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Preface

Linear Algebra and Vector Calculus is a key area in the study of an engineering
course. It is the study of numbers, structures, and associated relationships using
rigorously defined literal, numerical and operational symbols. A sound knowledge
of the subject develops analytical skills, thus enabling engineering graduates to solve
numerical problems encountered in daily life, as well as apply vector principles to
physical problems, particularly in the area of engineering.

Rationale

We have observed that many students who opt for engineering find it difficult to
conceptualise the subject since very few available texts have syllabus compatibility
and the right pedagogy. Feedback received from students and teachers have highlighted
the need for a comprehensive textbook on linear algebra and vector calculus that
covers all topics of first-year engineering along with suitable solved problems. This
book—an outcome of our vast experience of teaching undergraduate students of
engineering—provides a solid foundation in vector principles, enabling students to
solve mathematical, scientific, and associated engineering principles.

Users

This book is meant for the first-year engineering students of Gujarat Technological
University (GTU) studying the subject Linear Algebra and Vector Calculus (2110015).
The structuring of the book takes into account all the topics in the GTU syllabi in a
student-friendly manner.

Intent

An easy-to-understand and student-friendly text, it presents concepts in adequate
depth using a step-by-step problem-solving approach. The text is well supported with
a plethora of solved examples at varied difficulty levels, practice problems and engi-
neering applications. It is intended that students will gain logical understanding from
solved problems and then by solving similar problems themselves.

Features

Each topic has been thoroughly covered from the examination point of view. The theo-
ry part of the text is explained in a lucid manner. For each topic, problems of all possi-
ble combinations have been worked out. This is followed by an exercise with answers.
Objective type questions provided in each chapter help students in mastering concepts.
Salient features of the book are summarised below:

« Exactly in-sync with the latest GTU syllabus of Linear Algebra and Vector Cal-
culus (2110015)
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« Lucid writing style and tutorial approach throughout the book, i.e., teach-by-examples
« Offers extensive opportunities to students for practice and self-evaluation
through numerous step-by-step solved examples and exercises
« Application-based problems for better comprehension of concepts
o Solved GTU 2014, 2013 and 2012 examination papers
« Exam-oriented rich pedagogy includes
o 80 Illustrations
« 400 Solved Examples
« 300 Exercise Problems

Organization
The content of the book is spread over seven chapters.

Chapter 1 gives an in-depth account of matrices and systems of linear equations.
Chapter 2 discusses vector spaces.

Chapter 3 presents linear transformations.

Chapter 4 gives an overview of inner product spaces.

Chapter 5 deals with eigenvalues and eigenvectors.

Chapter 6 covers vector functions.

Chapter 7 explains vector calculus.

Apart from these, solved GTU question papers of 2012, 2013 and 2014 have been
provided at the end of the book.
Acknowledgements
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copyediting and production stages of this book.
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Matrices and Systems of

Linear Equations 1

] Chapter

1.1 INTRODUCTION

A matrix is a rectangular table of elements which may be numbers or any abstract
quantities that can be added and multiplied. Matrices are used to describe linear
equations, keep track of the coefficients of linear transformation and record data that
depend on multiple parameters. There are many applications of matrices in mathemat-
ics, viz. graph theory, probability theory, statistics, computer graphics, geometrical
optics, etc.

1.2 MATRIX

A set of mn elements (real or complex) arranged in a rectangular array of m rows and
n columns is called a matrix of order m by n, written as m X n.
An m X n matrix is usually written as

a, a, e ag,
a,, a,, e Ay,
A=
_aml am'.l e mn 1 jyxn

The matrix can also be expressed in the form 4=[q,],,,, where a, is the element
in the 7" row and j" column, written as (7, /) element of the matrix.

1.3 SOME DEFINITIONS ASSOCIATED
WITH MATRICES

(1) Row Matrix

A matrix having only one row and any number of columns, is called a row matrix or

row vector, €.g.
[2 5 -3 4]
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(2) Column Matrix

A matrix, having only one column and any number of rows, is called a column matrix

or column vector, e.g. i

=3
4

(3) Zero or Null Matrix

A matrix, whose all the elements are zero, is called a zero or null matrix and is denoted
by 0, e.g. 00 0

00
,10 0 0
00
0 00

(4) Square Matrix

A matrix, in which the number of rows is equal to the number of columns, is called a

square matrix, e.g. 5

1 3
2 3
|-t 4 -5
1 4
2 6 8
(5) Diagonal Matrix

A square matrix, all of whose non-diagonal elements are zero and at least one diagonal
element is non-zero, is called a diagonal matrix. e.g.

1 00
,10 4 0
0 4
0 0 8
(6) Unit or Identity Matrix
A diagonal matrix, all of whose diagonal elements are unity, is called a unit or identity

matrix and is denoted by 7, e.g.
1 0 0

1 0
[ } 010
0 1
0 0 1
(7) Scalar Matrix
A diagonal matrix, all of whose diagonal elements are equal, is called a scalar matrix, e.g.
2 0; 0

3.0
020
o

0 0 2
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(8) Upper Triangular Matrix

A square matrix, in which all the elements below the diagonal are zero, is called an
upper triangular matrix, e.g.

(9) Lower Triangular Matrix

A square matrix, in which all the elements above the diagonal are zero, is called a
lower triangular matrix, e.g.

(10) Trace of a Matrix

The sum of all the diagonal elements of a square matrix is called the trace of a matrix,

2 -1 0
e.g. A= 4 6 2
-1 0 3

Trace of A=2+6+3=11

(11) Transpose of a Matrix

A matrix obtained by interchanging rows and columns of a matrix is called transpose
of a matrix and is denoted by 4" or A7, e.g.

-1

7 1 0 -4
If A= 0 2|, then A" =
-1 2 |
4
le.if4 = [aij]mxn’ then 4" = [aji]nxm

(12) Determinant of a Matrix
If A4 is a square matrix, then determinant of 4 is represented as |4 | or det(4).
2
1
1

2 3 1 31
If A=|1 2 3|, then det(4)= 2 3
I 10 1 0
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(13) Singular and Non-Singular Matrices

A square matrix A4 is called singular if det (4) = 0 and non-singular if det (4) # 0.

1.4 SOME SPECIAL MATRICES

(1) Symmetric Matrix
A square matrix 4 =[a,],  is called symmetricifa, = a, foralliandj, i.c. 4= AT e.g.

1 i =3i

2 4
J i 2 4

=3i 4 3

(2) Skew Symmetric Matrix

A square matrix 4 = [aij]mxm is called skew symmetric if a,=-a, for all 7 and j,
ie.A=—A".
Thus, the diagonal elements of a skew symmetric matrix are all zero, e.g.

0 -3 -4

3i 0 8

4 -8 0

Example 1: Show that every square matrix can be uniquely expressed as the sum
of a symmetric matrix and a skew symmetric matrix.
Solution: Let 4 be a square matrix.

1 1
A=E(A+AT)+E(A—AT):P+Q

where, P=1(A+A"')
2
1 ;
and Qz—i(A—A7)
Now, PT=%(A+AT)T=%|:AT+(AT)T]
1 .
=E(A’+A)=P
Hence, P is a symmetric matrix.
| T 1 T
1 T:_ 4T — T .. T
Also, 0 2(/1 A) 2[/1 (A )]
LYoo=l )=
-1 -a)=-S4-1)=-0
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Hence, Q is a skew symmetric matrix.
Thus, every matrix can be expressed as the sum of a symmetric matrix and a skew
symmetric matrix.

Uniqueness Let A =R + S, where R is a symmetric and S is a skew symmetric matrix.

A"=(R+S) =R"+S8"=R-S

I gy 1

Now, E(A+A )=§[(R+S)+(R—S)]=R=P
I D

and E(A—A ):E[(R+S)—(R—S)]:5:Q

Hence, representation 4 = P + Q is unique.

i s
Example 2: Express the matrix 4=|—1 -2 —4| as the sum of a symmetric
8 2 13
and a skew symmetric matrix.
1 5 7 1 -1
Solution: A=|-1 =2 -4|, A"=|5 =2 2
8 2 13 7 -4 13
Let le(A+A’)
2
1 5 7 1 -1 8 2 4 15
=— [1 -2 —4|+|5 2 2 L 4 -4 2
8 2 13| [7 -4 13 215 -2 26
0=3(4-4)
2
1 5 7 1 -1 8 0 6 -1
=% -1 -2 —4|-|5 2 2 =l—60—6

2
8 2 13 7 -4 13 1 6 0

We know that P is a symmetric and Q is a skew symmetric matrix.

[2 4] [o6 -
A=P+Q=-| 4 —4 2[+-|-6 0 6
15 -2 26 16 0



1.6 Chapter 1 Matrices and Systems of Linear Equations

(3) Conjugate of a Matrix

A matrix obtained from any given matrix 4, on replacing its elements by the corre-
sponding conjugate complex numbers is called the conjugate of 4 and is denoted by

A, e.g.
1+3i 2+5i 8 - |1-3i 2-5 8
A= , A=
—i 6 9—i i 6 9+i

(4) Transposed Conjugate of a Matrix

The conjugate of the transpose of a matrix 4 is called the transposed conjugate or
conjugate transpose of 4 and is denoted by 4%, e.g.

A = (@) =(4")

1-2i 2+3i 3+4i 1-2i 4-5i 8
eg,If A=|4-5i 5+6i 6-7i|, A" =|2+3i 5+6i 7+8i
8 7+8 7 3+4i 6-7i 7

1+2i 4+5i 8
Then, 4° ={2-3i 5-6i 7-8i
3-4i 6+7i 7

(5) Hermitian Matrix
A square matrix 4 = [a ] is called Hermitian if @, =a_ foralliand;, i.e. 4 =4 e.g.,
ij ij ji

| 243 3-4i
2-3i 0 2-17i
3+4i 2+7i 2

(6) Skew Hermitian Matrix

A square matrix 4 = [a,] is called skew Hermitian if a, = —a for all i and J, i.e.
A =-A° Hence, diagonal elements of a skew Hermitian matrix must be either purely

imaginary or zero, e.g.
i 2+3i
2-3i 0

Example 1: Show that every square matrix can be uniquely expressed as the sum
of a Hermitian matrix and a skew Hermitian matrix.
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Solution: Let 4 be a square matrix.

A=%(A+A")+%(A—A")=P+Q

where, P= %(A+ A)

and Q=%(A—A")

Now, P’ :%(A+A")9 :%[A" +(A")9]
=%(A9 +4)=P

Hence, P is a Hermitian matrix.

Also, 0’ :%(A—A")B » %[A" —(A“)"]
Liw A
=’ ~d)=-g

Hence, Q is a skew Hermitian matrix

1.7

Thus, every square matrix can be expressed as the sum of a Hermitian matrix and a

skew Hermitian matrix.

Uniqueness Let A = R + S where R is a Hermitian and S is skew Hermitian matrix.

A =R+8)0°=R°+5°=R-5§

1 a1
Now, §(A+A )=E[(R+S)+(R—S)]=R=P

and Ha-a)=2[(R+5)-(R-5)]=5=0

L]
2 2

Hence, representation 4 = P + Q is unique.

2+3i 0 4
Example 2: Express the matrix 4=| 5 i 8
1-i -3+i 6

Hermitian and a skew Hermitian matrix.

as the sum of a
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Solution:
2+3i 0 4i
A=| 5 i 8
1-i -3+i 6
2-3i 5 1+i
A=AD"=| 0 -i 3-i
-4i 8 6
2+3i 0 4i 2-3i 5 1+i
Let p.__l(A+A9)=l 5 i 81+ 0 —i —3—i
2 2
1-i -3+i 6 —4i 8 6
4 S 1+5i
=—| 5 0 5-i
1-5i 5+i 12
i 2+3i 0 4i 2-3i 5 1+i
Q:—(A-A"):E 5 i 81— 0 - 8-
1-i -3+i 6 —-4i 8 6
6i =5 —1+3i
:l 5 2i 11+

14+3i =11+ 0

We know that P is a Hermitian and Q is a skew Hermitian matrix.

1 4 5 1+5i i 6i =5 —1+3i
A:P+Q:E 5 0 5-i +§ 5 2i 11+
1-5i 5+i 12 1+3i —11+i 0

Example 3: Show that every square matrix can be uniquely expressed as P + iQ
where P and Q are Hermitian matrices.

Solution: Let 4 be a square matrix.

A=%(A+A")+i%(A—A9)=P+iQ

! 1
where, P=—2-(A+A6) and Q=E(A_A9)
Nov Pl =54 (]

=%(A"+A)=P
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Hence, P is a Hermitian matrix.

Also, 0’ = [%(A—AG)]H = —%[Ae ~(4) |

1

__Ye_ ] o) _
——Z(A _A)_ZI(A_A )—Q
Hence, Q is a Hermitian matrix.

Thus, every square matrix can be expressed as P + iQ where P and Q are Hermitian
matrices.

Uniqueness Let A= R + iS where R and S are Hermitian matrices.
A% =(R+iS)° = R? +(iS)° = R—iS

i1
2
1 1
—(A=A")==[(R+iS)—(R-iS)]|=iS =i
S(A-A")= 2[R +i8)-(R-i5)] 0

Hence, representation 4 = P + iQ is unique.

Now, (A+A")=%[(R+i$)+(R—iS)]=R=P

and

2i 3 1- i
Example 4: Expressthe matrix 4= 0 2+3i 1+ i|asP+iQwhereP and
-3i 3+2i 2-5i
O are both Hermitian.
[2i -3 1-i
Solution: A= 0 2+3i 1+i
| —3i 3+2i 2-5i
[—2i 0 3i
A= -3 2-3i 3-2i
|1+ 1-i 2+5i

2 -3 1-i] [-2i 0 @ 3
Let P=%(A+A")=% 0 2+3i 1+i |+| -3 2-3i 3-2i
—3i 3+2i 2-5i] [1+i 1-i 2+5i

0 -3 1+2i

=% -3 4 4-i

1-2i 4+i 4
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i i 2i -3 1—-i =2i 0 3i
Qz_.(A_Ae)z_. 0 243i 1+i|-| -3 2-3i 3-2i
2i 2i . . . . . .
=3i 3+2i 2-5i 1+i 1—-i 2+5i
l 4i -3 1-4i
=— 3 6i —2+3i
2i

—-1-4i 2+43i -10i

We know that P and Q are Hermitian matrices.

l 0 =3 142 { 4i =3 1-4i
A=P+iQ=E -3 4 4—-i|+—-| 3 6i —-2+3i
1-2i 4+i 4 —-1-4i 2+43i -10i

Example 5: Prove that every Hermitian matrix can be written as P + iQ where P
is a real symmetric and Q is a real skew symmetric matrix.

Solution: Let 4 be a Hermitian matrix.

A’ =4

1 — .1 o .
A=5(A+A)+IZ(A—A)=P+1Q

where, P = %(A +4) and Q= 2L(A - Z) are real matrices.
i

Lo, =] _1 —r
Now, PT:[E(A+A):' =E[A"+A]’

Hence, P is a real symmetric matrix.

Also, o’ :[%(A—Z)] =2Li|:A9—Z]T
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Hence, Q is a real skew symmetric matrix.

Thus, every Hermitian matrix can be written as P + iQ, where P is a real symmetric
matrix and Q is a real skew symmetric matrix.

1 =i lgy 7
Example 6: Express the Hermitian matrix 4 = i 0 2-3i]|as
1-i 2+3i 2

P +iQ where P is a real symmetric matrix and Q is a real skew symmetric matrix.

[ 1 - 1+i |
Solution: A=| i 0 2-3i
[1-i 2+3i 2
[ 1 i 1-i]
A=| -i 0 2+3i
[1+i 2-3i 2
[ 1 —i 1+ 1 i 1-i
Let P=%(A+Z)=% i 0 2-3i|+| - 0 2+3i
[1-i 2+3i 2 1+i 2-3i 2
2 0 2] [1 01
Lo 0 4|={0 0 2
212 4 4 1 3 3
] 1 1 =i 1+ 1 =
Q=Z(A—A)=Z P00 2% 0 243
1-i 2+3i 2 1+i 2-3i 2
0 -2i 2i 0 -1 1
=>| 2 0 -6if=| 1 0 -3

We know that P is a real symmetric matrix and Q is a real skew symmetric matrix.
1 0 1 0 —i i
A=P+iQ=|0 0 2(+[ i 0 -3i
1 2 2| |- 3 0

Example 7: Prove that every skew Hermitian matrix can be written as P + iQ
where P is a real skew symmetric matrix and Q is a real symmetric matrix.
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Solution: Let 4 be a skew Hermitian matrix.
A° =-4

1 1 _ ,
A=5(A+A)+IE(A—A):P+1Q

1 - 1 - .
where, P = E(A+A) and Q:Z(A_A) are real matrices.

T T 1 _
Now, P! =[5(A+A)] =5[—A"+A]T

1 _
=—§(A+A):—P

Hence, P is a real skew symmetric matrix.

0 <[ -A)] =g [-a-a]

1

sl - -5} @]

Hence, Q is a real symmetric matrix.
Thus, every skew Hermitian matrix can be written as P + iQ where P is a real skew
symmetric matrix and Q is a real symmetric matrix.

2i 2+i 1-i
Example 8: Express the skew Hermitian matrix 4=|-2+i —i 3i | as
—1-i 3 0

P +iQ, where P is a real skew symmetric matrix and Q is a real symmetric matrix.

2i 240 1—i
Solution: A=|-2+i —i 3i
-1-i 3 0
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=2i 2—i 1+i
A=-2—i i —3i
-1+i =3i 0
2i 2+i 1-i =2i 2-i 1+i
Let P=%(A+Z)=l Duai =i % |#|-2-F i -3
—1-i 3 0 —1+i =3i 0
0 4 2] [0 21
U4 0 ol=zl2 00
2 -2 0 0 -1 0 0
i 1 2i 2+i0 1-i =2i 2-i 1+i
Q=Z(A—A)=E 24 —i B |-|=2-i i -3
| —1—i  3i 0 =1+i =3i 0
4i 20 -2i 2 1 -1
=% 2i -2i 6i|=| 1 -1 3
=2i 6i 0 -1 3

We know that P is a real skew symmetric matrix and Q is a real symmetric matrix.
0 2 1| (28 i =—i
A=P+iQ=|-2 0 O|+|i —i 3i
-1 0 0| [ 3i 0
(7) Unitary Matrix
A square matrix A4 is called unitary if A4°=A%4 = 1.

Example 1: Prove that matrix 4 is unitary and hence find 4.

L+i =1+ V2 -i2 0
. 2 9 .. 1.
) A= iy A=—|i2 -—\/E 0.
R ITTRN T
2 2
[1+i —14i]
Solution: (i) A= 2, 2_
Lo
L 2 2 |
[ 1+ 1+i]
AP 2 2
=1+i 1;1
| 2 g
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AB

AA° =

[ 1-i

3
-
| 2

(1+i

2

Il

1-i]
B3
1+i
B
—1+4i]
2

1-i

2

Matrices and Systems of Linear Equations

1—i

2

I+i 1-i

2 2

4

Hence, A4 is a unitary matrix.

(ii) A=

Il
|

AG

(= =

-iN2 2

i2 -2

iy L

iN2

0 0

2 -2

0 0

2 2
N2 -2
0 0

= =

0
0|=1
1

Hence, 4 is a unitary matrix.

_1[1-2 - +1
1= =1+

—1-i 1+i

2 2

e

['.‘AAgZI]

V2 -2 0
iN2 =2 0
0o 0 2

1—i3+1’2—1:|_

1

4

1
4

4
0
0

4 0

S B~ O

= O O
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For unitary matrix,

(8) Orthogonal Matrix
A square matrix A4 is called orthogonal if 447 = A"4 = L.

1.15

Example 1: Verify if the following matrices are orthogonal and hence find their

inverse:
I 2 2] cos¢ —sing 0
(1) A:% 2 1 2 (i) A=|sing cos¢ O]
=220 0 0 1
[ 1 2 2]
Solution: (i) A:% 2 1 =2
=2 2 =1]
. 5 o]
AT:l 2 1 2
3
L _2 _l_
1 2 21 2 =2
AArzé 2 1 2|2 1 2
|2 2 -2 2 -1
(9 0 0
:é 09 0
[0 0 9

1 00
=0 1 0[=1
0 0 1

Hence, 4 is an orthogonal matrix.

1 2 =2

2 1 2 [AAT=1]
2 -2 -

A=A = L
3
cos¢p —sing 0

(i1) A=|sing cosgp O
0 0 1
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[ cos¢ sing 0
A" =|—sing cos¢ 0
0 0 1

[cos¢p —sing cos

0 0

0

100
={0o 1 of=1
0 0 1

Hence, 4 is an orthogonal matrix.
For an orthogonal matrix,

sing 0

1

0

cosp sing O
A'=4" =|-sing cos¢p 0
0 0
0 2m
Example 2: Find/, m,nand A 'if A={] m
[ -m

Solution: Since the matrix 4 is orthogonal,

AA" =

0 2m n 0 / /

I m —-n||2m m -m|=

! -m nin -n n

4m’ +n’ 2m’ —n? 2m* +n’

2 2 2 2 2 2 2 2
2m - —n- I'4+m+n IT—-m —n |=

2mr+nt P=-mr=n* P+mP+n?

Equating corresponding components,
4m* +n* =1
2m* —n* =0
P+m +n* =1
Solving Egs. (1), (2) and (3),

pul gegl
2 2
m2=l, m=iL
6 6

, 1
n=—, n:iL
3 3

(=

O -

0
AA" =|sing cos¢ 0|/ —sing cos¢ 0
1

is orthogonal.

o - O O = O

1

- O

- o O

(D
)
.. 03)
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o
I+
I+

- &= &1
+
- 5= &1

Ry
|
B,
|
H+
H+

H+

Sl S

+l
I+

[
Example 3: If 4=|/, m, n,| is orthogonal, find the relationship among
L, my n

L i

Solution: Since the matrix A4 is orthogonal,

AA" =1
L m nllt L L] [1 0 0]
L m, n|lm m, m|=|0 1 0
Ly my ngflm n, n | [0 0 1]
IP+m+n LG +mm, +nn, L +mm,+nn, 1 1 o 0]
Ll +mm, +nn, L+m+n Li; +mymy+n,n, |=10 1 0
LI +mmy+nn, Ll +m,m;+n,n, L +m; +n 10 0 I}
Equating corresponding components,
PAml+n =L+m;+n =0 +m +n}=1
and L, +mm, +nn, = L1, +mm, +nn, = LI, +mym, +n,n, =0
Exercise 1.1 ) |
1. Express the following matrices as the 2. Express the following matrices as the
sum of a symmetric matrix and a skew sum of a Hermitian matrix and a skew
symmetric matrix: Hermitian matrix.
(0 5 -3 [ 2 2+i 3
» (1 1 1 i |2+i O 4
4 5 9 | i 3-i 1-i
3 2 6 [ 1 140 243
G |2 7 -1 G [1-i 2 -
5 4 0 2-3i i 0
1 053 [2 4+i 6i
(i) -2 161 (i) [6 5-i 4
3 271 [0 1-i 8i
| 4 -4 2 0
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3. Express the following matrices as
P + iQ, where P and Q are both

Hermitian.

2 3-i 1+2i
1) i 0 1
[1+2i 1 3i
[1+2i 2 3-i
(i) (243 2i 1-2i
[ 1+i 0 3+2i
4. Express the following Hermitian

matrices as P + iQ, where P is a real
symmetric matrix and Q is a real skew
symmetric matrix.

[ 2 2+4i -2i
G |2-i 3 i

| 20 -]

[ 2 1+ -
G) [1-i 0 =3-i

| & =3+i -l

5. Express the following skew Hermitian
matrices as P + iQ, where P is a real
and skew symmetric matrix and Q is a
real and symmetric matrix.

0 2-3i l+i

@ [-2-3i 20 2-i
| -1+i —2-i —i

[ i 2i —1+3i

G) | 28 20 2-i
(1430 —2-i  3i

6. Show that the following matrices are

unitary.
2+i 2
. 3 3
i
O | 5 o

3 3

Matrices and Systems of Linear Equations

i N4
.. 2 2
(i1)

V3o

2 2
(i) 11+ =147
111 —

211+i  1-i

7. Show that following matrices are
orthogonal and hence find their inverses.

1 8 -4 1
6] 5 1 4 -8
4 7 4
[ cos¢cos® sing cos¢sind
(i) | —sin¢gcos@® cos¢p —singsinf
| —sin@ 0 cos@
[ 1 1 1]
B 2
1 2
(ii1) ﬁ _ﬁ 0
1 1 1
V3 V6 V2
~ . o L_
V2 2
. 2 1 1
R KRS
1 1 1
V3 B V6
8. Find [, m, n and A7'if
[ m n 0
A 0 0 0 -1 s
n | -m 0
-m n -1 0
orthogonal.
-8 4 a
9.Finda,b,cifA=$ 1 4 b|is
4 7 ¢
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orthogonal.

Ans:a=1,b=-8,c=4 @b
[Ans.ca=1,5=-8,c=4] then prove that A=|a, b, ¢, | is
10.1f (a, b, c) where r = 1, 2, 3 be a by c

the direction cosines of the three
mutually perpendicular lines referred
to an orthogonal coordinate system,

orthogonal.

1.5 ELEMENTARY TRANSFORMATIONS

Elementary transformation is any one of the following operations on a matrix.

(1) The interchange of any two rows (or columns)
(i1)) The multiplication of the elements of any row (or column) by any non-zero
number
(iii)) The addition or subtraction of k items the elements of a row (or column) to the
corresponding elements of another row (or column), where &k # 0

Symbols to be used for elementary transformation:

(i) R,: Interchange of i and ;" row
(i) kR, : Multiplication of i row by a non zero number k
(iii) R, + kR : Addition of k times the j* row to the i row

The corresponding column transformations are denoted by C,, kC, and C, + kC,
respectively. ‘

1.5.1 Elementary Matrices

A matrix obtained from a unit matrix by subjecting it to any row or column transfor-
mation is called an elementary matrix.

1.5.2 Equivalence of Matrices

If B be an m X n matrix obtained from an m X n matrix by elementary transformation
of 4, then 4 is called the equivalent to B. Symbolically, we can write 4 ~ B.

1.5.3 Echelon Form of a Matrix

A matrix 4 is said to be in row echelon form if it satisfies the following properties:

(i) Every zero row of the matrix 4 occurs below a non-zero row.
(i1) The first non-zero number from the left of a non-zero row is a 1. This is called a
leading 1.
(iii) For each non-zero row, the leading 1 appears to the right and below any leading
1 in the preceding rows.

The following matrices are in row echelon form.
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1 1 0 1 2 -1 31({0 1 3 50
0 10,0 1 5 6,]0 0 1 -1 0
00 00 O 1 4/(0 0 0 0 1
A matrix A4 is said to be in reduced row echelon form if each column that contains a

leading 1 in row echelon form of the matrix 4 has zeros everywhere else in that column.
The following matrices are in reduced row echelon form.

1 00 1 00 2
00
,10 101,10 1 0 54,
0 0

0 0 1 0 0 I -1

S o O O

—4
0
0
0

(= -
S O —~ O
=

Example 1: In each part determine whether the matrix is in row echelon
form, reduced row echelon form, both or neither.

12030
1005
o |00 o i lo o 12
11
Y 1oo o0 01
0107
00000
0000 0
(i) [1 -6 4 3 @) 00 12 -3
111 1
0 132 Y looo 1 o0
0000 0
Solution:

(1) The given matrix is in reduced row echelon form and row echelon form since
it satisfies properties (i), (ii), (iii) and columns containing leading 1 have zero
everywhere else.

(i) The given matrix is neither in row echelon form nor in reduced row echelon
form since it does not satisfy the property (iii).

(ii1) The given matrix is in row echelon form since it satisfies properties (i), (ii) and (iii).
(iv) The given matrix is neither in row echelon form nor in reduced row echelon
form since it does not satisfy the property (i).

Example 2: Find a row echelon form of the following matrices:

08 — 1823 it 2 =g
2 3 45 . = [8R0

(i)
[ S ) RS ]
3 2 4 1 2 3

(i)
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2

-1 2 3
2 4
R,-2R, R,-3R,

-

1

3

-1

(=DR,

.+ 7R,

+3R,, R

R,

2
3

3 -1
-2

1

0

1

-7 =26

0 0

=26

=7

00

Solution: (i)
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1 |

o N o o0 (9 B ¢ TN o} -

I QT I Q|
- :
3 R4

NN Y O O /MM on = O O
— |~ —i | oo

R,+R, R,-2R,

2 =3 1

1

+R,

4

=2R,; R

R,

1
=]
7
-6

-3
2
-4
8

2
1
0
0

1
0
0
0

(i)



0 -1 2 3
|2 3 45
O

3 2 41

(i)

1
(‘z)’“
1 2 =3
0 1 2
0 0 1
0 0 8
R, -8R,
1 2 =3
0 1 2
0 0 1
0 0 0
|
(é)’“
1 2 =3
0 1 2
0 0 1
0 0 0

=)

oS O

1

W —= O N

1.5 Elementary Transformations

=30
3 4
2 =l
083

1.23
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Beginning with the last non-zero row and working upward, we add suitable mul-
tiples of each row to the rows above to introduce zeros above the leading 1°s.

R3—2—76R4, R,+3R,, R —2R,
(1 3 =1 0
01 =20
00 10
00 01

R, +2R,, R + R,

r B

1300
0100
oo 1 0
00 0 1]
R -3R,

[1 0 0 0]
0100
oo 10
0 0 0 1)

(i1)) The row echelon form of the matrix is

1 2 -3 |
01 2 -l
0 0 1 —Z

4
0 0 0 1

Beginning with the last non-zero row and working upward, we add suitable mul-
tiples of each row to the rows above to introduce zeros above the leading 1°’s.

R}+%R4, Ry +Ry; Ri—R,
1 2 -3 0

01 20

00 10

00 01
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R,-2R,, R+3R,

1200
0100
oo 10
0 0 0 1]
R -2R,

10 0 0]
0100
oo 10
0 0 0 1]

1.6 SYSTEM OF NON-HOMOGENEOUS
LINEAR EQUATIONS

A system of m non-homogeneous linear equations in » variables x , x,, ... x,_ or simply
a linear system, is a set of m linear equations, each in n variables. A linear system is
represented by

a,x, +a,x, +:-+aq

x, = b,

1n"*n
Ay X, +apX, +---+a,,x, =b,

X, +-+a,x, =b,

mn”"n

aml ‘xl g5 a/nZ d

Writing these equations in matrix form,

Ax=B
a, dy ... 4,
ay 4y wm | . . .
where A= is called coefficient matrix of order m X n,
kaml aml e anm
b
%l .
X= is any vector of order n X 1.
_x" _
b,
b, | .
B=| | isany vector of order m x 1.
L “m |
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1.6.1 Solutions of System of Linear Equations:
Gaussian Elimination and Gauss—Jordan
Elimination Method

For a system of m linear equations in n variables, there are three possibilities of the
solutions to the system:

(1) The system has unique solution.
(i1) The system has infinite solutions.
(iii) The system has no solution.

When the system of linear equations has one or more solutions, the system is said
to be consistent, otherwise it is inconsistent.

I
Ay Gy e 4y, b,
. Gy by e G, VB
The matrix [4:B]= =
: . ,
: : |
I
a, a a, 'b

ml m2 e mn m

is called the augmented matrix of the given system of linear equations.

To solve a system of linear equations, elementary transformations are used to reduce
the augmented matrix to either row echelon form or reduced row echelon form.

Reducing the augmented matrix to row echelon form is called Gaussian elimina-
tion method. Reducing the augmented matrix to reduced row echelon form is called
Gauss—Jordan elimination method.

The Gaussian elimination method for solving the linear system is as follows:

Step 1: Write the augmented matrix.

Step 2: Obtain the row echelon form of the augmented matrix by using elementary
row operations.

Step 3: Write the corresponding linear system of equations from row echelon form.

Step 4: Solve the corresponding linear system of equations by back substitution.

The Gauss—Jordan elimination method for solving the linear system is as follows:

Step 1: Write the augmented matrix.

Step 2: Obtain the reduced row echelon form of the augmented matrix by using
elementary row operations.

Step 3: For each non-zero row of the matrix, solve the corresponding system of
equations for the variables associated with the leading one in that row.

Note: The linear system has a unique solution if det(4) # 0

Example 1: Solve each of the following systems by Gaussian elimination method.

(1) x+ y+2z=9 (i) 4x—-2y+6z= 8 (i) 3x+ y- 3z=13
2x+4y—-3z=1 x+ y—-3z=-1 2x— 3y+ Jz=5
3x+6y—5z=0 15x—3y+92z= 21 2x+19y—-47z2=32
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Solution: (i) The matrix form of the system is

1. 1 2]|=x 9
2 4 3||y|=|1
3 6 5|z 0

The augmented matrix of the system is

11 2!9

|
2 A Bl
36 510

Reducing the augmented matrix to row echelon form,
R,-2R, R,-3R

11 21 9
I

~[0 2 =71-17

0 3 -111-27

1

(3)x

3 )5

(11 21 9]
I

o1 22117
21 2

[0 3 -11}-27]

R, 3R,

11 27 9]
|

o 1 2117
2: 2
I

00 113

L 20 2]

(-2)R,

[1 1 2} 9]

g 1 21117
2: 2

00 1} 3

x+y+ 2z=9
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Solving these equations,

x=1,y=2
Hence, x =1,y = 2, z =3 is the solution of the system.
(i1) The matrix form of the system is

4 -2 6|[«x 8
11 =3 |yl=]-1
15 -3 9|]|:z 21
The augmented matrix of the system is
4 -2 6, 8
11 =311
15 =3 9121

Reducing the augmented matrix to row echelon form,

RIZ

[1 1 -3}-1
o & -8 &L B
15 -3 9121

R,—4R, R,—15R
11 =31
<0 =6 18112
[0 —18 54136

a, ()
6) ° 18) -

L1 -3~
O T ~8 -
[0 1 810
R, —R,
[1 1 -3} -1
~lo 1 =312
00 0! 0

The corresponding system of equations is
x+y—-3z=-1
y—=3z=-2

The leading ones are in columns 1 and 2. Hence, the variables x and y are called
leading variables whereas the variable z is called a free variable. Assigning the free
variable z an arbitrary value ¢,



1.6 System of Non-Homogeneous Linear Equations 1.29

y=3t-2
x=-1-3t+2+3t=1

Hence, x =1, y =3t — 2, z =t is the solution of the system where ¢ is a parameter.
(ii1) The matrix form of the system is

2 19 47

(8]
W
|38}

The augmented matrix of the system is
31 =3,
|

2 3 71 8§

2 19 —47 132

Reducing the augmented matrix to row echelon form,

I
1 ! —1:2
3 13
~l2 =3 715
2 19 =473

Ro—2R;, Ry~2R

i 1 P13
1 E _li —
Y P TP I
3 ! 3
0 22 45y 1B
i 3 L3
_i)Rz
11
i 1 P13
1 3 —15—
~0 _2: 1
115
T
3 =N
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55
Ry ——R
I
1 13
1 5 _li_
~10 1 —ﬂi 1
11 !
0 0 015
From the last row of the augmented matrix,
0x+0y+0z=5

Hence, the system is inconsistent and has no solution.

Example 2: Solve the following system for x, y and z.

4
== =30
Yy z

1
_+£__= 9
Yy z
2 12000

X y z

Solution: The matrix form of the system is

1
J

1
-1 3 4]|Y| [30
3 2 -1 LY 9
2 -1 2| [0
l
Lz ]
The augmented matrix of the system is
-1 3 4130
|
32 -1'9
2 -1 2110

Reducing the augmented matrix to row echelon form,

(_I)RI

1 -3 —4!-30
~[3 2 11 9
2 -1 2110
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3R,, B —2R
4, -30
{ i 99
101 70
1
(n [5)
1 41 -30]
<lo 1 1i 9
0 1 21 14
RE_RZ
1 -3 —4-30]
“lo 1 1! 9
0 0 1! 5]

————— =-30
X y z
1 1
—+—=9
y z
1
—=3
Solving these equations,
LSRN R
ety
1 1 1. .
Hence, x = > s 7 z= = is the solution of the system.

Example 3: Solve the following system of non-linear equations for the unknown
angles &, fand %, where 0 < ¢ <27, 0< f<2zmrand 0< y < 7.

2sinoc— cosf+3tany =3
4sinor+2cosB—2tany =2
6sinor—3cosf+ tany =9

Solution: The matrix form of the system is
2 -1 3| |sinax 3
4 2 2| |cosp|=|2
6 -3 1| |[tany 9
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The augmented matrix of the system is

2 -1 3!3
]

4 2 212

6 -3 119

, L 343
B 2 212
3 2 -2l
g =8 159

R R
2 212
~lo 4 8!
0 -8! 0
i) (-3)
4) 73
[, -1 3:3
2 212
<o 1 2!=1
0 0 1! 0

The corresponding system of equations is

o | W

sino lcos[3+§tan =
2 2 ¥

cosff—2tany = -1
tany =0

Solving these equations,

=0
cosf=-1 = PB=n=x
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sina—lcosﬁ Etan +§
2 2 ¥ 2

1 33
=l O =1

b4 . .
Hence, o= 7 B=m, y=0 is the solution of the system.

Example 4: Investigate for what values of A and x the equations

x+2y+ z= 8
2xt2y+2z=13
3x+4y+Az= U

have (i) no solution, (ii) a unique solution, and (iii) many solutions.

Solution: The matrix form of the system is

1
2
3

RSN NS I S

|| x
21 |y|=]|13
Al z

The augmented matrix of the system is

12 118

I
2 2 313
34 Ay

Reducing the augmented matrix to row echelon form,

R,-2R, R,-3R

S
|
~{0 2 0 ! 3
0 =2 A-31pu-24
I
(-2)s
5 |k
12 1! 8
I
~10 1 0 | -
2

0 2 A—3 L i—24

1.33



1.34  Chapter 1 Matrices and Systems of Linear Equations

Ry +2R,
12 1 | 8
|
~lo1 ot 2
| 2

0 0 A-3)u-21

(i) If A=3and p# 21, the system is inconsistent and has no solution.
(ii) If A# 3 and w has any value, the system is consistent and has a unique solution.
(iii) If =3 and g =21, the system is consistent and has infinite (many) solutions.

Example 5: Determine the values of A for which the following equations are
consistent. Also, solve the system for these values of A.

x+2y+ z=3

x+ y+ z=4

2

3x+ y+3z=41

Solution: The matrix form of the system is

1 2 1f|=x 3
11 1||yl=lA
31 3|z A’
The augmented matrix of the system is
1 2 143
11102
3 1 3148

Reducing the augmented matrix to row echelon form,

R,—R, R, -3R,
(1 2 1) 3 ]
g -1 0! %3
0 =5 01A2-9]
(_I)Rz

1 2 1) 3 ]
~lo 1 0!3-2
[0 =& 03459
R, +5R,

i 2 1} 3
~lo 1 0! 3-2
0 0 014°-54+6
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The equations will be consistent if 2> —54+6=0,ie. A=3or 1=2.

Casel: When A=3,
x+2y+z=3

y =0
Assigning the free variable z any arbitrary value ¢,
x=3-2(0)—t=3-¢
Hence, x =3 —t, y =0, z =t is the solution of the system where ¢ is a parameter.
Case II: When A=2,
x+2y+z=3
y =1
Assigning the free variable z any arbitrary value ¢,
x=3-2()—t=1-¢
Hence, x =1—t, y =1, z=t1s the solution of the system where ¢ is a parameter.
Example 6: Show that the system of equations

3x+4y+5z=a
4x+5y+6z=
Sx+6y+Tz=9

is consistent only if ¢, fand A are in arithmetic progression (A.P.)

Solution: The matrix form of the system is

3 4 5] |x o
4 5 6||y|=|B
56 7|]|z Y

The augmented matrix of the system is

3 4 5
I

45 6B

56 71y

Reducing the augmented matrix to row echelon form,

R,—R, R, —R,

3 45!

|
~l1 1 118-
2 2 21y
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RI'.’
1 1 1B~
I
~[3 4 5| o
22 2iy-a
R, -3R,, R,—2R,
11 1] -«
|
~lo 1 2! 40-38
00 0!a—28+y
The system of equations is consistent if,
oa-2B+y=0
_a+y
F==

i.e. o, fand y are in arithmetic progression (A.P.)

Example 7: Show that if 4 # 0, the system of equations

2x+ y —q
X+Ay—z=b
y+2z=c

has a unique solution for every value of a, b, c. If A= 0, determine the relation
satisfied by a, b, ¢ such that the system is consistent. Find the solution by taking
A=0,a=1,b=1,c=-1.

Solution: The matrix form of the system is

2 1 0f|x a
1 A —1||y|=|b
0 1 2||:z C

The system has a unique solution if det(4) # 0

det(4)=2(2A+1)—-1 (24+0)#0
4A#0
A#0

Hence, the system of equations has a unique solution if A # 0 for any value of

a, b, c.
If A= 0, the system is either inconsistent or has an infinite number of solutions.
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For A= 0, the augmented matrix of the system is

21 0la
|

10 —-1!b

01 2ic

Rll
(1 0 —115
~[2 1 La
01 2i¢c
R, -2R,
[1 0 -1} b
2|0 7 'a—2b
01 21 ¢
R3 . Rz
1 0 -1, b
I
~lo 1 2! a-2p
00 0!c—a+2b
The system is consistent if c —a +2b =0
The corresponding system of equations is
x— z=b
y+2z=a-2b

Assigning the free variable z any arbitrary value ¢,

y=a-2b-2t
x=b+t

Hence, x =b + ¢,y =a —2b — 2t, z = t is the solution of the system where ¢ is a
parameter.

Whena=1,b=1,c=-1
x=1+t
y=-=1-2t

z=1
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Example 8: Solve each of the following systems by Gauss—Jordan elimination
method:

@® x+ x+2x,= 8 (i) 2x+2x,+2x,= 0 (i) x— y+2z— w=-1

=i = riyar e =l =0 00 o D =] 2x+ y—2z-2w=-2
3x, —Tx, +4x, =10 8x, + x, +4x; =~1 —x+2y—4z+ w= 1
R 3w=-3
(iv) —2y+3z=1 (V) x-2x,— x,+3x,=1 (i) 2x-y+ z=9
3x+6y—3z=-2 2x, —4x, + X, =5 3x—y+ z=6
6x+6y+3z= 5 X, —2x,+2x,-3x, =4 4x—y+2z=17
—x+y— z=4

Solution: (i) The matrix form of the system is

11 2]y 8
-1 =2 3||{x|=] 1
3 -7 4][x ] [10

The augmented matrix of the system is

1 1 2,8
]

=4 5 31 1

3 -7 4110

Reducing the augmented matrix to reduced row echelon form,

R, +R. R 3R
1 1 i8]
sl <1 51 9
[0 —10 —21-14]
(=DR,

11 2! 8]
~lo 1 =51 -9
[0 —10 —21-14]
R, +10R,

[1 1 2} 8
~lo 1 -5 -9
0 0 —521-104
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2
[1 1 2, 8
~lo 1 =519
00 12

R, +5R,, R —2R,
[1 1 014]
101
[0 0 112]

R

1

[N

—-R
0
1
0

1
~10
0

N - W

The corresponding system of equations is

Hence, x, =3, x, =1, x; =2 is the solution of the system.

(i1) The matrix form of the system is

2 2 2| x 0
-2 5 2|[x|=| 1
8 1 4| x -1

The augmented matrix of the system is

2 2 2!
1
5 § 3!
8 1 4

—

Reducing the augmented matrix to reduced row echelon form,
1
(5
|

1
~-2 5
8 1

B
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R, +2R, R, -8R,
0
1

11 1!
~lo 7 4!
|

0 -7 -1

S = O

o N
o N = o

o N|= =

The corresponding system of equations is

X +=X3 = 1
XX =
7

Xot—-x3=—
2T 55 =g

Since leading ones are in columns 1 and 2, x, and x, are called leading variables
whereas x, is a free variable. Assigning the free variable x, any arbitrary value ¢,

X, =———=t
7 17
X, =———t
77
1 3 1 4 . . .
Hence, x, = ~Z —;t, x, = = —7t, x, =t is the solution of the system where ¢ is a

parameter.
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(iii)) The matrix form of the system is

1 -1 2 -1][x] [-1
2 1 =2 =2fly| |2
-1 2 -4 1|lz|"] 1
30 0 -3||w| [-3

|

]
2 1 2 212
-1 2 -4 111
3.0 0 -31-3

Reducing the augmented matrix to reduced row echelon form,

R,—2R,R,+R.R,-3R,

1 -1 2 -1!-1
0 3 -6 0! 0
“lo 1 2 o010
0 3 =6 010
(5)»
[1 -1 2 -1}-1]
0 1 -2 0!0
lo 1 =2 o010
0 3 6 01 0]
R,—R,, R, -3R,
[1 -1 2 —1}-1]
0 2 0! 0
lo 0o 0 010
0 0 0 01! 0]
R +R,
[1 0 0 -1}-1
01 2 0!0
oo 0o oo
0 0 01 0
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The corresponding system of equations is

xX— w=-1

y=2z =0

The leading ones are in columns 1 and 2. Hence, the variables x and y are called
leading variables whereas the variables z and w are called free variables. Assigning the
free variables z and w any arbitrary values 7, and ¢, respectively,

x=-1+¢,
and y=2t

Hence, x=—1+1¢,, y=21,z=1,w=1, is the solution of the system where ¢ and
1, are parameters.

(iv) The matrix form of the system is
0 -2 3||x 1
3 6 =3|lyl=|-2
6 6 3|z

0 2 3! 1

I
3 6 3.2
6 6 315

Reducing the augmented matrix to reduced row echelon form,

1
12_1:_2
13
% -2 3 1
|
6 6 3' 5
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-6R,
|
1 2—1:—g
13
~l0 =2 31 1
0 -6 9! 9
e
5 %
1 2 _1:_2
L3
~lo0 1_2:_1
21 2
0 -6 91 9
R, +6R,
r |
1 2 —1:—E
13
I
~l0 1 _E:_l
2! 2
00 0: 6

From the last row of the augmented matrix,
0x+0y+0z=6

Hence, the system is inconsistent and has no solution.

(v) The matrix form of the system is

xl
1 2 -1 3 1
o
2 -4 1 0] "|=|5
X3
1 -2 2 3)f° 4
x4
The augmented matrix of the system is
1 -2 -1 371
I
2 -4 1 0,5
1 2 2 314

Reducing the augmented matrix to reduced row echelon form,
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R 2R, R, —R,
[1 2 -1 3)1]
~lo 0o 3 -6!3
0 613
R -R,
[1 2 -1 1
~lo 0o 3 —6!3
0 0 0]

1 -2 -1 3.1

R +R,
[1 2 0 1,2
|
~l0 0 1 =21
0 00 010
The corresponding system of equations is
X 2%+ x, =2
x,—2x,=1

The leading ones are in columns 1 and 3. Hence, the variables x, and x, are called
leading variables whereas the variables x, and x, are called free variables. Assigning
the free variables x, and x, any arbitrary values ¢, and ¢, respectively,

x, =242t —t,
x, =1+21,
Hence, x, =242t —t,,x,=1t,x,=1+2t,,x, =1, is the solution of the system
where ¢, and ¢, are the parameters.

(vi) The matrix form of the system is

(8}
|
—_
<
Il
A 9 o0



1.6 System of Non-Homogeneous Linear Equations 1.45

The augmented matrix of the system is

3. =1 109
3 -1 116
4 -1 217
-1 1 -114

Reducing the augmented matrix to reduced row echelon form,

RN
e 1 ~114
341 116
4 217
2 -1 119
(_I)Rl
(1 =1 1{-4
3 -1 1! 6
T4 -1 21 7
2 -1 11 9
R,—3R,R,—4R, R, 2R,
[1 -1 1,-4
0 2 218
“lo 3 2123
0 1 -1117
R,,
I -1 1)-4
0 1 -1!17
“lo 3 2123
0 2 2118
R,-3R,,R,—2R,
1 -1 1} -4
0 1 -1! 17
lo o 11-28
0 0 0116

From the last row of the augmented matrix,
O0x+0y+0z=-16

Hence, the system is inconsistent and has no solution.
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Exercise 1.2 ) |
1. Solve the following systems of i x+2y+ z=-1
equations by Gaussian elimination 6x+ y+ z=-4
method:

. 2x-3y—- z=

(i 2x-3y—z= 3 —x—Ty—2z=

x+2y—z= 4 x— y s

Sx—4y-3z=-2

il x+ y+ z=6
(i) x+2y- z =1 W

x=2y+2z=15
x+ y+2z=9 3x+ y+ z=38
2x+ y— z =2 2x—2y+3z=17
(i) 6x+ y+ z =-4 (iil) 2x+ x+5xy=4
2x=-3y—- z= 0

5 3x—=2x+2x3=2
—)C—7y— 2= T 5x1—8x2—4X3=1

(iv) 2x— y— z =2

Ans.:

x+2y+ z=2
(i) consistent

4x—-Ty—-5z=2
x=-l,y=-2,z2=4
V) 2x+ x,+2x,+ x, = 6

6x, —6x, +6x, +12x, =36
4x, +3x, +3x;— 3x, = 1

(i1) consistent

x=-1ly=-2,2=3

| (ii1) inconsistent
2x%,+2x,— x,+ x, =10
3. Investigate for what values of 4

Ans.: and 4, the system of simultaneous
(i) inconistent equations
(i) consistent x+ y+ z= 6
x=2,y=1z=3 x+2y+3z=10
(iii) consistent X+2y+Az=u
w=rhy= <Lz have (i) no solution, (ii) a unique
(iv) consistent solution, and (iii) infinite number of
6+1 2-3¢ solutions.
=—,y= ,z=1
. S 5 Ans.:
(v) consistent G A=3,u%10
L =dpg= ==l @) A # 3,any value of i
2. Solve the following system of @) A=3,u=10

equations by Gauss—Jordan
elimination method:
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4. Investigate for what values of & the
equations

x+y+ z=1
2x+y+ 4dz=k
dx+y+10z =k’
have infinite number of solutions.
[Ans.: k=1, 2]
5. Determine the values of A for which
the following system of equations.
3x— y+Az= 0
2x+ y+ z= 2
x=2y—-Az=-1
will fail to have a unique solution.

For this value of A, are the equations
consistent?

1.47

7
[Ans.: A= g no so]utjon}

6. Find for what values A, the set of
equations
2x—-3y+6z-5t=3
y—4z+ t=1
4x—5y+8z—-9r=A
has (i) no solution, and (ii) infinite
number of solutions and find the

solutions of the equations when they
are consistent.

Ans.: () A#7,
() A=7,x=3k +ky +3,
y=4k —ky+1,z=ky,

t=k,

1.7 SYSTEM OF HOMOGENEOUS LINEAR EQUATIONS

A system of m homogeneous linear equations in n variables x, x,, ... x or simply
a linear system, is a set of m linear equations each in n variables. A linear system is
represented by

a, X, +a,x, +--+a,x, =0

In""n

Ay X, +apXy +o 4 a5, X, =0

alnlxl + amlxl oot amu xn = O

Writing these equations in matrix form,

Ax=0
where 4 is any matrix of order m X n, x is a vector of order n X 1 and 0 is a null vector
of order m x 1. The matrix 4 is called coefficient matrix of the system of equations.
1.7.1 Solutions of a System of Linear Equations

For a system of m linear equations in » variables, there are two possibilities of the
solutions to the system.

(i) The system has exactly one solution, i.e. x, =0, x, = 0..., x = 0. This solution is
called the trivial solution.
(i1) The system has infinite solutions.

Note: The system of equations has a non-trivial solution if det(4) = 0.
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Example 1: Solve the following systems of equations by the Gauss—Jordan

elimination method.

@ 3x-y-z=0 (i) x+y—z+w=0 (i) 2x+ x,+3x;, =0
x+y+2z=0 X—y+2z—w=10 X -E20, =0
Sx+y+3z=0 Sx+ +w=0 x+ x =0

Solution: (i) The matrix form of the system is

3 -1 —1||x 0
1 1 2({y|=]0
5 1 3|z 0

The augmented matrix of the system is
3 -1 -1,0

I
1 2,0

5 1 31

Reducing the augmented matrix to reduced row echelon form,

Rl'l

(11 210
|3 1 <110
5 1 310

R, -3R,, R,-5R,
(11 210
{0 -2 710
[0 -4 710

1&%
|
= o

,_“
(=]

oS O
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R —R,
|
1o Lo
4!
|
~lo 1 Zio
4!
00 0:0
The corresponding system of equations is
x+lz=0
4
7
+—z=0
¥ a z
Solving for the leading variables,
1
X=——z
4
__7,
Y=y

Assigning the free variable z an arbitrary value ¢,

xX=——1

)——Zt
Y=y

1 7 . .. . .
Hence, x=——¢, y=——1 is the non-trivial solution of the system where 7 is a
parameter. %

(i1) The matrix form of the system is

11 -1 1 0
))

1 -1 2 -1 =10
z

31 0 1 0
w

(=R i -



1.50 Chapter 1 Matrices and Systems of Linear Equations

Reducing the augmented matrix to the reduced row echelon form,

R,—R, R, -3R,
11 -1 1}0

~lo =2 3 210
0 -2 3 210

(11 -1 170
|
1
~10 1 A 1.0
2
I
0 1 3 110
L 2
Rz_Rz
(1 1 -1 110
I
~lo 1 =2 1io
I
00 000
RI_R2
1 1
10 = 010
2
I
“lo 1 =2 110
2
00 000
The corresponding system of equations is
1
X+—z =0
2
3
-——z+w=0
B
Solving for the leading variables,
1
X=—=z
2
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Assigning the free variables z and w arbitrary values 7, and ¢, respectively,

1
x=—-=1
2
3
y=—t -t
D 2

1 3 . . .
Hence, x = —Etl, y= Et' —t,,z=1,w=t, is the non-trivial solution of the system

where ¢, and ¢, are parameters.
(ii1) The matrix form of the system is

2 1 3 x 0
1 2 0f|x,|=|0
0 1 1fx 0
The augmented matrix of the system is
2 1 30
|
1 2 0,0
01 110
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12 010
~lo 1 =110
00 110
R, +R,
1 2 0l0
]
~lo 100
00 110
R —2R,

Hence, the system has a trivial solution, i.e. x =0,y =0, z=0.
Example 2: Show that the following non-linear system has 18 solutions if
0<o<2m,0<B<21 and 0 <y < 27.

sina+2cosf+3tany =0
2sino+5cosfB+3tany =0
—sina —5cosf+ Stany =0

Solution: The matrix form of the system is

1 2 3||sinx 0
2 5 3||cosB|=]|0
-1 =5 5||tany 0

The augmented matrix of the system is
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Reducing the augmented matrix to reduced row echelon form,

R,—2R,R,+R,
1 2 30
~lo 1 310
0 -3 810
R, +3R,

12 310
~lo 1 310
00 -110
(=DR,

12 30
~lo 1 310
00 110

The corresponding system of equations is

sinoe =0
cosfB=0
tany =0

From these equations,

oa=0,7m, 21
- %, 37” [ o, B and ¥ lie between 0 and 27]
Yy=0,7x, 2%

Hence, there are 3-2-3 = 18 possible solutions which satisfy the system of
equations.



1.54  Chapter 1 Matrices and Systems of Linear Equations

Example 3: For what value of Adoes the following system of equations possess
a non-trivial solution? Obtain the solution for real values of A.

x+2y+3z=Ax
3x+ y+2z=Ay
2x+3y+ z = Az

Solution: The system of equations is
1-Dx+2y+3z=0
3x+(1-A)y+2z=0
2x+3y+(1-A)z=0

The matrix form of the system is

1-4 2 3 || x 0
3 1-4 2 ||ly|=]|0
2 3 1-A)|z 0

The system will possess a non-trivial solution if det(4) = 0.

1-4 2 3
3 1-4 2 (=0
2 3 1-4
A-A)[A-2)* -6]-2(3-31-4)+3(9-2+2A4)=0
(1=A)A* =24 -5)+2+6A+21+61=0
AP =24 -5-2*+2A* +5A+12A4+23=0
A +322 +15A4+18=0

A=6, A=-15%+0.866i

For real value of 4, i.e. 4= 6, the augmented matrix of the system is

5 2 310
I

3 -5 210

2 3 =510

Reducing the augmented matrix to reduced row echelon form,

Rz _R3
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RIZ
[ 1 -8 |
~l-s 2 310
2 3 510
R, +5R, R, 2R,
(1 -8 710
~lo 38 3810
0 19 -1910
_L)RM(L)&
38) (19 )"
1 -8 7!0]
- I —110
[0 1 -110]
R3_R2
1 -8 7!0]
w0 1 =)0
0 0 00
R +8R,
(10 10
~lo 1 <110
00 010

Solving for the leading variables,

Assigning the free variable z an arbitrary value ¢,
x=t
y=t

Hence, x=¢, y=t z=t is the non-trivial solution of the system where ¢ is a
parameter.
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Example 4: If the following system has a non-trivial solution, then prove that
a+b+c=0 or a=b=c and hence find the solution in each case.

ax+by+cz=0

bx+cy+az=0

cx+ay+bz=0

Solution: The matrix form of the system is
a b cflx

0
b ¢ allyl=|0
0

¢ a bz

The system has a non-trivial solution if det (4) =0

a b ¢
b ¢ a|=0
c a b

a(bc—a’)—b(b* —ac)+c(ab—c*)=0
-a+b’+c* =3abc=0

—(a+b+c)a* +b* +c* —ab—bc—ca)=0
a+b+c=0

or a*+b*+c* —ab—bc—ca=0

1
E[(a—b)z+(b—c)2+(c—a)2] =0
a-b=0,b—c=0,c—a=0

a=b;b=6,c=a

a=b=c

Hence, the system has a non-trivial solution if a+b+c¢=0 or a=b=c.
The augmented matrix of the system is

a b ci0

I

b ¢ a0

¢ a bio

R,+R +R,

a b c 1 0
~ b o a 10
a+b+c a+b+c a+b+ciO
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The corresponding system of equations is
ax+ by + cz=0
bx + cy + az=0
(a+b+c)x+(a+b+c)y + (a+b+c)z=0

(1) When a+b+c =0, we have only two equations.
ax+by+cz=0
bx+cy+az=0

X ___y __ =z -
b .¢ a c a b
¢ a b al |b c

x ___y __z i
ab-¢c? a—bc ac—b’

Hence, x=(ab—c’)t,y=(bc—a’)t,z=(ac—b")t is the solution of the system
where ¢ is a parameter.

(i1) When a = b = ¢, we have only one equation.

x+y+z=0
Y=t
Let ;
z=1,
Then X=-—t -1,

Hence, x=~t,—t,, y=1,z=t, is the solution of the system where ¢ and ¢, are
parameters.

Example 5: Discuss for all values of &, the system of equations
2x+ 3ky+ Bk+4)z=0
x+ (k+4)y+(4k+2)z=0
x+2(k+D)y+ (Bk+4)z=0
Solution: The matrix form of the system is
2 3k 3k+4])[x 0

1 k+4 4k+2|y|=|0
|1 2k+2 3k+4]|:z

1 k+4 4k+2][x
2 3k 3k+4]|y|=|0
1 2k+2 3k+4]||:z
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R,—2R,R,—R,

1
0 k=8 =5k ||y]|=
0

1 k+4 4k+2
det(4)=|0 k-8 =5k
0 k-2 —k+2

= (k=8)(—k+2)+5k(k—-2)
= (k=2)(—k +8+5k)
=4(k-2)(k+2)

(1) When k # = 2, det(A4) # 0, the system has a trivial solution, i.e. x=0,y=0,z=0.
(i) When k =22, det(A) =0, the system has non-trivial solutions.

Case I: When k = 2, the augmented matrix of the system is

1 6 10)0
I
0 -6 1010
0 0 010
&)=
5 R
[1 6 10 0]
|
|
~lo 1 1y
6 |
0 0 00
R —6R,
10 0 0]
|
|
~lo 1 1
6 |
0 0 00

The corresponding system of equations is
x=0

10
+—z=0
76
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Solving for the leading variables,

x=0
__lo_
=g

Assigning the free variable z any arbitrary value ¢,

10 5
y=——»>F=——t
i 6 3

5 . . .
Hence, x=0, y= ——3—[, z =t is the solution of the system where ¢ is a parameter.

Case II: When k =-2, the augmented matrix of the system is

I 2 =610
I

0 -10 100

0 -4 410

Reducing the augmented matrix to reduced row echelon form,

(12 -610
~lo 1 -110

0 1 —110

R3 _Rz

(12 —610
~lo 1 -110

00 010

R 2R,

1 0 -4'0
~lo 1 -110

00 010

The corresponding system of equations is

x—4z=0
y— z=0
Solving for the leading variables,
x=4z

y=z
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Assigning the free variable z any arbitrary value ¢,

x=4t
y=t

Hence, x=4¢, y=1t,z =1 is the solution of the system where # is a parameter.

Exercise 1.3 ) |
1. Solve the following equations:
i x- y+z=0
x+2y+ z=0

2x+ y+3z=0
(i) x-2y+3z=0
2x+5y+6z=0

(i) 2x-2y+5z+3w=0
4x— y+ z+ w=0
3x=2y+3z+4w=0
x=3y+7z+6w=0

(iv) 2x— y+3z=0

3x+2y+ z=0
x—4y+5z=0
v) 7x+ y-2z=0
x+5y—-4z=0
3x-2y+ z=0
2x—=Ty+5z=0

(vi) 3x+4y— z— 9w=0
2x+3y+ 2z— 3w=0
2x+ y—14z-12w=0
x+3y+13z+ 3w=0

(vi))  x +2x,+3x;+ x, =0
x+ x— x— x,=0
3x,— x,+2x,+3x,=0

(viii) 2x,— x,+3x;,=0
3x,+2x,+ x;=0
x,—4x,+5x,=0

[Ans.: (i) x=0,y=0,z=0
(i) x=-3t,y=0,z=t¢

21 i
iy x="—t,y=4t,z=—t,
(i) 9 y 9

w=t

(iv) x=—t,y=t,z=t

(v) x=it,y=2t,z=t

17 17
i) x=11t,y=-8¢,z=t,
w=0

1 2
Vii) X1 =——=1,% =—1,
(vii) x 32 =3

2
X3=——l, X4 =1

VIll) X] ==X, =—X3 =1
1 2 3

2. For what value of 4 does the following
system of equations possess a non-
trivial solution? Obtain the solution for
real values of A.

1) 3x+ y—-Az=0
4x—-2y— 3z=0
2Ax+4y—2Az=0

G) 1-A)x+  2n+  3x,=0
3x,+(1-A)x, + 2x, =0
2x + 3,+(1-A)x;, =0

Ans.:

(i) Non-trivial solution A =1,-9
ForA=1Lx=—t,y=—t,z=-2t
ForA=-9,x=-3t,y=-9t,z=2¢

[([)A=6,x=y=z=t
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3. Show that the system of equations Ans: ForA=1,x=26 4
2x—=2y+z=Ax,2x-3y+2z= A1y,
—x+ 2y = Az can posses a non-trivial y=ma=i
solution only if A= 1, A=-3. Obtain For A= -3,x=-,
the general solution in each case. y=-2t,z=t

1.8 INVERSE OF A MATRIX

If 4 be any n-rowed square matrix, then a matrix B, if it exists such that
AB=BA=1,

is called the inverse of 4,

ie., B=A"

We will explain a few terms associated with matrices before finding the inverse of a
matrix.

(1) Minor of an Element of a Determinant
a, G, a;

If det(4)=|a,, a, a,]|,then
(13| a,, 033

minor of a determinant is a determinant obtained by removing the row and
columns of det(A4) passing through the element, e.g.

: a?_?. a23
Minor of the element ¢, =

Gy 4y

. 4 Gy
Minor of the element a,, =

a%l a33

s 4 an
Minor of the element ¢, =

4 4y

(2) Cofactor of an Element of a Determinant
all al] al3
If det(4)=|a, a, a,l|, then
a; 4y, a4y

i+j

cofactor of an element a, of a determinant is the minor multiplied by (-1)", e.g.
1+1 a22 a23
Cofactor of element ¢;, = (=1)
Ay Gy
a,,  ay

Cofactor of the element a,, = (—1)'"*

ay 4y
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2@ @y
Cofactor of the element @, = (=)' 2"

a}l ail

(3) Adjoint of a Square Matrix

The transpose of the matrix of the cofactors is called the adjoint of the matrix.
Let 4 be a non-singular n-rowed square matrix.

67” aIZ A aln

a, a, a,,
A=

a anl q

Ll

The matrix formed by the cofactors of the elements of 4 is

All AIZ Aln
AZ] AZZ A2n
_Anl AHZ Ann )
The transpose of this matrix of cofactors is called the adjoint of 4 and is denoted
by adj 4. - 4
Al 1 AZ] nl
A An AM A,,?
adj4=| =~ 7 -
4, A A4

2n

nn |

Theorem 1.1: If 4 is a non-singular square matrix of order n, then
(i) A(adj A) = (adj A)A=|A|1,

n—l1

(i) [adj 4| =|4]

(iii) adj (adj 4)=|4|"" 4

1.8.1 Inverse of a Matrix by Determinant Method
If 4 is an n X n singular square matrix, then inverse of 4 is

A= 1 adj 4
det(A4)
Theorem 1.2: Every invertible matrix possesses a unique inverse.
Theorem 1.3: The necessary and sufficient condition for a square matrix 4 to possess
an inverse is that det(4) # 0, i.e. 4 is non-singular.
Theorem 1.4: The inverse of a product is the product of the inverses taken in the
reverse order.

(ABy' =B~ 4"
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Theorem 1.5: If 4 is an n X n non-singular matrix, then

(Afl)T — (Ar)fl
Example 1: Find the adjoint of the matrix

Solution: The cofactors of elements of 4 are

A” — (_1)l+l 2 :1 3 A” — (_1)I+2 1 3 — 7
1 2 - 3 2
Ay =D : 2’:—5 N S
31 - 1 2
A,,, = (_])2+2 2 1‘ - 1 : An s (_1)2+3 2 3 - 7
. 3 2 - 31
Ay =) 1’=7 L A= =S
: 2 3 " 1 3
w2 3
Ay = (=D | 2’=1
1 7 =5
The matrix of cofactors of elements of 4=|-5 1 7
7 =5 1
adj A = transpose of the matrix of cofactors
1 -5 7
=| 7 1 -5
=5 7 1
-1 -8
Example 2: Find adj (adj 4), where 4 =é -4 4 7
-8 -1 —4
1 =8 4
Solution: A =é -4 4 7
-8 -1 -4

We know that
adj (adj 4) = |4 4

and |kA| = k" | 4|

1.63
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Here, n=3
5[—1 —8
1Y
|4]= —) 4 4 7
9
-8 -1 -4
:%[(—1)(—16+7)—(—8)(16+56)+4(4+32)]
=L><729
729

=1
adj (adj ) =4 > 4
=4
iL 1kl
Example 3: If A=|a 4| and adj (adj 4) = 4, find a.
1

—_—
Pt

(1 2 1
Solution: A=|a 0 4
(111
We know that
adj (ade)=|A"7'A
Here, n=3
1 2 1
0 4/=10-4)-2(a—4)+1(a—-0)=—-a+4
1 1

|| =|a
1

adj (adj 4) = (—a+4)' 4
=(-a+4)4
But adj (adj 4) = 4
(—a+4)A=4
—a+4=1

a=3

Example 4: Find the inverses of the following matrices:

[0 ] 1 1 1 cosax —sinox 0
@ |0 2 2 @Gy (1 2 -3 (iii) | sina¢  cosax O
2 1 2 -1 3 0 0 1
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1 21
Solution: (i) 4=|0 2 2
2 1 1

0 4 -4
The matrix of cofactors of elements of A=|-1 -1
2 =2 2
0o -1 2
adjd=| 4 -1 =2
-4 3 2

121
det(4)=[0 2 2[=1(2-2)-2(0-4)+1(0-4)=4
2 1 1

] 0o -1 2
Phi adjd=—| 4 -1 =2
det(A) 4
4 3 2
1 1 1
(ii) A=|1 2 =3
2 -1 3
3 -9 -5
The matrix of cofactors of elements of 4 =|—4 I 3
-5 4 1
[ 3 -4 -5
adj4=|-9 1 4
-5 3 1

det(4)=|1 2 -3|=16-3)-13+6)+1(-1-4)=-11

2 -1
3 -4 -5
5 1 1
=——-adjd=—-—|-9 1 4
det(A) 11
=5 3 1
cosox —sinoe 0
(iii) A=|sinox coso 0

0 0 1

1.65
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[coso. —sino. 0

The matrix of cofactors of elements of 4=|sincot coso. 0

| 0 0 1

[ cosor  sina 0
adj4=|-sinax cosox 0
0 0 1

cosa —sino 0
det(A)=|sinax cosax O0|=1

0 0 1
cosoy  sino 0
= adjd=|-sino cosa 0
det(A)
0 0
-2 1 3
Example 5: Find the matrix 4, ifadj 4=-2 -3 11}|.
2 1 -5
-2 1 3
Solution: adjd=|-2 -3 11
2 1 -5
We know that
ladj(4)| = 4"
Here, n=3
[adj(A)| = |4
Now, |adj(4)| = -2(15-11)~1(10-22) +3(-2+6) = 16

Thus, |4'=16
|4l =4 _ .
4

12 4

The matrix of cofactors of elements of adj4A=| 8 4 4
(20 16 8]
4 8 20]

adj(adj4)=(12 4 16
| 4 4 8]
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1 4 8 20 1 125
adj 4)™" = adj(adj A)=—|12 4 16|=—[3 1 4
(adj 4) [adj ()] J(J)l6 2
4 4 8 112
Since  A(adj A)=|4[l,
Jrzs)przs
A=|dl(adjA) "' =4-=|3 1 4|=|3 1 4
112 (112

Example 6: Find the matrix 4 if

2 32

Solution: Let B= + 4
2 3
[ 2 -1
G=
= 2
(2 2
D=
e
Then BAC=D
AC=B"'D
A=B"'DC™
aof, b g 3 2
B —IBladJB—8 o 4
o, Vo B AT B 1
cl=madic=13 |75 2
Hence,
A—l 3 =2(2 22 1
“8|—2 4|3 7{3 2

124 16
8| 88 56

1)
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[g+r r—-p q-p]
0 1 1 2 2 2
Example 7: If 4=1 0 1| and B= r;q r-;p p;q , prove that
1 10
q-—r p—-r ptq
| 2 2 288
ABA ! is a diagonal matrix.
0 1 1
Solution: A=[1 0 1
1 10
det(4)=0(0-1)—1(0—1)+1(1-0)=2#0
Hence, 47! exists.
-1 1 1
The matrix of cofactors of elements of 4=| 1 -1 1
1 I -1
-1 | |
adjA4=| 1 -1 1
1 1 -1
1 -1 1 1
e adjd=—=| 1 -1 1
det(4) 2
1 1 -1
[¢+7 F—p ¢—p]
0 1 1] 2 2 2 0 p p
Now, AB=|1 0 1||I24 EP PR, g g4
2 2 2
1 0 r r 0
- g~ p-t prd
| 2 2 2 |
[0 p p_] -1 1 1
ABA™ =|¢q 0 glof 1 -1 1
lrro0)[ 1 1 1
12p 0 0 p 0 0
0 0 2r 0 0 r

Hence, ABA™" is a diagonal matrix.
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Example 8: Show that [diag (¢, B, )] = diag(l, % l) if offy # 0.
o W

o 0 0
Solution: Let 4 =diag(e,,,7)=|0 B 0
0 0 vy
By 0 0
The matrix of cofactors of elements of A=| 0 oy 0
0 0 of
By 0 0
adj4=| 0 oy 0
| 0 0 of
oa 0 0
det(4)=|0 B O|=afy
0 0 vy
If # 0, th et oy
oy #0, then dot(d)
i 0 0
1 g a0 ¢ 1
=——o1 1 0 ay 0l=] 0 — 0
o
Bl o o of B 1
0O 0 —
L 7]
1 1 1
=diag(—,—,—)
a By

cos@ —sinf

Example 9: Show that |
sinf  cosf

0 0
1 —tan — 1 tan —
] 2 2

0 0
tan — 1 —tan — 1
2 D

0
1 tan —
Solution: Let 4= -
—tan— 1
2
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1 tan —
The matrix of cofactors of elements of 4=
—tan— 1
1 —tan—
adj 4=
tan — 1
1 tan —
det(4) = 2 =1+tan29=sec29
2 2
—tan— 1
0
| 1 1 —tan 5
=———adj4=——
det(A) 0 0
S€C —| tan— 1
2 2
-1
1 —tan — 1 tan g 1 —tan g 1 —tan 9
N 2 2 1
ow, _
0 , 0 0
tan — 1 —tan— 1 tan — 1 Sec” —| tan— 1
2 2, 2
, 0 0 0
l—tan” — —tan——tan—
1 2 2
, 0 0 0 5 O
Sec” —| tan —+ tan — —tan” —+1
2 2 2 2
[ ,8 . ,0 .6 9
cos” ——sin"— —2sin—cos—
= 2 2
; 0 50 . 0
2sin—cos—  €0S” ——sin” —
L 2 2 2
- [cos® —sin®
| sin®  cos®
1 a O 1 0 0
Example 10: Find the inversesof 4=|0 1 af| and B=|bh 1 0| and
0 0 1 0 b 1
1+ ab a 0
hence, find inverse of C=| b l+ab a

0 b 1
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I a O
Solution: 4=(0 1 a
0 0 1
1 00
The matrix of cofactors of elements of 4=|—a 1 0
a -a 1
1 -a o
adj4=(0 1 -a
0 0 1
I a 0
det(4)=[0 1 a|l=1
0 0 1
' =———adj4
det(A4)
| —a d
=10 1 —a
0 0 1
1 00
Replacing a by b, A" becomes |» 1 0| which is equal to the matrix B.
0 b 1
Hence, replacing a by b in the transpose of 47!, we get
1 0 0
B'=|-b 10
b —b 1
1+ ab a 0
Now, C=| b l+ab a|=AB
| 0 b 1

Q
I

=
&
~
|

=
5

1 0 Off1 —a a
=|-b 1 0f{0 1 —a
»¥» —b 1|0 0 |

1.71
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| —a a’
=|-b l+ab —a’b—-a
b* —ab>—-b a’b* +ab+1

0 1 1
Example 11: Find the inverse of the matrix S=|1 0 1| andif
I 10
4 -1 1
A=l -2 3 -1, show that SAS™ is diag. (2, 3, 1).
2 I 5
0 1 1
Solution: S=|1 0 1
1 1 0
-1 1 1
The matrix of cofactors of elements of S=| 1 -1 1
11 -1
(-1 1 1
adjS= 1 -1 1
| 11 -
0 1 1
det(S)=|1 0 Ij=-1-D+1(1)=2
1 10
-1 1 1
_IZ;aJ -1 -1 1
det () 2 { 1 -1
[0 1 1][ 4 -1 1] 0 4 4
SA=11 0 1)|-2 3 —1=16 0 6
2_110__2 1 5 2220
[0 2 2|[-1 1 1]
SAS"=13 0 3 1 -1 1
2_1 L off 11 —1]

—_ W O

—_ O N

S W N
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40 0] 200
1o 6 o|=lo 3 o

210 0 2| |o 0 1
= diag. (2,3,1)

1.8.2 Inverse of a Matrix by Elementary Transformation
(Gauss-Jordan Elimination method)

Let A be any non-singular matrix. Then 4 = I4. Applying suitable elementary row
transformation to 4 on the L.H.S and to / on the R.H.S, so that 4 reduces to / and /
reduces to any matrix B.

Hence, /= BA
B=A"

Example 1: Find the inverses of the following matrices by elementary transfor-
mation (Gauss—Jordan elimination method):

=1
234 0 1 1 -1
) |4 3 1 ii -
(1) (ii) O
1 2 4
3o
(2 3 4]
Solution: (i) Let 4=(4 3 1
|1 2 4]
A=1I4
2 3 4] [1 0 0]
4 3 1|=|0 1 0|4
1 2 4] [0 0 1]

Rl3

(1 2 4] [0 0 1

4 3 1l=[0 1 0|4

2 3 4] [1 00
R,—4R, R, 2R

1 2 4] [0oo0 1
0 -5 -15[=|0 1 —4|4
0 -1 -4 |10 =2
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R,-3R,, R —4R,

4
120
0 1 0[=|3
00 1

=]
R —2R,

-2
100
0 1 0f=|3
00 1

-1

ni— ulbs nls

nl— s nlps

Matrices and Systems of Linear Equations
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wmlioy L
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1.8 Inverse of a Matrix

B ngdl
o < ©
|
| T |
LA s o1 it v %O =
||
c o o~
S n S — & —
—_ =] o o — o
I — e e
— | | | o — o ©
I —oca®m L —- o o o
r 1T | ] ™~ L J
NI ¥ |am O I I I
1
| ~ A2|_Ll6
<t n | —|n
| O = N -
< ! ,
Il Il — o el o
s el | S S |
~ |
A
-
Q
=
~
=
SN

Reducing the matrix A to reduced row echelon form,

R,—-2R,R,-3R,

=
- = _—
o —_
) o o — g 2
o o o — -
o - o |
o o — o
— N —_ e
o — o o [ I
10.._42_J © q o S N ™
i ’ | |
Il Il 1]
r 1
N — N o o~ —_ o —~ —_ o —
[ 5] | |
|
55 |
— — e & y - o O
I ] — o © "
o —~
— I n o o o
o o o
| R VRl | oo OO O ~ -
|
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R +R,, R —2R,
1 -100] [7 2
0 110| |3
0o 0o 10| |2 3
0o 00 1| |-3 -1
Rz_R3
1 <10 0] [7 2
0 10 0| |-5 -3
0 0 10| |2 3
0 00 1| |3 -1
R +R,
100 0] [2 -
010 0| |-5 -3
00 10| |2 3
000 1] |-3 -1
I,=A"4
3 -1
R P
A -
3 -

Exercise 1.4

1. Find the inverses of the following
matrices by the determinant method:

1 21 326

@ |2 11| @G [1 1 2

4 5 1) 2 9 3
1 2 1]
i) [0 2 2
2 1 1]

Matrices and Systems of Linear Equations

-4 3 1
Ans.: (1) 2 2 -3 1
6 3 -3
1 2 =2
-1 3 0
0 -2 1
0 -1 2
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2. Find the inverse of the matrix 11 1
0 11 6. If A=|1 2 3|and
S=(1 0 0] and 1 4 9
1 10
2 8 3
; 3 =2 -1 B=|3 1 2|,
A:E -1 4 1| and show that 1 2 1
1 2 5

show that (4B)' =B'A4™".

SA4S ! is the di | matrix of diag.
(3,2 11; © dlagonal matrix of clag 7. Find the matrix 4 if

— FC

3.1f A=[2 -3 4/|,showthat4’>=A4"

0 -1 1 24 13
Ans.:
-34 -18

8 4 3
4. If A=[2 1 1], prove that 8. Find the inverse of 4 if
2 1 10 0] [1 =2 9] [100
> 4 _5 2 -1 0410 1 -6|=(0 1 0
=10 47 -n -2 1 1f o o 1f [0 0 1
-9 -54 27 21 119
1 2 -1 Ans:| 14 -7 -6
5.1 4=|0 1 —1|, find 4™ if it < 11
2.2 3 9. Using elementary row transformati-
exists. Hence, find the inverse of ons, fmd the inverses of the following
matrices:
3 6 -3 _
B=|0 3 -3 . 5 =1 2
6 6 9 O (2 11 G [o 2 0
|1 2 1 -5 3 -15
[ [ 5 -8 -1]] (4 -3 4
Ans.: A == =2 1, Gii) | 2 -3 4
[ 2 1] -1 1
5 -8 1] i
=i 5 -1 1 1 2 3
N5 5 i v |2 2 3] ) [230
- ) oo | 1 -4 9 01 2
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1.9 RANK OF A MATRIX

The positive integer 7 is said to be the rank of a matrix A4 if it possesses the following
properties:
(1) There is at least one minor of order » which is non-zero.
(i1) Every minor of order greater than 7 is zero.
Rank of matrix 4 is denoted by p(4).

Theorem 1.6: The rank of a matrix remains unchanged by elementary transformations.
Theorem 1.7: The rank of the transpose of a matrix is same as that of the original matrix.

Theorem 1.8: The rank of the product of two matrices cannot exceed the rank of either
matrix.

pPUAUB) < p(d) or p(4B)< p(B)
1.9.1 Rank of a Matrix by Determinant Method

(1) The rank of a matrix is less than or equal to , if all (» + 1) rowed minors of the matrix
are zero.

(2) The rank of a matrix is greater than or equal to 7, if at least one minor of order 7 is not
equal to zero.

(3) The rank of a null matrix is zero.

(4) The rank of a non-singular square matrix is always equal to its order.

[1 2 3
e.g. consider the matrix A=[3 4 5
4 5 6
1 2 3
det(4)=|3 4 5/=0
4 56
Therefore, the rank of 4 is less than 3. There is at least one minor of 4 of order 2,
4 5
ie. 5 # 0, Hence, the rank of 4, i.e., p(4) =2
Example 1: Find the ranks of the following matrices by determinant method:
[2 3 4 123
1 |4 3 1 @) |2 3 4
|1 2 4 3 ST
4 2 3
[ 1 2 -1 -4
(iii) 8 4 6 av) | 2 4 3 5
-1 -2 6 -7
SoE| _3
L 2]
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Solution: (i) Let A

Il
W
—

4
det(4) =4 1
1 2 4
=2(12-2)-3(16-1)+4(8-3)
=-5
#0

2

D W W

A is a non-singular matrix of order 3.

Hence, p(A)=3
[1 2 3
(i) Let A=|2 3 4
3 8 7
1 2 3
det(4)=2 3 4
3 5 7
=121-20)-2(14-12)+3(10-9)
=0
‘ . |12
Therefore, the rank of 4 is less than 3. The minor of order 2 is 5 3‘ =—-1#0.
Hence, p(A)=2
[ 2 3
(iii) Let A= 8 4 6
= —1 _E
L 2
2 3
det(A)=| 8 4 6
5 g 3
2

= 4(=6+6)—2(~12+12) +3(-8+8)
=0



1.9 Rank of a Matrix

Therefore, the rank of 4 is less than 3.
Consider all the minors of order 2, i.e.,

4 2 2 3 4 3 4 2
=0, =O’ =0, =O
8 4 4 6 8 6 -2 =1
2 3 - 3
3=0, 3=O
=] -, ——
2 2

All the minors of order 2 are zero. Therefore, the rank of 4 is less than 2.

Hence, p(4)=1
1 2 -1 -4
(iv) Let A= 2 4 3 5
-1 2 6 -7

Consider all the minors of order 3, i.e.

1 2 -1 2 -1 -4 1 2 -4 1 -1
2 4 3=0, | 4 3 5=0, |2 4 5=0, |2 3
-1 -2 6 -2 6 =7 =1l =2 = -1 6

One minor of rank 3 is not equal to zero.

Hence, p(4)=3
3—-x 2
Example 2: For what value of x, will the matrix A=| 1 4-—x
2 =1
of rank
(i) equal to 3 (ii) less than 3
3-x 2 2
Solution: det(4)=]| 1 4-x 0
2 -4 1-x

= (3= x)[(4-x)(1-x)—0]-2(1— x)+ 2(~4+8 - 2x)

=(B-x)4-x)1-x)+23-x)
=(3-x)(x* =5x+6)
=@-x)(x-3)(x-2)
=—(x-3)’(x-2)

1.81
-4
5/=-120
-7
be
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(i) p(A)=3 if det(4)#0
(x-3%(x-2)#0
¥#2:3
(ii) p(A)<3 ifdet(4)=0
(x-3P(x-2)=0
=223

Example 3: Find the value of p for which the following matrix 4 will be of
(i) rank one (i1) rank two (ii1) rank three
3 pop
3 p
A
3 prp
Solution: det(A)=|p 3 p
p p 3
=3(9-p")-pBp-p*)+p(p’ -3p)
=(3-p)O+3p-p’-p*)
=(p-3)2p* -3p-9)
=(p-3)(p-3)(2p+3)
=(p-3)@2p+3)
(1) Ifp=3

h g

Il
W W W
W W W
W W W

det(4) = 0 and all the minors of order 2 are zero.

Hence, p(4)=1

Rank of A willbe 1 if p =3
(i) Rank of 4 will be 2 if det(4)=0butp #3
(p-32p+3)=0 but p#3
2p+3=0

PZ—E
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(iii) Rank of 4 will be 3 if det(4) # 0
(p-3PQ2p+3)#0

3
#3 #——
p P >
Example 4: Determine the value of b such that the rank of 4 is 3 where
1 1 -1 0]
4 4 -3 1
A=
HE 2R ) )
O N |
1 1 -1 0]
4 4 -3 1
Solution: A=
b 2 2 2
| 9 9 b 3

Rank of 4 will be 3 if det(4) = 0 and at least one minor of A4 of order 3 must be
non-zero.
By elementary transformation, C, —C, and C, +C,.

1 0 0 0
4 0 1 1
b 2-b b+2 2
9 0 b+9 3
A IO
WA=y gon by BT 28[’ ZI; §
9 0 b+9 3
=0-312-b)+(2-b)(b+9)
=(2-b)(b+6)
Now p(4) =3 <4 when det(4) =0
2-b)b+6)=0
b=2,-6
For b =2, one of the minor of order 3,
4 3 1
2 2 2/=-42%#0
9 2 3

Hence, p(4) =3.
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1.9.2 Rank of a Matrix by Row Echelon Form

The rank of a matrix in row echelon form is equal to the number of non-zero rows of
the matrix, e.g.
1 3 -1
A=]0 1 4
00 0
The matrix A4 is in row echelon form and the number of non-zero rows is two.

Hence, the rank of the matrix is two.

ie. p(A)=2

Example 1: Find the ranks of the following matrices by reducing to row echelon
form:

1 2 3 -l 302 0
5 3 14 4
wlo 1 21 a@l|= " 2 O
10 1 1 =2 =
1 -1 2 0
0 1 1 -1 0 1 2 1
5 3 14 4
Solution: (i) Let A=|0 1 2 1
1 -1 20
RH
1 -1 20
~lo 1 21
5 3 14 4
R,-5R,
[1 -1 2 0
~lo 1 2 1
0 8 4 4
R, -8R,
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The equivalent matrix is in row echelon form.

Number of non-zero rows = 3

pA)=3

(i) Let

1
‘E]R-*

[1 -1 2 0
~10 1 2 1
0 0 1 L
i 3
1 2 3 <
-2 ~1 -3 -l
1 0 1 1
[0 1 1 -1
R,+2R,R,—R
(1 2 3 -1
0 3 3 -3
0 =2 =2 2
0 1 1 -1]

R24

(1 2 3 1]
0 1 1 -1
0 =0 <D B
0 3 3 -3

R, +2R,, R,-3R,
(1 2 3 -1
-1

0 1 1
000 0
000 0

The equivalent matrix is in row echelon form.

Number of non-zero rows = 2

p(4)=2

(iii) Let

1.85
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R13

[1 <2 =3 2

0 2 2 1
13 2 0 -1

0 1 2 1
R,—3R, R,

(1 2 -3 2

0 1 2 1
“lo 4 9 7

0 2 2 1

1 2 3 2
0 1 2 1
“lo 0 1 -1l
6 0 2 <
R, +2R,
[1 =2 -3 2]
0 1 2 1
“lo 0 1 -11
0 0 0 -23
I
(‘E)’“
1 2 3 2
0 1 2 1
oo 1 -1
0 0 0 1

The equivalent matrix is in row echelon form.
Number of non-zero rows = 4

P =4

1.9.3 Rank of Matrix by Reduction to Normal Form

I, 0
Theorem 1.9: Any matrix of order m X n can be reduced to the form (’) 0:| by

elementary transformation where 7 is the rank of the matrix. This form is known as
normal form or first canonical form of a matrix.
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Corollary:
(1) The rank of a matrix 4 of order m X n is r if and only if it can be reduced to the

-

0
normal form [ 0 0] by elementary transformations.

(2) If 4 be an m x n matrix of rank r, then there exists non-singular matrices P and

O such that
PAO = I, 0
oo

Note: P and Q are not unique.

Example 1: Find the ranks of the following matrices by reducing to normal form:

g e 1 =1 2 -3 1 2 3
@[3 4 0 - (ii) s Lo (iii) ===l
B 0 30 10 1 1
0 10 2 0 1 1 -l
Solution:
i2 -1 3
(i) Let A4=| 3 4 0 -I
06
R,—3R,R,+R
1 2 -1 3
~l0 =2 3 —10
0 2 -3 10
R, +R,
1 2 -1 3
~l0 -2 3 ~10
0 0 0 0

€,=3C,, €, #E,,6,~3C,
1 00 0

~[0 2 3 -10

0 00 0
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1
—— |€
10) ?

|

1 1
__C,_
2)2(3
00 0

1

000

1

p(A)=2

(i) Let

—4R

o —

R

14

C# 8=, T, +3E

0
14

0
-8

0

1

0 5

S o <

S O O

S TN

J

5

IR T e T e Y )
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-2C;

o

4

-8

0 5

R,-3R,, R, -5R,

0

0

0

1

=2

0 0

p(A)=4

(iii) Let
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R,+R,R,—R

{

e |
—_ N
| | |
o o N
I
ey voe
|
- o o O

C, =20, C.~3C,, Ty L,

|

1
l

o N N o
| | K o 41

|

oo oY ™ s
| X o a_Ll

ol

=T o R
I N o o o

|_|
- o o o S o S

0 00

00 0 0
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S O O = 4—6
|
S O = O
o)
S -~ O O
S O o O

~l

~[f; 0]

p(4)=3

Example 2: Find non-singular matrices P and Q such that PAQ is in the normal
form and hence, find p(4) for the following matrices:

11 1 1 0 -2 2 113
i |1 -1 -1 () (2 3 -4 G |1 0 1 2
301 1 303 56 301 2 5
(11 1]
Solution: (i) Let A=[1 -1 -1
3 1 1]
A= LAl
1 1 1] [t o o] 1 00O
1 -1 —1|{=|0 1 of4lo 1 0
31 1] |00 1] ]0 0 1

1 11 L0 0 1 0 O
011=l—l 0140 1 0
0 11 2 4 0 0

3

8, 1

2 2
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oY
—lN - =
s N
[ [
r 1
o o o o o
o — o -
_
— o o
| S ———

(=T

- o O

0],0=

1
.|._2
|

1
7
—
N A I o o
| N on (T T ==
— N~ & o on i (= 0_
L e
1] Il I 1l
T P ————
h S 7 R
S o
~
< <
WO N o
Il
=i N o
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(ii) Let
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(= (=]
= o (=]
A[
o o -
o — O
R
Il
S o O
S NN
- o O

0
1

p(A)=2
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o o — o ©c o — o
© — o o o - o <o
— o o o - o o O
~ ~
o o — o o —
o — o - o o
— o o o — o
Il Il
—3 (o] 54 AN 0

A

(iii) Let

— A o

R—2R:R.—3R,

(= J= =S

o o — O

S e @

- O O

1
-2 0
=3

0
1
0

S ™

— o O

Cy+ GGG

Lo M = S

S =

- o O

C=CE,=2C;

oS o O

- o o
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L O—JMQ
il=
1 0 -1 =2
0 1 0
P 1 -2 0 = 01 : :
- 910 0 1 o
-1 2 -3
00 O
p(A)=2
Exercise 1.5 ) |
1. Find the ranks of A4, B, AB and verify 31 2

that rank of the product of two matrices

cannot exceed the rank of either matrix. € matrix

7 2 A

2 4 1 1 2 3 i Tess than 3 (i 03
t t
A=]3 6 2|.B=|3 1 2 (1) is less than 3 (ii) equal to
6. Find the ranks of the following matrices
4 8 3 4 35 .
by reducing to row echelon form:
2. Find the possible values of p, for (1 1 -1 1
which the following matrix 4 will have @ |1 <1 3=
(1) rank 1 (ii) rank 2 (iii) rank 3
3 1 0 1
pp 2 -
A=|2 » » ) 4 2 3
p 2 p (i1) 8 4 6
-2 -1 -1.5
Ans.: () p=2(i) p=-2 -~
(i) p# -1, p#2 =2 3
2 4
3. Find the rank of (it -1 -3 2 =2
x—1 x+1 x | 2 4 -1 6
A=| -1 x 0], where x is real. 0 1 -3 -1
¢ 1 4 w (00 11
iv
[Ans.: 3] 31 0 2
1 0 1 |1 2 0
4. If A= 0 x 1|, prove that rank 3 -5 -1 -7
-1 -1 x 0o 2 2 1 -5
of 4 is 3, where x is a real number. ) 1 =9 =3 9
5. Find the value of A for which rank of o 1 2 1 6
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1 2 -1 4 8. Find non-singular matrices P and O
) such that PAQ is in normal form. Also
(vi) 2 4 35 find their ranks.
-1 2 ~
2 1 -3 -6
[Ans.: ()2 (i) 1 (iii) 4 ] W (3 3 1 2
(iv)2 (v)4 (vi)2 1 1T 1 .2
7. Find the ranks of the following matrices - 232
by reducing to normal form: @ |2 -2 1 3
12 3 - 13 0 4 1
2. 1. 3 1 [1 =1 -1
®» (1o 1 1 G 1 1 1
[0 1 1 1 3 1 1
1 2 3 0 i 2
32 13 1 2
6 8 75 )
i i 8 -1 2 -1
. _1 _1 v (4 2 -1 2
(iii) 2 22 9
31 0 2
(1 1 -2 [ 2 @ @
- 0 2 1 (vi)y |-2 4 3 0
. 0 1 =2 1 | 1 0 2 -8
v
; _21 Z g [ Ans.: |
3 - [0 0 1
341 1 @P=| -1 o0 2|,
2 4 3 6 31 9
v) o
-1 -2 6 4 L 14 28 28
| 1 -1 2 -=2] [1 -1 4 0
r 0 -5 0
2 3 1 4 = ,rank =3
~vi) |52 30 0 0 1 -2
9 8 0 8 ! LU i

Ans.: (1) 2 (ii) 4 (iii) 3
(iv)3 (v)4 (vi)3



[ [ 1
(i) P=| -2
| -1
|
0=0
0
K
[ 1
(iii)P=| =
2
1
| 4
1
0=\0
_0
[ 1
2
iv)P=|—
(v) 5
_1
|
0=\0
| 10

© O A= W=

LSS ) R P

O i

1.10 Applications of Systems of Linear Equations

|
—
J

—_ O NN W~

L

o © = olun Wik

(=]

— |, rank =3

, rank = 2

10 0
21 1
N P=ls o i,
(v) 6 32
LA
| 8.3 B
110 -4
2
g1 2
2
00 0 1
00 1 0
10 0
(viyP=[-1 0 1,
7 1 -5
1 -1 ——
18
1
00 -
0= 5
0o 1 =
18
0

1.97

,rank =3

,rank =3

1.10 APPLICATIONS OF SYSTEMS OF LINEAR
EQUATIONS

Linear systems are used to model a wide variety of problems. Constructing models for
mechanical systems, electrical networks, Indian economy, chemical equations, etc.,
are some of the applications of linear systems.

Example 1: A 500 N ball is supported by three cables as shown in Fig 1.1. Find
the tension in each cable.
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B (=3,0,~4) m
C(4,0,-3)m

W=500N
Fig. 1.1

Solution: Writing forces in standard vector form,

oo [3H5i4k)_ 3 . 5 se g
AT s 52 527 52
3i+45/-4k) 3. 5 . 4 -
T :T = 1+ ]_ k
S UN) J V2 27 sz
4i +57 -3k 4 .~ 5 L 3 4
RGN ) ) V2 sz s
3 3 4
Since > F. =0, T,- T+ Ic =0
s2 ' s P s
37,-3Tg +4T- =0
Since YF, =0 > T+ > Ts + > T =500
oo V2 s s
T, +Tg + T = 50082
4 4 3
Since S F. =0, Ty— Ts — Te =0
sv2 szt s

AT, — 4Tz —3T- =0

The matrix form of the system of linear equations is

3 3 471y 0
11 1|7, |=]500v2
4 -4 3|1 0

The augmented matrix of the system is
3 3 4170
I
[4:B]=[1 1 1!500:2
4 4 31 0

- (2)

(3)
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Reducing the augmented matrix to row echelon form,

R
11 1150032
13 =3 41 o0
4 —4 30 0
Ry —3R,R; — 4R,
(11 11 50042
~lo -6 1;-1500\5
0 -8 —7!-2000v2
1
2R
6 2
L1 11 50032
1
~lo 1 —é: 25042
1
0 -8 —71-200052
R; +8R,
11 1150032
1
~lo 1 —é:zsoﬁ
1
1
00 —? 0
3
-2R
257
11 1150042
1I
~lo 1 —3:250\5
1
00 11 0

The corresponding system of equationsis

Ty +Tg+Tp = 50042
Ty —éTC =25042

Tc =0

Solving these equations,
T,=353.55N
Ty =353.55N
Tc =0

1.99
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Example 2: Find the currents /, I, and /, in the circuit shown in Fig 1.2.

6Q 2Q

TR /> 1Q /> 3Q/> 10Q
L

Iy

Fig. 1.2
Solution: Applying Kirchhoff’s voltage law to Mesh 1,
10-6/ -1, -1)=0
71, -1,=10 (1)
Applying Kirchoff’s voltage law to Mesh 2,
-1(,-1)—-2I,-3(,-1)=0
I,—6l,+3,=0 (2)
Applying Kirchoff’s voltage law to Mesh 3,
—3(1,-1)—-10[,-20=0
31,-131,=20 ..(3)
The matrix form of the system of linear equations is
7 -1 01| 4 10
1 -6 31/ |=| O
0 3 -13|| 15 20

The augmented matrix of the system is

7 -1 0110
[4:B]=|1 -6 31 0
0 3 -13120
Reducing the augmented matrix to row echelon form,
Ri»
1 -6 3,0
~|7 -1 0110
0 3 -13'20
R, —7R
1 6 310
~[0 41 21110
0 3 -13'20
1
—R
4177
1 -6 310
I
“lo 1 22110
411 41
I
]



1.10 Applications of Systems of Linear Equations 1.101

Ry —3R,
1 -6 310
I
o 1 2 10
41, 41
I
0O 0 _ﬂ i @
L 41 ' 41
4,
470
1 -6 34 0
I
o 1 22 10
41 41
I
0 0 1:—m
L 470

The corresponding system of equations is
I, —6l,+3[,=0

21 10
L 41° 41
_ 790
} 470
Solving these equations,
I, =134A
I,=-0.62 A
I,=-1.68 A

Exercise 1.6 |

1. Figure 1.3 shows a tripod carrying a load of 500 kN. Supports 4, B and C are
co-planar in the x-z plane. Find force in each member in the tripod. The joints are
ball-and-socket type.

1000 N
Fpc
Fpg C(0,0,-6) m
B
(-7,0,-2) m P Fos
(3,0,4)m
Fig. 1.3 [Ans.:Fp, =5859N

Fpe =322.4N
FDB = 2823N
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2. Find currents /,, 7, and 7, in the circuit shown in Fig 1.4.

v
I
1 )
Doge )
8V
I L
2Q 3Q
D
I
12V 50
Fig. 1.4

40

Ans.:[; =6.014
1, =3274
I3 =3.384
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2.1 INTRODUCTION

Vector space is a system consisting of a set of generalized vectors and a field of
scalars, having the same rules for vector addition and scalar multiplication as physi-
cal vectors and scalars. The operations of vector addition and scalar multiplication
have to satisfy certain axioms. An example of a vector space is the Euclidean vector
space where every element is represented by a list of » real numbers, scalars are real
numbers, addition is component wise and scalar multiplication is multiplication on
each term separately. Vector spaces are characterized by their dimension which gives
the number of independent directions in the space. They are useful in mathematics,
science and engineering.

2.2 EUCLIDEAN VECTOR SPACE

Euclidean vector space or simply n-space is the space of all n-tuples of real numbers,
(u,, Uy, ..., u,). It is commonly denoted as R".

