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Preface

Linear Algebra and Partial Differential Equations, has been designed specifically
to cater to the needs of third semester B Tech students. The current edition aims
at preparing the students for examination alongside strengthening the fundamental
concepts related to Partial Differential Equations. Lucidity of the text, ample worked
examples and notes highlighted within the text help students navigate through
complex topics seamlessly. Stepwise explanation, use of multiple methods of
problem solving, and additional information presented by the means of appendices
are few other notable features of the content.

Salient Features

e Strict adherence to the syllabus
e Stepwise solutions of solved problems which will enable students to score
marks

Chapter Organization

The book is organised into 5 units. Unit I deals with Vector Spaces. Unit 2 explains
in detail about Linear Transformation. Unit 3 discusses the Inner Product Spaces.
Unit 4 focuses on Partial Differential Equations while Chapter 5 elaborates on Fourier
Series Solutions of Partial Differential Equations.

Acknowledgements
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both the faculty and the students will receive the present edition as willingly as the
earlier editions and my other books.
A number of reviewers took pains to provide valuable feedback for the book. We
are grateful to all of them.
T VEERARAJAN
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Unit

Vector Spaces

1.1 VECTOR SPACES - DEFINITION

A vector space is a non-empty set of objects (called vectors) for which rules of addition
and scalar multiplication are defined as follows and for which the following axioms
hold good:

Addition means a rule that assigns to each pair of vectors u and v in the vector space
V, a vector (u + v)in V.

Scalar multiplication means a rule that assigns to each scalar ¢ in a field F' (viz., a
set of real or complex scalars which obey the elementary rules of algebra) and each
vector in V, a vector cu in V.

Axioms:

1. Addition is commutative. viz., for any two vectors, u, v, € V,u+v=v+u.
Addition is associative. viz., for any vectors u, v, V, (u+v)+w=u+ (v +w)

3. There is a unique vector 0 in V (called zero vector) such thatu + 0=0+u =
u for any vector u in V.

4. For each vector u in V. there is a unique vector — u in V, such that u + (—u) =0

5. For any scalar ¢ in F and any vector 4, vin V, c(u + v) = Cu + Cv.

6. For any two scalars C; and C, in F and any vector u € V, (C; + Cy)u = Cyu
+ C,u.

7. For the unit scalars 1 € F, lu=uforanyu e V.

8. For any two scalars C; and C, in F and any vector u € V, (C,C,) u =
C, (Cyu).

Note £
The Vector space is also referred to as the vector space over the field F or
linear space.

Examples of Vector Spaces

1. The set of all n-triples of scalars in any field F with addition and scalar
multiplication defined by:
(aj, ay, ...,a,) + (b, by, ...b)=a,+b,a,+ by, ...,a,+ b, and c (a,, a,, ...,
a,) = (cay, ca,, ..., ca,), where a;, b;, c € F. This vector space is denoted by
F". Particular cases are R" and C".
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Note #
The zero vector of F" is 0 = (0, O, ..., 0)

2. The set of all (m x n) matrices with entries from any field F is a vector space
over F w.r.t. the operations of matrix addition and scalar multiplication is
denoted by F™" ™"

Note £
F7 xn = Fn

3. The set of all polynomials ¢ + ¢, x + c2x2 + -+ +¢,x", with the coefficients c;
from any field F with respect to additions of polynomials and multiplication
by a constant.

4. The set V of all function from a non-empty set X into any arbitrary field F
for which addition and scalar multiplication are defined as follows is a vector
space.

The sum of any two functions fand g € Vis the function (f+ g) (x) =f(x) + g(x)
The product of a scalar ¢ € F and a function f € V in the function ¢f €V,
defined by (cf) (x) = ¢f(x).

Subspaces

If Wis a subset of a vector space V over a field F, such that W is itself a vector space
over F' w.r.t. vector addition and scalar multiplication [viz., (1) W is non-empty,
2)v,we Wimpliesv+w e Wand (3) ve Wimplies c ve W for every c € F], then
W is called a sub-space of V.

Examples of Subspaces

1. If Vis R®, then the set W consisting of those vectors whose first component
is zero. i.e., W= {(0, a, b): a, b € R} is a sub-space of V.

2. [If Vis the space of all n x n matrices, then the set of all symmetric matrices
of order n is a sub-space of V.

3. If Vis any space, then the set {0} consisting of the zero vector alone and the
entire space V are sub-spaces V.

Span

If S is a non-empty sub set of a vector space V, the set of all linear combinations of
vectors in S is a subspace of V and is called the span of S and denoted by L(S). The
subspace L(S) is said to be generated by S.

If L(S) = V, then V is said to be finitely generated by S.

Examples
1. The vector e; = (1, 0, 0), e, = (0, 1, 0) and e5 = (0, 0, 1) and span the vector
space R, for, any vector (a, b, ¢) in R?canbe expressed as a linear combination
of e, e5, e3as (a, b, ¢) = ae| + be, + ce;
2. The polynomial 1, ¢, 2 .. generate the vector space of all polynomials in ¢,
as any polynomial can be expressed as a linear combination of 1, ¢, 2.
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Linear Dependence and Independence of Vectors

The vectors uy, u,, ..., u,, are said to be linear by dependent if scalars, ¢y, c,, ... ¢,, (not
all zero simultaneously) can be found such that

cuy+cyuy+ - +cu,=0 (1)

m=m

where the symbol 0 on the right denotes the null vector.

Otherwise the m vectors are said to be linearly independent. In this case the
equation (1) will be satisfied only if ¢, =¢, = ... = ¢, =0.

In (1), suppose ¢, # 0, then

Cely = —Cry = CoUy— =+ = Cp U | = Cpy 1 Uy 17 " —Cpllyy

or equivalently u;, = dyu, + du, + --- + d,u,, In the case, the vector u, is said to be a
linear combination of all the others.

1.2 BASIS AND DIMENSION

A vector space Vis said to be finite-dimensional (n-dimensional or dim V = n), if there
exists a linearly independent set of vectors {e, e,, ..., ¢,) in V which spans the space
V. The set {e|, e,, ..., ¢,} is called a basis of V and the number of elements in a basis
is called the dimension of V

Examples

1. The vectors e, (1,0,0, ...,0),e,=(0, 1,0, ...,0),e3=(0,0, 1, ..., 0), ¢, = (O,
0,0, ..., 1) form a basis of R", called the standard basis and dim (R") = n.

2. [If Vis the vector space of all ( m x n) matrices over F, then dim V = mn.
In particular, if V is the vector space of all (2 x 2) matrices over R, then dim

V=4.
. 1 0)(O0, 1)(O0 O 0 0 .
The matrices s s and from the basis of V.
0 0){0, 0/J\1 O 0 1

3. If Vis the vector space of polynomials in ¢ of degree n, then dim (V) =n + 1,
for the linearly independent set {1, ¢, tz, ..., 1"} is a basis of V.

Worked Examples m_
Example 1

Determine whether the vector v = (3, 9, —4, —2) belongs to the space spanned by
uy=(1,-2,0,3),u,=(2,3,0,-1)and u3 = (2, -1, 2, 1)

If v belongs to the space spanned by u,, u, and u3, then constants ky, k,, k3 should
exist such that v = kyu; + kyu, + kzus.

viz., (3,9, -4,-2) =k(1, =2, 0, 3) + ky(2, 3, 0, =1) + ky(2, -1, 2, 1)
viz., ky + 2k, + 2k; =3 (1)
2k, +3ky —ky =9 2)

2y =4 3)
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Equations (1), (2), (3) and (4) are satisfied by k; =1, k, =3 and ky = -2

.. The vector v belongs to the space spanned by the vectors u, u,, u;.

Example 2

Find whether the vector (2, 4, 6, 7, 8) is in the subspace of R spanned by (1, 2, 0, 3,
0), (0,0, 1,4, 0)and (0,0, 0, 0, 1)
If possible, let (2,4, 6,7, 8) =k(1, 2,0, 3, 0) + £,(0, 0, 1, 4, 0) + £5(0, 0, 0, 0, 1).
Then k; =2, 2k, =4,k =6, 3k, + 4k, =7, k3 =8
There equations are not satisfied by the same set of values of ky, k, and k;,
.. The given vector does not belong to the subspace of R

Example 3
Examine the linear dependence or independence of the following vectors:
u =(01,-2,3,4),u,=(-2,4,-1,-3)and u; = (-1, 2, 7, 6)
Writing the vectors as row vectors, one below the other, we have
1, -2, 3, 4 1, -2, 3, 4

=2, 4, 1, =3|~|0, 0, 5 5|, u +2u,u;+u)
-1, 2, 7, 6 0, 0, 10, 10
1

> _2’ 3’ 4
~10, 0, 5 5|lu,u,+2u,uy+u —2 @, +2u)
0, 0, 0, 0

We see that u; — 3u; — 2u, =0
.. The 3 vectors are linearly dependent.

Example 4

Find the maximum number of linearly independent vectors among the following and
express each of the remaining vectors as a linear combination of these.

u =(1,2,1);u,=(4,1,2); u3=1(6,5,4)and u, = (-3, 8, 1).
Writing the vectors as row vectors one below the other, we have

1, 2, 1 1, 2, 1
1, 2 0, 7, =2 lu,uy,—%u,u;—6u,u, +3u]
6, 5 4| |0, -7, —2|lulu3,u3,1 say]
-3, 8, 1 0, 14, 4
1, 2, 1

0, -7, =2
0, 0, O
0, 0, O

~

’ ’ ’ ’ 4 ’
(), uy, uy —uy, uy +2n;)
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Maximum number of linearly independent vectors = 2
Also uj—us=0
viz., Uy —6u; — (uy —4u;) =0
viz., Uy =2uy + Uy
and uy+2ub=0

viz.,  uy=3u; +2(uy—4u;) =0

viz., uy = Su; — 2u,.

Example 5

Determine whether the set of vectors (4, 1, 2, 0), (1, 2, -1, 0), (1, 3, 1, 2) and
(6, 1, 0, 1) is linearly independent.

Letk;(4,1,2,0) + ky(1,2,-1,0) + ky(1, 3, 1, 2) + k4(6,1,0,1) =0 (A)

Then 4k, + ky + k3 + 6k, =0 (1)

ky+2ky+3ky;+k, =0 (2)

2k;—k, +ky=0 3)

and 2ky+k, =0 4)

using (4) in (1); 4k +ky—11k; =0 )

using (4) in (2); ki +2ky+ky;=0 (6)

Eliminating k5 from (3) and (5); 26k, — 10k, =0 or 13k, -5k, =0 7

Eliminating k5 from (3) and (6); ky -3k, =0 (8)
Solving (7) and (8), we get k;=0 and k, =0
From (3), k3 = 0 and from (4), ky=0

viz., the only values satisfying (A) are k; =k, = k; =k, = 0.
.. The given system in linearly independent.

Example 6
Show that the vectors u = (1, 2, 3), v=(0, 1, 2) and w = (0, 0, 1) generate R,
If u, v, w generate R3, a general vectors (a, b, ¢) in R? should expressed as a linear
combination of u, v, w.
Let (a, b, ¢) = k(1, 2, 3) + k5(0, 1, 2) + k5(0, 0, 1)
ky=a;2k; +ky=b s ky=b-2a
and 3k +2ky+ ky=c S ky=c-3a-2(b-2a)=c-2b+a

Hence the three given vectors generate R’

Example 7

Find the condition on a, b, ¢ so that (a, b, ¢) eRr’ belong to the space generated by
u=2,1,0,v=(,-1,2)and w= (0, 3, 4)

Let (@, b, ¢) =k(2,1,0) + ky(1, -1, 2) + k5(0, 3, —4)
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Then 2ky+ky=a (1)
ki —ky+3ky=0 )
2k, —4ky =c 3)

Eliminating k5 from (2) and (3), 4k, + 2k, = 4b + 3¢
viz., 2a = 4b + 3¢ from (1)

Example 8

Show that the vectors u = (1, 0, —-1), v=(1, 2, 1) and w = (0, -3, 2) form a basis for

R Express each of the standard basis vectors as a linear combination of u, v, w.
Writing u, v, w as row vectors one below the other and row reducing, we get

L, 0, -1y (1, 0, -1

L 2 1|~|0, 2 2[(R.R —R.R)
0, -3, 2) 0, -3, 2
1, 0, -1

~10, 2, 2 (R;,Rg,Rg+%Rg)
0, 0, 5

.. The given vectors are linearly independent.
Let (a, b, ¢) = k((1, 0, -1) + k,(1, 2, 1) and k4(0, -3, 2)
Then kij+ky=a
2k, —3ky;=b

—k +ky+2ky;=c

Solving, k, = L(7a —2b-3c) ky = L(3a +2b+3c)and ky = L(2a —-2b+2c)
10 10 10

The standard basis vectors and given by

2
e;=(1,0,0) = %u+%v+ﬁw

2 2 2
e,=(0,1,0) = _BM-’-B‘)_EW

2
and e3=(0,0,1) = I R
1 10 10

Example 9
Find a basis and the dimension of the sub space W of R, generated by the vectors
1,-2,5,-3),(2,3,1,-4) and (3, 8, -3, -5).
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We form the matrix with the given vectors as rows and then row-reduce to echelon
form as given below:

L, -2, 5 -3) (1, =2, 5 -3
2, 3, 1, —4|~|0, 7. -9, 2 |(R.R,-2R.R,—R —R,)
3, 9, -3, -5) (0, 7, -9, 2
L, -2, 5 3
~|0, 7. -9, 2|(R.R,,R; —R,)
0, 0, 0, 0

The non zero row vectors in the echelon form, namely, (1, -2, 5, -3) and (0, 7, -9, 2)
form a basis of W and dim (W) =2

Example 10
If Wis the space spanned by the polynomial v, = P20 +4r+ 1, vy = £ +6r-5, V3
=20 -3 +9t— 1 and v, = 2 = 5/ + 7t + 5, find a basis and dimension of W.

The coefficient vectors relative to the basis (t3 s t2, t,1)are(1,-2,4,1),(1,0,6,-5),
(2,-3,9,-1)and (2,-5,7,5)

We form the matrix with these coefficient vectors as rows and row-reduce to the
echelon form as given below:

1 2 4 1 1 2 4 1
b o6 = 022_6(RR R, R, —2R,, R, —2R,)
2 3 9 _1 0o 1 1 3|Vt 1> 183 1o Ity 1
2 57 5) (0 -1 -1 3
1 2 4 1
0 1 -3
~lo BBy 2Ry, Ry)
0 -1 -1 3
1 2 4 1
0 1 1 -
~lo 0 o (R,.Ry,Ry—R,, R, +R,)
00 0 0

s (1,-2,4, 1)and (0, 1, 1, -3) form a basis for the space generated by the coefficient
vectors

viz., £ =28 + 4t + 1 and 7 + t -3 form a basis for the space W and dim (W) = 2.

Example 11
Find the dimension and a basis for the solution space W of the system of homogeneous
equation given below.

Xp+2xy + 2x3— x4+ 3x5=0
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X +2x+3x;+x,+x5=0
3x;+6x, +8x3+x, + 5x5 =0
Row-reducing the given system of equation, we get
Xp 4+ 2%+ 2x3— x4+ 3x5 =0 (1)
X3+ 2x,—2x5=0 (2)
dim (W) = No. of unknowns — No. of non-zero equations
=5-2=3.
The free variables are taken as x,, x, and x5 (.". x, is not present in (2))
Taking x, =1, x,=0,x5=0; v; = (x|, X5, X3, X4, X5) = (-2, 1,0, 0, 0), using (1) and (2)
Taking x, =0, x, =1, x5=0; v, =(5,0,-2, 1, 0), using (1) and (2)

Taking x, =0, x, =0, x5=1; v;=(-7,0, 2,0, 1), using (1) and (2)
V|, v, v3 form a basis for the solution space W.

Example 12

Find a homogenous system of equations whose solution set W is spanned by (1, -2,
0,3-1),(2,-3,2,5,-3)and (1, -2, 1, 2, -2).

V = (X}, Xy, X3, X4, X5) € W, if and only if v is a linear combination of the given vectors.
(X Xy, Xy Xy X5) = k(1,-2,0,3,-1) + ky (2,-3,2,5,-3) + k5(1,-2, 1, 2,-2)

viz., ki + 2ky + ky = x, (1)
=2k, = 3ky — 2k5 = x, ()
2ky + ky = x3 3)
3k + Sky + 2ky = x4 4)
—k; =3k, — 2k5 = x5 (5)
Row-reducing the above equation, we get
ki + 2ky + ky = x4 (1)
ky =2x; +x, 2"
2k, + ky = x4 (3"
~ky — ky = x4 — 3x, 4
—ky —ky = x; + X5 (5"
(3") + (4) gives ky ==3x; + x5+ x4
Also ky =2x; +x,

2x Xy =-3x X3+ Xy
viz; Sxi+x—x3—x,=0 (6)
Equating (4”) and (5”), we also get

x|+ X5 =x4—3x;
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viz; 4, — x4, +x5=0
(OR) 4x; —(Ox;+x—x3) +x5=0 Vviz,x; +x,—x3—x5=0 (7)
v € W, if and only if the above system has a solution.
viz., if Sxi+x—x3—x,=0 (6)
and X+ Xy —x3—x5=0 (7)

Equations (6) and (7”) form the required homogeneous system of equations.

Exercise 1
Part A (Short-Answer Questions)

1. Define vector space with two examples.
Define subspace with two examples.
Define span of a vector space.
Define standard vectors in R® and prove that they span the vector space R’
Define linear dependence and independence of vectors.
Define basis and dimension of a vector space.
If Vis the vector space of all (2 x 2) matrices over R, give a basis of V and
dimension of V.
8. Determine whether the vectors (1, 1, 1) and (1, -1, 5) form a basis for the
vector space R’
9. Find whether the vectors (1, 1, 2), (1, 2, 5) and (5, 3, 4) form a basis for the
vector space R’
10. Find whether the vector (1, 1, 1), (1, 2, 3) and (2, —1, 1) form a basis for the
vector space R’

Part B

11. Is the vector (3, —1, 0, —1) in the sub-space of R spanned by the vectors
2,-1,3,2),(-1,1,1,-3)and (1, 1, 9, -5)?

12. Find whether the vector (-3, -6, 1, -5, 2) is in the sub space of R spanned
by (1,2, 0, 3,0),(0,0, 1,4,0) and (0, 0, 0, 0, 1).

13. Examine the linear dependence or independence of the following vectors:
D u; =2,-1,3,2), u,=(1,3,4,2) and u3 = (3, -5, 2, 2).

() u; =(1,-1,0, 1), uy =(-1,-1,-1,2) and u5 = (2,0, 1, -1)

14. Find the maximum number of linearly independent vectors among the
following and express each of the remaining vectors as a linear combination
of these:

u =G, 1,-4);u,=2,2,-3); u3=(0,-4, 1) and u, = (-4, -4, 6)

15. Show that the vectors u, (2, 3, -1, -1); u, = (1,-1,-2,-4); u3;=3, 1, 3, -2)
and u, = (6, 3, 0, —7) form a linearly dependent system, also express u4 as a
linear combination of other.

16. Determine whether the vector (4, 2, 1, 0) is a linear combination of
the vectors u; = (6, -1, 2, 1), u, = (1, 7, -3, -2), u3; = (3, 1, 0, 0) and
uys=(3,3,-2,-1).

17. Show that the vector (a, b, 0) in R?is generated by
() u;=(1,2,0)and u, = (0, 1, 0)

Nk wd
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18.

19.

20.

21.

22.

23.

24.

25.

10.
11.
12.
13.

14.
15.
16.
17.

18.

Linear Algebra and Partial Differential Equations

(i) u; =(2,-1,0)and u, = (1, 3, 0)

Show that the vector (a, b, 0) in R’ is generated by

() u;=(0,1, 1)and u, = (0, 2, -1)

(i) u; = (0, 1, 2) and u, = (0, 2, 3)

Show that the vectors (1, 1, 1), (1, 2, 3) and (2, 3, 8) form a basis for R
Express each of the standard basis vectors as a linear combination of these
vectors.

Show that the vectors u=(1,2,2),v=(2,1,-2) and w=(2,-2, 1) form a basis
for R®. Express each of the standard basis vectors as a linear combination of
u, v and w.

Find a basis and dimension for the subspace of R spanned by the four vectors
vi=(1,1,2,4),v,=(2,-1,-5,9),v;=(1,-1,-4,0) and v, = (2, 1, 1, 6)
Find a basis and dimension of the subspace of R spanned by

(1) (1,4,-1,3);(2,1,-3,-1) and (0, 2, 1, -5)

@) (1,-4,-2,1); (1,-3,-1,2) and (3, -8, -2, 7)

Find a basis and dimension of the solution space W of the homogeneous
systemx+ 3y +2z=0,x+5y+z=0and 3x+y+ 8z=0.

Find a basis and dimension of the solution space W of the homogeneous
system: x; + 2x, —x3+ x4 =0and x; — 2x, + x5+ 2x, =0

Find a homogeneous system of equations whose solution set W is spanned
by (1,-2,0,3),(1,-1,-1,4) and (1, 0, -2, 5)

Answers

Exercise 1

No, since dim (R3) = 3, but there are only 2 elements.
No, since the vectors are linearly dependent.

Yes, since the vectors are linearly independent.

No, the given vectors are linearly dependent.

Yes, since (-3, -6, 1, =5, 2) = -3u; + uy + 2u;

(i) Linearly dependent, since u; = 2u; — u,

(ii) Linearly dependent since u; = u, + u;

2, let them be u, and u,. Then u; = 2u; — 3u, and u, = 0 u; — 2u,
Uy =Uj + Uy + Uy

Yes since u = 2u; + u, — 3uz + 0.y

(1) (a, b,0)=a(1,2,0) + (b -2a)0, 1, 0)

(ii) (a, b, 0) = %(361 -b)(2,-1,0)+ %(a +2b)(1,3,0)

1, b, c)= %(b +2¢)(0,1, 1)+ %(b -0)(0,2,-1)

(i) (0, b, ¢) = (=3b +2¢) (0, 1,2) + 2b — ¢) (0, 2, 3)
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19.

20.

21.
22.

23.
24,
25.

7 1 3
el—Zul ZM2+4M3,62——5M1+2M2 Eu3
1 1
and e; = ——uy, Uy +—is
4
1 2 2 2 1 2 2 2
e =—Uu+—v+—wie, =—u+—v-——wjeg=—u——v+—w
9 9 9 9 9 9 9 9 9

(1,1,2,4),(0,-3,-11, 1) and (0, -2, —6, —4) form a basis and dim = 3.
(i) dim (W) = 3; Basis = [(1, 4, -1, 3), (0, -7, -1, -7) and (0, 2, 1, 5)
(i) dim (W) = 2; Basis = [(1, -4, -2, 1) and (0, 1, 1, 1)]

Basis = (7, -1, 2) and dim (W) =1

dim (W) =2; Basis=[(-5, 1,0, 3) and (3, 0, 1 -2)]
2x;+x,+x3=0and 5x; +x, —x, =0
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Linear Transformation

2.1 LINEAR TRANSFORMATION-DEFINITION

If V and W are vector spaces over the same field F, a function 7 from V into W is
called a linear transformation or linear mapping, provided it preserves the two basic
operations of a vector space and denoted by 7: V — W.

Viz.,

Q) Ty +w)=TWv)+ T(w) for any v, we V
(i1) T(cv) = cT(v), forany ve Vand c € F.

Note &5
T(0) = T(0v) = 0. T(v) = 0.

Examples of Linear Transformation

1.

Zero transformation: Let N : V— Wbe a transformation such that N(v) =0 e W,
foreveryve V.

Now Nv+w)=0=0+0=N(®)+ Nw)

and N(ev)=0=cx0=cN(®)

Hence W is a linear transformation, usually denoted by O.

Identity transformation: Let I. V — V be a transformation such that I(v) = v,
foreveryve V.

Now Iv+w)=v+w=Iv)+I(w)

and I(cv)=cv=cl(v)

Hence [ is a linear transformation.

If Vis the vector of polynomials in the variable x over the real field R and if

df !
D(f) = =—and I(x) = If(x)dx, then
dx 0

D :V — Vand:V— R are linear transformation, for
D(c,v + c;w) = ¢, D(v) + ¢, D(w) and,
1 1 1
I(c;v+c,w)= j(clv +c,w)dx = ¢ Ivdx + czjwdx =c l(v) +c,I[(w)
0 0 0
Let P be a fixed (m x m) matrix with entries over F' and Q be a fixed (n x n)
matrix over F.
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If T is a transformation over the space F”" *" is defined as T(A) = PAQ, then

T is a linear transformation, for

T(c,A + ¢,B) = P(c,A + ¢,B)Q = [¢,(PA) + c,(PB)]Q = ¢,(PAQ) + ¢,(PBQ)
=¢,T(A) + ¢, T(B)

Note £5

T: V — W can be uniquely determined by arbitrarily assigning elements of W
to the elements of a basis of V as per the following theorem which is stated
without proof.

Theorem: If Vis a finite dimensional vector space over a field F, with {v, vy, ..., v,
as a basis and W is another vector space over the same field containing the arbitrary
vector {wy, w,, ..., w, } (Which may be linearly dependent or equal to each other), there
exists a unique lmear transformation 7': V. — W such that T7(v) =w; ijj =1, 2, .

For example, let us find T : R* > R defined by T((1, 2) = (3, —1 5) and T(O 1)

=2,1,-1)

Since (1, 2) and (0, 1) are linearly independent, they form a basis of R’. The vectors
(3,-1,5) and (2, 1, —1) have been arbitrarily chosen in R’

Now (a,b)=c|(1,2) +¢c,(0,1) .. cy=aandc,=b-2a

T(a, b)y=a3,-1,5)+ (b -2a) (2,1,-1)

= (2b — a, b — 3a, 7a — b), which is the unique linear transformation
required.

2.2 NULL SPACE AND RANGE SPACE

Definitions: If V and W are vector spaces over the field F and if T: V — Wis a linear
transformation, the set of all vectors v in V such that 7(v) = 0 is called the null space
of T or kernel of T and denoted by Ny.

The set of all vector w is W such that 7(v) = w, v € Vis called the range space or
the image space of T and denoted by R;.

Note &5

Null space of T is a subspace of V and range space of T is a subspace of
w.)

If V is finite dimensional, the dimension of the range of T is called the rank of T
and that of the null space of T is called the nullity of T

Dimension Theorem

The sum of the dimension of the range space and null space of a linear transformation
is equal to the dimension of its domain viz., if V and W are vector spaces over the
field FFand if T: V — Wis a linear transformation and if V is finite dimensional, then
rank (7) + nullity (7) = dim (V).

Proof: Let {v,, v,, ..., v;} be a basis for Ny, so that dim (N;) =k
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We can find vectors vy, |, vy, 9, ... v, such that (v;, v,, ... v,) is a basis of V, so that
dim (V) = n.

The theorem is proved, if we can prove that (7v, |, TV, 5, ... Tv,) is basis for R,
Clearly the vectors Tv,, Tv,, ... Tv, span Ry

But  Tvi=Tvy=..=Tv,=0
vyt TViy s -os TV, span Ry

These vector Tv, ., Tv; .5, Tv, will be a basis of Ry, provided they are linearly

independent.
n

Let these be scalars c; such that 2 ¢;(Tv;))=0

i=k+1

n
viz., T 2 ¢; v; =0 (T is linear)

i=k+1

n n
This means that v = 2 cv; is (in Ny) viz., T 2 ¢;v; =0 [T is linear]
i=k+1 i=k+1 (1)

Since {vy, v,, ..., v} is a basis of Ny, there exist scalars b, b,, ..., b; such that

V= z bv; )

k n
From (1) and (2), we get zbivi - Z ¢v; =0

i=1 i=K+1
Since vy, v,, .., v, form a basis of V, they are linearly independent.
by=by=..=by=c¢,1=¢r=..=¢,=0
Tvi .15 Tvi 4, ..., Ty, form a basis for R,
dim (R;) =n —k and dim (N;) =k
Rank (7) + nullity (7) = dim(V)

Worked Examples

Example 1

Show that the transformation T : R> — R? defined by T(x, y, z) = (z, x + y) is linear.
Let v=(x,y,2)and w=(x",y’2)

Then cv+cw=(cx+ X', ¢y + ¢y 12+ 7))
T(cv + W) = {c 12+ 2, ¢;(x + ) + ¢,(x”+ )}, by definition of T

=ci(z, x+y)+ (2 x"+Y)
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=cT(x, y,2) + e, T(x", ¥, 2)
=c;T(v) + ¢, T(w)
- T1is linear.
Example 2

Show that the transformation T : R> — R* defined by T(x, y) = (sin x, y) is not linear.
Let v=(x,y)and w=(x/, y)

Then v+ W = (X + X’ ey + )
T(cyv + cow) = {sin(cx + ¢,x), ¢y + ¢y} (1)
But ¢;T(v) + ¢,T(w) = ¢ (sinx, y) + ¢, (sinx’, ¥
= {c, sinx + ¢, sinx’, c;y + ¢y} )
From (1) and (2), we see that T(c,v + c,w) # ¢;T(v) + ¢,T(w)

. T'is not linear.

