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Linear Algebra and Vector Calculus is a key area in the study of an engineering 

course. It is the study of numbers, structures, and associated relationships using 

rigorously defined literal, numerical and operational symbols. A sound knowledge 

of the subject develops analytical skills, thus enabling engineering graduates to solve 

numerical problems encountered in daily life, as well as apply vector principles to 

physical problems, particularly in the area of engineering.

Rationale

We have observed that many students who opt for engineering find it difficult to 

conceptualise the subject since very few available texts have syllabus compatibility 

and the right pedagogy. Feedback received from students and teachers have highlighted 

the need for a comprehensive textbook on linear algebra and vector calculus that 

covers all topics of first-year engineering along with suitable solved problems. This 

book—an outcome of our vast experience of teaching undergraduate students of 

engineering—provides a solid foundation in vector principles, enabling students to 

solve mathematical, scientific, and associated engineering principles. 

Users

This book is meant for the first-year engineering  students of Gujarat Technological 

University (GTU) studying the subject Linear Algebra and Vector Calculus (2110015). 

The structuring of the book takes into account all the topics in the GTU syllabi in a 

student-friendly manner.

Intent

An easy-to-understand and student-friendly text, it presents concepts in adequate 

depth using a step-by-step problem-solving approach. The text is well supported with 

a plethora of solved examples at varied difficulty levels, practice problems and engi-

neering applications. It is intended that students will gain logical understanding from 

solved problems and then by solving similar problems themselves.

Features

Each topic has been thoroughly covered from the examination point of view. The theo-

ry part of the text is explained in a lucid manner. For each topic, problems of all  possi-

ble combinations have been worked out. This is followed by an exercise with answers. 

Objective type questions provided in each chapter help students in mastering concepts.

Salient features of the book are summarised below:

● Exactly in-sync with the latest GTU syllabus of Linear Algebra and Vector Cal-

culus (2110015)
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● Lucid writing style and tutorial approach throughout the book, i.e., teach-by-examples

● Offers extensive opportunities to students for practice and self-evaluation 

through numerous step-by-step solved examples and exercises

● Application-based problems for better comprehension of concepts

● Solved GTU 2014, 2013 and 2012 examination papers

● Exam-oriented rich pedagogy includes

  ●  80 Illustrations

● 400 Solved Examples

  ● 300 Exercise Problems

Organization
The content of the book is spread over seven chapters.

Chapter 1 gives an in-depth account of matrices and systems of linear equations.

Chapter 2 discusses vector spaces.

Chapter 3 presents linear transformations.

Chapter 4 gives an overview of inner product spaces.

Chapter 5 deals with eigenvalues and eigenvectors.

Chapter 6 covers vector functions.

Chapter 7 explains vector calculus.

Apart from these, solved GTU question papers of 2012, 2013 and 2014 have been 

provided at the end of the book.
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1.1  INTRODUCTION

A matrix is a rectangular table of elements which may be numbers or any abstract  

quantities that can be added and multiplied. Matrices are used to describe linear 

 equations, keep track of the coefficients of linear transformation and record data that 

depend on multiple parameters. There are many applications of matrices in mathemat-

ics, viz. graph theory, probability theory, statistics, computer graphics, geometrical 

optics, etc.

1.2  MATRIX

A set of mn elements (real or complex) arranged in a rectangular array of m rows and 

n columns is called a matrix of order m by n, written as m × n.

An m × n matrix is usually written as

 A

a a a

a a a

a a a

n

n

m m mn m

=























×

11 12 1

21 22 2

1 2

…

…

… … … …

… … … …

…

nn

 

The matrix can also be expressed in the form A a
ij m n

=
×

[ ] , where a
ij
 is the element 

in the i th row and j th column, written as (i, j)th element of the matrix.

1.3   SOME DEFINITIONS ASSOCIATED 
WITH MATRICES

(1)  Row Matrix

A matrix having only one row and any number of columns, is called a row matrix or 

row vector, e.g.

 [ ]2 5 3 4−

 

 
Chapter1
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(2)  Column Matrix

A matrix, having only one column and any number of rows, is called a column matrix 

or column vector, e.g.

 

1

3

4

−

















(3)  Zero or Null Matrix

A matrix, whose all the elements are zero, is called a zero or null matrix and is denoted 

by 0, e.g.

 
0 0

0 0

0 0 0

0 0 0

0 0 0



























,

(4)  Square Matrix

A matrix, in which the number of rows is equal to the number of columns, is called a 

square matrix, e.g.

 
2 3

1 4

1 3 2

1 4 5

2 6 8









 − −

















,

(5)  Diagonal Matrix

A square matrix, all of whose non-diagonal elements are zero and at least one diagonal 

element is non-zero, is called a diagonal matrix. e.g.

 
2 0

0 4

1 0 0

0 4 0

0 0 8



























,

(6)  Unit or Identity Matrix

A diagonal matrix, all of whose diagonal elements are unity, is called a unit or identity 

matrix and is denoted by I, e.g.

 
1 0

0 1

1 0 0

0 1 0

0 0 1



























,

(7)  Scalar Matrix

A diagonal matrix, all of whose diagonal elements are equal, is called a scalar matrix, e.g.

 
3 0

0 3

2 0 0

0 2 0

0 0 2



























,
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(8)  Upper Triangular Matrix

A square matrix, in which all the elements below the diagonal are zero, is called an 

upper triangular matrix, e.g.

 

1 3 2

0 4 5

0 0 8

−

















(9)  Lower Triangular Matrix

A square matrix, in which all the elements above the diagonal are zero, is called a 

lower triangular matrix, e.g.

 

1 0 0

1 4 0

2 6 8

−

















(10)  Trace of a Matrix

The sum of all the diagonal elements of a square matrix is called the trace of a matrix,

e.g. A =

−

−

−

















2 1 0

4 6 2

1 0 3

Trace of A = + + =2 6 3 11

(11)  Transpose of a Matrix

A matrix obtained by interchanging rows and columns of a matrix is called transpose 

of a matrix and is denoted by A′ or AT, e.g.

If A A
T=

−

−

















=
−

−











1 1

0 2

4 1

1 0 4

1 2 1
, then

i.e. if A = [a
ij
]

m × n
, then AT = [a

ji
]

n × m

(12)  Determinant of a Matrix

If A is a square matrix, then determinant of A is represented as | A | or det (A).

If  A A=

















=

2 3 1

1 2 3

1 1 0

2 3 1

1 2 3

1 1 0

, det( )then
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(13)  Singular and Non-Singular Matrices

A square matrix A is called singular if det (A) = 0 and non-singular if det (A) ≠ 0.

1.4  SOME SPECIAL MATRICES

(1)  Symmetric Matrix

A square matrix A = [a
ij
]

m × m
 is called symmetric if a

ij
 = a

ji
 for all i and j, i.e. A = AT, e.g.

 
2 4

4 3

1 3

2 4

3 4 3











−

−

−

















,

i i

i

i

(2) Skew Symmetric Matrix

A square matrix A = [a
ij
]

m × m
 is called skew symmetric if a

ij
 = – a

ji
 for all i and j, 

i.e. A = – AT.

Thus, the diagonal elements of a skew symmetric matrix are all zero, e.g.

 

0 3 4

3 0 8

4 8 0

− −

−

















i

i

Example 1: Show that every square matrix can be uniquely expressed as the sum

of a symmetric matrix and a skew symmetric matrix.

Solution: Let A be a square matrix.

 A A A A A P Q
T T

= +( ) + −( ) = +
1

2

1

2

where, P A A
T

= +( )
1

2

and Q A A
T

= −( )
1

2

Now, P A A A A
T T

T
T T

T

= +( ) = + ( )





1

2

1

2

 = +( ) =
1

2
A A P
T

Hence, P is a symmetric matrix.

Also,  Q A A A A

A A A A Q

T T
T

T T
T

T T

= −( ) = − ( )





= −( ) = − −( ) = −

1

2

1

2

1

2

1

2
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Hence, Q is a skew symmetric matrix.

Thus, every matrix can be expressed as the sum of a symmetric matrix and a skew 

symmetric matrix.

Uniqueness Let A = R + S, where R is a symmetric and S is a skew symmetric matrix.

 A R S R S R S
T T T T
= + = + = −( )

Now, 
1

2

1

2
A A R S R S R P

T
+( ) = + + − = =[( ) ( )]

and 
1

2

1

2
A A R S R S S Q

T
−( ) = + − − = =[( ) ( )]

Hence, representation A = P + Q is unique.

Example 2: Express the matrix A = − − −

















1 5 7

1 2 4

8 2 13

 as the sum of a symmetric 

and a skew symmetric matrix.

Solution:  A A
T= − − −

















=

−

−

−

















1 5 7

1 2 4

8 2 13

1 1 8

5 2 2

7 4 13

,

Let      P A A
T= +( )

= − − −

















+

−

−

−















1

2

1

2

1 5 7

1 2 4

8 2 13

1 1 8

5 2 2

7 4 13



















= − −

−

















1

2

2 4 15

4 4 2

15 2 26

 

Q A A
T= −( )

= − − −

















−

−

−

−















1

2

1

2

1 5 7

1 2 4

8 2 13

1 1 8

5 2 2

7 4 13



















=

−

− −

















1

2

0 6 1

6 0 6

1 6 0

We know that P is a symmetric and Q is a skew symmetric matrix.

 A P Q= + = − −

−

















+

−

− −

















1

2

2 4 15

4 4 2

15 2 26

1

2

0 6 1

6 0 6

1 6 0
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(3)  Conjugate of a Matrix

A matrix obtained from any given matrix A, on replacing its elements by the corre-

sponding conjugate complex numbers is called the conjugate of A and is denoted by 

A,  e.g.

 A
i i

i i
A

i i

i i
=

+ +

− −









 =

− −

+











1 3 2 5 8

6 9

1 3 2 5 8

6 9
,

(4)  Transposed Conjugate of a Matrix

The conjugate of the transpose of a matrix A is called the transposed conjugate or 

conjugate transpose of A and is denoted by Aq, e.g.

 A A A
T Tθ

= =( ) ( )

e.g., If A

i i i

i i i

i

A

i i

T=

− + +

− + −

+

















=

− −

+

1 2 2 3 3 4

4 5 5 6 6 7

8 7 8 7

1 2 4 5 8

2 3, ii i i

i i

5 6 7 8

3 4 6 7 7

+ +

+ −

















Then, A

i i

i i i

i i

θ =

+ +

− − −

− +

















1 2 4 5 8

2 3 5 6 7 8

3 4 6 7 7

(5)  Hermitian Matrix

A square matrix A = [a
ij
] is called Hermitian if a a

ij ji
=  for all i and j, i.e. A =Aq, e.g.,

 

1 2 3 3 4

2 3 0 2 7

3 4 2 7 2

+ −

− −

+ +

















i i

i i

i i

(6)  Skew Hermitian Matrix

A square matrix A = [a
ij
] is called skew Hermitian if a a

ij ji
= −  for all i and j, i.e. 

A = –Aq. Hence, diagonal elements of a skew Hermitian matrix must be either purely 

imaginary or zero, e.g.

 
i i

i

2 3

2 3 0

+

−











Example 1: Show that every square matrix can be uniquely expressed as the sum

of a Hermitian matrix and a skew Hermitian matrix.
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Solution: Let A be a square matrix.

   A A A A A P Q= +( ) + −( ) = +
1

2

1

2

θ θ

where,    P A A= +( )
1

2

θ

and    Q A A= −( )
1

2

θ

Now, P A A A A
θ θ θ θ θ θ
= +( ) = + ( )





1

2

1

2

 = +( ) =
1

2
A A P
θ

Hence, P is a Hermitian matrix.

Also, Q A A A A
θ θ θ θ θ θ
= −( ) = − ( )





1

2

1

2

= −( ) = −
1

2
A A Q
θ

Hence, Q is a skew Hermitian matrix

Thus, every square matrix can be expressed as the sum of a Hermitian matrix and a 

skew Hermitian matrix.

Uniqueness Let A = R + S where R is a Hermitian and S is skew Hermitian matrix.

 
A R S R S R S
θ θ θ θ
= + = + = −( )

Now, 
1

2

1

2
A A R S R S R P+( ) = + + −[ ] = =

θ ( ) ( )

and 
1

2

1

2
A A R S R S S Q−( ) = + − −[ ] = =

θ ( ) ( )

Hence, representation A = P + Q is unique.

Example  2: Express the matrix A

i i

i

i i

=

+

− − +

















2 3 0 4

5 8

1 3 6

 as the sum of a 

 Hermitian and a skew Hermitian matrix.



1.8 Chapter 1 Matrices and Systems of Linear Equations

Solution:

A

i i

i

i i

=

+

− − +

















2 3 0 4

5 8

1 3 6

A A

i i

i i

i

Tθ = =

− +

− − −

−

















( )

2 3 5 1

0 3

4 8 6

Let  

 

P A A

i i

i

i i

i i

i i= +( ) =
+

− − +

















+

− +

− − −

−

1

2

1

2

2 3 0 4

5 8

1 3 6

2 3 5 1

0 3
θ

44 8 6

1

2

4 5 1 5

5 0 5

1 5 5 12

i

i

i

i i

































=

+

−

− +

















   

Q A A

i i

i

i i

i i

i i= −( ) =
+

− − +

















−

− +

− − −

−

1

2

1

2

2 3 0 4

5 8

1 3 6

2 3 5 1

0 3
θ

44 8 6

1

2

6 5 1 3

5 2 11

1 3 11 0

i

i i

i i

i i

































=

− − +

+

+ − +

















We know that P is a Hermitian and Q is a skew Hermitian matrix.

    A P Q

i

i

i i

i i

i i= + =

+

−

− +

















+

− − +

+
1

2

4 5 1 5

5 0 5

1 5 5 12

1

2

6 5 1 3

5 2 11

1++ − +















3 11 0i i

Example 3: Show that every square matrix can be uniquely expressed as P + iQ 

where P and Q are Hermitian matrices.

Solution: Let A be a square matrix.

 A A A i
i
A A P iQ= +( ) + −( ) = +

1

2

1

2

θ θ

where, P A A Q
i

A A= +( ) = −( )
1

2

1

2

θ θ
and

Now, P A A A A
θ θ θ θ θ θ
= +( ) = + ( )





1

2

1

2

= +( ) =
1

2
A A P
θ
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Hence, P is a Hermitian matrix.

Also, Q
i
A A

i
A A

θ θ
θ

θ θ θ
= −( )





= − − ( )





1

2

1

2

= − −( ) = −( ) =
1

2

1

2i
A A

i
A A Q

θ θ

Hence, Q is a Hermitian matrix.

Thus, every square matrix can be expressed as P + iQ where P and Q are Hermitian 

matrices.

Uniqueness Let A = R + iS where R and S are Hermitian matrices.

 
A R iS R iS R iS
θ θ θ θ
= +( ) = + = −( )

Now, 
1

2

1

2
A A R iS R iS R P+( ) = + + −[ ] = =

θ ( ) ( )

and 
1

2

1

2
A A R iS R iS iS iQ−( ) = + − −[ ] = =

θ ( ) ( )

Hence, representation A = P + iQ is unique.

Example 4: Express the matrix A

i i

i i

i i i

==

2 3 1

0 2 3 1

3 3 2 2 5

− −

+ +

− + −

















 as P + iQ where P and 

Q are both Hermitian.

Solution: A

i i

i i

i i i

=

− −

+ +

− + −

















2 3 1

0 2 3 1

3 3 2 2 5

 A

i i

i i

i i i

θ =

−

− − −

+ − +

















2 0 3

3 2 3 3 2

1 1 2 5

Let

 

P A A

i i

i i

i i i

i i

= +( ) =
− −

+ +

− + −

















+

−

−
1

2

1

2

2 3 1

0 2 3 1

3 3 2 2 5

2 0 3

3
θ

22 3 3 2

1 1 2 5

1

2

0 3 1 2

3 4 4

1 2

− −

+ − +

































=

− +

− −

−

i i

i i i

i

i

ii i4 4+
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Q
i
A A

i

i i

i i

i i i

i i

= −( ) =
− −

+ +

− + −

















−

−
1

2

1

2

2 3 1

0 2 3 1

3 3 2 2 5

2 0 3

θ −− − −

+ − +

































=

− −

−

3 2 3 3 2

1 1 2 5

1

2

4 3 1 4

3 6 2

i i

i i i

i

i i

i ++

− − + −

















3

1 4 2 3 10

i

i i i

We know that P and Q are Hermitian matrices.

 A P iQ

i

i

i i

i i

i= + =

− +

− −

− +

















+

− −

− +
1

2

0 3 1 2

3 4 4

1 2 4 4

1

2

4 3 1 4

3 6 2 3ii

i i i− − + −















1 4 2 3 10

Example 5: Prove that every Hermitian matrix can be written as P + iQ where P 

is a real symmetric and Q is a real skew symmetric matrix.

Solution: Let A be a Hermitian matrix.

 

A A

A A A i
i
A A P iQ

θ
=

= +( ) + −( ) = +
1

2

1

2

where, P A A= +
1

2
( )  and Q

i
A A= −( )

1

2
 are real matrices.

Now, P A A A A
T

T

T

= +( )





= + 

1

2

1

2

θ

   

= ( ) +





= ( ){ } + ( )





= +( ) = +( ) =

1

2

1

2

1

2

1

2

A A A A

A A A A P

T
T

T
T

T

θ

Hence, P is a real symmetric matrix.

Also, Q
i
A A

i
A A

T

T
T

= −( )





= − 

1

2

1

2

θ

 

= ( ) −





= ( ){ } − ( )





= −( )

= −( )

1

2

1

2

1

2

1

2

i
A A

i
A A

i
A A

i
A A

T
T

T
T

T θ

== − −( ) = −
1

2i
A A Q
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Hence, Q is a real skew symmetric matrix.

Thus, every Hermitian matrix can be written as P + iQ, where P is a real symmetric 

matrix and Q is a real skew symmetric matrix.

Example 6: Express the Hermitian matrix A

i i

i i

i i

==

1 1

0 2 3

1 2 3 2

− +

−

− +

















 as 

P + iQ where P is a real symmetric matrix and Q is a real skew symmetric matrix.

Solution: A

i i

i i

i i

==

1 1

0 2 3

1 2 3 2

− +

−

− +

















A

i i

i i

i i

=

−

− +

+ −

















1 1

0 2 3

1 2 3 2

Let

   

P A A

i i

i i

i i

i i

i i

i

= +( ) =
− +

−

− +

















+

−

− +

+

1

2

1

2

1 1

0 2 3

1 2 3 2

1 1

0 2 3

1 22 3 2

1

2

2 0 2

0 0 4

2 4 4

1 0 1

0 0 2

1 2 2

−

































=

















=

i

















 

Q
i
A A

i

i i

i i

i i

i i

i i= −( ) =
− +

−

− +

















−

−

− +
1

2

1

2

1 1

0 2 3

1 2 3 2

1 1

0 2 3

1++ −

































=

−

−

−















i i

i

i i

i i

i i

2 3 2

1

2

0 2 2

2 0 6

2 6 0




=

−

−

−

















0 1 1

1 0 3

1 3 0

We know that P is a real symmetric matrix and Q is a real skew symmetric matrix.

      A P iQ

i i

i i

i i

= + =

















+

−

−

−

















1 0 1

0 0 2

1 2 2

0

0 3

3 0

Example 7: Prove that every skew Hermitian matrix can be written as P + iQ 

where P is a real skew symmetric matrix and Q is a real symmetric matrix.



1.12 Chapter 1 Matrices and Systems of Linear Equations

Solution: Let A be a skew Hermitian matrix.

 

A A

A A A i
i
A A P iQ

θ
= −

= +( ) + −( ) = +
1

2

1

2

where, P A A= +( )
1

2
 and Q

i
A A= −( )

1

2
 are real matrices.

Now, P A A A A
T

T

T

= +( )





= − + 

1

2

1

2

θ

 

= −( ) +





= − ( ){ } + ( )





1

2

1

2

1 1

A A A A
T

T
T

T
T

                    

  { }
 

= − +( ) = − −( )
2 2

1

2

1

2
A A A A

θ

== − +( ) = −
1

2
A A P

Hence, P is a real skew symmetric matrix.

 

Q
i
A A

i
A A

i
A A

i
A

T

T
T

T
T

= −( )





= − − 

= −( ) −





= − ( )

1

2

1

2

1

2

1

2

θ

TT
T

T

A{ } − ( )






= − −( ) = − +( )

= −( ) =

1

2

1

2

1

2

i
A A

i
A A

i
A A Q

θ

Hence, Q is a real symmetric matrix.

Thus, every skew Hermitian matrix can be written as P + iQ where P is a real skew 

symmetric matrix and Q is a real symmetric matrix.

Example  8: Express the skew Hermitian matrix A

i i i

i i i

i i

=

+ −

− + −

− −

















2 2 1

2 3

1 3 0

 as 

P + iQ, where P is a real skew symmetric matrix and Q is a real symmetric matrix.

Solution:  A

i i i

i i i

i i

=

+ −

− + −

− −

















2 2 1

2 3

1 3 0
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A

i i i

i i i

i i

=

− − +

− − −

− + −

















2 2 1

2 3

1 3 0

Let 

 

P A A

i i i

i i i

i i

i i i

= +( ) =
+ −

− + −

− −

















+

− − +

− −
1

2

1

2

2 2 1

2 3

1 3 0

2 2 1

2 ii i i

i i

−

− + −

































= −

−

















3

1 3 0

1

2

0 4 2

4 0 0

2 0 0

== −

−

















0 2 1

2 0 0

1 0 0

     

Q
i
A A

i

i i i

i i i

i i

i i i

= −( ) =
+ −

− + −

− −

















−

− − +

−
1

2

1

2

2 2 1

2 3

1 3 0

2 2 1

22 3

1 3 0

1

2

4 2 2

2 2 6

2 6

− −

− + −

































=

−

−

−

i i i

i i

i

i i i

i i i

i ii 0

2 1 1

1 1 3

1 3 0

















=

−

−

−

















We know that P is a real skew symmetric matrix and Q is a real symmetric matrix.

     A P iQ

i i i

i i i

i i

= + = −

−

















+

−

−

−

















0 2 1

2 0 0

1 0 0

2

3

3 0

(7) Unitary Matrix

A square matrix A is called unitary if AAq = AqA = I.

Example 1: Prove that matrix A is unitary and hence find A–1.

(i)  A

i i

i i
=

+ − +

+ −



















1

2

1

2

1

2

1

2

      (ii)  A

i

i=

−

−



















1

2

2 2 0

2 2 0

0 0 2

.

Solution: (i)   A

i i

i i
=

+ − +

+ −



















1

2

1

2

1

2

1

2

 A

i i

i i

T =

+ +

− + −



















1

2

1

2

1

2

1

2
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 A

i i

i i

θ =

− −

− − +



















1

2

1

2

1

2

1

2

 

AA

i i

i i

i i

i i

θ =

+ − +

+ −



















− −

− − +














1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2






=
− − + − + −

− − + − + −









 =

1

4

1 1 1 1

1 1 1 1

1

4

4 0

0 4

2 2 2 2

2 2 2 2

i i i i

i i i i 





 =









 =

1 0

0 1
I

Hence, A is a unitary matrix.

 A A

i i

i i

− = =

− −

− − +



















1

1

2

1

2

1

2

1

2

θ  [AAq = I]

(ii)    A

i

i=

−

−



















1

2

2 2 0

2 2 0

0 0 2

        A

i

i
T = − −



















1

2

2 2 0

2 2 0

0 0 2

        A

i

i
θ =

−

−



















1

2

2 2 0

2 2 0

0 0 2

      AA

i

i

i

i
θ =

−

−



















−

−



















=
1

4

2 2 0

2 2 0

0 0 2

2 2 0

2 2 0

0 0 2

1

44

4 0 0

0 4 0

0 0 4

















        =

















=

1 0 0

0 1 0

0 0 1

I

Hence, A is a unitary matrix.



1.4   Some Special Matrices        1.15

For unitary matrix,

 A A

i

i
− = =

−

−



















1
1

2

2 2 0

2 2 0

0 0 2

θ

(8)  Orthogonal Matrix

A square matrix A is called orthogonal if AAT = ATA =  I.

Example 1: Verify if the following matrices are orthogonal and hence find their 

inverse:

(i)  A = −

−

















1

3

1 2 2

2 1 2

2 2 1

      (ii)  A =

−















cos sin

sin cos .

φ φ

φ φ

0

0

0 0 1

Solution: (i) A = −

− −

















1

3

1 2 2

2 1 2

2 2 1

 A
T =

−

− −

















1

3

1 2 2

2 1 2

2 2 1

 AA
T = −

− −

















−

− −

















1

9

1 2 2

2 1 2

2 2 1

1 2 2

2 1 2

2 2 1

 =

















1

9

9 0 0

0 9 0

0 0 9

 =

















=

1 0 0

0 1 0

0 0 1

I

Hence, A is an orthogonal matrix.

 A A
T− = =

−

− −

















1 1

3

1 2 2

2 1 2

2 2 1

   [AAT = I]

(ii) A =

−















cos sin

sin cos

φ φ

φ φ

0

0

0 0 1
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A
T = −

















cos sin

sin cos

φ φ

φ φ

0

0

0 0 1

 

AA
T =

−















−

cos sin

sin cos

cos sin

sin cos

φ φ

φ φ

φ φ

φ φ

0

0

0 0 1

0

0

0 0 1

















=
















=

1 0 0

0 1 0

0 0 1

I

Hence, A is an orthogonal matrix.

For an orthogonal matrix,

 A A
T− = = −

















1

0

0

0 0 1

cos sin

sin cos

φ φ

φ φ

Example 2: Find l, m, n and A–1 if A

m n

l m n

l m n

= −

−

















0 2

 is orthogonal.

Solution: Since the matrix A is orthogonal,

 AA I
T
=

 

0 2 0

2

1 0 0

0 1 0

0 0 1

m n

l m n

l m n

l l

m m m

n n n

−

−

















−

−

















=

















4 2 2

2

2

2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2

m n m n m n

m n l m n l m n

m n l m n l

+ − − +

− + + − −

− + − − ++ +

















=















m n

2 2

1 0 0

0 1 0

0 0 1

Equating corresponding components,

 4 1
2 2

m n+ =  … (1)

 2 0
2 2

m n− =  … (2)

 l m n
2 2 2

1+ + =  … (3)

Solving Eqs. (1), (2) and (3),

 

l l

m m

n n

2

2

2

1

2

1

2

1

6

1

6

1

3

1

3

= = ±

= = ±

= = ±

,

,

,
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A A

T− = =

± ±

± ±

± ±

























1

0
1

2

1

2

2

6

1

6

1

6

1

3

1

3

1

3

∓

∓

Example  3: If A

l m n

l m n

l m n

=

















1 1 1

2 2 2

3 3 3

 is orthogonal, find the relationship among 

l m n n
1 1 1 3
, , , .…

Solution: Since the matrix A is orthogonal,

 AA I
T
=

 

l m n

l m n

l m n

l l l

m m m

n n n

1 1 1

2 2 2

3 3 3

1 2 3

1 2 3

1 2 3

1































=

00 0

0 1 0

0 0 1

















 

l m n l l m m n n l l m m n n

l l m m n n l m

1

2

1

2

1

2

1 2 1 2 1 2 1 3 1 3 1 3

1 2 1 2 1 2 2

2

+ + + + + +

+ + +
22

2

2

2

2 3 2 3 2 3

1 3 1 3 1 3 2 3 2 3 2 3 3

2

3

2

+ + +

+ + + + + +

n l l m m n n

l l m m n n l l m m n n l m n
33

2

1 0 0

0 1 0

0 0 1

















=

















Equating corresponding components,

 l m n l m n l m n
1

2

1

2

1

2

2

2

2

2

2

2

3

2

3

2

3

2
1+ + = + + = + + =

and l l m m n n l l m m n n l l m m n n
1 2 1 2 1 2 1 3 1 3 1 3 2 3 2 3 2 3

0+ + = + + = + + =

Exercise 1.1

1. Express the following matrices as the 

sum of a symmetric matrix and a skew 

symmetric matrix:

 (i) 

0 5 3

1 1 1

4 5 9

−















 (ii) 

3 2 6

2 7 1

5 4 0

−

−

















 (iii) 

1 0 5 3

2 1 6 1

3 2 7 1

4 4 2 0

−

−



















2. Express the following matrices as the 

sum of a Hermitian matrix and a skew 

Hermitian matrix.

 (i) 

2 2 3

2 0 4

3 1

+

− +

− − −

















i

i

i i i

 (ii) 

1 1 2 3

1 2

2 3 0

+ +

− −

−

















i i

i i

i i

 (iii) 

2 4 6

6 5 4

0 1 8

+

−

−

















i i

i

i i
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3. Express the following matrices as 

P + iQ, where P and Q are both 

Hermitian.

 (i) 

2 3 1 2

0 1

1 2 1 3

− +

+

















i i

i

i i

 (ii) 

1 2 2 3

2 3 2 1 2

1 0 3 2

+ −

+ −

+ +

















i i

i i i

i i

4. Express the following Hermitian 

matrices as P + iQ, where P is a real 

symmetric matrix and Q is a real skew 

symmetric matrix.

 (i) 

2 2 2

2 3

2 1

+ −

−

−

















i i

i i

i i

 (ii) 

2 1

1 0 3

3 1

+ −

− − −

− + −

















i i

i i

i i

5. Express the following skew Hermitian 

matrices as P + iQ, where P is a real 

and skew symmetric matrix and Q is a 

real and symmetric matrix.

 (i) 

0 2 3 1

2 3 2 2

1 2

− +

− − −

− + − − −

















i i

i i i

i i i

 (ii) 

i i i

i i i

i i i

2 1 3

2 2 2

1 3 2 3

− +

−

+ − −

















6. Show that the following matrices are 

unitary.

 (i) 

2

3

2

3

2

3

2

3

+

−



















i i

i i

 (ii) 

i

i

2

3

2

3

2 2



















 (iii) 
1

2

1 1

1 1

+ − +

+ −











i i

i i

7. Show that following matrices are 

orthogonal and hence find their inverses.

   (i) 
1

9

8 4 1

1 4 8

4 7 4

−

−

















(ii)   

cos cos sin cos sin

sin cos cos sin sin

sin cos

φ θ φ φ θ

φ θ φ φ θ

θ θ

− −

−











0 





(iii) 

1

3

1

6

1

2

1

3

2

6
0

1

3

1

6

1

2

−

−

−

























(iv) 

0
1

2

1

2

2

3

1

6

1

6

1

3

1

3

1

6

























8. Find l, m, n and A–1 if 

A

l m n

n l m

m n l

=
−

−

− −



















0

0 0 0 1

0

0

 is 

orthogonal.

9. Find a, b, c if A

a

b

c

=

−















1

9

8 4

1 4

4 7

 is 
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1.5  ELEMENTARY TRANSFORMATIONS

Elementary transformation is any one of the following operations on a matrix.

 (i) The interchange of any two rows (or columns)

 (ii) The multiplication of the elements of any row (or column) by any non-zero 

 number

 (iii)  The addition or subtraction of k items the elements of a row (or column) to the 

corresponding elements of another row (or column), where k ≠ 0

Symbols to be used for elementary transformation:

 (i) R
ij
 :          Interchange of i th and j th row

 (ii) kR
i
 :         Multiplication of i th row by a non zero number k

 (iii) R
i
 + kR

j
 :  Addition of k times the j th row to the i th row

The corresponding column transformations are denoted by C
ij
, kC

i
 and C

i
 + kC

j
 

 respectively.

1.5.1  Elementary Matrices

A matrix obtained from a unit matrix by subjecting it to any row or column transfor-

mation is called an elementary matrix.

1.5.2  Equivalence of Matrices

If B be an m × n matrix obtained from an m × n matrix by elementary transformation 

of A, then A is called the equivalent to B. Symbolically, we can write A ~ B.

1.5.3  Echelon Form of a Matrix

A matrix A is said to be in row echelon form if it satisfies the following properties:

 (i) Every zero row of the matrix A occurs below a non-zero row.

 (ii)  The first non-zero number from the left of a non-zero row is a 1. This is called a 

leading 1.

 (iii)  For each non-zero row, the leading 1 appears to the right and below any leading 

1 in the preceding rows.

The following matrices are in row echelon form.

orthogonal.

[Ans.: a = 1, b = –8, c = 4]

10. If (a
r
, b

r
, c

r
) where r = 1, 2, 3 be 

the direction cosines of the three 

mutually perpendicular lines referred 

to an orthogonal coordinate system, 

then prove that A

a b c

a b c

a b c

=

















1 1 1

2 2 2

3 3 3

 is 

orthogonal.
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1 1 0

0 1 0

0 0 0

1 2 1 3

0 1 5 6

0 0 1 4

0 1 3 5 0

0 0 1 1 0

0 0 0

















−















−, ,

00 1

















A matrix A is said to be in reduced row echelon form if each column that contains a 

leading 1 in row echelon form of the matrix A has zeros everywhere else in that column.

The following matrices are in reduced row echelon form.

 
0 0

0 0

1 0 0

0 1 0

0 0 1

1 0 0 2

0 1 0 5

0 0 1 1

0 1

























 −

















−

, , ,

44 0 1

0 0 0 1 4

0 0 0 0 0

0 0 0 0 0



















Example  1: In each part determine whether the matrix is in row echelon 

form, reduced row echelon form, both or neither.

  (i) 

1 2 0 3 0

0 0 1 1 0

0 0 0 0 1

0 0 0 0 0



















      (ii) 

1 0 0 5

0 0 1 2

0 1 0 7

















 

(iii) 
1 6 4 3

0 1 3 2

−







         (iv) 

0 0 0 0 0

0 0 1 2 3

0 0 0 1 0

0 0 0 0 0

−



















Solution: 

 (i)  The given matrix is in reduced row echelon form and row echelon form since 

it satisfies properties (i), (ii), (iii) and columns containing leading 1 have zero 

everywhere else.

 (ii)  The given matrix is neither in row echelon form nor in reduced row echelon 

form since it does not satisfy the property (iii).

 (iii)  The given matrix is in row echelon form since it satisfies properties (i), (ii) and (iii).

 (iv)  The given matrix is neither in row echelon form nor in reduced row echelon 

form since it does not satisfy the property (i).

Example 2: Find a row echelon form of the following matrices:

  (i) 

0 1 2 3

2 3 4 5

1 3 1 2

3 2 4 1

−

−



















          (ii) 

1 2 3 1

1 0 3 4

0 1 2 1

2 3 0 3

−

−

−

−
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Solution: (i) 

0 1 2 3

2 3 4 5

1 3 1 2

3 2 4 1

−

−



















 

R
13

1 3 1 2

2 3 4 5

0 1 2 3

3 2 4 1

~

−

−



















 

R R R R
2 1 4 1

2 3

1 3 1 2

0 3 6 1

0 1 2 3

0 7 7 5

− −

−

−

−

− −



















,

~

 

R
23

1 3 1 2

0 1 2 3

0 3 6 1

0 7 7 5

~

−

−

−

− −



















 

( )

~

−

−

− −

−

− −



















1

1 3 1 2

0 1 2 3

0 3 6 1

0 7 7 5

2R

 

R R R R
3 2 4 2

3 7

1 3 1 2

0 1 2 3

0 0 0 8

0 0 7 26

+ +

−

− −

−

− −



















,

~

 

R
34

1 3 1 2

0 1 2 3

0 0 7 26

0 0 0 8

~

−

− −

− −

−
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−





−
− −

−























1

7

1 3 1 2

0 1 2 3

0 0 1
26

7

0 0 0 8

3
R

~

 

−





−
− −























1

8

1 3 1 2

0 1 2 3

0 0 1
26

7

0 0 0 1

4
R

~

(ii) 

1 2 3 1

1 0 3 4

0 1 2 1

2 3 0 3

−

−

−

−



















 

R R R R
2 1 4 1

2

1 2 3 1

0 2 0 5

0 1 2 1

0 1 6 5

+ −

−

−

− −



















,

~

 

R
23

1 2 3 1

0 1 2 1

0 2 0 5

0 1 6 5

~

−

−

− −



















 

R R R R
3 2 4 2

2

1 2 3 1

0 1 2 1

0 0 4 7

0 0 8 6

− +

−

−

−

−



















,

~
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−





−
−

−

−























1

4

1 2 3 1

0 1 2 1

0 0 1
7

4

0 0 8 6

3
R

~

 

R R
4 3

8

1 2 3 1

0 1 2 1

0 0 1
7

4

0 0 0 8

−

−

−

−























~

 

1

8

1 2 3 1

0 1 2 1

0 0 1
7

4

0 0 0 1

4







−
−

−























R

~

Example 3: Find the reduced row echelon form of the matrices of Example 2.

(i) 

0 1 2 3

2 3 4 5

1 3 1 2

3 2 4 1

−

−



















  (ii) 

1 2 3 1

1 0 3 4

0 1 2 1

2 3 0 3

−

−

−

−



















Solution: (i) The row echelon form of the matrix is

 

1 3 1 2

0 1 2 3

0 0 1
26

7

0 0 0 1

−

− −
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Beginning with the last non-zero row and working upward, we add suitable mul-

tiples of each row to the rows above to introduce zeros above the leading 1’s.

 

R R R R R R
3 4 2 4 1 4

26

7
3 2

1 3 1 0

0 1 2 0

0 0 1 0

0 0 0 1

− + −

−

−



















, ,

~

 

R R R R
2 3 1 3

2

1 3 0 0

0 1 0 0

0 0 1 0

0 0 0 1

+ +



















,

~

 

R R
1 2

3

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−



















~

(ii) The row echelon form of the matrix is

 

1 2 3 1

0 1 2 1

0 0 1
7

4

0 0 0 1

−

−

−























Beginning with the last non-zero row and working upward, we add suitable mul-

tiples of each row to the rows above to introduce zeros above the leading 1’s.

 

R R R R R R
3 4 2 4 1 4

7

4

1 2 3 0

0 1 2 0

0 0 1 0

0 0 0 1

+ + −

−

















, ,

~
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R R R R
2 3 1 3

2 3

1 2 0 0

0 1 0 0

0 0 1 0

0 0 0 1

− +



















,

~

 

R R
1 2

2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−



















~

1.6   SYSTEM OF NON-HOMOGENEOUS 
LINEAR EQUATIONS

A system of m non-homogeneous linear equations in n variables x
1
, x

2
, … x

n
 or simply 

a linear system, is a set of m linear equations, each in n variables. A linear system is 

represented by

 

a x a x a x b

a x a x a x b

a x a x

n n

n n

m m

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2

+ + + =

+ + + =

+

�

�

� � � �

22
+ + =� a x b

mn n m

Writing these equations in matrix form,

Ax = B

where A

a a a

a a a

a a a

n

n

m m mn

=



















11 12 1

21 22 2

1 2

…

…

� � �

…

 is called coefficient matrix of order m × n,

 x =



















x

x

x
n

1

2

�

 is any vector of order n × 1.

 B

b

b

b
m

=



















1

2

�
 is any vector of order m × 1.



1.26 Chapter 1 Matrices and Systems of Linear Equations

1.6.1   Solutions of System of Linear Equations: 

 Gaussian Elimination and Gauss–Jordan 

 Elimination  Method

For a system of m linear equations in n variables, there are three possibilities of the 

solutions to the system:

 (i) The system has unique solution.

 (ii) The system has infinite solutions.

 (iii) The system has no solution.

When the system of linear equations has one or more solutions, the system is said 

to be consistent, otherwise it is inconsistent.

The matrix A B

a a a b

a a a b

a a a b

n

n

m m mn m

:[ ] =



















11 12 1 1

21 22 2 2

1 2

…

…

� � � �

…

is called the augmented matrix of the given system of linear equations.

To solve a system of linear equations, elementary transformations are used to reduce 

the augmented matrix to either row echelon form or reduced row echelon form.

Reducing the augmented matrix to row echelon form is called Gaussian elimina-

tion method. Reducing the augmented matrix to reduced row echelon form is called 

Gauss–Jordan elimination method.

The Gaussian elimination method for solving the linear system is as follows:

Step 1: Write the augmented matrix.

Step 2:  Obtain the row echelon form of the augmented matrix by using elementary 

row operations.

Step 3: Write the corresponding linear system of equations from row echelon form.

Step 4:  Solve the corresponding linear system of equations by back substitution.

The Gauss–Jordan elimination method for solving the linear system is as follows:

Step 1: Write the augmented matrix.

Step 2:  Obtain the reduced row echelon form of the augmented matrix by using 

elementary row operations.

Step 3:  For each non-zero row of the matrix, solve the corresponding system of 

 equations for the variables associated with the leading one in that row.

Note: The linear system has a unique solution if det (A) ≠ 0

Example 1: Solve each of the following systems by Gaussian elimination method.

(i) x y z

x y z

x y z

+ + =

+ − =

+ − =

2 9

2 4 3 1

3 6 5 0

 

(ii)  4 2 6 8

3 1

15 3 9 21

x y z

x y z

x y z

− + =

+ − = −

− + =

 

(iii) 3 3 13

2 3 7 5

2 19 47 32

x y z

x y z

x y z

+ − =

− + =

+ − =
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Solution:  (i) The matrix form of the system is

 

1 1 2

2 4 3

3 6 5

9

1

0

−

−

































=

















x

y

z

The augmented matrix of the system is

 

1 1 2 9

2 4 3 1

3 6 5 0

−

−

















Reducing the augmented matrix to row echelon form,

 

R R R R
2 1 3 1

2 3

1 1 2 9

0 2 7 17

0 3 11 27

− −

− −

− −

















,

~

 

1

2

1 1 2 9

0 1
7

2

17

2

0 3 11 27

2







− −

− −



















R

~

 

R R
3 2

3

1 1 2 9

0 1
7

2

17

2

0 0
1

2

3

2

−

− −

− −





















~

 

( )

~

−

− −



















2

1 1 2 9

0 1
7

2

17

2

0 0 1 3

3R

The corresponding system of equations is

 

x y z

y z

z

+ + =

− = −

=

2 9

7

2

17

2

3
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Solving these equations,

x = 1, y = 2

Hence, x = 1, y = 2, z = 3 is the solution of the system.

(ii) The matrix form of the system is

 
4 2 6

1 1 3

15 3 9

8

1

21

−

−

−

































= −

















x

y

z

The augmented matrix of the system is

 

4 2 6 8

1 1 3 1

15 3 9 21

−

− −

−

















Reducing the augmented matrix to row echelon form,

 

R
12

1 1 3 1

4 2 6 8

15 3 9 21

~

− −

−

−

















 

R R R R
2 1 3 1

4 15

1 1 3 1

0 6 18 12

0 18 54 36

− −

− −

−

−

















,

~

 

−





−





− −
− −
− −

















1

6

1

18

1 1 3 1

0 1 3 2

0 1 3 2

2 3
R R,

~

 

R R
3 2

1 1 3 1

0 1 3 2

0 0 0 0

−

− −

− −

















~

The corresponding system of equations is

 
x y z

y z

+ − = −

− = −

3 1

3 2

The leading ones are in columns 1 and 2. Hence, the variables x and y are called 

 leading variables whereas the variable z is called a free variable. Assigning the free 

 variable z an arbitrary value t,
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y t

x t t

= −

= − − + + =

3 2

1 3 2 3 1

Hence, x = 1, y = 3t − 2, z = t is the solution of the system where t is a parameter.

(iii) The matrix form of the system is

 

3 1 3

2 3 7

2 19 47

13

5

32

−

−

−

































=

















x

y

z

The augmented matrix of the system is

 

3 1 3 13

2 3 7 5

2 19 47 32

−

−

−

















Reducing the augmented matrix to row echelon form,

 

1

3

1
1

3
1

13

3

2 3 7 5

2 19 47 32

1







−

−
−





















R

~

 

R R R R2 1 3 12 2

1
1

3
1

13

3

0
11

3
9

11

3

0
55

3
45

70

3

− −

−

− −

−























,

~

 

−





−

−

−























3

11

1
1

3
1

13

3

0 1
27

11
1

0
55

3
45

70

3

2R

~
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R R3 2

55

3

1
1

3
1

13

3

0 1
27

11
1

0 0 0 5

−

−

−





















~

From the last row of the augmented matrix,

 
0 0 0 5x y z+ + =

Hence, the system is inconsistent and has no solution.

Example 2: Solve the following system for x, y and z.

 

− + + =

+ − =

− + =

1 3 4
30

3 2 1
9

2 1 2
10

x y z

x y z

x y z

Solution: The matrix form of the system is

 

−

−

−









































=









1 3 4

3 2 1

2 1 2

1

1

1

30

9

10

x

y

z







The augmented matrix of the system is

 

−

−

−

















1 3 4 30

3 2 1 9

2 1 2 10

Reducing the augmented matrix to row echelon form,

 

( )

~

−

− − −

−

−

















1

1 3 4 30

3 2 1 9

2 1 2 10

1R
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R R R R
2 1 3 1

3 2

1 3 4 30

0 11 11 99

0 5 10 70

− −

− − −















,

~

 

1

11

1

5

1 3 4 30

0 1 1 9

0 1 2 14

2 3













− − −















R R,

~

 

R R
3 2

1 3 4 30

0 1 1 9

0 0 1 5

−

− − −















~

The corresponding system of equations is

1 3 4
30

1 1
9

1
5

x y z

y z

z

− − = −

+ =

=

Solving these equations,

 x y z= = =

1

2

1

4

1

5
, ,

Hence, x y z= = =

1

2

1

4

1

5
, ,  is the solution of the system.

Example 3: Solve the following system of non-linear equations for the unknown 

angles a, b and g, where 0 ≤ a  ≤ 2p, 0 ≤ b  ≤ 2p  and 0 ≤ g   < p.

 

2 3 3

4 2 2 2

6 3 9

sin cos tan

sin cos tan

sin cos tan

α β γ

α β γ

α β γ

− + =

+ − =

− + =

Solution:  The matrix form of the system is

 

2 1 3

4 2 2

6 3 1

3

2

9

−

−

−

































=
















sin

cos

tan

α

β

γ
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The augmented matrix of the system is

 

2 1 3 3

4 2 2 2

6 3 1 9

−

−

−

















Reducing the augmented matrix to row echelon form,

 

1

2

1
1

2

3

2

3

2

4 2 2 2

6 3 1 9

1







−

−
−



















R

~

 

R R R R
2 1 3 1

4 6

1
1

2

3

2

3

2

0 4 8 4

0 0 8 0

− −

−

− −

−



















,

~

 

1

4

1

8

1
1

2

3

2

3

2

0 1 2 1

0 0 1 0

2 3







−





−

− −



















R R,

~

The corresponding system of equations is 

 

sin cos tan

cos tan

tan

α β γ

β γ

γ

− + =

− = −

=

1

2

3

2

3

2

2 1

0

Solving these equations,

 γ

β β π

=

= − ⇒ =

0

1cos
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sin cos tan

( ) ( )

α β γ

α
π

= − +

= − − + =

=

1

2

3

2

3

2

1

2
1

3

2
0

3

2
1

2

Hence, α
π

β π γ= = =
2

0, ,  is the solution of the system.

Example 4: Investigate for what values of l and m the equations

 

x y z

x y z

x y z

+ + =

+ + =

+ + =

2 8

2 2 2 13

3 4 λ µ

have (i) no solution, (ii) a unique solution, and (iii) many solutions.

Solution: The matrix form of the system is

 

1 2 1

2 2 2

3 4

8

13

λ µ

































=
















x

y

z

The augmented matrix of the system is 

 

1 2 1 8

2 2 2 13

3 4 λ µ

















Reducing the augmented matrix to row echelon form,

 

R R R R
2 1 3 1

2 3

1 2 1 8

0 2 0 3

0 2 3 24

− −

− −

− − −

















,

~

λ µ

 

−





− − −



















1

2

1 2 1 8

0 1 0
3

2

0 2 3 24

2
R

∼

λ µ
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R R3 22

1 2 1 8

0 1 0
3

2

0 0 3 21

+

− −



















~

λ µ

 (i) If l = 3 and m ≠ 21, the system is inconsistent and has no solution.

 (ii) If l ≠ 3 and m has any value, the system is consistent and has a unique solution.

 (iii) If l = 3 and m = 21, the system is consistent and has infinite (many) solutions.

Example  5: Determine the values of l for which the following equations are 

consistent. Also, solve the system for these values of l.

 

x y z

x y z

x y z

+ + =

+ + =

+ + =

2 3

3 3
2

λ

λ

Solution:  The matrix form of the system is

 

1 2 1

1 1 1

3 1 3

3

2

































=

















x

y

z

λ

λ

The augmented matrix of the system is

 

1 2 1 3

1 1 1

3 1 3
2

λ

λ

















Reducing the augmented matrix to row echelon form,

 

R R R R
2 1 3 1

2

3

1 2 1 3

0 1 0 3

0 5 0 9

− −

− −

− −

















,

~ λ

λ

 

( )

~

−

−

− −

















1

1 2 1 3

0 1 0 3

0 5 0 9

2

2

R

λ

λ

 

R R
3 2

2

5

1 2 1 3

0 1 0 3

0 0 0 5 6

+

−

− +

















~ λ

λ λ
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The equations will be consistent if l2  – 5l + 6 = 0, i.e. l = 3 or l = 2.

Case I: When l = 3,

 
x y z

y

+ + =

=

2 3

0

Assigning the free variable z any arbitrary value t,

 x t t= − − = −3 2 0 3( )

Hence, x = 3 – t, y = 0, z = t is the solution of the system where t is a parameter.

Case II: When l = 2,

x y z

y

+ + =

=

2 3

1

Assigning the free variable z any arbitrary value t,

 x t t= − − = −3 2 1 1( )

Hence, x = 1 – t, y = 1, z = t is the solution of the system where t is a parameter.

Example 6: Show that the system of equations

 

3 4 5

4 5 6

5 6 7

x y z

x y z

x y z

+ + =

+ + =

+ + =

α

β

γ

is consistent only if a, b and l are in arithmetic progression (A.P.)

Solution: The matrix form of the system is

 

3 4 5

4 5 6

5 6 7

































=
















x

y

z

α

β

γ

The augmented matrix of the system is

 

3 4 5

4 5 6

5 6 7

α

β

γ

















Reducing the augmented matrix to row echelon form,

 

R R R R
2 1 3 1

3 4 5

1 1 1

2 2 2

− −

−

−

















,

~

α

β α

γ α
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R
12

1 1 1

3 4 5

2 2 2

~

β α

α

γ α

−

−

















 

R R R R
2 1 3 1

3 2

1 1 1

0 1 2 4 3

0 0 0 2

− −

−

−

− +

















,

~

β α

α β

α β γ

The system of equations is consistent if,

 

α β γ

β
α γ

− + =

=
+

2 0

2

i.e. a, b and g  are in arithmetic progression (A.P.)

Example 7: Show that if l ≠ 0, the system of equations

 

2

2

x y a

x y z b

y z c

+ =

+ − =

+ =

λ

has a unique solution for every value of a, b, c. If l = 0, determine the relation 

satisfied by a, b, c such that the system is consistent. Find the solution by taking 

l = 0, a = 1, b = 1, c = –1.

Solution: The matrix form of the system is

 

2 1 0

1 1

0 1 2

λ −

































=

















x

y

z

a

b

c

The system has a unique solution if det (A) ≠ 0

 

det( ) ( ) ( )A = + − + ≠

≠

≠

2 2 1 1 2 0 0

4 0

0

λ

λ

λ

Hence, the system of equations has a unique solution if l ≠ 0 for any value of 

a, b, c.

If l = 0, the system is either inconsistent or has an infinite number of solutions.
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For l = 0, the augmented matrix of the system is

 

2 1 0

1 0 1

0 1 2

a

b

c

−

















Reducing the augmented matrix to row echelon form,

 

R

b

a

c

12

1 0 1

2 1 0

0 1 2

~

−















 

R R

b

a b

c

2 1
2

1 0 1

0 1 2 2

0 1 2

−

−

−

















~

 

R R

b

a b

c a b

3 2

1 0 1

0 1 2 2

0 0 0 2

−

−

−

− +

















~

The system is consistent if c – a + 2b = 0

The corresponding system of equations is

 
x z b

y z a b

− =

+ = −2 2

Assigning the free variable z any arbitrary value t,

 
y a b t

x b t

= − −

= +

2 2

Hence, x = b + t, y = a – 2b – 2t, z = t is the solution of the system where t is a 

parameter.

When a = 1, b = 1, c = –1

 

x t

y t

z t

= +

= − −

=

1

1 2
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Example 8: Solve each of the following systems by Gauss–Jordan elimination 

method:

(i) x x x

x x x

x x x

1 2 3

1 2 3

1 2 3

2 8

2 3 1

3 7 4 10

+ + =

− − + =

− + =

 

(ii)  2 2 2 0

2 5 2 1

8 4 1

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

+ + =

− + + =

+ + = −

 

(iii)  x y z w

x y z w

x y z w

x w

− + − = −

+ − − = −

− + − + =

− = −

2 1

2 2 2 2

2 4 1

3 3 3

(iv)

 

− + =

+ − = −

+ + =

2 3 1

3 6 3 2

6 6 3 5

y z

x y z

x y z

 

(v)  x x x x

x x x

x x x x

1 2 3 4

1 2 3

1 2 3 4

2 3 1

2 4 5

2 2 3 4

− − + =

− + =

− + − =

 

(vi)  2 9

3 6

4 2 7

4

x y z

x y z

x y z

x y z

− + =

− + =

− + =

− + − =

Solution:  (i) The matrix form of the system is

 

1 1 2

1 2 3

3 7 4

8

1

10

1

2

3

− −

−

































=

















x

x

x

The augmented matrix of the system is 

 

1 1 2 8

1 2 3 1

3 7 4 10

− −

−

















Reducing the augmented matrix to reduced row echelon form,

 

R R R R
2 1 3 1

3

1 1 2 8

0 1 5 9

0 10 2 14

+ −

−

− − −

















,

~

 

( )

~

−

− −

− − −

















1

1 1 2 8

0 1 5 9

0 10 2 14

2R

 

R R
3 2

10

1 1 2 8

0 1 5 9

0 0 52 104

+

− −

− −

















~
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−





− −
















1

52

1 1 2 8

0 1 5 9

0 0 1 2

3
R

~

 

R R R R
2 3 1 3

5 2

1 1 0 4

0 1 0 1

0 0 1 2

+ −

















,

~

 

R R
1 2

1 0 0 3

0 1 0 1

0 0 1 2

−

















~

The corresponding system of equations is

 

x

x

x

1

2

3

3

1

2

=

=

=

Hence, x x x
1 2 3

3 1 2= = =, ,  is the solution of the system.

(ii) The matrix form of the system is

 
2 2 2

2 5 2

8 1 4

0

1

1

1

2

3

−

































=

−

















x

x

x

The augmented matrix of the system is

 

2 2 2 0

2 5 2 1

8 1 4 1

−

−

















Reducing the augmented matrix to reduced row echelon form,

 

1

2

1 1 1 0

2 5 2 1

8 1 4 1

1







−
−

















R

~
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R R R R
2 1 3 1

2 8

1 1 1 0

0 7 4 1

0 7 4 1

+ −

− − −

















,

~

 

R R
3 2

1 1 1 0

0 7 4 1

0 0 0 0

+

















~

 

1

7

1 1 1 0

0 1
4

7

1

7

0 0 0 0

2

























R

~

 

R R
1 2

1 0
3

7

1

7

0 1
4

7

1

7

0 0 0 0

−

−




















~

The corresponding system of equations is

 

x x

x x

1 3

2 3

3

7

1

7

4

7

1

7

+ = −

+ =

Since leading ones are in columns 1 and 2, x
1
 and x

2
 are called leading variables 

whereas x
3
 is a free variable. Assigning the free variable x

3
 any arbitrary value t,

 

x t

x t

1

2

1

7

3

7

1

7

4

7

= − −

= −

Hence, x t x t x t
1 2 3

1

7

3

7

1

7

4

7
= − − = − =, ,  is the solution of the system where t is a 

parameter.
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(iii) The matrix form of the system is

 

1 1 2 1

2 1 2 2

1 2 4 1

3 0 0 3

1

2

1

− −

− −

− −

−





































=

−

−

−

x

y

z

w 33



















The augmented matrix of the system is

 

1 1 2 1 1

2 1 2 2 2

1 2 4 1 1

3 0 0 3 3

− − −

− − −

− −

− −



















Reducing the augmented matrix to reduced row echelon form,

 

R R R R R R
2 1 3 1 4 1

2 3

1 1 2 1 1

0 3 6 0 0

0 1 2 0 0

0 3 6 0 0

− + −

− − −

−

−

−



















, ,

~

 

1

3

1 1 2 1 1

0 1 2 0 0

0 1 2 0 0

0 3 6 0 0

2







− − −
−
−
−



















R

~

 

R R R R
3 2 4 2

3

1 1 2 1 1

0 1 2 0 0

0 0 0 0 0

0 0 0 0 0

− −

− − −

−



















,

~

 

R R
1 2

1 0 0 1 1

0 1 2 0 0

0 0 0 0 0

0 0 0 0 0

+

− −

−



















~
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The corresponding system of equations is

 
x w

y z

− = −

− =

1

2 0

The leading ones are in columns 1 and 2. Hence, the variables x and y are called 

leading variables whereas the variables z and w are called free variables. Assigning the 

free variables z and w any arbitrary values t
1
 and t

2
 respectively,

and
 

x t

y t

= − +

=

1

2

2

1

Hence, x t y t z t w t= − + = = =1 2
2 1 1 2
, , ,  is the solution of the system where t

1
 and 

t
2
 are parameters.

(iv) The matrix form of the system is

 

0 2 3

3 6 3

6 6 3

1

2

5

−

−

































= −

















x

y

z

The augmented matrix of the system is

 

0 2 3 1

3 6 3 2

6 6 3 5

−

− −

















Reducing the augmented matrix to reduced row echelon form,

 

R
12

3 6 3 2

0 2 3 1

6 6 3 5

~

− −

−

















 

1

3

1 2 1
2

3

0 2 3 1

6 6 3 5

1







− −

−



















R

~



1.6   System of Non-Homogeneous Linear Equations        1.43

 

R R
3 1

6

1 2 1
2

3

0 2 3 1

0 6 9 9

−

− −

−

−



















~

  

−





− −

− −

−





















1

2

1 2 1
2

3

0 1
3

2

1

2

0 6 9 9

2
R

~

 

R R
3 2

6

1 2 1
2

3

0 1
3

2

1

2

0 0 0 6

+

− −

− −





















~

From the last row of the augmented matrix,

0 0 0 6x y z+ + =

Hence, the system is inconsistent and has no solution.

(v) The matrix form of the system is

 

1 2 1 3

2 4 1 0

1 2 2 3

1

5

4

1

2

3

4

− −

−

− −



































=













x

x

x

x





The augmented matrix of the system is

 

1 2 1 3 1

2 4 1 0 5

1 2 2 3 4

− −

−

− −

















Reducing the augmented matrix to reduced row echelon form,
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R R R R
2 1 3 1

2

1 2 1 3 1

0 0 3 6 3

0 0 3 6 3

− −

− −

−

−

















,

~

 

R R
3 2

1 2 1 3 1

0 0 3 6 3

0 0 0 0 0

−

− −

−

















~

 

1

3

1 2 1 3 1

0 0 1 2 1

0 0 0 0 0

2







− −
−

















R

~

 

R R
1 2

1 2 0 1 2

0 0 1 2 1

0 0 0 0 0

+

−

−

















~

The corresponding system of equations is

 
x x x

x x

1 2 4

3 4

2 2

2 1

− + =

− =

The leading ones are in columns 1 and 3. Hence, the variables x
1
 and x

3
 are called 

leading variables whereas the variables x
2
 and x

4
 are called free variables. Assigning 

the free variables x
2
 and x

4
 any arbitrary values t

1
 and t

2
 respectively, 

 
x t t

x t

1 1 2

3 2

2 2

1 2

= + −

= +

Hence, x t t x t x t x t
1 1 2 2 1 3 2 4 2

2 2 1 2= + − = = + =, , ,  is the solution of the system 

where t
1
 and t

2
 are the parameters.

(vi) The matrix form of the system is

 

2 1 1

3 1 1

4 1 2

1 1 1

9

6

7

4

−

−

−

− −



































=


















x

y

z 
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The augmented matrix of the system is

 

2 1 1 9

3 1 1 6

4 1 2 7

1 1 1 4

−

−

−

− −



















Reducing the augmented matrix to reduced row echelon form,

 

R
14

1 1 1 4

3 1 1 6

4 1 2 7

2 1 1 9

~

− −

−

−

−



















 

( )

~

−

− −

−

−

−



















1

1 1 1 4

3 1 1 6

4 1 2 7

2 1 1 9

1R

 

R R R R R R
2 1 3 1 4 1

3 4 2

1 1 1 4

0 2 2 18

0 3 2 23

0 1 1 17

− − −

− −

−

−

−



















, ,

~

 

R
24

1 1 1 4

0 1 1 17

0 3 2 23

0 2 2 18

~

− −

−

−

−



















 

R R R R
3 2 4 2

3 2

1 1 1 4

0 1 1 17

0 0 1 28

0 0 0 16

− −

− −

−

−

−



















,

~

From the last row of the augmented matrix,

 0 0 0 16x y z+ + = −

Hence, the system is inconsistent and has no solution.
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Exercise 1.2

1.  Solve the following systems of 

equations by Gaussian elimination 

method:
 

 (i) x y z

x y z

x y z

x y z

x y

+ + = −

+ + = −

− − =

− − − =

− =

2 1

6 4

2 3 0

7 2 7

1

 

(ii) x y z

x y z

x y z

x y z

+ + =

− + =

+ + =

− + =

6

2 2 5

3 8

2 2 3 7

 (iii) 2 5 4

3 2 2 2

5 8 4 1

1 2 4

1 2 3

1 2 3

x x x

x x x

x x x

+ + =

− + =

− − =

Ans.:

 (i) consistent

(ii) consistent

x y z

x y

= − = − =

= − = −

1 2 4

1 2

, ,

, , zz =



























3

(iii) inconsistent

3.  Investigate for what values of l 

and m, the system of simultaneous 

equations

x y z

x y z

x y z

+ + =

+ + =

+ + =

6

2 3 10

2 λ µ

  have (i) no solution, (ii) a unique 

solution, and (iii) infinite number of 

solutions.

 Ans.:

(i) = 3, 10

(ii)

λ µ

λ µ

λ µ

≠

≠

= =
















3

3 10

,

( ) ,

anyvalueof

iii





  (i) 2 3 3

2 4

5 4 3 2

x y z

x y z

x y z

− − =

+ − =

− − = −

  

(ii) x y z

x y z

x y z

+ − =

+ + =

+ − =

2 1

2 9

2 2

 

(iii) 6 4

2 3 0

7 2 7

x y z

x y z

x y z

+ + = −

− − =

− − − =

 (iv) 2 2

2 2

4 7 5 2

x y z

x y z

x y z

− − =

+ + =

− − =

 (v) 2 2 6

6 6 6 12 36

4 3 3 3 1

2 2

1 2 3 4

1 2 3 4

1 2 3 4

1 2

x x x x

x x x x

x x x x

x x

+ + + =

− + + =

+ + − =

+ −− + =x x
3 4

10

Ans.:

(i) inconistent

(ii) consistent

iii) consis

x y z= = =2 1 3, ,

( ttent

(iv) consistent

(v) co

x y z

x
t

y
t

z t

= − = − = −

=
+

=
−

=

1 2 4

6

5

2 3

5

, ,

, ,

nnsistent

x x x x1 2 3 42 1 1 3= = = − =




































, , ,







2.  Solve the following system of 

equations by Gauss–Jordan 

elimination method:



1.7   System of Homogeneous Linear Equations        1.47

1.7  SYSTEM OF HOMOGENEOUS LINEAR EQUATIONS

A system of m homogeneous linear equations in n variables x
1
, x

2
, … x

n
 or simply 

a linear system, is a set of m linear equations each in n variables. A linear system is 

represented by

 

a x a x a x

a x a x a x

a x a x

n n

n n

m m

11 1 12 2 1

21 1 22 2 2

1 1 2 2

0

0

+ + + =

+ + + =

+ +

�

�

� � � �

��+ =a x
mn n

0

Writing these equations in matrix form,

 Ax 0=

where A is any matrix of order m × n, x is a vector of order n × 1 and 0 is a null vector 

of order m × 1. The matrix A is called coefficient matrix of the system of equations.

1.7.1  Solutions of a System of Linear Equations

For a system of m linear equations in n variables, there are two possibilities of the 

solutions to the system.

 (i)  The system has exactly one solution, i.e. x
1
 = 0, x

2
 = 0…, x

n
 = 0. This solution is 

called the trivial solution.

 (ii) The system has infinite solutions.

Note: The system of equations has a non-trivial solution if det (A) = 0.

4.  Investigate for what values of k the 

equations

x y z

x y z k

x y z k

+ + =

+ + =

+ + =

1

2 4

4 10
2

 have infinite number of solutions.

[Ans.: k = 1, 2]

5.  Determine the values of l for which 

the following system of equations.

3 0

2 2

2 1

x y z

x y z

x y z

− + =

+ + =

− − = −

λ

λ

 will fail to have a unique solution. 

For this value of l, are the equations 

consistent?

 

Ans.:  λ = −






7

2
,no solution

6.  Find for what values l, the set of 

equations

 2 3 6 5 3

4 1

4 5 8 9

x y z t

y z t

x y z t

− + − =

− + =

− + − = λ

 has (i) no solution, and (ii) infinite 

number of solutions and find the 

solutions of the equations when they 

are consistent.

 
Ans.: (i) 

(ii) 

λ

λ

≠

= = + +

= − + =

=









7

7 3 3

4 1

1 2

1 2 1

2

,

, ,

, ,

x k k

y k k z k

t k
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Example  1: Solve the following systems of equations by the Gauss–Jordan 

 elimination method.

(i)  3 0

2 0

5 3 0

x y z

x y z

x y z

− − =

+ + =

+ + =

  

(ii)

 

x y z w

x y z

x y w

+ − + =

− + − =

+ + =

0

2 0

3 0

w   

(iii)  2 3 0

2 0

0

1 2 3

1 2

2 3

x x x

x x

x x

+ + =

+ =

+ =

Solution: (i) The matrix form of the system is

 

3 1 1

1 1 2

5 1 3

0

0

0

− −































=

















x

y

z

The augmented matrix of the system is

 

3 1 1 0

1 1 2 0

5 1 3 0

− −















Reducing the augmented matrix to reduced row echelon form,

 

R
12

1 1 2 0

3 1 1 0

5 1 3 0

~ − −

















 

R R R R
2 1 3 1

3 5

1 1 2 0

0 4 7 0

0 4 7 0

− −

− −

− −

















,

~

 

−





−

























1

4

1

4

1 1 2 0

0 1
7

4
0

0 1
7

4
0

2 3
R R,

~

 

R R
3 2

1 1 2 0

0 1
7

4
0

0 0 0 0

−



















~
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R R
1 2

1 0
1

4
0

0 1
7

4
0

0 0 0 0

−





















~

The corresponding system of equations is

 

x z

y z

+ =

+ =

1

4
0

7

4
0

Solving for the leading variables,

                   

x z

y z

= −

= −

1

4

7

4

Assigning the free variable z an arbitrary value t,

      

x t

y t

= −

= −

1

4

7

4

Hence, x t y t= − = −

1

4

7

4
,  is the non-trivial solution of the system where t is a 

parameter.

(ii) The matrix form of the system is

 

1 1 1 1

1 1 2 1

3 1 0 1

0

0

0

−

− −



































=

















x

y

z

w

The augmented matrix of the system is

 

1 1 1 1 0

1 1 2 1 0

3 1 0 1 0

−

− −
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Reducing the augmented matrix to the reduced row echelon form,

 

R R R R
2 1 3 1

3

1 1 1 1 0

0 2 3 2 0

0 2 3 2 0

− −

−

− −

− −

















,

~

 

−





−





−

−

−





















1

2

1

2

1 1 1 1 0

0 1
3

2
1 0

0 1
3

2
1 0

2 3
R R,

~

 

R R
3 2

1 1 1 1 0

0 1
3

2
1 0

0 0 0 0 0

−

−

−



















~

 

R R
1 2

1 0
1

2
0 0

0 1
3

2
1 0

0 0 0 0 0

−

−





















~

The corresponding system of equations is

 

x z

y z w

+ =

− + =

1

2
0

3

2
0

Solving for the leading variables,

 

x z

y z w

= −

= −

1

2

3

2
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Assigning the free variables z and w arbitrary values t
1
 and t

2
 respectively,

 

x t

y t t

= −

= −

1

2

3

2

1

1 2

Hence, x t y t t z t w t= − = − = =

1

2

3

2
1 1 2 1 2
, , , is the non-trivial solution of the system 

where t
1
 and t

2
 are parameters.

(iii) The matrix form of the system is

 

2 1 3

1 2 0

0 1 1

0

0

0

1

2

3

































=

















x

x

x

The augmented matrix of the system is

 

2 1 3 0

1 2 0 0

0 1 1 0

















Reducing the augmented matrix to reduced row echelon form,

  

R12

1 2 0 0

2 1 3 0

0 1 1 0

~















 

R R
2 1

2

1 2 0 0

0 3 3 0

0 1 1 0

−

−

















~

 

−





−
















1

3

1 2 0 0

0 1 1 0

0 1 1 0

2
R

~

 

R R
3 2

1 2 0 0

0 1 1 0

0 0 2 0

−

−

















~
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1

2

1 2 0 0

0 1 1 0

0 0 1 0

3







−
















R

~

 

R R
2 3

1 2 0 0

0 1 0 0

0 0 1 0

+

















~

 

R R
1 2

2

1 0 0 0

0 1 0 0

0 0 1 0

−

















~

The corresponding system of equations is

 

x

y

z

=

=

=

0

0

0

Hence, the system has a trivial solution, i.e. x = 0, y = 0, z = 0.

Example  2: Show that the following non-linear system has 18 solutions if 

0 2 0 2≤ ≤ ≤ ≤α π β π,  and 0 2≤ <γ π .

 

sin cos tan

sin cos tan

sin cos tan

α β γ

α β γ

α β γ

+ + =

+ + =

− − + =

2 3 0

2 5 3 0

5 5 0

Solution:  The matrix form of the system is

 

1 2 3

2 5 3

1 5 5

0

0

0− −

































=
















sin

cos

tan

α

β

γ

The augmented matrix of the system is

 

1 2 3 0

2 5 3 0

1 5 5 0− −
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Reducing the augmented matrix to reduced row echelon form,

 

R R R R
2 1 3 1

2

1 2 3 0

0 1 3 0

0 3 8 0

− +

−

−

















,

~

 

R R
3 2

3

1 2 3 0

0 1 3 0

0 0 1 0

+

−

−

















~

 

( )

~

−

−

















1

1 2 3 0

0 1 3 0

0 0 1 0

3R

 

R R R R
2 3 1 3

3 3

1 2 0 0

0 1 0 0

0 0 1 0

+ −

















,

~

 

R R
1 2

2

1 0 0 0

0 1 0 0

0 0 1 0

−

















~

The corresponding system of equations is

 

sin

cos

tan

α

β

γ

=

=

=

0

0

0

From these equations,

 

α π π

β
π π

α β γ π

γ π π

=

=

=

0 2

2

3

2

0 2

, ,

, [ , ]

, ,

∵ and lie between 0 and 2

Hence, there are 3 · 2 · 3 = 18 possible solutions which satisfy the system of  

equations.
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Example 3: For what value of l
 
does the following system of equations possess 

a non-trivial solution? Obtain the solution for real values of l.

 

x y z x

x y z y

x y z z

+ + =

+ + =

+ + =

2 3

3 2

2 3

λ

λ

λ

Solution:  The system of equations is

 

( )

( )

( )

1 2 3 0

3 1 2 0

2 3 1 0

− + + =

+ − + =

+ + − =

λ

λ

λ

x y z

x y z

x y z

The matrix form of the system is

 

1 2 3

3 1 2

2 3 1

0

0

0

−

−

−

































=

















λ

λ

λ

x

y

z

The system will possess a non-trivial solution if det (A) = 0.

 

1 2 3

3 1 2

2 3 1

0

1 1 6 2 3 3 4 3 9 2 2 0

1

2

−

−

−

=

− − − − − − + − + =

−

λ

λ

λ

λ λ λ λ

λ

( )[( ) ] ( ) ( )

( ))( )λ λ λ λ

λ λ λ λ λ λ

λ λ

2

2 3 2

3 2

2 5 2 6 21 6 0

2 5 2 5 12 23 0

3

− − + + + + =

− − − + + + + =

− + +115 18 0λ + =

 
λ λ= = − ±6 1 5 0 866, . . i

For real value of l, i.e. l = 6, the augmented matrix of the system is

 

−

−

−

















5 2 3 0

3 5 2 0

2 3 5 0

Reducing the augmented matrix to reduced row echelon form,

 

R R
2 3

5 2 3 0

1 8 7 0

2 3 5 0

−

−

−

−

















~
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R
12

1 8 7 0

5 2 3 0

2 3 5 0

~

−

−

−

















 

R R R R
2 1 3 1

5 2

1 8 7 0

0 38 38 0

0 19 19 0

+ −

−

−

−

















,

~

 

−











−
−
−

















1

38

1

19

1 8 7 0

0 1 1 0

0 1 1 0

2 3
R R,

~

 

R R
3 2

1 8 7 0

0 1 1 0

0 0 0 0

−

−

−

















~

 

R R
1 2

8

1 0 1 0

0 1 1 0

0 0 0 0

+

−

−

















~

The corresponding system of equations is

 
x z

y z

− =

− =

0

0

Solving for the leading variables,

 
x z

y z

=

=

Assigning the free variable z an arbitrary value t,

 
x t

y t

=

=

Hence, x t y t z t= = =, ,  is the non-trivial solution of the system where t is a 

 parameter.
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Example 4: If the following system has a non-trivial solution, then prove that 

a b c+ + = 0  or a b c= =  and hence find the solution in each case.

 

ax by cz

bx cy az

cx ay bz

+ + =

+ + =

+ + =

0

0

0

Solution:  The matrix form of the system is

 

a b c

b c a

c a b

x

y

z

































=

















0

0

0

The system has a non-trivial solution if det (A) = 0 

 

a b c

b c a

c a b

a bc a b b ac c ab c

a b c abc

a

=

− − − + − =

− + + − =

−

0

0

3 0

2 2 2

3 3 3

( ) ( ) ( )

( ++ + + + − − − =b c a b c ab bc ca)( )2 2 2 0

a b c

a b c ab bc ca

a b b c c a

a b

+ + =

+ + − − − =

− + − + − =

− =

0

0

1

2
0

2 2 2

2 2 2

or

[( ) ( ) ( ) ]

00 0 0, ,

, ,

b c c a

a b b c c a

a b c

− = − =

= = =

= =

Hence, the system has a non-trivial solution if a b c+ + = 0  or a b c= = .

The augmented matrix of the system is

a b c

b c a

c a b

0

0

0

















 R R R
3 1 2
+ +

 ~

a b c

b c a

a b c a b c a b c

0

0

0+ + + + + +
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The corresponding system of equations is

 

ax by cz

bx cy az

a b c x a b c y a b c z

+ + =

+ + =

+ + + + + + + + =

0

0

0( ) ( ) ( )

(i) When a b c+ + = 0, we have only two equations.

 
ax by cz

bx cy az

+ + =

+ + =

0

0

 

x

b c

c a

y

a c

b a

z

a b

b c

t

x

ab c

y

a bc

z

ac b
t

= − = =

−

= −

−

=

−

=

2 2 2

Hence, x ab c t y bc a t z ac b t= − = − = −( ) , ( ) , ( )2 2 2  is the solution of the system 

where t is a parameter.

(ii) When a = b = c, we have only one equation.

 x y z+ + = 0

Let 
y t

z t

=

=

1

2

Then x t t= − −
1 2

Hence, x t t y t z t= − − = =
1 2 1 2

, ,  is the solution of the system where t
1
 and t

2
 are 

parameters.

Example 5: Discuss for all values of k, the system of equations

2 3 3 4 0

4 4 2 0

2 1 3 4 0

x ky k z

x k y k z

x k y k z

+ + + =

+ + + + =

+ + + + =

( )

( ) ( )

( ) ( )

Solution:  The matrix form of the system is

 

2 3 3 4

1 4 4 2

1 2 2 3 4

0

0

0

k k

k k

k k

x

y

z

+

+ +

+ +

































=

















  

R

k k

k k

k k

x

y

z

12

1 4 4 2

2 3 3 4

1 2 2 3 4

0

0

0

+ +

+

+ +

































=
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 R R R R
2 1 3 1

2− −,

 

1 4 4 2

0 8 5

0 2 2

0

0

0

k k

k k

k k

x

y

z

+ +

− −

− − +

































=

















 

det ( )

( )( ) ( )

( )(

A

k k

k k

k k

k k k k

k

=

+ +

− −

− − +

= − − + + −

= − −

1 4 4 2

0 8 5

0 2 2

8 2 5 2

2 kk k

k k

+ +

= − +

8 5

4 2 2

)

( )( )

 (i) When k A≠ ± ≠2 0, det ( ) ,  the system has a trivial solution, i.e. x = 0, y = 0, z = 0. 

 (ii) When k A= ± =2 0, det ( ) ,  the system has non-trivial solutions.

Case I: When k = 2, the augmented matrix of the system is

 

1 6 10 0

0 6 10 0

0 0 0 0

− −

















 

−























1

6

1 6 10 0

0 1
10

6
0

0 0 0 0

2
R

~

 

R R
1 2

6

1 0 0 0

0 1
10

6
0

0 0 0 0

−



















~

The corresponding system of equations is

 

x

y z

=

+ =

0

10

6
0
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Solving for the leading variables,

 

x

y z

=

= −

0

10

6

Assigning the free variable z any arbitrary value t,

 y t t= − = −

10

6

5

3

Hence, x y t z t= = − =0
5

3
, , is the solution of the system where t is a parameter.

Case II: When k = –2, the augmented matrix of the system is

 

1 2 6 0

0 10 10 0

0 4 4 0

−

−

−

















Reducing the augmented matrix to reduced row echelon form,

 −





−





1

10

1

4
2 3
R R,

 ~

1 2 6 0

0 1 1 0

0 1 1 0

−

−

−

















 

R R
3 2

1 2 6 0

0 1 1 0

0 0 0 0

−

−

−

















~

 

R R
1 2

2

1 0 4 0

0 1 1 0

0 0 0 0

−

−

−

















~

The corresponding system of equations is

 
x z

y z

− =

− =

4 0

0

Solving for the leading variables,

 
x z

y z

=

=

4
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Exercise 1.3

Assigning the free variable z any arbitrary value t,

 
x t

y t

=

=

4

Hence, x t y t z t= = =4 , ,  is the solution of the system where t is a parameter.

1. Solve the following equations:

  (i) x y z

x y z

x y z

− + =

+ + =

+ + =

0

2 0

2 3 0

 (ii) x y z

x y z

− + =

+ + =

2 3 0

2 5 6 0

 (iii) 2 2 5 3 0

4 0

3 2 3 4 0

3 7 6 0

x y z w

x y z w

x y z w

x y z w

− + + =

− + + =

− + + =

− + + =

 (iv) 2 3 0

3 2 0

4 5 0

x y z

x y z

x y z

− + =

+ + =

− + =

 (v) 7 2 0

5 4 0

3 2 0

2 7 5 0

x y z

x y z

x y z

x y z

+ − =

+ − =

− + =

− + =

 (vi) 3 4 9 0

2 3 2 3 0

2 14 12 0

3 13 3 0

x y z w

x y z w

x y z w

x y z w

+ − − =

+ + − =

+ − − =

+ + + =

 (vii) x x x x

x x x x

x x x x

1 2 3 4

1 2 3 4

1 2 3 4

2 3 0

0

3 2 3 0

+ + + =

+ − − =

− + + =

 (viii) 2 3 0

3 2 0

4 5 0

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

− + =

+ + =

− + =

Ans.: ( ) , ,

( ) , ,

( ) , ,

i x y z

ii x t y z t

iii x t y t z

= = =

= − = =

= = =

0 0 0

3 0

211

9
4

7

9
tt

w t

iv x t y t z t

v x t y t z t

vi x t y t

,

( ) , ,

( ) , ,

( ) ,

=

= − = =

= = =

= = −

3

17

13

17

11 8 ,, ,

( ) , ,

,

( )

z t

w

vii x t x t

x t x t

viii x x x

=

=

= − =

= − =

= − = − =

0

1

3

2

3

2

3

1 2

3 4

1 2 3 tt





















































2.   For what value of l does the following 

system of equations possess a non-

trivial solution? Obtain the solution for 

real values of l.

  (i) 3 0

4 2 3 0

2 4 0

x y z

x y z

x y z

+ − =

− − =

+ − =

λ

λ λ

 (ii) ( )

( )

( )

1 2 3 0

3 1 2 0

2 3 1 0

1 2 3

1 2 3

1 2 3

− + + =

+ − + =

+ + − =

λ

λ

λ

x x x

x x x

x x x

 

Ans. :

(i) Non-trivial solution

For

  λ

λ

= −

= = − = − = −

1 9

1 2

,

, , ,x t y t z t

FFor

(ii)

 λ
λ

= − = − = − =

= = = =























9 3 9 2

6

, , ,

,

x t y t z t

x y z t
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1.8  INVERSE OF A MATRIX

If A be any n-rowed square matrix, then a matrix B, if it exists such that

 AB BA= = I
n

is called the inverse of A,

i.e.,  B A=

−1

We will explain a few terms associated with matrices before finding the inverse of a 

matrix.

(1)  Minor of an Element of a Determinant

If det ( )A

a a a

a a a

a a a

=

11 12 13

21 22 23

31 32 33

, then

minor of a determinant is a determinant obtained by removing the row and  

columns of det (A) passing through the element, e.g.

 Minor of the element a
a a

a a
11

22 23

32 33

=

 Minor of the element a
a a

a a
12

21 23

31 33

=

 Minor of the element a
a a

a a
13

21 22

31 32

=

(2)  Cofactor of an Element of a Determinant

If det ( ) ,A

a a a

a a a

a a a

=

11 12 13

21 22 23

31 32 33

 then

cofactor of an element a
ij
 of a determinant is the minor multiplied by ( ) ,−

+1 i j  e.g.

 Cofactor of element a
a a

a a
11

1 1 22 23

32 33

1= −
+( )

 Cofactor of the element a
a a

a a
12

1 2 21 23

31 33

1= −
+( )

3.  Show that the system of equations 

2 2 2 3 2x y z x x y z y− + = − + =λ λ, ,  

− + =x y z2 λ can posses a non-trivial 

solution only if l = 1, l = –3. Obtain 

the general solution in each case.

Ans.: For

For

 λ
λ

 = = −

= =

= − = −

= − =






1 2

3

2

2 1

2 1

,

,

, ,

,

x t t

y t z t

x t

y t z t
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 Cofactor of the element a
a a

a a
13

1 3 21 22

31 32

1= −
+( )

(3)  Adjoint of a Square Matrix

The transpose of the matrix of the cofactors is called the adjoint of the matrix.

Let A be a non-singular n-rowed square matrix.

 A

a a a

a a a

a a a

n

n

n n nn

=



















11 12 1

21 22 2

1 2

…

…

… … … …

…

The matrix formed by the cofactors of the elements of A is

 

A A A

A A A

A A A

n

n

n n nn

11 12 1

21 22 2

1 2

…

…

… … … …

…



















The transpose of this matrix of cofactors is called the adjoint of A and is denoted 

by adj A.

 adj A

A A A

A A A

A A A

n

n

n n nn

=



















11 21 1

12 22 2

1 2

…

…

… … … …

…

Theorem 1.1: If A is a non-singular square matrix of order n, then

 (i) A A A A A( ) ( )adj adj I= = n

 (ii) adj A A
n

=

−1

 (iii) adj (adj ) = A A A
n−2

1.8.1  Inverse of a Matrix by Determinant Method

If A is an n × n singular square matrix, then inverse of A is 

 A
A

A
−

=

1 1

det( )
adj

Theorem 1.2: Every invertible matrix possesses a unique inverse.

Theorem 1.3: The necessary and sufficient condition for a square matrix A to possess 

an inverse is that det (A) ≠ 0, i.e. A is non-singular.

Theorem 1.4: The inverse of a product is the product of the inverses taken in the 

reverse order.

(AB)–1 = B –1 A–1
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Theorem 1.5: If A is an n × n non-singular matrix, then

(A–1)T = (AT )–1

Example 1: Find the adjoint of the matrix

A =

















2 3 1

1 2 3

3 1 2

Solution: The cofactors of elements of A are

         

A A

A A

11

1 1

12

1 2

13

1 3

21

1
2 3

1 2
1 1

1 3

3 2
7

1
1 2

3 1
5

= − = = − =

= − = − =

+ +

+

( ) ; ( )

( ) ; (( )− = −
+1

3 1

1 2
52 1

   

A A

A A

22

2 2

23

2 3

31

3 1

32

1
2 1

3 2
1 1

2 3

3 1
7

1
3 1

2 3
7

= − = = − =

= − = =

+ +

+

( ) ; ( )

( ) ; (−− = −
+1

2 1

1 3
53 2)

 A33

3 31
2 3

1 2
1= − =

+( )

The matrix of cofactors of elements of A =

−

−

−

















1 7 5

5 1 7

7 5 1

 

adj transpose of the matrix of cofactors

=

A =

−

−

−








1 5 7

7 1 5

5 7 1









Example 2: Find adj (adj A), where A =

− −

−

− − −

















1

9

1 8 4

4 4 7

8 1 4

Solution:  A =

− −

−

− − −

















1

9

1 8 4

4 4 7

8 1 4

We know that

adj (adj ) =A A A
n−2

and kA k A
n

=
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Here, n = 3

 | |A = 





− −
−
− − −

1

9

1 8 4

4 4 7

8 1 4

3

= − − + − − + + +

= ×

=

1

729
1 16 7 8 16 56 4 4 32

1

729
729

1

[( )( ) ( )( ) ( )]

(adj adj A)) =

=

−

A A

A

3 2

Example 3: If A a==

1 1 1

1 4

1 1 1

















 and adj (adj A) = A, find a.

Solution:   A a=

















1 2 1

0 4

1 1 1

We know that 

 adj adj( )A =

−

A A
n 2

Here, n = 3

 | | ( ) ( ) ( )A a a a a= = − − − + − = − +

1 2 1

0 4

1 1 1

1 0 4 2 4 1 0 4

 
adj adj ( ) ( )

( )

A a A

a A

= − +

= − +

4

4

1

But

 

adj adj ( )

( )

A A

a A A

a

a

=

− + =

− + =

=

4

4 1

3

Example 4: Find the inverses of the following matrices:

(i) 

1 2 1

0 2 2

2 1 1

1 1 1

1 2 3

2 1 3

















−

−

















−

( ) ( )ii iii

cos sinα α 00

0

0 0 1

sin cosα α
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Solution:  (i) A =

















1 2 1

0 2 2

2 1 1

The matrix of cofactors of elements of A =

−

− −

−

















0 4 4

1 1 3

2 2 2

 adj A =

−

− −

−

















0 1 2

4 1 2

4 3 2

 

det ( ) ( ) ( ) ( )

det ( )

A

A
A

A

= = − − − + − =

= =−

1 2 1

0 2 2

2 1 1

1 2 2 2 0 4 1 0 4 4

1 1

4

1 adj 

00 1 2

4 1 2

4 3 2

−

− −

−

















(ii) A = −

−

















1 1 1

1 2 3

2 1 3

The matrix of cofactors of elements of A =

− −

−

−

















3 9 5

4 1 3

5 4 1

  adj A =

− −

−

−

















3 4 5

9 1 4

5 3 1

 det ( ) ( ) ( ) ( )A = −

−

= − − + + − − = −

1 1 1

1 2 3

2 1 3

1 6 3 1 3 6 1 1 4 11

 A
A

A
− = = −

− −

−

−

















1 1 1

11

3 4 5

9 1 4

5 3 1
det ( )

adj 

(iii) A =

−















cos sin

sin cos

α α

α α

0

0

0 0 1
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The matrix of cofactors of elements of A =

−















cos sin

sin cos

α α

α α

0

0

0 0 1

 adj A = −

















cos sin

sin cos

α α

α α

0

0

0 0 1

           det (A)

cos sin

sin cos=

−

=

α α

α α

0

0

0 0 1

1

        A
A

A
− = = −

















1 1
0

0

0 0 1
det( )

cos sin

sin cosadj

α α

α α

Example 5: Find the matrix A, if adj A ==

−

− −

−

















2 1 3

2 3 11

2 1 5

.

Solution:  adj A =

−

− −

−

















2 1 3

2 3 11

2 1 5

We know that

 adj( A A
n

) =

−1

Here, n

A A

=

=

3

2
adj( )

Now, adj( A) ( ) ( ) ( )= − − − − + − + =2 15 11 1 10 22 3 2 6 16

Thus,  A
2

16=

  A = 4

The matrix of cofactors of elements of adj A =

















4 12 4

8 4 4

20 16 8

          adj adj ( )A =

















4 8 20

12 4 16

4 4 8
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 ( )
)

adj 
adj (

adj(adj ) =A
A

A
− =

















=1 1 1

16

4 8 20

12 4 16

4 4 8

1

4

1 22 5

3 1 4

1 1 2

















Since A(adj A)=|A|I
3

 

A A A= = ⋅













=














−( )adj 1 4
1

4

1 2 5

3 1 4

1 1 2

1 2 5

3 1 4

1 1 2

Example 6: Find the matrix A if

 
4 2

2 3

2 1

3 2

2 2

3 7











−

−









 =









A

Solution:  Let

 

B

C

D

=










=
−

−











=










4 2

2 3

2 1

3 2

2 2

3 7

Then BAC D

AC B D

A B DC

=

=

=

−

− −

1

1 1

 

B
B

B

C
C

C

−

−

= =
−

−







= =






=






1

1

1 1

8

3 2

2 4

1 1

1

2 1

3 2

2 1

3 2

adj

adj 


Hence,

 

A =
−

−





























=
− −









=
−

1

8

3 2

2 4

2 2

3 7

2 1

3 2

1

8

24 16

88 56

3 −−









2

11 7
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Example  7: If A ==

0 1 1

1 0 1

1 1 0

















 and B

q r r p q p

r q r p p q

q r p r p q

=

+ − −

− + −

− − +

























2 2 2

2 2 2

2 2 2

,  prove that 

ABA–1 is a diagonal matrix.

Solution:  A =

















0 1 1

1 0 1

1 1 0

 det ( ) ( ) ( ) ( )A = − − − + − = ≠0 0 1 1 0 1 1 1 0 2 0

Hence, A–1 exists.

The matrix of cofactors of elements of A =

−

−

−

















1 1 1

1 1 1

1 1 1

 adj A =

−

−

−

















1 1 1

1 1 1

1 1 1

 A
A

A
− = =

−

−

−

















1 1 1

2

1 1 1

1 1 1

1 1 1
det ( )

adj 

Now,  AB

q r r p q p

r q r p p q

q r p r p q

=

















+ − −

− + −

− − +

0 1 1

1 0 1

1 1 0

2 2 2

2 2 2

2 2 2

























=

















0

0

0

p p

q q

r r

 

ABA

p p

q q

r r

p

− =

















−

−

−

















=

1

0

0

0

1

2

1 1 1

1 1 1

1 1 1

1

2

2 0 0

0 2qq

r

p

q

r

0

0 0 2

0 0

0 0

0 0

















=

















Hence, ABA–1 is a diagonal matrix.
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Example 8: Show that [ ( , , )] , ,diag diag α β γ
α β γ

− = 





1 1 1 1
 if αβγ ≠ 0.

Solution:  Let A = =
















diag( , , )α β γ

α

β

γ

0 0

0 0

0 0

The matrix of cofactors of elements of A =
















βγ

αγ

αβ

0 0

0 0

0 0

 adj A =
















βγ

αγ

αβ

0 0

0 0

0 0

det ( )A = =

α

β

γ

αβγ

0 0

0 0

0 0

If abg  ≠ 0, then A
A

A
−

=

1 1

det ( )
adj

=
















=

























1
0 0

0 0

0 0

1
0 0

0
1

0

0 0
1

αβγ

βγ

αγ

αβ

α

β

γ

=






diag
1 1 1

α β γ
, ,

Example 9: Show that 
cos sin

sin cos

1 tan
2

tan
2

1

tan

ta

θ θ

θ θ

θ

θ

θ
−



























==

−−

−−

1
2

nn
θ

2
1

1



















−

Solution: Let A =

−



















1
2

2
1

tan

tan

θ

θ
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The matrix of cofactors of elements of A =

−



















1
2

2
1

tan

tan

θ

θ

adj A =

−


















1
2

2
1

tan

tan

θ

θ

det ( )

tan

tan

tan secA =

−

= + =

1
2

2
1

1
2 2

2 2

θ

θ

θ θ

A
A

A
− =

−


















1

2

1 1

2

1
2

2
1

det( )
sec

tan

tan

adj =
θ

θ

θ

 

Now,

1
2

2
1

1
2

2
1

1

1

−

















−



















=

−

tan

tan

tan

tan

θ

θ

θ

θ

−−


















−


















=

tan

tan sec

tan

tan

θ

θ θ

θ

θ

2

2
1

1

2

1
2

2
1

2

11

2

1
2 2 2

2 2 2
1

2

2

2sec

tan tan tan

tan tan tan
θ

θ θ θ

θ θ θ

− − −

+ − +



















=

− −

−









cos sin sin cos

sin cos cos sin

2 2

2 2

2 2
2

2 2

2
2 2 2 2

θ θ θ θ

θ θ θ θ











=
−









cos sin

sin cos

θ θ

θ θ

Example 10: Find the inverses of A

a

a=

















1 0

0 1

0 0 1

 and B b

b

=

















1 0 0

1 0

0 1

 and 

hence, find inverse of C

ab a

b ab a

b

=

+

+

















1 0

1

0 1
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Solution:  A

a

a=

















1 0

0 1

0 0 1

The matrix of cofactors of elements of A a

a a

= −

−

















1 0 0

1 0

1
2

 adj A

a a

a=

−

−

















1

0 1

0 0 1

2

 det ( )A

a

a= =

1 0

0 1

0 0 1

1

 

A
A

A

a a

a

− =

=

−

−

















1

2

1

1

0 1

0 0 1

det ( )
adj

Replacing a by b, AT becomes 

1 0 0

1 0

0 1

b

b

















 which is equal to the matrix B.

Hence, replacing a by b in the transpose of A–1, we get

 B b

b b

− = −

−

















1

2

1 0 0

1 0

1

Now, C

ab a

b ab a

b

AB=

+

+

















=

1 0

1

0 1

C AB B A

b

b b

a a

a

− − − −= =

= −

−

















−

−











1 1 1 1

2

21 0 0

1 0

1

1

0 1

0 0 1

( )
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=

−

− + − −

− − + +

















1

1

1

2

2

2 2 2 2

a a

b ab a b a

b ab b a b ab

Example 11: Find the inverse of the matrix S =

















0 1 1

1 0 1

1 1 0

 and if 

A =

−

− −

















1

2

4 1 1

2 3 1

2 1 5

,  show that SAS–1 is diag. (2, 3, 1).

Solution:  S =

















0 1 1

1 0 1

1 1 0

The matrix of cofactors of elements of S =

−

−

−

















1 1 1

1 1 1

1 1 1

 adj S =

−

−

−

















1 1 1

1 1 1

1 1 1

det ( ) ( ) ( )S = = − − + =

0 1 1

1 0 1

1 1 0

1 1 1 1 2

S
S

S
− = =

−

−

−

















1 1 1

2

1 1 1

1 1 1

1 1 1
det ( )

adj 

SA =

















−

− −

















=
1

2

0 1 1

1 0 1

1 1 0

4 1 1

2 3 1

2 1 5

1

2

0 4 4

6 0 6

2 2 0

















=

















=

















−

0 2 2

3 0 3

1 1 0

1

2

0 2 2

3 0 3

1 1 0

1
SAS

−−

−

−

















1 1 1

1 1 1

1 1 1
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=

















=

















=

1

2

4 0 0

0 6 0

0 0 2

2 0 0

0 3 0

0 0 1

diag. (2, 3, 1)

1.8.2   Inverse of a Matrix by Elementary Transformation 

(Gauss–Jordan Elimination method)

Let A be any non-singular matrix. Then A = IA. Applying suitable elementary row 

transformation to A on the L.H.S and to I on the R.H.S, so that A reduces to I and I 

reduces to any matrix B.

Hence,
 
I BA

B A

=

=

−1

Example 1: Find the inverses of the following matrices by elementary transfor-

mation (Gauss–Jordan elimination method):

(i) 

2 3 4

4 3 1

1 2 4

















  (ii) 

1 1 0 2

0 1 1 1

2 1 2 1

3 2 1 6

−

−

−



















Solution: (i) Let
 

A

A I A

=

















=

2 3 4

4 3 1

1 2 4

3

   

2 3 4

4 3 1

1 2 4

1 0 0

0 1 0

0 0 1

















=

















A

Reducing the matrix A to reduced row echelon form,

 

R

A

13

1 2 4

4 3 1

2 3 4

0 0 1

0 1 0

1 0 0

















=

















          

R R R R
2 1 3 1

4 2

1 2 4

0 5 15

0 1 4

0 0 1

0 1 4

1 0 2

− −

− −

− −

















= −

−
















,



A
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−





− −
















= −

−



















1

5

1 2 4

0 1 3

0 1 4

0 0 1

0
1

5

4

5

1 0 2

2
R

AA

 

R R

A

3 2

1 2 4

0 1 3

0 0 1

0 0 1

0
1

5

4

5

1
1

5

6

5

+

−

















= −

− −





















 

( )−

















= −

−





















1

1 2 4

0 1 3

0 0 1

0 0 1

0
1

5

4

5

1
1

5

6

5

3R

A

 

R R R R
2 3 1 3

3 4

1 2 0

0 1 0

0 0 1

4
4

5

19

5

3
4

5

14

5

1
1

5

6

5

− −

















=

− −

− −

−







,




















−

















=

−

− −

−

A

R R
1 2

2

1 0 0

0 1 0

0 0 1

2
4

5

9

5

3
4

5

14

5

11
1

5

6

5

























A
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I A A

A

3

1

1

2
4

5

9

5

3
4

5

14

5

1
1

5

6

5

1

5

10 4 9

=

∴ =

−

− −

−

























=

−

−

−
115 4 14

5 1 6

− −

−

















(ii) Let  A =

−

−

−



















1 1 0 2

0 1 1 1

2 1 2 1

3 2 1 6

 

A I A=

−

−

−



















=









4

1 1 0 2

0 1 1 1

2 1 2 1

3 2 1 6

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











A

Reducing the matrix A to reduced row echelon form,

R R R R
3 1 4 1

2 3

1 1 0 2

0 1 1 1

0 3 2 3

0 1 1 0

1 0 0 0

0 1 0 0

2 0 1 0

− −

−

−

−



















=
−

,

−−



















3 0 0 1

A

R R R R
3 2 4 2

3

1 1 0 2

0 1 1 1

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

2 3 1 0

− −

−

−

−



















=
− −

,

−− −



















3 1 0 1

A

( )−

−

−



















=
−

− −





1

1 1 0 2

0 1 1 1

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

2 3 1 0

3 1 0 1

3R















A
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R R R R
2 4 1 4

2

1 1 0 0

0 1 1 0

0 0 1 0

0 0 0 1

7 2 0 2

3 0 0 1

2 3 1 0

+ −

−

















=

−

−

−

−

,

33 1 0 1−



















A

 

R R
2 3

1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

7 2 0 2

5 3 1 1

2 3 1 0

3 1 0 1

−

−

















=

−

− −

−

− −



















A

 

R R
1 2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2 1 1 1

5 3 1 1

2 3 1 0

3 1 0 1

+



















=

− −

− −

−

− −



















A

I A A

A

4

1

1

2 1 1 1

5 3 1 1

2 3 1 0

3 1 0 1

=

∴ =

− −

− −

−

− −



















−

−

1.  Find the inverses of the following 

matrices by the determinant method:

 (i) 

1 2 1

2 1 1

4 5 1

















 (ii) 

3 2 6

1 1 2

2 2 5

















(iii) 

1 2 1

0 2 2

2 1 1

















 

Ans.: (i) 
1

6

4 3 1

2 3 1

6 3 3

1 2 2

1 3 0

0 2 1

−

−

−

















−

−

−














( )ii



−

− −

−

















































( )iii
1

4

0 1 2

4 1 2

4 3 2






Exercise 1.4
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2.  Find the inverse of the matrix 

S =

















0 1 1

1 0 0

1 1 0

 and 

A =

− −

−

















1

2

3 2 1

1 4 1

1 2 5

 and show that 

SAS  –1 is the diagonal matrix of diag. 

(3, 2, 1).

3.  If A =

−

−

−

















3 3 4

2 3 4

0 1 1

, show that A3 = A–1.

4.  If A =

















8 4 3

2 1 1

1 2 1

,  prove that 

A
− =

− −

− −

− −

















2
1

9

2 4 5

10 47 11

9 54 27

5.  If A =

−

−

















1 2 1

0 1 1

2 2 3

,  find A–1 if it 

exists. Hence, find the inverse of 

B =

−

−

















3 6 3

0 3 3

6 6 9

 

Ans.: A

B

−

−

=

− −

−

−

















=

− −

−

−








1

1

1

3

5 8 1

2 5 1

2 2 1

1

9

5 8 1

2 5 1

2 2 1

,





































6.   If A =

















1 1 1

1 2 3

1 4 9

 and 

B =

















2 5 3

3 1 2

1 2 1

, 

show that ( ) .AB B A
− − −

=

1 1 1

7.   Find the matrix A if 

2 1

3 2

3 2

5 3

2 4

3 1











−

−









 =

−

−









A

 

Ans.:
24 13

34 18− −





















8.   Find the inverse of A if 

1 0 0

2 1 0

2 1 1

1 2 9

0 1 6

0 0 1

1 0 0

0 1 0

0 0 1

−

−

















−

−

















=









A









 Ans.:

−

− −

−

































21 11 9

14 7 6

2 1 1

9.   Using elementary row transformati-

ons, find the inverses of the following 

matrices:

 (i) 

8 4 3

2 1 1

1 2 1

















 (ii) 

5 1 5

0 2 0

5 3 15

−

− −

















(iii) 

3 3 4

2 3 4

0 1 1

−

−

−

















 

(iv) 

1 1 1

2 2 3

1 4 9

−

−

−

















 (v) 

1 2 3

2 3 0

0 1 2
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(vi) 

2 4 3 2

3 6 5 2

2 5 2 3

4 5 14 14

−



















(vii) 

0 1 2 2

1 1 2 3

2 2 2 3

2 3 3 3



















(viii)  

− − −

−

− −

−



















1 3 3 1

1 1 1 0

2 5 2 3

1 1 0 1

(ix)  

2 6 2 3

5 13 4 7

1 4 1 2

0 1 0 1

− − −

− − −

−



















(x)   

2 0 0 4

2 6 0 16

1 0 3 5

2 0 0 10

−

−

−

−



















Ans.:

( ) ( )i ii
1

3

1 2 1

1 5 2

3 12 0

1

5

10 4 9

15 4 14

5 1 6

− −

−

−

−

− −

−

















































−

− −

−

−

−

(iii) i

1 1 0

2 3 4

2 3 3

1

17

6 5 1

21 8 5

10 3 4

( )v
























































− −

−

− −

( )v
1

4

6 1 9

4 2 6

2 1 1















( )vi

− − −

−

−

−
























23 29
64

5

18

5

10 12
26

5

7

5

1 2
6

5

2

5

2 2
3

5

1

5

























− −

− −

− −

− −

( )

( )

vii

viii

3 3 3 2

3 4 4 2

3 4 5 3

2 2 3 2

0 2 1 3

1 11 1 2

1 2 0 1

1 1 2 6

2 1 0 1

1 0 2 1

4 1 3 1

1 0 2 2

− −

−

−

−

− −

− −



























( )ix




















































( )x

5 0 0 2

1 1 0 2

0 0 2 1

1 0 0 1


























































10. Find the matrix A if

 

A
− =

− − − −
−

− −
−



















− −

1

1 3 3 1

1 1 1 0

2 5 2 3

1 1 0 1

0 2 1 3

1 1 1 2

1 2 0

Ans.:

11

1 1 2 6−
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1.9  RANK OF A MATRIX

The positive integer r is said to be the rank of a matrix A if it possesses the following 

properties:

 (i) There is at least one minor of order r which is non-zero.

 (ii) Every minor of order greater than r is zero.

  Rank of matrix A is denoted by r (A).

Theorem 1.6: The rank of a matrix remains unchanged by elementary transformations.

Theorem 1.7: The rank of the transpose of a matrix is same as that of the original matrix.

Theorem 1.8: The rank of the product of two matrices cannot exceed the rank of either 

matrix.

r (AB) ≤ r (A) or r (AB) ≤ r (B)

1.9.1  Rank of a Matrix by Determinant Method

 (1)  The rank of a matrix is less than or equal to r, if all (r + 1) rowed minors of the matrix 

are zero.

 (2)  The rank of a matrix is greater than or equal to r, if at least one minor of order r is not 

equal to zero.

 (3) The rank of a null matrix is zero.

 (4) The rank of a non-singular square matrix is always equal to its order.

e.g. consider the matrix

 

A

A

=

















= =

1 2 3

3 4 5

4 5 6

1 2 3

3 4 5

4 5 6

0det ( )

Therefore, the rank of A is less than 3. There is at least one minor of A of order 2, 

i.e. 
4 5

5 6
0≠ , Hence, the rank of A, i.e., ρ( )A = 2

Example 1: Find the ranks of the following matrices by determinant method:

  (i) 

2 3 4

4 3 1

1 2 4

















       (ii) 

1 2 3

2 3 4

3 5 7

















(iii) 

4 2 3

8 4 6

2 1
3

2
− − −

























  (iv) 

1 2 1 4

2 4 3 5

1 2 6 7

− −

− − −
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Solution:  (i)  Let A =

















2 3 4

4 3 1

1 2 4

 

det ( )

( ) ( ) ( )

A =

= − − − + −

= −

≠

2 3 4

4 3 1

1 2 4

2 12 2 3 16 1 4 8 3

5

0

A is a non-singular matrix of order 3.

Hence, ρ ( )A = 3

(ii) Let A

A

=

















=

= − − − +

1 2 3

2 3 4

3 5 7

1 2 3

2 3 4

3 5 7

1 21 20 2 14 12 3

det ( )

( ) ( ) (110 9

0

−

=

)

Therefore, the rank of A is less than 3. The minor of order 2 is 
1 2

2 3
1 0= − ≠ .

Hence,  ρ ( )A = 2

(iii) Let

 

A

A

=

− − −



















=

− − −

= − + −

4 2 3

8 4 6

2 1
3

2

4 2 3

8 4 6

2 1
3

2

4 6 6 2

det ( )

( ) (−− + + − +

=

12 12 3 8 8

0

) ( )
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Therefore, the rank of A is less than 3.

Consider all the minors of order 2, i.e.,

 
4 2

8 4
0

2 3

4 6
0

4 3

8 6
0

4 2

2 1
0= = =

− −

=, , ,

 

2 3

1
3

2

0

4 3

2
3

2

0

− −

=

− −

=,

All the minors of order 2 are zero. Therefore, the rank of A is less than 2.

Hence, ρ ( )A = 1

(iv) Let  A =

− −

− − −

















1 2 1 4

2 4 3 5

1 2 6 7

Consider all the minors of order 3, i.e.

 

1 2 1

2 4 3

1 2 6

0

2 1 4

4 3 5

2 6 7

0

1 2 4

2 4 5

1 2 7

0

1 1 4

2 3 5

1 6

−

− −

=

− −

− −

=

−

− − −

=

− −

−

, , ,

−−

= −

7

120

One minor of rank 3 is not equal to zero.

Hence,  ρ ( )A = 3

Example 2: For what value of x, will the matrix A

x

x

x

=

−

−

− − −

















3 2 2

1 4 0

2 4 1

 be 

of rank

(i) equal to 3    (ii) less than 3

Solution:     det( )

( )[( )( ) ] ( ) (

A

x

x

x

x x x x

=

−

−

− − −

= − − − − − − + − +

3 2 2

1 4 0

2 4 1

3 4 1 0 2 1 2 4 8−−

= − − − + −

= − − +

= − − −

2

3 4 1 2 3

3 5 6

3 3 2

2

x

x x x x

x x x

x x x

)

( )( )( ) ( )

( )( )

( )( )( ))

( ) ( )= − − −x x3 22
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(i) ρ ( )

( ) ( )

,

A

x x

x

= ≠

− − ≠

≠

3

3 2 0

2 3

2

if det ( ) 0A

(ii) ρ( )

( ) ( )

,

A

x x

x

< =

− − =

=

3 0

3 2 0

2 3

2

if det ( )A

Example 3: Find the value of p for which the following matrix A will be of

(i) rank one  (ii) rank two  (iii) rank three

 A

p p

p p

p p

=

















3

3

3

Solution: det ( )

( ) ( ) ( )

( )(

A

p p

p p

p p

p p p p p p p

p p p p

=

= − − − + −

= − + − −

3

3

3

3 9 3 3

3 9 3

2 2 2

2 22

2

2

3 2 3 9

3 3 2 3

3 2 3

)

( )( )

( )( )( )

( ) ( )

= − − −

= − − +

= − +

p p p

p p p

p p

(i) If p = 3

A =

















3 3 3

3 3 3

3 3 3

det(A) = 0 and all the minors of order 2 are zero.

Hence, ρ ( )A = 1

Rank of A will be 1 if p = 3

(ii) Rank of A will be 2 if det (A) = 0 but p ≠ 3

 

( ) ( )p p p

p

p

− + = ≠

+ =

= −

3 2 3 0 3

2 3 0

3

2

2 but
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(iii) Rank of A will be 3 if det (A) ≠ 0

 

( ) ( )p p

p p

− + ≠

≠ ≠ −

3 2 3 0

3
3

2

2

Example 4: Determine the value of b such that the rank of A is 3 where

 A
b

b

=

−

−



















1 1 1 0

4 4 3 1

2 2 2

9 9 3

Solution: A
b

b

=

−

−



















1 1 1 0

4 4 3 1

2 2 2

9 9 3

Rank of A will be 3 if det (A) = 0 and at least one minor of A of order 3 must be  

 non-zero.

By elementary transformation, C C
2 1
−  and C C

3 1
+ .

 ~

1 0 0 0

4 0 1 1

2 2 2

9 0 9 3

b b b

b

− +

+



















 

det ( )

( ) (

A
b b b

b

b b

b

b

=
− +

+

= − +

+

= − − + −

1 0 0 0

4 0 1 1

2 2 2

9 0 9 3

0 1 1

2 2 2

0 9 3

0 3 2 2 bb b

b b

)( )

( )( )

+

= − +

9

2 6

Now r (A) = 3 < 4 when det(A) = 0

      ( )( )

,

2 6 0

2 6

− + =

= −

b b

b

For b = 2, one of the minor of order 3,

 

4 3 1

2 2 2

9 2 3

42 0

−

= − ≠

Hence, r (A) = 3.
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1.9.2  Rank of a Matrix by Row Echelon Form

The rank of a matrix in row echelon form is equal to the number of non-zero rows of 

the matrix, e.g. 

 A =

−















1 3 1

0 1 4

0 0 0

The matrix A is in row echelon form and the number of non-zero rows is two. 

Hence, the rank of the matrix is two.

i.e. ρ ( )A = 2

Example 1: Find the ranks of the following matrices by reducing to row echelon 

form:

(i) 

5 3 14 4

0 1 2 1

1 1 2 0−

















    (ii) 

1 2 3 1

2 1 3 1

1 0 1 1

0 1 1 1

−

− − − −

−



















    (iii) 

3 2 0 1

0 2 2 1

1 2 3 2

0 1 2 1

− −

− −



















.

Solution: (i) Let    A =

−

















5 3 14 4

0 1 2 1

1 1 2 0

 

R
13

1 1 2 0

0 1 2 1

5 3 14 4

~

−















 

R R
3 1

5

1 1 2 0

0 1 2 1

0 8 4 4

−

−















~

 

R R
3 2

8

1 1 2 0

0 1 2 1

0 0 12 4

−

−

− −

















~
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−





−

















1

12

1 1 2 0

0 1 2 1

0 0 1
1

3

3
R

~

The equivalent matrix is in row echelon form.

Number of non-zero rows = 3

       r (A) = 3

(ii) Let   A =

−

− − − −

−



















1 2 3 1

2 1 3 1

1 0 1 1

0 1 1 1

 

R R R R
2 1 3 1

2

1 2 3 1

0 3 3 3

0 2 2 2

0 1 1 1

+ −

−

−

− −

−



















,

~

 

R
24

1 2 3 1

0 1 1 1

0 2 2 2

0 3 3 3

~

−

−

− −

−



















 

R R R R
3 2 4 2

2 3

1 2 3 1

0 1 1 1

0 0 0 0

0 0 0 0

+ −

−

−



















,

~

The equivalent matrix is in row echelon form.

Number of non-zero rows = 2

      ρ ( )A = 2

(iii) Let A =

− −

− −



















3 2 0 1

0 2 2 1

1 2 3 2

0 1 2 1
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R
13

1 2 3 2

0 2 2 1

3 2 0 1

0 1 2 1

~

− −

− −



















 

R R R
3 1 24

3

1 2 3 2

0 1 2 1

0 4 9 7

0 2 2 1

−

− −

−



















,

~

 

R R R R
3 2 4 2

4 2

1 2 3 2

0 1 2 1

0 0 1 11

0 0 2 1

− −

− −

−

− −



















,

~

 

R R
4 3

2

1 2 3 2

0 1 2 1

0 0 1 11

0 0 0 23

+

− −

−

−



















~

 

−





− −

−



















1

23

1 2 3 2

0 1 2 1

0 0 1 11

0 0 0 1

4
R

~

The equivalent matrix is in row echelon form.

Number of non-zero rows = 4

     r(A) = 4

1.9.3  Rank of Matrix by Reduction to Normal Form

Theorem 1.9: Any matrix of order m × n can be reduced to the form 
I
r

0

0 0









 by 

elementary transformation where r is the rank of the matrix. This form is known as 

normal form or first canonical form of a matrix.



1.9   Rank of a Matrix        1.87

Corollary:

 (1)  The rank of a matrix A of order m × n is r if and only if it can be reduced to the 

normal form 
I
r

0

0 0









  by elementary transformations.

 (2)  If A be an m × n matrix of rank r, then there exists non-singular matrices P and 

Q such that

 PAQ
I
r=











0

0 0

    Note: P and Q are not unique.

Example 1: Find the ranks of the following matrices by reducing to normal form:

(i) 

1 2 1 3

3 4 0 1

1 0 2 7

−

−

− −

















  (ii) 

1 1 2 3

4 1 0 2

0 3 0 4

0 1 0 2

− −

















  (iii) 

1 2 3 1

1 1 3 1

1 0 1 1

0 1 1 1

−

− − − −

−



















.

Solution:

(i) Let    A =

−

−

− −

















1 2 1 3

3 4 0 1

1 0 2 7

 

R R R R
2 1 3 1

3

1 2 1 3

0 2 3 10

0 2 3 10

− +

−

− −

−

















,

~

 

R R
3 2

1 2 1 3

0 2 3 10

0 0 0 0

+

−

− −

















~

 

C C C C C C
2 1 3 1 4 1

2 3

1 0 0 0

0 2 3 10

0 0 0 0

− + −

− −

















, ,

~
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−











−





















1

2

1

3

1

10

1 0 0 0

0 1 1 1

0 0 0 0

2 3 4
C C C, ,

~

 

C C C C
3 2 4 2

1 0 0 0

0 1 0 0

0 0 0 0

− −

















,

~

 ~
I
2

0

0 0











 ρ ( )A = 2

(ii) Let    A =

− −

















1 1 2 3

4 1 0 2

0 3 0 4

0 1 0 2

 

R R
2 1

4

1 1 2 3

0 5 8 14

0 3 0 4

0 1 0 2

−

− −

−



















~

 

C C C C C C
2 1 3 1 4 1

2 3

1 0 0 0

0 5 8 14

0 3 0 4

0 1 0 2

+ − +

−



















, ,

~

 

R
24

1 0 0 0

0 1 0 2

0 3 0 4

0 5 8 14

~

−
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C C
4 2

2

1 0 0 0

0 1 0 0

0 3 0 2

0 5 8 4

−

−

−



















~

 

R R R R
3 2 4 2

3 5

1 0 0 0

0 1 0 0

0 0 0 2

0 0 8 4

− −

−

−



















,

~

 

C
34

1 0 0 0

0 1 0 0

0 0 2 0

0 0 4 8

~
−

−



















 

−





−





−



















1

2

1

8

1 0 0 0

0 1 0 0

0 0 1 0

0 0 2 1

3 4
C C,

~

 

R R
4 3

2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

+



















~

 ~ [ ]I
4

 ρ( )A = 4

(iii) Let A =

−

− − − −

−



















1 2 3 1

1 1 3 1

1 0 1 1

0 1 1 1
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R R R R
2 1 3 1

1 2 3 1

0 1 0 2

0 2 2 2

0 1 1 1

+ −

−

−

− −

−



















,

~

 

C C C C C C
2 1 3 1 4 1

2 3

1 0 0 0

0 1 0 2

0 2 2 2

0 1 1 1

− − +

−

− −

−



















, ,

~

 

R R R R
3 2 4 2

2

1 0 0 0

0 1 0 2

0 0 2 2

0 0 1 1

+ −

−

− −



















,

~

 

C C
4 2

2

1 0 0 0

0 1 0 0

0 0 2 2

0 0 1 1

+

− −



















~

 

−























1

2

1 0 0 0

0 1 0 0

0 0 1 1

0 0 1 1

3
R

~

 

R R
4 3

1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 0

−



















~
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C C
4 3

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

−



















~

 ~ [ ]I
3

0

 ρ( )A = 3

Example 2: Find non-singular matrices P and Q such that PAQ is in the normal 

form and hence, find r(A) for the following matrices:

(i) 

1 1 1

1 1 1

3 1 1

− −

















      (ii) 

1 0 2

2 3 4

3 3 6

−

−

−

















      (iii) 

2 1 1 3

1 0 1 2

3 1 2 5

















Solution: (i) Let A = − −

















1 1 1

1 1 1

3 1 1

 

A I AI

A

=

− −

















=

















3 3

1 1 1

1 1 1

3 1 1

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

















 

R R R R

A

2 1 3 1
3

1 1 1

0 2 2

0 2 2

1 0 0

1 1 0

3 0 1

− −

− −

− −

















= −

−

















,

11 0 0

0 1 0

0 0 1

















 −





−





1

2

1

2

1 0 0

2 3
R R,

 
















= −

−

2 2

1 1 1

0 1 1

0 1 1

1 0 0

1

2

1

2
0

3

2
0

1

2





































A

1 0 0

0 1 0

0 0 1
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C C

A

3 2

1 1 0

0 1 0

0 1 0

1 0 0

1

2

1

2
0

3

2
0

1

2

1 0 0

−

















= −

−





















00 1 1

0 0 1

−

















 

R R R R
1 2 3 2

1 0 0

0 1 0

0 0 0

1

2

1

2
0

1

2

1

2
0

1
1

2

1

2

− −

















= −

−















,











−

















A

1 0 0

0 1 1

0 0 1

 
I

PAQ
2

0

0 0









 =

 P Q= −

−

























= −















1

2

1

2
0

1

2

1

2
0

1
1

2

1

2

1 0 0

0 1 1

0 0 1

, 


 ρ ( )A = 2

(ii) Let   A =

−

−

−

















1 0 2

2 3 4

3 3 6

 

A I AI

A

=

−

−

−

















=

















3 3

1 0 2

2 3 4

3 3 6

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 11

















 −





1

2
3
C

 

1 0 1

2 3 2

3 3 3

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0
1

2

















=

















−












A
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 C C
3 1
−

 

1 0 0

2 3 0

3 3 0

1 0 0

0 1 0

0 0 1

1 0 1

0 1 0

0 0
1

2

















=

















−

−










A










 R R R R
2 1 3 1

2 3− −,

 

1 0 0

0 3 0

0 3 0

1 0 0

2 1 0

3 0 1

1 0 1

0 1 0

0 0
1

2

















= −

−

















−

−






A













 
1

3

1

3
2 3













R R,

 

1 0 0

0 1 0

0 1 0

1 0 0

2

3

1

3
0

1 0
1

3

1 0 1

0 1 0

0 0

















= −

−





















−

A

−−



















1

2

 

R R

A

3 2

1 0 0

0 1 0

0 0 0

1 0 0

2

3

1

3
0

1

3

1

3

1

3

1

−

















= −

− −





















00 1

0 1 0

0 0
1

2

−

−



















 
I

PAQ
2

0

0 0









 =

 
P Q= −

−





















=

−

−



















1 0 0

2

3

1

3
0

1 0
1

3

1 0 1

0 1 0

0 0
1

2

,

 ρ ( )A = 2
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(iii) Let   A =

















2 1 1 3

1 0 1 2

3 1 2 5

 

A I AI

A

=

















=

















3 4

2 1 1 3

1 0 1 2

3 1 2 5

1 0 0

0 1 0

0 0 1

1 0 0 0

0 1 0 0

00 0 1 0

0 0 0 1



















 

R

A

12

1 0 1 2

2 1 1 3

3 1 2 5

0 1 0

1 0 0

0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

















=

















00 0 0 1



















 

R R R R
2 1 3 1

2 3

1 0 1 2

0 1 1 1

0 1 1 1

0 1 0

1 2 0

0 3 1

− −

− −

− −

















= −

−













,























A

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 

C C C C

A

3 2 4 2

1 0 1 2

0 1 0 0

0 1 0 0

0 1 0

1 2 0

0 0 3

1 0

+ +

















= −

−

















,

00 0

0 1 1 1

0 0 1 0

0 0 0 1



















 

C C C C

A

3 1 4 1
2

1 0 0 0

0 1 0 0

0 1 0 0

0 1 0

1 2 0

0 0 3

1

− −

















= −

−

















,

00 1 2

0 1 1 1

0 0 1 0

0 0 0 1

− −

















 

R R

A

3 2

1 0 0 0

0 1 0 0

0 0 0 0

0 1 0

1 2 0

1 2 3

1 0 1 2

0

−

















= −

− −

















− −

11 1 1

0 0 1 0

0 0 0 1
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I

PAQ
2

0

0 0









 =

 P Q= −

− −

















=

− −

















0 1 0

1 2 0

1 2 3

1 0 1 2

0 1 1 1

0 0 1 0

0 0 0 1

,

 ρ ( )A = 2

1. Find the ranks of A, B, AB and verify 

that rank of the product of two matrices 

cannot exceed the rank of either matrix.

 

A B=

















=

















2 4 1

3 6 2

4 8 3

1 2 3

3 1 2

4 3 5

,

2. Find the possible values of p, for 

which the following matrix A will have 

(i) rank 1 (ii) rank 2 (iii) rank 3

A

p p

p p

p p

=

















2

2

2

 
Ans.: ( ) ( )

( ) ,

i ii

iii

p p

p p

= = −

≠ − ≠











2 2

1 2

3. Find the rank of

A

x x x

x=

− +

−

















1 1

1 0

0 1 1

, where  is real.x

 [Ans.: 3]

4.  If A x

x

=

− −

















1 0 1

0 1

1 1

,  prove that rank 

of A is 3, where x is a real number.

5. Find the value of l for which rank of 

the matrix A = −

















3 1 2

1 4 5

7 2 λ

 

(i) is less than 3 (ii) equal to 3

6. Find the ranks of the following matrices 

by reducing to row echelon form:

 (i) 

1 1 1 1

1 1 2 1

3 1 0 1

−

− −

















 (ii) 

4 2 3

8 4 6

2 1 1 5− − −















.

 (iii) 

1 2 2 3

2 5 4 6

1 3 2 2

2 4 1 6

−

−

− − −

−



















 (iv) 

0 1 3 1

0 0 1 1

3 1 0 2

1 1 2 0

− −

















 (v) 

3 2 0 1 7

0 2 2 1 5

1 2 3 2 1

0 1 2 1 6

− − −

−

− − −



















Exercise 1.5
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(vi) 

1 2 1 4

2 4 3 5

1 2 6 7

−

− −

















Ans.: ( ) ( ) ( )

( ) ( ) ( )

i ii iii

iv v vi

2 1 4

2 4 2











7. Find the ranks of the following matrices 

by reducing to normal form:

 (i) 

1 2 3 1

2 1 3 1

1 0 1 1

0 1 1 1

−

















 (ii) 

1 2 3 0

2 4 3 2

3 2 1 3

6 8 7 5



















 (iii) 

0 1 3 1

1 0 1 1

3 1 0 2

1 1 2 0

− −

−



















 (iv) 

1 0 2 1

0 1 2 1

1 1 4 0

2 2 8 0

−

−

−



















 (v) 

3 4 1 1

2 4 3 6

1 2 6 4

1 1 2 2

− −

− −



















 (vi) 

2 3 1 4

5 2 3 0

9 8 0 8

















Ans.: ( ) ( ) ( )

( ) ( ) ( )

i ii iii

iv v vi

2 4 3

3 4 3











8. Find non-singular matrices P and Q 

such that PAQ is in normal form. Also 

find their ranks.

 (i) 

2 1 3 6

3 3 1 2

1 1 1 2

− −

−

















 (ii) 

1 2 3 2

2 2 1 3

3 0 4 1

−

−

















 (iii) 

1 1 1

1 1 1

3 1 1

− −















 (iv) 

1 2 3

2 1 0

3 1 2

−

















 (v) 

1 1 2 1

4 2 1 2

2 2 2 0

− −

−

−

















 (vi) 

1 2 1 0

2 4 3 0

1 0 2 8

−

−

















Ans.:

( ) ,i P

Q

= −

−



















=

−

−

−

0 0 1

1 0 2

3

14

1

28

9

28

1 1 4 0

0 1 5 0

0 0 1 2

0 00 0 1

3



















=



































, rank
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( ) ,ii P

Q

= −

− − −

















=

− −

− −

1 0 0

2 1 0

1 1 1

1
1

3

4

3

1

3

0
1

6

5

6

7

6

0 0 1 0

0 0 0 1

























=

= −

− −













,

( )

rank

iii

2

1 0 0

1

2

1

2
0

1

4

1

2

1

4

P









= −

















=

= −

−





,

,

( )

Q

P

1 1 0

0 1 1

0 0 1

2

1 0 0

2

5

1

5
0

1 1 1

rank

iv














=

− −

−





















=













,

,Q

1 2
3

5

0 1
6

5

0 0 1

3rank












































































( ) ,v P = − −

− −





















−

−

1 0 0

2

3

1

6

1

2

1

3

1

3

1

2

1 1 0
1

2

0 1 1
3

2

0 0 0 1

0 0 1 00

3

1 0 0

1 0 1

7 1 5

1

























=

= −

−

















=

,

( ) ,

rank

vi P

Q

−− −

−





























1
4

18

1

45

0 0
1

18

1

18

0 1
2

18

4

45

0 0 0
1

40

, rannk =




























































3















1.10   APPLICATIONS OF SYSTEMS OF LINEAR 
EQUATIONS

Linear systems are used to model a wide variety of problems. Constructing models for 

mechanical systems, electrical networks, Indian economy, chemical equations, etc., 

are some of the applications of linear systems.

Example 1: A 500 N ball is supported by three cables as shown in Fig 1.1. Find 

the tension in each cable.
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Fig. 1.1

TA

TCTB

A(3, 0, 4) m
C (4, 0, −3) m

B (−3, 0, −4) m

D (0, −5, 0) m

W = 500 N

Solution: Writing forces in standard vector form,

T

T

A

B

=
+ +





= + +

=
− + −

T
i j k

i j k

T
i j

A

B

3 5 4

5 2

3

5 2

5

5 2

4

5 2

3 5 4

ˆ ˆ ˆ
ˆ ˆ ˆ

ˆ ˆ k̂k
i j k

T
i j k

C

5 2

3

5 2

5

5 2

4

5 2

4 5 3

5 2

4

5 2







=

−
+ −

=
+ −





=

ˆ ˆ ˆ

ˆ ˆ ˆ
ˆTC ii j k+ −

5

5 2

3

5 2

ˆ ˆ

Since

Since

∑ = − + =

− + =

∑ =

 F T T T

T T T

F

x A B C

A B C

y

0
3

5 2

3

5 2

4

5 2
0

3 3 4 0 1

0

,

( )�

,,

( )

,

5

5 2

5

5 2

5

5 2
500

500 2 2

0
4

5 2

T T T

T T T

F T

A B C

A B C

z A

+ + =

+ + =

∑ = −

�

Since  
44

5 2

3

5 2
0

4 4 3 0 3

T T

T T T

B C

A B C

− =

− − = �( )

The matrix form of the system of linear equations is

3 3 4

1 1 1

4 4 3

0

500 2

0

−

− −




























=

















T

T

T

A

B

C

The augmeented matrix of the system is

A B:[ ] =

−

− −
















3 3 4 0

1 1 1 500 2

4 4 3 0 
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Reducing the augmented matrix to row echelon form,

R12

1 1 1 5

∼
000 2

3 3 4 0

4 4 3 0

3 4

1 1 1 500 2

0 6 1 1500 2

0

2 1 3 1

−
− −

















− −

∼ − −

−

R R R R,

88 7 2000 2− −

















−

∼ −

− − −



















+

∼

1

6

1 1 1 500 2

0 1
1

6
250 2

0 8 7 2000 2

8

1 1 1 500

2

3 2

R

R R

22

0 1
1

6
250 2

0 0
25

3
0

3

25

1 1 1 500 2

0 1
1

6
250 2

0

3

−

−























−

∼ −

R

00 1 0



















The correspondingsystem of equations is

T T T

T T

A B C

B C

+ + =

− =

500 2

1

6
2500 2

0

353 55

353 55

0

T

T N

T N

T

C

A

B

C

=

=

=

=

Solving these equations,

.

.
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Example 2: Find the currents I
1
, I

2
 and I

3
 in the circuit shown in Fig 1.2.

Fig. 1.2

6 Ω 2 Ω

3 Ω 10 Ω

20 V

10 V

I1 I2 I3

1 Ω

Solution: Applying Kirchhoff’s voltage law to Mesh 1,

10 − 6I
1
 − 1(I

1
 − I

2
) = 0

                   7I
1
 − I

2
 = 10                                                                    ...(1)

Applying Kirchoff’s voltage law to Mesh 2,

−1(I
2
 – I

1
) − 2I

2
 − 3(I

2
 – I

3
) = 0

                       I
1
 − 6I

2
 + 3I

3
 = 0                                                         ...(2)

Applying Kirchoff’s voltage law to Mesh 3,

−3(I
3
 – I

2
) – 10I

3
 − 20 = 0

                   3I
2
 − 13I

3
 = 20                                                                ...(3)

The matrix form of the system of linear equations is 

7 1 0

1 6 3

0 3 13

10

0

20

1

2

3

−
−

−




























=














I

I

I

The augmentted matrix of the system is

Red

A B:[ ] =
−
−

−















7 1 0 10

1 6 3 0

0 3 13 20

uucing the augmented matrix to row echelon form,

R12

1 6 3 0

7∼
−
−−

−















1 0 10

0 3 13 20

R R

R

2 1

2

7

1 6 3 0

0 41 21 10

0 3 13 20

1

41

1 6 3 0

0 1
21

41

10

41

0

−

∼
−

−
−















∼

−

−

33 13 20−
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R R3 23

1 6 3 0

0 1
21

41

10

41

0 0
470

41

790

41

41

470

−

∼

−

−

−























− RR3

1 6 3 0

0 1
21

41

10

41

0 0 1
790

470

∼

−

−

−























The corresponding system of equations is

 I
1
 − 6I

2
 + 3I

3
 = 0

 I
2
 − 

21

41
I

3
 = 

10

41

 I
3
 = −

790

470

Solving these equations,

 I
1
 = 1.34 A

 I
2
 = −0.62 A

 I
3
 = −1.68 A

Exercise 1.6

1. Figure 1.3 shows a tripod carrying a load of 500 kN. Supports A, B and C are 

 co-planar in the x-z plane. Find force in each member in the tripod. The joints are 

ball-and-socket type.

Fig. 1.3

A

(3, 0, 4) m

C (0, 0, −6) m

B

(−7, 0, −2) m
FDA

FDB

FDC

1000 N

 [Ans. :F N

F N

F N

DA

DC

DB

=

=

=

















585 9

322 4

282 3

.

.

.
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2. Find currents I
1
, I

2
 and I

3
 in the circuit shown in Fig 1.4.

Fig. 1.4

8 V

12 V

10 V

I2I1

I3

2 Ω

1 Ω 4 Ω

3 Ω

5 Ω

 Ans. : I A

I A

I A

1

2

3

6 01

3 27

3 38

=

=

=

















.

.

.



2.1  INTRODUCTION

Vector space is a system consisting of a set of generalized vectors and a field of 

 scalars, having the same rules for vector addition and scalar multiplication as physi-

cal vectors and scalars. The operations of vector addition and scalar multiplication 

have to satisfy certain axioms. An example of a vector space is the Euclidean vector 

space where every element is represented by a list of n real numbers, scalars are real 

numbers, addition is component wise and scalar multiplication is multiplication on 

each term separately. Vector spaces are characterized by their dimension which gives 

the number of independent directions in the space. They are useful in mathematics, 

 science and engineering.

2.2  EUCLIDEAN VECTOR SPACE

Euclidean vector space or simply n-space is the space of all n-tuples of real numbers, 

(u1, u2, … , u
n
). It is commonly denoted as Rn.

2.2.1  Vectors in Rn

An ordered set of n real numbers (u1, u2, u3, … , u
n
) represent a vector u in the vector 

space Rn. The real number u
k
 is called the kth component or coordinate of u. This 

vector u represents a point in n-dimensional space Rn.

When n = 2 or 3, the vector u represents a point in two-dimensional or three-

dimensional space respectively.

2.2.2  Vector Addition and Multiplication by Scalars

If u = (u1, u2, … , u
n
) and v = (v1, v2, … , v

n
) are two vectors in Rn then vector addition 

of u and v is defined by

 u v+ = + + +( , , , )u v u v u v
n n1 1 2 2 …

and if k is any scalar, the scalar multiple is defined by,

 k ku ku ku
n

u = ( , , , )
1 2

…

Chapter2
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Properties of Vectors in Rn

If u, v and w are vectors in Rn and k1, k2 are scalars then

 1. u + v = v + u

 2. u + (v + w) = (u + v) + w

 3. u + 0 = 0 + u = u

 4. u + (–u) = 0

 5. k1(k2u) = (k1k2)u

 6. k1(u + v) = k1u + k1v

 7. (k1 + k2)u = k1u + k2u

 8. 1u = u

2.2.3 Inner (dot) Product in Rn

Inner (dot) product of two vectors u = (u1, u2, … , u
n
) and v = (v1, v2, … , v

n
) in Rn is 

defined by

 u v⋅ + + + += u
1 1 2 2
v u v u v

n n
�

Properties of Inner Product in Rn

If u, v and w are vectors in Rn and k is any scalar then

 1. u ⋅ v = v ⋅ u

 2. (u + v) ⋅ w = u ⋅ w + v ⋅ w

 3. (k u) ⋅ v = k(u ⋅ v)

 4. v ⋅ v ≥ 0. Also v ⋅ v = 0 if and only if v = 0

2.2.4 Norm or Length in Rn

The norm or length of a vector u = (u1, u2, … , un) in Rn is denoted by u  and is 

defined by

 
u u u= ⋅

= + + +

( )
1

2

1

2

2

2 2
u u u

n
�

Properties of Length in Rn

If u and v are vectors in Rn and k is any scalar then

 1. u ≥ 0

 2. u = 0  if and only if u = 0

 3. k ku u=

 4. u v u v+ ≤ + ,  Triangle inequality.
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2.2.5  Distance in Rn

The distance between the points u = (u1, u2, … , u
n
) and v = (v1, v2, … , v

n
) in Rn is 

denoted by d(u, v) and is defined by

 
d

u v u v u v
n n

( , )

( ) ( ) ( )

u v u v= −

= − + − + + −1 1

2

2 2

2 2
�

Properties of Distance in Rn

If u, v and w are vectors in Rn then

 1. d(u, v) ≥ 0

 2. d(u, v) = 0 if and only if u = v

 3. d(u, v) = d(v, u)

 4. d(u, v) ≤ d(u, w) + d(w, v), Triangle inequality.