2.2.1 Vectors in R"

An ordered set of n real numbers (u,, u,, i, ..., u,) represent a vector u in the vector
space R". The real number u, is called the kth component or coordinate of u. This
vector u represents a point in #-dimensional space R".

When n = 2 or 3, the vector u represents a point in two-dimensional or three-
dimensional space respectively.

2.2.2 Vector Addition and Multiplication by Scalars

Ifu=(u,u, ...,u)and v=(v,, v,, ..., v,) are two vectors in R” then vector addition
of u and v is defined by

utv=>+v,u,+v,,...,u,+v,)

and if & is any scalar, the scalar multiple is defined by,

kw= (ku,, ku,, ..., ku,)



2.2 Chapter 2 Vector Spaces

Properties of Vectors in R"
If u, v and w are vectors in R" and k,, k, are scalars then

utv=v+tu
ut(v+tw)=(u+v)+w
ut0=0+u=u
ut+(-u)=0

k(o) = (kk,)u
k(u+v)=ku+kyv

(k, + k,)u=ku+ ku
lu=u

g N9 iR, W 1L

2.2.3 Inner (dot) Product in R"

Inner (dot) product of two vectors u = (u,, ,, ..., u,) and v= (v, v,, ..., v,) in R" is
defined by

u-v=uy, v, ot uy

n'n

Properties of Inner Product in R"
If u, v and w are vectors in R” and £ is any scalar then
[.u-v=v-u
2. (utv)-w=u-w+tv-w
3. (ku)-v=FKk(u-v)
4. v-v20.Alsov-v=0ifand only if v=0
2.2.4 Norm or Length in R"

The norm or length of a vector u = (u,, #,, ..., u,) in R" is denoted by ||u|| and is
defined by

o= (u-w)*

2 2 2
= Jul g+t

Properties of Length in R"

If u and v are vectors in R” and £ is any scalar then

L. |u|z0

2. |u|=0 ifand only ifu=0

5. ol =Jelo

4. |u+v|<|ul+]|v], Triangle inequality.
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2.2.5 Distance in R

The distance between the points u = (u,, u,, ..., u,) and v = (v, v,, ..., v,) in R" is
denoted by d(u, v) and is defined by

d(u,v)= ||u - v||

= \/(”1 —v])2 + (u, —vz)2 +et(u, —v")2

Properties of Distance in R"
If u, v and w are vectors in R” then

d(u,v)=0

d(u, v)=0ifand only ifu=v

d(u, v)=d(v,u)

d(u, v) < d(u, w) + d(w, v), Triangle inequality.

9 A

2.2.6 Angle between Vectors in R"

If u and v are non-zero vectors in R” and if @1is the angle between them then

u-v
cosf=———
[l v

Theorem 2.1: If u and v are vectors in R” then

wv =l v ==
Proof: ||u+v||2 =(u+v)-(u+v)
=u-ut+u-v+v-ut+v-v
= [l +2u- v+ v} ~(21)

Ju=v[ =@-v)-(-v)
=u-u—u-v—-v-u+v-v

— [uff = 2u- v+ v} -22)

Subtracting Eq. (2.2) from (2.1),

ot vl == v = 4u-v

Hence, u-v= l|[u+v||2 —l"u—v
4 4

2
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2.2.7 Orthogonality in R

Two vectors u and v in R" are orthogonal if u - v=0

2.2.8 Pythagorean Theorem in R"

If w and v are orthogonal (perpendicular) vectors in R” then

”

2+||v

o+l =

Proof: Since u and v are orthogonal,
u-v=_0
||u+v||2 =(u+v)-(ut+v)
=u-u+u-v+v-u+v-v

= ||u||2 + ||v||2 [using Eq. (2.3)]

2.2.9 Cauchy-Schwarz Inequality in R"

If w and v are vectors in R" then

R CRCRE]

Dividing each component of v by |v| to obtain normalized vector of v,

g . N 6 8 3
V=== > s
v (\/109 J109 \/109)
The normalized vector V is a unit vector since ||V | = 1

Example 2: Find the vector x that satisfies 2x — 6v =w + x
whereu=(-3,-1,1,0),v=(2,0,5,3),w=(-2,4,1,7)

Solution: 2x—-6(2,0,5,3)=(-2,4,1,7)+x
x=(=2,4,1,7)+(12,0,30,18)
=(10, 4,31, 25)

(2.3)
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Example 3: Letu=(4,1,2,3),v=(0,3,8,-2)and w= (3, 1, 2, 2). Evaluate

@) [ul|+|v] (i) [Bu—=5v+w] (iii) ’Mw (iv) [u+v]|
Solution: (i) fuf+[v]|= V16 +1+4+9 +/0+9+64+4
=J30+77

(i1) 3u-5v+w=3(4,1,2,3)-5(0,3,8,-2)+(3,1,2,2)
=(12-0+3,3-154+1,6-40+2,9+10+2)
=(15,-11,-32,21)

[Bu-5v+w|= \/(15)2 +(=11)* +(=32)* +(21)
1811

(iii) ||w||= \/9+1+4+ =18

(3.1.2,9)
||W|| Jl_
1

(9+1+4+4) 1 =1
" v

This concludes that if w is a non-zero vector, then

1

MW

[wi=

1
=M|

1.e. . ——w has Euclidean norm 1.
wl

Example 4: Find the Euclidean inner product of u = (3, 1, 4, -5) and
v=(1,0,-2,-3).

Solution: u-v=03,1,4,-5)(1,0,-2,-3)
= )M+ M(O0)+(4)(=2)+(=5)(-3)
=3-8+15

=10

2.5
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Example 5: Find two vectors in R*> with Euclidean norm 1 whose Euclidean inner
product with (3, —1) is zero.

Solution: Letu= (u,, u,) be a vector in R? such that

(3.-1) (1) =0

3u, —u, =0 (1)
and [ul|=1
i +u; =1
ul +u; =1
ul +9u’ =1 [using equation (1)]

Example 6: Let R* have the Euclidean inner product. For which values of & are
u and v orthogonal?

(i) u=(kk 1), v=(k5,6)

) w=@2,1,3), v=(1,7,%)

(lll)uz(lak’ _3)5 V=(2,—5, 4)

Solution: Ifu and v are orthogonal then u - v=0

(1) u-v=0
(k, k,1)-(k,5,6)=0
k*+5k+6=0
(k+2)(k+3)=0
k=-2,-3
(i1) u-v=_0
2,1,3)-(1,7,k)=0
2+T7+3k=0
3k=-9

k=-3
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(iii) u-v=0
(1, k,=3)-(2,-5,4)=0
2-5k-12=0

Sk=-10

k=-2

Example 7: Find all vectors in R’ of Euclidean norm 1 that are orthogonal to the
vectorsu= (1, I, I)and v= (1, 1, 0)

Solution: Let w = (w,, w,, w;) be a vector in R* such that

u-w=0, v-w=0
(L L 1)- (W, wy, w,) =0, (1,1,0)-(w, W, w))=0
wo+w, +w, =0 ..(D), w+w,=0 ...(2),
and wl| =
Wi +w +wl =1
w+w; +w; =1 .(3)

Solving equations (1) and (2),
wy; =0

Substituting w, =-w, and w; = 0 in equation (3),

2 2
wy +w =1

"R

Example 8: Show that the zero vector is the only vector orthogonal to every
vector in R".

Solution: Let u is orthogonal to every vector in R”. Then u is orthogonal to itself.

uu=0
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2 2 2 . . _
u, +uy +uy +--+u, =0 where u=(u,u,...,u,)
2 _ .
u, =0, i=L2,..,n

u =0, i=12,...n
u=(0,0,...,0)

Hence, zero vector is the only vector orthogonal to every vector in R".

Example 9: Determine & such that [Jul = V39 where u = (1, k, -2, 5)

Solution: uf| = J39
Julf =39

1> +k*+(=2)* +(5)* =39

k> +30=39
k=9
k=13

Example 10: Find Euclidean distance between u = (3, -5, 4) and v = (6, 2, —1).

Solution: d(u, v)=|u-v]|

=J3=6)* +(=5-2)* +(4+1)?
=v9+49+25
=83,

Example 11: If u and v are orthogonal unit vectors, what is the distance
between u and v?

Solution: Since u and v are orthogonal unit vectors, u - v=10,

u[=1 and |v|=1
d(u, v)=|u-v|
||u—v||2 =(u-v)-(u-v)
—u-u—-u-v-v-u+v-v
= Jul* = 2u- v +[v]’
=1-0+1
=2
Hence, d(u, v)= \/5
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Example 12: Let R* have the Euclidean inner product. Find the cosine of the
angle @ between the vectors u = (4, 3, 1,-2) and v= (-2, 1, 2, 3).

Solution: u-v = [uf[|v]|cos®
u-v
cosfO =
iVl

_ (4a 39 ]7_2)(_27 1) 27 3)
VI6+9+1+4 J4+1+4+9
_—8+3+2-6

30418

Example 13: Verify Cauchy—Schwarz inequality for the vectors u = (=3, 1, 0),
v=(2,-1,3).

Solution: Cauchy-Schwarz inequality states that

jw-v|<ulv]
u-v=(-3,1,0)-(2,-1,3)
=—6-1=-7
uv|=|-7=7
ol =041 = io

[vl|=v4+1+9 = V14
[Ju[[v]|= V10414 =140
7 <140

Ju-v] <[l

Hence, the inequality is verified.

Exercise 2.1 h |
1. Findu+v,3u—2v,u-2v+3wif AnRs.:
(1) u:(—1,2, 1),V:(2, 1,3), (l) (1-/3/4)1 (_7141_3)1
w=(0,3,-1) €5,9,—8)
(ll) u= (_3’ 2’ 1, 0)’ V= (4’ 7’ _3’ 2)’ (JJ) (Lr 9/_ 2/2)r (_17/_ 81 9/_ 4)1

w=(5-2,81) 4,-18,31,-1)
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2. Find a, b, ¢ for the following if
u= (1, _2’ 3)’ V= (_33 _1’ 3)9
w=(a,—1,b),x=(3,c,2)

(1) w=%u (il) wt+v=u
(iil)) wtx=v
Ans.:
1 3
1 :—,b:—
(i) a 5 >
(i)a=4,b=0

(ii)a=-6,b=1,¢=0.

3. Find a, b, ¢, d such that
au+bv+cew+dx=(0,5,6,-3)
where,
u=(-1,3,2,0),v=(2,0,4,-1),
w=(7,1,1,4)andx=(6, 3, 1, 2)

[Ans.:a=1,b=1,c=-1,d=1]
4. Find the Euclidean inner product
u - v for the following:
(i) u=(4,8,2),v=(0,1,3)
(11) u:(3a la4, ‘—5),V=(2, 2, _47 _3)

(i) u=(1,1,0,4,-3),
v=(=2,2,0,2,-1)

[Ans.: (i) 14 (i) 7 (i) 15]

5. Find a such that |

(1,a,-3,2)|=5
[Ans.: a= i\/ﬁ]

6. Evaluate the following if u=(0, 2, 3, 1),
V= (29 0’ Ala 41)$ w= (——3’ ml’ ‘_2’ O)

() [u+v] @) [2u+3v+4aw|
G G Lo
Iwl [w]
Ans.:
i) v/12 (i) V27

(i) )1

1,
=W
V14

7. If u is a non-zero vector in R", show

that ﬁu is a unit vector in the
u

direction of u.

8. Find the cosine of the angle between
i uw=(231, v=3,-2,0
(i) wu=(1,2,-1,3), v=(0,0,-1,-2)

|:Ans.: @0 (JJ)—%:|

9. Find the distance between the
following:

(l) (0, 27 3)» (17 25 _4)
(11) (3, 4a Oa l)’ (25 29 l’_l)

[Ans.: (1)\/% (JJ.)\/E]

10. Find the constant a such that
u-v=0whereu=(a, 2,1, a)and
v={(a,-1,-2,-3).

[Ans.: a =-1, 4]
11. Determine whether the given vectors
are orthogonal.
(i u=(-1,3,2),v=(4,2,-1)
(i) u=(@4,2,6,-8),v=(-2,3,-1,-1)
(i) u=(1,2,3,-4),v=(0,-3,1,0)
(iii) no]

[Ans.: (i) yes (ii) yes

12. For which value of k are u = (2, &, 3)
and v=(1,-2, 1) orthogonal?

[Ans.: k= §:|
2

13. Find a, b, ¢ not all zero so that
u = (a, b, c) is orthogonal to both
v=(1,2, H)andw=(1,-1, 1)

[Ans.:a=1,b=0,c=-1]
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14. Verify Cauchy—Schwarz inequality: (i) u=(0,-2,2,1),

(i) u=(-4,2,1), v=(-1,-1,1,1)

v=(8,-4,-2) [Ans.: (i) yes (ii) yes]

2.3 VECTOR SPACES

Let V be a non-empty set of objects on which the operations of addition and multi-
plication by scalars are defined. Here addition means a rule for assigning to each pair
of objects u, v in 7 a unique object u + v and scalar multiplication means a rule for
assigning to each scalar k and each object u in V" a unique object ku. If the following
axioms are satisfied by all objects u, v, w in V" and all scalars k,, k, then V' is called a
vector space and the objects in V are called vectors.

If w and v are objects in V' thenu + visin V.

utv=v+u

ut(vtw)=(m+v)+w

There is an object 0 in V, called zero vector, such that 0 + u=wu + 0 = u for all
uin V.

For each object u in V, there exists an object —u in V' called a negative of u,
such that u + (—u) = (-u) + u=0.

If k, is any scalar and u is an object in V, then ku isin V.
k,(u+v)y=ku+kv

If k,, k, are scalars and u is an object in V, then (k, + k) u = kju + k,u.
k\(kyw) = (k, ky)u

lu=u

bl ol e

(9,

S PPN

The operations of addition and scalar multiplication in these axioms are not always
defined as standard vector operations (addition and scalar multiplication) on Euclidean
space R".

The scalars may be real numbers or complex numbers. When the scalars are real
numbers, the vector space is called real vector space, and when the scalars are complex
numbers, the vector space is called complex vector space.

Some standard vector spaces are as follows:

(i) The set R" under standard vector addition and scalar multiplication.
(i) The set P, of all polynomials of degree < n together with the zero polynomial
under addition and scalar multiplication of polynomials.
(iii) The set M, of all m X n matrices of real numbers under matrix addition and
scalar multiplication.
(iv) The set F[a, b] of all real-valued functions defined on the interval [a, b] under
addition and scalar multiplication of functions.
(v) The set F'[—oo, oo] of all real-valued functions defined for all real numbers
under addition and scalar multiplication of functions.



2.12  Chapter 2 Vector Spaces

Example 1: Determine whether the given set V is closed under the given
operations:

(i) Vis the set of all ordered triples of real numbers of the form (0, y, z);

0,22+ 0,y,2)=0.y 5, zt2)
k0, v,2z)=(0, 0, kz)

a
(i) Vis the set of all 2 x 2 matrices [

b
d:| where a = d under matrix addition and
c

scalar multiplication.
Solution:

(i) @ 0,y,2)+(0,y,2) =0,y +)',z +2)
Since y, )/, z, z" are real numbers, y + )7, z + 2" are also real numbers. Therefore,
0,y+),z+Z)isin V.
Hence, V' is closed under the addition operation.
(b) k&0, y,2)=1(0,0, kz)
If z is a real number then 4z is also a real number. Therefore, (0, 0, kz) is in V.
Hence, V' is closed under multiplication operation.

b , b P
(i) (a) Letu= |:a, dl ] and v = [a_ d—] where a, = d, and a, = d, be two objects in V.
c

cl 1 2 2

a, b a, b, a,+a, b+b,
u+v= * C = - N
¢ d, c, d, ¢ +c, d+d,
Ifa,=d,a,=d, thena, +a,=d, +d,
Therefore, u + v is also an object in V.

Hence, V' is closed under matrix addition.
(b) Let k be some scalar.

a, b ka, kb,
ku =k =
¢ d, ke, kd,

If a, = d,, then ka, = kd,. Therefore, ku is also an object in V.
Hence, V' is closed under scalar multiplication.

Example 2: Determine whether the set /' of all pairs of real numbers (x, y) with
the operations (x;, y;) + (x,, y,) = (x; tx, + 1,y + y, + 1) and k(x, y) = (kx, ky) is a
vector space.

Solution: Let u = (x,, ), v = (x,, »,) and w = (x;, y,) are objects in V and k,, k, are
some scalars.
Lutv=0,p)+0)=0+tx,+1Ly+y+1)
Since x;, X,, ¥,, ¥, are real numbers x, +x, + 1 and y, +y, +1 are also real numbers.
Therefore, u + v is also an object in V.
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2 utv=(x+x,+Ly +y,+1)
=, +x,+L y,+y +1)
=v+u

Hence, vector addition is commutative.

3. u+(v+w)=(xl,y,)+[(x2,y2)+(x3,y3)]

=(xp, )+ +x+L y, +y, +1)
=[x+, +x, + D+ 1Ly + (0, +y, +1)+1]
=[(x +x,+D+x,+L (1 + 3, + D+ p, +1]
=(x,+x,+1L, y +y, +D)+(x;, y;)
=(u+v)+w
Hence, vector addition is associative.
4. Let (a, b) be an object in V' such that
(a,b)+u=u
(a,b)+(x;, y) = (x, )
(a+x,+L,b+y,+1)=(x, )
at+x+l=x , b+y +1=y
a=-1 , bh=-1
Also,u+(a,b)=u
Hence, (-1, —1) is the zero vector in V.
5. Let (a, b) be an object in V' such that
u+(a,b)=(-1,-1)
(x, y)+(a,b)=(-1,-1)
(g +a+l,y+b+1)=(=1,-1)
X ta+l=-1 , »+tb+l=-1
a=-x-2 , b=-y -2
Also, (a, b) +u=(-1,-1)
Hence, (—x, — 2, —y, — 2) is the negative of u in V.
6. ku=k(x,y)
=(kx,, ky,)
Since &, x, and k, y, are real numbers, &, u is an object in V'

Hence, V' is closed under scalar multiplication.
7. k(u+v)=k(x +x,+1, y,+y,+1)

= (erl +k|x2 +k1’ klyl +k1y2 +k1)
# ku+kv

2.13



2.14  Chapter 2 Vector Spaces

V' is not distributive under scalar multiplication.
Hence, V is not a vector space.

Example 3: Determine whether the set R* of all positive real numbers with
operations
x +y=uxyand kx = x*is a vector space.

Solution: Letx, y and z be positive real numbers in R and k,, k, are some scalars
1. x+y=uxy, is also a positive real number
R* is closed under vector addition.
2. xty=xy=yx=y+x
Vector addition is commutative.
3. x+(y+2)=x(y+2)=x(y2)=(y)z=(x+y)z=(x+y)+z
Vector addition is associative.
4. Let a be an object in R* such that

atx=x
ax=x
a=1

Alsox+a=x
Hence, 0 = 1 is the zero vector in V.

5. Let a be an object in R* such that

x+a=1
xa=1
1

a=—

X

Also,a+x=1

Hence, 1 is the negative of x in R".
X

6. Ifk, is real then k,x = x" is a positive real number for all x in R*.
R'is closed under scalar multiplication.

7. k(x+y)=k(p) = ()"
= x" Y = (kx)(ky) = kx+ky
Scalar multiplication is distributive with respect to vector addition in R".
8. (k +kk=x""=gh2"
= (kx)(k,x) = kx+k,x
Scalar multiplication is distributive with respect to scalar addition in R".
9. k(kx)= klxk2 =(x" )
= xhh = xhb = (kk,)x
Scalar and vector multiplications are compatible with each other.
10. Ix=x'=x

All axioms are satisfied by R under given operations. Hence, R" is a vector space
under given operations.
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Example 4: Why are the following sets not vector spaces under the given
operations? Justify your answer.

(i) The set of all pairs of real numbers (x, y) with the operation (x,, y,) + (x,, »,)
= (x, +x,, y, +,) and k(x, y) = (2kx, 2ky).
(i) e, 3152) + (0 2, 2)) = (2, + 23,y T 15, %, H )
Solution: (i) 1 is a scalar.
1(x, y) = (2x, 2y) # (x, y)
Axiom 10 fails. Hence, given set is not a vector space.
G) (x5 ¥ 2)+H{(xy) 120 2) + (35, 135 2,)}
=X, V5 2)+(2y+ 23, ¥, + 5, X, +X5)
= {zI +(x, +x,), ¥, + (1, +3), X, +(2, +z3)}
= {(zl +X,)+ x5, (1, +2,) + 15, (X +22)+z3}
= ('xl T2, 0t s 2 +xz)+(z3’ Vi» xs)
= {(Z]’ Yis %) (%55 Vs Zz)}+(z3= V35 X3)
Given set is not associative under vector addition. Axiom 3 fails. Hence, the given
set is not a vector space.

Example 5: Check whether V= R* is a vector space with respect to the opera-
tions (x,, ¥,)+ (%, ¥,)=(x +x, -2, y,+y,—3) and
k(x, y)=(kx+2k—-2, ky =3k + 3), k is a real number.

Solution: Let u=(x,, ), v=_(x,, y,) and w = (x,, y;) are objects in R* and k, k,
are some real scalars.
Lout+v=(x,y)+(x,»)
=(x, +x, =2, y, +y, —3) which is also in R*.
R? is closed under vector addition.
2. utv=(x+x,-2,y+y,-3)
=(x,+x-2,y,+y,-3)
=(x,, ¥,) +(x, 1)

=v+u
Vector addition is commutative.

30w+ (VW) = (3, 1) {00, 1)+ (x5, p)}
=(x, y)+0,+x,-2,y,+y,-3)
=+ +x,-2)=2, y,+ (¥, + ¥, =3)=3)
=((x,+x,=-2)+x, -2, (¥, +y,=3)+y;-3)
=(x, +x,=2, 3, + ¥, =3)+(x;, ;)
= {00, )+ )+ (x5 )
=(u+v)+w

Vector addition is commutative.
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4. Let (a, b) be an object in R? such that
(a,b)+u=u
(a’b)+(x]a y1)=(~x1a }’1)
(a+x,=2,b+y,=-3)=(x, )
at+x,—-2=x, , b+y -3=y
a=2 b=3
Also, u+(a,b)=u
Hence, (2, 3) is the zero vector in V.
5. Let (a, b) be an object in R? such that
u+(a,b)=(2,3)
(x, »)+(a,b)=(2,3)
(x+a-2,y,+b-3)=(2,3)

x+a-2=2 , y+b-3=3
a=-x,+4 , b=-y +6
Also, (a, b) tu=(2, 3)
Hence, (—x, +4, —y, + 6) is the negative of u in V.
6. If k, is a real number then &, (x,, y,) = (k,x, +2k, -2, ky — 3k, +3)
is also in R%. R? is closed under scalar multiplication.
7. k@ v) =k {Go, 0)+ (x5, 0]
=k +x,-2,y,+y,-3)
= (k,(x, +x, = 2)+ 2k, =2, k,(y, + , —3) = 3k +3)
= (kx, + 2k, =2+ kx, = 2k,, k,y, =3k, +3+ky, = 3k,)
#ku+kv

Scalar multiplication is not distributive with respect to vector addition in R%.
Hence, R? is not a vector space.

Exercise 2.2 D |

1. Determine whether the given set V is (ay+ax+a,x)+ (b, +bx+b,x°)

closed under the given operations.
) . =(a,+b))+(a,+b)x+
(1) The set of all pairs of real numbers

of the form (x, 0) with the standard (a, +b,)x*

o 2
operations on R, k(a, +a,x+ a,x*)

ii) The set of all pol ials of th 2
(i) : e set of a po;zlnomlas of the = (ka,)+ (ka,)x + (ka, )x
orm a, +a, x + a, x* where a,, a,, a,
are real numbersanda, =a; + 1 with (i) The set of all 2 x 2 matrices

operations defined as a 1
of the form |:1 b] with the
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standard matrix addition and the operations defined as
scalar multiplication. |:a 1 } |:c 1 :| |:a +c 1 :|
+ -]
[Ans. : (i) yes (ii) no (iii) no] 1 b |1 d 1 b+d
2. Determine which sets are vector spaces a 1 ka 1
under the given operations: 1 bl

(1) The set of all ordered triples of real

iv) The set of all ordered pairs of real
numbers (x, y, z) with the operations (tv) The set of all ordered pairs of rea

numbers (x, y), where x < 0, with

s Vs 20+ (35 V35 25) the usual operations in R
= (%5 Y, +5 2;) [Ans.: (()no (i) yes (iii)yes (iv)no]
k(x, v, z) 3. Show that the set V' of all pairs of real
= (kx, ky, kz) numbers of the form (1, x) with the

operations defined as

.. . I, x Lx,)=(,x +x,

(i1) The set of all ordered triples of real U Hl T ) =1+ )
numbers of the form (0, 0, z) with the k(1, x) = (1, k x)
operations is a vector space.

(0,0,z)+(0,0,2,)=(0,0, z, + z,) 4. Show that the set M of all n X n

matrices with real entries is a vector
k(0,0, z) = (0,0, kz)

space under the matrix addition and

(iii) The set of all 2 x 2 matrices scalar multiplication.

1
of the form . with
1 b

2.4 SUBSPACES

A non-empty subset W of a vector space V is called a subspace of V if W is itself a
vector space under the operations defined on V.

Note: Every vector space has at least two subspaces, itself and the subspace {0}. The
subspace {0} is called the zero subspace consisting only of the zero vector.

Since W is the part of a vector space V, most of the axioms are true for 7 as they are
true for V. The following theorem shows that to prove / a subspace of a vector space
V, we need to verify only the closure property with respect to the operations defined
on V.

Theorem 2.2: If IV is a non-empty subset of vector space V, then W is a subspace of
V if and only if the following axioms hold:

Axiom 1: If u and v are vectors in /¥ then u + v is in V.
Axiom 2: If kis any scalar and u is a vector in W, then ku is in V.

Example 1: Show that W ={(x, y)|x =3y} is a subspace of R*. State all
possible subspaces of R>.
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Solution: Let u={(x,, »,)|x, =3y} and v={(x,, »,) | x, =3y,} are in Wand k
is any scalar.

Axiom 1: u+v=(x,y)+(x,,»,)
=(x,+X,, Y, +¥,)
But xX=3yandx; = 3y;

Sx X, =30+ ,)

kY= {(x, +X,, Y+ 1) X +x, =30y, +y2)}
Thus, u +visin W.

Axiom 2: ku=k(x,, y,)
= (kx, ky)
But x =3y
sokx, =3(ky,)

ku= {(kx, ky)) | kx, =3 (ky,)}

Thus, ku is in W.
Hence, W is a subspace of R%.
All possible subspaces of R* are

(1) {0} (ii) R? (ii1) Lines passing through the origin.

Example 2: Check whether the following are subspaces of R®. Justify your
answer. State all possible subspaces of R°.

(i) w={(x,0,0)|xeR}
(i) W={(x,y,2)|x*+y* +2* <1}
(i) w={(x,y,2)| y=x+z+1}
Solution: (i) Letu = {(x,,0,0) | x, € R} and v=(x,, 0, 0) | x, € R} be in ¥, and k
be any scalar.
Axiom 1: u+v=(x,0,0)+(x,,0,0)
=(x,+x,,0,0)
Since R is closed under addition, x, + x, is in R.
Thus, u +visin .
Axiom 2: ku=k(x,,0,0)
= (kx;, 0,0)
Since R is closed under scalar multiplication, kx, is in R.

Thus, ku is in W.
Hence, ¥ is a subspace of R,

(ii)) Letu=(1,0,0)andv=(0,0, 1) be two vectors of the set }¥ satisfying the condi-
tion x2 + )2+ 22 < 1.
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Axiom 1: u+v=(1,0,0)+(0,0,1)
=(1,0,1)

Here x> +)*+2z2=2>1. Thus, u + v is not in W.
W is not closed under addition and hence is not a subspace of R*.

(i) Let u={(x, y,2)|y =x+z+1} and v={(x,,7,,2,) |y, =x, +z, +1} be

in W.
Axiom 1: u+v=(x,¥,z)+(x,, ¥, 2,)
=X+ X  + 15,2+ 2,)
But n=x+z,+Ly,=x,+z,+1

Sty =Xtz D)+ (x, +2,+1)
=(x,+x,)+(z,+2,)+2
Thus, u + v is not in W.

W is not closed under addition and hence is not a subspace of R°.

All possible subspaces of R* are (i) {0} (ii) Lines passing through the origin.
(iii) Planes through the origin (iv) R.

Example 3: Show that the set of solution vectors of a homogenous linear system
Ax = 0 of m equations in # unknowns, is a subspace of R".

Solution: Let ¥ be the set of solution vectors of Ax = 0.

Case I: If system has only a trivial solution (x = 0) then W has at least one vector 0
and hence is a subspace of R°.

Case II: In case of non-trivial solution, let x, and x, be solution vectors in W and k
is any scalar.

Axiom 1: A(X, +X,) = AX, + 4X,
=0+0 [ 4x, =0, 4x, =0]
=0
Thus, x, + X, is also a solution vector in V.
Axiom 2: A(kx,)=k(Ax,) [ & is a scalar]
=0
Thus, kx, is also a solution vector in 7.

Hence, W is a subspace of R".

Example 4: Show that the following sets are the subspaces of the respective real
vector space J under the standard operations:

(1) W={a0+alx+a2xz+a3x3|a0=0}, V=P
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b
(i) W={[i d:||a+b+c+d=0}, V=M,

(iii)y W ={4, |AB=BA forafixed B, }, V=M,

(iv) W={f|f(x)=a,+a,sinx, wherea, and a, are real numbers},
= F(—>s,9)
Solution: (i) Let p, =a,+ax+a,x’ +a,x’ and p, =b, +bx+b,x* +bx’ be in
W such that ¢, = 0, b, = 0 and £ is any scalar.
Axiom 1: P, +P, =(a, +ax+a,x’ +a,x’)+ (b, + bx+b,x* +b,x’)
= (a, +b,)+(a, +b)x+(a, + b,)x* +(a, + b,)x’
But a,=0,b,=0
sayg+b, =0
Thus, p, + p, isin .
Axiom 2:  kp, = ka, +ka,x+ ka,x” + ka,x’
But a,=0
o kay, =0
Thus, kp, isin W.

Hence, W is a subspace of P;.

s a, b (a, b,
(1) Let 4, = d and 4, =

:l be in M,, such that a, + b, + ¢, + d,= 0,
1 1 ~C2 dl

a,+ b, + ¢, +d,=0and k is any scalar.

. al bl | a2 bZ
Axiom 1: 4 +4, = +
Cole 4] e

_|a+a, b, +b,
a ¢ +c, d+d,
Buta, +b,+c¢, +d,=0,a,+b,+c,+d,=0

s(a +ay)+ (b +by)+ (¢, +¢,)+(d, +d,)
=(a,+b +c,+d)+(a,+b,+c,+d,)=0

Thus, 4,+ 4,1s in W.
ka, kb,
ke, kd,
Buta,+b,+¢c,+d,=0
coka, + kb, + ke, +kd, =k(a, +b +c,+d)=0
Thus, k4, isin W.
Hence, W is a subspace of M,,.

Axiom 2: k4, =|:
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(iii) Let 4, and 4, be in W such that 4,8 = BA,, A,B = BA, and k be any real scalar.
Axiom 1: (4, +4,)B=AB+A,B
= BA, + B4,
=B(4,+4,)
Thus, 4, + 4, isin W.

Axiom 2: (kA4)B=k(AB)
=k(BA4)
= B(k4,)) [ kis a scalar]

Thus, kA4, is in W.
Hence, ¥ is a subspace of M,

nn*

(iv) Let f(x)=a, +a,sinx and f,(x)= b, +b,sinx be in W where a,, a,, b,, b, are
real numbers and & be any scalar.

Axiom 1:  f(x)+ f,(x) = (a, +a,sinx)+ (b, + b, sinx)
=(a,+b)+(a, +b,)sinx
Since a,, b,, a,, b, are real numbers, (a, + b,) and (a, + b,) are also real numbers.
Thus, f,(x) + fi(x) is in W.
Axiom 2: k f,(x)=k(a, +a,sinx)
= ka, + ka, sin x
Since £ is a real scalar, ka, and ka, are real numbers.

Thus, k& f,(x) is in W.
Hence, W is a subspace of F(—oo, o).

Example 5: State only one axiom that fails to hold for each of the following sets

W to be subspaces of the respective real vector space V" under the standard opera-
tions:

0 w={x <=y}, V=R
(i) W ={(x »)|xy20}, V=R
(i) W={4,,|4x=0=>x=0}, V=M,

(iv) W={f|f(x)<0,Vx}, V = F (=00, o)
) W={a,+ax+ a,x*+ a,x*, Vx where a,, a,, a, and a, are integers}, V=P,

Solution: (i) Let u = (-1, 1) and v = (2, 2) be two vectors of the set /¥ such that

X2 =y~

Axiom 1: u+v=(-1L1)+(2,2)
=i(1,3)
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Here 1% # 3% Thus, u + v is not in 7.
W is not closed under addition and hence is not a subspace of R>.

(i) Let u=(-2,-3) and v=(3,1) be two vectors of the set /¥ such that xy > 0.
Axiom 1: u+v=(-2,-3)+(3,1)
={1,-2)

Here 1(-2) =-2 <0. Thus, u + v is not in W.
W is not closed under addition and hence is not a subspace of R%.

(iii) From the definition of 17, it is clear that W is the set of all non-singular matrices
of order n so that Ax = 0 has only trivial solution (x = 0)

30 0 ... 0 200 ... 0
0 -1 0 ... 0 010 ..0
Let 4 =0 0 -1 ... 0 and 4,=[0 0 1 0
00 0 .. -1 000 .. 1]

are two matrices in I such that |A,| # 0 and |A2| #0.

500 ...0

000 ...0
Axiom 1: A+4,=10 0 0 ... O

000

|4, +4,|=0. Thus, 4, + 4, is not in V.
W is not closed under addition and hence is not a subspace of M.
(iv) W is the set of all negative functions of x. Let f{x) is in I such that f(x) <0
Axiom 2: If k=-2, then
kf(x)==2f(x)>0 [ f(x)<0]

Thus, kf(x) is not in .
W is not closed under scalar multiplication and hence is not a subspace of F(—oo, ).

(v) Let u=a, +ax+a,x* +a,x’ be in W, where a,, a,, a,, a,, are integers.

Axiom 2: If k= %, then
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. a, a a, a . . | .
Since 7", ?', ?“, 3’ are not necessarily to be integers, Eu isnot in W.

W is not closed under scalar multiplication and hence is not a subspace of P,.

2.5 LINEAR COMBINATION

A vector v is called a linear combination of vectors v,, v,, ..., v, if it can be
expressed as

v=kv, +kv,++kv,

where k,, k,, ..., k, are scalars.

Note: If » =1, then v = k,v,. This shows that a vector v is a linear combination of a
single vector v, if it is a scalar multiple of v,.

Vector Expressed as a Linear Combination of Given Vectors

The method to check if a vector v is a linear combination of the given vectors v, v,, ..., Vv,
is as follows:

1. Express v as linear combination of v;, v,, ...,V

v=kv, +kv,++kv, (2.4)

2. If the system of equations in (1) is consistent then v is a linear combination of
V,, Vs, ..., V.. If it is inconsistent, then v is not a linear combination of v, v,, ..., V,

P

Note: To express v as a linear combination of v,, v,, ..., v,, solve the system of
equations in (2.4) directly to determine scalars k,, k,, ..., &

-

Example 1: Which of the following are linear combinations of v, = (0, -2, 2) and
v,=(1,3,-1)?

1 3, 1,5) (i) (0, 4, 5)
Solution: Letv=/kyv, + kv,
() (3,1,5)=k(0,-2,2)+k,(1,3,-1)
= (k,, =2k +3k,, 2k, —k,)

Equating corresponding components,

k,=3
=2k +3k, =1
2k — k, =5
The augmented matrix of the system is
0 13
2 301
2 -115
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Reducing the augmented matrix to row echelon form,

I
1 _3 . _1
21 2
~10 1y .3
|
120 =l S5
R,—=2R,
. —
1 _3 : _1
210 2
~10 1y 3
|
0 2, 6]
R, 2R,
- A
1 _3 : 1
2:0 2
~10 1y 3
|
[0 0] O]
The system of equations is consistent.
Hence, v is a linear combination of v, and v,.
The corresponding system of equations is
1
k, —Ek, =——
2 2
k,=3
Solving these equations,
k,=4,k,=3
Hence, v=4v, +3v,
(i) (0,4,5)=k(0,-2,2)+k,(1,3,-1)
= (k,, — 2k, +3k,, 2k, - k,)
Equating corresponding components,
k,=0
=2k +3k, =4

2% - k=5
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The augmented matrix of the system is
0 1.0
2 34
2 -115

Reducing the augmented matrix to row echelon form,

wm O b

O O

From the last row of the matrix

0k, +0k,=9
The system of equations is inconsistent.
Hence, v is not a linear combination of v,, and v,.

Example 2: Which of the following are linear combinations of

4= 4y = 4= ?
2 = 2 3 14

N e

Oy 5 @ |71

Solution: LetAd =kA, +k, A, + k; A4,

2.25
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(M) [6 —8] [4 o] [1 -1] [o z}
=k, +k, +k,
-1 -8 -2 =2 2 3 1 4

4k, + k, —k, + 2k,
- [—2/<1 +2k, +h, —2k +3k, +4k, }
Equating corresponding components,
4k + K, =6
— ky+ 2k, =-8
=2k +2k,+ ky=-1
=2k, + 3k, + 4k, =8
The augmented matrix of the system is

4 106
0 -1 2!-8
2 % i1
2 3 418

Reducing the augmented matrix to row echelon form,




Y

4 i
~10 -1 2]
0 0 1!
0 0 11!

1

S O O

The system is consistent.

(-DR,, R, —11R,

2.5 Linear Combination
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Hence, A is a linear combination of 4,, 4,, A,. The corresponding system of equations is

k,+lk2
4

Solving these equations,

k =1k =2k =-3
A=A +24,-34,

Hence,

(i1) [—1 5]=k1[ 4 0]+k2|:
7 1 =2 =2

4k, +k,
- |:—2k1 +2k, +k,
Equating corresponding components,
4k, + k,
— k,+2k,
=2k, +2k, + K,
—2k, + 3k, + 4k,

The augmented matrix of the system is

4 10
0 -1 2!
B B 1)
-2 3 4

3

2
k, -2k, = 8
ky =3

1

2

-1
3

[0 3

—k, +2k, }

=-1
=-5

7

=2k, + 3k, + 4k,
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Reducing the augmented matrix to row echelon form,

|

(

| T E——
—_— |t v =~ - RI_ 1
_ A IR M ey N
||||||||||||| + |
> N = <t <+ T T T T TS T T T T T T T
S S — <t
—| ™ N en o
I M —~lt T v~
— o o~ T
[ o - o o o
L LT - T J

— <t v o —
_ I 1_6m_6
|
[l ol = (e
|
—_t — o o
i S S (=]
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From the last row of the matrix

0k, + 0k, + 0k, = —%l

The system of equations is inconsistent.
Hence, 4 is not a linear combination of 4,, 4,, and 4,.

Example 3: Express the vector v= (6, 11, 6) as a linear combination of v, = (2, 1, 4),
Y, = (1,=1,3)and v, = (3,2,5).

Solution: Let v=k v, tkv,+k v,

(6,11,6) =k (2,1, 4)+k,(1,-1,3)+ k,(3,2,5)
=2k, + ky + 3k, k, =k, +2k;, 4k, + 3k, + 5k;)

Equating corresponding components,
2k + ky+3k, =6
k— k,+ 2k, =11
4k, +3k, + Sk, = 6

Solving these equations,

k=4,k =5k =1

Hence, v=4v, - 5v, + v,

Example 4: Express the polynomial p=-9 — 7x — 15x? as a linear combination of
p=2tx+4xt, p,=1—x+3x p,=3 +2x+5x%

Solution: Letp ==k, p, +k, p, + k;p;

—9-Tx-15x* = kl(2+x+4x2)+k2(1——x+3x2)+k3(3+2x+5x2)
= (2k, +k, +3k; ) + (k, — k, + 2k, )x + (4k, + 3k, + 5k, )x°
Equating corresponding coefficients,
2k + k,+3k, = -9
k= k+2k = -7
4k, + 3k, + 5k, =—15

Solving these equations,
k=-2k=1k=-2
Hence, p =-2p, +p, - 2p,

5 1
Example 5: Express the matrix A=[

; 9j| as a linear combination of
1 -1 1l 2 2
4= , 4, = y Ay = !
0 3 @ 2 -1 1
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Solution: Let A=k A, +k A, +k A,

I e

[l 42k —k + &, + 2k,
- —k 3k +2k, +k,

3

Equating corresponding components,

k+ ky+2k= 5
-k + k,+2k, =1
—ky=~1

3k, +2k,+ k= 9

Solving these equations,

Hence, 4 =24, +4,+ 4,
Example 6: For which value of 4 will the vector v= (1, 4, 5) be the linear
combination of vectors v, = (1, -3, 2) and v, = (2, -1, 1)?

Solution: Let v=k v,tkv,
1L A,5)=k(1,-3,2)+k,(2,-1,1)
= (k, +2k,, — 3k, —k,, 2k, + k,)

Equating corresponding components,

k +2k, =1 (1)
3k — ky =2 -(2)
2%+ k=5 (3

v will be the linear combination of v, and v, if the above system of equations is
consistent.
Solving equations (1) and (3),

k=2 k =-1
Substituting &, k, in equation (2),
A=-5

2.6 SPAN

The set of all the vectors that are the linear combination of the vectors in the set
S={v,,V,,...,v, } is called span of S and is denoted by

spanS or span {v,,v,,...,V,}
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Theorem 2.3: If S={v,,v,,..., v, } is aset of vectors in a vector space V' then

(i) The span S is a subspace of V.
(i) The span S is the smallest subspace of / that contains the set S. Any other
subspace I of V that contains the set S must contain span S, i.e. span S < W.

Theorem 2.4: If S, and S, are two sets of vectors in a vector space V' then
span S, = span S,
if and only if each vector in S| is a linear combination of those in S, and vice versa.
ie., S, cspan S, and S, c span S,.
Vectors spanning the vector space: The method to check if the vectors v, v,, ...,
v, span the vector space V' is as follows:

1. Choose an arbitrary vector b in V.
2. Express b as linear combination of v, v,, ..., Vv

»

b=kv, +kv,+-+kv,. w(2:9)

3. Ifthe system of the equations in (2.5) is consistent for all choices of b then
vectors vy, v,, ..., v,span V. If it is inconsistent for some choices of b, vectors
do not span V.

Note: (i) If coefficient matrix 4 of (2.5) is a non-singular matrix, i.e. det (4) # 0, then
the system of equations in (2.5) is consistent for all choices of b and hence the given
vectors span V.

(i1) If det (4) = 0 then the system of equations in (2.5) is inconsistent for some
choices of b and hence given vectors do not span V.

Example 1: Let V' be a vector space. For a non-empty set 4, prove that
A C span 4.
Solution: Let A={v,,v,,...,v,}
Each vector v, of 4 can be expressed as

v,=0v, +0v,+---+1v, +---+0v,

This shows that each vector of 4 can be written as a linear combination of the vec-
tors of 4.
Hence, A < span 4.

Example 2: Find a condition on a, b, ¢ so that the vector v = (a, b, ¢) is in the span
{vy, V5, v;} where v,= (2, 1, 0), v, = (1, -1, 2) and v, = (0, 3, —4)

Solution: The vector v will be in the span {v,, v,, v,} if it can be expressed as a
linear combination of v, v,, v,.

Let v=kv, +k,v, +kv,

(a,b,c) = k(2,1,0)+k, (1, —1,2)+k,(0,3, - 4)
= (2k, +ky, k, —k, + 3k, 2k, — 4k,)
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Equating corresponding components,

2k, + k, =a
ky—k,+ 3k, =b
2k, =4k, =c
The augmented matrix of the system is
2 1 0ia
1 -1 31b
0 2 -4ic

1 -1 3, b
~l0 3 -61a-2b
|
g 12! %
()
1
—|R
(3) ’
[1 -1 3} b
I
~lo 1 2i2=2
i3
I
B 1 -2f =
L L 2
Ri—R,
[1 -1 3| b
I
o 1 _Zi a—2b
| 3
! —
0 0 0:30 2a+4b
L ! 3
Thesystemwillbeconsistentifw=0i.e.,3c—2a+4b=0

Hence, v will be in the span {v,, v,, v;} if 3¢ —2a + 4b = 0.
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Example 3: Determine whether the following vectors span the vector space R*.
O v =1(2,2,2), v, = (050,3), v, = (0,1, 1)
(“) Ve B/, 4)lv2 = @2,—3 5)1"3 = (5=72, 9)IV4 =L4,-1)

Solution: Let b = (b, b,, b,) be an arbitrary vector in R* and can be expressed as a
linear combination of the given vectors.

(1) b=kv, +k,v,+kyv,

(b, by, b)) =k (2,2,2)+k,(0,0,3)+ £,(0,1,1)
= (2k,, 2k, + k;, 2k, + 3k, + k;)
Equating corresponding components,
2k, =b
2k, + k=5,
2k, +3k, + k, = b,

00
Coefficient matrix, A= 0 1
31
The coefficient matrix is a square matrix.
2.0 0
det(4)=[2 0
2 3 1
=2(-3)=-6#0

The system of equations is consistent for all choices of vector b.
Hence, the given vectors span R°>.

(i1) b=kv, +kv,+kv,+k,v,
(b, by, b,)=k(3,1,4)+k,(2,-3,5)+k,(5,-2,9)+ k, (1,4, 1)
= 3k, +2k, + 5k, + k,, k, =3k, — 2k, + 4k, , 4k, + S5k, + 9k, — k,)
Equating corresponding components,
3k, +2k, + 5k, + k, = b,
k, =3k, =2k, + 4k, = b,
4k, + 5k, + 9k, —k, = b,

The coefficient matrix is not a square matrix.
The augmented matrix of the system is

3 2 5 11p
|

1 -3 =2 415

4 5 9 —1ip

3
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Reducing the augmented matrix to row echelon form,
RIZ

[1 -3 2 45,

~13 2 5 1}

(4 5 9 -1!b,

R,-3R, R,—4R

1 -3 2 4} b,
|
~[0 11 11 —11"! B -3p,
(0 17 17 -171b,-4b,
e (e
1) >\17) "
[1 -3 2 4} b,
! -
slge 1 1 np B
: 11
| by, —4b
0 1 1 -11=2—2
L Lo17
R,—R,
[1 -3 2 4| b,
I
~lo 1 1 -1 b~ 3b,
| 11
00 0 0=—17b,+7b2+11b3
L . 187

If —=17b,+7b, +11b, #0, the system of the equations is inconsistent. Thus, the
system of the equations does not have a solution for all choices of the vector b.
Hence, the given vectors do not span R,
Example 4: Determine whether the following polynomials span P,:
() p,=1-x+2x", p,=5-x+4x", p,=-2-2x+2x".
(i) p,=2+x",p,=1-x+2x",p, =2+x,p, =4+x+x".

Solution: Let b = b, + b, x + b, x* be an arbitrary polynomial in P, and can be
expressed as a linear combination of given polynomials.
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(i) b= kp, +k,p, +kp,

b +bx+bx’ =k (1-x+2x")+k,(5—x+4x>) + k(-2 - 2x +2x7%)
= (k, + 5k, = 2ky) + (—=k, — k, = 2k,)x + (2k, + 4k, + 2k, )x’
Equating corresponding coeffiencts,
k +5k, -2k, = b
—k, -k, -2k, =b,
2k, + 4k, + 2k, = b,

Coefficient matrix, A=[-1 -1 =2
2 4 2
The coefficient matrix is a square matrix.
1 5 =2
det(A)=| -1 -1 -2
2 4 2
=1(-2+8)-5(-2+4)-2(-4+2)
=0
The system of equations is inconsistent for some choices of b.
Hence, the given polynomials do not span P,.

(i1) b=kp, +kp, +kp;+kp,

b +byx+bx’ =k(Q2+x)+k,(1-x+2x")+ k(2 +x)+k, (4 +x+x7)
= 2k, +k, + 2k, +4k,) + (—k, + ky + k,)x + (k, + 2k, + k,)x°
Equating corresponding coefficients,
2k, +k,+2k, +4k, = b,
—k, +k, +k,=b,

k, +2k, +k, =b,
The augmented matrix of the system is
2 12 4}4
0 -1 1 1}b
1 20 11b
Reducing the augmented matrix to row echelon form,
R13
1 2 0 1;b,
sl =1 I 118

2.35
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R,—2R
[1 26 1] B

~lo -1 1 1! »

0 -3 2 215-2b,

R, -3R,

1 2 a4 1] b,
-l -1 1l b,
(0 0 -1 —11b-2b-3b,

The system of equations is consistent for all choices of b.
Hence, the given polynomials span P,.

Example 5: Determine whether the following matrices span M, ,.

1 0 I 1 11 11
AI= ,A2= ,A3= ,A“:
0 0 0 0 1 0 11

1 2
b, b,
the linear combination of given matrices.

b=kA +kA +kA +kA,

b, b, 10 11 11 11
=k +k, +k, +k,
b, b, 0 0 0 0] °|L O 11

_{h+@+&+h h+@+h}

Solution: Let b= |: ] be an arbitrary matrix in M,, and can be expressed as

k, +, k,

Equating corresponding coefficients,
k+k,+k,+k,=b
ky,+k,+k,=b,
ky+k, = b,
k, =b,

The system of equations is consistent for all choices of b,, b,, b,, b, i.e., b.
Hence, the given matrices span M,,.

Example 6: Let v, =(2,1,0,3),v, =3,-15,2), v, =(-1,0, 2,1). Which of the
following vectors are in the span {v,, v,, v;}?
@ 2,3,-7,3) () (L, L, 1, 1) (i) (0,0,0,0)
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Solution: The vector v will be in span {v,, v,, v,} if it can be expressed as a linear
combination of v,, v,, v,.

Let v=kv, +k,v,+kv,
(1) (23 39—7’ 3)=k1(25 15 05 3)+k2(3,—1’ 59 2)+k3(—19 05 23 1)
=2k, +3k, =k, k, — k,, Sk, + 2k,, 3k, + 2k, + k;)

Equating corresponding components,

2k +3k,— k= 2
k- k, =3

Sk, +2ky = -7
3k, +2k, + k=3

The augmented matrix of the system is

7 3~} 2
I -1 0! 3
0 5 21-7
3 2 11 3

Reducing the augmented matrix to row echelon form,

RlZ
1 -1 0} 3
g 4 i 2
“lo 5 217
32 11 3
R, -2R,R,-3R,
[1 -1 0 3]
0 114
“lo 213
[0 6]
BB B,
[1 -1 0} 3]
0 5 —1!-4
“lo 0 31-3
o o0 20
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1 1 1
—\R,|=|R.|=|R
5)(3)(2)
[1 -1 0! 3]
I
|
G 1 omi-
~ 5: 5
0o 0 1! -1
0 0 1! -1
4_R3
(1 =1 0} 3]
I
]
0 1 -—11-2
~ 5: 5
0 0 1! -1
0 0 0! of

The system of equations is consistent. Thus, v can be expressed as a linear
combination of v,, v, and v,.
Hence, v is in the span {v,, v,, v,}.
(i1) 1,1,,)=4(2,1,0,3)+k,(3,-1,5,2)+ k,(-1,0,2,1)
=2k, +3k, = k;, k, = k,, 5k, +2k,, 3k, + 2k, + k,)

Equating corresponding components,
2k +3k, — k=1
k- k, =1
Sk, +2k, =1
3k +2k, + &, =1

The augmented matrix of the system is
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R.—2R, R, 3R,

1 -1 0} 1
I
0 5 ~11-1
0 5 211
0 5 11-2
R3_R2’R4_R2
(1 =1 B 4
I
0 5 —1'-1
0 0 32
0 0 211
1 1
(s
5/7%\3 )
[1 -1 0} 3]
I
|
0o 1 111
~ 515
I
0o 0 1! 2
13
0 0 21 -1
R, —2R,
[1 -1 0} 3]
I
|
0 1 —1i-1
515
~ I
0 0 I, s
b3
I
0 0 0—1
L P 3

From the last row of the matrix
7
0k, + 0k, + 0k, = ~3
The system of equations is inconsistent. Thus, v cannot be expressed as a linear

combination of v, v, and v,.
Hence, v is not in the span {v,, v,, v,}.

(iii) (0,0, 0,0)=0v, +0v, + 0v,

Thus, v can be expressed as a linear combination of v, v, and v,.
Hence, v is in the span {v,, v,, v,}.
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Example 7: Let f = cos’x and g = sin>x. Which of the following lie in the space
spanned by f and g?

(1) cos 2x (ii) sinx
Solution: (i) cos2x = cos’ x—sin’ x
=1f+(-Dg

cos 2x can be expressed as a linear combination of f and g.
Hence, cos 2x lies in the space spanned by f and g.

(i1) sin x cannot be expressed as a linear combination of cos®v and sin’x.
Hence, sin x does not lie in the space spanned by f and g.

Example 8: Find an equation for the plane spanned by the vectors v, = (-1, 1, 1)
and v, = (3, 4, 4).
Solution: Letv = (x, ), z) be an arbitrary vector on the plane spanned by the vectors
v, and v,.
v=kv,+kv,
v, 2)=k(-LL1)+k,(3,4,4)
=(=k, +3k,, k, +4k,, k, +4k,)

Equating corresponding components,

—k +3k, =x
k,+4k, =y
k +4k, =z

Eliminating k,, k, from the above equations,
v =z, which is the required plane spanned by the vectors v, and v,.

Example 9: Find the parametric equations of the line spanned by the vector
v, =(3,-2,5).

Solution: Letv=(x, y, z) be an arbitrary point on the line spanned by the vector v,.

v=kv
(x, ,2) =k3,-2,5)
= (3k, -2k, 5k)

Equating corresponding components,
x=3k, y=-2k, z=5k

which is the parametric equations of the line spanned by the vector v,, where £ is a
parameter.
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Example 10: Show that v, = (,6,4),v,= @,4,-1),v,= ¢1,2,5) and w, =
(1,-2,-5), w, = (0, 8, 9) span the same subspace of R°.

Solution: Here we need to prove that span {v,, v,, v;} = span {w,, w,}, i.e., V,, V,, V,
are in span {w,, w,} and w,, w,are in span {v,, v,, V;}.

(i) Let v, =kw, +k,w,
1,6,4)=k(1,-2,-5)+k,(0,8,9)
= (k,, — 2k, +8k,, — 5k, +9k,)

Equating corresponding components,

ko =1
~2k, +8k, =6
~5k, +9k, =4

The augmented matrix of the system is

1 0!1
I

2 816

5 914

Reducing the augmented matrix to row echelon form,

R, +2R,, R, +5R,

1 01
~lo 818
0 919
l)Rﬁ,(l)Rz
) \9)"
[1 011
~lo 151]
0 111
R, —R,
[1 011
~lo 1:1]
0 010

The system of equations is consistent.
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Hence, v, is in the span {w,, w,}.

Letv,=b, w,+b,w,

(2, 4a _1)=b|(la _25 _5)+b3(0’ 8’ 9)
= (b,,—2b, +8b,,—5b, +9b.)

Equating corresponding components,

b= 2
—2b, +8b, = 4
—5b, +9b, =—1

The augmented matrix of the system is

1 b2
]

2 8! 4

-5 911

Reducing the augmented matrix to row echelon form,

R, +2R,, R, +5R,
[1 012

l
S O =

0
8
9

8
L 9_

Proceeding as in the previous part, this matrix reduces to the form

l
S O =
S = O

e
1
L 0_4

The system of equations is consistent.

Hence, v, is in the span{w,, w,}.

Let v, =cw, +c,w,
-1,2,5)=¢(1,-2,-5)+¢,(0,8,9) =(¢,, —2¢, +8¢,, = 5¢, +9c,)

Equating corresponding components,
©; =-1
-2¢,+8¢c, = 2
=5¢,+9¢, = 5
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The augmented matrix of the system is
10
|
-2 8! 2
5 9
Reducing the augmented matrix to row echelon form,

R,+2R, R, +5R

(10} -1]
I

~lo 81 0

0 91 0

Proceeding as in the previous part, this matrix reduces to the form,
(1 0 -1]
I
~10 1]
0 0!

The system of equations is consistent.
Hence, v, is in the span {w,, w,}

(ii) Let w, =kv, +kv,+kv,
1,-2,-5)=kQ1,6,H)+k,(2,4, - D)+ k,(-1,2,5)
=(k, +2k, —k;, 6k, + 4k, + 2k,, 4k, — k, + 5k;)
Equating corresponding components,
ke +2k,— k=1
6k, +4k, + 2k, =2
4k, — k, +5k, ==5

The augmented matrix of the system is

1 2 <1} 1
I

6 4 21-2

4 -1 51-5

Reducing the augmented matrix to row echelon form,

R,—6R, R, —4R
1 2 =1} 1
~lo -8 8!-8
0 9 919
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i 8 -4 i
~lo 1 111
[ =1 )=
R, +R,

i 8 =il ] 1

|

~lo 1 -111
0 0 010

The system of equations is consistent.
Hence, w, is in the span {v,, v,, V;}.
Let W, =V, +C,V, +¢,V,
0,8,9)=¢/(L,6,4)+c, (2,4, -1)+c,(-1,2,5)
= (¢, +2¢, — ¢, 6¢, +4c, +2c¢;, 4c, — ¢, +5¢;)

Equating corresponding components,
¢+2c,— ¢;=0
6c, +4c, +2c, =8

4c, —

=y +5¢, =9

The augmented matrix of the system is

1 2 -110
I

6 4 218

4 -1 51

Reducing the augmented matrix to row echelon form,

R,—6R,R,—4R
i =120
|
~lo -8 8!8
0 -9 919
1 1
(55
12 -1! 0

I

I
oo 1 =f1-4

0 -1 1!
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R +R,
12 -1} 0
~lo 1 -1141
00 00

The system of equations is consistent.
Hence, w, is in the span {v, v,, v,}.
From part (i) and (ii), we conclude that

span {v,, v,, v,} =span {w , w,}

Hence, {v,, v,, v;} and {w,, w,} span the same subspace of R>.

Exercise 2.3 D |

1.

Which of the following are subspaces
of R* and R* under the standard (i) W =
operations?

(1) W={(x,y,z)|x=z=0}
(i) W ={(x,y,2)|z>0}
(ii1) W={(x,y, z)]x=—z}
(iv) W={(x,y,z)|y=z=l}
(v) W={(x,y,z)|y=2x+l}

(i) W

(i) W =

S

(iv)y W= a+c=0

[

Il
—tN— —t— —A— A
l(3 S 1
ISV
St
>
|
&
(o
Il
N
Il
|
Y
(T S|

-a C
| d I

and b+d+f:0}

(vi) Wz{(xl,xz,xJ,x4)|x3 =X, +2x,
and x, =xl—3x2}

[Ans. : (1), (iii), (vi)]

. Which of the following are subspaces [Ans. : (i), (i1), (iv)]

of P, and P, under the standard
operations?

i W= {a(, +ax+a,x’|a,= 2}

4. Which of the following are subspaces
of M, under standard operations?

nn

(1) W=1{4,,|A4,,1s upper triangular}
(i) W={a,*ax+a,¥|a,=a,+a,} (i) W=1{4 |det(A)=1}
(i) W= {a() +(J])C+(sz2 +a3x3 | (iii) W= {Ann | AT=—A}
ay+a, +a, +a, =0} (iv) W=1{4,,|det (A)=0}
[Ans. : (ii), (iii)] [Ans. : (i), (iii)]
. Which of the following are subspaces 5. Which ofthe following are subspaces of
of M,, and M,, under the standard F{(—ee, °0) under standard operations?
operations? (i) W ={f| f(x)is constant}

i) W={f]/(0)=2}
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(iii) w ={f| f(0)=0}
(iv) W= {f| f(x) is integrable on the
interval [a, b]}
V) W={f|x*) =[]}
[Ans. : (i), (ii1), (iv)]
6. Which of the following are the linear
combinations of v, = (1, -3, 2) and
v,=(2,-1,1)?
(1) V:(1,7,—4) (“) v:(25_5,4)
(iii)) v=(0, 1,4)
[Ans. : (i), (i1)]
7. Which of the following are the linear

combinations of p, = 5 — 2x + x%
p,=-3x+2xand p,=3 +x?

(1) v=0 (ii) v=-3+4x +x?
(iii) 2 —5x + 3x2
[Ans. : (i), (i1)]
8. Which of the following are the linear
combinations of

1 =2 2 3
A] = N Az —
0 3 0 =1

2 ==l
amdA3=2 1?

N I I) PR I I
WA=l 4 | WATI,
[Ans. : (1)]

9. Express the vector v = (1, -2, 5) as
a linear combination of the vectors
v; = (1,1, L)y v, = (1 24 3); and
v;=(2,-1,1).

[Ans. : v=-6v, + 3v, + 2v,]

31
10. Express the matrix 4= [l 1]

as a linear combination of

11 00 0 2
A=l ol 2= 140 o

[Ans.: 4 =34,-24,— 4,]

. For which value of A will the vector
v=(1,-2, A) be a linear combination
of the vectors v, = (3, 0, —2) and
v,=(2,-1,-5)?

[Ans. : 1=-8]

12. Find a condition for which the vector
v = (a, b, ¢) is a linear combination
of the vectors v, = (1, -3, 2) and

v,=(2,-1,1).
[Ans. : a—3b—5¢=0]

13. Determine whether the following

vectors span the vector space R*:
(1) v] = (17 2, 3)7 v2 = (0’ 11 2)9

v3:(0-‘ 0’ ])

(i) v,=(1,2,5),v,=(1,3,7),
v;=(1,-1,-1)

(11]) v] — (2’—19 3)’ vz = (47 lﬁ 2),
v,=(8,-1,8)

(IV) vl:(192> 6)) V2:(3, 4» ])$
v;=4,3,1),v,=(G,3,1)

[Ans. : (i) yes (ii)no (iii)no (iv) yes]

14. Which of the following vectors span
the vector space R*?
(1) VI = (la 27 1’ 0)’ v2 = (1» 10 _17 O)’
v3 = (05 0: 09 1)
(i) v,=(1,1,0,0),v,=(1,2,-1, 1),
v3 =(O’ 0’ l’ ]) v4= (2’ l’ 2a l)
[Ans. : (ii)]
15. Determine whether the polynomials
p=1+2x+xp,=2-x+x%
p;=2+x,p,=2-5x+x-x
span p,?
[Ans. : no]
. Letv,=(1,0,0,1),v,=(1,-1,0, 0),
v,=(0, 1, 2, 1). Which of the follow-
ing vectors are in the span {v,, v,, v;}?
@ 0,1,1,0) (i) (-1,4,2,2)
[Ans. : (iii)]
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2.7 LINEAR DEPENDENCE AND INDEPENDENCE

Let S={v,V,, ..., V,} is a nonempty set of vectors such that
kv +k,v,++kv =0 (2.6)

If the homogeneous system obtained from (2.6) has only a trivial solution (i.e., &, =0,
ky =0, ..., k.= 0) then S is called a linearly independent set. If the system has a non-
trivial solution (i.e., at least one & is non-zero) then S is called a linearly dependent set.

Note: If the determinant of the coefficient matrix of (2.6) is zero then vectors are lin-
early dependent, otherwise they are linearly independent.

Theorem 2.5: A set S of vectors v, v,, ..., v, is

(i) Linearly dependent if and only if at least one vector of S can be expressed as a
linear combination of the remaining vectors in S.
(i1) Linearly independent if and only if no vector of S can be expressed as a linear
combination of the remaining vectors in S.
(iii) Linearly dependent if S contains zero vector as 0 =0v, +0v, +---+0v .

Theorem 2.6: A setS= {v,, v,} with exactly two vectors is linearly dependent if one
vector is a scalar multiple of the other vector,

ie.,v,=kv,orv,=kyv,

Theorem 2.7: If S, and S, are two finite set of vectors such that S, is a subset of S,
(S, cS,) thenif

(1) S, is linearly dependent then S, is also linearly dependent
(i1) S, is linearly independent then S, is also linearly independent, i.e. every subset of
a linearly independent set is linearly independent

Theorem 2.8: The set of vectors S = {v,, v,, ..., v,} in R" is linearly dependent if » >
n i.e., number of unknowns is more than the number of equations in the homogeneous
system obtained from Eq. (2.6).

Example 1: Which of the following sets of vectors in R* and R* are linearly
dependent?

(i) 4,-1,2),(-4,10,2),(4,0,1)

(1) (2,0,1),3,2,5),(6,-1,1),(7,0,-2)

(1) (0503252)5(3,350;,10), €1 7150, =1)

av) (1,1,2,1),(1,0,0,2),4,6,8,6),(0,3,2,1)
Solution: Letv,=(4,-1,2),v,=(-4,10,2),v;=(4,0, 1)
Consider, kv, + kv, + kv, =0

k,(4,—1,2)+k,(—4,10, 2) + k,(4,0,1) = (0, 0, 0)
(4k, — 4k, + 4k,, —k, +10k,, 2k, + 2k, + k,) = (0,0, 0)
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Equating corresponding components,
4k, — 4k, +4k, =0
—k, +10k, =
2k + 2k, + k; =0

The augmented matrix of the system is

4 -4 410
|

-1 10 010

2 2 110

Reducing the augmented matrix to reduced row echelon form,

e
1 -1 110]
|
~[-1 10 0'0
[ 2 2 110]
R, &R, R, —2R
1 -1 0]
I
~lo 9 110
0 4 -110]
i]Rq
5%
(1 -1 1'0
I
I
“lo 1 Lio
%
0 4 -1}0
R,—4R,
(1 -1 110
I
1
~lo 1 Lio
2!
1
8 B ==l
L 9 1

The system has a trivial solution.
Hence, v,, v,, v, are linearly independent.

(ii) Letv,=(-2,0,1),v,=(3,2,5),v,;=(6,-1,1),v,=(7,0,-2)
Consider, kv, + k,v, + kv, +k,v, = 0.
k[ (_25 Oa 1) + kz (3’ 25 5) + k3 (6’ _], 1) + k4 (7s 0, _2) = (0’ Ov 0)
(2k, + 3k, + 6ky + Tk,, 2k, — ks, ky + S5k, + ky — 2k,) = (0, 0, 0)



(iii)

(iv)

2.7 Linear Dependence and Independence

Equating corresponding components,
=2k, +3k, + 6k, +7k, =0
2k~ K, =0
k +5k,+ k, -2k, =0
The number of unknowns, » =4
The number of equations, n =3
r>n
Hence, v,, v,, v,, v, are linearly dependent.
Letv,=(0,0,2,2),v,=(3,3,0,0),v,=(1,1,0,-1)
Consider, kv, + kv, +kyv,=0
k(0,0,2,2)+k,(3,3,0,0)+k,(1,1,0,-1)= (0,0, 0, 0)
Bky +ky, 3ky + Ky, 2k, 2k, — k) = (0, 0, 0, 0)

Equating corresponding components,

3k, +k, =0

3k, +k, =0
2k, =0
2%~k =0

Solving these equations,

k,=0,k,=0,k;=0
Hence, v,, v,, v, are linearly independent.
Letv,=(1,1,2,1),v,=(1,0,0,2),v,=(4,6,8,6),v,=(0,3,2,1)

Consider, kv, + kv, + kv, +kyv,=0

k(1,1, 2, 1)+ ky (1, 0,0, 2) + k, (4, 6, 8, 6) + k,(0, 3,2, 1) = (0, 0, 0, 0)
(k, +k, + 4k, k, +6k, +3k,, 2k +8k, +2k,, k, +2k, +6k, +k,)= (0, 0,0,0)

Equating corresponding components,
k + k, + 4k, =0
k, + 6k, +3k, =0
2k, + 8ky +2k, =0
ke, +2k, + 6k, + k, =0
The augmented matrix of the system is
4 010
6 310
8 210
6 1!

110

—_ N = =
N O O =

2.49
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Reducing augmented matrix to row echelon form,
R,—R,R,—-2R,R,—R

1 1400
0 -1 2 310
“lo =2 0 210
0 12 110
(—I)Rz,(i)ks
2
1 1 4 0.0
o1 =2 =310
0 -1 0 110
0 1 2 110
R,+R,R,—R,
11 4 000
[o 1 =2 =310
“lo 0 <2 wa0
00 4 410
(-3)%:(3)x
[1 1 4 00]
01 -2 310
oo 1110
00 1 110]

RA_Rfi

(1 1 4 0}0]
01 -2 310
oo 1100
00 0 010]

The system has a non-trivial solution.
Hence, v,, v,, v;, v, are linearly dependent.

Example 2: Which of the following sets of polynomials in P, are linearly
dependent?

(1) 2= T4x% 3 6x F 22 2t 10x =4 \(ii)h 2 xt x 2% 2+ 2% 3%
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Solution: Letp,=2—x+4x% p,=3+6x+2x% p, =2+ 10x — 4x?
Consider, kp, +kp,+kp;=0
k(2= x+4x")+k,(3+6x+2x7)+k,(2+10x—4x*)=0
(2k, + 3k, + 2k,) + (=k, + 6k, + 10k, )x + (4k, + 2k, —4k;)x* =0
Equating corresponding components,
2k, +3k, + 2k, =0
—k, + 6k, +10k; =0
4k + 2k, — 4k, =0

The augmented matrix of the system is

2 3 210
16 1010
4 2 —410
Reducing the augmented matrix to row echelon form,
R|2
-1 6 100
<23 210
4 2 410
(_I)Rl’(l)Rz
5 JR
[1 -6 -1010]
~l2 3 210
2 1 210
R,—2R.,R 2R
[1 -6 -10,0]
~lo 15 2210
0 13 1810]
1
(G)Rz
I -6 -1010
~lo 1 2
15 |
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R, -13R,
1 -6 =100
I
22 !
~10 1 =10
15:
I
0 0 —E:o
151

The system has a trivial solution.
Hence, the given polynomials are linearly independent.

(ii) Letp,=2+x+x%, p,=x+2x%, p, =2+ 2x + 3x?
Consider, kip, +kp, + kp; =0
ky(2+x+x7)+k, (x+2x7) +k,(2+2x+3x7) =0
(2k, +2ky) + (k, + k, + 2k)x + (k, + 2k, +3k;)x* =0
Equating corresponding components,

2k, +2k, =0

k+ k,+2k;=0

k, +2k, +3k; =0

The augmented matrix of the system is

B ———
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The system has a non-trivial solution.
Hence, p,, p,, p; are linearly dependent.

Example 3: Which of the following sets of matrices in M,, are linearly
dependent?

) 11 10 0 1
Solution: Let 4, = alls= o=
1 1 ° 10 2 0 2

Consider, kA, + kA, + kA, =0
11 10 0 1 0 0
k, +k, +k, =
11 0 2] 7|0 2 0 0

k+k,  k+k ] [0 0
k= k+2k,+2k| |0 0

Equating corresponding components,

k+ k, =0
k, + k=0
k =0

ky+ 2k, + 2k, =0

The augmented matrix of the system is

S o =
(=R )

1 0

|
1 1!
100!
. % %l

Reducing the augmented matrix to row echelon form,

R,—R,R,—R,R,—R,

[1 1010
0 -1 110
“lo -1 010
0 1210
R,—R,. R, +R,
1 I Do
0 -1 110
“lo o0 -110
0 0 310
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(=DR,,R, +3R,

11 00
0 1 -110
oo -110
00 010

The system has a trivial solution.
Hence, 4,, 4,, 4 are linearly independent.

. 1 1 1 0 0 3 2 6
(i1) Let 4, = , Ay = A, = , A, =
1 21 ° |10 2| ° 1 2 4 6

Consider, kA, + kA, + kA, +kA,=0

[1 1] [1 o] [o 3] [2 6] [o o}
k, +k, +k, +k, =
1 2 0 2 1 2 4 6 0 0
k, +k, + 2k, k, + 3k, + 6k, 00
[k, +k, +4k, 2k +2k, +2k, + 6k4] - [o 0}
Equating corresponding components,
k, +k, +2k, =0
k, +3k, + 6k, =0
k, +k,+4k, =0
2k, + 2k, + 2k, + 6k, =0
The augmented matrix of the system is
1 0
| 3
1 1
2 2
Reducing the augmented matrix to row echelon form,
R,-R;,R;—R;,R, —2R

[ N S e N S
S o o O

N © O —

110 210
0 -1 3 410
“lo -1 1 210
0 02 210
R,-R,

11 0 210
0 -1 3 410
“lo 0 2 210
0 0 2 210
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R, +R,

1 1 0 210

0 -1 3 410
“lo 0 2 210

0 0 0 010

The system has a non-trivial solution.
Hence, 4,, 4,, A5, A, are linearly depdendent.

Example 4: Which of the following sets of vectors are linearly dependent?
(i) v,=(-1,2,4)andv,=(5-10,-20) in R
(ii)) p,=1-2x+x*andp,=4—x+3x*in P,.

=3 4 3 4.
(iii)) 4, = 5 0 and 4, = - in M,,.

Solution: (i) (5,-10,-20)=-5(-1,2,4)
v, ==5v,
v, is a scalar multiple of v,.
Hence, v, and v, are linearly dependent.
(i) p,=1-2x+x% p,=4—x+3x*

Neither p, is a scalar multiple of p, nor p, is a scalar multiple of p,.
Hence, p, and p, are linearly independent.

i) [—3 4}_1{ 3 _4]
2 0 -2 0

4 =-14,
A, is a scalar multiple of 4,.
Hence, 4, and 4, are linearly dependent.

Example 5: Show that the vectors v, = (0, 3, 1, —1), v, = (6, 0, 5, 1) and
v,=(4,-7, 1, 3) form a linearly dependent set in R*. Express each vector as a linear
combination of the other two.

Solution: Consider, kv, +kv,+kv,=0 (1)
k(0,3,1,-1)+k,(6,0,5, 1)+ k,(4,-7,1,3)=(0, 0,0, 0)
(6k, +4k,, 3k, —Tk,, k, + 5k, + k,, — k, + k, +3k,) = (0, 0, 0, 0)

Equating corresponding components,

6k, +4k, =0
3k, —7k, =0
k +5k, +k;=0

-k, +k,+3k; =0



2.56  Chapter 2 Vector Spaces

The augmented matrix of the system is

06 410
30 =710
15 110
-1 1 310

Reducing the augmented matrix to row echelon form,

13

15
30 -
1o 6 4
11 3

R
R, =3R R+ R

~N -

S O O O

15 110
I
0 -15 -10!0
0 6 410
0 6 410
e,
15)
(15 110]
I
I
01 210
~ 3:
06 410
0 6 410]
R,—6R,, R, —6R,
[1 5 1,0]
1
I
01 210
~ 3:
00 00
I
0 0 010]

The system has a non-trivial solution.
Hence, v, v,, v, are linearly dependent.
The corresponding system of equations is

k,+5k,+ k,=0

@+§@:0
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Solving these equations,

b =—2k,
2 3
7
kl = gkz

Substituting in equation (1),

%k3v] —%k_,v2 +kv, =0

%v, —zv2+v3 =0

2 3
V,=—V,—=V,
7 7
7
V,=—V, +5vx
2
vV, =——V, +§v,

1

)

Example 6: For what real values of A are the vectors v, =(/l,—— -

2

1 1 1 . .
v, = (——, A, ——),v3 = (——, —l, ft) in R linearly dependent?
- 2 2 2.

Solution: Consider, kv, +k,v,+kv,=0

K, (1, & —1)+k,(—1, /1,—1)+k,(—1, "y /1)= (0,0,0)
27 2 - 2 2 : 22

(/lkl—lk,—lk,,—lk,+lk,—lk;,—lkl—lk7+lk;)=(0,0,0)
272 27 2 2 g T

Equating corresponding components,

1o
Me,——k, —=k, =0
3¢ B

—%k, + Ak, —%kB =0

oy D o 2 )
27 27

3

1

_),

2

(1)

The vectors are linearly dependent (i.e. non-trivial solution) if determinant of the

coefficient matrix of (1) is zero.
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2 -1 1
2 2
Coefficient matrix, 4= _1 y _1
2 2
s gl 3
L 2 2 |
A |
2. 2
1 1
det(A)=[-— A2 -—=
(4) : ;
2 2 7
2
= 1z_l)+1(_&_1)_1(1+i)
4) 2\ 2 4) 2\4 2
g S L
4 4
If det(A4)=0, then
w31y
4 4
A=y
2

Hence, for A=1and A= —% , the set of vectors is linearly dependent.

2.7.1 Geometrical Interpretation of Linear Dependence
and Independence

(i) Two vectors are linearly dependent if v, = kv, orv, = k,v, otherwise, they are
linearly independent. Geometrically, it states that the two vectors in R? or R® are
linearly dependent if they lie on the

same line with their starting points k 5
at the origin. Vil
(i) Three vectors are linearly de- " V2
pendent if at least one vector is
the linear combination of the re- V2 vy

maining two, i.e. v, =kv,+kv, © y © y
or any two vectors are scalar

multiple of the third vector i.c. CirEaH ety
v, =kV,,vy=kv,. This shows dependent independent
that v, lies in the plane spanned by

Fig. 2.1
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V3= oV,
Y
Va2 =kiVy
% EFESESETES) L LEWESTOEREE y
Linearly Linearly Linearly dependent
dependent independent .
Fig. 2.2

v, and v, or all three vectors lie on the same line. Geometrically, it states that
the three vectors in R* are linearly dependent if either they lie on the same plane
or they lie on the same line with their starting points at the origin.

Example 1: Ifv,=(4, 6, 8), v, = (2, 3, 4), v, = (-2, -3, —4) are three vectors in
R’ that have initial points at the origin. Do they lie on the same line?

Solution:

v, =(4,6,8) Az
=2(2,3,4)
= 2V2 vy =2V,

V; = (_2) _3a _4) vy
= _1(25 3’ 4)

N >
=(=Dv, %,/\"‘ oA y
X Fig. 2.3

Since v, and v, are scalar multiples of v,, they lie on the same line.
Example 2: Show that there is no line containing the points (1, 1), (3, 5),
(=1, 6) and (7, 2)

Solution: Since none of the points is a scalar multiple of the other, they do not lie
on the same line.

2.7.2 Linear Dependence and Independence of Functions
If f, = £,(x),f, = f,(x),....f, = f,(x) are (n —1) times differentiable functions on the

interval (—oo,c0) then the Wronskian of these functions is

/() LD o [

s fl'(\) fz'fx) i f”’:(x)

B (0 - )
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Theorem 2.9: If the Wronskian of (n — 1) times differentiable functions on the inter-
val (—oo,00) is not identically zero on this interval then these functions are linearly
independent.

Note: If the Wronskian of the functions is identically zero on the interval (—oo, o),
then no conclusion can be made about the linear dependence or independence of the
functions.

Example 1: Which of the following sets of functions F'(—c,) are linearly
independent?

(i) x,sinx @) 1,e.e* (i) e e xt & (iv) 6,3 sin’x, 2 cos’x
(v) sin(x+ 1), sin x, cos x (vi) (3-x),x*—6x,5
Solution: The Wronskian of the functions is

X sinx

1 cosx

= XCO0S X —Ssinx

Since, this function is not zero for all values of x in the interval (—oo, o0), the given
functions are linearly independent.

(ii) The Wronskian of the functions is

2x

1 & e~
W=0 e 2~
0 e 4e™
=1(4e™ —2¢*)—e*(0)+ ¢ (0)
— 263.\‘

Since this function is not zero for all values of x in the interval (—eo, o), the given
functions are linearly independent.

(iii)) The Wronskian of the functions is
e’ xe* x’e"
W=|e" xe+e  x'e" +2xe
e (x+2)e* (xX*+4x+2)e
=e" [(x +1)e* - (x* +4x+2)e" —(x* +2x)e" - (x+ 2)e"']
—xe* [(x2 +4x+2)e* —(x* +2x)e* ] +x’e* [(x +2)e™ —(x+ I)ez"']
= e}.\‘ (2 _ x2 )

Since this function is not zero for all values of x in the interval (—oo, o), the given
functions are linearly independent.
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(iv) The Wronskian of the function is
6  3sin’x 2cos” x
W =|0 6sinxcosx —4cosxsinx
0  6cos2x —4cos2x
= 6(—24sin x cos x cos 2x + 24 cos x sin x cos 2x)
=0
No conclusion can be made about the linear independence of these functions.
From trigonometric identity,
6 = 6sin” x+6co0s” x
=2(3sin’ x)+3(2cos’ x)
This shows that 6 can be expressed as a linear combination of 3 sin? x and 2 cos’x.
Hence, the given functions are linearly dependent.

Note: Appropriate identities can be used directly to show linear dependence without
using Wronskian.

(v) sin(x+1)=sinxcosl+cosxsinl
=k, sinx + k, cos x, where k, = cos1, k, =sinl

This shows that the function sin (x + 1) can be expressed as a linear combination

of sinx and cosx.
Hence, the given functions are linearly dependent.

(vi) Let f,=(3-x)=9-6x+x",f, =x" —6x,f, =5
Here,
f, =9-6x+x’

=2~5+x2 - 6x

=2ﬁ+ﬁ
shTh

This shows that f; can be expressed as a linear combination of f, and f,.
Hence, the given functions are linearly dependent.

Exercise 2.4 B |
1. Which of the following sets of vectors @iv) (1,-1,1),(2,1,1),(3,0,2)
in R? are linearly dependent? V) (2,0, 1),(8,-1,3),(6,-1, 1)
(1) (192)_1)9 (39 23 5) (3929 5)
(i) (4,-6,2),(2,-3,1) [Ans. : (i), (iv), (V)]

(i) (-3,0,4),(5,-1,2),(1,1,3)
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2. Which of the following sets of vectors
in R*are linearly dependent?

(l) (1,2,41, O)’ (1’ 39 1’2)’ (4’ 2’ 1, 0)7
(6,1,0,1)

(i) 2,-1,3,2),(1,3,4,2),(3,-5,2,2)

(i) (3,8,7,-3), (1,5, 3,-1),
(29 _la 25 6)’ (15 47 0’ 3)

(iv) (1,0,2,1),(3,1,2,1), (4,6, 2,4),
(-6,0,-3,0)

[Ans. : (ii), (iv)]

3. Which of the following sets of vectors
in P, are linearly dependent?

(i) 1+2x+4x* 3+7x+10x°
(i) 3+x+x%,2—x+5x%,4-3x"
(iii) 1+42x+3x%, 3—2x+x%, 1 —6x—5x?

(iv) 1+x+4x%, x+4x% 1-2x—-3x2,
5—x+6x?

[Ans. : (iii), (iv)]

4. Show that § =
{1=x—x3,—-2+3x+x2+2x3, 1+x*+5x}
is linearly independent in P;.

5. Which of the following sets of vectors
in M,, are linearly dependent?

.)'—3 41 -1 3
D12 o] o1

(i) (1 1] [1 2] [2 3
11 h s
} 4
(1 1] [2 3][3 1][2 2
o1 22 1o
S [1 ol[3 1]1[4 6][-6 0
(iv) ) 5

[2 1] [2 1]'[2 4] [—3 0}

[Ans. : (i1), (iv)]

6. Show that the following vectors form
a linearly dependent set in respective
vector spaces. Express each vector as
a linear combination of the other two.

(l) vl =(3’ ]’_4)3 V2=(2, 29 _3)7
v,=(0,-4, 1) in R®

(”) vl :(1909 2’ ])a V2:(3, 17 2’ l),
V3:(4, 6, 23_4)’
v,=(-6,0,-3,—4)in R*

(iii) p,=2+x+x% p,=x+2x%
p; =2+ 2x + 3x?

v a1t O
V) A= 1% o 2f
[46:| [03]

4, = A, =
2 P 21

Ans.: (i) v, = 2v, =3v,
(1) v; ==2v, +6v, +2v,
(i) p; = p, +p,
(iv) 4, =34+ 4, + 4,

7. For what values of A are the vectors
(-1,0,-1),(2,1,2)and (1, 1, A) in R®
linearly dependent?

[Ans.: A=1]

8. If the following vectors in R* have
their initial points at the origin then
check if they lie on the same plane.

@) v=@2,-2,0),v,=(6,1,4),

v;=(2,0,-4)
(11) v] = (1: 23 3)5 vz = (33 _25 ])’
v, =(1,-6,-5)

[Ans. : (i) no (ii) yes]

9. If the following vectors in R* have
their initial points at the origin then
check if they lie on the same line.

(1) (_la _27 _3)’ (3’ 9, 0)7 (6, 09 _l)
(”) (_23 _1’ 1)’ (6’ 37 _3)s (_4’ _25 2)
[Ans. : (i) no (ii) yes]
10. Which of the following sets of

functions in F(—ee, o) are linearly
independent?

(1) 1, sinx, sin 2x (i) 1, x, e*

(iii) cos 2x, sin’*x, cos’x  (iv) 1, x, x*

[Ans. : (i), (ii), (iv)]
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2.8 BASIS

The set of vectors S = {v,, v,, ..., v,} in a vector space V' is called a basis for V if

(i) Sis linearly independent
(i1) Sspans V
Note: Basis for a vector space is not unique.

Theorem 2.10: If S= {v,, v,, ..., v,} is a basis for a vector space } then every vector
in V can be expressed as a linear combination of the vectors in S in exactly one way.

Examples on Standard or Natural Basis

Example 1: Show that the vectors ¢, =i = (1, 0, 0), e, = j = (0, 1, 0) and
e,=k=(0, 0, 1) form a basis for R*.

Solution: Letb = (b,, b,, b;) be an arbitrary vector in R* and can be expressed as a
linear combination the of given vectors.
b =ke, + ke, +ke,
(b, b,, b,) =k (1,0,0)+k,(0,1,0)+ £,(0, 0,1)
= (ks ks k)
Equating corresponding components,
ky=b,, k,=b,, k;=b,

Since for each choice of b,, b,, b, some scalars &, k,, k; exist, the given vectors
span R>.

Now consider,
ke +ke, +ke =0

ki (1,0, 0)+ &, (0,1, 0)+ k,(0, 0, 1) = (0, 0, 0)
(k> k55 k5) = (0,0, 0)

Equating corresponding components,
k=0,k,=0,k=0

Thus, e, e, and e, are linearly independent.
Hence, e, e, and e, form a basis for R* and is known as standard or natural basis
for R°.

Note: In general, the set S= {e,, e,, ..., e,} wheree,=(1,0,...,0),e,=(0,1,...,0),...,

e, =(0,0,...,1) form a basis for R” and is known as standard or natural basis for R".
Example 2: Show that the set S = {1, x, x?, ..., x"} is a basis for the vector
space P,.

Solution: Each polynomial p in P, can be written as

p=a,+ax+ax’ +-+ax"
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which is a linear combination of the vectors 1, x, x%, ..., x". Thus, the set S spans P,.
Now consider,

ki +hkx+kx’++k, x"=0

n+

Equating corresponding components,
k=0,k=0,k,=0,....k.,=0
Thus, the set S is linearly independent.

Hence, the set S is a basis for P, and is known as a standard or natural basis for P,.

Example 3: Show that the set S = {v,, v,, v, v,} is a basis for the vector space

10 0 1 0 0 0 0
M,, where, v, = 0 0,v2= 0 O,v3= | O,vh,= 0 1

2

b
Solution: Let b= [b]

] be an arbitrary vector in M,, and can be expressed as
3 4

the linear combination of the given vectors.

b=kv, +k,v,+kv,+k,v,
b b, 10 0 1 00 0 0
T =k +k, +k; +k,
by, b, 00 00 10 0 1
_ k1 kz
- k3 k4
Equating corresponding components,
ky=b,, ky=by, ky=by, k,= b,

Since for each choice of b, b,, b, b, some scalars k,, k,, k;, k, exist, the set S spans M,,.

Now consider,
kv, + kv, + kv, + kv, =0

10 0 1 00 00 0 0
k, +k, +k, +k, =
0 0 0 0] |1 O 0 1 0 0

k, k, 0 0
[k3 k4:| B [0 0}
Equating corresponding components,
k=0,k,=0,k,=0,k,=0

Thus, the set S is linearly independent.
Hence, the set S is a basis for M,, and is known as standard or natural basis
for M,,.



2.8 Basis 2.65

mn

single entry as 1 and remaining entries as 0.

Note: In general, the standard basis for M, consists of mn different matrices with

Examples on Basis

Example 4: Show that the set S= {v,, v,, v;} is a basis for R*, where v, = (1, 0, 0),
Y, —1(2,230):and v 1=(3,.3,13)

Solution: Let b = (b,, b,, b;) be an arbitrary vector in R* and can be expressed as a
linear combination of given vectors.

b=kyv, + kv, + kv, swll)

(b, by, b)) = k,(1,0,0)+k,(2, 2, 0)+k,(3,3,3)
= (k, +2k, +3k,, 2k, +3k,, 3k,)

Equating corresponding components,

k +2k,+3k, = b,
2k, +3k, = b, ..(2)
3k, =b,
[1 2 3
Coefficient matrix, A=|0 2 3
|0 0 3
1 2 3
det (4)=0 2 3
0 0 3
=6#0

Since the determinant of the coefficient matrix obtained from equation (2) is non-

zero, the set S spans V.
To prove that S is linearly independent, we need to show that

kv, +k,v, +kv, =0 s+(3)

has only a trivial solution, i.e. k, = k, = k; = 0. Comparing equation (3) with equation (1),
we observe that the coefficient matrix of the equations (2) and (3) is same.
Since determinant of the coefficient matrix of equation (3) is non-zero, the system

has only trivial solution.
Hence, S is linearly independent and spans R® and so is a basis for R,

Note: 1. To show the set of vectors S to be a basis of a vector space V, it is sufficient
to the prove that the determinant of the coefficient matrix obtained from equation

(2) is non-zero.
2. If the determinant of the coefficient matrix is zero, S does not span /" and hence

S'is not a basis of V.
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Example 5: Determine whether the following set of vectors form a basis for R*.

[y, 1,0,(1,2,3), 2, -1,1)
(i) (1,1,2),(1,2,5),(5,3,4)

Solution: Let b ={b,b,, b,} be an arbitrary vector in R* and can be expressed as a
linear combination of given vectors.

(1) {b, by, b} =k (1, 1,1)+k,(1,2,3)+k,(2,-1,1)
=(k, +k, +2k;, k, + 2k, = k,, k, +3k, + k)
k+ k,+2k; =
ki + 2k, — ky=b,
k+3k,+ ky=b,

1 1 2
Coefficient matrix, A=[1 2 -1
13 1
11 2
det (A)=|1 2 -1
1 3 1
=12+3)-10+1)+2(3-2)
=570

Hence, the given set of vectors forms a basis for R>.
(i1) (b, by, b)) =k (1,1,2)+k,(1,2,5)+ k, (5,3, 4)
=(k, +k, +5k;, k, +2k, +3k;, 2k, + 5k, + 4k;)
k, + ky,+ 5k, = b,
k, + 2k, + 3k, =b,
2k, + Sk, + 4k, =b,

1 15

Coefficient matrix, A=|1 2 3

2 5 4

1 15

det(A)=|1 2 3

2 5 4
=18-15)-1(4-6)+5(5—-4)

=0

Hence, the given set of vectors does not form a basis for R*.
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Example 6: Determine whether the following set of vectors forms a basis for P,.
(@) 4 +x 13526 + 55+ 2%, 8 +dx + 7
(1) 1-3x+2x%4 1 +x+4x%1-7x
Solution: Letb = b, + b,x +b,x* be an arbitrary polynomial in P, and can be written
as a linear combination of the given vectors.
(i) b +bx+bx’ =k(—4+x+3x")+k,(6+5x+2x")+k,(8+4x+x7)
= (—4k, + 6k, +8k,) + (k, + 5k, + 4ky)x + (3k, + 2k, + k)X’
Equating corresponding coefficients,
—4k, + 6k, +8k, = b,
k, +5k, +4k, = b,
3k, +2k, +k,=b,

Coefficient matrix, A= 1 5 4

4 6 8
det(A)=| 1 5 4

32 1
=—4(5-8)—6(1—12) +8(2—15)
=-26#0

Hence, the given set of vectors forms a basis for P,.

(ii) b +b,x+bx’ =k (1-3x+2x*)+ k,(1+ x+4x%)+ k,(1-7x)
= (k, +k, + k) +(=3k, +k, — Tk, )x + (2k, + 4k, )x*

Equating corresponding components,

ki + k,+ ky=0b

=3k + k,—Tk,=b,

2k, + 4k, =b,
111
Coefficient matrix, A=|-3 1 -7
2 4 0

det(A)=|-3 1 -7

2 4 0
=1(28)-1(14)+1(-12-2)
=0

Hence, the given set of vectors does not form a basis for P,.
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Example 7: Show that S = {v,, v,, v, v,} is a basis for M,, where

12 = 0 2 00
i S S I AR

2

(==}

b, b,

b
Solution: Let b= [ ]
the linear combination of the given vectors.

] be an arbitrary vector in M,, and can be expressed as

b=kv, +k,v,+kv,+k,v,

R R S TR
=k +k, + k; +k,
b, b, 1 -2 -1 0 31 -1 2
k, 2k -k, +2k;
- [k, —k, +3k,—k, 2k +k, +2k4]
Equating corresponding components,
k, = b,
2k, —k, + 2k, =b,
k—k;+3k; — k,=b,
=2k, + ky +2k, =0

1 00 O
. ' 2 -1 2 0
Coefficient matrix, A=
-1 3 -1
|2 0 1 2
00 0
-1 2 0
2 -1 2 0
det (4) = ={-1 3 -1
1 -1 3 -1
01 2
-2 0 1 2

=—1(6+1)=2(=2)=-3#0

Hence, S is a basis for M,,.

Example 8: Let I/ be the space spanned by v, = cos® x, v, = sin® x, v, = cos 2x.
Show that (i) S = {v,, v,, v;} is not a basis for V. (ii) Find a basis for /.

Solution: (i) From trigonometry, we have

2 [ )
€0os” x —sin” x = cos2x
ie., vV, -V, =V, (D)
This shows that v, can be expressed as a linear combination of v, and v,. Therefore,

V,, V,, v, are linearly dependent.
Hence, S is not a basis for V.
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(i) Since from equation (1), any one vector can be expressed as the linear combination
of the remaining two, any two of vectors v,, v,, v, will form a basis for V.

Example 9: Let V/ be the space spanned by v, = sin x, v, = cos x, v, = x. Show that
S={v,, v,, v;} forms a basis for V.

Solution: It is given that S spans V. To prove S linearly independent, we need to
show that the Wronskian, W of v,, v,, v, is non-zero.

Vl vZ V"&
W=y v; v
” ” ”

v vy v

sinx  COSXx X
=| cosx -—sinx |

—sinx —cosx O

= sin x(cos x) — cos x(sin x) + x(—cos’ x —sin” x)

=-—Xx

This function is not zero for all values of x. This shows that S is linearly independent.
Hence, S forms a basis for V.

Basis for the Subspace Span (S)

If S={v,, v, ..., v,} is a linearly independent set in a vector space /' then S is a basis
for the subspace span (S).

2.9 FINITE DIMENSIONAL VECTOR SPACE

A vector space V is called finite dimensional if the number of vectors in its basis are
finite. Otherwise, V is called infinite dimensional.

Theorem 2.11: Ifbasis S={v,, v,, ..., v,} of a finite dimensional vector space /" has
n vectors then

(1) Every set in / having more than n vectors is linearly dependent
(ii) Every set in J having less than n vectors does not span

Theorem 2.12: From the above theorem, we conclude that all the bases for a finite-
dimensional vector space have the same number of vectors.

2.9.1 Dimension

The number of vectors in a basis of a non-zero finite dimensional vector space V is
known as the dimension of / and is denoted by dim (V).

Note: Dimensions of some standard vector spaces can be found directly from their
standard basis.
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(i) dim (R")=n
(ii) dim(P)=n+1
(iii) dim (M,,)=mn

(iv) dim {0} =0 [ 0 is linearly dependent, vector space {0} has no basis.]

Theorem 2.13: If dim (V) =nand S= {v, v,, ..., v,} is a set in }V/ with exactly n
vectors then S is a basis for V if either S is linearly independent or S spans V.

Theorem 2.14: Let S be a non-empty set of vectors in a vector space V.

(1) If Sis a linearly independent set then S L {v} is also linearly independent if the
vector v does not belong to the span (S).
(i) Ifvisa vector in S that can be expressed as a linear combination of other vectors
in S then
span () = span (S - {v})

Theorem 2.15: If I is a subspace of a finite dimensional vector space /' then

(1) W is finite dimensional and dim (W) < dim (V); if dim (W) = dim (V') then W= V.
(i1) Every basis for W is part of a basis for V.

2.10 BASIS AND DIMENSION FOR SOLUTION SPACE
OF THE HOMOGENEOUS SYSTEMS

Let Ax = 0 be a homogeneous system of m equations in » unknowns. The basis and
dimension for the solution space of this system can be found as follows:

1. Solve the homogeneous system using Gaussian elimination method. If the
system has only a trivial solution then the solution space is {0}, which has no
basis and hence the dimension of the solution space is zero.

2. If the solution vector x contains arbitrary constants (parameters) #,, f,, ..., L
express X as a linear combination of vectors X, X,, ..., X, with #,, #,, ..., 7, as
coefficients.

Le. X=4X, +5,X, +-+1 X,

3. The set of vectors {X,, X,, ..., X,} form a basis for the solution space of 4x =0
and hence the dimension of the solution space is p.

Note: If the row echelon form has » non-zero rows then dimension of the solution
space is p = n — r where n represents the number of unknowns.

Example 1: Determine the dimension and a basis for the solution space of the

system
e =2 — 0

=2x,—2x, +4x, =0

=20 = 2=
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Solution: The matrix form of the system is

1 1 =2][x] [0
-2 =2 4{|x|=|0
=1 =1 2|=] LU
The augmented matrix of the system is
1 1 -2,0]
-2 -2 4 i 0
1 -1 210

Reducing the augmented matrix to row echelon form,

R2+2R1,R3+R1
1 1 =210
~lo 0 o010
00 000

The corresponding system of equations is
x+x,—-2x,=0
Solving for the leading variables,
X, =—x, + 2x,

Assigning the free variables x, and x; arbitrary values 7, and ¢, respectively,
X, =—t, +2t,,x, =1, x; =1, is the solution of the system.

The solution vector is % —t +21,

=t,| 1(+4,]0
0 1

=X, +14,X,

Hence, Basis = {x,, x,} = 1,10

Dimension = 2

Example 2: Find the dimension and a basis for the solution space of the system
e R R — ()

S e Eh =)
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Solution: The matrix form of the system is

The augmented matrix of the system is

311 110
5 <1 1 1%

Reducing the augmented matrix to row echelon form,

1 l l l:()
~ 3 3 3
15 -1 1 -1,0
R, -5R,
B I
r & & Lig
~ 3 3 3
|
0o -5 2 81
L 3 3 3; !
(-3)x
g )
I
1 l l 1:0
_ 3 3 39
1 i
0O 1 — 110
4 !

The corresponding system of equations is
1

| 1
x+=x+=-x+-x,=0
3 3 3

3

1
x2+zx_~+ x,=0

Solving for the leading variables,
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Assigning the free variables x; and x, arbitrary values 7, and ¢, respectively.

|

X ==gh=h
1( 1 ) 1 1
X, =——|—=t,—-t,|-=t,—=t,
30 4 3 3
1
=_Zt|
1 1 ; g
Hence, x, = —le, X, = —Zt, —1,, X, =1, x, =1, is the solution of the system.
The solution vector is )
X
X,
X=
X3
[ X4
- F T
_ZZI
1
=|-zh-%
tl
| L]
__lﬂ
4 0
g |-t len ]
- 4 2 0
1 1
L 0_4
=1X, +1,X,
Hence, Basis = {x,, X, }
[ 1] |
~ ,
_J_1f)-l
= i
o
L 0_

Dimension = 2

2.73
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Example 3: Find the dimension and a basis for the solution space of the system
T an g = =]
D E5%, =0
=R 2 =)

Solution: The matrix form of the system is

1 2 =3 x 0
2 5 1fx|=]|0
1 =1 2] % 0
The augmented matrix of the system is
1 2 =30
2 5 110
1 -1 2O

Reducing the augmented matrix to row echelon form,

Ry —2R,R;—R
1 2 -3!0
~jo 1 710
0 -3 50
Ry +3R,
12 <819
~lo 1 710
00 260

1

= |R
(26) ’

1 2 -3!0
~lo 1 710
00 1'0

|
The corresponding system of equations is
X, +2x,-3x,=0
X, +7x,=0
x=0
Hence, x, = 0, x, = 0, x; = 0 is the solution of the system.
The solution vector is

X 0
x, |=|0[= {0}
X 0

Hence, the solution space has no basis and dimension = 0.
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Example 4: Determine the dimension and basis for the following subspaces of
R? and R*.