Example 3

Find whether the transformation T : R* — R’ defined by
T(x,y)=(x+ 1,2y, x +y) is linear.
Let v(x,y)andw=(x", y)
Then v+ W = (X + X’ ey + ¢y
T(cv + cw) = {ex + ex’+ 1,2(cy + 99, c;(x + y) + H(x"+y)
zc,TW) + ¢, T(w)

. T'is not linear.

Example 4

If V is the vector space of all n x n matrices over F and if B is an arbitrary matrix in
V, show that the transformation 7: V — V defined by T(A) = AB — BA, where A€ V
is linear. Show also that 7(A) = A + B is not linear, unless B = 0.

T(c,A + c,A) = (c}A + c,A)B — B(c,A + ¢,A")
=¢,(AB— BA) + c,(A’B— BA") (1)
¢, T(A) + ¢,T(A) = ¢;,(AB — BA) + ¢,(A’'B — BA") 2)
From (1) and (2), we see that T is linear.
Now T(ciA+c,A)=ciA+c,A’+B 3)
and ¢,T(A) + ¢,T(A) = c¢;(A + B) + c,(A"+ B)
=c,A+c, A+ 2B 4)

From (3) and (4); we see that T is not linear, but linear when B =0
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Example 5

Find 7(1, 0), where T': R* — R® is defined by 7(1,2) = (3,2, 1) and T(3, 4) = (6, 5, 4)
Since (1, 2) and (3, 4) are linearly independent, they form a basis of Rz.(3. 2, 1)

and (6, 5, 4) are arbitrary vectors in R
T:R*>— R’ can be uniquely determined.

Let (1,0)=c(1,2) + 53, 4)
Then ¢ +3c,=1and 2¢; +4¢,=0
Solving there equations, ¢; =2 and ¢, = 1
T(1,0) =-27(1, 2) + T(3, 4)
=-2(3,2,1)+(6,5,4)
=(0,1,2)

Example 6

Find a basis and dimension of R; and N, for the linear transformation 7 : R - R,
defined by T(x,, x,, X3) = (x| — Xy + 2x3 = 2X| + X, —x| —2x, + 2X3)

The images of standard basis vectors of R3, viz: (1, 0, 0), (0, 1, 0) and (0, O, 1)
generate R,

7(1,0,0)=(1,2,-1); T(0, 1, 0) = (-1, 1, -2) and 7(0, 0, 1) = (2, 0, 2)

We have to test wether three images can form the basis of R,
viz., to find the number of independent vectors from the images.

1 2 -1 1 2 1 1 21
Now -1 1 2|~|0 3 3|~|0 1 1
2 0 2 0 4 4 000
=~ {1, 2, 1)and (0, 1, 1)} is a basis of Ry and rank of 7'= 2.

Let (x}, x,, x3) be an element of N

Then T(x,, x5, x3) = (0, 0, 0)
viz., X=X, +2x;=0, (1)
2x,+x,=0 (2)

and =X —2x,+2x3=0 3)
viz., X=X, +2x3=0 (1)

36, -4 x;=0 [(2) -3 x(1)]

“3x, +4x,=0 (D +3)]
viz., X=X, +2x3=0
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- dim (Ny) = 1 (No. of unknowns—No. of non-zero equations)
Taking x; as the free variable and putting x; = 3, we get x, =4 and x; = -2

= (2,4, 3) is a basis of Np.

Example 7

Find a basis and dimension of R; and Ny for the linear transformation T : R* — R’
defined by T(x;, x,, X3, X4) = (x; — X5 + X3 + Xy, X; + 23 — X4, X; + X, + 3x3 — 3x,).
The images of the standard basis vectors of R* generate Ry.
viz., 7(1, 0, 0, 0) = (1, 1, 1), 7(0, 1, 0, 0) = (-1, O, 1), 7(0, O, 1, 0) = (1, 2, 3) and
7(0,0,0, 1) =(1,-1,-3)
Now let us find the number of independent vectors from the images

11 1) (1 1 1) (111

=10 1 f0 1 2] f0 1 20 1, 1) and (0, 1,2)
1 2 3 0o 1 2 000 from a basis of Ry and
1 -1 -3) o 2 4) lo o o0 dim (Ry) =2

Let (xy, x5, X3, x4) € Ny
Then T(x,, x,, x3, x4) = (0, 0, 0)
X=Xy +x3+x, =0 | viz,, x; =X, +x3+x, =0 | viz., x; —x, +x3+x,=0
X +2x;,—x, =0 Xy+x3-2x,=0|and  x,+x;-2x,=0
X +xy +3x3-3x, =0 2x, +2x;—4x, =0
Since x3 and x, can be taken as free variables,
X, =—1,x; =0 (corresponding to x; = 1 and x, = 0)

and x, = 2, x; = | (corresponding to x; =0 and x, = 1)
- dm (Np) =2 and {(0, -1, 1,0), (1, 2, 0, 1)} is a basis of N;.

Example 8

If Vis the vector space of 2 x 2 matrices, if M =( 2} and if T: V — V be the

linear transformation defined by T(A) = MA, find a basis and dimension of (i) R; and
(i) Ny
The images of the standard basis element of V are given by

L -1y 0) (1L O)( 1 -1j(0 1) (0O 1) 1 -1}(0 O
-2, 2)lo, o) (=2 0o)(-2 2)lo o) (0 —2)(-2, 2){1 0
-1 0 1 -1)(0 0 0 -1
= and =
2, 0 -2 2)l0 1 0 2
These images span R;. To find the basis of R, we have to find the number of

independent vectors among these images. Writing these images as row vector, we
have
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1 0 -2 0 1 0 -2 0 1 0 -2 0
0 1 0 -2 0 1 0 -2 01 0 -2
-1 0 2 O 0 0 0 O 00 0 O
0 -1 0 2 0 -1 0 2 00 0 O
. . I, 0|0 1
. dim (Ry) = 2 and a basis is ,
-2, 0] |0 -2
R IY)
Let be an element of N;.
X3 Xy
Then T X X _ I =1{lx x _ 00
X3 X4 =2 2||x x 00
viz., x —x3=0 .. The non- zero eqautions are
X, —x, =0 x;—x3=0and x, —x, =0

—2x; +2x3=0 | ..dim(N;) =2 and x; and x, can be

=2xy, +2x, =0 treeted as free variable

Taking x; = 1 and x, = 0, we get E g}

1

) i1 010 1
.. A basis of Ny is ,
1 01|10 1

Example 9

01
Taking x; =0 and x, = 1, we get {0 }

Find a linear transformation R* — R® whose range space R is generated by (1, 2, 3)
and (4, 5, 6)
Consider the standard basis of R’ namely e; =(1,0,0),e,=(0, 1,0) and e; = (0, 0, 1)
The images of e,, e,, e;, which are the elements of the basis of Ry, are given by
7(1,0,0)=(1, 2, 3); T(0, 1, 0) = (4, 5, 6); 7(0, 0, 1) = (0, 0, 0).
Now xe; +ye, +ze3;=x(1,0,0) + (0, 1, 0) + (0,0, 1) = (x, y, 2)
T(x, y, 2) = T(xe, + ye, + xe3)

=xT(e;) + y1I(e,) + z1(e5)
=x(1, 2, 3) + y(4, 5, 6) + z(0, 0, 0)
= (x + 4y, 2x + 5y, 3x + 6y)
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Example 10

Find a linear transformation 7 : R* — R® whose null space N, is generated by (1, 2,
3,4 and (0, 1,1, 1)
Let T(x, y, z, w) = [(a;x + by + ¢, + d\w, arx + byy + c,2 + dyw),

(azx + by + c3z + d3yw)] (since T is linear)

Since (1, 2, 3,4) and (0, 1, 1, 1) generate the null space,

viz.,

Taking
Viz.,

7(1,2,3,4)=(0,0,0) and 7(0, 1, 1, 1) = (0, 0, 0)
a, +2b, +3c, +4d, =0 (1) |viz.,, b +c¢ +d =0 (4)
a, +2b, +3c, +4d, =0 (2) by +cy +d, =0 (5)
ay +2by +3c; +4d; =0 (3) by+c;+dy; =0 (6)

d, =0 and solving (1) and (4), we have
(a]9 b]? C]?) = (_17 _17 1)

Solving taking ¢, = 0 and solving (2) and (5), we get

Taking

Part A

1.
2.
3.

% N oL

Part B

10.

11.

12.

(aZa bz, d2) = (_2» _17 1)
b; =0 and solving (3) and (6), we get
(03, C3, d3) =(-1,-1,+1)

T(x,y, W) ={-x—y+2,-2x—y+w,—x—2+w)
x+y,—-z,2x+y—-w,x+z2—w)

Exercise 2(A)

(Short-Answer Questions)

Define linear transformation with an example

How can we find the unique linear transformation 7: V — W?

Show that the transformation 7 : R — R* defined by T(x) = (2x, 3x) is
linear.

Show that the transformation T : R* — R defined by T(x, y) = Ix — yl not
linear.

Find the linear transformation 7': K> — R defined by 7(1, 1) =3 and T(0, 1) = 2.
Define the null space of a linear transformation.

Define the range space of a linear transformation.

Define rank and nullity of a linear transformation. How are they related?

Show that the transformation T : R* — R? defined by T(x, y) = (ax + by, cx +
dy); where a, b, ¢, d € R, is linear.

Show that the transformation T : R® — R defined by T(x,v,2)=(x+ 1,y +
z) is not linear.

Show that the transformation T : R* — R, defined by T(x, y) = (x2, yz) is not
linear.

Show that the transformation 7 : R* — R, defined by T(x, y) = xy is not
linear.
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13. If Vs the vector space of all n x n matrices over F and if B is an arbitrary
matrix in V, show that the transformation 7: V — V, defined by T(A) = AB +
BA, where A € Vis linear.

14. If Vis the vector space of polynomials in 7 over F, show that 7: V — V,
defined by (i) T(ay + a,t + ayt* + - +a,f") = ayt + a,r* + --- +a,"* ' and (ii)
T(ay+ ayt +ay® + - +at)=0+a, +at + - +a,"" " are linear.

15. Find T(a, b, c¢), where T : R® = Ris defined by 7(1,1,1) =3, 7(0, 1,-2) =1
and 7(0, 0, 1) = -2.

16. TIs there a linear transformation 7 : R> — R® such that (1, -1) = (1, 0),
T(2,-1)=(0, 1) and T(-3, 2) = (1, 1)?

17. Find a basis and dimension for R; and N, for the linear transformation 7': R’
—>R3, givenby T(x,y,2) =(x+2y—z,y+z, x +y—22)

18. Find a basis and dimension for R, and N, for the linear transformation 7 :
R® = R®, defined by T(x, y, 2) = (x + 2y, y — 2, X + 22)

19. Find a basis and dimension for R and N, for the linear transformation 7': R’
— R?, defined by T(x,y) = (x +y, x + y).

20. Find a basis and dimension for R, and N for the linear transformation 7 : R’
— R* defined by T(x,y,2) = (x+y,y + 2).

1 2

0 3

V — Vs the linear transformation, defined by T(A) = AM — MA, find a basis
and dimension of N;.

22. Find a linear transformation 7 : R* — R* whose range space is generated by
(1,2,0,-4) and (2, 0, -1, -3)

23. If T is the linear operator on R® [viz; T : R -R ], the matrix of which in the

21. If Vis the vector space of 2 x 2 matrices over R and M = { } and if T:

1 21
usual basis is [A]f =| 0 1 1/,find abasis for R; and N;.
-1 3 4

[Hint: T(x, y,2) =(x + 2y + 2, y + 2, —x + 3y + 42)
24. Find a basis and dimension for R; and N, of the linear transformation 7' : R

1 20 1
— R®determined by A=[2 -1 2 -1
1 -3 2 =2
25. Find a basis and dimension for R; and N, of the linear transformation 7' : R

10 2 -1

— Ry determinedby B=| 0 3 -1 1

2 0 -5 3

2.3 MATRIX REPRESENTATION OF LINEAR

TRANSFORMATION

Definition: Let V and W be vector spaces over the field F, of dimensions n and m
respectively. Let e = {e}, e,, --- ,e,} and f = {f}, f>, --- .f,,} be ordered (arbitrary but
fixed) bases for V and W respectively. If ve V, then v=cje; + c,e, + + e,
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c
The column vector | ° | is called the co-ordinate vector of v relative to {¢;} and
denoted as [v],.

C}’l
Let T: V— W be a linear transformation. Since 7(e,), T(e,), ..., 1(e,) are vectors
in W, each can be expressed as a linear combination of fi, f,, ..., f,, uniquely as
m
Tle) = 2. a;f;
i=1
viz., T(e) = ayjfy + ayi fo + - + ayif,, = 1,2, - 1)
viz., Tep)=ay fi+aynfa+ - +aufu

T(e)) =apfi+anfh+-+anf,

The co-ordinate vector of T(e)) relative to {f;} is
“
The matrix of dimension (m x n) for by the co-ordinate vectors 7(e) (j = 1, 2,

-, n) which determine 7 is called the matrix of T relative to the bases e and f and
denoted by A or A.

Working rule: To get the matrix representation of 7 w.r.t. e and f, we have to express
each T(e;) as a linear combination of f;"s. The transpose of the matrix of coefficients
in the above equations is the required matrix.

Definition: If 7 : V — V, where V is a vectors space over the field F, the linear
transformation T is called a linear operator on V

Note £

If Tis a linear operator on a vector space V overthe field Fand ife ={e,, e,, ---, e}
is a basis of V, then the matrix of T relative to e is the (n x n) square
matrix A whose elements of a; are defined by the equation T(e) =

n
zaij e (j=12---n)(sincee=fr)
i=1

Also [T(0)], =Al[v), (1)
Since A depends on the basis e used, it is usually denoted by [T],.

Thus [T(v)], = [T1,[v], 2)
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Eigenvalue and Eigenvectors
X1 N
In equation (1) above, we shall take [v], =X = and [T(v)], =Y = y‘z , it takes
xn yﬂ
the form Y = AX, where A is the square matrix [aij] (i,j=1,2,-,n).
There are situation where certain column vectors are transformed into scalar
multiples of themselves.
viz., Y=AX=2AX (1), where A 1is a scalar,
From (1), we get AX=AIX or (A—-ADX =0  (2), where I is the unit matrix of
order n.
If X is a non-zero column vector, then A is called an eigenvalue of A and X is the
Eigenvalues of A and the corresponding eigenvectors are as follows:
If A is an eigenvalue of A and X is the corresponding eighenvector, then (A —Al)
X=0
viz., (@1 —)x; +apx, +o+a,x, =0
Ay X+ (ayy = M)xy +-+ay,x, =0

3)

X +apx, +-+(a,, —A)x, =0
Equations (3) are a system of homogeneous linear equations in the unknowns x,,
X5, -+, X, (which are the element of the non-zero vector X). The condition for the
system (3) to have a non-zero solution is
ay —Aay —a,

=0, viZ.,|A—/'LI|=() )

The equation (3) is called the characteristic equation of A
The n roots of the characteristic equation are called the eigenvaluses of A.

Note #5

(1) Corresponding to each value of A, equation (2) possess a non-trivial
solution which will be a one-parameter family of solutions. Hence the
eigenvector corresponding to an eigenvalue is not unique.

(2) Ifallthe eighenvalues of a matrix A are distinct, then the corresponding
eigenvectors are linearly independent.

(3) If two or more eigenvalues are equal, then the eigenvectors may be
linearly independent or linearly dependent.

Properties of Eigenvalues

We state certain properties of eignevalues without proof: They may be verified in
individual problems
1. A square matrix A and it transpose AT have the same eighenvlaues.
2. The sum of the eigenvalues of A is equal to the trace of the matrix, viz., to
the sum of the principal diagonal elements of A.
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3. The product of the eigenvalues of a matrix A is equal to |AL. If |Al =0, viz.
If A is a singular matrix, at least one of the eigenvalues of A is zero and
conversely.

4. If A, Ay, -+, A, are the eigenvalues of A, then
(a) kA, kA,, --- kA, are the eigenvalues of kA, where k is a non-zero scalar.
(b) AP, AL, -+ AP are the eigenvalues of A”, where p is a +ve integer.

i, L, .. i are the eigen values of A"l, viz., the inverse of A, provided

M Ay Ay

A, # 0, viz., Ais non-singular.

5. The eigenvalues of a real symmetric matrix, viz., symmetric matrix with real
elements are real.

6. The eigen vectors corresponding to distinct eigenvalues of a real symmetric
matrix are orthogonal.

(©)

2.2 SIMILARITY TRANSFORMATION AND
DIAGONALISATION

Definition: If A and B are (n x n) square matrices over F for which there exists an
invertible (non-singular) (n x n) matrix P over F such that B = P'AP, B is said to be
similar to A or B is said to be obtained from A by a similarity transformation.

Note £

(1) When B is similar to A, Ais similar B, for
B =P 'AP; viz., PBP" = PP'APP = IAl = A
Assuming P~" = Q, this means that A =Q"'BQ
viz., A is similar to B.

(2) SinceA=[T],and B=[T], Aand B represent the same linear operator
T, if and only if they are similar to each other.

Definition: A linear operator 7T is said to be diagonalisable if for some basis {e;} it is
represented by a diagonal matrix.

viz., T is diagonalisable if and only if its matrix representation can be diagonalised
by a similarity transformation.

Property (1) (Proof omitted)

If A is a square matrix with distinct eigenvalues and P is the matrix whose columns
are the eighenvectors of A, then A can be diagonalised by the similarity transformation
P 'AP=D, where Dis the diagonal matrix whose diagonal element are the eighenvalues
of A.

Property (2)

If A is areal symmetric matrix, then the eigen vectors will be linearly independent and
pairwise orthogonal. If we normalise each eigenvector X,, viz., divide each element
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of X, by the square root of the sum of the squares of all the elements of X, and use the
normalised eigenvector of A as columns of Q, then Q will be an orthogonal matrix
such that Q’1 =0

The the similarity transformation P'AP = D takes the form 0TAQ = D. In this case,
A is said to be diagonalised by an orthogonal transformation.

Worked Examples m_

If T: R® — R? is the linear transformation defined by T(x,y,2) = 2x+y—2z,3x -2y
+ 47), find the matrix of T relative to the bases e and f where e = {e; = (1, 1, 1), ¢, =
(1, 1,0) and e5 = (1, 0, 0) and f'= {f; = (1, 3); f, = (1, 4)}. Also verify that [T(v)],=
(71/[v]..

Let (a, b) =kif| + ko =k (1, 3) + ky(1,4)

Example 1

ki +ky=a (1)
3k, + 4k, =b 2)

Solving (1) and (2), we getk;, =4a—band k,=b—3a .. (a+b)=(4a-Db)f;
+ (b -3a)f,

(a,b)y=(4a-b) f, +)b-3a)f,

Using the definition of 7(x, y, z) and step (1),
T(ey) =T(1, 1, 1) =(2,5) =3f, -/,
T(ep)) =T(1,1,0) =3, 1) = 11f, - 8f,,
T(e3) =T(1,0,0) = (2, 3) =5/, - 3,

- 3 11 5
e -1 -8 -3

Let (a, b, ) = kye, + kyby + kyes = k,(1, 1, 1) + ky(1, 1, 0) + ky(1, 0, 0)

ki +ky=b 4)
ki =c (5)

Solving (3), (4) and (5), we getk, =c, ky=b—-c,ky=a—-b
If (a,b,c)=ve R3, thenv=ce, + (b—-c)e,+ (a—D) ez

c
[vl,=|b-c
a->b
RS T(v)=T(a, b, c)=[2a+b-c), Ba—-2b+4c)], using T(x, y, z)
=[{4QRa+b—-c)— (Ba-2b+4c)}f, + Ba—-2b+4c) —3(2a+ b - c)f,, using (1)
= (Sa + 6b - 8c)f; + (-3a—5b + Tc)f,

() 5a +6b — 8¢
v =
I\ 3a-5b+7c¢
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Now [TV [v 3 11 5 bc 5a +6b — 8¢ T, which
ow v], = —c|= =[T()],, which com-
et {1 -8 -3 —3a-5b+7c 4

pletes the verification.

Example 2
If Tis the linear operator on R* defined by T(x,, x,) = (=X, x;), find the matrix of 7'in
the basis e = {e; = (1, 2), e, =(1,-1)
Since T is the linear operator, 7 : R* - R* and hence f={f, =(1,2); £, =(1,-1)}.
Let (a, b) = k;(1, 2) + k,(1, 1) we have k; + k, = a and 2k, — k, = b.

2a -
Solving these equation, we get k; = a3Lb and k, = a=b

(a.b) = [(“;bj(l, 2)+(2“3_bj(1,—1)}

T(e) =T(1,2) = (-2, 1) = —%el _gez

1 1
g(a +b)e, + E(Za —b)e,

T(ep) =T(1, - =(1, 1) = 261 +%€2

12
_ 3 3
[T]e - ~ g l
3 3
Example 3 s
The matrix A = ( | 4 7) determines a linear transformation T': R® — Rz, defined

by T(v) = Av, where v is a column vector.
(i) Show that the matrix representation of 7 relative to the usual bases of R®and
R’ is A itself.
(i) Find the matrix representation of 7 relative to the following bases of R® and

RZ
e={e;=(1,1,1),e,=(1,1,0), e;=(1,0,0) and
f= {fl = (17 3)’f2= (2’ 5)
1
i) ra00=[> > 2lo|=[F=2 +1[]=21 + 21
a UL 4 7 o] U 0 1 =
0
700, 1,0) = 205 B[] =5f —4f
o 1 -4 7 0 -4 ! 2
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0
700, 0, 1) = S I =3f +7f.
T 4 71_7_1 :
2 5 -3
fo _
m”(l —4 7] 4
(ii) Let (a, b) = kyf, + kofy = ky(1, 3) + ky(2, 5) (1)

ook + 2k, =aand 3k, + 5k, =D
Solving these equation, we get k; =2b —5a and k, =3a - b

. r 2 5 3
Since [T1,=A, T(e)) =

1
4
L 7] 1 =(4]=—12f1+8f2, by (1)

=[_Zj=—41f1 +24f;, by (1)

1

1

0
! 2

0 z(ljz—Sfl +5f,, by (1)
0

Example 4

If T(x, y) = 2x - 3y, x + y), find (T], where e = f{e, = (1, 2), e,(2, 3)}.
Verity also that [7],[v]e = [T(v)], for any v € R

Let (a, b) =kje; + kye, = k((1,2) + ky(2, 3)
ky + 2k, = a and 2k, + 3k, = b

Solving these equation, we get k; =—3a + 2b and k, =2a — b
(a, b) =(-3a + 2b)e; + 2a — b)e, (1)
T(e))=T(1,2)=(-4,3)=18¢, - 11e,
T(ey) =T(2,3) =(-5,5) =25¢; — 15e¢,

[ 18 25}
-1l —15
Let (a, b) =v=(-3a + 2b)e, + (2a — b)e,

. [—3a +2b
% =
¢ _2a—b

}using 0

(7, =
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[ 18 25)[-3a+2b
M=\ 11 15|l 2a-»

= [-54a+36b +50a — 25b, 33a — 22b —30a + 15b]"

=(—4a+11b,3a - 7b)" 2
Let T(v) = (2a — 3b, a + b), by the definition of T(x, y)
=kie, + kyey = ki(1, 2) + ky(2,3)
ki + 2k, =2a -3b
2k; +3k,=a+b

Solving these equation, we get k; =—4a + 11b and k, =3a - 7b
[T(v)]e = {

3)

—da+11b
3a-17b

From (2) and (3), the result [T(v)], = [T], [v], has been verified

Example 5 b
If Vis the vector space of 2 x 2 matrices over R and M = [a }, find the matrix of
c

the linear operator on V in the usual basis when (i) T(A) = MA, (ii) T(A) = AM and
(iii) T(A) = MA — AM.

. 1 0 0 1 00 00
The usual basis is E= ( E| = s B, = s By = yE =
00 00 1 0 01

. a b\(1 O a O
(i) T(E)=ME, = e allo o = . 0 =aE, +0-E, +cE; +0-E,

Similarly T(E,) = ME, = 0- E, + aE, + 0- E; +cE,
and T(E,) = ME, = 0-E, + bE, + 0- E; + dE,
a 0 0

a

0
(Tlg = 0

9}

(i) When T(A) =AM, [T], =

=

o
- 8 o o © O™
L0 oo O

S O S Q
S O a0
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0 —c b 0
-b (a-d) 0 b

0 (d-a) -c
0 c -b 0

(iii) When T(A) = MA - AM, [T, =

Example 6

In the vector space of polynomials in.x of degree <3 over Rif D : V — Vis the differential
operator defined by Df(x) = % fix), find the matrix of D in the basis (1, x, *, x3).
Verify that [D],- [f(x)], = [Df(x)],, where f(x) = a + bx + cx, + dx;.

D(e)) =D(1) =0 =0¢; + Oe, + Oe; + Oe,

D(ey) =D(x)=1=¢, + 0e, + 0e; + Oe,

D(e3) = D(x*) = 2x = Oe, + 2e, + Oes + Oe,

D(ey) = D(x”) = 3x* = Oe, + Oe, + 3e; + Oe,

0 1 0
[D]:O 020
10 0 0 3
0 00O

As fix) = a + bx + cx” + dx’ viz., (x) = ae, + be, + ce; + de,, [f(,)], =

QU o & Q

As Dfix)=b + 2cx + 3dx? viz., Df(x) = be, + 2ce, + 3des, [DA()] = 3d

0

[\)
S &
—

b
2c . ..

Now [D],-[F(x), = 34 =[Df (x)],. Verification is completes.
0

Example 7
If Vis a two dimensional vector space over R and if 7 is a linear operator on V

such that its matrix representation in the usual basis is [T], = {a b}, prove that
T~ (a+d)T + (ad — be)l = 0. c d
b

](x] = (ax + by, cx + dy)
d)\y

a
T(x, y) = (C



Linear Algebra and Partial Differential Equations
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TX(x, y) = T{T(x, y} = T(ax + by, cx + dy)
= {a(ax + by + b(cx + dy), c(ax + by) + d(cx + dy)}
= {(a* + bo)x + (ab + bd)y, (ac + dc)x + (be + d)y) (1)
—(a+d)T(x,y)={-(a+d) (ax + by),— (a+d) (cx + dy)} )
(ad - bc) I(x, y) = {(ad — bc)x, (ad — be)y} (3)

Adding (1), (2) and (3), we get T - (a+d)T + (ad - be)l = 0.

Example 8

(1 0 0

Find the eigenvalues and eigenvectors of the matrix A=|{0 3 —1| Verify that their

1 -1 3

sum and product are equal to the trace of A and |A| reséectively.

