

|

_R2 0011 R—RR—R 0010:8

~3° o0 0 1 1= 10 00 1| ™
000 0 0000

The row-reduced echelon matrix B has 3 non-zero rows.
So, Rank B =3 and hence Rank A4 =3.

2.7 SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS BY MATRIX
INVERSION METHOD

Let us consider the system of # linear equations involving » unknowns:

ajx, +apx, -+ ap,x, = b

Ay X; +ayxy +---+ay,x, = b,

anX) +appXy +-+a,,x, = bn
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ayy apy ey, xl
a a .o a . . X
Let A=|"%! 2 2n | called the coefficient matrix, X =| "2 | and
an (2% Ayn Xn
by
B=|"
b

Then the above system of equations can be written in the form AX = B.
Now if det(4)# 0, then the system AX = B has the unique solution X = 4 'B.

Example 9 Let us solve the following system of equations:

2x=3y+4z=-4

x+z=0
—y+4z=2 [WBUT 2005]
2 -3 4 X —4
Here, the coefficient matrix 4=[{1 0 1| X=|y|and B=| 0
0 -1 4 z 2

Then the given system of equations can be written as 4X = B.

2 -3 4
Now det(4)=|1 0 1/=10=0.
0 -1 4

So the system has a unique solution X = A'B.

1 8 -3
Here, adj(4)=| -4 8 2|
-1 2 3
. (18 -3
Now A~ = adj(A), or, A'=—|-4 8 2|
det(A) 100y 5 3
Hence X=4"'B
X 1 1 8 -3\ -4
o, | y|=F—|—4 8 2 0
2 1002 2 3| 2
-10) (-1
_ L 50 |-
101 19 !

So the solutions are x=-1, y=2, z=1.
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2.8 SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS BY
CRAMER’S RULE

Let us consider the system of »r linear equations involving » unknowns:
ap X, + ayy Xy +---+ X, = bl

ay Xy +a22x2 +"‘+aznxn = b2

Xy T Ay Xy +-0ta,,x, = bn

apy app s a, X1
a a ... a . . bY
Let 4=|"? "2 2n | called the coefficient matrix, X =|"2 | and
py py -o. lpy Xn
by
B= b,
b

Then the above system of equations can be written in the form AX = B.

Now if det(A4) # 0, then there exists a unique solution of the system A4X = B and
is given by

bl a)y ey,
Y = det Al _ 1 bz ayy e Ay
' odetd  detdl..
bn Ay oo Ay,
apy bl e dpy,
. _detdy 1 ay by ... oy,
> detd detd|... ...
Ay bn A
a4 dp by
v = det AVI _ 1 ayy [25%) bz
" detAd detd
app dpy .- bn
Observations:

(1) When det(A) # 0 then the system AX = B has a unique solution.

(2) When det(4) =0 and at least one of det A4,,det 4,,...,det 4, is nonzero,
then the above system has no solution.

(3) When det(4)=0 and det A, =det A, =---=det 4, =0 then the above
system has an infinite number of solutions.
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Example 10 | Let us solve the following system by Cramer’s rule:

xX+2y+3z=6

2x+4y+z=17

3x+2y+9z=14.

If we write the above equations in the form AX = B then

2 3 X 6
1|, X=|y|and B=| 7
9 z 14

the coefficient matrix A=

W N =

1 2
Here, detA=2 4
So the system has a unique solution.

Now det 4, =| 7 =-20.

B
N [\ REN SN NS

det Az =

[UST NS I

1 2
detd, =2 4
32 14

1
9
3
1
14 9
6
7

Hence the solution is (1, 1, 1), which is unique.

29 SYSTEM OF HOMOGENEOUS AND NONHOMOGENEOUS LINEAR
EQUATIONS

Let us consider the following system of m linear equations with » unknowns
ap X +a112x2 +-~-+a1nxn = bl
ay1 X + ayr Xy +"'+aznxn = b2

a1 X + a2 Xy +---+ ApnXy = bm

i
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The above system is called a homogeneous system of linear equations if all the b,-ls
are zero and the system is called a nonhomogeneous system of linear equations if at
least one b; is nonzero.

2.9.1. Matrix Representation of a System of Homogeneous
and Nonhomogeneous Linear Equations

ayy apy . Ay, X1
a a e.a - . X
Let A=|"2! 22 2n | called the co-efficient matrix, X =|"2 | and
Anl Am2  --- Ay Xn
by
b
B=|"7?
by,
Then the above system of equations can be written in the form A4X = B.
ayy a)n . ayy, bl
- |a a ..oa b, |. .
Here, 4=| ' 2 72 | s called the augmented matrix.
A1 Am2 Ann bm
0
. 0 . .
The system AX =B is homogeneous for B = , otherwise the system is
0
nonhomogeneous.

So, the homogeneous system can be written in the form 4X = O, where O is the
null matrix or zero matrix.

Example 11 | The following is a homogeneous system of 3 linear equations with 4

unknowns:
2x-3y+4z=0
x+z+w=0
—y+4z-2w=0
2 3 4 0 (x 0
Here, the coefficient matrix A=[1 0 1 1| x=|"| B=|0
0 -1 4 -2 LZ 0
w
_ 2 34 00
and augmented matrix A=|{1 0 1 1 0|
0 -1 4 -2 0
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Example 12 | The following is a nonhomogeneous system of 3 linear equations

with 3 unknowns:

Sx—4y+4z=2
x+z=0
3x=2y+4z=0
5 -4 4 X 2
Here the coefficient matrix 4={1 0 1| X=|y| B=|0
3 2 4 z 0
(2 3 42
and augmented matrix A=[{1 0 1 0 |
0 -1 4 0

210 CONSISTENCY AND INCONSISTECY OF THE SYSTEM OF LINEAR
EQUATIONS

We say the system of linear equations is consistent if it has a solution. On the other
hand, the system is called inconsistent if it has no solution.

For example,
i) The following system
Sx—4y=2
x—y=0
has the solution (2, 2). So the system is consistent.
ii) The following system
8x—4y=2
2x—-y=1
has no solution. So the system is inconsistent.

2.11 EXISTENCE OF THE SOLUTION OF HOMOGENEOUS SYSTEM

Let us consider the following homogeneous system of m linear equations with »
unknowns:

anx, Fapx, o+ a,x, =0

ay Xy +022xZ +"’+a2nxn =0

0

It is very important to keep in mind that the homogeneous system is always
consistent, since it has always a solution of the form (x,, x,...,x,)=(0,0,...,0).

Qi Xy + 2 X2 +et QyinXn =
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This solution is called a trivial solution. The solutions other than the trivial are known
as nontrivial solutions.

Example 13 | The following homogeneous system of 2 linear equations with 3

unknowns
3x=2y+z=0
x+y-3z=0

has a trivial solution (0, 0, 0). Also it is very interesting to see that (1, 2, 1), (2, 4, 2),
(3, 6, 3), etc., are also the solutions of the system. In fact the system has a solution of
the form of k(1, 2,1). Actually, these are nontrivial solutions.

Theorem 2.4: In a homogeneous system with m equations and n unknowns, if the
number of equations are less than the number of unknowns (i.e., m < n) then the
system has a nontrivial (non-zero) solution. In fact, there exists infinitely many
solutions.

Proof: Beyond the scope of the book.

Example 14 | Let us solve the following homogeneous system:

x+2y—-z=0
2x+y—-2z=0
First of all, it is clear that it has a trivial (or, zero) solution (0, 0, 0). So the system
is consistent.

Here number of equations (m) =2 and number of unknowns (#) =3. So, m < n.
Therefore, nontrivial solution also exists.

X
Now if we write the system as AX =0, then A4 —(l 2 _1), X=|y|and

2 1 =2
= 0 null matrix
0Ff ’

Here, we apply elementary row operations to convert 4 to a row-echelon matrix.
—1 R —2R, 1 2 -1
0 -3 0
[l] 1 2 -1 R-2R, 1 0 -1 .
3 01 0ofJ— |0 1 0

. o 1o -1\ (o
So the given system is equivalent to y|=
z

z

01 0
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Let we choose z =k, then x =k, where k is any arbitrary constant.
Therefore, the solution is (x, y, z) = (k, 0, k) = k(1, 0, 1), which is nontrivial.

Hence, the system has infinitely many solutions.

Theorem 2.5: In a homogeneous system with n equations and » unknowns, if
the rank of the coefficient matrix is less than n then the system has a non-trivial
(nonzero) solution. In fact, there exists infinitely many solutions.

Proof: Beyond the scope of the book.

Example 15 | Solve the following homogeneous system:

x+y+3z=0
2x+y+z=0
3x+2y+4z=0

First of all, it is clear that it has a trivial (or, zero) solution (0, 0, 0). So the system
is consistent.
Here number of equations (#) =3 and number of unknowns (#) = 3.

1 1 3
Now if we write the system as AX =0 then A=|2 1 1|
3 2 4

X 0
X =y |and O=| 0 |, null matrix.
z 0

Here, we apply elementary row operations to convert 4 to a row-echelon matrix.

1 1 3 Ro—2R . Ri-3R 1 1 3
A=[2 1 1 2 20T P 0 -1 -5
3 2 4 0 -1 -5
1 1 3 1 1 3 R_2R 1 0 -2
Ri—Ry 0 -1 -5 (=D&, 01 5|——=25]0 1 5
0O 0 O 00 0 00 O
So, the rank of 4 =2 (<3, number of unknowns ).
Therefore, nontrivial solution exists.
1 0 -2)\(x 0
So the given system is equivalentto ([0 1 5| » [=]| 0
00 0]z 0
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ie.,
x—2z=0
y+5z=0

Let us choose z =k, then x =2k and y =-5k where k is any arbitrary constant.

Therefore, the solution is (x,y,z)= 2k, —5k,2k)=%k(2,-5,2), which is
nontrivial.

Hence, the system has infinitely many solutions.

2.12 EXISTENCE OF THE SOLUTION OF A NON-HOMOGENEOQUS
SYSTEM

Let us consider the following non-homogeneous system of 7 linear equations with n
unknowns

anx; +anx, ot ay,x, = b
ay X +anx, -+ ay,x, =b

A Xy + Ay X+ + Ay X, = bm

If we write the above system of equations in the form of 4X =B

aip G e Qi X b
. . a a ... a by b
then coefficient matrix 4=| "2 "% | x=|"2]| B=|"?|and
Amt Am2 yn Xn bm
ay  ap ... a, b
. = |a a ..a b
augmented matrix 4=| 2" "2 2
Aml Au2  --- Apy bm

Theorem 2.6: A nonhomogeneous system AX = B is consistent iff rank 4 = rank
A. In other words, solution exists for a nonhomogeneous system 4X = B iff rank
A=rank A, otherwise the system has no solution.

Proof: Beyond the scope of the book.

Example 16 | Let us consider the system

x+2y=5
2x+5y=11
3x+7y=17
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1 2
Here, the coefficient matrix is 4=|2 5| and the augmented matrix 1is
3 7
1 2 5
A=|2 5 11|
3 7 17

Now we apply elementary row operations to the augmented matrix A

12 5 125
d-lr 5 (1| _Re-2R.R-3R 01 1
3.7 17 0 1 2

1 0 3 1 00

R,—2R,,R;— R, 0 1 1 R\ —3R3.Ry— Ry 01 0

00 1 00 1

1 0
So from the above, A is row equivalentto |0 1 | and A4 is row equivalent to
0 0

S O
S = O
—_— o O

and therefore rank of 4 =2 and rank of 4 =3.

Hence rank A4 # rank A4 and correspondingly, the system is not consistent, i.e.,
the system has no solution.

Theorem 2.7: Consider a nonhomogeneous system AX = B with m linear equa-
tions and » unknowns which is consistent (i.e., rank 4 = rank A). Then the follow-
ing cases hold.

i) The sytem has a unique solution (i.e., only one solution) if rank A4 = rank
A=n when m=n or m>n.

ii) The sytem has infinitely many solutions if a) rank 4 =rank A4 <n when
m=n or m>n and b) rank 4 =rank 4 <m when m <n.

Proof: Beyond the scope of the book.

Example 17 | Let us consider the system

x+y+z=1
2x+y+2z=1
xX+2y+3z=0
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1 1 1
Here, the coefficient matrixis 4=|2 1 2 | and
1 2 3
(1111
the augmented matrix is A=2 1 2 1
1 2 3 0

Now we apply elementary row operations to the augmented matrix A.

111
A={2 1 2 1 Ry=2Ry, Ry 3Ry 0 -1 0 -1
1 23 0 0 1 2 -1
DR 111 1 101 0
=% o1 0 1| BRRBR g 1 o0
01 2 —I 00 2 -2

(JR3 1 01 O 1 0 0 1
R, —R
\2) " o1t o 1S ylo 10 1
00 1 -1 00 1 -1
1 00
So from the above, A is row equivalentto |0 1 0
0 0 1
B 1 0 0 1
and A4 isrow equivalentto |0 1 0 1|
0 0 1 -1

and therefore, rank of 4 =3 and rank of 4 =3.
Hence, rank 4 = rank 4 =3 (i.e.,rank A = rank A = number of unknowns)

and according to case (i) of the above theorem, the system is consistent and the system
has a unique solution.

1 0 0Y«x
Now the above system is equivalentto |0 1 0 ff y |=| 1
00 1)z
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Hence we have the unique solution (1, 1, —1) for the given system.

Example 18 | Let us consider the system

xX+y+z=6
x+2y+3z=14
x+4y+7z=30 1 1 1
Here, the coefficient matrixis 4=|1 2 3 |and
1 4 7
1 11 6
the augmented matrix is A=|1 2 3 14 |
1 4 7 30

Now we apply elementary row operations to the augmented matrix A

1 11 6 111 6
=1 2 3 14| FoReBR Hg g o g
1 4 7 30 0 3 6 24
1 0 -1 2
R 3R, R—R o 1 2 8}
00 0 O
1 0 -1
So from the above, A is row equivalentto ([0 1 2
00 O
B 1 0 -1 =2
and A4 isrow equivalentto |0 1 2 8|
00 0 O

and therefore, rank of 4 =2 and rank of A=2.

Hence,rank 4 =rank 4 =2<3 (i.e.,rank 4 = rank A < number of unknowns)
and according to case (ii) (a) of the above theorem, the system is consistent and the
system has infinitely many solutions.

1 0 -1)(x -2
Now the above system is equivalentto |0 1 2 ||y [=]| 8
00 0z 0
ie.,
x—z=-2
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Let z=4k, then x=k—-2 and y=—-k+8, where k is any arbitary constant.
So (x,y,z)=(k=2,—k+8,k)=(-2,8,0)+k(1,-1,1).

Hence we have infinitely many solutions for the given system.
Example 19 | Let us consider the system
xX+2y+z=2

2x+5y+3z=5

Here, the coefficient matrix is 4= G ? ;) and

L. = (1 2 1 2
the augmented matrix is A(2 5 3 5].

Now we apply elementary row operations to the augmented matrix A
1= 1 2 1 2) R-2R 1 21 2) R-2R 1 0 -1 0
2 535 01 11 01 1 1]

So from the above, A is row equivalent to ( é ? _1 J

- . . 1 0 -1 0
and A is row equivalent to ( 0 1 1 1).

and therefore, rank of 4 =2 and rank of A=2.

Hence, rank 4 = rank 4 =2 (i.e.,rank A = rank A < number of equations)
and according to case (ii) (b) of the above theorem, the system is consistent and the
system has infinitely many solutions.

1o -1\ (o
Now the above system is equivalent to ( 0 1 1] y =(1]
z
ie.,
x—z=0
y+z=1

Let z=k, then x=k and y=-k+1, where k is any arbitrary constant.
So (x, y,z)=(k,—k+1,k)=(0,1,0)+k(1,-1,1).

Hence, we have infinitely many solutions for the given system.
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2.13 EIGEN VALUES AND EIGEN VECTORS

2.13.1 Characteristic Polynomial and Characteristic Equation

Let us consider an nxn matrix A. Then the characteristic polynomial f,(1) is
defined as

apy —A« app ay,
a an—A ... a
det(4-21,)=| © 2 2
a, Ay cee Ay —A

where A ={(a;)x,-

It is obvious from the definition that the characteristic polynomial f,(A) is of nth
degree and is of the form

Fa A= b A" + B A" by A" b,
where by(#0), by, b,, ..., b, are constants.

Note: It can be easily shown that the constant term appears in the polynomial (i.e.,
the term b, ) is equal to det(A).

The characteristic equation is defined as

a“—l a);p a,
det(A—AL)=| @ an—A . @, |
a, Ay e Ay — A

e, [y (A)=b A"+ A" +hA" 2 -+ b, =0.
So the degree of the equation is #, which is same as the order of the matrix A.

Example 20 Let us find the characteristic polynomial and characteristic equa-
tion of the 2x2 matrix 4= (:1; i]

Here, characteristic polynomial is

. 1-A 2 2
=det(A- A1) = =A"-6A-1.
fa(RA)=det(4—- A1) ‘ 3 52 AT —64
It is very important to note that in the polynomial (—1) is the constant term which
. 1 2
Ito det 4= =-1.
is equal to de 3 s

The characteristic equation is f,(1)=0. i.e., A2 —61—-1=0.

The degree of the equation is 2, which is same as order of the matrix 4.
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2.13.2 Cayley—Hamilton Theorem
If A be a square matrix of order » X n then A satisfies its own characteristic equation.
From the above theorem, we can say that if the characteristic equation of a square

matrix 4 of order nxn is
BA" + b A" + 0, A" 44 b, =0,
then we have
byA" + B A" + 5, A" 4.4 b1, =O,.
where O, is the null matrix of order n.
For example,
In the last example, the chracteristic equation is A2 bR =i;

So by Cayley—Hamilton theorem we have A Y bd—L=10,.

2.13.3 Determination of Inverse of a Matrix using Cayley—
Hamilton Theorem
Let us consider a nonsingular square matrix 4 of order nxn and its chracteristic
equation is byA" +HA"" +b,A" 2 4.4 b, =0.
Then by Cayley—Hamilton theorem, we have
boA" +b A" 45, A" b, A+ b,], =0, (1)
Now since A4 is nonsingular, b, = det(4) # 0 and so b, exists.
So from the above equation (1),

bed e B AT 3 b A 2 ol gl = b L,
A(by A" +by A" 4 by 4" ook, 1, ) = b, I,
A[_b;l (b(’An_l + b]A'FZ +b2A"7‘; +"'bn—]]" )] - In

So,
A7 ==, (b A" 4 A" by A b, )
-1 0

2
Example 21 | Let us find the characteristic equation of 4={0 3 -2 | and
1 0 -2

using Cayley—Hamilton theorem, find 47"
The characteristic equation of A is det(4—-A1,)=0

2-1 -1 0
ie,| 0 3-1 =2 [=0
1 0 -2-1

ie, A -322—41+10=0.
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By Cayley—Hamilton theorem,
A® —3A7 —4A+101, = O,
ie,A*—3A% —4A =101,

e, A(A?=3A-41,) =101,

. 1 ) _
ie. A[—E(A ~3A —413)} =1,

. 1 1,2
ie. A —[—m\A —3A—413)}

2 -1 0Y(2 -1 0 4 -5 2
A2={0 3 =2[l0o 3 2|=|2 9 =2
1 0 =2)(1 0 =2 0 -1 4

4 -5 2) (6 -3 0) (4 0 0)

So, (A2-3A-4I,)=|2 9 2 -]0 9 -6 -0 4 O

0 -1 4) {3 0 -6) (0 0 4)

-6 -2 2)
=2 —4 4.
-3 -1 6)

6 2 -2)

Hence, A‘1={—%(A2—3A—413)}=% 2 4 4.

31 -6)

2.13.4 Eigen Values of a Matrix

Roots of the characteristic equation of a square matrix A are called the eigen values
of A.

Eigen values are also known as characteristic roots.
For example,

(1 3
letA(O 2}

Then the characteristic equation is det(4—A7,)=0.
1-4 3

0 2-2
ie,(1-1)2-4)=0
re, A=1,2.

i.e., =0

So, 1 and 2 are the eigen values.
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Theorem 2.8: 0 is always an eigen value for a singular matrix.

Proof: Let 4 be any singular matrix of order #nxn and its characteristic equation is
boA" + b A" + b A2 4o b, A+, =0.

Now since 4 is singular, b, =det 4 =0.
S0, ByA" + B A" + b A"+ +b, A =0
e, MbA" " +b A" +b A" 4 4b, )=0

Therefore, A =0 is an eigen value.

For example,

1 01
let A={2 2 3|
000

Clearly, det A =0. So, A is singular.
Then the characteristic equation is det(4—AZ;) = 0.

1-A 0 1
ie,| 2 2-1 3|=0
0 0o -2

e, M1-1)(2-21)=0

ie,A1=0,1,2.
So, 0 is an eigen value.

Theorem 2.9: The diagonal elements are the eigen values for any diagonal matrix.

d 0 ... 0
. . . 0 d, ... 0
Proof: Let us consider an nxn diagonal matrix, 4 =
0 0 d,
dy—A 0 0
Then its characteristic equation is 0 d=A ... 0 |- 0
0 0 d,—A

ie,(d—A)dy—A)...(d,—2)=0
ie,A=d|, d,,...,d,.

Hence, the theorem is proved.

For example,

1 00
let A={0 2 0|
0 0 3
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The diagonal elements are 1, 2, and 3.
Then the characteristic equation is det(4—Al3)=0.

-4 0 0
ie,| 0 2-2 0 |=0
0 0 3-1
ie,(1-2)2-A)(3-21)=0
e, A=1,2,3.

So, the eigen values are 1, 2, and 3.

2.13.5 Eigen Vectors of a Matrix

Let us consider a square matrix 4 of order nxn. Now if an n-dimensional non-null
vector £= (x|, X5, ..., X, ) satisfies the equation

AX= AX, where A is any scalar then x is called an eigen vector of the matrix A.
Now if At= Ax holds, then (4—AI,)x=0.

This is nothing but a homogeneous system of » equations with » unknowns.
Since the system has a non-null solution,

we have det(4—A17,)=0.

This leads to the conclusion that the scalar A is the eigen value corresponding to
the eigen vector £ .

Theorem 2.10: There exists a unique eigen value corresponding to a eigen vector.

Proof: Beyond the scope of the book.

Theorem 2.11: If X, and x, are two eigen vectors corresponding to two distinct
eigen values then X, and X, are independent.

Proof: Beyond the scope of the book.

Example 22 Let us find the eigen values and eigen vectors of the

. (4 6
matrix A[Z 8]'

4-2 6‘

g—4

The characteristic equation is

ie, A7 =121+20=0
ie., (A-10)(A-2)=0
So, the eigen values are A =10 and 2, say A, =10 and A, =2.
X

Let)%l —(
X2

J be the eigen vector corresponding to A, =10.
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ThenA)?F)L1 )?]

(o L)l

i.e.,
4x,+6x, =10x,
2x; +8x, =10x,
i.e.,
—6x, +6x, =0
2x; —2x, =0

The above system is equivalent to x; —x, =0.

Now if x, =c¢, then x; = ¢, where c is an arbitrary real number.

A

AN
LetX ,= (x] ] be the eigen vector corresponding to A, =2.

X2

A A
Then AX ,=1,X,

)

i.e.,
4x, +6x, =2x,
2.\”] +8X2 = 2x2
i.e.,
2x;+6x, =0
le +6X2 = 0

The above system is equivalent to x; +3x, =0.

Now if x; =c¢, then x; = -3¢, where c is an arbitrary real number.

c

| 2.23

So the eigen vectors are X ; = (C)— c(i) corresponding to the eigen value
c

So the eigen vectors are )?f (_3CJ=C[_T] corresponding to the eigen value

A =2.

Theorem 2.12: Suppose A be an eigen value of an nxn square matrix A. Then

the following hold:

(1) Ais also an eigen value of AT,
(2) cAis also an eigen value of ¢4 for any scalar c.
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(3) A*is an eigen value of A4".

(4) A'is an eigen value of 47",

Proof:
(1) Since A is an eigen value of an nxn square matrix A,
we have (4—A1,) = A" —A1T = A" LI, {since I =1}
So, det[(4—AI,)" 1=det(4” —AI,)
ie., det(d—Al,)=det(4” — AL).
Since A is an eigen value of an nxn square matrix 4, det(4—Al,)=0.
So, det(4” —A1,)=0.

This proves the fact that A is also an eigen value of 4.

(2) Since A is an eigen value of an nXn square matrix A, det(4—Al,)=0.
Now det(cA —cAl,)=det[c(4—Al,)]=c" det(4—A1,)=0.
This proves the fact that ¢A is also an eigen value of ¢4 for any scalar c.
(3) Let us consider X be the eigen vector corresponding to the eigen value A.
Then AX =21 X.
So, A2X = A(AX) = AM(AX)=AAX)
ie., X =AX.
Therefore A* is an eigen value of A
Again 42X = A(A*X)= A(N>X)=21?(4X)= A* (LX)
ie., £AX=1X.
So, A% isan eigen value of A3,
Proceeding in the similar manner we have A" X = A" X.

This proves the fact that A" is an eigen value of A”.

(4) Let us consider X be the eigen vector corresponding to the eigen value A.
Then AX =AX.
So, A1 (AX)=A"(AX)
= (47X =14"X)
= [ X=MA"X)
= X=M4"'X)
=>A4'X=1"x.

This proves the fact that A7 is an eigen value of A
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Theorem 2.13: For an idempotent matrix, the eigen values are either 0 or 1.

Proof: Let A be an idempotent matrix 4 and X be an eigen vector corresponding
to A.

Then we have 42 = A4 and AX = A X.
So, A(AX)= A(AX)
= A X = A(A4X)

= AX = A(AX)
= AX =A*X.
So, AX = A*X
=AM -)X=0
=11 -1)=0
= AA-1)=0
=1=0,1.

This proves the theorem.

The following topic is included as advanced reading for interested students.

2.14 DIAGONALISATION OF A SQUARE MATRIX

2.14.1 Similar Matrices

Any matrix 4 of order » is said to be similar to another matrix B of the same order
if there exists a nonsingular nx# matrix P such that B= P ' AP.
It is easy to prove that if 4 is similarto B then B also is similarto 4 and

vice-versa. In this case, we say two matrices 4 and B of the same order are similar.
Theorem 2.14: Two similar matrices have the same eigen values.

Proof: Let 4 and B are two similar matrices of order n. Then fora nx#n nonsingular
matrix P, we have B = P'AP.

Now the characteristic polynomial of B is

det(B—M,,):det(P’lAP—Mn) (1)
Again

P (AL, P= P 'A(1,P)= A(P'P)= AL,
So using the above result, from (1)

det(B—AL,) = det[ P 4P~ P~ (41,)P]
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= det[ P! (4= 21,)P]
=det(P™")-det(4-21,)-det P
Therefore,
det(B—Al,)=det(P'P)-det(4—A4l,)
=det(/,)-det(A—Al,)=det(A—-AL,).

Since A and B have the same characteristic polynomial, they have the same
characteristic equations and correspondingly they have the same eigen values.

Note: The converse of the above theorem is not always true, i.e., the matrices having
the same eigen values need not be always similar.

Definition: A matrix 4 of order nxn is said to be diagonalisable if and only if 4 is
similar to an nxn diagonal matrix.

ie.,if D=P 'AP, where P isan nxn nonsingular matrix and nxn diagonal

matrix D is given by

AL, 0 0 ... 0
0 A4, 0 .. 0
D=0 0 Ay .. 0
0 0 0 .. A

n

Since 4 and P ' AP have the same eigen values and also the eigen values of any
diagonal matrix are its diagonal elements, we can say that 4, 4,, 41, ..., A, are the
distinct eigen values of the matrix A.

Theorem 2.15: A matrix A of order nxn is said to be diagonalisable if and only
if there exist n eigen vectors of A which are linearly independent.

Proof: Beyond the scope of the book.

Theorem 2.16: If the eigen values of a matrix A of order nxn are all distinct and
real, then A is diagonalisable.

Proof: Beyond the scope of the book.

2.14.2 Steps for Diagonalisation of any Square Matrix
Here we consider a square matrix 4 of order 3x3 and which has distinct eigen values.
Step (1) Find all three distinct eigen values of 4. Suppose they are A, 1,, 45.
Step (2) Find all three eigen vectors of 4 corresponding to A;, 1,, 15. Suppose
X ( N ] 2
X2 b2 p| 22

X3 L)’sJ 23
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are the eigen vectors corresponding to 4, 1,, A5 respectively.

XN 4
Step (3) Form the nonsingular matrix P=|x, ¥, 2z, |
X3 V3 Z3
A0 0
Step (4) The matrix P~' AP is the diagonal matrix D= 0 A, 0
0 0 A4
1 1 -2
Example 23 Let us show that 4A=| -1 2 1 | is diagonalisable, and
0 1 -1

find P such that P'AP isa diagonal matrix.
The characteristic equation is det(4—Al;)=0.

-1 1 -2
ie,| -1 2-4 1 [=0
0 1 -1-1

=(1-2)A-2)A+1)=0
=1=1,2,-1.

So, the eigen values are 1, 2, and —1.

X
Let X =| x, [ be the eigen vector corresponding to A =1.
X3
Then AX =4X.
I 1 2\ x X
=(-1 2 1{fx |=1|x
0 1 =1){x X3
i.e.,
Xi+ X =2x;3 =X
—X +2)C2 +X3 =X
Xy —X3 = X3
i.e.,
Xy _2X3 =0

—x +x,+x3=0
XZ—Z)C:), =0
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So the system is equivalent to
Xy —ZX3 =0
—x +x, +x3=0

Now if we set x; =k, then x, =2k, and x; = 3k;, where £k, is any arbitrary
constant.

3k, } 3
So the eigen vector corresponding to the eigen value A =1 is | 2k, J— k|2

Similarly, the eigen vectors corresponding to the eigen value A =2 and A =—1 are

1 1

ky| 3 | and k| O | respectively, where k,, k; are arbitrary constants.
1 1

Since all the three eigen values of A are distinct, the eigen vectors are linearly

independent and correspondingly A is diagonalisable.

31 1
So, we choose P={2 3 0|
1 1 1

Also detP=6#0, so P is nonsingular.

32 -1 (3 0 -3
Here adj(P)=| 0 2 2| =|-2 2 2
-3 2 7 -1 -2 7
3 0 3
So, P'=—|2 2 2
-1 -2 7
Now
| 30 3 I 1 -2)(3 11
Plap=—{—2 2 2||-1 2 1|2 3 0
lcr =2 7)o 1 —1){1 11
1 0 0
=0 2 0|=D
0 0 -1
1 0 0
where D=0 2 0 |, adiagonal matrix with the eigen values as its diagonal.
0 0 -1
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* WORKED-OUT EXAMPLES

|
—_

|
—_

Example 2.1 Find the rank of the matrix

—_—O N
AN O BN
W —
N DO

[WBUT-2002, 2008].

|
—_

-1
4
1
6 3 2

Sol. Let A=

—_ O N
S b~
w N O

Applying elementary row operations on the matrix 4, we have,

-1 2 0
4
0
6

Ry+2R,, R4+ R,

—_ O N

2
5
2

|
—_

|
—_

Ry+2R,
—_—

S O O
N = N

-1
4
1
3
0
2
5
2
0
2
5
0

OOO»—'-
SO O N 0O 0N
O»—*l\)rl—i

OO O -
S N - O

S OO —
|

SO =N OO DD OO RN
S = OO O = OO O M = -
(9,1

S OO =

S —- o O
[
N o=
N =1V
Il
o]

S OO =
SO - O
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The row-reduced echelon matrix B has the 3 nonzero rows.

So, rank of B =3 and hence rank of 4=3.

1 3 4 3
Example 2.2 Find the rank of the matrix {3 9 12 3 [WBUT-2005]
1 3 4 1
1 3 4 3
Sol. Let, A=|3 9 12 3
1 3 4 1

Applying elementary row operations on the matrix 4, we get,

1 3 43
-1 _
A=]3 9 12 3| RBRRBR
1 3 4 1
1 3 4 3 1 1
00 0 -6 ZR27R3
_—
00 0 -2
1 3 4 3
_l\lD\i_
0001R325;3R2
0 0 0
1 3 40
0 00 1|=B
00 00

The row-reduced echelon matrix B has the 2 nonzero rows.

So, rank of B =2 and hence rank of 4=2.

1 3 2 41
Example 2.3 Find the rank of the rectangular matrix 002 20
> 2 6 2 6 2
39 110 6
[WBUT-2006]
1 32 41
100 2 20
Sol.  Let A= v 62 6 2
39110 6
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Applying elementary row operations on the matrix A4, we get,

1 32 4 1
4|00 2 2 0| R-2R.R-3R
26 2 6 2
39 110 6
132 4 1) 1, (-1
00 2 20| 27227/
00 2 -2 0
00 -5 —2 3
13 2 41
00 1 10| R-R
00 1 10 >
00 -5 -2 3
13 2 4 1
00 1 1 0| Ry
00 0 00 5
00 -5 -2 3
13 2 41
00 1 1 0| R—5R,R—2R,
00 -5 -2 3
00 0 -0 0
1302 1)
00110 gRs
000 33|
00000
1 302 1
001 1 0| R—2R,R-R,
0001 1 ’
00000
1 300 -1
00 10 —1|_
0 0 0 1 173
0000 0

The row-reduced echelon matrix B has the 3 nonzero rows.

So, rank of B =3 and hence rank of 4=3.
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Example 2.4 Using elementary row operations find the inverse of the matrix

I 1 2
A=|2 4 4|
3 37

Sol.  Let us apply elementary row operations on the matrix (4 |/3)
1 1.2 1 00
(A11;)=|2 4 4 0 1 0 Ry 2R, R 3R,
337 001
I 1 2 1.0 0 lR
020 2 10|
00 1 3 1
1 1 2 1 0 0
010 -1 % () EECEECEN
00 1 -3 01
-1
1 02 2 — 0
2
01 0 -1 % 0 _}ﬂ_>
001 -3 0 1
1 0 0 8 _—1 -2
2
1 _ -1
010—1507(13\/1)
001 -3 0 1
Therefore,
g L
2
at=lo1 Lo
2
-3 0 1
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Example 2.5 Solve the system of equations by matrix inversion method:

X+y—z=6
2x-3y+z=1
2x—-4y+2z=1
Sol. The above system of equations can be written as AX = B
1 I -1)\«x 6
ie,|2 =3 1]y ]|=|1
2 -4 2|z 1
Therefore,

1
A=(2 -3 1|, X=|yl|and B=
2

1 -1 X 6
113
—4 2 z 1
So,
I 1 -1
detd=2 -3 1|==2=%0
2 -4 2
Since det A#0, A exists, and the system has a unique solution X = A'B.
Now,
O TP I TR R
-4 2 2 2 2 4
Lo 1 -1 1 -1 1
adj 4= _‘—4 2 ‘2 2 T -4
-1 |1 -1 11
-3 1 2 1 2 3
2 2 2y
=l 2 4 6
-2 -3 =5
-2 2 22
=|-2 4 3
-2 6 =5
Now,
1 -1 1
-2 2 2 3
i - 1 -2 —=
e - - 5
2 6 =5 1 3 =
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Therefore,
X=4"'B
1 -1
=2
b |-
)1 =3
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1
306 | ©
2 1
2 S
si1] |2
5 12

2

Therefore, the solution of the system of equations is

1

X=6,y=—;z

2

Example 2.6 IfA=|11 —4

2
1 2 1 2
1land B=| 1
3 0 -3 2

-1 0

11
, show that 4B = 615.
1 -1

Utilize this result to solve the following system of equations

2x+y+z=5
x—y=0
2x+y—-z=1

Sol. Here,

AB=|1 -4

30

2-4+2
6—6
6
0
00 6

0
6

24242 1-2+1 1-
1+4+1 1-
3-3 3

1 0
=6/0 1
0 0

2 1
Lyf1r -1 0
=312 -1

1

1
+3
0
() =
1

So, the first part is proved.

Now, to solve the system

2x+y+z=5
x—y=0

2x+y—z=1

[WBUT-2009].
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first we write the system in the following form

2 1 1)x 5
1 =1 O0fly|=|0
2 1 -1z 1
ie,BX=C (D)
where,
2 1 1 X 5
B=|1 -1 O0,X=|yl|landC=|0
2 1 -1 z 1

Now from the above relation AB = 6/5, we have

(lA}B—Q
6

So, from the definition of inverse, we conclude that B! exists and it is given by

B =14
6
(o2
Bl'==|1 -4 1|
63 o -3

Since B! exists, the solution of the system (1) is given by

X=BC
x) (1 2 1S
e,y |=—=|1 -4 1]}/0
2] 3 o 3|1
6) (1
_1 61=]1
6l12] |2

Hence, the solution of the given system is

x=1,y=1,z=2.

Example 2.7 Solve by Cramer’s rule

2x—y =3
3y—-2z=5
2z+x=4 [WBUT-2008]
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Sol. If we write the above equations in the form 4X = B then
2 -1 0 X 3
the coefficient matrix 4={0 3 -2 X=|y|and B=|5 |
1 0 -2 z 4

The determinant of the coefficient matrix is

2 -1 0
detA=0 3 -2[=-10#0
I 0 -2
Therefore, the system of equations is consistent and the system has a unique
solution.
Now
3 -1 0
det4, =[5 3 -2[=-20
4 0 =2
2 3 0
det4, =|0 5 -2|=-10
1 4 2
2 -1 3
det4; =0 3 5[=10
1 0 4

So, the solution of the system of equations by Cramer’s rule is given by

_etd 20,

det4 -10
7detA27—_10_1

det4 -10
_detd 10 _

det4 —10 '

Example 2.8 _ Solve by Cramer’s rule

3x+y+z=4
xX—y+2z=6

xX+2y—-z=-3 [WBUT-2009]
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If we write the above equations in the form AX = B then

31 1 X 4
the coefficient matrix 4={1 -1 2| X=|y|and B=| 6|
1 2 -1 z -3

The determinant of the coefficient matrix is
31 1

detA=|1 -1 2[==-3%#0
1 2 -1

Therefore, the system of equations is consistent and the system has a unique
solution.

Now,
4 1 1

det4,=| 6 -1 2|=-3

-3 1

3 4 1
det4,={1 6 2[=3

1 -3 -1

3 1 4
det4;=|1 -1 6|=-6

1 2 -3

_detd 3
det4 -3
_detd, 3 _
det4A -3
_detd _—6_,
det4 -3

Example 2.9 Investigate for what value of A and u the following equations

xX+y+z=6
x+2y+3z=10
x+2y+Az=u

have 1) no solution, ii) a unique solution, and iii) an infinite number of solutions.

[WBUT-2004]
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Sol. If we write the above equations in the form AX = B then the coefficient
11 1 X 6
matrix A=|1 2 3|, X=|y|and B=|10 |
1 2 2 z u

The determinant of the coefficient matrix is

I 1 1
det4d=l 2 3
1 2 2

=121-6)-1(A-3)+1(2-2)
=1-3
Now,
6
detAl =110

Do —

1

3
u A
=6(2A—-6)—-1(10A-3u)+1(20-2u)
=2A+u-16

1 6 1
detd, =[1 10 3
I u A

=1(10A=31)— 6(A=3)+1(1—10)
=4A-2u+8

11 6
det4, =1 2 10
1 2 u

=12u—-20)—1(u—-10)
=u-10
[Note: The following cases will be discussed according to the observations of Section 3.8]

Case (i): The system of equations have no solution when det A=0= A =3 and at
least one of det 4;, det4,, detA4; is nonzero,

i.e., when A =3 and at least one of

224 u—-16%0,41-2u+8#0, L —10#0

i.e., when =3 and u #10.
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Case (ii): The system of equations have a unique solution when det 4 # 0,
i.e., when A #3.

Case (iii): The system of equations have an infinite number of solutions when
detA=0=A=3 and det4, =detd, =det 43 =0
ie, when A=3 and 2A+u—-16=0,44-2u+8=0,u—-10=0
i.e., when A =3 and u=10.

Example 2.10 | Determine the nature of the solution without solving the

homogeneous system of equations:

x+y+3z=0
2x+y+z=0
3x+2y+4z=0
1 1 3
Sol. The determinant of the coefficient matrix 4 is detA=1{2 1 1
3 2 4

=1(4-2)-1(8-3)+3(4-3)=2-5+3=0.

Since the determinant of the coefficient matrix is zero for the given
homogeneous system of equations, the system has infinitely many nontrivial
solutions.

Example 2.11 | Solve by the consistency of the following system of equations and

solve if possible

x+y+z=1
2x+y+2z=2
3x+2y+3z=5 [WBUT-2006, 2008]
Sol. The system of linear equations can be written in matrix form as 4X = B
T 1 1)x 1
e,|2 1 2|y |=]2
3 2 3]z 5

The coefficient matrix of the system of equations is

1 1
A=]2 2
3 3

N = =
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and the augmented matrix is

A=

W N =
o = =
w N =
W =

Applying elementary row operations on the augmented matrix A, we have,

I 1 1 1

— -0 —
3235
1 1 11
0 -1 0 0 R3 _R2s Rl +R2
0 -1 0 2

1
10 1T 1) (=DRy, =R

0 0 0 2
1 0 1 1
01 0 o L=k
00 01
1 01 0
0100
00 0 1

Here, rank of A is 3 and rank of A4 is 2.

Since rank of 4 # rank of A, the given system of equations is inconsistent.

In other words, the system does not have any solution.

Example 2.12 | For what value of & do the following equations

x+y+z=1
2x+y+4z=k
4x+y+10z = k* have solutions? Solve them completely in each case.
[WBUT-2003]
Sol. The system of linear equations can be written in matrix form as AX = B

1

11 1
ie,|2 1 4
4 1 10

N =
Il

1 k2
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1

11
The coefficient matrix is A=|2 1 4 | and the augmented matrix is
4 1

10
(1o
A=2 1 4 &

4 110 k*

Applying elementary row operations on the augmented matrix A, we have

11 1 1
— _" _
-l 1 4 & | _R2R.R4R
4 110 k°
11 1 1
0 1 2 koo | RIRRHR,

0 3 6 k*—4

1 0 3 k-1
0 -1 2 k=2
0 0 0 K -3k+2
1 0 3
The coefficient matrix is equivalent to the matrix {0 -1 2 |
0 00

Therefore, the rank of A4 is 2.

The system of equations have solutions if rank 4 = rank A.

The matrix A has rank 2 if and only if k*=3k+2=0=k=1,2.
For, k =1, the system of equations becomes

1 0 3)(x 0
0 -1 2| y|=]-1
0 0 0}z 0

The above system is equivalent to
x+3z=0
—y+2z=-1

Putting z=4k;, we get x=-3k; and y=2k; +1, where k;is an arbitrary
constant.

So the solution is (x, y, z) = (=3k;, 2k +1, k). In this case, the number of
solutions is infinite.
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For k =2, the system of equations becomes

1 0 3)x 1
0 -1 2fy|=|0
0 0 Oz 0
The above system is equivalent to
x+3z=1

-y+2z=0

Putting z=+k,, we get x=-3k, and y=2k,, where k,is an arbitrary

constant.

So the solution is (x, y, z) = (—=3k,, 2k,, k;). In this case also, the number of

solutions is infinite.

Example 2.13 | Determine the values of a and b so that the system of equations

2x+3y+4z=9
xX—=2y+az=5
3x+4y+7z=b

have 1) a unique solution, ii) many solutions, and iii) no solution.

Sol. If we write the system of linear equations in the matrix form as AX = B then

the coefficient matrix of the system of linear equations is

2 3 4
A=({1 =2 a
3 4 7
and the augmented matrix is
(2 3 49
A={1 -2 a 5
3 4 70b

The system of equations have unique solution when the determinant of the

coefficient matrix is not equal to zero.

2 3 4
detA=|1 -2 a
3 4 7

=2(~14—4a)—-3(7-3a)+4(4+6) = a—9
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Therefore, for det A=0=a#9 the system of equations have a unique
solution.

When a =9, the augmented matrix becomes

(2 3 49
A=l1 2 9 5
347 b

Applying elementary row operations on the matrix Z, we have

_(2 3409
A=|1 =2 9 5|—2
347 b
1 2 95
5 3 4 9| R2RR+3R,
347 b
1 =2 9 5 1
0 7 14 -1 7 R
0 10 20 h=15|— "
1 =2 9 5
o 1 2 =L |_Rt2R, R-10R,
7
0 10 20 b-15
1oz 2
7
01 2 -
7
10

00 0 b-I5+—
7

The system of equations is consistent when rank 4= rank A and this is
possible for

b—15+920
7
i.e.,b=%.
7

In this case, rank 4 = rank A= 2, which is less then the number of unknowns
(=3) and the system has infinitely many solutions.
Again, if

b—15+1—0¢0:b¢%.
7 7
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then rank A =2 and rank A= 3,ie,rank A # rank A

and so the system of equations is inconsistent and correspondingly, the system
has no solution.

Summarizing the above, we have

i) the system of equations has a unique solutions when a # 9

ii) the system of equations has infinitely many solutions when a =9
95
and b=—
7

5
iii) the system of equations has no solution when ¢ =9 and b # -

Example 2.14 | Solve the system of equations

x+2y+z-3u=1
2x+4y+3z+u=3

3x+6y+4z—-2u =4 if possible .

Sol. The coefficient matrix of the system of equations is
1 2 1 3
A=|2 4 3 1
3 6 4 2

and the augmented matrix is

(121 31
A=12 4 3 13
364 2 4

Applying elemetary row operation on the augmented matrix A, we have

-3 1

1 2 1

a=l2 4 3 1 3| Re2RR RO
36 4 2 4

1 21 31

0 0 7 1 R3_R2’R1_R2

0 0 71

12 0 -10 O

0 0 1 7 1

000 0 0

Here, the equivalent matrix has two nonzero rows and rank 4 = rank A=2.
So the system of equations is consistent.
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Since, rank 4= rank 4 =2 < Number of unknowns (=4),
the system of equations has infinitely many solutions.

The equivalent system of equations becomes

120 10\ *]| (0

o0 1 7)7|=1

000 o] o
u

or,x+2y—10u=0
z+Tu=1

Taking, u =k, y=k,, we have x =10k, —2k,, z=1-7k;, where k and
k, are arbitrary constants.

Hence, the solution is given by
(x, y, 2) = (10ky =2ky, kp, 1=Thy, ky)

where k; and k, are arbitrary constants.

2

Example 2.15 If A4=|1

eigen vectors corresponding to its eigen values. [WBUT-2004]

find all eigen values of 4 and obtain all the

[
[\ RRVS N S
N — —

Sol. The characteristic equation of the matrix A4 is
det(A-213)=0

2-A 2 1
or,| 1 3-1 1 [=0
1 2 2-A

or, 2= A{B-)2-A) -2} -2{2-A)-1}+{2-(3-1)} =0
or, 2= A){6-5A+ A" =2} =2(1- )+ (-1+A)=0

or, 2= A)(A* =51+4)=3+31=0

or, 24> —104+8— A7 +51% —424-3+341=0

or, A =742 +111-5=0
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or, A-1)(A2=6A+5)=0
or, A-1)(A-5(A-1)=0
Therefore, the eigen values are A =1,1, 5.

X
Let X; =] y | be the eigen vector corresponding to the eigen value A =1.
z

Therefore, we have,

AX, =1 X,
2 2 1)«x X
or,|1 3 1{yl=l»
1 2 2|z z
or,2x+2y+z=x
x+3y+z=y

X+2y+2z=z
or,x+2y+z=0
x+2y+z=0
xX+2y+z=0
So the above system is equivalent to
x+2y+z=0.

Let y=k and z=k, then x=-2k —k, where k; and k, are arbitrary
constants.

Therefore, the eigen vector corresponding to the eigen value A =1 is given

by

X _2k1 - k2
Xi=|y = ky

z k2

-2 -1

= kl 1+ k2 0

0 1

X

Let X, =| y | be the eigen vector corresponding to the eigen value A =5.
z
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Therefore, we have,
AX2 = 5X2
2 2 1)\«x X
or,|1 3 1 ||y |=5]»
1 2 2|z z
or, 2x+2y+z=>5x

x+3y+z=S5y
x+2y+2z=>5z
or, —3x+2y+z=0

x=2y+z=0

x+2y-3z=0
Here, the determinant of the coeficient matrix is
-3 2 1
A=1 =2 1/=0
1 2 -3

Therefore, the system of homogeneous equations have nontrivial solutions.
The solutions are

X 4k
X, ={y |=| 4k |=4k|1
z 4k
0 -1 2
Example 2.16 | Verify thatthe matrix A=| 1 0 3 [ satisfies its own character-
2 30
istic equation. If possible, find AL [WBUT-2002]
Sol. The characteristic equation of the matrix 4 is
det(A-A1)=0
-2 -1 2
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= -AA* =9 +1(-1—6)+2(3+21)=0

= -2 +IL-A—6+6+41=0

=-A*+121=0

=21 -124=01
Now,

0 -1 2)(0 -1 2 36 -3
A={1 0 3|1 0 3|=|l6 8 2
2 3 0]l2 3 0 3 =2 13
36 =3)(0 -1 2
A=44=l6 8 2|1 0 3
3 =2 132 3 0

0 -12 24
=112 0 36
24 36 0
0 —12 24 0 -1 2
A -124=|12 0 36|-12[1 0 3
24 36 0 2 30

0 00
=0 0 0|=0
000

Since we have 4* =124 = O, the matrix 4 satifies its characteristic equation (1).

Again from (1), we have A(A? —12)=0 which implies A =0 is an eigen-
value, i.e., the matrix A4 is singular.

Therefore, A7 does not exist.

1

0 2
Example 2.17 | If4={0 -1 1 |thenverifythat 4 satisfiesitsown characteristic
10

0
equation. Hence, find 4" and 4°. [WBUT-2007, 2008]
Sol. The characteristic equation of the matrix 4 is

det(A—A1)=0
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1-A 0 2
or,l] 0 -1-4 1|=0
0 1 -2

Now
1 0 21 0 2 1 2 2
A2=[0 -1 1{lo -1 1|=[0 2 -1
o 1 ojJlo 10 (0o -1 1
1 2 2Y1 0 2 1 0 4
A =424=|0 -1llo -1 1]=]l0 -3 2
0 -1 1Jlo 1 0] |0 2 -1
Therefore,
A —24+1
1 0 4 1 0 2)Y(1 0 0
=10 =3 2[|-2(0 -1 1]+/0 1 0
0 2 -1 0 1 0)]lo 01
000
=0 0 0|=0
000
Since
A =24+1=0 (1)

the matrix A4 satisfies its own characteristic equation.

Now, from (1), we have
A -24+1=0

or, A(A* =20y =—I
ie., A-[—(A2 -21)] =7

So, from the definition of inverse, we have

A=A -2n=21-47
1 0 0) (1
ie,4'=2[0 1 0-|0 2 -1
00 1]1l0
2 -2

1
=0 0 1
0o 1 1
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Again, from (1), we obtain

A -24+1=0

or, 42 =24-1

or, A = (L)Y =Q4-1) =84 -124% +64-1

=8(2A4-1)—12A4" +6A4—1=224-124> 91

1 0 2 1 2 2 1 00
or, =220 -1 1|-12|0 2 -1}]-9/0 1 0
0O 10 0o -1 1 0 0 1
1 =24 20
=10 -55 34
0 34 -21
0 0 1
Example 2.18 | Show that the matrix A=| 3 1 0| satisfies the Cayley—
-2 1 4
Hamilton theorem. [WBUT-2007]
Sol. The characteristic equation of the matrix is
det(A-A1)=0
-A 0 1
or,|3 1-4 0 |=0
-2 1 4-2
or, CM){(1-1)@-A)}+{3+2(1-4)} =0
or, (~A)(A* =54 +4)+(5-21)=0
or,—A>+51% —4A-24+5=0
or, A* =542 +61-5=0
Now,
0 0 1 0 0 1 -2 1 4
A= 3 1 0| 3 1 0= 31 3
-2 1 4/l-2 1 4 55 14
-2 1 4 0 0 1 -5 5 14
A=44=] 3 1 3| 3 1 0|=| -3 4 12
55 14|21 4 -13 19 61
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So,

A =542 +64-51

-5 5 14 2 1 4 00 1 1 00
= -3 4 12|-5| 3 1 3|46/ 3 1 0o|-5l0 1 0
13 19 61 5 5 14 2 1 4 0 0 1
00 0

=10 0 0]=0

00 0

Therefore, the matrix A satisfies its own characteristic equation.

Example 2.19 | Find the eigen values and corresponding eigen vectors of the

1 -1 2
matrix |2 -2 4 [WBUT-2008].
3 -3 6
1 -1 2
Sol. Let A=|2 -2 4
3 -3 6

The characteristic equation of 4 is
det(A-AI)=0

3 -3 6-1
or, (1= {(2-A)6—-A)+12} +1{2(6 - A)— 12} +2{-6+3(2+A)}}=0
or, (1= A){=12—4A+ A% +12} + {1224 - 12} + 2{-6+6+3A} =0
or, (1= A)(A? —42)+4A=0
or, M{(1-A)(A-4)+4}=0
or, MA—A2 +4A—4+4}=0
or, A (A-5)=0
Therefore, the eigen values of the matrix 4 are 1 =0, 0, 5.

X
Let X; =| y | be the eigen vector corresponding to the eigen value A = 0.
z
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Therefore, we have

AX=0-X
1 -1 2)\(x 0
or,|2 -2 4|y |[=|0
3 -3 6|z 0

or,x—y+2z=0
2x=2y+4z=0
3x-3y+6z=0
The above system is equivalent to
x—y+2z=0
Let y=4k and z=k,, then x=4k —2k, where k and k, are arbitrary

constants.

Therefore, the eigen vector corresponding to the eigen value A =10

X ke — 2k,
X = y = kl
z k2
1 -2
= kl 1+ k2 0
0 1
X
Let X, =| y | be the eigen vector corresponding to the eigen value A =3.
z

Therefore, we have

AX2=5X2
1 -1 2Y«x X
or,|2 -2 41y |[=5»
3 -3 6}z z

or, x—y+2z=>5x
2x—2y+4z=>5y
3x-3y+6z=>52z
or,—4x—-y+2z=0
2x=Ty+4z=0

3x-3y+z=0
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This is a homogeneous system and the determinant of the coeficient matrix is

-4 -1 2
2 -7 4/=0.
3 -3 1

Therefore, the system of homogeneous equations has nontrivial solutions and
the solutions are

where k is any arbitrary constant.

Therefore the eigen vector corresponding to the eigen value A =5

x) (10k 1
X, =|y |=| 20k [=10k| 2
z | |30k 3

Example 2.20 | Determine the eigen vectors of 4= (? ;) and then diagonalise

A with the help of the basis of eigen vectors. [WBUT-2003]

Sol.

The characteristic equation of the matrix 4 is
det(4—-AI)=0
5-4 4

1 2-2
or, 5-1)2-1)-4=0

r’

-0

or, A =7A+6=0
or, A-1)(A-6)=0

So, the eigen values of the matrix 4 are 1 =1, 6.

Now let X, = (;J be an eigen vector corresponding to the eigen value A =1,
then

AXlzl‘Xl

or 5 4\ x _(x
11 2 )\ y y
or,4x+4y=0

x+y=0



2.54

Engineering Mathematics-I

The above system is equivalent to
x+y=0
Taking x =k, we have y = —k;, where k; is any arbitrary constant.

Therefore, the eigen vector corresponding to the eigen value A =1

wCHEC)

Again let X, —(;) be an eigen vector corresponding to the eigen value
A =6, then
AX2 = 6X2

or 5 4)x)_(6x

11 2 )\ y 6y
or,—x+4y=0

x—4y=0

The above is equivalent to
x—4y=0
Taking y =k,, we have x = 4k,, where k, is any arbitrary constant.
Therefore, the eigen vector corresponding to the eigen value A =6

)L

Since both the two eigen values of A are distinct, the eigen vectors are linearly
independent and correspondingly A is diagonalisable.

So, we choose P = (_} TJ,

Also, det P=5#0, so P is nonsingular.

T
. (1T 1y (1 -4
Here, adj (P)—(_4 1) —(1 1]
11 -4
So, P 5(] 1).
Now
—4\(5 4)\( 1 4
{1 2J1-1 1
(1 0)_
(o o7

where D = ((1) g} a diagonal matrix with the eigen values as its diagonal.

P'AP—l(l
511



EXERCISES

Matrix II

| 255

— 1 Short and Long Answer Type Questions "—

1. Find the rank of the following matrices:

5
(a)| 4
5

(b)

©| 1

@[
|

—_— W = O

(@ [

4 5
5 7
7 10
2 -1 3
-1 2 1
2 3 2
-1 1 -1
10 4
32 1
2 4 3
012 1
310 3
6 4 2 8
9 4 2 10
343
9 12 3
3041
1 3 8
2 6 -1
3.9 7
4 12 15
1 -3 -1
0 1 1
10 2
1 =2 0

[Ans

[Ans

[Ans

: Rank is 2]

: Rank is 3]

: Rank is 3]

[Ans : Rank is 3]

[WBUT-2005]

[Ans : Rank is 2]

[Ans : Rank is 2]

[Ans : Rank is 2]
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1 -1 2 0 4
2 3 152
(hy 1 3 -1 0 3
1 7 -4 1 1
[Ans : Rank is 4]
3 -1 2
-6 2 -4
-3 1 =2

[Ans : Rank is 1]

2. Find all values of u for which the rank of the following matrix is 2.

1 2 3 1
2 53 u
1 1 6 u+l
[Ans: u=1].
3. Using elementary row operations, find the inverse of the matrix
2 00
4 3 0
6 4 1 [ 1 |
- 0 0
2
Ans: 21 0
3 3
-1 -4
— — 1
L 3 3 -
4. Using elementary row operations, find the matrix A if
3 -1 1
AT=1 2 3|
3 3 4
I 1 -1
Ans:[5 9 -8
3 6 =5

5. Find the eigen values of the following matrices:

1 =2
@ (_5 4]
[Ans: 6, —1]

5 4
b
© (1 2] [Ans : 6, 1].



10.

11.

12.

13.
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. Find the eigen values of the matrix

-6 0 0 0
0 -2 00
0 0 7 0 [Ans: -6, -2, 7,1]
0 0 0 1

2

31 4
. Prove that the vector | 0 | is an eigen vector of the matrix | 0 2 0 [ Mention
0 05

1

the corresponding eigen value.
[Ans : Eigen value is 5]

2 8§ -6 2

. Prove that the vector 1] is an eigen vector of the matrix | -6 7 -4

-2 2 4 3

corresponding to the eigen value 3.

. Verify the Cayley—Hamilton theorem for the following matrices.

2 1 3 2 -1 1 12 4
-1 3 =7 |2 1 1| of-1 4 -8
10 1 2 2 1 5 1 8

If a matrix A4 is invertible and its eigen values are A, A,,...1, and B= A",

show that the eigen values of B are L, L, ety L [WBUT-2006]
A Ay Ay
1 3 2 4 1
. .10 0 2 2 0
Find the rank of the matrix 26 2 6 2 [WBUT-2006]
39 1 10 6 [Ans : Rank is 3]
A1 1 1
. . A1 1.
Find all values of A for which the rank of the matrix L1 a1 is less than 4.
1 1 1 A
-1
Ans: A =1, 3
a c b d
. . - 0 a b ’ ’ ,
Find the rank of the matrix b —a 0 , | where aa’+bb" +cc” = 0.

|

Q\

|

S

|

Q\
o O



2.58

14.

15.

16.
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Solve the following system of equations by matrix inversion method:

a) 2x—y+3z=4

x+2y+2z=5

3x—y+4z=6
[Ans: x=1,y=1,z=1]

b) x+y+z=1
x+2y+3z=16
xX+3y+4z=22

[Ans: x=1,y=3,2z=3]
¢) x+2y+3z=6
2x+4y+z=17
3x+2y+9z=14
[Ans: x=1,y=1,z=1]

Solve the following system of equations by Cramer’s rule:

a) xX+y—z=6

2x-3y+z=-1

3x—4y+2z=-1
[Ans: x=3,y=2,z=-1]

b) —x+y+z=2

2x—y+3z=4

3x+2y—-6z=1
59 33:|

[Ans:x=2,y— ,Z=—
7 28 28

Examine the consistency of the following system of equations and if possible,
solve:

a) 2x—y+z=1
x+y+2z=-1
3x+2y—z=4
[Ans : Consistent and unique solution x =1, y=0,z=-1]
b) 4x-2y+6z=8
x+y-3z=-1
I5x-3y+9z=21

[Ans : Consistent and infinitely many solutions x =1, y=3k—-2,z=k ]
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c) x—-y+2z=4
3x+y+4z=6
x+y+z=2

[Ans : Inconsistent]

d) x—4y+7z=8

3x+8y—-2z=6

Tx—8y+26z=31
[Ans : Inconsistent]

e) x—-4y—-z=3
3x+y—-2z=7
2x-3y+z=10

[Ans: Consistent and unique solution x = Q, y= _—5, z= ﬂ}
17 17 17
f) 2x+y+4z=4
x—=3y—-z=5
3x-2y+2z=-1
—8x+3y—-8z=-

[Ans : Consistent and unique solution x =1, y=2,z=0]

Examine whether the following homogeneous system of equations have nontrivial
solutions and find them if they exist.

a) x+2y+3z=0
2x+3y+z=0
x+y+2z=0
[Ans : Only trivial solution]
b) x+2y+3z=0
3x+4y+5z=0
2x+3y+4z=0
[Ans : Nontrivial solution x =k, y=-2k,z=k ]
¢) x—2y+z-w=0
x+y-=2z+3w=0
4x+y=5z+8w=0

|:Ans : Nontrivial solution x = &, —gkb yv=k —gkz, z=k,w= k2:|
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18. Find the values of a and b so that the following system of equations have
(i) aunique solution, ii) no solution, and iii) infinitely many solutions.

a) 2x+3y+5z=9
Tx+3y—2z=8
2x+3y+az=>b

[Ans: i) Unique solution for a # 5, b = k (any constant) ii) No solution for
a=135,b#9 iii) Infinitely many solutions for a=5,b=9]

b) xX+y+z=b>b

2x+y+3z=>b+1

5)(-1—2y+az:b2

[Ans : i) unique solution for a # &, b = k (any constant) ii) no solution for
a=28,b+#3,—1 iii) infinitely many solutions for a=8,b=3,-1]

¢) 3x-2y+z=b
5x—8y+9z=3
2x+y+az=—

[

I

Ans : i) Unique solution for a # -3, b = k (any constant)

ii) No solution fora=-3,5 # %

. . 1
iii) Infinitely many solutions for a = -3, b = 3

19. Find the eigen values and corresponding eigen vectors of the following matrices:

2 -1 1
a) |-1 2 -1
1 -1 2

Ans: Eigen values: 1=1,1,4.,

1 1 1

Eigen vectors:for A=1,k| O [+k,| 1 |and for A =1, k5| —1

2 1 1
b | 2 3 4
1 -1 2

-1 0 1

Ans: Eigenvalues:1=1,-1,3,

Eigen vectors: for A =1, k

1 0 -2
=1 [ forA==1,ky| 1| forA=3,k;|-3
0 -1 1
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2 1 1
20. Verify Cayley—Hamilton theorem for the matrix 4= -1 2 -1 | and find A7
and 4. 1 -1 2
0100
0010 . 0 3
21. If A= 000 1F by Cayley—Hamilton theorem show that 4~ = 4°.
1 0 00

22. Find the inverse of the following matrices by finding the characteristic equation
(using Cayley—Hamilton theorem):

(@) ( 2 ‘21)

21
4113 3
Ans: A l%
3 3
1 21
M) |-1 0 3
-1 1
[ 1o
6 6 3
Ans:A*l=l_—lg
18 18 9
151
| 9 18 9]
1 2 1
© |1 -1 1 [WBUT-2005]
2 3 -1
[ 2 5 1)
9 9 3
Ans:A’1=l_—10
3 3
s 1 -
i 9 9 3]
1 2 =2
@ |-1 3 0
-2 1
3 2 6
Ans: 47'=|1 1 2
2 25
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23. Determine eigen vectors of 4 and then diagonalise A4 with the help of the basis
of eigen vectors:

(20
@ A—(z 3j

(5 4
() A—(l 2)

24. Find the matrices P so that P~'AP is a diagonal matrix (i.e., find P which
diagonalises the following matrices):

1 2 2
G A={ 1 2 -1
-1 1 4
1 1 2
Ans:P=1 0 -1
00 1
4 2 2
(i) A4=12 4 2
2 2 4
1 1 0
Ans:P=|1 0 1
1 -1 -1
1 2 3
(i) 4=10 1 0O
21 2
1 -3 1
Ans: P=|0 0 -6
1 2 4

Multiple-Choice Questions
. 2 1).
1. The rank of the matrix A= (3 4J 1s
a) 2 b) 3 c) 4 d) none of these

2. For what value of A does the system of equations x+ y+z=1; x+2y—z=2;
5x+7y+ Az = 4 have a unique solution?

a) A#2 b) 1#1 c) A#3 d A1#4



10.

11.

12.

Matrix II

2 0 1
. The value of a for which rank of the matrix | 5 « 3 |isless than 3?
0 3 1

3 3 3
a) — b) — c) — d 1.
) 2 ) 5 ) 3 )
1 1 1
. The value of k for which the rank of the matrix | 1 & 1 [is2is
10 1 0
a) 1 b) 0 c) —1 d) 2

. The system of equations x+2y—z=2; 4x+8y—4z =28 has

a) infinite many solutions b) no solution
¢) a unique solution d) none of these
(2 2 1Y).

. The rank of the matrix ( 6 6 3) is

a) 2 b) 3 c) 1 d) none of these
. The equation x—y =0 has

a) no solution b) exactly one solution

¢) exactly two solutions d) infinite number of solutions
. All the eigen values of any nilpotent matrix are

a) 0 b) 1 c) 2 d) none of these

1

13
. The sum of the eigen valuesof A=|1 5 1 |is
11

3
a) 6 b) 5 c) 4 d) 7

| 2.63

[Hint : The trace of any square matrix is equal to the sum of the eigen values.]

The system of equations x+y—3z=0; 3x—y—z=0; 2x+y—4z=0 has

a) a nontrivial solution b) a trivial solution
¢) no solution d) none of these
300
The eigen valuesof A=[{0 2 0 | are
0 0 4
a) 3,2,4 b) 5,4,6 c) 4,3,5 d) 7,2,9
. 2 2
The eigen values of 4= N 2] are

a) 2,4 b) 0,4 ) 0,2 d) 0,0.
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322
13. One of the eigen valuesof A=|2 1 3 [is
322
a) 16 b) 15 c) 0 d) 14.
14. A be an eigen value of an nxn square matrix 4 then A7 is an eigen value of
a) A° b) 24 o) A d) 4™
15. A be an eigen value of an nxn square matrix 4 then 21 is an eigen value of
a) A b) 24 o) A" d 4"
16. A be an eigen value of an nxn square matrix A, then A is also an eigen value of
a) A b) 24 c) A" dy 4!
17. A be an eigen value of an nxn square matrix 4 then A% is an eigen value of
a) A b) 24 c) A" d 4!
40
18. If the sum of the eigen values of the matrix A={0 a 0 is 7, then a is
7 0 2
a) 7 b) 1 c) 8 d) 2
19. If trace of a 3x3 matrix is 12, and two of its eigen values are 4, 6 then the third
eigen value is
a) 2 b) 1 c) 8 d) 3
20. If 4% = 4 then its eigen values are either
a) Oor2 b) Oor 1 c) 2orl d) none of these.
Answers:

1. (a) 2.(b) 3.(c) 4. (a) 5. (a) 6. (c) 7.(d) 8. (a)
9. (a) 10. (a) 11. (a) 12. (b) 13. (¢) 14.(d) 15.(b) 16.(c)

17.(a) 18.(b) 19.(a)  20.(b)



CHAPTER

Successive
Differentiation

3.1 INTRODUCTION

Suppose we have a differentiable function y = f(x) defined over an interval /. Then
its first-order derivative is denoted by

b d :
dx’f(x), dx(f‘(x))ay:yL

Now suppose the first-order derivative is again differentiable on a certain interval.
Then the second-order derivative is denoted by

d? L d? .
;zy, e

In this way we can find the higher-order derivatives, differentiating the functions
again and again, if they exist.

Basically, this leads to the formation of the present chapter named as successive
differentiation.

3.2 SUCCESSIVE DIFFERENTIATION

Successive differentiation of a function means differentiation of a function succes-
sively or repeatedly.

Suppose any function is given and you are to find its 100-th derivative, if it exists.
Now the question is whether you can find it without having prior knowledge of the
Ist, 2nd, ..., 99-th derivatives of the function. This means when you are finding deriva-
tives of higher orders, you should know all of its previous-order derivatives. This is a
very laborious and time-consuming job.
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So, to meet the above difficulty, if we can find a general formula for the n-th order
derivative of a particular function, if it exists, then by putting simply the value of n,
we can get the derivative of any order as we require.

Keeping similarity with the notations as before, we denote the n-th order derivative
of a function y = f(x) by

)‘l

(1)
o L r () (f())

3.3 n-TH DERIVATIVE OF SOME IMPORTANT FUNCTIONS

(a) Let us consider y = (ax+ b)", m is any number.
Then

y; =m-(ax+Db)

m=1

Vo =m(m—1)-(ax+b) "2 42

=m(m-2-1)-(ax+b)" 2 -a’
vy =m(m—1)(m—2)-(ax+b)" > -a’
=m(m—1)(m-3-1)-(ax+b)"" -a’

y, =m(m—-1m=2)...(m-n—1)-(ax+b)"" - a",
if n <m,m is any number.

Especially when m is any +ve integer and n < m,
v, =m(m—1m=2)...(m-n—1)-(ax+b)"" - a"

m!

= () -a” (ax+b)""

When n=m,

v, =m(m—1)m=2)...1-(ax+b)"" -a"
=m! a"
=n!-a"

When n>m and m is any +ve integer,
y, =0.

Example 1 | If y=(2x+3)°, letus find y,. ys and y;.

Here, m =6, a +ve integer.
In the first case, n=4. So n<m. Then
m!
(m—mn)!

Y, = -a" (ax+b)"".
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6!

_ A4 6-4
o1 24 (2x+3)

Ya

|
=%~24~(2x+3)2

In the second case, n=6. So n=m. Then
y,=nl-a".

ye =6!-25

In the third case, n="7. So n>m. Then
y;=0.

Example2 | If y= x %, letus find V-

Here, m=-2, a —ve integer and n = 4.
v, =m(m—1)m=2)...(m=n—1)-x""
ya =(22)(2-1)(2-2)(-2-3)x 7"
=120-x°

3

Example 3 If y= xZ, let us find y;.

Here, m= %, a fraction and n = 3.

v, =m(m—-1m=-2)...(m—n-1)-x""

L)

(b) Let us consider y = L (ax + b)_1
ax+b

Then

n=(D-(ax+b)? a
=(-1)-(ax+b)""a

2 =(1)(2) (ax+b)" -a®
=(=D* 2 (ax+b) > &P

3 = (D)D) (ax+b)™* -a’
==} 31(ax+b) "4

v, =(=D)"-nl-(ax+b) " a"
_ (=D nt-d"

(ax+b)"™"
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1

then
C(=D)"-nt-3"
C Bxts)t
_ (D413
(Bx+5)°
1
fy=>"73
then
b (-1)" n'i
2x-3)
(=1 3128
ST

(c) Let us consider y =log(ax+b)
Then

= ca=(ax+b)"-a

ax+b
Yy =(=1)- (a)c+b)_2 -a?
=(-1)-1-(ax+b)*-d*
=D - (ax+b)?*-d*
y3 = (=1)(=2)-(ax+b) "> -a’
=(=D* 2 (ax+b)> &
==D"-@-Dl-(ax+b)>-d°

Yo = (D) (=) (ax+ )" a"
=) m=Dta”
(ax+b)" ’

Alternative Method
y =log(ax+b)

50, ¥ = ‘a
ax+b
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y, = (n—1)th derivative of y,
1
-a
ax+b
=a- {(n —1)th derivative of( ! J}
ax+b

D"t (m=1)-a"!