(i) theplane3x—2y+5z=0
(i) thelinex=2t,y=—t,z=4¢
(ii1) all vectors of the form (a, b, ¢, d) whered=a+bandc=a-b

Solution: (i)3x—2y+5z=0
Solving for x,
2 5

x==—y-=z
3?3

Assigning y and z arbitrary values 7, and ¢, respectively,

2 5
x=Zt-=t,
3 3

Any vector x lying on the plane is

h ——t
x| (3737
X=|y|= [l
z b
2022
3 3
=H|1[+5] O
0 1
=4HX| +6HX

Thus, x, and x, span the given plane. Also, x, and x, are linearly independent as
they are not scalar multiples of each other.

2
Hence, Basis= | | 3 3

1

0

Dimension = 2

(i) Any vector x lying on the line x =2¢, y =—t,z =4t is

2t 2
x=|y|=|-t|=t|-1|=1x
Z 4t 4

Thus, x, spans the given line and is also linearly independent as it is a non-
zero vector.
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2
Hence, Basis ={x,} =1 | -1
4
Dimension = 1
a a
b b
(ii1) Let X= =
c a—>b
d a+b
1 0
0 1
=al| [+b
1 -1
1 1
= ax, +bx,

Thus, x, and x, span the given set of vectors. Also, X, and x, are linearly indepen-
dent as one is not the scalar multiple of another.

_— O

Hence, Basis = {x,,X,} =

—_— = O

Dimension = 2

Example 5: Find a basis and dimension of

4
W={(a,,a2,a3,a4)eR ]al+02=0,a2+a3=0,a3+a4=0}
Solution:
a+a,=0 = a,=-q
a,+ay,=0 = a,=-a,=q

a,+a,=0 = a,=-a,

3

=-q,

Any vector x in W'is

ay a
a —a
X = 2| 1
a aq
ay —da
1
-1
= al

= aXy
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Thus, x, spans W and is also linearly independent as it is a non-zero vector.

1
-1
1
-1

Hence, Basis ={x, } =

Dimension=1
Example 6: Find the dimension and a basis for the following subspaces of P,
and P,.

(i) all polynomials of the form a, + @, x + a,x* + a, x*, where a,= 0
(i1) all polynomials of the form ax?® + bx* + cx + d, where b = 3a — 5d and
c=d+4a

Solution: (i) Let p be any polynomial in the given subspace of P,.
p=a,+ax+a,x +ax’
=ax+a,x’ +ax’ [.a,=0]
Thus, the vectors x, x> and x* span the given subspace of P,. Also, x, x> and x* are
linearly independent which can be verified as follows:
Let kx+kx’+kx' =0

Equating corresponding coefficients,
k=k=kK=0.
Thus, x, x* and x* are linearly independent.

Hence, Basis = {x, x%, x°}
Dimension =3

(ii) Let p be any polynomial in the given subspace of P;.
p=ax’ +bx’ +cex+d
=ax’ +(3a—-5d)x* +(d +4a)x+d
=a(x’ +3x* +4x)+d(-5x> + x+1)
=ap, +dp,

Thus, p, and p, span the given subspace of P,. Also, p, and p, are linearly indepen-
dent as one is not the scalar multiple of another.

Hence, Basis = {p,, p,}

= {(* +3x* +4x), (-5x" +x+ 1)}

Dimension = 2
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2.11 REDUCTION AND EXTENSION TO BASIS

Theorem 2.16: LetS = {v,,v,, ..., V,} be a set of non-zero vectors in a vector space V.

(i) If S spans ¥ then S can be reduced to a basis for /' by removing some vectors
from S and dim (V') <n.

(i1) If S is linearly independent then S can be extended to a basis for /' by adding
some vectors into S and dim (V) > n.

2.11.1 Reduction to Basis

LetS = {v,V,, ..., v,} be a set of non-zero vectors in a real vector space V.
If V'=span S and dim (/') < n then S can be reduced to a basis for /" as follows:

1. Consider, kv, +k,v,+---+k v, =0 (2.7)

2. Construct the augmented matrix of the homogeneous system obtained from
Eq. (2.7). Reduce the homogeneous system to row echelon form.

3. The vectors corresponding to the columns containing the leading 1’s form a
basis for V.

Note: By changing the order of vectors in S, other possible bases can be found.

2.11.2 Extension to Basis

Let S={v,, v, ..., v,} be a linearly independent set of vectors in a real vector space
V. If dim (V) = n > m then S can be extended to a basis for V" as follows:

1. Form the set S’ ={v,, v,,...,v
dard basis vectors for R".
2. Follow all the steps (1 to 3) of 2.11.1.

e,e,,....e | wheree,e, ..., e, are the stan-

m?

Note: By changing the order of standard basis vectors e ,e,,...,e, in S, other
possible bases can be found.

Example 1: Reduce S={(1,0,0),(0,1,-1),(0,4,-3), (0,2, 0)} to obtain a basis
for W= span §

Solution: Consider,
k(1,0,0)+k,(0,1, =1)+ £,(0, 4, = 3) + £, (0, 2, 0) = (0, 0, 0)
(ky, key + 4k, +2k,, — k, = 3k;) = (0,0, 0)
Equating corresponding components,
k, =0
k, +4k,+2k, =0
—k, =3k, =0
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The augmented matrix of the system is
1 0 0 0,0
0 1 4 210
0 -1 =3 010
Reducing the augmented matrix to row echelon form,
R, +R,

The leading 1’s appear in columns 1, 2 and 3.
Hence, BaSis = {(1, 05 0)9 (07 17 _1)’ (09 4’ _3)}

2.79

Example 2: Reduce S= {1 —2x +x>+x3, | +x% 2x +x3, 3 —4x + 3x* + 2x°} to

obtain a basis for the subspace of P;, W = span S. What is the dimension of #?

Solution: Consider,

k(1=2x+x" + X)) +k,(1+ X)) + by (2x + X))+ k,(3—4x+3x" +2x°) =0

(k, + ky + 3k, )+ (—2k, — 2k, — 4k, )x + (k, +k, +3k,)x* + (k, +k, +2k,) =0

Equating corresponding coefficients,
ki +k, + 3k, =0
—2k — 2k, —4k, =0
ke +k, + 3k, =0
k, + ky+2k, =0

The augmented matrix of the system is

11 0 3.0
20 2 410
11 0 310
10 1 210

Reducing the augmented matrix to row echelon form,
R,+2R,R,—R,R,—R,
1 1 0 310
|
0 2 -2 20

lo 0o 0 o010
|

g <4 T =L

(=]
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1 1 0 310
0 1 110
“lo 0o 0 o010
0 -1 ~110
R, +R,
(11 0 310
0 1 -1 110
oo o000
00 0010
The leading 1’s appear in columns 1 and 2.
Hence, Basis = {1 —2x + x2 + x3, 1+ x?}

Dimension = 2

Example 3: Find a basis for the subspace of P, spanned by the vectors 1 + x, x%,
—2 -2 %2 3%
Solution: Consider,
b (14 X) + X + ky (<24 257) + &, (<3x) = 0
(k, = 2k,) + (k, =3k, )x + (k, + 2k;)x> =0

Equating corresponding coefficients,

ko -2k =0
k, -3k, =0
ky + 2k, =0
The augmented matrix of the system is
1 0 2 0,0
10 0 =310
01 2 010
Reducing the augmented matrix to row echelon form,
R, - R,
(1 0 -2 010]
~lo o 2 =310
0 1 010
R'?'%

l
(=
S = O
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10 -2 00

|

~lo1 2 o0'0
|

|

00 1 -210

24

The leading 1’s appear in columns 1, 2 and 3.
Hence, Basis = {1 +x, x?, -2 + 2x?}

2.81

1 0]]0 1 1 1| [-1 1 . .
Example 4: Reduce S = : A s to obtain a basis
0O 1|1 o]l 1 1 -1

for the subspace of M,,, W= span S. What is the dimension of 7.

Solution: Consider,

1 0 0 1 1 1 -1 1
k, +k, +ky +k,
0 1 1 0 11 1 -1

ky+ky =k, ky+k+k] [0 0
ky+k,+k, k+k—k |

Il
—
o O
oS O
==

Equating corresponding coefficients,

k& +k—k, =0

ky+k,+k, =0
ky+k,+k, =0
k, +k—-k,=0

The augmented matrix of the system is

—_ 0 O =
S = = O

S O O =
S = =



2.82  Chapter 2 Vector Spaces

S O = O N;U
S O = =
S O - .l_-
o o o o

The leading 1’s appear in columns | and 2.

. 1 0]]0 1
Hence, Basis = R
0 1 1 0

Example 5: Find standard basis vector/vectors that can be added to the following
set of vectors to produce a basis for R* and R*.

(1) Vi = (715 2’ 3), v, = (15 72’ 72)
(i) v,=(1,-4,2,-3),v,=(-3,8,-4,6)
Solution: (i) FormasetS={v,v, e,e, e} wheree =(1,0,0),e,=(0,1,0),
and e, = (0, 0, 1) are the standard basis vectors of R°.
Since the set {e,, e,,e,} spans R?, the set S also spans R>.
Consider, kv, +k,v, +ke +ke, +ke, =0

ky(=1,2,3)+ky (1, =2, = 2) + k,(1, 0, 0) + k, (0, 1, 0) + &, (0, 0, 1) = (0, 0, 0)
(—k, +k, + Ky, 2k, — 2k, +k,, 3k, — 2k, + k;) = (0, 0, 0)

Equating corresponding components,
—k, + k, +k, =0
2k =2k, + k, =0
3k, -2k, + k=0

The augmented matrix of the system is

-1 1 1

Reducing the augmented matrix to row echelon form,
(=DR,
1 -1 -1 0 010
|
~12 =2 0 1 010
0 110
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R,—2R,R,-3R,
[1 -1 =1 0 010
|
~lo 0 2100
0 30 110
R23
[1 -1 -1 0 00]
|
il 3010
0 0 010
1
ik
[1 -1 -1 0 010
1
~fo 1 30 110
1
0 0 1+ 00
L 2 !

The leading 1’s appear in columns 1, 2 and 3.
Hence, Basis = {v, v,, e,}

Note: By changing the order of e, e,, e, in S, other possible bases can be found.

(i) Formaset S={v,,v,,ee,,e;, e,} wheree =(1,0,0,0),e,=(0,1,0,0),
e;=(0,0,1,0)and e, = (0, 0,0, 1) are the standard basis vectors of R*.
Since the set {e,, e,, e;, ,} span R*, the set S also spans R*.

Consider,
kv, + kv, + ke + ke, +ke, +ke, =0
k(,-4,2,-3)+k,(-3,8,-4,6)+k(1,0,0,0)+£,(0,1,0,0)+ (0, 0, 1, 0)
+£k,(0,0,0,1)=(0,0,0,0)
(k, =3k, + ky, — 4k, + 8k, + k,, 2k, — 4k, + ks, — 3k, + 6k, + k;) = (0, 0, 0, 0)

Equating corresponding components,

k -3k, + k, =0
—4k, + 8k, + k, =0
2k, — 4k, + k. =0

=3k, + 6k, + ky=0
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The augmented matrix of the system is

Reducing the augmented matrix to row echelon form,

R,+ 4R, R,—2R,, R, + 3R,

; . ; g =) o o S
) o ) S o (== (=) == e e L e
|||||||||||||||||||||||||||||||||| o <o o — | N

rr————

o o o o o < o S —~|en o (=] (=] 1_3 |

||||||||||| |

| S © ~|la © © © ~|la © |
oo T O N v
& S —~ | O =) S = |t — |t —~ | S —~| —~ |
o e o [ | o | |
s <
— <t N ™M —leN i — — I — — o o —_ — o o
| /I,\ | | | R4 | |
&' a
™M T N ™M n — — — Soen — o o 30 — o =
| | | i B A |
—| < |
- O O O | — o o o o — o o o — o ) o
L J L ) R J L J
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(DR, (-2)R,

1 -3 1 00 0,0
|
|

0 1 -1 ——1—0 0:0

% |

0O 0 O 1 2 0!0
|
|

0o 0 O 0 1 z:0

L 30 ]

The leading 1’s appear in columns 1, 2, 4 and 5.
Hence, Basis = {v,, v,, e,, e,}

Note: By changing the order of e, e,, e;, e, in S, other possible bases can be found.

Exercise 2.5 ) |
1. Determine whether the following set of 3. Show that S= {v,, v,, v;,v,} isa
vectors form a basis for the indicated basis for M,, where
vector spaces: 1 2 0 -1
(i) (1,3),(1,-1) for R? Vi :[1 _z]’vl :[-1 o]’

(i) (1,-1), (2, 3), (-1, 5) for R . o 0 i
(i) (1,2, 1), (2, 1,0), (1, -1, 2) for R® v3=[3 1}’“ :[_1 2]
(iv) (2,-3,1),(4,1,1),(0,-7, 1) for B

(V) (0> 07 13 1)’ (_la 1’ 1, 2): (1’ 1; 03 O),
2,1,2,1) for R*

4. Determine the dimension and a basis
for the solution space of the systems:

i) (1,-1,0,2), (1,1, 2, 0), (D) % =dgt g =0
(-3,1,-1,2) for R* 2x, —6x,+2x,=0
[Ans.: (i) yes (ii)no (iii) yes 3%, =9x, +3x, =0

(ivymo (V)yes (vinol (i) x +2x,+ x,~3x,=0

2. Determine whether the following set 2x, +4x, +4x,— x, =0

of vectors form a basis for P, and P;:
(i) 1—-x% 1+2x +x?2, —3x + 2x?
(ii) 1 +x +2x% 2 +2x +4x%,

3x,+6x,+7x,+ x, =0

(1)  x+2x,+ x,+2x,+ x,=0

I QI x 2% +2x,+ %, +2x,=0
(111) 1+x+x2+x3,3+x+2x2+x3, 2x,+4x3+3x3+3x4+3x5=0
24+3x+x7+ 22,2+ 2x + 5= x,— x=0
x4
(iv) 3x+ 22+, 1 422, -t
4+ 6x + 8 + 63, Ans.: (i) Basis= 1{,] O|¢,Dim =2
1 +x+2x%+x° 0

[Ans.: (i) yes (ii) no (iii) yes (iv) no]
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(i1) Basis =

- l_l_ —
—9 B
I, 0 .
" 5| Dim=2
ke 0 _E
|1
=21 [-3]
1 0
(ii1) Basis = 0f,] 1|p,Dim=2
0 1
0 0] |

5. Determine the dimension and basis for
the following subspaces of R* and R*:

(i) the plane 2x -3y +4z=0

(i1) the line x =

—t,y=2t,z=-3t

(ii1) all vectors of the form
(a,b,c,d), whered=a+b

(iv) all vectors of the form
a + bx + cx?, where a =2c¢ - 3b

(i) Basis =

(iii) Basis =

B
(ii) Basis = 2
=3

-2

0|p, Dim=2
1

,Dim=1
0]10

1110 .
ol ,Dim=3
1110

6. Reduce the following sets to obtain a

basis for the subspace of the indicated
vector space:

@ S={(1,-3,2),(2,4,1),(3, 1, 3),
(1,1, 1)} for R®

(i) S={+x+x",14+2x+3x%,
2—x+x*,4+3x-2x"}
1 22 3
5 311 -4
(i) S=

308
3 -5
ns.: () {(1,-3,2),(2,4,1),(111}]

(ii){l+x+x2,1+2x+3x2,

2—x+x2,4+3x—2x2}

(it {[é j] [21 -ﬂ}

7. Find a basis for the subspace of R*

spanned by the following vectors:

v,= (,1,0,~1)
V= 0:1:2:0)
v,= ,0,1,-1)
v,= 4,1,-6,-3)
v, = 1,-5,1,0)

[Ans.: {v, V,, V;}]

8. Find a basis and dimension for the

subspace of P, spanned by the following
polynomials:

Pi =1=2x%x> 42
P2 =1+ x?
P3 =-2x+x°
ps =3—4x+3x2+2x°
[Ans.: Basis = {p,, p,}, Dim = 2]
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9. Find standard basis vector/vectors that Ans.:
can be added to the following set of
vectors to produce a basis for R* and R*.

@) v, =(1,-1,0),v,=(3,1,-2)
(i) v,=(1,-2,5,-3),v,=(2,3,1,-4)

2.12 COORDINATE VECTOR RELATIVE TO A BASIS

one possibk basis

@ {v,,v,,e} @) {v,,v,,e,,e,}

IfS={v,V, ..., v,} is a basis for a vector space } then any vector v in J can be
expressed as
v=kv +kv,++kv

n'n

The scalars &, k,, ..., k, are called the coordinates of v relative to the basis S and the
vector (k,, k,, ..., k,) in R" is called the coordinate vector of v relative to S. This vector
is denoted by

W=, k-0 k)

Note: The coordinate vectors depend on the order in which the basis vectors are writ-
ten. If the order of the basis vectors is changed, a corresponding change of order
occurs in the coordinate vectors.

Example 1: Find the coordinate vector of v relative to the basis S.
(1) V= (17 1)3 S= {Vla VZ} Where Vl = (2» _4)’ V2 = (33 8)
(i) v=(5,-12,3); S={v,, V,, V;} where v, =(1, 2, 3), v, = (-4, 5, 6), v, = (7,8, 9)
Solution: (i) Let V)= (k,, k)
v=kv,+k,v,
L) =k(2,-4)+k,(3,8)
= (2k, +3k,, — 4k, +8k,)

Equating corresponding components,

2k +3k, =1
—4k, +8k, =1
Solving these equations,
k = i, k, = =
28 ° 14
5 3
Hence, (v), =| —, —
= 2]
(i) Let (V)= (ky, ky, ky)

v=kv, +kv,+kv,
(5,-12,3)=k,(1,2,3) + k, (4,5, 6) + k;(7,-8,9)
= (k, =4k, +Tky, 2k, + 5k, —8k,, 3k, + 6k, +9k,)
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Equating corresponding components,
k, =4k, +7k,= 5
2k, + 5k, =8k, =12
3k, +6k, +9%, = 3

Solving these equations,

k=-2,k =0,k =1
Hence, (v);=(-2,0, 1)

Example 2: Find the coordinate vector of p = 2 — x + x* relative to the basis
S={p,, p» P;} Wherep, =1+x,p,=1+x% p,=x+x%
Solution: Let p)s= (k,, ky, k3)
P =kp, +k,p, +k;p;
2—x+x* =k (1+x)+k(1+x*)+k(x+x7)
= (k, +k,) + (k, + ky)x + (k, + k,)x°

Equating corresponding coefficients,
k, +k,
k, + k,

ky+k,= 1

([
|
— BN

Solving these equations,

Hence, (p)s=1(0,2,-1)

Example 3: Find the coordinate vector of 4 relative to the basis
S={4,,4,,A4,, A,}, where

2 0 -1 1 1 1
A= A = A, =
-1 3 0 0 0 0
0 0 0 0
A, = LA, =
’ 1 0 0 1

Solution: Let (4),=(k, k,, k3, k,)
A=k A +k A, + k4 +k,A,

20 =1 1 11 0 0 0 0
=k, +k, + 1k, +k,
-1 3 0 0f “|0 o] “|1 O 0 1

|~k t+k, ki +k,
| K k

4
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Equating corresponding components,

~k +k, = 2
k, +k, =0
k, =-1

k,= 3

Solving these equations,
k==L =Lk ==L k=3
Hence, (4);= (-1, 1, -1, 3)

Example 4: The vectors v, = (1, -1, 1), v,=(0, 1, 2), v, = (3, 0, —1) form a basis
of V. Let S, = {v,, v,, v;} and S, = { v;, v,, v, } are different orderings of these vectors.
Determine the vector v in / having following coordinate vectors.

@ ()5 =(G,~18)
i) (v, =(3,-18)
Solution: (i) S,={v,, v, v;} and k, =3, k,=-1,k, =38
V=k|V| +k2V2 +k3V3
=3(1,-1,1)-1(0,1,2)+8(3,0, 1)
=(3+24,-3-1,3-2-8)
v=(27,-4,-17)
(i) S,={vy, v, viyandk =3,k =-1,k=8
v=kv,+k,v,+kv,
=3(3,0,-1)-1(0,1,2)+8(1, —-1,1)
=(9+8,-1-8,-3-2+8)
v=(17,-9,3)

In this example we observe that on changing the order of vectors in the basis, we get
two different vectors in J corresponding to same coordinate vectors.

Coordinate Matrices

If (v)g =(k,, k,,..., k,) is the coordinate vector of v relative to the basis S then the
coordinate matrix of v relative to the basis S is defined as
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2.13 CHANGE OF BASIS

The basis for a vector space V is not unique. Sometimes it is required to change
the basis for a vector space. To change the basis for V it is necessary to know the
relationship between the coordinates (coordinate matrices) of a vector v in V relative
to both the bases.

Relationship between the Coordinate Matrices
Relative to Different Bases

Let S, ={v,, v, ..., v,} and S, = {w, w,, ..., w,} be bases of vector space V. If v is
any vector in V' then

v=kw +kw,++kWw,

Now, Vs, =[kw, +k,w, +--+k,w, ]
:[klwl]S, +[k:w:]g +"'+[knwn]s,
= kl[wl]s, +k3[wz]s‘ +"'+kn[wn]s,

Let the coordinate vector of w, relative to S, be

a,;
a,,
[w,]g =
ni
a, a; a,,
aZ] a22 aln
[v]S‘:k, " +k, ) +-+k, ;
a a a

n2 nn

klall +kza[2 +"'+kua|n
_ kla'll + k2a22 sl knaln

++ka

kla +k2an2 n"nn

nl
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a, dap a, || &

4y dap a,, || k,

an] an?_ ann n
[vls, = Plvl;,

The matrix P is called the transition matrix from S, to S,. The columns of P are the
coordinate matrices of the new basis vectors relative to the old basis i.e.

P=[w]g W15 1w, |

Theorem 2.17: If P is the transition matrix from a basis S, to a basis S, for a finite
dimensional vector space /' then

(i) P isinvertible
(ii) P 'is the transition matrix from S, to S,
(iii) For every vector v in the vector space V, we have

[V]s[ = P[V]sl
and [vl, = P[v];

Example 1: Find v if the basis S= {v,, v,, v,}, where v, = (2, -1, 3), v, = (1, 2, 3),

6
v,=(1,1,0)and [v]g =[ -1

4
Solution: (v)s=(6,-1,4)

v=0v,—v, +4v,
=6(2,-1,3)-(1,2,3)+4(1,1,0)
=(12-1+4,-6-2+4,18-3)
v=(15,-4,15)

Example 2: Find p if the basis S = {p,, p,, p;} where p, = 1, p, = x, p, = x* and

3

[pls =|0

4
Solution: (p)s=@3,0,4)

p =3p, +0p, +4p,
=3+4x°
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Example 3: Find 4 if the basis S = {4,, 4,, 4, 4,}, where

Al Ll Toaf® O 2]® T ana
= ,A = , A, = LA = n =
Lo of™Tlo o™ T|1 o™ o 1|? s

Solution: (4),=(-8,7,6,3)
A=—8A4 +74,+64,+34,

1 11 00 0 0
0 a7la ot ol
_|8+7 —8+7
16 3
_[i5 ~i
16 3
Example 4: Consider the bases S, = {u,, u,} and S, = {v,, v,}, where u, = (1, -1),

u,=(0,6),v,=(2,1),v,=(-1,4)

(i) Find the transition matrix from S, to S;.
(i1) Find the transition matrix from S, to S,.

Solution: (i) The transition matrix P from S, to S, is

P= [[VI ]5‘ [Vz]Sl]

K
Let [V|]s, :|:k :|

v, = ku, +k,u,
(2,1 =k (1, =1 +k,(0,6)

= (k,, — k, +6k,)
Equating corresponding components,
k, =2
—k, + 6k, =1
p L
c2

Let [v,]s =

2
v =1
2
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v, =¢cu, +c,u,
(=L4)=¢(1,=1)+¢,(0,6)
=(¢,—¢, +6c,)

Equating corresponding components,

¢ =-1
—c, +6c, =4
1
c3=5
[-1
[v,]s = 1
L2
[2 -1
Hence, P=|1 1
2 2

(i)  The transition matrix from S, to S, is P

P = 1 adj P
det(P)
S

adj P = ]
-— 2
2
3

det(P)==

et(P) 2

Lo

pi=2| 2

g1 )
2

Example 5: Consider the bases S, = {u,, u,} and S, = {v,, v,} for R?, where

i (o e

(i) Find the transition matrix from S, to S;.
(i1) Find the transition matrix from S, to S,.

(iif) Find [w]g where w = [_2]

(iv) Find [w] using (iii).
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Solution: (i) The transition matrix P from S, to S| is

P= [[Vl INAAN ]

Let [v,1s :[k‘]

Equating corresponding components,

=2k =1
[v.] 2
v =
115, 1
cl
Let [v,]s =
1 C:

vV, =qu, +c,u,

Equating corresponding components,

¢=-3,¢c,=4
vl =|
Vil. =
215, 4
2 3
Hence, P=
1 4

(ii)  The transition matrix from S, to S, is P~".

F= l adj P
det(P)

) 4 3
adj P =
-1 2
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det(P) =11

P =L[ 4 3]

-1 2
_ kl
(iii)) Let [w], —[kg]

w = ku, +k,u,

o[
-2

Equating corresponding components,

k =3k =-5

In a vector space V' if P is the transition matrix from S, to S, then for any vector
win V

(Wl = Plwlg,

or [W]s: = Pil[w]s1

SN
i3

T
o
0

Hence, (W], =

Example 6: Consider the bases S, = {u,, u,, u,} and S, = {v,, v,, v;} for P,, where
uy=1+x,u,=2+x,u,=3+x,v,=x+2x%,v,=3+x% v,=nx.

(1) Find the transition matrix from S, to S,
(i1) Find [w] using transition matrix, where

wW=>5+4x—x’



2.96 Chapter 2 Vector Spaces

Solution: The transition matrix P from S, to S, is

P= [[u] ]Sz [uz]S: [u3]53 ]
k,
Let [u] ]Sl =|®
k,

u, =kv, +k,v, +kv,
14+ x? =k (x+2x%) + k, 3+ x*) + k, (x)
=3k, + (k, + ky)x+ 2k, + k, )x’

Equating corresponding coefficients,

3k, =
k, + k,=0
2k +k, =1
Solving these equations,
S
377 3 ¢ 3
- _]_—
3
1
ul, =| -
s =| 3
-
| 3]
0
Let [u,]s, =] b,
[ by

u, =bv, +b,v, +bv,
=2+ x=3b, + (b +b,)x+(2b, +b,)x’

Equating corresponding components,
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Solving these equations,

|
b1=—'eb7=_ ,blz—%
37 T3
= l_
3
2
[uz]s = _5
2
[ 3]
—C]
Let [u3]sz =|c,
[ &

u, =V, +C’2V2 +CV,

34x =3¢, +(¢ +¢,)x+(2¢, +¢,)x°

Equating corresponding coefficients,

3¢, =3
¢ F c =1
2¢+c¢, =0
Solving these equations,
g=——,6=1c,==
1
2
[u,], =] 1
2
L 2
[ 11 1]
3 3 2
PP l —z 1
3 3
L g 2
| 3 3 2]

(i) wis a vector in P, and P is the transition matrix from S to S,.

[wls, = PIw];

2.97
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Let [wls =1k,
k

w=ku, +ku, +ku,
S5+4x—x" =k (1+x*)+ky(=2+x)+k,(3+x)
= (k, =2k, +3ky) + (k, + k,)x + k. x°
Equating corresponding coefficients,
k, =2k, + 3k,
k, +k,

(||
A W

kl

I
|

Solving these equations,

1 T
U‘|E w| o

W WIN W=

[w]sz =

U‘l; wlo L

r

1
J

Wi G m Wl W= W=

+

& b

+

—_ U\|E VRS

1
W | —
vy
| B~
W
+
U1|N
L

|
AN Wl W

ot

@ |

r
L
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Example 7: Consider the basis S, = {u,, u,, u;} and S, = {v,, v,, v} for R*, where
u, =(1,0,1),u,=(1, 1, 0), u; = (0, 0, 1). If the transition matrix P from S, to S| is

1 1 2
P=(2 1 1
=1k =kl

determine S,.

Solution: The transition matrix P from S, to S, is

P=[ 1 vl ]

| ()
Given P=|l 2 1 1
-1 -1 1
Comparing both the matrices,
[Vl]s, =l 2
| -1

v, =u, +2u, —u,
=(1,0,1)+2(1,1,0)—(0,0,1)
=(1+2,2,1-1)
=(3,2,0)

1
[v,] =| 1
-1

vV, =u, +u, —u,
= (]7 O, 1)+(1’ l» O) _(Os 09 ])
=(2,1,0)

[V3]5, =1
1
vy =2u, +u, +u,
=2(1,0,1)+(1,1,0)+(0,0,1)
=(3,13)

Hence, S,={(3,2,0),(2,1,0),(3, 1, 3)}
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Example 8: Consider the bases S, = {u,, u,} and S, = {v,, v,} for P,, where
vV,=x,v,=—1+x.

3
If the transition matrix from S, to S, is [ 2], determine .

Solution: The transition matrix from S, to S, is
P [[ul Is, [w, I, :|

. 2 3
Given Pi=

Comparing both the matrices,

u =2v, -V,
=2x—(-1+x)
=l+x

w1, =3

u, =3v, +2v,
=3x+2(-1+x)
=-2+5x

Hence, S, ={(1+x), (-2+5x)}

Example 9: Consider bases S, = {u,,u,} and S, = {v,,v,} for R?, where u, = (1, 2),
u,=(0, 1)

2 1
If the transition matrix from S, to S, is [ i l}’ determine S,.

Solution: To determine S,, we need the transition matrix from S, to S,. Since the
transition matrix from S, to S, is
21
P —
11

The transition matrix from S, to S, will be P!,
e — adj P
det(P)

) 1 -1
adj P:[ ]
-1 2
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det(P)=1

]

Also, P

Comparing both the matrices,

[Vl]s, =

b ol Pl |

By

v, =lu, —lu,
= (1,2)-(0,1)
=(,1)

[v, ]s, = [

K

v, =-u, +2u,

1,2)+2(0,1)

= (-1,0)

Hence, SZ = {(19 1)> (_1’ O)}
Exercise 2.6 ) |
1. Find the coordinate vector of v relative
to the basis S for R3.
(i) v=@G3,1,-4)and S={(1, 1, 1),
(0,1, 1),(0,0, 1)}
(i) v=(2,-1,3)and S={(1, 0, 0),
(2,2,0),(3,3,3)}
[Ans.: (i) (V)S—(3,~2,—-5):|
(i) (v)s=(3,-2, 1)

2. Find the coordinate vector of
p =4 — 3x + 2x? relative to the basis
S={l+x+x*%1+x, 1} for P,

[Ans. : (p)s=(2,-5,7)]

3. Find the coordinate vector of

2 3
A= relative to the basis
4 -7

Lk oke o o
S= 4 ; 5
L 1f {1t oJ[0 0f[0 0f
in M,,.

[Ans. : (A)g= (-7, 11,-21, 30)]

4. Find the vector v if the coordinate matrix
[v]s is given with respect to the basis §
for vector space V.

(i) §={(,1,-1),(1,0,0), (1,1, 1)}
-1
for R? and [v]s =l 1

2

(i) S={1+x*,1+x,x+x*} for P,

3

and [v], =| -1

(iii) &
g -1 0|2 2 1 21[0 O
1 oo 1]-1 3|2 3

2

1

for M,, and [v]s = it
3
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Ans.: (i)(3,1,3) (ii)2-3x+x? -2 -5 -2]]
Ans.: (i)| -1 -6 -2
Gi| L0 i 2 1
9 7
2
5. Consider the bases S, = {u,, u,} and (i) [w]s, =] 1
S, = {v,, v,} where u, = (1, -2), B

u,=03,-4),v,=(1,3),v,=(3,38). - -

(i) Find the transition matrix from S, 8. Consider the bases

to S, e [1 0} [o 1] [0 2} [0 0]
(i) Find the transition matrix from ] 0 0)[1 o]0 1][1 1
Sito S, and
= = 1 1110 0|0 O]f1 O
13 S: = ’ ’ ’
=5 -18 0 Of]1 O]]0 1]]0 O
Ans.: (1) 5 , for M,,
2 (1) Find the transition matrix from
. [—14 —36] S, t0 S,
(i1)
L 5 13]] (ii) Find [w] using transition matrix,
1 2
6. Consider the bases S, = {(1, 2), (0, 1)} where w =[ 5 J
and S, ={(L,1),(2,3)}.
(1) Find the transition matrix from ) .
S, to S,. 0 1 20
(i) Find [w]S: using transition matrix, Ans.: (i) 8 (; (; }
where w= (1, 5) | -1 =2 0
-] . 2
[Ans 53 (i)[ : 21} (ii) [w]s, =[ Z‘H )
(i) [wls, =|
7. Consider the bases S, = {1 +x?, -1, L =] )
x+2x%} and S, = {~1+x,1+2x—x", x}
for P,. 9. Consider the bases S, = {u, u,} and
(i) Find the transition matrix from S= -4 x T It thle tr2an51t1on
S,to S, matrix from S, to S, is [2 3:|,
(i) Find [w]; using transition determine ;.

matrix, where w = | + 3x + 8x? [Ans.: S, = {-5 +x,3 —x}]
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2.14 ROW SPACE, COLUMN SPACE AND NULL SPACE

a, a, .. a,
By Gy wes Uy

Let A=| - o
a a a

be an m X n matrix. The vectors
r,=[a, a,...q,]

r,=[a, ay..a,]

rm = [aml am] R amn]

in R" are called row vectors of 4, and the vectors

all all aln

a’l a22 a’n
cl ~ ’ cZ = ¢ > 2 crr =

a a a

in R™ are called column vectors of 4.

(1) Row Space

The subspace of R” spanned by the row vectors of 4 is called the row space of 4.

(2) Column Space

The subspace of R” spanned by the column vectors of 4 is called the column space of 4.

(3) Null Space

The solution space of the homogeneous system of equations Ax = 0 is called the null
space of 4.

2.14.1 Basis for Row Space

Theorem 2.18: Elementary row transformations do not change the row space and
null space of a matrix.

Note: If a matrix 4 is reduced to row echelon form B then the row spaces of 4 and B
are same.

Theorem 2.19: If B is the row echelon form of 4 then the row vectors of B with lead-
ing 1’s (i.e. non-zero row vectors) form a basis for the row space of B, and hence form
a basis for the row space of 4.

Note:
(i) A basis for the row space of a matrix 4 may not consist entirely of row vectors.
(i1) A basis for the row space of A consisting entirely of row vectors of 4 can be
obtained by finding the basis for column space of 47.
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2.14.2 Basis for Column Space
Theorem 2.20: If A and B are row equivalent matrices then

(1) A set of column vectors of matrix A4 is linearly independent if and only if the
corresponding column vectors of B are linearly independent

(i1) A set of column vectors of matrix 4 forms a basis for the column space of 4 if
and only if the corresponding column vectors of B form a basis for the column
space of B

Theorem 2.21: If B is the row echelon form of a matrix 4 then

(i) The column vectors containing the leading 1’s of row vectors form a basis for
the column space of B

(i1) The column vectors of 4 corresponding to the column vectors of B containing
the leading 1’s form a basis for the column space of 4

2.14.3 Basis for Null Space

The basis for the null space of 4 is the basis for the solution space of the homogeneous
system Ax = 0. This method has been discussed in 2.10.

Example 1: Find a basis for the row and column spaces of 4.

4 5 2
A= DS ()
-1 3 2 2|
Solution:
1 4
A=| 2 1
<1 3 % 3

Reducing the matrix A to row echelon form,

R,-2R, R, +R,

1 4 5 2
~10 =7 =7 -4

0o 7 7 4

R, +R,

1 4 5 2
~10 =7 -7 -4

0 0 0 O
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2
~011£=B
7
00 0 O

. -
Basis for the row space of 4 = Non-zero rows of B = {(] 4,5,2), (O, i1 7)}

The leading 1’s appear in columns 1 and 2.

1| [4
Hence, basis for the column space of 4 = 21,11
-1(13

Example 2: Find a basis for the row and column spaces of

1 4 5 4
2 9 8 2
A=
2 9 9 7
S5y
1 4 5 4
2 9 8 2
Solution: A=
) 9 9 7
-1 =4 -5 =4

Reducing the matrix A to row echelon form,

B, ~ 2R R —2R R+ R,

(1 4 5 4
01 -2 -6
o1 -1 -1
00 0 o0
R, —R,
(1 4 5 4
0 1 -2 -6
“lo o 5|78
00 0 0
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Basis for the row space of 4 = non-zero rows of B = {(1, 4, 5, 4), (0, 1, -2, -06),
0,0, 1,5)}
The leading 1’s appear in columns 1, 2 and 3.

Hence, basis for the column space of 4 =

’

-1] [-4] [-5

Example 3: Find a basis for the row space of

1 4 5 6 9
3 2 1 4 -]
=1 0 -1 -2 -1
20003 5 7§

A=

consisting entirely the row vectors of 4.

Solution: We know that
Row space of 4 = Column space of A7
.. Basis for the row space of 4 = Transpose of the basis for the column space of 47.

1 3 -1 2
4 2 0 3
A =5 1 -1 5
6 4 =2 7
9 -1 -1 8

Reducing the matrix A” to row echelon form,

R,—4R,R,—5R,R,—6R, R, —9R

(1 3 -1 2
0 -14 4 -5
A~|0 -14 4 -5
0 -14 4 -5
[0 —28 & -10
R,—R,,R,—R,, R, -2R,
1 3 -1 2
0 -14 4 -5
~l0 0 0 0
0 0 0 0
0 0 0 0
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13 4 2
“lo o o o®
00 0 0
00 0 0]

The leading 1’s appear in columns 1 and 2.

1

4
Basis for the column space of A" =3 |5/|,| 1

6

9

Hence, basis for the row space of 4 = {(1, 4, 5,6,9),(3,-2,1,4,-1)}

Example 4: Find a basis for the column space of

=D RN

I -1 4 0
A=

5w =2 5

2 =S

consisting of vectors that are not entirely the column vectors of 4.

Solution: We know that
Column space of 4 = Row space of 47
.. Basis for the column space of 4 = Transpose of the basis for the row space of A”

11 3 2

2 -1 2 1
AT =

7 % 3 -1

0 0 5 3

Reducing the matrix A” to row echelon form,

R,+2R,R,—7R
11 3 2
0o 1 8 5
0 -3 24 -I5
0o 0 5 3
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whn O oo W
w O W N

o W

o
© O
- O
Wnlw © wn N
1l
o

Basis for the row space of A” = Non-zero rows of B

= {(1, 1.32).(0:1.8.5), (o, 0,1, %)}

Hence, basis for the column space of 4 =

) )

1] [0
1] |1
3118
2] (5

nNlw - o o

Example 5: Find a basis for the space spanned by the vectors v, = (1, 1, 0, 0),
v,=(0,0, 1, 1),v,=(-2,0,2,2),v,=(0,-3,0, 3).

Solution: The space spanned by these vectors is the row space of the matrix

1 1 00
0 0 I 1
A=
-2 0 2 2
0 -3 0 3

Reducing the matrix 4 to row echelon form,

R, +2R,
1 100
0 0 1 1
|6 328 3
0 -3 0 3
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1
5
[ 1 00
0 1 1
o111
0 -1 0 1
R,+R,, R, +R,
(1 1.0 0
0122
o111
0 0 12
Rx_Rz
(1 1 0
01 2
“lo 0 =1 =1
00 1 2
(=DR,
[1 1 0 0]
0122
oo 11
0 0 1 2]
R4_R3
(1 1 0 0]
0122
“lo o 1 1|78
0 0 0 1]

Basis for the given space = Basis for the row space of 4 = Non-zero rows of B
={(1,1,0,0),(0,1,2,2),(0,0,1,1),(0,0,0, 1)}

Example 6: Find a basis for the space spanned by the vectors

A = o\ =

1
2
1
2
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Solution: The space spanned by these vectors is the column space of the matrix

L 2.3 3 3

2123 3
A=

123335

212 33

Reducing the matrix 4 to row echelon form,
R,—2R,R,—R,R,-2R,
1 2 3 3 5
0 -3 -4 -3 -7
0O 0 0 0 0
0 3 -4 -3 -7

1 2 3 3 5§
0 -3 -4 3 -7
0O 0 0 0 O
o 0 0 0 0
e
3 )%
[1 2 3 3 5
0 1 ! | L
~ 3 3[=B
0 0
| 0 0
The leading 1°s appear in columns 1 and 2.
1] (2
. 2111 o .
Basis for the column space = {v,, v,} = Il 2 which is also the basis for the
2] 1

space spanned by the given vectors.

Theorem 2.22: A system of linear equations Ax = b is consistent if and only if b is in
the column space of 4.
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Example 1: Determine whether b is in the column space of 4, and if so, express
b as a linear combination of the column vectors of 4 if

1 -1 1 2
A= I =1| and b=]|0
-1 -1 1 0

Solution: The system of equations formed by 4 and b is

Ax=Db

The augmented matrix of the system is

1 -1 12
I 1 -110
-1 -1 110
Reducing the augmented matrix to row echelon form,
R,—R,R,+R
[1 -1 1} 2]
~lo 2 212
0 2 21 2
R, +R,
[1 -1 1} 2]
sl 3 B3
0 0 0! 0]
s
[1. <1 1) 2
w0 1 =1i=d
0 0 0! 0

The corresponding system of equations is
X =X +tx= 2
X, —x, =—1
Solving for the leading variables,
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Assigning the free variable x; arbitrary value ¢,
x,==l+t, x,=2+(-1+1)—-1=1

Thus, x, =1, x, =t — 1, x; =t is the solution of the system.
Since the system is consistent, b is in the column space of 4.

Now, b = Ax
1 -1 1] 1
= 1 1 =1|[¢-1
-1 -1 1f ¢
2 1 -1 1
Of=1] 1|+@-=D| 1[+¢[-1
0 -1 | -1 1

Example 2: Determine whether b is in the column space of 4, and if so, express
b as a linear combination of the column vectors of 4 if

-1 1 5
A=(9 3 1| and b=| 1
1 =l

Solution: The system of equations formed by 4 and b is

Ax=Db
1 -1 1 x 5
9 3 1|l= =
11 1[x -1

The augmented matrix of the system is

1 =1 1

| 5

|
9 31! 1
11

1 -1

Reducing the augmented matrix to row echelon form,

R,—9R,R,—R,

I = L} 3
I

~lo 12 -81-44

0 2 01 -6
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1 -1 1, 5

|

|
o 8w
121 12
[0 2 0 —6]

R,—-2R,

1 -1 1y 5

|

|
~10 1 _ﬁ:_ﬁ
121 12

|
oo 2 %
L 61 6]

(5)e

1 -1 1y 5

|

|
N R
121 12
0 0 14 1

The corresponding system of equations is
Xx—x+ x= 5
8 44
X, ——X, =——
©o12 12
x= 1

Solving these equations,
x=1,x,=-3x=1

Since the system is consistent, b is in the column space of 4.

Now, b = Ax
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Example 3: Determine whether b is in the column space of 4, and if so, express
b as a linear combination of the column vectors of 4 if

1 1 2 -1
A=|1 0 1 and b=| 0

21 2
Solution: The system of equations formed by 4 and b is
Ax=b
11 2][x] [-1
1 0 1f|x,|=| 0
2 1 3| |x] |2
The augmented matrix of the system is
1 1 2}-1]
1 0 1 E 0
2 1 31 2]
Reducing the augmented matrix to row echelon form,
R, =R R, =2R,
(1 1 2-1]
ol <1 <! 1
[0 -1 -1! 4]
R, - R,
[1 1 2)-1]
~lo -1 —11 1
0 0 o} 3]

From the last row of the augmented matrix,
Ox, +0x, +0x, =3

This shows that the system is inconsistent and hence b is not in the column space of 4.

Example 4: Find a basis for the null space of

i =1 3
A=|5 -4 -4
7 6 2

Solution: The null space of A is the solution space of the homogeneous system
Ax =0.
I -1 3| x

0
5 -4 —4||x,|=|0
7 -6  2|[x 0
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The augmented matrix of the system is

I -1 310
|

5 -4 —410

7 6 210

Reducing the augmented matrix to row echelon form,
R, —5R,R,-7R

1 -1 310
~lo 1 -1910

0 1 -1910]

R —R,

[1 -1 310]
~lo 1 -1910

0 0 00

The corresponding system of equations is

X —x,+3x,=0

x,—19x, =0
Solving for the leading variables,
X, =x, —3x,
x, =19x,

Assigning the free variable x; arbitrary value ¢
x, =19t -3t =16¢,x, =19, x, =t

Null space consists vectors of the type

] [1er 16
x=|x, |=|19¢|=1¢]|19 |=tv,
X, t 1

(16
Hence, basis= {v,}=|19
1

2.15 RANK AND NULLITY

In the previous section we observed that in the row echelon form of a matrix, the
number of non-zero rows (i.e. rows containing the leading 1’°s) form a basis for the row
space of 4 and vectors corresponding to the columns containing the leading 1’s form
a basis for the column space of 4.
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Thus, dimension of row space = number of rows containing the leading 1’s
and dimension of column space = number of columns containing the leading 1’s.
This concludes that for any matrix 4

Dimension of row space = Dimension of column space

2.15.1 Rank

The dimension of row/column space of a matrix 4 (or the number of non-zero rows in
the row echelon form of A) is called the rank of 4 and is denoted by p(4).

Note: If 4 is an m X n matrix then
rank (4) < min (m, n)

Thus, the largest possible value of rank (4) = min (m, n) where min (m, n) means the
smaller of the m and n.
e.g. if A4 is of order 5 X 3 then

The largest possible value of rank (4) = min (5, 3)
=3
2.15.2 Nullity

The dimension of the null space of a matrix 4 is called the nullity of 4 and is denoted
by nullity (4).

2.15.3 Dimension Theorem

Theorem 2.23: If 4 is an m X n matrix then
rank (A4) + nullity (4) = n (number of columns)

Theorem 2.24: If 4 is an m X n matrix then nullity (4) represents the number of
parameters in the general solution of Ax =0

Example 1: Find the number of parameters in the general solution of Ax = 0 if 4
is a 5 X 7 matrix of rank 3.

Solution: The number of parameters = nullity (4)

=n—rank (4)
=7-3
=4

Example 2: Find the rank and nullity of the matrix

2 0 -1

A=|4 0 =2

0 0 0

2 -1

Solution: A=(4 0 -2
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Reducing matrix 4 to row echelon form,

1

E)R'

1o -1

2

~l4 0 =2

0 0 0

R,—4R

1 0 ——
~10 0 0

0 0 0]

Rank (4) = Number of non-zero rows = 1
nullity (4) = n —rank (4)

=3-1=2
Exercise 2.7 1
1. Find a basis for the null space of 2. Find a basis for the row space of
[ 2 -1 =2 L&~
: — 1 9 -1
() 4=|-4 2 4 A= consisting of
|8 4 8 = 8
_ -2 3 2
122 -1 1 vectors that are
(i) A= 022 -2 -l (i) row vectors of 4
2 6 2 -4 1 (ii) not entirely row vectors of 4
140 =3 0 Ans. : (i) {(1,2, 1), (1,9, 1)}

) (i) {(1, 0, —1), (0,1, 0)}

1
—1 (1
Ans. : (i) 2 1o 3. Find a basis for the column space of
1 1 1 =25
] A=|2 3 2| consisting of vectors
[-2] 4 0 -7 8
1 I that are
|1 (i) column vectors of 4
(ii) %) o (i1) not entirely column vectors of 4
0 1 1] [-2 1 0
| 0 Ans.: (1) 3|2, 3[pGD)s[2],| 1

- e 0| [-7 0] [-1
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4. Find a basis for the space spanned by
the vectors

(1) v, = (715 19 729 0)9 v, = (33 33 65 O)a

v,=(2,-1,3,2)
1] [2 0
.. 2 | 2
(i) v, = 1,v2= 3},“ At
1] 1 2
3 [ 5
2 0
V= 1l ¥ = 0
4] | -1
[(1,-1,2,0),(0,1,0,0),
Ans. : (i) (0’ O,l,—l)
6

(i) {v], Vigs Vg v4}

5. Determine whether b is in the column
space of A, and if so, express b as a
linear combination of the column
vectors of 4 if

-1 3 2 1

(i) A= 1 2 =3 and b=|-9

| 2 -2 -3

(1 2 0 1 4

.. 0 1 2 1 3
(i) 4 = and b=

1 2 13 5

01 2 2 7

[ 1 ~1] 2
Ans.: ()| -9 (=2 1|-|2|+3|-3
| -3 2] -2
4 1] 2
13 0 1
(i1) =-26 +13
5 1 2
| 7 0] 1
0 1
2 1
=7  [+4
1 3
L 2 2 -

6. Find the largest possible value of
rank (4) and the smallest possible value
of nullity (4) in each of the following:

(i) Ais3x3
(i) Ais4x5
(iii) A is 5 x 4
[Ans. : (i) 3, 0 (ii) 4, 1 (iii) 4, 0]

7. Find the number of parameters in the
general solution of Ax = 0 if 4 is a
5 X 9 matrix of rank 3.

[Ans. : 6]
8. Find the rank and nullity of the matrix:
[1 -1 -1
(i) A4=(4 -3 -1
13 -1 3
(1 2 -1 3
(i) 4=(2 4 1 2
|3 6 3 -7

[Ans. : (i) 2, 1 (ii) 2, 2]



Linear
Transformations

)
1

| Chapter

3.1 INTRODUCTION

Often it is necessary to transform data from one measurement scale to another
e.g., the conversion of temperature from degree centigrade to degree Farenheit is
given by °F = 1.8°C + 32. This is a linear transformation. Hence, linear transforma-
tion is a function that converts one type of data into another type of data. Linear
transformation from R” to R™ is referred to as Euclidean linear transformation
whereas, linear transformation from vector space V to vector space W is referred
to as general linear transformation. This is useful in many applications in physics,
engineering and various branches of mathematics.

3.2 EUCLIDEAN LINEAR TRANSFORMATION

It is a function that associates each element of R” with exactly one element of R”.
It is represented by 7': R" — R and we say that 7 maps R" into R”. Here, the domain
of transformation 7'is R" and the codomain of transformation 7"is R".

Consider a linear transformation 7' : R" — R™ defined by

W =ap X, tapx, +-+a,x,

Wy =dy X, +ayX, ++a,, X,

«4(3.1)
um = aml xl i aml'xl el aum X"
In matrix form,
H Gy Gy e Gy || K
w, a,, a,, e 4y, X,
o = [ ol
W a amZ 0 amn xn

w = Ax ...(3.3)
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The matrix 4 is called the standard matrix of the linear transformation. Eq (3.1) can
also be represented as,
T (525500 005:2,) = (Wi Wygaony W)

n

If 7: R" — R™ is multiplication by 4, then standard matrix of 7'is also denoted by 7',.

3.3 LINEAR TRANSFORMATIONS

Let V and W be two vector spaces. A linear transformation (7 : V' — W) is a function
T from V to W such that

(@) T(u+v)=T(u)+ T(v)
(b) T(ku)=k T(u)

for all vectors u and v in V and all scalars £.
If V= W, the linear transformation 7': V' — V is called a linear operator.

3.3.1 Some Standard Linear Transformations

(1) Zero Transformation

Let V and W be two vector spaces. The function 7 from V' to W defined by
T(v)=0

for every vector v in V' is a linear transformation from V' to W.
Letuand v arein V.

T(u)=0
T(v)=0
T(u+v)=0 [cu+visin/V]
T(ku)=0 [.kuisin V]
Thus, Tu+v)=T)+T(v)
and T(ku) =k T(u)
Hence, T is a linear transformation and is called zero transformation.
(2) Identity Operator
Let V' be a vector space. The function / from V to V defined by
I(v)=v

is a linear transformation from V'to V.
Letuand varein V.
I(v)=v
I(u)=u
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I(u+v)=u+v=1I(u)+1(v)
(k) = ku =kl (u)

Hence, / is a linear transformation and is called identity operator on V.

3.3.2 Properties of Linear Transformations
Theorem 3.1: If 7: V' — W is a linear transformation then

(@ T0)=0

(b) T(~v)=-T(v)forallvin V'

(¢) T(v—-w)=T(v)—T(w) forall vand win V

d) Tk, +k,vy+-+k v )=kT(v)+kT(v,)+--+kT(v,)

n-'n

where v, v,,..., v, are vectors in ¥ and k, k,, ..., k, are all scalars.

3.4 LINEAR OPERATORS (TYPES OF LINEAR
TRANSFORMATIONS)

3.4.1 Reflection Operators

An operator on R? or R that maps each vector into its symmetric image about some line or
plane is called a reflection operator. Let 7': R* — R® be a reflection operator defined by

T(x,y)=(x,-y)

that maps each vector into its symmetric image about the x-axis.

In matrix form, y
T([’CD _ [ 1 O][x] (x, y)
y 0 -1jl»

The standard matrix of 7'is [ | 0] 0 i
Tl= |
0 -1 !

(X1 7y)

Some of the basic reflection operators are given in Table 3.1  Fig. 3.1

Table 3.1
Operator Equation Standard Matrix
Reflection about the T(x,y)=(x,-y) 1 0
x-axis on R?
0 -1
Reflection about the T(x,y)=(=x,y) -1 0
y-axis on R? |: 0 l:|

(contd.)
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Table 3.1 (contd.)

Operator Equation Standard Matrix
Reflection about the line Tx,y)=(y,x) 0 1
y=xonR?
1 0
Reflection about the T(x,y,z)=(x,y,-2) 1 0 0]
xy-plane on R?
01 0
|0 0 —1]
Reflection about the T(x,y,2)=(x,—y,2) 1 0 0]
xz-plane on R
0 -1 0
0 0 1
Reflection about the Tx,y,2)=(=x,,2) 1 0 0]
yz-plane on R?
0 1
0 0 1

3.4.2 Projection Operators

An operator on R? or R® that maps each vector into its orthogonal projection on a line or
plane through the origin is called a projection operator. Let 7': R* — R* be a projection
operator defined by

T'(x,y)=(x,0)

that maps each vector into its orthogonal projection on the x-axis.
In matrix form,
% I Off x
T =
y 0 0ffy
The standard matrix of 7'is

|1 8
o R

Some of the basic projection operators on R? 0 (x, 0)
and R® are given in Table 3.2.

(x )

Fig. 3.2



Operator

Orthogonal projection on
the x-axis on R?

Orthogonal projection on
the y-axis on R?

Orthogonal projection on
the xy-plane on R*

Orthogonal projection on
the xz-plane on R®

Orthogonal projection on
the yz-plane on R®

3.4 Linear Operators (Types of Linear Transformations) 3.5

Table 3.2

Equations

T(x,y) = (x, 0)

T'(x,»)=(0,y)

T(x,y,2)=(x,,0)

T(x,y,z)=(x,0,2)

T(x,y,2)=(0,y,2)

Standard Matrix

y

3.4.3 Rotation Operators

An operator on R? that rotates each vector counterclockwise through a fixed angle &is
called a rotation operator. Let 7: R> — R? be a rotation operator defined by

T(x,y)=(xcos @—ysin 6, xsin 8+ ycos )

that rotates each vector counterclockwise through a fixed angle 6.

In matrix form,

The standard matrix of 7'is

cos@
e[
sin @

—sin@
cos@

Similarly, a rotation operator on R* rotates
each vector about some rotation axis through

a fixed angle 6.

Some of the rotation operators on R? and R*

are given in Table 3.3.

T x| cos® —sinf
y " |sin®  cos6

y

Fig. 3.3
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Table 3.3
Operator Equations Standard Matrix
Rotation through an T(x,y)=(xcos §—ysin 6, [cos® —sin6
angle fon R? x sin @+ y cos ) .
| sin@  cosf
Counterclockwise rotation T(x,y,z)=(x,ycos 8—zsin 6, Bl 0 0
about the positive x-axis y sin @+ z cos 6) )
through an angle fon R 0 cos® -—sinf
|0 sin® cos6 |
Counterclockwise rotation T(x,y,z)=(xcos +zsin 6, [ cos® 0 sin@]
about the positive y-axis y,—x sin @+ z cos 6)
through an angle fon R 0 1 0
| —sin@ 0 cos@ |
Counterclockwise rotation T(x,y,z)=(xcos §—ysin 6, [cos® —sin® O]
about the positive z-axis x sin 6+ y cos 6, z) .
through an angle fon R sin@  cos® 0
0 0 1

3.4.4 Dilation Operators

An operator on R? or R* that stretches each vector uniformly away from the origin
in all directions is called a dilation operator. Let 7 : R> — R? be a dilation operator
defined by

T'(x,y)=(kx, ky), k=1

that stretches each vector by a factor £.
In matrix form,
X k Offx
T —
y 0 %k y y
The standard matrix of 7'is

k0 x ¥
s o]

Some of the dilation operators on R* and R® are
given in Table 3.4. Fig. 3.4

(kx, ky)
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Table 3.4

Operator Equations Standard Matrix
dilation with factor T(x,y)=(kx, ky) k0
konR*(k>1)

10 &
dilation with factor T(x,y,z)=(kx, ky, kz) 'k 0 0
konR*(k=>1)

0 k£ O
|0 0 £k

3.4.5 Contraction Operators

An operator on R? or R* that compresses each vector uniformly toward the origin from
all directions is called a contraction operator. Let 7: R> — R? be a contraction operator
defined by

T(x,y)=(kx, ky),0<k<1

that compresses each vector by a factor £.

In matrix form, y
(%)
i k Of x
T =
(IRt

The standard matrix of 7'is o X

ry=|* ° Fig. 3.5

0 k

Some of the contraction operators on R? and R* are given in Table 3.5.

Table 3.5

Operator Equations Standard Matrix
Contraction with factor T(x,y)=(kx, ky) k0
konR*(0<k<1)

[0 &
Contraction with factor T(x,y,z)=(kx, ky, kz) k0 0
konR*(0<k<1)

0 £ O
10 0 &
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3.4.6 Shear Operators

An operator on R? or R* that moves each point parallel to the x-axis by the amount £y is
called a shear in the x-direction. Similarly, an operator on R* or R* that moves each vector
parallel to y-axis by the amount kx is called a shear in the y-direction. Let 7: R? — R? be
a shear operator in the x-direction defined by

T(x,y)=(x+ky,y)

that moves each point parallel to the x-axis by the amount k.

In matrix form,
X (1 k][ x y
T = T
y 0 1|y (0, 1) an

The standard matrix of T is (0, 0) (1,0)

[T]= y
(0, 1)

When the shear in the x-direction with k = 2 is applied
to a square with vertices (0, 0), (0, 1), (1, 1) and (1, 0), ©.0) G0 X
it is transformed to a parallelogram with vertices (0, 0), ’
(2, 1), (3, 1)and (1, 0).

Some of the shear operators on R* are given in

Shear in x-direction

Table 3.6. Fig. 3.6
Table 3.6
Operator Equations Standard Matrix
Shear in the x-direction on R* T, y)=x+ky,p) 1 &
o
Shear in the y-direction on R? T(x,y)=(x,y+kx) |: 1 0:|
ko1

Example 1: Show that the following functions are linear transformations.
(i) T:R*—> R, where T, y)=(x+2y,3x—y)
(i) T:R— R%, where T, y,z2)=2x—y+z,y—4z)
Solution: (i)Let u = (x,, y,) and v = (x,, ,) be the vectors in R? and k be any
scalar.
T(u)=(x,+2,3% - )
T(v)=(x,+2y,,3x, - y,)
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u+v=_>x,»)+(x,»)

= +x, 0+ 9,)

Ta+v)=0x+x,+2y,+2y,,3x,+3x, =y, — »,)
=(x+2y,+x,+2y,,3x, —y, +3x, - y,)
=(x,+2y,3%-y)+(x, +2y,,3x, - y,)
=T()+T(v)

kua=k(x, y)=(kx,ky)
T(ku)= (kx, +2ky,, 3kx,—ky,)

=k(x, +2y,3x-»)
= kT (u)

Hence, T 'is a linear transformation.

(i) Letu=(x,,y,,z) and v = (x,, y,, z,) be the vectors in R* and & be any scalar.
T(u)=2x,—y +2z,y —4z)
T(v)=12x,—y,+2z,,y,—4z,)
u+v=(x,5,2)+(x, ¥ 2)

=(x+x, 0 +t¥,,2 t2,)

Tu+v)=02x,+2x, =y, =y, +z,+z,, y, +y, —4z, —4z,)
=Q2x, =y +z,+2x, =y, +2,, ¥, —4z,+y, —4z,)
=Q2x -y tz,y-4z2)+Q2x, -y, +2,,y,—4z,)
=T()+T(v)

ku=k(x,y,z)=(kx, ky,, kz,)
T(kw)= (2kx, —ky, +kz,, ky, —4kz,)
=k(2x, -y, +z,,y,—4z)
= kT (u)

Hence, T'is a linear transformation.

Example 2: Determine whether the following functions are linear transformations.

@ T:P,—>P, where T(p(x))=xp(x)
(i) T:P,—> P, where T(a,+ax+a,x*)=(a,+ 1)+ (a, + 1) x+(a,+ 1)x*

Solution: (i) Letp,=a,+a,x+a,x*and p,=b,+ b,x + b,x* be the two polynomials
in P, and & be any scalar.

T(p,) = a,x+ax’ +a,x’
T(p,) = byx+bx* +b,x°
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p, +p, = (q, +a,x+a2x2)+(b0 +b]x+b2x2)
=(a, +b,)+(a,+b)x+(a, +b2)x2

T(p, +p,) = (a, +by)x+(a,+b)x* +(a, + b,)x’
=ayx+ax’ +a,x +bx+hbx" +b,x’
=T(p)+T(p,)

kp, = k(a, +ax+a,x*)

= a,k + akx + a,kx’

T(kp,) = x(a,k +akx+ azkxl)
= a,kx +akx’ + a,kx’
=k(ax+ax’ +a,x’)
=kT(p,)
Hence, T is a linear transformation.
(ii) Letp, =a,+ ax +ayx? and p, = b, + b x +b,x* be the two polynomials in P, and k
be any scalar.
T(p,) = (a, + 1)+ (a, + )x+(a, +1)x’
T(p,) = (b, + 1)+ (b, +)x+ (b, +1)x°

p, +p, = (a, + ax+a,x*)+ (b, + bx+b,x*)

=(a,+by)+(a, +b)x+(a, +b2)x2

T(p, +p,)=(a, +b, +1)+(a, + b +1)x+(a, +b, + )x’
=(a, +1)+(a, +D)x+(a, + )x* + b, + bx +b,x’
=T(p,)+p,

#T(p)+T(p,)

Hence, T is not a linear transformation.

Example 3: Determine whether the following functions are linear transformations:

O7T:M, —>M,6,6  where T(A)=A4"
.. a b S
(1) T: M,, —> R, where 7 = a +b
¢

(i) 7: M, > R, where T(A4)=det(4)
iv) T: M, =R, where T(A4)=tr(4)
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Solution: (i) Let 4, and 4, be two matrices in M,,, and k be any scalar.

T(4) =4
T(Az) = A:T

T(4 +4,)=(4+4,) = A" + 4 =T(4)+T(4,)
T(kA)= (kA) =kA" = kT(4,)

Hence, T 'is a linear transformation.

a, 2 . .
(i) Let 4, = |:a] dl ] and 4, = [ : d~ :| be two matrices in M,, and k be any scalar.
¢ d, G

2 2

a, b7 9 2
c :|) =a, +b;
¢ d;
_|ata, b+b,
e +e, d+d,

T(4 +A4,)= T([a' A4 D =(a,+a,)* +(b +b,)

¢+c, d+d,
=a +2aa,+a; +b’ +2bb, +b;
=(a’ +b])+(a; +b})+2(aa, +bb,)
#T(A4)+T(4,)
Hence, T is not a linear transformation.
(iii) Let 4, and 4, be two matrices in M,, and & be any scalar.
T(4,) = det (4)
T(4,)=det (4,)
T(A +A4,)=det (A4, +4,)
# det (4,) +det (4,)

#T(4)+T(4,)
Hence, T is not a linear transformation.

(iv) Let 4, and 4, be two matrices in M,, and k be any scalar.
T(4)=tr(4)= Y a,
i=1

T(4)=tr(4,)= ibﬁ

i=1
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T(4 +4,)=) (a,+b,)
i=
= zaii 2 Zbii
i=1 i=1
=T(4)+T(4,)

T(kA4)= 2 ka,

i=1

= kzaii
i=1
=kT(4)

Hence, T 'is a linear transformation.

3.5 LINEAR TRANSFORMATIONS FROM
IMAGES OF BASIS VECTORS

A linear transformation is completely determined by the images of any set of basis
vectors. If 7: V' — W is a linear transformation and if {v, v,, ..., v,} is any basis for V'
then any vector v in V'is expressed as a linear combination of v,, v,,..., v,.

v=kv, +k,v,+--+k,v

The linear transformation 7'(v) is given by,

T(V)=T(kyv,+kyv,+---+k,v,)

=kT(v)+kET(v,)++kT(v,)

Example 1: Consider the basis S = {v,, v,} for R?, where v, = (1, 1) and v, = (1, 0)
and let 7 : R> - R? be the linear transformation such that 7'(v,) = (1, —2) and
T(vy) = (=4 1).

Find a formula for 7'(x,, x,) and use the formula to find 7'(5, -3).

Solution: Letv=(x,, x,) be an arbitrary vector in R* and can be expressed as a linear
combination of v, and v,.
v=kv, +kv,
(x,x,) =k (1, 1)+ £k,(1, 0)
= (k +k,, k)

Equating corresponding components,

k+k, =x

k, =X,
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Hence, k, =x,, k, =x, —x,
SLVEXV (X X))V,
T(v)=kT(v)+kT(v,)

T(x,,x,)=x,T(v))+(x, —x,)T(v,)
=x(-2)+(x, —x,)(-41)
=(x,, =2x,) +(=4x, +4x,, x, — X,)
= (—4x, +5x,, x, = 3x,)

T(5,-3) = (—4(5)+5(-3), 5-3(-3))
= (-35,14)

Example 2: Consider the basis S = {v,, v,} for R?, where v, = (-2, 1) and
v,=(1,3)andlet 7: R? — R® be the linear transformation such that 7(v,) = (-1, 2, 0)
and 7'(v,) = (0, -3, 5).

Find a formula for 7'(x,, x,) and use that formula to find 7'(2, -3).

Solution: Letv=/(x,,x,) be an arbitrary vector in R* and can be expressed as a linear
combination of v, and v,.

v=kv, +kv,
(%, %)=k (-2,1)+k,(L, 3)
= (2k +k,, k +3k,)
Equating corresponding components,
=2k + k,=x
k +3k, = x,
Solving these equations,
1

ky=—=x+=x,
7 7"

k,==x+=x,
275 7%

( 3 | ) (1 2
sy=|—=x v=x, Vit =xt=n, |V,
7 7 7 7

T(v)=kT(v)+kT(v,)
3 1 1 2
T(x,x,)= (—;Al +7,\2)T(vl)+(711 +;x3)T(v2)

3 1 1 2
=(—7xl +7x2J(—l, 2; 0)+(7.\‘| +7x3)(0, -3, 5)
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e 8
7 7717
:l(3xl—x,,—9x,—4x,,5xl+10x,)
7 2 2 2
1 9 6 20
T(2,-3)==(9,-6,20)=| =, ——,——
(2,=3)=70,-6,-20) (7 7 7)

Example 3: Consider the basis S = {v,, v,, v;} for R* where v, = (1, 1, 1),
v,=(1,1,0) and v; = (1, 0, 0) and let 7 : R* — R® be the linear operator such that
T(v)=(2,-1,4),T(v,)=(3,0,1), T(vy) = (-1, 5, 1). Find a formula for T'(x,, x,, x,)
and use that formula to find 7'(2, 4, —1).

Solution: Letv = (x,, x,, x;) be an arbitrary vector in R*> and can be expressed as a
linear combination of v, v,, and v,.

v=kv, +kv,+kyv,
(x5 %, %)=k(Q,LD+k,(1,1,0)+ 4,1, 0,0)
=(k +ky+ky, k +ky k)
Equating corresponding components,

ke +k,+k,=x

k, +k, =X,

k, =X,

Hence, k, = x,
ky=x,—x,
k,=x—x,

SV =26V, (X, = X))V, +(x, —x,)V,
T(V)=kT(v)+kT(v,)+kT(v,)
T(x), %5, %) = xT7(v))+(x, = x3) T(v,y) + (x; = x,)T(vy)
=x(2,-1,4)+(x, —x,)3,0, 1)+ (x, —x,)(-1,5,1)
=(2%; —%354%;)+ (3% =3%:5 0, x05—2,) + (=X + 255 5% = 5%55 %, — %)

= (=x, +4x, —x;, 5x, —5x, — x;, x, +3x;)

T(2,4,—1) = (=2 +4(4) - (=1), 5(2) - 5(4) = (=1), 2+ 3(=1))
=(15,-9,-1)
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1 2
Example 4: Consider the basis S= {v,, v,} for R?>, where v, = [1] and v, = [3]
and let 7 : R?> — P, be the linear transformation such that 7'(v,) = 2 — 3x + x? and

-1
T(v,)=1-x* Find T|:Z] and then find T[ 2].

. a . . .
Solution: Let v= |:b} be an arbitrary vector in R* and can be expressed as a linear

combination of v, and v,.
v=kv, +kyv,

HECHE NS e

Equating corresponding components,

k+2k,=a
k, +3k,=b
Solving these equations,
k, =3a-2b
ky,=b—-a

sv=0Ba-2b)v,+(b—a)v,
T(vV)=kT(v,)+kT(v,)
T|:::| =Ba-2b)2-3x+x*)+(b—-a)(l-x*)

=(6a—4b+b—a)+(-9a+6b)x+(3a—2b—b+a)x’
= (5a—3b)+(—9a+ 6b)x + (4a —3b)x’

- | 2
T[ 2] =[5(=1)=3(2)]+[(-9)(=1) + 6(2)]x +[4(-=1) - 3(2)]x*
==11421x-10x

Example 5: LetT: M,, — Rbealinear transformation for which 7'(v,) =1, T'(v,) =2,

1 0 1 1 1 1 11
T(v,)=3,T(v,) =4 where v, = 0 0 D 0 0 , V= o , V= {1

. a b 1 3
Find T and T .
I:c a':| [4 2:|
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a
Solution: Let v =[
¢

b . .
:| be an arbitrary vector in M,, and can be expressed as a
d

linear combination of v,, v,, v; and v,.

v=kv, +k,v,+kv,+k,v,

a b 10 11 11 11
=k +k, +k;y +k,
c d 0 0 10 0 110 11
B ke +ky+ky+k, k,+k +k,
N k, +k, k,
Equating corresponding components,

ki +hk,+k,+k,=a

ky,+k,+k,=b
ky+k,=c
k,=d
Solving these equations,

k,=a-b

k,=b-c

ky=c—d

k,=d

sv=(a=b)v,+(b=c)v,+(c=d)v,+dv,

T(v) = kT(v))+k,T(V,)+kT(v,)+kT(v,)

T|:Z 5 =(a=b)1)+(b-c)2)+(c—d)3)+d(4)
=a+b+c+d

1 3]
T =1+3+4+2=10
4 2]

3.6 COMPOSITION OF LINEAR TRANSFORMATION

Let 7;: U — V and T,: V' — W be linear transformations. The application of 7
followed by T, produces a transformation from U to W. This transformation is called
the composition of 7, with 7| and is denoted by 7, o 7|

(o) (u) =7,(7;(u))

where u is a vector in U.

Note 1: The domain of 7, (which is V) consists of range of 7.
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Note 2: If [T,] = A4 and [T,] = B, then T(u) = A(u)
(T o T ) (w) = T3 (7, (w)) = 7, (4w)
= B(Au) = (BA)u
This shows that [7,oT\1= BA=[T,][T}]

Theorem 3.2: If 7}: U — V and T,: V' — W are linear transformations then (7, o 7)):
U — W is also a linear transformation.

Compositions can be defined for more than two linear transformations. If 7,: U — V, T:
V' — Wand T;: W — U are three linear transformations then the composition 7; o 7, o 7]
is given by

(TyoTo1;) () =7 (7 (7 (w)))

Example 1: Find domain and codomain of 7,0 7, and find (7, 7;)(x, y).
(1) Tl (xay):(2x93y)9 Tz(ny/):(x_yax"‘J’)
(11) Tl (xay):(x_yay+zsx_z)a T2 (xsyaz):(09x+y+z)

Solution: (i) T, (x,y)=(2x, 3y).
T, : R* — R?is a linear transformation from R?to R*.

T2 (xsy) = (xfyax*_y)
T, : R*— R?is a linear transformation from R*to R>.

Hence 7, ¢ 7, is a linear transformation from R? to R*.
Domain of T,oT, =R’
Codomain of T, =R

[T, e T1=[T]IT}]
1 -1[2 0] [2 -3
1 1]lo 3| |2 3

(Tzo T|) (x,y) = (2x-3y, 2x+3y)

(i) T, y) ==y, y+z,x-2)
T,: R*— R’ is a linear transformation from R* to R>.

T,(xy,2)=0,x+y+2)

T,: R — R?is a linear transformation from R* to R%.

Hence, 7, o7, is a linear transformation from R* to R*.
Domain of 7,07 = R’

Codomain of 7,07, = R’
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(7,7 ]=[T,1[T]
1 -1 0
[0 0 o] [0 0 0}
= 0 1 1|=
A 20 0
I %~
(T, o T, )(x, ¥) = (0, 2x)

Example 2: Find the domain and codomain of 7;° 7, T; and find (7;° 7,° T} )(x, )
where T'(x, y) = (x+y, y,—x), I, (X, y, 2) = (0, x+y+z, 3y), T;(x, , z) = 3x+2y, 4z —x — 3).
Solution: 7\(x,y)=(x+y,y,—x)
T,: R*— R’is a linear transformation from R? to R°.
T,(x,y,2)=0,x+y+z3y)
T,: R — R’is a linear transformation from R® to R>.
Ty(x,y,2)=(3x+2y,4z —x—3y)

T;: R — R?is a linear transformation from R* to R%.

Hence, 7,07, o7, is a linear transformation from R* to R%,

Domain of 7,07, 0T, = R’
Codomain of T7,0T,7, = R’

0

[TTT]—3 20y
S

(I o T, o T)(x, ) = (4, 6)

Example 3: Let 7}: P, — P, and T,: P, — P, be the linear transformation given by,
T, (px)) = plx + 1) and T, ( p(x)) = x p(x).
Find (7,2 T;) (a, +ax +a,x*).

Solution: T, (p(x)=pkx+1)
T, (p(x)) = x p(x)
(T, °T Ya, +ax+a,x’) =T, (T, (a, +ax+a,x’ ))
=T, (ay +a(x+1)+a,(x+1)?)
= x(a, +a,(x+1)+a,(x+1)*)
=ayx+ax(x+1)+a,x(x+ 1)?
=ayx+a,x’ +ax+ax(x* +2x+1)
=ayx+ax’ +ax+a,x +2a,x" +a,x

=(a, +a, +a,)x+(a, +2a,)x’ +a,x’
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Example 4: Let 7;: M,, - R and T,: M,, — M,, be the linear transformations
given by T, (4) = tr(4) and T, (1) = A". Find (7, °T,) (4)

a b
whereA=[ ]

c d
Solution: T,(A)=tr(Ad)=a+d
T4)=4a"=|? ¢
S R

(T, o T,)(A) = T,(Ty(A)) = T,(A”) = tr(A")
=a+d

Example 5: Let T: R*— R*be the orthogonal projection of R* on to the xy-plane.
Show that 77 =T.

Solution: 7: R*— R*be the orthogonal projection of R* onto the xy-plane defined by
T(x,y,2)=(x,7,0)

The standard matrix of 7'is

100
[71=]0 1 0
000
10 0][t 0 0] [1 00
[ToT]=[T][T]=|0 1 ofj0 1 o|=|0 1 0
0 0 0l/o o of |00 o0

Hence, ToT =T
Example 6: Find the standard matrix of the stated composition of linear operators
on R,

(i) A rotation of 45° about the y-axis, followed by a dilation with the factor
k=~2.
(i1) A rotation of 30° about the x-axis, followed by a rotation of 30° about the

. . . 1
z-axis, followed by a contraction with the factor & = A

Solution: (i) Let 7, be a rotation about the y-axis on R>.
T,(x, y,z)=(xcosO+zsinb, y, —xsinf@+zcosH)
cos@ 0 sin@
G1=| 0 1 0

—sinf@ 0 cos@
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For @=45°,
1 1
1=l — 0 —
[]] \/5 \/E
0o 1 0
1 s L
V2 2

Let T, be a dilation with the factor k on R°.

T,(x, v, 2) = (kx, ky kz)

The linear transformation of the stated composition of these linear operators on R?

(k0 0
[T,]=|0 & 0
[0 0 &
Fork=\/§,
(2 0 o
(1= 0 ¥2 0
0 0 2
is given by
T:T,ZO];
The standard matrix of 7T'is
(T1=I[ZL]1T]
~ 1
V20 ol &
=l 0o V2 o] o
0 o0 V2 _ 1
) 2

10 1
=l 0 2 0
0 1

(ii) Let T, be a rotation about the x-axis on R>.

T, =(x,y,z)=(x, ycosO—zsin0, ysin 0+ zcos )

1 0 0
[7]]=]0 cos® —sin6
0 sin@® cosB

Sl- = &=
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For € =30°,
1 0 0
N
Tl=|0 2= ——
(7] > >
o L V3
2 2

Let T, be a rotation about the z-axis on R°.

T,(x, y,z)=(xcos@—ysin6, xsin@+ ycosb, z)

cos@ —sinf@ 0
[7,]=|sin® cos® O

0 0 1

For 6= 30°,

N

2 2
=] 1 V5

2 2

0 0 1

Let T, be a contraction with factor k on R°.

T,(x, y, z) = (kx, ky, kz)

kK 0 0

[;]1=|0 &k 0

0 0 &

Fork:l,
4 B 1
-0 0
4
1

[31=] 0 3 0

0 0 L
i 4]

The linear transformation of the stated composition of these linear operators on R?
is given by,
T = ]; o T2 ) TI
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The standard matrix of 7'is
(T1=[L1TIT]

1
- 0
Z V3
| 2
=0 — 0|| i
4 .S
0 0 l -
i 4L 0
EE
8 16 16
|1 3 B
8 16 16
g L B
| 8 8

Exercise 3.1

1

1. Which of the following are linear
transformations? Justify.

(i) T:R*— R? where

T(x,y)=(x+y,x)

(i) T:R*— R, where T(x, y) =xy

(iii) 7: R* —> R®, where
T, y)=@x+1,2y,x+y)

(iv) T:R® — R?, where
T(x,y,2)=(x], 0)

(v) T:R*— R, where T(x, y) = (x%)?)

(vi) T: R* > R? where

T(x,y,2)=
(x—y+2z,2x+y—z,—x-2y)

[ Ans.:
(1) Linear
(i) N on-linear
(iii) N on-linear
(&7) N on-linear
(v) N on—linear
| (Vi) Linear

2.

3.

| 1 0 0
— 0
2 ]y B 1
B, 3 2
2 ], LB
0 1 9 D

Determine whether the function is a
linear transformation. Justify your
answer.
(i) T:P,— P, where T(a,+ax+
ax)=ay+a(x+1)+a,(x+1)>
(i) T: P, = P,, where
T(px)=xpx)+x>+1
(i) 7: P, = P,, where
T(p(x)) =x p(x) + p(0)
(iv) T: P, — P,, where
T(ax +b)=ax*+ (a—b)x

Ans.:
(1) Linear
(i1) Non-linear

(iii) Linear

| (iv) Linear

Determine whether the function is a
linear transformation. Justify your
answer.

(1) T:M,, - M,,, where B is a fixed
2 x 3 matrix and 7(4) = AB
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(i) T:M,, - M,,, where

7 a bl) [ b c-d
¢ d|) |e+d 2a
(iii) 7: V — R, where V'is an inner
product space and 7'(u) = ||ul|
Ans.: () Lnear (@ii) Linear
(iil) N on-linear
4. Consider the basis S = {v,, v,, v;} for
R, where v, = (1,2, 1), v,=(2,9,0)

andv,=(3,3,4)and let 7: R* > R*be
the linear transformation such that

T(v]) = (1,0), T(vz) = (—lal)’
T(v;)=(0,1)
Find a formula for 7(x,, x,, x;) and use

that formula to find 7°(7, 13, 7).

Ans.: (—41x; +9x, + 24X3,
14% — 3%, —8x3), (<2, 3)

5. Let T': R* — P, be a linear transforma-

tion for which T and

3 . . a
T =x+2x". Find T and
-1 b
-7
T .
9

=1-2x
1

Ans.:
a+3b (a+7b a-b) ,
- x+ X
4 4 2
5—14x —8x?

6. Let T : P, —» P, be a linear trans-
formation for which

TA+x)=1+x%,

T(x+x)=x-x",T(1+x*)=1+x+x

3.23

Find T(a + bx + ¢cx?) and T(4 — x + 3x?).
Ans.: a+ cx+(¥)x2,
443x+5x2

7. Let T : M,, —» R be a linear trans-
formation. Show that there are scalars
a, b, ¢ and d such that

w X
T|: ]=aw+bx+cy+dz
y z

WX
for all |: ] in M,,.

y Z

8. Let7T,:R> > M,and T, : R* > R*
be the linear transformations given

a a+b b
by T = and
b 0 a—>b
¢ 2c+d
7—;: — Ik
- |d —d

. 2 X
Find (TloT2)|:]:|and (1, oT2)|: :l
y

4 -1
Ans.: I:O 6]’
2% =y
0 2x+2y
9. Find the domain and codomain of

T,oT,, and find (7, °T;) (x,).

(a) Tl (xay):(x_3y7 0):
Tz(xa)’):(4x_5y, 3x—6y)
Tl (X:J’)=(2x:—3y’x+J’):
Tz(x:y’z)=(X—y,y+Z)

(b)

Ans.: domain: Rz, codomain: Rz,
(2x-3y,2x+3y)
domain: R*, codomain: R?,
(4x-12y,3x-9y)
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10. Let7,: P, > P,and 7,: P, > P,be 12. Find the standard matrix of the

the linear transformations given by linear operator T: R® — R* that first
T,(p(x)) =x p(x) and rotates a vector about the x-axis
T, (p(x)) = p(2x+4). by 270°, then rotates the resulting

vector about the y-axis by 90°, and

Find (T’ OT‘)(a” +a,x). then rotates that vector about the

[Ans.: a,(2x +4) + a,(2x + 4)] z-axis by 180°.
11. Find the standard matrix of the linear
operator 7: R>— R that first dilates a 0 1 0
vector with factor k = 2, then rotates Ans.:| 0 0 -l
the resulting vector by an angle of -1.0 0

45°, and then reflects that vector
about the y-axis.

[ 4]

3.7 KERNEL (NULL SPACE) AND RANGE OF A
LINEAR TRANSFORMATION

Let V and W be two vector spaces and let 7% V' — W be a linear transformation. The
kernel or null space of T, denoted by ker (7") or N(T'), is the set of all vectors in V' that T
maps into the zero vector, 0. The range of 7, denoted by R(T), is the set of all vectors
in /¥ that are images of at least one vector in ¥ under 7.

Theorem 3.3: If 7: V—W is a linear transformation then

(1) The kernel of 7'is a subspace of V'
(i) The range of T'is a subspace of W

3.7.1 Rank and Nullity of a Linear Transformation

If T: V—W is a linear transformation then the rank of 7 is the dimension of the range
of T'and is denoted by rank (7). The nullity of 7 is the dimension of the kernel of T
and is denoted by nullity (7).

Theorem 3.4: If 4 is m X n matrix and 7,: R"— R™ is multiplication by A then the
kernel of 7', is the null space of 4 and the range of 7, is the column space of 4.

Hence, nullity (7,) = nullity (4) and rank (7,) = rank (4)
From Theorem 3.4, we can conclude that

Basis for ker (7") = Basis for the Null space of 4, i.e. [T]
and Basis for R(7T) = Basis for the column space of 4, i.e. [T']
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3.7.2 Dimension Theorem for Linear Transformation

Theorem 3.5: If T: V—W is a linear transformation from a finite dimensional vector
space V to a vector space W then

rank (7) + nullity (7) =dim V'
Example 1: Let 7: R> — R? be the linear operator defined by
T(xay) = (2x =V —8x + 4y)

(1) Find a basis for ker (7).
(i1) Find a basis for R(T).
Solution: (i) The basis for ker (7) is the basis for the solution space of the
homogeneous system
2x— y=0
—Bx+4y=0 = 2x-y=0

Let y=t
1
X
1 1
{5 1[5
t 1
1
Hence, basis for ker (7) = {v,} = 2
1

(i1) The basis for the range of 7 is the basis for the column space of [T].

; 1

~ 2
-8 4
R, +8R,
; -1

~ 9
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The leading 1 appears in column 1.

Hence, basis for R(7") = basis for column space of [7']

Example 2: Let 7: R* — R® be the linear transformation given by the formula
T (x5 Xy, X5, X,) = (4x; +x,— 2x; — 3x,, 2x, + X, + x; — 4x,, 6x; — 9x, + 9x,)
(1) Find a basis for ker (7).
(ii) Find a basis for R(T).
(iii) Verify the dimension theorem.
Solution: (i) The basis for ker (7) is the basis for the solution space of the
homogeneous system
4x, +x, —2x,-3x, =0
2x,+x,+ x;—4x, =0
6x, — 9x, +9x, =0

The augmented matrix of the system is

41 -2 =30
|
21 1 -4'0
|

6 0 -9 90

Reducing the augmented matrix to row-echelon form,

1
L3
4 2 4
~l2 1 1 -4}0
|
2 0 3 3!0
R,—2R,,R, -2R,
1 1 —Elo
4 2 4!
1 :
<0 = 2 -Zlp
9 2!
I
0 ik -2 2:0
| ? % i




3.7 Kernel (Null Space) and Range of a Linear Transformation

2R,, 2R,

R, +R,
M I
A 2 2l
4 2 4
~10 1 4 5,0
1
00 0 470
1
(5)=
£ 2 .2
4 2 4
~l10 1 4 =510
|
0 0 0 110
The corresponding system of equations is
3
+—x,— —x%—=x,=0
b 4x_ 2)(3 4‘{4
X, + 4x;— 5x,=0
x,=0
Solving for the leading variables,
3
X = =y X =X,
4 27 4

x, = —4x, +5x,
Assigning the free variable x, arbitrary value ¢,
x, =4t

1 | 3
Xl = —Z(—41)+5f: Et

3 3
X — —
2 2
5
“l= —4t = —4 :l‘vI
% t 1
x4

0 0

3.27
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Hence, basis for ker (7)={v,} =1| —4

0
dimension for ker (7) = dim (ker (7)) =1

(i1) The basis for the range of 7 is the basis for the column space of [T].

4 1 2 =3
[T1=|2 1 1 -4
6 0 -9 9

Reducing [T] to row echelon form,

p £ .4 3

4 2 4

~l0 1 4 -5

0 0 0 1

The leading 1’s appear in columns 1, 2 and 4.

1| [-3
Hence, basis for R(7T") = basis for column space of [T]=<[2],| 1|,|—4
0 9

dim (R(T))=3
(iii)
rank (7)) = dim (R(T)) =3
nullity (7') = dim (ker (7)) =1
rank (7)+nullity (7) =3+1=4=dim R,
Hence, the dimension theorem is verified.

Example 3: Let 7 be a multiplication by the matrix 4 where

1 2 5
A=| 3 5 13
9 1 4

(1) Find a basis for the range of 7.
(ii) Find a basis for the kernel of 7.
(iii) Find the rank and nullity of 4.
(iv) Find the rank and nullity of T.
(v) Verify the dimension theorem.
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Solution: (i) The basis for the range of 7 is the basis for the column space of 4.

1 2 5
A= 3 5 13
] ~4

Reducing the matrix A to row echelon form,

R, -3R, R;+2R

[1 2 3
~10 -1 =2
10 3 6
(=DR,
[1 2 5
~(0 1 2
|0 3 6
R, -3R,
1 25
~[0 1 2
0 0 0
The leading 1’s appear in columns 1 and 2.
Hence, basis for R(T) = basis for column space of 4
1
= 3, S
=21 -1

dim (R(T)) =2

(i1) The basis for the kernel of T'is the basis for the solution space of the homogeneous
system

X +2x,+ 5x,=0
3x, +5x, +13x;, =0
=2x,— x,— 4x,=0

The augmented matrix of the system is

1 2 510
|

305 1310

2 -1 -410
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Reducing the augmented matrix to row echelon form,
1 2. 5,0
~lo 1 210
00 010
The corresponding system of equations is
X, +2x,+5x,=0
X, +2x,=0
Solving for the leading variables,
x, =—2x, —5x,
X, =-2x,

Assigning the free variable x; arbitrary value ¢,

x, ==2(2t)-5t=—t

X =f -1
x, |=|2t|=t| 2|=tv,
X, t 1
=1
Hence, basis for kernel (7)={v } =1 [-2

|
dim(ker (7)) =1

(i) rank (4) =dim (R(T)) =2
nullity (4) = dim (ker(7")) =1
(iv) rank (7)) =rank (4) =2
nullity (7') =rank (4) =2
(v) rank (7) + nullity (T)=2+1=3
For standard matrix 4, number of columns=n=3
Hence, dimension theorem i.e., rank (7) + nullity (7') = n, is verified.

Example 4: Let P: P, — P, be the linear transformation defined by
T(p(x)) = x p(x).

(1) Find a basis for the kernel of 7.
(i) Find a basis for the range of 7.
(iii) Verify the dimension theorem.

Solution: Let p(x)=a,+a, x + a, x?

T(p(x))=ax+ax’ +a,x’
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(i) The basis for kernel (7') is the basis for the solution space of 7'(p(x)) =0
ax+ax’+a,x =0
Comparing the coefficients of powers of x,
a,=0, a,=0, a,=0
ker (T") = {0}
Hence, there is no basis for the kernel of 7.

dim(ker(7))=0

(il) Every vector in range 7 has the form
a,x+ax’ +a,x’

Hence, the vectors x, x? and x* span the range of 7. Since these vectors are linearly
independent, they form a basis for the range of 7.

Basis for R(T) ={x, o ,\*3}
dim(R(T))=3
(iii) rank (7) = dim(R(T)) =3
nullity (7') = dim(ker (7)) =0
rank (7)) +nullity (7)=3+0=3=dimP,

Hence, the dimension theorem is verified.

Example 5: Let 7: P, — R? be the linear transformation defined by
T(a, +ax+a,x’)=(a,—a,, a +a,)

(1) Find a basis for ker (7).
(i1) Find a basis for R(T).
(iii) Verify the dimension theorem.

Solution: (i) The basis for ker (7') is the basis for the solution space of the homo-
geneous system

a,—a, =0
a,+a,=0
Let a, =t
a=-1
a,=—t
a, —t -1
a |=|—-t|=t|-1]|=tv,

a, t 1
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Hence, basis for ker (7)={v,} = {—l —-x+ xz}

(i1) The basis for the range of 7 is the basis for the column space of [T].

T_1—10
[]_o 11

The leading 1’s appear in columns 1 and 2.

Hence, basis for R(T") = basis for column space of [7']
NI
ol 1
(iii) rank (7) = dim (R(T)) =2

nullity (7') = dim (ker (7)) =1
rank (7) + nullity (T) =2 + 1 =3 = dim P,

Hence, dimension theorem is verified.

Example 6: Let T: M,, — M,, be the linear transformation defined by

7 a b . a+b b+c
¢ d|) |a+d b+d
(i) Find a basis for ker (7).

(i) Find a basis for R(T).

Solution: (i) The basis for ker (7) is the basis for the solution space of the

homogeneous system
a+b b+c 3 0 0
a+d b+d| [0 0

Equating corresponding components,

a+b

b+c

Il

a+
b+

(=R e i 2 =

QU X
Il

The augmented matrix of the system is

S O = O
—_— - O O

O = O
—_— O = =
S O o O
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Reducing the augmented matrix to row echelon form,

R3_RI

(1 1.0 010]
0 1 100
“lo -1 0 110
0 1.0 110]
R+R,R,~R,
[1 1 0 0}0]
01 1000
loo 1110
0 0 -1 110
R, +R,
11000
01100
oo 1 110
000 210
)

7 )

1 1000
011000
looo 1 1i0
000 110

The corresponding system of equations is
a+b =0
b+c =0
c+d=0
d=0
Solving these equations, a=0,b=0,c=0,d=0

[0 0
ker(T):{ 0 O:|}

Hence, the kernel of 7 has no basis.

(ii) [e b\ [a+b b+c
¢ d|) |a+d b+d
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o R R

This shows that each vector in R(7) is the linear combination of four independent
matrices.

e =1 5 1o o}

Example 7: Let I be the vector space of all symmetric 2 x 2 matrices and
Let 7: W — P, be the linear transformation defined by

[a b] 5
i =(@a-b)+(b—-c)x+(c—a)x
b ¢

Find the rank and nullity of T.
Solution: The nullity of 7'is easier to find directly than the rank. To find ker (7),

[a b] ’
T =(a-b)—(b-c)x+(c—a)x =0
b ¢

Equating corresponding coefficients,

a—-b=0

b—c=0

c—a=0
Hence, a=b=
Let a=b=c=

(-
|} ]
|

1
Hence, basis for ker (T) = {v,} { :|

dim (ker (7)) =1
nullity (7) =1
We know that
rank (7') +nullity (7)=dim W =3
srank (T)=3-1=2

3.7.3 One-to-one Transformation

Let Vand W be two vector spaces. A linear transformation 7 : V' — W is one-to-one if
T maps distinct vectors in ¥ to distinct vectors in .
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A one-to-one transformation is also called injective transformation.

P

(i) T is one-to-one (i) T is not one-to-one
Fig. 3.7

Theorem 3.6: A linear transformation 7 : V' — W is one-to-one if and only if
ker (T) = {0}.

Theorem 3.7: A linear transformation 7 : V' — W is one-to-one if and only if
dim (ker (7)) =0, i.e., nullity (7") = 0.

Theorem 3.8: A linear transformation 7 : V' — W is one-to-one if and only if
rank (7)) = dim V.

Theorem 3.9: If 4 is an m X n matrix and 7,: R* — R™ is multiplication by 4 then
T, is one-to-one if and only if rank (4) = n.

Theorem 3.10: If 4 is an » x n matrix and 7,: R — R" is multiplication by 4 then
T, is one-to-one if and only if 4 is an invertible matrix.

3.7.4 Onto Transformation

Let V and W be two vector spaces. A linear transformation 7 : /' — W is onto if the
range of T'is W, i.e., T'is onto if and only if for every w in ¥, there is a v in V such that
T(v) = W. An onto transformation is also called surjective transformation.

T
[ o
range (T)
[ ®
% w
(i) T is onto (i) T is not onto

Fig. 3.8

Theorem 3.11: A linear transformation 7 : V' — W is onto if and only if
rank (7) = dim W.

Theorem 3.12: If 4 is an m x n matrix and 7,: R" — R™ is multiplication by 4 then
T, is onto if and only if rank (4) = m.
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Theorem 3.13: Let 7: V' — W be a linear transformation and let dim V' =dim W

(i) If T'is one-to-one, then it is onto.
(i) If T'is onto, then it is one-to-one.

3.7.5 Bijective Transformation

If a transformation 7' : V' — W is both one-to-one and onto then it is called bijective
transformation.

3.7.6 Isomorphism

A bijective transformation from ¥ to W is known as an isomorphism between V" and W.

Theorem 3.14: Let V' be a finite dimensional real vector space. If dim (V') = n, then
there is an isomorphism from /' to R".

Theorem 3.15: Let J and W be a finite dimensional vector spaces. If dim (V) =
dim (W) then V and W are isomorphic.

Example 1: In each case, determine whether the linear transformation is one-to-
one, onto, or both or neither.

(i) T:R>—R>  where Tx,y)=x+y,x—y)
(i) T:R*— R, where Tx,y)=@x—y,y—x,2x—2y)
(i) 7:R*— R?, where Tx,y,z) =(x+y+z,x—y—2z)
(iv) T:R*—> R, where T(x,y,z)=(x+3y,y,z+2x)
Solution: (i) (a) A linear transformation is one-to-one if and only if ker (7) = {0}
Let Tx,y)=0
(x+yax_y) = (0> O)

x+y=0
x-y=0
Solving these equations,
x=0
=0

y

X 0

y 0
ker (T') = {0}

Hence, T is one-to-one.

(b) A linear transformation is onto if R(T) = W
Let v = (x, y) and w = (a, b) be in R?, where a and b are real numbers such that

T(v)=w. T(x,y)=(a,b)
(x+y,x—y)=(a,b)
x+y=a

x—-y=b
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Solving these equations,

a+b
x:
2
_a-b
S

Thus, for every w = (a, b) in R?, there exists a v = (a +b i a— b] in R2.
Hence, T is onto. 2 2

(i) (a) Let Tx,»)=0
(x—=y,y—x,2x-2y)=(0,0,0)

x—y=0

y—x=0

2x=-2y=0

SLX=Y

Let y=t
xX=1

e
= —% 1

y t 1
ker (T) # {0}

Hence, T is not one-to-one.

(b) Letv={(x,y)bein R*>and w=(a, b, ¢) be in R*, where a, b, c are real numbers such

that T(v) = w. T(x,y)=(a, b, c)
(x—y,y—x,2x=-2y)=(a, b, c)
X—y=a

y—x=b = x-y=-b

2x-2y=c = x—yz%
ca=-b=2<
2

Thus, T'(v) =w only when a=-b= E, not for all values of a, b and c.
Hence, T is not onto. -

(ii1) (a) Let T(x,y,2)=0
x+y+z,x—y—2)=(0,0)

x+y+z=0

x=y—-z=0

Solving these equations,
x=0
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Let z=t

X 0 0
y|=|-t|=¢-1
z 1 1
ker (T") # {0}
Hence, T is not one-to-one.

(b) Letv={(x,y,z)bein R*and w = (a, b) be in R?, where a, b are real numbers such

that 7(v) = w.
T(x,y,z)=(a,b)

(x+y+z,x—y—2z)=(a,b)

x+y+z=a
x—y—z=b
Solving these equations,
a+b
T
Let z=t
_a-b-2t
P
Thus, for every w = (a, b) in R?, there exists a v = (a b ,w ,t) in R%,
Hence, T is onto. 2
(iv) (a) Let T(x,y,2z)=0
(x+3y,y,z+2x)=(0,0,0)
x+3y=0
y=0
z+2x=0
Solving these equations,
x=0
y=0
z=0
X 0
3 =
z |:0
ker (7') = {0}

Hence, T is one-to-one.

(b) Letv=(x,y,z)and w=(a, b, ¢) be in R, where a, b, c are real numbers such that
T(v)=w. T(x,y.2)=(a, b, c)
(x+3y,y,z+2x)=(a, b, c)
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x+3y=a
y=>b
z+2x=c
Solving these equations,
x=a-3b
y=b
z=c—2a+6b

Thus, for every w = (a, b, ¢) in R?, there exists a v = (a—3b,b,c —2a+ 6b) in R%.
Hence, T is onto.

Example 2: In each case, determine whether multiplication by 4 is one-to-one,
onto, both or neither.