-2 0 0

The characteric equationofAis | 0 3-4 -1 |=0

1 -1 3-4

viz., (1 = 2)(A* = 64 + 8) = 0. .. The eigenvalues are 1, 2, 4.
When A = 1, the eigenvector is given by

0-x, +2xy —x3=0

R . T
T4-1 -1-0 0-2

and x; —x, +2x; =0

X, =3,-1,-2)"

When A = 2, the eigenvector is given by

—x; +0:x, +0-x;, =0

S .
T 0-0 0-1 -1-0

Ox; +x, —x;=0

X=Xy +x3=0

X,=(0,1, )"

When A = 4, the eigenvector is given by

=3x;, +0x, +0-x;, =0

X X X3

"0-0 0-3 3-0

Ox; —x, —x;=0

X —x+x3=0

X;=(0,-1,1)"

Sum of the eigenvalues=1+2+4=7

= Trace of the matrix=1+3 + 3
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Product of the eigenvalue =8 =1A1

Example 9

Verify that the eigenvalues of A*and A" are respectively the squares and reciprocals
31 4

of the eigenvalues of A, given that A= {0 2 6
0 0 5

3-1 1 4
The characteristic equation of Ais | 0 2-1 6 |=0
0

viz, 3 - 2-A)B5-1)=0
.. Eigenvalues of A are 2, 3, 5.

31 4)\(3 1 4 9 5 38
Now A’=|0 2 6]|0 2 6|=|0 4 42
0 0 5/)\0 0 5 0 0 25
9-1 5 38

The characteristic equation of A%is | 0 4-A1 42 [=0
0 0 25-1

viz.,, O-A) 4-2)25-1)=0
.. The eigenvalues of A? are 4,9, 25, which are the square of eigenvalue of A.
31 4 a, a, ap
Let A=10 2 6|=|ay ay axy
0 0 5 ay; Gz asg
A, =cofactorof a;; =10; A, =0;A;3=0; A, =-5; A, = 15;
Ayy=0;A3=-2;A3,=-18;A;3=0and |A1 =30

RN
o5 =2 3 16 135
Al=—[0 15 -18|or|0 — -=

30 2 5

0 0 6 |

0 O —
L 5 |

1, 1 1

3 6 15

_ : . 1 3

Characteristic equation of A™ is | 0 E—l 3

0 0 l—),

5
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A e

111
.. The eigenvalues of A" are —,—,—, which are the reciprocals of the eigenvalues
of A. 235
Hence the two properties have been verified.

Example 10

Verify that the eigenvectors of the following real symmetric matrix are orthogonal
in pairs.

3 -1 1
A=-1 5 -1
1 -1 3

3-14 -1 1

The caracteristic equation of Ais | -1 5-1 -1 [=0
1 -1 3-14

viz, A —11A+301-36=0

viz., A=2)(A-3)(1-6)=0

.. The eigenvalues of A are 2, 3, 6.
When A = 2, the eigenvector is given by

X =Xy +x3=0

X X X
—x 3% —x=0 | —=—2—= . X =(-1,0,1)
e 1-3 —1+1 3-1 1= )
X=Xy +x3=0
When A = 3, the eigenvector is given by
0-x, —xy, +x3=0
X X X
—x 2% —xy =0 | =2 =3 X, =L
e 1-2 -1-0 0-1 2= LD
X —xy +0-x3,=0
When A = 6, the eigenvector is given by
3%, —xy +x3=0
X X X
—X =Xy — X, =0 L=—"2 =3 .'.X=1,—2,1T
b 2 -1-3 3-1 2= )

X=Xy +3x3=0
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1 1
Now X! X, =[-1,0+1]|1|=0; X X, =[1,1,1]| =2 |= 0 and
1 1

-1
r X, =[1,-2,1]| 0 |=0. .. Eigenvectors are orthogonal in pairs;
1

Example 11 2 2 1

1 1
If A is an eigenvalues of the matrix A = —| -2 1 2|, verify that 1 is also an
1 =2 2
eigenvalue of A. Also verify that the eigenvalues are of unit modulus.
2-1 2 1

The characterstic equation of the matrix 34is0=| -2 1-1 2
1 -2 2-2
viz, 2-ADA*=31+6)2QA-4-2)+(@A-1+1) =0
viz., A =52 +15A-27 =0
viz., (A-3)(A=21+9) =0

s~ A=3and A= 2%y4-36 ‘13_360“1”'2\/5
1+12\/_ i—i2\2

. Eigenvalues of Aare A, =1, 4, = and A; = 3
1 1 3 3(1—12J_) i—i2\2
Now—=1=/ll;— =1
X 140242 1+8 3 “

Similarly % =1,
3

Thus, when A is an eigenvalue of A, % is also an eigenvalue of A.

.
12| 18
3 9 O

Hence the eigenvalues of A are of unit modulus.

Now IA;l=1and | 4,] =

Note 29

The two results verified above are properties of an orthogonal matrix. In fact,
the matrix A is an orthogonal matrix as it satisfies the definition of an orthogonal
matrix, namely A - AT=ATA=1.
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Example 12 2 0 7
Diagonalise the matrix A = |2 1 2| by similarity transformation and hence
. 01 3
find A™.
2-4 2 -7
The characteristic equation of Ais | 2 1-1 2 =0

e, (2= (AP +21-5) 2(-6-21+7)=0

ie., 2 -132+12=0

ie., A-1DA-3)(A+4)=0.ie,A=-4,1,3
When A = —4, the eigenvector is given by

) __ X
4+35 -14-12 30-4

6x, +2x, —7x;=0

23, + 5%, + 20, =0 | fe, L=2=13 e X =(3,-22)
3 2 2
0-x, +x, +x3=0
When A = 1, the eigenvector is given by
X X2 )

X +2x, —Tx; =0 = =
bhem e 4-0 -14-2 0-4

23, +0:2, + 22, =0 | i.e., %:x_zzx_sl, i, X, =(,—4,-1)
Ox; +x, —4x;,=0

When A = 3, the eigenvector is given by

—x, +2x, —Tx; =0 . B
4-14 -14+2 2-4
N _ M8

Zie, X;=(56,1)"

2x, —2x, +2x, =0 | i.e., = =
! 20T -10 -12 -2

0x; +x, —6x;=0

.. The modal (diagonalising) matrix P is given by

3 1 5 a,, a, ap
P=|-2 -4 6|;LetP=|ay, ay ay
2 -1 1 ay; Gz A

Then A, =2, A, = 14,A,3=10, Ay, =—6, Ay, =7, Ay =5
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2-23
| 2 -6 26
p! =2 14 -7 -28
10 5 -10

.. The required similarity transformation is

P'AP=D(4, 1, 3)

A=pPDP!
A*=pD*P!
256 0 0 | 2 -6 26
Now D'P'=] 0 1 0|x—|14 -7 -28

70
0 0 81 10 5 -10

(512 -1536 6656
=—|14 -7 28
810 405 810

[ 3 1 5][512 -1536 6656
and PD*P! = = -2 -4 6|14 -7 28
| 2 -1 1][810 405 -810

. 5600 -2590 15890
=—|3780 5530 -18060
1820 -2660 12530

80 —37 227
ie., A* =54 79 -258

26 -38 —179
Example 13 2 2 1

Find the matrix P that diagonalises the matrix A= | 1 3 1| by means of similarity

1 2 2
transformation. Verify your answer.

2-4 2 1
The characteristic equation Ais | 1 3-1 1 |=0
1 2 2-4
e, Q=D XP=-51+4H)-21-H+A-1)=0

ie., AT+ 11A-5=0
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ie., A-1%(A-5=0
.. The eigenvalue are 5, 1, 1.

When A = 3, the eigenvector is given by

=3x; +2x, +x3=0 | .~ i B
242 1+3 6-2
X —2x+x=0]. X, =011"

X —2x, =3x;=0

When A = 1, the eigenvector is given by the same single equation, namely,
X +2x%+x3=0
Treating x, and x; as free variables and putting x, = -1 and x; = 0, we get x; = 2.
Putting x, =0 and x; =-1, we x; =1
X, =[2,-1,01"and X; = (1, 0, -1)”

I 2 1 a;, ap, ap
s themodal matrix P= |1 -1  0|=|ay, ay axp
I 0 -1 ay; Gy Ay

Then the cofactos are given by A;; =1, A, = 1, A3 =1, 4y, =2, Ay, = -2,
Aypy=2,A5=1,A5=1land Ay; =-3

| P | =ap Ayt apAptaA;; =4

1 2 1
pr=ll 2
4
1 2 3
.. The required similarity transformation is
Verification:
2 2 11 2 5 2
AP=|1 3 1||1 -2 0|=|5 -1 O
1 2 21 0 -1 5 0 -1
1 2 1] [5 2 1
P‘lAP=%1 -2 1{5 -1 0
2 -3 5 0 -1
20 0 O 500
Yo 4 0l=l0 10
4 0 0 4 0 0 1
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Example 14 2 1 -1
Diagonalise the matrix A=| 1 1 —2| by means of an orthogonal transformation.
-1 -2 1

Verify your answer.

2-4 1 -1
The characteristic equation of Ais | 1 1-A =2 [=0
-1 -2 1-2
ie., Q-AHAW-21-3)-(A-1)-(A-1)=0

e, =4 -A+4=0ie,A+ 1) A-1)(A-4)=0
.. The eigenvalues of A are —1, 1, 4.

When A = -1, the eigenvector is given by

X X X
3% +x, —x;=0| . —2-l|-2=—1-2|-6=6—31
X +2x, -2x,=0 | X, =(0,1,1)

=X —2x, +2x3 =0

When A = 1, the eigenvector is given by

X +x,—x;=0|. - B
-2+10 -1+2 0-1
X+ -2x5=0| - X,=2,-11)
—x; —2x +0.x;=0
When A = 4, the eigenvector is given by
“2x +x —x;=0 | . I B
-2-3 -1-4 6-1
X, =3x, -2x,=0 | Xy;=(@1-1"
—x; —2x, —3x;,=0
0 2 1
Hence the modal matrix P=|1 -1 1
1 1 -1

The normalised modal matrix Q is got by normalising each column vector of P, viz.,
by dividing the elements of each column vector by its norm.
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o, 2 L]
Jo B
L
Thus 0= \/5 \/g \/37
L
V2 V6 B
The required orthogonal transformation that diagonalises A is 0TA0 =D(-1, 1, 4)
Verification:
I U I P
S NN NN
ao=|1 12| L L Ly L 1 4
L. | E T B[R OE
e .
L2 Ve Bl L V2 Ve 3
(o Lo, 2 4]
2 1 1 1 1 4
and Q" AQ=|-—= -— —||l-—= ——= —=|=| 0 1 0|=D(-1,1,4)
NN NN N1 N
L | L
3 B B2 Je B
Example 15 2 0 4
Diagonalise the matrix A= |0 6 0| by means of an orthogonal transformation,
4 0 2

Verify your answer.

The characteristic equation of Ais | 0 6-1 0 |=0

e, 2= 6-)2-)-166-1)=0

ie., 6-A) N -41-12)=0
ie., 6-)(6+A)(A+2)=0

.. The eigenvalues of A are A =-2, 6, 6.

When A = -2, the eigenvector is given by
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} o I T |

T 0-32 0-0 32-0

Ox, +8x, +0-;=0| ~ X, =(1,0,-1)"

4x, +0x, +4x,=0

4x, +0x, +4x,=0

When A = 6, the eigenvector is given by
—4x;+0-x, +4x3=0
4x,+0-x,—4x;=0
or x—x3=0
.". X, is free variable, but it must be so chosen that X, and Xj; are orthogonal among
themselves and also each orthogonal with X (by the property or orthogonal matrix)
Taking x, = 0 arbitrarily, we choose X, = (1, 0, l)T
This choice makes X, and X, orthogonal.
To find X;, we assume it as X; (a, b, c)T
Since X5 is orthogonal to X|,a—c=0 @)
Since Xj; is orthogonal to X,, a+ ¢ =0 2)
Solving (1) and (2), we get a = ¢ = 0 and b arbitrary.
 Let X;=(0,1,0)"

1
.. The modal matrix P=| 0
-1

—_— O =

0
1
0
L
NoR)
The normalised modal matrix Q = | 0 0 1
ND)

NG

The required orthogonal transformation that diagonalises A is 0"AQ = D(-2, 6, 6)

Verification
L Y I B T
20 4| V2 2 RN
AQ=10 6 0| O 0 1f=| O 0 6
402 112 6
2 2 22
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Lo _Lir 2 6
V2 V2 2 2 %' 12 00
and  00=|L o LIl o o 6|2l 06 0|l=D2606
? i o2 R
NN
Note 25

Had we assumed another values for x,, say, 2, we would have got a different
X,. For example, if X, = [1, 2, 1]', X; would have [1, —1, 1]. In this case the

171 1
modal matrix Qwillbe | 0 2 -1
-1 1 1

Exercise 2(B)

Part A (Short-Answer Questions)

1. Define matrix of a linear transformation relative to the bases e and f.

2. Define the matrix representation of a linear operator 7 on a vector space V.
Find the matrix representation of the following linear transformations relative
to the usual basis of R":

: R? > R® defined by T(x, y) = (3x — y, 2x + 4y, 5x — 6y)

: R* = R* defined by T(x, y, s, 1) = 3x — 4y + 25 — 51, 5x + Ty — s — 21)

: R’ — R* defined by T(x, y, z) = (2x + 3y — 82, x + y + 2, 4x — 52, 6y)

: R’ — R? defined by T(x, y, z) = (2x — 4y + 9z, 5x + 3y — 27)

: R - R* defined by T(x, y, z) = B3x + 4y, 5x — 2y, x + 7y, 4x)

: R* = R defined by T(x, y, 7) = (a;x + ayy + a3z, bix + byy + bsz, ¢ x + cyy

+ ¢32)
9. Define eigenvalues and eigenvaectors of a square matrix.

10. State five properties of eigenvalues.

11. Define similarity transformation.

12. When are two matrices said to be similar?

13.  What is meant by diagonalising a linear operator?

14. Define orthogonal transformation.

15. How will you derive an orthogonal matrix from a real symmetric matrix?

NN R W

T
T
T
T
T
T

Part B

16. If T: R®— R*is the linear transformation defined by T(x,y,z) =(Bx+ 2y -4z,
x — 5y + 3z), find the matrix of T relative to the bases e and f, where e = {¢,
=(1, 1,1),e,=(1,1,0),e3=(1,0,0)} and f= {f; = (1, 3), /= (2,5). Also
verify that [T(v)],= [T/ [V],.

17. If T: R’ — R?is the linear transformation defined by T(xy, X5, X3) = (X] + Xy,
2x5 — x;), find the matrix of 7 relative to the bases e and f, where (i) e = {(1,
0,0),(0,1,0),(0,0, D} and f= {(1,0), (0, 1)} (i) e = {1, 0,-1), (1, 1, 1),
(1,0, 0) and f= {(0, 1), (1, 0)}



18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

Linear Transformation @

If T is the linear operator on R*, defined by T(xy, Xy, X3) = Bx) + x5, — 2x; +
X5,—X; + 2x, + 4x3), find the matrix of T in the basis e= {e; = (1,0, 1), e, =
(-1,2,1) and e; = (2, 1, 1). Also verify that [T],[v], = [T(W)],.

If T is the linear operator on R3, defined by T(x, y, z) = 2y + z, x — 4y, 3x)
Find [T],, where e={e; =(1, 1, 1),e,=(1,1,0) and e; = (1, 0, 0)

If T(x, y) = (2y, 3x — ), find [T],, where e = {¢; = (1, 2) and ¢, = (2, 5)

If T(x, y) = (5x + y, 3x — 2y), find [T],, where e = {e; = (1, 3) and e, = (1, 4)}

1 2
IfA= |:3 4} and 7 is the linear operator on R?, defined by T(v) = Av, where

v is written as column, find the matrix of 7 in the (i) usual basis and (ii) basis
e=1{(1,3),(2,5)

22 0
Find the eigenvalues and eigenvectors of the matrix | 2 1 1
-7 2 -3

2 21
Find the eigenvalues and eigenvectors of the matrix |1 3 1
1 2 2

8§ -6 2
Find the eigenvalues and eigenvectors of A= |-6 7 —4
2 4 3

What can you infer about the matrix A from the eigenvalues? Verify your
answer.
Verify that the sum and product of the eigenvalues of A are equal to the trace

-15 4 1
of A and | Al respectively, giventhatA=| 10 -12 6
20 4 2
22 0
Diagonalise the matrix A=| 2 1 1| by similarity transformation.
-7 2 -3
1 -3 3
Diagonalise the matrix A= | 1 =5 3| by similarity transformation.
|0 -6 4
3 -1 0
Diagonalise the matrix A= |—-1 2 —1| by orthogonal transformation.
0 -1 3
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2-30
2 -1 1
30. Diagonalise the matrix A=|—-1 2 —1| by orthogonal transformation
1 -1 2

Exercise 2(A)

5. T(a,b)=>5a-2b
15. T(a,b,c)=8a-3b-2c
16. No
17. dim(R;) =2 Basis = {(1, 0, 1), (0, 1, =1)}; dim(N;) = 1, Basis = (3, -1, 1)
18. dim(Ry) =2, Basis= {(1, 0, 1), (0, 1, =2); dim(N;) = 1, Basis = (2, -1, 1)
19. dim(Ry) =1, Basis= (1, 1); dim (Ny) = 1, Basis= (1, -1)
20. dim(Ry) =2, Basis .= {(1, 0), (0, 1)}; dim(N;) = 1, Basis= (1, -1, 1)

21. dim(N,) = 2, Basis = N
. dim(N;) =2, Basis = o ollo 1

22, T(x,y,7) =(x+ 2y, 2x, —4x -3y)
23. dim(R;) =2, Basis = {(1, 0,-1), (0, 1, 5)}; dim (N;) = 1, Basis=(1, 1, -1)

0 -4\ (-1
24. dim(Ry) =2, Basis= {12 |,| 1 |¢;dim (N;) =1, Basis = i, 3
1
0)\-5
-1
1) (0)(O 2
25. dim(RT)=3andRT=R3,Basiss Of,[1] 0|p;dim(N,)=1Basis= 3
0){0){1 1
1
Exercise 2(B)
3 -1
3. [T]=1|2 4
5 -6
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16.

17.

18.

19.

20.

21.

22.

2 3 -8
11 1
4 0 -5
06 0
[T]_' -4 9
5 3 =2
(3 4
m-=|>
o7
4 0
_al a, a;
b] b2 b3
11 G G5
-7 =33 -13
4 19 8

[—30 -48
18 29

[ 35 41
-27 -32

(i [Tl.=A4

i =
" c“l6 10

2-31
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23.
24.
25.

26.

217.

28.

29.

30.
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1,3,-4; (<2, 1,7, 2, 1,-2)", (1, -3, 13)T

51, 1; (1,1, DT, 2, 1,007, (1,0, -1)T
0,3,15;(1,2,2)", 2, 1,-2)", (2, -2, 1)"; A singular.
Eigenvalues are 5, —10, —20; Trace = -25; 1A 1 = 1000

2 2 1
D(,3,-4);P=|-1 1 -3
-4 -2 13
1 1 1
D4,-2,-2);P=|1 1 0
2 0 -1
11 1]
i & &
2 1
D(1,3,4);,0=|— 0 —
°= 7 NG
RN
%5 E A
T 1]
N
1 1 1
D4 L1 Q0=|-——= —= —
N RV
0, 2
G %
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Inner Product Spaces

3.1 INNER PRODUCT - DEFINITION

If V is a vector space over F, viz., the field of real or complex numbers and there
exists a function (or mapping), which assigns a scalar (u,v) € F corresponding to each
ordered pair of vectors u,v €Y, then (u,v) is called an inner product in V, provided it
satisfies the following axioms:

(1) (au, +bu,,v)=a(u,v) + bu,,v)

@i1)  (u,v)=(v,u). If F is the field of real numbers, then (v, u)= (v,u)

(iii) (#,u) 20 and equality holds if u=0[. (u,u)= (u,u) and so real]
The vector space with an inner product is called an inner product space.

A finite dimensional real inner product space is called an Euclidean space and
complex inner product space is called a unitary space.

Note &5

(1) In axiom (i), if v = av, + bv, then (u, av, + bv,) =
a (u,vq)+b (u,v,), for

(u,avy + bv,) = (avy + bv,, u), by axiom (ii)

=a(vy, u) + b(v, ,u), by axiom (i)

=a(vq,u)+ b(vy,u)
=a (u,v,)+ b (u,v,), by axiom (i)
(2) Ifu=(ay,a,,...a,)andv = (b, b,,...b,) over R", then, (u, v) = (a;b,)
+ayb, +--- +a,b,) is called the standard inner product in R". It is also

called the scalar product or the dot product and denoted by u.v
(3) If u=(zy, 2y, ... 2,) and v = (w,, w, ... w,) are in C", then

(U v)=(zywy +Z,W, +---+2, W) is called the standard inner

product in C", It is also denoted as (u/v).



32}
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The non-negative real number ./(u,u) is called the norm or
length of u and denoted by ||u|.If |u| =1 u is called a unit vector.

To normalize u €V, we have to divide u by "“" and cos 6 = m

where q is the angle between u and v. The non-negative real
number d (u,v)=|v —u| is called the distance between u and v. It

can be verified that (i) d(u, v) = 0 (equality holds good when u = v),
(i) d(u, v) =d (v, u) and (iii) d(u, v) <d (u, w) + d(w, v).

Theorem

If Vis an inner product space, then for any vectors u, v in V and any scalar C,

(i)
(ii)
(iii)
(iv)

Proof

@

(ii)

(iii)

Jewdl=1cl- ]
| > 0. foru=0
Cauchy-schwraz inequality: |(u, v)| < ||u||||v||

Triangle Inequality: ||u + v|| < ||u|| + ||v||

||cu||2 =(cu, cu)= |cE| (u, u)
=[ef* Jul’
feul =Ie I
By axiom (iii), (u, u) > 0, viz., ||M||2 >0 . [u>o0.
Also [u|=0, only when u=0

||u|| >0, only whenu #0.
The inequality is valid when u = 0 (viz., 0 <0)
When u # 0, consider ||u —(u,v) tv"2 > 0, where ¢ is real

=w-(u,v)tv,u—uv)tv=0
viz., (u,v) —mt(u, v)—tu,v) (v,u)+ (1, V)mtz v,v)=20

viz., ||u||2 -2t |u, v)|2 + |u, v)|2 1? ||V||2 20 [ (v,u)= m and z7 = |E|2]

Now putting t:% in (1), we get (D
v

2l ")|2 >
B A BN

. 2
viz., ‘(u, V)z‘ s "”" "V"2
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viz, vl < o
(iv) Consider |+ v)|* = (u+v,u+v)
= (u, 1) + (11, v) + (1, v) + (v, V)
= ||u||2 +2R (u,v) + ||v||2

< "u”2 +2 "u" . "v" + "v"2 ,since R(u,v) < |u, v| as R(z)
< |z| and so R(u, v) < ||u|| . ||v|| by (iii)

< Jl+ M ¥

o+ vl < e+ V]

Note £
(1) Inthe Cauchy-Schwarz inequality, the equality holds when u = (u, v)tv
i.e., u= M
V]

i.e., when u and v are linearly dependent.
(2) Ifu=(ay, ay ...a,)and v = (by, by, ... b,), then (iii) becomes

(@ by +ab, +--+a,b, P < flarf* +ao [+ +[a, 'y (o] +]bs[ +-- |6,

(3) If fand g are real continuous functions over 0 <t < 1, then (iii) gives
1 2y 1
[jf(t)g(t)dt] < [f2(t)dt + [ g*(t)at.
0 0 0

Orthogonality

Definition: The vectors u, v € an inner product space V are said to be orthogonal,
if (u, v) =0.

Note £5

(1) If u is orthogonal to v, then (u, v) =0

Now (v,u)=(u,v) =0=0

*. v is orthogonal to u.
(2) 0e€ Visorthogonal to every v € V for

O,v)=0v,v)=0(Ww,v)=0

(3) If u is orthogonal to ever v € V, then u = 0,

for (u, u)=0 .. u=0, by axiom (iii)

Definition: A set (u;) of vector in V is said to be an orthogonal set, if all pairs of

distinct vectors are orthogonal, i.e., (i, ”i) =0 wheni#j.

Definition: The set {i;} of vectors in V is said to be an orthonormal set, if it is or-
thogonal and if "M, " =1 for each u,.

For example, the standard basis (e}, e,, e3) is an orthonormal set with respect to
the standard inner product, for ||ei || =1 and (e, ej) =0, when i #}.
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Theorem

An orthogonal set of non-zero vectors (or an orthonormal set of vectors) is linearly
independent.

Proof

Let (u;, u,, ..., u,) be an orthogonal set of vectors in a given inner product space.
Let v=cu +cu,+... +c,u,

Now (v,uj)=(20i ”i’”jj
= ZCI- (u;, uj), by axiom (1)
i
=¢; (ujv uj)

(v,u;)

c;=—2=j=1.2,---,msince (u;,u;) # 0, as u;1s a non-zero vector
]

. whenv=Ocj(j=1,2,...,m)=0

This means that (u,, u,, ..., u,,) is linearly independent.
Corollary: Ifve Vthen y _b ul) _b “22) Uy — o — W, ) ) is orthogonal
to each u, 2 — (o ||
) ) ) )
21— i, IIu ||

3.2 GRAM-SCHMIDT ORTHOGONALISATION
PROCESS

Constructions of an orthogonal basis for an inner product space can be done according
to the following theorem which is stated below without proof.

If (v}, vy, ...,v,) is a basis of an inner product space V, then an orthogonal basis
(uy, uy, ,u,) can be found out using the rules u#; = v, and

< (Vm+1’ui)
um+1_vm+1_z U;

2
Sl

Working rule for the construction of an orthogonal basis.

1) wuy=v,
Q@ =y, -2
o
3) 1y = vy — (V39’41) - (V3,u2) 1w,

2
[l el
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and so on.

4) 4:4—(V4’”1) _Wpiy) ()

> 2 2 U
e ] s

Adjoint of Linear Operations

Definition: A linear operator 7 on an inner product space V is said to have an adjoint-
operator T* on V, if (T(u), v) = (u, T* (v)) for all u, ve V.

Note £

(1) If Vs finite dimensional, T* exists for every T. This is not true, if V is
infinite dimensional.

—T
(2) [T*, =I[T1,. This will not be true, if e is an artillery basis of V.

Theorem

If Vis a finite dimensional inner product space and if 7'and § are linear operators on
V and c is scalar, then
1) (T+8*=T*%+ 8% (i) (c)*=cT*,
>iii) (TS)* = S*T* @iv) (T*)* =T and
(v) If Tis invertible, T* is also invertible such that (T")* = (T*)_'

Proof

(i) Ifu,ve v,then (T+S) (u),v)=(T ) +S u),v)
=(T (u),v) + (S (u), v)
= (u, T* (v)) + (u, S* (v))
ie., (u, (T + §)*v) = (u, T*(v) + S* (v))
(T + S)* =T* + S*, (since adjoint operator is unique)
(1) ((cDu, v) = (c T(u), v) = c(T(u),v) = c(u, T*v) = (u, c T*(v))
(cT)*=c¢ T*
(i) (TS(u), v) = (T(S(u),v) = (S(u), T*(v)

= (u, §* (T*(v)))
= (u, §* T*(v))
(TS)* = S*T*
V) (T*w,»)=0,T*w)=TW),u)=wTV) - (T**=T)

(v) [Note: The linear operator T is said to be invertible, if [7], is invertible,
Equivalently [7']e [T], = [T, [T, =1

viz., [T1,'=[T"1)
Forevery u,ve V, (I(u),v)=w,v)=w,I1(v) . I*=1I
I=1I¥=(TT"* = (T ~")* T*, by (iii)
(T"yx = (1%
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Definitions

A linear operator T is called self-adjoint, if T* =T.

A self-adjoint operator is called Hermitian in the complex case and symmetric in
the real case.

A linear operator T is called skew-adjoint, if T* = -T.
Proof: Any operator T can be expressed as the sum of a self-adjoint operator and a
skew adjoint operator.
Property: Let S and U be any linear operators

Let S:%(T+T*)andU:%(T—T*),sothatT:S-i-U
1 S 1
Now S*=|—(T+T*| == T*+T**)=— (T +T*) =S
2 2 2
S is self-adjoint

1 1 -1
U*—(E(T—T*)) =T -T)=— (T -T*=-U

S is skew-adjoint.