= (n—1)th derivative of (

ie,y,=a-
(ax+b)"
D) m=1a”
(ax+b)"
3
Example 6 If y=1log
> 2x+1
then

y=3logx—log(2x+1)
=3.(—1)"*‘ (n=D! (=D)""-(n—1)1-2"

& x Qx+1)"
s D= (=D (6=1)1-2°
& x5 Qx+1)°

_ 5 2 3
1ex+D)® x° [

(d) Let us consider y = ¢“*?

Then

Y = e(ax+h) -a
y _e(ax+b) aZ
¥ _e(ax+b) (13
v, = (ax+b) _n

Example 7 | If y=¢%"Y then

Y, = e(2x+3) . zn
n

ys = e(2x+3) ~25

=05 2x43)
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(e) Let us consider y = cos(ax+b)
Then

y =-sin{ax+b)-a

(7
=a-cos| —+ax+b
12
V3 =-a’ -sin(%+ax+b]
=a’ <cos{2-§+ax+bj

V3 =—a’ -sin 2-%+ax+b]

=4’ Acos(3-%+ax+b)

" T
y,=a -cos(n~5+ax+b].

Example 8 | If y=sin®(3x+4), find y, and y,.

Here,

y= sin® (3x+4)

=—[1-cos2(3x+4)]

N —= N|=

[l —cos(6x+ 8)]

Vo= %[1 —cos(6x+8)]

——6—-cos(n»£+6x+8}
2

4
V4 =—6—-cos(4-§+6x+8]

=——cos(6x+38
3 (6x+8)

(f) Let us consider y = sin(ax+b)
Then

v =cos{ax+b)-a

(T
=a~sm[5+ax+b)

[WBUT 2003]



Successive Differentiation I 3.7

V4
V2 =a -cos(;+ax+b

+
g

+
S

5
!
<
W
G
2
[\
NN oy NN
+
g
+
fl
N————— \ AN /

Example 9 | If y=sin(2x+3)cos(2x+3), find y, and ys.

Here,
y=sin2x+3)cos(2x+3)

1 sin2(2x+3)
2
-1 sin(4x+06)
2
1.
Y, = > [sin{4x + 6)]

n

4]1
=—-sin n~£+4x+6 .
2 2

48 T
=—-sin| 8- —+4x+6
8 > ( 5 ]

48
= 5 sin(4x+6)

3.4 n-TH ORDER DERIVATIVE OF PRODUCT OF TWO FUNCTIONS OF
SAME VARIABLE

First, we recall the multiplication rule of the differentiation for finding 1s¢ order deriv-
ative of the product of two functions.

Suppose u# and v are two functions of x and 1sz order derivative exists for them
then 1st order derivative of y=u-v is given by

V1 = U 'V+Z/I‘V1.

Also, we can find the higher order derivatives of the product «-v, differentiating
repeatedly if they exist.
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Now the question is whether we can have any general formula for finding directly
the n-th order derivative of the product of two functions of the same variable. The
answer is yes and it is given by the following theorem:

Leibnitz’s Theorem
Suppose u and v are two functions of x and the n-th order derivative exists for both
of them. Then the » -th order derivative of the product y =u.v is given by

Vo =uV), =u,y+"Cup_ vy + "Cottyy_yvy ++ "Cotty,_,v, +--+uv,.
Proof: Beyond the scope of the book.

Note:

If we put n=1 in the above formula, we obtain y; = (u-v); =u; - v+u-v;, which is
the multiplication rule of differentiation for finding lsz order derivative of the product
of two functions. So it is clear that Leibnitz’s Theorem is nothing but the generalised
multiplication rule for finding higher-order derivatives.

Selection of z and v

In general, we can choose any function of the product as # or v, but if we carefully
see formula, the order of the derivative of v increases term by term. So, among the two
functions, which ever has more priority of vanishing at the higher order derivatives
should be taken as v. Basically, the reason behind it is to make the calculation easier
and, of course, to save time too.

Example 10 | If y = x? logx then let us find y,.

Here, we set u =logx and v= x2.

Then
- (n-1)!
N o) Uil
xn
and
v =2x,v, =2,y =y, =---=0

ie,v, =0,forn>2

Here, it is obvious from the above that x* has the more priority over logx of van-
ishing at the higher order derivatives and due to that factor we have choosen x* as v.

Now using Leibnitz’s theorem, we find the n-th derivative of y =u-v=logx- (x2 ) as

_ _ n n
Vn = (Z/l 'v)n =u,vt+ Clun—lvl + C2un—2v2 tetuy,

ie., y, = {logx~(x2 )}n

_ D=1
xl’l

1) (n-2)!

xn—l

n-3
2x)+ "G, w.(z).

() + "G
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Example 11 | If y=¢"sinx then letus find y,,.

Here, we set u=¢* and v =sinx.
Then

. . (nrm
u,=e" and vy, = s1n(7+xj
Here, it is obvious from the above that no function has the priority over another of
vanishing at the higher order derivatives and due to that we can choose # and v

arbitrarily.
Now using Leibnitz’s theorem, we find the n-th derivative of y =u-v=¢"sinx as

— — n n
Yn = (M'V)n =u,v+ Clun—lvl + CZMn—ZVZ teeetuy,

ie,y, ={e’Y -sin x}
n

. (7T ) . (2rm . (nm
—e”smx-i-"Cl‘ex-51n(5+xJ+"Cz~ex~sm(7+x]+~~+e"~sm[7+x)

WORKED-OUT EXAMPLES

2

X
Example3.1| If y= , find y,. WBUT 2001
Y (x_])(x_2)(x_3) Y [ ]

Sol. Let us consider
x* A B C
y= = + +
(x-Dx-2)(x-3) (x=1) (x-2) (x-3)
x? _A(x=2)(x=3)+ Bx—D(x=3)+ C(x—1)(x-2)
(x=1(x=2)(x-3) (x=D(x=2)(x-3)

=7 = A(x=2)(x=3)+B(x—1)(x=3)+ C(x = 1)(x—2)
Substituting x =1, 2, 3, we have respectively
17 = A(1-2)(1-3)
e, A= l
2
2 =B2-1)(2-3)
1e., B=-4.
and
32 =C3-1)(3-2)

re.,C= 2
2
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Therefore,
1 9
5 2
= b 2 4 N )
(x=Dx=-2)(x=3) (x=1) (x=2) (x=3)
s n Sl n
since y, = ) e, when y = L, we get from the above,
(ax+b)""! ax+b

1 (-1)"-n! =D"-n! 9 (=1"-n
== —-4. +— .
2 (x_l)n+1 (x_z)rH—l 2 (x_3)n+l

Example 3.2 | If y=e™ coshx, prove that

n
= ab
Yy = (a2 +b2)2 e™ cos(bx+ntan l—).

n

a
Sol. Here, we have
y=e* cosbx
Now differentiating w.r.t x,
v =a-e™ coshx—e™ -bsinbx
= ¢ (acosbx —bsin bx)
Consider a =rcosf and b=rsinf then
2

b
P =a’+b* and O = tan”' —
a

So,

¥y = e* (rcosB cos bx —r sin 6 sin bx)
=r-e™ -cos(bx+0)

Again differentiating w.r.t x, we have

vy =r-e® a-cos(bx+0)—r-e™ -sin(bx+80)-b
=r-e™ rcos@-cos(bx+6)—r-e™ -sin(bx+86)-rsin@
=r?-e™ {cos(hx +8)-cos6 —sin(bx +6) sin6}
=r?.e™ -cos(bx +26).

Proceeding similarly as above

vy, =r"-e* -cos(bx + nb)

n
Yp = (a2 +b? ) 2.e™ -cos[bx+ntan_1 2)

a
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Example 3.3 | If y=¢“ sinbx, prove that

Vo = (a2 +b? ))21 e sin(bx+ntanl é\

a)

Sol. Follow Example 3.2.

Example 3.4 | If y=x""logx, prove that

_(n=1)!
n X *
Sol. Here, we have
y=x""logx

Now differentiating w.r.t. x,
n-2 n—1 1
y=(n-1)-x"" -logx+x"" -—
X

ie,xp =m—-1)-x"" logx+x""

ie,xy =(n-1)y+x""

Now applying Leibnitz’s rule, we differentiate (n—1) times,

XDy =[=1) ¥, + 16" 1y

ey Wit X+ iyt 1= =Dy, +(n=1)!

i'e-a Y 'x+(n_})'yn—l :(n_l)yn—l +(7’l—1)'
ie., y, - x=(n-1)!

Hence

_(n=1)!
.

n

Example 3.5 | If y=2cosx(sinx—cosx) then show that (y;,), =2'".

Sol. It is given that
y =2¢0sx(sin x — cos x)
=2cosxsinx—2cos’x

=sin2x—cos2x—1

| 3.11
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Differentiating » times, we have

Y, = {sin2x}, —{cos2x},

=2" sin(n§+2x]—2" cos(n£+2x]

|2

=2"{sin n£+2x —cos n£+2x
2 2

Now putting x =0, we have

(y,)o =2" {sin(% )— cos(%)}

So

(rio)o = 210 {sin(loTﬂ J— cos(loTﬂ ]}

=21"4sin 57 — cos 571}
=2"%40-(-1)’}
Hence

(0)o =2

! -1)" -n! 1 1
Example 3.6 | If y=———, show that y, _ED n - 1
[ X —a 2a (x_a)n+ (x+a)n+
Sol. Here,
1 1
Yo

2o (xta)r-a)

_L[;_ ! }
2a|(x—a) (x+a)

So differentiating » times, we have

il
V1R s i ey

_L[(—l)"m B (—1)"~n!1

2a (x_a)n+] (x+a)n+l

Hence,

_(—1)”~n!|: L }
Vn 2a (x—a)"+1 (x+a)n+l'
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1 -1 -n! 1 1
Example3.7] 1f y=——— show that y, = 12) ? { - -
> ia " "

x“+a (x—ia) (x+ia)
Sol. Here,

1 1

¥ +a®  (x+ia)x—ia)

_L[;_ ! }
2ia| (x—ia) (x+ia)

So differentiating » times, we have

Rl = A e
i\ [, |G+ia) |,

_L{ )"0l (—1)"~n!:|

2ia| (x—ia)"""  (x+ia)™!
Hence,
_(=D"-n! 1 1
Yn = 2i . o N
la | (x—ia) (x+ia)
Example 3.8 | If f(x)=tanx and n is a +ve integer, prove with the help of
Leibnitz’s theorem that " (0)— "C, f" 2 (0)+ "C, " P (0) - = sin(%)
[WBUT 2001]
Sol. We have
sin x

f(x)=tanx =
cosx

or, f(x)-cosx=sinx.

Applying Leibnitz’s theorem, we differentiate n times w.r.t x,
{f(x)-cosx}, = {sinx},

S (x)cosx—"Cp f"D (x)(=sinx)+ "Cy £ (x)(—cos x)

+"Cy " () sinx+ "Cy P (x)cos x4 = sin(%+x]

Now, putting x =0 in the above, we get

SO ="Co f PO+ "Cy P (0) =+ = sin (7” ]
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If x+y =1, prove that the n-th derivative of x"y" is
e B Lo B (o e e e

[WBUT 2002]
Sol.  Letu=x"and v=y" =(1-x)"

Then u, = n!, v, =(-1)"-n!.

n!

sk

n-r
s

Also u, =
So,

w-v), =u,v+" Ciat,_ vy +" Cout,_yvy +---+uv,

(x"y” )n = {x"(l —x)”}

n

nyn n! n—1
==+ "G (-0 (1)
+ nczz_i,xz _n(n_l)(l_x)n—Z(_l)Z +“‘+xn(_1)n -
2 2
=n!{(1—x)”—(”cl) (1=x) " x+("C ) (1=x) 2

_(nC3 )2 (1 —x)"—3x3 +‘”(_1)nxn}
So,
(x"yn )n - n!{y” _(ncl )2 y"_'x+("c2 )2 §22

V2

-("c) y”_3x3+-~(—1)"x"}.

Example 3.10 | 1If y= tan 'x then show that
@ (1+2* )y =1

(ii) (l +x° )yn+1 +2nxy, +n(n—1)y, ;=0

Find also the value of y, at x=0. [WBUT 2003, 2005]
Sol. If we differentiate y = tan~' x w.r.t x, then
1
N =

1+ 22
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ie., v (1 +x° ) =1 (1)

Applying Leibnitz’s theorem, we differentiate » times w.r.t x,

[ (1+7)] =1,
= id, (1427 )+ "Gt -0+ "G}y - (2) =0

:>(l+x2)yn+1 +2nxy, +n(n—1)y,_; =0 ..(2)
Now we will find (y,,).

From (1),
1
1+x2

N =

i'e" (yl )0 = ]
Also, from (1),
2x

i.e., (1) =0.

Now putting x =0 in (2),

(Vur1)o +(n=1)(y,1)0 =0

e, (Vpe1)o = —n(n=1)(y,-1)o -(3)

If weput n=3,5,7,... in the above then

(¥4)o ==3-2:(y2)g =0, since (33)g =0

(¥6)o ==5-4-(y4)9 =0,since (y4)o =0

(5g)o =—T7-6-(ys)o =0, since(ys)y =0

and so on.

Therefore, (v,), =0, when #n is even.

Again putting n=2, 4, 6, ... in the relation (3), we have
(r3)o = =2-1-(y1)y = (=1)-2!, since (y;)o =1

(5)o =—4-3-(33)y = (=1)* -4, since (y3)o = (=1)-2!
(77)9 ==6-5-(y5)g = (=1) -6, since(ys)o = (~1)* -4!

n—1

Therefore, (v,)g = (—1)T “(n=1)!, when » is odd.
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Hence, we can say

n—1

(y,)o =(=1) 2 -(n—1)!, when n is odd

=0, when » is even.

Example 3.11 | Show that

n !
d” flogx )y el oo
dx" X xn+l 2 3 n
Sol. Here we are to find
d” (logx)_d l.logx
"\ x "\ x

x n

=D"-

xn+1

1
We set v =—, then u, =
X

D" (n-1)!
xn

if v=1logx, then v, =

Now using Leibnitz’s theorem, we have

w-v), =u,v+ "Cu,_ v + "Cou,_pvy +--+uv,

n

X

. 1 -1)"-n!
1.e.,{—-logx} =()71n-10gx+
. X X

2

1
" X

X

n-2
+ ”CZM.(_L]_F.H

¥ 1

-1 -n! 1V ! 1V 0
e, {l~logx} :%logx—( I?H— l’l._( 1) nl
n X X

(-)"-nl 1

1 n! 1 1
ie,{—-logxp =(-1)"—|logx—-1-—=—=—+..—
{x s }n D x”H( & 2 3

" !
ie., d l()ﬂ :(—])nL logx—l—l_l .....
dx” X xn+1 2 3

X

].

[WBUT 2003, 2008].

|
" (using (b) of Art. 3.3) and

(using (c) of Art. 3.3)

ne, V(=D 1

X

L e D)

X xn

2

}
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Example 3.12 Show that if u = sin ax+ cosax then

|
. N d
D'u=a" {1 +(=1)" sin 2ax}2 , where D = o
i

Sol. It is given that

u = sin ax + cos ax
Now differentiating » times, we have

u, = {sinax}, + {cosax},

Using (e) and (f) of Art. 3.3,

n .| AT n nw
u,=a sm| —+ax [+a cosf —+ax

2 2

nl . | AT nw
=a {SIn 74‘61}( + cos 7"‘0}(

Squaring both sides, we have

2 on | . | AT nmw :
(u,)” =a™"{sin| —+ax |[+cos| —+ax
2 2
= N+ 2sin| v ax | cos| ZE + ax
2 2
=a2”{1+sin2(%+ax]}

= ™" {1 +sin(nm +2ax)}

=" {1+(=1)" sin 2ax}

Hence,

u, =a" {l +(-1)" sin2ax}% )

Example 3.13 If y=cos (m sin”! x) then prove that

(1 —x? )yn+2 -2u+Dxy, . +(m2 —n? )yn =0.

A1S07 find (yn)().

| 3.17

[WBUT 2003].

[WBUT 2004]
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Sol. We have
_ -
y—cos(msm x)
. P |
i.e,cos  y=msin x

Now differentiating w.r.t x,

Squaring both sides, we have
(1) -(1-x) = (1=)7) (D)
Differentiating (1) w.r.t x,
2:y1: 3 '(1 - )+()"1 )2 (=2x)= m’ (—2mm)
Cancelling —2y; from both sides,
yy(1=x")=xp, +m*y =0. (2
Now Applying Leibnitz’s rule, we differentiate (2), » times
[yz .(] -x2 )]n —[yl -x]n +[m2y]n =0.
i, [ ad-(1=2°)+ "Clvad (2004 "Cobiah s (D)
—[{}’1}11 x+"Cr iy} '1]"""2}’” =0
ie., |:yn+2 . (l —x* )—an'y,,ﬂ -n(n—1)y, ]—[x-y,,+1 +n- yn]+mzyn =0
ie., (l —x? )sz -2n+1)xy, . + (m2 —n’ )y,, =0 ..(3)
Now we will find (y,),
Putting x=0 in y= cos(m sin”! x), we get (v)y =1.
We have from (1), by putting x =0
ie, (1) =0
Again from (2), by putting x =0
ie., () = -m’.
Now putting x =0 in (3),

(TS +(m2 -n’ )(yn)0 =0
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1. c., (V/7+7 )() (ﬂ -m )(yn)O (4
If weput n=1,3,5,... in the above then

(¥3)0 = (17 =m ) (310 = 0, since (31)g = 0

(¥5)0 = (3% = ) (32)o =0, since (33) =0

(7)o = (5" =1 )-(5)e =0, since (y5)g =0

and so on.

Therefore, (y,), =0, when » is odd.
Again putting n=2, 4, 6, ... in the relation (4), we have

(y4)o = (2 —-m )'(,Vz)o = —m? (22 —m? ), since (),)g = —m?
(V6o = (4 -m )'()’4)0 =-m’ (22 _mz)(4z _mz)’
since (yy)g = —m* (22 —m2)
Similarly, (y5)o = (6% =" )-(ys)o =—m’ (22 =m’ )(4* =" ) (6> =’ )
and so on.
o, )y = (2 <74 ) <o) [-2 -]

when 7 is even

Hence we can say

(¥,)o =0, when 7 is odd
=—m’ (22 —1112)(42 —mz)(62 —1712)...[(17—2)2 —mz],

when 7 is even.

Example 3.14 If y= (x2 - l)n then prove that

(%> =1) ¥piz + 259541 =n(n+1)y, =0 [WBUT 2006]
Sol. We have
y= (x2 = 1)

Now differentiating w.r.t x,

» :n~(x2—l)nil -2x
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ie., (xz —I)-yl = 2nx~(x2 —l)n
ie., (xz —l)-yl =2nxy
Again differentiating w.r.t x,
(x* =1) 2+ 20001 =2n(y +7)
. 2 _
ie., (x —1)-,\12 +2x(1-n)y, —2ny=0
Now Applying Leibnitz’s rule, we differentiate » times
[2-(x* =1)] +20-n)ly1 ¥, 2151, =0.
i, [ 2o (¥ =1)+ "Cllab - @0+ "Co b2 )]
£2(1=m)[ i}, - x+ "Cy b 1] =207, = 0
ie., {y,,+2 -(x2 —])+2nx4y,,+1 +n(n—l)yn}
+2(1 _n){x'yn-i-l +n'yn}—2nyn =0

i-e-» (XZ _l)yn+2 +2Xyn+l _n(n+l)yn =0

n

Example 3.15 | If y, = an (x" log x) then prove that

Vn =NYyy +(n-1)! [WBUT 2007]
Sol. Here,
Vp = x" log x
dx" ( )

dn—l d )
= F . {E(x logx)}

n—-1
e (nx”_1 10gx+x”-lJ

dxn—l X
So,
n—1 n—1
Yy = :ljc"_l (nx”*1 logx)+ cclixr’*l (x"il)
n—1

=n-

(x" ‘logx)+(n—1)!

n—1

ie., y, =ny, +(n-1L
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Example 3.16 | If y = acos(logx)+bsin(logx), prove that

X2y +Q2n+1)xy, + (n"— + 1) y, =0 [WBUT 2007]

Sol.

Here

vy =acos(logx)+bsin(logx)
Now differentiating w.r.t x,
; 1 1
» =—asin(logx)-—+bcos(logx)-—
x X
i.e., xy; = —asin(log x)+ b cos(log x)
Again differentiating w.r.t x,

V; +xy, =—acos(logx)- 1 bsin(log x)- 1
X X

e,y +xp, = (— i ){a cos(log x) + bsin(log x)}

So,

Xy +x7y, ==y

ie,x’y, +xy, +y=0

Now Applying Leibnitz’s rule, we differentiate » times.
[32-2 | +-x, + D01, =0.

e, [D2h X+ "G 02h1 @0+ "Cr b2 D)

n —
O 3+ "C b 1]+ 90 =0

i~e~, {yl1+2 _x2 +27’DC'_V”+| +n(n_l)yn}+{x.yn+l +n'yn}+yn =0
Hence

xzyn+2 +(2n+l)xy,,+1 +(7’12 +1)yn =0

Example 3.17 | With the help of result obtained by differentiating » times x*"in

two different ways, show that

1+

ﬁ+n2 =1y +n2 -(n=1)*-(n-2)* LG

1%ag? 1292 .32 (n)?*
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Sol.  Let y=x*" then
| !
(2)’1) x2n—n (2}’1)

 2n-n)! n!

Now again we can write

x".

n

n

_2n_ n _n
y=x"=x -x

Now applying Leibnitz’s rule, we differentiate » times.

. n! 4 n(n—-1) n! N
ie.y,=n-x"+n —-x-n-x""+ ( )~—~x2~n(n—l)<x"2
1!

2 2!

n(n—1)(n-2) n!
B TREETE

2 2 2 2 2 2
. (n—1 (=12 - (n—
ie.y,=n!-x" 1+n—2+n gn 2) +! (nz )2 (721 2) -
1 12.2 12.22.3

X n(n—-1)(n-2)-x"7 +--.

From (1) and (2), we have

202 o N2 2 gND o) |
i 1+n_2+n En 21) L (n1 1)2 (Z 2) e :(Zn).x,,
1 1“2 1-.27.3

n!
Hence,
ot (=1 nr-(n-17-(m-2*  (2n)
HEtTe g YT gy o
EXERCISES

(D)

(2

Short and Long Answer Type Questions

1. Find the n-th derivative y, of the following functions:
1

() y=(a—bx)?

2"
-1
(i) y=x?2

[Ans:(—l)” {1~3-5.H(2n—1)

2ﬂ

1
[Ans H-1)" {M}.(G_m"z}
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(iii) y=x4

3—4n
[Ans:(_l)n_]3»1.5.94.”.(4n—7)_x : ]

@iv) y

AT
Gx-=7)""
V) y=a ™"

[Ans v (=) 4" (loga)" -a_4X:|

(vi) y=1log(2x+9)

[Ans: 1" (n=1)1-2"
(2x+9)"

a+x

(vii) y=log
a-x

{Ans:(n—l)!{ L (b }
(@a=x)" (a+x)"]]

Ans:l 3sin ﬂ+x —3"sin ﬂ+3x
4 2 2 |

(vii) »=sin’x.

(ix) y=e*"sinxsin2x

[Ans : %ex {25 cos(%+x]+105 cos(3x+ntan_] 3)}

S S
) Y o) (x-2)
Ans:(—l)”ln!{(n+2)(n+l)+ (n+D) | ! P }
2(x_1)n+3 (x_l)nJrZ Z(x_l)n+1 (X_z)nJr]
2
(xi) y . [WBUT 2001]

- (x—D(x=2)(x-3)

Ane: LED A Dt 9 (D) !
2 (x_l)n-H (1‘(_2)71+1 2 (x_3)n+1
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(xi)) y=— [WBUT 2001]

x“+16
Aps: ED ! (.
8i | (x—4)"™"  (x+4)™!

2. Find the n-th derivative y, of the following functions using Leibnitz’s theorem:

(1) y=¢"logx

n—1

‘ 1 1 2! -1 n—1)!

Ans:e*qlogx+" C-—="Cy —+ "G ._+...+()4()
X X X x"

i) y= ¥ cosx

i n—1)n
Ans:x3(cos%+xJ+"C,-cos{( 2) +x}-3x2

) (n-2)z ’ (n=3)7
+"C, -cos TH -6x+ "C5-cos TH -6

(iii) y=x"e"

[Ans te’ [x" +"C ™t "y n(n—1)x"2 +-~-+n!]

(iv) y=x"(1-x)"

|:Ans:n!|:(1—x)" +("¢ )2 (-2 ("6 )2 (1= x)"2 et X"

(v) y=e"cosx

{Ans tet [cosx+” G .cos{%+x}+" Cz.cos{2.§+x}+ +cos{%+x}

(vi) y=x"tan"'x
Ans:y, =(-1)"'(n—3)!sin" %@
{(n —1)(n—2)sinnb cos” 6
—2n(n-2)sin(n—1)60 cos@
+n(n—1)sin(n—2)0}, where cot6 = x |

. -1
(vil) y= xlogx—.

A . :—ln _2) X—n _)C+I’l}
ns yn ( )(ﬂ ){(x—l)" (x+1)n

3. If y=2cosx(sinx—cosx), then show that (y,y), =2'". [WBUT 2001]
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4. 1f y= el prove that
@ (14+x7)y, +@x=1)3, =0

Qi) (1427 ) ypz + {2004 1)x =1}y, +n(n+1)y, =0

5. If f(x)=tanx and 7 is a +ve integer, prove with the help of Leibnitz’s theorem

that £"(0)—"C, f" 2 (0)+ "C, f" P (0) =+ = sin(%] [WBUT 2001]

6. If y= sin(m sin”! x), prove that
@ (1-%7)y2 =0 +m’y=0

(ii) (1 —x? ) Vyan — (20 +1)x0,; —(172 —m? ) y, =0

2
7. If y=(sin71 x) , prove that
@) (1—-\'2)y2 —xy=2=0

(i) (1=") yu2 =@n+D)xy, =17y, =0

8. If y=tan*1x then show that
(i) (1+x2)y,=1
(i) (1427 )yt +2m0y, +1(n=1)y, =0

Find also the value of y, at x=0. [WBUT 2003, 2005]

1 -1
9. If ym +y™ =2x, prove that

@ (x> =1)y +x0 —m’y=0

(i) (x2 —l)yn+2 +2n+1)xy, +(n2 —m* )y,, =0

10. If x+ y =1, prove that the n-th derivative of x"y" is
2 2 2
n,{yn _(nCI ) yn—1x+(HC2) yn—2x2 _(nCS) yn—3x3 +_“(_])nxn}.
[WBUT 2002]

I+
1. If y= ﬁ prove that (1-x7 )y, ~ {2(n=1)x+ 1}y, ~(n1~1)(n=2)y, > =0
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12. If y= 10g(x+\/1+x2 ), prove that (x2 —1)yn+2 —2n+Dxy,, —nzy,, =0
" !
13. Show that [ 198% = 1y jogx—1-L-L .1}
xn X xn+1 2 3 n
[WBUT 2003, 2008]
3 .
X 0, if miseven
- Yy =4 >
14. If y A prove that (v,), {—n!, s 0dd}for n>1.
_{.2 " 2 1)\ _
15. 1f y=(x> 1) then prove that (x* ~1)y,.; +2xp,1 —n(n+1)y, =0
[WBUT 2006, 2009]
-
16. If y= \7% prove that (1" ) ,.5 = (214 3)x7, —(n+1)", =0
I-x
17. If y= em“‘sflx, prove that (1 —xz)yn+2 -Q2n+1)xy,., —(n2 +mz)yn =0
",
18. If y, = P (x log x) then prove that y, =ny,_; +(n—1)! [WBUT 2007]
x
19. 1f cos-l(%} 1og(f] , prove that x’y, ., +(2n+1)xy,,, +2n’y, =0
n
20. If y = acos(logx)+bsin(logx), prove that
X2y, + Q@+ 1)xy,, + (n2 +1 ) y,=0 [WBUT 2007]
Multiple-Choice Questions
1. If y=¢ 7 then y, is given by
a) e " b) (-3)"e " c) (-3)" d) none.
2. If y=37"" then y, is given by
a) (-1)"5"(log3)"37>" b) (-1)"(log3)"3™>*
¢) 5"(log3)"37>" d) none
3. The n-th derivative of (ax+5)'° when n>10 is

a) a'" b) 10!a" c) 0 d) 10! [WBUT 2007]



10.

11.

12.

13.

.Ify=e

Successive Differentiation

. If y=xcosx then y, is given by

T
a) xcos n5+x

b) xcos[n§+xj+ncos n—l§+x

c) cos(n%+x)+ncos(m%+x) d) none

a) (-1)"4"

a) 1

a) ae’

a) 0

ax+h

b) 4"

b) 4

then (g ), is given by
b) abel

. If y=sindx+cos4x then (y,), is given by

c) 0

. If y=cos*4x then (y,), is given by

c) 0

C) a680+b

. If y=1log /1 then (y, ), is given by

d) none

d) none

d) none

b) 1, when » iseven and —1, when » is odd

¢) —1, when #n is even and 0, when » is odd

a) 2

l’l

LI y= Va* —=x* then (yy2+y12) is

b) 1

If y=
x—

a) —(n!)

If y—e

a) 5"sin

*sin4x then y, is given by

(
\

. then (y, ), is

b) (-1)"

4x+ntan”! %]

. 1 4
c) sm(4x+ntan 1§Je3x

c) 0

c) (n!)

b) 5"sin

d) none

If y=cos’4x+x" then (, ), is given by

a) 120
c) 0

(
\

d) none

d) none
d) none

14
4x+ntan 15)63‘“

(
b) 4" sinL4+ntan*1 %]

d) none

If y=cosxcos3x then (ys), is given by

a) 3

b) 15

c) 0

d) none

| 327

|
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14. If y =log(2+3x) then (yg), is given by

—(51)-2° b —(51)-3°

a) - p ¢ 1 d) none
3° 2°
15. = then is given b
S (v4), is given by
4 —(41-3* .34
a) 3—5 b) % c) 4'53 d) none
5 5 5
Answers:
1.b 2.a 3.¢ 4.b 6.d 7.b

5
10. a 11.b 12.d 13.¢ 14.

9.d



CHAPTER

Mean Value Theorems and
Expansion of Functions

41 INTRODUCTION

There are some real-valued functions being continuous and derivable on a certain
interval, which possess some special properties at any point lying in between boundary
points of that interval. Mean-value theorems are such theorems which involve some
particular results as stated above.

Basically, in this chapter we discuss the very well-known three mean-value theo-
rems, namely, Rolle’s, Lagrange’s and Cauchy’s mean-value theorems along with
their wide range of applications in various fields.

In this chapter, we also deal with some series expansion theorems and formulas,
namely, Taylor’s and Maclaurin’s series expansion and their application towards

some standard functions like €*, sinx, log(l+x), etc.

4.2 ROLLE’S THEOREM

4.2.1 Statement

Let f:1 — R be a real-valued function where I =[a, b] and f satisfies the fol-
lowing conditions:

i) fis continious in the closed interval [«, b]



4.2 I Engineering Mathematics-I

ii) fis derivable in the open interval (a, b), i.e., f’(x) exists for x € (a, b) and

iii) f(a)= f(b)
Then there exists at least one value of x (say ¢), c € (a, b), i.e., a <c <b such that,
fie)=0. [WBUT-2003]

Proof: Since the function f is continuous in the closed interval [a, b], it is also
bounded there. Let us consider that m and M are the greatest lower bound (g./.») and
least upper bound (l.u.b) respectively for the function f.

Then there exists two points ¢ and d in [a,b] such that f(c)=m and

fld)y=M.
Now two cases may arise:
Casei) m=M

In this case, the function f(x)=m is constant for all [x € a, b] and corre-
spondingly, the derivative f’(x)=0 for all [x€ a, b].
Hence, the result is proved.

Caseii) m# M

Since in this case f(a)= f(b) and m # M, at least one of m and M is different
from f(a) or f(b).

Suppose m # f(a); then f(c)# f(a)=>c#a
And m # f(b); then f(c)# f(b)=>c#b
So ¢ is neither a nor b. Therefore, a <c<b

By hypothesis, f is derivable in the open interval (a,b), ie., f’(c) exists for
a<c<b.

Now it remains to prove f’(c)=0.

For this purpose, first consider f’(c) < 0. Then there exists an interval (c, c+h,),
hy; >0, for every point x€ (c,c+h;), f(x)< f(c)=m, which contradicts the fact
that m is the greatest lower bound (g-/-b)

Next we consider f’(c)>0. Then there exists an interval (c—h,,c), h, >0, for

every point xe(c—h,,c), f(x)< f(c)=m, which is again a contradiction as
before.

So the only possiblity is that f’(c)=0 for a <c < b.

Hence, the theorem is proved.

Note: The theorem asserts the existence of at least one value ¢, where f’(c)=0.
So, there may be more than one value of ¢ for which the derivative vanishes.

Skar2 04 001-023.indd 2 @ 8/7/2010 7:30:16 PM
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4.2.2 Geomertical Interpretation

y
A fa) B / y=1x)
(o]
M N
—— f(b)
—3» X
x=a X=c x=b

Figure 4.1 Rolle’s Theorem

From Fig. 4.1, it is clear that at the points A (a, f(«)) and B (b, f(b)), the ordinates
are same for the continuous graph y= f(x), i.e., the values at the points x=a and
x=>b (which are f(a) and f(b) respectively) are equal.

Since the function f is derivable in the open interval («, b), a tangent exists at each
point of the graph except the extreme points A (a, f(a)) and B (b, f(b)). Now, we can
see in the graph that there exists a point C (¢, f(c¢)) in between two extreme points A
and B, at which the tangent MN is parallel to the x -axis, i.e., gradient of the tangent at
C (c, f(c)) is zero. It implies that f’(c) = 0.

Correspondingly, we have a point x =c¢ in between the points x=a and x=b,

such that f’(c) = 0.
4.2.3 Important Observation
The conditions of Rolle’s theorem are only sufficient, they are not neccessary.

This will be followed by three important examples:

Example 1 Verify Rolle’s theorem for the function f(x)=1- x* for —1<x<1.

Sol. Here, we are to examine three conditions.

i) Since, f(x) is a polynomial in x and all polynomials in x are continious
functions for all values of x€ R,

fx)=1- x? is continuous for all x, where —1< x<1.

Skar2 04 001-023.indd 3 @ 8/7/2010 7:30:24 PM
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ii) Due to the same reason as above, f(x) is also derivable for all x, where
-1<x<1.

Moreover, f’(x)=-2x, which exists for all values of x in —1< x<1.

i) f(=D=f1)=0.
Thus, all the conditions of Rolle’s theorem are satisfied by f(x)=1- x2.

Now
fe)=0=-2c=0=c=0.
Definitely, ¢ =0 lies between —1 and 1, i.e., —1<c<1.

Hence, we can conclude that f(x) satisfies all the conditions and as such
there exists ce (~1,1) such that f{(c)=0.

Therefore, Rolle’s theorem holds good.

Example 2 Verify Rolle’s theorem for the function f(x)= [x[ , —-1<x<1.

[WBUT-2003, 2009]

Sol. Here, f(x) is defined as
fx)=—x,lor-1<x<0,
=xfor0<x<l.

i) f(x) is continious for all x in —1 < x <1 except at x = 0. Now,

lim f(x)= iim x=0

x—=0+ x—=0+

lim f(x) = lim (=x)=0
x—0— x—0-

and f(0)=0

s0, f(x) is also continious at x = 0.
Therefore, f(x) is continuous for all x in —1< x<1.

ii) Here,
f(x)=-1,for-1<x<0,

=lforO<x<I.
So, f(x) is derivable for all x in —1<x <1 exceptat x=0.
Now we check the derivability of f(x) at x=0.

Since,

00 = tim LSO,

h—0+ h

Skar? 04 001-023.indd 4 7~y 8/7/2010 7:30:28 PM
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and £/(0-) = 1im £0=SO _
h—0— h

ie., £(0+) = £(0-)
s0, f(x) is not derivable at x =0.
Therefore, f(x) is not derivable for all x in —1<x<1.
i) f(-D=f1)=1
Since all the conditions of Rolle’s theorem is not satisfied by f(x), Rolle’s
theorem is not applicable here.

Here, we can observe that there exists no such ¢, —1<c¢<1 for which
f(c) =0, i.e., Rolle’s theorem does not hold since the condition (ii) is violated.

Example 3 Verify Rolle’s theorem for the function f(x) = 1 + 3 ! ,in0<x <2,
= x 2-x

Sol.

(1) f(x) is not continious for all x in 0<x <2 (since it is continuous for
O0<x<2).

(i) f(x) is derivable in 0 < x < 2, since
1 |
5 ——5 exists forO<x<?2.
2-x)y x

(iii) f(0) and f(2) are not defined. So, f(0)= f(2).

)=

All the conditions are not satisfied by the function f{(x), so Rolle’s theorem is
not applicable here.

But it is interesting to see that

Flo=—_ 1o

2-c)?

= ¢ =1, which lies between 0 and 2

i.e., there exists ¢ where 0 < ¢ <2 such that f’{c)=0.

So, the result of Rolle’s theorem is still true, though all the conditions are not
satisfied.

Conclusion from Examples 1 to 3:

From Example 1 We have observed that all the conditions are satisfied, so
Rolle’s theorem holds good.

Skar2 04 001-023.indd 5 @ 8/7/2010 7:30:34 PM
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From Example 2 We have observed that some of the conditions are violated,
so Rolle’s theorem does not hold.

From Example 3 We have observed that some of the conditions are violated
but Rolle’s theorem is still true.

Summing up the above, we conclude that if all the conditions are satisfied by f(x)
in [a, b] then the result f’(c)=0, where a <c<b surely occurs. But if any of the
conditions are violated by f(x), the result f’(c)=0, where a <c <b may still be
true but not in at all times. In the latter case, we can say that Rolle’s theorem is not
applicable.

So it is clear that the conditions of Rolle’s theorem are only sufficient, by no
way they are neccessary.

4.3 LAGRANGE’S MEAN VALUE THEOREM (LAGRANGE’S MVT)

4.3.1 Statement

Let f:1 — R be a real-valued function where I =[a, b] and f satisfies the fol-
lowing conditions:

i) fis continuous in the closed interval [a, b]
ii) fis derivable in the open interval (a, b), i.e., f'(x) exists for x< (a, b).

Then there exists at least one value of x (say c¢), c< (a, b), i.e., a<c <b such
that

fb)~ fa) _

5 fe)fora<e<b. [WBUT 2002, 2004]
-a

Proof: Let us construct a function
Oo(x)as  ¢(x)=f(x)+k xfor xe a,b] )
where the constant k is to be determined such that ¢ (a) =@ (b).
So,
0(a)=p(b)= fla)+k-a=fb)+k-b

D)~ f(@)
b—a

=k= (@)

Now since f(x) is continuous in [a, b], ¢(x) is continuous there and also since
f(x) is derivable in (a,b), ¢(x) is derivable there.

Also ¢(a)=¢(b).

Therefore, ¢(x) satisfies all the conditions of Rolle’s theorem in [a, b]. So, there
exists a value x =c¢, a<c<b such that ¢’(c)=0.
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Therefore, by (1),
¢'(0)=fe)+k=0= f(c)=—k

Using (2) in the above, we have

Mfora<c<b.
b—a

fe)=

Hence, the theorem is proved.

Note: If we consider f(a)= f(b) then from the above f’(c)=0 for a<c<b. So,
Lagrange’s MVT becomes Rolle’s theorem.

4.3.2 Geomertical Interpretation

y
A
y=1x)

B
A
/_ N
C
M
f(b)
Ha) <«—
» X
X=a X=cC X=b

Figure 4.2 Lagrange’s MVT

Figure 4.2 represents a curve y = f(x) which is continuous in [«, b] and derivable in
(a,b). Now we consider the chord AB joining the two points A («, f(a)) and B
(b, f(b)) of the curve.

So, gradient of the chord AB is
BN _ f(b)- f(a)
AN b—a
Again since the function is derivable everywhere in (¢, b), a tangent exists at every
point between the extreme points A and B.

Now we draw a tangent MN which is parallel to the chord AB and touches the curve
at the point C (¢, f(c)). Here the point C lies between the points A and B and corre-
spondingly x =c lies between x=a and x=b.
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Then gradient of the tangent MN is f’(c) (Since here at C, x=c).

Since the chord AB and the tangent MN are parallel, their gradients are same. So,
we have

IOZI@D _ ey where a<e <y
b—a

4.3.3 Other Forms of Lagrange’s Mean-Value Theorem
(1) If in the statement of Section 4.3.1 we consider b =a+h, h> 0, then the
point ¢ where a <c <a+h can be repesented as
c=a+6h,where 0 <0 <1 and correspondingly Lagrange’s MVT in the
interval [a, a + h] can be written as

\f(a +h) = f(a)+hf '(a+6h),where 0 <6 < 1.\

(2) Now if we put a =0 and s = x in the above form then Lagrange’s MVT
in the interval [0, x] can be written as

|f(x)= f(0)+x f'(6x), where 0 <6 <1.]

Example 4 Verify Lagrange’s MVT for the function f(x)= x* +3x+2 for

1<x<2.

Sol. Here, we are to examine two conditions.

i) Since f(x) is a polynomial in x and all polynomials in x are continuous
functions for all values of xe R,

flx)= x% +3x+2 is continuous for all x, where 1< x<2.
ii) Due to the same reason as above, f(x) is also derivable for all x, where
1<x<2.

Moreover, f’(x)=2x+3, which exists for all values of x in 1< x <2,

Since all the conditions of Lagrange’s MVT are satisfied by f(x) = x* +3x+2
in1<x<2,

there should exist ce (1,2) such that

f@-f)
2-1

Now the above implies

12—
T6=2C+3.

= f(o).

ile,c=—.
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Here, ¢ = % lies between 1 and 2.

Hence Lagrange’s MVT is verified for the given function.

Example 5 Verify Lagrange’s mean-value theorem for f(x)=cosux,

=

where OSxS%

Sol. Here we are to examine two conditions.

)

i) f(x)=cosx is continuous for all values of x, 0 < x<—.

\S]

ii) f’(x)=—sinx exists for all values of x, 0 < x < %

Since all the conditions of Lagrange’s MVT are satisfied by f(x)=cosx in

OSxSE,
2

there should exist ce (0, %] such that

T

f By - f(0)
po = f(o).
T o
2

Now the above implies

b4
cosz—cosO
=—sinc
b4
——0
2
. 2
=sinc=—
T

(2
= C = SIn —
T

(2.
Here, ¢ =sin ! (—) lies between 0 and %
/4

Hence Lagrange’s MVT is verified for the given function.
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4.3.4 Applications of Lagrange’s Form of Mean-Value
Theorem

Example 6 (Estimation of numerical value)

(i) Estimate the numerical value of 7 using Lagrange’s MVT.
1

Sol. Let us consider the function f(x)= x* in [16,17].

1
i) f(x)=x* is a continuous function for all values of [xe 16,17]

-3
i) f'(x)= ix 4 exists for all values of xe (16,17).

Since all the conditions of Lagrange’s MVT are satisfied by f(x), there should
exist such a ce (16,17) such that

Sb)-fla)
b—a

= fUT) - f(16)=(17-16)f"(c)
Takingh=b-a=17-16=1, c=a 6h=16 0, 0<0<]1
= f(17)- f(16)=(17-16) /(16 6),0<H <1

= f(c)

-3
:i/ﬁ—i/l—zi.(m 0)4,0<0<1

Since
=3 =3 1
(16 6)4 <(6)* =§

We have from above
1

11_1
4 8 32
1 1

. 4 L _5 1
i.e., 17<2+32 232

7 -2<

Hence, the estimate is
1
2<N7<2—.
<7< 2
(i) Estimate the value of log§ using Lagrange’s MVT.

Sol. Let us consider the function f(x)=1logx in [3,4].

i) f(x) is continuous for all values of [x e 3, 4].



Mean Value Theorems and Expansion of Functions I 4.11

i) f(x)= l which exists for all values of xe (3,4).
X

Therefore, all the conditions of Lagrange’s MVT is satisfied by f(x), and
there should exist c € (3, 4) such that

log4 —log3

= f'(c) fi 4
@3 fo)for3<c<

c

log(%)= lfor3 <c<4

Since

1 1 1
3<ec<d = —<—<—
C

The estimate is given by

1 4) 1
—<log| = |<-.
4 3] 3
Example 7 (Proof of some standard inequalities using Lagrange’s MVT)

(i) Using Lagrange’s MVT, prove
X .

—<log(l+x)<xif x>0.

1+x

Sol. Let f(x)=1og(1+x) for x> 0.

It is obvious that f(x) satisfies all the conditions of Lagrange’s MVT in
[0, x].

From Section 4.3.3, we have Lagrange’s MVT in the interval [0, x] as
f(x)= f(O)+xf'(Ox), where 0< 0 < 1.
Here f(O) = log] =0 and f’(_x) = L

1+x
So from above

log(1+x)=0+xL,where0<9<1.
1+6x

X

or,log(1+x)=——
& ) 1+6x

Now we have

0<0<1

or,0<0x< x,since x>0

or, 1 <1+0x<1+x

Skar2 04 001-023.indd 11 @ 8/7/2010 7:30:57 PM
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1 1
<

r, —— <1
1+x 1+0x

O

Since x>0 we have,

1
—.x<
1+x 1+06x

x<l-x

X

X
or, — <
1+x 1+06x

<X

X
1+0x

Again log(l+x)= , therefore

or,i< log(1+x) < x.
1+x

e —1

(ii) Using Lagrange’s MVT, prove 0 < llog <1 [WBUT 2002]
X

X

Sol. Let f(x)=¢e".

It is obvious that f(x) satisfies all the conditions of Lagrange’s MVT in
[0, x].

From Section 4.3.3, we have Lagrange’s MVT in the interval [0, x] as
f(x)= fFO+xf(6x), where 0 < 8 < 1.

Here f(0)=¢" =1 and f'(x)=¢".

So from above

e =1+xe, where 0< 6 < 1.

X
e —1
or, &% =

X

-1
HX):loge

or, log(e

e’ —1

or, Ox = log
X

e’ —1

X

1
or, 8 =—log
X

Since 0< 0 <1, we have

,‘4‘_1
¢ <1

1
0<—log
X X
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(iii) Using Lagrange’s MVT, prove 1+

< 1+x<1+§,—1<x<0

[WBUT 2004]

X
21+ x

Sol. Let f(x)=+1+x.
It is obvious that f(x) satisfies all the conditions of Lagrange’s MVT
From Section 4.3.3, we have Lagrange’s MVT in the interval [0, x] as

f(x)= fO+xf(0x), where 0 < 0 < 1.

, 1
H 0)=1+0=1 and - _
ere f(0) + and f(x) N

So from above

N1+ x =1+x;,wher60<9<l.

21+ 0x

Now we have

0<08<1
or,0>0x> x,since x<0

or,1>14+60x>1+x

or,1>\/1+9x>\m
or,1< ! < !

’ N1+6x 1+x
Since x <0,

1 1 1
1-x-—> X
2

1
N1+60x 2 J1+x

\Y

X

N | =

X X

X
or, < <=
2J1+x 24146x 2

or,1+ x <1+ x <1+£
ool x 241+ 6x 2

Again

1
Vitx=l+x———
21+ 0x

Hence

< 1+x<1+§,—1<x<0

X
241+ x
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Example 8 (Proof of some well-known properties of function using
Lagrange’s MVT)

(i) Suppose f’(x)=0 in [a, b]. Then using Lagrange’s MVT, prove that f(x)
is constant in [a, b].

Sol. Let us consider two arbitrary points x; and x, so that a < x; < x; <b.

Now since f'(x)=0 in [a, b], the function f(x) is derivable and so continu-
ous in [a, b].

Then the function f(x) is also continuous and derivable in [x;, x, ].

Therefore, we can apply Lagrange’s MVT on f(x) in [x;, x, ], and applying
we have

)= fx)

Xy =X

Now since f’(x)=0 in [a, b], also f(x)=0 in [x, x, ]

= f'(¢) for x; < ¢ < x,.

and so, f(c)=0 for x, <c < x,.
Therefore

SfOo)—fx)

Xy =X

=0= f(x) = f{x))

Since x; and x, are two arbitrary points and we have the same functional
value for them, i.e., f(x;)= f(x,).

Hence we can conclude that f(x) is constantin [a, b].
(ii) Suppose f’(x)=g'(x) in [a,b] then using Lagrange’s MVT prove that
f(x) = g(x)+ constant in [a, b].
Sol.  Let ¢(x) = f(x)—g(x).
Then d)y(x) = f'(x)—g’(x) =0.

Now in the last example using Lagrange’s MVT we have proved that if
f(x)=0 in [a, b], then f(x)= constant in [«, b].

Therefore,
¢(x) = constant in [a, D]
i.e., f(x)—g(x) = constant in [, b]

f(x) = g(x)+ constant in [a, b].
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(iii) Suppose f(x) is continuous in [«a, b] then using Lagrange’s MVT, prove that
f(x) is increasing if f’{x)>0 and f(x) is decreasing if f'(x)<0
Sol. Let us consider two arbitrary points x; and x, sothat a < x; < x, <b.
Now since the function f(x) is derivable, it is continuous in [«, b].
Then the function f{x) is also continuous and derivable in [x, x,].

Therefore, we can apply Lagrange’s MVT on f(x) in [x;, x,], and applying we

have
SO ZIE) e for < < .
Xy — X

In the first case, since f’(x) >0 in [a, b], also f'(x)>0 in [x;, x,]
and so, f'(c)>0 for x; <c < x,.

Therefore,

Six)— flx)

Xy =X

>0= f(x)> f{x)

So, x; < x, = f(x;) < f(x,) and hence the function is increasing.
In the 2nd case, since f'(x) <0 in [a, b], also f(x)<O0 in [x;, x, ]
and so, f'{c)<0 for x; < ¢ < x,.

Therefore,

)~ f(x)

Xy =X

<0= fx) < flx))

So, x; < x, = f(x,) < f(x;) and hence the function is decreasing.

4.4 CAUCHY’S MEAN-VALUE THEOREM (CAUCHY’S MVT)

441 Statement

Let f:1 — R and g:I — R be two real-valued functions where 7 =[a, b] and
[ and g satisfy the following conditions,

i) fand g are both continuous in the closed interval [a, b];
ii) fand g are both derivable in the open interval («, b);

iii) g’(x)# 0 for all values of x in a < x <b;
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Then there exists at least one value of x (say c¢) c< (a, b), i.e., a <c <b such

that,
SO -j@ _ f :(c) for a <c <b. [WBUT 2001, 2003]
g(b)—gla) g(c)
Proof: Let us construct a function ¢(x) as
O(x)= f(x)+k-g(x)for xe[a, b] (1)
where the constant k is to be determined such that ¢(a) = ¢(b).
So,
Pa)=¢b)= fla)+k-gla)=f(b)+k-gD)
k=SB - fla) )
g(b)—gla)

Here, g(b) # g(a), otherwise it satisfies the conditions of Rolle’s theorem which
results g’(x) =0, a < x < b, which contradicts the condition (iii) of the theorem. So k
is finite.

Now since f(x) and g(x) both are continuous in [a, b], ¢(x) is continuous there
and also since f(x) and g(x) are derivable in (a, b), ¢(x) is derivable there.

Also, ¢(a) = ¢(b).
Therefore, ¢(x) satisfies all the conditions of Rolle’s theorem in [a, b]. So, there
exists a value x =c¢, a<c<b such that ¢’(c)=0.

Therefore by (1),
()= f(c)+k-g'(c)=0= M -k
g
Using (2) in the above, we have
f)-f@
g(b)—gla)

Hence the theorem is proved.

fora<c<b.

flo)=

Note: When, g(x)=x, Cauchy’s mean-value theorem takes the form of Lagrange’s
mean-value theorem

fb) - fla)

=fc)fora<c<b
b—a

4.4.2 Other Forms of Cauchy’s Mean-Value Theorem

1) Letb = a+ h; then the point ¢ where a < ¢ <a+h is repesented as

c=a+6h,where0<6 <1
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Cauchy’s mean-value theorem in the interval [a, a + /] takes the form

fla+h)—f(a) _ f:(a+0h),where0<9 <1
gla+h)-gla) g'(a+06h)

2) If weset a =0 and 4 = x in the above form then in the interval [0, x],
Cauchy’s MVT takes the form

SOSO _ SO (poven<n<t
8(x)-g(0) g'(0x)

Example 9 Verify Cauchy’s mean-value theorem for

f(x)=~/x and g(x) = % in[1,2]

Sol.

. . 1 .. .
i) The functions f(x)=+/x and g(x):T are both continious in [1, 2];
X

-3
e g 1 , -1 = . .
i) f(x)= and g'(x)=—x2 which exists for all values of xe (1,2);
2Jx
iii) g"(x)#0 for all values of x in 1< x<2;
Therefore, all the conditions of Cauchy’s MVT are satisfied by the given functions
and so there should exist such a ce (1, 2) such that
fO-f) _ [
g2)-g() g

which implies

0r,c=\/§

Here, ¢ = \/5 lies between 1 and 2.
Hence Cauchy’s MVT is verified.

Example 10 If f(x)=¢" and g(x)=¢ ", using Cauchy’s mean-value theorem,
1

show that @ is independent of both x and 4 and is equal to 5 [WBUT 2003]
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Sol.

~* are continuous and differentiable for all real values of

Since f(x)=¢e" and g(x)=¢
x and g'(x)=—e" 20,

Applying Cauchy’s MVT on the functions in [x, x+#/] (see Section 4.4.2)

we have
flthy—f(x) _ f,(x+9h)’0 <<l
glx+h)—g(x) g(x+6h)
ex+h _ ex ~ ex+9h
L o) _ - _p(xt0h)
eh ((,’h _1) ~ e@h

T l—eh oo
or, o= g20h
or,0 = l

2

Therefore, 6 is independent of x and A and is equal to %

45 TAYLOR’S THEOREM (GENERALISED MEAN-VALUE THEOREM)

4.5.1 Taylor’s Theorem with Lagrange’s Form of
Remainder

Statement: Let f: 1 — R be areal-valued function where I =[a, b] and f satis-
fies the following conditions:

i) the (n—1)-th derivatives of f(x), i.e., £ V(x) is continuous in [a, b];
i) the n-th derivative of f(x), i.e., £ (x) existsin (a, b)

Then there exists at least one value of x (say c¢) ce(a,b), i.e., a<c<b such

that
b—
f®)= f@+G6-a @+ 0" fay+- R )1), S @)+ R,
where the (n+1)-th term R, = (b ) f(")(c) is called the Lagrange’s form of
n!

reminder after n terms.
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4.5.2 Other Forms of Taylor’s Theorem with Lagrange’s
Form of Remainder

(1) Let f:1— R be a real-valued function where [ =[a,a+h], h>0 and f
satisfies the following conditions:

i) the (n—1)-th derivatives of f(x), i.e., f("_l)(x) is continuous in [a, a + h];

ii) the f'(x):l, -th derivative of f(x), i.e., f(”)(x) exists in (a, a+h)
X

Then there exists at least one value of 8, 0 <60 <1 such that,

fla )= f(a) hf’'(a) %;fﬁa)~~ ég;if”‘Nm R,
where R, = % Ffa 6h),0<6<1
(2) Putting b = x, (from Section 4.5.1), we have
f(0=f@) (x-a)f(a) gﬁ%?if%w ~-(fn“; 7" V@ R,
where R, = == “) M 1 0(x—a)},0<0<1

Note: The form (2) is known as Taylor’s expansion of f(x) about x =a with the
Lagrange’s form of reminder.

Basically, this is a finite-series expansion of a function about any point. Sometimes
we also call this as the power-series expansion of x about a in the finite form.

Example 11 Using Taylor’s theorem, expand f(x)=logx, 1<x<e about

the point x = 2 with the Lagrange’s form of remainder after 3 terms.
Sol.

Here, f(x)=1logx for 1< x <oo.

’ ] ” _] m 2 . . .
Now, f(x)=—, f(x)= —> f(x)= — - etc. all exist and continuous in
X X X
1< x<oo,

From (2) of Section 4.5.2 we have Taylor’s expansion of f{x) about the point
x = a with the Lagrange’s form of reminder after 3 terms as

(x—a)’

f)=fla) (x—a)f'a) o

fa) R

(x—a)’

where Ry = 3

fa+6(x—a)},0<0<1
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Here a =2, so the expansion becomes

(x—

f)=fQ+(x=2)f' Q) +~—" f(2)+R3
WhereRg—(x 2) FM2+6(x-2)},0<0<1
Now

‘@=L o=
f2)=log2 f2)=—. f'2)=—

2

and f"{2+6(x~2)}= ——
[2+8(x-2)F

Putting the values, we have

f()=log2+ L 2)—1(’(2'2) +R;
whereR3—(x 2) 2 ,0<06<1
31 (2460(x-2))
So,
_ 92 _7\3
logx = log2 + - (x—2)— F=2" , (x=21 ! - where 0< 6 <1.
2 8 3 (2+0(x-2)F

4.5.3 Taylor’s Theorem with Cauchy’s Form of Remainder

Statement: Let f:I — R be a real-valued function where I =[a, b] and f satis-
fies the following conditions:

i) the (—1)-th derivatives of f(x), i.e., £V (x) is continuous in [a, ]
i) the n-th derivative of f(x), i.e., £ (x) existsin (a, b)

Then there exists at least one value of x (say ¢) c< {(a, b), i.e., a<c<b such

that,
b—
FB)= fla)+(b- a)f(a)+( ’ £r@)+- +(( “’l) SV (a)+R,
n—1
where the (n+1)-th term R, % % (c) is called the Cauchy’s
n— .

form of remainder after n terms.
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4.5.4 Other Forms of Taylor’s Theorem with Cauchy’s Form
of Remainder

Let f:I — R be areal-valued function where I =[a,a+h], h>0 and f satis-
fies the following conditions:

i) the (n—1)-th derivatives of f(x), i.e., £V (x) is continuous in [a, a + h]
ii) the n-th derivative of f(x), i.e.,, £\ (x) existsin (a,a+h)

Then there exists at least one value of 8, 0 <0 <1 such that,

n—-1

2 —
flathy= f@+hf' @+ fayr .+ @y 1R,
2! (n-1)!

h"(1-6)""

(1) F"Na+6n),0<6<1
n—1).

where R, =

4.6 MACLAURIN’S THEOREM

Statement: Let f:I — R be a real-valued function where 7 =[0, x] and f satis-
fies the following conditions:

i) the (n—1)-th derivatives of f(x) i.e £ (x) is continuous in [0, x]
ii) the n-th derivative of f(x) i.e £’ (x) existsin (0, x)
Then there exists at least one value of 8, 0 <0 <1 such that

2 n-1
f(x)= fO)+ xf'(0)+%f”(0)+...+x_

Ok

where R, = x_' 1™ (6x),0<6 <1(Lagrange’s form of remainder)
n!

xn(l _G)n—l

and R, =
(n-1)!

£ (0x), 0 <6 <1(Cauchy’s form of remainder)

Observation: Generally, we choose Lagrange’s form of remainder if anything is
not mentioned.

Note: If we put a =0 in the form (2) of Section 4.5.2, then too we can get the same
expression of Maclaurin’s theorem as above.

This is also called Maclaurin’s finite-series expansion of a function about x = 0.
Sometimes we call this as the power-series expansion of x in finite form.
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Example 12 Expand f(x)=sinx in a finite series with the Lagrange’s form of
remainder.
Sol. Here, f(x)=sinx and so its n -th order derivative is given by

£ (x) = sin(ﬂJr x ]

2
Thus, £ (x) exists for every order n and also for every value of x.
Here £ (0) = sin%.

Now the Maclaurin’s finite-series expansion of f(x) with the Lagrange’s

form of remainder is given by
n—1

_ , x2 ” .X3 mw X (n-1)
f(x)—f(0)+xf(0)+§f (0)+§f )+ +mf 0)+R,

where R, = % FM0x),0<0<1

Here,

FO=0,£0)=1,£(0)=0, f"©0) =1, f™(0)=0...etc.
and £ (0x) = sin(%+ Ox )

Putting the values, we have
2 3 n—1

-1
sinx=0+x-1+—-0+—-(-1)+---+ al sin(n )n+Rn
2! 3! (n=1)! 2
whereanx—sin L ,0<08<1
n! 2
So,
% ¥t (n-Dr x" ni
siny=x——+---+ si +—sin| —+6x |where 0 <8 <1
3! (n—1)! 2 n! 2

4.7 INFINITE SERIES EXPANSION OF FUNCTIONS

In this section, we check whether we can express any function f(x) as an infinite
series about the point x = a in the form of

(x-a)’
2!

(x-a)

fla)+(x—a)fa)+ f”<a>+-~~+Tf<"><a>+--- (1)

Now the first question that arises is that for any function can we always get a series

of the above form (1). The answer is that we can construct the series iff f () (a) exists
for each n.
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Next we have to find out whether the infinite series (1) will be convergent or not. To
answer this question consider n -th partial sum

(x— a) (x—a)""
fa)+- +( 1 f {(a).

Now if 1lim S, exists and finite (= S) then the series converges to S.
n—o0
The last and most vital question is that if f satisfies all the conditions of Taylor’s

theorem with any form of remainder in the interval [a —h, a + h],

Sn = f(d)+ (x_a)f,(a)+

1.€e.,

£ = flay+(x— a)f(a)+( L %f”’ D)+ R,

then under what conditions will the infinite series (1) be convergent to f(x).
Now, we have from above
fx)=S,+R,
ie., S, =f(x)—R,
Now limS, = lim f(x)— limR,
n—3c0 n—>o0 n—oo
= f(x)-limR,

n—soo
Again the infinite series (1) will be convergent and converges to f(x) iff
lims, = /(x),
n—oo

which is possible from above iff limR, = 0.

n—oo
Hence the infinite series (1) will be convergent and converges to f(x) iff
limR, =0.
n—oo

In this case, we can write

(x— a) (x— a)

@)+ +——"f"(a)+-

fo)=fla)+(x—a)f(a)+

4.7.1 Taylor’s Infinite-Series Expansion

Statement: Let f: 7 — R be a real valued function where I =[a—h,a+ h] and
[ satisfies the following conditions:

i) the n™ derivative of f(x), i.e., /™ (x) exists for all n in [a—h, a + h]

ii) imR, =0 where R, is any form of remainder after n terms in the
n—oo

Taylor’s finite expansion of f(x) about x = a.

Then we have Taylor’s infinite-series expansion of f(x) about x =a as

(x— a) (x— a)

f(ﬁ)(a)+...

f(x)=f@)+(x-a)f(a)+ fr@y+
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4.7.2 Maclaurin’s Infinite-Series Expansion

Statement: Let f:7 — R be a real-valued function where 7 =[-h,h], h>0
and f satisfies the following conditions:
i) the n™ derivative of f(x), i.e., £/ (x) exists for all n in [, h]

ii) limR, =0 where R, is the any form of reminder after n terms in the
n—oo

Maclaurin’s finite expansion of f(x).
Then we have Maclaurin’s infinite-series expansion of f(x) as

2 n
fx)=f(©0) ﬂm)%jm)m X o)
. n.

Note:
If we consider a =0 in the Taylor’s infinite series expansion of f(x) then we have the
Maclaurin’s infinite series expansion of f(x).

4.7.3. Maclaurin’s Infinite-Series Expansion of sin x
Here
f(x)=sinx

Now
F7 ) = sin(% X } for every n

Thus, f(x)=sinx possesses derivatives of every order for every value of x in any
interval [—h-h].
Here

£ (0) = sin%, for all n

F0)=0,F © =1, f ©=0,f (©)=-1, f"©0)=0...and so on.

Now in the Maclaurin’s finite expansion, the remainder R, after n terms in
Lagrange’s form is

X"
R, == f"(6x)
n:

n

:x—sin nr 0x |,0<0<1
n! 2
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Here
0<|R,|< —sm( n Qx]
n! 2
- sin nm Ox
n! 2
Again

|sin x| <1for all x.

So, we have
x" X
0<[R,|<|—|1=]—
n! n!
n n
. X
1e,—|—|<R, <|—
n! n!
Again
n
lim—=0
n—oeo N!

which implies

x"

lim |—|=0.

n—soo| 11!

Hence from above, we obtain

hmRn =0.

n—eo

4.25

Therefore, we have Maclaurin’s infinite-series expansion of f(x)=sinx and is

given by

f0 =10+ f(0)+ f”(0)+ f”'(0)+ + f<")(0)+

I
or, sinx = O+—(1)+—(0)+_( 1)+ +—s1n(”2”]+...
.X3 5

or,sinx =x—— ——--
3t 5!
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4.7.4. Maclaurin’s Infinite-Series Expansion of cos x

Here
f(x)=cosx

Now
7= COS(% x} for every n

Thus, f(x)=cosx possesses derivatives of every order for every value of x in any
interval [—A, &].

Here
£ 0) = cos%, for all n
FO)=1,f (0)=0, f ©=-1,f (©)=0, f™©0)=1...and so on.

Now in the Maclaurin’s finite expansion, the remainder R, after n terms in
Lagrange’s form is

R, == f"6x)
n!

n
=x—cos(%+9x),0<0<l

n!
Here
x" nrw
< <|Z— i
0_|Rn|_ pr cos( > +9x)
n
X nrw
=|=—|cos| — +60x
n! 2
Again
|cosx| <1 for all x.
So, we have
n n
X X
< <|Z]1=]2—
0= |R"| “ln! n! ‘
n n
ie,—|—|<R, <|—
n! n!
Again
x}’l
lim — =
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which implies

n

=0.

lim
n!

n—>o0

Hence from above, we obtain
limR, =0.

n—yoco
Therefore, we have Maclaurin’s infinite-series expansion of f(x)=cosx and is

given by
_ O X /0 x2 //O )C3 /IIO )C4 (iv) 0 x” (n) 0
f)=f(0) Ef() Ef() ;f() Zf 0)--- Ef 0)

X x* x° x* x" nrw
or,cosx =1 ﬁ(O) E(_l) E(O) Z(l) ;cos(z]

2 4
X )C6

or,cosx=1——
21 41 6!

4.7.5 Maclaurin’s Infinite-Series Expansion of e*
[WBUT 2004]

Here

f=e'
Now

FM(x) = e, for every n

Thus, f(x)=e" possesses derivatives of every order and for every value of x in

any interval [/, /].
Here
F™©)=1, for all n
FO=1,f =17 ©=1,f"©)=1, f"©)=1...and so on.
Now in the Maclaurin’s finite expansion, the remainder R, after n terms in

Lagrange’s form is
xl’l
Rn = ?‘f(m(ex)

n

:x—e(e’”), 0<06<l1
n!
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Here
n
0<’R | x P ‘e(ex) <|— e‘ex‘
n! !
Since

0<0<1=>0<0x<x
ie.,0< l(’j‘x‘ < !x|

we have

eJeX‘ < e|x|.

Again
lim =0
n—oo p!

which implies

n

—|=0.

n!

lim
n—oo

Hence, from above, we obtain
limR, =0.
n—oo
Therefore, we have Maclaurin’s infinite-series expansion of f(x)=¢" and it is
given by
2 3

f@) = fO)+4 f(0)+—f (0)+—f (0)+ f<’“>(0>+ + f<">(0)+

2 3 4 n
NP SR x x X X
ie.,e _1+1!(1)+ 2!(1)+ 3!(1)+4! D+ +n!(1)+

)C2 x3 )C4 n

X
e, =l+—+—+—+—+ -+ —+--
120 31 4 n!

4.7.6 Maclaurin’s Infinite-Series Expansion of log (1 + x),

-1<x<1 [WBUT 2006]
Here
J(x) =log(1+x)
So,
= ED (-D)!
(1+x)
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Thus, f(x)=1og(1+x) possesses derivatives of every order for every value of x
fPO =" -1
Casel: Let 0<x<1

Now in the Maclaurin’s finite expansion, the remainder R, after n terms in Lagrange’s
form is

R, =2 f"6x)
n!

_2 D )

,0<0<1
nl (1+6x)"
~ (_1)}1—1 . xn
n (1+0x)"
Now
_1yn-! n
03MA=(1) N
n (1+6x)"
_ (_1)1‘1—1‘ xn ‘
no||a+ox)

:lww_L_
n (1+6x)"

Since 0 £ x <1, we have ‘x”‘éland since 0 <8 <1 and x >0, we have

0<Band x20=0<06x

ie,l<l+0x= <1

1+06x
So

os|Rn[gl-1~1
n
—0asn—>oo

Hence limR, =0, when 0<x<1.
n—oo

CaselIl: Let -1<x<0
Now in the Maclaurin’s finite expansion, the remainder R, after n terms in Cauchy’s

form is
R - x" (1 _e)n—l

(n)
=y en0<0 <
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_ (1-6)" (=) (n-1)!
(n=1)! (1+6x)"

n—1
— (_l)ll—lxl’l 1-6 1
1+6x (1+6x)
Since
0<0<land x<0=0>0x>1x

e, I1>1+0-x>1+x

we have
1 1

1+6-x 1+x

1<

Again
—I<x<0and0<B8<1=>-0<x0<0

ie,1-0<1+x0

. 1-6
ie., <1
(1+9x)

Now, limR, =0, —1< x <0 since
n—oo

n—1
0S|R”|=|x|n(l_9 ) ! s|x|"-1-L[—1<x<0]
1+6x (1+6x) 1+x

— 0 asn —> ocosince x| < 1.

So in the both cases limR, = 0.
n—soo

Therefore, we have Maclaurin’s infinite series expansion of f(x)=Ilog(1+x),
—1<x <1 andis given by

3 x ., x? ” x° ” x* (iv) x" (n)
f(X)—f(0)+ﬁf(0)+§f(0)+§f (0)+Zf (O)+M+Hf ©)+--

2 3 4
: - r X+ on+ X Zang...
i, fog(1+:) = log1+ (1) + 2-(-1) + -+ (-3 +

+ (D) =)+
n!

X2 X3 X4 (_l)n—] X"
re,log(l+x)=x——+———+-+———+---
2 3 4 n
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4.7.7 Maclaurin’s Infinite-Series Expansion of (a+x)"
where nis a Positive Integer

Here
f(x)=(a+x)"
So,
FO)=nn-1)(n-2)...(n—k+1)a+x)"*

T =k

(a+x)"*

Then, f*(0)=n(n—1)n=2)...(n—k+1)-a"*

— n! ‘anfk
(n—k)!

So, _f(m(x) exists for all x and
when k > n, f(k)(x) =0.

Remainder R, in Lagranges form is

R, =2 " @x).
n!

k
Now R, =%f(k)(6x)=0 for all k> n, since f(k)(ex)=0 when k > n.

Hence
limR, =0.

n—»eo

Therefore, we have Maclaurin’s infinite-series expansion of f{x)=(a+x)", for
positive integer n and is given by

n

2 3 4
3 X ., X7 L, X X (v T ()
f(x)—f(o)"'ﬂf(o)"'af (0)+§f (O)+Zf O+ +n!f 0),

since all other terms vanish.

: n n, X n! n—l1 )C2 n! n-2
ie,(a+x)' =a" +— -a +— -a
1M (n-1)! 21 (n=2)!

X n! "3 x" n! nn
| —d"" |+t = ——a
31 | (n=3)! n! (n—n)!