1 2 1 il
G A=| 2 -4| @) 4=|4 2| i) 4=[0 1 1
36 SIS 1 1 0
-2
Solution: (i) A= 2 -4
-3 6

Reducing the matrix A to row echelon form,

R,—-2R, R,+3R

1 =2
~[0 0
0 0

rank (4) = number of non-zero rows = 1
= 2, (number of columns)
Hence, 4 is not one-to-one.
Also, rank (4) = 3, (number of rows)
Hence, A4 is not onto.

1 5
(ii) A=|4 =2
5 3

Reducing the matrix A to row echelon form,

R,—4R, R, —5R
i1 3
~l0 —22

0 22
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R,—R,
(15
~l0 =22
i 0
1
‘E)Rz
(15
~10 1
10 0

rank (4) = number of non-zero rows
=2 (number of columns)
Hence, 4 is one-to-one.
Also, rank (4) = 3 (number of rows)
Hence, 4 is not onto.

1
(iii) A=]0
I

R.‘»_Rl

(1 0 1]
~10 1 1
10 1 —1]
R, - R,

(1 0 1]
~l0 1 1
10 0 2]
e
(1 0 1
~10 1 1
10 0 1

rank (4) = number of non-zero rows
= 3 (number of columns)
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Hence, 4 is one-to-one.
Also, rank (4) = 3 (number of rows)
Hence, 4 is onto.

Example 3: In each case, determine whether the linear transformation is
one-to-one, onto, both or neither.

(i) T: P, — P,, where T(a, + a, x + a, x*) = (a, + a,) + (a, + 2a,)x
(ii) T: P, > P,, where T(a,+ ax + a, x*) =a,+a, (x + 1) + a, (x + 1)?
(iii) T: R* — P,, where T(a, b)=a + (a + b)x

2a—-b
(iv) T: P, — R®, where T(a+bx+cx’)=|a+b-3c
c—a

Solution: (i) (a) Let T(a,+ ax+a,x*)=0
(ag+a)+(a,+2a)x=0

a,+a, =0
a,+2a,=0
Let a, =t
1
a=——t
2
1
00_51‘
1 1
2 2
a() 1 1
a |=|-=t|=t|-=
2 2
& t I
ker (T") # {0}

Hence, T is not one to one.
(b) dim (ker (7)) =1= nullity (T)
From the dimension theorem,
rank (7) = dim P, —nullity (7')
=3-1 ~
=2
Dimension of W (P,) = 3.

rank (7") # dim W
Hence, T is not onto.
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(i) (a) Let T(a, +ax+a,x’)=a,+a(x+1)+a,(x+1)> =0
ie., a,+ax+a +a,x’ +2a,x+a, =0
(a, +a,+a,)+(a +2a,)x+a,x’ =0
a,+a,+ a,=0

a,+2a,=0
a,=0
Solving these equations, G
0
a, =
a, =
a, 0
a =0
a, 0
ker (T') = {0}

Hence, T is one-to-one.
(b) dim (ker (7)) = 0 = nullity (7
From the dimension theorem,
rank (7') = dim P, —nullity (7')
=3-0
=3
Dimension of W (P,) = 3.
sorank (7)) =dim W

Hence, T'is onto.

(iii) (a) Let T(a,by=a+(@+b)x=0
a=0
a+b=0

Solving these equations,

ker (T) = {0}

Hence, T is one-to-one.
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(b) dim (ker (7)) = 0 = nullity (T)
From the dimension theorem,

rank (7) = dim R* —nullity (T)
=2-0
=2

Dimension of W (P,) =2.

rank (7) =dim W
Hence, T is onto.

(iv) (@) LetT(a+bx+cx?) =0

2a-b 0
a+b-3c|=|0
c—a 0
2a-b=0

a+b-3c=0
c—a=0
b
azzzc
Let c=t
b=2t¢
a=t
a 14
bl=|2t|=t|2
c t 1
ker (T") # {0}

Hence, T is not one-to-one.

(b) dim (ker (7)) = 1 = nullity ()
From the dimension theorem,

rank (7') = dim P, —nullity (7')
=3-1
=2
Dimension of W (R%) = 3.

rank (7') = dim W
Hence, T is not onto.

3.43
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Example 4: In each case, determine whether linear transformation is
one-to-one, onto, both or neither.

(a b)) [d -b
(i) T:M,,— M,,, where T = ]

le ¢l =2 @
o (a b] [2d 0
@ity T:M,,—> M,,, where T . = 5

= = a+b

b

Gii)y T M, - R, where T||° ][

c

B ~ |etd

Solution: (i) (a) Let T [a b]]zo

c d
d -b i 0 0
|—¢ a 10 0
d=0
-b=0=b=0
—c=0=c¢=0
a=0
a 0
b 3 0
c|l |o
d 0
ker (T) = {0}

Hence, T is one-to-one.
(b) dim (ker (7)) =0 =nullity (7)
From the dimension theorem,
rank (7') = dim M,, —nullity (7')
=4-0
=4

Dimension of W (M,,) =4
s rank (7) =dim W

Hence T, is onto.
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(ii) (a) Let T([” bD:o
c d
2d 0] [0 0
0 o] [0 o0

2d =0
fd=0
Let a=t,
b=t,
c=1

al [ 11 [o] [o

bl 6| [o| |1] o

AR

dl o] o] o] o

= ker(T) # {0}
Hence, T is not one-to-one.

(b) dim (ker (7)) = 3 = nullity (7)
From the dimension theorem,
rank (7') = dim M,, —nullity (7')
=4-3
=1
Dimension of W (M,,) = 4.

s rank (T) = dim W
Hence, T is not onto.

(i) (a) Let T([Z ZD:O

a+b 0

b+c|=]0

c+d 0
0
0

Let d=t

3.45
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a

b t 1
= —

C ~t -1

d t 1

ker (7') # {0}
Hence, T is not one to one.
(b) dim (ker (7)) = 1 =nullity (T)
From the dimension theorem,
rank (7") = dim M,, —nullity (7')
=4-1
=3
Dimension of W (R*) = 3.
sorank (T) =dim W

Hence, T is onto.

3.8 INVERSE LINEAR TRANSFORMATIONS

If T:V — Wis a linear transformation then the range of T is the subspace of W
consisting of all images of vectors in ' under 7. If T'is one-to-one then each vector w
in R(T') is the image of a unique vector u in V. Hence, inverse linear transformation
T-': W — V maps w back into v.

Theorem 3.16: If 7', : U — Vand T, : V' — W are one-to-one transformations, then
(i) T,oT, is one-to-one.
(i) (of)' =1"oT;"

The standard matrix of the inverse of a composition is the product of the inverses of

the standard matrices of the individual operators in the reverse order.

Example 1: Let 7: R* — R be the linear operator defined by the formula
T (36, X5, X3) = (06, — X, + X5, 2%, — X5, 2%, + 3x,)
Determine whether 7 is one-to-one. If so, find 7! (x,, x,, X;).
Solution: The standard matrix of T is
1 -1 1
[T1=10 2 -1
2 3 0
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1 -1 1
det[T]=|0 2 -1
2 3 0
=10+3)+1(0+2)+1(—4)
=3+2-4
=1#0
Hence, the matrix is invertible and 7 is one-to-one. The standard matrix of 7! is
found by elementary row transformation.
Consider, [T]1=1][T]
-1 1] [1 0 0
0 2 -1|=|10 1 0|[T]
2 3 0] [0 0 1

0 2 -1|=| 0 1 o1

1 -1 11 [1 00
1 1

0 1 —=[=[ 0 = or
5 5 (7]

0 5 -2 |2 01

R +R,, R,—5R,

1o L L
2 3

o 1 -1l o L ol
2 2

00 L |2 -2

i 2] L 2

2R,

1o L 1 Lo
2 2
1 1

01 —=[=| 0 = ol
2 2

00 1] |4 -5 2
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R, +%R3, R —%R;
1 00 3 3 -l
0 1 O0f=|-2 =2 1|[T]
0 0 1 -4 -5 2
33 -1
(rT'1=[11"'=1-2 =2 1
-4 -5 2]
X, X, 33 ~1|| x 3x, +3x, —x,
' x [[=077"x |=| 2 =2 1|x|=] 2x-2x,+x,
X, X, -4 =5 2||x]| |—4x-5x,+2x,

Expressing in horizontal notation,

T7'(x,, X,, X;) = (3x, +3x, —x;, —2x, = 2x, + X;, —4x, — 5x, + 2x,)

Example 2: Let 7: R* — R® be a multiplication by 4. Determine whether 7 has

X, 14
aninverse. If so, find 77'[| x, || where 4=| 1 2 1
%, 110
1 4 -1
Solution: det(A)=| 1 2 1
-1 1 0
—1(0—=1)—40+1)—1(1+2)
—_1-4-3
=-8%£0

The matrix 4 is invertible. Hence, 7 has an inverse.
The inverse can be found by elementary row transformation.

Consider, A=14

1 4 —-1] [1 0 0O

1 2 1|=|0 1 0|4
-1 1 0f |0 0 1
R,—R,R,+R
(1 4 —1] 1 00
0 -2 2|=|-1 1 0]4
10 5 -1 1 0 1
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1
J
J

1. 1 3 1 3

= O Tz —x1+ X5 —X3
IR R

Tl | [ | = & =|lml=]| Ssd—mitrn

’ ’ 8 8 4| 8 47
i % 3 5 1% 3 I

== = = =itk Kb

| 8 8 4] 8 47 ]

Example 3: Let 7, : R> > R* and T, : R> — R® be the linear operators given by
the formula

Ty ()= +y,x-y)and T, (x, ) = (2x +y, x = 2y)
(1) Show that 7, and 7, are one-to-one.
(i1) Find formulas for T;"(x, y) and Tz"(x, v) and (7, 07])'1()5, ).
(iii) Verify that (T, oT)" =T o T;".
Solution: (i) 7, and T, are one-to-one if ker (7,) = {0} and ker (T,) = {0}
Ti{x, yt=(x+y,x-y)=(0,0)

x+y=0
x—y=0

Solving these equations,

x=0

y=0.
X 0

WEl

s ker (7)) = {0}
T,(x,y)=(2x+y,x—2y)=(0,0)

2x+y=0
x-2y=0

Solving these equations,

Hence, 7, and 7, are one-to-one.

(i1) The standard matrix of 7| is
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The standard matrix of 7,' is

1 1
" g 1{-1 -1 2 2
Tl __T L __ .. 5% —
[7]=17] 2[_1 1] 1
2 2
1 1 1
ik —X+t=),—X——
(x,») (2x Sl Zy)
The standard matrix of 7, is
(7= 2 1
2211 <2
The standard matrix of T
2 1
1[-2 -1]_[5 5
T T. —— =
m-emr -4 HS
5 5
2 1 1
T)_] > =|l=-x+-= s -
(x,») (5x e Sy)
(iii) (T.oT)=[T.][T] 2 |1 1 3 1
111 , 0 =\1, =) =
2 S 1 2|1 -1| |~1 3
[ERR
_ 10 10
T, oT]'=
[7,°T] 1
L10 10
3 1 1 3
T,oT)'(x,y)=| =x—-—yp, —x+—
(Lo L) @ )= 1577167 10 1oy)
(112 1
T_IOT,_]:T_ln_I: 2 2 5 5
Lo =[0][7] Lo 2
22 2115 S
(3 1
_|10 10
1 3
L10 10




3.52 Chapter 3 Linear Transformations

Exercise 3.2 1

1. Let 7: R?> = R? be the linear transfor-
mation defined by

T'(x,y)=(x,0)
(1) Which of the following vectors
are in ker (7)?

(@ (0,2) (b) (2,2
(i) Which of the following vectors
are in R(7)?

(@ 3,00 (b 5,2
(iii) Find ker (T).

(i1)) Find a basis for ker (7).
Ans.: @){ (1,1, 0,1,2)}
(IL){ (2111_11 O)r (1,2, Oll)}

4.Let T : R* — R* be the linear transfor-
mation defined by

T(x,y,z2)=(x+y+z x+2y-3z,
2x+3y—2z,3x+4y—2).

(1) Find a basis and the dimension for

R(T).
(iv) Find R (7). RO o
(i1)) Find a basis and the dimension for
Ans.: (i) (a) ker (7).

(i1) (a)
(i) {(0, x)}
(iv) {(x, 0)}

Ans: ({(1,2,3),0,1,1,1)},2
{54,111

5. Let 7 be a multiplication by the matrix

A wh
2. Let T: R* — R be the linear transfor- where
mation defined by 2.0 =1
T(x,y,2)=(x+2y—z, A=|4 0 -2
y+z,x+y-2z) 00 0

(i) Find a basis and the dimension for
the range of T.

(i1) Find a basis and the dimension for
the kernel of 7.

(ii1) Verify the dimension theorem.
Ans.: ©{¢0,1), 0,1,-1},2
@{e6,-1,1},1

3.Let T: R* = R be the linear transfor-
mation defined by

T (5% Xy5:25)
=05 — Xy X, + X X+ 20— X,

X, +x, +3x; = 3x,)

(1) Find a basis for R(T).

(i) Find a basis for the range of 7.
(i1) Find a basis for the kernel of T.
(iii) Find the rank and nullity of 7.
(iv) Find the rank and nullity of 4.

1
Ans.: (i)|2
O_
lﬂ
2110
(i) 01,] 1
1| [0
(iii) Rank (7)) = 1, nullity (7) =2
i (iv) Rank (4) =1, nullity (4) =2 |



6. Let 7: P, = P, be the linear
transformation defined by

T(ax*+bx+c)=(a+c)x*+(b+c)x

(1) Find a basis for ker (7).

(i1) Find a basis for the range of 7.
Ans.: (1) {-xz -x+ 1}

(i1) {xz, x}

7. Determine whether any of the fol-
lowing vectors are in the range of

ol
HHRHR

i) To
)
[Ans. : (i1) and (iv)]

8. Let P: M,, — M,, be the linear
transformation defined by

(B /S

(i) Determine whether any of the
following matrices are in ker (7).

@ 111 ® [1 -1
-

© M 1] @Wri1 -
|

(i) Determine whether any of the
following matrices are in R(T).

@ 11 ® T1 0
d ol
© TJo 1 @ 3 o
oo

[Ans.: (i) (b) and (d) (ii) (b) and (d)]
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9. Find the rank and nullity of the given
linear transformations and determine
whether T is one-to-one or onto.

(1) T:R*— R* where
T(x,y)=(x,x+y)
(ii) T: R®> — R? where
Tx,y,z)=(x—2z,z—Y)
(iii) 7': R* > R?, where
T(x,y)=(x+y,2x+y,x)
(iv) T:R*— R',where T(x,y,2z)=0
(v) T:P,— P,, where
T(ay+ax+ax?) =a,x
(vi) T:P,— P,, where
T(ay+ax+ax®)=0
(vii) T: P, — P,, where
T(ay+ ax + a,x?)
=(a,—a) X’ + (a, —a,) x
(viii) T: M,, — M,,, where

T (a b] 3 a+b 0
| c d] 10 c-d
(ix) T:M,, — R', where
0 b1
T[ ]:b+2c‘—3d

c d

(x) T:P,— M,,, where

’ a 2b]
T(ax"+bx+c)=

0 a|

(xi) T: R* > M,,, where

a-b b-c]
I(a,b,0)= a+b b+c

[Ans.: (i) nullity (7) = 0,

rank(7) = 2,

one - to - one and onto
(i) nullity () =1,

rank(7') = 2,

not one - to - one but onto
(iii) nullity (7) =0,

rank(7)= 2,

one - to - one but not onto |
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[ (iv) nullity (7) =3, ]

1 -1 1
rank(7") =0, i) A4=(0 2 -1
neither one-to-one nor onto 2 3 0
(v) nullity (T") = 2,
rank(7") =1, )
neither one-to-one nor onto Ans.:

(vi) nullity (7') = 3, (i) [ 11 1 ]
rank(7') =0, 9 & 2 ot ) e
neither one-to-one nor onto 1 1 1

(vii) nullity (T) =1, TRty n
rank(7") = 2, e e
neither one-to-one nor onto | 2 2 2

(viii) nullity (T) = 2, (D[ 3% +3%, —x3
rank(7') = 2, —2x1—2x +x3
neither one-to-one nor onto —4x; —5x3 +2x3

(ix) nullity (7)) =3,

rank(T) =1, 11. LetT,: P, > Pyand T, : P, = P, be
nokenzdozone Buk onto the linear transformations defined by
(x) nullity (7) =1, T,(p(x)) = x p(x) and T, ( p(x))
rank(7) = 2, = LT
neither one-to-one nor onto o
(xi) nullity (T) = 0, (i) Find formulas for
rank(7) = 3, I (p(x), T, (p(x)) and
one-to-one but not onto. | (T, o T) " (p(x)).
(ii) Verify that (7,o7,)" =7, oT;".
10. In each case, let R* — R* be a multi- B )
X [Ans. H &; p(x-1); p(x_—l)}
plication of 4, Find 77'| | x, | |- * *

X3 12. Let T: P, — R be the function def-
ined by
1 0 1
i) A=|0 1 1 T(p(x)) = (p(0), p(1)
a Lo (i) Find T(1 - 2x).

(i) Show that 7 is one-to-one.
(iii) Find 771 (2, 3).
[Ans.: (1) (1,-1) (iil)) (2 +x)
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3.9 THE MATRIX OF A LINEAR TRANSFORMATION

Let T: V' — W be a linear transformation of an n-dimensional vector space V' to an
m-dimensional vector space W (n # 0 and m # 0) and let S|, = {v,, v,,..., v,} and
S, ={w,, W,,..., w,} be bases for " and W respectively.

If A be the standard matrix of this transformation then

A=[IT I I |- | T, |
satisfies AV = [T(v)]S: ...(34)

for every vector v in V.

where [v] and [T'(v)]g, are the coordinate vectors of v and T'(v) w.r.t. the respective
bases S, and S,. The matrix 4 in Eq. (3.4) is called the matrix of 7 w.r.t. the bases S,
and S,. Figure 3.9 gives the graphical interpretation of Eq. (3.4).

[ —— )
My, — AV =TV
Fig. 3.9

The matrix of a linear transformation 7': '— Ww.r.t. the bases §,= {v,, v,, ..., v,} and
S, ={w,, W,,..., w,} for VVand W, respectively is calculated as follows:

Step 1: Calculate T(vj) forj=1,2,...,n.
Step 2: Find the coordinate vector [T(v,)]s w.r.t. the basis S, by expressing 7'(v) as
a linear combination of the vectors in S,.

Step 3: The matrix 4 of T w.r.t. the bases S, and S, is formed by choosing [T (VV,»)]

S5
as the j column of 4. ’

A=[IT) TV |- T v )0, |
The matrix 4 is denoted by the symbol [T']; .
[T)s, s =[ [T | (TN - 1T, ), ]
and [T, 5[Vl =[T(W)];,

3.9.1 Matrices of Linear Operators

If T: V — Vis a linear operator and S, = {v,, v,,..., v,} is the basis for /' then the
matrix of the linear operator is

(71, =[r vl | T |- T, )

and [T [v]; =[T(V)];
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3.9.2 Matrices of Identity Operators

For identity operator / : V' — V, the matrix w.r.t. basis S, = {v,,v,, ..., v, } isthen X n
identity matrix,

ie. ], =1
and 15 [v]s, =LV, =[vI;

Theorem 3.17: If T: R" — R" is a linear transformation and if S, and S, are the standard
bases for R” and R” respectively then

[T, 5, =[]

i.e., the matrix of 7' w.r.t. the standard bases is the standard matrix of 7.

Example 1: Let 7: R? — R® be the linear transformation defined by

X,

25
T =('=5x +13%;
x

&/ 6

Find the matrix of the transformation 7' w.r.t. the bases S, = {v,, v,} for R* and
S, = {w,, w,, w;} for R®, where

1
3 5
vi=|. Lv,=|_|,w,=| O,w,=]| 2|,w,=]1
l 2 1 2 2

Solution:

—
i

T(v,):T(ﬁ =|-53)+13(1) |=| -2
Yo =13 +16() | |5

2 2

T(v3)=T(B =[-55)+132) |=| 1
Vo165 +16(2) | | -3

Expressing these vectors as linear combinations of w,, w, and w;,

T(v))=kw, +k,w,+kw,

1 I =1 0 k=
2|=k| O|+k| 2|+k|1|=] 2k +k,
-5 ] 2 2| |-k, +2k, +2k,
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Equating corresponding components,
k— ik, = ]
2k, + by =-2
—k, + 2k, + 2k, =5
Solving these equations,

=1,k =0k=-2

T(v))=w,—2w,
1
(T(v)]s, =| O
-2

T(v,)=kw, +k,w,+kw,

2 1 ~1 0 k —k;
L{=k| O|+k,| 2|+k| 1= 2k, +k,
-3 ~1 2 2] |~k +2kA+2k

Equating corresponding components,
k= .k =2
2k;4 k=1
—k, + 2k, + 2k, =3
Solving these equations,
k=3 k=1k=-1
T(v,)=3w, +w, —w,
3
Vugk: 1
-1

The matrix of the transformation w.r.t. the bases S, and S, is

1 3
(71, = [T (T |=| 0 1
2 -

Example 2: Let 7: R® — R® be the linear transformation defined by
Tx,y,2)=(x+2y+2z,2x—y,2y+2)

3.57
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Find the matrix of transformation 7" w.r.t.
1 S, @i S,andS, (i) S,andS, (iv) S,

where S, ={1,0,0), (0, 1,0), (0,0, )} ={v,, v,, v;}
and S, ={(1,0,1),(0,1,1),(0,0, D} ={w,, w,, w,}

Solution: (i) T(x,y,z2)=(x+2y+2z2x—y,2y+2)

Since S, is the standard bases for R?, the matrix of 7 w.r.t. S| is the standard matrix

of I. (7], =IT]
1 2 1
=2 -1 0
0 2 1
(i1) T(V])=T(1, 0,0)=(1,2,0)

T(v,)=T7T(0,1,0)=(2,-1,2)
T(v,)=T7(0,0,1)=(1,0,1)

Expressing 7'(v,) as linear combinations of w,, w, and w,
T(v))=kw, +k,w,+kw,
(1,2,0)=k,(1,0,1) + k,(0,1,1) + k,(0, 0, 1)
= (k, ky, by + K, + k)

Equating corresponding components,

k, =1
k, =2
ki +k,+k;=0

Solving these equations
ky=1,k=2k=-3

T(v,)=w,+2w, —3w,

[T(vl)]sz =| 2
-3

Expressing 7'(v,) as linear combinations of w,, w, and w,

T(v,)=kw, +kw,+kw,
(2,-1,2)=k/(1,0,1)+k, (0,1, )+ £,(0, 0, 1)
=k ky, k, +k, + k)
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Equation corresponding components,

k, = 2
ky =-1
ky+k,+ky,= 2

Solving these equations,
k=2,k=-1,k=1
T(v,)=2w,—-wW,+Ww,
2
[T(vz)]sz =|-1
|
Expressing 7'(v;) as linear combinations of w,, w, and w,
T(vy)=kw, +k,w, +kw,
1,0,1)=k1,0,1)+k,(0,1,1)+ k;(0, 0, 1)
=k, ky, b+, + k)

Equating corresponding components,

k, =1
k, =0
ki +k,+ky=1

Solving these equations,

k=1,k=0k=0

T(vy)=w,
1
[T(vy)];, ={0
0
Thas, Tl =[O0k | Tl | T |
1 2 1
=[2 -1 0
-3 10

(iii) Since S, is the standard bases for R*,

[T(w)]s =[T(w))]
[T(wz)]sl =[T(w,)]
[T(w))], =[T(w))]
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T(w,)=T(1,0,1)=(2,2,1)
T(w,)=T(0,1,1)=(3,-1,3)
T(w,)=T(0,0,1)=(1,0,1)

Thus [Tl 5, =[[TOw)], | [T, | 7wl |

2 3
=2 -1 0
31

(iv) Expressing 7 (w,) as linear combinations of w,, w, and w,
T(w)=kw, +k,w, +kw,
(2,2,) =k 1,0,1)+k,(0, 1, 1)+ £,(0, 0, 1)
= (k kb + ko, +K3)

Equating corresponding components,

k, =2
k, =2
ky+ky,+ky =1

Solving these equations,
ky=2,k,=2,k;=-3
T(w,)=2w,+2w, —3w,
2
[Hwﬂ&: 2
=3
Expressing 7(w,) as linear combinations of w,, w, and w,,
T(w,)=kw, +k,w,+kw,
3, -L3)=k(1,0,1)+£k,(0,1,1)+ 4, (0,0, 1)
=(k, ky, k, +k, +k;)

Equating corresponding components,

k, = 3
ks =-1
ki +k,+k,= 3

Solving these equations,

k=3, k=-1k=1
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T(W,)=3w,—W, +W,
3
[T(wz)].s: ol
1

Expressing 7T'(w,) as linear combinations of w,, w, and w;,

T(wy)=kw, +k,w, +kw,
(1,0,1)=k (1,0,1)+4,(0,1,1)+ £, (0, 0, 1)
=(k, ky, ky + k, + k3)

Equating corresponding components,

k, =1
k, =0
ki +hk,+ k=1

Solving these equations,

k=1,k=0k=0

T(w,)=w,
1
[T(Ws)]sz =10
1 0
Thus, [T, =[ (7wl | o)l | (7wl |
[ 2 3 1
=2 -10
-3 10

Example 3: Let T: P, — P, be the linear operator defined by
T(p(x) =p(2x +1)
ie, T(ag,+ax+ax’)=a,+a, 2x+1)+a,(2x+ 1)

(1) Find [T]; w.r.t. the basis S = {1, x, x*}.
(i) Compute 7(2 — 3x + 4x?).

Solution: (i) T(a,+ax+ax’)=a,+a, Qx+1)+a,(2x+ 1)
T)=1
T(x)=2x+1=1+2x
T(xz) =2x+1)? =4x* +4x+1=1+4x+4x
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Since S is the standard basis,

1

1 1
[TM)], =[TW1=[0], [T®)],=[T=|2|, [TE)];=[TG*)]=|4
0 0 4

Thus, [T =[ [T | [T | (TG ]

Il
S O -
(=R S,
B

(i) The coordinate vector relative to S for the vector p =2 — 3x + 4x? is

[pls =|-3

[7@-3x+4x") ], =[T®)]; =[T);[p]s

1 1 1f 2 3
=({0 2 4||-3|=]|10
0 0 4 4 16

T(2-3x+4x*)=3+10x+16x".

Example 4: Let T: P, — P, be the linear transformation defined by

T(p(x)) =x p(x)

(i) Find the matrix of 7' w.r.t. the bases
S ={v;, v,} and S, = {w,, w,, w;}
wherev, =1, v,=x,w,=x+ 1, w,=x—1, w, =x%

(i1) If p(x) = 3x — 2, compute 7'(p(x)) directly and using matrix obtained in (i).
Solution: (i) T(p(x)) =x p(x)
T(vp)=T=x1=x
T(v,)=T(x)=x-x= X
Expressing 7'(v,) as linear combinations of w,, w, and w,
T(v,)=kw, +k,w,+kw,
x=k(x+D)+k (x=1)+k(x*)
= (k, —k,) + (k, + k) )x + kX
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Equating corresponding components,

ki—k, =0
k+k =1
k=0
Solving these equations,
k, =l,k, =l,k3 =0
20 27T
1 1
T(v,)= Ewl +Ew2

4
2
1
[T(V] )]s1 e
0

Expressing 7'(v,) as linear combinations of w,, w, and w,

T(Vz) = klwl + klwl + k3w3
X' = kl(,\‘+l)+k2(x_1)+k3(x2)
= (k, —k,) + (k, + k,)x + ke, x*

Equating corresponding components,

ki—k, =0
ki+k =0
k=1

Solving these equations,

ky =0,k =0,k=1

T(v,)=w,

0

[T(VZ)]S_, =10
1

Thus, [Tl 5 =[(TO)I, (Tl ]

3.63
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o= N~

(ii)) Direct computation

T(p(x)) = x p(x) = x(3x—2) = 3x* - 2x
Computation using matrix obtained in part (i):
The coordinate vector relative to S, for the vector p(x) =3x -2 =-2+3x s

[p(0)],, = [_ﬂ

[TGx-2)], =[T(p()], =[T1 5 [P,

Il

I

TBx—-2)=(-D(x+D+(=D(x—-1)+3x’
=—x—1-x+1+3x’

=3x*—2x

Example 5: Let T: M,, —» M,, be defined by T(4) = A”. Let

s=llo oo o102 oo °)
s 5= o 5 o3 06 Ol

be bases for M,,. Find the matrix of 7w.r.t S, and S,.

Solution: LetS, = {v,,V,, v,,v,} and S, = {w, w,, w,, w,} be the bases for M,,.

.1 o . oo .o
I'(v)=(v,) = 0 0 T(vy)=(v,) = 1 o JT(vy)=(vy) = 0 ol

~ o o
T(V4)=(V4) =[0 1:|
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Expressing 7'(v,) as linear combinations of w;, w,, w; and w,,

T(v,)=kw, +k,w,+kw,+kw,
1 0 1 1 0 1 00 1 0
=k, +k, +ky +k,
0 0 0 0 0 0 1 1 0 1
k, k, 0 k, 0 0 k, 0
= + |+ +
0 0 00 ky Kk, 0 k,

| k+k, Ktk
|k Ktk

Equating corresponding components,

k, +k, =1
k, +k, =0
ks =0
ky+k,=0

Solving these equations,

Expressing T'(v,) as linear combinations of w,, w,, w, and w,,

T(V2)=k,w,+k2w2+k3w3+k4w4
0 0] [k+k, K+k,
1 o] | & k+k,

Equating corresponding components,

ke, + k,=0
k, +k, =0
ky =1

ky+k, =0
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Solving these equations,
k=Lk,=-Lk=1k =-1
T(V,)=W,—W,+W,—W,
1

Vwﬂ$=_1
=1
Expressing 7'(v;) as linear combinations of w;, w,, w; and w,,
T(vy)=kw, +k,w, +kw,+kw,

0 1] [k+k, k+k,
0 0] | k  k+k,

3

Equating corresponding components,

k, + k,=0
k+ K, =1
k, =0
ky+k, =0

Solving these equations,

k =0k, =1,k =0,k =0

T(vy)=w,

0

1

[T(v3)]53 = 0
0

Expressing 7'(v,) as linear combinations of w,, w,, w; and w,,

T(v,)=kw, +k,w,+kw, +kw,
0 0] [k+k, k+k
0 1| | k k+k

Equating corresponding components,

k+ k,=0
k+ k, =0
k, =0

k+k, =1
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Solving these equations,

ky ==Lk, =1,k =0k, =1
T(v,)=-w,+wW,+w,
-1

1
[T(v-‘)]S:: 0
1
Thus, [Tl s, =[ [T [T [ Tl | T (v, |
1 1 0 -1
3 -1 -1 1 1
o 10 o0
0 -1 0 1

1 —1 I 3
Example 6: Let v, = |:3:| and v, = [ 4], and let 4= I: > 5] be the matrix
of T': R> — R* w.r.t. the basis S= {v,, v,}
(i) Find [7'(v))]s and [T'(v,)]s.
(i1) Find 7'(v,) and T'(v,).

(iii) Find T([XID.
X
(iv) Calculate T (I}D

1 3
Solution: (i) A= [ 5 5] is the matrix of T'w.r.t. the basis S.

A

13
(715 =[[T(v)1s | [T(v,)]s | = [_2 5}

1
Hence, [T(v)], = |:_2:|

o]



3.68 Chapter 3 Linear Transformations

roo=s-am=[ o[ ]

(il) From part(i),

S
T(v,)=3v,+5v,=3| |+5 =
. 3 4 29

X
(iii) Let v= |: '] be any vector in R%.
x

Expressing v as linear combinations of v, and v,,
v=kv, +k,v,
X, 1 -1 b~k
=k |tk =
%, 3] | 4 3k, + 4k,

Equating corresponding components,

k- k,=x
3k, +4k, = x,
Solving these equations,
o 4x, +x,
‘ 7
b = =3% +x%
’ 7

T(v)= 4x‘+x2)7‘(v.)+(%)r<vz)

(¥ G G B
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18 | 19
oy | Soso || 2
o 7([))- :
W2 2| -2
T 7 7

Example 7: Let 7: P, — P, be a linear transformation. The matrix of 7 w.r.t. the
basis S, = {v,, v,} and S, = {w,, w,, w,} is

0
A=| 2 1
-1 -2

— — — y2 — —
where v,=x+1,v,=x—-1,w,=x>+ 1, w,=x, w,=x— 1

(i) Find [T(v,)], and [T(v,)], .
(ii) Find T(v,) and T(v,). ‘
(iii) Find T(a, + a,x).
(iv) Calculate 7(2x + 1).

Solution: (i) A4 is the matrix of 7 w.r.t. the basis S, and S,.

0
A=[Tls, s = [[T(Vl)]s: ‘ [T(v,)]s, ] =2 1
-1 =2
&
Hence, [Tl =| 2| [Tl =| 1
-1 -2

(i1) From part(i),

TVv)=w,+2w,—-w,=(x*+ D) +2x—-(x— 1) =x*+x+2
T(v) =W, 2W, =x—2(x— 1) = —x+2

(iii) Let v = p(x) = a, + a,x be any vector in P,. Expressing v as linear combinations
of viand v,,

v=kv, +kv,
a,+ax=k((x+1)+k,(x-1)
=(k; —ky)+ (k, + k,)x

Equating corresponding components,
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Solving these equations,

i a +a,
‘ 2

k e al a()
? 2

a, +a, a, —da,
1% |y 4 8= |y,
2 2 -

T(v):(“'“’“ T(vl)+(%)T(vz)

2
+ 2 -
T(a, +ax)=| 2 zau (x? +x+2)+(%](—x+2)
a +a, ) a, ta 4 —d4a
:( ‘2 O)X“‘f‘(—] > ())X+(a1+ao)_(]T“)x+(al_ao)
+ 2
:(al 2a°)x‘+a0x+2al

(iv) TQx+D)= (?)xl +(x+2(2) = %x: +x+4

Example 8: Let the matrix of 7: R* — R* w.r.t. the bases S, = {v,, v,, v;} and
S,={w,, w,} be

120
A=
-1 1 0]
-1 [0 1
where v, = V=1, v, =[0
| | 1 0

1
0
1 1
and W, = Wy =

() Find [T(v)]s,, [T(v,)]s, > [T(v5)]s, -
(i) Find T(v,), T(v,), T(v,)

X
(iti) Find 7| | x,
L%
i
(iv) Find T 1
-1
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1 2 1
Solution: (i) 4= I: i i Oj| is the matrix of 7 w.r.t. the bases S, and S,.
A=[T]; = [T [T [T

1 2] 1
Hence, [T'(v))]s, = [_J, [T(v,), = [1 [T(vy)ls, = [o]

(ii) From part(i),

orence L]
LM

1
T(v,)=2w,+w, =2|: ]+

2
P |
(V3)—W]— 2

xl
(iii) Let v = | x, | be any vector in R*.
X3
Expressing v as linear combinations of v,, v,, and v,

v=kv,+kv,t kv,

% -1 0 1| | =k +k,
X, |=k| 1|+k| 1|+k|O0|=| k +k,
% 0 1 0 k,

Equating corresponding components,

-k, +k, = x,
k, +k, =X,
k, =X,

Solving these equations,
k, =x,—x,
ky = x4
ky=x+x,—x,
SV =, =0 )V TV, + (0 = )V,

T(V)=(x, —x)T(v)+x,T(v,)+(x, +x, —x,)T(v;)

3.71
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X

T N =(x, - )O+'3+(+'— 1
x| |=k, —x 3 133 X, + X, x;)2

X,

3 3oty =%
N 3%, —3x,+3x; +2% +2x; —2x;
| 2
B 2%+ 5% — 2%,
2
v 7l 1l|= 2+1+2(-1) _ 1
, 2(2)+5(1)-2(=1) 11

3.9.3 Matrices of Compositions and Inverse
Transformations

Theorem 3.18: If 7;: U — V and T,: V' — W are linear transformations and if S, S;,
and S, are bases for U, V and W respectively then

(7, OTI]SI.Sl = [Tz]sz.s}[ﬂ]sj.s,

Theorem 3.19: If 7: V' — Vis a linear operator and if S is a basis for V' then the
following are equivalent:

(a) Tis one-to-one.
(b) [T],1is invertible.

When (a) and (b) hold,

Theorem 3.20: If 7: V' — W is a linear transformation and if S, and S, are bases for V'
and W respectively then T'is invertible ifglmd only if [T']; g isinvertible. In this case,

([Flse ) =M Ts5
Example 1: Let 7}: P, — P, be the linear transformation defined by
T (a, + a,x) = 2a, —3a,x’
and let 7, : P, — P, be the linear transformation defined by

T,(a, + a,x+a,x*) = 3a,x +3a,x* +3a,x’
LetS, = {1,x},S;={Ll,x,x*},and S, = {1, x, x?, x*}

Find [7,°7 ]324 50 [7; ]SZ.S; and [T} ]s,.s,
Solution: (=2
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T,(x)= —3x?
LL)=3x
T () =35
L") =3
Since S, is the standard basis for P,,
[T, =[]
[T,00l, =17, (x)]

Thus, [T, =[ B0 [5600 ]

20
=0 0
0 =3
Since S, is the standard basis for P;,
(7,01, =[5 (1]

(7,0, = [T,(2)]
(7,2, =[1,()]

[T.)s,s, =|[LO, | (L | TG

[0 0 0]

1300

10 3 0

[0 0 3]

[TZOT;]S:,S, =[T, ] 3‘3[TI]S 5,

1
J

S O N © O O W o,
(=)

o w o oV
w o o o

r

1

r
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Example 2: T, :R*— P and 7, : P, — P,be the linear transformations defined by

T [Z] = a+(a+b)x and T, p(9)) = x p(x)

1] [0
Let S, ={[O:|’[l:| }, S, =41 %} and S,= {1, x, ¥}

(i) Find [T, 7], s (i) Find [T,
1
Solution: T, I:O] =1+x

il

L,()=x
Tz(,\')=)c2

Since S, is the standard basis for P,,

s (o
o | e
] 1
—_— O [ RN
—
| E——| | —

1) B
Il Il
1
| S
—_— O S -
A = R > |

Since S, is the standard basis for P,,

(7, (D],
(7, ()]s,

(7,()]
(7, (x)]

1

ThuS, [7:' ]S’z..S\

7,0, | (7 (0, |

S - O
—_ O O
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[7,°T s, s =

(i)

Exercise 3.3

1. Let 7 : R?— R? be the linear transfor-
mation defined by

T(x,y)=(x—2y,x+2y)

Let S,={(1,-1), (0, 1)} be a basis for
R? and let S, be the standard basis for
R?. Find the matrix of T w.r.t.

Q) S, (ii) S, and S,
Gii) S,and S,  (iv) S,
[ Ans.: ]
i 3 =2
2 o
=
-1 2
! —2]
(i)
2 0
o
L —l 2 -

3.75

L5 s. [T} s,
0 0]

1 0
I 0

1 1
0 1
0 0]
1 0
_] ]d

2. Let T': R* — R® be defined by

(il

Let S, and S, be the standard bases for R
and R® respectively. Also, let

1{]0
Sy = 5 and S =<[1],[1
=11 N
0f 11 |

be bases for R* and R’, respectively. Find
the matrix of 7 w.r.t.

x—2y
=|2x+y
X+y

(i) S, and S, (ii) S7and S,

[ Ans.: 1
e

1 -2 3 3

; i 2 5

@2 1f, @f-- =

i 4 3 3

2 2
L — 3 3-—‘
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3. Let T: R*> > R? be defined by 1 -1 1
X +2x, Ans:: [0 1 -2

Find the matrix [T]g  w.rt. the bases 6. Let T': P, — P; be defined by

S,={v,,v,} and §,= {w, w,, w,} where T(p(x)) = x’p(x).
1 _2 Let S, ={x, 1} and S, = {x, x + 1} be
v, = [3 X, :[ 4}, bases for P,.
]‘ 5 ’ Let S/ ={x’, x>, x,1} and
wo=lilwe=lalw =lo S;=1{x’, x> =1, x, x+1} be bases
l 1 o 0 o 0 for P,. Find the matrix of T’ w.r.t.
) () S,and S, (i) S,and S
0 0 ) )
1 Ans.:
Ans.: | 2 L L © i
8 4 @ 01 ) 0
3 3 00 0 -1
| oo 0 1]
4. Let T: R> = R? be the linear operator
defined by L3
M l]l=] & X, 7. Let A=[2 0 5| be the matrix
X —2x, +4x, 6 -2 4

and let S= {v,, v,} be the basis, where of T': P,— P,w.r.t. the basis
S={v,V,, v;} where v, = 3x + 3x?,

v}:[l],vjz[l} vV, =—143x+2x% v, =3 + Tx + 2x?
1~ 12 -
. (i) Find [T(v)], [T(v,)], and [T(v;)].
Find [T],. 5 7] () Find T(v), T(v,), and T(vy).
Ans.:
0 3
) [ Ans.: ]
5. Let T': P, = P, be the linear operator
defined by Y3
) M2, 0] 5
T(a,+ax+a,x")=a,+a(x-1) 61 1= 4
tay(x=1)° (ii) 16+ 51x +19x2, — 6 — 5x + 5x2,
Find the matrix of 7 w.r.t. the standard | 7+40x+15 2 |

basis S = {1, x. x*} for P,.
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i B 4 9. Let7,: P> R*and T, : R*>— R>be
8 Let A=12 0 5!|be the matrix the linear transformation defined by

8 4 4 T](p<x))=[p (0)} and Tz[“]=[a_2b}
of T: P,—> P, w.r.t. the bases p) bl 1264
S={v,,V,, v;} where LetS,={1,x}, S,=5,={e,, e,}
v, =3x+3x% v, =—1+3x + 222, Find [T, T}] .
v,=3+T7x+2x? .
(i) Find [T(v))], [T(vy)], and [T()], [Anss [—‘ -2}]
(ii) Find T(v,), T(v,) and T(v, ). b
| 31 =111 10. Let 7: P, = P, be a linear
transformation defined by
Ans.: (2], Of,| 5
6l 12l | 4 T(p(x)) = p(x+2)
5 Let S,= {1, x, x*},
16+51,\‘+]9X, SZZ{I,X+2,(X+2)2}
~6-5x+5x, Find 7" (p (x))
7+40x+15x* | [Ans.: p(x-2)]

3.10 EFFECT OF CHANGE OF BASES ON
LINEAR OPERATORS

The matrix of a linear operator 7': /'— V' depends on the basis for V. A basis for V'is
chosen such that it produces the simplest possible matrix for 7 such as a diagonal or a
triangular matrix.

IfS, ={v,v,...,v,}and S, = {w, w,,..., w,} are the bases for vector space V,
then the transition matrix from S, to S, is given by,

e [[wll,. ‘[Wz]x. .| [w,,].\.,]

Theorem 3.21: Let 7: = V be a linear operator of vector space ¥, and let S, and S,
be bases for vector space V. Then

where P is the transition matrix from S, to S,.

Note: P !is the transition matrix from S, to S,.
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Example 1: Let S, = {v,, v,, v;} be a basis for a vector space V and let
T:V — V be a linear operator such that

3 4 7
[E1N= 0 -2
0 0

Find [T]g where S, = {w,, W,, w;} is the basis for V" defined by w, =v,, w,=v, +v,,
W, =V, +V,+V,

Solution: 34 7
[Tls=| 1 0 -2
01 0

w,, W, and w; are expressed as linear combinations of v, v, and v, as,

W, =V, W-_,=V]+V2, W3=V]+V2+V3
1 1 1
(W], =10, [w,]=[1], [W:];=]1
0 0 1

Hence, the transition matrix from S, to S, is

1 11
=0 11
10 0 1
Thus -
I -1 0
P'=l0 1 -1
i 0 1

The matrix of 7'w.r.t the basis S, is

[1 -1 0][-3 4 7][1 11
(7], =P'[Tl,P=[0 1 -1f| 1 0 =2f|0 1 1
“ 0 o 1[0 1 oflo o1

[-4 0 9

=l 10 =

0 1 1
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Example 2: S, ={v,,v,, v,} and S, = {w,, w,, w,} be the bases for a vector space
V and let

20 =103
P= 1 4
0 1 2

be the transition matrix from S, to S,.

(i) Express w,, w,, W, as linear combinations of v,, v,, v,.
(i1) Express v,, v,, v;as linear combinations of w,, w,, w;.

Solution: (i) Since P represents the transition matrix from the basis S, to S|,

2 -1 3
P=[[w1]sl‘[wz]s,‘[w_w]s,] =1 1 4
0o 1 2
2 -1 3
[wl].S =1 a[wz]s, = 1 a[ws]s, =14
0 1 2
Hence, W, =2v,+vV,
W,=-V,+V,+V,
w, =3v, +4v, +2v,
2 -1 31" [2 5 -7
(ii) P'=[1 1 4| =|2 4 -5
0 1 2 1 -2 3

Since P! represents the transition matrix from the basis S, to S,,

-2 5 -7
P =[vils, | [V2ls,|Ivsls, [=[ -2 4 -5
] —
-2 5 -7
[Vl]s, =12 [VZ]S: =| @ [Vs]s: =] =2
1 -2 3
Hence, vV, ==2w, =2w, + W,

v, = 5w, +4w, — 2w,

v, ==7Tw, —5w, +3w,
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Example 3: T: R?> — R?is defined by

S, ={v,,v,} and S, ={w,, w,}, where

e

(i1) Find the matrix of 7 w.r.t the basis S|.
(i1) Find the matrix of 7 w.r.t the basis S,.

Solution: (i) The standard matrix of T'is
Since S, is the standard basis for R?,

1 -2
(71, =[T]=[ }

(ii) Since S, is the standard basis for R?,

The transition matrix from S, to S, is

]

P= :[Wl]s1 |:|W:

1
11

_
-
o =

|

4 3

-1

2

|
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The matrix of 7'w.r.t the basis S, is

o po [ 43 22 3
(7], = P [T]SIP_11|:—1 2][0 —1}[1 4]

[ 3 56

IETERET!
% 3

IETHEET!

Example 4: Let 7: R*> > R® is defined by
(|:X|—) [2x' +x"]
i = -
5% | 5 e
Sy ={vy, v,} and S, = {w,, w,}

T B

(1) Find the matrix of 7 w.r.t the basis S,.
(i1) Find the matrix of 7" w.r.t the basis S,.

o ooy r| ]_[20+2]_[ 4
Solution: (i) (v)= 27 [1-32) || =

Expressing 7'(v,) as linear combination of v, and v,,

T(v,)=kv, +k,v,

4 | 1 k, +k,
=k|_|+k]|_ |= .
-5 21 *I3 2k, + 3k,
Equating corresponding components,
k+ k,= 4
2k +3k, =-5
Solving these equations,
k=17
k,=-13
T(v,)=17v,—13v,

T |17
[ (vl)]S,_ _]3

3.81
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. 1 2(1)+3 5
Similarly, T(v,)= T|:3:| = |:I - 3(3)] = |:—8:|

Expressing 7'(v,) as linear combinations of v, and v,,

T(vy)=kv,+k,v,
5 1 1 ky, +k,
=k| . |+k]|,|= .
-8 2 3 2k, + 3k,

Equating corresponding components,

k +k,= 5
2k +3k, =-8
Solving these equations,
k =23
k,=-18

T(v,)=23v,—18v,
23
[T(v)); =[_18}
7, =17l I7(v2)
| 1723
|13 -18

(i) Expressing w, as linear combinations of v, and v,,

.

w, =kv, +kv,

el

Equating corresponding components,

ki + k=-1
2k +3k,= 1
Solving these equations,
k,=—4
k,=3

w, =—4v, +3v,

rovl, =| 73]
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Expressing w, as linear combinations of v, and v,,

w, =kv +kv,
0 1 1 k, +k,
=k, +k, = -
1 2] |3 2k, + 3k,

Equating corresponding components,

ki+ k=0
2k, + 3k, =1
Solving these equations,
k=1
ky=1

W, =-V, +V2

o]

The transition matrix from S, to S, is

P=[1T (W)l | [T(w,)], |
[-4 -
3o
5
P —
34
The matrix of 7' w.r.t the basis S, is
———— 1| IR ) B A
Tl =P P=1 g s sl 5

| 3]

Example 5: Let T: P, — P, is defined by T'(a,+ ax) =a, +a, (x + 1);

3.83

S, ={p,, p,} and S, ={q,, q,} where p,=6+3x,p,=10+2x,q,=2,q,=3 +2x

Find the matrix of 7'w.r.t the basis .S, and matrix of 7 w.r.t the basis S,.
Solution: T(p)=T6+3x)=6+3(x+1)=9+3x
Expressing 7'(p,) as linear combinations of p, and p,

T(p,) = kp, +k,p,
9+3x =k, (6+3x)+k,(10+2x)
= (6k, +10k,) + (3k, +2k,)x
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Equating corresponding coefficients,

6k, + 10k, =9
3k + 2k, =3
Solving these equations,
-
~T(p)= %p. +%pz
2
[reol, =}
3
Similarly, T(py)=T(10+2x)=10+2(x+1)=12+2x

Expressing T'(p,) as linear combinations of p, and p,

T(pz) = klpl + kzp:
12+2x =k (6+3x)+ k,(10+ 2x)
= (6k, +10k,) + (3k, + 2k,)x

Equating corresponding the coefficients,

6k, + 10k, =12
3ki+ 2k, =2
Solving these equations,
k= —%, ksi= =
9 ° 3
2 4
STP,)=—=p; +=P,
(p,) 9 P 3 P>
2
9
[T(pz)].s‘, = 4
3

171, = [0, | 7@ ]=

o= WIN
Wlh Ol
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Expressing q, as linear combinations of p, and p,,

q, =kp, +k,p,
2=k (6+3x)+k,(10+2x)
= (6k, +10k,) + 3k, + 2k, )x

Equating corresponding coefficients,
6k, + 10k, =2
3k, + 2k, =0

Solving these equations,

2 1

k=——,k, ==

9"~ 3

2 |

q, =_§p[ +§p2
_2
| 9
[ql]& - l
3

Expressing q, as linear combination of p, and p,,

q, =kp,+kp,
3+2x =k (6+3x)+k,(10+2x)
= (6k, +10k,) + 3k, +2k,)x

Equating corresponding coefficients,
6k, + 10k, =3
3k + 2k,=2

Solving these equations,

3.85
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Hence, transition matrix from S, to S, is

P = _[q|]gl qu ]SI]
(2 71
N
1
| 3 6
Thus [3 7]
pi|4 2
3
(2 ]
[3 72 _2][_,2 7
; 4 23 9| 9 9 11
T]. =P '[T]. P= =
e N E ] [01]
12 Jl2 3l 3 6

3.11 SIMILARITY OF MATRICES

If A and B are two square matrices then B is said to be similar to 4, if there exists a
non-singular matrix P such that B=P~'AP

Properties of Similar Matrices

(i) Similar matrices have the same determinant.
(i1) Similar matrices have the same rank.
(ii1) Similar matrices have the same nullity.
(iv) Similar matrices have the same trace.
(v) Similar matrices have the same characteristic polynomial.
(vi) Similar matrices have the same eigenvalues.
(vii) If A is an eignvalue of two similar matrices, the eigenspace of both the similar
matrices corresponding to A have the same dimension.

Two matrices representing the same linear operator 7 : V' — V with respect to dif-
ferent bases are similar. If S, and S, are two different bases for a vector space V' then
matrices [T']g and [T] are similar.

Hence, det([T]s', ) = det ([T]s, )

The value of the determinant depends on 7, but not on any basis that is used to obtain
the matrix for 7. Thus, if V'is a finite-dimensional vector space then

det (T) = det ([T]S‘)

where S, is any basis for V.
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1 1 2 1
Example 1: Show that the matrices [ ] and [ :l are similar but that

4
3 1 -1 2
and are not.
-6 2 1 0

. 1 1 2 1] 31 -1 2
Solution: Let 4= ,B= JE= and D=
-1 4 1 3] -6 -2 10

i i
det (4)=| 4‘=5
2 1
dct(B)=1 3‘=5
det (C) = 3 l‘:o
§ =2
dct(D):_] 2!:—2
10

Since det(4) = det(B), matrices 4 and B are similar.
Since det(C) = det(D), matrices C and D are not similar.

Example 2: Let 7: R* — R® defined by

% L
Tl|x,||= =X
X, | x4 +7x,

S, is the standard basis for R* and S, = {w,, w,, w,}, where

| | |
w, =0, w,=[1[,w,=]|1
[0 0 1
Verify that det (7) = det ([T, ) = det ([T, ).
Solution: The standard matrix of T'is
1 2 -1
[T1=]0 -1 0
1 0 7
Since S, is the standard basis for R?,
1 2 -1

(7], =[T1=[0 -1 0
1 0 7
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1 2 -1
det(7)={0 -1 0|=-8
I 0 7

Since S, is the standard basis for R®,

1
[w,]sl =[w]= 0]
0

— )

1
1
10

1
[w3]S, =[w;]= I:I
1

Transition matrix from S, to S| is

P= [[wl ]S, ’ [w3]51 ‘[Wz]s, :|

1 11

=0 1 1

10 0 1
[1 -1 0
Thus P'=l0 1 _1]
0 0 1

(1 -1 o][1 2
[T, =P'[T],P=[0 1 -1{[0 -I
3

0 o 1f[1 o0
S
=1 < -0
11 8]
1 4 3

det (T, )=|-1 -2 -9|=-8
' 11 8

Hence, det (7)=det ([T]s, ) = det ([T]S1 )
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Exercise 3.4 1
1. Find the transition matrix from S, to 2. LetT:R*— R*be defined by

S, where . X X, +X,

1 [1 o] [1 x |) | 2% +4x,

(1) S: = P 5 Sl = P ) )
0] [1 e (1) Find the matrix of 7'w.r.t. the

standard basis S, = {e,, ¢,} for R%.
1 1
ii S-, = ]
o s}

};S,={[_ﬂ,[?]} (i) Find the matrix of T w.urt.
1] [o] [1] [wl]=[i:| and [w2]=[;:|
(i) S, =3/ 1[,| 1],|3 ¢

the basis S, = {w,, w,} where

o [1]]1
S AnS'(i)[1 1]
(T17 1] [1 -2 4

S,=1101,| 1],|1 (ii)[z o]
o] [o] [1 g 3

3. Let T: R> > R? is defined by

[1] [o] [1] A1*])- 8x, —3x,
Gv) S=9(1]-|1|,[3]¢ x]) | 6x-x

T S ={v;,v,} and S, = {w;, w,}
LEfog ]l where
S = I, 1],]10 1 1 1 1
VI: ’V2: ’w|: 'w2:
0] (1] L] 0 1 1 2
(i) Find the matrix of 7' w.r.t. the basis
_ i . S
r— ‘i ‘;] (ii) Find the matrix of T'w.r.. the basis S,.
[T =1 ]2 0
(H)_ 3 4:| Ans.: (i) [6 5:|
0 -1 -2 (ii)[s o]
(i1 0 2 0 2
0 1 1
- N 4. Let I: R* — R be the linear operator
1o 2 defined by
2
T(x,x,,x.)=03x+x,—2x, +x,,
(IV) O 1 2 ( 1 2 3) ( 1 3 1 2
2 =X, +2x, +4x;)
0 0 L
| | 2] (i) Find the matrix of 7 w.r.t. the

standard basis S, for R®.
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(i1) Find the transition matrix from
S, to S, where S, = {w,, W,, w,},
w,={1,0, 1}, w, = {1, 2, 1},

w,=1{2,1,1}.
(iii) Find the matrix of 7 w.r.t. the
basis S,.
30 1
Ans.:(i)|-2 1 0
-1 2 4
[ 1 -1 2 ]
o 2 1
(111
(17 35 11]
4 4 2
3 15 3
W=7 7 72
1 7
| 2 2 ]

2
. Show directly that 4 = |:O

O]
and
2

2 1
B= are not similar.
0 2

6. Show directly that there does not

10.

exist an invertible matrix P that
satisfies equation 4 = P~' BP for

4 3 5 —4
A= and B =
B ETE

. Prove that if 4 is similar to B and B is

similar to C, then A is similar to C.

. Prove that if 4 is similar to B, then

A? is similar to B2.

. Prove that if 4 is similar to B, then

AT is similar to B.
Prove that every square matrix is
similar to itself.



Inner Product
Spaces

ﬂ Chapter

4.1 INTRODUCTION

Inner product space is a vector space with an inner product on it. It associates each pair
of vectors in the space with a scalar quantity known as the inner product of vectors. It
helps defining the orthogonality between vectors. They generalize Euclidean spaces to
the vector spaces of any dimension.

4.2 INNER PRODUCT SPACES

Let V' be a real vector space. An inner product on V' denoted by <,> is a function from
V' X V' — R that assigns a real number (u,v> to each ordered pair of vectors u and v
in V in such a way that for all u, v, w in V and all scalars £, the following axioms are

satisfied.
@ (u,v)=(v.u) (Symmetry)
(b) (ut+v,w)y=(u,w)+(v,w)  (Additivity)
¢) (ku,v)=k(u,v) (Homogeneity)
(d) (u,u)20 and (u,u)=0  (non-negativity)

ifand only ifu=0
If the given product satisfies all the above 4 axioms then V' is called a real inner
product space with respect to the given product.

Note: If u=(u,,u,,...,u,) and v=_(v,v,,...

v ) are vectors in R" then Euclidean

’H

inner product (dot product)

u-v=uy +u,v,+:---+u,v

n'n

satisfies all the four axioms of inner product space. Hence, any vector space with
respect to Euclidean inner product is an inner product space.

Weighted EuclideanInnerProduct Ifu= (u,u,,...,u, )andv=v,v,,...,v,)
are vectors in R”, and w,, w,, ..., w, are positive real numbers called weights then

>"n

<U,V>-—HZIV+WUV+ +wuv

n'nn

is called a weighted Euclidean inner product with weights w,, w,, ..., w,.
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4.2.1 Properties of Inner Products

If u, v, and w are vectors in an inner product space /" and £ is any scalar then
@ (0,v)=(v,0)=0

(1) (u, v+w)=(u, v)+(u,w)

(i) (u, kv)=k(u,v)

() (u=v,w)=(u, w)~(v,w)

) (uv=w) =, V)~ (. )

Example 1: Let u = (3, 1), v= (2, -2), w = (-1, 6) and k = 2. Verify the
following using Euclidean inner product.
@ (u+v,w)=(u,w)+(v,w)
(i) (u, v+w)=(u, v)+(u,w)
i) (ku, v) = k(u, v} = {u, kv)
(iv) (0,u)=(u,0)=0

Solution: (i) u+v=3,—-1)+(2,-2)=(5,-3)
LHS.=(u+v,w)
=(u+v)w
(5,-3)-(-1,06)
=-5-18
=-23
R.H.S.=(u, w)+(v, w)
=u-WHV-W
=3,-1)-(-L,6)+(2,-2)-(-1,6)
= (-3-6)+(<2-12)
=-23
L.H.S.=R.H.S.
(i) v+w=(2,-2)+(-1,6)=(1, 4)
LHS. =(u, v+w)
=u-(v+w)
=3,-D)-0,4
e N
RHS.=(u, v)+(u, w)
=u-v+u-w
=3,-D-(2,-2)+@3,-D-(-1,6)
= (6+2)+(=3-6)
-1
LHS.=R.HS.
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(iii)) ku=-23,-1)=(-6, 2), kv=-2(12,-2)=(-4,4)
(ku, v)=(ku)-v

= (=12-4)
=-16

k<u, v) =k(u-v)
=-2[(3,-1):(2,-2)]
= 2(6+2)
—_16
(u,kv)=wu-(kv)
= (3, —1)- (=4, 4)
=-12-4
=-16
(ku, v)=k(u, v)=(u, kv)

(iv) (0,u)=0-u

=(0,0)-3, -1
=0
(u,0)=u-0
=(3,-1)-(0,0)
=0
(0,u)=(u,0)=0

Example 2: Determine which of the following are inner products on R* if,
u= (uly uz: u3)5 NS (vls v2’ v3)

(1) (u, v) =2u, +u,v, +4u,y;

W) (u, v)=2of 4202 +l?

(1) (u, v)=wuy, —u,v, +u,v,
Solution: (i) (a) (u, v)=2uv, +u,v, +4u,v,

=2vu, +v,u, +4viu,
=(v,u)
Symmetry axiom is satisfied.
(b) Let w=(w,, w,, w;) be also in R>.
u+v=(u,u,, )+, Vv,, ;)

= +v,uy +v,, 1 +v;)
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<u +v, w) =2(u, +v)W, + (uy +vy)w, + 41, +vy)w,
= Quyw, +u,w, +4uwy) + 2viw, +v,w, +4vwy)
=(u, w)+(v,w)
Additivity axiom is satisfied.
(c) Let k be any scalar.
kw=k(u,,u,, uy) = (ku,, ku,, ku,)
(ku, v)=2(ku, v, + (ku,)v, + 4(ku, v,
=kQu,v, +u,v, +4u,v;)
=k(u, v)
Homogeneity axiom is satisfied.

(d) (w, u) = 2uu, +uu, +4uu,
=2u] +u +4u; =0
Also, (u,u)=2u} +u; +4u; =0

ifand only ifu, =0, ,=0,u;=01.e.u=0
Non-negativity axiom is satisfied.
Hence, the given product is an inner product in R°.

(i) (a) (w, v)=u}v +ulvi +uiv;
2.2 2.2 2..-2
=vu +vyu, +v,u,
=(v,u)
Symmetry axiom is satisfied.
(b) Let w=(w,, w,, w;) be also in R*.
u+v=(u,u,, 1)+, v,, ;)
=(u, + v, uy + vy, uy +vy5)
(wt v, W)=, + v, W+, +v,) W]+ (uy +v,)’ W
= (Ui w] +uiwi +uswi )+ (VW viws Fviws )+ 2(u v W+ uy vy Wi+ ugviw; )
= (u, W)+ (v, W)+ 2@y, W} +u,v, Wi +u;v,ws)
# (u, w)+(v, w)
Additivity axiom is failed.
Hence, the given product is not an inner product in R°.
(i) (@) (u, v)=wuy, —u,v, +uv,

= VU, — VU, +V5Uy

=(v,u)
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Symmetry axiom is satisfied.
(b) Let w=(w,, w,, w;) be also in R®.
u+v=_(u,u,, )+, v,, )

=(u, + v, uy +v,, 1y +vy)

(u +v, w) = (u, +v)w, = (uy +v,)w, + (uy +v;)w,
= (uw, —u,w, +uywy) + (Vw, —v,w, +vwy)
=(u, w)+(v, w)
Additivity axiom is satisfied.
(c) Let & be any scalar.
kw=k(u,u,,u,)
<ku, v) = (ku,)v, = (ku,)v, + (kuy)v,
= k(uv, —u,v, +u,vy)
=k (u, v)
Homogeneity axiom is satisfied.
(d) {u,u)= U Uy — Uyl + Uyl

2 2 2
=u; —uy +u;

which is not necessarily positive because one term is with a negative sign.
Non-negativity axiom failed.
Hence, the given product is not an inner product.

Example 3: If u = (1, u,) and v = (v,, v,) are vectors in R* then verify that the
weighted Euclidean inner product (u, v) = 3u,v, + 2u,v, satisfies the four inner prod-
uct axioms.

Solution:

(@ (u, v)=3uy +2u,v,
=3vu, +2v,u,
=(v,u)

Symmetry axiom is satisfied.
(b) Let w=(w,, w,) be also in R%.

u+v=(u,u,)+,v,) =W +v,u,+v,)
<u +v, w) =3, +v)w, +2(u, +v,)w,
=3u,w, +2u,w, +3v,w, +2v,w,
=(u, w)+(v, w)

Additivity axiom is satisfied.
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(c) Let k be any scalar.
ka = (ku,, ku,)
<ku, v) =3(ku,)v, +2(ku,)v,
= kQQu,v, +2u,v,)
=k(u, v)
Homogeneity axiom is satisfied.

(d) (u, u)=3uu, +2u,u,
=3u’ +2u; 20
Also, (u,u)=3u’ +2u; =0.

ifand only ifu,=0, ,=01e.u=0
Non-negativity axiom is satisfied.
Hence, given product satisfies all the four inner product axioms.

Example 4: If u = (4, u,), v = (v, v,) are vectors in R* then prove that R* is an
inner product space with respect to the inner product defined as

u,v)=4uv +u,v, +4uv, +4u,v,.
{9 25| j45) 252

Solution: R’ will be an inner product space with respect to the given product if it
satisfies all the four inner product axiom.

(a) (u, V)= du, +uv, +4uy, +4u,v,
=4dvu, +vu, +4v,u, +4v,u,

=(v,u)
Symmetry axiom is satisfied.
(b) Let w=(w,, w,) be also in R*.
u+v=_(u,u,)+,v,)
=, +v,u, +v,)
(u +¥, w} =4u, +v)w, + (U, +vy))w, +4(u, +v)w, +4(u, +v,)w,
= (du,w, +u,w, +4u,w, +4u,w, )+ (dv,w, +v,w, +4vw, +4v,w,)
=(u, w)+(v, w)

Additivity axiom is satisfied.
(c) Let k be any scalar.

kw=k(u,u,)=(ku,, ku,)
(ku, v) = 4(ku,)v, + (ku, v, +4(ku,)v, + 4(ku,)v,
= k(4u,v, +uyv, +4u,v, +4u,v,)
=k(u, v)



4.2 Inner Product Spaces 4.7

Homogeneity axiom is satisfied.
(d) (w,u)=duu, +uu, +4uu, +4u,u,

= 4u} + Suu, +4u]
5 2 5 2 3 2 2
=Eul'+5uluz+5u2 +E(ul +uz)
5 2 3/,
=5(u,+uz) +§(u,‘+u22)20

Also, <u, u> - g(uI +u, )2 .|.%(u,2 +u; ) =0

ifand only ifu, =0, u,=01e.u=0
Non-negativity axiom is satisfied.
Hence, R is an inner product space.

4.2.2 Inner Products Generated by Matrices
Let u and v be vectors in R" expressed as n X 1 matrices and 4 be an n X n invertible
matrix. If u-v is the Euclidean inner product on R" then

(u, v)= Au- Av .(4.1)

represents the inner product on R” generated by matrix 4.

u, v

: : ) v,
If u and v are in matrix form, u=| " [,v=| |

u \2

n n

then, UV =uy, Uy, Feee Uy,

n'n

=(V)'u
Applying this formula in Eq. (4.1),
(u,v)=Au-Av
=(Av)" Au
=(v'4A") Au
=v A" Au
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Note: (i) If 4 =1 (identity matrix) then
(u,v)=TIu-Iv
=u-v

Thus, inner product on R" generated by identity matrix is the Euclidean inner
product (dot product).
(ii) The weighted Euclidean inner product (u, v) = wa,v, + wyu,v, +---+ w,u,v, is

n’n’n

Jwoo0 0 ... 0
0

w 0 ... O
0 0 0 .. Jw

Example 1: Show that (u, v) = 9u,v, + 4u,v, is the inner product on R* generated

the inner product in R" generated by the matrix A4 =

i 30
by the matrix 4 = ;
0 2

Solution: Inner product generated by 4 is

(u,v}=Au-Av,whereu=[ulj|,v=|:v':|
|3 Offu |3 O ;1
{0 2o oI
a 3u, 3y,
Lo

=3u,3v, +2u,2v,

=9u,v, +4u,v,

Example 2: Show that (u, v) = Su,v, — u,v, — u,v, + 10u,v, is the inner product on

200
R? generated by the matrix A4 =[ i 3].

Solution: Inner product generated by 4 is

BRSSP ) B
=[-? L2 ]

2u, +u, 2vI +v,
—u, + 3u, -, +3v,
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= 2u, +u,) (2v, +v,) + (—u, +3u,) (=v, +3v,)
=4u v, +2uv, +2u,v, +u,v, +uv, —3u,v, —3u,v, +u,v,

= S5u,v, —u,v, —u,v, +10u,v,

Example 3: Letu=(u,u,), v=(v,, v,). Find a matrix that generates the following
inner products.

(i) (w,v)=3uy +5uy, (i) (u, v)=4uy, +6u,v,.

Solution: (i) (u, v)=3uv, +5u,v,
In this weighted Euclidean inner product
w,=3, w,=5

The matrix that generates it is
I R I N
0 Jw| [0 5

In this weighted Euclidean inner product

(i) (u,v)=4uv +6u,y,

w =4, w,=6

The matrix that generates it is

5 @l &

4.2.3 Norm or Length in Inner Product Spaces

The norm or length of a vector u in an inner product space ¥ is denoted by [ul| and is
defined by

1
Jufl = (u. w)2

Unit Vector: Let u be a vector in an inner product space V. If ||u|| =1 then u is called
a unit vector in V.

Properties of Length

If u and v are vectors in an inner product space J and £ is any scalar then
R EL

2. |ul=0 ifand only ifu=0
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3. [eull= [K ul
4.

4.2.4 Distance in Inner Product Spaces
The distance between two vectors u and v in an inner product space V' is denoted by
d(u, v) and is defined by

d(u,v) =|u—v|

Properties of Distance
If u, v and w are vectors in an inner product space / then

1. d(u,v)=0

2. d(u,v)=0ifand onlyifu=v

3. d(u,v)=d(v,u)

4. d(u,v)<d(u, w)+d(w, v), Triangle inequality

Example 1: Find [u| if u = (3, 4) and weighted Euclidean inner product is
(u, vy =uy, —u,v, —u,v, +3u,v, where u=(u, u,), v=(v,, v,).

Solution: [[u]| = (u, u)
1
= (uyu, — g, —u,u, +3u,u, )2

=(3*-3-4-4. 3+3(4)~)’
_ .

Example 2: Find d(u, v) if u = (5, 4), v = (2, —6) and weighted Euclidean inner
product is (u, v) = 3u,v, + 2u,v, where u = (u,, u,), v=(v,, v,).

Solution: u-v=(54)-(2,-6)=(3, 10)
d(u, v)=[u—v]|
=(u-v,u- v)é
=((3,10), (3, 10))5
=(3-3-3+2~10~10)5
227



4.2 Inner Product Spaces 4.11

Example 3: Find |ju and d(u, v) where u = (-1, 2) and v = (2, 5) using the
following inner products.

(i) the Euclidean inner product

(ii) the weighted Euclidean inner product {u, v) = 3u,v, + 2u,v,, where
u=(uy, u,) and v= (v, v,)

(ii1) the inner product generated by the matrix 4 = [ i g]

Solution: u-v=(-1,2)—(2,5)=(-1-2,2-5)=(-3,-3)

g Jul = (o, w):
= (u-u)?

— (2 +i2)F
= (1+4)
=5

d(u, v)=|u-v]|
=[=3,-3)]
=[(-3,-3)-(-3,-3)]
=[+(37 F
=18=3\2

i) Ju = (. u):

= (3uu, + 2u,u, )%
=[3-1’+22)° |
=11

d(u,v)=|u-v]|
— “(_33 = 3)H
=((-3,-3),(-3,-3))2
=[3(-3) +2(=3) |
=45 =35
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(iii)  Inner product generated by the matrix 4 is
(u, v) = Au - Av, where u = |:u':|, v =[vl]
u, v,
1 2|y 1 2]
) |:"1 3][“2].[_1 3:|[V2]
u, +2u, v, +2v,
- [_“1 +3u, ] . |:——v] +3v, :|
= (u, +2u, )(v, +2v,) + (=u, +3u, )(—=v, +3v,)

=uw, +2u,v, + 2u,v, +4u,v, +uv, —3uv, —3u,v, +u,v,

=2uv, —u,v, —u,v, +13u,v,
1.
= (u, )2

1
= (2w, — wu, —uyu, +13u,u, )?

=[2(-17 - (-D@)- @D +13(2)’ |
=38

d(u, v) = Ju—v|
=[(-3,-3)
=((-3,-3),(-3,- 3))5
=[263 = (3)-3) - () + 133 |
=117
=313

Example 4: Find ||pl|| and d(p,, py) if p, =3 —x + x%, p, =2 + 5x* and
weighted inner product {(p,, p,) = a,b, + a,b, + a,b, where p, = a, + ax + a,x%
p,=b, thx+ b

1
Solution: Ipl={p,.p)?

=[3+D)7+)

=11
p,— P, =(B-x+x*)-(2+5x%)
=1-x-4x’

d(p,,p,)=p, —p,
=[P+’ + (—4)2]%
=18
=32
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2 6 -4 7
Example 5: Find ||B| and d (4, B) if A:|:9 4}, Bz[ 1 6] and weighted

: a, a, b b,
inner product (4, B) = a,b, + a,b, + a;b; + a,b, where 4= Q=B =
2o G by b,

(ST

Solution: |B|= (B, B)
=[(=4’+()+ @) +(6) |
=4/102

[2 6] [_4 7] |:6 _1]
A-B= = =
9 4 1 6 8 2
d(4,B)=[4-B|
—(4-B, 4-B):

1
=[(© +(-1)’ +(8) +(-2)’ ]
=4/105

Example 6: Find inner product (4, B) = tr (B" 4) if
9 8 7 i 2
= and B= !
6 5 4 4 5 6

Solution: (4, By =tr (BT A)
1 4

9 8 7
=trq|2 5
o5

36

|:9:| [SH [7] [Sum of diagonal]
=[1 4] [+[2 5] _|+[3 6]
6 5] 4 elements

= (9+24)+(16+25)+(21+24)
=119

Note: If can be observed that the second last step gives the sum of product of
corresponding elements of 4 and B.

Hence, (4, B)=(9)(1)+ (6)(4) + (8)(2) + (5)(5) + (7)(3) + (4)(6) = 119.

Example 7: Find (f, g) if f=/(x)=1—x+x*+ 5x°, g = g(x) = x — 3x? and the inner
1

product (f, g) = [ f(x)g(x) dx
=

1
Solution: (f,g)= J(l —x+ X7 +5x")(x =3x%) dx
S
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1
= J(x—3x2 —x2+3x° +x° =3x* +5x* —15x°)dx

-1

1
= j(x—4x2 +4x° +2x* —15x° ) dix
-1

j F(x)dx = 0,if f(x)is odd

=2[(—4x” +2x*) dx )
d = 2J-f(x) dx,if f(x)is even

Example 8: Find d(f, g) if f=/(x) = cos 27x and g = g(x) = sin 27x and the inner
1
product (f, g) = jf(X)g(X) dx
0
Solution: d(f,g)=|f-g
1
=(f-g,f-g)

(f-g.f-g)=|[/(0)-gW@][f(x)-g(x)]dx

cos 27X —sin 27tx) dx

cos” 27rx +sin’ 27rx — 2 cos 27x sin 27m)dx

1 —sin 47m

f
1
[
g

Il

4r
cos4mr—cos0
4

cosdmx|
x+

0
=1+
=1

df, g)=J1=1.



Exercise 4.1

1

4.2.5 Angle between Vectors

. Find

. Determine which of the following are

inner products on R* if u = (u,, u,),
v=(v, V)

(i) (u,v)=u,v,—uv,—u,yv,
+3u,v,

(ii) (u, v) =u,v, u,v,

(iii) (u, v) =3u,v,+ Su,v,

[Ans.: (1), (ii1)]

. Show that

(A4, B)=ab +a,b; +a,b, +a,b, is
not an inner product on M,, where

a, a, b, b,
A= = | B= -
a, a, b, b,

. Find |ul| and d(u, v) if u= (2, -1),

v = (-1, 1) and weighted inner product
<u, V) =2u, —uv, —uyv, +uu,v,
where u = (u,, u,) and v=(v,, v,)

[Ans.: \/E, \/ﬁ]

p,| andd(p,, p,) if p, =2x - %,
p, =—1+x + 2x* and weighted inner
product (p,, p,) = a,b, + a,b, + a,b,

4.2 Inner Product Spaces 4.15

where p, = a, + a,x + a,x* and
p,=b,+ bx + b2

[Ans.:x/(;, \/—1_1]

5. Find ||B| and d(4, B) if

(-2 4 =51
A= ;B= and
| 1 0 6 2
weighted inner product (4, B) =
a,b, + a,b, + a;b;+ a,b, where

Fa] a,] [bl b,}
A= “|,B= .
as d, b, b,
[Ans.: J66, \/47]

6. Find (f, g) if f = f{x) =x — 5x°,
g = g(x) = 2 + 8x? and the inner

product (f, g) = J‘f(x)g(x)dx
) [Ans.: 0]

7. Find d(f, g) if f = f{x) =x,
g = g(x) = e and the inner product

(f.g)=[ f(x)g(x)dx

2
Ans.:e——E
2 6

If u and v are non-zero vectors in an inner product space V' and if @ is the angle
between them then

(u,

v)

cosf=—~-

Jullv]

4.2.6 Orthogonality

Two vectors u and v in an inner product space V are called orthogonal if

(u,v)=0 ie, 0==

V3
2
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4.2.7 Pythagorean Theorem

If u and v are orthogonal vectors in an inner product space V then

2

2+||v

"=

u+v

Proof: Since u and v are orthogonal, (u, v) = (v, u)=0
Ju+ v =(u+v,u+v)
=(u,u+v)+(v,u+v)
=(u, u)+(u, v)+{v,u)+(v, v)
S [ (wv)=(v.u)=0]
4.2.8 Cauchy-Schwarz Inequality

=

If u and v are vectors in an inner product space V' then
[, v){ <[l V]

Example 1: Find the cosine of the angle between u and v if R?, R* and R* have
the Euclidean inner product.

1 u=(1,-3),v=(2,4)

(i) u=(-1,52),v=(2,4,-9)
(iii) wu=(1,0,1,0),v=(-3,-3,-3,-3)

(u, v)

Solution: cosf=-——", where @is angle between u & v.

ol

(1,-3)-(2,4)
J1+9V4+16
21D
10420
=10
V10420

i

NG

(_195,2)'(2,4a _9)
J1+25+4/4+16+81
_ —2+20-18

ool

=0

(i) cos@=

(i) cosO=
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(L0 0)(=3~8-3;-%)
VI+1J9+9+9+9

_ B3

2436

L
V2

Example 2: Determine whether the given vectors are orthogonal with respect to
the Euclidean inner product.

A u=(1,3,2),v=4,2,-1)
(1) u=(-4,6,-10,1),v=(2,1,-2,9)

(iii) cos®=

Solution: (i) (u,v)=u-v
=(-13,2)-(4,2,-1)
= (=D +3)2)+2)-1)
=—4+6-2
=0
Hence, u and v are orthogonal.
() {u,v)=u-v
=(-4,6,-10,1)-(2,1,-2,9)
= (-4)(2)+(6)(1) +(-10)(=2) + (1)(9)
=-8+6+20+9
=27#0
Hence, u and v are not orthogonal.

Example 3: Determine whether there exists scalars & and / such that the vectors
u=(2,k 6),v=(,5,3)and w = (1, 2, 3) are mutually orthogonal with respect to
the Euclidean inner product.

Solution: Let u, v and w be mutually orthogonal.
(u, v> =u-v=0
(2,k,6)-(1,5,3)=0
21+5k+18=0
2/+5k=-18 (1)

<v,w>=v~w=0

2,5,3)-(1,2,3)=0

[+10+9=0
I=-19 ..(2)
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(Ww,u)=w-u=0
(]a 27 3)(2a k’ 6)= 0
24+2k+18=0
k=-10 ..(3)
Substituting / and & in equation (1),
2(=19)+5(-10)=-18
—-88=-18
This shows that / and & does not satisfy equation (1).
Hence, there do not exist & and / such that u, v and w are orthogonal.
Example 4: Find cosine of the angle between p, = x —x?, and p, = 7 + 3x + 3x* if
the inner product (p,, p,) = a,b, + a,b, + a,b,, where
P =ay+ax+ax>andp, = b, +bx+ bx%
Solution: Let &be the angle between p, and p,.
<p1 > p2>
I e |
<x—x2, 7+3x+3x2>
VA + (=17 (7Y +G) + 3

_ O +DB)+(=DB3)
V267

cos@ =

=0

Example 5: Show that p, = 1 —x + 2x? and p, = 2x + x? are orthogonal with respect
to the inner product (p,, p,) = a,b, + a,b, + a,b,, where

p,=a,+ax+ax*andp,=b,+bx+ bx>
Solution: (P, p,)=(1-x+2x", 2x+x*)

=M0)+(-1)(2)+(2)(1)
=0
Hence, p, and p, are orthogonal.

2.1 I 1
Example 6: Show that the matrices A =[ ) 3] and B :[O l] are orthog-

onal with respect to the inner product (4, B) = a,b, + a,b, + a;b, + a,b, where
a, a, b b,
A= and B= :
Co @ by b,
Solution: (4, B) = (2)(1)+(1)(1)+(~1)(0)+ (3)(~1)

=0
Hence, 4 and B are orthogonal.
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Example 7: For the matrices A=[21 _2] and B=|:31, 3], verify Cauchy—
Schwarz inequality and find the cosine of the angle between them if M,, have the
inner product as defined in Example 6.
Solution: (4, B) = (2)(3)+(6)(2) + ()(1) + (-3)(0)
=19
(4.B)=19
J4]= (4, 4)
=2 +(6) + (1) +(-3)
=50
=52
Igl= (5. 5
=3y +(27 +() +(0
=14
l4ll8]=5v2 V14
=107

=26.45

Since |(4, B)| <||4|||B|, Cauchy—Schwarz inequality is verified.

Let @be the angle between 4 and B.

o )

Example 8: Verify that the Cauchy—Schwarz inequality holds for the following
vectors.

(i) w=(-2,1)and v=(1, 0) where (u, v) = 3u,v, + 2u,v,.
o -1 2 SO/ :
(i) 4= [ 6 1:| and B = [3 3:| using the inner product {4, B) = a,b, + a,b, +

Ch 5 b, b,
aby +a,b, where 4 = and B = .

a 4 by b,
(iii) p,=—1+2x+x?and p, =2 — 4x2 using the inner product {p,, p,) = a,b, + a,b, +
a,b, where p, = a, + a,x + a,x* and p, = b, + b, x + b, x%.
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Solution: (i) (u, v)=((=2,1),(1,0))
=3(=2)(1)+2(1)(0)
=—6

(w.v)=|-6l=6

[l = (u, u)2
= (?au,2 +2u; )%
=[3(-2 +20) |
=14

IVl =(v. v)2
= (3vl2 +2v; )%
=[3)° +2(0)° ]

-
Juflv] = V22 = 6.48

Since,

(w, v)| <|uf|v[], Cauchy-Schwarz’s inequality is verified.

(i) (4, B) = (-)(1)+(2)(0)+ (6)(3) +(1)(3)
=—1+18+3
=20
(4. 8) =20

l4]= VD + @) +(6)* + (1 =42
18] =V +0) +(3) +@3) =19
4] 1B] = V798 = 28.25

Since, |(4, B)| <||4||B||. Cauchy-Schwarz’s inequality is verified.

(iii) (P> p2) = (=D(2)+(2)(0)+ (1)(—4)
=6

=|-6/=6

‘<P1’pz>
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||p,|| = <p,, P >%
=Je @+
=6

Ip.ll= {p.p. )2
=\(2) +(0)* +(-4)?
=20

Ip.[|[p,]| = ¥120 =10.95

, Cauchy—Schwarz’s inequality is verified.

<[p/|

Since, (p| R pz)

P,

4.2.9 Orthogonal and Orthonormal Set

AsetS={u,u,, ..., ul,} of vectors in an inner product space V is called an orthogonal
set if each pair of distinct vectors in S are orthogonal, i.e. (u;, u) =0 for i # .

An orthogonal set of unit vectors (norm is 1) is called orthonormal, i.e. (u,, u_/.) =0
fori#jand (u,u)=1fori=1,2,...,p.

The process of dividing a non-zero vector u by its norm is called normalizing u.

normalized u = .3
(i

20201 2 1 2
Example 1: Show that the vectors u,=(—, ),u2=( —) and

373303773

u, = (%, 3’ 5) are orthonormal with respect to the Euclidean inner product on R°.
3 2 2 1yf21 2
Solution: (u,,u,):(—,——,—).(_,_,__)
- 37 33)\33 3

-GIEH)E))
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o= )
SR ONOECIIR
SO OROROIR

Since (u,, u,)= <u2, u3> = <u3, u, > =0 and ||u,|| = Hu7|| = ||u}|| =1, the vectors are
orthonormal.

| -
Il
=
N
w N
| A
N~
+
e N
|
(SRR}
N
(%)
+
R
W | —
~—
—_
N -
Il
i

|-

Example 2: Show that the set of vectors u, =(l,l,l), 5 =(—l,l,0j,
i 55585 250
u,= (5, 3 —5) is orthogonal with respect to the Euclidean inner product on R*

and then convert it to an orthonormal set by normalizing the vectors.
Solution: (ul,u7>=(l,l’l .(_l’l,o)
- 57575 2°2

() EEG)e

Hence, u,, u,, u, are orthogonal.



Exercise 4.2

1.

4.2 Inner Product Spaces 4.23

Orthonormal set = {w,, w,, w,}

Verify that the Cauchy—Schwarz
in-equality holds for the following
vectors with respect to the Euclidean
inner product.

(l) u= (_4’ 2’ 1)3 Y= (8’ _4’ _2)
(i) u=(0,-2,2,1),v=(-1,-1,1,1)

[Ans.: (1), (i1)]

. Find the cosine of the angle between u

and v if R? and R* have Euclidean inner
product:

(i) u=(4,1,8),v=(1,0,-3)
(i) u=(2,1,7,-1),v=(4,0,0,0)

[ 2410

Ans.: (i) 9

R 2
(ii) -\/g]

. Determine whether the given vectors

are orthogonal with respect to the
Euclidean inner product:

1 (1,-1,2),(0,2,-1),(-1,1, 1)
(i) (0,1,0,-1)(1,0,1,0),(-1,1,1,1)
[Ans.: (i1)]

4. Letu=(1,1,-2)and v=(a,-1,2). For
what values of @ are u and v orthogonal
with respect to the Euclidean inner
product?

[Ans.: a=35]

5. For what values of a and b is the
set {u, v} orthonormal with respect
to the Euclidean inner product where

om0

[Ans.: a= il, b= il]
2 2
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4.3 ORTHOGONAL AND ORTHONORMAL BASIS

In an inner product space, a basis consisting of orthogonal vectors is called an orthogo-
nal basis.

In an inner product space, a basis consisting of orthonormal vectors is called an ortho-
normal basis.

Theorem 4.1: If S= {v,, v,, ..., v,} is an orthogonal set of non-zero vectors in an
inner product space J then S is linearly independent.

Theorem 4.2: Any orthogonal set of » non-zero vectors in R is a basis for R".

Theorem 4.3: If S= {v,, v,, ..., v,} is an orthonormal basis for an inner product
space V, and u is any vector in V then it can be expressed as a linear combination of
Vis Vaswen V

n*

u=(u,v,)v,+(u, v,) v, +-+(u,v,)v

n

Here, (u, v, > <u, v2>, s (u, v"> are the coordinate vectors of u with respect to the

orthonormal basis S,

8 [uls = ((w, v,), (W, v,),.... (w,v,))

Corollary: If S={v,,v,, ..., v, } is an orthogonal basis for an inner product space V,
and u is any vector in V then

) )L ()

2 vl 2 v,
| ||vll

]2 vn

B ”VI \£

Theorem 4.4: If S is an orthonormal basis for an n-dimensional inner product space,
and if coordinate vectors of u and v with respect to S are [u];= (a,, a,, ..., a,) and
[vlg=(b,, b, ..., b,) then,

(1) |]u||: ,laf +a22 +---+aj

(i) d(u,v)=+/(a —b) +(a,—b,)* ++(a, —b,)’

(i) (w,v)=ab +a,b, +---+ab, =[uls [Vl

n-n

Theorem 4.5: Every non-zero finite dimensional inner product space has an
orthonormal basis.

Constructing an Orthogonal Basis from an Arbitrary Basis

An orthogonal basis for a non-zero finite dimensional inner product space ' can be
constructed from an arbitrary basis of / using Gram—Schmidt process.
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4.4 GRAM-SCHMIDT PROCESS

Let ¥ be any non-zero n-dimensional inner product space and S, = {u,, u,, ..., u,} is
an arbitrary basis for V. The process of constructing an orthogonal basis S, = {v,, v,,
..., v,} from S, is as follows.

Step 1: Letv, =u,.

Step 2: Find the vectors v,, vs, ..., v, successively using the formula

_ <u,, v1> <“,-, V2> <“,-» Vi—|> =

2 1 - 2 i1
[vi-.

2 2

v,

The set S, of vectors v, v,, ..., v, is an orthogonal set. Since every orthogonal set is
linearly independent, S, is linearly independent and also has n vectors (dim V), thus the
set S, is an orthogonal basis for V.

Note: The orthogonal basis S, can be transformed to orthonormal basis by normalizing
all the vectors of ..

Example 1: Find an orthonormal basis for R* containing the vectors
v,=(3,5,1),v,=(2,-2, 4) using the Euclidean inner product.

Solution: (Vi, v, )=V, -V,
=(3,51-(2,-2,4)
=6-10+4
=0

Thus, v, and v, are orthogonal.
Basis for R* will have 3 non-zero vectors.
Let vy = (b,, b,, b,) be the third vector of the basis such that

(v, vyp=0 and (v, vy)=0
(3’ 5a 1) (b19 bz’ b3)=0

3b,+5b,+b,=0 (1)
and (2s ~2; 4) i (blsbzs b3)=0
2b, —2b,+4b,=0 (2)

The augmented matrix of the system of equations (1) and (2) is

35110
1
2 =2 410

Reducing the augment matrix to row echelon form,

RI _Rz

i T -310
2 2 410
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R, 2R,

1 7 =310
I

[0 16 10]0

The corresponding system of equations is
b +7b,— 3b,=0

B2yt
e

Solving for leading variables b, and b,,

b, = —7b, +3b,, b2=§b3
Let b,=8

b=—-11,b,=5

v, =(-11,5,8)

The vectors v,, v,, v, form an orthogonal basis for R.
Normalizing the vectors v,, v,, v,
wo Vi G5 _(3 5 1
Vvl Ve+25+1 \\B57B57435
v, (2,-2,9) _( 2 2 4 )
v, Va+a+16 \V24 7 247 24

v, (-11,5,8) (_Jﬁ 5 8]

w

YT Vi2ir 25464

The vectors w,, w,, w, form an orthonormal basis for R*.

Example 2: Verify that the basis vectors v, = (—%, %, 0), v, = (—, =, 0),
v, = (0, 0, 1) form an orthonormal basis S for R* with the Euclidean inner product.
Express the vector u = (1, -1, 2) as a linear combination of the vectors v,, v,, v; and
find coordinate vector [u];.

Solution: (V.,V2>=(—§,%,O)~(§,§,O)

SRR

0
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<v2,v3>=( ) (0,0,1)

(:)(OH( ](0)+<0)(1)
3 4
(vs,v,)=(0,0,1)- = )

|
3 4
= (0)( 5) + (0)(5) +(1)(0)

u-l-h
Wl

- (%)*(%)?1
Ivsll=l1y =1

Hence, v,, v, and v, form an orthonormal basis for R®.

Since, S = {v,, V,, v;} is an orthonormal basis in R* any vector u in R* can be
expressed as

u=<u, v]>v,+<u, v2>v2+<u, v3>v3

3 4 4 3
(1,—1,2)—[(1,—l,2)-(—§,§,0)]v1+|:(l,—1,2)-(5,3,0)}v2+[(1,—1,2)-(0,0,1)]v3

7 1
===V, +=v,+2v,.
5 5 =

7 1
[u] —(—g,g’z)

Example 3: Let S = {v, v,, v,, v,}, where v, = (1, — -1),v,=(2,2,3,2),
v,=(1,2,0,-1),v,=(1, 0,0, 1), is an orthogonal basis for R4 with Euclidean inner

product. Express the vector u= (1, 1, 1, 1) as linear combinations of v, v, v;, v, and
find the coordinate vector [u];.

Solution: Since S is an orthogonal basis for R*, any vector u in R* can be expressed as
_fww) o (wvy) (wv) o (wvy)
I 2 T 2 3 4
[ A A A
A= LL1L,D-1, -1, 2,—1)v +(1, L1,1)-(-2,2,3, 2)v
LALLD(1,2,0-D  (LLLD-(1L0.01)
Jiraroe1 0 Jir040+1
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[MP_LQ
M WA TR AN
Example 4: Let R® have the Euclidean inner product and let S= {v,, v,, v;} be the
orthonormal basis with v, =(O, —E, i) =(1,0,0) and v, = 4, 3 .
55 “8°5
(1) Find the vectors u, v and w that have the coordinate vectors [u],= (-2, 1, 2),
[V]S = (35 05 —2) and [w]s‘ = (55 —4’ 1)

(i) Find |v|, d(u, w)and (w, v) using coordinate vectors.

Solution: (i) u=-2v,+v,+2v,

- —2(0, —i,f)m, 0, 0)+2(o,f, 5)
5°5 55

=(0+1+O,§+0+§,—§+0+§)
5 5 5

5
43
5 5

v=3v,+0v, - 2v,

S0 804
5’5 55

(0 3 i) 4(1,0,0)+(0,3,3)
e 55

( 15 4 20 3)
= _4,__+_’_+_
S 57§ 5§

(ii) IVl = V3 +(0) +(-2)?
=J13
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d(u,w)= \/(—2—5)2 +(1+4)+2-1)
=475
=53
(W, v) =[], -[v],
=(5,-4,1)-(3,0,-2)
=15-2
=13
Example 5: Let R® have the Euclidean inner product. Use the Gram—Schmidt

process to transform the basis vectors u, = (1, 0, 0), u, = (3, 7, -2), u; = (0, 4, 1) into
an orthonormal basis.

Solution: Step1:  Letv,=u,=(1,0,0)

Step2: v,= u, —wv,

]|v,

=3,7, 2)—(3’7’_21)'(1’0’0)(1,0,0)

= (3’ 7v —2)—3(]’ 0’ 0)

=(0,7,-2)

Vg UMy <“3’ ‘;]> V= <“3’ sz> \£}

[vil [v.

0,4, 02D 0004 5 g 04D O.7.22) 4, 5

1 (49+4)

28-2
=(0,4,1)-0-=—"-2(0,7, -2
( ) o ( )

:(0,4,1>—(o,@ —2)

537 53
=@&¢Q
537 53

15
=—=(0,2,7
s e 1)

The vectors v,, v,, v, form an orthogonal basis for R*. Normalizing v,, v,, v,
vI _ (]) O, 0)

=L =22-(1,0,0

A ™7 I

w _L_(‘”"z)_(o 7 _L]

vl Vao+4 “J58° ~/53
15

=w=§“2”{02 JJ

2 gm V53753

The vectors w,, w,, w, form an orthonormal basis for R*.



4.30 Chapter 4 Inner Product Spaces

Example 6: Let R* have the inner product ((x,, X,, X;), (V) Vs, V3)) = X0, +
2x2y2 + 3x,;. Use the Gram—Schmidt process to transform the basis vectors
=(1,1,1),u,=(1, 1,0), u; =(1, 0, 0) into an orthonormal basis.

Solution: Step 1: Let v,=u,=(1,1,1)
<“2’ ‘;l > v,

[vil
—<(7l : 0),7(1, s 12> L LD
(B 424817

M@ + 2D +3(0)D)
6

Step 2: v, =u, —

=(1,1,0-

:(1’ lv 0)_ (1,], 1)

1
=(1,1,0)——(1,1,1
( ) 2( )
_(l ! _l)
2727 2

<“z’ > <“3’V2>V

o Hv]” ; ""22 ’
11
ren(sy-1)
_(1,0,0)-{LO0GLYD) 4 22 2 (l,l,_l)
(P +2-17+3-1%) (l+2+3) 2’27 2
4 4 4

2(1 1 1
=(1,0,0)— (111) 6(— 5,—5)

The vectors v,, v,, v, form an orthogonal basis for R*. Normalizing v, v,, v,

v

ooV _(LD (LLL)
B Y I WA AN
1

(_l_l
v, 2’27 2 (1 1 1)
w,=—"—=-+— = -

ra b b
[v.l

6 6 Vo' o
4
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Ws

g5

v’i
= —= —’——’O
[v.I \ﬁ Jo© e
9

The vectors w,, w,, w, form an orthonormal basis for R°.

Example 7: Use the Gram—Schmidt process to transform the basis {1, x, x*} of P,
into an orthonormal basis if

(i) {p.q)=p(0) q(0)+p(1) q(1) + p(2) q(2)
(i) (p,q) =] p(x)g(x)dx

Solution: Letp, =1, p,=x, p,=x
(i) Step 1: Letq,=p,=1
P:-q
Step 2: 9 =P, —<—z'>q1
.

= - OO)+1)D+@)WD)
(1+1+1)

O
=(x-1)

0@ =p. <p3,qz.>ql ~ <p3,q;)q2

o .

= 2 OO +OAD)+EHD - O)=DH+MO) +(4)A)
(1+1+1) (1+0+1)

(x=1)

» S
=x ———=2(x-1
g =)

=x>=2x+ %
The polynomials q, q,, q; form an orthogonal basis for P,. Normalizing q,, q,, q;,
R B
la Vi+1+1 3
_ 9% x—1 =1
el Jeprvor e V2

" x2—2x+1 3 |

r3=_3= 3 =\/:(x2—2x+—)

e {7 ¥ (1} V2 3
(3) (5) (3)

The polynomials r,, r,, r; form an orthonormal basis for P,.
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(ii) Step 1: Let q,=p, =1
Step 2: q=p; —Mql
|a,
[
=x—2—()
[1-ax
0
2
=X——
2
=x-1

Step 3: q3:p3_<p3’qzl>q1_<p3,q2>qw

la, la.f”

2

j(xz)(l) sz (x—1)dx

=x2_0 5 (1)_02
[Ge-1yax
0
)
=x2—§—(?3)(x—1)
3
= x? —2x+3
3

The polynomials q,, q,, q; form an orthonormal basis for P,.
Normalizing q,, q,, q5,
q _ 1

=r———=—7
TG
q, x-1 \/g
r2=—=—= —(_x—l)
o | \E :
3
2 2

X —2x+—
q; 3

ol [ 2
\/J.(xz —2x+ z) dx
3
35 ( ; 2)
=—=| X" —2x+—
212 3
The polynomials r, r,, r, form an orthonormal basis for P,.

[‘3:

(x=1)
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I 1|l O
Example 8: Use Gram—Schmidt method to transform the basis {I:O O:|’ [ ],

0 1{|1 O . o b
o 1o 1 of M,, into an orthogonal basis if

) 11 10 0 1 10
Solution: Let 4 = s =|: ], 4, =[ ], A, =[ ]

11
Step 1: Let B =A4= ]

Step2: B,=4,——-=

_amyumuwuxm+wxm3
1+14+0+0 :

|1 ol-3lo o

(4B) (4.8)
5 A
Y5 T
=A_UM$Q&_UMﬁ?&
* w(BB) ' w(B,B)"

, )

3 3 2 1 2

=A4,——B -~—"2B,
I 3 O
(o 11 1[1 1] 11 =1
— —— +__
[0 1] 2{0 0] 6]2 -I
(11
_| 6 3
L]
|3 6
=1 2
6| 2 5
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4 = 4y

(4.8), (4.8), (4.8),

2 1 2 2 2 3
13| A Al
tr(A4B,T) tr(A4B,T) tr(A4B3T)
4~ TR T T D3
(B,B,) (B,B,) (B;By)

(l) (E)
1 2 3
= A, ~=B ~_2B, LB
4 2 1 3 2 (17) 3
18

109 133
| 204 204
a1 7
[ 12 17

The matrices B,, B,, B, and B, form an orthogonal basis for M,,.

Example 9: Let R* have the Euclidean inner product. Find an orthonormal basis
for the subspace of R* consisting of all the vectors (a, b, ¢, d) such that

a—-b-2c+d=0
Solution: Using a—b—2c+d =0, the vector (a, b, ¢, d) can be written as

=a(1,0,0,-1)+5(0,1,0,1)+c(0, 0, 1, 2)

=au, + bu, +cu,

Basis for the vector (a, b, ¢, d) = {u,, u,,u;}
where u,=(1,0,0,-1),u,=(0,1,0, 1), u;=(0,0, 1, 2)

To convert the above basis to an orthonormal basis, apply the Gram—Schmidt
process using Euclidean inner product.