2.2.6 Angle between Vectors in Rn

If u and v are non-zero vectors in Rn and if q is the angle between them then

  cosθ =
⋅u v

u v

Theorem 2.1: If u and v are vectors in Rn then

 u v u v u v⋅ = + − −
1

4

1

4

2 2

Proof:
 

u v u v u v

u u u v v u v v

+ = + ⋅ +

= ⋅ + ⋅ + ⋅ + ⋅

2
( ) ( )

 
= u u v v

2 2

2+ ⋅ +

 
...(2.1)

 
u v u v u v

u u u v v u v v

− = − ⋅ −

= ⋅ − ⋅ − ⋅ + ⋅

2
( ) ( )

 

= u u v v

2 2

2− ⋅ +

 

...(2.2)

Subtracting Eq. (2.2) from (2.1),

 u + v u v u v
2 2

4− − = ⋅

Hence, u v u + v u v⋅ = − −

1

4

1

4

2 2
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2.2.7  Orthogonality in Rn

Two vectors u and v in Rn are orthogonal if u ⋅ v = 0

2.2.8  Pythagorean Theorem in Rn

If u and v are orthogonal (perpendicular) vectors in Rn then

 u v u v+ = +
2 2 2

Proof: Since u and v are orthogonal,

u v⋅ = 0  ...(2.3)

          

u v u v u v

u u u v v u v v

= u v

+ = + ⋅ +

= ⋅ + ⋅ + ⋅ + ⋅

+

2

2 2

( ) ( )

[ ]using Eq. (2.3)

2.2.9 Cauchy–Schwarz Inequality in Rn

If u and v are vectors in Rn then

 u v u v⋅ ≤

Example 1: Normalize v = −





1

2

2

3

1

4
, ,  and generate a unit vector.

Solution:

 

v = 





+ 





+ −





= + +

=

1

2

2

3

1

4

1

4

4

9

1

16

109

12

2 2 2

Dividing each component of v by v  to obtain normalized vector of v,

v̂ = = −






v

v

6

109

8

109

3

109
, ,

The normalized vector v̂ is a unit vector since || v̂ || = 1

Example 2: Find the vector x that satisfies 2x – 6v = w + x

where u = (–3, –1, 1, 0), v = (2, 0, 5, 3), w = (–2, 4, 1, 7)

Solution:

 

2 6 2 0 5 3 2 4 1 7

2 4 1 7 12 0 30 18

10 4

x x

x

− = − +

= − +

=

( , , , ) ( , , , )

( , , , ) ( , , , )

( , , 331 25, )
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Example 3:  Let u = (4, 1, 2, 3), v = (0, 3, 8, –2) and w = (3, 1, 2, 2). Evaluate 

(i)  u v+    (ii) 3 5u v w− +    (iii) 
1

w

w    (iv) u v+

Solution:  (i)
 

u v+ = + + + + + + +

= +

16 1 4 9 0 9 64 4

30 77

  

 (ii)

 

3 5 3 4 1 2 3 5 0 3 8 2 3 1 2 2

12 0 3 3 15 1 6

u v w− + = − − +

= − + − + −

( , , , ) ( , , , ) ( , , , )

( , , 440 2 9 10 2

15 11 32 21

+ + +

= − −

, )

( , , , )

 
3 5 15 11 32 21

1811

2 2 2 2
u v w− + = + − + − +

=

( ) ( ) ( ) ( )

 
(iii)

 

w

w
w

1

w
w

= + + + =

=

= + + + = =

9 1 4 4 18

1 1

18
3 1 2 2

1

18
9 1 4 4 1 1

( , , , )

( )

This concludes that if w is a non-zero vector, then

 
1 1

1
w

w

w

w= ⋅ =

i.e. 
1

w

w  has Euclidean norm 1.

Example 4: Find the Euclidean inner product of u = (3, 1, 4, –5) and 

v = (1, 0, –2, –3).

Solution:

 

u v⋅ = − ⋅ − −

= + + − + − −

=

( , , , ) ( , , , )

( )( ) ( )( ) ( )( ) ( )( )

3 1 4 5 1 0 2 3

3 1 1 0 4 2 5 3

33 8 15

10

− +

=
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Example 5:  Find two vectors in R2 with Euclidean norm 1 whose Euclidean inner 

product with (3, –1) is zero.

Solution:  Let u = (u1, u2) be a vector in R
2 such that

  (3, –1) ⋅ (u1, u2) = 0

 
3 0

1 2
u u− =

 
...(1)

and u = 1

 

u u

u u

u u

1

2

2

2

1

2

2

2

1

2

1

2

1

1

9 1

+ =

+ =

+ =

  

[using equation (1)]

 

u

u

1

2

1

10

3

10

1

10

3

10

= ±

= ±

= ± ±






u ,

Example 6: Let R3 have the Euclidean inner product. For which values of k are 

u and v orthogonal?

(i)   u = (k, k, 1), v = (k, 5, 6)

(ii)  u = (2, 1, 3), v = (1, 7, k)

(iii) u = (1, k, –3), v = (2, –5, 4)

Solution: If u and v are orthogonal then   u ⋅ v = 0

(i)

 

u v⋅ =

⋅ =

+ + =

0

1 5 6 0

5 6 02

( , , ) ( , , )k k k

k k

 

( )( )

,

k k

k

+ + =

= − −

2 3 0

2 3

(ii)

 

u v⋅ =

⋅ =

+ + =

= −

= −

0

2 1 3 1 7 0

2 7 3 0

3 9

3

( , , ) ( , , )k

k

k

k
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(iii)

 

u v⋅ =

− ⋅ − =

− − =

= −

= −

0

1 3 2 5 4 0

2 5 12 0

5 10

2

( , , ) ( , , )k

k

k

k

Example 7: Find all vectors in R3 of Euclidean norm 1 that are orthogonal to the 

vectors u = (1, 1, 1) and v = (1, 1, 0)

Solution: Let w = (w1, w2, w3) be a vector in R3 such that

u w v w⋅ = ⋅ =

⋅ = ⋅ =

+ +

0 0

1 1 1 0 1 1 0 01 2 3 1 2 3

1 2

,

( , , ) ( , , ) , ( , , ) ( , , )w w w w w w

w w ww w w3 1 20 1 0 2= + =...( ), ...( ),

and w = 1

 w w w
1

2

2

2

3

2
1+ + =

 w w w
1

2

2

2

3

2
1+ + =  ...(3)

Solving equations (1) and (2),

 w
3

0=

Substituting w2 = –w1 and w3 = 0 in equation (3),

 

w w

w

w

1

2

1

2

1

1

1

1

2

1

2

1

2

+ =

= ±

= −,

 

w
2

1

2

1

2

1

2

1

2
0

1

2

1

2
0

= −

= −





−





,

, , , ,w and

Example 8: Show that the zero vector is the only vector orthogonal to every 

vector in Rn.

Solution: Let u is orthogonal to every vector in Rn. Then u is orthogonal to itself.

 u u. = 0
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n n1

2

2

2

3

2 2

1 2
0+ + + + = =� …where u ( , , , )

 

u i n

u i n

i

i

2
0 1 2

0 1 2

= =

= =

, , , ,

, , , ,

…

…

 

u = ( , , , )0 0 0…

Hence, zero vector is the only vector orthogonal to every vector in Rn.

Example 9: Determine k such that u = 39  where u = (1, k, –2, 5)

Solution:
 

u

u

=

=

39

39
2

 

1 2 5 39

30 39

9

3

2 2 2 2

2

2

+ + − + =

+ =

=

= ±

k

k

k

k

( ) ( )

Example 10: Find Euclidean distance between u = (3, –5, 4) and v = (6, 2, –1).

Solution:

 

d( , )

( ) ( ) ( )

.

u v u v= −

= − + − − + +

= + +

=

3 6 5 2 4 1

9 49 25

83

2 2 2

Example 11: If u and v are orthogonal unit vectors, what is the distance 

between u and v?

Solution: Since u and v are orthogonal unit vectors, u ⋅ v = 0, u = 1  and v = 1

 

d( , )

( ) ( )

u v u v

u v u v u v

u u u v v u v v

u u v v

= −

− = − ⋅ −

= ⋅ − ⋅ − ⋅ + ⋅

= − ⋅ +

= − +

2

2 2
2

1 0 11

2=

Hence, d ( , )u v = 2
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Example 12:  Let R2  have  the Euclidean  inner  product.  Find  the  cosine of  the 

angle q  between the vectors u = (4, 3, 1, –2) and v = (–2, 1, 2, 3).

Solution:     u v u v⋅ = cosθ

 

cos

( , , , ) ( , , , )

θ =
⋅

=
− ⋅ −

+ + + + + +

=
− + + −

u v

u v

4 3 1 2 2 1 2 3

16 9 1 4 4 1 4 9

8 3 2 6

30 118

  

= −

= −

9

3 60

3

2 15

Example 13: Verify Cauchy–Schwarz inequality for the vectors u = (–3, 1, 0), 

v = (2, –1, 3).

Solution: Cauchy–Schwarz inequality states that

    

u v u v

u v

u v

⋅ ≤

⋅ = − ⋅ −

= − − = −

⋅ = − =

( , , ) ( , , )3 1 0 2 1 3

6 1 7

7 7

 

u

v

u v

u v u v

= + =

= + + =

= =

<

⋅ <

9 1 10

4 1 9 14

10 14 140

7 140

Hence, the inequality is verified.

Exercise 2.1

1. Find u + v, 3u – 2v, u – 2v + 3w if

 (i)  u = (–1, 2, 1), v = (2, 1, 3), 

w = (0, 3, –1)

 (ii)  u = (–3, 2, 1, 0), v = (4, 7, –3, 2), 

w = (5, –2, 8, 1)

Ans.:

()(, , ),( , , ),

( , , )

( )(, , , ),( , ,

i

ii

1 3 4 7 4 3

5 9 8

1 9 2 2 17 8

− −
− −

− − − 99 4

4 18 31 1

, ),

( , , , )

−
− −
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2.   Find a, b, c for the following if 

u = (1, –2, 3), v = (–3, –1, 3), 

w = (a, –1, b), x = (3, c, 2)

  (i)  w u=

1

2
  (ii) w + v = u

(iii) w + x = v

Ans. :

(i)

(ii)

(iii)

a b

a b

a b c

= =

= =

= − = =

















1

2

3

2

4 0

6 1 0

,

,

, , .






3.  Find a, b, c, d such that 

au + bv + cw + dx = (0, 5, 6, –3) 

where,  

u = (–1, 3, 2, 0), v = (2, 0, 4, –1), 

w = (7, 1, 1, 4) and x = (6, 3, 1, 2)

[Ans.: a = 1, b = 1, c = –1, d = 1]

4.  Find the Euclidean inner product 

u ⋅ v for the following:

 (i) u = (4, 8, 2), v = (0, 1, 3)

 (ii) u = (3, 1, 4, –5), v = (2, 2, –4, –3)

(iii)  u = (–1, 1, 0, 4, –3), 

v = (–2, 2, 0, 2, –1)

[Ans.: (i) 14 (ii) 7 (iii) 15]

5. Find a such that ( , , , )1 3 2 5a − =

 Ans.: a = ±



11

6.  Evaluate the following if u = (0, 2, 3, 1), 

v = (2, 0, –1, –1), w = (–3, –1, –2, 0)

 (i) u v+ 1  (ii) 2 3 4u v w+ +

(iii) 
1

w

w   (iv) 
1

w

w

Ans.:

w

() ( )

( ) ( )

i ii

iii iv

12 27

1

14
1



















 7.  If u is a non-zero vector in Rn, show 

that 
1

u

u  is a unit vector in the 

direction of u.

 8. Find the cosine of the angle between

 (i) u = (2, 3, 1),    v = (3, –2, 0)

(ii)  u = (1, 2, –1, 3), v =  (0, 0, –1, –2)

Ans.: () ( )i ii0
1

3
−











 9.  Find the distance between the 

following:

 (i) (0, 2, 3), (1, 2, – 4)

(ii) (3, 4, 0, 1), (2, 2, 1, –1)

Ans.: () ( )i ii50 10





10.  Find the constant a such that 

u ⋅  v = 0 where u = (a, 2, 1, a) and 

v = (a, –1, –2, –3).

[Ans.: a = –1, 4]

11.  Determine whether the given vectors 

are orthogonal.

 (i) u = (–1, 3, 2), v = (4, 2, –1)

 (ii)  u = (4, 2, 6, –8), v = (–2, 3, –1, –1)

(iii) u = (1, 2, 3, – 4), v = (0, –3, 1, 0)

[Ans.: (i) yes (ii) yes (iii) no]

12.  For which value of k are u = (2, k, 3) 

and v = (1, –2, 1) orthogonal?

Ans.: k =










5

2

13.  Find a, b, c not all zero so that 

u = (a, b, c) is orthogonal to both 

v = (1, 2, 1) and w = (1, –1, 1)

[Ans.: a = 1, b = 0, c = –1]
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14.   Verify Cauchy–Schwarz inequality:

  (i)   u = (– 4, 2, 1),

v = (8, – 4, –2)

(ii)   u = (0, –2, 2, 1), 

v = (–1, –1, 1, 1)

[Ans.: (i) yes  (ii) yes]

2.3 VECTOR SPACES

Let V be a non-empty set of objects on which the operations of addition and multi-

plication by scalars are defined. Here addition means a rule for assigning to each pair 

of objects u, v in V a unique object u + v and scalar multiplication means a rule for 

assigning to each scalar k and each object u in V a unique object k u. If the following 

axioms are satisfied by all objects u, v, w in V and all scalars k1, k2 then V is called a 

vector space and the objects in V are called vectors.

  1. If u and v are objects in V then u + v is in V.

  2. u + v = v + u.

  3. u + (v + w) = (u + v) + w.

  4. There is an object 0 in V, called zero vector, such that 0 + u = u + 0 = u for all 

u in V.

  5. For each object u in V, there exists an object - u in V called a negative of u, 

such that u + (–u) = (–u) + u = 0.

  6. If k1 is any scalar and u is an object in V, then k1u is in V.

  7. k1 (u + v) = k1u + k1v

  8. If k1, k2 are scalars and u is an object in V, then (k1 + k2) u = k1u + k2u.

  9. k1(k2u) = (k1 k2)u

 10. 1 u = u

The operations of addition and scalar multiplication in these axioms are not always 

defined as standard vector operations (addition and scalar multiplication) on Euclidean 

space Rn.

The scalars may be real numbers or complex numbers. When the scalars are real 

numbers, the vector space is called real vector space, and when the scalars are  complex 

numbers, the vector space is called complex vector space.

Some standard vector spaces are as follows:

 (i) The set Rn under standard vector addition and scalar multiplication.

 (ii) The set Pn of all polynomials of degree ≤ n together with the zero polynomial 

under addition and scalar multiplication of polynomials.

 (iii) The set Mmn of all m × n matrices of real numbers under matrix addition and 

scalar multiplication.

 (iv) The set F [a, b] of all real-valued functions defined on the interval [a, b] under 

addition and scalar multiplication of functions.

 (v) The set F [– ∞, ∞] of all real-valued functions defined for all real numbers 

under addition and scalar multiplication of functions.
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Example 1:  Determine  whether  the  given  set  V  is  closed  under  the  given 

operations: (i) V is the set of all ordered triples of real numbers of the form (0, y, z);   (0, y, z) + (0, y′, z′) = (0, y + y′, z + z′)

  k(0, y, z) = (0, 0, k z)

(ii)  V is the set of all 2 × 2 matrices 
a b

c d









 where a = d under matrix addition and 

scalar multiplication.

Solution:

 (i) (a) (0, y, z) + (0, y′, z′) = (0, y + y′, z + z′)

 Since y, y′, z, z′ are real numbers, y + y′, z + z′ are also real numbers. Therefore, 

(0, y + y′, z + z′) is in V.

Hence, V is closed under the addition operation.

(b) k(0, y, z) = (0, 0, kz)

If z is a real number then kz is also a real number. Therefore, (0, 0, kz) is in V.

Hence, V is closed under multiplication operation.

(ii)  (a)  Let u =










a b

c d

1 1

1 1

 and v =










a b

c d

2 2

2 2

 where a1 = d1 and a2 = d2 be two objects in V.

 u v+ =








 +









 =

+ +

+ +






a b

c d

a b

c d

a a b b

c c d d

1 1

1 1

2 2

2 2

1 2 1 2

1 2 1 2 


If a1 = d1, a2 = d2, then a1 + a2 = d1 + d2.

Therefore, u + v is also an object in V.

Hence, V is closed under matrix addition.

(b) Let k be some scalar.

 k k
a b

c d

ka kb

kc kd
u =









 =











1 1

1 1

1 1

1 1

If a1 = d1, then ka1 = kd1. Therefore, k u is also an object in V.

Hence, V is closed under scalar multiplication.

Example 2: Determine whether the set V of all pairs of real numbers (x, y) with 

the operations (x1, y1) + (x2, y2) = (x1 + x2 + 1, y1 + y2 + 1) and k(x, y) = (kx, ky) is a 

vector space.

Solution: Let u = (x1, y1), v = (x2, y2) and w = (x3, y3) are objects in V and k1, k2 are 

some scalars.

1.  u + v = (x1, y1) + (x2, y2) = (x1 + x2 + 1, y1 + y2 + 1)

Since x1, x2, y1, y2 are real numbers x1 + x2 + 1 and y1 + y2 +1 are also real numbers. 

Therefore, u + v is also an object in V.
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2.

     

u v+ = + + + +( )

= + + + +

= +

x x y y

x x y y

1 2 1 21 1,

( , )2 1 2 11 1

v u

Hence, vector addition is commutative.

3. u v w+ + = + +[ ]( ) ( , ) ( , ) ( , )x y x y x y
1 1 2 2 3 3

 

= + + + + +

= + + + + + + + +[ ]

( , ) ( , )

( ) , ( )

x y x x y y

x x x y y y

1 1 2 3 2 3

1 2 3 1 2 3

1 1

1 1 1 1

== + + + + + + + +[ ]
= + + + + +

( ) , ( )

( , ) ( ,

x x x y y y

x x y y x y

1 2 3 1 2 3

1 2 1 2 3 3

1 1 1 1

1 1 ))

( )= + +u v w

Hence, vector addition is associative.

4. Let (a, b) be an object in V such that

 

( , )

( , ) ( , ) ( , )

( , ) ( , )

a b

a b x y x y

a x b y x y

+ =

+ =

+ + + + =

u u

1 1 1 1

1 1 1 11 1

 

a x x b y y

a b

+ + = + + =

= − = −

1 1 1 1
1 1

1 1

,

,

Also,u u+ =( , )a b

Hence, (–1, –1) is the zero vector in V.

5. Let (a, b) be an object in V such that

 

u + = − −

+ = − −

+ + + + = − −

( , ) ( , )

( , ) ( , ) ( , )

( , ) ( ,

a b

x y a b

x a y b

1 1

1 1

1 1 1 1

1 1

1 1 ))

 

x a y b

a x b y

1 1

1 1

1 1 1 1

2 2

+ + = − + + = −

= − − = − −

,

,

Also, (a, b) + u = (–1, –1)

Hence, (–x1 – 2, –y1 – 2) is the negative of u in V.

6. 

     

k k x y

k x k y

1 1 1 1

1 1 1 1

u =

=

( , )

( , )

Since k1 x1 and k1 y1 are real numbers, k1 u is an object in V

Hence, V is closed under scalar multiplication.

7. 

      

k k x x y y

k x k x k k y k y k

k

1 1 1 2 1 2

1 1 1 2 1 1 1 1 2 1

1

1 1( ) ( , )

( , )

u v+ = + + + +

= + + + +

≠ uu v+ k
1
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V is not distributive under scalar multiplication.

Hence, V is not a vector space.

Example 3: Determine whether the set R+ of all positive real numbers with 

operations
x + y = xy and k x = xk

 is a vector space.

Solution: Let x, y and z be positive real numbers in R+ and k1, k2 are some scalars

 1. x + y = xy, is also a positive real number

R+ is closed under vector addition.

 2. x + y = xy = yx = y + x

Vector addition is commutative.

 3. x y z x y z x yz xy z x y z x y z+ + = + = = = + = + +( ) ( ) ( ) ( ) ( ) ( )

Vector addition is associative.

 4. Let a be an object in R+ such that 

 a + x = x

 ax = x

 a = 1

Also x + a = x

Hence, 0 = 1 is the zero vector in V.

 5. Let a be an object in R+ such that

 

x a

xa

a

x

+ =

=

=

1

1

1

Also, a + x = 1

Hence, 1

x

 is the negative of x in R+.

 6. If k1 is real then k x x
k

1

1
=  is a positive real number for all x in R+ .

R+ is closed under scalar multiplication.

 
7.

 
k x y k xy xy

x y k x k y k x k y

k

k k

1 1

1 1 1 1

1

1 1

( ) ( ) ( )

( )( )

+ = =

= = = +

Scalar multiplication is distributive with respect to vector addition in R+.

 8. ( )

( )( )

k k x x x x

k x k x k x k x

k k k k

1 2

1 2 1 2

1 2 1 2
+ = =

= = +

+

Scalar multiplication is distributive with respect to scalar addition in R+.

 
9. k k x k x x

x x k k x

k k k

k k k k

1 2 1

1 2

2 2 1

2 1 1 2

( ) ( )

( )

= =

= = =

Scalar and vector multiplications are compatible with each other.

 10. 1x = x1 = x

All axioms are satisfied by R+ under given operations. Hence, R+ is a vector space 

under given operations.
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Example 4:  Why  are  the  following  sets  not  vector  spaces  under  the  given 

operations? Justify your answer.

(i)  The set of all pairs of real numbers (x, y) with the operation (x1, y1) + (x2, y2)

 = (x1 + x2, y1 + y2) and k(x, y) = (2k x, 2k y).

(ii) (x1, y1, z1) + (x2, y2, z2) = (z1 + z2, y1 + y2, x1 + x2)

Solution:  (i) 1 is a scalar.

1(x, y) = (2x, 2y) ≠ (x, y)

Axiom 10 fails. Hence, given set is not a vector space.

(ii) ( , , ) ( , , ) ( , , )x y z x y z x y z
1 1 1 2 2 2 3 3 3

+ +{ }

            

= + + + +

= + + + + +

( , , ) ( , , )

( ), ( ), (

x y z z z y y x x

z x x y y y x

1 1 1 2 3 2 3 2 3

1 2 3 1 2 3 1
zz z

z x x y y y x z z

x z y y

2 3

1 2 3 1 2 3 1 2 3

1 2 1 2

+{ }

= + + + + + +{ }

= + +

)

( ) , ( ) , ( )

( , , zz x z y x

z y x x y z z y x

1 2 3 3 3

1 1 1 2 2 2 3 3 3

+ +

= +{ }+

) ( , , )

( , , ) ( , , ) ( , , )

Given set is not associative under vector addition. Axiom 3 fails. Hence, the given 

set is not a vector space.

Example 5: Check whether V = R2
  is a vector space with respect to the opera-

tions ( , ) ( , ) ( , )x y x y x x y y1 1 2 2 1 2 1 22 3+ = + − + −  and 

k x y k x k ky( , ) ( ,= + −2 2  -3k + 3), k is a real number.

Solution: Let u v= ( , ),x y y
1 1 2 2

= ( , )x  and w = (x3, y3) are objects in R2 and k1, k2 

are some real scalars.

1. u v+ = ( , ) + ( , )x y x y
1 1 2 2

          = ( + 2, + 3)x x y y
1 2 1 2

− − which is also in R2.

R2 is closed under vector addition.

2.

 

u + v

v

= + − + −

= + − + −

= +

=

( , )

( , )

( , ) ( , )

x x y y

x x y y

x y x y

1 2 1 2

2 1 2 1

2 2 1 1

2 3

2 3

+uu

    Vector addition is commutative.

3.

 

u (v w)+ + = + +{ }

= + + − + −

( , ) ( , ) ( , )

( , ) ( ,

x y x y x y

x y x x y y

1 1 2 2 3 3

1 1 2 3 2 3
2 3))

( ( ) , ( ) )

(( ) , (

= + + − − + + − −

= + − + − + −

x x x y y y

x x x y y

1 2 3 1 2 3

1 2 3 1 2

2 2 3 3

2 2 33 3
3

) )+ −y

 

= + − + − +

= +{ }+

= +

( , ) ( , )

( , ) ( , ) ( , )

( )

x x y y x y

x y x y x y

1 2 1 2 3 3

1 1 2 2 3 3

2 3

u v ++w

Vector addition is commutative.
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4. Let (a, b) be an object in R2 such that

 

( , )

( , ) ( , ) ( , )

( , ) ( , )

a b

a b x y x y

a x b y x y

+ =

+ =

+ − + − =

u u

1 1 1 1

1 1 1 12 3

 

a x x b y y

a b

+ − = + − =

= =

1 1 1 1
2 3

2 3

,

,

Also, u u+ =( , )a b

Hence, (2, 3) is the zero vector in V.

5. Let (a, b) be an object in R2 such that

 

u + =

+ =

+ − + − =

( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , )

a b

x y a b

x a y b

2 3

2 3

2 3 2 3

1 1

1 1

 

x a y b

a x b y

1 1

1 1

2 2 3 3

4 6

+ − = + − =

= − + = − +

,

,

Also, (a, b) + u = (2, 3)

Hence, (–x1 + 4, –y1 + 6) is the negative of u in V.

6. If k1 is a real number then k x y k x k k y k
1 1 1 1 1 1 1 1

2 2 3 3( , ) ( , )= + − − +

 is also in R2. R2 is closed under scalar multiplication.

7.

 

k k x y x y

k x x y y

k x x

1 1 1 1 2 2

1 1 2 1 2

1 1 2

2 3

2

( ) ( , ) ( , )

( , )

(

u v+ = +{ }

= + − + −

= + − )) , ( )

( ,

+ − + − − +( )

= + − + − −

2 2 3 3 3

2 2 2 3

1 1 1 2 1

1 1 1 1 2 1 1 1 1

k k y y k

k x k k x k k y k ++ + −

≠ +

3 3
1 2 1

1 1

k y k

k k

)

u v

Scalar multiplication is not distributive with respect to vector addition in R2.

Hence, R2 is not a vector space.

Exercise 2.2

1. Determine whether the given set V is 

closed under the given operations.

 (i)  The set of all pairs of real numbers 

of the form (x, 0) with the standard 

operations on R2.

 (ii)  The set of all polynomials of the 

form a0 + a1 x + a2 x
2 where a0, a1, a2 

are real numbers and a2 = a3 + 1 with 

operations defined as

( ) ( )

( ) ( )

( )

a a x a x b b x b x

a b a b x

a b x

0 1 2

2

0 1 2

2

0 0 1 1

2 2

2

+ + + + +

= + + + +

+

 

k a a x a x

ka ka x ka x

( )

( ) ( ) ( )

1 2 3

2

0 1 2

2

+ +

= + +

 (iii)  The set of all 2 × 2 matrices 

of the form 
a

b

1

1









  with the 
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standard matrix addition and 

scalar multiplication.

[Ans. : (i) yes (ii) no (iii) no]

2. Determine which sets are vector spaces 

under the given operations:

 (i)  The set of all ordered triples of real 

numbers (x, y, z) with the operations

 

( , , ) ( , , )

( , , )

( , , )

( , , )

x y z x y z

x y y z

k x y z

kx ky kz

1 1 1 2 2 2

2 1 2 2

+

= +

=

(ii)  The set of all ordered triples of real 

numbers of the form (0, 0, z) with the 

operations

 

       
( , , ) ( , , ) ( , , )

( , , ) ( , , )

0 0 0 0 0 0

0 0 0 0

1 2 1 2z z z z

k z kz

+ = +

=

(iii)  The set of all 2 × 2 matrices 

of the form 
a

b

1

1









  with 

the operations defined as 

a

b

c

d

a c

b d

1

1

1

1

1

1









 +









 =

+

+











 k
a

b

ka

kb

1

1

1

1









 =











(iv)  The set of all ordered pairs of real 

numbers (x, y), where x ≤ 0, with 

the usual operations in R2

[Ans. : (i) no (ii) yes (iii) yes (iv) no]

3. Show that the set V of all pairs of real 

numbers of the form (1, x) with the 

operations defined as 

 
( , ) ( , ) ( , )

( , ) ( , )

1 1 1

1 1

1 2 1 2x x x x

k x k x

+ = +

=

 is a vector space.

4. Show that the set Mnn of all n × n 

matrices with real entries is a vector 

space under the matrix addition and 

scalar multiplication.

2.4 SUBSPACES

A non-empty subset W of a vector space V is called a subspace of V if W is itself a 

vector space under the operations defined on V.

Note: Every vector space has at least two subspaces, itself and the subspace {0}. The 

subspace {0} is called the zero subspace consisting only of the zero vector.

Since W is the part of a vector space V, most of the axioms are true for W as they are 

true for V. The following theorem shows that to prove W a subspace of a vector space 

V, we need to verify only the closure property with respect to the operations defined 

on V.

Theorem 2.2: If W is a non-empty subset of vector space V, then W is a subspace of 

V if and only if the following axioms hold:

Axiom 1: If u and v are vectors in W then u + v is in W.

Axiom 2: If k is any scalar and u is a vector in W, then k u is in W.

Example 1: Show that W x y x y= ={ }( , ) | 3  is a subspace of R2. State all 

possible subspaces of R2.
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Solution:  Let u = ={ }( , ) |x y x y
1 1 1 1

3  and v = ={ }( , ) |x y x y
2 2 2 2

3  are in W and k 

is any scalar.

Axiom 1:
 

u v+ = +

= + +

( , ) ( , )

( , )

x y x y

x x y y

1 1 2 2

1 2 1 2

But x1 = 3y1 and x2 = 3y2

 ∴ + = +x x y y
1 2 1 2

3( )

 u v+ = + + + = +{ }( , ) | ( )x x y y x x y y1 2 1 2 1 2 1 23  

Thus, u + v is in W.

Axiom 2:
 

k k x y

k x k y

u =

=

( , )

( , )

1 1

1 1

But  x y
1 1

3=

 ∴ =k x k y1 13( )

 k u = {(k x1, k y1) | k x1 = 3 (k y1)}

Thus, k u is in W.

Hence, W is a subspace of R2.

All possible subspaces of R2 are

(i) {0}  (ii) R2  (iii) Lines passing through the origin.

Example 2: Check whether the following are subspaces of R3. Justify your 

answer. State all possible subspaces of R3.

 (i) W x x R= ∈{ }( , , ) |0 0

 (ii) W x y z x y z= + + ≤{ }( , , ) | 2 2 2 1

 (iii) W x y z y x z= = + +{ }( , , ) 1

Solution: (i) Let u = {(x1, 0, 0) | x1 ∈ R} and v = (x2, 0, 0) | x2 ∈ R} be in W, and k 

be any scalar.

Axiom 1: u v+ = +( , , ) ( , , )x
1
0 0 x

2
0 0

 = +( , , )x x
1 2

0 0

Since R is closed under addition, x1 + x2 is in R.

Thus, u + v is in W.

Axiom 2: k k xu = ( , , )
1
0 0

 = ( , , )kx
1
0 0

Since R is closed under scalar multiplication, k x1 is in R.

Thus, k u is in W.

Hence, W is a subspace of R3.

 (ii)  Let u = (1, 0, 0) and v = (0, 0, 1) be two vectors of the set W satisfying the condi-

tion x2 + y2 + z2 ≤ 1.
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=

( , , ) ( , , )

( , , )

1 0 0 0 0 1

1 0 1

Here x2 + y2 + z2 = 2 > 1. Thus, u + v is not in W.

W is not closed under addition and hence is not a subspace of R3.

 (iii)  Let u = = + +{ }( , , ) |x y z y x z
1 1 1 1 1 1

1  and v = = + +{ }( , , ) |x y z y x z
2 2 2 2 2 2

1  be 

in W.

Axiom 1: u v+ = +( , , ) ( , , )x y z x y z1 1 1 2 2 2

 = + + +( , , )x x y y z z
1 2 1 2 1 2

But y x z y x z
1 1 1 2 2 2

1 1= + + = + +,

 
∴ + = + + + + +

= + + + +

y y x z x z

x x z z

1 2 1 1 2 2

1 2 1 2

1 1

2

( ) ( )

( ) ( )

Thus, u + v is not in W.

W is not closed under addition and hence is not a subspace of R3.

All possible subspaces of R3 are (i) {0} (ii) Lines passing through the origin. 

(iii) Planes through the origin (iv) R3.

Example 3: Show that the set of solution vectors of a homogenous linear system

Ax = 0 of m equations in n unknowns, is a subspace of Rn.

Solution: Let W be the set of solution vectors of Ax = 0.

Case I: If system has only a trivial solution (x = 0) then W has at least one vector 0 

and hence is a subspace of R3.

Case II: In case of non-trivial solution, let x1 and x2 be solution vectors in W and k 

is any scalar.

Axiom 1:

 

A A A

A A

( )

[ , ]

x x x x

0 0 x 0 x 0

0

1 2 1 2

1 2

+ = +

= + = =

=

∵

Thus, x1 + x2 is also a solution vector in W.

Axiom 2:
 
A k k A k( ) ( ) [ ]x x

0

1 1=

=

∵ is a scalar

Thus, k x1 is also a solution vector in W. 

Hence, W is a subspace of Rn.

Example 4: Show that the following sets are the subspaces of the respective real 

vector space V under the standard operations:

 (i) W a a x a x a x a V P= + + + ={ } =0 1 2

2

3

3

0 30| ,
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c d
a b c d V M=









 + + + =









=| ,0 22

 (iii) W A AB BA B V M
nn

= ={ } =nn nnfor a fixed| , 

 (iv)  

 

W f f x a a x a a

V F

= = +{ }

=

| ( ) ,

(

1 2 1 2
sin , where  and  are real numbers

−−∞ ∞, )

Solution: (i) Let p
1 0 1 2

2

3

3
= + + +a a x a x a x  and p

2 0 1 2

2

3

3
= + + +b b x b x b x  be in 

W such that a0 = 0, b0 = 0 and k is any scalar.

Axiom 1:
 
p p

1 2 0 1 2

2

3

3

0 1 2

2

3

3

0 0 1 1

+ = + + + + + + +

= + + +

( ) ( )

( ) (

a a x a x a x b b x b x b x

a b a b )) ( ) ( )x a b x a b x+ + + +
2 2

2

3 3

3

But

 

a b

a b

0 0

0 0

0 0

0

= =

+

,

∴ ==

Thus, p1 + p2 is in W.

Axiom 2:

 

k ka ka x ka x ka x

a

ka

p
1 0 1 2

2

3

3

0

0

0

= + + +

=

=

0

∴

But

Thus, k p1 is in W.

Hence, W is a subspace of P3.

 (ii) Let A
a b

c d
1

1 1

1 1

=








  and A

a b

c d
2

2 2

2 2

=








  be in M22 such that a1 + b1 + c1 + d1 = 0, 

a2 + b2 + c2 + d2 = 0 and k is any scalar.

Axiom 1:

 

A A
a b

c d

a b

c d

a a b b

c c d d

1 2

1 1

1 1

2 2

2 2

1 2 1 2

1 2 1 2

+ =








 +











=
+ +

+ +











But a1 + b1 + c1 + d1 = 0, a2 + b2 + c2 + d2 = 0

 ∴ + + + + + + +

= + + + + + + +

( ) ( ) ( ) ( )

( ) (

a a b b c c d d

a b c d a b c d

1 2 1 2 1 2 1 2

1 1 1 1 2 2 2 22 0) =

Thus, A1 + A2 is in W.

Axiom 2:
 
k A

k a k b

k c k d
1

1 1

1 1

=










But a1 + b1 + c1 + d1 = 0

 ∴ + + + = + + + =ka kb kc kd k a b c d1 1 1 1 1 1 1 1 0( )

Thus, k A1 is in W.

Hence, W is a subspace of M22.
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(iii)  Let A1 and A2 be in W such that A1B = BA1, A2B = BA2 and k be any real scalar.

Axiom 1:

 

( )

( )

A A B A B A B

BA BA

B A A

1 2 1 2

1 2

1 2

+ = +

= +

= +

Thus, A A
1 2
+  is in W.

Axiom 2:

 

( ) ( )

( )

( ) [ ]

k A B k A B

k BA

B kA k

1 1

1

1

=

=

= ∵ is a scalar

Thus, k A1 is in W.

Hence, W is a subspace of Mnn.

(iv) Let f x a a x
1 1 2
( ) sin= +  and f x b b x

2 1 2
( ) sin= +  be in W where a1, a2, b1, b2 are 

real numbers and k be any scalar.

Axiom 1:
 
f x f x a a x b b x

a b a b x

1 2 1 2 1 2

1 1 2 2

( ) ( ) ( sin ) ( sin )

( ) ( )sin

+ = + + +

= + + +

Since a1, b1, a2, b2 are real numbers, (a1 + b1) and (a2 + b2) are also real numbers.

Thus, f1(x) + f2(x) is in W.

Axiom 2:
 
k f x k a a x

ka ka x

1 1 2

1 2

( ) ( sin )

sin

= +

= +

Since k is a real scalar, ka1 and ka2 are real numbers.

Thus, k f1(x) is in W.

Hence, W is a subspace of F(– ∞, ∞).

Example 5: State only one axiom that fails to hold for each of the following sets 

W to be subspaces of the respective real vector space V under the standard opera-

tions:

 (i) W x y x y V R= ={ } =( , ) | ,2 2 2

 (ii) W x y xy V R= ≥{ } =( , ) | ,0 2

 (iii) W A A V M
n n nn

= = ⇒ ={ } =
×

| ,x 0 x 0

 (iv) W f f x x V F= ≤ ∀{ } = −∞ ∞| ( ) , , ( , )0

 (v) W = {a0 + a1x + a2  x
2 + a3

 x3, ∀x where a0, a1, a2 and a3 are integers}, V = P3

Solution: (i) Let u = (–1, 1) and v = (2, 2) be two vectors of the set W such that

x2 = y2.

Axiom 1:
 

u v+ = − +

=

( , ) ( , )

( , )

1 1 2 2

1 3
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Here 12 ≠ 32. Thus, u + v is not in W.

W is not closed under addition and hence is not a subspace of R2.

 (ii)  Let u = − −( , )2 3  and v = ( , )3 1  be two vectors of the set W such that xy ≥ 0.

Axiom 1:
 
u v+ − −

−

= ) + (3, 1)

= (1, 2)

( ,2 3

Here 1(–2) = –2 < 0. Thus, u + v is not in W.

W is not closed under addition and hence is not a subspace of R2.

 (iii)  From the definition of W, it is clear that W is the set of all non-singular matrices 

of order n so that Ax = 0 has only trivial solution (x = 0)

Let A A

n n

1 2

3 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2 0

=

−

−

−























=

×

…

…

…

� � � � �

…

and

00 0

0 1 0 0

0 0 1 0

0 0 0 1

…

…

…

� � � � �

… −























×n n

are two matrices in W such that A
1

0≠ and A
2

0≠ .

Axiom 1: A A

n n

1 2

5 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

+ =























×

…

…

…

� � � � �

…

A A
1 2

0+ = .  Thus, A1 + A2 is not in W.

W is not closed under addition and hence is not a subspace of Mnn.

(iv) W is the set of all negative functions of x. Let f(x) is in W such that f(x) ≤ 0

Axiom 2:
 
If    k = –2, then

 k f x f x f x( ) ( ) [ ( ) ]= − > ≤2 0 0∵

Thus, k f (x) is not in W.

W is not closed under scalar multiplication and hence is not a subspace of F(– ∞, ∞).

 (v) Let u = + + +a a x a x a x
0 1 2

2

3

3  be in W, where a0, a1, a2, a3, are integers.

Axiom 2: If k =
1

2
,  then

 
1

2 2 2 2 2

0 1 2 2 3 3
u = + + +

a a

x

a

x

a

x
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Since 
a a a a

0 1 2 3

2 2 2 2
, , ,  are not necessarily to be integers, 

1

2
u  is not in W.

W is not closed under scalar multiplication and hence is not a subspace of P3.

2.5 LINEAR COMBINATION

A vector v is called a linear combination of vectors v1, v2, … , vr if it can be 

expressed as

 v v v v= + + +k k k
r r1 1 2 2

�

where k1, k2, … , kr are scalars.

Note: If r = 1, then v = k1v1. This shows that a vector v is a linear combination of a 

single vector v1 if it is a scalar multiple of v1.

Vector Expressed as a Linear Combination of Given Vectors

The method to check if a vector v is a linear combination of the given vectors v1, v2, … , vr 

is as follows:

 1. Express v as linear combination of v1, v2, … , vr

 v v v v= + + +k k k
r r1 1 2 2

�  (2.4)

 2. If the system of equations in (1) is consistent then v is a linear combination of 

v1, v2, … , vr. If it is inconsistent, then v is not a linear combination of v1, v2, … , vr.

Note: To express v as a linear combination of v1, v2, … , vr, solve the system of 

 equations in (2.4) directly to determine scalars k1, k2, … , kr.

Example 1: Which of the following are linear combinations of v1 = (0, –2, 2) and 

v2 = (1, 3, –1)?

 (i) (3, 1, 5)  (ii) (0, 4, 5)

Solution: Let v = k1v1 + k2v2

(i)
 
( , , ) ( , , ) ( , , )

( , , )

3 1 5 0 2 2 1 3 1

2 3 2

1 2

2 1 2 1 2

= − + −

= − + −

k k

k k k k k

Equating corresponding components,

 

k

k k

k k

2

1 2

1 2

3

2 3 1

2 5

=

− + =

− =

The augmented matrix of the system is

    

0 1 3

2 3 1

2 1 5

−

−
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Reducing the augmented matrix to row echelon form,

  

R
12

2 3 1

0 1 3

2 1 5

~

−

−

















 

−



− −

−



















1

2

1
3

2

1

2

0 1 3

2 1 5

1
R

~

 

R R
3 1

2

1
3

2

1

2

0 1 3

0 2 6

−

− −


















~

 

R R
3 2

2

1
3

2

1

2

0 1 3

0 0 0

−

− −


















~

The system of equations is consistent.

Hence, v is a linear combination of v1 and v2.

The corresponding system of equations is

 
k k

k

1 2

2

3

2

1

2

3

− = −

=

Solving these equations,

Hence,
 

k k
1 2

4 3

4 3

= =

= +

,

v v v
1 2

(ii)
 
( , , ) ( , , ) ( , , )

( , , )

0 4 5 0 2 2 1 3 1

2 3 2

1 2

2 1 2 1 2

= − + −

= − + −

k k

k k k k k

Equating corresponding components,

 

k

k k

k k

2

1 2

1 2

0

2 3 4

2 5

=

− + =

− =
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The augmented matrix of the system is

 

0 1 0

2 3 4

2 1 5

−

−

















Reducing the augmented matrix to row echelon form,

 

R
12

2 3 4

0 1 0

2 1 5

~

−

−

















 

−



− −

−



















1

2

1
3

2
2

0 1 0

2 1 5

1
R

~

 

R R
3 1

2

1
3

2
2

0 1 0

0 2 9

−

− −


















~

 

R R
3 2

2

1
3

2
2

0 1 0

0 0 9

−

− −


















~

From the last row of the matrix

0k1 + 0k2
 = 9

The system of equations is inconsistent.

Hence, v is not a linear combination of v1, and v2.

Example 2: Which of the following are linear combinations of  

A A A
1 2 3

4 0

2 2

1 1

2 3

0 2

1 4
=

− −









 =

−







 =









, , ?

 (i) 
6 8

1 8

−

− −









   (ii) 

−









1 5

7 1

Solution: Let A = k1A1 + k2 A2 + k3 A3
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(i)

 

6 8

1 8

4 0

2 2

1 1

2 3

0 2

1 4

4

1 2 3

−

− −









 = − −









 +

−







 +











=

k k k

k
11 2 2 3

1 2 3 1 2 3

2

2 2 2 3 4

+ − +

− + + − + +











k k k

k k k k k k

Equating corresponding components,

 

4 6

2 8

2 2 1

2 3 4 8

1 2

2 3

1 2 3

1 2 3

k k

k k

k k k

k k k

+ =

− + = −

− + + = −

− + + = −

The augmented matrix of the system is

 

4 1 0 6

0 1 2 8

2 2 1 1

2 3 4 8

− −

− −

− −



















Reducing the augmented matrix to row echelon form,

 

1

4

1
1

4
0

3

2

0 1 2 8

2 2 1 1

2 3 4 8

1







− −
− −
− −























R

~

 

R R R R
3 1 4 1

2 2

1
1

4
0

3

2

0 1 2 8

0
5

2
1 2

0
7

2
4 5

+ +

− −

−



























,

~

 

R R R R
3 2 4 2

5

2

7

2

1
1

4
0

3

2

0 1 2 8

0 0 6 18

0 0 11 33

+ +

− −

−

−























,

~
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 1

6

1
1

4
0

3

2

0 1 2 8

0 0 1 3

0 0 11 33

3







− −
−

−























R

~

 

( ) ,

~

− −

−

−























1 11

1
1

4
0

3

2

0 1 2 8

0 0 1 3

0 0 0 0

2 4 3R R R

The system is  consistent.

Hence, A is a linear combination of A1, A2, A3. The corresponding system of equations is

 

k k

k k

k

1 2

2 3

3

1

4

3

2

2 8

3

+ =

− =

= −

Solving these equations,

  k k k
1 2 3

1 2 3= = = −, ,

Hence, 
A A A A= + −

1 2 3
2 3

(ii)
 

 

−







 = − −









 +

−







 +











=
+

1 5

7 1

4 0

2 2

1 1

2 3

0 2

1 4

4

1 2 3

1

k k k

k kk k k

k k k k k k

2 2 3

1 2 3 1 2 3

2

2 2 2 3 4

− +

− + + − + +











Equating corresponding components,

 

4 1

2 5

2 2 7

2 3 4 1

1 2

2 3

1 2 3

1 2 3

k k

k k

k k k

k k k

+ = −

− + = −

− + + =

− + + =

The augmented matrix of the system is

   

4 1 0 1

0 1 2 5

2 2 1 7

2 3 4 1

−

−

−

−
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Reducing the augmented matrix to row echelon form,

 

1

4

1
1

4
0

1

4

0 1 2 5

2 2 1 7

2 3 4 1

1







−

−
−
−























R

~

   

R R R R
3 1 4 1

2 2

1
1

4
0

1

4

0 1 2 5

0
5

2
1

13

2

0
7

2
4

1

2

+ +

−

−


























,

~



     

R R R R
3 2 4 2

5

2

7

2

1
1

4
0

1

4

0 1 2 5

0 0 6 19

0 0 11 18

+ +

−

−























,

~

    

1

6
1

1
1

4
0

1

4

0 1 2 5

0 0 1
19

6

0 0 11 18

3 2







−

−

− −






















R R, ( )

~





     

R R
4 3

11

1
1

4
0

1

4

0 1 2 5

0 0 1
19

6

0 0 0
101

6

−

−

− −

−



























~
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From the last row of the matrix

 

0 0 0
101

6
1 2 3
k k k+ + = −

The system of equations is inconsistent.

Hence, A is not a linear combination of A1, A2, and A3.

Example 3: Express the vector v = (6, 11, 6) as a linear combination of v1 = (2, 1, 4), 

v2 = (1, –1, 3) and v3 = (3, 2, 5).

Solution: Let  v = k1 v1 + k2 v2 + k3 v3

 
( , , ) ( , , ) ( , , ) ( , , )

( ,

6 11 6 2 1 4 1 1 3 3 2 5

2 3

1 2 3

1 2 3 1 2

= + − +

= + + − +

k k k

k k k k k 22 4 3 5
3 1 2 3

k k k k, )+ +

Equating corresponding components,

 

2 3 6

2 11

4 3 5 6

1 2 3

1 2 3

1 2 3

k k k

k k k

k k k

+ + =

− + =

+ + =

Solving these equations,

 k k k
1 2 3

4 5 1= = − =, ,

Hence, v = 4v1 – 5v2 + v3

Example 4: Express the polynomial p = –9 – 7x – 15x2 as a linear combination of 

p1 = 2 + x + 4x2, p2 = 1 – x + 3x2, p3 = 3 + 2x + 5x2.

Solution: Let p = k1 p1 + k2 p2 + k3 p3

 
− − − = + + + − + + + +

= + +

9 7 15 2 4 1 3 3 2 5

2 3

2

1

2

2

2

3

2

1 2

x x k x x k x x k x x

k k k

( ) ( ) ( )

(
33 1 2 3 1 2 3

22 4 3 5) ( ) ( )+ − + + + +k k k x k k k x

Equating corresponding coefficients,

 

2 3 9

2 7

4 3 5 15

1 2 3

1 2 3

1 2 3

k k k

k k k

k k k

+ + = −

− + = −

+ + = −

Solving these equations,

 k k k
1 2 3

2 1 2= − = = −, ,

Hence, p = –2p1 + p2 – 2p3 

Example 5: Express the matrix A =
−











5 1

1 9
 as a linear combination of 

A A A
1 2 3

1 1

0 3

1 1

0 2

2 2

1 1
=

−







 =









 =

−









, , .
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Solution:  Let        A = k
1
 A

1
 + k

2
 A

2
 + k

3
 A

3

 

5 1

1 9

1 1

0 3

1 1

0 2

2 2

1 1
1 2 3

1 2

−









 =

−







 +









 + −











=
+

k k k

k k ++ − + +

− + +











2 2

3 2

3 1 2 3

3 1 2 3

k k k k

k k k k

Equating corresponding components,

 

k k k

k k k

k

k k k

1 2 3

1 2 3

3

1 2 3

2 5

2 1

1

3 2 9

+ + =

− + + =

− = −

+ + =

Solving these equations,

 k k k
1 2 3

2 1 1= = =, ,

Hence, A = 2A1 + A2 + A3

Example 6: For which value of l will the vector v = (1, l, 5) be the linear 

 combination of vectors v1 = (1, –3, 2) and v2 = (2, –1, 1)?

Solution: Let      v = k1 v1 + k2 v2

 

( , , ) ( , , ) ( , , )

( , , )

1 5 1 3 2 2 1 1

2 3 2

1 2

1 2 1 2 1 2

λ = − + −

= + − − +

k k

k k k k k k

Equating corresponding components,

 k k
1 2

2 1+ =  ...(1)

 − − =3
1 2
k k λ  ...(2)

 2 5
1 2
k k+ =  ...(3)

v will be the linear combination of v1 and v2 if the above system of equations is 

consistent.

Solving equations (1) and (3),

 k k
1 2

2 1= = −,

Substituting k1, k2 in equation (2),

 λ = −5

2.6 SPAN

The set of all the vectors that are the linear combination of the vectors in the set 

S
r

= { , , , }v v v
1 2

…  is called span of S and is denoted by

 span or span { , , , }S
r

v v v1 2 …
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Theorem 2.3: If S
r

= { , , , }v v v
1 2

…  is a set of vectors in a vector space V then

 (i) The span S is a subspace of V.

 (ii) The span S is the smallest subspace of V that contains the set S. Any other 

subspace W of V that contains the set S must contain span S, i.e. span S ⊆ W.

Theorem 2.4: If S1 and S2 are two sets of vectors in a vector space V then

 span span S
1 2
= S

if and only if each vector in S1 is a linear combination of those in S2 and vice versa.

i.e., S1 ⊂ span S2 and S2 ⊂ span S1.

Vectors spanning the vector space: The method to check if the vectors v1, v2, … , 

vr span the vector space V is as follows:

 1. Choose an arbitrary vector b in V.

 2. Express b as linear combination of v1, v2, … , vr

 b v v v= + + +k k k
r r1 1 2 2

� .  ...(2.5)

 3. If the system of the equations in (2.5) is consistent for all choices of b then 

 vectors v1, v2, … , vr span V. If it is inconsistent for some choices of b, vectors 

do not span V.

Note: (i) If coefficient matrix A of (2.5) is a non-singular matrix, i.e. det (A) ≠ 0, then 

the system of equations in (2.5) is consistent for all choices of b and hence the given 

vectors span V.

(ii) If det (A) = 0 then the system of equations in (2.5) is inconsistent for some 

choices of b and hence given vectors do not span V.

Example 1: Let V be a vector space. For a non-empty set A, prove that 

A ⊂ span A.

Solution: Let A
r

= { }v v v
1 2
, , ,…

Each vector vi of A can be expressed as

 v v v v v
i i r
= + + + + +0 0 1 0

1 2
� �

This shows that each vector of A can be written as a linear combination of the vec-

tors of A.

Hence, A ⊂ span A.

Example 2: Find a condition on a, b, c so that the vector v = (a, b, c) is in the span 

{v1, v2, v3} where v1 = (2, 1, 0), v2 = (1, –1, 2) and v3 = (0, 3, – 4)

Solution: The vector v will be in the span {v1, v2, v3} if it can be expressed as a 

linear combination of v1, v2, v3.

Let v v v v= + +k k k
1 1 2 2 3 3

 
( , , ) ( , , ) ( , , ) ( , , )

( , ,

a b c k k k

k k k k k

= + − + −

= + − +

1 2 3

1 2 1 2 3

2 1 0 1 1 2 0 3 4

2 3 22 4
2 3

k k− )
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Equating corresponding components,

 

2

3

2 4

1 2

1 2 3

2 3

k k a

k k k b

k k c

+ =

− + =

− =

The augmented matrix of the system is

 

2 1 0

1 1 3

0 2 4

a

b

c

−

−

















Reducing the augmented matrix to row echelon form,

 

R

b

a

c

12

1 1 3

2 1 0

0 2 4

~

−

−















   

R R R

b

a b

c

2 1 32
1

2

1 1 3

0 3 6 2

0 1 2
2

− 





−
− −

−



















,

~

      

1

3

1 1 3

0 1 2
2

3

0 1 2
2

2







−

−
−

−





















R

b

a b

c

~

          

R R

b

a b

c a b

3 2

1 1 3

0 1 2
2

3

0 0 0
3 2 4

3

−

−

−
−

− +





















~

The system will be consistent if 
3 2 4

3
0

c a b− +
=  i.e., 3c – 2a + 4b = 0

Hence, v  will be in the span {v1, v2, v3} if 3c – 2a + 4b = 0.
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Example 3:  Determine whether the following vectors span the vector space R3. (i) v v v1 2 32 2 2 0 0 3 0 1 1= = =( , , ), ( , , ), ( , , )

 (ii) v v v v
1 2 3 4

3 1 4 2 3 5 5 2 9 1 4 1= = = =( , , ), ( , , ), ( , , ), (, , )− − −

Solution: Let b = ( , , )b b b
1 2 3

 be an arbitrary vector in R3 and can be expressed as a 

linear combination of the given vectors.

(i) b v v v= + +k k k
1 1 2 2 3 3

 
( , , ) ( , , ) ( , , ) ( , , )

( , ,

b b b k k k

k k k k

1 2 3 1 2 3

1 1 3 1

2 2 2 0 0 3 0 1 1

2 2 2 3

= + +

= + + kk k
2 3
+ )

Equating corresponding components,

 

2

2

2 3

1 1

1 3 2

1 2 3 3

k b

k k b

k k k b

=

+ =

+ + =

Coefficient matrix, A =

















2 0 0

2 0 1

2 3 1

The coefficient matrix is a square matrix.

 
det ( )

( )

A =

= − = − ≠

2 0 0

2 0 1

2 3 1

2 3 6 0

The system of equations is consistent for all choices of vector b.

Hence, the given vectors span R3.

(ii) b v v v v= + + +k k k k
1 1 2 2 3 3 4 4

 
( , , ) ( , , ) ( , , ) ( , , ) ( , , )

(

b b b k k k k

k

1 2 3 1 2 3 4

1

3 1 4 2 3 5 5 2 9 1 4 1

3

= + − + − + −

= ++ + + − − + + + −2 5 3 2 4 4 5 9
2 3 4 1 2 3 4 1 2 3 4

k k k k k k k k k k k, , )

Equating corresponding components,

 

3 2 5

3 2 4

4 5 9

1 2 3 4 1

1 2 3 4 2

1 2 3 4 3

k k k k b

k k k k b

k k k k b

+ + + =

− − + =

+ + − =

The coefficient matrix is not a square matrix. 

The augmented matrix of the system is

   

3 2 5 1

1 3 2 4

4 5 9 1

1

2

3

b

b

b

− −

−
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Reducing the augmented matrix to row echelon form, 

 

R

b

b

b

12

2

1

3

1 3 2 4

3 2 5 1

4 5 9 1

~

− −

−

















  

R R R R

b

b b

b b

2 1 3 1

2

1 2

3 2

3 4

1 3 2 4

0 11 11 11 3

0 17 17 17 4

− −

− −

− −

− −















,

~ 


 

1

11

1

17

1 3 2 4

0 1 1 1
3

11

0 1 1 1
4

17

2 3

2

1 2

3 2













− −

−
−

−
−

R R

b

b b

b b

,

~





















     

R R

b

b b

b b b

3 2

2

1 2

1 2 3

1 3 2 4

0 1 1 1
3

11

0 0 0 0
17 7 11

187

−

− −

−
−

− + +
















~ 





If − + + ≠17 7 11 0
1 2 3
b b b ,  the system of the equations is inconsistent.  Thus, the 

system of the equations does not have a solution for all choices of the vector b.

Hence, the given vectors do not span R3.

Example 4: Determine whether the following polynomials span P2:

 (i) p p p
1

2

2

2

3

2
1 2 5 4 2 2 2= − + = − + = − − +x x x x x x, , .

 (ii) p p p p
1

2

2

2

3 4

2
2 1 2 2 4= = = =+ − + + + +x x x x x x, , , .

Solution: Let b = b1 + b2 x + b3 x
2 be an arbitrary polynomial in P2 and can be 

expressed as a linear combination of given polynomials.
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(i) b p p p= + +k k k
1 1 2 2 3 3

 
b b x b x k x x k x x k x x

k k

1 2 3

2

1

2

2

2

3

2

1 2

1 2 5 4 2 2 2

5

+ + = − + + − + + − − +

= + −

( ) ( ) ( )

( 22 2 2 4 2
3 1 2 3 1 2 3

2
k k k k x k k k x) ( ) ( )+ − − − + + +

Equating corresponding coeffiencts,

 

k k k b

k k k b

k k k b

1 2 3 1

1 2 3 2

1 2 3 3

5 2

2

2 4 2

+ − =

− − − =

+ + =

Coefficient matrix,  A =

−

− − −

















1 5 2

1 1 2

2 4 2

The coefficient matrix is a square matrix.

 

det ( )A =

−

− − −

= − + − − + − − +

=

1 5 2

1 1 2

2 4 2

1 2 8 5 2 4 2 4 2

0

( ) ( ) ( )

The system of equations is inconsistent for some choices of b.

Hence, the given polynomials do not span P2.

(ii) b p p p p= + + +k k k k
1 1 2 2 3 3 4 4

 
b b x b x k x k x x k x k x x

k k

1 2 3

2

1

2

2

2

3 4

2

1

2 1 2 2 4

2

+ + = + + − + + + + + +

= +

( ) ( ) ( ) ( )

(
22 3 4 2 3 4 1 2 4

22 4 2+ + + − + + + + +k k k k k x k k k x) ( ) ( )

Equating corresponding coefficients,

 

2 2 4

2

1 2 3 4 1

2 3 4 2

1 2 4 3

k k k k b

k k k b

k k k b

+ + + =

− + + =

+ + =

The augmented matrix of the system is

   

2 1 2 4

0 1 1 1

1 2 0 1

1

2

3

b

b

b

−

















Reducing the augmented matrix to row echelon form,

 

R

b

b

b

13

3

2

1

1 2 0 1

0 1 1 1

2 1 2 4

~ −
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R R

b

b

b b

3 1

3

2

1 3

2

1 2 0 1

0 1 1 1

0 3 2 2 2

−

−

− −

















~

 

R R

b

b

b b b

3 2

3

2

1 3 2

3

1 2 0 1

0 1 1 1

0 0 1 1 2 3

−

−

− − − −

















~

The system of equations is consistent for all choices of b.

Hence, the given polynomials span P2.

Example 5: Determine whether the following matrices span M2 2.

A A A A
1 2 3 4

1 0

0 0

1 1

0 0

1 1

1 0

1 1

1 1
=









 =









 =









 =









, , ,

Solution: Let b =










b b

b b

1 2

3 4

 be an arbitrary matrix in M22 and can be expressed as 

the linear combination of given matrices.

 b = + + +k A k A k A k A
1 1 2 2 3 3 4 4

 

b b

b b
k k k k

1 2

3 4

1 2 3 4

1 0

0 0

1 1

0 0

1 1

1 0

1 1







 =









 +









 +









 +

11 1

1 2 3 4 2 3 4

3 4 4











=
+ + + + +

+











k k k k k k k

k k k

Equating corresponding coefficients,

 

k k k k b

k k k b

k k b

k b

1 2 3 4 1

2 3 4 2

3 4 3

4 4

+ + + =

+ + =

+ =

=

The system of equations is consistent for all choices of b1, b2, b3, b4 i.e., b. 

Hence, the given matrices span M22.

Example 6: Let v v v1 2 32 1 0 3 3 1 5 2 1 0 2 1= = − = −( , , , ), ( , , , ), ( , , , ).  Which of the 

following vectors are in the span {v1, v2, v3}?

(i) (2, 3, –7, 3)  (ii) (1, 1, 1, 1)  (iii) (0, 0, 0, 0)
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Solution:  The vector v will be in span {v1, v2, v3} if it can be expressed as a linear 

combination of v1, v2, v3.

Let v v v v= + +k k k
1 1 2 2 3 3

(i) ( , , , ) ( , , , ) ( , , , ) ( , , , )

(

2 3 7 3 2 1 0 3 3 1 5 2 1 0 2 1

2 3

1 2 3

1 2

− = + − + −

= + −

k k k

k k kk k k k k k k k
3 1 2 2 3 1 2 3

5 2 3 2, , , )− + + +

Equating corresponding components,

 

2 3 2

3

5 2 7

3 2 3

1 2 3

1 2

2 3

1 2 3

k k k

k k

k k

k k k

+ − =

− =

+ = −

+ + =

The augmented matrix of the system is 

   

2 3 1 2

1 1 0 3

0 5 2 7

3 2 1 3

−

−

−



















Reducing the augmented matrix to row echelon form, 

R
12

1 1 0 3

2 3 1 2

0 5 2 7

3 2 1 3

~

−

−

−



















R R R R
2 1 4 1

2 3

1 1 0 3

0 5 1 4

0 5 2 7

0 5 1 6

− −

−

− −

−

−



















,

~

R R R R
3 2 4 2

1 1 0 3

0 5 1 4

0 0 3 3

0 0 2 2

− −

−

− −

−

−



















,

~
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1

5

1

3

1

2

1 1 0 3

0 1
1

5

4

5

0 0 1 1

0 0 1 1

2 3 4



















−

− −

−
−





R R R, ,

~



















R R
4 3

1 1 0 3

0 1
1

5

4

5

0 0 1 1

0 0 0 0

−

−

− −

−























~

The system of equations is consistent. Thus, v can be expressed as a linear 

 combination of v1, v2 and v3.

Hence, v is in the span {v1, v2, v3}.

(ii) ( , , , ) ( , , , ) ( , , , ) ( , , , )

(

1 1 1 1 2 1 0 3 3 1 5 2 1 0 2 1

2 3

1 2 3

1 2

= + − + −

= + −

k k k

k k k
33 1 2 2 3 1 2 3

5 2 3 2, , , )k k k k k k k− + + +

Equating corresponding components,

2 3 1

1

5 2 1

3 2 1

1 2 3

1 2

2 3

1 2 3

k k k

k k

k k

k k k

+ − =

− =

+ =

+ + =

The augmented matrix of the system is

2 3 1 1

1 1 0 1

0 5 2 1

3 2 1 1

−

−



















Reducing the augmented matrix to row echelon form,

 

R
12

1 1 0 1

2 3 1 1

0 5 2 1

3 2 1 1

~

−

−
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R R R R
2 1 3 1

2 3

1 1 0 1

0 5 1 1

0 5 2 1

0 5 1 2

− −

−

− −

−



















,

~

R R R R
3 2 4 2

1 1 0 1

0 5 1 1

0 0 3 2

0 0 2 1

− −

−

− −

−



















,

~

   

1

5

1

3

1 1 0 3

0 1
1

5

1

5

0 0 1
2

3

0 0 2 1

2 3













−

− −

−




















R R,

~






   

R R
4 3

2

1 1 0 3

0 1
1

5

1

5

0 0 1
2

3

0 0 0
7

3

−

−

− −

−



























~

From the last row of the matrix

 
0 0 0k k k

1 2 3

7

3
+ + = −

The system of equations is inconsistent. Thus, v cannot be expressed as a linear 

combination of v1, v2 and v3.

Hence, v is not in the span {v1, v2, v3}.

 (iii) (0, 0, 0, 0) = 0v1 + 0v2 + 0v3

Thus, v can be expressed as a linear combination of v1, v2 and v3.

Hence, v is in the span {v1, v2, v3}.
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Example 7:  Let f = cos2
x and g = sin2

x. Which of the following lie in the space 

spanned by f and g?

 (i)  cos 2x    (ii)  sin x

Solution:  (i) cos cos sin

( )

2

1 1

2 2
x x x= −

= + −f g

cos 2x can be expressed as a linear combination of f and g.

Hence, cos 2x lies in the space spanned by f and g.

(ii)  sin x cannot be expressed as a linear combination of cos2x and sin2x.

Hence, sin x does not lie in the space spanned by f and g.

Example 8: Find an equation for the plane spanned by the vectors v1 = (–1, 1, 1) 

and v2 = (3, 4, 4).

Solution: Let v = (x, y, z) be an arbitrary vector on the plane spanned by the vectors 

v1 and v2.

v v v= +

= − +

= − + +

k k

x y z k k

k k k k k

1 1 2 2

1 2

1 2 1 2 1

1 1 1 3 4 4

3 4

( , , ) ( , , ) ( , , )

( , , ++ 4
2

k )

Equating corresponding components,

 

− + =

+ =

+ =

k k x

k k y

k k z

1 2

1 2

1 2

3

4

4

Eliminating k1, k2 from the above equations, 

y = z, which is the required plane spanned by the vectors v1 and v2.

Example 9: Find the parametric equations of the line spanned by the vector 

v1 = (3, –2, 5).

Solution: Let v = (x, y, z) be an arbitrary point on the line spanned by the vector v1.

v =

= −

= −

k v

x y z k

k k k

1

3 2 5

3 2 5

( , , ) ( , , )

( , , )

Equating corresponding components,

x k y k z k= = − =3 2 5, ,

which is the parametric equations of the line spanned by the vector v1, where k is a 

parameter.
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Example 10:  Show  that  v v v
1 2 3

1 6 4 2 4 1 1 2 5= = =(, , ), ( , , ), ( , , )− −  and w1 = 

(1, -2, -5), w2 = (0, 8, 9) span the same subspace of R3.

Solution: Here we need to prove that span {v1, v2, v3} = span {w1, w2}, i.e., v1, v2, v3  

are in span {w1, w2} and w1, w2 are in span {v1, v2, v3}.

(i) Let  v w w1 1 1 2 2

1 2

1 1 2

1 6 4 1 2 5 0 8 9

2 8 5

= +

= − − +

= − + −

k k

k k

k k k

( , , ) ( , , ) ( , , )

( , , kk k1 29+ )

Equating corresponding components,

 

k

k k

k k

1

1 2

1 2

1

2 8 6

5 9 4

=

− + =

− + =

The augmented matrix of the system is

  

1 0 1

2 8 6

5 9 4

−

−

















Reducing the augmented matrix to row echelon form,

        

R R R R
2 1 3 1

2 5

1 0 1

0 8 8

0 9 9

+ +

















,

~

 

1

8

1

9

1 0 1

0 1 1

0 1 1

2 3





























R R,

~

 

R R
3 2

1 0 1

0 1 1

0 0 0

−

















~

The system of equations is consistent.
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Hence, v1 is in the span {w1, w2}.

Let v2 = b1 w1 + b2 w2

 
( , , ) ( , , ) ( , , )

( , , )

2 4 1 1 2 5 0 8 9

2 8 5 9

1 2

1 1 2 1 2

− = − − +

= − + − +

b b

b b b b b

Equating corresponding components,

 

b

b b

b b

1

1 2

1 2

2

2 8 4

5 9 1

=

− + =

− + = −

The augmented matrix of the system is

 

1 0 2

2 8 4

5 9 1

−

− −

















Reducing the augmented matrix to row echelon form, 

     

R R R R
2 1 3 1

2 5

1 0 2

0 8 8

0 9 9

+ +

















,

~

Proceeding as in the previous part, this matrix reduces to the form

 ~

1 0 1

0 1 1

0 0 0

















The system of equations is consistent.

Hence, v2 is in the span{w1, w2}.

Let v w w
3 1 1 2 2
= +c c

( , , ) ( , , ) ( , , ) ( , , )− = − − + = − + − +1 2 5 1 2 5 0 8 9 2 8 5 91 2 1 1 2 1 2c c c c c c c

Equating corresponding components,

 

c

c c

c c

1

1 2

1 2

1

2 8 2

5 9 5

= −

− + =

− + =



2.6  Span  2.43

The augmented matrix of the system is

 

1 0 1

2 8 2

5 9 5

−

−

−

















Reducing the augmented matrix to row echelon form, 

 

R R R R
2 1 3 1

2 5

1 0 1

0 8 0

0 9 0

+ +

−















,

~

Proceeding as in the previous part, this matrix reduces to the form,

 ~

1 0 1

0 1 0

0 0 0

−















The system of equations is consistent.

Hence, v3 is in the span {w1, w2}

(ii) Let w v v v
1 1 1 2 2 3 3
= + +k k k

 
( , , ) ( , , ) ( , , ) ( , , )

( ,

1 2 5 1 6 4 2 4 1 1 2 5

2 6 4

1 2 3

1 2 3 1

− − = + − + −

= + − +

k k k

k k k k kk k k k k
2 3 1 2 3

2 4 5+ − +, )

Equating corresponding components,

 

k k k

k k k

k k k

1 2 3

1 2 3

1 2 3

2 1

6 4 2 2

4 5 5

+ − =

+ + = −

− + = −

The augmented matrix of the system is

 

1 2 1 1

6 4 2 2

4 1 5 5

−

−

− −

















Reducing the augmented matrix to row echelon form,

 

R R R R
2 1 3 1

6 4

1 2 1 1

0 8 8 8

0 9 9 9

− −

−

− −

− −

















,

~
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−
−

− −

















1

8

1

9

1 2 1 1

0 1 1 1

0 1 1 1

2 3
R R,

~

R R
3 2

1 2 1 1

0 1 1 1

0 0 0 0

+

−

−

















~

The system of equations is consistent.

Hence, w1 is in the span {v1, v2, v3}.

Let w v v v2 1 1 2 2 3 3

1 2 30 8 9 1 6 4 2 4 1 1 2 5

= + +

= + − + −

=

c c c

c c c( , , ) ( , , ) ( , , ) ( , , )

(cc c c c c c c c c1 2 3 1 2 3 1 2 32 6 4 2 4 5+ − + + − +, , )

Equating corresponding components,

 

c c c

c c c

c c c

1 2 3

1 2 3

1 2 3

2 0

6 4 2 8

4 5 9

+ − =

+ + =

− + =

The augmented matrix of the system is

  

1 2 1 0

6 4 2 8

4 1 5 9

−

−

















Reducing the augmented matrix to row echelon form,

 

R R R R
2 1 3 1

6 4

1 2 1 0

0 8 8 8

0 9 9 9

− −

−

−

−

















,

~

     

−











−
− −

−

















1

8

1

9

1 2 1 0

0 1 1 1

0 1 1 1

2 3
R R,

~
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3 2

1 2 1 0

0 1 1 1

0 0 0 0

+

−

− −

















~

The system of equations is consistent.

Hence, w2 is in the span {v1, v2, v3}.

From part (i) and (ii), we conclude that

span { , , } span { , }v v v w w1 2 3 1 2=

Hence, {v1, v2, v3} and {w1, w2} span the same subspace of R3.

Exercise 2.3

1. Which of the following are subspaces 

of R3 and R4 under the standard 

operations?

  (i) W x y z x z= = ={ }( , , ) | 0

  (ii) W x y z z= >{ }( , , ) | 0

 (iii) W x y z x z= = −{ }( , , ) |

 (iv) W x y z y z= = ={ }( , , ) | 1

  (v) W x y z y x= = +{ }( , , ) | 2 1

 (vi) W x x x x x x x

x x x

= = +{

= − }

( , , , ) |1 2 3 4 3 1 2

4 1 2

2

3and

[Ans. : (i), (iii), (vi)]

2. Which of the following are subspaces 

of P2 and P3 under the standard 

operations?

  (i) W a a x a x a= + + ={ }0 1 2

2

0 2|

  (ii) W = {a0 + a1x + a2 x
2 | a0 = a1 + a2}

 

(iii) W a a x a x a x

a a a a

= + + +{
+ + + = }

0 1 2

2

3

3

0 1 2 3 0

|

[Ans. : (ii), (iii)]

3. Which of the following are subspaces 

of M22 and M23 under the standard 

operations?

 (i) W
a b

c d
c=









 =












0

 (ii) W
a b

c d
b a c d a=









 = = = −












,

(iii) W
a b c

d e f
a c=









 = +












2 1

(iv) W
a b c

d e f
a c

b d f

=








 + =







+ + =




0

0and

[Ans. : (i), (ii), (iv)]

4. Which of the following are subspaces 

of Mnn under standard operations?

  (i) W = {Ann | Ann is upper triangular}

  (ii) W = {Ann | det (A) = 1}

 (iii) W = {Ann | A
T = –A}

 (iv) W = {Ann | det (A) = 0}

[Ans. : (i), (iii)]

5. Which of the following are subspaces of 

F(– ∞, ∞) under standard operations?

  (i) W f x= { }f | ( ) is constant

  (ii) W f= ={ }f | ( )0 2
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 (iii) W f= ={ }f | ( )0 0

 (iv)  W = {f | f(x) is integrable on the 

interval [a, b]}

  (v) W = {f | f(x2) = [f(x)]2}

[Ans. : (i), (iii), (iv)]

6. Which of the following are the linear 

combinations of v1 = (1, –3, 2) and 

v2 = (2, –1, 1)?

 (i) v = (1, 7, – 4) (ii) v = (2, –5, 4) 

(iii) v = (0, 1, 4)

[Ans. : (i), (ii)]

7. Which of the following are the linear 

combinations of p1 = 5 – 2x + x2, 

p2 = –3x + 2x2 and p3 = 3 + x?

 (i) v = 0 (ii) v = –3 + 4x + x2

(iii) 2 – 5x + 3x2

[Ans. : (i), (ii)]

8. Which of the following are the linear 

combinations of 

A A

A

1 2

3

1 2

0 3

2 3

0 1

2 1

2 1

=
−







 =

−











=
−









,

?and

 (i) A =
− −











3 9

4 2
 (ii) A = 

1 2

1 0−











[Ans. : (i)]

9. Express the vector v = (1, –2, 5) as 

a linear combination of the vectors 

v1 = (1, 1, 1,), v2 = (1, 2, 3), and 

v3 = (2, –1, 1).

[Ans. : v = –6v1 + 3v2 + 2v3]

10.  Express the matrix A =
−











3 1

1 1
 

as a linear combination of 

A A A
1 2 3

1 1

1 0

0 0

1 1

0 2

0 1
=








 =









 =

−









, ,

[Ans. : A = 3A1 – 2A2 – A3]

11.  For which value of l will the vector 

v = (1, –2, l) be a linear combination 

of the vectors v1 = (3, 0, –2) and 

v2 = (2, –1, –5)?

[Ans. : l = –8]

12.  Find a condition for which the vector 

v = (a, b, c) is a linear combination 

of the vectors v1 = (1, –3, 2) and 

v2 = (2, –1, 1).

[Ans. : a – 3b – 5c = 0]

13.  Determine whether the following 

vectors span the vector space R3:

   (i)  v1 = (1, 2, 3), v2 = (0, 1, 2), 

v3 = (0, 0, 1)

   (ii)  v1 = (1, 2, 5), v2 = (1, 3, 7), 

v3 = (1, –1, –1)

  (iii)  v1 = (2, –1, 3), v2 = (4, 1, 2), 

v3 = (8, –1, 8)

  (iv)  v1 = (1, 2, 6), v2 = (3, 4, 1), 

v3 = (4, 3, 1), v4 = (3, 3, 1)

[Ans. : (i) yes  (ii) no  (iii) no  (iv) yes]

14.  Which of the following vectors span 

the vector space R4?

   (i)  v1 = (1, 2, 1, 0), v2 = (1, 1, –1, 0), 

v3 = (0, 0, 0, 1)

  (ii)  v1 = (1, 1, 0, 0), v2 = (1, 2, –1, 1), 

v3 = (0, 0, 1, 1) v4 = (2, 1, 2, 1)

[Ans. : (ii)]

15.  Determine whether the polynomials 

p1 = 1 + 2x + x3, p2 = 2 – x + x2, 

p3 = 2 + x3, p4 = 2 – 5x + x2 – x3 

span p3?

[Ans. : no]

16.  Let v1 = (1, 0, 0, 1), v2 = (1, –1, 0, 0), 

v3 = (0, 1, 2, 1). Which of the follow-

ing vectors are in the span {v1, v2, v3}?

    (i) (0, 1, 1, 0) (ii) (–1, 4, 2, 2)  

(iii) (2, –1, 3, 1)

[Ans. : (iii)]
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2.7  LINEAR DEPENDENCE AND INDEPENDENCE

Let S = {v1, v2, … , v
r
} is a nonempty set of vectors such that

 k k k
r r1 1 2 2

v v v 0+ + + =�  (2.6)

If the homogeneous system obtained from (2.6) has only a trivial solution (i.e., k1 = 0, 

k2 = 0, … , kr = 0) then S is called a linearly independent set. If the system has a non-

trivial solution (i.e., at least one k is non-zero) then S is called a linearly dependent set.

Note: If the determinant of the coefficient matrix of (2.6) is zero then vectors are lin-

early dependent, otherwise they are linearly independent.

Theorem 2.5: A set S of vectors v1, v2, … , vr is

 (i)  Linearly dependent if and only if at least one vector of S can be expressed as a 

linear combination of the remaining vectors in S.

 (ii)  Linearly independent if and only if no vector of S can be expressed as a linear 

combination of the remaining vectors in S.

 (iii) Linearly dependent if S contains zero vector as 0 v v v= + + +0 0 0
1 2

�

r
.

Theorem 2.6: A set S = {v1, v2} with exactly two vectors is linearly dependent if one 

vector is a scalar multiple of the other vector,

i.e., v1 = k1v2 or v2 = k2v1

Theorem 2.7: If S1 and S2 are two finite set of vectors such that S1 is a subset of S2 

( )1 2S S⊂  then if

 (i) S1 is linearly dependent then S2 is also linearly dependent

 (ii)  S2 is linearly independent then S1 is also linearly independent, i.e. every subset of 

a linearly independent set is linearly independent

Theorem 2.8: The set of vectors S = {v1, v2, … , vr} in Rn is linearly dependent if r > 

n i.e., number of unknowns is more than the number of equations in the homogeneous 

system obtained from Eq. (2.6).

Example 1: Which of the following sets of vectors in R3 and R4 are linearly 

dependent?

 (i) (4, –1, 2), (– 4, 10, 2), (4, 0, 1)

 (ii) (–2, 0, 1), (3, 2, 5), (6, –1, 1), (7, 0, –2)

 (iii) (0, 0, 2, 2), (3, 3, 0, 0), (1, 1, 0, –1)

 (iv) (1, 1, 2, 1), (1, 0, 0, 2), (4, 6, 8, 6), (0, 3, 2, 1)

Solution: Let v1 = (4, –1, 2), v2 = (– 4, 10, 2), v3 = (4, 0, 1) 

Consider, k1v1 + k2v2 + k3v3 = 0

 
k k k

k k k k

1 2 3

1 2 3 1

4 1 2 4 10 2 4 0 1 0 0 0

4 4 4 1

( , , ) ( , , ) ( , , ) ( , , )

( ,

− + − + =

− + − + 00 2 2 0 0 0
2 1 2 3

k k k k, ) ( , , )+ + =
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Equating corresponding components,

 

4 4 4 0

10 0

2 2 0

1 2 3

1 2

1 2 3

k k k

k k

k k k

− + =

− + =

+ + =

The augmented matrix of the system is

 

4 4 4 0

1 10 0 0

2 2 1 0

−

−

















Reducing the augmented matrix to reduced row echelon form,

 

1

4

1 1 1 0

1 10 0 0

2 2 1 0

1







−
−

















R

~

 

R R R R
2 1 3 1

2

1 1 1 0

0 9 1 0

0 4 1 0

+ −

−

−

















,

~

     

1

9

1 1 1 0

0 1
1

9
0

0 4 1 0

2







−

−



















R

~

    

R R
3 2

4

1 1 1 0

0 1
1

9
0

0 0
13

9
0

−

−

−





















~

The system has a trivial solution.

Hence, v1, v2, v3 are linearly independent.

 (ii)  Let v1 = (–2, 0, 1), v2 = (3, 2, 5), v3 = (6, –1, 1), v4 = (7, 0, –2) 

Consider, k k k k
1 1 2 2 3 3 4 4
v v v v 0+ + + = .

k1 (–2, 0, 1) + k2 (3, 2, 5) + k3 (6, –1, 1) + k4 (7, 0, –2) = (0, 0, 0)

 (–2k1 + 3k2 + 6k3 + 7k4, 2k2 – k3, k1 + 5k2 + k3 – 2k4) = (0, 0, 0)
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Equating corresponding components,

 

− + + + =

− =

+ + − =

2 3 6 7 0

2 0

5 2 0

1 2 3 4

2 3

1 2 3 4

k k k k

k k

k k k k

The number of unknowns, r = 4

The number of equations, n = 3

r > n

Hence, v1, v2, v3, v4 are linearly dependent.

 (iii)  Let v1 = (0, 0, 2, 2), v2 = (3, 3, 0, 0), v3 = (1, 1, 0, –1) 

Consider, k1v1 + k2v2 + k3v3 = 0

 
k k k

k k k

1 2 3

2 3 2

0 0 2 2 3 3 0 0 1 1 0 1 0 0 0 0

3 3

( , , , ) ( , , , ) ( , , , ) ( , , , )

( ,

+ + − =

+ + kk k k k
3 1 1 3

2 2 0 0 0 0, , ) ( , , , )− =

Equating corresponding components,

 

3 0

3 0

2 0

2 0

2 3

2 3

1

1 3

k k

k k

k

k k

+ =

+ =

=

− =

Solving these equations,

k1 = 0, k2 = 0, k3 = 0

Hence, v1, v2, v3 are linearly independent.

 (iv) Let v1 = (1, 1, 2, 1), v2 = (1, 0, 0, 2), v3 = (4, 6, 8, 6), v4 = (0, 3, 2, 1) 

 Consider, k1v1 + k2v2 + k3v3 + k4v4 = 0

 
k k k k

1 2 3 4
1 1 2 1 1 0 0 2 4 6 8 6 0 3 2 1 0 0 0 0( , , , ) ( , , , ) ( , , , ) ( , , , ) ( , , , )

(

+ + + =

kk k k k k k k k k k k k k
1 2 3 1 3 4 1 3 4 1 2 3 4

4 6 3 2 8 2 2 6 0 0 0 0+ + + + + + + + + =, , , ) ( , , , )

Equating corresponding components,

 

k k k

k k k

k k k

k k k k

1 2 3

1 3 4

1 3 4

1 2 3 4

4 0

6 3 0

2 8 2 0

2 6 0

+ + =

+ + =

+ + =

+ + + =

The augmented matrix of the system is

 

1 1 4 0 0

1 0 6 3 0

2 0 8 2 0

1 2 6 1 0
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Reducing augmented matrix to row echelon form,

 

R R R R R R
2 1 3 1 4 1

2

1 1 4 0 0

0 1 2 3 0

0 2 0 2 0

0 1 2 1 0

− − −

−

−



















, ,

~

 

( ) ,

~

− 





− −
−



















1
1

2

1 1 4 0 0

0 1 2 3 0

0 1 0 1 0

0 1 2 1 0

2 3R R

 

R R R R
3 2 4 2

1 1 4 0 0

0 1 2 3 0

0 0 2 2 0

0 0 4 4 0

+ −

− −

− −



















,

~

 

−









−


















1

2

1

4

1 1 4 0 0

0 1 2 3 0

0 0 1 1 0

0 0 1 1 0

3 4
R R,

~

 

R R
4 3

1 1 4 0 0

0 1 2 3 0

0 0 1 1 0

0 0 0 0 0

−

−



















~

The system has a non-trivial solution.

Hence, v1, v2, v3, v4 are linearly dependent.

Example 2: Which of the following sets of polynomials in P2 are linearly 

 dependent?

(i) 2 – x + 4x2, 3 + 6x + 2x2, 2 + 10x – 4x2  (ii)  2 + x + x2, x + 2x2, 2 + 2x + 3x2
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Solution:  Let p1 = 2 – x + 4x2, p2 = 3 + 6x + 2x2, p3 = 2 + 10x – 4x2

Consider, k1p1 + k2p2 + k3p3 = 0

 
k x x k x x k x x

k k k k

1

2

2

2

3

2

1 2 3 1

2 4 3 6 2 2 10 4 0

2 3 2

( ) ( ) ( )

( ) (

− + + + + + + − =

+ + + − ++ + + + − =6 10 4 2 4 02 3 1 2 3

2
k k x k k k x) ( )

Equating corresponding components,

 

2 3 2 0

6 10 0

4 2 4 0

1 2 3

1 2 3

1 2 3

k k k

k k k

k k k

+ + =

− + + =

+ − =

The augmented matrix of the system is

 

2 3 2 0

1 6 10 0

4 2 4 0

−

−

















Reducing the augmented matrix to row echelon form,

 

R
12

1 6 10 0

2 3 2 0

4 2 4 0

~

−

−

















 

( ) ,

~

− 





− −

−

















1
1

2

1 6 10 0

2 3 2 0

2 1 2 0

1 3R R

 

R R R R
2 1 3 1

2 2

1 6 10 0

0 15 22 0

0 13 18 0

− −

− −















,

~

 

1

15

1 6 10 0

0 1
22

15
0

0 13 18 0

2







− −

















R

~
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3 2

13

1 6 10 0

0 1
22

15
0

0 0
16

15
0

−

− −

−





















~

The system has a trivial solution.

Hence, the given polynomials are linearly independent.

(ii) Let p1 = 2 + x + x2, p2 = x + 2x2, p3 = 2 + 2x + 3x2

 Consider, k1p1 + k2p2 + k3p3 = 0

 

k x x k x x k x x

k k k k k x

1

2

2

2

3

2

1 3 1 2 3

2 2 2 2 3 0

2 2 2

( ) ( ) ( )

( ) ( )

+ + + + + + + =

+ + + + + (( )k k k x1 2 3

22 3 0+ + =

 Equating corresponding components,

 

2 2 0

2 0

2 3 0

1 3

1 2 3

1 2 3

k k

k k k

k k k

+ =

+ + =

+ + =

The augmented matrix of the system is

 

2 0 2 0

1 1 2 0

1 2 3 0

















Reducing augmented matrix to row echelon form,

 

1

2

1 0 1 0

1 1 2 0

1 2 3 0

1























R

~

      

R R R R
2 1 3 1

1 0 1 0

0 1 1 0

0 2 2 0

− −

















,

~

 

R R
3 2

2

1 0 1 0

0 1 1 0

0 0 0 0

−

















~
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The system has a non-trivial solution.

Hence, p1, p2, p3 are linearly dependent.

Example 3: Which of the following sets of matrices in M22 are linearly 

 dependent?

 (i) 
1 1

1 1

1 0

0 2

0 1

0 2





























, ,  (ii) 

1 1

1 2

1 0

0 2

0 3

1 2

2 6

4 6







































, , ,

Solution: Let A A A
1 2 3

1 1

1 1

1 0

0 2

0 1

0 2
=









 =









 =









, ,  

Consider,        k1A1 + k2A2 + k3A3 = 0

 

k k k

k k k k

1 2 3

1 2 1

1 1

1 1

1 0

0 2

0 1

0 2

0 0

0 0









 +









 +









 =











+ +
33

1 1 2 3
2 2

0 0

0 0k k k k+ +









 =











Equating corresponding components,

 

k k

k k

k

k k k

1 2

1 3

1

1 2 3

0

0

0

2 2 0

+ =

+ =

=

+ + =

The augmented matrix of the system is

 

1 1 0 0

1 0 1 0

1 0 0 0

1 2 2 0



















Reducing the augmented matrix to row echelon form,

    

R R R R R R
2 1 3 1 4 1

1 1 0 0

0 1 1 0

0 1 0 0

0 1 2 0

− − −

−

−



















, ,

~

  

R R R R
3 2 4 2

1 1 0 0

0 1 1 0

0 0 1 0

0 0 3 0

− +

−

−



















,

~
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~

− +

−

−



















1 3

1 1 0 0

0 1 1 0

0 0 1 0

0 0 0 0

2 4 3R R R

The system has a trivial solution.

Hence, A1, A2, A3 are linearly independent.

(ii) Let A A A A
1 2 3 4

1 1

1 2

1 0

0 2

0 3

1 2

2 6

4 6
=









 =









 =









 =









, , ,  

Consider, k1A1 + k2A2 + k3A3 + k4A4 = 0

 

k k k k
1 2 3 4

1 1

1 2

1 0

0 2

0 3

1 2

2 6

4 6

0 0

0 0









 +









 +









 +









 =











+ + + +

+ + + + +









 =

k k k k k k

k k k k k k k

1 2 4 1 3 4

1 3 4 1 2 3 4

2 3 6

4 2 2 2 6

0 0

0 00











Equating corresponding components,

 

k k k

k k k

k k k

k k k k

1 2 4

1 3 4

1 3 4

1 2 3 4

2 0

3 6 0

4 0

2 2 2 6 0

+ + =

+ + =

+ + =

+ + + =

The augmented matrix of the system is

 

1 1 0 2 0

1 0 3 6 0

1 0 1 4 0

2 2 2 6 0



















Reducing the augmented matrix to row echelon form,

 

R R R R R R
2 1 3 1 4 1

2

1 1 0 2 0

0 1 3 4 0

0 1 1 2 0

0 0 2 2 0

− − −

−

−



















, ,

~

 

R R
3 2

1 1 0 2 0

0 1 3 4 0

0 0 2 2 0

0 0 2 2 0

−

−

− −



















~
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4 3

1 1 0 2 0

0 1 3 4 0

0 0 2 2 0

0 0 0 0 0

+

−

− −



















~

The system has a non-trivial solution.

Hence, A1, A2, A3, A4 are linearly depdendent.

Example 4: Which of the following sets of vectors are linearly dependent?

 (i) v1 = (–1, 2, 4) and v2 = (5, –10, –20) in R3

 (ii) p1 = 1 – 2x + x2 and p2 = 4 – x + 3x2 in P2.

 (iii) A
1

3 4

2 0
=

−







  and A

2

3 4

2 0
=

−

−









  in M22.

Solution: (i) (5, –10, –20) = –5 (–1, 2, 4)

 v2 = –5v1

v2 is a scalar multiple of v1.

Hence, v1 and v2 are linearly dependent.

 (ii) p1 = 1 – 2x + x2, p2 = 4 – x + 3x2

Neither p1 is a scalar multiple of p2 nor p2 is a scalar multiple of p1.

Hence, p1 and p2 are linearly independent.

(iii)
 

−







 = −

−

−











= −

3 4

2 0
1

3 4

2 0

1
1 2
A A

A1 is a scalar multiple of A2.

Hence, A1 and A2 are linearly dependent.

Example 5: Show that the vectors v1 = (0, 3, 1, –1), v2 = (6, 0, 5, 1) and 

v3 = (4, -7, 1, 3) form a linearly dependent set in R4. Express each vector as a linear 

combination of the other two.

Solution: Consider, k1v1 + k2v2 + k3v3 = 0 ...(1)

 
k k k

k k k

1 2 3

2 3

0 3 1 1 6 0 5 1 4 7 1 3 0 0 0 0

6 4 3

( , , , ) ( , , , ) ( , , , ) ( , , , )

( ,

− + + − =

+
11 3 1 2 3 1 2 3

7 5 3 0 0 0 0− + + − + + =k k k k k k k, , ) ( , , , )

Equating corresponding components,

 

6 4 0

3 7 0

5 0

3 0

2 3

1 3

1 2 3

1 2 3

k k

k k

k k k

k k k

+ =

− =

+ + =

− + + =
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The augmented matrix of the system is

 

0 6 4 0

3 0 7 0

1 5 1 0

1 1 3 0

−

−



















Reducing the augmented matrix to row echelon form,

 

R
13

1 5 1 0

3 0 7 0

0 6 4 0

1 1 3 0

~
−

−



















 

R R R R
2 1 4 1

3

1 5 1 0

0 15 10 0

0 6 4 0

0 6 4 0

− +

− −



















,

~

 

−



























1

15

1 5 1 0

0 1
2

3
0

0 6 4 0

0 6 4 0

2
R

~

 

R R R R
3 2 4 2

6 6

1 5 1 0

0 1
2

3
0

0 0 0 0

0 0 0 0

− −























,

~

The system has a non-trivial solution.

Hence, v1, v2, v3 are linearly dependent.

The corresponding system of equations is

 

k k k

k k

1 2 3

2 3

5 0

2

3
0

+ + =

+ =
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Solving these equations,  

 

k k

k k

2 3

1 3

2

3

7

3

= −

=

Substituting in equation (1),

 

7

3

2

3

7

3

2

3

3 1 3 2 3 3

1 2 3

k k kv v v 0

v v v 0

− + =

− + =

 

v v v

v v v

v v v

1 2 3

2 1 3

3 1 2

2

7

3

7

7

2

3

2

7

3

2

3

= −

= +

= − +

Example 6: For what real values of λ  are the vectors

 

v
1

1

2

1

2
= , , ,λ − −





v v
2 3

1

2

1

2

1

2

1

2
= =− −





− −





, , , , ,λ λ  in R3 linearly dependent?

Solution: Consider, k k k
1 1 2 2 3 3
v v v 0+ + =

 

k k k1 2 3

1

2

1

2

1

2

1

2

1

2

1

2
0 0λ λ λ, , , , , , ( ,− −




+ − −




+ − −




= ,, )

, , ( ,

0

1

2

1

2

1

2

1

2

1

2

1

2
0 01 2 3 1 2 3 1 2 3λ λ λk k k k k k k k k− − − + − − − +




= ,, )0

Equating corresponding components,

 

λ

λ

λ

k k k

k k k

k k k

1 2 3

1 2 3

1 2 3

1

2

1

2
0

1

2

1

2
0

1

2

1

2
0

− − =

− + − =

− − + =

 ...(1)

The vectors are linearly dependent (i.e. non-trivial solution) if determinant of the 

coefficient matrix of (1) is zero.
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Coefficient matrix, A =

− −

− −

− −

























λ

λ

λ

1

2

1

2

1

2

1

2

1

2

1

2

 

det ( )A =

− −

− −

− −

= −




+ − −




−

λ

λ

λ

λ λ
λ

1

2

1

2

1

2

1

2

1

2

1

2

1

4

1

2 2

1

4

12

22

1

4 2

3

4

1

4

3

+





= − −

λ

λ
λ

If

 

det ( ) ,

,

A =

− − =

= −

0

3

4

1

4
0

1
1

2

3

then

λ
λ

λ

Hence, for λ = 1 and λ = −
1

2
, the set of vectors is linearly dependent.

2.7.1  Geometrical Interpretation of Linear Dependence 

and Independence

 (i)  Two vectors are linearly dependent if v v v v
1 1 2 2 2 1
= =k kor  otherwise, they are 

linearly independent. Geometrically, it states that the two vectors in R2 or R3 are 

linearly  dependent if they lie on the 

same line with their starting points 

at the origin.

 (ii)  Three vectors are linearly de-

pendent if at least one vector is 

the linear combination of the re-

maining two, i.e. v v v
1 1 2 2 3
= +k k  

or any two vectors are scalar 

multiple of the third vector i.e. 

v v v v
2 1 1 3 2 1
= =k k, . This shows 

that v
1
 lies in the plane spanned by 

x

y

z

v1

v2

v2

x

z

yo o

k 1
v 2

v 1
 =

Linearly

dependent

Linearly

independent

Fig. 2.1
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v
2

 and v
3

 or all three vectors lie on the same line. Geometrically, it states that 

the three vectors in R3 are linearly dependent if either they lie on the same plane 

or they lie on the same line with their starting points at the origin.

Example 1: If v1 = (4, 6, 8), v2 = (2, 3, 4), v3 = (-2, -3, -4)  are three vectors in 

R3 that have initial points at the origin. Do they lie on the same line?

Solution:

 

v

v

v

v

1

2

3

2

4 6 8

2 2 3 4

2

2 3 4

1 2 3 4

1

=

=

=

= − − −

= −

= −

( , , )

( , , )

( , , )

( , , )

( )

Since v
1
 and v

3
 are scalar multiples of v

2
,  they lie on the same line.

Example 2: Show that there is no line containing the points (1, 1), (3, 5), 

(–1, 6) and (7, 2)

Solution: Since none of the points is a scalar multiple of the other, they do not lie 

on the same line.

2.7.2 Linear Dependence and Independence of Functions

If f f f1 1 2 2 1= = = −f x f x f x nn n( ), ( ), , ( ) ( )… are  times differentiable functions on the 

interval ( )−∞ ∞,  then the Wronskian of these functions is

W

f x f x f x

f x f x f x

f x f

n

n

n n

=

′ ′ ′

− −

1 2

1 2

1

1

2

1

( ) ( ) ( )

( ) ( ) ( )

( ) (( ) ( )

…

…

� � �

xx f xn

n) ( )( )
�

−1

Linearly

dependent

Linearly

independent

x

y

z

o

v1

v2

v3

v2

x

z

yo

v1

v3

x

y

z

o

v1 k1v1v2 =

k2v1v3 =

Linearly dependent

x

y

z

o

v2

2v2v1 =

(−
1)v 2

v 3
 =

Fig. 2.2

Fig. 2.3
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Theorem 2.9:  If the Wronskian of (n – 1) times differentiable functions on the inter-

val  ( , )−∞ ∞  is not identically zero on this interval then these functions are linearly 

independent.

Note: If the Wronskian of the functions is identically zero on the interval ( , ),−∞ ∞  

then no conclusion can be made about the linear dependence or independence of the 

functions.

Example 1: Which of the following sets of functions F( )−∞ ∞,  are linearly 

independent?

 (i) x, sin x  (ii) 1, ex,e2x  (iii) ex, xex, x2 ex  (iv) 6, 3 sin2 x, 2 cos2 x 

(v) sin (x + 1), sin x, cos x   (vi) (3 – x)2, x2 – 6x, 5

Solution: The Wronskian of the functions is

W
x x

x

x x x

=

= −

sin

cos

cos sin

1

Since, this function is not zero for all values of x in the interval (– ∞, ∞), the given 

functions are linearly independent.

 (ii) The Wronskian of the functions is

W

e e

e e

e e

e e e e

e

x x

x x

x x

x x x x

x

=

= − − +

=

1

0 2

0 4

1 4 2 0 0

2

2

2

2

3 3 2

3

( ) ( ) ( )

Since this function is not zero for all values of x in the interval (– ∞, ∞), the given 

functions are linearly independent.

 (iii) The Wronskian of the functions is

 

W

e xe x e

e xe e x e xe

e x e x x e

e x e

x x x

x x x x x

x x x

x x

= + +

+ + +

= +

2

2

2

2

2 4 2

1

( ) ( )

( ) ⋅⋅ + + − + ⋅ + 

− + + − +

( ) ( ) ( )

( ) (

x x e x x e x e

xe x x e x x

x x x

x x

2 2

2 2 2

4 2 2 2

4 2 2 )) ( ) ( )

( )

e x e x e x e

e x

x x x x

x

2 2 2 2

3 2

2 1

2

  + + − + 

= −

Since this function is not zero for all values of x in the interval ( , ),−∞ ∞  the given 

functions are linearly independent.
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 (iv) The Wronskian of the function is

 

W

x x

x x x x

x x

x

= −

−

= −

6 3 2

0 6 4

0 6 2 4 2

6 24

2 2
sin cos

sin cos cos sin

cos cos

sin ccos cos cos sin cosx x x x x2 24 2

0

+( )

=

No conclusion can be made about the linear independence of these functions.

From trigonometric identity,

 

6 6 6

2 3 3 2

2 2

2 2

= +

= +

sin cos

( sin ) ( cos )

x x

x x

This shows that 6 can be expressed as a linear combination of 3 sin2 x and 2 cos2x.

Hence, the given functions are linearly dependent.

Note: Appropriate identities can be used directly to show linear dependence without 

using Wronskian.

(v) sin ( ) sin cos cos sin

sin cos , cos ,

x x x

k x k x k k

+ = +

= + = =

1 1 1

1
1 2 2

where 
1

ssin1

This shows that the function sin (x + 1) can be expressed as a linear combination 

of sin x and cos x.

Hence, the given functions are linearly dependent.

 (vi) Let f f f1

2 2

2

2

33 9 6 6 5= − = − + = − =( ) , ,x x x x x

Here,

f

f f

1

2

2

3 2

9 6

9

5
5 6

9

5

= − +

= ⋅ + −

= +

x x

x x

This shows that f
1

 can be expressed as a linear combination of f
2

 and f
3
.

Hence, the given functions are linearly dependent.

Exercise 2.4

1. Which of the following sets of vectors 

in R3 are linearly dependent?

 (i) (1, 2, –1), (3, 2, 5) 

 (ii) (4, –6, 2), (2, –3, 1)

 (iii)  (–3, 0, 4), (5, –1, 2), (1, 1, 3)

 (iv) (1, –1, 1), (2, 1, 1), (3, 0, 2)

 (v)  (–2, 0, 1), (8, –1, 3), (6, –1, 1),  

(3, 2, 5)

[Ans. : (ii), (iv), (v)]
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2.  Which of the following sets of vectors 

in R4 are linearly dependent?

  (i)  (1, 2, –1, 0), (1, 3, 1, 2), (4, 2, 1, 0), 

(6, 1, 0, 1)

  (ii)  (2, –1, 3, 2), (1, 3, 4, 2), (3, –5, 2, 2)

 (iii)  (3, 8, 7, –3), (1, 5, 3, –1),  

(2, –1, 2, 6), (1, 4, 0, 3)

 (iv)  (1, 0, 2, 1), (3, 1, 2, 1), (4, 6, 2, 4), 

(–6, 0, –3, 0)

[Ans. : (ii), (iv)]

3. Which of the following sets of vectors 

in P2 are linearly dependent?

 (i) 1 2 4 3 7 10
2 2

+ + + +x x x x,

 (ii) 3 2 5 4 3
2 2 2

+ + − + −x x x x x, ,

 (iii) 1 + 2x + 3x2 , 3 - 2x + x2, 1 - 6x - 5x2

 (iv)  1 + x + 4x2, x + 4x2, 1 - 2x - 3x2, 

5 - x + 6x2

[Ans. : (iii), (iv)]

4. Show that S = 

{1 - x - x3, - 2 + 3x + x2 + 2x3, 1+x2 + 5x3} 

is linearly independent in P3.

5. Which of the following sets of vectors 

in M
22

 are linearly dependent?

  (i) 
−









−









3 4

2 0

1 3

0 1
,

  (ii) 
1 1

1 3

1 2

3 4

2 3

4 7





























, ,

 (iii) 
1 1

1 1

2 3

1 2

3 1

2 1

2 2

1 1







































, , ,

 (iv) 
1 0

2 1

3 1

2 1

4 6

2 4

6 0

3 0





























−

−









, , ,

[Ans. : (ii), (iv)]

6. Show that the following vectors form 

a linearly dependent set in respective 

vector spaces. Express each vector as 

a linear combination of the other two.

 (i)  v1 = (3, 1, – 4), v2 = (2, 2, –3), 

v3 = (0, – 4, 1) in R3

 (ii)  v1 = (1, 0, 2, 1), v2 = (3, 1, 2, 1), 

v3 = (4, 6, 2, – 4), 

v4 = (– 6, 0, –3, – 4) in R4

 (iii)  p1 = 2 + x + x2, p2 = x + 2x2, 

p3 = 2 + 2x + 3x2

 (iv) A A

A A

1 2

3 4

1 1

2 1

1 0

0 2

4 6

8 6

0 3

2 1

=








 =











=








 =











, ,

,

Ans. : v v v

v v v v

p p p

( )

( )

( )

( )

i

ii

iii

iv

3 1 2

3 1 2 4

3 1 2

3

2 3

2 6 2

= −

= − + +

= +

=A 33 1 2 4A A A+ +



















7. For what values of l are the vectors 

(–1, 0, –1), (2, 1, 2) and (1, 1, l) in R3 

linearly dependent?

[Ans. : l = 1]

8. If the following vectors in R3 have 

their initial points at the origin then 

check if they lie on the same plane.

 (i)  v1 = (2, –2, 0), v2 = (6, 1, 4), 

v3 = (2, 0, – 4)

 (ii)  v1 = (1, 2, 3), v2 = (3, –2, 1), 

v3 = (1, –6, –5)

[Ans. : (i) no (ii) yes]

9.  If the following vectors in R3 have 

their initial points at the origin then 

check if they lie on the same line.

 (i) (–1, –2, –3), (3, 9, 0), (6, 0, –1)

 (ii) (–2, –1, 1), (6, 3, –3), (– 4, –2, 2)

[Ans. : (i) no (ii) yes]

10.  Which of the following sets of 

functions in F(– ∞, ∞) are linearly 

independent?

 (i) 1, sin x, sin 2x   (ii) 1, x, e x 

(iii) cos 2x, sin2 x, cos2 x (iv) 1, x, x2

[Ans. : (i), (ii), (iv)]
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2.8  BASIS

The set of vectors S = {v1, v2, … , v
n
} in a vector space V is called a basis for V if

 (i) S is linearly independent

 (ii) S spans V

Note: Basis for a vector space is not unique.

Theorem 2.10: If S = {v1, v2, … , v
n
} is a basis for a vector space V then every vector 

in V can be expressed as a linear combination of the vectors in S in exactly one way.

Examples on Standard or Natural Basis

Example  1: Show that the vectors e1 = i = (1, 0, 0), e2 = j = (0, 1, 0) and 

e3= k = (0, 0, 1) form a basis for R3.

Solution: Let b = (b1, b2, b3) be an arbitrary vector in R3 and can be expressed as a 

linear combination the of given vectors.

 

b e e e= + +

= + +

=

k k k

b b b k k k

1 1 2 2 3 3

1 2 3 1 2 3
1 0 0 0 1 0 0 0 1( , , ) ( , , ) ( , , ) ( , , )

(kk k k
1 2 3
, , )

Equating corresponding components,

 k1 = b1, k2 = b2, k3 = b3

Since for each choice of b1, b2, b3 some scalars k1, k2, k3 exist, the given vectors 

span R3.

Now consider,
k k k

k k k

k k

1 1 2 2 3 3

1 2 3

1

1 0 0 0 1 0 0 0 1 0 0 0

e e e 0+ + =

+ + =( , , ) ( , , ) ( , , ) ( , , )

( , 22 3 0 0 0, ) ( , , )k =

Equating corresponding components,

k1 = 0, k2 = 0, k3 = 0

Thus, e1, e2 and e3 are linearly independent.

Hence, e1, e2 and e3 form a basis for R3 and is known as standard or natural basis 

for R3.

Note: In general, the set S = {e1, e2, … , en} where e1 = (1, 0, … , 0), e2 = (0, 1, … , 0), … , 

en = (0, 0, … , 1) form a basis for Rn and is known as standard or natural basis for Rn.

Example 2: Show that the set S = {1, x, x2, … , xn} is a basis for the vector 

space Pn.

Solution: Each polynomial p in Pn can be written as

 p = + + + +a a x a x a x
n

n

0 1 2

2
�
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which is a linear combination of the vectors 1, x, x2, … , xn. Thus, the set S spans P
n
.

Now consider,

  k k x k x k x
n

n

1 2 3

2

1
+ + + + =

+
� 0

Equating corresponding components,

k1 = 0, k2 = 0, k3 = 0, … , kn + 1 = 0

Thus, the set S is linearly independent.

Hence, the set S is a basis for Pn and is known as a standard or natural basis for Pn.

Example 3: Show that the set S = {v1, v2, v3, v4} is a basis for the vector space 

M22 where, v v v v
1 2 3 4

1 0

0 0

0 1

0 0

0 0

1 0

0 0

0 1
= = = =







































, , ,

Solution: Let b =










b b

b b

1 2

3 4

 be an arbitrary vector in M22 and can be expressed as 

the linear combination of the given vectors.

 b v v v v= + + +k k k k
1 1 2 2 3 3 4 4

b b

b b
k k k k

1 2

3 4

1 2 3 4

1 0

0 0

0 1

0 0

0 0

1 0

0 0







 =









 +









 +









 +

00 1

1 2

3 4











=










k k

k k

Equating corresponding components,

k1 = b1, k2 = b2, k3 = b3, k4 = b4

Since for each choice of b1, b2, b3, b4 some scalars k1, k2, k3, k4 exist, the set S spans M22.

Now consider,

 k1v1 + k2v2 + k3v3 + k4v4 = 0

k k k k
1 2 3 4

1 0

0 0

0 1

0 0

0 0

1 0

0 0

0 1

0 0

0 0









 +









 +









 +









 =



















 =











k k

k k

1 2

3 4

0 0

0 0

Equating corresponding components,

 k1 = 0, k2 = 0, k3 = 0, k4 = 0

Thus, the set S is linearly independent.

Hence, the set S is a basis for M22 and is known as standard or natural basis 

for M22.
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Note: In general, the standard basis for M
mn

 consists of mn different matrices with 

single entry as 1 and remaining entries as 0.

Examples on Basis

Example 4: Show that the set S = {v1, v2, v3} is a basis for R3, where v1 = (1, 0, 0), 

v2 = (2, 2, 0) and v3 = (3, 3, 3)

Solution:  Let b = (b1, b2, b3) be an arbitrary vector in R3 and can be expressed as a 

linear combination of given vectors.

 b = k1v1 + k2v2 + k3v3 ...(1)

( , , ) ( , , ) ( , , ) ( , , )

( ,

b b b k k k

k k k k

1 2 3 1 2 3

1 2 3 2

1 0 0 2 2 0 3 3 3

2 3 2 3

= + +

= + + + kk k
3 3
3, )

Equating corresponding components,

 

k k k b

k k b

k b

1 2 3 1

2 3 2

3 3

2 3

2 3

3

+ + =

+ =

=

 ...(2)

Coefficient matrix,    A =

















1 2 3

0 2 3

0 0 3

 
det ( )A =

= ≠

1 2 3

0 2 3

0 0 3

6 0

Since the determinant of the coefficient matrix obtained from equation (2) is non-

zero, the set S spans V.

To prove that S is linearly independent, we need to show that

 k k k
1 1 2 2 3 3
v v v 0+ + =  ...(3)

has only a trivial solution, i.e. k1 = k2 = k3 = 0. Comparing equation (3) with equation (1), 

we observe that the coefficient matrix of the equations (2) and (3) is same.

Since determinant of the coefficient matrix of equation (3) is non-zero, the system 

has only trivial solution.

Hence, S is linearly independent and spans R3 and so is a basis for R3.

Note: 1. To show the set of vectors S to be a basis of a vector space V, it is sufficient 

to the prove that the determinant of the coefficient matrix obtained from equation  

(2) is non-zero.

 2.  If the determinant of the coefficient matrix is zero, S does not span V and hence 

S is not a basis of V.
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Example 5:  Determine whether the following set of vectors form a basis for R3. (i)  (1, 1, 1), (1, 2, 3), (2, –1, 1)
 (ii)  (1, 1, 2), (1, 2, 5), (5, 3, 4)

Solution: Let b = { , , }b b b
1 2 3

 be an arbitrary vector in R3 and can be expressed as a 

linear combination of given vectors.

(i) { , , } ( , , ) ( , , ) ( , , )

( ,

b b b k k k

k k k k k

1 2 3 1 2 3

1 2 3 1

1 1 1 1 2 3 2 1 1

2 2

= + + −

= + + +
22 3 1 2 3

3− + +k k k k, )

k k k b

k k k b

k k k b

1 2 3 1

1 2 3 2

1 2 3 3

2

2

3

+ + =

+ − =

+ + =

Coefficient matrix,     A = −

















1 1 2

1 2 1

1 3 1

 

det ( )

( ) ( ) ( )

A = −

= + − + + −

=

1 1 2

1 2 1

1 3 1

1 2 3 1 1 1 2 3 2

5 ≠ 0

Hence, the given set of vectors forms a basis for R3.

(ii) ( , , ) ( , , ) ( , , ) ( , , )

( ,

b b b k k k

k k k k k

1 2 3 1 2 3

1 2 3 1 2

1 1 2 1 2 5 5 3 4

5 2

= + +

= + + + ++ + +3 2 5 4
3 1 2 3

k k k k, )

 

k k k b

k k k b

k k k b

1 2 3 1

1 2 3 2

1 2 3 3

5

2 3

2 5 4

+ + =

+ + =

+ + =

Coefficient matrix, A =

















1 1 5

1 2 3

2 5 4

det ( )

( ) ( ) ( )

A =

= − − − + −

=

1 1 5

1 2 3

2 5 4

1 8 15 1 4 6 5 5 4

0

Hence, the given set of vectors does not form a basis for R3.
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Example 6:  Determine whether the following set of vectors forms a basis for P2.

 (i) – 4 + x + 3x2, 6 + 5x + 2x2, 8 + 4x + x2

 (ii)  1 – 3x +2x2, 1 + x + 4x2, 1 – 7x

Solution: Let b = b1 + b2x +b3x
2 be an arbitrary polynomial in P2 and can be written 

as a linear combination of the given vectors.

(i)
 

b b x b x k x x k x x k x x

k k

1 2 3

2

1

2

2

2

3

2

1

4 3 6 5 2 8 4

4 6

+ + = − + + + + + + + +

= − +

( ) ( ) ( )

( 22 3 1 2 3 1 2 3

28 5 4 3 2+ + + + + + +k k k k x k k k x) ( ) ( )

Equating corresponding coefficients,

− + + =

+ + =

+ + =

4 6 8

5 4

3 2

1 2 3 1

1 2 3 2

1 2 3 3

k k k b

k k k b

k k k b

Coefficient matrix, A =

−















4 6 8

1 5 4

3 2 1

det ( )

( ) ( ) ( )

A =

−

= − − − − + −

= − ≠

4 6 8

1 5 4

3 2 1

4 5 8 6 1 12 8 2 15

26 0

Hence, the given set of vectors forms a basis for P2.

(ii)

 

b b x b x k x x k x x k x

k k k

1 2 3

2

1

2

2

2

3

1 2 3

1 3 2 1 4 1 7+ + = − + + + + + −

= + + +

( ) ( ) ( )

( ) (−− + − + +3 7 2 4
1 2 3 1 2

2
k k k x k k x) ( )

Equating corresponding components,

k k k b

k k k b

k k b

1 2 3 1

1 2 3 2

1 2 3

3 7

2 4

+ + =

− + − =

+ =

Coefficient matrix, A = − −

















1 1 1

3 1 7

2 4 0

 det ( )A = − −

1 1 1

3 1 7

2 4 0

 

= − + − −

=

1 28 1 14 1 12 2

0

( ) ( ) ( )

Hence, the given set of vectors does not form a basis for P2.
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Example 7:  Show  that  S  =  {v1,  v2,  v3,  v4}  is  a  basis  for  M22  where 

v v
1 2

1 2

1 2

0 1

1 0
=

−









 =

−

−









, , v v

3 4

0 2

3 1

0 0

1 2
=








 =

−









,

Solution: Let b =










b b

b b

1 2

3 4

 be an arbitrary vector in M22 and can be expressed as 

the linear combination of the given vectors.

 b v v v v= + + +k k k k
1 1 2 2 3 3 4 4

b b

b b
k k k k

1 2

3 4

1 2 3

1 2

1 2

0 1

1 0

0 2

3 1









 = −









 +

−

−









 +









 + 44

1 1 2 3

1 2 3 4 1 3 4

0 0

1 2

2 2

3 2 2

−











=
− +

− + − − + +











k k k k

k k k k k k k

Equating corresponding components,

k b

k k k b

k k k k b

k k k b

1 1

1 2 3 2

1 2 3 4 3

1 3 4 4

2 2

3

2 2

=

− + =

− + − =

− + + =

Coefficient matrix,   A =
−

− −

−



















1 0 0 0

2 1 2 0

1 1 3 1

2 0 1 2

 

det ( )

( ) ( )

A =

−

− −

−

=

−

− −

= − + − − = −

1 0 0 0

2 1 2 0

1 1 3 1

2 0 1 2

1 2 0

1 3 1

0 1 2

1 6 1 2 2 3 ≠ 00

Hence, S is a basis for M22.

Example 8: Let V be the space spanned by v1 = cos2 x, v2 = sin2 x, v3 = cos 2x. 

Show that (i) S = {v1, v2, v3} is not a basis for V. (ii) Find a basis for V.

Solution: (i) From trigonometry, we have

cos sin cos
2 2

2x x x− =

i.e., v1 – v2 = v3 ...(1)

This shows that v3 can be expressed as a linear combination of v1 and v2. Therefore, 

v1, v2, v3 are linearly dependent.

Hence, S is not a basis for V.
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(ii) Since from equation (1), any one vector can be expressed as the linear combination 

of the remaining two, any two of vectors v1, v2, v3 will form a basis for V.

Example 9: Let V be the space spanned by v1 = sin x, v2 = cos x, v3 = x. Show that 

S = {v1, v2, v3} forms a basis for V.

Solution:  It is given that S spans V. To prove S linearly independent, we need to 

show that the Wronskian, W of v1, v2, v3 is non-zero.

W

v v v

v v v

v v v

x x x

x x

x

= ′ ′ ′

′′ ′′ ′′

= −

− −

1 2 3

1 2 3

1 2 3

1

sin cos

cos sin

sin cos xx

x x x x x x x

x

0

2 2
= − + − −

= −

sin (cos ) cos (sin ) ( cos sin )

This function is not zero for all values of x. This shows that S is linearly independent.

Hence, S forms a basis for V.

Basis for the Subspace Span (S)

If S = {v1, v2, … , vr} is a linearly independent set in a vector space V then S is a basis 

for the subspace span (S ).

2.9 FINITE DIMENSIONAL VECTOR SPACE

A vector space V is called finite dimensional if the number of vectors in its basis are 

finite. Otherwise, V is called infinite dimensional.

Theorem 2.11: If basis S = {v1, v2, … , vn} of a finite dimensional vector space V has 

n vectors then

 (i) Every set in V having more than n vectors is linearly dependent

(ii) Every set in V having less than n vectors does not span V

Theorem 2.12: From the above theorem, we conclude that all the bases for a finite-

dimensional vector space have the same number of vectors.

2.9.1 Dimension

The number of vectors in a basis of a non-zero finite dimensional vector space V is 

known as the dimension of V and is denoted by dim (V ).

Note: Dimensions of some standard vector spaces can be found directly from their 

standard basis.
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 (i) dim (Rn) = n

 (ii) dim (P
n
) = n + 1

 (iii) dim (M
mn

) = mn

 (iv) dim {0} = 0 [ ]∵0 0is linearly dependent, vector space { } has no basis.

Theorem 2.13: If dim (V ) = n and S = {v1, v2, … , vn} is a set in V with exactly n 

 vectors then S is a basis for V if either S is linearly independent or S spans V.

Theorem 2.14: Let S be a non-empty set of vectors in a vector space V.

 (i)  If S is a linearly independent set then S ∪ {v} is also linearly independent if the 

vector v does not belong to the span (S ).

 (ii)  If v is a vector in S that can be expressed as a linear combination of other vectors 

in S then

span (S) = span (S – {v})

Theorem 2.15: If W is a subspace of a finite dimensional vector space V then

 (i) W is finite dimensional and dim (W ) ≤ dim (V ); if dim (W ) = dim (V ) then W = V.

 (ii) Every basis for W is part of a basis for V.

2.10  BASIS AND DIMENSION FOR SOLUTION SPACE 
OF THE HOMOGENEOUS SYSTEMS

Let Ax = 0 be a homogeneous system of m equations in n unknowns. The basis and 

dimension for the solution space of this system can be found as follows:

 1. Solve the homogeneous system using Gaussian elimination method. If the 

system has only a trivial solution then the solution space is {0}, which has no 

basis and hence the dimension of the solution space is zero.

 2. If the solution vector x contains arbitrary constants (parameters) t1, t2, … , tp, 

express x as a linear combination of vectors x1, x2, … , xp with t1, t2, … , tp as 

coefficients.

i.e. x x x x= + + +t t t
p p1 1 2 2

�

 3.  The set of vectors {x1, x2, … , xp} form a basis for the solution space of Ax = 0 

and hence the dimension of the solution space is p.

Note: If the row echelon form has r non-zero rows then dimension of the solution 

space is p = n – r where n represents the number of unknowns.

Example 1: Determine the dimension and a basis for the solution space of the 

system

 

x x x

x x x

x x x

1 2 3

1 2 3

1 2 3

2 0

2 2 4 0

2 0

+ − =

− − + =

− − + =
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Solution:  The matrix form of the system is

1 1 2

2 2 4

1 1 2

0

0

0

1

2

3

−

− −

− −

































=

















x

x

x

The augmented matrix of the system is

1 1 2 0

2 2 4 0

1 1 2 0

−

− −

− −

















Reducing the augmented matrix to row echelon form,

R R R R2 1 3 12

1 1 2 0

0 0 0 0

0 0 0 0

+ +

−













,

~

The corresponding system of equations is

x1 + x2 – 2x3 = 0

Solving for the leading variables,

x1 = –x2 + 2x3

Assigning the free variables x2 and x3 arbitrary values t1 and t2 respectively, 

x1 = –t1 + 2t2, x2 = t1, x3 = t2 is the solution of the system.

The solution vector is

  x =

















=

− +















x

x

x

t t

t

t

1

2

3

1 2

1

2

2

      
=

−















+

















= +

t t

t t

1 2

1 1 2 2

1

1

0

2

0

1

x x

Hence, Basis = { , } ,x x1 2

1

1

0

2

0

1

=

−















































 Dimension = 2

Example 2: Find the dimension and a basis for the solution space of the system

3 0

5 0

1 2 3 4

1 2 3 4

x x x x

x x x x

+ + + =

− + − =  
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Solution:  The matrix form of the system is 

3 1 1 1

5 1 1 1

0

0

1

2

3

4

− −





























=









x

x

x

x

The augmented matrix of the system is

  
3 1 1 1 0

5 1 1 1 0− −











Reducing the augmented matrix to row echelon form,

1

3

1
1

3

1

3

1

3
0

5 1 1 1 0

1







− −















R

~

   

R R
2 1

5

1
1

3

1

3

1

3
0

0
8

3

2

3

8

3
0

−

− − −



















~

 

−























3

8

1
1

3

1

3

1

3
0

0 1
1

4
1 0

2
R

~

The corresponding system of equations is

x x x x

x x x

1 2 3 4

2 3 4

1

3

1

3

1

3
0

1

4
0

+ + + =

+ + =

Solving for the leading variables,

 

x x x x

x x x

1 2 3 4

2 3 4

1

3

1

3

1

3

1

4

= − − −

= − −
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Assigning the free variables x3 and x4 arbitrary values t1 and t2 respectively.

x t t

x t t t t

t

2 1 2

1 1 2 1 2

1

1

4

1

3

1

4

1

3

1

3

1

4

= − −

= − − −




− −

= −

Hence, x t x t t x t x t
1 1 2 1 2 3 1 4 2

1

4

1

4
= − = − − = =, , ,  is the solution of the system.

The solution vector is

   x =



















x

x

x

x

1

2

3

4

 =

−

− −

























1

4

1

4

1

1 2

1

2

t

t t

t

t

 =

−

−

























+
−



















t t
1 2

1

4

1

4

1

0

0

1

0

1

                     = +t t
1 1 2 2
x x

Hence,       Basis = {x1, x2}

      =

−

−

























−








































1

4

1

4

1

0

0

1

0

1

,








         Dimension = 2
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Example 3:  Find the dimension and a basis for the solution space of the system

x x x

x x x

x x x

1 2 3

1 2 3

1 2 3

2 3 0

2 5 0

2 0

+ − =

+ + =

− + =

Solution: The matrix form of the system is

1 2 3

2 5 1

1 1 2

0

0

0

1

2

3

−

−

































=

















x

x

x

The augmented matrix of the system is

1 2 3 0

2 5 1 0

1 1 2 0

−

−

















Reducing the augmented matrix to row echelon form,

R R R R2 1 3 12

1 2 3 0

0 1 7 0

0 3 5 0

− −

−

−















,

~

 

R R3 23

1 2 3 0

0 1 7 0

0 0 26 0

+

−













~

 

1

26

1 2 3 0

0 1 7 0

0 0 1 0

3







−













R

~

The corresponding system of equations is

x x x

x x

x

1 2 3

2 3

3

2 3 0

7 0

0

+ − =

+ =

=

Hence, x1 = 0, x2 = 0, x3 = 0 is the solution of the system.

The solution vector is

x

x

x

1

2

3

0

0

0

















=

















= { }0

Hence, the solution space has no basis and dimension = 0.
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Example 4:  Determine the dimension and basis for the following subspaces of 

R3 and R4.

 (i)  the plane 3x – 2y + 5z = 0

 (ii)  the line x = 2t, y = –t, z = 4t

 (iii)  all vectors of the form (a, b, c, d ) where d = a +b and c = a – b

Solution:  (i) 3x – 2y + 5z = 0

Solving for x,

x y z= −

2

3

5

3

Assigning y and z arbitrary values t1 and t2 respectively,

x t t= −

2

3

5

3
1 2

Any vector x lying on the plane is

x =













=

−


















=



















x

y

z

t t

t

t

t

2

3

5

3

2

3

1

0

1 2

1

2

1 ++

−


















= +

t

t t

2

1 1 2 2

5

3

0

1

x x

Thus, x1 and x2 span the given plane. Also, x1 and x2 are linearly independent as 

they are not scalar multiples of each other.

Hence, Basis = 

2

3

1

0

5

3

0

1



















−










































,

 Dimension = 2

 (ii) Any vector x lying on the line x = 2t, y = –t, z = 4t is

x x=

















= −

















= −

















=

x

y

z

t

t

t

t t

2

4

2

1

4

1

  Thus, x1 spans the given line and is also linearly independent as it is a non-

zero vector.
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Hence, Basis ={ }x1

2

1

4

= −

































Dimension = 1

 (iii) Let x =



















=
−

+



















a

b

c

d

a

b

a b

a b

     
=



















+
−



















= +

a b

a b

1

0

1

1

0

1

1

1

1 2
x x

Thus, x1 and x2 span the given set of vectors. Also, x1 and x2 are linearly indepen-

dent as one is not the scalar multiple of another.

Hence, Basis = { , } ,x x1 2

1

0

1

1

0

1

1

1

=



















−











































 Dimension = 2

Example 5: Find a basis and dimension of

W a a a a R a a a a a a= + = + = + ={ }( , , , ) | , ,1 2 3 4

4

1 2 2 3 3 40 0 0∈

Solution: 

a a a a

a a a a a

a a a a a

1 2 2 1

2 3 3 2 1

3 4 4 3 1

0

0

0

+ = ⇒ = −

+ = ⇒ = − =

+ = ⇒ = − = −

Any vector x in W is 

x =



















=
−

−



















=
−

−








a

a

a

a

a

a

a

a

a

1

2

3

4

1

1

1

1

1

1

1

1

1












= a1 1x
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Thus, x1 spans W and is also linearly independent as it is a non-zero vector.

Hence, Basis = x
1

1

1

1

1

{ } =
−

−











































Dimension =1

Example 6: Find the dimension and a basis for the following subspaces of P2
  

and P3.

 (i) all polynomials of the form a0 + a1 x + a2 x
2 + a3 x

3, where a0 = 0

 (ii)  all polynomials of the form ax 3 + bx 2 + cx + d, where b = 3a – 5d and 

c = d + 4a

Solution: (i) Let p be any polynomial in the given subspace of P2.

p = + + +

= + + =

a a x a x a x

a x a x a x a

0 1 2

2

3

3

1 2

2

3

3

0
0[ ]∵

Thus, the vectors x, x2 and x3 span the given subspace of P2. Also, x, x2 and x3 are 

linearly independent which can be verified as follows:

Let k x k x k x
1 2

2

3

3
+ + = 0

Equating corresponding coefficients,

 k1 = k2 = k3 = 0.

Thus, x, x2 and x3 are linearly independent.

Hence, Basis = {x, x2, x3}

 Dimension = 3

 (ii) Let p be any polynomial in the given subspace of P3.

p = + + +

= + − + + +

= + + + −

ax bx cx d

ax a d x d a x d

a x x x d x

3 2

3 2

3 2 2

3 5 4

3 4 5

( ) ( )

( ) ( ++ +

= +

x

a d

1

1 2

)

p p

Thus, p1 and p2 span the given subspace of P3. Also, p1 and p2 are linearly indepen-

dent as one is not the scalar multiple of another.

Hence, Basis = { , }p p1 2

 
= 

Dimension

( ), ( )x x x x x
3 2 23 4 5 1

2

+ + − + +{ }
=
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2.11  REDUCTION AND EXTENSION TO BASIS

Theorem 2.16:  Let S = {v1, v2, … , vn
} be a set of non-zero vectors in a vector space V.

  (i)   If S spans V then S can be reduced to a basis for V by removing some vectors 

from S and dim (V ) < n.

  (ii)   If S is linearly independent then S can be extended to a basis for V by adding  

some vectors into S and dim (V ) > n.

2.11.1  Reduction to Basis

Let S = {v1, v2, … , vn
} be a set of non-zero vectors in a real vector space V.

If V = span S and dim (V ) < n then S can be reduced to a basis for V as follows:

  1.  Consider,  k k k
n n1 1 2 2

v v v 0+ + + =�  ...(2.7)

 2.  Construct the augmented matrix of the homogeneous system obtained from 

Eq. (2.7). Reduce the homogeneous system to row echelon form.

 3.  The vectors corresponding to the columns containing the leading 1’s form a 

basis for V.

Note: By changing the order of vectors in S, other possible bases can be found.

2.11.2 Extension to Basis

Let S = {v1, v2, … , vm} be a linearly independent set of vectors in a real vector space 

V. If dim (V ) = n > m then S can be extended to a basis for V as follows:

 1.  Form the set S
m n

′ = { , , , , , }, ,v v e e ev1 2 1 2… …  where e1, e2, … , en  are the stan-

dard basis vectors for Rn.

 2. Follow all the steps (1 to 3) of 2.11.1.

Note: By changing the order of standard basis vectors e e e
1 2
, , ,…

n
 in S′, other 

possible bases can be found.

Example 1: Reduce S = {(1, 0, 0), (0, 1, –1), (0, 4, –3), (0, 2, 0)} to obtain a basis 

for W = span S

Solution: Consider,

k k k k

k k k

1 2 3 4

1 2

1 0 0 0 1 1 0 4 3 0 0 0 0

4

2 0( , , ) ( , , ) ( , , ) ( , ) ( , , )

( ,

,+ − + − + =

+ 33 4 2 32 3 0 0 0+ − − =k k k, ) ( , , )

Equating corresponding components,

k

k k k

k k

1

2 3 4

2 3

0

4 2 0

3 0

=

+ + =

− − =
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The augmented matrix of the system is

   

1 0 0 0 0

0 1 4 2 0

0 1 3 0 0− −

















Reducing the augmented matrix to row echelon form,

R R
3 2

1 0 0 0 0

0 1 4 2 0

0 0 1 2 0

+

















~

The leading 1’s appear in columns 1, 2 and 3.

Hence, Basis = {(1, 0, 0), (0, 1, –1), (0, 4, –3)}

Example 2: Reduce S = {1 – 2x + x2 + x3, 1 + x2, –2x + x3, 3 – 4x + 3x2 + 2x3} to 

obtain a basis for the subspace of P3, W = span S. What is the dimension of W ?

Solution: Consider,

 k x x x k x k x x k x x x1

2 3

2

2

3

3

4

2 31 2 1 2 3 4 3 2( ) ( ) ( ) ( )− + + + + + − + + − + + = 0

 
( ) ( ) ( ) ( )k k k k k k x k k k x k k k1 2 4 1 3 4 1 2 4

2

1 3 43 2 2 4 3 2+ + + − − − + + + + + + = 0

Equating corresponding coefficients,

 

k k k

k k k

k k k

k k k

1 2 4

1 3 4

1 2 4

1 3 4

3 0

2 2 4 0

3 0

2 0

+ + =

− − − =

+ + =

+ + =

The augmented matrix of the system is

 

1 1 0 3 0

2 0 2 4 0

1 1 0 3 0

1 0 1 2 0

− − −



















Reducing the augmented matrix to row echelon form,

 R2 + 2R1, R3 – R1, R4 – R1

 

~

1 1 0 3 0

0 2 2 2 0

0 0 0 0 0

0 1 1 1 0

−

− −
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1

2

1 1 0 3 0

0 1 1 1 0

0 0 0 0 0

0 1 1 1 0

2







−

− −



















R

~

 

R R
4 3

1 1 0 3 0

0 1 1 1 0

0 0 0 0 0

0 0 0 0 0

+

−



















~

The leading 1’s appear in columns 1 and 2.

Hence, Basis = {1 – 2x + x2 + x3, 1+ x2}

 Dimension = 2

Example 3: Find a basis for the subspace of P2 spanned by the vectors 1 + x, x2, 

–2 + 2 x2, –3x.

Solution: Consider,

k x k x k x k x

k k k k x k k

1 2

2

3

2

4

1 3 1 4 2

1 2 2 3 0

2 3 2

( ) ( ) ( )

( ) ( ) (

+ + + − + + − =

− + − + + 33

2 0)x =

Equating corresponding coefficients,

k k

k k

k k

1 3

1 4

2 3

2 0

3 0

2 0

− =

− =

+ =

The augmented matrix of the system is

 

1 0 2 0 0

1 0 0 3 0

0 1 2 0 0

−

−

















Reducing the augmented matrix to row echelon form,

R R
2 1

1 0 2 0 0

0 0 2 3 0

0 1 2 0 0

−

−

−

















~

R
23

1 0 2 0 0

0 1 2 0 0

0 0 2 3 0

~

−

−
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1

2

1 0 2 0 0

0 1 2 0 0

0 0 1
3

2
0

3







−

−



















R

~

The leading 1’s appear in columns 1, 2 and 3.

Hence, Basis = {1 + x, x2, –2 + 2x2}

Example 4: Reduce S =






























−

−























1 0

0 1

0 1

1 0

1 1

1 1

1 1

1 1
, , ,  to obtain a basis 

for the subspace of M22, W = span S. What is the dimension of W.

Solution: Consider,

k k k k
1 2 3 4

1 0

0 1

0 1

1 0

1 1

1 1

1 1

1 1

0 0

0 0









 +









 +









 +

−

−









 =











        
k k k k k k

k k k k k k

1 3 4 2 3 4

2 3 4 1 3 4

0 0

0 0

+ − + +

+ + + −









 =











Equating corresponding coefficients,

k k k

k k k

k k k

k k k

1 3 4

2 3 4

2 3 4

1 3 4

0

0

0

0

+ − =

+ + =

+ + =

+ − =

The augmented matrix of the system is

  

1 0 1 1 0

0 1 1 1 0

0 1 1 1 0

1 0 1 1 0

−

−



















Reducing the augmented matrix to row echelon form,

 

R R
4 1

1 0 1 1 0

0 1 1 1 0

0 1 1 1 0

0 0 0 0 0

−

−

















~
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R R
3 2

1 0 1 1 0

0 1 1 1 0

0 0 0 0 0

0 0 0 0 0

−

−

















~

The leading 1’s appear in columns 1 and 2.

Hence, Basis =




























1 0

0 1

0 1

1 0
,

Example 5: Find standard basis vector/vectors that can be added to the following 

set of vectors to produce a basis for R3 and R4.

 (i) v1 = (–1, 2, 3), v2 = (1, –2, –2)

 (ii) v1 = (1, – 4, 2, –3), v2 = (–3, 8, – 4, 6)

Solution: (i) Form a set S = { v1, v2, e1, e2, e3} where e1 = (1, 0, 0), e2 = (0, 1, 0), 

and e3 = (0, 0, 1) are the standard basis vectors of R3.

Since the set {e1, e2, e3} spans R3, the set S also spans R3.

Consider,                                         k k k k k
1 1 2 2 3 1 4 2 5 3
v v e e e 0+ + + + =

k k k k k1 2 3 4 51 2 3 1 2 2 1 0 0 0 1 0 0 0 1 0 0( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , ,− + − − + + + = 00

2 2 3 2 0 0 01 2 3 1 2 4 1 2 5

)

( , , ) ( , , )− + + − + − + =k k k k k k k k k

Equating corresponding components,

− + + =

− + =

− + =

k k k

k k k

k k k

1 2 3

1 2 4

1 2 5

0

2 2 0

3 2 0

The augmented matrix of the system is

−

−

−

















1 1 1 0 0

2 2 0 1 0 0

3 2 0 0 1 0

0

Reducing the augmented matrix to row echelon form,

( )

~

−

− −

−

−

















1

1 1 1 0 0 0

2 2 0 1 0 0

3 2 0 0 1 0

1R
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R R R R
2 1 3 1

2 3

1 1 1 0 0 0

0 0 2 1 0 0

0 1 3 0 1 0

− −

− −















,

~

R
23

1 1 1 0 0 0

0 1 3 0 1 0

0 0 2 1 0 0

~

− −















1

2

1 1 1 0 0 0

0 1 3 0 1 0

0 0 1
1

2
0 0

3







− −

















R

~

The leading 1’s appear in columns 1, 2 and 3.

Hence, Basis = {v1, v2, e1}

Note: By changing the order of e1, e2, e3 in S, other possible bases can be found.