Worked Examples 3)

Example 1
If u = (x}, x,) and v = (y,, y,), prove that (u, v) = x;y, — x,y, —X,y; + 4x,y, is an inner
product in R’
Let u’= (x", x%), Then au + bu’= (ax, + bx"|, ax, + bx’)
(au + bu’y, v) = (ax; + bx )y, — (ax; + bx )y, — (ax, + bx, )y, + (ax, + bx," )y,

= a(xy; — X1y = %) +4%,9,) + b(x(y; — x{y, — xz,)ﬁ + 4x2' )
=au,v)+bu’,v)
Axiom (1) of L.P. is satisfied
(v, u) = y1x1 = y1X5 = yoXy + 49X,

= X))~ XY — XYy + 4xoy,
Axiom (2) is satisfied

(u, u) = x12 — XXy — Xy, + 4)622
=(x, - x,)" +3x; 20

Equality holds only when x; =x, =0
Axiom (3) is satisfied.
(u, v) is an inner product in R~

Example 2
For what values of a, b, ¢, d, for which f (u, v) = ax,y, + bx;y, + cx,y; = dx,y, is an
inner product on R*?
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Axioms (1) and (2) will hold good for all real values of a, b, c, d.
fu,u)= ax12 +bx;x, +cx;xy + dxzz.

I b+c d
=a x12+( ))cl)c2+zxz2

- i 2
b d o
- {x' +( : ZZC))XZ} +{Z_( 42’? })4

2 2
b 4ad — (b

>0, if a>0and 4ad > (b + ¢)°

(b +c)?
4

ie., ad> > bc, since (b —c)>0 i.e., b* +c* >2bc ie., b+ C)2 > 4bc

Sf(u, v) is an inner product on R’ ifa>0and ad — be >0

Example 3
If V is a vector space of m x n matrices over R, prove that (A, B) = Tr (BTA) is an
inner product in V.

(c|A +c,Ay,B)=Tr {B' (c,A, + c,A,))
=c,Tr (B A) + ¢, Tr (B" Ay)
=¢, (A,B)+¢, (Ay,B)

i.e., Axiom (1) holds good
(A,B)=Tr (BTA) can be proved to be equal to (B, A) = Tr (ATB)
(A, A)=Tr (ATA) = Tr (I) = n 2 0. Equality holds only when A is a null matrix
(A, B) = Tr (B'A) is an inner product in R.

Example 4
If Vis the vector space of real continuous functions on the real interval a < ¢ < b, prove

1
that (f,g) = J. f(H)g(t)dt is an inner product on V.
0
b
(ah+efh.8)= J(lel +efy)gdt

b b
=C1J flgdt+c2_[f2gdt

=¢/(f1,8) +cy(f5,8)1
Axiom (1) holds good.
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b b
[ £@) gty dr = [ g(0) () dr.viz., (f, )= (g. f)

Axiom (2) holds good.

b
(/)= [Lf @) dr>0,since a < f(1) < b)

Axiom (3) holds good.
(f, g) is an inner product

Example 5

If V is the vector space of m x n matrices over R, find the norm of A =

the inner product (A, B) = Tr(B*A)

|AF = A, 4)=Tr (A" 4)

2N
=Tr
2 4
(10 —10)
=Tr
-10 20
=10+20=30
J4]=+30

Example 6

1 2
w.r.L.

Find the vectors which form an orthogonal basis with the vectors (1, -2, 2,-3) and

(2,-3,2,4)in R*.
Let the required vector be w = (x, v, z, )
w is orthogonal with u = (1, -2, 2, -3)
o (u,w)=0.viz.,x -2y +2z-3t=0
w is orthogonal with v = (2, -3, 2, 4)
(v, w)=0.viz.,,2x -3y +2z+4t=0
(2) -2 x(1) givesy—2z+ 10r=0
*. z and t are free variables.

Putting t =0, z= 1, we get y = 2 from (3); x = 2 from (2).

Putting r =1, z =0, we get y =10 from (3); x =—17 from (2)

.. The required vectors are (2, 2, 1, 0) and (-17, -10, 1, 0)

Example 7

Find the vectors which form an orthonormal basis with u =

11 1 1
y=|= = —— ——|in R".
2’27 27 2

Let the required vector be w = (x, y, z, )

t
Then  (u,w)=0. viz., %+§+5+—=o

1
2’

(D

(2)
(3

(D
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and  (nw)=0.viz, ~+2_2_L -0 Q)
22

(1) + (2) givesx+y=0and z + =0 from (1) or (2)

viz.,x =-yand z = —¢
Takingy=-lx=1x=-lory=1:Takingt=-1,z=1orifr=1,z=-1
*. The orthogonal basis is given by (1, -1, -1, 1)and (1, —l 1,-1)

The corresponding orthonormal basis is given by B

R

and | L LU (Lo L et

AT AT aT Ja) 27 27 272 27 2°27 2
Example 8

Find an orthonormal basis of R3, given that an arbitrary basis of R is {v,(, L),
v, =(0, 1, 1) and v; = (0, 0, 1)} using Gram-Schmidt process.

Let (u;, u,, us) be the required orthogonal basis.

Then by Gram-Schmidt process,

uy=v;=(1,1,1)

vyl 211
Uy =V, "ul”2 u, =(0,1,1)- \/_2 L1LD= ( 3 3,3)
Uy = vy — (vs, ) u — (vs, 1) "

||u1|| oo
_ (211
=0.0.h- (1 LD~ 2/3( 3’3’3)
1 (211
_(0,0,1)—5(1,1,1)—5(—5,5,5]

11
0,——,—
272
The corresponding orthonormal basis (u;", u,’, u;") by normalizing each of
(1, 16, 1) 111 1
- The orthonormal basis required is {u, =| ——, —,— [;u,” =— (-2, 1, 1);
A AFFE T
u = 0’ T =T =
! [ V22 j
Example 9
Find an orthogonal basis of the subspace of R, given than an arbitrary basis
{vl = (2’ 1, 3$ _1) ’ V2 = (75 4’ 3 ) _3)’ and V] = (5’ 77 75 8)

Let (u;, u,, us, u,) be the required orthogonal basis. Then, by G.S.O process,
u=v;=2,1,3,-1)
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1y = v, — G, 1) U = (7, 43,-3) =22 (21,3, 1)= (3,2, -3, 1)
oo 15

Uz = vy — (Vv “1) U (V3,2u§) Uy
F " ]

30 0
=6,7,78)-—2,1,3,-)-—@3,2,-3,-1
( ) 15( ) 23( )

= (57 75 79 8) - 2’ (25 la 35 - 1) = (17 5, 13 10)
*. Therequired orthogonal basisis {u; =(2, 1,3,-1);u,=(3,2,-3,-1); u3=(1,5, 1, 10)}

Example 10
Find an orthonormal basis of R>, given that an arbitrary basis is {v, (3, 0, 4),
v,=(-1,0,7),v3=(2,9, 11). Express (x, y, z) as a linear combination of the orthogonal
basis vectors.

Let (u,, u,, u3) be an orthogonal basis of R

Then by G.S.O process, u; =v,; =(3,0,4)

Uy =v, — (v2’ul)u1 =(_1’0, 7)_£(3, 0, 4)=(_4’ 0, 3)
ulz 25
(v3,uy) (vs,u )
Uy = vy — 321 u - 3°"2
] e

50
=(2,911)-—@3,0,4)——(4,0,3
( ) 25( ) 25( )
=(2,9,11)-(6,0,8)-(-4,0,3)
=(0,9,0)

*. The orthogonal basis is {u; = (3, 0, 4); u, =(-4, 0, 3); u3=(0, 9, 0)}
*. The corresponding orthonormal basis is

’ 3 4 , 4 3 ’
=_50,_; =__909_; =O,LO
{”‘ (5 5) " (5 5] "= }
Let u = kyuy + kyuy + kzu, (1)

o uy) =k “ulz“ [ (uy,u)=0, (13, u;) =0, by orthogonality]

© k= () . Similarly, &, = (u, u )and k, (u, u3)
el 2] ™5 e

3x+4z —4x+3z
_ T (2
(x,5,2) ( s )(3,0,4)-{-[ s j(403)+ 0,9,0) (2)

If we take u = (x, y, 7 ) in (1), we get
(2) is the required linear combination of u,, u,, and u; equivalent to (x, y, z)
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Example 11

Find an orthonormal basis of the subspace w of C 3, spanned by v, = (1, i, 0) and v,
(1,2, 1-0)
Let u, and u, be the orthogonal basis of the subspace.
Then by GSO process, u;=v, = (1, i, 0)
_ (V2 >, Uy )

and u, =v, Wul =(L2,1-i)- (1_22i)
|

(1,4,0)

=%{2(1, 2,1-1)—-(1-2i)(1,i,0)

1
=—{1+2i,2-i,2-i
S 1 }

The corresponding orthonormal basis given by o

271 g
2

(i )1 1 A
V1Z., {ul (—,—,0 s Uy :T(l + 21, 2—1, 2 - 21)
18

Example 12
If V is the vector space of polynomials over R of degree < 2 with inner product

1
(f,8) = J' f(t) g(t)dt, (1) find a basis of the subspace W orthogonal to f(r) = 2t + 1
0

and (ii) apply G.S.O. process to the basis (1, f, #) to find an orthonormal basis {u,(0),

u (1), uz(1)}
(i) Let g(r) = ar* + bt + ¢ be orthogonal to f(r) = 27 + 1.

1 1
Then j F(b)g(t) dt = j(at2 +bt+c) Qt+1)dt=0
0 0
1
viz., J-[ZaIS +(a+2b)* +(b+20)t+cldt=0
0

1 1
viz., §+§(a+2b)+5(b+2c)+c=00r5a+7b+12c=o (D

b and c are free variables in (1)
Taking b = -5 and ¢ = 0, we get, from (1), a=7
Taking b = 0 and ¢ = -5, we get from (1), a = 12.
g = 77 — 5t and g,(1) 122 -5 form a basis of W, orthogonal to
fiy=2t+1.
(i) By G.S.O process, u, () =v,(f) = 1
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1
jtdt
iy (1) = vy (1)~ 222 = D Ll
W
uz (1) = v3(t) — vs.14) u — (Vg,uz) "
s
1
Jtz dt 2 [t _ 1]
2 0 2

24 24
Normalizing the vectors u,(t), u,(?), u3(t) we get the orthonormal basis .
1

t_i
ul(t)—luz(t)— 1 1
“(r— dt 13
0

[;—%) J3er-1

(t —t+éj—?—\/_(6t —6r+1)

Required orthonormal basis is {1,327 — 1), /5 (61> — 61 + 1)}

Example 13

Define orthogonal projection of the vector v € V on W, which is a subspace of V. Find
the orthogonal projection v = (-10, 2, 8) on the subspace W spanned by {w,=(-1,1, 1)
and w, = (1, -2, 2)}
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Definition

If Vis an inner product space and W a subspace of V and if v € V and (w;, wy, --- w,

span W, then 2 %
i=1 |Wi

For the given problem, the orthogonal projection of v = (-10, 2, 8) on

w; is called the orthogonal projection of v on W.

W:(V’W1)W (V»WZ)W

[ T Y
_(04248) 4y gy 104510 5 o)
)

2
—LLD)+=(1,-2,2
3 ( ) 9( )

(2252

e

Example 14
Find the angle between u = f(f)=2¢t— 1 and v = g(f) = 7 in the space in which the inner
1

product is defined by (f,g) = Jf(t) g(t)dt.

i 0 (u, v)
If O1s the angle between the vector u, v € V, then cos 0 = W
p 2 1 1
= = - 2 = ——— =
(u,v) = {f(1), g(1)} = _([(2; Didi=5 - 2=

1 1
2 2 . 2 :i_ :l
([ —l[f(t)] di = {(4: 41+ Ddr=5=2+1=

1 1
b = JieoPdr= [ ar=t
0 0 5

1
6 _1
cos 0 = I I —6\/B

NoNA
Example 15

If Vis the vector space C? with standard inner product and if T is an adjoint operator
on C? defined by T(e;) = (1, -2), T(e,) = (i, —1), find T* assuming that v = (x|, x,).

(x, %) =x,(1,0) + x,(0,1) = x1¢; + x5,



Linear Algebra and Partial Differential Equations

3-14
T(x;,x)=x(L,-2)+x, (i,-1)

=(x; +ix,,=2x —Xx,)

T_li
[]e—_2 1

Since e is an orthonormal basis for c2, [T*]e = ﬁT
Now 7= L T a2 e
R O B (S
T*(xl, .xZ) = (.xl — ZXZ, — ixl —x2
Example 16

If T: C* = €, defined by T(x, y, 2) = {ix + (2 + 3i)y, 3x + 3 — i)z, (2 — 50) y + iz},
find T* (x, y, 2)

i 2+3) 0
[T],=|3 0 (B-1i)
0 2-5i) i

Since e is the stand and orthonormal basis for ¢ s [T* 1, = ﬁT

i 2-3i 0
Now [T, =|3 0 3+i
0 245 -i
- 3 0
[T°), =[T1. =|2-3i 0 2+5i
0 3+i -

T* (x,v,2) = {-ix + 3y, 2-3i)x + (2 + 5i)z, 3 + i)y — iz}

Example 17

If T is the linear operator on C? with the standard inner product whose matrix in the
standard basis is defined by A;; = i/** where j=+/—1 find a basis for the null space
of T*

A A R
(r1, =7 i* Pl|=|- 1 i
P S 1 i -1

-1 i 1
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R T*(x,y,2)=(—x+iy+z,ix+y—iz, x—iy —2)
Let (x,y, z) € Np=. Then T* (x, y, z) = (0, 0, 0)

Viz., —x+iy+z=0
ix+y—-iz=0
x—iy—2z=0
viz., —x+1iy+z=0 .. dim (Np)=2and y and z are free variable.

. Basisof N ={(i, 1,0); (1,0, 1)}

Example 18

Express the linear operator T(x, y, z) = (x + 2y, 3x — 4z, y) as the sum of a self-adjoint
operator and a skew adjoint operator.

13 0 12 0
(T],=|2 0 1| ~[7T], =3 0 —4|=[T%,
0 -4 0 01 0

T#(x,y,2) = {x + 3y, 2x + z, — 4y}

1 1
Let S=E(T+T*)andU=§(T—T*)

1
S(xs )’»Z) =E{T(-x7 Yy, Z) + T* (x»y,Z)}

_(2x+5y 5x -3z _3_yj

2 7 2 72

1 -
and U(x,%Z)ZE{T(x,y,Z)_T (x,y,Z)}

=(-y,x—5z,5y)
12 0
2
5 3 rol * . 3 . .
(S, = 3 0 Y =[S1, =[S1, -. Sisself-adjoint
0 3 0
2
0 1 O
S
[Ul,={-1 0 5|=-[U]l, =-[U 1], .. Uisself-adjoint
0 -5 0

Hence the result.
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Exercise 3

Part A (Short-Answer Questions)

1. Define inner product.
2. When is a vector space called inner product space.
3. Define standard inner product in R" and C".
4. Show that, for any vector ¢ in R2, a=(a,e)e +(a,e)e .
1 111
5. Define the norm of a vector and find it when u = (5, —Z, g, g) e R*.
6. State Cauchy-Shwary inequality and use it to prove that
—\2 2 2
(zarb’) s 2|ar| ><24|br| :
7. If fand g are real continuous functions over 0 < ¢ < 1, prove that
1 2
2 Lo
[rwgwar| <[ rwar. jo S2(t) dt.
0 0
8. Define orthonormal set of vectors and give an example.
9. State the working rule for construction of orthogonal basis from a given
basis
10. Find a unit vector orthogonal to u = (1, 1, 2) and v = (0, 1, 3) in R
11. Find the orthogonal projection of v =(1,-1,2) onw = (0, 1, 1)
12.  Find the orthogonal projection of v = (10, 2, 8) on the subspace spanned by
w=(@3,12,-1)
13. Define adjoint operator of a linear operator on an inner product space.
14. State the relation between a linear operator 7" and its adjoint 7°*
15. If T(x, y, 7) = x + 2y + 3z, prove that T is a self-adjoint operator.
Part B
16. If u = (x;, x,) and v = (¥, y,), prove that f{u, v)= x,y; — 2x,y,—2x,y, + 5x,),
is an inner product.
17. For what value of k, is f(u, v) = x,y; — 3x,y, — 3x,y, + kx,y,, where u = (x|, x,)
and v = (y;, ¥,), an inner product?
18. Ifa=(1,2)and B= (-1, 1) are vector in R?such that (¢, r) =—1 and (B.r=3,
find r where (¢, r) and (B, r) are standard inner products in R~
19. Find the norm of u = (1, 2) eR? wrt. (1) the standard inner product and
(ii) the inner product defined by (u, v) = x;y,— 2x,y, — 2x,y, + 5x,5.
20. If Vis the vector space of polynomials over R, find the norm of the vector
1
fit) = 2 + 3 wrt. the inner product [ f(1)g(t) dt.
0
21. If Vis the vector space of real continuous functions in the interval -r <t <,
prove that {1, cos ¢, cos 2¢, ... , sin ¢, sin 2z, ...} is an orthogonal set.
22. Find the vector which forms an orthonormal basis with

z,l,z and l,z,—% in R®.
333 33 3



23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

10.

11.

12.

17.
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Fin({1 the vectors which form an orthogonal basis with (1, 1, 1,2)and (1,2, 3,-3)
inR".
Find the vectors which form an orthogonal basis with
L

2222 2 2 2 2
Find an orthonormal basis of R* with the standard inner product, given that
an arbitrary basis is {v, =(1,0, 1), v, = (1,0, -1), v = (0, 3, 4)}
Find a basis of the subspace W of R4, orthogonal to u; = (1, -2, 3, 4) and
u,=(3-5,7,8).
Find a basis of the subspace W of R4, orthogonal to u; = (1, 0, -1, 1) and
u,=(2,3,-1, 2).
Construct an orthogonal basis of the subspace of R4, spanned by (1,2, 2,-1),
(1,1,-5,3)and (3,9, 3, -7).
Construct an orthogonal basis of the subspace of R4, spanned by (1, 1,-1,-2),
(5,8,-2,-3)and (3,9, 3, 8).
Find an orthonormal basis of the subspace W of C3, spanned by v, = (1,4, 1)
and v, (1 +4, 0, 2).
Find an orthonormal basis of the subspace W of C3, spanned by (1, 0, /) and
V=(2,1,1+i0). y 0 1
Find the angle between the vector y = (3 lj and v = [2 3 J in the space
in which the inner product is defined as (A, B) = Tr (B'A).
If T is the linear operator on C? with standard inner product defined by T(e,)
=(1+1i,2)and T(e,) = (i, i) find T* (x|, x,).
If T is the linear operator on C? with standard inner product defined by T(x,
v,2)={2x+ iy, y—=5iz, x + (1-i) y + 3z}, find T* (x, y, 2)
Express the linear operator 7(x, y, z) = {x — 2y, 2y — 3z, 3z — 4x} as the sum
of a self adjoint operator and a skew-adjoint operator.

Answers

Exercise 3

J65
12°

(; 3 ;J.
NTRERTENTYA
1

—(0,1,1);
SOLD

1
-——@(3,12-1);
11( )
k>9



19.

20.

22.

23.

24.

25.

26.
27.
28.
29.

30.

31.

32.

34.

35.
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(1,-2, 1,0 and (25, 4, -17, -6);

v =(1,2, 1, 0), v, = (4, 4,0, 1),
(-1,0,0, 1) and (- 3, 1,-3, 0);

wy=(1,2,2,-1), uy = (2,3,-3,2), us = (2, -1, -1, -2);
wy (1, 1,-1,-2), u, = (2,5, 1,3), and u5 = (0, 0, 0, 0);

1 1
uy =——(Li,1)and u, = —— (2i,1-3i,3—i);
B > 24
u —L(lo 1)and u —L(Hi 2,1-i);
1 \/5 s Vs 2 2\/5 ERt] il

0 2 33)1° [1-;‘ zJ
Cos 0 = —; = . .
J210 —-i i

T ={2x+z —ix+y+1+i)z 5iy +3z}
3 3
S(r.y.2)= 1=y =22, —x+2y -2z -2x -y +3z

Ux,y,2)= {—y +2z,x —%z, —2x +%y}
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Partial Differential
Equations

4.1 INTRODUCTION

Partial differential equations are found in problems involving wave phenomena, heat
conduction in homogeneous solids and potential theory. As an equation containing
ordinary differential coefficients is called an ordinary differential equation, an equation
containing partial differential coefficients is called a partial differential equation. Partial
derivatives come into being only when there is a dependent variable which is a function
of two or more independent variables. Hence in a partial differential equation, there
will be one dependent variable and two or more independent variables. However we
will mostly deal with partial differential equations containing only two independent
variables. In what follows, z ill be taken as the dependent variable and z and y the
independent variables so that z = f{x, y). We will use the following standard notations
to denote the partial derivatives:
dz 09z 9z 0%z 0%z

=p, =q, -r, =sand — =1t
P dy i ox? oxdy 9y”

The order of a partial differential equation is that of the highest order derivative
occurring in it.

4.2 FORMATION OF PARTIAL DIFFERENTIAL EQUATIONS

Thought our main interest is to solve partial differential equations, it will be
advantageous if we know how partial differential equations are formed. Knowledge
of the formation of partial differential equations will help us to distinguish between
two kinds of solutions of the equation. Partial differential equations can be formed
by eliminating either arbitrary constants or arbitrary functions from functional
relations satisfied by the dependent and independent variables. When we form partial
differential equations the following points may be considered for proper procedure
and checking.

1. If the number of arbitrary constants to be eliminated is equal to the number
of independent variables, the process of elimination results in a partial
differential equation of the first order.
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Note £5

4. In the formation of ordinary differential equations, the order of the
equation is equal to the number of constants eliminated.

2. Ifthe number of arbitrary constants to be eliminated is more than the
number of independent variables, the process of elimination will lead
to partial differential equation of second or higher order.

3. If the partial differential equation is formed by eliminating arbitrary
functions, the order of the equation will be, in general, equal to the
number of arbitrary functions eliminated.

4.3 ELIMINATION OF ARBITRARY CONSTANTS

By way of verifying point 3 of Section 4.2, let us consider the functional relation
among

X, y,z1.e flx,y,z,a,b)=0 (D

where a and b are arbitrary constants to be eliminated.
Differentiating (1) partially with respect to x and y, we get

a—f+a—f-%=0, ie. & afp 0 2
dox 0z ox ox 0z

and a—f B_f % =0, ie. 8_f+3_f =0 3)
dy 9z dy dy aZ

Equations (2) and (3) will contain a and b.
If we eliminate a and b from equations (1), (2) and (3), we get partial differential
equation (involving p and ¢) of the first order. This justifies point 1 of Section 4.2.

4.4 ELIMINATION OF ARBITRARY FUNCTIONS

By way of verifying point 3 of Section 4.2 above, let us consider the relation
fu, v) =0 (1)

where u and v are functions of x, y, z and fis an arbitrary function to be eliminated.
Differentiating (1) partially with respect to x,

TR L o
Ju\ox 0z ovlox 0z

[since u and v are functions of x, y, z and z is z is in turn, a function of x, y]
Differentiating (2) partially with respect to y,

Jf 3u+8_u +af av_’_ﬁ ~0 3
ou\ dy az ov\ dy az

of af

Instead of eliminating, f, let us eliminate —— and ——

from (2) and (3).
Ju
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From (2) and (3), we get

ux+uzp _ VX+VZp

Jou
, where u, = a—, etc.

u,tug v, +v,g X
ie. UV, +uyg+uyp =uy, +uyp+uyvg
i.e. (uyv, —u v )p + (uy, —uw)qg = Uy, —uyw,) (@)

i.e.Pp + Qg = R, say, where P, Q and R are functions of x, y, z.

Now equation (4) is a partial differential equation of order 1.
This justifies point 3 of Section 4.2.

Note £5

1. To verify point 3 of Section 4.2, we could have taken a functional
relation containing a function of one argument, but we have shown
that the order of the partial differential equation formed depends only
on the number of arbitrary functions eliminated and not on the number
of arguments of the function.

2. The equation (4) is called Lagrange's linear equation, whose solution
will be discussed later.

Worked Examples m_

Example 1
Form the partial differential equation by eliminating the arbitrary constants a and b
from the following.

(i) logz=alogx+ V1-da? logy+b

(i) (x—a)+(y-b)=2cot’ o

@) logz=alogx+ \1-a® logy+b (1)
Differentiating (1) partially with respect to x and then with respect to y, we
get

1 a
—p== 2)
Z X
2
and L, =N1Zd 3)
< y

If we ignore (1), b is eliminated.
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Form (2), a = i and using this in (3), we get

1 5, 1 | p2x2
—¢* =—11-
2 yz 2

22 22
ie. P= 47 -
z b4
or PRy =2
(ii) (x—a)P+(y-b’=7cot’ o (1)
Differentiating (1) partially with respect to x and then respect to y, we get
2(x—a) =2zp cot’ & (2)
and 2(y—b) =2zq cot* & 3)

Using (2) and (3) in (1), we have
2 + ¢ cot* o = 2 cot’ &
ie. p2 + q2 = tan’ &

Example 2

Form the partial differential equation by eliminating the arbitrary constants a and b
from the following.

(i) 1+d®log (z++z> —1)=x+ay+b
2 x+Vx2 +ad?

. 1 2., 2,1 2 2,4
Gi) z= —x\/x +a +—y\/y —a* +—log{ ——v
2 2 2 il 2

(1) V1+a® log (z++z> —1)=x+ay+b (1)

Differentiating (1) partially with respect to z and then with respect to y, we
get

+b

\/H—Z. 1 L1+ < =1
’ z+\/z2—1 \/22—1 i
ie. Vi+a* -piZ -1 =1 (2)
and V1 1+ i }q =a

+a- ! .
z+\/z2—1 \/zz—l

ie. 1+a2 -4 =4 3)
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4-5
p 1
From (2) and (3), we get —=— “4)
q a
Using (4) in (2), we get
2
q 2
1+—2-p=«/z -1
p
ie. \/P2+q2:\/12—1 or pP+gi+l=7
N 1 1 2
(i) Z:Ex\/x2 +ad° +5y\/y2 -a® +a710g(x+ X2 +a2)
a2
—?log(y+ v —a*)+b 1)

Differentiating (1) partially with respect to x,

1 X 5 2 a* 1 X
p=—dx——— P+ a — 1+
21 Y+ 2 x+\/x2+a2 \/x2+a2
2

2, 2
=l 20 ta +—2 =x* +d* (2)
21 P +d® P +d
Similarly, differentiating (1) partially with respect to y, we get

q=y -a
From (2) and (3),

o=y

ie. p2 + q2 =x*+ y2
Example 3
Form the partial differential equation by eliminating the arbitrary constants a, b and
2 2 2
y <
¢ from —2+—2+—2—1.

a b c

We note that the number of constants is more than the number of independent
variables. Hence the order of the resulting equation will be more than 1.

2 2 2
T+l =1 (1
a b* ¢
Differentiating (1) partially with respect to x and then with respect to y, we get
2x 2z _
> + —2p =0 (2)
a ¢
and 2220 3)
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EZN

Differentiating (2) partially with respect to x,

1 1
—+—(zr+p?) “)
a ¢
2
where r= E
ox?
A p
From (2), —— =" ()
a X
From (4), — =+ P’ (6)
a

From (5) and (6), we get

2 2
XZE-F x % = Z% which is the required partial differential equation. This
ox? ox ox

is not the only way of eliminating a, b and c. Had we differentiated (2) partially with

respect to y, we would have got
2

C%{zs + pq} =0, where s = aaxazy
. o’z 9z 0z
ie. z +—=—= =
dxdy dx dy

which is also a partial equation corresponding to (1).
If we differentiate (3) partially with respect to y and eliminate b and c, we will get
yet another partial differential equation, namely

za—zz+ % 2—z§ =0
7 oy dy

Example 4
Find the partial differential equation of the family of planes, the sum of whose x, y,
z intercepts is unity.
The equation of a plane which cuts off intercepts a, b, ¢ on the coordinate axes is
RN (1)
a b c
If sum of the intercepts is unity, a + b+ c =1 or
c=1l-a-b )

Using (2) in (1), we get the equation of a plane, the sum of whose x, y, z-intercepts
is unity as
f + X + Z =1
a b l-a-b

or b(1—a-b)x+a(l —a->b)y+abz=ab(l —a->b) 3)
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If a and b are treated as arbitrary constants, (3) represents the family of planes
having the given property. Differentiating (3) partially with respect to x and then with
respect to y, we have

b(l—a-b)+abp=0 or 1-a-b=-ap 4)
and all—a-b)+abqg=0 or 1-a-b=-bq 5)
From (4) and (5), we get
b
ap =bg or 4_2_k 5)
qg P
Using (6) in (4),1 — k(p + q) = —kpq
) 1
ie. =—
ptq—pq
a= 4 ,b= P and1-a-b=—21
p+tq—pq ptq—pq p+tq—pq
Using these values in (3), we have
~k’p*qx ~I’pq’y + Kpqz = —k'p’q’
ie. -px—qy +z=-kpq
orz=px+qy-— L, which is the required partial differential equation.
ptq—pq
Example 5

Find differential equation of all planes which are at a constant distance k from the
origin.
The equation of a plane which is at a distance k from the origin is

xcosa+ycos B+zcosv=k

where cos @, cos 3, cos v are the direction cosines of a normal to the plane.