SN Uil ) R R
2
N n(n_13)|(n_2) =

ie,(a+x)"=a"+n-a"

X"

Skar? 04 024-052.indd 31 7~y 8/4/2010 1:50:55 PM



4.32 I Engineering Mathematics-I

ie,(a+x)"=a"+"C -a"" x+"Cy-d" X+ Cyd" 3 X

+4"C,ad" XX

This is also known as binomial expansion of (a+ x)", where n is any positive
integer.

4.7.8 Maclaurin’s Infinite-Series Expansion of (a+ x)"
where nis a Negative Integer or a Fraction

(a+x)" =a" +n-a"" .x+@.awz‘xz+w.am I

+n(n_1)"];n_k_1)-a"7k -xk+~‘[when ever—a<x<a]

This is also known as binomial expansion of (¢ + x)" where n is a negative integer
or a fractionand —-a<x<a.

% WORKED-OUT EXAMPLES &
Verify Rolle’s theorem for

f(x)=x>—5x+6 in 2<x<3 [WBUT-2001]

Sol. Here we are to examine three conditions.

i) Since f(x) is a polynomial in x and all polynomials in x are continuous
functions for all values of x€ R,

fx)= x> =5x+6 is continious for all x, where 2 < x <3.

ii) Due to the same reason as above, f(x) is also derivable for all x, where
2< x<3.

Moreover, f'(x)=2x-5, which exists for all values of x in 2< x <3.
iii) f(2)=f(3)=0.

Thus all the conditions of Rolle’s theorem are satisfied by f(x)= x> —5x+6
in 2 < x <3 and so there should exist at least a point ¢, 2 <c¢ <3 such that

fie)=0.
Now
f’(C)=0:26—5=0:-C=§

Definitely ¢ = % lies between 2 and 3, i.e., 2<c < 3.

Therefore, Rolle’s theorem is verified.
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Example 4.2 | State Rolle’s theorem. Examine whether the theorem is applicable on
fx)=x*—6x> +11x—6 in 1<x<3 [WBUT-2002]

Sol. Here,
fx)=x>—6x"+11x—6 in 1<x<3
i) Since f(x) is a polynomial in x and all polynomials in x are continuous
functions for all values of x€ R,

f(x)=x* —6x> +11x—6 is continuous for all x, where 1< x <3.

ii) Due to the same reason as above, f(x) is also derivable for all x, where
1<x<3.

Moreover, f'(x)= 3x> —12x+11, which exists for all values of x in
1£x<3.

i) f(=f(3)=0.

Thus, all the conditions of Rolle’s theorem are satisfied by
f(x)=x>—6x"+11x—6 in 1<x<3

and so there should exist at least a point ¢, 1< ¢ <3 such that f () =0.
Now

Fe)=0=3c" —12¢+11=0

L_l2xVila-132 _12:V12

= =2+
6 6

& -

1
Definitely ¢ =2+ —= lies between 1 and 3, i.e., 1 <c < 3.

V3

Therefore, Rolle’s theorem is applicable.

Example 4.3 | Show that Rolle’s theorem is not applicable to

f(x)=tanx in [0-7]
although f(0)= f(r). [WBUT-2004, 2006]

Sol. Here
f(x)=tanx in [0-7].
It is obvious that f(x)=tanx is continuous everywhere in [0, 7] except at

V4 . .
X= 7 and consequently is not derivable there.
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Also, f(0)= f(r).
Since all the conditions of Rolle’s theorem are not satisfied by f(x)=tanx in
[0-7], Rolle’s theorem is not applicable to f(x)=tanx in [0-7x] although

fO = f(m).
Example 4.4 | Show that Lagrange’s mean-value theorem is not applicable to the
function

1
xsin— when x #0

fx)= X in[-1,1] [WBUT-2005]
Owhen x=0
Sol. Here we are to check two conditions.

i) Since x is continuous everywhere and sin— is continuous everywhere
X

A .
except at x=0, f(x)=xsin— is continuous everywhere except at
X

x=0.

x—0 X

Now it is easy to show that lim (x sin l]— 0= lirr(l)f(x) = 1(0).
X X!

i.e., f(x) is continuous at x = 0.

Combining the above two cases, we say that f(x) is continuous every-
where and so f(x) is continuous in [—1, 1].

i) When x #0,

f(x)= sinl—lcos(l)
X x

X

i.e., f'(x) exists for x #0.

Now

1
hsin—
£(0)=lim f(0+h2_f(0) — lim

- h—=0 h

o1 . .
= lim sin — which does not exist.
h—0

So, f(x) is not derivable at x = 0.
Therefore, f(x) is not derivable in (-1, 1).

Since all the conditions of Lagrange’s mean-value theorem are not satisfied,
the theorem is not applicable to f(x) in [-1,1].
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Example 4.5 | If f(x)=sin"'x, 0<a<b < 1, use mean-value theorem to prove that
b- - bh—
\(/_“2 <sin"'p-sin"la < £ “z [WBUT-2007, 2008]
1- 1-b

Sol.  Let f(x)=sin"'x in [a,b], O<a<b<1.

Here, f(x) is continious in [a, b] and f'(x)=

which exists for all
1-x
values of x in (a, b).

Therefore, all the conditions of Lagrange’s mean-value theorem are satisfied
and there exists at least one value of x, say ¢, a < c < b, such that

fb)~flay=(b-a)f(c),a<c<b
-1 (b—a)

or, sin U—MI’I di

= ,a<c<b (1)
l1-c

Now,
a<c<b=da’><c* <b?
= —a’>-c*>-b*

or,1-a®> >1-c*>1-b%

or,\/l—a sV1=c? >A1-p?

| |
<

\/1— \/1— J1-p?

(b a) (b- (l) (b—a)

" e \/1 \/1 b’ @

Therefore, from (1) and (2), we get,
=) _ . (b-a)

<sin~ o—sm
1-a° 1-b?

Hence, the required result is proved.

Example 4.6 | Using mean-value theorem, prove that

24 1£: <sin! (% ]< z. 1 [WBUT-2005]
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)

Sol. Let us consider f{x)= sin"'x in [l E}

1 3 , 1 L 1 3
Since f(x) is continuous in | —,— | and X)= existsin | —, — |,
70 [2 5] N (2 5]

all the conditions of Lagrange’s mean-value theorem are satisfied.

. 1 3
So, there exists at least one value of x, say ¢, — <c¢ <— such that

3 1 3 1),
or, sin™" (E )— sin”! (l]— L : ; (1)
5 2) 10 12

Now,

2 2
T3 (1) ss (3
2 5 |2 5

2 2
=1- 1 Sl-c?>1- 3
2 5
4 1 25
= -—<—<—
3 1-¢2 16
12 1 1 15

=5 ——<——F—<—-

103 10, f1_.2 104

11 1 1
S —— <<= (2)
53 10 fi_2 8

There from (1) and (2), we have

—1 <sin™' z —sin” l <l

53 5 2) 8

or L<sin’1 3 —£<l
503 5) 6 8

or,£+£<sin71 é <£+l
6 15 5

6 8
Thus, the required result is proved.
Alternative Method of Solution

In the last example (4.5), using Lagrange’s mean-value theorem, we have proved that

M< Sinilb_sinila < (b_—a)

J1-42 1-p2
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where f(x)=sin"'x, 0<a<b<l.

1
Putting a = 5 and b= % in the above, we have

@

6 8
Example 4.7 | Using Lagrange’s mean-value theorem, prove that
b—a

b—
5 <tan"'h—tan a < where 0<a<b<?2

1+b 1+a

Sol. Let f(x)= tan"'x in [a,b], O<a<b<2.

, 1 . .
Here, f(x) is continuous in [a, b] and f'(x)= 3 which exists for all values
of x in (a, b). I+x

Therefore, all the conditions of Lagrange’s mean-value theorem are satisfied and
there exists at least one value of x, say ¢, a < c < b, such that

fb)-—fla)=b-a)f(c),a<c<b

or, tan 'b—tan'a = (b—az) ,a<c<b (1)
(1+c¢7)

Now,

a<c<b

0r,l+a2 <l1+c? <1+b?

1 1 1

or, > >
1+a®> (1+c¢%) 1+b°
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or, (b—a)> (b—a) >(b—a)
1+a*> (1+c%) 145

(2)

Therefore, from (1) and (2), we get,

b—a _ _
- <tan 'b—tan la <
1+b 1+a

b-a
2

Hence the required result is proved.

Example 4.8 | Using mean-value theorem, prove that

—1 T
< tan x<x,0<x<5

1+x

Sol.  Let f(x)=tan'x for 0<x< %

It is obvious that f(x) satisfies all the conditions of Lagrange’s MVT in
[0, x].

From Section 4.3.3, we have Lagrange’s MVT in the interval [0, x] as

F(x)= FIO+xf'(Ox), where 0 < 8 < 1.

, 1
Here, f(0)=tan '0=0 and f’(x)=
1+x
So from above

1
tan"'x = 0+x—2, where 0 <6 <1.
1+(0x)

X
1+(9x)2

Now we have

or, tan'x =

0<08<1=0<0x<x,since x>0
0r,0<(6x)2 < x? :>1<1+(<9)c)2 <1+x?
1 1

, <—<1
1+x 14(0x)

or

X X
<L— - <x

> 5 , since x>0
I+x l+(9x)

or,

Again tan"'x = Lz, therefore
1+ (GX)

5 < tanflx< X.
1+x
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Example 4.9 | Use MVT to prove that
P | T
sin46” ~ —| 1+ — [WBUT-2003]
L2 U180

Sol. Let us consider f(x) =sinx in [45°,46°].

It is obvious that all the conditions of Lagrange’s MVT are satisfied by
f(x)=sinx in [45°,46°].

Also f'(x)=cosx.

Now Lagrange’s mean-value theorem in [a, a + | is [see alternative form (1)
of Section 4.3.3]

flath)= f(a)+hfa+6h), 0<6<I
Putting a =45° and h=1°, we have
f46° )= f(45°)+1°- /45 +0-1),0< 06 <1

or,sin46° =sin45° +1°-cos(45°+6-1°),0< 8 <1

= §in45° + ——cos(45° +0°),0< 0 <1
180
Since O is very small,
. o . o V4 o
sin46” ~ sin45” + ——cos45

1 T 1

YT
e

Example 4.10 | Estimate 328 using Lagrange’s mean-value theorem.

1
Sol. Let us consider the function f(x)=x3 in [27,28].

-2
’ 1 = .
Here, f(x) is continuous in [27,28] and f'(x) = gx 3 exists for all values of
x in (27,28).
So all the conditions of Lagrange’s MVT are satisfied.

Therefore, by Lagrange’s mean-value theorem in the interval [a, a+h], we
have

fla+h)= fa)+hf(a+6h),0<0 <1
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Putting a =27, h=28-27=1
F28)= FQT)+1- f(27+6-1),0<0 <1

-2
or,@:ﬁ%mw)s

:>3_28=3+l;<3+l 1
3 2 3 2
(27+6)3 (27)3
=328 34— |=3L
3.9 27

Again since 27 <28 = %/E < 2@ =3< Q/ﬁ we have

3<%/ﬁ<3i.
27

Example 4.11 | 1If fi(x)= ! > and f(0)=1, using Lagrange’s mean-value

4—x

theorem, estimate f(1).

, 1
Sol. Since, f(x)=
4-x

3 exists for all x in (0, 1), therefore f(x) is continuous

in [0,1].

Therefore, applying Lagrange’s mean-value theorem to f(x) in [0, 1], there
exists at least one value of x, say ¢, 0 <c <1 such that

FH=f0)=(1-0)f"(c),0<c<1

= f()-1= 0O<c<l

P

Since 0 < c <1, we have

1 1
-1
|:4—C2l=o<f( ) <|:4—Cz:|c=1

1 1
or,—< f(l)-1<—
) f 3

or,1.25< £(1)<1.33.

The above gives an estimate for f(1).
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Example 4.12 Find the values of a, b, ¢ for which the function

f(x)=3;,x<0
=—x° +3x+a;0<x<1
=bx+c;1<x<2
satisfies the conditions of Lagrange’s mean-value theorem.

Sol. The function f(x) will satisfy the conditions of Lagrange’s mean-value
theorem if

(i) f(x) is continuous in [0, 2]
(i) f(x) is derivable in (0, 2)
The function
fx)=3;x<0
= —x? +3x+a;0<x<1
=bx+c;15x<2

is continuous and derivable for all values of x in [0, 2] except at x =0 and
x=1.

Now,
lim f(x)= lim (-x* +3x+a)=a
x—=0+ x—0+
lim f(x)= lim (3)=3and f(0)=3
x—0— x—0-
Therefore, f(x) is continuous at x =0 if
lim f(x)= lim f(x)= f(0)
x—=0+ x—0-
=a=3 (1)
Again
lim f(x)= lim (bx+c)=b+c
x—l+ x—I+
lim f(x) = lim (—x* +3x+a)=a+2 =5, since a =3
x—l1- x—li-
and f(l)=b+c

Therefore, f(x) is continuous at x =1 if
lim f(x)=lim f(x)= 7 (1)
x—l1+ x—1-

=b+c=5 2

Skar? 04 024-052.indd 41 7~y 8/4/2010 1:51:28 PM



4.42 I Engineering Mathematics-I

Similarly, f(x) is derivable at x =1 if

f(1+h) S _ f(1+h) AQ))

h~>0+ h—)()f

f— — 2 f—
or, lim b(+h)+c—(b+c) _ lim (1+h) +3(0+h)+a—(b+c)
h—0+ h h—0— h

Putting a=3 and b+c =5,

2
or, lim bh _ lim -(+h)"+3(1+h)+3-5
h—=0+ b h—0- h

. bh_ .. —h+h
or, lim — = lim
h—0+ J1 h—0— h

or,b=1 ..(3)

Therefore, from (1), (2) and (3), we have a=3, b=1and ¢ =4.

Example 4.13 | Apply Maclaurin’s theorem to the function f (x)=(1+x)4

deduce that

A+x)* =1+4x+6x> +4x> +x* [WBUT-2001]

Sol. Maclaurin’s theorem with Lagrange’s form of remainder is

2 3 4 )
)= O+ xf O+ 2 f O+ O+ 00)

(il)'f(” 1)(0)+ f(")(ex) 0<6<1 ()

Here,
f=1+x" = f(0)=1
S =41+x’ = f(0)=4
) =12(1+x)? = f0)=12
F7(x)=241+x) = f7(0)=24
fMy=24 = ™ 0)=24

f(")(x) =0 forall x, whenn>4
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Therefore, putting the above values in (1), we have

2 x3 x4

(A+x)* =1+4x+12- 24242 40242
21 31 41

=1+4x+6x> +4x° +x*

Example 4.14 | If
1

, K,
()= fO)+hf'(0)+— f"(6h),0< 0 <1, f(x)=—
2! 1+x

and h =7, find 6.
Sol. Here

f<x):% = £(0)=1
+Xx

4 — l0:_1

Sx) Urxy = f0)

, 2 , 2
= = Qh = @

1 (1+x) Jom (1+6h)

So, f(x) satisfies the conditions of Maclaurin’s theorem for x #—1 in [0, A].
The given expression
hz

f=fO+hf (0)+§f (6h) (D)
is Maclaurin’s theorem with Lagrange’s form of remainder after 2 terms.
Therefore, putting the values in (1),

1 o2

—=1-h+—

1+h 2 (1+6h)°

For h =7, we have
l=1_7+i3
8 (1+70)

or,(1+76)) =8 =1+70=2

1
=6 =—(Ans.
7( ns.)
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Example 4.15 | Expand a”* in a finite series with Lagrange’s form of remainder.
[WBUT-2002]
Sol. Here,

f=a" = = f(0)=1
£(x) = (log @)™ = £'(0) = (log,a)
£7(x) = (log @™ = f£7(0) = (log,a)’

)= (log,a)" ™™ = £1")(6x) = (log,a)" ™4™
So, it is clear from the above that the given function satisfies all the conditions

of Maclaurin’s theorem.
Now the Maclaurin’s series in finite form with Lagrange’s form of remainder is

flo)= f<0)+xf(0>+—f(0)+ +( )f“’ (0)

+x—'f(")(9x), 0<8<1 (D)
n!

Putting the values from above in (1), we have the expansion of f{x)=a" ina
finite series with Lagrange’s form of remainder as

2 3
a* =1 +x-(logea)+%(lo,«_zea)2 +%(logea)3 4o
21 !

n—1
n (lngLa)vx

+ log )" "' +=—(log a
e 1),( g.4) ( ga) e
Example 4.16 | Expand the function " sinx in powers of x in infinite series:

Sol. Here,
f(x)=e"sinx= f(0)=0

We know from successive differentiation that if y = ¢® sinbx then

5 b
Y, = (a? +bz)2 -e™ sin(bx+ntan1 —).
a

Therefore, for f(x)=e” sinx, we have

n
FPx) =12 +1%)2¢" -sin(x+n-tan'1)

Skar2 04 024-052.indd 44 @ 8/4/2010 1:51:37 PM



Mean Value Theorems and Expansion of Functions I 4.45

=(2)2 " ~sin(x+ﬂ]
4
= (\/E)” et ‘sin(x+%} for each n.

Thus, f(x)=e¢" sinx possesses derivatives of every order and for every value
of x in any interval [—#4, &].

Here

F0) = (\/E)n ~Sin(% ] for each n
So,

fﬂD=(J5)ﬂn(%]
£70)=(2)? -sin(%”]

...and so on.

Now in the Maclaurin’s finite expansion, the remainder R, after n terms in
Lagrange’s form is

n
R, == f*(6x)
n!

=x—‘-(ﬁ)" -eex-sin(%+ex}0<9<l
n.

Now,

0<|R,|=(2)" El [ e . (D)
EN

Since

0<0<1=0<Bx<x=0<0x]<|x]
we have
|g(~)x

and

sin(ﬂ+9xj
4

_ |9x| Vx'
~e <e

,which is a finite quantity.

<l
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Also

n

lim X - 0 for all x.
n—se p!

So from (1), we get
limR, =0.

n—sc0

Therefore, we have Maclaurin’s infinite-series expansion of f{x)=e" sinx
and is given by

2 3

F@ =10+ f(0)+—f(0)+—f (0)+ f<”><0)+ + f<”><0)+ -

ie.,e slnx—0+r(x/551nz)+—(f) sm( ) (\/7) sm( J
+x—(\/5)4sin(4—ﬂ]+---
4! 4

3 5
X
1e 6 sin x = X+.X +?——+

30

Example 4.17 |  Apply Maclaurin’s theorem to prove that

1
smx>x——x 1f0<x<—
6 2

Sol. Maclaurin’s theorem with Lagrange’s form of remainder after 3 terms is
4 x2 ” x3 v 4
f(x)=f(0)+xf(0)+§f (0)+?f 0x), 0<8<1 (1)
Let

f(x)=sinx= £(0)=0

Fi(x)=cosx = £ (0)=1
f7(x)==sinx= f(0)=0

f7(x) = —cos x = f"(6x) = —cos(6x)

Therefore, putting the above values in (1), we have

2 3
F()= £0)+x£(0)+ % £7(0)+ % £70x), 0<6<1
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2 3
or, sinx=O+x<l+x—<0+x—{—cos(0x)}, 0<6<1
2! 31t

3
or, sinxzx—%cos(@x),0<9<1 ..(2)

Since
T
O<9<1and0<x<5,
we have
b4
O<9x<E:>0<cos(9x)<l.

Therefore,

3 3

—Cos(Ox) < —since x>0
6 6

3 3 3 3
= —x—cos(ﬁx) > X o x——cos(6x)> -
6 6 6 6
Hence from (2),
3

. 1
sinx>x——x
6

EXERCISES

——— & Short and Long Answer Type Questions +——

1. Show that Rolle’s theorem holds for the following functions:
a) f(x)=4-x%in [-2,2]
b) f(0)=(x+2) (x=4) in [-2,4]

—-X

©) f(x)=x(x+2)e? in [-2,0]

. T T
d) f(x)=cosx in [—5,5:|

- sinx—cosx) in [ £, 3T
e) f(x)=e (sinx—cosx) 1n[4, 4:|

2. Show that Rolle’s theorem is not applicable to the following functions:

@ fo)=]x=3] in [0,3].
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) f(x)= sin(l] in [-1,1]
X

1
(i) f(x)=3+(x—1)3 in [-1,1]

3. If the function f(x) is defined on [0, 1] by

f(x):Z,ifOsté

=3,ifl<xS1.
3

then prove that f(x) satisfies none of the conditions of Rolle’s theorem but f'(x)
vanishes for each xe€ (0, 1).

4. If

sinx sinf sing .
f(x)=|cosx cos® cosg|, 0<O<¢p<—,
tanx tanf tan¢

using Rolle’s theorem, show that f’(y) =0, where 0 <y < ¢.

5. Verify Lagrange’s mean-value theorem for the following functions:

1) f)=x(x—-1)(x-2) in [0, %}
(ii) f(x)=+/x in [9,16]

1
xcos—when x #0 |
(i) ()= x in[-1,1]

0 when x=0

T 5]
v x)=logsinx in | —, —
(iv) f(x)=log [6 6 |

V) f)=3-3(x—2)" in [4,10]

[Ans: (i) yes (i) yes (iii)) no (iv) yes (v) no]

6. Verify Cauchy’s MVT for the functions:
1 1.
a) f(x)=— and g(x)=— in [l,3]
X X

b) f(x)=logx and g(x)=x in [1, €]
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1
Jx

d) f(x)=x(x-2) and g(x)=x* in [~1,1]

¢) f(x)=+x and g(x)=— in [3,6]

[Ans: (i) yes (ii) yes (iii)) yes (iv) no]

7. If f(x)=cosx, g{x)=sinx in [a, b], then show that ¢ of Cauchy’s mean-value
theorem for the two function is A.M. of a and b.

8. Using mean-value theorem, prove the following inequalities:

X

a)

- >qin x2x if0<x<1
1-x

b) O<;—l<l, if x>0
log(1+x) x

¢) x<log——<—* if0<x<I
-x 1-x

2x

1+
> >log1—x>x, if 0<x<l1
1—x - X

d)

Q

2x . .
e) —<sinx<yx, if 0<x<—
T

N

9. Estimate cos61” using Lagrange’s form of MVT. [Ans : 0.4849]
10. Find the approximate value of +/9.12 using Taylor’s theorem. [Ans : 3.0199]
11. In the mean-value theorem

fla+h)= f(a)+hf(a+0h),0<0<1
if
1 3 3,
X)=—x"——x"+2x
J(x) 3 5
and a =0, h =3, show that @ has two values.

12. Using mean-value theorem prove the following:

(i) +101 lies between 10 and 10.05
1 1

i) —<logld<—

(i) - <log 5

(i) T <t <L
4 tan 4

25 3
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13. Use Taylor’s theorem to expand x* =37 +2x —x+1 in powers of (x—3).
[Ans : 16+38(x—3)+29(x—3)* +9(x—3)’ +(x-3)"]

14. Use Maclaurin’s theorem to prove the following:

2
i) log(1+x)> x—%, if x>0

x’ T
i) cosx>1-—, if O<x<—
2 2

2
x°
iii) e” >1+x+7, if x>0

15. Prove the following by infinite series expansion:

(x-2)? . (x-2)°

@A) exzez[1+(x—2)+ 5 5

+---:|f0r all xe [2—h, 2+h]

(x-1°  (x-1)°

(i) logxz(x—l)—iz +73 —for0<x<2.
2 4
e . 1 1
(i11) smx:l——(x—z +— x—z ...
Z!L 2 4! 2

16. Find the binomial expansion of (1+ x)", when n is a positive integer.

[Ans: 1+ "Cy-x+ "Cy x"+ "Cy- X +-+ "Cp-x" +-+x"]

# Multiple-Choice Questions *

1. Maclaurin’s expansion for the function f(x)= i‘/; in [-1,1] is

a) applicable b) not applicable
c) partially suitable d) none of these

2. Lagrange’s MVT is obtained from Cauchy’s MVT for the function f(x) and g(x)
by putting g{x) =
a) x b) 0 c) 1 d) none of these

3. Which of the following functions does not satisfy the conditions of Rolle’s theorem
in [-1,1] ?
1 1
a) x> b) c) — d) Vx2+3

x+2 X
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4. Which of the following pair of functions do not satisfy the conditions of Cauchy’s
MVTin [-2,2]?

a) %2, log x b) sinx?, x

o) |x—4|, x> +4 d) 1+x°, —
x"+4

5. log(1+ x) can be expanded in an infinite series on the interval

a) (-1.1] b) [-1.1] o [-1.D d (=L 1D

6. The region of validity of the expansion log(1+5x) is

a) -5<x<5 b) _—ISXSl
5 5

c) _—]<x<l d) _—]<x$l
5 5 5 5

7. If a function f(x) satisfies all the conditions of Rolle’s theorem on [«, b] then
f’(x) vanishes

a) every where on («, b) b) at exactly one point of (a,b)

c) atleast one point of (a, b) d) none of these
8. Let f(x) be a differentiable function on (7,9). Then f(x) satisfies the condi-
tions of Lagrange’s mean-value theorem on [7, 9] if
a) f(x) is continious on (7,9) b) f(x) is continious at [7, 9]
¢) f(x) is continious at x =7 d) none of these
9. If f(x) iscontiniousin [a, a+h] and derivable in (¢, a+ h) then f(a+h)— f(a)=

hf’(a+0h), where

a) @ is any real number b) 0<6O<l1

c) 6>1 d) 0 is an integer

10. The region of validity of the expansion log (1+2x) in Maclaurin’s infinite series is

-1 1
a) -l<x<1 b) —<x<—
2 2

c) 0<x<2 d) none of these
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11. If the Maclaurin’s expansion of sinx is

3 5
. X X
sinx=x——+-——-+-00
3k
then the value of k is
a) 4! b) 5! c) —5! d) 6

12. For a function f(x) the expression

Ha-or ! f™(a+6h)
(n=1)!
is known as
a) Lagrange’s remainder b) Cauchy’s remainder
¢) Maclaurin’s remainder d) Taylor’s remainder

13. f(x) has derivative of every order in a neighbourhood of zero. Then f(x) can be
expanded in an infinite series if

a) f"(x) =0 forsome n and x
b) remainder R, exists for all n
¢) remainder R, -0 as n — oo
d) none of these
14. Which of the following statements is true?
a) Two conditions are necessary for Rolle’s theorem.

b) If f(c)=0, a<c<b then f(x) satisfies all the conditions of Rolle’s theorem
in [a, b].

c) If f(c)=0, a<c<b then f(x) must be continious in [«, b].
d) Two conditions are necessary for Lagrange’s mean-value theorem.

15. Cauchy’s mean-value theorem can not be applied on the two functions f(x)= X
and g(x)= x* on the interval [-2, 2] because

a) x* is not derivable at apoint in the interval (-2, 2)
b) f(x) is an odd function
C) 45 =0 at x=0

d) g(x) is an even function

Answers:

1. (b) 2.(a) 3.c) 4@ 5@ 6(d T 8 9.(0b)
10. (b) 11.(b) 12.(b) 13.(c) 14.(d) 15.(c)
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CHAPTER

Reduction Formula

5.1 INTRODUCTION

In the present chapter, we deal with the concept of reduction formula for integration.
Basically, reduction formula allow us to express an integration involving higher powers
of a function by another integration which involves comparatively lower powers of the
same function. Also, by means of reduction formula we are able to compute indefinite
as well as definite integrals.

Here in the chapter first we develop reduction formulas for some standard integra-
tions and then we apply those formulas to evaluate the integrations. Each of the items
are illustrated with suitable examples.

5.2 REDUCTION FORMULA FOR
(a) J.sin"x dx, where n (>1) is a positive integer

T
(b) -[02 sin” x dx, where n(>1)is a positive integer [WBUT 2006]

(a) Let us consider
I,= J.sin”x dx

= Jsin"ilx -sin x dx

Integrating by parts taking sin "X as the first function and sin x as the second function,
we have
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. n-1
I, = sin"_lxjsin xdx— {%J‘sinxdx J’ dx
X

2 xcos x(—cos x) dx

= sin" " x(—cosx) - J‘(n —1)sin"”
=—sin" xcosx+(n— I)J’siny'f2 xcos® x dx

= —sin™"!

xcosx+(n—l)J‘sin"72 x(1—sin? x) dx
= —sin"" xcosx+(n—1) [sin" xdy—(n—1) [ sin” xdx
=], =—sin"" xcosx+{n-1)1, , —(n-1)1,

= nl, =—sin"" xcosx+(n—-1)1, ,

e, |I,= —sin" ' xeosx  (n-1) 1,, ()
n n

Therefore, (1) represents the reduction formula for /,, = _[sin" xdx where n is any
positive integer
(b) Let us consider

/2

T
J, =J.055in” xde=[1,]".

Now taking limits on both sides of (1), we have

w
[ln]og = [_Sinn_l msx}z U [1,172]0%
n o n

ie., [J,

1
- ("n )T, e

T
Therefore (2) represents the reduction formula for J,, = _[02 sin” x dkx.

Calculation of the Value of the Definite Integral

T
J, = F sin” xdx, where n(> 1) is apositive integer.
0

From (2), we have the reduction formula for above as

J, =

(n—1) o ..(3)
n

Now replacing n by n—2, we get from (3)

_(n-3)
2 Jo 4 (4

n=2
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From (3) and (4), we obtain
J = (n=1) (n=3) J

g —J, .5
w2 )
Again replacing n by n—2, we get from (4)
(n-5)
et = S, ..(6
s ©)

From (5) and (6), we have

_(=) (1-3) (n-9)
n (n=2) (n-4) "°

Similarly proceeding as above, we have the following cases:

J

n

Case (i) n is even.

(n—-1) (n-3) (n=5) 31
J, = . . 2=,
n  (n=2) (n—-4) 42
Again
Jy :jmzsino xdx = ﬂ/zdxzz.
0 0 2
Hence
(n-1) (n-3) (n-5 3 1 =&« .
J, = --.— — —, when n is even.
n (n-2) (n-4) 4 2 2

Case (ii) n is odd.
g =D (=3) n=3) 42

8 n (n=2) (n-4) 53
Again

/1

J1=j03sinxdx=1.

Hence

Jn=(n_1) (n-3) (n—S)mﬂ z,whennisodd.
n (n-2) (n—-4) 5 3

Alternative method of finding reduction formula for
T

J.OZ sin"x dx, where n(>1) is any positive integer

Let

T
Jn = J.Oz Sinnx dx
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=[sin"'x jsmxdx]’”2 .[0

{M‘[smx dx}dx

=[—sin""xcosx]7'? +(n—1)F"* sin" 2 x cos” xdx
i
2
=0+(n— I)J‘ sin” 2x(1 —sin” x)dx
T T
2 2
= (n—I)Jsin”_zxdx—(n—I)Jsin”xdx
0 0

ie., J,=(n-1)J, ,—(n-1)J,

n—1
J_( )n2
n

T
Therefore, the reduction formula of J, = J}f sin” x dx, where n is any positive
integer is

g, =z,
n

n-2-

Example 1 Using reduction formula, find '[ sin®x d.

Sol. If we consider
I,= jsin"xdx
Then the reduction formula is

o n—1
—sin”  xcosx (n—1
I, = + ( ) 1,5
n n

We are to calculate

I, = Jsin“ xdx.

Here
I :—sin3xcosx+§
4T T gl
Again

—sinxcosx 1
L, = |sinxdx=—"""" 4],
=] : Sl
and

Iy = J-sin0 xdx = de =X
Therefore, we have
—sin’xcosx 3
= +

J,=— " 7
4 4 47
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_—sin3xcosx 3 |—sinxcosx 1
4 4

+—1
2 20

4 2 2

—sin’ xcosx 3 [-sinxcosx 1
- +—x
4 4

_ —sin’ xcosx 3 sinxcosx+ 3
4 4 2 8

/4
Example 2 | Using reduction formula, find ,[05 sin’ xd.

Sol. If we consider

T
#:kgwxm
Then the reduction formula is

Jn :(n_l)"]n—Z
n

We are to calculate

T
k:kﬁfxﬁ

T

5o 2
Ji =j02 sm3xdx:§-J1

and

T

J, = J‘Ogsinxa’x =1

Therefore,

T

T
Example 3 | Evaluate j02 sin®x dx.

Sol. Let us consider

T
#:kgwxm

[WBUT 2006]
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So, we are to calculate
T

Jg = J‘OZ sin® x dx.

0

Here n =6, an even integer.

Now we have the value of J,, when n is even as
J _(n-1) n=3) n=5) 3 1=

! n  (n=2) (n-4) 422

Hence,
o33z
6 422
_or
32

5.3 REDUCTION FORMULA FOR

(a) '[cos"x dx, where n(> 1) is a positive integer

T
(b) J'fcos" x dx, wheren(> 1) is a positive integer

[WBUT 2008]

(a) Let us consider
I,= J.cos” xdx
_ n—1
= J.cos x-cos x dx

Integrating by parts, we have

n-1
I,=cos"" xJ.cosx dx—J{Mjcosxdx} dx
dx

1

— . 2 . .
=cos" xsinx— J‘—(n —1)cos™ * x-sin xsin xdx

2

=cos" ! x-sinx+(n —I)Jcos”_ x-sin® xdx

=cos" ! xsinx+(n— I)J.cosnfzx(l —cos® x)dx

= cos" ! xsinx+(n— I)JCOS”_2 x—(n— 1).[ cos” xdx

1

ie, [I,=cos" xsinx+{(n-1)I,_,—(n-1)I,

ie, nl,=cos" xsinx+(n-1)I,,
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cos" ! xsinx N (n—1)

=1, = 1,, ()

n n

Therefore, (1) represents the reduction formula of 7, = jcos” x dx, where n is any
positive integer.

(b) Let us consider
L T
J, = J.OZ cos” xdx =[1,]?
Now taking limits on both sides of (1), we have

T

T n=1, o3 5 _ T
[[n]g :[cos xs1nx:|2 +(n 1)[1n_2]§
n 0 n

e g ==, (2

ERd ]
n

T
Therefore, (2) represents the reduction formula for .J, = J02 cos” xdx.

Calculation of the value of the Definite Integral
T
J, = JOE cos” xdx, where n(> 1) is a positive integer.

It is very interesting to see that

4

Vs Vs
J =JZCos"xdx:'[2cos” T _x dx=J‘Zsin”xdx
" Jo 0 ) 0

Vs T
So, the values of two definite integrations J02 cos” x dx and I02 sin” x dx are
same.

Vs
Hence from the last section 5.2, we have the value of J, = J.OZ cos” xdx as the
following

Case (i) When n is even.

J _(n-1) (n-3) n-5)
" n (n-2) (n-4) 4

| W

(SR

[SHEE

Case (ii) When n is odd.

_(n-1) (n-3) (n-5) 4 2
T n n-2) (n-4 5 3’

P
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Alternative method of finding Reduction Formula for

T
J02 cos” xdx, where n (>1) is any positive integer.

Let

T
J, = J.OZ cos” xdx

Vs
5 -
= JOZ cos”"™ x-cosx dx

Using integration by parts,

a3 o fi—1
J :I—cos"_lx cosxdx |* — |2 dicos” x)
n L

cos xdx }dx
0 0

dx
i
= 2(n— "2 x.sinx-sinx-
0+J‘0 (n—1)cos" " x dx
T
=(n- 1)_]‘02 cos” 2 x-sin® xdx
T
=(n- I)J‘O2 cos" % x(1—cos® x)dx

T T
ie, J,=(n- 1)'[05 cos”fzx—(n—l)J.OE cos” xdx
ie, J,=(n-1)J, ,—(n-1)J,
(n—l)Jni2

ire., J,=

T
Therefore the reduction formula of J, = J02 cos” x dx, where n(> 1) is any positive
integer is given by

n= (n_l) Jn—2'
n

Example 4 Using reduction formula, find Jcos4 X dx.

Sol. If we consider

I,= J.cos” xdx

then the reduction formula is

n—l, o3 _
i _ Ccos xs1nx+(n ])]n72

n

n

We are to calculate

1, = jcos“ X dx.
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Here
I :J.cos4xdx—7COS3 xsinx_l_zl
4 4 22
_ 2 _cosxsinx 1
IZ—J.cos xabc—42 +2[0
]OZIdx:x
Therefore,
3 .
_ 4 _cos” xsinx 3
[4_jCOS xdx_f‘i'zlz
cos’ xsinx 3 [cosxsinx 1
4 4 2 2

_ cos® xsin x 3{cosxsinx 1 }

+—x
4 4 2

V9
Example 5 Using reduction formula, find JE cos® xdx.

Sol. If we consider

T

J, = J‘OE cos” xdx
Then the reduction formula is

Jn :(n_l)"]n—Z
n

We are to calculate

T

Jg = J‘Ozcosé x dx

Here,
‘]() __‘J4
Again

3
J, :Z.Jz
and

1
Jz—E‘Jo
But

z T
Jy —J'zdx__
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Therefore,
531 n 5¢m
Jg=—"— == -
6 422 32

5.4 REDUCTION FORMULA FOR

(a) J.sin’" x cos” xdx, where m(> 1) and n(> 1) are positive

integers

Jgsin’" x cos” x dx,where m(> 1)andn(> 1)are
positiveintegers [WBUT 2008]

(a) Let

Lyn= Jsinm xcos” x dx
-1 .
= Icos” x(sin” xcos x) dx

Integrating by parts, we have

or d(cos"™ ,
I, , =cos" ! xJ‘sm’" X €OS xdx—'[{(c%x)'[smm X COS xdx} dx
X

inm+1 - m+l

.| ) . s X
=cos" x - j—(n —1)cos” “ xsin x dx
m+1
m+1
-1 n—1 . -2 22
—cos" X (-1 J.sm'” x cos" ™" x sin” xdx

m+1 (m+l)

L sin™x (n-

=cos" x
m+1 (m+1)

jsm x cos” 2 x(1—cos” x)dx

n—1 m+1 (l’l 1) sm n-2 (}'l B l) s m n
so, /,, , =cos P Jsm xcos" " xdx— Jsm x cos” xdx
’ m+1  (m+1) (m+1)
(m+n) L osin™ x (n=1)
m,n . COS X + m, n—2
(m+1) m+1 (m+1)
n—1 s m+1
cos xsin x (n-1)
= I = I _ 1
m,n (m+n) (m+n) m,n—2 ( )
If we write

— s m n
Im’n—jsm xcos” x dx
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~ x (cos” xsin x) dx

= jsinm !
Then we can get
sin™ " x cos” (m-1)
Im’n = - Im_Z,n ...(2)
(m+n) (m+n)
Therefore, the reduction formula of 7, , = jsin xcos” x dx is given by both the

formulas (1) and (2).

(b) Let us consider
T

/4
— 2 inm n _
T n I2s1n xcos xdx—[ m,n]

Now taking limits on both sides of (1), we have
T

”’“xr =D T
m,n=2 |,

"1 xsin
(m+n)
..(3)

[1nn ]2 =

{cos
(m+n)

e, J,, ~ 1)

" (mn)

Again taking limits on both sides of (2), we have
(m+n) fn2n 0

.(4)

m n-2

3

1 xcos”

e

i'e'v mon (m_l) m=2,n
’ (m+n) ’
Therefore, both the formulas (3) and (4) represent the reduction formula of

T
— J 2 sin” x cos” x dx.

Observation:
T
Tonn =J.2 sin™ xcos” xdx

e (oo (5

J}’I m
Calculation of the Value of the Definite Integral

a
Jpn = J.2 sin™ x cos” x db.
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Let us consider the reduction formula (4), i.e.,

_(m-1) _(m=1)
(m+n) e (n+m)

m,n m=2,n

Now replacing m by m—2, we get from (5)
(m—-3)
(n+m-2)
From (5) and (6), we obtain

_(m-1) (m-3)
(n+m) (n+m-2)

J

m—2,n

m—4,n

m,n m—4,n

Again replacing m by m—2, we get from (6)
(m=5)

(n+m—4) e

From (7) and (8), we have

_m=1) _(m=3) _(m-5)
(n+m) (n+m-2) (n+m—4)

J

m—4,n

m,n m—6,n

Similarly proceeding, we have the following cases:

Case (i) m is odd and n is any (odd or even) integer

_(m-1) (m-3) (m-5) 4 2

m,n

Again
L2
Jin= JOZ sin x cos” x dx

_ cos™! x _ 1
(n+1) | (n+1)

Hence

]

(n+m) (n+m-2) (n+m—4) (n+5).(n+3) b

_(m-1) (m-3) (m-5 4

2

1

_2-4-6..(m-3)-(m—-1)
T (m+1)-(n+3)...(n+m)

T pem) (n+m-2) (n+m—-4) (n+5) (n+3) (n+1)

Case (ii) m and n both are even integers

:(m—l)_ (m-=3) _ (m=75) 3 1

m,n

(n+m) (n+m—-2) (n+m—4) (n+4)'(n+2)‘]°’”

..(5)

...(6)

A7)

..(8)

(9
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Again
L2
Jon = J.OZ cos” x dx

Since 7 is even we have from section 5.3,

o = (n—l).(n—3).(n—5)”.3 1

n (n=2) (n-4) 422
Hence

o (m-1) (m-3) 3 1 (n-1) (n-3) 3 1 =
" (n+m) (n+m-2) (n+d) (n+2) n (m-2) 4 2 2|
[1-3-5...0n-3)-(m-D][1-3-5..(n-3)-(n-1)| =

2:-4-6...(n+m) 2

Example 6 | Using reduction formula, find J sin® x-cos® x dx

Sol.  The reduction formula of 7, , = J sin™ xcos” x dx is given by

cos"" x sin™*! x N (n—-1)

(m+n) (m+n)
Here, m=3,n=2

Vi =

m,n

m,n—2

Now

. 4

cosx-sin” x 1
L,=——7+-1

5 5
and 15 = J-sin3x dx = J-(l—cosz x)sinx dx
_ . I‘ 2 .
fJ‘smxdx—Jcos x-sin x dx
3

cos” x
=—Ccosx+
Therefore,
. 4
cosxsin" x 1
Li,=——T—+-1
5 5

cos xsin*x 1 cos’ x
= 4+ J-cosx+—
5 5 3

T
Example 7 | Using reduction formula, find J02 sin® x cos” x di

Sol. Since
T

Jm,n:JOESinmxcos"xdx: 2:4-6..(m-1)

(n+1)(n+3)(n+5)...(n+m)
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when m is odd and » may be odd or even integers.
Here, m=3 (odd), n=2 (even)

Therefore,

/4
J3,= JOZ sin® xcos? x dx

T
Example 8 | Using reduction formula, find J02 sin” x cos” x di

Sol. Since
V3
g =J.Esin’"xcos" xdx:1~3-5...(m—1)-1»3-5...(n—1)z
’ 0 2-4-6..(m+n) 2

when both m,n are even integers.
Here, m =2 (even), n=2 (even).

Therefore,
T

Jro = IO2 sin? x - cos® x dx

5.5 REDUCTION FORMULA FOR
(a) J.cos’" x sin nx dx, where m and n are

positive integers.

T
(b) J02 cos™ x sin nx dx, where m and n are

positive integers.

(a) Let

Lyn= Jcos"’ xsin nx dx

Integrating by parts, we have

1, ,=cos" xjsin nx dx—_[ d(COSm x) Jsin nx dx ¢ dx

n

—cosnx ) m a0 .
= cos” x( J——Jcosm ' sinx - cos nx dx
n
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Since
sin(n—1) x = sin xx cos x —cos nx sin X = €os #x sin x = sin 7x cos x —sin(n—1)x

—cosnx ) m o .
L, w=cos™ x(—)——jcos’" "x{sinnxcos x —sin(n—1)x} dx
n n

m
—cos” x cosnx m . a0
—_— Ucosm xsin nxdx — J.cos'" ! xsin(n— l)xdx]
n n

mx

—COS  XxXcosmx m
= —__[Im,n —1,,,,]_,7,1 ]
n n
(m+n) _ —cos" xcosnx m
Im.n_ +_[m—l,n—l
n n n

—cos™ x cos nx m
+ I
m+n m+n

=1, =

m—-1, n—1

Therefore, the reduction formulaof /,, , = J.cos’" xsin nx dx where m, n are positive

integers is given by

m
—CO0S X -COS nx m

Im‘n = + Im—l,n—l ...(1)

m-+n m-+n

(b) Let us consider

n T
—[2 m : _ Py
Imn = J02 cos” xsin nx dx —[Im' " ]g

Now taking limits on both sides of (1), we have

4

> _| —cos™ x-cos mx |2 ;
[lm,n]o - + [ m-1,n— 1]
m+n o m-+n
. 1 m
T + Y AP 2)
m+n m+n

T
Therefore, (2) represents the reduction formula for J02 cos™” x sin nx dx.

Alternative Method of Finding Reduction

n
Formula for IOZ cos™ xsinnx dx

Let

\ 2

J2 cos” x sinnx dx

[cos sin nxa?x];r J‘% d(cosm)xfsin nxdx pdx

0 dx
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T
cos” xcosnx |2 m| ¢F u
- = . . -1 .
=|l—| - 2 cos™ x sin nxdx — j02 cos™ xsin(n—1)x dx

n n
T
(m+n) | —cos" xcosnx |2 m
Jm,n - +_Jm—l,n—l
n n n
0
L2
| —cos"xcosnx |2 m
= Jm,n - + m—1,n-1
m+n m+n
1 m
= Jm,n = + Jm—l,n—]

m+n m+n
T
Therefore, the reduction formula of .J,, , = J02 cos” xsinnx dx where m, n are
positive integers is given by
1 m

mn +
m+n m+n

T
Example 9 | Using reduction formula, find j02 cos’ x-sin 2x dx

T
The reduction formula of J,, , = JOZ cos” x sin nx dx where m, n are positive

Jm—l, n—1

Sol.
integers is

1 m

+

m+n m+n

Jm,n = ‘]m—l,n—l

Here, m=3 and n=2.

Now,

] 3 1 3
AL S
32340 342°% 5 572!

1 2 1 2
Jy =t J =42
204 24170 3 g0

o

= 2 =
and J; JOde 0
Therefore,

1 3
Jyy=—t>J
327 5T

1 31 2

553 5
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5.6 REDUCTION FORMULA FOR

(a) _[ 2 — o where n(> 1) is a positive integer
(b) r,‘,d—xz, where n(> 1) is a positive integer
0 (x*+a°)"

(a) Let us consider

_'[(x +a "_J'(x +a

Now integrating by parts, we have

_ 1
I”7<x2+a2)” I _Ildx{u +a’y }Jldx]dx

n-2x
(Y +a ) J‘ 2 n+l (x)dx
(r +a ) '[ (x> +a )"Jrl
J‘x +a —a
(r +a ) (x*+a )”*1
5 1
X—a" | ——————dx
(‘C +a) { (x* +a) J.()cz-i-az)’”'l :|
- d7 — 2.
:>[n_(x2+a2)”+2n [In a In+1:|
=2na’ 1, =———+@2n-1)-1,
“ (x* +d*)" (

Now replacing » by n—1, we have from above

2n-1)-a*-1, = a

- —+@2n-3)-1,, (D)

2 + a2 )ll—

So (1) represents the reduction formula for
d . e
I, = %, where n(>1) is a positive integer.
(x“+a’)"
(b) Let us consider
o dx

0 (x*+a*)"

n
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50, J, =[1,]; -

Now taking limits on both sides of (1), we have

2n-1)-a*-[1,]7 —{#} +2n=3)[1,];
- 0

2n-1)-a*-J, =| lim ——5———0 |+2n-3)-J, (2)
xoeo (X7 +a”)"”

Again

lim % is an indeterminate form of =,

xoeo (X7 +a”)"” )

So using L’Hospital’s rule, we have

d
a (x)

X

lim ——— = lim
xoe (x° 4+ a”)” xoee d [0 2 2 pm
dx[(x +a’) ]

1

lim
v (n=1)- (x> +a*)"™* - 2x

=0. (3

ie. Iim —————
"o (22 4a?)"

Using the result (3) in (2), we have
2(n-1)-a*-J,=Q2n-3)-J,_,

. 1 2n-3)
ie., |(Juo=——""—7"J,. ..(4
2 2n_2) 1 “4)
Hence (4) is the reduction formula for
o dx . e
el P s where n(>1) is a positive integer.
O (x*+a”)

Calculation of the Value of the Definite Integral

= mzd—xz, where n(> 1) s a positive integer.
O (x*+a”)"
From (4), we have the reduction formula for above as
1 2rn-3
; ZT.Q. . (5
a’ (2n-2)

Now replacing n by n—1, we get from (5)
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From (5) and (6), we obtain
1 2r=-3) 1 (2n-5)
Jn:_. —_ .
a® 2n=2) 4% (2n-4)

e d, ‘(%%wah
& &) 2n-2) 2n-4)

n-=2

Again replacing n by n—1, we get from (6)

2= s

From (7) and (8), we have
gL 1\ @n=3) @n=5) @n=7)
8 (2n-2) 2n-4) 2n-6)

2 2
a a a
Similarly proceeding as above

n-3

1| @n=3) @n-5) @n-7) 531

1 1
L=l 55 e S J,
a a a [(2n=-2) 2n-4) 2n-6) 6 4 2
(n—1) terms
L @ne3) @nes) @n-n) 531
a?" D 2n-2) 2n—4) 2n—-6) 6 4 2 !
Again
Y S
bodo (x*+d?)
!
=[{—-tan —
a al,
1z
a2’
So putting the value of .J; in (10), we have
_ 1 (2n-3) 2n-5 @n-7) 5 3 1 (1 =&
" g2 2p-2) 2n-4) 2n-6) 6 4 2 \a 2
_ 1 (2n-3) 2n-5 @n-7) 5 3 1 =&
a"!' (2n-2) (2n-4) (2n-6) 6 4 2 2
Alternative Method for Computation
o dx . e
L= —> where n(>1) s a positive integer.

o)

| 5.19

.(6)

A7)

(8

(9

..(10)
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Let
x=a tan 6 then dx = a sec*0 - d0
Putting the above values in integration, we have

4 2
I = 5 asec 6-do

0 (a*tan’ O +a*)"

1 3
= IZ cos>" 2 0 do
0

2n-1
a

T
We have from Section 5.3 if J, = JOZ cos” x dx, then

J, = (n_l)-(n_3)-(n_s)n-é-l-z.,whennis even

n (m-2) m-4) 422

Since 2n—2 is always even, using the result of Section 5.3, we have

1 L
I,= J2 cos’ % 6 de

aZn—] 0

_ 1 [(2n—3)_(zn—5).(zn—7)__'§_1£}
2n—1

(2n-2) 2n-4) @n-6) 4 2 2

Example 1() Find J.L

(> +a?)?

Sol. We have the reduction formula for

P et where n(> 1) is a positive integer.
(x*+a”)
as
2(n-1)-a*-1, :%+(2n—3)~ln_1.

(xZ + 02 )n
Here we are to find 7,.

By putting # =2 in the above formula we get

X
2(2—1)‘02 ‘12 :(2.—2—1+(2.2_3)~1271'
X

+a2)
1.€., 2a2 [2 zx 5 +[1
(x“+a”)
Again
d 1 _
I, = 3 al 5o = —tan Ya
(x"+a”) a



Reduction Formula I 5.21

WORKED-OUT EXAMPLES
T
Example5.1| If 7, = .[02 sin®™*' 0 d6, where n is a positive integer, show that
=2
2n+1
T

Use this to evaluate J'OZ sin’ 0 d6 . [WBUT 2001]
Sol. Here

T T
I,=[2sin>""0d 6= [2sin>6 sin 06
0 0

Integrating by parts, taking sin”"6 as the first function and sin 6 as the second
function, we have

T T - 2n
= sinZ”efz sinede—jz {Mjsinede}de
0 0 46

w
L

= [—sin"0cos0]2 + jznsinz'H 0 cos® 6O
0

=0+2n |sin”"' 0 (1—5in%0)d6

[SX YR

SN

b

=2 j sin®"! 0.0 ~2n [ sin>"*' 646
0 0

=2nl, | —2nl,

= 2n+1)1,=2nl,,

_ 2n

C@en+l) "

T

n

2
To evaluate jsin7 0d6 by the above reduction formula, we have
0
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T

2 .
I=[sin"0d0=—>—1, =21,

. 2-3+1) 7 7
Similarly,

T

2 22 4
= [sin®0d0=—="—1 =—1

. @2+ " 5

T

f 21 2
I, :Is1n 0do = o =—1

. @1+1) " 3

T

3
I, = j sin6d6 =[—cosO]%> =1

0

Therefore, from the above relations, we have

sin edefylzfﬁfh:ﬁizlo 16

I3 =
75" 753° 35

o'—,mm

Example 5.2 | Show that

[ —

Sol.

[
& ¢
Il \

(9%)
N|U‘

Let

x=sin0

then dx = cos8 d6
Then

—
|
=
[5)

- 6
sin" @ -cos 0 40
cos 6

Il
S N

SN

= j sin6 do

[WBUT 2003]
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w
2
Now from Section 5.2, we have if J, = _[sin " x-dx, then
0
J - (n-1) (n=-3) n-5) 3 1=«

L= . TR —, niseven.
n (n=2) (n-4) 42 2°

Since here 7 =6, using the result of Section 5.2,

V9

2
Jsinéede_é.i.l.ﬁzs_”
0 6 422 32
Hence

1 6

j al dx:in
oV1-x’ 32

1
Example 5.3 | Prove that if u, = _[x” tan~' x dx then

0

(n+1)u, +(n—1)u, :g—l. [WBUT 2002]
n

Sol. Here

1 1

_f -1 n
x" tan” xdx—J tan” " x-x"dx
0 0

Performing integration by parts, we have

n+1 ! 1 1 xn+1
tan~ x - dx
n+l | f 2

ol+x" n+l

2

T 1 1 r X n—1
=—- - J. X" dx
4 n+1 n+101+x2
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1 1
1 1 " 1 _ _ 1 _ _
u,,=£-——— Al R [x" ! tan lx:I —j(n—l)x” Ztan™" xdx
4 n+l n+l| n 0 n+l1 0 0

Hence from above

1
T 1 1 1 + 1 & I’I—IJ‘xn_z —1

=—. - — —- tan xdx
4 n+l n+ln n+l14 n+10

uy,

i
. 1 1 -1 _ _
ie., u,,——(z——J n—jx” Ztan”! x dx

n+1\2 n _n+10

. 1 7 1 n—1
1e., u,= i —

n+l(2 nj n+l

Therefore,

1

(), +(n—1) =22,

2 n

/2
4

Example 54 | 1If u, = Jtan" 0 do, prove that
0

(. +u,_)=1. [WBUT 2003]

Sol. Here

T T
4 4

u, = [1an" 6 do = [tan"" 0 -tan’ 0 dO
0 0

/4
= j tan” 20 -(sec> 0 —1) dO
0

T

oS t— [N

4
tan"? 0d (tan 0) [ tan" " 0 dO
0

From above, we can write
3
| tan"' 6 |4
U, = 1 —Uy>
h 0
1

e, u,=———u,,
n—1

Replacing » by n+1 in the above expression, we have
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1

Uppl =~ Uy
n

ie., mu,q +tu,)=1.

Hence the result is proved.

Example 55| 1f /. =" 4o chow that
& sin 6

(n-1){,—-1,,)=2sin(n-1)80.

Sol. We have
I = s1? nb J0
sin@
So,
_ Jsm
sin 0
Now
sin 2)0
L1 7J-51nn0d J.ni)de
sin 6 sin 6
sin #0 —sin (n—2)6
= j : do
sin O
_ '[Zcos (n.—l)6~sm 0 40
sin 6
= 2Jcos (n—1)6d6
Therefore
L1 sm (n-1)06
n—1

ie, (n=1)I,-1,,)=2sin(n—1)80.

Hence the result is proved.

Example 5.6] If 7, = [~ ”99 d6, show that
“ COS

(n-1){U,+1,,)=2sin(n—1)0
Hence evaluate
j(4cos2 0-3)do

| 5.25

[WBUT 2004]

[WBUT 2005]



5.26 I Engineering Mathematics-I

Sol. We have
cos nf
I, = do el
j cos 6 M
So,

-2)6
I, .= J.M 40

cos 6
Now
cos(n—2)0
1n+1n_2:jc°”9de+j (7=2)0
cos 6 cos 6
cos nf +cos (n—2) 6
= de
cos 6
—De-
:J-2cos(n 1)8 - cosO 40
cos@
=2jcos(n—1)9de
Therefore
[n+ln72=2s1n(n—1)9
n—1
e, (m—-1){,+1,,)=2sin(n-1)80. ..(2)

Hence, the result is proved.

Now we are to evaluate
[ (4 cos’0-3) do
using the above result.

For this purpose, if we put » =3 in (1), then

do

3 —
[3:J-cos3(9 dezJ-(4cos(9 3 cosb)
cos 6

cos 6
= j(4cos2 0-3)d6
Basically, we are to find /5.
Putting #» =13 in (2), we have
B-1)(I3+1;,)=2sin(3-1)0

i.e., ([3 +Il) =3sin 20
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. 08 6
Again ]1:_[’05’ d@:Jd9=9.
cos
So,

ie, [ (4cos’ 0-3)d0=sin20-0.

S ey

Example5.7 | If /, =

SR
~—<
|

I, +n(n-1)1,_, = n(
Sol. Here we have

I, = | x" sin x dx

n

oSe— |y

Integrating by parts, we obtain

T
T2
_[ n T2 n—1
[”_L_x cosx |2 —n|x cos xdx
0

T

V4
z 2

=0-n [—x’H sin x]g —(n— 1)_[ X" 2 (—sinx) dx
0

T
p n—1 2
=n| — —n(n—l)J‘x"f2 sin x dx
2 0
Therefore,

7—1
T
I, =n|— —n{n—1)1,_
n ( 2 J ( ) n=2

n—1
e, I, +n(n-11, , = n(%)

Hence the result is proved.

ExampleS.8| If /, , =

O [N

x" sinxdx, (n>1) then prove that

cos™ xcosnxdx, then prove that

| 5.27

[WBUT 2008]
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I, ,= I

m-1,n-1"*
m+n

Hence show that

cosxcosnxdx =

ce—wln

2n+1 '
Sol. Here
T
2
I, ,=|cos” xcosnxdx (1
m,n
0
z T
cos™xsinnx |2 z m—1 . sin nx
=] - Jmcos x-(—sinx)——dx
n P n
T
2
. m m—1 . .
ie, 1, :—jcos X - (sin nx sin x)dx -(2)
n
0
Again
cos(n—1)x = cos(nx — xX) = cOSnx COS X + Sin xx sin x
Then from (2)
T
2
m ,
Ly, =— J.cosm " x-[cos(n—1)x — cos nx cos x| dx
n
0
T z
2 2
m -1 m
= —Jcosm xcos(n —l)xdx——fcos’" X ¢os nx dx
n n
0 0
m m
le5]mn _[m—l n—1 ]m,n

;o—_m -(3)

m,n m—1,n—1-
m+n

So the first part is proved.
To prove the second part, let

J, = | cos” xcosnxdx.

O =V [N



Example5.9 | If /, = J.(sinflx)" dx then prove that

L,+nn-1)1,_, =(5J .

Sol.

Reduction Formula

So it is clear from (1) that J,, =1, ,,.

Therefore, from (3), we have

n 1
Jn :]n,n :—[nfl,nfl = _Jn—l
n+n 2
Now from (4)
1 11
‘]n _Jn—l=_'_Jn—2
2 22
_11d
79 2 n-3
111 1
222 27"
n terms
1
1.€., Jn__JO
2}1
Again
2 2
2 2 .
J0=Jcos xcosde:jdx:—.
2
0 0
Hence
1 1
gty -Lr_

0

T

Let
J, = J-(sin’lx)ndx

Putting x =sinv, i.e., dx = cosvdv, we have from the above,

J, = Iv" cosvdv

=v"sinv— J‘nv'“1 sin vdv

=" sinv—nliv"*1 (—cosv) —(n—l)J.v"*2 (—cos v)dv]

J, =V"sinv+m"" cosv—n(n- 1)_[\/”_2 cosvdv

| 5.29

—..(4)
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- P
ie., J,=V'sinv+m" cosv—n{n—1)J,_,

= (sin_lx)’1 “x+ n(sin_'x)n_1 ~«/§ —n(n-1)J,_,

I, +n(n-I, , =(%J :

sin” xcosnxdx and J,, A =

m,n

Example 5.10 | If /, , =

that

sin™ xsin nxdx then prove

O = [
O [N

i, i

. NI
(m+ml, ,+ml, 4 1= sm?.

Sol. Here we have

O = [y

— 1am
1y, = | sin” xcos nxdx
r L
sin”xsin nx 2 mi . m—l .
== ——J.sm x(cos x)sin nxdx
n o "o
T
2
If . nmY m¥$ . o1 .
=—| sin— ——Jsm’” ! x(sin nx cos x)dx
n 2 n
0
Again

sin{z —1)x = sin(znx — x) = sin 72x COS X — COS 72X Sin X
So,

T
1 . m2 . om—1 . .
1, ,=—|sin— ——Jsm x(sin(n—1)x+ cos nxsin x) dx
n n
0
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T T
2 2
(. nmY m¥p . 1 . me .
=—|sin— ——_[smm lxsm(n—l)xdx——.[s1nmxcosnxdx
n 2 n n
0 0
Therefore,
I(. nm) m m
]m,n =S —— = —J 1 a1 __Im,n
n 2 n n

. . nmw
L., nlmﬂ’l _(SIHTJ_meI,VII _MIW!,n
Hence we have

. nm
m+n)l, _+mJ, . =sin—.
( ) i, i m—1, n—1 )

Example 5.11 | If /, =

2n+1)I, =2nl,_,.

/ 2\"
l\ 1—x ) dx then prove that

S e —

Sol. Here
I, = }(1 —x*) 1
0

1 1

—{(1_x2)n -x:| —n'[(l—xz)lH (—2x) - xdx

0 0

ie., I,= —Zrzj-(l—x2 )ndx+2nj‘(l—x2)nildx
0 0
ie, [1,=-2nl,+2nl,_,

re., @n+1)I,=2nl, .

Hence the result is proved.

1
Example5.12 | 1If 7, , = _[x’"(l —x)"dx then prove that
0
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Sol. Here we have
; -1
m n—1 J. ( ) dx
0
1
=I|: —x)" 1:| [xm]dx
0
Integrating by parts,
1 xm+l 5 m+]
Lywy =| (1=2)" ~(n- l)fa 0" D)
0
n—1 |
=0+ j(l —x)"2 ™y
+1 0
_ n—-2 ‘xm —x)dx
m+l
—x)" 2" (1=x)=1]dx
m+1 ) L ) ]
n—1 m n—1 n—2 m
-x)" -x +—j(1—x) X
m+l0
Therefore,
n—1 n—1
]mn | P | — Im,n—Z
m+1

_ n—1 ]
m+1 R

ie, 1, I

myn—=2"
m+n

Hence the result is proved.

T
Example 5.13 | If /, = J.ll_cﬂde, where n is a positive integer or zero then
0

—cosf

prove that
I,.,+1,=2I,
Sol. Here, we have

V9 T

1- 1- cos n+2
.= [ €S0 19 and so 1, = [———"a0.
0 1—cos@ 0 1—cos@
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Therefore,
T1—cos{n+2)0+1—cosnb
Lz +1, = | de
0 1—cos@
T2 — s(n+2)0 + 0
:J. [coa(n )6 +cosn ]dG
5 1—cos@
Since

COSA+COSB=2COS(A;B]~COS(A;B}

we obtain from above

%2-2cos{n+1)6-cosf
I,.,+1, = de
n+2 n j 1 0
0 —cos
T 1+[(1—c056)—1]~cos(n+1)9
=2 do
b[ 1-cos@
T T
(1—cosB)-cos{n+1)6 1-cos(n+1)6
=2 d0+2| ———do
6[ 1-cos@ (-[ 1—cos@

V]

0

_2[sin(n+l)9 "

} +2]n+1
n+1 )

n+l-

=0+2/
Hence
In+2 +[n = 2In-%—l .

1
Example5.14 | If [, = er"\ll —x*dx then prove that
0

n—1

I, =——0:I _
" n+2 "2
Sol Here
I = | x"V1-x%dx
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(<)
A

|
= x" — —(n—l)fx”_2
0 -3

0

1
1, =O—i-(n_1)‘[x”72 (l—xz) 1—x%dx
3%

| 1
_ (n—l).[x,,,z l—xzdx—(n_l)_’.x" N2 dx
) 0

3 3
i, 1 ==, =D,
3 3
e, (14721, =20,
3 3
n+2 -
e ( ),” (-1,
3 3
1.€., Infn_lln_z
n+2

Hence, the result is proved.

Example 5.15 | Show that

1 22 23 2n—l on
bXal 2 3 (n-1) n

T
2
jcos"xsinnxdx:— 24—t ——+ |
0

where m is any positive integer.

Sol.

From Article 5.5, we have the reduction formula for

O = [N

Jon.n = | cos™ xsinnxdx
as below
1
T = R A (1)

m+n m+n

Now let

1, = | cos"xsin nxdx

S t— [N
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So it is obvious that
1, =J, .

and from (1), we obtain

1 n

[n=L+l. #4_1.]”72
2n 2 Z(n—l) 2

=—+ + +—-1,
20 2P(n-1) 2(n-2) 22 "7

Proceeding in a similar manner, we obtain
1 1 1 1 1
I, =—+ > +— tot
2n 2°(n-1) 2°(n-2) 2" 2"

Again

I (2)

. 1
I, = | cosxsin xd :E.

ce—wln

Hence from (2), we have
1 1 1 1 1 1

1
I,=—+= +— tot e ——
2n 2°(n—=1) 2‘(n—2) 2"e.3 2t 2 2
1 1 1 1 1 1
= —+ B + 3 ++T+T+—
2n 2°(n—1) 2*(n—2) 2.3 . 27
1 2n 2/1—1 2n—2 23 22
= —+ + +oot—+—42
2" (n=1) (n-2) 3 2
Hence
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EXERCISES

Short and Long Answer Type Questions

1. Obtain the reduction formula for

cos” xdx,where n (> 1) is a positive integer

S [N

and evaluate

S e— [y

cos’ xdx. [WBUT 2007, 2008]

Ans : 2nd Part. E
15
2. Evaluate:

cos’ xdx

S — [N

5
@) j cos®xdx (i)
0

16
Ans: (1
[ @ ) ( ) 3 5}
3. Obtain a reduction formula for

S N

sin” xdx, where n (> 1) is a positive integer

and evaluate | sin’xdy. [WBUT 2006, 2009]

Se— [

Ans : 2nd Part. ﬁ
15
4. Evaluate:

®

T
2

sin®xdx (i) jsingxdx
0

O =N

[Ans (i) 22" ()%}

T

2 _
S IF 1 :j51n(2n D)x

- dx, show that
sin x

0

I, -1, flsm2nx
n
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T
2

6. If I,= jsinz”xdx, show that
0

I - 2n I
2n+1
T
2
Use this to evaluate fsin79d9. [WBUT 2001]
0
[Ans : 2nd Part. E:|
35
T
2
8. If I, = J-xcos”xdx, where n is a positive integer, show that
0
n—1 1
]n = In—Z P
9. Show that
j~ x° 5
@) | —=dx=—nm [WBUT 2003]
/ 2
0oVl-x 32 [Hint : put x =sin 0]

8

1 5
b) [ =2
E)[\/l—x2 15

[Hint : put x =sin 8]

o 4
(©) inz‘d)f:l [Hint : put x = tan 6]
0 (1+ 2) 32
X
T cosnx
10. If 7, = J dx, then prove that
I—cosx

0
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11. Obtain the reduction formula for

S N

sin” x cos” xdx, where m (> 1) and n (> 1) are positive integers.

Hence evaluate | sin®xcos®xdx [WBUT 2008]

Sy

Ans : 2nd Part. 35—”
1280

12. Evaluate:

4

z 2
2 2
@) Isinsx cos’ xdx (i) jsinﬁx cos®xdx
0 0

L 8 .. 57
|:Ans 1 (1) 593 (i1) m}

1

13. If [, = I(cosflx)ndx then prove that
0

n—1
I, +n(n-11I,,= n(%) .

T
4

14. If u, = J.tan"GdG, prove that
0

(U, +u,_)=1. [WBUT 2003]
. B )
15. If [, = jwdx and J, = sm_nxdx’ where n is any integer then prove
sin x sin”x
that
Jn+1 _Jn = ]n+1'
sin n@
16. If 1, = j —— 46, show that
sin @
(n-1){U,—1,,)=2sin(n—-1)0. [WBUT 2004]
17.0F 1, = [<2 " 46, show that
cos6

(n=1)(I,+1, ,)=2sin(n—1)8
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| 530
Hence evaluate J(4 cos’0 — 3)d0 [WBUT 2005]

Vi

2

18. If I, = J.x" sin xdx, (n>1) then prove that
0
P n—1

g+nm—ngz=n(5j : [WBUT 2008]

19. Obtain the reduction formula for 7, = cos”"xdx and hence show that

O =y [

. 2n—1
|:Ans : First part 7, = n—[,,_l :|
2n
1
20. Prove that if u, = jx” tan"'xdx then
0
1
(n+Du, +(n—Du,_, = 3 [WBUT 2002]

21. If 1, = | x"(sin x+ cos x)dx, show that

n—1
T\

IL,+n(n-1)1, ,=|n+— | = .
s Bl

2. If I,= _[x” cot ' xdx then prove that
0

O i [ ¥

1
(n+1),+(n—-DI, , =Z 4.
2 n
23. Obtain the reduction formula for

2 dx . .
I, = J.ﬁ’ where n (> 1) is a positive integer
n
o (x"+a%)
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and hence show that

[y

x+a) 4a2-

Ans : First part /,, - 1.@n=3d) el
a2 (2)’! 2)
Multiple-Choice Questions
i
2
1. The value of J.sin(’xdx is
0
a) i b) i c) ST d) R
32 16 32 16
i
2
2. The value of jcos7xdx is
0
a) 8 b) 16 <) l6m d) 8m
35 35 35 35
T
2
3. The reduction formula for 7, = J.cos"xdx is
0
-1 -1
a) ln:n ]n72 b) ]n:n—]nfl
n n
n n
c) I,=—1,, d 1,=—1,, [WBUT 2007]
n—1 n—1

3
2

4. The value of jsin”xdx is same as
0

cos"2xdx b) |cos”xdx

a)

S —
S —

cos” xdx d) |cos"xdx

O t— [N

(e

N
N | —
O t— [N



5. The reduction formula for /,, , =

Reduction Formula I 5.41

sin”xcos"xdx is

m,n

O o [

a) Imn: [m—Zn b) ]mn: I -2.n
m+n m+n
m— n—1

C) Imn_ I n-2 d) ]mn: Im—Z,n—Z
m+n m+

T T
2 2
a) fcos"”'x sin" ' xdx b) Jcosm_'.r sin™' xdx
0 0
T
2
c) jcosmx sin” xdx d) none of these.
0
T
2
The reduction formula for 7, , = Jcos’”x sinnxdx 1is
0
1 1
a) [m n - Im—l n—1 b) [m n - ]m—l n—-1
m+n m+n ’ m+ ’
m
c) I,,= J d) none of these.
: mt .
L
2
The value of J.cos4xsin 3xdx is
0
131 7 13 r
— b) — c) — d —
) 35 ) 16 ) 35 ) 16
N dx
. The value of I—z is
0 (x2 +a2)
a) b) O ) — d) o

S|
)
S
S}
)
[\
Q
)
(98]
S}
)
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10. The reduction formula for u, = | tan”xdx is
a) U, = —— Uy b) u, = Uy,
n—1 n—
1 1
C) u, = —Uy> d) u, = — Uy,
n— n—2
w
2
11. The value of Jsinsxcoséxdx is
0
2 8 4 8
a) — b) — c) — d —
) 693 ) 693 ) 693 @ 693
3
2
12. The value of Isinzxcos4xdx is
0
T 1 1 b4
a) — b) — c) — d —
) 16 ) 16 ) 32 ) 32
ANSWERS:

l.c 2.b 3.a .
7.a 8.¢c 9.b 10.a 11.