 (ii)  Form a set S = { , , , , , }v v e e e e1 2 1 2 3 4  where e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), 

e3 = (0, 0, 1, 0) and e4 = (0, 0, 0, 1) are the standard basis vectors of R4.

Since the set {e1, e2, e3, e4} span R4, the set S also spans R4.

Consider,

       k k k k k k
1 1 2 2 3 1 4 2 5 3 6 4
v v e e e e 0+ + + + + =

k k k k k1 2 3 4 51 4 2 3 3 8 4 6 1 0 0 0 0 1 0 0 0 0( , , , ) ( , , , ) ( , , , ) ( , , , ) ( ,− − + − − + + + ,, , )

( , , , ) ( , , , )

1 0

0 0 0 1 0 0 0 06+ =k

( , , , ) ( , , , )k k k k k k k k k k k k1 2 3 1 2 4 1 2 5 1 2 63 4 8 2 4 3 6 0 0 0 0− + − + + − + − + + =

Equating corresponding components,

k k k

k k k

k k k

k k k

1 2 3

1 2 4

1 2 5

1 2 6

3 0

4 8 0

2 4 0

3 6 0

− + =

− + + =

− + =

− + + =
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The augmented matrix of the system is

1 3 1 0 0 0 0

4 8 0 1 0 0 0

2 4 0 0 1 0 0

3 6 0 0 0 1 0

−

−

−

−



















Reducing the augmented matrix to row echelon form,

R2 + 4R1, R3 – 2R1, R4 + 3R1

 ~

1 3 1 0 0 0 0

0 4 4 1 0 0 0

0 2 2 0 1 0 0

0 3 3 0 0 1 0

−

−

−

−



















−












−





−

− −

−

1

4

1

2

1

3

1 3 1 0 0 0 0

0 1 1
1

4
0 0 0

0 1 1 0

2 3 4
R R R, ,

~ 11

2
0 0

0 1 1 0 0
1

3
0− −



























R R R R
3 2 4 2

1 3 1 0 0 0 0

0 1 1
1

4
0 0 0

0 0 0
1

4

1

2
0 0

0 0 0
1

4
0

1

3
0

− −

−

− −

−













,

~
















R R
4 3

1 3 1 0 0 0 0

0 1 1
1

4
0 0 0

0 0 0
1

4

1

2
0 0

0 0 0 0
1

2

1

3
0

−

−

− −

− −





















~
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( ) , ( )

~

4 2

1 3 1 0 0 0 0

0 1 1
1

4
0 0 0

0 0 0 1 2 0 0

0 0 0 0 1
2

3
0

3 4R R−

−

− −

























The leading 1’s appear in columns 1, 2, 4 and 5.

Hence, Basis = {v1, v2, e2, e3}

Note: By changing the order of e1, e2, e3, e4 in S, other possible bases can be found.

Exercise 2.5

1. Determine whether the following set of 

vectors form a basis for the indicated 

vector spaces:

  (i) (1, 3), (1, –1) for R2

  (ii) (1, –1), (2, 3), (–1, 5) for R2

 (iii) (1, 2, 1), (2, 1, 0), (1, –1, 2) for R3

 (iv) (2, –3, 1), (4, 1, 1), (0, –7, 1) for R3

  (v)  (0, 0, 1, 1), (–1, 1, 1, 2), (1, 1, 0, 0), 

(2, 1, 2, 1) for R4

 (vi)  (1, –1, 0, 2), (1, –1, 2, 0),  

(–3, 1, –1, 2) for R4

[Ans.: (i) yes (ii) no (iii) yes 

(iv) no (v) yes (vi) no]

2. Determine whether the following set 

of vectors form a basis for P2 and P3:

  (i) 1 – x2, 1+2x + x2, –3x + 2x2

  (ii)  1 + x + 2x2, 2 +2x +4x2, 

 –3 + 2x – x2

 (iii)  1 + x + x2 + x3, 3 + x + 2x2 + x3, 

 2 + 3x + x2 + 2x3, 2 + 2x + 

  x2 + x3

 (iv)  3x + 2x2 + x3, 1 +2x3, 

 4 + 6x + 8x2 + 6x3, 

 1 + x + 2x2 + x3

[Ans.: (i) yes (ii) no (iii) yes (iv) no]

3. Show that S = {v1, v2, v3, v4} is a 

basis for M22 where 

v v
1 2

1 2

1 2

0 1

1 0
=

−









 =

−

−









, ,

v v
3 4

0 2

3 1

0 0

1 2
=








 =

−









,

4. Determine the dimension and a basis 

for the solution space of the systems:

  (i) x x x

x x x

x x x

1 2 3

1 2 3

1 2 3

3 0

2 6 2 0

3 9 3 0

− + =

− + =

− + =

  (ii) x x x x

x x x x

x x x x

1 2 3 4

1 2 3 4

1 2 3 4

2 3 0

2 4 4 0

3 6 7 0

+ + − =

+ + − =

+ + + =

 (iii) x x x x x

x x x x x

x x x x x

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

2 2 0

2 2 2 0

2 4 3 3 3 0

+ + + + =

+ + + + =

+ + + + =

xx x x
3 4 5

0− − =

Ans.: () , ,i Basis Dim=

















−































=

3

1

0

1

0

1

2
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( )
,

ii Basis =

−















 −
































2

1

0

0

11

2

0

5

2

1























=

=

−





















−

,

( ) ,

Dim

iii Basis

2

2

1

0

0

0

3

0

11

1

0

2

















































=
















 , Dim
























5. Determine the dimension and basis for 

the following subspaces of R3 and R4:

  (i) the plane 2x – 3y + 4z = 0

  (ii) the line x = –t, y = 2t, z = –3t

 (iii)  all vectors of the form  

(a, b, c, d ), where d = a + b

 (iv)  all vectors of the form  

a + bx + cx2, where a = 2c – 3b

Ans.:

( ) , ,

( )

i Basis Dim

ii

=









































=

3

2

0

2

0

1

2

−

BBasis Dim

iii Basis

=



























=

=












−

−

1

2

3

1

1

0

0

1

,

( )






























































, , ,

0

1

0

1

0

0

1

0

Dim ==

= +{ } =




































3

2 3 22( ) , ,iv Basis Dimx x −











6. Reduce the following sets to obtain a 

basis for the subspace of the indicated 

vector space:

 (i)  S = {(1, -3, 2), (2, 4, 1), (3, 1, 3), 

(1, 1, 1)} for R3

 

(ii)

 

S x x x x

x x x x

= + + + +

− + + −

{ , ,

, }

1 1 2 3

2 4 3 2

2 2

2 2

 (iii) S =

−

−









 −











− −



































1 2

5 3

2 3

1 4

3 8

3 5

, ,

Ans.:  ( ) ( , , ), ( , , ), ( , , )

( ) , ,

i

ii

1 3 2 2 4 1 1 1 1

1 1 2 3

2

2 2

−{ }
+ + + +{
−

x x x x

xx x x x+ + − }
−
−






 −

























2 24 3 2

1 2

5 3

2 3

1 4

,

( ) ,iii













7. Find a basis for the subspace of R4 

spanned by the following vectors:

v

v

v

v

v

1

2

3

4

5

1 1 0 1

0 1 2 1

1 0 1 1

11 6 3

1

= −

=

= −

= − −

= −

(,, , )

( ,, , )

(, ,, )

(,, , )

( ,, ,, )−5 1 0

[Ans.: {v1, v2, v3}]

8. Find a basis and dimension for the 

subspace of P3 spanned by the following 

polynomials:

     

p

p

p

p

1

2 3

2

2

3

3

4

2 3

1 2

1

2

3 4 3 2

= − + +

= +

= − +

= − + +

x x x

x

x x

x x x

[Ans.: Basis = {p1, p2}, Dim = 2]
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9. Find standard basis vector/vectors that 

can be added to the following set of 

vectors to produce a basis for R3 and R4.

(i)  v1 = (1, –1, 0), v2 = (3, 1, –2)

(ii)  v1 = (1, –2, 5, –3), v2 = (2, 3, 1, – 4)

Ans.:

v v e v v e e

one possible basis

(i) { , , } (ii) { , , , 
1 2 1 1 2 3 44

}

















2.12 COORDINATE VECTOR RELATIVE TO A BASIS

If S = {v1, v2, … , vn} is a basis for a vector space V then any vector v in V can be 

expressed as

v v v v= + + +k k k
n n1 1 2 2

�

The scalars k1, k2, … , kn are called the coordinates of v relative to the basis S and the 

vector (k1, k2, … , kn) in Rn is called the coordinate vector of v relative to S. This vector 

is denoted by

( ) ( , , , )v
S n

k k k= 1 2 …

Note: The coordinate vectors depend on the order in which the basis vectors are writ-

ten. If the order of the basis vectors is changed, a corresponding change of order 

occurs in the coordinate vectors.

Example 1: Find the coordinate vector of v relative to the basis S.

 (i) v = (1, 1); S = {v1, v2} where v1 = (2, – 4), v2 = (3, 8)

 (ii) v = (5, –12, 3); S = {v1, v2, v3} where v1 = (1, 2, 3), v2 = (– 4, 5, 6), v3 = (7, –8, 9)

Solution: (i) Let (v)S = (k1, k2)

 

v v v= +

= − +

= + − +

k k

k k

k k k k

1 1 2 2

1 2

1 2 1 2

1 1 2 4 3 8

2 3 4 8

( , ) ( , ) ( , )

( , )

Equating corresponding components,

 

2 3 1

4 8 1

1 2

1 2

k k

k k

+ =

− + =

Solving these equations,

k k
1 2

5

28

3

14
= =,

Hence, ( ) ,v
S
= 





5

28

3

14

(ii) Let (v)S = (k1, k2, k3)

v v v v= + +

− = + − + −

=

k k k

k k k

1 1 2 2 3 3

1 2 35 12 3 1 2 3 4 5 6 7 8 9( , , ) ( , , ) ( , , ) ( , , )

(( , , )k k k k k k k k k1 2 3 1 2 3 1 2 34 7 2 5 8 3 6 9− + + − + +
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Equating corresponding components,

k k k

k k k

k k k

1 2 3

1 2 3

1 2 3

4 7 5

2 5 8 12

3 6 9 3

− + =

+ − = −

+ + =

Solving these equations,

k k k
1 2 3

2 0 1= − = =, ,

Hence, (v)S = (–2, 0, 1)

Example 2: Find the coordinate vector of p = 2 – x + x2 relative to the basis 

S = {p1, p2, p3} where p1 = 1 + x, p2 = 1 + x2, p3 = x + x2.

Solution: Let (p)S = (k1, k2, k3)

p p p p= + +

− + = + + + + +

= + +

k k k

x x k x k x k x x

k k

1 1 2 2 3 3

2

1 2

2

3

2

1 2

2 1 1( ) ( ) ( )

( ) (kk k x k k x1 3 2 3

2
+ + +) ( )

Equating corresponding coefficients,

k k

k k

k k

1 2

1 3

2 3

2

1

1

+ =

+ = −

+ =

Solving these equations,

k k k
1 2 3

0 2 1= = = −, ,

Hence, (p)S = (0, 2, –1)

Example 3: Find the coordinate vector of A relative to the basis 

S = {A1, A2, A3, A4}, where

A A A

A A

= = =

=

2 0

1 3

1 1

0 0

1 1

0 0

0 0

1 0

1 2

3 4

−











−





























, ,

, ==
0 0

0 1











Solution: Let  (A)S = (k1, k2, k3, k4)

 A k A k A k A k A= + + +
1 1 2 2 3 3 4 4

2 0

1 3

1 1

0 0

1 1

0 0

0 0

1 0

0 0

0 1
1 2 3 4−









 =

−







 +









 +









 +k k k k











=
− + +









k k k k

k k

1 2 1 2

3 4
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Equating corresponding components,

− + =

+ =

= −

=

k k

k k

k

k

1 2

1 2

3

4

2

0

1

3

Solving these equations,

k k k k
1 2 3 4

1 1 1 3= − = = − =, , ,

Hence, (A)S = (–1, 1, –1, 3)

Example 4: The vectors v1 = (1, –1, 1), v2 = (0, 1, 2), v3 = (3, 0, –1) form a basis 

of V. Let S1 = {v1, v2, v3} and S2 = { v3, v2, v1} are different orderings of these  vectors. 

Determine the vector v in V having following coordinate vectors.

 (i) ( ) ( , , )v
S1

3 1 8= −

 (ii) ( ) ( , , )v
S2

3 1 8= −

Solution: (i) S1 = {v1, v2, v3} and k1 = 3, k2 = –1, k3 = 8

v v v v= + +

= − − + −

= + − −

k k k1 1 2 2 3 3

3 1 1 1 1 0 1 2 8 3 0 1

3 24 3 1 3

( , , ) ( , , ) ( , , )

( , , −− −

= − −

2 8

27 4 7

)

( , , )v

(ii) S2 = {v3, v2, v1} and k1 = 3, k2 = –1, k3 = 8

v v v v= + +

= − − + −

= + − − −

k k k1 3 2 2 3 1

3 3 0 1 1 0 1 2 8 1 1 1

9 8 1 8 3

( , , ) ( , , ) ( , , )

( , , −− +

= −

2 8

17 9 3

)

( , , )v

In this example we observe that on changing the order of vectors in the basis, we get 

two different vectors in V corresponding to same coordinate vectors.

Coordinate Matrices

If ( ) ( , , , )v
S n

k k k= 1 2 …  is the coordinate vector of v relative to the basis S then the 

coordinate matrix of v relative to the basis S is defined as

[ ]v
S

n

k

k

k

=



















1

2

�
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2.13 CHANGE OF BASIS

The basis for a vector space V is not unique. Sometimes it is required to change 

the basis for a vector space. To change the basis for V, it is necessary to know the 

relationship between the coordinates (coordinate matrices) of a vector v in V relative 

to both the bases.

Relationship between the Coordinate Matrices 

Relative to Different Bases

Let S1 = {v1, v2, … , vn} and S2 = {w1, w2, … , wn} be bases of vector space V. If v is 

any vector in V then

v w w w= + + +k k k
n n1 1 2 2

�

 [ ]v
S

n

k

k

k

2

1

2
=



















�

Now, [ ]v w w w
S n n S

k k k
1 1

1 1 2 2
= + + +[ ]�

 

= + + +

= + + +

[ ] [ ] [ ]

[ ] [ ] [ ]

k k k

k k k

S S n n S

S S n n S

1 1 2 2

1 1 2 2

1 1 1

1 1 1

w w w

w w w

�

�

Let the coordinate vector of wi relative to S1 be 

 [ ]w
i S

i

i

ni

a

a

a

1

1

2
=



















�

[ ]v
S

n n

k

a

a

a

k

a

a

a

1 1

11

21

1

2

12

22

2

=



















+



















+ +
� �

� kk

a

a

a

n

n

n

nn

1

2

�



















 
=

+ + +

+ + +

+ + +

k a k a k a

k a k a k a

k a k a k a

n n

n n

n n n

1 11 2 12 1

1 21 2 22 2

1 1 2 2

�

�

� �

�
nnn
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=



























a a a

a a a

a a a

k

k

k

n

n

n n nn n

11 12 1

21 22 2

1 2

1

2

…

…

� � �

…

�











 [ ] [ ]v v
S S

P
1 2
=

The matrix P is called the transition matrix from S2 to S1. The columns of P are the 

coordinate matrices of the new basis vectors relative to the old basis i.e.

P
S S n S

= 



[ ] [ ] [ ]w w w

1 21 1 1
�

Theorem 2.17: If P is the transition matrix from a basis S2 to a basis S1 for a finite 

dimensional vector space V then

 (i) P is invertible

 (ii) P –1
 is the transition matrix from S1 to S2

 (iii) For every vector v in the vector space V, we have

[ ] [ ]v v
S S

P
1 2
=

 and [ ] [ ]v v
S S

P
2 1

1
=

−

Example 1: Find v if the basis S = {v1, v2, v3}, where v1 = (2, –1, 3), v2 = (1, 2, 3), 

v3 = (1, 1, 0) and [ ]v
S
= −

















6

1

4

Solution:  (v)S = (6, –1, 4)

v v v v= − +

= − − +

= − + − − + −

6 4

6 2 1 3 1 2 3 4 1 1 0

12 1 4 6 2 4 18

1 2 3

( , , ) ( , , ) ( , , )

( , , 33

15 4 15

)

( , , )v = −

Example 2: Find p if the basis S = {p1, p2, p3} where p1 = 1, p2 = x, p3 = x2 and 

[ ]p
S
=

















3

0

4

Solution:  (p)S = (3, 0, 4)

p p p p= + +

= +

3 4

3 4

1 2 3

2

0

x
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Example 3: Find A if the basis S = {A1, A2, A3, A4}, where 

A A A A
1 2 3 4

1 1

0 0

1 1

0 0

0 0

1 0

0 0

0 1
=

−







 =









 =









 =









, , ,  and [ ]A

S
=

−

















8

7

6

3

Solution: (A)S = (–8, 7, 6, 3)

A A A A A= − + + +8 7 6 3
1 2 3 4

= −
−





+







+







+








=
+ − +

8
1 1

0 0
7

1 1

0 0
6

0 0

1 0
3

0 0

0 1

8 7 8 7

66 3

15 1

6 3








=
−






Example 4: Consider the bases S1 = {u1, u2} and S2 = {v1, v2}, where u1 = (1, –1), 

u2 = (0, 6), v1 = (2, 1), v2 = (–1, 4)

 (i) Find the transition matrix from S2 to S1.

 (ii) Find the transition matrix from S1 to S2.

Solution: (i) The transition matrix P from S2 to S1 is

P
S S

= 



[ ] [ ]v v

1 21 1

Let  [ ]v
1

1

2
1S

k

k
=











v1 1 1 2 2

1 2

1 1 2

2 1 1 1 0 6

6

= +

= − +

= − +

k k

k k

k k k

u u

( , ) ( , ) ( , )

( , )

Equating corresponding components, 

k

k k

k

1

1 2

2

2

6 1

1

2

=

− + =

=

 [ ]v
1 1

2

1

2

S
=















Let [ ]v
2

1

2
1S

c

c
=
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v u u2 1 1 2 2

1 2

1 1 2

1 4 1 1 0 6

6

= +

− = − +

= − +

c c

c c

c c c

( , ) ( , ) ( , )

( , )

Equating corresponding components,

 

c

c c

c

1

1 2

2

1

6 4

1

2

= −

− + =

=

 [ ]v
2 1

1

1

2

S
=

−













Hence, P =

−













2 1

1

2

1

2

(ii) The transition matrix from S1 to S2 is P–1.

  P
P

P
−

=

1 1

det ( )
adj

adj P =

−



















1

2
1

1

2
2

 

det ( )P

P

=

=

−



















−

3

2

2

3

1

2
1

1

2
2

1

Example 5: Consider the bases S1 = {u1, u2} and S2 = {v1, v2} for R2, where 

u u v
1 2 1

1

0

0

1

2

1
= , = , =





























  and v

2

3

4
=

−









 (i) Find the transition matrix from S2 to S1.

 (ii) Find the transition matrix from S1 to S2.

 (iii) Find [ ]w
S1

 where w =
3

5−









 .

 (iv) Find [ ]w
S2

using (iii).
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Solution: (i) The transition matrix P from S2 to S1 is

P
S S

= 



[ ] [ ]v v

1 21 1

Let [ ]v
1

1

2
1S

k

k
=











 
v u u
1 1 1 2 2
= k k+

2

1

1

0

0

1
1 2

1

2








 =








 +










=










k k

k

k

Equating corresponding components,

 

k k

S

1 2

1

2 1

2

11

= =

=










,

[ ]v

Let [ ]v
2

1

2
1S

c

c
=











 
v u u
2 1 1 2 2
= +c c

 −







 =











3

4

1

2

c

c

Equating corresponding components,

 c c
1 2

3 4= − =,

 [ ]v
2 1

3

4
S

=
−









Hence, P =
−









2 3

1 4

(ii) The transition matrix from S1 to S2 is P –1.

 P
P

P
−

=

1 1

det ( )
adj 

 adj  =P
4 3

1 2−
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det ( )P

P

=

=
−











−

11

1

11

4 3

1 2

1

(iii) Let       [ ]w
S

k

k1

1

2

=










 

w u u= +

−









 =









 +











=










k k

k k

k

k

1 1 2 2

1 2

1

2

3

5

1

0

0

1

Equating corresponding components,

k k
1 2

3 5= = −,

 [ ]w
S1

3

5
=

−











In a vector space V if P is the transition matrix from S2 to S1 then for any vector 

w in V

[ ] [ ]w w
S S

P
1 2
=

or [ ] [ ]w w
S S

P
2 1

1
=

−

=
−









 −











=
−

−











1

11

4 3

1 2

3

5

1

11

3

13

Hence, [ ]w
S2

3

11

13

11

=

−

−



















Example 6: Consider the bases S1 = {u1, u2, u3} and S2 = {v1, v2, v3} for P2, where 

u1 = 1 + x2 , u2 = –2 + x , u3 = 3 + x, v1 = x + 2x2, v2 = 3 + x2, v3 = x.

 (i) Find the transition matrix from S1 to S2

 (ii) Find [ ]w
S2

 using transition matrix, where

w = 5+ −4
2

x x
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Solution: The transition matrix P from S1 to S2 is

 P
S S S

= 



[ ] [ ] [ ]u u u

1 2 32 2 2

Let u
1

1

2

3

1

[ ] =

















S

k

k

k

u v v v1 1 1 2 2 3 3

2

1

2

2

2

3

2 1 3

1 2 3

3

= + +

+ = + + + +

= + +

k k k

x k x x k x k x

k k k

( ) ( ) ( )

( )xx k k x+ +( )2 1 2

2

Equating corresponding coefficients,

3 1

0

2 1

2

1 3

1 2

k

k k

k k

=

+ =

+ =

Solving these equations,

k k k
1 2 3

1

3

1

3

1

3
= = = −, ,

[ ]u
1 2

1

3

1

3

1

3

S
=

−

























Let [ ]u
2

1

2

3

2S

b

b

b

=

















 
u v v v2 1 1 2 2 3 3

2 1 3 1 2

22 3 2

= + +

− + = + + + +

b b b

x b b b x b b x( ) ( )

Equating corresponding components,

 

3 2

1

2 0

2

1 3

1 2

b

b b

b b

= −

+ =

+ =
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Solving these equations,

b b b
1 2 3

1

3

2

3

2

3
= = − =, ,

[ ]u
2 2

1

3

2

3

2

3

S
= −

























Let [ ]u
3

1

2

3

2S

c

c

c

=

















u v v v
3 1 1 2 2 3 3
= + +c c c

3 3 22 1 3 1 2

2
+ = + + + +x c c c x c c x( ) ( )

Equating corresponding coefficients,

 

3 3

1

2 0

2

1 3

1 2

c

c c

c c

=

+ =

+ =

Solving these equations,

c c c
1 2 3

1

2
1

3

2
= − = =, ,

[ ]u
3 2

1

2

1

3

2

1

3

1

3

1

2

1

3

2

3
1

1

3

2

3

3

2

S

P

=

−




















=

−

−

−

























(ii) w is a vector in P2 and P is the transition matrix from S1 to S2.

[ ] [ ]w w
S S

P
2 1
=
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Let [ ]w
S

k

k

k

1

1

2

3

=

















w u u u= + +

+ − = + + − + + +

= − +

k k k

x x k x k x k x

k k

1 1 2 2 3 3

2

1

2

2 3

1 2

5 4 1 2 3

2

( ) ( ) ( )

( 33 3 2 3 1

2
k k k x k x) ( )+ + +

Equating corresponding coefficients,

k k k

k k

k

1 2 3

2 3

1

2 3 5

4

1

− + =

+ =

= −

Solving these equations,

k k k
1 2 3

1
6

5

14

5
= − = =, ,

 

[ ]w
S1

1

6

5

14

5

=

−



















    

[ ]w
S2

1

3

1

3

1

2

1

3

2

3
1

1

3

2

3

3

2

1

6

5

14

5

=

−

−

−

























−



















=

− + −

− − +

+ +

























1

3

2

5

7

5

1

3

4

5

14

5

1

3

4

5

21

5

 =

−
























4

3

5

3

16

3
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Example 7: Consider the basis S1 = {u1, u2, u3} and S2 = {v1, v2, v3} for R3, where 

u1 = (1, 0, 1), u2 = (1, 1, 0), u3 = (0, 0, 1). If the transition matrix P from S2  to S1 is

 P =

− −

















1 1 2

2 1 1

1 1 1

determine S2.

Solution: The transition matrix P from S2 to S1 is

   P
S S S

= 



[ ] [ ] [ ]v v v

1 2 31 1 1

Given          P =

− −

















1 1 2

2 1 1

1 1 1

Comparing both the matrices,

[ ]v
1 1

1

2

1

S
=

−

















v u u u1 1 2 32

1 0 1 2 1 1 0 0 0 1

1 2 2 1 1

3 2 0

= + −

= + −

= + −

=

( , , ) ( , , ) ( , , )

( , , )

( , , )

[ ]v
2 1

1

1

1

S
=

−

















v u u u2 1 2 3

1 0 1 1 1 0 0 1

2 1 0

0

= + −

= + −

=

( , , ) ( , , ) ( , , )

( , , )

[ ]v
3 1

2

1

1

S
=

















v u u u3 1 2 32

2 1 0 1 1 1 0 0 0 1

3 1 3

= + +

= + +

=

( , , ) ( , , ) ( , , )

( , , )

Hence, S2 = {(3, 2, 0), (2, 1, 0), (3, 1, 3)}
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Example 8: Consider the bases S1 = {u1, u2} and S2 = {v1, v2} for P1, where 

v1 = x, v2 = – 1 + x.

If the transition matrix from S1  to S2 is 
2 3

1 2−









 ,  determine S1.

Solution: The transition matrix from S1 to S2 is

 P
S S

= 



[ ] [ ]u u

1 22 2

Given           P =
−











2 3

1 2

Comparing both the matrices,

[ ]u
1 2

2

1
S

=
−











u v v1 1 22

2 1

1

= −

= − − +

= +

x x

x

( )

u
2

2

3

2
[ ] =









S

u v v2 1 23 2

3 2 1

2 5

= +

= + − +

= − +

x x

x

( )

Hence, S x x1 1 2 5= + − +{ }( ), ( )

Example 9: Consider bases S1 = {u1, u2} and S2 = {v1, v2} for R2, where u1 = (1, 2), 

u2 = (0, 1)

If the transition matrix from S1 to S2 is 
2 1

1 1









 , determine S2.

Solution: To determine S2, we need the transition matrix from S2 to S1. Since the 

transition matrix from S1 to S2 is

  P =










2 1

1 1

The transition matrix from S2 to S1 will be P –1.

P
P

P
−

=

1 1

det ( )
adj

adj P =
−

−











1 1

1 2
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det ( )P

P

=

=
−

−











−

1

1 1

1 2

1

Also,       P
S S

− = 





1

1 21 1
[ ] [ ]v v

Comparing both the matrices,

   [ ]v
1 1

1

1
S

=
−











  

v u u1 1 21 1

1 2 0 1

1 1

= −

= −

=

( , ) ( , )

( , )

  [ ]v
2 1

1

2
S

=
−









  

v u u2 1 22

1 2 2 0 1

1 0

= − +

= − +

= −

( , ) ( , )

( , )

Hence, S2 = {(1, 1), (–1, 0)}

Exercise 2.6

1. Find the coordinate vector of v relative 

to the basis S for R3.

 (i)  v = (3, 1, – 4) and S = {(1, 1, 1), 

(0, 1, 1), (0, 0, 1)}

 (ii)  v = (2, –1, 3) and S = {(1, 0, 0), 

(2, 2, 0), (3, 3, 3)}

Ans. : v

v

 (i) ( ) = (3, 2, 5)

(ii) ( ) = (3, 2, 1)

S

S

− −

−











2. Find the coordinate vector of 

p = 4 – 3x + 2x2 relative to the basis 

S = {1 + x + x2, 1 + x, 1} for P3.

[Ans. : (p)S = (2, –5, 7)]

3. Find the coordinate vector of 

A =
−











2 3

4 7
 relative to the basis 

S = 
1 1

1 1

0 1

1 0

1 1

0 0

1 0

0 0











−









−



























, , ,  

in M22.

[Ans. : (A)S = (–7, 11, –21, 30)]

4. Find the vector v if the coordinate matrix 

[v]S is given with respect to the basis S 

for vector space V.

 (i)  S = {(0, 1, –1), (1, 0, 0), (1, 1, 1)} 

for R2 and v[ ] =

−















S

1

1

2

 

 (ii)  S = {1 + x2 , 1 + x, x + x2} for P2 

and [ ]v
S
= −

−

















3

1

2
 (iii)

S =
−

















 −
































1 0

1 0

2 2

0 1

1 2

1 3

0 0

2 3
, , ,  

for M22 and [ ] .v
S
=

−



















2

1

1

3
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Ans.: i 3 1 3  ii 2 3

iii

2( ) ( ) ( ) +

−






















, ,

( )

− x x

1 0

9 7

5. Consider the bases S1 = {u1, u2} and 

S2 = {v1, v2} where u1 = (1, –2), 

u2 = (3, – 4), v1 = (1, 3), v2 = (3, 8).

 (i)  Find the transition matrix from S2 

to S1.

 (ii)  Find the transition matrix from  

S1 to S2.

 

Ans.: ( )

( )

i

ii

− −
















− −






















13

2
18

5

2
7

14 36

5 13









6. Consider the bases S1 1 2 0 1= {( , ), }( , )  

and S2 1 1 2 3= {( , ), ( , )}.

 (i)  Find the transition matrix from  

S1 to S2.

 (ii)  Find [ ]w
S2

using transition matrix, 

where w = (1, 5)

 

Ans .: (i) ii
− −





=

−















1 2

1 1

7

42
( ) [ ]w S

7. Consider the bases S1 = {1 + x2, –1, 

x + 2x2} and S x x x x2

21 1 2= − + + −{ , , } 

for P2.

 (i)  Find the transition matrix from  

S2 to S1.

 (ii)  Find [ ]w
S1

 using transition 

matrix, where w = 1 + 3x + 8x2

 

Ans.: ( )

( ) [ ]

i

ii

− − −
− − −














=























2 5 2

1 6 2

1 2 1

2

1

3
1

w S

















8. Consider the bases 

S
1

1 0

0 0

0 1

1 0

0 2

0 1

0 0

1 1
=

















































, , ,  

and 

S
2

1 1

0 0

0 0

1 0

0 0

0 1

1 0

0 0
=

















































, , ,  

for M22.

 (i)  Find the transition matrix from  

S1 to S2.

 (ii)  Find [ ]w
S2

using transition matrix, 

where w =
−











1 2

2 1

 

Ans.:

w

( )

( ) [ ]

i

0 1 2 0

0 1 0 1

0 0 1 1

1 1 2 0

2

2

1

1

2

− −



















=
−

−






ii S









































9. Consider the bases S1 = {u1, u2} and 

S2 = {–1 + x, 1 + x}. If the transition 

matrix from S2 to S1 is 
1 2

2 3









 ,  

determine S1.

[Ans.: S1 = {–5 + x, 3 – x}]
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2.14 ROW SPACE, COLUMN SPACE AND NULL SPACE

Let A

a a a

a a a

a a a

n

n

m m mn

=



















11 12 1

21 22 2

1 2

…

…

� � �

…

be an m × n matrix. The vectors

r

r

r

1 11 12 1

2 21 22 2

1 2

=

=

=

[ ]

[ ]

[ ]

a a a

a a a

a a a

n

n

m m m mn

…

…

�

…

in Rn are called row vectors of A, and the vectors

c c c
1

11

21

1

2

12

22

2

=



















=



















=

a

a

a

a

a

a

a

m m

n

� �
…, , ,

11

2

n

n

mn

a

a

�



















in Rm are called column vectors of A.

(1) Row Space

The subspace of Rn spanned by the row vectors of A is called the row space of A.

(2) Column Space

The subspace of Rm spanned by the column vectors of A is called the column space of A.

(3) Null Space

The solution space of the homogeneous system of equations Ax = 0 is called the  null 

space of A.

2.14.1 Basis for Row Space

Theorem 2.18: Elementary row transformations do not change the row space and 

null space of a matrix.

Note: If a matrix A is reduced to row echelon form B then the row spaces of A and B 

are same.

Theorem 2.19: If B is the row echelon form of A then the row vectors of B with lead-

ing 1’s (i.e. non-zero row vectors) form a basis for the row space of B, and hence form 

a basis for the row space of A.

Note: 

 (i) A basis for the row space of a matrix A may not consist entirely of row vectors.

 (ii)  A basis for the row space of A consisting entirely of row vectors of A can be 

 obtained by finding the basis for column space of AT.
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2.14.2 Basis for Column Space

Theorem 2.20: If A and B are row equivalent matrices then

 (i)  A set of column vectors of matrix A is linearly independent if and only if the 

corresponding column vectors of B are linearly independent

 (ii)  A set of column vectors of matrix A forms a basis for the column space of A if 

and only if the corresponding column vectors of B form a basis for the column 

space of B

Theorem 2.21: If B is the row echelon form of a matrix A then

 (i)  The column vectors containing the leading 1’s of row vectors form a basis for 

the column space of B

 (ii)  The column vectors of A corresponding to the column vectors of B containing 

the leading 1’s form a basis for the column space of A

2.14.3 Basis for Null Space

The basis for the null space of A is the basis for the solution space of the homogeneous 

system Ax = 0. This method has been discussed in 2.10.

Example 1: Find a basis for the row and column spaces of A.

A =

−

















1 4 5 2

2 1 3 0

1 3 2 2

Solution:

 A =

−

















1 4 5 2

2 1 3 0

1 3 2 2

Reducing the matrix A to row echelon form,

 

R R R R
2 1 3 1

2

1 4 5 2

0 7 7 4

0 7 7 4

− +

− − −

















,

~

R R
3 2

1 4 5 2

0 7 7 4

0 0 0 0

+

− − −

















~
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−























=

1

7

1 4 5 2

0 1 1
4

7

0 0 0 0

2
R

B~

Basis for the row space of A = Non-zero rows of B = ( ) 













1 4 5 2 0 1 1
4

7
, , , , , , ,

The leading 1’s appear in columns 1 and 2.

Hence, basis for the column space of A =

−

















































1

2

1

4

1

3

,

Example 2: Find a basis for the row and column spaces of

 A =

− − − −



















1 4 5 4

2 9 8 2

2 9 9 7

1 4 5 4

Solution: A =

− − − −



















1 4 5 4

2 9 8 2

2 9 9 7

1 4 5 4

Reducing the matrix A to row echelon form,

R R R R R R
2 1 3 1 4 1

2 2

1 4 5 4

0 1 2 6

0 1 1 1

0 0 0 0

− − +

− −

− −



















, ,

~

 

R R

B

3 2

1 4 5 4

0 1 2 6

0 0 1 5

0 0 0 0

−

− −



















=~
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Basis for the row space of A = non-zero rows of B = {(1, 4, 5, 4), (0, 1, –2, –6), 

(0, 0, 1, 5)}

The leading 1’s appear in columns 1, 2 and 3.

Hence, basis for the column space of A =

−



















−



















−
























1

2

2

1

4

9

9

4

5

8

9

5

, ,



















Example 3: Find a basis for the row space of

A =
− −

− − − −



















1 4 5 6 9

3 2 1 4 1

1 0 1 2 1

2 3 5 7 8

consisting entirely the row vectors of A.

Solution: We know that

 Row space of A = Column space of AT

∴ Basis for the row space of A = Transpose of the basis for the column space of AT.

A
T =

−

−

−

−

− −























1 3 1 2

4 2 0 3

5 1 1 5

6 4 2 7

9 1 1 8

Reducing the matrix AT to row echelon form,

R R R R R R R R

A

2 1 3 1 4 1 5 1
4 5 6 9

1 3 1 2

0 14 4 5

0 14 4 5

0 14 4 5

0 2

− − − −

−

− −

− −

− −

−

, , ,

~

88 8 10−























 

R R R R R R
3 2 4 2 5 2

2

1 3 1 2

0 14 4 5

0 0 0 0

0 0 0 0

0 0 0 0

− − −

−

− −






















, ,

~
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−





−

−

























=

1

14

1 3 1 2

0 1
4

14

5

14

0 0 0 0

0 0 0 0

0 0 0 0

2
R

~ BB

The leading 1’s appear in columns 1 and 2.

 Basis for the column space of AΤ =























−

−




































1

4

5

6

9

3

2

1

4

1

, 










Hence, basis for the row space of A = {(1, 4, 5, 6, 9), (3, –2, 1, 4, –1)}

Example 4: Find a basis for the column space of

A =

−

−

−

−



















1 2 7 0

1 1 4 0

3 2 3 5

2 1 1 3

consisting of vectors that are not entirely the column vectors of A.

Solution: We know that

 Column space of A = Row space of AT

∴ Basis for the column space of A = Transpose of the basis for the row space of AT

 A
T =

− −

− −



















1 1 3 2

2 1 2 1

7 4 3 1

0 0 5 3

Reducing the matrix AT to row echelon form,

R R R R
2 1 3 1

2 7

1 1 3 2

0 1 8 5

0 3 24 15

0 0 5 3

+ −

− − −



















,

~
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R R
3 2

3

1 1 3 2

0 1 8 5

0 0 0 0

0 0 5 3

+



















~

1

5

1 1 3 2

0 1 8 5

0 0 0 0

0 0 1
3

5

4





























=

R

B~

 Basis for the row space of AT = Non-zero rows of B 

= ( ) ( ) 













1 1 3 2 0 1 8 5 0 0 1
3

5
, , , , , , , , , , ,

Hence, basis for the column space of A =




























































1

1

3

2

0

1

8

5

0

0

1

3

5

, ,























Example 5: Find a basis for the space spanned by the vectors v1 = (1, 1, 0, 0), 

v2 = (0, 0, 1, 1), v3 = (–2, 0, 2, 2), v4 = (0, –3, 0, 3).

Solution: The space spanned by these vectors is the row space of the matrix

A =
−

−



















1 1 0 0

0 0 1 1

2 0 2 2

0 3 0 3

Reducing the matrix A to row echelon form,

R R
3 1

2

1 1 0 0

0 0 1 1

0 2 2 2

0 3 0 3

+

−



















~
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1

2

1

3

1 1 0 0

0 0 1 1

0 1 1 1

0 1 0 1

3 4













−



















R R,

~

R R R R
2 3 4 3

1 1 0 0

0 1 2 2

0 1 1 1

0 0 1 2

+ +



















,

~

R R
3 2

1 1 0 0

0 1 2 2

0 0 1 1

0 0 1 2

−

− −



















~

( )

~

−



















1

1 1 0 0

0 1 2 2

0 0 1 1

0 0 1 2

3R

R R

B

4 3

1 1 0 0

0 1 2 2

0 0 1 1

0 0 0 1

−



















=~

Basis for the given space = Basis for the row space of A = Non-zero rows of B 

= {(1, 1, 0, 0), (0, 1, 2, 2), (0, 0, 1, 1), (0, 0, 0, 1)}

Example 6: Find a basis for the space spanned by the vectors

v v v
1 2 3

1

2

1

2

2

1

2

1

3

2

3

2

= , = , =



























































































, = , =v v
4 5

3

3

3

3

5

3

5

3
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Solution: The space spanned by these vectors is the column space of the matrix

 A =



















1 2 3 3 5

2 1 2 3 3

1 2 3 3 5

2 1 2 3 3

Reducing the matrix A to row echelon form,

R R R R R R
2 1 3 1 4 1

2 2

1 2 3 3 5

0 3 4 3 7

0 0 0 0 0

0 3 4 3 7

− − −

− − − −

− − − −

















, ,

~



R R
4 2

1 2 3 3 5

0 3 4 3 7

0 0 0 0 0

0 0 0 0 0

−

− − − −



















~

−



























=

1

3

1 2 3 3 5

0 1
4

3
1

7

3

0 0 0 0 0

0 0 0 0 0

2
R

B~

The leading 1’s appear in columns 1 and 2.

Basis for the column space = =





























































{ , } ,v v1 2

1

2

1

2

2

1

2

1

 which is also the basis for the 

space spanned by the given vectors.

Theorem 2.22: A system of linear equations Ax = b is consistent if and only if b is in 

the column space of A.
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Example 1: Determine whether b is in the column space of A, and if so, express 

b as a linear combination of the column vectors of A if

A =

−

−

− −

















=

















1 1 1

1 1 1

1 1 1

2

0

0

and b

Solution: The system of equations formed by A and b is

A

x

x

x

x b=

−

−

− −

































=

















1 1 1

1 1 1

1 1 1

2

0

0

1

2

3

The augmented matrix of the system is

  

1 1 1 2

1 1 1 0

1 1 1 0

−

−

− −

















Reducing the augmented matrix to row echelon form,

 

R R R R
2 1 3 1

1 1 1 2

0 2 2 2

0 2 2 2

− +

−

− −

−

















,

~

 

R R
3 2

1 1 1 2

0 2 2 2

0 0 0 0

+

−

− −

















~

1

2

1 1 1 2

0 1 1 1

0 0 0 0

2







−
− −

















R

~

The corresponding system of equations is

x x x

x x

1 2 3

2 3

2

1

− + =

− = −

Solving for the leading variables,

x x x

x x

1 2 3

2 3

2

1

= + −

= − +
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Assigning the free variable x3 arbitrary value t,

x t x t t2 11 2 1 1= − + = + − + − =, ( )

Thus, x1 = 1, x2 = t – 1, x3 = t is the solution of the system.

Since the system is consistent, b is in the column space of A.

Now, b x=

=

−

−

− −

















−

































=

A

t

t

1 1 1

1 1 1

1 1 1

1

1

2

0

0

1

11

1

1

1

1

1

1

1

1

1−

















+ −

−

−

















+ −

















( )t t

Example 2: Determine whether b is in the column space of A, and if so, express 

b as a linear combination of the column vectors of A if

A =

−















=

−

















1 1 1

9 3 1

1 1 1

5

1

1

and b

Solution: The system of equations formed by A and b is 

A

x

x

x

x b=

−































=

−

















1 1 1

9 3 1

1 1 1

5

1

1

1

2

3

The augmented matrix of the system is

1 1 1 5

9 3 1 1

1 1 1 1

−

−

















Reducing the augmented matrix to row echelon form,

 

R R R R
2 1 3 1

9

1 1 1 5

0 12 8 44

0 2 0 6

− −

−

− −

−

















,

~
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1

12

1 1 1 5

0 1
8

12

44

12

0 2 0 6

2







−

− −

−



















R

~

R R
3 2

2

1 1 1 5

0 1
8

12

44

12

0 0
8

6

8

6

−

−

− −























~

6

8

1 1 1 5

0 1
8

12

44

12

0 0 1 1

3







−

− −



















R

~

The corresponding system of equations is

x x x

x x

x

1 2 3

2 3

3

5

8

12

44

12

1

− + =

− = −

=

Solving these equations,

x x x
1 2 3

1 3 1= = − =, ,

Since the system is consistent, b is in the column space of A.

Now, 

 

b x=

−















−

















−

















=

A

=

1 1 1

9 3 1

1 1 1

1

3

1

5

1

1

1

1

9

1

















−

−















+

















3

1

3

1

1

1

1

1
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Example 3: Determine whether b is in the column space of A, and if so, express 

b as a linear combination of the column vectors of A if 

A =

















=

−















1 1 2

1 0 1

2 1 3

1

0

2

and b

Solution: The system of equations formed by A and b is

A

x

x

x

x b=

































=

−















1 1 2

1 0 1

2 1 3

1

0

2

1

2

3

The augmented matrix of the system is

1 1 2 1

1 0 1 0

2 1 3 2

−















Reducing the augmented matrix to row echelon form,

R R R R
2 1 3 1

2

1 1 2 1

0 1 1 1

0 1 1 4

− −

−

− −

− −

















,

~

R R
3 2

1 1 2 1

0 1 1 1

0 0 0 3

−

−

− −

















~

From the last row of the augmented matrix,

0 0 0x x x
1 2 3

3+ + =

This shows that the system is inconsistent and hence b is not in the column space of A.

Example 4: Find a basis for the null space of

A =

−

− −

−

















1 1 3

5 4 4

7 6 2

Solution: The null space of A is the solution space of the homogeneous system 

Ax = 0.

 

1 1 3

5 4 4

7 6 2

0

0

0

1

2

3

−

− −

−

































=

















x

x

x
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The augmented matrix of the system is

 

1 1 3 0

5 4 4 0

7 6 2 0

−

− −

−

















Reducing the augmented matrix to row echelon form,

R R R R
2 1 3 1

5 7

1 1 3 0

0 1 19 0

0 1 19 0

− −

−

−

−

















,

~

R R
3 2

1 1 3 0

0 1 19 0

0 0 0 0

−

−

−

















~

The corresponding system of equations is

x x x

x x

1 2 3

2 3

3 0

19 0

− + =

− =

Solving for the leading variables,

        
x x x

x x

1 2 3

2 3

3

19

= −

=

Assigning the free variable x3 arbitrary value t

x t t t x t x t
1 2 3

19 3 16 19= − = = =, ,

Null space consists vectors of the type

x v=

















=

















=

















=

x

x

x

t

t

t

t t

1

2

3

1

16

19

16

19

1

Hence,    basis= =

















{ }v
1

16

19

1

2.15 RANK AND NULLITY

In the previous section we observed that in the row echelon form of a matrix, the 

number of non-zero rows (i.e. rows containing the leading 1’s) form a basis for the row 

space of A and vectors corresponding to the columns containing the leading 1’s form 

a basis for the column space of A.
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Thus, dimension of row space = number of rows containing the leading 1’s

and  dimension of column space = number of columns containing the leading 1’s.

This concludes that for any matrix A

Dimension of row space = Dimension of column space

2.15.1 Rank

The dimension of row/column space of a matrix A (or the number of non-zero rows in 

the row echelon form of A) is called the rank of A and is denoted by r(A).

Note: If A is an m × n matrix then

rank (A) ≤ min (m, n)

Thus, the largest possible value of rank (A) = min (m, n) where min (m, n) means the 

smaller of the m and n.

e.g. if A is of order 5 × 3 then

The largest possible value of rank (A) = min (5, 3)

   = 3

2.15.2 Nullity

The dimension of the null space of a matrix A is called the nullity of A and is denoted 

by nullity (A).

2.15.3 Dimension Theorem 

Theorem 2.23: If A is an m × n matrix then

rank (A) + nullity (A) = n (number of columns)

Theorem 2.24: If A is an m × n matrix then nullity (A) represents the number of 

parameters in the general solution of Ax = 0

Example 1: Find the number of parameters in the general solution of Ax = 0 if A 

is a 5 × 7 matrix of rank 3.

Solution: The number of parameters = nullity (A)

 = n – rank (A)

 = 7 – 3

 = 4

Example 2: Find the rank and nullity of the matrix

A =

−

−

















2 0 1

4 0 2

0 0 0

Solution: A =

−

−

















2 0 1

4 0 2

0 0 0
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Reducing matrix A to row echelon form,

1

2
1






R

 
∼

1 0
1

2

4 0 2

0 0 0

−

−



















R R
2 1

4

1 0
1

2

0 0 0

0 0 0

−

−


















~

Rank (A) = Number of non-zero rows = 1

 nullity (A) = n – rank (A)

 = 3 – 1 = 2

Exercise 2.7

1. Find a basis for the null space of

  (i) A =

− −

−

−

















2 1 2

4 2 4

8 4 8

 (ii) A =

−

− −

−

−



















1 2 2 1 1

0 2 2 2 1

2 6 2 4 1

1 4 0 3 0

Ans. : ( ) ,

( )

i

ii

1

2

1

0

1

0

1

2



























































−

11

2

0

0

1

1

1

0

1

0



































































,
















































2. Find a basis for the row space of 

A =

−

−

−

−



















1 2 1

1 9 1

3 8 3

2 3 2

 consisting of 

vectors that are

 (i) row vectors of A

 (ii) not entirely row vectors of A

Ans. : (i) ( , , ), ( , , )

( ) ( , , ), ( , , )

1 2 1 1 9 1

1 0 1 0 1 0

− −{ }
−{ }











ii

3. Find a basis for the column space of 

A =

−

−

















1 2 5

2 3 2

0 7 8

 consisting of vectors 

that are

  (i) column vectors of A

 (ii) not entirely column vectors of A

Ans. : ( ) , ( )i ii

1

2

0

2

3

7

1

2

0

















−

−















































 −

















































,

0

1

1
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4. Find a basis for the space spanned by 

the vectors

  (i)  v1 = (–1, 1, –2, 0), v2 = (3, 3, 6, 0), 

v3 = (2, –1, 3, 2)

 (ii) v v v
1 2 3

1

2

1

1

2

1

3

1

0

2

1

2

=



















=



















=


















, ,



=



















=

−



















,

,v v
4 5

3

2

1

4

5

0

0

1

Ans. : ( )

( , , , ), ( , , , ),

, , ,

( )

i

ii

1 1 2 0 0 1 0 0

0 0 1
1

6

−

−



















vv v v v1 2 3 4, , ,{ }





















5. Determine whether b is in the column 

space of A, and if so, express b as a 

linear combination of the column 

vectors of A if

 (i) A =

−

−

−

















= −

−

















1 3 2

1 2 3

2 1 2

1

9

3

and b

 (ii)

 

A =



















=



















1 2 0 1

0 1 2 1

1 2 1 3

0 1 2 2

4

3

5

7

and b

Ans. : ( )i

1

9

3

2

1

1

2

3

2

1

3

2

3−

−

















=

−















−

















+ −

−−



































= −



















+

2

4

3

5

7

26

1

0

1

0

13

2

1
( )ii

22

1

7

0

2

1

2

4

1

1

3

2



















−



















+































































6. Find the largest possible value of 

rank (A) and the smallest possible value 

of nullity (A) in each of the following:

  (i) A is 3 × 3

  (ii) A is 4 × 5

 (iii) A is 5 × 4

[Ans. : (i) 3, 0 (ii) 4, 1 (iii) 4, 0]

7. Find the number of parameters in the 

general solution of Ax = 0 if A is a 

5 × 9 matrix of rank 3.

[Ans. : 6]

8. Find the rank and nullity of the matrix:

  (i) A =

− −

− −

−

















1 1 1

4 3 1

3 1 3

 (ii) A =

−

−

−

















1 2 1 3

2 4 1 2

3 6 3 7

[Ans. : (i) 2, 1 (ii) 2, 2]



3.1  INTRODUCTION

Often it is necessary to transform data from one measurement scale to another 

e.g., the conversion of temperature from degree centigrade to degree Farenheit is 

given by °F = 1.8°C + 32. This is a linear transformation. Hence, linear transforma-

tion is a function that converts one type of data into another type of data. Linear 

transformation from Rn to Rm is referred to as Euclidean linear transformation 

whereas, linear transformation from vector space V to vector space W is referred 

to as general linear transformation. This is useful in many applications in physics, 

engineering and various branches of mathematics.

3.2  EUCLIDEAN LINEAR TRANSFORMATION

It is a function that associates each element of Rn with exactly one element of Rm. 

It is represented by T : Rn → Rm and we say that T maps Rn into Rm. Here, the domain 

of transformation T is Rn and the codomain of transformation T is Rm.

Consider a linear transformation T : Rn → Rm defined by

 

w a x a x a x

w a x a x a x

w a x a

n n

n n

m m

1 11 1 12 2 1

2 21 1 22 2 2

1 1

= + + +

= + + +

= +

�

�

� � � �

mm mn n
x a x

2 2
+ +�

 …(3.1)

In matrix form,

 

w

w

w

a a a

a a a

a a a
m

n

n

m m mn

1

2

11 12 1

21 22 2

1 2

�

…

…

� � � �

…



















=





































x

x

x
n

1

2

�

 …(3.2)

 w x= A  …(3.3)

Linear  

Transformations

Chapter3
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The matrix A is called the standard matrix of the linear transformation. Eq (3.1) can 

also be represented as,

 T (x1, x2, … , x
n
) = (w1, w2, … , w

n
)

If T : Rn → Rm is multiplication by A, then standard matrix of T is also denoted by T
A 
.

3.3  LINEAR TRANSFORMATIONS

Let V and W be two vector spaces. A linear transformation (T : V → W ) is a function 

T from V to W such that

(a) T (u + v) = T (u) + T (v)

(b) T (k u) = k T (u)

for all vectors u and v in V and all scalars k.

If V = W, the linear transformation T : V → V is called a linear operator.

3.3.1  Some Standard Linear Transformations

(1)  Zero Transformation

Let V and W be two vector spaces. The function T from V to W defined by

 T (v) = 0

for every vector v in V is a linear transformation from V to W.

Let u and v are in V.

 

T

T

T V

T k k V

( )

( )

( ) [ ]

( ) [ ]

u 0

v 0

u v 0 u v

u 0 u

=

=

+ = +

=

∵

∵

is in 

is in 

Thus, T (u + v) = T (u) + T (v)

and T (ku) = k T (u)

Hence, T is a linear transformation and is called zero transformation.

(2)  Identity Operator

Let V be a vector space. The function I from V to V defined by

 I (v) = v

is a linear transformation from V to V.

Let u and v are in V.

 I (v) = v

 I (u) = u
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I k k kI

( ) ( ) ( )

( ) ( )

u v u v u v

u u u

+ = + = +

= =

Hence, I is a linear transformation and is called identity operator on V.

3.3.2 Properties of Linear Transformations

Theorem 3.1: If T : V → W is a linear transformation then

(a) T (0) = 0

(b) T (–v) = –T (v) for all v in V

(c) T (v – w ) = T (v) – T (w ) for all v and w in V

(d) T k k k k T k T k T
n n n n

( ) ( ) ( ) ( )1 1 2 2 1 1 2 2v v v v v v+ + + = + + +� �

where v1, v2, … , vn are vectors in V and k1, k2, … , kn are all scalars.

3.4   LINEAR OPERATORS (TYPES OF LINEAR 
TRANSFORMATIONS)

3.4.1 Reflection Operators

An operator on R2 or R3 that maps each vector into its symmetric image about some line or 

plane is called a reflection operator. Let T : R2 → R2 be a reflection operator defined by

 T (x, y) = (x, –y)

that maps each vector into its symmetric image about the x-axis.

In matrix form,

 T
x

y

x

y
















=

−


















1 0

0 1

The standard matrix of T is
 [ ]T =

−











1 0

0 1

Some of the basic reflection operators are given in Table 3.1 Fig. 3.1

y

x

(x, y )

(x, −y)

0

Table 3.1

Operator Equation Standard Matrix

Reflection about the  

x-axis on R2

T (x, y) = (x, –y)
1 0

0 1−











Reflection about the  

y-axis on R2

T (x, y) = (–x, y) −









1 0

0 1

(contd.)
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3.4.2 Projection Operators

An operator on R2 or R3 that maps each vector into its orthogonal projection on a line or 

plane through the origin is called a projection operator. Let T : R2 → R2 be a  projection 

operator defined by

 T (x, y) = (x, 0)

that maps each vector into its orthogonal projection on the x-axis.

In matrix form,

 T
x

y

x

y
















=


















1 0

0 0

The standard matrix of T is

 [ ]T =










1 0

0 0

Some of the basic projection operators on R2 

and R3 are given in Table 3.2.

Fig. 3.2

y

x

(x, y)

(x, 0)0

Table 3.1 (contd.)

Operator Equation Standard Matrix

Reflection about the line  

y = x on R2

T (x, y) = ( y, x)
0 1

1 0











Reflection about the  

xy-plane on R3

T (x, y, z) = (x, y, –z)
1 0 0

0 1 0

0 0 1−

















Reflection about the  

xz-plane on R3

T (x, y, z) = (x, –y, z)
1 0 0

0 1 0

0 0 1

−

















Reflection about the  

yz-plane on R3

T (x, y, z) = (–x, y, z) −















1 0 0

0 1 0

0 0 1
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Table 3.2

Operator Equations Standard Matrix

Orthogonal projection on  

the x-axis on R2

T (x, y) = (x, 0)
1 0

0 0











Orthogonal projection on  

the y-axis on R2

T (x, y) = (0, y)
0 0

0 1











Orthogonal projection on  

the xy-plane on R3

T (x, y, z) = (x, y, 0)
1 0 0

0 1 0

0 0 0

















Orthogonal projection on  

the xz-plane on R3

T (x, y, z) = (x, 0, z)
1 0 0

0 0 0

0 0 1

















Orthogonal projection on  

the yz-plane on R3

T (x, y, z) = (0, y, z)
0 0 0

0 1 0

0 0 1

















3.4.3 Rotation Operators

An operator on R2 that rotates each vector counterclockwise through a fixed angle q is 

called a rotation operator. Let T : R2 → R2 be a rotation operator defined by

  T (x, y) = (x cos q – y sin q, x sin q + y cos q  )

that rotates each vector counterclockwise through a fixed angle q.

In matrix form,

 T
x

y

x

y
















=

−

















cos sin

sin cos

θ θ
θ θ

The standard matrix of T is

 [ ]
sin

sin cos
T =

−









cosθ θ

θ θ

Similarly, a rotation operator on R3 rotates 

each vector about some rotation axis through 

a fixed angle q.

Some of the rotation operators on R2 and R3 

are given in Table 3.3. Fig. 3.3

y

x

(x, y)

(x´, y´)

q

0
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Table 3.3

Operator Equations Standard Matrix

Rotation through an  

angle q on R2

T (x, y) = (x cos q – y sin q, 

x sin q + y cos q )
cos sin

sin cos

θ θ

θ θ

−









Counterclockwise rotation  

about the positive x-axis 

through an angle q on R3

T (x, y, z) = (x, y cos q – z sin q, 

y sin q + z cos q )
1 0 0

0

0

cos sin

sin cos

θ θ

θ θ

−

















Counterclockwise rotation  

about the positive y-axis 

through an angle q on R3

T (x, y, z) = (x cos q + z sin q, 

y, –x sin q + z cos q )
cos sin

sin cos

θ θ

θ θ

0

0 1 0

0−

















Counterclockwise rotation  

about the positive z-axis 

through an angle q on R3

T (x, y, z) = (x cos q – y sin q, 

x sin q + y cos q, z)
cos sin

sin cos

θ θ

θ θ

−















0

0

0 0 1

3.4.4 Dilation Operators

An operator on R2 or R3 that stretches each vector uniformly away from the origin 

in all directions is called a dilation operator. Let T : R2 → R2 be a dilation operator 

defined by

 T (x, y) = (k x, k y), k ≥ 1

that stretches each vector by a factor k.

In matrix form,

 T
x

y

k

k

x

y
















=


















0

0

The standard matrix of T is

 [ ]T
k

k
=











0

0

Some of the dilation operators on R2 and R3 are 

given in Table 3.4. Fig. 3.4

y

(kx, ky)

(x, y )

0
x
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3.4.5 Contraction Operators

An operator on R2 or R3 that compresses each vector  uniformly toward the origin from 

all directions is called a contraction operator. Let T : R2 → R2 be a contraction operator 

defined by

  T (x, y) = (k x, k y), 0 ≤ k ≤ 1

that compresses each vector by a factor k.

In matrix form,

 T
x

y

k

k

x

y
















=


















0

0

The standard matrix of T is

 [ ]T
k

k
=











0

0

Some of the contraction operators on R2 and R3 are given in Table 3.5.

Table 3.4

Operator Equations Standard Matrix

dilation with factor  

k on R2 (k ≥ 1)

T (x, y) = (k x, k y) k

k

0

0











dilation with factor  

k on R3 (k ≥ 1)

T (x, y, z) = (k x, k y, k z)
k

k

k

0 0

0 0

0 0

















Table 3.5

Operator Equations Standard Matrix

Contraction with factor  

k on R2 (0 ≤ k ≤ 1)

T (x, y) = (k x, k y) k

k

0

0











Contraction with factor  

k on R3 (0 ≤ k ≤ 1)

T (x, y, z) = (k x, k y, k z)
k

k

k

0 0

0 0

0 0

















Fig. 3.5

y

(kx, ky)

(x, y)

0
x
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3.4.6 Shear Operators

An operator on R2 or R3 that moves each point parallel to the x-axis by the amount k y is 

called a shear in the x-direction. Similarly, an operator on R2 or R3 that moves each vector 

parallel to y-axis by the amount k x is called a shear in the y-direction. Let T : R2 → R2 be 

a shear operator in the x-direction defined by

  T (x, y) = (x + k y, y)

that moves each point parallel to the x-axis by the amount k y.

In matrix form,

 T
x

y

k x

y
















=


















1

0 1

The standard matrix of T is

 [ ]T
k

=










1

0 1

When the shear in the x-direction with k = 2 is applied 

to a square with vertices (0, 0), (0, 1), (1, 1) and (1, 0), 

it is transformed to a parallelogram with vertices (0, 0), 

(2, 1), (3, 1) and (1, 0).

Some of the shear operators on R2 are given in

Table 3.6.

Table 3.6

Operator Equations Standard Matrix

Shear in the x-direction on R2 T (x, y) = (x + k y, y)
1

0 1

k









Shear in the y-direction on R2 T (x, y) = (x , y+ k x)
1 0

1k











Fig. 3.6

y

(0, 0)

(0, 1)
(2, 1)

(3, 1)

(1, 0)
x

y

(0, 1)

(0, 0) (1, 0)

(1, 1)

x

T

(k = 2)

Shear in x-direction

Example 1:  Show that the following functions are linear transformations.

 (i) T : R2 → R2, where T (x, y) = (x + 2y, 3x – y)

(ii) T : R3 → R2, where T (x, y, z) = (2x – y + z, y – 4z)

Solution: (i) Let u = (x1, y1) and v = (x2, y2) be the vectors in R2 and k be any 

scalar.

 
T x y x y

T x y x y

( ) ( , )

( ) ( , )

u

v

= + −

= + −

1 1 1 1

2 2 2 2

2 3

2 3
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u v+ = +

= + +

( , ) ( , )

( , )

x y x y

x x y y

1 1 2 2

1 2 1 2

 

T x x y y x x y y

x y x y x y

( ) ( , )

( ,

u v+ = + + + + − −

= + + + −

1 2 1 2 1 2 1 2

1 1 2 2 1 1

2 2 3 3

2 2 3 ++ −

= + − + + −

= +

3

2 3 2 3

2 2

1 1 1 1 2 2 2 2

x y

x y x y x y x y

T T

)

( , ) ( , )

( ) ( )u v

 

k k x y k x k y

T k k x k y k x k y

k x y x

u

u

= =

= + −

= +

( , ) ( , )

( ) ( , )

( ,

1 1 1 1

1 1 1 1

1 1

2 3

2 3 11 1−

=

y

kT

)

( )u

Hence, T is a linear transformation.

(ii) Let u = (x1, y1, z1) and v = (x2, y2, z2) be the vectors in R3 and k be any scalar.

 
T x y z y z

T x y z y z

( ) ( , )

( ) ( , )

u

v

= − + −

= − + −

2 4

2 4

1 1 1 1 1

2 2 2 2 2

 
u v+ = +

= + + +

( , , ) ( , , )

( , , )

x y z x y z

x x y y z z

1 1 1 2 2 2

1 2 1 2 1 2

T x x y y z z y y z z

x y z x

( ) ( , )

(

u v+ = + − − + + + − −

= − + + −

2 2 4 4

2 2

1 2 1 2 1 2 1 2 1 2

1 1 1 2 yy z y z y z

x y z y z x y z y z

2 2 1 1 2 2

1 1 1 1 1 2 2 2 2 2

4 4

2 4 2 4

+ − + −

= − + − + − + −

, )

( , ) ( , ))

( ) ( )= +T Tu v

 

k k x y z kx ky kz

T k kx ky kz ky kz

u

u

= =

= − + −

=

( , , ) ( , , )

( ) ( , )

1 1 1 1 1 1

1 1 1 1 12 4

kk x y z y z

kT

( , )

( )

2 41 1 1 1 1− + −

= u

Hence, T is a linear transformation.

Example 2: Determine whether the following functions are linear  transformations.

 (i) T : P2 → P3, where T (  p (x)) = x p(x)

(ii) T : P2 → P2, where T (a0 + a1x + a2 x
2) = (a0 + 1) + (a1 + 1) x + (a2 + 1) x2

Solution: (i) Let p1 = a0 + a1x + a2 x
2 and p2 = b0 + b1x + b2 x

2 be the two polynomials 

in P2 and k be any scalar.

 
T a x a x a x

T b x b x b x

( )

( )

p

p

1 0 1

2

2

3

2 0 1

2

2

3

= + +

= + +
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p p1 2 0 1 2

2

0 1 2

2

0 0 1 1 2 2

+ = + + + + +

= + + + + +

( ) ( )

( ) ( ) ( )

a a x a x b b x b x

a b a b x a b xx
2

 

T a b x a b x a b x

a x a x a x b x b

( ) ( ) ( ) ( )p p1 2 0 0 1 1

2

2 2

3

0 1

2

2

3

0 1

+ = + + + + +

= + + + + xx b x

T T

2

2

3

1 2

+

= +( ) ( )p p

 
k k a a x a x

a k a kx a kx

p1 0 1 2

2

0 1 2

2

= + +

= + +

( )

 

T k x a k a kx a kx

a kx a kx a kx

k a x a x a x

( ) ( )

( )

p1 0 1 2

2

0 1

2

2

3

0 1

2

2

3

= + +

= + +

= + +

== kT ( )p1

Hence, T is a linear transformation.

(ii) Let p1 = a0 + a1x +a2x
2 and p2 = b0 + b1x +b2 x

2 be the two polynomials in P2 and k 

be any scalar.

 
T a a x a x

T b b x b x

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

p

p

1 0 1 2

2

2 0 1 2

2

1 1 1

1 1 1

= + + + + +

= + + + + +

 
p p1 2 0 1 2

2

0 1 2

2

0 0 1 1 2 2

+ = + + + + +

= + + + + +

( ) ( )

( ) ( ) ( )

a a x a x b b x b x

a b a b x a b xx
2

 

T a b a b x a b x

a a x

( ) ( ) ( ) ( )

( ) ( ) (

p p1 2 0 0 1 1 2 2

2

0 1

1 1 1

1 1

+ = + + + + + + + +

= + + + + aa x b b x b x

T

T T

2

2

0 1 2

2

1 2

1 2

1+ + + +

= +

≠ +

)

( )

( ) ( )

p p

p p

Hence, T is not a linear transformation.

Example 3: Determine whether the following functions are linear  transformations:

 (i) T : Mmn → Mnm, where T (A) = AT

 (ii) T : M22 → R, where T
a b

c d
a b

















= +2 2

(iii) T : Mnn → R, where T (A) = det (A)

(iv) T : Mnn → R, where T (A) = tr (A)
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Solution: (i)  Let A1 and A2 be two matrices in Mmn and k be any scalar.

 T A A
T

1
 ( ) =

1

 T A A
T

2
 ( ) =

2

 
T A A A A A A T A T A

T kA kA kA kT

T T T

T T

( ) ( ) ( ) ( )

( ) ( )

1 2 1 2 1 2 1 2

1 1 1

+ = + = + = +

= = = (( )A1

Hence, T is a linear transformation.

(ii) Let A
a b

c d
1

1 1

1 1

=








  and A

a b

c d
2

2 2

2 2

=








  be two matrices in M22 and k be any  scalar.

 

T A T
a b

c d
a b

T A T
a b

c d

( )

( )

1

1 1

1 1

1

2

1

2

2

2 2

2 2

=
















= +

=
















= +a b2

2

2

2

 A A
a b

c d

a b

c d

a a b b

c c d d
1 2

1 1

1 1

2 2

2 2

1 2 1 2

1 2 1 2

+ =








 +









 =

+ +

+ +











 

T A A T
a a b b

c c d d
a a b b( ) ( ) (1 2

1 2 1 2

1 2 1 2

1 2

2

1 2+ =
+ +
+ +

















= + + + ))

( ) ( ) (

2

1

2

1 2 2

2

1

2

1 2 2

2

1

2

1

2

2

2

2

2

1 2

2 2

2

= + + + + +

= + + + +

a a a a b b b b

a b a b a a ++

≠ +

b b

T A T A

1 2

1 2

)

( ) ( )

Hence, T is not a linear transformation.

(iii) Let A1 and A2 be two matrices in Mnn and k be any scalar.

 
T A A

T A A

( ) det ( )

( ) det ( )

1 1

2 2

=

=

   

T A A A A

A A

T A T A

( ) det ( )

det ( ) det ( )

( ) ( )

1 2 1 2

1 2

1 2

+ = +

≠ +

≠ +

Hence, T is not a linear transformation.

(iv) Let A1 and A2 be two matrices in Mnn and k be any scalar.

 

T A A a

T A A b

ii

i

n

ii

i

n

( ) ( )

( ) ( )

1 1

1

2 2

1

= =

= =

=

=

∑

∑

tr

tr
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T A A a b

a b

T A T A

ii ii

i

n

ii

i

n

ii

i

n

( ) ( )

( ) ( )

1 2

1

1 1

1 2

+ = +

= +

= +

=

= =

∑

∑ ∑

 

T kA ka

k a

kT A

ii

i

n

ii

i

n

( )

( )

1

1

1

1

=

=

=

=

=

∑

∑

Hence, T is a linear transformation.

3.5   LINEAR TRANSFORMATIONS FROM 
IMAGES OF BASIS VECTORS

A linear transformation is completely determined by the images of any set of basis 

vectors. If T : V → W is a linear transformation and if {v1, v2, … , vn} is any basis for V 

then any vector v in V is expressed as a linear combination of v1, v2, … , vn.

 v v v v= + + +k k k
n n1 1 2 2

�

The linear transformation T (v) is given by,

 
T T k k k

k T k T k T

n n

n n

( ) ( )

( ) ( ) ( )

v v v v

v v v

= + + +

= + + +

1 1 2 2

1 1 2 2

�

�

Example 1: Consider the basis S = {v1, v2} for R2, where v1 = (1, 1) and v2 = (1, 0) 

and let T : R2 → R2 be the linear transformation such that T (v1) = (1, –2) and 

T (v2) = (– 4, 1).

Find a formula for T (x1, x2) and use the formula to find T (5, –3).

Solution: Let v = (x1, x2) be an arbitrary vector in R2 and can be expressed as a linear 

combination of v1 and v2.

 

v v v= +

= +

= +

k k

x x k k

k k k

1 1 2 2

1 2 1 2

1 2 1

1 1 1 0( , ) ( , ) ( , )

( , )

Equating corresponding components,

 
k k x

k x

1 2 1

1 2

+ =

=
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Hence, k1 = x2, k2 = x1 – x2

 ∴ = + −v v vx x x2 1 1 2 2( )

 T k T k T( ) ( ) ( )v v v= +1 1 2 2

 

T x x x T x x T

x x x

x

( , ) ( ) ( ) ( )

( , ) ( )( , )

( ,

1 2 2 1 1 2 2

2 1 2

2

1 2 4 1

= + −

= − + − −

= −

v v

22 4 4

4 5 3

2 1 2 1 2

1 2 1 2

x x x x x

x x x x

) ( , )

( , )

+ − + −

= − + −

 
T ( , ) ( ( ) ( ), ( ))

( , )

5 3 4 5 5 3 5 3 3

35 14

− = − + − − −

= −

Example  2:  Consider the basis S = {v1, v2} for R2, where v1 = (–2, 1) and

v2 = (1, 3) and let T : R2 → R3 be the linear transformation such that T (v1) = (–1, 2, 0) 

and T (v2) = (0, –3, 5).

Find a formula for T (x1, x2) and use that formula to find T (2, –3).

Solution: Let v = (x1, x2) be an arbitrary vector in R2 and can be expressed as a linear 

combination of v1 and v2.

 

v v v= +

= − +

= − + +

k k

x x k k

k k k k

1 1 2 2

1 2 1 2

1 2 1 2

2 1 1 3

2 3

( , ) ( , ) ( , )

( , )

Equating corresponding components,

 
− + =

+ =

2

3

1 2 1

1 2 2

k k x

k k x

Solving these equations,

 

k x x

k x x

x x x x

1 1 2

2 1 2

1 2 1 1 2

3

7

1

7

1

7

2

7

3

7

1

7

1

7

2

7

= − +

= +

∴ = − +





+ +


v v 


v
2

 T k T k T( ) ( ) ( )v v v= +1 1 2 2

 T x x x x T x x T

x

( , ) ( ) ( )1 2 1 2 1 1 2 2

1

3

7

1

7

1

7

2

7

3

7

= − +





+ +





= − +

v v

11

7
1 2 0

1

7

2

7
0 3 52 1 2x x x







− + +





−( , , ) ( , , )
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= − − +





+ − − +





3

7

1

7

6

7

2

7
0 0

3

7

6

7

5

7

10

7
1 2 1 2 1 2 1 2x x x x x x x x, , , , 

= − − − +





= − − −

3

7

1

7

9

7

4

7

5

7

10

7

1

7
3 9 4

1 2 1 2 1 2

1 2 1 2

x x x x x x

x x x x

, ,

, ,,

( , ) ( , , ) , ,

5 10

2 3
1

7
9 6 20

9

7

6

7

20

7

1 2x x

T

+( )

− = − − = − −





Example  3:  Consider the basis S = {v1, v2, v3} for R3 where v1 = (1, 1, 1), 

v2 = (1, 1, 0) and v3 = (1, 0, 0) and let T : R3 → R3 be the linear operator such that

T (v1) = (2, –1, 4), T (v2) = (3, 0, 1), T (v3) = (–1, 5, 1). Find a formula for T (x1, x2, x3) 

and use that formula to find T (2, 4, –1).

Solution: Let v = (x1, x2, x3) be an arbitrary vector in R3 and can be expressed as a 

linear combination of v1, v2, and v3.

 

v v v v= + +

= + +

=

k k k

x x x k k k

1 1 2 2 3 3

1 2 3 1 2 31 1 1 1 1 0 1 0 0( , , ) ( , , ) ( , , ) ( , , )

(kk k k k k k1 2 3 1 2 1+ + +, , )

Equating corresponding components,

 

k k k x

k k x

k x

1 2 3 1

1 2 2

1 3

+ + =

+ =

=

Hence,

 

k x

k x x

k x x

1 3

2 2 3

3 1 2

=

= −

= −

 ∴ = + − + −v v v vx x x x x3 1 2 3 2 1 2 3( ) ( )

 T k T k T k T( ) ( ) ( ) ( )v v v v= + +1 1 2 2 3 3

T x x x x T x x T x x T

x

( , , ) ( ) ( ) ( ) ( ) ( )

( , , ) (

1 2 3 3 1 2 3 2 1 2 3

3 2 1 4

= + − + −

= − +

v v v

xx x x x2 3 1 23 0 1 1 5 1− + − −)( , , ) ( )( , , )

 
= − + − − + − + − −

= −

( , , ) ( , , ) ( , , )

(

2 4 3 3 0 5 53 3 3 2 3 2 3 1 2 1 2 1 2x x x x x x x x x x x x x

xx x x x x x x x1 2 3 1 2 3 1 34 5 5 3+ − − − +, , )

 
T ( , , ) ( ( ) ( ), ( ) ( ) ( ), ( ))

( , , )

2 4 1 2 4 4 1 5 2 5 4 1 2 3 1

15 9 1

− = − + − − − − − + −

= − −
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Example 4:  Consider the basis S = {v1, v2} for R2, where v
1

1

1
=








  and v

2

2

3
=









  

and let T : R2 → P2 be the linear transformation such that T (v1) = 2 – 3x + x2 and 

T (v2) = 1 – x2. Find T
a

b









  and then find T

−









1

2
.

Solution: Let v =










a

b
 be an arbitrary vector in R2 and can be expressed as a linear 

combination of v1 and v2.

 v = k1v1 + k2v2

 
a

b
k k

k k

k k








 =








 +








 =

+

+









1 2

1 2

1 2

1

1

2

3

2

3

Equating corresponding components,

 
k k a

k k b

1 2

1 2

2

3

+ =

+ =

Solving these equations,

 
k a b

k b a

1

2

3 2= −

= −

 ∴ = − + −v v v( ) ( )3 2 1 2a b b a

 T k T k T( ) ( ) ( )v v v= +1 1 2 2

 

T
a

b
a b x x b a x

a b b a a b








 = − − + + − −

= − + − + − +

( )( ) ( )( )

( ) (

3 2 2 3 1

6 4 9 6

2 2

)) ( )

( ) ( ) ( )

x a b b a x

a b a b x a b x

+ − − +

= − + − + + −

3 2

5 3 9 6 4 3

2

2

 
T x x

−







 = − − + − − + + − −

= −

1

2
5 1 3 2 9 1 6 2 4 1 3 2

1

2[ ( ) ( )] [( )( ) ( )] [ ( ) ( )]

11 21 10 2+ −x x

Example 5:  Let T: M22 → R be a linear transformation for which T (v1) = 1, T (v2) = 2, 

T (v3) = 3, T (v4) = 4 where v v v v
1 2 3 4

1 0

0 0

1 1

0 0

1 1

1 0

1 1

1 1
=









 =









 =









 =









, , ,

Find T
a b

c d









  and T

1 3

4 2









 .
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Solution: Let v =










a b

c d
 be an arbitrary vector in M22 and can be expressed as a 

linear combination of v1, v2, v3 and v4.

 v v v v v= + + +k k k k
1 1 2 2 3 3 4 4

 

a b

c d
k k k k









 =









 +









 +









 +




1 2 3 4

1 0

0 0

1 1

0 0

1 1

1 0

1 1

1 1







=
+ + + + +

+











k k k k k k k

k k k

1 2 3 4 2 3 4

3 4 4

Equating corresponding components,

 

k k k k a

k k k b

k k c

k d

1 2 3 4

2 3 4

3 4

4

+ + + =

+ + =

+ =

=

Solving these equations,

  

k a b

k b c

k c d

k d

1

2

3

4

= −

= −

= −

=

 
∴ = − + − + − +v v v v v( ) ( ) ( )a b b c c d d1 2 3 4

 

T k T k T k T k T

T
a b

c d
a b

( ) ( ) ( ) ( ) ( )

( )( ) (

v v v v v= + + +









 = − +

1 1 2 2 3 3 4 4

1 bb c c d d

a b c d

− + − +

= + + +

)( ) ( )( ) ( )2 3 4

 T
1 3

4 2
1 3 4 2 10









 = + + + =

3.6  COMPOSITION OF LINEAR TRANSFORMATION

Let T1: U  → V and T2: V  → W be linear transformations. The application of T1 

 followed by T2 produces a transformation from U to W. This transformation is called 

the  composition of T2 with T1 and is denoted by T T
2 1
�

 T T T T
2 1 2 1

  �( ) ( ) = ( )( )u u

where u is a vector in U.

Note 1: The domain of T2 (which is V ) consists of range of T1.
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Note 2: If [T1] = A and [T2] = B, then T1(u) = A(u)

 

∴( )( ) = ( )( ) =

= =

T T T T T A

B A BA

2 1 2 1� u u u

u u

2 ( )

( ) ( )

This shows that [ ]
2 1
T T BA T T� = = [ ][ ]

2 1

Theorem 3.2: If T1: U → V and T2: V → W are linear transformations then (T T
2 1
� ): 

U → W is also a linear transformation.

Compositions can be defined for more than two linear transformations. If T1: U → V, T2: 

V → W and T3: W → U are three linear transformations then the composition T T T
3 2 1
� �  

is given by

 T T T T T T
3 2 1 3 2 1

  � �( ) ( ) = ( )( )( )u u

Example 1:  Find domain and codomain of T T
2 1
�  and find ( )( , )T T x y2 1� .

 (i) T1 (x, y) = (2x, 3y), T2 (x, y) = (x – y, x + y)

(ii) T1 (x, y) = (x – y, y + z, x – z), T2 (x, y, z) = (0, x + y + z)

Solution: (i) T1 (x, y) = (2x, 3y).

T1 : R
2 → R2 is a linear transformation from R2 to R2.

 T2 (x, y) = (x – y, x + y)

T2 : R
2 → R2 is a linear transformation  from R2 to R2.

Hence T T
2 1
�  is a linear transformation from R2 to R2.

   Domain of        T T R
2 1

2
� =

Codomain of        T T R
2 1

2
� =

 

[ ] [ ][ ]T T T T
2 1 2 1

1 1

1 1

2 0

0 3

2 3

2 3

� =

=
−
















 =

−









 T T x y x y x y
2 1

   2 3  2 3�( ) ( ) = +( ), ,−

(ii) T1 (x, y) = (x – y, y + z, x – z)

T1: R
2 → R3 is a linear transformation from R2 to R3.

 T2 (x, y, z) = (0, x + y + z)

T2: R
3 → R2 is a linear transformation from R3 to R2.

Hence, T T
2 1
�  is a linear transformation from R2 to R2.

   Domain of T T R
2 1

2
� =

Codomain of T T R
2 1

2
 � =
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[ ] [ ][ ]T T T T2 1 2 1

0 0 0

1 1 1

1 1 0

0 1 1

1 0 1

0 0 0

2 0 0

� =

=










−

−

















=










=( )( , ) ( , )T T x y x
2 1 0 2�

Example 2:  Find the domain and codomain of T T T
3 2 1
� �  and find T T T x y

3 2 1
� �( )( ),  

where T1(x, y) = (x + y, y, – x), T2 (x, y, z) = (0, x + y + z, 3y), T3 (x, y, z) = (3x + 2y, 4z – x – 3y).

Solution: T1(x, y) = (x + y, y, –x)

T1: R
2 → R3 is a linear transformation from R2 to R3.

 T2 (x, y, z) = (0, x + y + z, 3y)

T2: R
3 → R3 is a linear transformation  from R3 to R3.

  T3 (x, y, z) = (3x + 2y, 4z – x – 3y)

T3: R
3 → R2 is a linear transformation from R3 to R2.

Hence, T T T
3 2 1
� �  is a linear transformation from R2 to R2.

   Domain of T T T R
3 2 1

2
 � � =

Codomain of T T T R
3 2 1

2
 � � =

 
[ ]T T T3 2 1

3 2 0

1 3 4

0 0 0

1 1 1

0 3 0

1 1

0 1

1 0

� � =
− −

























 −

















=










=

0 4

0 6

4 6
3 2 1( )( , ) ( , )T T T x y y y� �

Example 3:  Let T1: P2 → P2 and T2: P2 → P2 be the linear transformation given by, 

T1 (  p(x)) = p(x + 1) and T2 (  p(x)) = x p(x).

Find  ( )T T2 1
�  (a0 + a1x + a2  x

2).

Solution:  T1 (  p(x)) = p(x + 1)

   T2 (  p(x)) = x p(x)

 ( )( ) ( )

( ( ) (

T T a a x a x T T a a x a x

T a a x a

2 1 0 1 2

2

2 1 0 1 2

2

2 0 1 21

� + + = + +( )
= + + + xx

x a a x a x

a x a x x a x x

+

= + + + +

= + + + +

1

1 1

1 1

2

0 1 2

2

0 1 2

2

) )

( ( ) ( ) )

( ) ( )

 

= + + + + +

= + + + + +

=

a x a x a x a x x x

a x a x a x a x a x a x

a

0 1

2

1 2

2

0 1

2

1 2

3

2

2

2

0

2 1

2

( )

( ++ + + + +a a x a a x a x1 2 1 2

2

2

32) ( )
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Example 4:  Let T1: M22 → R and T2: M22 → M22 be the linear transformations 

given by T1 (A) = tr (A) and T2 (A) = AT. Find T T A
1 2
�( ) ( ) 

where A
a b

c d
=









 .

Solution: T1 (A) = tr (A) = a + d

 T A A
a c

b d

T

2 ( ) = =










 
( )( ) ( ( )) ( ) ( )T T A T T A T A A

a d

T T

1 2 1 2 1� = = =

= +

tr

Example 5:  Let T: R3 → R3 be the orthogonal projection of R3 on to the xy-plane. 

Show that T T T� = .

Solution: T: R3 → R3 be the orthogonal projection of R3 onto the xy-plane defined by

  T (x, y, z) = (x, y, 0)

The standard matrix of T is

 

[ ]

[ ] [ ] [ ]

T

T T T T

=

















= =

















1 0 0

0 1 0

0 0 0

1 0 0

0 1 0

0 0 0

1 0 0

� 00 1 0

0 0 0

1 0 0

0 1 0

0 0 0

















=

















Hence, T T T�   =

Example 6:  Find the standard matrix of the stated composition of linear operators 

on R3.

 (i)  A rotation of 45° about the y-axis, followed by a dilation with the factor 

k = 2 .

(ii)  A rotation of 30° about the x-axis, followed by a rotation of 30° about the 

z-axis, followed by a contraction with the factor k =
1

4
.

Solution: (i) Let T1 be a rotation about the y-axis on R3.

 

T x y z x z y x z

T

1

1

0

0 1 0

( , , ) ( cos sin , , sin cos )

[ ]

cos sin

si

= + − +

=

−

θ θ θ θ

θ θ

nn cosθ θ0
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For q = 45°,

 

[ ]T
1

1

2
0

1

2

0 1 0

1

2
0

1

2

=

−























Let T2 be a dilation with the factor k on R3.

 

T x y z kx ky kz

T

k

k

k

2

2

0 0

0 0

0 0

( , , ) ( , )

[ ]

=

=

















For k = 2,

 [ ]T
2

2 0 0

0 2 0

0 0 2

=



















The linear transformation of the stated composition of these linear operators on R3 

is given by

 T T T=
2 1
�

The standard matrix of T is

 

[ ] [ ][ ]T T T=

=

















 −
















2 1

2 0 0

0 2 0

0 0 2

1

2
0

1

2

0 1 0

1

2
0

1

2








=

−

















1 0 1

0 2 0

1 0 1

(ii) Let T1 be a rotation about the x-axis on R3.

 

T x y z x y z y z

T

1

1

1 0 0

0

0

= = − +

= −

( , , ) ( , cos sin , sin cos )

[ ] cos sin

s

θ θ θ θ

θ θ

iin cosθ θ
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For q  = 30°,

    [ ]T
1

1 0 0

0
3

2

1

2

0
1

2

3

2

= −























Let T2 be a rotation about the z-axis on R3.

 

T x y z x y x y z

T

2

2

0

( , , ) ( cos sin , sin cos , )

[ ]

cos sin

sin co

= − +

=

−

θ θ θ θ

θ θ

θ ssθ 0

0 0 1

















For q = 30°,

 
[ ]T

2

3

2

1

2
0

1

2

3

2
0

0 0 1

=

−






















Let T3 be a contraction with factor k on R3.

 

T x y z kx ky kz

T

k

k

k

3

3

0 0

0 0

0 0

( , , ) ( , , )

[ ]

=

=

















For k =
1

4
,

 [ ]T
3

1

4
0 0

0
1

4
0

0 0
1

4

=

























The linear transformation of the stated composition of these linear operators on R3 

is given by,

 T T T T=
3 2 1
� �
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1.  Which of the following are linear 

transformations? Justify.

  (i)  T : R2 → R2, where 

T (x, y) = (x + y, x)

   (ii) T : R2 → R, where T (x, y) = xy

 (iii)  T : R2 → R3, where 

T (x, y) = (x + 1, 2y, x + y)

 (iv)  T : R3 → R2, where 

T (x, y, z) = (| x |, 0)

  (v) T : R2 → R2, where T (x, y) = (x2, y2)

 (vi)  T : R3 → R2, where 

T (x, y, z) = 

(x – y + 2z, 2x + y – z, –x –2y)

 

Ans.:

(i) Linear

ii Non-linear

iii Non-linear

iv Non-linear

(

( )

( )

( )

vv)Non-linear

(vi)Linear





























2.  Determine whether the function is a 

linear transformation. Justify your 

answer.

  (i)  T : P2 → P2, where T (a0 + a1x + 

a2x
2) = a0 + a1(x + 1) + a2 (x + 1)2

  (ii)  T : P1 → P2, where 

T ( p(x)) = x p(x) + x2 + 1

 (iii)  T : P1 → P2, where 

T ( p(x)) = x p(x) + p(0)

 (iv)  T : P1 → P2, where 

T (ax + b) = ax2 + (a – b)x

 

Ans.:

( )

( )

i Linear

ii Non-linear

(iii) Linear

(iv) Linear























3. Determine whether the function is a 

linear transformation. Justify your 

answer.

 (i)  T : M22 → M23, where B is a fixed 

2 × 3 matrix and T (A) = AB

The standard matrix of T is

 

[ ] [ ][ ][ ]T T T T=

=

























−

3 2 1

1

4
0 0

0
1

4
0

0 0
1

4

3

2

1

2
0

1

2

3

2
0

00 0 1

1 0 0

0
3

2

1

2

0
1

2

3

2























−























 =

−

−



























3

8

3

16

1

16

1

8

3

16

3

16

0
1

8

3

8

Exercise 3.1
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 (ii)  T : M22 → M22, where 

T
a b

c d

b c d

c d a

















=

−
+











2

 (iii)  T : V → R, where V is an inner 

product space and T u u( ) =

Ans.: (i)Linear (ii)Linear

 (iii)Non-linear











4. Consider the basis S = {v1, v2, v3} for 

R3, where v1 = (1, 2, 1), v2 = (2, 9, 0) 

and v3 = (3, 3, 4) and let T : R3 → R2 be 

the linear transformation such that

 T T( ) ( , ), ( ) ( , ),v v1 21 0 1 1= = −

 
T ( ) ( , )v3 0 1=

Find a formula for T (x1, x2, x3) and use 

that formula to find T (7, 13, 7).

 
Ans.: ( ,

), ( , )

− + +

− − −











41 9 24

14 3 8 2 3

1 2 3

1 2 3

x x x

x x x

5. Let T : R2 → P2 be a linear transforma-

tion for which T x
1

1
1 2








 = −  and 

T x x
3

1
2

2

−









 = + . Find T

a

b









  and 

T
−









7

9
.

 

Ans.:

a b a b
x

a b
x

x x

+




−

+





+
−





− −










3

4

7

4 2

5 14 8

2

2

,













6. Let T : P2 → P2 be a linear trans-

formation for which

T x x

T x x x x T x x x

( ) ,

( ) , ( )

1 1

1 1

2

2 2 2 2

+ = +

+ = − + = + +

Find T (a + bx + cx2) and T (4 – x + 3x2).

Ans.: a cx
a b c

x

x x

+ +
− −





+ +

















3

2

4 3 5

2

2

,

7. Let T : M22 → R be a linear trans-

formation. Show that there are scalars 

a, b, c and d such that

 T
w x

y z
aw bx cy dz









 = + + +

for all 
w x

y z









  in M22.

8. Let T1 : R2 → M22 and T2 : R2 → R2 

be the linear transformations given 

by T
a

b

a b b

a b
1

0








 =

+

−









  and 

T
c

d

c d

d
2

2
=







 =

+

−









.

Find ( )T T1 2

2

1
�









 and ( ) .T T

x

y
1 2�











 

Ans.:
4 1

0 6

2

0 2 2

−






−
+


























,

x y

x y

9. Find the domain and codomain of 

T T
2 1
� ,  and find T T

2 1
�( )  (x, y).

(a)  T1 (x, y) = (x – 3y, 0), 

T2 (x, y) = (4x – 5y, 3x – 6y)

(b)  T1 (x, y) = (2x, – 3y, x + y), 

T2 (x, y, z) = (x – y, y + z)

Ans.: domain: codomain:

domain: codomain

R R

x y x y

R

2 2

2

2 3 2 3

, ,

( , )

,

− +

:: R

x y x y

2

4 12 3 9

,

( , )− −
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10.  Let T1 : P1 → P2 and T2 : P2 → P2 be 

the linear transformations given by 

T1( p(x)) = x p(x) and 

T2 ( p(x)) = p(2x + 4).

Find T T a a x
2 1 1
�( ) +( )0

.

[Ans.: a0(2x + 4) + a1(2x + 4)2]

11.  Find the standard matrix of the linear 

operator T: R2
 → R

2 that first dilates a 

vector with factor k = 2, then rotates 

the resulting vector by an angle of 

45°, and then reflects that vector 

about the y-axis.

Ans.:
−





















2 2

2 2

12.  Find the standard matrix of the 

linear operator T: R3 → R3 that first 

rotates a vector about the x-axis 

by 270°, then rotates the resulting 

vector about the y-axis by 90°, and 

then rotates that vector about the 

z-axis by 180°.

Ans.:

0 1 0

0 0 1

1 0 0

−
−





























3.7   KERNEL (NULL SPACE) AND RANGE OF A 
LINEAR TRANSFORMATION

Let V and W be two vector spaces and let T: V → W be a linear transformation. The 

kernel or null space of T, denoted by ker (T ) or N(T ), is the set of all vectors in V that T 

maps into the zero  vector, 0. The range of T, denoted by R( T ), is the set of all vectors 

in W that are images of at least one vector in V under T.

Theorem 3.3: If T: V→W is a linear transformation then

 (i) The kernel of T is a subspace of V

(ii) The range of T is a subspace of W

3.7.1 Rank and Nullity of a Linear Transformation

If T: V→W is a linear transformation then the rank of T is the dimension of the range 

of T and is denoted by rank (T ). The nullity of T is the dimension of the kernel of T 

and is denoted by nullity (T ).

Theorem 3.4: If A is m × n matrix and TA
 : Rn → Rm is multiplication by A then the 

kernel of TA is the null space of A and the range of TA is the column space of A. 

Hence,         nullity (TA) = nullity (A) and rank (TA) = rank (A)

From Theorem 3.4, we can conclude that

 Basis for ker (T ) = Basis for the Null space of A, i.e. [T ]

and Basis for R(T ) = Basis for the column space of A, i.e. [T ]



3.7   Kernel (Null Space) and Range of a Linear Transformation 3.25

3.7.2 Dimension Theorem for Linear Transformation

Theorem 3.5: If T: V→W is a linear transformation from a finite dimensional vector 

space V to a vector space W then 

 rank (T ) + nullity (T ) = dim V

Example 1:  Let T : R2 → R2 be the linear operator defined by 

                         T (x, y) = (2x – y, –8x + 4y)

 (i) Find a basis for ker (T ).

(ii) Find a basis for R(T ).

Solution: (i) The basis for ker (T ) is the basis for the solution space of the 

 homogeneous system

 
2 0

8 4 0 2 0

x y

x y x y

− =

− + = ⇒ − =

Let y t=

 

x t

x

y

t

t

t

=









 =














=















1

2

1

2

1

2

1

Hence, basis for ker ( ) { }T = =






























v1

1

2

1

(ii) The basis for the range of T is the basis for the column space of [T ].

 [ ]T =
−

−











2 1

8 4

Reducing the matrix to row echelon form,

 

1

2

1
1

2

8 4

1







−

−















R

~

 

R R
2 1

8

1
1

2

0 0

+

−














~
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The leading 1 appears in column 1.

Hence, basis for R(T ) = basis for column space of [T ]

 =
−



















2

8

Example 2:  Let T : R4 → R3 be the linear transformation given by the formula 

T (x1, x2, x3, x4) = (4x1 + x2 – 2x3 – 3x4, 2x1 + x2 + x3 – 4x4, 6x1 – 9x3 + 9x4)

 (i) Find a basis for ker (T ).

 (ii) Find a basis for R(T ).

(iii) Verify the dimension theorem.

Solution: (i) The basis for ker (T ) is the basis for the solution space of the 

 homogeneous system

 

4 2 3 0

2 4 0

6 9 9 0

1 2 3 4

1 2 3 4

1 3 4

x x x x

x x x x

x x x

+ − − =

+ + − =

− + =

The augmented matrix of the system is

 

4 1 2 3 0

2 1 1 4 0

6 0 9 9 0

− −

−

−

















Reducing the augmented matrix to row-echelon form,

 

1

4

1

3

1
1

4

1

2

3

4
0

2 1 1 4 0

2 0 3 3 0

1 3













− −

−
−





















R R,

~

 

R R R R
2 1 3 1

2 2

1
1

4

1

2

3

4
0

0
1

2
2

5

2
0

0
1

2
2

9

2
0

− −

− −

−

− −
























,

~
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2 2

1
1

4

1

2

3

4
0

0 1 4 5 0

0 1 4 9 0

2 3
R R,

~

− −

−

− −



















 

R R
3 2

1
1

4

1

2

3

4
0

0 1 4 5 0

0 0 0 4 0

+

− −

−



















~

 

1

4

1
1

4

1

2

3

4
0

0 1 4 5 0

0 0 0 1 0

4







− −

−



















R

~

The corresponding system of equations is

 

x x x x

x x x

x

1 2 3 4

2 3 4

4

1

4

1

2

3

4
0

4 5 0

0

+ − − =

+ − =

=

Solving for the leading variables,

 
x x x x

x x x

1 2 3 4

2 3 4

1

4

1

2

3

4

4 5

= − + +

= − +

Assigning the free variable x3 arbitrary value t,

 

x t

x t t t

x

x

x

x

t

t

t

2

1

1

2

3

4

4

1

4
4

1

2

3

2

3

2

4

0

= −

= − − + =



















= −








( )

















= −























=t t

3

2

4

1

0

1v
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Hence, basis for ker ( ) { }T = = −

















































v1

3

2

4

1

0

 dimension for ker (T ) = dim (ker (T )) = 1

(ii) The basis for the range of T is the basis for the column space of [T ].

 [ ]T =

− −

−

−

















4 1 2 3

2 1 1 4

6 0 9 9

Reducing [T] to row echelon form,

     

~

1
1

4

1

2

3

4

0 1 4 5

0 0 0 1

− −

−



















The leading 1’s appear in columns 1, 2 and 4.

Hence, basis for R(T ) = basis for column space of [ ] , ,T =

































−

−

































4

2

6

1

1

0

3

4

9

 dim ( )R T( ) = 3

(iii)

 
rank

nullity ( ) = dim ker ( )

( ) dim ( )T R T

T T

= ( ) =

( ) =

3

1

 rank nullity ( ) = 3 1 4 dim ( )T T R+ + = = 4

Hence, the dimension theorem is verified.

Example 3:  Let T be a multiplication by the matrix A where 

 A =

− − −

















1 2 5

3 5 13

2 1 4

 (i) Find a basis for the range of T.

 (ii) Find a basis for the kernel of T.

(iii) Find the rank and nullity of A.

(iv) Find the rank and nullity of T.

(v) Verify the dimension theorem.
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Solution: (i) The basis for the range of T is the basis for the column space of A.

 A =

− − −

















1 2 5

3 5 13

2 1 4

Reducing the matrix A to row echelon form,

 

R R R R
2 1 3 1

3 2

1 2 5

0 1 2

0 3 6

− +

− −

















,

~

 

( )

~

−

















1

1 2 5

0 1 2

0 3 6

2R

 

R R
3 2

3

1 2 5

0 1 2

0 0 0

−

















~

The leading 1’s appear in columns 1 and 2.

Hence, basis for R(T ) = basis for column space of A

   =

−















 −

































1

3

2

2

5

1

,

 dim ( )R T( ) = 2

(ii) The basis for the kernel of T is the basis for the solution space of the homogeneous 

system

 

x x x

x x x

x x x

1 2 3

1 2 3

1 2 3

2 5 0

3 5 13 0

2 4 0

+ + =

+ + =

− − − =

The augmented matrix of the system is

 

1 2 5 0

3 5 13 0

2 1 4 0− − −
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Reducing the augmented matrix to row echelon form,

 ~

1 2 5 0

0 1 2 0

0 0 0 0

















The corresponding system of equations is

 
x x x

x x

1 2 3

2 3

2 5 0

2 0

+ + =

+ =

Solving for the leading variables,

 
x x x

x x

1 2 3

2 3

2 5

2

= − −

= −

Assigning the free variable x3 arbitrary value t,

 
x t

x t t t

2

1

2

2 2 5

= −

= − − − = −( )

 

x

x

x

t

t

t

t t

1

2

3

1
2

1

2

1

















=

−

−

















=

−

−

















= v

Hence, basis for kernel ( ) { }T = =

−

−

































v1

1

2

1

 dim ker ( )T( ) = 1

(iii) rank (A) = dim (R(T )) = 2

nullity (A) = dim (ker(T )) = 1

(iv) rank (T ) = rank (A) = 2

 nullity (T ) = rank (A) = 2

 (v) rank (T ) + nullity (T ) = 2 + 1 = 3

 For standard matrix A, number of columns = n = 3

Hence, dimension theorem i.e., rank (T ) + nullity (T ) = n, is verified.

Example 4:  Let P: P2 → P3 be the linear transformation defined by

T (p(x)) = x p(x). 

  (i) Find a basis for the kernel of T.

 (ii) Find a basis for the range of T.

(iii) Verify the dimension theorem.

Solution: Let p(x) = a0 + a1 x + a2 x
2

   T p x a x a x a x( )( ) = + +0 1

2

2

3
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(i) The basis for kernel (T ) is the basis for the solution space of T (p(x)) = 0

 a x a x a x
0 1

2

2

3
0+ + =

Comparing the coefficients of powers of x,

 a a a
0 1 2

0 0 0= = =, ,

    ker ( ) { }T = 0

Hence, there is no basis for the kernel of T.

 dim ker( )T( ) = 0

(ii) Every vector in range T has the form

 a x a x a x
0 1

2

2

3
+ +

Hence, the vectors x, x2 and x3 span the range of T. Since these vectors are linearly 

independent, they form a basis for the range of T.

 Basis for ( ) =R T x x x, ,2 3{ }

     dim ( )R T( ) = 3

(iii) rank

nullity ( ) dim

rank nullity

( ) dim ( )

ker ( )

( )

T R T

T T

T

= ( ) =

= ( ) =

+

3

0

(( )T P= + = =3 0 3 2dim

Hence, the dimension theorem is verified.

Example 5:  Let T : P2 → R2 be the linear transformation defined by

 T a a x a x a a a a( ) ( , )0 1 2

2

0 1 1 2+ + = − +

 (i) Find a basis for ker (T ).

 (ii) Find a basis for R(T ).

(iii) Verify the dimension theorem.

Solution: (i) The basis for ker (T ) is the basis for the solution space of the homo-

geneous system

 
a a

a a

0 1

1 2

0

0

− =

+ =

Let a t

a t

a t

2

1

0

=

= −

= −

    

a

a

a

t

t

t

t t

0

1

2

1

1

1

1

















=

−

−

















=

−

−

















= v
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Hence,      basis for ker ( )T x x= { } = − − +{ }v1

21

(ii) The basis for the range of T is the basis for the column space of [T ].

 [ ]T =
−









1 1 0

0 1 1

The leading 1’s appear in columns 1 and 2.

Hence, basis for R(T ) = basis for column space of [T ]

(iii)

 =









−

















1

0

1

1
,

  rank

nullity ( ) dim

( ) dim ( )

ker ( )

T R T

T T

= ( ) =

= ( ) =

2

1

rank (T ) + nullity (T ) = 2 + 1 = 3 = dim P2

Hence, dimension theorem is verified.

Example 6:  Let T : M22 → M22 be the linear transformation defined by

 T
a b

c d

a b b c

a d b d

















=

+ +
+ +











 (i) Find a basis for ker (T ).

(ii) Find a basis for R(T ).

Solution: (i) The basis for ker (T ) is the basis for the solution space of the 

 homogeneous system

 
a b b c

a d b d

+ +

+ +









 =











0 0

0 0

Equating corresponding components,

 

a b

b c

a d

b d

+ =

+ =

+ =

+ =

0

0

0

0

The augmented matrix of the system is

   

1 1 0 0 0

0 1 1 0 0

1 0 0 1 0

0 1 0 1 0
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Reducing the augmented matrix to row echelon form,

 

R R
3 1

1 1 0 0 0

0 1 1 0 0

0 1 0 1 0

0 1 0 1 0

−

−



















~

 

R R R R
3 2 4 2

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 1 1 0

+ −

−



















,

~

 

R R
4 3

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 2 0

+



















~

 

1

2

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 0

4

























R

~

The corresponding system of equations is

 

a b

b c

c d

d

+ =

+ =

+ =

=

0

0

0

0

Solving these equations, a = 0, b = 0, c = 0, d = 0

 ker ( )T =


















0 0

0 0

Hence, the kernel of T has no basis.

(ii)  
T

a b

c d

a b b c

a d b d

















=

+ +
+ +
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=








 +









 +









 +









a b c d

1 0

1 0

1 1

0 1

0 1

0 0

0 0

1 1

This shows that each vector in R(T) is the linear combination of four independent 

matrices.

Hence, basis =













































1 0

1 0

1 1

0 1

0 1

0 0

0 0

1 1
, , ,

Example 7:  Let W be the vector space of all symmetric 2 × 2 matrices and

Let T : W → P2 be the linear transformation defined by

 T
a b

b c
a b b c x c a x









 = − + − + −( ) ( ) ( ) 2

Find the rank and nullity of T.

Solution: The nullity of T is easier to find directly than the rank. To find ker (T ),

 T
a b

b c
a b b c x c a x









 = − − − + − =( ) ( ) ( ) 2 0

Equating corresponding coefficients,

 

a b

b c

c a

− =

− =

− =

0

0

0

Hence, a = b = c

Let a = b = c = t

 
a b

b c

t t

t t
t t









 =









 =









 =

1 1

1 1
v
1

 
ker ( ) { }T = =



















v1

1 1

1 1

Hence, basis for

  

ker ( ) { }T = =


















v1

1 1

1 1

 

dim ker ( )

( )

T

T

( ) =

=

1

1nullity

We know that

 
rank nullity 

rank

( ) ( ) dim

( )

T T W

T

+ = =

= − =

3

3 1 2∴

3.7.3 One-to-one Transformation

Let V and W be two vector spaces. A linear transformation T : V → W is one-to-one if 

T maps distinct vectors in V to distinct vectors in W.
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A one-to-one transformation is also called injective transformation. 

Theorem 3.6: A linear transformation T  : V → W is one-to-one if and only if 

ker (T ) = {0}.

Theorem 3.7: A linear transformation T  : V → W is one-to-one if and only if 

dim (ker (T )) = 0, i.e., nullity (T ) = 0.

Theorem 3.8: A linear transformation T  : V → W is one-to-one if and only if 

rank (T ) = dim V.

Theorem 3.9: If A is an m × n matrix and TA: R
n → Rm is multiplication by A then 

TA is one-to-one if and only if rank (A) = n.

Theorem 3.10: If A is an n × n matrix and TA: R
n → Rn is multiplication by A then 

TA is one-to-one if and only if A is an invertible matrix.

3.7.4 Onto Transformation

Let V and W be two vector spaces. A linear transformation T : V → W is onto if the 

range of T is W, i.e., T is onto if and only if for every w in W, there is a v in V such that 

T (v) = W. An onto transformation is also called surjective transformation. 

Fig. 3.7

V W

T

(i) T is one-to-one

V W

T

(ii) T is not one-to-one

(i) T is onto

V W

T

range (T)

(ii) T is not onto

V W

T

range (T)

Fig. 3.8

Theorem 3.11: A linear transformation T  : V → W is onto if and only if 

rank (T ) = dim W.

Theorem 3.12: If A is an m × n matrix and TA: R
n → Rm is multiplication by A then 

TA is onto if and only if rank (A) = m.
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Theorem 3.13: Let T : V → W be a linear transformation and let dim V = dim W

 (i) If T is one-to-one, then it is onto.

(ii) If T is onto, then it is one-to-one.

3.7.5 Bijective Transformation

If a transformation T : V → W is both one-to-one and onto then it is called bijective 

transformation.

3.7.6 Isomorphism

A bijective transformation from V to W is known as an isomorphism between V and W.

Theorem 3.14: Let V be a finite dimensional real vector space. If dim (V ) = n, then 

there is an isomorphism from V to Rn.

Theorem 3.15: Let V and W be a finite dimensional vector spaces. If dim (V ) = 

dim (W ) then V and W are isomorphic.

Example 1:  In each case, determine whether the linear transformation is one-to-

one, onto, or both or neither.

  (i) T : R2 → R2, where T (x, y) = (x + y, x – y)

  (ii) T : R2 → R3, where T (x, y) = (x – y, y – x, 2x – 2y)

 (iii) T : R3 → R2, where T (x, y, z)  = (x + y + z, x – y – z)

 (iv) T : R3 → R3, where T (x, y, z) = (x + 3y, y, z + 2x)

Solution: (i) (a) A linear transformation is one-to-one if and only if ker (T ) = {0}

Let T (x, y) = 0

 (x + y, x - y) = (0, 0)

   
x y

x y

+ =

− =

0

0

Solving these equations,

 

x

y

x

y

=

=









 =











0

0

0

0

 ker ( ) { }T = 0

Hence, T is one-to-one.

(b) A linear transformation is onto if R(T ) = W

Let v = (x, y) and w = (a, b) be in R2, where a and b are real numbers such that

T (v) = w.

 

T x y a b

x y x y a b

( , ) ( , )

( , ) ( , )

=

+ − =

 
x y a

x y b

+ =

− =
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Solving these equations,

  

x
a b

y
a b

=
+

=
−

2

2

Thus, for every w = (a, b) in R2, there exists a v = a b a b+ −



2 2

,  in R2.

Hence, T is onto.

(ii) (a) Let T (x, y) = 0

  (x – y, y – x, 2x – 2y) = (0, 0, 0)

 

x y

y x

x y

− =

− =

− =

0

0

2 2 0

  ∴ x = y

Let  y t

x t

x

y

t

t
t

=

=









 =








 =









1

1

 ker ( ) { }T ≠ 0

Hence, T is not one-to-one.

(b) Let v = (x, y) be in R2 and w = (a, b, c) be in R3, where a, b, c are real numbers such 

that T (v) = w. T (x, y) = (a, b, c)

 ( , , ) ( , , )x y y x a b cx y− − =−2 2

 

x y a

y x b x y b

x y c x y
c

a b
c

− =

− = ⇒ − = −

− = ⇒ − =

∴ = − =

2 2
2

2

Thus, T (v) = w only when a b
c

= − =

2
,  not for all values of a, b and c.

Hence, T is not onto.

(iii) (a) Let T (x, y, z) = 0

  (x + y + z, x – y – z) = (0, 0)

  
x y z

x y z

+ + =

− − =

0

0

Solving these equations,

 x = 0
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Let

 

z t

y t

x

y

z

t

t

t

=

= −

















= −

















= −

















0 0

1

1

 ker ( ) { }T ≠ 0

Hence, T is not one-to-one.

(b) Let v = (x, y, z) be in R3 and w = (a, b) be in R2, where a, b are real numbers such 

that T (v) = w.

 

T x y z a b

x y z x y z a b

( , , ) ( , )

( , ) ( , )

=

+ + − − =

 
x y z a

x y z b

+ + =

− − =

Solving these equations,

 x
a b

=
+

2

Let

 

z t

y
a b t

=

=

− − 2

2

Thus, for every w = (a, b) in R2, there exists a v =
+ − −





a b a b t
t

2

2

2
, ,  in R2.

Hence, T is onto.

(iv) (a) Let T (x, y, z) = 0 

  (x + 3y, y, z + 2x) = (0, 0, 0)

 

x y

y

z x

+ =

=

+ =

3 0

0

2 0

Solving these equations,

 

x

y

z

x

y

z

=

=

=

















=

















0

0

0

0

0

0

 ker ( ) { }T = 0

Hence, T is one-to-one.

(b) Let v = (x, y, z) and w = (a, b, c) be in R3, where a, b, c are real numbers such that 

T (v) = w. T (x, y, z) = (a, b, c)

 ( , , ) ( , , )x y y z x a b c+ + =3 2
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x y a

y b

z x c

+ =

=

+ =

3

2

Solving these equations,

 

x a b

y b

z c a b

= −

=

= − +

3

2 6

Thus, for every w = (a, b, c) in R2, there exists a v = − − +( , , )a b b c a b3 2 6  in R2.

Hence, T is onto.

Example 2:  In each case, determine whether multiplication by A is one-to-one, 

onto, both or neither.

(i)  A =

−

−

−

















1 2

2 4

3 6

 (ii) A = −

















1 5

4 2

5 3

 (iii) A =

















1 0 1

0 1 1

1 1 0

Solution: (i) A =

−

−

−

















1 2

2 4

3 6

Reducing the matrix A to row echelon form,

 

R R R R
2 1 3 1

2 3

1 2

0 0

0 0

− +

−















,

~

 rank (A) = number of non-zero rows = 1

     ≠ 2, (number of columns)

Hence, A is not one-to-one.

Also, rank (A) ≠ 3, (number of rows)

Hence, A is not onto.

(ii) A = −

















1 5

4 2

5 3

Reducing the matrix A to row echelon form,

 

R R R R
2 1 3 1

4 5

1 5

0 22

0 22

− −

−

−

















,

~
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R R
3 2

1 5

0 22

0 0

−

−

















~

 

−





















1

22

1 5

0 1

0 0

2
R

~

 rank (A) = number of non-zero rows

     = 2 (number of columns)

Hence, A is one-to-one.

Also, rank (A) ≠ 3 (number of rows)

Hence, A is not onto.

(iii) A =

















1 0 1

0 1 1

1 1 0

Reducing the matrix A to row echelon form,

 

R R
3 1

1 0 1

0 1 1

0 1 1

−

−

















~

 

R R
3 2

1 0 1

0 1 1

0 0 2

−

−

















~

 

−





















1

2

1 0 1

0 1 1

0 0 1

3
R

~

 rank (A) = number of non-zero rows

 = 3 (number of columns)
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Hence, A is one-to-one.

Also,  rank (A) = 3 (number of rows)

Hence, A is onto.

Example  3:  In each case, determine whether the linear transformation is 

one-to-one, onto, both or neither.

 (i) T : P2 → P2, where T (a0 + a1 x + a2 x
2) = (a0 + a1) + (a2 + 2a1) x

 (ii) T : P2 → P2, where T (a0 + a1x + a2 x
2) = a0 + a1 (x + 1) + a2 (x + 1)2

(iii) T : R2 → P1, where T (a, b) = a + (a + b) x

(iv) T : P2 → R3, where T a bx cx

a b

a b c

c a

( )+ + =

−

+ −

−

















2

2

3

Solution:  (i) (a) Let T (a0 + a1x + a2 x
2) = 0

 (a0 + a1) + (a2 + 2a1) x = 0

 
a a

a a

0 1

2 1

0

2 0

+ =

+ =

Let a t

a t

a t

2

1

0

1

2

1

2

=

= −

=

 a

a

a

t

t

t

t

0

1

2

1

2

1

2

1

2

1

2

1

















= −





















= −





















 ker ( ) { }T ≠ 0

 Hence, T is not one to one.

(b) dim ker ( ) ( )T T( ) = =1 nullity

From the dimension theorem,

 

rank nullity( ) dim ( )T P T= −

= −

=

2

3 1

2

Dimension of W (P2) = 3.

 rank ( ) dimT W≠

Hence, T is not onto.
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(ii) (a) Let            T a a x a x a a x a x( ) ( ) ( )0 1 2

2

0 1 2

21 1+ + = + + + + = 0

i.e., 

 

2

0 1 1 2 2 2

2

0 1 2 1 2 2

2 0

( ) ( 2 ) 0

a a x a a x a x a

a a a a a x a x

+ + + + + =

+ + + + + =

 

a a a

a a

a

0 1 2

1 2

2

0

2 0

0

+ + =

+ =

=

Solving these equations,

 

a

a

a

0

1

2

0

0

0

=

=

=

 

a

a

a

T

0

1

2

0

0

0

















=

















=ker ( ) { }0

Hence, T is one-to-one.

(b) dim (ker (T )) = 0 = nullity (T )

From the dimension theorem,

 

rank nullity( ) dim ( )T P T= −

= −

=

2

3 0

3

Dimension of W (P2) = 3.

 ∴ =rank ( ) dimT W

Hence, T is onto.

(iii) (a) Let T (a, b) = a + (a + b) x = 0

 
a

a b

=

+ =

0

0

Solving these equations,

 

a

b

a

b

=

=









 =











0

0

0

0

 ker ( ) { }T = 0

Hence, T is one-to-one.
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(b) dim (ker (T )) = 0 = nullity (T )

From the dimension theorem,

 

rank nullity( ) dim ( )T R T= −

= −

=

2

2 0

2

Dimension of W (P1) = 2.

 rank (T ) = dim W

Hence, T is onto.

(iv) (a) Let T (a + bx + cx2) = 0

 

2

3

0

0

0

a b

a b c

c a

−

+ −

−

















=

















 

2 0

3 0

0

a b

a b c

c a

− =

+ − =

− =

 ∴ = =a
b

c
2

 Let

 

c t

b t

a t

=

=

=

2

 

a

b

c

t

t

t

t

T

















=

















=

















≠

2

1

2

1

ker ( ) { }0

Hence, T is not one-to-one.

(b) dim (ker (T )) = 1 = nullity (T )

From the dimension theorem,

 

rank nullity( ) dim ( )T P T= −

= −

=

2

3 1

2

Dimension of W (R3) = 3.

 rank (T ) ≠ dim W

Hence, T is not onto.
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Example  4:  In each case, determine whether linear transformation is 

one-to-one, onto, both or neither.

 (i) T: M22 → M22, where T
a b

c d

d b

c a

















=

−
−










 (ii) T: M22 → M22, where T
a b

c d

d















=










2 0

0 0

(iii) T: M22 → R3, where T
a b

c d

a b

b c

c d

















=

+
+
+

















Solution: (i) (a) Let    T
a b

c d

















= 0

 

d b

c a

−

−









 =











0 0

0 0

 

d

b b

c c

a

=

− = ⇒ =

− = ⇒ =

=

0

0 0

0 0

0

 

a

b

c

d



















=



















0

0

0

0

 ker ( ) { }T = 0

Hence, T is one-to-one.

(b) dim (ker (T )) = 0 = nullity (T )

From the dimension theorem,

 

rank nullity( ) dim ( )T M T= −

= −

=

22

4 0

4

Dimension of  W (M22) = 4

  ∴ rank (T ) = dim W

Hence T, is onto.
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(ii) (a) Let

 

T
a b

c d

d

















=









 =











0

2 0

0 0

0 0

0 0

Let 

2 0

0

1

2

3

d

d

a t

b t

c t

=

∴ =

=

=

=

 

a

b

c

d

t

t

t
t t



















=



















=



















+

1

2

3

1 2

0

1

0

0

0

00

1

0

0

0

0

1

0

3



















+



















∴ ≠

t

Tker( ) { }0

Hence, T is not one-to-one.

(b) dim (ker (T )) = 3 = nullity (T )

From the dimension theorem,

 

rank nullity( ) dim ( )T M T= −

= −

=

22

4 3

1

Dimension of W (M22) = 4.

 ∴ rank (T ) ≠ dim W

Hence, T is not onto.

(iii) (a) Let

 

T
a b

c d

a b

b c

c d

















=

+
+
+
















=
















0

0

0

0

 

a b

b c

c d

+ =

+ =

+ =

0

0

0

Let d t=

 

c t

b t

a t

= −

=

= −
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a

b

c

d

t

t

t

t

t



















=

−

−



















=

−

−



















1

1

1

1

 ker ( ) { }T ≠ 0

Hence, T is not one to one.

(b) dim (ker (T )) = 1 = nullity (T )

From the dimension theorem,

 

rank nullity( ) dim ( )T M T= −

= −

=

22

4 1

3

Dimension of W (R3) = 3.

 ∴ rank (T ) = dim W

Hence, T is onto.

3.8  INVERSE LINEAR TRANSFORMATIONS

If T : V → W is a linear transformation then the range of T is the subspace of W 

 consisting of all images of vectors in V under T. If T is one-to-one then each vector w 

in R(T ) is the image of a unique vector u in V. Hence, inverse linear transformation 

T  –1: W → V maps w back into v.

Theorem 3.16: If T1 : U → V and T2 : V → W are one-to-one transformations, then

 (i) T T
2 1
�  is one-to-one.

(ii) ( )T T T T2 1

1

1

1

2

1
� �

− − −

=

The standard matrix of the inverse of a composition is the product of the inverses of 

the standard matrices of the individual operators in the reverse order.

Example 1:  Let T : R3 → R3 be the linear operator defined by the formula

  T (x1, x2, x3) = (x1 – x2 + x3, 2x2 – x3, 2x1 + 3x2)

Determine whether T is one-to-one. If so, find T–1 (x1, x2, x3).

Solution: The standard matrix of T is 

 [ ]T =

−

−

















1 1 1

0 2 1

2 3 0
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det [ ]

( ) ( ) ( )

T =

−

−

= + + + + −

= + −

= ≠

1 1 1

0 2 1

2 3 0

1 0 3 1 0 2 1 4

3 2 4

1 0

Hence, the matrix is invertible and T is one-to-one. The standard matrix of T  –1 is 

found by elementary row transformation.

Consider, [T ] = I [T ]

 

1 1 1

0 2 1

2 3 0

1 0 0

0 1 0

0 0 1

−

−

















=

















[ ]T

 

R R

T

3 1
2

1 1 1

0 2 1

0 5 2

1 0 0

0 1 0

2 0 1

−

−

−

−

















=

−

















[ ]

 

1

2

1 1 1

0 1
1

2

0 5 2

1 0 0

0
1

2
0

2 0 1

2







−

−

−



















=

−


















R



[ ]T

 

R R R R
1 2 3 2

5

1 0
1

2

0 1
1

2

0 0
1

2

1
1

2
0

0
1

2
0

2
5

2
1

+ −

−

























=

− −

,

























[ ]T

 

2

1 0
1

2

0 1
1

2

0 0 1

1
1

2
0

0
1

2
0

4 5 2

3
R

−





















=

− −





















[TT ]
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R R R R
2 3 1 3

1

2

1

2

1 0 0

0 1 0

0 0 1

3 3 1

2 2 1

4 5 2

+ −

















=

−

− −

− −
















,



[ ]T

 [ ] [ ]T T
− −= =

−

− −

− −

















1 1

3 3 1

2 2 1

4 5 2

 T

x

x

x

T

x

x

x

− −
































=
















=

−
−1

1

2

3

1

1

2

3

3 3 1

2[ ] −−
− −
































=

+ −
− − +
−

2 1

4 5 2

3 3

2 2

1

2

3

1 2 3

1 2 3

x

x

x

x x x

x x x

44 5 2
1 2 3
x x x− +

















Expressing in horizontal notation,

 T x x x x x x x x x x x x
−

= + − − − + − − +
1

1 2 3 1 2 3 1 2 3 1 2 33 3 2 2 4 5 2( , , ) ( , , )

Example 2:  Let T : R3 → R3 be a multiplication by A. Determine whether T has 

an inverse. If so, find T

x

x

x

−

































1

1

2

3

 where A =

−

−

















1 4 1

1 2 1

1 1 0

Solution:

 

det ( )

( ) ( ) ( )

A =

−

−

= − − + − +

= − − −

= − ≠

1 4 1

1 2 1

1 1 0

1 0 1 4 0 1 1 1 2

1 4 3

8 0

The matrix A is invertible. Hence, T has an inverse.

The inverse can be found by elementary row transformation.

Consider,  A = I A

 

1 4 1

1 2 1

1 1 0

1 0 0

0 1 0

0 0 1

−

−

















=

















A

 

R R R R

A

2 1 3 1

1 4 1

0 2 2

0 5 1

1 0 0

1 1 0

1 0 1

− +

−

−

−

















= −

















,
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−





−
−
−
















= −



















1

2

1 4 1

0 1 1

0 5 1

1 0 0

1

2

1

2
0

1 0 1

2
R

AA

 

R R R R
3 2 1 2

5 4

1 0 3

0 1 1

0 0 4

1 2 0

1

2

1

2
0

3

2

5

2
1

− −

−

















=

−

−

−













,









A

 

1

4

1 0 3

0 1 1

0 0 1

1 2 0

1

2

1

2
0

3

8

5

8

1

4

3







−















=

−

−

−

















R






A

 

R R R R
2 3 1 3

3

1 0 0

0 1 0

0 0 1

1

8

1

8

3

4

1

8

1

8

1

4

3

8

5

8

1

4

+ −

















=

−

−










,

















A

 A
− =

−

−

























1

1

8

1

8

3

4

1

8

1

8

1

4

3

8

5

8

1

4
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 T

x

x

x

A

x

x

x

− −
































=
















=

−

1

1

2

3

1

1

2

3

1

8

1

8

3

4

1

88

1

8

1

4

3

8

5

8

1

4

1

8

1

8
1

2

3

1 2

−








































=

+ −
x

x

x

x x
33

4

1

8

1

8

1

4

3

8

5

8

1

4

3

1 2 3

1 2 3

x

x x x

x x x

+ +

− + +

























Example 3:  Let T1 : R
2 → R2 and T2

 : R2 → R2 be the linear operators given by 

the formula

  T1 (x, y) = (x + y, x – y) and T2 (x, y) = (2x + y, x – 2y)

 (i) Show that T1 and T2 are one-to-one.

 (ii) Find formulas for T x y1

1− ( , )  and T x y2

1− ( , ) and ( ) ( , )T T x y2 1

1
�

− .

(iii) Verify that ( )T T T T2 1

1

1

1

2

1
� �

− − −

= .

Solution: (i) T1 and T2 are one-to-one if ker (T1) = {0} and ker (T2) = {0}

 T x y x y x y1 0 0{ , } ( , ) ( , )= + − =

 
x y

x y

+ =

− =

0

0

Solving these equations,

 

x

y

x

y

=

=









 =











0

0

0

0

.

 
∴ =

= + − =

ker ( ) { }

( , ) ( , ) ( , )

T

T x y x y x y

1

2 2 2 0 0

0

 2x + y = 0

 x – 2y = 0

Solving these equations,

  x = 0

 y = 0

 

x

y

T








 =









∴ =

0

0

2ker ( ) { }0

Hence, T1 and T2 are one-to-one.

(ii) The standard matrix of T1 is

 [ ]T
1

1 1

1 1
=

−
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The standard matrix of T
1

1−  is

 

T T

T

1

1

1

1

1

1

1

2

1 1

1 1

1

2

1

2

1

2

1

2

− −

−

  = = −
− −
−









 =

−



















[ ]

(( , ) ,x y x y x y= + −





1

2

1

2

1

2

1

2

The standard matrix of T2 is

 [ ]T
2

2 1

1 2
=

−











The standard matrix of T
2

1−  is

 

T T

T

2

1

2

1

2

1

1

5

2 1

1 2

2

5

1

5

1

5

2

5

− −

−

  = [ ] = −
− −
−









 =

−



















(( , ) ,x y x y x y= + −





2

5

1

5

1

5

2

5

(iii)

 

 

( ) [ ][ ]

[ ]

T T T T

T T

2 1 2 1

2 1

2 1

1 2

1 1

1 1

3 1

1 3
�

�

= =
−









 −









 =

−











−− =

−


















1

3

10

1

10

1

10

3

10

 ( ) ( , ) ,T T x y x y x y2 1

1 3

10

1

10

1

10

3

10
�

− = − +





 

T T T T
1

1

2

1

1

1

2

1

1

2

1

2

1

2

1

2

2

5

1

5

1

5

2

5

− − − −= =

−



















−









� [ ] [ ]












=

−


















3

10

1

10

1

10

3

10

 ∴ =
− − −

[ ]T T T T
2 1

1

1

1

2

1
� �
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Exercise 3.2

1.  Let T : R2 → R2 be the linear transfor-

mation defined by

  T (x, y) = (x, 0)

  (i)  Which of the following vectors 

are in ker (T)?

  (a) (0, 2) (b) (2, 2)

  (ii)  Which of the following vectors 

are in R(T )?

  (a) (3, 0) (b) (3, 2)

 (iii) Find ker (T ).

 (iv) Find R (T ).

Ans.: ( ) ( )

( ) ( )

( ) {( , )}

( ) {( , )}

i a

ii a

iii

iv

0

0

x

x



















2.  Let T : R3 → R3 be the linear transfor-

mation defined by

  T (x, y, z) = (x + 2y – z, 

      y + z, x + y – 2z)

  (i)  Find a basis and the dimension for 

the range of T.

 (ii)  Find a basis and the dimension for 

the kernel of T.

 (iii) Verify the dimension theorem.

Ans.: () (, , ),( , , ) ,

( ) ( , , ) ,

i

ii

1 0 1 0 1 1 2

3 1 1 1

−{ }
−{ }













3. Let T : R4 → R3 be the linear transfor-

mation defined by

 

T x x x x

x x x x x x x

x x x x

( , , , )

( , ,

)

1 2 3 4

1 2 3 4 1 3 4

1 2 3 4

2

3 3

= − + + + −

+ + −

 (i) Find a basis for R(T ).

(ii) Find a basis for ker (T ).

Ans.: () (, , ),( , , )

( ) ( , , , ),(, , , )

i

ii

1 1 1 0 1 2

2 1 1 0 1 2 0 1

{ }
−{ }













4.  Let T : R3 → R4 be the linear transfor-

mation defined by

 T x y z x y z x y z

x y z x y z

( , , ) ( , ,

, ).

= + + + −

+ − + −

2 3

2 3 2 3 4

 (i)  Find a basis and the dimension for 

R(T ).

(ii)  Find a basis and the dimension for 

ker (T).

 

Ans.: (){(, , , ),( , , , )},

( ){( , , )},

i

ii

1 1 2 3 0 1 1 1 2

5 4 1 1−











5.  Let T be a multiplication by the matrix 

A where

A =

−

−

















2 0 1

4 0 2

0 0 0

  (i) Find a basis for the range of T.

  (ii) Find a basis for the kernel of T.

 (iii) Find the rank and nullity of T.

 (iv) Find the rank and nullity of A.

Ans.: ( )

( ) ,

( )

i

ii

iii Ra

1

2

0

1

2
0

1

0

1

0















































nnk nullity

iv Rank nullity

( ) , ( )

( ) ( ) , ( )

T T

A A

= =

= =















1 2

1 2
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6.  Let T : P2 → P2 be the linear 

transformation defined by

 T (ax2 + bx + c)  = (a + c)x2 + (b + c) x

  (i) Find a basis for ker (T ).

 (ii) Find a basis for the range of T.

Ans.: ( )

( ) ,

i

ii

− − +{ }
{ }















x x

x x

2

2

1

7.  Determine whether any of the fol-

lowing vectors are in the range of    

    A =










1 3

0 0

  (i)
 

2

6









  

(ii)
 

2

0









  

(iii)
 

0

2











 
(iv)

 
0

0











[Ans. : (ii) and (iv)]

8.  Let P : M22 → M22 be the linear 

transformation defined by

 T
a b

c d

a b

c d

















=

+
−











0

0

 (i)  Determine whether any of the 

following matrices are in ker (T ).

   
(a)

 
1 1

1 1









  

(b)
 

1 1

1 1

−









    
(c)

 
1 1

1 1−









  

(d)
 

1 1

1 1

−

− −











 (ii)  Determine whether any of the 

following matrices are in R(T ).

     
(a)

 
1 1

1 1









   

(b)
 

1 0

0 0











    
(c)

 
0 1

0 0









   

(d)
 

3 0

0 5−











[Ans.: (i) (b) and (d) (ii) (b) and (d)]

9.  Find the rank and nullity of the given 

linear transformations and determine 

whether T is one-to-one or onto.

 (i)  T : R2 → R2, where

T (x, y) = (x, x + y)

 (ii)  T : R3 → R2, where

T (x, y, z) = (x – z, z – y)

(iii)  T : R2 → R3, where

T (x, y) = (x + y, 2x + y, x)

(iv)  T : R3 → R1, where T (x, y, z) = 0

 (v)  T : P2 → P2, where 

T (a0 + a1x + a2x
2) = a0 x

(vi)  T : P2 → P2, where

T (a0 + a1x + a2x
2) = 0

 (vii)  T : P 2 → P 2, where 

T (a0 + a1x + a2x
2) 

= (a2 – a1) x
2 + (a1 – a0) x

(viii)  T : M22 → M22, where 

T
a b

c d

a b

c d

















=

+
−











0

0

  (ix)  T : M22 → R1, where 

T
a b

c d
b c d

















= + −2 3

   (x)  T : P2 → M22, where 

T ax bx c
a b

a
( )2

2

0
+ + =











   (xi)  T : R3 → M22, where 

T a b c
a b b c

a b b c
( , , ) =

− −

+ +











Ans.: ( ) ( ) ,

( ) ,

- -

( )

i nullity

rank

one to one and onto

ii null

T

T

=

=

0

2

  

iity

rank

not one to one but onto

iii nullity

( ) ,

( ) ,

- -

( ) ( )

T

T

T

=

=

1

2

   

==

=




























0

2

,

( ) ,

- -

rank

one to one but not onto

T
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( ) ( ) ,

( ) ,

iv nullity

rank

neither one-to-one nor onto

(v) n

T

T

=

=

3

0

uullity

rank

neither one-to-one nor onto

(vi) null

( ) ,

( ) ,

T

T

=

=

2

1

iity

rank

neither one-to-one nor onto

(vii) nullit

( ) ,

( ) ,

T

T

=

=

3

0

yy

rank

neither one-to-one nor onto

(viii) nullity

( ) ,

( ) ,

T

T

=

=

1

2

(( ) ,

( ) ,

( )

T

T

T

=

=

2

2rank

neither one-to-one nor onto

(ix) nullity ==

=

=

3

1

1

,

( ) ,

( ) ,

(

rank

not one-to-one but onto

(x) nullity

rank

T

T

TT

T

T

) ,

( ) ,

( )

=

=

=

2

0

neither one-to-one nor onto

(xi) nullity

rank 33,

one-to-one but not onto.









































































10.  In each case, let R3 → R3 be a multi-

plication of A, Find T

x

x

x

−

































1

1

2

3

.

 (i) A =

















1 0 1

0 1 1

1 1 0

(ii) A =

−

−

















1 1 1

0 2 1

2 3 0

Ans.:

( )i 1

2

1

2

1

2
1

2

1

2

1

2
1

2

1

2

1

2

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

− +

− + +

+ −























+ −
− − +
− − +





















( )ii 3 3

2 2

4 5 2

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x






























11.  Let T1 : P2 → P3 and T2 : P3 → P3 be 

the linear transformations defined by

 

T p x x p x T p x

p x

1 2

1

( ( )) ( ) ( ( ))

( )

=

= +

and

  (i)  Find formulas for 

T p x T p x1

1

2

1− −( ( )), ( ( ))  and 

( ) ( ( ))T T p x2 1

1
�

− .

 (ii) Verify that ( )T T T T2 1

1

1

1

2

1
� �

− − −

= .

Ans. :
p x

x
p x

p x

x

( )
; ( );

( )
−

−





1

1

12.  Let T : P1 → R2 be the function def-

ined by

 T p x p p( ( )) ( ( ), ( ))= 0 1

 (i) Find T (1 – 2x).

 (ii) Show that T is one-to-one.

(iii) Find T –1 (2, 3).

[Ans.: (i) (1, –1) (iii) (2 + x)
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3.9  THE MATRIX OF A LINEAR TRANSFORMATION

Let T : V → W be a linear transformation of an n-dimensional vector space V to an 

m-dimensional vector space W (n ≠ 0 and m ≠ 0) and let S1 = {v1, v2, … , vn} and 

S2 = {w1, w2, … , wn} be bases for V and W respectively.

If A be the standard matrix of this transformation then

 A T T T
S S n S

= 



[ ( )] [ ( )] [ ( )]v v v1 22 2 2

…

satisfies A T
S S

[ ] ( )v v
1 2

= [ ]  …(3.4)

for every vector v in V.

where [ ]v
S1

 and [ ( ]T
S

v)
2
 are the coordinate vectors of v and T (v) w.r.t. the respective 

bases S1 and S2. The matrix A in Eq. (3.4) is called the matrix of T w.r.t. the bases S1 

and S2. Figure 3.9 gives the graphical interpretation of Eq. (3.4).

The matrix of a linear transformation T : V → W w.r.t. the bases S1 = {v1, v2, … , vn} and 

S2 = {w1, w2, … , wn} for V and W, respectively is calculated as follows:

Step 1: Calculate T (vj) for j = 1, 2, … , n.

Step 2: Find the coordinate vector [ ( )]T
j S

v
2
 w.r.t. the basis S2 by expressing T (vj) as 

a linear combination of the vectors in S2.

Step 3: The matrix A of T w.r.t. the bases S1 and S2 is formed by choosing T
j S

( )v 
2

 

as the j th column of A.

 A T T T
S S n S

= 



[ ( )] [ ( )] [ ( )]v v v1 22 2 2

…

The matrix A is denoted by the symbol [ ] .
,

T
S S2 1

 [ ] [ ( )] [ ( )] [ ( )],T T T T
S S S S n S2 1 2 2 21 2= 



v v v…

and [ ] [ ] ( ),T T
S S S S2 1 1 2

v v= [ ]

3.9.1 Matrices of Linear Operators

If T : V → V is a linear operator and S1 = {v1, v2, … , vn} is the basis for V then the 

matrix of the linear operator is

 [ ] [ ( )] [ ( )] [ ( )]T T T T
S S S n S1 1 1 11 2= 



v v v…

and [ ] [ ] [ ( )]T T
S S S1 1 1
v v=

Fig. 3.9

v

[v]

T(v)

A[v ]
S1 S2S1

[T(v)]= 

T

A
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3.9.2 Matrices of Identity Operators

For identity operator I : V → V, the matrix w.r.t. basis S1 = {v1, v2, … , vn} is the n × n 

identity matrix,

i.e. [ ]I I
S1
=

and [ ] [ ] [ ( )] [ ]I I
S S S S1 1 1 1
v v v= =

Theorem 3.17: If T : Rn → Rm is a linear transformation and if S1 and S2 are the  standard 

bases for Rn and Rm respectively then

 [ ] [ ]
,

T T
S S2 1

=

i.e., the matrix of T w.r.t. the standard bases is the standard matrix of T.