Taking cos o = a, cos = b and cos v = ¢ and noting that @+ b+ =1, the
equation of the plane can be assumed as

ax+by+\/1—a2—b22=k (1)

If @ and b are treated as arbitrary constants, equation (1) represents all planes
having the given property.
Differentiating (1) partially with respect to x and then with respect to y, we have

a++l-a*>-b’p=0 ()
and b+\1-a*-b>q=0 3)
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From (2) and (3), %: S —JI—>—p* = 2say
a=ip.b=Agand 1-22(p* +¢*) =-A
ie. 1-2@*+) =2

or A=— !

1
IRES TS J1+p* +4
(" Alsnegative,as A= _\[1— 4% —p?)

2,2

Using these values in (1), we get
Apx+ gy — Az =k

. k
ie. Z=px+qy —— or
px+qy 2
Z=px+qy+ kyJl+ p2 +q2 , which is the required partial differential equation.

Example 6
Find the differential equation of all spheres of the same radius ¢ having their centres
on the yoz-plane.

The equation of a sphere having its centre at (0, a, b), that lies on the yoz-plane
and having its radius equal to c is

FPHy-—al+@z-b’=c (D

If a and b are treated as arbitrary constants, (1) represents the family of spheres
having the given property.

2x+2(z-b)qg=0 (2)

and 2(y—a)+2(z-b)qg=0 3)

From (2), 1-b=-2 4

Using (4) in (3), y-a=%¥ (5)
p

Using (4) and (5) in (1), we get

ie. (1+p>+¢x* = ¢* p*, which is the required partial differential equation.
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Example 7

Find the differential equation of all spheres whose centres lie on the x-axis.
The equation of any sphere whose centre is (a, 0, 0) (that lies on the x-axis) and whose
radius is b is

(x—a)2+y2+zz=b2 (D)

If a and b are treated as arbitrary constants, (1) represents the family of spheres
having the given property.
Differentiating (1) partially with respect to z and then with respect to y, we have

2—a)+2zp =0 2)
2y+2zqg =0 3)
The required equation is provided by (3).
ie. it is z%+y=O
dy
Example 8

Find the differential equation of all spheres whose radii are the same.
The equation of all spheres with equal radius can be taken as

x-a)+(y-b’+@-c)’ =R (1)
where a, b, ¢ are arbitrary constants and R is a given constant.
Differentiating (1) partially with respect to x and then with respect to y, we have

(x-—a)+(z-c)p=0 2
O=b)+(z-0c)g=0 3)
Differentiating (2) and (3) with respect to x and y respectively, we get
l+@Ez-or+p*=0 ©))
and l+(Gz-0)i+q =0 (5)

Eliminating (z — ¢) from (4) and (5), we have

2

ro 1+p
t 1+q2
’z 0%z
ie. r(l +q2) =11 +p2), where r = — and r = — -
ox dy

Note £

The answer is not unique. We can get partial differential equations.
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Example 9

Form the partial differential equation by eliminating the arbitrary function ‘f” from

@
(ii)

@

(i)

z=e" fix + by); and
z= y2 +2f(l+logyj
X

z=e% . flx + by)
ie. e Pz =f(x + by) (1

Differentiating (1) partially with respect to x and then with respect to y, we
get

ep=f'(u)-l ()
e q—ae Pz =f(wb 3)
where u = x + by
Eliminating f(u) from (2) and (3), we get
q-az

p
ie. q=az+bp

=b

1
z= y2+2f(—+logyj
X

1
ie. 71—y’ = 2f(—+10gy]
X

Differentiating (1) partially with respect to x and then with respect to y, we
get

p= 2f’(u)-(_—21j @
X

and g-2y= 2f’(u>-(1) 3)
y

1
where u=—+logy
X

Dividing (2) by (3), we have

i.e. px2 +gqy = 2y2

which is the required partial differential equation.
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Example 10
From the partial differential equation by eliminating function ‘f” from
(i) xy+yz+ax= f( < ] and
x+y
(i) flz—xy.x’+y)=0
(i) xy+yz+zx=f( - ) )
x+y
Differentiating (1) partially with respect to x and then with respect to y, we
have
, x+ -z
y+yp+ap+z=[f(u) {%} 2
(x+y)
+ p—
and  y+yp+z+xq=1f"(u) {%} 3)
(x+y)
Dividing (2) by (3), we have
Y+ +x+y)p  (x+y)p-z
(z+x)+(x+y)g  (x+y)g-z
Le. (x+y)(@+x) p-z(z+x)-z(x+y)q
=(x+y) (v +2g-z0+2)z(x+y)p

ie. X+E+209)p-(x+y) Y +20)g=2(x-y)

which is a Lagrange linear equation.
(i) fz—xy, x> +y)=0 (1)

f@u-v)=0
If we assume that u can be expressed as a single-valued function of v, (1) can
be rewritten as ,
z=xy =90 " +y7) 2
where ¢ is an arbitrary function.
Differentiating (2) partially with respect to x and then with respect to y, we have

p-y=0'(w-2x 3)
and qg-x=f"(u)-2y 4
Eliminating ¢’(u) from (3) and (4), we get
p—y 2

X 2
=—oryp—-xq=y —x
q—-x Yy

Note 25

Without assuming that u = ¢(v), we can eliminate ‘f’ and form the equation
alternatively as given in the following example.
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Example 11

Form the differential equation by eliminating °f” from

(i) flz—xy, ¥ +y)=0and
(i) f2+y +22 ax+by+cz)=0

(i) f@—xp, X +y)=0 (1)

By putting z — xy = u and x> +y? = v, (1) becomes
S, v)=0 ©))

Differentiating (2) partially with respect to x and then with respect to y, we have

S p-p+Lox) =
o (P +2-(20=0 5

a—f(q —x)+a—f(2y) =0
and du v 4)

F o

Eliminating —— and =—— from (3) and (4), we get
du dv

p-y 2x
g—x 2y
ie. 2y(p—y) 2x(g—x) =0

or W-xg=y -x°

(i) FoE+y + 2 ax+by+cz)=0 1)

=0

Putting u = X+ y2 +Z7andv=ax+ by + cz, (1) becomes
Sflu,v)=0 (2)

Differentiating (2) partially with respect to x and then with respect to y, we have

a—f(2x+21p)+a—f(a +cp)=0
u v

J 3)

a—f(2y+2z61)+a—f(bﬂ‘q) =0
u ov

and J
Eliminating a—f and a—f from (3) and (4), we get
Ju v

“)

xX+zp a+cp

y+29 b+cq

ie. (x+2zp) (b +cq)=+zq) (a+cp)
ie. (ecy—b)p +(az—cx)g=b —ay
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Example 12

Form the partial differential equation by eliminating the arbitrary functions f and g
fromz=f(2x +y) + gB3x—y)

2=f2x+y)+gBx-y) (1)
Differentiating (1) partially with respect to x,
p=fw)2+g’(v3 2

where u =2x+yandv=3x-y

Differentiating (1) partially with respect to y,
g=fw-1+g () (-1 3)
Differentiating (2) partially with respect to x and then with respect to y,
r=f"u)-4+g"v)-9 (4)
and s=f"u)-2+g"v)-(-3) )
Differentiating (3) partially with respect to y,
t=f"u)1+g"v)1 (6)

Eliminating /(«) and g ”(v) from (4), (5) and (6) using determinants, we have

4 9 r

2 -3 5|=0

1 1 t
ie. 5r+55-30t=0
or axz axay 8y2
Example 13

Form the differential equation by eliminating the arbitrary function f and ¢ from
z=f(ax + by) + ¢(cx + dy).

z = flu) + ¢(v) (D

where u =ax + by and v=cx+dy
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Differentiating partially with respect to x and y,

p=fw a+¢v)-c )
q =1 -b+¢vd 3)
r=f1u-a’+ ¢ W) - c €5
s=f1u)-ab+ ¢"(v) - cd (5)
t=fw) - b+ 9 - d (6)

Eliminating /(u) and ¢”(v) from (4), (5), (6), we have

2 2
roa c
s ab c¢d|=0
t b d?
ie. (abd* - b*cd)r — (A*d® — b*cP)s + (a*cd — abcHit = 0
i.e. bd(ad — bc)r — (ad + be) (ad — be)s + ac(ad — be )t =0
2 2 2
bda—i—(ad+bc) 0’z +aca—§= 0.
i.e. ox dxy dy
Example 14
Form the differential equation by eliminating f and g from z = xf(ax + by) + g(ax + by).
z=x- flu) + g(u) (D
where u = ax + by.
Differentiating partially with respect to x and y,
p=xfu)-a+fu)+gw-a (2)
g=xf"(w) -b+gw- b (3)
r=x-fua +fw)-2a+g" ) - a 4
s=xf"(wab + f’(w)b + g"’(u)ab 5)
t=xf Wb’ +g" ) - b’ 6)
[(4) x b —(5) x 2a] gives
br—2as = —a’blxf(u) + g"(u)] @)

1
= —a2b><b—2t, from (6)

L s B i

— =0
i.e. ox® dxdy ayz
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Form the differential equation by eliminating the arbitrary functions f and g from

z=fx+iy) + (x +iy)g (x —iy), where i=+—-1 andx+iy#z

z=fu) + (x + iy) g(v)
where u = x + iy and V=Xx-—Iiy.

Differentiating partially with respect to x and y,

p=fw 1+ x+iyg(v) - 1+gv)

g=f"w)-i+@x+iyg'y) (i) +gv)-i

r=f"w) -1+ x+iy)g”(v) - 1+2¢'(v) -1

s=f7u) i+ (x+iy)g”(v) (-i)

t=f"w) (-1) + (x +iy)g”"(v) - (1) + 2g'(v)

Adding (4) and (6), we get
r+t=4g1v)
From (2) and (3), we get
p+iqg=2x+iygv)

Eliminating g’(v) from (7) and (8), we get

r+t= 2—(p+l.q)
x+1iy
9’z 9%z 0z
i V) | —+— |=2| —+
e Gt i) (axz 0y? ox
Note £
Equation (5), giving the value of s, is not all used.
Example 16
*u 1 0u ’u
= = — ————4x* = =0.
If u=f(x"+y) + ¢(x” — y), show that 2 Yo X %

u=f)+fw)
2

wherev=x2+yandw=x -y

.32]
;9%
dy

ey

@)
3)
“)

)
(6)

(N

(®)

ey
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Differentiating partially with respect to x and y,

Ju

. = f'(v)-2x+¢'(w)-2x (2)
du i ,
PP ACRETAURCE )
azu 2 2
el = /W) 2+ f7(v)-4x"+ 9" (W) 2+ 9" (w)-4x” (4)
X
a2u 7 ’7
axdy = (1) 2x+¢"'(w)-(=2x) (5)
az” 44 7
P = f7() 1+¢”(w) 1 (6)

Eq. (4) can be rewritten as

’u

P 21 () + 9" (W) }+AX (£ () +¢" (W)}

2
Cox O 2 T m (2) and (6)
2x ox 9y*
2
ie. Fu 10u_y 020w _,
ox®  xox 0y?

Example 17
Form the differential equation by eliminating f and ¢ from z =f(x + y) - ¢(x — y).

z=f(u) - ov) (1)

where u =x+yandv=x-y.

Differentiating partially with respect to x and y, we get

p=f) - ¢’W)+f"(u)- () 2
q=fe’(v) (=D +f (W) 3)
r=fe”(v) +2f ¢’ v) + 7 (u) - p(v) “)
s=fe”W) 1) +f7w) - (v) &)

t=f) - 97 (v) =2f" (W)’ v) +f”(w)p(v) (6)
Subtracting (5) from (3), we get
r—t=4f"(u) - ¢(v) (7
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From (1) and (2), we get
P’ =q" = 4fw) - §w) - f () - 9(v)
=z(r-1) from (1) and (7)
. P’z 9z (az] (az]
ie. 7| — —
n? ay ox dy
Example 18
Form the differential equation by eliminating fand ¢ from z = xf(y/x) + y ¢(x).
z=xf(u) +yox) )]
where u = 2
X
Differentiating partially with respect to x and y, we get
= xf"(u): (——)+f(u)+y¢ (x)
ie. p= —%-f’(u)+f(u)+ ¥9 () )

g= x-f’(u)%w(x)
ie. g =)+ ') 3)

f"(u)( j+y¢"(x)

ie. r= y—3 )+ y9” (x) @)
X

5= —xlz )+ 9 (x) (5)

r= 1w (6)
X

Eliminating f”(u) from (5) and (6), we get

s+2t = ¢'(x) (7)
From (2) and (3), we get g
px+qy = {xflu) + yp(x)} + dy¢’(x)
ie. PX +qy =2z + xy¢’(x) 8)
Eliminating ¢’ (x) from (7) and (8), we get
Xys+ Yt =px+qy-z
x 0’z +y2& _ x8z+ 0z
oxdy 9y” dx " dy

i.e.
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Example 19

Form differential equation by eliminating f and ¢ from z = f(y) + ¢(x + y + 2)
2=f(y) + ou)

where u=x+y+z.

Differentiating partially with respect to x and y, we get
p=0"(w) (1+p)
q=f"+ ¢ (1+q)
r=¢’w - r=9¢"w-(1+p)y
s=¢’w)-s+¢"w) (1 +p) (1 +q)

t=f7() + ¢’ i+ ¢’(w) (1 + g)°
From (4), {1 - ¢’} = (1 +p)*¢”(u)
From (5), s{1=¢’w)} =1 +p) (1 +q)¢" ()
Dividing (7) by (8), we get

r_Itp

s 1+p
. 9z ) 9%z _ 9z ) 9%z

Example 20
Form the differential equation by eliminating the arbitrary function ¢ from

1
2= 0= X)+9"(y—x).

Note 25

ey

2
3)
“)
)
(6)
(N
(®)

Though ¢’ is the derivative of ¢, we should not assume that only one function
is to be eliminated. We have to eliminate two functions ¢ and ¢” and hence

the resulting partial differential equation will be of order 2.
1 ,
= —¢w)+9¢'(w)
X

where u =y —x
Differentiating partially with respect to x and y, we get

1 1
P=—=¢" ) (=)——¢@)+9” u)(-1)
X X
1
= —0'(u)1+¢"(u)-1
X

1 2 2
r=—¢" W1+ 9" () +— o) + 9" (w)-1
X X X

D

2

3)

“)
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1 , 1 ’’ 1224
s= =0 ) =—¢"w+¢" )= )
X X
1
;=.;¢"my1+¢”xuy1 (6)

From (4) and (6), we get

2, 2
ret= S0

2 |1
—2{—¢(u)+¢'(u)}
X X
_2,
2
2 aZZ aZZ -2

Exercise 4(a)

Part A (Short-Answer Questions)

1.

Write down the form of the P.D.E. (partial differential equation), obtained by
eliminating ‘f” from f(u, v) = 0.

Form the P.D.E.s by eliminating the arbitrary constants a and b from the following
relations:

2.

z=(x+a)(y+b)

3. 2= +d) P+ b

4. z=ax+by+ab

5. z=ax+by+az+b2

6. z=ax + by3

7. z=alx+y)+b

8. ax2+by2+zz=1

9. (x—a)+ - b)Y =27
Form the P.D.E.s by eliminating the arbitrary functions from the following
relations.

10. z=f("+y%)

11. z=¢( -y

12. z=f(bx—ay)



@ Linear Algebra and Partial Differential Equations

13. z=¢(xy)
4. z= f(l)
x
15. z=f(x)+ ¢(y)
16. z=f(x) + ¢(y) + axy
17 z=f() + x¢(y)
18. z=yf(x) + (x)
19. z=xf(y)+ ¢(y) —sinx
20. z=yf(x)+ ¢(x) —cosy
Part B
21. Form the P.D.E. by eliminating a and b from z = xy + y\x* —a* +b.
a
22. From the P.D.E. by eliminating a and b from z = ax — T y+b.
a
23. Form the P.D.E. by eliminating a and b from 4z(1 + a2) =(x+ay+ b)z.
24. Form the P.D.E. by eliminating a and b from 2+ { Wzt —4d®
—4a* log(z +7z* —4a’ )} =4(x+ay+Db).
25. Form the P.D.E. by eliminating a and b from 3z = ax’ +2yJa—1y** +b.
26. Form the P.D.E. of all planes which cut off equal intercepts on the x and y
axes.
27. Form the P.D.E. of all planes passing through the origin.
28. Form the P.D.E. of all spheres whose centres lie on the z-axis.
29 Form the P.D.E. of all spheres of radius c¢ having their centres on the
xoy-plane.
30. Final the PD.E. of all spheres of radius ¢ having their centres on the
zox-plane.
31. Form the P.D.E. by eliminating the arbitrary function °f’ from
@)z = f(%j; (B)z=f(+y" +2°)
32. Form the P.D.E. by eliminating the arbitrary function f from
X
@xz=fty s ) T = -y+)
33. Form the P.D.E. by eliminating ‘¢’ from
I 11 1
d{———,———J:O; (b) ¢’ =y’ x* =) =0
X yy z
34. Form the P.D.E. by eliminating ‘¢’ from

(a)¢(x2+y2+z2,lj=o; (b)¢(x2—y2—zz,l)=o
Z X
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35. Form the P.D.E. by eliminating ‘¢’ from
- +y+
(@) ¢[U,xy+yz+zx]:o; (b)q{u,xz—yz):o
y-z Z
From the P.D.E.s by eliminating the arbitrary functions from the following
relations.

36. z=flx+iy)+ glx —1iy), where i = \/—_1 and x + iy # z.

37. z=fQ2y+3x)+ gy +x).

38. z=fiy—x)+ £,y +x) + 30 + 2x).

39. z=xf2x +3y) + g(2x + 3y)

40. z=fix+y) +yglx+y)

41. z=(x—-iy) fix +iy) + g(x—iy), wherei= \/—_1 and x + iy # z.
2. z= fx+y)+gWx-y)

43. z=fx) - ¢(y)

44, z=yftx) + xd(y)

45. z=fx+y+2)+ dp(x—y)

4.5 SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

The relation between the independent variables and the dependent variable (containing
arbitrary constants or functions) from which a partial differential equation is formed
is called the primitive or solution of the P.D.E.

In other words, a solution of a P.D.E. is a relation between the independent and
the dependent variables, which satisfies the P.D.E. solution of a P.D.E. is also called
integral of the P.D.E.

As was seen in Section 4.2, the primitive of a P.D.E. may contain arbitrary constants
or arbitrary function. Accordingly, we have two types of solutions for a P.D.E.

A solution of a P.D.E. which contains as many arbitrary constants as the number
of independent variables is called the complete solution or complete integral of the
equation.

A solution of a P.D.E. which contains as many arbitrary functions as the order of
the equation is called the general solution or general integral of the equation.

Both these types of solutions can be obtained for the same P.D.E. For example,
the equation z = px + gy is obtained when we eliminate the arbitrary constants a and

b from z = ax + by or the arbitrary functions ‘f’ from z=x- f (l)
X

Thus z = ax + by is the complete solution and z=x- f (l) is the general solution
of the PD.E. z = px + gy. x
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The complete solution z = ax + by can be rewritten as z = x {a + b(lj}.
X

Y
Comparing this with the general solution Z = f (;) we note that a+b(1] is a
X

particular case of f(y/x). Hence the general solution of a P.D.E. is more general than
the complete solution. Thus when the solution of a P.D.E. is required, we should try
to give the general solution. However there are certain. P.D.E.s for which methods
are not available for finding the general solutions directly, but methods are available
for finding the complete solutions only in other cases. In such cases, we indicate the
procedure for finding the general solution from the complete solution as explained
in Section 4.6.

4.6 PROCEDURE TO FIND GENERAL SOLUTION

Let F(x,y,2,p,9) =0 (0
be a first order P.D.E. Let its complete solution be
¢(x’ ¥, % a, b) =0 (2)

where a and b are arbitrary constants.
Let b =f(a) [or a = g(b)], where ‘f” is an arbitrary function.

Then (2) becomes
olx. y, 2, a, la)] =0 3)
Differentiating (2) partially with respect to a, we get
d¢ 99
—+—f"(a) =0 4
% 3 f(a) 4)

Theoretically, it is possible to eliminate ‘a’ between (3) and (4).

This eliminant, which contains the arbitrary function ‘f’, is general solution of (1).

A solution obtained by giving particular values to the arbitrary constants in the
complete solution or to the arbitrary functions in the general solution is called a
particular solution or particular integral of the P.d.E.

Thus for the P.D.E. z = px + gy, for which the complete solution is z = ax + by and

the general solution is z=x- f (l), the following are particular solution.
x

(i) z=2x+3y
(i) z=3x-4y
Y
(i) z=x-e*

(iv) z=xsin (XJ
X

There is yet another type of solution of a PD.E., called the singular solution or singular
integral. Geometrically the singular solution of a P.D.E. represents the envelope of
the family of surfaces represented by the complete solution of that P.d.E. the singular
solution will neither contain arbitrary constants nor arbitrary functions but at the same
time cannot be obtained as particular case of the complete or general solution.
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4.7 PROCEDURE TO FIND SINGULAR SOLUTION

Let F(x,y,2,p,q) =0 ey
be a first order P.D.E.

Let its complete solution be
¢x,y,2,a,b) =0 ()
Differentiating (2) partially with respect to a and then b, we have

9 _y 3

o 3)

d¢

99 _ 4
and b 0 4

The eliminant of a and b from equations (2), (3) and (4), if it exists, is the singular
solution of the P.D.E. (1).

As pointed out earlier, P.D.E.s can be divided into two categories — one for which
methods are readily available only for finding complete solutions and the other for
which methods are available for finding general solutions. first order non-linear
equations that belong to the first category will be discussed in Section 4.8.

4.8 COMPLETE SOLUTIONS OF FIRST ORDER
NONLINEAR P.D.E.s

A P.D.E., the partial derivatives occurring in which are of the first degree, is said to
be linear; otherwise it is said to be non-linear.

First order non-linear P.D.E.s, for which complete solution can be found out, are
divided into four standard types. Some first-order non-linear P.D.E.s, which do not
fall under any of the four standard types, can be transformed into one or the other of
the standard types by suitable changes of variables. We shall discuss below the special
methods of finding the complete solutions for these types of equations.

Bype I

Equations of the form f(p, q) = 0, i.e. the P.D.E.s that contain p and ¢ only
explicitly.

For equations of this type, it is known that a solution will be of the following
form,

z=ax+by+c (D

But this solution contains three arbitrary constants, whereas the number of independent
variables is two. Hence if we can reduce the number of arbitrary constants in (1) by
one, it becomes the complete solution of the equation f{(p, g) = 0. Now from (1), p=a
and ¢ = b. If (1) is to be a solution of f(p, g) = 0, the values of p and g obtained from
(1) should satisfy the given equation.

ie. fla,b)=0
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Solving this, we can get b = ¢(a), where ¢ is a known function. Using this value
of b in (1), the complete solution of the given P.D.E. is

z=ax+ ¢(a)y + ¢ 2)
The general solution can be obtained from (2) by the method given earlier.
To find the singular solution, we have to eliminate a and ¢ from
z=ax+ ¢a)y +c, x+¢(@y=0and1=0

of which the last equation is absurd. Hence there is no singular solution for equations
of type L.

Bype 11

Clairaut’s type, the P.D.E.s of the form
z=px+qy+fp,q) (1)
For equations of this type also, it is known that a solution will be on the form
z=ax+by+c )
If we can reduce the number of arbitrary constants in (2) by one, it becomes the
complete solution of (1).
From (2) we get p =a and g = b.
As before, z=ax+ by + fla, b) 3)
From (2) and (3), we get ¢ = fla, b)
Thus the complete solution of (1) is given by (3).

Note £5

Without going through all these formalities, we can quickly write down the
complete solution of a clairaut’s type of P.D.E. by simply replacing p and q by
a and b in it respectively.

The general and singular solution of (1) can be found out by the usual methods.

For clairaut’s type of equations, singular solutions will normally exist.

Type 111
Equations not containing x and y explicitly, i.e. equations of the form
fzp.q)=0 ey
For equations of this type, it is known that a solution will be of the form
7= ¢(x+ay) @)

where ‘a’ is an arbitrary constant and ¢ is a specific function to be found out.
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Putting x + ay = u, (2) becomes z = ¢(u) or z(u)

_dz u_de
du ox du
and _ 4z du_ aﬂ
1 du Ju du
If (2) is to be a solution of (1), the values of p and ¢ obtained should satisfy (1).
. Jdz dz
i.e. ,—,a— | =0 3
f (Z du du) ©)
From (3), we can get
dz
£ v a @)
du

Now (4) is an ordinary differential equation, which can be solved by the variable
separable method.

The solution of (4), which will be of the form g(z, @) =u + b or g(z, a) =x + ay +
b, is the complete solution of (1).
The general and singular solutions of (1) can be found out by the usual methods.

Type IV

Equations of the form
fx.p) =80, q) (1)

that is equations which do not contain z explicitly and in which terms containing p
and x can be separated from those containing ¢ and y.

To find the complete solution of (1), we assume that fix, p) = g(y, q) = a, where
‘a’ is an arbitrary constant.

Solving f(x, p) = a, we can get p = ¢(x, a) and solving g(y, g) = a, we can get g =

l//(y’ a)‘
Now
dz = %dx+%dy or pdx+gqdy
ox dy
ie. dz = ¢(x, a)dx + y(y, a)dy
Integrating with respect to the concerned variables, we get
2= [o(x, @) dx+[y(y, @) dy+b @)

The complete solution of (1) is given by (2), which contains two arbitrary constants
aand b.

The general and singular solutions of (1) are found out by the usual methods.



@ Linear Algebra and Partial Differential Equations

4.9 EQUATIONS REDUCIBLE TO STANDARD
TYPES TRANSFORMATION

Type A

Equations of the form f(x" p, y" ¢) =0 or f(x" p,y" q,z) =0,
where m and n are constants, each not equal to 1.

We make the transformations x' """ =X and y' " =Y.
dz _dz 90X _ 0z
Then p=—=——=(1-m)x™"P, where P =—and
ox dX ox ( ) X
_ 90z _dz dY

_ 0z
=—=—-—=(1-n)y"Q, where Q = —
qayayay()yQ QaY
Therefore the equation f(x" p, y"q) = 0 reduces to f{(1 —m)P, (1 —n)Q} =0, which
is a type I equation.
The equation f(x" p, ¥" g, z) = 0 reduces to f{(1 — m)P, (1 —n)Q, z} = 0, which is
a type III equation.

Type B
Equations of the form f(px, gy) = 0 or f(px, gy, 7) =0

Note &5
These equations correspond to m = 1 and n = 1 of the type A equations.
The required transformations are
logx=Xandlogy=Y
dz _dz dX dz 1 dz dz dY

Inthiscase, p=—=——=——orpx=Pandg=—=———7=
ox 0X ox 0JX x dy dY ody

oz 1 0z 0z
—-—orqy=0Q,where P=— and Q=—.
oy Y v=¢2 ox M 2=5y

Therefore the equation f(px, gy) = 0 reduces to f(P, Q) = 0, which is a type I
equation.