CHAPTER

Calculus of Functions of
Several Variables

6.1 INTRODUCTION

In the earlier two chapters (chapters 3 and 4), we have dealt with the functions of single
varable only. But we also require the fuctions of two or more variables to solve various
problems in different branches of science and technology. Also, the derivatives and
integrations of functions of two or more variables have a wide range of applications.

Basically, in this chapter, we first discuss briefly the limit and continuity of the
functions of two or more variables. Then we describe the methods of differentiations
and their applications towards the optimisation of the functions.

6.2 FUNCTIONS OF SEVERAL VARIABLES

A real function of a single variable f: R — R is defined by y= f(x) where xe R
and ye R

Example 1

y=f(x)= x*. Here, y is a function of a single variable x.

A real function of two variables f: R*> > R is defined as z= f(x,y) where
(x,y)e R? and z€ R.

Example 2

z=f(x,y)= X’ + y2 +xy. Here, z is a function of two variables, x and y.

The domain D of a function f of two variables is any closed curve on the two-
dimensional plane, namely, rectangular, square, circular, etc.

A real function of three variables f : R — R isdefinedas z = f(x;, x,, x;) where
(x1, %y, %3)€ R and z€ R.
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Example 3

2= f(x,, Xy, x3) = 2x; +3x; +4x,x;. Here, z is a function of three variables,
Xy, Xp and X3.
A real function of n variables 7 :R" — R is defined as z= f(x;, x5, X3,..., X,,)

where (x;, x5, X3,...,X,)€ R" and z€ R.
Example 4
z=f(X, X3, X3, ..., X,,) =Xy + X, + X3 +---+x,. Here, z is a function of n

variables, x;, x,, X3,..., X

n-*

6.3 LIMIT AND CONTINUITY

To describe the analytical concept of limit of a function, first we define two types of
6 -neighbourhood (or §-nbd) of a point (a, b) in the two-dimensional plane.

(i) Square 6 -neighbourhood

Any square region consisting of the points (x, y) and satisfying
|x—a|<8,|y—b|<8,for6>0
is called the square J-nbd of the point (a, b).

(ii) Circular 5-neighbourhood

Any circular region consisting of the points (x, y) and satisfying

0<(x—a) +(y—b)* <8*for6>0

is called the circular ¢ -nbd of the point (a, b).

Suppose (x, ¥) be any variable point lying in any neighbourhood of a fixed point
(a,b) in a two-dimensional plane. Also, let f(x, y) be a function defined on a certain
neighbourhood of the point (a, b). Now we will check whether the function f(x, y)
tends to a real value / as (x, y) tends to (a, D).

6.3.1 Limit of a Function of Two Variables
General Definition

Let f(x,y) be a function of two independent variables, x and y. If the function
f tends to a real value / as (x, y) = (a, b) then we write

lim f(x,y)=1
(x, y)—>(a, h)
or, f(x,y) —>/las(x,y) = (a,b)

or, lim f(x, v) = 1.
X—a
y—=b

where [ is called the limit.
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Analytical Definition:

Let f(x,y) be a function of two independent variables x and y.The function f is
said to tend to limit / as (x, y) — (a, b) if for an arbitrary small positive number &,
no matter how small, there exists a positive number &, such that

|/ ) —1| <&
for every point (x, y) which lies in any §-nbd N of the point (a, b).
N may be a square §-nbd of the point (g, b), i.e.,
|x—a| <34, !y—b! <§,for6>0
or, N may be a circular 6-nbd of the point (a, b), i.e.,
0<(x—a) +(y—b)><8*for6>0
or N may be any other d-nbd.
Symbolically,
lim  flxny) =1

(x, y)—>(a,b)

Example 5

Find lim (x2 +y2 +xy).
(%, »)=>(2,3)

Sol. lim (x2 —i—y2 +xv)
(%, »)=(2,3)

= lim D+ Lm0+ lim ()
(x,»)—(2,3) (x,y)—(2,3) (x,»)—(2,3)

=4+9+6=109.

Example 6 _

Justify the following by analytical definition

. 2.2
lim Xy
(x,9)=>(0,0) 2 2

X +y

=0

Sol. To prove the existance of the limit, for a given £ >0 we are to find 6 >0
such that in any 6-nbd N of (0, 0),

|fo -l <e

x2y2

2 2_0

or, <e

<E. ..(1)

Now

x2<x2+y2 andyz<xz+y2
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So
2, 2\ 2, 2
2yt _(24r)(@+y)
[ 2+
= x* + y? < g (consider)
if

0<(x—0)’ +(y—0)* < 8%, where s =+/¢.
Here we are getting a circular -nbd of (0, 0).
So, the condition (1) is satisfied and hence the result is proved.

6.3.2 Observations

1) lis called limit or double limit or simultaneous limit.
2) The definition

lim f(x,y)=1
(x, y)>(a, b)
is equvalent to

limf(x, b)=1or, limf(a, y) =1
x—a y—b
3) Uniqueness of the Limit:

Now the variable point (x, y) may approach the fixed point (a, b) by any path
(e.g., straight line, parabolic, etc.), but the simultaneous limit should be unique in
all the cases.

4) Non-existence of Limit:

If we get different values of the limit choosing different paths, i.e., if the limit
is not unique then the simultaneous limit / does not exist.

Example 7 Show that

2

2x .
lim 24 2 does not exist.
(x,7)=(0,0) x“ + y
Sol. Let us consider the parabolic path x = my”; thenas x >0, y—0 and we
obtain from above
292 o 2myt
lim 7 lim W,
x5 )=0,0x"+y"  y>0(l+m”)y
. 2m
= lim
y=01+m
_ 2m
1+m*

which is different for different values of m, i.e., choosing different parabolic
paths for different values of m, we get different limits.

So the limit is not unique. Hence, the limit does not exist.
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5) Repeated Limits:
A repeated limit of f(x, y) as y — b and then x — g is defined as
lim lim f(x, y) = lim @(x) =1, (say)
x—ay—b x—a
A repeated limit of f(x, y) as x — a and then y — b is defined as
limlim f(x, y) = 11m y(y) =1, (say)

y—bx—a
These two repeated llmlts may not be equal.
6) In case the simultaneous limit exists, the repeated limits if they exist are neces-
sarily equal, but the converse is not always true,
i.e., even when both the repeated limits exist and are equal, the simultaneous
limit may not exist.

Example 8 Show that for the function

FOry)= 52— (x,y) #(0,0)
X" +y
=0,(x,¥)=(0,0)
the repeated limits are equal but simultaneous limit does not exist.
Sol. The repeated limits are,

lim lim f(x, y) = 11m(0) 0

y—=0x—0

lim lim f(x, y) = hm(O) =0

x—0y—0 x—0

but, along the path (straight line) y = mx

X
lim f(x»)= lim 24
(x,¥)—(0,0) (x,¥)—(0,0) X + y
2
= lim _mx
x—0 x2 +m X2
om
1+ m?

which is different for different values of m.
Therefore, the repeated limits are equal but the simultaneous limit does not exist.
7) If the repeated limits are not equal, the simultaneous limit cannot exist.

Example 9 Show that for the function

Foon =27 20.0)
y+xl+y
~0,(x,1)=(0,0)

the repeated limits are not equal and limit does not exist.
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Sol. The repeated limits are,

1
lim lim f{(x, y) = hm( ]_1
o\ 1+y

y—0x—0

1+x
lim lim f(x, y) = 11m -—— |=-1
x—0y—0 —0 1

Here, the repated hrmts are not equal. So simultaneous limit cannot exist.
Also, this is obvious from the following:

Along the path y = mx

xl+x
lim f(xy)= lim
(x,)=(0,0) (x,)—(0,0) y+x T+y
m—1 1+x
hm—
x—om~+11+mx
m—1
m+1

which is different for different values of m.
Therefore,the repeated limits are not equal and so simultaneous limit does not exist.

6.3.3 Continuity of a Function of Two Variables
Definition: Let z= f(x, y) be a function of two independent variables x and y. The

function f is said to be continuous at a point («, b) of its domain of definition if the

double limit or simultaneous limit ( l)lrrz ])f (x, ¥) exists and is equal to the func-
X,y —(a, n

tional value of f(x, y) at (g, b). i.e.,
lim  f(x, y)= f(a,b)

(x. y)—(a.b)

Example 10 Show that the function

[y =+ 42, (6 9) % (2,3)
=10, (x,y)=(2,3)
is continuous at (0, 0) but discontinuous at (2, 3).

Sol. First, we find the limit

lim  fOoy)=  lim (2 +y* +xy)

(x, y)—(0,0) (x, y)—(0,0)
=0+0+0=0.

Again

£(0,00=0+0+0=0

So,

lim  f(x, y)=0=/(0,0)
(x,3)-(0,0)
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Then the function is continuous at (0, 0).

Again
lim fuy)= TLim (2 +) +xy)
(x, y)=>(2,3) (x, y)—>(2,3)
=4+9+6=19.
But
Sf(x, y)=10, when (x, y) = (2, 3)
ie., f(2,3)=10
So,
(x,)—(2,3)

Hence the function is not continuous at (2, 3).

6.3.4 Observations

(1) If at a point, limit does not exist then the function cannnot be continuous
there.

(2) A function which is not continuous at a point is called discontinious there.

(3) A function is said to be continuous in a region if it is continuous at every
point in the region.

6.4 PARTIAL DERIVATIVES

6.4.1 First-Order Partial Derivatives

(i) Consider f(x, y) to be a function of two independent variables, x and y.

The first-order partial derivative of f(x, y) with respect to x, (treating y as con-
stant) is denoted by

I (x,y) 9
LED Ly xvyor f,

and is defined as
WY _ gy LR D= y)
ox ' h—0 h
Similarly, the first-order partial derivative of f(x, y) withrespectto y (treating x
as constant) denoted by

of (x,y) of
T’ 5’ fy(xa y) or fy

,provided the limit exists.

and is defined as
8f(x,y):f C S y+k) = f(x, )
——— =/, =lim

, provided the limit exists.
ay k—0 k
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(ii) Consider f(x, y, z) be a function of three independent variables x, y and z.
The first-order partial derivative of f(x, y, z) with respect to x, (treating y and
z as constant) is denoted by
of(x,y,2z) o
S22 T 15,3, 2)or f,
ox
and is deﬁned as
af(x’ Y, Z) — f — lim f(x+h’ Y, Z)_f(x7 Vs Z)
dx Y0 h
The first-order partial derivative of f(x, y, z) with respect to y, (treating x and
z as constant) denoted by

, provided the limit exists.

of(x,y,z) 0
Y&2.2 ) f Sy(x, y,z)or f,
dy
and is deﬁned as
Y&23) _ i LI DZSC002) ovided the limit exiss.

dy Y k>0 k
Similarly, the first-order partial derivative of f(x, y, z) withrespectto z, (treating
x and y as constant) denoted by

a/(xay’ z) 3f Ly 2)or
4

may be deflned.
Note:

(1) Always keep in mind that determination of partial derivative of a function
w.r.t. any of its independent variables is equivalent to ordinary derivative of the
function w.r.t. the same variable, keeping all other variables as constant.

(2) Partial derivatives may exist at a point where the function may not be even
continuous.

Example 11

Let f(x,y):x2+y2+xy+x+y. Then

I _
Jx= ox ox

=2 )+ 207+ L+ L+ 2
- )+ax<y >+ax<xy>+ax(x)+ax(y)

=2x+0+1-y+1+40 (keeping y as constant)

(x +y +xy+x+y)

=2x+y+1
and

fr= a—f i()62+y2+)cy+x+y)
Y dy dy

_ 9. 2,,9 2 0 9l
ay(x )+ay(y )+ay(xy)+ay(x)+ay(y)
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=0+2y+x-1+0+1 (keeping x as constant)
=2y+x+1.

Example 12

From definition, find £, (0,0) and f,(0,0) for the function
2, .2
X"+ .
S0, )= if (2. 3) % (0,0)
x+y

=0, if (x, ) =(0,0)

Sol. From definition,
Fxy) = f, =lim Jorth y)= fix 3) , provided the limit exists.
ox h—0 h
So,
[af(x, y>} = £.0.0)=lim f(h,0)~ f(0,0)
x oo , h
"o
= hm—h =liml=1
h—0 h h—0
Again
M = f, = lim S, y+k) =[x, y) , provided the limit exists.
ay ’ k—0 k
Then,
af (x, 0, k 0,0
{f( y)} - ,(0,0)= lim L&D /0.0
dy ©.0) k
2
Ko
—limk
=0k
Example 13
If z(x+y)= X’ + y2 then show that
% ) _,f 0 o
ox dy ox dy
Sol. Here, it is given that
z(x+y)=x2+y2. (D)

Differentiating partially w.r.t x, we obtain

0 0
a[z(x+y)] = al:xz +y2:|
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e =2+ 2y
or, ==+ (v )+ 2o (v ) = == () + == ()

or, a—z (x+y)+z-(1+0)=2x+0, keeping y as constant.
X

dz  (2x-2)

o (x+y)
Similarly, differentiating partially w.r.t y, we have
2z _(2y-2)

day  (x+y)
Now

¥ 0\ _(@x-2) @r-2Y
ox dy (x+y) (x+y)

2
= [x_yJ , putting the value of z from (1)
X+Yy

_4 1_(2x—z)_(2y—z)
(x+y) (x+y)

2
=4l
x+y

Hence the result is proved.

], putting the value of z from (1)

6.4.2 Second-Order Partial Derivatives

The second-order partial derivative of f,(x, y) with respect to x is denoted by

2
ai(f\«x,,y)) 2 (), LS
X

x

or fX)C

and is defined at a point (a, b) as

2 . .
{m} = . (a,b) = lim LOFEB OV Z T D) e the Timit exists.
(a, b)

8x2 h—0 h

Similarly, the second-order partial derivative of f,(x, y) with respect to y is
denoted by

2
(fm ). —(fy) J f(" »)

or fy,

and is defined at a point (a, b) as
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fy(a,b+k)—f,(a,b)
k

, provided the limit exists.

{azﬂx, )

= /,y(a, b) = lim
ayz ](a.b) h k=0

The second-order partial derivative of f,(x, y) with respect to y is denoted by

9> f(x, y)

dyox Or o

Jd, ., d
g(f\ (xv ,V))a @(f\)a

and is defined at a point (a, b) as
[82.f'(x, » fila,b+k)= [, (a,b)
k

, provided the limit exists.

= f,,(a,b) = lim
dyox llb) Jyla.b) k—0

The second-order partial derivative of f)(x, y) with respect to x is denoted by

9% f(x, y)

d 0
a(.f_‘v(-\»y))’ g(f‘), axay

or fy,

and is defined at a point (a, b) as

fyla+h,b)—f,(a,b)

R , provided the limit exists.

—— = — 1.
} foa.b)=lim
(a,b)

Note: f,, and f, are known as mixed partial derivative.

Example 14

Let us consider the function

2 2,22
z=x"y+xy  +x"y°.

Then
aZ_ ) 2 aZ_ 2 2
—=2xy+y°+2xy” and — =x" +2xy+2x°y
ox dy
2 2
xx:a—f:i % -2y+2y7 andzw:a—jzi LANSMPN.
ox*  ox| dx ot adyloy
0’z ooz
=02 O oxs2y+4
Za oxdy Bx[ay] ey
2
and z,,, = Jz :i % =2x+2y+4xy
dyox dy| ox

Example 15

Let us consider the function is
% .9
xy(x” —
.f(xs y):%’ (-xa Y) ¢(09 0)
X 4y

=0, (x, y) = (0, 0).
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From the definition, find f,,(0,0) and f,,(0,0). Also examine their equality.

[WBUT 2003]
Sol. By the definition of Section 6.4.2, we have

(h,0)— £,(0,0
0,0 = i 202 L 00 (1)

Now by the definition of Section 6.4.1,
h, k h,0
£y 0= lim L0

k
hk(h* =k*) _h-0(h* =0%)
— lim /’12 +k2 hz +02
k=0 k
2 2
— lim A"k _
k=0 (h* + k)

Also by the definition of Section 6.4.1

_hmu—o

Using the above two results in (1), we obtain
£, (h,0)~ £,(0,0)
£(0.0) = fim 22 2
h—0
=lim——
hl—r>I(1) P =1 ..(2)
Again by the definition of Section 6.4.2, we have

- f00, k)
£4(0.0)= fim 2 EOS 0 )

Now by the definition of Section 6.4.1,
7.0, k) = lim 10700

h—0 h
hk(h* —k7)
2 .2 -0
—lim_h"+k~
h—0 h
2 2
hmM i
=0 (B% 4+ k%)

Also, by the definition of Section 6.4.1

f(h,0)- £(0,0)
1m—
£:00,0)=h p
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_1im2=0_,
h—>0 |

Using the above two results in (3), we obtain
- [0, k)= £:(0,0)
= 1 gxh 7 JxXD 7
$x(0.0)= fim 2=

= lim = = | (4)

From (2) and (4), we have
S (0,0) # £,,(0,0)

Hence we have the result.

Note: It is clear from the last example that the mixed partial derivatives may not be
same always.

6.4.3 Results on the Equality of Mixed Partial Derivatives

Here we represent the two famous theorems on the equality of mixed partial deriva-
tives without proof.

Theorem 6.1: (Schwarz Theorem)

If f, exists in a certain neighbourhood of a point (4, b) of the domain of defi-
nition of a function f(x, y) and f), is continuous at (a, b) then f,,(a, b) exists
and equal to f, (a, b), ie., f,(a,b)= [ (a,b).

Proof: Beyond the scope of the book.
Theorem 6.2: (Young’s Theorem)

If f. and f, both exist in a certain neighbourhood of a point (a, b) and if
both f. and f, are differentiable at the point (4, b) of the domain of definition
of a function f(x, y) then f, (a,b)= f,.(a,b).

Proof: Beyond the scope of the book.

6.5 COMPOSITE FUNCTIONS

Let us consider the function z= f(x, y) where x, y are not independent variables
but functions of an independent variable ¢,

ie., x=¢(t) and y =y (?).
Then, the composite function z = f(x, y) is written as
z=f(x )= fle@y®)

Let us consider the function z = f(x, y) where x, y are not independent variables
but functions of the independent variable » and v.

ie., x=¢@(u,v) and y=wy (u, v).
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Then, the composite function z= f(x, y) is written as

2= f(x, )= fo@,v).y (u,v))

6.5.1 Partial Derivatives of Composite functions
(Chain Rules)

First, we recall the chain rule for an ordinary derivative.
Theorem 6.3:
Let us consider
i) the function z = f(x) to be a differentiable function of x, and

ii) x is not an independent variable but a differentiable function of the inde-
pendent variable ¢, i.e., x = @ (?).

Then,
dz dz dx
dt_dx dt’
Theorem 6.4:

Let us consider
i) the function z = f(x, y) to be a differentiable function of x, y, and

ii) x, y are not independent variables but differentiable functions of the
independent variable ¢, i.e., x =¢@(¢) and y =y (¢).
Then,

d_ddv oudy

dt  dx dt oy dt
Corollary of Theorem 6.4:

In particular, suppose x = a+ ht and y = b + kt; where a, b, h, k are constants.
Then from above

%=h%+k%= hi+ki 2z
dt dx  dy dx dy

d’z = (hi+ki] 4
dt" dx  dy
Theorem 6.5:
Let us consider
i) the function z = f(u) to be a differentiable function of u, and

ii) u is not an independent variable but differentiable functions of indepen-
dent variables x and y.

Then,

and,

oz dz du oz dz du
—=—— and —=-—"—
ox duox dy du dy
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Theorem 6.6:
Let us consider
i) the function z = f(x, y) to be a differentiable function of x, y; and
ii) x,y are not independent variables but differentiable functions of inde-
pendent variables u and v, i.e., x =¢(u,v) and y =y (u,v).
Then,

%_%ax odz dy and % dz ox E)zay
du ox au dy ou’ v ox v ay o

Theorem 6.7: Let us consider

i) the function r = f(x, y, z) to be a differentiable function of x, y, z, and
ii) x,y, z are not independent variables but differentiable functions of inde-
pendent variables u, v, w.

Then,

or arax+aray+araz
ou  ox du dy du dz du

Q or ax or ay Jr dz
v ox av ay av v

dr _or ox ar ay or oz
w ox aw ay Bw  ow

Example 16

If z=sin{uv) where

u=3x" and v=Ilogx

find % . [WBUT 2004]

Sol. By chain rule
dz 0z du dzdv
+

dx  dudx Ovdx

dz  9(sinuv) d(3x2) . d(sinuv) d(logx)
r 92
ob dx Ju dx v dx

1
=v-cos(uv)-6x+u-cos(uv) —
X

= cos(uv)(6vx + Z]
X
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Example 17

If f(v2 —x2, V? —yz, V2 —zz) =0, where v is a function of x, y,z then show
that
1 1 1 1
—@+—i —&:— [WBUT 2005]

Sol.  Let a=v*—x* B=v'—)? and y=v>—2z* then,
f(o, B,y)=0and alsoglzo (1)
x

Using chain rules, we have,
Y da_ of I I Iy _
do dx dff dx dy ox

or, a—f(211——2) af(Z ——Oj f(Z ——Oj 0

oo ox ap ay
Jf
v v o
—_—— (2
or, —— alJralJral 2
do. df 9y
Jf

Similarly, from (1) =— =
dy

Using chain rules we have,
o 9o o O f Iy _
do dy df dy dy dy

a9
v oy ap
vov_ 9B .03
N o o o @
o o oy
of

Similarly, from (1) — =0,
0z

Using chain rules, we have,

o 9o o f A Iy _
oa dz dff dz Jy dz

o
vov _ oy
=- " —L 7T (4
doo df 9y

Adding (2), (3) and (4), we obtain
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s L
K@+1Q+v8v do. df dy _
xdx ydy zodz I af Jf

lav 1dv 10v

xax y8y z 0z

Hence the result is proved.

6.6. HOMOGENEOUS FUNCTION AND EULER’S THEOREM

6.6.1 Homogeneous Functions
Definition: A fuction f(x, y) is said to be a homogeneous function of degree » if
flx, ) =1"f(x, y)
Alternatively, A function f(x, y) is said to be a homogeneous function of degree
n if
n |V
p—c
X
Definition: A function f(x, y,z) is said to be a homogeneous function of degree
n if
fx, . z)=1"f(x, y, 2)
Alternatively, a function f(x, y, z) is said to be a homogeneous function of degree
n if

[y, 2)=x w(y 5)

X

Generalised Definition: A function f(x, y, z,...) is said to be a homogeneous func-
tion of degree n if

flx,ty,tz,..)=1"f(x, v, z,...)

Alternatively, a function f(x, y, z) is said to be a homogeneous function of degree
n if

69, 2,..)= x«p(—f...]

X X
Example 18

Let f(x, y)=x"+)"; then
ftx, ty)= x* + t2y2
=1 f(x, ).

So, this is a homogeneous function of degree 2.
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Example 19

Let f(x,y)=x"+)" +xy°, then
fx, ty)=12x* +1 )+ x)?
=12 (x> +1° + %)
So this is not a homogeneous function.

6.6.2 Euler’s Theorem
Theorem 6.8: (First Order)
Let f(x, y) be a homogeneous function of degree n. Then
Y& Sy
dx dy

Theorem 6.9: (First Order)
Let f(x, y,z) be a homogeneous function of degree n. Then

. df(x, y,2) Tty af(x,y,2) ‘2 af(x,y,2)
ox dy oz

Theorem 6.10: (Second Order)

Let f(x, y) be a homogeneous function of degree n. Then

(xaf(x,}’)+yaf(x,)’)

n- f(x,y)

=n- f(x,y,2)

ox dy
Theorem 6.11: (Second Order)

Let f(x, y,z) be a homogeneous function of degree n. Then

xaf(x’ Ys Z)+yaf(xa Ys Z)+Zaf(x’ ¥, 2)
ox dy Jz

2
} =n(n-1)- f(x, y)

2
J =n(n-1)- f(x, y,2)

Example 2() If

3, .3
X+
u=tan"' L
X=y
Using Euler’s theorem prove that
xa—u +y o _ sin2u [WBUT 2006]
ox ~ dy
Sol. Let

3, .3
+
tanu=[x Y ]=v(x, y)
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Now,
Py 2 @4y
Hx=y) (x=»)

Therefore, v(x, ) is a homogeneous function of degree 2.
By Euler’s theorem

wWix, 1) = =*u(x, y).

. w(x, y) iy v(x, )

=2.-v(x,
. % w(x, y)
o(t a(t
or, x ( anu)+y (tanu) =2(tanu)
ox dy
or, secu - xa—u+ya—u =2(tanu)
ox ~ dy

or, {xg—z+yg—;[}= 2(tanu)~(c052u)

=2sinucosu = sin2u

Hence

du  Ju
X—+y—=sin2u
ox ~ dy

Example 21 | If

X X
then show that,
i) x%+ya—u=xf(z
X

ox ~ dy
i 207U ’u  ,0%u
— 42 + =0 WBUT 2004, 2007
i) x o xy axdy y % [ ]
Sol. i) Let, u =v+w where
v(x, y) = xf (Z ] and w(x, y) = g (X J
X X
Now
_ wl_ .
V(Zx> Z‘y)_txf‘ f_ =1 'V()C, y)
X
and
wix, 1y) = g(ﬁ} © w(x, y)
©x
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Therefore, v and w are homogeneous functions of degree 1 and 0 respectively.
Therefore, by Euler’s theorem

ov  dv
x—+y—=1v
ox " ady
and x—+ya—W:0 w
X dy
Now,
8u+y8_u:x8(v+w)+ya(v+w)
ox ~ ay ox dy
v dv dw  dw
=lx—+y— [+ x—+y—
ox oy ox dy
=v+0=v=)gf(1]
X
Hence

ou  du ¥
—ty—=xf| = e
xax+yay xf(x) (D

ii) Differentiating (1) partially w.r.t x, we get
a2 au 82 | Y Yy
5 s ] )
%u ou 9’u y) v oy
L X—+— = |-=f1= (2
9 Tax vy f(x] xf(x @
Differentiating (1) partially w.r.t y, we get
2, 2
yJuw ou o (Y1
ayax ay o’ x N x

0%u au 32
ou_ .3
Byax ay 8 2 f( )

Multiplying (2) by x and (3) by y and then adding, we get

0%u 0%u ul [ ou ou |
20" 5 20U ou . ot R v I qpa
{x P xyaxayw ay2:|+>xax+y3y4 xf[x] yf(x +yf .

2 2 2
or, xza—u+2xyau +y 28 xf =xf e
ox> oxdy o’ X

2 2 2]
or, xza—u+2xy o u +y28—§l =0
ox oxdy |

Hence, the result is proved.
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6.7 DIFFERENTIATION OF IMPLICIT FUNCTIONS

6.7.1 Implicit Functions

Definition: Let us consider the equation F(x, y,z)=0 where z is a function of
two independent variables x and y. In this case, z is called an implicit function of x
and y.

For example, X’z xyz2 + xyzz =0 is an implicit function.

6.7.2 Derivative of Implicit Functions
Theorem 6.12: (Two Variables)

If F(x,y)=0 be an equation of two variables x and y where y is an implicit
function of x; then

ox
ﬂ=— =—i,providedFy=a_F¢0
dx oF F, dy

ady

Theorem 6.13: (Three Variables)

If F(x,y,z)=0 be an equation of three variables x, y and z where z is an
implicit function of x and y then

(aF)
a2 ox F, JoF
- =X i F = — 0
™ ( BF) . , provided F, Py #

oz

[aF]
F

ii) g—;:—a—y)=—F:,provided F, =aa—f¢0

Z

Example 22

Find @, if X>+3° —3x—)*=0.
dx

Sol. Here F(x, y)= X+ y3 -3xy-— yz, so y is an implicit function of x.
JaF _ o +y =3xy—1?%)
ox ox
JF _ A +° =3xy—1%) _3
dy dy

=3x? -3y,

y2 —3x-2y
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Therefore,

6.8 TOTAL DIFFERENTIALS

6.8.1 Condition of Differentiability of a Function

Let us consider z= f(x, y) be a function of two independent variables x and y.
f(x, y) is said to be differentiable if the increment Az is expressed as

Az =Af={f(x+Ax, y+Ap) = f(x, ¥)}

afo+alAy+nm+k Ay

ox )y

wheren - 0 and Kk > 0 as Axand Ay —» 0

6.8.1 First-order Total Differential

The expression

of —dx+— of
ox dy

is called the total differential of z or f(x, y).

Example 23 | Show that z= f(x, y)=xy—2y is differentiable.

dz = dy

Sol. Here,
af*yamdl—(x 2)
ox dy
Therefore,

Az =N ={f(x+Ax, y+ Ay) = f(x, y)}
=(x+Ax)(y+Ay) =2(y+Ay) —xy+2y
= Axy+xAy+ AxAy —-2Ay
= yAx+(x—2)Ay + AxAy

=yAx+ (x—2)Ay+(%Ay JA)H—(%AXJA)/

= yAx+(x—2)Ay+nAx+xAy where —(%Ay)and K—(%Ax]
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= of Ax+§lAy +1nAx + KAy where n —(%Ay)and K‘—(%Ax]
y

ox
Now,n—(%Ay]eO and K—(%Ax)eo as Ax -0 and Ay — 0.

Therefore, the function z = f(x, y) = xy—2y is differentiable.
The total differential is,
dz = a—fdx+a—fdy =ydx+{(x=2)dy
ox ay
Theorem 6.14: Let z = f(x;, x5, x3) then the total differential of z is

a7 9z 4
dz =——dx; +—dx, + —dx
ox; ! ox, 2 dax;3 3

Theorem 6.15: Let f{(x;, x,,..., x,)=c (constant) then df = 0.

6.8.2 Second-order Total Differentials

Theorem 6.16: Let z = f(x, y) have continuous second-order derivatives. Then
the second-order differential is

2
9 d
d*z=|—dx+—d
p4 (ax x+8y y) V4

Theorem 6.17: Let z= f(x;, x,, x3) have continuous second-order derivatives.
Then the second-order differential is

X1 Xy X3

2
d*z =(idx1 +idx2 +idx3) z

6.9 JACOBIANS AND THEIR PROPERTIES
6.9.1 Definitions

1) Let u;(x, y) and u,{(x, y) be two functions of independent variables x and y,
having first-order partial derivatives. Then the determinant

9 Iy
(uy, u2)=qu1, uz)_ ox dy
a(x9y) L X,y

|9 oy

ox dy

is called the Jacobian of u,, u, with respect to x, y.

2) Let u,(x,y,2), u,{x,y,z) and u;(x, y, z) be three functions of independent
variables x, y and z, having first-order partial derivatives. Then the determinant
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ou; du; du

x A
a(ul,uz,u3)=J(u1,u2,u3)=aﬁ aﬂ aﬁ
a(x,y,2) X, ¥, 2 ox dy &z
ou; duy duy

oy x

is called the Jacobian of u,, u,, u; with respect to x, y and z.

3) Let uy(x1,X5,...,%,), Us(X1sX5y...9%,),...U,(X1, X3,...,%x,) be n functions
of independent variables x;, x,,..., x, having first-order partial derivatives.
Then the determinant

axl ax2 axn

du, du, du,
J(M]= o o, o,
X1s X909 Xy
dx; Ox, ox,,

is called the Jacobian of u,, u,, ... u, with respect to x;, x,, ..., x,,.

6.9.2 Properties of Jacobians

Property 1 Let u;(x, y) and u,(x, y) be two functions of independent variables
x and y, having first-order partial derivatives; then

up, X,
X,y Uy, U

Property 2 (Chain Rule for Jacobians)

Let u;(x,y) and u,(x,y) be two functions of variables x and y having first-
order partial derivatives, while x and y are functions of r and s; then

e
r,s X,y r,s

Property 3 (Chain Rule for Jacobians)

Let u,(x, y,z), uy(x,y,z) and u,(x, y, z) be three functions of x, y, z having
first-order partial derivatives, while x, y and z are functions of r, s and #; then

J(lll,llz,u3]=J(u1,u2,u3 .J[x,y,z)
r, s, t X, ¥, 2 r,s,t

Property 4 (Chain Rule for Jacobians)

Let u; and u, are functions of o, , ¥ and a, B, y are functions of x and y; then
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J(uhuzJ:J(ulauzJJ(aaﬁ)+J(u1au2JJ(ﬂ’ YJ+J(ul’u2JJ(M)
X,y apB ) \xy By ) \xy v,e ) \xy

Example 24

1706 ) =2 and g(x, ) = an~x+ tan . find 222 [WBUT 2006].
1—xy d(x, p)
Sol. Here
J
d(f,g) _|ox dy (D)
I(x,y) |98 g
ox dy
Now,
2 2
d _ 1+y anda‘—f: T+x
x (I-x)°  d (I-x)
Also

%__1 > anda—g: ! 3
ox 1+x W l+y
So from (1), we have

H—y2 1+x° ‘
A/, 8) _|1-x)* (1-x)°
d(x, ) 1 1

1+x° l+y2

1 1

(1-)"  (1-x)
Hence the result is proved.

6.10 MAXIMA AND MINIMA

6.10.1 Maxima and Minima of Explicit Functions

Stationary Point or Critical Point
All the points satisfying f,(x, y) =0 and f(x, y) =0 are called stationary or critical
points.

Necessary Condition for Maxima and Minima
The necessary condition for f(x, y) to have maxima and minima at (a, b) is
fe(a,b)=0and f,(a, b) =0, provided they exist.
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Note: The above condition reflects the fact that both the partial derivatives f,(x, »)
and f,(x, y) being zero at a point does not gurantee that at that point the function will
always, have maxima or minima

i.e., the function may not have the extremum at all the stationary points.

Saddle Point

A point (a, b) is called a saddle point of the function z= f(x, y) if it is a point of
neither maximum nor minimum though /. (a,b)=0 and f (a,b)=0.

Sufficient Condition for Maxima and Minima
Let f{x, y) be a continuous function having second-order partial derivatives. The suf-
ficient condition for f{x, y) to have extremum at (a, b) is

fi(a,b)=0and f,(a, b) =0, provided they exist

and

Feul@,B) - fy (@, B)~[ fipla, 0] >0

and this extreme value is

i) a maxima according as
fla, b) <0 and f (a,b) <0
ii) a minima according as
Suxta, b)>0and f, (a,b)>0
Note:
Let f(x, y) be acontinuous function having second-order partial derivatives such that
fi(a,b)=0and f|(a, b) =0, provided they exist
Now if (i)
2
fula.b) £, (a.b)=[ fila. b)] <0,
Then f(x, y) has no extreme value at (g, b), i.e., (a, b) is a saddle point.
and if (ii)
. T2
fila,b)- £y (a.b)=[ f (@, B)] =0

Then f(x,y) may or may not have extreme value at («,b), i.e., the case is
undecided and further investigation is required.

Alternate Conditions of Maxima and Minima
Let z=f(x,y) be a continuous function having second-order partial
derivatives.

If df =0 at (a, b) then
i) (a, b) is a point of maximum if dzf <0, and

ii) (a, b) is a point of minimum if d2f > 0.
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Example 25

Find the maxima and minima of the function x’ + y3 —3x—-12y+20. Find also the
saddle points. [WBUT 2001, 2005]

Sol. Here, f(x,y)= x>+’ —3x—12y+20. Then

fiolx, p)=3x% =3, fo(x, »)=3)" - 12,

Jfo(,y)=6x, f(x,y)=6yand f, (x,y)=0
Solving,

filx, 1) =3x*=3=0
and f,(x, y)= 3y2 -12=0
we obtain,
x==xland y=12
Therefore, the (stationary points) critical points are (1,2),(1,-2),(-1,2) and
(-1,-2).
Now,

Faia ) S e ) =[ fr (e )| =362y

At the point (1, 2)

fol1,2) £, (LD =[ o (LD)] =720,
Su(1,2)=6>0and f,,(1,2)=12>0

Therefore, f(x, y) has minimum at (1,2) and the minimum value is
f(,2)=2.
At the point (-1, 2)

foL D) [y (L) [ £y (L D] =-72<0
Therefore, f(x, y) has neither maximum nor minimum at (-1, 2).
At the point (1,—-2)

folli=2) £, (1, =2 ~[ £y (1, -2) ] =-72<0
Therefore, f(x, y) has neither maximum nor minimum at (1,—-2).
At the point (-1, —2)
[l =D fy (L =)~ £ (-1,-2)] =720

Jou(1,-2)=-6<0and f,,(-1,-2)=-12<0

Therefore, f(x, y) has maximum at (—1,—2) and the minimum value is
f(=1,-2)=38.
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We have, from the above, that at the stationary points (-1, 2) and (1, —2), the func-
tion does not have any extreme values. So the saddle points are (-1, 2) and (1, —2).

The following topic is included for further reading by interested students.

6.10.2 Maxima and Minima of Implicit Functions:
(Lagrange’s Multiplier Method)

For Functions of Two Variables:

Let f(x, y) be a function of two variables x and y, subject to the constraint con-
ditions ¢(x, y)=0.

Let L(x, y)= f(x, y)+A¢(x, y), where A is called the Lagrangian multiplier.

The critical points can be found by solving

oL oL
o(x,y)=0,—=0and — =
ox oy
i) the critical point is a point of maxima according as d? f <0 where d? fis

determined considering y is dependent on x
or, the critical point is a point of maxima according as d*L<0
ii) the critical point is a point of minima according as d*f >0 where d”f is
determined considering y is dependent on x
or, the critical point is a point of minima according as d*L>0

For Functions of Three Variables:

Let f(x, y,z) be a function of two variables x, y and z, subject to the constraint
conditions @(x, y, z)=0.

Let L(x, y,z)= f(x,y,z2)+A¢(x, y,z), where A is called the Lagrangian
multiplier.

The critical points can be found by solving
8L oL oL
o(x, y,2z)=0, — *0—70 nd —=0.
oy oz
i) the critical point is a point of maxima according as d° f <0 where d°f is
determined considering z is dependent on x and y
or, the critical point is a point of maxima according as d’L<0
ii) the critical point is a point of minima according as d*f >0 where d*f is
determined considering z is dependent on x and y
or, the critical point is a point of minima according as d”L > 0.

Example 26

Find the optimum value of f(x, y)= x’ yz, subject to the condition x+y =1 using
Lagrangian multiplier method.

Sol. Let
O(x, y)=x+y—-1=0. (D)
Now L{(x, y)= f(x, y)+A.9(x, y), where A isthe Lagrangian multiplier.
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So,
L(x, )= f(x, y)+ A.0(x, »)
=x A (x+y—1)

Then
a—L=2xy2+l
ox
and
a—L=2 2y+A
dy
L L
Now solving a—=0, a—=0 and (1) we have
ox dy
1 1
x=—and y=—.
2 7 2

11
So the critical pointis [ —, — |.
22

Now

2
d>f —[idﬁidy] f
ay

ox
Ff, 2 f, o 9f
=—(dv) +—= +2——dx-d
axz( ) 9’ () axy
Again
az_fzzyz 82_f=2x2 az_f=
x> e * 0xdy

and x+y=1=dx=-dy
Putting the values in (2), we have

Ff, 2 f, 2 0f
d*f=—2(d = (d 2 dx-d
f axg(x) +ay2(y) + Ixdy x-ay

= 2y2 (dx)z +2x° (—dx)2 +2-4xy-dx-(—dx)
=2y° +2x7 —8xy)(a’x)2

Since

=—(dx)’ <0

s

11
the function f(x, y)= x° y2 attains maximum value at the point (E 5 ]

1
The maximum value of f(x, y) is I3

-.(2)
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WORKED-OUT EXAMPLES

Example 6.1 Show that the function

2 2
2o
Fe )= 52 (0, ) #(0,0)
X +y

=0, (x, ¥)=(0,0)
is continuous at (0, 0).
Sol. To prove the continuity at (0, 0), we are to show
lim f(\’ »)=7(0,0)
(x, »)—(0,0
2 2
ie., lim Xy * Y 0

(6, 1)—>(0,0) x>+ y2
Now to prove the existence of the above limit, for a given € >0 we are to find
6 >0 such that in any 6-nbd N of (0, 0),
2 yz
Xy — 5 -0
x4y

<€

it
x* +y
We know

(1)

or,

y|<\/xz+y2 and ‘xz —yz‘<xz+y2

|x|< x2+y2,

So

= x? +3? <& (consider)

if 0<(x=0)>+(y—0)> <82, where § =e.
Here we are getting a circular § -nbd of (0,0).
So, the condition for existence of the limit is satisfied and correspondingly, we

have
¥ yz
lim xy———=0
(5, 00,00 x"+y

ie, lim f(x,»)=/(0,0)

(x,)—(0,0)
Hence the given function is continuous at (0, 0).
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Example 6.2 If

(6, y)=—2— when(x, y) #(0,0)
xXy+x—y
=0, when (x, y) = (0, 0)
Show that both the repeated limits exist and are equal but the double limit does not
exist.

Sol. The repeated limits are
. X
lim lim £ (%, ») = lim lim ———— = lim —— =0
x—0 y—0 x—=0y—0 Xy +Xx—y  x—00+x
and

X 0
lim lim /(X ¥) = lim lim ———— = lim —— = 0.
y—=0x—0 y=0x—20XY+x—y 3500—y

Therefore we have
lim lim f(x, ¥) = lim lim f(x, y) =0

x—=0y—0 y—=0x—-0
Hence the repeated limits exist and are equal.

Along the x -axis (i.e., y=0)

lim f(x, )’)—hmf(V 0)—11m——0
(x, ¥)—(0,0) x—0 X

Along the path y=x
2
. X XX X
lim f(n)= lim ——=lim———— = lim 5 = .
(x,9)—(0,0) (520,00 Xy +X—Y x50X-X+X—X x50x
We see that along two different paths, the limits are different. So, the double
limit does not exist.

Example 6.3 If

x3+ 3
f(x, y)= Y when x # y
x—y

=0, when (x, ) =(0, 0)
Examine whether the repeated limits and double limit exist and are equal. Is the
function continuous at (0, 0) .

Sol. The repeated limits are
3, .3 3
X+ x
lim lim /(x, ¥) = lim lim =lim—=0
x—0y—0 x=0y—=0 X—)Y x50 X

and
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3 3
+
L = fim2-=0
y

lim limf{x, ¥) = lim hm

y—0x-0 y=>0x—>0 X—Y y—=0—
Therefore,

lim lim f(x, ¥) = lim hmf(x »=0
x—0y—0 y—0x—0

Hence the repeated limits exist and are equal.

Along the curve y = x— mx’, we have
3

3 3
| RS Gl
lim f(x,»)= lim = lim 3
(x, ¥)—(0,0) (x,»)—(0,00 X—Y x—0 mx
3,3 2)\? 2\

X +x (l—mx ) 1+(1—mx ) 2
= lim 3 = lim =—
x—0 mx x—0 m m

which is different for different values of m. So, the limit is not unique.

Hence the double limit does not exist at (0, 0) and correspondingly, f(x, y)
is not continious at (0, 0).

Example 6.4 Show that for the function

Sol.

2 2
[ y) =32 5.(0 1) £ (0,0)
X +y

=0, (x,»)=(0,0)
S2(0,0)= £,,(0,0) [WBUT-2008]
By the definition in Section 6.4.2, we have

(h,0)— £.(0,0
£0(0,0) = i 222010
h—0 h

Now by the definition of Section 6.4.1,

(1)

Wk’
‘(h,k)— f(h, 0 22
fy(h,O):lim‘/( )— f( ):limh +k
k—0 k k—0 k
=1 hzk =
/clg})h2+k2

Also, by the definition of Section 6.4.1

0,k)— (0,0 0-0
/5(0,0)=lim /0.0-/0.0_ lim =0
k—0 k k-0 k

Using the above two results in (1), we obtain
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A{h,0)—f,(0,0 0-0
J(0,0) = lim 1, 0-1,0.9 lim =0 - (2)
h—0 h =0 h

Again by the definition of Section 6.4.2, we have
fx (07 k) — fx (Oa 0)

fvx (Oa 0) = lim (3)
: k—0 k
Now by the definition of Section 6.4.1,
Wk
——=0
h,ky— 10,k 2472
£.00,5) = lim Sh, k)= f(0, k) _ Y
h—0 h h—0 h
o
ho0 1 4k
Also, by the definition of Section 6.4.1
h,0)— 10,0 0-0
£.(0,0)= i LLO-SO0 020
h—0 h h—0 h
Using the above two results in (3), we obtain
(0,k)—£.(0,0 - 0-0
f1x(0,0) = lim /0.6~ /0.0 _ lim =0 (4
k—0 k k-0 k
From (2) and (4), we have
S (0,0)= £1,(0,0)
Hence we have the result.
Example 6.5 | If u =[xy, find the value of
2 2
8—12’ + 8—12’ [WBUT-2001]
ox”  dy
Sol. Here,
du 1 ou 1
—=——,/yand —= —\/;
ax  2Jx W I 2y
Similarly,
u _ —1 \/; u  —1x
—=—-"—and —=——
o’ 4 % 8y2 4 %
X Y
Therefore,

+ — N | —
2 2 3 3 3
ox~  dy 4 2 4 2y2

I NN N W
A
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Example 6.6 If

flx,y)= x* tan”! (X )— y2 tan”! [f]
X y
verify that f,, = f,.

Sol. Differentiating f(x, y) partially with respect to x, we have

fo=2xtan™ (§J+x2 %-(;—;]—yz %[%]
1+(yj 1+(XJ
X y

=2xtan”' (Z]—y
X

Again differentiating f, partially with respect to y, we have

1 1 2x° x*—y?
S =2 = 1= -1 =5 (D)
[y) x X +y x“+y
1+ =
X
Now differentiating f(x, y) partially with respect to y, we have
1 1 1
' X y X y
1+(y] 1+(]
X y
3 2
- 2x 2_2ytanil = +%
X" +y Y X" +y
=x—2ytan”’ X
y
Differentiating /), partially with respect to x, we have
1 1 2y X -y’
oy —1—2y72-(—121— S (2)
ME: y xX“+yT xT+y
y]

From (1) and (2), it is verified that f,. = f)..
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Example 6.7 | If u= f(x” +2)z, y* +2zx), show that

(» —zx)g—z+(x2 —yz)g—;l+(zz —xy)g—z =0 [WBUT-2001]

Sol. Let
X=x*+2yzand Y = y* +2zx
Therefore
u=f (¥ +2yz, y* +22x) = f(X, )

Now,
ou _ du 0X 8u8Y_2 ou ou

x—+
dx oX dx JY odx oX aY
ou Ju dX OJudY _ 5 ou ou

z—+

dy dX dy JY dy oX oY

ou oJudX oJudY Ju ou
- oty -2

% e tare: ooy
Therefore,
(yz_zx)%(xz_yz)g_z+(zz_xy)g_:’

:(yz —zx) (2x§—;+223—§l]]+(x2 —yz)(2zaa—;+2ya_uj

_du 2 2 2 2 2 2
—a?(ny —2zx" +2x7z-2yz" +2yz" = 2xy )
du 2 2 2 2 2 2
+W(2y z—=2xz"4+2x"y—-2y"z4+2xz" - 2x y)
:a_”.()_,.a_u.():()
)¢ aY

Example 6.8 If

u= lc»g(x3 +y3 +z° —3xyz)

then show that

. o o9 9 3
i) —t—+t— |u=
(8x dy 82] X+y+z
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ii) i + i + i u=- ;
ox? 9’ 0z’ (x+y+2)*
2
iii) i + i + i u=-— 2 [WBUT-2003].
ox dy oz (x+y+z)°
Sol. We know,

(x3 +y3 +z° —3xyz)=()c+y+z)(x+ya)+za)2)(x+ya)2 +zw),

where @ is the cube root of unity.
Therefore,

u= log(x3 +y° +2z —3xyz)

Le,u= 10g(x+y+z)+log(x+yw+ za)z)ntlog()ﬁya)2 +za))

Now,
a—u: ! + ! ==+ 17 (1)
dox (x+y+z) (x+ya)+za)') (x+ya)‘+za))
2
o 1 ., o ., U (2)
d  (x+y+2) (x+ya)+za)‘) (x+ya)‘+za))
2
Q. 1 . @ —+ 2 e
0z (x+y+2) (x+ya)+zw') (x+ya)'+za))
i) Adding (1), (2) and (3), we get
ou Oou ou_ 3 1+ 0+’ . 1+o+o’
dx dy dz (x+y+z) (x+ya)+za)2) (x+ya)2+za))
Since 1+ w+@* = 0, we have
d d 0 3
—t—t— |u= ;
ox dy oz X+y+z
ii) Now, from (1), we have
Pu_of 1 of v Jof L
ox?  ox|(x+y+2) | ox| (x+yw+ze®) | ox| (x+yw® +:zm)
1 1 1
=— - ..(4)

(x+y+2)° ) (x+ya)+za)2 )2 (x+ya)2 +za))2



Calculus of Functions of Several Variables I 6.37

Since ®* = m, from (2), we get

*u 8( 1 ] 0 w J w’

— T — ] —— — +_ ——————————————
o | (x+y+2)) Iy (x+yw+zw2) dy (x+yw2+zw)
_ 1 _ o’ 3 w )
C (x+y+2) ( 72 2 2
/ X+yw+zm ) (x+ya) +za))
Since w* = w, from (3), we obtain
’u 9 1 0 o 0 o’
BN el e A LA A S
oz dz\ (x+y+z) | oz (x+yw+za)“) oz (x+ya)“+za))
B 1 w o’ 6
__(\f+ o - e ; 5 ...(6)
ETYTEZ (x+yw+zw) (x+ya) +Za))
Adding (4), (5) and (6), we have
Pu Pu Fu 3 (1+w+w2) (1+w+w2)

2 2 2 2 2 2
dx” dy" oz (x+y+z) (x+ya)+za)2) X+ yo’ +zw)

—

o, | —+—+— u=—#,since (l+a)+m2)=0
ox? ot oz’ (x+y+2)?
9 2. 9Y (0.9 2Y)a. 0. 9
—t—t— |u=|—+—+— || —+—+—|u
ox dy oz ox dy 0z Jlox dy Oz
0o Jd 0 3
12+ 242 — |wya
(8x+8y+azJ(x+y+z] y (@

d 1 0 1 d 1
=3 — = ——
{a,r((x+y+z)] ay[(x+y+z)] az[(x+y+z)]}

:3{_ I }

(x+y+:)2 (x+y+:)2 ()c+y+z)2
9

(x+y+z)2

Example 6.9 | If z= f(x, y) where x=¢" cosv, y =¢" sinv show that

g Lmgn & [WBUT-2006, 2009]
du ov dy
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Sol.  Here z= f(x, y) where x =¢" cosv, y =" sinv.

By chain rules

0z 0zox 0z dy 0z 0z

— =+ = L =" cosv-—+¢€" sinv-—

ou dxdu dyodu ox dy

and

dz dzox Jzdy w .. 0z 0z

— = 4+ =L =_¢"sinv—+eé" cosv—

ov dxdv dyov ox dy
Therefore,

N
Yu T
0z oz 0z 0z
=e"sinv| e cosv-—+e" sinv-— |+¢é" cosv| —e" sinv— + " cosv—
ox dy ox dy
) . ) L
= (ez” sinvcosv— e sinvcos v) %, (62” sinvsinv+e* cosvcos v) —
ox dy
= (sm v+ cos’ v) e 0z
»y
Example 6.10 | Show that the transformation u# =x—cf, v=x+ct reduces the
equation
2 2 2
E =c? E to the equation oz =0
or o’ Judv
Sol. Here,

u=x—ct,yv=x+ct and z= z(u, v)

Now,
LTI T P
Jf Juodt Jvor Jdu

PR 3 9V 9> 2 9
—= ¢t fma | = =2 +—
or? du v ou? udv  H?

9’z ,| 9%z 9’z 9%z
9Z_ 2|82 ,92,92 (1
T ¢ |:au2 oudv  gy? M
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Again,

o dou v ¥ o
ox Ouodx oJdvox OJu OIv

9 (0.9
“ox |ou o
Therefore,

(a9 oY [ . &
— = =—+—| =|—+2 +—
x> \ou ov dut dudv R
9’z | 9%z 9%z 9’z
=—=—42 +—
ox? ou’ dudv
Using (1) and (2) in the given equation
822 2822
_:C —
or’ ox?

we obtain

NESL A L
ou’ dudv ou’ dudv  ?

Simplifying, we get

‘ 9%z _ 9%z -0

Judv oudv

Hence, the required result is proved.

Example 6.11 | If # be a function of x and y, prove that

a)
wuY 1(ouY (uY (ouY
or 72 00 ox oy
Pu, Pu_Fu 100 1
ot o ror oo’

4

0=

b)

where x =rcosO and y = rsinf.
Sol. Here,

x =rcos@ and y = rsiné

a) By chain rules, we have

ou Ouox oudy Ou du .
— = ——+——==_—cos@+—sinf
or oxdr dyor oOx dy

| 6.39

(2)

[WBUT-2002, 2008]

(1)
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and
Ou _Judx oudy du. 1n6)+—(rc039)
00 0x 00 Jdydo ox
r, la_u _a_u n9+a—c099 ..(2)
r 06 ax dy

Therefore, from (1) and (2), we have

2 2 2
a—u +L a_u = a_u ose+a—sm0 + —a—usin9+%cose
or 2\ 06 ox dy dx dy

2 2 2
=cos’ 0 B_u +sin’ @ a—u +2s1n900s98—a—+ 29 ou
ox dy dx dy o

2
+cos’ 0 a_u Zsm@cos@a—ua—u
dy ox dy

wuY (ouY
+ —_—
P ady
0
b) From (1), we have the operator — as
r

—:cos.Gi+sin0i ...(A)
or ox dy
and from (2), we have the operator i as

—:—rsin(9i+rcosei ...(B)
00 ox ay

Now,

*u 9 (ou)_ 9 (ou ou
—S T | F|= 050+—sm6
o orlor | or|ox dy
=cosf— 9 (Ou sinf = d (ou
or | ox or ay
=cosf cosei+sm0— B_u
ox dy J| ox

+sin (cos 0 Bi +sinf i ](g—u ], using operator (A)
Yy

X dy
. ’u  u
Since =—,
oxdy dyox
2 2 2 2
8__COS 98—+2s1n9c050 Ju +sin298—2 .3
or? ox? dxdy ay
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Similarly,

82u 9 du J( odu du
_— —| ——rsin@+—rcos@
20 96| a6 20| ox dy
=—rcosf au —rsin@i a_u —rsin@ a_u +rcos€i a_u
o 20| ox dy 20| dy
=—rcosf 8_u —rsin@ a_u —rsint9i a_u +rcos9i a—u
ox dy 20\ ox 20| dy

=—r<qcosf| — 2y +sin@| — du —rsin@ —rsin()inchosBi a_u
o ay ox dy |\ ox

+rcos@| —rsinf i +rcosf i B_u , using operator (B)
ox dy |\ oy

2

2
= _ra_”+r2 Sin2ea—u—r2 sinf cos O
p) ox?

r X dyox
2 2
% cos@sin@ “ +72 cos’0 8_124
xdy dy
2 2
Since ou = M, we get from above
dxdy  dyox
2 2 2 2
8—2 = —ra—u+r sinzea—Z—ZrZ cos@sinf d'u +r2005298—;l
00 or ox 0xdy dy
2 2 2 2
ie., J u+ a—ufr sinzea—Z—Zcosesin()a “ +cos298—Z
00*  or ox xdy dy
2 2 2 2
.., 12 0 121 lB_u 2Ga——2c05951n98—+ cos 98—3{ ..(4)
00 7 or ax 8x8y ay

Adding (3) and (4), we have
o%u lau 1 o%u
_J’___

ot ai’ r 892

2 5 ,
= Coszea—u+25in9 Cos@—a = +sin298_u
ax2 a_xay ayZ

9%u 9%u 9%u
2 : 2
+[sn1 B—axz —2cosfOsinf 3 +cos 9—_)

ox? o’ .
Hence both the results are proved.
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g x+y
Example 6.12 | If u=cos™' | ——— | then prove that
i [\/; + \/; ]
X a—u +y a_u + l cotu =0 [WBUT-2009]
ox “ady 2
Sol. Let
x+y
cosu =| ——= [=v(x,»)
[\/} +Jy J
Now,
1 1
x+ty 5 xX+y 5
v(tx, ty) = =t2 =12v(x, y).
N {J; NE ]

. 1
Therefore, v(x, y) is a homogeneous function of degree —.
By Euler’s theorem

o dv 1
ox “dy 2
d(cosu d(cosu 1
or, X ( )+y ( )=—-(cosu)
ox oy 2
or, —sinu- xa—u+ u —L(cosu)
’ ox yay 2
Ju  du 1 (cosu 1
or,x—+y—=——| — =——cotu
ox T~ dy 2 | sinu 2
Hence
ou du 1
X—+y—+—cotu=0
ox dy 2

1 1 |2

3443
Example 6.13 If U=sin"'|2 ; Ty ; show that

x2 +y?

U +2x9U 4 +?U,, = t‘i“;i] (13+wn’v). [WBUT-2001, 2008]
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Here,

1

L ) L

3443 3443

X3+ . x3 +
l—l yl =sin’U = ; yl

x2 +y2 x2 +y2

U=sin"

. . . -1
Here, sin’U isa homogeneous function of degree (? J

Therefore, by Euler’s theorem

a(sin2 U) a(sin2 U)

-1/ .,
X + =—/(sin" U
ox 7 oy 6 ( )
or, x- ZSinUcosU~a—U +y- ZSinUcosU-a—U :_—lsian
ox oy 6
or,xa—U+ QU: ; —1 sin?U f—ltanU ..(1)
ox oy 2sinUcosU )| 6 12

Differentiating (1) partially with respect to x and y, we have respectively

8_U+8U U -1, U

+y —sec ...(2)
ox o2 axay 12 ox
x—a U+8_U+y8 v_ _1 Ua—U ..(3)
oyox  dy o’ 12 oy
Multiplying (2) by x and (3) by y and adding, we have
U U\ ,0U U  ,0U
X—+y— |+x +2xy +y
ox dy o’ dxdy o’
-1 L, (oUu ouY. U U
=—sec Ul x—+y— | since——=——
12 ox ady oxdy  dyox
_ 2 2 2
or, —]tanU+ x28 U+2xya U+y28 - 2U(—tanU
2 ax2 Bxay ay2 12 le
2 2 2
or,xz(—9 U+2xya v yza U=LtanUseczU+LtanU
o2 oxdy oy’ 144 12
_anY 2 (sec?U+12) = tant =2 (tan? U +13)
144
Hence

XU +2x00U,, +Y°U,, —1—(13+tdn ).
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Example 6.14 | If f(x, y) =0, show that

dzy _ ]p,\t\'f,‘»2 — 2./‘.‘\'4}(»\2}(.‘1)' + ./‘_‘)j-f,\'z

dx? (/, )3
Sol. Here f(x,y)=0 defines y as an implicit function of x.
Therefore,
dy_—fe
dx  f,
and '
ﬁ d dy i =7f\ ,(f\) f\' (fy) n
P’ dx| dx £ ( fv)
Now, ’
Dy D dy =
dx (ﬁ) ax (fY ) dx + ay (f\ ) dx »/:\1" + f‘\ ( fv ] (2)
and
diry=2 - e
—(/) ax(fy) (f,) = fat Sop 7 -3
Using (2) and (3) in (1) and assuming [, = f,, we have

Jyxs

f _f\'
.fr ./;c,\‘ i .f\'x : . f\ .[\'\' + .f\’\‘ )
P G 3 G v |
@ (1)
_ fuf|2 _ 2’\/\1\\ + /Hf\z
()
If u=xlog(xy) where X +y3 +3xy =1, find %
v X

Sol. Let

fG=x+y>+3x-1=0
This is an implicit function of x and y. Then,
fo=3x>+3y, f, =3y" +3x

Therefore,

dy:i:_(3x2+3y)__x2+y

dx  f, 3y2 +3x y2 +x
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Here

u = xlog(xy)

Now using chain rule,
du _oudx dudy

+ —_
dx dxdc dydx

2
—|:1~log(xy)+x-L-y:|-l+ x~i~x _x2+y
Xy xy yo+x
x(x2+y)
N
Example 6.16 | If f(x,y)=0 and ¢(x, z) =0, show that

Jf d¢ dz _df d¢g

i oz dy dy ox
Sol. We have,
S(x,»)=0

Therefore,

=1+log(xy)—

= (1
dy ox dy o
Again,

P(x, »)=0
Therefore,

.2
ox 0z dy @

Multiplying (1) and (2), we have
of dp _df do dz

dy ox ox 0z dy

Example 6.17 | If f(p,v,t)=0 prove that

dap ) () [dv)__, [WBUT-2003]
dt ), \dv A dp ),
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Here,

S(p,v,1)=0

Therefore,

deO:a‘—/dp+a—fdv+a—fdt:O (1)
op ov ot

Let p be constant. Then dp =0 and from (1), we get
A
dt EN
— | =—-= (2
&) % ”
ot

Let v be constant; then dv =0 and from (1) we get
of
dp ot
= | =2 ..(3
(dt l af S
dp
Let ¢ be constant; then df =0 and from (1) we get

s
dv ap
— | =—== ..(4
(5]% ?
v
Multiplying (2), (3) and (4), we get

d_pxﬁ Xﬁ =—]
dr ), \dv), \dp)

Example 6.18 If f(x, y,z, w)=0 prove that

Sol.

= 1 [WBUT-2005]
dy 0dz ow ox

Here,

Sy, z,w)=0 (1)

represents an implicit function involving 4 variables, x, y, z and w.
Using the property of differentiation of implicit functions, we have

o —Q, considering z and w as constants. -(2)
CUN
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Similarly, we obtain

a

y__ L , considering x and w as constants.
0z )

0z

L , considering x and y as constants.
ow f.

ow

w__ L , considering y and z as constants.
xSy

Multiplying (2), (3), (4) and (5), we get

N AV AY WAVIAR
8y8z8wax I f) ﬁ S

Example 6.19 | If z is a function of x and y defined by

Xy 2 A x+y+z+1=0,

find d*z at (1,0,1).

Sol.

Here
Ay +ZHx+y+z+1=0

We have from the first- and second-order total differentials,

[ Lar Zay |- s Lay |-
ox ay ox oy

and
2

d*z= J dx+idy

ox ay

822 2 aZZ 822 2

=——(d 2 dxdy + —(dy

o 0+ 2+ S (@)

Here

Ay Hxty+z+1=0
Differentiating (1) partially with respect to x, we have

px42: g1 g 2 2xt]
ox ox ox 2z+1

922 (22+1)~2—(2x+1)-2§i_

CQz+1)2+Q2x+1)7 2

ox’ (z+1)° (2z+1)°

| 6.47

(3
(4

..(5)

(1)

-.(2)

(3
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Differentiating (1) partially with respect to y, we have

2y+2za—+1+a—z—0 a—z=—2y+1
oy ady dy 2z+1
(2z+1)-2-(2 +1)-2ai
o’z _ 7 I Qz+1)’2+2y+1) -2
o’ (2z+1)* 2z+1)
2
So,| 22 20 (4
o (1,0,1) 27
Also
'z _M.z___ .M?*“
oxdy (2z+1)> ox Qz+1)* 2z+1
2
SO,|:a Z] _2 .05
dxdy o 9

Using (3), (4) and (5) in (2), we have
2

2 82 2 822 d°z 2
[d z:|] 1 (dx)’ +2 dvdy +| — (dv)
.0 ) o’ (1,0,1) dxdy (1,0,1) dy (1,0,1)

4, 4 20 .,
= (d)? — = dxdy— = (d
3(’f) gy 27(y)

Example 6.20 | If f(u, v)=3uw’, g(u,v)=u’ —v* find the Jacobian (f,g)'

u,v)

[WBUT-2004]

Sol. Here

f(us V) = 31/{\/2, g(ua V) :uz _v2

Therefore

af =13y 2 aff6uv

du "o
and %8 =24, %8 = 9,

u A%
Hence

¥y

IS>8) _[ou v|_[3" 6wv|_ 3 15,2,
Au,v) (98 dg| [2u -2v

du v
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Example 6.21 | Show that the functions

u=x+y—-z,v=x—y+z and w=x2+y2+zz—2yz

are dependent. Find the relation between them.

Sol. The given functions u,v and w of independent variables x, y,z will be
functionally dependent if M =0, otherwise independent.
d(x, y, z)
Now,
W
dx dy Oz
du,v,w) _[dv  dv v
d(x,y,z) |ox dy oz
w w ow
dx dy Oz
1 1 -1
=1 -1 1[G > CG+G]
2% 2y-2) 2:z-)
1 1 0
=1 -1 0/=0
2x 2(y—z) O

Therefore, the functions u, v, w are functionally dependent.
The relation between them is

(u+v): +u—v)’ =4()c2 +y* 422 —2;‘2):4w

or, W +v2 =2w=0

Example 6.22 | Find the extrema of the following function:

f(x, ) =x> +3xp7 =3)* =3x% +4 [WBUT-2004, 2007, 2009]
Sol. Here,
f(x,y)= X +3xy2 —3y2 —3x*+4

Then
fo=3x+3y% —6x, £, =6xy -6y,
S =6x—6, f,,, =6x-6, f,, =6y

Now,
fi=0 =23x"+3y"—-06x=0 =S x" +y —2x=
f.=0 =37 +3)y*—6x=0 2432 -2x=0 1)



6.50 Engineering Mathematics-I

and f, =0 =6xy—-6y=0 = xy—-y=0 ..(2)
Solving equations (1) and (2) the critical points are (2, 0), (1, 1), (0, 0).
Now,

Fury =y = (6x=6)* =(6) =36{(x-1)" =}

At the point (2, 0)

F2(2,0)£,,2,0~{£,2, 0} =36>0

and f,,(2,0)=6>0, ,,(2,0)=6>0
Therefore, f(x, y) is minimum at (2, 0).

At the point (1, 1)

D £, (D ={ £, (LD} =36 <0

Therefore, f(x, y) has no extreme value at (1, 1)

At the point (0, 0)

.f.;(x (O’ O)fw (0’ 0) _{.f:xy (05 0)}2 = 36 > 0
and £,,(0,0)=—6.<0, £,,(0,0)=6<0

Therefore, f(x, y) is maximum at (0, 0).

Example 6.23 | Find the maximum and minimum of the function

Flx,y)=x+y’ =3axy [WBUT-2002, 2008]
Sol. Here,

[y =%+ =3axy
Then
1= 3x? =3ay, f, =3y —3ax
S = 6%, [y = 6y, [y = —3a
Now,
f=0 =3x*-3ay=0 =x>—ay=0 (1)
and f, =0 :>3y2—3ax=0 :>y2—ax=0 (2)
Solving equations (1) and (2), the critical points are (0, 0) and (a, a)

Now,
fxxf}y - (fxy)z =36xy— 9a2
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At the point (a, a)

fula,a) fry (@, @) ~{ f (@, @)} =27a® >0
and
fula,a)=6a>0 ifa>0
=6a<0 ifa<0
fp(a,a)=6a>0 ifa>0
—6a<0 ifa<0
Hence f(x, y) is maximum at (a,a) if ¢<0 and minimum at (a,a) if
a>0.
At the point (0, 0)

£(0,0)£,,(0,0)~{ £,,(0,0)}’ =—9a* <0

Hence f(x, y)is neither maximum nor minimum at (0, 0).

Example 6.24 | Find the maxima and minima of the function

fo ) =x"+y* —63(x +y)+12x.
Find also the saddle points.

Sol. Here,
Fx, ) =x"+y* —63(x+y) +12xy.
Then
fi(x, »)=3x" =63+12y, f,(x,»)=3y" —63+12x,
S (X, ¥)=6x, f,,(x, y) =6y and f,,(x, y) =12
Now to find the critical points, we solve
f‘.(x,y):3x2—63+12y:0 = x2-21+4y=0 (1)
and f,(x, y)=3y" =63+12x=0 =y’ -21+4x=0 (2
Subtracting (1) from (2) we obtain,
(x=y)x+y-4)=0
this implies (x—y)=0or, (x+y—-4)=0

So from above we have two pairs of equations

(x=»)=0 (x+y-4)=0
5 and<
2 =21+4y=0 2 =21+4y=0
Solving the above, we obtain the (stationary points) critical points as

=7,-7),3,3),(5,—1) and (-1, 5).

Now,

.[v.v (X, y) 3 .f)j\' (X’ _V) — [fu (X, y)] ’ = 3())(.‘)/ —144
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At the point (=7,—7)
) 2
Fol =T =T [, (<7, =T)— [ [ (-7, ~ 7)] ~1620>0,
fu(=7,=T)=-42<0and f,,(-7,-7)=-42<0

Therefore, f(x, y) has maximum at (—7,—7) and the maximum value is
f(1,2)=2.
At the point (3, 3)

3.3) £,3.3)-[ £,,3.3)]" =180>0
fo(3,3)=18>0and f,,(3,3)=18>0

Therefore, f(x, y) has minimum at (3,3) and the minimum value is
f(3,3)=-216.

At both the the points (5,—1) and (-1, 5)
42
[ =01, 5. =D=[ £, (5. -1D)] =-324<0

and f, (~1,5)f,, (-1,5) [ £ (-1.5)]" =324 <0
Therefore, f(x, y) has neither maximum nor minimum at both the the points
(5,—-1) and (-1, 5). So, these are the saddle points.

Example 6.25 | Find the point in the plane x+2y+3z =13 nearest to the point

(1,1, 1) using Lagrange’s multiplier method. [WBUT-2001,2002]

Sol. Let P(x, y, z) be any point on the plane x+2y+3z=13.

The distance between the point P(x, y, z) and A(1,1,1) is

D=J(x=1)2 +(y—1)> +(z—1)?
Let us consider

f@,p,2)=D*(x, y.2) = (x=1) +(y=1) +(z—1)°
Here, we have to find the point P(x, y, z) such that f(x, y, z) or D*(x, ¥, Z)
is minimum subject to

o(x, y,2)=x+2y+3z-13
Let

L(x, y, 2) = f(x, y, 2)+ Ad(x, y, 2)

=(x-1D2+(-1D)*+(z-1) +A(x+2y+3z-13)

Now,

oL :al+la—¢20
ox ox ox
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or, 2(x—=1)+A1=0 (1)
AL _U 59
dy dy dy
or, 2(y—1)+24=0 (2
a—L=al+/’La—¢=O
0z Oz 0z
or, 2(z—1)+34=0 .03

The critical points are found by solving,
a—L=0,a—L=O,a—L=Oand¢)(x,y,z)=0
ox dy dz

Putting the values of x, y, z from (1), (2) and (3) in ¢(x, y, z) =0, we get

i+1 +2(-A+1)+3 ﬂ+1 -13=0
2 2
or, AL =-1
Putting the value of A in (1), (2) and (3) we have
3 5

x=2,y=2,z=2
2 2

3
Therefore the required point on the plane is (E, 2, g]

Now,
2
0 0 )
d* f=| —dx+—dy+—d.
/ (ax x+8y y+az Z]f
I RIS eI e
=—7 ()" +—(dy)” +—5-(d2)
ox dy oz

2 2 2
+2a fdxdy+2a fdydz+2a fdzdx

dxdy dyoz 0zox

Again,

of Jf of

Y -1, L =2(y-1), L =2(z-1
™ (x=1), % (y-D, o (z-1)
2 2 2

T T

ox? o’ 022
and

2 2 2
0xdy 0y0z 0zdx

Therefore,

d*f = 2{(dx)2 +(dv) + (dz)z} >0
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So,
(dzf)(; 5 2{(c)” +(dy) +(d2)’} >
o)
Therefore, f(x, y,z) or D? (x, y, z) is minimum at (%, 2, %]

3 .5). o .
Hence (5, 2, EJ is the point in the plane x+2y+3z =13 nearest to the point

(1,1,1).