Example 1:  Let T : R2 → R3 be the linear transformation defined by

 T
x

x

x

x x

x x

1

2

2

1 2

1 2

5 13

7 16

















= − +

− +

















Find the matrix of the transformation T w.r.t. the bases S1 = {v
1
, v2} for R2 and 

S2 = {w1, w2, w3} for R3, where

 v v w w
1 2 1 2

3

1

5

2

1

0

1

1

2

2

=







 =








 =

−

















=

−












, , ,



=

















, w
3

0

1

2

Solution: 

  T T( ) ( ) ( )

( ) ( )

v1

3

1

1

5 3 13 1

7 3 16 1

1

=















= − +

− +
















= −22

5−

















 T T( ) ( ) ( )

( ) ( )

v2

5

2

2

5 5 13 2

7 5 16 2

2

1=















= − +

− +
















=

−−















3

Expressing these vectors as linear combinations of w1, w2 and w3,

 

T k k k

k k

( )v w w w1 1 1 2 2 3 3

1 2

1

2

5

1

0

1

1

2

= + +

−

−

















=

−

















+

−

22

0

1

2

2

2 2

3

1 2

2 3

1 2 3

















+

















=

−

+

− + +













k

k k

k k

k k k
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Equating corresponding components,

 

k k

k k

k k k

1 2

2 3

1 2 3

1

2 2

2 2 5

− =

+ = −

− + + = −

Solving these equations,

 k1 = 1, k2 = 0, k3 = –2

 
T

T
S

( )

[ ( )]

v w w

v

1 1 3

1

2

1

0

2
2

= −

=

−

















 T k k k( )v w w w2 1 1 2 2 3 3= + +

 

2

1

3

1

0

1

1

2

2

0

1

2

1 2 3

−

















=

−

















+

−















+






k k k











=

−

+

− + +

















k k

k k

k k k

1 2

2 3

1 2 3

2

2 2

Equating corresponding components,

 

k k

k k

k k k

1 2

2 3

1 2 3

2

2 1

2 2 3

− =

+ =

− + + = −

Solving these equations,

 k1 = 3, k2 = 1, k3 = –1

 

T

T
S

( )

( )

v w w w

v

2 1 2 3

2

3

3

1

1
2

= + −

[ ] =

−

















The matrix of the transformation w.r.t. the bases S1 and S2 is

 

[ ] [ ( )] [ ( )],T T T
S S S S2 1 2 21 2

1 3

0 1

2 1

= 



 =

− −

















v v

Example 2:  Let T : R3 → R3 be the linear transformation defined by

T (x, y, z) = (x + 2y + z, 2x – y, 2y + z)
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Find the matrix of transformation T w.r.t.

(i) S1 (ii) S1 and S2 (iii) S2 and S1 (iv) S2

where  S1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} = {v1, v2, v3}

and  S2 = {(1, 0, 1), (0, 1, 1), (0, 0, 1)} = {w1, w2, w3}

Solution:   (i) T (x, y, z) = (x + 2y + z, 2x – y, 2y + z)

Since S1 is the standard bases for R3, the matrix of T w.r.t. S1 is the standard matrix 

of T.

 

[ ] [ ]T T
S1

1 2 1

2 1 0

0 2 1

=

= −

















(ii) T T( ) ( , , ) ( , , )v1 1 0 0 1 2 0= =

 
T T

T T

( ) ( , , ) ( , , )

( ) ( , , ) ( , , )

v

v

2

3

0 1 0 2 1 2

0 0 1 1 0 1

= = −

= =

Expressing T (v1) as linear combinations of w1, w2 and w3,

 

T k k k

k k k

( )

( , , ) ( , , ) ( , , ) ( , , )

v w w w1 1 1 2 2 3 3

1 2 31 2 0 1 0 1 0 1 1 0 0 1

= + +

= + +

= (( , , )k k k k k1 2 1 2 3+ +

Equating corresponding components,

 

k

k

k k k

1

2

1 2 3

1

2

0

=

=

+ + =

Solving these equations

 k1 = 1, k2 = 2, k3 = -3

 

T

T
S

( )

( )

v w w w

v

1 1 2 3

1

2 3

1

2

3
2

= + −

[ ] =

−

















Expressing T (v2) as linear combinations of w1, w2 and w3,

 

T k k k

k k k

( )

( , , ) ( , , ) ( , , ) ( , , )

v w w w2 1 1 2 2 3 3

1 2 32 1 2 1 0 1 0 1 1 0 0 1

= + +

− = + +

== + +( , , )k k k k k1 2 1 2 3
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Equation corresponding components,

 
k

k

k k k

1

2

1 2 3

2

1

2

=

= −

+ + =

Solving these equations,

  k1 = 2, k2 = -1, k3 = 1

 

T

T
S

( )

( )

v w w w

v

2 1 2 3

2

2

2

1

1
2

= − +

[ ] = −

















Expressing T (v3) as linear combinations of w1, w2 and w3,

 

T k k k

k k k

( )

( , , ) ( , , ) ( , , ) ( , , )

v w w w3 1 1 2 2 3 3

1 2 31 0 1 1 0 1 0 1 1 0 0 1

= + +

= + +

= (( , , )k k k k k1 2 1 2 3+ +

Equating corresponding components,

 
k

k

k k k

1

2

1 2 3

1

0

1

=

=

+ + =

Solving these equations,

  k1 = 1, k2 = 0, k3 = 0

 

T

T
S

( )

( )

v w

v

3 1

3
2

1

0

0

=

[ ] =

















Thus,       [ ] [ ( )] [ ( )] [ ( )],T T T T
S S S S S2 1 2 2 21 2 3= 





v v v

 = −

−

















1 2 1

2 1 0

3 1 0

(iii) Since S1 is the standard bases for R3,

 

T T

T T

T T

S

S

S

( ) [ ( )]

( ) [ ( )]

( ) [ ( )]

w w

w w

w w

1 1

2 2

3 3

1

1

1

[ ] =

[ ] =

[ ] =
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T T

T T

T T

( ) ( , , ) ( , , )

( ) ( , , ) ( , , )

( ) ( , ,

w

w

w

1

2

3

1 0 1 2 2 1

0 1 1 3 1 3

0 0 1

= =

= = −

= )) ( , , )= 1 0 1

Thus [ ] [ ( )] [ ( )] [ ( )],T T T T
S S S S S1 2 1 1 11 2 3= 



w w w

 = −

















2 3 1

2 1 0

1 3 1

(iv) Expressing T (w1) as linear combinations of w1, w2 and w3

 

T k k k

k k k

( )

( , , ) ( , , ) ( , , ) ( , , )

w w w w1 1 1 2 2 3 3

1 2 32 2 1 1 0 1 0 1 1 0 0 1

= + +

= + +

= (( , , )k k k k k1 2 1 2 3+ +

Equating corresponding components,

 

k

k

k k k

1

2

1 2 3

2

2

1

=

=

+ + =

Solving these equations, 

  k1 = 2, k2 = 2, k3 = -3

 

T

T
S

( )

( )

w w w w

w

1 1 2 3

1

2 2 3

2

2

3
2

= + −

[ ] =

−

















Expressing T (w2) as linear combinations of w1, w2 and w3,

 

T k k k

k k k

( )

( , , ) ( , , ) ( , , ) ( , , )

w w w w2 1 1 2 2 3 3

1 2 33 1 3 1 0 1 0 1 1 0 0 1

= + +

− = + +

== + +( , , )k k k k k1 2 1 2 3

Equating corresponding components,

 
k

k

k k k

1

2

1 2 3

3

1

3

=

= −

+ + =

Solving these equations, 

  k1 = 3, k2 = -1, k3 = 1
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T

T
S

( )

( )

w w w w

w

2 1 2 3

2

3

3

1

1
2

= − +

[ ] = −

















Expressing T (w3) as linear combinations of w1, w2 and w3,

 

T k k k

k k k

( )

( , , ) ( , , ) ( , , ) ( , , )

w w w w3 1 1 2 2 3 3

1 2 31 0 1 1 0 1 0 1 1 0 0 1

= + +

= + +

= (( , , )k k k k k1 2 1 2 3+ +

Equating corresponding components,

 
k

k

k k k

1

2

1 2 3

1

0

1

=

=

+ + =

Solving these equations, 

  k1 = 1, k2 = 0, k3 = 0

 

T

T
S

( )

( )

w w

w

3 1

3
2

1

0

0

=

[ ] =

















Thus, [ ] [ ( )] [ ( )] [ ( )]T T T T
S S S S2 2 2 21 2 3= 





w w w

 = −

−

















2 3 1

2 1 0

3 1 0

Example 3:  Let T : P2 → P2 be the linear operator defined by

                             T (  p(x)) = p(2x + 1)

i.e., T (a0 + a1 x + a2 x
2) = a0 + a1 (2x + 1) + a2 (2x + 1)2

 (i) Find [T]S w.r.t. the basis S = {1, x, x2}.

(ii) Compute T (2 - 3x + 4x2).

Solution: (i) T (a0 + a1x + a2x
2) = a0 + a1 (2x + 1) + a2 (2x + 1)2

 

T

T x x x

T x x x x x x

( )

( )

( ) ( )

1 1

2 1 1 2

2 1 4 4 1 1 4 42 2 2 2

=

= + = +

= + = + + = + +
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Since S is the standard basis,

 T T T x T x
S S

( ) [ ( )] , ( ) [ ( )] ,1 1

1

0

0

1

2

0

[ ] = =

















[ ] = =

















[[ ( )] [ ( )]T x T x
S

2 2

1

4

4

= =

















Thus, [ ] [ ( )] [ ( )] [ ( )]T T T x T x
S S S S
=  1 2

 =

















1 1 1

0 2 4

0 0 4

(ii) The coordinate vector relative to S for the vector p = 2 – 3x + 4x2 is

 [ ]p
S
= −

















2

3

4

 

T x x T T
S S S S

( ) ( ) [ ] [ ]2 3 4

1 1 1

0 2 4

0 0 4

2

3

4

2− +  = [ ] =

=

















−



p p















=

















3

10

16

 T x x x x( ) .2 3 4 3 10 162 2
− + = + +

Example 4:  Let T : P1 → P2 be the linear transformation defined by

  T (  p( x)) = x p( x)

(i) Find the matrix of T w.r.t. the bases

S1 = {v1, v2} and S2 = {w1, w2, w3}

where v1 = 1, v2 = x, w1 = x + 1, w2 = x – 1, w3 = x2.

(ii) If p(x) = 3x – 2, compute T ( p(x)) directly and using matrix obtained in (i).

Solution: (i) T ( p(x)) = x p(x)

 
T T x x

T T x x x x

( ) ( )

( ) ( )

v

v

1

2

2

1 1= = ⋅ =

= = ⋅ =

Expressing T (v1) as linear combinations of w1, w2 and w3,

 

T k k k

x k x k x k x

k k k k

( )

( ) ( ) ( )

( ) (

v w w w1 1 1 2 2 3 3

1 2 3

2

1 2 1

1 1

= + +

= + + − +

= − + + 22 3

2)x k x+
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Equating corresponding components,

 k1 – k2  = 0

  k1 + k2  = 1

  k3 = 0

Solving these equations,

 

k k k

T

T
S

1 2 3

1 1 2

1

1

2

1

2
0

1

2

1

2

1

2

1

2

0

2

= = =

= +

[ ] =



















, ,

( )

( )

v w w

v



Expressing T (v2) as linear combinations of w1, w2 and w3,

 

T k k k

x k x k x k x

k k k

( )

( ) ( ) ( )

( ) (

v w w w2 1 1 2 2 3 3

2

1 2 3

2

1 2 1

1 1

= + +

= + + − +

= − + + kk x k x2 3

2) +

Equating corresponding components,

 k1 – k2  = 0

  k1 + k2  = 0

  k3 = 1

Solving these equations,

 k1 = 0, k2 = 0, k3 = 1

 

T

T
S

( )

( )

v w

v

2 3

2
2

0

0

1

=

[ ] =

















Thus, [ ] [ ( )] [ ( )],T T T
S S S S2 1 2 21 2= 



v v



3.64  Chapter 3  Linear Transformations

 

=





















1

2
0

1

2
0

0 1

 Direct computation(ii)

 T p x x p x x x x x( ( )) ( ) ( )= = − = −3 2 3 22

Computation using matrix obtained in part (i):

The coordinate vector relative to S2 for the vector p(x) = 3x – 2 = -2 + 3x is

 
p x

T x T p x T p x

S

S S S S S

( )

( ) ( ( )) [ ] [ ( )],

[ ] =
−









−[ ] = [ ] =

2

2 2 2 1 2

2

3

3 2

 =





















−







 =

−

−

















1

2
0

1

2
0

0 1

2

3

1

1

3

 

T x x x x

x x x

x x

( ) ( )( ) ( )( )3 2 1 1 1 1 3

1 1 3

3 2

2

2

2

− = − + + − − +

= − − − + +

= −

Example 5:  Let T : M22 → M22 be defined by T (A) = AT. Let

  S
1

1 0

0 0

0 1

0 0

0 0

1 0

0 0

0 1
=

















































, , ,

and   S
2

1 1

0 0

0 1

0 0

0 0

1 1

1 0

0 1
=

















































, , ,

be bases for M22. Find the matrix of T w.r.t S1 and S2.

Solution: Let S1 = {v1, v2, v3, v4} and S2 = {w1, w2, w3, w4} be the bases for M22.

 

T T T
T T T( ) ( ) , ( ) ( ) , ( ) ( )v v v v v v1 1 2 2 3 3

1 0

0 0

0 0

1 0
= =









 = =









 = =

00 1

0 0

0 0

0 1
4 4











= =










,

( ) ( )T
T

v v
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Expressing T (v1) as linear combinations of w1, w2, w3 and w4,

 T k k k k( )v w w w w1 1 1 2 2 3 3 4 4= + + +

 

1 0

0 0

1 1

0 0

0 1

0 0

0 0

1 1

1 0

0 1
1 2 3 4









 =









 +









 +









 +




k k k k 






=








 +









 +









 +











=

k k k

k k

k

k

k

1 1 2

3 3

4

4
0 0

0

0 0

0 0 0

0

11 4 1 2

3 3 4

+ +

+











k k k

k k k

Equating corresponding components,

 

k k

k k

k

k k

1 4

1 2

3

3 4

1

0

0

0

+ =

+ =

=

+ =

Solving these equations,

 

k k k k

T

T
S

1 2 3 4

1 1 2

1

1 1 0 0

1

1

0

0

2

= = − = =

= −

[ ] =
−



















, , ,

( )

( )

v w w

v

Expressing T (v2) as linear combinations of w1, w2, w3 and w4,

 
T k k k k

k k k k

k k k

( )v w w w w2 1 1 2 2 3 3 4 4

1 4 1 2

3 3 4

0 0

1 0

= + + +









 =

+ +

+











Equating corresponding components,

 

k k

k k

k

k k

1 4

1 2

3

3 4

0

0

1

0

+ =

+ =

=

+ =
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Solving these equations,

 

k k k k

T

T
S

1 2 3 4

2 1 2 3 4

2

1 1 1 1

1

1

1

1

2

= = − = = −

= − + −

[ ] =
−

−








, , ,

( )

( )

v w w w w

v













Expressing T (v3) as linear combinations of w1, w2, w3 and w4,

 

T k k k k

k k k k

k k k

( )v w w w w3 1 1 2 2 3 3 4 4

1 4 1 2

3 3 4

0 1

0 0

= + + +









 =

+ +

+











Equating corresponding components,

 

k k

k k

k

k k

1 4

1 2

3

3 4

0

1

0

0

+ =

+ =

=

+ =

Solving these equations,

 

k k k k

T

T
S

1 2 3 4

3 2

3

0 1 0 0

0

1

0

0

2

= = = =

=

[ ] =



















, , ,

( )

( )

v w

v

Expressing T (v4) as linear combinations of w1, w2, w3 and w4,

 

T k k k k

k k k k

k k k

( )v w w w w4 1 1 2 2 3 3 4 4

1 4 1 2

3 3 4

0 0

0 1

= + + +









 =

+ +

+











Equating corresponding components,

 

k k

k k

k

k k

1 4

1 2

3

3 4

0

0

0

1

+ =

+ =

=

+ =
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Solving these equations,

 

k k k k

T

T
S

1 2 3 4

4 1 2 4

4

1 1 0 1

1

1

0

1

2

= − = = =

= − + +

[ ] =

−












, , ,

( )

( )

v w w w

v






Thus,        [ ] [ ( )] [ ( )] [ ( )] [ ( )],T T T T T
S S S S S S2 1 2 2 2 21 2 3 4= 



v v v v

 =

−

− −

−



















1 1 0 1

1 1 1 1

0 1 0 0

0 1 0 1

Example 6:  Let v
1

1

3
=









  and v

2

1

4
=

−







 ,  and let A =

−











1 3

2 5
 be the matrix 

of T : R2 → R2 w.r.t. the basis S = {v1, v2}

 (i) Find [T (v1)]S and [T (v2)]S.

 (ii) Find T (v1) and T (v2).

(iii) Find T
x

x

1

2

















.

(iv) Calculate T
1

1
















.

Solution:  (i) A =
−











1 3

2 5
 is the matrix of T w.r.t. the basis S.

 A T T T
S S S

= =   =
−









[ ] [ ( )] [ ( )]v v1 2

1 3

2 5

Hence, T
S

( )v1

1

2
[ ] =

−











 T
S

( )v2

3

5
[ ] =
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(ii) From part (i),

 

T

T

( )

( )

v v v

v v v

1 1 2

2 1 2

2
1

3
2

1

4

3

5

3 5 3
1

= − =







 −

−







 = −











= + =
33

5
1

4

2

29








 +

−







 =

−









(iii) Let v =










x

x

1

2

 be any vector in R2.

Expressing v as linear combinations of v1 and v2,

 

v v v= +









 =








 +

−







 =

−

+



k k

x

x
k k

k k

k k

1 1 2 2

1

2

1 2

1 2

1 2

1

3

1

4 3 4







Equating corresponding components,

 
k k x

k k x

1 2 1

1 2 2
3 4

− =

+ =

Solving these equations,

 

k
x x

k
x x

1

1 2

2

1 2

4

7

3

7

=

+

=

− +

 

v v v

v v

=
+





+
− +





=
+





+

4

7

3

7

4

7

1 2

1

1 2

2

1 2

1

x x x x

T
x x

T( ) ( )
−− +





















=

+



 −







3

7

4

7

3

5

1 2

2

1

2

1 2

x x
T

T
x

x

x x

( )v


 +

− +





−









3

7

2

29

1 2x x

 

=

+




−

− +





−
+




+

− +

3
4

7
2

3

7

5
4

7
29

3

7

1 2 1 2

1 2 1 2

x x x x

x x x x























=
+

− +



















18

7

1

7

107

7

24

7

1 2

1 2

x x

x x



3.9   The Matrix of a Linear Transformation 3.69

(iv) T
1

1

18

7
1

1

7
1

107

7
1

24

7
1

19
















=

+

− +



















=
( ) ( )

( ) ( )

77

83

7
−



















Example 7:  Let T : P1 → P2 be a linear transformation. The matrix of T w.r.t. the 

basis S1 = {v1, v2} and S2 = {w1, w2, w3} is

 A =

− −

















1 0

2 1

1 2

where v1 = x + 1, v2 = x – 1, w1 = x2 + 1, w2 = x, w3 = x – 1

 (i) Find T
S

( )v1
2

[ ]  and T
S

( ) .v2
2

[ ]
 (ii) Find T (v1) and T (v2).

(iii) Find T (a0 + a1x).

(iv) Calculate T (2x + 1).

Solution: (i) A is the matrix of T w.r.t. the basis S1 and S2.

 A T T T
S S S S

= = 



 =

− −

















[ ] [ ( )] [ ( )],2 1 2 21 2

1 0

2 1

1 2

v v

Hence, [ ( )] , [ ( )]T T
S S

v v1 22 2

1

2

1

0

1

2

=

−

















=

−

















(ii) From part (i),

T (v1) = w1 + 2w2 – w3 = (x2 + 1) + 2x – (x – 1) = x2 + x + 2

T (v2) = w2 – 2w3 = x – 2(x – 1) = –x + 2

(iii)  Let v = p(x) = a0 + a1x be any vector in P1. Expressing v as linear combinations 

of v1 and v2, 

 

v v v= +

+ = + + −

= − + +

k k

a a x k x k x

k k k k x

1 1 2 2

0 1 1 2

1 2 1 2

1 1( ) ( )

( ) ( )

Equating corresponding components,

 
k k a

k k a

1 2 0

1 2 1

− =

+ =
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Solving these equations,

 

k
a a

k
a a

1

1 0

2

1 0

2

2

=

+

=

−

 

∴ =
+





+
−





=
+





+
−

v v v

v v

a a a a

T
a a

T
a

1 0

1

1 0

2

1 0

1

1

2 2

2
( ) ( )

aa
T

T a a x
a a

x x
a a

0

2

0 1

1 0 2 1 0

2

2
2

2







+ =
+





+ + +
−





( )

( ) ( )

v

(( )

( )

− +

=
+





+
+





+ + −
−





x

a a
x

a a
x a a

a a
x

2

2 2 2

1 0 2 1 0

1 0

1 0 ++ −

=
+





+ +

( )a a

a a
x a x a

1 0

1 0 2

0 1
2

2

(iv) T x x x x x( ) ( ) ( )2 1
2 1

2
1 2 2

3

2
42 2+ =

+





+ + = + +

Example 8:  Let the matrix of T : R3 → R2 w.r.t. the bases S1 = {v1, v 2, v3} and 

S2 = {w1, w2} be

 A ==
1 2 1

1 1 0−











where  v v , v
31 2

1

1

0

,

0

1

1

1

0

0

== == ==

−















































and  w w
1 2

1

2

1

1
=







 =

−









,

 (i) Find [ ( )] [ ( )] [ ( )]T T T
S S S

v v v1 2 32 2 2
, , .

 (ii) Find T T T( ), ( ), ( )v v v1 2 3

(iii) Find T

x

x

x

1

2

3

































(iv) Find T

2

1

1−
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Solution: (i) A =
−











1 2 1

1 1 0
 is the matrix of T w.r.t. the bases S1 and S2.

 A T T T T
S S S S S

= = 





[ ] [ ( )] [ ( )] [ ( )]
,2 1 2 2 21 2 3v v v

Hence, [ ( )] , [ ( )] , [ ( )]T T T
S S S

v v v1 2 32 2 2

1

1

2

1

1

0
=

−









 =









 =











(ii) From part (i),

 

T

T

( )

( )

v w w

v w w

1 1 2

2 1 2

1

2

1

1

0

3

2 2
1

2

= − =







 − −









 =










= + =







 + −









 =

+

−









 =










= =









1

1

2 1

4 1

3

3

1

2
3 1T ( )v w

(iii) Let v = 

x

x

x

1

2

3

















 be any vector in R3.

Expressing v as linear combinations of v1, v2, and v3,

 

v v v v = + + 
1 1 2 2 3 3
k k k

x

x

x

k k

1

2

3

1 2

1

1

0

0

1

















=

−















+

11

1

0

0

3

1 3

1 2

2

















+

















=

− +

+

















k

k k

k k

k

Equating corresponding components,

 

− + =

+ =

=

k k x

k k x

k x

1 3 1

1 2 2

2 3

Solving these equations,

 

k x x

k x

k x x x

x x x x x x

1 2 3

2 3

3 1 2 3

2 3 1 3 2 1 2 3 3

= −

=

= + −

∴ − + + + −v v v v = ( () )

 T x x T x T x x x T( ) ( ) ( ) ( ) ( ) ( )v v v v= − + + + −2 3 1 3 2 1 2 3 3
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T

x

x

x

x x x

1

2

3

2 3 3 1

0

3

3

3
































= −








 +








 +( () x ++ −










=
+ + −

− + + + −










x x

x x x x

x x x x x x

2 3

3 1 2 3

2 3 3 1 2 3

1

2

3

3 3 3 2 2 2

)

==
+ +
+ −











x x x

x x x

1 2 3

1 2 3

2

2 5 2

(iv) T

2

1

1

2 1 2 1

2 2 5 1 2 1

1

−






























=

+ + −
+ − −









 =

( )

( ) ( ) ( ) 111











3.9.3  Matrices of Compositions and Inverse 

Transformations

Theorem 3.18: If T1: U → V and T2: V → W are linear transformations and if S1, S3, 

and S2 are bases for U, V and W respectively then

 [ ] [ ] [ ]
, , ,

T T T T
S S S S S S2 1 2 12 1 2 3 3 1

� =

Theorem 3.19: If T : V → V  is a linear operator and if S is a basis for V then the 

 following are equivalent:

(a) T is one-to-one.

(b) [T ]S is invertible.

When (a) and (b) hold, 

T
− −

  = [ ]1 1

S s
T

Theorem 3.20: If T : V → W is a linear transformation and if S1 and S2 are bases for V 

and W respectively then T is invertible if and only if [ ]
,

T
S S2 1

 is invertible. In this case,

 [ ] [ ]
, ,

T T
S S S S2 1 1 2

1
1( ) =

−
−

Example 1:  Let T1: P1 → P2 be the linear transformation defined by 

 T a a x a a x1 0 1 0 1

22 3( )+ = −

and let T2 : P2 → P3 be the linear transformation defined by

 T a a x a x a x a x a x2 0 1 2

2

0 1

2

2

33 3 3( )+ + = + +

Let S1 = {1, x}, S3 = {1, x, x2}, and S2 = {1, x, x2, x3}

Find   [ ] , [ ] [ ]
, , ,

T T T T
S S S S S S2 1 2 12 1 2 3 3 1

� and

Solution:  T1 1 2( ) =
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T x x

T x

T x x

T x x

1

2

2

2

2

2

2 3

3

1 3

3

3

( )

( )

( )

( )

= −

=

=

=

Since S3 is the standard basis for P2,

 
[ ( )] [ ( )]

[ ( )] [ ( )]

T T

T x T x

S

S

1 1

1 1

1 1
3

3

=

=

Thus, [ ] [ ( )] [ ( )],T T T x
S S S S1 1 13 1 3 3

1= 





 =

−

















2 0

0 0

0 3

Since S2 is the standard basis for P3,

 

[ ( )] [ ( )]

[ ( )] [ ( )]

[ ( )] [ ( )]

[ ]

T T

T x T x

T x T x

T

S

S

S

S

2 2

2 2

2

2

2

2

2

1 1
2

2

2

=

=

=

22 3 2 2 22 2 2

21

0 0 0

3 0 0

0 3 0

0 0 3

, [ ( )] [ ( )] [ ( )]
S S S S

T T x T x= 


=



















     

[ ] [ ] [ ]
, , ,

T T T T
S S S S S S2 1 2 12 1 2 3 3 1

0 0 0

3 0 0

0 3 0

0 0 3

2 0

� =

=



















00 0

0 3

0 0

6 0

0 0

0 9

−

















=

−
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Example 2:  T1 : R
2 → P1 and T2 : P1

 → P2 be the linear transformations defined by 

T
a

b
a a b x1








 = + +( )  and T2(  p(x)) = x p(x)

Let S S x
1 3

1

0

0

1
1=



























= { }, , ,  and S2 = {1, x, x2}

(i) Find [ ]T T
S S2 1 2 1

�
,

 (ii) Find [ ]
,

T
S S1

1

1 3

−

Solution: T x
1

1

0
1








 = +

 

T x

T x

T x x

1

2

2

2

0

1

1








 =

=

=

( )

( )

Since S3 is the standard basis for P1,

 

T T

T T

S

S

1 1

1 1

1

0

1

0

0

1

0

1

3

3


















 =





































 =




















 

[ ]
,

T T T
S S

S S

1 1 13 1

3 3

1

0

0

1

1 0

1

=






















































=
11











Since S2 is the standard basis for P2,

 
[ ( )] [ ( )]

[ ( )] [ ( )]

T T

T x T x

S

S

2 2

2 2

1 1
2

2

=

=

Thus, [ ] [ ( )] [ ( )],T T T x
S S S S2 2 22 3 2 2

1= 





 

=

















0 0

1 0

0 1
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[ ] [ ] [ ]
, , ,

T T T T
S S S S S S2 1 2 12 1 2 3 3 1

0 0

1 0

0 1

1 0

1 1

� =

=



























==

















0 0

1 0

1 1

(ii)   T T
S S S S1

1

1

1
1

1 3 3 1

1 0

1 1

1 0

1 1

−
−

−

  = ( ) =








 =

−









, ,

[ ]

Exercise 3.3

1.  Let T : R2 → R2 be the linear transfor-

mation defined by

  T (x, y) = (x – 2y, x + 2y)

Let S1 = {(1, –1), (0, 1)} be a basis for 

R2 and let S2 be the standard basis for 

R2. Find the matrix of T w.r.t.

    (i) S1          (ii) S1 and S2 

 (iii) S2 and S1   (iv) S2

 

Ans.:

 (i)

ii

iii

iv

3 2

2 0

3 2

1 2

1 2

2 0

1

−









−

−











−









−

( )

( )

( )
22

1 2















































2. Let T : R2 → R3 be defined by

  T
x

y

x y

x y

x y
















=

−
+
+

















2

2

Let S1 and S2 be the standard bases for R2 

and R3 respectively. Also, let 

  ′ =
−




























′ =





















S S
1 2

1

1

0

1

1

1

0

0

1

1

, , and    












−

































1

1

1

 

be bases for R2 and R3, respectively. Find 

the matrix of T w.r.t.

(i) S1 and S2  (ii) S ′1 and S ′2

 

Ans.:

() ,( )i ii

1 2

2 1

1 1

7

3

4

3

2

3

5

3

2

3

2

3

−















−

−

−





















































3.76  Chapter 3  Linear Transformations

3. Let T : R2 → R2 be defined by

 T
x

x

x x

x
1

2

1 2

1

2

0

















=

+
−

















Find the matrix [T ]S2 ,
 S1

 w.r.t. the bases 

S1 = {v1, v2} and S2 = {w1, w2, w3} where

 

v v

w w

1 2

1 2

1

3

2

4

1

1

1

2

2

0

=







 =

−









=

















=

















, ,

, ,, w
3

3

0

0

=

















 Ans.:  

0 0

1

2
1

8

3

4

3

−









































4.  Let T : R2 → R2 be the linear operator 

defined by

  T
x

x

x x

x x

1

2

1 2

1 2
2 4

















=

+
− +










  and let S = {v1, v2} be the basis, where

 v v
1 2

1

1

1

2
=








 =









,

Find [T ]s .

 Ans.:  
2 0

0 3





















5.  Let T : P2 → P2 be the linear operator 

defined by 

T a a x a x a a x

a x

( ) ( )

( )

0 1 2

2

0 1

2

2

1

1

+ + = + −

+ −

Find the matrix of T w.r.t. the standard 

basis S = {1, x. x2} for P2.

 Ans.:  

1 1 1

0 1 2

0 0 1

−

−

































6.  Let T : P1 → P3 be defined by 

T ( p(x)) = x2p(x).

Let S1 = {x, 1} and S2 = {x, x + 1} be 

bases for P1.

Let ′ =S x x x1

3 2 1{ , , , } and

′ = − +S x x x x2

3 2 1 1{ , , , } be bases 

for P3. Find the matrix of T w.r.t.

 (i) S1 and ′S
1   (ii) S2 and ′S

2

 

Ans.:

 (i)

1 0

0 1

0 0

0 0

(ii)

1 1

0 1

0 1

0 1












































−

















7. Let A =

−

−

















1 3 1

2 0 5

6 2 4

 be the matrix 

of T : P2 → P2 w.r.t. the basis 

S = {v1, v2, v3} where v1 = 3x + 3x2, 

v2 = –1 + 3x + 2x2, v3 = 3 + 7x + 2x2

 (i) Find [T (v1)]s, [T (v2)]s and [T (v3)]s.

(ii) Find T (v1), T (v2), and T (v3).

 

Ans.:

( ) , ,

( )

i

ii

 1

2

6

3

0

2

1

5

4

16 51 1















−















−













+ +x 99 6 5 5

7 40 15

2 2

2

x x x

x x

, ,− − +

+ +
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8.  Let A =

−

−

















1 3 1

2 0 5

6 2 4

be the matrix 

of T : P2 → P2 w.r.t. the bases 

S = {v1, v2, v3} where 

v1 = 3x + 3x2, v2 = –1 + 3x + 2x2, 

v3 = 3 + 7x + 2x2

  (i) Find [T (v1)]s, [T (v2)]s and [T (v3)]s.

 (ii) Find T (v1), T (v2) and T (v3.).

 Ans.:

1

2

6

3

0

2

1

5

16 51 19















 −

















−















+ +

, ,

4

x x
22

2

2

6 5 5

7 40 15

,

− − +

+ +



























x x

x x

,
 

 9.  Let T1 : P1 → R2 and T2 : R
2

 → R2 be 

the linear transformation defined by 

T p x
p

p
T

a

b

a b

a b
1 2

0

1

2

2
( ( ))

( )

( )
=

















 =

−

−









and

Let S1 = {1, x}, S2 = S3 = {e1, e2}

Find [ ] .
,

T T
S S2 1 2 1

�

 Ans.:
− −

−
















1 2

1 1

10.  Let T: P2 → P2 be a linear 

transformation defined by

  T p x p x( ( )) ( )= + 2

Let S1 = {1, x, x2}, 

S2 = {1, x + 2, (x + 2)2}

Find T p x
−1( ( ))

 Ans.: p x( )−[ ]2

3.10   EFFECT OF CHANGE OF BASES ON 
LINEAR OPERATORS

The matrix of a linear operator T : V → V depends on the basis for V. A basis for V is 

chosen such that it produces the simplest possible matrix for T such as a diagonal or a 

 triangular matrix.

If S1 = {v1, v2, … , vn} and S2 = {w1, w2, … , wn} are the bases for vector space V, 

then the transition matrix from S2 to S1 is given by,

 P
s s n s

= 





[ ] [ ] [ ]w w w
1 21 1 1

…

Theorem 3.21: Let T : V→ V be a linear operator of vector space V, and let S1 and S2 

be bases for vector space V. Then

[ ] [ ]T P T P
S S2 1

1
=

−

where P is the transition matrix from S2 to S1.

Note: P –1 is the transition matrix from S1 to S2.

 P
s s n s

− = 





1

1 22 2 2
[ ] [ ] [ ]v v v…
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Example  1:  Let S1 = {v1, v2, v3} be a basis for a vector space V and let 

T : V → V be a linear operator such that

 [ ]T
S1

3 4 7

1 0 2

0 1 0

=

−

−

















Find [ ]T
S2

 where S2 = {w1, w2, w3} is the basis for V defined by w1 = v1, w2 = v1 + v2, 

w3 = v1 + v2 + v3

Solution:

 [ ]T
S1

3 4 7

1 0 2

0 1 0

=

−

−

















w1, w2 and w3 are expressed as linear combinations of v1, v2 and v3 as,

        

w v w v v w v v v

w w

1 1 2 1 2 3 1 2 3

1 21 1

1

0

0

1

1

0

= = + = + +

=

















=



, ,

[ ] , [ ]
S S















=

















, [ ]w3 1

1

1

1

S

Hence, the transition matrix from S2 to S1 is

   

P
S S S

= 





=

















[ ] [ ] [ ]w w w
1 2 31 1 1

1 1 1

0 1 1

0 0 1

Thus

 P
− =

−

−

















1

1 1 0

0 1 1

0 0 1

The matrix of T w.r.t the basis S2 is

  

[ ] [ ]T P T P
S S2 1

1

1 1 0

0 1 1

0 0 1

3 4 7

1 0 2

0 1 0

= =

−

−

















−

−

















−

11 1 1

0 1 1

0 0 1

4 0 9

1 0 2

0 1 1

















=

−

−
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Example 2:  S1 = {v1, v2, v3} and S2 = {w1, w2, w3} be the bases for a vector space 

V and let

 P =

−















2 1 3

1 1 4

0 1 2

be the transition matrix from S2 to S1.

 (i) Express w1, w2, w3 as linear combinations of v1, v2, v3.

(ii) Express v1, v2, v3 as linear combinations of w1, w2, w3.

Solution: (i) Since P represents the transition matrix from the basis S2 to S1,

 P
S S S

= 



[ ] ] [ ]w w w

1 2 31 1 1
[  =

−















2 1 3

1 1 4

0 1 2

 [ ] , [ ] , [ ]w w w1 2 31 1 1

2

1

0

1

1

1

3

4

2

S S S
=

















=

−















=

















Hence,

 

w v v

w v v v

w v v v

1 1 2

2 1 2 3

3 1 2 3

2

3 4 2

= +

= − + +

= + +

(ii) P
−

−

=

−















=

− −

− −

−

















1

1

2 1 3

1 1 4

0 1 2

2 5 7

2 4 5

1 2 3

Since P –1 represents the transition matrix from the basis S1 to S2,

 
P S S S

− =   =
− −
− −

−















1
1 2 32 2 2

2 5 7

2 4 5

1 2 3

[ ] [ ] [ ]v v v

 [ ] , [ ] , [ ]v v v
1 2 32 2 2

2

2

1

5

4

2

7

5

3

S S S
=

−

−

















=

−

















=

−

−

















Hence,

 

v w w w

v w w w

v w w w

1 1 2 3

2 1 2 3

3 1 2 3

2 2

5 4 2

7 5 3

= − − +

= + −

= − − +
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Example 3:  T : R2 → R2 is defined by

 T
x

x

x x

x

1

2

1 2

2

2















=

−
−











S1 1 2= { , }v v  and S2 1 2= { , },w w  where

 v v w w
1 2 1 2

1

0

0

1

2

1

3

4
=







 =








 =








 =

−







, , ,

(ii) Find the matrix of T w.r.t the basis S1.

(ii) Find the matrix of T w.r.t the basis S2.

Solution: (i) The standard matrix of T is

 [ ]T =
−

−











1 2

0 1

Since S1 is the standard basis for R2, 

 [ ] [ ]T T
S1

1 2

0 1
= =

−

−











(ii) Since S1 is the standard basis for R2,

 

[ ] [ ]

[ ] [ ]

w w

w w

1 1

2 2

1

1

2

1

3

4

S

S

= =









= =
−









The transition matrix from S2 to S1 is

    

P
S S

= 











=
−









[ ]w w
1 21 1

2 3

1 4

      P− =

−



















=
−











1

4

11

3

11

1

11

2

11

1

11

4 3

1 2
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The matrix of T w.r.t the basis S2 is

 

[ ] [ ]T P T P
S S2 1

1 1

11

4 3

1 2

1 2

0 1

2 3

1 4

3

11

= =
−











−

−











−









=

−

−

−−

−



















56

11

2

11

3

11

Example 4:  Let T : R2 → R2 is defined by

 T
x

x

x x

x x

1

2

1 2

1 2

2

3

















=

+
−











S1 = {v1, v2} and S2 = {w1, w2}

where v v w w
1 2 1 2

1

2

1

3

1

1

0

1
=







 =








 =

−







 =








, , ,

 (i) Find the matrix of T w.r.t the basis S1.

(ii) Find the matrix of T w.r.t the basis S2.

Solution: (i) T T( )
( )

( )
v1

1

2

2 1 2

1 3 2

4

5
=








 =

+

−









 = −











Expressing T (v1) as linear combination of v1 and v2,

 

T k k

k k
k k

k k

( )v v v1 1 1 2 2

1 2

1 2

1

4

5

1

2

1

3 2 3

= +

−









 =









 +









 =

+

+
22











Equating corresponding components,

 
k k

k k

1 2

1 2

4

2 3 5

+ =

+ = −

Solving these equations,

 

k

k

T

1

2

1 1 2

17

13

17 13

=

= −

= −( )v v v

 [ ( )]T
S

v1 1

17

13
=

−
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Similarly,

 

T T( )
( )

( )
v2

1

3

2 1 3

1 3 3

5

8
=








 =

+

−









 = −











Expressing T (v2) as linear combinations of v1 and v2,

   

T k k

k k
k k

k k

( )v v v2 1 1 2 2

1 2

1 2

1

5

8

1

2

1

3 2 3

= +

−









 =









 +









 =

+

+
22











Equating corresponding components,

  
k k

k k

1 2

1 2

5

2 3 8

+ =

+ = −

Solving these equations,

 

k

k

T

1

2

2 1 2

23

18

23 18

=

= −

= −( )v v v

 T
S

( )v2
1

23

18
[ ] =

−











 

[ ] [ ( )] ( )T T T
S S S1 1 1

1 2

17 23

13 18

= 





=
− −











v v

(ii) Expressing w1 as linear combinations of v1 and v2,

 

w v v
1 1 1 2 2

1 2

1 2

1 2

1

1

1

2

1

3 2 3

= +

−







 =









 +









 =

+

+





k k

k k
k k

k k







Equating corresponding components,

 k1 +   k2 = –1

 2k1 + 3k2 = 1

Solving these equations,

   k1 = – 4

  k2 = 3

 w1 = – 4v1 + 3v2

 T
S

( )w1
1

4

3
[ ] =

−
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Expressing w2 as linear combinations of v1 and v2,

 

w v v
2 1 1 2 2

1 2

1 2

1 2

0

1

1

2

1

3 2 3

= +









 =









 +









 =

+

+






k k

k k
k k

k k






Equating corresponding components,

  k1 +   k2 = 0

 2k1 + 3k2 = 1

Solving these equations,

  k1 = –1

  k2 = 1

 w2 = –v1 + v2

 T
S

( )w2
1

1

1
[ ] =

−









The transition matrix from S2 to S1 is

 

P T T

P

S S
= 





=
− −









=
− −









−

[ ( )] [ ( )]w w1 2

1

1 1

4 1

3 1

1 1

3 4

The matrix of T w.r.t the basis S2 is

   

[ ] [ ]T P T P
S S2 1

1
1 1

3 4

17 23

13 18

4 1

3 1

1

= =
− −







 − −











− −









=

−

−−

− −










1

5 2

Example 5:  Let T: P1 → P1 is defined by T (a0 + a1x) = a0 + a1 (x + 1); 

S1 = {p1, p2} and S2 = {q1, q2} where p1 = 6 + 3x, p2 = 10 + 2x, q1 = 2, q2 = 3 + 2x

Find the matrix of T w.r.t the basis S1 and matrix of T w.r.t the basis S2.

Solution: T (p1) = T (6 + 3x) = 6 + 3(x + 1) = 9 + 3x

Expressing T (p1) as linear combinations of p1 and p2

 

T k k

x k x k x

k k k k

( )

( ) ( )

( ) (

p p p1 1 1 2 2

1 2

1 2 1 2

9 3 6 3 10 2

6 10 3 2

= +

+ = + + +

= + + + ))x
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Equating corresponding coefficients,

 6k1 + 10k2 = 9

 3k1 +   2k2 = 3

Solving these equations,

 

k k

T

T
S

1 2

1 1 2

1

2

3

1

2

2

3

1

2

2

3

1

2

1

= =

∴ = +

[ ] =



















,

( )

( )

p p p

p

Similarly, T ( p2) = T (10 + 2x) = 10 + 2 (x + 1) = 12 + 2x

Expressing T ( p2) as linear combinations of p1 and p2

 

T k k

x k x k x

k k k k

( )

( ) ( )

( ) (

p p p2 1 1 2 2

1 2

1 2 1

12 2 6 3 10 2

6 10 3 2

= +

+ = + + +

= + + + 22 )x

Equating corresponding the coefficients,

 6k1 + 10k2 =12

 3k1 +   2k2 = 2

Solving these equations,

 

k k

T

1 2

2 1 2

2

9

4

3

2

9

4

3

= − =

∴ = − +

,

( )p p p

 T
S

( )p2
1

2

9

4

3

[ ] =
−



















 [ ] ( ) ( )T T T
S S S1 1 11 2

2

3

2

9

1

2

4

3

= 



 =

−


















p p
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Expressing q1 as linear combinations of p1 and p2,

 

q p p1 1 1 2 2

1 2

1 2 1 2

2 6 3 10 2

6 10 3 2

= +

= + + +

= + + +

k k

k x k x

k k k k x

( ) ( )

( ) ( )

Equating corresponding coefficients,

 6k1 + 10k2 = 2

 3k1 +   2k2 = 0

Solving these equations,

 

k k
1 2

1 1 2

2

9

1

3

2

9

1

3

= − =

∴ = − +

,

q p p

 [ ]q
1 1

2

9

1

3

S
=

−


















Expressing q2 as linear combination of p1 and p2,

 

q p p2 1 1 2 2

1 2

1 2 1 2

3 2 6 3 10 2

6 10 3 2

= +

+ = + + +

= + + +

k k

x k x k x

k k k k x

( ) ( )

( ) ( )

Equating corresponding coefficients,

   6k1 + 10k2 = 3

   3k1 +   2k2 = 2

Solving these equations,

 

k k

S

1 2

2 1 2

2

7

9

1

6

7

9

1

6

7

9

1

6

1

= = −

∴ = −

=

−



















,

[ ]

q p p

q
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Hence, transition matrix from S2 to S1 is

 

P
S S

= [ ] [ ]





=
−

−



















q q
1 2

1 1

2

9

7

9

1

3

1

6

Thus

 P
− =



















1

3

4

7

2

3

2
1

 [ ] [ ]T P T P
S S2 1

1

3

4

7

2

3

2
1

2

3

2

9

1

2

4

3

2

= =



















−


















−
− 99

7

9

1

3

1

6

1 1

0 1
−



















=










3.11  SIMILARITY OF MATRICES

If A and B are two square matrices then B is said to be similar to A, if there exists a 

non-singular matrix P such that B = P –1AP

Properties of Similar Matrices

  (i) Similar matrices have the same determinant.

  (ii) Similar matrices have the same rank.

 (iii) Similar matrices have the same nullity.

 (iv) Similar matrices have the same trace.

  (v) Similar matrices have the same characteristic polynomial.

 (vi) Similar matrices have the same eigenvalues.

(vii)  If l is an eignvalue of two similar matrices, the eigenspace of both the similar 

matrices corresponding to l have the same dimension.

Two matrices representing the same linear operator T : V → V with respect to dif-

ferent bases are similar. If S1 and S2 are two different bases for a vector space V then 

matrices [ ]T
S1

 and [ ]T
S2

 are similar.

Hence, det [ ] det [ ]T T
S S1 2

( ) = ( )

The value of the determinant depends on T, but not on any basis that is used to obtain 

the matrix for T. Thus, if V is a finite-dimensional vector space then 

     det   det TT
S

( ) = [ ]( )
1

where S1 is any basis for V.
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Example 1:  Show that the matrices 
1 1

1 4−









  and 

2 1

1 3









  are similar but that 

3 1

6 2− −









  and 

−









1 2

1 0
 are not.

Solution: Let A B C=
−









 =









 =

− −











1 1

1 4

2 1

1 3

3 1

6 2
, ,  and D =

−









1 2

1 0

 

det ( )

det ( )

A

B

=

−

=

= =

1 1

1 4
5

2 1

1 3
5

 

det ( )

det ( )

C

D

=

− −

=

=

−

= −

3 1

6 2
0

1 2

1 0
2

Since det (A) = det (B), matrices A and B are similar.

Since det (C) ≠ det (D), matrices C and D are not similar.

Example 2:  Let T : R3 → R3 defined by

 T

x

x

x

x x x

x

x x

1

2

3

1 2 3

2

1 3

2

7
































=

+ −
−
+

















S1 is the standard basis for R3 and S2 = {w1, w2, w3}, where 

 w w w
1 2 3

1

0

0

1

1

0

1

1

1

=

















=

















=

















, ,

Verify that det ( ) det [ ] det [ ] .T T T
S S

= ( ) = ( )
1 2

Solution: The standard matrix of T is 

 [ ]T =

−

−

















1 2 1

0 1 0

1 0 7

Since S1 is the standard basis for R3, 

 [ ] [ ]T T
S1

1 2 1

0 1 0

1 0 7

= =

−

−
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 det ( )T =

−

− = −

1 2 1

0 1 0

1 0 7

8

Since S1 is the standard basis for R3,

 

w w

w w

w w

1 1

2 2

3

1

1

1

1

0

0

1

1

0

[ ] = [ ] =
















[ ] = [ ] =
















[ ] =

S

S

S 33

1

1

1

[ ] =
















Transition matrix from S2 to S1 is

 

P
S S S

= 





=

















[ ] [ ] [ ]w w w
1 2 31 1 1

1 1 1

0 1 1

0 0 1

Thus P
− =

−

−

















1

1 1 0

0 1 1

0 0 1

The matrix of T w.r.t the basis S2 is

 

[ ] [ ]T P T P
S S2 1

1

1 1 0

0 1 1

0 0 1

1 2 1

0 1 0

1 0 7

= =

−

−

















−

−

















−

11 1 1

0 1 1

0 0 1

1 4 3

1 2 9

1 1 8

















= − − −

















 det ([ ] )T
S2

1 4 3

1 2 9

1 1 8

8= − − − = −

Hence, det ( ) det [ ] det [ ]T T T
S S

= ( ) = ( )
1 2
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1.  Find the transition matrix from S2 to 

S1 where

(i) S S
2 1

1

0

1

1

0

1

1

1
=


























=

























, ; ,

(ii) S S
2 1

1

2

1

3

1

1

0

1
=


























=
−

























, ; ,

(iii) S
2

1

1

0

0

1

1

1

3

1

=

































































, , ;

 

S
1

1

0

0

1

1

0

1

1

1

=

































































, ,

 (iv) S

S

2

1

1

1

0

0

1

1

1

3

1

=

































































=

, , ,

11

1

0

0

1

1

1

0

1

































































, ,

 

Ans.: (i)

ii

iii

−






− −






− −












1 0

1 1

1 1

3 4

0 1 2

1 0 2

0 1 1

( )

( )


−




















































( )iv

1 0
3

2

0 1
3

2

0 0
1

2

















2. Let T : R2 → R2 be defined by

 T
x

x

x x

x x

1

2

1 2

1 2
2 4

















=

+
− +










 (i)  Find the matrix of T w.r.t. the 

standard basis S1 = {e1, e2} for R2.

 (ii)  Find the matrix of T w.r.t. 

the basis S2 = {w1, w2} where 

[ ]w
1

1

1
=








  and [ ]w

2

1

2
=











 
Ans.:  (i)

1 1

2 4

(ii)
2 0

0 3

−
































3. Let T : R2 → R2 is defined by

 T
x

x

x x

x x

1

2

1 2

1 2

8 3

6

















=

−
−











  S1 = {v1, v2} and S2 = {w1, w2}

 where 

v v w w
1 2 1 2

1

0

1

1

1

1

1

2
=









 =








 =








 =









, , ,

 (i)  Find the matrix of T w.r.t. the basis 

S1.

 (ii)  Find the matrix of T w.r.t. the basis S2.

 

Ans.: ( )

( )

i

ii

2 0

6 5

5 0

0 2

































4.  Let I: R3 → R3 be the linear operator 

defined by

 

T x x x x x x x

x x x

( , , ) ( , ,

)

1 2 3 1 3 1 2

1 2 3

3 2

2 4

= + − +

− + +

 (i)  Find the matrix of T w.r.t. the 

standard basis S1 for R3.

Exercise 3.4
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 (ii)  Find the transition matrix from  

S2 to S1 where S2 = {w1, w2, w3}, 

w1 = {1, 0, 1}, w2 = {–1, 2, 1}, 

w3 = {2, 1, 1}.

 (iii)  Find the matrix of T w.r.t. the 

basis S2.

Ans. : (i)

3 0 1

2 1 0

1 2 4

−

−

































 ( )

( )

ii

iii

1 1 2

0 2 1

1 1 1

17

4

35

4

11

2

3

4

15

4

3

2

1

2

7

2
0

−















− −

− −



























































 5.  Show directly that A =










2 0

0 2
 and 

B =










2 1

0 2
 are not similar.

 6.  Show directly that there does not 

exist an invertible matrix P that 

satisfies equation A = P –1 BP for

 A =
− −











4 3

2 1
 and B =

−

−











5 4

3 2

 7.  Prove that if A is similar to B and B is 

similar to C, then A is similar to C.

 8.  Prove that if A is similar to B, then 

A2 is similar to B2.

 9.  Prove that if A is similar to B, then 

AT is similar to BT.

10.  Prove that every square matrix is 

similar to itself.



4.1  INTRODUCTION

Inner product space is a vector space with an inner product on it. It associates each pair 

of vectors in the space with a scalar quantity known as the inner product of vectors. It 

helps defining the orthogonality between vectors. They generalize Euclidean spaces to 

the vector spaces of any  dimension.

4.2  INNER PRODUCT SPACES

Let V be a real vector space. An inner product on V denoted by ⋅ ⋅,  is a function from 

V × V → R that assigns a real number u v,  to each ordered pair of vectors u and v 

in V in such a way that for all u, v, w in V and all scalars k, the following axioms are 

satisfied.

(a) u v v u, ,=  (Symmetry)

(b) u v w u w v w+ = +, , ,  (Additivity)

(c) ku v u v, ,= k  (Homogeneity)

(d) u u u u, ,≥ =0 0and  (non-negativity)

if and only if u = 0

If the given product satisfies all the above 4 axioms then V is called a real inner 

product space with respect to the given product.

Note: If u = ( , , , )u u u
n1 2 …  and v = ( , , , )v v v

n1 2 …  are vectors in Rn then Euclidean 

inner product (dot product)

u v⋅ = + + +u v u v u v
n n1 1 2 2

�

satisfies all the four axioms of inner product space. Hence, any vector space with 

respect to Euclidean inner product is an inner product space.

Weighted Euclidean Inner Product If u = ( , , , )u u u
n1 2 …   and  v = ( , , , )v v v

n1 2 …  

are vectors in Rn, and w w w
n1 2

, , ,…  are positive real numbers called weights then 

u v, = + + +wu v w u v w u v
n n n1 1 1 2 2 2

�

is called a weighted Euclidean inner product with weights w w w
n1 2

, , , .…

Inner Product 
Spaces

Chapter4
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4.2.1  Properties of Inner Products

If u, v, and w are vectors in an inner product space V and k is any scalar then 

 
 (i)

 
0 v v 0, ,= = 0

  
(ii)

 
u v w u v u w, , ,+ = +

(iii)
 

u v u v, ,k k=

 
(iv)

 
u v w u w v w− = −, , ,

   
(v)

 
u v w u v u w, , ,− = −

Example 1: Let u = (3, –1), v = (2, –2), w = (–1, 6) and k = –2. Verify the 

 following using Euclidean inner product.

 
 (i)

 
u v w u w v w+ = +, , ,

  (ii)
 
u v w u v u w, , ,+ = +

(iii)
 

k k ku v u v u v, , ,= =

 (iv)
 
0 u u 0, ,= = 0

Solution:  (i)  u + v = (3, -1) + (2, -2) = (5, -3)

 

L.H.S. = +

= + ⋅

= − ⋅ −

= − −

= −

u v w

u v w

,

( )

( , ) ( , )5 3 1 6

5 18

23

 

R.H.S. = +

= ⋅ + ⋅

− ⋅ − + − ⋅ −

= − − +

u w v w

u w v w

, ,

( , ) ( , ) ( , )

( )

== (3, 1) 1 6 2 2 1 6

3 6 (( )− −

= −

=

2 12

23

L.H.S. R.H.S.

(ii)  v + w = (2, –2) + (–1, 6) = (1, 4)

    

L.H.S. = +

= ⋅ +

= − ⋅

= − = −

u v w

u v w

,

( )

( , ) ( , )3 1 1 4

3 4 1

 

R HS.. . , ,

( , ) ( , ) ( , ) ( , )

( ) (

= +

= ⋅ + ⋅

= − ⋅ − + − ⋅ −

= + +

u v u w

u v u w

3 1 2 2 3 1 1 6

6 2 −− −

= −

=

3 6

1

)

. . . . . .L HS R HS



4.2  Inner Product Spaces 4.3

(iii)  k u = –2 (3, –1) = (–6, 2), k v = –2(2, –2) = (– 4, 4)

   

k ku v u v, ( )

( , ) ( , )

( )

= ⋅

= − ⋅ −

= − −

= −

6 2 2 2

12 4

16

 

k ku v u v, ( )

[( , ) ( , )]

( )

= ⋅

= − − ⋅ −

= − +

= −

2 3 1 2 2

2 6 2

16

  

u v u v, ( )

( , ) ( , )

k k= ⋅

= − ⋅ −

= − −

= −

3 1 4 4

12 4

16

 k k ku v u v u v, , ,= =

(iv) 0 u 0 u, = ⋅

 

= ⋅ −

=

= ⋅

= − ⋅

=

= =

( , ) ( , )

,

( , ) ( , )

, ,

0 0 3 1

0

3 1 0 0

0

0

 
u 0 u 0

0 u u 0

Example 2: Determine which of the following are inner products on R3 if, 

u = (u1, u2, u3), v = (v1, v2, v3)

  (i) u v, = + +2u v u v u v
1 1 2 2 3 3

4

  (ii) u v, = + +u v u v u v
1

2

1

2

2

2

2

2

3

2

3

2

(iii) u v, = − +u v u v u v
1 1 2 2 3 3

Solution:  (i)  (a) u v, = + +2 4
1 1 2 2 3 3

u v u v u v

 
= + +

=

2 4
1 1 2 2 3 3
v u v u v u

v u,

Symmetry axiom is satisfied.

(b)  Let w = (w1, w2, w3) be also in R3.

 
u v+ = +

= + + +

( , , ) ( , , )

( , , )

u u u v v v

u v u v u v

1 2 3 1 2 3

1 1 2 2 3 3
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= + + +

, ( ) ( ) ( )

( ) (

2 4

2 4

1 1 1 2 2 2 3 3 3

1 1 2 2 3 3

u v w u v w u v w

u w u w u w 22 41 1 2 2 3 3v w v w v w+ +

= +

)

, ,u w v w

Additivity axiom is satisfied.

(c)  Let k be any scalar.

 

k k u u u ku ku ku

k ku v ku v ku v

u

u v

= =

= + +

( , , ) ( , , )

, ( ) ( ) ( )

1 2 3 1 2 3

1 1 2 2 3 32 4

== + +

=

k u v u v u v

k

( )

,

2 41 1 2 2 3 3

u v

Homogeneity axiom is satisfied.

(d) u u, = + +2 4
1 1 2 2 3 3
u u u u u u

 = + + ≥2 4 0
1

2

2

2

3

2
u u u

Also, u u, = + + =2 4 0
1

2

2

2

3

2
u u u

if and only if u1 = 0, u2 = 0, u3 = 0 i.e. u = 0

Non-negativity axiom is satisfied.

Hence, the given product is an inner product in R3.

(ii) (a)  u v, = + +u v u v u v
1

2

1

2

2

2

2

2

3

2

3

2

 
= + +

=

v u v u v u
1

2

1

2

2

2

2

2

3

2

3

2

v u,

Symmetry axiom is satisfied.

(b)  Let w = (w1, w2, w3) be also in R3.

 
u v+ = +

= + + +

( , , ) ( , , )

( , , )

u u u v v v

u v u v u v

1 2 3 1 2 3

1 1 2 2 3 3

 

u v w+ = + + + + +

= + +

, ( ) ( ) ( )

(

u v w u v w u v w

u w u w u

1 1

2

1

2

2 2

2

2

2

3 3

2

3

2

1

2

1

2

2

2

2

2

33

2

3

2

1

2

1

2

2

2

2

2

3

2

3

2

1 1 1

2

2 2 2

2

3 3 3

22w v w v w v w u v w u v w u v w) ( ) ( )+ + + + + +

= uu w v w

u w v w

, , ( )

, ,

+ + + +

≠ +

2 1 1 1

2

2 2 2

2

3 3 3

2
u v w u v w u v w

Additivity axiom is failed.

Hence, the given product is not an inner product in R3.

(iii)  (a)  u v, = − +u v u v u v
1 1 2 2 3 3

 
= − +

=

v u v u v u
1 1 2 2 3 3

v u,
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Symmetry axiom is satisfied.

(b)  Let w = (w1, w2, w3) be also in R3.

 
u v+ = +

= + + +

( , , ) ( , , )

( , , )

u u u v v v

u v u v u v

1 2 3 1 2 3

1 1 2 2 3 3

 

u v w+ = + − + + +

= − + +

, ( ) ( ) ( )

( ) (

u v w u v w u v w

u w u w u w v w

1 1 1 2 2 2 3 3 3

1 1 2 2 3 3 1 1 −− +

= +

v w v w2 2 3 3 )

, ,u w v w

Additivity axiom is satisfied.

(c)  Let k be any scalar.

 

k k u u u

k ku v ku v ku v

k u v u v u v

u

u v

=

= − +

= − +

( , , )

, ( ) ( ) ( )

(

1 2 3

1 1 2 2 3 3

1 1 2 2 3 33 )

,= k u v

Homogeneity axiom is satisfied.

(d)  〈u, u〉 = u1u1 – u2u2 + u3u3

     = − +u u u
1

2

2

2

3

2

which is not necessarily positive because one term is with a negative sign.

Non-negativity axiom failed.

Hence, the given product is not an inner product.

Example 3: If u = (u1, u2) and v = (v1, v2) are vectors in R2 then verify that the 

weighted Euclidean inner product 〈u, v〉 = 3u1v1 + 2u2v2 satisfies the four inner prod-

uct axioms.

Solution:

(a)  u v, = +3 2
1 1 2 2

u v u v

 
= +

=

3 2
1 1 2 2
v u v u

v u,

Symmetry axiom is satisfied.

(b)  Let w = (w1, w2) be also in R2. u v

u v w

+ = + = + +

+ = + + +

( , ) ( , ) ( , )

, ( ) ( )

u u v v u v u v

u v w u v

1 2 1 2 1 1 2 2

1 1 1 2 23 2 ww

u w u w v w v w

2

1 1 2 2 1 1 2 23 2 3 2= + + +

= +u w v w, ,

Additivity axiom is satisfied.
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(c)  Let k be any scalar.

 

k ku ku

k ku v ku v

k u v u v

k

u

u v

u v

=

= +

= +

=

( , )

, ( ) ( )

( )

,

1 2

1 1 2 2

1 1 2 2

3 2

3 2

Homogeneity axiom is satisfied.

(d) u u, = +3 2
1 1 2 2
u u u u

 = + ≥3 2 0
1

2

2

2
u u

Also, u u, .= + =3 2 0
1

2

2

2
u u

if and only if u1 = 0, u2 = 0 i.e. u = 0

Non-negativity axiom is satisfied.

Hence, given product satisfies all the four inner product axioms.

Example 4: If u = (u1, u2), v = (v1, v2) are vectors in R2 then prove that R2 is an 

inner product space with respect to the inner product defined as

 u v, .= + + +4 4 4
1 1 2 1 1 2 2 2

u v u v u v u v

Solution:  R2 will be an inner product space with respect to the given product if it 

satisfies all the four inner product axiom.

(a)  u v, = + + +4 4 4
1 1 2 1 1 2 2 2

u v u v u v u v

 
= + + +

=

4 4 4
1 1 1 2 2 1 2 2
v u v u v u v u

v u,

Symmetry axiom is satisfied.

(b)  Let w = (w1, w2) be also in R2.

 

u v

u v w

+ = +

= + +

+ = + + +

( , ) ( , )

( , )

, ( ) ( )

u u v v

u v u v

u v w u v w

1 2 1 2

1 1 2 2

1 1 1 2 24 11 1 1 2 2 2 24 4+ + + +( ) ( )u v w u v w

 

= + + + + + + +

= +

( ) ( )

, ,

4 4 4 4 4 41 1 2 1 1 2 2 2 1 1 2 1 1 2 2 2u w u w u w u w v w v w v w v w

u w v w

Additivity axiom is satisfied.

(c)  Let k be any scalar.

 

k k u u ku ku

k ku v ku v ku v ku

u

u v

= =

= + + +

( , ) ( , )

, ( ) ( ) ( ) ( )

1 2 1 2

1 1 2 1 1 2 24 4 4 vv

k u v u v u v u v

k

2

1 1 2 1 1 2 2 24 4 4= + + +

=

( )

,u v
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Homogeneity axiom is satisfied.

(d) u u, = + + +4 4 4
1 1 2 1 1 2 2 2
u u u u u u u u

 = + +4 5 4
1

2

1 2 2

2
u u u u

 
= + + + +( )

= +( ) + +( ) ≥

5

2
5

5

2

3

2

5

2

3

2
0

1

2

1 2 2

2

1

2

2

2

1 2

2

1

2

2

2

u u u u u u

u u u u

Also, u u, = +( ) + +( ) =
5

2

3

2
0

1 2

2

1

2

2

2
u u u u

if and only if u1 = 0, u2 = 0 i.e. u = 0

Non-negativity axiom is satisfied.

Hence, R2 is an inner product space.

4.2.2 Inner Products Generated by Matrices

Let u and v be vectors in Rn expressed as n × 1 matrices and A be an n × n invertible 

matrix. If u ¥ v is the Euclidean inner product on Rn then 

 u v u v, = ⋅A A  ...(4.1)

represents the inner product on Rn generated by matrix A.

If u and v are in matrix form, u v=



















=



















u

u

u

v

v

v
n n

1

2

1

2

� �
,  

then,  u v⋅ = + + +u v u v u v
n n1 1 2 2

�  

  
= …[ ]



















=

v v v

u

u

u

n

n

T

1 2

1

2

�

( )v u

Applying this formula in Eq. (4.1),

 

u v u v

v u

v u

v u

,

( )

( )

= ⋅

=

=

=

A A

A A

A A

A A

T

T T

T T
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Note:  (i)  If A = I (identity matrix) then

 
u v u v

u v

, = ⋅

= ⋅

I I

Thus, inner product on Rn generated by identity matrix is the Euclidean inner 

 product (dot product).

(ii)  The weighted Euclidean inner product u v, = + + +wu v w u v w u v
n n n1 1 1 2 2 2

�  is 

the inner product in Rn generated by the matrix A

w

w

w

=

…

…

…





















1

1

1

0 0 0

0 0 0

0 0 0

� � � �

Example 1: Show that 〈u, v〉 = 9u1v1 + 4u2v2 is the inner product on R2 generated 

by the matrix A =










3 0

0 2
.

Solution:  Inner product generated by A is 

  〈u, v〉 = Au ⋅ Av, whereu v=








 =











u

u

v

v

1

2

1

2

,

 

=

















 ⋅



















=








 ⋅

3 0

0 2

3 0

0 2

3

2

3

1

2

1

2

1

2

u

u

v

v

u

u

v
11

2

1 1 2 2

1 1 2 2

2

3 3 2 2

9 4

v

u v u v

u v u v











= +

= +

Example 2: Show that 〈u, v〉 = 5u1v1 – u1v2 – u2v1 + 10u2v2 is the inner product on 

R2 generated by the matrix A =
−











2 1

1 3
.

Solution:  Inner product generated by A is 

 〈u, v〉 = Au ⋅ Av, whereu v=








 =











u

u

v

v

1

2

1

2

,

 

=
−


















 ⋅ −




















=
+

− +

2 1

1 3

2 1

1 3

2

3

1

2

1

2

1 2

1 2

u

u

v

v

u u

u u









 ⋅

+

− +











2

3

1 2

1 2

v v

v v
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= + + +

( ) ( ) ( ) ( )2 2 3 3

4 2 2

1 2 1 2 1 2 1 2

1 1 1 2 2 1 2

u u v v u u v v

u v u v u v u v22 1 1 1 2 2 1 2 2

1 1 1 2 2 1 2 2

3 3 9

5 10

+ − − +

= − − +

u v u v u v u v

u v u v u v u v

Example 3: Let u = (u1, u2), v = (v1, v2). Find a matrix that generates the  following 

inner products.

(i) u v, = +3 5
1 1 2 2

u v u v  (ii) u v, = +4 6
1 1 2 2

u v u v .

Solution:  (i) u v, = +3 5
1 1 2 2

u v u v

In this weighted Euclidean inner product

 w1 = 3, w2 = 5

The matrix that generates it is

 A
w

w

=











=













1

2

0

0

3 0

0 5

(ii) u v, = +4 6
1 1 2 2

u v u v

In this weighted Euclidean inner product

 w1 = 4, w2 = 6

The matrix that generates it is

 A
w

w

=











=











1

2

0

0

2 0

0 6
.

4.2.3 Norm or Length in Inner Product Spaces

The norm or length of a vector u in an inner product space V is denoted by u  and is 

defined by

 u u u= ,
1

2

Unit Vector: Let u be a vector in an inner product space V. If u = 1  then u is called 

a unit vector in V.

Properties of Length

If u and v are vectors in an inner product space V and k is any scalar then

1. u ≥ 0

2. u = 0  if and only if u = 0
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3. k ku u=

4. u v u v+ ≤ + ,  Triangle inequality.

4.2.4 Distance in Inner Product Spaces

The distance between two vectors u and v in an inner product space V is denoted by 

d(u, v) and is defined by

 d ( , )u v u v= −

Properties of Distance

If u, v and w are vectors in an inner product space V then

1. d(u, v) ≥ 0

2. d(u, v) = 0 if and only if u = v

3. d(u, v) = d(v, u)

4. d(u, v) ≤ d(u, w) + d(w, v), Triangle inequality

Example 1: Find u  if u = (3, 4) and weighted Euclidean inner product is 

u v, = − − +u v u v u v u v
1 1 1 2 2 1 2 2

3  where u = (u1, u2), v = (v1, v2).

Solution: u u u= ,
1

2

 

= − − +( )

= − ⋅ − ⋅ +( )

=

u u u u u u u u1 1 1 2 2 1 2 2

1

2

2 2
1

2

3

3 3 4 4 3 3 4

33

( )

.

Example 2: Find d(u, v) if u = (5, 4), v = (2, – 6) and weighted Euclidean inner 

product is 〈u, v〉 = 3u1v1 + 2u2v2 where u = (u1, u2), v = (v1, v2).

Solution: u – v = (5, 4) – (2, – 6) = (3, 10)

 

d ( , )

,

( , ), ( , )

u v u v

u v u v

= −

= − −

=

= ⋅ ⋅ + ⋅ ⋅( )

=

1

2

1

2

1

2

3 10 3 10

3 3 3 2 10 10

227
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Example 3:  Find  u  and d(u, v) where u = (–1, 2) and v = (2, 5) using the 

following inner products.

   (i) the Euclidean inner product

  (ii)  the weighted Euclidean inner product 〈u, v〉 = 3u1v1 + 2u2v2, where 

u = (u1, u2) and v = (v1, v2)

(iii) the inner product generated by the matrix  A =
−







1 2

1 3

Solution:  u – v = (–1, 2) – (2, 5) = (–1–2, 2 – 5) = (–3, –3)

(i) u u u= ,
1

2

 

= ⋅

= +( )

= +

=

( )

( )

u u

1

2

1

2

2

2
1

2

1

21 4

5

u u

 

d ( , )

( , )

( , ) ( , )

( ) ( )

u v u v= −

= − −

= − − ⋅ − −[ ]

= − + − 

=

3 3

3 3 3 3

3 3

1

1

2

2 2
1

2

88 3 2=

(ii) u u u= ,
1

2

 

= +( )

= − + 

=

3 2

3 1 2 2

11

1 1 2 2

1

2

2 2
1

2

u u u u

( ) ( )

 

d ( , )

( , )

( , ), ( , )

( ) ( )

u v u v= −

= − −

= − − − −

= − + − 

=

3 3

3 3 3 3

3 3 2 3

4

1

2

2 2
1

2

55 3 5=
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(iii)  Inner product generated by the matrix A is 

〈u, v〉 = Au ⋅ Av, where u v=








 =











u

u

v

v

1

2

1

2

,

 

=
−


















 ⋅ −




















=
+

− +

1 2

1 3

1 2

1 3

2

3

1

2

1

2

1 2

1 2

u

u

v

v

u u

u u









 ⋅

+

− +











v v

v v

1 2

1 2

2

3

 

= + + + − + − +

= + + +

( )( ) ( )( )u u v v u u v v

u v u v u v u v

1 2 1 2 1 2 1 2

1 1 1 2 2 1 2

2 2 3 3

2 2 4 22 1 1 1 2 2 1 2 2

1 1 1 2 2 1 2 2

3 3 9

2 13

+ − − +

= − − +

u v u v u v u v

u v u v u v u v

 

u u u=

= − − +( )

= − − − − − +

,

( ) ( )( ) ( )( )

1

2

1 1 1 2 2 1 2 2

1

2

2

2 13

2 1 1 2 2 1

u u u u u u u u

113 2

58

2
1

2( ) 

=

 

d ( , )

( , )

( , ), ( , )

( ) ( )( ) ( )(

u v u v= −

= − −

= − − − −

= − − − − − −

3 3

3 3 3 3

2 3 3 3 3

1

2

2 −− + − 

=

=

3 13 3

117

3 13

2
1

2) ( )

.

Example 4: Find p
1

 and d(p1, p2) if p1 = 3 – x + x2, p2 = 2 + 5x2 and 

weighted inner product 〈p1, p2〉 = a0b0 + a1b1 + a2b2 where p1 = a0 + a1x + a2 x
2, 

p2 = b0 + b1x + b2x
2

Solution:  p p p=
1 1

1

2,

 
= + − + 

=

3 1 1

11

2 2 2
1

2( ) ( )

 
p p1 2

2 2

2

3 2 5

1 4

− = − + − +

= − −

( ) ( )x x x

x x

 

d ( , )

( ) ( )

p p p p1 2 1 2

2 2 2
1

21 1 4

18

3 2

= −

= + − + − 

=

=
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Example 5:  Find  B  and d (A, B) if A B=








 =

−









2 6

9 4

4 7

1 6
,  and weighted 

inner product 〈A, B〉 = a1b1 + a2b2 + a3b3 + a4b4 where A
a a

a a
B

b b

b b
=









 =











1 2

3 4

1 2

3 4

,

Solution: B B B= ,
1

2

 
= − + + + 

=

( ) ( ) ( ) ( )4 7 1 6

102

2 2 2 2
1

2

 A B− =








 −

−







 =

−

−











2 6

9 4

4 7

1 6

6 1

8 2

 

d A B A B

A B A B

,

,

( ) ( ) ( ) ( )

= −

= − −

= + − + + − 

=

1

2

2 2 2 2
1

26 1 8 2

105

Example 6: Find inner product 〈A, B〉 = tr (BT A) if 

 A B=








 =











9 8 7

6 5 4

1 2 3

4 5 6
and .

Solution:    〈A, B〉 = tr (BT A)

 

=











































=







 +

tr

1 4

2 5

3 6

9 8 7

6 5 4

1 4
9

6
2 5[ ] [ ]] [ ]

8

5
3 6

7

4








 +




















Sum of diagonal

 elements

 
= + + + + +

=

( ) ( ) ( )9 24 16 25 21 24

119

Note: If can be observed that the second last step gives the sum of product of 

 corresponding elements of A and B.

Hence,   〈A, B〉 = (9)(1) + (6)(4) + (8)(2) + (5)(5) + (7)(3) + (4)(6) = 119.

Example 7: Find 〈f, g〉 if f = f (x) = 1 – x + x2 + 5x3, g = g(x) = x – 3x2 and the inner 

product f g, ( ) ( )=
−
∫ f x g x dx
1

1

Solution:  f g, ( )( )= − + + −
−
∫ 1 5 32 3 2

1

1

x x x x x dx
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= − + + −

−
∫ ( )

( )

x x x x x x x x dx

x x x x x

3 3 3 5 15

4 4 2 15

2 2 3 3 4 4 5

1

1

2 3 4 5
ddx

−
∫
1

1

 

= − +

=

=
∫

∫
−

2 4 2

0

2

2 4

0

1

( )

( ) , ( )

( ) , ( )

x x dx

f x dx f x

f x dx f x

a

a

∵ if

if

is odd

iis even
0

3 5

0

1

2 4
3

2
5

a

x x

∫





















= − +

 

= − +





= −

2
4

3

2

5

28

15
.

Example 8: Find d(f, g) if f = f (x) = cos 2p x and g = g(x) = sin 2p x and the inner 

product f g, ( ) ( )= ∫ f x g x dx
0

1

Solution:  d ( , )f g f g= −

 = − −f g f g,
1

2

 

f g f g− − = −[ ] −[ ]

= −( )

=

∫

∫

, ( ) ( ) ( ) ( )

cos sin

f x g x f x g x dx

x x dx

0

1

2

0

1

2 2π π

ccos sin cos sin2 2

0

1

2 2 2 2 2π π π πx x x x dx+ −( )∫

 

= −( )

= +

= +
−

=

= =

∫ 1 4

4

4

1
4 0

4

1

1 1

0

1

0

1

sin

cos

cos cos

( , ) .

π

π
π

π
π

x dx

x
x

d f g 
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1. Determine which of the following are 

inner products on R2 if u = (u1, u2), 

v = (v1, v2)

   (i)  〈u, v〉 = u1v1 – u1v2 – u2v1 

+ 3u2v2

 (ii) 〈u, v〉 = u1v1 u2v2

 (iii) 〈u, v〉 = 3u1v1 + 5u2v2

[Ans. : (i), (iii)]

2. Show that 

A B a b a b a b a b, = + + +
1 1 2 3 3 2 4 4

 is 

not an inner product on M22 where

 A
a a

a a
B

b b

b b
=









 =











1 2

3 4

1 2

3 4

,

3. Find u  and d(u, v) if u = (2, –1), 

v = (–1, 1) and weighted inner product 

u v, = − − +2
1 1 1 2 2 1 2 2

u v u v u v u v  

where u = (u1, u2) and v = (v1, v2)

Ans.: 13 34,





4. Find p
2

 and d(p1, p2) if p1 = 2x – x2, 

p2 = –1+ x + 2x2 and weighted inner 

product 〈p1, p2〉 = a0b0 + a1b1 + a2b2 

where p1 = a0 + a1x + a2x
2 and 

p2 = b0 + b1x + b2x
2.

Ans.: 6 11,





5. Find B  and d(A, B) if 

A B=
−







 =

−









2 4

1 0

5 1

6 2
,  and 

weighted inner product 〈A, B〉 = 

a1b1 + a2b2 + a3b3 + a4b4 where 

A
a a

a a
B

b b

b b
=









 =











1 2

3 4

1 2

3 4

, .

Ans.: 66 47,





6. Find 〈f, g〉 if f = f(x) = x – 5x3, 

g = g(x) = 2 + 8x2 and the inner 

product f g, ( ) ( )=
−
∫ f x g x dx
1

1

[Ans. : 0]

7. Find d(f, g) if f = f(x) = x, 

g = g(x) = ex and the inner product 

f g, ( ) ( )= ∫ f x g x dx
0

1

Ans.:
e
2

2

13

6
−











4.2.5 Angle between Vectors

If u and v are non-zero vectors in an inner product space V and if q is the angle 

between them then

 cos
,

θ =
u v

u v

4.2.6 Orthogonality

Two vectors u and v in an inner product space V are called orthogonal if

 u v, .,= =0
2

i.e θ
π

Exercise 4.1
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4.2.7  Pythagorean Theorem

If u and v are orthogonal vectors in an inner product space V then

 u v u v+ = +
2 2 2

Proof: Since u and v are orthogonal, 〈u, v〉 = 〈v, u〉 = 0

 

u v u v u v

u u v v u v

u u u v v u v v

u v u v v u

+ = + +

= + + +

= + + +

= + = =

2

2 2
0

,

, ,

, , , ,

, ,∵ 

4.2.8 Cauchy-Schwarz Inequality

If u and v are vectors in an inner product space V then

 u v u v, ≤

Example 1: Find the cosine of the angle between u and v if R2, R3 and R 4 have 

the Euclidean inner product.

  (i)  u = (1, –3), v = (2, 4)

  (ii)  u = (–1, 5, 2), v = (2, 4 , –9)

(iii)  u = (1, 0, 1, 0), v = (–3, –3, –3, –3)

Solution: cos
,

,θ =
u v

u v

 where q is angle between u & v.

 =

⋅u v

u v

(i) cos
( , ) ( , )

θ =
− ⋅

+ +

1 3 2 4

1 9 4 16

 

=

−

=

−

= −

2 12

10 20

10

10 20

1

2

(ii)

 

cos
( , , ) ( , , )

θ =
− ⋅ −

+ + + +

=
− + −

=

1 5 2 2 4 9

1 25 4 4 16 81

2 20 18

30 101

0
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(iii)

 

cos
( , , , ) ( , , , )

θ =
⋅ − − − −

+ + + +

=
− −

= −

1 0 1 0 3 3 3 3

1 1 9 9 9 9

3 3

2 36

1

2

Example 2:  Determine whether the given vectors are orthogonal with respect to 

the Euclidean inner product.

 (i) u = (–1, 3, 2), v = (4, 2, –1)

(ii) u = (– 4, 6, –10, 1), v = (2, 1, –2, 9)

Solution: (i)  〈u, v〉 = u ⋅ v

 

= − ⋅ −

= − + + −

= − + −

=

( , , ) ( , , )

( )( ) ( )( ) ( )( )

1 3 2 4 2 1

1 4 3 2 2 1

4 6 2

0

Hence, u and v are orthogonal.

(ii) 〈u, v〉 = u ⋅ v

 

= − − ⋅ −

= − + + − − +

= −

( , , , ) ( , , , )

( )( ) ( )( ) ( )( ) ( )( )

4 6 10 1 2 1 2 9

4 2 6 1 10 2 1 9

88 6 20 9

27 0

+ + +

= ≠

Hence, u and v are not orthogonal. 

Example 3: Determine whether there exists scalars k and l such that the  vectors 

u = (2, k, 6), v = (l, 5, 3) and w = (1, 2, 3) are mutually orthogonal with respect to 

the Euclidean inner product.

Solution: Let u, v and w be mutually orthogonal.

 

u v u v,

( , , ) ( , , )

= ⋅ =

⋅ =

+ + =

0

2 6 5 3 0

2 5 18 0

k l

l k

 2 5 18l k+ = −  ...(1)

 

v w v w,

( , , ) ( , , )

= ⋅ =

⋅ =

+ + =

0

5 3 1 2 3 0

10 9 0

l

l

 l = −19  ...(2)
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( , , ) ( , , )

= ⋅ =

⋅ =

+ + =

0

1 2 3 2 6 0

2 2 18 0

k

k

  k = −10  ...(3)

Substituting l and k in equation (1),

 
2 19 5 10 18

88 18

( ) ( )− + − = −

− = −

This shows that l and k does not satisfy equation (1).

Hence, there do not exist k and l such that u, v and w are orthogonal.

Example 4: Find cosine of the angle between p1 = x – x2, and p2 = 7 + 3x + 3x2 if 

the inner product 〈p1, p2〉 = a0b0 + a1b1 + a2b2, where 

  p1 = a0 + a1x + a2x
2 and p2 = b0 + b1x + b2x

2.

Solution: Let q be the angle between p1 and p2.

 

cos
,

,

( ) ( ) ( ) ( ) ( )

( )(

θ =

=
− + +

+ − + +

=

p p

p p

1 2

1 2

2 2

2 2 2 2 2

7 3 3

1 1 7 3 3

0 7

x x x x

)) ( )( ) ( )( )+ + −

=

1 3 1 3

2 67

0

Example 5: Show that p1 = 1 – x + 2x2 and p2 = 2x + x2 are orthogonal with respect 

to the inner product 〈p1, p2〉 = a0b0 + a1b1 + a2b2, where

 p1 = a0 + a1x + a2x
2 and p2 = b0 + b1x + b2x

2.

Solution: p p
1 2

2 2
1 2 2, ,= − + +x x x x

 
= + − +

=

( )( ) ( )( ) ( )( )1 0 1 2 2 1

0

Hence, p1 and p2 are orthogonal.

Example 6: Show that the matrices A =
−











2 1

1 3
 and B =

−











1 1

0 1
 are orthog-

onal with respect to the inner product 〈A, B〉 = a1b1 + a2b2 + a3b3 + a4b4 where 

A
a a

a a
=











1 2

3 4

 and B
b b

b b
=











1 2

3 4

.

Solution: A B, ( )( ) ( )( ) ( )( ) ( )( )= + + − + −2 1 1 1 1 0 3 1

 = 0

Hence, A and B are orthogonal.
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Example 7:  For  the  matrices  A =
−











2 6

1 3
 and B =











3 2

1 0
, verify Cauchy–

Schwarz inequality and find the cosine of the angle between them if M22 have the 

inner product as defined in Example 6.

Solution: A B, ( )( ) ( )( ) ( )( ) ( )( )= + + + −2 3 6 2 1 1 3 0

 
=

=

19

19A B,

 

A A A=

= + + + −

=

=

,

( ) ( ) ( ) ( )

1

2

2 2 2 22 6 1 3

50

5 2

 

B B B=

= + + +

=

,

( ) ( ) ( ) ( )

1

2

2 2 2 23 2 1 0

14

 

A B = ⋅

=

=

5 2 14

10 7

26 45.

Since A B A B, ,<  Cauchy–Schwarz inequality is verified.

Let q be the angle between A and B.

 

cos
,

.

θ =

=

A B

A B

19

10 7

Example 8: Verify that the Cauchy–Schwarz inequality holds for the  following 

vectors.

  (i)  u = (–2, 1) and v = (1, 0) where 〈u, v〉 = 3u1v1 + 2u2v2.

  (ii)   A =
−









1 2

6 1
 and  B =











1 0

3 3
 using the inner product 〈A, B〉 = a1b1 + a2b2 + 

a3b3 + a4b4 where  A
a a

a a
=











1 2

3 4

 and  B
b b

b b
=











1 2

3 4

.

(iii)   p1 = –1 + 2x + x2 and p2 = 2 – 4x2 using the inner product 〈p1, p2〉 = a0b0 + a1b1 + 

a2b2 where p1 = a0 + a1x + a2x
2 and p2 = b0 + b1x + b2 x

2.
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Solution:  (i) u v, ( , ), ( , )= −2 1 1 0

 

= − +

= −

= − =

3 2 1 2 1 0

6

6 6

( )( ) ( )( )

,u v

 

u u u=

= +( )

= − + 

=

,

( ) ( )

1

2

1

2

2

2
1

2

2 2
1

2

3 2

3 2 2 1

14

u u

 

v v v

u v

=

= +( )

= + 

=

= =

,

( ) ( )

.

1

2

1

2

2

2
1

2

2 2
1

2

3 2

3 1 2 0

3

42 6 48

v v

Since, u u vv, ,<  Cauchy–Schwarz’s inequality is verified.

(ii) A B, ( )( ) ( )( ) ( )( ) ( )( )= − + + +1 1 2 0 6 3 1 3

 

= − + +

=

=

1 18 3

20

20A B,

 

A

B

A B

= − + + + =

= + + + =

= =

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 6 1 42

1 0 3 3 19

798 28

2 2 2 2

2 2 2 2

..25

Since, A B A B, ,<  Cauchy–Schwarz’s inequality is verified.

(iii) p p1 2 1 2 2 0 1 4, ( )( ) ( )( ) ( )( )= − + + −

 

= −

= − =

6

6 6
1 2
p p,
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1

2

2 2 21 2 1

6

=

= − + +

=

,

( ) ( ) ( )

 

p p p

p p

2 2 2

1

2

2 2 2

1 2

2 0 4

20

120 10 95

=

= + + −

=

= =

,

( ) ( ) ( )

.

Since, p p p p
1 2 1 2
, ,<  Cauchy–Schwarz’s inequality is verified.

4.2.9 Orthogonal and Orthonormal Set

A set S = {u1, u2, …, up} of vectors in an inner product space V is called an orthogonal 

set if each pair of distinct vectors in S are orthogonal, i.e. 〈ui, uj〉 = 0 for i ≠ j.

An orthogonal set of unit vectors (norm is 1) is called orthonormal, i.e. 〈ui, uj〉 = 0 

for i ≠ j and 〈ui, ui〉 = 1 for i = 1, 2, …, p.

The process of dividing a non-zero vector u by its norm is called normalizing u.

 normalized u
u

u

=

Example 1: Show that the vectors u u
1 2

2

3

2

3

1

3

2

3

1

3

2

3
= −





= −





, , , , ,  and 

u
3

1

3

2

3

2

3
= 





, ,  are orthonormal with respect to the Euclidean inner product on R3.

Solution: u u
1 2

2

3

2

3

1

3

2

3

1

3

2

3
, , , , ,= −





⋅ −





 
= 









+ −









+ −





=

2

3

2

3

2

3

1

3

1

3

2

3

0

 

u u
2 3

2

3

1

3

2

3

1

3

2

3

2

3

2

3

1

3

1

3

, , , , ,= −




⋅ 





= 









+ 









+ −










=

2

3

2

3

2

3

0

 

u u
3 1

1

3

2

3

2

3

2

3

2

3

1

3

1

3

2

3

2

3

, , , , ,= 




⋅ −





= 









+ 





−




+ 










=

2

3

2

3

1

3

0
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u u u

1 1 1

1

2

2 2 2

1

22

3

2

3

1

3
1= = 





+ −





+ 

















=,

 
u u u

2 2 2

1

2

2 2 2

1

22

3

1

3

2

3
1= = 





+ 





+ −

















=,

 u u u
3 3 3

1

2

2 2 2

1

21

3

2

3

2

3
1= = 





+ 





+ 

















=,

Since u u u u u u
1 2 2 3 3 1

0, , ,= = =  and u u u
1 2 3

1= = = ,  the vectors are 

orthonormal.

Example 2: Show that the set of vectors u u
1 2

1

5

1

5

1

5

1

2

1

2
0= 





= −





, , , , , ,  

u
3

1

3

1

3

2

3
= −





, ,  is orthogonal with respect to the Euclidean inner product on R3 

and then convert it to an orthonormal set by normalizing the vectors.

Solution:  u u
1 2

1

5

1

5

1

5

1

2

1

2
0, , , , ,= 




⋅ −





 
= 





−




+ 









+ 





=

1

5

1

2

1

5

1

2

1

5
0

0

( )

 

u u2 3

1

2

1

2
0

1

3

1

3

2

3

1

2

1

3

1

2

, , , , ,= −




⋅ −





= −









+ 









+ −





=

1

3
0

2

3

0

( )

 

u u
3 1

1

3

1

3

2

3

1

5

1

5

1

5

1

3

1

5

1

3

, , , , ,= −




⋅ 





= 









+ 









+ −










=

1

5

2

3

1

5

0

Hence, u1, u2, u3 are orthogonal.



4.2  Inner Product Spaces 4.23

 u

u

1

2 2 2

2

2

1

5

1

5

1

5

3

25

3

5

1

2

1

2

= 





+ 





+ 





= =

= −





+ 





=

= 





+ 





+ −





=

2

3

2 2 2

1

2

1

3

1

3

2

3

2

3
u

Normalising the vectors,

 

w

u

u

w

u

u

w

u

u

1

1

1

2

2

2

3

3

3

1

3

1

3

1

3

1

2

1

2
0

1

6

1

6

= =






= = −






= =

, ,

, ,

, , −−






2

3

Orthonormal set = {w1, w2, w3}

Exercise 4.2

1. Verify that the Cauchy–Schwarz 

in-equality holds for the following 

vectors with respect to the Euclidean 

inner product.

  (i) u = (– 4, 2, 1), v = (8, – 4, –2)

 (ii) u = (0, –2, 2, 1), v = (–1, –1, 1, 1)

[Ans. : (i), (ii)]

2. Find the cosine of the angle between u 

and v if R3 and R4 have Euclidean inner 

product:

  (i) u = (4, 1, 8), v = (1, 0, –3)

 (ii) u = (2, 1, 7, –1), v = (4, 0, 0, 0)

Ans.: i ii( ) ( )−










2 10

9

2

55

3. Determine whether the given vectors 

are orthogonal with respect to the 

Euclidean inner product:

  (i) (1, –1, 2), (0, 2, –1), (–1, 1, 1)

 (ii)  (0, 1, 0, –1) (1, 0, 1, 0), (–1, 1, 1, 1)

[Ans. : (ii)]

4. Let u = (1, 1, –2) and v = (a, –1, 2). For 

what values of a are u and v orthogonal 

with respect to the Euclidean inner 

product?

[Ans. : a = 5]

5. For what values of a and b is the 

set {u, v} orthonormal with respect 

to the Euclidean inner product where  

u =






1

2
0

1

2
, ,  and v = −







a b, ,
1

2

Ans.: a b= ± = ±






1

2

1

2
,



4.24 Chapter 4 Inner Product Spaces

4.3  ORTHOGONAL AND ORTHONORMAL BASIS

In an inner product space, a basis consisting of orthogonal vectors is called an orthogo-

nal basis.

In an inner product space, a basis consisting of orthonormal vectors is called an ortho-

normal basis.

Theorem 4.1: If S = {v1, v2, … , v
n
} is an orthogonal set of non-zero vectors in an 

inner product space V then S is linearly independent.

Theorem 4.2: Any orthogonal set of n non-zero vectors in Rn is a basis for Rn.

Theorem 4.3: If S = {v1, v2, … , v
n
} is an orthonormal basis for an inner product 

space V, and u is any vector in V then it can be expressed as a linear combination of 

v1, v2, … , v
n 
.

 u u v v u v v u v v= + + +, , ,
1 1 2 2

�

n n

Here, u v u v u v, , , , , ,
1 2

…

n
 are the coordinate vectors of u with respect to the 

orthonormal basis S,

i.e., [ ] , , , , , ,u u v u v u v
S n

= …( )1 2

Corollary: If  S = {v1, v2, … , vn} is an orthogonal basis for an inner product space V, 

and u is any vector in V then

 

u

u v

v

v

u v

v

v

u v

v

v= + + +

, , ,
1

1

2 1

2

2

2 2 2
�

n

n

n

Theorem 4.4: If S is an orthonormal basis for an n-dimensional inner product space, 

and if coordinate vectors of u and v with respect to S are [u]S = (a1, a2, …, an) and 

[v]S = (b1, b2, …, bn) then,

  (i) u = + + +a a a
n1

2

2

2 2
�

  (ii) d a b a b a b
n n

( , ) ( ) ( ) ( )u v = − + − + + −1 1

2

2 2

2 2
�

(iii) u v u v, [ ] [ ]= + + + = ⋅a b a b a b
n n S S1 1 2 2

�

Theorem  4.5:  Every non-zero finite dimensional inner product space has an 

 orthonormal basis.

Constructing an Orthogonal Basis from an Arbitrary Basis

An orthogonal basis for a non-zero finite dimensional inner product space V can be 

constructed from an arbitrary basis of V using Gram–Schmidt process.
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4.4  GRAM–SCHMIDT PROCESS

Let V be any non-zero n-dimensional inner product space and S1 = {u1, u2, … , u
n
} is 

an arbitrary basis for V. The process of constructing an orthogonal basis S2 = {v1, v2, 

… , v
n
} from S1 is as follows.

Step 1: Let v1 = u1.

Step 2: Find the vectors v2, v3, … , v
n
 successively using the formula

 v u

u v

v

v

u v

v

v

u v

v

v
i i

i i i i

i

i
= − − − −

−

−

−

, , ,
1

1

2 1

2

2

2 2

1

1

2 1
�

The set S2 of vectors v1, v2, … , vn is an orthogonal set. Since every orthogonal set is 

linearly independent, S2 is linearly independent and also has n vectors (dim V), thus the 

set S2 is an orthogonal basis for V.

Note: The orthogonal basis S2 can be transformed to orthonormal basis by normalizing 

all the vectors of S2.

Example 1: Find an orthonormal basis for R3 containing the vectors 

v1 = (3, 5, 1), v2 = (2, –2, 4) using the Euclidean inner product.

Solution: v v v v
1 2 1 2
, = ⋅

 

= ⋅ −

= − +

=

( , , ) ( , , )3 5 1 2 2 4

6 10 4

0

Thus, v1 and v2 are orthogonal.

Basis for R3 will have 3 non-zero vectors.

Let v3 = (b1, b2, b3) be the third vector of the basis such that

 〈v1, v3〉 = 0    and    〈v2, v3〉 = 0

 (3, 5, 1) ⋅ (b1, b2, b3) = 0

 3b1 + 5b2 + b3 = 0 ...(1)

and (2, –2, 4) ⋅ (b1, b2, b3) = 0

 2b1 – 2b2 + 4b3 = 0 ...(2)

The augmented matrix of the system of equations (1) and (2) is

 
3 5 1 0

2 2 4 0−











Reducing the augment matrix to row echelon form,

 

R R
1 2

1 7 3 0

2 2 4 0

−

−

−









~
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2 1

2

1 7 3 0

0 16 10 0

−

−

−









∼

 

−





−

−















1

16

1 7 3 0

0 1
5

8
0

2
R

∼

The corresponding system of equations is

 

b b b

b b

1 2 3

2 3

7 3 0

5

8
0

+ − =

− =

Solving for leading variables b1 and b2,

 b b b b b
1 2 3 2 3

7 3
5

8
= − + =,

Let b3 = 8

 
b b1 2

3

11 5

11 5 8

= − =

= −

,

( , , )v

The vectors v1, v2, v3 form an orthogonal basis for R3.

Normalizing the vectors v1, v2, v3,

 

w

v

v

w

v

v

1

1

1

2

2

2

3 5 1

9 25 1

3

35

5

35

1

35

2 2 4

4 4

= =
+ +

=






= =
−
+

( , , )
, ,

( , , )

++
= −






= =
−
+ +

= −

16

2

24

2

24

4

24

11 5 8

121 25 64

11

210

5
3

3

3

, ,

( , , )
,w

v

v 2210

8

210
,








The vectors w1, w2, w3 form an orthonormal basis for R3.

Example 2: Verify that the basis vectors v v
1 2

3

5

4

5
0

4

5

3

5
0= −





= 





, , , , , ,  

v3 = (0, 0, 1) form an orthonormal basis S for R3 with the Euclidean inner product. 

Express the vector u = (1, –1, 2) as a linear combination of the vectors v1, v2, v3 and 

find coordinate vector [u]S.

Solution:  v v
1 2

3

5

4

5
0

4

5

3

5
0, , , , ,= −





⋅ 





 

= −









+ 









+

=

3

5

4

5

4

5

3

5
0

0
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4

5

3

5
0 0 0 1

4

5
0

3

5
0 0 1

, , , ( , , )

( ) ( ) ( )( )

= 




⋅

= 





+ 





+

== 0

 

v v2 3

4

5

3

5
0 0 0 1

4

5
0

3

5
0 0 1

, , , ( , , )

( ) ( ) ( )( )

= 




⋅

= 





+ 





+

== 0

 

v v3 1 0 0 1
3

5

4

5
0

0
3

5
0

4

5
1

, ( , , ) , ,

( ) ( ) ( )(

= ⋅ −





= −




+ 




+ 00

0

)

=

 

v

v

v

1

2 2

2

2 2

3

2

3

5

4

5
1

4

5

3

5
1

1 1

= −





+ 





=

= 





+ 





=

= ( ) =

Hence, v1, v2 and v3 form an orthonormal basis for R3.

Since, S = {v1, v2, v3} is an orthonormal basis in R3, any vector u in R3 can be 

expressed as

 

u u v v u v v u v v= + +

− = − ⋅ −












, , ,

( , , ) ( , , ) , ,

1 1 2 2 3 3

1 1 2 1 1 2
3

5

4

5
0


 + − ⋅













 + − ⋅( ) v v v1 21 1 2

4

5

3

5
0 1 1 2 0 0 1( , , ) , , ( , , ) , , 33

 

= − + +

= −





7

5

1

5
2

7

5

1

5
2

1 2 3
v v v

u

.

[ ] , ,
S

Example 3: Let S = {v1, v2, v3, v4}, where v1 = (1, –1, 2, –1), v2 = (–2, 2, 3, 2), 

v3 = (1, 2, 0, –1), v4 = (1, 0, 0, 1), is an orthogonal basis for R4 with Euclidean inner 

product. Express the vector u = (1, 1, 1, 1) as linear combinations of v1, v2, v3, v4 and 

find the coordinate vector [u]S.

Solution:  Since S is an orthogonal basis for R4, any vector u in R4 can be expressed as

 

u

u v

v

v

u v

v

v

u v

v

v

u v

v

v= + + +

=

, , , ,

( , , , )
( , , ,

1

1

2 1

2

2

2 2

3

3

2 3

4

4

2 4

1 1 1 1
1 1 1 11 1 1 2 1

1 1 4 1

1 1 1 1 2 2 3 2

4 4 9 4

1

1 2

) ( , , , ) ( , , , ) ( , , , )

( ,

⋅ − −

+ + +

+
⋅ −

+ + +

+

v v

11 1 1 1 2 0 1

1 4 0 1

1 1 1 1 1 0 0 1

1 0 0 1
3 4

, , ) ( , , , ) ( , , , ) ( , , , )⋅ −

+ + +

+
⋅

+ + +

v v
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=






1

7

5

21

2

6

2

2

1

7

5

21

2

6

2

2

1 2 3 4
v v v v

u[ ] , , ,
S

Example 4: Let R3 have the Euclidean inner product and let S = {v1, v2, v3} be the 

orthonormal basis with v v v
1 2 3

0
3

5

4

5
1 0 0 0

4

5

3

5
= −





= ( ) = 





, , , , , , , .and

 (i)   Find the vectors u, v and w that have the coordinate vectors [u]S = (–2, 1, 2), 

[v]S = (3, 0, –2) and [w]S = (5, – 4, 1).

(ii) Find  v ,  d (u, w) and 〈w, v〉 using coordinate vectors.

Solution: (i) u = –2v1 + v2 + 2v3

 = − −




+ + 





2 0
3

5

4

5
1 0 0 2 0

4

5

3

5
, , ( , , ) , ,

 

= + + + + − + +





= −





0 1 0
6

5
0

8

5

8

5
0

6

5

1
14

5

2

5

, ,

, ,

 

v v v v= + −

= −




− 





= − − −

3 0 2

3 0
3

5

4

5
2 0

4

5

3

5

0
9

5

8

5

12

5

1 2 3

, , , ,

, ,
66

5

0
17

5

6

5







= −





, ,

 

w v v v= − +

= −




− + 





= − −

5 4

5 0
3

5

4

5
4 1 0 0 0

4

5

3

5

4
15

1 2 3

, , ( , , ) , ,

,
55

4

5

20

5

3

5

4
11

5

23

5

+ +





= − −





,

, ,

(ii)  v = + + −( ) ( ) ( )3 0 22 2 2

 = 13
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=

=

2 5 1 4 2 1

75

5 3

2 2 2

 

w v w v, [ ] [ ]

( , , ) ( , , )

= ⋅

= − ⋅ −

= −

=

s s

5 4 1 3 0 2

15 2

13

Example 5: Let R3 have the Euclidean inner product. Use the Gram–Schmidt 

process to transform the basis vectors u1 = (1, 0, 0), u2 = (3, 7, –2), u3 = (0, 4, 1) into 

an orthonormal basis.

Solution: Step 1: Let v1 = u1 = (1, 0, 0)

Step 2:  v u

u v

v

v
2 2

2 1

1

2 1
= − 

,

 

= − −

− ⋅

= − −

=

( , , )
( , , ) ( , , )

( , , )

( , , ) ( , , )

( , ,

3 7 2
3 7 2 1 0 0

1
1 0 0

3 7 2 3 1 0 0

0 7 −− 2)

 

v u

u v

v

v

u v

v

v3 3

3 1

1

2 1

3 2

2

2 2

0 4 1
0 4 1 1 0 0

1
1 0

= − −

= −
⋅

 
, ,

( , , )
( , , ) ( , , )

( , , 00
0 4 1 0 7 2

49 4
0 7 2

0 4 1 0
28 2

53
0 7 2

)
( , , ) ( , , )

( )
( , , )

( , , ) ( , ,

−
⋅ −

+

−

= − −
−

− ))

 

= − −





= 





=

( , , ) , ,

, ,

( , ,

0 4 1 0
182

53

52

53

0
30

53

105

53

15

53
0 2 7))

The vectors v1, v2, v3 form an orthogonal basis for R3. Normalizing v1, v2, v3,

 

w

v

v

w

v

v

1

1

1

2

2

2

1 0 0

1
1 0 0

0 7 2

49 4
0

7

53

2

53

= = =

= =
−
+

= −



( , , )
( , , )

( , , )
, ,




= =
+

=






w

v

v
3

3

3

15

53
0 2 7

15

53
4 49

0
2

53

7

53

( , , )

, ,

The vectors w1, w2, w3 form an orthonormal basis for R3.
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Example 6:  Let  R3  have  the  inner  product  〈(x1,  x2,  x3),  (y1,  y2,  y3)〉 = x1 y1 +  

2x2 y2  +  3x3 y3.  Use  the  Gram–Schmidt  process  to  transform  the  basis  vectors 

u1 = (1, 1, 1), u2 = (1, 1, 0), u3 = (1, 0, 0) into an orthonormal basis.

Solution:  Step 1: Let  v1 = u1 = (1, 1, 1)

Step 2:  v u
u v

v
v

2 2

2 1

1

2 1
== −−

,

 

= −
+ ⋅ + ⋅

= −

( , , )
( , , ), ( , , )

( )
( , , )

( , , )
( )(

1 1 0
1 1 0 1 1 1

1 2 1 3 1
1 1 1

1 1 0
1

2 2 2

11 2 1 1 3 0 1

6
1 1 1

1 1 0
1

2
1 1 1

1

2

1

2

1

2

) ( )( ) ( )( )
( , , )

( , , ) ( , , )

, ,

+ +

= −

= −





 v u

u v

v

v

u v

v

v
3 3

3 1

1

2 1

3 2

2

2 2
= − −

, ,

 

= −
+ ⋅ + ⋅

−( , , )
( , , ), ( , , )

( )
( , , )

( , , ), ,

1 0 0
1 0 0 1 1 1

1 2 1 3 1
1 1 1

1 0 0
1

2

1

2 2 2

22

1

2

1

4

2

4

3

4

1

2

1

2

1

2

1 0 0
1

6
1 1 1

,

, ,

( , , ) ( , ,

−





+ +





−





= − )) , ,− −





2

6

1

2

1

2

1

2

 

= − − − − − +





= −





1
1

6

1

6

1

6

1

6

1

6

1

6

2

3

1

3
0

, ,

, ,

The vectors v1, v2, v3 form an orthogonal basis for R3. Normalizing v1, v2, v3,

 

w

v

v

w

v

v

1

1

1

2

2

2

1 1 1

6

1

6

1

6

1

6

1

2

1

2

1

2

6

4

1

= = =






= =
−




=

( , , )
, ,

, ,

66

1

6

1

6
, , −
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 w

v

v
3

3

3

2

3

1

3
0

6

9

2

6

1

6
0= =

−





= −






, ,

, ,

The vectors w1, w2, w3 form an orthonormal basis for R3.

Example 7: Use the Gram–Schmidt process to transform the basis {1, x, x2} of P2 

into an orthonormal basis if

 (i)  〈p, q〉 = p(0) q(0) + p(1) q(1) + p(2) q(2)

(ii)  p q, ( ) ( )= ∫ p x q x dx
0

2

Solution:  Let p1 = 1, p2 = x, p3 = x2

(i)  Step 1:  Let q1 = p1 = 1

      Step 2: q p
p q

q

q
2 2

2 1

1

2 1
= −

,

 
= −

+ +

+ +

= −

x

x

( )( ) ( )( ) ( )( )

( )
( )

( )

0 1 1 1 2 1

1 1 1
1

1

 

q p
p q

q

q
p q

q

q3 3

3 1

1

2 1

3 2

2

2 2

2 0 1 1 1 4 1

1 1 1

= − −

= −
+ +

+ +

, ,

x

( )( ) ( )( ) ( )( )

( )
(( )

( )( ) ( )( ) ( )( )

( )
( )

( )

1
0 1 1 0 4 1

1 0 1
1

5

3
2 1

2

2

2

−
− + +

+ +

−

= − − −

= − +

x

x x

x x

11

3

The polynomials q1, q2, q3 form an orthogonal basis for P2. Normalizing q1, q2, q3,

 

r
q

q

r
q

q

r
r

r

1

1

1

2

2

2
2 2 2

3

3

3

2

1

1 1 1

1

3

1

1 0 1

1

2

2

= =
+ +

=

= =
−

− + +
=

−

= =
−

x x

x

( ) ( )

xx

x x

+







+ −





+ 





= − +





1

3

1

3

2

3

1

3

3

2
2

1

32 2 2

2

The polynomials r1, r2, r3 form an orthonormal basis for P2.
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(ii)  Step 1: Let  q1 = p1 = 1

Step 2: q p
p q

q

q
2 2

2 1

1

2 1
= −

,

 

= −

⋅

= −

= −

∫

∫
x

x dx

dx

x

x

( )( )

( )

1

1

1

2

2

1

0

2

0

2

Step 3: q p
p q

q

q
p q

q

q
3 3

3 1

1

2 1

3 2

2

2 2
= − −

, ,

 

= − −
−

−
−

= − −




∫ ∫

∫
x

x x x dx

x dx

x

x

2

2

0

2

2

0

2

2

0

2

2

1

2
1

1

1

1

4

3

4

3

( )( )

( )

( )

( )

( )











−

= − +

2

3

1

2
2

3

2

( )x

x x

The polynomials q1, q2, q3 form an orthonormal basis for P2.

Normalizing q1, q2, q3,

 

r
q

q

r
q

q

r
q

q

1

1

1

2

2

2

3

3

3

2

2

1

2

1

2

3

3

2
1

2
2

3

2
2

3

= =

= =
−

= −

= =
− +

− +


x
x

x x

x x

( )




= − +





∫
2

0

2

23 5

2 2
2

2

3

dx

x x

The polynomials r1, r2, r3 form an orthonormal basis for P2.
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Example 8:  Use Gram–Schmidt method to transform the basis 
1 1

0 0

1 0

1 0

0 1

0 1

1 0

0 1




















































, , ,  

1 1

0 0

1 0

1 0

0 1

0 1

1 0

0 1




















































, , ,  of M22 into an orthogonal basis if

 A B AB
T, ( ).= tr

Solution: Let A A A A
1 2 3 4

1 1

0 0

1 0

1 0

0 1

0 1

1 0

0 1
=









 =









 =









 =









, , ,

Step 1: Let B A
1 1

1 1

0 0
= =











Step2:  B A
A B

B

B
2 2

2 1

1

2 1
= −

,

 

= −

= −
+ + +

+

A
A B

B B
B

A

T

T2

2 1

1 1

1

2

1 1 0 1 1 0 0 0

1 1

tr

tr

( )

( )

( )( ) ( )( ) ( )( ) ( )( )

++ +0 0
1B

 

=








 −











=
−















=
−









1 0

1 0

1

2

1 1

0 0

1

2

1

2

1 0

1

2

1 1

2 0

 

B A
A B

B

B
A B

B

B

A
A B

B B
B

A B
T

T

3 3

3 1

1

2 1

3 2

2

2 2

3

3 1

1 1

1

3

= − −

= − −

, ,

( )

( )

(tr

tr

tr 22

2 2

2

3 1 2

1

2

1

2

3

T

T
B B

B

A B B

)

( )tr

= − −
−





 

=








 −









 +

−

−











=

−















0 1

0 1

1

2

1 1

0 0

1

6

1 1

2 1

1

6

1

3

1

3

5

6





=
−









1

6

1 2

2 5
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 B A
A B

B

B
A B

B

B
A B

B

B

A
A B

B B

T

T

4 4

4 1

1

2 1

4 2

2

2 2

4 3

3

2 3

4

4 1

1 1

= − − −

= −

, , ,

( )

( )

tr
BB

A B

B B
B

A B

B B
B

A B

T

T

T

T1

4 2

2 2

2

4 3

3 3

3

4 1

1

2

1

2

− −

= − −







tr tr( )

( )

( )

( )

33

2

3

17

18

2 3B B−













 

=








 −









 − ⋅

−







 − ⋅

−




1 0

0 1

1

2

1 1

0 0

1

6

1

2

1 1

2 0

12

17

1

6

1 2

2 5


=

−

−



















109

204

133

204

41

102

7

17

The matrices B1, B2, B3 and B4 form an orthogonal basis for M22.

Example 9: Let R4 have the Euclidean inner product. Find an orthonormal basis 

for the subspace of R4 consisting of all the vectors (a, b, c, d ) such that

 a b c d− − + =2 0

Solution:  Using a b c d− − + =2 0 , the vector (a, b, c, d ) can be written as

 
= − + +a b c( , , , ) ( , , , ) ( , , , )1 0 0 1 0 1 0 1 0 0 1 2

 
= + +a b cu u u

1 2 3

Basis for the vector (a, b, c, d ) = {u1, u2, u3}

where  u1 = (1, 0, 0, –1), u2 = (0, 1, 0, 1), u3 = (0, 0, 1, 2)

To convert the above basis to an orthonormal basis, apply the Gram–Schmidt 

 process using Euclidean inner product.

Step 1: Let v1 = u1 = (1, 0, 0, –1)

Step 2: v u

u v

v

v
2 2

2 1

1

2 1
= −

,
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⋅ −
+

−

= +

( , , , )
( , , , ) ( , , , )

( )
( , , , )

( , , , )

0 1 0 1
0 1 0 1 1 0 0 1

1 1
1 0 0 1

0 1 0 1
1

22
1 0 0 1

1

2
1 0

1

2

( , , , )

, , ,

−

= 





 

v u

u v

v

v

u v

v

v3 3

3 1

1

2 1

3 2

2

2 2

0 0 1 2
0 0 1 2 1 0 0 1

= − −

= −
⋅ −

, ,

( , , , )
( , , , ) ( , , , )

(( )
( , , , )

( , , , ) , , ,

,

1 1
1 0 0 1

0 0 1 2
1

2
1 0

1

2

1

4
1

1

4

1

2

+
−

−
⋅





+ +





11 0
1

2
, ,







 

= ( ) + −( ) − 





= −





0 0 1 2 1 0 0 1
1

3

2

3
0

1

3

2

3

2

3
1

2

3

, , , , , , , , ,

, , ,

The vectors v1, v2, v3 form an orthogonal basis for the subspace of R 4.

Normalizing v1, v2, v3,

 

w

v

v

w

v

v

1

1

1

2

2

2

1 0 0 1

1 1

1

2
0 0

1

2

1

2
1 0

1

2

= =
−

+
= −







= =




( , , , )
, , ,

, , ,



+ +
=






1

4
1

1

4

1

6

2

3
0

1

6
, , ,

 w

v

v
3

3

3

2

3

2

3
1

2

3

4

9

4

9
1

4

9

2

21

2

21

3

7

2

21
= =

−





+ + +
= −







, , ,

, , ,

The vectors w1, w2, w3 form an orthonormal basis for the subspace of R 4.

Example 10: Find an orthonormal basis for the solution space of the homoge-

neous system

 
x x x

x x x

1 2 3

1 2 3

0

2 2 0

+ − =

+ + =
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Solution:  The augmented matrix of the system is

 
1 1 1 0

2 1 2 0

−









Reducing the augmented matrix to row echelon form,

 

R R
2 1

2

1 1 1 0

0 1 4 0

−

−

−









∼

 

( )−

−

−











1

1 1 1 0

0 1 4 0

2R

∼

The corresponding system of equations is

 
x x x

x x

1 2 3

2 3

0

4 0

+ − =

− =

Solving for leading variables x1 and x2,

 
x x x

x x

1 2 3

2 3
4

= − +

=

Let  x3 = t,

 x t x t
1 2

3 4= − =, ,

The solution space of system consists vectors of the form x =

−















=

−















3

4

3

4

1

t

t

t

t

Hence, basis for the solution space =

−































3

4

1

Normalizing the basis vector,

Orthonormal basis =

−




















































3

26

4

26

1

26

Exercise 4.3

1. Find an orthonormal basis for R3 

containing the vectors (2, –2, 1) and  

(2, 1, –2), using Euclidean inner 

product.
, , , , , , , ,

Ans.:

2

3

2

3

1

3

2

3

1

3

2

3

1

3

2

3

2

3
−





−



































2. Consider the orthonormal basis 

S = {v1, v2, v3} for R3 with the Euclidean 
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inner   product where v v
1 2

1

5
0

2

5

2

5
0

1

5
=






= −






, , , , , 

v v
1 2

1

5
0

2

5

2

5
0

1

5
=






= −






, , , , , , v3 = (0, 1, 0) 

Express the vector u = (2, –3, 1) as a 

linear combination of the vectors in S 

and find the coordinate vector [u]s.

Ans.: u v v v= − −

− −
























4

5

3

5
3

4

5

3

5
3

1 2 3
,

, ,

3. Verify that the basis vectors 

v
1

2

3

2

3

1

3
= −





, , , v
2

2

3

1

3

2

3
= −





, , ,  

v
3

1

3

2

3

2

3
= 





, , form an orthonormal 

basis S for R3 with the Euclidean inner 

product. Express the vector u = (3, 4, 5) 

as a linear combination of the vectors 

v1, v2, v3 and find the coordinate vector 

[u]s.

[Ans. : u = v1 + 0v2 + 7v3, (1, 0, 7)]

4. Verify that the vectors v1 = (1, –2, 3, – 4), 

v2 = (2, 1, – 4, –3), v3 = (–3, 4, 1, –2) 

and v4 = (4, 3, 2, 1) form an orthogonal 

basis for R4 with the Euclidean 

inner product. Express the vector  

u = (–1, 2, 3, 7) as a linear combination 

of the vectors v1, v2, v3, v4 and find the 

coordinate vector [u]s.

Ans.: u v v v

v

= − − −

+ − −



















4

5

11

10
0

1

2

4

5

11

10
0

1

2

1 2 3

4
, , , ,





5. Find the coordinate vector of u = (–1, 0, 2) 

with respect to the orthonormal basis 

2

3

2

3

1

3

2

3

1

3

2

3

1

3

2

3

2

3
, , , , , , , ,−





−


















 

using Euclidean inner product.

[Ans. : (0, –2, 1)]

6. Let R2 have the Euclidean inner product 

and let S = {v1, v2} is the orthonormal 

basis with v v
1 2

3

5

4

5

4

5

3

5
= −





= 





, , , .

 (i)  Find the vectors u and v that have 

coordinate vectors [u]s = (1, 1) and 

[v]s = (–1, 4).

 (ii)  Find u , d(u, v) and 〈u, v〉 using 

coordinate vectors.

Ans.: u v( ) , , ,

( ) , ,

i

ii

= −





= 





















7

5

1

5

13

5

8

5

2 13 3

7. Let R3 have the Euclidean inner 

product. Use the Gram–Schmidt 

process to transform the basis vectors  

u1 = (1, 2, 1), u2 = (1, 0, 1), u3 = (3, 1, 0) 

into an orthogonal basis.

Ans.: ( , , ), , , ,

, ,

1 2 1
2

3

2

3

2

3

3

2
0

3

2

−









−




























8. Let R3 have the Euclidean inner 

product. Use the Gram–Schmidt 

process to transform the basis vectors  

u1 = (1, 0, 3), u2 = (2, 2, 0), u3 = (3, 1, 2) 

into an orthonormal basis.

 

Ans.:

1

10
0

3

10

9

190

10

190

3

190

3

19

3

19

1

, , ,

, , ,

, ,











−






− −
119
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 9. Let R3 have the inner product 〈(x1, x2, 

x3), ( y1, y2, y3)〉 = 2x1 y1 + x2 y2 + 3x3 y3  Use 

the Gram–Schmidt process to trans‑  

form the basis vectors u1 = (1, 1, 1), 

u2 = (1, –1, 1), u3 = (1, 1, 0) into an 

orthogonal basis.

[Ans. : (1, 1, 1), (1, –5, 1), (3, 0, –2)]

10. Use the Gram–Schmidt process to tra‑

nsform the basis {1, x, x2, x3} of P3 

into an orthogonal basis if

 p q, ( ) ( )=
−
∫ p x q x dx
1

1

Ans.: 1
1

2
3 1

1

2
5 32 3 2, , ( ), ( )x x x x− −



















11. Let M22 have the inner product 

A B AB
T, ( ).= tr  Use the Gram–

Schmidt process to transform the basis 

vectors A A

A A

1 2

3 4

1 1

0 1

1 0

1 1

1 0

0 1

1 0

0 0

=








 =











=








 =











, ,

,

into an orthogonal basis.

Ans.:
1

3

1 1

0 1

1

15

1 2

3 1

1

10

1 2

2 1

1

2

1 0

0 1











−









−

−









 −





, ,

, 

























12. Find an orthonormal basis for the sub-

space of R4 consisting of all vectors of 

the form (a, a + b, c, b + c).

Ans.:

1

2

1

2
0 0

1

6

1

6
0

2

6

1

12

1

12

3

12

1

12

, , , , , , , ,

, , ,







−










−





























13. Use Gram–Schmidt process to con-

struct an orthonormal basis for the 

subspace W of R4 spanned by the 

vectors v1 = (1, 1, 0, 0), v2 = (2, –1, 0, 1), 

v3 = (3, –3, 0, –2), v4 = (1, –2, 0, –3) 

using Euclidean inner product.

 

Ans.:

1

2

1

2
0 0

3

22

3

22
0

2

22

1

11

1

11
0

3

, , , ,

, , , ,

, , ,











−






− −
111








































14. Find an orthonormal basis for the 

solution space of the homogeneous 

system

 

1 1 1

2 1 3

1 2 6

0

0

0

1

2

3

−

−

































=

















x

x

x

Ans.:

−






























































4

42

5

42

1

42
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4.5  ORTHOGONAL COMPLEMENTS

Let W be a subspace of an inner product space V. A vector u in V is called orthogonal 

to W if it is orthogonal to every vector in W. The set of all vectors in V that are orthogo-

nal to W is called the orthogonal complement of W and is denoted by W ⊥ (read as “W 

perpendicular” or “W perp.”)

Properties of Orthogonal Complements

If W is a subspace of inner product space V then

  (i)  A vector u is in W ⊥ if and only if u is orthogonal to every vector in a set that 

spans W.

  (ii) The only vector common to W and W 
⊥ is 0.

(iii) W ⊥ is a subspace of V.

(iv) W W
⊥

⊥

( ) = .

Theorem 4.6: If A is an m × n matrix then the following hold:

(i)  The null space of A and the row space of A are orthogonal complements in Rn 

with respect to the Euclidean inner product.

(Row space of A)⊥ = Null space of A and (Null space of A)⊥ = Row space of A

(ii)  The null space of AT and the column space of A are orthogonal complements in 

Rm with respect to the Euclidean inner product.

(Column space of A)⊥ = Null space of AT and (Null space of AT )⊥ = Column space of A

Note: This theorem can be used to find a basis for the orthogonal complement of a 

subspace of Euclidean n-space.

Example 1: Find a basis for the orthogonal complement of the subspace W of the 

corresponding space Rn spanned by the vectors

 (i)  u1 = (2, 0, –1), u2 = (4, 0, –2) in R3.

(ii)   u1 = (2, –1, 1, 3, 0), u2 = (1, 2, 0, 1, –2), u3 = (4, 3, 1, 5, – 4), u4 = (3, 1, 2, –1, 1), 

u5 = (2, –1, 2, –2, 3) in R5.

Solution:  (i) The subspace W spanned by these vectors is the row space of the 

matrix

 A =
−

−











2 0 1

4 0 2

Since, (Row space of A)⊥ = Null space of A

 Basis for (Row space A)⊥ = Basis for the null space of A

i.e.,  Basis for W ⊥ = Basis for the null space of A

The null space of A is the solution space of the homogeneous system Ax = 0

 
2 0 1

4 0 2

0

0

1

2

3

−

−



























=









x

x

x
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The augmented matrix of the system is

 
2 0 1 0

4 0 2 0

−

−











Reducing the augmented matrix to row echelon form,

 

1

2

1 0
1

2
0

4 0 2 0

1







−

−















R

~

 

R R
2 1

4

1 0
1

2
0

0 0 0 0

−

−














~

The corresponding system of equations is

 x x x
1 2 3

0
1

2
0+ − =

Solving for the leading variables,

 x x x
1 2 3

0
1

2
= − +

Assigning the free variables x2 and x3 arbitrary values t1 and t2 respectively,

 

x t

x t

x t

1 2

2 1

3 2

1

2
=

=

=

,

,

Null space consists vectors of the form

 
x =

















=



















=

















+

x

x

x

t

t

t

t t

1

2

3

2

1

2

1 2

1

2
0

1

0

11

2

0

1



















Basis for the null space of A =



























































0

1

0

1

2

0

1

,  which is also the basis for W⊥.
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(ii)  The space W spanned by these vectors is the row space of the matrix.

  A =

−

−

−

−

− −























2 1 1 3 0

1 2 0 1 2

4 3 1 5 4

3 1 2 1 1

2 1 2 2 3

Since, (Row space of A)⊥ = Null space of A

Basis for (Row space of A)⊥ = Basis for the null space A

i.e., Basis for W ⊥ = Basis for the null space of A

The null space of A is the solution space of the homogeneous system Ax = 0

 

2 1 1 3 0

1 2 0 1 2

4 3 1 5 4

3 1 2 1 1

2 1 2 2 3

1

2

3

4

5

−

−

−

−

− −























 x

x

x

x

x



















=























0

0

0

0

0

The augmented matrix for the system is

 

2 1 1 3 0 0

1 2 0 1 2 0

4 3 1 5 4 0

3 1 2 1 1 0

2 1 2 2 3 0

−

−

−

−

− −























Reducing the augmented matrix to row echelon form,

 

R
12

1 2 0 1 2 0

2 1 1 3 0 0

4 3 1 5 4 0

3 1 2 1 1 0

2 1 2 2 3 0

∼

−

−

−

−

− −























 

R R R R R R R R
2 1 3 1 4 1 5 1

2 4 3 2

1 2 0 1 2 0

0 5 1 1 4 0

0 5 1 1 4 0

0 5 2 4 7 0

0

− − − −

−

−

−

− −

, , ,

∼

−− −





















5 2 4 7 0
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3 2 4 2 5 2

1 2 0 1 2 0

0 5 1 1 4 0

0 0 0 0 0 0

0 0 1 5 3 0

0 0 1 5 3 0

− − −

−

−

−

−










, ,

∼















 

R R
5 4

1 2 0 1 2 0

0 5 1 1 4 0

0 0 0 0 0 0

0 0 1 5 3 0

0 0 0 0 0 0

−

−

−

−























∼

 

R
34

1 2 0 1 2 0

0 5 1 1 4 0

0 0 1 5 3 0

0 0 0 0 0 0

0 0 0 0 0 0

∼

−

−

−























 

−





−

− − −

−












1

5

1 2 0 1 2 0

0 1
1

5

1

5

4

5
0

0 0 1 5 3 0

0 0 0 0 0 0

0 0 0 0 0 0

2
R

∼















The corresponding system of equations is

 

x x x x x

x x x x

x x x

1 2 3 4 5

2 3 4 5

3 4 5

2 0 2 0

1

5

1

5

4

5
0

5 3 0

+ + + − =

− − − =

− + =
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Solving for the leading variables,

 

x x x x x

x x x x

x x x

1 2 3 4 5

2 3 4 5

3 4 5

2 0 2

1

5

1

5

4

5

5 3

= − − − +

= + +

= −

Assigning the free variable x4 and x5 arbitrary values t1 and t2 respectively,

 

x t t

x t t

x t t

x t

x t

1 1 2

2 1 2

3 1 2

4 1

5 2

17

5

8

5

6

5

1

5

5 3

= − +

= +

= −

=

=

,

,

,

,

Null space consists vectors of the form

 x =























=

− +

+

−

x

x

x

x

x

t t

t t

t t

t

1

2

3

4

5

1 2

1 2

1 2

1

17

5

8

5

6

5

1

5

5 3

tt

t

2

1

17

5

6

5

5

1

0





























=

−


























+ tt
2

8

5

1

5

3

0

1

−



























Basis for the null space of A =

−


























−

























17

5

6

5

5

1

0

8

5

1

5

3

0

1

,




































 which is also the basis for W ⊥.

4.6 ORTHOGONAL PROJECTION

4.6.1 Orthogonal Projection on a Vector

If u and v are two vectors in an inner product space V such that v ≠ 0 then orthogonal 

projection of u on v is given by

 proj
v
u

u v

v

v=

,
2
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4.6.2  Orthogonal Projection on a Subspace

If {v1, v2, … , v
r
} is an orthonormal basis for subspace W of an inner product space V 

and W is any vector in V then orthogonal projection of w on W is given by

 proj
W r r
w w v v w v v w v v= + + +, , ,1 1 2 2 �

Note: If {v1, v2, … , vr} is an orthogonal basis for W and w is any vector in V then

 proj
W

r

r

r
w

w v

v

v

w v

v

v

w v

v

v= + + +

, , ,1

1

2 1

2

2

2 2 2
�

(1) Approximation Theorem

Theorem 4.7:  If W is a finite dimensional subspace of an inner product space V and u 

is any vector in V then projW u is the vector in W that is closest to u, i.e.

 u u u v− < − >proj
W  for all v in W.

(2) Projection Theorem

Theorem 4.8:  If W is a subspace of a finite dimensional inner product space V and w 

is any vector in V then

 w w w= +
1 2

where  w w1 = proj
W

 is in W

and  w w2 = ⊥proj
W

 is in W⊥.

Example 1: Find the orthogonal projection of u = (1, –2, 3) along v = (1, 2, 1) in 

R3 with respect to the Euclidean inner product.

Solution:  Let W be the subspace spanned by the vector v = (1, 2, 1).

 

proj
W
u

u v

v

v

u v

v

v

=

=

⋅

,
2

2

 

=
− ⋅

+ +

=
− +

=

( , , ) ( , , )

( )
( , , )

( , , )

1 2 3 1 2 1

1 2 1
1 2 1

1 4 3

6
1 2 1

0

2 2 2

Example 2: Find the orthogonal projection of u = (4, 0, –1) along v = (3, 1, –5) 

in R3 with respect to the Euclidean inner product. Also find the component of u 

orthogonal to v.



4.6  Orthogonal Projection 4.45

Solution:  Let W be the subspace spanned by the vector v = (3, 1, –5).

 

proj
W
u

u v

v

v

u v

v

v

=

=

⋅

,
2

2

 

=
− ⋅ −
+ +

−

= −

=

( , , ) ( , , )

( )
( , , )

( , , )

, ,

4 0 1 3 1 5

9 1 25
3 1 5

17

35
3 1 5

51

35

17

35
−−





17

7

The component of u orthogonal to v is

 proj proj
W W⊥ = −u u u

 

= − − −





= −





( , , ) , ,

, ,

4 0 1
51

35

17

35

17

7

89

35

17

35

10

7

Example 3: Let W be the subspace of R3 with orthonormal basis {v1, v2}, where 

v v
1 2

2

3

1

3

2

3

1

2
0

1

2
= − −





=






, , , , .,  Using Euclidean inner product find the dis-

tance from the vector u = (1, 1, 0) to W, where u is in V.

Solution:  From the approximation theorem,

Distance from u toW
W

= −u uproj

 

proj
W
u u v v u v v= +

= ⋅ − −













−

, ,

( , , ) , , , ,

1 1 2 2

1 1 0
2

3

1

3

2

3

2

3

1

3
−−





+ ⋅




















2

3

1 1 0
1

2
0

1

2

1

2
0

1

2
( , , ) , , , ,

 

= − −




+







= −





1

3

2

3

1

3

2

3

1

2

1

2
0

1

2

13

18

1

9

5

18

, , , ,

, ,
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= − −





proj
W

( , , ) , ,

, ,

1 1 0
13

18

1

9

5

18

5

18

10

9

5

18

 

= + +





=

25

324

100

81

25

324

5 2

6
.

Example 4: Let W be the subspace spanned by the orthonormal vectors 

v1 = (0, 1, 0) and v
2

4

5
0

3

5
= −





, , .

Find the orthogonal projection of  w  = (1, 2, 3) on W  with respect to Euclid-

ean  inner product. Also find the component of  u  orthogonal to W  and express 

w = w1 + w2 where w1 is in W and w2 is in W ⊥.

Solution:  Since an orthonormal set is also linearly independent, the vectors v1 and 

v2 form an orthonormal basis for W.

 
proj

W
w w v v w v v

w v v w v v

= +

= ⋅ + ⋅

, ,

( ) ( )

1 1 2 2

1 1 2 2

 

= ⋅ + ⋅ −













[( , , ) ( , , )]( , , ) ( , , ) , , ,1 2 3 0 1 0 0 1 0 1 2 3

4

5
0

3

5

4

5
0,,

( )( , , ) ( ) , ,

, ,

−





= + − −





= −





3

5

2 0 1 0 1
4

5
0

3

5

4

5
2

3

5

The component of w orthogonal to W is

 

proj proj
W W⊥ = −

= − −





= 





w w w

( , , ) , ,

, ,

1 2 3
4

5
2

3

5

9

5
0
12

5

Using Projection theorem w can be expressed as 

 

w w w

w  w

= +

= +

= −




+ 





⊥

1 2

4

5
2

3

5

9

5
0

12

5

proj proj
W W

, , , ,
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Example 5:  Let W = span {(2, 5, –1), (–2, 1, 1)}. Find the orthogonal projection 

of w = (1, 2, 3) on W with respect to Euclidean inner product. Also find the compo-

nent of w orthogonal to W.

Solution:  Let v1 = (2, 5, –1), v2 = (–2, 1, 1)

 
v v v v1 2 1 2 2 5 1 2 1 1

0

, ( , , ) ( , , )= ⋅ = − ⋅ −

=

Thus v1 and v2 are orthogonal. Since an orthogonal set is linearly independent, the 

vectors v1, v2 form an orthogonal basis for W.

 

proj
W
w

w v

v

v

w v

v

v

w v

v

v

w v

v

v

= +

=
⋅( )

+
⋅( )

=

, ,

( , , )

1

1

2 1

2

2

2 2

1

1

2 1

2

2

2 2

1 2 3 ⋅⋅ −

+ + −
− +

⋅ −

− + +

( , , )

[ ( ) ]
( , , )

( , , ) ( , , )

[( )

2 5 1

2 5 1
2 5 1

1 2 3 2 1 1

2 12 2 2 2 2 11
2 1 1

2 ]
( , , )−

 

= − + −

= −




+ −





9

30
2 5 1

3

6
2 1 1

18

30

45

30

9

30
1

3

6

3

6

( , , ) ( , , )

, , , , 

= −




= −





12

30

60

30

6

30

2

5
2

1

5
, , , ,

The component of w orthogonal to W is

 

proj proj
W W⊥ = −

= − −





= 





w w w

( , , ) , ,

, ,

1 2 3
2

5
2

1

5

7

5
0
14

5

4.7 LEAST SQUARES APPROXIMATION

In Chapter 6 we have discussed that a linear system Ax = b is consistent if it has a 

 solution and is inconsistent if it has no solution. In many situations an inconsistent 

system requires a solution. In such situations we find a value of x that makes Ax as 

close as possible to b, i.e. it minimizes the value of Ax b−  with respect to the Euclid-

ean inner product. Here, x is regarded as an approximate solution of the linear system 

Ax = b.

The general least squares problem is to find a vector x that minimizes Ax b−  with 

respect to the Euclidean inner product. The vector x is called a least squares solution 

of Ax = b.
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If W is the column space of A then the vector in W that is closet to b is proj
W 

b. 

Thus, if we find x such that

 Ax = proj
W
 b

then Ax b−  is minimum and therefore x is a least squares solution of Ax = b.

Since b – Ax = b – projW b is in W⊥, it is orthogonal to every vector in W. Therefore, 

b – Ax is orthogonal to each column of A.

Thus,  AT (b – Ax) = 0

 AT Ax = AT b

This is called the normal system of equation associated with Ax = b.

The least squares solution x to Ax = b can be found as follows.

1. Find the matrices AT A and AT b.

2. Solve the normal system

AT Ax = AT b for x using Gauss-elimination method.

Theorem 4.9:  A vector x is the least squares solution to Ax = b if and only if x is a 

solution to the normal equations AT Ax = AT b.

Theorem 4.10:  If x is any least squares solution of Ax = b and W is the column space 

of A then

 projW b = Ax.

Example 1: Find the least squares solution of the linear system Ax = b given by

 

x x

x x

x x

1 2

1 2

1 2

7

0

2 7

+ =

− + =

− + = −

and find the orthogonal projection of b on the column space of A.

Solution:  The matrix form of the linear system is

 

1 1

1 1

1 2

7

0

7

1

2

−

−

























 =

−

















x

x

 A = −

−

















=

−

















1 1

1 1

1 2

7

0

7

, b

 A A
T =

− −







 −

−

















=
−

−











1 1 1

1 1 2

1 1

1 1

1 2

3 2

2 6

 A
T
b =

− −









−

















=
−











1 1 1

1 1 2

7

0

7

14

7
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The normal system AT A x = AT b is

 
3 2

2 6

14

7

1

2

−

−


















 = −











x

x

The augmented matrix of the system is

 
3 2 14

2 6 7

−

− −











Reducing the augmented matrix to row echelon form,

 

R
12

2 6 7

3 2 14
~

− −

−











 

−





−

−















1

2

1 3
7

2

3 2 14

1
R

~

 

R R
2 1

3

1 3
7

2

0 7
7

2

−

−


















~

The corresponding system of equations is

 

x x

x

1 2

2

3
7

2

7
7

2

− =

=

The least squares solution of the system is x x
1 2

5
1

2
= =,

The orthogonal projection of b on the column space of A is

 

Ax = −

−































=
−

−





















1 1

1 1

1 2

5

1

2

11

2

9

2

4
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Example 2:  Find the orthogonal projection of u = (2, 1, 3) on the subspace of R 4 

spanned by the vectors v1 = (1, 1, 0), v2 = (1, 2, 1).