The equation f(px, gy, z) = 0 reduces to f(P, Q, z) = 0, which is a type III
equation.

Type C

Equations of the form f(zkp, qu) =0or f(zkp, qu, x, y) = 0, where k is a constant
#-1.

We make the transformation Z = 75+

Then P=Z=(k+Dz*p and

az
ox
0Z
=%
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P
Therefore the equation f(zk p, zk g) = 0 reduces to f (— £j 0, which is a

k+1 k+1

P

type I equation and the equation ﬂz D, 2 q,x,y)=0reducesto f | —— £ %y |=0,
k+1"k+1

which may be a type IV equation.

Bype D

Equations of the form f (E, 1) =0 or f(p/z, q/z, x, ¥) = 0, which correspond to
Z z

k=—-1 of type C equations.

The required transformation is Z = log z

zZ 1 Z 1
Then P = a—=—pandQ=a—=_q
a.x Z ay b

Therefore the equations f(p/z, g/z) = 0 and f(p/z, q/z, x, y) = 0 reduce respectively
to type I and type IV equations.

Type E

Equations of the from f(x"z*p, y"z*q) = 0 where m, n # 1; k # -1
We make the transformations
X _xl —-m Y_yl—n andZ:Zk+]
0Z dZ dz dx

Then P=— =L
oxX dz ox dX
= (k+D)2p-
_ kY
and O=(k+1)z" g—
1-n

The given equation reduces to

Al (i5)ef -0

which is a type I equation.

Bype F
Equations of the form f (p @ ) 0
z z
By putting X = log x, ¥ =1log y and Z = log z the equation reduces to f(P, Q) =
where P = 9z and Q = 8_Z
oX oY
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Worked Examples 4(b)

Example 1
Solve the equation pg +p + g =0.
This equation contains only p and g explicitly.
Let a solution of the equation be
z=ax+by+c @))
From (1), we getp =a and g = b.

Since (1) is a solution of the given equation,

ab+a+b=0 @))
b=--2 )
a+1

Using (2) in (1), the required complete solution of the equation

z= ax— a1y+c 3)

a+
To find the general solution, we put ¢ =f(a) in (3), where ‘f” is an arbitrary function.
ie. z = ax—Ly+f(a) (@)
a+1

Differentiating (4) partially with respect to a, we get

@ =0 5)

Eliminating a between (4) and (5), we get the required general solution.

To find the singular solution, we have to differentiate (3) partially with respect to
a and c.

When we differentiate (3) partially with respect to ¢, we get 0 = 1, which is
absurd.

Hence, no singular solution exists for the given equation.

Example 2
Solve the equation p2 + q2 =4pq.
P’ +q—4pg =0 M
As (1) contains only p and g, a solution of (1) will be of the form
z=ax+by+c (2)

From (2), we get p =a and g = b.
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Since (2) is a solution of (1),
a* +b*—4ab =0

_4da +/16a* — 4a*

Solving for b, we get

b
2
= 2+3)a
Using in (2), the complete solution of (1) is
7= ax+(2i\/§)ay+c 3)

There is no singular solution for (1), as in Example 1.
To get the general solution, we put ¢ = f(a) in (3), which becomes
2= ax+Q2E3)ay+ f(a) @)
where f'is an arbitrary function.
Differentiating (4) partially with respect to a, we get

0= x+Q2+\B)y+f"(a) (5)

The eliminant of ‘a’ between (4) and (5) gives the general solution of (1).

Example 3

Solve the equation X p2 —-yzq — Z=0

As it is, the equation . s )
X p —-yzg—-z2-=0 (h

does not belong to any of the four standard types.

Rewriting Eq. (1), we get

) \2
X
z z
. . xX°p yq .
As L.H.S. of (2) is a function of —— and — , we make the transformations
z

X=x7, Y=Ilogyand Z=1logz
(by the transformation rules for type A and type F equations)

oz dz dZ dX 1
- =22 ——
Then P=ox "z ax & ° ( xZJ
Xp_ p
x
oz dz 0Z dY 1
d - = = —
an g dy dZ 9Y dy X0 y
X -o

Z
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Equation (2) becomes
PP-0=1 (3)
Equation 3 contains only P and Q explicitly.

Therefore a solution of (3) will be of the form

Z=aX+bY+c 4)
P =a and Q = b, obtained from (4), satisfy Eq. 3.
a-b=1
b=d*-1

The complete solution of (3) is
Z=aX+ (@ - DY +c

The complete solution of (1) is
a 2
logz=—+(@ —Dlogy+c
X

Singular solution does not exist and general solution is found out as usual.

Example 4

2 2
Solve the equation z [p_2+ q—zj =1.
Xy

The given equation does not belong to any of the four standard types.
It can be rewritten as
@)’ + (7 g = 1 (1)
which of the form (x"zp)* + (y"Z'¢)* = 1 [Refer to type E equations]
We make the transformations
X=z'"" y=y""and Z ="
ie. X=x2,Y=y2andZ=z2

Then
dz _dz 90Z dX 1

=___._.___.P.2x
ox dZ dJX dx 2z

P = x’lzp
Similarly, O = y_lzq.
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Using these in (1), it becomes
PP+0*=1 )

As (2) contains only P and Q explicitly, a solution of the equation will be of the
form

Z=aX+bY+c (3)
P =a and Q = b, obtained form (3), satisfy Eq. 2.
ie. a+b =1
The complete solution of (2) is
Z =aX* 1-a*Y+c
The complete solution of (1) is

2= ax’* £ 1—a2y2+c

Singular solution does not exist and general solution is found out as usual.

Example 5

Solve the equation pg xy = 2.
The equation
pqxy=2" )

does not belong to any of the four standard types.

1)

As (2) contains X and Q, we make the substitutions X = log x, ¥ = log y and
z z
Z =log z [Refer to type F equations]

Rewriting (1),

Then P= %=£.B_Z.E=Z.P.l
ox dZ oX dx X
ie. Px _p
X
Similarly _p
Z
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Using these in (2), it becomes

PO =1 (3)
which contains only P and Q explicitly. A solution of (3) is of the form
Z=aX+bY+c 4)
P =a and Q = b, obtained from 4, satisfy (3)
ie. abzlorb:l
a

1
The complete solution of (3)is Z= aX+—Y +c¢
a

The complete solution of (1) is
1
logz= alogx+—logy+c (&)
a

General solution of (1) is obtained as usual.

Note £5

To find the singular solution of (1), we should not use the complete solution
of (3). We should use only that of (1) given in (5).

If we put ¢ = log k, (5) becomes
log z = log (x* yk)

ie. z=x"y"% (6)
Differentiating (6) partially with respect to a,

1
logx—a—zlogy =0 @)

Differentiating (6) partially with respect to &,
O - xayl/a (8)

Eliminating a and k form (6), (7) and (8), that is using (8) in (6), the singular solution
of equation (1) is z=0.

Example 6
Solve the equation z4q2 ~7 p=1
The equation can be solved directly, as it contains p, ¢ and z only explicitly.
However we shall transform it into a simpler equation and solve it.
The equation can be rewritten as
@@’ -@p) =1 (1)

which contains z’p and qu_
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Hence we make the transformation Z = z° [Refer to type C equations]
J0Z 2
P=—=3z
ox P
. 2 P
1.€. p=—
3
Similarly z%g = %
Using these values in (1), we get
0*-3P=0 )

As (2) is an equation containing P and Q only a solution of (2) will be of the form
Z=ax+by+c (3)
Now P =a and Q = b, obtained from (3) satisfy Eq. 2.
b -3a=9

Le. b= +\3a+9

Complete solution of (2) is Z=axE/3a+9y +c ji.e. complete solution of (1)
is 2’ = ax+.\3a+ 9y +c. Singular solution does not exist. General solution is found
out as usual.

Example 7

Solve the equation z = px + qy + p2 +pgq + q2
The given equation
2=px+qy+ (P’ +pg+q) (1)
is a Clairaut’s type equation.

The complete solution of (1) is
z=ax+by+d +ab+ b )
[got by replacing p and ¢ in (1) by a and b]
Let us now find the singular solution of (1).

Differentiating (2) partially with respect to a and then b, we get
x+2a+b=0 (3

and y+a+2b=0 @
The eliminant of a and b from (2), (3) and (4) is the required singular solution.

Solving (3) and (4) for a and b, we get

g:%(y—Zx) and b=%(x—2y)
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Using these values in (2), the singular solution is

X y 1 5
= —(-2x)+=(x-2y)+—=(y-2
z 2(y X) 3(x y) 9(y X)

+%<y—2x>(x—2y>+é<x—2y>2

ie. 9z = 3x(y — 2x) + 3y(x — 2y)
+ (=207 + (y = 20 (x = 2y) + (x - 2)?

ie. 3z+x2—xy+y2=0
General solution of (1) is found out as usual.
Example 8
Solve the equation z = px+gy+ (i - p].

p

The given equation
7= Px"‘qy"'[i_l?j
p

is a Clairaut’s type equation.

The complete solution of (1) is
b
Z=ax+by+——a
a

The general solution of (1) is found out as usual.

ey

2

To find the singular solution of (1), we differentiate (2) partially with respect to

a and then b.
We get
0=x—bla*—1
and O=y+1/a

Using a = 1 got from (4) in (3), we get
y
X - by2 -1=0

-1
i.e. b= x—z
y

Using thee values of a and b in (2), we get

x—1 (x—lj 1
= —xly+——-— +—
y y y

i.e. yz=1-x, which is the singular solution of (1).

3)
“)
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Example 9

. [ 2, 2
Solve the equation Z= PX+qy+cyl+p”+q~.
The given equation
7= px+qy+c\/1+p2 +q2

is a Clairaut’s type equation.

z= ax+by-i—cx/1+az+b2

.. Its complete solution is

where a and b are arbitrary constants and c is a given constant.

The general solution of (1) is found out from (2) as usual.

4-35

ey

2

To find the singular solution of (1), we differentiate (2) partially with respect to

a and then b.
ca
0= Xt+t—F—eo
\/1+a2 +b°
ch
and 0=y+
1+a> +b°

From (3) and (4), we get % . or a_ 2 =k, say

y x
o a=kxand b = ky
Using these values in (3), we have

kc

e — =_1
J1+E2 (% +5%)

since k is negative,

ie. 1+ K2 +y%) = k5
or kz(cz—xz— y2)=1
. 1
1.€. = —
Cz_xz_yz
a=— s , b= Y
c"—x —y2 c —xz—y2
and 1+a>+b2 = ‘
cz_xz_yz

i.e. Z=,'C2_x2_y2 or

3)

“)
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Example 10

Solve the equation (pg — p — q) (z—px — qy) = pq.
Rewriting the given equation as

pq

7= px+qy+——"———
p4—prP—4q
we identify it as Clairaut’s type equation.
Hence its complete
ab
7= ax+by+——
ab—a-b

The general solution of (1) is found out as usual from (2).
Let us now find the singular solution of (1).
Differentiating (2) partially with respect to a and then b, we get

(ab—a—-b)b—ab(b-1)
X+

0= >
(ab—a—b)
2
ie. O=)c—b—2
(ab—a->b)
d similarl 0=y a
and similar =y———
Y (ab—a—b)2

2
From (3) and (4), we get Z—2 =yl/x or

4 L=k, say
NI
a=kyy and bzk\/;
Using thee values in (3), we get
K x = (k2 Jxy —k\Jy —kJx)?x =0
ie. (k\/;—\/;—\/;) =1
1+\/;+\/;

k =
Jxy
Hencea = FNHy ey
Also \/; \/;
ab 1 1

ab-a-b 1—1/b—1/a=1_ b &
1+\/;+\/; 1+\/;+\/;
1+\/;+\/§

Using these values in (2), the singular solution of (1) is

2= NxA+Vx + )+ AHVx )+ A+Vx )
ie. 2= (+x+)%

ey

2

3)

“)
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Example 11

Transform the equation 4xyz = pg + 2px2y + 2qu2 by means of the
X =x* and Y = y* and hence solve it.

p=92_9z x _p
0X ox dX 2x

-1
=%

Rewriting the given equation, we have

and similarly

1z = ﬂ+2px+2qy
Xy

Using the transformations in (1), it becomes

47=4PQ+4P X +40Y
ie. z=PX+QY+PQ
which is a Clairaut’ type of equation.

The complete solution of (2) is
z=aX+bY +ab

Therefore the complete solution (1) is
Z =ax2+by2+ab
The general solution of (1) is obtained form (4) as usual.

The singular solution of (1) is obtained as follows.

Differentiating (4) partially with, respect to a and then, b, we get

4-37

substitutions

ey

2

3)

“)

)
(6)

0=x*+b
and 0= y2 +a
From (5) and (6), a = —y2 and b = —x°. Using these values in (4), the singular solution
of (1) is
= —x2y2 —x2y2 +x2y2
ie. zZ+ x2y2 =0
Example 12

Solve the equation 20+ q2 + 1) = ¢, where ¢ is a constant.

The given equation
ZP+¢+)=c

does not contain x and y explicity.

Therefore (1) has a solution of the form
z=y(u) =z(x + ay)

ey

where z(u) = z(x + ay) is a function of (x + ay), where a is an arbitrary constant.
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d
From (2) we have p = d—Z and g=—-a
u

dz
du

Since (2) is a solution of (1), we get

i.e.

i.e.

2
2 (3) +a’
du

2
dz
—= | +1p =¢?
(du) } ‘

dz 2
l+a =—-1
( )(du) Z
1+a2£ = —CZ_Z2
du Z
1+a? dz

m:du

Integrating (3), the complete solution of (1) is

i.e.

The general and singular solutions of (1) are found out from (4) as usual.

Example 13

\]1+ j\/ﬂ =u+b

—V1+a*ye* -2 =x+ay+b or

A +d)(P* - =(x+ay+b)

Solve the equation p(1 — qz) =q(1-2)

The given equation

p(1—¢*) =q(1-2)

does not contain x and y explicitly.

Therefore (1) has a solution of the form

z =z(u) = z(x + ay)

where a is an arbitrary constant.

From (2), p= %
Z

dz
and =a—
i du

Since (2) is a solution of (1), we get

i.e.

2
dz 2 dz dz
Lho2[E = afa-o
du{ “ [du) } du

2
ﬂ 1-a? % —a+az| =0
du du

3)

“)

ey

2
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As z is not constant, % 0

du
2
l—az(g) —a+az =0
du
2
i.e. az(EJ =az+1-a
du
or aj—z = Jaz+1—-a
u

Solving (3), we get

aj & +b

S

NJaz+1l-a

ie. 2yaztl—-a =x+ay+b or
4(az+1—a)=(x+ay+b)2

which is the complete solution of (1).

The general and singular solution of (1) are found out from (4) as usual.

Example 14

Solve the equation 9pqz2 =4(1 + 7).

The given equation . ;
gz =41 +7°)

does not contain x and y explicitly.

Therefore (1) has got a solution of the form
z=2z(u) = z(x + ay)
where a is an arbitrary constant.

From (2), ng and q:ag.
du du

Since (2) is solution of (1), we get
dz :
9a(—) =41+ )
du

ie. 3\/935 N
u

Solving (3), we get

ﬂj‘ 37%dz _ b
2 Ji+2* et
ie. \/;'\/1+23 =x+ay+b or

a(l +2°) = (x + ay + b)?

which is the complete solution of (1).

The general and singular of (1) are found out form (4) as usual.
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3)

“)

ey

@)

3)

“)
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Example 15
242

Solve the equation —+-—=2.
P 4

The given equation does not belong to any of the standard types.

It can be rewritten as

1 1
- + — =Z (1)
2 qy
As equation (1) contains p)c"2 and qy_z, we make the substitution X = x” and ¥ = yz.
[Refer type A equations]

Bz 1 2 C. -2
Then P=—=p-—— or px - =3P and similarl =30.
ax P32 p yqy 0

Then (1) becomes

1 + 1 =3Z 2)
P 0
As (2) does not contain X and Y explicitly, it has a solution of the form
z=z(u) =z(X + aY) 3)

Form (3), P = % and Q = a%
du du

Since (3) is a solution of (2), we get

2
dz dz
—((+a) = 3az| —
w0t az(d )

u

du du
ASgiO, 3az$=a+1 4)
du du

Solving (4), J3az dz=(a+Du+b

3
ie. Eazz —(a+ DX +aY)+b

which is the complete solution of equation (2).
The complete solution of equation (1) is

3
Eaz2 =@+ DX +ay’)+b

where a and b are arbitrary constants.

The general and singular solutions are found out as usual.
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Example 16
Solve the equation
2,22 2_ 22

prHX Y ¢ =x"¢7
The given equation does not belong to any of the standard types.
Rewriting, it, we have

@'p+ g’ =2 )

As equation (1) contains X! p and yg, we make the transformations X = x> and
Y =log y [Refer to type A and type B equations]

0z 1 dz

— = p-— and =—=

x Do T
ie. x'p=2pP and yqg =0

Using these values in (1), it becomes
4P+ Q=7 @)

As (2) does not contain X and Y explicitly, it has got a solution of the form

z=z(u) = z(X + ay) (3
From (3), we have
P= 4 and Q= a$
u du

Using these values in (2), we get
2
d
(—Z) (4+ad*) =7
du

ie. a’+4 & _ z 4)
du

Solving (4), we get

Ja® +4logz =X +a¥+b

which is the complete solution of (2).

The complete solution of (1) is

Jal +4logz =3 +a logy+b

where a and b are arbitrary constants.

The general and singular solutions are found out as usual.
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Example 17
Solve the equation
2 2 2
X p +axpg=z

The given equation can be rewritten as

op)* +(p)g =7 (1)
Putting X = log x, we etP—ﬁ— X
g g X, g X P

Using this in (1), it becomes
P +Pg=7 2)

As Eq. 2 does not contain X and y explicitly, it has a solution of the form

z=z(u) =X + ay) 3)
From (3),
P = 4 and ¢= (J%
du du

Using these values in (2), we have

dz dz Y 2
e +a| — =7
du du
. dz
i.e. \/1+ad— =z 4)

u

Solving (4), we get /1+a logz = X +ay+b, which is the complete solution of (2).

The complete solution of (1) is
N1+alogz=logx+ay+b

The general and singular solution are found out as usual.

Example 18
Solve the equation
7y’ =2z - px)
As the given equation contains px and gy, we make the following substitutions.
X =logx and Y=1logy

P 0z

0z
= —— d = —
oy Pr oA 0 5y
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Using these in the given equation, it becomes
Q2=z(z—P) or Pz+Q2:z2
As Eq. (1) does not contain X and Y explicitly, it has a solution of the form

z=2z(u) =z(X + aY)
From (2),
_dz dz

andQ=a—
Qad

P =
du u

Using these values in (1), it becomes

du du
2
dz dz
2 2
a|—| +z—-2" =
or (duj du 0

Solving (3) for E, we get
du

dz —z++77 +4a’7

du 24>

(—1++1+44%)z
2a°
Solving this equation, we get

d
2a* [= = (124144 u+b
Z

ie. 2a°log z = (~1+\1+4a> (X +aY)+b
which is the complete solution of (1).

The complete solution of the given equation is

2alog z = (—14_-\/1+4a2 )(logx+alogy)+b

The general and singular solution are found out as usual.

Example 19

Solve the equation

\/;Jf\/g =x+y

The given equation does not contain z explicitly and is variable separable.

443

(1

2

3)



IE Linear Algebra and Partial Differential Equations

That is the equation can be rewritten as

\/;—x = y—\/gza, say (1)
P =()c+a)2 and q=(y—a)2
No dz = pdx + qdy
=+ a’dv+ (y-a) dy 2)

Integrating both sides with respect to the concerned variables, we get

3 3
G’ o-a)
3 3

where a and b are arbitrary constants. Equation (3) is the complete solution of the
given equation.

3)

General solution is found out as usual. Singular solution does not exist.

Example 20

Solve the equation
yp =2xy +log g
The given equation, which does not contain, z, can be rewritten as

p—2x=llogq=a, say (D
p=2yx+a and g=e”
dz = pdx + gdy
ie. dz = 2x + a)dx + e®dy (2)
Integrating (2), we get
7= x2+ax+ée“y+b 3)

where a and b are arbitrary constant.
Equation (3) is the complete solution of the given equation.
General solution is found out as usual.

Singular solution does not exist.

Example 21
Solve the equation
PP +x0)y = gx°

The given equation, which does not contain z, can be rewritten as

1+ x°
L . )9 _ 4, say (1)
x y
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\/Z -~ and
p= q=ay
V1+x2
dz = pdx + gdy
= Va - ——=—dx+aydy )
V1+x?
Integrating (2), we get the complete solution of the given equation as
2
z= a(1+x2)+%+b (3)

where a and b are arbitrary constants.
From (3), we get the general solution as usual. Singular solution does not exist.

Example 22

Solve the equation zz(p2 + qz) =Xx+y
The given equation s s,
TP Hqg)=x+y (1
does not belong to any of the standard types.
Equation (1) can be rewritten as
@)+ (@) =x+y

Since the equation contains zp and zq, we make the substitution Z = 2

Y4 0
P=—=2zp and Q:—Q:2zq
ox dy
Using these in (1), it becomes
PP+ Q*=4x+4y )
which does not contain Z explicitly.
Rewriting (2), we get
P’ —4x= 4y — Q2 =4a, say 3)
P=2Jx+a and Q=2\y—a

dZ = Pdx + Qdy

= 2Jx+a dx+2\/y—a dy
Integrating, we get

Z= %()c+a)3/2 +%(y—0t)3/2 +b

ie. Zt a2 -0 b

which is the complete solution of (1).
General solution is found out as usual.
Singular solution does not exist.
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Example 23
Solve the equation
PP +q’ =20 +y)
The given equation does not belong to any of the standard types.

It can be rewritten as
PP gt =4y (1)

As the Eq. (1) contains 7! p and 7! g, we make the substitution Z = log z

P=2 and in
b4 Z

Using these values in (1), it becomes
PP+ QP =x"+) 2)

As Eq. 2 doe not contain Z explicitly, we rewrite it as

PP _x= y2 - Q2 =d’, say 3)
From (3), P=+ x> +a*> and 0= y2 —a?
dZ = Pdx + Qdy

= \/xz +a’ dx+\/y2 —-a® dy
Integrating, we get
2

2
7= %\/xz +a* +a?sinh’1 (£)+X\/y2 —a? —%Coshfl(y/a)‘*'b

a 2

The complete solution of (1) is

2 2
logz= %\/xz +a’ +a?sinh71 (£)+§\/y2 —a® —%coshfl(y/a)+b
a
where a and b are arbitrary constants.
General solution is found out as usual.
Singular solution does not exist.

Example 24

Solve the equation (x + P’ +(+q2)’=1.
The given equation does not belong to any of the standard types.
But the equation contains pz and gz.
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Therefore we make the substitution Z = z°.
Then P = g_z =2zp and O = 2z¢.
X

Using these values in the given equation, it becomes

2 2
(ng +(y+%) 1 )

Equation (1) does not contain Z explicitly. Rewriting (1), we have

2 2
[x+§) =1—(y+%) =d’, say 2)

P
From (2), x+—=a orP:2(a—x)andy+%:\/l—a2 or Q=2(1-a* -y)

Now dZ = Pdx + Qdy
= 2(a-x)dx+2(J1—a® —y)dy (3)

Integrating (3) and replacing Z by %, the complete solution of the given equation

is
= —(a-x)+201-a*y—y* +b

General solution is found out as usual. Singular solution does not exist.

Example 25

Solve the equation pz” sin® x + qz2 cos’y=1. The given equation does not belong
to any of the standard types.

The given equation contains (zp) and (z%¢).
Therefore we make the substitution Z = z°

Z
=a—:312p and Q:3zzq
ox

Using these values in the given equation, it becomes
P .
—sm2x+gcos2y =1 (D
3 3
Equation (1) does not contain Z explicitly. Rewriting (1), we have

2

P
—sin“ x = 1—%c:os2 y =a, say (2)

From (2), P =3a cosec” x and 0=31- a)sec2 y
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Now dZ = Pdx + Qdy

= 3a cosec® xdx + 3(1 — a) sec® ydy (3)

Integrating (3) and replacing Z by 2, the complete solution of the given equation

is

2 =-3acotx+3(1-a)tany+b

General solution is found out as usual. Singular solution does not exist.

Exercise 4(b)

Part A (Short-Answer Questions)

5.
6.

Define complete solution and general solution of a P.D.E.

How will you find the general solution of a P.D.E. from its complete
solution?

What is the geometrical significance of the singular solution of a P.D.E.?

How will you find the singular solution of a P.D.E. from its complete
solution?

Find the complete solution of the PD.E. g = f(p)
Find the complete solution of the P.D.E. z = px + gy + f(p, q).

Find the complete solution of the following P.D.E.s.

7. pg=k
8. p=eé
9. p2 + q2 =2
10. p+g=z
11. p2 =qz
12. pg=z
13. pg=xy
14. px=gqy
15. pe’ =ge*
16. Rewrite the equation pgz = pz(qx + pz) + qz(py + qz) as a Clairaut’s equation
and hence write down its complete solution.
Part B
17. Solve the equation (a) \/; + \/; =1; (b) p2 + q2 = k*. Find the singular
solution, if they exist.
18. Solve the equation 3p° - 2q2 = 4pq. Find the singular solution, if it exist.
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19. Solve the equation p2 —2pg + 3qg = 5. Find the singular solution, if it exists.
Convert the following equations into equations of the form f{(p, ¢) = 0 and hence
solve them.

20. p2 o+ q2 y2 =7

21. p2x+q2y:z

22. px2 + qy2 =7

23. Zpt-gH=1

24. 2x*p*—yzg-3"=0

25. (y-x) (qgy—px)=(p—q)* [Hint: Put x + y= X and xy = Y]

Find the singular solution os the following partial differential equations.

26. z=px+qy-— 2@

z Xy

A

28. z=px+qy+p g’

29. (p+q)(z-px-qy=1

30. Z=px+qy+p2—q2

Z=px+qy+ \/1’72“12

31.
32. I1-x)-p2-y)g=3-z
Solve the following equations.
33. pP+qi=z
34. 1+172+(]2=z2
35. (@pz=1+4q% b)gz=1+p°
36. p(1+4%)=q-a)
37. 9p’z+q) =4
Convert the following equations into equations of the form f(p, g, z) = 0 and hence
solve them.
38. x% + yiz =z
38. PP+ =1

40. p*xt+y*zg=27

Solve the following equations

41.

q=px+p’
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42.
43.
44.

yp +xq+pg=0
yp-x" ¢ =xy
q(p —sin x) = cos y

Convert the following equations into equations of the form f(p, g, x, y) = 0 and hence

solve them.
45. (0 -q)z=x-y
46. PP+ ="+
47. p2 +x° y2 qz =x*7
48. 47¢*=y-—x+2zp
49. x+y)(p+¢’+(x-y) (p—g)*=1[Hint: Putx+y=Xandx—y=Y]
50. (p2 + qz) o+ y2) =1 [Hint: Put x = r cos O and y = r sin 0]

4.10 GENERAL SOLUTIONS OF PARTIAL

DIFFERENTIAL EQUATIONS

Partial differential equations, for which the general solution can be obtained directly,
can be divided into the following three categories.

1.

Equations that can be solved by direct (partial) integration. For example,
consider the equation.

0z
— =a (1
ox
If z were a function of x only, direct integration with respect to x will give the
solution as

z=ax+Db ©))

If (2) is to be the general solution of (1), b need not be a constant, but it may
be an arbitrary function of y, say f(y). Then (2) becomes

z=ax+f(y) €)

When we differentiate (3) partially with respect to x, we get Eq. (1). As (3)
contains an arbitrary function, it is the general solution.

Thus when we get the solution of an equation by partial integration with
respect to x [or y], we should take an arbitrary function of y [or x] in the place
of arbitrary constants taken when ordinary integration is performed.

Equations, in which the dependent variable occurs only in the partial
derivatives, can be solved by this partial integration method.

Lagrange’s linear equation of the first order, which will be discussed in
Section 4.11.

Linear partial differential of higher order with constant coefficients, which
will be discussed in Section 4.12.
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4.11 LAGRANGE’S LINEAR EQUATION

A linear partial differential equation of the first order, which is of the form Pp + Qg =R
where P, Q, R are functions of x, y, z, is called Lagrange’s linear equation.