Example 6.26 | If xyz = o’ find the critical points of xy + yz + zx using Lagrange’s

multiplier method.

Sol. Here
X, y,2) = xy+ yz+2x
subject to

o(x, y,2)=xpz—a’

Let,
L(x, y,2)= f(x, y, 2) + Ap(x, y, z) = xy+yz+zx+/l(xyz—a3)
Now,
oAL_¥ + /la—¢ =0
ox oOx ox
or, yv+z+A(yz)=0 (1)
.
dy dy Iy
or, x+z+A(xz)=0 (2)
oL_I 39
0z oz oz
or, y+x+A(xy)=0 ..(3)
The critical points are found by solving,
oL oL oL
—=0,—=0,—=0and , 0
g, Oy TOandot )=
From (1), (2) and (3), we have
l+l:l+l:l+l:—/l ..(4)
y z z X Xx Y
or, 2(l+l+l]= 31 ..(5)
X y z
From (4) and (5), we get
-2 -2 -2
x=—,y= =

===
A A A
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Putting the values of x, y, z in ¢(x, y,z) =0 we get
xX=y=z=a

Therefore, the critical point is («, a, ).

Example 6.27 | Prove that the volume of the greatest rectangular parallelepiped
that can be inscribed in the ellipsoid

g 8abc
337

Sol.

2 2 2
X z
_+y_+_=1
2 b 2

IS
o

[WBUT 2002]

The volume of the rectangular parallelepiped is

V=2x-2y-2z=8xyz

The problem is to find the maximum volume subject to the condition

X y z
—t—t—==1
a bl
Here,
2 22
Sy, 2)=V =8xyzand §(x, y, 2) = — +=5+——1
a b ¢
Let,
2 2 2
L(x, y,2) = f(xy, z) + AP(x, ¥, z) = 8xyz +;{_2+Z_2+_2_] ]
a c

Now,

§£=%¥%§9=0

ox ox ox
or, syz+2§ =0 (D)

§£=%¥%§9=0

dy dy  dy
or, 8zx + @ =0 ...(2)

b

§£=%¥%§9=0

0z Oz oz
or, 8+ 225 =0 (3

c
Multiplying (1), (2), (3) by x, y, z respectively and adding we have

2 2 2
24xyz+2/1(x—2+y—2+ ]—o
a

n|t\:
[3S)

ol
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or, 24xyz+2A=0

or, L =—12xyz
From (1), we have
8yz+ @ =0
a
or, 8yz + 72(_122)022))6 =0
a
2
or,x* =—
3
a
or,x=+*—
NG
Since x>0, we consider
— @
NG
Similarly from (2) and (3),
b c —4dabc
y=—,z=— and A=
NERNC] 3
a b ¢
Therefore, the critical pointis | —, —, —=
(ﬁ NERNE J
Again,
2 2 2
d’L = 2),|:(dxz) + (cjj}z) + (dzz) :| +16(ydzdx + zdxdy + xdydz)
a c
Also from,
2 2 2
x_2 +2 4 Z—z -1=0
a” b ¢
we get
xdx ydy zdz

r
Bla b ¢
o B
a b ¢
From (6)

.4

..(5)

...(6)
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Similarly from (6), we obtain
zdydzzﬂz_ﬂz_ﬁz
bc a b c
2 2 2
andZdXdZ: ﬂ - ﬂ - é
ac b a c
Therefore using the above results in (5)

dzL__16abc[(dx) L (@’ (dz)2]< .

\/g a’ b? ?

a b c
Hence at | —,—,— |, f(x,y,z) is maximum and correspondingly
(ﬁ 5 \BJ

volume V' is maximum.

The maximum volume is given by

8abc
V =8xyz = .
xXyz g
EXERCISES

Short and Long Answer Type Questions

. Show that the function

2 2
fx v)= wﬁ (2, ) #(0,0)
X"ty

=0,(x,»)=(0,0)

is continuous at (0, 0).

. Show that the function

Sx, y)—

3
. (x, ) #(0, 0)

= 0, (x, ) =(0,0)

is not continuous at (0, 0).

. Show that the function

2
ﬂm&wfa(mﬁmm

=0,(x,»)=(0,0)

is not continuous at (0, 0).
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4. Show that the function

5.a) Ifu=

6. a) If u=tan

2 2

[ )= xz . (2, ) #(0,0)

=0, (x, y) =(0,0)
is differentiable at (0, 0).

1
———, prove that
Jxi+yt 42

’u  9’u 82

Sttt

ox? 9 927
b) If u= f(ax+by), prove that

ba—u—aa—ufo
ox  dy

=

) If u=cot™ [Z), prove that
Pu O _
ox?  9y?

d) If u= \/JT , prove that

8214 %u -1 ﬁ x2

o 9’ 4

e) If u=tan(ax+y)—(y—ax)?, prove that

ox? o’

3
2
ry , show that

[

ou  du
X—+y—=sin2u.
ox oy

Engineering Mathematics-I
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b) If u=cot” Xy , show that
Ve+y
ou odu -1 .
X—+y—=—sin2u.
ox “ oy 4
2.2
c) If u=sin_l{x Y }, show that
xX+y
Ju  du
X—+y—=3tanu
ox " oy
3,3
+
d) If u=1log al > Y , show that
Xy
du  Jdu
x—+y—=0
ox oy

_ 44 —1(x\
e) If u=x"y"sin k—J+ log x—log y, prove that
y

xg—u+ya—u:8x4y4 sin”! [fj

X oy y
3,3
_ +
.a) If u=tan lu, show that
x+y
2 8214 8214 2 az_u

—
X % xyaxay ¥ e

b) If u=+/x +y2, show that

2 2 2
xza—u+2xy o u +y28—u:
ax2 axay ayz

c) fu= ¢(ZJ+\M2 +y2 , show that
X

Pu,, Pu
ox> yaxay 7 o’

= (1 —4sin? u)sinZu

d) If u=sin"' x>+, show that

o’u 0’u o’u
X —2+2xy—+y2 ——=tan’u
X

ox oxdy o’

| 6.59
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R
+
Y > ], show that

e) If u=log
x +y
2 2 2
x? Jou +2xy—a “ +yza—zl
ax axay ay

8. If f(lx+my+nz, x° +y2 +z° ) =0, prove that

N
(Iz—nx)+(mz —ny) L (b —mx) a_y =0
ox oz

9. If f(x+y+z xyz)=0, prove that

- E -0 E = ey,
ox ady

10. Ifu=f( y y -2 22X ), prove that

10u 1du 19du
—+t——+—-—=0
xodx ydy zoz

11.a) If u:x2+y2 and v =xy, prove that M=2(ch—yz).
a(x, )

b) If u=acoshxcosy, v=asinhxsin y, prove that

o) 1 a* (cosh 2x —cos2y)
Ar.y) 2
C) Ifu—yZ V—E W—ﬁ’ show that a(U,V,W):
x z A, y, 2)

d) If u=x+y—z,v=x—y-i—z,w=x2+y2 +22—2yz, show that

I, v, w) _
a(x, y, z)
2, 2, 2 2, 2, 2 2, 2, 2
+y7+ +y7 +
e) Ifu=x+y 2 ,v=x Y Tz ,w=x Yy T2 , show that
X y z
A, v, w) _ x*yiz?

>
d(x, y, 2) (x2 +57 +22)
12. Find the maxima and minima of the following functions:

a) x* +yt—2x? +4xy-2)° [Ans: Minimun at (\/5,—\/5) and (—ﬁ,ﬁ)]



13.

14.

15.

16.

17.

18.

19.

20.
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b) 4x? —xy+4y2 +x3y+xy3 -4

[Ans : Minimum at (0, 0) and maximun at (%, =3 } (—E 3 ):|

2 272
) V3432 +3x% +dxy {Ans:Minimum at (%%4]}
d) xy+ % +% [Ans : Minimum at (2, 2) ]
e) xy+a (% + %] [Ans : Minimum at (a, a)]

Show that the function f{x, y)= X+ 2xy+ y2 +x0 4+ y3 +x’ has neither a maxi-
mum or minimum at the origin.

Find the minimum value of x* + y2 +277 subject to the condition x+ y+z =3a.
[Ans : Minimum value is 3a° at (a,a,a)]
Find the minimum value of x* + y2 + 77 subject to the condition xyz =8.
[Ans : Minimum value is 12 at(2, 2, 2), (-2,-2,-2),(-2,2,-2),(2,—2,-2) ]
Find the extreme value of 4x+9y subject to the condition xy = 4.

[Ans : Maximum value is —24 and minimum value is 24]

Find the extreme value of 7.x% + 8xy + y2 subject to the condition X+ y2 =1.

[Ans : Maximum value is 9 and minimum value is —1 ]

Find the extreme value of x° + y2 subject to the condition 327 + 4xy+6 y2 = 140.
[Ans : Maximum value is 70 and minimum value is 20]
Find the minimum distance of the point (1, 2, 3) from the plane x+ y—4z=9.

[Ans : Minimum distance is 9]

% where l+l+—=1
X y z

Find the extreme value of u =a’x> +5°y> +¢°z

[Ans : Extreme value is (a+b+¢)’ ]
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1.

Multiple-Choice Questions

2.2
X
1m Y =
(2.9)=0.0) x% 4 32

1

a) 0 b) 1 c) 2 d) none of these
I
. flx,y)= is a homogeneous function of degree
p +[
3 5 1
a) — b) — c) — d) 2
) 2 ) 2 ) 2 )
. flx,y)= XJ;-F# is a homogeneous function of degree
VX Fx+y
1
a) 0 b) 2 c) 2 d) none of these
3, .3
I ulx, y)= X ry then xu, +yu, =
JX+y
1 5 5 1
a) — b) — c) —u d) —u
) 2 ) 2 ) 2 ) 2
3003
2 4,2
I ulx, y)= x° +y2 +% then xu, +yu, =
x+y
a) 2 b) % c) 2u d) %u

CIf ulx, y) = log(x2 + yz) then the value u, at (1,1) is

a) % b) 1 c) 0 d) none of these

I ulx, y):£+z, then xu, +yu, =
y X

a) 0 b) -1 c) 2 d u

Ifu= 10g()€2 +y2) then Uy +uyy =

|<
o
N
—

a) 0 b X )
y



10.

11.

12.

13.

14.

15.

16.

17.
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d(u, v) A(x,y) _

©A(x, ) o, v)

a) 1 b) 0 ¢) -1
If x=rcos@ and y=rsinf then 9. 0) _
a(x, y)
1
a) r b) 1 o) -
B
1 x3 +y3

sin ——— is a homogeneous function of degree
xX+y |
a) 2 b) 1 Q) =
) ) ) 2

d) none of these

d) 0

d) none of these

A 8‘/‘

If f(x, y) is a homogeneous function of degree 3 then xa—+ y—

where k =
a) 3 b) 2 c) 0

d) none of these

. . 1
If f(x, y) is a homogeneous function of degree B then

82f 9’ f *f
20 ] 2
B S Ry Sk )
where k =

1 1 -1
If ¢(x, y)=0 then P

dx

(Px q)y
) = b) — )
s 0, 0 %

If f(x,y)=x"+)" then f,,(x, )=
a) 1 b) 0 ) 2

If /(x,y)=x"y then df =

a) 2x’dx+dy b) x—2dy c) x+dy

d) 4

d) none of these

d x+y

d) 2xydx+x’dy

| 6.63

=kf(x,y)

If a function f(x, y) has maximum or minimum value at the point (3,4) then

J:(3,4)
a) >0 b) <0 ¢) =0

d) none of these
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18. If f.(a,b)= f,(a,b)=0 then (a,b) is
a) saddle point b) point of extreme
¢) critical point d) isolated point
19. The critical point of the function f(x, y)=xy is
a) (1,1) b) (1,-1) o (=11 d) (0,0)

20. f(x,y) issuchthat f.(a,b)= f,(a,b)=0. Then (a, b) is a saddle point if

) fulab)fy(ab)~{ fi(a, b)) =0

B) felas )1,y b)~{ fiy (@, )} <0
0) fula,b)<0

d) none of these

Answers:

1. (a) 2. (b) 3.(d) 4. (c) 5.c) 6.(b) 7.(a) 8. (a) 9. (a)
10. (¢) 11.(d) 12.(a) 13.(a) 14.(d) 15.(b) 16.(d) 17.(b) 18.(c)
19. (d) 20. (b)



CHAPTER

Line Integral, Double Integral
and Triple Integral

7.1 DEFINITION OF LINE INTEGRALS

Let f(x,y) be defined over the region R, which contains the curve C. The line
integral of f(x, y) over C is defined by

n—seo

J. f{x, y)Ydx=1im z f(xys ¥m) Ax,, where (x,,, v,,) are coordinates of arbitrary n
C m=1

points in the curve C and Ax,, =x,, — X,,,_;.

The line integral exists if the limit exists and is finite.

7.1.1 Properties of Line Integrals

1. Let z = F(x, y)be a continuous function at every point on a plane curve in the xy
plane whose parametric equation is x = ¢(¢), y = y(¢) for some real value of £.

Then

q
a) | [ F(x,y) dx = [ F{9(0), w(t)} do(z)
C

%

t

1
[ Flo@), w)) dy(o)

t

b) [ F(x, ) dy =
C

0

2. Let the equation of the curve be y = f(x), x, < x < x,,; then

X

[F(x, y)dx = j F{x, f(x)} dx
C Xy
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3. Let the equation of the curve be x = ¢(y), yo < y<y,; then

y

[FGx,y)dy= [ F{o(y), y} dy
C Yo

4. If z= f(x,y) and z=¢(x,y) are integrable along C then f(x, y)*d(x,y)
are also integrable and

[Uf(x, y) £ 0(x, y)} dx = [{f(x, y) dx £ [ §(x, y)dx
C C C

5. If arcAB = arcAC + arcCB then
| Fx,y) dx= | F(x,y)dx+ [ F(x,y)dx
AC

AB CB

and
[ Fx,y)dy= | F(x,y)dy+ | F(x,y)dy
AB AC CB

7.1.2 Evaluation of the Line Integral
[tf(x, y) dx + g(x, y) dy}
c

1. Let the plane curve C be given by y=¢(x),a<x<bh

b
Then, |[{f(x, y) dx + g(x, y) dy} = [{f(x, §(x)) dx+ g(x, $(x))¢(x) dx}
C a

2. Let the plane curve C be givenby x=y(y), c<y<d

d
Then, | [ {f(x, y) dx+ g(x, y) dy} = [{f(W(y), )y’ (y) dy+ g(w(y), y) dy}
C c

3. Let the parametric equation of the plane curve C be given by
x=x(), y=y(t),1ty <t <t
Then,

tl
JUFGe y) dx+ glx, ) dy} = [LFGe(), y(O)}x' () dt +{g(x(t), @)}y (2) ]
C

fy

4. If {f(x, y) dc+g(x, y) dy} can be expressed as
{f(x, ) dx+g(x, y)dy} =dU(x, y) then
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J {f(x,y)dx+g(x,y)dy}=0

where C is a closed curve.

Example 1 Evaluate '[{nydx+(x2 - yz) dy} where C is the line segment
c

AB from A(0,0) to B(2,1).
Sol. The equation of the line segment AB from A(0,0) to B(2,1) is
x-0_ y-0 1
—— = y=—x
2 1 2
Therefore,
[+ (2 =)7) dy)

Example 2 Evaluate nyz dx where C is the circle x> + y2 =1.
c
2, 2 _ 4.

Sol. The parametric equation of the circle x” +y° =1 is
=c0s 8, y=sinf where 0 <6 <21

Therefore,
2r
[x0? dx= [ coso (sin* 0
Xy cos@ (sin” 0) d(cosB)
c

sin® 6 cos 640

Il
| [
o—5

2
j sin® 6d(sin 0)
0

]
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7.2 DOUBLE INTEGRALS

The double integral may be considered as the definite integrals of functions of two
variables.

Let f(x, y) be defined over the region R.
Then the double integral of f(x, y) over R is defined by

n

_[J‘4f(x7 y) dxdy = lim f‘(xmﬂ ym)AxmA‘ym
R 1

n—eo =

where (x,,, v,,) are coordinates of arbitrary » points in the region R.
The double integral exists if the limit exists and is finite.

Observations
1. A double integral is improper if either the domain of integration is an
infinite region or the integrand has an infinite discontinuity at a point of
the region.
2. The continuity of f(x,y) over R ensures the existence of the double
integral but, the existence of the integral does not always follow the conti-
nuity of f(x, y).

7.2.1 Evaluation of Double Integrals

The most convinient method of evaluation of double integrals is the method of evalu-
ation by iterated integrals. In the first stage, integration is done with respect to exactly
one variable, keeping the other variable fixed. And in the second stage, the resulting
function is integrated with respect to the remaining variable.

The selection of the proper order of integration is based on the configuration on the
domain of integration R.

Case 1: Evaluation of Double Integrals when R is Rectangular

y
y=d
(0, d)
Xx=a R x=b
0. 0) e
X
o (a 0) (b, 0)

Figure 7.1
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Let R={(x,y):a<x<b,c<y<d}

Then

=d [ x=b
[ 7ex, vy dvy = ! | { [ESY dx}dy
R

y=c Lx=a

x=a | y=c¢

or x=b | y=d
[J £ e, vy axdy = | {yj S ) dy}dx
R

In particular, if f(x, y) = @¢(x)Xw(y) then

x=b —=d
[[ 16y asay= | o) dx [ w)ay
R x=a

y=c

Example 3 Evaluate Jj drdy
~ 0\ (1=x*)(1-

Sol. Here, R={(x,»):0<x<1,0<y<1}

Tl dxdy

M\/a—xz)(l—yz)
1 1
! J\/a ) (1-3%)

1
_;!‘\/]1? [sinf1 x]:) dy

| 75
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Case 2: Evaluation of Double Integrals when R has Two Linear Boundaries
Parallel to the y-axis

y

y=01(x)
RN
] x=b

R
X=a /
\
Y=05(x)
X
o (a 0) (b, 0)
Figure 7.2

Let R={(x,y):a<x<b,¢(x)<y<¢(x)} where ¢,(x) and ¢,(x) are

continuous functions over[a, b]

x=b | Y=, (x)
Then [[f(x, y)dvdy= [ { | fx,y)dypdx
R x=a | y=4, ()

Example4 | Evaluate ”\/4x2 —y%dxdy over the triangle formed by the straight
lines y=0, x=1 and y=x. [WBUT-2002, 2005]
Sol.

y
B(1,1)
y=x
x=1
R
X
o y=0 A(1,0)

Figure 7.3
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The region R is the triangle OAB formed by the lines y=0, x=1and y=x
and R has two linear boundaries parallel to y-axis.

Here, R={(x,y):0<x<1,0<y<x}

Therefore,

J‘J.\sz — y* dxdy
R
1|x
=J.{J.\/4x2 —yzdy}dx
0lo
2 X
[§\/4x2—y2 +4% sinlzl:| dx
o
1
J[ 232 +24° sinfll —(2x*sin™" O):| dx
oL\ 2 2
1
J‘[£+£]x2 dx
ol 2 3
(B, 2)[2]
2 313,
:L(3\/§+2ﬂ?)
18

Case 3: Evaluation of Double Integrals when R has Two Linear Boundaries
Parallel to x-axis:

Il
o —

y

y=d

(0, d)

X=¥1(y)
R
x="Y5(y)

(0, 0

y=c
X
O

Figure 7.4
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Let R={(x, y):y1(y) Sx<y,(y),c<y<d} where y(y) and y,(y) are
continuous functions over [¢, d]

Then
y=d [¥=v, ()
[[recyaedy="[{ | fexy)ydepdy
R y=c | x=y ()
y2+1

1
Example S | Evaluate J j x* ydxdy
0y

Sol.  Here, R={(x,y): y<x<y*+1,0< y<1}
Therefore,

152+1

I J. x* ydxdy

0 y

11
= o7+ = 1y
0

1
3

1
Jo7+3°+3y +y -y dy
0

4 2 57

8
S A A N A
3] 8 2 4 2 5

Case 4: Evaluation of Double Integrals when R is Enclosed by a Curve

Let R be a region enclosed by a closed curve ¢(x, y)=0.
Let

o(x,»)=0
be reduced to either y = f;(x) or x= f5().
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Suppose y is determined in terms of x and limits of y so obtained are
Y=V, Y=

Putting y =0 in the equation of the curve @(x, y)=0 gives the limits of x,

say X=Xy, X=X,

Then, evaluate the integral according to the order of integration by the way the
limits are determined

=x [v=v
x=x, [y=)

[[renaar=[ 4] reovdvbax

R x=x | =y,

Example 6 Evaluate nydxdy, where R is the quadrant of the circle
R

xz+yz=a2 where x>0 and y > 0.

Sol.
y
1
y=(a2-x2
B —__
R |
—{ dy
dx |
X
o) y=0 A(a, 0)
Figure 7.5

Here, the region R 1is enclosed by the first quadrant of the circle

o+ y2 =d’.

Now,

x2+y2 =d :>y:\/a2—x2
Therefore,

OSyS\/az—xz
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2
, we have

Now putting y =0 in x° +y2 =a
0<x<a
Therefore,

a V a2 —x2
H xydxdy = J‘ dx j xydy
R 0 0

7.2.2 Transformation of Double Integrals
Let us consider the integral

[J 7Gx, v axay
R

where f(x, y) is defined over the region R.

Let us take the transformation
x=g(u,v) and y =y (u, v)
Then the Jacobian of the transformation is defined by

ox Ox

J:a(xsy): Ju ov
o(u,v) [dy 9y

ou v

The transformation is invertible if J # 0.
If x=¢u,v)andy=w(u,v)

is an invertible transformation then

] £e, v dxdy = [[ F@ta,v), wu, ) J - dudv
R

R

1

where R, is the region in the new coordinate system.
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a Vaz—.\‘z
Example 7 Evaluatej I y2\/x2 + y2 dydx
0 0

by transforming to polar coordinates.

Sol.

Figure 7.6

Let x=rcosf,y=rsin6 be the transform from Cartesian to polar
coordinates.

The Jacobian of the transformation is

ox ox
_9(x,)) _|or 96|_|cos® —rsin6]| _
J d(r,8) |[dy dy| [sinf rcosf r#0
Jor 00

The domain of integration R = {(x, 1):0<x<a:0<y< Va* —x? }, i.e., the

first quadrant of the circle X’ + y2 =d*.

Under the transformation the domain of integration is R, —{(F,G) :0<

rSa;OSGSE
2

Therefore,
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B a
Jsinzeclex J' P dr
0 0
T (15 7'L'aS
=— X —=—
475 20

7.3 TRIPLE INTEGRALS

The concept of triple integrals may be considered as the definite integral of functions
of three variables.

Let f(x, v, z) be defined over the closed three dimensional region R of volume V.
Then the triple integral of f(x, y, z) over R is defined by

[ £x. v, 2) dxdydz = tim Y, £ (s Vo ) A, AV, A,
R

=0 =]

where (x,,, V,,, Z,,) are coordinates of arbitrary » points in the volume V.
The triple integral exists if the limit exists and is finite.

Observations

The triple integral is said to be improper if either R is of infinite volume or
f(x,y,2) has a singularity over R.

7.3.1 Evaluation of Triple Integrals

The most convenient method of evaluation of triple integrals is the method of evalua-
tion by iterated integrals in three stages. In the first stage, the integral turns to be double
integral with respect to exactly one variable, and in the second stage, the resulting
integral is integrated with respect to the remaining variables as a double integral.

The selection of the proper order of integration is based on the configuration on the
domain of integration R.

Case 1: Evaluation of Triple Integral when R is a Rectangular Parallelpiped
Let R={(x,0,2): X SX< X ;) SY< ;21 S 2525}

x=x_| y=y, |z=z

Then J:Uf(x, v, z) dxdydz = '[ J J.z f(x, v, z)dz pdy |dx
R

X=1 =y =
=x | y=y, | 777

In particular, if f(x, y, z) = f(x)X f5(¥)X f3(z) then

x=x, y=y, 7=z,
[[Jreyaaayz= [ aaex | poravx | e
R

X=X Y=Y 7=z

1 1
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111
Example 8 Evaluate J‘J‘J‘e’”“"” dxdydz
000

Sol.
Here,

jj[ _I[ e dxdydz = jexdx X _][ e’dy x ]Jezdz
000 0 0 0

1 1
—r,X1 y z
e 1o xl:e :Io X[e :|0
=(e-1)xX(e=1)x(e—1)
=(e-1)°
Case 2: Evaluation of Triple Integral when Exactly Two Variables have Constant
Limits
Let R={(x,y,2):x, Sx< Xy, Sy< ¥y ;2 £z< 2,5} andlet x;, x,, y; and
y, are constants. Then

x=x, | y=y, [2=z,

I[ 762y dsdvaz= [ | [ 4] fe 2 de py |
R

x=x | y=y | 277,

1
or

=y | x=x  |z=z
Y=y ) 5

~"J.J.f()c, v, z) dxdydz = J J J. f(x, v, z)dz pdx |dy
R

=y, [ x=x | 77

axy

Example 9 | Evaluate J.J.J. x°y? zdzdydx

000
Sol.

axy al x|y
Ijjxsyzzdzdydxz_[ J.[nyzzdz} dy |dx

000 00110

al x )Y
=J Jx3y2{%} dy |dx
oLo
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Case 3: Evaluation of Triple Integral when Exactly One Variable has a Constant
Limit
Let R={(x,y,2):a<x<b;¢1(x) <y < ¢,(x);y1(x, y) S 2y, (x, )}
Then
N EACHRACS)
()] £y, exdyaz= [ | | [ Gy, 2)dz by |
R x=a| y=6,(x) | 7=y, (x, »)
Case 4: Evaluation of Triple Integrals when R is Enclosed by a Curve
Let the domain of integration R is enclosed by the surface ¢(x, y, z) =0.
Let
¢(x, y,2)=0
is expressed as
z=¥(x, )
Thus the limits of z are determined as z =2z, and z =z,
Putting z =0 in the equation of the curve ¢(x, y, z) =0, express
y=pH)
Thus the limits of y are determined as y =y, and y = y,

Putting z= y =0 in the equation of the curve ¢(x, y, z) =0, the limits of x
are determined as x =x; and x=x,

Therefore, we evaluate the triple integral following the order of integration as

x=x, | y=y, (272,

J‘_Uf(xa ¥y, z) dxdydz = J J J. f(x, v, z)dz pdy |dx
R

x=x | y=y, |77

Example 10 Evaluate J._U (x* +y* +z%) dxdydz where R is the region bounded

by x=0;y=0;z=0and x+y+z=a(a>0)
Sol.
Here
x+y+z=a(a>0)
or,z=a—x-—y
Therefore, the lower and upper limits of z are z=0 and z=a—-x—y
Putting z=0 in x+y+z=a(a>0), we have
x+y=a

or,y=a—x
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X+y=a

Therefore, the lower and upper limits of yare y=0 and y=a—x

y=0

Figure 7.7

Putting z=0; y=0 in x+ y+z=a(a>0), we have

XxX=a

Therefore, the lower and upper limits of x are x=0 and x=a.

Therefore,

a-x a-x-y

”J‘(xz-i-y2+22)dxdydz— J‘dx.[ dy J *+)y* +z0) dz

x=0  y=0 z=0

\I —_
&
\I '—-

Q

X

Il
| e——=
&
=]

o

0

=

y

3

|:x2(a—x)—x2y+(a—x)y2—y

a-x—y
z
3‘|
0

dy |:xzz + yzz +—

_ Jla=0y Yt (@-x-p)
Xlo{x (a=0r= 2 3 4 12 }
*J. X (a x) (ar—)c)4 i
6
[rpx et 20 @]
2 3 4 10 30 0

a—

0

X

N3
3+w—2)0}@

dx

| 7.15
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7.3.2 Transformation of Triple Integrals
Let us consider the integral

J‘J‘J.f(x’ v, z) dxdydz
R

where f(x, y, z) is defined over the region R.
Let us take the transformation
x=¢u,v,w), y=y{(u,v,w)and z = p(u, v, w)
Then the Jacobian of the transformation is defined by

B
du dv Jdw
o) |y ay a

ou,v,w) |du dv ow
0z dz Oz

ou v ow

The transformation is invertible if J # 0.
If x=¢u;v;w), y=w(u;v;w) and z = p(u;v;w)

is an invertible transformation then

Jj f(x, v, z) dxdydz = jj f(ow,v,w), ¥ (u,v,w), p(u,v,w)) Jdudvdw
R

Rl
where R, is the region in new coordinate system

Example 11 Evaluate J‘J.J‘ (x* +y* +2%) dxdyd: taken over the volume enclosed

by the sphere X4yt =1.

Sol. Let us transform the given integral into spherical polar coordinates by putting

x=rsin 8cos ¢; y =rsin @singd;z =rcosO
Then

u oJdv ow
Ldwra) | » @

ou,v,w) |du dv ow
e o o
u oJdv ow

=r2sin6 £0

Under this transformation, the  domain

R={(r0,0):0<r<1;0<0<m0<¢<2r}

Therefore,

m(x2 +y2 +2°) dxdydz

of

integration

is
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1
j 2+ sin 0) dOdpdr
2n T 1
= [ dosin 0d6 [r*dr
0 0 0

- [(p]i” x[—cos O]g ><|:§:|

0

WORKED-OUT EXAMPLES

T

2
Example 7.1 | Evaluate | [sin (x+y) dxdy [WBUT-2001, 2009]
00

Sol.

sin (x + y) dxdy

S t— N
S —

Il
Sy

ﬁsin (x+y) dx‘| dy

0

—[cos (x+y)]g dy

Il
o e— [N

[cos (T +3)—cos y] dv

O 0 |y

[=

2
= 2-[ cos ydy
0

T
2

=2[sin y]o =2

Example 7.2 | Evaluate H xy (x+ y) dxdy over the area bounded by y = x”and

y=x [WBUT-2001]
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Sol.
y
a,1
y=x
R
X
O / x=1
y=x2
Figure 7.8
The region R is shown in Fig. 7.8 by the shaded portion.
Therefore,
_U xy (x+y) dxdy
R
1 x 1 ¥
= J. J. xy (x+y) dxdy — J- J- xy (x+y) dxdy
x=0 y=0 x=0y=0
1 2.2 3T 1 2.2 37
o e I e I
02 3 102 3
x=0 0 x=0 0
1 1 xé x7
=— J Xty - J. |:—+—:| dx
x=0 x=0 2 3
_L (i1
6 (14 24
_3
56
a a *y2
Example 7.3 | Evaluate I j (x2 + yz) dydx by changing to polar coordinates.
0 0
[WBUT-2002]
Sol. Let x=rcosf, y=rsin@ be the transform from cartesian to polar

coordinates.
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The Jacobian of the transformation is

ox ox
Jza(x,y):§ %zq)se _rSinezr;&O
a(r, 0) B_y B_y sin® rcos0
or 00

The domain of integration R={(x, y):0<x<a;0<y<+a’—x*} ie., the

first quardant of the circle x* + y* = a’.

Under the transformation the domain of integration is R, —{(r, 0):0<

rSa;OS@SE
2

Therefore,

22 % ,
[ &P+y)dyde= | [ r*-rdrde
0 6=0r=0

oe—

3
4 2
j de
8=0
a4 T
_X_:
42

ﬂ'a4
8

axy
Example 7.4 | Evaluate J“”x3 y? zdzdydx

000
Sol.

| x°y? zdzdydx

Il S =2
. Se—,x
e Qﬁ O —

j{]vf yzzdz} dy]dx

010

Il
S

I
() S
-1
[ S—
Rw
N o
Q.
| C——

[WBUT-2003]
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1 ’
s d
10§ 90
Example 7.5 | Evaluate _m-(x+ y+z+ 1)* dxdydz over the region defined by
x20,y20,z20,x+y+z<1 [WBUT-2003]
Sol.
z
C
o X
A
B
y
Figure 7.9

The plane x+y+z=1 cuts X,Y and Z axes at A(l,0,0), B(0,1,0) and
C(0,0,1).
Therefore, the upper limit and lower limit of z are O and 1—x—y.

Putting z=0 in x+ y+z=1 we have the upper limit and lower limit of y
are 0 and 1—x.

Putting z=0 and y =0, we have the upper limit and lower limit of x are O
and 1.

Therefore,
J:U (x+y+z+1)* dxdydz

= j'lj"xli)j:y (x+y+z+1)* dxdydz
00 0
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(Y+y+z+l)
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:| x-y
dxdy
> o

[32 (x+y+1) ]dxdy

1
:lJ' 32y (x+y+1) d
5 6
0
1
zlj{ 21 )_32 (x+1)° }d
5 6
2 77!
Mg 32, GFD)
5 2 3 4
Ny 32 04|17
5 321 70

| 7.21

1
Example 7.6 | Evaluate || ——== dxdy where R={x|<;{y|<1}

Sol. Here R= {|

Therefore,

1
————dxd)
I JUJIW

Since ————

a

f_/% O — O —, —
r r

i

[WBUT-2004]

dxdy

is an even function

\/7
;l).;.]‘ \/7 dxdy

- 1
log (y+\_/x2 +y2:| dx

0
10g(1+\/1+x2)—10g x:| dx

1 v
wlog (el ):|0 '(’;(l+\/l+v )\/1+x

dx—{x logx —x|
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Example 7.7 _

=4 log(1+\/—) j

—4{10g(1+\/_)+1 j[l—

Engineering Mathematics-I

\/l+x

\/l+x x? det
\/l—i-x2 :

4

:4{1og(1+ﬁ)+1—[x—1og (x+\/l+x2):|]
0
=4 flog (1+~+2)+1—(1—Tlog (1+~/2)}

=8log (1++2)

circle x> + y2 =1

Sol.

Evaluate ”

-y

1+x° +y2

dxdy over the positive quadrant of the

[WBUT-2006]

Let x=rcosf, y=rsinf be the transform from Cartesian to polar

coordinates.

The Jacobian of the transformation is

ox

j — a(xs y) _ ar
ar,0) |

or

ox
96| _|cos@ —rsin6| _
ay‘ sin@ rcos6
a0

r#0

The domain of integration R={(x, y):0<x<a;0< y<+/ a* —x* }, i.e., the

first quardant of the circle 4yt =d’

Under the transformation, the domain of integration is

Ry _{(I’,G):OSrSa;OSBg%}

Therefore,

I L - H

1+x° +y

2

rdrdG
a3
12 [[_ 2
= [ ] =L o
1+r
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[ 12V - &« /4
=—|sin r| —=—-——
03 4 3
Example 7.8 | Evaluate j(3xydx—y2dy) where C is the arc of the parabola
c
y= 2x° from (0,0) to (1,2) [WBUT-2007]

Sol. Here, y =2x> = dy = 4xdx

Therefore,
J(3xydx —y2 dy)
C
1
= j Bx-2x2dx — (2x%)? - dxdx)

x=0

1
= j (6x° —16x°) dx
x=0

S0 16 7
4 6 6
EXERCISES

Short and Long Answer Type Questions

1 Evaluate J[(xz +xy) dy +(x* + y*) dyv] where C is the square formed by the lines

c
x==1, y=+1. [Ans : 0]

2. Evaluate J[(cos xsin y—xy) dx +sinxcos y dy] where C is the circle x* + y* =1

c
[Ans : 14]
3

3. Evaluatej{(x2 + yz)dx—Z xydy}, where C is the rectangle in the xy plane

c
bounded by x=0,x=a;y=0, y=a.
[Ans:—2 ab®]



7.24

4.

. Evaluate _U\laz —xr - y2 dxdy over the semicircle X+ y2 =a* in the positive

Engineering Mathematics-I

Evaluate the line integral _”{(2xy —x?) dx+(x+ yz) dy}, where C is the closed
c

curve of the region bounded by y = x*, y* = x.

Evaluate the following double integrals:

41
a) [ [ (x—y) dyay [Ans : 8]
00
aa -y’ 3]
b) J J‘ Ja* —x* —y? dxdy [Ans:%
0 0 J
7 acosf az_
c) j J rsin 8 drdf |:Ans:—
0 0 6 |
1 3
d + dyd Ans: —
) !! X7 +37) dydx [ 35 |
1 V142 i . .
e) f .[ _ i [Ans:—log(x/g+l)
00 1+x2 +y 4 ]

5
quardant. [Ans : a?

T a
. Transform the integral to Cartesian form and hence evaluate jjr3 sin 8 cos 8drdo

00
[Ans : 0]
. Evaluate the following integrals:
21 1
a) _” J (x* + % +2%) dxdyd:z [Ans : 6]
00-1
12 3
b) _” J xyzdzdydx |:Ans : g}
00 2

Xy

ey 13 1
c) fj j xyzdzdydx [Ans:;—glogﬂ
110
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. Evaluateﬂj(x+y+z) dxdydzwhere R={(x, y,z):0<x<1;1<y<2;2<2z<3}
R

]

10. Evaluate J:[ (x+y+z)dxdydz over the tetrahedron bounded by the planes
R
x=0,y=0,z=0 and x+y+z=1. [Ans:é}
11. Evaluate J.J‘ ydxdy where R is the region of the first quardant bounded by the
R
2
ellipse —t5= 1 [WBUT-2008]
a b
12. Evaluate jjfzzdxdydz over the region defined by z >0, x* + y* +z* <’
[WBUT-2004]
Multiple-Choice Questions
11
1. The value of the integral _[ [(x+y)dx+(y—x)dy isindependent of the path.
0,0)
a) True b) False
2. The value of the integral J.J.dxdy where R = {(x, y):|x|+|y[< 1} is
R
a)2 b) 2 )4 d) 3
111
3. J.jxyzdxdydz is equal to
000
a)l b)0 c) é d)4

4

. The value of the line integral l xdx + vdy) along any closed curve C is
g 7 yay g any

C
a) % b) 1 )0 d) none of these

5. The value of J-(xdr— dy), where C is the line joining (0, 1) to (1, 0) is

C

3 1 2
Z b) — d =
a)2 )2 c)0 )3
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3 by
) 64 ) 32 ) 64 ) 64
11
7. J.J.(xz +y%) dxdy =
00
1 2
a) E b) 0 c) E d) none of these

8. The value of the integral jxdy where C is the arc cut off from the parabola y2 =X
c
from the point (0, 0) to (1, —1) is

a) _?1 b) % c)0 d) none of these

Answers:

1. (b) 2.(a 3.(c) 4(c) 5@ 6.(c) T() 8.()



CHAPTER

Infinite Series

8.1 INTRODUCTION

This chapter basically deals with preliminary ideas of real sequences and illustrative
ideas of infinite series.

The first few sections elaborate the ideas of a sequence; different types of sequences,
including bounded and monotone sequences, and their convergence and divergence.
Each of the items are illustrated with various kinds of examples.

In the later sections, we discuss the different kinds of infinite series including
alternating series and also the tests of convergence of these series. Here too, useful
examples are cited to illustrate the facts.

Further, solutions of some important problems given in university examinations are
provided in the last section.

8.2 PRELIMINARY IDEAS OF SEQUENCES

A sequence in R or a real sequence is a mapping f : N — R where N is the set of
natural numbers and R is the set of real numbers. So for each ne N, there exists
/(n) and the sequence is denoted by { f(n)}.

We often denote a sequence by {a,,} or {x,,}, etc. A sequence is also denoted by
{al, a, as, }

Example 1 _

Let /: N — R isdefined by f(n)=n’,ne N; then f(1)=1°, f(2)=2°, f(3)=3",...
The sequence is denoted by {nS} or {13, 23, 33,.”}.
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Note: For our convenience, we replace { /(n)} by {a,} where a, isthe n-th term of
the sequence.

8.3 DIFFERENT TYPES OF SEQUENCES:

1) Finite Sequence: A sequence {an} having a finite number of terms is called a
finite sequence, for example,

{2,5,6,9} is a finite sequence of four terms.

2) Infinite Sequence: A sequence {a,} having infinite number of terms is called
an infinite sequence, for example,

{n}={1,2,3,...} is an infinite sequence.
) 1 .
3) Harmonic Sequence: A sequence {an} where a, =—, ne N is a well-known
n
harmonic sequence.

4) Constant Sequence: A sequence {a,,} where a, =k, ne N for any real
number k is called a constant sequence.

8.4 BOUNDED SEQUENCE

The real sequence {an} is said to be a bounded sequence if there exits real numbers
m and M such that m < a, < M, for example,

l,l,l,...,l,... is a bounded sequence since OSlSI.
23 n n

(a) A sequence {a,,} is bounded above if there exists a real number M such that
a, <M forall ne N. M is called the upper bound of the sequence.

Example 2

The sequence {an}—{nz—_l} is bounded above since nz_—l<% for all ne N.
n n

1.
Therefore M = > is the upper bound.

(b) A sequence{an} is bounded below if there exists a real number m such that
a, 2m forall ne N, and m is called the lower bound of the sequence.

Example 3

The sequence {an} = {nz} is bounded below since n? >1 for all ne N. Therefore,
m =1 is the lower bound.
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8.5 MONOTONE SEQUENCE

(a) Asequence {a,, } is said to be monotonic increasing ifand only if ¢, | 2 q,,
forall ne N.

Example 4

The sequence {a, } = {—} is a monotonic increasing sequence since
n

(n+l) ' n 1
(n+2) (n+1) m+1)(n+2)

>0, forallne N.

(b) A sequence {a,, } is said to be monotonic decreasing if and only if a, ; < a,
for all ne N.

Example 5

1. . . .
The sequence {a, } = {— is a monotonic decreasing sequence since
n

l—l: -l <0, forallne N.
n+l n nn+l)

Observations
1) A sequence{a, }is said to be strictly monotonic increasing if and only if
a,,; >a, forall ne N.

Example 6

n . . . .
The sequence {a, } = {—1} is a strictly monotonic increasing sequence.
n+

2) A sequence {an} is said to be strictly monotonic decreasing if and only if
a,.<a, forall neN.

Example 7

1. . . .
The sequence {an} = {—} is a strictly monotonic decreasing sequence.
n

3) A sequence {a,} is said to be monotone if {a,} is either monotonic
increasing or monotonic decreasing.

4) If a sequence {a,} is monotonic increasing then {-a,} is monotonic
decreasing.

5) A sequence {an} need not always be monotone.
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Example 8

{2, 0,2,0,2,0.. } is neither monotonic increasing nor monotonic decreasing.

8.6 LIMIT OF A SEQUENCE

A real number / is said to be a limit of a sequence {an} if for any pre-assigned posi-
tive €, however small, there exists a natural number 7, depending on & such that

|a, —1| < & for all n> .

We write lima, = /.
n—eo

Observation

To establish the limit / of a sequence {a,, }, we take £ as an arbitrary positive
number and then find some positive integer n, such that the numerical magni-
tude of the difference (a, —1) is less than & for every a, where n > n,.

Example 9 _

To establish lim
n—e n+

ever small, such that

2n+1

=2, let us consider a pre-assigned positive number &, how-

2n+1
n+l1

-2

<&

1
=n>——1.
e

1
Taking n, = |:l—1J, i.e., the integral part of (l—l] we have
£ £

2n+1
n+l1

-2

<eg forall n 2 ny.

8.7 CONVERGENT SEQUENCE

A sequence {a,,} is called a convergent sequence if it has a finite real number / as its
limit. We say the sequence {a, } converges to /.
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Example 10
2

1
The sequence {n hl

2

} is a convergent sequence and converges to the limit 1.
n

Observations
1) A convergent sequence has at most one limit.
2) A convergent sequence is bounded.
3) Every bounded sequence is not convergent.

8.8 DIVERGENT SEQUENCE

If for any pre-asssigned positive number K, however large, there exists a natural
number 7, such that a, > K for all n 2 n,, then {an} is said to diverge to oo.

We write

lima,, = co.
n—>o0

If for any pre-asssigned positive number K, however large, there exists a natural
number 7, such that @, <—-K for all n=n, then {an} is said to diverge to — oo,

We write

lima, = —ce.
n—eo

A sequence {a,} is said to be a divergent sequence if {a,} either diverges to oo
or diverges to —oo.

Example 11 | The sequence {nz} is a divergent sequence and diverges to the limit

o, since limn? =co.
n—oo

Note: There are also some sequences which are neither convergent nor divergent,
known as oscillatory sequences.

Example 12 {(—2)"} ={-2,2,-2,2,...} is a common example of an oscillatory

sequence.

8.9 INFINITE SERIES

Consider {a,} be a sequence of real numbers. Then a, +a, +as +--+a, +---o is

said to be the infinite series generated by the sequence {an}. The infinite series is

denoted by 2 a,.

n=1
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a=1
n

8.10 CONVERGENCE AND DIVERGENCE OF INFINITE SERIES

Let S, =a, +a, +as+---+a,. The sequence {S,} is called the sequence of partial

1 . .
= 1+—+§+~~- is a series generated by the sequence

HMZ
5" ﬁ[\/]z

NI»—‘
w|>—l

sums of the series Zan. The infinite series Zan is convergent or divergent accord-

n=l n=l1

ing to whether {S,} is convergent or divergent.

If limS, =S then § is the sum of the series Za and if 1limS, = e (or—oo)

n—oo n=1 n—oo

then the infinite series is said to diverge to oo (or, —eo).

Example 14

Let {a,} = {

be a sequence of real numbers, ne N.
n(n+1)

So,

S, = + + +--+
1.2 2.3 34 n(n+1)
1 1 1 1 1
=ll-= |+ === |+ +| ————
2 2 3 n n-—1
o
n—1

From the above, we have

limS, =1

n—o0

Therefore, the infinite series Zan is convergent and converges to 1.

n=1
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Example 15

Let {an} = {n3} be a sequence of real numbers,

So,

Ya,=1+2+3"+

n=1

The sequence of partial sums of the series is

S, =1+2°+3% +...4 0’

_[n(n+l):|2
2

From the above, we have

limS,, = oo
n—o

ne N.

{S,} where

Therefore, the infinite series 2 a, is divergent and diverges to eo.

n=1

8.10.1 The p-Series

- 11 o 1 . .
The infinite series » a,=—+—+— = 2— is convergent if p>1 and
ot 17 2P 3P P
divergent if p <1.
- 1l 1 1 . L .
2—2 = —2 —2 7 — +--- is convergent, since itis a p-series where p = 2.

11
2) 2— = T+ —+ 3 +--- is divergent, since itis a p-series where p =1.

2

8.10.2 Geometric Series

A series of the form 147472 +7° ++o 47" +--.

common ratio r.
The above series is
(i) convergent for || <1, i, —1<r<I
(i1) divergent for r =1

(iii) oscillatory for » <—1

is called a geometric series with
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8.11 PROPERTIES OF CONVERGENCE OF INFINITE SERIES

oo

1) If Z a, and 2 b, are two convergent infinite series and they converge

n=1 n=1

to p and q respectively then the series 2 (c-a,+d-b,) is also conver-

n=1

gent and convergesto c- p+d - q.

2) If an infinite series z a, is convergent then lima, =0
n—oo

n=1

Example 16

- 1 . .1

2— is convergent, so we have lim — =0.
1 n’ n—e p?

n=

The converse is not true.

Example 17

.1 -l . . .
lim — =0, but 2— is a divergent series.

n—eo p =l n

o

3) If lima, # 0 for an infinite series 2 a, then the series cannot be convergent.

n—oo
n=1

4) If the sequence of partial sum {S,} is not bounded then {S,} being a
monotone increasing sequence, diverges to °.

In this case, the series Z a, diverges to °o.
n=1
5) Addition or removal of a finite number of terms does not effect the conver-
gence of an infinite series.

8.11.1 Series of Positive Terms

An infinite series Zan is called a series of positive terms if a, >0 forall ne N.

n=1

Theorem 8.1: The necessary and sufficient condition for an infinite series of posi-

oo

tive terms z a, to be convergent is that the sequence of partial sums {S,,} is
n=1

bounded.

Proof: Beyond the scope of the book.
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Theorem 8.2: An infinite series of positive terms either converges or diverges to

co. This kind of series cannot diverge to —e and cannot be oscillatory.

Proof: Beyond the scope of the book.

8.12 DIFFERENT TESTS OF CONVERGENCE OF INFINITE SERIES

8.12.1 Comparison Test

Consider a, and b, are two infinite series of positive terms.
n n

n=l1 n=1
If for all n2m, Z—” <k, k being a fixed positive number then

n

i) Zan is convergent if Zb,, is convergent

n=1 n=1

ii) Zb,, is divergent if 2 a, is divergent

n=1 n=l

8.12.2 Limit Form of Comparison Test

. c c e . iy . a
Consider Zan and Zb” be two infinite series of positive terms and lim =/,

n=1 n=l n—ee bn
where / is a nonzero finite number.
Then Za,, and Zb,z converge and diverge together. [WBUT-2008]

n=1 n=1

Example 18

Consider the following two series:

oo

1+2 1+42+3 1+2+3+4
za": A 3 Hoee
7=l 2 3 4
and
& 1 1 1
Nob, =1+t —+— oo
~ 2 3 4
Here
4 _(m+D)(n+2) _ (n+2) d b _1

n

2(n+1)° 2(n+1)° n
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Now,

lim In _ lim 11(”7-’_2)2 = l a nonzero finite value.
nse by nsed(n4+1)? 2

. < ol . . . . .~ .
Since an = Z— is a divergent series, by comparison test the series Zan is

n=1 n=1 n=1

also divergent.

Example 19
1

Test the convergence of the infinite series Zan where a, = (o + 13 —n.
n=1

[WBUT 2003, 2007]

Sol. Here, we have

L N
l’l2 3 9}’!3
1

Let us consider the series zbn where b, =—

n=1 n
Now
. a, . 1 11 1 ..
lim -2 = lim {— ———+---00 s = —, a nonzero finite value.
n—yo0 bn n—oo 3 9 ;13 3

Since, Zb,, is a convergent series, by comparison test, za,, is also
n=1 n=1

convergent.
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Example 20

Test the convergence of the infinite series

1 22 3 4
2 3 47 5
Sol. We know that addition and removal of finite number of terms does not affect

the convergence of an infinite series.
So, removing the first term from the given series, the resulting series is

ia :L+z+i+£+
o SR L LA S &

nl’l

where a, = ————-.
(n+1)"

. < 1
Let us consider the series an, where b, = —. Now

n=1 n

n+l

. a, . n ..
lim -2 = lim — = 1, a nonzero finite value.
n—soo bn n—oeo (n+1)”+

Since, Zb,, is a divergent series, by comparison test, Z a, is divergent.

n=1 n=1

Therefore, correspondingly the given series

is also divergent.

8.12.3 D’Alembert’s Ratio Test

Let Za,, be an infinite series of positive terms and

n=l

. a
lim 2L =/ any real value.

n
—>00 an

Then, the series Zan
n=1
i) converges if /<1
ii) diverges if />1
iii) the test fails if 1=1
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Example 21

Examine the convergence of the infinite series

1292 9232 32 42
+ +

+ e
1! 2! 3!
Sol. If we write the given series in the form of Z a, then
n=1
2 2 2 2
+1 +1 +2
a, = nntl)” and a,,; = (1) (n+2)” .
n! (n+1)!

Now,

Z(n!
lim Ap+ = lim (n;'_z) (n)
noe q,  noe pt(p+1)!

2
— Jim 12" _
n=(p+1)n

=0<1.

Therefore, by D’ Alembert’s ratio test, the series is convergent.

Example 22

Examine the convergence of the infinite series
2 2 2
1 1-2 1-2-
— |+ — |+ —3 +-- [WBUT 2002, 2007]
3 3.5 3-5.7
Sol. If we write the given series in the form of z a, then
n=l1
1230 Y
a,=|———""
3-5-7...2n+1)

1230 (n+1) Y
3-5-7...2n+1)-2n+3)

( 1-2:3...n-(n+1) JZ

3.5-7...2n+1)-(2n+3

Now, lim 240 = jim @n+l) : )
noe @, o noe ( 1-2:3...n J

and so a,,,; =(

3.5.7...2n+1)
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. n+l 3
= lim
n—oo|\ 210 +3

2
= l :l<1.
2 4

Therefore, by D’ Alembert’s ratio test, the given series is convergent.

8.12.4 Cauchy’s Root Test

o L
Let Za,, be an infinite series of positive terms and li_r)n (a,)r =1.
H—yoo

n=1

Then the series 2 a,

n=1

i) converges if /<1
ii) diverges if />1
iii) the test fails if /=1 [WBUT 2004]

Example 23

Examine the convergence of the infinite series

2 2Y (3 3) (4t a)
——=| H == H == + [WBUT 2001]
121 2 2 3* 3
Sol. Let us consider
2 —3
= 22 2) (3 3 (4
2=l 5T 5 pranl s
=R CRE B PR B
Then
n+l o n+l )
a, = - —
n n
Now,

L n+1 ! n+l -
lim (a,)” = lim {( ] —(—J}
Nn—yoo n—eo n n
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sl )]
et

=(e-1)7"<1.

Therefore, by Cauchy’s root test, z a, 1is convergent.

n=l

Example 24

3
Py
Examine the convergence of the infinite series (1 + T] [WBUT 2004]
n
Sol. Let
3
oo oo _n2
Sa, =31+
n=l1 n=l1 \/;
then
1 —n
a,=|1+—
( Jn ]
Now,
1
[ 37
1 1 _n2
li n=1 1+—
ng)l;lo(a”) ngll \/;
L |
- . i
=lim|| 1+—
n—>o0 n
1 <1
e

Therefore, by Cauchy’s root test, Zan is convergent.

n=1
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8.12.5 Raabe’s Test

n=1 n—ee Ay

< o . . . a
Let Zan be an infinite series of positive terms and lim n(—” -1 ]= L.

Then the series Zan

n=1
i) converges if /> 1
ii) diverges if /<1

iii) the test fails if /=1

Example 25

Examine the convergence of the infinite series

11 1-31 1:3:51
14— —4+——+ — -
23 245 2467
Sol. Since addition or removal of a finite number of terms does not affect the con-

vergence of an infinite series, by removing the first term of the given series, let
the resulting infinite series be

Then
:1‘3-5..‘(21’1—3)‘ 1
2-4-6...2n-2) (2n-1)

n

1-3:5...Qn-3)@2n-1) 1
2-4-6..2n-22n  (2n+1)

and so a,,; =

Now

2
fim Gt — iy 277D
n—ee ., n—=2n(2n+1)

Therefore, D’ Alembert’s ratio test fails.
But

lim n| <271 |= lim n w—l
n—eo (2] n—ee (21’1 — 1)

. 6en*-n 3
= 11m—2:—>1
n—=e(2n-1) 2

Therefore, by Raabe’s test, the series 2 a, is convergent.

n=1
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8.13 ALTERNATING SERIES

The infinite series of the form 2‘(—1)"71 a,, where a, >0 forall ne N is called an
n=l

alternating series.

Example 26

Let us consider the series
< 1 1 1 1
)" e ———
E 2 22 32 g2

Here a, >0 for all ne N. So this is an alternating series.

8.13.1 Test of Convergence of Alternating
Series (Leibnitz’s Test)

Let 2‘(—1)”71 a, be an alterenating series with a, >0 for all n€ N. Then the series
n=1
converges if

i) a,. <a,, ie., {a,} is a monotonic decreasing sequence
ii) lima, =0
n—oo

[WBUT-2009]

Example 27

Examine the convergence of the alternating series

3 4 5
2——F———+---
2 3 4
Sol. If we write the series in the form of Z(—l )”_1 a, then
n=1
+1 +2
an:(n ) and anH:n—.
n n+1
Now
+1 +2
ay — dpyl :(n )_n—
n n+1

= ! > ( for all n
n(n+1)

So a, > a,,,, i.e., {a,} is a monotonic decreasing sequence.
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But

. . +
lima, = lim (ntD) =1
n—yo0 n—yo0 n

ie, lima, #0.
n—oo

Therefore, by Leibnitz’s test, the alternating series is not convergent.

Example 28

cosnmw

Examine the convergence of the alternating series Z . [WBUT 2002]
n=1 n +1
Sol. Since cosnm =(—1)", the alternating series can be written as
COS NI D" P |
D Tt
S B DTS B n” +1
Then,
1 1
a,=———andsoa,, =————
n”+1 (n+1)" +1
Now
1 1
ay —dpy) —

n”?+1 (n+1)* +1

2n+1)

7(n2+1)((n+1)2+1)>0

The above implies that {«,} is a monotonic decreasing sequence.

Also lima, = lim L 0
n—oo n—eo +1

snw . oo
is convergent by Leibnitz’s test.

— CO

Therefore, 2
2
n=1 N +1

8.14 ABSOLUTE CONVERGENCE

Let 2 a, be an infinite series. The series is said to be absolutely convergent if Z |a,,|

n=1 n=l1

is convergent.
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Suppose 2(—1)"71 a, be an alternating series. The alternating series is said to be

n=1

absolutely convergent if

Yl a]=Yal
n=1 n=1

is convergent. [WBUT-2009]

Note: An absolutely convergent series is convergent, but the converse is not always
true.

Example 29

. . .~ cosnr
Examine the absolute convergence of the alternating series z >
n=1 N
Sol. Since cosnm =(—1)", the alternating series can be written as
S COSNT  ~a (1) a1
D Ve D Mot
n=1 N n=1 N n=1 n

Here, a, :Lz‘ Then
n

- - |

2l =2

— 1
But the series 2—2 is a p-series with p=2 (>1). So the series is
n=1Nn

convergent.

Correspondingly, '|a,| is also convergent.

n=1

cosnmw
2

Hence the given series z is absolutely convergent.

n=1 N

8.15 CONDITIONAL CONVERGENCE

Let Zan be an infinite series. The series is said to be conditionally convergent if

n=1

Za,, is convergent but not absolutely convergent, i.e., Z‘an| is not convergent.
n=1 n=1
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An alternating series 2‘(—1)"71 a, 1is said to be conditionally convergent if

n=1

2‘(—1)’H a, is convergent but Z|an| is not convergent. [WBUT-2009]
n=1

n=1

Example 30

Examine the conditional convergence of the alternating series

1 1 1
l——4+———4——--00
2 3 4

.. . . = _ < a1
Sol.  This is an alternating series of the form Z(—l)" Ly, = Z(—l)” -,
n=1 n=1 n
Here

1 1
a,=—andsoa,, =—
n n+l

Let us apply Leibnitz’s test for checking convergence.
Now
1 1 1

This proves that {a,} is a monotonic decreasing sequence.

N .1
Again, limag, = lim —=0.
n—yeo n—eo 1

o ) o 1 .
Therefore, Z(—l)" a, = 2(—1)" ' is a convergent series.
n=1 n=1 n

=3

Now we consider 2|a,,| which is

n=1

1 1 1 1 o 1
I+—+—F+—F+=+--=) —.
2 3 4 5 Z‘n

n=1

This is a p-series with p =1, and so the series is divergent.

Since, Z‘(—l)"f1 a, is convergent and Z|an| is divergent,

n=1 n=l1

- _ - a1 . .o
Z(—l)" g, = 2(—1)” '~ is conditionally convergent.
n=1 n=1 n
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WORKED-OUT EXAMPLES

Example 8.1 | Examine the convergence of the infinite series
X (ST [WBUT 2008]
n=1

Sol. Let
ian = i{\/ﬁ +1—+/n* —1}
n=l n=l1

This is an infinite series of positive terms. Here

a, :{\/114—4-—\/1’14——1}
) {\/n4+1—\/n4 —1}{\/n4 +1+\/n4 —1}
T [lede]

2

{ﬁJ—l}

Let us consider the series

HMX

o | S . .
2—2, which is convergent since it is a

p-series for p=2.

Now,
2

lim =~ In — = lim

no= b, n_m{\/n +1+vn* - }

=1, a nonzero finite value.

- |
Since 2 2—2 is a convergent series, by comparison test, we can
n=1 1l

conclude that

0, S\t r1 1)

is also convergent.
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Example 8.2 | Examine the convergence of the infinite series

2 3 4
X X X

Xttt

4
Sol. Let us consider
oo oo n
e X
=2
n=1 n=1 n
where
|
xl’l xn+
a,=—anda,,; =—.
n n+l1
Now,
n+l
.. a X" n
lim 221 = {im =X.
noe @,  noox"(p+1)

Then by D’ Alembert’s ratio test, we have
i) If x <1, the infinite series is convergent
ii) If x > 1, the infinite series is divergent

i) If x =1, the test fails

For x =1, the series becomes

1+;+ - 2—

n=11

| 8.21

. <l . . . o R =T
Since 2— is a divergent series, the infinite series Z— diverges for x >1

n=1 n=l1

and converges for x <1.

Example 8.3 | Examine the convergence of the infinite series

2 3

T [WBUT-2009]
2 5 10

Sol. We know that addition or removal of a finite number of terms does not alter

the convergence of an infinite series.

So, removing the first term, we have the series of the form
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Suppose we write the series in the form

oo _oc xn
2=~

n=l1 n=1N +1
Then
n n+l
a, = and so a,,,
n +1 (n+1)* +1
Here,
n+l n
. a . X X
lim 221 = lim 5 5
n—e a,  n=e(p+l1)"+1/ n”+1
. n* +1
=x - lim ——=x

noe (n+1)2 +1
So by D’ Alembert’s ratio test, we can conclude that

i) If x <1, the infinite series is convergent
ii) If x> 1, the infinite series is divergent
iii) If x =1, the test fails
For x =1, the series becomes
I 1 1

— S 1 — S
PAE TR L

1

n’+1

Here, b, =

. N < | Co
Consider the series ZCn = 2—2, which is convergent. Now
n=1 n=11

2

. b . . .
lim 2 = lim =1, a nonzero finite number.

n—e C, n—e n< 41

. — 1
Therefore, by comparison test, z 3
n=1 N~ + 1

is a convergent series.

oo

o n
X . .
Hence, z a, = z 3 is convergent for x <1 and divergent for x > 1.
= n +1

n=1



Infinite Series I 8.23

Example 8. 4 Examine the convergence of the infinite series z

. [WBUT 2003]
n=1 n
Sol. Let us consider
1.2"
Za -3
n=1 n
Then
1N | n+l
o = n!2 and so a,,, = (n+1)12 1
n" (n+1)"*
Here

liog Gt (n+1)|2"+' /n!2"

a, n—>oe (n+1)n+1 n"

. . own!
Therefore by D’ Alembert’s ratio test, the series 2

n=1 N
Example 8.5 | Test the convergence of the series

D L nt [WBUT-2001]

is convergent.

Sol. Let us consider the given infinite series
Z a, = z — s1n —
n=1

then
1 .1
a, = —=sin—

N

Let us consider the series

= o
20, =2

n2
Then
1

bn = —3

n?
Now,

! sin1
——Ssm-— sin —
lim ”—lim\/; = lim n =1
n—e b n—oo 1 n—o0
3 n
2
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Since

Mz

&
=X
:2

3
I
—_

is a convergent series, by comparison test
Ya,-
n=1

is a convergent series.

Example 8.6 Test the convergence of the series
-1y (Va-)
Fo () (-

1+ + + +-r00 [WBUT-2001]
1! 2! 3!

Sol. Since addition or removal of a finite number of terms does not affect the

convergence of an infinite series, by removing the first term of the given series,

sm —

M

let the resulting infinite series be

n=l1 n=l1 n!
Then
n n+l
i
a, = and Ay
n! (n+1)!
Now,

(\/E—])nﬂ
1imM:1imL1)!:nm@:0<1
n—e q, n—eo (\/5_1)" n—e (n+1)

n!

Therefore, by D’ Alembert’s ratio test,

n!

Za -

n=1

is convergent.



CHAPTER

Infinite Series

8.1 INTRODUCTION

This chapter basically deals with preliminary ideas of real sequences and illustrative
ideas of infinite series.

The first few sections elaborate the ideas of a sequence; different types of sequences,
including bounded and monotone sequences, and their convergence and divergence.
Each of the items are illustrated with various kinds of examples.

In the later sections, we discuss the different kinds of infinite series including
alternating series and also the tests of convergence of these series. Here too, useful
examples are cited to illustrate the facts.

Further, solutions of some important problems given in university examinations are
provided in the last section.

8.2 PRELIMINARY IDEAS OF SEQUENCES

A sequence in R or a real sequence is a mapping f : N — R where N is the set of
natural numbers and R is the set of real numbers. So for each ne N, there exists
/(n) and the sequence is denoted by { f(n)}.

We often denote a sequence by {a,,} or {x,,}, etc. A sequence is also denoted by
{al, a, as, }

Example 1 _

Let /: N — R isdefined by f(n)=n’,ne N; then f(1)=1°, f(2)=2°, f(3)=3",...
The sequence is denoted by {nS} or {13, 23, 33,.”}.
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Note: For our convenience, we replace { /(n)} by {a,} where a, isthe n-th term of
the sequence.

8.3 DIFFERENT TYPES OF SEQUENCES:

1) Finite Sequence: A sequence {an} having a finite number of terms is called a
finite sequence, for example,

{2,5,6,9} is a finite sequence of four terms.

2) Infinite Sequence: A sequence {a,} having infinite number of terms is called
an infinite sequence, for example,

{n}={1,2,3,...} is an infinite sequence.
) 1 .
3) Harmonic Sequence: A sequence {an} where a, =—, ne N is a well-known
n
harmonic sequence.

4) Constant Sequence: A sequence {a,,} where a, =k, ne N for any real
number k is called a constant sequence.

8.4 BOUNDED SEQUENCE

The real sequence {an} is said to be a bounded sequence if there exits real numbers
m and M such that m < a, < M, for example,

l,l,l,...,l,... is a bounded sequence since OSlSI.
23 n n

(a) A sequence {a,,} is bounded above if there exists a real number M such that
a, <M forall ne N. M is called the upper bound of the sequence.

Example 2

The sequence {an}—{nz—_l} is bounded above since nz_—l<% for all ne N.
n n

1.
Therefore M = > is the upper bound.

(b) A sequence{an} is bounded below if there exists a real number m such that
a, 2m forall ne N, and m is called the lower bound of the sequence.

Example 3

The sequence {an} = {nz} is bounded below since n? >1 for all ne N. Therefore,
m =1 is the lower bound.
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8.5 MONOTONE SEQUENCE

(a) Asequence {a,, } is said to be monotonic increasing ifand only if ¢, | 2 q,,
forall ne N.

Example 4

The sequence {a, } = {—} is a monotonic increasing sequence since
n

(n+l) ' n 1
(n+2) (n+1) m+1)(n+2)

>0, forallne N.

(b) A sequence {a,, } is said to be monotonic decreasing if and only if a, ; < a,
for all ne N.

Example 5

1. . . .
The sequence {a, } = {— is a monotonic decreasing sequence since
n

l—l: -l <0, forallne N.
n+l n nn+l)

Observations
1) A sequence{a, }is said to be strictly monotonic increasing if and only if
a,,; >a, forall ne N.

Example 6

n . . . .
The sequence {a, } = {—1} is a strictly monotonic increasing sequence.
n+

2) A sequence {an} is said to be strictly monotonic decreasing if and only if
a,.<a, forall neN.

Example 7

1. . . .
The sequence {an} = {—} is a strictly monotonic decreasing sequence.
n

3) A sequence {a,} is said to be monotone if {a,} is either monotonic
increasing or monotonic decreasing.

4) If a sequence {a,} is monotonic increasing then {-a,} is monotonic
decreasing.

5) A sequence {an} need not always be monotone.
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Example 8

{2, 0,2,0,2,0.. } is neither monotonic increasing nor monotonic decreasing.

8.6 LIMIT OF A SEQUENCE

A real number / is said to be a limit of a sequence {an} if for any pre-assigned posi-
tive €, however small, there exists a natural number 7, depending on & such that

|a, —1| < & for all n> .

We write lima, = /.
n—eo

Observation

To establish the limit / of a sequence {a,, }, we take £ as an arbitrary positive
number and then find some positive integer n, such that the numerical magni-
tude of the difference (a, —1) is less than & for every a, where n > n,.

Example 9 _

To establish lim
n—e n+

ever small, such that

2n+1

=2, let us consider a pre-assigned positive number &, how-

2n+1
n+l1

-2

<&

1
=n>——1.
e

1
Taking n, = |:l—1J, i.e., the integral part of (l—l] we have
£ £

2n+1
n+l1

-2

<eg forall n 2 ny.

8.7 CONVERGENT SEQUENCE

A sequence {a,,} is called a convergent sequence if it has a finite real number / as its
limit. We say the sequence {a, } converges to /.
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Example 10
2

1
The sequence {n hl

2

} is a convergent sequence and converges to the limit 1.
n

Observations
1) A convergent sequence has at most one limit.
2) A convergent sequence is bounded.
3) Every bounded sequence is not convergent.

8.8 DIVERGENT SEQUENCE

If for any pre-asssigned positive number K, however large, there exists a natural
number 7, such that a, > K for all n 2 n,, then {an} is said to diverge to oo.

We write

lima,, = co.
n—>o0

If for any pre-asssigned positive number K, however large, there exists a natural
number 7, such that @, <—-K for all n=n, then {an} is said to diverge to — oo,

We write

lima, = —ce.
n—eo

A sequence {a,} is said to be a divergent sequence if {a,} either diverges to oo
or diverges to —oo.

Example 11 | The sequence {nz} is a divergent sequence and diverges to the limit

o, since limn? =co.
n—oo

Note: There are also some sequences which are neither convergent nor divergent,
known as oscillatory sequences.

Example 12 {(—2)"} ={-2,2,-2,2,...} is a common example of an oscillatory

sequence.

8.9 INFINITE SERIES

Consider {a,} be a sequence of real numbers. Then a, +a, +as +--+a, +---o is

said to be the infinite series generated by the sequence {an}. The infinite series is

denoted by 2 a,.

n=1
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a=1
n

8.10 CONVERGENCE AND DIVERGENCE OF INFINITE SERIES

Let S, =a, +a, +as+---+a,. The sequence {S,} is called the sequence of partial

1 . .
= 1+—+§+~~- is a series generated by the sequence

HMZ
5" ﬁ[\/]z

NI»—‘
w|>—l

sums of the series Zan. The infinite series Zan is convergent or divergent accord-

n=l n=l1

ing to whether {S,} is convergent or divergent.

If limS, =S then § is the sum of the series Za and if 1limS, = e (or—oo)

n—oo n=1 n—oo

then the infinite series is said to diverge to oo (or, —eo).

Example 14

Let {a,} = {

be a sequence of real numbers, ne N.
n(n+1)

So,

S, = + + +--+
1.2 2.3 34 n(n+1)
1 1 1 1 1
=ll-= |+ === |+ +| ————
2 2 3 n n-—1
o
n—1

From the above, we have

limS, =1

n—o0

Therefore, the infinite series Zan is convergent and converges to 1.

n=1
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Example 15

Let {an} = {n3} be a sequence of real numbers,

So,

Ya,=1+2+3"+

n=1

The sequence of partial sums of the series is

S, =1+2°+3% +...4 0’

_[n(n+l):|2
2

From the above, we have

limS,, = oo
n—o

ne N.

{S,} where

Therefore, the infinite series 2 a, is divergent and diverges to eo.

n=1

8.10.1 The p-Series

- 11 o 1 . .
The infinite series » a,=—+—+— = 2— is convergent if p>1 and
ot 17 2P 3P P
divergent if p <1.
- 1l 1 1 . L .
2—2 = —2 —2 7 — +--- is convergent, since itis a p-series where p = 2.

11
2) 2— = T+ —+ 3 +--- is divergent, since itis a p-series where p =1.