Solution:  The subspace of R4 spanned by the vectors v1 and v2 is the column space 

of the matrix

  A =

















1 1

1 2

0 1

projW u = Ax, where x =










x

x

1

2

 is the least squares solution of the system Ax = u.

 A A
T =



























=










1 1 0

1 2 1

1 1

1 2

0 1

2 3

3 6

 A
T
u =



























=










1 1 0

1 2 1

2

1

3

3

7

The normal system AT Ax = AT u is

 
2 3

3 6

3

7

1

2


















 =










x

x

The augmented matrix of the system is

 
2 3 3

3 6 7











Reducing the augmented matrix to row echelon form,

 

1

2

1
3

2

3

2

3 6 7

1





















R

~

 

R R2 13

1
3

2

3

2

0
3

2

5

2

−

















~

The corresponding system of equations is

 

x x

x

1 2

2

3

2

3

2

3

2

5

2

+ =

=
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The least squares solution of the system is

 x x
1 2

1
5

3
= − =,

The orthogonal projection of u on the column space of A is

 

Ax =

















−













=

























1 1

1 2

0 1

1

5

3

2

3

7

3

5

3

Exercise 4.4

1. Find a basis for the orthogonal 

complement of the subspace W of the 

corresponding space Rn spanned by the 

following vectors:

   (i)  v1 = (5, –2, –1), v2 = (2, –3, 15) 

in R3 

   (ii)  v1 = (1, –1, 3), v2 = (5, –4, –4), 

 v3 = (7, –6, 2) in R3

 (iii)  v1 = (1, –1, 2, 0), 

v2 = (1, 0, –2, 3) in R4.

 (iv)  v1 = (1, 4, 5, 6, 9), 

 v2 = (3, –2, 1, 4, –1), 

v3 = (–1, 0, –1, –2, –1), 

 v4 = (2, 3, 5, 7, 8) in R5.

Ans.: ( )

( )

i

ii

 3

7

1

16

9

1











































































( ) ,

( )

iii

iv

2

4

1

0

3

3

0

1



















−











































−11

1

1

0

0

2

1

0

1

0

1

2

0

0

1

−























−

−























−

−







, ,















































































2. Find the orthogonal projection of 

u = (1, 2, 3, 4) along v = (1, –3, 4, –2) 

in R4 with respect to the Euclidean 

inner product.

Ans.: − −















1

30

1

10

2

15

1

15
, , ,

3. Let W be the subspace of R4 with basis 

{(1, 1, 0, 1), (0, 1, 1, 0), (–1, 0, 0, 1)}. 

Find the orthogonal projection of  

w = (2, 1, 3, 0) on W with respect to the 

Euclidean inner product.

Ans.:
7

5

11

5

9

5

3

5
, , , −
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4. Let W be the subspace of R3 with 

orthonormal basis 

2

3

1

3

2

3

1

2
0

1

2
, , , , , .− −



















 

Using Euclidean inner product, find the 

component of w = (2, 1, 3) orthogonal 

to W and express w = w1 + w2 where w1 

is in W and w2 is in W⊥.

Ans.: w

w

1

6

2

3

1

6

11

6

1

3

19

6

1

6

2

3

1

6

1

2

, , , , , ,

, ,

−





= 





= −























5. Let W be the subspace of R4
 with 

orthonormal basis 

1

2
0 0

1

2
0 0 1 0

1

2
0 0

1

2

, , , , ( , , , ),

, , ,

.

−






























  

Using Euclidean inner product, find the 

component of w = (1, 0, 2, 3) ortho-

gonal to W and express w = w1 + w2 

where w1 is in W and w2 is in W⊥.

[Ans. : (0, 0, 0, 0), w1 = (1, 0, 2, 3), w2 = 

(0, 0, 0, 0)]

6. Let W be the subspace of R3 with 

orthonormal basis {v1, v2}, where 

v v
1 2

1

5
0

2

5

2

5
0

1

5
=






= −






, , , , , . 

Using Euclidean inner product find 

the distance from the vector u = (3, 4, 

–1) to W, where u is in V.

Ans.: 10





7. Find the least squares solution of 

the linear system Ax = b and find 

orthogonal projection of b onto the 

column space of A.

 (i) A =

−

−

















=

















1 1

3 2

2 4

4

1

3

, b

 (ii) A =

−

−

−



















=



















1 0 1

2 1 2

1 1 0

1 1 1

6

0

9

3

, b

Ans.:

( ) , ;i x x1 2

17

95

143

285

92

285

439

285

94

57

= =

−
























= = − =









































( ) , , ;ii x x x1 2 312 3 9

3

3

9

0 

















8. Find the orthogonal projection of 

u = (6, 3, 9, 6) subspace of R4 spanned 

by the vectors v1 = (2, 1, 1, 1), 

v2 = (1, 0, 1, 1), v3 = (–2, –1, 0, –1).

 

Ans.:

7

2

9

5









































5.1  INTRODUCTION

Eigenvalues and eigenvectors are important concepts in linear algebra. They are derived 

from the German word ‘eigen’ which means proper or characteristic.  Eigenvectors are 

non-zero vectors that get mapped into scalar multiples of themselves under a linear 

operator. These are useful in solving systems of differential equations, analyzing 

 population growth models and are also useful in quantum mechanics and economics.

5.2  EIGENVALUES AND EIGENVECTORS

Any non-zero vector x is said to be a characteristic vector or eigenvector of a square 

matrix A, if there exists a number l such that

 Ax = lx

where A a
ij n n

=
×

[ ]  is a n-rowed square matrix and 
x

x

x

x
n

=



















1

2

�

 is a column vector.

Also, l is said to be characteristic root or characteristic value or  eigenvalue of the 

matrix A.

Depending on the sign and the magnitude of the eigenvalue l corresponding to 

x, the linear operator Ax = l x compresses or stretches eigenvector x by a factor l. If l 

is negative, direction of eigenvector reverses.

Chapter5

Eigenvalues and 
Eigenvectors

x

lx x

lx
x

lx

(i) 0 ≤ l ≤ 1 (iii)  −1 ≤ l ≤ 0(ii) l ≥ 1 (iv) l  ≤  −1

x

lx

Fig.  5.1
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Now Ax = l x = l I x

 (A - l I )x = 0

The matrix A - lI is called the characteristic matrix of A where I is the unit matrix 

of order n.

The determinant

 det ( )A I

a a a

a a a

a a a

n

n

n n nn

− =

− …

− …

… … … …

… −

λ

λ

λ

λ

11 12 1

21 22 2

1 2

which is an ordinary polynomial in l of degree n, is called the characteristic  polynomial 

of A.

The equation det (A - l I ) = 0 is called the characteristic equation of A and the roots 

of this equation are called the eigenvalues of the matrix A. The set of all eigenvectors 

is called the eigenspace of A corresponding to l. The set of all eigenvalues of A is 

called the spectrum of A.

Note: (1) The characteristic equation of the matrix A of order 2 can be obtained from

 l 2  –  S1 l + S2 = 0

 where S1 = Sum of principal diagonal elements and

 S2  = Determinant A

(2) The characteristic equation of the matrix A of order 3 can be obtained from

 l 3  –  S1 l2 + S2 l – S3 = 0

  where S1 = Sum of principal diagonal elements,

 S2 = Sum of minors of principal diagonal elements and

 S3 = Determinant A

(3) The sum of the eigenvalues of a matrix is the sum of its principal diagonal elements.

(4) The product of the eigenvalues of a matrix is the determinant of the matrix.

5.2.1  Nature of Eigenvalues of Special Types of Matrices

Theorem 5.1: The eigenvalues of a triangular matrix are the diagonal elements of 

the matrix.

Theorem 5.2: The eigenvalues of a real symmetric matrix are real.

Theorem 5.3: The eigenvalues of a skew real symmetric matrix are either purely 

 imaginary or zero.

Theorem 5.4: The eigenvalues of a Hermitian matrix are real.

Theorem 5.5:  The eigenvalues of a skew Hermitian matrix are either purely imagi-

nary or zero.
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Theorem 5.6:  The eigenvalues of a unitary matrix are of unit modulus.

Theorem 5.7:  The eigenvalues of an orthogonal matrix are of unit modulus.

5.2.2   Relations between Eigenvalues and 

Eigenvectors

Theorem 5.8:  If x is an eigenvector of a matrix A corresponding to the eigenvalue l 

then k x is also an eigenvector of A corresponding to same eigenvalue l, where k is any 

nonzero scalar.

Theorem 5.9:  If x is an eigenvector of a matrix A then x can not correspond to more 

than one eigenvalue of A.

Theorem 5.10:  The eigenvectors corresponding to distinct eigenvalues of a matrix 

are linearly independent.

Theorem 5.11:  If two or more eigenvalues are equal then the corresponding eigen-

vectors may or may not be linearly independent.

Theorem 5.12:  The  eigenvectors  corresponding  to  distinct  eigenvalues  of  a  real 

 symmetric matrix are orthogonal.

Theorem 5.13:  Any two eigenvectors corresponding to two distinct eigenvalues of a 

unitary matrix are orthogonal.

Theorem 5.14:  If l is an eigenvalue of a matrix A and x is a corresponding  eigenvector 

then 
1

λ
 is an eigenvalue of A-1 and x is a corresponding eigenvector.

Theorem 5.15: If l is an eigenvalue of a matrix A and x is a corresponding eigenvector 

then lk is an eigenvalue of Ak and x is a corresponding eigenvector.

Theorem 5.16: If l is an eigenvalue of a matrix A and x is a corresponding  eigenvector 

then l ± k is an eigenvalue of A ± k I and x is a corresponding eigenvector.

Theorem 5.17: If l is an eigenvalue of a matrix A and x is a corresponding  eigenvector 

then kl is an eigenvalue of matrix k A and x is a corresponding eigenvector.

Theorem 5.18: If l is an eigenvalue of a matrix A then l is also an eigenvalue of 

matrix AT. Matrix A and AT need not have the same eigenvectors.

Example 1:  If A =

−

− −

−

















3 1 1

1 5 1

1 1 3

, find eigenvalues for the following matrices:

 (i) A (ii) AT (iii) A–1 (iv) 4A–1 (v) A2 (vi) A2 – 2A + I (vii) A3 + 2I

Solution: A =

−

− −

−

















3 1 1

1 5 1

1 1 3
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The characteristic equation is

 
det ( )A I− =

− −

− − −

− −

=

λ

λ

λ

λ

0

3 1 1

1 5 1

1 1 3

0

 λ λ λ
3

1

2

2 3 0− + − =S S S

where S1 = Sum of the principal diagonal elements of A = 3 + 5 + 3 = 11

S2 = Sum of the minors of principal diagonal elements of A

 
=

−

−

+ +

−

−

= − + − + −

5 1

1 3

3 1

1 3

3 1

1 5

15 1 9 1 15 1( ) ( ) ( )

 

= + +

=

14 8 14

36

 

S A3

3 1 1

1 5 1

1 1 3

3 15 1 1 3 1 1 1 5

42 2 4

36

= =

−

− −

−

= − + − + + −

= − −

=

det( )

( ) ( ) ( )

Hence, the characteristic equation is

λ λ λ
3 2

11 36 36 0− + − =

            l = 2, 3, 6

   (i) Eigenvalues of A = l  : 2, 3, 6

 (ii) Eigenvalues of AT = lT  : 2, 3, 6

 (iii) Eigenvalues of A-1
 = l-1  : 

1

2

1

3

1

6
, ,

 (iv) Eigenvalues of 4A-1 = 4l-1  : 2
4

3

2

3
, ,

  (v) Eigenvalues of A2 = l2  : 4, 9, 36

  (vi) Eigenvalues of A2 - 2A + I = l2 - 2l + 1 : 1, 4, 25

(vii) Eigenvalues of A3 + 2I = l3 + 2  : 10, 29, 218

Example 2: Find the eigenvalues, eigenvectors and bases for eigenspaces for the 

following matrices.

  (i) 

4 6 6

1 3 2

1 4 3− − −

















  (ii) 

1 0 1

1 2 1

2 2 3

−















  (iii) 

8 6 2

6 7 4

2 4 3

−

− −

−
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(iv)  − −

−

− −

















2 2 3

2 1 6

1 2 0
 

(v)

 

0 1 1

1 0 1

1 1 0
















 

(vi)

 

1 2 2

0 2 1

1 2 2−
















 

(vii)

 

0 1 0

0 0 1

1 3 3−

















Solution:  (i) A =

− − −

4 6 6

1 3 2

1 4 3

















The characteristic equation is

 

det ( )A I− =

−

−

− − − −

=

λ

λ

λ

λ

0

4 6 6

1 3 2

1 4 3

0

l3 - S1l2 + S2l - S3 = 0

where S1 = Sum of the principal diagonal elements of A = 4 + 3 – 3 = 4

 S2 = Sum of the minors of principal diagonal elements of A

 
=

− −

+

− −

+

= − + + − + + −

3 2

4 3

4 6

1 3

4 6

1 3

9 8 12 6 12 6( ) ( ) ( )

 

= − − +

= −

1 6 6

1  

 

S A3

4 6 6

1 3 2

1 4 3

4 9 8 6 3 2 6 4 3

4 6 6

4

= =

− − −

= − + − − + + − +

= − + −

= −

det( )

( ) ( ) ( )

Hence, the characteristic equation is

λ λ λ

λ

3 2
4 4 0

1 1 4

− − + =

= − , ,

(a) For l = -1, [A - l I ] x = 0

 

5 6 6

1 4 2

1 4 2

0

0

0− − −

































=

















x

y

z
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4 2 0

x y z

x y z

+ + =

+ + =

By Cramer’s rule,

 

x y z

6 6

4 2

5 6

1 2

5 6

1 4

= − =

 

x y z

x y z
t

−

=

−

=

−

=

−

= =

12 4 14

6 2 7
, say

Thus, the eigenvectors of A corresponding to l = -1 are the non-zero vectors of the 

form x =

−

−

















=

−

−

















6

2

7

6

2

7

t

t

t

t  = tx1 where x1 forms a basis for the eigenspace  corresponding 

to l = -1.

(b) For l = 1, [A - l I ]x = 0

 

3 6 6

1 2 2

1 4 4

0

0

0− − −

































=

















x

y

z

 

x y z

x y z

+ + =

− − − =

2 2 0

4 4 0

 By Cramer’s rule,

 
x y z

2 2

4 4

1 2

1 4

1 2

1 4− −

= −

− −

=

− −

 
x y z

0 2 2
= =

−

 
x y z

t
0 1 1
= =

−

= , say

Thus, the eigenvectors of A corresponding l = 1 are the non-zero vectors of the form 

x x=

−

















=

−

















=

0 0

1

1

2
t

t

t t  where x2 forms a basis for the eigenspace corresponding to 

l = 1.
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(c)  For l = 4,  [A - l I ] x = 0

 

0 6 6

1 1 2

1 4 7

0

0

0

−

− − −

































=

















x

y

z

 

0 6 6 0

2 0

4 7 0

x y z

x y z

x y z

+ + =

− + =

− − − =

By Cramer’s rule,

 
x y z

6 6

1 2

0 6

1 2

0 6

1 1−

= − =

−

 

x y z

x y z
t

18 6 6

3 1 1

= =

−

= =

−

= , say

Thus, the eigenvectors of A corresponding to l = 4 are the non-zero vectors of the 

form x x=

−

















=

−

















=

3 3

1

1

3

t

t

t

t t  where x3 forms a basis for the eigenspace corresponding 

to l = 4.

(ii) A =

−















1 0 1

1 2 1

2 2 3

The characteristic equation is

 det( )A I− =λ 0

 
1 0 1

1 2 1

2 2 3

0

− −

−

−

=

λ

λ

λ

l3 - S1l2 + S2l - S3 = 0

where S1 = Sum of the principal diagonal elements of A = 1 + 2 + 3 = 6

 S2 = Sum of the minors of principal diagonal elements of A

 

= +

−

+

= − + + + −

= + +

=

2 1

2 3

1 1

2 3

1 0

1 2

6 2 3 2 2 0

4 5 2

11

( ) ( ) ( )
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 S A3

1 0 1

1 2 1

2 2 3

1 6 2 0 1 2 4

6

= =

−

= − − − −

=

det( )

( ) ( )

Hence, the characteristic equation is

l3  - 6l2 + 11l - 6 = 0

l = 1, 2, 3

(a) For l = 1, [A - l I ] x = 0

 

0 0 1

1 1 1

2 2 2

0

0

0

−































=

















x

y

z

 0x + 0y - z = 0 

 x +  y  + z = 0

By Cramer’s rule,

 

x y z

x y z
t

0 1

1 1

0 1

1 1

0 0

1 1

1 1 0

−

= −

−

=

=

−

= = , say

Thus, the eigenvectors of A corresponding to l = 1 are the non-zero vectors of the 

form x x= −

















= −

















=

t

t t t

0

1

1

0

1
 where x1 forms a basis for the eigenspace corresponding 

to l = 1.

(b) For l = 2, [A - l I ] x = 0

 

− −































=

















1 0 1

1 0 1

2 2 1

0

0

0

x

y

z

 
x y z

x y z

+ + =

+ + =

0 0

2 2 0

By Cramer’s rule,

 
x y z

0 1

2 1

1 1

2 1

1 0

2 2

= − =
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t

−

= = =

2 1 2
, say

Thus, the eigenvectors of A corresponding to l = 2 are the non-zero vectors of the form 

x x=

−















=

−















=

2

2

2

1

2

2

t

t

t

t t  where x2 forms a basis for the eigenspace corresponding 

to l = 2.

(c) For l = 3, [A - l I ] x = 0

 

− −

−

































=

















2 0 1

1 1 1

2 2 0

0

0

0

x

y

z

 

− + − =

− + =

+ + =

2 0 0

0

2 2 0 0

x y z

x y z

x y z

By Cramer’s rule,

 
x y z

0 1

1 1

2 1

1 1

2 0

1 1

−

−

= −

− −

=

−

−

 
x y z

t
−

= = =

1 1 2
, say

Thus, the eigenvectors of A corresponding to l = 3 are the non-zero vectors of the 

form x x=

−















=

−















=

t

t

t

t t

2

1

1

2

3
 where x3 forms a basis for the eigenspace corresponding 

to l = 3.

(iii) A =

−

− −

−

















8 6 2

6 7 4

2 4 3

The characteristic equation is

 det ( )A I− =λ 0

 

8 6 2

6 7 4

2 4 3

0

− −

− − −

− −

=

λ

λ

λ

   l3 - S1l2 + S2l - S3 = 0

where S1 = Sum of the principal diagonal elements of A = 8 + 7 + 3 = 18

 S2 = Sum of the minors of principal diagonal elements of A



5.10 Chapter 5 Eigenvalues and Eigenvectors =

−

−

+ +

−

−

= − + − + −

= + +

=

7 4

4 3

8 2

2 3

8 6

6 7

21 16 24 4 56 36

5 20 20

45

( ) ( ) ( )

 

S A3

8 6 2

6 7 4

2 4 3

8 21 16 6 18 8 2 24 14

40 60 2

= =

−

− −

−

= − + − + + −

= − +

det( )

( ) ( ) ( )

00

0=

Hence, the characteristic equation is

λ λ λ

λ

3 2
18 45 0

0 3 15

− + =

= , ,

(a) For l = 0, [A - l I ] x = 0

 

8 6 2

6 7 4

2 4 3

0

0

0

−

− −

−

































=

















x

y

z

 

8 6 2 0

6 7 4 0

2 4 3 0

x y z

x y z

x y z

− + =

− + − =

− + =

By Cramer’s rule,

 

x y z

x y z

x y z
t

−

−

= −

− −

=

−

−

= =

= = =

6 2

7 4

8 2

6 4

8 6

6 7

10 20 20

1 2 2
, say

Thus, the eigenvectors of A corresponding to l = 0 are the non-zero vectors of the 

form x x=

















=

















=

t

t

t

t t2

2

1

2

2

1
 where x1 forms a basis for the eigenspace corresponding 

to l = 0.
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(b)  For l = 3,  [A - l I ] x = 0

 

5 6 2

6 4 4

2 4 0

0

0

0

−

− −

−

































=

















x

y

z

 

5 6 2 0

6 4 4 0

2 4 0 0

x y z

x y z

x y z

− + =

− + − =

− + =

By Cramer’s rule,

 
x y z

−

−

= −

− −

=

−

−

6 2

4 4

5 2

6 4

5 6

6 4

 

x y z

x y z
t

16 8 16

2 1 2

= =

−

= =

−

= , say

Thus, the eigenvectors of A corresponding to l = 3 are the non-zero vectors of the form 

x x=

−

















=

−

















=

2

2

2

1

2

2

t

t

t

t t  where x2 forms a basis for the eigenspace  corresponding to 

l = 3.

(c) For l = 15,  [A - lI ] x = 0

 

− −

− − −

− −

































=

















7 6 2

6 8 4

2 4 12

0

0

0

x

y

z

 

− − + =

− − − =

− − =

7 6 2 0

6 8 4 0

2 4 12 0

x y z

x y z

x y z

By Cramer’s rule,

 
x y z

−

− −

= −

−

− −

=

− −

− −

6 2

8 4

7 2

6 4

7 6

6 8

 

x y z

x y z
t

40 40 20

2 2 1

= − =

=

−

= = , say
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Thus, the eigenvectors of A corresponding to l = 15 are the non-zero vectors of the 

form x x= −

















= −

















=

2

2

2

2

1

3

t

t

t

t t  where x3 forms a basis for the eigenspace correspond-

ing to l = 15.

Note: The eigenvectors corresponding to distinct eigenvalues of a real symmetric 

matrix are orthogonal which can be verified with this example.

 x x
1 2

1 2 2

2

1

2

0
T =

−

















=[ ]

 x x
2 3

2 1 2

2

2

1

0
T = − −

















=[ ]

 
x x3 1 2 2 1

1

2

2

0
T = −














=[ ]

Thus, x1, x2 and x3 are orthogonal to each other.

(iv) A =

− −

−

− −

















2 2 3

2 1 6

1 2 0

The characteristic equation is

 det ( )A I− =λ 0

 

− − −

− −

− − −

=

2 2 3

2 1 6

1 2

0

λ

λ

λ

 λ λ λ
3

1

2

2 3 0− + − =S S S

where S1 = Sum of the principal diagonal elements of A = –2 + 1 + 0 = –1

 S2 = Sum of the minors of principal diagonal elements of A

 

=

−

−

+

− −

−

+

−

= − + − + − −

= − − −

= −

1 6

2 0

2 3

1 0

2 2

2 1

0 12 0 3 2 4

12 3 6

21

( ) ( ) ( )
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2 2 3

2 1 6

1 2 0

2 0 12 2 0 6 3 4 1

24 12 9

= =

− −

−

− −

= − − − − − − +

= + +

det( )

( )( ) ( ) ( )

== 45

Hence, the characteristic equation is

 
λ λ λ

λ

3 2
21 45 0

5 3 3

+ − − =

= − −, ,

(a) For l = 5,  [A - l I ] x = 0

 

− −

− −

− − −

































=

















7 2 3

2 4 6

1 2 5

0

0

0

x

y

z

 

− + − =

− − =

− − − =

7 2 3 0

2 4 6 0

2 5 0

x y z

x y z

x y z

By Cramer’s rule,

 
x y z

2 3

4 6

7 3

2 6

7 2

2 4

−

− −

= −

− −

−

=

−

−

 

x y z

x y z
t

−

=

−

=

= =

−

=

24 48 24

1 2 1
, say

Thus, the eigenvectors of A corresponding to l = 5 are the non-zero vectors of the 

form x x=

−

















=

−

















=

t

t

t

t t2

1

2

1

1
 where x1 forms a basis for the eigenspace corresponding 

to l = 5.

(b) For l = -3,  [A - lI ] x = 0

 

1 2 3

2 4 6

1 2 3

0

0

0

−

−

− −

































=

















x

y

z
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Let 

x y z

y t z t

x t t

+ − =

= =

= − +

2 3 0

2 3

1 2

1 2

  and  

Thus, the eigenvectors of A corresponding to l = -3 are the non-zero vectors of the 

form x =

− +















=

−















+

















=

2 3 2

1

0

3

0

1

1 2

1

2

1 2

t t

t

t

t t tt t
1 2 2 3
x x+  where x2 and x3 form a basis for 

the eigenspace corresponding to l = -3.

(v) A =

















0 1 1

1 0 1

1 1 0

The characteristic equation is

 det ( )A I− =λ 0

 

−

−

−

=

λ

λ

λ

1 1

1 1

1 1

0

 l3 – S1l2 + S2l – S3 = 0

where S1 = Sum of the principal diagonal elements of A = 0 + 0 + 0 = 0

 S2 = Sum of the minors of principal diagonal elements of A

 

= + +

= − + − + −

= −

0 1

1 0

0 1

1 0

0 1

1 0

0 1 0 1 0 1

3

( ) ( ) ( )

 S A3

0 1 1

1 0 1

1 1 0

= =det( )

 

= − − + −

=

0 1 0 1 1 1 0

2

( ) ( )

Hence, the characteristic equation is

λ λ

λ

3
3 2 0

2 1 1

− − =

= − −, ,
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(a) For l = 2,  [A - l I ] x = 0

 

−

−

−

































=

















2 1 1

1 2 1

1 1 2

0

0

0

x

y

z

 

− + + =

− + =

+ − =

2 0

2 0

2 0

x y z

x y z

x y z

By Cramer’s rule,

 
x y z

1 1

2 1

2 1

1 1

2 1

1 2−

= −

−

=

−

−

 

x y z

x y z
t

3 3 3

1 1 1

= =

= = = , say

Thus, the eigenvectors of A corresponding to l = 2 are the non-zero vectors of the 

form x x=

















=

















=

t

t

t

t t

1

1

1

1
 where x1 forms a basis for the eigenspace corresponding to 

l = 2.

(b) For l = -1,  [A - l I ] x = 0

 

1 1 1

1 1 1

1 1 1

0

0

0

































=

















x

y

z

Let 

x y z

y t z t

x t t

+ + =

= =

= − −

0

1 2

1 2

and

Thus, the eigenvectors of A corresponding to l = -1 are the non-zero vectors of the 

form x =

− −















=

−















+

−















=

t t

t

t

t t t

1 2

1

2

1 2

1

1

0

1

0

1

11 2 2 3
x x+ t  where x2 and x3 form a basis for the 

eigenspace corresponding to l = -1.
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(vi) A =

−

















1 2 2

0 2 1

1 2 2

The characteristic equation is

 det ( )A I− =λ 0

 

1 2 2

0 2 1

1 2 2

0

−

−

− −

=

λ

λ

λ

 l3 – S1l2 + S2l – S3 = 0

where S1 = Sum of the principal diagonal elements of A = 1 + 2 + 2 = 5

 S2 = Sum of the minors of principal diagonal elements of A

 

= +

−

+

= − + + + −

= + +

=

2 1

2 2

1 2

1 2

1 2

0 2

4 2 2 2 2 0

2 4 2

8

( ) ( ) ( )

 

S A3

1 2 2

0 2 1

1 2 2

1 4 2 2 0 1 2 0 2

2 2 4

4

= =

−

= − − + + +

= − +

=

det( )

( ) ( ) ( )

Hence, the characteristic equation is

 
λ λ λ

λ

3 2
5 8 4 0

1 2 2

− + − =

= , ,

(a) For l = 1,  [A - l I ] x = 0

 

0 2 2

0 1 1

1 2 1

0

0

0−

































=

















x

y

z

 

0 0

2 0

x y z

x y z

+ + =

− + + =
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By Cramer’s rule,

 
x y z

1 1

2 1

0 1

1 1

0 1

1 2

= −

−

=

−

 

x y z

x y z
t

−

=

−

=

= =

−

=

1 1 1

1 1 1
, say

Thus, the eigenvectors of A corresponding to l = 1 are the non-zero vectors of the 

form x x=

−

















=

−

















=

t

t

t

t t

1

1

1

1
 where x1 forms a basis for the eigenspace corresponding 

to l = 1.

(b) For l = 2,  [A - l I ] x = 0

 

−

−

































=

















1 2 2

0 0 1

1 2 0

0

0

0

x

y

z

 

− + + =

+ + =

− + + =

x y z

x y z

x y z

2 2 0

0 0 0

2 0 0

By Cramer’s rule,

 
x y z

2 2

0 1

1 2

0 1

1 2

0 0

= −

−

=

−

 
x y z

t
2 1 0
= = = , say

Thus, the eigenvectors of A corresponding to l = 2 are the non-zero vectors of the 

form x x=

















=

















=

2

0

2

1

0

2

t

t t t  where x2 forms a basis for the eigenspace corresponding 

to l = 2.

Hence, there is only one eigenvector corresponding to repeated root l = 2. 

(vii) A =

−

















0 1 0

0 0 1

1 3 3
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The characteristic equation is

 det ( )A I− =λ 0

 
−

−

− −

=

λ

λ

λ

1 0

0 1

1 3 3

0

 l3 – S1l2 + S2l – S3 = 0

where S1 = Sum of the principal diagonal elements of A = 0 + 0 + 3 = 3

 S2 = Sum of the minors of principal diagonal elements of A

 

=

−

+ +

= + + +

=

0 1

3 3

0 0

1 3

0 1

0 0

0 3 0 0

3

( ) ( ) ( )

 

S A3

0 1 0

0 0 1

1 3 3

0 1 0 1 0

1

= =

−

= − − +

=

det( )

( )

Hence, the characteristic equation is

 
λ λ λ

λ

3 2
3 3 1 0

1 1 1

− + − =

= , ,

For l = 1,  [A - l I ] x = 0

 

−

−

−

































=

















1 1 0

0 1 1

1 3 2

0

0

0

x

y

z

 

− + + =

− + =

− + =

x y z

x y z

x y z

0 0

0 0

3 2 0

By Cramer’s rule,

 
x y z

1 0

1 1

1 0

0 1

1 1

0 1−

= −

−

=

−

−

 
x y z

t
1 1 1
= = = , say
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Thus, the eigenvectors of A corresponding to l = 1 are the non-zero vectors of the 

form x x=

















=

















=

t

t

t

t t

1

1

1

1
 where x1 forms a basis for the eigenspace corresponding to 

l = 1.

Hence, there is only one eigenvector corresponding to repeated root l = 1. 

Example 3: Find the values of µ which satisfy the equation A100 x = µx, where

A =

−

− −

















2 1 1

0 2 2

1 1 0

Solution: A =

−

− −

















2 1 1

0 2 2

1 1 0

The characteristic equation is

 det ( )A I− =

− −

− − −

−

=

λ

λ

λ

λ

0

2 1 1

0 2 2

1 1

0

 l3 – S1l2 + S2l – S3 = 0

where S1 = Sum of the principal diagonal elements of A = 2 – 2 + 0 = 0

S2 = Sum of the minors of principal diagonal elements of A

 
=

− −

+

−

+

−

2 2

1 0

2 1

1 0

2 1

0 2

 

= + + + + − −

= −

( ) ( ) ( )0 2 0 1 4 0

1

 

S A3

2 1 1

0 2 2

1 1 0

2 0 2 1 0 2 1 0 2

4 2 2

0

= =

−

− −

= + − + − +

= − −

=

det( )

( ) ( ) ( )
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Hence, the characteristic equation is

λ λ

λ

3
0

0 1 1

− =

= −, ,

If l is an eigenvalue of A, it satisfies the equation Ax = lx. 

For equation A100 x = µ x, µ represents eigenvalues of A100. Eigenvalues of A100 = 

l100, i.e., 0, 1, 1.

Hence, values of µ are 0 and 1.

Example 4: Find the characteristic root and characteristic vectors of 

A =
−









cos sin

sin cos

θ θ

θ θ
 and verify that characteristic roots are of unit modulus and 

characteristic vectors are orthogonal.

Solution: A =
−









cos sin

sin cos

θ θ

θ θ

The characteristic equation is

 

det ( )

cos sin

sin cos

(cos ) sin

(cos

A I− =

− −

−
=

− + =

−

λ

θ λ θ

θ θ λ

θ λ θ

θ λ

0

0

02 2

)) sin

cos sin

cos sin

cos sin

2 2

2 2 1

= −

− = ±

= ±

= + =

θ

θ λ θ

λ θ θ

λ θ θ

i

i

Hence, characteristic roots are of unit modulus.

(a) l = cos q + i sin q,

 

[ ]

sin sin

sin sin

( si

A I

i

i

x

y

i

− =

− −

−


















 =










−

λ

θ θ

θ θ

x 0

0

0

nn ) (sin )θ θx y− = 0

Let  y = t

 x = it

Thus, the eigenvectors of A corresponding to l = cos q + i sin q are the non-zero  vectors 

of the form x x=








 =









 =

it

t
t

i
t

1
1
 where the x1 forms a basis for the eigenspace corre-

sponding to l = cos q + i sin q.
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(b) For l = cos q - isin q,

 

[ ]

sin sin

sin sin

( sin )

A I

i

i

x

y

i

− =

−
















 =










λ

θ θ

θ θ

θ

x 0

0

0

xx y− =(sin )θ 0

Let    y = t

  x = -it

Thus, the eigenvectors of A corresponding to l = cos q – i sin q are the non-zero 

vectors of the form x x=
−







 =

−







 =

it

t
t

i
t

1
2
 where x2 forms a basis for the eigenspace 

corresponding to l = cos q - i sin q.

For orthogonality of complex matrix,

 x x 0
1 2

2
1

1
1 0

θ = −[ ]
−







 = + = =i

i
i[ ] [ ]

Similarly,  x x 0
1 2

θ
=

Hence, characteristic vectors are orthogonal.

Example 5: If A
i

i
=

−

+ −











2 1 2

1 2 2
 verify whether eigenvectors are mutually 

orthogonal.

Solution: A
i

i
=

−

+ −











2 1 2

1 2 2

The characteristic equation is 

 

det ( )

,

A I

i

i

− =

− −

+ − −
=

− =

= −

λ

λ

λ

λ

λ

0

2 1 2

1 2 2
0

9 0

3 3

2

(a) For l = -3

 

[ ]

( )

A I

i

i

x

y

x i y

− =

−

+

















 =










+ − =

λ x 0

5 1 2

1 2 1

0

0

5 1 2 0
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Let y = t

 x
i
t= −

−1 2

5

Thus, the eigenvectors of A corresponding to l = -3 are the non-zero vectors of the 

form x x=
−

−












=

−
−












=

1 2

5

1 2

5

1

1

i
t

t

t

i

t  where x1 forms a basis for the eigenspace 

 corresponding to l = -3.

(b) For l = 3,

 

[ ]

( )

A I

i

i

x

y

x i y

− =

− −

+ −

















 =










− + − =

λ x 0

1 1 2

1 2 5

0

0

1 2 0

Let y = t

 x = (1-2i )t

Thus, the eigenvectors of A corresponding to l = 3 are the non-zero vectors of the 

form x x=
−







 =

−







 =

( )1 2 1 2

1
2

i t

t
t

i
t  where x2 forms a basis for the eigenspace 

 corresponding to l = 3.

For orthogonality of complex matrix,

 x x 01 2

1 2

5
1

1 2

1

1 2

5
1 2 1 0θ = −

+





−







 = −

+
− +







= =

i i i
i( ) [ ]

Similarly, x x 0
1 2

θ
=

Hence, eigenvectors are mutually orthogonal.

5.2.3   Algebraic and Geometric Multiplicity of an 
Eigenvalue

If the eigenvalue l of the equation det ( )A I− =λ 0  is repeated n times then n is called 

the algebraic multiplicity of l. The number of linearly independent eigenvectors is the 

difference between the number of unknowns and the rank of the corresponding matrix 

A-l I and is known as geometric multiplicity of eigenvalue l.
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Example 1: Determine algebraic and geometric multiplicity of each eigenvalue 

of the following matrices:

 (i) 

2 1 0

0 2 1

0 0 2

















 (ii) 

1 2 2

0 2 1

1 2 2−

















Solution: (i) A =

















2 1 0

0 2 1

0 0 2

Since A is upper triangular matrix, its diagonal elements are the eigenvalues of A.

 l = 2, 2, 2

Since eigenvalue l = 2 is repeated thrice, its algebraic multiplicity is 3.

For l = 2

 

[ ]A I

x

y

z

− =




























=














λ x 0

0 1 0

0 0 1

0 0 0

0

0

0

 Rank of matrix = 2

 Number of unknowns = 3

Number of linearly independent eigenvectors = 3 - 2 = 1

Hence, geometric multiplicity is 1.

(ii) A =

−

















1 2 2

0 2 1

1 2 2

The characteristic equation is

 

det ( )A I

S S S

− =

−

−

− −

=

− + − =

λ

λ

λ

λ

λ λ λ

0

1 2 2

0 2 1

1 2 2

0

03
1

2
2 3

where S1 = Sum of the principal diagonal elements of A = 1 + 2 + 2 = 5

 S2 = Sum of the minors of principal diagonal elements of A

 

= +

−

+

= − + + + −

= + +

=

2 1

2 2

1 2

1 2

1 2

0 2

4 2 2 2 2 0

2 4 2

8

( ) ( ) ( )
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1 2 2

0 2 1

1 2 2

1 4 2 2 0 1 2 0 2

2 2 4

4

= =

−

= − − + + +

= − +

=

det( )

( ) ( ) ( )

Hence, the characteristic equation is

λ λ λ

λ

3 2
5 8 4 0

1 2 2

− + − =

= , ,

(a) Since eigenvalue l = 1 is non-repeated, its algebraic multiplicity is 1.

For l = 1

 

[ ]A I

x

y

z

− =

−

































=

















λ x 0

0 2 2

0 1 1

1 2 1

0

0

0

 

R

x

y

z

R R

13

3 2

1 2 1

0 1 1

0 2 2

0

0

0

2

1

−































=

















−

− 22 1

0 1 1

0 0 0

0

0

0

































=

















x

y

z

   Rank of matrix = 2

   Number of unknowns = 3

Number of linearly independent eigenvectors = 3 - 2 = 1

Hence, geometric multiplicity is 1.

(b) Since eigenvalue l = 2 is repeated twice, its algebraic multiplicity is two.

For l = 2

 

[ ]A I

x

y

z

− =

−

−

































=

















λ x 0

1 2 2

0 0 1

1 2 0

0

0

0
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 R R

x

y

z

R R

3 1

3

1 2 2

0 0 1

0 0 2

0

0

0

2

−

−

−

































=

















+
22

1 2 2

0 0 1

0 0 0

0

0

0

−































=

















x

y

z

 Rank of matrix = 2

 Number of unknowns = 3

Number of linearly independent eigenvectors = 3 - 2 = 1

Hence, geometric multiplicity is 1.

1. Find the eigenvalues and eigenvectors 

for the following matrices:

   (i) 

9 1 9

3 1 3

7 1 7

−

−

− −

















  (ii) 

1 1 2

1 2 1

0 1 1

−

−

−

















 (iii) 

−

−

−

















1 1 2

0 2 1

0 0 3

 (iv) 

4 0 1

2 1 0

2 0 1

−

−

















   (v) 

2 1 1

2 3 2

3 3 4

















    (vi) 

2 2 1

1 3 1

1 2 2

















   (vii) 

− −

−

− −

















2 2 3

2 1 6

1 2 0

 (viii) 

1 0 0

2 0 1

3 1 0

















  (ix) 

2 4 6

4 2 6

6 6 15

−

−

− − −

















   (x) 

7 0 2

0 5 2

2 2 6

−

−

− −

















    (xi) 

7 2 2

2 1 4

2 4 1

− −

−

−

















Exercise 5.1
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   (xii) 

3 1 1

1 5 1

1 1 3

−

− −

−

















  (xiii) 

6 2 2

2 3 1

2 1 3

−

− −

−

















   (xiv) 

7 2 1

2 10 2

1 2 7

−

− −

−

















    (xv) 

2 1 1

1 2 1

1 1 2

−

− −

−

















   (xvi) 

2 0 1

0 3 0

1 0 2

















  (xvii) 

1 2 3

0 2 3

0 0 2

















 (xviii) 

3 10 5

2 3 4

3 5 7

− − −

















 (xix) 

− − −















3 7 5

2 4 3

1 2 2

  (xx) 

2 1 0

0 2 1

0 0 2

















Ans.: (i) 1, 0, 2;−















 −















 −

















1

1

1

1

0

1

4

1

3

, ,

 

(ii) 1, 2, 1;−

















































1

0

1

1

3

1

3

2

1

, ,

 

(iii) 1, 2, ;− − −

















−















 −

















3

1

0

0

1

1

0

1

2

2

, ,

 

(iv) 1 2 3

0

1

0

1

2

2

1

1

1

, , ; , ,

















−















−















 

(v) 1, 1, 7;

1

2

3

0

1

1

1

0

1















 −















 −

















, ,

 

(vi) 5, 1, 1;

1

1

1

2

1

0

1

0

1

















−















 −

















, ,

 

(vii) 5 3 3

1

2

1

2

1

0

3

0

1

, , ; , ,− −

−

















−

































 

(viii) − −

















































1 1 1

0

1

1

0

1

1

1

0

0

, , ; , ,

 

(ix) − − −

















































2 9 18

0

1

0

2

2

1

1

1

4

, , ; , ,























































































































5.2  Eigenvalues and Eigenvectors 5.27 ( ) , , ; , ,x 3 6 9

1

2

2

2

2

1

2

1

2

















−















 −

















 

(xi) −

−

































−















3 3 9

0

1

1

1

1

1

2

1

1

, , ; , ,

 

(xii) 2 3 6

1

0

1

1

1

1

1

2

1

, , ; , ,

−































−

















 

( ) , , ; , ,xiii 8 2 2

2

1

1

0

1

1

1

1

1

−































 −

















 

( ) , , ; , ,xiv 12 6 6

1

2

1

1

0

1

1

1

1

−















 −

































 

( ) , , ; , ,xv 4 1 1

1

1

1

1

1

0

1

1

2

−

































−















 

( ) , , ; , ,xvi 1 3 3

1

0

1

1

1

1

1

2

1−

































−

















 

( ) , , ; ,xvii 1 2 2

1

0

0

2

1

0

































 

( ) , , ; ,xviii 3 2 2

1

1

2

5

2

5−















 −

















 

( ) , , ;xix 1 1 1

3

1

1

−















 

( ) , , ;xx 2 2 2

1

0

0

















2. Determine algebraic and geometric 

multiplicity of the following matrices:

   (i) 

0 1 0

0 0 1

1 3 3−

















 (ii) 

2 1 1

1 2 1

0 0 1

















Ans. :

  

  

 

i For

ii For

For

( ) = = =

( ) = = =

=

λ

λ

λ

1 3 1

1 2 2

3

, ,

, ,

,

AM GM

AM GM

AM == =



















1 1, GM

3. If A =

















2 2 1

1 3 1

1 2 2

, find eigenvalues of 

the following matrices:

   (i) A3 + I (ii) A-1 (iii) A2 - 2A + I 

(iv) adj A (v) A3 – 3A2 + A

Ans. : ( ) , , ( ) , ,

( ) , , ( ) , ,

( ) , ,

i ii

iii iv

v

2 2 126 1 1
1

5

0 0 16 5 5 1

1 1 55− −





















4. Verify that x  = [2, 3, –2, –3]T is an 

eigenvector corresponding to the 

eigenvalue l = 2 of the matrix

 A =

− − −

−

− −

− −



















1 4 1 4

2 0 5 4

1 1 2 3

1 4 1 6

5. If A =

−

− −

−

















3 1 1

1 3 1

1 1 3

 then check 

whether eigenvectors of A are 

orthogonal.

6. If A = − − −

















3 10 5

2 3 4

3 5 7

 then verify 

whether eigenvectors of A are linearly 

independent or not.
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5.3  CAYLEY–HAMILTON THEOREM

Theorem 5.19:  Every square matrix satisfies its own characteristic equation.

Proof: Let A be an n-rowed square matrix. Its characteristic equation is

 

A I a a a

A I A I A I I

A

n n n n

n− = − + + + +

− − = −

∴

− −λ λ λ λ

λ λ λ

( ) ( )

( ) ( )

1 1
1

2
2
�

adj

adjj( )A A I= 
 

…(5.1)

Since adj (A –l I ) has element as cofactors of elements of |A – lI |, the elements of 

adj (A – l I ) are polynomials in l of degree n – 1 or less. Hence, adj (A – l I ) can be 

written as a matrix  polynomial in l.

adj (A –l I ) = B0ln – 1 + B1ln – 2 + ⋅⋅⋅ + Bn –2l + Bn  – 1

where B0, B1,…, Bn –1 are matrices of order n.

 
( ) ( ) ( )[ ]A I A I A I B B B B

A

n n

n n     

 

− − = − + + + +

−

− −
− −λ λ λ λ λ λadj 0

1
1

2
2 1�

λλ λ λ λ λI I A I B B B B
n n

n n   = − + + + +
− −

− −( )[ ]0
1

1
2

2 1�

 
( ) [ ]

( ) ( )

− + + + + +

= − + −

− −
−1 1

1
2

2
1

0 0 1

n n n n

n n

n

I a I a I a I a I

IB AB IB

λ λ λ λ

λ

�

λλ λ λ
n n

n n nAB IB AB IB AB
− −

− − −+ − + + − +
1

1 2
2

2 1 1( ) ( )�

Equating corresponding coefficients,

 

− = −

− = −

− = −

− =
− −

IB I

AB IB a I

AB IB a I

AB IB

n

n

n

n n

0

0 1 1

1 2 2

2 1

1

1

1

( )

( )

( )

(

� �

−−

= −

−

−

1

1

1

1

)

( )

n

n

n

n

n

a I

AB a I

Premultiplying the above equations successively by An, A n–1, A n–2,… I and adding,

Hence, 

( ) [ ]− + + + + =

+ + + + =

− −

− −

1 1

1

2

2

1

1

2

2

n

A a A a A a I

A a A a A a I

n n n

n

n n n

n

�

�

0

0  …(5.2)

Corollary: If A is a non-singular matrix, i.e. det (A) ≠ 0 then premultiplying Eq. (5.2) by 

A–1, we get

 

A a A a A a A

A
a

A a A a I

n n n

n

n

n n

n

− − − −

− − −

−

+ + + + =

= − + + +

1

1

2

2

3 1

1 1

1

2

1

1

…

…

0

[ ]
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Example 1: Verify Cayley–Hamilton theorem for the following matrix and 

hence, find A–1 and A4.

   A =

−

− −

−

















2 1 1

1 2 1

1 1 2

.

Solution: A =

−

− −

−

















2 1 1

1 2 1

1 1 2

The characteristic equation is 

det ( )A I− =

− −

− − −

− −

=

λ

λ

λ

λ

0

2 1 1

1 2 1

1 1 2

0

   l3 – S1l2 + S2l – S3 = 0

where S1 = Sum of the principal diagonal elements of A = 2 + 2 + 2 = 6

S2 = Sum of the minors of principal diagonal elements of A

 

=

−

−

+ +

−

−

= − + − + −

=

2 1

1 2

2 1

1 2

2 1

1 2

4 1 4 1 4 1

9

( ) ( ) ( )

 

S A3

2 1 1

1 2 1

1 1 2

2 4 1 1 2 1 1 1 2

6 1 1

4

= =

−

− −

−

= − + − + + −

= − −

=

det( )

( ) ( ) ( )

Hence, the characteristic equation is

 λ λ λ
3 2

6 9 4 0− + − =

 

A
2

2 1 1

1 2 1

1 1 2

2 1 1

1 2 1

1 1 2

6 5 5

5 6=

−

− −

−

















−

− −

−

















=

−

− −55

5 5 6

6 5 5

5 6 5

5 5 6

2 1 1

1 2 1

1 1 2

3

−

















=

−

− −

−

















−

− −

−






A 











=

−

− −

−

















22 21 21

21 22 21

21 21 22
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A A A I
3 2

6 9 4

22 21 21

21 22 21

21 21 22

36 30 30

30 36

− + −

=

−

− −

−

















−

−

− −−

−

















+

−

− −

−

















−30

30 30 36

18 9 9

9 18 9

9 9 18

4 0 0

0 4 0

0 0 4

















=

















=

0 0 0

0 0 0

0 0 0

0

 

…(1)

The matrix A satisfies its own characteristic equation. Hence, Cayley–Hamilton theo-

rem is verified.

Premultiplying Eq. (1) by A–1,

 
A A A A I

A A I A

−

−

− + − =

− + − =

1 3 2

2 1

6 9 4

6 9 4

( ) 0

0

 

4 6 9

6 5 5

5 6 5

5 5 6

12 6 6

6 12 6

6 6 12

1 2
A A A I

− = − +

=

−

− −

−

















−

−

− −

−

















+

















=

−

−

















=

−
−

9 0 0

0 9 0

0 0 9

3 1 1

1 3 1

1 1 3

1

4

3 1

1
A

11

1 3 1

1 1 3−

















Multiplying Eq. (1) by A,

A A A A I

A A A A

( )3 2

4 3 2

6 9 4

6 9 4

− + − =

− + − =

0

0

 

A A A A
4 3 2

6 9 4

132 126 126

126 132 126

126 126 132

54

= − +

=

−

− −

−

















−

−−

− −

−

















+

−

− −

−

















=

45 45

45 54 45

45 45 54

8 4 4

4 8 4

4 4 8

86 −−

− −

−

















85 85

85 86 85

85 85 86

Example 2: Show that the matrix A

c b

c a

b a

=

−

−

−

















0

0

0

 satisfies Cayley–

Hamilton theorem and hence find A–1, if it exists.
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Solution:                A c b

c a

b a

=

−

−

−

















0

0

0

The characteristic equation is

 

det ( )A I

c b

c a

b a

− =

− −

− −

− −

=

λ

λ

λ

λ

0

0

 l3 – S1l2 + S2l – S3 = 0

where S1 = Sum of the principal diagonal elements of A = 0

S2 = Sum of the minors of principal diagonal elements of A

 

=

−

+

−

+

−

= + + + + +

= + +

0

0

0

0

0

0

0 0 02 2 2

2 2 2

a

a

b

b

c

c

a b c

a b c

( ) ( ) ( )

 

S A

c b

c a

b a

c ab b ac

abc abc

3

0

0

0

0 0 0

0

= =

−

−

−

= − − − −

= −

=

det( )

( ) ( )

Hence, the characteristic equation is

 λ λ
3 2 2 2 0+ + + =( )a b c

   A

c b

c a

b a

c b

c a

b a

c b ab ac

2

2 2
0

0

0

0

0

0

=

−

−

−

















−

−

−

















=

− −

aab c a bc

ac bc b a

− −

− −

















2 2

2 2

   A

c b ab ac

ab c a bc

ac bc b a

c b

c a

b a

3

2 2

2 2

2 2

0

0

0

=

− −

− −

− −

















−

−

−

















    

=

− − − + +

+ + − − −

− − −

0

0

3 2 2 3 2 2

3 2 2 2 2 3

2 3 2

c cb ca b bc ba

c ca cb ab ac a

bc b a b ac
22 2 3

2 2 2

0

0

0

0

+ +

















= − + +

−

−

−

















= −

ab a

a b c

c b

c a

b a

a( ) ( 22 2 2

3 2 2 2

+ +

+ + + =

b c A

A a b c A

)

( ) 0
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=

− − − + +

+ + − − −

− − −

0

0

3 2 2 3 2 2

3 2 2 2 2 3

2 3 2

c cb ca b bc ba

c ca cb ab ac a

bc b a b ac
22 2 3

2 2 2

0

0

0

0

+ +

















= − + +

−

−

−

















= −

ab a

a b c

c b

c a

b a

a( ) ( 22 2 2

3 2 2 2

+ +

+ + + =

b c A

A a b c A

)

( ) 0

The matrix A satisfies its own characteristic equation. Hence, Cayley– Hamilton theo-

rem is verified.

det ( ) ( ) ( )A

c b

c a

b a

c ab b ac abc abc=

−

−

−

= − − − − = − =

0

0

0

0 0 0

Hence, A–1 does not exist.

Example 3: Find the characteristic roots of the matrix A =










1 4

2 3
 and 

verify Cayley–Hamilton theorem for this matrix. Find A–1 and also express 

A5 – 4A4 – 7A3 + 11A2 – A – 10I as a linear polynomial in A.

Solution: A =










1 4

2 3

The characteristic equation is

 det ( )A I− =

−

−
=

λ

λ

λ

0

1 4

2 3
0

       l2 – S1l + S2 = 0

where S1 = Sum of the principal diagonal elements of A = 1 + 3 = 4

 

S A2

1 4

2 3

3 8

5

= =

= −

= −

det( )

Hence, the characteristic equation is

λ λ

λ

2
4 5 0

1 5

− − =

= − ,

 A
2

1 4

2 3

1 4

2 3

9 16

8 17
=


















 =
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2

4 5
9 16

8 17

4 16

8 12

5 0

0 5

0 0

0 0
− − =









 −









 −









 =









 = 0  …(1)

The matrix A satisfies its own characteristic equation. Hence, Cayley–Hamilton 

theorem is verified.

Premultiplying Eq. (1) by A–1,

 

A A A I

A I A

A A I

−

−

−

− − =

− − =

= −

=
−

−











1 2

1

1

4 5

4 5

1

5
4

1

5

3 4

2 1

( )

( )

0

0

Now, 

 

A A A A A I A A A I A A A I

A A I

5 4 3 2 3 2 2

2

4 7 11 10 4 5 2 4 5

3 4 5

− − + − − = − − − − −

+ − −

( ) ( )

( ))

( )( )

[ ]

+ +

= − − − + + +

= +

A I

A A I A A A I

A I

5

4 5 2 3 5

5

2 3

using Eq. (1)

which is a linear polynomial in A.

Example 4: Find the characteristic equation of the matrix A =

















2 1 1

0 1 0

1 1 2

 and 

hence, find the matrix represented by A8 – 5A7 + 7A6 – 3A5 + A4 – 5A3 + 8A2 – 2A + I.

Solution:  A =

















2 1 1

0 1 0

1 1 2

The characteristic equation is

 

det ( )A I− =

−

−

−

=

λ

λ

λ

λ

0

2 1 1

0 1 0

1 1 2

0

    l3 – S1l2 + S2l – S3 = 0

where S1 = Sum of the principal diagonal elements of A = 2 + 1 + 2 = 5

S2 = Sum of the minors of principal diagonal elements of A
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= − + − + −

=

1 0

1 2

2 1

1 2

2 1

0 1

2 0 4 1 2 0

7

( ) ( ) ( )

           

S A3

2 1 1

0 1 0

1 1 2

= =det( )

  

= − − − + −

= − −

=

2 2 0 1 0 0 1 0 1

4 0 1

3

( ) ( ) ( )

Hence, the characteristic equation is

 λ λ λ
3 2

5 7 3 0− + − =

By Cayley–Hamilton theorem,

          A3 – 5A2 + 7A – 3I = 0  ...(1)

Now, A A A A A A A A I
8 7 6 5 4 3 2

5 7 3 5 8 2− + − + − + − +

         

= − + − + − + − + + +

= − + −

A A A A I A A A A I A A I

A A A I

5 3 2 3 2 2

3 2

5 7 3 5 7 3

5 7 3

( ) ( ) ( )

( )(AA A A A I

A A I

A A I

5 2

2

2

+ + + +

= + + +

= + +

) ( )

( )

[ ( ]

0

using Eq. 1)

        A2

2 1 1

0 1 0

1 1 2

2 1 1

0 1 0

1 1 2

5 4 4

0 1 0

4 4 5

=

































=

















    A A I
2

5 4 4

0 1 0

4 4 5

2 1 1

0 1 0

1 1 2

1 0 0

0 1 0

0 0 1

+ + =

















+

















+

















=

















8 5 5

0 3 0

5 5 8

  A A A A A A A A I
8 7 6 5 4 3 2

5 7 3 5 8 2

8 5 5

0 3 0

5 5 8

− + − + − + − + =
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Example 5: If A =

















1 0 0

1 0 1

0 1 0

,  prove by induction that for every integer n ≥ 3, 

An = An–2 + A2 – I. Hence, find A50.

Solution:                        A =

















1 0 0

1 0 1

0 1 0

The characteristic equation is

 

det ( )A I− =

−

−

−

=

λ

λ

λ

λ

0

1 0 0

1 1

0 1

0

   l3 – S1l2 + S2l – S3 = 0

where S1 = Sum of the principal diagonal elements of A = 1 + 0 + 0 = 1

S2 = Sum of the minors of principal diagonal elements of A

 

= + +

= − + − + −

= −

0 1

1 0

1 0

0 0

1 0

1 0

0 1 0 0 0 0

1

( ) ( ) ( )

 

S A3

1 0 0

1 0 1

0 1 0

1 0 1 0 0

1

= =

= − + +

= −

det( )

( )

Hence, the characteristic equation is

λ λ λ
3 2

1 0− − + =

By Cayley–Hamilton theorem,

 
A A A I

A A A I A A I

3 2

3 2 1 2

− − + =

= + − = + −

0

   = + −
−

A A I
3 2 2  …(1)

Hence, An = An – 2 + A2 – I is true for n = 3.

Assuming that the Eq. (1) is true for n = k,

 Ak = Ak–2 + A2 – I = A1 + A2 – I 
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Pre multiplying both the sides by A,

 Ak+1 = Ak–1 + A3 – A

Substituting the value of A3,

 
A A A A I A

A A I

k k

k

+ −

+ −

= + + − −

= + −

1 1 2

1 2 2

( )

( )

Hence, An = An–2 + A2 – I is true for n = k + 1.

Thus, by mathematical induction, it is true for every integer n ≥ 3.

We have, A A A I A A I A I
n n n
= + − = + − + −

− −2 2 4 2 2( )

   

= + − = + − + −

= + −

= +

− −

−

−

A A I A A I A I

A A I

A A r

n n

n

n n r

4 2 6 2 2

6 2

2

2 2

3

( ) ( ) ( )

( )

(

�

AA I
2
− )

Putting n = 50 and r = 24,

 
A A A I

A A I A I

50 50 2 24 2

2 2 2

24

24 24 25 24

= + −

= + − = −

− ( ) ( )

 

A
2

1 0 0

1 0 1

0 1 0

1 0 0

1 0 1

0 1 0

1 0 0

1 1 0

1 0 1

=

































=

















=

















−

















=A
50

25 0 0

25 25 0

25 0 25

24 0 0

0 24 0

0 0 24

1 0 00

25 1 0

25 0 1

















Exercise 5.2

1. Verify Cayley–Hamilton theorem for 

the matrix A and hence, find A–1 and A4.

  (i) 

1 2 2

1 3 0

0 2 1

−

−

−

















  (ii) 

1 2 3

2 1 4

3 1 1

−

−

















(iii) 

2 0 1

0 2 0

1 0 2

−

−

















(iv) 

1 2 2

1 3 0

0 2 1

−

−

−
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Ans. :

 (i)

3 2 6

1 1 2

2 2 5

55 104 24

20 15 32

32 42 13

















−

− −

−











,







−

−

−

















( ) ,ii
1

40

3 5 11

14 10 2

5 5 5

248 101 218

272 109 50

104 998 204























































( ) ,

( )

iii

iv

1

6

4 0 2

0 3 0

2 0 4

41 0 40

0 16 0

40 0 41

3

















−

−

















22 6

1 1 2

2 2 5

55 104 24

20 15 32

32 40 23

















−

− −

− −
























,





















2. Verify that the matrix 

A = −

−

















1 2 0

2 1 0

0 0 1

 satisfies the 

characteristic equation and hence, find 

A–2.

 

Ans. : 0A A A I

A

3 2

2

5 5

1

5

1 0 0

0 1 0

0 0 1

+ − − =

=





































−

,

3. Use Cayley–Hamilton theorem 

to find 2A5 – 3A4 + A2 – 4I, where 

A =
−











3 1

1 2
.

Ans. :138 403
11 138

138 127
A I− =

−





















4. If A =










1 4

1 1
,  find A7 – 9A2 + I.

[Ans. : 609A + 640I ]

5. Verify Cayley–Hamilton theorem for 

(i) A =










1 2

3 4
 (ii) A =











2 4

1 2
 and 

hence, find A–1 and A3 – 5A2.

Ans. : ( )
. .

,

( )

i

ii  does not exist, 

−

−

















 −

2 1

1 5 0 5
2

1 2

A

A A









6. Compute A9 – 6A8 + 10A7 – 3A6 + 

A + I, where A = −

















1 2 3

1 3 1

1 0 2

.

Ans. :

2 2 3

1 4 1

1 0 3

−

































7. Verify Cayley–Hamilton theorem for 

A =










1 2

2 2
 and evaluate 

2A4 – 5A3 – 7A + 6I.

Ans. :
36 32

32 52
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5.4 SIMILARITY OF MATRICES

If A and B are two square matrices of order n then B is said to be similar to A, if there 

exists a non-singular matrix P such that

 B = P –1 AP

Theorem 5.20:  Similarity of matrices is an equivalence relation.

Theorem 5.21:  Similar matrices have the same determinant.

Theorem 5.22:  Similar matrices have the same characteristic polynomial and hence 

the same eigenvalues. If x is an eigenvector of A corresponding to the eigenvalue l, 

then P –1 x is an eigenvector of B corresponding to the eigenvalue l where B = P –1 AP.

5.5 DIAGONALIZATION

A matrix A is said to be diagonalizable if it is similar to a diagonal matrix.

A matrix A is diagonalizable if there exists an invertible matrix P such that P–1 AP = D 

where D is a diagonal matrix, also known as spectral matrix. The matrix P is then said 

to diagonalize A or transform A to diagonal form and is known as modal matrix.

Theorem 5.23:  If the eigenvalues of an n × n matrix are all distinct then it is 

always similar to a diagonal matrix.

Theorem 5.24:  An n × n matrix is diagonalizable if and only if it possesses n 

 linearly independent eigenvectors.

Theorem 5.25:  The necessary and sufficient condition for a square matrix to be 

similar to a diagonal matrix is that the geometric multiplicity of each of its eigenvalues 

is equal to the algebraic multiplicity.

Corollary: If A is similar to a diagonal matrix D, the diagonal elements of D are the 

eigenvalues of A.

5.5.1  Orthogonally Similar Matrices

If A and B are two square matrices of order n then B is said to be orthogonally similar 

to A, if there exists an orthogonal matrix P such that

 B = P –1 AP

Since P is orthogonal, P–1 = PT

 B = P –1 AP = PT AP

Theorem 5.26: Every real symmetric matrix is orthogonally similar to a diagonal 

matrix with real elements.

Corollary  1: A real symmetric matrix of order n has n mutually orthogonal real 

 eigenvectors.

Corollary 2: Any two eigenvectors corresponding to two distinct eigenvalues of a real 

symmetric matrix are orthogonal.
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Note: To find the orthogonal matrix P, each element of the eigenvector is divided by 

its norm (or length).

Example 1: Show that the following matrices are not diagonalizable.

(i) 

1 2 2

0 2 1

1 2 2−

















   (ii) 

1 2 0

1 2 2

1 2 3

−















Solution: (i) A =

−

















1 2 2

0 2 1

1 2 2

The characteristic equation is

 det ( )A I− =

−

−

− −

=

λ

λ

λ

λ

0

1 2 2

0 2 1

1 2 2

0

   l3 – S1l2 + S2l – S3 = 0

where S1 = Sum of the principal diagonal elements of A = 1 + 2 + 2 = 5

 S2 = Sum of the minors of principal diagonal elements of A

 

= +

−

+

= − + + + −

= + +

=

2 1

2 2

1 2

1 2

1 2

0 2

4 2 2 2 2 0

2 4 2

8

( ) ( ) ( )

 

S A3

1 2 2

0 2 1

1 2 2

1 4 2 2 0 1 2 0 2

2 2 4

4

= =

−

= − − + + +

= − +

=

det( )

( ) ( ) ( )

Hence, the characteristic equation is

λ λ λ

λ

3 2
5 8 4 0

1 2 2

− + − =

= , ,

(a) For l = 1, number of linearly independent eigenvectors = 1
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(b) For l = 2, A I−[ ] =λ x 0

 

−

−

































=

















1 2 2

0 0 1

1 2 0

0

0

0

x

y

z

 

R R

x

y

z

3 1

1 2 2

0 0 1

0 0 2

0

0

0

−

−

−

































=

















 

R R

x

y

z

3 2
2

1 2 2

0 0 1

0 0 0

0

0

0

+

−































=

















 Rank of matrix = 2

 Number of unknowns = 3

 Number of linearly independent eigenvectors = 3 – 2 = 1

Since the matrix A has a total of 2 linearly independent eigenvectors which is less than 

its order 3, the matrix A is not diagonalizable.

(ii)            A =

−















1 2 0

1 2 2

1 2 3

The characteristic equation is

 det ( )A I− =

− −

−

−

=

λ

λ

λ

λ

0

1 2 0

1 2 2

1 2 3

0

      l3 – S1l2 + S2l – S3 = 0

where S1 = Sum of the principal diagonal elements of A = 1 + 2 + 3 = 6

 S2 = Sum of the minors of principal diagonal elements of A

               

= + +

−

= − + − + +

=

2 2

2 3

1 0

1 3

1 2

1 2

6 4 3 0 2 2

9

( ) ( ) ( )
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                    S A3

1 2 0

1 2 2

1 2 3

1 6 4 2 3 2 0

4

= =

−

= − + − +

=

det( )

( ) ( )

Hence, the characteristic equation is

λ λ λ

λ

3 2
6 9 4 0

4 1 1

− + − =

= , ,

(a) For l = 4, number of linearly independent eigenvectors = 1

(b) For l = 1,                                     A I−[ ] =λ x 0

  

0 2 0

1 1 2

1 2 2

0

0

0

−































=

















x

y

z

  

R

x

y

z

13

1 2 2

1 1 2

0 2 0

0

0

0−

































=

















  

R R

x

y

z

2 1

1 2 2

0 1 0

0 2 0

0

0

0

−

−

−

































=

















   

R R

x

y

z

3 2
2

1 2 2

0 1 0

0 0 0

0

0

0

−

−

































=

















  Rank of matrix = 2

  Number of unknowns = 3

Number of linearly independent eigenvectors = 3 – 2 = 1

Since the matrix A has a total of 2 linearly independent eigenvectors which is less than 

its order 3, the matrix A is not diagonalizable.
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Example 2: Show that the following matrices are similar to diagonal matrices. 

Find the diagonal and modal matrix in each case.

(i)  4 2 2

5 3 2

2 4 1

−

−

−

















  (ii) 

−

−

−

















9 4 4

8 3 4

16 8 7

  (iii) 

1 6 4

0 4 2

0 6 3

− −

− −

















Solution:  (i) A =

−

−

−

















4 2 2

5 3 2

2 4 1

The characteristic equation is

 det ( )A I− =

− −

− −

− −

=

λ

λ

λ

λ

0

4 2 2

5 3 2

2 4 1

0

   l3 – S1l2 + S2l – S3 = 0

where S1 = Sum of the principal diagonal elements of A = 4 + 3 + 1 = 8

 S2 = Sum of the minors of principal diagonal elements of A

 

= +

−

−

+

−

= − + − + +

= − + +

=

3 2

4 1

4 2

2 1

4 2

5 3

3 8 4 4 12 10

5 0 22

17

( ) ( ) ( )

 

S A3

4 2 2

5 3 2

2 4 1

4 3 8 2 5 4 2 20 6

20 2 28

10

= =

−

−

−

= − − − + − − +

= − + +

=

det( )

( ) ( ) ( )

Hence, the characteristic equation is

λ λ λ

λ

3 2
8 17 10 0

1 2 5

− + − =

= , ,

Since all the eigenvalues are distinct, the matrix A is diagonalizable.
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(a) For l = 1,  [A – lI ]x = 0

 

3 2 2

5 2 2

2 4 0

0

0

0

−

−

−

































=

















x

y

z

 

3 2 2 0

5 2 2 0

2 4 0 0

x y z

x y z

x y z

+ − =

− + + =

− + + =

By Cramer’s rule,

 
x y z

2 2

2 2

3 2

5 2

3 2

5 2

−

= −

−

−

=

−

 

x y z

x y z
t

8 4 16

2 1 4

= =

= = = , say

Thus, the eigenvectors of A corresponding to l = 1 are the non-zero vectors of the form 

x =

















=

















2

4

2

1

4

t

t

t

t  = tx1 where x1 is a linearly independent eigenvector corresponding 

to l = 1.

(b) For l = 2, [A – l I ]x = 0

 

2 2 2

5 1 2

2 4 1

0

0

0

−

−

− −

































=

















x

y

z

 

2 2 2 0

5 2 0

2 4 0

x y z

x y z

x y z

+ − =

− + + =

− + − =

By Cramer’s rule,

 
x y z

2 2

1 2

2 2

5 2

2 2

5 1

−

= −

−

−

=

−

 

x y z

x y z
t

6 6 12

1 1 2

= =

= = = , say
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Thus, the eigenvectors of A corresponding to l = 2 are the non-zero vectors of the form 

x x=

















=

















=

t

t

t

t t

2

1

1

2

2
 where x2 is a linearly independent eigenvector corresponding 

to l = 2.

(c) For l = 5, [A – l I ]x = 0

 

− −

− −

− −

































=

















1 2 2

5 2 2

2 4 4

0

0

0

x

y

z

 
− + − =

− − + =

x y z

x y z

2 2 0

5 2 2 0

By Cramer’s rule,

   
x y z

2 2

2 2

1 2

5 2

1 2

5 2

−

−

= −

− −

−

=

−

− −

 

x y z

x y z
t

0 12 12

0 1 1

= =

= = = , say

Thus, the eigenvectors of A corresponding to l = 5 are the non-zero vectors of the form 

x x=

















=

















=

0 0

1

1

3
t

t

t t  where x3 is a linearly independent eigenvector corresponding 

to l = 5.

Modal matrix P has eigenvectors as its column vectors.

 P =

















2 1 0

1 1 1

4 2 1

Diagonal matrix D has eigenvalues as its diagonal elements.

 D =

















1 0 0

0 2 0

0 0 5

(ii) A =

−

−

−

















9 4 4

8 3 4

16 8 7
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The characteristic equation is

 det ( )A I− =

− −

− −

− −

=

λ

λ

λ

λ

0

9 4 4

8 3 4

16 8 7

0

     l3 – S1l2 + S2l – S3 = 0

where S1 = Sum of the principal diagonal elements of A = –9 + 3 + 7 = 1

S2 = Sum of the minors of principal diagonal elements of A

 

= +

−

−

+

−

−

= − + − + + − +

= − + +

= −

3 4

8 7

9 4

16 7

9 4

8 3

21 32 63 64 27 32

11 1 5

5

( ) ( ) ( )

          

S A3

9 4 4

8 3 4

16 8 7

9 21 32 4 56 64 4 64 48

99 3

= =

−

−

−

= − − − − + + − +

= −

det( )

( ) ( ) ( )

22 64

3

−

=

Hence, the characteristic equation is

λ λ λ

λ

3 2
5 3 0

1 1 3

− − − =

= − −, ,

(a) For l = –1, [A – l I ]x = 0

 

−

−

−

































=

















8 4 4

8 4 4

16 8 8

0

0

0

x

y

z

 − + + =8 4 4 0x y z

Let y = t1 and z = t2

 x t t= +
1

2

1

2
1 2
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Thus, the eigenvectors of A corresponding to l = –1 are the non-zero vectors of the 

form

 
x =

+

















=


















+









1

2

1

2

1

2

1

0

1

2

0

1

1 2

1

2

1 2

t t

t

t

t t











= +t t

1 1 2 2
x x

where x1 and x2 are linearly independent eigenvectors corresponding to l = –1.

(b) For l = 3, [A – l I ]x = 0

 

−

−

−

































=

















12 4 4

8 0 4

16 8 4

0

0

0

x

y

z

 

− + + =

− + + =

− + + =

12 4 4 0

8 0 4 0

16 8 4 0

x y z

x y z

x y z

By Cramer’s rule,

 
x y z

4 4

0 4

12 4

8 4

12 4

8 0

= −

−

−

=

−

−

 

x y z

x y z
t

16 16 32

1 1 2

= =

= = = , say

Thus, the eigenvectors of A corresponding to l = 3 are the non-zero vectors of the form 

x x=

















=

















=

t

t

t

t t

2

1

1

2

3
 where x3 is a linearly independent eigenvector corresponding 

to l = 3.

Since the matrix A has a total of 3 linearly independent eigenvectors which is same as 

its order, matrix A is diagonalizable.

Modal matrix P has eigenvectors as its column vectors.

 
P =



















1

2

1

2
1

1 0 1

0 1 2



5.5  Diagonalization 5.47

Diagonal matrix D has eigenvalues as its diagonal elements.

 D =

−

−

















1 0 0

0 1 0

0 0 3

(iii) A =

− −

− −

















1 6 4

0 4 2

0 6 3

The characteristic equation is

 det ( )A I− =

− − −

−

− − −

=

λ

λ

λ

λ

0

1 6 4

0 4 2

0 6 3

0

 l3 – S1l2 + S2l – S3 = 0

where S1 = Sum of the principal diagonal elements of A = 1 + 4 – 3 = 2

 S2 = Sum of the minors of principal diagonal elements of A

 

=

− −

+

−

−

+

−

= − + + − + + +

=

4 2

6 3

1 4

0 3

1 6

0 4

12 12 3 0 4 0

1

( ) ( ) ( )

 

S A3

1 6 4

0 4 2

0 6 3

1 12 12 6 0 0 4 0 0

0

= =

− −

− −

= − + − − − −

=

det( )

( ) ( ) ( )

Hence, the characteristic equation is

λ λ λ

λ

3 2
2 0

0 1 1

− + =

= , ,

(a) For l = 0, [A – lI ]x = 0

 

1 6 4

0 4 2

0 6 3

0

0

0

− −

− −

































=

















x

y

z
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x y z

x y z

− − =

+ + =

− − =

6 4 0

0 4 2 0

0 6 3 0

By Cramer’s rule,

 x y z

− −

= −

−

=

−6 4

4 2

1 4

0 2

1 6

0 4

 

x y z

x y z
t

4 2 4

2 1 2

=

−

=

=

−

= = , say

Thus, the eigenvectors of A corresponding to l = 0 are the non-zero vectors of the form 

x x= −

















= −

















=

2

2

2

1

2

1

t

t

t

t t  where x1 is a linearly independent eigenvector corresponding 

to l = 0.

(b) For l = 1, [A – l I ]x = 0 

 

0 6 4

0 3 2

0 6 4

0

0

0

− −

− −

































=

















x

y

z

 0 3 2 0x y z+ + =

Let   x = t1 and z = t2

 y t= −

2

3
2

Thus, the eigenvectors of A corresponding to l = 1 are the non-zero vectors of the

form x = −



















=

















+ −


















t

t

t

t t

1

2

2

1 2

2

3

1

0

0

0

2

3

1

= +t t
1 2 2 3
x x  where x2 and x3 are linearly indepen-

dent eigenvectors corresponding to l = 1.

Since matrix A has total 3 linearly independent eigenvectors which is same as its order, 

the matrix A is diagonalizable.

Modal matrix P has eigenvectors as its column vectors.

 P = − −



















2 1 0

1 0
2

3

2 0 1



5.5  Diagonalization 5.49

Diagonal matrix D has eigenvalues as its diagonal elements.

 D =

















0 0 0

0 1 0

0 0 1

Example 3: Determine diagonal matrices orthogonally similar to the following 

real symmetric matrices. Also find modal matrices.

(i) 

3 1 1

1 5 1

1 1 3

−

− −

−

















  (ii) 

8 6 2

6 7 4

2 4 3

−

− −

−

















  (iii) 

6 2 2

2 3 1

2 1 3

−

− −

−

















Solution:  (i) A =

−

− −

−

















3 1 1

1 5 1

1 1 3

The characteristic equation is

 

det ( )A I− =

− −

− − −

− −

=

λ

λ

λ

λ

0

3 1 1

1 5 1

1 1 3

0

 l3 – S1l2 + S2l – S3 = 0

where S1 = Sum of the principal diagonal elements of A = 3 + 5 + 3 = 11

 S2 = Sum of the minors of principal diagonal elements of A

 

=

−

−

+ +

−

−

= − + − + −

=

5 1

1 3

3 1

1 3

3 1

1 5

15 1 9 1 15 1

36

( ) ( ) ( )

 

S A3

3 1 1

1 5 1

1 1 3

3 15 1 1 3 1 1 1 5

42 2 4

36

= =

−

− −

−

= − + − + + −

= − −

=

det( )

( ) ( ) ( )

Hence, the characteristic equation is

 
λ λ λ

λ

3 2
11 36 36 0

2 3 6

− + − =

= , ,
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(a) For l = 2, [A – l I ] x = 0

     

1 1 1

1 3 1

1 1 1

0

0

0

−

− −

−

































=

















x

y

z

  x –   y + z = 0

 – x + 3y – z = 0

By Cramer’s rule,

 
x y z

−

−

= −

− −

=

−

−

1 1

3 1

1 1

1 1

1 1

1 3

 
x y z

−

= =

2 0 2

 
x y z

t
−

= = =

1 0 1
, say

Thus, the eigenvectors of A corresponding to l = 2 are the non-zero vectors of the form 

x x=

−















=

−















=

t

t

t t0

1

0

1

1
 where x1 is a linearly independent eigenvector corresponding 

to l = 2.

(b) For l = 3, [A – l I ] x = 0

 

0 1 1

1 2 1

1 1 0

0

0

0

−

− −

−

































=

















x

y

z

 0x –    y +   z = 0
 –x + 2y –    z = 0

 x –    y + 0z = 0

By Cramer’s rule,

 
x y z

−

−

= −

− −

=

−

−

1 1

2 1

0 1

1 1

0 1

1 2

 
x y z

−

=

−

=

−1 1 1

 
x y z

t
1 1 1
= = = , say
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Thus, the eigenvectors of A corresponding to l = 3 are the non-zero vectors of the form 

x x=

















=

















=

t

t

t

t t

1

1

1

2
where x2 is a linearly independent eigenvector corresponding to l 

= 3.

(c) For l = 6, [A – l I ] x = 0

         

− −

− − −

− −

































=

















3 1 1

1 1 1

1 1 3

0

0

0

x

y

z

           

− − + =

− − − =

− − =

3 0

0

3 0

x y z

x y z

x y z

By Cramer’s rule,

 
x y z

−

− −

= −

−

− −

=

− −

− −

1 1

1 1

3 1

1 1

3 1

1 1

                                                                   

x y z

x y z
t

2 4 2

1 2 1

=

−

=

=

−

= = , say

Thus, the eigenvectors of A corresponding to l = 6 are the non-zero vectors of the form 

x x= −

















= −

















=

t

t

t

t t2

1

2

1

3
 where x3 is a linearly independent eigenvector  corresponding 

to l = 6.

Length of the eigenvector   x
1
= − + =( )1 1 22 2

Length of the eigenvector   x
2
= + + =1 1 1 3

2 2 2

Length of the eigenvector   x3 = + − + =1 2 1 62 2 2( )

The normalized eigenvectors are

 x x x
1 2 3

1

2

0

1

2

1

3

1

3

1

3

1

=

−






















=

























=, ,

66

2

6

1

6

−
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Modal matrix P has normalized eigenvectors as its column vectors.

 P =

−

−

























1

2

1

3

1

6

0
1

3

2

6

1

2

1

3

1

6

Diagonal matrix D has eigenvalues as its diagonal elements.

 D =

















2 0 0

0 3 0

0 0 6

(ii) A =

−

− −

−

















8 6 2

6 7 4

2 4 3

The characteristic equation is

         det ( )A I− =

− −

− − −

− −

=

λ

λ

λ

λ

0

8 6 2

6 7 4

2 4 3

0

                                       l3 – S1l2 + S2l – S3 = 0

where S1 = Sum of the principal diagonal elements of A = 8 + 7 + 3 = 18

 S2 = Sum of the minors of principal diagonal elements of A

 

=

−

−

+ +

−

−

= − + − + −

= + +

=

7 4

4 3

8 2

2 3

8 6

6 7

21 16 24 4 56 36

5 20 20

45

( ) ( ) ( )

 

S A3

8 6 2

6 7 4

2 4 3

8 21 16 6 18 8 2 24 14

40 60 2

= =

−

− −

−

= − + − + + −

= − +

det( )

( ) ( ) ( )

00

0=



5.5  Diagonalization 5.53

Hence, the characteristic equation is

λ λ λ

λ

3 2
18 45 0

0 3 15

− + =

= , ,

(a) For l = 0,

        

[ ]A I

x

y

z

− =

−

− −

−

































=
















λ x 0

8 6 2

6 7 4

2 4 3

0

0

0

− + =

− + − =

− + =

8 6 2 0

6 7 4 0

2 4 3 0

x y z

x y z

x y z

By Cramer’s rule,

  

x y z

x y z

x y z
t

−

−

= −

− −

=

−

−

= =

= = =

6 2

7 4

8 2

6 4

8 6

6 7

10 20 20

1 2 2
, say

Thus, the eigenvectors of A corresponding to l = 0 are the non-zero vectors of the form 

x x=

















=

















=

t

t

t

t t2

2

1

2

2

1
 where x1 is a linearly independent eigenvector corresponding 

to l = 0.

(b) For l = 3,

 

[ ]A I

x

y

z

− =

−

− −

−

































=
















λ x 0

5 6 2

6 4 4

2 4 0

0

0

0

− + =

− + − =

− + =

5 6 2 0

6 4 4 0

2 4 0 0

x y z

x y z

x y z

By Cramer’s rule,

 
x y z

−

−

= −

− −

=

−

−

6 2

4 4

5 2

6 4

5 6

6 4
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x y z
t

16 8 16

2 1 2

= =

−

= =

−

= , say

Thus, the eigenvectors of A corresponding to l = 3 are the non-zero vectors of the form 

x x=

−

















=

−

















=

2

2

2

1

2

2

t

t

t

t t where x2 is a linearly independent eigenvector  corresponding 

to l = 3.

(c) For l = 15,

 

[ ]A I

x

y

z

− =

− −
− − −

− −




























=














−

λ x 0

7 6 2

6 8 4

2 4 12

0

0

0

77 6 2 0

6 8 4 0

2 4 12 0

x y z

x y z

x y z

− + =

− − − =

− − =

By Cramer’s rule,

 

x y z

x y z

x y z
t

−

− −

= −

−

− −

=

− −

− −

=

−

=

=

−

= =

6 2

8 4

7 2

6 4

7 6

6 8

40 40 20

2 2 1
, say

Thus, the eigenvectors of A corresponding to l = 15 are the non-zero vectors of the 

form x x= −

















= −

















=

2

2

2

2

1

3

t

t

t

t t  where x3 is a linearly independent eigenvector corre-

sponding to l = 15.

Length of the eigenvector x
1
= + + =1 2 2 3

2 2 2

Length of the eigenvector x
2
= + + − =2 1 2 32 2 2( )

Length of the eigenvector x3 = + − + =2 2 1 32 2 2( )



5.5  Diagonalization 5.55

The normalized eigenvectors are

 x x x
1 2

1

3

2

3

2

3

2

3

1

3

2

3

=

























=

−

























, ,
33

2

3

2

3

1

3

= −

























Modal matrix P has normalized eigenvectors as its column vectors.

 P = −

−

























1

3

2

3

2

3

2

3

1

3

2

3

2

3

2

3

1

3

Diagonal matrix D has eigenvalues as its diagonal elements.

 D =

















0 0 0

0 3 0

0 0 15

(iii) A =

−

− −

−

















6 2 2

2 3 1

2 1 3

The characteristic equation is 

       
det ( )A I− =

− −

− − −

− −

=

λ

λ

λ

λ

0

6 2 2

2 3 1

2 1 3

0

 l3 – S1l2 + S2l – S3 = 0

where S1 = Sum of the principal diagonal elements of A = 6 + 3 + 3 = 12

 S2 = Sum of the minors of principal diagonal elements of A

 

=

−

−

+ +

−

−

= − + − + −

= + +

=

3 1

1 3

6 2

2 3

6 2

2 3

9 1 18 4 18 4

8 14 14

36

( ) ( ) ( )
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6 2 2

2 3 1

2 1 3

6 9 1 2 6 2 2 2 6

48 8 8

32

= =

−

− −

−

= − + − + + −

= − −

=

det( )

( ) ( ) ( )

Hence, the characteristic equation is

λ λ λ

λ

3 2
12 36 32 0

2 2 8

− + − =

= , ,

(a) For l = 8, [A – l I ] x = 0

 

− −

− − −

− −

































=

















− −

2 2 2

2 5 1

2 1 5

0

0

0

2 2

x

y

z

x yy z

x y z

x y z

+ =

− − − =

− − =

2 0

2 5 0

2 5 0

By Cramer’s rule,

 

x y z

x y z

x y z
t

−

− −

= −

−

− −

=

− −

− −

=

−

=

=

−

= =

2 2

5 1

2 2

2 1

2 2

2 5

12 6 6

2 1 1
, say

Thus, the eigenvectors of A corresponding to l = 8 are the non-zero vectors of the form 

x x= −

















= −

















=

2 2

1

1

1

t

t

t

t t  where x1 is a linearly independent eigenvector corresponding 

to l = 8.
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(b) For l = 2, [A – l I ] x = 0

 

4 2 2

2 1 1

2 1 1

0

0

0

4 2 2

−

− −

−

































=

















− +

x

y

z

x y z == 0

Let               y = t1 and z = t2

 x t t= −

1

2

1

2
1 2

Thus, the eigenvectors of A corresponding to l = 2 are the non-zero vectors of the 

form x = =

1

2

1

2

1

2

0

1

2

0

1 2

1

2

1

1

2

2

t t

t

t

t

t

t

t

−



































+

−

















=


















+

−

















= +t t t t

1 2 1 2 2

1

2

1

0

1

2

0

1

x xx
3
 where x2 and 

x3 are linearly independent eigenvectors corresponding to l = 2.

The orthogonal matrix P has mutually orthogonal eigenvectors. Since x2 and x3 are not 

orthogonal, we must choose x3 such that x1, x2, x3 are orthogonal.

Let             x3 = 

 
 
 
  

l

m

n

For orthogonality of eigenvectors,

1 3 0T
x x =  and 2 3 0T

x x =

 [2 –1 1] 0

 
  = 
  

l

m

n

 and 
1

1 0 0
2

 
    =    

  

l

m

n

 2l – m + n = 0 and 
1

2
l + m = 0

By Cramer’s rule,

 

–
–1 1 2 1 2 –1

1 0 1 1
0 1

2 2

= =
l m n
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1 5–1

2 2

= =
l m n

     

, say
–2 1 5

= = =
l m n

t

     x = 

–2 –2

1

5 5

     
     = =     
          

l t

m t t

n t

 = tx3

where x3 is an eigenvector corresponding to l = 2.

Length of eigenvector x1 = 2 2 2(2) (–1) (1) 6+ + =

Length of eigenvector x2 = 

2

2 21 5
1 0

2 2

  + + =  

Length of eigenvector x3 = 2 2 2(–2) (1) (5) 30+ + =

The normalized eigenvectors are

 

1 2 3

2 1 2
–

6 5 30

1 2 1
– , ,

306 5

51 0

306

x x x

     
     
     
     = = =     
     
      
     

The modal matrix P has normalized eigenvectors as its column vectors.

      P = 

2 1 2
–

6 5 30

1 2 1
–

6 5 30

1 5
0

6 30

 
 
 
 
 
 
 
  

  P–1 = PT = 

2 1 1
–

6 6 6

1 2
0

5 5

2 1 5
–

30 30 30

 
 
 
 
 
 
 
 
 



5.5  Diagonalization 5.59

D = PTAP = 

2 1 1 2 1 2
– –

6 6 6 6 5 30
6 –2 2

1 2 1 2 1
0 –2 3 –1 –

5 5 6 5 30
2 –1 3

2 1 5 1 5
– 0

30 30 30 6 30

   
   
    
    
    
     
   
   
   

     = 

8 0 0

0 2 0

0 0 2

 
 
 
  

Hence, the diagonal matrix D has eigenvalues as its diagonal elements.

5.5.2  Powers of a Matrix

If A is an n × n matrix and P is an invertible matrix then

 ( )P AP = P A P
k k− −1 1

If the matrix A is diagonalizable and D =

−

P AP
1  is a diagonal matrix then

 D P AP P A P
k k k= ( ) = 1 1− −

Premultiplying Dk by P and post-multiplying by P -1,

 
PD P P P A P P PP A PP IA I A

A PD P

k k k k k

k k

− − − − −

−

=

=

1

1

= ( ) ( ) ( )1 1 1 1
= =

∴

Example 1: Find A10 where A =
−











1 0

1 2

Solution: A =
−











1 0

1 2

The characteristic equation is

 det ( )A I− =

−

− −
=

λ

λ

λ

0

1 0

1 2
0

       l2 – S1l + S2 = 0

where S1 = Sum of the principal diagonal elements of A = 1 + 2 = 3

 S A2

1 0

1 2
2 0 2= =

−

= − =det( )
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Hence, the characteristic equation is

λ λ

λ

2
3 2 0

1 2

− + =

= ,

Since all the eigenvalues are distinct, the matrix A is diagonalizable.

(a) For l = 1,

 

[ ]A I

x

y

x y

x y

− =

−

















 =










− + =

=

λ x 0

0 0

1 1

0

0

0

Let y = t

 x = t

Thus, the eigenvectors of A corresponding to l = 1 are the non-zero vectors of the 

form x =








 =









 =

t

t

t t

1

1
1
x  where x1 is a linearly independent eigenvector corresponding 

to l = 1.

(b) For l = 2,

 

[ ]A I

x

y

x y

− =

−

−

















 =










− + =

λ x 0

1 0

1 0

0

0

0 0

Let y = t

 x = 0

Thus, the eigenvectors of A corresponding to l = 2 are the non-zero vectors of the form 

x =








 =









 =

0 0

1
2

t

t tx  where x2 is a linearly independent eigenvector corresponding to 

l = 2.

Modal matrix P has eigenvectors as its column vectors.

 P =










1 0

1 1

 

P
− =











1
1 0

1 1−
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Diagonal matrix D has eigenvalues as its diagonal elements.

 

D

A

=










=


















−










−

1 0

0 2

10 10= PD P
1

10

10

1 0

1 1

1 0

0 2

1 0

1 1


=
−











1 0

1023 1024

Example 2: Find a matrix P that diagonalizes A =

−















0 0 2

1 2 1

1 0 3

. Hence, find A13.

Solution: A =

−















0 0 2

1 2 1

1 0 3

The characteristic equation is

 det ( )A I− =

− −

−

−

=

λ

λ

λ

λ

0

0 2

1 2 1

1 0 3

0

 l3 – S1l2 + S2l – S3 = 0

where S1 = Sum of the principal diagonal elements of A = 0 + 2 + 3 = 5

 S2 = Sum of the minors of principal diagonal elements of A.

 

= +

−

+

= − + + + −

=

2 1

0 3

0 2

1 3

0 0

1 2

6 0 0 2 0 0

8

( ) ( ) ( )

 S A3

0 0 2

1 2 1

1 0 3

0 0 2 0 2 4= =

−

= + − − =det( ) ( )

Hence, the characteristic equation is

λ λ λ

λ

3 2
5 8 4 0

1 2 2

− + − =

= , ,
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(a)  For l = 1,  [A – l I ] x = 0

 

− −































=

















− + − =

1 0 2

1 1 1

1 0 2

0

0

0

0 2 0

x

y

z

x y z

xx y z+ + = 0

By Cramer’s rule,

 

x y z

x y z
t

0 2

1 1

1 2

1 1

1 0

1 1

2 1 1

−

= −

− −

=

−

=

−

=

−

= , say

Thus, the eigenvectors corresponding to l = 1 are the non-zero vectors of the form 

x x= −

−

















= −

−

















=

2 2

1

1

1

t

t

t

t t  where x1 is a linearly independent eigenvector corresponding 

to l = 1.

(b) For l = 2, [A – l I ] x = 0

 

− −































=

















+ + =

2 0 2

1 0 1

1 0 1

0

0

0

0 0

x

y

z

x y z

Let y = t1 and z = t2

 x = –t2

Thus, the eigenvectors corresponding to l = 2 are the non-zero vectors of the form 

x x=

−















=

















+

−















= +

t

t

t

t t t

2

1

2

1 2 1 2

0

1

0

1

0

1

tt
2 3
x  where x2 and x3 are linearly independent 

eigenvectors corresponding to l = 2.

Modal matrix P has eigenvectors as its column vectors.

P =

−

−

−

















2 0 1

1 1 0

1 0 1
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− =

















1

1 0 1

1 1 1

1 0 2

Diagonal matrix D has eigenvalues as its diagonal elements.

 

D =

















1 0 0

0 2 0

0 0 2

 

A PD P
13 13= =

−

−

−
































−1

13

13

13

2 0 1

1 1 0

1 0 1

1 0 0

0 2 0

0 0 2 

















=

− −



1 0 1

1 1 1

1 0 2

8190 0 16382

8191 8192 8191

8191 0 16383













Exercise 5.3

1. Show that the following matrices are 

not similar to diagonal matrices.

  (i) 

2 3 4

0 2 1

0 0 1

−

















 (ii) 

2 1 1

2 2 1

1 2 1

−

−

−

















(iii) 

1 2 3

0 2 0

0 0 2

















  (iv) 

3 10 5

2 3 4

3 5 7

− − −

















2. Show that the following matrices are 

similar to diagonal matrices. Find the 

diagonal and modal matrix in each 

case.

 (i) 

− −

−

− −

















2 2 3

2 1 6

1 2 0

(ii) 

− −

− −

−

















17 18 6

18 19 6

9 9 2

(iii) 

1 6 4

0 4 2

0 6 3

− −

− −

















(iv) 

8 8 2

4 3 2

3 4 1

− −

− −

−















Ans.:

(i) D P= −

−

















=

−

−

















5 0 0

0 3 0

0 0 3

1 2 3

2 1 0

1 0 1

,

(ii)) ,D P=

−















=

−





























2 0 0

0 1 0

0 0 1

2 1 1

2 1 0

1 0 3
















( ) ,

( )

iii

iv

D P

D

=














= − −
−















=

1 0 0

0 1 0

0 0 0

1 2 2

2 2 1

3 3 2

1 0 0

0 2 00

0 0 3

4 3 2

3 2 1

2 1 1















=






































, P
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3. Determine diagonal matrices ortho

gonally similar to the following real 

symmetric matrices. Also, find the 

modal matrix in each case.

(i)  

7 4 4

4 8 1

4 1 8

−

− −

− −

















(ii) 

7 0 2

0 5 2

2 2 6

−

−

− −

















Ans. :

( ) ,i D

P

= −

−

















= −

−





9 0 0

0 9 0

0 0 9

4

18
0

1

3

1

18

1

2

2

3

1

18

1

2

2

3



























































     

(ii) D

P

=

















= −

−















3 0 0

0 6 0

0 0 9

1

3

2

3

2

3

2

3

2

3

1

3

2

3

1

3

2

3

,













































4. Find A11, where A =

− −

−

















1 7 1

0 1 0

0 15 2

Ans.:

− −

−

































1 10237 2047

0 1 0

0 10245 2048

5.6 QUADRATIC FORM

A homogeneous polynomial of second degree in n variables is called a quadratic form. 

An expression of the form a x x
ij i j

j

n

i

n

==

∑∑
11

 where aij = aji are all real, is called a quadratic 

form in n variables x1, x2, … xn.

Matrix of a Quadratic Form

The quadratic form corresponding to a symmetric matrix A can be written as

 Q A a x x
T

ij i j

j

n

i

n

= =
==

∑∑x x

11

 ...(1)

where A

a a a

a a a

a a a

n

n

n n nn

=



















11 12 1

21 22 2

1 2

…

…

… … … …

…
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Coefficient of xi xj in equation (1) = +a a
ij ji

 
=

=

2

2

a

a

ij

ji

Coefficient of x
i

2  in equation (1) = aii

5.6.1 Linear Transformation

Let Q = xTAx be a quadratic form and x = Py be a non-singular linear transformation.

 

Q A P A P

P AP

B P AP

T T

T T

T T

= =

=

= =

x x y y

y y

y y

( ) ( )

where B

The form y TBy is called linear transformation of the quadratic form xTAx under a non-

singular transformation x = Py and P is called the matrix of the transformation.

Further,  B P AP P A P P AP A
T T T T T T T T
= = =( ) ( ) [ ]∵ is symmetric

           = B

Hence, matrix B is also symmetric.

5.6.2  Rank of Quadratic Form

The rank of the coefficient matrix A is called the rank of the quadratic form xTAx. The 

number of non-zero eigen values of A also gives the rank of the quadratic form of A.

If r (A) < n (order of A), i.e. det (A) = 0 then the quadratic form is singular, other-

wise it is non-singular.

5.6.3  Canonical or Normal Form

Let Q = xTAx be a quadratic form of rank r. An orthogonal transformation x = Py 

which diagonalises A, i.e., PT AP = D, transforms the quadratic form Q to λ
i i

i

r

y
2

1=

∑  

(i.e., sum of r squares) or in matrix form y TDy in new variables. This new quadratic 

form containing only the squares of yi is called the canonical form or normal form or 

sum of squares form of the given quadratic form.

(1)  Index 
The number of positive terms in the canonical form is called the index of the quadratic 

form and is denoted by p.

(2)  Signature 

The difference between the number of positive and negative terms in the canonical 

form is called the signature of the quadratic form and is denoted by s.

If index is p and total terms are r then

 signature s = p – (r – p)

   = 2p – r

The signature of a quadratic form is invariant for all normal reductions.
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5.6.4  Value Class or Nature of Quadratic Form

Let Q = xTAx be the quadratic form in n variables x1, x2 … xn. Let r be the rank and p be 

the number of positive terms in the canonical form of Q. Then we have the following 

criteria for the definiteness of value class of Q.

 

Value Class Criteria Canonical Form

1. Positive definite r = p = n
y

y

i

i

n

i

i

r

2

1

2

1

=

=

∑

∑













only positive terms

2. Positive semidefinite r = p, p < n

3. Negative definite r = n, p = 0 −

−













=

=

∑

∑

y

y

i

i

n

i

i

r

2

1

2

1

only negative terms

4. Negative semidefinite r < n, p = 0

5. Indefinite Otherwise both positive and negative terms

(1)   Criteria for the Value Class of a Quadratic Form in Terms 

of the Nature of Eigen Values 
Value Class Nature of Eigen Values

1. Positive definite positive eigenvalues

2. Positive semidefinite positive eigenvalues and at least one is zero

3. Negative definite negative eigenvalues

4. Negative semidefinite negative eigenvalues and at least one is zero

5. Indefinite positive as well as negative eigenvalues

(2)   Criteria for the Value Class of a Quadratic Form in Terms 

of Leading Principal Minors

For the matrix A

a a a

a a a

a a a

n

n

n n nn

=



















11 12 1

21 22 2

1 2

…

…

… … … …

…

The leading principal minors of matrix A are those determinants starting with a11 of 

orders 1, 2, … n, i.e. 
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a a

a a

a a a

a a a

a a a

a a a

a

n

11

11 12

21 22

11 12 13

21 22 23

31 32 33

11 12 1

2
, , , …

…

11 22 2

1 2

a a

a a a

n

n n nn

…

… … … …

…

Value Class Nature of Leading Principal Minors

1. Positive definite positive leading principal minors

2. Positive semidefinite positive leading principal minors and  

at least one is zero

3. Negative definite negative leading principal minors

4. Negative semidefinite negative leading principal minors and  

at least one is zero

5. Indefinite positive as well as negative leading 

 principal minors

 
5.6.5  Maximum and Minimum Value of Quadratic Form 

Maximum and minimum values of a quadratic form xTAx are l1 and ln respectively if 

l1 ≥ l2 ≥ … ≥ ln subject to the constraint 

 
x x x x

n
= + =( )1

2
2
2 2

1

2 1�

The quadratic form xTAx = l1 if x is a normalized eigenvector of A corresponding to l1 

and xTAx = ln if x is a normalized eigenvector of A corresponding to ln.

5.6.6  Methods to Reduce Quadratic Form 
to Canonical Form

(1)  Orthogonal Transformation

If Q = xTAx  is a quadratic form, then there exists a real orthogonal transformation 

x = Py (where P is an orthogonal matrix) which transforms the given quadratic form 

xTAx to

 λ λ λ1 1

2

2 2

2 2
y y yr r+ + +�

where l1, l2 …lr are the r non-zero eigen values of matrix A.

(2)  Congruent Transformation

Congruent transformation consist of a pair of elementary transformations, one row and 

one similar column such that pre and post matrices are transpose of each other.

If Q = xTAx is a quadratic form then there exists a non-singluar linear transformation 

x = Py which transforms the given quadratic form xTAx to a sum of square terms.
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2

2 2

2 2
+ + +�

Example 1: Express the following quadratic forms in matrix notation:

  (i)  x2 - 6xy + y2

  (ii)  2x2 + 3y2 - 5z2 - 2xy + 6xz - 10yz

(iii) x x x x x x x x x x x x x x x x
1

2

2

2

3

2

4

2

1 2 1 3 1 4 2 3 2 4 3 4
2 3 2 4 2 4 6 8+ + + − + − + − −

Solution: (i) x x
T
A x y

x

y
=

−

−


















[ ]

1 3

3 1

(ii) x x
T
A x y z

x

y

z

=

−

− −

− −

































[ ]

2 1 3

1 3 5

3 5 5

(iii) x x
T
A x x x x

x

x

x

x

=

− −

− −

−

− − −



















[ ]
1 2 3 4

1

2

3

1 1 2 1

1 2 2 3

2 2 3 4

1 3 4 1 44



















Example 2: Write down the quadratic forms corresponding to the following 

 matrices:

(i) 

2 1 5

1 3 2

5 2 4

−

−

















  (ii) 

0 1 2 3

1 2 3 4

2 3 4 5

3 4 5 6



















Solution: (i) Q x x x x x x x x x= + + + + −2 3 4 2 10 4
1

2

2

2

3

2

1 2 1 3 2 3

(ii) Q x x x x x x x x x x x x x x x= + + + + + + + +2 4 6 2 4 6 6 8 10
2

2

3

2

4

2

1 2 1 3 1 4 2 3 2 4 3 4

Example 3: Determine the nature (value class), index and signature of the 

 following quadratic forms:

  (i) x x x x x x x x x
1

2

2

2

3

2

2 3 3 1 1 2
5 2 6 2+ + + + +

  (ii) 6 3 3 4 2 4
1

2

2

2

3

2

1 2 2 3 3 1
x x x x x x x x x+ + − − +

(iii) x x x x x x x x x
1

2

2

2

3

2

1 2 3 1 2 3
4 4 2 4+ + − + −

 (iv) − − − − − +3 3 3 2 2 2
1

2

2

2

3

2

1 2 1 3 2 3
x x x x x x x x x
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Solution:  (i) Q x x x x x x x x x= + + + + +
1

2

2

2

3

2

2 3 3 1 1 2
5 2 6 2

 Q A x x x

x

x

x

T= =

































x x [ ]
1 2 3

1

2

3

1 1 3

1 5 1

3 1 1

 A =

















1 1 3

1 5 1

3 1 1

The characteristic equation is

 det (A - l I ) = 0

 

1 1 3

1 5 1

3 1 1

0

7 36 0

2 3 6

3 2

−

−

−

=

− + =

= −

λ

λ

λ

λ λ

λ , , .

Since there are positive as well as negative eigenvalues, value class of quadratic form 

is indefinite.

Index p = Number of positive eigenvalues = 2

Signature s = Difference between the number of positive and negative eigenvalues

  = 2 - 1 = 1

(ii) Q x x x x x x x x x= + + − − +6 3 3 4 2 4
1

2

2

2

3

2

1 2 2 3 3 1

 Q A x x x

x

x

x

T= =

−

− −

−

































x x [ ]
1 2 3

1

2

3

6 2 2

2 3 1

2 1 3

 A =

−

− −

−

















6 2 2

2 3 1

2 1 3

The characteristic equation is

 

det ( )

, ,

A I− =

− −

− − −

− −

=

− + − =

=

λ

λ

λ

λ

λ λ λ

λ

0

6 2 2

2 3 1

2 1 3

0

12 36 32 0

8 2 2

3 2
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Since all the eigenvalues of A are positive, the value class of the quadratic form is 

positive definite.

Index p = Number of positive eigenvalues = 3

Signature s = Difference between the number of positive and negative eigenvalues 

 = 3 – 0 = 3

(iii) Q x x x x x x x x x= + + − + −
1

2

2

2

3

2

1 2 3 1 2 3
4 4 2 4

Q A x x x

x

x

x

T= =

−

− −

−

































x x [ ]
1 2 3

1

2

3

1 2 1

2 4 2

1 2 1

A=

−

− −

−

















1 2 1

2 4 2

1 2 1

The characteristic equation is

 

det ( )

, ,

A I− =

− −

− − −

− −

=

− =

=

λ

λ

λ

λ

λ λ

λ

0

1 2 1

2 4 2

1 2 1

0

6 0

0 0 6

3 2

Since the eigenvalues of A are positive and two eigenvalues are zero, the value class 

of the quadratic form is positive semidefinite.

 Index p = Number of positive eigenvalues = 1.

Signature s = Difference between the number of positive and negative eigenvalues

  = 1 – 0 = 1

(iv) Q x x x x x x x x x= − − − − − +3 3 3 2 2 2
1

2

2

2

3

2

1 2 1 3 2 3

Q A x x x

x

x

x

A

T= =

− − −

− −

− −

































x x [ ]
1 2 3

1

2

3

3 1 1

1 3 1

1 1 3

==

− − −

− −

− −

















3 1 1

1 3 1

1 1 3
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The characteristic equation is

 

det ( )

, ,

A I− =

− − − −

− − −

− − −

=

+ + + =

= − −

λ

λ

λ

λ

λ λ λ

λ

0

3 1 1

1 3 1

1 1 3

0

9 24 16 0

1 4

3 2

−− 4

Since all the eigenvalues of A are negative, the quadratic form is negative  definite.

 Index p = Number of positive eigenvalues = 0

 Signature s = Difference between the number of positive and negative eigenvalues 

 = 0 – 3 = –3

Example 4: Find the value of k so that the value class of the quadratic form 

k x x x x x x x x x
1

2

2

2

3

2

1 2 2 3 3 1
2 2 2+ +( ) + − +  is positive definite.

Solution: 

 

Q k x x x x x x x x x

Q A x x x

k

kT

= + +( ) + − +

= = −

−

1

2

2

2

3

2

1 2 2 3 3 1

1 2 3

2 2 2

1 1

1 1

1

x x [ ]

11

1

2

3
k

x

x

x

































 A

k

k

k

= −

−

















1 1

1 1

1 1

The characteristic equation is

 

det ( )A I

k

k

k

− =

−

− −

− −

=

λ

λ

λ

λ

0

1 1

1 1

1 1

0

 

( )[( ) ] ( ) [ ( )]

( )( )( )

k k k k

k k k

− − − − − + + − − − =

− − + − − −

λ λ λ λ

λ λ λ

2 1 1 1 1 1 0

1 1 (( ) ( )

( )[( )( ) ]

k k

k k k

− + − − + =

− + − − − − =

λ λ

λ λ λ

1 1 0

1 1 2 0

 

( )[( ) ( ) ]

( )( )( )

( ), (

k k k

k k k

k k

− + − − − − =

− + − + − − =

= +

λ λ λ

λ λ λ

λ

1 2 0

1 1 2 0

1

2

++ −1 2), ( )k
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For value class of quadratic form to be positive definite, all the eigenvalues should 

be greater than zero, i.e.

 k > –1 and k > 2

Hence, value class of quadratic form is positive definite if k > 2.

Example 5: Find the maximum and minimum values of the quadratic form 

x x x x
1

2

2

2

1 2
4+ +  subject to the constraint x x

1

2

2

2
1+ = ,  and determine values of x1 and 

x2 at which the maximum and minimum occur.

Soltuion: 

 

Q x x x x

Q A x x
x

x

T

= + +

= =



















1

2

2

2

1 2

1 2

1

2

4

1 2

2 1
x x [ ]

 A =










1 2

2 1

The characteristic equation is

 

det ( )

,

A I− =

−

−
=

− − =

= −

λ

λ

λ

λ λ

λ

0

1 2

2 1
0

2 3 0

3 1

2

Thus, the eigenvalues of A are l = 3, and l = –1 which are the maximum and mini-

mum values, respectively of the quadratic form subject to the constraint.

(a) For  l = 3, [A – l I ] x = 0

 
−

−


















 =










2 2

2 2

0

0

1

2

x

x

 

− + =

− + =

=

2 2 0

0

1 2

1 2

1 2

x x

x x

x x

Let x2 = t

 x1 = t

Thus, the eigenvectors of A corresponding to l = 3 are the non-zero vectors of the form 

x x=








 =









 =

t

t

t t

1

1
1
 where x1 is a linearly independent eigenvector corresponding to 

l = 3.
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(b) For l = –1 [A – l I ] x = 0

 
2 2

2 2

0

0

1

2


















 =










x

x

 
2 2 0

1 2

1 2

x x

x x

+ =

= −

Let x2 = t

 x1 = –t

Thus, the eigenvectors of A corresponding to l = –1 are the non-zero vectors of the form 

x x=
−







 =

−







 =

t

t

t t

1

1
2

 where x2 is a linearly independent eigenvector  corresponding 

to l = –1.

Length of vector 

Length of ve

the eigen

the eigen

x1

2 21 1 2= + =( ) ( )

cctor x2

2 21 1 2= − + =( ) ( )

The normalized eigenvectors are 

 x x
1 2

1

2

1

2

1

2

1

2

=



















=

−


















,

Thus, subject to the constraint x x
1

2

2

2
1+ = ,  the maximum value of the quadratic 

form is l = 3, which occurs if x x
1 2

1

2

1

2
= =,  and the minimum value is l = –1, 

which occurs if x x
1 2

1

2

1

2
= − =, .

Example 6: Reduce the following quadratic forms to canonical forms by orthog-

onal transformation. Also find the rank, index, signature and value class (nature) of 

the quadratic forms.

  (i)  Q x x x x x= + + −2 2 2 2
1

2

2

2

3

2

1 3

  (ii)  Q x x x x x x x x x= + + − − +3 5 3 2 2 2
1

2

2

2

3

2

1 2 2 3 1 3

(iii)    Q  = 2x2 + 2y2 – z2 – 4yz + 4xz – 8xy

Solution: (i) Q x x x x x= + + −2 2 2 2
1

2

2

2

3

2

1 3

 Q A x x x

x

x

x

T= =

































x x [ ]
1 2 3

1

2

3

2 0 1

0 2 0

1 0 2
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2 0 1

0 2 0

1 0 2

The characteristic equation is

 

det ( )A I− =

−

−

−

=

λ

λ

λ

λ

0

2 0 1

0 2 0

1 0 2

0

 l3 – S1l2 + S2l – S3 = 0

where S1 = Sum of the principal diagonal elements of A = 2 + 2 + 2 = 6

 S2 = Sum of the minors of principal diagonal elements of A

 

= + +

= − + − + −

=

2 0

0 2

2 1

1 2

2 0

0 2

4 0 4 1 4 0

11

( ) ( ) ( )

 

S A3

2 0 1

0 2 0

1 0 2

2 4 0 0 1 0 2

8 2

6

= =

= − + + −

= −

=

det( )

( ) ( )

Hence, the characteristic equation is

 
λ λ λ

λ

3 2
6 11 6 0

1 2 3

− + − =

= , ,

(a) For l = 1, [A – l I ] x = 0

 

1 0 1

0 1 0

1 0 1

0

0

0

1

2

3

































=

















x

x

x

 x1 + 0x2 +   x3 = 0

 0x1 +   x2 + 0x3 = 0

By Cramer’s rule,

 
x x x
1 2 3

0 1

1 0

1 1

0 0

1 0

0 1

= − =
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t

1 2 3

1 0 1−

= = = , say

Thus, the eigenvectors of A corresponding to l = 1 are the non-zero vectors of the 

form x x=

−















=

−















=

t

t

t t0

1

0

1

1
 where x1 is a linearly independent eigenvector corre-

sponding to l = 1.

(b) For l = 2, [A – l I ] x = 0

 

0 0 1

0 0 0

1 0 0

0

0

0

1

2

3

































=

















x

x

x

 0x1 + 0x2 +   x3 = 0

 x1 + 0x2 + 0x3 = 0

By Cramer’s rule,

 
x x x
1 2 3

0 1

0 0

0 1

1 0

0 0

1 0

= − =

 
x x x

t
1 2 3

0 1 0
= = = , say

Thus, the eigenvectors of A corresponding to l = 2 are the non-zero vectors of the 

form x x=

















=

















=

0

0

0

1

0

2
t t t  where x2 is a linearly independent eigenvector correspond-

ing to l = 2.

(c) For l = 3, [A – l I ] x = 0

 

−

−

−

































=

















1 0 1

0 1 0

1 0 1

0

0

0

1

2

3

x

x

x

    -x1 + 0x2+   x3 = 0

    0x1 -   x2+ 0x3 = 0

By Cramer’s rule,

 
x x x
1 2 3

0 1

1 0

1 1

0 0

1 0

0 1−

= −

−

=

−

−

 
x x x

t
1 2 3

1 0 1
= = = , say
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Thus, the eigenvectors of A corresponding to l = 3 are the non-zero vectors of the form 

x x=

















=

















=

t

t

t t0

1

0

1

3
 where x3 is a linearly independent eigenvector corresponding to 

l = 3.

 

Length of the eigenvector 

Length of the eige

1x = − + + =( )1 0 1 22 2 2

nnvector 

Length of the eigenvector 

x

x

2

2 2 2

3

2 2 2

0 1 0 1

1 0 1

= + + =

= + + == 2

The normalized eigenvectors are

 x x x
1 2 3

1

2

0

1

2

0

1

0

1

2

0

1

2

=

−






















=

















=











, ,














Modal matrix P has normalized eigenvectors as its column vectors.

 P =

−






















1

2

0
1

2

0 1 0

1

2

0
1

2

Diagonal matrix D has eigenvalues as its diagonal elements.

 D =

















1 0 0

0 2 0

0 0 3

Let x = Py be the linear transformation which transforms the given quadratic form to 

canonical form.

 

x

x

x

y

y

y

1

2

3

1

2

3

1

2

0
1

2

0 1 0

1

2

0
1

2

















=

−






































= − +

=

= +

x y y

x y

x y y

1 1 3

2 2

3 1 3

1

2

1

2

1

2

1

2



5.6  Quadratic Form 5.77

The canonical form is

 

Q P AP D

y y y

y

y

y

T T T= =

=































y y y y( )

[ ]1 2 3

1

2

3

1 0 0

0 2 0

0 0 3



= + +y y y1

2

2

2

3

22 3

Rank r = Number of non-zero terms in canonical form = 3

Index p = Number of positive terms in canonical form = 3

Signature s = Difference between the number of positive and negative terms in 

c anonical form = 3 – 0 = 3

Since only positive terms occur in the canonical form, the value class of the 

 quadratic form is positive definite.

(ii) Q x x x x x x x x x= + + − − +3 5 3 2 2 2
1

2

2

2

3

2

1 2 2 3 1 3

 Q A x x x

x

x

x

T= =

−

− −

−

































x x [ ]
1 2 3

1

2

3

3 1 1

1 5 1

1 1 3

 A =

−

− −

−

















3 1 1

1 5 1

1 1 3

The characteristic equation is

 

det ( )A I− =

− −

− − −

− −

=

λ

λ

λ

λ

0

3 1 1

1 5 1

1 1 3

0

 l3 – S1l2 + S2l – S3 = 0

where S1 = Sum of the principal diagonal elements of A = 3 + 5 + 3 = 11

 S2 = Sum of the minors of principal diagonal elements of A

=

−

−

+ +

−

−

= − + − + −

= + +

=

5 1

1 3

3 1

1 3

3 1

1 5

15 1 9 1 15 1

14 8 14

36

( ) ( ) ( )
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3 1 1

1 5 1

1 1 3

3 15 1 1 3 1 1 1 5

42 2 4

36

= =

−

− −

− −

= − + − + + −

= − −

=

det( )

( ) ( ) ( )

Hence, the characteristic equation is

 
λ λ λ

λ

3 2
11 36 36 0

2 3 6

− + − =

= , ,

(a) For l = 2, [A – l I ] x = 0

 

1 1 1

1 3 1

1 1 1

0

0

0

1

2

3

−

− −

−

































=

















x

x

x

 x1 –   x2 + x3 = 0

 –x1 + 3x2 – x3 = 0

By Cramer’s rule,

 
x x x
1 2 3

1 1

3 1

1 1

1 1

1 1

1 3

−

−

= −

− −

=

−

−

 
x x x
1 2 3

2 0 2−

= =

 
x x x

t
1 2 3

1 0 1−

= = = , say

Thus, the eigenvectors of A corresponding to l = 2 are the non-zero vectors of the 

form x x=

−















=

−















=

t

t

t t0

1

0

1

1
 where x1 is a linearly independent eigenvector correspond-

ing to l = 2.

(b) For l = 3, [A – l I ] x = 0

 

0 1 1

1 2 1

1 1 0

0

0

0

1

2

3

−

− −

−

































=

















x

x

x

 0x1 -   x2 +   x3 = 0

 -x1  + 2x2 -   x3 = 0

 x1   -  x2 + 0x3 = 0
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By Cramer’s rule,

 
x x x
1 2 3

1 1

2 1

0 1

1 1

0 1

1 2

−

−

= −

− −

=

−

−

 
x x x
1 2 3

1 1 1−

=

−

=

−

 
x x x

t
1 2 3

1 1 1
= = = , say

Thus, the eigenvectors of A corresponding to l = 3 are the non-zero vectors of the form 

x x=

















=

















=

t

t

t

t t

1

1

1

2
 where x2 is a linearly independent eigenvector corresponding to 

l = 3.

(c) For l = 6, [A – l I ] x = 0

 

− −

− − −

− −

































=

















3 1 1

1 1 1

1 1 3

0

0

0

1

2

3

x

x

x

 

− − + =

− − − =

− − =

3 0

0

3 0

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

By Cramer’s rule,

 
x x x
1 2 3

1 1

1 1

3 1

1 1

3 1

1 1

−

− −

= −

−

− −

=

− −

− −

 
x x x
1 2 3

2 4 2
=

−

=

 
x x x

t
1 2 3

1 2 1
=

−

= = , say

Thus, the eigenvectors of A corresponding to l = 6 are the non-zero vectors of the form 

x x= −

















= −

















=

t

t

t

t t2

1

2

1

3
 where x3 is a linearly independent eigenvector  corresponding 

to l = 6.

 

Length of the eigenvector 

Length of the eig

1x = − + + =( )1 0 1 22 2 2

eenvector 

Length of the eigenvector 

x

x

2

2 2 2

3

2

1 1 1 3

1 2

= + + =

= + −( ))2 21 6+ =
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The normalized eigenvectors are

 x x x
1 2 3

1

2

0

1

2

1

3

1

3

1

3

1

=

−






















=

























=, ,

66

2

6

1

6

−

























Modal matrix P has normalized eigenvectors as its column vectors.

 P =

−

−

























1

2

1

3

1

6

0
1

3

2

6

1

2

1

3

1

6

Diagonal matrix D has eigenvalues as its diagonal elements.

 D =

















2 0 0

0 3 0

0 0 6

Let x = Py be the linear transformation which transforms the given quadratic form 

to canonical form.

 

x

x

x

y

y

1

2

3

1

2

1

2

1

3

1

6

0
1

3

2

6

1

2

1

3

1

6

















=

−

−

























yy
3

















 

x y y y

x y y

x y y y

1 1 2 3

2 2 3

3 1 2 3

1

2

1

3

1

6

1

3

2

6

1

2

1

3

1

6

= − + +

= −

= + +
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The canonical form is

 

Q P AP D

y y y

y

y

y

T T T= =

=































y y y y( )

[ ]1 2 3

1

2

3

2 0 0

0 3 0

0 0 6



= + +2 3 61

2

2

2

3

2
y y y

Rank r = Number of non-zero terms in canonical form = 3

Index p = Number of positive terms in canonical form = 3

Signature s = Difference between the number of positive and negative terms in 

canonical form = 3 - 0 = 3

Since only positive terms occur in the canonical form, the value class of the quadratic 

form is positive definite.

(iii) Q x y z xy xz yz= + − − + −2 2 8 4 4
2 2 2

   Q A x y z

x

y

z

T= =

−

− −

− −

































x x [ ]

2 4 2

4 2 2

2 2 1

  A =

−

− −

− −

















2 4 2

4 2 2

2 2 1

The characteristic equation is

 

det ( )A I− =

− −

− − −

− − −

=

λ

λ

λ

λ

0

2 4 2

4 2 2

2 2 1

0

 l3 – S1l2 + S2l – S3 = 0

where S1 = Sum of the principal diagonal elements of A = 2 + 2 - 1 = 3

 S2 = Sum of the minors of principal diagonal elements of A

    

=

−

− −

+

−

+

−

−

= − − + − − + −

= − − −

= −

2 2

2 1

2 2

2 1

2 4

4 2

2 4 2 4 4 16

6 6 12

24

( ) ( ) ( )

 

S A3

2 4 2

4 2 2

2 2 1

2 2 4 4 4 4 2 8 4

12 32 8

28

= =

−

− −

− −

= − − + + + −

= − + +

=

det( )

( ) ( ) ( )
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Hence, the characteristic equation is

 
λ λ λ

λ

3 2
3 24 28 0

2 2 7

− − − =

= − −, ,

(a) For l = 7, [A – l I ] x = 0

 

− −

− − −

− −

































=

















5 4 2

4 5 2

2 2 8

0

0

0

x

y

z

 

− − + =

− − − =

− − =

5 4 2 0

4 5 2 0

2 2 8 0

x y z

x y z

x y z

By Cramer’s rule,

 
x y z

−

− −

= −

−

− −

=

− −

− −

4 2

5 2

5 2

4 2

5 4

4 5

 
x y z

18 18 9
=

−

=

 
x y z

t
2 2 1
=

−

= = , say

Thus, the eigenvectors of A corresponding to l = 7 are the non-zero vectors of the 

form x x= −

















= −

















=

2

2

2

2

1

1

t

t

t

t t  where x1 is a linearly independent eigenvector corre-

sponding to l = 7.

(b) For  l = -2, [A – l I ] x = 0

 

4 4 2

4 4 2

2 2 1

0

0

0

−

− −

−

































=

















x

y

z

 2x - 2y + z = 0

Let y = t1 and z = t2

 x t t= −
1 2

1

2
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Thus, the eigenvectors of A corresponding to l = -2 are the non-zero vectors of the form 

x =

−

















=

















+

−













t t

t

t

t t

1 2

1

2

1 2

1

2 1

1

0

1

2

0

1




= +t t

1 2 2 3
x x  where x2 and x3 are linearly independent  

eigenvectors corresponding to l = -2.

The orthogonal matrix P has mutually orthogonal eigenvectors. Since x2 and x3 are 

not orthogonal, we must choose x3 such that x 1, x 2, x 3 are orthogonal.

Let x3 = 

l

m

n

 
 
 
  

For orthogonality of eigenvectors,

  x 1
T x3 = 0  and  x2

T x3 = 0

 [2 2 1] 0

l

m

n

È ˘
Í ˙- =Í ˙
Í ˙Î ˚

 and [1 1 0] 0

l

m

n

È ˘
Í ˙ =Í ˙
Í ˙Î ˚

 2l – 2m + n = 0 and l + m = 0

By Cramer’s rule,

 

2 1 2 1 2 2

1 0 1 0 1 1

l m n
= - =

- -

 , say
1 1 4

l m n
t= - = =

-

3

1

1

4 4

l t

m t t t

n t

- -È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙= = = =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

x x  where x3 is an eigenvector corresponding to l = –2.

Length of eigenvector x1 = 2 22 ( 2) 1 3+ - + =

Length of eigenvector x2 = 2 2 21 1 0 2+ + =

Length of eigenvector x3 = 2 2 2( 1) 1 4 18- + + =

The normalized eigenvectors are

1 2 3

112

1823

2 1 1
, ,

3 2 18

1 0 4

3 18

È ˘È ˘È ˘ -Í ˙Í ˙Í ˙
Í ˙Í ˙Í ˙
Í ˙Í ˙Í ˙= - = = Í ˙Í ˙Í ˙
Í ˙Í ˙Í ˙

Í ˙ Í ˙Î ˚Í ˙
Í ˙Í ˙Î ˚ Î ˚

x x x
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Modal matrix P has normalized eigenvectors as its column vectors.

 P = 

2 1 1

3 2 18

2 1 1

3 2 18

1 4
0

3 18

È ˘
-Í ˙

Í ˙
Í ˙
-Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

 P–1 = PT = 

2 2 1

3 3 3

1 1
0

2 2

1 1 4

18 18 18

È ˘
-Í ˙

Í ˙
Í ˙
Í ˙
Í ˙
Í ˙-
Í ˙Î ˚

 D = PT AP = 

2 1 12 2 1

3 2 183 3 3 2 4 2
1 1 2 1 1

0 4 2 2
32 2 2 18

2 2 1
1 1 4 1 4

0
318 18 18 18

È ˘È ˘ -- Í ˙Í ˙
- Í ˙È ˘Í ˙

Í ˙Í ˙Í ˙ - - -Í ˙Í ˙Í ˙
Í ˙Í ˙- -Í ˙ Î ˚
Í ˙Í ˙- Í ˙Í ˙Î ˚ Î ˚

 = 

7 0 0

0 2 0

0 0 2

È ˘
Í ˙-Í ˙
Í ˙-Î ˚

Hence, the diagonal matrix D has eigenvalues as its diagonal elements.

Let x = Py be the linear transformation which transforms the given quadratic form to 

cannonical form.

 

1 1

2 2

3 3

2 1 1

3 2 18

2 1 1

3 2 18

1 4
0

3 18

x y

x y

x y

È ˘
-Í ˙

Í ˙È ˘ È ˘
Í ˙Í ˙ Í ˙= -Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙Î ˚ Î ˚
Í ˙
Í ˙
Î ˚

 

1 1 2 3

2 1 2 3

3 1 3

2 1 1

3 2 18

2 1 1

3 2 18

1 4

3 18

x y y y

x y y y

x y y

= + -

= - + +

= +
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The cannonical form is

 Q = yT (PTAP)y = yT Dy

  = 

1

1 2 3 2

3

7 0 0

[ ] 0 2 0

0 0 2

y

y y y y

y

È ˘ È ˘
Í ˙ Í ˙-Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

  = 7y1
2 –2y2

2 – 2y3
2

Rank r = Number of non-zero terms in canonical form = 3

Index p = Number of positive terms in canonical form = 1

Signature s = Difference between the number of positive and negative terms in 

canonical form = 1 - 2 = –1

Since both positive and negative terms occur in canonical form, the value class of 

quadratic form is indefinite.

Example 7: Reduce the following quadratic forms to canonical form by  congruent 

transformation. Also find the rank, index, signature and value class nature of the 

quadratic forms.

    (i) x x x x x x x x x
1

2

2

2

3

2

1 2 1 3 2 3
2 3 2 2 2+ + + − +

   (ii) 2 3 8 4 12
1

2

2

2

3

2

2 3 1 3 1 2
x x x x x x x x x+ − − − +

(iii) x y z xy yz zx
2 2 2

2 2 2 2+ + − − +

Solution: (i) Q x x x x x x x x x= + + + − +
1

2

2

2

3

2

1 2 1 3 2 3
2 3 2 2 2

 

Q A x x x

x

x

x

A

T= =

−

−

































=

−

x x [ ]
1 2 3

1

2

3

1 1 1

1 2 1

1 1 3

1 1 1

11 2 1

1 1 3−

















Let A = I3 AI3

 

1 1 1

1 2 1

1 1 3

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

−

−

















=





























A




 

R R R R

A

2 1 3 1

1 1 1

0 1 2

0 2 2

1 0 0

1 1 0

1 0 1

1 0 0

0 1

− +

−















= −

















,

00

0 0 1
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C C C C

A

2 1 3 1

1 0 0

0 1 2

0 2 2

1 0 0

1 1 0

1 0 1

1 1 1

0 1

− +

















= −

















−

,

00

0 0 1

















 

R R

A

3 2
2

1 0 0

0 1 2

0 0 2

1 0 0

1 1 0

3 2 1

1 1 1

0 1 0

0 0

−

−

















= −

−

















−

11

















 

C C

A

3 2
2

1 0 0

0 1 0

0 0 2

1 0 0

1 1 0

3 2 1

1 1 3

0 1 2

0

−

−

















= −

−

















−

−

00 1

















 

1

2

1

2

1 0 0

0 1 0

0 0 1

1 0 0

1 1 0

3

2
2

1

2

3 3













−
















= −

−







R C,














−

−























A

1 1
3

2

0 1 2

0 0
1

2

Comparing with D = PT AP

 D =

−

















1 0 0

0 1 0

0 0 1

 P =

−

−























1 1
3

2

0 1 2

0 0
1

2

Let x = Py be the linear transformation which transforms the given quadratic form 

to the canonical form.

 

x

x

x

y

y

y

1

2

3

1

2

3

1 1
3

2

0 1 2

0 0
1

2

















=

−

−
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x y y y

x y y

x y

1 1 2 3

2 2 3

3 3

3

2

2

1

2

= − +

= −

=

The canonical form is

 

Q y P AP y y Dy

y y y

y

y

y

T T T= =

=

−





























( )

[ ]1 2 3

1

2

3

1 0 0

0 1 0

0 0 1





= + −y y y1

2

2

2

3

2

Rank r = Number of non-zero terms in canonical form = 3

Index p = Number of positive terms in canonical form = 2

Signature s = Difference between the number of positive and negative terms in 

canonical form = 2 – 1 = 1
Since both positive and negative terms occur in the canonical form, the value class of 

the quadratic form is indefinite.

(ii) Q x x x x x x x x x= + − − − +2 3 8 4 12
1

2

2

2

3

2

2 3 1 3 1 2

 Q A x x x

x

x

x

T= =

−

−

− − −

































x x [ ]
1 2 3

1

2

3

2 6 2

6 1 4

2 4 3

 A =

−

−

− − −

















2 6 2

6 1 4

2 4 3

Let A = I3 AI3

 

2 6 2

6 1 4

2 4 3

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

−

−

− − −

















=






















A











 

R R R R

A

2 1 3 1
3

2 6 2

0 17 2

0 2 5

1 0 0

3 1 0

1 0 1

1

− +

−

−

−

















= −

















,

00 0

0 1 0

0 0 1



















5.88 Chapter 5 Eigenvalues and Eigenvectors

 

C C C C

A

2 1 3 1
3

2 0 0

0 17 2

0 2 5

1 0 0

3 1 0

1 0 1

1

− +

−

−

















= −

















−

,

33 1

0 1 0

0 0 1

















 

R R
3 2

2

17

2 0 0

0 17 2

0 0
81

17

1 0 0

3 1 0

11

17

2

17
1

+

−

−



















= −



















−















A

1 3 1

0 1 0

0 0 1

 

C C
3 2

2

17

2 0 0

0 17 0

0 0
81

17

1 0 0

3 1 0

11

17

2

17
1

+

−

−



















= −



















−




















A

1 3
11

17

0 1
2

17

0 0 1

      
1

2

1

2
1 1













R C,

     

1

17

1

17

17

81

17

81

2 2

3 3


























R C

R C

,

,

 

1 0 0

0 1 0

0 0 1

1

2

0 0

3

17

1

17

0

11

9 17

2

9 17

17

9

−

−

















= −



























−
























A

1

2

3

17

11

9 17

0
1

17

2

9 17

0 0
17

9
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Comparing with  D P AP
T

=

          

D

P

= −

−

















=

−












1 0 0

0 1 0

0 0 1

1

2

3

17

11

9 17

0
1

17

2

9 17

0 0
17

9













Let x = Py be the linear transformation which transforms the given quadratic form 

to canonical form.

 

x

x

x

1

2

3

1

2

3

17

11

9 17

0
1

17

2

9 17

0 0
17

9

















=

−








































= − +

= +

=

y

y

y

x y y y

x y y

x

1

2

3

1 1 2 3

2 2 3

3

1

2

3

17

11

9 17

1

17

2

9 17

177

9
3
y

The canonical form is

 

Q P AP D

y y y

y

y

y

T T T= =

= [ ] −

−



























y y y y( )

1 2 3

1

2

3

1 0 0

0 1 0

0 0 1 





= − −y y y1

2

2

2

3

2

Rank r = Number of non-zero terms in canonical form = 3

Index p = Number of positive terms in canonical form = 1

Signature s = Difference between the number of positive and negative terms in 

canonical form = 1 – 2 = –1

Since both positive and negative terms occur in the canonical form, the value class of 

the quadratic form is indefinite.
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(iii)          Q = x2 + 2y2 + 2z2 – 2xy – 2yz + zx

  

Q A x y z

x

y

z

A

T= = [ ]

−

− −

−





































=

−

x x

1 1
1

2

1 2 1

1

2
1 2

1 11
1

2

1 2 1

1

2
1 2

− −

−





















Let           A = I3AI3

 

1 1
1

2

1 2 1

1

2
1 2

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0

−

− −

−





















=

















A

11

















 

R R R R
2 1 3 1

1

2

1 1
1

2

0 1
1

2

0
1

2

7

4

1 0 0

1 1 0

1

2
0

+ −

−

−

−

























=

−

,

11

1 0 0

0 1 0

0 0 1



































A

 

C C C C
2 1 3 1

1

2

1 0 0

0 1
1

2

0
1

2

7

4

1 0 0

1 1 0

1

2
0 1

+ −

−

−





















=

−









,












−


















A

1 1
1

2

0 1 0

0 0 1
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R R

A

3 2

1

2

1 0 0

0 1
1

2

0 0
3

2

1 0 0

1 1 0

0
1

2
1

1

+

−





















=



















11
1

2

0 1 0

0 0 1

−


















 

C C

A

3 2

1

2

1 0 0

0 1 0

0 0
3

2

1 0 0

1 1 0

0
1

2
1

1 1 0

0 1

+



















=



















11

2

0 0 1



















 

2

3

2

3
3 3













R C,

 

1 0 0

0 1 0

0 0 1

1 0 0

1 1 0

0
1

6

2

3

1 1 0

0 1
1

6

0 0
2

3

















=
























A 
















Comparing with      D P AP
T

=

        

D =

















1 0 0

0 1 0

0 0 1

 

P =























1 1 0

0 1
1

6

0 0
2

3

Let x = Py be the linear transformation which transforms the given quadratic form to 

canonical form.

 
x

y

z

u

v

w

















=







































1 1 0

0 1
1

6

0 0
2

3
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x u v

y v w

z w

= +

= +

=

1

6

2

3

The canonical form is

 

Q P AP D

u v w

u

v

w

u

T T T= =

= [ ]
































= +

y y y y( )

1 0 0

0 1 0

0 0 1

2
vv w
2 2+

Rank r = Number of non-zero terms in canonical form = 3

Index p = Number of positive terms in canonical form = 3

Signature s = Difference between the number of positive and negative terms in 

canonical form = 3 – 0 = 3

Since only positive terms occur in the canonical form, the value class of the quadratic 

form is positive definite.

Example 8: Show that 5 26 10 4 14 6
1

2

2

2

3

2

2 3 1 3 1 2
x x x x x x x x x+ + + + +  is positive 

semi- definite and find a non-zero set of values of x1, x2, x3 which makes the form zero.

Solution: Q x x x x x x x x x= + + + + +5 26 10 4 14 6
1

2

2

2

3

2

2 3 1 3 1 2

 

Q A x x x

x

x

x

A

T= = [ ]
































=

x x
1 2 3

1

2

3

5 3 7

3 26 2

7 2 10

5 3 7

3 226 2

7 2 10

















Let         A = I3AI3

 

5 3 7

3 26 2

7 2 10

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

















=





























A




 

R R R R
2 1 3 1

3

5

7

5

5 3 7

0
121

5

11

5

0
11

5

1

5

1 0 0

3

5
1 0

− −

−

−





















=
−

−

,

77

5
0 1

1 0 0

0 1 0

0 0 1





































A
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C C C C
2 1 3 1

3

5

7

5

5 0 0

0
121

5

11

5

0
11

5

1

5

1 0 0

3

5
1 0

− −

−

−





















=
−

−

,

77

5
0 1

1
3

5

7

5

0 1 0

0 0 1





















− −


















A

 

R R
3 2

1

11

5 0 0

0
121

5

11

5

0 0 0

1 0 0

3

5
1 0

16

11

1

11
1

+

−



















=
−

−





















− −


















A

1
3

5

7

5

0 1 0

0 0 1

 

C C
3 2

1

11

5 0 0

0
121

5
0

0 0 0

1 0 0

3

5
1 0

16

11

1

11
1

+



















=
−

−





















− −




















A

1
3

5

16

11

0 1
1

11

0 0 1

Comparing with D P AP
T

= ,

 

D

P

=



















=

− −



















5 0 0

0
121

5
0

0 0 0

1
3

5

16

11

0 1
1

11

0 0 1


Let x = Py be the linear transformation which transforms the given quadratic form 

to the canonical form.