We have already shown that the elimination of the arbitrary function ‘f” from
Sflu, v) =0 leads to Lagrange’s linear equation.

General solution of Lagrange’s linear equation

The general solution of the equation Pp + Qg = R is f(u, v) = 0, where ‘f” is an
arbitrary function and u(x, y, z) = @ and v(x, y, z) = b are independent solutions of the

simultaneous differential equations 3 = b = %
p Q@ R
Proof
S, v)=0 ey
Differentiating (1) partially with respect to x and then y, we have

a_f(a” a_” ) a_f(av & ):0 2)

ou\ dx Jz ov\dx 0dz

of [ du du of (dv v

-— —q |=0

and au(ay 0z J—i_ av(ay 0z j )

Eliminating a—fand a—f from (2) and (3), we get
Ju v

u, +sz _ Vi +Vzp

u,tuqg v, +vg

i.e. (uyvZ - uzvy)p + U, v, —u.v)qg=u, Vy = Uy Vy 4)

Taking,P:uva u, y,Q—uv —uyv,and R=u,v Eq. (4) takes the

y v Ve
form
Pp+Q0g=R )

Since the primitive of equation (5) is equation (1), that contains an arbitrary
function ‘f’, we conclude that f(u, v) = 0 is the general solution of the Lagrange’s
linear equation (5).

Now consideru=aandv=>b
du=0anddv=0

ie. udx + udy + udz =0 (6)
and vdx +vdy +v,dz =0 (N
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Solving (6) and (7) for dx, dy, dz, we get

dx d dz
= Y = (8)
WY, —UV, UV UV,

I/tyVZ —MZVy

When we eliminate @ and b from u = a and v = b, we get the simultaneous equations
(8). In other words, the solutions of equations (8) are u = a and v = b.

Therefore the general solution of Pp + Qg = R is f(u, v) = 0, where u = a and

. . dx dy dz
v = b are independent solutions of —=—=—.
P QO R

Working rule to solve Pp + Qq = R

(i) To solve Pp + Qq = R, we form the corresponding subsidiary simultaneous
equations de = b = dz .
P Q R
(i) Solving these equations, we get two independent solution u = a and v = b.
(iii)) Then the required general is f(u, v) = 0 or u = ¢(v) or v = w(u).

4.12 SOLUTION OF THE SIMULTANEOUS

EQUATIONS & _ & _&
P Q R

Method of grouping

By grouping any two of three ratios, it may be possible to get an ordinary differential
equation containing only two variables, even though P; Q; R are, in general, functions
of x, y, z. By solving this equation, we can get a solution of the simultaneous equations.
By this method, we may be able to get two independent solutions, by using different
groupings.

Method of multipliers

If we can find a set of three quantities /, m, n, which may be constants or functions of
the variables x, y, z, such that /[P + mQ + nR = 0, then a solution of the simultaneous
equations is found out as follows.

dx _dy dz _ ldx+mdy+ndz
P Q R IP+mQ+nR

Since [P + mQ + nR =0, ldx + mdy + ndz = 0. If /[dx + mdy + ndz is an exact differential
of some function u(x, y, z), then we get du = 0. Integrating this, we get u = a, which
dy dz
0 R

Similarly, if we can find another set of independent multipliers I/, m’, n’, we can
get another independent solution v = b.

. . dx
is a solution of — =
P
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Note &5
1. We may use the method of grouping to get one solution and the method
of multipliers to get the other of % = b = %

2. The subsidiary equations are called Lagrange’s subsidiary simultane-
ous equations.

3. The multipliers I, m, n are called Lagrange multipliers.

Worked Examples m_

Example 1 , ,

Solve the equations (i) 3_; =xy; (i) a—j =sinxy
ox dy

82
ax—i = xy (1)

Integrating both sides of (1) partially with respect to x (i.e. treating y as a
constant),

@

0z X2
P y 5 +o(y) (2)

Integrating (2) partially with respect to x,

3
z= %y+f(y)+x-¢(y) 3)

where f(y) and @(y) are arbitrary functions. Equation (3) is the required general
solution of (1).

2

(ii) a—j = sin xy (4)
y
Integrating (4) partially with respect to y,
0z 1
g = —;cosxy+¢(x) %)

Integrating (5) partially with respect to y,
1 .
= ——sinxy+ £(x)+y-9(x) ©)
X

where f(x) and @(x) are arbitrary functions. Equations (6) is the required general
solution of (4)
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Example 2
2

Solve the equation

:eflcosx,ifuszhent:Oanda—u:O when x =0
X0t ot

Also show that # — sin x, when ¢t — oo.
o%u
dxot
Integrating (1) partially with respect to x,

ou =e'sinx +£() )
ot

When x =0, g_u =0. (given)
t

=¢'cosx (D

Using this in (2), we get f(r) = 0.
Equation (2) becomes 3—1; =e¢ 'sinx 3)

Integrating (3) partially with respect to ¢, we get

u=—e"sinx+ gx) 4)
Using the given condition, namely, # = 0 when 7 = 0, in (4), we get

0 = —sin x + g(x) or g(x) = sin x

Using the value in (4), the required particular solution of (1) is u = sin x (1 —e™).

Now lim(u)
t—o0

sin x[lim(l —e! )}

[—oo
=sin x
That is when ¢t — oo u — sin x.
Example 2
0%z 0z
Solve the equation 8_2+ z=0, given thatz=¢" and —~ =1 when x=0.
X X
9’z
y +z2 =0 1

If z were a function of x alone, the equation (1) would have been the ordinary
differential equation

2
%+z =0,ie., (D% +1)z=0 )

The auxiliary equation of (2) is m? + 1 =0. Its roots are +i. Hence the solution of 2)
is

z=Acosx+ Bsinx 3)

Solution (3) can be assumed to be obtained by integrating (2) ordinarily with respect
to x.
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If we replace A and B in (3) by arbitrary functions of y, the solution can be assumed

to have been obtained by integrating (1) partially with respect to x.
Thus the general solution of (1) is

z=f(y)-cosx+g(y) - sinx

From (4), g_z =—f(y) sin x + g(y) cos x
X
Using the condition that z = ¢ when x = 0 in (4), we get
fy=¢é

Using the condition that % =1 when x=01in (5),
X

gy =1

Using (6) and (7) in (4), the required solution of (1) is z = €’ cos x + sin x.

Example 4

. a ) .
Solve the equations E)_Z =3x—yand E)_Z =—x+cosy simultaneously.
X 'y

0z

R 3y

ox Y
% =—x + cos
dy Y

Integrating (1) partially with respect to x,

3x?
= T—yx'i'f(y)

Differentiating (3) partially with respect to y,

g—i =-x+f1y)
Comparing (2) and (4), we get f(y) = cos y
fly)=siny+c

The required solution is

z= Exz —xy+sin y+c¢, where c is an arbitrary constant.

“)
&)

(6)

(N

D

©))

3)

“)

)

Example 5
By changing the independent variables by the transformations # = x — y and
.0 0* 0’
v = x + y, show that the equation —§+2 < —5 =0 can be transformed as
2 ax axay ay

z .
— = 0 and hence solve it.
v
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u=x—-yandv=x+y

u+tv v—u

X = and y=

If we express x and y in z in terms of « and v, z becomes a function of u and v.

_ 9z _ _ 0z _ du
Z,= —=g, U, +z,-v,where z, =—and u, =—, etc.
ox du dx
=z,+2,

ZyzZu'My+Zv‘Vy:—Zu+Zv

Ly = (Zuu + Zuv) + (Zvu + Zvv) =Zwt 2Zuv + 2y
ny = (_Zuu + Zuv) + (_Zvu + Zvv) =2yt 2
Zyy =2y~ Lt (_Zvu + Zvv) =%~ ZZuv + 2,

Using these values in the given equation z,, + 2z, + z,, = 0, it becomes 4z,, = 0.

aZ
ie. 22 =0 (1)
ov
Integrating (1) partially with respect to v,
9z
— =8 2
ov
Integrating (2) partially with respect to v,
z=v-gu) +f(u) 3)

.. The solution of the given equation is
z=fx=y)+x+y)gx-y)
Example 6
By changing the independent variables by the transformations # = x and v = l,
Xy 8(1282)) +y? 2725 =0 and hence solve it. '

When u = x and v = y/x, x=uandy=uv.

2
207X,
a 2

transformation the equation x

z, which is a function of x and y, can also treated as a function of # and v.

=g, u,+z,-v, =Zu—x—22v

1
<y 'uy+Zv'vy :;'Zv

N
=1
1l
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Using these values in the given equation, it becomes,

2
2 2y y
[x Ly — Yy +7zv Yy +x_21vv]

2y 2y y’
+ __ZV +2yZuV __ZZVV + _ZZVV :O
X X X

w=0 (D
Integrating (1) partially with respect to u,

2, = 0(v) 2

ie. X2, =0 or z

Integrating (2) partially with respect to u,
2=fW) +u- o) 3)
Solution of the given equation is

z=f(y/x) +x - ¢(y/x)

Example 7

2 2 2
Transform the partial differential equation E—5 E: +6E= 0 to the form

) ax2 axay ay2
d°z

Judv

appropriate constants and hence solve the given equation.

=0 by using the substitutions u = x + oy and v = x + By, where o and 3 are

Clearly z, which is a function of x and y, can also be treated as a function of u and v.
2, =2,+ 2, z,= oz, + [z,
Zoe = Tt 2y ¥ Ty Ty =T A+ 2y B
+2,, 0+z, - Boroz, + o+ Bz, + Bz,
Zyy = 0Ty O+ 2y B) + Pz, - 0+ 2,0 P)
= o'z, + 20z, + Bz,
Using these values in the given equation, it becomes
@ + 224 + 20) = Sl 02, + (@ + B)z,, + Bz,
+6[a’z,, + 20, + fz,]1 =0
ie. (607 —5a+ 1)z, +[2-5(a+ P+ 120Blz,, + (68> - 5B+ 1)z, =0 (1)
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Since (1) has to reduce to the form z,, = 0, coefficient of z,, = 0 coefficient of

uy

ZVV'

ie. 60 -50+1=0and 68°—58+1=0
11

ie. o= —,— and ﬁ:l,l
2’3 2’3

If we choose equal values for o and B, coefficient of z,, also becomes zero. Hence

uv

1 1
we choose ¢ =— and f=-—.
2 3

For these value of o and B, equation (1) becomes

~—Z, =0 or 9’z =0 (2)
6" Judv
Integrating (2) partially with respect to u,
oz
- =6 3)
v

Integrating (3) partially with respect to v,

2= Jomdv+ f@)
i.e. z=f(w)+g®)

The solution of the given equation is

= f(x+%yj+g(x+%yj

orz =fly +2x)+ g(y + 3x)

Example 8
Solve the equation xzp + yzq +22=0
The given equation
Cp+yq=-2 (1)
is a Lagrange’s linear equation with P = X%, 0 =y*and R = -2

The subsidiary equations are

& _ b d

22
Taking the first two ratios, we get an ordinary differential equation in x and y, namely,
dx dy
27 2

X y



Partial Differential Equations

4-59
. 1 1
Integrating, we get —=———¢
X y
1 1
ie. ——— =a 2)
Xy
. . . dy -—dz
Taking the last two raties, we get the equation — =——
y Z
b _—dz
o2
. -1 1
Integrating, we get — =——»>b
Solving, <
1 1
—t+—=b 3)
y z

.. The general solution of the given equation is f l—l,l+l =0, where /" is
an arbitrary function. X yy z

Example 9

Solve the equation yzp —xyq = x(z - 2y).

The given equation is a Lagrange’s linear equation with P = y2, 0 = —xy,
R = x(z — 2y). The subsidiary equations are

e _dy = dz
Yoy x(z-2y)
Taking the first two ratios, we get
dx = G or —xdx = ydy
y —X
2 2
Integrating, we get 7+y— = or P+y =a (D
From the subsidiary equations, we have
dr dy = dz_ zdy+ydz
Voo az-2y) 2w

From the first and last ratios, we get

dx
T = @ or —2xdx=d(yz)
-2x
Integrating, we get P+yz=b (2)

From (1) and (2) the general solution of the given equation is f >+ yz, X+ yz) =0.
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Example 10
Solve the equation (p — g)z = 2+ (x+y). Thisis a Lagrange’s linear equation with
P=z,0=-zandR=72"+ (x+y).
The subsidiary equations are
dx _ ﬂ _ dz

z -z 2 +(x+y)

From the first two ratios, we get dx = —dy

Integrating, we get x+y=d® (1)

Note £5

Neither the method of grouping nor the method of multipliers can be used to
get the second solution.

We make use of solution (1), i.e. we put x +y = a” in the third ratio.

From the first and third ratios, we get

dx d 2zd.
_=2Z20r2dx=2222
Z Z"+a " +a

Integrating, we get 2x = log (22 + a>)+ b. Now using the value of a” from (1), the
second solution is

2x-log (P +x+y)=b 2)
From (1) and (2), the general solution of the given equation is

f[x+y,2x—10g(x+y+z2)] =0

Example 11
Solve the equation (7 - 2yz - yz)p + (xy + 2x)g = xy — zx.

This is a Lagrange’s linear equation with P = (2 - 2yz — yz), QO =xy + zx and
R=xy—zx.

The subsidiary equations are

dx dy dz

Z-2yz-y"  x(y+2) x(y-2)

From the last two ratio, we have
(y—z2dy =(=2)dz
ie. ydy — (zdy + ydz) —zdz =0
ie. ydy —d(yz) —zdz =0
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Integrating, we get
2 2

2oplty

Y -2yz-7"=a )
Using the multipliers, x, y, z, each of the above ratios = xdx+ydy+adz gy +adz

xdx + ydy + zdz=0

Integrating, we get Ly +2=b ?)

Tzherezfore the general solution of the given equation is fO7 = 2yz — 2 K%+
y+2)=0

Example 12
Solve the equation (x — 2z)p + (2z — y)q =y — x. This is a Lagrange's linear equation
withP=x-2z7,0=2z-yand R=y —x.
The subsidiary equations are
dx dy dz

= — 1
x—2z 22—y y—x M
Using the multipliers 1, 1, 1, each ratio in (1) = w
dx+dy+dz=0
Integrating, we get, xX+y+z=a 2)
Using the multipliers y, x, 2z, each ratio in (1) = M
d(xy) + 2zdz=0
Integrating, we get xy+22=b (3)

Therefore the general solution of the given equation is f(x +y + z, xy + =0

Example 13
Solve the equation -y -Dp+ 2xyq = 2zx. This is a Lagrang’s linear equation
with P = x* - y2 - zz, 0 =2xy, R =2zx.

The subsidiary equations are

_ & dy dz

= = ey
X —y2—z 2xy 2zx
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Taking the last two ratios, we get
b _d
y ooz
Integrating, we get log y =log z + log a

ie. = =a (2
¢ rdx+ ydy + zdz

Using the multipliers, x, y, z, each of the ratios in (1) = e (3)
: . . x(x"+y"+2%)
Taking the last ratio in (1) and the ratio in (3),
1

& Ed(x2 +y2+7%)

2zx )c(x2 + y2 + zz)
. dz  d(? +y*+2°)
e L T 2i e

X" +y +z
Integrating, we get log b + log z = log o+ y2 +79)
2,2, .2
+y +
ie. XAy rT "
b4

2,2, 2

. . . +y +

Therefore the general solution of the given equation is f [l,u] =0.
< <

Example 14
Solve the equations x*(y — 2)p + y*(z — X)q = 25 (x — y).
This is a Lagrange’s linear equation with P = x*(y — 2), Q = y*(z — x), R = 22(x — y).
The subsidiary equations are
dx dy dz
2 =2 2
x(y=2)  y(@-x) z(x-y)

ey

1 1 1
—2dx+—2dy+7dz

1 1 1
Using the multipliers —,—»—» each of the ratios in (1) = J <
Xy oz 0
— dx+—dy+—dz =
x y z
Integrating, we get LN =—a
X y Z
1 1 1
or —+—+— =a )
rr oz 111
—dx+—dy+—dz
y Z

each of the ratios in (1) = s

Using the multipliers l,l,l,
Xy z 0



Partial Differential Equations

4-63
ldx+ldy+ldz =0
X y Z
Integrating, we get log x + log + log z =1log b
or xyz="b (3)

Therefore the general solution of the given equation is f (l + L + l, xyz) =0.
Xy z

Example 15

Solve the equation (mz — ny)p + (nx — [z)q = Iy — mx. Hence down the solution of the
equation 2z—y)p+ (x+2)g+2x+y=0.

The equation (mz — ny)p + (nx — Iz)g = ly — mx

is a Lagrang’s linear equation with P = mz — ny, Q = nx — Iz, R = ly — mx.
The subsidiary equations are

dx dy dz

ey

mz—ny T onx—lz ly —mx
Using the two set of multipliers /, m, n and x, y, z, each of the above ratios in (1)

ldx +mdy+nd dx + ydy + zd
=# and also :%

ldx + mdy + ndz=0 and xdx+ ydy+zdz=0
Integrating both the equations, we get
Ix+my+nz=aand x> +y* +2=b

Therefore the general solution of the given equation is f (Ix + my + nz, 24y
2
+z)=0.

Comparing the equation
Qz-y)p+(x+2)g=-2x-y )
with the previous equations (1), we get/=—-1,m=2,n=1.
Therefore the solution of equation (2) is

fx+2y =2, 2+ +25) =0

Example 16

Solve the equation (y + 2)p + (z + X)g =x + .

This is a Lagrange’s equation with P=y+z, O=z+xand R =x +y.
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The subsidiary equations are

dx dy dz )
y+z Z+x Xx+Yy

Each of the ratios in (1) is equal to
dix—y) _ dly-z) _d(z—-x)

= = (2)
-(x-y)  -O-2 -(z-x»
Taking the first two ratios in (2), we get
dix-y) _ d(y-2)
xX=y y—z
Integrating, we get log (x —y) =log (y —z) + log a
x—
ie. Y —a (3)
y-z
Note &

Taking the last two ratios in (2) and integrating, we get another solution,
namely

= =t @)

But solution (4) is not independent of solution (3), since —(1+ );_y] =
-z

—(1+a), ie. SInbayN

y—z
Hence we should use solution, (3) or (4) only to write down the general solu-
tion of the give equation.

Now each of the ratios in (1) is also equal to
dix+y+2z)
2(x+y+2z)

(&)

dix+y+z) _ _2d(x—y)

Taking the first ratio in (2) and the ratio (5), we have
(x+y+2) x—y

Integrating, we getlog (x +y+z) =-2log (x—y) + log ¢
ie. (x— y)2 x+y+z)=c (6)

x_y,<x—y)2(x+y+z>}:o
y—2z

Therefore the general solution of the f {

Example 17

Solve the equation x(y2 + zz)p + y(z2 + xz)q = z(y2 —-x).

This is a Lagrange’s linear equation with P = x(y2 + 2, 0= y(z2 + x%) and
R=z("-x%).
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The subsidiary equations are
dx : dy _ dz
(P +28) y@+x%) 207 -x%)

D

—ldx+ldy+ldz
z

Using the multipliers —l,l,l, each of the ratios in (1) = al Y
x'yz 0

Integrating, we get —log x + log y + log z =log a

i.€e. Yz _ a @)
x
- ol - dx —ydy+zd
Using the multipliers x, -y, z, each of the ratios in (1) = XTIy T IR Oy &
xdx—ydy +zdx =0
Integrating, we get -y +2=b 3)

Therefore the general solution of the given equation is f [E, x> = yz + sz =0
x

Example 18
Find the integral surface of the equation px + gy = x, passing through x + y = 1 and
X+ y2 +7 =4
The general solution or integral of the Lagrange’s linear equation
pr+qy=z (1)
represent a surface. This surface is called the integral surface of the equation.

Now the particular integral passing through the circle given by (2) and (3) is
required.

x+y=1 (2)
C+y+=4 3)
First let us find the general integral surface of equation (1).
The subsidiary equations are
de _dy_dy

g 4)
x y X
Two independent solution of (4) are easily found as
Xy (5)
y
and 2 =p (5)
z
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Therefore the general integral surface of (1) is

f(f,lj =0 6)
y z

Instead of finding the particular value of ‘f” that satisfies (2) and (3), we proceed
alternatively as follow.
We eliminate x, y, z from (2), (3), (5) and (5)”and get a relation satisfied by a and

b, which are then replaced by their equivalents, namely, Land 2 respectively.
<
. ;. o Y
Using (5)”in (3), X+y + b_z =4 (7

Using (5) in (2) and (7), we have

( 1)
x| 1+4—| =1 (8)
a

and x2(1+%+ 212) =4 9)
a~ a’b

Eliminating x between (8) and (9), we get
(@b* +b°+1)
bra+1?
Substituting for a and b from (5) and (6) in (10), we get

(10)

2 2 2 2
+
SIS

2 2
7z Z y

viz., xX* + y2 +Z7 =40+ y)z, which is the equation of the required integral surface.

Example 19
Show that the integral surface of the equation 2y(z — 3)p + (2x — z)g = y(2x — 3) that
passes through the circle x* + y* = 2x, z = 0 is x* + y* — 27 = 2x + 47 = 0.

The subsidiary equations of the given Lagrange’s equation are

dx dy dz

= = (D
2y(z=3) 2x—-z y(2x-3)
Taking the first and lat ratios in (1), we have
dx d
= = =X or (2x—3)dx= (27 - 6)dz
2z—6 2x-3
Integrating, we get Y- -3x+6z=a (2)

dx+2ydy—2dz

Using the multipliers 1, 2y, -2, each ratio in (1) = 0
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dx +2ydy—2dz =0
Integrating, we get X+ y2 —2z=b 3)
The required surface has to pass through
X +yr=2x and 4)
z=0 (5)
Using (5) in (2) and (3), we get
X -3x=a (6)
and x+y'=b (N
From (6) and (7), we get
XHy —2x=a+b (8)
Using (4) in (8), we have
a+b=0 C))

Substituting for a and b from (2) and (3) in (9), we get x> + y* —z° — 2x + 4z = 0,
which is the equation of the required integral surface.

Example 20

Show that the integral surface of the partial differential equation x(y2 +2)p— y(x2 + 2)q
=% - yz)z which contains the straight line x + y =0, z =1 is X+ y2 + 2xyz — 2z
+2=0.

The subsidiary equations of the given Lagrange’s equation are

A dy o de 0
X’ +2) -4z (-2
111 ld)c+ldy+ldz
Using the multipliers —,—,—, each of the ratios in (1) = ol Y <
Xy z 0
1 1 1
—dx+—dy+—dz =0
X Yy Z
Integrating, we get
Xyz=a (2)
+ —
Using the multipliers x, y, —1, each of the ratios in (1) = Xdx+ydy-dz yO dy—dz

xdx +ydy—dz =0
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Integrating, we get

X+ y=2z=b (3

The required surface has to pass through
x+y=0 4)
and z=1 Q)

Using (4) and (5) in (2) and (3), we have
=a (6)
and 2 -2=b 7

Eliminating x between (6) and (7), we get

2a+b+2=0 ®)

Substituting for a and b from (2) and (3) in (8), we get 2xyz + x + y2 -2z+2=0o0r
X+ y2 + 2xyz — 2z + 2 = 0, which is the equation of the required surface.

Exercise 4(c)

Part A (Short-Answer Questions)

Solve the following equations.

A
ox?

) P2,

) ayz_

3, 0’z _
0xdy

4 BT
T

2
S. £=cos(2x+3y)

9y*

6 9’z :L
oxdy  xy
2z

7. —=siny

ox?
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2
9>
I’z
0xdy
g 2, .2

=x+
0xdy ey

Give the working rule to solve the Lagrange’s linear equation.

Find the general solutions of the following Lagrange’s equations.

12.
13.
14.

15.
16.

Part B

17.

18.

19.

20.

21.

22.

23.

24.

25.

pyx + qzx = xy

Yqg—xXp=2
px+ayy ==

ptanx+qgtany=tanz
2 2_ 2

px +qy =z

2
<

0xdy

and z = 0 when y is an odd multiple of %

. o . ) .
Solve the equation = sin x sin y, given that £ =2 sin ywhenx=0
Y

s . d : J
Solve the equation —j =a’z, given that & _a sin y and % 0 when
=0 ox ox dy
i oz
Solve the equation —— =2, given thatz=¢"and —=e¢
dy dy
Solve the equation p = 6x + 3y, ¢ = 3x — 4y simultaneously.

—X

when y = 0.

. d
Solve the equation xa—Z =2x+y+3z
y

2

Solve the equation oz + 18xy2 +sin(2x—y)=0.
0xdy
2
Solve the equation a—;— 5%+6z =12y.
dy dy
2 2
Solve the equation g—j =0, a—j =0 simultaneously.
X
By changing the independent variables by the transformations u = x + at,

N 4 0’z .
v = x — at, show that the equation 8_2 =a’ — get transformed into the
y

2

equation =(. Hence obtain the general solution of the equation.

oudv
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26.

217.

28.

29.

By changing the independent variable by the transformations z = x + iy,
. u o’

z¥ = x — iy, where i = /-1, show that the equation —Z+—Z= 0 gets
2 ox”~ dy

= (. Hence obtain the general solution

transformed into the equation
. &
of the equation. 202

Use the transformations x = # + v, y = u — v to change the equation

o’z 9z 0 9’z

=0 as =( and hence solve it.
ax2 ayz auav

) . . 0’z 9%z 9’z oz
Find the solution of the equation y2 — = 2xy———+ P L )

2 oz ox> 0xdy dy>  x Ox
+ 7@ , by transforming it to a simpler form using the substitutions u = x

+y2,v=x2—y2.

2

Reduce the equation 4y3zmC — ¥Zyy + 2, — 0 to a simpler form by using the
transformations u = y2 +xandv= y2 — x and hence solve it.

Find the general solutions of following linear partial differential equations.

30.

31.

32.
33.
34.
35.
36.
37.
38.

39.
40.
41.
42.
43.

44.

(i) pcotx+gcoty=cotz
(i) (@a-x)p+(b-y)g=(c-2)

2
yz

X
() x%p+yq=(x+yz  ()xp—yq=(x-y)x
(y2 + zz)p —xyqg+xz=0

p+xzq=y

(y2+z2—x2)p—2xyq+21x=0
p—g=log(x+y)
x(p—yg) =y* - x°
D) G-2p+GE-0g=x-y; () -2p+x-y)g=z-x
(1) x(y —2)p +y(z-x)g =2z2(x~-y)
(ii) y—zp+z—x_qzx—y
yZ A3 xy

X(y* =D+ 3@ - x)g =2 (" -y

(x2 —yZ)p + (y2 —-zX)q = - xy. [See example (16)]

O O+p-x+2g=x-y(@{i) Bz—-4y)p + (4x - 27)g =2y — 3x
0x =2 + 2yt - xXyg = (- ).

Find the integral surface of the equation px + gy = z, that passes through the
circlex2+y2+z2=4,x+y+z=2.

Find the integral surface of the equation yp + xg + 1 = z, that passes through
thecurvez=x2+y+ 1 and y = 2x.
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45. Show that the integral surface of the equation ()c2 - a2)p + (xy — az tan )
q = xz — ay cot ¢, that passes through the curve X+ y2 =d®, z=0is x> +
y2 —d’= Z2 tan® o

4.13 LINEAR P.D.E.’s OF HIGHER ORDER WITH
CONSTANT COEFFICIENTS

Linear partial differential equations of higher order with constant coefficient may be
divided into two categories as given below.

(i) Equations in which the partial derivatives occurring are all of the same order
(of course, with degree 1 each) and the coefficients are constants. Such
equations are called homogeneous linear P.D.E.s with constant coefficients.

(i) Equations in which the partial derivatives occurring are not of the same order
and the coefficients are constants are called non-homogeneous linear P.D.E.s
with constant coefficients.