2

8.10.2 Geometric Series

A series of the form 147472 +7° ++o 47" +--.

common ratio r.
The above series is
(i) convergent for || <1, i, —1<r<I
(i1) divergent for r =1

(iii) oscillatory for » <—1

is called a geometric series with
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8.11 PROPERTIES OF CONVERGENCE OF INFINITE SERIES

oo

1) If Z a, and 2 b, are two convergent infinite series and they converge

n=1 n=1

to p and q respectively then the series 2 (c-a,+d-b,) is also conver-

n=1

gent and convergesto c- p+d - q.

2) If an infinite series z a, is convergent then lima, =0
n—oo

n=1

Example 16

- 1 . .1

2— is convergent, so we have lim — =0.
1 n’ n—e p?

n=

The converse is not true.

Example 17

.1 -l . . .
lim — =0, but 2— is a divergent series.

n—eo p =l n

o

3) If lima, # 0 for an infinite series 2 a, then the series cannot be convergent.

n—oo
n=1

4) If the sequence of partial sum {S,} is not bounded then {S,} being a
monotone increasing sequence, diverges to °.

In this case, the series Z a, diverges to °o.
n=1
5) Addition or removal of a finite number of terms does not effect the conver-
gence of an infinite series.

8.11.1 Series of Positive Terms

An infinite series Zan is called a series of positive terms if a, >0 forall ne N.

n=1

Theorem 8.1: The necessary and sufficient condition for an infinite series of posi-

oo

tive terms z a, to be convergent is that the sequence of partial sums {S,,} is
n=1

bounded.

Proof: Beyond the scope of the book.
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Theorem 8.2: An infinite series of positive terms either converges or diverges to

co. This kind of series cannot diverge to —e and cannot be oscillatory.

Proof: Beyond the scope of the book.

8.12 DIFFERENT TESTS OF CONVERGENCE OF INFINITE SERIES

8.12.1 Comparison Test

Consider a, and b, are two infinite series of positive terms.
n n

n=l1 n=1
If for all n2m, Z—” <k, k being a fixed positive number then

n

i) Zan is convergent if Zb,, is convergent

n=1 n=1

ii) Zb,, is divergent if 2 a, is divergent

n=1 n=l

8.12.2 Limit Form of Comparison Test

. c c e . iy . a
Consider Zan and Zb” be two infinite series of positive terms and lim =/,

n=1 n=l n—ee bn
where / is a nonzero finite number.
Then Za,, and Zb,z converge and diverge together. [WBUT-2008]

n=1 n=1

Example 18

Consider the following two series:

oo

1+2 1+42+3 1+2+3+4
za": A 3 Hoee
7=l 2 3 4
and
& 1 1 1
Nob, =1+t —+— oo
~ 2 3 4
Here
4 _(m+D)(n+2) _ (n+2) d b _1

n

2(n+1)° 2(n+1)° n
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Now,

lim In _ lim 11(”7-’_2)2 = l a nonzero finite value.
nse by nsed(n4+1)? 2

. < ol . . . . .~ .
Since an = Z— is a divergent series, by comparison test the series Zan is

n=1 n=1 n=1

also divergent.

Example 19
1

Test the convergence of the infinite series Zan where a, = (o + 13 —n.
n=1

[WBUT 2003, 2007]

Sol. Here, we have

L N
l’l2 3 9}’!3
1

Let us consider the series zbn where b, =—

n=1 n
Now
. a, . 1 11 1 ..
lim -2 = lim {— ———+---00 s = —, a nonzero finite value.
n—yo0 bn n—oo 3 9 ;13 3

Since, Zb,, is a convergent series, by comparison test, za,, is also
n=1 n=1

convergent.
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Example 20

Test the convergence of the infinite series

1 22 3 4
2 3 47 5
Sol. We know that addition and removal of finite number of terms does not affect

the convergence of an infinite series.
So, removing the first term from the given series, the resulting series is

ia :L+z+i+£+
o SR L LA S &

nl’l

where a, = ————-.
(n+1)"

. < 1
Let us consider the series an, where b, = —. Now

n=1 n

n+l

. a, . n ..
lim -2 = lim — = 1, a nonzero finite value.
n—soo bn n—oeo (n+1)”+

Since, Zb,, is a divergent series, by comparison test, Z a, is divergent.

n=1 n=1

Therefore, correspondingly the given series

is also divergent.

8.12.3 D’Alembert’s Ratio Test

Let Za,, be an infinite series of positive terms and

n=l

. a
lim 2L =/ any real value.

n
—>00 an

Then, the series Zan
n=1
i) converges if /<1
ii) diverges if />1
iii) the test fails if 1=1
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Example 21

Examine the convergence of the infinite series

1292 9232 32 42
+ +

+ e
1! 2! 3!
Sol. If we write the given series in the form of Z a, then
n=1
2 2 2 2
+1 +1 +2
a, = nntl)” and a,,; = (1) (n+2)” .
n! (n+1)!

Now,

Z(n!
lim Ap+ = lim (n;'_z) (n)
noe q,  noe pt(p+1)!

2
— Jim 12" _
n=(p+1)n

=0<1.

Therefore, by D’ Alembert’s ratio test, the series is convergent.

Example 22

Examine the convergence of the infinite series
2 2 2
1 1-2 1-2-
— |+ — |+ —3 +-- [WBUT 2002, 2007]
3 3.5 3-5.7
Sol. If we write the given series in the form of z a, then
n=l1
1230 Y
a,=|———""
3-5-7...2n+1)

1230 (n+1) Y
3-5-7...2n+1)-2n+3)

( 1-2:3...n-(n+1) JZ

3.5-7...2n+1)-(2n+3

Now, lim 240 = jim @n+l) : )
noe @, o noe ( 1-2:3...n J

and so a,,,; =(

3.5.7...2n+1)
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. n+l 3
= lim
n—oo|\ 210 +3

2
= l :l<1.
2 4

Therefore, by D’ Alembert’s ratio test, the given series is convergent.

8.12.4 Cauchy’s Root Test

o L
Let Za,, be an infinite series of positive terms and li_r)n (a,)r =1.
H—yoo

n=1

Then the series 2 a,

n=1

i) converges if /<1
ii) diverges if />1
iii) the test fails if /=1 [WBUT 2004]

Example 23

Examine the convergence of the infinite series

2 2Y (3 3) (4t a)
——=| H == H == + [WBUT 2001]
121 2 2 3* 3
Sol. Let us consider
2 —3
= 22 2) (3 3 (4
2=l 5T 5 pranl s
=R CRE B PR B
Then
n+l o n+l )
a, = - —
n n
Now,

L n+1 ! n+l -
lim (a,)” = lim {( ] —(—J}
Nn—yoo n—eo n n
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sl )]
et

=(e-1)7"<1.

Therefore, by Cauchy’s root test, z a, 1is convergent.

n=l

Example 24

3
Py
Examine the convergence of the infinite series (1 + T] [WBUT 2004]
n
Sol. Let
3
oo oo _n2
Sa, =31+
n=l1 n=l1 \/;
then
1 —n
a,=|1+—
( Jn ]
Now,
1
[ 37
1 1 _n2
li n=1 1+—
ng)l;lo(a”) ngll \/;
L |
- . i
=lim|| 1+—
n—>o0 n
1 <1
e

Therefore, by Cauchy’s root test, Zan is convergent.

n=1
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8.12.5 Raabe’s Test

n=1 n—ee Ay

< o . . . a
Let Zan be an infinite series of positive terms and lim n(—” -1 ]= L.

Then the series Zan

n=1
i) converges if /> 1
ii) diverges if /<1

iii) the test fails if /=1

Example 25

Examine the convergence of the infinite series

11 1-31 1:3:51
14— —4+——+ — -
23 245 2467
Sol. Since addition or removal of a finite number of terms does not affect the con-

vergence of an infinite series, by removing the first term of the given series, let
the resulting infinite series be

Then
:1‘3-5..‘(21’1—3)‘ 1
2-4-6...2n-2) (2n-1)

n

1-3:5...Qn-3)@2n-1) 1
2-4-6..2n-22n  (2n+1)

and so a,,; =

Now

2
fim Gt — iy 277D
n—ee ., n—=2n(2n+1)

Therefore, D’ Alembert’s ratio test fails.
But

lim n| <271 |= lim n w—l
n—eo (2] n—ee (21’1 — 1)

. 6en*-n 3
= 11m—2:—>1
n—=e(2n-1) 2

Therefore, by Raabe’s test, the series 2 a, is convergent.

n=1
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8.13 ALTERNATING SERIES

The infinite series of the form 2‘(—1)"71 a,, where a, >0 forall ne N is called an
n=l

alternating series.

Example 26

Let us consider the series
< 1 1 1 1
)" e ———
E 2 22 32 g2

Here a, >0 for all ne N. So this is an alternating series.

8.13.1 Test of Convergence of Alternating
Series (Leibnitz’s Test)

Let 2‘(—1)”71 a, be an alterenating series with a, >0 for all n€ N. Then the series
n=1
converges if

i) a,. <a,, ie., {a,} is a monotonic decreasing sequence
ii) lima, =0
n—oo

[WBUT-2009]

Example 27

Examine the convergence of the alternating series

3 4 5
2——F———+---
2 3 4
Sol. If we write the series in the form of Z(—l )”_1 a, then
n=1
+1 +2
an:(n ) and anH:n—.
n n+1
Now
+1 +2
ay — dpyl :(n )_n—
n n+1

= ! > ( for all n
n(n+1)

So a, > a,,,, i.e., {a,} is a monotonic decreasing sequence.
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But

. . +
lima, = lim (ntD) =1
n—yo0 n—yo0 n

ie, lima, #0.
n—oo

Therefore, by Leibnitz’s test, the alternating series is not convergent.

Example 28

cosnmw

Examine the convergence of the alternating series Z . [WBUT 2002]
n=1 n +1
Sol. Since cosnm =(—1)", the alternating series can be written as
COS NI D" P |
D Tt
S B DTS B n” +1
Then,
1 1
a,=———andsoa,, =————
n”+1 (n+1)" +1
Now
1 1
ay —dpy) —

n”?+1 (n+1)* +1

2n+1)

7(n2+1)((n+1)2+1)>0

The above implies that {«,} is a monotonic decreasing sequence.

Also lima, = lim L 0
n—oo n—eo +1

snw . oo
is convergent by Leibnitz’s test.

— CO

Therefore, 2
2
n=1 N +1

8.14 ABSOLUTE CONVERGENCE

Let 2 a, be an infinite series. The series is said to be absolutely convergent if Z |a,,|

n=1 n=l1

is convergent.
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Suppose 2(—1)"71 a, be an alternating series. The alternating series is said to be

n=1

absolutely convergent if

Yl a]=Yal
n=1 n=1

is convergent. [WBUT-2009]

Note: An absolutely convergent series is convergent, but the converse is not always
true.

Example 29

. . .~ cosnr
Examine the absolute convergence of the alternating series z >
n=1 N
Sol. Since cosnm =(—1)", the alternating series can be written as
S COSNT  ~a (1) a1
D Ve D Mot
n=1 N n=1 N n=1 n

Here, a, :Lz‘ Then
n

- - |

2l =2

— 1
But the series 2—2 is a p-series with p=2 (>1). So the series is
n=1Nn

convergent.

Correspondingly, '|a,| is also convergent.

n=1

cosnmw
2

Hence the given series z is absolutely convergent.

n=1 N

8.15 CONDITIONAL CONVERGENCE

Let Zan be an infinite series. The series is said to be conditionally convergent if

n=1

Za,, is convergent but not absolutely convergent, i.e., Z‘an| is not convergent.
n=1 n=1
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An alternating series 2‘(—1)"71 a, 1is said to be conditionally convergent if

n=1

2‘(—1)’H a, is convergent but Z|an| is not convergent. [WBUT-2009]
n=1

n=1

Example 30

Examine the conditional convergence of the alternating series

1 1 1
l——4+———4——--00
2 3 4

.. . . = _ < a1
Sol.  This is an alternating series of the form Z(—l)" Ly, = Z(—l)” -,
n=1 n=1 n
Here

1 1
a,=—andsoa,, =—
n n+l

Let us apply Leibnitz’s test for checking convergence.
Now
1 1 1

This proves that {a,} is a monotonic decreasing sequence.

N .1
Again, limag, = lim —=0.
n—yeo n—eo 1

o ) o 1 .
Therefore, Z(—l)" a, = 2(—1)" ' is a convergent series.
n=1 n=1 n

=3

Now we consider 2|a,,| which is

n=1

1 1 1 1 o 1
I+—+—F+—F+=+--=) —.
2 3 4 5 Z‘n

n=1

This is a p-series with p =1, and so the series is divergent.

Since, Z‘(—l)"f1 a, is convergent and Z|an| is divergent,

n=1 n=l1

- _ - a1 . .o
Z(—l)" g, = 2(—1)” '~ is conditionally convergent.
n=1 n=1 n
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WORKED-OUT EXAMPLES

Example 8.1 | Examine the convergence of the infinite series
X (ST [WBUT 2008]
n=1

Sol. Let
ian = i{\/ﬁ +1—+/n* —1}
n=l n=l1

This is an infinite series of positive terms. Here

a, :{\/114—4-—\/1’14——1}
) {\/n4+1—\/n4 —1}{\/n4 +1+\/n4 —1}
T [lede]

2

{ﬁJ—l}

Let us consider the series

HMX

o | S . .
2—2, which is convergent since it is a

p-series for p=2.

Now,
2

lim =~ In — = lim

no= b, n_m{\/n +1+vn* - }

=1, a nonzero finite value.

- |
Since 2 2—2 is a convergent series, by comparison test, we can
n=1 1l

conclude that

0, S\t r1 1)

is also convergent.
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Example 8.2 | Examine the convergence of the infinite series

2 3 4
X X X

Xttt

4
Sol. Let us consider
oo oo n
e X
=2
n=1 n=1 n
where
|
xl’l xn+
a,=—anda,,; =—.
n n+l1
Now,
n+l
.. a X" n
lim 221 = {im =X.
noe @,  noox"(p+1)

Then by D’ Alembert’s ratio test, we have
i) If x <1, the infinite series is convergent
ii) If x > 1, the infinite series is divergent

i) If x =1, the test fails

For x =1, the series becomes

1+;+ - 2—

n=11

| 8.21

. <l . . . o R =T
Since 2— is a divergent series, the infinite series Z— diverges for x >1

n=1 n=l1

and converges for x <1.

Example 8.3 | Examine the convergence of the infinite series

2 3

T [WBUT-2009]
2 5 10

Sol. We know that addition or removal of a finite number of terms does not alter

the convergence of an infinite series.

So, removing the first term, we have the series of the form
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Suppose we write the series in the form

oo _oc xn
2=~

n=l1 n=1N +1
Then
n n+l
a, = and so a,,,
n +1 (n+1)* +1
Here,
n+l n
. a . X X
lim 221 = lim 5 5
n—e a,  n=e(p+l1)"+1/ n”+1
. n* +1
=x - lim ——=x

noe (n+1)2 +1
So by D’ Alembert’s ratio test, we can conclude that

i) If x <1, the infinite series is convergent
ii) If x> 1, the infinite series is divergent
iii) If x =1, the test fails
For x =1, the series becomes
I 1 1

— S 1 — S
PAE TR L

1

n’+1

Here, b, =

. N < | Co
Consider the series ZCn = 2—2, which is convergent. Now
n=1 n=11

2

. b . . .
lim 2 = lim =1, a nonzero finite number.

n—e C, n—e n< 41

. — 1
Therefore, by comparison test, z 3
n=1 N~ + 1

is a convergent series.

oo

o n
X . .
Hence, z a, = z 3 is convergent for x <1 and divergent for x > 1.
= n +1

n=1
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Example 8. 4 Examine the convergence of the infinite series z

. [WBUT 2003]
n=1 n
Sol. Let us consider
1.2"
Za -3
n=1 n
Then
1N | n+l
o = n!2 and so a,,, = (n+1)12 1
n" (n+1)"*
Here

liog Gt (n+1)|2"+' /n!2"

a, n—>oe (n+1)n+1 n"

. . own!
Therefore by D’ Alembert’s ratio test, the series 2

n=1 N
Example 8.5 | Test the convergence of the series

D L nt [WBUT-2001]

is convergent.

Sol. Let us consider the given infinite series
Z a, = z — s1n —
n=1

then
1 .1
a, = —=sin—

N

Let us consider the series

= o
20, =2

n2
Then
1

bn = —3

n?
Now,

! sin1
——Ssm-— sin —
lim ”—lim\/; = lim n =1
n—e b n—oo 1 n—o0
3 n
2
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Since

Mz

&
=X
:2

3
I
—_

is a convergent series, by comparison test
Ya,-
n=1

is a convergent series.

Example 8.6 Test the convergence of the series
-1y (Va-)
Fo () (-

1+ + + +-r00 [WBUT-2001]
1! 2! 3!

Sol. Since addition or removal of a finite number of terms does not affect the

convergence of an infinite series, by removing the first term of the given series,

sm —

M

let the resulting infinite series be

n=l1 n=l1 n!
Then
n n+l
i
a, = and Ay
n! (n+1)!
Now,

(\/E—])nﬂ
1imM:1imL1)!:nm@:0<1
n—e q, n—eo (\/5_1)" n—e (n+1)

n!

Therefore, by D’ Alembert’s ratio test,

n!

Za -

n=1

is convergent.
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Example 8.7 | Test the convergence of the series

1’+2 2242 3?42
11 X+ ; e 3:’ X oo [WBUT-2002]

Sol. Let the given infinite series be
< & (n +2)
Ya, -3
n=1 n=1 n

Then

2 2
D) g DY
n (n+1)

Now,
(1) +2}
lim 91— iy (14D’ i (D42

noes @, e (n2+2)xn noe 242 (n+1)*

4

By D’ Alembert’s ratio test,

(1) If x <1, the infinite series is convergent
(i) If x>1, the infinite series is divergent
(iii) If x =1, the test fails

For x =1, the infinite series becomes
1+2 22+2 3*42
+ + +-

14 4 34
Here,

--00

_ (" +2)

aﬂ
4
n

Consider the series

b=y
n=1 n

n=1
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Then
2

. a . ..
lim - = lim >— = 1(a nonzero finite number).

n—es b, n— p< 41

Since

is a convergent series, by comparison test
& (7 +2)

>

n=I1 n

is also a convergent series.

1
_z

HMZ

Therefore,

- “n+2)

is convergent for x <1 and divergent for x > 1.

Example 8.8 Examine the convergence of the series

2 3
I+2+ 4+ o [WBUT-2004]
2 5 10
Sol. Since addition or removal of a finite number of terms does not affect the

convergence of an infnite series, by removing the first term of the given series,

Let the resulting infinite series be

a, =Y

n=1 n= ln +1
Then
n n+l
anzzx—andsoanﬂzi2
n”+1 (n+1)" +1
Now,
xn+1
2
lim Zrtt M limnitlx
n—e q, n—>°<‘ x" n—e(n+1)" +1
n* +1
1
. n*+1 . 1+T
=11m27x=11m4nx=x
noept 2042 noey 2 2

n n2
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Therefore, by D’ Alembert’s ratio test,

i) If x <1, the infinite series is convergent
ii) If x>1, the infinite series is divergent
iii) If x=1, the test fails

For x =1, the series becomes

n=1 n=11
Then
2

lim - = lim =1 (a nonzero finite number).
n—eo bn n—e pn° 41
Since

o =

=2~

n=1 n=11

is also a convergent series.
Therefore,

505

,,1}1 +1

n

is convergent for x <1 and divergent for x > 1.

Example 8.9 | Test the convergence of the series
J V2 V3
+ +

+--v00 (a>0)

3 3 3
al2+b a-22+b a-32+b
Sol. Let the infinite series be

n=1

n2+b

where

| 8.27

[WBUT-2004]
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Consider the divergent series

Sh-3t

n=1"
Now,
D 3
n? . n?
lim 2 = lim 4 +b _ jim
n—e b n—soo 1 n—oo 3
" a-n?+b
. 1 -
= lim ——— = — (a nonzero finite number)
n—soo a
=
2
Therefore, by comparison test
= n2 +b
. J1 2 3
ie, A S S S A
a12+b a-22+b a-32+b

is a divergent series.

Example 8.10 Test the convergence of the series

2 2 0 2 42 2
1+§_2x+§2 :2 x2+§2 :2 32 X 4o, x#1] [WBUT-2004, 2009]

Sol. Since addition or removal of finite number of terms does not effect the conver-
gence of an infinite series, by removing the first term of the given series,

Let the resulting infinite series be

o0 = 2 2 2 2
Zan :2 4767, (2}’[) xn.

25272 . 2n+1)

_ 2246 ..02n
32.52.77 .2n+1)?

n

22 .42 .62 “_(2n)2(2n+2)2 xn+1

and so a,,; =
222 0t 1) 2n+3)
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Now,
27.42.6%...2n)* 2n+2)*
i % i 325270 ..2n+ 1)’ 2n+3)°
noe @, n—e 22.4%.6%...(2n)?
32.52.7% . (2n+1)?
2
= 1im 7(2’”2)2 x=
e (2n+3)

n+l

n

Therefore, by D’ Alembert’s ratio test,

1) If x <1, the infinite series is convergent
ii) If x> 1, the infinite series is divergent

Example 8.11 | Test the convergence of the series

1 1
sinl%J+sin % +sint—3J+sm — |t [WBUT-2005]
42

12 2 32

22
Sol. Let the infinite series be of the form

oo = 1
S a, = Y sin| = |
n=1 n=1 5
n2

Then
p— 1 1
a, =sin =
n2

. . 3
Consider the p-series for p = B as

oo =
b=
n=1 n=1 3
n2
where,
1
bn = —3
n?
Now,
a ..
lim 2+ = lim =1, a nonzero finite value.
n—soo bn n—yoo
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Since

HMX

i :
3
n=l n?
is a convergent series, by comparison test,

Za = ZSIH —

n2
is also convergent.

> 2
Example 8.12 Test the convergence of the series 2 nte™" [WBUT-2005]
n=1
Sol. Let the infinite series be of the form

> & 2

Zan = 2114@_” .

n=1 n=1

Then

a2 _
a,=ne"™ andsoa,,, =(n+1)e (re1)?

Now,
et Y
n—»eo an n—)oa 4 e " n—soo n e(n+1) -n
(1Y
=lim|1+— =0<1
N0 n eZn+]

Therefore, by D’ Alembert’s ratio test, the series is convergent.

w2
-1
Example 8.13 | Test the convergence of the series 2 x"; x>0
= n= 11’1 +1
[WBUT-2006]
Sol. Let the infinite series be of the form
o )
n =1 ,
a, = x".
ZT E n +1
Then
2 2
+ p—
a, = xn and a,,, = (}'l 1)2 1 n+l
+1




Infinite Series I 8.31

n+l
2 2
— lim (2n +2n)(n —2i-1)
" n—e (p” 4+ 2n+2)(n" —1)

Therefore, by D’ Alembert’s ratio test, the series is
(i) convergentif x <1

(i1) divergentif x>1 and
(iii) the test fails for x =1

For x =1, the series becomes
n=1 n=1

Now,

n+1

2

. . -1
hman:hmn =1#0
n—oo n—e p° 41

So the series is divergent for x =1.

Hence, the series is convergent for x <1 and divergent for x > 1

Example 8.14 | For what values of x is the following series convergent?

[WBUT-2006]

Sol. Let the infinite series be of the form

Z; g‘zn DH2n+1)

B X B xn+1
a,=———

andso g, =——
2n-1D)(2n+1) 2n+1)2n+3)
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Now,
xn+1
lim 24— i 2n+1)2n+3)
n—e q, n—soo x"
2n-1)(2n+1)
—tim 77D
n—e (2n+3)

Therefore, by D’ Alembert’s ratio test, the series is
(i) convergentif x <1

(i1) divergentif x>1 and

(iii) the test fails for x =1

For x =1, the series becomes

ST R

8

3
L‘
I
—~
[\
N
|
N’
~
[\
N
+
—_—
R

n=1 n=l1
where,
1
b, =—
2
Now,
1
PN 2

lim % = lim 27=DCn*D _ 7

n—eo b n—se 1 n—e (2n—-1)Y2n+1)

2
. 1 1 .
= lim ——————— = — (a nonzero finite value)
n—sco 1 1 4
2—— 2+~
n n

Since

— — 1

b=

n=1 n=11

being a p-series for p =2, is a convergent series,



Example 8.15 | Examine the convergence of the series 2 (—J

Sol.
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By comparison test

ng’ 2:‘ 2n

—1)un+1)

is also convergent.

Therefore, the given series is convergent for x < 1.

n+1

Since addition or removal of a finite number of terms does not affect the con-
vergence of an infnite series, by removing the first term of the given series,

Let the resulting infinite series be

2a-5(1%)

Then

1 n |,
lim (a,)" = lim ]
n—e |\ n+1 n—e\ n+1

X=X

Therefore, by Cauchy’s root test, the series is
(1) convergent for x <1

(ii) divergent for x > 1

(iii) test fails for x =1

For x =1, the series becomes

S35

Now,
lima, = hm(LJ = 1im¥:l¢0
n—>co n—eo| n+1
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Therefore, the series is divergent in this case.

Hence the given series is convergent for x <1 and divergent for x > 1.

. .o (14 nx)"
Example 8.16 | Examine the convergence of the series Z A+ m)”
= =~ n"
Sol. Let the infinite series be of the form
oo oo 1+ n
Yo, -y
n=1 n=1 n
+ n
Then a, = a+m)”
nﬂ
Now,

1
1 n ;
lim (a,)" = lim {M} = lim (Hﬂ)
n—oo n—oo n" n—soo n

| [ 1 )
=lim|—+x |=x
n—oo|\ n
Therefore, by Cauchy’s root test, the series is

(i) convergent for x <1
(ii) divergent for x > 1
(iii) test fails for x =1

For x =1, the series becomes

53]

n=l n
Now,
lima, = lim (”_”] ~ lim [Hl) o0
n—ee n—ee\ N n—eo n

Therefore, the series is divergent in this case.

Hence, the series is convergent for x <1 and divergent for x > 1.

Example 8.17 Examine the convergence of the series

1 2 (3 , (4Y) 5
—+Zx+H| S x4 = |+
23 |4 5

Sol. Since addition or removal of a finite number of terms does not affect the con-
vergence of an infnite series, by removing the first term of the given series,
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Let the resulting series be

2 Z(n—HJ o

n+2
Then
n+1Y
a, = X
n+2
Now,

I
1 n "
hm(a )" = lim nt] X"y =1lim n+l Xp=x
n—e [\ n+2 n—oe |\ n+2

Therefore, by Cauchy’s root test, the series is

(i) convergent for x <1
(ii) divergent for x > 1
(ii1) test fails for x =1

For x =1, the series becomes

n=1 n=1\" +2

Now,

lima, = lim ntl ) lim !
n—soo n—eo| n+2

Therefore, the series is divergent in this case.

Hence, the series is convergent for x <1 and divergent for x > 1.

1+nl
Example 8.18 | Examine the convergence of the series 2 ﬂ

n=2 I’l+5

Sol. Since the addition or removal of finite number of terms does not effect the

e . . 1+1-logl
convergence of an infnite series, by adding 2—og as the first term to the
1" +5

given series,
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Let the resulting series be

oo

Zan :zl+nlogn.

n=1 n2 +5
Then

_l+nlogn
! n’+5
Consider the well-known divergent series

- — 1
Sn-%i

n=11
where
1
b,=—
n
Now,
I+nlogn
. a . 245 . n+n210gn
lim 2 = lim — lim
n—eo b n—se l nse  p? 4§
n
—+logn
=limZ— =
n—o0 5
1+—
n

Therefore, by comparison test, the series

oo

Zl+nlogn
n=1 nz +5

is divergent.

Example 8.19 Examine the convergence of the series

132 135> 1357
ST P 2
24> 2.4.6>° 2.4.6-8

«s00

Sol. Since addition or removal of a finite number of terms does not affect the con-

vergence of an infinite series, by removing the first term of the given series, let
the resulting infinite series be

oo ™ IREYS 2
Z"n:ZI 3-5...2n 1)un+i)
S5 2-4-6..2n02n+2)
_1:3:5..2n-D@2n+1)
2-4-6..2n2n+2)

Then, a

n
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2
and so a,,, = 1-3 5...(2n+1)(2n+3)2
2:4-6...2n+2)2n+4)

Now,

2
lim 2~ fim (2n+3)2(2n+2)
n—oe g,  n=°2n+4) (2n+1)

2

3 2

2+ | |2+~

) n n

= lim =1

n—e 4V (. 1
2+— || 2+—

n n

So, it is obvious from the above that D’ Alembert’s ratio test fails.

Therefore, we apply Raabe’s test.

Now,

2
lhnn{ n —1}=lhnn ﬁzﬁiﬁ%ﬁzﬁill—l
n—e | d,. n—e | (2n+3) " 2n+2)

.| 4n*+6n*-2n
=11m 2—
n—e | (2n+3)"(2n+2)
6 2
44+ ——-—
a4 1,

el oY 3¢ 8 2
(2+1é+]
n n

Therefore, by Raabe’s test, the given series is divergent.

Example 8.20 | Test the convergence of the following series:

, 22, 224, 24260
X +—x + X + X
347 3.4.56 345678

.00, x>0

Sol. Let the infinite series be of the form

2242 . 2n)* a2

2 42 2
a, = 2747 . (21’!) x2n+2
3.4-56..2n+2)

|&y
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2242 .20 (2n+2) Jed
and a, | = X
3-4.5-6..2n+2)2n+3)2n+4)
Now,
2
lim 221 = im (2”;2))62 )
n—e q, n—=e (2n+3)2n+4)

By D’ Alembert’s ratio test, the series is
(1) convergent if <1, ie, 0<x<I
(i) divergentif x*>1 ie., x>1

(iii) The test fails for x =1.

For x =1, the series becomes

) ) 2 42 2
Sa -3 2%.4% ... (2n)
ST H3.4.5.6...2n+2)

Then

. 2%4%..n)
3-4-5-6...2n+2)

n

2247 .2n)’2n+2)°

and a,, =
3.4-5-6...2n+2)(2n+3)2n+4)

Now,

limnl <%= _1 |= lim n w_l

n—e | a4 n—e (2n+2)

. n6n+8) 6 3
= lim ——— ==
noe(2p+2)° 4 2

Therefore, by Raabe’s test, the series is convergent for x =1.

.. sin@n—-1)"

Example 8.21 | Test the convergence of the series z (71)2
= n+

n=1

Sol. Since
sin(2n—1)§ = (1!

the given series can be represented as

< 1yl _ < 1yl 1
E( D" a, =Y (1) pon

n=1

So, this is an alternating series and we apply Leibnitz’s test for testing its
convergence.



Infinite Series I 8.39

Here
1
a, = and so a,,, | = ——
(n+1) (n+2)
Now,
1 1 1
ay — Ay = >0 forallne N

n+l n+2 (n+1)n+2)

Since, a,.; <a,, so {a,} is monotonically decreasing.
Also,

lima, = lim =
n—eo n—ep+1

Therefore, by Leibnitz’s test the alternating series is convergent.

Example 8.22 | Test the convergence of the series

Sol.

1 12422 12422432 _12+22+32+42 .

- +
1.2 2.33 3.4 4.5

The given series can be represented as

i(_l)nila = i(_l),Fl (12 +22 +32 -|-4-2 +...n2)
n=1 n ~ I’l(l’l+1)3

Then
u = nn+1)(2n+1) _ (2n+1)
6n(n+1)* 6(n+1)*

So, this is an alternating series and we apply Leibnitz’s test for testing its
convergence.

Now,

dye _ Qn+3)(n+1)
a, (n+1)n+2)*

_ 207+ 7% +8n+3
20 +9n° +12n+4

_ 2n’+4n+1
20 +9n* +12n+4

=1 <1

Since a,,,, <a
Also

so {a,} is monotonically decreasing.

no

lima, = lim (2”7”)2 -0
noe " noe 6(n+1)

Hence by Leibnitz’s test, the alternating series is convergent.
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Example 8.23 Test the convergence of the following two series:
< 0 - 1
a)z — and b)z

n=1€ n=1 (ln 3)n
Sol.
a) The series can be written as
— 6 6
— =ttt e
e e e e
6 1 1 1
i Rt
e e e e
Now
1+1+L2+l3+...m ...(D)
e ¢ ¢

. S . 1
is a geometric series whose common ratio is » =—<1.
e

. . 1
Hence the series (1) is convergent and converges to =—.

Consequently, the series Z—n is also convergent and converges to

n=1€
6f e -6
ele—1 e—1"

b) The series can be written as

< 1 1 1 1
S
mi(n3)" In3 (In3)" (In3)

1 1 1
=—|1+—+ +:i00
3| I3 (In3)
Now

1 1
+—+ 5
In3  (In3)

oo o)

. . . . 1
1S a geometric series whose common ratio » = ﬁ >1.
n

-
Therefore, the series (2) is divergent and consequently, the series 2 1

a1 (In3)"
is also divergent.
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Example 8.24 Show that the following series is divergent:

1-24+42-343-4+4-5+:--00

Sol. The given series is
Y a, 2 n(n+1)
n=1 n=1
Now,

lima, = 11mn(n+l)—oo
n—oo

Therefore, the given series is divergent.

Example 8.25 | Test the convergence of the following series:

6 8 10
+ + 400
1-3-5 357 579
Sol. Let the given series be

- 2n+4
2o X

2n—-1)C2n+1)2n+3)’

Then

2n+4
2n-1)2n+1)2n+3)

a, =
Consider the convergent series

- - 1
Su-5s

n=11
where
1
by =—
n
Now,
2n+4
lim 2 = i (21n=D@n+1)2n+3)
n—yeo bn n—co 1
n”
_ Qn+4)n’

m
ne 2n—1)(2n+1)(2n+3)

| 8.41

[WBUT-2008]
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(2 i . ]
n 1 -
= —(a nonzero finite value)

FEr)

Therefore, by comparison test

oo

< 2n+4
- g;(zn—l)(2n+1)(2n+3)

n

is convergent.

Example 8.26 Test the convergence of the following series:

P P p
1+7~2_'+33_'+‘;_'+...w [WBUT-2008]

Sol. Let the given series be

D=2
n=1 n=1 1

Then

P +1)?
a, :n—andsoa,m UER)

n! (n+1)!
Now,

(n+1)?
! Pyl
lim %2t fj DY _ gy (14D
n—e d, n—soo ﬁ n—yoo l’lp(}’l-i-l)!
n!

. 1Y 1
=lim|1+— =0<1
n—eo nj n+l

=3 0 P
. n" .
Therefore, by D’ Alembert’s ratio test, E a, = E — s convergent.
n

n=1 n=l ""*

Example 8.27 Test the convergence of the alternating series:

L1 1 [WBUT-2009]

1—— .00

ATV



Sol.
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The alternating series can be written as

Sy = T
n= n=1

Here, a, =L2 and so a,,, =%.

n (n+1)
Then

1

1) 2

Gntl (7+1) =" __<iforallne N.
ay Lz (l’l+1)2

n

Since, a,.; <a,, so {a,} is monotonically decreasing.

Also

. .1
limag, = lim —=0
n—yoo n—yoo n

Hence, by Leibnitz’s test, the alternating series is convergent.

Example 8.28 Show that the series Z cosznx

Sol.

n=1 N
Let the given series be

— _ \~ cosnx
DD
n=1

n=1 N

Then

_ cosnx

n 2 N
n

Therefore,

oo oo

2lanl=2

n=1 n=1

coSnx
2

Since |cosnx| <1 forall n, x we have
1 - 1
|a,| = = |cos nx| < —-.
n
Now we consider the series

= o
Zibnzz—z

n=11

is absolutely convergent.

| 8.43

[WBUT-2004, 2009]
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which is a p-series with p=2 (>1) and so convergent.
Here

1
bn = —2

n
Therefore, for all ne N,

]

|an|<bn:> <.

n

So, by comparison test, Z|a,,| is convergent.

n=1

. o+ — COSHX .
Hence, the given series Zan = 2 S s absolutely convergent.
n=1 n=1 N
Example 8.29 | Prove that the infinite series
2 3 4 n

X x X X
x__+___+...(_1)”+1 RAET

2 3 4

is absolutely convergent when |x| <1 and conditionally convergent when x =1.
[WBUT 2001, 2007]

Sol. Let the given series be
Ya, =Y )= (D
n=1 n=l1 n
where

a, = (_1)n+l x_
n

Now we consider the series

oo

2 a| )

n=1

where
n xn
la| —‘(—1)”“ "7 i
So,
—|(_ n+2i+1 :’ |"+1
|an+l| ‘( D n+1 n+l’
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Therefore

. |an+1| _n n
lim lim |x|
n—seo |a,,| n—e (n+1)

. 1
= lim 7|x| = |x|
n—seo 1
n
Then by D’ Alembert’s ratio test, we have
i) If |x| <1, the infinite series (2) is convergent
i) If x| >1, the infinite series (2) is divergent
Hence, the given series (1) is absolutely convergent for |x| <1.

For x =1, the series becomes

which is conditionally convergent. (For proof see the example 30 of
Article 8.15).

Example 8.30 | Test the convergence of the series:

LI I [WBUT-2003]

P 3P 4P
Sol. The given series can be written as

S 1), =Y 1y L
n=1 n=1 np

So this is an alternating series and

1 1
a,=—and g, = .
n” (n+1)p
Then
1
1)? P
an+1:(n+ ) -_" <lfor p>0and ne N.
a, L (n+1)p
n?

Since, a,., <a, for p>0, so {a,} is monotonically decreasing for p > 0.
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Also, for p>0

. 1
lima, = lim —=0
n—eo n—seo pP

Hence by Leibnitz’s test, the alternating series is convergent for p > 0.
But for p <0,

lima, = lim — = oo,
n—oo n—seo P

Therefore, the series can’t be convergent for p <0.

EXERCISES

Short and Long Answer Type Questions

(A) Test the convergence of the following series:

2)

3)

4)

5)

6)

7)

[Ans : Convergent]

T T
[Ans : Convergent]
—Vn+1—+n—1
[Ans : Convergent]
1+1+1+1+mm
1+27" 1427 1427 1427
[Ans : Divergent]
1,3.7.,5, -
2 22 23 2
[Ans : Divergent]
2
[Ans : Convergent]
3
oo 1 -n2
;(1 + \/;J [WBUT-2004]

[Ans : Convergent]
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n=1 N
[Ans : Convergent]
2 2 2
o (L] (L2] (123 ) 4 o [WBUT-2002, 2007]
3 3.5 3.5.7
[Ans : Convergent]
3 —
10) n—-n+l
n=l n!
[Ans : Convergent]
m Yot
n=1 N
[Ans : Convergent]
w 4
n
B
n=1 "

[Ans : Convergent]

(B) Examine the convergence of the following series for different values of x:

5 e

[Ans : Convergent if —1 < x <1, divergentif x>1or x <-1]

P SRR

[Ans : Convergent if x>1 or 0< x <1]

15) i( nx J

[Ans : Convergent if x <1, divergentif x >1]

16) Y
n=l
[Ans : Convergent if x <1, divergent if x >1]

17) Prove that

Z( 1) cos nx

n2

is absolutely convergent.
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Prove that
oo (_ 1 )n—l
7= n(logn)’

is absolutely convergent.

(C) Test the convergence of the following series:

1y

2)

3)

4)

5)

0)

7)

8)

9)

n=l nn
[Ans : convergent]

[Ans : convergent]

[Ans : divergent]

1P+2 2242, 3+2 ,
x+ X"+ X7 400

A Y 3 [WBUT-2002]
[Ans : Convergent if x <1, divergent if x> 1]
n=1 n
[Ans : divergent]
x XX X
1+5+?+E+mw [WBUT-2004]

[Ans : Convergent if x <1, divergentif x>1]

. 1. . 1
[Ans : Convergent if p > > [divergent if p < E}

5 2 2 2 42 2
1+§—2x+§2 :2 x2+§2 :2 32 X oo, x# | [WBUT-2004, 2009]

[Ans : Convergent if x <1, divergent if x> 1]

2P 3P 4P 5P
—+—+—+—+-00(p,q>0)
1‘1 2‘] 3‘1 4‘1

[Ans : Convergent if ¢ > p+1, divergentif ¢ < p+1]
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10) =+ 4+ 4 [WBUT-2006]
-3 3.5 5.7
[Ans : Convergent if x <1, divergent if x> 1]
11) E_Z+2_E+...m
2 4 6 8
[Ans : Not convergent]
sin(2n—1)—

S 2
12) 3 (n+1)

[Ans : Convergent]
13) 1-2+2-343-44+4-5+--00

[Ans : Divergent]

14) x2+ix4+ 24 X+ 2-4%-6 X8
3-4 3-4.5-6 3-4.56-7-8

[Ans : Convergent if 0 <x <1, divergentif x>1]

n+1 -n
it n+ n+l1
15) 2{(—] ‘7}

16) Zisinl [WBUT-2001]

2 3
17) l-ng-i- 3 X+ 4 X0
2 3 4 5

[Ans : Convergent if x <1, divergentif x>1]

00, x>0

[Ans : Convergent]

[Ans : convergent]

2 3
3
a+x+(a+x) +(a+ x)

18) +eve00, x>0
1! 2! 3!
. .. . 1
[Ans : Convergent if 0 < x < —, divergent if x > —}
e e
19) 1+ 1 ! ! <-o0

+ + +
217+1 2:2°+1 2-3%+1
[Ans : Convergent]
3 3 3
20) 2 + 3 + 4 400
17 +37 27 45P 3P 47P

[Ans : Convergent if p >4, divergent if p <4]
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! ! !
21) 1 +lx+&x2 +ix3 +ix4 .00, x>0
2 3 4 5
[Ans : Convergent if 0 < x <e, divergent if x 2 e]
(D) Examine the convergence of the following alternating series:

1 1 1 1
+

22) - - +:-e00
log2 log3 log4 log5
[Ans : Convergent]
1 1 1
23) l-—4——— oo [WBUT-2009]
2 3 4

[Ans : Convergent]
o (_1);1—1 2n
e
n=1 n
[Ans : Divergent]

oo o 1\n—l_n
25) 2(134)‘,0<x<1
n=l N —nN

[Ans : Convergent]

26) 11 N 11 .
V241 B+l Ja+1 5+l
[Ans : Convergent]
27) l—£+i—i+
6 11 16 21
[Ans : Not convergent]
u le M3 Ll4
28) - + - +00, 0<u<l1

u+l WP +1 P41 ut +1
[Ans : Convergent]

(E) Prove that the following series are absolutely convergent:

29) 1_%+i_i+...oo
3 3% 3
2.2 3.3 4 4
30) x—2 X +3 x 4'x +-~-°°,x¢il

2! 3! 4! e
(F ) Prove that the following series are conditionally convergent:

31) 1_L_+L_L_+L_,,,oo

P Vs s
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byl 2,3 4,5
2 5 10 17 26

v 00

& Multiple Choice Questions

. The series Z—p is convergent if

n=1N
a) p<l b) p>0 ¢ p>1 d) p<0
The series ! + ] + ! + | + is
a) divergent b) convergent c) oscillatory  d) none of these
The series L—i— ! + ! + ! + is
a) convergent b) oscillatory c) divergent d) none of these
. The sequence {(-1)"-2"} is
a) monotone b) bounded c) convergent d) oscillatory infinitely
1. .
. The sequence {—sinn; is
n
a) oscillatory b) divergent to oo
c¢) convergent with limit 1 d) convergent with limit O
1 .
. The sequence is
443n
a) decreasing and unbounded b) increasing and bounded
¢) decreasing and bounded d) none of these
n Ll
. The sequence {3+(-1)"—} is
n
a) oscillatory b) monotone
c) convergent d) bounded but not convergent
3
+1
. The sequence {n > } is
n
a) bounded b) divergentto oo

c) convergent d) none of these



8.52 I Engineering Mathematics-I

9. Which of the following sequence is convergent?

4
a) {L-i-Zn} b) {n :1}
4" n

c) {L+L} d) {1+-=D"}
21’1 4}'[
10. The series z ntl
n=1 N
a) convergent b) divergent to oo
¢) oscillatory d) none of these

11. If Zan is convergent then

n=1
a) {a,} is monotone b) {a,} is convergent with limit O
. . a
¢) limg, =1 d) lim 2L <1,
n—oo n—ee q,

12. The series is
nz{ (n+ 1)
a) divergent to oo b) convergent
c¢) oscillatory d) none of these

13. The series i(\3jn+l—%) is
n=1

a) convergent b) divergent
¢) oscillatory d) none of these.

14. The series 2(”+1
n=1

. ] is convergent if
n

a) p>2 b) p>1 c) p<2 d p>0
15. Which of the following infinite series is convergent?
(1 (8
a) 2(—2+4J b) Z(g]
n=1\1 n=1

11 1 < 3 +1
©) l+—+—+—+- d) 23n3+
24 3t g =4 11

;
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16. The infinite series
11 N 1 N

T+x% 2+4x% 3+4x° 4+x°

is convergent

a) only for -1<x<1 b) only for x=0

¢) for no real values of x d) for all real values of x
17. The infinite series

1- ! + - +

V2 3 A4

is

a) absolutely convergent b) oscillatory

c¢) conditionally convergent d) none of these

—(n).
18. The series 2 — |18
n=1\ 1"
a) convergent b) divergent
¢) neither convergent nor divergent d) none of these
1
e . o . - 4 .
19. Let Zan be an infinite series of positive terms. If lim(a,)” = — then Zan is
n—sc0 3

a) convergent b) divergent

c¢) oscillate infinitely d) none of these
20. If a,>0 for all n and a; 2a, 2a;>--- and lim(a,)a, =0 then the series

n—soo

2 (D",

n=1

a) oscillates infinitely b) is divergent to —oo

c) is convergent d) none of these
Answers:

l.Lc) 2. 3.(@ 4@ 5@ 6@ 7.0 8@® 9.(c)
10.(b) 11.(b) 12.(b) 13.(b) 14.(a) 15.(c) 16.(d) 17.(c) 18.(a)
19.(b)  20.(c)






CHAPTER

Vector Analysis

9.1 INTRODUCTION

Vectors are very important part of any branch of science and technology. Vectors and their
differentiation and integrations have wide range of applications for solving problems in
many practical situations. Basically, we shall divide the chapter into three parts.

In the first part of this chapter, we discuss Vector Algebra which includes various
kinds of vectors, different terminologies, different kinds of products of vectors, equa-
tions of straight line, plane and sphere in vector form and of course their applications too.

In the second part of the chapter, we deal with vector differentiations, gradient,
divergence, curl, directional derivative along with their applications.

In the third part of the chapter, we give theorems on vector integrations (Green’s
theorem, Divergence theorem, Stoke’s theorem) and their applications to physical
problems.

PART-I (VECTOR ALGEBRA)

9.2 SCALARS AND VECTORS

Any physical quantity which has magnitude only is known as a scalar. The examples
of scalars are area, volume, mass, speed, etc.

Any physical quantity which has magnitude as well as direction is known as a
vector. The examples of vectors are displacement, velocity, force, etc.

Generally, a vector is represented by a directed line segment. Any vector from point
A to point B is denoted by 4B. Letus consider any vector 4B = a, where the length
of the line segment 4B is a (which is always positive). Then the magnitude or abso-

, and is given by ‘ZE‘ = |5! =a.
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9.2.1 Different Kinds of Vectors
Here we give a few definitions.
(1) Like Vectors: Vectors having the same direction are known as like vectors.

(2) Null Vector or Zero Vector: Any vector having the magnitude zero is known as
a null vector or zero vector. It is generally denoted by 0 or 6.

(3) Unit Vector: Any non-null vector of unit length (or, having the unit magnitude)
is known as a unit vector.
Let a be any non-null vector. Then the unit vector in the direction of a is given

o
In the three-dimentional Cartesian coordinate system, the unit vectors along the

Xx-axis, y-axis and z-axis are i } and k respectively. These are called fundamental
unit vectors.

(4) Equal Vectors: Two vectors d and b are called equal if they have the same
magnitudes as well as the same direction. Then we write a = b. Two parallel vec-
tors having the same magnitude are equal.

(5) Negative of a Vector: Let AB=a be a vector. Then a vector having the same
magnitude but opposite direction is known as the negative of 4B and is given by
BA=-AB=—a.

(6) Position Vector: The position of a point P with respect to any arbitrary point
O is represented by a vector OP. Here, O is called the initial point or the vector
origin and the vector OP is called the position vector w.r.t O.

9.2.2 Addition and Subtraction of Vectors

Additon of Vectors using Triangle Law

Figure 9.1 Triangle Law
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Let AB= a, BC=b and AC =¢. Then by Triangle Law, (see Fig. 9.1) we have

B+BC=4C

b

|

Sy

+

=¥}

or,

a

Additon of Vectors using Parallelogram Law

Figure 9.2 Parallelogram Law

Let AB=ad, AD=b and AC =¢. Then by Parallelogram Law (see Fig. 9.2), we
have

AB+AD = AC
or, d+ bh=¢
Properties of Vector Addition

(i) Addition of vectors is commutative, i.e., a + b=b+a.

(i) Addition of vectors is associative, i.e., (G+5)+¢=a+(b+7¢).

Subtraction of Vectors
Let AB = a BC=h ; then their subtraction is given by
AB—BC = AB+(-BC)

ie,d—b=a+(-b).

9.2.3 Scalar Multiplication of a Vector

Multiplication of a vector a by any scalar m, +ve or —ve, is denoted by the vector ma.

Now |m5| = |m||5 , 1.e., magnitude of the vector ma is |m| multiple of magnitude

of the vector a.
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Direction of the vector ma is same or opposite of the direction of the vector a,
accordingly as m is positive or negative.

In particular, if m =0 then ma=0-a=0.
Properties
(i) (m+n)a=ma+na
(i) m(d+b)=ma+mb

(iii) m(na)= mna = m(na)

9.2.4 Collinear Vectors

Any set of vectors having the same or different magnitudes is said to be collinear if all
of them have the same directions.

In particular, when two vectors @ and b are collinear then we can write d = A- b
for any scalar A.

Here, we state a theorem on the collinearity of three points.

Theorem 9.1: Any set of three distinct points A, B and C will be collinear (i.e.,
lie on the same line) iff there exists three scalars o, B, ¥ (not all zero) such that

a a+B b+y ¢=0 and a+B+y=0

where @, b and ¢ are the position vectors of A, B and C respectively w.r.t
a vector origin.

Proof: Beyond the scope of the book.

9.2.5 Coplanar Vectors

Any set of vectors are called coplanar if all of them are parallel to the same plane.
Here, we state a theorem on the coplanarity of four points.

Theorem 9.2: Any set of four distinct points A, B, C and D (no three of them
are collinear) will be coplanar (i.e., lie on the same plane) iff there exists four
scalars a, B, ¥, & (not all zero) such that

o @a+B b+y ¢+86 d=0 and a+B+y+8=0

where a, I;, ¢ and d are the position vectors of A, B, C and D respectively
w.r.t a vector origin.

Proof: Beyond the scope of the book.
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9.2.6 Resolution of Vectors in Rectangular Cartesian
coordinate System

\.1"

Y

/ N

Figure 9.3

Let the unit vectors along the three axes OX, OY and OZ be i }, k respectively
and P(x, y, z) be any point.

From Fig. 9.3, it clear that PN is perpendicular to the XY plane and MN is paral-
lel to Y-axis.

So, OM=x, MN=y, NP=z and correspondingly, OM =xi, MN = i,
NP = zk.

Now from AOMN, ON =xi + y}

So from AONP, we have OP = xi + y; + 7k

Hence we can say for any point P (x, y, z), the position vector OP w.r.t some
vector origin O is given by OP = xi + y} + zlg, where the vector components of op

along the directions of X-axis, Y-axis, and Z-axis are respectively xi, yj and Zk.
Now ‘07" = \/xz —i—y2 +22.

So, the unit vector along the direction of OP is

OP xf+yj+zl€

‘a)‘ 2+ e
Observation:

Let us consider the two points 4 and B whose coordinates are (x;, y;,z ) and

(x5, ¥2,23). So the position vectors of 4 and B are OA = xlf+ylj+z11€ and
OB = xzf + yzj + z2/2 respectively.

So the vector AB, joining two points 4 and B is given by

E=ﬁ—m=(x2—x]);+()12—)11)}+(22—Z,l)k.
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9.3 SCALAR PRODUCT OR DOT PRODUCT OF VECTORS

9.3.1 Definition

The scalar product or dot product of two vectors a and b, where 6 is the smallest
angle between their directions, is defined by

Zi‘l;=|ii|‘l;‘c059

where |é| and‘lg‘ are magnitudes of a and b respectively (see Fig. 9.4).

a N
Figure 9.4

9.3.2 Geometrical Interpretations

The scalar product of two vectors is nothing but the product of the length of one vector
and the projection of the other to the former one.

9.3.3 Properties of Scalar Product
1) The scalar product of two vectors always yields a scalar quantity.
2) The scalar product of two vectors is commutative, i.e., @ b=b a.

3) Two non-null vectors a and b are perpendicular if and only if a b=0.

4) a*=a a=|d| |a| cos0=lal

A A N ~|12 A ~ A A A A
5) Here, i-i=1> =M =1. Similarly, j?=k*=1. Again, i-j=] k=
k-i= 0, where i , }, k respectively are the unit vectors along the three
coordinate axes.

6) Let a=a;i +a,]+ask, and b =byi +b, ] + bk

Then,d b =(aji +ayj+azk) (byi+b,j+bsk)=ab, +a,b, +azb,
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7) The angle between the vectors a and b is given by

a b

6 =cos™' -
@l B|

-1 a1b1 +a2b2 +a3b3

= COS
\/a12 +al+al \/bf +b3 +b3

8) Distributive property:
i (b+¢)=d b+a ¢

9) Component of d along b is given by

10) If ¢ b=a ¢ then a (b—¢)=0 implies the following facts.

@=0or b—c¢=0 ordis perpendicular to b-¢c.

i.e., =0 or b=¢ or a is perpendicular to b —¢.

Example 1

It |0?| =3 and ‘ E ‘ =4, then find the values of the scalar y for which the vectors

G +up and é - /JE will be perpendicular to each other. [WBUT 2005]

Sol. The vectors ¢+ 3 and & —uf will be perpendicular to each other if

(G +up)-(@-up)=0

ie., 07|2 —u? ‘B‘z =0
or w2 =9

' ‘5‘2 16
or, U —i%

9.4 VECTOR OR CROSS PRODUCTS OF VECTORS

9.4.1 Definition

The cross product, or vector product, of two vectors a and b , where 0 is the smallest
angle between their directions, is defined by

axb=1allblsinOn
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where |5| and ‘I;‘ are magnitudes of 4 and b respectively and 7 is a unit vector

perpendicular to both a and b and the direction of 7 is same as the direction of the

motion of a right-handed screw rotating from a to b (see Fig. 9.5).

B

Figure 9.5

9.4.2 Geometrical Interpretations

We have @b = [d|b|sin 6.

So, 5X5‘ = |5Hl§‘sin6 =0A-OB-sin8 =2xarea of AOAB = area of the paralle-
logram with the adjacent sides O4 and OB (see Fig. 9.5).

Hence, axb represents the vector area of the parallelogram whose adjacent sides
are the vectors G and b.

9.4.3 Properties of Cross Products of Vectors

1) The cross product of two vectors always yields a vector quantity.

2) Let a and b be any two vectors. Then, (a x b )= —(I; X a), i.e., cross prod-
uct is non-commutative.

3) Two non-null vectors @ and b are parallel or collinear if and only if
axb=0.

4) For any vector a, we have axa =0.
5) Here, fef:}e}:l@el@:ﬁ.Again fe}:ﬁ, }eﬁ:f, ﬁef:}, where

i , }, k respectively are the unit vectors along the three coordinate axes.
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6) Let a = a1§+ a2}+ a3i(\, and E = blg + b2}+ b3i(\

Then,
i j k
ach= a a, az
by b, by

= (ayby — azb, )i +(asby —aybs) ] +(a1b, — ayby )k

7) The unit vector n, which is perpendicular to both a and b, is given by

S

€

Q

n=

=0 or b=¢ or d is parallel to b—¢.

Example 2 _

Find a unit vector perpendicular to each of the vectors 2 -]+ 2k and 3i + ] —k and
obtain the angle between them.

—
[

N
Ql

Sol.  Letd=2i—j+2k and b =3i + ] —k.

Now,
g
axb:z —1 2
3 1 -1
=1(1-2)= j(-2-6)+kQ+3)=—i +8)+5k
So,

‘5x1§i=‘—f+8}+51€‘=\/‘12+82+52 =+/90
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Therefore, the unit vector is given by

axb —i+8)+5k

‘5X5‘ BNCT

n=

Now, the angle is given by

laxl;‘ o J90

b| V2241242232 12 4 2

Example 3
LoV a2 s 72
Show that (axb) =a*h* —(a-b)’.

_ _ 2
Sol. For any vector a, we have a’ = ‘a' . So,

(axb) =|axd[
= |a”|2 ‘I;r -sin’ @

2 )
b[ (I—cos” 9)

- |5|2 ‘
~[af’ {5 ~JaP 5[ -cos’0
a*b* —(a-b)?

9.5 SCALAR TRIPLE PRODUCTS

9.5.1 Definition

Let d, b and ¢ be three vectors. Then the scalar triple product of a, b and ¢ is
defined as a- (b x¢).

It is always a scalar quantity and is denoted by [abe].

Geometrically, it represents the volume of a parallelepiped whose coterminus edges

are d,b and c.



Vector Analysis I 9.11

9.5.2 Properties of Scalar Triple Product

1) Let a= a1§+a2}.+a3k’\, E = b12+b25+b3]€ and ¢ = le+(:2}+03k’\ then

- a a, a3
[abe]=|by b, b
€ € €3

2) [db¢] =[béal = [¢ab] = —[ach] = —[bdc] = —[cbal.

3) [f, }, Ig] = [f, 12, f] = [l@, f, }] =1, where f, }, k respectively are the unit
vectors along the three coordinate axes.

4) The three nonzero vectors d, b and ¢ are coplanar if and only if

[m}a] =0ie,d (bxc)=0

9.6 VECTOR TRIPLE PRODUCTS

9.6.1 Definition

Let G, b and ¢ be three vectors in three dimensions. Then the vector triple product of

5,5 and ¢ is defined as

ax(bxé)=(a ¢) b—(a b) ¢

9.6.2 Properties of Vector Triple Products

1) Let a, b and ¢ be three nonzero vectors. Then, a x (bx¢)#(ax 5) XC.
2) If any two of the nonzero vectors d, b and ¢ are parallel or equal then,
ax(bxé)=0

3) (bxé)xd=-dx(bxé)=(d b) ¢—(d ¢) b.

9.7 STRAIGHT LINE

9.7.1 Equation of a Line Passing Through a Given Point
and Parallel to a Given Vector

Let 4 be the given point whose position vector is @ w.r.t the origin O, and also sup-
pose the line is parallel to the given vector b. Let P be any point on the line and its
position vector is given by 7.

Then the equation of the required line in vector form is given by 7 =da + th, where
¢t is any scalar.
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Figure 9.6

Note: The equation of the line passing through the origin is 7 = tb, since a=0.

Example 4 Find the equation of the line through the point (-2, 1, 0) and paral-

lel to the vector 57 — 3}’ +4k.

Sol. Here, the given point is (-2, 1, 0), whose position vector is a and the vector
b=5i —3}‘ +4k represents the point (5, —3, 4).
Also, 7 1is the position vector of any arbitrary point (x, y, 2).

We have from the above section, the equation of the line as 7 =a + tb for any
scalar .

Therefore,
(x’ Y, Z) = (_2’ Ia 0)+Z(59 _39 4)
which implies

x+2 y-1_z-0
5 -3 4

=1

Hence the required equation of the line is

9.7.2 Equation of a Line Passing Through Two Points

Let 4 and B be the given points whose position vectors are a and b respec-
tively w.r.t the origin O. Let P be any point on the line and its position vector is
given by 7.
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Figure 9.7

Then the equation of the required line in vector form is given by
F=ti+(1-1)b (1)

where ¢ is any scalar.

Note: Let the coordinate of the points 4 and B are (x,, ¥,,2,) and (X, ¥, ;)

w.r.t the rectangular Cartesian coordinate system. Also, P(x, y, z) be any point on
the line. Then, from (1) we have

(X, Vs Z):t(x2a y2522)+(1_1)(x1’ ylazl)
which gives

X=X _ V=N _Z274

Xop=X V=N D4

=1.

This is the equation of a line through two given points in three-dimensional Cartesian
coordinate system.

Example 5 | Find the equation of the line through the points (2,3,4) and
(3.4,5).

Sol. Here» (xl s Y1s 2 ) = (29 37 4) and (X29 Y2, ZZ) = (3’ 49 5)
Hence the required equation of the line is

X=X _Y=h _ 274

X=X = T4

x=2 y-3 4
or, = =

3-2 4-3 5-4
or,x—2=y-3=z-4
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9.8 PLANE

9.8.1 Equation of a Plane Perpendicular to the Unit Vector
A and Passing Through a Point whose Position
Vector is a

o

Figure 9.8

Let A be the given point whose position vector is a. Suppose ON is perpendicular
to the plane and ‘W‘ = p, length of the perpendicular from the origin. Also, consider
P to be any point on the plane whose position vector is 7. Here ON = p-n and
OP=7.

Then the required equation of the plane is given by 7 -7 = p. This is known as
normal form of the equation of the plane.

Note: If the plane passes through the origin then the equation becomes 7 -7 = 0.

9.8.2 Equation of a Plane Passing Through a Point whose
Position Vector is a and Parallel to Two Vectors b
and ¢

Let P be any point on the plane whose position vector is 7.

Then the required equation of the plane is [FI;E 1= [ZzI;E 1.

9.8.3 Equation of a Plane Passing Through Three Given

Points
Let the position vectors of three points be a, b and ¢ respectively. Then b-a

a
and ¢—a lie in the same plane. So, (E—G)X(E—ﬁ) is perpendicular to the plane.
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Let P be any point on the plane whose position vector is 7. Then also 7 —a is per-
pendicular to (l;—ﬁ)x(é -a).
So,

(F-a)-{(p-a)x(c-a) }=0

which implies

is the required equation of the plane.

Example 6 Find the equation of the plane through the points A(2, -1, 4),

B(3,4,7) and C(-2,3,-1).

Sol.  Here AB=(1,5,3) and AC = (-4, 4,-5).
Let P(x, y, z) be any point on the plane.
Here ABXAC = (=37,-7,24) is perpendicular to the plane and
AP = (x—2, y+1, z—4) lies on the plane.
So, AP is perpendicular to ABx AC. Therefore
AP. {;I_Ex A—C} =0
or, (-37,-7,24)-(x-2, y+1,z—4)=0
or, =37(x—2)-7(y+1)+24(z—4)=0.

This is the required equation of the plane.

9.8.4 Distance of a Point from a Plane

Let the position vector of the given point be a and the equation of the plane be
7-n= p, where 7 is normal to the plane.

Then the required distance is
|p—a-i|

|
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9.9 SPHERE

9.9.1 General Equation of a Sphere

P

Figure 9.9

Let the radious of the sphere be a, and ¢ be the position vector of its centre C. Also,
let P be any point on the sphere whose position vector is 7.

It is clear from the figure that CP=7-C.
Again ‘ﬁ”z = a*. Therefore

(F-c) =d

ie, (F)-2-F.¢+(6) -a> =0

This is the required equation of the sphere.

Note:

(1) If the centre of the sphere is the origin, i.e., ¢ =0 then the equation of the
sphere becomes

(7Y =d.

(2) 1If the origin lies on the sphere then (¢ )2 = 4*, and correspondingly the equa-
tion becomes

(F)’ =2-7-¢=0.

9.9.2 Equation of the Sphere with Given Diameter Ends

Let @ and b be the position vectors of the ends of the diameter of the sphere.
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Then the equation of the sphere is given by
(F—a@)-(F—b)=0

where 7 is the position vector of any arbitrary point on the sphere.

WORKED-OUT EXAMPLES
Given two vectors @ = 3i — ; and B =2+ }—3/2, express B in

the form of B, + B,, where J, is parallel to ¢ and f3, is perpendicular to @.

[WBUT-2005]

Sol. Since Bl is parallel to @ and f, is perpendicular to & then

Bl = ka and Bz -a =0 where k is any scalar
Now,

Therefore,

0r,k=ﬁ;a
~12
|ci
g Giri=3bGi-]) 5 1
’ (3)* +1? 10 2
Therefore,

- 1 N 2
B = ka=5(3l )

and

B,=B-PBi=Qi+j- 3k)——(3l—/)——l+2j 3k
Example 9.2 | Let @, 5,7 be unit vectors satisfying &-f=0 and ¢ -7 =0. If
the angle between 5 and 7 is % then show that ¢ =+2 (S x7).

Sol.  Here | :‘B‘ =|7|=1
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Therefore @ is perpendicular to 5 and 7
Therefore,

a = (B x7), t being a scalar

Therefore,
~ 2
6 =[«(Bx7)

or,1=¢> {‘ﬂ—‘msin %F

2
or,1—z2{1~1-l}
2

or,12:22:>t:i2

Hence

0 =+2(Bx7)

A D oa . NP I
Example 9.3 If a,b,c are unit vectors such that ax{(bx¢) = Eb’ find the angles

which & makes with b and ¢.
Sol.
Here,
NP
axX(bxc)=—>b
(bXc) 2
Therefore,

A~

GOV -b—(G4-b)-6=—b
(a-¢)-b—(a-b)-c 2

Equating coefficients of b and ¢, we get

PN |

c)=— ...(1
(a-c) > (1)
and
(G-b)=0 (2
From (1),

’&’ ’6‘ cosf = %where 6 is the angle between a and ¢

=1

a1 . R o
or, 9 = COS ! —_=— SlnC6|(ti = iC
2 3
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From (2),

|&||I;| cos¢ = 0 where ¢ is the angle between @ and b

- V3
or,p=cos  0=—
¢ 2

Therefore, the angle between & and b is % and the angle between a and ¢ is %

Example 9.4 Given three vectors a,b,c, prove that 5><(l; ><E)=(5-E)-I;—

-C. [WBUT-2005]

Let

a =a,f+a2}+a3k,/; =b‘l,'\+b2‘;+b3k,g =C1;+C2}+C3k

Now,
) PGk
bxi=|b b b
Cl C2 C3

= i(byes —bycy) = J(bey — e 1by) +k(bycy —c1by)
Therefore,

) i b k
ﬁx(b XZ) = ap a, as

(bycy —bses) ~(byes—ciby) (s —ciby)
= f[az (bycy —1by) + a3 (byey —cby)]
— jlay(byey —eiby) —as(byes —bscy)]
+hl—ay (b3 — e 1b3) — a3 (byc; — by )]
= f[(a2c2 +azcy +aycp)b 1+ }'[(azcz +aszcy +ajcy )by |
+k:[(azcz +ayc3 +aycy )by ] — f[(azbz +azby +ajby) ¢ ]
—Jl(ayh, + ashy +ayh,)cy ] - é[(azbz +ayhy +a;by)cs ]
=(ayc, +azc; tapcy) (byi +by j+ b_;lg)

—(azbz +(l3b3 +alb1 )(Cl;+C2}+C3]2)
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= {(a|f + azj +a31€) : (c‘f +c2} +C3I€)}(b|f +b, }'+b3l€)

—{(ayi +ay ] +ask)-(bi +by ] +bsk)} ()i +¢y ] +3k).

=(a-¢)-b—(a-b)-¢

Example 9.5 Find the constant m such that the vectors a=2i —_}'+I€,

b= f+2}—3/€, C= 3?+m}+5l€ are coplanar.

Sol.

[WBUT-2004].

The three nonzero vectors @, b and ¢ are coplanar if and only if [555 1=0,

which implies

2 -1 1
1 2 -31=0
3 m 5

or, 2(10+3m)+1(5+9)+1(m—-6)=0
or, Tm+28=0

or, m=—4

If a, 5,5 are three vectors, show that
[Gxb, bx¢,éxal=[a,b,c].
Sol.
[axh,bxc,cxa)
= {(@axb)x(bx2)}(¢xa)
= {(p-)-b-(p-b)-c}(cxa), where p = (axb)
=(p-¢)-b-(¢xa)—(p-b)-¢-(¢xa)
=(p-é)-[b, ¢, al—(p-b)C, ¢, d]

=—{(axh)-c}[b, a,¢]-0, since [¢, ¢, a]=0

[WBUT 2006, 2009]
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PART-II (VECTOR DIFFERENTIATION
AND GRADIENT, DIVERGENCE, CURL)

9.10 VECTOR FUNCTION OF A SCALAR VARIABLE

9.10.1 Definition

If for each value of a scalar variable ¢, there corresponds a unique vector f then f is
called a vector function of the scalar variable ¢ and is denoted by f(z).

If the components of a vector function f(r) along the coordinate axes be

f](t), fz(t), f3(t) then the vector function f(t) is written as

£(1) =F1(0)i +£2(1)] + 5 (Dk.

The position vector of a point P in three-dimensional space with respect to a
vector origin is a function of a scalar variable 7 and is denoted by,

F(1) = x(1)i + ()] + z(k.

9.10.2 Limit and Continuity of a Vector Function
Limit of a Vector Function

A Vector function f(t) is said to tend to a limit @ as ¢ tends to s, if for any pre-
assigned positive number &, there exists a small positive number &, such that

[f(t)=a| <&, when |r—s|< 8
Limit of a vector function is denoted by

limf(r)=a

1—s

Continuity of a Vector Function

A vector function f(7) is said to be continuous at a point s if
lim £(7) = £(s)

—s

9.11 DIFFERENTIATION OF VECTOR FUNCTIONS

The ordinary derivative of a single-valued function f(#) with respect to ¢ is defined as

di(t) _ fim f+80)—1()
dt 5t—0 5l

provided the limit exists.
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9.11.1 General Rules for Differentiation

b d@+h) _da  db
dt dt dr

2) d(a-b) b) 5.9 pda da
dt dt dt

3 d@xb)_; & di;
dt de dt

5) —{ax(b><c)} d—;X(bXC)+aX(%XCJ+aX(Z;X§]

d(¢a) _

)dz

q) where ¢ is any scalar
dt

9.12 SCALAR AND VECTOR POINT FUNCTION

If for every position of a point in space, a physical quantity has one or more definite
values assigned to it then it is said to be a point function. If the point function has only
one value at each point then the function is called a single-valued function.

9.12.1 Scalar Point Function

f is said to be a scalar point function of 7 if for every value of 7, there corresponds
a definite scalar quantity /. The scalar point function is denoted by

J@F)or f(x,y,2)

where 7 is the position vector corresponding to any point P (x, y, z) in the space.
The scalar point function will constitute a scalar field, for example,

(x, y,z =x>+ y+xyz.
Yy Y+ xy.

9.12.2 Vector Point Function

F is said to be a vector point function of 7 if for every value of 7, there
corresponds a definite vector quantity F.The vector point function is denoted by

F(7) or F(x, y, )

where 7 is the position vector corresponding to any point P (x, y, z) in the space.
The vector point function will constitute a vector field, for example,

F(x, y,2)=x2% +yz) + 2k
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9.13 GRADIENT OF A SCALAR POINT FUNCTION

9.13.1 Definition

Let ¢(x, y,z) be a scalar point function differentiable at each point in a certain region

R of space. Then the gradient of @, denoted by grad ¢ is defined by,
grad ¢ = V(x, y,2)

=(i?+i A'+i/2] o(x, y, z)
oz

ox dy
_(90; 29 29,
_[Bxl+ayj+azk]

9.13.2 Properties of Gradient of a Scalar Point Function

1) The necessary and sufficient condition for a scalar point function ¢(x, y,z) to
be a constant is

Vo(x, y,2)=0

2) If ¢(x,y,z) and y(x,y, z) are two scalar point functions then,
V{p(x, y, 2 W (x, y, 2)} = VO(x, y, ) £ VY (x, 3, 2)

3) If ¢(x,y,z) and y(x, y, z) are two scalar point functions then,

Vid(x, y, 2) w(x, y, 2)} = ¢(x, y, VW (x, y, 2) + W(x, y, 2)VP(x, y, 2)

4) If ¢(x,y,z) and y(x,y, z) are two scalar point functions then,

6[ ¢(x, y, z) J 2= W(xa Ys Z)§¢(x5 ¥, 2)—9(x, y, Z)Vl[l(x, ¥, 2)
w(x,y,2) {w(x,y,2)}?