 

x

x

x

y

y

y

1

2

3

1

2

3

1
3

5

16

11

0 1
1

11

0 0 1

















=

− −






































5.94 Chapter 5 Eigenvalues and Eigenvectors

x y y y

x y y

x y

1 1 2 3

2 2 3

3 3

3

5

16

11

1

11

= − −

= +

=

The canonical form is

    

Q P AP D

y y y

y

y

y

T T T= =

= [ ]

























y y y y( )

1 2 3

1

2

3

5 0 0

0
121

5
0

0 0 0












= +5
121

5
1

2

2

2
y y

Rank r = Number of non-zero terms in canonical form = 2

Index p = Number of positive terms in canonical form = 2

Signature s = Difference between the number of positive and negative terms in 

canonical form = 2 – 0 = 2

Since all the terms in canonical form are positive and one term is zero, the value 

class of the quadratic form is positive semi definite.

The set of values y1 = 0, y2 = 0, y3 = 1 will reduce the quadratic form to zero. For 

this set of value,

 x x x
3 2 1

1
1

11

16

11
= = = −, ,

This is a non-zero set of values of x1, x2, x3 which makes the quadratic form zero.

Exercise 5.4

1. Express the following quadratic forms 

in matrix notation.

   (i) 2x2 + 3y2 + 6xy

  (ii) 2x2 + 5y2 – 6z2 – 2xy – yz + 8zx

 (iii) x x x x x x

x x x x

1

2

2

2

3

2

4

2

1 2

1 3 3 4

2 7 4

8 6

+ − + −

+ −

 (iv) x x x x x x x
1

2

2

2

3

2

1 2 2 3
2 2 2 2+ + − −

    (v) x x x x x x x x

x x x x x x x x

1

2

2

2

3

2

4

2

1 2 1 3

1 4 2 3 2 4 3 4

2 3 4 2 4

6 4 8 12

+ + + + +

− − − +

   

Ans :.  ( )

( )

(

i

ii

ii

2 3

3 3

2 1 4

1 5
1

2

4
1

2
6











−

− −

− −























ii)

1 2 4 0

2 2 0 0

4 0 7 3

0 0 3 1

−

−

− −

−
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( )

( )

iv

v

1 1 0

1 2 1

0 1 2

1 1 2 3

1 2 2 4

2 2 3 6

3 4 6 4

−

− −

−

















−

− −

−

− −















































2. Write down the quadratic forms 

corresponding to following matrices:

 (i) 

1 2 1

2 0 3

1 3 1

−

−

















 (ii) 

1 1 2 0

1 4 0 0

2 0 6 3

0 0 3 2

−

−

− −

−



















(iii) 

2 1
3

2
2

1 3
5

2
3

3

2

5

2
4

1

2

2 3
1

2
1

− −

− − −

−

−





























Ans.: ( )

( )

i

ii

x x x x x x x x

x x x x x

1

2

3

2

1 2 1 3 2 3

1

2

2

2

3

2

4

2

4 2 6

4 6 2 2

+ + − +

− + + + 11 2

1 3 3 4

1

2

2

2

3

2

4

2

1 2

1 3 1 4

4 6

2 3 4 2

3 4

x

x x x x

x x x x x x

x x x x

− −

− + + −

+ − −

( )iii

55 62 3 2 4 3 4x x x x x x+ +

























3. Reduce the following quadratic forms 

to canonical forms by orthogonal 

transformation. Also find rank, index 

and signature.

 (i) 3x2 + 5y2 + 3z2 – 2xy – 2yz + 2zx

 (ii) 2 2 2 2

2 2

1

2

1

2

1

2

1 2

1 3 2 3

x y z x x

x x x x

+ + −

+ −

(iii) 3x2 – 2y2 – z2 – 4xy + 8xz + 12yz

Ans.: ( ) ; ,

,

( ) ; ,

i 2 2 6 3

3 3

4 3

3

1

2

2

2

3

2

1

2

2

2

3

2

y y y r

p

y y y r

p

+ + =

= =

+ + =

=

s

ii

,,

( ) ; ,

,

s

s

=

+ − =

= =



























3

3 6 9 3

2 1

1

2

2

2

3

2iii y y y r

p

4. Reduce the following quadratic forms 

to canonical forms by congruent 

transformation. Also find rank, index 

and signature.

  (i) x2 – 2y2 + 3z2 – 4yz + 6zx

 (ii) 2x2 – 2y2 + 2z2 – 2xy – 8yz + 6zx

(iii)  x2 + 3y2 + 8z2 + 4w2 + 4xy + 6xz 

– 4xw + 12yz – 8yw – 12zw

Ans.: ( ) ; ,

,

( ) ; ,

,

i y y y r

p

y y y r

p

1

2

2

2

3

2

1

2

2

2

3

2

3

1 1

3

1

− − =

= = −

− − =

= =

s

s

ii

−−

− − =

= = −



























1

3

1 1

1

2

2

2

3

2( ) ; ,

,

iii y y y r

p s

5.7 CONIC SECTIONS

Consider quadratic equations of the form

 ax bxy cy dx ey f2 2
2 0+ + + + + =

where a, b, … , f are real numbers and at least one of the numbers a, b, c is not zero. 

In this equation ax2 + 2bxy + cy2 is called the associated quadratic form. Graphs of 
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quadratic equations in x and y are called conics or conic sections. The most important 

conics are ellipses, circles, hyperbolas and parabolas. A conic is said to be in standard 

position relative to the coordinate axes if its equation can be expressed in one of the 

forms given in the table.

A conic in standard position does not contain an xy-term in its equation. The pres-

ence of an xy-term in the equation indicates that the conic is rotated out of standard 

position. Also, a conic in standard position does not contain both an x2 and an x term or 

both a y2 and a y term. If there is no xy-term, the occurence of either of these pairs in the 

equation indicates that the conic is translated out of standard position. The occurrence 

of either of these pairs and an xy-term usually indicates that the conic is both rotated 

and translated out of standard position.

Conic Equation Standard Position

Ellipse
x

a

y

b
a b

2

2

2

2
1 0+ = >; ,

(−a,0)

(0,−b)

(0,b)

(a,0)

x

y

a<b

 

(−a,0)

(a,0)

(0,−b)

(0,b)

x

y

a>b

Circle
x

a

y

a

a

2

2

2

2
1 0+ = >;

(−a,0)
(0,−a)

(0,a)
(a,0)

x

y

Hyperbola
x

a

y

b
a b

2

2

2

2
1 0− = >; ,

x

y

(−a,0)

(a,0)

Hyperbola
y

a

x

b
a b

2

2

2

2
1 0− = >; ,

x

y

(0,a)

(0,−a)

Parabola y ax a
2

0= ≠;

x

y

a > 0  

x

y

a < 0

Parabola x ay a
2

0= ≠;

x

y

a > 0  

x

y

a < 0
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Eliminating xy-term from Quadratic Form

Let ax bxy cy dx ey f2 2
2 0+ + + + + =  be the equation of a conic c. Writing the 

 equation in the matrix form,

 

x y
a b

b c

x

y
d e

x

y
f

A k fT

[ ]
















 + [ ]








 + =

+ + =

0

x x x 0

where x =








 =









 = [ ]

x

y
A

a b

b c
k d e, ,

The coordinate axes can be rotated so that the conic equation in the new x′ y′ 
coordinate system becomes

 λ λ
1

2

2

2
0′ + ′ + ′ ′ + ′ ′ + =x y d x e y f

where l 1 and l 2 are the eigenvalues of A. The rotation can be accomplished by the 

transformation x = P x′ where P orthogonally diagonalizes A and det (P) = 1.

Example 1: Describe the conic whose equation is

 9 4 36 24 36 0
2 2

x y x y+ − − + = .

Give its equation in the translated coordinate system.

Solution:  Since the quadratic equation

     9 4 36 24 36 0
2 2

x y x y+ − − + =

contains x2, x, y2, and y-terms but no cross-product term, its graph is a conic that is 

translated out of standard position. This conic can be brought into the standard posi-

tion by suitably translating the co-ordinate axes.

Collecting x-terms and y-terms,

 
( ) ( )

( ) ( )

9 36 4 24 36 0

9 4 4 6 36 0

2 2

2 2

x x y y

x x y y

− + − + =

− + − + =

Completing the squares,

 
9 4 4 4 6 9 36

9 2 4 3 36

2 2

2 2

( ) ( )

( ) ( )

x x y y

x y

− + + − + =

− + − =

Translating the coordinate axes by translation equations ′ = − ′ = −x x y y2 3, ,  

  

9 4 36

4 9
1

2 2

2 2

′ + ′ =

′
+

′
=

x y

x y

This is the equation of the ellipse in the standard position in the x′y′ system.
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Example 2: Describe the conic whose equation is

 5 4 8 36 0
2 2

x xy y− + − = .

Give its equation in the rotated coordinate system.

Solution:  Let  5 4 8 36 0
2 2

x xy y− + − =  be the equation of a conic and let the 

 associated quadratic form be

 

Q x xy y

x y
x

y
A

A

T

= − +

= [ ]
−

−


















 =

=
−

−











5 4 8

5 2

2 8

5 2

2 8

2 2

x x

The characteristic equation is

 

det ( )

,

A I− =

− −

− −
=

− + =

=

λ

λ

λ

λ λ

λ

0

5 2

2 8
0

13 36 0

4 9

2

(a) For l = 4, [ ]A I− =λ x 0

 

1 2

2 4

0

0

2 0

−

−

















 =










− =

x

y

x y

Let   y = t

                    x = 2t

Thus, the eigenvectors of A corresponding to l = 4, are the non-zero vectors of the 

form x x=








 =









 =

2 2

1
1

t

t

t t  where x1 is a linearly independent eigenvector correspond-

ing to l = 4.

(b) l = 9, [ ]A I− =λ x 0

 

− −

− −

















 =

− − =

4 2

2 1
0

2 0

x

y

x y

Let y = t

 x t= −

1

2
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Thus, the eigenvectors of A corresponding to l = 9 are the non-zero vectors of the 

form x x=
−














=

−













=

1

2

1

2

1

2

t

t

t t  where x2 is a linearly independent eigenvector 

 corresponding to l = 9.

Length of the eigenvector   x1

2 22 1 5= + =( ) ( )

Length of the eigenvector  x2

2

21

2
1

5

2
= −





+ =( )

The normalized eigenvectors are

 x x
1 2

2

5

1

5

1

5

2

5

=



















=

−


















,

Modal matrix P has normalized eigenvectors as its column vectors.

 P =

−


















2

5

1

5

1

5

2

5

Thus, matrix P orthogonally diagonalizes A.

 det ( )P =

−

= + =

2

5

1

5

1

5

2

5

4

5

1

5
1

Thus, the rotation can be accomplished by the transformation x = Px′.
The matrix form of the conic equation is

      

x x

x x

x x

x x

T

T

T T

T

A

P A P

P AP

D

− =

′ ′ − =

′ ′ − =

′ ′ − =

36 0

36 0

36 0

36 0

( ) ( )

( )

 

′ ′[ ]










′

′









 − =

′ + ′ − =

′
+

′
=

x y
x

y

x y

x y

4 0

0 9
36 0

4 9 36 0

9 4
1

2 2

2 2

This is the equation of the ellipse.
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Example 3: Translate and rotate the coordinate axes, if necessary, to put the 

conic 9x2 – 4xy + 6y2 – 10x – 20y = 5 in the standard position. Find the equation of 

the conic in the final coordinate system.

Solution: Let 9x2 – 4xy + 6y2 – 10x – 20y = 5 be the equation of a conic and let the 

associated quadratic form be

 

Q x xy y

x y
x

y
A

A

T

= − +

= [ ]
−

−


















 =

=
−

−











9 4 6

9 2

2 6

9 2

2 6

2 2

x x

The characteristic equation is

 

det ( )

,

A I− =

− −

− −
=

− + =

=

λ

λ

λ

λ λ

λ

0

9 2

2 6
0

15 50 0

5 10

2

(a) For l = 5, [ ]A I− =λ x 0

 

4 2

2 1

0

0

2 0

−

−

















 =










− + =

x

y

x y

Let y = t

 x t=

1

2

Thus, the eigenvectors of A corresponding to l = 5 are the non-zero vectors of the form 

x x=














=














=

1

2

1

2

1

1

t

t

t t  where x1 is a linearly independent eigenvector corresponding 

to l = 5.

(b) l = 10, [ ]A I− =λ x 0

 

− −

− −

















 =

− − =

1 2

2 4
0

2 0

x

y

x y

Let y = t

  x = –2t
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Thus, the eigenvectors of A corresponding to l = 10 are the non-zero vectors of the 

form x x=
−







 =

−







 =

2 2

1
2

t

t

t t  where x2 is a linearly independent eigenvector corre-

sponding to l = 10.

Length of the eigenvector   x1

2

21

2
1

5

2
= 





+ =( )

Length of the eigenvector   x2

2 22 1 5= − + =( ) ( )

The normalized eigenvectors are

 x x
1 2

1

5

2

5

2

5

1

5

=



















=

−


















,

Modal matrix P has normalized eigenvectors as its column vectors.

 P =

−


















1

5

2

5

2

5

1

5

Diagonal matrix D has eigenvalues as its diagonal elements.

 D =










5 0

0 10

Thus, matrix P orthogonally diagonalizes A.

 det ( )P =

−

= + =

1

5

2

5

2

5

1

5

1

5

4

5
1

Thus, the rotation can be accomplished by the transformation x = Px′.
The matrix form of the conic equation is

 

x x x

x x x

x x x

x x

T

T

T T

T

A k

P A P k P

P AP kP

D

+ =

′ ′ + ′ =

′ ′ + ′ =

′ ′ +

5

5

5

( ) ( ) ( )

( ) ( )

(kkP)

,

′ =













− −

x 5

10 20where = [ ]k
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′ ′[ ]










′

′









 + − −[ ]

−


















′
x y

x

y

5 0

0 10
10 20

1

5

2

5

2

5

1

5

xx

y

x y
x

y

x y

′









 =

′ + ′ + −



′

′









 =

′ + ′ −

5

5 10 10 5 0 5

5 10 10 5

2 2

2 2 ′′ =x 5

Collecting x′-terms and y′-terms,

 
( )

( )

5 10 5 10 5

5 2 5 10 5

2 2

2 2

′ − ′ + ′ =

′ − ′ + ′ =

x x y

x x y

Completing the squares,

 
5 2 5 5 10 5 25

5 5 10 30

2 2

2 2

( )

( )

′ − ′ + + ′ = +

′ − + ′ =

x x y

x y

Translating the coordinate axes by translation equations, ′′ = ′ − ′′ = ′x x y y5, ,  

 

5 10 30

6 3
1

2 2

2 2

′′ + ′′ =

′′
+

′′
=

x y

x y

This is the equation of the ellipse.

Exercise 5.6

1. In each case, a translation will put 

the conic in standard position. Name 

the conic and give its equation in the 

translated coordinate system.

  (i) x2 – 16y2 + 8x + 128y = 256

  (ii) y2 – 8x – 14y + 49 = 0

 (iii) x2 + 10x + 7y = –32

 (iv) x2 + y2 + 6x – 10y + 18 = 0

Ans.:  (i) 16  16  hyperbola

ii  8  parabola

(ii

2 2

2

′ − ′ =

′ = ′

x y

y x

,

( ) ,

ii)  parabola

iv  16  circle
2 2

′ = − ′

′ + ′ =



















y x

x y

1

7

2
,

( ) � ,






2. In each case, rotate axes to identify 

the graph of the equation and write the 

equation in standard form.

  (i) x2 + xy + y2 = 6

  (ii) 9x2 + y2 + 6xy = 4

 (iii) 4x2 + 4y2 – 10xy = 0

Ans.: ( ) ,

( ) ;

,

i
′

+
′

=

′ = ′ = −

′ =

x y

y y

y

2 2

2

12 4
1

2

10

2

10

4

10

 ellipse

ii and

  pair of parallel lines

(iii)  3 and 3  

9
2

′ = ′ ′ = − ′

′ − ′ =

y x y x

x y

;

2
0,, two intersecting lines
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3. In each case, translate and rotate the 

coordinate axes, if necessary, to put 

the conic in standard position. Find the 

equation of the conic in final coordinate 

system.

  (i) 2x2 – 4xy – y2 – 4x – 8y = – 14

 

(ii) 5 4 8 4 5

16 5 4 0

2 2
x xy y x

y

− + +

− + =

 

 

(iii) 9 6 10 10

10 10 90 0

2 2
x y xy x

y

+ + −

+ + =

  

Ans.: ( ) ,

( ) ,

i hypherbola

ii  ellips

2 3 24

9 4
1

2
2

2 2

′′ − ′′ =

′′
+

′′
=

x y

x y
ee

iii  parabola( ) ,′′ = − ′′



















y x

2

4



6.1  INTRODUCTION

A vector field or a scalar field can be differentiated w.r.t. position in three ways to 

produce another vector field or scalar field. This chapter details the three derivatives, 

i.e., (i) the gradient of a scalar field, (ii) the divergence of a vector field, and (iii) the 

curl of a vector field.

6.2   VECTOR FUNCTION OF A SINGLE 
SCALAR VARIABLE

If, in some interval (a, b) or [a, b], for every value of a scalar variable t, there 

corresponds a value of ,r  then r  is called a vector function of the scalar variable ‘t’ 

and is denoted by r  = ( ).f t

6.2.1  Decomposition of a Vector Function

If î , ĵ , k̂ be three unit vectors along the three mutually perpendicular fixed directions 

(x, y, and z axes), then r  = ( )f t can be decomposed as

 r = ( )f t  = f
1
(t) î  + f

2
(t) ĵ  + f

3
(t) k̂

where, f
1
(t), f

2
(t) and f

3
(t) are scalar functions of t. This relation can also be denoted by 

f  = ( f
1
,  f

2
,  f

3 
) 

| ( ) | [ ( )] [ ( )] [ ( )]f t f t f t f t= + +1
2

2
2

3
2

6.2.2 Derivative of a Vector Function 

Derivative of a vector function ( )f t  with respect to a scalar variable t is defined as

0

d ( ) ( )
lim

d →

+ −
=

t

f f t t f t

t tδ

δ
δ

where, d t is the change in t.

If f (t) = f
1
 (t) î  + f

2
 (t) ĵ  + f

3
 (t) k̂ where f

1
 (t), f

2
 (t) and f

3
 (t) are the components 

Vector Functions

O Chapter6



6.2 Chapter 6 Vector Functions

of ( )f t  in the direction of x, y, z-axes, then derivative in the component form is 

31 2 dd dd ˆˆ ˆ .
d d d d

ff ff
i j k

t t t t
= + +

6.2.3  Some Standard Results

Most of the basic rules of differentiation that are true for a scalar function of scalar 

variable hold good for vector function of a scalar variable, provided the order of fac-

tors in vector products is maintained. 

 Let , ,a b c  are differentiable vector functions of a scalar variable t.

 1. 
d

0,
d

=
k

k
t

 is a constant vector

 2. ( )d d d

d d d

a b
a b

t t t
± = ±

 3. ( )d d d
,

d d d

a
a a

t t t
= +

φ
φ φ  f is a scalar function of t.

 4. ( )d d d

d d d

a b
a b b a

t t t
⋅ = ⋅ + ⋅

 5. ( )d d d

d d d

a b
a b b a

t t t
× = × + ×

 6. 
d

d

d

d

d

d

d

dt
a b c

a

t
b c a

b

t
c a b

c

t

  =








 +









 +











 7. ( ) ( )d d d d

d d d d

a b c
a b c b c a c a b

t t t t

    × × = × × + × × + × ×        

6.3  TANGENT, NORMAL AND BINORMAL VECTORS

(1) Tangent Vector 

Let P(t) and Q(t + d t) be the two 

points on the curve  r   =  ( ).f t  The tan-

gent vector at P is the limiting  position 

of the chord PQ when Q → P, i.e., 

d t → 0.

0

d
lim

d→
=

t

r r

t tδ

δ
δ

Hence, tangent vector is

y

x
O

r

P (t)

Q (t + d t)

d
 r

r 
+
 d

 r

Fig.  6.1
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N

P

B T

Principal normal

Osculating

plane

Tangent

lineRectifying plane

Curve

Normal

plane

Binormal

Fig.  6.2

d

d

r
T

t
=

The line containing the tangent vector is known as tangent line.

(2) Osculating Plane 

The limiting position of a plane passing 

through three points P, Q, R on a curve as 

Q and R approaches P is known as oscu-

lating plane. 

(3) Normal Plane 

A plane containing all the normals to the 

tangent line at P is known as normal plane. 

(4) Principal Normal 

The line perpendicular to the tangent line 

and lying in the osculating plane is known 

as principal normal.

(5) Binormal 

The line perpendicular to the osculating plane and passing through P is known as 

binormal.

(6) Rectifying Plane 

The plane containing the tangent line and the binormal is known as rectifying plane.

(7) Unit Tangent Vector

A unit vector  along the tangent line is known as the unit tangent vector and is denoted 

by T̂ .

T̂
r

r
=

′

′

(8) Unit Normal Vector 

A unit vector along the principal normal is known as the unit normal vector and is 

denoted by ˆ .N

N̂
r

r
=

′′

′′

(9) Unit Binormal Vector 

A unit vector along the binormal is known as the unit binormal vector and is denoted 

by B̂ .

ˆ ˆ ˆB T N= ×
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Example 1: Write down the formula for 
d

dt
( )A B×  and verify the same for 

A  = 5t2 î  + t ĵ  − t3 k̂, and B  = sint î  − cost ĵ . 

Solution: 
d

dt
( )A B×  = 

d

d

A

t
 × B A+  × 

d

d

B

t

Given, A  = 5t2 î  + t ĵ  − t3 k̂,

 B  = sin t î  − cos t ĵ

 

2 3

ˆˆ ˆ

5

sin cos 0

i j k

A B t t t

t t

× = −
−

 = î  (0 − t3 cos t) − ĵ  (0 + t3 sin t) + k̂ (−5t2 cos t − t sin t)

 = (−t3 cos t) î  − (t3 sin t) ĵ  − (5t2 cos t + t sin t) k̂

( )d

d
×A B

t
= (−3t2 cos t + t3 sin t) î  − (3t2 sin t + t3 cos t) ĵ

  − (10t cos t − 5t2 sin t + sin t + t cos t) k̂  … (1)

Now, 
d

d

A

t
 = 10t î  + ĵ  − 3t2 k̂,

 
d

d

B

t
 = cos t î  + sin t ĵ

2

ˆˆ ˆ

d
10 1 3

d
sin cos 0

× = −
−

i j k
A

B t t
t

t t

 = î (0 − 3t2 cos t) − ĵ (0 + 3t2 sin t) + k̂ (−10 t cos t − sin t)

 

2 3

ˆˆ ˆ

d
5

d
cos sin 0

× = −

i j k
B

A t t t
t

t t

 = î (0 + t3 sin t) − ĵ (0 + t3 cos t) + k̂ (5t2 sin t − t cos t)

 
d d

d d
× + ×

A B
B A

t t
= (−3t2 cos t + t3 sin t) î  − (3t2 sin t + t3 cos t) ĵ

  − (10t cos t + sin t − 5t2 sin t + t cos t) k̂ … (2)

Comparing Eqs. (1) and (2), 

 
( )d d d

d d d
× = × + ×

A B
A B B A

t t t
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Example 2: If 
d

d

u

t
= w  × u  and 

d

d

v

t
= w  × v , then prove that 

d

dt
( )u v× =  w  ×  ( )u v×  .

Solution: We know that, ( )d d d

d d d

u v
u v v u

t t t
× = × + ×

But 
d

d

u

t
 = w  × u , 

d

d

v

t
 = w  × v

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

d

d
u v w u v u w v

t

v w u v u w u v w u w v

v w u u w v w v u w u v

w u v

× = × × + × ×

= ⋅ − ⋅ + ⋅ − ⋅

= ⋅ − ⋅ = ⋅ − ⋅

= × ×

Example 3: If r  = t3 î  + 3

2

1
2

5
t

t

 −  
  ĵ , then show that r  × 

d

d

r

t
= k̂. 

Solution:  r  = t3 î  + 3

2

1
2

5
t

t

 − 
 

  ĵ

 
d

d

r

t
 = 3t2 î  + 6

2

5

2

3
t

t
+





  ĵ

( ) ( ) ( )

( )

3 3 2 2

2 3

5 5 5

3 2

2 3

d 1 2ˆ ˆ ˆ ˆ2 3 6
d 5 5

2 3ˆ ˆ ˆ ˆ ˆ ˆ3 6 6
5 5

1 2 ˆ ˆ2 6
5 5

r
r t i t j t i t j

t t t

t i i t i j t j i

t t j j
t t

      × = + − × + +            
   = × + + × + − ×      

   + − + ×      

5 52 3 ˆ0 6 6 ( ) 0
5 5

t k t k
   = + + + − − +      

ˆ  ∵ i i j jˆ × ˆ = 0 ˆ × ˆ=[ ]

= k̂

Example 4: If a  and b  are constant vectors and w is constant and

 r  = a sin w t + b cos w t, prove that r  × 
d

d

r

t
 + w ( a × b ) = 0. 

Solution:  r  = a sin w t + b cos w t

d

d

r

t
 = a w cos w t + b w (−sin w t)
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r
r

t
a t b t a t b t

a a t t

× = +( )× −( )

= ×( ) −

d

d
sin cos cos sin

sin cos

ω ω ω ω ω ω

ω ω ω aa b t b a t

b b t t

a b t

×( ) + ×( )

− ×( )

= − ×( )

ω ω ω ω

ω ω ω

ω ω

sin cos

cos sin

sin

2 2

20 −− ×( ) − × = = × 

= − ×( ) + = − ×

a b t a a b b

a b t t a b

ω ω

ω ω ω

cos

(sin cos )

2

2 2

0 0∵

(( )ω

Hence, r  × 
d

d

r

t
 + ( a × b) w = 0.

Example 5: If r  = a  sinh t + b cosh t, where a  and b  are constant, then show 

that

 (i) 
2

2

d

d

r
r

t
=   (ii) 

2

2

d d
constant.

d d

r r

t t
× =

Solution:  r  = a  sinh t + b  cosh t,

 (i)  
d

d

r

t
= a  cosh t + b  sinh t [∵ a and b  are constant]

2

2

d

d

r

t
 = a  sinh t + b  cosh t = r

Hence,  
2

2

d

d

r
r

t
=

 

(ii) 
d

d

d

d

r

t

r

t

a t b t a t b t

a a t

× = +( )× +( )

= ×( )

2

2
cosh sinh sinh cosh

cosh sinh tt a b t b a t b b t t

a b t a

+ ×( ) + ×( ) + ×( )

= + ×( ) −

cosh sinh sinh cosh

cosh

2 2

2
0 ××( ) +

= ×( ) −( )

= ×( ) − =

b t

a b t t

a b t t

sinh

cosh sinh

[ cosh sinh ]

2

2 2

2 2

0

1∵

Hence, 
2

2

d d

d d

r r

t t
×  = constant.

Example 6: If r  = a (sin w t) î  + b (sin w t) ĵ  + 
ct

ω2
(sin w t) k̂, prove that 

2

2

d

d

r

t
+ w 2 r  = 

2c

ω
(cos w t) k̂.
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Solution:  r  = a (sin w t) î  + b (sin w t) ĵ  + 
ct

ω2
(sin w t) k̂

d

d

r

t
 = aw (cos w t) î  + bw (cos w t) ĵ  + 

c

ω2
(sin w t + t w cos w t) k̂

 
2

2

d

d

r

t
 = aw (−w sin w t ) î  + bw (−w sin w t) ĵ  + 

c

ω2
[w (cos w t) + 

     w (cos w t) + tw (−w sin w t)] k̂

 = −aw 2 (sin w t ) î  − bw 2 (sin w t) ĵ  + 
c

ω2
(2w cos w t − tw 2 sin w t) k̂

 = −w 2 [a (sin w t) î  + b (sin w t) ĵ  + 
ct

ω2
(sin w t) k̂] + 

2c

ω
(cos w t) k̂

 = −w 2 r  + 
2c

ω
(cos w t) k̂

Example 7: If r  = (a cos t) î  + (a sin t) ĵ  + (at tan a ) k̂, prove that

 (i) 
2

2

2

d d
sec

d d

r r
a

t t
α× =   (ii) 

d

d

d

d

d

d

r

t

r

t

r

t

a

2

2

3

3

3








 = tan .α

Solution:  r  = (a cos t) î  + (a sin t) ĵ  + (at tan a) k̂,

d

d

r

t
 = (−a sin t ) î  + (a cos t) ĵ  + (a tan a) k̂

2

2

d

d

r

t
 = (−a cos t) î  + (−a sin t) ĵ  + 0 k̂

3

3

d

d

r

t
 = (a sin t) î  + (−a cos t) ĵ  + 0 · k̂

(i) 
2

2

d d
sin cos tan

d d
cos sin 0

i j k
r r

a t a t a
t t

a t a t

× = −
− −

α

ˆ
ˆ ˆ

= î  (0 + a2 sin t tan a) − ĵ  (0 + a2 cos t tan a) + k̂ (a2 sin2 t + a2 cos2 t)

= a2 (sin t tan a) î  − a2 (cos t tan a) ĵ  + a2 k̂

2
4 2 2 4 2 2 4

2

d d
sin tan cos tan

d d

r r
a t a t a

t t
× = ⋅ + ⋅ +α α 2 2tan 1a α= + = a2 sec a

(ii) 

2 3

2 3

d d d

d d d

r r r

t t t

 
× ⋅ 

 
 = [a2(sin t tan a) î  − a2 (cos t tan a) ĵ  + a2 k̂]. [(a sin t) î

 + (−a cos t) ĵ  + 0 k̂]

   = a3 sin2 t tan a + a3 cos2 t tan a
 [∵  î  · î  = ĵ  · ĵ  = k̂ · k̂ = 1 and î  · ĵ  = ĵ  · k̂ = k̂ · î  = 0]

 = a3 tan a
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Hence, d

d

d

d

d

d

r

t

r

t

r

t

a

2

2

3

3

3








 = tan .α

Example 8: If A  = (sin t) î  + (cos t) ĵ  + t k̂, B  = (cos t) î  − (sin t) ĵ  − 3 k̂, 

 C  = 2 î  + 3 ĵ  − k̂, find ( )d

d
A B C

t
 × ×  at t = 0.

Solution:  ( )
ˆˆ ˆ

cos sin 3

2 3 1

i j k

B C t t× = − −
−

= î  (sin t + 9) − ĵ (−cost + 6) + 

 k̂ (3 cos t + 2 sin t)

  

( )
ˆˆ ˆ

sin cos

sin 9 cos 6 3cos 2sin

i j k

A B C t t t

t t t t

× × =
+ − +

     = î  (3 cos2 t + 2 sin t cos t − t cos t + 6t) − ĵ  (3 cos t sin t + 2 sin2 t

          − t sin t − 9t) + k̂ (sin t cos t − 6 sin t − cos t sin t − 9 cos t)

        = (3 cos2 t + sin 2t − t cos t + 6t)î  − 
3

2
2 2 9

2
sin sin sint t t t t+ − −



    ĵ

+ (−6 sin t − 9 cos t) k̂

   ( )d

d
A B C

t
 × ×   = [6 cos t (−sin t) + 2 cos 2t − cos t + t sin t + 6] î

     −(3 cos 2t + 4 sin t cos t − sin t − t cos t − 9) ĵ  − (6 cos t − 9 sin t) k̂

Putting t = 0, 

  ( )d

d
A B C

t
 × ×  = 7 î  + 6 ĵ  − 6 k̂.

Example 9: Find the derivative of 

2

2

d d

d d

r r
r

t t

 
× ×  

 with respect to ‘t’.

Solution: 

d

d

d

d

d

d

d

d

d

d

d

d

d

t

r
r

t

r

t

r

t

r

t

r

t

r× ×





















= × ×









 + ×

2

2

2

2

2
rr

t

r

t

r
r

t

r

t

r

t

r

t

r

t

d

d

d

d

d

d

d

d

d

d

d

d

d

2

2

2

3

3

2

2

×








 + × ×











= × ×








 + × ×









 × =













r
r

t

r

t

r

t

r

t

d

d

d

d

d

d

d

d

3

3

2

2

2

2
0∵

Example 10: Find 
d

dt

r a

r a

×
⋅







, where r  is a vector function of scalar variable t 

and r  is a constant vector.

Solution: 
d

d

d

d

d

d

t

r a

r a

t

r a r a r a

t

r a

r a

×

⋅









 =

×( )





⋅( ) − ×( ) ⋅( )

⋅( )2
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( ) ( )

( )2

d d d d

d d d d

r a r a
a r r a r a a r

t t t t

r a

   
× + × ⋅ − × ⋅ + ⋅      

=
⋅

But, 
d

0,
d

a

t
= as a  is constant.

Hence,  
d

d

d

d

d

d

t

r a

r a

r

t

a r a r a
r

t

a

r a

×

⋅









 =

×






⋅( ) − ×( ) ⋅








⋅( )2
.

Example 11: Find 
d

d

f

t
if f  = r2 r  + ( a  · r ) b  where r  is a function of t and 

,a b  are constant vectors.

Solution:  f  = r2 r  + ( )a r⋅ b

( ) ( )

( ) ( )

( )

2

2
2

2

d d d

d d d

d d d d d

d d d d d

d d d d d
2 0

d d d d d

f
r r a r b

t t t

r r a r b
r r r a b a r

t t t t t

r r r a b
r r r a b
t t t t t

= + ⋅

  
= + + ⋅ + ⋅ + ⋅     

    = + + ⋅ = =        
∵

Hence,   
d

d

d

d

d

d

d

d

f

t
rr

r

t
r

r

t
b a

r

t
= + + ⋅









2

2
.

Example 12: If f (t) is a unit vector, prove that 
d ( ) d ( )

( ) .
d d

f t f t
f t

t t
× =

Solution:  Since f  is a unit vector,

f  · f  = 1

Differentiating w.r.t. t,

d

d

d

d

d

d

d

d

f

t
f f

f

t

f
f

t

f
f

t

⋅ + ⋅ =

⋅ =

⋅ =

0

2 0

0

This shows that f  and d

d

f

t
 are perpendicular to each other.
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Now,    ^d d
sin

d d

f f
f f n

t t
× = θ

where, q is the angle between f and 
d

and
d

f
n

t
ˆ is the unit vector perpendicular to the 

plane of f and d

d

f

t
.

Since f and 
d

d

f

t
 are perpendicular,

2

πθ = ⋅

f × 
d

d

f

t
= 

d
sin

d 2

πf
f n

t
ˆ

 

× =
d f d f

f n
dt dt

ˆ

 

∵ f  is a unit vectorÈÎ ˘̊

Hence,   
d d

d d
× = ⋅

f f
f

t t
 [ | | ]∵ nˆ = 1

Example 13: Find the magnitude of the velocity and acceleration of a particle 

which moves along the curve x = 2 sin 3t, y = 2 cos 3t, z = 8t at any time t > 0. Find 

unit tangent vector to the curve.

Solution:  The position vector r of the particle is

 r  = xî  + yĵ  + zk̂ = (2 sin 3t)î  + (2 cos 3t)ĵ  + (8t)k̂

Velocity, 
d

d

r
v

t
=  = (6 cos 3t) î  + (−6 sin 3t) ĵ  + 8k̂

 

2 236cos 3 36sin 3 64 36 64 10v t t= + + = + =

Acceleration, 
2

2

d

d

r
a

t
= = (−18 sin 3t) î  + (−18 cos 3t) ĵ  + (0)k̂

 
2 2 2 2(18) sin 3 (18) cos 3 18.= + =a t t

Unit tangent vector

d

d

d

d

r

t

r

t

=  = 
1

10
6 3 6 3 8cos sin .t i t j k( ) ( ) +[ ]ˆ – ˆ ˆ

Example 14: A particle moves along a plane curve such that its linear velocity 

is perpendicular to the radius vector. Show that the path of the particle is a circle. 

Solution:  Let position vector r of the particle is

 r  = x î  + y ĵ
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Velocity, 
d

d

r
v

t
=

To find path of the particle, we have to develop a relation in x and y. Velocity is per-

pendicular to the radius vector.

( )
2

d
0

d

d
2 0

d

d d
0

d d

d
0

d

, constant

r
r

t

r
r

t

r r
r r

t t

r r
t

r r c

⋅ =

⋅ =

⋅ + ⋅ =

⋅ =

⋅ =

 x2 + y2 = c2

which is a circle with center at the origin and radius c.

Example  15: Find the magnitude of tangential components of acceleration at 

any time t of a particle whose position at any time t is given by x = cos t + t sin t,

y = sin t − t cos t.

Solution:  Position vector r of the particle is

 r  = (cos t + t sin t) î  + (sin t − t cos t) ĵ

Velocity, 
d

d
=

r
v

t

= (−sin t + sin t + t cos t) î  + (cos t − cos t + t sin t) ĵ

 = (t cos t) î  + (t sin t ) ĵ

Acceleration, 
2

2

d

d

r
a

t
= = (cos t − t sin t) î  + (sin t + t cos t) ĵ

Unit vector in the direction of the tangent is

 

ˆ
( cos ) ˆ ( sin ) ˆ

cos sin
t

r

t

r

t

t t i t t j

t t t t
= =

+

+

d

d

d

d

2 2 2 2
 = (cos t) î  + (sin t) ĵ

Magnitude of tangential component of acceleration

 = ⋅a tˆ

 = [(cos t − t sin t) î  + (sin t + t cos t) ĵ ] · [(cos t) î  + (sin t) ĵ ]

 = cos2 t − t sin t cos t + sin2 t + t cos t sin t

 = 1
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Example 16: Show that a particle whose position vector r at any time t is given 

by r  = (a cos nt) î  + (b sin nt) ĵ  moves in an ellipse whose center is at the origin 

and that its acceleration varies directly as its distance from the center and is directed 

towards it.

Solution:  r  = (a cos nt) î  + (b sin nt) ĵ

 x = a cos nt, y = b sin nt

 

2 2
2 2

2 2

2 2

2 2

cos sin 1

1

x y
nt nt

a b

x y

a b

+ = + =

+ =

which is an ellipse with center at origin.

Now, 
d

d

r

t
= (− a n sin nt) î  + (b n cos nt) ĵ

Acceleration, 
2

2

d

d
=

=

r
a

t

  (−a n2 cos nt) î  + (−b n2 sin nt) ĵ

 = −n2 [(a cos nt) î  + (b sin nt) ĵ ] 

 = −n2 r

This shows that acceleration of the particle varies directly as its distance r from the 

 origin (center of the ellipse) and negative sign shows that acceleration is directed 

 towards the origin.

Example 17: Find unit tangent, unit normal and unit binormal vectors for the 

curve x = t, y = 3 sin t , z = 3 cos t.

Solution: 

 

r t i t j t k

r i t j t k

r t j

= + +

= + −

= − −

ˆ sin ˆ cos ˆ

ˆ cos ˆ sin ˆ

sin ˆ co

3 3

3 3

3 3

′

′′ ss ˆt k

          
r t t

r t t

′

′′

= + + =

= + =

1 9 9 10

9 9 3

2 2

2 2

cos

sin cos

sin

                    

ˆ
ˆ cos ˆ sin ˆ

ˆ cos ˆ sin ˆ

T
r

r

i t j tk

i t j tk

= =
+ −

= + −

′

′

3 3

10

1

10

3

10

3

10

        
ˆ

sin ˆ cos ˆ

sin ˆ cos ˆ

N
r

r

t j tk

t j tk

= =
− −

= − −

′′

′′

3 3

3
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ˆ ˆ ˆ

ˆ ˆ ˆ

cos sin

sin cos

ˆ cos

B T N

i j k

t t

t t

i t

= ×

= −

− −

= − −

1

10

3

10

3

10

0

3

10

32

110

1

10

1

10

3

10

1

1

2
sin ˆ cos ˆ sin

ˆ

t j t k t

i






− −






+ −







= − +
00

1

10
cos ˆ sin ˆt j tk−

Example  18: Find unit tangent, unit normal and unit binormal vectors to the 

curve x = acos q, y = asin q, z = bq.

Solution:  ˆ cos ˆ sin ˆ ˆ

sin ˆ cos ˆ ˆ

cos ˆ

kr a i a j b k

r a i a j b k

r a

= + +

= − + +

= −

θ θ θ

θ θ

θ

′

′′ ii a j− sin ˆθ

                             
r a a b a b

r a a a

′

′′

= + + = +

= + =

2 2 2 2 2 2 2

2 2 2 2

sin

cos

θ θ

θ θ

cos

sin

           

ˆ
sin ˆ cos ˆ ˆ

sin ˆ cos

T
r

r

a i a j bk

a b

a

a b
i

a

a b

= =
− + +

+

= −

+

+

+

′

′

θ θ

θ θ

2 2

2 2 2 2

ˆ̂ ˆj
b

a b
k+

+
2 2

      
ˆ

cos ˆ sin ˆ

cos ˆ sin ˆ

N
r

r

a i a j

a

i j

= =
− −

= − −

′′

′′

θ θ

θ θ

 

ˆ ˆ ˆ

ˆ ˆ ˆ

sin cos

cos sin

[ˆ(

B T N

a b

i j k

a a b

a b
i b

= ×

=

+

−

− −

=

+

+

1

0

1
0

2 2

2 2

θ θ

θ θ

ssin ) ˆ( cos ) ˆ( sin cos )]

( sin ˆ cos

θ θ θ θ

θ θ

− + + +

=

+

−

j b k a a

a b
b i b

0

1

2 2

2 2

ˆ̂ ˆ)j ak+
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Example 19: Find unit tangent, unit normal and unit binormal vectors for the 

curve cos ˆ sin ˆ ˆr ti tj tk= + +2 3 4 at t = p. 

Solution:  ˆ cos ˆ sin ˆ ˆ

sin ˆ cos ˆ ˆ

cos ˆ

kr ti tj tk

r ti tj k

r t

= + +

= − + +

= −

2 3 4

2 3 4

2

′

′′ ii tj− 3sin ˆ

At t = p, 

         

r i j k j k

r i j k i

r

r

′

′′

′

′′

= − + = − +

= + + =

= + =

= =

0 3 4 3 4

2 0 0 2

9 16 5

4 2

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

                  

ˆ
ˆ ˆ

ˆ ˆ

ˆ
ˆ

ˆ

ˆ ˆ ˆ

ˆ ˆ

T
r

r

j k
j k

N
r

r

i
i

B T N

i j

=
′
′
=

− +
= − +

=
′′
′′

= =

= ×

=

3 4

5

3

5

4

5

2

2

ˆ̂

ˆ( ) ˆ ˆ

ˆ ˆ

k

i j k

j k

0
3

5

4

5
1 0 0

0
4

5

3

5

4

5

3

5

−

= − −




+ 





= +

Exercise  6.1

 1. If A = 5t2 î  + t ĵ  − t3 k̂ and 

B  = sin t î  − cos t ĵ , find the value of

 (i) ( )d

d
A B

t
⋅  (ii) ( )d

d
A B

t
× ⋅

2

3 2

^
3 2

^2

(i) (5 1)cos 11 sin ,

(ii) ( sin 3 cos )

( cos 3 sin )

(5 sin sin 11cos )

t t t t

t t t t i

jt t t t

t t t t k

 
 
 − + 
 −
 
 − + 
 + − −  

Ans. :

ˆ

 2.  If A = 4t3 î  + t2 ĵ  − 6t2 k̂ and 

B  = (sin t) î  − (cos t) ĵ , verify the 

formula of ( )d
.

d
A B

t
⋅

  3.  If r = A  ent + B  e −nt, show that
2

2

d

d

r

t
 − n2 r  = 0.

  4.  If r  = t3 î  + 3

2

1
2

5
t

t

 − 
 

 ĵ , show 

that r  × 
d

d

r

t
= k̂.
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  5. Prove that

d

d

d

d

d

d

d

d

d

dt

r
r

t

r

t

r
r

t

r

t

2

2

3

3









 =









 .

  6. Prove that

d

d

d

d

d

d

d

d

d

d

d

d

d

d

2

2

2

2

2

2

3

3

4

4

t

r
r

t

r

t

r
r

t

r

t

r
r

t

r

t









 =











+








 .

  7. Find the derivatives of the following:

   (i) r3 r  + 
d

d

r
a

t
×  (ii) 2

r rb

r a r
+

⋅

where, ,=r r a and b are constant 

vectors.

 

( )

( )

2
2 3

2

2 3

2

d d d
(i) 3

d d d

1 d d d
(ii) 2

d d d

d

d

r r r
r r r a

t t t

r r r b r

t t tr r a r

br r
a

ta r

 
 
 + + × 
 

  − +    ⋅ 
  
 − ⋅   ⋅ 

Ans. :

  8. A particle moves along the curve 

r  = e − t (cos t) î  + e − t (sin t) ĵ  + e − t k̂. 

Find the magnitude of velocity and 

acceleration at time t.

3 , 5t tv e a e− − = = Ans. :

  9. A particle moves on the curve 

x = 2t2, y = t2 − 4t, z = 3t − 5. Find 

the velocity and acceleration at t = 1 

in the direction of î  − 3 ĵ  + 2 k̂

[Hint: unit vector in the direction of 

î  − 3ĵ  + 2k̂ is

ˆ ˆˆ ˆ ˆ ˆ3 2 3 2
ˆ ,

1 9 4 14

i j k i j k
n

− + − +
= =

+ +

Find v and a at t = 1, velocity in the 

given direction = v n⋅ ˆ and acceleration 

in the given direction = a n⋅ ˆ ]

8 2 2
,

77
v a

 
= = − 

 
Ans. :

 10.  A particle is moving along the curve 
2 ,r a t b t c= + + where , ,a b c are 

constant vectors. Show that accel-

eration is constant.

 11.  A particle moves such that its posi-

tion vector is given by  

r  = (cos w t) î  + (sin w t) ĵ . Show 

that velocity v is perpendicular to .r

d
Prove that 0

d

r
r

t

 
⋅ = 

 
Hint:

6.4 ARC LENGTH

The parameterization for a curve is a set of functions depending only on a parameter 

t along with the bounds for the parameter. When we parameterize a curve by taking 

values of t from some interval [a, b], the position vector r̄(t) of any point t on the curve 

can be written as,

ˆ ( ) ( )ˆ ( ) ˆ ( ) ˆ

( )

(

k r t x t i y t j z t k

r t is

r t

= + +

′

′

The tangent vector  

)) ( )ˆ ( ) ˆ ( ) ˆ

( ) ( ) ( ) ( )

= ′ + ′ + ′

′ = ′[ ] + ′[ ] + ′[ ]

x t i y t j z t k

r t x t y t z t
2 2 2

TThe length of  the curve is

dl r t t

a

b

= ′∫ ( )
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The arc length function or arc length of the curve is obtained by replacing the 

constant limit with a variable t.

s r u du

a

t

= ∫ ′( )

Example 1: Find the length of the curve 

( ) ˆ sin ˆ cos ˆr t ti tj tk t= + + ≤ ≤2 3 2 3 2 2on the interval 0 π

Solution:               r ti tj tk

r i tj tk

r

= + +

= + −

= +

2 3 2 3 2

2 6 2 6 2

4 36

ˆ sin ˆ cos ˆ

ˆ cos ˆ sin ˆ

cos

′

′ 22 2

0

2

0

2

2 36 2

4 36

2 10

2 10

2

4 10

t t

l r t

t

t

s r

a

b

+

= +

=

=

=

= [ ]
=

=

∫

∫

sin

′ d

d

π

π
π

π

′′( )u u

t

d

0

∫

         

=

= [ ]
=

∫ 2 10

2 10

2 10

0

0

du

t

t

t

t

Example 2: Find the length of the arc of the curve

( ) ˆ ˆ ( ) ˆr t t i
t

j t k t t= + + + = =
2 2

3 2
3 0 2

3

2

2

between and

Solution:          r t i tj k

r t t t

l r t

a

b

′

′

′( )

= + +

= + + = +

= ∫

2

2 1 1

1

2

2

2

ˆ ˆ ˆ

t d
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t t

t

= +

=

∫ 1

1

2

0

2

2

( )d

++







= +

=

t
0

2

2 2

4

6.5  CURVATURE AND TORSION

Curvature

The magnitude of rate of change of tangent vector w.r.t the arc length is known as 

curvature and is denoted by k.

κ =

dT

ds

ˆ

The reciprocal of the curvature is known as the radius of curvature of the curve and 

is denoted by r.

ρ =
1

k
If the equation of the curve is

 ( ) ( )ˆ ( ) ˆ ( ) ˆr t x t i y t j z t k= + + , then

    k =
×r r

r

′ ″

′
3

Torsion

The magnitude of rate of change of binormal w.r.t. the arc length is known as torsion 

and is denoted by t.

τ =
dB

ds

ˆ

The reciprocal of the torsion is known as the radius of torsion of the curve  and is 

denoted by s.

σ

τ

=
1

If the equation of the curve is 

ˆ ( ) ( )ˆ ( ) ˆ ( ) ˆkr t x t i y t j z t k= + +

then,       τ =
[ ]

×

r r r

r r

′ ″ ″′

′ ″
2

Example 1: Find curvature and torsion for the curve cos ˆ sin ˆ ˆr ti tj tk= + + . Also 

prove that 2 12 2( )k + =τ
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Solution:  ˆ cos ˆ sin ˆ ˆ

sin ˆ cos ˆ ˆ

cos ˆ sin ˆ

kr ti tj tk
r ti tj k

r ti tj

= + +
= − + +

= − −

′

″

rr ti tj

r r
i j k

t t

t t

i t

″′

′ ″

= −

× = −

− −

=

sin ˆ cos ˆ

ˆ ˆ ˆ

sin cos

cos sin

ˆ sin

1

0

(( ) − ( ) + +( )
= − +

× = +

ˆ cos ˆ sin cos

sin ˆ cos ˆ ˆ

sin c

j t k t t

ti tj k

r r t

2 2

2′ ″ oos

sin cos

sin cos

2

2 2

2

1 2

1 2

t

r t t

r r r r r r t

+ =

= + + =

[ ] = ×( ) ⋅ = +

′

′ ″ ′″ ′ ″ ′″ 22

3

3

2

2

2 2

0 1

2

2

1

2

1

2

1

2

1

4

t

r r

r

r r r

r r

+ =

=
×

=

( )

=

=
×

=

( )
=

+ =

k

k

′ ″

′

′ ″ ″′

′ ″
τ

τ ++

=

+( ) =

1

4

1

2

2 1
2 2k τ

Example 2: For the curve cos ˆ sin ˆ ˆr a i a j b k= + +θ θ θ , find the radius of curva-

ture and torsion.

Solution: ˆ cos ˆ sin ˆ ˆ

sin ˆ cos ˆ ˆ

cos ˆ

k r a i a j b k

r a i a j bk

r a i

= + +

= − + +

= −

θ θ θ

θ θ
θ

′

″ −− +

= − +

× = −

a j k

r a i a j k

r r

i j k

a a

sin ˆ ˆ

sin ˆ cos ˆ ˆ

ˆ ˆ ˆ

sin cos

θ
θ θ

θ

0

0″′

′ ″ θθ

θ θ

b

a a− −cos sin 0
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θ θ θi ab j ab k a a= +( ) − +( ) + +ˆ sin ˆ cos ˆ sin cos0 0
2 2 2 22

2

2 2 2 2 2 2 4

θ

θ θ

θ θ

( )
= − +

× = + +

=

ab i ab j a k

r r a b a b a

a

sin ˆ cos ˆ ˆ

sin cos′ ″

bb b a

a b a

a a b

r a a b a

2 2 2 2 2

2 2

2 2

2 2 2 2 2 2

sin cos

sin cos

θ θ

θ θ

+ +

= +

= +

= + + = +′ bb

r r r r r r

a b a b

a b

r r

r

2

2 2 2 2

2

0

′ ″ ″′ ′ ″ ″′

′ ″

[ ] = ×( ) ⋅

= + +

=

=
×[ ]

sin cosθ θ

k
′′

′ ″ ″′

′ ″

3

2 2

2 2

3

2

2 2

2 2

2

2

1

=
+

+( )
=

+

= =
+

=
[ ]

×
=

a a b

a b

a

a b

a b

a

r r r

r r

a b

ρ

τ

k

aa a b

b

a b2 2
2 2 2

+( )
=

+

Example 3: For the curve x a y a z a= = =cos , sin , tanθ θ θ α , find ρ.

Solution:
ˆ cos ˆ sin ˆ tan ˆ

sin ˆ cos ˆ tan ˆ

kr a i a j a k

r a i a j a k

r

= + +

′ = −( ) + +

θ θ θ α

θ θ α

′′′ = − + − +

′ × ′′ = −

( cos )ˆ ( sin ) ˆ ˆ

ˆ ˆ ˆ

sin cos tan

a i a j k

r r

i j k

a a a

θ θ

θ θ α

0

−− −

= +( ) − +( ) +
a a

i a j a k a

cos sin

ˆ tan sin ˆ tan cos ˆ sin

θ θ

α θ α θ θ

0

0 02 2 2 2 ++( )
= ( ) − ( ) +{ }

′ × ′′ =

a

a i j k

r r a

2 2

2

2 2

cos

tan sin ˆ tan cos ˆ ˆ

tan

θ

α θ α θ

α ssin tan cos sec

sin cos tan sec

2 2 2 2

2 2 2 2 2

1θ α θ α

θ θ α α

ρ

+ + =

′ = + + =

a

r a a a a

==
′

′ × ′′
= =

r

r r

a

a
a

3 3 3

2

2sec

sec
sec

α

α
α
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Example 4: Find curvature and torsion for the curve 
cos , sin ,x t t y t t z t t= = = =λ at 0

Solution:             ˆ cos ˆ sin ˆ ˆ

cos sin ˆ sin cos ˆ

kr t ti t tj tk

r t t t i t t t j

= + +

′ = −( ) + +( ) +

λ

λ ˆ̂

sin cos ˆ cos sin ˆ ˆ

cos si

k

r t t t i t t t j k

r t t

′′ = − −( ) + −( ) +

′′′ = − +

2 2 0

3 nn ˆ sin cos ˆt i t t t j( ) + − −( )3

ˆ
, ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

k t r i j k

r i j k

r i j k

r r

At = = + +

= + +

= − + +

× =

0 0

0 2 0

3 0 0

′

″

″′

′ ′′

λ

ˆ̂ ˆ ˆ

ˆ( ) ˆ( ) ˆ( )
ˆ ˆ ˆ

i j k

i j k

i j k

r r

1 0

0 2 0

0 2 0 0 2 0

2 0 2

λ

λ
λ

= − − − + −
= − − +

× =′ ″ 22 1

1

6 0 0 6

2 1

2

2

3

λ

λ

λ λ

+

= +

[ ] = ×( ) ⋅ = + + =

=
×

=
+

r

r r r r r r

r r

r

′

′ ″ ″′ ′ ″ ″′

′ ″

′
k

λλ

λ
λ

τ
λ

λ

λ

λ

2

2
3

2

2

2 2 2

1

2

1

6

4 1

3

2 1

+( )
=

+

=
[ ]

×
=

+( )
=

+( )
r r r

r r

′ ″ ″′

′ ″

Example 5: Prove that radii of curvature and torsion are equal to 
2 2
x

c

 for the 

curve x c t y c t z ct= = =cosh , sinh , .

Solution:  ˆ cosh ˆ sinh ˆ ˆ

sinh ˆ cosh ˆ ˆ

cosh

kr c ti c tj ctk

r c ti c tj ck

r c

= + +

′ = + +

″ = tti c tj k

r c ti c tj k

r r

i j k

c

ˆ sinh ˆ ˆ

sinh ˆ cosh ˆ ˆ

ˆ ˆ ˆ

sin

+ +

″ = + +

′ × ′′ =

0

0

hh cosh

cosh sinh

ˆ sinh ˆ cosh ˆ si

t c t c

c t c t

i c t j c t k c

0

0 0
2 2 2= −( ) − −( ) + nnh cosh

sinh ˆ cosh ˆ ˆˆ

2 2 2

2 2 2

t c t

c ti c tj c kk

−( )
= − + −



6.5 Curvature and Torsion 6.21

r r c t t c t t c t

r c

k′ × ′′ = + + = + =

′ =

2 2 2 2 2 2 2

2

1 2sinh cosh cosh cosh cosh

sinnh cosh cosh

sinh

2 2 2 2

3 2

2t c t c c t

r r r r r r c t c

+ + =

′ ″ ″′[ ] = ′ × ″( )⋅ ″′ = − + 33 2 3

3 3 3

2

2 2 2

0

2 2

2

2 2

cosh

cosh

cosh

cosh

t c

r

r r

c t

c t

c t

c

x

c

+ =

=
×

= = =ρ
′

′ ″

ττ

σ
τ

ρ σ

=
[ ]

×
= = =

= =

=

r r r

r r

c

c t

c

c t

c

x

x

c

′ ″ ″′

′ ″
2

3

4 2 2 2 2

2

2 2 2

1 2

cosh cosh

==
2

2
x

c

Example 6: Find curvature and torsion for the curve 

x t y t z t t= − = − = − =

2 3 4
1 1 1 1, , .at

Solution:       r t i t j t k

r ti t j t k

r i t

= −( ) + −( ) + −( )
′ = + +

′′ = +

2 3 4

2 3

1 1 1

2 3 4

2 6

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ĵj t k

r i j t k

+

′″ = + +

12

0 6 24

2 ˆ

ˆ ˆ ˆ

At t =  1, r i j k

r i j k

r i j k

r r

i j

′ = 2

′′ = 2

′″ = 0

′ ′′ =

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

+ +

+ +

+ +

×

3 4

6 12

6 24

kk

i j k

i j k

r r

2 3 4

2 6 12

36 24 24 8 12 6

12 16 6

= − − − + −

= − +

× =

ˆ( ) ˆ( ) ˆ( )

ˆ ˆ ˆ

′ ′′ 1144 256 36 436 2 109

4 9 16 29

+ + = =

= + + =

[ ] = × ⋅

r

r r r r r r

′

′ ′′ ′′′ ′ ′′) ′′′ =( 00 − 96 +144 = 48

′ ′′

′

′ ′′ ′′′

′ ′′

k =
×

=

=
[ ]

×
=

×

r r

r

r r r

r r

3

2

2 109

29 29

48

4 1
τ

009

12

109
=
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Example 7: Find the radius of curvature and the radius of torsion for the curve 

r ti t j t k= + +3 3 3
2 3  

Solution:  r ti t j t k

r i t j t k

r i j tk

r

= + +

′ = + +

′′ = + +

′′′ =

3 3 2

3 6 6

0 6 12

0

2 3

2

� � �

� � �

� � �

ii j tk

r r

i j k

t t

t

i t t j t

� � �

� � �

� �

+ +

′ × ′′ =

= − −

0 12

3 6 6

0 6 12

72 36 36

2

2 2( ) ( −− + −

= − +

′ × ′′ = + + = +

0 18 0

36 36 18

18 4 4 1 18 2 1

2

4 2 2

) ( )

(

k

t i t j k

r r t t t

�

� � �

))

( )

( ).

r t t t

r r r r r r

′ = + + = +

′ ′′ ′′′[ ] = ′ × ′′ ′′′ = + +

9 36 36 3 2 1

0 0 216

2 4 2

==

=
′

′ × ′′
=

+

+
= +

=
′ × ′′

′

216

27 2 1

18 2 1

3

2
2 1

3 2 3

2

2 2

2

ρ

σ

r

r r

t

t
t

r r

r

( )

( )
( )

rr r

t
t

′′ ′′′
=

+
= +

( ) ( )
( )

18 2 1

216

3

2
2 1

2 2 2
2 2

 

Example 8: Find the curvature and torsion of the curve

r a t t i a t t j atk at t= − + − + =( sin ) ( cos ) .� � � π

3

Solution: r a t t i a t t j at k

r a t i a t j a

= − + − +

= − + + +

( sin ) ( cos )

( cos ) ( sin )

� � �

� �′ 1 1 tt k

t r a i a j ak

a
i

a

�

� � �

�

At = = −





+ +






+

= +
+( )

π
3

1
1

2
1

3

2

2

2 3

2

, ′

jj ak� �

� � �

+



6.5 Curvature and Torsion 6.23

r a t i a t j ak

t r
a

i
a

j k

� � �

� �

= + +

= = + +

′′

′′

(sin ) (cos )

,At
π
3

3

2 2
0��

� � �

� � �

r a t i a t j k

t r
a
i

a
j k

′′′

′′′

= + − +

= = − +

(cos ) ( sin )

,

0

3 2

3

2
0At

π

                     

r r

i j k

a a
a

a a

i
a

j
a
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+
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=
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 1. Find the arc length of the following 

curves:

ˆ( ) cos ˆ sin ˆ ˆ

( ) ( )ˆ ( ) ˆ

k r t i t j t k t

r t i t j

a for

b f

= + + ≤ ≤

= + + +

0 6

1 3 4 22 3

π

oor 0 1≤ ≤t

 

Ans. : (a) 6 2

2 2 2 1

π

( )b −( )














 2. Find the arc length of the curve 

r t i t j= +

−( )






2 3

1

27
80 10 13 13

ˆ ˆ between (1,1) and (4,8)

Ans. :

 3. For the curve in space x = a cos 2t, 

y = sin 2t, z = 2a sin t, show that 

τ =

+

3

5 3 2

cos

( cos )

t

a t

 4. For the space curve 
ˆ

ˆ

( )ˆ ˆ ( ) ˆ,

( )

k

k

r a t t i at j a t t k

a t

= − + + +

= =

+

3 3 3

1

3 1

3 2 3

2 2
show that k τ

 5. For the space curve 

x e t y e t z e
t t t= = =cos , sin , , find 

the radius of curvature and radius of 

torsion.

 Ans. : ρ σ= =










3

2
3e e

t t
,

6.6  SCALAR AND VECTOR POINT FUNCTION

6.6.1  Field

If a function is defined in any region of space, for every point of the region, then this 

region is known as field.

6.6.2  Scalar Point Function

A function f (x, y, z) is called scalar point function defined in the region R, if it 

associates a scalar quantity with every point in the region R of space. The temperature 

distribution in a heated body, density of a body and potential due to gravity are the 

examples of a scalar point function.

6.6.3  Vector Point Function

A function F (x, y, z) is called vector point function defined in the region R, if it 

associates a vector quantity with every point in the region R of space. The velocity of 

a moving fluid, gravitational force are the examples of vector point function.

6.6.4  Vector Differential Operator Del (∇ )

The vector differential operator Del (or nabla) is denoted by ∇ and is defined as

ˆˆ ˆi j k
x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂

Exercise 6.2
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6.7  GRADIENT

The gradient of a scalar point function f is written as φ∇ or grad f and is defined as

ˆˆ ˆgrad i j k
x y z

φ φ φφ φ ∂ ∂ ∂
= ∇ = + +

∂ ∂ ∂

grad f is a vector quantity.

f (x, y, z) is a function of three independent variables and its total differential df is 

given as

 

d d d d

d

φ
φ φ φ

φ φ φ

=
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂









 ⋅ +

x
x

y
y

z
z

i
x

j
y

k
z

i x jˆ ˆ ˆ ˆ ˆdd dy k z+( )ˆ

 dr= ∇ ⋅φ       ˆˆ ˆ ˆ ˆ ˆd d d dr xi yj zk r i x j y j z = + + + ∴ = + + ∵

 
d cosr= ∇φ θ

 
...(6.1)

where, q is the angle between the vectors φ∇  and d .r  If dr  and φ∇  are in the same 

direction, then q = 0,

df = dr∇φ

cos q = 1 is the maximum value of cos q. Hence, df is maximum at q = 0.

6.7.1  Normal

Let f (x, y, z) = c represents a family of surfaces for different values of the constant c. 

Such a surface for which the value of the function is constant is called level surface. 

 Now differentiating f, we get 

 df = 0

But from Eq. (6.1) of Section 6.7,

d d

d 0

r

r

= ∇ ⋅

∇ ⋅ =

φ φ

φ

Hence, φ∇  and dr are perpendicular to each other. Since vector dr is in the direction 

of the tangent to the given surface, vector φ∇  is perpendicular to the tangent to the 

surface and hence φ∇  is in the direction of normal to the surface.

Thus geometrically φ∇ represents a vector normal to the surface f (x, y, z) = c.

6.7.2 Directional Derivative

 (i) Let f (x, y, z) be a scalar point function. Then , ,
x y z

φ φ φ∂ ∂ ∂
∂ ∂ ∂

are the directional 

derivative of f in the direction of the coordinate axes.
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Similarly, if f (x, y, z) be a vector point function, then , ,
∂ ∂ ∂
∂ ∂ ∂
f f f

x y z
 are the directional 

derivative of f in the direction of the coordinate axes.

 (ii) The directional derivative of a scalar point function f (x, y, z) in the direction 

of a line whose direction cosines are l, m, n,

l m n
x y z

φ φ φ∂ ∂ ∂
= + +

∂ ∂ ∂

 (iii) The directional derivative of scalar point function f (x, y, z) in the direction of 

vector a , is the component of φ∇  in the direction of a . If â is the unit vector 

in the direction of a , then directional derivatives of f in the direction of a

ˆ
a

a
a

∇ ⋅
= ∇ ⋅ =

φ
φ

6.7.3  Maximum Directional Derivative

Since the component of a vector is maximum in its own direction, [∵cos q  is maximum 

when q = 0], the directional derivative is maximum in the direction of φ∇ . Since φ∇  

is normal to the surface, directional derivative is maximum in the direction of normal.

Maximum directional derivative cos

cos 0

φ θ

φ

φ

= ∇

= ∇

= ∇

Standard Results:

 (i) ( )φ y φ y∇ ± = ∇ ± ∇

 (ii) ( ) ( ) ( )φy φ y φ y∇ = ∇ + ∇

 (iii) 
( ) ( ) ( )ˆˆ ˆ( ) ( ) .
f u f u f u

f u i j k f u u
x y z

∂ ∂ ∂ ′∇ = + + = ∇
∂ ∂ ∂

Example 1: Find φ∇  at (1, − 2, 1), if f  = 3x2y − y3 z2.

Solution:   ˆˆ ˆi j k
x y z

φ φ φφ ∂ ∂ ∂
∇ = + +

∂ ∂ ∂

= î  (6xy − 0) + ĵ  (3x2 − 3y2z2) + k̂ (0 − 2y3z)

At x = 1, y = −2, z = 1

 φ∇  = î  (−12) + ĵ  (3 − 12) + k̂ (16)

  φ∇  at (1, −2, 1) = −12 î  − 9 ĵ  + 16 k̂
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Example 2: Evaluate 
2

,re∇  where r2 = x2 + y2 + z2.

Solution:  r2 = x2 + y2 + z2

Differentiating partially w.r.t. x, y and z,

 

2 2 ,

2 2 ,

2 2 ,

∂ ∂
= =

∂ ∂
∂ ∂

= =
∂ ∂
∂ ∂

= =
∂ ∂

r r x
r x
x x r

r r y
r y
y y r

r r z
r z
z z r

( )

2 2 2

2

2 2 2

2 2 2 2

ˆˆ ˆ

ˆˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ( 2 ) ( 2 ) ( 2 ) 2

r r r
r

r r r

r r r r

e e e
e i j k

x y z

e r e r e r
i j k

r x r y r z

x y z
i e r j e r k e r e xi yj zk

r r r

∂ ∂ ∂
∇ = + +

∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅ + ⋅

∂ ∂ ∂ ∂ ∂ ∂

= ⋅ + ⋅ + ⋅ = + +

Example 3: If f (x, y) = 2 2log x y+ and r  = xî + yĵ + zk̂, prove that

grad 
( )

( ) ( )
ˆ ˆ

.
ˆ ˆ ˆ ˆ

r k r k
f

r k r k r k r k

− ⋅
=

   − ⋅ ⋅ − ⋅   

Solution:  f (x, y) = 2 2log x y+

 
= +

1

2

2 2log( )x y

 

2 2 2 2 2 2

2 2 2 2

2 2

1 1 1ˆˆ ˆlog( ) log( ) log( )
2 2 2

ˆ ˆ1 1
2 2 0

2 2

ˆ ˆ

f i x y j x y k x y
x y z

i j
x y

x y x y

xi yj

x y

∂ ∂ ∂     ∇ = + + + + +     ∂   ∂   ∂  

= ⋅ ⋅ + ⋅ ⋅ +
+ +

+
=

+

 
( ) ( )

ˆ ˆ

ˆ ˆ ˆ ˆ

xi yj

xi yj xi yj

+
=

+ ⋅ +

Now,  r  = xî  + yĵ  + zk̂

 k̂· r  = z [∵ î  · k̂ = ĵ  · k̂ = 0, k̂ · k̂ = 1]

r  = xî  + yĵ  + (k̂ · r ) k̂

r  − (k̂ · r )k̂ = xî  + yĵ
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Substituting x î  + y ĵ  in ,f∇

( )
( ) ( )

ˆ ˆ

ˆ ˆ ˆ ˆ

r k r k
f

r k r k r k r k

− ⋅
∇ = ⋅

   − ⋅ ⋅ − ⋅   

Example 4: Prove that 
2 ,n nr nr r r−∇ =  = xî + yĵ + zk̂, r = .r

Solution:  r = x î  + y ĵ  + zk̂, r2 = x2 + y2 + z2

 

∂

∂
=

∂

∂
=

∂

∂
=

∇ =
∂

∂
+

∂

∂
+

∂

∂
=

∂

∂

r

x

x

r

r

y

y

r

r

z

z

r

r i
r

x
j

r

y
k

r

z
i

r

r

n
n n n n

, ,

⋅⋅
∂

∂
+

∂

∂
⋅
∂

∂
+

∂

∂
⋅
∂

∂

= ⋅ + ⋅ +
− −

r

x
j

r

r

r

y
k

r

r

r

z

i nr
x

r
j nr

y

r
k n

n n

n n

ˆ ˆ

ˆ ˆ ˆ1 1 rr
z

r

n−
⋅

1

    = nrn − 2 (x î  + yĵ  + zk̂ )

    = nrn − 2 r .

Example  5: Show that∇
⋅





= −

⋅( ) ( )
+

a r

r

a

r

n a r

r

r
n n n 2 , where r  = xî + yĵ + zk̂, 

r = ,r a  is constant vector. 

Solution:  Let

 

 
a a i a j a k

a r

r

r xi yj zk

a r

r

a

n

n

= + +
⋅

=

= + +

=
⋅







 =

1 2 3
ˆ ˆ ˆ,

ˆ ˆ ˆ

(

and φ

φ 11 2 3

1 2 3

ˆ ˆ ˆ) ˆ ˆ ˆi a j a k xi yj zk

r

a x a y a z

r

n

n

+ + ⋅ + +( )









=
+ +








 

1 2 3

1 2 3 1 2 3

2

1

1 1 2 3

2

( ) ( )

( )

n

n
n

n

n n

n

a x a y a z

x x r

r
a x a y a z r a x a y a z

x x

r

r
a r a x a y a z nr

x

r

−

+ +∂ ∂  =   ∂ ∂
∂ ∂ + + − + + ∂ ∂ =

∂
− + +

∂=

φ

But, r  = xî  + yĵ  + zk̂, r2 = x2 + y2 + z2
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1

1 1 2 3

2

, ,

( )n n

n

r x r y r z

x r y r z r

x
a r a x a y a z nr

r

x r

−

∂ ∂ ∂
= = =

∂ ∂ ∂

 − + +   ∂
=

∂
φ

Similarly, 

1

2 1 2 3

2

( )n n

n

y
a r a x a y a z nr

r

y r

−  − + +   ∂
=

∂
φ

and 

1

3 1 2 3

2

( )

ˆˆ ˆ

n n

n

z
a r a x a y a z nr

r

z r

i j k
x y z

−  − + +   ∂
=

∂
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

φ

φ φ φ
φ

=
+ +( ) − + + + +( )

=

−a i a j a k r a x a y a z nr xi yj zk

r

ar

n n

n

n

1 2 3 1 2 3

2

2

ˆ ˆ ˆ ˆ ˆ
ˆ( )

−− ⋅( )

+ + = + +( )⋅ + +(

−a r nr r

r

a x a y a z a i a j a k xi yj zk

n

n

2

2

1 2 3 1 2 3∵ ˆ ˆ
ˆ

ˆ ˆ ˆ )) = ⋅ a r

Hence, ∇
⋅





= −

⋅( )
+

a r

r

a

r

n a r r

r
n n n 2

.

Example 6: If r  = xî + yĵ + zk̂ and ,a b  are constant vectors, prove that

( )( )
5 3

1 3
.

a r b r a b
a b

r r r

⋅ ⋅ ⋅ ⋅∇ ⋅∇ = −  

Solution:  Let a a i a j a k b b i b j b k

r
i

x r

= + + = + +

∇
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∂
∂







 +

1 2 3 1 2 3

1 1

ˆ ˆ ˆ, ˆ ˆ ˆ

ˆ ĵj
y r

k
z r

i
r

r

x
j

r

r

y

∂
∂







 +

∂
∂








= −
∂
∂







 + −

∂
∂






1 1

1 1

2 2

ˆ

ˆ ˆ



 + −

∂
∂







k̂

r

r

z

1

2

But, r  = xî  + yĵ  + zk̂, r2 = x2 + y2 + z2

( )
2 2 2 3 3

, ,

1 1 1 1 1ˆ ˆˆ ˆ ˆ ˆ .

r x r y r z

x r y r z r

x y z r
i j k xi yj zk

r r r rr r r r r

∂ ∂ ∂
= = =

∂ ∂ ∂

       ∇ = − ⋅ + − ⋅ + − ⋅ = − + + = −              
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1 2 3 3

1 2 3

3

ˆˆ ˆ1 ˆˆ ˆ( )

, say

xi yj zk
b b i b j b k

r r

b x b y b z

r

 + + ⋅∇ = + + ⋅ −     

+ + = −   

= φ

 

1 2 3

3

1 ˆˆ ˆb i j k
r x y z

b x b y b z

x x r

∂ ∂ ∂ ∇ ⋅∇ = ∇ = + +   ∂ ∂ ∂

+ +∂ ∂  = −  ∂ ∂

φ φ φ
φ

φ

 

3 3

1 1 2 3

6

3 2

1 1 2 3

6

( )

( )3

∂ − + + ∂= −   
∂ − + + ∂= −   

b r b x b y b z r
x

r

r
b r b x b y b z r

x

r

 

( )

( )

3 2

1

6

2

1

5

3

3

 − ⋅ 
= −   

− + ⋅
=

x
b r b r r

r

r

b r b r x

r
Similarly,

and 

( )

( )

( )

2

2

5

2

3

5

1 2 3

3 5

3

3

ˆˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ( ) 3 ( )

φ

φ

φ φ φφ

− + ⋅∂
=

∂

− + ⋅∂
=

∂
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

+ + ⋅ + +
= − +

b r b r y

y r

b r b r y

z r

i j k
x y z

b i b j b k b r xi yj zk

r r

 

( )

( )( )
3 5

3 5

3

1 3

b b r r

r r

a b a r b r
a a b

r r r

⋅
= − +

⋅ ⋅ ⋅ ⋅∇ = ⋅∇ ⋅∇ = − +  φ

Hence, 
( )( )

5 3

1 3
 .

a r b r a b
a b

r r r

⋅ ⋅ ⋅ ⋅∇ ⋅∇ = −  

Example  7: Find the unit vector normal to the surface x2 + y2 + z2 = a2 at 

, , .
3 3 3

a a a 
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Solution:  φ∇ is the vector which is normal to the surface f (x, y, z) = c 

Given surface is x2 + y2 + z2 = a2

 f (x, y, z) = x2 + y2 + z2

2 2 2 2 2 2 2 2 2ˆˆ ˆ( ) ( ) ( )

ˆˆ ˆ(2 ) (2 ) (2 )

i x y z j x y z k x y z
x y z

i x j y k z

φ ∂ ∂ ∂
∇ = + + + + + + + +

∂ ∂ ∂

= + +

At the point  , , ,
3 3 3

a a a 
  

∇ = + +φ
2

3

a
i j k(ˆ ˆ ˆ )

Unit vector normal to the surface x2 + y2 + z2 = a2 at , ,
3 3 3

a a a 
 
 

 

( )

( )

2 2 2

ˆˆ ˆ
2

3 4 4 4

3 3 3

ˆˆ ˆ2

2 3
3

3

ˆˆ ˆ
.

3

φ
φ

∇
=

∇

+ +
=

+ +

+ +
=

⋅

+ +
=

i j ka

a a a

a i j k

a

i j k

Example 8: Find unit vector normal to the surface x2y + 2xz2 = 8 at the point 

(1, 0, 2).

Solution: Given surface is x2y + 2xz2 = 8

      f (x, y, z) = x2y + 2xz2

2 2 2 2 2 2

2 2

ˆˆ ˆ( 2 ) ( 2 ) ( 2 )

ˆˆ ˆ(2 2 ) ( ) (4 )

i x y xz j x y xz k x y xz
x y z

i xy z j x k xz

φ ∂ ∂ ∂
∇ = + + + + +

∂ ∂ ∂

= + + +

At the point (1, 0, 2), φ∇ = 8î  + ĵ  + 8k̂

Unit vector normal to the surface x2y + 2xz2 = 8 at the point (1, 0, 2)

 

ˆ ˆˆ ˆ ˆ ˆ8 8 8 8
.

64 1 64 129

i j k i j k∇ + + + +
= = =

∇ + +
φ
φ

Example 9: Find the directional derivatives of f = xy2 + yz2 at the point (2, −1, 1)

in the direction of the vector î + 2ĵ + 2k̂.
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Solution:  2 2 2 2 2 2ˆˆ ˆ( ) ( ) ( )i xy yz j xy yz k xy yz
x y z

φ ∂ ∂ ∂
∇ = + + + + +

∂ ∂ ∂
  = î y2 + ĵ  (2xy + z2) + k̂ (2yz)

At the point (2, −1, 1),

 φ∇ = î  + ĵ  (− 4 + 1) + k̂ (− 2) = î  − 3 ĵ  − 2k̂

Directional derivative in the direction of the vector a = î  + 2 ĵ  + 2k̂

( ) ( )

( )

ˆˆ ˆ2 2ˆˆ ˆ3 2
1 4 4

(1 6 4)

3

3.

φ= ∇ ⋅

+ +
= − − ⋅

+ +
− −

=

= −

a

a

i j k
i j k

Example 10: Find the directional derivative of φ =

+ +

1

2 2 2

1

2( )x y z

 at the point 

P (1, −1, 1) in the direction of a  = î + ĵ + k̂.

Solution: 

∇ =
∂

∂
+ +

+
∂

∂
+ +

+
∂

∂
+ +

φ ˆ

( )

ˆ

( )

ˆ

( )

i
x

x y z

j
y

x y z

k
z

x y z

1 1 1

2 2 2

1

2 2 2 2

1

2 2 2 2

1

22

2 2 2

3

2 2 2 2

3

2

2

2

2

2

= −

+ +















+ −

+ +















+ −
x

x y z

i j
y

x y z( )

ˆ ˆ

( )

22

2
2 2 2

3

2

2 2 2

3

2

z

x y z

k

xi yj zk

x y z

( )

ˆ

( ˆ ˆ ˆ)

( )

+ +















= −
+ +

+ +

At the point (1, −1, 1),

 
∇ =

− − +
φ

( )

( )

i j k

3

3

2

Directional derivative in the direction of a = î  + ĵ  + k̂

= ∇ ⋅

=
− − + ⋅ + +

+ +

=
− + −

= −

φ
a

a

i j k i j k( ) ( )

( )

.

3 1 1 1

1 1 1

3

1

9

3

2

2
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Example 11: Find the directional derivative of f = xy2 + yz3 at (2, −1, 1) in the 

direction of the normal to the surface x log z − y2 = −4 at (−1, 2, 1). 

Solution:  Let y = x log z − y2 

y∇ is normal to the surface x log z − y2 = −4

2 2 2ˆˆ ˆ( log ) ( log ) ( log )

ˆˆ ˆ(log ) ( 2 )

i x z y j x z y k x z y
x y z

x
i z j y k

z

∂ ∂ ∂
∇ = − + − + −

∂ ∂ ∂

 = + − +   

y

At the point (−1, 2, 1), 

 y∇ = î  (log 1) − 4 ĵ  − k̂

 = −4 ĵ  − k̂

 −4 ĵ  − k̂ is a vector normal to the surface x log z − y2 = −4 at (−1, 2, 1).

Now, f = xy2 + yz3

 

2 3 2 3 2 3ˆˆ ˆ( ) ( ) ( )i xy yz j xy yz k xy yz
x y z

φ ∂ ∂ ∂
∇ = + + + + +

∂ ∂ ∂

 = î  (y2) + ĵ  (2xy + z3) + k̂ (3yz2)

At the point (2, −1, 1),

 φ∇ = î  + ĵ  (−4 + 1) + k̂ (−3) = î  − 3ĵ  − 3k̂

Directional derivative of f in the direction of the vector −4 ĵ  − k̂

 

ˆˆ( 4 ) 12 3 15ˆˆ ˆ( 3 3 )
16 1 17 17

j k
i j k

− − +
= − − ⋅ = =

+

Example 12: Find directional derivative of the function f = xy2 + yz2 + zx2 along 

the tangent to the curve x = t, y = t2, z = t3 at the point (1, 1, 1). 

Solution:  Tangent to the curve is

2 3

2

d

d

d ˆˆ ˆ( )
d

d ˆˆ ˆ( )
d

ˆˆ ˆ( 2 3 )

=

= + +

= + +

= + +

r
T

t

xi yj zk
t

ti t j t k
t

i tj t k

If x = 1, y = 1, z = 1, then t = 1
At the point (1, 1, 1), t = 1

 T = î  + 2ĵ  + 3k̂

 f = xy2 + yz2 + zx2

 2 2 2 2 2 2 2 2 2ˆˆ ˆ( ) ( ) ( )i xy yz zx j xy yz zx k xy yz zx
x y z

φ ∂ ∂ ∂
∇ = + + + + + + + +

∂ ∂ ∂
 = î  (y2 + 2xz) + ĵ  (2xy + z2) + k̂ (2yz + x2)
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At the point (1, 1, 1),

φ∇  = 3î  + 3ĵ  + 3k̂

Directional derivative of f in the direction of the tangent T = î  + 2ĵ  + 3k̂ at the point 

(1, 1, 1)
ˆˆ ˆ( 2 3 ) 18ˆˆ ˆ(3 3 3 )

1 4 9 14

T i j k
i j k

T

+ +
= ∇ ⋅ = + + ⋅ =

+ +
φ

Example 13: Find the directional derivative of f = e2x cos yz at the origin in the 

direction of the tangent to the curve x = a sin t, y = a cos t, z = a t at .
4

t
π

=

Solution:  Tangent to the curve is

 

d d ˆˆ ˆ( sin ) ( cos ) ( )
d d

r
T a t i a t j at k

t t
 = = + + 

 = (a cos t) î  + (−a sin t) ĵ  + (a) k̂

At the point ˆˆ ˆ,
4 2 2

a a
t T i j ak

π
= = − +

 f = e2x cos yz

      

2 2 2ˆˆ ˆ( cos ) ( cos ) ( cos )x x xi e yz j e yz k e yz
x y z

φ ∂ ∂ ∂
∇ = + +

∂ ∂ ∂

      = î  (2e2x cos yz) + ĵ  (−e2x z sin yz) + k̂ (− e2x y sin yz)

At the origin, φ∇  = 2i

Directional derivative in the direction of the tangent to the given curve

 

= ∇ = ⋅
− +








+ +

= =φ
T

T
i

a
i

a
j ak

a a
a

a

a
2

2 2

2 2

2

2
1

2 2

2

ˆ

ˆ ˆ ˆ

.

Example 14: Find the directional derivative of v2, where v = xy2 î + zy2 ĵ + xz2 k̂ 

at the point (2, 0, 3) in the direction of the outward normal to the sphere 

x2 + y2 + z2 = 14 at the point (3, 2, 1).

Solution:  v2 = v · v

 
2 2 2 2 2 2ˆ ˆˆ ˆ ˆ ˆ( ) ( )xy i zy j xz k xy i zy j xz k= + + ⋅ + +

 = x2y4 + z2y4 + x2z4

Let v2 = f

 

ˆˆ ˆi j k
x y z

φ φ φφ ∂ ∂ ∂
∇ = + +

∂ ∂ ∂
 = (2xy4 + 2xz4) î  + (4x2y3 + 4z2y3) ĵ  + (2zy4 + 4x2z3) k̂

At the point (2, 0, 3), 

 φ∇  = (0 + 324) î  + (0 + 0) ĵ  + (0 + 432) k̂ = 324 î  + 432 k̂
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Given sphere is x2 + y2 + z2 = 14. 

Let y = x2 + y2 + z2 

Normal to the sphere ˆˆ ˆi j k
x y z

y y yy ∂ ∂ ∂
= ∇ = + +

∂ ∂ ∂
= 2xî  + 2yĵ  + 2zk̂

At the point (3, 2, 1),

 y∇  = 6î  + 4ĵ  + 2k̂

Directional derivative in the direction of normal to the sphere

 

= ∇ ⋅
∇

∇

= +( ) ⋅
+ +( )
+ +

=

φ
ψ

ψ

324 432
6 4 2

36 16 4

1404

14

ˆ ˆ
ˆ ˆ ˆ

.

i k
i j k

Example  15: Find the directional derivative of f = x2 − y2 + 2z2 at the point 

P(1, 2, 3) in the direction of the line PQ where Q is the point (5, 0, 4). In what 

 direction it will be maximum? Find the maximum value of it.

Solution:  Position vector of the point P

OP = î  + 2ĵ  + 3k̂

Position vector of the point Q

OQ = 5î  + 0ĵ  + 4k̂

  PQ =OQ  − OP  = 4î  − 2ĵ  + k̂

2 2 2 2 2 2 2 2 2ˆˆ ˆ( 2 ) ( 2 ) ( 2 )i x y z j x y z k x y z
x y z

φ ∂ ∂ ∂
∇ = − + + − + + − +

∂ ∂ ∂

 = (2x) î  + (−2y) ĵ  + (4z) k̂

At the point, (1, 2, 3),

φ∇ = 2î  − 4ĵ  + 12k̂

Directional derivative at the point (1, 2, 3) in the direction of the line PQ

( ) ( )ˆˆ ˆ4 2ˆˆ ˆ2 4 12
16 4 1

8 8 12

21

28

7 3

4 7

3

− +
= − + ⋅

+ +
+ +

=

=

=

i j k
i j k

Directional derivative is maximum in the direction of φ∇ i.e. 2î  − 4ĵ  + 12k̂

Maximum value of directional derivative 

 4 16 144 164 2 41φ= ∇ = + + = =
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Example  16: Find the directional derivative of e = 6x2y + 24y2z − 8z2x at 

(1, 1, 1) in the direction parallel to the line 
1 3

.
2 2 1

x y z− −
= =

−
Hence, find its maxi-

mum value.

Solution: 2 2 2 2 2 2

2 2 2

ˆ ˆ(6 24 8 ) (6 24 8 )

ˆ (6 24 8 )

i x y y z z x j x y y z z x
x y

k x y y z z x
z

∂ ∂
∇ = + − + + −

∂ ∂
∂

+ + −
∂

φ

 = (12xy − 8z2) î  + (6x2 + 48yz) ĵ  + (24y2 − 16zx) k̂

At the point (1, 1, 1), 

φ∇ = 4î  + 54 ĵ  + 8k̂

Given line is 
1 3

2 2 1

x y z− −
= =

−
.

Direction ratios of the line are 2, −2, 1. 

Direction of the line = 2î  − 2 ĵ  + k̂

Directional derivative in the direction of 2î  − 2ĵ  + k̂ at the point (1, 1, 1)

î ĵ kˆ
= + + =

+ +

+ +

( )
( )2 2

4 4 1

ˆˆ ˆ4 54 8i j k

 

+ +

=
− +

=
−

.

4 4 1

8 108 8

3

92

3

Maximum value of directional derivative

 
ˆˆ ˆ4 54 8 16 2916 64 2996.= + + = + + =i j k

Example  17: Find the values of a, b, c if the directional derivative of 

e = axy2 + byz + cz2x3 at (1, 2, −1) has maximum magnitude 64 in the direction paral-

lel to the z-axis. 

Solution:

 

2 2 3 2 2 3 2 2 3ˆˆ ˆ( ) ( ) ( )i axy byz cz x j axy byz cz x k axy byz cz x
x y z

φ ∂ ∂ ∂
∇ = + + + + + + + +

∂ ∂ ∂

 = (ay2 + 3cz2x2) î  + (2axy + bz) ĵ  + (by + 2czx3) k̂

At the point (1, 2, −1), 

  φ∇ = (4a + 3c) î  + (4a − b) ĵ  + (2b − 2c) k̂ … (1)

The directional derivative is maximum in the direction of φ∇  i.e. in the direction 

of (4a + 3c) î  + (4a − b) ĵ  + (2b − 2c) k̂. But it is given that directional derivative is 

maximum in the direction of z-axis i.e., in the direction of 0 î  + 0 ĵ  + k̂. Therefore, φ∇
and z-axis are parallel.

  
4 3 4 2 2

0 0 1

a c a b b c+ − −
= =  = l , say

    4a + 3c = 0 … (2)

      4a − b = 0 … (3)

Substituting in Eq. (1),
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φ∇ = (2b − 2c) k̂

Maximum value of directional derivative is .φ∇  But it is given as 64.

 

64

ˆ(2 2 ) 64b c k

∇ =

− =

φ

 2b − 2c = 64,  b − c = 32

From Eqs. (2) and (3),

 4a + 3c = 0,  4a − b = 0, 

Solving, b = −3c

Substituting in b − c = 32, −4c = 32, 

 c = −8, b = 24, a = 6

Hence,      a = 6, b = 24, c = −8.

Example 18: For the function f (x, y) = 
2 2

,
x

x y+
find the magnitude of the direc-

tional derivative along a line making an angle 30°  with the positive x-axis at (0, 2).

Solution:  ∇ =
∂
∂ +









 +

∂
∂ +









 +

∂
∂ +











=

φ ˆ ˆ ˆi
x

x

x y
j

y

x

x y
k

z

x

x y2 2 2 2 2 2

1

xx y

x x

x y
i

x y

x y
j

y x

2 2 2 2 2 2 2 2

2

2 2
0

+
−

+








 + −

+








 +

=
−

( )

( )
ˆ ( )

( )
ˆ

22

2 2 2 2 2 2

2

( )
ˆ

( )
ˆ

x y
i

xy

x y
j

+
−

+

At the point (0, 2), 

2 2

4 0 0ˆ ˆ
(0 4) (0 4)

−
∇ = −

+ +
i jφ ˆ

4
=
i

Line OA makes an angle 30° with positive

x-axis.

 OA OB BA= +

Unit vector in the direction of OA

 = î  cos 30°  + ĵ  sin 30°

 

3 1ˆ ˆ
2 2
i j= +

Directional derivative in the direction of
3 1ˆ ˆ

2 2
i j+  at (0, 2)

 

ˆ 3 1 3ˆ ˆ
4 2 2 8

i
i j

 
= ⋅ + =  

y

x

A

BO

30°

Fig. 6.3
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Example 19: Find the rate of change of f = xyz in the direction normal to the 

surface  x2y + y2x + yz2 = 3 at the point (1, 1, 1). 

Solution:  Rate of change of f in the given direction is the directional derivative of 

f in that direction.

ˆˆ ˆ( ) ( ) ( )i xyz j xyz k xyz
x y z

φ ∂ ∂ ∂
∇ = + +

∂ ∂ ∂
= (yz) î  + (xz) ĵ  + (xy) k̂

At the point (1, 1, 1),

φ∇ = î  + ĵ  + k̂ 

Given surface is  x2y + y2x + yz2 = 3. 

Let y = x2y + y2x + yz2 

Normal to the surface = ˆˆ ˆi j k
x y z

y y yy ∂ ∂ ∂
∇ = + +

∂ ∂ ∂
= (2xy + y2) î  + (x2 + 2xy + z2) ĵ  + (2yz) k̂

At the point (1, 1, 1),

y∇ = 3î  + 4 ĵ  + 2 k̂ 

Directional derivative in the direction of normal to the given surface

 

yφ
y

∇
= ∇ ⋅

∇

ˆˆ ˆ(3 4 2 ) 3 4 2 9ˆˆ ˆ( )
9 16 4 29 29

i j k
i j k

+ + + +
= + + ⋅ = =

+ +

Example 20: Find the direction in which temperature changes most rapidly with 

distance from the point (1, 1, 1) and determine the maximum rate of change if the 

temperature at any point is given by e (x, y, z) = xy + yz + zx.

Solution:  Temperature is given by f (x, y, z) = xy + yz + zx. Temperature will change 

most rapidly i.e., rate of change of temperature, will be maximum in the direction of .φ∇

ˆˆ ˆ( ) ( ) ( )i xy yz zx j xy yz zx k xy yz zx
x y z

φ ∂ ∂ ∂
∇ = + + + + + + + +

∂ ∂ ∂

 = (y + z) î  + (x + z) ĵ  + (y + x) k̂

At the point (1, 1, 1),

φ∇ = 2î  + 2 ĵ  + 2k̂

This shows that temperature will change most rapidly in the direction of 2î  + 2ĵ  + 2k̂

and maximum rate of change = maximum directional derivative

 4 4 4 12 2 3φ= ∇ = + + = =

Example  21: Find the acute angle between the surfaces x2 + y2 + z2 = 9 and 

z = x2 + y2 − z at the point (2, −1, 2). 

Solution:  The angle between the surfaces at any point is the angle between the 

normals to the surfaces at that point.

Let f
1
 = x2 + y2 + z2, f

2
 = x2 + y2 − z 

Normal to f
1
, 1 1 1

1
ˆˆ ˆi j k

x y z

φ φ φ
φ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
= (2x) î  + (2y) ĵ  + (2z) k̂
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Normal to f
2
, 2 2 2

2
ˆˆ ˆi j k

x y z

φ φ φ
φ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
= (2x) î  + (2y) ĵ  − k̂

At (2, −1, 2), 1φ∇ = 4î  − 2ĵ  + 4k̂, 2φ∇ = 4î  − 2ĵ  − k̂

Let q be the angle between the normals 1φ∇ and 2φ∇ .

1 2 1 2 cos

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(4 2 4 ) (4 2 ) 4 2 4 4 2 cos

(16 4 4) 16 4 16 16 4 1cos

i j k i j k i j k i j k

∇ ⋅∇ = ∇ ∇

− + ⋅ − − = − + − −

+ − = + + + +

φ φ φ φ θ

θ

θ

 

36 21cos

16 6 21cos

16 8 21
cos

636 21

=

=

= =

θ

θ

θ

Hence, acute angle  1 8 21
cos

63

−=θ  = 54°251

Example  22: Find the angle between the normals to the surface xy = z2 at 

P(1, 1, 1) and Q (4, 1, 2).

Solution: Given surface is xy = z2.

Let f = xy − z2

Normal to f,  2 2 2ˆˆ ˆ( ) ( ) ( )i xy z j xy z k xy z
x y z

φ ∂ ∂ ∂
∇ = − + − + −

∂ ∂ ∂

 = y î  + x ĵ  − 2z k̂

Normal at point P (1, 1, 1),

1N = î  + ĵ  − 2k̂

Normal at point Q (4, 1, 2),

 
2N = î  + 4 ĵ  − 4k̂

Let q be the angle between 1N  and 2N .

1N · 2N = 1 2 cosN N θ

cos
( ) ( )

q =
⋅

=
+ − ⋅ + −

+ + + +

=
+ +N N

N N

i j k i j k1 2

1 2

2 4 4

1 1 4 1 16 16

1 4 8

6

ˆ ˆ
ˆ

ˆ ˆ
ˆ

333

13

198
=

                    

1 13
cos

198

−  =   
θ
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Example 23:  Find the constants a, b such that the surfaces 5x2 − 2yz − 9x = 0 and 

ax2y + bz3 = 4 cut orthogonally at (1, −1, 2).

Solution:  If surfaces cut orthogonally, then their normals will also cut orthogonally, 

i.e., angle between their normals will be 90°.

Given surfaces are 5x2 − 2yz − 9x = 0 and ax2y + bz3 = 4.

Let f
1
 = 5x2 − 2yz − 9x and f

2
 = ax2y + bz3 

Normal to f
1
, ∇f

1
 = î

x

∂
∂

(5x2 − 2yz − 9x) + ĵ
y

∂
∂

(5x2 − 2yz − 9x) + k̂
z

∂
∂

(5x2 − 2yz − 9x)

 = (10x − 9) î  + (−2z) ĵ  + (−2y) k̂

Normal to f
2
, ∇f

2
 = î

x

∂
∂

(ax2y + bz3) + ĵ
y

∂
∂

(ax2y + bz3) + k̂
z

∂
∂

(ax2y + bz3)

 = (2axy) î  + (ax2) ĵ  + (3bz2) k̂

At the point (1, −1, 2),

 ∇f
1
 = î  − 4 ĵ  + 2k̂

 ∇f
2
 = −2aî  + aĵ  + 12bk̂

∇f
1
 and ∇f

2
 are orthogonal.

 ∇f
1
 · ∇f

2
 = |∇f

1
| |∇f

2
| cos

2

π

 (î  − 4 ĵ  + 2 k̂)· (−2aî  + a ĵ  + 12bk̂) = 0

 −2a − 4a + 24b = 0

 −6a + 24 b = 0

 a − 4b = 0 … (1)

The point (1, −1, 2) lies on the surface ax2y + bz3 = 4.

 a (1)2 (−1) + b (2)3 = 4

 −a + 8b = 4 … (2)

Solving Eqs. (1) and (2), we get

 a = 4, b = 1

Example 24:  Find the angle between the surfaces ax2 + y2 + z2 − xy = 1 and 

bx2y + y2z + z = 1 at (1, 1, 0).

Solution:  Let f
1
 = ax2 + y2 + z2 − xy 

 f
2
 = bx2y + y2z + z 

The point (1, 1, 0) lies on both the surfaces.

 a (1)2 + (1)2 + 0 − (1) (1) = 1

 a = 1

and b (1)2 + 0 + 0 = 1

 b = 1
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Angle between the given surface is the angle between their normals.

Normal to f
1
, ∇f

1
 = î

x

∂
∂

(x2 + y2 + z2 − xy) + ĵ
y

∂
∂

(x2 + y2 + z2 − xy) 

 + k̂
z

∂
∂

(x2 + y2 + z2 − xy)

 = (2x − y) î  + (2y − x) ĵ  + (2z) k̂

Normal to f
2
, ∇f

2
 = î

x

∂
∂

(x2y + y2z + z) + ĵ
y

∂
∂

(x2y + y2z + z) + k̂
z

∂
∂

(x2y + y2z + z)

 = (2xy) î  + (x2 + 2yz) ĵ  + (y2 + 1) k̂

At the point (1, 1, 0),

 ∇f
1
 = î  + ĵ  + 0k̂

 ∇f
2
 = 2 î  + ĵ  + 2k̂

Let the angle between 1N  and 2N  is q.

 1 2

1 2

cos
| | | |

φ φ
θ

φ φ
∇ ∇

= ⋅
∇ ∇

=
+( ) ⋅ + +( )

+ + +
=

+
=

ˆ ˆ ˆ ˆ ˆi j i j k2 2

1 1 4 1 4

2 1

2 9

1

2

 
q

p
=

4

Hence, angle between the surfaces is .
4

π

Example  25:  Find  the  constants  a,  b  if  the  directional  derivative  of 

e   = ay2 + 2bxy + xz at P (1, 2, −1) is maximum in the direction of the tangent to the curve, 

r  = (t3 − 1) î  + (3t − 1) ĵ  + (t2 − 1) k̂ at point (0, 2, 0).

Solution:  f = ay2 + 2bxy + xz

 ∇f
1
 = î

x

∂
∂

(ay2 + 2bxy + xz) + ĵ
y

∂
∂

(ay2 + 2bxy + xz) + k̂
z

∂
∂

(ay2 + 2bxy + xz)

 = (2by + z) î  + (2ay + 2bx) ĵ  + (x) k̂

At the point (1, 2, −1),

 ∇f = (4b − 1) î  + (4a + 2b) ĵ  + k̂

Tangent to the curve r  = (t3 − 1) î  + (3t − 1) ĵ  + (t2 − 1) k̂ is

 d

d

r

t
 = (3t2) î  + 3 ĵ  + (2t) k̂

At the point (0, 2, 0), i.e., at t = 1

 
d

d

r

t
 = 3 î  + 3 ĵ  + 2 k̂
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Directional derivative is maximum in the direction of ∇f but it is given that direc-

tional derivative is maximum in the direction of the tangent.

Hence, ∇f and 
d

d

r

t
 are parallel.

4 1 4 2 1

3 3 2

4 1 1 4 2 1
and , 8 4 3

3 2 3 2

− +
= =

− +
= = + =

b a b

b a b
a b

Hence,
 

b a b

a

a b

= = − = − =

=

= =

5

8
8 3 4 3

5

2

1

2

1

16

1

16

5

8

and

, .

Example 26:  The temperature of the points in space is given by e = x2 + y2 − z. 

A mosquito located at point (1, 1, 2) desires to fly in such a direction that it will get 

warm as soon as possible. In what direction should it move?

Solution:  Temperature is given by f = x2 + y2 − z

Rate of change (increase) in temperature = ∇f

 = î
x

∂
∂

(x2 + y2 − z) + ĵ
y

∂
∂

(x2 + y2 − z) + k̂
z

∂
∂

(x2 + y2 − z)

 = (2x) î  + (2y) ĵ  − k̂

At the point (1, 1, 2),

 ∇f = 2î  + 2  ĵ  − k̂

Mosquito will get warm as soon as possible if it moves in the direction in which rate 

of increase in temperature is maximum, i.e., ∇f is maximum. Now, ∇f is maximum in 

its own direction, i.e., in the direction of ∇f.

Unit vector in the direction of 

ˆˆ ˆ2 2

4 4 1

ˆˆ ˆ2 2

3

i j k

i j k

φ
φ

φ
∇

∇ =
∇

+ −
=

+ +

+ −
=

Hence, mosquito should move in the direction of 
2 2

3

ˆ ˆ ˆi j k+ −
.
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Example 27:  Find the direction in which the directional derivative of 

2 2( )x y

xy
φ

−
=  at (1, 1) is zero.

Solution: 

2 2

( , ) ,

ˆˆ

1 1ˆ ,

x y
x y

y x

x y x y x y
i j k
x y x y y x z y x

y x
i j

y xx y

φ

φ

= −

∂ ∂ ∂     ∇ = − + − + −     ∂ ∂ ∂     

   = + + − −      

ˆ

ˆ

At the point (1, 1) ∇f = 2î  − 2 ĵ .

Let the direction in which directional derivative is zero is r  = xî  + yĵ .

 
2 2

ˆ ˆ
0

xi yi

x y
φ +

∇ ⋅ =
+

(2î  − 2 ĵ ) · (xi + y ĵ ) = 0

 2x − 2y = 0, x = y

 r  = xî  + x ĵ

Unit vector in this direction =
+

+

=
+x i j

x

i j( )ˆ ˆ ˆ ˆ

1 1 2

Hence, directional derivative is zero in the direction of 
ˆ ˆ

.
i j+

2

Exercise  6.3

  1.  Find ∇f if 

 (i) f = log (x2 + y2 + z2)

 (ii) f = (x2 + y2 + z2) 
2 2 2x y z

e
− + +

.

 

Ans.: ( ) ( ) ( )

,

i ii
2

2
2

r

r
r e r

r xi yj zk

r r

r−

= + +

=


















−

where ˆ ˆ ˆ 



 2. Find ∇f and |∇f| if

 (i) f = 2xz4 − x2y at (2, −2, −1)

 (ii) f = 2xz2 − 3xy − 4x at (1, −1, 2).

  

Ans. :  (i) 10 4 16 , 2 93

 (ii) 7 3  +  8 , 2 29

i j k

i j k

ˆ ˆ

ˆ

− −

−







ˆ

ˆ ˆ 



 3. If A = 2x2î  − 3yzĵ  + xz2k̂ and 

f = 2z − x3y find

 (i) A  · ∇f
 (ii) A  × ∇f at (1, −1, 1).

  [Ans. : (i) 5 (ii) 7î  − ĵ  − 11k̂ ]

 4. If f = 3x2y, y = xz2 − 2y, find 

∇ (∇f · ∇y ).

  

Ans. :  (6 12 )  

+ 6  + 12

2

2

yz x i

xz j xyzk

− ˆ

ˆˆ
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  5.  If r  = xî  + yĵ  + zk̂, r = | r |, prove that

 (i) ∇ (log r) = 
2

r

r

 (ii) ∇ | r |3 = 3r r

 (iii) ∇ f (r) = ( )′ r
f r

r
.

 6.  Prove that 
( )

2
,

+

⋅ ⋅
∇ = −  

 
n n n

n a r ra r a

r r r
 

where a  is a constant vector. 

  7.  Find a unit vector normal to the sur-

face x2y + 2xz = 4 at the point (2, −2, 3).

  Ans. :
1

3
( )i j kˆ ˆ ˆ− 2 − 2








  8. Find unit outward drawn normal to 

the surface (x − 1)2 + y2 + (z + 2)2 = 9 

at the point (3, 1, −4).

  Ans. :
( )2 i j kˆ ˆ ˆ

3

+ − 2






  9. Find a unit vector normal to the sur-

face xy3 z2 = 4 at the point (−1, −1, 2).

  

ˆˆ ˆ3
 

11

i j k + −
 
  
Ans. :

 10.  Find the directional derivative of 

f = x2yz + 4xz2 at (1, −2, −1) in the 

direction of 2î  − ĵ  − 2k̂.

  

37
 

3

 
 
 
Ans.:

 11.  Find the directional derivative of 

f = xy + yz + zx at (1, 2, 0) in the 

direction of vector î  + 2 ĵ  + 2k̂.

  

10
 

3

 
  
Ans. :

 12.  Find the maximal directional deriva-

tive of x3y2z at (1, −2, 3).

  4 91  Ans. :

 13.  In what direction from the point 

(2, 1, −1) is the directional derivative 

of f = x2yz3 a maximum? Find its 

maximum value of magnitude.

  

Ans. :  maximum in the direction of

= 4 4 + 12 , 4 11∇ −φ ˆ ˆi j kˆ











 14.  In what direction from the point

(3, 1, −2) is the directional derivative 

of f = x2y2z4 a maximum? Find its 

maximum value of magnitude.

  Ans. :  96 (  + 3 3 ), 96 19ˆ ˆi j kˆ − 
 15.  In what direction from the point 

(1, 3, 2) is the directional derivative 

of f = 2xz − y2 a maximum? Find its 

maximum value of magnitude.

  Ans. : 4i j kˆ ˆ + 2 ˆ,  2 14− 6 
 16.  What is the greatest rate of change of 

f = xyz2 at the point (1, 0, 3)?

  [Ans. : ∇f = 9]

 17.  If the directional derivative of 

f  = ax2 + by + 2z at (1, 1, 1) is max-

imum in the direction of î  + ĵ  + k̂, 

then find values of a and b.

  [Ans. : a = 1, b = 2] 

 18.  If the directional derivative of 

f = ax + by + cz at (1, 1, 1) has maxi-

mum magnitude 4 in a direction  

parallel to x axis, then find values of 

a, b, c.

  [Ans. : a = 2, b = −2, c = 2]

 19.  Find the directional derivative of 

f = x2y + y2z + z2x2 at (1, 2, 1) in the 

direction of the normal to the surface 

x2 + y2 − z2x = 1 at (1, 1, 1).

  

4
 

3

 
  
Ans. :

 20.  Find the directional derivative of 

f = x2y + yz2 at (2, −1, 1) in the 

direction normal to the surface  

x2y + y2x + yz2 = 3 at (1, 1, 1).

  

13
 

29

 −
 
 
Ans. :

 21.  Find the directional derivative of 

f = x2y + y2z + z2x at (2, 2, 2) in the 

direction of the normal to the surface 

4x2y + 2z2 = 2 at the point (2, −1, 3).

  

36
 

41

 
 
 
Ans. :



6.7 Gradient 6.45

 22.  Find the rate of change of f = xy + yz + zx 

at (1, −1, 2) in the direction of the nor-

mal to the surface x2 + y2 = z + 4.

  

14
 

21

 
 
 
Ans. :

 23.  Find the directional derivative of 

f = x2yz2 along the curve x = e−t, 

y = 2 sin t + 1, z = t − cost at t = 0.

  

1
 

6

 
− 

 
Ans. :

 24.  Find the directional derivative of 

f = x2y2z2 at (1, 1, −1) in the direc-

tion of the tangent to the curve x = et, 

y = 2 sin t + 1, z = t − cos t, at t = 0.

  

2 3
 

3

 
 
  
Ans. :

 25.  Find the directional derivative of the 

scalar function f = x2 + xy + z2 at the 

point P(1, −1, −1) in the direction of 

the line PQ where Q has coordinates 

(3, 2, 1).

  

Hint :  PQ OQ OP

i j k i j k

i j k

=

= + − − − −

= +













−

( ) ( )3 2

2 3

ˆ ˆ + ˆ ˆ ˆ ˆ

ˆ ˆ + 2 ˆ





  

1
 

17

 
 
 
Ans. :

 26.  Find the directional derivative of 

f = 2x3y − 3y2z at the point P (1, 2, −1) 

in the direction towards Q (3, −1, 5). In 

what direction from P is the directional 

derivative maximum? Find the magni-

tude of maximum directional deriva-

tive.

  

90 ˆˆ,12 14 12 , 22
7

i j k
 − + −  

ˆAns. :

 27.  Find the directional derivative of 

f = 4xz3 − 3x2y2z at (2, −1, 2) in the 

direction from this point towards the 

point (4, −4, 8).

  

376
 

7

 
  
Ans. :

 28.  Find the angle of intersection of 

the spheres x2 + y2 + z2 = 29 and 

x2 + y2 + z2 + 4x − 6y − 8z = 47 at 

(4, −3, 2).

  

1 19
 cos

29

−  
    

Ans. :

 29.  Find the angle between the normals 

to the surface 2x2 + 3y2 = 5z at the 

point (2, −2, 4) and (−1, −1, 1).

  

1 65
 cos

233 77

− 
 
 
Ans. :

 30.  Find the angle between the normals 

to the surface xy = z2 at the points 

(1, 4, 2) and (−3, −3, 3).

  

1 1
 cos

22
θ − 

= 
 
Ans. :

 31.  Find the acute angle between the 

surfaces xy2z = 3x + z2 and 

3x2 − y2 + 2z = 1 at the point (1, −2, 1).

  

1 6
 cos

14

− 
 
 
Ans. :

 32.  Find the constant a and b so that the 

surface ax2 − byz = (a + 2)x will be 

orthogonal to the surface 4x2y + z3 = 4 

at the point (1, −1, 2).

  

Hint :  condition for orthogonal -

 ity is ∇ ∇ = 0f y⋅









 .

  

5
 , 1

2
a b

 = =  
Ans. :

 33.  Find the angle between the two sur-

faces x2 + y2 + a z2 = 6 and z = 4 − y2 + 

bxy at P (1, 1, 2).

  
Hint :  (1, 1, 2) lies on both 

surfaces,  = 1,  = 1a b −











  

1 6
 cos

11

− 
 
  
Ans. :
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 34.  Find the directional derivative of 

f = x2 + y2 + z2 in the direction of the 

line 
3 4 5

x y z
= =  at (1, 2, 3).

  

26
 2

5

 
  
Ans.

 35.  Find the direction in which the dire-

ctional derivative of f = (x + y) = 
2 2( )x y

xy

−
 at (1, 1) is zero.

  

Hint : φ

φ

( , ) ,

,

x y
x

y

y

x

y

y

x
i

x

y x
j

= −

∇ = +








 + − −











1 1
2 2

ˆ ˆ

At (1,, 1),∇ = 2 − 2φ i jˆ ˆ























Let the direction in which directional 

 derivative is zero is r  = xî  + yĵ

 
2 2

ˆ ˆ
0

xi yj

x y
φ +

∇ ⋅ =
+

 (2î  − 2 ĵ ) · (xî  + yĵ ) = 0

 2x − 2y = 0, x = y

 r  = xî  + x ĵ

unit vector in this direction 

        

( )ˆ ˆ

1 1

ˆ ˆ

2

x i j

x

i j

+
=

+

+
=

Hence, directional derivative is zero in 

the direction of 
ˆ ˆi j+

2
.

6.8  DIVERGENCE

The divergence of a vector point function F  is denoted by div F  or ∇ · F  and is 

defined as

 

ˆˆ ˆ ∂ ∂ ∂
∇ ⋅ = + + ⋅ ∂ ∂ ∂ 

F i j k F
x y z

If F  = F
1 
î  + F

2
 ĵ  + F

3 
k̂,

then 
ˆˆ ˆ ∂ ∂ ∂

∇ ⋅ = + + ∂ ∂ ∂ 
F i j k

x y z
 · (F

1 
î  + F

2
 ĵ  + F

3 
k̂ )

 

31 2 FF F

x y z

∂∂ ∂
= + +

∂ ∂ ∂

which is a scalar quantity.

Note:

 (i) ∇ · F  ≠ F  · ∇, because ∇ · F  is a scalar quantity whereas 

1 2 3F F F F
x y z

∂ ∂ ∂
⋅∇ = + +

∂ ∂ ∂
 is a scalar differential operator.

 (ii) 31 2
FF F

F
x y z

∂∂ ∂
∇⋅ = + +

∂ ∂ ∂

 = ˆˆ ˆ∂ ∂ ∂
⋅ + ⋅ + ⋅

∂ ∂ ∂
F F F

i j k
x y z

  (if F  = F
1 
î  + F

2
 ĵ  + F

3 
k̂ )
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6.8.1 Physical Interpretation of Divergence

Consider the case of a homogeneous and incompressible fluid flow. Consider a small rect-

angular parallelepiped of dimensions d x, d y, d z parallel to x, y and z axes respectively.

Let v  = v
1
î  + v

2
 ĵ  + v

3 
k̂  be the velocity of the fluid at point A (x, y, z).

The velocity component parallel to x − axis (normal to the face PQRS) at any point 

of the face PQRS

 = v
1
 (x + d x, y, z)

  = v
1
 + 1v

x

∂
∂

d x  [expanding by Taylor’s series and ignoring higher 

powers of d x]

x

y

Q

R
S

D

PA

V1
B

C

O

d z

d y

Fig. 6.4

Mass of the fluid flowing in across the face ABCD per unit time

 = velocity component normal to the face ABCD × area of the face ABCD

 = v
1
 (d y d z)

Mass of the fluid flowing out across the face PQRS per unit time

 = velocity component normal to the face PQRS × area of the face PQRS

 

1
1

v
v x y z

x
δ δ δ

∂ 
= + ×  ∂

Gain of fluid in the parallelepiped per unit time in the direction of x-axis

 

1
1 1

1

v
v x y z v y z

x

v
x y z

x

δ δ δ δ δ

δ δ δ

∂ 
= + × −  ∂

∂
=

∂
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Similarly, gain of fluid in the parallelepiped per unit time in the direction of y-axis

 
=
∂

∂

v

y
x y z

2 δ δ δ

and gain of fluid in the parallelepiped per unit time in the direction of z-axis

 
=
∂

∂

v

z
x y z

3 δ δ δ

Total gain of fluid in the parallelepiped per unit time

 

31 2 vv v
x y z

x y z
δ δ δ

 ∂∂ ∂
= + + ∂ ∂ ∂ 

But, d x d y d z is the volume of the parallelepiped.

Hence, total gain of fluid per unit volume = 
31 2 vv v

x y z

∂∂ ∂
+ +

∂ ∂ ∂

 = div v  

 = ∇ · v

Note: A point in a vector field F  is said to be a source if div F  is positive, i.e., 

∇ · F  > 0 and is said to be a sink if div F  is negative, i.e, ∇ · F  < 0.

6.8.2  Solenoidal Function

A vector function F  is said to be solenoidal if div F  = 0 at all points of the function. 

For such a vector, there is no loss or gain of fluid.

6.9  CURL

The curl of a vector point function F  is denoted by curl F  or ∇ × F  and is defined as

1 2 3

1 2 3

3 32 1 2 1

ˆ ˆˆ ˆ ˆ ˆ( )

ˆˆ ˆ

ˆˆ ˆ

i j kF F i F j F k
x y z

i j k

x y z

F F F

F FF F F F
i j k

y z x z x y

∂ ∂ ∂ + +∇ × = × + + ∂ ∂ ∂ 

∂ ∂ ∂
=

∂ ∂ ∂

∂ ∂∂ ∂ ∂ ∂     
= − − − + −     ∂ ∂ ∂ ∂ ∂ ∂   

which is a vector quantity.
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6.9.1 Physical Interpretation of Curl

Let ω  be the angular velocity of a rigid body moving about a fixed point. The linear 

velocity v  of any particle of the body with position vector r  w.r.t. to the fixed point 

is given by,

 v  = w  × r

Let w  = w
1
î  + w

2
 ĵ  + w

3 
k̂, r  = x î  + y ĵ  + z k̂

 v  = w  × r

 

=

ˆ ˆ ˆi j k

x y z

ω ω ω
1 2 3

 = î  (w
2 
z − w

3 
y) − ĵ  (w

1 
z − w

3 
x) + k̂ (w

1 
y − w

2 
x)

Curl v  = ∇ × v

 2 3 3 1 1 2

ˆˆ ˆi j k

x y z

z y x z y xω ω ω ω ω ω

∂ ∂ ∂
=

∂ ∂ ∂
− − −

 = î  (w
1
 + w

1
) −  ĵ  (−w

2
 − w

2
) + k̂ (w

3
 + w

3
)

 = 2(w
1 
î  + w

2
 ĵ  + w

3 
k̂)

 = 2w

Curl v  = 2w

Thus, the curl of the linear velocity of any particle of a rigid body is equal to twice 

the angular velocity of the body.

This shows that curl of a vector field is connected with rotational properties of the 

vector field and justifies the name rotation used for curl.

6.9.2  Irrotational Field

A vector point function F  is said to be irrotational, if curl F  = 0 at all points of the 

function, otherwise it is said to be rotational.

Note: If F  = ∇f, then curl F  = ∇ × F  = ∇ × ∇f = 0.

Thus, if ∇ × F  = 0, then we can find a scalar function f so that F  = ∇f. A vector 

field F  which can be derived from a scalar field f so that F  = ∇f is called a conser-

vative vector field and f is called the scalar potential.
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Example 1:  If A  = x2zî  − 2y3z2  ĵ  + xy2zk̂, find ∇· A  at the point (1, −1, 1).

Solution: ∇ · A  = 
31 2 ,
AA A

x y z

∂∂ ∂
+ +

∂ ∂ ∂  where A  = A
1
î  + A

2
 ĵ  + A

3 
k̂ 

 ∇ · A  = 
x

∂
∂

(x2z) + 
y

∂
∂

(−2 y3z2) + 
z

∂
∂

(xy2z)

 = 2xz − 6 y2z2 + xy2

At the point (1, −1, 1),

 
2 2 22(1) (1) 6( 1) (1) 1( 1)A∇ ⋅ = − − + −

 = 2 − 6 + 1

 = −3

Example 2:  If r  = xî  + yĵ  + zk̂ , prove that div (grad rn) = n (n + 1) rn−2.

Solution:

 

grad r
r

x

r

y

r

z

nr
r

x
nr

r

n

n n n

n n

=
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂









 +

∂− −

i j k

i j

ˆ ˆ ˆ

ˆ ˆ1 1

∂∂








 +

∂
∂











−

y
nr

r

z

nk̂ 1

But r  = xî  + yĵ  + zk̂, 

 r2 = r
2  = x2 + y2 + z2

 

, ,
r x r y r z

x r y r z r

∂ ∂ ∂
= = =

∂ ∂ ∂

 grad r n = nr n−1 ˆˆ ˆx y z
i j k

r r r

 + + 
 

 

( )
1

ˆˆ ˆ
n

xi yj zk
nr

r

−
+ +

=

 = nr n−2 r

div (grad r n) = ∇ · (nr n−2 r )

 = n ∇ · rn−2 (xî  + yĵ  + zk̂ )

 

2 2 2

2 2 2 2 2 2

( ) ( ) ( )n n n

n n n n n n

n r x r y r z
x y z

n x r r y r r z r r
x y z

− − −

− − − − − −

∂ ∂ ∂ = + + ∂ ∂ ∂ 
∂ ∂ ∂ = + + + + + ∂ ∂ ∂ 
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n n n n3 2 2 22 3 3 3( ) ( ) ( )

( )

2 2 2
2 3

2
2 3

2

( )
3 ( 2) , ,

3 ( 2)

3 2

− −

− −

−

   + + ∂ ∂ ∂
= + − = = =   ∂ ∂ ∂   

 
= + −  
= + −

∵
n n

n n

n

x y z r x r y r z
n r n r

r x r y r z r
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 = n (n + 1) rn−2

Example 3:  Prove that for vector function ,A  ∇ × (∇ × A ) = ∇ (∇ · A ) − ∇2 A .

Solution:  Let A  = A
1
î  + A

2
 ĵ  + A

3 
k̂ 
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2
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Hence, ∇ ∇( )× × A  = ˆˆ ˆi j k
x y z

 ∂ ∂ ∂
+ + ∂ ∂ ∂ 

 ∇ ⋅( )A  − ∇2 (A
1
î  + A

2
 ĵ  + A

3 
k̂ )

 = ∇ ∇ ∇2⋅( ) −A A

Example 4:  If A  = ∇ (xy + yz + zx), find ∇ · A  and ∇ × .A

Solution:   A  = ∇ (xy + yz + zx)

 = î
x

∂
∂

(xy + yz + zx) + ĵ
y

∂
∂

(xy + yz + zx) + k̂
z

∂
∂

(xy + yz + zx)

 = (y + z) î  + (x + z) ĵ  + (y + x) k̂

 ∇ · A  = ∇ · [(y + z) î  + (z + x) ĵ  + (x + y) k̂ ]

 = 
x

∂
∂

(y + z) + 
y

∂
∂

(z + x) + 
z

∂
∂

(x + y) 

 = 0

 

ˆˆ ˆi j k

A
x y z

y z z x x y

∂ ∂ ∂
∇ × =

∂ ∂ ∂
+ + +
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( ) ( ) ( ) ( )
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∂
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 = î  (1 − 1) − ĵ  (1 − 1) + k̂ (1 − 1)

 = 0

Example 5: Verify ∇ ∇ ∇ ∇×( ) = ⋅( )A A  − ∇2 A  for A  = x2yî  + x3y2ĵ  − 3 x2z2k̂.

Solution: 

∇× =
∂

∂

∂

∂

∂

∂

−

=
∂

∂
− −

∂
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ˆ ( ) ( )

ˆ ( ) ( )

j
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x z
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x y

k
x

x y
y
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3
2 2 2

3 2 2 




 = 0 · î  − (−6xz2) ĵ  + (3x2y2 − x2)k̂

 ∇ ∇( )× × A  

2 2 2 2

ˆˆ ˆ

0 6 (3 )

i j k

x y z

xz x y x

∂ ∂ ∂
=

∂ ∂ ∂

−

 = î  (6x2y − 12xz) − ĵ  (6xy2 − 2x − 0) + k̂ (6z2 − 0)

 = (6x2y − 12xz) î  − (6xy2 − 2x) ĵ  + (6z2) k̂ 

 ∇ · A  = ˆˆ ˆi j k
x y z

 ∂ ∂ ∂
+ + ∂ ∂ ∂ 

 · (x2yî  + x3y2ĵ  − 3x2z2k̂ )

 = 
x

∂
∂

(x2y) + 
y

∂
∂

(x3y2) + 
z

∂
∂

(−3x2z2)

 = 2xy + 2 x3y − 6x2z

 ∇ ∇ ⋅( )A  = î
x

∂
∂

 (2xy + 2x3y − 6x2z) + ĵ
y

∂
∂

 (2xy + 2x3y − 6x2z) 

 + k̂ 
z

∂
∂

(2xy + 2x3y − 6x2z)
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 = (2y + 6x2y − 12xz) î  + (2x + 2x3 − 0) ĵ  + (−6x2) k̂ 

 ∇2 A  = 
2

2x

∂
∂

(x2yî  + x3y2 ĵ  − 3x2z2k̂ ) + 
2

2y

∂
∂

(x2yî  + x3y2 ĵ  − 3x2z2k̂ )

 + 
2

2z

∂
∂

(x2yî  + x3y2ĵ  − 3x2z2k̂ )

 = 
x

∂
∂

(2xyî  + 3x2y2ĵ  − 6xz2k̂ ) + 
y

∂
∂

(x2î  + 2x3y ĵ ) + 
z

∂
∂

(−6x2z k̂ )

 = (2yî  + 6xy2ĵ  − 6z2k̂ ) + 2x3ĵ  − 6x2k̂  

 = 2yî  + (6xy2 + 2x3) ĵ  − 6 (z2 + x2)k̂

 ∇ ∇ ⋅( )A  − ∇2 A  = (6x2y − 12xz) î  + (2x − 6xy2) ĵ  + (6z2) k̂ 

Hence, ∇ ∇( )× × A  = ∇ ∇ ⋅( )A  − ∇2 A

Example 6:  Show that A  = 3 y4z2î  + 4x3z2 ĵ  − 3x2y2k̂ is solenoidal.

Solution:  A  = 3y4z2 î  + 4x3z2 ĵ  − 3x2y2 k̂

 ∇ · A  = 
x

∂
∂

(3y4z2) + 
y

∂
∂

(4x3z2) + 
z

∂
∂

(−3x2y2) = 0

Since ∇ · A  = 0, A  is solenoidal.

Example 7: Determine the constant b such that A  = (bx + 4y2z) î  + (x3sin z − 3y) ĵ  

− (ex + 4 cos x2y) k̂  is solenoidal.

Solution:  If A  is solenoidal, then

 ∇ · A  = 0

 
x

∂
∂

(bx + 4y2z ) + 
y

∂
∂

(x3 sin z − 3y) + 
z

∂
∂

(−ex − 4 cos x2y) = 0.

 b − 3 = 0

  b = 3

Example 8:  Show that the vector field 
2 2

ˆ ˆ( )a xi yj
A

x y

+
=

+
 is a source field or sink 

field according as a > 0 or a < 0.

Solution: Vector field A  is a source field if ∇ · A  > 0 and vector field A  is a sink 

field if ∇ · A  < 0.
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2 2

a

x y
=

+

Since 
2 2x y+ is always positive, ∇ · A  > 0 if a > 0, and ∇ · A < 0 if a < 0. Hence, 

A  is a source field if a > 0 and sink field if a < 0.

Example 9:  If A  = (ax2y + yz) î  + (xy2 − xz2) ĵ  + (2xyz − 2x2y2) k̂ is solenoidal, find 

the constant a.

Solution:  If A  is solenoidal, then ∇ · A  = 0,

∇ · [(ax2y + yz) î  + (xy2 − xz2) ĵ  + (2xyz − 2x2y2) k̂ ] = 0

 
x

∂
∂

(ax2y + yz) + 
y

∂
∂

(xy2 − xz2) + 
z

∂
∂

(2xyz − 2x2y2) = 0

 2axy + 2xy + 2xy = 0

 2a = −4

 a = −2

Example 10:  Find the curl of A  = exyz (î  + ĵ  + k̂ ) at the point (1, 2, 3).

Solution:  Curl of A  = ∇ × A
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e e exyz xyz xyz
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y

exyz

 = (exyz · xz − exyz · xy) î  − (exyz · yz − exyz · xy) ĵ  + (exyz · yz − exyz · xz) k̂ 
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At the point (1, 2, 3),

Curl A  = e6 [î  (3− 2) − ĵ  (6 − 2) + k̂ (6 − 3)]

 = e6 (î  − 4 ĵ  + 3k̂ )

Example 11:  Find curl A  = x2y î  − 2xz ĵ  + 2yzk̂ at the point (1, 0, 2).

Solution:  Curl A  = ∇ × A
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 = (2z + 2x) î  − (0 − 0) ĵ  + (−2z − x2) k̂ 

 Curl Curl A( ) = ∇ × (∇ × A )
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ˆ ( ) ( )

ˆ ( ) ( )

j
x

x z
z

z x

k
x y

z x

2
2 2

0 2

 = î  (0 − 0) − ĵ  (−2x − 2) + k̂ (0 − 0)

 = (2x + 2) ĵ

At the point (1, 0, 2),

 Curl Curl A( ) = (2 + 2) ĵ

 = 4 ĵ

Example 12:  Prove that F  = 2xyz2î  + [x2z2 + z cos (yz) ] ĵ  + (2x2yz + y cos yz) k̂ is 

a conservative vector field. 
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Solution: Vector field F  is conservative if ∇ × F  = 0

 

2 2 2 2

2 2 2

2 2

2 2 2

ˆˆ ˆ

2 cos 2 cos

ˆ (2 cos ) ( cos )

ˆ (2 cos ) (2 )

ˆ ( cos ) (2 )

i j k

F
x y z

xyz x z z yz x yz y yz

i x yz y yz x z z yz
y z

j x yz y yz xyz
x z

k x z z yz xyz
x y

∂ ∂ ∂
∇ × =

∂ ∂ ∂

+ +

∂ ∂ = + − + ∂ ∂ 

∂ ∂ − + − ∂ ∂ 

∂ ∂ + + − ∂ ∂ 

 = (2x2z + cos yz − yz sin yz − 2x2z − cos yz + zy sin yz) î  

 − (4xyz − 4xyz) ĵ  + (2xz2 − 2xz2) k̂ 

 = 0

Hence, F  is conservative vector field.

Example 13: Determine the constants a and b such that curl of (2xy + 3yz) î  + 

(x2 + axz − 4 z2) ĵ  + (3xy + 2byz) k̂ is zero. 

Solution:  Let F  = (2xy + 3yz) î  + (x2 + axz − 4z2) ĵ  + (3xy + 2byz) k̂  

Curl F  = ∇ × F  = 0

2 2

2 2

2 2

ˆˆ ˆ

0

2 3 4 3 2

ˆ ˆ(3 2 ) ( 4 ) (3 2 ) (2 3 )

ˆ ( 4 ) (2 3 ) 0
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xy yz x axz z xy byz

i xy byz x axz z j xy byz xy yz
y z x z

k x axz z xy yz
x y

∂ ∂ ∂
=

∂ ∂ ∂

+ + − +

∂ ∂ ∂ ∂   + − + − − + − +   ∂ ∂ ∂ ∂  

∂ ∂ + + − − + = ∂ ∂ 

 (3x + 2bz − ax + 8z) î  − (3y − 3y) ĵ  + (2x + az − 2x − 3z) k̂ = 0

 [(3 − a)x + 2z (b + 4)] î  − 0 ĵ  + z (a − 3) k̂ = 0
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Comparing coefficients of î  and k̂, 

 (3 − a) x + 2 (b + 4) z = 0

 (a − 3) z = 0

Solving both the equations  a = 3, b = −4

Example 14:  Show that F  = (y2 − z2 + 3yz − 2x) î  + (3xz + 2xy) ĵ  + (3xy − 2xz + 2z)k̂ 

is both solenoidal and irrotational .

Solution:  If F  is solenoidal, ∇ · F  = 0

∇ · F  = 
x

∂
∂

 (y2 − z2 + 3yz − 2x) + 
y

∂
∂

 (3xz + 2xy) + 
z

∂
∂

 (3xy − 2xz + 2z)

 = −2 + 2x − 2x + 2 

 = 0

Hence, F  is solenoidal.

If F  is irrotational, ∇ × F  = 0

 

2 2

ˆˆ ˆ

3 2 3 2 3 2 2

ˆ (3 2 2 ) (3 2 )

i j k

F
x y z

y z yz x xz xy xy xz z
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y z

∂ ∂ ∂
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∂ ∂ ∂
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2 2

2 2

ˆ (3 2 2 ) ( 3 2 )

ˆ (3 2 ) ( 3 2 )

j xy xz z y z yz x
x z

k xz xy y z yz x
x y

∂ ∂ − − + − − + − ∂ ∂ 
∂ ∂ + + − − + − ∂ ∂ 

 = (3x − 3x) î  − (3y − 2z + 2z − 3y) ĵ  + (3z + 2y − 2y − 3z) k̂ 

 = 0

Hence, F  is irrotational.

Example  15:  Find the directional derivative of the divergence of F (x, y, z) 

= xy î  + xy2ĵ  + z2k̂ at the point (2, 1, 2) in the direction of the outer normal to the 

sphere x2 + y2 + z2 = 9.

Solution:  F  (x, y, z) = xy î  + xy2 ĵ  + z2 k̂ 

Divergence of F  (x, y, z) = ∇ · F

 =
∂

∂
+

∂

∂
+

∂

∂x
xy

y
xy

z
z( ) ( ) ( )2 2

 = y + 2xy + 2z 
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Gradient of divergence of F  = ∇ (∇ · F )

 ˆˆ ˆi j k
x y z

 ∂ ∂ ∂
= + + ∂ ∂ ∂ 

(y + 2xy + 2z)

 = 2y î  + (1 + 2x) ĵ  + 2k̂ 

At the point (2, 1, 2),

 ∇ (∇ · F ) = 2 î  + 5 ĵ  + 2k̂ 

Normal to sphere ˆˆ ˆi j k
x y z

 ∂ ∂ ∂
= + + ∂ ∂ ∂ 

(x2 + y2 + z2)

 = 2 (xî  + yĵ  + zk̂ )

Normal at (2, 1, 2) = 2 (2î  + ĵ  + 2k̂ )

Directional derivative in the direction of the outer normal to the sphere x2 + y2 + z2 = 9

 = (2î  + 5 ĵ  + 2k̂ ) · 
ˆˆ ˆ4 2 4

16 4 16

i j k+ +
+ +

 = 
1

6
(8 + 10 + 8)

 = 
13

3

Exercise 6.4

  1.  Find divergence and curl of 

  x2 cos z î  + y log x ĵ  − yz k̂.

  

Ans. : 2x z x y

iz j x z k
y

x

cos log ,

sin

+ −

− +













ˆ ˆ ˆ2

  2.  If f = 2x3y2z4, prove that div (grad f) 

= 12xy2z4 + 4x3z4 + 24x3y2z2.

  3.  Find curl (curl A ), if

  A  = x2y î  − 2xz ĵ  + 2yz k̂.

  [Ans. : (2x + 2) ĵ ]

  4.  If A  = 2yzî  − x2yĵ  + x z2k̂, 

  B  = x2î  + yzĵ  − xyk̂ and f = 2x2yz3, 

  find

 (i) ( A · ∇) f (ii) A · ∇ f

 (iii) ( B  · ∇) A  (iv) ( A × ∇) f

 (v) A × ∇f

Ans. : ( ) ( )

( ) ( )

(

i and ii

iii

8 2

6 2 2

2

2 4 4 3

3 4 2 2

3

xy z x yz

x yz yz xy i

x

−

+ −

−

ˆ

yy x yz j

x z x yz k

x y z x z i

x

+

−

− +

+

2

2

4 2 2 3 5

2

2

6 2

4

)

( ) ( )

( )

(

ˆ

+ ˆ

ˆ

2 2 iv and

(v)

yyz x y z j

x yz x y z k

5 2 2 312−






























)

ˆ

ˆ

+ (4 + 4 )2 4 3 2 3 

  5.  If A  = x2 î  + xyex ĵ  + sin z k̂, find 

∇ · (∇ × A ).

  [Ans. : 0]

  6.  If f = tan  −1 ,
y

x

 
 
 

 find div (grad f).

  [Ans. : 0]

  7.  If f = 2x2 − 3y2 + 4z2, find curl (grad f).

  [Ans. : 0]
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  8.  Prove that for every field ,A

div (curl A) = 0.

  9.  Prove that gradient field describing a 

motion is irrotational.

  [Hint: Prove that ∇ × ∇f = 0]

 10.  Prove that A = î   yz + ĵ  xz + k̂  xy is 

irrotational and find a scalar function 

f (x, y, z) such that A  = grad f.

  [Ans. : xyz + c]

 11.  Prove that A  = (6xy + z3) î  

+ (3 x2 − z) ĵ  + (3x z2 − y) k̂ is 

irrotational. Find the function f 

such that A  = ∇f.

  [Ans. : f = 3 x2y + x z3 − yz]

 12.  Prove that the velocity given by 

A  = (y + z) î  + (z + x) ĵ  + (x + y) k̂ 

  is irrotational and find its scalar 

  potential. Is the motion possible for 

an incompressible fluid?

 

Ans. : f = + +

⋅ =











yz zx xy

A

, motion is

possible because ∇ 0

 13.  Prove that A  = (z2 + 2xy + 3y) î  

+ (3x + 2y + z) ĵ  + (y + 2zx) k̂ is 

irrotational and find scalar potential f 

such that A  = ∇f and f (1, 1, 0) = 4.

  [Ans. : f = z2x + x2 + 3xy + y2 + yz − 1]

 14.  Prove that A  = (z2 + 2x + 3y) î  

+ (3x + 2y + z) ĵ  + (y + 2zx) k̂ is 

conservative and find scalar  

potential f such that A  = ∇f.

  [Ans. : f = x2 + y2 + z2x + 3xy + zy]

 15.  Prove that A = (y2cosx + z3) î  

+ (2y sin x − 4) ĵ  + (3xz2 + 2) k̂ is irro-

tational and find its scalar potential.