Step 1: Let vi=u,=(1,0,0,-1)

Step 2: Vv, =u2—<uz’—‘;l>vl
vl
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=(Q1ALD—(QLOJ)(LOJL_”(LOJL—D
(1+1)

=(0,1,0, ])+%(l, 0,0,-1)

:(l, 15 07 l)
2 2

(u, v)) (s, vy)

u, - v, — v
3 ||V|||2 l v, F

(0,0,1,2)(1,0,0, 1)
(1+1)

(QQLD(%LQ%)I 1
- (_71503_)
(1 1) 2 2
—+1+-
4 4
1 2 1
=(0,0,1,2)+(1,0,0,-1)—| =, =, 0, —
(0.0..2)+(.0.0,.-1)~(3.2.0.4]

_(3 = ]Z)
37373

The vectors v,, v,, v, form an orthogonal basis for the subspace of R*.
Normalizing v,, v,, Vs,

vV, =

2(09 Oa 1’ 2)_ (la()’ O’ _1)

v, (1,0,0,-D (1 1)

=v - = _’090’__

A T N e 2 2
1 1

W_%_&M5L_LEOL

LA Y PR S B
4 4

3

(z_zlz)
v (3 T’3={£__jL z_aj
ol 4,4, 4

L4 \/ﬁ’ \/ﬁ’ 77\/5
9

The vectors w,, w,, w, form an orthonormal basis for the subspace of R*.

Example 10: Find an orthonormal basis for the solution space of the homoge-
neous system
baltts = ()

2% %, 2%, =0



i
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Solution: The augmented matrix of the system is

11 =10
|
21 20

Reducing the augmented matrix to row echelon form,

R, -2R,
[1 1 -1/0
“lo -1 450]
(=D R,

[1 1 -1}0
“lo 1 —450}

The corresponding system of equations is
X +x,— x=0

x,—4x; =0

Solving for leading variables x, and x,,

X ==X+x,

x, = 4x,
Let Xy =1,

x =-3t x,=4, 3 3
The solution space of system consists vectors of the form x=| 47 |=¢| 4

-3 t 1

Hence, basis for the solution space =4| 4
1

Normalizing the basis vector,

-hsyw
(=)

Orthonormal basis =

S

Exercise 4.3 D |

1. Find an orthonormal basis for R? Ans.:

containing the vectors (2, -2, 1) and
(2, 1, =2), using Euclidean inner (2,_2’1)’(2,1,_Z)’(l’g,g)
product. 3 33 33 3)\333
2. Consider the orthonormal basis
S={v,,V,, v,;} for R* with the Euclidean



inner product where v, = (T 0, T)
2 1
= (0, 1,
ool v-eno

Express the vector u = (2, -3, 1) as a

linear combination of the vectors in S
and find the coordinate vector [u]..

3
Ans.:u=—=v,———vVv, —3v,,
\/g 1 \/g 2 3
(4
NER
. Verify that the basis vectors

basis S for R* with the Euclidean inner
product. Express the vectoru=(3, 4, 5)
as a linear combination of the vectors
V,, V,, vyand find the coordinate vector

[u],

[Ans.: u=v, +0v,+ 7v,, (1,0, 7)]

. Verify that the vectors v, =(1,-2, 3,—4),
v,=(2,1,-4,-3),v,;=(3,4,1,-2)
and v, = (4, 3, 2, 1) form an orthogonal
basis for R* with the Euclidean
inner product. Express the vector
u=(-1,2,3,7) as alinear combination
of the vectors v,, v,, v;, v, and find the
coordinate vector [u],.

4 11
Ans.:u=——v,——V,
10 ~

1 ( 4 11 1)
+“'V4, _—a_'—,();—
2 5 100 2

. Find the coordinate vector of u=(-1, 0, 2)
with respect to the orthonormal basis

5396563

—0v,

8.

.Let R
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using Euclidean inner product.

[Ans.: (0,-2, 1)]
. Let R? have the Euclidean inner product
and let S = {v,, v,} is the orthonormal

basis with v, =(§—i) v, :(ii)
5 B3 T ASTS

(1) Find the vectors u and v that have
coordinate vectors [u], = (1, 1) and

[vl,=(-1,4).
(ii) Find |juf, d(u, v) and (u, v} using
coordinate vectors.

Ans.:())u= (Z, —l), V= (E, §)
5" 5 55
(i) V2, 13,3
have the Euclidean inner

product. Use the Gram—Schmidt
process to transform the basis vectors

ul=(l,25 1)’u2=(130, 1)9“32(3’ 1’0)
into an orthogonal basis.
2 2 2
0.3 (12, 1| =s==s=|;
{( )(3 3 3)

2ol

Let R* have the Euclidean inner
product. Use the Gram—Schmidt
process to transform the basis vectors
u=(1,0,3),u,=(2,2,0),u,=(3,1,2)
into an orthonormal basis.

r I

Ans.:

o)

—

o

0 3
rr)
T

Fed)

— —
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9. Let R® have the inner product {(x,, x,,
X3), (V15 V2o V)Y =2%,y, %9, 3x,y, Use
the Gram—Schmidt process to trans-
form the basis vectors u, = (1, 1, 1),
u, = (1,-1, 1), u; = (1, 1, 0) into an
orthogonal basis.

[Ans.: (1,1, 1),(1,-5, 1), (3, 0,-2)]

10. Use the Gram—Schmidt process to tra-
nsform the basis {1, x, x>, x*} of P,
into an orthogonal basis if

= [ pq(x)d

[Ans.: {l, %, %(3x2 -1, %(5)(3 - 3x2)}]

11.Let M,, have the inner product
(4, B)=1tr(AB"). Use the Gram-
Schmidt process to transform the basis

11 1 0
vectors 4 = , A, = "
0 1] = |1l 1
1 0 1 0
4, = LA, =
S0 1 0 0
into an orthogonal basis.
1[1 1} 1 {1 —z]
Blo 1] Visl3 1)
1 [ 1 —2] 1[1 o]
Jiol=2 120 -1

12. Find an orthonormal basis for the sub-
space of R* consisting of all vectors of
the form (a, a+ b, ¢, b + ¢).

Ans.:

Ans.:
(i)
(@ mEwm)

13. Use Gram—Schmidt process to con-
struct an orthonormal basis for the
subspace W of R* spanned by the
vectors v,=(1, 1,0, 0), v,=(2,-1,0, 1),
v,;=03,-3,0,-2),v,=(1,-2,0,-3)
using Euclidean inner product.

Ans.:

(Fr-aro-m )t

14.Find an orthonormal basis for the
solution space of the homogeneous
system
11 —1flx
2 1 3fx|=
1 2 —6]|x

oS o O

U'ﬁl‘.h
[\e)

Ans.:

S
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4.5 ORTHOGONAL COMPLEMENTS

Let W be a subspace of an inner product space V. A vector u in V is called orthogonal
to W ifitis orthogonal to every vector in 7. The set of all vectors in / that are orthogo-
nal to W is called the orthogonal complement of / and is denoted by W+ (read as “IW
perpendicular” or “W perp.”)

Properties of Orthogonal Complements

If W is a subspace of inner product space J then
(i) A vector u is in W+ if and only if u is orthogonal to every vector in a set that
spans W.
(ii) The only vector common to ¥ and W * is 0.
(iii) W is a subspace of V.
: 1\
(v) (w*) =w.
Theorem 4.6: If 4 is an m X n matrix then the following hold:

(i) The null space of 4 and the row space of 4 are orthogonal complements in R”
with respect to the Euclidean inner product.

(Row space of 4)* = Null space of 4 and (Null space of 4)* = Row space of 4

(i1) The null space of A and the column space of 4 are orthogonal complements in
R™ with respect to the Euclidean inner product.

(Column space of 4)*=Null space of A" and (Null space of 4”)* = Column space of 4

Note: This theorem can be used to find a basis for the orthogonal complement of a
subspace of Euclidean n-space.

Example 1: Find a basis for the orthogonal complement of the subspace ¥ of the

corresponding space R” spanned by the vectors

(i) u,=(2,0,-1),u,=(4,0,-2) inR*.
(11) ul = (2’ _19 15 37 0)’ u2= (13 25 09 1$_2)5 u3 = (4, 37 15 55 _4)a u4= (35 l’ 27 _la 1)9
u,=(2,-1,2,-2,3) inR,.

Solution: (i) The subspace ¥ spanned by these vectors is the row space of the

matrix
2 0 -1
A —
4 0 2
Since, (Row space of A)* = Null space of 4
Basis for (Row space 4)* = Basis for the null space of 4
1.e., Basis for 7+ = Basis for the null space of 4

The null space of 4 is the solution space of the homogeneous system Ax = 0

X

o 2=

3
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The augmented matrix of the system is
2 0 -1,0
|
4 0 2,0

Reducing the augmented matrix to row echelon form,

ll
[ @ == 0
~ 2:
4 0 -210
R, —4R,
1 0 —l:o
o~ 2:
0 0 0i0]

The corresponding system of equations is
|
X +0x,—=x; =0
2
Solving for the leading variables,
1
x, =—0x, +—x,
2

Assigning the free variables x, and x, arbitrary values ¢, and 7, respectively,

1
X —Efz,
X, =1,
X, =t

Null space consists vectors of the form

X, %tz 0 %
=\ =\, =t|1|+6|
% ‘ 0 |

13
Basis for the null space of 4=4|1|, 0 which is also the basis for ™.
¢ 1



4.5 Orthogonal Complements 4.41

(i) The space ¥ spanned by these vectors is the row space of the matrix.

2 -1'1 3 0
1 20 1 =2
A=|4 3 1 5 -4
31 2 -1 1
2 -1 2 =2 3

Since, (Row space of A)* = Null space of 4

Basis for (Row space of 4)*= Basis for the null space 4

i.e., Basis for 7+ = Basis for the null space of 4

The null space of 4 is the solution space of the homogeneous system Ax =0

-1

W
|
N
=
Il
oS o o o O

1

0

I

12 -1 1fx
-1 2

N W s = N

The augmented matrix for the system is

2 .11 3 0.0
I 0 1 210
4 1 5 —410
312 -1 110
2 -1 2 2 3i0

RI2
(1 2 0 1 =210]
2 -1 1 3 0!0
~l4 31 5 -410
3 12 -1 110
2 -1 2 -2 3i0

1 20 1 =210]
0 -5 1 1 410
~lo =5 1 1 410
0 =52 -4 710
0 =52 -4 710
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R,

The corresponding system of equations is

o o
Il Il
=
N <
| |
= s
— |y
+ |
S
S iy (%)
+ |
~
+

*

x— 5x,+ 3x,=0
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Solving for the leading variables,
x, = =2x, —0x; —x, +2x;
Xl = §x3 +§x4 +gx5
X, = 5x, —3x,

Assigning the free variable x, and x; arbitrary values 7, and ¢, respectively,

17 8
X, =—?[1 +g[2,

6 1
X, =§t, +§1‘2,
x, =5¢ -3¢,
X, =1,
Xs =1,

Null space consists vectors of the form

17 8 1 [ 17] 8
- | =+ -— -
X 5 5 5
X 6 1 6 1
2 N - -
X=|x|= 5 D =t1 5 +t2 5
x, 5t, —3t, 5 -3
x| f 1 0
i t, | | 0 | | 1]
,_ Eﬂ _ §,,
5 5
e11d
Basis for the null space of 4= 5 |,| 5|t which is also the basis for 7+,
5 -3
1 0
L 0 - L 1‘

4.6 ORTHOGONAL PROJECTION

4.6.1 Orthogonal Projection on a Vector

If u and v are two vectors in an inner product space V such that v # 0 then orthogonal
projection of u on v is given by

(u, v)

v
IvIF

proj,u =
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4.6.2 Orthogonal Projection on a Subspace

If {v,, v,,..., v} is an orthonormal basis for subspace W of an inner product space V’
and W is any vector in V' then orthogonal projection of w on W is given by

proj, w = <W, \f > v, + <w’ \L! > Vy oot <W, ¥y > v,
Note: If {v,, v,,..., v} is an orthogonal basis for /¥ and w is any vector in /' then

<w, v'>v +<W, Vz>v +_,,+Mv

2 1 2 2 2
| vl‘ "

proj, w =
v,

r

”Vz

(1) Approximation Theorem

Theorem 4.7: If W is a finite dimensional subspace of an inner product space ' and u
is any vector in V' then proj, u is the vector in I that is closest to u, i.e.

||u = proj,,,u" <|jw—v] forall v in .

(2) Projection Theorem

Theorem 4.8: If 17 is a subspace of a finite dimensional inner product space V and w
is any vector in V' then

W=W, +W,
where W, = proj,w isin W
and W, =proj,, w is in /-

Example 1: Find the orthogonal projection of u = (1, -2, 3) along v=(1, 2, 1) in
R? with respect to the Euclidean inner product.

Solution: Let I¥ be the subspace spanned by the vector v= (1, 2, 1).

(u, v)

proj, u =

>

Iv

— v
IvIF

= (13 _725 3)’ (1’ 225 l) (l, 2, 1)
1°+2°+1%)
1-4+3
= 1,21
5 1,2,1)

=0

Example 2: Find the orthogonal projection of u = (4, 0, —1) along v = (3, 1, -5)
in R* with respect to the Euclidean inner product. Also find the component of u
orthogonal to v.
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Solution: Let I¥ be the subspace spanned by the vector v=(3, 1, -5).
Y
v

llV

proj, u

@ 0-1E1-5
T (9+1+25)

(3,1,-5)
17

=—@,1,-5
35( )

_(ﬂ 17 _E)

135735 7

The component of u orthogonal to v is

proj,,.u = u - proj,u

=(4,0,—1)—(ﬂ,u,—ﬂ)
35 35 7

(L)
35" 887
Example 3: Let J¥ be the subspace of R* with orthonormal basis {v,, v,}, where

20 )
v=|—,——,— Using Euclidean inner product find the dis-
' (3 3 ) (I ' 2 ) fe e
tance from the vector u=(1, 1, 0) to ¥, where u is in V.

Solution: From the approximation theorem,
Distance from u to ¥ = [u— proj,,,u”

proj,u = <“’ v > v+ <“’ V7>V2

2 1L 2 2 1 2
—{“’“0’(§=‘5’ 5)}(5 ‘5"5)

1 1 1 1
ooz g)(Ees)
__f____z
“3\37 37 3
( 918)

[\

+LLOL)
\/5\/5;’2
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13 15
]9150 1559 mvin
G (18 9 18)“

_ (i _1o _i)
18 97 18

||u—proj,,,.u||=\

(25 100 25)
= —+—+—
324 81 324

52

T
Example 4: Let W be the subspace spanned by the orthonormal vectors
4 3

v,=(0,1,0)and v, =| —,0,——|.
1= ) : (5 5)

Find the orthogonal projection of w = (1, 2, 3) on ¥ with respect to Euclid-
ean inner product. Also find the component of u orthogonal to W and express
W =W, + w, where w, is in # and w, is in W'*.

Solution: Since an orthonormal set is also linearly independent, the vectors v, and
v, form an orthonormal basis for 7.
proj, w = <W, v > v, + <W, Vo > Ya
=(W-V)V, +(W-V,)V,

3)|( 4 3

4
=i{(1,2;3)4(0,1,:0)](0,1, 0)+[(1, 2 3)-(5, 0, —g):|(§ 0, —g)

=(2)(0,1,0)+ (—l)(;, 0, —%)

The component of w orthogonal to IV is

proj,. W = W — proj, w

4 3
=(1,2, 3)—(—5, 2,—)

5
9
{20
5 5
Using Projection theorem w can be expressed as

W=W, +W,

= Proj, W + proj,,. w

SRR
55 5 5
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Example 5: Let W=span {(2, 5, 1), (-2, 1, 1)}. Find the orthogonal projection
of w=(1, 2, 3) on W with respect to Euclidean inner product. Also find the compo-
nent of w orthogonal to 7.

Solution: Letv, =(2,5,-1),v,=(-2,1,1)
<V|v V2>: Vi ¥ig'= 2,5,-1)-(-2,1,1)
=0
Thus v, and v, are orthogonal. Since an orthogonal set is linearly independent, the
vectors v,, v, form an orthogonal basis for WV.
(w,v)  (w,v,)
% ) z V2
||vl I v,
vy, bvev)
vil vl
— (l, 22’ 3)’(2’ 55 _71) (2, 5’ —1)+ (15 25 3’) (_229 1’71)
[2°+5 +(=1D)7] [(=2) +1"+17]
9

3
=— (2,5 -1)+=(-2,1,1
30( ) 6( )

_(E 45 _2)+(_1 3 E)
307307 30 676

_(_2 60 i)_(_z 5 1)
30730730 5775

The component of w orthogonal to W is

proj, w =

(-2,L1)

proj,,. W = W — proj, w

2 1
=(1,2:3) =] ==525=
a.29-(-2.2.4)
)
5 5

4.7 LEAST SQUARES APPROXIMATION

In Chapter 6 we have discussed that a linear system Ax = b is consistent if it has a
solution and is inconsistent if it has no solution. In many situations an inconsistent
system requires a solution. In such situations we find a value of x that makes Ax as
close as possible to b, i.. it minimizes the value of || Ax —b|| with respect to the Euclid-
ean inner product. Here, x is regarded as an approximate solution of the linear system
Ax =Db.

The general least squares problem is to find a vector x that minimizes ||Ax - b” with
respect to the Euclidean inner product. The vector x is called a least squares solution
of Ax =b.
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If W is the column space of A then the vector in I that is closet to b is proj, b.
Thus, if we find x such that
Ax =proj, b
then |4x—b)| is minimum and therefore x is a least squares solution of Ax = b.
Since b — Ax = b — proj,, b is in W, it is orthogonal to every vector in W. Therefore,

b — Ax is orthogonal to each column of 4.
Thus, AT(b—-Ax)=0
AT Ax=A"Db

This is called the normal system of equation associated with Ax = b.
The least squares solution x to Ax = b can be found as follows.

1. Find the matrices A”4 and A”b.
2. Solve the normal system

A" Ax = A" b for x using Gauss-elimination method.

Theorem 4.9: A vector x is the least squares solution to Ax = b if and only if x is a
solution to the normal equations A” Ax = A”b.

Theorem 4.10: If x is any least squares solution of 4x =b and W is the column space
of 4 then

proj,, b = Ax.
Example 1: Find the least squares solution of the linear system 4x = b given by
x+ x,=17
-x+ x,= 0
=2 =1

and find the orthogonal projection of b on the column space of 4.

Solution: The matrix form of the linear system is

4 2 -7
5 N

g, [T =L =i 3 -

AT A= -1 1|=
11 2 2 6
- 2-1 2
: g

o [ =Ll =4 14

A" = 0=
11 2 3
: e
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The normal system A" 4 x=A"b is

[ 3 2][x] [14
-
The augmented matrix of the system is
[ 3 -2} 14]
-2 6T
Reducing the augmented matrix to row echelon form,
RIZ
(-2 61-7
B 14}

l

1

W

| |

o W
i
BN
e

l
T 1
= i
|
< w
RN N
—_

The corresponding system of equations is

X —3x, =

Tx; =

N

. . 1
The least squares solution of the system is x, =5, x, = >

The orthogonal projection of b on the column space of 4 is

1 1{[5
Ax=[-1 1{|1
-1 2]l2
11
2
=l 9
g
| -4




4.50 Chapter 4 Inner Product Spaces

Example 2: Find the orthogonal projection of u = (2, 1, 3) on the subspace of R*
spanned by the vectors v, = (1, 1, 0), v, = (1, 2, 1).

Solution: The subspace of R* spanned by the vectors v, and v, is the column space
of the matrix i

A=|1 2
0 1
xl

proj, u = Ax, where x = [ ] is the least squares solution of the system 4Ax = u.

X

. 11
5 1 10 2 3
A" A= 1 2|=
1 2 1 3 6
= 10 1
_ {2
. I 10 3
Au= L=
1 2 1 7
- 13

The normal system A7 Ax =A"u is

R NEH

The augmented matrix of the system is

[2 3,3
|

|3 6,7

Reducing the augmented matrix to row echelon form,

I
12:3
~ 2 12
3 67
R, —3R
- it s
13:3
" 212
I
g 318
L. 21 2]




The least squares solution of the system is

X =

“1,x, ==
-3

The orthogonal projection of u on the column space of A4 is

ol

Ax

r

1
Wl W Wl © — —

J

r
L

1.Find a basis for the orthogonal
complement of the subspace W of the
corresponding space R" spanned by the
following vectors:
(@) vy=(5,-2,-1),v,=(2,-3, 15)
in R
(i) v,=(1,-1,3),v,=(5,-4,-4),
v,=(7,-6,2)in R®

(lll) v] =(1,_]’ 2s 0)9
v,=(1,0,-2,3) in R*.

(iv) v,=(1,4,5,6,9),
v,=(,-2,1,4,-1),
v,=(-1,0,-1,-2,-1),
v,=(2,3,5,7,8)in R°.

Exercise 4.4

Ans.: (1)

(i)

4.7 Least Squares Approximation 4.51
1[-1
20 5
1l 3
= - . =
(i) 411 3
iii 1
1 0
0] [-1
[-1] [-2] [-1]]
=1 |-1]]-2
@iv) I,|] Of,] O
0 1 0
| 0 0 |
.Find the orthogonal projection of

u=(1,2,3,4)alongv=(1,-3,4,-2)
in R* with respect to the Euclidean
inner product.

Ans.:(—i,i,—z,i)
3010 1515

. Let W be the subspace of R* with basis

{(1, 1,0, 1),(0, 1, 1, 0), (-1, 0, 0, 1)}.
Find the orthogonal projection of
w=(2,1,3,0)on W with respect to the
Euclidean inner product.

Ans.:(z,l—l,g,—é)
5" 855 5
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4. Let W be the subspace of R* with
orthonormal basis

G- )

Using Euclidean inner product, find the
component of w = (2, 1, 3) orthogonal
to /W and express w = w, + w, where w,
is in W and w, is in W™,

(l 2 l) (ll | 19)
Ans.: S P Ty 9w] =S Z e 32 |s
6 3 6 6 3 6

(l 2 1)
Wo S| Sy =2
S \6 3 6

5. Let W be the subspace of R* with
orthonormal basis

| 1
_,O, Oa——_ 5 050a 15 0)5
(Foo-)¢

1 1
T 0’ 0: =
(Fo3)

Using Euclidean inner product, find the

component of w = (1, 0, 2, 3) ortho-

gonal to W and express w =w, +w,

where w, is in W and w, is in /™.
[Ans. : (0,0,0,0), w,=(1,0,2,3), w,=

(0,0,0,0)]

6. Let 17 be the subspace of R® with
orthonormal basis {v,, v,}, where

Using Euclidean inner product find
the distance from the vector u = (3, 4,
—1) to W, where uisin V.

[Ans.: \/ﬁ]

7. Find the least squares solution of
the linear system 4x = b and find
orthogonal projection of b onto the
column space of 4.

-1 4
i 4=| 3 2|,b=
-2 4 3
10 -1 [6
B 2 1 =2 0
(1)) A= {1 O,b— 9
1 1 -1 3
[ Ans.: ]
92 |
285
i =, =202 [ 339
95~ ° 285 285
94
57]
7
i 3
() x, =12,x,=-3,x,=9;
: 9
- 0~_.

8. Find the orthogonal projection of
u = (6, 3,9, 6) subspace of R* spanned
by the vectors v, = (2, 1, 1, 1),
v,=(1,0,1,1),v;=(-2,-1,0,-1).



Eigenvalues and
Eigenvectors

m Chapter

5.1 INTRODUCTION

Eigenvalues and eigenvectors are important concepts in linear algebra. They are derived
from the German word ‘eigen’ which means proper or characteristic. Eigenvectors are
non-zero vectors that get mapped into scalar multiples of themselves under a linear
operator. These are useful in solving systems of differential equations, analyzing
population growth models and are also useful in quantum mechanics and economics.

5.2 EIGENVALUES AND EIGENVECTORS

Any non-zero vector x is said to be a characteristic vector or eigenvector of a square
matrix 4, if there exists a number A such that

Ax = Ax

X1
where 4=[q,],,, is a n-rowed square matrix and ,. _ | *2 | is a column vector.

Xn

Also, A is said to be characteristic root or characteristic value or eigenvalue of the
matrix 4.

Depending on the sign and the magnitude of the eigenvalue A corresponding to
x, the linear operator Ax = Ax compresses or stretches eigenvector x by a factor A. If A
is negative, direction of eigenvector reverses.

AL

yo<sA<t (i) =1 (i) —1<4<0 (iv) 4 < -1
Fig. 5.1
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Now Ax = Ax = AIx
(A= A)x=0

The matrix 4 — Al is called the characteristic matrix of 4 where 7 is the unit matrix
of order n.
The determinant

a,-A a, .. a,

a,  an—A ... a
det(A—AD) = "
anl anZ arm -

which is an ordinary polynomial in A of degree n, is called the characteristic polynomial
of A.

The equation det (4 — A7) =0 is called the characteristic equation of 4 and the roots
of this equation are called the eigenvalues of the matrix 4. The set of all eigenvectors
is called the eigenspace of A corresponding to A. The set of all eigenvalues of 4 is
called the spectrum of 4.

Note: (1) The characteristic equation of the matrix 4 of order 2 can be obtained from
A= 8,1+ 85,=0
where S, = Sum of principal diagonal elements and
S, = Determinant 4
(2) The characteristic equation of the matrix 4 of order 3 can be obtained from
A= 8§ A+85,1-8,=0

where S, = Sum of principal diagonal elements,
S,= Sum of minors of principal diagonal elements and
S, = Determinant 4

(3) The sum of the eigenvalues of a matrix is the sum of its principal diagonal elements.
(4) The product of the eigenvalues of a matrix is the determinant of the matrix.

5.2.1 Nature of Eigenvalues of Special Types of Matrices
Theorem 5.1: The eigenvalues of a triangular matrix are the diagonal elements of
the matrix.

Theorem 5.2: The eigenvalues of a real symmetric matrix are real.

Theorem 5.3: The eigenvalues of a skew real symmetric matrix are either purely
imaginary or zero.

Theorem 5.4: The eigenvalues of a Hermitian matrix are real.

Theorem 5.5: The eigenvalues of a skew Hermitian matrix are either purely imagi-
nary or zero.
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Theorem 5.6: The eigenvalues of a unitary matrix are of unit modulus.

Theorem 5.7: The eigenvalues of an orthogonal matrix are of unit modulus.

5.2.2 Relations between Eigenvalues and
Eigenvectors

Theorem 5.8: If x is an eigenvector of a matrix 4 corresponding to the eigenvalue A
then kx is also an eigenvector of 4 corresponding to same eigenvalue A, where k is any
nonzero scalar.

Theorem 5.9: If x is an eigenvector of a matrix 4 then x can not correspond to more
than one eigenvalue of 4.

Theorem 5.10: The eigenvectors corresponding to distinct eigenvalues of a matrix
are linearly independent.

Theorem 5.11: If two or more eigenvalues are equal then the corresponding eigen-
vectors may or may not be linearly independent.

Theorem 5.12: The eigenvectors corresponding to distinct eigenvalues of a real
symmetric matrix are orthogonal.

Theorem 5.13: Any two eigenvectors corresponding to two distinct eigenvalues of a
unitary matrix are orthogonal.

Theorem 5.14: If Ais an eigenvalue of a matrix 4 and x is a corresponding eigenvector

1 . . . .
then 1 is an eigenvalue of 47! and x is a corresponding eigenvector.

Theorem 5.15: If Ais an eigenvalue of a matrix 4 and x is a corresponding eigenvector
then A* is an eigenvalue of 4* and x is a corresponding eigenvector.

Theorem 5.16: If Ais an eigenvalue of a matrix 4 and x is a corresponding eigenvector
then 4+ k is an eigenvalue of 4 £ k7 and x is a corresponding eigenvector.

Theorem 5.17: If Ais an eigenvalue of a matrix 4 and x is a corresponding eigenvector
then kA is an eigenvalue of matrix k4 and x is a corresponding eigenvector.

Theorem 5.18: If A is an eigenvalue of a matrix 4 then A is also an eigenvalue of
matrix 4”. Matrix 4 and 4” need not have the same eigenvectors.

3 -1 1
Example 1: If 4=|-1 5 -1|,find eigenvalues for the following matrices:
1 -1 3

1) 4 (@[1) A" (i) A1 (iv) 44 (v) 42 (vi) A2=24+1 (vii) A>+2I

Solution: A=|-1 5 -1
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The characteristic equation is

det(A-AT)=0
5-4 -1 1
-1 5-1 -1[=0
{ <l B=g

P =S5+ S48 =0

where S, = Sum of the principal diagonal elements of 4 =3 +5+3 =11
S, = Sum of the minors of principal diagonal elements of 4

5 -1 31 3 -1
= + +
-1 3|l 3 |-1 5
=(15-D+O-D+15-1)
=14+8+14
=36
3 -1 1

S, =det(4)=[-1 5 -1
1 -1 3
=3(15-D)+1(-3+1D)+1(1-5)
=42-2-4
=36
Hence, the characteristic equation is

A -112%+364—36=0

A1=2,3,6
(i) Eigenvalues of 4 =1 12,3,6
(ii) Eigenvalues of A= A" :2,3,6
(iii) Eigenvalues of A™'= 1" : l l, 1
236
. . g v 4 2
(iv) Eigenvalues of 447! =41 59 33
(v) Eigenvalues of 4> = 2? 14,9, 36
(vi) Eigenvalues of 4224 +1=A-2A+1 :1,4,25
(vii) Eigenvalues of A +27/=*+2 110,29, 218

Example 2: Find the eigenvalues, eigenvectors and bases for eigenspaces for the
following matrices.

4 6 6 L0 = 8§ -6 2
b1 3 2 6|1 2 1] @i -6 7 -4
-1 -4 -3 2 2 3 2 -4 3
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-2 2 =3 0 1 1 N2 0 10
vy | 2 1 -6 m |10 1| oid|o 2 1| i)|o o 1
-1 -2 0 1 1 0 -1 2 2 1 -3 3
4 6 6
Solution: (i) A= 1 3 2
-1 -4 -3

The characteristic equation is
det(4-Al)=0
4-1 6 6

-8 A+85,4-8,=0
where S, = Sum of the principal diagonal elements of 4 =4+3 -3 =4

S, = Sum of the minors of principal diagonal elements of 4

3 2 |4 6 |46
:’—4 —3+‘—1 —3Hl 3
=(-9+8)+(~12+6)+(12-6)
=—1-6+6
=1

4 6 6
S,=det(d)=| 1 3 2
A -4 -3
= 4(=9+8) — 6(~3+2) + 6(—4+3)
=—4+6-6
=4

Hence, the characteristic equation is
A2—4)2-21+4=0
A=-1,14

(a) ForA=-1, [A-=AI1x=0
5 6 6|«x 0
1 4 2| y|=]o
-1 -4 =2||z 0
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5x+6y+6z=0
x+4y+2z=0
By Cramer’s rule,

X y _ z
’6 6’ '5 6‘ ‘5 6‘
4 2 1 2 |1 4

A .
12~ -4 14
x y z
—=—=—===1{,sa
5 g 7

Thus, the eigenvectors of 4 corresponding to A =—1 are the non-zero vectors of the

—6t -6
form x =| -2t [=t| -2 | =tx, where x, forms a basis for the eigenspace corresponding
7t 7
to A=-1.
(b) ForA=1, [A=AIx=0
3 6 6f«x 0
1 2 2y|=|0
-1 -4 4|z 0
x+2y+2z=0
—x—4y—-4z=0
By Cramer’s rule,
x _y _z
2 2 1 2|1 2
-4 -4 -1 -4 |-1 -4
P dley =
0o 2 =2
x _ Y
—=—=—={8a
0o 1 - 4

Thus, the eigenvectors of 4 corresponding A= 1 are the non-zero vectors of the form

0 0
x=| t|=t| 1|=tx, where x, forms a basis for the eigenspace corresponding to
—t -1

A=1.
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(¢) ForA=4, [A-AI1x=0
0 6 6]x 0
I -1 2fy|=|0
-1 -4 7|z 0
Ox+6y+6z=0
x— y+2z=0
—x—4y-T7z=0
By Cramer’s rule,
x Yy _ z
6 6 |0 6 |0 6
-1 2 1 2 1 -1
&* k. B
I8 6 -6
x y z
—==—=—=¢{,5a
31 - Y

Thus, the eigenvectors of 4 corresponding to 4 = 4 are the non-zero vectors of the

3t
form x=| ¢
—t

3
=t
-1

to A=4.

(i)

The characteristic equation is

B=S 2+ S,A-8,=0

1 | =tx, where x, forms a basis for the eigenspace corresponding

[ R
NN O
W =

det(A—-AI)=0

where S, = Sum of the principal diagonal elements of A=1+2+3=6
S, = Sum of the minors of principal diagonal elements of 4

1 =1
+
2 3

1
1

+

21
2 3

0
2

=(6-2)+(3+2)+(2-0)

=4+5+2
=11
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10 -1
S,=det(4) =1 2 1
2 2 3
=1(6-2)-0-1(2-4)

=6
Hence, the characteristic equation is

LB -6A£+111-6=0

A=1,2,3
(a) ForA=1, [A—AI1x=0
0 0 —1flx 0
1 1 1 y|=|0
2 2 2|z 0
Ox+0y—2z=0
x+y+z=0
By Cramer’s rule,
X y z

0 -] Jo -1 Jo 0
1 1 11 |11
X y z
—=—=—=1,5a
1 -1 0 ¥
Thus, the eigenvectors of 4 corresponding to A = 1 are the non-zero vectors of the
t 1

form x=|—¢|=t| —1|=1tx, where x, forms a basis for the eigenspace corresponding
0 0
toA=1.
(b) For 4=2, [A-Al1x=0
-1 0 -1]l=x 0
1 0 1iy|=|0
2 2 1|z 0
x+0y+z=0
2x+2y+z=0
By Cramer’s rule,
x __y _ z
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X y z
ST
Thus, the eigenvectors of 4 corresponding to A= 2 are the non-zero vectors of the form
=2t -2
x=| t|=t| l|=tx, where x, forms a basis for the eigenspace corresponding
2t 2
to A=2.
(¢) ForA=3, [A=AI1x=0
-2 0 -1 =x 0
1 -1 1|fy|=|0
2 2 0|z 0
—2x+0y— z=90
x— y+ z=0
2x+2y+0z=0
By Cramer’s rule,
X % z
0 - 2 - |2 0
A
X y z
i R ik

Thus, the eigenvectors of 4 corresponding to A = 3 are the non-zero vectors of the
—t -1

form x=| ¢|=t| 1|=tx, where x; forms a basis for the eigenspace corresponding
2t 2
to A=3.
8 -6 2
(iii) A=|-6 T -4
2 -4 3

The characteristic equation is
det(A-2A1)=0
8—-A —6 2
-6 7-2 -4|=0
2 -4 3-)
-8 +8,A-8,=0

where S, = Sum of the principal diagonal elements of 4 =8+ 7 +3 =18
S, = Sum of the minors of principal diagonal elements of 4
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7 -4 8 2| |8 6
=‘—4 3Hz 3‘+—6 7‘
= (21-16) + (24— 4)+ (56 — 36)
=5+20+20
=45
8 —6 2
S, =det(A)=|-6 7 -4
3 & 3
=8(21-16)+6(—18+8) +2(24—14)
= 40-60+20

=0
Hence, the characteristic equation is
2’ —1822 +451=0
A=0,3,15
(a) For A=0, [A-=AI1x=0

8 -6 2| «x 0
-6 7 —4|ly|[=|0
2 -4 3|z 0

8x—-6y+2z=0
—6x+7y—4z=0
2x=4y+3z=0

By Cramer’s rule,

X _y _ z
10 20 20
X y z
1T
Thus, the eigenvectors of 4 corresponding to 4 = 0 are the non-zero vectors of the
t 1
form x=| 2t |=t|2|=tx, where x, forms a basis for the eigenspace corresponding
2t 2

to A=0.
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(b) ForA=3, [A-A1]1x=0
5 -6 2|x 0
-6 4 -4 =|0
2 -4 0]z 0
5x—6y+2z=0
—6x+4y—4z=0
2x—-4y+0z=0
By Cramer’s rule,
x __y _z
-6 2 |5 2|5 -6
4 -4 -6 -4 |-6 4
Xl S
6 8 16
X y z
—==—=—=1,8a
2 1 2 t
Thus, the eigenvectors of 4 corresponding to A= 3 are the non-zero vectors of the form
2t 2
x=| t|=t| 1|=tx, where x, forms a basis for the eigenspace corresponding to
=2t -2
A=3:
(¢) For A=15, [A-=AITx=0
-7 -6 2| x 0
-6 -8 —4fly|=]0
2 -4 -12|| ¢z 0
—Ix—6y+ 2z=0
—6x—-8y— 4z=0
2x—-4y—-12z=0
By Cramer’s rule,
X ___Y _ Z
-6 2 -7 2 |-7T -6
-8 -4 -6 -4 |-6 -8
AT
40 40 20
G
“==—="=¢(sa
2 2 4
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Thus, the eigenvectors of 4 corresponding to A= 15 are the non-zero vectors of the

2t 2
form x=|-2¢|=t|-2|=1tx, where x; forms a basis for the eigenspace correspond-
t 1
ing to A=15.

Note: The eigenvectors corresponding to distinct eigenvalues of a real symmetric
matrix are orthogonal which can be verified with this example.

2
xx,=[ 2 2] 1/=0
__2_‘
F 5
xix,=[2 1 =2][-2[=0
1

1
Xix;=[2 -2 1]|2|=0
)

Thus, x,, X, and X, are orthogonal to each other.

-2 2 3
(iv) A= 2 1 -6
-1 -2 0
The characteristic equation is
det(A-2A1)=0
—2-A 2 3
2 1-A4 —-6|=0
-1 -2 -1

P=BA*+52~8=10

where S, = Sum of the principal diagonal elements of A =2+ 1+ 0=-1
S, = Sum of the minors of principal diagonal elements of 4

1 -6 |2 -3 |2 2
= - +

2 0 |-1 o |21
=(0-12)+(0-3)+(-2—4)
=-12-3-6

=-21
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-2 2 3
S,=det(4d)=] 2 1 -6
-1 =2 0
=(-2)(0-12)-2(0-6)—3(—4+1)
=24+12+9

=45
Hence, the characteristic equation is

A +A7=-211-45=0

A=5,-3,-3
(a) For A=35, [A—AI1x=0
-7 2 3 «x 0
2 -4 —6|ly|=|0
-1 =2 5|z 0
~7x+2y-3z=0
2x—4y—-6z=0
- x—-2y-5z=0
By Cramer’s rule,
X _ y _ z
2 3 =7 3 -7 2
-4 -6 2 -6 2 -4
LI e
24 48 24
£=Z=i=t,say

1 2 -1

Thus, the eigenvectors of 4 corresponding to 4 = 5 are the non-zero vectors of the
t 1

form x=|2¢|=t| 2|=tx, where x, forms a basis for the eigenspace corresponding
—t -1

to A=5.

(b) For A=-3, [A=A1x=0
1 2 3)|=x 0
2 4 —6|y|=|0
-1 =2 3|z 0
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x+2y-3z=0
Let y = tand z=¢,
x=-2t +3¢,

Thus, the eigenvectors of 4 corresponding to A = -3 are the non-zero vectors of the

=2t, +3t, -2 3
form x= t, =t| 1|+t,|0|=tx,+t,X, where x, and x, form a basis for
t 0 1

the eigenspace corresponding to 4= -3.

0 1 1
(v) A=11 0 1
1 10
The characteristic equation is
det(A-AI)=0
-1 1 1
1 -4 1[=0
1 1 -2

B—SR+8A-8,=0

where S|, = Sum of the principal diagonal elements of A=0+0+0=0
S, = Sum of the minors of principal diagonal elements of 4

0 1f |0 1] (0 1
= + +
I o (1 O (1 O

=0-D+0-D+(0-1)

=-3
0 1 1
S, =det(A)=|1 0 1
1 10
=0-1(0—-1)+1(1-0)
=2

Hence, the characteristic equation is

P—34—2=10
1=2,-1,-1
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(a) For A=2, [A-A1]x=0
-2 1 1| x 0

1 =2 1fly|=|0

1 1 2|z 0

—2x+ y+ z=0

x—2y+ z=0
x+ y—-2z=0
By Cramer’s rule,
X _ y _ V4
L =21 2 1
-2 1 11 1 =2
oL 2
3 3 3
X y z
—===—=1,5a
111

Thus, the eigenvectors of 4 corresponding to 4 = 2 are the non-zero vectors of the
t 1

form x=|7|=¢|1|=1x, where x, forms a basis for the eigenspace corresponding to
t 1

A=2.
(b) For A=-1, [A-AI1x=0
1 1 1|fx 0
I 1 1)|y|[=|0
11 1)z 0
xX+y+z=0
Let y=tandz=t,
x=-t—t,

Thus, the eigenvectors of 4 corresponding to A= —1 are the non-zero vectors of the

~t, —t, -1 -1
form x=| ¢ =t| 1|+4]| O0|=tx,+t,x, whereXx,and x, form a basis for the
L 0 1

eigenspace corresponding to 4 =—1.
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N - N

1 2
(vi) A=| 0 2
2

The characteristic equation is

det(4—AI)=0
O 2
0 2-2 1 |=0
-1 2 2-2

B—S, +8A-8,=0

where S, = Sum of the principal diagonal elements of A=14+2+2=5
S, = Sum of the minors of principal diagonal elements of 4

2 1 1 21 (1 2
= + +

2 21 |-1 2/ |0 2
=4-2)+2+2)+(2-0)
=2+4+2
=8

iz 2
S, =det(4)=|0 2 1
L Z 2
=1(4-2)=2(0+1)+2(0+2)
=2-2+4
=4

Hence, the characteristic equation is

AP =51*+81-4=0
A=12.2
(a) ForA=1, [A=AI1x=0
0 2 2|l«x 0
0 1 1f|y|=]0
-1 2 1|z 0

Ox+ p+z=0
—x+2y+z=0
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By Cramer’s rule,

X _ y _ Z
11 o 1 0 1
2 1 -1 1 |-1 2
L
< =1 |
xX y z
—==—=—=1,8a
11 -1 y

Thus, the eigenvectors of 4 corresponding to 4 =1 are the non-zero vectors of the
t 1

form x=| ¢ |=¢| 1|=tx, where x, forms a basis for the eigenspace corresponding
—t -1
to A=1.
(b) ForA=2, [A=AI1x=0
-1 2 2fl=x 0
0 0 Iily|=|0
-1 2 0|z 0
—x+2y+2z=0
0x+0y+ z=0
-x+2y+0z=0
By Cramer’s rule,
X y z
2 2| 1 2] 1 2
N R
X y z
2 1 0
Thus, the eigenvectors of A4 corresponding to 4 = 2 are the non-zero vectors of the
2t 2
form x=| ¢ |=t| 1 |=tx, where x, forms a basis for the eigenspace corresponding
0 0
to A=2.
Hence, there is only one eigenvector corresponding to repeated root 4= 2.
0 10
(vii) A=|0 0 1

1 =3 .3
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The characteristic equation is

det(A—AD)=0
-2 1 0
0 -2 1|=0
1 -8 8-

BoSA+8A-8=0

where S, = Sum of the principal diagonal elements of 4 =0+0+3=3
S, = Sum of the minors of principal diagonal elements of 4

0 1 [0 o o 1
z‘—s 3+‘1 3Ho 0
= (0+3)+(0)+(0)
=3

0 10
S, =det(4)=[0 0 I

1 -3 3
=0-1(0—1)+0

=1
Hence, the characteristic equation is

A =317 +31-1=0
A=111

For A=1, [A-A1]x=0
-1 I 0f x 0

0 -1 1)|y|=|0

1 -3 2|z 0

-x+ y+0z=0

Ox— y+ z=0
x=3y+2z=0
By Cramer’s rule,
X y z
Lo -1 o -1 1
SR A
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Thus, the eigenvectors of A corresponding to 4= 1 are the non-zero vectors of the
t 1
form x=|¢|=t|1|=1tx, where x, forms a basis for the eigenspace corresponding to
t 1
A=1.

Hence, there is only one eigenvector corresponding to repeated root A= 1.

Example 3: Find the values of ; which satisfy the equation 4'® x = ux, where

2 1 -1
A=|0 2 2
I 1 0
2 1 -1
Solution: A=|0 -2 -2
1 1 0
The characteristic equation is
det(A-AI)=0
2-2 1 -1
0 -2-1 -2|=0
1 1 -2

B—S+8A-8,=0

where S|, = Sum of the principal diagonal elements of A=2-2+0=0
S, = Sum of the minors of principal diagonal elements of 4

2 =2 - 1
= -+ -

1o 1 oo -2
= (0+2)+(0+1)+(-4-0)
=-1

5 1 =l
S,=det(4)=[0 -2 -2
1 1 0
=2(0+2)-1(0+2)-1(0+2)
=i

=0
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Hence, the characteristic equation is
A-1=0
A=0,1,-1

If Ais an eigenvalue of 4, it satisfies the equation Ax = Ax.

For equation A'” x = px, p represents eigenvalues of 4'%. Eigenvalues of 4'% =
A%ae.,0; 1,1

Hence, values of y are 0 and 1.

Example 4: Find the characteristic root and characteristic vectors of
cosf —sinf
A=

. and verify that characteristic roots are of unit modulus and
sinf  cos@

characteristic vectors are orthogonal.

. cosf® —sinf
Solution: A=]| .
sinf  cos6
The characteristic equation is
det(A-AI)=0
cos@—A  —sinf a
sin®  cos@—A|

(cos@—A)* +sin*0 =0
(cos@—2)* =—sin’0
cosf—A ==isinf
A =cosO=xisinf
|A| = Vcos® 0 +sin’ 6 =1
Hence, characteristic roots are of unit modulus.

(a) A=cos @+isin 6,
[A=AIx=0

—isin@ —sinf [|x| [0
sin@  —isin@ || y o
(—isin@)x—(sin@)y =0

Let y=t
x=it

Thus, the eigenvectors of 4 corresponding to A= cos 8+ i sin fare the non-zero vectors
it i

of the form x =[ ]= t[l] =tx, where the x, forms a basis for the eigenspace corre-
t

sponding to A= cos @+ i sin 6.
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(b) For A=cos @—isin 6,
[A=AI]x=0

isinf —sin@ x| |0
sin@ isin@ ||y o
(isin@)x—(sin@)y =0

Let y=t
x=-—it

Thus, the eigenvectors of 4 corresponding to A= cos - i sin € are the non-zero

—it —i
]= t[ :| =tx, where x, forms a basis for the eigenspace

vectors of the form x = [ :

corresponding to A= cos &— i sin 6.

For orthogonality of complex matrix,
x'x, =[—i 1][—1] =[* +1]=[0]=0

Similarly, xx; =10

Hence, characteristic vectors are orthogonal.

1-2i
Example 5: If 4= [1 o 3 Z:I verify whether eigenvectors are mutually
l —
orthogonal.
2 1-2i
Solution: A= ) l
1+2i -2
The characteristic equation is
det(A—A1)=0
2-4 1-2i|
1+2i —2-A]
A*-9=0
A=-33
(a) For A=-3
[A-AIlx=0

o )

5x+(1-2i)y=0
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Let y=t

1-2i
5

xX=- 1

Thus, the eigenvectors of 4 corresponding to A = -3 are the non-zero vectors of the
1-2i 1-2i
= t —_

form x= 5 =t 5 |=tx, where x, forms a basis for the eigenspace
t 1

corresponding to A =-3.

(b) For A=3,
[A-Al]x=0
-1 1-2i||x 0
s S
-x+(1-2))y=0
Let y=t
x=(1-2i)t
Thus, the eigenvectors of 4 corresponding to 4 = 3 are the non-zero vectors of the
(-2t 1-2i ) )

form x =[ ; :|= t[ { :|= tx, where x, forms a basis for the eigenspace

corresponding to 4= 3.

For orthogonality of complex matrix,

x'x, = [— ] +52" 1}{] _12'] - [— ' *;_2" ( —2i)+1]= [0]=0

Similarly, x,x; =0

Hence, eigenvectors are mutually orthogonal.

5.2.3 Algebraic and Geometric Multiplicity of an
Eigenvalue

If the eigenvalue A of the equation det (4— A7) =0 is repeated n times then 7 is called
the algebraic multiplicity of 4. The number of linearly independent eigenvectors is the
difference between the number of unknowns and the rank of the corresponding matrix
A-AI and is known as geometric multiplicity of eigenvalue A.



5.2 Eigenvalues and Eigenvectors 5.23

Example 1: Determine algebraic and geometric multiplicity of each eigenvalue
of the following matrices:

2 1 0 12 )

@ 028 NS GEDE [0 2 ]

002 -1 2 2
2 10
Solution: (i) A=|0 2 1
0 0 2

Since A4 is upper triangular matrix, its diagonal elements are the eigenvalues of 4.
A=2,2,2
Since eigenvalue A= 2 is repeated thrice, its algebraic multiplicity is 3.
For 4=2

[A-ATlx=0
0 1 0][x] [o
00 1|fy|=]0
00 oflz| |o

Rank of matrix = 2
Number of unknowns = 3
Number of linearly independent eigenvectors =3 —2 =1
Hence, geometric multiplicity is 1.

1 2 2
(ii) A= 0 2 1
-1 2 2
The characteristic equation is
det(A—AI)=0
-4 2 2
0 2-2 1 |=0
-1 2 2-2

P -S4+ 50—8=0

where S, = Sum of the principal diagonal elements of A =1+2+2=5
S, = Sum of the minors of principal diagonal elements of 4

2. 1 1 20 1 2
= + +

2 20 -1 2 |0 2
=(4-2)+(2+2)+(2-0)
=2+4+2

=8
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12 2
S,=det(d)=| 0 2 1
9 2 2
=1(4=2)=2(0+1)+2(0+2)
=2-2+4
=4

Hence, the characteristic equation is

12 =542 +81-4=0
=122

(a) Since eigenvalue A4 =1 is non-repeated, its algebraic multiplicity is 1.
For A=1

[A-AI]x=0
[0 2 2][x] [0]
0 I Ify|=|0
-1 2 1f[z] [0
R|3
(-1 2 1][x] [o0]
0 1 1 =
[ 0 2 2f[z] [0]
R, 2R,
(-1 2 1][x] [0]
0 1 1 =0
| 0 0 0fz] [0]

Rank of matrix =2
Number of unknowns = 3
Number of linearly independent eigenvectors =3 — 2 = 1
Hence, geometric multiplicity is 1.
(b) Since eigenvalue A= 2 is repeated twice, its algebraic multiplicity is two.
For A=2
[A=Al]x=0
-1 2 2ff=x 0
0 0 1ffy[=]|0
-1 2 0|z 0
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0 0 1|fy|=|0
00 -2fz
R, +2R,
-1 2 2l
0 0 Ifly|=|0
0 0 0fz

Faat's) R E gt

Rank of matrix = 2
Number of unknowns = 3
Number of linearly independent eigenvectors =3 —2 =1
Hence, geometric multiplicity is 1.

Exercise 5.1 D |
1. Find the eigenvalues and eigenvectors 2 2
for the follow1ng matrices: wi) |13 1
9 -1 9 1 2 2
(1) 3 -1 3 -
=7 1 - -2 2 3
i (vii) 2 1 -6
1 -2 -1 2 0
G |[-1 2 1 )
K 1 1 00
(viii) |2 0 1
-1 1 2 3 1 0
0 2 1 5
(iii) ) 6
0 0 -3 .
- (ix) 4 2 -6
(4 0 1 -6 -6 -15
@iv) (-2 10 [ 7 0 -2]
-2 0 1 (x) 0 5 =2
_ -2 -2 6
2 11 ) )
~v |23 2 7T 2 2
i |2 4 1
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(xii)

(xiii)

(xiv)

(xv)

(xvi)

(xvii)

(xviii)

(xix)

(xx)

-1 1
5 —1
-1 3
=
3 -1
-1 3]
-2 1
10 -2
-2 7]
-1 1
2 -1
-1 2
.
0
2_
10 5]
-3 —4
5 7]
-7 =5]
4 3
2 2|
0

1

2
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Ans.: (i)

(i)

(iii)

@iv)

)

(vi)

(vii)

(viii)

(ix)

l’ 2’ 3; l 2

L1, 7121,

=2,9,~18;




(x)

(xi)

(xii)

(xiii)

(xiv)

(xv)

(xvi)

(xvii)

(xviii)

(xix)

(xx)

1 2 p)
3,6,9; 122, 1
2 1| |-2
o] [1][-2
3’379, 1’ 1 s
-1 1]
[-1] [1] [ 1
293’6; O i ] l ) _2
| 2] [1) | 1
270 1
8,2, 2:|-1[[1],] 1
1] 1] ]
1] 1
12,6,6: =2 [,| ol,]1
1 [-1] [t
(1] 1] [-1]
41,1 -1, 1],] 1
| 1] (o] | 2]
][] [ 1]
1,3,3;| Of,[1[,]-2
-1 (1] | 1]
(1] [2
L,2,2;0[,]1
0] |0
1T 5
3,2,2; 1/, 2
|-2] |-5
-3
LL L 1
]_
1
2,2,2:10
04
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. Determine algebraic and geometric

multiplicity of the following matrices:

0 1 0 2 11
1 (0 0 1] @)1 21
1 -3 3 0 0 1

Ans. :

(i) For A=1, AM =3,GM =1
(ii) For A=1, AM =2,GM =2
For A=3,4M =1, GM =1

2 2 1

Jdf A=|1 3 1}, find eigenvalues of

1 2 2
the following matrices:
(1) AA+1 (i) A7 (i) A2=24+1
(iv) adj 4 (v) 4> —-34*+ 4

Ans.:(1)2, 2,126 (i) 1, 1, é

(iii) 0, 0,16 (iv) 5, 5, 1
")=1,-1,55

. Verify that x = [2, 3, -2, -3]"is an

eigenvector corresponding to the
eigenvalue 4 =2 of the matrix

1 -4 -1 -4
2 0 5 -4
A=
-1 1 =2 3
-1 4 -1 6
3 -1 1]
JAf A=|—-1 3 —1| then check
1 -1 3

whether eigenvectors of 4 are
orthogonal.

3 10 5

AfA4=|-2 -3 —4|then verify

3 5 7

whether eigenvectors of 4 are linearly
independent or not.
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5.3 CAYLEY-HAMILTON THEOREM

Theorem 5.19: Every square matrix satisfies its own characteristic equation.
Proof: Let 4 be an n-rowed square matrix. Its characteristic equation is
|[A=21|= (1" A" + @ A" +a A" + -+ +a,)
(A=Al adj(A-Al)=|A- 1|1 ..(5.1)
[ Aadj(4)=|4]T]
Since adj (4 —A1) has element as cofactors of elements of |4 — A/|, the elements of

adj (4 — AI) are polynomials in A4 of degree n — 1 or less. Hence, adj (4 — A7) can be
written as a matrix polynomial in A

adj (4-A1)=B A" '+ B A" *+--+B, ,A+B, |
where B, B,,..., B, ,are matrices of order n.

(A-AD) adj(A— X)) =(A-AD[BoA" "' +BA"™2 + - +B,.2A +B,]
|[A=AT|I =(4-AD[BA" +BA"? + - + B, oA +B,]

D'UA" + @ IA" ™ + ayIA" % + - + ay_ IA + a, 1]
= (—IBy)A" +(ABy — IB)A" " +(AB, — IBy)A" 2 + -+ +(AB,—» — IB,_1)A+ AB,_

—_
|

Equating corresponding coefficients,
—IBy = (-1)"I
ABy —IB, = (-1)"ay1
ABy —IBy = (-1)"ay1

AB, = 1By = (=1)" a1
ABn—l = (_l)n (J,,l
Premultiplying the above equations successively by 4", 4", A"2,... I and adding,
(-D)'[4"+a A" +a, A" +-+a,l]=0
Hence, A"+ad " +a,A" ++al=0 (5.2

Corollary: If 4 is a non-singular matrix, i.e. det (4) # 0 then premultiplying Eq. (5.2) by
A, we get

A +a A" +a, A+ . +a, A =0

1
A'=——[A""+a A4 +...+a, ]
a

n—1
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Example 1: Verify Cayley—Hamilton theorem for the following matrix and
hence, find 47! and 4*.

2 -1 1
A=|-1 2 -1
1 -1 2
2 -1 1
Solution: A=|-1 2 -1
1 -1 2
The characteristic equation is
det(A-AI)=0
2-1 -1 1
-1 2-4 -1|=0
1 -1 2-2

B-SA+8A-8,=0

where S, = Sum of the principal diagonal elements of 4 =2+2+2=6
S, = Sum of the minors of principal diagonal elements of 4

2 -1l 2 1| |2 -
:Ll o1 21 2
=(@-1)+@-1)+(@4-1)
=9

2 -1 1
S, =det(4)=|-1 2 -1
f <1 2
=2(4-1)+1(-2+1)+1(1-2)
=6-1-1
=4

Hence, the characteristic equation is

A —6A%+91-4=0
2 -1 1|[2 -1 1 6 -5 5
A =|-1 2 -1||-1 2 -1|=|-5 6 -5
| 1 -1 2)[ 1 -1 2 5 =5 6

A=[-5 6 -5|-1 2 -1|=[-21 22 -21
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A —64+94—-41

(22 21 21] [ 36

=[-21 22 -21|-|-30
21 =21 22] | 30
[0 0 0

=l0 00

0 0 0

=0

=30

36

=30

30 18 —9: 9
=30(+|-9 18 -9
36 9 -9 18
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4 0 0
-10 4 0
0 0 4

(1)

The matrix A4 satisfies its own characteristic equation. Hence, Cayley—Hamilton theo-

rem 1is verified.
Premultiplying Eq. (1) by 47,

AN (A —64> +94-41)=0
AP —64+91-447" =0

447 = A —6A4+91
6 -5 5] [12 -6
=|-5 6 -5[-|-6 12
5 -5 6] |6 -6
3 1 -1]
=3
4
-1 1 3]
Multiplying Eq. (1) by 4,
A4 —64*+94-41)=0
A =64 +94> -44=0
A'=64"-94" +44
[ 132 -126 126 54
=|-126 132 -126|-|-45
| 126 -126 132 45
[ 86 -85 85
=|-85 86 -85
| 85 -85 86

Example

2: Show that the matrix 4=

61 |9 0 0
-6(+[0 9 0=
12 00 9

—45
54
45

45 8
—45|+| -4
54 4

Hamilton theorem and hence find 47!, if it exists.

-4 4
8 —4
-4 8

satisfies Cayley—
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0 ¢ -b
Solution: A=|-c 0 a
b —a 0
The characteristic equation is
det(A-AI)=0
-A ¢ -b
—-c -A a|=0
b —-a -1

B -8 +8A-8,=0

where S, = Sum of the principal diagonal elements of 4 =0
S, = Sum of the minors of principal diagonal elements of 4

0 a [0 -b 0 ¢
“lea ol ol o
=(0+a*)+(0+b*)+(0+c?)
=a’ +b*+c’

0 ¢ -b
S;=det(4)=|~¢ 0 a
b —a 0
=0—-c(0—ab)—b(ac—-0)
= abc — abc
=0

Hence, the characteristic equation is

A +(@+b2+cH)A=0

[0 ¢ b 0 c b -’ =b’ ab ac
A =|-c 0 al|l-c 0 af= ab =p2g? bc

| b —a O b —a 0 ac be —b* -

[—c? —p? ab ac 0 ¢ -b
A= ab -’ -ad’ bc —C 0 a

| ac bc —b* - d? b —a 0

[ 0 - —cb* —ca* b +bct +ba?

=| ¢ +ca® +cb’ 0 —ab® —ac® -a’
_—bc2 b =d*b  ac’+ab®+d’ 0
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0 ¢ -b
=—(@+b*+cH)|-c 0 al|=—-(+b+cH)4
b —-a 0

A +(@+b+c*)A4=0

The matrix A satisfies its own characteristic equation. Hence, Cayley—Hamilton theo-
rem is verified.

0 ¢ -b
det(A)=|—-¢c 0 al|=-c(0—ab)—b(ac—0)=abc—abc=0
b —a 0

Hence, A" does not exist.

2 3
verify Cayley—Hamilton theorem for this matrix. Find 4" and also express
A’ —44*—T7A4° + 114%> — 4 — 10/ as a linear polynomial in 4.

1 4
Example 3: Find the characteristic roots of the matrix A:|: ] and

. 1 4
Solution: A= [ :|
2 3
The characteristic equation is
det(4-A1)=0
-1 4
‘2 3—J'0
A-8A+8,=0

where S, = Sum of the principal diagonal elements of A =1+3 =4
S, =det(A) L 9
5 = (&4 —
- 2 3

=3-8
=-5
Hence, the characteristic equation is
A2-4)4-5=0
A=-15

S Y
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. 9 16| |4 16| |5 O 0 0
A" —44-51= - - = =0 (1)
8 17| [8 12| [0 5 0 0
The matrix A4 satisfies its own characteristic equation. Hence, Cayley—Hamilton

theorem is verified.
Premultiplying Eq. (1) by 47,

A (4> -44-50)=0
A-41-547"=0
1
A :g(A—41)
1{-3 4
ZE{ 2 —1]
Now, A° —44* =74 +114> = A-101 = A* (4> —44—-51)-2A(A* —44-5I)
+3(A* —44-50)+ A+51
=(A*—4A4-51)(A* -24+3)+ A+5I
=A+5/ [using Eq. (1)]
which is a linear polynomial in 4.

2, il

Example 4: Find the characteristic equation of the matrix 4=[0 1 0| and
1 1 2

hence, find the matrix represented by A% — 547 + 74° —3A4° + A* — 54> + 84> — 24 + L.

2 1
Solution: A=10 1 0
1 2

The characteristic equation is

det(A—AT)=0
2-24 1 1
0 1-2 0 |=0
1 . N

B—S8,2+8A-8,=0

where S, = Sum of the principal diagonal elements of A =2+ 1+4+2=5
S, = Sum of the minors of principal diagonal elements of 4
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10 2 1] |21
= + -

12 |1 2 fo1
=(2-0)+(4-1)+(2-0)
=7

5.1 1
S, =det(4)=[0 1 0
112

=2(2-0)=1(0—0)+1(0—1)

=4-0-1
=3
Hence, the characteristic equation is
/ A =522 +7A4-3=0

By Cayley—Hamilton theorem,
A —542+74-31=0 (1)
Now, A*—54"+7A4°-34"+A4"' 54’ +84° -24+1
= AL 5482 +TA-3D)+ AL 542 +TA-3D)+(A2 + A+])
=(A =542 +T7A4-3I A’ + A)+(A* + A+])
=0+(A*+A+1)

= A+ A+1 [using Eq. (1)]

2 1 12 1 1 5 4 4

A=|0 1 0fjo 1 of=|0 1 0

[1 1 2)|1 1 2] |4 45
(5 4 4] [2 1 1] [t 0 o] [8 5
A+ A+I1=[0 1 0[+[0 1 0o|+l0 1 0]=]|0 0
(4 4 5] |1 1 2]]0o0 1] [5 8
8 5
A =547 +TA° =347 + A* =547 +84* -24+1=|0 0
5 8
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1

00

Example 5: If A=|1 0 1], prove by induction that for every integer n > 3,
0 1 0

A" = A"2 + A% — I. Hence, find 4°°.

1 0 0
Solution: A=|1 0 1
010
The characteristic equation is
det(A—AI)=0
1-2 0 0
I -1 1|=0
0 1 -2

B-SA+84-8,=0
where S, = Sum of the principal diagonal elements of 4 =1+0+0=1
S, = Sum of the minors of principal diagonal elements of 4
0O 1] [T O] |1 O
- ‘ 10/ o o |1 0‘
=0-D+(0-0)+(0-0)
=-1

+

+ ‘

100

S, =det(4)=[1 0 1
01 0

=1(0=1)+0+0

=-1
Hence, the characteristic equation is
22— -A+1=0
By Cayley—Hamilton theorem,
A-A-A4+1=0
A=A+4-1=4'+4-1

= A2+ 4] (1)

Hence, A" = A""* + A*> — I is true for n = 3.
Assuming that the Eq. (1) is true for n = £,

A= A2 4 g2 [ = A4+ g2 ]



5.36  Chapter 5 Eigenvalues and Eigenvectors

Pre multiplying both the sides by 4,
A = A"+ 43 - 4
Substituting the value of 4°,
A=A+ (L2 +4-1)-4
— AR2 g2 g
Hence, A" =A"2+ A>T is true forn =k + 1.
Thus, by mathematical induction, it is true for every integer n > 3.
Wehave, A=A+ -I=""‘+A-D+4 -1
= ATV UL =T = (A0 42 =Ty U A% = 1)
=A"+3(4* 1)

A= A" (42 -T)
Putting n=>50and r = 24,

ASU - A50—2(24) +24(A2 __1)
= A* +244° —24] =254° - 241

1 0 Off1 0 O 1 00
A =10 1|10 1|=|1 10
0 1 00 1 0 10

25 0 0] [24 0 0] [1 0 0
A°=[25 25 0|-[0 24 o|=|25 1 0
25 0 25] [0 0 24 [25 0 1

Exercise 5.2 a
1. Verify Cayley—Hamilton theorem for (2 0 -1
the matrix 4 and hence, find A" and 4%, ...
(ii1) 0 2
[1 2 =2 <1 0 2
“» (-1 3 0
0 - (1 2 =2
) vy [-1 3 0
[ 2 3 | 0 2 1
@i (2 -1 4
| I -1




Ans. :
3 2 6|[-55 104 24
T 1 2,20 <15 32
2 2 5|| 32 -42 13
l’—3 5 11
(11)4—0 14 -10 2|,
| 5 5 -5
[248 101 218
272 109 50
i 104 98 204 i
[ 4 0 2] 41 0 -40]]
(iii) 1o 3 0l,] 016 0
6 2 0 4/[-40 0 41
3 2 6][-55 104 24
Ggv) |1 1 2|,[-20 -15 32
| 2 2 5|[ 32 -40 -23]]

2. Verify that the matrix
I 2 0
A=|2 -1 0] satisfies the
0 0 -1
characteristic equation and hence, find
A7,
Ans.: £+ A4 -54-51=0,

A? =

W | —

1 00
0 10
0 0 1

3. Use Cayley—Hamilton theorem
to find 24° — 34* + 4> — 41, where

o33

5.3 Cayley-Hamilton Theorem 5.37

11 138
Ans.:1384-4037 =
-138 127

1 4
4. lfA=|:l 1:|, find 47— 94% + L.

[Ans. : 6094 + 640/]

5. Verity Cayley—Hamilton theorem for

N L) PR A
(1) —34(11) =|{ 5|

hence, find 4! and 4° — 54°.

12 1
Ans. : (1) ,24
|:1 5 —0.5:|

(ii) A" does not exist, 4

6. Compute 4° — 64% + 1047 — 34° +

1 2 3
A+ 1, where A=|-1 3 1].
1 0 2

2 2 3
Ans.:|-1 4 1
1 0 3

7. Verify Cayley—Hamilton theorem for

[1
A=
2

2
2} and evaluate
24% - 54° - T4 +61.

|
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5.4 SIMILARITY OF MATRICES

If 4 and B are two square matrices of order # then B is said to be similar to A4, if there
exists a non-singular matrix P such that

B=P1'4P
Theorem 5.20: Similarity of matrices is an equivalence relation.
Theorem 5.21: Similar matrices have the same determinant.

Theorem 5.22: Similar matrices have the same characteristic polynomial and hence
the same eigenvalues. If x is an eigenvector of A corresponding to the eigenvalue A,
then P! x is an eigenvector of B corresponding to the eigenvalue A where B = P~ AP.

5.5 DIAGONALIZATION

A matrix A4 is said to be diagonalizable if it is similar to a diagonal matrix.

A matrix 4 is diagonalizable if there exists an invertible matrix P such that P'AP=D
where D is a diagonal matrix, also known as spectral matrix. The matrix P is then said
to diagonalize A or transform A4 to diagonal form and is known as modal matrix.

Theorem 5.23: If the eigenvalues of an » X n matrix are all distinct then it is
always similar to a diagonal matrix.

Theorem 5.24: An n X n matrix is diagonalizable if and only if it possesses n
linearly independent eigenvectors.

Theorem 5.25: The necessary and sufficient condition for a square matrix to be
similar to a diagonal matrix is that the geometric multiplicity of each of its eigenvalues
is equal to the algebraic multiplicity.

Corollary: If 4 is similar to a diagonal matrix D, the diagonal elements of D are the
eigenvalues of 4.

5.5.1 Orthogonally Similar Matrices

If A and B are two square matrices of order » then B is said to be orthogonally similar
to 4, if there exists an orthogonal matrix P such that

B=P'AP
Since P is orthogonal, pl=pr
B=P'AP=P" 4P
Theorem 5.26: Every real symmetric matrix is orthogonally similar to a diagonal
matrix with real elements.

Corollary 1: A real symmetric matrix of order » has » mutually orthogonal real
eigenvectors.

Corollary 2: Any two eigenvectors corresponding to two distinct eigenvalues of a real
symmetric matrix are orthogonal.
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Note: To find the orthogonal matrix P, each element of the eigenvector is divided by
its norm (or length).

Example 1: Show that the following matrices are not diagonalizable.

[S255D 1 -2 0
@lo 21 G [t 2 2
-1 2 2 1 2 3

1 2 2

Solution: (i) A= 0 2 1

-1 2 2

The characteristic equation is

det(A—AI)=0
=4 2 2
0 2-12 1 |=0
-1 2 24

B-SA+S4-8,=0
where S, = Sum of the principal diagonal elements of A =142 +2=5
S, = Sum of the minors of principal diagonal elements of 4

2 1/ |12 12
:L 2" -1 2| o J
= (4-2)+(2+2)+(2-0)
=2+4+2
=38

.

+

12 2
S, =det(4)=| 0 2 1
1 8 8
=1(4-2)-2(0+1)+2(0+2)
=2-2+4
=4

Hence, the characteristic equation is

AP —51% 1844 =0
21=122

(a) For A= 1, number of linearly independent eigenvectors = 1
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(b) For A=2, [A-AI]x=0
-1 2 2][x] [0]
00 =

R3_RI
-1 2 2][x] [o]
0 0 | =0
0 0 =2|lz] |0}
R, +2R,
-1 2 2] x 0
00 1fy[=]0
0 0 Off z 0

Rank of matrix = 2
Number of unknowns = 3
Number of linearly independent eigenvectors =3 —2 = 1
Since the matrix 4 has a total of 2 linearly independent eigenvectors which is less than
its order 3, the matrix 4 is not diagonalizable.

(ii) A=|1

The characteristic equation is

det(A—AI)=0
-2 =2 0
1 2-42 2 |=0
1 3 3-4

P-SA+8,A-8,=0
where S| = Sum of the principal diagonal elements of A=1+2+3=6
S, = Sum of the minors of principal diagonal elements of A

2 20 |1 o |1 =2
= +

2 31 3 1 2
=(6-4)+3-0)+(12+2)
=9

-
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1 .3 @
S,=det(d)=[1 2 2

1 2 3
=1(6-4)+2(3-2)+0

=4
Hence, the characteristic equation is
A —612+91-4=0
A=4,11

(a) For A=4, number of linearly independent eigenvectors = 1

(b) ForA=1, [A-AI]x=0

0 =2 0ffx| |0

2_R1
(1 2 2][x] [o]
0 -1 Ofl»|=|0
10 =2 0flz] |0]
R, —2R,

12 2][x] [o
0 -1 offy|=]0
0 0 0f:=

Rank of matrix =2
Number of unknowns = 3
Number of linearly independent eigenvectors =3 -2 = 1
Since the matrix 4 has a total of 2 linearly independent eigenvectors which is less than
its order 3, the matrix A4 is not diagonalizable.
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Example 2: Show that the following matrices are similar to diagonal matrices.
Find the diagonal and modal matrix in each case.

4 2 2 -9 4 4 1 6 -4

@ |- 3 2 ) | -8 3 4 Gi) |0 4 2

2 4 1 -16 8 7 0 -6 -3
4 2 =2
Solution: (i) A=(-5 3 2
-2 4 1

The characteristic equation is

det(4—A1)=0

2 4 1-2
B-S2+84-8,=0

where S, = Sum of the principal diagonal elements of 4 =4 +3 +1=38
S, = Sum of the minors of principal diagonal elements of 4

32 |4 2 |4 2
=‘4 1‘+—2 1+‘—5 3‘
= (3-8)+(4—4)+(12+10)
=—5+0+22
=17

4 2 -2
S, =det(d)=|-5 3 2
2 4 1
= 4(3-8)— 2(~5+4) — 2(~20+6)
=-20+2+28
=10

Hence, the characteristic equation is

A3 —8A2+174-10=0
A=1,25

Since all the eigenvalues are distinct, the matrix 4 is diagonalizable.



5.5 Diagonalization 5.43

(a) ForA=1, [A-Allx=0
3 2 2« 0
=5 2 2lly|=|0
-2 4 0f:z 0

3x+2y—-2z=0
=S5x+2y+2z=0
-2x+4y+0z=0

By Cramer’s rule,

Thus, the eigenvectors of 4 corresponding to A= 1 are the non-zero vectors of the form

2t 2
x=| t|=t| 1| =1x, where x, is a linearly independent eigenvector corresponding
4t 4
toA=1.
(b) ForA=2, [A-AI]x=0
2 2 2|[x 0
=5 1 2{ly|=|0
-2 4 -1l z 0
2x+2y-2z=0
—Sx+ y+2z=0
—2x+4y— z=0
By Cramer’s rule,
23 y z
Y 2 |2 =2 |2 2
1 2‘ ‘—5 2’ ‘—5 1\
x_p B
6 6 12
£
11
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Thus, the eigenvectors of A corresponding to A= 2 are the non-zero vectors of the form
t 1

x=| t|=t| 1|=tx, where x, is a linearly independent eigenvector corresponding
2t 2
to A=2.
(¢) For A=5, [A-Alx=0
-1 2 2|« 0
-5 2 2|ly|=|0
-2 4 -4z 0
—x+2y-2z=0
—5x=2y+2z=0
By Cramer’s rule,
X y Z
2 2 =2 -1 2
S Qi g
X _ y _ z
0 12 12
X y z
o 11
Thus, the eigenvectors of 4 corresponding to A= 5 are the non-zero vectors of the form
0 0
x=|t|=t| 1|=tx, where x; is a linearly independent eigenvector corresponding
t 1
to A=35.
Modal matrix P has eigenvectors as its column vectors.
2. 1. DB
P=|11 1
14 2 1]
Diagonal matrix D has eigenvalues as its diagonal elements.
[1 0 0]
D=|0 2 0
|0 0 5]
[ -9 4 4
(i1) A=| -8 3 4

[-16 8 7
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The characteristic equation is

det(A—AI)=0
9-1 4 4
-8 3-1 4 |=0
=i6 & =3
X -SP+8A-58,=0

where S, = Sum of the principal diagonal elements of A =-9+3+7=1
S, = Sum of the minors of principal diagonal elements of 4

-9 4 -9 4
4 b
=(21-32)+ (~63+64) +(-27 +32)
=—11+1+5
=-5
9 4 4
S, =det(4)=|-8 3 4
-16 8 7
=—9(21-32) — 4(=56+ 64) + 4(—64 + 48)
=99-32—64
=3

Hence, the characteristic equation is

4P —27—51—-3=0

A=-1,-1,3
(a) ForA=-1, [A-Al]x=0
-8 4 4| x 0
-8 4 4|y|=]0
-16 8 8|z 0
—8x+4y+4z=0
Let y=t and z=t¢,

| 1
x=5tl +Ef2
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Thus, the eigenvectors of 4 corresponding to A = -1 are the non-zero vectors of the
form

=1,X, +5,X,

—_ O N~

where x, and x, are linearly independent eigenvectors corresponding to A=—1.

(b) For A=3, [4-Alx=0
-12 4 4][x] [o
-8 0 4 y[=|0
-16 8 4| z| |o

—12x+4y+4z=0
—8x+0y+4z=0
—16x+8y+4z=0

By Cramer’s rule,

x _y _ .z
14 12 4 12 4
04 |-8 4 |-8 0
&
16 16 32
X y z
—==—=-=t,sa
1 1 2 ¥

Thus, the eigenvectors of A corresponding to 4= 3 are the non-zero vectors of the form
t |

x=| t|=t| l|=tx, where x; is a linearly independent eigenvector corresponding
2t 2
to A=3.

Since the matrix A has a total of 3 linearly independent eigenvectors which is same as
its order, matrix A4 is diagonalizable.
Modal matrix P has eigenvectors as its column vectors.

© = W=
—_ O N =

N -
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Diagonal matrix D has eigenvalues as its diagonal elements.

(-1 0 0

D= 0 -1 0

| 0 0 3

[1 -6 -4

(iii) A=({0 4 2

|0 -6 -3

The characteristic equation is
det(4-A1)=0
1-1 -6 -4

0 4-1 2 |=0
0 -6 -3-1

B-SAE+SA-8=0

where S| = Sum of the principal diagonal elements of A =1+4-3=2
S, = Sum of the minors of principal diagonal elements of 4

4 2/ |1 -4 |1 -6
= + +

-6 =3 |0 3] [0 4
=(=12+12)+(-3+0)+(4+0)
=1

1 -6 -4
S,=det(A)=0 4 2
0 -6 -3
=1(=12+12)—6(0 - 0)— 4(0— 0)
=0

Hence, the characteristic equation is

A -22+A4=0
A=0,1,1
(a) For A=0, [A-=Ax=0
1 -6 —4|[x 0
0 4 2»|=|0
0 -6 -3z 0
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x—6y—4z=0
Ox+4y+2z=0
Ox—6y—3z=0
By Cramer’s rule,
x o y _ z
-6 -4 |1 -4 [1 -6
Ry
X _ y _ z
4 -2 &
X y z
PRt
Thus, the eigenvectors of 4 corresponding to A= 0 are the non-zero vectors of the form
2t 2
x=|—t |=t|-1|=tx, where x, is a linearly independent eigenvector corresponding
2t 2
to A=0.
(b) For A=1, [A-Al]x=0
-6 -4 x 0
3 2|y|=|0
0 -6 —4|:z 0
Ox+3y+2z=0
Let x=t and z=t,
Y= —g’
3 2
Thus, the eigenvectors of A corresponding to 4= 1 are the non-zero vectors of the
2 | 0
form x = —%tz =4{0 |+, .. 1,X, +1,x; where X, and x, are linearly indepen-

‘) g 1

dent eigenvectors corresponding to A= 1.

Since matrix 4 has total 3 linearly independent eigenvectors which is same as its order,
the matrix 4 is diagonalizable.
Modal matrix P has eigenvectors as its column vectors.

21 0
p=|-1 0 -2
3

2 0 1
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Diagonal matrix D has eigenvalues as its diagonal elements.

0 0 0
D={0 1 0
0 0 1

Example 3: Determine diagonal matrices orthogonally similar to the following
real symmetric matrices. Also find modal matrices.

3 -1 1 8 -6 2 6 -2 2
i |-1 5 -1 Gi) [-6 7 -4 gy =2 3 -1
1 -1 3 2 4 3 2 -1 3

3 -1 1

Solution: (i) A=|-1 5 -1

The characteristic equation is

det(A—AT)=0
=@ =1 1
=] B3 I [=0
i =i B=a

B—S +8A-8,=0

where S, = Sum of the principal diagonal elements of A =3 +5+3 =11
S, = Sum of the minors of principal diagonal elements of 4

5 -1 3 1 3 -1
= + +

-1 3 {1 3] |-1 5
=(15-D+0O-1)+15-1)
=36

3 -1 1
S, =det(4)=]-1 5 -1
1 -1 3
=3(15-D)+1(-3+1)+1(1-5)
=42-2-4
=36
Hence, the characteristic equation is
A =111% +361-36=0
A=2;3,6
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(a) For A=2, [A-AI1x=0
I -1 1 0
-1 3 -1 =0
1 -1 1)z 0
x— y+z=0
-x+3y—2z=0
By Cramer’s rule,
X - z
-1 1 |1 1|1 =
3 -1 -1 -1 |-1 3
L
2 0 2
R
—===Z=t,5
1 o1 *7

Thus, the eigenvectors of 4 corresponding to A= 2 are the non-zero vectors of the form
~t -1

x=| 0|=t| 0|=tx, where x, is a linearly independent eigenvector corresponding
t 1

to A=2.
(b) For A=3, [A-AI]x=0
0 -1 Iffx 0
-1 2 -1)|»|=|0
I -1 0|z 0
Ox— y+ z=0
—x+2y— z=0
x— y+0z=0
By Cramer’s rule,
x _ y _ z
-1 1 0 1 0 -1
2 -1 -1 - |-1 2
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Thus, the eigenvectors of A corresponding to A= 3 are the non-zero vectors of the form

t 1
x =|t|=t|1|=1x, where X, is a linearly independent eigenvector corresponding to 4

t 1

=3.
(c) For A=6, [A—AI]1x=0
-3 -1 1|=x 0
-1 -1 =1{[y[=|0
1 -1 3|z 0
=3x-y+ z=
-x-y—z=0
x—y=3z=0
By Cramer’s rule,
x _ y _ .z

=<—=—={5a
- Y

Thus, the eigenvectors of 4 corresponding to A= 6 are the non-zero vectors of the form

t 1

X =| =2t |=t| =2 | =tx, where X, is a linearly independent eigenvector corresponding
t 1
to A=6.

Length of the eigenvector  x, =/(-1)* +1* = X3
Length of the eigenvector  x, =V’ +1°+1° = B

Length of the eigenvector  x, = /I’ +(-2)* +1> =/6

The normalized eigenvectors are
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Modal matrix P has normalized eigenvectors as its column vectors.

1 1 1
NFIENCING
1 2
P=| 0 — ——F4
NEING
RN .
| V2 3 Vel
Diagonal matrix D has eigenvalues as its diagonal elements.
[2 0 0
D=0 3 0
|0 0 6
[ 8 -6 2
(i1) A=|-6 71 -4
| 2 -4 3
The characteristic equation is
det(A-A1)=0

8-1 -6 2
-6 7-A -4|=0
2 -4 3-2
B8 R+8,4-8,=0

where S| = Sum of the principal diagonal elements of A =8 +7+3 =18
S, = Sum of the minors of principal diagonal elements of 4

7 -4 8 2/ |8 -6
:‘—4 3Hz 3" |- 7‘
= (21-16)+ (24— 4) + (56— 36)
=5+20+20
=45
8§ —6 2
S, =det(4)=|-6 7 -4
2 4 3
=8(21-16)+6(—18+8)+2(24—14)
= 40-60+20

=0
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Hence, the characteristic equation is

A3 —184%2 +454=0

A=0,3,15
(a) For 1=0,
[A-Alx=0
8§ -6 2|f«x 0
-6 7 —4|ly|=]|0
2 -4 3|z 0
8x—-6y+2z=0
—6x+7y—4z=0
2x—4y+3z=0
By Cramer’s rule,
X v z
% 2 [8 2 [8 -6
‘7 —4‘ ’—6 -4 ‘—6 7‘
X _y _z
10 20 20
y z
E=E=t,say

%
1
Thus, the eigenvectors of A corresponding to 4=
t 1

0 are the non-zero vectors of the form

X =2t |=t|2|=tx, where x, is a linearly independent eigenvector corresponding

2t 2

to A=0.
(b) For A=3, [A—AlTx=0
5 6 2f«x 0
-6 4 —-4|[y|=|0
2 -4 0|z 0
S5x—-6y+2z=0
—6x+4y—4z=0
2x-4y+0z=0

By Cramer’s rule,
x y z

6 2 |5 20 ][5 -6
4 -4 |6 -4 |-6 4
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»—-|'\<

_i_f sa
— =ty

Thus, the eigenvectors of A corresponding to A= 3 are the non-zero vectors of the form

2t 2
x=| t |=t| 1|=tx, where X, is a linearly independent eigenvector corresponding
=2t -2
to A=3.
(¢) ForA=15,
[A-AIlx=0
-7 -6 2|[x 0
-6 -8 —4ily|=]0
2 -4 -12||:z 0
-Tx—-6y+ 2z=0
-6x-8y— 4z=0
2x—4y—-12z=0
By Cramer’s rule,
x _y _ .z
-6 2 |7 2 -7 -6
-8 —4 -6 -4/ |-6 -8
et = F
40 -40 20
X y z
—=“-=—={,5a
2 3 1
Thus, the eigenvectors of 4 corresponding to A= 15 are the non-zero vectors of the
2t 2
form x=|-2¢|=1t|-2|=tx, where X, is a linearly independent eigenvector corre-
t 1

sponding to A= 15.
Length of the eigenvector x, =+v1*+2*+2* =3

Length of the eigenvector x, =/2° +1° +(-2)* =3
Length of the eigenvector x, =+/2> +(-2)*+1° =3
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The normalized eigenvectors are

1
]

1 2 2
3 3 3
2 1 2
x=|=| %= =|, x=[—-=
3 3 3
2 2 1
3] | 3] | 3]
Modal matrix P has normalized eigenvectors as its column vectors.
(1 2 2]
303 3
al2 L 3
3 3 3
2 2 1
3 3 3]
Diagonal matrix D has eigenvalues as its diagonal elements.
[0 0 0
D=|0 3 0
[0 0 15
[ 6 -2 2
(iii) A=|-2 3 -1
2 -1 3

The characteristic equation is
det(A—-AI)=0
6-1 2 2
-2 3-12 -1|=0
2 -1 3-4

B-SR+8,A-8=0

where S, = Sum of the principal diagonal elements of 4 =6+3 +3 =12
S, = Sum of the minors of principal diagonal elements of 4

3 -1 |6 2 6 2
= - +
=1 3|2 3 |20 3

=0O-)+(18-4)+(18—-4)
=8+14+14
=36
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6 -2 2
S, =det(d)=|-2 3 -l

2 -1 3
=6(9—1)+2(-6+2)+2(2-6)
=48-8-8
=32

Hence, the characteristic equation is

A3 1242 +364-32=0

A=2,2.8
(a) For A=8, [A—AI]x=0
-2 =2 2|[x 0
-2 =5 —1If|ly|=|0
2 -1 -5|:z 0
—2x—-2y+2z=0
—2x—-5y— z=0
2x— y-5z=0
By Cramer’s rule,
X y z
3 2 |2 7 |2 =
‘—5 —l' ‘—2 —l’ ‘—2 -5
X y z
2 -6 6
X y z
ST
Thus, the eigenvectors of 4 corresponding to A= 8 are the non-zero vectors of the form
2t 2
x=|—t|=t|-1|=¢x, where x, is a linearly independent eigenvector corresponding
t 1

to A= 8.
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(b) For A=2, [A-AI1x=0
4 -2 2flx 0
-2 1 -1f|ly|[=]0
2 -1 1}z 0
4x-2y+2z=0
Let y=t and z=t,
1 1
x==t——t,
2" 2

1 1 1 1 1 1
—t,——t,| |=t, i = -
2 2 2 2 2 2
form x= £ =t |+ 0 |=¢4|1|+t] O|=1x,+1X, where x, and
b 0 & 0 1

x, are linearly independent eigenvectors corresponding to 4= 2.
The orthogonal matrix P has mutually orthogonal eigenvectors. Since x, and x; are not
orthogonal, we must choose x; such that x,, X,, X, are orthogonal.

/

Let X,=|m

For orthogonality of eigenvectors,

Ty _ Te —
X, X;=0 and x,x,=0

/ /
[2 -1 1]lm|=0 and [% 1 O:I m|=0
n n

1
2l-m+n=0 and El+m=0

By Cramer’s rule,

= N
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Lom_n
-1 1 5
2 2
L:ﬂzﬁzt,say
-2 1 5
/ -2t -2
x=|m|=| t |=¢t|1 X,
n 5t 5

where X, is an eigenvector corresponding to A= 2.

Length of eigenvector x, = /(2)°+ (=1)* + (1)* = J6

V5

2
Length of eigenvector x, = (%J +1°+0° = 5

Length of eigenvector x; = 4/(=2)"+ (1)* + (5)* = J30

The normalized eigenvectors are

(2] (1] [.2
J6 V5 V30
1 2 1
X, = *ﬁ , X, = E , X3= 3—0
n 0 5
L V6 ] [ /30 |
The modal matrix P has normalized eigenvectors as its column vectors.
(2 L 2]
V6 5 B
bl | L2
V6 s Bo
1y 2
NG 30
(2 1 1]
NN
1 2
Pl :PT— ﬁ ﬁ 0
2 1 5
[ V30 30 30




[ 2 11
‘/16 ;/ng 6 = 2
D=P4P=| —— — 0 -2 3 -
V5o 2 1 3
2 1 5
L V30 V30 430
(8 0 0
=0 2 0
[0 0 2
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(2 1 _ 2]
J6 5 30
LI I
V6 5 \Bo
L —

| V6 N

Hence, the diagonal matrix D has eigenvalues as its diagonal elements.

5.5.2 Powers of a Matrix
If 4 is an n X n matrix and P is an invertible matrix then

(P'4AP)* =P 4'P

If the matrix 4 is diagonalizable and D = P™' AP is a diagonal matrix then

DF=(P?AP)* =P 4*P
Premultiplying D* by P and post-multiplying by P!,
ED P =P PP = (PP ) A5 (PP ")
L4° =PDP

1 0

Example 1: Find 4'° where 4 =|: .

Solution: A= [_1 g:|
The characteristic equation is
det(A-AI)=0
1 —1/l 2 (—) ,1’ =0
A-S14+8,=0

=Jd"] = 4"

where S, = Sum of the principal diagonal elements of 4 =1+2=3

1
S, = det(A4) =’ :

0‘
2

2
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Hence, the characteristic equation is
A2-31+2=0
A=12
Since all the eigenvalues are distinct, the matrix 4 is diagonalizable.

(a) ForA=1,

[A=AI]x=0
0 Off x 0
B HEH
-x+y=0
x=y
Let y=t
x=t

Thus, the eigenvectors of A corresponding to 4 = 1 are the non-zero vectors of the

t
form x = [t] = t[l] =tx, where x, is a linearly independent eigenvector corresponding

toA=1.
(b) ForA=2,
[A=Al]x=0
-1 0ffx| |0
-1 olly| |0
-x+0y=0
Let y=t
s

Thus, the eigenvectors of A corresponding to A= 2 are the non-zero vectors of the form

0 0
= [ t] = t[ 1] =1x, where x, is a linearly independent eigenvector corresponding to

A=2.

Modal matrix P has eigenvectors as its column vectors.
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Diagonal matrix D has eigenvalues as its diagonal elements.
1 0
D=
0 2
AIO =PDIOP—I = ] 0 1'0 0 1 O
1 1fjlo 2"]-1 1

- 1 0
T 1-1023 1024

00 -2
Example 2: Find a matrix P that diagonalizes A=|1 2  1|. Hence, find 4"
L & 3
0 0 -2
Solution: A=|1 2 1
1 0 3
The characteristic equation is
det(A—AI)=0
-2 0 -2
1 2-2 1 [=0
1 0 3-1

B—S, +8,A-8,=0

where S, = Sum of the principal diagonal elements of A =0+2+3=5
S, = Sum of the minors of principal diagonal elements of 4.

2 1 o =2/ o o

= + +

03 [1 312

=(6-0)+(0+2)+(0-0)

=8
00 -2

S,=det(A)=[1 2 1|=0+0-2(0-2)=4

10 3

Hence, the characteristic equation is
A} -512+81-4=0
A=1,22
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(a) For A=1, [A—AI]1x=0
-1 0 2fx 0

1 1 1)|y|[=|0

1 0 2z 0

-x+0y—2z=0

x+ y+ z=0

By Cramer’s rule,

x _ y _ .z
0 -2 |1 =2 |-1 0
11 1 1 11
xX y z
Z==="={5a
2 -1 -1 4
Thus, the eigenvectors corresponding to 4 = 1 are the non-zero vectors of the form
2t 2
x=|—t|=t|—=1|=tx, where x, is a linearly independent eigenvector corresponding
~t =1
toA=1.
(b) For A=2, [A-Allx=0
-2 0 2|« 0
1 0 1fy|=|0
1 0 1fz 0
x+0y+z=0
Let y=t and z=¢,
xX=-t,

Thus, the eigenvectors corresponding to A = 2 are the non-zero vectors of the form

~ 0 -1
x=| t|=t|1|+4]| O|=£x,+¢tx, where X, and x; are linearly independent
t, 0 1

eigenvectors corresponding to 4= 2.
Modal matrix P has eigenvectors as its column vectors.

2 0 -1



A% = ppRpt =| =
—-8190
=| 8191 819
8191
Exercise 5.3 a

1. Show that the following matri

not similar to diagonal matrices.

23 4 2 -1
@ |0 2 -1| i [2 2
0 0 1 12
18 § (3 10
i |0 2 0| Gv) |2 -3
[0 0 2 35

2. Show that the following matri
similar to diagonal matrices. F
diagonal and modal matrix i
case.

-2 2 3
@) 2 1 -6
-1 2 0
[-17 18 -6
(i) |-18 19 -6
9 9 2

5.5 Diagonalization 5.63

2 0 ~1|1® 0o o |[1 0 1
1 1 0}f0 213 o jr 1 1
-1 0 9> 0 2

—16382
2 8191

16383

ces are I —§ =4

i)y [0 4 2
I 0 -6 -3
=] B }

§ 8 -2

&
(v) |4 -3 =2

3| [Ans:|3 -4 1] |
—4 5 0 0 1 -3 3
116 p=lo =3 o|,P=| 2
ces are 0 0 -3 -1 0
ind the - _
o each 2 0 0 2 1 -1
) D=l 0 1 of, P=[2 1 0
i [ 0 0 10 3]
[ 1 0 0] (1 2 2]]
Giyp=0 1 0o|,P=[-2 =2 1
0 0 0] | 3 3 2
(1 0 0] (4 3 2
v)yD=|0 2 o|,.P=|3 2 1
I 0 0 3] 2 1 1] |
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3. Determine diagonal matrices ortho- r

300
gonally similar to the following real o
symmetric matrices. Also, find the @WD=[0 6 0f,
modal matrix in each case. 10 0 9
(7 4 -4 (12 2]
i | 4 -8 -1 33 3
2 2 1
-4 -1 8 P& & 2
S 3 3 3
[ 7 0 -2 2 12
Q@ [0 5 =2 L 4 4 all
-2 2 6
[ Ans.: ] -1 7 -l
(9 0 0 4. Find A", where A=| 0 1 0
(i D=[0 -9 o], 015 -2
0 0 -9
- _ -1 10237 -2047
4+ 0 1 Ans.:| 0 1 0
V18 5 0 10245 -2048
paf 1 L B
Jis V2 03
L L2
i | V18 V2 3]

5.6 QUADRATIC FORM

A homogeneous polynomial of second degree in n variables is called a quadratic form.

n on

An expression of the form Z Z a;x,x; where a,=a,are all real, is called a quadratic

i=1 j=I
form in n variables x,, x,, ... x

Matrix of a Quadratic Form

The quadratic form corresponding to a symmetric matrix 4 can be written as

non

g=x"dx=Y ¥ axx; (1)
i=l j=1
all al2 aln
Qyy Ay oo Qs
where A= ~ !
a a,, a
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Coefficient of x, x; in equation (1) =a, +a,
=2a,
=2a,

Coefficient of x; in equation (1) = a,

5.6.1 Linear Transformation

Let O = x"Ax be a quadratic form and x = Py be a non-singular linear transformation.
0 =x"Ax=(Py)" A(Py)

=y’ P" APy

=y’ By where B = P" AP
The form y ’By is called linear transformation of the quadratic form x’4x under a non-
singular transformation x = Py and P is called the matrix of the transformation.
Further, B" =(P"AP) =P A" (P")' = PTAP [. Ais symmetric]

=B

Hence, matrix B is also symmetric.

5.6.2 Rank of Quadratic Form

The rank of the coefficient matrix 4 is called the rank of the quadratic form x”4x. The
number of non-zero eigen values of 4 also gives the rank of the quadratic form of 4.

If p (4) < n (order of A), i.e. det (4)=0 then the quadratic form is singular, other-
wise it is non-singular.

5.6.3 Canonical or Normal Form
Let Q = x"Ax be a quadratic form of rank . An orthogonal transformation x = Py

which diagonalises 4, i.e., PT AP = D, transforms the quadratic form Q to z Ay:
i=1

(i.e., sum of r squares) or in matrix form y’Dy in new variables. This new quadratic

form containing only the squares of y, is called the canonical form or normal form or
sum of squares form of the given quadratic form.

(1) Index
The number of positive terms in the canonical form is called the index of the quadratic
form and is denoted by p.

(2) Signature

The difference between the number of positive and negative terms in the canonical
form is called the signature of the quadratic form and is denoted by s.
If index is p and total terms are » then
signature s =p — (r — p)
=2p—r
The signature of a quadratic form is invariant for all normal reductions.
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5.6.4 Value Class or Nature of Quadratic Form

Let O = x"4x be the quadratic form in n variables x,, x, ... x,. Let 7 be the rank and p be
the number of positive terms in the canonical form of Q. Then we have the following
criteria for the definiteness of value class of Q.

Value Class Criteria Canonical Form
2
1. Positive definite r=p=n Z Vi
’:1 only positive terms
2
2. Positive semidefinite r=p,p<n Z Yi
i=l
2
3. Negative definite r=np=0 _Z Vi
',_' only negative terms
4. Negative semidefinite r<nmnp=0 _z Vi
i=1
5. Indefinite Otherwise both positive and negative terms

(1) Criteria for the Value Class of a Quadratic Form in Terms
of the Nature of Eigen Values

Value Class Nature of Eigen Values

1. Positive definite positive eigenvalues

2. Positive semidefinite positive eigenvalues and at least one is zero
3. Negative definite negative eigenvalues

4. Negative semidefinite negative eigenvalues and at least one is zero
5. Indefinite positive as well as negative eigenvalues

(2) Criteria for the Value Class of a Quadratic Form in Terms
of Leading Principal Minors

ap  dip ... Ay

= a a v A
For the matrix ~ A=|"2! 2 o
Ay Apy .. Qpy

The leading principal minors of matrix 4 are those determinants starting with @, of
orders 1,2, ... n, i.e.
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al 1 all al n
al 1 alZ al?
a, ap ayi Gy a,,
|a” ) s |Gy Gy Ay
ay dp
a; 4y Oy
anl anZ ann
Value Class Nature of Leading Principal Minors
1. Positive definite positive leading principal minors
2. Positive semidefinite positive leading principal minors and
at least one is zero
3. Negative definite negative leading principal minors
4. Negative semidefinite negative leading principal minors and
at least one is zero
5. Indefinite positive as well as negative leading

principal minors

5.6.5 Maximum and Minimum Value of Quadratic Form

Maximum and minimum values of a quadratic form x"4x are 4, and A, respectively if

A, 2 A4, =2+ 2 4, subject to the constraint |

||x||=(,\qz+x§---x,21)E =]

The quadratic form x’Ax = 4, if x is a normalized eigenvector of 4 corresponding to A,
and x"4x = 4, if x is a normalized eigenvector of 4 corresponding to A,.

5.6.6 Methods to Reduce Quadratic Form
to Canonical Form

(1) Orthogonal Transformation

If Q = x"Ax is a quadratic form, then there exists a real orthogonal transformation
x = Py (where P is an orthogonal matrix) which transforms the given quadratic form
x"4x to

Ayt + 2233+t A7

where A,, 4, ...A, are the r non-zero eigen values of matrix A.

(2) Congruent Transformation

Congruent transformation consist of a pair of elementary transformations, one row and
one similar column such that pre and post matrices are transpose of each other.

If O =x"Ax is a quadratic form then there exists a non-singluar linear transformation
X = Py which transforms the given quadratic form x”4x to a sum of square terms.