5) If ¢ is a constant and ¢(x, y, z) is a scalar point function, then

V(co(x, y,2))= c(W(x, s z))
If r=|F| where 7 = xi +yj +zk, prove that

Soell) 7
o)

iy V")=nr""%F [WBUT 2004]
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Sol.  Here,7 = xi +yj+zk, so r=|F|= 2+ + 2 =2 =yt + 2

MO RO
r ox\ r ay\ r 0z

~ 1 x Al ~1 z
L T TX_kT_
r-r r-r rer
. r
=—()a+yj]+zk)=——3
r r

ii) Since =+ y2 + zz, we have

2rﬂ:2x:8_r:£

X ox r
Similarly, i=Xandﬁ=£
dy r oz r

Vi) = f%(r")+}§—y(r")+l€a%(r”)
18r

A _y or A 4 0r - —
=i = o = ken T =
ox dy 0z
2 -1 X~ - ~ -1Z
=i S o ko 2
r r r

=nr" 2 (xi + yj + k) = nr"

9.14 LEVEL SURFACE

Let f(F) or f(x,y,z) be a scalar point function over a region in space. Then the
points (x, y, z) in the region satisfying the equation f(x, y, z) =c constitute a family
of surfaces.This family of surfaces is called a level surface determined by f, for

example, X+ y2 —2z =15 is alevel surface, determined by the function f(x, y, z) =

x3+y2—2z for ¢ =5.

9.15 DIRECTIONAL DERIVATIVE OF A SCALAR POINT FUNCTION

9.15.1 Definition

Let @(x, y, z) be a scalar point function possessing first-order derivatives. Then the
directional derivative of ¢(x, y,z) at P(x, y,z) along the unit vector g, where

a=a)i+a,j+azk is given by
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_ (9¢ - a¢A a¢A\
Vo a= (ax ay az J (alt+a21+a3k)

dox dy az

9.15.2 Observations

1) Directional derivative is the rate of change of ¢ at (x, y, z) in the direction

of a.
2) The directional derivative along along any straight line can be expressed in

terms of those along the coordinate axes.
3) The directional derivative at P(x, y, z) along the reverse direction will be

do _ 3¢ 3¢ a¢

ds E)x ay P %

Example 8 Find the directional derivative of ¢(x, y, z)=xy’z+x’z

at (1,1,2) in the direction (2?+j —2k).
Sol. Here,
Vo(x,y,z)= [ax ;+$}+a—z
= (yzz + 2xz)f + 2xy:;} + (xy2 +x2 )Ig
Now, Vé(1,1,2) =61 +4] +2k.
The unit vector in the direction (2f + } - 212) is

Qi +j-2k) 3A+1} 2,

3 3

21:
22412422

The directional derivative is

?¢(1,1,2)- _(61+4]+2k) (—; +;]—§k]

9.15.3 Properties of Directional Derivative of a Scalar Point
Function

Theorem 9.3: The directional derivative of a scalar field ¢ at a point P(x, y, z)
in the direction of the unit vector a is given by

d¢ _ o
ds =V¢-a
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where s is the distance of the point P(x, y, z) from some fixed point in the direction
of a.

Theorem 9.4: The directional derivatives of a scalar point function ¢(x, y, z) in
the directions of X,Y and Z-axes are

o9 d¢ . ¢

and — respectivel
ax’ dy oz P ¥

Theorem 9.5: Let 1 be a unit normal vector to the level surface ¢(x, y,z) =c at
a point P(x, y,z), n being the distance of P(x, y,z) measured from a fixed
point in the direction of 7. Then,

o)

i.e., the direction of V¢ is normal to the level surface.

Theorem 9.6: The directional derivative of a scalar field function ¢(x, y, z) is maxi-
mum along the normal to the level surface ¢(x, y, z) = ¢, and the maximum value is

Vol e )il<

dn
Example 9 Find the maximum value of the directional derivative of

o(x, y,z) = x> +z> —y* atthe point (1,3, 2).
Sol. Here,

Vo(x, y,2)= [¢ af} g—flgj

=2xi — Zyj +2zk.

At (1,3,2), Vo(1,3,2)=2i —6]+4k is the direction in which the direc-
tional derivative is maximum.

The maximum value of the directional derivative is

Wq)(l, 3, 2)\ = ‘22—6}+41§‘ =22 +6% +4> =214

9.16 TANGENT PLANE AND NORMAL TO A LEVEL SURFACE

Let ¢(x, y, z) = c be the equation of a level surface. Then,
i) the equation of tangent plane at P(x, y,z) is

¢

(X - x)a +(Y - y)a¢+(Z % =0
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ii) the equation of the normal at P(x, y, z) is
X-x) Y-y)_(Z-2)
9% 9 9
ox dy oz

Example 10 | Find the equation of the tangent plane to the surface xyz =4 at the

point (1, 2,2). Find also the equation of the normal line at that point.

Sol. The equation of the level surface is @(x, y, z) =xyz—4=0.
Now,

9 _ 99
yZ,a

_‘P:
o T

and 21,2224, 21,22 =200 2(1,2,2)=2.
ox dy 9z

The equation of the tangent plane at (1, 2,2) is
(-84 -2 rz-92 -
ay 0z

or, (x—1)4+(y—2)2+(z—2)2:0
or, 4x+2y+2z-12=0
The equation of the normal at (1,2, 2) is
X=x) -y _ (Z-2)

99 99 9

ox oy 0z

. x=-D_ (=2 (z-2)
T4 2 2

Example 11 | Find a unit normal to the surface x° - y2 +z=2at(l,-1,2)

Sol. The surface is given by ¢(x, y, z) = x° —y2 +z-2.

Therefore,

S ¢ 00+ ¢ s oaa 7
Vo(x,y, +—j+— 2xi —2yj+k
O(x, y,2) = [Ebcl ay 3 ] xi —2yj
and Vo(1,-1,2) =2 +2] +k.

The unit normal to the surface is

—_——=—i 4+
V2242242 3

Another unit normal is —(%2 + %]A + % 12] in the other side of the surface.

20 +2j+k 2 g i
37

1L
"3
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9.17 DIVERGENCE AND CURL OF A VECTOR POINT FUNCTION

9.17.1 Definition

Let F = Flf + sz + F31€ be any continuously differentiable vector point function.
The divergence of the vector point function is defined by

- — — A '\\ ~ A ~
divF=V F=(ii+ij+§kJ (Fi +Fyj + Fyk)
74

dx dy
T oy oz

the summation being taken over all i , } and k.
The curl of the vector point function is defined by

— — — ~ A A\ ~ A A~
curl F=VXF = i+i '+2k X(Fi + F, j+ Fsk)
dx oy oz
i j k
_|9 9 9
ox dy oz
K F, F
curl F can also be written in the summation form as
VxF = if+i}+i/€ ><F=Zf-><a—F,
ox dy oz ox

the summation being taken over all i } and k.

9.17.2 Properties of Divergence and Curl
1) If F and G be two differentiable vector point functions then,
i) div(F+G)=divF+divG
ii) curl (F+G)=curl F +curl G

Proof:
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1l
>
Q)

~

z-.iizg.aaﬁ

ox
%

V.F F
(ii) curl (F +G) =(%E+%j+%/€jx(ﬁié)

=Y ><—(F+G)—Z [%ig
- Sixayixd

=curl Ftcurl G

2) If F be vector point function and ¢ be a scalar point function. Then
i) div(¢F)=V¢ F+¢divF
i) curl(9F)=VoxF+¢ curlF [WBUT-2004]

Proof

(i) div(9F)= [—1 +ij + 97 ](¢F)
dy 0z

=V¢-F+¢div F

= (9. 9~ -~ _
. F)= ; ) A
(ii) curl (9 F) (—axt +?)yj +?)zk]X(¢F)
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3)If F and G be two differentiable vector point functions, then
i) grad(F-G)=(F-V)G+(G-V)F +Gxcurl F+F xcurl G
ii) div(F xG)=G-curlF -F -curlG
i) curl (FxG)=F-divG-G-divF +(G-V)-F—(F-V)-G [WBUT-2003].

Proof:
(i) grad (F-G)

S » 3G ) (2 <20 )= =~ + OF
G+ F | X — G- Yi—I\F+G | X —
] + xZ(zxax}{ z:ax) % xZ[zxax]
=(F-V)G+(G-V)F +Gxcurl F+Fxcurl G
v e m 20 =
(ii) le(FXG)=Zla—(FXG)
X

= Zf~{a—F><G+F‘xa—G}

ox X

)l

=Gecurl F-Fcurl G
(iii) curl (FxG) = Vx(FxG)

N i OFEXG) | s [OF 5 s G
_Z{zx oy }_Z{zx[axxG-'-anx)}
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9.17.3 Irrotational and Solenoidal Vectors

A vector point function F is said to be irrotational if curl F =0 and solenoidal if
div F =0.

Example 12 | If the vectors A and B are irrotational then show that the vectors

Ax B is solenoidal. [WBUT 2004, 2006]
Sol. If the vector functions A and B are irrotational then

curl A=0and curl B=0

Now,

div (AxB)=V-(AxB)=B-curl A—A-curl B=B-0—A4-0=0
Since, div (2 X E) =0 therefore (; X E) is solenoidal.

9.17.4 Some Results on Second-Order Differential
Operators
Laplacian Operator
The Laplacian operator is defined as
2 2 2
w2 B2
o’ oy’ 32
If ¢ (x, y, z) be a scalar point function then
%, 0% ¢,
ax2 o’ 82
If v(x, y, z) be a vector point function then
2= 2= 2o
Vzv _ a 8 9V

——+—— is a vector quantity.
o ay 0z

Vi =

is a scalar quantity.
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The equation V<¢ =0 is known as the Laplace Equation
i) Let @(x, y, z) beascalar point function then, div (grad ¢) =V V¢ =VZ¢
Proof:

div (grad¢)=div(1 a(p +ja—¢ ka—q)]
X

dy 0z
=3 o {19,590, ;2

8x E)x E)y 0z
azq) 0’ o o, %
ox? ax ax

2 2 2
= a_2+a_ a ¢ V ¢
ox?  ox? ax
ii) Let ¢(x, y, z) be a scalar point function then,

curl(grad ¢) = Vx V¢ =0,

[WBUT-2005]
Proof:

curl (grad ¢)

=curl( —¢+J—¢ lga—q)]

ox “dy 0oz

_ X_(a_¢ 99 ,ga_¢]
ox| ox E)y 0z

2 2 2 2 2 2
=a<p_a(p;+a¢_a¢}+a¢_a(p/2
dydz 0dzdy 0z0x 0x0z 0xay

dyox
=0

iii) Let F(x, y,2)= 17",; + FZ} + F;Ig be a vector point function then,
div(curl F)=V(VxF)=0
Proof:
div (curl F )
=div curl {Fi + F> ]+ F3k}

_aivJ[2B 9B ) (R 3R, (3R R )
dy oz dz  ox

ox  Ox

(95 08, 0 (05 0B\, 0 (95 oR
ox| dy oz oyl dz  ox Jz| dx  ox
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iv) Let F(x,y,z)= 17‘1; + 17‘2 } + 17’312 be a vector point function then,
curl(curl F)=V x(VxF)=V(VF)-V*F

Proof:
Vx(VxF)
~ 0 OF ~ oF +~ OF
=Y ix—|ix—+jX—+kx—
ox by dy Z

x> 0xdy 0xoz

A e A N | R i
B o’ o’ axay | axay

(2 *F . PF - aZFJ
=21><Ll><—+]>< +kx

Using the formula ZIX(BXE):(ZI-Z’)I—?—(ZJ-Z)-E and since lAzA=]AjA=l€

i-j=]-k=k-i =0, we have from above

Vx(VxF)

| 9.33

=1,

* WORKED-OUT EXAMPLES

Example 9.7 | If ¢ =xy+yz+2zx and A= xzyf + yzz} +7%xk then find a)A- ?{])

b)¢-(V-A) ¢)V¢ xA at the point (3,—1,2)

Sol.
Here,

O=xy+yz+zx
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Now,

. d. 9. 9
Vo= —i+—j+—k )
(0 (ax +8y]+8z ](xy+)z+a)

= (y+2)i +(x+2)]+(x+ )k

VA izfﬁtiﬁ+il€ (x2y5+yzz}+zlez)
ox dy 0z
Jd d 5. 0 5
=—(x*y)+— +—(z°x
ax( ») ay(y z) aZ(Z )
=2(xy+ yz+zx)
At the point (3,—-1, 2)
Vo (3,-1,2)=i+5j+2kand A(3,—1,2) =97 +2] +12k
Therefore,
a) A-Vo=(=9i +2j+12k)-(i+5j+2Kk)
=-94+10+24=25
b) ¢-(V-A)=2(xy+yz+2x) (xy+ yz+2x) = 2(xy + yz + v)°

Therefore,

¢-(V-4)3,-1,2)=2(-3-2+6)* =2

—_— e

k
¢) Vo xA= 2
2

N D~

-9 1

=i (60—4)— j(12+18)+ k(2 +45)
=56i —30 +47k

Example 9.8 | If A=2x"1-2ygj+x’k and f=2z-x’y find a) A-grad / b)

Axgrad £ at (1,-1,1)

Sol.
Here,

grad f =(§_x;+aiyj+§z]€](22_X3y)

= —3x2y; - x3} +2k

Therefore,
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a) A-gradf=(2x71 ~2yzj +x2°k)(=3x7yi —x7 +2k)
=—6x"z+2x yz +2x7°
At (1,-1,1)
A~grad f=6
i j ok
b) A-xgradf=|2x> =2yz xz°
*3x2y 3 )
= i(4yz+atah) = @4 +3x7y2) + k(20" ~627y72)
At (1,—-1,1)
A-xgrad f =5i - j—8k

Example 9.9 | Find div F and curl F where F = grad (x* + y3 +z —3xyz)

[WBUT-2001, 2009]

Sol.
Here,

F=grad (x’ +y’ +2° =3xy2)

~d
=] —

)
ST+ 42 =3+ 4y 42 =30)

+/’gi(x3 +_v3 +7° —3xyz)
0z

= (3X2 - 3)‘Z)? + (3)*2 — 3xz)_; + (3:2 = 3xy)]€

Therefore,
. = o a ~ a ~ a 2 ~ 2 A 2 A
divF=|i—+j—+k— [Gx" =3y2)i +By” —3x2)j +(3z" =3xy)k}
ox “dy 0Jz
0 ., » d ., 1 d . -
=—3x" -3yz)+—Q@y" -3xz)+—(3z" -3
ax( x~ =3yz) ay( Y- —3xz) az( - =3xy)
=6x+6y+6z

and

curl B[ Jr}'iwéi x{(3x> =3yz2)i +(3y* =3x2)] + (32> =3xy)k}
ox “dy oz
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i

QO
Q) ~.>
QO =

R y PR
(3x2 —3yz2) (Sy2 -3xz) (3% - 3xy)

= (=3x+3x)i +(-3y+3y)] +(-3z+32)k=0

Example 9.10 | Find the directional derivative of f(x,y,z)= 2x2 43 y2 +z° at the
[WBUT-2001]

point (2,1, 3) in the direction of the vector i —2k.

Sol. Here,
flx, v, 2)=2x"+3y* +7°

Therefore,

= 8 2 8 ~ 8 n 2 2 2 2 - ~

Vf=|—i+—j+—k |Cx"+3y" +z7)=4xi +6yj +2zk
ox dy 4

At the point (2,1, 3)

VF(2,1,3)=8i+6j+6k
If & is the unit vector in the direction of i — 212, then

soiz2k_ 1. 2
=—=—] ——F
550 s
Therefore, the required directional derivative is
-4

Vf(Z,l.3)-&=(8i+6j+6k)[%§_%/§]= =

Example 9.11| Show that A = (6xy+2°)i +(3x> —2)j +(3xz% — y)k is irrotational.
[WBUT-2002, 2004]

Find the scalar function ¢ such that A= V¢.

Sol.
Here,
i i k
curl A= i i i
ox dy 0z
2

(6xy+7°) (3x*-z) (Bxz’—Y)

[0 ) 0 ., » NI 5 p) 3
=i| —Cxz" =) -=—0Cx" -2) |- j| =—Cxz"=y)-=—(6
l[ay( Xz —y) aZ( X Z)J ]_ax( X7 —y) aZ( xy+z )}
+k i(Ts)cz—z)—i(G)Q/-i-f)
ox dy
=i(-1+1)-jB3z2 =32%)+k(6x—6x)=0

Therefore, A = (6xy+ z )f + (3x2 - z)}' + (?axz2 - y)lg is irrotational.
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Since
Z=V¢=f—¢+}a—¢+lga—¢

ox “dy 0z
therefore,

99 _ 3,90 _ 32 99 _ 3 2
ax—(6xy+z ), ay—(3x 2), az—(3xz y)

Now,

dg = a—d)dx+a—¢dy+a—¢dz
ox dy 0z
or, d¢ = (6xy+ 13) dx + (3)c2 —-z7)dy+ (?axz2 -y)dz
or, dg = (6xydx + 3x2dy) + (2 dx +3xz°dz) — (xdy + ydz)
or, dp =3[ yd(x* )+ x*dy]+[ 2 dx + xd(z*)] - (xdy + ydz)
or, dp =3d(x*y)+d(xz>)— d(yz)
Integrating, we get

O(x,y,2)= 3x2y +x7° — yz+ ¢ where c is arbitrary constant.

Example 9.12 ] Show that curl grad /=0 where f(x,y,z)= X y+2xy+ 27,

[WBUT-2003]

Sol. Here,

fx,y,2) = x*y+2xy+ 7

Now,

grad f =(aa—xf+aa—y A’+B%I€](x2y+2xy+z2)

= (Q2xv+2)i + (x> +2x)] +27k
Therefore,
i j k
curl grad f = aa_x E)a_y 8%

Qxy+2) (x> +2x) 2z
=i(0-0)— j(0-0)+k(2x+2-2x-2)=0

Example 9.13 | In what direction from the point (1, 1, —1) is the directional deriva-

tive of @(x,y,z)= x? —2y2 +4z% a maximum? Obtain the magnitude of the direc-
tional derivative. [WBUT-2003, 2006, 2007]
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Sol. Directional derivative of ¢ is maximum in the direction of V.
Here,
$(x,y,2) = x> =2y” +47>
Therefore,

ox
= 2xf—4y;}+82]€
At (1,1,-1)

Vo= i;+i}+ié (x* —2y* +4z77%)
dy~ oz

Vo-(1,1,-1)=2i —4] -8k
Therefore, the directional derivative is maximum along 2 — 4} —8k.
The magnitude of the directional derivative is

Vo[ = 2> +(4)7 +(-8)° =2421

Example 9.14 | In what direction from the point (1,2, 3) is the directional deriva-

tiveof f = X - y2 +2z° amaximum? Also find the value of this maximum directional

derivative. [WBUT-2004]
Sol. Directional derivative of f is maximum in the direction of V.

Here,

flxy,=x> =y +27°

Therefore,

Vf = if+i}+ilg (x> —y* +27%)

ox dy oz
= 2xf—2yf+4zl€
At (1,2,3)

Vo-(1,2,3)=2i —4j+12k
Therefore, the directional derivative is maximum along 2i — 4}' +12k.
The magnitude of the directional derivative is

Wf\:«/f +(=4)% +(12)* =4/162
Example 9.1 If 7=xi+ y}+zl€ and r= |7 , show that grad f(r)x7 =6 where

0 is the null vector. [WBUT-2005]

Sol.  Here, r=|f|= Jxi+y +27
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Since f is a function of r

Therefore,
of _dfor
dx drox
= F() 3t 2x
. 2 xz T yz + Z2
_ )
r
Similarly,
9 _df or _ (0
dy drdy r
and
of _df or _zf'(r)
dz dr oz r
Therefore,
f P 3f f
grad f(r)= ay az —k
:vﬁ%+ﬁvg+fwé
r r
f( )(xz+v1+zk)
:fm?
r
Now,
grad f(r)x7 = (f tr) ij?
r
= m(?>< F)=0
B

Pw

. o1 - Lo
Example 9.16 | If v =wXxF7, prove that w = Ecurl v where w is a constant vector.

Sol.

Let,

?zxf+y}+zl€ andw=w12+w2}+w3l€
Therefore,

curl v = curl wx7
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ik
=VX|w, wy, wy
Xy z

=Vx (Wrz2—=w3y)i +(W3x —w;2)j + (W y —wax)k

i j k
- 9 9
ox dy 0z

(Wyz—w3y)  (w3x—wiz)  (wy—wyx)

= f[(%(w}x -w2)— aa—z(w3x — wlz):| —} [%(le — W5 X) —a%(wzz — w3y)]

+k [%(Wﬁc -wW2)— aa—y(WzZ ~ w3y):|

= ;(Wl +w))+ j(wz +w,) +I€(W3 +wy)
= 2[w|f + wzj + w3/2] =2w

Therefore,

P 5
w=—curl v
2

Example 9.17 | Find a unit normal to the surface x2y+2xz=4 at the point

(2,-2,3).

Sol. Let
o(x,y,2)=x"y+2x7—4
Now,

= dr 0~ 0=r) 2
Vo(x,y,z)=| —i+—j+—k [(x*y+2xz—4
ez ox dy 0z ) )
=Qxy+ 22)1T + xzj +2xk
At the point (2,—2,3), the normal to the given surface is —2i + 4]’ +4k
The unit normal to the surface is

20 +4]+4k

1
JEO +drad? 3
Example 9.18 | Determine the constant a so that the vector 17=(x+3y)f +

(y —?_z)]' +(x+ az)lg is solenoidal.

Sol. Since the vector V is solenoidal divv =0
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or,[ 27+ 95,94 ((x+39) +(y—22)] +(x+an)k} =0
ox dy 0z

or,%(x+3y)+§—y(y—2z)+a%(x+az)=0

or, 1 +1+a=0

or,a=-2

Example 9.19| A particle moves on a curve x= 217, y= t*—4t and z=3r-5

where ¢ denotes time. Find the components of velocity and acceleration at time 7 =1
in the direction i —37 +2k. [WBUT-2002, 2009]

Sol.

Let 7 be the position vector of any point on the given curve. Then
F=xi+y+zk=200+(> -4+ Gt -5k
Therefore, velocity of the particle is
V= %: Ati +(21—4) j+3k
t

At t =1, the velocity is
(¥l =41 —2j+3k
The acceleration of the particle is

AT 45 42;

dr’
At t =1, the acceleration is

a

Gl =4i+2]
Let
a=i-3j+2k
Therefore, the component of velocity along @ is
V@ (4 —2]+3k)G —3]+2k) 814
@ J14 7
Therefore, the component of acceleration along @ is
a-a (42 -3j+26) 14

|| V14 7

Example 9.20 | Evaluate[F, 7, 7] where 7 = acos ui +asin uj + buk.

Sol.

[WBUT-2008]

Here

7 =acosui +asin uj + buk.
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., dr .o Ao
¥ = — = —qgsin ui +acos uj +bk
u
2
o r 2 e
= =—acos ui —asinuj
2
du
Therefore,

acosu  asinu  bu
— = W .
[F, 7,7 ]=|—-asinu acosu b
—acosu —asinu 0
= —acosu{basinu—buacosu}+ asinu{bacosu+ buasinu}
= —ba® cosusinu+ ba*ucos u+ ba* cosusinu + ba’usin’ u

2 2 .2 o
=bau(cos” u+sin” u)=hba"u

Example 9.21 | Find the angle between the surfaces x° +y’ +7 =3xyz=5 and

x2y+y’z+7°x—5xyz=8 at the point (1,0,1). [WBUT-2008]
Sol.

Let

fy,2)= x> +y3 +7° -3xyz-5

¢(x,y,2)=x"y+y z+2°x—5xyz—8

=3(x% = y2)i +3(y* = x2)] +3(2 —xy)lz
VF(1,0,1)=3i =3]+3k
Vo= 99 +a—¢ +== 9% ; k
&)x ay 0z
=Q2xy+ z —Syz)z +(x7+ 2yz —5xz)j' + (y2 +2xz~ 5/\’)7)12
Vo(1,0,1)=i —4]+2k
Let 6 be the angle between the surfaces. Then
L VYo
[V£[[¥9]
L Bi=3j+3k)i —4]+2k)
32482 4P 34502
o 21 7
———=cos —
V27421 3

0 =cos

= COS

= COS
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Example 9.22 | Find the directional derivative of f(x,y,z)= )62yz+4)cz2 at the

point(1,2,—1) in the direction of the vector 2i — j — 2k [WBUT-2008]

Sol.

Here,

fx,y,2)=x*yz+4x7

%) %) 0z
=(2xyz+ 47%) i+ xzzj~ + (xzy + 8xz)l€
Therefore,

VF(1.2,-1)=— j—6k
Therefore, the directional derivative in the direction 2i — } —2k is

— -2k . 1 13

Vi, ~1)2 =(=j—6k)=(2i — j—2k)=—
‘21 = 2k‘ 3 3

Example 9.23 | Find the equation of the tangent plane and normal line to the surface

2xz% —3xy—4x=7 at the point (1, —1,2).

Sol.

Here,
d(x,y,2)= 2xz2 —3xy—4x-7
Therefore,
% 22 -3y-4, % —3x, 9 _ 4xz
dx dy 0z
At the point (1,-1,2).

¢

o (b-1.2)=7, ¢(1—1 2)=-3, ¢(1 ~1,2)=8

The equation of the tangent plane at the point (1,—1,2) is given by
99
ox
or,7(x—1)— 3(_» +1)+8(Z 2)=0
or,7x-3y+8z=26
The equation of the normal to the surface at (1,—1, 2) is given by
(x=1) (v+1) (z-2)

a9 29 29

%

LD _0+D_(-2)

7 -3 8

—(x —1)+—¢( +1)+ ¢(z 2)=0
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s r,—,
t| Tt dr’ dt dr

- 2 - 3
Example 9.24] Prove dil:r dr d_r]=[~ dr d_r]

Sol. Now,
d|. dF d%
Llpar ar
dt| T dr’ ar?
dr dr d&°F | |. &°F 4% | |. dF &F
el Bt R S + ry—7,—5 + ry—,—=
dt dt’ dr’ dr* " dr’ dr dr’
_dF &F | . dr di d°F _d¥F 4
=|7,—,— |since| —,—,— |=0,|F,—,— [=0
tdr dt dt dr* dr* " dr’

Example 9.25 | Find the constants a and b so that the surface ax® - byz=(a+2)x

will be orthogonal to the surface 4x7 v+ 2> =4 atthe point (1,—1,2).

Sol. Since, (1, -1, 2) lies on the surface ax? - byz=(a+2)x.
Therefore,
a+2b=a+2=b=1
Let the given surfaces are,

fx,y.2)= ax® —-byz—(a+2)x

and
O(x,y,2)=4x’y+2° —4
Therefore,
Vi(x, y,2) = (;i+}i+l€i {ax® —byz—(a+2)x}
ox “dy oz
={2ax—(a+2)}f—z}'—yl€
Vo(x,y, z)=(fi+}‘i+1€i (4x2y+7° —4)
ox “dy oz
= 8xyf + 4x2} +372%
Now,

Vi(1,-1,2)=(a—2)i =2 +kand Vo(1,—1,2) = —8i +4] +12k
Since the surfaces are orthogonal

VI,-1,2)Ve(l,-1,2)=0

or,{(a—2)i —2]+k}{-8i +4]j+12k} =0
or,—8(a—2)-8+12=0
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5
or,a=—
2

Therefore, a = % and b=1.

Example 9.26 | Show that F = (ysinz—sin x)f +(xsinz+ 2yz)]A' +(xycosz+ y2 )12

is irrotational. Find a scalar function ¢ such that F =V¢.

Sol.

Here,

F =(ysinz—sin x)f+(x sinz+2yz)}' +(xycosz+y2 )12

Now,
i i k
curl F = i i i
ox dy 0z

(ysinz—sinx) (xsinz+2yz) (xycosz+y2)
= (xcosz+2y—xcosz—2y)f—(ycosz—ycosz)j+(sinz—sinz)1€ =0

Therefore, F is irrotational.

Since,
F=Vg.
or, (y sinz—sinx)f +(xsinz+2yz)}+ (xycosz+ yz)lg = a—¢;+ a—¢f+ 8_¢12
ox dy” 0z
Therefore,
6‘_(1) =(ysinz—sinx), 8_(]) =(xsinz+2yz), 8_(]) = (xycosz+y2)
ox dy 0z

Now,

9 , 099 . 09
dp=2LLax+2%ay+ 224
¢ ox x+ay y+az ¢

=(ysinz—sinx)dx+ (xsinz+2yz)dy+ (xycosz+ yz)dz
= (6xydx + 3x2dy) +(Pdx+3x7%d7) - (zdv + ydz)
=3d(x*y) +d(xz") - d(y2)

Integrating, we get,

o(x,v,2) =3xzy+xz3 —yz+c

where c¢ is an arbitrary constant.
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PART-III (VECTOR INTEGRATION)
9.18 GREEN’S THEOREM IN A PLANE

9.18.1 Cartesian Form

Let us consider two continuous functions M(x, y) and N{(x,y) of x and y possess-
. . . o oM ON . . . .

ing continuous partial derivatives 5 and — inaregion R on the two-dimensional

y X
xy plane bounded by a closed curve C.
Then, Green’s theorem states that
ON oM

{M(x, y)dx+N(x,y)dy}= (———] dxdy
gc‘) -[!ax dy

where the line integral along the curve C is taken in the anticlockwise direction.

9.18.2 Vector Form

Let F=M(x,y) f+N(x, y) } and 7 = xf+y}' where M and N have continuous
partial derivatives in a region R on the xy plane bounded by a closed curve C .
Then,Green’s theorem states that

gSF’df:”(?xﬁ)-l% dxdy
C R

Note: Using Green’s theorem, we are able to transform a double integral over a closed
region into a line integral along the boundary of the region and vice-versa.

Example 13 | Verify Green’s theorem in the plane for gg{(xy+y2) dx + x>dv)
c

where C is the closed curve of the region bounded by y=x and y= x?.

[WBUT 2001, 2003]

Sol. We have Green’s theorem as

N oM
M(x,v)dx+ N(x,y)dv}= — — —— |dxdy.
gcﬁ{ (x,¥) dx+ N(x, y) dv} jRj(ax anyy

So, for the given problem
M(x,y)=(xy+y*)and N(x, y) = 2*.
Then

oM

—=x+2yanda—N=2x.
dy ox
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Figure 9.10

From Fig. 9.10, it is clear that

9S(de + Ndy) = g@(de + Ndy) + gﬁ (Mdx + Ndy)
C

C c,

where C, :y:x2 and G, : y=ux. So,

9S(de + Ndy) = qﬁ{(xy +v))dx + x2dy} + g; {Cov+y2)dx + x2dy)
C

G G

Now, on the curve C;: y:xz, dy=2x-dx and on the curve C,:y=x,

dy = dx.
Then from above

Cﬁ(de + Ndy)
c

1 0
=J{(x»x2 +x*) dy+ 22 ~2xdx}+J{(x~x+x2)dx+x2dx}
0 1
1 0
:J.(3x3+x4)dx+.[3x2dx
0 1

4 5!
- 3L+x_ +[X3](1)=—L
4 5 0 20

Now, we find the double integral

1 y=x
H[%—i]—aa—ﬁ;l]dxdy=j}-[ {2x—(x+2y)} dxdy
R 0

y=x*
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1 y=x |
= J. J (x—=2y) dydx = J'[xy_yzlyzxz i
Oy=rd 0 y=x
1 -1
=J’()C4 _x3)d)(=_
0 20

In both the cases, we have the same value for the integrals. Hence the Green’s
theorem is verified.

Example 14 Evaluate using Green’s theorem

Cj}{(cosxsin y—Xxy) dx +sin xcos ydy}
c

where C is the circle x* +y> =1. [WBUT 2004]

Sol. Let M =(cosxsiny—xy) and N =sinxcosy.
Now by Green’s theorem, we have

ON oM
{M(x,v)dx+N(x,y)dv}= [———]dxdy
93 JI;[ ox dy

Now,

M oON
—— =cosxcosy—x and — = cos xcos y
y ox

So,

qg{(cosxsin y—Xxy) dx +sin x cos ydy}
c

= H(cos XCOsy—cosxcosy+ x) dxdy
R

=dexdy ()
R

Let x=rcos@ and y=rsin6.

Then (1) becomes

95{(cosxsin y—xy) dx+sinxcos ydy}
c

= 'U xdxdy = J‘:jo.[rlor cosO - rdOdr
R

= (-[92:0 cos0do ) (J::O r )

=Oxl=0
3
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9.19 GAUSS’ DIVERGENCE THEOREM

9.19.1 Cartesian Form

Let F = F]f + F2} + F;lz. Then Gauss’ divergence theorem can be written as
JF, OF;
‘”‘J‘( Ly =24 8 dedydz ” (Fydydz + F,dzdx + F3dxdy)
dy
where V is the volume enclosed by the closed surface S.

9.19.2 Vector Form

Let F be a vector point function possessing continuous first-order partial derivatives
in the volume V bounded by a closed surface S. Then Gauss’ divergence theorem
states that

jlj?-ﬁdV:J!ﬁ-ﬁ.ds

where 7 is the outward drawn unit normal vector to the surface S.

Example 15 | Evaluate the volume integral J.J.J‘V -Fdv
4

where F =(x* - zz)f + 2xy} + (y2 + z)]g bounded by the planes x=y=z=0
andx=y=z=1.
Sol. Here,
F= ()c2 —zz)l?-i-nyj+(y2 +z)12
and

L 9., 5 0 d
V=2 =)+ ZQxy) +— (37
ax(x z )+ay( xy)+az(y +2)

=2x+2x+1=4x+1
Therefore,

jl V-dezii

(4x+1) dxdydz

O C— —

j‘j- 2x% +x](')dydz
00

H 3dydz =3
00
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Example 16 | Verify the divergence theorem for the vector function

l7=4xzf—y2}+yzlg taken over a cube bounded by x=0,x=1; y=0,y=1;

z=0,z=1. [WBUT2002]
Sol.

\J
~<

Figure 9.13
Here in Fig. 9.13,
x=0 and x =1 are the equations of the planes OBDC and AGEF.
y=0 and y=1 are the equations of the planes OAFC and BGED.

z=0 and z=1 are the equations of the planes OAGB and CFED.
From the divergence theorem,

Jlﬁﬁdl/:gﬁ.ﬁ.ds

Here,
F=dxzi -y ] +yzk

and

- - 0 Jd o, 0
V- F=—(@4xz)—— +—
ax( XzZ) ay(y) aZ(yz)

=4z-2y+y=4z-y
Then

111

J‘J_W Fdv = ”_"(42 - y) dxdydz

000
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= H [22% — yzlhdxdy = H(z —v) dxdy
0 0 00
1

—'”de(Z v)dy——

00 0

Again, let S; be side FEGA, S, be the side BDCO, S; be side BDEG,
S, be the side OAFC, S5 beside DCFE, S be the side BGAO. Then
TANIPNS IO f B L7 L.h F.7 F.i .5

ij ads=[[ F nds+ij ndS+”F ndS+”F ndS+HF ndS+”F’ Ads
S 1 2 S3 S4 SS SG

On the surface S;, x=1 and the normal 1= i , SO

— 1 1 ~ ~ ~ ~
j j F-idS = j j (4zi — 2] + yzk) - idydz
SI z=0y=0
1 1

= | j 4zdydz= [ [22°1) dy = j 2dy=2.

7z=0y=0 y=0 y=0

On the surface S,, x=0 and the normal 7 = —f SO

”F ndsS = J I(Oz y ]+yzk) (- z)dydz—O

2 z=0y=0

On the surface S;, y=1 and the normal n = } SO

11

_UF nds = J. j(4le ]+Zk) (]) dxdz

3 z=0x=0

- j JI‘(—l)dxdz=—1

z=0x=0
On the surface S,, y=0 and the normal n= —}, SO

1 1
jF-ﬁdS: j J-(4xzf—0»}+zl€)~(—j')dxdz=0
S4 z=0x=0

On the surface S5, z=1 and the normal 2=k, so

jF-ﬁdS: j Jl.(4xl?—y2‘}+yl€)~(l€)dxdy

N y=0x=0

5 11 I

= J I ydxdy = —
y=0x=0 2
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On the surface Sy, z=0 and the normal 7= —12, SO

Hﬁﬁds = j j (4xi —y? - j+0k)-(—k) dxdy =0
S6 y=0x=0

Therefore,

N | W

gﬁ-ﬁds=2—1+%=

So, we have
HW FdV = ﬂﬁﬁds
1% S

Hence the theorem is verified.

9.20 STOKE’S THEOREM

Let F be a continuously differentiable vector point function and S be the surface
bounded by a closed curve C. Then Stoke’s theorem states that

CJSI?‘d? = '”.curl F-hds
C s
where the curve C is described in the anticlockwise sense and 71 being the unit normal

at any point of S is drawn with a similar sense, in which a right-handed screw would
move when rotated in the sense of description of C.

Example 17 | Verify Stoke’s theorem for

F= ()c2 +y2)f—2xy}

taken around the rectangle bounded by the lines x=ta, y=0, y=>.

[WBUT 2003]
Sol.

x=-a

E y=0 A
Figure 9.16
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Stoke’s theorem states that
gﬁﬁ.ﬁ:ﬂcurlﬁﬂds
S

Here,
= 2, 237 A
F=(x"+y)i—-2xy
then

i ik
curl F = i 3 J —4yk

ox ay oz

x2+y2 2xy O
Now for the surface S, A=k
curlF~ﬁ=—4yl€-l€=—4y

Therefore,

”curlF n-ds= J J ——rydxa'y——4ab2

y=0x=-a

Again

§F-dF = L™ +yH)i = 2xHdx i +dy- )
C C

=L +y))dv - 220y}
c

Now from Fig. 9.16, it is obvious that

| 9.53

cﬁ{u + )dx —2xydy) = 95{(x +)dx = 2xydy) + § {(x +37)dx —2xydy)

+ (JS {()c2 + y2 )dx —2xydy} + C'f/ { ()c2 + yz)dx —2xvdy}
BD DE

a

95 {(x% +y?)dx — 2xydy} = J’ x2dx(since y =0, dy = 0)

EA —a

3

qg{(x +y )dx 2xydy} = J( 2ay)dy (since x = a, dx =0)

AB

=—ab’

(1)
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9@ (6 +y?)dx = 2xydy} = j (x? +b?)dx (since y = b, dy = 0)

BD a

3
=20 o
3

0
CJ.) (% + y2 Ydx —2xydy} = JZay -dy (sincex = —a, dx =0)
DE b

=—ab®
So from (1), we have

95{()62 + y2 )dx —2xydy} = —4ab*
c

Therefore,
(JSF"-dF = —4ab* =<jicur1 F-fi-ds
C N

Hence Stoke’s theorem is verified.

Example 18 Apply Stoke’s theorem to evaluate Cﬁ(ydx + zdy + xdz) where C
c

is the curve of intersection of x* + y2 +7°=a” and x+z=a.

[WBUT-2001]
Sol.
Y
A(a 0,0)
X
C
V4
Figure 9.17

Since the intersection of x* + y2 +z2=a” and x+z=a is a circle, here the

curve C is a circle with diameter AB where A and B have coordinates («, 0, 0)
and (0, 0, «) respectively.

Therefore, the radius of the circle is

5
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We can write

gS(ydx+ 2dy+ xdz) = @'(yf + 2]+ xk)(dxi +dyj +dzk) = 95F~d? (1)
C C C

where F = (yf + Z}' + xlg) and d7 = (dxi + dyj + dzlg)

By Stoke’s theorem, we have

cﬁﬁdf:jjcurlﬁ-ﬁds (2
C s

The unit normal to the surface is

/\

POt ivl-k i
2 f

By (1) and (2), we can write

9S(ydx+zdy+xdz) = J”cuﬂ(yf +z}+x12)-(i+i ds (3

! : V2" 2

Now,
i j k

= cLoh Jd d 0 cLh 7

curl F=curl(yi+zj+xk)=|— — —|=—-(+j+k) (4
ox dy 0z
y < X

Therefore, from (3) and (4) we have

9S(ydx + zdy + xdz)
c

—H(z +]+k)[%
_%g@

2
since H ds = area of circle bounded by C = ﬂ(%)

S‘ >
;/

_2 (aY
)
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WORKED-OUT EXAMPLES
Verify Green’s theorem for Sﬁ[(Sx - 8y2) dx+(4y—6xy) dy]
o

where C is the boundary of the region bounded by x=0,y=0, and x+y=1.

[WBUT-2002]
Sol.

B(0, 1)

x+y=1

A(1, 0)
Figure 9.11

Green’s theorem states that

C'f(de + Ndy) = '[;[[?9_]: - %—A; ]dxdy

where R is the region bounded by the closed curve C constisting of the lines
OA, AB and BO, where A and B are the points (1,0) and (0,1)

respectively.
Here,
N d
M(x,y) = Br—8y), Nz, y) = (4y—6xy) and 2> =65, 2 __j6,
ox dy
Now,

Cﬁ(de + Ndy) = #[(3)6 - 8}‘2) dx+(4y—6xy) dy]
c c

= J [(3x—8y2) dx+(4y—6xy) dy]+ J [(3x—8y2) dx+(4y—6xy) dy]
04 AB

+ [ [(3x=8y7) dx+(4y—6xy) dy]
BO
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On OA, y=0,s0 dy=0. On AB, x+y=1, so dy=—dx. On BO, x=0
so dx=0.
Therefore,
Cﬁ(de + Ndy)
c

j3xdx+ j[{3x 8(1—x)?} dx +{4(1— x)—6x(1—x)} (—dx)] + j4 ydy

x=0 x=1 y=lI
=3[ = j (—14x% +29x—12) dx+4 = =2
2 2 )3
Again,
ﬂ[a—N—aﬂjdxdFﬂ(—ﬁyﬂéy) dxdy
dy R

1 1-x 1 1 5

= j j 10ydxdy = j —(1-x)dx=2

2 3
x=0y=0 x=0

Hence Green’s theorem is verified.

Example 9.28 | Verify Green’s theorem in the plane for C.[)(xzdx + xydy)

where C is the square in the xy plane given by x=0,y=0,x=a, y=a(a>0)

[WBUT-2005]
Sol.

Figure 9.12

Green’s theorem states that

95(M¢lx+N¢l») H [a—N—a—A;]dxdy
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where R is the region bounded by the closed curve C.

Here,

M(x,y)= x%, N(x, yy=xy and B_N: y,aﬂ =0
ox dy

Now,

Cﬁ(de + Ndy) = g;(xzdx + xydy)
c C

= J (x%dx + xydy) + I (x*dx + xydy) +

0A AB
j (x%dx + xvdy) + j (x%dx + xvdy)
BC co

On OA, y=0, so dy=0. On AB, x=a, so dx=0. On BC, y=a, so
dy=0. On CO, x=0, s0o dx=0

Therefore,

95(de+Ndy)= ]l‘ xdx + 'T aydy + j. xdx + j)‘ 0-ydy
c

x=0 y=0 x=a y=a
37 27° 370
3 2 3
0 0 a
Again,
ON oM
H(———dedy = jj(y—()) dxdy
2\ 0x  dy .

| oo J[2]

x=0y=0 x=0 0

a a2 a3
= j—dx——
D)

x=0

Hence, Green’s theorem is verified.

Example 9.29 | Verify Gauss’s divergence theorem for F = yf +x} +2%k over the

cylindrical region bounded by x* +y* =9,z=0, z=2. [WBUT-2003, 2007]
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Sol. z

X2+y2=9

Figure 9.14
Gauss’s divergence theorem states that
H v-ﬁd\/:”ﬁ-ﬁds
14 s

where the volume V bounded by a closed surface S and 7 is the outward
drawn unit normal vector to the surface S.

Here, V is the volume bounded by surface S: x4 y2 =9,z=0,z=2.
Now

F= yf + x; + Zzlg

So

= 8¢ aﬁ 0 - 2 s 27
V- F=|—i+—j+—k +x+z7k)=2
[axl PR ](yl xj+2k)=2z

For a particular z, 2+ y2 =9 is acircle. Therefore, —3 < x <3.

and for a particular value of x, —\/ 9—x?<y< \/ 9— x?

Therefore,

Vv x=-3 Y= {9—)(2 z=0 x==3 y=— 9_x2

3 9—x? 3
= j | j 4dxdy = j4[y]_3%dx

x==3
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3
=4 J 2N9—x%dx =16

3
wN9-x* 9 X
———+—sin =

2 2 3

x==3 0
= 16[35111' 1}:367; .1
Now
jjﬁ-ﬁdszHﬁﬁdwﬂﬁ-ﬁdﬁﬂﬁﬁds (2)
S S S. S

1 2 3

where S, is the circular base in the plane z=0, S, is the circular top in the
plane z=2 and S; is the curved surface of the cylinder, given by X+ y2 =0.

In the integral _UF -Ads, n is normal to S, so n= k and z=0. Therefore

5
ﬂﬁ-ﬁds=jj(y2+xj+o)-1€~1€dxdy=o. .03
5 5
In the integral 'UI:“ -Aids, 7 is normal to S,, so n= k and z=2. Therefore
)
J‘J.Fﬁds = J‘J.(y; +xj+2° -é)‘édxdy
s s

2 2

- 4dedy = 4-(Area of S,)

S

=4-7(3)* =36m ()

Again S; is represented by X’ + y2 -9=0. So, V(x> + y2 —-9) is normal
vector on S;3. So the unit normal vector,

V2 +y2-9)  2xi +2y)

n=

Ve +32 =9 fax +4y7
= %[since o+ y2 =9]
_xi+y)
3
Therefore,
[JFedds=[[ (5 ++22 )2 as
S3 S3

2
=§.S[3[xyds
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On S;, o+ y2 =9, let x=3cosf, y=3sinf and ds =3dzd6. So, for the
entire surface, 6 varies from O to 27 and z varies from O to 2

[[F-sids == [[ s
S3 3 %

2 2
2

== j J 27 sin@ cos 0dOdz
3
0=02z=0

2
=18 | sin20d0z]3
6=0

2r

=36[—C°S29] =0 .5
2

Using (3), (4) and (5) in (1),

jjﬁ.ﬁds=o+36n+o=36n. ...(6)
S

From (1) and (6), it is clear that Gauss’s divergence theorem is verified.

Example 9.30 | Evaluate by divergence theorem

J‘J‘{xzdydz + y2dzdx +2z(xy — x — v)dxdy)
s

where S is the surface of the cube 0<x<1,0<y<1,0<z<1. [WBUT-2005]
Sol.
V4
C(0,0,1) D
F
E
o Y
A(1,0,0) B(0, 1, 0)
G
X

Figure 9.15
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If F= Fl; + FZ} + F3l€ then the divergence theorem can be written as

m 9k aﬁ + aﬁ dxdydz = ([ (Fdydz + Fydzds + Fydxdy)
dx dy 0oz S

where V is the volume enclosed by the closed surface S.
Here,

F=x"F =y’ F=2z(xy—x—y)

oF, oF, oF,
and — =2x,— =2y, —=2(xy—x—
ox dy Y 0z (3 »
Therefore,

_U (x*dydz+ y*dzdx +2z(xy — x — y)dxdy}
s

m= {2x+2y+2(xy—x—y)} dxdydz
14

= j j. j.{2x+2y+2(xy—x—y)}dxdydz
x=0y=02z=0

1 1 1 1 1

= J. J Jnydxdydz= J- 2xy[ 2] dxdy
x=0y=02z=0 x=0y=0

h 27 ] x* : 1
=J2xy— dxz'[xdxz —| ==
2 2 2

x=0 0 x=0 0

Example 9.31 | Usingdivergence theorem, evaluate ”ﬁ -fids where @i = xi + y} +7k

S
and S is the sphere x>+ y2 +7z2=9 and 7 is outward normal to S. [WBUT-2006]

Sol. Let V be the volume of the sphere x* +y* +z* =9 with a radius of 3.

By the divergence theorem,
[J-sds = {[[V-siav

s 4
Now,

v-ﬁ=(§—xl+§—y1+§k)(xz +)]+Zk)

d d
—g(x)+$(y)+a—z(z)—3
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Therefore,

gﬁ iids = g V. iidy = j{ 3dv =3 Qj dxdydz

=3 X (volume of the sphere of radius = 3 units)

=3x(%ﬂ33 ): 1087

Example 9.3 Use Stoke’s theorem to prove div curl F=0. [WBUT-2002]

Sol.

Figure 9.18

Let V' be any volume enclosed by a closed surface S.

Let us divide V by a plane into two surfaces S; and S,, and let C denote
the common closed curve bounding both the portions.

Therefore, by Stoke’s theorem

H div curl Fdv = _Ucurl F -hds
v s

= ”curl F-ﬁds+”curl F-ids
S, s,
=[F-ar—[F.ar=0
C C

where negative sign is taken in the second integral as it is traversed in the
direction opposite to that of the first.

Since the above result is true for every volume element V, we have

div curl F=0

Example 9.33 | Verify Stoke’s theorem for A =2yf +3x}—12/€ where S is the

upper half surface of the sphere X4y +72=9 and C isits boundary.
[WBUT-2004]
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Sol.

Engineering Mathematics-I

z

S

C

Figure 9.19
Stoke’s theorem states that for any vector function A

95&17 = H curl A - Ads,
C S

where 71 being the outward drawn unit normal at any point of S.
The boundary of C of S is a circle in xy plane whose equation is x2+y*=9, z=0.

Let the parametric equation of C be x =3cost, y=3sint,0<7 < 27,
Therefore,

gSAdf = gﬁ(zyf +3x) — 22k)dxi + dy] +dzk)
C C

= 98(2 ydx + 3xdy — 7°dz)

c
2
=9 j (—2sin>t+3cos’ t)dt = 9r (D
=0
Now,
ik
— |0 9 9| = A ~ ~
curlA=— — —|[=i(0®-jO)+kB-2)=k
> B % @ —jO)+k(3-2)
2y 3x -7
Therefore,
- L ~ . dxdy
[Jeurl A-fids = [[ k-2 === [[ dxdy
s R k-n g

where R is the region enclosed by the circle x> +y*=9. So,

”dxdy = (Area of the circle x* + y2 =9)
R

=r-(3)* =9r.
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Therefore,
H curl A -ids =9r.

s
From (1) and (2), it is clear that Stoke’s theorem is verified.

Example 9.34 | Verify Stokes theorem for F = (2x — y)f - yzsz'— yzzlg where S is

the upper half surface of the sphere x> +y*+z>=1 and C isits boundary.

[WBUT-2006]
Sol.

B

C

Figure 9.20

Stoke’s theorem states that for any vector function F

(ﬁﬁd? = .Ucurl F - ids,
c S

where 71 being the outward drawn unit normal at any point of S.

Here, the boundary C of S is a circle in the xy plane whose equation is
)c2+y2 =1,z=0.

Let the parametric equation of C is
x=cost,y=sint,z=0,0<t<2rx

Now

95Fdf = CJ;{(ZX— Vi — 22 ] — y2zk}(dxi + dyj + dzk)
C C
= qS{(Zx —y)dx—yz’dy — y*zdz)
C

= CJS(ZX — y)dx [since,on C, =0, dz =0]
c
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2r

2r
‘ . ( 1—cos?2
= j (2cost—sint)(—sint)dt = L sin2f+ —— cos =t dt

[
0

2 2 4

- . 2
cos2t+t sm2t} -7 (D)
0

Again,

|QJ ~.>
|QJ >
>

J
curl F = i
)

ox 0z

2 2
2x—y —yz© Yz
Therefore,

H curl F - Ads
s

wl o7 dxdy

where R is the region bounded by the circle C

I
>:1._.

ik

oo dxdy
H(k n) =1 —'[!dxdy

R

= 71(1)* (area of the circle x2+y2 =l)=nm ...(2)
Therefore by (1) and (2), Stoke’s theorem is verified.

Example 9.35| Verify Stoke’s theorem for A=(y—z+ 2)2 +(yz+ 4)}' —xzk over

the surface of the cube x=y=z=0 and x=y=z=2 above xy plane.

[WBUT-2007]
Sol.
z
D(0, 0, 2) C(0,2,2)
A(2,0,2)
B(2,2,2)
G(0,2,0)
o)
Y
E(2,0,0)
F2,2,0)
X

Figure 9.21
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Let us denote S, S,, Sz, S4 and Ss as the five faces ABFE, DCGO, ABCD,

BCGF and ADOE respectively above XOY plane.

Therefore, the boundary of the surface is the square EFGO.
Stoke’s theorem states that

H curl A - fids = j A-dr

S1+8,+S3+8,+Ss EFGO
Now,
i j k
curl A = i i i
ox dy 9z

(y—z+2) (yz+4) -XZ
=—yf+(z—1)}—l€
Therefore,

”curl A-nds :J.J‘{—yf+(z—l)}—lg}<f-ds, since on S, 71 =i

5 5

22 ) 2
-([b[ ;dde J Z]Ody_—2|:y?:| =—4

0

Similarly,
chrlA nds—”{ yl+(z 1)] k} (- z) ds, smceonSz,n——

5
22
J. ydydz =4
00

”curl A-ids = H{—y? +(z—1)} —lg}‘(lg)wls, since on S5, n = k

53
22
= ~I‘J‘—d)ca’y =4
00
”curl A-hds = J.J‘{—yf +{(z— l)} —12} : (]A')'ds, since on Sy, 71 = ]A
s

4

22
= [[z=1)dxdz=0

00

...(D
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chrl A-ids = J‘J.{—yf +(Z—1)} —l€}~(—]A') -ds since on S5, 1 = —}
s s
s 5

[SY S

2
[~(z=1dxdz=0
0

Therefore,

.U curl A-Ads = ”curl A-fds + ”curl A-ids
S 1Sy +S3 48+ s s

253195 1 2
+J‘J.curlA-ﬁa’s+ chrlﬁ-fzds+” curl A - Aids
Sy S, S5
=—4+4-440+0=—4 .(2)

Now,

j A-dF = j (V= 2+2)i +(yz+4)] — xzk} dxi +dy] + dzk)
EFGO EFGO

= [ -2+ 2dx+ (yz+4)dy - xzdz)
EFGO

= J‘ {(y—z+2)dx+ (yz+4)dy — xzdz}
OE

+ J {{(y—z+2)dx+ (vz+4d)dy — xzdz}

EF

+ I {(y—z+2)dx + (yz+4)dy — xzdz}
FG

+ [ (=2 +2dx+ o+ d)dy — xzde)
GO

2 2 0 0
= [ 2ax+ [ 4dy+ | 4dx+ [ 4dy=-4
x=0 ¥=0 x=2 V=2

(3

Therefore, From (1) and (2) we conclude that Stoke’s theorem (1) is
satisfied.

Example 9.36| If A = (3x% +6y)i — 14yz] +20xz°k, evaluate j A-d7 from (0,0, 0)
C

to (1, 1, 1) along the path C given by x =1,y = *and z=1°. [WBUT-2002].

Sol.  Let F=xi +yj+zk then dF = dxi +dyj +dzk.
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Therefore,

j A-di = j [(3x2 +6y)i —14yz] +20xz2k1(dxi + dyj] +dzk)
C C

= j [(3x% +6Y)dx — 14yzdy + 20x72dz]
C
1

= j [(31% +61%)dt —141° (2tdr) + 201" (3t%d1)]
0

1
= j[9t2 —281% +60¢°1dt
0

3 7 107!
={9t——28t—+60t—}
3 7 10
0
=3-4+6=5.
EXERCISES

Short and Long Answer Type Questions

. Show that the vector 97 + } —6k is perpendicular to the vector 4i — 6}' +5k.

. Determine A so that Ai =4 +3k and 3i+ Aj -2k are perpendicular.
[Ans: A =-6]

e ]

. Find a vector of magnitude 5, perpendicular to both the vectors 2i +}—31€ and

. Find the angle between the vectors i —2} —2k and 2i + ; —2k.

P -5
i—2j+k. {Ans:—(i+j+k)}
J3
. If a, I;,E be three vectors such that @+ b + ¢ =0, show that
a) G-b+b-¢+¢ a:?

. |a]=3.]p|=4,

¢|=5, show that
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

If ]Zz| =3, l;' =4, find the values of  for which the vectorsd+ ub and d—ub
will be perpendicular to each other. |:Ans : %:|
. Prove that the following vectors are coplanar:

a) i—2j+k2i+]-3k3i+]+k

b) §—2]+3k —2i +3]j—4k,—]+2k

. Determine the value of the constant A so that the vectors 2i—j+k,i+2j+ Ak

and 3i—4j+k are coplanar.

Prove that

a) [axb,céxd,éx fl=la,b,el[c,d, f1-1a,b, flI¢,d,e)

b) [G+b,b+¢,¢+ad]=2[a,b,c]

C) axX(bXZ)+bx(¢xad)+cx(@xb)=0

If @ and ¢ are perpendicular to each other then show that ax (I; X¢) and
(@xb)xc are also perpendicular to each other.

Find the volumeA of the parallelepiped whose edges are along a = -3i +7} +5k,
b=-3i+7j-3k and ¢ =7i —5j —3k.

If axf=7 fxy=0a and yxd=[ then show that ¢, , 7 are mutually

perpendicular.

If G=1—1j+Qt+1)k and = (2t-3)i + j—ik, find di[&xcfi—ﬁ]at r=2.
t t

- _odr - o,
If ¥ =dcosnt+bsinnt then prove that rxd—rz n(axb) and %+n2r =0.
t t

If @,b,¢,d be vectors such that Gxb =¢xd then show that (a —(?) and (Z; —C)
are collinear.

Show that i x(dxi)+ jXx(G@x J)+kx(dxk) = 2a.

If 7=2x>y—x*)i+(e” —ysinx)j+(x>cosy)k then show that the value of
Do g

a_gxa_g at (1,0) is —(7 +12] +12k).

ox” dy

If o= .xz_\'zf—2x23}+xzzlg and B = 2zf+)§—x212 then show that the value of
2

a—(dxﬁ) at (1,0,-2) is —=4(i +2j)

0xdy

Find the directional derivative of ¢(x, y, z) = x? yz+ 4x7* at the point (1,—2,1) in
the direction of 2i —} —2k.

Find the angle of intersection of the spheres *+y*+27=29 and
X+ +2 +4x—6y—87—-47=0 at (4,-3,2).



22.

23.
24,

25.

26.

27.

28.

29.

30.

31.

32.

Vector Analysis I 9.71

Find the equations of the tangent line and normal plane to the curve of intersection
of the surfaces x> + y2 +z2=9 and z=x*+ y2 —3 at the point (2,—1, 2).

Show that the vector yf + x}' is both solenoidal and irrotational.

If f(x,y,z) be a scalar point function such that V? f(x,y,z)=0, then show that
V2f is irrotational as well as solenoidal.

If 7 = xi+yj+zk and r=|F|, prove that

a) V(F-r7)= iz

,
b) div(ax7)=0 where a is a constant vector.
¢) div(grad r")=n(n+1)r""
& div L =0

r
e) curl(r"'F)=0
f) curl(r*¥)=0
Verify Green’s theorem in the plane for J[(y —sin x)dx + cos xdy] where C is the
c

triangle whose vertices are (0, 0), (%, 0) and (%, 1).

Evaluate by Green’s theorem in the plane for J(efx sin ydx + e " cos ydy) where C
c

is the rectangle with vertices (0, 0), (7, 0), (n’, %) and (O, %]

[Ans: 2(e " -1)]
Verify Stoke’s theorem for F = (x> + yz)f —2xy}' taken round the rectangle
bounded x=xa,y=0,y=>.

Evaluate by Stoke’s theorem _[( yzdx + zxdy + xydz), where C is the curve
c

x2+y2:1,z=y2.

[Ans : 0]
Verify Gauss’s divergence theorem for F = yf +x}'+zzk over the cylindrical
region bounded by X+ y2 =a®,z=0 and z=h.
Evaluate ”17 -Aids where F =3xzi + yzj —3sz€ and S is the surface of the cube

s

boundedby x=0,x=2;y=0,y=2;z7=0,z=2 and 7 is the outward drawn unit
normal to the surface S.

Evaluate Jﬂﬁdv where F=2zi —x}+ ylz and V is the region bounded by the
4

surfacesx:(),y=0,x=2,y=4,z=x2 and z=2.

32 o~ o~
Ans: —@3i+5)
[ l5(1 1)}
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33.

34.

35.

Evaluate J..Uﬁdv where F = (2x> —32)i— 2xyj —4xk and V is the region bounded

o

Evaluate j(sin zdx —cosxdy +sinydz) by Stoke’s theorem where C is the
c
boundary of the rectangle 0<x <7, 0<y<1,z=3.

by the surfacesx =0, y=0,z=0,and 2x+2y+z=4.

[Ans : 2]
Evaluate ‘U{ (> - x)dydz — xydxdz +3zdxdz} where S is the surface of the closed
s

region bounded by y2 =4 -z and the planes x=0,x=3,z=0.
[Ans : 16]

Multiple-Choice Questions

. The value of A for which the vectors G =Ai —4 +3k and b=3i +Aj— 2k are

perpendicular to each other is
a) -6 b) 6 ©)3 d)2

. A unit vector perpendicular to each of the vectors i+ j and j+k is

1 1 1 1
a) —(@{+j+k) b) —@G—-j+k) ¢) —=(@(+j—k) d) —(-i+j+k)
V3 V3 V3 V3
. If for the vectors d and l;, d+l;|=‘ii—l;‘ then @ and b are
a) parallel b) collinear c¢) perpendicular d) none of these

If G and b are two mutually perpendicular vectors then ‘é xb ‘ =

a) ab b [a-b) o) [al[p| d)0
(G-b)x(G+b)=
a) 2(G-b) b) axb ¢) 2(axb) d) 0

. The value of A for which the vectors d = f+}+l€,5= 2?—4} and ¢ =f+/1}+312

are coplanar is

3 | 2 5
a) — b) — c) — d) =
)3 )3 )3 )3

CIf G=3i—2j+k b=2i —k, then (axb) d=
a) i+)+k b) i+k )0 d)2

The vector xi +y]A'+zI€ is perpendicular to the vector 2i +5}+1 1k when
a) x=2,y=3,z=-11 b) x=2,y=-3,z=11
¢) x=-2,y=3,z=11 d) x=2,y=-3,z=1



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Vector Analysis I 9.73

. The angle between the vectors 2i + 2}' —k and 37 +4k is

a) cos”' (%J b) cos™ (%J ¢) cos™ (%] d) none of these

If Jaf’ =|p
a) parallel b) perpendicular

2 _ -
, then the vectors @¢+b and a—b are

¢) inclined at an angle 30° with each other d) none of these
R 2 A 3n - . N d ., - .
Ifa=3t"i+tj—t’k and b =sinti —2costj, then d—(axb) at t:E is
t
3 3
o2 3 54 & o 3 54
a) —i——n"j—-k b)) —i+—nmj+k
) PR ) PR
7. 3 a0 a
c) —i——7t2j+k d) none of these
4 4
. A1 oan 74
If 7 =2ti —1>j+—tk then the value of d_rxd_;’ at r=11is
3 tdt
a) 2i—4)+4k b) 2i+4j+4k c)-2i+4j+4k d) 2i+4j—4k

If f(x,y,2)=x"+3yz”> then grad f at (1,1,1) is
a) 3i+3j+3k b)i+j+2k  ¢) 3i+3j+6k d)none of these
A normal vector to the plane x+2y+3z—-1=0 is
a) 2i+)+3k b) i+2j+3k ¢ i-2j-3k d)yi+2j-3k
If 9= x* +3yz” then Vz(p is
a) x+6y b) 6x+y c) 6x+06y d) x+y
Ifr = xf+y}+zl€ then curl 7 =
a) 3i b)0 c) i+ } +k d) none of these
The magnitude of the vector drawn in the direction perpendicular to the surface
X +2y"+22=7 at(1,-1,2) is
2 3

a) — b) — c)3 d)6

) 3 ) 5 ) )
If r2=x>+ y2 +z° then Vz(ln r)=

a) Lz b) ! c) r? d)r
r r

If F= xyf+yz}+le€ then curl F =

a) xi+yj+zk b) yi+zj+k ¢ —yi-zj-xk d) yi+zj+xk
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20

21.

22.

23.

. The value of ¢ for which F = (rxy— z )f +(t— 2)x2} +(1- t)xzzlg is irrotational is

a) 0 b) 4 c)—4 d)2

The value of « for which F = (x+3 y)f +(y —21)} +{(x+ az)lg is solenoidal is
a) 2 b) -2 c)0 d) none of these
The directional derivative of ¢ = xyz at (1,1,1) in the direction } is

a) 3 b1 )2 d)4

If ¥ =wxF where # is a constant vector and 7 = xi + y} + zlg, then divv =
a) 1 b) 0 c)2 d) none of these

24. The value of grad(x+ y—2z)d7 from (0,1,—1) to (1,2,0) is

25.

a) 3 b) -1 o)1 d)2
If #(x,y,z)=c represent the equation of a surface then normal to this surface is
a) grad ¢ b) div(grad ¢) c¢) curl(grad ¢) d) none of these

Answers:

l.@ 2.(b) 3.(c) 4. (c) 5.(c) 6.(d 7.(c) 8.(d)

9.c) 10.(b) 11.(a) 12.(a) 13.(c) 14.(b) 15.(c) 16.(b)
17.(d) 18.(a) 19.(c) 20.(b) 21.(b)  22.(b) 23.(b) 24.(a)
25. (a)



SOLUTION OF UNIVERSITY QUESTIONS
(W.B.U.T))

B.TECH SEM-1 (NEW) 2010
MATHEMATICS-I (M 101)

Time Alloted: 3 Hours Full Marks: 70

GROUP-A (Multiple-Choice Type)

1. Choose the correct alternative for any ten of the following: (10x1=10)
*@1) If o, B are the roots of the equation x> — 3x + 2 = 0 then

0 o pB
B 0 O0is
1l - «

@ 6 ® 3 © -6 @ 3

Solution: Since ¢, B are the roots of the equation, we have

oa+B=3 and aff=2.

Now
0 a pB
B 0 Ol =-af(a+pP=-6
1 —a «

Hence, the correct alternative is .
#(ii) If y = e+ then (ys5), =
(a) ae’ (b) a’e’ (c) abe™ (d) none of these

Solution: Here, y = e™*" = y = a’e®™+?; therefore (y5) 0 = a’e’.

Hence, the correct alternative is .

*(iii) If Rolle’s theorem is applied to f(x) = x (x> — 1) in [0, 1] then ¢ =
1 1

(@ 1 (b) 0 ©) ——= d) —

: NG B

Solution: If Rolle’s theorem is applied to f(x) = x (x> — 1), we have

F()=0=32—1=0=c=t L

Level of difficulty:- *Low, **Medium, ***High.
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Since by the conditions of Rolle’s theorem 0 < ¢ < 1, we take ¢ =

1
5

Hence, the alternative option is [(d) —=|.

f

*%(v) If u + v =1x, uv =y then gg";)) =
(a) — () uv ©) u+v @ %
u-— %
Solution: We know
au,v) 1
d(x,y)  9I(x,)
Now 9(u.v)
o ox
d(x,y) _[ou dv| |l 1 "y
a(u,v)_ﬂ Q_v u
du v
a(u V) .
a(x ¥) ' (a)u
3
*(v) The value of J.sin70d0 is
2
6.4.2 6! 2.(6.4.2)
@ 3531 ® 7 © 0 @ =530

Solution: The correct alternative is , since sin’ @is an odd function of 6.
*(vi) The sequence {(—1)" l} is
n

(a) convergent (b) oscillatory (c) divergent (d) none of these

Solution: The correct alternative is |(b) oscillatory]|.

#(vii) If @ = 3i — 2] +k, B =2i — k then (¢ X B). o is equal to

(@) i+ ]+k ) i +k
) i-k (d 0
Solution: Here, A N
i j ok
axpB=|3 -2 1|=2i+5]+4k.

2 0 -1
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Therefore,

(@xB)a=23+5(2)+4.1=0.
Hence the correct alternative is |(d) 0.

6 sinf
w5 (viii) The matrix | 0o o0 | s
—sin@ cos @
(a) symmetric (b) skew-symmetric
(c) singular (d) orthogonal

Solution: Here,

cos® sinf cos 0 sin9T= cosO sin@ ||cos@ —sin0
—sin@ cosO| | —sinf® cos@ —sin@ cos@||sin@® cos@

Hence, the correct alternative is |(d) orthogonal|.

**(ix) The value of ¢ for which

f=G+3)i+0-20]+@+1)k
is solenoidal is
(a) 2 (b) -2 © 0 @ 1

Solution: The correct alternative is [(b) —2|. See Example 9.18.

*##%(x) The distance between two parallel planes x + 2y —z=4 and 2x + 4y -2z =3 is

(a) % (b) % © % (d) none of these

3

il

Solution: The correct alternative is |(a)

**(xi) In the MV Theorem,
S =)+ hf'(6h); 0<O<I.

1 .
Iff(x) = Tra and & = 3 then value of @1is
1 1
(a) 1 b = (c) — (d) none of these
3 ;3

Solution: Here, f(x) = 1 -|1- and & = 3, so by given relation
X

f(h) =)+ hf'(6h); 0<6O<1
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1 1
or — = 1l+h|——
1+h { (1+9h)2}
Putting & = 3, we have
L P N
4 (1+36)
= 1+39=J_rz=>e=%,_1

Since 0 < < 1, we take 6= %

Hence the correct alternative is |(b) % .

*(xi1) The series sz is convergent if
n
@ p=1 b p>1 © p<l1 @ p<1

Solution: The correct alternative is |(b) p > 1|.

GROUP-B (Short-Answer type Questions)

Answer any three of the following: Bx5=15)
#%2 If y = (x? — 1)" then show that

(XZ - l)yn+2 + 2xyn+l - I’l(l’l + l)yn =0.
Hence, find y, (0).

Solution: See Example 3.14.

**3. Using MVT, prove that

x>tan! x> T

O<x<=.
3

1+ x2

Solution: See Example 4.8.
##%4_ Show that

I+a 1 1 1
1 1+ 1 1
1 I I+c 1
1 1 1 1+d

1 1,1 1
=abed|1+—+—+—+—
ac(+a+b+c+d)

Solution: See Example 1.8.
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*#%5  Test the nature of the series

1Y, (12Y, (123,
3)7\35) "\357) T

Solution: See Example 22 of Chapter 8.

6, If a, b , ¢ are three vectors then show that
- - 72
[axb bxc éxa)=[ab ]
Solution: See Example 9.6.

2 2
*7. If u = tan”' =2 then show that
Ju Ju

x— + ——lsin2u
ox yay 2 ’

Solution: See Example 20 of Chapter 6.