  [Ans. : f = y2 sin x + z3x − 4y + 2z]

 16.  Prove that a = −1 or b = 0, if 

  (xyz)b (xaî + yaĵ  + zak̂ ) is an irrotational 

vector.

 17.  Find the constant a if A  = (ax + 3y 

+ 4z) î  + (x − 2y + 3z) ĵ  + (3x + 2y − z) k̂ 

is solenoidal.

  [Ans. : a = 3]

 18.  Find the constant a if A  = (x + 3y2) î  

+ (2y + 2z2) jˆ + (x2 + az) k̂ is solenoidal.

  [Ans. : a = −3]

 19.  Find the constants a, b, c if

  A = (axy + bz2) î  + (3x2 − cz) ĵ  + 

(3xz2 − y) k̂ is irrotational.

  [Ans. : a = 6, b = 1, c = 1]

 20.  Find the directional derivative of 

( )f∇ ⋅ ∇  at the point (1, −2, 1) in the 

direction of the normal to the surface 

xy2z = 3x + z2, where  f = 2x3y2z4.

6.10   PROPERTIES OF GRADIENT, 
DIVERGENCE AND CURL

6.10.1  Sum and Difference

The gradient, divergence and curl are distributive with respect to the sum and differ-

ence of the functions. If f, g are scalars and A  and B are vectors, then

 (i) ( )f g f g∇ ± = ∇ ± ∇

 (ii) ( ) ( ) ( )A B A B∇⋅ ± = ∇⋅ ± ∇⋅

 (iii) ( ) ( ) ( )A B A B∇ × ± = ∇ × ± ∇ ×
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Proof: (i) ∇ ±( ) =
∂

∂
±( ) +

∂

∂
±( ) +

∂

∂
±( )f g i

x
f g j

y
f g k

z
f gˆ ˆ ˆ

 

=
∂
∂
+

∂
∂
+

∂
∂






±

∂
∂
+

∂
∂
+

∂
∂







= ∇

i
f

x
j

f

y
k

f

z
i

g

x
j

g

y
k

g

z

f

ˆ ˆ ˆ ˆ ˆ ˆ

^

±± ∇g

 (ii) Let A  = A
1
 î  + A

2
 ĵ  + A

3 
k̂, B  = B

1
 î  + B

2
 ĵ  + B

3 
k̂

 

( )

( ) ( ) ( )
1 1 2 2 3 3

1 1 2 2 3 3

ˆˆ ˆ( ) ( ) ( )A B A B i A B j A B k

A B A B A B
x y z

 ∇⋅ ± = ∇⋅ ± + ± + ± 
∂ ∂ ∂

= ± + ± + ±
∂ ∂ ∂

 

3 31 2 1 2
A BA A B B

x y z x y z

A B

∂ ∂   ∂ ∂ ∂ ∂
= + + ± + +    ∂ ∂ ∂   ∂ ∂ ∂ 

= ∇⋅ ± ∇⋅

 (iii) ∇× ±( ) = ∇× ±( )

= ×
∂

∂
±( ) + ×

∂

∂
±( ) + ×

∂

∂
±( )

A B A B

i
x

A B j
y

A B k
z

A Bˆ ˆˆ

 

( )

( ) ( )

ˆ

ˆ

ˆ ˆ

∂
= × ±

∂
 ∂ ∂

= × ±  ∂ ∂

∂ ∂
= × + ×

∂ ∂

= ∇ × ± ∇ ×

∑

∑

∑ ∑

i A B
x

A B
i

x x

A B
i i

x x

A B

6.10.2 Products

If f, g are scalars and A and B  are vectors, then

 (i) ( )f g f g g f∇ = ∇ + ∇ or grad (  f g) = f (grad g) + g (grad f  )

 (ii) ( ) ( ) ( ) ( ) ( )A B B A A B B A A B∇ ⋅ = ⋅∇ + ⋅∇ + × ∇ × + × ∇ ×

  or grad ( ) ( ) ( ) ( ) ( )curl curl  A B B A A B B A A B⋅ = ⋅∇ + ⋅∇ + × + ×

 (iii) ( ) ( ) ( )f A f A f A∇⋅ = ∇⋅ + ∇ ⋅

  
or div = div grad f A f A f A( ) ( ) + ⋅( )

 

 (iv) ( ) ( ) ( )∇ ⋅ × = ⋅ ∇× − ⋅ ∇×A B B A A B

  ( )or div curl curl  A B B A A B× = ⋅ − ⋅
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 (v) ( ) ( ) ( )f A f A f A∇× = ∇× + ∇ ×

  ( ) ( )or curl curl (grad )f A f A f A= + ×

 (vi) ( ) ( ) ( ) ( ) ( )A B B A B A A B A B∇× × = ⋅∇ − ∇ ⋅ − ⋅∇ + ∇ ⋅

  ( ) ( ) ( ) ( ) ( )or curl div div A B B A B A A B A B× = ⋅∇ − − ⋅∇ + .

Proof:

 (i) ˆˆ ˆ( ) ( ) ( ) ( )
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

fg i fg j fg k fg
x y z

 

ˆ

ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ

∂ ∂ = +  ∂ ∂

∂ ∂   = +      ∂ ∂

   ∂ ∂ ∂ ∂ ∂ ∂
= + + + + +    ∂ ∂ ∂   ∂ ∂ ∂ 

= ∇ + ∇

∑

∑ ∑

g f
i f g

x x

g f
f i g i

x x

g g g f f f
f i j k g i j k

x y z x y z

f g g f

 (ii) ( ) ( ) ( ) ( )ˆˆ ˆA B i A B j A B k A B
x y z

∂ ∂ ∂
∇ ⋅ = ⋅ + ⋅ + ⋅

∂ ∂ ∂

 

( )ˆ

ˆ

∂
= ⋅

∂
 ∂ ∂

= ⋅ + ⋅ ∂ ∂ 

∑

∑

i A B
x

B A
i A B

x x

 ˆ ˆ
   ∂ ∂

= ⋅ + ⋅      ∂ ∂   
∑ ∑B A
i A i B

x x
 ... (1)

Consider,

  

( )ˆ ˆ ˆB B B
A i A i A i

x x x

   ∂ ∂ ∂
× × = ⋅ − ⋅   

∂ ∂ ∂     
∵a b c a c b a b c× ×( ) = ⋅( ) − ⋅( )





 

i A
B

x
A i

B

x
A i

B

x

^ ^ ^

⋅
∂
∂









 = × ×

∂
∂









 + ⋅( ) ∂

∂

Similarly, interchanging A and ,B

 

( )ˆ ˆ ˆA A A
i B B i B i

x x x

   ∂ ∂ ∂
⋅ = × × + ⋅      ∂ ∂ ∂   
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Substituting in Eq. (1),

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( )
1 2 3

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆˆ ˆ ˆ

B B A A
A B A i A i B i B i

x x x x

B A B A
A i B i A i B i

x x x x

A B B A A B B A

B B B B
A i A i A j A k

x x y z

      ∂ ∂ ∂ ∂
∇ ⋅ = × × + ⋅ + × × + ⋅         ∂ ∂ ∂ ∂         

   ∂ ∂ ∂ ∂
= × × + × × + ⋅ + ⋅      ∂ ∂ ∂ ∂   

= × ∇× + × ∇× + ⋅∇ + ⋅∇

 ∂ ∂ ∂ ∂
⋅ = + + ∂ ∂ ∂ ∂ 

∑ ∑

∑ ∑ ∑ ∑

∑∵
 
     

 (iii) ( ) ( )

( )

ˆˆ ˆ

ˆ

ˆ

 ∂ ∂ ∂
∇⋅ = + + ⋅  ∂ ∂ ∂ 

∂
= ⋅

∂
 ∂∂

= ⋅ + ∂ ∂ 

∑

∑

f A i j k f A
x y z

i f A
x

fA
i f A

x x

 

ˆ ˆ

ˆ ˆ

  ∂∂  = ⋅ + ⋅    ∂ ∂ 

  ∂∂
= ⋅ + ⋅ ∂ ∂ 

∑ ∑

∑ ∑

fA
f i A i

x x

fA
f i A i

x x

 

( ) ( )
( ) ( )

= ∇⋅ + ⋅∇

= ∇⋅ + ∇ ⋅

f A A f

f A f A

 (iv) ( ) ( )ˆˆ ˆüüü
x y z

 ∂ ∂ ∂
∇× ⋅ = + + ⋅ × ∂ ∂ ∂ 

=
∂
∂
⋅ ×( ) = ⋅

∂
∂

×( )

= ⋅ ×
∂
∂
+
∂
∂
×








∑ ∑

∑

ˆ ˆ

ˆ

i
x

A B i
x
A B

i A
B

x

A

x
B

= ⋅ ×
∂
∂







+ ⋅

∂
∂

×







= × ⋅
∂
∂

+ ×
∂
∂

⋅

∑ ∑

∑ ∑

ˆ ˆ

ˆ ˆ

i A
B

x
i

A

x
B

i A
B

x
i

A

x
B a∵ ⋅⋅ × = × ⋅ 

= − ×
∂
∂

⋅ + ×
∂
∂

⋅ ∂∑ ∑

b c a b c

i
B

x
A i

A

x
B

A

ˆ ˆ
Interchanging  and

 
BB

x∂















 in scalar triple product.
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= − ∇×( )⋅ + ∇×( )⋅

= ⋅ ∇ ×( ) − ⋅ ∇ ×( )

B A A B

B A A B

 (v) ( ) ( )

( )

ˆˆ ˆ

ˆ

ˆ

 ∂ ∂ ∂
∇ × = + + ×  ∂ ∂ ∂ 

∂
= ×

∂
 ∂∂

= × + ∂ ∂ 

∑

∑

f A i j k f A
x y z

i f A
x

fA
i f A

x x

 
( )

ˆ ˆ

ˆ ˆ

( )

A f
f i i A

x x

A f
f i i A

x x

f A f A

 ∂ ∂
= × + ×  ∂ ∂ 

 ∂ ∂ = × + ×    ∂ ∂  

= ∇× + ∇ ×

∑ ∑

∑ ∑

 (vi) ( ) ( )

( )
( )

ˆˆ ˆ

ˆ

ˆ

 ∂ ∂ ∂
∇ × × = + + × ×  ∂ ∂ ∂ 

∂
= × ×

∂
∂

= × ×
∂

∑

∑

A B i j k A B
x y z

i A B
x

i A B
x

  

= × ×
∂
∂
+
∂
∂
×








= × ×
∂
∂







+ ×

∂
∂
×








∑

∑ ∑

ˆ

ˆ ˆ

i A
B

x

A

x
B

i A
B

x
i

A

x
B

( ) ( )

( ) ( ) ( )

ˆ ˆ ˆ ˆB B A A
i A i A i B i B

x x x x

a b c a c b a b c

      ∂ ∂ ∂ ∂
= ⋅ − ⋅ + ⋅ − ⋅         ∂ ∂ ∂ ∂         

 × × = ⋅ − ⋅ 

∑ ∑

∵

   

= ⋅
∂
∂









 − ⋅

∂
∂









 − ⋅( ) ∂

∂
+ ⋅( ) ∂

∂∑∑∑A i
B

x
B i

A

x
A i

B

x
B i

A
ˆ ˆ ˆ ˆ

xx

A B B A A B B A

B A B A A B A B

∑

= ∇⋅( ) − ∇ ⋅( ) − ⋅∇( ) + ⋅∇( )

= ⋅∇( ) − ∇ ⋅( ) − ⋅∇( ) + ∇ ⋅( ))
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6.11  SECOND ORDER DIFFERENTIAL OPERATOR

It is a two fold application of the operator ∇ . Some second order differential operators 

are given below.

 (1) Laplacian Operator 2∇  

Div (grad f ) = ∇ . ( ∇ f )

2 2 2

2 2 2

2 2 2

2 2 2

2

ˆ ˆˆ ˆ ˆ ˆ
   ∂ ∂ ∂∂ ∂ ∂

= + + ⋅ + +    ∂ ∂ ∂   ∂ ∂ ∂ 

 ∂ ∂ ∂∂ ∂ ∂   = + +       ∂ ∂ ∂  ∂  ∂ ∂

∂ ∂ ∂
= + +

∂ ∂ ∂

 ∂ ∂ ∂
= + +  ∂ ∂ ∂ 

= ∇
= ∆

f f f
i j k i j k
x y z x y z

f f f

x x y y z z

f f f

x y z

f
x y z

f

f

Thus, the scalar differential operator (read as “nabla squared” or “delta”)

 

2 2 2
2

2 2 2x y z

∂ ∂ ∂
∇ = ∆ = + +

∂ ∂ ∂

is known as Laplacian operator.

 

2 2 2
2

2 2 2

f f f
f

x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂

is known as Laplacian equation.

 (ii) f∇×∇  = curl grad f

 

= ∇×
∂
∂

+
∂
∂

+
∂
∂







=
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

ˆ ˆ ˆ

ˆ ˆ ˆ

i
f

x
j

f

y
k

f

z

i j k

x y z

f

x

f

y

f

z

ˆ̂ ˆ ˆi
f

y z

f

z y
j

f

x z

f

z x
k

f

x y

∂
∂ ∂

−
∂
∂ ∂









 −

∂
∂ ∂

−
∂
∂ ∂









 +

∂
∂ ∂

2 2 2 2 2

−−
∂
∂ ∂











=

2

0

f

y x

Hence, curl grad f = ∇ × ∇ f = 0.
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 (iii) ( ) div curl A A∇ ⋅ ∇× =

Let A = A
1
î  + A

2
 ĵ  + A

3 
k̂

 

3 32 1 2 1

1 2 3

ˆˆ ˆ

ˆˆ ˆ

i j k

A AA A A A
A i j k

x y z y z x z x y

A A A

∂ ∂   ∂ ∂ ∂ ∂∂ ∂ ∂  ∇× = = − − − + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 

( ) 3 32 1 2 1

2 22 2 2 2

3 32 1 2 1

0

∂ ∂∂ ∂ ∂ ∂   ∂ ∂ ∂ 
∇⋅ ∇ × = − − − + −     ∂  ∂ ∂  ∂ ∂ ∂ ∂  ∂ ∂ 

∂ ∂∂ ∂ ∂ ∂
= − − + + −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
=

A AA A A A
A

x y z y x z z x y

A AA A A A

x y x z y x y z z x z y

Hence, ( )A∇ ⋅ ∇× = div curl A = 0.

Example 1:  If r = xî  + yĵ  + z k̂, show that div ( ) ( )3n nr r n r= + .

Solution:  nr is a scalar and r is a vector.

We know that div ( ) ( ) ( )f A f A f A= ∇ ⋅ + ∇ ⋅

div r r r r r r

r i
x

j
y

k
z

xi yj zk

n n n

n

( ) = ∇ ⋅( ) + ∇ ⋅

=
∂
∂

+
∂
∂

+
∂
∂









 ⋅ + +

( )

ˆ ˆ ˆ ˆ ˆ ˆ̂( )







 +

∂
∂

+
∂
∂

+
∂
∂









 ⋅

= + + +

ˆ ˆ ˆ

( ) ˆ(

i
r

x
j
r

y
k

r

z
r

r i nr

n n n

n 1 1 1 nn n nr

x
j nr

r

y
k nr

r

z
r− − −∂

∂
+

∂
∂

+
∂
∂









 ⋅

1 1 1) ˆ( ) ˆ( )

 r = xî  + yĵ  + zk̂

 r2 = x2 + y2 + z2

 

, ,
r x r y r z

x r y r z r

∂ ∂ ∂
= = =

∂ ∂ ∂

Hence, div r r r nr i
x

r
j
y

r
k

z

r
xi yj zkn n n( ) = + + +






 ⋅ + +( )−

3
1

ˆ ˆ ˆ ˆ ˆ ˆ

 

= +
+ +









= +







= +

−

−

3

3

3

1

2 2 2

1

2

r nr
x y z

r

r nr
r

r

r nr

n n

n n

n n

Hence, div ( ) ( 3)n nr r n r= + .
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Example  2:  Find the value of n for which the vector 
nr r is solenoidal, where 

r = xî  + yĵ  + z k̂.

Solution:  If F = nr r  is solenoidal, then

 ∇ ⋅ nr r = 0 … (1)

As proved in Ex. 1.,

 ∇ ⋅ nr r = (n + 3) nr

Substituting in Eq. (1),

 (n + 3) 
nr = 0

 n = −3

Example 3: Prove that Div (grad nr ) = n (n + 1) rn − 2 , where r = xî  + yĵ  + z k̂.

Solution:

Div (grad nr ) 

1 1 1

1 1 1

( )

ˆˆ ˆ

ˆˆ ˆ

ˆˆ ˆ

− − −

− − −

= ∇ ⋅ ∇

 ∂ ∂ ∂
= ∇ ⋅ + + ∂ ∂ ∂ 

 ∂ ∂ ∂
= ∇ ⋅ + + ∂ ∂ ∂ 

 = ∇ ⋅ + + 
 

n

n n n

n n n

n n n

r

r r r
i j k

x y z

r r r
nr i nr j nr k

x y z

x y z
nr i nr j nr k

r r r

 

( )

( )

( )

( )

1

2

2 2

2

2 2 2

ˆˆ ˆ

( )

ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ

n

n

n n

n

n n n

xi yj zk
nr

r

n r r

n r r r r

n r i j k xi yj zk
x y z

r r r
i j k xi yj zk

x y z

−

−

− −

−

− − −

+ +
= ∇ ⋅

= ∇ ⋅

 = ∇ ⋅ + ∇ ⋅ 
  ∂ ∂ ∂= + + ⋅ + +  ∂ ∂ ∂ 

 ∂ ∂ ∂
+ + + ⋅ + +  ∂ ∂ ∂  

 

= + + + −
∂

∂
+ −

∂

∂









+ −

− − −n r n r
r

x
i n r

r

y
j

n r

n n n2 3 3
1 1 1 2 2

2

( ) ( ) ( )

( )

ˆ ˆ

nn r

z
k xi yj zk− ∂

∂ } ⋅ + +( )



3 ˆ ˆ ˆ ˆ

 r = xî  + yĵ  + zk̂

 r2 = x2 + y2 + z2

 

, ,
r x r y r z

x r y r z r

∂ ∂ ∂
= = =

∂ ∂ ∂
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Hence,∇⋅ ∇ = + − + +





 ⋅ + +( )− −( ) ( )r n r n r

x

r
i

y

r
j

z

r
k xi yj zkn n n

3 2
2 3 ˆ ˆ ˆ ˆ ˆ ˆ









 = n [3rn − 2 + (n − 2) rn − 4 (x2 + y2 + z2)]

 = n [3rn − 2 + (n − 2) rn − 4 · r2]

 = n [3rn − 2 + (n − 2) rn − 2]

 = n (n + 1) rn − 2 

Example 4:  If f and y are two scalar point functions, show that 

∇ 2 (fy ) = f∇2y + 2 ∇ f. ∇ y + y ∇2f.

Solution: 
2 2 2

2

2 2 2
( ) ( ) ( ) ( )

∂ ∂ ∂
∇ = + +

∂ ∂ ∂x y z
φy φy φy φy  ... (1)

Consider,    
2

2
( ) ( )

x xx
φy φy∂ ∂ ∂ =  ∂ ∂∂  

 

2 2

2 2

x x x

x x x xx x

φ yy φ

y φ φ φ y yy φ

∂ ∂ ∂ = + ∂ ∂ ∂ 
∂ ∂ ∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂∂ ∂

Similarly, 
2 2 2

2 2 2
( )

y y y yy y y

y φ φ φ y yφy y φ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + ⋅ +

∂ ∂ ∂ ∂∂ ∂ ∂

and 
2 2 2

2 2 2
( )

z z z zz z z

y φ φ φ y yφy y φ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + ⋅ +

∂ ∂ ∂ ∂∂ ∂ ∂
Substituting in Eq. (1),

∇ =
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂











+
∂
∂

+
∂
∂

+
∂

2

2

2

2

2

2

2( )φψ
φ ψ φ ψ φ ψ

φ
ψ ψ

x x y y z z

x y

ψψ
ψ

φ φ φ

φ ψ φ ψ ψ φ

∂








 +

∂
∂

+
∂
∂

+
∂
∂











= ∇ ⋅∇ + ∇ + ∇

∇

z x y z
2

2

2

2

2

2

2

2 2

2

2

(( )φψ φ ψ φ ψ ψ φ= ∇ + ∇ ⋅∇ + ∇2 22

Example 5:  Prove that 2 4

2
2 ,

r
r

r

−  
∇ ∇⋅ =     

 where r = xî + yĵ  + z k̂.

Solution:  ∇⋅








 = ∇ ⋅( )

= ∇ ⋅( ) + ∇ ⋅

=
∂
∂

+
∂
∂

+

−

− −

−

r

r
r r

r r r r

r i
x

j
y

k

2

2

2 2

2

( )

ˆ ˆ ˆ ∂∂
∂









 ⋅ + +( )









+
∂
∂

+
∂
∂

+
∂
∂

 − − −

z
xi yj zk

i
r

x
j

r

y
k

r

z

ˆ ˆ ˆ

ˆ ˆ ˆ
2 2 2







 ⋅ r
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= + + + −
∂

∂
+ −

∂

∂









+ −
∂

∂

− − −

−

r r
r

x
i r

r

y
j

r
r

z
k

2 3 3

3

1 1 1 2 2

2

( ) ( ) ( )

( )

ˆ ˆ

ˆ̂ ˆ ˆ ˆ}⋅ + +( )

xi yj zk

 r = xî  + yĵ  + zk̂

 r2 = x2 + y2 + z2

 

, ,
r x r y r z

x r y r z r

∂ ∂ ∂
= = =

∂ ∂ ∂

Hence, ( )2 3

2

2 2 2
2 3

ˆ ˆˆ ˆ ˆ ˆ3 2

( )
3 2

r x y z
r r i j k xi y j zk

r r rr

x y z
r r

r

− −

− −

    ∇ ⋅ = − + + ⋅ + +         
 + +

= − 
 

 = 3r−2 − 2r −4 r2

 = 3r− 2 − 2r−2 

 = r − 2

 

2 2 2

2

2 2 2
2 2 2

2 2 2

( )

( ) ( ) ( )

r
r

r

r r r
x y z

−

− − −

  
∇ ∇ ⋅ = ∇      

∂ ∂ ∂
= + +

∂ ∂ ∂

Now,

 

∂

∂
=

∂
∂

−
∂
∂







=
∂
∂

−





= −
∂
∂

−
−

−

−

2 2

2

3

3

4

2

2

2

r

x x

r

r

x

x

r

x

r

x

r

( )

( )

( ⋅⋅

= − −
∂
∂

+





= − − +





− −

− −

x

r

r

x

x r

r

x

r

x r

)

2 4

2 4

5 4

5 4

 

2
4

2

4
2 1

x
r

r

−  −
= − + 

 

Similarly, 

 

2 2 2
4

2 2

2 2 2
4

2 2

4
2 1

4
2 1

−
−

−
−

 ∂ −
= − + ∂  

 ∂ −
= − + ∂  

r y
r

y r

r z
r

z r
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2 2 2 2 2 2
2

2 2 2 2

2 2 2

4

2

2
4

2

4( )
2 3

4
2 3

− − −

−

−

   ∂ ∂ ∂
∇ ∇⋅ = + +   ∂ ∂ ∂   

 − + +
= − +  

 −
= − +  

r r r r

r x y z

x y z
r

r

r
r

r

  = 2r−4

Hence,  ∇ ∇⋅





















= −2

2

4
2

r

r
r

Example 6:  Prove that 
3

2
.

r
r

r r

 
∇ ∇⋅ = −  

Solution:  ( )1r
r r

r

−∇ ⋅ = ∇ ⋅

= ∇ ⋅( ) + ∇ ⋅

=
∂
∂

+
∂
∂

+
∂
∂









 ⋅ + +(

− −

−

r r r r

r i
x

j
y

k
z

xi yj zk

1 1

1

( )

ˆ ˆ ˆ ˆ ˆ ˆ ))








 +

∂
∂

+
∂
∂

+
∂
∂









 ⋅

= + −
∂
∂

− − −

− −

ˆ ˆ ˆ

ˆ

i
r

x
j

r

y
k

r

z
r

r r
r

x

1 1 1

1 2
3 ii r

r

y
j r

r

z
k r−

∂
∂

−
∂
∂









 ⋅

− −2 2ˆ ˆ

 r = xî  + yĵ  + zk̂

 r2 = x2 + y2 + z2

 

, ,
r x r y r z

x r y r z r

∂ ∂ ∂
= = =

∂ ∂ ∂

Hence, 
1 2

1 2

1 2

2
1 2

1

ˆˆ ˆ3

3

( )
3

3

2

yr x z
r r i j k r

r r r r

r
r r r

r

r r
r r

r

r
r r

r

r

− −

− −

− −

− −

−

 ∇⋅ = − + + ⋅  

 
= − ⋅  

⋅
= −

 
= −   

=
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1 1 1

2 2 2

2

ˆˆ ˆ(2 ) (2 ) (2 )

ˆˆ ˆ2 2 2

ˆˆ ˆ2

r
i r j r k r

r x y z

r r r
r i r j r k

x y z

x y z
r i j k

r r r

− − −

− − −

−

  ∂ ∂ ∂
∇ ∇ ⋅ = + +   ∂ ∂ ∂ 

∂ ∂ ∂
= − − −

∂ ∂ ∂

 = − + + 
 

 

= −

= −

−

2

2

2

3

r
r

r

r
r.

Example 7:  Show that 
2

r
E

r

= is irrotational. 

Solution: 

( )
2

2

Curl E E

r

r

r r−

= ∇×

= ∇×

= ∇×

We know that, ( ) ( ) ( )f A f A f A∇× = ∇× + ∇ ×

 

( )
( )

( )

( )

2

2 2

2
2

2 3

curl 

( )

ˆ ˆ ˆ

ˆ ˆ ˆ( 2 )

−

− −

−
−

− −

= ∇ ×

= ∇ × + ∇ ×

 ∂ ∂
= × + × ∂ ∂ 

∂ = × + − × ∂ 

∑ ∑

∑ ∑

E r r

r r r r

r
r i xi i r

x x

r
r i i r i r

x

 r = xî  + yĵ  + zk̂

 r2 = x2 + y2 + z2

 

, ,
r x r y r z

x r y r z r

∂ ∂ ∂
= = =

∂ ∂ ∂

Hence,  ( )
( )

( )

2 3

3

4

ˆ0 2

ˆˆ ˆ
2

2

0

x
r r r i r

r

xi yj zk
r r

r

r r r

− −

−

−

 ∇× = − × 
 

+ +
= − ×

= − ×
=

∑

Hence, E is irrotational.



6.72 Chapter 6 Vector Functions

Example 8:  Prove that ( ) 2 ,a r a∇ × × =  where a is a constant vector. 

Solution:  Let a = a
1 
î  + a

2
 ĵ  + a

3 
k̂

 r = xî  + yĵ  + zk̂

 

1 2 3

ˆˆ ˆ

× =
i j k

a r a a a

x y z

 = î  (a
2 
z − a

3 
y) − ĵ  (a

1 
z − a

3 
x) + k̂ (a

1 
y − a

2 
x)

( )

2 3 3 1 1 2

ˆˆ ˆi j k

a r
x y z

a z a y a x a z a y a x

∂ ∂ ∂
∇× × =

∂ ∂ ∂
− − −

 = î  (a
1
 + a

1
) − ĵ  (−a

2
 − a

2
) + k̂ (a

3
 + a

3
)

 = 2(a
1
î  + a

2
 ĵ  + a

3
k̂)

 = 2 a

Example 9:  Prove that 
2

(2 ) ( )
.

n n n

a r n a n a r r

r r r +

 × − ⋅
∇ × = +  

Solution:  ( ) , where ,n

n

a r
r A a r A

r

− ×
∇× = ∇× × =  

 
say

We know that, 

 

( ) ( )
( ) ( )

( )

( )

( )

ˆˆ ˆ

n n n

n n n
n

f A f A f A

r A r A r A

r r r
r a r i j k A

x y z

− − −

− − −
−

∇× = ∇× + ∇ ×

∇× = ∇× + ∇ ×

 ∂ ∂ ∂ = ∇× × + + + ×   ∂ ∂ ∂ 

As proved in Ex. 8

 

( )

( ) ( ) 1

2

ˆˆ ˆ2 ( )n n n

a r a

r r r
r A r a nr i j k A

x y z

− − − −

∇× × =

 ∂ ∂ ∂
∇× = + − + + × ∂ ∂ ∂ 

As proved earlier, , ,
r x r y r z

x r y r z r

∂ ∂ ∂
= = =

∂ ∂ ∂
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Hence, ∇×( ) = − + +





 ×

= − ×

− − − −

+

r A ar nr
x

r
i

y

r
j

z

r
k A

a

r

n

r

r

r
a

n n n

n n

2

2

1

1

ˆ ˆ ˆ

××( )

= − ⋅( ) − ⋅( ) +

r

a

r

n

r
r r a r a r

n n

2

2  
∵a b c a c b a b c× ×( ) = ⋅( ) − ⋅( )





 

( )

( )

( )

2

2

2

2

2

2

(2 )
.

n n

n n n

n n

a n
r a r a r

r r

a na n a r r

r r r

n a n a r r

r r

+

+

+

 = − − ⋅ 

⋅
= − +

− ⋅
= +

Example 10:  If a  is a constant vector, show that ( ) ( ) ( ) .a r a r a r× ∇ × = ∇ ⋅ − ⋅∇

Solution:  Let a = a
1 
î  + a

2
 ĵ  + a

3 
k̂

 r = x
1 
î  + x

2
 ĵ  + x

3 
k̂

 

1 2 3

3 32 1 2 1

ˆˆ ˆ

ˆˆ ˆ

∂ ∂ ∂
∇× =

∂ ∂ ∂

∂ ∂   ∂ ∂ ∂ ∂ = − − − + −    ∂ ∂ ∂ ∂ ∂ ∂    

i j k

r
x y z

r r r

r rr r r r
i j k

y z x z x y

( )
1 2 3

3 32 1 2 1

3 32 1 1 2 1 2

2 3 1 3

3 31 2

1 2

ˆˆ ˆ

ˆ ˆ

ˆ

i j k

a r a a a

r rr r r r

y z z x x y

r rr r r r r r
i a a j a a

x y z x x y y z

r rr r
k a a

z x y

× ∇× =

∂ ∂   ∂ ∂ ∂ ∂ − − −    ∂ ∂ ∂ ∂ ∂ ∂    

   ∂ ∂     ∂ ∂ ∂ ∂ ∂ ∂ = − − − − − − −         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂         

∂ ∂∂ ∂ + − − − ∂ ∂ ∂ ∂  z
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3 32 1 1 1 2 2

2 3 1 1 1 3 2 2

3 31 2 1 1

1 2 3 3 2 3

3 32 2

1 3 1 2

ˆ ˆ

ˆ ˆ

ˆˆ

r rr r r r r r
i a a a a j a a a a

x x x x y y y y

r rr r r r
k a a a a i a a

z z z z y z

r rr r
j a a k a a

x z x y

∂ ∂∂ ∂ ∂ ∂ ∂ ∂   = + + − + + + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
∂ ∂  ∂ ∂ ∂ ∂ + + + − − +   ∂ ∂ ∂ ∂ ∂ ∂   

∂ ∂ ∂ ∂ − + − +  ∂ ∂ ∂ ∂   

 

=
∂
∂

+
∂
∂

+
∂
∂









 + +

−
∂
∂

+
∂
∂

+
∂
∂

ˆ ˆ ˆ ( )i
x

j
y

k
z

a r a r a r

a
x

a
y

a
z

1 1 2 2 3 3

1 2 3









 + +

= ∇ ⋅( ) − ⋅∇( )

( ˆ ˆ )̂r i r j r k

a r a r

1 2 3

Example 11:  If a is a constant vector such that ,a a=  prove that 

( ) 2 .a r a a ∇⋅ ⋅ = 

Solution:  Let a = a
1 
î  + a

2
 ĵ  + a

3 
k̂

 r = xî  + yĵ  + zk̂ 

We know that, ( ) ( )
( ) ( )( ) ( )

( )f A f A f A

a r a a r a a r a

∇ ⋅ = ∇ ⋅ + ∇ ⋅

   ∇ ⋅ ⋅ = ⋅ ∇ ⋅ + ∇ ⋅ ⋅   

 

Since a  is constant, 0a∇ ⋅ =

( ) ( ) ( ) ( )

1 2 3 1 2 3 1 2 3

1 2 3

ˆˆ ˆ

ˆˆ ˆ( ) ( ) ( )

ˆˆ ˆ

a r i a r j a r k a r
x y z

i a x a y a z j a x a y a z k a x a y a z
x y z

a i a j a k

a

∂ ∂ ∂
∇ ⋅ = ⋅ + ⋅ + ⋅

∂ ∂ ∂
∂ ∂ ∂

= + + + + + + + +
∂ ∂ ∂

= + +

=

Hence, ( )
2

0

.

a r a a a

a

 ∇ ⋅ ⋅ = + ⋅ 
=

Example 12:  If ( )  where F a r r a= ⋅  is a constant vector, find curl F and prove 

that it is perpendicular to .a



6.11 Second Order Differential Operator 6.75

Solution:  Curl ( )F F a r r = ∇× = ∇× ⋅ 

We know that, ( ) ( ) ( )f A f A f A∇× = ∇× + ∇ ×

 ( )Curl F a r r = ∇× ⋅ 

 
( )( ) ( )a r r a r r = ⋅ ∇× + ∇ ⋅ × 

Now, 

ˆˆ ˆi j k

r
x y z

x y z

∂ ∂ ∂
∇× =

∂ ∂ ∂

 = î  (0 − 0) − ĵ  (0 − 0) + k̂ (0 − 0)

 = 0

As proved in Ex. 11

 
( )a r a∇ ⋅ =

 ( ) 0a r r a r

a r

 ∇× ⋅ = + × 

= ×

 ∇× ⋅( )  ⋅ = ×( )⋅ =a r r a a r a 0

Hence, ( )a r r ∇× ⋅  is perpendicular to .a

Example 13:  Prove that 0,
a r

r

 ×
∇⋅ =  

 where a is a constant vector.

Solution:  ( )1a r
r a r

r

− ×  ∇ ⋅ = ∇ ⋅ ×   
 

We know that, ∇⋅( ) = ∇ ⋅( ) + ∇ ⋅

∇ ⋅ ×( )  = ∇ ⋅ ×( )  + ∇ ⋅− − −

f A f A f A

r a r r a r r a

( )

( )1 1 1 ××( )

= ∇ ⋅ ×( )  +
∂
∂

+
∂
∂

+
∂
∂









 ⋅ ×(−

− − −

r

r a r i
r

x
j

r

y
k

r

z
a r1

1 1 1

ˆ ˆ ˆ ))

 
∇⋅ ×( ) = ⋅ ∇ ×( ) − ⋅ ∇ ×( )

∇⋅ ×( ) = ⋅ ∇ ×( ) − ⋅ ∇ ×( )

A B B A A B

a r r a a r

Since a is constant, 0.a∇× =
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Also, 0r∇× =  as proved in Ex. 12.

 
∇⋅ ×( )a r = 0

Hence, ∇⋅ ×( )  + −
∂
∂

−
∂
∂

−
∂
∂









 ⋅ ×(− − − −r a r r

r

x
i r

r

y
j r

r

z
k a r1 2 2 2

0= ˆ ˆ ˆ ))

 

= −
+ +





⋅ ×( )

= − ⋅ ×( ) 
=

−

−

0

0

2

3

r
xi yj zk

r
a r

r r a r

ˆ ˆ ˆ

Example 14:  Prove that curl ( ) ,r a b b a × × = ×   where a and b are constants.

Solution: We know that, ( ) ( ) ( )r a b r b a a b r× × = ⋅ − ⋅

Let r b f b g⋅ = ⋅ =, ,say and  saya

( )
( ) ( )

( )
( ) ( )

curl 

¢¢¢

r a b r a b

f a gr

f a gr

× × = −

   × × = ∇ × × ×   

= ∇ × −

= ∇ × − ∇ ×

We know that, ( ) ( ) ( )f A f A f A∇× = ∇× + ∇ ×

 ( ) ( ) ( )( ) ( )r a b f a f a g r g r ∇× × × = ∇× + ∇ × − ∇× − ∇ × 

Since a is constant, 0.a∇× =  Also 0r∇× =

 ∇× ×( )×  = ∇ ⋅( )  × − ∇ ⋅( )  ×r a b r b a a b r  [Substituting f and g]

 ( ) 0r b a = ∇ ⋅ × −        ... (1)  and  are constanta b  ∵

Let b = b
1
i ̂  + b

2
 ĵ  + b

3 
k̂, r = xî  + yĵ  + zk̂

 

( )
1 2 3

1 2 3

ˆˆ ˆ ( )

ˆˆ ˆ

 ∂ ∂ ∂
∇ ⋅ = + + + +  ∂ ∂ ∂ 

= + +

=

r b i j k b x b y b z
x y z

b i b j b k

b

Substituting in Eq. (1),

( )r a b b a ∇× × × = × 

Hence, curl ( ) .r a b b a × × = × 
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Example 15:  Prove that 
( )

1

1 2
.

n n

n n
r

r r +

− ∇⋅ ∇ =  

Solution: 

1 1 1

1

1 ˆˆ ˆ

ˆˆ ˆ( ) ( ) ( )

ˆˆ ˆ( )

−

− − − − − −

− −

 ∂ ∂ ∂
∇ = + + ∂ ∂ ∂ 

∂ ∂ ∂
= − + − + −

∂ ∂ ∂

 = − + + 
 

n

n

n n n

n

i j k r
x y zr

r r r
nr i nr j nr k

x y z

x y z
nr i j k

r r r

 
=

−
= −

+ +

n

r

r

r

n

r

r
n n1 2

 ( )
2

1

1
n n

n

n
r r r

r r

n r r

+

− −

    ℜℜℜ        

= − ∇⋅

We know that, ( ) ( ) ( )f A f A f A∇ ⋅ = ∇ ⋅ + ∇ ⋅

( ) ( )1 1

1

1

1

2

1

1 2

1
( )

3 ˆˆ ˆ ( ) [ 3]

3 ˆˆ ˆ( 1)

3 ( 1) ˆˆ ˆ

n n

n

n

n

n

n

n n

n r r n r r r
r

n i j k r r r
x y zr

r r r
n n r i j k r

x y zr

n x y z
n i j k r

r r rr r

− − − −
+

− −
+

− −
+

+ +

 − ∇ ⋅ = − ∇ ⋅ + ∇ ⋅  
   ∂ ∂ ∂ = − + + + ⋅ ∇ ⋅ =   ∂ ∂ ∂     
 ∂ ∂ ∂  = − − + + + ⋅  ∂ ∂ ∂  
 +  = − − + + ⋅ 

 

∵


 

 

= − −
+ ⋅









= − −
+









= −

+ +

+ +

n

r

n

r

r r

r

n

r

n r

r r

n

n n

n n

3 1

3 1

1 2

1

2

2

( )

( )

(( )

( )
.

2

2

1

1

−

=
−

+

+

n

r

n n

r

n

n

Example 16:  Prove that 
2

log
r

r
r

∇ = and hence, show that 

( ) ( )
4

log 2
a r r

a r
r

⋅
∇ × × ∇ = where a is a constant vector.
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Solution: 

2

ˆˆ ˆlog log

1 1 1 ˆˆ ˆ

1 ˆˆ ˆ

 ∂ ∂ ∂
∇ = + + ∂ ∂ ∂ 

 ∂ ∂ ∂
= + + ∂ ∂ ∂ 

 = + + 
 

=

r i j k r
x y z

r r r
i j k

r x r y r z

x y z
i j k

r r r r

r

r

Let a r A× = ,

 

( )

( ) ( )

2

2

2

2

log

log

r
a r a

r

a r

r

a r
a r r A

r

−

 
∇× ×∇ = ∇× ×  

 
 ×

= ∇×  
 

 ×
∇× ×∇ = ∇× = ∇×  

 

We know that, ( ) ( ) ( )f A f A f A∇× = ∇× + ∇ ×

 ∇×( ) = ∇×( ) + ∇( )×

= ∇× ×( )  + ∇( )× ×( )

=

− − −

− −

−

r A r A r A

r a r r a r

r

2 2 2

2 2

2 rr a r a a r a r

i
x

j
y

k
z

r

⋅∇( ) − ∇ ⋅( ) − ⋅∇( ) + ∇ ⋅( ) 

+
∂
∂

+
∂
∂

+
∂
∂











−
ˆ ˆ ˆ

22








× ×( )a r

Since a is a constant vector, ( )0, 0.a r a∇ ⋅ = ⋅∇ =

Let a = a
1 
î  + a

2
 ĵ  + a

3 
k̂

 r = xî  + yĵ  + zk̂

( ) ( ) ( ) ( )2 3 ˆˆ ˆlog ( 2 )
r r r

a r r a r a r r i j k a r
x y z

− −  ∂ ∂ ∂ ∇× ×∇ = − ⋅∇ + ∇ ⋅ + − + + × ×   ∂ ∂ ∂ 

 , ,
r x r y r z

x r y r z r

∂ ∂ ∂
= = =

∂ ∂ ∂
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∇× ×∇( ) = −
∂
∂

+
∂
∂

+
∂
∂









 +













+

−a r r a
r

x
a

r

y
a

r

z
alog ( )2

1 2 3
3

(( )− + +





 × ×( )

= − + +( ) +

−

−

2

3

3

2

1 2 3

r
x

r
i

y

r
j

z

r
k a r

r a i a j a k a

ˆ ˆ ˆ

ˆ ˆ ˆ



 + − × ×( )

= − +( ) − ⋅( ) − ⋅( ) 

−

−

( )2

3
2

3

2

4

r
r

r
a r

r a a
r

r r a r a r

          

( )

( )

( )

2

2 4

2 2 4

4

2 2

2 2 2

2

 = − − ⋅ 

⋅
= − +

⋅
=

a
r a r a r

r r

a a a r r

r r r

a r r

r

Example 17:  Calculate 2f∇  when f = 3x2z − y2z3 + 4x3y + 2x − 3y − 5 at the point 

(1, 1, 0).

Solution:  ∇ =
∂

∂
+
∂

∂
+
∂

∂









 − + + − −

∂
∂

=
∂
∂

2
2

2

2

2

2

2

2 2 3 33 4 2 3 5f
x y z

x z y z x y x y

f

x

( )

xx
x z y z x y x y

xz x y

f

x
z xy

( )3 4 2 3 5

6 12 2

6 24

2 2 3 3

2

2

2

− + + − −

= + +

∂

∂
= +

 ... (1)

 

∂

∂
=

∂

∂
− + + − −

= − + −

∂

∂
= −

f

y y
x z y z x y x y

yz x

f

y
z

( )3 4 2 3 5

2 4 3

2

2 2 3 3

3 3

2

2

3

 

∂

∂
=

∂

∂
− + + − −

= −

∂

∂
= −

f

z z
x z y z x y x y

x y z

f

z
y z

( )

.

3 4 2 3 5

3 3

6

2 2 3 3

2 2 2

2

2

2

Substituting in Eq. (1),

 
2 3 26 24 2 6f z xy z y z∇ = + − −

At the point (1, 1, 0), ∇ =
2

24f
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Example 18:  Prove that 
2

2

2

d 2 d
( ) ,

dd

f f
f r

r rr
∇ = +  where r = xî  + yĵ  + z k̂.

Solution:   ∇ = ∇⋅∇

∇ =
∂

∂
+

∂

∂
+

∂

∂

= ′
∂

∂








2 f f

f i
f r

x
j

f r

y
k

f r

z

f r
r

x
i

ˆ ( ) ˆ ( ) ˆ ( )

( ) ˆ ++ ′
∂

∂









 + ′

∂

∂







f r

r

y
j f r

r

z
k( ) ˆ ( ) ˆ

  , ,
r x r y r z

x r y r z r

∂ ∂ ∂
= = =

∂ ∂ ∂

 

ˆˆ ˆ( )

( )

( )

 ∇ = + +′   

= ′

′
=

yx z
f f r i j k

r r r

r
f r

r

f r
r

r

 

2 ( )f r
f f r

r

′ ∇ = ∇ ⋅∇ = ∇ ⋅   

We know that, ( ) ( ) ( )f A f A f A∇ ⋅ = ∇ ⋅ + ∇ ⋅

( )

2 ( )

( ) ( ) ( )
 is a scalar function

′ ∇ = ∇⋅   
′ ′ ′   = ∇⋅ + ∇ ⋅      

∵

f r
f r

r

f r f r f r
r r

r r r

Now,                ( )ˆ ˆˆ ˆ ˆ ˆr i j k xi yj zk
x y z

 ∂ ∂ ∂
∇ ⋅ = + + ⋅ + + ∂ ∂ ∂ 

= 3

 

∇
′

=
∂
∂

′





+

∂
∂

′





+

∂
∂

′






f r

r x

f r

r
i

y

f r

r
j

z

f r

r

( ) ( ) ( ) ( )
ˆ ˆ 

=
′





∂
∂

+
′





∂
∂

+
′

k

d

dr

f r

r

r

x
i

d

dr

f r

r

r

y
j

d

dr

f r

r

ˆ

( ) ( ) ( )





∂
∂

=
′′

−
′





+ +





=
′′

r

z
k

f r

r

f r

r

x

r
i

y

r
j

z

r
k

ˆ

( ) ( ) ˆ ˆ ˆ
2

ff r

r

f r

r
r

( ) ( )
2 3

−
′






Hence, 2

2 3

2

2 3

( ) ( ) ( )
(3)

3 ( ) ( ) ( )

f r f r f r
f r r

r r r

f r f r f r
r

r r r

′ ′′ ′ ∇ = + − ⋅  
′ ′′ ′ = + −  
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=
′

+ ′′ −
′

= ′′ + ′

= +

3

2

2
2

2

f r

r
f r

f r

r

f r
r

f r

f

r r

f

r

( )
( )

( )

( ) ( )

d

d

d

d

Exercise  6.5

  1.  Evaluate div ( )A r×  if curl A = 0, 

r = xî  + yĵ  + zk̂.

  [Ans. : 0]

  2.  If 1r and 2r  are vectors joining the 

P
1
 (x

1
, y

1
, z

1
) and P

2
 (x

2
, y

2
, z

2
) to a 

variable point P (x, y, z), show that 

curl ( ) ( )1 2 1 22 .× = −r r r r

  3.   Prove that 

( )  , where ×∇× × = × r a b b a

  r = xî  + yĵ  + zk̂ and a, b are constant 

vectors.

  4.  If a is a constant vector, prove that 

( ) 3 .r a r r a ∇× × × = × 
  5.  Prove that 

2

2

( ) 1
( )  

f r d
r r f r

r drr

   ∇ ⋅ =    
  Hence, or otherwise prove that

div r r n r
n n( ) = +( ) .3

  6.  Prove that 

log 1
(1 2log ).

r
r r

r r

 ∇ ⋅ = + 
 

  7.  Prove that

( ) ( )grad curl = div ⋅ ⋅ − × a f a f a f  

where a is a constant unit vector.

  8.  Find f (r), so that the vector f (r) r is 

both solenoidal and irrotational.

  
3

   ( ) =
c

f r
r

 
  
Ans. :

  9.  If f
1
 and f

2
 are scalar 

functions, then prove that, 

∇× ∇ = ∇ ×∇( ) .φ φ φ φ1 2 1 2

 10.  Is 
n

a r
A

r

×
=  a solenoidal vector, 

where a is constant vector?

  [Ans. : Yes]

 11.  Prove that div ( ) 2a r a a⋅ = .

 12.  If r is the positive vector of the point 

(x, y, z) and r is the modulus of r , 

then prove that rn r is an irrotational 

vector for any value of n but is sole-

noidal only if n = −3.

 13.  If f
1 
and f

2
 are scalar functions, then 

prove that 

  ∇× ∇ = ∇ ×∇ =( )φ φ φ φ1 2 1 2

2 1( )φ φ−∇× ∇  and deduce that 

( ) 0.f f∇× ∇ =

 14.  Prove that 
1 2 2 1( ) 0φ φ φ φ∇ ⋅ ∇ × ∇ = , 

where f
1 
and f

2
 are scalar functions.

 15.  Prove that 
2 2 2( ) 2 ,fg f g g f g f∇ = ∇ + ∇ ⋅∇ + ∇

 

where f and g are scalar functions.

 16.  Calculate 2 f∇ where f = 4x2 + 9y2 + z2.

  [Ans. : 28]



Chapter7
Vector Calculus

7.1  INTRODUCTION

Vector calculus deals with the differentiation and integration of vector functions. We 

learn about derivative of a vector function, gradient, divergence and curl in vector 

differential calculus. In vector integral calculus, we learn about line integral, surface 

integral, volume integral and three theorems, namely Green’s theorem, divergence the-

orem and Stokes’ theorem. It plays an important role in the differential geometry and 

in the study of partial differential equations. It is useful in the study of rigid dynamics, 

fluid dynamics, heat transfer, electromagnetism, theory of relativity, etc. 

7.2  LINE INTEGRALS

The line integral is a simple generalisation of a  definite 

 integral f x x
a

b

( )∫ d  which is integrated from x = a (point A) 

to x = b (point B) along the x-axis. In a line integral, the 

integration is done along a curve C in space.

Let ( )F r  be a vector function defined at every point 

of a curve C. If r  is the position vector of a point 

P (x, y, z) on the curve C, then the line integral of ( )F r  over a curve C is defined by

where 

F r r F x F y F z

F F i F j F k r xi yj z

C C∫ ∫⋅ = + +

= + + = + +

( ) ( )d d d d

and

1 2 3

1 2 3
ˆ ˆ ˆ ˆ ˆ kkˆ

If the curve C is represented by a parametric representation

 ˆˆ ˆ( ) ( ) ( ) ( )r t x t i y t j z t k= + + ,

then the line integral along the curve C from t = a to t = b is

F r r F
r

t
t

F
x

t
F

y

t
F

z

t
t

C a

b

a

b

∫ ∫

∫

⋅ = ⋅

= + +





( ) d
d

d
d

d

d

d

d

d

d
d1 2 3

If C is a closed curve, then the symbol of the line integral 
C
∫  is replaced by 

.

C
�∫

B

B

C

C

A

A

Fig. 7.1
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Note:

(1)  The curve C is called the path of integration, the points ( )r a  and ( )r b  are called 

initial and terminal points respectively.

(2)  The direction from A to B along which t increases is called positive direction on C.

7.2.1  Circulation

If F is the velocity of a fluid particle and C is a closed curve, then the line integral 

F r
C

⋅∫ d
�

 represents the circulation of F  around the curve C.

Note: If the circulation of F  around every closed curve C in the region R is zero, 

then F  is irrotational, i.e. if F r
C

⋅ =∫ d
�

0, F  is irrotational.

7.2.2   Work done by a Force

If F  is the force acting on a particle moving along the arc AB of the curve C, then the 

line integral F r
A

B

⋅∫ d  represents the work done in displacing (moving) the particle 

from the point A to the point B.

7.3   PATH INDEPENDENCE OF LINE INTEGRALS 
(CONSERVATIVE FIELD AND SCALAR POTENTIAL)

If F  is conservative, i.e. F = ∇f  where f is a scalar potential, then the line integral 

along the curve C from the points A to B is

F r r

x
x

y
y

z
z

B

C A

B

A

B

A

B

∫ ∫

∫

∫

⋅ = ∇ ⋅

=
∂
∂

+
∂
∂

+
∂
∂







=

= −

d d

d d d

d

φ

φ φ φ

φ

φ φ( ) (( )A

Thus, line integral depends only on the start and end values and therefore is independent 

of the path.

Hence, for a conservative force field, line integral is independent of the path.

Note 1: If F  is conservative and curve C is closed, then 

           
F r A A

C

⋅ = − =∫ d
�

φ φ( ) ( ) 0
   

Note 2: Work done in moving a particle from points A to B under a 

conservative force field is

work done = f (B) - f (A)

Fig. 7.2

A



7.3  Path Independence of Line Integrals (Conservative Field and scalar Potential)        7.3
Example 1: Evaluate F r

C
∫ ⋅d  along the parabola y2 = x between the points (0, 0) 

and (1, 1) where 2 ˆ ˆ.F x i xy j= +

Solution:  (i) Let ˆ ˆr xi yj= +

 ˆ ˆd d dr i x j y= +

     (ii)  2 ˆ ˆ ˆ ˆd ( ) ( d d )F r x i xy j i x j y⋅ = + ⋅ +

         
2
d dx x xy y= +

(iii) Path of integration is the parabola 

 x = y2

 dx = 2ydy

Substituting in dF r⋅  and integrating between 

the limits y = 0 to y = 1,

 

F r y y y y y y

y y y

y y

C∫ ∫

∫

⋅ = ⋅ + ⋅

= +

= +

= +

=

d d d

d

( )

( )

4 2

0

1

5 3

0

1

6 4

0

1

2

2

2
6 4

1

3

1

4

77

12

Example 2:  Prove that d 3 ,
C

F r⋅ =∫ p  where ˆˆ ˆF zi xj yk= + +  and C is the arc of 

the curve ˆˆ ˆcos sinr ti t j t k= + +  from t = 0 to t = 2p .

Solution :  (i)  ˆˆ ˆcos sinr t i t j t k= + +

 

x t y t z t

x t t y t t z t

= = =

= = =

cos , sin ,

sin , cos ,d d d d d d–

 (ii) ˆ ˆˆ ˆ ˆ ˆd ( ) ( d d d )F r zi x j yk i x j y k z⋅ = + + ⋅ + +   

 
2

d d d

( sin )d cos cos d sin d

( sin cos sin )d

z x x y y z

t t t t t t t t

t t t t t

= + +

= − + ⋅ +

= − + +

 (iii) Path of integration is the arc of the curve ˆˆ ˆcos sinr ti t j t k= + +  from

t = 0 to t = 2p.

A (1, 1)

y

O

(0, 0)

y2 = x

x

Fig. 7.3
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F r t t t t t

t t t

C

⋅ = − + +

= − − − − +
+

∫ ∫d d( sin cos sin )

( cos ) ( sin )
( c

2

0

2

0

2 1

π

π oos )
cos

( )
sin

(cos cos )

2

2

2
2

2

4
2 0

2

0

2

0

2

0

2

t
dt t

t t

π π

π

π π

π

∫ + −

= − − + + − −

= ++

=

2

2

3

π

π

Example  3:  If ˆˆ ˆ(2 2 ) ( ) (3 2 5 ) ,F x y z i x y z j x y z k= − + + + − + − −  calculate the 

circulation of F
–
 along the circle in the xy-plane of 2 unit radius and centre at the 

origin.

Solution:  Circulation = F r
C

⋅∫ d
�

 (i) Let  ˆˆ ˆr xi yj zk= + +

 
ˆˆ ˆd d d dr i x j y k z= + +

 (ii) ˆ ˆˆ ˆ ˆ ˆd (2 2 ) ( ) (3 2 5 ) ( d d d )F r x y z i x y z j x y z k i x j y k z ⋅ = − + + + − + − − ⋅ + + 

 
(2 2 )d ( )d (3 2 5 )dx y z x x y z y x y z z= − + + + − + − −

 (iii) Path of integration is the circle in xy-plane of radius of 2 units and centre at the 

origin, i.e. x2 + y2 = 4 and in xy-plane z = 0

  Parametric equation of the circle is

 x = 2 cosq,       y = 2 sinq
   dx = -2 sinq dq,   dy = 2 cosq dq

For the complete circle, q varies from 0 to 2p .

Substituting in dF r⋅  and integrating between the limits q = 0 to q = 2p,

[ ]
2

0

2
2 2

0

2

0

2

0

Circulation (2 2cos 2sin )( 2sin d ) (2cos 2sin )(2cos d )

4 ( 2cos sin sin cos cos sin )d

sin 2
4 1 d

2

cos2
4

4

8

= ⋅ − − + +

= − + + +

 = −  

= +

=

∫
∫

∫

p

p

p

p

q q q q q q q q

q q q q q q q

q
q

q
q

p



7.3  Path Independence of Line Integrals (Conservative Field and scalar Potential)        7.5
Example  4:  Evaluate F r

C
⋅∫ d  where 2 2 ˆ ˆ( ) 2F x y i xy j= + −  and C is the 

 rectangle in the xy-plane bounded by y = 0, x = a, y = b, x = 0.

Solution :  (i) Let ˆ ˆ= +r xi yj

 
ˆ ˆd d dr i x j y= +

 (ii) 2 2 ˆ ˆ ˆ ˆd ( ) 2 ( d d )F r x y i xy j i x j y ⋅ = + − ⋅ + 

   
2 2( )d 2 dx y x xy y= + −

 (iii) Path of integration is the rectangle OABD 

bounded by the four lines 

y = 0, x = a, y = b, x = 0.

F r F r F r F r F r
C OA AB BD DO

⋅ = ⋅ + ⋅ + ⋅ + ⋅∫ ∫ ∫ ∫ ∫d d d d d … (1)

(a) Along OA : y = 0,  dy = 0

x varies from 0 to a.

F r x x
x a

OA

a

a

⋅ = = =∫ ∫d d
2

0

3

0

3

3 3

(b) Along AB : x = a,  dx = 0

y varies from 0 to b.

F r ay y ay ab
AB

b b

⋅ = − = − = −∫ ∫d d( )2
0

2

0

2

(c) Along BD : y = b,  dy = 0

x varies from a to 0.

F r x b x
x

b x
a

b a
BD a

a

⋅ = + = + = − +




∫ ∫d d( )2 2

0
3

2

0 3
2

3 3

(d) Along DO : x = 0,  dx = 0

y varies from b to 0.

 
F r y

DO b
⋅ = =∫ ∫d d0 0

0

Substituting in Eq. (1),

 

3 3

2 2

2

d
3 3

2

C

a a
F r ab b a

ab

⋅ = − − −

= −

∫

Example 5:  Evaluate d
C

F r⋅∫  where 2 2 ˆˆ ˆ(3 6 ) 14 20F x y i yzj xz k= + − +  and C is 

the straight line joining the points (0, 0, 0) to (1, 1, 1).

y

(0, b)D

A (a, 0)

B (a, b)

xO

(0, 0)

Fig. 7.4
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Solution:  (i) Let ˆˆ ˆr xi yj zk= + +

          
ˆˆ ˆd d d dr i x j y k z= + +

 (ii) 2 2 ˆ ˆˆ ˆ ˆ ˆd (3 6 ) 14 20 ( d d d )F r x y i yzj xz k i x j y k z ⋅ = + − + ⋅ + + 

 
2 2(3 6 )d 14 d 20 dx y x yz y xz z= + − +

 (iii) Path of integration is the straight line joining the points A (0, 0, 0) to B (1, 1, 1).

  Equation of the line AB is

 

0 0 0

0 1 0 1 0 1

x y z− − −

= =

− − −

 x = y = z

 dx = dy = dz

Substituting in dF r⋅  and integrating between the limits x = 0 to x = 1,

F r x x x x x x x

x x x x

C

⋅ = + − + 

= − +

∫ ∫

∫

d d d d

d

( )

( )

3 6 14 20

20 11 6

2 2 3

0

1

3 2

0

1

1
∫0

== − +

=

20
4

11

3

6

2

13

3

4 3 2

0

1

x x x

Example 6:  Evaluate d
C

F r⋅∫  along the curve x2 + y2 = 1, z = 1 in the positive 

direction from (0, 1, 1) to (1, 0, 1), where ˆˆ ˆ( 2 ) ( 2 ) .F yz x i xzj xy z k= + + + +

Solution:  (i) Let  ˆˆ ˆr xi yj zk= + +

 
ˆˆ ˆd d d dr i x j y k z= + +

 (ii) F r yz x i xzj xy z k i x j y k z⋅ = + + + + ][ ⋅ + +dd d d( ) ( ) ( )2 2ˆ ˆ ˆ ˆ ˆ ˆ

( 2 )d d ( 2 )dyz x x xz y xy z z= + + + +

 (iii) Path of integration is the part of the curve 

x2 + y2 = 1, z = 1 from (0, 1, 1) to (1, 0, 1).

Parametric equation of the curve is

       x = cosq,          y = sinq,        z = 1

     dx = – sinq dq,   dy = cosq dq,    dz = 0

At point A : x = 0

 cosq  = 0, q θ =
2

p

At point B : x = 1

 cosq  = 1,

  q = 2p

y

x

A (0, 1)

D
B (1, 0)

Fig. 7.5
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Substituting in dF r⋅  and integrating between the limits q = =to 2 ,

2

p
q p

[ ]⋅ = + − +

= − −

= −

= +

= − + −

=

∫ ∫

∫

∫

2

2

2
2 2

2

2

2

2

2

d (sin 2cos )( sin d ) cos (cos d )

(cos sin 2cos sin )d

(cos2 sin2 )d

sin2 cos2

2 2

1
(sin4 sin cos4 cos )

2

1

ADB

F r
p

p

p

p

p

p

p

p

q q q q q q q

q q q q q

q q q

q q

p p p p

Example  7:  Evaluate d
C

F r⋅∫  over the circular path x2 + y2 = a2 where 

ˆ ˆsin (1 cos ) .F yi x y j= + +

Solution:  (i) Let   ˆ ˆr xi yj= +

          
ˆ ˆd d dr i x j y= +

 (ii)     F r y i x y j i x j y⋅ = + +[ ]⋅ +( )d d dsin ( cos )ˆ ˆ ˆ ˆ1

  
sin d (1 cos )dy x x y y= + +

 

= + +

= +

sin cos

( sin )

y x x y y x y

x y x y

d d d

d d

 (iii) Path of integration is the circle x2 + y2 = a2.

  Parametric equation of the circle is

 x = a cosq,           y = a sinq
  dx = -a sinq dq,  dy = a cosq dq

For complete circle, q varies from 0 to 2p.

Substituting in dF r⋅  and integrating between the limits q   = 0 to q   = 2p ,

{ }θ θ θ θ θ

θ θ θ θ

θ
θ

 ⋅ = + ⋅ 

= + +

= + +

=

∫ ∫

∫

2

0

2
22

0 0

22

0

2

d d cos sin( sin ) cos cos d

cos sin( sin ) (1 cos2 )d
2

sin2
0

2 2

C

F r a a a a

a
a a

a

a

p

p
p

p

p
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Example 8:  Find work done in moving a particle in the force field = +
2 ˆ3 (F x i  

− + ˆˆ(2 )xz y j zk  along the curve x2 = 4y and 3x3 = 8z from x = 0 to x = 2.

Solution:  Work done d
C

F r= ⋅∫

 (i) Let  ˆˆ ˆr xi y j zk= + +

       
ˆˆ ˆd d d dr i x j y k z= + +

 (ii)  2 ˆ ˆˆ ˆ ˆ ˆd 3 (2 ) ) ( d d d )F r x i xz y j zk i x j y k z ⋅ = + − + ⋅ + + 

  
23 d (2 )d dx x xz y y z z= + − +

 (iii) Path of integration is the curve x2 = 4y and 3x3 = 8z.
2

3

2

3
,

4 8

9
d d , d d

2 8

x
y z x

x x
y x z x

= =

= =

Substituting in dF r⋅  and integrating between the limits x = 0 to x = 2,

Work done d d d= + ⋅ −






+ ⋅








∫ 3 2

3

8 4 2

3

8

9

8

2

3 2 3 2

0

2

x x x

x x x

x

x x

x

== + −






= + ⋅ − ⋅

= + −

∫ 3
51

64 8

3

3

51

64 6

1

8 4

8
51

6

1

2

5 3

0

2

3 6 4

0

2

x

x x

x

x x x

d

22

16=

Example 9:  Find the work done in moving a particle from A(1, 0, 1) to B (2, 1, 2) 

along the straight line AB in the force field 2 ˆˆ ˆ( ) ( ) .F x i x y j y z k= + − + +

Solution:  Work done dF r= ⋅∫
(i) Let   ˆˆ ˆr xi yj zk= + +

 
ˆˆ ˆd d d dr i x j y k z= + +

(ii) F r x i x y j y z k i x j y k z⋅ = + − + +  ⋅ + +d d d d2ˆ ( ) ˆ ( ) ˆ (ˆ ˆ ˆ )

 
2d ( )d ( )dx x x y y y z z= + − + +
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(iii)  Path of integration is the straight line AB joining the 

points A(1, 0, 1) and B(2, 1, 2).

       Equation of the line AB is

 

1 1 1

1 2 1 2 1 2

1 0 1

1 2 0 1 1 2

1 1

x x y y z z

x x y y z z

x y z

x y z

− − −

= =

− − −

− − −

= =

− − −

− = = −

 x = 1 + y,  z = 1 + y

 dx = dy,    dz = dy

      Substituting in dF r⋅  and integrating between the limits y = 0 to y = 1,

Work done = + + + − + + +





= + + +

∫ ( ) ( ) ( )

( )

1 1 1

1 2 2

2

0

1

2

y y y y y y y y

y y

d d d





=
+

+ +

= + + −

=

∫0

1

3
2

0

1
1

3
2

8

3
2 1

1

3

16

3

dy

y
y y

( )

Example 10:  Find work done in moving a particle along the straight line  segments 

joining the points (0, 0, 0) to (1, 0, 0), then to (1, 1, 0) and finally to (1, 1, 1) under 

the force field 2 2 ˆˆ ˆ(3 6 ) 14 20 .F x y i yzj xz k= + − +

Solution:  Work done = dF r⋅∫
(i) Let ˆˆ ˆr xi yj zk= + +

   
ˆˆ ˆd d d dr i x j y k z= + +

(ii) 
2 2 ˆ ˆˆ ˆ ˆ ˆd (3 6 ) 14 20 ( d d d )F r x y i yzj xz k i x j y k z ⋅ = + − + ⋅ + + 

 
2 2(3 6 )d 14 d 20 dx y x yz y xz z= + − +

(iii)  Path of integration is the line segments joining the points O (0, 0, 0) to A (1, 0, 0), 

A (1, 0, 0) to B (1, 1, 0) and then B (1, 1, 0) to D (1, 1, 1).

 

Work done d

d d d

= ⋅

= ⋅ + ⋅ + ⋅

∫

∫ ∫ ∫

F r

F r F r F r

C

OA AB BD
 ... (1)

B (2, 1, 2)

A (1, 0, 1)

Fig. 7.6
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D (1, 1, 1)

B (1, 1, 0)

y

x

A (1, 0, 0)

z

O

(0, 0, 0)

Fig. 7.7

 (a) Along OA : y = 0,     z = 0

 dy = 0,   dz = 0

   x varies from 0 to 1.

 

1 1
2 3

00

d 3 d 1
OA

F r x x x⋅ = = =∫ ∫
 (b) Along AB : x = 1,   z = 0

 dx = 0,  dz = 0

   y varies from 0 to 1.

 

1

0

d 0d 0
AB
F r y⋅ = =∫ ∫

 (c) Along BD : x = 1,    y = 1

 dx = 0,  dy = 0

   z varies from 0 to 1.

 

F r z z
z

BD

⋅ = = =∫ ∫d d20 20
3

20

3

2

3

0

1

0

1

 Substituting in Eq. (1),

 

20
Work done 1 0

3

23

3

= + +

=

Example 11:  Find the work done by the force F xi z j yk= − +ˆ ˆ ˆ2  in displacing the 

particle along the triangle OAB, where

: 0 1, , 0

: 0 1, 1, 1

: 0 1,

OA x y x z

AB z x y

BO x y z x

≤ ≤ = =

≤ ≤ = =

≤ ≤ = =
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Solution:  Work done d

C

F r= ⋅∫
  (i) Let ˆˆ ˆr xi y j zk= + +

  
ˆˆ ˆd d d dr i x j y k z= + +

 (ii) F r xi zj yk i x j y k z⋅ = − + ⋅ + +d d d d( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ2

 
d d 2 dx x z y y z= − +

(iii) Path of integration is the triangle OAB.

    

Work done d

d d

d ... (1)

C

OA AB

BO

F r

F r F r

F r

= ⋅

= ⋅ + ⋅

+ ⋅

∫

∫ ∫

∫
     (a) Along OA : y = x,      z = 0

 dy = dx,  dz = 0

       x varies from 0 to 1.

   

1
2

1

0

0

d d
2OA

x
F r x x⋅ = =∫ ∫  = 

1

2

     (b) Along AB : x = 1,    y = 1

         dx = 0,     dy = 0

       z varies from 0 to 1.

 

1 1

00

d 2d 2 2
AB

F r z z⋅ = = =∫ ∫
     (c) Along BO : x = y = z

 dx = dy = dz

       x varies from 1 to 0.

⋅ = − + = = −∫ ∫
0 0

2

11
d ( d d 2 d ) 1

BO

F r x x x x x x x

Substituting in Eq. (1),

 

1 3
d 2 1

2 2C

F r⋅ = + − =∫

Example 12:  Find the work done by the force 2ˆ ˆ16 (3 2)F yi x j= + + in moving a 

particle once round the right half of the ellipse 2 2 2 2  from (0, 1) to (0, 1).x a y a+ = -

Solution:  Work done d
C

F r= ⋅∫
 (i) Let ˆ ˆr xi yj= +

 
ˆ ˆd d dr i x j y= +

B (1, 1, 1)

y

x A (1, 1, 0)

O

(0, 0, 0)

z

Fig. 7.8
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(ii) 2ˆ ˆ ˆ ˆd 16 (3 2) ( d d )F r yi x j i x j y ⋅ = + + ⋅ + 

 
216 d (3 2)dy x x y= + +

(iii)  Path of integration is the right half

       of the ellipse x2 + a2y2 = a2 from 

       (0, 1) to (0, – 1).

Parametric equation of the ellipse is

  x = a cosq,     y = sinq

dx = -a sinq dq,  dy = cosq dq

At point A : y = 1

 sin q = 1

 q = 
π

2
At point B : y = –1

 sin q = –1

 q = 
–

π

2

 

Substituting in dF r⋅  and integrating between the limits  to ,
2 2

= = −

p p
q q

Work done 

−

−

= ⋅

 = − + + 

= − − + +

∫

∫

∫

2 22

2

2 2 32

2

 d

16sin ( sin d ) (3 cos 2)(cos d )

( 16 sin 3 cos 2cos )d

ADB

F r

a a

a a

q q q q q q

q q q q

p

p

p

p

 

= − − + +

      = − − ⋅ + ⋅ + ⋅            
 + + =    

∫

∫∵

2 2 32

0

2

2

0

2 ( 16 sin 3 cos 2cos )d

1 3 1 1 1 1 1
2 16 ,  3 2,  2 1,  

2 2 2 2 2 2 2

1 1 1
sin cos d ,  

2 2 2

p q

a a

a B a B B

p q
B

p

p

q q q q

q q q

 

2

3 1 1 1
2 1

32 2 2 2
2 8

22 5 3

2 2

a

a

 
 
 = − − + +
 
  

y

D

x

B (0, −1)

A (0, 1)
2

p

2
q    −

p

q

Fig. 7.9
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2

2

2 2

1 3 4
2 8 2

2 2 3

8 4 4

a

a

a a

 

 
= − − ⋅ + ⋅ + 

 

= − −

p

p

Example 13:  If 2 2 ˆˆ ˆ2 ( 2 ) ,F xyz i x z y j x yk= + + +  then

 (i) if F
- 

is conservative, find its scalar potential f

 (ii) find the work done in moving a particle under this force field from (0, 1, 1) to 

(1, 2, 0)

Solution : 

(i) Since F is conservative,

 

2 2 ˆ ˆˆ ˆ ˆ ˆ(2 ) ( 2 ) ( )

F

xyz i x z y j x y k i j k
x y z

= ∇

∂ ∂ ∂
+ + + = + +

∂ ∂ ∂

φ

φ φ φ

 Comparing coefficient of ˆ,i ˆ,j ˆk on both the sides,

  But, 

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

φ φ φ

φ
φ φ φ

x
xyz,

y
x z y,

z
x y

x
x

y
y

z
z

xy

= = + =

= + +

=

2 2 22

d d d d

(2 zz x x z y y x y z) d ( 2 ) d d2+ + + ( )2

    Integrating both the sides,

= + + +∫ ∫ ∫ ∫2 2

, ,,
constant constant constant

d 2 d ( 2 )d ( )d
y z x yx z

xyz x x z y y x y zf

     Considering only those terms in R.H.S. integral which have not appeared in the 

previous integral, i.e. omitting the x2yz term in second and third integral,

2 2
x yz y c= + +f

    where c is the constant of integration.

 (ii) F  is conservative and hence the work-done is independent of the path.

    Work done = ⋅

= =

= + +

=

∫

∫
(1,2,0) (1,2,0)

(0,1,1)(0,1,1)

(1,2,0)
2 2

(0,1,1)

d

d

3

C
F r

x yz y c

f f
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Example 14:  If 2 2 2 ˆˆ ˆ( ) ( ) ( )F x yz i y zx j z xy k= + − + −- , then

 (i) If F
-

 is conservative, find its scalar potential f

 (ii) find the work done in moving a particle under this force field from (1, 1, 0) to 

(2, 0, 1)

Solution:

(i) Since F  is conservative,

 

F

x yz i y zx j z xy k i
x

j
y

k
z

=

− + − + − =
∂

∂
+

∂

∂
+

∂

∂
( ) ( ) ( )

2 2 2
ˆˆ ˆ ˆ ˆ ˆ

f

f f f

∇

Comparing coefficients of ˆ,i ˆ,j ˆk on both the sides,

But, 

2 2 2,  ,  x yz y zx z xy
∂ ∂ ∂

= − = − = −
∂ ∂ ∂

2 2 2

d d d d

( )d ( )d ( )d

x y z

x y z
x y z

x yz x y zx y z xy z

∂ ∂ ∂
= + +
∂ ∂ ∂

= − + − + −

φ φ φ

φ φ φ
φ

Integrating both the sides,

 

2 2 2

,, ,
constantconstant constant

d ( )d ( )d ( )d
x yy z x z

x yz x y zx y z xy z= − + − + −∫ ∫ ∫ ∫f

Considering only those terms in R.H.S. integral which have not appeared in the 

previous integral, i.e. omitting the xyz term in second and third integral,

3 3 3

3 3 3

x y z
xyz c= − + + +f

where c is the constant of integration.

 (ii) F  is conservative and hence the work done is independent of the path.

 Work done

 

(2,0,1)

(1,1,0)

(2,0,1)

(1,1,0)

(2,0,1)
3 3 3

(1,1,0)

d

d

3 3 3

7

3

C
r

x y z
xyz c

= ⋅

=

=

= − + + +

=

∫

∫

F

f

f
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Exercise  7.1

 1. Evaluate F r
C

∫ ⋅d where,  

and isˆ ˆ( ) ( )  x y i y x j C= + + −F

 (i) the parabola 2
y x= between the 

points (1, 1) and (4, 2)

 (ii) the straight line joining the points 

(1, 1) and (4, 2)

34
(i) (ii)11

3

 
  
Ans. :

 2. Evaluate

2

ˆd ,where (3 2 )

ˆˆ( 2 )  and  is

C
r x y i

y z j x k C

⋅ = −

+ + −

∫ F F

 (i) the curve x = t, y = t2, z = t3 between 

the points (0, 0, 0) to (1, 1, 1)

 (ii) the straight line joining the points 

(0, 0, 0) to (1, 1, 1).

 (iii) the straight lines from (0, 0, 0) to 

(0, 1, 0) then to (0, 1, 1) and then 

to (1, 1, 1).

i ii iii
23 5

( ) ( ) ( ) 0
15 3

 
  
Ans. :

 3. Evaluate

2 ˆd ,where (2 )
C

r x y i⋅ = +∫ F F

+ −( )3 4y x  ĵ and C is the triangle 

in the xy-plane with vertices (0, 0), 

(2, 0) and (2, 1).
14

3

 
−  

Ans. :

 4. Evaluate

ˆˆ ˆd ,where 
C

r yz i zx j xy k⋅ = + +∫ F F
 

and C is the curve y2 = x, z = 0 from 
(0, 0, 0) to (1, 1, 0) followed by the 

straight line from (1, 1, 0) to (1, 1, 1).

3

4

 
  
Ans. :

 5. Evaluate 

ˆˆ ˆd ,where 2 4 3  
C

r x i y j z k⋅ = + −∫ F F

and C is the curve ˆcos sinr t i t= +  
ˆĵ t k+  from t = 0 to t = p.

2
3

2

π 
−  

Ans. :

 6. Find the circulation of ( 3 )x y i= −F  
ˆ ˆ) ( 2 )i y x j+ −  around the ellipse in 

the xy-plane with the origin as centre 

and 2 and 3 as semi-major and semi-

minor axes respectively.

Ans. : 6p[ ]

 7. Find the circulation of ˆy i z= +F

ˆˆj x k+  around the curve 
2 2

1,x y z+ =

, 0.z =

Ans. : −p[ ]

 8. Find the work done in moving 

a particle in a force field 
ˆˆ ˆ3 5 10xy i z j x k= − +F along the 

curve 2 2 3
1 , 2 ,x t y t z t= + = =  from 

1 to 2.t t= =

Ans. : 303[ ]  

 9. Find the work done in moving 

a particle in a force field 
2 ˆˆ ˆ3 (2 )x i xz y j z k= + − +F along the

  (i)  straight line joining the points  

(0, 0, 0) and (2, 1, 3)

 (ii)  curve 2 2
2 , , 4x t y t z t t= = = −  

from 0 to 1t t= =

  i ii
71

( ) 16 ( )
5

 
  
Ans. :

 10. Find the work done in moving 

a particle in a force field 
2ˆ ˆ(2 ) ( )x y z i x y z j= − + + + −F  

+ − +( )3 2 4x y z  k̂ once around the 

circle in xy-plane with centre at the 

origin and radius of 3 units.

Ans. :18p[ ]
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 11. If = + + +
3 2 2 ˆˆ ˆ(2 ) 3xy z i x j xz kF  is 

conservative then

      (i) find its scalar potential f

      (ii)  find the work done in moving 

a particle under this force field 

from (1, -2, 1) to (3, 1, 4)

i ii = + + 
2 3( ) ( ) 202x y x z cAns. : f

 12. If 2 3 2ˆ ˆ3 ( 2 )x y i x y z j= + −F  

          + −( )3 22 2z y z  k̂, is conservative

  (i) find its scalar potential f
(ii) find the work done in moving 

a particle under this force field 

from (2, 1, 1) to (2, 0, 1)

7

3 3 2 2(i)

(ii)

x y z y z cf = + − +
 

− 

Ans.:

 13. If 2 2 ˆˆ ˆ2
z z zxy e i x e j x y e k= + +F  is 

conservative, then find

 (i) the scalar potential f 

 (ii) the work done in moving a 

particle under this force field from  

(0, 0, 0) to (1, 1, 1)

i ii = + 
2( ) ( )z

x y e c eAns. : f

 14. Evaluate

ˆ ˆd  where cos sin
C

r y i x y j⋅ = −∫ F F

and C is the curve 2
1y x= − in

the  xy-plane from (1, 0) to (0, 1).

Ans. : −[ ]1

7.4   GREEN’S THEOREM IN THE PLANE

Statement: If M (x, y), N (x, y) and their partial derivatives ,

M N

y x

∂ ∂

∂ ∂
 are continuous in 

some region R of xy-plane bounded by a closed curve C, then

( d d ) d d
C

R

N M
M x N y x y

x y







∂
∂

∂
∂

∫∫∫� + −=

Proof: Let the region R be bounded by the curve C.

Let the curve C be divided into two parts, the curves EAB and BDE.

Let the equations of the curves EAB 

and BDE are x = f
1
(y), x = f

2
(y) respec-

tively and are bounded between the lines  

y = c and y = d. 

Consider,

∂

∂
=

∂

∂








=

∫∫ ∫∫
N

x
x y

N

x
x y

N x y

R
f y

f y

c

d

f y

f y

d d d d

d

1

2

1

2

( )

( )

( )

( )
( , ) yy

N f y N f y y

c

d

c

d

∫

∫= −[ ]( , ) ( , )2 1 d

           

= +

= +

=

∫∫

∫ ∫

N f y y N f y y

N x y y N x y y

N x y

c

c

BDE EAB

( , ) ( , )

( , ) ( , )

( ,

2 1
d d

d d

d

d

)) dy
C�∫

y

E

D

B

R

A

x

(0, d )

(0, c)

(a, 0) (b, 0)O

Fig. 7.10
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( , )d d d
C

R

N
N x y y x y

x

∂
=

∂
� ∫∫∫  ... (7.1)

Similarly, let the curve C be divided into two parts, the curves ABD and DEA.

Let the equations of the curves ABD and DEA are y = g
1
(x), y = g

2
(x) respectively and 

are bounded between the lines x = a and x = b.

Consider,

∂

∂
=

∂

∂











=

∫∫∫∫
M

y
x y

M

y
y x

M x y

g x

g x

a

b

R

g x

g x

d d d d

d

1

2

1

2

( )

( )

( )

( )
( , ) xx

M x g M x g x

a

b

a

b

∫

∫= −[ ]( , ) ( , )
2 1

d

   

= − −

= − +





∫∫

∫ ∫

M x g x M x g x

M x y x M x y x

a

b

b

a

DEA ABD

( , ) ( , )

( , ) ( , )

2 1
d d

d d

== − ∫ M x y x
C

( , ) d
�

 

( , )d d d
C

R

M
M x y x x y

y

∂
= -

∂
�∫ ∫∫  ... (7.2)

Adding Eqs. (7.1) and (7.2),

 

( d d ) d d
C

R

N M
M x N y x y

x y

Ê ˆ∂ ∂
+ = −Á ˜Ë∂ ∂ ¯

�∫ ∫∫

Note: Vector form of Green’s theorem is given as

 

ˆd ( ) d d
R

r k x y⋅ = ∇ × ⋅∫ ∫∫�
C

F F

where ˆˆ ˆ ˆ ˆ,  ,  M i N j r x i y j k= + = +F is the unit vector along z-axis.

Area of the Plane Region  Let A be the area of the plane region R bounded 

by a closed curve C.

Let M y N x

M

y

N

x

= − =

∂

∂
= −

∂

∂
=

,

,1 1

Using Green’s theorem,

 

( d d ) (1 1) d d 2 d d 2
C

R R

y x x y x y x y A− + = + = =∫ ∫∫ ∫∫�
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Hence, 
1

 ( d d )
2 C

A x y y x= −∫�

Note: In polar coordinates, 

x r y r

x r r y r r

A r

= =

= − = +

=

cos , sin

cos sin , sin cos

cos

θ θ

θ θ θ θ θ θd d d d d d

1

2
θθ θ θ θ θ θ θ θ

θ

(sin cos ) sin (cos sin )d d d d

d

r r r r r

r

C

C

+ − −[ ]

=

∫

∫

�

�

1

2

2

Example 1:  Verify Green’s theorem for  − + + ∫�
2 2( 2 )d ( 3)d

C

x xy x x y y  where C

is the boundary of the region bounded by the parabola 2
y x=  and the line y = x.

Solution:  (i) The points of intersection of the parabola 
2

y x=  and the line y = x are 

obtained as x = x2, x = 0, 1 and y = 0, 1.

Hence, O(0, 0) and B(1, 1) are the points of 

intersection.

(ii) 2 2
2 , 3M x xy N x y= − = +

 

2 , 2
M N

x xy
y x

∂ ∂
= − =

∂ ∂

(iii) ( d d )

( d d ) ( d d )

C

OAB BO

M x N y

M x N y M x N y

+

= + + +

∫

∫ ∫

�

 

... (1)

        (a) Along 

d d

varies from 0 to1.

OAB y x

y x x

x

: =

=

2

2

 

2 2

1
2 2 2 2

0

1
2 3 5

0

( d d ) ( 2 )d ( 3)d

( 2 ) ( 3)2 d

( 2 2 6 ) d

OAB OAB
M x N y x xy x x y y

x x x dx x x x x

x x x x x

 + = − + + 

 = − ⋅ + ⋅ + 

= − + +

∫ ∫

∫

∫
1

3 4 6 2

0

2 2 6

3 4 6 2

1 1 1
3

3 2 3

19

6

x x x x

= − + +

= − + +

=

O

y

x

A

A'

y = x
y = x2

B (1, 1)

Fig. 7.11
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        (b) Along BO :    y = x

        dy = dx

 x varies from : x = 1 to x = 0.

 

( ) ( ) ( )

( ) ( )

M x N y x xy x x y y

x x x x

BO BO
d d d d

d

+ = − + + 

= − + +

∫ ∫ 2 2

2 2 3

2 3

2 3 ddx

x x
x

 

= − + +

= − −

= −

∫1
0

3 4

1

0

3 4
3

1

3

1

4
3

35

12  

Substituting in Eq. (1),

 

19 35
( d d )

6 12C
M x N y+ = −∫�

 

1

4
=

 

... (2)

(iv)  Let R be the region bounded by the line y = x and the parabola 2
.y x=

 Along the vertical strip AA′, y varies from 2
to x x  and in the region R, x varies 

from 0 to 1.

  

 

2

2

1

0

1
2

0

1
3 2 5 3

0

1
4 3 6

0

d d (2 2 )d d

2 d

( 2 2 )d

2

4 3 6

1 2 1

4 3 6

x

x
R

x

x

N M
x y xy x y x

x y

xy xy x

x x x x x

x x x

 ∂ ∂
− = +  ∂ ∂ 

= +

= + − −

−
= + −

= − + −

∫ ∫ ∫ ∫

∫
∫

   
=

1

4  

... (3)

From Eqs. (2) and (3), 

 

1
( d d ) d d

4C
R

N M
M x N y x y

Ê ˆ∂ ∂
Á ˜Ë ∂x ∂y ¯

+ = − =�∫ ∫∫

Hence, Green’s theorem is verified.
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Example 2:  Verify Green’s theorem for x y x xy y
C

−( ) + ∫ d d3
� , where C is the 

boundary of the region bounded by the parabolas x y y x
2 2

4 4= = and .

Solution:   (i) The points of intersection 

of the parabolas

x y y x
2 2

4 4= = and  are obtained as

y
y y y

y

x

2
2

3

4
4 64 0

0 4

0 4







= − =

=
=

, ( )

,

,

Hence, O(0, 0) and C(4, 4) are the points of 

intersection.

(ii) , 3M x y N xy= − =

 

1,= −
M

y

∂

∂
   

3=
N

y
x

∂

∂

(iii) ( d d ) ( d d ) ( d d )
C OAC CBO

M x N y M x N y M x N y+ = + + +∫ ∫ ∫�  ... (1)

(a) Along OAC : 
2

2
4 ,

4

x
x y y= =

 d d
2

x
y x=

x varies from 0 to 4.

 

( ) ( ) ( )M x N y x y x xy y

x
x

x x
x

OAC OAC
d d d d

d

+ = − +[ ]

= −






+ ⋅

∫ ∫

∫

3

4
3

2

0

4
2

44 2

4

3

8

2 12

3

8 5

2
4

0

4

2 3 5

0

4







= − +






= − + ⋅

∫

x
x

x
x

x x

x x x

d

d

 

16 384
8

3 5

1192

15

= − +

=

y

xO

A

B
C (4, 4)

x2 = 4y

y2 = 4x

Fig. 7.12
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(b) Along CBO : 

2

2
4 ,

4

y
y x x= =

 
d d

2

y
x y=

y varies from 0 to 4.

[ ]
2 2

0

4

0
3 2 4 3

0

4
4

( d d ) ( )d 3 d

d 3 d
4 2 4

7 7 1
d

8 2 8 4 2 3

7 1 64
64

8 2 3

136

3

CBO CBO
M x N y x y x xy y

y y y
y y y y

y y y y
y

+ = − +

   
= − + ⋅ ⋅      

 
= − = ⋅ − ⋅  

= − ⋅ + ⋅

= −

∫ ∫

∫

∫

Substituting in Eq. (1),

 
1192 136 512

( d d )
15 3 15C

M x N y+ = − =∫�  ... (2)

 (iv) Let R be the region bounded by the parabolas 2 2
4  and 4 .x y y x= =

  Along the vertical strip AB, y varies from 
2

 to 2
4

x

x  and in the region R, 

x varies from 0 to 4. 

 

2

2

4 2

0
4

2
2

4

0

4

2
4

4

0

d d (3 1)d d

3
d

2

3
6 2 d

32 4

x

x

R

x

x

N M
x y y x y

x y

y
y x

x
x x x x

 ∂ ∂
− = +  ∂ ∂ 

= +

 
= + − −  

∫ ∫ ∫ ∫

∫

∫

4
3 5 3

2 2

0

4 3 1
3

3 32 5 4 3

32 96 16
48

3 5 3

x x

x x= + − ⋅ − ⋅

= + − −

= 
512

15
 ... (3)
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From Eqs. (2) and (3),

512
( d d ) d d

15C
R

N M
M x N y x y

x y

 ∂ ∂
+ = − =  ∂ ∂ ∫ ∫ ∫�

Hence, Green’s theorem is verified. 

Example 3:   Verify Green’s theorem for ( )sin d cos d
C

y x x x y  ∫� - +  where C is 

the plane triangle enclosed by the lines 
2

0, ,
2

x
y x y= = =

p

p

.

Solution:  (i) The point of intersection of 

the lines y
x

=

2

π

 and x =
π

2

 is obtained as 

y = ⋅ =

2

2
1

π

π
.

Hence, , 1
2

B
 
  
p

 is the point of intersection.

 (ii)  M = y – sin x, N = cos x

1, sin
M N

x
y x

= = −
∂ ∂

∂ ∂

 (iii)
 

+

= + + + + +

∫

∫ ∫ ∫

�
( d d )

( d d ) ( d d ) ( d d )

C

OA AB BO

M x N y

M x N y M x N y M x N y

 

... (1)

 (a) Along OA : y = 0 

           dy = 0

 x varies from 0 to 
2

p
.

[ ]

2

0

2
0

( d d ) ( sin )d cos d

( sin ) d

cos

1

OA OA
M x N y y x x x y

x x

x

+ = − +

= −

=

= −

∫ ∫

∫
p

p

 (b) Along AB : 
2

d 0

x

x

=

=

p

 y varies from 0 to 1. 

[ ]
1

0

( d d ) ( sin )d cos d

cos d
2

0

AB AB
M x N y y x x x y

y

+ = − +

=

=

∫ ∫

∫
p

O
(0, 0)

y

x

Q

P 0

y = 

2x

2
x = 

2
B      1, 

2
,A

p

p

p

p

Fig. 7.13
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(c) Along BO : 

2

2
d d

x
y

y x

=

=

p

p

x varies from π

2

 to 0.

 

[ ]
0

2

0
2

2

2

( d d ) ( sin )d cos d

2 2
sin d cos d

2 2
cos sin

2

1 2
cos0 cos sin

4 2 2

2
1

4

+ = − +

  = − + ⋅    

= ⋅ + +

= − ⋅ − −

= − −

∫ ∫

∫

BO BO
M x N y y x x x y

x
x x x x

x
x x

p

p

p p

p p

p p p

p p

p

p

Substituting in Eq. (1), 

 

2
( d d ) 1 0 1

4
+ = − + + − −∫�C

M x N y
p

p  
= −

+





p

p

2
8

4  

... (2)

(iv) Let R be the region bounded by the triangle OAB. 

  Along the vertical strip PQ, y varies from 0 to 
2x

p

 and in the region R, x varies 

from 0 to 
2

p
.

  

2

2

0 0

2
2

00

2

0

2 2

0

2

2

d d ( sin 1)d d

sin d

2 2
sin d

2
( cos ) ( sin )

2

2
cos sin 0

2 2 2 8

2
1

8

x

R

x

N M
x y x x y

x y

y x y x

x x
x x

x
x x x

 ∂ ∂
− = − −  ∂ ∂ 

= − −

 = − −  

= − − − − +

 
= − − + + −  

 
= − +  

∫ ∫ ∫ ∫

∫

∫

p

p

p

p

p

p

p p

p

p p p p

p

p

p
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= −
+





p

p

2
8

4  

... (3)

From Eqs. (2) and (3), 
2 8

( d d ) d d
4

  ∂ ∂ +
+ = − = −    ∂ ∂   ∫ ∫ ∫�C

R

N M
M x N y x y

x y

p

p

Hence, Green’s theorem is verified. 

Example 4:  Verify Green’s theorem for 
1 1

y
d dx +

x
y

C





∫  where C is the boundary 

of the region bounded by the parabola y x=  and the lines x = 1, x = 4, y = 1. 

Solution: 

     (i) The point of intersection of the 

 (a) parabola y x=  and the line

 x = 1 is obtained as

1 1y = =

  Hence, A(1, 1) is the point of 

intersection.

 (b) parabola y x=  and the line 

 x = 4 is obtained as

4 2= =y

  Hence, D(4, 2) is the point of 

intersection.

  (ii) 
1 1

,M N
y x

= =

2 2

1 1
,

M N

y y x x

∂ ∂
= − = −

∂ ∂

(iii) ( ) ( ) ( )

( )

M x N y M x N y M x N y

M x N y

C AB BD

DQA

d d d d d d

d d

+ = + + +

+ +

∫ ∫ ∫

∫

�
  

... (1) 

 (a) Along AB : y = 1, dy = 0 

 x varies from 1 to 4.

( )M x N y
y
x

x
y

x

x

AB AB
d d d d

d

+ = +






=

=

=

∫ ∫

∫

1 1

3

1

4

1

4

y

O

(1, 1)

x

Q
D (4, 2)

B (4, 1)
P

x = 4
x = 1

y = √x
y = 1

A

Fig. 7.14
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 (b) Along BD : x = 4, dx = 0 

y varies from 1 to 2.

( )M x N y
y
x

x
y

y

BD BD
d d d d

d

+ = +






=

∫ ∫

∫

1 1

1

4

1

1

2

y=

=

1

4

1

4

1

2

 (c) Along DQA : 
1

, d d
2

y x y x

x

= =

x varies from 4 to 1.

( )M x N y
y
x

x
y

x
x

x x
x

DQA DQA
d d d d

d d

+ = +






= + ⋅





=

∫ ∫

∫

1 1

1 1 1

2

2

4

1

xx
x

−

= − − +

= −

1

2 1 4
1

2
5

2

4

1

Substituting in Eq. (1),

 
1 5 3

( d d ) 3
4 2 4

C

M x N y+ = + − =∫�  ... (2)

(iv)  Let R be the region bounded by the parabola y x=  and the lines x = 1, x = 4, y = 1.

  Along the vertical strip, y varies from 1 to x  and in the region R, x varies from 

1 to 4. 
∂
∂

−
∂
∂







= − +







= − ⋅ −

∫ ∫∫∫
N

x

M

y
x y

x y
x y

x
y

y

x

R

d d d d
1 1

1 1

2 211

4

21

44

1

3

2

1

2

21

4

1

2

1

2

1

4

1
1

2 2
1

1 4

∫

∫= − − + +







= − − +

= − −

− −

−

x

x

x x
x

x

x x
x

x

d

d

11

4
4 2 2 1 1+ − + + −

  = 
3

4
 ... (3)
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From Eqs. (2) and (3), 

3
( d d ) d d

4
R

N M
M x N y x y

x y

 ∂ ∂
+ = − =  ∂ ∂ ∫ ∫ ∫�

Hence, Green’s theorem is verified.

Example  5:  Verify Green’s theorem for 
2(2 d d )

C
xy x y y−∫�  where C is the 

boundary of the region bounded by the ellipse 2 2
3 4 12.x y+ =

Solution: 

  (i) 2
2 ,M xy N y= = −

 

2 , 0
M N

x
y x

∂ ∂
= =

∂ ∂

(ii) 2( d d ) (2 d d ),+ = −∫ ∫� �C C
M x N y xy x y y

 ... (1)

where C is the ellipse 
2 2

1.
4 3

x y
+ =

Parametric equation of the ellipse is

2cos , 3 sin

d 2sin d , d 3 cos d

x y

x y

= =

= − =

q q

q q q q

For the given ellipse, q varies from 0 to 2p.

Substituting in Eq. (1),

( ) ( cos sin )( sin ) sin cosM x N yd d d d+ = ⋅ ⋅ − − ⋅



∫ 2 2 3 2 3 32

0

2

θ θ θ θ θ θ θ
π

CC�∫

∫

∫

= −( )
= − ⋅

=

11 3

11 3 2

0 2

2

0

2

2

0

cos sin

cos sin

...( )

θ θ θ

θ θ θ

π

π

d

d

 

∵ f x x f x x f a x f x

f a x f x

aa

( ) ( ) , ( ) ( )

, ( ) ( )

d d if

if

= − =

= − = −





 ∫∫ 2 2

0 2

00

2










(iii) Let R be the region bounded by the ellipse, 
2 2

1.
4 3

x y
+ =  

y

x

B

A (2, 0)

P

(0, 3)

D (0, −√3 )

(−2, 0) C

Q
3x2 + 4y2 = 12

Fig. 7.15
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Along the vertical strip PQ, y varies from 

− − −3
3

4
3

3

4

2 2
x x

 to    and in the region 

R, x varies from -2 to 2.

∂
∂

−
∂
∂







= −

= −

− −

−

−

−

∫∫∫∫
N

x

M

y
x y x y x

x y

x

x

R

d d d d( )0 2

2

3
3

4

3
3

4

2

2

3

2

2

−−

−

−

−

∫

∫= − −

=

3

4

3
3

4

2

2

2

2
2

2

2

4 3
3

4

0 3

x

x

x

x
x

x

d

d

...( )

From Eqs. (2) and (3),

( d d ) d d 0
C

R

N M
M x N y x y

x y

 ∂ ∂
+ = − =  ∂ ∂ ∫ ∫ ∫�

Hence, Green’s theorem is verified.

Example 6:  Evaluate 
�

2( cosh )d ( sin )d
C

x y x y x y − + + ∫  by Green’s theorem 

where C is the rectangle with vertices (0, 0), (p , 0), (p , 1), (0, 1).

Solution:  By Green’s theorem, 

( )M x N y
N

x

M

y
x y

C
R

d d d d+ =
∂
∂

−
∂
∂





∫ ∫∫�

... (1)

where R is the region bounded by the rectangle 

OABC.
2

cosh , sin

sinh , cos

M x y N y x

M N
y x

y x

= − = +

∂ ∂
= − =

∂ ∂

Along the vertical strip PQ, y varies from 0 to 1 

and in the region R, x varies from 0 to p. 

Substituting in Eq. (1),

( cosh ) ( sin )

(cos sinh )

x y x y x y

x y y x

C

yx

2

0

1

0

− + +





= +

=

∫

∫∫ ==

d d

d d

�

π

yy x y x

x x

cos cosh

(cos cosh cosh )

+

= + − −

∫

∫

0

1

0

0
1 0 0

π

π

d

d

∵ f x x f x f x
a

a

( ) , ( ) ( )d if 
−∫ = − = −





0

y

x

C (0, 1)
B (p, 1)

A (p, 0)

Q

PO

(0, 0)

Fig. 7.16
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x(cos cosh= + −1 11

1

1 0

1 1

0

0

)

sin cosh

sin cosh sin

(cosh )

dx

x x x

π

π

∫
= + −

= + − −

= −

p p p

p

Example  7:  Evaluate by Green’s theorem 2 2( d d )
C

x y x xy y− +∫�  where C is the 

cardioid r = a (1 + cosq ).

Solution:  By Green’s theroem, 

( d d ) d d
C

R

N M
M x N y x y

x y

 ∂ ∂
+ = −  ∂ ∂ ∫ ∫ ∫�

... (1)

where R is the region bounded by the 

cardioid r = a (1 + cosq ).

2 2

2 2

,

,

M x y N xy

M N
x y

y x

= − =

∂ ∂
= − =

∂ ∂

Putting x = r cosq,                y = r sinq 

2 2 2 2
cos , sin

M N
r r

y x

∂ ∂
= − =

∂ ∂
q q

                dx dy = r dr dq

Along the radius vector OA, r varies from 0 to a (1 + cosq) and in the region R, q 

varies from 0 to 2p.

Substituting in Eq. (1),

( ) ( sin cos )
( cos )

− + = +

=

∫ ∫∫
+

x y x xy y r r r r

r

C

a2 2 2 2 2 2

0

1

0

2

3

d d d d
�

θ θ θ
θπ

dd d

d

d

r

r

a

a

a

θ

θ

θ θ

θπ

θ
π

π

0

1

0

2

4

0

1

0

2

4
4

0

2

4

4
1

( cos )

( cos )

( cos )

+

+

∫∫

∫=

= +∫∫

∫

∫

= ⋅ +

= 





a

a

4
4

0

4
2

4

0

4
2 1

2
2

2

( cos )

cos

θ θ

θ
θ

π

π

d

d

∵ f f

f a f

a a
( ) ( )

( ) ( )

0

2

0
2

2

∫ ∫=

=















θ θ θ θ

θ θ

d d

if

Fig. 7.17

A

r = a (1 + cos q )

O q = 0

q =
p

2
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Putting    , d 2d

2
t t= =

q
q

When  q  = 0, t = 0

  
,

2
t= =

p
q p

( ) cos

,

− + = ⋅

= ⋅ 





=

∫ ∫x y x xy y a t t

a B

a

C

2 2 4 8

0

2

4

4

8 2

16
1

2

9

2

1

2

8

d d d
�

π

⋅⋅

= ⋅ ⋅ ⋅ ⋅

=

9

2

1

2

5

8

24

7

2

5

2

3

2

1

2

1

2

1

2

35

16

4

4

a

a
π

Example 8: Evaluate 2 2( 2 )d (4 )d
C

x y x x y y + + + ∫�  by Green’s theorem where 

C is the boundary of the region bounded by y = 0,  y = 2x and x + y = 3.

Solution:  By Green’s theorem,

( d d ) d d
C

R

N M
M x N y x y

x y

 ∂ ∂
+ = −  ∂ ∂ ∫ ∫ ∫�

 ... (1)

where R is the region bounded by the triangle OAB. 

 

2 2
2 , 4

2, 4

M x y N x y

M N

y x

= + = +

∂ ∂
= =

∂ ∂

Substituting in Eq. (1),

�

2 2( 2 )d (4 )d

(4 2)d d

2 d d

C

R

R

x y x x y y

x y

x y

 + + + 

= −

=

∫

∫∫

∫∫
=

= ⋅ ⋅ ⋅

2

2
1

2
3 2

( )Area of ∆OAB

= 6

y

xO A(3, 0)

B(1, 2)

x + y = 3

y = 2x

Fig. 7.18
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Example 9:  Find the area of the region bounded by the parabola 2
y x=  and the 

line y = x + 2.

Solution:  (i) The points of intersection of the parabola 2
y x=  and the line 

y = x + 2 are obtained as 
2 2

2 , 2 0x x x x+ = − − =

(x - 2)(x + 1) = 0,

x = 2, -1 and y = 4, 1

Hence, A(-1, 1) and B(2, 4) are the 

points of intersection. 

(ii)  By Green’s theorem, the area of 

the region bounded by a closed 

curve C is 

1
( d d )

2 C
A x y y x= −∫�

 

    

= −

∫

1

2
( )x y y x

AOB

d d

 

+ − 


∫ ( )x y y x
BA

d d

 

... (1)

(a) Along AOB : 2
, 2y x dy x dx= =

x varies from -1 to 2.

 

2
2

1

23

1

( d d ) ( 2 d d )

3

8 1

3 3

3

−

−

− = ⋅ −

=

= +

=

∫ ∫AOB
x y y x x x x x x

x

(b) Along BA : y = x + 2, dy = dx

x varies from 2 to -1.

[ ]
1

2

1

2

( d d ) d ( 2)d

2

2( 1 2)

6

−

−

− = − +

= −

= − − −

=

∫ ∫BA
x y y x x x x x

x

 Substituting in Eq. (1), 

 

1 9
(3 6)

2 2
A = + =

y

B (2, 4)

y = x + 2

y = x2

O

A

(−1, 1)

x

Fig. 7.19
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Example 10:  Find the area of the ellipse 

2 2

2 2
1.

x y

a b
+ =

Solution: 

(i) By Green’s theorem, the area of the 

 region bounded by a closed curve C is 

1
( d d )

2 C
A x y y x= −∫  ... (1)

(ii) Parametric equation of the ellipse 
2 2

2 2
1

x y

a b
+ =  is

cos , sin

d sin d , d cos d

x a y b

x a y b

= =

= − =

q q

q q q q

For the given ellipse, q varies from 0 to 2p .

Substituting in Eq. (1),       

    

2

0

2

0

2

0

1
[ cos ( cos d ) sin ( sin d )]

2
1

d
2

1

2

A a b b a

ab

ab

ab

= − −

=

=

=

∫

∫
p

q q q q q q

q

q

p

p

p

Example 11:  Find the area of the loop of the folium of descartes x y axy
3 3

3+ = .

Solution:  (i) Putting x = r cosq, 

y = r sinq, equation of the curve 

changes to

3 3 3 2

3 3

(cos sin ) 3 sin cos

3 sin cos

cos sin

r ar

a

r

+ =

=

+

q q q q

q q

q q

(ii)  By Green’s theorem, the area of the 

 region bounded by a closed curve C 

in polar form is 

2
1

2
= ∫�

C

A r dq

For the loop of the given curve, q varies 

from 0 to 
2

p
.

y

x

2
q =

p

q = 0

Fig. 7.21

y

x

B (0, b)

A (a, 0)(−a, 0)

D (0, −b)

C

Fig. 7.20
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A 
2 2 2

2
3 3 20

2 2 2

1 9 sin cos
d

2 (cos sin )

9 tan sec

a

a

=
+

⋅

∫
p

p

q q
q

q q

q q

            

2 2 2

2
3 20

9 tan sec
d

2 (1 tan )

a ⋅
=

+∫
p

q q
q

q

Putting    1

3

3

2 2

+ =

=

tan

tan sec

θ

θ θ θ

t

td d

When q = 0, t = 1

 
θ

π
= →

2
, t ∞

 A =

= −

=

∫
9

2 3

3

2

1

3

2

2

2
1

2

1

2

a t

t

a

t

a

d∞

∞

Exercise  7.2

(I) Verify Green’s theorem in plane for 

the following:

1.  ( ) ( ) ,x xy x x y y
C

2 22 3− + + ∫ d d
�

where 

C is the boundary of the  region bounded by 

the parabola 2
8  and the line 2.y x x= =

128

5

 
  
Ans.:

2.  2 2( )d d
C

xy x x x y y − + ∫� , where C is 

the boundary of the triangle formed by 

the lines y = 0, x = 1 and y = x.

1
 

12

 
−  

Ans.:

3.  ( ) ( ) ,3 8 4 62 2
x y y y xy y

C
− + − ∫ d d

�

where C is the boundary of the region 

bounded by 2
 and .y x y x= =

3

2

 
  
Ans.:

4.  ( sin cos ),e y x e y y
x x

C

− −+∫ d d
�

 where 

C is the boundary of the region 

bounded by the square with vertices 

(0,0), , 0 , , , 0, .
2 2 2 2

     
          
p p p p

 Ans.: 2 12
e

−
−

















π

5.  2 2( 2 )d ( 3)d
C

xy xy x x y y− + +∫� , where 

C is the boundary of the region bound-

ed by the rectangle with vertices  

(-1, 0), (1, 0), (1, 1) and (-1, 1).

Ans.: 0[ ]

6.  
3 3( d d ),

C
x y y x−∫�  where C is the cir-

cle 2 2
4.x y+ =

[Ans.: 48p]
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7.  ( ) ( ) ,2 2 2 2 2

x y x x y y
C

− + +∫ d d
�

 

where C is the boundary of the region 

bounded by the x-axis and the circle 
2

1 .y x= −

      
4

 
3

 
  
Ans.:

(II) Evaluate the following integrals using Green’s theorem:

1.  (cos d sin d ),x

C
e y x y y

− −∫� where C is 

the boundary of the region  bounded 

by the rectangle with vertices (0,0),(

, ( ,0), ,  and 0, .
2 2

   
      

p p

p p

2(1 )e
− − Ans.:
p

2.  2 2 2( )d (5 3 )d ,
C

x y x x y y + + − ∫�  

where C is the boundary of the 

 region bounded by the parabola 

x2 = 4y and the line y = 4.

512

5

 
−  

Ans.:

3.  3 2( )d ( 3 )d ,
C

y xy x xy xy y − + + ∫�  

where C is the boundary of the 

region in the first quadrant  bounded 

by the y- axis and the parabolas 
2 2

1 , .y x y x= − =

1 2
 .

8 6

  
+     

Ans.:

4.  
3( d d ),

C
xy x x y+∫� where C is the 

boundary of the region bounded by 

the x-axis and the circle 4 .y x
2

= −

[Ans.: 6p]

5.  (sin d cos d ),x

C
e y x y y+∫� where C is 

the boundary of the region bounded by 

the ellipse 2 24( 1) 9( 3) 36.x y+ + − =

Ans. : 0[ ]

(III) Find the area of the following  regions using Green’s theorem:

1.  Bounded by the astroid 
2 2 2

3 3 3x y a+ = .

2
3

8
a

 
  
Ans.:

p

2.  Bounded by one arch of the cycloid 

x = a (q - sinq ), y = a (1 - cosq ) and 

the x-axis.

[Ans.: 3p a2]

3.  In the first quadrant, bounded by the 

lines y = x, x = 4y and rectangular 

 hyperbola xy = 1.

Ans.: log2[ ]

4.  Bounded by one loop of the lemni-

scate 2 2 2 2 2 2( ) ( )x y a x y+ = −

Ans.:
a
2

2








7.5  SURFACE INTEGRALS

The surface integral over a curved surface S is the generalisation of a double integral over 

a plane region R. 
1 2 3

ˆˆ ˆLet F F i F j F k= + + be a continuous vector point function defined 

over a two-sided surface S. Divide S into a finite number of subsurfaces 
1 2
, , ......,

m
S S S  

with surface areas 
1 2
, , ......, .

m
S S Sd d d  Let dS

r
 be the surface area of S

r
 and ˆ

r
n  be the unit 

vector at some point P
r
 (in S

r
) in the direction of the outward normal to S

r
.
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z n k

y

dx

R

O

x

SdS

dy

ˆ

ˆ

Fig. 7.22

If we increase the number of subsurfaces, then the surface area dS
r
 of each subsurface 

will decrease. Thus, as , 0
r

m Sδ→ ∞ →

Then,

lim ( ) ^ ^

m
r

r

m

r r

S

F P n S F ndS
→∞

=
∑ ∫∫⋅ = ⋅

1

δ

This is called surface integral of F over the surface S.

The surface integral can also be written as

F S S n S

S

⋅ =∫∫ d d d, where ˆ

If equation of the surface S is f (x, y, z) = 0, then ˆ

∇

∇
n=

f

f

7.5.1  Flux

If F represents velocity of the fluid at any point P on a closed surface S, then surface 

integral F n S

S

⋅∫∫ � d  represents the flux of F  over S, i.e., volume of the fluid flowing 

out from S per unit time.

Note: If F

S

⋅∫∫  n̂dS = 0, then F is called a solenoidal vector point function.

7.5.2  Evaluation of Surface Integral

A surface integral is evaluated by expressing it as a double integral over the region R.

The region R is the orthogonal projection of S on one of the coordinate planes 

(xy, yz or zx). Let R be the orthogonal projection of S on the xy-plane and cosa, cosb, 

cosg  are the direction cosines of n̂ . Then

ˆ cos ˆ cos ˆ cos ˆn i j k= + +α β γ
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 dx dy = Projection of dS on xy-plane

 = dS cosg

 

d
d d

S
x y

=
cosγ

 

d d

ˆˆ

x y

n k
=

⋅

Hence, F n S F n
x y

n kS R

⋅ = ⋅
⋅

∫∫ ∫∫ˆ ˆ

ˆ

ˆ

d
d d

Similarly, taking projection on yz and zx-plane,

 

F n S F n
y z

n i
F n S F n

z x

n j
S R S R

⋅ = ⋅
⋅

⋅ = ⋅
⋅

∫∫ ∫∫ ∫∫ ∫∫ˆ ˆ
ˆ ˆ

ˆ ˆ
ˆ ˆ

d
d d

d
d d

and

Component Form of Surface Integral

F n S F i F j F k i j k S

F

S S

⋅ = + + ⋅ + +

=

∫∫ ∫∫ˆ ( ˆ ˆ ˆ) (cos ˆ cos ˆ cos ˆ)

(

d d1 2 3

1

α β γ

dd d d

d d d d d

S F S F S

F y z F z x F x y

S

S

cos cos cos )

)

α β γ+ +

= + +

∫∫

∫∫

2 3

1 2 3d

Example 1:  Evaluate F n S

S

⋅∫∫ ˆ ,d  where = − + ˆˆ ˆ18 12 3F z i j y k and S is the part 

of the plane 2x + 3y + 6z = 12 in the first octant.

Solution: 

 (i) The given surface is the plane 2x + 3y + 6z = 12 in the first octant. 

  Let  2 3 6x y z= + +f

 

ˆˆ ˆ2 3 6

ˆ

4 9 36

ˆˆ ˆ2 3 6

7

i j k

n

i j k

∇

+ +

=

=

+ +

+ +
=

φ

∇φ

  (ii)  Let R be the projection of the plane 

2x + 3y + 6z = 12 (in the first octant) 

on the xy-plane, which is a triangle 

OAB bounded by the lines y = 0, x = 0 

and 2x + 3y = 12.
Fig. 7.23

z

y

x

A(6, 0, 0)

C(0, 0, 2)

B(0, 4, 0)O
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   (iii)  d
d d

d d

S
x y

n k

x y

=

⋅

=

ˆ ˆ

7

6

    (iv)  Along the vertical strip PQ, y varies from 0 to 12 2

3

x−  and in the region R, x 

varies from 0 to 6.

        

ˆ ( ˆ ˆ ˆ)
ˆ ˆ ˆ

^
k F n S z i j y k

i j k
x y

S R

⋅ = − + ⋅
+ +






=

∫∫ ∫∫d d d18 12 3
2 3 6

7

7

6

11

6
36 36 18

3 2
12 2 3

6
2

( )z y x y

x y
y x y

R

R

− +

=
− −




− +











=

∫∫

∫∫

d d

d d

(( )6 2
0

12 2

3
0

6
−

−

∫∫ x y x

x

d d

 

= −

= −
−

∫

∫

−

2 3

2 3
12 2

3

0

6

0

12 2

3

0

6

( )

( )
( )

x y x

x
x

x

x

d

d

 

= − +

= − +

= − +

=

∫
4

3
9 18

4

3 3

9

2
18

4

3
72 162 108

24

2

0

6

3 2

0

6

( )

( )

x x x

x x

x

d

Example  2:  Evaluate d d d d d d( )
S

yz y z xz z x xy x y+ +∫∫  over the surface of the 

sphere 2 2 2
1x y z+ + =  in the positive octant.

Solution: 

 (i) F n S yz y z xz z x xy x y

S

⋅ = + +∫∫ ˆd d d d d d d

 
F yz i xz j xy k= + +ˆ ˆ ˆ

Fig. 7.24

y

P

Q

O x

B(0, 4)

2x + 3y = 12

A(6, 0)
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 (ii) The given surface is the sphere 2 2 2

1x y z+ + = .

 Let 2 2 2
 x y z= + +f

 

2 2 2

ˆ

ˆˆ ˆ2 2 2

4 4 4

ˆˆ ˆ

n

x i y j z k

x y z

x i y j z k

=

+ +
=

+ +

= + +

φ∇

φ∇

 [ ]∵x y z
2 2 2

1+ + =

 (iii)  Let R be the projection of the sphere 2 2 2
1x y z+ + =  (in the positive octant) 

on the xy-plane (z = 0), which is the part of the circle x2 + y2 = 1 in the first 

quadrant.

  (iv) d
d d

d d

S
x y

n k

x y

z

=

⋅

=

ˆ

ˆ

 (v) ( )yz y z xz z x xy x y F n S

S S

d d d d d d d+ + = ⋅∫∫ ∫∫ ˆ

d dˆ ˆˆ ˆ ˆ ˆ( ) ( )

d d
(3 )

3 d d

R

R

R

x y
yz i xz j xy k x i y j z k

z

x y
xyz

xy x y

z

= + + ⋅ + +

=

=

∫∫

∫ ∫

∫ ∫

Putting x = r cosq, y = r sinq, the equation of the circle x2 + y2 = 1 reduces to r = 1 and 

dx dy = r dr dq.

Along the radius vector OP, r varies from 0 to 1 and in the first quadrant of the circle, 

q varies from 0 to .
2

p

( ) cos sin

sin

yz y z xz z x xy x y r r r r

S

d d d d d d d d+ + = ⋅ ⋅

=

∫∫ ∫∫3

3
2

0

1

0
2 θ θ θ

θ

π

22

3

2

2

2 4

3

16
0

3

8

3

0

1

0
2

0

2
4

0

1

d dθ

θ

π

π

π

⋅

=
−

⋅

= − +

=

∫∫ r r

rcos

( cos cos )

Fig. 7.25

y

xO

B

A

P

r = 1
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Example  3:  Find the flux of ˆˆ ˆF i j xyz k= − +  through the circular region S 

 obtained by cutting the sphere 2 2 2 2
x y z a+ + =  with a plane y = x.

Solution:  Flux = F n S

S

⋅∫∫ ˆ d

 (i) Surface S is the intersection of the sphere 
2 2 2 2

x y z a+ + =  with a plane y = x, 

which is an ellipse 2x2 + z2 = a2.

 (ii) Normal to the ellipse 2x2 + z2 = a2 is also  normal to the plane y = x.

 Let  = −x yf

 

ˆ ˆ

ˆ

2

i j

n

−

=

=

φ∇

φ∇

 (iii) Let R be the projection of the surface S on 

the xz-plane, which is an ellipse 2x2 + z2 = a2

 (iv) dS =

⋅

d dx z

n jˆ
ˆ

 
d d2 x z=

 (v) F n S i j xyz k
i j

x z

S R

⋅ = − + ⋅
−




∫∫ ∫∫ˆ (ˆ ˆ ˆ)
ˆ ˆ

d d d
2

2

 

d d2

R

x z= ∫∫

Putting cos , sin ,
2

a

x r z ar= =q q  the equation of the ellipse 2x2 + z2 = a2 reduces to 

r = 1 and d d d d

2

2

a

x z r r= q

Along the radius vector OP, r varies from 0 to 1 and for a complete ellipse, q varies 

from 0 to 2p.

 

F n S
a

r r

a r

a

a

S

⋅ =

=

= ⋅ ⋅

=

∫∫ ∫∫ˆ d d d2
2

2

2 2

2
1

2
2

2

2

0

1

0

2

2 2

0

1

0

2

2

2

θ

θ

π

π

π

π

z

xO

P

r = 1

Fig. 7.26



7.5  Surface Integrals        7.39
Aliter

 

F n S x z

x

a

y

a

S R

⋅ =

=






+ =

∫∫ ∫∫ˆ d d d2

2

2

1
2

2

2

2
Area of the ellipse 





















= ⋅ ⋅

=

2
2

2 2

π

π

a
a

a

Hence, flux = 2
2

πa

Example  4:  Evaluate F ndS F y i z j x yz k
S

⋅ = + +∫∫ ˆ ˆ ˆ ˆ where 3 2
2

 and S is the 

 surface y2 = 5x in the positive octant bounded by the planes x = 3 and z = 4.

Solution: 

 (i) The given surface is y2 = 5x.

 Let 
2

5y x= −f

 
2

ˆ

ˆ ˆ5 2

25 4

n

i y j

y

∇
=
∇

− +
=

+

f

f

 (ii) Let R be the projection of the surface 

y2 = 5x (in the positive octant) 

bounded by the planes x = 3 and 

z = 4 in the xz-plane.

 (iii) d
d d

S
x z

n j
=

⋅ˆ
ˆ

 

=

+25 4

2

2
y

y
x zd d

 (iv) In the region R, x varies from 0 to 3 and z varies from 0 to 4.

F n S y i z j x yz k
i y j

yS R

⋅ = + + ⋅
− +

+













+
∫∫ ∫∫ˆ ( ˆ ˆ ˆ)

ˆ ˆ
d 3 2

5 2

25 4

252

2

44

2

1

2
15 4

1

2
15 4

2

0

3

0

y

y
x z

y yz
x z

y

z

R

xz













= − +

= − +

∫∫

∫ ==

d d

d d
( )

( )
44

∫ d dx z

Fig. 7.27

y

z
z = 4

x = 3
x

O
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Evaluate the following integrals:

1. F n S F x y i

x j yz k S

S

⋅ = +

− +

∫∫ ˆ , ( ) ˆ

ˆ ˆ

d where

and is the surface

  

  

2

2 2

 

of the plane 2x + y + 2z = 6 in the first 

octant.
Ans. : 81[ ]

2.  F n S F xy i yz j xzk

S

⋅ = + +∫∫ ˆ , ˆ ˆd where 2
2

ˆ

 

and S is the surface of the parallelepiped 

0 1, 0 2 and 0 3x y z≤ ≤ ≤ ≤ ≤ ≤ .

Ans. : 33[ ]

3.  F n S F x i z zx

j xy k

S

⋅ = + −

−

∫∫ ˆ , ˆ ( )

ˆ ˆ

d where 2

and S is the triangular ssurface

 

 with vertices (2, 0, 0), (0, 2, 0) and (0, 0, 4).

 
22

3

 
−  

Ans.:

4.  ∇× ⋅ = +

−

∫∫ F n S F y i y j

xzk

S

ˆ , ˆ ˆ

ˆ

d where

and  is the upper half  of

2

S   the 

 sphere 2 2 2 2
x y z a+ + = .

 Ans. : 0[ ]

5.  Find the flux of the vector field F  

through the portion of the sphere 
2 2 2

36x y z+ + =  lying between the 

planes 11 and 20  where z z= =  
ˆˆ ˆ .z kF x i y j += +

 72 20 11π − Ans.:

6.  Find the flux of the vector field 
2 2 ˆˆ ˆ 1F x i y j x y k= + + + −  through 

the outer side of the hyper-boloid 
2 2

1z x y= + −  bounded by the 

planes z = 0 and 3.z =

 2 3  Ans. : p

7.  Find the flux of the vector field 
2 ˆˆ ˆ2F y i z j x k= − +  across the sur-

face of the parabolic cylinder y2 = 8x 

in the first octant bounded by the planes 

y = 4 and z = 6.

 Ans. :132[ ]

       

= − +( )
= − +

∫

∫

1

2
15 4

1

2
45 12

1

0

3

0

3

0

4

0

4

x z x z

z z

d

d( )

         

= − +

= −

2

1

2
45 6

1

2
1

2

0

4
z z

( 880 96

42

+

= −

)

Exercise 7.3
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7.6  VOLUME INTEGRALS

If V be a region in space bounded by a closed surface S, then the volume integral of a 

vector point function F  is d

V

F V∫∫∫ .

Component Form of Volume Integral

If 1 2 3

1 2 3

1 2 3

ˆˆ ˆ

ˆˆ ˆd ( )d d d

ˆˆ ˆd d d d d d d d d

V V

F F i F j F k

F V F i F j F k x y z

i F x y z j F x y z k F x y z

= + +

= + +

= + +

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫ ∫∫∫
Another type of volume integral is d ,

V

Vφ∫∫∫  where f is a scalar function.

Example  1: Evaluate F V F x i y j z k

V

d where∫∫∫ = + +  ˆ ˆ ˆ2 and V is the  volume 

 enclosed by the planes x = 0, y = 0, y = a, z = b2 and the surface z = x2.

Solution: 

 (i) V is the volume of the cylinder in positive octant with base as OAB and bounded 

between the planes y = 0 and y = a. y varies from 0 to a.

BQ

P

A

O (0, 0)

z = x2

z

z = b2

(b, b2)

x

Fig. 7.28

 (ii) Along the vertical strip PQ, z varies from x2 to b2 and in the region OAB, 

x varies from 0 to b.

ˆ ( ˆ ˆ ˆ)

ˆ ˆ

i F V x i y j z k x y z

xi y j
y

V
y

a

z x

b

x

b

a

∫∫∫ ∫∫∫= + +

= +

===
d d d d2

00

0

2

2

22

0

00

2

2
2

2
2

2

2

2

a

a

x

bb

x

zk y z x

ixa j
a

k za

+












= + +







∫∫ ˆ

ˆ ˆ ˆ

d d

bbb
z x

2

0 ∫∫ d d
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= + +







= − +

∫ ˆ ˆ ˆ

ˆ ( ) ˆ

i xa z j
a

z k a z x

i xa b x j
a

x

b

x

b

x

bb

2

2

2

2

2

22
2

0

2 2

2
d

22
2 2 4 4

0 2
( ) ˆ ( )b x k a b x x

b
− + −









∫ d

 

= −






+ −







+ −








=

ˆ ˆ ˆi a
b x x

j
a

b x
x

k a b x
x

b
2 2 4 2

2

3

4

5

0
2 4 2 3 5

ˆ̂ ˆ ˆ

ˆ

i a
b b

j
a

b
b

k a b
b

ab
i

4 4 2

3

3

5

5

4

2 4 2 3 5

4

−






+ −







+ −








= ++ +
a b

j
ab

k
2 3 5

3

4

5

ˆ ˆ.

Example  2: Evaluate ( ) ,∇ ×∫∫∫ F V

V

d  where ( )ˆ ˆ ˆF x z i xyj xk= − − −2 3 2 42  and 

V is the closed region bounded by the planes x = 0, y = 0, z = 0 and 2x + 2y + z = 4.

Solution:  (i) 

2

ˆˆ ˆ

2 3 2 4

i j k

F
x y z

x z xy x

∂ ∂ ∂
∇ × =

∂ ∂ ∂

- - -

ˆˆ ˆ(0 0) ( 4 3) ( 2 0)

ˆˆ 2

i j k y

j y k

= - - - + + - -

= -

x

y

z

A(2, 0, 0)

C (0, 0, 4)

O

Q

P B(0, 2, 0)

2x + 2y + z = 4

x

y

O

x + y = 2

P'

Q'

B(0, 2)

A(2, 0)

Fig. 7.29
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 (ii) Along the elementary volume PQ, z varies from 0 to 4 - 2x - 2y.

  Along the vertical strip P´Q´, y varies from 0 to 2 - x and in the region, x varies 

from 0 to 2.

 
( ) ( )∇× = −∫∫∫ ∫∫∫

− −−

F V j y k x y z
V

x yx

d d d dˆ ˆ2
0

4 2 2

0

2

0

2

 

ˆ ( ˆ ˆ )

( ˆ ˆ ) (

k j y k z y x

j y k x

x x y

x

= −

= − − −

− − −

−

∫∫
∫∫

2

2 4 2 2

0

2

0

2

0

4 2 2

0

2

0

2

d d

yy y x

x y j x y k y k y x

x

x

)

( ) ˆ ( ) ˆ ˆ

(

d d

d d= − − − − +





= −

−

∫∫ 4 2 2 2 4 2 4

4 2

2

0

2

0

2

)) ˆ ( ) ˆy y j x y
y

k
x x x

x

0

2 2

0

2
2

0

2 3

0

2

2 2 4
3

− − −
−

−{ } − − −
























∫ dx

0

2

ˆ ( ) ( ) ( ) ˆ ( ) ( ) ( ) ˆk x x x j x x x k= − − − −{ } − − − − −











 2 2 2 2 2 2 2

4

3
22 2 3 




= − − −







=
−

−
− ⋅

−

∫

∫

0

2

2 3

0

2

3

2
2

3
2

2

3

2

3

2

d

d

x

x j x k x

x
j

( ) ˆ ( ) ˆ

( ) ˆ ( xx
k

j k

j k

) ˆ

ˆ ˆ

( ˆ ˆ)

4

0

2

4

8

3

8

3
8

3

−

= −

= −

Exercise 7.4

Evaluate the following integrals:

1. ˆ ( )

ˆ ˆ ˆ

k F V

F x yi y j xz k

V

∇⋅

= − +

∫∫∫ d where 

2 42 2 2

 and V is region in the first 

octant bounded by the cylinder

 y2 + z2 = 9 and the plane z = 2.

Ans. :180[ ]

2. ˆ ˆ ˆF V F xz i xj y k

V

∫∫∫ = − +d where  2
2  

and V is the region bounded by the 

surfaces x = 0, y = 0, y = 6,  z = x2, 

z = 4.

Ans. :128 24 384ˆ ˆ ˆi j k− + 

3. f V f x y

V

d  where ∫∫∫ = 45
2

 and V is 

the region bounded by the planes  

4x + 2y + z = 8, x = 0, y = 0, z = 0.

Ans. :128[ ]

4. ˆ ( ) ˆ

ˆ ˆ

k F V F x y i

z j x k V

V

∇ × = +

− +

∫∫∫ d

and  is the closed

where 2

3

region in the first octant bounded by 

the plane 2x + 2y + z = 4.

8 ˆˆ ˆ(3 2 )
3

i j k
 

- +  
Ans. :
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7.7  GAUSS’ DIVERGENCE THEOREM

Statement: If F  be a vector point function having continuous partial derivatives in 

the region bounded by a closed surface S, then ∇⋅ = ⋅∫∫∫∫∫ F V F n S

SV

d dˆ

where n̂  is the unit outward normal at any point of the surface S.

Proof: Let 
1 2 3

ˆˆ ˆF F i F j F k= + +

∇⋅ =
∂
∂

+
∂
∂

+
∂
∂







⋅ + +∫∫∫ ∫∫∫F V i
x

j
y

k
z

F i F j F k x y
V V

d d dˆ ˆ ˆ ( ˆ ˆ ˆ)1 2 3 ddz

                    31 2
d d d

V

FF F
x y z

x y z

 ∂∂ ∂
= + +  ∂ ∂ ∂ ∫∫∫  ... (7.3)

Fig. 7.30

z

x

R

S1

S2

O
y

n1
ˆ

n2
ˆ

z = f2 (x, y)

z = f1 (x, y)

Assume a closed surface S such that any line parallel to the coordinate axes intersects 

S at most at two points. 

Divide the surface S into two parts: S
1
, the lower and S

2
, the upper part. Let z f x y= 1( , ) 

and z f x y= 2 ( , )  be the equations and 
1̂
n  and 

2
n̂  be the normals to the surfaces S

1
 and 

S
2
 respectively. Let R be the projection of the surface S on the xy-plane.

∂

∂
=

∂

∂








=

∫∫∫ ∫∫∫
F

z
x y z

F

z
z x y

F x y

V
f x y

f x y

R

3 3

3

1

2

d d d d d d
( , )

( , )

( , ,, )

( , , ) ( , , )

z x y

F x y f F x y f x y

f

f

R

R

1

2

3 2 3 1

∫∫

∫∫= −[ ]

d d

d d

3 2 3 1( , , ) d d ( , , )d d
R R

F x y f x y F x y f x y= −∫∫ ∫∫   ... (7.4)
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dx dy = projection of dS on xy-plane 

 = ˆ ˆn k S⋅ d

For surface S
2
: z = f

2
 (x, y)

dx dy = 
2

ˆn̂ k⋅  dS
2

For surface S
1
: z = f

1
 (x, y)

dx dy = 
1

ˆn̂ k− ⋅ dS
1

Substituting in Eq. (7.4),

∂

∂
= ⋅ − − ⋅

= ⋅

∫∫ ∫∫∫∫∫
F

z
x y z F n k S F n k S

F n

S SV

3

3 2 2 3 1 1

3 2

2 1

d d d d dˆ ˆ ( ˆ ˆ)

ˆ k̂k S F n k S
S S

d d2 3 1 1

2 1

+ ⋅∫∫ ∫∫ ˆ ˆ

= ⋅∫∫ F n k S

S

3
ˆ ˆ d  ... (7.5)

Similarly, projecting the surface S on yz and zx-planes, we get

      
∂

∂
= ⋅∫∫∫∫∫

F

x
x y z F n i S

SV

1

1
d d d dˆ ˆ  ... (7.6)

and                     d d d d
∂

∂
= ⋅∫∫∫∫∫

F

y
x y z F n j S

SV

2

2
ˆ ˆ  ... (7.7)

Substituting Eqs. (7.5), (7.6) and (7.7) in Eq. (7.3),

∇⋅ = ⋅ + ⋅ + ⋅

= ⋅ +

∫∫∫∫ ∫∫∫∫∫ F V F n i S F n j S F n k S

F i n

SS SV

d d d d1 2 3

1

ˆ ˆ ˆ ˆ ˆ ˆ

( ˆ ˆ FF j n F k n S

F i F j F k n S

S

S

2 3

1 2 3

ˆ ˆ ˆ ˆ)

( ˆ ˆ ˆ) ˆ

⋅ + ⋅

= + + ⋅

∫∫

∫∫

d

d

= ⋅∫∫ F n S

S

ˆ d

Hence, ∇⋅ = ⋅∫∫∫∫∫ F V F n S

SV

d dˆ

Note: Cartesian form of Gauss’ divergence theorem is

( )1 2 2

1 2 3
d d d d d d d d d

V S

F F F
x y z F y z F z x F x y

x y z

 ∂ ∂ ∂
+ + = + +  ∂ ∂ ∂ ∫∫∫ ∫∫

Example 1:  Verify Gauss’ divergence theorem for 2 ˆˆ ˆ4F x z i y j y z k= − +  over 

the cube x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

Solution:  By Gauss’ divergence theorem,

 

∇⋅ = ⋅∫∫∫∫∫ F V F n S

SV

d dˆ
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 (i) 2 ˆˆ ˆ4F x z i y j y z k= − +

2(4 ) ( ) ( )

4 2 4

F x z y y z
x y z

z y y z y

∂ ∂ ∂
∇⋅ = + − +

∂ ∂ ∂

= − + = −

z

y

x

D (0, 1, 1)

G (1, 1, 1)

C (0, 1, 0)

B (1, 1, 0)A (1, 0, 0)

O (0, 0, 0)

F

(1, 0, 1)

(0, 0, 1)E

Fig. 7.31

 (ii) For the cube: x varies from 0 to 1

        y varies from 0 to 1

        z varies from 0 to 1

 

∇⋅ = −

= −

= −

∫∫∫∫∫∫

∫∫

F V z y x y z

z yz x y

x y

V

d d d d

d d

d

( )

( )

4

2

2

0

1

0

1

0

1

2

0

1

0

1

0

1

ddy
0

1

0

1

∫∫

 

= −

= −

x y
y

0

1

2

0

1

2
2

2
1

2

 
3

2
=  ... (1)

 (iii) Surface S of the cube consists of 6 surfaces, S
1
, S

2
, S

3
, S

4
, S

5
 and S

6
. 

 

F n S F n S F n S F n S

F n S F n

S S S S

S

⋅ = ⋅ + ⋅ + ⋅

+ ⋅ + ⋅

∫∫ ∫∫ ∫∫ ∫∫

∫∫

ˆ ˆ ˆ ˆ

ˆ ˆ

d d d d

d

1 2 3

4

dd dS F n S

S S5 6

∫∫ ∫∫+ ⋅ ˆ   ... (2)
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(a)  On S OABC z n k S

x y

n k
x y1 0( ) : , ,= = − =

⋅

=ˆ
ˆ

ˆ
ˆ

d
d d

d d

x and y both varies from 0 to 1.

F n S x z i y j y z k k x y
S S

⋅ = − + ⋅ −∫∫ ∫∫ˆ ( ˆ ˆ ˆ) ( ˆ)d d d

1 1

4 2

 = 0

(b)  On S DEFG z n k S
x y

n k
x y

2 1( ) : , ,
| |

= = =

⋅

=ˆ
ˆ

ˆ
ˆ

d
d d

d d

x and y both varies from 0 to 1.

 

F n S x z i y j y z k k x y

y x y

y

S S

⋅ = − + ⋅

=

=

∫∫ ∫∫

∫∫

ˆ ( ˆ ˆ ˆ) ˆd d d

d d

2 2

4

2

2

0

1

0

1

2

0

1

0

11

0

11

2

1

2

∫

=

=

dx

x

(c)  On S OAFE y n j S
z x

n j
z x

3
0( ) = = − =

⋅
=: , ,ˆ

ˆ

ˆ ˆ

d
d d

d d

x and z both varies from 0 to 1.

F n S x z i y j y z k j z x
S S

⋅ = − + ⋅ −

=

∫∫ ∫∫ˆ ( ˆ ˆ ˆ) ( ˆ)d d d

3 3

4

0

2

(d)  On S BCDG y n j S
z dx

n j
z x

4
1( ) = = =

⋅
=: , ,ˆ ˆ

ˆ ˆ

d
d

d d

x and z both varies from 0 to 1.

F n S x z i y j y z k j z x

z x

S S

⋅ = − + ⋅

= −

= −

∫∫ ∫∫

∫∫

ˆ ( ˆ ˆ ˆ) ( ˆ)d d d

d d

4 4

4

1

2

0

1

0

1

(e) On S OCDE x n i S
y z

n i
y z

5
0( ) = = − =

⋅
=: , ,ˆ ˆ

ˆ
ˆ

d
d d

d d

y and z both varies from 0 to 1.

F n S x z i y j y z k i y z
S S

⋅ = − + ⋅ −

=

∫∫ ∫∫ˆ ( ˆ ˆ ˆ) ( ˆ)

.

d d d

5 5

4

0

2
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(f )  On S ABGF x n i S
y z

n i
y z

6
1( ) = = =

⋅
=: , ,ˆ

ˆ

ˆ
ˆ

d
d d

d d

y and z both varies from 0 to 1.