5.68 Chapter 5 Eigenvalues and Eigenvectors

byt +byys +--+ by}

Example 1: Express the following quadratic forms in matrix notation:

(1) x*—6xy +)?
(i) 2x*+3)? — 522 —2xy + 6xz — 10yz
(i) X7 +2x) +3x] +x; —2x,x, +4x,x, —2x,.x, +4x,%, —6x,x, —8x,X,

Solution: (i) x"Ax=[x y]|:_; —3][)(]

Ly

2 -1 3=x
(i1) xXAx=[x y z]|-1 3 5|y

3 =5 5|z

(iii) Y As=[% % % x]

Example 2: Write down the quadratic forms corresponding to the following
matrices:

012 3
A 1 23 4
D (1 3 = -
® Wy 3 4 s
5 2 4
345 6

Solution: (i) Q=2x7 +3x] +4x] +2x,x, +10x,x, —4x,x,

(i1) Q0 =2x] +4x] +6x] +2x,x, +4x,x, +6x,x, + 6x,x, +8x,x, +10x,x,
Example 3: Determine the nature (value class), index and signature of the
following quadratic forms:

(1) X} +5x5 +x; +2x,x, +6x,x, +2x,x,
(1) 6x7 +3x7 +3x] —4x,x, —2x,x, +4x,x,
(i11) X7 +4x +x; —4xx, +2x,x, —4x,x,

(1v) =3x7 —3x; —3x] —2x,x, —2x,x, +2x,X,
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Solution: (i) Q= x] +5x] +x] +2x,x, +6x,x, +2x,X,
11 3 x
O=xAx=[x x x]|I 5 1||=x
301 1| x
1 13
A=[1 5 1
31 1
The characteristic equation is
det(4—-AI)=0
-4 1 3
1 5-2 1 |=0
3 1 1-2
A =722 +36=0
A=-2,3,6.

Since there are positive as well as negative eigenvalues, value class of quadratic form
is indefinite.

Index p = Number of positive eigenvalues = 2

Signature s = Difference between the number of positive and negative eigenvalues

=2-1=1

(i) 0 =6x7 +3x; +3x] —4x,x, —2x,x, +4x,x,
6 -2 2| x
O=x"Ax=[x, x, x][-2 3 -1|[x
2 -1 3|5

6 -2 2

A=1-2 3 -l

20 =1 3

The characteristic equation is

det(A—A1)=0
=i -2 2
2 3-4 -1 |=0
5 < F=4

AP =122 +36A-32=0
A=8,2,2
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Since all the eigenvalues of 4 are positive, the value class of the quadratic form is
positive definite.

Index p = Number of positive eigenvalues = 3

Signature s = Difference between the number of positive and negative eigenvalues

=3-0=3
(i) Q=x7 +4x] +x] —4x,x, +2x,x, —4x,X,

1 =2 1 x
O=x"Ax=[x, x, x]|-2 4 2| x
1 =2 1]|x

1 -2 1

A=|-2 4 =2

1 =2 1

The characteristic equation is

det(A-AI)=0
-4 5 1
2 4-1 -=2|=0
1 -2 1-4
A =622 =0
2=0,0,6

Since the eigenvalues of A are positive and two eigenvalues are zero, the value class
of the quadratic form is positive semidefinite.
Index p = Number of positive eigenvalues = 1.
Signature s = Difference between the number of positive and negative eigenvalues

=1-0=1
(iv) 0 =-3x7 =3x] =3x; —2x,x, = 2x,x, +2x,x,
=3 -1 -1 x
O=x"4x=[x, x, x][-1 =3 1|«
-1 1 3|lx

=3 =l =l
A=|-1 -3 1
=1 1 =3
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The characteristic equation is

det(A—AI)=0
-3-2 -1 -1
-1 -3-2 I |=0
-1 1 -3-1
A +9A7 +244+16=0
A=-1,-4,-4

Since all the eigenvalues of 4 are negative, the quadratic form is negative definite.
Index p = Number of positive eigenvalues = 0
Signature s = Difference between the number of positive and negative eigenvalues
=0-3=-3

Example 4: Find the value of k so that the value class of the quadratic form
k(x,2 +x; + x§)+ 2x,x, — 2x,X, + 2x,x, is positive definite.

Solution:
0= k(x,2 + 35+ X3 )+ 20,2, — 22, %, + 2X,%,

ko1 1| x
O=x"4Ax=[x, x, x]|1 k -1|x
1 -1 k|| x
k1 1
A=|1 k -1
I -1 %k
The characteristic equation is
det(A—A1)=0
k=4 1 1
1 k-4 -1|=0
1 -1 k-2

k= D[(k=2) =1]-1(k—A+D)+1[-1-(k—A)]=0
k=)k=A+D)(k=A=1)—=(k=A+1)—(k—A+1)=0
(k= A+D[(k-A)k-2-1)-2]=0
(k=A+D[(k-2)* —(k—1)-2] =0
k=2A+1)(k=A+1)(k=A-2)=0

A= (k+1), (k+1), (k-2)
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For value class of quadratic form to be positive definite, all the eigenvalues should
be greater than zero, i.e.

k>-1 and k>2

Hence, value class of quadratic form is positive definite if k£ > 2.
Example 5: Find the maximum and minimum values of the quadratic form
x; +x; +4x,x, subject to the constraint x; +x; =1, and determine values of x, and

x, at which the maximum and minimum occur.

Soltuion: 2 2
O =x +x; +4xx,

- L. 2] o
O=x Ax =[x, x2]|:2 1][)‘]

The characteristic equation is

det(A-A1)=0

’1—1 2‘_0

2 1-1

AP =2A-3=0
A=3,-1

Thus, the eigenvalues of 4 are A= 3, and A=—1 which are the maximum and mini-
mum values, respectively of the quadratic form subject to the constraint.

(a) For A=3, [A-A11x=0
-2 2| x 0
= L
—2x,+2x,=0
-x,+x,=0
% =%
Let X, =t
Byt

Thus, the eigenvectors of 4 corresponding to A= 3 are the non-zero vectors of the form

t
A=3.

t 1
X :[ :|= 1[1:| =1x, where x, is a linearly independent eigenvector corresponding to
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(b) For A=-1 [A-AI1x=0
2 2)fx| |0

2 2|[x, | |0

2x,+2x,=0
X =%

Let X, =t
X, =—t

Thus, the eigenvectors of 4 corresponding to A=—1 are the non-zero vectors of the form

—t = o : : ’
X= l: t] = t[ 1] =1x, where X, is a linearly independent eigenvector corresponding
to A=-1.

Length of the eigenvector x, = /(1)> +(1)* =2
Length of the eigenvector x, =+/(—1)* +(1)* = 2

The normalized eigenvectors are

1 1

2 V2

) X, =
BN e
V2 2
Thus, subject to the constraint xf +x22 =1, the maximum value of the quadratic
form is A = 3, which occurs if x, = Lz,x2 = LZ and the minimum value is A =—1,
R
N A
Example 6: Reduce the following quadratic forms to canonical forms by orthog-

onal transformation. Also find the rank, index, signature and value class (nature) of
the quadratic forms.

which occurs if x, =

() O0=2x+2x+2x] —2xx,
(i) Q=3x7+5x3 +3x] —2x,x, — 2x,x, +2x,X,
(ili) Q=2x*+2y?—z>—4yz + 4xz — 8xy
Solution: (i) 0 =2x] +2x] +2x] —2x,x,
2 0 1ffx
O=x"4x=[x, x, x][0 2 0] x,
1 0 2f|lx
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0 1
A= 2 0
0 2

—_— O N

The characteristic equation is
det(A-A1)=0
2-4 0 1

LP-SP+8,4-8,=0
where S, = Sum of the principal diagonal elements of A =2+2+2=6
S, = Sum of the minors of principal diagonal elements of 4

2 0 12 1) 120
+

0 2 |1 2/ |0 2
=(4-0)+@4-)+4-0)
=11

-

2 0 1
S, =det(4)=|0 2 0
1 0 2
=2(4-0)+0+1(0-2)
=8-2
=6
Hence, the characteristic equation is

A =617 +111-6=0

A=1,23
(a) ForA=1, [A-=AIlx=0
1 0 1| x 0
0 1 Offx,|=|0
1 0 1]]x 0

X, +0x,+ x;=0
Ox, + x,+0x;=0

By Cramer’s rule,
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A S B oy
-1 0 1
Thus, the eigenvectors of A corresponding to 4 = 1 are the non-zero vectors of the
—t -1
form x=| 0|=¢| 0|=tx, where x, is a linearly independent eigenvector corre-
t 1

sponding to A= 1.

(b) ForA=2, [A-AI1x=0
0 0 1|[x 0
0 0 0ffx,|=|0
1 0 0ffx 0

By Cramer’s rule,

xl__xz_xs

0 1 0 1] o o

0 0 1 o [1 o
i ooy
0 10

Thus, the eigenvectors of 4 corresponding to 4 = 2 are the non-zero vectors of the

0 0

form x=|t [=¢| 1 |=1x, wherex, is a linearly independent eigenvector correspond-
0 0

ingto A=2.

(¢) For A=3, [A-=AI]1x=0

-1 0 1fx 0
0 -1 Oflx,|=|0
10 =1 x 0

=X, +0x,+ x;=0

Ox, — x,+0x;=0
By Cramer’s rule,

o S S
0 1 -1 1 |-1 O
-1 0 0 0 0 -1
P =2 =1¢,say
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Thus, the eigenvectors of 4 corresponding to A= 3 are the non-zero vectors of the form
t 1
x=|0[=¢|0[=rx, where x, is a linearly independent eigenvector corresponding to

t 1
A=3.

Length of the eigenvector x, = /(=1)> +0% +1* =2
Length of the eigenvector x, =v0° +1° +0° =1
Length of the eigenvector x, =12 + 0% +1% =2

The normalized eigenvectors are

g
Il
(==
<
1
|

jﬂ
Il

Modal matrix P has normalized eigenvectors as its column vectors.

2 2

Diagonal matrix D has eigenvalues as its diagonal elements.

100
D=|0 2 0
0 0 3

Let x = Py be the linear transformation which transforms the given quadratic form to
canonical form.

o, L

X 2 V2 |[ 7

x|= 0 1 0|y

X 1 0 s
V2 \/5
1
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The canonical form is
Q=y' (P"4AP)y=y'Dy

1 0 Offy
=y, » »l)0 2 0]y,
0 0 3|y

=y +2y; +3y}

Rank » = Number of non-zero terms in canonical form =3
Index p = Number of positive terms in canonical form =3
Signature s = Difference between the number of positive and negative terms in
canonical form=3-0=3

Since only positive terms occur in the canonical form, the value class of the
quadratic form is positive definite.

(i1) Q0 =3x7 +5x3 +3x7 —2x,x, = 2X,%, +2x,X,
3 -1 1 x
O=x"4Ax=[x, x, x]|-1 5 -1fx,
1 -1 3|~
3 -1 1
A=|-1 5 -1
1 -1 3
The characteristic equation is
det(A-AI)=0
3-4 -1 1
-1 5-4 -1(=0
1 -1 3-1

B— S, +8,A-8,=0

where S, = Sum of the principal diagonal elements of 4 =3 +5+3 =11
S, = Sum of the minors of principal diagonal elements of 4

S -1 B 1|3 -1
= + +

-1 3 |1 3 |-1 5
=15-D+O-D+(15-1)
=14+8+14

=36
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S =det(A)=|-1 5 -1

=3(15-D)+1(-3+)+1(1-5)
=42-2-4
=36
Hence, the characteristic equation is
AP =111* +364-36=0
A=2,3.6
(a) For A=2, [A-AI]x=0

By Cramer’s rule,

% % Xy
1 1 1 1 4
HEEE R
XX XN
2 0 2
X _%5_ N
ST T

Thus, the eigenvectors of A corresponding to 4 = 2 are the non-zero vectors of the
—t -1

formx=| 0[=¢| 0|=¢x, wherex, isalinearly independent eigenvector correspond-

t 1
ingto A=2.
(b) ForA=3, [A-AI1x=0
0 -1 1][x] [o
-1 2 -l1|lx,|=]|0
I -1 0] x 0

Ox,— x,+ x;,=0
-x, +2x,— x,=0

x, —x,+0x,=0
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By Cramer’s rule,

s S X, X
-1 1 o 1 [o -l
S I O N
N _ X _ X
I |
A B .5 1, say
1 1 1
Thus, the eigenvectors of A corresponding to A= 3 are the non-zero vectors of the form
t 1
x=|t|=t|1|=1x, where X, is a linearly independent eigenvector corresponding to
t 1
A=3.
(¢) For A=6, [A-AI1x=0
-3 -1 1f|x 0
-1 -1 -1, |=]0
I -1 =3 x 0

=3x-x,+ x,=0
-x—X— x=0
X =% =3x,=0
By Cramer’s rule,

x, X2 x3
1 14 3 1 -3 -1
B I
x,_xz_x3
2 =4 3
DB 5oy gy
1 2 1

Thus, the eigenvectors of 4 corresponding to A= 6 are the non-zero vectors of the form
t 1

x =| =2t |=t| -2 |=tx, where X, is a linearly independent eigenvector corresponding
t 1
to A=6.

Length of the eigenvector x, =/(=1)* +0* +1* = V2
Length of the eigenvector x, = V1> +1> +12 =43

Length of the eigenvector x, = /1> +(=2)> +1> =/6
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The normalized eigenvectors are

I:x
Il
S &l &l
i
Il
|
- 5

1
V2
0

1

[ V2

Diagonal matrix D has eigenvalues as its diagonal elements.

2 00
D=|0 3 0
0 0 6

Let x = Py be the linear transformation which transforms the given quadratic form
to canonical form.

l\)%l‘—

1
V2
0

X Wi
- | B2

. J6

X3 1 1 Y

&= &= -
B

| V2

| 1 1
X == =Y, =Y,
1 /—2)’1 \/5){ \/gyA
1 2

X, =—=y, ———
B R
SR
X3 2)’1 \/5’2 = 3
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The canonical form is
Q=y' (P"4P)y =y’ Dy

2 0 0y
:[.Vl V> »Vz] 030 Y2
00 6]

=2y +3y; +6y;
Rank » = Number of non-zero terms in canonical form =3
Index p = Number of positive terms in canonical form =3
Signature s = Difference between the number of positive and negative terms in
canonical form=3-0=3
Since only positive terms occur in the canonical form, the value class of the quadratic
form is positive definite.

(1i1) 0=2x"+2y" —z* -8xy+4xz—4yz
2 -4 2|[«x
O=x"Ax=[x y z]|-4 2 2|y
2 2 -1z
2 -4 2
A=|-4 2 =2
2 2 -1

The characteristic equation is
det(A-A1)=0
2-1 -4 2

-4 2-1 =2 |=0

2 -2 -1-A
P-SP+S,A-5,=0

where S, = Sum of the principal diagonal elements of 4 =2+2-1=3
S, = Sum of the minors of principal diagonal elements of 4

2 =21 12 2 2 -4
= + +
-2 -1 2 -1 |4 2
=(-2-4)+(-2-4)+(4-16)
=—6-6—12
=-24
2 -4 2
S, =det(4d)=|-4 2 -2
2 =2 -1
=2(2-4)+4(4+4)+2(8-4)
=—12+32+8

=28
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Hence, the characteristic equation is
AP =31*-241-28=0

A=-2,-2,7
(a) For A=7, [A-A11x=0
-5 -4 2|x 0
-4 -5 2|ly|=|0
2 -2 -8z 0
—Sx—4y+2z=0
—4x-5y-2z=0
2x—-2y—8z=0
By Cramer’s rule,
X _ y _ z
-4 2/ |5 2/ |-5 -4
-5 =2 -4 -2/ |-4 -5
x_¥ 2
18 -18 9
B K B e
g g 1 "7
Thus, the eigenvectors of A corresponding to 4 = 7 are the non-zero vectors of the
2t 2
form x=|-2¢|=t|-2 |=¢x, where X, is a linearly independent eigenvector corre-
t 1

sponding to A=7.

(b) For A=-2, [A-AI1x=0
4 -4 2| x 0
-4 4 21|[y|=|0
2 2 1|z 0
2x=2y+z=0
Let y=t and z=t¢,
x:q—lu

77
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Thus, the eigenvectors of A corresponding to A= -2 are the non-zero vectors of the form

t ! t l
L g 1 2
= t, =t |1|+1,| 0 |=¢x,+1,x, whereXx, and x; are linearly independent
t 0 1
eigenvectors corresponding to 4 =-2.
The orthogonal matrix P has mutually orthogonal eigenvectors. Since x, and x; are
not orthogonal, we must choose X, such that x ,, X ,, X, are orthogonal.

/
Let X,=|m
n

For orthogonality of eigenvectors,

X/ x;=0 and X/ x;=0
) )

2 -2 1]|m|=0 and 1 1 0]jm|=0
n n

2]-2m+n=0and I+m=0
By Cramer’s rule,

/ m n
2 1 R 1k =2
R
i:—ﬂz—zt,say
-1 1
/ —t -1
x=|m|=| t|=t| 1|=x; where x, is an eigenvector corresponding to A=-2.
n 4¢ 4

Length of eigenvector x, = /2% + (=2) +1° =3
Length of eigenvector x, = /1> + 1 + 0% =~/2
Length of eigenvector X, = /(=1)>+1°+ 4* = Ji8

The normalized eigenvectors are

A
|
|

W= W[ W

£- - 5l-
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Modal matrix P has normalized eigenvectors as its column vectors.

2 1 1
3 2 I8
A T N O
3 2 I8
Iy A
| 3 N
2 2 1]
3 3 3
| L
pl=p 5 5
1 1 4
L V18 18 18]
[ 2 1] 21 1]
? 133 2_4‘232\16\?
D=P'AP=| —— — 0 ||-4 2 —2|-2 —— —
2 2 2_2_13J§Jﬁ
N S . I, A
iz Jig Jig] | 3 N
(7 0 0
=lo0 =2 0
0 0 -2

Hence, the diagonal matrix D has eigenvalues as its diagonal elements.
Let x = Py be the linear transformation which transforms the given quadratic form to
cannonical form.

2 1 1
X 3 \/E \/ﬁ N

X = _2 L L
2 3 \/E \/ﬁ Vs
X3 1 4 V3

RS

2 1 1

X Zg)ﬁ +$J’2 _ﬁh

2 1 1
xzz—gJﬁJrﬁ)’z +ﬁ)’3

1 4
Xy=—Y+—F
3 3y1 \/ﬁ)@
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The cannonical form is
O=y' (P'AP)y =y’ Dy

7 0 0}y
= » »)0 2 01l »,
0 0 2|y

=Ty =297 = 2y7

Rank » = Number of non-zero terms in canonical form = 3
Index p = Number of positive terms in canonical form = 1

Signature s = Difference between the number of positive and negative terms in
canonical form=1-2=-1

Since both positive and negative terms occur in canonical form, the value class of
quadratic form is indefinite.

Example 7: Reduce the following quadratic forms to canonical form by congruent
transformation. Also find the rank, index, signature and value class nature of the
quadratic forms.

() X} +2x5 +3x] +2x,x, —2x,x, + 2, X,
(i)  2x7 +x7 —3x] —8x,x, —4x,x, +12x,x,
(i) x*+2y* +22° —2xy—2yz+2zx

Solution: (i) Q=x7+2x3 +3x] +2x,x, = 2x,X; +2x,X,

-1 1 3|x
11 -1
A= 1 2 1
-1 1 3
Let A=1, Al
1 1 1] [t 0 0] [t 00
12 1|={0 1 0f4/0 1 0
-1 1 3/ 100 1] |00 1
R,—R,R,+R
11 -1 10 0] [10
P 1 2|=[-1 1 o]4f0 1
02 2 10 1] oo
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G, ~C;,/C+ G,

100 [1o0o0] [t 11
[012=—1]0A() 10
022 1o 1]fo o1
R, -2R,

(10 o] [1 0 0] [1 -1 1
0 1 2f(=[-1 1040 10
00 2|3 =21 10 o1

¢ 26,
(10 o] [1 o0 o] [1 =1 3
0 1 of=[-1 1 0l4l0 1 =2
0 0 2] [ 3 2 1f/]0o 0o 1
1 1
— R, b
2)“ (ﬁ)
) ) | S
10 0 10 0 2
01 0|=f-1 0 l4lo0 1 =2
O 0 =i 3 J—l 1
L - 2 —| o 0o —
72 2107 %
Comparing with D = P" AP
(10 0
D=0 1 0
[0 0 -1
. 3
L =1 —
2

Let x = Py be the linear transformation which transforms the given quadratic form
to the canonical form.

3
1 -1 —
X V2 B4
X, [=]10 1 -2 Y2
x} 0 0 ] y}
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The canonical form is
Q=y (P"AP)y =y Dy

1 0 O0ffy
=y » »)0 1 Of¥»
0 0 —1f|»

=Vi+y-¥
Rank » = Number of non-zero terms in canonical form =3
Index p = Number of positive terms in canonical form =2
Signature s = Difference between the number of positive and negative terms in
canonical form=2-1=1
Since both positive and negative terms occur in the canonical form, the value class of
the quadratic form is indefinite.

(i1) 0 =2x7 +x; —3x] —8x,x, —4x,x, +12x,x,
2 6 2|l x
O=x"4x=[x, x, x]| 6 1 -4 x,
=2 =4 =3||x

2 6 2

A=| 6 1 -4

-2 -4 3

Let A=1 AL
2 6 =2 1 00 1 00
6 1 —4(=|0 1 0f{4{0 1 0
-2 -4 3 0 0 1 0 0 1

R, =3R,R,+R,

2 6 -2 1 00 1 00
0 =17 2|=(-3 1 0f{4/0 1 0
0 2 =5 1 0 1 0 0 1
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5.88

630,06 ¥

1
0
|

-3
1
0

1 00 1
=(-3 1 0[4]0
1 0 1 0

0
2
=5

0
=17
2

2
0
0

R, +

2 o
17 2

C.+—C
3 17 2
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Comparing with D=P" 4P
1 0 0
D=0 -1 0
0 0 -1
(1 3 1
V2o 179
1 2
P=| 0 e et
V17917

Let x = Py be the linear transformation which transforms the given quadratic form
to canonical form.

(=]

1 3
N bR e v P
\F]— 0 L L yl
W7 o ||
3 \/ﬁ 3
0 —_—
9

—

X = \/]E}ﬁ \/::—7y + \1/7%

B, T b

2 \/ﬁ \/— 3
17

X3 ="V

9

The canonical form is

O=y'(P"4P)y =y’ Dy

I 0 0}y
:[yl Vs ys]o -1 0{|»
0 0 -1}y

2 2 2
==Y —Ys
Rank r = Number of non-zero terms in canonical form = 3

Index p = Number of positive terms in canonical form = 1
Signature s = Difference between the number of positive and negative terms in

canonical form=1-2=-1
Since both positive and negative terms occur in the canonical form, the value class of

the quadratic form is indefinite.
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(1i1)

Let
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Q=x*+2y"+222—2xy —2yz + zx

o L
211X
Q:xTAXZ[xyz]—l 2 1|y
L g gll=
2
1 &
2
A=l 3 -
L
2
A =14l
1
P13 11001 1o o
1 2 -1]|=jo 1 0|40 1 0
Lo, oL o] foo
2
I
R,+R,R —~R
2 373
] e
L =l =
? 10 0] 1y o o
o 1 L= P 1040 10
. Lo 1] [o o1
0_11 2
| 2 4]
I
4G, G5
b0 o too]f, , _
0o 1 -1 L1oof,
2_1 0 1
o -+ I [72 %1 oo
2 4
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&+l&

5T

Lo 0 1 0 0 1
1 1 1 ——

0 1 —=|_|1 1o, 2
ol I 01 0

00 2117 Yloo 1
2

1

C+=GC,

sl

1 0 0 1 0 0 1 1 0

Ol;)ZIIIOAOI%

005 051 00 1
21r.| 2 e
3] 3]

0 0 1 0 0 11]0
0 1 0|=|1 1 0(4|/0 1 —
0 0 1 1 2 V6

— |5 2
J6 N3] |0 0 =
3
Comparing with D=P' AP

>
L=
SeiEl- o

Let x = Py be the linear transformation which transforms the given quadratic form to
canonical form.

1 1 0
X u
y|i=]0 1 L %
J6
z w
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X=u+v
y—v+Lw
J6
2
z=,=w
3

The canonical form is
Q=y' (P"4P)y=y'Dy

1 0 Of|lu
=[u v W]O 1 O v

00 If|w
=u’+v +w’

Rank » = Number of non-zero terms in canonical form =3

Index p = Number of positive terms in canonical form =3

Signature s = Difference between the number of positive and negative terms in
canonical form=3-0=3
Since only positive terms occur in the canonical form, the value class of the quadratic
form is positive definite.

Example 8: Show that 5x; +26x; +10x] +4x,x, +14x,x, + 6x,x, is positive
semi-definite and find a non-zero set of values of x,, x,, x, which makes the form zero.

Solution: Q0 =5x7 +26x; +10x] +4x,x, +14x,x, + 6x,x,
5 3 T|lx
O=x"4x=[x, x, x]|3 26 2|fx,
2 10]| x,

Let A =TLAIL
1 00 1 00
26 {0 I 0(4(0 1 0
0 0 1 0 0 1
Rz Rl’ 37 5
5 3 7 1 00
5 51=| 5 A0 1 0
11 7 0 0 1



Cz—%C,,Q—%C,
5 0 0
o 121 11
5 S |=
LN
o) S
1
R3+ﬁR2
5 0 0
5 5
0 0 0
1
Ci+—0C;
11
5 0 0
0 121 |
5
0 0 0
Comparing with D = P AP,
(5 0 0]
p=[o & o
5
(0 0 0]
f e el
5 11
P= | e
11
[0 0 1

16
11

5.6 Quadratic Form

37
0 5 s
Ao 1 o
il 1o o
0
4o 1 o
il 1o o 1
0 _3 _le
. T
.
] T
0 0 1

5.93

Let x = Py be the linear transformation which transforms the given quadratic form

to the canonical form.

i
B
V3



5.94  Chapter 5 Eigenvalues and Eigenvectors

_ 316
'xl_yl_gyl_ﬁ)B
xﬁ=y+iy

2 2773

X3 =),

The canonical form is

Q=y' (P"AP)y =y’ Dy

5 0 0 2

121 :

:[Y1 Vs .V3]0 ? 0f »

0o o ofth
, 121,
=5y2 +——y?2
ht< X

Rank 7 = Number of non-zero terms in canonical form = 2

Index p = Number of positive terms in canonical form = 2

Signature s = Difference between the number of positive and negative terms in
canonical foorm=2-0=2

Since all the terms in canonical form are positive and one term is zero, the value
class of the quadratic form is positive semi definite.

The set of values y, =0, y, =0, y; = 1 will reduce the quadratic form to zero. For

this set of value,
1 16
x=Lx=—x=-—
10] 11

This is a non-zero set of values of x,, x,, x; which makes the quadratic form zero.

Exercise 5.4 1
1. Express the following quadratic forms [ [z 3 ]
in matrix notation. Ans.: (i) 3 3
(1) 2x2+ 3)? + 6xy - 5
(i) 2x?+ 5)? — 62— 2xy — yz + 8zx 2 = &
(i) X7 +2x7 —7x] +x] —4x,x, 1
L 8xx (i) | -1 5 ——
X%y =65, 2
(v) x7+2x; +2x7 —2x,x, — 2x,X, 4 _1 -6
2 2 2 2 = 2 -
W) x; +2x5 +3x5 +4x; +2x,.x, +4x,x; 1 2 4 0
—6x,x, —4x,x; —8x,x, +12x,x, - g > 0 0
il
0 -7 3
0 0 =3 1




2. Write down

I -1 0
)|-1 2 -1
0 -1 2
1 1 2 -3
3 < =4
M2 2 3 6
3 4 6 4

5.7 Conic Sections 5.95

3. Reduce the following quadratic forms

to canonical forms by orthogonal
transformation. Also find rank, index
and signature.

(1) 3x*+ 57+ 322 2xy—2yz + 2zx
(i) 2x7+2p) +2z0 —2x,x,

+ 2%, —2x,x,

(iii) 3x?—2y*—zZ2—4xy + 8xz + 12yz

the quadratic forms

corresponding to following matrices:

(M)

(i)

(iii)

Ans.: (i) X7 +x7 +4x,x, —2x,X, +6x,x,

1 2 -
2.0 3
-1 3 1
(1 1 -2 0
1 4 0 0
3 0 6 -3
L0 0 3 2
9 Al 2 2
2
1 -3 -2 3
2
3 3 4 1
2 2 2
2 3 1o
i 2

sy 2 2 2 2 ’
(1) x; —4x;, +6x; +2x, +2x.x,

—4x,x; —6x;x,

(iii) 2x7 —3x7 +4x7 +x; —2x,x,

30X = 4x,2, =52, X3 +6x,X, + XX, |

5.7 CONIC SECTIONS

[ Ans.: (i) 2y +2y2 +6y2;r=3, |
p=3;5=3
() 4y, +ys +yir=3,
p=3,5=3
(iii) 3y} +6y; —=9y3;r=3,
p=2,5=1 ]

4. Reduce the following quadratic forms

to canonical forms by congruent
transformation. Also find rank, index
and signature.

(1) x*—2y*+322—4yz + 62x
(i) 2x?—2y*+ 22— 2xy — 8yz + 6zx
iii)  x2+3)% + 822+ 4w?+ 4xy + 6xz
y V

—4xw + 12yz — 8yw — 12zw

[ Ans.: (i) y? -2 —y3r=3, |
p=LlLs=-1
(i) y - y; - yisr=3,
p=lLs=-1
(i) y7 = y3 —y3ir =3,

L p=ls=-1 |

Consider quadratic equations of the form

ax’ +2bxy+cy* +dx+ey+ f =0

where a, b, ..., fare real numbers and at least one of the numbers a, b, ¢ is not zero.
In this equation ax?+ 2bxy + ¢)*is called the associated quadratic form. Graphs of



5.96 Chapter 5 Eigenvalues and Eigenvectors

quadratic equations in x and y are called conics or conic sections. The most important
conics are ellipses, circles, hyperbolas and parabolas. 4 conic is said to be in standard
position relative to the coordinate axes if its equation can be expressed in one of the
forms given in the table.

A conic in standard position does not contain an xy-term in its equation. The pres-
ence of an xy-term in the equation indicates that the conic is rotated out of standard
position. Also, a conic in standard position does not contain both an x? and an x term or
both a y? and a y term. If there is no xy-term, the occurence of either of these pairs in the
equation indicates that the conic is translated out of standard position. The occurrence
of either of these pairs and an xy-term usually indicates that the conic is both rotated
and translated out of standard position.

Conic Equation Standard Position
Ellipse ¥+L=1; a,b>0
a: b7
Circle X7+¥=];u>0
a- ia:
7 e 12 y
Hyperbola ;_};7:1;a,b>0
JERN (a,0)
(-a,0) x
Hyperbola ": — —; =l;a,b>0
) 2
Parabola y2 =ax;a#0 Y d
‘X ~X
a>0 a<o0

o

Parabola X =ay;a#0 \ ry ,

a>0 a<0
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Eliminating xy-term from Quadratic Form

Let ax’+2bxy+cy’ +dx+ey+ f =0 be the equation of a conic c. Writing the
equation in the matrix form,

SR O e

X Ax+kx+ =0
X a b
where xz[ :|,A=[ },kz[d e]
y b c

The coordinate axes can be rotated so that the conic equation in the new x” )/
coordinate system becomes

AX?+ A,y +dX +e’y' + f=0
where A, and A, are the eigenvalues of A. The rotation can be accomplished by the
transformation x = Px” where P orthogonally diagonalizes A and det (P) = 1.
Example 1: Describe the conic whose equation is
9x* +4y” —36x—24y+36=0.
Give its equation in the translated coordinate system.
Solution: Since the quadratic equation
9x* +4y* —36x-24y+36=0

contains x?, x, )%, and y-terms but no cross-product term, its graph is a conic that is
translated out of standard position. This conic can be brought into the standard posi-
tion by suitably translating the co-ordinate axes.

Collecting x-terms and y-terms,

(9x* =36x)+(4y* —24y)+36=0
9(x* —4x)+4(y* —6y)+36=0
Completing the squares,
9(x* —4x+4)+4(* -6y+9)=36
9(x—2) +4(y-3)* =36

Translating the coordinate axes by translation equations x" =x—2,y" = y—3,

9x"* +4y"* =36

This is the equation of the ellipse in the standard position in the xy” system.



5.98 Chapter 5 Eigenvalues and Eigenvectors

Example 2: Describe the conic whose equation is
5x* —4xy+8y*-36=0.

Give its equation in the rotated coordinate system.

Solution: Let 5x” —4xy+8y>—36=0 be the equation of a conic and let the
associated quadratic form be

Q= 5x" —4xy +8)*

o3 e
A

The characteristic equation is

det(A-A1)=0
‘5-/1 —2‘_0
-2 8-
A*=131+36=0
A=49
(a) For A=4, [A=Allx=0
1 2| 0
B e
x=2y=0
Let y=t
x=2t

Thus, the eigenvectors of A corresponding to A = 4, are the non-zero vectors of the

2t 2
form x = |: :| = t|: :| =tx, where X, is a linearly independent eigenvector correspond-
t 1

ingto A=4.
(b) =9, [A-AIx=0
-4 2|[x
=0
= ol
-2x-y=0
Let y=t

x=——t
2



5.7 Conic Sections 5.99

Thus, the eigenvectors of A corresponding to 4 = 9 are the non-zero vectors of the
1 1

form x=| 2 |=¢ 2 =tx, where x, is a linearly independent eigenvector
t 1
corresponding to 4=9.

Length of the eigenvector % = 2 +(1)? = /5

Length of the eigenvector X, = f(—%) +(1)* = ?

The normalized eigenvectors are

2 b
I
: 17 2

5 5

Modal matrix P has normalized eigenvectors as its column vectors.

2
NCENG
P:

i B

NG

Thus, matrix P orthogonally diagonalizes A.

2
det(P) = V55|41
1 217575

NN
Thus, the rotation can be accomplished by the transformation x = Px’.
The matrix form of the conic equation is
x Ax-36=0
(Px")" A(Px")-36=0
x'"(P"AP)x’-36=0
x"Dx'-36=0

o o

This is the equation of the ellipse.
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Example 3: Translate and rotate the coordinate axes, if necessary, to put the
conic 9x*— 4xy + 6)>— 10x — 20y = 5 in the standard position. Find the equation of
the conic in the final coordinate system.

Solution: Let 9x2—4xy + 6)?— 10x — 20y = 5 be the equation of a conic and let the
associated quadratic form be

0=9x" —4xy+6y°

o2 e
A2

The characteristic equation is
det(A-AI)=0
9-4 =2
[
A*—15A4+50=0
A=5,10

(a) For A=5, [A=Allx=0

4 2fx| |0
BONHEH

-2x+y=0

Let y=t

-

1
xX=—t

Thus, the eigenvectors of 4 corresponding to A= 5 are the non-zero vectors of the form

1 1
_[ -y
x=|2 |=t|2 |=tx, where x, is a linearly independent eigenvector corresponding
t 1
to A=35.
(by A=10, [A-AI]x=0
-1 =2||x
=0
-2 —4|ly
-x-2y=0

Let y=
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Thus, the eigenvectors of 4 corresponding to A = 10 are the non-zero vectors of the

-2t -2
form x =[ J = t[ 1] =X, where X, is a linearly independent eigenvector corre-

sponding to 4= 10.

ol %

1y
Length of the eigenvector X; = (E) +(1)" =

Length of the eigenvector X, = (-2 +(1)* =5

The normalized eigenvectors are

! _2
Bl TG
]i’l 1

Modal matrix P has normalized eigenvectors as its column vectors.

12
N N
2 1

NG

Diagonal matrix D has eigenvalues as its diagonal elements.

50
T
{o 10}

Thus, matrix P orthogonally diagonalizes A.

N&y|—-
—‘ﬁl'\’

det(P) = =%+%=1

NENG
Thus, the rotation can be accomplished by the transformation x = Px’.
The matrix form of the conic equation is

X' Ax+kx=5

PX') APX')+k(PX') =5
: %.) ,.( X aPx) s where £k =[-10 —20]

x (P' AP)X’ + (kP)x" =5

X" Dx’+ (kP)x’ =5
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12
5 0 |=" ﬁ ﬁ [x"]
Ly -10 20 =5
EOS ) S0 B
55
sx +10y2 +[-10V5 0]| 7, |=5
y

Collecting x’-terms and y’-terms,

5x2 410y —10V5x =5

(5x* =10:/5x") +10y* =5
5(x? =25x")+10y" =5

Completing the squares,

5(x"% = 25x"+5)+10y"> = 5+25
5(x"—/5)* +10y"> =30

Translating the coordinate axes by translation equations, x” = x”" — 5,97 =y,

5x”* +10y”* =30

”2

%
6
This is the equation of the ellipse.

Exercise 5.6 ) |

1. In each case, a translation will put
the conic in standard position. Name
the conic and give its equation in the
translated coordinate system.

(1) x*—16)*+ 8x+ 128y =256
(i) y*—8x—14y+49=0
(iii)) x4+ 10x+ 7y =-32
(iv) x*+)y*+6x—10y +18=0
Ans.: (i) x> =16y’ = 16, hyperbola

(ii)y”* = 8x’, parabola
1 o
(iil)y” = —;x", parabola

(iv)x”* +377 = 16, circle

7”2

=1

3

2.In each case, rotate axes to identify
the graph of the equation and write the
equation in standard form.
i) xX*+xy+)y’=6
(i) 9 +)y*+6xy=4
(i) 4x*+4y*—10xy=0

X y
+— =1, ellipse
12 P

Ans.: (1)

2 2
(ii)y' = ﬁand y’ = _ﬁ;

2

4
y’" = —, pair of parallel lines

(iij)y” = 3x"and y" = -3x;

9x”* — "> =0, two intersecting lines



3. In each case, translate and rotate the
coordinate axes, if necessary, to put
the conic in standard position. Find the
equation of the conic in final coordinate

system.

(1) 2x*—4dxy—y*—4x—-8y=—14

(i) 5x* —4xy+ 8)” +4/5x
—163/5y+4=0

(iif)

Ans.:

5.7 Conic Sections 5.103

9x* + y* + 6xy ~10V10x
+104/10y+90=0
(i) 2x7 —3)/"1 =24, hypherbola

(i) -+ =1, ellipse

(iii) y": =—4x", parabola



Vector Functions

I Chapter

6.1 INTRODUCTION

A vector field or a scalar field can be differentiated w.r.t. position in three ways to
produce another vector field or scalar field. This chapter details the three derivatives,
i.e., (i) the gradient of a scalar field, (ii) the divergence of a vector field, and (iii) the
curl of a vector field.

6.2 VECTOR FUNCTION OF A SINGLE
SCALAR VARIABLE

If, in some interval (a b) or [a b], for every value of a scalar variable ¢, there

corresponds a value of r, then r is called a vector function of the scalar variable ‘¢’

and is denoted by r= f ).

6.2.1 Decomposition of a Vector Function
Ifi, f , k be three unit vectors along the three mutually perpendicular fixed directions
(x, y, and z axes), then r = f(f) can be decomposed as
r= S0 =f(0)i +£0] +fD k
where, f,(1), f,(¢) and f(¢) are scalar functions of #. This relation can also be denoted by

f =015 1)

| 7O 1= JUAOF +LAOF +L6OF

6.2.2 Derivative of a Vector Function

Derivative of a vector function f(#) with respect to a scalar variable ¢ is defined as

df _ o S - f(@
dr 6t—>0 ot
where, ot is the change in .

I f () =f ()i +f, ()] +f, (t) k where f (1), f, (1) and £, (¢) are the components
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of 7(t) in the direction of x, y, z-axes, then derivative in the component form is

AF i dhs g
dr dt dr dr

6.2.3 Some Standard Results

Most of the basic rules of differentiation that are true for a scalar function of scalar
variable hold good for vector function of a scalar variable, provided the order of fac-
tors in vector products is maintained.

Let a, b, ¢ are differentiable vector functions of a scalar variable ¢.

1. dk = Oj is a constant vector
dt
7 d P da db
dt dt dr
d —dg
3. _+ , @is a scalar function of 7.
dt(qj ) ¢ dr’
s d(p)oda g, odb
dr dt dr
5. Llaxk) =99 praxdt

t
6. 4 ;z;]:[d_azz] [ﬂ;H;;,z}
dt d dr ds
7 i[;x(zx;)]=d_ax(gxg)+;x(%xg)+;x[gxz)

6.3 TANGENT, NORMAL AND BINORMAL VECTORS

y
(1) Tangent Vector

Let P(f) and Q(t + ot) be the two 0+61
points on the curve ro= (1. The tan-
gent vector at P is the limiting position X A
of the chord PO when QO — P, ie., /,\;0
ot— 0. P
or dr 7
m-—-—=—
5t—0 Ot dt
0]

Hence, tangent vector is
Fig. 6.1
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= _dr
dt
The line containing the tangent vector is known as tangent line.

(2) Osculating Plane

The limiting position of a plane passing Principal normal
through three points P, O, R on a curve as N

0 and R approaches P is known as oscu-
lating plane.

(3) Normal Plane
Normal

A plane containing all the normals to the plane
tangent line at P is known as normal plane.

< Osculating
plane

(4) Principal Normal _ -
The line perpendicular to the tangent line ~ Binermal A Talr,‘gem
and lying in the osculating plane is known Rectifying plane e
as principal normal. Fig. 6.2

(5) Binormal

The line perpendicular to the osculating plane and passing through P is known as
binormal.

(6) Rectifying Plane

The plane containing the tangent line and the binormal is known as rectifying plane.

(7) Unit Tangent Vector

A unit vector along the tangent line is known as the unit tangent vector and is denoted
by T.

(8) Unit Normal Vector

A unit vector along the principal normal is known as the unit normal vector and is
denoted by N.

W=
7]
(9) Unit Binormal Vector

A unit vector along the binormal is known as the unit binormal vector and is denoted
by B.

A

B=TxN
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Example 1: Write down the formula for © (Z X E) and verify the same for
A=5Pi+tj—F£k and B =sinti —cost . d?

d (Zxﬁ):d—AxE+Zxd—B

Solution: —
dt dt dt
Given, A =5tzf+tf—t3 l;,
B =sintf—costf
i J k
AxB=|5%* + -
sint —cost O
=f(0—t3cost)—f(0+t3sint)+l€(—5t2cost—tsint)
= (= cos f) i- (£ sin t)f —(5f cost+tsint) k
di(ZXE) = (=37 cos t+ £ sin¢) i— (32 sint+ £ cos t)f
t
— (10t cost—5£sint+sint+tcost) k .. (1)
d4 S
Now, Eleti—i—j—&zk,
4B =costf+sintf
dr
_ i j k
A J—
M Bl 1 32
dt )
sint —cost 0
=1(0— 37 cos ) — (0 + 3 sin £) + k (—10 ¢ cos ¢ — sin #)
_ ik
— dB
Ax—=|5* ¢+ -
dt )
cost sint 0
=f(0+t3sint)—f(0+t3cost)+lAc(5tzsint—tcost)
%XE+ZX%—?=(—3# cos t+ £ sin t)f—(3t2 sin ¢ + £ cos t)f
—(10z cos t+ sin t — 5¢* sin t + £ cos t)l; .. (2)
Comparing Egs. (1) and (2),
d(~_ =y dd4d_— — dB
—(AXB):—XB+A><—
dr dt dt
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du — - vy - -
Example 2: If E: w X u and d—: w X v, then prove that
t

4 ()= w x ().

dr
Solution: We know that, i(ﬁx;) = d—u><;+;><ﬂ
dt dr dt
du — - dv — -
But — =wXu,— =wxXy
dr dt
E(Zx;): wxu)xv+ux(wxv)

v-w)u—(v~u)w+(u~v)w—(u-w)v

—

=(vewu—(u-wv=(wv)u—(w-u)y
= wx(uxv)
dr

dr

Example 3: If F=£i+ (21‘3 _Lz) /, then show that r X
St

Solution: r =£i + | 23 L i
5¢%

dr _3piy (6t2+%)j
dt 5t

x t3f+(2t3—i)}’ N 3t25+(6t2+i)]‘
dr 56 56

=37 (fxf)+[6ts +%)(ij‘)+(6t5 —%)(}Xl)

1 RATEE
+(2t3 —57)(6t2 +¥)(]X_])

2\~ ~ 2 n 2R
=0+(6t5+§)k +(6t5—§)(—k)+0 [ ixi=0=/x%j]

Il
P

Example 4: If a and b are constant vectors and @is constant and

7 = asin ot + b cos wt, prove that 7 X % +(1)(;>< Z)zO.
t

Solution: r = asin wt+ b cos wt

dr - - .
@ = a wcos wt+ b w(—sin wr)
t
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rx%=(c_zsina)t+Zcoswt)><(21a)cosa)t—I;a)sina)t)

= (c_1><21)cosina)tcoscot—(thl_))a)sin2 a)t+(l;><c_1)a)cos2 wt
—(ZxI;)wcoswtsinwt
= 0—(;1><E)cosin2 a)t—(;xz)wcosz wt—0 [ axa=0 =E><E]

= —(thl_a)(o(sin2 ot +cos’ ot) =—(;1><Z_7)w

Hence, r x % +(;x5) w=0.
t

Example 5: If ; = a sinh ¢+ b cosh t, where a and b are constant, then show
that

o dir - . dr_d*r

1) —=r 11) — X——— = constant.

(1) = (i1) PPl

Solution: r = a sinh¢+ b cosh t,

) ﬂ= a cosht+ b sinht [ aand b are constant]
dr
27 — — —
d_zr =aqa sinht+ b cosht=r
dr
2_ —
Hence, ﬂ: ”
dr?
- - B - B
(i) %x%=(acosht+bsinht)><(asinht+bcosht)
t

= (;XE)coshtsinht+(21><l_7)cosh2 z+(l_)><;1)sinh2 t+(l_)><l_7)sinhtcosht
= 0+(Zz><l_7)cosh2 t—(c_le_))sinh2 t+0
= (;xl_))(cosh2 ¢ —sinh? t)
= (;xl;) [+ cosh? 7 —sinh? £ =1]
rod*r
Hence, — X——— = constant.
dt de?
Example 6: If r=a (sin wt) i +b(sin a)t)f + c_t2 (sin wt) k, prove that
w

-

_ 2 .

ﬂwt w’r = —c(cos wt) k.
w

dr?
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Solution: r =a (sin 1) +b (sin @f) ] + <= (sin ) k
®
d; ~ 2 C . ~
@ =aw(cos wt)i +bw(cos wt)j + — (sin wt+t wcos wt) k
10)
dz; . 2 . 2 c
d_2 =aw(-wsin wt) i +bw(-wsin wt)j + — [@(cos wi) +
t 0]

A

w(cos wt) +tw (—wsin wt)] k
= —a’ (sin @t ) i — b (sin wf) ] + i2 Qwcos ot - 1’ sin 1) k
®
2¢
=—w? [a (sin wr) i+b (sin a)t)] + — (s1n wr) k] + — (cos wt) k
w?
=~ r + 2 (cos a)t)lAc
®

Example 7: If r= (acosf) e (asint) f + (at tan &) k, prove that

(1) %x% =a’secar (i1) [% % %]=a3tana.
Solution: r = (acos )i+ (asin t)f + (at tan @) /;,
% —(—asmt)z +(acost)] + (a tan a)k
d*r

d_2 =(—acost)z?+(—asint)f+01ﬂc
t

3 ~
d—:z(asint)i+(—acost)j+0'k
t

» a ~

dr d*r l. / ‘
(i) —X—=|—asint acost atan¢
dr dr?

—acost —asint 0
:f(0+azsinttana)—f(0+azcosttana)+k(azsin21+azcos2t)
—az(sinttana)f—az(costtana)f+a2k

dr d*r ; J = o
FrarEl ar —Ja*sin?r-tan? o+ a* cos? ¢ - tan® @+ a* =a’tan® a+1=a’ sec &
t t

(ii) &, &) & — [a¥(sin t tan @) i —a* (cos ¢ tan @) ] + @ k]. [(a sin #)
11 a“(Sin an &)1 — a- (cos an & a . |(a sin 1
FTRN P J

+(=acost)j +0K]
=’ sin’ ttana'+a cos ttan e
[~ z—] j k- k-landr j=j k=k-i=0]
=d’tan
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-
Hence, |dr d7rdirf_ 5.
dr d* dr? '

Example 8: If A = (sin t)f+(cos t)f+tl€, B = (cos t)f—(sin t)f—3 k,
C=2i+3j -k find di[ZX(ExE)]an=0.
t

i ik
Solution: (BxC)=|coss —sins —3|=1i (sinz+9)—j(—cost+6) +
2 3 -1 k(3 cost+2sinf)
i j k
A><(B><C)= sint cost t
sint+9 cost—6 3cost+2sint

=f(3coszt+2sir}tcost—tcost+6t)—f(3costsint+2sinzt
—tsint—9t)+k(sintcost—6sint—costsint—9 cos?)
~ (3. . . -
=(3cos?t+sin2t—tcost+6t)i — (E sin2¢+2sin’ t —¢sint —9t) Jj
+(—6sint—9cos?)k
di[Zx(ExE)] =[6cost(—sint)+2cos2t—cost+tsint+ 6]f
t “ ~
—(3cos2t+4sintcost—sint—tcost—9)j—(6cost—9sint)k
Putting t =0,
drr-= (= = A A »
d—[Ax(BxC)]:7z+6]—6k.
t

2

- [dr_d
Example 9: Find the derivative of 7 X (d—:xd—;) with respect to ‘#’.
t

Solution:

d|-_(dr _d&*r)| _dr (dr_d*r). - (d*r_d*r). - _(dr_dr
—|rX| —X—||=—X| —X— [+ rX| —X— |+ rX| —X—
dr dr - dr? de \dr dr? dr*  dr’ dr dr

dr (dr d*r) - (dr d&r ar d&*r
=—X|—X—|+rX| —XxX— w—X—=0
de \ dr o de? dr 4 de? de?

rxa =
Example 10: Find —(f] , Where r is a vector function of scalar variable ¢
r-a

and 7 is a constant vector.

Solution: i

dr

A e o] (e e K
o) L
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But, %_ 0,as a is constant.
dt
4 alGa)-Gxa)| &g
d (ran dt
Hence, = —
dr -2

Example 11: Find (il_fif f=r r + (5 0 ;)Z where 7 is a function of 7 and
t

a, b are constant vectors.

Solution: 7 =Pr + (;;) b

&= L)+ a7

dt  dr
2 — o - - — f— [
S A [ T TR (G PO oo U
d dr dr
{zﬂ)(;)m&(;ﬂ]z [-.-d—aﬂ:o]
dr dr dr de dt
-dr  ,dr o[- dr
——=2rr—+4r°—+bla —
fenee, 4 =2 ( dt]
Example 12: If f () is a unit vector, prove that f () x———= df(t) dfd(t) .
t
Solution: Since 7 is a unit vector,
=1
Differentiating w.r.t. ¢,
df -, 7.4/
. + L = ()
d S+t dt
2_.% =0

de

47

de

This shows that 7 and daf are perpendicular to each other.
dt
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sin@n

Now, 7 X g = ‘7‘ ‘%

df

where, @is the angle between 7 and Eand n is the unit vector perpendicular to the

plane of 7 and 4.
de

Since 7 and (ii_f are perpendicular, g = g
t

A daf _ ‘f‘ﬂsin—ﬁ
dt dt
‘7x% = % I | |: / is a unit Vector]
Hence, 7)(% = ﬂ . [|;1 ‘:1]
det dr

Example 13: Find the magnitude of the velocity and acceleration of a particle
which moves along the curve x =2 sin 3¢, y = 2 cos 3¢, z = 8¢ at any time ¢ > 0. Find
unit tangent vector to the curve.

Solution: The position vector 7 of the particle is
7 o=xi+y) +zk=(2sin 307 + (2 cos 3¢ + (80)k

Velocity, S = % — (6. cos 31) | + (=6 sin 37) ] + 8k
t

M = \[36c0s 31 + 365in> 31 + 64 = /36 + 64 = 10

— 2 ~ ~ A
Acceleration, P % — (~18 sin 31) { + (=18 cos 37) / + (0)k
t

la| = \/(18) sin’ 3¢+ (18)” cos 31 =18.

. 1 . . r o
Unit tangent vector = e E[(6cos3t)i —(6sin31) j +8k |.

dr

dt

Example 14: A particle moves along a plane curve such that its linear velocity
is perpendicular to the radius vector. Show that the path of the particle is a circle.

Solution: Let position vector 7 of the particle is

r=xi+yj
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- dr
v=—
dt
To find path of the particle, we have to develop a relation in x and y. Velocity is per-
pendicular to the radius vector.

Velocity,

- dr
re—=

dt
24

dt
;.24_%._:0

der dt

d, - -
—(r-rl=0

)

r-r=c*, constant
4P =c
which is a circle with center at the origin and radius c.

Example 15: Find the magnitude of tangential components of acceleration at
any time ¢ of a particle whose position at any time ¢ is given by x = cos ¢ + ¢ sin ¢,
y=sint—tcost.

Solution: Position vector 7 of the particle is
r =(cos t+1tsin t)f+(sin t—1tcos t)f
_dr
dt
=(—sint+sint+tcosft)i+(cost—cost+tsint)j

=(tcost)f+(tsint)f

=

Velocity, v

. - r . 2 . 2
Acceleration, a= e =(cost—tsint)i +(sint+1cost)j
t
Unit vector in the direction of the tangent is
dr

;_E _ (tcost)i +(tsint) ]

dr - \/t2 coslr+iisin’r (cos )i +(sinD)j
dr
Magnitude of tangential component of acceleration
=a-i
=[(cos t —tsin f) i+ (sin t + ¢ cos t)f] “[(cos £) i+ (sin t)j]
=cos’t—tsintcost+sin’t+1costsint
=1
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Example 16: Show that a particle whose position vector rat any time ¢ is given

by r = (a cos nt) i+ (b sin nt) j moves in an ellipse whose center is at the origin
and that its acceleration varies directly as its distance from the center and is directed
towards it.

Solution: r =(a cos nt)i + (b sinnt) j

x=acosnt,y=>bsinnt

2 2
X .
T+ —cos® nt+sin®nr =1
a
2 2
X
— + y_z =1
a b
which is an ellipse with center at origin.
dr . .
Now, d—=(—ansmnt)l + (b n cos nt) j
t
. - dr
Acceleration, a=—
dt

= (—a n* cos nt) i+ (—b n* sin nt)f

=—n*[(a cos nt) i+ (b sin nt)f]

=—n’r
This shows that acceleration of the particle varies directly as its distance 7 from the
origin (center of the ellipse) and negative sign shows that acceleration is directed
towards the origin.

Example 17: Find unit tangent, unit normal and unit binormal vectors for the
curvex="¢y=3sint,z=3cost.

Solution: F=ti+3sint j+3costk

7' =i+3cost j—3sintk

r’ = —3sint}'—3cost1€

7= \/1+9coszt+9sin2t =10

|F”| = \/9sin2t +9cos’t =3

v i +3costj—3sintk

T=—=
—, \/E
—Lf+—costj—isintl€
Vo Vio )
X = i" _ —3sintj —3cosrk
r 3

= —sint}' —costk
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B=TxN
i j k
~-L ——cost ————=sint
NITONIT) Jio
0 —sint —cost
—f(—icoszt—isinzt)—}(—LcostJ+lg(—Lsint)
Jio Jio V10 Jio

) B
——sintk

3. 1 -
=——=i+—=costj—
N RN TN T)

Example 18: Find unit tangent, unit normal and unit binormal vectors to the
curve x =acos 6,y =asin 6,z=D06.

Solution: 7 =acosOi+asin@j+bOk
7 =—asin@i +acos6j+bk

7" =—acosOi —asinf;j

7’| = \a®sin®0+ a® cos*6 + b* =\/az+b2
7’| = \Ja*cos’0+a’*sin’0 = a
Fe 7 —asin®i +acosO] + bk
__—,:
|r | va* +b*
a . 2~ a A b A
=- sin6i + coslj+——=k
Ja? +p? Ja? +1? a*+b°
—r > . ol
AT —acosBi —asinf
N: —,, = j
a
=—c059f—sin9}‘
B=TxN

i ik
—asin@ acosf b
0

1
Va> +b* | _cos® —sin@

= ;[f(0+bsin0)—}(0+bcose)+le(asinz 0+ acos’ 6)]

a’ +b?

=;(bsinei—bcose}+a1€)
a’ +b?
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Example 19: Find unit tangent, unit normal and unit binormal vectors for the

curve 7 = 2costf+3sint}'+4tl€ att=r
Solution: 7 = 2costi +3sinfj + 4tk
7' = —2sinti +3cosfj +4k

7" = —2costi —3sintj
Att=r,

7 =00 —3]+4k=-3]+4k
=2 +07+0k=2i

7|=v9+16=5

|F":\/Z:2
7 5 5 5
N:i’,zz—l:l
3 2
B=TxN
iJ k
I P
5 5
1 0 0
A 4) ~(3
=i(0)—j| —=|+k| =
© ’( 5) (5)
4. 3.
=—j+=k
5775

Exercise 6.1

LIf A= 527 + ¢t ] — £k and 2. If A= 4f7 + £ ] — 6£ k and

B =sinti —cos tf, find the value of B = (sin #) - (cos 1) f, verify the
. - = . - = d - =
@) i(A-B) (ii) i(AxB)- formula of = (4.B).
dt dt dt
[ ] 3.1f7F=Ade¢"+ B e™ show that
Ans.: 27 _
d’r —-n*r =0
(i) (5¢* =1)cost +11tsint, FE -

(i) (£ sint — 3¢* cost)i _ . 1 -
. 4. Ifr:t3i+(2t3——2)j,show
— (¢ cost+3¢*sint) J ~ S5t

A - dr -
+(5¢° sint —sint—11cost) k that » X d—::k.



5. Prove that
g[— dr &'

- dr &F
.
dr| dr dtz_

S er
dr d7?

6. Prove that
e arar] [ arar
de’ | dr dr’ | "ar af

-dr d*r
+lr——
dr dr*

7. Find the derivatives of the following:

dr r b
@ FtaxL (11)—+=
dr a-r

where, r = ‘r‘ ,aand b are constant
vectors.

Ans. :

() 3r° %;+r L rax

ra
b dr
(@.r) de

r dr

(i) (dt) 2r3 E-I-

8. A particle moves along the curve

r=e ‘(cost)z+e ’(smt)j +e 'k

6.4 ARC LENGTH

6.4 Arc Length 6.15

Find the magnitude of velocity and
acceleration at time 7.

[Ans. sy = x/ge",; = x/ge”]

9. A particle moves on the curve
x=2¢,y=1—-4t,z=3t-5.Find
the ve10c1ty and acceleration at 7 = 1
in the direction of i — 3 ] +2k
[Hint: umAt vector in the direction of
i =3 +2kis

. i-3j+2k i-3j+2k

n= ’
rovd v

Find vand aatt= 1, velocity in the

given direction =v- 7 and acceleration
in the given direction= a-n ]

:;_8\/_ - 2:|

Ans

=—,4a —_
J7 7

10. A particle is moving along the curve

r=at’ +bt+c where a,b,c are
constant vectors. Show that accel-
eration is constant.

11. A particle moves such that its posi-
t10n vector is glven by

r= (cos wt) z + (sin wt)] Show
that velocity vis perpendicular to 7.

{Hint: Prove that %; = 0:|

The parameterization for a curve is a set of functions depending only on a parameter
t along with the bounds for the parameter. When we parameterize a curve by taking
values of ¢ from some interval [a, b], the position vector 7(¢) of any point ¢ on the curve

can be written as,

7(1) = x(0)i + (1) ]+ z(Ok

The tangent vector 7'(¢) is

() = x'(0)i + V(1) ]+ 2 (Ok

The length of the curve is
b

(1) dt

(1) = \/[x'(t)]z +[y o +[zZOT



6.16 Chapter 6 Vector Functions

The arc length function or arc length of the curve is obtained by replacing the
constant limit with a variable .

Example 1: Find the length of the curve
7(f) = 2t +3sin 24j + 3cos 2tk on the interval 0 < 7 < 27

Solution: 7 = 21i +3sin 24] +3cos 2tk
7’ = 2i +6¢0s2fj — 6sin 2tk

7| = 4+ 36 cos? 2t +36sin> 2
=+/4+36
=210

b
I={[7|dr
2r
= [ 2v10dr

=2 [f]"
=410

s = J|r'(u)|du

t

j2\/7du
0
= 210[7];
= 2101
Example 2: Find the length of the arc of the curve
3
2N2 S
7(t)= iﬂ E]+(t+3)kbetween t=0and?=
Solution: 7 =210 + i+ k

[Fl=N2t+2 +1=1+1

b

[

a
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6.5 CURVATURE AND TORSION

Curvature

The magnitude of rate of change of tangent vector w.r.t the arc length is known as
curvature and is denoted by x

_|ar

ds

The reciprocal of the curvature is known as the radius of curvature of the curve and
is denoted by p.

K

p=—
K

If the equation of the curve is

7(1) = x(0)i + (1) ] + z(t)k , then
7 XF”
3

—7

7

Torsion
The magnitude of rate of change of binormal w.r.t. the arc length is known as torsion
and is denoted by .

dB

T=|—
ds

The reciprocal of the torsion is known as the radius of torsion of the curve and is
denoted by o

1
c=-
T
If the equation of the curve is
7(£) = x(1)i + (1) ] + z()k

—r=n—rn
7'r’r ]
then, T =

—2

7IXT

Example 1: Find curvature and torsion for the curve 7 = cos# + sint} +1tk . Also
prove that 2(x* +72) =1
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Solution: 7 =costi + sin#j + tk
7 ——smtl+c0stj+k
7" =—costi —sintj
F” =sinti —costj

D I
rXro=|—sint cost 1
—cost —sint 0
= f(sin t) - }'(cos t) + Ig(sin2 t + cos? t)
=sinti —costj+k

:\/sin2t+coszt+ :\/5
=+sin? t+cos® t + =\/E

[F 777 = (r’ X7”)-7"” =sin’ t+cos’ t+0 =1

(v2)
1
T2
T rrr”
1

(V2)
1
T2

K=yl

4" 4
1
T2

2(1(2+12)=1

Example 2: For the curve 7 = acos6i +asin 0 + b6k, find the radius of curva-
ture and torsion.

Solution: 7 =acosbi +asin@] + b6k
7’:—asin0§+acos0}'+bl€

77 =—acos@1—as1n9]+0k

7 —a51n01—ac056]+0k

i ik

7F'X7” =|-asin® acos@ b

—acos@ —asinf® 0
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= f(O+absin@)—}(0+abcose)+l€(a2 sin” 6+ a” cos? 9)
= absin 6i — abcos 9}' +a’k

|17' X 7”| = \/a2b2 sin 0 + a’b* cos® 6 + a*

= a\/b2 sin” @+ b? cos” 6 + a*

= ava® + b*

= \/a2 sin? 0+ a” cos? 0+ b* = \/a2 +b?
(777" | = (7" x7")- 7"

= a*bsin? 0+ a*bcos’ 0+ 0

-7
7

=a’b
| xF] aa*+p* o«
K= = =
PP, oy a b
(a +b )2
1 _az+b2
K a
~ [}7!}7//,7//!] ~ aZb B b
_,X_,,z_ P 22_a2+b2
rxr (a\/a +b )

Example 3: For the curve x =acos6,y =asinf,z = aftan, find p.

Solution:
7 =acos6i + asin9}+ aBtan ok

7= (—asin@)f+acos€}+atanal€

7" = (—acosB)i +(—asin6) ] + 0k

A ~ ~

i j k
7'X¥r"” =|—-asin@ acos@ atano
—acosf —asinf 0

A

= 17(0+a2 tanasinG)—](0+a2 tanacos0)+l€(a2 sin” 6+’ cos? 9)

=4’ {(tanocsin 6)i —(tanccos 8) j + 12}

[F'x7"|=a* \/tan2 asin® O+tan® orcos® 0+1 = a* secar

7= \/a2 sin* @+a” cos® O+ a’ tan o = asec o

—/3

_@’sec’

= ase02 o

7 X7l a®seco
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Example 4: Find curvature and torsion for the curve
x=tcost,y=tsint,z= Atatt =0

Solution: = tcosti +tsingj + Atk
"= (cost—tsint)i +(sint+rcost) j+ Ak
7 = (~2sint —tcost)i +(2cost —tsint) j + 0k
7 = (~3cost+tsint)i +(-3sint —tcost) j
Att=0, F=i+0]+ Ak

7 3l+0]+0k
i ] k

020
=i(0-24)~ j(0—0)+k(2-0)
=2 —-0j+2k

PN o
7= 1+ 22
FEF = (F X F7) Y =6A+0+0=61
P N S

e (1+/12)2_1+12
o [7’7”7”’] _ 6 32
7’ x 7" 4(1+)Lz) 2(1+)¢2)

2
. . X

Example 5: Prove that radii of curvature and torsion are equal to — for the
curve x = ccosht,y = csinht,z = ct. €

Solution: 7 = ccosh#i +csinh{j + cth
7= csinhtf+ccosht}'+cl€
7” = ccoshti +csinh{j + 0k
7" = csinhi +ccoshj + 0k
i ik
7'X7"” =|csinht ccosht ¢
ccosht csinhz 0

= f(O — ¢ sinh t)—}'(O —c? cosht)+ 13(02 sinh? £ — ¢? cosh? t)

= —c*sinh#i +c? cosht}' ~c%k
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"= 2\/sinh2t+cosh2t+1=02\/cosh2t+cosh2t = ¢?2 cosht

7’ =\/c2 sinh? t+ ¢? cosh? 1+ ¢ = /2 cosh ¢

(77777 )= (F"x7")- 7" = —c> sinh® t + ¢ cosh® 1+ 0 = ¢*

|17'|3 _2V2cosh® s 2¢? cosh? 1 2"

p = — pp = =
|7 x7” 2 cosht c c
[717/17”/] c3 ¢ c
7 (:42cosh2 t 2c*cosh’r 2x°
1 2x2
oOo=—=——
T c
2x?
p =0 =—
c

Example 6: Find curvature and torsion for the curve
x=t2-Ly=£-1z=¢*-lats=1.
Solution: 7 =(¢—1)i+(F ~1)j+(r* -1)#
=26 430+ 45 k
7 =20+ 60 +1267 k
7 =00 +6)+24tk
Atr=1, 7'=2i+3j+4k
=20 +6)+12k
77 =0 +6)+24k

i ]k
FxXF =2 3 4
2 6 12

=7(36-24)— j(24-8)+ k(12 -6)
=127 —16 + 6k
|7 x 7| = V144 + 256 + 36 = /436 = 2/109
7|=Va4+9+16 =29
[F/F7F" = xF")- 7" =0-96+144 = 48
|r ><_”| 24109
=P 2929
[7’7”7"’]_ 48 12
27 4%109 109

T=

—=r

6.21
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Example 7: Find the radius of curvature and the radius of torsion for the curve

r=3ti+362 j+3k

Solution: F=3i+32 )+ 20k
7 =3i+6t)+66%k
7 =0i+6]+ 12tk
7= 00+ 0 + 12tk

~ ~ A~

ik
FXF =3 6t 61
0 6 12¢

=7 (726* =36%) = j (36t = 0) + k(18— 0)
=361%1—36¢ j+18k

—r

7 F| =184t + 417 +1=18 (2% +1)

[7'|= N9 +361% +36r* =3(21% +1)

[7" 777" ]=(F" x7")F"”=0+0+216 =216

_,3 2 3
27027 +)) _30n 1y

P18 +1) 2
=1 o |2 2/n,2 2
X
oo Pl _ (924D 3 0 0
rrr 216 2

Example 8: Find the curvature and torsion of the curve

- . /: /\. ~ 7[
r=a(t—smt)z+a(t—cost)]+atkatt=g.

Solution: 7 =a(t—sin t); + a(t —cos t)}' +atk

7 =a(l-cos t); + a(l+sin t)} +atk

Attzz, '=a 1—l i+ta 1+£ }'+alAc
3 2 2

_a; )
2 2
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7" =a(sint)i + a(cost) j + ak

AUZE, 7= a\/71+ j+0k
3 2 2
7 = a(cos )i + a(—sint) ] + 0k
Att:z, —”’_ﬁz—u}#OlAc
3
i j k
oy | @ a2+4B)
rXri= - —
2 2
a\/g a
a2 g 0
2 2
) 2\ 2 a2 @32+
2 2 4 4
2 2
a -
SRS NS PRIV %)
2
"’:%\/1+3+3+1+2\/_=%\/8+2\/§
443+43
’7,:61\/%—'—( 4_)+1=a\l3+\/§
3 3
—r =11 =) _ (=7 —r —Hl_i_SL—— 3
[rrr]—(rxr).r—4 4—0

2
a /
|r ><r”| ) 8+2V3 B V8+243
B N 3
T (3+43)7  2a(3+3)?
[FI ’7// F”’] _a3 _ 4

= 2 :cj(8+2\/§)_ a(8+2\/§)
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Exercise 6.2 |

1. Find the arc length of the following 3cost

. T=—m—m—
curves:
a(5+3 cos? 1)

(a)7=costf+sint}'+t/€ forO0<t<é6rm
(b)7 =(1+32)i +(4+28%)jfor0<r<1 4. For the space curve .
— 37 2% 3
A 643 r=a(3t—t")i +3at"j+aB3t+ 1)k,
e § show that K = T—;
(b)2(2v2-1) 3a(l+1%)?

2. Find the arc length of the curve

I e, 5. For the space curve
r=t"i+t j between (1,1)and (4,8)

x=¢e'cost,y=e'sint,z=¢, find

|: Ans. : 1 (80 J10 -13 \/B):| the ¥ad1us of curvature and radius of
27 torsion.
S I SR
3. For the curve in space x = a cos 2t, Ans.:p= E e, 0=3e

y =sin 2t, z = 2a sin ¢, show that

6.6 SCALAR AND VECTOR POINT FUNCTION

6.6.1 Field

If a function is defined in any region of space, for every point of the region, then this
region is known as field.

6.6.2 Scalar Point Function

A function ¢ (x, y, z) is called scalar point function defined in the region R, if it
associates a scalar quantity with every point in the region R of space. The temperature
distribution in a heated body, density of a body and potential due to gravity are the
examples of a scalar point function.

6.6.3 Vector Point Function

A function F(x, », z) is called vector point function defined in the region R, if it
associates a vector quantity with every point in the region R of space. The velocity of
a moving fluid, gravitational force are the examples of vector point function.

6.6.4 Vector Differential Operator Del (V)
The vector differential operator Del (or nabla) is denoted by V and is defined as
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6.7 GRADIENT

The gradient of a scalar point function ¢ is written as V¢ or grad ¢ and is defined as

grad p=Vo=1i ¢ ?)f-”é%

grad ¢@1is a vector quantity.
@ (x, y, z) is a function of three independent variables and its total differential d¢ is
given as

d¢ :a—¢dx+a—¢dy+3—¢dz
Z

ox dy
500 29\ (4 i
( ot ay+kaz)(zdx+]dy+kdz)
=Vg-dr I:'.';_’zxf+y}'+zl€+.'. d;:fdx+}dy+}'dz]
= |V¢|\d?\ cosd (6.1

where, @is the angle between the vectors V¢ and dr. Ifdr and V¢ are in the same
direction, then =0,

dg= |V¢”d;‘

cos =1 is the maximum value of cos €. Hence, d¢ is maximum at 8= 0.

6.7.1 Normal

Let ¢ (x, y, z) = c represents a family of surfaces for different values of the constant c.
Such a surface for which the value of the function is constant is called level surface.
Now differentiating ¢, we get

dg=0
But from Eq. (6.1) of Section 6.7,
dg=Ve-dr
Vg-dr=0

Hence, V¢ and dr are perpendicular to each other. Since vector dr is in the direction
of the tangent to the given surface, vector V¢ is perpendicular to the tangent to the
surface and hence V¢ is in the direction of normal to the surface.

Thus geometrically V ¢ represents a vector normal to the surface ¢ (x, y, z) = c.

6.7.2 Directional Derivative
d¢ 99 Jd¢

(1) Let ¢(x,y, z) be a scalar point function. Then — 9 are the directional
x dy 0z

derivative of ¢ in the direction of the coordinate axes.
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Similarly, if f (x, v, z) be a vector point function, then %f aaf %f are the directional
X dy Oz

derivative of f in the direction of the coordinate axes.

(i1) The directional derivative of a scalar point function ¢ (x, y, z) in the direction
of a line whose direction cosines are /, m, n,

90,90, 3

(iii) The directional derivative of scalar point function ¢ (x, y, z) in the direction of
vector a , is the component of V¢ in the direction of a . If a is the unit vector
in the direction of a, then directional derivatives of ¢ in the direction of a
. Vg-a
=V¢-a= L
ld
6.7.3 Maximum Directional Derivative

Since the component of a vector is maximum in its own direction, [ .- cos € is maximum
when 6= 0], the directional derivative is maximum in the direction of V¢ . Since V¢
is normal to the surface, directional derivative is maximum in the direction of normal.

Maximum directional derivative = |V¢| cos@
= |V¢| cos0
=[v4|
Standard Results:
(i) V(gxy)=Vo£Vy
(i) V(oy)=o(Vy)+(V oy
RIONRONEIOEN
8y 0z

(i) Vf(u)=

Example 1: Find V@ at (1, -2, 1), if ¢ = 3x% —)* 22

Solution: Vo=i—+ ] —+k—
X

=1 (6xy—0)+/ (32— 3)°22) + k (0 — 2)%2)
Atx=1y=-2,z=1
Vo =i (=12)+/ 3 —12)+k(16)

Vo at(l,-2, 1)=-127 -9/ + 16k
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Example 2: Evaluate Ve , where 72 =x? +)? + 22
Solution: ?=x?+)*+27
Differentiating partially w.r.t. x, y and z,

2rﬁ =2x, — dr =2
ox n -
2ra—r =2y, a_r =2
dy ay r
2ri =2z, ﬁ =z
0z 0z 7
I EA VA P

Ve = +j—tk
T ™

e O A0e7 dr  ~de” or
=% oy k

. J——+ _—
or ox ar dy Jr 0z
=i(e” ~2r)£+j(e’2 ~2}’)Z+I€(er2 -Zr)E =2¢" (xf+yj+zl€)
r r r
Example 3: Iff(x, y) = 1og\/x2 +y? and r =Xi + yj + zk, prove that
r—(k-r)k
grad f == A_A( f) —
[r—(k~r)k]~[r—(k-r)k]
Solution: f(x, y) = log/x* +°

1
= Elog(x2 +%)

A 1 A
Vf=ii[—log(x2+y2)]+ji[ log(x* +y ):| il: log(x* +y )]
oxL2 aylL2 )
=L 21 2x+l 2940
2 X+’ 2 X’ +)°
o xity)
x* 4y
~ xi +yj
(xd + ) (xi + 1)
Now, r = f+yf+zl€
12?= [vi-k=j k=0,k k=1]
1_”=xi+yf+(l;~7_”)l:t

r —(lAc-;)/;=xf+yf
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Substituting xi +yf in Vf,

Example 4: Prove that V" = n"2r =xi+yj +zk, r= |;|

N |

Solution: r=xi+yj +zk, r* =x*+y*+2*

or_xor_yor_z
ox rdy roz r

Vrn:l.ar +jar +k8r :,ar .ar+qar or lgar o

1 J— J_._+ —_——
ox dy dz or Jx or dy or dz

2 -1 X 1 - " -1 Z

zlnr"l-—+jnr”l-l+knr"1-—
r r r

=nr"-? (xf+yf+zk)

=nrtr.

n P 2 , where r =xi +yf + zk,
.

Example 5: Show that V[ﬂ) =2_ n(a : r) (1_*) >
r r

= |r|, a is constant vector.

. - 2 A ~ a-r
Solution: Let a=ai+a,j+ak,and —=¢
-
r=xi+y+zk

p =(;-; )z|:(alf+a2j+a3l€)-(x1?+y]'+zlg):|

n n

r r

_(axtaytaz
rn

%_i(a1x+a2y+a3z)
ox  ox

n

r

d ; or"
—(ax+a,y+az)|r'" —(ax+a,y+a,z)—
ox ox

r2n

n n-l1

ar' —(ax+a,y+a,z)nr" —
- X
- r2n

But, ;=x1?+yf+zk,r2=xz+yz-|—z2
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N <

ar" —(ax+a,y+a,z)nr"” (E)
% _ I | 2V T, ,
ox P
Similarly, % = )
dy r

n n-1| Z
3¢ ar" —(ax+a,y+a,z)nr" | —
and —~ = r

ar" —(ax+a,y+a,z)nr"” (

2n

dz P

120,500 00
vg=320 i
=it R

(alf +a2f +a3l€ )r" —(alx+azy+a3z)nr"’2 (xf +y/ +zk )

r2n

[wax+ay+az=(ai +a,j +ak ) (xf +y +zk )=a-r]

Honce. V(Z’—f} a_nlar)r
r

n n+2

r r

Example 6: If Fo=xi+ yj +zk and @, b are constant vectors, prove that

Z-V(Z-Vl) _3ar)r)_ab

Solution: Let Zz=af+a2}'+aI€ E=bf+b2}'+b3I€
v(1)=2(L +j— (L), ;2
r ox\ r ay oz r
o 1orY) - 1 o) » 1 or
Sl ——— [tJ|— +k| -
r’ ox r ay oz

But, ;=)ci—i—yj+zk,r2=)c2+y2+z2



6.30 Chapter 6 Vector Functions

E-V(l) - (blf+b2j+b3l€)-(——m +y{+2k)
r

r
__(b1x+b2y+b3z)
r3
= ¢, say
V(Z-Vl)=v¢=f%+}%+l€%
r ox ~dy oz
99 a( b1x+b2y+b3z)
r3

ox ox

br’ —(bx+b,y+ b3z)air3 }
- X

6

br’ —(bx+b,y+bz)3r" ar]
ox

Similarly, r
39 _ b’ +3(b-r)y
Iy I
99 _—bri+3(b-r)y
dz S
200  ~00  ~0¢
d Vo=i—+j—+k—
an ¢ 1 ax J ay az
— _(b1;+b2j+b3]€) + 3(5;)(x;+)/}+21€)
I P5
__b 3y
=5 -
a-Vo=a V(l_; Vl):_@+3(a.r)5(b r)
r 4 7
Hence, Z-V(Z-Vl)=w_a'ﬁ
r r

Example 7: Find the unit vector normal to the surface x*> + )? + 22 = a® at

(55
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Solution: V¢ is the vector which is normal to the surface ¢ (x, y, z) = ¢
Given surface is X+y 4+ =a’
P(x,y,2) =x*+ ) +2

V¢=fjiﬁg+y2+f)+fj103+y2+z5+éjl03+y2+zﬁ
ox dy oz
=1(2x)+ J(2y) +k(22)
a a a
At the point | —,—,— |,
b (ﬁﬁﬁ)
2a .~ .~
—(@+j+k
\B( J + k)

Unit vector normal to the surface x> + ) + z> = ¢? at [

V¢ =

a

5\/59

ar
&

|

_Vo
V)
@+]+@

f\/ 40’ 4a’

2a@+j+k)
\/g. 2a«/§
3
itk
Example 8: Find unit vector normal to the surface x?y + 2xz> = 8 at the point
(1,0, 2).
Solution: Given surface is x?y + 2xz2 =8
o (x,y,z) =x% + 2xz*

V¢:fi(x2y+2xzz)+ji(x2y+2xzz)+I€i(x2y+2xzz)
ox dy 0z

=7(2xy+22%) + j(x*) + k(4x2)
At the point (1, 0, 2), Vg = 8 +f + 8k
Unit vector normal to the surface x*y + 2xz? = 8 at the point (1, 0, 2)
Vo 8i+j+8k 8+ j+8k

“IVd Jedrires 129

Example 9: Find the directional derivatives of @=x)? + yz? at the point (2, —1, 1)

in the direction of the vector i + 2/ + 2k.
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Solution: Vg=7 i(xy2 +yz28)+ j‘i(xy2 +yzh)+ léi(xy2 +yz%)
ox dy 0z

=iy 4] Qo +2) +k (2z)
Atthe point (2, -1, 1), . . .
Vo=i+j(-4+D)+k(-2)=i-3j -2k
Directional derivative in the direction of the vector @ =i + 2 f + 2k
a
= (Vo) =
Z
oo (F+2]+2k)
=i -3;-2k) ——*
( / ) N1+4+4
_(1-6-4)
3
=-3.

1
Example 10: Find the directional derivative of ¢ = ——————— at the point

. = s (2 +y? +2%)2
P (1,-1, 1) in the direction of @ =i +j + k.

Solution:

Vqﬁzfi ! 1+j‘i ! 1+1€i 1

= 0
x(x2+y2+zz)2 Y

2x ~ A 2 2z ~
2(xX* +y* +2%)? 2(xX* +y* +2°)? 2(x* +y* +2%)2

_ (xf+y}'+zl€)
- 3

[P I
(xz+yz+zz)2 Z()c2+y2+zz)2

(x> +y° +22)E
At the point (1, -1, 1),

—(i—-j+k
V¢=( JE )
(3 A
Directional derivative in the direction of a=i +j + k
=vg- L
lal
_—(i=j+k)(i+j+k)
- 3
(3)2V1+1+1
—1+1-1
N
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Example 11: Find the directional derivative of ¢ = x)? + yz* at (2, —1, 1) in the
direction of the normal to the surface x log z — y*> =—4 at (-1, 2, 1).

Solution: Let w=xlogz—)?
Vi is normal to the surface x log z — > = —4

Vy= fi(xlogz—y2)+j’i(xlogz—y2)+1€i(xlogz—y2)
ox ay dz

=i(logz)+ j(=2y) + k(f)
z

At the point (-1, 2, 1),
Vy=i(log)-4;—k
o =—4j—k
—4 j — k is a vector normal to the surface x log z — > =—4 at (-1, 2, 1).
Now, o=xy*+yz}
Vo=i2 (0 )+ () (o 97
ox dy 0z

=i 0 +] @y +2)+kGBy)
At the point (2, -1, 1),

Vo=i+](-4+ 1) +k(=3)=i-3 -3k
Directional derivative of ¢ in the direction of the vector —4 f —k
(—4j—k) 12+3 15

Jierl 1717

Example 12: Find directional derivative of the function ¢= x)? + yz* + zx* along
the tangent to the curve x =1, y = 2, z = £ at the point (1, 1, 1).

=((-3j-3k)

Solution: Tangent to the curve is

t

= %(xf+y} + zlg)
=%(tf+t2}+t3l€)

= (7 + 24 +3t%k)
Ifx=1,y=1,z=1,thent=1
Atthe point (1, 1, 1), 7=1
T=i+2j +3k
P=xy*+yz* +zx2
X, 2 2 2 X 2 2 2 ;0 2 2 2
Vo=i—(xy" +yz +zx )+ j—(y  +yz" +2x )+ k—(xy" + yz~ +2x7)
ox dy 0z

=1 (2 +2x2) +] Qv+ ) +k 2z +22)
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At the point (1, 1, 1), . . .

V¢ =3i +3j +3k
Directional derivative of ¢ in the direction of the tangent 7 = i+ Zj + 3k at the point
(1’ 1’ 1)

—Vp L= 3434 3k) U230 18
7] JI+4+9 14

Example 13: Find the directional derivative of ¢ = e* cos yz at the origin in the

direction of the tangent to the curve x=asint,y=acost,z=atat t = Z

Solution: Tangent to the curve is

— dr d . . .
T =—=—/|(asint)i +(acost)j+ (at)k
=L @sinni +@eosn)j+ (ank]
=(acost)i+(-asint)j +(a)k
. T = a » a » ~
Atthepoint t=—T=—i——j+ak
AN EN

¢=e* cos yz
: a 2x s a 2x I a 2x
Vo=i—(e™ cosyz)+ j— (e~ cos yz)+k— (e cos yz)
ox ay 0z
=i (2€* cos yz) +f (—e* z sin yz) + k (—e* ysinyz)

At the origin, V¢ =2i
Directional derivative in the direction of the tangent to the given curve

_ [";_";+aé)
vy L =2i. 22 S
|_| 2 2 2a
T a a 2
—+—+a

2 2
Example 14: Find the directional derivative of v?, where v= x)* i+ z)? j +x2 k

at the point (2, 0, 3) in the direction of the outward normal to the sphere
x*+y* + 2% = 14 at the point (3, 2, 1).

Solution: V= v-v
=i +z )+ xzzlg) (2] xzzlé)
— x2y4 + Zzy4 + x24
Letv=¢
V¢=f§2+}§9+éég
ox “dy 0oz
= (200 + 2x2Y) | + (42 +425%) | + (2204 + 4 k
At the point (2, 0, 3),
Vo =(0+324)i +(0+0)] +(0+432) k=324 +432k
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Given sphere is x* + ) + 22 = 14.

Let y=x2+)*+ 2*

Normal to the sphere —Vl//—lal// al//+l€a—l//:2xlT+2y]T+2z/Ac
At the point (3, 2, 1), ox Iy dz

Vy = 6i + 4] +2k
Directional derivative in the direction of normal to the sphere

Vv
=Vg-
[Vl
. . (67 +47+2k)
= (324 +432k)-(—J
l J6+16+4
1404
Ja

Example 15: Find the directional derivative of ¢ = x> — )* + 2z at the point
P(1, 2, 3) in the direction of the line PO where Q is the point (5, 0, 4). In what
direction it will be maximum? Find the maximum value of it.

Solution: Position vector of the point P
OP=1+2j +3k
Position vector of the point O
00 =50 +0j +4k

PO_00 - OP —4i -2 +i

V¢=fai(x2—y2+2zz)+f (x* =y*+2z )+k (x -y’ +22%)
X

= (2x) [ +(=2y)] + (42 k
At the point, (1, 2, 3),
Vo=2i —4j + 12k
Directional derivative at the point (1, 2, 3) in the direction of the line PQ
oo (4-2j+)
=(2i —4;+12k) ——==—"
( / ) V16+4+1

848412

V21

8
T
_ah
5

Directional derivative is maximum in the direction of V¢ i.e. 2i — 4f + 12k
Maximum value of directional derivative

= |V =Va+16+144 =164 = 2/41
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Example 16: Find the directional derivative of @ = 6x%y + 24y%*z — 8z%x at
x—-1_ y-3
-2

(1, 1, 1) in the direction parallel to the line = % Hence, find its maxi-

mum value.

Solution:vg = 83(6;8 y+24y%z —827x) + ]’ai(6x2 y+24y%z—82%x)
x y

+ lgai(6x2y +24y°z—82°x)
z

= (12xy — 822) 7 + (6> + 48yz) | + (241> — 162x) k
At the point (1, 1, 1),
Vo=4i +54 +8k
-1 y-3 =z

Given line is AL S .
2 -2 1

Direction ratios of the line are 2, -2, 1.
Direction of the line = 2i — 2] +k .
Directional derivative in the direction of 2i — 2/ + k at the point (1, 1, 1)

(2i+2/+k) 8-108+8 —92
Ja+dr1r 3 3
Maximum value of directional derivative
= ‘4?+54}'+81€‘ =16+ 2916 + 64 = /2996.

= (41 +54] +8k) =

Example 17: Find the values of a, b, ¢ if the directional derivative of
@=axy’ + byz+ cz’x* at (1, 2, —1) has maximum magnitude 64 in the direction paral-
lel to the z-axis.

Solution:

Vo= fi(axy2 +byz+czzx3)+}'i(axy2 +byz+czzx3)-i-l:ri(0txy2 +byz+cz’x’)
ox dy 0z

= (ay® +3cz2x?) i + Qaxy + bz) | + (by + 2czx’) k
At the point (1, 2, -1),
Vo= (4a+3c)i+(4a—Db)j+(2b- 2c)k (1)
The directional derivative is maximum in the direction of V¢ i.e. in the direction
of (4a + 3c) i+ (4a —b) ] + (2b — 2c¢) k. But it is given that directional derivative is
maximum in the direction of z-axis i.e., in the direction of 0 i + 0 ] +E. Therefore, Vg
and z-axis are parallel.

4a+3c 4a-b 2b-2c

o o 1 L
4a+3c=0 .. (2
4a—b=0 .. 3)

Substituting in Eq. (1),
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Vé=(02b-20)k
Maximum value of directional derivative is |V¢|. But it is given as 64.
|Vg| =64

|(2b—20)i| = 64
2b—2c =64, b—c=32
From Egs. (2) and (3),
4a+3c=0, da—-b=0,
Solving, b=-3c
Substituting in b — ¢ =32, —4¢ =32,
c=-8,b=24,a=6
Hence, a=6,b=24,c=-8.

Example 18: For the function ¢ (x, y) = % , find the magnitude of the direc-
x“+y

tional derivative along a line making an angle 30° with the positive x-axis at (0, 2).

~ 0 X A0 X ~ 0 X
Solution: V¢ =i — — j
olution: V¢ lax(x2+y2 J+Jay{x2+y2 J+ az[x2+y2J

:[ 1 x(2x) ]i+[— x(2y) }j+o
x2+y2 (x2+y2)2 (x2+y2)2

2

Yy —x? s 2xy ]A
(& +y) ()
At the point (0, 2),

4-0 . 0 .

V= 0+ay (0ray’ = 4

Line OA makes an angle 30° with positive
X-axis.
OA=O0B+ BA

Unit vector in the direction of OA

30°

=i cos 30° +f sin 30°

V3. 1- Fig. 6.3

=—i+—
2 2 J
Directional derivative in the direction of g i +%} at (0, 2)

($51,1)5

4 8

1
) T/
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Example 19: Find the rate of change of ¢ = xyz in the direction normal to the
surface x%y + y?x + yz* = 3 at the point (1, 1, 1).
Solution: Rate of change of ¢ in the given direction is the directional derivative of
¢1n that direction.

Vo= fi(xyz)+}i(xyz)+1€i(xyz)= (z) i+ (xz)f + (xy) k
ox dy 0z

At the point (1, 1, 1), .
Vo=i+j+k
Given surface is x?y + y*x + yz2 = 3.
Let y=x% + y’x + yz*
0W AW A0V

Normal to the surface = Vi =i ——+ j -+ k-
ox dy 0z

= Qe+ i+ (2 + 2w+ [+ 2v2) k
At the point (1, 1, 1), . . N
Vy=3i+4j+2k
Directional derivative in the direction of normal to the given surface
\Y s oa o~ (Bi+4j+2k 442
=V¢-—l//=(i+j+k)-(3l+ Jj+ k)=3+ +2_ 9
Vo+16+4 V29 V29

Vvl
Example 20: Find the direction in which temperature changes most rapidly with
distance from the point (1, 1, 1) and determine the maximum rate of change if the
temperature at any point is given by @ (x, y, z) =xy + yz + zx.

Solution: Temperature is given by ¢ (x, y, z) = xy + yz + zx. Temperature will change
most rapidly i.e., rate of change of temperature, will be maximum in the direction of V¢.

Vo= fi(xy+yz+zx)+}'i(xy+yz+zx)+/€i(xy+yz+zx)
ox dy 0z

—(+2) i+ +2) + 0k
At the point (1, 1, 1), . .
Vo=2i+2j+2k
This shows that temperature will change most rapidly in the direction of 2+ Zf +2k
and maximum rate of change = maximum directional derivative

=|Vg|=Va+4+4=112=2{3

Example 21: Find the acute angle between the surfaces x> + )? + z2 = 9 and
z=x*+)? — z at the point (2, —1, 2).
Solution: The angle between the surfaces at any point is the angle between the
normals to the surfaces at that point.
Let ¢, =x2+)* + 22, ¢2=x2+y2—z
99,

Normal to @, Vg, =f¥+j%—?+1€%= 2x) i+ 2] +Q2) k
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Normal to ¢, V¢2:f%+}%+l€%:(2x)f+(2y)f—l;

At(Q2,-1,2), Vg =4i - 2] +4k, Vo, =4i -2/ — k
Let &be the angle between the normals V¢ and Vg,.
Vo -V, = |V¢1”V¢2|COSQ
(47 2] +4k)- (41 = 2] — k) = |47 =2 + 4k|[47 = 2] — k|cos &
(16+4—-4)=16+4+16~/16+4+1cos @

= \/%x/icose
16 = 6@0050

16 821

cosf=——=

621 63

L 821
=C0S ——
63

Hence, acute angle 0 = 54°25!

Example 22: Find the angle between the normals to the surface xy = z* at
P(1,1,1)and O (4, 1, 2).

Solution: Given surface is xy = z2.
Let g=xy—2*
2~ a 2 A a 2 ~ a 2
Normal to ¢, Vo=i—(y-2)+j——(w-2)+k—(-2")
ox dy 0z
=yf+xf—22/;
Normal at point P (1, 1, 1),
=i+] -2k

=|

Normal at point Q (4, 1, 2),
N, =i+4j -4k
Let &be the angle betweenﬁl and VZ

[t

Ni-No  (I+]—2k)-(I+4] —4k) 1+4+8 13

WI[Va]~ Viti+aVi+16+16 633 198

@=cos! (i)
/198

cosf =
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Example 23: Find the constants a, b such that the surfaces 5x? — 2yz — 9x = 0 and
ax®y + bz* = 4 cut orthogonally at (1, -1, 2).

Solution: If surfaces cut orthogonally, then their normals will also cut orthogonally,
i.e., angle between their normals will be 90°.

Given surfaces are 5x* — 2yz — 9x = 0 and ax?y + bz* = 4.
Let ¢, = 5x* — 2yz — 9x and ¢, = ax’y + bz’

Normal to ¢, V@, =i 9 (5x* = 2yz—9x) +/ i(5x2 —2yz—9x) + P2 (5x% = 2yz — 9x)
ox dy 0z
=(10x—=9) i +(<22)] + (-2) k
~ 0 ~ 0 ~ 0
Normal to ¢, V@, =i — (ax’y + bz’) + j — (ax’y + b2’) + k— (ax’y + bz’)
ox dy 0z

=Qaxy) i +(ax?) ] + (3b2) k
At the point (1, -1, 2),
Vo =i—4j+2k
Vg, =-2ai +aj +12bk
V¢, and V¢, are orthogonal.

T
V¢1 ’ V¢2 = |V¢1| |V¢2| COSE

((—47+2kr (—2ai +aj +12bk)=0
—2a-4a+24b=0
—6a+24b=0
a—4b=0 (D
The point (1, —1, 2) lies on the surface ax?y + bz* = 4.
a(1?-D)+bR2)y=4
—a+8b=4 ... (2
Solving Egs. (1) and (2), we get
a=4,b=1

Example 24: Find the angle between the surfaces ax? +)? + z> — xy = 1 and
bx’y+y*z+z=1at(l,1,0).

Solution: Let ¢ =ax’+y* + 2> —xy

¢ =bx’y +yz+z
The point (1, 1, 0) lies on both the surfaces.
a1+ +0-(H(H=1
a=1
and b(1)*+0+0=1
b=1
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Angle between the given surface is the angle between their normals.
Normal to ¢, Vg, = z?i(x2 +y*+ 22— xy) +fi(x2 +)2+22—xy)
ox dy
+l€i(x2+y2+zz—xy)
oz . . .
=2x—-y)i+Q2y—x)j+Q22)k
Normal to ¢,, Vg, = ;i (y+)y*z+2) +fi(x2y +y2z+z)+ ]}i *y+)yz+z2)
ox dy 0z

=) i+ +22) ] +0P+ D)k
At the point (1, 1, 0), .
Vo =i+ +0k
Vo, =2i+j+2k

Let the angle between N, and N, is 6.

Vo, V9, _(f+})-(2f+]’+21€) 241 |

cosf@= = = -
Vo, | |V,] JI+1J4+1+4 V2o 2

6="

4

.
Hence, angle between the surfaces is e

Example 25: Find the constants a, b if the directional derivative of
@ =ay*+2bxy+xzat P(1,2,—1)is maximum in the direction of the tangent to the curve,

r=F-1)i+@t—1)j +(#—1)katpoint (0, 2, 0).
Solution: ¢=ay?+ 2bxy + xz
A A ~d
Vo =i i(ay2 +2bxy +xz) +j i(ay2 +2bxy + xz) + k— (@* + 2bxy + xz)
ox dy 0z
=(Qby+2)i + (ay+2bx)] + (x) k
At the point (1, 2, —1),
Vo=(4b—1)i +(4a+2b)j +k
Tangent to the curve 7 = (£ - 1) i+ (3t— l)f +(@#-1) kis

dr —@3p)i+37+ ok
dr

At the point (0, 2, 0),i.e.,att=1
dr _3ie3j+2k

dr
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Directional derivative is maximum in the direction of V@ but it is given that direc-
tional derivative is maximum in the direction of the tangent.

Hence, V@ and % are parallel.

4b-1_4a+2b 1
3 3 2
11 g 2a¥20 1 gyap=3
3 2 2
b=§and8a:3—4b=3_§:l
8 2 2
1
a=—
16
1 5
H a:—’b:_.
ence, 6 5

Example 26: The temperature of the points in space is given by ¢ = x> +)* — z.
A mosquito located at point (1, 1, 2) desires to fly in such a direction that it will get
warm as soon as possible. In what direction should it move?

Solution: Temperature is given by ¢=x>+)? —z
Rate of change (increase) in temperature = V ¢

Z;i(x2+y2—z) +ji(x2+y2—z)+l€i(x2+y2—z)

ox dy 0z

=20 i+Qy)j -k

At the point (1, 1, 2),
Vo=2i+2j—k
Mosquito will get warm as soon as possible if it moves in the direction in which rate

of increase in temperature is maximum, i.e., V@is maximum. Now, V¢ is maximum in
its own direction, i.e., in the direction of V ¢.

Unit vector in the direction of Vg =—

. : o 20 +2j -k
Hence, mosquito should move in the direction of 2i+2j-k .
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Example 27: Find the direction in which the directional derivative of

2 2
(Z§=M at (1, 1) is zero.
Solution: ¢(x,y)=£—1,
y X
Vo i (X Xy QX _r) o fx_y
ox\y «x dply «x oz\y «x
Y L O R
_(y+x2)l+[ y2 x]j,

At the point (1, 1) Vg=2i — 2.
Let the direction in which directional derivative is zero is 7 =xi + yf :

V. Xi + yi
Jx? + 52
(2i =2j) (xi+yj)=0
2x-2y=0,x=y

=0

7 =xi+xj

x(i +j) i+)

Wi+l 2

Unit vector in this direction =

i+j

N

Hence, directional derivative is zero in the direction of

Exercise 6.3 \

1 Fl(rll)d Z;z:nlig e Ans.: (i) 10{ —4ji— 16]2, 2493
(i) p=(2+)2+2Y) eV Lo w7378k 229
_ 3. If 4=2x% —3yzj +xz’k and
Ans.: (i) 2 (i) @-r)e 7 ¢=2z - x’y find
o (i 4-Vg
wherer = xi + yj + zk, (i) 4 xVgat(l,-1,1).
e ‘;‘ [Ans. : (i) 5 (i) 77 —/ — 11k]
4. If p=3x%, w=xz* -2y, find
2. Find Vgand |V if V (V- V).
(i) ¢=2xz"-x’yat(2,-2,-1) Ans.: (6yz> —12x) i

(i) @=2xz2—3xy—4xat(l,-1,2). +6x2° f+ 12xyzk
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10.

11.

12.

13.

. Provethatv[a'r J:

. Find a unit vector normal to the sur-

LIf 7 =xf+yf+zic,r=|;|,provethat

(i) V (logr) =
r
Gi) V|rP=3rr )

@DVﬂ0=fUE-

rn

where a is a constant vector.

. Find a unit vector normal to the sur-

face x*y + 2xz =4 at the point (2, -2, 3).

[Ans.:%(f—2f— 212)}

. Find unit outward drawn normal to

the surface (x — 1)+ )+ (z+2)*=9
at the point (3, 1, —4).

[Ans‘ : w

face xy* z> = 4 at the point (-1, —1, 2).