GROUP-C (Long-Answer type Questions)
Answer any three of the following: 3 x15=45)

*##%8. (a) Determine the conditions under which the system of equations
X+y+z=1,x+2y—z=b,5x+Ty+az=0b?
admits
(i) only one solution
(i1) no solution
(iii) many solutions

Solution: If we write the system of linear equations in the matrix form as
AX = B then the coefficient matrix of the system of linear equations is

1 1 1
A=11 2 -1
5 7 a

And the augmented matrix is
11 1 1
A=@AB=[1 2 -1 b
57 a b

The system of equations has only one solution when the determinant of
the coefficient matrix is not equal to zero.
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1 1 1
detA=1|1 2 —-1|=a-1
5 7 a

Therefore, for det A # 0 = a # 1 the system of equations has only one
solution.

For a = 1, the system has either no solution or many solutions. When
a =1, the augmented matrix becomes

11 1 1
A=|1 2 -1 b
57 1 b

Appling elementary row operations on the matrix A, we have

11 1 1
A=|1 2 -1 b |Ry,—R,R;-5R,
57 1 b°
11 1 1
0 1 -2 b-1|R—RyR3—2R,
0 2 -4 b>-5
0 3 -b+2
01 -2 b-1
0 0 b -20-3

The system of equations is consistent when Rank A = Rank A and this
is possible for

b*-2b-3 =0
ie., b=-1,3.

In this case, Rank A = Rank A= 2, which is less then number of
unknowns (= 3) and the system has infinitely many solutions.
Again, if
b*-2b-320=b#-1,3.

then Rank A =2 and Rank A = 3,1.e., Rank A # Rank A and so the system

of equations is inconsistent and corestpondingly, the system has no
solution.

Summarising the above,

(i) the system of equations has only one solution when a # 1
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(ii) the system of equations has infinitely many solutions when a = 1,
b=-lora=1,b=3
(iii) the system of equations has no solution when a =1 and b # -1, 3

**%(b) Find the eigen values and corresponding eigen vectors of the matrix
2 11

A=|1 2 1}.
0 01

Solution: The characteristic equation of A is

det (A — Al) =0

or, 1 2-4 1 | =0
0 0 1-4

or, (1-D{2-1)2-1} =0
or, (1-223B-1) =0
or, A=1,1,3.

Therefore, the eigen values of the matrix A are A=1, 1, 3.
X

Let X, =| y | be the eigen vector corresponding to the eigen value A =1.
Z

Then, by the difinition of eigen vector, we have

AX =1.X
2 1 1)\(x X
or, I 2 1|yl =]y
0 0 1)\z Z
or, 2x+y+z=x

X+2y+z=y
z=2
The above system is equivalent to
x+y+z=0

Let y = k, and z = k,, then x = —k; —k, where k; and k, are arbitray
constants.

Therefore, the eigen vector corresponding to the eigen value A =1
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X = y|= kl
Z k,
-1 -1
=k | 1 |+k]| 0
1

Again, let X, =| y | be the eigen vector corresponding to the eigen value

A=3. ¢
Therefor, we have
AX, =3X,
2 1 1)\(x X
or, 1 2 1||y|=3]y
0 0 1){z z
or, 2x+y+z=3x
xX+2y+z=3y
=3z
or, —-x+y+z=0
x-y+z=0
2z =0

The above system is equivalent to
x-y+z=0,z=0
which imples the system
x-y=0,z=0
Lety = k,, then x = k; where k| is any arbitrary constant.
Therefore, the eigen vector corresponding to the eigen value A =3

X k,
X=ly|=|hk
z 0

1

=k|1
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**(c) Find whether the following series is convergent:

2 oY (3 3)7 (40 4
2o1) T2 3T

Solution: See Example 23 of Chapter 8.

*9. (a) If f(x) = x% g(x) = x* on [1, 2], is Cauchy’s mean value theorem applica-
ble? It so find &.

Solution: (i) The functions f(x) = x> and g(x) = x* are both being poly-
nomials, continuous in [1, 2];
(i) f’(x) = 2x and g’(x) = 3x% which exists for all values of
xe (1, 2); and
(iii) g’(x) # 0 for all values of xin 1 <x < 2.

Since all the conditions of Cauchy’s MVT are satisfied by the given
functions, Cauchy’s MVT is applicable and so there should exist such a
Ee(1, 2) such that

Q- _ FE)
g2)-g)  g'©

which implies
4-1_ 28

ﬁ 3};2 é——

So, &= %, which lies between 1 and 2.

*#(b) If [, = j C;’OSS”: d6, show that

(m-1U,+1, ,) =2sin(n-1)6.
Hence, evaluateJ-(4 cosZ 8- 3)do.

Solution: See Example 5.6.

##(c) If r=171, where ¥ = xi + y} + 212, prove that
§(r”) =n-r"2.F.

Solution: See Example 7 of Chapter 9.

*10. (a) Fi d%whereu x2—2y2%, v=2x>—y%and x = rcos 6, y = sin 6.

Solution: By chain rule for Jacobians, we have

d(u,v) _ d(u,v) 9(x,y)
a(r,0)  d(x,y) o(r0)’

ey
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Now by the definition of a Jacobian

u
ou,v) dx dy 2x -4y
= = =12xy
a(x»Y) Q Q 4x —Zy
dx dy
Also, we have
ax o
(x,y) Jr 06 cosf —rsin@ 5
= = = 6.
d(r.0) dy  dy 0 cos 6 o8
Jdr 00

Putting the above results in (1), we obtain

dwy) _ dwy) d(xy)
a(r,0) Jd(x,y) 9(r,0)

=12xy-cos’ 0

=12-rcos 0 -sin 0-cos? 8= 12r sin 0 cos> 6.
**(b) Verify Green’s theorem for
F = (xy +y2)f +x2}

where the curve C is bounded by y = x and y = x2.

Solution: See Example 13 of Chapter 9.

*#*%(c) Evaluate:

axy
Jjjx3yzz dzdydx.
000
Solution:
axy a_x y
Ijjx3yzzdzdydx =I J Jx3y2zdz dy |dx
000 ololo
al x 27
=J. J.x3y2{%} dy |dx
0Lo0 0
a—x
= l'[ fx3y4dy dx
2
0Lo
ar 3. s7* < 9
1 xy 1J‘ 8 a
= — PR S d = — d =—-—.
2.[ 5 } T 100 o0
ol 0 0

#*%%]1, (a) Find the maxima and minima of the function

X+ y3=3x+ 12y +20.
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Also, find the saddle point.

Solution: See Example 25 of Chapter 6.

*#(b) State Cayley—Hamilton theorem and verify the same for the matrix

A:B _ZJ

Solution: The characteristic equation of A is det (A — A1) =0

Find A~! and AS.

1-21 2
2 —-1-2
ie., A2-5=0.

i.e.,

By Cayley—Hamilton theorem, we know that every square matrix satis-
fies its own characteristic eqation. Therefore,

A2-51,=0 (1)
ie., A? =512:>A(%A)=12
. 1
., Al ==
leTh f >
erefore, A—1=1A=l 1 2
5 502 -1

Again, by (1), we have
A? =51,
A% =Ly
A8 =5%(1,)* = 6251,

- A3=6251 0 _ 625 0 .
01 0 625

(c) Show that Curl V£= 0, where f(x, y, z) = X2y + 2xy + 22.

U

U

Solution: See Example 9.12.
*#*%]12. (a) Given the function
22
xy(x”—y7)
T 5 5 (x9 y) * (O’ O)
fly) = x>+ y2
0 , (xy)=(0,0)

Find from the definition f,, (0, 0) and f,(0, 0). Is ., = /},,?

Solution: See Example 15 of Chapter 6.
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*#%(b) Integrate by changing the order of integration:

ala—x

'[ '[ xydydx
0 2
a

Solution: By the given form of integration, it is clear that we have to inte-

grate first w.r.t y which varies from y = Lo y=2a—x and then we are to
a

integrate w.r.t x which varies fromx=0to x = a.

2
Here, y = L o= ay (representing a parabola) and y = 2a — x (rep-
a

resenting a strainght line) itersects at the point (a, a).

Y

(a,0) \

Fig. Q. 1

The region of integration is the area bounded by x* = ay (parabola), y =
2a — x (straight line) and y-axis as shown in the figure by the shaded
portion.

Now when we change the order of integration, i.e., first we integrate
w.r.t x and then w.r.t y, for taking limits we subdivide the region of integra-
tion ito two parts as R, and R,. So we take the integration separately into
the two subregions R, and R,.

Here, in the region R,

 x varies from y-axis to the parabola x* = ay(= x = \/ay), i.e.,
x varies from 0 to /ay
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* y varies from x-axis to the line y = @, i.e., y varies from 0 to a
Now, in the region R,,
* x varies from y-axis to the straight line y =2a —x (= x=2a - y),
i.e., x varies from O to 2a —y
 y varies from the line y = a to the line y = 2a, i.e., y varies from a
to 2a

Changing the order of integration, we have

a2a—x a ay 2a 2a-y
J '[ xydydx = Jj xydxdy+J J. xydxdy
2
(Reglon R) (Reglon R,)

a ) ay 2a ) 2a-y
Jy{%} dy + Jy {%} dy
0 0 0

a

a a
af lj w2
2_([y dy+2 yQa—y)*dy

3774 a
l:y?} + % j [4a®y — 4ay? + y3]dy
0 a

2 2a 3 2a 4 2a
21 Y | g4l pal
a a a

4
_a 1 4 284 154_2
‘6+2{6“ 3 +4“}‘8

(SRS

+

@lag
| —

a*.

*#(c) If F(p, v, t) =0, show that

() () s ()
dt v constant dp t constant dv p constant

Soltion: See Example 6.17.



SOLUTIONS OF UNIVERSITY QUESTIONS
(W.B.U.T))

B.TECH SEM-1 (NEW) 2011

MATHEMATICS-I (M 101)
Time Alloted: 3 Hours Full Marks: 70
GROUP-A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following:

10x1=10)
(i) The least upper bound of the sequence { " 1} is
n+
1
(@ 0 (b) > (© 1 (d 2

Solution: The correct alternative is

2000 2001 2002
(i) The value of {2003 2004 2005| is
2006 2007 2008

(a) 2000 (b) 0

(c) 45 (d) none of these

Solution: The correct alternative is |(b) O

(ili) If *—6A% + 94 —4 =0 is the characteristic equation of a square matrix A then
A~lis equal to

(a) A2—6A+91 ) La2-344 2
20 4

(c) A2—6A+9 @ 1a2-3442
47 27 T4

Solution: The correct alternative is |(b) iAQ _3 A+ % 1

(iv) If x=rcos 6,y =rsin 6, then M is
a(x, y)
(@)

(©)

r ®) 1
1
,

(d) none of these
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. . 1
Solution: The correct alternative is |(c) —
r

W) fix,y)= M is a homogeneous function of degree

y+x
@ = ) —= © 1 @ 2
2 2
Solution: The correct alternative is |(b) —%
(vi) If@-(Bx¥)=0,then @, B,7 are
(a) coplanar (b) independent
(c) collinear (d) none of these
Solution: The correct alternative is |(a) coplanar
(vii) The nth derivative of (ax + b)'? is (where n > 10)
(a) a'® (b) 10!a'° (© 0 (d) 10!

Solution: The correct alternative is
(viii) If for any two vectors a and b,

|la+b|=|a-b|
then G and b are
(a) parallel

(b) collinear
(c) perpendicular

(d) none of these
Solution: The correct alternative is |(d) orthogonal
1
(ix) IfA-1= 13 then A =
7(-1 2

3] 21 12 -1 2 -1
(@ {—1 2} ® {—1 3} © 7{1 3} @ L }

3

2 1
Solution: The correct alternative is (b)[ | 3}
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O — 0 [y

(x) The reduction formula of I, = | cos"xdx is
@ 1,=["=1)_, M) 1=,
n n—1
(©) I,= (n _1jlnz (d) none of these
n

. -1
Solution: The correct alternative is |(c) I, = (H—J 1,.»
n

o

is

(xi) The series Z

—ry 2n* +1
(a) convergent (b) divergent
(c) oscillatory (d) none of these

Solution: The correct alternative is |(b) divergent

(xii) Lagrange’s Mean Value Theorem is obtained from Cauchy’s Theorem for two
functions f(x) and g (x) by putting g(x) =

1
(a) 1 (b) x? (© x @ -
X

Solution: The correct alternative is

GROUP-B (Short-Answer Type Questions)
Answer any three of the following: Bx5=15)

2. Prove that every square matrix can be expressed as the sum of a symmetric
matrix and a skew-symmetric matrix.

Solution: See Theorem 1.2 of Page 1.10.

3. By Laplace’s method, prove that

a b ¢ d
—c

“boad =@+ b+ 2+ d?)?
—c —-d a
—d c -b a

(consider minors of order 2).
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Solution: Here, we expand the given determinant by Laplace’s method of
expansion in terms of a minor of order 2 considering the first two rows as

follows:

a b ¢ d

-b a d -c

-c -d a b

-d ¢ -b a
_|a b x (~1)1+v+a+2 | ¢ b +| ¢ xnurvrasy -d b
-b a -b a -b c a
d -d a| |b c —c b

+ a x(_l)(1+2)+(1+4) + X(_l)(1+2)+(2+3)

—-b —c c —-b a —-d a
n b d X (=1)(1+2+Q2+4) —cooa e d X (—1)(1+2)+G+4) —c —d
a —c -d -b —c -d ¢

= (a% + b?) (% + b?) + (ad + bc) (ad + be)
+ (—ac + bd) (—ac + bd) + (bd — ac) (bd — ac)
+ (be + ad) (be + ad) + (2 + d¥) (2 + d2)
=(a%+ b®? + 2(ad + bc)? + 2(—ac + bd)?
+ (2 + d?)?
= (a% + b®? + 2[(ad + bc)* + (—ac + bd)?]
+ (2 + d?)?
= (a% + b®)? + 2[aPd* + b*c? - 2adbc + a*c?
+ b2d% = 2achd] + (¢ + d?)?
=(a?+ b2 +2(a® + bH) (2 + d?) + (2 + d*)?
=(a%+ b* + 2 + d?)?
1 1
4, If2x= y; + yiz then prove that

(2= 1)y, 0+ Cn+ Dxy,,, + (> -=m?)y,=0
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Solution: Here, we have
1

y;—2x+% =0

or,
y

1y il
or, ym| =2x|y" |+1=0

Applying the rule for finding solution of the above quadratic equation, we
get
L 2
= 2x%4(2x)* - 4.1.1 _ (xi [2_1 1)
2

y = (xi\/ﬁ)m

Differentiating (i) w.r.t. x, we have

m—1 1
)’1=m(xi\/x2—1) |t —2x
x =1

®

=

m(xi\/xz—l)m_l~ —“xz—l tx

x*—1
m-1 (x++/x* =1
=im(xi\/x2—l) (2—\/7)
x =1
) (xi\/xz—l)m ny .
ie., v =Em == > (>i1)
-1 \/x -
Squaring (ii) and simplifying, we get
D> = 1) =m?y? (iii)

Again differentiating (iii) w.r.t. x, we have
2y19,(% = 1) + (y)*2x = m*2y- y;
(iv)

Y02 =1 +yx—m?y =0
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Now applying Leibnitz’s theorem, we differentiate (iv) n times w.r.t. x,

{0 =D}, + {yx}, — {m?}, =0

= {32}, 07 = D)+ "Ci{y2},1 - (20) +"Coy2}, 2 - (D]

+ i x+"C{y}ny - =m?y, =0
= (2= 1)y, +2nxy,, | +n(n— 1)y, +xy,,, +ny,—m?, =0
= O = D)Yyp + @n+ Dxy, .y + (0P =m?)y, =0

5 Ifu= xf(l) + g(l) then show that
X b
2 2 2
xza—l;+2xy L +y2ﬂ=0.
ox 0xdy 9y*

Solution: See Example 21 of Page 6.19.

6. Show that the area bounded by a simple closed curve C is given by

%Cﬁ(xdy — ydx).
c

Solution: We know that Green’s theorem states the following:

qs{M(x, y)dx + N(x, y)dy} = J‘J‘(B_N - a—Mjabcdy
C p ox dy

where the region R on the two-dimensional xy plane is bounded by a simple
closed curve C and the line integral along the curve C is taken in the anti-

clockwise direction.

Here, comparing LHS of (i) with Cﬁ(xdy — ydx), we have
c

M:-y,N=x=>a_M=—],a_N=]

dy ox

Therefore using (ii) in (i), we get

C_Cf)(xdy —ydx) = “'[1 — (=1)]dxdy

R
= 2J.J.dxdy
R

= 2 X [Area bounded by C]
—  Area bounded by C = %gﬁ(xdy — yd)
C

Hence, the area bounded by a simple closed curve C is given by

1
Eqﬁady ~ yd).
C
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GROUP-C (Long-Answer Type Questions)

Answer any three of the following: B x15=45)
7. () If
fx,y) = xztanl(zj —y*tan”! (fj,
X y
verify Joy =fi

Solution: See Example 6.6 of Page 6.34.

(ii) State Rolle’s theorem and examine if you can apply the same for
f(x)=tan x in [0, 7.

Solution: See Example 4.3 of Page 4.33.
(iii) Find the value of A and u for which

xX+y+z=3
2x-y+3z=4
Sx—y+Az=u

has (a) a unique solution, (b) many solutions (c) no solution.

Solution: If we write the system of linear equations in the matrix form as
AX = B then the coefficient matrix of the system of linear equations is

I 1 1
A=|2 -1 3
5 -1 4

and the augmented matrix is

1 11 3
A=|2 -1 3 4
5 -1 A u

The system of equations has a unique solution when the determinant of
the coefficient matrix is not equal to zero.

1 1 1
detA =12 -1 3
5 -1 2

=1(A+3) = 1Q2A-15) + 1(=2 +5) =34+ 21

Therefore, for det A #0 = 34 + 21 #0 = A # 7, the system of equa-
tions have unique solution.
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When A =7, the augmented matrix becomes

1 11 3
A=[2 -1 3 4
5 -1 7 u

Applying elementary row operations on the matrix A, we have

1 113 1 11 3
A={2 -1 3 4|R—2R,R;=5R |0 -3 1 -2 |R;-2R,
5 -1 7 u 0 -6 2 u-15
1 11 3 | b i Z
0 31 =2 (——)Rz 01 — =
0 00 11 3 5003
K= 00 0 p-II
1o & 7
3 3
R-R|o 1 -1 2
33
00 0 u-l11

The system of equations is consistent when Rank A = Rank A and this
is possible for
u-11=0=pu=1I.

In this case, Rank A = Rank A = 2, which is less then number of
unknowns (=3) and the system has infinitely many solutions.

Again, if
U-110=>u=#11.

then Rank A = 2 and Rank A = 3, i.e., Rank A # Rank Z, and so the
system of equations is inconsistent and correspondingly the system has
no solution.

Summarizing the above, the system of equations has

(a) a unique solution when A =7

(b) infinitely many solutions when A =7 and y =11

(c) no solution when A =7 and u# 11.
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8. (i) Find the maxima and minima of the function
FO, ) =x3 +y3—63(x +y) + 12xy
Find also the saddle points.
Solution: See Example 6.24 of Page 6.51.

(ii) State Leibnitz’s test for alternating series and apply it to examine the
convergence of

| 1 1 1
- 2—2 + 3—2 - 4—2 +...00
Solution: See Example 8.27 of Page 8.42.
(iii) Applying Lagrange’s Mean Value Theorem, prove that

— <log(1 +x) <x, for all x> 0.
1+x

Solution: See Example 7 of Page 4.11.
9. (i) Ify=e™sin'x show that
(1 =)y, 45 = @n+ Dy, — (0 + mP)y, = 0.
Hence, find y, when x = 0.
Solution: Here, we are given that
y=emints 0)

Differentiating (i) w.r.t. x, we have

v, = emsin—‘x, m 1
1-x2

i.e., v, = ny
Ji-2
Squaring (ii) and simplifying, we get
O (1 =% =m?y? (iii)
Again differentiating (iii) w.r.t. x, we have
2y, v,(1 =x%) + (y)*(-2x) =m*2y-y,
= Yol =x?) =y x—m?y =0 (@iv)

(ii)

Now applying Leibnitz’s theorem, we differentiate (iv) n times w.r.t. x,
{n(1 =29}, = {yjx}, = (m?y}, = 0.
= [{»},- A _xz) +"C{ya} o1 - (20 +"Co{ys )0 - (2)]
=yt x+"Ciiy}, -1 _m2yn =0
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= (1 =Xy, 00 = 20Xy, — n(n— 1)y, — xy, ., —ny, —m?y, =0
= (1 =x2)y, .= Qn+ Dxy,,, —m*+m?y, =0 (V)

Calculation of y, when x =0, i.e., (y,)o:

Putting x = 0 in (v), we have

(yn+2)0 = (I’l2 + m2) (yn)O

Replacing n by n — 2, we get

0o = [(n =2+ m*1 (v, ) (vi)
Replacing n by n — 2 in (vi), we get
On-2)o = [ =4+ m*1 (3,_4)o (vii)

Using (vii) in (vi),
0o = [ =272+ m?] [(n = 42 + m*] (3,_4)g
Similarly, we have
0o = [(n =22+ m?] [(n - 4>+ m*| [(n — 6>+ m?] (y,_¢)g  (viii)

Proceeding in a similar manner we have from (viii), when 7 is odd as
the following:

0o =M =22 +m? [(n—42 +m?] ... [32+m?][12 + m?](y)), (ix)
From (ii), we have (y,), = m. Using this in (ix), we get
o =[(n- 22+ m?[(n—4)2+m?] ... [3% + m?]
[12+ m?] m, when n is odd.

Also proceeding in a similar manner we have from (viii), when n is
even as the following:

0o = [ =27 +m’1[(n - 4> + m*] .. [+ m’][22 + m*] () (%)
From (iv), we have (y,), = m?. Using this in (x), we get
) = [(n=2)* + m?][(n — 4)> + m?] ... [4% + m?]
[2% + m*|m?, when n is even.

Prove that [ﬁ+l; b+¢ E+Zz] = 2[&55], where @ b ¢ are three
vectors.

Solution: Using the definition of scalar triple product, we write
[a+b b+cc+al=(a+b)-[(b+e)x(¢+a)]
= (a+5)-[(5+6)x6+(5+6)xﬂ

=(a+5)-[(bxc)+(@xe)+(bxa)+(cxa)]
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since ¢xc=0
=G (bxc)+a-(bxa)+a-(¢xa)+b-(bxe
+b-(bxa)+b-(¢xa)

+[bbal+[beal
By the property of scalar triple product of vectors, we have [5 b 6] =
0, [6 ¢ ﬁ] =0, [l; b E] =0, [l; b 6] = 0 (since two vectors in the product
are same) and [l; ¢ 51 = [5 b E].
Using this in the above, we get
lG+b b+cc+a]=[abc|+0+0+0+0+[abc|=2[ab¢c]
(iii) Find the directional derivative of f = xyz at (1,1,1) in the direction
2i— j—2k.

Solution: Here, it is given that f = xyz. Then

= yzi +x7) +xyk
So, [Vf](l’u) —i+j+k

Here we are to find the directional derivative in the direction 27 —} —2k.
The unit vector in the direction of 2i — j — 2k is given by

2i-j-2k  _2i-j-2k
22+ (12 +(=2) 3

a=

Then the requ1red directional derivative of f = xyz at (1, 1, 1) in the
direction of 2i — —-j- 2k is given by

[ﬁf:l(m,]) ra= (;+JA+/2) . (#J — _%
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10. (i) Prove that

b? +c? a’ a’
— A2 22
b* A+d? p> | =4abc
c? c? a’+b?

Solution: See Example 1.16 of Page 1.43.

(i1) State the Divergence Theorem of Gauss. Verify divergence theorem for F

= yf +x}+zzl€ over the cylindrical region bounded by x> + y*> =9, 7 = 0,
z=2.

Solution: See Example 9.29 of Page 9.58.

(iii) Test the series for convergence:

Solution: Let us consider the given series as

- wo2r 3
S = gt
Zq 39 44

Then

n? n? 1
a = = =

n+1)7 4 4
M (R
n n

Let us consider another series

S-S

n=1

which is convergent for g — p > 1 and divergent for ¢ —p < 1.
Now we have

lim & = lim —— =1,
n—e b, n—soo 1\¢
1+ —
n

Since Eb,, is convergent for g — p > 1 and divergent for ¢ —p < 1, by

n=1 oo

comparison test, Zan is convergent for ¢ — p > 1 and divergent for

n=1

g-p<1.
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r 2
2
11. (i) Obtain a reduction formula for Isin" xdx. Hence obtain .[singx dx.

0 0
Solution: See Section 5.2 of Page 5.1.

(ii) Given two vectors & =3 — J, B =20 + ] - 3k. Express B in the form
B, + B,, where J, is parallel to & and f3, is perpendicular to @.
Solution: See Example 9.1 of Page 9.17.

(iii) Show that A = (6xy + 23)i + (3x2 = 2)] + (3xz2 — y)k is irrotational. Find
the scalar function ¢, such that A= ﬁgb.

Solution: See Example 9.11 of Page 9.36.



SOLUTIONS OF UNIVERSITY QUESTIONS
(W.B.U.T))

B.TECH SEM-1 (NEW) 2012
MATHEMATICS-II (M 101)
Time Alloted: 3 Hours Full Marks: 70

GROUP-A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following: (10 x 1 =10)

*(i) The sequence {(_1)" l} is
n

(a) convergent (b) oscillatory
(c) divergent (d) none of these
*(ii) The matrix [ cos6 Sine} is
—sinf cos6
(a) symmetric (b) skew-symmetric
(c) singular (d) orthogonal

**(1i1) The value of ¢ for which
f=(x+3)it(-22)j +(x+)k

is solenoidal is

(a) 2 (b) —2 () 0 (@ 1
*(iv) The series zip is convergent if
n
(@ p=21 (b) p=1 () p>1 (dp<l

**(v) The two eigenvalues of the matrix
2 =2 2
A=|1 1 1
1 2 -1

Level of difficulty:- *Low, **Medium, ***High.
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are 2 and —2. The third eigenvalue is
(a) 1 (b) 0 () 3 (d 2

*(vi) If Rolle’s theorem is applied to f{x) = x(x2 —1)in [0, 1] then c =
1

1
() 1 (b) O (©) NG (d) N
3 3

.. +
*(vil) Ifu= A , find the value of n so that xu, + yu, = nu.

(@) 0 (b) 2
(c) % (d) none of these
*#*(viii) The n'™ derivative of sin(5x + 3) is
(a) 5" cos(5x + 3) (b) 5" sin(™ + 5x +3)
2
(c) 5" cos( % +5x +3) (d) none of these

**(ix) The value of .[(xdx— dy) where C'is a line joining (0, 1) to (1, 0) is
‘ 3 1 2
a) 0 b) — c) — d) =
(a) (b) 2 () 5 (d) 3
T
2
*(x) The value of .[ sin’ 040 is
T

2
6.4.2

a) 0 b

@ \ ®) 7.5.3.1

(©) % (d) none of these

*(xi) If the characteristic equation of a matrix 4 is X +3X2+5X+9=0then
determinant of the matix is

(a) 7 (b) 5 (c) 6 (d) 9
*(xii) Let 4 and B be two square matrices and A7, B! exist. Then (AB)f1 is
a) 4'B! b) B4
c) AB d) none of these
Answers
(i) (b) (i1) (d) (i) (b) (iv) (¢)
V) (d) (vi) (d) (vii) (b) (viii) (b)

(ix) (b) x) (a) (xi) (d) (xii) (b)
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GROUP B (Short Answer Type Questions)

Answer any three of the following: B x15=45)
**2. Verify Rolle’s theorem for the function
fx)=,-1<x<1
Solution: See Example 2 of Page 4.4.
*#%3. 4 and B are orthogonal matrices and |A4| + |B| = 0. Prove that 4 + B is singular.

Solution: Since 4 and B are orthogonal, |[4| = £1 # 0, |B| = £1 # 0. Also,
A4 =44"=Tand B'B=BB"=1.
Let us consider C =4 + B. Then
CT=U+B)T"=4"+B"
= C'4=4"4+B"4
= C'4=1+B"4
= BC'A =BI+BB" 4
= BC'A=B+14
= BC'A=B+A=A+B

|4+ B| = |BC"4| = |BI|C"]|4]

=—|A| |C] || , since |4 + |B| =0 and |CT| =|C]|
=—{l41}* |C| = -|C}, since |4| = +1
=—|4 + B|
2/A+B|=0
|4+ B|=0.

Hence, 4 + B is singular.

x*+1
(x=D(x=2)(x-3)

Solution: Let us consider

*%4_ Find the n™ derivative of

x*+1 A B C
y = = + +
G-DE-2(x-3) (-1 (x-2) (x-3)
x2 +1 B Ax-2)(x-3)+B(x-D(x-3)+C(x—-1(x—2)
(x=D(x-2)(x-3) (x-D(x—-2)(x-3)

= ¥+l =Ax—2)(x—3)+Bx—1)(x—3)+Clx—1)(x—2)
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**5

Substituting x = 1, 2, 3 we have respectively
2=A4(1-2)(1-3)

ie., A=1
5=B2-1)(2-3)

1.e., B =-5.

and

10=C3 - 1H(3-2)

1.e., CcC=5
Therefore,
x* 1 5 5
y= = - +
x-Dx-2)(x-3) x-1) (x-2) (x-3)
. (=1)"nla" 1
since y, = ———— -1 wheny= ——, we get from the above,
(ax+b) ax+b’

G L N GV A R G )
Yn = (x_z)nﬂ (x 2)n+1 (X 3)n+l

. Let

o xfyyz’ (x,)#(0,0)
X, y) =

0, (x,y)=(0,0)
Evaluate £,,(0, 0) and 1,,(0, 0).

Solution: We have

1, (1,0)~ £,(0,0)

=1
£5(0,0) = im ===
Now,
hk 3 h.0
T2 2
Sk, 0) = llmf(hk) JO) _ . h+k® h+0
k—0 k
= lim
—S0h+ K
and
f(OO) f(Ok) f(OO)_1 0- O:0
k=0 k

Using the above two results in (1), we obtain

0.0)— lim fy(h,O)—fy(O,O)_Hml—o_liml
‘f;‘y( ’ )_h—>0 h _h—>0 h _h—>0h

which does not exist. Again, we have

(1
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fx(O’k)_fx(an)

— lim "2 S
£,(0,0) = lim - @)
Now,
hk
T2
£0,5) = lim f(h, k) JOK) _ o htk
h— h—0 h
. k 1
=lim =—
h—0 h+ k2 k
and
f(h, 0) £(0,0) 0-0
1 = lim =0
/(0,0)= 1m =0 h
Using the above two results in (2), we obtam
o JO0,k) - £:(0,0)
.];'x(oa 0) - Illi;r(l] k
1
—=0
= lim k___ lim L

k=0 k k—0 k2
which also does not exist.

**+6. Find div F, and curl F where
F =grad(x’ + ) + 22 — 3xy2)
Solution: See Example 9.9 of Page 9.35.

GROUP C (Long Answer Type Questions)

Answer any three of the following: (B x15=45)
e 2 ANu,v,w)
7. (@) fu=x"-2y,v=x+y+z, w=x—2y+ 3z find ﬁ
‘x’ y’ z
Solution: Here,
W o
dx dy oz

a(u,v,w): @ Q &
a(x,y,z) ox dy oz

gw dw ow
ox dy oz
2x -2 0

=1 1 1=10x+4
1 -2 3
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1 o o®-Py
**(b) Prove that |I ﬁz—ya =0

1y v -op

Solution: See Example 1.14 of Page 1.41.
#%(c) If v =f (x> + 2yz, y* + 2zx), prove that

(=)Lt @)L -0
ox dy oz
Solution: See Example 6.7 of Page 6.35.

*k*@  (a) If 0=1" e 4, find what value of n will make
1 0( ,00) 06
e S ) e
r2 or or ot
—r2
Solution: Since 8= 7"¢ 4 , we have

a_0=[”e_4rt.(__2rj=_&.

or 4¢
_(rza_") _ Li(r.(_ﬂ))_ii _or

2 or or 2 or 26)) 2 or 2t

_ 1706 13r20_1r3( g)_mﬂe

22 ar 2 a2 ul ) 2
_6 3
42 2t

Again,

2 2 2

98 _ nt’_le% + t”e% + t”e% [F—ZJ = ﬂ+ %
ot 4¢ r 4
By the given condition, we have
1 0,00\ 0d6
#5755
02 30 _m o’

4 2t 4

which implies n = —%
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**(b) Using the mean-value theorem, prove that

0<110g(6 _1j<1
X x

Solution: See Example 7 (ii) of Page 4.12.

**(c) If I,= | x" sinx dx (n> 1) then show that

ce—la

n—1
[+n(n—DI, ,= n(%)
Solution: See Example 5.7 of Page 5.27.

**0. (a) State D’Alembert’s ratio test for convergence of an infinite series.
Examine the convergence or divergence of the series

(1)2 (1.2)2 (1.2.3)2

— +| — +| — e
3 3.5 3.5.7
Solution: See Example 22 of Page 8.12.

**(b) Ify = ¢ then show that

(1 +x7), o+ @ux +2x = L)y, +na(n+1)y,=0

Solution:
We have

y=e tan~1 ¥
Now, differentiating w.r.t. x,

a

= e x.ﬁ: 1+yx2
= (1+x%)y =y (1)
Again, differentiating (1) w.r.t. x,

(1+x7)yy + 0y, =3,

= (1+xX)y, +Qx— 1y, =0 )

Now, differentiating (2) » times by Leibnitz’s rule, we have
[2:(1+2%)], + [yy.2x = 1], =0.

ie., [2} (123 +"Cr i}, 1.20) +"Cr (2}, 2. (2)]
H} @ =D +"Ciin},1:21=0

e, [V (1+x5)+2nxy,. . +n(n—1y]+[2x—1)y,., +2ny,]=0
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ie., (1+x2)y,.0+ Qnx+2x— 1)y, +n(n+1)y,=0

**(c) Find the extreme value of the function

fix,y) =x3-1-y3 —3x— 12y + 20.
Solution: See Example 25 of Page 6.27.

1 0 2

*¥*¥%10. (a) If 4 = |0 —1 1|then verify that A4 satisfies its own characteristic

0 10
equation.

Hence, find 4" and A°.

Solution: See Example 2.17 of Page 2.48.

3,.3
**(b) Ifu= tan"' *_ Y then show that

xX=y
o%u o*u o%u
2 2 .2 .
X 8x_2+2xy8xay+y ay—2=(l— sin“u) sin 2u

Solution: We have

(1

3, .3 3, .3
u=tan ' XY tanu= (x ry ) =v(x, ), (say)
x—y -
Here,
3,3, .3 3, .3
+ +
Wex, ) = - (Y _ Xty
H(x—y) (x=y)
Therefore, v(x, y) is a homogeneous function of degree 2. Now, by Euler’s
theorem,
ov(x, ov(x,
AICS)) +y (y) 295, y)
ox dy
or, d(tanu) . d(tanu) _ 2 (tan )
ox dy
or, sec’u. {xa_u + ya_u} =2 (tan u)
ox ~ ady
ou OJu _ .
or, X—+y— =sin2u
ox ~ dy
Now, differentiating (1) partially w.r.t. x we get,
2 2
xa—Z+a—u+y ou =2 cos 2ua—u
ox* Ox 0xdy ox
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2 2
or, xa_”+y IU _ pcos 2u—1) )
ox? oxdy ox
Again, differentiating (1) partially w.r.t. y we get,
’u  ou o%u du
X +—+y =2cos2u —
dyox dy = dxdy y
0%u ’u du
or, +y— =(2cos2u—1)— 3
YotV oo D 3)

Multiplying (2) by x and (3) by y and then adding we get,

2 2 2
[xza—u+2xy Ju +y? B_u} =(2cos2u-1) {xg—u+ya—u}
X

0xdy oy? dy

2 2 2
or, {xz —u+2xy ou +? 3—3} = (2 cos 2u — 1) sin 2u = (1 — 4 sin®u)sin 2u
Y 34

Hence, the result is proved.
*#%(c) Given the system of equations:
X F4x, +2x3=1, 2x; + Txy + 5x3 =k, 4x; + mx, + 10x3 =2k + 1.

Find for what values of k and m, the system has (i) an unique solution, (ii)
no solution, and (iii) many solutions.

Solution: If we write the system of linear equations in the matrix form as
AX = B then the coefficient matrix of the system of linear equations is

1 4 2
A=12 7 5
4 m 10

and the augmented matrix is

1 4 2 1
A4=12 7 5 k
4 m 10 2k+1

The system of equations has a unique solution when the determinant of
the coefficient matrix is not equal to zero.

1 4 2
detd=12 7 5|=—-m+14
4 m 10
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Therefore, for det 4 # 0 = m # 14, the system of equations has a unique
solution.

When m = 14, the augmented matrix becomes

1 4 2 1
A=|2 7 5 k
4 14 10 2k+1

Applying elementary row operations on the matrix 4, we have

1 4 2 1 1 4 2 1
A=12 7 5  k |R2RR-4R 10 -1 1 k-2 | B2hy,
4 14 10 2k+1 0 -2 2 2k-3
L4 2 ! 14 2 1
0 -1 1 k-2 =0 -1 1 k-2
0 0 0 (2k=3)-2(k-2) 00 0 1

Here, Rank 4 =2 and Rank 4 =3, i.e., Rank 4 # Rank 4 . So the system
of equations is inconsistent and correspondingly, the system has no
solution.

Summarizing the above, we have
i) the system of equations has a unique solution when m # 14
i) the system of equations has no solution when m = 14
iii) it is not possible that the system of equations has many solutions
*#11. (a) Show that V /' = m" 2 F = w27, where 7 =xi +yJ + zk.

Solution: See Example 7 of Page 9.23.

**(b) Evaluate J.J.\sz — y? dxdy over the triangle formed by the straight lines
y=0,x=1,and y=nx.
Solution: See Example 4 of Page 7.6.
**%(c) Verify Stokes’ theorem for
F = (2x—y)§ —yZZJA'—yzzlAc,
where S is the upper half surface of the sphere X+ y2 +z%=1and Cis its
boundary.

Solution: See Example 9.34 of Page 9.65.



SOLUTIONS OF UNIVERSITY QUESTIONS
(W.B.U.T))

B.TECH SEM-I (NEW) 2013

MATHEMATICS-I (M 101)

Time Alloted: 3 Hours Full Marks: 70

GROUP-A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following: (10 x 1 =10)

100 101 102
*(i) The value of the determinant {105 106 107|is
110 111 112
(a0 (b) 10 (c) 100 (d) 1000
*(i1) The equation x +y +z =0 has
(a) infinite solutions (b) no solution
(¢) unique solution (d) two solutions

*%(iii) The value of LO ,[(:(“ V) dxdy =

(a) 2 (b) 3 ©) 1 @ 0

Jy +Vx
y+x

*(iv) fox, y) =

is a homogeneous function of degree

@ L b _1 © 1 ) 2
2 2

**(v) In the MVT
Sth) =f(0) + hf"(6h), 0 < 6 < 1

if flx) = IL and & =3 if then the value of Ois
+Xx

1
1 b) —
(2) ()3

(d) none of these

© \—15

Level of difficulty:- *Low, **Medium, ***High.
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#k(vi) If y = e™", then (y5), =

(a) ae’ (b) ae’
(c) a’e™ (d) none of these
*(vii) The series ¥, 1 is
(2n+1)"
(a) convergent (b) divergent
(c) oscillatory (d) none of these

T

2
*(viil) J cos® xdx is equal to

0
5w
@ X (b) = © Z (d
12 32 32
#%(ix) If [@ b ¢] =0 then the vectors d, b, ¢, are
(a) colinear (b) coplanar
(c) orthogonal (d) none of these
*x) Ifux, y) = tan ™! (Z) , then the value ofxa—u + ya—u is
X ox ~ dy
(a) 0 (b) 2u(x, y)
(c) u(x,y) (d) none of these.
(xi) The centre of the sphere given by the equation
a(x2+y2+22)+2bx+20y+2dz+w=0
is

b ¢ d

(a) T, T, T T (b) (7b9 -, 7d)
a a a
b c d b ¢ d

© ( 2a° 2a’ Za) @ (Z’Z’Z)

Answers
@ (a) (i) (a) (i) (¢) (iv) (b)
(v) (b) (vi) (b) (vii) (a) (viii) (b)

(ix) (b) x) (a) (xi) (a)

RV 4
16
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GROUP B (Short Answer Type Questions)

Answer any three of the following: B x5=15)

*2. Prove that every square matrix can be expressed as the sum of a symmetric
matrix and a skew-symmetric matrix.

Solution: See Theorem 1.2 of Page 1.10.
**3. Show that
f=(6xy+22)i+(3x —2)j +(Bxz - )k
is irrotational. Hence, find a scalar function ¢ such that ]7 = w .
Solution: See Example 9.11 of Page 9.36.

**4. Using mean-value theorem, prove that

x<sin" x<

X 0<x<l
1-x?

Solution: Let f{x) = sin”!

[0, x] and £ (x) = ——

V1-x?

Hence, by Lagrange’s MVT, we have,
Jx) =10) +x/"(6x), 0 < 6<1

x in [0, x] where 0 <x < 1. Then, f{x) is continuous in

exists in (0, 1).

1 X

or, sin” X = ——— (1)
V1-6%x?
Now,
0<6<1
o, 0< Bx<x [x>0]
or, 1>1- x*>1-x°
or, 1> \/1—92x2 >\/l—x2
1 1
or, 1< <
\/1—92x2 \/l—x2
o, X al (i1)

< <
\/ 1-6%x* \/ 1-x?
Therefore, from (i) and (ii), we have,

- X
x<sinlx<——,0<x<1
1-x2
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**5. Show that the area bounded by a simple closed curve C is given by
1
ECfD(xdy—de)
Solution: See Problem 6 of Page SQP 2.6.

**6, Prove that the function
foe,y) =2 =2y +y7 —x =y X

has neither maxima nor minima at the origin.

Solution: Here,
S y)=x =2y +)P = xP =7+

and
fo=5¢" = 3%+ 2x — 2y and f, = -3y” + 2y — 2x
J;x:20x3,6x+2’j§y:—2, yy:76y+2

Since
10, 0) =0=/0,0)
therefore, (0, 0) is a stationary point. Also,

J0,0) =2, £,(0,0) ==2,1,(0,0) =2

We have,
10, 0)/,,(0,0) = (£,)* (0,0) =4 4 =0

Hence, f(x, y) has neither maxima nor minima at the origin.

GROUP C (Long Answer Type Questions)

Answer any three of the following: (B x15=45)

*7. (a) If f:|17| where, 7:)/{1’+)’;}'+Zl\c, prove that

1 7
v/ -
[r) I

Solution: See Example 7 of Page 9.23.
**(b) Prove that

p2te? & a2
b? A +d b |=4a’b*c?
c? c? a’ +b?

Solution: See Example 1.16 of Pages 1.43.

*(c) If y =cos '(msin" x) then prove that
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(1 =20 = @+ Dy, + (m* = )y, = 0
Solution: See Example 3.13 of Page 3.17.

*8, (a) If the vector functions F and G are irrotational, prove that F X Gis
solenoidal.

Solution: See Example 12 of Page 9.31.

_ -1 X .
#¥(b) If f(x,y)= x*tan™! (%) —y*tan™! [;j , verify that f, =/

Solution:See Example 6.6 of Page 6.34.
**(c) Find the maxima and minima of the function
X+ —3x+12y+20
Also, find the saddle point.
Solution: See Example 25 of Page 6.27

0 a b ¢

**9, (a) Evaluate —a 0 d e by the Laplace expansion method.
-b -d 0
- —e —-f 0

Solution: See Example 1.9 of Page 1.36.

**(b) Verify Green’s theorem for
b [3x=8y")dr-+ (4y—6)dy]

where C is the region bounded by x =0,y =0,and x + y = 1.
Solution: See Example 9.27 of Page 9.56.

***(c) For what values of A and u does the system of equations

X+y+z=6
x+2y+3z=10
x+2y+Az=u

has (i) a unique solution, (ii) no solution, and (iii) infinite solutions.

Solution: See Example 2.9 of Page 2.37.

**10. (a) If ¥, = J-Oz tan” 0 dO then prove that
n(unﬂ + un*l) =1

Solution:See Example 5.4 of Page 5.24.
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*%*%(b) Prove that if 0 <a <b,

(b-a)

(1+5%)

Hence, show that

<tan'h—tan"'a< (b_i)
(1+a°)

T 3 _14 T 1
—+—<tan —<—+
4 25

6
Solution: For first part, see Example 4.7 of Page 4.37.

Leta=1, p :g so that 0 < a < b < 1 is satisfied. Substituting these
values in the above result, we have,

4—1 4 i—1
3—2<tan_](§)—tan_ll<l3 "
1+(ﬂ) +M

3
4 4
or, 3—<tan_1 i —£< 3
' 4\ 3) 4 1+Q)°
I+| -
3
T 1 T
or, —+—<tan —<—+-—
4 4

**(c) Test the convergence of the series

6 8 10
+ + +
1.3.5 357 579

Solution: See Example 8.25 of Page 8.41.

**11. (a) State Leibnitz’s theorem for convergence of an alternating series. Hence,
test the convergence of the following series:

r 1 1 1 1
ety Tty e
Solution: For the statement of Leibnitz’s theorem, see Article 8.13.1 of
Page 8.16. For the solution of the problem, see Example 8.27 of Page
8.42.
**(b) Ifz=flx,y), where, x = ¢"cos v and y = ¢" sin u, show that
yk + x% =™ %
du  dv dy
Solution: See Example 6.9 of Page 6.37.
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0prx x+y X+y+z
©) Evaluatej Jo jo e dxdydz

Solution: Here,

I= jo [ e dnava: = jo {jo & [ [ ezdz:| dy}dx
[ e o)) = [ e te e

S P o L [

2x
= J:{ezx {% - %} —e'le’ - 1]} dx




SOLUTIONS OF UNIVERSITY QUESTIONS
(W.B.U.T))

B.TECH SEM-I (NEW) 2014
MATHEMATICS-I (M 101)
Time Alloted: 3 Hours Full Marks: 70

GROUP-A (Multiple Choice Type Questions)

*1. Answer any ten questions: (10x1=10)

(i) f:sinSede:

8 8 8 4
a) = b) — c) — d) —
()15 ()15 ()15 ()15
2
*(1) Ifulx, y)=yf X |thenx a_u +y a_u =
2 ox ~ dy
(a) 0 () 2u(x, y) (©) ulx,y) (d) 2
**(iii) The value of .[c (xdx — dy), where C is the line joining (0, 1), to (1, 0) is
3 1 2
a) — b) — c) 0 d =
()2 ()2AA(A)AAA()3
**(iv) The component of the vector 2j+5; + 7k on j—2;j +2k is
(2) V78 (b) 3 (© 6 @ 2
*(v) The value of ¢ for which (x +3)i + (y — 22)j +(x+#z)k is solenoidal is
(a) 2 (b) -2 c) 0 d) 1
*(vi) If x =r cos Band y = r sin 6 then, r.0) _
a(x,y) |
(a) r (b) 1 () - (d) 0
X +y?
*(vil) f(x, y) = 5 is a homogeneous function of degree
X" +y
1
(2) 0 (b) 2 (c) 1 (d) 5

Level of difficulty:- *Low, **Medium, ***High.
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-1 1 -1
**(viil) If4=1]3 —3 3 |thendis
5. 55
(a) idempotent (b) nilpotent
(c) involutary (d) none of these

*(ix) If y =tan ' x then

(a) (1+xy, =1 ®) (1+27,=1
(© (1+x)y, =0 () (1+x, =2
*(x) If 4 is a real skew-symmetric matrix such that 4> + I =0 then 4 is
(a) singular (b) aunit matrix
(c) orthogonal (d) none of these
*(xi) The sequence {1, l, L, v — e 00t 1S
3732 3"
(a) divergent (b) oscillatory
(c) convergent (d) none of these
s . . ha-et :
(xii) For a function f{x), the expression W f"(a+06h)is known as
n—1)!
(a) Lagrange’s remainder (b) Cauchy’s remainder

(c) Maclaurin’s remainder ~ (d) Taylor’s remainder

Answers
(i) (a),(c) (i) (c) (i) (a) (iv) (d)
(v) (b) (vi) (¢) (vii) (b) (viii) (a)
(ix) (a) (x) (d) (xi) (¢) (xii) (b)

GROUP B (Short Answer Type Questions)

Answer any three Questions: B x5=15)
**2. Using the Laplace method of expansion, prove that
X y —u -v
X v o u
y (VP -y i)
u v x y
-v —u y X

Solution: Using the Laplace method of expansion, we have
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y oo v u _ Y X(il)(1+2)+(1+2)x Y
u Y X Yy y X
-V -u 'y X
X —u v .y
+ X(_1)(1+2)+(1+3) y .
y
X -V Y
N1 +2)+(1+4)
tly w|xED —u y
o —v u v
+ X (_1)(1+2)+(3+4) v —u
vV o ou
X -V X
+ X(fl)(1+2)+(1+4)
y u —u .y
— a+n+e+y |4 Y
+ x (-1)
X v -V X

= (=)D = u ) + G+ )t + (0 =)
= P+ P — P — )
**3. For what values of x is the following infinite seriens convergent?
oo n_n
» (n+1)"x x>0
o] nn+l
Solution: Let
u - (n+1)"x"

n nn+1

, x>0

Applying the Cauchy root test,
1

1 n_n ;
lim(a,)" = lim (M)
n—seo

H—o0 nn+1

(l+l)x
lim (n+1)x Cm | L)

_ 1k ; _
T n—ooo 1 =X

- n—soo -
n.n" nn
Therefore, by Cauchy root test, the series is convergent when x < 1 and diver-
gent when x > 1. The test fails when x = 1.

Whenx =1,
+1)" n
o (1)L
n

nn+1 n
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*4,

**5

**6

. . . 1
Consider a series ™ p , where b, = —.
n=1"n n n

Now,

lim 22 = 1im(1+l) —e>1

n—e b n—e n

Since Y.._,b,is a divergent series. So by comparison test, the series is
divergent.

Therefore, the infinite series is convergent for x < 1.

If , B, yare the angles which a vector makes with the coordinate axes, prove
that
-2 . 2 Lo
sin” ot + sin” B+ sin” y=2
Solution: Let

F=xi+yj+zk

then,
X z
cosa=—;cosﬁ=+;cosy=—
[2, .2, .2 [2, 2, 2 [2, 2, 2
X“+y 4z X4y +z X“+y 4z
Now,

sin® o+ sin® B+ sin® ¥ = (1 — cos’a)) + (1 — cos® B) + (1 — cos’ 9)

2, .2, 2
+y 4+
ST . A S
X +y 4z
. . o -D!
CIfy=Xx" 1log x, using Leibnitz’s theorem, show that y, = u
X

Solution: See Example 3.4 of Page 3.11.

. Using Green’s theorem, evaluate cﬁ {(cos x sin y — xy) dx + sin x cos ydy}
c

where C is the circle x* + y* = 1.

Solution:See Example 14 of Page 9.48

GROUP C (Long Answer Type Questions)

Answer any three of the following: (B x15=45)
1 2 2
**7. (a)IfA=1|2 1 2| then show that A* 44 - 51; = 0. Hence, find Al
2 21

Solution: Here,

1 2 2 1 2 2
A=121 2{x|2 1 2
2 2 1 2 21
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8
= 9
18 8 9]
Therefore,
9 8 8 1 22 1 00
A —44-5L=18 9 g|l-4/2 1 2|-5/0 1 0
18 8 9] [2 21 0 0 1
0 0 0]
=0 0 0|=0
10 0 0]
Since
A —44-51; =0
or, A (AP -44-5L) =0
or, A—4L,-54" =0
or, A1 =é[A—4I3]
1 22 1 00
or, A=l 1 alzalo 1 o
2 21 0 0 1
-3 2 2
=% 2 -3 2
2 2 -3

#*(b) Ify = ¢” " ' then show that
() (1 =x*)y, —xp; = m’y =0
(i) (1= xX*),e0 = @0+ Day,y = (2% + m®)y, = 0. Also, find (3,,)p.
Solution: See Example 9(i) of Pages SQP 2.9.

**(c) Is Rolle’s theorem applicable to the function f(x) = (x — p)"(x — q)",
x € [p, q] where m, n are positive integers? If so, find the constant ¢ of
Rolle’s theorem, where ¢ has its usual meaning.

Solution: Here,
f) =& -p)'"x—q),x € [p,q]
where m, n are positive integers. Now,
(1)
fp) =0=A4q)
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(i1) Since f(x) is a polynomial, f{x) is continuous in [p, ¢]
(1ii)
f0) =mx=p)" = )" + nx = p)'x— )"
exists in (p, q).

Therefore, Rolle’s theorem is applicable to the function f{x) and there exists
c € (p, q) such that

f©)=0
or, — m(e=p)"(c=gq)+nc=p)fc—gf =0
or, (c=p)" =g tm(c—q)+n(c-p)}=0
or, {m(c—q)+n(c—p)} =0
or, _ mq+np

m+n

**8. (a) State D’ Alembert’s ratio test. Applying this test, examine the conver-
gence of the following series:
o [0 o
1+2—+—+4—+-~~oo, a>0
21 31 41
Solution: See Example 8.26 of Page 8.42.
**(b) Show that
[a+b,b+¢, ¢+d]=2[a.b.c]
Solution: See Problem 9(ii) of Page SQP 2.10.
#%(c) If fv* — x%,v* — %, v* — 2%) = 0, where v is a function of x, y, z then show
that
ldv lov lov 1
——t——F——="_
xdx ydy zdz
Solution: See Example 17 of Page 6.16.

**%9.  (a) Determine the conditions under which the system of equations
x+ty+z=1
x+2y—z=k
Sx+Ty+az= K
admits (i) only one solution, (ii) no solution, and (iii) many solutions.

Solution: See Problem 8(a) of Page SQP1.5.

**%*(b) Verify the divergence theorem for the vector function F =dxzi— »? f

+yzlAc taken over a cube bounded by x =0, x=1;y=0,y=1;z=0,
z=1.
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Solution: See Example 16 of Page 9.50.

T

#x(c) If [, = _[02 " sin xdx(n > 1) then prove that

n—1
I+n(n—"1)I_,=n (%)

Solution: See Example 5.7 of Page 5.27.
**10. (a) Verify Lagrange’s mean-value theorem at [—1, 1] for
fix) =x sinl ,x#0
X
=0,x=0
Solution: See Example 4.4 of Page 4.34.

%) If 4 = xf (1) +g (X) then show that
X X

Ou_  ou _ Y 2 0%u
xax+yay = xf(;) and x ax—2+2xy

Solution: See Example 21 of Page 6.19.

2 2
Ju +? 9u_
oxdy dy?

16 5

**(c) Find the rank of the following matrix 6

N AN
S W W

3
8 8 23 15

Solution: Let us apply elementary row operations on the matrix; then

2 316 5 2 3 16 5
45 6 T| pir+n |45 6 7
2 0 1 3 8 8 23 15
8 8 23 15 8 8 23 15
2 3 16 57 2 3 16 5
R-r |4 5 6 T| pog |0 -1 26 3
8 8 23 15| B4R |0 -4 —41 -5
00 0 O 0 0 0 0
2 3 16 5] 2 0 -62 4
01 26 3 01 26 3
(GRL R-3R,
DRy |0 4 41 5| B4R |0 0 -63 -7
00 0 O] 00 0 O
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10 31 =2 1 0 -13 0
v o 1 26 3| gam 001 -1 0
[;)R 00 9 1| R3& 700 9 1

00 0 0 00 0 0

Since the number of nonzero rows of the reduced matrix is 3, therefore,
the rank of the matrix is 3.

**11. (a) Find the extremum of the following function:
X+ = 3axy
Solution: See Example 6.23 of Page 6.50.
**(b) Show that V ¢ is irrotational, where ¢=x%y + 2xy + z%.

Solution: Now,
Vo= (28—¢+]a—¢+fca—¢)
ox ~ dy oz
= Qxy+2y)i + (P +2x)] +2zk

and
i j k
=3 0 d 0
curl{ Vo) = - - 2
( ¢) ox dy 0z

2xy+2y) (x> +2x) 2z

i(0-0)—j (0—0)+k(2x+2—2x—2)
=0

Therefore, V ¢ is irrotational.
**(c) Evaluate J.Oa jox L)y x> y? zdxdydz

Solution: See Example 7.4 of Page 7.19.



SOLUTIONS OF UNIVERSITY QUESTIONS
(W.B.U.T))

B.TECH SEM-1 (NEW) 2011

MATHEMATICS-I (M 101)

Time Alloted: 3 Hours Full Marks: 70

GROUP-A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following: (10x1=10)
*(@1) The least upper bound of the sequence {Ll} is
n+

(@ 0 ) % © 1 @ 2

Solution: The correct alternative is

2000 2001 2002
*(ii) The value of (2003 2004 2005/ is
2006 2007 2008
(a) 2000

() 0
(c) 45

(d) none of these

Solution: The correct alternative is |(b) 0

#%(iii) If 23— 6A% + 94 —4 =0 is the characteristic equation of a square matrix A then
A~lis equal to

(a) A2—6A+91 (b) lA2 - iA + 21
4 2 4
(c) A2—6A+9 @ ~a2-3a42
4 2 4
. o 1, 3 9
Solution: The correct alternative is |(b) ZA —=A+ " 1

*(iv) If x=rcos 6,y = rsin 0, then 90, 6) is

a(x,y)
(a)

(©)

r ®) 1
1
p

(d) none of these

Level of difficulty:- *Low, **Medium, ***High.
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.. 1
Solution: The correct alternative is |[(c) —
,

*wv) f(x,y) = M is a homogeneous function of degree
y+x

1 1
(2) ) (b) ~3 () 1

Solution: The correct alternative is |(b) —%

#%(vi) If @- (BX7)=0, then &, B, 7 are
(a) coplanar (b) independent

(c) collinear (d) none of these

Solution: The correct alternative is |(a) coplanar

**(vii) The nth derivative of (ax + b)'° is (where n > 10)

(@) a' (b) 10!a'® (© 0

Solution: The correct alternative is

*##%*(viii) If for any two vectors a and b,

la+b|=|a-b|
then G and b are
(a) parallel (b) collinear
(c) perpendicular (d) none of these

Solution: The correct alternative is [(d) orthogonal

*4(ix) IfA‘I:%[ ? j then A =

d 2

(d) 10!

3 1 2 1 112 -1 2
(a) Ll 2} (b) [_1 3} © 7{1 3} (d) [1

2 1
Solution: The correct alternative is (b)|: 1 }

-1

3

|
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O 0 [y

*(x) The reduction formula of I, = | cos"xdx is
@ ="t b 1= "
n n—1
() I,= (n ~1 jln_z (d) none of these
n

-1
Solution: The correct alternative is |(c) I,= (n—jlnz
n

o 2
**(xi) The series is
HZ:; 2n*+1
(a) convergent (b) divergent
(c) oscillatory (d) none of these

Solution: The correct alternative is |(b) divergent

*(xi1) Lagrange’s Mean Value Theorem is obtained from Cauchy’s Theorem for two
functions f(x) and g (x) by putting g(x) =

@ 1 b) © x @ +
X
Solution: The correct alternative is

GROUP-B (Short-Answer Type Questions)
Answer any three of the following: Bx5=15)

*2. Prove that every square matrix can be expressed as the sum of a symmetric
matrix and a skew-symmetric matrix.

Solution: See Theorem 1.2 of Page 1.10.

**%3 By Laplace’s method, prove that

a b ¢ d
hoad oy ey
—-c —-d a
—d c -b a

(consider minors of order 2).
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Solution: Here, we expand the given determinant by Laplace’s method of
expansion in terms of a minor of order 2 considering the first two rows as

follows:
a b ¢ d
-b a d -c
—-c —-d a b
—d c -b a
_|a b X (=1)1+D+(1+2) a b I B X (=1)1+D+(1+3) -d b
-b a -b a -b c a
a d -d a b ¢ —c b
+ X (_1)(l+2)+(l+4) + X (_1)(l+2)+(2+3)
-b —c c b a -4 a
+ b d X (—1)(1+2)+Q@+4) a4 .Llc d X (=1)(1+2+G+4) —c —d
a —c -d -b| |d -c —d c

= (a* + b?) (a@® + b?) + (ad + bc) (ad + be)
+ (—ac + bd) (—ac + bd) + (bd — ac) (bd — ac)
+ (be + ad) (be + ad) + (2 + d*) (¢* + d?)
=(a%+ b?)? + 2(ad + bc)? + 2(-ac + bd)?
+ (2 + d?)?
=(a® + b»)? + 2[(ad + bc)* + (—ac + bd)?]
+ (A2 + d?)?
=(a%+ b?)? + 2[a?d* + b*c? — 2adbc + a*c?
+ b2d? - 2achd] + (c* + d?)?
=@+ b2+ 2@+ DDA+ d) + (2 + db)?
=(a*+b* + 2+ d*):?

1 1
*#k%4, If 2x = y™ 4+ y ™ then prove that

(2= 1)y, +Qn+ Dxy,,, + (2 —m?y, =0
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Solution: Here, we have
1 1

2x :y;+y_;
1

or, yr=2x+—/=0

ym

1y 1
or, ymo| =2x|ym |+1=0

Applying the rule for finding solution of the above quadratic equation, we
get

1
o = 2x+4(2x)° - 411 _ (xim)

2
(x -1 )m ()

Differentiating (i) w.r.t. x, we have

= y

m—1 1 1
M=mPiJﬁ—q SREES 2x
2 2
x =1
m—1 2 _ +
- m(xi,rz_l) . xz_l—x
x =1

[
I+
3
=
I+
=
[
T‘
—
=
3
L
=
+
=
[\
|

ie., y, =%tm \/xZ_l \/xz—l (i)
Squaring (ii) and simplifying, we get

GD*( = 1) =m?y? (iii)
Again differentiating (iii) w.r.t. x, we have

2y, 3,(x2 = 1) + (y)?2x =m?2y-y,
= V2= 1)+ yx—m?y =0 (iv)
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Now applying Leibnitz’s theorem, we differentiate (iv) n times w.r.t. x,

{3, = D}, + {yx}, — {m?y}, =0

= ({2}, 02 = 1) +"Ci{yy), 1 - (20) +"Ca{ya}, 5~ (2]

+ {1}, 2 +"Col{y}ny - 11 -mPy, =0
= (2= 1)y, o+ 2nxy, | +n(n— 1)y, +xy,,, +ny,—m?, =0
= (2= 1)y,0 + 2n+ Dxy,, + (> —m?)y, =0

#*5. Ifu= xf(l) + g(l) then show that
X X

) 0%u 0%u ) 82_14

Solution: See Example 21 of Page 6.19.

*%6. Show that the area bounded by a simple closed curve C is given by

1
E@()cdy — ydx).

Solution: We know that Green’s theorem states the following:

IN M
Cﬁ{M(x y)dx + N(x, y)dy) = H(———y)d ' dy

where the region R on the two-dimensional xy plane is bounded by a simple
closed curve C and the line integral along the curve C is taken in the anti-

clockwise direction.

Here, comparing LHS of (i) with (]S(xdy — ydx), we have

c
M=—y,N=x:>aM -1, a_N—l
dy ox

Therefore using (ii) in (i), we get

éfﬂxdy yd) = j [1 - Dldxdy

- ZJdedy

=2 X [Area bounded by C]
= Area bounded by C = %{ﬁ(xdy — ydx)

Hence, the area bounded by a simple closed curve C is given by

1

—P(xdy — ydx).

295(xy ydx)
C
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GROUP-C (Long-Answer Type Questions)

Answer any three of the following: 3 x15=45)
T (1) If
fx,y) =x? tan‘l(zj —y?tan~! (ﬁj,
X y
verify fxy = fyx.

Solution: See Example 6.6 of Page 6.34.

*(@i) State Rolle’s theorem and examine if you can apply the same for
f(x) =tan xin [0, 7.

Solution: See Example 4.3 of Page 4.33.
*#%(iii) Find the value of A and u for which

xX+y+z=3
2x—y+3z=4
Sx—y+Az=u

has (a) a unique solution, (b) many solutions (c) no solution.

Solution: If we write the system of linear equations in the matrix form as
AX = B then the coefficient matrix of the system of linear equations is

and the augmented matrix is

1 1 1 3
A=|2 -1 3 4
5 -1 A u

The system of equations has a unique solution when the determinant of
the coefficient matrix is not equal to zero.

I 1 1

detA =2 -1 3

5 -1 4
=1(-A+3)-1RA-15)+ (-2 +5)=-31+21

Therefore, fordet A #0 = 34+ 21 #0 = A # 7, the system of equa-
tions have unique solution.
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When A =7, the augmented matrix becomes

1 11 3
A=|2 -1 3 4
5 -1 7 u

Applying elementary row operations on the matrix A, we have

1 11 3 1 11 3
A=|2 -1 3 4|R,—2R.R;—-5R/|0 -3
5

1 -2 |Ry-2R,
17 u 0 -6 2 u-1s
1 11 3 1 b 1 ;
0 -3 1 =2 (——)Rz 01 — =
0 00 1) = 53
H= 00 0 up-11
1o &2
303
Ri-R 0 1 o2
303
00 0 u-11

The system of equations is consistent when Rank A = Rank A and this
is possible for

u-11=0=pu=1I.

In this case, Rank A = Rank A = 2, which is less then number of
unknowns (=3) and the system has infinitely many solutions.

Again, if
u-11#0=pu=11.

then Rank A = 2 and Rank A = 3, i.e., Rank A # Rank A, and so the
system of equations is inconsistent and correspondingly the system has
no solution.

Summarizing the above, the system of equations has
(a) aunique solution when A # 7

(b) infinitely many solutions when A =7 and u =11
(¢) no solution when A =7 and u# 11.
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*#%*8 (1) Find the maxima and minima of the function
fO,y)=x+y> = 63(x +y) + 12xy
Find also the saddle points.
Solution: See Example 6.24 of Page 6.51.

**(ii) State Leibnitz’s test for alternating series and apply it to examine the
convergence of

R U

22 + 3—2 - 4—2 +...00
Solution: See Example 8.27 of Page 8.42.
*(iii) Applying Lagrange’s Mean Value Theorem, prove that

— <log(1 +x) <x, for all x> 0.
1+x

Solution: See Example 7 of Page 4.11.
%9, (i) Ify = e™s"'x show that
(=40 = Qn+ Dy, = (0 + )y, = 0.
Hence, find y, when x = 0.
Solution: Here, we are given that

msin-1x

y=e ()
Differentiating (i) w.r.t. x, we have

— omsin-lx 1
y =e -m
( 1—x2j

ie., V=

(i1)
Squaring (ii) and simplifying, we get
0?1 —x%) =m?y? (iii)
Again differentiating (iii) w.r.t. x, we have
2y, 9,(1 = x%) + (y)? (-2x) =m?2y-y,
= V(1 =x?) =y x—m?y =0 (iv)
Now applying Leibnitz’s theorem, we differentiate (iv) n times w.r.t. x,
(1 =)}, = {yix}, = {m?y}, =0.
= [, (=) +"Ci{yo},o1 - (20 +"Co{ya} 0 (F2)]
_[{yl}n CXF ncl{yl}n—l 1] - m2y11 =0
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= (1 _xz)yn+2 - 2nxyn+1 - I’l(l’l - l)yn X1 Y — m2y11 =0
= (1 =Xy, 0= Cn+ Dxy,, — > +m?)y, =0 (v)

Calculation of y, when x =0, i.e., (y,)y:
Putting x = 0 in (v), we have

(yn+2)0 = (n2 + m2) (yn)()
Replacing n by n — 2, we get

0o =101 =2+ m*1(v,_2)g (vi)
Replacing n by n — 2 in (vi), we get
Vy_a)o = [(n - 4)? + m?] Vu_ado (vii)

Using (vii) in (vi),
0o = [(n =22+ m?1[(n = 4)* + m*1 (3,_4)g
Similarly, we have
0o = [(n =27+ m*][(n = 4>+ m*] [(n - 6)*+ m*1 (¥, )y (viii)

Proceeding in a similar manner we have from (viii), when » is odd as
the following:

0o =l =22 +m’1[(n -4 +m?] ... 32+ m?][12 + m*1(y)), (ix)
From (ii), we have (y,), = m. Using this in (ix), we get
0o = [(n=2)* + m?][(n — 4)> + m?] ... [3% + m?]
[1%2 + m?] m, when 7 is odd.

Also proceeding in a similar manner we have from (viii), when n is
even as the following:

0o = (=272 +m*1[(n -4 +m?] ... [42+ m?][2* + m?1 () (X)
From (iv), we have (y,), = m?. Using this in (x), we get
0o = =22+ m*|[(n—4)>+m?] ... [4> + m?]
[22 + m%]m?, when n is even.

Prove that [6+l; b+¢ ¢+ Zz] = 2[&155], where @ b ¢ are three
vectors.

Solution: Using the definition of scalar triple product, we write

[+b b+cc+a)=(a+b)-[(b+&)x(c+a))
)><5+(E+E)><a]

—(a+5)-[(5xc)+(@xe)+(bxa)+(cxa)]

1]
—_
Q
+
S
~—
1
—
S
+
(oY)
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By the property of scalar triple product of vectors, we have [Zl b 5] =
0, [é ¢ 5] =0, [l; b E} =0, [5 b 5} = 0 (since two vectors in the product
are same) and [I; ¢ d] = [ﬁ b E].
Using this in the above, we get
G+bb+¢c+ad|=[abe|+0+0+0+0+[abé]=2[abc]
*(@ii) Find the directional derivative of f = xyz at (1,1,1) in the direction
2i— j—2k.

Solution: Here, it is given that f = xyz. Then

= yzf + xz} + xylg
So, [ﬁflu’l) = f+}+l€
Here we are to find the directional fierAivati\A/e in the direction 2i —} —2k.
The unit vector in the direction of 2i — j —2k is given by
2i-j-2k  _2i-j-2k
22+ (D2 +(=2)? 3

Q>

Then the required directional derivative of f = xyz at (1, 1, 1) in the
direction of 2i —} —2k is given by

[ﬁfl],],l) a= (;+JA+/€) . [#j — _%
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**10. (i) Prove that

b +c? a* a’
—A212.2
b? +ad? p? | =4a‘bc
2 2 a’ +b?

Solution: See Example 1.16 of Page 1.43.

#3%(ij) State the Divergence Theorem of Gauss. Verify divergence theorem for F

= yi +xj+2°k over the cylindrical region bounded by x + y> =9, z = 0,
z7=2.

Solution: See Example 9.29 of Page 9.58.
**(ii1) Test the series for convergence:
1» 27 3P
—+
20 39 44
Solution: Let us consider the given series as

.- 17 21’ 37
Sttt
2‘1 311 4‘1
n=
Then

n? n? 1
a. = = =

+1 q q q
(n+D n? (1 +1) n"‘P(1+1)
n n

Let us consider another series

oo oo

Th=Y

n=1 n=1 n

which is convergent for g — p > 1 and divergent for g —p < 1.

Now we have

lim % = fim— o1,

n—e b, n—soo 1Y
I+ )

n

Since an is convergent for ¢ — p > 1 and divergent for g —p < 1, by
n=1 -

comparison test, Zan is convergent for ¢ — p > 1 and divergent for

n=1

g-p<1.
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T

*11. (i) Obtain a reduction formula for | sin” xdx. Hence obtain Isin9xdx.

O — 0 [

0
Solution: See Section 5.2 of Page 5.1.

#%(ii) Given two vectors & = 3 — J B =2i +j - 3k. Express B in the form
B, + By, where B, is parallel to & and f3, is perpendicular to &.
Solution: See Example 9.1 of Page 9.17.

#%({ii) Show that A = (6xy + 29)i + (3x2 = 2)] + (3xz2 — y)k is irrotational. Find
the scalar function ¢, such that A= @d).

Solution: See Example 9.11 of Page 9.36.
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