 

F n S x z i y j y z k i y z

z y z

S S

⋅ = − + ⋅

=

∫∫ ∫∫

∫∫

ˆ ( ˆ ˆ ˆ) ˆd d d

d d

6 6

4

4

2

0

1

0

1

 

1
2

1

0

0

4
2

2

z
y=

=

Substituting in Eq. (2),

 

F ndS

S

⋅ = + + + − + +∫∫ ˆ ( )0
1

2
0 1 0 2

 3

2
=

 ... (3)

From Eqs. (1) and (3),

 

∇⋅ = ⋅ =∫∫∫ ∫∫F V F n S

V S

d dˆ
3

2

Hence, Gauss’ divergence theorem is verified.

Example 2:  Verify Gauss’ divergence theorem for 2 2 2 ˆˆ ˆ2 4F x y i y j xz k= − +  

over the region bounded by the cylinder 2 2
9y z+ = and the plane x = 2 in the first 

octant.

Solution:  By Gauss’ divergence theorem,

 

∇⋅ = ⋅∫∫∫ ∫∫F V F n S

V S

d dˆ

 (i) F x y i y j xz k= − +2 4
2 2 2ˆ ˆ ˆ

2 2 2(2 ) ( ) (4 )

4 2 8

F x y y xz
x y z

xy y xz

∂ ∂ ∂
∇⋅ = + − +

∂ ∂ ∂

= − +

 (ii) d (4 2 8 )d d d
V

F V xy y xz x y z∇⋅ = − +∫∫∫ ∫∫∫

For the given region, x varies from 0 to 2. Putting y = r cosq, z = r sinq, the equation 

of the cylinder 2 2
9y z+ =  reduces to r = 3 and dy dz = r dr dq.

Along the radius vector OP, r varies from 0 to 3 and for the region in the first octant, 

q varies from 0 to .
2

p
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∇⋅ = ⋅ − ⋅ + ⋅ ⋅∫∫∫ ∫∫∫ ===

F V x r r x r x r

V

xr

d d d( cos cos sin )4 2 8
0

2

0

3

0

2 θ θ θ
θ

π

rr

r x r x r x r

d

d d

θ

θ θ θ θ
π

= − +( )∫∫ 2 2 42 2

0

2 2

0

2 2 2

0

2

0

3

0

2 cos cos sin

3
2 22

0 0

3 33 3

2 2

0 0

0 0

(4 cos 16 sin )d d

4 sin 16 cos
3 3

r r r

r r

π

= +

= + −

∫ ∫
p p

q q q

q q

= 36 + 144

= 180 ... (1)

(iii)  The surface S consists of 5 surfaces, 

1 2 3 4 5
, , , , .S S S S S

  

F n S F n S F n S

F n S F n S

F n

S S S

S S

⋅ = ⋅ + ⋅

+ ⋅ + ⋅

+ ⋅

∫∫ ∫∫ ∫∫

∫∫ ∫∫

ˆ ˆ ˆ

ˆ ˆ

ˆ

d d d

d d

1 2

3 4

ddS

S5

∫∫  ... (2)

(a) On S
1
(OAED) : z = 0, ˆn̂ k= −

d
d d

d dS
x y

n k
x y=

⋅

=

ˆ ˆ

x varies from 0 to 2 and y varies from 0 to 3.

F n S x y i y j xz k k x y
S S

⋅ = − + ⋅ −

=

∫∫ ∫∫ˆ ( ˆ ˆ ˆ) ( ˆ)d d d

1 1

2 4

0

2 2 2

(b)  On S
2
 (OBCD) : y = 0, ˆ ˆ,

ˆ ˆ
n j S

z x

n j
z x= − =

⋅

=d
d d

d d

x varies from 0 to 2 and y varies from 0 to 3.

 

F n S x y i y j xz k j z x
S S

⋅ = − + ⋅ − =∫∫ ∫∫ˆ ( ˆ ˆ ˆ) ( ˆ)d d d

2 2

2 4 02 2 2

z

y
O

P

B (0, 3)

A (3, 0)

Fig. 7.32

D (2, 0, 0)

B (0, 0, 3)

A

O

(0, 0, 0)

x

CE

y z

(0, 3, 0)

Fig. 7.33
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(c)  On S
3
 (OAB) : x = 0, ˆ ˆ,

ˆ ˆ
n i S

y z

n i
y z= − =

⋅

=d
d d

d d

   y and z varies from 0 to 3.

 

F n S x y i y j xz k i y z
S S

⋅ = − + ⋅ − =∫∫ ∫∫ˆ ( ˆ ˆ ˆ) ( ˆ)d d d

3 3

2 4 02 2 2

(d)  On d
d d

d dS DEC x n i S
y z

n i
y z4 2( ) : , ,= = =

⋅

=ˆ
ˆ

ˆ
ˆ

   y and z varies from 0 to 3.

 

F n S x y i y j xz k i y z y y z
S S

⋅ = − + ⋅ =∫∫ ∫∫ ∫∫ˆ ( ˆ ˆ ˆ) ˆd d d d d

4 4

2 4 82 2 2

Putting y = r cosq, z = r sinq, equation of the cylinder y2 + z2 = 9 reduces to r = 3 

and dy dz = r dr dq.

 

F n S r r r

r r

S

⋅ = ⋅

= ⋅

= −

∫∫ ∫∫

∫∫

ˆ sin

sin

cos

d d d

d d

4

8

8

8

0

3

0

2

2

0

3

0

2

0

θ θ

θ θ

θ

π

π

ππ

2

3

0

3

3

72

r

=

(e)  On S
5
 (ABCE) : This is the curved surface of the cylinder y2 + z2 = 9 bounded 

between x = 0 and x = 2.

Let 
2 2

y z= +f

ˆ

ˆ ˆ

ˆ ˆ
[ ]

ˆ ˆ

n

y j z k

y z

y i z k
y z

S
x y

n k

=
∇

∇

=
+

+

=
+

+ =

=
⋅

=

φ

φ

2 2

4 4

3
9

3

2 2

2 2
∵

d
d d

dxx y

z

d
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F n S x y i y j xz k

y j z k x y

z
S S

⋅ = − + ⋅
+





⋅

=

∫∫ ∫∫ˆ ( ˆ ˆ ˆ)
ˆ ˆ

d
d d

5 5

2 4
3

32 2 2

(( )− +
== ∫∫ y xz

x y

zyx

3 3

0

3

0

2

4
d d

The parametric equation of the cylinder y2 + z2 = 9 is,

 y = 3 cosq, z = 3 sinq

When 

d
d 3sin d d , d

 0,
2

3, 0

y
y z

z

y

y

π

= − = − = −

= =

= =

q q q q

q

q

 

F n S x x

x

S

⋅ = − + −

= − +

∫∫ ∫∫ˆ ( cos sin ) ( )

cos

d d

5

27 108

27

3 3

0

2

2

0

3

0

2

θ θ θ

θ

π d

1108
2

54 216

3
2

0

2

0
2

3 3

0
2

sin

cos sin

θ θ

θ θ

π

π

x












= − +

∫

∫

d

  

= − ⋅ 




+ ⋅ 





=
+

∫54
1

2
2

1

2
216

1

2
2

1

2
1

2

B B

B
p q

p q, , sin cos

,

∵ θ θ θd

++





















= − +

=
⋅

⋅
⋅

1

2
2

1

2

5

2

27 108

1
1

2

3

2

1

2

1

2

81

( )

   =108

Substituting in Eq. (2),

 
F n S

S

⋅ = + + + + =∫∫ ˆ d 0 0 0 72 108 180
 ... (3)

From Eqs. (1) and (3),

 
∇⋅ = ⋅ =∫∫∫ ∫∫F V F n S

V S

d dˆ 180

Hence, Gauss’ divergence theorem is verified.
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Example 3:  Verify Gauss’ divergence theorem for 2 ˆˆ ˆ2F xz i yz j z k= + +  over 

the upper half of the sphere 2 2 2 2
.x y z a+ + =

Solution:  By Gauss’ divergence theorem,

        

∇⋅ = ⋅∫∫∫ ∫∫F V F n S

V S

d dˆ

 (i) 2 ˆˆ ˆ2F xz i yz j z k= + +

2(2 ) ( ) ( ) 2 2 5F xz yz z z z z z
x y z

∂ ∂ ∂
∇⋅ = + + = + + =

∂ ∂ ∂

 (ii) d 5 d d d

V V

F V z x y z∇⋅ =∫∫∫ ∫∫∫

Putting x = r sinq cosf, y = r sinq sinf, z = r cosq, equation of the sphere x2 + y2 + z2 = a2 

reduces to r = a and dx dy dz = r2 sinq dr dq df.

For upper half of the sphere (hemisphere),

 varies from 0 to 

 varies from 0 to 
2

 varies from 0 to 2

r a

p
q

f p

∇⋅ = ⋅

=

∫∫∫ ∫∫∫ ===
F V r r r

V

r

a

d d d d

d

5

5

2

00

2

0

2

cos sin

cos sin

θ θ θ φ

φ θ θ

θ

π

φ

π

ddθ

φ
θ

π π

π
π

π

π

r

a

a

a4

0

2

0
0

2

0

2

0

2
4

4

4

5
1

2

2

2 4

5

16
2

∫∫

= ⋅ − ⋅

= − ⋅ −

cos

(cos cos00)

 4
5

4
a= p  ... (1)

 (iii) Given surface is not closed. We close this 

surface from below by the circular surface 

S
2
 in xy-plane.

Thus, the surface S consists of two surfaces 

S
1
 and S

2
.

F n S F n S F n S

S S S

⋅ = ⋅ + ⋅∫∫ ∫∫ ∫∫ˆ ˆ ˆd d d

1 2

 
... (2)

2 2 2 2
[ ]x y z a+ + =∵

z

y

E

S1

S2

B

O A
D

C

x

Fig. 7.34
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  (a)  Surface S

1
(ABCEA) : This is the curved surface of the upper half of the 

sphere.

        Let 2 2 2
x y z= + +f

2 2 2

2 2 2 2

ˆ

ˆˆ ˆ2 2 2

4 4 4

ˆˆ ˆ
[ ]

n

x i y j z k

x y z

x i y j z k
x y z a

a

∇
=
∇

+ +
=

+ +

+ +
= + + =∵

f

f

Let R be the projection of S
1
 on the xy-plane, which is a circle x2 + y2 = a2.

d
d d

d d

S
x y

n k

a x y

z

=

⋅

=

ˆ ˆ

F n S xz i yz j z k
x i y j z k

a

a x y

z
S R

⋅ = + + ⋅
+ +






=

∫∫ ∫∫ˆ ( ˆ ˆ ˆ)
ˆ ˆ ˆ

(

d
d d

1

2 2

22

2

2 2 2

2 2 2 2 2 2 2 2 2

x y z x y

x y a x y x y z a x y

R

R

+ +

= + + − − = − −

=

∫∫

∫∫

)

( ) [ ]

d d

d d ∵

(( )x a x y
R

2 2+∫∫ d d

Putting x = r cosq, y = r sinq, equation of the circle 2 2 2
x y a+ =  reduces to r = a and 

dx dy = r dr dq. Along the radius vector OP, r varies from 0 to a and for the complete 

circle, q varies from 0 to 2p.

∇× ⋅ = +

= +




∫∫ ∫∫F n S r a r r

r
a

r

S

a

a a

1

2 2 2

00

2

4

0

2 2
2

0
4 2

ˆ ( cos )

cos

d d dθ θ

θ

π










=
+




+











∫

∫

0

2

4 4

0

2

4

1 2

2 2

π

π

θ

θ
θ

d

d
a acos

 

2

4

0

4

5 1 sin 2

8 8 2

5

4

= +

=

a

a

p

q
q

p

y

x

P
r = a

O

Fig. 7.35
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 (b) Surface S
2
 (ABCDA) : This is the circle 2 2 2

x y a+ =  in xy-plane z = 0, 
ˆn̂ k= −

d
d d

d d

S
x y

n k

x y

=

⋅

=

ˆ ˆ

 

F n S xz i yz j z k k x y

z

S S

⋅ = + + ⋅ −

= =

∫∫ ∫∫ˆ ( ˆ ˆ ˆ) ( ˆ)

[ ]

d d d

2 2

2

0 0

2

∵

Substituting in Eq. (2),

F n S a

S

⋅ =∫∫ ˆ d
5

4

4π  ... (3)

From Eqs. (1) and (3),

∇⋅ = ⋅ =∫∫∫∫∫ F V F n S a

SV

d dˆ
5

4

4π

Hence, Gauss’ divergence theorem is verified.

Example  4:  Evaluate ( )yz i zx j xy k dS
S

ˆ ˆ ˆ+ + ⋅∫∫ , where S is the surface of the 

sphere in the first octant.

Solution:  By Gauss’ divergence theorem,

 F S F V

S V

∫∫ ∫∫∫⋅ = ∇⋅d d  … (1)

                     
ˆˆ ˆ

( ) ( ) ( ) 0

F yz i zx j xy k

F yz zx xy
x y z

= + +

∂ ∂ ∂
∇⋅ = + + =

∂ ∂ ∂

From Eq. (1), F S

S

⋅ =∫∫ d 0

Example  5:  Evaluate 3 2 2( d d d d d d )x y z x y z x x z x y+ +∫∫
S

 where S is the closed 

surface consisting of the circular cylinder 2 2 2
, 0 and .x y a z z b+ = = =

Solution:  By Gauss’ divergence theorem,

 ( ) 31 2

1 2 3
d d d d d d d d d

S V

FF F
F y z F z x F x y x y z

x y z

 ∂∂ ∂
+ + = + +  ∂ ∂ ∂ ∫∫ ∫∫∫  … (1)
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 (i)  3 2 2

1 2 3
d d d d d d d d d d d dF y z F z x F x y x y z x y z x x z x y+ + = + +

3 2 2

1 2 3
, ,F x F x y F x z= = =

 (ii)  3 2 231 2 ( ) ( ) ( )
FF F

x x y x z
x y z x y z

∂∂ ∂ ∂ ∂ ∂
+ + = + +

∂ ∂ ∂ ∂ ∂ ∂

2 2 2 2
3 5x x x x= + + =

 (iii)     231 2
d d d 5 d d d

V

FF F
x y z x x y z

x y z

 ∂∂ ∂
+ + =  ∂ ∂ ∂ ∫∫∫ ∫∫∫

Putting x = r cosq, y = r sinq, z = z, circular cylinder 2 2 2
x y a+ =  reduces to r = a and 

dx dy dz = r dr dq dz.

Along the radius vector OA, r varies from 0 to a and for complete circle, q varies from 

0 to 2p. Along the volume of the cylinder, z varies from 0 to b.

y

x

A
r = a

O

z = 0

z = b

y

x

z

Fig. 7.36

   

∂
∂

+
∂
∂

+
∂
∂







= ⋅∫∫∫ ∫ ==

F

x

F

y

F

z
x y z r r r z

V
r

a
1 2 3 2 2

00
5d d d cos θ θ

θ
d d d

22

0

0

4

0

0

2

4

0

5
4

1 2

2

5

4

1

2

2

2

π

π θ
θ

θ
θ

∫∫

∫

=

=
+





= ⋅ ⋅ +

z

b

b

a

z
r

b a

cos

sin

d

22p

4

4

5
2

4 2

5

4

ba

a b

= ⋅ ⋅

=

p

p

From Eq. (1),

3 2 2 45
( d d d d d d )

4
S

x y z x y z x x z x y a b+ + =∫∫ p

Example  6:  Evaluate ( ) ,lx my nz dS
S

+ +∫∫  where l, m, n are the direction 

cosines of the outer normal to the surface whose radius is 2 units.
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Solution:  By Gauss’ divergence theorem,

F n S F V

VS

⋅ = ∇⋅∫∫∫∫∫ ˆ d d
 ... (1)

 (i) ˆF n lx my nz⋅ = + +

ˆ ˆˆ ˆ ˆ ˆ( ) ( )

ˆˆ ˆ

= + + ⋅ + +

= + +

x i y j z k l i m j n k

F x i y j z k

 (ii) 

3

F x y z
x y z

∂ ∂ ∂
∇⋅ = + +

∂ ∂ ∂

=

 (iii) d 3d

V V

F V V∇⋅ =∫∫∫ ∫∫∫
= 3 (Volume of the region bounded by the sphere of 2-unit radius)

34
3 (2)

3

32

π

π

= ⋅

=

 From Eq. (1),

 

( ) .lx my nz S
S

+ + =∫∫ d 32π

Example 7:  Prove that 
dS

a x b y c z abcS
2 2 2 2 2 2

4

+ +
∫∫ ==

π
, where S is the  ellipsoid 

2 2 2
1ax by cz+ + = .

Solution:  By Gauss’ divergence theorem,

 F n S F V

S V

⋅ = ∇⋅∫∫ ∫∫∫ˆ d d  ... (1)

 (ii)  
2 2 2 2 2 2

1
ˆF n

a x b y c z
⋅ =

+ +

where n̂  = unit normal to the ellipsoid, 2 2 2
1ax by cz+ + =

2 2 2 2 2 2

2 2 2 2 2 2

ˆˆ ˆ2 2 2

4 4 4

ˆˆ ˆ

ax i by j cz k

a x b y c z

ax i by j cz k

a x b y c z

+ +
=

+ +

+ +
=

+ +

Now,       
2 2 2 2 2 2

2 2 2

1
ˆF n

a x b y c z
⋅ =

+ +

+ +
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2 2 2

2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

[ 1]

ˆˆ ˆ
ˆˆ ˆ( )

ˆˆ ˆ

ax by cz
ax by cz

a x b y c z

ax i by j cz k
x i y j z k

a x b y c z

F x i y j z k

+ +
= + + =

+ +

 + +
= + + ⋅ 

+ + 

= + +

∵

Hence,

 (iii)      3F x y z
x y z

∂ ∂ ∂
∇⋅ = + + =

∂ ∂ ∂

 (iv)  d 3d

V V

F V V∇⋅ =∫∫∫ ∫∫∫
 = 3 (Volume of the region bounded by the ellipsoid)

=3
4

3
 ⋅ ⋅ ⋅






+






+






=







π

1 1 1

1 1 1

1

2

2

2

2

2

2

a b c

x

a

y

b

z

c

∵














=
4π
abc

From Eq. (1),

dS

a x b y c z abcS
2 2 2 2 2 2

4

+ +
=∫∫

π

Example  8: Evaluate F S

S

⋅∫∫ d  using divergence theorem where 3 3ˆ ˆF x i y j= + + 

3 ˆz k+ and S is the surface of the sphere 2 2 2 2
x y z a+ + = .

Solution:  By Gauss’ divergence theorem,

 F S F V

VS

⋅ = ∇⋅∫∫∫∫∫ d d   ... (1)

 (i)  3 3 3 ˆˆ ˆF x i y j z k= + +

 

3 3 3

2 2 2
3 3 3

F x y z
x y z

x y z

∂ ∂ ∂
∇⋅ = + +

∂ ∂ ∂

= + +

 (ii)  2 2 2d 3 ( )d d d
V V

F V x y z x y z∇⋅ = + +∫∫∫ ∫∫∫
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Putting x = r sinq cosf, y = r sinq sinf, z = r cosq equation of the sphere x2 + y2 + z2 = a2 

reduces to r = a and dx dy dz = r2 sinq dr dq df
For complete sphere,

r varies from 0 to a

q varies from 0 to p
f varies from 0 to 2p

∇⋅ = ⋅

= ⋅

∫∫∫ ∫∫∫

∫

===
F V r r r

V

r

a

d d d d

d d

3

3

2 2

000

2

0

2

0

sin

sin

θ θ φ

φ θ θ

θ

π

φ

π

π ππ

π π
φ θ

∫ ∫⋅

= −

r r

r

a

a

4

0

0

2

0

5

0

3
5

d

cos

5

5

3 2 ( cos cos0)
5

12

5

a

a

= ⋅ − +

=

p p

p

From Eq. (1),

F S a

S

⋅ =∫∫ d
12

5

5π .

Example  9:  Evaluate F S⋅∫∫ d  using Gauss’ divergence theorem where 

2 ˆˆ ˆ2F xy i yz j zx k= + +  and S is the surface of the region bounded by x = 0, y = 0, 

z = 0, y = 3, x + 2z = 6.

Solution:  By Gauss’ divergence theorem,

     F S F V

S V

⋅ = ∇⋅∫∫ ∫∫∫d d  ... (1)

 (i)      2 ˆˆ ˆ2F xy i yz j zx k= + +

∇⋅ =
∂

∂
+
∂

∂
+
∂

∂
= + +F

x
xy

y
yz

z
zx y z x( ) ( ) ( )2 22 2

 (ii)      2(2 )d d d
V V

F y z x x y z∇⋅ = + +∫∫∫ ∫∫∫
In the given region, y varies from 0 to 3.

In xz-plane, region is bounded by the lines x = 0, z = 0, x + 2z = 6.

Along the vertical strip PQ, z varies from 0 to 
6

2

x−
and in the region, x varies from 

0 to 6.
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6

6 3
22

0 0 0

6
6 32 22

00 0

6
6

22

0 0

6
6

3 2

00

(2 )d d d

d d

(9 3 3 )d d

9 3 d

x

x z y
V

x

x

x

F y z x y z x

y z y xy z x

z x z x

z z xz x

−

= = =

−

−

−

∇⋅ = + +

= + +

= + +

= + +

∫∫∫ ∫ ∫ ∫

∫ ∫

∫ ∫

∫
3

6

0

32
6

0

6 6 6
9 3 d

2 2 2

9 3 6
27 d

2 2 2

x x x

x x

x x x

x

 − − −     = + +             
 − = + − +     

∫

∫

62 3 4

0

4

9 1 (6 )
27

2 2 2 8 4

6
162 81 108

32

351

2

−
= + ⋅ − + ⋅

−

= + − +

=

x x x

x

Hence, From Eq. (1),

351
d .

2
F s⋅ =∫∫

Example  10:  Evaluate F n S

S

⋅∫∫ ˆ d using Gauss’ divergence theorem where 

2 ˆˆ ˆ4 3= + +xz i xyz j z kF  over the region bounded by the cone 
2 2 2

z x y= + and 

plane z = 4, above the xy plane.

Solution:  By Gauss’ divergence theorem,

 F n S F V

VS

⋅ = ∇⋅∫∫∫∫∫ ˆ d d  ... (1)

 (i)  2 ˆˆ ˆ4 3F xz i xyz j z k= + +

2

2

(4 ) ( ) (3 )

4 3

F xz xyz z
x y z

z x z

∂ ∂ ∂
∇⋅ = + +

∂ ∂ ∂

= + +

 (ii)  2d (4 3)d d d
V

F V z xz x y z∇⋅ = + +∫∫∫ ∫∫∫

B (0, 3)

A (6, 0)

Q

x + 2z = 6

O P x

z

Fig. 7.37
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O

A

q = 0

2
q =

p

O

P

z = 4

z = r

y

z

x

Q

Fig. 7.38

Putting x = r cosq, y = r sinq, z = z, equation of the cone z2 = x2 + y2 reduces to z = r, and 

dx dy dz = r dr dq dz. Along the elementary volume PQ, z varies from r to 4.

Projection of the region in rq -plane is the curve of intersection of the cone r = z and 

plane z = 4 which is a circle r = 4.

Along the radius vector OA, r varies from 0 to 4 and for the complete circle, q 

 varies from 0 to 2p.

∇⋅ = + ⋅ +

= +

∫∫∫ ∫∫∫ ===
F V z r z r z r

z r

V

z rr

d d d d( cos )

cos

4 3

2

2
4

0

4

0

2

2

θ θ

θ

θ

π

⋅⋅ +

= − + − + −





∫∫
z

z r r

r r
r

r r r

r

3 4

0

4

0

2

2
2

3

3
3

2 16
3

64 3 4

d dθ

θ

π

( )
cos

( ) ( )



∫∫ d dr θ

π

0

4

0

2

 

= + − − −






= +

∫∫ 44
64

3
3 2

3

22
64

3

2 2 3

5

0

4

0

2

2

r r r r

r

r

r

cos cos

co

θ θ θ
π

d d

ss cos

cos

θ θ θ

θ θ

π

π

⋅ − − − ⋅

= +





∫
r

r

r r
3

3

4 6

0

4

0

2

0

2

3 2

1

3 6

160
2048

9

d

d∫∫

 
2 2

0 0

2048
160 sin

9
= +

π π

θ θ

 160 2 0= ⋅ + =π

 0 320

9

= π

From Eq. (1),

 F n S

S

⋅ =∫∫ ˆ .d 320π
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Example  11:  Evaluate ( ˆ ˆ ˆ) ˆx i y j z k n S

S

2 2 2+ + ⋅∫∫ d  using Gauss’ divergence  

theorem where S is the surface of the ellipsoid  2 2 2

2 2 2
1.

x y z

a b c
+ + =

Solution:  By Gauss’ divergence theorem,

 F ndS F dV

S V

⋅ = ∇ ⋅∫∫ ∫∫∫ˆ  ... (1)

 (i)  2 2 2 ˆˆ ˆ= + +F x i y j z k

2 2 2( ) ( ) ( )

2 2 2

F x y z
x y z

x y z

∂ ∂ ∂
∇ ⋅ = + +

∂ ∂ ∂

= + +

 (ii) d

V

F V∇⋅∫∫∫ (2 2 2 )d d d
V

x y z x y z= + +∫∫∫

      Putting x = ar sinq cosf, y = br sinq sinf, z = cr cosq, equation of the ellipsoid 
2 2 2

2 2 2
1

x y z

a b c
+ + =  reduces to r = 1 and dx dy dz = abc r2 sinq dr dq df.

     For the complete ellipsoid,

r varies from 0 to 1

q varies from 0 to p
f varies from 0 to 2p

∇⋅ = + +∫∫∫ ∫∫∫ ===
F V ar br cr

V
r

d 2
0

1

00

2
[( sin cos sin sin cos )θ φ θ φ θ

θ

π

φ

π

aabc r r

a b c
r

ab

2

2 2
4

0

1

4

sin ]

( sin cos sin sin cos sin )

θ θ φ

θ φ θ φ θ θ

d d d

= + + cc

abc
a b c

d dθ φ

θ φ θ φ θ θ φ

ππ

π π

00

2

2

0

2 2

0

2

04

∫∫

= + − +sin sin sin cos cos sin
22

0

ππ
θ( )

∫ d

 

0

2

0

2

(0 0 cos sin 2 )d
4

cos2

4 2

(cos2 cos0)
8

0

abc
c

abc

abc

= + + ⋅

= −

−
= −

=

∫
p

p

q q p q

q
p

p
p

From Eq. (1),

    

F ndS

S

⋅ =∫∫ ˆ 0
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Exercise 7.5

(I) Verify Gauss’ divergence theorem for the following:

1.  
2 2 2ˆ ˆ( ) ( ) ( )F x yz i y zx j z xy= − + − + −  

over the regionk̂ R  bounded by the 

parallelepiped 0 ,0 ,0x a y b≤ ≤ ≤ ≤

,0 .z c≤ ≤

Ans.: abc a b c( )+ +[ ]

2.  ˆˆ ˆF x i y j z k= + +  over the region R 

bounded by the sphere 
2 2 2

16.x y z+ + =

Ans.: 256p[ ]

3.  2 2 ˆˆ ˆ4 2F x i y j z k= − +  over the 

region bounded by the cylinder 
2 2

4x y+ =  and the planes z = 0, z = 3.

Ans.: 84p[ ]

4.  ˆˆ ˆ2 6 3F xy i yz j zx k= + +  over the 

region bounded by the coordinate 

planes and the plane x + y + z = 2.

Ans.:
22

3








(II) Evaluate the following integrals using Gauss’ divergence theorem:

1.  ( ) ,y z i z x j z y k n dS
S

2 2 2 2 2 2
ˆ ˆ

ˆ

ˆ+ + ⋅∫∫  

where S is the part of the sphere 
2 2 2

1x y z+ + =  above the xy-plane.

12

 
  
Ans.:

p

2.  ( ) ,x y i y j xz k n dS
S

2 3 2
ˆ ˆ ˆ ˆ+ + ⋅∫∫  where 

S is the surface of the parallelepiped 

0 2,0 3,0 4.≤ ≤ ≤ ≤ ≤ ≤x y z

Ans.: 384[ ]

3.  ( ) ,4 2 2 2x i y j z k n dS
S

ˆ ˆ ˆ
ˆ− + ⋅∫∫  where 

S is the surface of the region bounded 

by 2
4 , 1, 0, 3.y x x z z= = = =

Ans.: 56[ ]

4.  ( ),
S

x dy dz y dz dx z dx dy+ +∫∫  where 

S is the part of the plane x + 2y 

+ 3z = 6 which lies in the first octant.

Ans.: 18[ ]

5.  ( ),
S

x dy dz y dz dx z dx dy+ +∫∫  where 

S is the surface of the sphere 
2 2 2( 2) ( 2) ( 2) 4x y z− + − + − = .

Ans.: 32p.[ ]

6.  2 2 3 ˆˆ ˆ(2 ),
S

xy i x y j x k+ +∫∫  where S is 

the surface of the region bounded by 

the cone 2 2
z x y= +  and the plane 

z = 4.

3072

5

 
  
Ans.:

p

7.  
3 3 3 ˆˆ ˆ( ),

S

x i y j z k+ +∫∫  where S is the 

surface of the region bounded within 
2 2 2 2

16  and 4.z x y x y= − − + =

2
(2188 1056 3)

5

 
−  

Ans.:
p

7.8  STOKES’ THEOREM

Statement: If S be an open surface bounded by a closed curve C and F  be a continuous 

and differentiable vector function, then

F r F n S
C

S

�∫ ∫∫⋅ = ∇ × ⋅d dˆ
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where n̂ is the unit outward normal at any point of the 

surface S.

Proof: Let 
1 2 3

ˆˆ ˆF F i F j F k= + +

r x i y j z k

F n S F i F j F k n S

S S

= + +

∇ × ⋅ = ∇ × + + ⋅∫∫ ∫∫

ˆ ˆ ˆ

ˆ ( ˆ ˆ ˆ) ˆd d1 2 3

                          

= ∇ × ⋅ + ∇ × ⋅

+ ∇ × ⋅

∫∫ ∫∫

∫∫

( ) ( )

( )

F i n S F j n S

F k n S

S S

S

1 2

3

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

d d

d
 ... (7.8)

Consider,

( )∇ × ⋅ =
∂
∂

+
∂
∂

+
∂
∂






×









 ⋅∫∫ ∫∫F i n S i

x
j

y
k

z
F i n

S S

1 1
ˆ ˆ ˆ ˆ ˆ ˆ

ˆd dSS

k
F

y
j

F

z
n S

S

= −
∂
∂

+
∂
∂






⋅∫∫ ˆ ˆ ˆ1 1

d

 

=
∂
∂

⋅ −
∂
∂

⋅




∫∫

F

z
j n

F

y
k n S

1 1ˆ ˆ ˆ ˆ d  ... (7.9)

Let equation of the surface S be z = f (x, y),

Then, ˆˆ ˆ

ˆˆ ˆ ( , )

r x i y j z k

x i y j f x y k

= + +

= + +

Differentiating partially w.r.t. y,

 

ˆˆ

r f
j k

y y

∂ ∂
= +

∂ ∂

Taking dot product with n̂ ,

 
ˆˆ

ˆ ˆ ˆ

r f
n j n k n

y y

∂ ∂
⋅ = ⋅ + ⋅

∂ ∂
 ... (7.10)

r

y

∂

∂
 is tangential and n̂  is normal to the surface S.

 

ˆ 0
r

n
y

∂
⋅ =

∂

Substituting in Eq. (7.10),

 

ˆˆ ˆ ˆ0

ˆ ˆˆ ˆ ˆ ˆ

f
j n k n

y

f z
j n k n k n

y y

∂
= ⋅ + ⋅

∂

∂ ∂
⋅ = − ⋅ = − ⋅

∂ ∂
 

[ ( , )]∵z f x y=

z

x

y

R

S

c

c1

Fig. 7.39
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Substituting in Eq. (7.9),

( )∇ × ⋅ =
∂
∂

−
∂
∂

⋅






−
∂
∂

⋅








∫∫ F i n S

F

z

z

y
k n

F

y
k n S

S S

1
1 1

ˆ
ˆ

ˆ
ˆ

ˆ
ˆd d∫∫∫

  
= −

∂
∂

⋅
∂
∂

+
∂
∂







⋅∫∫
F

z

z

y

F

y
k n S

S

1 1 ˆ ˆ d

 ... (7.11)

Equation of the surface is z = f (x, y).

1 1( , , ) [ , , ( , )] ( , )F x y z F x y f x y x y= = G  say

Differentiating partially w.r.t. y,

1 1
F FG z

y y z y

∂ ∂∂ ∂
= + ⋅

∂ ∂ ∂ ∂

Substituting in Eq. (7.11),

( )∇ × ⋅ = −
∂

∂
⋅∫∫∫∫ F i n S

G

y
k n S

SS

1
ˆ

ˆ
ˆ

ˆd d

Let R is the projection of S on the xy-plane and dxdy is the projection of dS on the xy-

plane, then ˆ

ˆk n S x y⋅ =d d d

Thus, ( )∇ × ⋅ = −
∂

∂∫∫ ∫∫F i n S
G

y
x y

S R

1
ˆ

ˆ d d d

 = ∫ G x
C

d
1

�  [Using Green’s theorem]

Since the value of G at each point (x, y) of C
1
 is same as the value of F

1
 at each point 

(x, y, z) of C and dx is same for both the curves C
1
 and C, we get

 
( )∇ × ⋅ = ∫∫∫ F i n S F x

C

S

1 1
ˆ ˆ d d

�  ... (7.12)

Similarly, by projecting the surface S on to yz and zx planes,

 
( )∇ × ⋅ =∫∫ ∫F j n S F y

S
C

2 2
ˆ

ˆ d d
�  ... (7.13)

and ( )∇ × ⋅ =∫∫ ∫F k n S F z

S
C

3 3
ˆ

ˆ d d
�  ... (7.14)

Substituting Eqs. (7.12), (7.13) and (7.14) in Eq. (7.8),

 

∇ × ⋅ = + + = ⋅( )∫∫ ∫ ∫F n S F x F y F z F r

S
C C

ˆ ( )d d d d d1 2 3� �

Note: If surfaces S
1
 and S

2
 have the same bounding curve C, then

 
∇ × ⋅ = ∇ × ⋅ = ⋅∫∫ ∫∫ ∫F n S F n S F r

S S

C

ˆ ˆd d d

1 2

�

Example 1:  Verify Stokes’ theorem for the vector field 2 2 ˆ ˆ( ) 2F x y i xy j− += in 

the rectangular region in the xy-plane bounded by the lines x = -a, x = a, y = 0, y = b.

Fig. 7.40

x
z

y

x y

F1
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Solution:  By Stokes’ theorem, 

 

∇ × ⋅ = ⋅∫∫ ∫F n S F r

S

C

ˆ d d
�

 (i)  ∇× =
∂

∂

∂

∂

∂

∂

−

F

i j k

x y z

x y xy

ˆ ˆ ˆ

2 2
2 0

 

= − + +

=

ˆ ( ) ˆ ( ) ˆ ( )

ˆ

i j k y y

y k

0 0 2 2

4

y

x

R

P

Q
C ′(a, b)

B (a, 0)A(−a, 0)

D(−a, b)

x = −a

y = b

y = 0

x = a

Fig. 7.41

 (ii) Surface S is the rectangle ABCD in xy-plane.

 

ˆ ˆ

ˆ ˆ
n k S

x y

n k
x y= =

⋅

=and
d d

d dd

 (iii) Let R be the region bounded by the rectangle ABCD in xy-plane. Along the 

vertical strip PQ, y varies from 0 to b and in the region R, x varies from -a to a.

 

∇ × ⋅ = ⋅

=

=

=

∫∫ ∫∫

∫∫

∫

==−

−

F n S y k k x y

y y x

y
x

S R

y

b

x a

a

b

a

a

ˆ ˆ ˆd d d

d d

d

4

4

4
2

0

2

0

22

4

2

2

b x

ab

a

a

−

=  ... (1)
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 (iv) Let C be the boundary of the rectangle ABC′D.

 F r F r F r F r F r
C AB BC C D DA

⋅ = ⋅ + ⋅ + ⋅ + ⋅∫ ∫ ∫ ∫ ∫′ ′
d d d d d

� � � � �
 ... (2)

  (a) Along AB : y = 0, dy = 0

   x varies from -a to a.

 

d d d

d

2 2

2

3

3

( ) 2

3

2

3

AB AB

a

a

a

a

F r x y x xy y

x x

x

a

−

−

 ⋅ = − + 

=

=

=

∫ ∫

∫

�

  (b) Along BC′ : x = a, dx = 0

   y varies from 0 to b.

F r x y x xy y

ay y

a
y

ab

BC BC

b

b

⋅ = − +





=

=

=

′ ′∫ ∫

∫

d d d

d

( )2 2

0

2

0

2

2

2

2
2

  (c) Along C ′D : y = b, dy = 0

   x varies from a to -a.

F r x y x xy y

x b x

x
b x

C D C D

a

a

a

a

⋅ = − +





= −

= −

=

′ ′

−

∫ ∫

∫

d d d

d

( )

( )

2 2

2 2

3
2

2

3

–

−− +
2

3
2

3
2a

ab

  (d) Along DA : x = -a, dx = 0

   y varies from b to 0.

F r x y x xy y

ay y

DA DA

b

⋅ = − +





= −

∫ ∫

∫

d ( )

( )

2 2

0

2

2

d d

d
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0
2

2

2
2

b

y
a

ab

= −

=

Substituting in Eq. (2),

d

3 3

2 2 22 2
2

3 3C

a a
F r ab ab ab⋅ = + − + +∫�

 = 4ab2 ... (3)

From Eqs. (1) and (3),

∇ × ⋅ = ⋅ =∫∫ ∫F n S F r ab

S
C

ˆ d d
2

�
4

Hence, Stokes’ theorem is verified.

Example 2:  Verify Stokes’ theorem for ˆˆ ˆ( ) ( )F x y i y z j x k= + + + − and S is the 

surface of the plane 2 2x y z+ + = which is in the first octant.

Solution:  By Stokes’ theorem, 

∇ × ⋅ = ⋅∫∫ ∫F n S F r

S

C

ˆ d d
�

 (i) 

ˆˆ ˆi j k

F
x y z

x y y z x

∂ ∂ ∂
∇× =

∂ ∂ ∂

+ + −

ˆˆ ˆ(0 1) ( 1 0) (0 1)

ˆˆ ˆ

i j k

i j k

= − − − − + −

= − + −

 (ii) Let  2x y z= + +f

ˆˆ ˆ2
ˆ

4 1 1

ˆˆ ˆ2

6

i j k
n

i j k

∇ + +
= =
∇ + +

+ +
=

f

f

 (iii) Projection of the plane 2 2 on -plane ( 0)x y z xy z+ + = =  is the triangle OAB 

bounded by the lines x = 0, y = 0, 2x + y = 2.

 (iv) d
d d

S
x y

n k
=

⋅ˆ

ˆ

d d6 x y=

Fig. 7.42

x

y

z

A(1, 0, 0)

O

B (0, 2, 0)

C ′(0, 0, 2)

2x + y = 2
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 (v) Let R be the region bounded by the triangle OAB in the xy-plane.

 Along the vertical strip PQ, y varies from 0 to (2 - 2x) and in the region R, x 

varies from 0 to 1.

∇ × ⋅ = − + − ⋅
+ +

= − + −

∫∫ ∫∫
−

F n S i j k
i j k

x y

S R

x

ˆ ( ˆ ˆ ˆ)
( ˆ ˆ ˆ)

( )

d d d
2

6
6

2 1 1
0

2 2

∫∫∫

∫= −
−

d d

d

x y

y x
x

0

1

0

2 2

0

1
2

  

d
1

0

1
2

0

2 (2 2 )

4
2

1
4 1

2

x x

x

x

= − −

= − −

 = − −  

∫

∇ × ⋅ = −∫∫ F n S

S

ˆ d 2

 

... (1)

Aliter

 

∇ × ⋅ = −

= − ∆

= − ⋅ ⋅ ⋅

= −

∫∫ ∫∫F n S x y

OAB

S R

ˆ

( )

d

Area of 

2

2

2
1

2
1 2

2

d d

 (vi) Let C  be the boundary of the triangle ABC′.

  d d d d( ) ( )F r x y x y z y x z⋅ = + + + −

 

F r F r F r F r
AB BC C A

⋅ = ⋅ + ⋅ + ⋅∫ ∫ ∫ ∫′ ′
d d d d

�

 

... (2)

  (a) Along AB : z = 0,     y = 2 - 2x

   dz = 0,     dy = –2dx

   x varies from 1 to 0.

F r x y x y z y x z

x x x x x

AB AB
⋅ = + + + −[ ]

= + − + − −[ ]

∫ ∫d d d d

d d

( ) ( )

( ) ( )( )2 2 2 2 2
11

0

1

0
3 2

∫

∫= −( )x xd

y

P

Q

2x + y = 2

O x

B (0, 2)

A (1, 0)
(0, 0)

R

Fig. 7.43



7.8  Stokes’ Theorem        7.69

             

0
2

1

3 2
2

3
2

2

1

2

x

x= ⋅ −

= − +

=

  (b) Along BC ′ : x = 0,  y + z = 2

  dx = 0,      dz = -dy

 y varies from 2 to 0.

 

F r x y x y z y x z

y

y

BC BC
⋅ = + + + −[ ]

=

=

= −

′ ′∫ ∫

∫

d d d d

d

( ) ( )

2

2

4

2

0

2

0

  (c) Along C′A : y = 0,  2x + z = 2

   dy = 0,    dz = -2dx

 x varies from 0 to 1.

F r x y x y z y x z

x x x x

x x

C A C A
⋅ = + + + −[ ]

= − −[ ]

=

′ ′∫ ∫

∫

d d d d

d d

d

( ) ( )

( )2

3

0

1

0

1

∫∫

=

=

3
2

3

2

2

0

1
x

Substituting in Eq. (2),

 
d

1 3
4

2 2C

F r⋅ = − +∫�
 2= −  ... (3)

From Eqs. (1) and (3),

 
∇ × ⋅ = ⋅ = −∫∫ ∫F n S F r

S

C

ˆ d d
�

2

Hence, Stokes’ theorem is verified.

Example  3:  Verify Stokes’ theorem for 2 ˆˆ ˆF x z i y j x y k= + + where S is the 

surface of the region bounded by y = 0, z = 0 and 4 2 4x y z+ + =  which is not 

included in the yz-plane. 
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Solution:  By Stokes’ theorem,

∇ × ⋅ = ⋅∫∫ ∫F n S F r

S

C

ˆ d d
�

x

y

z

A (1, 0, 0)

O

B (0, 4, 0)

C ′(0, 0, 2)

Fig. 7.44

 (i)  

2

ˆˆ ˆi j k

F
x y z

xz y xy

∂ ∂ ∂
∇× =

∂ ∂ ∂

 

2

2

ˆˆ ˆ(2 0) ( ) (0 0)

ˆ ˆ2 ( )

i xy j y x k

xy i x y j

= − − − + −

= + −

 (ii) Surface S consists of three surfaces, y = 0, z = 0 and 4x + y + 2z = 4.

 

∇ × ⋅ = ∇ × ⋅ + ∇ × ⋅ + ∇ × ⋅∫∫ ∫∫ ∫∫ ∫∫F n S F n S F n S F n S

S S S S

ˆ ˆ ˆ ˆd d d d

1 2 3  

... (1)

  (a) Surface S
1
 (DOAC'): y = 0, ˆ ˆ .n j S x z= − = and d d d

  Let R
1
 be the region bounded by the DOAC'. Along the vertical strip 

1 1
,PQ z  

varies from 0 to 2 - 2x and in the region R
1
, x 

varies from 0 to 1. 

  

∇ × ⋅ = − −

= − =[ ]

= −

∫∫ ∫∫

∫∫
−

F n S x y x z

x x z y

x z

S R

x

1 1

2

0

2 2

0

1

0

2

0

ˆ ( )

( )

d d d

d d ∵

−−
∫

2

0

1 x
xd

Fig. 7.45

z

P1

Q1

O x

C ′(0, 0, 2)

A(1, 0, 0)

2x + z = 2
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d

1

0

13
2

0

(2 2 )

2

3

2
1

3

1

3

x x x

x

x

= − −

= − −

 = − −  

= −

∫

  (b)  Surface S
2
 (DOAB): z = 0, ˆn̂ k= −  and 

dS = dx dy.

    Let R
2
 be the region bounded by the 

OAB∆ . Along the vertical strip P
2
 Q

2
, y 

varies from 0 to 4 - 4x and in the region 

R
2
, x varies from 0 to 1.

        

∇ × ⋅ = + −



 ⋅

=

∫∫ ∫∫F n S i y j k x y

S R

ˆ ˆ ( ) ˆ (– ˆ)d d d

2 2

2

0

2
xy x

  (c) Surface S x y z3 4 2 4( ) :+ + =

 Let 4 2x y z= + +f

 

ˆ

ˆˆ ˆ4 2

16 1 4

ˆˆ ˆ4 2

21

n

i j k

i j k

∇
=
∇

+ +
=

+ +

+ +
=

f

f

Projection of the plane 4 2 4x y z+ + =  on xy-plane is the triangle OAB. 

     

d
d d

d dS
x y

n k
x y=

⋅

=

ˆ ˆ

21

2

Let R
3
 be the region bounded by the .OAB∆  Along the vertical strip P

2
Q

2
, y varies 

from 0 to 4 - 4x and x varies from 0 to 1. 

∇ × ⋅ = + −



 ⋅

+ +




∫∫ ∫∫F n S xy i x y j
i j k

S R3 2

2
4 2

21

21

2

2ˆ ˆ ( ) ˆ
ˆ ˆ ˆ

d dxx yd

−1

Fig. 7.46

y

P2

Q2

O x

B (0, 4, 0)

A(1, 0, 0)

4x + y = 4
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xy x y y x

x
y

xy
y

x

x

x

d d

d

= + −

= + −

−

−

∫∫

∫

1

2
8

1

2
8

2 3

2

0

4 4

0

1

2 3

0

1

0

4 4

( )

 

= − + − −
−









= − +

∫
1

2
4 4 4 4 4

4 4

3

1

2

256

3
196 13

2
3

0

1

3 2

x x x x

x

x

x x

( ) ( )
( )

d

22
64

30

1
x x−



∫ d

 

1
4 3 2

0

1 256 64
196 132

2 3 4 3 2 3

1 64 196 64
66

2 3 3 3

1

3

x x x

x= ⋅ − + −

 = − + −  

=

Substituting in Eq. (1), 

 

∇ × ⋅ = − + + =∫∫ F n S

S

ˆ d
1

3
0

1

3
0

 

... (2)

 (iii) Since the surface S does not include the yz-plane, it is open on the yz-plane. 

∆ ′OBC  is the boundary of the surface S.

 Let C be the boundary of the ∆ ′OBC  bounded by the lines y = 0, z = 0, y + 2z = 4. 

 

F r F r F r F r
C C O OB BC

⋅ = ⋅ + ⋅ + ⋅∫ ∫ ∫ ∫′ ′
d d d d

�

 

... (3)

 
d d d d d

2
F r xz x y y xy z y y⋅ = + + =

 
∵x x= =[ ]0 0,d

  (a) Along C′O : y = 0 dy = 0

   z varies from 2 to 0.

F r y y
C O

⋅ = =∫∫ ′
d d

2

0

0

  (b)  Along OB : z = 0, dz = 0

y varies from 0 to 4.

          

d d

4
2

4

0

0

8
2

OB

y
F r y y⋅ = = =∫ ∫

 (c)  Along BC': y = 4 - 2z, dy = -2 dz

 z varies from 0 to 2.

F r y y

z z

BC
⋅ =

= − −

′∫ ∫

∫

d d

d

0

2

0

2
4 2 2( ) ( )
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z

z
= − −

= − −

= −

2

0

2

4 2
2

4 4 2

8

( )

Substituting in Eq. (3),

d 0 8 8 0
C

F r⋅ = + − =∫�  ... (4)

From Eqs. (2) and (4), 

∇ × ⋅ = ⋅ =∫∫ ∫F n S F r

S

C

ˆ d d 0
�

Hence, Stokes’ theorem is verified.

Example 4:  Verify Stokes’ theorem for ˆ ˆ ˆ4 4 3F y i x j k= − + , where S is a disk of 

1-unit radius lying on the plane z = 1 and C is its boundary.

Solution:  By Stokes’ theorem, 

∇ × ⋅ = ⋅∫∫ ∫F n S F r

S

C

ˆ d d
�

where S is the surface of the disk of 1-unit radius  lying 

on the plane z = 1 and C is the circle
2 2

1x y+ = .

 (i) 

ˆˆ ˆ

4 4 3

i j k

F
x y z

y x

∂ ∂ ∂
∇× =

∂ ∂ ∂

−

ˆˆ ˆ(0 0) (0 0) ( 4 4)

ˆ8

i j k

k

= − − − + − −

= −

 (ii) Since disc lies on the plane z = 1, parallel to the xy-plane, 

 
ˆn̂ k=

 (iii) Projection of the disc in the xy-plane is the circle 
2 2

1x y+ = .

 (iv) d
d d

S
x y

n k
=

⋅| |ˆ
ˆ

d dx y=

 (v) Let R be the region bounded by the circle 2 2
1x y+ = in the xy-plane.

∇ × ⋅ = − ⋅

= −

∫∫ ∫∫

∫∫

F n S k k x y

x y

S R

R

ˆ ( ˆ) ˆd d d

d d

8

8

z

O
y

C ′(0, 0, 2)

B(0, 4, 0)

y + 2z = 4
y = 0

z = 0
(0, 0, 0)

Fig. 7.47

Fig. 7.48 

z

yO

z = 1

x
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Putting x = r cosq ,  y = r sinq,

equation of the circle 2 2
1x y+ =

reduces to r = 1 and d d d dx y r r= q .

Along, the radius vector OA, r varies from 0 

to 1 and for a complete circle, q varies from 

0 to 2p.

  

∇× ⋅ = −

= −

∫∫ ∫∫F n S r r

r

S

ˆ d d d8

8
2

0

1

0

2

0

2

2

0

1

θ

θ

π

π

 (1)

Aliter

   

∇ × ⋅ = −

= −

= −

= −

∫∫ ∫∫F n S x y

S R

ˆ

( )

( )

d d d8

8

8 1

8

2

Area of the circle

π

π

 (vi) C is the boundary of the disc, i.e., the circle 2 2
1x y+ = lying on the plane z = 1.

 

d d d d

d d

d d d

4 4 3

4 4

(4 4 )
C C

F r y x x y z

y x x y

F r y x x y

⋅ = − +

= −

⋅ = −∫ ∫� �  

∵z z= =[ ]1 0, d

Parametric equation of the circle is 

 

x y

x y

= =

= − =

cos , sin

sin , cos

θ θ

θ θ θ θd d dd

For the complete circle, q varies from 0 to 2p.

F r
C

⋅ = − −[ ]

= −

= −

∫ ∫

∫

d d d

d

�
4 4

4

4

0

2

0

2

0

2

sin ( sin ) cos (cos )θ θ θ θ θ θ

θ

θ

π

π

π

 8= − p  ... (2)

From Eqs. (1) and (2), 

∇× ⋅ = ⋅ = −∫∫ ∫F n S F r

S

C

ˆ d d
�

8π

Hence, Stokes’ theorem is verified. 

Example 5:  Verify Stokes’ theorem for 2 2 ˆˆ ˆ( 4) 3 (2 )F x y i xy j xz z k= + − + + +

over the surface of the sphere 2 2 2
16x y z+ + =  above xy-plane. 

Fig. 7.49

O

y

x

A

r = 1
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Solution:  By Stokes’ theorem, 

∇ × ⋅ = ⋅∫∫ ∫F n S F r

S

C

ˆ d d
�

    

(i)

 

2 2

ˆˆ ˆ

4 3 2

i j k

F
x y z

x y xy xz z

∂ ∂ ∂
∇× =

∂ ∂ ∂

+ − +

ˆˆ ˆ(0 0) (2 0) (3 1)

ˆˆ2 (3 1)

i j z k y

z j y k

= − − − + −

= − + −

  (ii) Let 2 2 2
x y z= + +f

 

2 2 2

ˆ

ˆˆ ˆ2 2 2

4 44

ˆˆ ˆ

4

n

x i y j z k

x y z

x i y j z k

∇
=
∇

+ +
=

+ +

+ +
=

f

f

 
∵x y z

2 2 2
16+ + = 

(iii)  Let R be the projection of the hemisphere 
2 2 2

16x y z+ + =  on the xy-plane (z = 0) 

which is a circle, x y
2 2

16+ = .

(iv) d
d d

S
x y

n k
=

⋅| |ˆ ˆ

 

4d dx y

z
=

(v) ∇ × ⋅

= − + −  ⋅
+ +






∫∫

∫∫

F n S

z j y k
x i y j z k x y

z

S

R

ˆ

ˆ ( ) ˆ
ˆ ˆ ˆ

d

d d
2 3 1

4

4

 
[ ] d d

2 (3 1)

( 1)d d

R

R

x y
zy y z

z

y x y

= − + −

= −

∫∫

∫∫

 Putting x = r cosq, y = r sinq, equation of the circle 2 2
16x y+ =  reduces to 

r = 4 and dx dy = r dr dq .

 Along the radius vector OA, r varies from 0 to 4 and for the complete circle, q  

varies from 0 to 2p. 

x

y

z

O

Fig. 7.50

Fig. 7.51

y

xO

A

r = 1
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∇× ⋅ = −

= − −

=

∫∫ ∫∫F n S r r r

r r

S

ˆ ( sin )

cos

d d dθ θ

θ θ

π

π π

1

3 2

0

4

0

2

3

0

4

0

2
2

0

4

0

2

−− − − ⋅
4

3
2 0

16

2
2

3

(cos cos )π π

 = - 16p ... (1)

(vi) The boundary C of the hemisphere S is the circle 2 2
4x y+ = in xy-plane (z = 0).

 

2 2

2

2

d ( 4)d 3 d (2 )d

( 4)d 3 d

d ( 4)d 3 d
C C

F r x y x xy y xz z z

x y x xy y

F r x y x xy y

⋅ = + − + + +

= + − +

 ⋅ = + − + ∫ ∫� �  

∵z z= =[ ]0 0,d

Parametric equation of the circle 
2 2

4x y+ =  is

4cos , 4sin

d 4sin d , d 4cos d

x y

x y

= =

= − =

q q

q q q q

For the complete circle, q varies from 0 to 2p .

F r
C

⋅ = + − − + ⋅ ⋅∫ ∫d� ( cos sin )( sin ) ( cos sin )( c16 4 4 4 3 4 4 42

0

2

θ θ θ θ θ θ
π

d oos )

( cos sin sin sin cos sin )

θ θ

θ θ θ θ θ θ θ

d

d







= − − + +64 16 16 1922 2 2

00

2

2

0

2

0

2

16 2 0 2

π

π
θ θ

∫

∫ ∫= − − = − = −





= −

sin ( ) , ( ) ( )d if∵ f a x f a x f x
a

116
1 2

2

8
2

2

16

0

2

0

2

−





= − −

= −

∫
co

sin

s θ
θ

θ
θ

π

π

π

d

From Eqs. (1) and (2), 

... (2)

 

∇× ⋅ = ⋅ = −∫∫ ∫F n S F r

S

C

ˆ d d
�

16π

Hence, Stokes’ theorem is verified.

Example  6:  Verify Stokes’ theorem for ˆˆ ˆF yi zj xk= + +  over the surface 
2 2

1 , 0.x y z z+ = − >

Solution:  By Stokes’ theorem, 

∇× ⋅ ⋅∫∫ ∫F n S F r

S
C

ˆ d d=
�
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    (i) 

ˆˆ ˆi j k

F
x y z

y z x

∂ ∂ ∂
∇× =

∂ ∂ ∂

ˆˆ ˆ(0 1) (1 0) (0 1)

ˆˆ ˆ( )

i j k

i j k

= − − − + −

= − + +

  (ii) Let  2 2
x y z= + +f

2 2

ˆ

ˆˆ ˆ2 2

4 4 1

n

x i y j k

x y

∇
=
∇

+ +
=

+ +

f

f

(iii)  Let R be the projection of the surface 2 2
1x y+ =  - z on the xy-plane (z = 0) 

which is a circle 2 2
1.x y+ =

(iv) d
d d

S
x y

n k
=

⋅ˆ ˆ

2 2
4 4 1 d dx y x y= + +

   (v) ∇ × ⋅∫∫ F n S

S

ˆ d

= − + + ⋅
+ +

+ +
+ +

= − +

∫∫ ( )
( )

(

i j k
x i y j k

x y
x y x y

x

R

ˆ ˆ ˆ

ˆ ˆ ˆ2 2

4 4 1
4 4 1

2

2 2

2 2 d d

22 1

12 2

y x y

x r y r x y

R

+

= = + =

∫∫ )

cos , sin ,

d d

Putting circle reducesθ θ   to  and d d d dr x y r r= =1 θ

Along the radius vector OA, r varies from 0 to 1 and for the complete circle, q varies 

from 0 to 2p .

∇× ⋅ = − + +

= − +

∫∫∫∫ F n S r r r r

r

S

ˆ ( cos sin )

(cos sin )

d d d2 2 1

2
3

0

1

0

2

3

θ θ θ

θ

π

00

1
2

0

1

0

2

2
+













∫

rπ
θd

 

= − + +







= − − +

∫
2

3

1

2

2

3

1

2

0

2

0

2

(cos sin )

(sin cos )

θ θ θ

θ θ θ

π

π

d

Fig. 7.52

y

x

C

O

z

y

xO

A

C

r = 1

Fig. 7.53
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2
(sin 2 cos2 sin 0 cos0)

3
= − − − + −p p p

 = –p ... (1)

 (vi)  The boundary C of the surface 
2 2

1x y z+ = −  is the circle 2 2
1x y+ =  in the 

xy-plane (z = 0).

[ ]
d d d d

d 0,d 0

d d
C C

F r y x z y x z

y x z z

F r y x

⋅ = + +

= = =

⋅ =∫ ∫

∵

� �

Parametric equation of the circle x y
2 2

1+ =  is 

cos , sin

d sin d , d cos d

x y

x y

= =

= − =

q q

q q q q

For the complete circle, q varies from 0 to 2p.

F r
C
�∫ ∫

∫

⋅ = −

= −
−





d d

d

sin ( sin )

cos

θ θ θ

θ
θ

π

π

0

2

0

2 1 2

2

= − −

= − − −





= −

1

2

2

2

1

2
2

4

2
0

0

2

θ
θ

π
π

π

π
sin

sin

  ... (2)

From Eqs. (1) and (2),

 

∇× ⋅ = ⋅ =∫∫∫ F n S F r
C

S

ˆ d d
�

–π

Hence, Stokes’ theorem is verified. 

Example 7:  Evaluate by Stokes’ theorem ( d 2 d d )x

C
e x y y z+ −∫� , where C is the 

curve 2 2
4, 2.x y z+ = =

Solution:  By Stokes’ theorem,

∇ × ⋅ = ⋅∫∫∫ F n S F r
C

S

ˆ d d
�

 

∇ × ⋅ = + −∫∫ ∫F n S e x y y z
S

x

C
ˆ ( )d d d d2

�

 

... (1)
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  F e i y j k

F

i j k

x y z

e y

i j k

x

x

= + −

∇× =
∂

∂

∂

∂

∂

∂

−

= − − − +

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ( ) ˆ( ) ˆ

2

2 1

0 0 0 0 (( )0 0

0

−

=

Substituting in Eq. (1),

 

( d 2 d d ) 0x

C
e x y y z+ − =∫�

Example 8:  Evaluate ∇ × F( )⋅∫∫ n̂ S

S

d  for the vector field 2 2 2 ˆ(2 3 )F y z x i= + − +

2 2 2 2 2 2 ˆˆ(2 3 ) (2 3 )z x y j x y z k+ + − + + −  over the part of the sphere 2 2 2
2x y z+ + −  

2 0ax az− + =  cut off by the plane z = 0.

Solution:  By Stokes’ theorem,

 

∇ × ⋅ = ⋅∫∫∫ F n S F r
C

S

ˆ d d
�

 

... (1)

  (i) 2 2 2 2 2 2 2 2 2d (2 3 )d (2 3 )d (2 3 )dF r y z x x z x y y x y z z⋅ = + − + + − + + −

 (ii) Let C be the boundary of the part of the sphere x y z ax az
2 2 2

2 0+ + + =–  cut 

off by the plane z = 0, which is a circle, x y ax x a y a
2 2 2 2 22 0+ − = − + =, ( ) .

Fig. 7.54

A

x

y

(2a, 0)
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Parametric equation of the circle

 

cos , sin

d sin d , d cos d

x a a y a

x a y a

− = =

= − =

q q

q q q q

For the complete circle, q varies from 0 to 2p.

 

F r y x x x y y z z

a a

C C
⋅ = − + −  = =[ ]

= −

∫ ∫d ( )d d d� � ∵2 3 0 0

2

2 2 2 2

2 2

( ) ,

sin θ ++( ){ } −

+ +( ) −{ }
∫ a a

a a a a

cos ( sin )

cos sin ( cos

θ θ θ

θ θ θ θ

π
2

0

2

2 2 23

d

d )).

( sin sin sin cos cos sin

cos cos



= − + + +

+ +

∫a3 3 2

0

2

3

2 2

3 3

θ θ θ θ θ θ

θ θ

π

++ −6 2 2cos sin cos )θ θ θ θd

 

= +

+ −

= −∫2 3 3

6

0 23 3

0

2 2

a f f a( cos cos

cos sin cos

( ) , (θ θ

θ θ θ θ

θ θ
π

)d

d if ∵ θθ θ

θ θ θ θ

) ( )

( ) , ( ) ( )

= −

= − =

















∫

∫

f

f f a f

a

a

0

2

0
2 2d if

= − = −[ ]

=
+





∫

∫

4 6

24
1 2

2

3 2

0

2

3

0

2

a

a

cos cos( ) cos

cos

q q p q q

q
q

p

p

d

d

∵

 

= +

= +
−





=

12
2

2

12
2

0

2

6

3

0

2

3

3

a

a

a

θ
θ

π π

π

π

sin

sin

From Eq. (1),

3
ˆ d 6

S

F n s a∇ × ⋅ =∫∫ p

Example 9:  Evaluate by Stokes’ theorem (4 d 2 d 6 d )
C

y x z y y z+ +∫� where C is 

the curve of intersection of the sphere 2 2 2
6x y z z+ + =  and the plane z = x + 3.

Solution:  By Stokes’ theorem,

 

∇ × ⋅ = ⋅∫∫∫ F n S F r
C

S

ˆ d d
�

 

... (1)

(i)   d 4 d 2 d 6 dF r y x z y y z⋅ = + +
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 ∴

ˆ ˆˆ ˆ ˆ ˆ(4 2 6 ) ( d d d )

ˆˆ ˆ 4 2 6

y i z j y k i x j y k z

F y i z j y k

= + + ⋅ + +

= + +

    

ˆˆ ˆ

4 2 6

ˆˆ ˆ(6 2) (0 0) (0 4)

ˆˆ4 4

i j k

F
x y z

y z y

i j k

i k

∂ ∂ ∂
∇× =

∂ ∂ ∂

= − − − + −

= −

  (ii)  Normal to the surface which is bounded by the curve of intersection of the 

sphere x y z z z x
2 2 2 6 3+ + = = + and the plane  is also normal to the plane 

3.z x= +

Let x zφ = −

ˆ

ˆ ˆ

n

i k

S x z

=
∇

∇

=
−

=

φ

φ

2

d d d

(iii)  Let C be the curve of intersection of x2 + y2 + z2 = 6z and z = x + 3 which is a circle 

x2 + z2 = 6z (since y = 0 on xz-plane). 

 (iv) Let R be the region bounded by the circle 2 2
6 0x z z+ − =  with 3-unit radius.

Fig. 7.55

P

C

z

xO

(0, 3)

∇× ⋅ =
+

=

∫∫∫∫

∫∫

F n S x z

x z

RS

ˆ d d d

d d

4 4

2

4 2

            

= ∫∫ x z

R

d d4 2
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Putting cos , sin ,x r z r= =q q  the equation of the circle 2 2
6x z z+ =  reduces to 

r = 6 sinq  and d d d dx y r r= q . Along the radius vector OP, r varies from 0 to 6 sinq 

and for the complete circle, q varies from 0 to p.

 

∇× ⋅ =

=

=

∫∫ ∫∫

∫

F n S r r

r

S

ˆ

sin

sin

sin

d d d

d

d

4 2

4 2
2

4 2

2
36

0

6

0

2

0

6

0

2

θ

θ

θ

θπ

θ
π

θθ
π

0
∫

0

0

36 2 (1 cos2 )d

sin 2
36 2

2

sin 2
36 2

2

36 2

π
= −

= −

 = −  

=

∫
p

q q

q
q

p
p

p

Aliter 

    

 d d d

Area of the circle 

∇× ⋅ =

= ( )

= ⋅

=

∫∫ ∫∫F n S x z

C

S R

ˆ

( )

4 2

4 2

4 2 3

3

2π

66 2π
From Eq. (1),

 
d 36 2

C

F r⋅ =∫� p

Example 10:  Using Stokes’ theorem, find the work done in moving a particle 

once around the perimeter of the triangle with vertices at (2, 0, 0), (0, 3, 0) and 

(0, 0, 6) under the force field ˆˆ ˆ( ) (2 ) ( ) .F x y i x z j y z k= + + − + +

Solution:  Work done d
C

F r= ⋅∫�
By Stokes’ theorem,

F r F n S
C

S

⋅ = ∇ × ⋅∫ ∫∫�
d dˆ

Thus, work done = ∇ × ⋅∫∫ F n S

S

ˆ d

where S is the surface of the ABC∆ .

Equation of the ABC∆  is
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1
2 3 6

3 2 6

x y z

x y z

+ + =

+ + =

 (i)     

ˆˆ ˆ

2

i j k

F
x y z

x y x z y z

∂ ∂ ∂
∇× =

∂ ∂ ∂

+ − +

 

ˆˆ ˆ(1 1) (0 0) (2 1)

ˆˆ2

i j k

i k

= + − − + −

= +

 (ii) Let  φ = + +3 2x y z

 

ˆ

ˆˆ ˆ3 2

9 4 1

ˆˆ ˆ3 2

14

n

i j k

i j k

∇
=
∇

+ +
=

+ +

+ +
=

f

f

 (iii) Projection of ABC∆  on the xy-plane is the OAB∆  bounded by the lines y = 0, 

3x + 2y = 6, x = 0.

 

d
d d

d d

S
x y

n k

x y

=

⋅

=

ˆ ˆ

14

 (iv) Let R be the region bounded by the .OAB∆  Along the vertical strip PQ, y var-

ies from 0 to 
6 3

2

x−

 and in the region R, x varies from 0 to 2.

∇ × ⋅ = + ⋅
+ +






=

∫∫∫∫
−

F n S i k
i j k

x y

y x

RS

ˆ ( ˆ ˆ)
ˆ ˆ ˆ

d d d

d d

2
3 2

14
14

7
0

6 3xx

x

y x

x
x

2
0

2

0

6 3

2
0

2

0

2

7

7
6 3

2

∫∫

∫

∫

=

=
−





−
d

d

            

= −

=

7 3
3

4

21

2

0

2

x
x

Fig. 7.56

z

y

x

C (0, 0, 6)

A (2, 0, 0)

B (0, 3, 0)

O (0, 0, 0)

Fig. 7.57

y

Q

P xA (2, 0, 0)

B (0, 3, 0)

O

(0, 0, 0)

3x + 2y = 6
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Aliter

      

=

∇ × ⋅ = ∫∫∫∫

21

7F n S x y
RS

ˆ d d d

= ∆( )

= ⋅ ⋅ ⋅

=

7

7
1

2
2 3

21

Area of OAB

Example  11:  Evaluate ∇ × ⋅∫∫ F n S

S

ˆ d  using Stokes’ theorem, where F y z i= ˆ 

x y j x z k S+ + − + +ˆ ˆ ˆ( ) ( )2 1 2
2

 and  is the surface of intersection of the cylinders 
2 2 2 2 2 2

 and x y a x z a+ = + =  in the positive octant.

Solution:  By Stokes’ theorem,

           ∇ × ⋅ = ⋅∫∫∫ F n S F r
C

S

ˆ d d
�  ... (1)

z

y

x

B (0, a, a)

E (a, 0, 0)

A (0, a, 0)

D (0, 0, a)

x2 + y2 = a2

x2 + z2 = a2

Fig. 7.58

  (i)  F r yz x x y y x z z⋅ = + + − + +d d d d( ) ( )2 1 22

(ii)  C is EABDE which is the boundary of the surface of intersection of the cylinders 
2 2 2 2 2 2

 and x y a x z a+ = + =  in the positive octant. 

d d d d d
EA AB BD DE

C

F r F r F r F r F r⋅ = ⋅ + ⋅ + ⋅ + ⋅∫ ∫ ∫ ∫ ∫�
 ... (2)

 (a) Along EA: 2 2 2
0,z x y a= + =

dz = 0

   Putting   cos , sin

d sin d , d cos d

x a y a

x a y a

= =

= − =

q q

q q q q
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Along EA, q varies from 0 to 

2

p

.

F r yz x x y y x z z

a a a

EA EA∫ ∫⋅ = + + − + +( ) 

= + −

d d d d( )

( cos sin )

2 1 2

2 1

2

θ θ ccos

cos sin cos cos

,

θ θ

θ θ θ θ θ

π

π

d

( )d

0

2

2 2 2

0

2

2

2

2
1

2

3

2

1

2

∫

∫= + −

= ⋅

a a a

a B





+ ⋅ ( ) −a B a

2

0

2
1

2
1 1, sinθ

π

     

2

2

2

2

2 2

3 1

1 12 2
sin sin 0

2 22 2

1

2 2

2 2

a

a a

a

a a

a a

a

 = + − −  

= ⋅ + −

= + −

p

p

p

 (b) Along AB:    0,x y a= =

 

d d

 varies from 0 to 

x y

z a

= =0 0,

.

F r yz x x y y x z z

z z

z

a

AB AB

a

a

⋅ = + + − + + 

=

=

=

∫ ∫

∫

d d d d

d

( ) ( )2 1 2

2

2

0

2

0

2

2

 (c) Along BD:   0,x z a= =

 

d d

 varies from  to 0.

x z

y a

= =0 0,

F r yz x x y y x z z

y y

y
y

BD BD

a

a

⋅ = + + − + + 

= −

= −

∫ ∫

∫

d d d d

d

( ) ( )

( )

2 1 2

1

2

2

0

2 00

2

2
= − +

a
a.

Fig. 7.59

y

x

A (0, a)

E (a, 0)
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 (d) Along DE:   
2 2 2

0,y x z a= + =

 
d 0y =

Putting  cos , sin

d sin d , d cos d

x a z a

x a z a

= =

= − =

q q

q q q q

Along DE, q varies from 
2

p

 to 2p.

F r yz x x y y x z z

a a

DE DE∫ ∫⋅ = + + − + + 

= +

d d d d( ) ( )

( cos sin ) (

2 1 2

2

2

2 2 θ θ aa

a a

a
a

cos )

( cos sin cos )

(cos cos

θ θ

θ θ θ θ

θ

π

π

π

π

d

d

2

2

2 3

2

2

2

2

4
3 3

∫

∫= +

= + θθ θ θπ

π

) sin+






∫ 2
2

2

d

  

= + + −
a

a

3

2

2

2

2

2

4

3

3
3

2

2

sin
sin

cosθ
θ

θ

π

π

π

π

  

= + − −




− −

=

a a

a

3 2

3

4

6

3
3 2

1

3

3

2
3

2 2
4

sin
sin sin sin (cos cos )

π
π

π π
π π

44

1

3
3

2
1 1

2

3

2

3
2

−




− +

= − −

a

a

a

( )

Substituting in Eq. (2), 

2 2 2 3

2 2

2 3

2
d

2 2 2 3

2

2 3

C

a a a a
F r a a a a

a a

⋅ = + − + − + − −

= −

∫
p

p

From Eq. (1), 

∇× ⋅ = −∫∫ F n S
a a

S

ˆ .d
π 2 3

2

2

3

Fig. 7.60

z

x

D (0, a)

E (a, 0)
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Exercise 7.6 

(I) Verify Stoke’s theorem for the following vector point functions:

1.  F x
yz

i
xz

y j

x y z k S

= +






+ +






+

3
2 2

2

2 2
ˆ ˆ

( ) ˆover the surface oof the

cube
 0 3 0 3

0 3

≤ ≤ ≤ ≤
≤ ≤

x y

z

, ,

.

 

[Ans.: 0]

2.  
2 ˆˆ ˆF x z i y j y x k= + +  over the sur-

face S of the tetrahedron bound-

ed by the planes y = 0, z = 0 and 

4 2 4x y z+ + =  above the yz-plane.

Ans. : 0[ ]

3.  
4

3 3 2 ˆˆ ˆ4 ( )
4

z
F x i x j x z z k

 
= + + + +  

 

over the upper half surface S of the 

sphere 
2 2 2

1.x y z+ + =

Ans. : 4p[ ]

4.  2 ˆˆ ˆ( 2) 2 4 xF x y i xy j ze k= + + + +  

over the surface S of the paraboloid 
2 29 ( )z x y= − +  above xy-plane.

Ans. : −[ ]9p

(II) Evaluate the following integrals using Stokes’ theorem:

1.  ∇ × ⋅ = + +

+ − +

∫∫ F n S F x y z i

xy j xyz z k S
S

ˆ ( ) ˆ

ˆ ( ) ˆ

d  where 2

32 3 and isthe

 

 surface of the hemisphere 
2 2 2

9x y z+ + =  above the xy-plane.

Ans. : −[ ]9p

2.  ∇ × = −

+

∫∫ F n S

S

S

F y i xz j

yz k

⋅ ˆ ˆ ˆ

ˆ

d  where 

and is the surfaceof t

3

2
hhe

 

paraboloid 
2 2

2x y z+ =  bounded by

the plane z = 2 and C is its boundary 

 traversed in the clockwise direction. 

Ans. : 20p[ ]

 3.  ( d d d )
C

y x z y x z+ +∫  where C is 

the curve of intersection of the sphere 
2 2 2 2

x y z a+ + =  and the plane 

.x z a+ =

2

.
2

a −
 
 
Ans. :

p

(III) For the vector field: 

1.  
2 2 2 2

ˆ ˆ
y x

F i j
x y x y

= − +

+ +

 over the  

surface of the sphere 
2 2 2

1x y z+ + =  

above the xy-plane, evaluate

 (i) ∇ × ⋅∫∫ F n S

S

ˆ d  (ii) d ,
C

F r⋅∫�  where 

C is the boundary of S. Are the  results 

compatible with Stokes’ theorem?

Ans. : ( ) ( ) ( )i ii iii no0 2p[

 since ∇ × ⋅ ≠ ⋅∫∫∫ F n S F r
C

S

ˆ d d
�

 Also 

in this case, Stokes’ theorem cannot 

be applied since at (0, 0) which is 

inside C, F  is neither continuous nor 

differentiable]. 
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Integral  
Formulae

Appendix1
 1. x x

n

d∫  = x

n

n+

+

1

1

(n ≠ –1)

 2. 1

x

x∫ d  = log | x |

 3. e x
x

d∫  = ex

 4. a x
x

d∫  = 
a

a

x

log
, a > 0, a ≠ 1

 5. sin x xd∫  = – cos x

 6. cos x xd∫  = sin x 

 7. tan x xd∫  = –log cos x

 8. cot x xd∫  = log sin x

 9. sec x xd∫  = log (sec x + tan x)

 10. cosec x xd∫  = log (cosec x – cot x)

 11. sec
2
x xd∫  = tan x

 12. cosec
2
x xd∫  = – cot x

 13. sec tanx x xd∫  = sec x

 14. cosec x x xcot d∫  = –cosec x

 15. 1

2 2
a x

x

−
∫ d  = sin–1

x

a







 16.  
1

2 2
x a

x

−
∫ d  = 

log ( )x x a+ −
2 2

 = cosh–1
x

a







 17.  
1

2 2
x a

x

+
∫ d  = 

log ( )x x a+ +
2 2

 = sinh–1 x

a







 18. 
1

2 2
a x

x

−∫ d  = 
1

2a

a x

a x

log
+
−







  = 
1 1

a

x

a

tanh
− 



 , x2 < a2

 19. 
1

2 2
x a

x

−∫ d  = 
1

2a

x a

x a

log
−
+







  = − 





−1 1

a

x

a

coth , x2 > a2

 20. 
1

2 2
a x

x

+∫ d  = 
1

1

a

x

a

tan
− 





 21. a x x
2 2−∫ d

  = x a x

a x

a2 2

2 2

2

1− + 





−
sin

 22. a x x
2 2+∫ d

 = 
x

a x

a

x x a

2 2

2 2
2

2 2
+ + + +log( )



A.2 Appendix 1 Integral Formulae

 23. x a x
2 2−∫ d

= 
x

x a

a

x x a

2 2

2 2
2

2 2
− − + −log( )

 24. e bx x
ax∫ sin d

  = e

a b

ax

2 2
+

 (a sin bx – b cos bx)

 25. e bx x
ax∫ cos d

  = e

a b

ax

2 2
+

 (a cos bx + b sin bx)

 26. uv xd∫  = u v x

u

x

v x xd
d

d
d d∫ ∫∫− 





 27. [ ( )] ( )f x f x xn ′∫ d

  = 
[ ( )]f x

n

n+

+

1

1
, n ≠ –1

 28. 
′

∫
f x

f x
x

( )

( )
d  = log | f (x) |

 29. e f x xf x( ) ( )′∫ d  = e f (x)

 30. e f x f x xx [ ( ) ( )]+ ′∫ d  = ex f (x)

 31. sin[ ( )] ( )f x f x x′∫ d  = – cos f (x)

 32. cos[ ( )] ( )f x f x x′∫ d  = sin f (x)

 33. f x x

a

( )d
0

∫  = f a x x

a

( )−∫ d

0

 34. f x x

a

( )d
0

2

∫  

  = f x x f a x x

a a

( ) ( )d d

0 0

2∫ ∫+ −

 35. f x x
a

a

( )d
−
∫

  = 2
0

f x x

a

( )d∫ , if f (x) is even

  = 0, if f (x) is odd

 36. f x x

a

( )d
0

2

∫

  = 2
0

f x x

a

( )d∫  if f (x) = f (2a – x)

  = 0, if f (x) = –f (2a – x) 



GUJARAT TECHNOLOGICAL UNIVERSITY
B.E. Sem-I/II Examination Summer-2014

Subject Code: 2110015

Subject Name: Vector Calculus and Linear Algebra

Total Marks: 70

Instructions:

1. Question No. 1 is compulsory. Attempt any four out of remaining six 

questions.

2. Make suitable assumptions wherever necessary.

3. Figure to the right indicate full marks.

Q.1 (a) Objective Question 07

1. The number of solutions of the system of equations AX = 0 where A is a 

singular matrix is

  Solution:

   Here, system of equation AX = 0 which is a homogeneous linear system.

   And it has two types of solutions:

(i) Trivial solution

Ans:

2. Let A be a unitary matrix; then A–1 is

(a) A (b) A (c) AT (d) ( )TA

  Solution:

   If A be a unitary matrix then

    A(A )T = I = (A)T A

    So (A )T = I A–1

    A–1 = (A)T

    Ans: (d) (A )T

3. Let W = span {cos2 x, sin2 x, cos 2x} then the dimension of W is

(a) 0 (b) 1 (c) 2 (d) 3

  Solution:

   W can be expressed as a linear combination of function

    W = cos2 x + sin2 x + cos 2x

    = cos2 x + sin2 x + cos2 x – sin2 x

    W = 2 cos2 x

    W = 2f

    \ dim(W) = 2

   Ans: (c) 2
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4. Let P
2
 be the vector space of all polynomials with degree less than or equal to 

two; then the dimension of P
2
 is

(a) 1 (b) 2 (c) 3 (d) 4

  Solution:

   Here, P
2
 is the polynomial with degree less than or equal to two. Therefore,

    P
2
 = a

0
 + a

1
x + a

2
x2

    dim(P
2
) = 3

   Ans: (c) 3

5. The column vectors of an orthogonal matrix are

(a) orthogonal (b) orthonormal

(c) dependent (d) none of these

  Solution:

   The column vectors of an orthogonal matrix are orthonosmal.

6. Let T : R2 Æ R2 T(x, y) = (y, x); then it 

is

(a) one to one (b) onto

(c) both (d) neither

  Solution:

   A linear transformation is one to one if and only if Ker(T) = {0}

    let T(x, y) = 0

    (y, x) = (0, 0)

    y = 0 and x = 0

    

0

0

x

y

È ˘È ˘ = Í ˙Í ˙Î ˚ Î ˚
    Ker(T) = {0}

    Hence, T is one to one.

    A linear transformation is onto if R(T) = W

    Let V = (x, y) and W = (a, b) be in R2 where a and b are real numbers such 

that

    T(v) = W fi T(x, y) = (a, b)

    fi (y, x) = (a, b)

    fi y = a, x = b

    Thus, for every W = (a, b) in R2, 'V = (b, a) in R2.

    Hence, T is onto.

    Ans: (c) Both

7. Let T : R3 Æ R3 T(x, y, z) = (y, z, 0); then 

the dimension of R(T) is

(a) 0 (b) 1 (c) 2 (d) 3
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  Solution:

    The image of T is the entire yz-plane. i.e. point of the form (y, z, 0)

    R(T) = Im(T) = {(a, b, c) | a = 0} = yz-plane

    dim [R(T)] = 2

Q.1 (b) 07

1. If ||u + v||2 = ||u||2 + ||v||2; then u and v are

(a) parallel (b) perpendicular

(c) dependent (d) none of these

  Solution:

    By Pythagorean theorem, if u and v are orthogonal (Perpendicular) vectors 

in Inner product space then <u, v> = <v, u> = 0

    ||u | v||2 = <u + v, u + v>

    = <u, u + v> + <v, u + v>

    = <u, v> + <u, v> + <v, u> + <v, v>

    = ||u||2 + ||v||2 [{ <u, v> = <v, u> = 0]

    Ans: (b) Perpendicular

2. ||u + v||2 – ||u – v||2 is

(a) <u, v> (b) 2<u, v> (c) 3<u, v> (d) 4<u, v>

  Solution:

    ||u + v||2 = <u + v, u + v>

    = <u, u + v> + <v, u + v>

    and ||u – v||2 = <u – v, u – v> = <u, u> + <u, v> + <v, u> + <v, u> (1)

    ||u – v||2 = <u, u – v> – <v, u – v>

    = <u, u> – <u, v> – <v, u> + <v, v> (2)

    eq. (1) – eq. (2)

    ||u + v||2 – ||u – v||2

    = <u, u> + <u, v> + <v, u> + <v, v> – <u, u> + <u, v>

+ <v, u> – <v, u>

    = 2<u, v> + 2<v, u>

    = 2<u, v> + 2<u, v>

    = 4<u, v> Ans: (d) 4<u, v>

3. Let T : R3 Æ R3 be a one-to-one linear transformation; then the dimension of 

Ker(T) is

(a) 0 (b) 1 (c) 2 (d) 3

  Solution:

    A linear transformation is one to one if and only if Ker (T) = 0

    dim {Ker(T)} = 0 Ans: (a) 0
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4. Let A = 
2 1

2 3

È ˘
Í ˙
Î ˚

; then the eigen values of A2 are

(a) 1, 2 (b) 1, 4 (c) 1, 6 (d) 1, 16

  Solution:

    The characteristic equation is |A – dI| = 0

    
-È ˘

Í ˙-Î ˚

2 1

2 3

d

d
 = 0

    (2 – d) – (3 – d) – 2 = 0

    6 – 2d – 3d + d2 – 2 = 0

    d2 – 5d + 4 = 0

    d2 – 4d – d + 4 = 0

    d(d – 4) – 1(d – 4) = 0

    (d – 4)(d – 1) = 0

    d = 1, 4

    The eigenvalues of A are d = 1, 4. Therefore, the eigenvalues of A2 are 1, 

16.

   Ans: (d) 1, 16

5. Let A = 
2 1

2 3

È ˘
Í ˙
Î ˚

; then the eigenvalues of A + 3I are

(a) 1, 2 (b) 2, 5 (c) 3, 6 (d) 4, 7

  Solution:

   The characteristic equation is |A – dI| = 0

    
2 1

2 3

d

d

-È ˘
Í ˙-Î ˚

 = 0

    fi (2 – d)(3 – d) – 2 = 0

    fi d2 – 5d + 4 = 0

    fi d2 – 4d – d + 4 = 0

    fi d(d – 4) – 1(d – 4) = 0

    fi (d – 1)(d – 4) = 0

    fi d = 1, 4

    The eigenvalues of A is d = 1, 4. Therefore, the eigenvalue

6. div r  is

(a) 0 (b) 1 (c) 2 (d) 3

  Solution:

    Here, r  = x î  + y ĵ  + z k̂ fi div r  = = ? r
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     div r  = 
r r r

x y z

∂ ∂ ∂
+ +

∂ ∂ ∂

     = 1 + 1 + 1 = 3

7. If the value of line integral 
C

F dr◊Ú  does not depend on the path C then F  is

(a) solenoidal (b) incompressible

(c) irrotational (d) none of these

  Solution:

    If F c is a closed curve then the line 

integral 

C

F dr◊Ú  in the region R is zero. Then F is irrotational, i.e., if 
C

F dr◊Ú

= 0, F  is irrotational.

Q.2

(a) Solve the following system of equations using the Gauss elimination method:

05

  2x
1
 + x

2
 + 2x

3
 + x

4
 = 6,    6x

1
 – x

2
 + 6x

3
 + 12x

4
 = 36

  4x
1
 + 3x

2
 + 3x

3
 – 3x

4
 = 1,  2x

1
 + 2x

2
 – x

3
 + x

4
 = 10

  Solution:

    The matrix form of the system is

    

1

2

3

4

2 1 2 1 6

6 1 6 12 36

4 3 3 3 1

2 2 1 1 10

x

x

x

x

È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- Í ˙Í ˙ Í ˙=
Í ˙Í ˙ Í ˙-
Í ˙Í ˙ Í ˙

-Î ˚ Î ˚Î ˚

    The augmented matrix of the system is

    

2 1 2 1 6

6 1 6 12 36

4 3 3 3 1

2 2 1 1 10

È ˘
Í ˙-Í ˙
Í ˙-
Í ˙

-Î ˚

    Reducing the augmented matrix to row echelon form

    

1

1 1
1 1 3

2 2

6 1 6 12 36~
2

4 3 3 3 1

2 2 1 1 10

R

È ˘
Í ˙
Í ˙

-Í ˙
Í ˙-
Í ˙

-Í ˙Î ˚
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È ˘
Í ˙ -
Í ˙

- -Í ˙
Í ˙- - - -Í ˙

-Í ˙Î ˚

2 1

3 1

4 1

1 1
1 1 3

62 2

0 4 0 9 18~ 4

0 1 1 5 11 2

0 1 3 0 4

R R

R R

R R

       R
2
/4

    

2 1 2 1 6

9 18
0 1 0

~ 4 4

0 1 1 5 11

0 1 3 0 4

È ˘
Í ˙
Í ˙-
Í ˙
Í ˙- - -
Í ˙

-Í ˙Î ˚

    R
3
 + R

2
R

4
 + R

2

    

2 1 2 1 6

9 18
0 1 0

4 4
~ 11 26

0 0 1
4 4

9 34
0 0 3

4 4

È ˘
Í ˙
Í ˙-
Í ˙
Í ˙
Í ˙- - -
Í ˙
Í ˙

-Í ˙
Î ˚

    R
3
S –R

3

    

2 1 2 1 6

9 18
0 1 0

4 4
~ 11 26

0 0 1
4 4

9 34
0 0 3

4 4

È ˘
Í ˙
Í ˙-
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙

-Í ˙
Î ˚

    R
4
 + 3R

3

    

2 1 2 1 6

9 18
0 1 0

4 4
~ 11 26

0 0 1
4 4

42 112
0 0 0

4 4

È ˘
Í ˙
Í ˙-
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚
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    Now, the corresponding system equation is

    2x
1
 + x

2
 + 2x

3
 + x

4
 = 6 then 4

112 8

42 3
x = =

    x
2
 + 4

9 18

4 4
x = x

3
 = 

226 11 8 10

4 4 3 12
- = -

    3

11 26

4 4
x xy+ = 3

5

6
x = -

    4

42 112

4 4
x =

2

2 4

9 18 9 8 18

4 4 4 3 4
x x= - = -

    = 
18 18 18 3

3 4 12 2
- = =

    2x
1
 = 6 – x

2
 – x

4
 – 2x

3
fi x

1
 = 3 – 2 4

32 2

x x
x- -

    x
1
 = 

3 4 5
3

4 3 6
- - +

    = 1

2536 9 16 10 46 21 7 7

12 12 12 4 4
x

-- - +
= = = =

(b) Find the inverse of 

1 2 3 1
1 3 3 2
2 4 3 3
1 1 1 1

È ˘
Í ˙
Í ˙
Í ˙
Î ˚

 using the Gauss–Jordan method. 05

  Solution:

    Here, A = 

1 2 3 1
1 3 3 2
2 4 3 3
1 1 1 1

È ˘
Í ˙
Í ˙
Í ˙
Î ˚

     A = I
4

A

    

1 2 3 1 1 0 0 0
1 3 3 2 0 1 0 0
2 4 3 3 0 0 1 0
1 1 1 1 0 0 0 1

A

È ˘ È ˘
Í ˙ Í ˙

=Í ˙ Í ˙
Í ˙ Í ˙
Î ˚ Î ˚

   Now, reducing the matrix A to the reduced row echelon form

    R
2
 – R

1
, R

3
 – 2R

1
, R

4
 – R

1

    

1 2 3 1 1 0 0 0
0 1 0 1 1 1 0 0
0 0 3 1 2 0 1 0
0 1 2 0 1 0 0 1

A

È ˘ È ˘
Í ˙ Í ˙-=Í ˙ Í ˙- -Í ˙ Í ˙

- - -Î ˚ Î ˚
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    R
4
 – R

2

    

1 2 3 1 1 0 0 0

0 1 0 1 1 1 0 0

0 0 3 1 2 0 1 0

0 0 2 1 2 1 0 1

A

È ˘ È ˘
Í ˙ Í ˙-Í ˙ Í ˙=
Í ˙ Í ˙- -
Í ˙ Í ˙

- -Î ˚ Î ˚

    

3

3

R

-

    

1 2 3 1 1 0 0 0

0 1 0 1 1 1 0 0

1 2 1
0 0 1 0 0

3 3 3

0 0 2 1 2 1 0 1

A

È ˘ È ˘
Í ˙ Í ˙-Í ˙ Í ˙

=Í ˙ Í ˙
- -Í ˙ Í ˙

Í ˙ Í ˙
- -Í ˙ Í ˙Î ˚ Î ˚

    R
4
 + 2R

3

    

1 2 3 1 1 0 0 0

0 1 0 1 1 1 0 0

1 2 1
0 0 1 0 0

3 3 3

1 2 2
0 0 0 1 1

3 3 3

A

È ˘ È ˘
Í ˙ Í ˙-Í ˙ Í ˙
Í ˙ Í ˙=- -Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙- -Í ˙ Í ˙Î ˚ Î ˚

    3R
4

    

1 2 3 1 1 0 0 0

0 1 0 1 1 1 0 0

1 2 1
0 0 1 0 0

3 3 3

0 0 0 1 2 3 2 3

A

È ˘ È ˘
Í ˙ Í ˙-Í ˙ Í ˙

=Í ˙ Í ˙
- -Í ˙ Í ˙

Í ˙ Í ˙
- -Í ˙ Í ˙Î ˚ Î ˚

    R
3
 + 

1

3
  R

2
 – R

4
  R

1
 – R

4

    

1 2 3 0 3 3 2 3

0 1 0 0 1 2 2 3

0 0 1 0 0 1 1 1

0 0 0 1 2 3 2 3

A

- -È ˘ È ˘
Í ˙ Í ˙- -Í ˙ Í ˙=
Í ˙ Í ˙-
Í ˙ Í ˙

- -Î ˚ Î ˚

    R
1
 – 3R

3
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1 2 0 0 3 6 5 6

0 1 0 0 1 2 2 3

0 0 1 0 0 1 1 1

0 0 0 1 2 3 2 3

A

- -È ˘ È ˘
Í ˙ Í ˙- -Í ˙ Í ˙=
Í ˙ Í ˙-
Í ˙ Í ˙

- -Î ˚ Î ˚

    R
1
 – 2R

2

    

1 0 0 0 1 2 1 0

0 1 0 0 1 2 2 3

0 0 1 0 0 1 1 1

0 0 0 1 2 3 2 3

A

-È ˘ È ˘
Í ˙ Í ˙- -Í ˙ Í ˙=
Í ˙ Í ˙-
Í ˙ Í ˙

- -Î ˚ Î ˚

    I
4
 = A–1 A

     A–1 = 

1 2 1 0

1 2 2 3

0 1 1 1

2 3 2 3

-È ˘
Í ˙- -Í ˙
Í ˙-
Í ˙
- -Î ˚

(c) Express 

4 2 7 3

0 3 2

5 3 –7 9 6

i i

i

i i i

+ -È ˘
Í ˙-Í ˙
Í ˙+ + +Î ˚

 as the sum of a hermitian and a skew-

hermitian matrix. 04

  Solution:

    A = 

4 2 7 3

0 3 2

5 3 7 9 6

i i

i

i i i

+ -È ˘
Í ˙-Í ˙
Í ˙+ - + +Î ˚

    AQ = ( A )T = 

4 2 0 5 3

7 3 7

3 2 9 6

i i

i i

i i

- -È ˘
Í ˙- - -Í ˙
Í ˙+ - -Î ˚

    Let P = 
1

2
(A + AQ)

    =

Ï ¸+ - - -È ˘ È ˘
Ô ÔÍ ˙ Í ˙- + - - -Ì ˝Í ˙ Í ˙
Ô ÔÍ ˙ Í ˙+ - + + + - -Î ˚ Î ˚Ó ˛

4 2 7 3 4 2 0 5 3
1

0 3 2 7 3 7
2

5 3 7 9 6 3 2 9 6

i i i i

i i i

i i i i i

    = 

-È ˘
Í ˙- -Í ˙
Í ˙+ - +Î ˚

8 7 8 4
1

7 0 9
2

8 4 9 18

i

i

i i
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    And Q = 
1

2
 (A – AQ)

    = 

Ï ¸+ - - -È ˘ È ˘
Ô ÔÍ ˙ Í ˙- - - - -Ì ˝Í ˙ Í ˙
Ô ÔÍ ˙ Í ˙+ - + + + - -Î ˚ Î ˚Ó ˛

4 2 7 3 4 2 0 5 3
1

0 3 2 7 3 7
2

5 3 7 9 6 3 2 9 6

i i i i

i i i

i i i i i

    = 

- +È ˘
Í ˙- +Í ˙
Í ˙+ - +Î ˚

4 7 2 2
1

7 6 5
2

2 2 5 12

i i

i i

i i i

    We know that P is a hermitian and Q is a skew-hermition matrix.

    A = P + Q = 

7 7
4 4 2 2 1

2 2

7 9 7 5
0 3

2 2 2 2 2 2

9 5
4 2 9 1 6

2 2 2 2

i i i

i i
i

i i
i i i

È ˘ È ˘- - +Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙- - + - +Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙+ - + + - +Í ˙ Í ˙Î ˚ Î ˚

Q.3

(a) Let V be the set of all ordered pairs of real numbers with vector addition 

x
2
, y

1
) + (x

2
, y

2
) = (x

1
 + x

2
 + 1, y

1
 + y

2

additive inverse. 05

  Solution:

    Let u = (x
1
, y

1
), v = (x

2
, y

2
) and w = (x

3
, y

3
) are objects in V.

  (1) u + v = (x
1
, y

1
) + (x

2
, y

2
)

   = (x
1
 + x

2
 + 1, y

1
 + y

2
 + 1)

Since x
1
, x

2
, y

1
, y

2
 are real numbers, x

1
 + x

2
 + 1 and y

1
 + y

2
 + 1 are also real 

numbers.

Therefore, u + v H V.

  (2) u + v = (x
1
 + x

2
 + 1, y

1
 + y

2
 + 1)

   = x
2
 + x

1
 + 1, y

2
 + y

1
 + 1)

   = v + w

Hence, vector addition is commutative.

  (3) u + (v + w) = (x
1
, y

1
) + [(x

2
, y

2
) + (x

3
, y

3
)]

   = (x
1
, y

1
) + (x

2
 + x

3
 + 1, y

2
 + y

3
 + 1)

   = [x
1
 + (x

2
 + x

3
 + 1) + 1, y

1
 + (y

2
 + y

3
 + 1) + 1]

   = [(x
1
 + x

2
 + 1) + x

3
 + 1, (y

1
 + y

2
 + 1) + y

3
 + 1]

   = (x
1
 + x

2
 + 1, y

1
 + y

2
 + 1) + (x

3
, y

3
)

   = (u + v) + w

Hence, vector addition is associative.
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  (4) Let (a, b) H V, such that

   (a, b) + u = u

   (a, b) + (x
1
, y

1
) = (x

1
, y

1
)

   (a + x
1
 + 1, b + y

1
 + 1) = (x

1
, y

1
)

   a + x
1
 + 1 = x

1
, b + y

1
 + 1 = y

1

   a = –1, b = –1

Also, u + (a, b) = u

Hence, (–1, –1) is the zero vector in V.

  (5) Let (a, b) H V such that

   u + (a, b) = (–1, –1)

   (x
1
, y

1
) + (a, b) = (–1, –1)

   (x
1
 + a + 1, y

1
 + b + 1) = (–1, –1)

   x
1
 + a + 1 = –1 y

1
 + b + 1 = –1

   a = –x
1
 – 2 b = –y

1
 – 2

Also, (a, b) + u = (–1, –1)

Hence, (–x
1
, –2, –y

1
, –2) is the inverse in V.

(b) Find a basis for the subspace of P
2
 spanned by the vector 1 + x, x2, –2 + 

2x2, – 3x 05

  Solution:

   Let v
1
 = 1 + x, v

2
 = x2, v

3
 = –2 + 2x2, v

4
 = –3x

    Here, {v
1
, v

2
, v

3
, v

4
} spans subspace of P

2
 but it is not a basis for the sub-

space of P
2
. Since dim (subspace of P

2
) = 3 and the basis of the subspace 

of P
2
 contains exactly three vectors. We now need to remove one vector 

from {v
1
, v

2
, v

3
, v

4
} to get a basis.

    We can remove that vector only which is a linear combination of some of 

the other vectors of the set {v
1
, v

2
, v

3
, v

4
}. Let

    c
1
(1 + x) + c

2
(x2) + c

3
(–2 + 2x2) + c

4
(–3x) = 0 + 0x + 0x2

Then

    (c
1
 – 2c

3
) + (c

1
 – 3c

4
)x + (c

2
 + 2c

3
)x2 = 0 + 0x + 0x2

which implies

    c
1
 – 2c

3
 = 0  c

1
 – 3c

4
 = 0  c

2
 + 2c

3
 = 0

Now, the matrix form of the system is

    AX = 0

    

1

2

3

4

1 0 2 0 0

1 0 0 3 0

0 1 2 0 0

c

c

c

c

È ˘
-È ˘ È ˘Í ˙

Í ˙ Í ˙Í ˙- =Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙Î ˚ Î ˚

Î ˚
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The augmented matrix of the system is

    

1 0 2 0 0

1 0 0 3 0

0 1 2 0 0

-È ˘
Í ˙-Í ˙
Í ˙Î ˚

    R
2
 – R

1

    

1 0 2 0 0

0 0 2 3 0

0 1 2 0 0

-È ˘
Í ˙ª -Í ˙
Í ˙Î ˚

    R
2
4 R

3

    

1 0 2 0 0

0 1 2 0 0

0 0 2 3 0

-È ˘
Í ˙ª Í ˙
Í ˙-Î ˚

    R
3
/2

    

1 0 2 0 0

~ 0 1 2 0 0

3
0 0 1 0

2

-È ˘
Í ˙
Í ˙
Í ˙

-Í ˙Î ˚

The corresponding system of equation is

    c
1
 = 2c

3
 = 0

    c
2
 + 2c

3
 = 0

    c
3
 = 

4

3

2
c  = 0

Now, take c
4
 = t

    c
3
 = 

3

2
t

    Then c
2
 = –3t  c

1
 = 3t

Here, c
1
, c

2
, c

3
, c

4
, not all zero, the given vectors are linearly are dependent 

and the relation between them is given by

    3tv
1
 – 3tv

2
 + 

3

2
tv

3
 + tv

4
 = 0

Thus, we can remove any one of the vectors v
1
, v

2
, v

3
, v

4
. Let us remove v

4
.

Then the set {v
1
, v

2
, v

3
} still spans the subspace of P

2
 and has exactly three 

vectors. So it must be a basis for P
2
.

Basis = {1 + x, x2, –2 + 2x2}
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(c) Express the matrix 
5 1

1 9

È ˘
Í ˙-Î ˚

 as a linear combination of 
1 1 1 1

, ,
0 3 0 2

-È ˘ È ˘
Í ˙ Í ˙
Î ˚ Î ˚

2 2

1 1

È ˘
Í ˙-Î ˚

04

  Solution:

Here, the matrix

    A = 
5 1

1 9

È ˘
Í ˙-Î ˚

    Let A = A
1
k

1
 + A

2
k

2
 + A

3
k

3

     
1 2 3

5 1 1 1 1 1 2 2

1 9 0 3 0 2 1 1
k k k

-È ˘ È ˘ È ˘ È ˘
= + +Í ˙ Í ˙ Í ˙ Í ˙- -Î ˚ Î ˚ Î ˚ Î ˚

    = 
1 2 3 1 2 3

3 1 2 3

2 2

3 2

k k k k k k

k k k k

+ + - + +È ˘
Í ˙- + +Î ˚

Now, equating the corresponding components,

    k
1
 + k

2
 + 2k

3
 = 5

    – k
1
 + k

2
 + 2k

3
 = 1 (1)

    – k
3
 = –1

    3k
1
 + 2k

2
 + k

3
 = 9

Now, solving these equations,

    k
3
 = 1

    k
1
 + k

2
 = 5 – 2 = 3

    –k
1
 + k

2
 = 1 – 2 = –1

    2k
2
 = 2

    k
2
 = 1

    Then k
1
 + k

2
 = 3

     k
1
 = 3 – 1 = 2

    Now, k
1
 = 2, k

2
 = 1, k

3
 = 1

Hence the linear combination of A is 1 2 32A A A A= + +

Q4.

(a) S = {v
1
, v

2
} for R2 where v

1
 = (1, 1) and v

2
 = (2, 3). Let 

T : R2 Æ P2 be the linear transformation such that T(v
1
) = 2 – 3x + x2 and 

T(v
2
) = 1 – x2 T(a, b) 05

  Solution:

Let V = 
a

b

È ˘
Í ˙
Î ˚

 be an arbitrary vector in R2 expressed as a linear combination 

of v
1
 and v

2
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    V = k
1
v

1
 + k

2
v

2

    
a

b

È ˘
Í ˙
Î ˚

 = 
1 2

1 2
1 2

21 2

1 3 3

k k
k k

k k

+È ˘È ˘ È ˘
+ = Í ˙Í ˙ Í ˙ +Î ˚ Î ˚ Î ˚

New, equating corresponding components,

    k
1
 + 2k

2
 = a

    k
1
 + 3k

2
 = b

(1)

Solving these equations,

    –k
2
 = a – b

    2k b a= -

    And k
1
 + 2(b – a) = a

    fi k
1
 = a – 2b + 2a = 3a – 2b

    1 3 2k a b= -

    \ V = (3a – 2b)V
1
 + (b – a)V

2

    T(V) = k
1

T(v
1
) + k

2
T(v

2
)

    T
a

b

È ˘
Í ˙
Î ˚

 = (3a – 2b) (2 – 3x + x2) + (b – a)(1 – x2)

    = (6a – 4b + b – a) + (–9a + 6b)x + (3a – 2b – b + a)x2

    

2(5 3 ) ( 9 6 ) (4 3 )
a

T a b a b x a b x
b

È ˘
= - + - + + -Í ˙

Î ˚

(b) Verify Rank-Nullity theorem for the linear transformation T : R4 Æ R3

by 

  T(x
1
, x

2
, x

3
, x

4
) = (4x

1
 + x

2
 – 2x

3
 – 3x

4
, 2x

1
 + x

2
 + x

3
 – 4x

4
, 6x

1
 – 9x

3
 + 9x

4
)

05

  Solution:

The basis for ker (T) is the basis for the solution of the homogeneous 

system

    4x
1
 + x

2
 – 2x

3
 – 3x

4
 = 0

    2x
1
 + x

2
 + x

3
 – 4x

4
 = 0

    6x
1
 – 9x

3
 + 9x

4
 = 0

The augmented matrix of the system is

    

4 1 2 3 0

2 1 1 4 0

6 0 9 9 0

- -È ˘
Í ˙-Í ˙
Í ˙-Î ˚

Reducing in row echelon form,

31 ,
4 3

RR
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    ~ 

1 2 3
1 0

4 4 4

2 1 1 4 0

2 0 3 3 0

È ˘- -Í ˙
Í ˙

-Í ˙
Í ˙-Î ˚

    R
2
 – 2R

1
R

3
 – 2R

1

    

1 1 3
1 0

4 2 4

1 5
~ 0 2 0

2 2

1 9
0 2 0

2 2

È ˘- -Í ˙
Í ˙
Í ˙-Í ˙
Í ˙
Í ˙- -Í ˙Î ˚

    

2 32 , 2

1 1 3
1 0

4 2 4

~ 0 1 4 5 0

0 1 4 9 0

R R

È ˘- -Í ˙
Í ˙

-Í ˙
Í ˙- -Î ˚

    

3 2

1 1 3
1 0

4 2 4

~ 0 1 4 5 0

0 0 0 4 0

R R+

È ˘- -Í ˙
Í ˙

-Í ˙
Í ˙Î ˚

    

4

1

4

1 1 3
1 0

4 2 4

~ 0 1 4 5 0

0 0 0 1 0

R

È ˘- -Í ˙
Í ˙

-Í ˙
Í ˙Î ˚

Therefore, the corresponding system of equations is

    x
1
 + 

1

4
x

2
 – 

1

2
x

3
 – 

3

4
x

4
 = 0

    x
2
 + 4x

3
 – 5x

4
 = 0

    x
4
 = 0

Now, take x
3
 = t

    x
2
 = –4t

    and x
1
 = 

1 1 3
( 4 )

4 2 2 2

t
t t t t

-
- + = + =
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    so

1

2

3

4

x

x

x

x

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

 = 

3 3

2 2

4 4

1

0 0

t

t t

t

È ˘ È ˘
Í ˙ Í ˙
Í ˙ Í ˙
- -=Í ˙ Í ˙

Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

Hence the basis per ker(T) = Null space

    = 

3

2

4

1

0

È ˘
Í ˙
Í ˙
-Í ˙

Í ˙
Í ˙
Í ˙Î ˚

    \ dim [ker(T)] = 1

The basis for the range of T is the basis for the column space of [T].

    [T] = 

4 1 2 3

2 1 1 4

6 0 9 9

- -È ˘
Í ˙-Í ˙
Í ˙-Î ˚

Reducing [T] to row echelon form as above,

    ª

1 1 3

4 2 4

0 1 4 5

0 0 0 1

l
È ˘- -Í ˙
Í ˙

-Í ˙
Í ˙Î ˚

    Here, the leading entry appears in column 1, 2 and 4.

    Hence, the basis of R(T) = Basis for column space of [T].

    

4 1 3

2 , 1 , 4

6 0 9

Ï ¸-È ˘ È ˘ È ˘
Ô ÔÍ ˙ Í ˙ Í ˙= -Ì ˝Í ˙ Í ˙ Í ˙
Ô ÔÍ ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚Ó ˛

    dim [R(T)] = 3

    Rank(T) = dim(R(T)) = 3

    nullity (T) = dim (Ker(T)) = 1

    so Rank(T) + Nullity (T) = 3 + 1

    = 4

    = dim R
4
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(c) Find the algebraic and geometric multiplicity of each of the eigenvalues of 

0 1 1

1 0 1

1 1 0

È ˘
Í ˙
Í ˙
Í ˙Î ˚

04

  Solution:

    Here, A = 

0 1 1

1 0 1

1 1 0

È ˘
Í ˙
Í ˙
Í ˙Î ˚

The characteristic equation is

    |A – dI| = 0

    

1 1

1 1

1 1

d

d

d

-
-

-
 = 0

    fi d3 – s
1
d2 + s

2
d = s

3
 = 0

    s
1
 = sum of the principal diagonal element

    = f + f + f = 0

    s
2
 = sum of the minors of principal diagonal element

    = 
0 1 0 1 0 1

1 1 1
1 0 1 0 1 0

+ + = - - -

    = –3

    s
3
 = det(A) = 

0 1 1

1 0 1

1 1 0

    = 0 – 1(–1) + 1(1 – 0)

    = 1 + 1 = 2

Hence, the characteristic equation is 

    d3 – 3d = 2 = 0

    d2(d + 1) – d(d + 1) – 2 (d + 1) = 0

    (d + 1)(d2 – 2d + d – 2) = 0

    (d + 1)(d – 2)(d + 1) = 0

    d = 2, –1, –1

eigen values of the matrix are 2, –1, –1.

Since the eigenvalue d = –1 is repeated twice. So its Algebraic multiplic-

ity is 2.

For d = –1, the corresponding eigenvectors are 

    [A – dI]x = 0
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1

2

3

1 1 1 0

1 1 1 0

1 1 1 0

x

x

x

+È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙=Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚Î ˚

    R
2
 – R

1
 – R

3
 – R

1

    

1

2

3

1 1 1 0

0 0 0 0

0 0 0 0

x

x

x

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙=Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚Î ˚

    \ Rank of matrix = 1

    And the corresponding equation is

    x
1
 + x

2
 + x

3
 = 0

    x
3
 = t

    x
2
 = 3

    x
1
 = –t – S

So the eigenvector

    x = 

1

2

3

1 1

0 1

1 0

x t S

x S t S

x t

- - - -È ˘ È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙ Í ˙= = +Í ˙ Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚Î ˚

    Number of unknowns = 3

    Number of linearly independent eigenvectors

    \ Geometric multiplicity is 2.

    Since eigenvalue d = 2 is non-repeated, so its Algebraic multiplicity is 1.

    For d = 2, the corresponding eigenvectors are 

    [A – dI]x = 0

    

1

2

3

2 1 1 0

1 2 1 0

1 1 2 0

x

x

x

-È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙- =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙-Î ˚ Î ˚Î ˚

    R
13

    

1

2

3

1 1 2 0

1 2 1 0

2 1 1 0

x

x

x

-È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙- =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙-Î ˚ Î ˚Î ˚

    R
2
 – R

1
R

3
 + 2R

1

    

1

2

3

1 1 2 0

0 3 3 0

0 3 3 0

x

x

x

-È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙- =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙-Î ˚ Î ˚Î ˚
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32

3 3

RR

-

    

1

2

3

1 1 2 0

0 1 1 0

0 1 1 0

x

x

x

-È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙- =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙-Î ˚ Î ˚Î ˚

    R
3
 – R

2

    

1

2

3

1 1 2 0

0 1 1 0

0 0 0 0

x

x

x

-È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙- =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚Î ˚

    Now, the corresponding equation is

     x
1
 + x

2
 – 2x

3
 = 0

     x
2
 + x

3
 = 0

    Let x
3
 = t  x

2
 = t

     x
1
 = 2x

3
  – x

2

     = 2t – t = t

    So the eigenvector x = 

1

2

3

x t

x t

x t

È ˘ È ˘
Í ˙ Í ˙=Í ˙ Í ˙
Í ˙ Í ˙Î ˚Î ˚

    = 

1

1

1

t

È ˘
Í ˙
Í ˙
Í ˙Î ˚

    Now, the rank of matrix = 2

    Number of unknowns = 3

    Number of linearly independent eigenvectors = 3 – 2 = 1

    Hence, geometric multiplicity is 1.

Q.5

(a) For A = 
1 1

1 1

a b

c d

È ˘
Í ˙
Î ˚

 and B = 
2 2

2 2

a b

c d

È ˘
Í ˙
Î ˚

, let the inner product on M
22

 be 

A, B> = a
1
a

2
 + b

1
b

2
 + c

1
c

2
 + d

1
d

2
. Let A = 

2 6

1 3

È ˘
Í ˙-Î ˚

 and 

B = 
3 2

1 0

È ˘
Í ˙
Î ˚

between A and B. 05
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  Solution:

    If A and B are vectors in an inner product space M
22

 then

    |<A, B>| £ ||A|| ||B||

    Now, ||B|| = <B, B>1/2

    = [(3)2 + (2)2 + (1)2 + (0)2]1/2

    = 9 4 1 14+ + =

    ||A|| = <A, A>1/2

    = [(2)2 + (6)2 + (1)2 + (–3)2]1/2

    = 4 36 1 9+ + +

    = 50 5 2=

    <A, B> = a
1
a

2
 + b

1
b

2
 + c

1
c

2
 + d

1
d

2

    = 2.3 + 6.2 + 1.1 + (–3) ◊ 0
    = 6 + 12 + 1 + 0

    = 19

    Therefore, |19| £ 5 2 14◊

    |19| £ 26.45

    The angle between A and B is

    cos q = 
,

|| || || ||

A B

A B

< >

    \ q = cos–1
,

|| || || ||

A B

A B

< >È ˘
Í ˙Î ˚

    = cos–1
19

50 14

È ˘
Í ˙
Î ˚

    = cos–1
19

700

È ˘
Í ˙Î ˚

    

1 19
cos

10 7
q - È ˘= Í ˙Î ˚

(b) Let R3 x
1
, x

2
, x

3
), (y

1
, y

2
, y

3
) > = x

1
y

1

+ 2x
2
y

2
 + 3x

3
y

3
. Apply the Gram–Schmidt process to transform the vectors 

(1, 1, 1), (1, 1, 0) and (1, 0, 0) into orthonormal vectors. 05

  Solution:

    Gram-Schmidt Process:

    Step-1 Let v
1
 = u

1
 = (1, 1, 1)
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    Step-2 v
2
 = u

2
 – 

2 1
2

1

,

|| ||

u v

v

< >
◊ v

1

    = (1, 1, 0) – 
2 2 2

(1,1, 0), (1,1,1)

(1 2 1 3 1 )

< >
+ ◊ + ◊

◊ (1, 1, 1)

    = (1, 1, 0) – 
[(1)(1) 2(1)(1) 3(1)(0)]

1 2 3

+ +
+ +

 (1, 1, 1)

    = (1, 1, 0) – 
3

6
(1, 1, 1) = (1, 1, 0) –

1

2

-
(1, 1, 1)

    v
2
 = 

1 1 1
, ,

2 2 2

-Ê ˆ
Á ˜Ë ¯

    Step-3 v
3
 = u

3
 – 3 1 3 2

1 22 2
1 2

, ,

|| || || ||

u v u v
v v

v v

< > < >
-

    = (1, 0, 0) – 
2 2 2

(1, 0, 0), (1,1,1)

(1 2 1 3 1 )

< >
+ ◊ + ◊

◊ (1, 1, 1)

          – 

1 1 1
(1, 0, 0), , ,

1 1 12 2 2
, ,

1 2 3 2 2 2

4 4 4

-Ê ˆ
Á ˜Ë ¯ -Ê ˆ◊ Á ˜Ë ¯Ê ˆ+ +Á ˜Ë ¯

    = (1, 0, 0) – 
(1)

6
(1, 1, 1) – 

1
1 1 12 , ,

6 2 2 2

4

-Ê ˆ
Á ˜Ë ¯

    = (1, 0, 0) – 
1

6
(1, 1, 1) – 

1 1 1 1
, ,

3 2 2 2

-Ê ˆ
Á ˜Ë ¯

    = 
1 1 1 1 1 1

1 , ,
6 6 6 6 6 6

- - -Ê ˆ- - +Á ˜Ë ¯

    = 
4 2 2 1
, , 0 , , 0

6 6 3 3

- -Ê ˆ Ê ˆ=Á ˜ Á ˜Ë ¯ Ë ¯

    Thus, the vectors v
1
, v

2
, v

3
 form an orthogonal basic for R3.

     Orthogonal basis = 
1 1 1 2 1

(1,1,1), , , , , , 0
2 2 2 3 3

Ï ¸- -Ê ˆ Ê ˆ
Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ó ˛
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    Now, normalizing v
1
, v

2
, v

3

    

1
1

1

(1,1,1) (1,1,1)

|| || 1 2 1 3 1 6

v
w

v
= = =

+ ◊ + ◊

    

1 1 1
, ,

6 6 6

Ê ˆ= Á ˜Ë ¯

    W
2
 = 

2

2

1 1 1
, ,

2 2 2
|| || 1 2 3

4 4 4

v

v

-Ê ˆ
Á ˜Ë ¯

=
+ +

    

1 1 1 1 1 1
, , , ,

2 2 2 2 2 2

6 6

4 2

- -Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

= =

    W
2
 = 

1 1 1
, ,

6 6 6

-Ê ˆ
Á ˜Ë ¯

    W
3
 = 

3

3

2 1
, , 0

3 3
|| || 4 2

3 0
9 9

v

v

Ê ˆ-Á ˜Ë ¯
=

+ + ◊

    = 

2 1 2 1
, , 0 , , 0

3 3 3 3

6 6

9 3

Ê ˆ Ê ˆ- -Á ˜ Á ˜Ë ¯ Ë ¯
=

    W
3
 = 

2 1
, , 0

6 6

-Ê ˆ
Á ˜Ë ¯

    Thus, the vectors w
1
, w

2
, w

3
 form an orthonormal basis for R3.

    Orthonormal basis = 
1 1 1 1 1 1 2 1

, , , , , , , , 0
6 6 6 6 6 6 6 6

Ï ¸- -Ê ˆ Ê ˆ Ê ˆ
Ì ˝Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Ó ˛

(c) Find a basis for the orthogonal complement of the subspace spanned by the 

vectors (2, –1, 1, 3, 0), (1, 2, 0, 1, –2), (4, 3, 1, 5, –4), (3, 1, 2, –1, 1) and 

(2, –1, 2, –2, 3). 04

  Solution:

    Let the W subspace spanned by these vectors be the row space of the matrix.

    A = 

2 1 1 3 0

1 2 0 1 2

4 3 1 5 4

3 1 2 1 1

2 1 2 2 3

-È ˘
Í ˙-Í ˙
Í ˙-
Í ˙

-Í ˙
Í ˙- -Î ˚
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    Since (Row space)T = Null space

    Basis for (Row space)T = Basis for the null space

     \ the null space of A is the solution space of the homogeneous system 

AX = 0

    

1

2

3

4

5

2 1 1 3 0 0

1 2 0 1 2 0

4 3 1 5 4 0

3 1 2 1 1 0

2 1 2 2 3 0

x

x

x

x

x

- È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙=-
Í ˙Í ˙ Í ˙

- Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙- -Î ˚ Î ˚Î ˚

    The augmented matrix for the system is

    

-È ˘
Í ˙-Í ˙
Í ˙-
Í ˙

-Í ˙
Í ˙- -Î ˚

2 1 1 3 0 0

1 2 0 1 2 0

4 3 1 5 4 0

3 1 2 1 1 0

2 1 2 2 3 0

    Reducing the augmented matrix into row echelon form,

    R
1

´ R
2

    

1 2 0 1 2 0

2 1 1 3 0 0

4 3 1 5 4 0

3 1 2 1 1 0

2 1 2 2 3 0

-È ˘
Í ˙-Í ˙
Í ˙ª -
Í ˙

-Í ˙
Í ˙- -Î ˚

    R
2
 – 2R

1
R

3
 – 4R

1
R

4
 – 3R

1
R

5
 – 2R

1

    

1 2 0 1 2 0

0 5 1 1 4 0

0 5 1 1 4 0

0 5 2 4 7 0

0 5 2 4 7 0

-È ˘
Í ˙-Í ˙
Í ˙ª -
Í ˙

- -Í ˙
Í ˙- -Î ˚

    R
3
 – R

2
R

4
 – R

2
R

5
 – R

2

    

1 2 0 1 2 0

0 5 1 1 4 0

0 0 0 0 0 0

0 0 1 5 3 0

0 0 1 5 3 0

-È ˘
Í ˙-Í ˙
Í ˙ª
Í ˙

-Í ˙
Í ˙-Î ˚
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    R
5
 – R

4

    

1 2 0 1 2 0

0 5 1 1 4 0

0 0 0 0 0 0

0 0 1 5 3 0

0 0 0 0 0 0

-È ˘
Í ˙-Í ˙
Í ˙ª
Í ˙

-Í ˙
Í ˙Î ˚

    R
3

´ R
4

    

1 2 0 1 2 0

0 5 1 1 4 0

0 0 1 5 3 0

0 0 0 0 0 0

0 0 0 0 0 0

-È ˘
Í ˙-Í ˙
Í ˙ª -
Í ˙
Í ˙
Í ˙Î ˚

    

2

5

R

-

    

1 2 0 1 2 0

1 1 4
0 1 0

5 5 5

0 0 1 5 3 0

0 0 0 0 0 0

0 0 0 0 0 0

-È ˘
Í ˙
Í ˙- - -
Í ˙

ª Í ˙-Í ˙
Í ˙
Í ˙
Î ˚

    Therefore, the corresponding system of equation is

    x
1
 + 2x

2
 + 0x

3
 + x

4
 – 2x

5
 = 0

    x
2
 – 

3 4 5

1 1 4

5 5 5
x x x- -  = 0

    x
3
 – 5x

4
 + 3x

5
 = 0

    Now, let x
4
 = S x

5
 = t

    x
3
 = 5S – 3t

    x
2
 = 

1

5
(5S – 3t) + 

1

5
(S) + 

4

5
(t)

    = 
3 4

5 5 5

S t
S t- + +

    = 
6

5 5

t
S +

    x
1
 = 2x

5
 – x

4
 – 2x

2

    = 2t – S – 2
6

5 5

t
S

Ê ˆ+Á ˜Ë ¯
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    = 2t – S – 
12

5
S  – 

2

5

t

    = 
17 8

5 5
S t

-
+

    Null space vectors of the form

    

1

2

3

4

5

17 8

5 5

6 1

5 5

5 3

17 8

5 5

6 1

5 5

5 3

1 0

0 1

S t
x

x
S t

xX

S tx

Sx

t

S t

È ˘- +Í ˙È ˘
Í ˙Í ˙
Í ˙Í ˙ +Í ˙Í ˙= = Í ˙Í ˙ -Í ˙Í ˙
Í ˙Í ˙Î ˚ Í ˙
Í ˙Î ˚

È ˘ È ˘-Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙= +Í ˙ Í ˙

-Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

    Basis for the null space of A

    

17 8

5 5

6 1

5 5,
5 3

1 0

0 1

Ï ¸È ˘ È ˘-Ô ÔÍ ˙ Í ˙
Ô ÔÍ ˙ Í ˙
Ô ÔÍ ˙ Í ˙
Ô ÔÍ ˙ Í ˙Ì ˝Í ˙ Í ˙Ô Ô-Í ˙ Í ˙Ô ÔÍ ˙ Í ˙Ô ÔÍ ˙ Í ˙Ô ÔÍ ˙ Í ˙Î ˚ Î ˚Ó ˛

which is also the basis for the subspace w.

Q.6

(a) A = 

6 1 1

2 5 1

2 1 7

-È ˘
Í ˙- -Í ˙
Í ˙Î ˚

A4.

05

  Solution:

    Here, A = 

6 1 1

2 5 1

2 1 7

-È ˘
Í ˙- -Í ˙
Í ˙Î ˚
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The characteristic equation is

    |A – dI| = 0

    

6 1 1

2 5 1 0

2 1 7

d

d

d

- -
- - - =

-

    d3 = S
1
d2 + S

2
d – S

3
 = 0

    where S
1
 = 6 + 5 + 7 = 18

    S
2
 = 36 + 40 + 28 = –104

    S
3
 = det(A) = 

6 1 1

2 5 1

2 1 7

-
- -

    = 6(36) + 1(–12) + 1(–12)

    = 216 – 24 = 192

    Hence, the characteristic equation is

    d3 – 18d2 + 104d – 192d = 0

characteristic equation. Therefore,

    A3 – 18A2 + 104A – 192I = 0 (1)

    Now, A2 = 

6 1 1 6 1 1 40 10 14

2 5 1 2 5 1 24 26 14

2 1 7 2 1 7 24 10 50

- - -È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙- - - - = - -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

    A3 = 

40 10 14 6 1 1 288 76 148

24 26 14 2 5 1 224 140 148

24 10 50 2 1 7 224 76 364

- - -È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙- - - - = - -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙-Î ˚ Î ˚ Î ˚

    A3 – 18A2 + 104A – 192I

    = 

288 76 148 720 180 252

224 140 148 432 468 252

224 76 364 432 80 900

624 104 104 192 0 0

208 520 104 0 192 0

208 104 728 0 0 192

- -È ˘ È ˘
Í ˙ Í ˙- - - - -Í ˙ Í ˙
Í ˙ Í ˙±Î ˚ Î ˚

-È ˘ È ˘
Í ˙ Í ˙+ - - -Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

    = 

0 0 0

0 0 0

0 0 0

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 = 0
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    Now, multiplying Eq. (1) by A,

    A(A3 – 18A2 + 104A – 192I) = 0

    A4 – 18A3 + 104A2 – 192A = 0

    A4 = 18A3 – 104A2 + 192A

    = 

288 76 148 40 10 14 6 1 1

18 224 140 148 104 24 26 14 192 2 5 1

224 76 364 24 10 50 2 1 7

- - -È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙- - - - - + - -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

    = 

5184 1368 2664 4160 1040 1456

4032 2520 2664 2496 2704 1456

4032 1368 6552 2496 1040 5200

1152 192 192

384 960 192

384 192 1344

- -È ˘ È ˘
Í ˙ Í ˙- - - - -Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

-È ˘
Í ˙+ - -Í ˙
Í ˙Î ˚

    A4 = 

2176 520 1400

1920 776 1400

1920 520 2696

-È ˘
Í ˙- -Í ˙
Í ˙Î ˚

(b) F  = (y sin z – sin x)i + (x sin z + 2yz)j + 

(xy cos z + y2) k

05

  Solution:

    Since F  is conservative then

    curl F  = 0

    — ¥ F = 

2

ˆˆ ˆ

sin sin sin 2 cos

i j k

x y z

y z x x z yz xy z y

∂ ∂ ∂
∂ ∂ ∂

- + +

    = 2ˆ ( cos ) ( sin 2 )i xy z y x z yz
y z

∂ ∂È ˘+ - +Í ˙∂ ∂Î ˚

    

2ˆ ( cos ) ( sin sin )j xy z y y z x
x z

∂ ∂È ˘- + - -Í ˙∂ ∂Î ˚

    

ˆ ( sin 2 ) ( sin sin )k x z yz y z x
x y

∂ ∂È ˘+ + - -Í ˙∂ ∂Î ˚

    = î [x cos z + 2y – x cos z – 2y]

    ĵ- [y cos z – y cos z] + k̂ [sin z – sin z]

    = ˆˆ ˆ0 0 0 0i j k- + =
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    So F

    Now, since F  is conservative,

    F  = —f

    (y sin z – sin x) î  + (x sin z + 2yz) ĵ  + (xy cos z + y2) k̂

    = ˆˆ ˆi j k
x y z

f f f∂ ∂ ∂
+ +

∂ ∂ ∂

ˆˆ ˆ, ,i j k  on both sides,

    
x

f∂
∂

 = y sin z – sin x 
y

f∂
∂

 = x sin z + 2yz 
z

f∂
∂

 = xy cos z + y2

    But df = dx dy dz
x y z

f f f∂ ∂ ∂
+ +

∂ ∂ ∂

     df = (y sin z – sin x)dx + (x sin z + 2yz) dy + (xy cos z + y2) dz

    Integrating both the sides, we get

    

, cos , cos

2

, cos

( sin sin ) ( sin 2 )

( cos )

y z wt x z wt

x y wt

d y z x dx x z yz dy

xy z y dz

f
Æ Æ

Æ

Ú = - + +

+ +

Ú Ú

Ú

    \ f = –(–cos x) + 2 ◊
2

2

y
◊ z + xy sin z + c

    f = cos x + y2z + cy sin z + c

    It is scalar potential.

(c) Find the directional derivative of x2y2z2 at (1, 1, –1) along a direction equally 

inclined with coordinate axes. 04

  Solution:

    Here, f = x2y2z2 point (1, 1, –1)

    In the direction equally inclined with coordinate axes, ˆˆ ˆa i j k= + +

    Now, —f = î
x

∂
∂

(x2y2z2) + ĵ
y

∂
∂

(x2y2z2) + k̂
z

∂
∂

(x2y2z2)

    = y2z2(2x) î  + x2z2(2y) ĵ  + x2y2(2z) k̂

    At the point (1, 1, –1),

    —f = ˆˆ ˆ2 2 2i j k+ -

    Therefore, the directional derivative in the direction of the vector 
ˆˆ ˆa i j k= + +

    = —f ◊
| |

a

a
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    = 
+ +

+ -
+ +

ˆˆ ˆ( )ˆˆ ˆ(2 2 2 )
1 1 1

i j k
i j k

    = 
2 2 2 2

3 3

+ -
=

Q.7

(a) Verify Green’s theorem for 
C

Ú (3x – 8y2)dx + (4y – 6xy)dy where C is the bound-

ary of the triangle with vertices (0, 0), (1, 0) and (0, 1). 05

  Solution:

   The region bounded by the triangle vertices (0, 0), (1, 0) and (0, 1).

Fig. 1

    Here, M = 3x – 8y2 N = 4y – 6xy

    
M

y

∂
∂

 = –16y  
N

x

∂
∂

 = –6y

    \ 
CÚ (Mdx + Ndy) = Ú

OA
(Mdx + Ndy) + Ú

AB
(Mdx + Ndy) + Ú

OO
(Mdx + Ndy)

(1)

    Along the path OA: y = 0

    dy = 0

    Ú
OA

(Mdx + Ndy) = 
1

0Ú (3x – 8y2) dx

    = 
1

0Ú 3xdx = 

12

0

3
3

2 2

x
◊ =

    Along the path ABC: x + y = 1

    y = 1 – x fi dy = (–dx)

    Ú
AB

(Mdx + Ndy) = 
0

1Ú (3x – 8y2)dx + (4y – 6xy)(–dx)

    = 
0

1Ú [3x – 8y2 – 4y + 6xy]dx

    = 
0

1Ú [3x – 8(1 – x)2 – 4(1 – x) + 6x(1 – x)]dx
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    = 
1

0Ú [4(1 – x) – 6x(1 – x) + 8(1 – 2x + x2) – 3x]dx
     

    = 
1

0Ú (4 – 4x – 6x +   6x2  + 8 – 16x +  8x2  – 3x) dx

    = 
1

0Ú (14x2 – 29x + 12)dx

    = 

13 2

0

14 29
14 29 12 12

3 2 3 2

x x
x

È ˘
- + = - +Í ˙

Î ˚

    = 
28 87 72

6

- +

    = 
100 87 13

6 6

-
=

    Along the path BO: x = 0

    dx = 0

    Ú
BO

(Mdx + Ndy) = 
0

1Ú (3x – 8y2)dx + (4y – 6xy)dy

    = 
0

1Ú 4ydy = 

02

1

4
2

y

    = 
1

4
2

-Ê ˆ
Á ˜Ë ¯  = –2

    From Eq. (1),

    Ú
c
(Mdx + Wdy) = 

3 13 9 13 12
2

2 6 6

+ -
+ - =

    = 
22 12 10 5

6 6 3

-
= = (2)

    Let R be the region bounded by the triangle. Along the vertical strip.

    y varies from: y Æ 0 to y Æ 1 – x

    x varies from: x Æ 0 to x Æ 1

    

1 1

0 0
( 6 16 )

x

R

N M
dxdy y y dxdy

x y

-∂ ∂Ê ˆ- = - +Á ˜Ë ∂ ∂ ¯ÚÚ Ú Ú

    = 
1 1

0 0
10

x
y dy dx

-
Ú Ú

    = 

12
1

0
0

10
2

x

y
dx

-
È ˘
Í ˙Î ˚Ú

    = 
1

0Ú 5(1 – x)2 dx

    = 

13

0

(1 )
5

3

x-

    = 
3

5
(3)
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    From Eq. (2) and Eq. (3)

    

5
( )

3C R

N M
Mdx Ndy dxdy

x y

∂ ∂Ê ˆ+ = - =Á ˜Ë ∂ ∂ ¯Ú ÚÚ

(b) Verify Stokes’ theorem for F  = (x + y)i + (y + z)j – xk and S is the surface of 

the plane 2x + y + z 05

  Solution:

    By Stokes’ theorem,

    

ˆ( )
C

S

F nds F dr— ¥ ◊ = ◊ÚÚ Ú

The given surface is the plane 2x + y + z

f = 2x + y + z

    

ˆˆ ˆ2
ˆ

| | 4 1 1

ˆˆ ˆ2

6

i j k
n

i j k

f

f

— + +
= =

— + +

+ +
=

Let R be the projection of the plane 2x + y

+ z xy-plane 

which is the triangle OAB bounded by the lines x = 0, y = 0, 2x + y = 2.

    

ˆˆ ˆi j k

F
x y z

x y y z x

∂ ∂ ∂
— ¥ =

∂ ∂ ∂
+ + -

    = î (0 – 1) – ĵ (–1 – 0) + k̂ (0 – 1)

    = ˆˆ ˆi j k- + -

    ds = 6
ˆ 1ˆ| |

6

dx dy dxdy
dxdy

n k
= =

◊

     Let R be the region bounded by the triangle 

OAB in the xy-plane

    Along the vertical strip:

    y varies from: y = 0, y = 2 – 2x

    x varies from: x = 0, x = 1

    

ˆˆ ˆ2ˆˆ( ) ( 1 ) 6
6S R

i j k
F nds j k dxdy

+ +
— ¥ = - + - ◊ ◊ÚÚ ÚÚ

    

1 2 2

0 0
( 2 1 1)

x
dxdy

-= - + -Ú Ú

z

y

x

A(1, 0, 0)

B(1, 0, 0)

(0, 0, 2)C

Fig. 1

y

B(0, 0) (1, 0)

(0, 2)

2
+

=
2

Fig. 2
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1 2 2

00
2 | | x

y
-= - Ú

    

1
2

1

0
0

2
2 (2 2 ) 2 2 2

2

x
x dx x

Ê ˆ
= - - = - - = -Á ˜Ë ¯Ú (1)

    Let C be the boundary of the triangle ABC.

    F dr◊ ◊ dr = (x + y)dx + (y + z)dy – xdz

    AB BC CAF dr F dr F dr F dr◊ = Ú ◊ + Ú ◊ + Ú ◊Ú (2)

    Along the path AB: z = 0 y = 2 – 2x

    dz = 0 dy = –2dx

    x varies from 1 to 0

    AB F drÚ ◊  = 
0

1Ú [(x + y)dx + (y + z)dy – xdz]

    = 
0

1Ú (x + 2 – 2x)dx + (2 – 2x)(–2 dx)] = 
0

1Ú (3x – 2)dx

    = 

02

1

3 1
3 2 2

2 2 2

x
x◊ - = - + =

    Along the path BC: x = 0 y + z = 2

    dx = 0 dz = –dy

    y varies from 2 to 0

    BC F drÚ ◊  = 
0

2Ú [(x + y)dx + (y + 2)dy – xdz]

    = 
0 0

22
2 2 | | 4dy y= = -Ú

    Along the path CA: y = 0 2x + z = 2

    dy = 0 dz = –2dx

    z varies from 0 to 1

    CA F drÚ ◊  = 
1

0Ú [(x + y)dx + (y + z)dy – xdz] = 
1

0Ú [xdx – x(–2dx)]

    = 

12
1

0
0

3
3 3

2 2

x
xdx = =Ú

    From Eq. (2), 

    
1 3

4 2
2 2C

F dr◊ = - + = -Ú (3)

    From Eq. (1) and (3),

    

ˆ( ) 2
C

S

F nds F dr— ¥ = ◊ = -ÚÚ Ú
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(c) Find the work done when a force F  = (x2 – y2 + x)i – (2xy + y)j moves a par-

ticle in the XY-plane from (0, 0) to (1, 1) along the parabola y2 = x. 04

  Solution:

    Work done F dr◊

    Let ˆ ˆr xi yj= +

    
ˆ ˆdr dxi dyj= +

    F dr◊  = (x2 – y2 + x)dx – (2xy + y)dy

    Path of the integration along the ______ parabola

    y2 = x fi dx = 2y dy

    and y varies from 0 to 1.

    \Work done W = CF drÚ ◊

    = 
1

0Ú [(x2 – y2 + x)dx – (2xy + y)dy]

    = 
1 4 3 2 3

0
[( ) (2 ) (2 ) ]y y y ydy y y dy- + ◊ - +Ú

    = 
1

0Ú [(2y5) – 2y3 – y] dy

    = 

16 4 2

0

2
2

6 4 2

y y y
◊ - -

    = 
2 2 1

6 4 2
- -

    = 
4 6 6 8 2

12 12 3

- -
= - = -
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