Jit

Find the directional derivative of
¢=xyz + 4xz* at (1, =2, —1) in the
direction of 2i —j — 2k.

]

Find the directional derivative of
¢=xy+yz+zxat(l, 2,0) in the
direction of vector i + 2 j + 2k.

[Ans. : 2:|
3

Find the maximal directional deriva-
tive of X}z at (1, -2, 3).

[Ans. : 4@]

In what direction from the point
(2, 1,-1) is the directional derivative
of ¢ = x*yz* a maximum? Find its
maximum value of magnitude.

14.

15.

16.

17.

18.

19.

20.

21.

|:Ans. : maximum in the direction of

Vo =4i — 4] +12k, 4411
In what direction from the point
(3, 1, -2) is the directional derivative
of ¢ = x*?z* a maximum? Find its
maximum value of magnitude.
[Ans.: 96 (7 +3] - 34), 96319 |
In what direction from the point
(1, 3, 2) is the directional derivative
of ¢=2xz — »* a maximum? Find its
maximum value of magnitude.
[Ans.:4i —6] + 2k, 2414 |
What is the greatest rate of change of
¢ = xyz* at the point (1, 0, 3)?
[Ans. : Vg=9]
If the directional derivative of
¢ =ax’+by+2zat(l, 1, 1) is max-
imum in the direction of i +; + £,
then find values of a and b.
[Ans.:a=1,b=2]
If the directional derivative of
@=ax+ by +czat(l,1, 1) has maxi-
mum magnitude 4 in a direction
parallel to x axis, then find values of
a, b, c.
[Ans.:a=2,b=-2,c=2]
Find the directional derivative of
¢=x*+yz+z2x*at (1,2, 1) in the
direction of the normal to the surface
xX+yP—-zx=1lat(1,1,1).

it

Find the directional derivative of
¢ =x* + yz2 at (2, -1, 1) in the
direction normal to the surface
Xy+yx+yz2=3at(l,1,]1).

|:Ans. : _—13:|
J29
Find the directional derivative of
¢=x%+yz+z% at (2, 2, 2) in the
direction of the normal to the surface
4x?y 4+ 2z° = 2 at the point (2, -1, 3).

i



22.

23.

24.

25.

26.

27.

Find the rate of change of ¢=xy +yz +zx
at (1,—1, 2) in the direction of the nor-
mal to the surface x> +)? =z + 4.

-

Find the directional derivative of
¢ = x*yz* along the curve x = ¢,
y=2sint+1,z=t—costats=0.

]

Find the directional derivative of
¢ =x*z* at (1, 1, —1) in the direc-
tion of the tangent to the curve x = ¢/,
y=2sint+1,z=t—cost,atr=0.

|:Ans : ﬁl
3

Find the directional derivative of the
scalar function ¢ = x? + xy + z* at the
point P(1, —1, —1) in the direction of
the line PQ where Q has coordinates
(3,2, 1).

Hint : P_Q=O_Q—aJ
=i +2j+k)=(-i —j—k)
=2i +3] +2k

1
Ans.: —

V17 |
Find the directional derivative of
¢=2x% — 3y?z at the point P (1, 2, —1)
in the direction towards Q (3, —1, 5). In
what direction from P is the directional
derivative maximum? Find the magni-
tude of maximum directional deriva-
tive.

[Ans. :—?,122 +14f — 12/2,22}

Find the directional derivative of
¢ =4xz* — 3x%°z at (2, —1, 2) in the
direction from this point towards the
point (4, —4, 8).

28.

29.

30.

31.

32.

33.

6.7 Gradient 6.45

I:Ans. : ﬁ]
7

Find the angle of intersection of
the spheres x* + »* + z> = 29 and
X4y +z22+4x — 6y — 8z =47 at

(4,-3,2).
|:Ans. : cos”! (EH
29

Find the angle between the normals
to the surface 2x* + 3)? = 5z at the
point (2, -2, 4) and (-1, —1, 1).

65
V233477
Find the angle between the normals

to the surface xy = z* at the points
(1,4, 2) and (-3, -3, 3).

|:Ans. : cos™!

|:Ans. : @=cos”! L:|

V22

Find the acute angle between the
surfaces x’z = 3x + 2z and
3x?—y*+2z=1 at the point (1, -2, 1).
. ﬁ}
14
Find the constant @ and b so that the
surface ax* — byz = (a + 2)x will be
orthogonal to the surface 4x*y + z* =4
at the point (1, -1, 2).
Hint : condition for orthogonal -
ityisVg-Viy =0 '

|:Ans. . cos

I:Ans.: a=§,b=1:|
2

Find the angle between the two sur-
faces x> +)y*+az2=6andz=4—)" +
bxyatP(1,1,2).
Hint: (1, 1, 2) lies on both
surfaces,a=1,b= -1

[Ans. I

os™! ﬁ]

11
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34. Find the directional derivative of

¢=x*+y* + 2% in the direction of the
line =2
3 4

z
= at(1,2,3).
5 at( )

[Ans. é\/i :l
5
Find the direction in which the dire-
ctional derivative of ¢ = (x + y) =
2 .2
OT=y7) at (1, 1) is zero.

Xy y
Hlnt ¢('x y) - s
y X

1
i)

35.

Yy x
|At(1, 1),V =2i —2;

]f’

6.8 DIVERGENCE

[Let the direction 1n whlch d1rect1onal
derivative is zero is  =xi + y]

XI +y]
NEE

(2i =27) (xi +yj)=0
2x — 2y 0,x=y

Vo =0

Fo=xi+x ]
unit vector in this direction
x (z + ])
N
i+j

p

Hence, directional derivative is zero in

A A

the direction of
¢ airection or ———.
NG

The divergence of a vector point function F is denoted by div ForV-F andis

defined as
V.F= li-l-Ji-i-ki F
ox “dy Oz
If F =Fi+F,j+Fk,
0 d d . . .
then v F_(’$+J$+kaz] “(F\i +F,j +Fk)
ox dy oz

which is a scalar quantity.

Note:

(i) V- F#F - V, because V - F is a scalar quantity whereas

F-V= 8 +F J
oy z
(i) VF—aF 9, 9
ox dy 9z
+ OF ~ OF  » OF
— ._+‘] _+ —
ox ay )

J . . .
—+ F, — is a scalar differential operator.

(if F =F,i+F,j+Fk)
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6.8.1 Physical Interpretation of Divergence

Consider the case of a homogeneous and incompressible fluid flow. Consider a small rect-
angular parallelepiped of dimensions dx, dy, 0z parallel to x, y and z axes respectively.

Let v =v i +v,j + v,k be the velocity of the fluid at point 4 (x, y, 2).

The velocity component parallel to x — axis (normal to the face PORS) at any point
of the face PORS

=v,(x+0dx,y,2)

0 . . . . .
=v, + a—: Ox [expanding by Taylor’s series and ignoring higher

powers of Jx]

Z A
C
T R
' S
D
10z
N
" S A 0
o0 A P
X
y
Fig. 6.4

Mass of the fluid flowing in across the face ABCD per unit time

= velocity component normal to the face ABCD X area of the face ABCD
=v, (0y 02)

Mass of the fluid flowing out across the face PORS per unit time
= velocity component normal to the face PORS X area of the face PORS

= (vl +ﬂ5xJ X 8y Oz
ox
Gain of fluid in the parallelepiped per unit time in the direction of x-axis
0
= (vl +a—vl§x) X 8y 6z —v, Oy oz
X

_ M 55y 6
ox



6.48 Chapter 6 Vector Functions

Similarly, gain of fluid in the parallelepiped per unit time in the direction of y-axis
= aﬁ 0x8ydz
ay
and gain of fluid in the parallelepiped per unit time in the direction of z-axis
= aﬁ 0x0ydz
0z

Total gain of fluid in the parallelepiped per unit time

_(%+ oy , vy

5x 8y &
ax |y az)xyz

But, 0x Jy Oz is the volume of the parallelepiped.

av, I, av3
Hence, total gain of fluid per unit volume = —+——+—
ox 8y 0z
=div v
=V-v

Note: A point in a vector field F is said to be a source if div F is positive, i.e.,
V- F >0and is said to be a sink if div F is negative, i.e, V - F <0.

6.8.2 Solenoidal Function

A vector function F is said to be solenoidal if div F =0 at all points of the function.
For such a vector, there is no loss or gain of fluid.

6.9 CURL

The curl of a vector point function F is denoted by curl F orVx F and is defined as

= ?a A.a Aa 2 Y ~
VXF = z$+j$+ka )x(Flz+F2]+F3k)
i ]k
_|2 9 9
dx dy oz
BB

Loy oz o oz ox dy

which is a vector quantity.
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6.9.1 Physical Interpretation of Curl

Let @ be the angular velocity of a rigid body moving about a fixed point. The linear

velocity y of any particle of the body with position vector 7 W.rt. to the fixed point
is given by,

V=W X7

Let @ = @i+ @] + ok r =xi+yj+zk
v

i j ok
=lo, 0, o
X y z

=i(wz-0y) —j(0z-wx)+k(wy- wx)

Curl v=Vxv
i j k
| 9 9 9
ox ady 0z

0,2—@;y OXx—0z @OF—0,X

=i (0+0)-](~0,-0)+k(o+ )
= 2(a)lf + a)zf + a)31})
—20
Curl v =2
Thus, the curl of the linear velocity of any particle of a rigid body is equal to twice
the angular velocity of the body.

This shows that curl of a vector field is connected with rotational properties of the
vector field and justifies the name rotation used for curl.

6.9.2 Irrotational Field

A vector point function F is said to be irrotational, if curl F =0atall points of the
function, otherwise it is said to be rotational.

Note: If F =V¢, thencurl F =Vx F =VxVg=0.
Thus, if V x F = 0, then we can find a scalar function ¢ so that F = V. A vector
field F which can be derived from a scalar field @ so that F = V@is called a conser-

vative vector field and ¢@1is called the scalar potential.
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Example 1: If 4 =x’zi — 2)°2] + x)%zk, find V- 4 at the point (1, 1, 1).

o4 oAy 04

ion: V. A O Oy e A = AT A4 A
Solution: V x oy o where 4 =Ai +A4,j + Ak

V4= i(xzz) + i(—2 132%) + 9 (x)%2)
ox dy 0z

=2xz — 6 y’2* + x)?
At the point (1, -1, 1),

V-A=21)1)-6(-1)>(1)* +1(=1)

=2-6+1
=3

Example 2: If ro=xi +yf + z7c, prove that div (grad 7)) =n (n + 1) "2

Solution:

But 7 =xf+yf+zl},

= ‘;‘2 =x*+y*+2°

or _x or _y or _z

FPRP R

grad r" = nrm! (if +Z}'+£l€]
roor’ o

_ (xz +yj+ zk)
r
=2 r
div (grad r")=V - (nr"? 7))
=nV-p? (xf+yf+zl€)

= n[%(r"_zx) + 9

n—=2 i n—=2
ay(r y)+aZ(V Z)]

0 . _ _ _ 0 . _
=n|x=—r" 2"y
ox dy 0z
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=n|3r"? +x(n-2)r"" o +y(n=2)r""> or +z(n=2)r"" ar
ox dy 0z

r"'2+(n—2)r"'3—(x2+y2+Zz):| Lo _x or_y oz
r " ox r’ Ay P’ 0z r

2
=n|3r" 7+ (-2 r_]
r

=nr"? (3 +n - 2)
=nm+1)r?
Example 3: Prove that for vector function Z, V x(V x Z) =V (V- Z) -V2 4

Solution: Let 4 =Ai+A [+ Ak

ik
vxd=|2 9 9
ox dy oz
A A 4
8A3 94, ; 04, 04 s 04, 94
oz ox oz ox ay
i j k
Vx(Vx2)= i i i
ox dy o

0 4o oy 04

dy dz 0dz odx dx Jdy

(0424 (9404 ]
- dyox ay2 dz2  Oxoz ]
9’4, 9’4 | (9’4, 9’4,
ax axay oz 9z’
i 9’4 9’43 (9’4, 0’4,
ava axz ayz ayaz
2 2
Consider i o4, 94 04 4,
dyox  dy’ 3z oxdz

d (04, 82A1_82A1+i(8ﬁ)
x| ay dy?  9z% ox\ oz
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)

_i| o (o4, 04 ) a%@+azl
ax ay oz o? oz’ o’ ox?
82
|:Adding and subtracting 21 ]
ox
fo(on on an) (24 P4 74
ox\dx dy oz x> o o
_i (v a)-i v
dx
Similarly,
9’4,
—(V-4 &
|:[ ox’ axay] (ayéz oz’ II / y( )=
2
and [ L2 a b9 (v. D) -kvia,
oz ayaz 0z

_ 9 A0 o~ . ..
Hence, V x (V x 4) = Xt kaz) (V-4) = V24,i+4,]+4,k)

Example 4: IfA4=V (xy+yz+zx), findV- 4 andV x 4

Solution: 4 =V (xy + yz + zx)
—{—(xy+yz+zx) +fai(xy+yz+zx)+1Aca—(xy+yz+zx)
)y z

=(+2)i+(x+2)] + @ +x)k
A [(V+2)i+@E+x)] +(x+y) k]

V-4=
=aa—x(y+z)+ %(z+x)+ a—Z(x+y)
=0

ik
= ad d Kl

y+z z+x x+Yy
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.| a9 d ~| 9 d
=i [g(x‘*'y)—a—z(z‘*'x)]—J [a—x(x'i'y)—a—z(y‘*'z)]

~ |0 d
+k [a(z+x)—$(y+z):|

=i(1-D)-j(1=-D+k(1-1)
=0

Example 5: Verify V(V X 2) =v(v-4) - V> A for A =x2i + %% -3 x22°k.

Solution:
i k
ox dy 0z
xzy x3y2 32,2
n a 2.2 a 3.2 "|:a 2.2 a 2 :|
=i|—(-3 -z il =3 -z
’[ay( x°z%) aZ(xy)] J ax( xz%) aZ(xy)
~[ 9 0
+k[a—x(x3y2)—$<x2y>}
=0-i—(-6x2)] + 3> — )k
i k
_. la @ P)
Vx(Vxd4) =[5~ > e

0 6xz° (3»)(2)/2 - x2)
=7 (6x%y — 12xz) — ] (6x)% — 2x — 0) + k (622 — 0)

= (6x%y — 12xz) i— (6x)” — 2x)f + (62°) k

VA= ;i+}i+/€i -(xzylf+x3y2]?—3xzzzl;)
ox “dy oz

a 2 a 31,2 a
= — R __322
ax(xy)Jr ay(xy)+ aZ( x’z%)
=2xy+2 X%y — 6x%z

\Y% (V : Z) = ;ai (2xy + 2x%y — 6x7%2) +fai (2xy + 2x%y — 6x%2)
X o

~d
+k— 2xy + 2x*y — 6x%2)
oz
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=2y +6x% — 12x2) 7 + (2x +2x° — 0) ] + (—6x%) k

_ 2 . . A 2 . . A
Vi4 = 7 (i + X3 = 3x%2%k) + aa_z (i + x5 = 3x%2%)
X 'y

2
+ —aa > (i +x°y% = 3x°2°k)
z
d ~ ~ - J - N -
= — (2xyi +3xH% — 6x2%k) + — (x4 +2x% j) + — (-6x%zk)
ox dy 0z

= (2yi + 6xy% — 62212) +2x3 — 6x°k
= 2le + (6x)” + 2x3)f -6(z2+ xz)lg

V(V-4) -V24 = (6x2y— 12x2) 1 + 2x — 6x7) ] +(62) k
Hence, V x (V X Z) = V(V . Z) -Vi4
Example 6: Show that A=3 y“zzf + 4x37? f — 3x2yzl} is solenoidal.

Solution: 4 =327 +4x2 ] — 32k

N

0
V- 4= % (3y*2%) + % (4x°2%) + 5% (-3x%%) =0

Since V- 4 =0, A is solenoidal.

Example 7: Determine the constant b such that A= (bx + 472) i + (Psinz — 3y) j
— (e° +4 cos x?%) k is solenoidal.

Solution: If 4 is solenoidal, then
V-A4=0
d d . 0
— (bx+4%2 )+ — (¥ sinz—3y)+ — (—e* — 4 cos x?) = 0.
ox dy 0z

b-3=0
b=3

a(xf + y}')

\x2+ 2

Example 8: Show that the vector field A= is a source field or sink

field according as a > 0 or a < 0.

Solution: Vector field 4 is a source field if V- 4 > 0 and vector field 4 is a sink
field if V- 4 <0.
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VA=V | =i+ 2L
\/)cz+y2 \/xz-i-y2

=i ax +i ay
ox \/m dy \/m
—a> 1 . x2x 1 Y2y
S 2(x2+y2)% x4y 2(x2+y2)2]
=a" 2 ()

ey (x2+y2)Z]

) a

N
Since \/xz +37 s always positive, V- 4 >0ifa>0,and V- 4 <0 if a <0. Hence,
A is a source field if @ > 0 and sink field if @ < 0.
Example 9: If A= (ax*y + yz) i+ (xy? —xz?) f + (2xyz — 2x%7) kis solenoidal, find
the constant a.
Solution: If 4 is solenoidal, then V - = 0,
V - [(ax*y + yz) i+ (0 —xz2%) f + (2xyz — 2x3H7) lAc] =0
0
— (ax’y +yz) + i (0? —xz%) + i (2xyz —2xH%) =0
ox dy oz

2axy +2xy +2xy =0
2a=-4
a=-2

Example 10: Find the curl of 4 =™ (i +/ + k) at the point (1, 2, 3).

Solution: Curlof 4 =V x 4

ik
_|9 9 9
lox 9y oz
P L

:lf iexyz _iexyz _]’3 (iexyz _iexyz)_’_]} iexyz _iexyz
dy oz ox 0z ox dy

=(e-xz—e"-Xx i— (e yz—e" xp)j +(e¥ - yz— e - xz ]:T
3% V. V)J V.
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At the point (1, 2, 3),
Curl 4 =€[i (3=2)— (6-2)+k(6-3)]
= et (i —4] +3k)
Example 11: Find curl 4 =x% 7 — 2xz/ + 2yzk at the point (1, 0, 2).

Solution: Curl 4 =V x 4

ik
|0 ad 0
Tl ¥y e
x? y 2xz 2yz

=9 e = 3 D2y - (42
—l[ay(ZyZ) aZ( 2x2)] J[ax(ZyZ) aZ(x y)]
+/€|:;—x(—2xz)—%(x2y):|

=Qz42x)i - (0-0)] +(-2z-x) k

Curl (Curl 4)=Vx(Vx4)

20z+x) 0 —(x*+22)

2220|2222 ]

_l|:ay( x°=2z) aZ(O)] j 8x( x°=2z) aZZ(Z+)C)
~l d 0

+k|:g(0)—$2(Z+x):|

=i (0-0)—j (-2x—2)+k(0—0)
=(2x+2)/
At the point (1, 0, 2),
Curl (Curl 2): 2+2) j
=4;

Example 12: Prove that F = nyzzf + [x?z* +z cos (2) ] f + (2x*yz + y cos yz) kis
a conservative vector field.
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Solution: Vector field F is conservative if Vx F =0

i J k
vxF=| < 9 9
ox dy 0z
2 2+zcosyz 2x2yz+ycosyz

2xyz2 Xz
_: 9,2 0 5,
=i (2x"yz+ ycos yz) (x"z" +zcos yz)
ay 0z

- ]A[i (2x2yz +ycosyz)— i(2xyz2 ):I
ox 0z

-l d d
+ k [—(x222 +2zc0s yz) ——(2xyz° ):|
X dy
= (2x%z + €08 yz — yz sin yz — 2x’z — €0s yz + zy sin yz) i
— (4xyz — 4xyz) f + (2xz2 — 2x2%) k
=0
Hence, F is conservative vector field.

Example 13: Determine the constants a and b such that curl of (2xy + 3yz) i+
(o + axz — 4 22) j + Bxy + 2byz) k is zero.
Solution: Let F = (2xy + 3yz) i+ (X*+ axz — 4zz)f + (3xy + 2byz) k

Curll?:VXl?zo

R ) 2|,
dx dy oz

2xy+3yz x* +axz—4z° 3xy+2byz

i i(3xy +2byz) - i(x2 +axz—4z%) |- [i (Bxy+2byz) - i(2xy + 3yz):|
dy 0z ox oz
n a 2 2 a
+hk| —(&"+axz—4z")——2xy+3yz) |=0
ox dy

Gx+2bz—ax+82)i —By—3y)j +2x+az—2x—32)k=0
[(B-ax+2z(b+4)]i-0]+z(a—3)k=0
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Comparing coefficients of i and 12,
B-a)x+2(b+4)z=0

(a-3)z=0

Solving both the equations a=3,b=-4

Example 14: Show that F = (2 — 22+ 3yz — 2x) 7 + (3xz + 2x) ] + (Bxy — 2xz + 22)k

1s both solenoidal and irrotational .

Solution: If F is solenoidal, V- F =0

V-F =i 0P=22+3yz—-2x) + i (3xz+2xy)+i (Bxy — 2xz + 22)
ox ) 0z
=-2+4+2x—-2x+2

=0
Hence, F is solenoidal.

If Fis irrotational, V x F =0

QO ~o
QU =

i

— 0
VXF = - — -
x ox dy 0z

y2 - z? +3yz—2x 3xz+4+2xy 3xy—2xz+2z

=i i(3.xy —2xz+22) —i(3xz +2x)
dy oz

—}[1(3)@/— 2xz+2z) —i(y2 —z7+3yz —Zx):l
ox oz

+k i(3xz+2xy)—i(y2 - z? +3yz—-2x)

ox dy
=Bx—3x)i-(By-2z+2z-3y)j + Bz +2y-2y-32) k
-0

Hence, F is irrotational.
Example 15: Find the directional derivative of the divergence of F(x, v, 2)
=xy i+ xyzf + Z’k at the point (2, 1, 2) in the direction of the outer normal to the

sphere x* +y* +z2=9.
Solution: f(x,y,z)=xyf+xy2f+zzfc
Divergence of F (x,y,2)=V"- F
d 0, 5. 0, 5
=— W) +—W)+—(z
5 ) ay(y) 5. )

=y+2xy+2z



Gradient of divergence of F =V (V- F)
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—[zi+]—+ki](y+2xy+2z)
0z

ox " dy

=2yi+(1+2x)] +2k

At the point (2, 1, 2),
V(V-F)=2i+5]+2k
d
dx “dy oz

0 0
Normal to sphere = l—+J—+k_ (*+y*+2)

=2 (xi +y] +zk)
Normal at (2, 1,2) =2 (2i +/ + 2k)

Directional derivative in the direction of the outer normal to the sphere x> +)? +z2=9

=i +5] +2k)-

1
=—(8+10+8
6( )

Exercise 6.4 |

1. Find divergence and curl of
xcoszi+ylogxj—yzk.
Ans. : 2xcosz + logx — y,

iz— jx*sinz + i
x
2. If ¢p=2x%72* prove that div (grad ¢)
= 12x)%2* + 4x°z* + 24x%)%2°
3. Find curl (curl A4), if
Z:x2y5—2x2f+2yzfc. A
[Ans.: (2x+2)/]
4. 1f 4 = 2yzf —xzyj +x2212,
B =x% +yzf - xyl:f and ¢=2x%z%,
find

(i) (4-V)¢
(iii) (B -V) 4
(v) AxVg

(i) 4-V ¢
(iv) (AxV) ¢

41 +2]+4k

V16+4+16

s. : (i)and (ii) 8xy’z* —2x*yz*
+ 6x’yz* (iii) (2y2% - 2x0%) |
- (2x’y +x7y2))
+ (x%2° - 2x2yz)l:r (iv) and
(v) =(6x*y*z°+ 2x°2°) i
+ (4x’yz’ —12x°y? 3)]
+ (4x7yz* + 4x°y’ 3)k

5.1f 4 =x21?+xye‘f+sinzl;,ﬁnd

V- (VxA).
[Ans. : 0]

6. If p= tan‘l( ) find div (grad ¢).
X

[Ans. : 0]
3y + 42, find curl (grad ¢).
[Ans. : 0]

7. If p=2x—
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8.

10.

11.

12.

13.

Prove that for every field 4,
div (curl 4)=0.

. Prove that gradient field describing a

motion is irrotational.
[Hint: Prove that Vx Vg=0]
Prove that A= fyz +fxz + l;xy is
irrotational and find a scalar function
@ (x,y,z) such that 4 = grad ¢.
[Ans 1 xyz +cl
Prove that A =(6xy+z%) i z
+ (3 X —z)] + (3x 22 —y)kls
irrotational. Find the function ¢
such that 4 = V.
[Ans. : ¢=3 x}y +x 2> — yz]
Prove that the velocity given by
A=+ i+C+x)]j+@x+0)k
is irrotational and find its scalar
potential. Is the motion possible for
an incompressible fluid?

[Ans. :

Prove that 4 = (22 + 2xy + 3y) i
+(3x+2y+z)] +(y+22x)kls
irrotational and find scalar potential ¢
suchthat 4 =Vgand ¢(1, 1,0)=4.
[Ans.: g=22x+ x>+ 3xy + ) +yz— 1]

@ = yz + zx + xy, motion is
possible because V - A=0

15.

16.

17.

18.

19.

20.

. Prove that 4 = (2 + 2x + 3y) i

+(3x+2y+z)] +(y+2zx)kls
conservative and find scalar
potential @ such that 4 = Vg,

[Ans. : p=x>+)* +2x + 3xy + zy]
Prove that 4 = - (Vcosx +2°) | i

+(2ysinx — 4)] +(Bxz2+2) Jis irro-
tational and find its scalar potential.
[Ans. : ¢=)7sin x + z°x — 4y + 2z]
Provethata=—-1or b =0, if
Covz)? (e + 7 + k) is an irrotational
vector.
Find the constant a if A = (ax + 3y
+4z)z +(x— 2y+3z)] +(Bx+2y-2)k
is solenoidal.
[Ans a= 3]
Find the constant a if A4 = (x+3” i
+(2y+22)/ + (@ +az) k is solenoidal.
[Ans. : a =-3]
Find the constants a, b, ¢ if
A= (axy + bz?) i+(3x—cz)j +
(3xz% — y) k is irrotational.
[Ans.:a=6,b=1,c=1]
Find the directional derivative of
V- (Vf) atthe point (1, -2, 1) in the
direction of the normal to the surface
Xz =3x + z2, where f=2x%7%z"

6.10 PROPERTIES OF GRADIENT,

DIVERGENCE AND CURL

6.10.1 Sum and Difference

The gradient, divergence and curl are distributive with respect to the sum and differ-

ence of the functions. If /, g are scalars and 4 and B are vectors, then

(i) V(ftg)=Vf+tVg
(i) V-(42B)=(v.4)+(v.B)

(i) Vx(4+B)=(VxA)+(VxB)
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Proof: () V(f ) =1 (/£ )+ J - (f2e)+h ()

af 2of -~ Of ~dg »~»0dg -~ Og
—+k —|x|i =+ —=+k ==
( ox jay+ az) [l ax+J ay+ Z

=VftVg
(i) Let 4 =A4i+A,j+Ak, B=Bi+B,j+Bk

V-(4+B)=V-[(4,+B)i +(4, £ B,)j+(4 +B)k]

d 0 0

:g(AliBl)+$(AziB2)+§(A3iB3)
(94 04, o4\ (0B 9B, 9B
ox ay 0z ox ay 0z

=V-A+V-B

(iii) Vx(4+B)=Vx(4+B)
Cix 2 (a4 B)+ fx L (A+B)+ix2(A+B)
X dy oz

=Y ix2(i+5)
=

. 0B
—sz—+ ix—
ox

:(VxA)_(VXE)

6.10.2 Products
If /, g are scalars and 4 and B are vectors, then
(1) V(fg)=fVg+gVf orgrad (fg)=/(grad g) + g (grad f)
(i) V(4-B)=(B-V)A4+(4-V)B+Bx(Vx4)+Ax(VxB)
orgrad (4-8)=(B-V) 4+(4-V) B+ Bx(curl 4)+Ax(curl B)
(i) V-(f4)=rs
ordiv (f4)= f(div 4)+(grad f)- 4

(V-4)+(Vf)-4

(iv) V-(4xB)=B-(Vx4)-4-(VxB)
or div (Zx§)=§-cur12—z-curl B
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) Vx(fd4)=f(Vx4)+(Vf)x4a
orcurl (f4)= f(curl 4)+(grad f)x 4

vi) Vx(4xB)=(B-V)4-B(V-4)-(4-V)B+4(V-B)
orcurl (4xB)=(B-V)4-B(div 4)-(4-V)B+4(div B).

Proof:

i) V(e)=i ai(fg> 2 k()
X y oz
N %, 9
_zl(f8x+gax)
o () (i
‘zf(’ axJ+zg(’ ax)
=f(fa—g+}a—g+1€a—gj+g(fa—f+ja—f+l€a—f)
ox X

dy oz
= fVg+gVf

~ — BE ~ A az

Consider,

zx(;xaa_ﬁ]{z.@);_(z.f)@ [+ ax(bx)= (- )5 -(a-5)c]

X

(228 x| ix 98 | (7.1)28
ox ox ox
Similarly, interchanging A and E,

i394 )= Bx|1x24 |+ (3.1 24
ox ox ox
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Substituting in Eq. (1),

v(ﬁ):z[zx[zx%} (15)%}2[5{;%_2}@ )%A]

:ZxZ(fx%—f}ExZ(fx%—f}Z(Z-f)%—f+ (B-i )aaf
=Ax(VxB)+Bx(Vx4)+(4-V)B+(B-V)4

AT HB_ AfaB+A2}aB A/éaB
ox ox dy oz

. .=y _[~9 ~9  ~0d | (— —
(iv) Vx(uuu)—( = + y+ BZJ( x )

=Yio (4xB)=Yi— AxB)
- dB 0d4 =
—Z [A g'FgXB]
~ - aB N aA e

—ZI'(AX§]+ZZ’[—XXB]
=Yixa 8 ix B [abxe=axb]

X x

— - Interchanging A and
=—fo%—8«2+25xaa—14§ 9B

X X ™ in scalar triple product.
X
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=—(VxB)-4+(Vx4) B
=B-(Vx4)-4.(VxB)
(v) Vx(fg):(f%+]%+l€%] X (fZ)

=Zf><ai(f2)

= (Vx4)+(Vf)x4
. - 5 |z a A a ~ a - =
(vi) VX(AXB)—(I$+]$+/€8—Z)X(AXB)

20 (.5

=Zza—x><(A><B)

= foai@xﬁ)
X
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6.11 SECOND ORDER DIFFERENTIAL OPERATOR

It is a two fold application of the operator V . Some second order differential operators

are given below.
(1) Laplacian Operator V*
Div (grad /) = v . (V)

d d ~d (-9 ~of rof
=z A B I A A
(l 8x+]8y+ BZJ (l 8x+]ay+ sz

a3l
~oxlox dy\ady ) oz\oz
azf 32f o f

o ay2 BZ

2 2 2
=Vf
=Af

Thus, the scalar differential operator (read as “nabla squared” or “delta”)

0 9 9
o o o2
is known as Laplacian operator.

o’ f 0’ f o’ f

ox’ a g 822
is known as Laplacian equation.

(i) VxVf =curl grad f

:Vx(fl+jaf f]

Vi=A=

V=

IR I T A W
"N\ ooz azay) M\ ave: ozax ) |oxay ayox

=0
Hence, curl grad f= V xV f=0.
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(iii) V-(Vx4) = divcurl 4

Let A=Ai+A,j+A4k
vxd=|d 9 9| (94 04| 534 04, ) of04, 04
ox dy Oz dy Oz ox 0z
Al AZ A3
V-(VxA)=i %_% _i aﬁ_ai +i %_%
ox\ dy oz dy\ dx 0z ) dz\ dx dy

_ 0’4, 0’4, 9’4, N 0* 4, . 4, 94
dxdy dxdz Jyox Jydz 0zdx dzdy
=0
Hence, V-(Vx 4) = div curl A=0.

Example 1: If r=xi +] + zk, show that div (r” ;) =(n+3)r".

Solution: 7"is a scalar and ris a vector.

We know that div (fZ) =f(V~Z)+(Vf)~Z

div(rr) =" (V- r) +(Vr") -

X dy
=r"(1+1+1)+ l?(nr"_l)i-k}(nr”“)i+I€(nr"“)g .
ox oy oz
;=xf+yf+zl€
rr=x*+y*+2?

o _x or_y or
ox r dy r oz

2, .2
=3" + ! (—x Tyt ]
,

=3r" +nr"

Hence, div (+"7) = (n+3)".

x oy

|
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Example 2: Find the value of n for which the vector "7 is solenoidal, where
r=xi+ yj +zk.

Solution: If F=r"r is solenoidal, then

V- r";:o (1)
As proved in Ex. 1.,

Vor'r=(n+3) 1"
Substituting in Eq. (1),
(n+3) 7" =0
n=-3
Example 3: Prove that Div (grad 7" )=n (n+ 1) =2, where r=xi +yf +zk
Solution:
Div (gradr") =V -(Vr")

=V- ':al” +f:a}” +"al"]

ox T ez

=V ! ﬁf + ! E} +nr! ﬁ]é
0 0z

ox )y
X2 zZ
=V. nr"l—z+nr"11]+nr T2k
r r r

R (xi +yj+zk)
r

=nV-r"r
—n[r" 2(v.7) +(Vr'?) r]

[ +]—+ki) (xf+yj'+zl€)
ox dy oz
n-2 n-2 n-2
( ag j‘agy +kaaZ J~(xf+y]’+zl€)]

=n[r"1+1+1D)+ (n—2)r"'3ﬁf+(n—2)r”‘3ﬁj
ox oy

+(n—2)r"_3?kA }(JCZA +yf +zk ):|
z

r=xi +yf +zk
rr=x*+)y*+2?
or _x or _y or z

ax_7’$_7’g_r
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n-3 X2

Hence, V.(V") = n[3r"'2 +(n=2)r| 1] +yj +2k | (xi +yf +zk )}
r r
n[3r=2+m=2)r* (> +)y*+z2%)]
n[3r2+m-2)r*-r
=n[3r2+(m-2)r?
=nmn+1)r?
Example 4: If gand yare two scalar point functions, show that

V2 (9y) = oViy+2V ¢-V v+ '//V2¢-

Solution: V*(gy)= (¢l//) (¢l//) (W) (D)

Consider, 87 (ow) = B_x[a_x (¢l//)]

_9(, 990, 4%
_ax(l//ax+¢ ox J

_9y9¢ 8¢ 99 oy o'y

ox ox Wax ox ax ox?

oy d d’¢ 9¢ 9 9’
dwds, 09 00 v 0y
dy oy oy’ ay dy dy

81//8¢ 82¢ 99 81// Py

az
Similarly, —2(;7)1//) =

d =
" (W) oz oz Vo oz oz Lor
Substituting in Eq. (1),
V2(¢W):2 8_¢8_l//+3_¢8_l//+8_¢8_1//
dx dx dy dy 0z Jz

'y 821// R 9%¢ 8¢ ¢
+¢(a2 P aZZJ“”(ax FIEP

=2V¢-Vy +¢Vy +y V¢
Vi(py) = ¢V +2V¢-Vy +y V3¢

Example 5: Prove that V> I:V(Lz)] =2/, where r=xi+yj +zk.
r

1l
<
/..\
S

b
~
NS

Solution: y [%J
r
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=2 A+1+1])+ (—2r*3)ﬂf + (—2r*3)ﬁj
ox dy

+ (—2r'3)ﬁl:t }(sz +yf +zk )]
oz

r=xi+yf +zk
P =x2+)*+ 2
or _x or _y or z

PP VAl Ea

Hence, V{LZJ: r |:3—2r'3 (£f+lj+£l€)-(xf+yj+ zlg)]
r rooroor
_ o[y @)
r
=3r2=2r*p
=3r2=-2r72
= ’,.72

v {V(%ﬂzvz(ﬂ)

2> J° o
=¥(” 2)+8y_2(r 2)+a7(r %)

Now,

°r? 9 |: 3 ar]
= — —2 e
axr ox (=2r7) ox
8 -3 x:|
B O
ox l:( ) r

=—28%(r_4-x)

2

= —2(—4}’_5 Eapo r_4)
r

. 2
_ g +1)

= —2(—41”_5 ?x+r_4)

Similarly,
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- 2.2 2.2 2.2
v v.[ 2 _or +8 r +8 r
r ox’ o’ oz’

=2 [
=27 l:

=2r*

Hence, V> {V-[Lz )} =2
r

Example 6: Prove that V[V-

Solution: v.~

Il
<

-1-
\r I")

(f%f%u;_)(xnyfﬂze)} (
=3r"+ —r’zi; ’zz} 72@]‘2 o
ox ady oz

r=xi+yf +zk
rr=x*+)y*+2?
o _xor_yodr _z
ox rdy roz r

r _ _ X »
Hence, V-==3r"' —p72 | i+ =
r roor
_ Lolr) -
=312 = |r
r
_ L (rr
et 2 ()
r
2

—A(x*+y +27)

2
r

477 :|
+3
7'2

rl._2;
r r3.

}+££);
r

.
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V(V r) l—(2r )+J (2r‘1)+k (2r-1)
r

,zar" 27281’] 2*ZQA
ax dy 0z

=27 (£f+— j‘+£l€)
r r r

,27"

=-2r

Example 7: Show that E= — s irrotational.
r

Solution: Curl £ =VxE

r
:VX—2

r
=vx(r?7r)
We know that, Vx(f4) = f(Vx4)+(Vf)x4
curl E =V x(r27)
=12 (Vxr)+(Vr)xr

=7 ZIX—)CI ( Aag:]x;
=r22(fxf)+[2(_zmg_:f] v

;zxf+yf+zk
rr=x*+)y*+2?
o _x or _y or_z

ox rdy raz r

Hence, Vx(r’2;) =0-2r" (sz) Xr
r

\ (xi+yj‘+zl€)x;
r

=27 (rxr)

=0

=-2r"

Hence, E is irrotational.
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Example 8: Prove that V x (Zx;) = 25, where a is a constant vector.

Solution: Let g=a,i +a,j +a,k

r=xi+yj +zk
ik
axr=\a, a, a,
X y z
—a,x)

i(az—ay)—j(az-

Vx(axr) = 9 9 9
dx dy oz

a,z2—a,y aX—az ay—a,x

=f(al+a1)—j (~a,—a)+k(a,+a,)

= Z(alf + a2f + a3l:7)

=24

Example 9: Prove that ¥ X(a X r) _2-na + na ;’;)r,
rn n rn

7

Solution: V x( a f r
r

]: Vx(r”’Z),where axr= Z, say

We know that,
Vx(f4)=f(VxA4)+(Vf)x4

Vx(r4)=r"(Vx4) +(Vr‘")><2
LA sz

=7 [Vx(ax;)h(fag; +] 5 .

As proved in Ex. 8
Vx(axr)=2a
V(7 4) = (25)+(—nr’"’1) or f+ij+a_r]€ “ A
ox dy~ oz
As proved earlier, o _ f’ﬂ = Z,ﬂ _=
ax r y r )Z 7
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Hence, VX(r"4) =2ar™" —nr"! (£5+X}'+£l€)x A
r r r
=2 D)
r r r
=202 {Gr)a-Ga)r] [ ax(bre)=(a-cb-(a-b)e

S Mg (ra)r]

n n+2
r

2a na n(a~r)r

n n n+2

r r r
:(2—n)5+n(5~;);.

n n+2

r r

Example 10: If a is a constant vector, show that ax (V X ;) =V (; . ;) - (; V);
Solution: Let a= alf + azf + a3/€

r=xi+x,j+xk

i ]k
ox dy 0z
n n o n
AN AN L]
dy 0oz ox oz ox dy
ax(Vxr) = a, a, a,

o e (n_on) (9
dy oz dz ox dx dy
S P S P U P Y U
ox dy 0z oOx -/ ox dy oy oz
- o, on dr, or,
+h|a | -2 I 9
|: [az ax] (8}/ BZJ]
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ox Cox ox @ ox
+k a1%+ L ar3 8r3 —i a2%+a3%
0z 0z oz az dy 0z
—jla ai+a3ai —k a1%+a2ai
ox 0z ox dy

=(fi+}i+1€ J ](atlr1 +a,r, +a,r,)
x oz

—i(azai+ I a9 %)+j[a1%+a3ai+a %, ai}
V

9 9 9 PP
- alg+a2$+a3a_z (i +1r,]+1k)

Example 11: If ais a constant vector such that H = a, prove that

V'[G';)Z]=a2.

Solution: Let a= alf + azf + a312
r=xi +yj +zk
We know that, ~ V-(f4)=£(V-4)+(Vf)- 4
V[ar)a] ar Va+[V(ar]

Since a is constant, V-a=0

=fai(a1x+a2y+a3z)+j (ax+a2y+a3z)+k (ax+a2y+a3z)
x dy

=ai+a,j+ak

=a

Hence, V-[(Z-;);]:0+;-a

2
=a .

Example 12: If F= G;); where a is a constant vector, find curl F and prove

that it is perpendicular to a.
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Solution: Curl F=VxF = Vx[(g';);]

We know that,  Vx(fA4)=f(Vx4)+(Vf)x4
Curlf:VX[(E-i_’);]
=(a-r)(Vxr) +[V(a r)]xr
ij ok
Now, vxr=|d 29
ox dy oz
X y z

=i (0-0)—7 (0—0)+k(0—0)
=0
As proved in Ex. 11

Via-r)=a
Vx[ ar r] 0+axr
—a><r
Vx[(a-;);]-az(ax;)-azo

Hence, V x[(a . ;);] is perpendicular to a.

axr —.
Example 13: Prove that V- ( ): 0, where a is a constant vector.
r

Solution: vy .[axr J: V- (axr)]

7

We know that, V(fd)=r(V-A)+f)-4

V-[r_1 (;x;)] =" [V'(le;)]-i-(Vr'l)(;x;)
=7 [V axr)]+(l ag—;+}£+l€ag—z_l)(;x;)

V- (4xB)=B-(Vx4)-4-(VxB)
V-(axr)=r-(Vxa)—a-(Vxr)

Since a is constant, Vxa =0.
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Also, Vxr=0 as proved in Ex. 12.
V-(sz;_f)= 0

Hence, V-[ ' (axr)]=0+ —r‘zif—r*i]’—r‘zié Aaxr)
ox dy 0z

—0_,2 (fofy—J”fZ’;].(;x;)

7

= [r(axr)]

=0
Example 14: Prove that curl [(; X Z) X E] =bx E, where a and b are constants.

Solution: We know that, (rxa)xb=(r-b)a—(a-b)r
Let ;_f-l_7=f, say and 5-13=g, say
(M_)xl =
curl [(;XZ)XZ]sz[(;xa)xE]
=Vx(fa-gr)
= Vx(ra)-Vx(gr)
We know that, Vx(fZ)zf(VxZH(Vf)xZ

Vx| (rxa)xb ] = f(Vxa)+ (V) xa-g(Vxr)—(Va)xr
Since ais constant, Vxa =0. Also Vxr =0
Vx[(rxa)xb]=[V(r-b)]xa-[V(a-b)]xr  [Substituting fand g]
= [V(;-l_))]x;—o .. (1) [ a and b are constant]
Let b=bi +b,j +bk r=xi +y +zk

V(r-b)= (fi+}'i+l€i)(blx+b2y+b32)
ox “dy oz
=bi+b,j+bk
=b
Substituting in Eq. (1),
Vx[(;xa)xl_a] =bxa

Hence, curl [(;x;)xz] =bxa.
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n+l

r

1
Example 15: Prove that V(rV—n
r

J: n(n-2)

Solution: Viz(fi+ji+]€i)r_,z
rn

ox ~dy oz
A e R S KRG et
= (—nr'"‘l)(£f+lj'+£/€)
roror
T on -
P n+2 r
r r
1 n -
9{{9{ _n) |:r( n+2 r):|
r r
=—nV-(17)

We know that, V-(f4)= £ (V- 4)+(Vf)-4

V(") = —n %(V )+ (Vr™ ;:|
r

[+ V-r=3]

Il
|
S
;w
—r
~
QU
+
~o
Q)
Ll
+
=
o
N——
—
N
K
L
~
[y —'
~
| S—
|

=—n|——(m+r"” LAy

L dy oz
e T

r r r r

[ 3 (el)rr
=-n n+]_ n+2 _:|

wa r r

[ 3+
=-hn n+]_ n+2

wa r r
__n2-n)

rn+1
_n(n=2)

rn+1 °

Example 16: Prove that Vlogr = Lz and hence, show that
r

(a-r)r

7’4

V x (a X Vlog r) =2 where a is a constant vector.
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Solution: Viogr = z—+]—+k Jlogr

larA larA lié
rax ray r oz

1
:—(—z+y]+ k)
rlr 7 r
-
2

~

Vx(Eleogr) =Vx ;XL]

=Vx

Let 5><17=A,

Vx(axVlogr)=Vx| =25 |=vx(+24)

We know that, Vx(f4) = f(Vxd)+(Vf)x4

Vx(r24) =2 (Vx A)+(Vr2)x 4
=2 [Vx(axr) ]+ (Vi) x(axr)
2[G-V)a-r(v-a)=(a-V)r+a(v.r)]

Since a is a constant vector, V.q = 0,(;- V)E =0.

Let a= az+aj+ak

r=xi +yj + 2k

Vx(Zleogr): [ (@a-V)r+a(v.r ]+(—2r )[ +Ai+l€ﬁ]x(5x;
ox " dy
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Vx(&leogr) =77 l—[al 8_r+a2 £+a iJ%—ZJ(E})]

ox dy oz
+(—2r3)(£f +2 742k )x(}x;)
roor r
=77 [—( alf + azf + a3l€ )+3¢_1]+(—2r73)£><(;><;)
r

:r—z(_;+3;)_r£4[<;.;>;_<;.;,);]

2 2[a0 (o))

r2 1”4
2¢ 2a 2(@r)r
B
20a-7)r

4
7

Example 17: Calculate V? f when f=3x%z — )’2* + 4x*y + 2x — 3y — 5 at the point

(1, 1,0).
Solution: v2 ’ P 2 2 2.3 3
olution: v2 7 PR Gx’z-y*2 +4x’y+2x-3y-5 (1)
X )y Z
gizaiaxzz—yzf+4x3y+2x—3y—5)
x Ox
=6xz+12x%y+2
2
a—f=6z—}-24xy
ox?
glzai(hzz—yzf+4x3y+2x—3y—5)
V. oy
=-2yz +4x’ -3
2
8{2_223
dy
31283(3x22—y223+4x3y+2x—3y—5)
z 0z
=3x? —3yzz2
82
—{=—6y22.
oz

Substituting in Eq. (1),

V2f =6z+24xy—22—6y*z
% y

At the point (1, 1, 0), V2 f =24
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2 - .
Example 18: Prove that V2 f(r) = %-ﬁ-z%, where r=xi +yj +zk.
dr

r dr
Solution:  V?f=V.Vf

szlfaf(”) af(”) ”af(”)
ox dy oz

-[roZ) +[f’(r)§—;]}' | o]

o _x Jr _y or_z

ox r dy r 0z r

V2f=V-Vf=V-|:f,(r) ]
A

We know that, V-(/4) = £(V-4)+(Vf)-

Vv [L07]
=f(V)(V.;) [Vm}; [ 1sascalarﬁ1nctlon:|
7 r
[tz
Now, V.r= l—+]—+k_ XH‘)’]"‘Zk
dy 0

v/ 0 _ B[f(r)} j[f(r)] g[ }
r r dy ) r
d[f(r)]ar d|:f(r):|8r. [ 1 ]

dr r

[ "(r) f(r)}( )

[f "(r) f(r)}

Hence, szzf’(r)(3)+[f Er)—f(f)];.?
r r r

30, [f”(r) _ f'(r)}rz

r }"2 I"3




If Zandg are vectors joining the
P, (?‘1’ Vi z!) and P,(x,, y,, z,) to a
variable point P (x, y, z), show that
e (7x2)=2(7 7).

. Prove that

VX[(;XE)XEJ =bxa, where
7=xi +y] + zk and a, b are constant
vectors.

. If ais a constant vector, prove that

Vx[;x@x;) =3rxa.
. Prove that
r)= 1 d
V. |:—f( ) r] = —2—[r2f(r)]
r dr
Hence, or otherwise prove that
div (77) = (n+3)r".
. Prove that
V-(loﬂ?)z L+210g7).
r r

. Prove that

5~[grad (7~E)—cur1 (7x5)] =div f

where a is a constant unit vector.

. Find f(r), so that the vector f(r) ris
both solenoidal and irrotational.
c
_3

[Ans. f(r)=

6.11
3 r - r
SO, oy L0
=f ”(r)+;f "(r)
&2y
@t rdr
Exercise 6.5 |
(U7 - 9.
. Evaluate div (Axr) ifcurl 4=0,
r=xf+yf+zk.
[Ans. : 0]

10.

11.
12.

13.

14.

15.

16.

Second Order Differential Operator

6.81

If ¢, and ¢, are scalar
functions, then prove that,

V><(¢’1 V¢2):V¢1 XV¢2'

Is 4=22" 4 solenoidal vector,

n

7

where a is constant vector?

[Ans. : Yes]

Prove that div (a : r)a =a’
If 7 is the positive vector of the point

(x, y, z) and 7 is the modulus of r,
then prove that 7" 7 is an irrotational
vector for any value of n but is sole-
noidal only if n =-3.

If ¢, and ¢, are scalar functions, then
prove that

VX(¢1 V¢2) = V¢1 XV¢2 =

-Vx(¢, Vg¢,) and deduce that
Vx(fVf)=0.

Prove that V(¢ V¢, x¢, Vg) =0,
where ¢ and ¢, are scalar functions.
Prove that

Vi (fg)=fV’g+2Vg-Vf +gV’/,
where fand g are scalar functions.

Calculate V* f where f=4x> + 9% + 2.
[Ans. : 28]



Vector Calculus

l Chapter J

7.1 INTRODUCTION

Vector calculus deals with the differentiation and integration of vector functions. We
learn about derivative of a vector function, gradient, divergence and curl in vector
differential calculus. In vector integral calculus, we learn about line integral, surface
integral, volume integral and three theorems, namely Green’s theorem, divergence the-
orem and Stokes’ theorem. It plays an important role in the differential geometry and
in the study of partial differential equations. It is useful in the study of rigid dynamics,
fluid dynamics, heat transfer, electromagnetism, theory of relativity, etc.

7.2 LINE INTEGRALS

The line integral is a simple generalisation of a definite B
integral J ’ f(x) dx which is integrated from x=a (point 4) g
tox=>b (upoint B) along the x-axis. In a line integral, the G
integration is done along a curve C in space.

Let F(7) be a vector function defined at every point g Fig. 7.1

of a curve C. If 7 is the position vector of a point
P (x, y, z) on the curve C, then the line integral of F(7) over a curve C is defined by

j(_ F(F)-dF = L‘(Fld\-+ Fydy+ F,dz)
where F=Fi+F,j + Fk and 7 = xi +yj + zk
If the curve C is represented by a parametric representation

7(t) = x(t)i + y(t)] + 2(Dk,
then the line integral along the curve C from t=atot=>bis

jF(,)d;_j F—dz
f(ne i, )y

If Cis a closed curve, then the symbol of the line integral J' is replaced by Sﬁ .
c c
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Note:
(1) The curve C is called the path of integration, the points 7(a) and 7(b) are called
initial and terminal points respectively.

(2) The direction from A to B along which ¢ increases is called positive direction on C.

7.2.1 Circulation
If F is the velocity of a fluid particle and C is a closed curve, then the line integral

@ F -d 7 represents the circulation of F around the curve C.
2

Note: If the circulation of F around every closed curve C in the region R is zero,

then F is irrotational, i.e. if cﬁ F-d7 =0, F is irrotational.
2

7.2.2 Work done by a Force

If F is the force acting on a particle moving along the arc 4B of the curve C, then the
B
line integral J.1 F-d7 represents the work done in displacing (moving) the particle

from the point 4 to the point B.

7.3 PATH INDEPENDENCE OF LINE INTEGRALS
(CONSERVATIVE FIELD AND SCALAR POTENTIAL)

If F is conservative, i.e. F =V @ where @is a scalar potential, then the line integral
along the curve C from the points 4 to B is

[ Far=['v¢-dar

o
= ( avd +$dz)

=J 00
=0(B)—9(4)
Thus, line integral depends only on the start and end values and therefore is independent

of the path.
Hence, for a conservative force field, line integral is independent of the path.

Note 1: If F is conservative and curve C is closed, then
- A
 F-d7 = 9(4)-9(4) =0 ®

Note 2: Work done in moving a particle from points 4 to B under a Fig. 7.2
conservative force field is

work done = ¢ (B) — ¢ (4)
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Example 1: Evaluate J.C F -d7 along the parabola y* = x between the points (0, 0)
and (1, 1) where F = x*{ + xy J.

Solution: (i) Let 7 = xi + ]
d7 = idx + jdy o
(i) F-d7=(x"+xyj)-((dx+ jdy)

A(1,1)
= x*dx + xydy

(iii) Path of integration is the parabola
x=)>
dx =2ydy
Substituting in F-d7 and integrating between
the limits y=0to y =1,

= 1 5
j(,F-dr—:j“(yf 2ydy+y* - ydy)

(o,

Lo 3
= J0(2y‘ +y7)dy

=‘ >, P
6 4
1 1
= —+4—

3 4
o b

12

Example 2: Prove that JCF -d7 =37, where F = zi + xj + yk and C's the arc of

the curve 7 = costf+sintj‘+tl€ fromt=0tor=2rx.

Solution : (i) 7=costf+sint]’+t/€
x=cost, y=sint, z=t
dx = —sinzdt, dy = costdt, dz =dt
(i) F-d7 =(zi +x ]+ yk)-((dx+ jdy +kdz)
= zdx + xdy + ydz
= t(—sint)dt + cost-cost df +sinz dt
= (~tsint +cos’ ¢ +sinz)d¢

(iii) Path of integration is the arc of the curve 7 = costi +sinz j +¢k from
t=0tot=2m
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— 2 5 .
jF-dF = J.U (—tsint+cos” ¢ +sint)ds
=

. o 2 1+ ‘21‘ 2r
= —|t(—cost) - (—sin?)|, +L mdtﬂ—cosdo
/ . 2[ 2r
=2+ + S _(cos27 = cos0)
0
2
=2m+8
2
=3r

Example 3: If F=Qx—y+2z)i +(x+y—2)j+(Bx—2y— 52)12, calculate the
circulation of F along the circle in the xy-plane of 2 unit radius and centre at the
origin.

Solution: Circulation = (j)(ﬁ -dr

(1) Let 7=xf+yj'+zl€
d7 = idx + jdy + kdz
(ii) F-dr=[(2x—y+2z)f+(x+y—z)j+(3x—2y—52)/€]-(fdx+j'dy+1€dz)
=2x—-y+2z)dx+(x+y—z)dy+(Bx—-2y—-5z)dz

(ii1) Path of integration is the circle in xy-plane of radius of 2 units and centre at the
origin, i.e. x* + y* =4 and in xy-plane z =0
Parametric equation of the circle is

x=2cos6, y=2sind
dx=-2sinddé, dy=2cosf@dé

For the complete circle, & varies from 0 to 27.
Substituting in F-d7 and integrating between the limits 6=0to =27,

Circulation = -[02”[(2 -2c0s @—2sin 8)(—2sin 8d6) + (2cos 8+ 2sin &) (2 cos 0d6')]

= 4J02”(—2 cos @sin @+ sin® @+ cos® O+ cos Gsin ) d&

=4J-2fr 1_s1n2t9 40
0 2

2

cos26
+—

=4’¢9
4

0
=8
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Example 4: Evaluate J-c F-d7 where F=(x*+)%)i-2xyj and C is the
rectangle in the xy-plane bounded by y=0,x=a, y=5b,x=0.

s A y
Solution : (i) Let 7 = xi +yj
d7 =idx+ jdy
(i) F-d7 =[(+y")i -2xp]]-(dv+ jdy) b8 B
= (x" +y")dx - 2xpdy
(ii1) Path of integration is the rectangle OABD
bounded by the four lines 6] A(a 0) X
y=0,x=a,y=b,x=0. (0,0)
Fig. 7.4
J.(‘F-dr = JOAF-dr +'[ABF-dr +JBDF-dr +ID0F~dr .. (D

(a) Along 04 :y=0, dy=0
x varies from 0 to a.

OA

(b) Along 4B : x=a, dx=0
y varies from 0 to .

J‘AB}?-dF = J:(—2ay)dy = —|ay2|z = —ab’

(c) Along BD:y=b, dy=0
x varies from a to 0.
0 3
= _(a + bza]
a 3

- _ 0 2 2 ,\‘3 5
J.BDF‘dr = j (x> +b%)dx = ?+b“x

(d) Along DO :x=0, dx=0
y varies from b to 0.

L 0 _
-[I)()F.d’ :-[lrody_o
Substituting in Eq. (1),
3 3
[ Frar=%-ap’-%-pa
¢ 8 3
= —2ab’

Example 5: Evaluate LF -d7 where F = (3x* +6y)i —14yzj +20xz°k and C is
the straight line joining the points (0, 0, 0) to (1, 1, 1).
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Solution: (i) Let 7 = xi + yj + zk
d7 =idx+ jdy + kdz
(ii) F-d7 =[ (32" +6y)i —14yz) +20x2°k |- (id + jdy+ kdz)
= (3x* +6y)dx —14yzdy + 20xz°dz

(iii) Path of integration is the straight line joining the points 4 (0, 0, 0) to B(1, 1, 1).
Equation of the line AB is
x=0 y-0 z-0
0-1 0-1 0-1
xX=y=z
dx=dy=dz

Substituting in F-d7 and integrating between the limits x=0tox =1,

J.(, F-dr = JOI [(3xz +6x)dx —14x” dx + 20,r3d\‘]
= j(:(zox* —11x% +6x)dx

1

‘ 1 6

+
4 3 2

0

Example 6: Evaluate chﬁ -d7 along the curve x*> + 3> = 1, z = 1 in the positive
direction from (0, 1, 1) to (1, 0, 1), where F = (yz+2x)i +xzj + (xp+ 22)k.
Solution: (i)Let 7=xi+y+ zk
d7 = idx+ jdy + kdz
(i) F-d7=[(yz+2x) +xz + (+22)k]-(idv + jdy + kdz)

=(yz+2x)dx+xzdy + (xy+2z)dz

y
(iii) Path of integration is the part of the curve A0, 1)
xX*+y'=1,z=1from (0, 1, 1) to (1, 0, 1).
Parametric equation of the curve is
X =cos6, y =siné, z=1
dx=-sindd€, dy=cosfddd, dz=0 B(1,0)x
Atpoint4:x=0 b
cos@=0, 0= %
Atpoint B:x=1
cosf=1, Fig. 7.5

0=2r
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Substituting in F-d7 and integrating between the limits & = %to 0=2r,

LDB F.d7 = Igﬂ[(sin 0+ 2cos O)(—sin #d6) + cos B(cos 6d6)]
= [ (cos® 6 sin® 6 2cos Bsin )46
2

= E” (cos280—sin26)dé
2

2z

sin28 A cos26
2 2

ua

L. p
= E(sm 47 —sinz+cos4x —cos )
=1
Example 7: Evaluate LF -d7 over the circular path x> + ) = a? where

F =sinyi + x(1+cos y) .

Solution: (i) Let 7= xf+y}'

d7 =idx+ jdy

(ii) F-d7 =[sinyi +x(1+cosy)j |-(idx+ jdy)
=sin ydx+ x(1+cos y)dy
=sinydx+xcos ydy+xdy
=d(xsiny)+ xdy

(iii) Path of integration is the circle x* + ) = a°.
Parametric equation of the circle is

X =acosé, y=asinf
dx=—-asinfdé, dy=acosfdé

For complete circle, & varies from 0 to 2.
Substituting in F-d7 and integrating between the limits 8 =0 to 8 =27,

JCFdF = JOZ”[d{acos @sin(asin@)}+acos 6- acos&dO]

_ . . 27 az 2z
_]acost9s1n(asm0)|0 +7'[0 (14 cos26)da
2

2

=O+a_ sin26
2

o+

0

:ﬂ'az
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Example 8: Find work done in moving a particle in the force field F = 3x% +
(2xz - y) ] + zk along the curve x> = 4y and 3x* = 8z from x = 0 to x = 2.

Solution: Work done =j F-d7
(s
(i) Let 7=xf+y}'+zl€
d7 =idx+ jdy+kdz
(i) F-d7= [3x2f+(2xz—y)}'+zl€)]~(fdx+}dy+/€dz)
=3x*dx + (2xz — y)dy + zdz

(iii) Path of integration is the curve x*> = 4y and 3x* = 8z.

=X z—éx3
T g
2
=il Al
2 8

Substituting in F -d7 and integrating between the limits x = 0 to x = 2,

2 3 2 3 2
Work done = L;[3.x2dx+(2x-%—%)%dv+%~9%dx:|

Example 9: Find the work done in moving a particle from A(1, 0, 1) to B (2, 1, 2)
along the straight line 4B in the force field F = x* +(x — y) j +(y + 2)k.
Solution: Work done = JF‘-d?
(1) Let 7=xf+y}'+zl€
dF =idx+ jdy+kdz
(i) F-dF = [le? (%= y))' +(y+ z)lg]‘(fdx + jdy + /gdz)
=x*dx+(x - y)dy +(y + z)dz
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(iii) Path of integration is the straight line AB joining the B(2,1,2)
points A(1, 0, 1) and B(2, 1, 2).
Equation of the line AB is
=% V- 2%
X=X N=V, Z7%
x-1_ y-0_ z-1
-2 0-1 1-2
x=1l=y=2z-1 A(1,0,1)
x=1+y, z=l+y Fig. 7.6
dx =dy, dz=dy

Substituting in F - dr and integrating between the limits y=0to y =1,

Work done = L:[(l + )2 dy+(1+y—y)dy+(y+1+ y)dy]

:'[Ol|:(1+y)2 +2+2y]dy
1

3
= M+2y+y2
3
0

=§+2+1—l

3 3
_16

3

Example 10: Find work done in moving a particle along the straight line segments
joining the points (0, 0, 0) to (1, 0, 0), then to (1, 1, 0) and finally to (1, 1, 1) under
the force field F = (3x* +6y)i —14yzj + 20xz°k.
Solution: Work done =I F-dr

(1) Let r= xf+y}'+zl€

dr = idx+ jdy + kdz
(ii) F-dr=[ (x> +6y)i =14z} +20x2%k |- (idx + jdy + kdz)
=(3x> +6y)dx —14yzdy + 20xz%dz

(iii) Path of integration is the line segments joining the points O (0, 0, 0) to A (1, 0, 0),
A(1,0,0)to B(1, 1,0) and then B(1, 1,0) to D(1, 1, 1).

Work done =J‘CF.d;_~
=] F-dr+] F-dr+| F-dr (1)
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D(1,1,1)

<V

B(1,1,0)

(a) Along O4:y=0, z
dy=0, dz=
x varies from 0 to 1.

JOAF~d;=J.;3x2dx=|x3|L =1
(b) Along AB:x=1, z=0
dx=0, dz=0
y varies from 0 to 1.
- - 1
LBF-dr=j00dy=o
(c) AlongBD :x=1, y=1

dx=0, dy=0

z varies from 0 to 1.
1

F-dr=]20z%:= 20}1’ 0
0 3 3

0

BD

Substituting in Eq. (1),

Work done =1+0+23—O
B
3

Example 11: Find the work done by the force F = xi — zj + 2 yk in displacing the
particle along the triangle OAB, where

04:0<x<1, y=x, z=0

AB:0<Lz<1, x=1 y=1

BO:0<x<l, y=z=x
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Solution: Work done = jc F-dr
(i) Let r= xf+y}+zl€
dr=idx+ jdy+kdz
(i) F-dr=(xi—zj +2yk)-({dc+ jdy +kdz)
= xdx —zdy +2ydz
(ii1) Path of integration is the triangle OA4B.

Z A
Work done =‘[ F-dr
C
=I 17~d;+‘[ F-dr
04 AB
= 1. B(1,1,1)
+[ Fdr ()
(a) Along O4 : y =x, z=0 o)
dy = dx, dz=0 (0,0, 0) 5
x varies from 0 to 1. A y
- I
J‘ F'dr=-|-xdx=x_ = —
04 0 2 2
. X A(1,1,0)
(b) Along AB:x=1, y=1 Fic. 7.8
dx=0, dy=0 18 /-

z varies from 0 to 1.
[ Fedr=[2dz=]2c] =2
AB 0 0

(c)Along BO:x=y=z
dx=dy=dz
x varies from 1 to 0.

JBOF.d;=JIO(xdx—xdx+2xdx)=|x2|? =-1

Substituting in Eq. (1),

J.F‘d;=l+2—l=§
é 2 >

Example 12: Find the work done by the force F =16 yi +(3x> +2) j in moving a
particle once round the right halfofthe ellipse x* + a*y* = a* from (0, 1) to (0, —1).

Solution: Work done = LF -dr
(i) Let r=xi+yj
dr=idx+ jdy
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(i) F-dr=[16yi +(3x* +2)] ] (idx + jdy)
=16ydx+(3x*> +2)dy

(iii) Path of integration is the right half
of the ellipse x* + a*? = a* from

X=acosb, y=sinf
dx =—asinfdé, dy =cosddé

Atpoint4 :y=1

y
A
(0, 1) to (0, - 1).
Parametric equation of the ellipse is D
B

0,-1)

Fig. 7.9
Atpoint B:y=-1

Substituting in F - dr and integrating between the limits 0=§ to 8= —%,

Work done = LDB F-dr

8
= [,2[165in O(~asin 616) + (3a* cos* 0+ 2)(cos &16) |
2

¢
= —_’._2,,(—16asinz 6+3a* cos’ 8+2cos0)do
3

= —2j5(—16asin2 6+3a’ cos’ 6+ 2cos6)do

—-16a —B(g l)+3 ? 13(2 —)+2 1B(l, l)
2 \2 2 2 2 2 2

[ _[ sm"@cos"&d@—%B(p-l-l q+1):|

I e
‘ER
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=8ar—4a’ -4

Example 13: If F =2xyzi +(x’z+2y) ]+ x’yk, then
(i) if F is conservative, find its scalar potential ¢
(i1) find the work done in moving a particle under this force field from (0, 1, 1) to
(1,2,0)
Solution :

(i) Since F is conservative,

F=V¢
(2xyz)f+(xzz+2y)}+(x2y)k—la—¢+ ¢+12%
dx “dy oz

Comparing coefficient of i }', k on both the sides,

29 ¢ 99 _
=2 — = z4+2y—=x"y
5 Xyz, S xz+ Y, % =X")
But, d¢=a—¢dx+a—¢dy+a—¢dz
ox )y 0z

= (2xyz) dx+ (X*z+2p) dy +(x’y)dz
Integrating both the sides,

[do= Janh+J(meﬁ®+j(xﬁ&

constant constam constam

Considering only those terms in R.H.S. integral which have not appeared in the

previous integral, i.e. omitting the x?yz term in second and third integral,
p=x'yz+y* +c

where c is the constant of integration.

(ii) F is conservative and hence the work-done is independent of the path.
Work done = J F-dr
G

(1,2,0) (1,2,0)
“Joy d¢_|¢(0,1’1)
| 2 + 2 x |(l,2‘0)
=|Xyz C
Yety (0,1,1)

=3
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Example 14: If F = (x* = yz)i +(3* — zx) j + (2> — xp)k, then
(i) If F is conservative, find its scalar potential ¢

(i1) find the work done in moving a particle under this force field from (1, 1, 0) to
(2,0, 1)

Solution:
(i) Since F is conservative,

F=V¢
~d ~d ~ 0
(-X _VZ)1+(V —ZA)/+(Z —xv)k_l_¢+/i _¢
X dy 0z

Comparing coefficients of i 1 ]’, k on both the sides,

%—\ -yz, g—f—y - zx, %—z —Xxy
8¢ L99 ¢
But, do=—"24d
¢ dx ayd +az

= (%% — yz2)dx + (3 = zx)dy + (2% — xy)dz
Integrating both the sides,

jd¢= J.y’z(xz —yz)dx+ L.z(yz —zx)dy+ Ly(zz —xy)dz

constant constant constant

Considering only those terms in R.H.S. integral which have not appeared in the
previous integral, i.e. omitting the xyz term in second and third integral,

3 3 3
x y
== —xz+i-++c
P=g—nEtyty

where c is the constant of integration.

(ii) F is conservative and hence the work done is independent of the path.

Work done = L F-dr

(2,0,1)
“Jaro
_ |¢|(2,0‘l)
17,10y
(2,0,1)
e y3 3
= |———xyZ2+——d—=+¢
3 3

(1,1,0)

7
3
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Exercise 7.1 ]

1. Evaluatej F- dl_‘, where
CA ~
F=(x+y)i+(y—x)jandCis
(i) the parabola y* = x between the
points (1, 1) and (4, 2)
(i1) the straight line joining the points
(1, 1) and (4, 2)
[Ans.: (1) % (ii)ll:l
2. Evaluate
jCF-d?,whereF =(3x-2y)i

+(y+2z)j—x*k and C is
(1) the curvex=t¢,y=7,z=1¢ between
the points (0, 0, 0) to (1, 1, 1)
(ii) the straight line joining the points
(0,0,0)to (1,1, 1).
(iii) the straight lines from (0, 0, 0) to
(0, 1, 0) then to (0, 1, 1) and then
to (1,1, 1).
23 5
Ans.: (i) — (ii) = (iii) 0
[ D7 : (i1) 3 (iii) ]
3. Evaluate
JCF-d;,where F=Qx+y)i
+(3y —4x) j and C is the triangle
in the xy-plane with vertices (0, 0),

(2,0)and (2, 1).
[Ans.: —%]

ICF-d;,where17=yzf+zx]'+xyle

4. Evaluate

and C is the curve )? = x, z = 0 from
(0, 0, 0) to (1, 1, 0) followed by the
straight line from (1, 1, 0) to (1, 1, 1).

[Ans. : E:I
4
5. Evaluate

jcﬁ-d?,whereﬁz 2xi+4yj-3zk

10.

7.15

and C is the curve ;=costf+sintl
j+tk fromt=0tot=r

[Ans. : —z]
2

. Find the circulation of F=(x-3y)

% (y- 2x)j' around the ellipse in
the xy-plane with the origin as centre
and 2 and 3 as semi-major and semi-
minor axes respectively.

[Ans.: 67|

. Find the circulation of F =yi+z

j+xk around the curve x*+y* =1,
z=0.
[Ans.: - 7]
Find the work done in moving
a particle in a force field
F=3xpi =5z j+10xkalong  the
curve x=1+¢,y=2z=¢ from
t=1tot=2.
[Ans. :303]
Find the work done in moving
a particle in a force field
F=3x*i +(2xz - y) j + zkalong the
(i) straight line joining the points
(0,0,0)and (2, 1, 3)
(i) curve x=21*y=t,z=41" -t
from t=0tor=1

[Ans. : (1) 16 (i) 7?1]

Find the work done in moving
a particle in a force field
F= (2x—y+z)f+(x+y—zz)}
+(3x —2y+4z)l€ once around the
circle in xy-plane with centre at the
origin and radius of 3 units.
[Ans.:187]
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1. If F=Qxy+2))i+x*j+3x22k is
conservative then
(1) find its scalar potential ¢

(i1) find the work done in moving
a particle under this force field
from (1,-2, 1) to (3, 1, 4)

[Ans.: (i) g=x*y+x2° +c (ii) 202]

12. If F=3x*yi+(x’-2yz%) ]

+(32% —2y°z) k, is conservative
(1) find its scalar potential ¢
(i1) find the work done in moving
a particle under this force field
from (2,1, 1)to (2,0, 1)

Ans.: (i) g=x"y+2° —y*2* +¢
(i)—7
13. If F=2xpe'i+x% j+x’yek is
conservative, then find
(i) the scalar potential ¢
(i) the work done in moving a
particle under this force field from
(0,0,0)to (1,1, 1)
[Ans.: (i) g=x*ye +c (ii)e]
14. Evaluate
J.CF-dr where F = cos yi —xsin y j
and C is the curve y=+1-x*in
the xy-plane from (1, 0) to (0, 1).
[Ans.:—1]

7.4 GREEN’S THEOREM IN THE PLANE

oM dN

Statement: If M (x, y), N (x, y) and their partial derivatives —, — are continuous in

some region R of xy-plane bounded by a closed curve C, theﬁ;

dx

(M dv+N dy)= H (a—N—aﬂ)dxdy

2y

Proof: Let the region R be bounded by the curve C.
Let the curve C be divided into two parts, the curves EAB and BDE.

Let the equations of the curves EAB
and BDE are x = f,(y), x = f(y) respec-
tively and are bounded between the lines

y=candy=d.
Consider,
oN /maN
.ijdxdy J.I:J.m‘) o ]dv
/(‘)
_J. N (x,) Nsion @

=J(, [N(fZay)—N(fl,y)]dv

VA

(0, d)

(%)

—
1 ol [ ——
(=)
N
>V

=J‘éN(fz’)’)der'[;N(f;,y)dy
=J.BDEN(x’y)dy+J‘EABN(x’y)dy

= ¢(‘ N (x, y) dy
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oN
N(x,y)dy =|| —dxdy .. (7.
§N )ty =[] 5 dxd (1.1)
Similarly, let the curve C be divided into two parts, the curves ABD and DEA.

Let the equations of the curves ABD and DEA are y = g (x), y = g,(x) respectively and
are bounded between the lines x = a and x = b.

Consider,
{j _mdv—j [j;(i‘))%—]:ldV}d
= ["M )0
= ["[M(x.g,) - M(x,g)]dx
="M (g dv= [ M (g ) v

B l:jDE"‘ Mz, p)dz+ .[_.131) M (x,y) d}c:l
=M (x,y)dr

i‘M(x,y)dv=—“aa—Ay/[drdy .. (7.2)

Adding Egs. (7.1) and (7.2),

¢ (Md\+Nd))—H (aN aM) drdy

V

Note: Vector form of Green’s theorem is given as
gSCF.dr =£I(V><F)-kdxdy
where F=Mi+N }', r=xi+ y j‘, k is the unit vector along z-axis.

Area of the Plane Region Let A be the area of the plane region R bounded
by a closed curve C.

Let M=-y, N=x
M _ N
dy " Ox

Using Green’s theorem,

$, (~ydx+xdy)=[[(1+1)dvdy =2[[ drdy =24
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1
Hence, A= Ecﬁc (xdy—ydx)

Note: In polar coordinates,
x=rcoso, y=rsin6
dx = cosOdr—rsin@dO, dy =sinBdr+rcos6do

A= %(j}([rcosa(sin Odr+rcos0dB) —rsinO(cosOdr —rsin0do)]

= %(j}( de

Example 1: Verify Green’s theorem for ¢ [(x2 —2xy)dx +(x*y + 3)dy] where C
(2
is the boundary of the region bounded by the parabola y = x* and the line y = x.
Solution: (i) The points of intersection of the parabola y = x* and the line y = x are

obtainedasx=x%,x=0, l and y=0, 1.
Hence, O(0, 0) and B(1, 1) are the points of

intersection. AY
(i) M=x*-2xy, N=x’y+3

oM ON

=-2x, — =2xy

dy ox > LR
yep 3
(iif) gSC(de+Ndy) J—y=x

=], ,(Mdx+Ndy)+[ (Mde+Ndy)
(0] X
e
(a) Along OAB: y=x’

dy =2xdx Fig. 7.11
x varies from 0 tol.

| oy (M dx+N dy) = jm [ —2xp)dx + (x2y+3)dy |
= J.Ol [(x2 —2x-x7)dx+(x* - x* +3)2x dx]
= _[ol (x* =2x° +2x° +6x)dx

ES S Sl

3 + 6 2

0
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(b) AlongBO: y=x
dy=dx
x varies from: x=1tox=0.

_[BO (M dx+ N dy) =J.BO [(x2 —2xy)dx+(x*y+ 3)dy]

= [l 20 e+ (" +3)dr ]

5 4 0
o R
4 1
1 1
=———=3
3 4
32
12
Substituting in Eq. (1),
1
§.(Mdx+ N dy )——9—f—§ —% e))

(iv) Let R be the region bounded by the line y = x and the parabola y = x*.

Along the vertical strip A4’, y varies from x*tox and in the region R, x varies
from 0 to 1.

[ RS

x
,dx
X

=j;(x3 +2x* —x° =2x*)dx

4 6!

—x* 2 «x

43 6|
1.2 1
43 6
_1 03
4

From Egs. (2) and (3),

98 (Mdx+Ndy) = _U (a—[j—%—/‘fJ chdv—Z

Hence, Green’s theorem is verified.
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Example 2: Verify Green’s theorem for (ﬁc[(x - y)dx+3xy dy], where C is the

boundary of the region bounded by the parabolas x* =4y and y* = 4x.

Solution: (i) The points of intersection .

of the parabolas

”

x’ =4y and )’ = 4x are obtained as

yz ] 3
(7) =4y, y(y' -64)=0

C(4,4)

<« x2=4y

y=0,4

x=0;4
Hence, O(0, 0) and C(4, 4) are the points of
intersection.
(i) M=x-y, N =3xy

Fig. 7.12
oM _ -1, oN

o 3%

(iif) <j>C(de+Ndy) = IOAC(de+Ndy)+JCBO(de+Ndy)

2
X

(a) Along 0AC : x* =4y’y=T
X

dy==dx

4 2

x varies from 0 to 4.

J‘m(' (M dx+N dy) - j().«' [(\” N y)dx + (3 xy)dy]

= )c—L dx + 3x~£ X dx
0 4 4 )2

<« y2=4x

(D)
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2

(b) Along CBO: y* =4x, x= yT
Y
dx==d
D) y
y varies from 0 to 4.

[ (Mdx+Ndy)=|_ [(x=y)de+3xydy]

2 2
oL ¥ y Yy
= ——y|=dy+|3-—-y|d
e et
N P A W
40 8 2 8 4 2 3|,
=_Z.64+l.ﬁ
8 2 3
__136
3
Substituting in Eq. (1),
1192 136 512
Mdx+Ndy)=————=—+ (2
$ ( e T @)

(iv) Let R be the region bounded by the parabolas x> =4y and y* = 4x.
2
Along the vertical strip 4B, y varies from X to 2Jx and in the region R,
x varies from 0 to 4. 4

ON oM Vx
_U(g—g)dxdy=j:j% (3y+1)dedy

_ie= 03
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From Egs. (2) and (3),

ON oM 512
@C(de-i-Ndy):J;J’ (g-g)dXd_}’:F

Hence, Green’s theorem is verified.

Example 3: Verify Green’s theorem for Sﬁ [( y—sin x)dx+cos x dy] where C is
C

the plane triangle enclosed by the lines y =0, x = %, y= 2 :
V4
Solution: (i) The point of intersection of 4
the lines y = 2 and x = g is obtained as
n
2 r -~
)= —.—=1]. Bl 51
A T 2 Q _(zyl 2x
T
Hence, B (%, 1) is the point of intersection. le— x= %
(ii) M=y—sinx, N=cosx (0,8 P A(g,o) x
a—M =1 a—N =—sinx
ady ox
Fig. 7.13
(iif) gS (M dx+ N dy) '
c
:J.OA(de+Ndy)+LB(de+Ndy)+IBO(de+Ndy) (D)

(a) Along0OA4:y=0
dy=0

x varies from 0 to .
jOA(de+N dy) = IOA [(y—sin x)dx + cos x dy]
= J.og (—sinx)dx
~|cos 12
=-1
(b) Along 4B : x =%

dx=0
y varies from 0 to 1.

LB(de+Ndy) = LB [(y = sin x)dx + cos x dy]

LI 4
=I0 coszdy
=0
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2x
(c)Along BO: y= r

dy=£dx
b4

x varies from % to 0.
2

JBO(M dx+Ndy)= JBO[(y —sinx)dx + cos xdy]

=IZ[[2—x—sinx]dx+cosx'-2—dx]
S\ 7T T

2 0

2 .
—-—+Ccosx+—sinx

2 T z
2
1 7 2 .z
=cos0——-—-— COS———sIin—
T 4 T 2
= F 2
4
Substituting in Eq. (1),
2
$ M des Ny =—1¢041-2-2 =—(” +8)
2 4 & ar

(iv) Let R be the region bounded by the triangle OAB.

7.23

- (2)

Along the vertical strip PQ, y varies from 0 to 2% and in the region R, x varies

T
from 0 to E.

J'J' (%_Z_%_A;)dxdy = J?J?(—sinx—l)dxdy

R

= E|—ysinx—y|?dx

=J5(—2—xsinx—2—x)dx
0 T T

2 " -
=—— x(—cosx)-—(—smx)+%

DN

0

T m . x T
=——| ——cos—+sin—+—-0
2 2 2 8

=_£ 1+£)

T 8
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=_(”2+8J - 3)
ir
From Egs. (2) and (3),
ON oM 7 +8
gosernar={[( G- 5 o= {22

Hence, Green’s theorem is verified.

y By
of the region bounded by the parabola y = Jx andthe linesx=1,x=4, y=1.

Example 4: Verify Green’s theorem for j (ldx -+ ldy] where C is the boundary

Solution:

(i) The point of intersection of the %
(a) parabola y = Jx and the line

x =1 is obtained as

y=+1=1 Al | D@42
Hence, A(1, 1) is the point of A = B(4,1)
intersection. y=Vx — T
. 7 y=1 l—x=4
(b) parabola y = Vx and the line x=1
x =4 is obtained as ) e
y= \/Z =2
Hence, D(4, 2) is the point of
11ntersect10n. 1 Fig. 7.14
(i) M=—, N=—
y X
M__1  oN__ 1
dy y*’ ox %
(iii) <_|'>C(M¢\-+ Ndy)= j/m(deNdijBD(MdH N dy)
’ .. (1
+jDQA(MdA+Ndy) (D

(a) AlongAdB:y=1,dy=0
x varies from 1 to 4.

J.I4B(de+Ndy)=Lk(ylvdx+%dy)
=Jl4dr

= x|

=3
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(b) Along BD :x=4,dx=0
y varies from 1 to 2.

1.1
IBD(de+Ndy)=J.BD(;dx+;dy)
21
—3 l Zdy
=1|Y|f

1
4
1
c) Along DQA : =x/;,d=—dx
() gDOA: y Ly ol

x varies from 4 to 1.

1o
jDQA(MdH Ndy)='[DQA(;dA +;dy)

- 4( e Fd’“)

=‘2\/_—$

— 2144~
2

4

Substituting in Eq. (1),
1 5 3
Mdx+Ndy)=3+———=— (2
gf( =Bt o= )
(iv) Let R be the region bounded by the parabola y = Jx and the linesx =1, x =4, y=1
Along the vertical strip, y varies from 1 to Jx andin the region R, x varies from

1 to 4.
ON oM 1
[ N (e IR
I\E
I
Yl
3
:J‘:‘(—x_E —x_% +XL2+1JCLV

1 | 4

=[x 2-2x%2 ——+x%
%

1

=1—4—%+4—2+2+1—1

03

3
4
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From Egs. (2) and (3),

ON oM 3
cﬁ(de+Ndy):jRj(a—x—E)dxdyzZ

Hence, Green’s theorem is verified.

Example 5: Verify Green’s theorem for q.DC (2xydx — y*dy) where C is the
boundary of the region bounded by the ellipse 3x* +4y” =12.

Solution: =
. 2

(i) M=2xy, N ==y Al G, 3)<—03x2 +4y2 =12

M, W

dy ox (-2,00C A(2,0)

X
i) § (M dc+ Ndy)=§ (2xydv—y* dy), \ P
() B8]}
x2 y2
where C is the ellipse T+? =1. Fig. 7.15

Parametric equation of the ellipse is

x =2cos8, y=\/§sin0
dx = —2sin6d6, dy=~/3cosfdo

For the given ellipse, &varies from 0 to 2.
Substituting in Eq. (1),

(j)C(Md,\'+Ndy):J.:”[(z-2cose~ﬁsin@)(—ZsinGd@)—%inz 6-3cos0d6|
= j:’r(—l 13/3 cos Bsin’ 0)d0
= -11¥3-2[ " cos bsin’ 046
f(, F(x)dx =2 jo F(x)dx, if f(2a-x)= f(x)
=0,if f(2a-x)=—f(x)

2 2

(iii) Let R be the region bounded by the ellipse, % + y? =1.
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Along the vertical strip PQ, y varies from \/ 3- % to \/ 3— % and in the region

R, x varies from -2 to 2.

N oM 2 (p-2
-U(g—a—y]cbcdy=J._z_[_\‘\/ﬁ(()—2x)dydx

= [l e
N S ¢
=4[ w324
=3 4
=0 .3 [I f(x)dx =0, if f(-x)=—f (x)]
From Egs. (2) and (3),

95 (Mdx+Ndy)= ”(aN aM)dxdy: 0
dy
Hence, Green’s theorem is verified.
Example 6: Evaluate @C[(x2 —coshy)dx +(y + sinx)dy] by Green’s theorem
where C is the rectangle with vertices (0, 0), (7, 0), (, 1), (0, 1).

Solution: By Green’s theorem,

Z
gSC(MdHNdy) = _”(a—N—a—M]dxdy

ox dy

- (D) c@o 1) Q
where R is the region bounded by the rectangle | B(m, 1)
P

OABC.
M =x*-coshy, N=y+sinx

—— = —sinh —aﬂ—cosx
ady ¥ ox @

Along the vertical strip PQ, y varies from 0 to 1
and in the region R, x varies from 0 to 7. Fig. 7.16

Substituting in Eq. (1),

(0,0)

é(w I:(xz —cosh y)dx +(y+ sin X)dy]
T ol ‘

- J\‘:0 -[\*:() (cosx +sinh y)dydx
¥ | 1

= Jo |y cos x + cosh y| dx

= J:(cosx+ cosh1—0-cosh0)dx
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= Jg(cosx+cosh1—1)dx

=[sinx+ xcoshl —x|g
=sinz +mwcoshl—m7—sin0
= m(coshl—1)

Example 7: Evaluate by Green’s theorem (f)c(—x2 ydx+xp*dy) where C is the
cardioid 7 = a (1 + cos@).

Solution: By Green’s theroem, 6= g

ON oM A
9SC(de+Ndy)=£j(g—$)dxdy

(D) 5 P

where R is the region bounded by the

cardioid r = a (1 + cos@). r=a(1+cos )
-« Ir= o

M =-xy, N=x
O CLUP Fig. 7.17
dy ox
Putting X =rcosb, y=rsind
oM

—=-r"cos’ 6, I st g
dy ox

dxdy=rdrdf

Along the radius vector O4, r varies from 0 to a (1 + cos6) and in the region R, 6
varies from 0 to 2.

Substituting in Eq. (1),

2x pa(l+cosB) )
q.)(‘(—xzydx+ x*dy) = JOHIO . (% sin® 6+ 12 cos® @)rdrde

27 pa(l+cos) 5
= J J r’drd@
0 0

J-ZIT
“Jo

a(l+cosB)
dée
0 . 2a _ a
i I [, r@de=2]" r@)a0
:TJO (I+cos€)"dO | f(2a 6)=f(6)

4

e
4

4
=2 (" 4
~ 2J.0 (I+cos@)"do

4 4
=a—jn 200529 de
270 2
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Putting §=t’ dg=2dt
When 6 =0, t=0
6=, t=z
2

436 (=x’ydx + xy’dy) = 8a* Jf cos’ ¢-2dt

=16a’ lB(g l)
g 22

_%.ZE.ELEL
24 2 2 2 21212

7.29

Example 8: Evaluate gSC [(x2 +2y)dx+(4x+ y*) dy] by Green’s theorem where

C is the boundary of the region bounded by y =0, y =2x and x + y = 3.

Solution: By Green’s theorem,

ON oM
Mdx+Ndy)= ||| =———=—|dxd (1
956( ly) U( . ay) Ly (M
where R is the region bounded by the triangle OA4B.
M=x"+2y, N=4x+)’
aﬁ — 2’ a_N o 4
E)y ox YA
Substituting in Eq. (1),
CJ.)C[(x2+2y)dx+(4x+y2)dy] y=2%
= [[@-2drdy
R B(1,2)
=2”dxdy <« x+y=3
R
=2(Area of AOAB) o) A3, 0) x
1
=2'5'3'2 Fig. 7.18

=6
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Example 9: Find the area of the region bounded by the parabola y = x* and the

line y =x+2.

Solution: (i) The points of intersection of the parabola y = x* and the line

y=Xx+ 2 are obtained as i
A

x+2=x%, x*-x-2=0
x-2)x+1)=0,
x=2,-landy=4,1
Hence, A(—1, 1) and B(2, 4) are the
points of intersection.
(i) By Green’s theorem, the area of
the region bounded by a closed
curve C is

B(2,4)
y=x+2

y=x2

1
4 :E(ﬁc(xdy—ydx)

= %[ J. (xdy—ydx)

+J (xdy—ydx):| .. (1)
BA
(a) Along AOB: y =x*, dy=2xdx

x varies from —1 to 2.

L()B(Xdy—ydx) = J._zl(x‘zxdx—xzdx)

(b) AlongBA :y=x+2,dy=dx
x varies from 2 to —1.
-1
IBA(xdy —ydx)= L [xdx — (x+2)dx]
==2|f;
=-2(-1-2)
=6
Substituting in Eq. (1),
9

1
A=—B3+6)=—
2( ) 2

AOB Fig. 7.19
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2 2
Example 10: Find the area of the ellipse x—2+)b)—2 =1l
a

Solution:

(i) By Green’s theorem, the area of the

L
B(0, b)
region bounded by a closed curve C is // \
9

1
A:EJC(xdy—ydx) -~ T35 \\ A(a,0) x
(ii)) Parametric equation of the ellipse
x>y . D (0, -b)
;2‘ + b—2 =11s
X =acosb, y =bsiné Fig. 7.20

dx = —asin@d6, dy = bcos&d8
For the given ellipse, @varies from 0 to 2.
Substituting in Eq. (1),
2
A= %Jo /r[a cos@(bcos@df)—bsin@(—asin@dO)]

=lj2”abd9
2 0

1 2
= Eabwlo”

:”ab

Example 11: Find the area of the loop of the folium of descartes x* + y* = 3axy.

Solution: (i) Putting x = cos®, VA
y =r sind, equation of the curve

Bm
changes to 4_

[STENY

*(cos® @+sin® @) = 3ar’ sin Bcos &
3asin@cos @
r=—
cos’ @+sin®

x ¥

(i) By Green’s theorem, the area of the T
region bounded by a closed curve C 9=
in polar form is

A=%<j>cr2de

For the loop of the given curve, &varies

from O to z.
2

Fig. 7.21
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" J% 94’ sin® Ocos’ 6
270 (cos’ @+sin’ §)°
_9a” (S tan’ §-sec’ 6

2 Jo (1+tan’ @)’
l+tan’ =1
3tan’ @sec’ 6dO = dr

When 6=0,1=1

O0=—, >
2

9a” = dt
~ 2 b3
3d° -
T2
3d°

Exercise 7.2 ) |

(I) Verify Green’s theorem in plane for
the following:
1. <J‘>C [(Jv2 —2xy)dx+(x*y+3) dy], where
C'is the boundary of the region bounded by
the parabola y* = 8x and the line x = 2.

[Ans.: E]
5

2. ¢C[(xy—x2)dx+x2ydy], where C is
the boundary of the triangle formed by
the lines y=0,x=1and y = x.

[Ans.: —L]
12

3. <ﬁ(y [(3»)(2 —8y%)dy+(4y —6xy) dy],

where C is the boundary of the region
bounded by y = x* and y = V/x.

]

4. Cﬁ(,(‘ﬂ sin ydx+e " cos ydy). where
C is the boundary of the region
bounded by the square with vertices

IEOTEENE)
[A 2(e§ ) 'H

5. 95C (xy* —2xp)dx +(x*y +3)dy, where

C'is the boundary of the region bound-

ed by the rectangle with vertices

(-1,0), (1,0), (1, 1) and (-1, 1).
[Ans.: 0]

6. C'|.>C(x3dy— y’dx), where C is the cir-

cle x> +y* =4.
[Ans.: 487]
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7. <j>({(2xz =y dx+(x* + y*) dy, [Ans.: %]

where C is the boundary of the region
bounded by the x-axis and the circle

y=+1- .
(II) Evaluate the following integrals using Green’s theorem:

by the y-axis and the parabolas

1. Cﬁce" (cos ydx —sin ydy),where C is Ty |

the boundary of the region bounded
by the rectangle with vertices (0,0), |: Aiii. s (l +£) :|

V.4 V4
(7,0), (ﬂ', 5) and (O, E)

[Ans.:2(1—e”’)] 4. <jl>c(xydx+x3dy), where C is the
boundary of the region bounded by

2. @ [(x2 +y?)dx +(5x* =3y) dy], the x-axis and the circle y =v4—x".
(64
where C is the boundary of the [Ans.: 67]
region bounded by the parabola
x* =4y and the line y = 4. 5. @ €*(sin y dx +cos ydy), where C is
{64

l: AnS.: _ﬁ:l the boundary of the region bounded by
5

the ellipse 4(x+1)* +9(y—3)* = 36.
3. @C[(y3—xy)dX+(xy+3xy2)dy], [Ans.: 0]
where C is the boundary of the

region in the first quadrant bounded

(IIT) Find the area of the following regions using Green’s theorem:

-2 2 2 3. In the first quadrant, bounded by the
1. Bounded by the astroid x3 +y? =a3. lines y = x, x = 4y and rectangular

T, hyperbola xy = 1.

[Ans.: i :l [Ans.: log2]

2. Bounded by one arch of the cycloid 4 Boundecl by one IOZOP 20f ﬂzle lemni-
x=a (6-sinb),y=a(l - cosd) and scate (x™+y7)" =a (x"—)")

the x-axis. [ a’ ]
Ans.: —
[Ans.: 37a%] 2

7.5 SURFACE INTEGRALS

The surface integral over a curved surface § is the generalisation of a double integral over
aplane region R. Let F' = F| i + F, j+ F, k be a continuous vector point function defined
over a two-sided surface S. Divide § into a finite number of subsurfaces S, S,, ...... S

’m

with surface areas d5,, d5,, ......,d5,,. Let S, be the surface area of S and 7, be the unit
vector at some point P, (in S) in the direction of the outward normal to S .
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Fig. 7.22
If we increase the number of subsurfaces, then the surface area JS, of each subsurface
will decrease. Thus, as m — 0,05, — 0

Then, =
lim > F(R)- .88, = [[F-nds
r=1 S

m—eo

This is called surface integral of F over the surface S.
The surface integral can also be written as

J.J.F-di where dS = ndS
s

If equation of the surface Sis ¢ (x, y, z) =0, then i1=—-

L
V4l

7.5.1 Flux

If F represents velocity of the fluid at any point P on a closed surface S, then surface

integral _”F -nds represents the flux of F over S, i.e., volume of the fluid flowing
5
out from S per unit time.

Note: If ” F-ndS=0,then F is called a solenoidal vector point function.
s

7.5.2 Evaluation of Surface Integral
A surface integral is evaluated by expressing it as a double integral over the region R.
The region R is the orthogonal projection of S on one of the coordinate planes

(xy, yz or zx). Let R be the orthogonal projection of S on the xy-plane and cos¢, cosf,
cosy are the direction cosines of 7. Then

A=cosoi+cosfj+cosyk
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dx dy = Projection of dS on xy-plane
=dScosy
_dxdy
~ cosy
dxdy

pk

ds

dxdy
-
Similarly, taking projection on yz and zx-plane,

J‘_[F.ﬁdszﬂﬁ-ﬁ(‘i;;(;z and jjﬁﬁdkﬂﬁ'ﬁf,fif[
2 = N R

Hence, [[Fids=[[F-h
S R

Component Form of Surface Integral

HF-}%dS=”(ﬂf+Fz j+Fyk)-(cosai +cos B j+cosyk)dS
s s
:jj(ﬂ dScosa+ F, dScos B+ F; dS cosy)
s

= [[ Fidydz+ F> dzdv + F; drdy)
S

Example 1: Evaluate _Uﬁ'ﬁdS, where F = lSzf—l2j'+3yl€ and S is the part
s
of the plane 2x + 3y + 6z = 12 in the first octant.
Solution:

(i) The given surface is the plane 2x + 3y + 6z = 12 in the first octant.
Let §=2x+3y+62

Rl

Vel ‘

_2i+3j+6k

 J4+9+36

_2i+3j+6k

7 J
[0 B(0, 4, 0)

ﬁ.—_

(0, 0, 2)

(ii) Let R be the projection of the plane
2x + 3y + 6z = 12 (in the first octant)
on the xy-plane, which is a triangle
OAB bounded by the lines y=0,x=0
and 2x + 3y =12.

A8, 0, 0)
X

Fig. 7.23
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(iii) dS= G dy
‘n-k

;
=2 iy
6

(iv) Along the vertical strip PQ, y varies from 0 to 12-2x and in the region R, x

3
varies from 0 to 6.

”F-ﬁdS:JJ(1825—12}+3)212)~(MJ%M@
S

—_U(362 36 +18y)dxdy

—3JJ‘|: (12 2x — 3)2] 2+)}:|de))

12-2x

6P
= 3 —
[ 3 6-20)dpdx
12-2x

B 3
:2j0(3—x)]y|0

6 12 -2x Y
=2 3-n B g
=202 —ox+18)de
ik B(0, 4)
4 x> 9x? _6 Q
_E?_T+181\0 2x+3y=12
=%(72—162+108) o P AG6.0) x
~24 Fig. 7.24

Example 2: Evaluate ”(yzdydz+xzdzdx+xydxdy) over the surface of the
s

sphere x* + y* + z* =1 in the positive octant.

Solution:

() [[F-idS = yzdydz+xzdzdx+xydrdy
S

F'= yzf+xzj'+xy1:f



ii) The given surface is the sphere x* + y* +z> =1.
g P Y

Let g=x"+y"+2°
Vo

|Vdl

_ 2xi+2yj+2zk

Jaxt +4y* +47°

=xf+y}'+zk

ﬁ:

7.5 Surface Integrals 7.37

[ox*+y*+2° =1]

(iii) Let R be the projection of the sphere x* + y* +z* =1 (in the positive octant)
on the xy-plane (z = 0), which is the part of the circle x*> + y*> = 1 in the first
quadrant.

(iv) dxdy ¥

iv =7
n-k
B
_dxdy P
z « r=1
_ A
(v) H(yzdydz+xzdzdx+xydrdy):”F~ﬁdS QJ X
s s
= jj'(yzf+xz}+xyl€)- (xi+yj+ zlg)m
z
R
= [[Ga2) dxdy Fig. 7.25
p z
=3 [[xydxdy

R

Putting x = r cos 6, y = r siné, the equation of the circle x* + > = 1 reduces to =1 and

dxdy=rdrdé

Along the radius vector OP, r varies from 0 to 1 and in the first quadrant of the circle,

@ varies from 0 to %

T
[J(zdydz+ xzdzdv+xpdedy) =3[ 2 [ reos6-rsin6-rdrde
N

T
-

3

2

2

2

16

3
8

sin 26

—cos26

d9-L1r3 dr

1
4
2

4

z
2

0 o

(—cosm+cos0)
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Example 3: Find the flux of F=i —j+xyzl€ through the circular region S
obtained by cutting the sphere x*+ y* +z* = ¢* with a plane y = x.

Solution: Flux = Hﬁ -ndS
s

(i) Surface S is the intersection of the sphere x*+y’+2° =d’ witha plane y =x,
which is an ellipse 2x? + 22 = a”.
(i) Normal to the ellipse 2x* + z2 = @? is also normal to the plane y = x.
Let p=x—y z
Yo,
X P

n=

P

= 7 Q/ X
(iii) Let R be the projection of the surface S on

the xz-plane, which is an ellipse 2x* + z* = @?
dxdz

'~ A

i

=2 dxdz

(iv) dS =

~ [[F-ads=([[¢G -] .‘zé)-(f_‘}]\/iddz
v '[j n .le J+Xxyz \/5 X

=£Idedz

) a ; . .
Putting x = ﬁrcos 6, z=arsin@, the equation of the ellipse 2x? + z* = a? reduces to

2

r=1and drdz=2—rdrde

NG

Along the radius vector OP, r varies from 0 to 1 and for a complete ellipse, & varies
from 0 to 2.

J;_[F‘-ﬁdS= 2j02”j(1 aTZZrdrdO

_2a r? ‘Olzﬂ
ey 0
2],
=2t
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Aliter
[[Fids =2[[dvdz
S R
' x2 yz
= 2| Area of the ellipse 7+ =1
a a
()
a
=2-T—-a
2
=2 nd®
Hence, flux =~2 rd*

7.39

Example 4: Evaluate ”FﬁdS WhereF=3yf+2z]+x2_vz/€ and S is the
S

surface y? = 5x in the positive octant bounded by the planes x =3 and z = 4.

Solution:
z
(i) The given surface is y* = 5x. z=4
Let =y’ —5x p .
n= yé e i
\Z |
_5i+2y]
J25+4y7 . .
(i1) LetRbethe projection ofthe surface i
»* = 5x (in the positive octant) i
bounded by the planes x = 3 and AHia e
z =4 in the xz-plane. xI g
i) dg=L %
|;, o] Fig. 7.27
J25+4y
_2Hayt
2y

(iv) In the region R, x varies from 0 to 3 and z varies from 0 to 4.

Jjﬁ‘flds=J.J(3yf+22]'+x2y2]€). _517"'2)’} m]dxdz
S R

J25+4)2 2y

dxdz

y

= %”(——15}/+4yz)
R

- %Jio_[j:o(—15+4z)dxdz
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:%j04(‘—15x|2+ 4z, )az

—lf _45+122)dz
=2 [ as+122)

4
0

= l‘—452 +62°
2

1
=—(-180+96
7t )

=—-42
Exercise 7.3 1
Evaluate the following integrals: [Ans.: 0]
1. ”f'ﬁd& where F = (x+y%)i 5. Find the flux of the vector field F
s

through the portion of the sphere
x> +y*+z° =36 lying between the
of the plane 2x + y+ 2z =6 in the first ~ planes z= V11 and z = /20 where
octant. F=xf+y}'+zl€.

[Ans.:81]
B B ) . [Ans.: 727[\/2_0—\/ﬁ]

2. HF-ﬁdS, where F'=2xyi +yz2 J+xzk
§ 6. Find the flux of the vector field

and S is the surface of the parallelepiped
0<x<L0<y<2and0<:z<3.

2x j+2yz kand S is the surface

F=xi+yj+{x*+y* -1k through

the outer side of the hyper-boloid

[Ans.: 33] z= \/JC2 +%" =1  bounded by the

3. ”ﬁ-ﬁdS, where F=uxi+(z>—zx) planes z=0and z = 3.
5

A A . i [Ans. : 2x/§ﬂ']
J—xvkand S is the triangular surface
with vertices (2,0, 0), (0,2,0)and (0,0, 4). 7. Find the flux of the wvector field

[Ans.: —2] F=2yi-zj+x’ k across the sur-

3 face of the parabolic cylinder )? = 8x

4. j J Vx F-idS, where F=)2i+y ] in the first octant bounded by the planes
s y=4andz=6.

—xzk and S is the upper half of the [Ans.:132]

sphere x>+’ +z* =ad”.
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7.6 VOLUME INTEGRALS

If V' be a region in space bounded by a closed surface S, then the volume integral of a

vector point function F is J.J- Fav.
4

Component Form of Volume Integral

If F=Ri+F j+Fk
jijdV=jjj(ﬂi+F2}+F3/€)dxdydz
v 4

=i [[[ Fidxdydz+ ]} [[[ Py dvdydz+£ [[[ F dvdydz

Another type of volume integral is ”j(de, where ¢ is a scalar function.
v

Example 1: Evaluate UJ FdV where F=xi+yj+2zkand V is the volume
enclosed by the planes x =Vo, y=0,y=a,z=>b?and the surface z = x*.

Solution:

(i) Vis the volume of the cylinder in positive octant with base as O4B and bounded
between the planes y =0 and y = a. y varies from 0 to a.

zZ
z=b2
A 0 B
(b,b?)
«— z=x2
P
0 (0, 0) x
Fig. 7.28

(i1) Along the vertical strip PQ, z varies from x? to b* and in the region OA4B,
x varies from 0 to b.

Jij7ar- T ey v 2z ardyae

b b2 N a 2 2 ~ a
:Josz xi|y|0+] y? +2zk|y|o dzdx

a
0

—Jb_[bz i +A'£+l€2 dzdx
=)o) |ati za
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2
(fm|z|j§ + j%|z|§i +halz?

b2

o
2

[f)ccz(l)2 —x2)+}%(b2 -x))+ka(* —x4):|dx

-1,
-1,

b

2.2 4 2 3 5
ia bx” _x +}'a— prx—2|+ka|bx—2
2 4 2 3 5
4 4 2 3 5
B AR AN Ul PR N Ay LS
2 4 2 3 5

ab* . &b~ 4dab’ -
=— i+ Jj+ k.
4 3 5

0

Example 2: Evaluate ”J(V x F)dV, where F =(2x% =3z)i —2xyj —4xk and

4
V is the closed region bounded by the planes x =0, y=0,z=0and 2x + 2y +z=4.

Solution: (i) VxF = 9 9 9
ox dy 0z

2x? =3z —2xy —4x
=71 (0-0)— j(-4+3)+k(-2y-0)
= j—2yl€

C(0,0,4)

2x+2y+z=4 y

B(0,2)

— x+y=2

0 P B(0,2,0) y ol P 42,00 «x

4(2,0,0)

Fig. 7.29
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(ii)) Along the elementary volume PQ, z varies from 0 to 4 — 2x — 2.
Along the vertical strip P'Q’, y varies from 0 to 2 — x and in the region, x varies
from 0 to 2.

[[JovxFyay=[ [T 77 (j - 2yk)dvdydz
vV
=0, G2 v
=1 G - 2vb - 2w -2y dy s
0J0
[1 [@-2x-20) - 2420k +4)% k |dyde

J

2—x

k |dx

S

bl

{(4—2x)|y|§x—\y2\zx}}’— 20-)2[ -4 :

=1

0

2

0

{2(2—x)(2—x)—(2—x)2}j —{2(2—x)(2—x)2 —%(2—x)3}7c:|dx

J‘ L
Jz(zﬂff—fu—m%}w

0

2

_|@-x . 2 -0
-3 3 4
0
8~ 8-
=—j——k
3773
8 ~ A
=—(j—k
;=0

Exercise 7.4

Evaluate the following integrals: 3. J‘J‘J‘de where f = 45x2y and Vis
1. [[[(V-F)dv where v
% the region bounded by the planes

— . B - 4x+2y+z=8,x=0,y=0,z=0.
F=2x"yi —y* j+4xz%k T * Y :

and V is region in the first [Ans.:128]

octant bounded by the cylinder

»*+2* =9 and the plane z = 2. 4. jijdethereF"=(x+2y)f
[Ans. :180] v

- - Y 3z j+xk is the cl
2. _U FdV where F = 2xzi —xj + y°k 7+ xk and Vs the closed

v ' region in the first octant bounded by
and V is the region bounded by the the plane 2x + 2y + z = 4.
surfacesx=0,y=0,y=06, z=x2,
z=4.

A . [Ans. : §(3§ —j+ 2/2)]
[ Ans.:1287 —24 ] + 384 | 3
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7.7 GAUSS’ DIVERGENCE THEOREM

Statement: If F be a vector point function having continuous partial derivatives in
the region bounded by a closed surface S, then J ” V.FdV = ” F-ndS

where 7 is the unit outward normal at any point of the surface S.
Proof: Let F=F,] +sz+F3k

mv Fdv = jjj(z—rﬂa—wa J(F1+F/+Fk)¢vdvdz

_Hj(a—F+ai+%iz)dxd dz .. (13)

Fig. 7.30

Assume a closed surface S such that any line parallel to the coordinate axes intersects
S at most at two points.

Divide the surface S into two parts: S, the lower and S, the upper part. Let z = £/ (x, y)
and z= f,(x,y) be the equations and 7, and 7, be the normals to the surfaces S, and
S, respectively. Let R be the projection of the surface S on the xy-plane.

IF: x.y) OF
m 3dxd,}zdz=.[,![J:]((\ '))a—;dz:ldxd
zgﬂ(xﬂy’z)”;dldy
=”[Fz(x,y,fz)—ﬁ(x,y,ﬁ)]dvdy

R
= [[FGey. f)dxdy = [[ F(xy, f)dedy - (14)



7.7 Gauss’ Divergence Theorem

dx dy = projection of dS on xy-plane
= -kdS
For surface S;: z=/f, (x, y)
dvdy= A,k ds,
For surface S;: z=f, (x, y)
dvdy= —#, -k ds,
Substituting in Eq. (7.4),

maa drdydz = ij hy -k ds, —HF (—i,-k)dS,
= ”F A, -kds, +j_[F A -k ds,
= [[Fa-kds
Similarly, projecting the surface S on y; and zx-planes, we get

maidxdydz =j Fi-ids

and | ”

Substituting Egs. (7.5), (7.6) and (7.7) in Eq. (7.3),

[[[v-Fav=[[Faids+[[Fn jds+[[Fnkds
14 I A S
=[[(Fi-a+F }-i+ Fk-ids
S

=[[(Fi+F, j+Fk-ads
N

=[[F-ads
3
Hence, Hj V.-FdV = U F-hdS
Note: Cartesian form of Gauss’l’ divergence tlsleorem is
m (ai 328 5 a—i)dxd dz = jj (F, dydz+ F, dzdx + F, dx dy)

7.45

.. (7.5)

.. (7.6)

. (1.7)

Example 1: Verify Gauss’ divergence theorem for F=4xzi- Yi+y zk over

thecubex=0,x=1,y=0,y=1,z=0,z=1.

Solution: By Gauss’ divergence theorem,

JIjv-Fav = J[F sas
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() F=4xzi-y*j+yzk

— 9 d J
V.-F=—(4x2)+—(-y*) +—
ax( x2)+ay( y )+az(y2)

=4z-2y+y=4z-y

Z A
E|(0,0,1)
D(0,1,1)
A G(1,1,1
(1,0,1) ( )
y
0(0,0,0) C(0,1,0)
A(1,0,0) B(1,1,0)

Fig. 7.31

(i1) For the cube: x varies from 0 to 1
y varies from 0 to 1
z varies from 0 to 1

mV-FdV= [].] z=p)dvdyaz

- [l -t

=J,asf, -0

s

y
= x|, 2y-=
0 2 .
_,_ 1
2
_3
2

(iii) Surface S of the cube consists of 6 surfaces, S, S,, S,, S, S, and S.

20 P30 Py Ps
jjf-ﬁds=jjf-ﬁds+ﬂf.ﬁds+jjf-ﬁds
S, i S

S

+I‘[F-ﬁdSJr.J‘jf-ﬁdS%J‘J.f-ﬁdS
Sy Ss Se

(D)

. (2)
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(2) On S,(04BC):z=0, # = —k, dS= ldf“}f' ~ drdy
nv

x and y both varies from 0 to 1.
[[F-nds=[[(axzi-y*j+yzh)-(—k)dvdy
S, S,
=0
X drdy
(b) On S,(DEFG):z=1, i = k,dS=lA—Z=dxdy
n .

x and y both varies from 0 to 1.
”F-ﬁdS =J‘J.(4xzf—y2]'+yzl€)'l€dxdy
S S,

1pl

=, Jyaxdy
!

=5

=1
2

(c) On S, (OAFE): y=0, 7=~/ ds:%zdzdY
n-j

x and z both varies from 0 to 1.
HFﬁdS =jj(4xzi—y3j+yzlé)~(—_})dzdx
SS S}

(d) On §,(BCDG): y=1, n=j, dS=r——F=dzdx

x and z both varies from 0 to 1.

”F I’IdS—JI(4)\Zl y /+yzk) (/)dzdx
—H -

dydz

(e) On S,(OCDE): x=0, n=—1i, dS= =dydz

v and z both varies from 0 to 1.
[[F-nds=[[(axzi-y*j+yzk)-(-D)dydz
S S5

=0.

7.47
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. 3 dydz
(f) On S, (4BGF): x=1, a=1i, dS= e =dydz

n-i

E..

y and z both varies from 0 to 1.

”FﬁdS =”(4x2f—yz‘;'-i-yzle)-fdydz
S Se

1l
:J.(DJ.U4Zd'de
21
— 4|4 |2=
_4|y|0 2 ;
=2

Substituting in Eq. (2),
[[F-hds = o+%+o+(—1)+o+2
S

_3 - 3)
2

From Eqgs. (1) and (3),

JIJv-Far = [[Foaas=3

Hence, Gauss’ divergence theorem is verified.

Example 2: Verify Gauss’ divergence theorem for F =2x>yi —y® j+4xz*k
over the region bounded by the cylinder y* +z* =9 and the plane x = 2 in the first
octant.

Solution: By Gauss’ divergence theorem,
[[Jv-Fav=|[F-hds
4 S
(1) F=2x2yf—y2j+4xzzl€
= 4 0 0
V-F=—Q2xy)+—(-y")+=—(4xz’
ax( x°y) ay( y7) aZ( xz°)
=4xy—2y+8xz
(i) [[[V-Fav=|[[4xy-2y+8xz)dxdydz
Y.

For the given region, x varies from 0 to 2. Putting y = r cosé, z = r siné, the equation
of the cylinder y* +2z* =9 reduces to » =3 and dy dz=r dr dé.
Along the radius vector OP, r varies from 0 to 3 and for the region in the first octant,

. V.4
G varies from 0 to E
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IﬂV-FdV = J.ioj.’:}:o‘li\io(4x-rcosl9 —2-rcosO@+8x-rsinf)dx-rdrdo

= j%J"‘(zl.z cos (9|xz‘2 ~2r% cos x|, +4r* sin 0|x2|2 )drdG
0 Jo 0 "

—j§j34 2 c0s 0+167° sin §)drd6
—Oo(rcos+ 7~ sin @) dr

3P z 3| z
=4/ |sin6|? +16 i |-cos )2

3 0 3 0
—36+ 144
~ 180 (D)

(iii)) The surface S consists of 5 surfaces,
S, 8,8, 8, S;.

”Fﬁ@:”?ﬁa+ﬁfﬁw
+”Fﬁw¥ﬂfﬁw
+[[F-nds - (2)

A

(a) On S(OAED):z=0, fi=—k

as=2_ 4
i

x varies from 0 to 2 and y varies from 0 to 3.

HF-ﬁdS = H(szyf—y2 j+4xz* /€)~(—/€)dxdy
s, s,
=0
dzdx
i

(b) On S, (OBCD):y=0, i=—j, dS= =dzdx

x varies from 0 to 2 and y varies from 0 to 3.

[[F-nds=[[@xyi-yj+axz> b)-(=))dzdr =0
S, S,
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(c) OnS, (O4B) : x=0, fi=—i, dS = dyd.Z =dydz

|ﬁ-1

y and z varies from 0 to 3.

[[Fnds=[[@x’yi-y j+axz* b)-(-D)dydz =0
S5 S5

(d) OnSy(DEC):x=2,n=1,dS %:dydz
n i

v and z varies from 0 to 3.
”fﬁdS =J‘J‘(2x2yf—y2 j+4xz2k)-idydz= HSydydz
Sy Sy

Putting y = r cosé, z = r siné, equation of the cylinder y? + z> = 9 reduces to r =3
and dy dz=rdr dé.

[[F hds= SJgjji'sinO-rdrdG
oA

:8jfsined9~j:r2 dr

3

(.3

= 8|-cos 6|2

L
3 0

=72

(e) On S, (ABCE) : This is the curved surface of the cylinder y* + z* = 9 bounded
between x =0 and x = 2.

Let g=y* +2°

Yo

Vgl

_ 2yj'+22/€

\/4)/2 +4z°

ﬁ:

[y +22 =9]
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[[F-nds=[[@xyi-y? jeax by [ L1220 20D
S5 S5 3 z
2 3 dxd
= 4[\'2()-"\':()(_)}3 * 4'\‘23) zZ y
The parametric equation of the cylinder y? +z2 =9 is,
y=3cosf,z=3sinf
: dy
dy=-3sinfdf=-zd6, —=-d@
z
T
When y=0,6= 2
y=3,6=0
- . 02 3 . 3
[[F-iids=[z] (-27cos’ 6+ x108sin’ 6)(~dO)dx
Ss 2
x 2F
=] 2| -27cos* 6x|; +108sin* 0 || |do
0 0 2
0
iz
= |2 -54cos’ 6+216sin’ 0
1 1 1 1 5 5 :
= -54.—B| 2, — |+216-= B 2, = -+ [sin” Bcos? 06
2 2 2 2
3 B(p+1 q+l)
2 72

i
:—52(—27+108)

:

N | W
N | —
BN | —

=108
Substituting in Eq. (2),

”F-ﬁdS:O+O+O+72+108:180

N

From Egs. (1) and (3),
[[[v-Fdv =|[F -qds =180

Hence, Gauss’ divergence theorem is verified.

3
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A

Example 3: Verify Gauss’ divergence theorem for F =2xzi + yz j+z°k over
the upper half of the sphere x* + y* +z° = a’.

Solution: By Gauss’ divergence theorem,
[[Jv-Fav =|[F-ads
Vv N
() F=2xzi+yzj+2%k

V-F:i(2xz)+i(yz)+i(zz)= 2z+z4+2z=52
ox dy 0z

(i) j!jVFdV:jﬂSdedydz

Putting x = r sin€cos@, y = r sin@sing, z = r cos 6, equation of the sphere x> + )? + 2% = @?
reduces to 7 = q and dx dy dz = ? sinfdr d6dg.
For upper half of the sphere (hemisphere),

r varies from 0 to a

@ varies from 0 to g

¢ varies from 0 to 27

jﬂV-FdV: SI::)JEOJ.LO;’COSG- r?sin@drdode

a

4

. sj:”d(pj(?cosesinede %

0
Z o4
2 a

o 4

e 1| cos26
:5¢|0 '2_‘_ P

4

= —1‘271'(0057[—0080)
16

=%m4 (D)

(iii)) Given surface is not closed. We close this
surface from below by the circular surface
S, in xy-plane.

Thus, the surface S consists of two surfaces
S and S..

[[F-#ds = [[F-ads+[[F-ads . Fig. 7.34
s S, S

['.'x2 +y2 +z7 = az]
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(a) Surface S (ABCEA) : This is the curved surface of the upper half of the

sphere.

Let g=x"+y* +2°

Y

V4l

_ 2xf+2y}+221€
- JAxP +4y* +47°

_ xf+y}'+zl€

n=

a

[ox*+y* +2* =ad*]

Let R be the projection of S, on the xy-plane, which is a circle x* +y* = a*.

dxd
dsi=r
n-k
_adxdy

z

adxdy

Si

=II(2x2+y2+zz)dxdy
R

:J‘_|'(2.>c2 +y +a —x* —y*)dxdy
R

= ”(xz +a’)dxdy

jJ.F'ﬁdS=IJ(2xzf+yzj+22 ]‘:)_(xf+yj+z/€
R

z

[ Py _yz]

Putting x = r cosé, y = r sin6, equation of the circle x> +y* = a” reduces to » = a and
dx dy = r dr d6. Along the radius vector OP, r varies from 0 to a and for the complete

circle, @varies from 0 to 27z

a

4 2

[[VxF-ads = j:”j:(rz cos’ 0+a*)rdrdo

S
=" "1 |de
0 2 0
o[ 4
ZJ-- a_(l+c0529)+a_ 40
ol 4 2 2

2z

2 2
cos  O+a
0

14
4

é 9+lsm26

8 &8 2

4

0

5
==
4

p
&

Fig. 7.35
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(b) Surface S, (4BCDA) : This is the circle x> +y* =a’ inxy-plane z =0,
n=-k

dxdy
|f1- /€|
=dxdy

ds=

”F-ﬁdS = ”(szf +yz]+2? lé)-(—/g)dxdy
S, S,
=0 [iz=10]
Substituting in Eq. (2),
= 5
F-hdS==nd
fs hds == na . 0)
From Egs. (1) and (3),
— - 5
[[[v-Fav=|[F nds=>ra'
vV S 4
Hence, Gauss’ divergence theorem is verified.
Example 4: Evaluate ”( yzi+zx j+xy k)-dS, where S is the surface of the
sphere in the first octant. ‘

Solution: By Gauss’ divergence theorem,
[[F-as=[[[v-Far (D)
N Vv

F=yzf+zxj'+xyl€
- 0 d J
V-F=— — —(x)=0
. (yZ)+ay (b= 09)

From Eq. (1), Hng =0
Y

Example 5: Evaluate ”(x3dy dz+x’ydzdx+x*zdxdy) where S is the closed
S

surface consisting of the circular cylinder x* +3* =a’, z=0andz = b.

Solution: By Gauss’ divergence theorem,

oF, BF E)F

”dedz+Fdzdx+Fdxdy HI( FYR

]dxd dz .1
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(i) F dydz+ F,dzdx + F, dxdy = x’ dydz + x’y dzdx + x*zdx dy
Fi=%, E=8)E =%
(i) £+8—FZ—+8£_—( )+ (xy)+ (xzz)
ox dy oz

=3x" +x* +x? = 5x7

(iii) m(aF aai aaF )dxd dz = [[[ 5x* dxdydz

Putting x = 7 cosé, y = r sin6, z = z, circular cylinder x* + y* = a* reduces to 7 = ¢ and
dxdydz=rdrdé@d:.

Along the radius vector OA4, r varies from 0 to a and for complete circle, &varies from
0 to 2. Along the volume of the cylinder, z varies from 0 to b.

Fig. 7.36
m ol aﬂ alg dvdydz sj j j 2 cos? - rdrd@dz
ox dy 0z z=0 =0
a
b7 27 1+ cos 20
2] ()
0
5 1| sin26f"
==.ba* =|0+
4 2 2 |
4
4 2
=§m4b
4
From Eq. (1),

[ dydz+x*y dzdy + x*z dv dy) =%ﬂa4b
N

Example 6: Evaluate ”(lx+my+nz)a’S, where [, m, n are the direction

R
cosines of the outer normal to the surface whose radius is 2 units.
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Solution: By Gauss’ divergence theorem,
[[F-aas=[[[ v Far - ()
s 4

i) f«ﬁ=lx+my+nz
=(xi+yj+zk)-(i+mj+nk)
F=xi+yj+zk
J

(i) V~f=%x+%y+$z

=3
(i) [[fv-Far=[[[3ar
% Vv
= 3 (Volume of the region bounded by the sphere of 2-unit radius)
4
=3.-—z(2)’
3 (2)
=32r
From Eq. (1),
”(lx +my+nz)dS =32r.
S

Example 7: Prove that H b - o , where S is the ellipsoid

s @ + by +22 Nabe

ax’> +by* +cz* =1.
Solution: By Gauss’ divergence theorem,
[[F-nds=[[] v-Far (D)
S Vv

1

(i) Fof=
\/azx2 +b*y? +c% 2

where 7 = unit normal to the ellipsoid, ax® +by* +cz* =1

_ 2axf+2byj+2czl€
\/4a2x2 +4b2y2 +4c2 77

_ axf+by}'+czl€
\/azx2 +b2y2 +c%z2?

1

Now F-h=
’ 22 o § 22 4 20
ax +b’y +cz
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ax’ +by’ +cz’

= [vax® + by’ +cz” =1]
\/azx2 +b*y* +c*7?

axf+by}'+czl€ ]

=(xf+y]'+zl€)-
\/azx2 +b2y2 +c2?

Hence, F=xf+yj'+zl€

— 4 ) )
il V-F=—x+—y+—z=3
(i) ox ayy 822

(iv) J"V[J'V-de = '[_I[J3dV

=3 (Volume of the region bounded by the ellipsoid)

R S I S S
3 Va \b e 1Y (1Y (1Y
@) @) ()
_ 4z
- Jabe
From Eq. (1),
ds 4r

'[- \/azx2 + bzy2 +c*2? abc

Example 8: Evaluate ”ng using divergence theorem where F=x%+ D

s
+ 2’k and S is the surface of the sphere x* +)* +z° =a’.

Solution: By Gauss’ divergence theorem,
[[F-ds=[[[v-Far
S 14
@) F=x%1+yj+2°k
) ) )
V-F=—x+—y'+—7
ox dy ¥ 0z

=3x +3y% +32

(if) [[Jv-Far=3[[[(x*+y* + 2*)dxdydz

(D)
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Putting x = 7 sin@cosg, y = rsindsing, z = r cos@equation of the sphere x> + )? + 22 = >
reduces to 7 = a and dx dy dz = sinf@dr d8d¢
For complete sphere,

r varies from 0 to a
Gvaries from 0 to 7
@ varies from 0 to 27

jﬂ V-Fay =3[ [" [* 7 rsinodrdods

=3["dg- [ sin6de- [irar

P
5

= 3[of* |-cos

0
5

=3-27(—cosmw+ cosO)%

12
5

From Eq. (1),
[[F-d5=2za
s 5]

Example 9: Evaluate j jl? .dS using Gauss’ divergence theorem where
F =2xpi+yz* j+zxk and Sis the surface of the region bounded by x = 0, y = 0,

z=0,y=3,x+2z=6.

Solution: By Gauss’ divergence theorem,
[[F-ds=[[[v-Far (D)
N vV

(1) F=2Ayf+y22}+le€

V-F=%(2Ay)+%(yzz)+§—z(zx)=2y+22+x

(if) [[[v-F=[[[@y+z+x)drdydz

In the given region, y varies from 0 to 3.
In xz-plane, region is bounded by the lines x =0,z =0, x + 2z = 6.

6—x

Along the vertical strip PQ, z varies from 0 to and in the region, x varies from

0 to 6.
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— z
J‘J..[V.F=I:=0J‘:’ZJ;=O(2))+ZZ +x)dydzdx A
V
= [T 2yl e e @
=I:J:%(9+322+3x)dzd_x I
=I:|9z+z3 +3xz|:_Txdx 0] P A6,0) X
Fig. 7.37

P {5
At

2
9 x* &

7P S S Cle.)
22 2 8 —4

0
4

—162+81-108+
32
351

Hence, From Eq. (1),

J[F-a=22

Example 10: Evaluate ”fﬁds using Gauss’ divergence theorem where

F =4xzi+xyz’j+3zk over the region bounded by the cone z°=x’+ 3’ and

plane z = 4, above the xy plane.

Solution: By Gauss’ divergence theorem,
[[F-adas=[[[v-Far (D
S vV

1) F=4xzf+xyzzj+3zle

V.-F= —(4xz)+—(xyz )+—(3z)

=4z+x2°+3

(ii) [[[V-Fav =[[[(4z+x* +3)dvdydz
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=y

s
— P

Fig. 7.38

Putting x = cos 6, y = r siné, z =z, equation of the cone z> = x> + y? reduces to z =r, and
dx dy dz =r dr d@dz. Along the elementary volume PQ, z varies from r to 4.
Projection of the region in »@-plane is the curve of intersection of the cone 7 =z and

plane z =4 which is a circle » = 4.
Along the radius vector O4, r varies from 0 to 4 and for the complete circle, &

varies from 0 to 2.

4

v.Far=["[*[* @4z+rcoss 22 +3)rdzdrde
fvFer=J22000
B

= j;"j:[zr(lé—rl)+ a C;’SQ(64—;~-")+3r(4—r)]drd0

3
2z7? +rcos(9-%+32

= J'Mr(44r+ﬁr2 cos6—3r" =21 —Lcose)drde
o Jo 3 B

5 . 3 41 8 4
=] 20+ B gmel T LY sud e
0 3 3 2 36 5
=J2”(160+2048c0s9)d9

0 9
n 2 4 ¥ 2r
=16O|9|(2) +ﬂ s1r19|0
=160-27+0
=320x

From Eq. (1),
”F-ﬁdS: 3207

S
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Example 11: Evaluate ”(xzf+ Y j+z ﬁ).ﬁds using Gauss’ divergence
S

2 2
theorem where S is the surface of the ellipsoid x—2-+ y_2+ Z—z =1.
a b c
Solution: By Gauss’ divergence theorem,
jjﬁ-ﬁdS:jij-FdV (D)
s 14
(i) f=x2f+yzj+221€

- 0

V-F=—(x' )+ (y )+ ( ")
ox

=2x+2y+ 22

Q) [[[v-Far =[[[@x+2y+22)dvdydz

Putting x = ar sinf cos¢@, y = br sin@sing, z = cr cos, equation of the ellipsoid
2 2 2

x—+Z—2+Z— =1 reduces to » = 1 and dx dy dz = abc 1 sin@dr d0d¢.
a c
For the complete ellipsoid,

rvaries from 0 to 1

Gvaries from 0 to 7

@ varies from 0 to 27

J” V.-Fdv = ZI::O J(;;o J”LO [(arsinBcos @+ brsinOsin @+ crcos )
- :

abcr? sinf]drd0de

4l

ME i e . 7
=.[o -[0 (asin” Bcos @+ bsin 031n¢+ccos@sm9)7 abcdfd¢

0

"i [J (asm 9]sm¢| +bsin® 9|_COS¢|(2)E+C’00895in9|¢|§”)d9
abcj (0+0+ccos@sin@-27)d6
_ abc? _00520
4 2 |,

2
= m;bc (cos2z—cos0)

From Eq. (1),
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Exercise 7.5 1

(I) Verify Gauss’ divergence theorem for the following:

1. F=(x*=y2)i+(* —2x) j+(2* —=xy) 3. F=4xi-2y* j+z°k over the
kovertheregion R bounded by the region bounded by the cylinder
parallelepiped 0<x<a,0<y<b, x> +y*> =4 and the planesz=0,z=3.
D=zse [Ans.: 847]

[Ans.: abc(a+b+c)]
_ . A = 4. f=2xyf+6yz]‘+3le€ over the

2. F=xi+yj+zk over the region R region bounded by the coordinate

bounded by the sphere planes and the plane x + y + z = 2.
x> +y*+z° =16.

22
[Ans.: 2567] [Ans.: ?:l

(II) Evaluate the following integrals using Gauss’ divergence theorem:

1. _U( v {4225 [ +22y* k). h dS, [Ans.: 18]
S

5. ||(xdydz+ ydzdx+zdxdy), where
where S is the part of the sphere ‘[SI 4 4 g

x*+y"+2z" =1 above the xy-plane. S is the surface of the sphere
2 2 5 _
[Ans‘: %] (=2 +(y-2)* +(z-2) = 4.
5 5. 4B e [Ans.: 327]
2. ”(x‘yi+y’ J +xz° k)-ndS, where

s 2 Ao .
S is the surface of the parallelepiped 9 ” xy*i+x’y j+x’ k), where S is

N
0sx<20sy<30=<z<4 the surface of the region bounded by

Ans.: 384
5 e B B [ | the cone z=+/x"+)" and the plane
3. H(4x1 =2y~ j+z k)-ndS, where =4
N

S is the surface of the region bounded [ Ans.: w]

by y*=4x,x=1,2z=0,z=3.
[Ans.: 56] 7. ”(x3f+y3j'+z3 k), where S is the

N
4. J.SJ (xdydz+ydzdx+zdxdy), where surface of the region bounded within

S is the part of the plane x + 2y z=+]16—x* —-y* and x* +y* = 4.
+ 3z = 6 which lies in the first octant.

[Ans.: 2?”(2188—105&/3)]
7.8 STOKES THEOREM

Statement: If S be an open surface bounded by a closed curve C and F be a continuous
and differentiable vector function, then

gﬁ(_ﬁ-d}:ijxﬁﬁds
S
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where 7 is the unit outward normal at any point of the
surface S.

Proof: Let F=Fi+F j+Fk

r=xi+yj+zk
[[VXF-hds=[[Vx(Ri+Fj+Fk-ids
S S

=[[(VxRi)nds+[[(VxF j) nds
S S
+[[(VxFk)-nds
S

Consider,

fog

Fig. 7.39

(VxFi) ndS= | 2i+ji+12i xFi|-ndS
I I

ox “dy oz

=] —I€%+}%)-ﬁd5
S

=” %}.ﬁ_bﬁ.ﬁ)dg
Let equation of the surface S be z = f'(x, y),

Then, ;=xf+yj+zl€

=xi+yj+f(xy)k
Differentiating partially w.r.t. y,

e 7 g
dy dy
Taking dot product with 7,
a_.,a= J",Hal;gﬁ
dy ay

? is tangential and 7 is normal to the surface S.
)y -

Substituting in Eq. (7.10),

.. (7.8)
.. (7.9)

.. (7.10)
[vz=f(xp)]
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Substituting in Eq. (7.9),
oF zA ~) OF »
H(pr,l) nds = jj[ az( 5 n]—?k-n}d.s

34
. _H(a”' 2, );; jids
0z ay w (7.10)
Equation of the surface is z =f(x, y).
F(x,7,2)= F[x.5,f (x,9)]=G(x,y) say 5
Differentiating partially w.r.t. y, m
3G _oR  oF, o Ly
dy dy 0Jz 9y /\y
Substituting in Eq. (7.11), o
Fig. 7.40

”(VxFlz) ndS——”—k i ds

Let R is the projection of S on the xy-plane and dxdy is the projection of dS on the xy-
plane, then k-ndS =dxdy

v A oG
Thus, ”(VX Fi)-ndS= —”a—dxdy
N R Y
=% Gdx [Using Green’s theorem]

Since the value of G at each point (x, y) of C, is same as the value of F| at each point
(x, y, z) of C and dx is same for both the curves C, and C, we get

{J(Vxﬂf)-f«dS:gSCﬂdv

.. (7.12)
Similarly, by projecting the surface .S on to yz and zx planes,
VxFj)ndS=¢ Fdy
{J( XF )i dS = Fady L (1.13)
and [[(vxFk)-ads =§_Fd . (7.14)
s

Substituting Eqgs. (7.12), (7.13) and (7.14) in Eq. (7.8),
ijVxFﬁds:g%C(ﬂ dv+ Fy dy+ Fydz) = gﬁc(id;)

Note: If surfaces S| and S, have the same bounding curve C, then
”VxF Ads = ”VxF pds =§_F-dr

Si

Example 1: Verify Stokes’ theorem for the vector field F = (x* —y?)i +2xy j in
the rectangular region in the xy-plane bounded by the lines x =—a,x=a,y =0,y =b.
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Solution: By Stokes’ theorem,

_[JVXF-:%dSzC_'SCF-d;

i ok
(i) virs| £ L 2
ox dy oz
-y 2% 0
=1 (0)~j(O+k(2y+2y)
= 4yl€
Va
y=>b
D(-a, b) l Q
< C'(a, b)
R «— XxX=a
X= —a—>‘
A(-a, 0) T P B(a, 0) x
y=0
Fig. 7.41
(i) Surface S is the rectangle ABCD in xy-plane.
B B and d5= Y ey

fi-4]

7.65

(iii) Let R be the region bounded by the rectangle ABCD in xy-plane. Along the
vertical strip PQ, y varies from 0 to b and in the region R, x varies from —a to a.

”VXF-ﬁdS = _U4y/€-l€d\”dy
S R
- 4fil=—:1 J'\b=0ydydx

=4,

=207 |x[* .

b

2
de‘
2

= dah?

(D)
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(iv) Let C be the boundary of the rectangle 4BC’D.

(J'DC F-dr= ﬁm F-dr+ (]SBC, F-dr+ gsc’/) F-dr+ CﬁDA F-dr
(a) AlongAB:y=0,dy=0
x varies from —a to a.
Fdr= J’AB[(xz — ) dx+ 2xydy]
@ 2
= J x“dx
-

3“

(b) Along BC’ :x=a,dx=0
y varies from 0 to b.

- F-dr= IBC'[(XZ - y2 )dx + 2xy dy]

E J.(f 2aydy

= ab’
(c) AlongC’'D:y=b,dy=0

x varies from a to —a.
J.C'D F-dr= J.C’D [(Jc2 - y2 )dx + 2xy dy]

= ju_”(x2 ~b%)dx

3 —a
X
S
3

3
=— e +2ab*
3
(d) Along DA :x=—-a,dx=0
y varies from b to 0.

o F-dr= JDA [(x2 - y2 )dx + 2xy dy]

0
=], (2andy

. (2)
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Substituting in Eq. (2),

From Egs. (1) and (3),

Lijf-ﬁ ds = <j>cf-d7~:4ab2

Hence, Stokes’ theorem is verified.

7.67

- 03)

Example 2: Verify Stokes’ theorem for F= (x+y)i+(+ z)]’ —xk and S is the

surface of the plane 2x+ y+z =2 which is in the first octant.

Solution: By Stokes’ theorem,

{JV X F-h dS=<j>C1?~dr_‘

c'(0, 0, 2)

(i) VXF =

L3

X

|QJ %5

dy

)
X+

y y+z

Flo =

. . ) B(0, 2, 0)
=i(0-1)—-j(-1-0)+k(0-1) [} y
= Bl \

A(1,0,0) 2x+y=2

(i) Let ¢g=2x+y+z X
Fig. 7.42
Vo _20+]+k
Vg Ja+1+1
2+ ]+k

J6

(iii) Projection of the plane 2x+ y+z =2 on xy-plane (z = 0) is the triangle O4B
bounded by the linesx=0,y=0,2x +y=2.

dxdy

-4

n=

(iv) dS= =J6dxdy
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(v) Let R be the region bounded by the triangle OAB in the xy-plane.
Along the vertical strip PQ, y varies from 0 to (2 — 2x) and in the region R, x
varies from 0 to 1.

v ~Fi dS=J;j(—f+}‘—l€)~%\/gdxdy

=j01j02_2“'(—2+1—1)dxdy

¥
I -2x
=2 Iy B(0,2)
=2 @-20)dx
=2f (2-2x)
2! Q
=—4 x—x— «— 2X+y=2
2 R
0
1 >
| 1_5 o) P A(1,0) x
(0,0)
[[VxF-ids=-2 (1) Fig. 7.43
s
Aliter
[[V xF i ds=-2[[drdy
s R
= —2(Area of AOAB)
RERE)
2
=-2
(vi) Let C be the boundary of the triangle ABC’.
F'd;=(x+y)dx+(y+z)dy—xdz
$F-dr =LBF-d;~+jBC,F-dr+jC,AF-dr (2

(a) Along 4B:z=0, y=2-2x
dz=0, dy =-2dx
x varies from 1 to 0.

LBF'd; = LB[(X+ y)dx +(y+z)dy — x dz|
= LO[(x +2—2x)dx + (2 - 2x)(—2dx)]

= 'flo(}x—Z)dx
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(b) Along BC": x=0, y+z=2
dx =0, dz=—dy
y varies from 2 to 0.

J‘BC, F-dr= JRC'[()C +y)dx +(y +z)dy — xdz]

(c) Along C’'4:y=0, 2x+z=2
dy=0, dz =-2dx
x varies from 0 to 1.

J.C’AF dr= J‘m[(x +y)dx +(y+z)dy — x dz|

= [ [xdv —x(-2d)]

=Il3,vdx
0
5[l
| el
0
-
2
Substituting in Eq. (2),
§ Frdr=s-d+
¢ 2 2
=-2

From Egs. (1) and (3),
[[VxF-ids=¢ F-dr=—2
s ¢

Hence, Stokes’ theorem is verified.

7.69

(3

Example 3: Verify Stokes’ theorem for F = xzi + yj+x y212 where S is the
surface of the region bounded by y = 0, z = 0 and 4x+ y+2z=4 which is not

included in the yz-plane.
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Solution: By Stokes’ theorem,
[[VxF-ids=§ F-dr
. @

C’(0,0,2)

B(0,4,0)
(0] b4

A(1,0,0)

=i{(2xy=0)— j(»* —=x)+k(0—0)
=2xpi +(x—")j

(i) Surface S consists of three surfaces, y=0,z=0and 4x +y +2z=4.

[[VxF-ids=[[VxF-ads+[[VxF-ids+[[VxF-ids (1)
S Sy

N Sy

(a) Surface S, (AOAC'): y =0, ii=—j and dS = dxdz.

Let R, be the region bounded by the AOAC". Along the vertical strip BQ,,z

varies from 0 to 2 — 2x and in the region R , x

c'(0, 0, 2)

Qq
« 2X+2=2

varies from 0 to 1. ZA
”fo-ﬁdS=”—(x—y2)dxdz
Sy R
= f(: J-Oz—z.\-(_x) dxdz [ pi= 0]
(0]

I j2-2x
= —JOX|Z|0 : dx

Py A(1,0,0) X

Fig. 7.45
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=—[ x(2-2x)dx
5!
.
30
=_(1_3) Ya
3
1 B(0.4,0)
3 dx+y=4
Q>

(b) Surface S, (AOAB): z=0, i= —k and
dS'=dx dy.
Let R, be the region bounded by the >
AOAB . Along the vertical strip P, Q. y 0| P 4000 X
varies from 0 to 4 — 4x and in the region Fig. 7.46
R, x varies from 0 to 1.

J'J-VXFﬁdS=J-J[2xyf+(,v—)fz)}’]~(—lz)dxdy
S Ry

=0
(c) Surface S;(4x+y+2z=4):

Let g=4x+y+2z

e
Vel
_Ai+j+2k
4+ j+2k

V21

Projection of the plane 4x+ y+2z =4 on xy-plane is the triangle OA4B.

dxdyzgdxdy

n=

ds = ==

n-k

Let R, be the region bounded by the AOAB. Along the vertical strip P,Q,, y varies
from 0 to 4 — 4x and x varies from 0 to 1.

T 2 A 4i + 2/2 \/E
{!VXF.ndS='][![2_YyI+();_y2)./:|.[%)7dxdy
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_ 1 ¢l pd4-4x ) )
—EJ’OJ-O Bxy+x—y“)dydx
4—-4x

dx

1l 2 3
= — 8’—+ ==
210 ¥2 TP

0

gt a2 g (8%
_Zj 4x(4 — 4x)? + x(4 — 4x) = }d\'

:lJ' 256 > —196x2 +132\—ﬁ)¢r
2d0l 3 3

2
L2560 F g Ly O
23 4 3 2 3|
LR )
203 3 3
_i
3
Substituting in Eq. (1),
= 1 1
VXF-ndS=—-=4+0+-=0
J" n 5 - - (2)

(iii) Since the surface S does not include the yz-plane, it is open on the yz-plane.
AOBC’ is the boundary of the surface S.

Let C be the boundary of the AOBC” bounded by the lines y=0,z=0, y +2z=4.
cﬁCF-dr=jC,0F~dr+jOBF~dr+jBC,F-dr 3

F-dr=xzdx+ydy+xy’dz= ydy [ =0;d%=0]
(a) AlongC’O:y=0 dy=0

z varies from 2 to 0.

[ Fdr=] yay=0

(b) Along OB:z=0, dz=0

y varies from 0 to 4.
4

=8

Jf-d;=j:ydy= —
0B

(c) Along BC:y=4—-2z,dy=-2dz
z varies from 0 to 2.

J‘B(‘,Fd; = ‘[Ozydy

= joz(4 —22)(-2d2)
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S z
=—402;-=
2
0
=-4(4-2)
= B Cc'(0,0,2)
Substituting in Eq. (3), yeg s
= s <« y+2z=4
¢ F-dr=0+8-8=0 (@)
> Y
From Egs. (2) and (4), . 0? T B(0, 4, 0)
[[VxF-hds=¢ F-dr=0 o z=0
4 c Fig. 7.47

S

Hence, Stokes’ theorem is verified.

Example 4: Verify Stokes’ theorem for F=4 y i 4x}' +3k, where S is a disk of
1-unit radius lying on the plane z = 1 and C is its boundary.

Solution: By Stokes’ theorem,

Z
[[VxF-hds=¢ F-dr
: ¢
where S is the surface of the disk of 1-unit radius lying <>
on the plane z = 1 and C is the circle x* + y* =1. z=1
ij Kk
. —= |9 9 0 Y
(i) VxF=|— — —
ox Jdy Oz e ¥
4y —-4x 3
=1(0-0)- j(0-0)+k(-4-4) x
2 Fig. 7.48
Y s
(i) Since disc lies on the plane z = 1, parallel to the xy-plane,

A=k
(iii) Projection of the disc in the xy-plane is the circle x* +y* =1.
) ds=LY =drdy
| 7-k|
(v) Let R be the region bounded by the circle x* + y* =1 in the xy-plane.

HVxFﬁ dS:jj(—S/@)-/@dqu
S R

=—8[drdy
R
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Putting x=rcos@, y=rsiné, y

equation of the circle x* +y* =1

reduces to =1 and dxdy =rdrdé. r=1
A

Along, the radius vector OA, r varies from 0
to 1 and for a complete circle, € varies from
0to2rm

[[VxF-ds= —8j:"j0'rdrde
LY

1l
r

:_8|9|21r >

0

g (1)

Aliter
Fig. 7.49
[JVxF-ids=-8[[drdy
s R
= —8( Area of the circle)
= -8r(1)*
=-87
(vi) Cis the boundary of the disc, i.e., the circle x* + y* = 1 lying on the plane z = 1.
F-dr=4ydx—4xdy+3dz
=4ydx—4xdy [-z=1,dz=0]
SBCF-dr = gSC(4ydx—4xdy)

Parametric equation of the circle is
X =cos0, y=sin6

dx =-sinfdf, dy=cos6do
For the complete circle, &varies from 0 to 2.
95(; dr= J(jn [45in O(—sin0dB) — 4 cos B(cos 6d6)]

= —4j:”d9

_—
=8 )

2rn
0

From Egs. (1) and (2),
[[VxF-ids=¢ F-dr=-8x

N

Hence, Stokes’ theorem is verified.

Example 5: Verify Stokes’ theorem for F = (x> +y—4)i +3xy j +(2xz+2°)k
over the surface of the sphere x* + y* +z*> =16 above xy-plane.



7.8

Solution: By Stokes’ theorem,

@  JJvxFa dS:gScf.d?

QU =

i
= 0
VXF = a—x a—z
X +y—4 3xy 2xz+7°
=i{(0-0)— j(2z—0)+k(3y-1)
=2z]+3By-Dk X
(i) Let g=x"+y*+2°
Vg
V4|
_2xf+2y}+221€

_xi+yj+zk
4

&l <

n

(iii) Let R be the projection of the hemisphere
x*+y*+2z° =16 on the xy-plane (z = 0)
which is a circle, x* +y” =16.

(iv) ds=2Y
|n-k |

Stokes’ Theorem 7.75

Fig. 7.50

['.'xz +y2 +22 = 16]

Y

-

_ 4dxdy
z

V) HVXF-ﬁ ds

:J.,'.l:_zz‘;+(3y—1)/€].(x’?"'y;+zl€]4dxdy

R z

dxdy
z

= [[[-2zp+@y-1)]

= [[(r-Ddxdy

S

d

Fig. 7.51

Putting x =  cosé, y = r siné, equation of the circle x*+y* =16 reduces to

r=4anddxdy=rdrdé.

Along the radius vector O4, r varies from 0 to 4 and for the complete circle, 8

varies from 0 to 2.
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[[VxF-hds= jozﬂf(:(l‘sin9—1)1~dl*d9
S

4
2r
6l

3 2
7 r
3 2{,

: 4
|~cos 6|, -
0

4 1
= ——(cosZn—cosO)——6-27t
3 2

=-lo6r (D)
(vi) The boundary C of the hemisphere S is the circle x* + y* = 4 in xy-plane (z = 0).
F-dr= (x* +y—4)dx+3xydy+(2xz +z%)dz
=(x*+y—4)dx+3xydy [rz=0,dz=10]
qSCF-d?: gSC[(x2 +y—4)dx+3xydy]

Parametric equation of the circle x> +y* =4 is

x=4cosé, y=4sinf
dx =—-4sin@df, dy=4cosfdl

For the complete circle, & varies from 0 to 2.

(ﬁ(ﬁf dr = [‘[:”(160082 O+4sin6—4)(—4sin6dO)+(3-4cosO-4sin6)(4cos 9d0):|

= _’-:”(—640053 Osin® —16sin’ O+ 16sin0+192cos’ OsinH)dO

= ["~16sin* 040 [ |, r@a-x=0,if fa-x)=-1 (x)]
'y Jz”(ﬂ)dg
0 2
_ —8‘0— sin26
2 |
=-lé6r .. (2)

From Egs. (1) and (2),
[[VxF hds= gﬁ(id?: ~16m
A

Hence, Stokes’ theorem is verified.

Example 6: Verify Stokes’ theorem for F = yi+z +xk over the surface
¥ +y*=1-z,2>0.

Solution: By Stokes’ theorem,
[J[VxF-hds=F-dr
D,

S
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7.8
N “
@) fo:i 9 9
ox dy oz
Yy iz &
=i(0--ja-0+k0-1) [ —— .
=—(F+]+h) % y
(i) Let g=x>+)y*+z
X
2. VO Fig. 7.52
A

2xf+2yj’+l€

A 4yt 4

iii) Let R be the projection of the surface x*>+y* =1 — z on the xy-plane (z = 0
) y 2

which is a circle x“+y° =1

¥
(iv) ds =&Y
n-k
A
F=
Q

=4x* +4)" +1 dxdy

V) ”fo‘ﬁdS
=_U ~( +j +k)- (ZXI+2))J+k)\/4 +4y* +1dxdy
\/4x +4y +1

Fig. 7.53

= —J‘J(2x+2y+1)dxdy
R
Putting x = rcosf, y=rsin6, circle i +y2 = Ireduces to » =1 and dxdy = rdrd@

X=r b
Along the radius vector OA, r varies from 0 to 1 and for the complete circle, & varies

fromOto27x.
= 2r ¢l 5
”VxF ndS:—jo j0(2rcose+2rsme+1)rd; de

1

1 2

¥ 2
de

0

2
= _jo 2(cos+ sin 0)
0

—Jz[ (cosO+sinO)+— ]d@

2r

0

—’z(sine—c058)+19
3 2
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2. .
= —5(31n27t—00527r—s1n0+ cos0)—7

=-7 .. (1)

(vi) The boundary C of the surface x> +y* =1-z is the circle x* +y*> =1 in the
xy-plane (z = 0).

1?~d;=ydx+zdy+xdz
= ydx ['.'z= 0,dz = 0]

Fdr=
(fé dr (j)c ydx
Parametric equation of the circle x* +y* =1 is

x =cosb, y=sinf
dx=-sin@df, dy=cosfdé

For the complete circle, & varies from 0 to 27.

$F-dr= Jznsin 6(—sin6d0)
a 0

:_J-zn(]—cos%))de
0 2

:_l}e_sin202”
2 2 |
=_l(2ﬂ_M_0)
2 2 Q)
=-7

From Egs. (1) and (2),
[[VxF-ads=¢F-dr=-n
& (o]

Hence, Stokes’ theorem is verified.

Example 7: Evaluate by Stokes’ theorem 9SC(e"dx+2 ydy—dz), where C is the
curve x’+y* =4, z=2,

Solution: By Stokes’ theorem,

[[VxF-ids=¢F-dr
N

[JVXF-ids = (e de+2ydy—dz) (D)
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F:e‘f+2y}—/€
ik
vxE=ld 2 @
dx dy 0z

et 2y -1

=i{(0-0)= j(0—0)+k(0—0)
=0

Substituting in Eq. (1),
Cf)c(e"dx +2ydy—dz)=0

Example 8: Evaluate H(V x F)-7dS for the vector field F = (2y* +32> —x*)i -
S
+(222 +3x* =) j+(2x* +3y* =21k over the part of the sphere x* + y* + 2% —

2ax+az =0 cut off by the plane z = 0.

Solution: By Stokes’ theorem,

[[VxF-ids=@F-dr (D)

S
() F-dr=(2y*+32° - x})dx+(22° +3x% - Y )dy+ (2x> +3y* - 2%)dz
(ii) Let C be the boundary of the part of the sphere x” + y* +z° —2ax+az =0 cut

off by the plane z = 0, which is a circle, x* +y”> —2ax=0,(x —a)* + )’ = a’.

YA

(2a,0) x

Fig. 7.54
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Parametric equation of the circle

X—a=acos#, y=asinf
dx =—-asin8d@, dy=acosfd@

For the complete circle, & varies from 0 to 2.
gSCF-d? = gSC[(z y? —x))dxe+(3x% - y*)dy | [-z=0,dz=0]
= J.UJ [{Za2 sin? 0—(a+acos8)’ } (—asin0d6)
+{3(a+acos8)’ -’ sin” 6} (acos0do). ]

=a '[UM(—Zsins 0+sinO+sinOcos” O +2cosHsin O

+3cos0+3cos’ B+ 6¢cos’ O—sin’ Bcos0)do

= 24" (3cosB+3cos' 0 [ 1(6)d0=0,iff(2a—8) =~/ (6)
+6cos” O —sin’ Bcos§)dO = 2'[(:'_f(9)d9, if f(2a—6)= £(6)

T e =
=4a JO 6cos” 8dé [ cos(r—6)= cosﬁ]
_ 24a3J-5(1+c0526’) e

0 2
10 g4 BRRE

0

_ ]2a3(£+smn—0)

2 2
=6na’

From Eq. (1),

Hfo-r‘zds= 6ma’

N

Example 9: Evaluate by Stokes’ theorem (ﬁc(4 ydx+2zdy+6ydz) where C is

the curve of intersection of the sphere x> + y* + z* = 6z and the plane z = x + 3.
Solution: By Stokes’ theorem,
[[VxF hds=§F dr (D)
& (e

) F-dr=4ydx+2zdy+6ydz
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=(4yi+2zj+6yk)-(Idx+ jdy+kdz)
. f=4yf+2z}'+6yl€

A A

i J k
— 19 9 9
VxF=|— — —
N T &
4y 2z 6y
=i(6-2)—j(0-0)+k(0-4)
=47 -4k

(i1) Normal to the surface which is bounded by the curve of intersection of the
sphere x” + y* +z° = 6z and the plane z = x + 3 is also normal to the plane

z=x+3.
Let p=x—z
ﬁ:ﬁ
Ve
ik
J2
dS =dxdz

7.81

(iii) Let Cbe the curve of intersection of x? + y* + z> = 6z and z = x + 3 which is a circle

X+ 22 = 6z (since y = 0 on xz-plane).

(iv) Let R be the region bounded by the circle x* +z* —6z = 0 with 3-unit radius.

z

C (0, 3)

(0] X

Fig. 7.55

HVXF AdS = Hﬂchdz

=42 [ dxdz
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Putting x =rcos@, z=rsiné, the equation of the circle x*+2z’> =6z reduces to
r=6sind and dxdy = rdrd@. Along the radius vector OP, r varies from 0 to 6 sind
and for the complete circle, @ varies from 0 to 7.

[[VxF-ads = 4ﬁj(fj(f5i"9/~d,~d0
S

6sin6

de

o

-]

ﬁj”%sinz 0de
0
= 36J§j:(1—cos29)d9

_ 36«/5‘49— sm220

0
_ 36\/5(7z— sm27r)

2
=367V2

Aliter
[[VxF ids =4v2|[dxdz
s R
= 4/2 (Area of the circle C)
= 42(m-3)
=367\2
From Eq. (1),

9SCF- dr =367\2

Example 10: Using Stokes’ theorem, find the work done in moving a particle
once around the perimeter of the trlangle with Vertlces at (2, 0, 0), (0, 3, 0) and
(0, 0, 6) under the force field F = (x+ ) +(2x—2)] +( y+z)k

Solution: Work done = i F-dr
By Stokes’ theorem,

$F-dr=[[VxF-ids
N
Thus, work done = J‘J.VXF-ﬁdS
N

where S is the surface of the AABC.
Equation of the AABC is



£+Z+£=1
2 3 6
3x+2y+z=6
i 7 k
(i) VxF= 9 9 9
ox dy 0z

x+y 2x—z y+z
=i(1+1)= j(0-0)+k(2-1)
=2 +k
0=3x+2y+z
M
A
_3i+2j+k

V9+4+1

_3i+2j+k

N

(ii) Let

n=

7.8 Stokes’ Theorem

7.83

ZA
€ (0,0, 6)
B(0, 3, 0)
0(0,0,00— y
A(2,0,0)
Fig. 7.56

(iii) Projection of AABC on the xy-plane is the AOAB bounded by the lines y =0,

3x+2y=6,x=0.
dsi= 282
k|

=14 dx dy

(iv) Let R be the region bounded by the AOAB. Along the vertical strip PQ, y var-

ies from O to

o s w3427k
J;JVXF-ndS:J;!(Zz+k)-[%]x/ﬁdxdy

g 073%
='[0J0 2 7dydx

6-3x

2
:7J‘0|y’0 2 dx
2( 6-3x
=7J0( 2 )dx
=73x—£

4 0

=21

6—3% and in the region R, x varies from 0 to 2.

YA
B (0, 3, 0)
3x+2y=6
Q
o P A(2,0,0) X
(0,0,0)
Fig. 7.57
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Aliter
[JVxF-nds=7[[dxdy
S R
= 7(Area of AOAB)

7.1.2.3
2

21

Example 11: Evaluate JIVXF-fIdS using Stokes’ theorem, where F= yzi
~ MDY
+(2x+y—1)j+(x*+2z)k and S is the surface of intersection of the cylinders

x*+y*=a* andx* +z* =a® in the positive octant.

Solution: By Stokes’ theorem,
J:JVandS:CﬁCF'dr (D)

<« B (0, a, a)

X+22=a > \

E(a 0,0)

Fig. 7.58

(1) F-dr= yzdx+Q2x+y—=1)dy +(x* +22)dz

(il) Cis EABDE which is the boundary of the surface of intersection of the cylinders
x> +y* =a® and x* +z° = 4” in the positive octant.

$F-dr=[ F-dr+[ F-dr+| F-dr+| F-dr )
= EA AB BD DE

(@) Along EA: z=0, x*+)y’=d’
dz=0

Putting X =acos¥, y=asiné

dx =—asin@df, dy=acosfd@
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Along EA, @varies from 0 to E.
2
A (0, a)

y
Jnfd)_ = J.E/'[yzdx+(2x+y—1)dy+(xZ +22)dz] /\
z E(a, 0)
:Lz (2acosO+a sin@—1)acos6dO \/ -

= _[07 (24* cos® O+ a” sin@cos O —acos B)dO

L4

50 1 31 3 1 . Al
=2a -—B(E,E)+a -EB(],I)—a|sm0|6

2
Fig. 7.59
31
EE ah z
=02 E +?T—a(sin3—sin0)
1 2
=a —m+—-a
2
m  a
=—+—-a
2 2
(b) Along AB: x=0, y=a
dx=0, dy=0

z varies from 0 to a.
LBF dr= LB [yzdx+Q@x+y-Ddy+(x* +2z)dz |

= J.:szz

2
=a

(c) Along BD: x=0, z=a
dv=0, dz=0
y varies from a to 0.

jBDF'd; = J‘BD[yzdx+(2x+y—l)dy+(x2 +22)dz]
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(d) Along DE: y=0, x"+z'=a

dy=0 D0, a)

Putting x =acos®, z=asinf E(a, 0)

dx = —asin@df, dz=acos@dé \\

Along DE, @varies from % to 2.

N

f,)Ef'd'_‘ = JDE[,VZ dx+(2x+ y =)y +(x° +2z)dz]
(& cos® : Fig. 7.60
= [2 (a* cos® 6+ 2asin6) (acos §d6)
2

= [, (acos’ 0+ 2sinOcos 6)do

2z
=a |,

[g(cos 30+ 3cos6) +sin29]d9

|

2

2r 2r

3 .
_a Sm39+3sin6 +a3_00529
4 Ll il
? (si : 1 ; 3
=a—(sm6”+3s1n27t——sm3—ﬂ—3sm£)—a—(cos47r—cos7t)
4 3 2 2 2
a(l a’
=—|==-3|-—(1+1
4(3 ) 2( )
24° 5

3

Substituting in Eq. (2),

_ 2 2 3
IF dr=2 4L _a+a? ——+a—2i—a2
b 3
_m 2
2 3
From Eq. (1),
2 3
ﬂwpms:”i—z%.
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Exercise 7.6 1

(I) Verity Stoke’s theorem for the following vector point functions:

— g Y 5 s = Vs A -
1. F= (x‘ +T) i +(7+y') J 3. F=(x3 +%)i+4xj+(xz3 +2')k
+(x yz)/é over the surface§ of the over the upper half surface S of the
cbe0<x<3, 0 y<3, sphere x* +y* +2° =1.
0<z<3. [Ans.: 4]
[Ans.: 0]

2. F=xzi+yj+yxk over the sur- 4. F=(x2+y+2)i +2xy j+4ze* k
face § of the tetrahedron bound-
ed by the planes y = 0, z = 0 and
4x+ y+2z =4 above the yz-plane.

[Ans. <0] [Ans.: -97]

over the surface S of the paraboloid
z=9—(x"+y*) above xy-plane.

(IT) Evaluate the following integrals using Stokes’ theorem:

.5 T (2 2 the plane z = 2 and C is its boundary
1. || VX F-ndS where F =(x"+y+ ) o
-[J e where "+ y+z) traversed in the clockwise direction.

%2@1 J—-Gxyz+ 2k andS isthe [Ans.:207]
surface of the hemisphere .
X2 +y* +2° =9 above the xy-plane. 3. L (ydx+zdy+xdz) where C is
[Ans.: -97] the curve of intersection of the sphere
x*+y’+z°=da’ and the plane
2. [[VxF -7dS where F =3yi —xz ] xtz=a
Y . ]
+yz’k and S is the surface of the [ Adig, 308 ]
V2

paraboloid x* +y* =2z bounded by

(IIT) For the vector field:

[Ans. : (i)0 (ii) 27 (iii)no

1. F=——2—7+—>" 7] overthe
X +y X +y

surface of the sphere x* + > +z* =1 since ”V < F-7dS ¢¢ F.dr Also
above the xy-plane, evaluate
in this case Stokes’ theorem cannot

() ”VXF -ndS (i) écf'd;, where e applied_since at (0, 0) which is
& inside C, F is neither continuous nor

Cis the boundary of S. Are the results differentiable].

compatible with Stokes’ theorem?



Integral
Formulae

I Appendix 1

n+l

g W
1. J.\ dx —

1
(n#-1) 16. | dx =
Jx—

1 — x
‘[—d,\-zlog|x| log (x+\/x'—a“)zcosh1(l)
X a

3. J.e‘d.rze“ 17 J- 1 s
4 ,[a"‘dvz i a>0,a#1 o
. ' loga , , log (x+ VX' +d’ )=sinh! (l)
a
1 1 a+x
18. > ,dx:—log( )
6. Jcos xdx =sinx J‘a‘ —-x° 2a a—x

= : tanh™ (ﬁ), 2<g?
7. Jtan x dx =—log cosx 7 i

8. _[cotxdleogsinx 19. j 71 7dx:2L10g(—\‘—a)
X —a a X+a

| X
= ——coth™ (—), xX*>a?
a a

N

5. '[sinxdx =—COSX

9. Jscc x dx =log(secx + tanx)

14.

10. Icosec x dx =log(cosecx — cotx)
1 | x
20. | 5——dx = —t _I(_)
11. Isec xdx = tanx J‘a'+.’c2 A \a
12. Icosec xdx =—cotx 21. J. a’ - x*dx
13. |secx tanxdx =secx =8 [ +£sin"(£)
::: 2 2 a

txdy =— 2 2
cosecx cot xdx =—cosecx 2. J‘ F 1 P
X
d‘—sm (a) —ixla +x° +—]og(\'+\/r +a’)

2

1sj



A.2 Appendix 1 Integral Formulae

23. j - adx

_E-a —az—‘log(x-k\/x2 —=a”)

2
24, Ic sin bx dx

ax

=_% _ (asin bx — bcos bx)
a+ b
25. Je“"cosbxdx
= _ (acos bx + bsin bx)
a*+ b’
du
26. Iuvdx = uJ.vdx—J(EJ.vdx)dx

27. [/ Y /() dx
_ e

n+1

,n#—1

28 [ L0 ax = oglsto)

29. Je”""f’(x)dx = e/

30. [T/ + f(@)]dr = e ()

31.

32.

33.

34.

35.

36.

[sinl/ o)) £ (x) dx = —cos fx)

[ eosLf (x)1.f"(x)dx = sin f(x)

I f(x)dx = Jf(a—x)dx

f(x)dx

ct—.“

= If(x)dx + Jif(2a —x)dx

J reyax

~2f f(nye,

=0,

Tﬂnm

= ZJLf(x)dx

=0,

if f(x) is even

if f(x) is odd

i f(x) = f2a —x)
if f(x) = /(24— x)



GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-I/Il Examination Summer-2014

Subject Code: 2110015
Subject Name: Vector Calculus and Linear Algebra

Total Marks: 70

Instructions:

1. Question No. 1 is compulsory. Attempt any four out of remaining six
questions.

2. Make suitable assumptions wherever necessary.

3. Figure to the right indicate full marks.

Q.1 (a) Objective Question 07
1. The number of solutions of the system of equations 4X = 0 where 4 is a
singular matrix is
(a 0 d) 1 (c) 2 (d) infinite
Solution:
Here, system of equation AX = 0 which is a homogeneous linear system.
And it has two types of solutions:
(1) Trivial solution
(ii) Infinitely many solutions
Ans: (d) Infinite
2. Let 4 be a unitary matrix; then 47! is
(a) 4 (b) A () A7 @ A"
Solution:
If 4 be a unitary matrix then
A(A)'=1=(A)"4
So (A =14"
A= @Y
Ans: (d) (A)"
3. Let W=span {cos? x, sin® x, cos 2x} then the dimension of W is
(a) 0 (b) 1 (c) 2 (d) 3
Solution:
W can be expressed as a linear combination of function
W = cos? x + sin® x + cos 2x
= cos? x + sin® x + cos? x — sin® x
W=2cos*x
w=2f
dim(W) =2
Ans: (c) 2
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4. Let P, be the vector space of all polynomials with degree less than or equal to
two; then the dimension of P, is
(a) 1 () 2 (c) 3 (d) 4

Solution:
Here, P, is the polynomial with degree less than or equal to two. Therefore,

= 2
P, a,tax+ax

dim(P,) =3
Ans: (¢) 3
5. The column vectors of an orthogonal matrix are
(a) orthogonal (b) orthonormal
(c) dependent (d) none of these

Solution:
The column vectors of an orthogonal matrix are orthonosmal.

6. Let T: R* > R? be a linear transformation defined by 7(x, y) = (y, x); then it
is

(a) one to one (b) onto
(c) both (d) neither
Solution:

A linear transformation is one to one if and only if Ker(7) = {0}
let T(x,y)=0

(0, x)=(0,0)
y=0andx=0
X 0
HxY
Ker(7) = {0}

Hence, T is one to one.

A linear transformation is onto if R(T) = W

Let V= (x,y) and W= (a, b) be in R? where a and b are real numbers such
that

Tvy=wW = T(x,y)=((a,b)
= », x)=(a, b)
= y=a,x=b
Thus, for every W= (a, b) in R?, AV = (b, a) in R
Hence, T is onto.
Ans: (c) Both

7. Let T: R* = R® be a linear transformation defined by 7(x, y, z) = (3, z, 0); then
the dimension of R(7) is
(a) 0 (b 1 (c) 2 (d) 3
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Solution:
The image of T is the entire yz-plane. i.e. point of the form (y, z, 0)
R(T) = Im(T) = {(a, b, ) | a= 0} = yz-plane

dim [R(T)] =2
Q.1(b) 07
1. If |ju + V| = ||u|]* + ||V||%; then u and v are
(a) parallel (b) perpendicular
(c) dependent (d) none of these
Solution:

By Pythagorean theorem, if # and v are orthogonal (Perpendicular) vectors
in Inner product space then <u, v>=<y, u>=0

[l | VI =<u+ v, u+v>
=<y, u+v>+<v,u+v>
=<y, v>+ <u, v>+ <y, > + <y, v>
= [fuel? + [IVI? [ <u,v>=<v,u>=0]
Ans: (b) Perpendicular
2. lu+vIP = flu = VI is
(a) <u,v> (b) 2<u, v> (¢) 3<u,v> (d) 4<u, v>
Solution:
lu+tv]|P=<u+v,ut+v>
=<u,u+tv>+<y,utv>
and [l —V|P=<u—v, u—v>=<u,u>+<u, v>+<v,u>+<v,u> (1)
[l —V|]?=<u, u—v>—<v, u—v>
=<u, u>— <u, v>— <y, u> + <y, v> 2)
eq. (1)—eq. (2)
[l +V* = flu = VI

=<u, u> + <u, v>+ <y, u> + <y, v> — <u, u> + <u, v>
+ <v, u> —<v, u>

=2<u, v>+ 2<v, u>

=2<u, v>+ 2<u, v>

= 4<y, v> Ans: (d) 4<u, v>
3. Let T: R® — R® be a one-to-one linear transformation; then the dimension of
Ker(7) is
(a) 0 (b) 1 (c) 2 (@ 3
Solution:

A linear transformation is one to one if and only if Ker (7) =0
dim {Ker(7)} =0 Ans: (a) 0
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2 1
4, LetA= {2 3} ; then the eigen values of 42 are

(a 1,2 () 1,4 () 1,6 (d) 1,16

Solution:
The characteristic equation is |4 — dI] =0

2-d 1

=0
5
Q-d)-(3-d)-2=0
6-2d-3d+d—-2=0
P —5d+4=0
P—4d—d+4=0
dd—4)—1(d—4)=0

d-4)d-1)=0
d=1,4
The eigenvalues of 4 are d = 1, 4. Therefore, the eigenvalues of 42 are 1,
16.
Ans: (d) 1, 16
2 1
5. Let4 = { ) 3}; then the eigenvalues of 4 + 37 are
(a) 1,2 b) 2,5 (c) 3,6 (d) 4,7
Solution:

The characteristic equation is |4 — dI| =0

2-d 1

[ 2 3—d}_0
Q-d)3-d)-2=0
P —5d+4=0

P —4d—d+4=0
d(d—4)—1(d—4)=0
(d-1)d-4)=0
d=1,4

The eigenvalues of 4 is d = 1, 4. Therefore, the eigenvalue

L N A

6. div 7 is
(@ 0 (b) 1 (©) 2 (d 3
Solution:
Here, F=xi+tyj+zk = divi=V-T
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. . _o0r or oJr
divi=—+—+—
ox dy 0z
=1+1+1=3
7. If the value of line integral cﬁf -dr does not depend on the path C then F is
c
(a) solenoidal (b) incompressible
(c) irrotational (d) none of these

Solution:

If F is the velocity of a fluid particle and ¢ is a closed curve then the line

integral cf;F . d7 in the region R is zero. Then F is irrotational, i.e., if <f> F-dr
c c
=0, F is irrotational.

Q.2
(a) Solve the following system of equations using the Gauss elimination method:
05
2x, +x,+2x,+x,=6, 6x, —x, + 6x,+ 12x, = 36
4x +3x,+3x,-3x,= 1, 2x, +2x,—x,+x,= 10
Solution:
The matrix form of the system is
2 1 2 1]x 6
6 -1 6 12| x, 36
4 3 3 3ix 1
202 -1 1]lx 10

The augmented matrix of the system is
2 1 2 1! 6]
6 -1 6 12136
4 3 3 311
2 2 -1 1,10}

Reducing the augmented matrix to row echelon form

!

|
~l6 -1 6 12136 %

I 2

1

|

|

|



SQP.6 Vector Calculus and Linear Algebra

R, +R,

a o — e
| |
— = o o
|
a o o o

— <t
N = — (=
I
N =) S (=
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Now, the corresponding system equation is

112 8
2x, +x,+2x,+x,=6 then x4=z=§
18 26 11°8 10
X, t —xy=— X, = — ===
4 4 4 A3 12
=2 =2
3Ty y—4 3T 7%
42 12 L9, 18 9°% 18
47 4 2TYNMTA T3 T,
_18_18 18 3
3 4 12 2
X X,
2x1=67x27x472x3:>x|=3772—74—)63
NEPERE DS
4 3 6
_36-9-16+10_46-25 21 7 x—z
12 12 12 4 4
1 2 31
. . 1 3 3 2 )
(b) Find the inverse of 2 4 3 3| using the Gauss—Jordan method. 05
1 1 11
Solution:
1 2 31
Here, A=|1 3 3 2
2 4 33
I 111
A=14
1 2 31 1 000
1 332 (010 OA
2 4 3 3/7/0 010
1 1 11 0 0 01

Now, reducing the matrix A4 to the reduced row echelon form
R,—R,R,-2R,R,—R,

1 2 31 00
0 1 0 1| |- 0 0,
0 0 =3 1| |20 10
0 -1 =2 0] |-1 00 1
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S o o -

S o — O

o — o —

| O 0 A

a — O O

- o O O

-3

-3
-2
1
3

n O — O

AN - O O

— O O O

R, - 3R,
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1 2 00 3 -6 5 -6
010 0] -2 2 -3 A
0010/ |0 1 -1
000 1 |2 3 -2 3]
R —2R,
(1 0 0 0] [ 1 =2 0]
01 00 -2 2 =3
= A
0010 0o 1 -1
00 0 1] [-2 3 -2 3]
I,=A4"4
1 -2 1 0
e 1 2 2 =3
o 1 -1 1
-2 3 =2 3
4 +2i 7 3—i
(¢) Express 0 3i —2 | as the sum of a hermitian and a skew-
543 -7+i 9+6i
hermitian matrix. 04

Solution:

Ae=(Ay=| 7 =3i -T-i
| 3+i -2 9-6i

Let P= %(A +49)

| 4+2i 7 3—1i 4-2i 0 5-3i
= — 0 3i =2 |+ 7 =3i -7-i
5+3i -7+i 9+6i 3+i -2 9-6i

8 7 8 —4i

=— 7 0 -9—1i

8+4i -9+ 18
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And Q= % (4 - 49

442 7 3—-i 4-2i 0 5-3i
:l 0 3i -2 |- 7 =3i -7-i
5+3i -T+i 9+6i| [3+i -2 9-6i
4i 7 2+2i)
_1 =7 6i 5+i
22+2i —S5+i 12i

We know that P is a hermitian and Q is a skew-hermition matrix.

4 7 4-2i 2i 7 -1+
2 2
A:P+Q= Z 0 _2_L + _Z 3i 4=
2 2 2 2
4+2i —2+i 9 1+i —§+i 6i
L 2 2 1L 2 2 |

Q3
(a) Let V be the set of all ordered pairs of real numbers with vector addition
defined as (x,, y,) + (x,, y,) = (x, + x, + 1, y, + y, + 1). Show that the first five
axioms for vector addition are satisfied. Clearly mention the zero vector and

additive inverse. 05
Solution:

Letu=(x, ), v=(x,y,) and w = (x,, y,) are objects in V.

(1) utv=(x,y)+(x,y,)

=@, +tx,+ 1,y +y,+1)
Since x,, x,, y,, y, are real numbers, x, + x, + 1 and y, +y, + 1 are also real

numbers.

Therefore, u +v e V.

2) utv=(x +x,+1,y +y +1)
=x,*tx +Ly +y +1)
=v+w

Hence, vector addition is commutative.

3) ut(vtw)=,y)+(x,r)+(x, )]
=, y) Ot Ly, Hy 1)
=ttt D)+ Ly + @,y D]
= [, Fry + D) L Fay D Fy
=t Ly Ay, D+ (g,
=u+v)y+tw

Hence, vector addition is associative.
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e V, such that

(a,b)tu=u

(@, D) + (5. 7)) = (x,.7)
(a+x,+1,b+y +1)=(x.p)
atx +1=x,b+y +1=y
a=-1,b=-1

Also, u+ (a, b)=u
Hence, (-1, —1) is the zero vector in V.
(5) Let (a, b) € V such that

Also, (a, b) +

u+(a, b)=_-1,-1)

(xlayl) + (Cl, b) = (_1’ _1)
(x,Tatl,y +b+1)=(1,-1)

x ta+tl=-1 y,+tb+1=-1
a=-x -2 b=-y -2
u=(-1,-1)

Hence, (—x,, -2, -y,, —2) is the inverse in V.

(b) Find a basis for the subspace of P, spanned by the vector 1 + x, x>, -2 +

2x%, —3x

Solution:
Letv, =1+x,

Here, {v, v, v,, v,

=32y = 2y =_
v,=x%v,==2+2xv,=-3x

05

} spans subspace of P, but it is not a basis for the sub-

space of P,. Since dim (subspace of P)) = 3 and the basis of the subspace
of P, contains exactly three vectors. We now need to remove one vector

from {v, v, v

,» V,} to get a basis.

We can remove that vector only which is a linear combination of some of
the other vectors of the set {v,, v, v, v,}. Let

c,(I+x)+c,(x?) + (-2 +2x%) + ¢,(-3x) = 0 + Ox + Ox?

Then

(¢, =2c) +(c,—3c)x+(c, +2c)x* =0+ Ox + Ox*

which implies

Cl—

2¢,=0 ¢, —3c,=0 c,*2¢,=0

Now, the matrix form of the system is

AX=0
1

10 -2 0 0
)

10 0 -3 =0
C3

0o1 2 0 0
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The augmented matrix of the system is
10 -2 o0lo
10 0 =310
01 2 00

R2_R1
10 -2 o0lo
=0 0 2 =310
01 2 00
R, <R,
10 -2 o0lo
=0 1 2 010
00 2 -3,0
R/2
10 -2 010
|
~001 2 00
|
|
00 1 —3:0
2
The corresponding system of equation is
¢, =2¢,=0
¢, *2¢,=0
_3 _
C3_EC4_O

Now, take ¢, = ¢

Then ¢, =3t c, =3t

Here, ¢, c,, c,, c,, not all zero, the given vectors are linearly are dependent

and the relation between them is given by
3 p—
3tv, =3y, + Etv3 +w,=0

Thus, we can remove any one of the vectors v, v,, v,, v,. Let us remove v,.
Then the set {v,, v,, v,} still spans the subspace of P, and has exactly three
vectors. So it must be a basis for P,.

Basis = {1 +x, x?, -2 + 2x%}
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51 1 1|1 1
(¢) Express the matrix [_1 9} as a linear combination of {0 3}[0 2}

22 04
-1 1

Solution:
Here, the matrix

o[ 3]

Let A=Ak + Ak, + Ak,

51 1 -1 11 2 2
=k +k, + ks

-1 9 0 3 0 2 -1 1
[/<l+k2+2k3 —kl+k2+2k3}

—ky 3k, + 2k, + ks

Now, equating the corresponding components,

k +k,+2k=5
—k tk, 2k =1 €))
—k,=~1

3k, + 2k, +k,=9
Now, solving these equations,
k=1
k +k,=5-2=3
—k, +k,=1-2=-1

2k, =2
k,=1
Then k +k =3
k=3-1=2
Now, k=2k=1kK=1

Hence the linear combination of 4 is |A =2A1+ A+ Ay |

Q4.

(a) Consider the basis § = {v,, v,} for R*> where v = (1, 1) and v, = (2, 3). Let
T : R* — P* be the linear transformation such that 7(v) = 2 — 3x + x* and
T(v,) = 1 — x* then find the formula of 7(a, b) 05

Solution:
a . . . . .
Let V= b be an arbitrary vector in R* expressed as a linear combination

of v, and v,
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V= klv1 + k2v2

BRI RS Hy e

New, equating corresponding components,

k +2k,=a
k +3k =0 M
1 2
Solving these equations,
~k,=a-b
And k+2b-a)=a
= k,=a-2b+2a=3a-2b
ky=3a-2b

V=0Ba-2b)V,+(b-a)V,
(V) =k, T(v) + k, T(v,)

Tm —(Ba-2b) 2 -3x+x) + (b—a)l - )
=(6a—-4b+b—a)+(9a+ 6b)x+(3a—-2b-b+a)x?

T[Z} = (5a —3b) + (—9a + 6b)x + (4a — 3b)x*

(b) Verify Rank-Nullity theorem for the linear transformation 7': R* — R* defined

by
T(x,, x,, X3, x,) = (4x, +x, - 2x, — 3x,, 2x, + x, + x, — 4x,, 6x, — 9x, + 9x)
05
Solution:
The basis for ker (7) is the basis for the solution of the homogeneous
system

dx +x,—2x,-3x,=0
2%, +x,+x,—4x,=0
6x, —9x,+9x,=0
The augmented matrix of the system is
4 1 =2 =310
21 1 410
6 0 9 90
Reducing in row echelon form,
R R

)

4 3
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1 2 3|
1 = == —=
4 4 4
~12 1 1 —410
|
2 0 3 310
R,—2R, R,-2R,
. A
A R B
4 2 4.
1 |
~l0 = 2—5:0
2 2:
|
0o L o 2ig
L 2 21
2R,, 2R,
I |
p L3,
4 2 4
~l0 1 4 -5}0
I
0 -1 -4 910
R, +R,
|
p L_L 3y
4 2 4
~l0 1 4 -5}0
|
00 0 4'0
1
—R
44
|
S A
4 2 4
~l01 4 =510
|
00 0 10

Therefore, the corresponding system of equations is

1 3
xl+zx2—5x3—zx4—

0
x,+4x,-5x,=0
x,=0
Now, take x, = ¢
x, =4t

-1 1 t 3
and X, = T(—4t)+5t=t+5=5t
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X él‘ E
5| |2 2
o) X5 = | -4t |=¢| -4
t 1
Xy
0 0

Hence the basis per ker(7) = Null space

o | W

_|-4
1
0

-~ dim [ker(7)] =1
The basis for the range of T is the basis for the column space of [7].

(4 1 -2 =3
=121 1 -4
6 0 -9 9

Reducing [T] to row echelon form as above,

p L1 3
4 2 4
~lo 1 4 -5
00 0 1

Here, the leading entry appears in column 1, 2 and 4.
Hence, the basis of R(7) = Basis for column space of [7].

41717 [-3

=l2[1],|—4
60| 9

dim [R(T)] =3

Rank(7) = dim(R(T)) = 3
nullity (7) = dim (Ker(7)) =1
so Rank(7) + Nullity (7) =3 + 1
=4
=dim R,
Hence, the dimension theorem is verified.



Solved Question Paper SQP.17

(¢) Find the algebraic and geometric multiplicity of each of the eigenvalues of

01 1
1 0 1 04
1 10
Solution:
011
Here, A=|1 0 1
1 10
The characteristic equation is
[A—dl|=0
-d 1 1
1 -d 1=0
1 1 -d

= d&-sd+sd=s,=0
s, = sum of the principal diagonal element

=0+d+¢=0
s, = sum of the minors of principal diagonal element
0 1 ‘o 1 o 1‘
= + + =—1-1-1
1 0 |1 Of 1 O
=-3
011
s,=det(4)=|1 0 1
1 10
=0-1(-1)+1(1-0)
=1+1=2
Hence, the characteristic equation is
&P -3d=2=0

Ad+1)-dd+1)-2(d+1)=0

(d+ 1) (P -2d+d-2)=0

d+DHd-2)d+1)=0

d=2,-1,-1
eigen values of the matrix are 2, -1, —1.
Since the eigenvalue d = —1 is repeated twice. So its Algebraic multiplic-
ity is 2.
For d = -1, the corresponding eigenvectors are

[A—dlx=0



SQP.18 Vector Calculus and Linear Algebra

+1 1 1| x 0

1 1 1|x,|=0

I 1 1] x 0

Rz - Rl - R3 - Rl
1 1 1| x 0
0 0 O0flx,|=|0
0 0 0] x 0
.. Rank of matrix = 1

And the corresponding equation is
x, +tx,+x,=0

x, =1
x,=3
x =—t-8
So the eigenvector
X -t-=S -1 -1
x=|x%|=| § |=t 0[+§] 1
X3 t 1 0

Number of unknowns = 3
Number of linearly independent eigenvectors
. Geometric multiplicity is 2.
Since eigenvalue d = 2 is non-repeated, so its Algebraic multiplicity is 1.
For d =2, the corresponding eigenvectors are
[A-dllx=0

Rl3

1 1 2% [0]
1 =2 1fx|=
-2 1 1x
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RZ R3
3 3
(1 1 =2][x] [0
0 1 —1{x,|=0
10 1 —1]| x; 0
R37R2
(11 =2x] [o
0 1 —1|x,|[=[0
10 0 O0flx] [O

Now, the corresponding equation is

x +tx,-2x,=0

x,+x,=0
Let X, =t x,=t
X, =2x, —x,
=2t—t=t
x| [t
So the eigenvectorx = | X, [=|?
x| |t
1
=11
1

Now, the rank of matrix = 2

Number of unknowns = 3

Number of linearly independent eigenvectors =3 —2 =1
Hence, geometric multiplicity is 1.

b

a b a O .
(a) For 4 = ¢ and B = FRE let the inner product on M,, be
14 2

d c,

2 6
defined as <4, B> = aa, + bb, + cc, + dd,. Let A = L _3} and

32
B = |:1 0} then verify Cauchy—Schwarz inequality and find the angle

between 4 and B. 05
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Solution:
Cauchy—Schwarz Inequality:
If 4 and B are vectors in an inner product space M,, then
<4, B> <||4]| [|B]|
Now, ||B|| = <B, B>'"
=[3)+ @7+ (1) + (01"
_orari=vid
4 = <4, 4>
=[@)y +(6)* + (1)* + (-3)1]"
_ [i5%6+159
=50 =52
<4,B>=aa,+bb,+cc,+dd,
=23+62+1.1+(3)-0
=6+12+1+0
=19
Therefore, |19| < 5214
[19] <26.45

so the Cauchy—Schwarz inequality is verified.
The angle between 4 and B is

cos O= <A, B>
lAllBll
6= cos™ _<A’B>}
AN
e
= COS _\/%\/ﬁ:|
e |19
= COos _m}

1l 19
@=cos || ——
[mﬁ}

(b) Let R’ have the inner product defined by < (x, x,, x,), (v, ¥,, ¥)) > = x ),
+ 2x,y, + 3x,y,. Apply the Gram—Schmidt process to transform the vectors
(1,1, 1),(1, 1,0) and (1, 0, 0) into orthonormal vectors. 05

Solution:
Gram-Schmidt Process:
Step-1  Letv, =u =(1,1,1)
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<Uy, V>
S .
<(1,1,0),(1,1,1)>
PP+2-1°+3-1%)

Step-2 v,=u

2

=(1,1,0)—

(1,1, 1)

MM +2(MHA) +3(1)(0)

]
1,1,1
1+2+3 ( )

:(la 150)7 [

-1
=(1,1,0)- %(1, LD=(1,1,0-2(,1,1)

_(1 1 —1)
Vzi RN
2°27 2

-~ <usz, v; > <Uz, Vy>
Step-3 v, =, - VY,
[l [Iv.l

<(1,0,0),(1,1,1)>
1?+2-12+3-1%)

11 -1
B <(1’0’0)’(2’2’2)>(1 1 —_1]
2

(1 2 3)
4 4 4

=(1,0,0)—

(1,1, 1)

_( -1 1 -1 1 -1 1)
- 1___’___3_+_
6 66 66 6

(2.0)-(22%0)
6 6 33

Thus, the vectors v, v,, v, form an orthogonal basic for R

11 -1 2 -1
h 1 is=193(1,1,1 ,(—,—,—j,(—,_70)}
Orthogonal basis {( ) N UACHE
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Now, normalizing v, v,, v,

w=t-__ QLY _GLD
[Ivill \/1+2-1+3-1 \/g

2 -1
W = T T 0)
3 (\/6 J6
Thus, the vectors w,, w,, w, form an orthonormal basis for R.
1 1 1 I 1 -1 2 -1
Orthonormal basis = < | ——=, —=,—= |,| —=,—=,—/—= || ——=,—=,0
{(\/6 \E%N%JE JE)(JE V6 )}
(¢) Find a basis for the orthogonal complement of the subspace spanned by the

vectors (2, -1, 1, 3, 0), (1, 2,0, 1, -2), (4, 3, 1, 5, —4), (3, 1, 2, -1, 1) and
(23 715 2a 72! 3) 04

Solution:
Let the W subspace spanned by these vectors be the row space of the matrix.

2 11 3 0

1 20 1 =2
A=14 3 1 5 -4
312 -1 1
2 -1 2 -2 3
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Since (Row space)” = Null space

Basis for (Row space)” = Basis for the null space

. the null space of 4 is the solution space of the homogeneous system
AX=0

2 -1 1 3 0][x] [0
1 20 1 =2{x]| |0
4 31 5 —4|x|=|0
3012 -1 1fx]| |0
2 -1 2 =2 3][x] [0

The augmented matrix for the system is

2 -1 1 3 0!0
1 20 1 =210
4 31 5 410
312 -1 150
2 -1 2 2 30
Reducing the augmented matrix into row echelon form,
R &R,
(1 2 0 1 —2!0]
2 -1 1 3 010
=4 3 1 5 —410
3 12 -1 150
2 -1 2 -2 3|0]
R,~2R, R,—4R, R,~3R, R, 2R
(1 2 0 1 =210]
0 -5 1 1 410
=0 -5 1 1 410
0 -5 2 —4 7m
0 -5 2 4 7]0
R,—~R, R,—R, R,—R,
(1 2 0 1 —2!0]
0 -5 1 1 410
=0 00 0 010
0 0 1 -5 350
0 0 1 -5 30|
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R.-R,
(1 2 0 1 —2!0]
0 -5 1 1 410
=0 00 0 010
0 0 1 -5 350
0 00 0 0}0]

R, &R,

(1 2 0 1 -2!0]
0 -5 1 1 410
=0 01 -5 310
0 00 0 0;0
0 00 0 0}0]
RZ

-5
(12 o 1 -210]

!
0o 1 -+ L 44
5 5 5|

“loo 1 -5 310
00 0 0 0}0
00 0 0 0;0]

Therefore, the corresponding system of equation is
x, +2x,+0x, +x, - 2x,= 0
1 1 4

T g TN =0

x3—5x4+3x5=0

Now, letx,=§ x, =t

x,=58-3¢
*lSS 3z+l +it
,=5068-3)+ SO+ 50
:S—§t+£+£
5
_bg,t
5 5

x, = 2x,—x,—2x,

=2t—S—2(§S+£)
575
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12 2t

X1 5 5

Basis for the null space of 4

[ 17][8
5|5
6 1
505
5 =3
1 0
L O J4 L 1 .
which is also the basis for the subspace w.
Q.6
6 -1 1
(a) Verify Cayley—Hamilton theorem for 4 = |—2 5 —1| and, hence, find 4*.
2 1 7

05
Solution:
6 -1 1
Here,A=|-2 5 -1
2 1 7
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The characteristic equation is
|[A—-dl|=0
6-d -1 1

2 1 7-d
#=Sd+Sd-S=0

where §=6+5+7=18
§,=36+40+28=-104
6 -1 1
S,=detd)=|-2 5 -1
2 1 7
=6(36) + 1(-12) + 1(-12)
=216-24=192

Hence, the characteristic equation is

& —18d* +104d - 192d=0
Now, the Cayley—Hamilton theorem is every square matrix satisfies its own
characteristic equation. Therefore,

A*—184%+ 1044 -1921=0 1)

6 -1 1| 6 -1 1 40 -10 14

Now, A>=|-2 5 1|2 5 -1|=|-24 26 -14
2 1 7002 1 7 24 10 50

(40 -10 14][ 6 -1 1 288 —76 148
=24 26 —14||=2 5 —1|=|-224 140 -148
24 10 50| 2 1 7 24 76 364

A®—184%+ 1044 — 192/

[ 288 -76 148 720 -180 252
=|-224 140 -148|—|-432 468 -252
224 76 364 432 480 900
624 -104 104 192 0 0
+[-208 520 -104|-| 0 192 O
208 104 728 0 0 192

Il
S o O
S o O

0
0]=0
0
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Hence, the Cayley—Hamilton theorem is verified.

Now, multiplying Eq. (1) by 4,
A(4> - 184>+ 1044 - 1921) =0

A*—184°+1044*-1924=0
A*=184° - 1044> + 1924

288 -76 148 40 -10 14 6 -1 1
=18 -224 140 -148|-104|-24 26 -14|+192|-2 5 -1
224 76 364 24 10 50 2 1 7
5184 -1368 2664 4160 —1040 1456 ]
=|-4032 2520 -2664 |—|-2496 2704 -1456
4032 1368 6552 2496 1040 5200 |
1152 -192 192
+|-384 960 -192
384 192 1344
2176 =520 1400
A*=|-1920 776 -1400
1920 520 2696

(b) Show that the vector field F = (y sin z — sin x)i + (x sin z + 2yz)j +
(xy cos z +)?) k is conservative and find the corresponding scalar potential.
05

Solution:
Since F is conservative then
curl F =0

VxF=

I
\SJ‘ QJ|\..>
1%)‘ QJ| =

ysinz—sinx xsinz+2yz )cyc:osz+y2

~

=i i(xycosz+y2)—i(x sin z +2yz)
dy 0z
—J{i(xy cosz+y2)—i(y sin z — sin x)}
ox 0z
Al 0 . d . .
+ k| —(xsin z+2yz) — —(y sin z — sin x)
ox dy
= f[xcosz+2y—xcosz—2y]

—} [ycosz—ycosz]+ Ig[sinzfsinz]

=0i—0j+0k=0
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So F is a conservative field.
Now, since F is conservative,

F=V¢
(ysinz—sinx)i +(xsinz+2yz)j + (xy cos z +12) k
_ 799,500, ;99
ox E)y 0z
Comparing the coefficient of i s }, k on both sides,
0 0 0
a—f =ysinz—sinx a—f =xsinz+2yz a—(f =xycos z +)?
But d¢= ¢dx+ a¢dy+a—¢a'z
dy 0z

d¢ = (y sin z — sin x)dx + (x sin z + 2yz) dy + (xy cos z +)?) dz
Integrating both the sides, we get

Jdg=|

(ysin z —sin x)dx+'[

X,Z—>Ccoswrt

(x sin z 4+ 2yz)dy

y,Z2—>coswt

J-x,y—woswt(xy cosz+y )dZ

2
¢=—(-cosx)+2- y? -z+xysinz+c
¢p=cosxtyz+cysinz+c

It is scalar potential.
(¢) Find the directional derivative of x3?z% at (1, 1, —1) along a direction equally
inclined with coordinate axes. 04

Solution:
Here, ¢ = x*y?z? point (1, 1, —1)
In the direction equally inclined with coordinate axes, @ =1 + } +k

Now, Vo= l — (x 2y272) + ] (x 2y27%) + k (x 2?)

= yzz2(2x)f +x222(2y) ] + xzyz(zz)lé
At the point (1, 1, —1),
Vo=2i+2j -2k

Therefore, the directional derivative in the direction of the vector
a:f+}+k

B

=Vop-

=
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= Qi+2j- 2/2)@
JI+1+1
2+42-2_ 2
NERVE)
Q.7
(a) Verify Green’s theorem for <ﬁ(3x —8y?)dx + (4y — 6xy)dy where C is the bound-
c
ary of the triangle with vertices (0, 0), (1, 0) and (0, 1). 05
Solution:

The region bounded by the triangle vertices (0, 0), (1, 0) and (0, 1).

> > X
(0,0) |0 (1, 0)
Fig. 1
Here, M=3x-8? N=4y—6xy
dy Y x Y

CﬁC(de + Ndy) = JOA(de + Ndy) + -[AB(de + Ndy) + _[OO(de + Ndy)
(D

Along the path OA: y =0
dy=0

Jo(Mdx + Nely) = [ (3x — 8y?) dx

1
xz_
2

= _[(;3xdx: 3.

3
o 2
Along the path ABC: x +y =1

y=1l-x = dy=(-dx)
I s(Mex + Ndy) = [’ (3x — 8y2)dlx + (4y — 6xy)(~dkx)
= Jlo [3x — 82 — 4y + 6xy]dx

= [} Bx— 8(1 —x)* — 4(1 — x) + 6x(1 — x)]dx
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= [} [4(1 —x) - 6x(1 —x) + 8(1 - 2x + ) — 3x]dx

:j;(4—4x—6x+ +8—16x+—3x)dx

= [, (1422 —29x + 12)dx

1
3 2
= {14)6——29)‘—“24 L
3 2 o 3 2

_ 28-87+72
- 6
_100-87 13
6 6
Along the path BO: x =0
dx=0
) so(Mdx + Ndy) = LO (3x — 8y?)dx + (4y — 6xy)dy
5[0
= [[ dyay = 4‘y—
210

()

[+ )= 2413 9213212

From Eq. (1),

6
o 22-12 10 _5 )
6 6 3 )
Let R be the region bounded by the triangle. Along the vertical strip.
y varies from:y >0toy > 1 —x
x varies from: x - 0tox — 1
M
IR (aN ay )d xdy = joj " (=6y + 16y)dxdy
I¢el-x
= -[0-[0 10y dy dx
) I-x
- | {my—} dx
0 2 o
= [y5(1 —x) dx
1
-x)
3
s .
3 3)
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From Eq. (2) and Eq. (3)
oN 8M] 5

@C(de + Ndy) = ij(a_x - a_y dxdy = g

Hence, Green’s theorem is verified.
(b) Verify Stokes’ theorem for F = (x + y)i + (v + z)j — xk and S is the surface of
the plane 2x + y + z = 2 which is in the first octant. 05

Solution:
By Stokes’ theorem,

[J(VXF)-hds=§,.F - dF
s
The given surface is the plane 2x + y + z = 2 in the first octant. Let

o=2x+y+z
Vo _2f+}+l€

h= -
[Vo| Ja+1+1

_ 2+ j+k y
- B(1, 0, 0)
\/8 A(1,0,0)
Let R be the projection of the plane 2x + y X .
Fig. 1

+ z = 2 (in the first octant) on the xy-plane
which is the triangle O4B bounded by the linesx =0,y =0, 2x + y =2.

~

i J k
VXF= 9 9 9
ox dy 0z
xX+y y+z —x
=i (0-1)-j(=1-0)+k©0-1)
=—i+j-k
ds = dAXdAy = dxdy = \/gdxdy
-kl L
Jo
Let R be the region bounded by the triangle
OAB in the xy-plane
Along the vertical strip: B(0, 0) (1,0)
y varies from: y=0,y=2—-2x Fig. 2

x varies from: x=0,x =1

N

=, =2+ 1= Daxdy

”(V><F)ﬁds=jj(—l+}—k)-w~\/gdxdy
N R
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1 _
=2 Iy
1

=-2[[2-2x)dx=-2 =2

2
%)
2

Let C be the boundary of the triangle ABC.
F-dr -dr=(x+y)dx+(y+z)dy—xdz

0

§F-di =],pF -dF + [y F - dF + [\ F - dF

Along the path AB: z=0 y=2-2x
dz=0 dy=-2dx
x varies from 1 to 0

[upF-di = [0+ y)dx + (v + 2)dy — xde]

= [+ 2 - 200dx + (2 20)(-2 d)] = [ B — 2)dx

0

2 2

=3-—-2x
2 1

Along the path BC: x=0 y+z=2
dx=0 dz=-dy
y varies from 2 to 0
[peFdi = [} [(c+ y)dx + (v + 2)dy - xdz]
= [ 2dy=2yl}=-4
Along the path CA: y=0 2x+z=2
dy=0 dz=-2dx
z varies from 0 to 1
[eAF-dF = [y [(x + y)dx + (5 + 2)dy — xdz] = [} [xelx — x(~2dlx)]

ot

= [axde=3f] =2
0 210 2
From Eq. (2),
@F-d7:1—4+§=—2
¢ 2 2

From Eq. (1) and (3),
jsj(v X F)ids =96CF dF==2

Hence, Stokes’ theorem is verified.

M

2

3)
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(¢) Find the work done when a force F = (x> — y* + x)i — (2xy + y)j moves a par-
ticle in the XY-plane from (0, 0) to (1, 1) along the parabola y* = x. 04
Solution:

(1,1

%T\

Work done F - dr
Let F=xi+ y}
dF = dxi + dyj
F-di =~y +x)dx — (2xy + y)dy

Path of the integration along the parabola

V'’=x=dx=2ydy
and y varies from 0 to 1.

~.Work done W= [.F - drF
= ol = + x)dx - 2y + )]
= [1O* =X+ X3 @ydy) - 2y + y)dy]

= [ 1@ -2 -y dy
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