For example,

2 2 2
d0°z 8z+6az

-~ __§__ = = _ Xty d
ox? oxdy  9y* ¢
3 3 3 3
8—5—3 af —48—Z2+128—§ =x+2y
ox ox“dy  0dxdy dy
are equation of the first category.
2 2
9z 9dz +az =x*+y*and

x> Oxdy ox

82 2
—Z—£—3%+3% =cos(x +2y)
ox> 9y ox  dy
The standard form of ahomogeneous linear partial differential equation of n'™ order
with constant coefficients is

2"z 2"z 2"z 2"z
o a7+al ox" 9y e 20y Fody ay" =R(x, y) (1)

where a”are constants.

we can symbolically write equation

s

If we use operators D = i and D’ = i
(1) as ax ay
(agD"+a,D" " 'D’ +a,D" " *D"* + ... + a,D’")z = R(x, ) )

ie. f(D,D")z=R(x,y) (3

where f(D, D’) is a homogeneous polynomial of the n' degree in D and D’.
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The method of solving (3) is similar to that of solving ordinary linear differential
equations with constant coefficients.

The general solution of (3) is of the form z = (Complementary function) +
(Particular integral), where the complementary function (C.F.) is the R.H.S. of the
general solution of f(D, D")z = 0 and the particular integral (P.L.) is given symbolically

by — —
Yf(D’D,)R(x,y).

Complementary function of /(D, D)z = R(x, y)
C.F. of the solution of f(D, D)z = R(x, y) is the R.H.S. of the solution of
f(D,Dz=0 ey
Let us assume that
z = @y + mx) 2
is a solution of equation (1), where ¢ is an arbitrary function.

Differentiating (2) partially with respect to x and then with respect to y, we have

a

Dz = 5= mg(y +mx)
ox
a2

D% = _§: m2¢"(y+mx)
ox
an

Dz="L= m" ¢ (y + mx)
ox"

.. P d"z (1)
Similarly, D, a_" = ¢"’(y + mx) and
y
n—r nyr anz n=r 4(n
D Dy = =m ¢( )(y + mx)

axn—rayr
Since (2) is solution of (1), we have

(ao m" + a,m™" +a2m”’2+ vt a) 0" (y+mx)=0 3)
Since ¢ is arbitrary, ¢ (y+mx) #0

(3) reduces to ay, m" + alm"_1 +...+a,=0o0rf(m,1)=0 4)
Thus z = ¢(y + mx) will be a solution of (1), if m satisfies the algebraic equation
(4) or m is a root of equation (4), which we get by replacing D by m and D’ by 1 in
the equation f(D, D")z = 0 and by dropping z from it.
The equation f(m, 1) = 0 is called the auxiliary equation, which is an algebraic
equation of the n' degree in m and hence will have 7 roots.
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Case (1)

The roots of (4) are distinet (real or complex).
Let them be m,, m,, ... m,,.

The solutions of (1) corresponding to these roots are z = ¢,(y + m;x),
z=0,(y + myx)..., z = ¢,(y + m,x). The general solution of (1) is given by a linear
combination of these solutions.

That is the general solution of (1) is given by
=0, +mx) + o,(y + myx)+ ... + ¢,(y + m,x)

C.F. of the solution of f(D, D)z = R(x, ) is ¢;(y + mx) + ¢,(y + myx) + - +
¢,(y + m,x), where ¢,’s are arbitrary functions.

Case (ii)

Two of the roots of (4) are equal and other are distinct.
Let them be m,, m3, my, ..., m,.

Note £5

If we apply the rule arrived at in Case (i), the solution of (1) will be z = [¢,(y

+myX) + go(y + mX)] + g3y + maX) + .+ Py + mX), Qe z= gy + myx) +
ds3(y + msx) + ... + ¢,(y + m,x), which contains only (n — 1) arbitrary functions.
Hence it cannot be the general solution of Equation (1).

Then f(m, 1) an(m—ml)2 (m —my) - (m—m,)
f(D, D) = ay(D —m,D’)* (D —m3D’) - (D —m,D")

Hence solution of (1) will be a combination of the solutions of the component
equations

(D-mD'Yz=0,(D-m3D")z=0, -, (D~m,D')z=0
Consider (D —m,D")z =0, i.e p — m, g = 0 which is a Lagrange’s linear equation.
The subsidiary equations are
dx  dy dz

1 -m, 0
Solving, we gety + m,x =a and z = b.
General solution of (D —m,D")z=01is f.(y + m,x,z) =0 or z = §.(y + m, x).
Now consider (D —m,D’)’z =0 (5)
Let (D-mD)z=u (6)

becomes (D-mDYu=0 (7
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The solution of (7) is u = ¢;(y + m,x). Using this value of « in (6), it becomes
(D -mD")z = ¢,(y + myx)
or p—mq=¢(y+mx) (3)
which is a Lagrange’s equation.
The subsidiary equations are

dx dy dz

1 —-m _¢l(y+mlx)

Solving, we gety + m;x =a and z —x¢,(y + m;x) =b

The solution of Eq. (8) and hence Eq. (5) is

fhy+mx,z—x- ¢y + mx)] =0

or Z=x - Gy + mx) = ¢y(y + myx)
or =X G (y + myx) + Gp(y + myx)

General solution of equation (1) is

2=Xx0;(y + myx) + O(y + myx) + O3(y + mzx) + - + @,(y + m,x)
C.F. of the solution of f(D, D")z = R(x, y) is
xXP,(y +mx) + o,(y + myx) + G3(y + msx) + ... + ¢,(y + m,x)

Case (iii)
‘r’ of the roots of Eq. (4) are equal and others distinct.
ie. m =m,=mz=...=m,

Proceeding as in Case (ii), we can show that the part of the C.F. of the solution of
D, D)z=R(x,y)is

O,y + mx) +x¢,(y + myx) + x2¢3(y +mx) + ..o+ x ! o,y + mx)

The Particular Integral of the solution of f(D, D)z = R(x, ).

As in the case of ordinary differential equations, there are formulas/methods
for finding particular integrals (P.I.) of the solution of homogeneous (and also
nonhomogeneous) linear P.D.E.s with constant coefficients. The formulas/methods
are given below without proof.

1

;, ax+by — —eax+by, if f(a,b) * 0
f(D, D ) f(a, b)

1(a).
If f(a, b) =0, ( D —% D’) or its power will be a factor of f(D, D’). In this case

we factorise f(D, D’) and proceed as in ordinary differential equations and use the
following results.
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1 1
eax+by — xeax+hy;

2 r
X 1 by
eax+by . eax+by — eax+by

’ ’

2! " r!
(o=
b

The above results can be derived by using Lagrange’s linear equation method.

eax+by —

For example, let ——————— ™+ =7,

p-%p
b
i.e., p_%q:eax+by

The subsidiary equations are
dx bdy dz

1 —a ewc+by

The solutions of these equations are ax + by = ¢, and z = xe‘! or z = xe™* .
1 sin

— . ax+b
f(DZ,DD’,D’z)““( Y

] .
= ws(ax +by)
F(=d—ab—b7) Y

provided f (az, —ab, —bz) #0.
2(a).
a2
Z_p’? | will be a factor of
»2

f (D2, DD’, D" ). In this case, we proceed as in ordinary differential equations and
use the results.

Hf@a{—dn—f):O,mml\mﬂbe[Dz—

3 sin(ax + by) = —icos(ax + by) and
D2 _iD,z 2a
b2
> cos(ax+by) = isin(a)c +by)
pr_% p’ 2a
B2

which may be verified by the reader.

1 m._n N1 .,.m_ n 11 s .
———x"y" =[f(D,D")]" x"y" where [f(D, D’)]"" is to be expanded in
f(D,D’)
series of power of D and D’.
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L mnp (x,y) =™ — (x, ).
f(D,D") f(D+a,D’"+b)
1
5. mF(x,y) = |:JF()C,(1 - X)dx:|a—>y+mx

1
This result can be derived by assuming that ﬁF (x,y) =2z and solving for
—-m

z by using Lagrange’s linear equation method.

4.14 COMPLEMENTARY FUNCTION FOR A
NON-HOMOGENEOUS LINEAR EQUATION

Let the non-homogeneous linear equation be (D, D’) = 0.
We resolve f(D, D) into linear factor of form (D — aD’ - b).

The C.F. is the linear combination or simply the sum of (the R.H.S. functions of) the
solution of the component equations (D — a,D’ — b,)z = 0.

Now let us consider the equation (D — aD’” — b)z = 0.

ie. p —aq = bz, which is a Lagrang’s linear equation
The subsidiary equations are

dx dy dz

1 -a bz

One solution of these equations y + ax = ¢;. The other solution is log z = bx +
log c,
or z=ce™

The general solution of the equation is

¢(%,y+ax) =0 or z=e"f(y + ax)
e

Note £5

The rules/methods for finding P.l.s are the same as those for homogeneous
linear equations.

4.15 SOLUTION OF P.D.E.s BY THE METHOD OF
SEPARATION OF VARIABLES

In the next few chapters on applications of partial differential equations, we will have
to solve boundary value problems, i.e. partial differential equations that satisfy certain
given conditions called boundary conditions.

When solving a boundary value problem, if we first find the general solution of the
concerned partial differential equation, it will be very difficult to find particular values
of the arbitrary functions involved in the general solution that satisfy the boundary
conditions. Hence in such situations, we try to find particular solutions of the partial
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differential equation that satisfy the boundary conditions and then combine them to

get the solution of the boundary value problem.

A simple but powerful method of obtaining such particular solution is the method
of separation of variables. In this method of solving a P.D.E. with z as the dependent
variable and x and y as independent variables, the solution is assumed to be of the form

z=f(x)-g(y), where fis a function of x alone and g is a function of y alone.

This assumption makes the solution of the P.D.E. depend on solutions of ordinary

differential equations.

This variable separable solution of a P.D.E. is called a particular solution, as it can

be verified to be a particular form of the general solution of the P.D.E.
For example, consider the equation

0’z 2 &
or’ ox?
A variable separable solution of (1) can be obtained as
z = (ae”™ + be™) (ce™ + de ™)
where a, b, ¢, d, p are constants.
(2) can be rewritten as
z={ac " +bd e} + {ad &'V + be P}
(3) is a particular case of
z=flx+at) + ¢(x — ar)

which is the general solution of (1) [see Problem 25 in Exercise 1(c)].

Worked Examples m_

Example 1

Solve the equation
(D*+2D*D’' - DD - 2D")z =0

ey

©))

3)

The auxiliary equation (got by replacing D by m and Dby 1 in the given P.D.E.)

is
m+2m*-m-2 =0

ie. m+(m*+2)—(m+2) =0
ie. m-1D)m+1)(m+2) =0
m=1,-1,-2

General solution of the given equation is

2= ¢(y +X) + 0 (y — x) + ¢5(y — 2x)
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Note &5

There is no particular integral in the general solution, since the R.H.S. member
of the given P.D.E. is zero.

Example 2
Solve the equation
(D’ - D’D’ —8DD’* +12D"%)z =0
The auxiliary equation is m—m*—8m+12=0
m =2 is a root of the auxiliary equation.
Itis (m—2) (m2+m—6)=00r(m—2)(m—2)(m+3)=0
m=2,2,-3

The general solution of the given equation is

z=xf1(y + 2x) + /o0y + 2x) + f5(y - 3%)

Example 3

Solve the equation (D*=3DD’ +2D'%)z = 2 cosh (3x + 4y)
The auxiliary equation is m*=3m+2=0

ie. m-1)(m-2)=0

m=1,2
The C.F. of the given PD.E. =fi(y x) +/f,(y + 2x)

1
D*-3DD’+2D"?
1 ,
_ > > e3x+4y + e—(3x+4))]
D“ -3DD’+2D’

PI

2cosh(3x+4y)

; e3x+4y + 1 e—(3x+4y)
32 _33442.4> (=3)% = 3(=3)(=4) + 2(—4)>

1 _
— _[e3x+4y +e (3x+4y)]

2
g cosh(3x+4y)
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2
The general solution of the given equation is z = fj(y + x) + f,(y + 2x) + — cosh
Gx + 4y). 3

Example 4
Solve the equtation
OD* + 6DD’ + DY)z = (" + e 2)
The auxiliary equation is

9m*+6m+1=0 ie. Bm+1)>=0

m=-1/3,-1/3
1 1
CF = Xfl(y——-x)ﬂ‘z(y——-xj or
3 3
xf13y = x) + f,(3y — x)
PL=— ! ~(e* +e¥)
9D“ +6DD’+ D’
1

T 9D +6DD’ + D" (4™ 42

_ 1 2x 1 —4y 1 x=2y
- "2 € n ¢ ' "2 €
(3D+D") (3D+D") (3D+D")
= Lez" +Le_4y +2e7
36 16

.. The general solution of the given equation is

1 5 | " -2
= 3y—-x)+f,By—x)+—e" +—e 7 +2e7
z=xfiBy-x)+ £,By—x) 36¢ T16¢ e

Example 5
Solve the equation
(D*-3DD? + D)z ="V 4 Y

The auxiliary equation is m=3m+2=0

ie. (m—-1)(m*+m-2)=0
ie. (m—-1>*(m+2)=0
m=1,1,-2

CE =xfily + x) + fL,(y + x) + f3(y — 2x)
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1 [N
PL = — > 3(62 Y4t
D’ +3DD’* +2D’
1 _ 1 ,
_ > er y+ > ex-%—)
(D+2D’)(D-D’) (D-D’)> (D+2D’)

T_ 1 oy +l.;e“y
9 D+2D’ 9 (D-D")?

1 2 x2
= —| xe” 7Y + =
9 2

The general solution of the given equation is

2
z = xfl(y+x)+f2(y+x)+f3(y—2x)+£e2"‘y +x_eX+y

9 18
Example 6
Solve the equation
(D~ 6D°D’ +12DD"* - 8D")z = (1 + > )
The auxiliary equation is m’—6m>+12m—8=0
i.e. (m — 2)3 — O
’ m=2,2,2
C.E = xX*f,(y + 2%) + x fo(y + 2%) + f3(y + 2%)
1
Pl = —3(1+62x+y)2
(D-2D")
= ; 1 +2~;ezﬂy +;e4x+2y
~ (D-2D%)’ (D-2D")} (D—2D')
= £+2x_e2x+y +ﬁe4x+2y
3! 3! 3!
since —————(1) = L om0y iy
(D—ZD') (D_2D/)3
! Mty _ ﬁ eax+by:|

— =

|

(D—aD'] 3!
b

3
X
— _(1+82x+y)2

The general solution of the given equation is

3
2
2= XA 20+ x fo(y+2x) + f1(y +2x) +%(1 + Y
Example 7
Solve the equation (D* + 2DD’ + D"*)z =x*y + ¢
The auxiliary equation is m?+2m+1=0o0r(m+17>=0 . m=-1,-1

CF =xfi(y —x) +fo,(y —x)
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1
(PL), = —x’
(D+D")
_ 1 Py
= —
02(1+D)
D
-2
1 D’ 5
= —1+ X
DZ( Dj (x7y)
1 2DI /2
:E[l— ) +3 2](xzy)
Lo 25
= —Xy——x
1)2{ D }
=y ()2 ()
=YV 3
I AP
34 345
RES T
12 30
Pl = —— e
T (DD 2!
The general solution is
4 5 2
X'y x x7 .
= —x)+ —X)+ -+
2= xfi(y=—0)+f(y—-x) n 30t 3¢

Example 8
Solve the equation
(D*-7DD’* — 6Dz =X +xy° +y°
The auxiliary equation is
m—Tm—-6=0, ie. (m+ 1)(m* -m-6)=0
ie. m+1D(m+2)(m-3)=0

m=-1,-2,3
CF. =fi(y = x) + f,(y = 2x) + f5(y + 3x)
PI = ! (X +xy° +y°)

D*-7DD’* -6D"?

-1
1 7DD"* +6D"
3 {1—(—:} (x? -Hcy2 +y3)
D D

1 D/2 ’ 2 2 3
F 1+F(7D+6D)+--~ (x"+xy"+y7)
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The general solution is

5
x> 25 1
z= f](y—x)+f2(y—2x)+f3(y+3x)+a+—x3 +—x"y

Example 9

Solve the equation

11 , ,
- [F+F(7DD 246D 3)}(;8 +xy? +y°)

1 1
E(xz +xy° +y3)+F{7D~(2x+6y)+36}

1 1
E(x2 +xy° +y3>+§<50)

5 4 3

3

Ty 4502
3.4.5 234 1.2.3 1.2.3
1

—x5+£x3+—x4y2+lx3y3

60 3 24 6

3 24

(D> +4DD’ - 5D"%*)z = xy + sin (2x + 3y)
The auxiliary equation is m>+4m-5=0
ie. (m+5)@m-1)=0

m

CFE

(PL),

-5.1

O,(y = 5x) + 9 (y + x)
1
D?> +4DD’ -5D"?
1

(x, y)

’

D (xy)
D? {1 + P (4D - 5D’)}

, -1
#{1+ gz (4D—5D’)} (xy)

1 D’
F{l— s (4D—5D')+--}(xy)

1 1
() 4D (xy)
D

DZ
3
Xy Ly
6 Dp*
1
—x3y——x5

6 30

4

2

L 3
+—x
6 y

3
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1
2 ’ 7?2
D" +4DD’"+5D
1

= in(2x+3
2% +4.(=2.3)=5(=3%) Sin(2x-+3y)

(PL), sin(2x+3y)

1
—sin(2x+3
17 (2x+3y)
General solution is

= -5x)+ +X)+—x"y——x" +—sin(2x+3
G (y=35x)+0,(y+x) 67 30" 17sm(x )

Example 10
Solve the equation

i.e.

(D? + D)z = sin 2x sin 3y + 2 sin’(x + y)

The auxiliary equation is m” + 1 = 0

m=x=i
CFE = ¢,(y + ix) + ¢o(y — ix)
1
(PL), = ﬁsiansini’)y
D +D’
1 1
= ﬁ-—{cos(2x—3y)—cos(2x+3y)}
D +D”" 2

1 1 1
=5[_4_900s(2x—3y)— 2 9cos(2x+3y)}

= —%-%[{cos@x —3y)—cos(2x+ 3y)}]

1
= ——sin2x sin3y
13

1 L,
(PL), = ———2sin®(x+y)
T p*+D7?
1
= ———— {1-cos2x+2y))
D" +D’

1 p?\ 1
= —2[1+ 3 j - 3 5 cos(2x+2y)
D D D*+D’

1
= -

cos(2x+2
) ( y)
2

X 1

= —+—cos(2x+2

>t ( y)

General solution is
. . 1 . . X1
2= ¢ (y+lx)+¢2(y—tx)—Esm2x sm3y+?+§cos(2x+2y)
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Example 11

Solve the equation
(16D* = D’ *)z = cos(x + 2y)
The auxiliary equation is 16 m*-1=0
ie. (m® — 1/4)(m* + 1/4) =0
: m==%1/2,%i/2

fl(y+%xj+fz(y—%XJ+J%(y+%)+f4(y—%j

1
PI. = ———cos(x+2y)
16D* - D"

CFE

1
T (4D -D'*)4D* +D?)
(4D*=D"?) 4(-D)+(-4)

1

1
= —g'mCOS(X‘Fzy)

cos(x+2y)

cos(x+2y)

1 1
= ——'—ICOS(.X+2y)
32 D2 _ZDIZ

1
—— Zsin(x+2y)| -

X
cos(ax+by)=—sin(ax+b
322 (ax+by) 22 (ax+by)

2
D2 _ZTD,z

1
——xsin(x+2

o (x+2y)
General solution is

. . )
z= f1(y+§j+f2(y—gjﬂ%(y+%]+f4(y—%]—axsin(xﬂy)

Example 12
Solve the equation

(D + D*D’ —4DD’? - 4D’z = cos (2x + y)
The auxiliary equation is m*+m?—4m-4=0
ie. m*m+1)—4m+1)=0
i.e. m+1D(m+2)(m-2)=0
: m=-1,-2,2
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CE =¢,(y—x) + ¢(y = 2x) + ¢5(y + 2x)

1
PIL

1

B (D*-4D"*)(D+D")
(D-

cos(2x+y)

D)

1

(D*-4D"*) D*-D

> cos(2x—y)

1

(D*-4D"*) —4-(-1)

1
3 D*-4D

D’ -

General solution is

X
——cos(2x—y)| ..
2 2x-y)

(D-D")cos(2x—y)

—{~2sin(2x— y) = sin(2x - y)}

1
—— §in(2x—y)
4D”?

sin(ax+by) = —icos(ax +by)
D72 2a

z= (Pl(y—x)+¢2(y—2x)+¢3(y+2x)—§cos(2x—y)

Example 13
Solve the equation

(D>~ 2DD’ + D' %)z =

The auxiliary equation is m?=2m+1=0
m=1,1

CE =xfi(y +x) +fo(y + %)

PI

2.2 x+y

Xy'e

(D _1D,)2 ex+y (x2y2)
1 2.2
{(D+D)—(D"+1))? Y

ex+y

1 2.2
S S
(D-D’)

-2
1 D’
ex+y ?(1_ ) (x2y2)

D
1
ol

1 22,2 2 3 2
—X +—2xy+—2x
Dz{ y D( y D2( )

e.X+y

72

2D D
+37J(x2y2)

D

JC+y

.
e
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. 1 1 1
ety {yz ~§<x2)+4y~ﬁ(x2)+6-ﬁ(x2)}

1 4 2 1 5 1 6 x+y
— Xy +—xy+—x" |e
(12 Y5 60
General solution is
7= )cfl(y+)c)+f2(y+x)+(éy2 +%xy+—x2jx4e"+y
Example 14
Solve the equation
(D> = D™z = ¢*sin(2x + 3y)
The auxiliary equation is m* — 1 =0
: m =zl
CE =fi(y +x) +f,(y —x)
1
PI = ﬁex_y sin(2x+3y)
D”-D’
=Y ! sin(2x +3y)
(D+1)* =(D" -1y
1

D*-D?+2(D+D")

x=y

sin(2x +3y)

, 1
=¢ ——sin(2x +3y)
2(D+D")+5

2AD+D")-
- ex_y(+—z)ssin(2x+3y)
AD+D’Y 25

=" Y{2(D+D")-5)}- > ! > sin(2x+3y)
4(D* +2DD’ +D'*)=25

- ex—y{z(D + D’) _ 5} . (—é) sin (Zx + 3y)

—%e“y {4cos(2x+3y)+6cos(2x+3y)—5sin(2x +3y)}

1
Eex_y {sin(2x+3y)—2cos(2x+3y)}
General solution is

7= fl(y+x)+f2(y—x)+%ex_y{sin(2x+3y)—2008(2x+3y)}

Example 15
Solve the equation

(D* - 5DD’ + 6D"*)z = y sin x
The auxiliary equation is m* — 5m 6 =0
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i.e. m-2)(m-3)=0
m=2,3
CF. = ¢,y +2x) + $(y + 3x)
PI = ! sin x
"= (D+2D'YD-3D")"
1 :
= 5 op U (a—3x)sin xdx] —
1
= DD [(a—3x)(—cosx)+3(=sinx)],_, .3,
= ! [—ycosx—3sinx]
" b2 Y
= {I[(a —2x)cosx+ SSinx]dx}
a—>y+2x
=—[(a — 2x) sin x + 2(-cos x) — 3cos x], _, 5,

=5cosx—ysinx
General solution is
2=0,(y+2x)+ ¢,(y + 3x) + 5 cos x — y sin x

Example 16
Solve the equation

(4D* - 4DD’ + D)z = 16 log (x + 2y)

The auxiliary equation is 4m* —4m+1=0

ie. @m-1*=0
: m=1/2,1/2
1 1
CE=xfily+t=x|+f,|y+=x| or
2 2
xfi(2y + x) + f,(2y + x)
PI.= —161log(x+2y)
2D-D’)? & Y
=4 ! ! log(x+2y)

(D-1/2D") D—-1/2D"

_ 4.#/2D’{Jlog{x+2(a—%x1| dx}

a—>y+—x
3
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512D 2D [ J log(2a) dx]

a—>y+—x
i

1
———{xlog(x+2
D 1/apy N1OE TR

_ 4{ jxlog{ﬁz[a_%xj}dx]

- 4['[xlog(2a)de 1

a—y+—x
i

|
a—y+—x
i

= 2x*(log2a) 1

a—y+—x
T

= 2x%log(x + 2y)
General solution is
2= xfi(x + 2y) + fo(x + 2y) + 2x° log (x + 2y)

Example 17

Solve the equation

(D* +2DD’ + D'?~2D - 2D’)z = cosh(x — y)
The given equation is a non-homogeneous linear equation
D*+2DD’ +D'*-2D-2D'=(D+D’)*-2(D + D)
=D+D)D+D -2)
The given equation
(D+ D) (D+ D" -2)z =cosh(x-y)
CE=fi(y-x)+ ez";fz(y —x) [ the part of C.E. corresponding to
(D —aD’ —b)z =0is " f(y + ax)]

YR B PR
(D+D'YD+D’-2)2
11

= _._.__l(ex*y +e )
2 D+D" 2

Yy

1 ,
—Z-(xex_’ + xe

X
——cosh(x—
3 (x=y)

General solution is

IS
|

= f](y—x)+62xf2(y—x)—%cosh(x—y)
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Example 18
Solve the equation (D> — D> = 3D + 3D")z = ¢**® + xy
D*-D?-3D+3D'=(D+D)(D-D)-3(D-D)
=(D-D)(D+D -3)
The given equation is
(D-D)Y(D+D -3)z=¢"""+xy
CE =fi(y +x) + e f,(y —x)

Pl = ! <Y
(D-D’YD+D’-3)

1
T (D+D' -3)

+2y
=—xe' "7

(_l)ex+2y

1
(D-D')YD+D'—3) "

_ (D - DD’ -
3\ D 3 w

1 D’ 1 1 , 1 3
=—1+ 1+—=(D+D)+—(D+D")y"+—(D+D’)" +--
( D){ 3( ) 9( ) 27( ) }Xy

(PL),=

1(1 D 11 1 2 1 1
= ——|—+ 1+=D+—D'+—D*+=DD"+—D*+—D>D’} (xy)
D D2 37379 9 27 9

If1r 1 1D 1 2 1 D" 1D 1 1
=——| —+=+—-—+—D+—D'+—DD’+—+——+—D"+—DD’ |(xy)
3lb 3 3D 9 9 9 D* 3D 9 27

1D 2D 1 1 1 1 4
= —— +——+—+—+—D+—-D'+—DD’ | xy
3 3D D 3 9 3 27

6 3 2 37T 9YT3N Ty

General solution is
z=CFE +((PL), +(PL),

Example 19
Solve the equation (D* — 3DD’ + 2D"* + 2D — 2D’)z = x + y + sin(2x + y)

D?>-3DD’ +2D’*+2D - 2D’ =(D-D’) (D -2D') + 2(D - D’)
=(D-D)(D-2D" +2)
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The given equation is
(D-D")(D-2D" +2)z = (x +y) + sin(2x + y)
CE =f,(y +x) + e fo(y +2x)
1

L = DD D-207+2) (x+)

-1 -1
1 D’ D-2D’
—| 1= 1+ +

’ 1 .1 ,
2){1—5(D—2D )+ (D=2D )2+~~}(x+y)

—}[1——D+D’+%D2 —DD'}(x+y)

D’ 1
+—D'}(x+y)

= %xz +%xy—%y—1/4
1
D* —-3DD’+2D"* +2D 2D’
= ! sin(2x +y)
—4+6-2+2(D-D")
(D+D")

= Wsin@x +y)

(PL), sin(2x+y)

= %{2 cos(2x+y)+cos2x+y)}

-1
= —cos(2x+
> ( y)

General solution is

1 1 1 1 1

—2x 2

z= +x)+e +2x)+—x"+—xy——y————cos(2x +
fily+x) Ly ) ) 2)’ 4y 1 o ( y)

Example 20
Solve the equation (D> -DD’ + D’ — 1)z= e + cos’(x + 2y)
D>-DD'+D —1=(D*-1)-D' (D-1)
=D-1)D-D +1)
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The given equation is
(D-1)D-D"+ 1)z =¥ + cos’(x + 2y)
CE =€ fi)+e fLy +x)
1 43y
( )l — : ez +3y
(D-1)(D-D’"+1)
— 1 62x+3y
Q-1)(D-D"+1)
— xe2x+3y
(PL), = ! l{1+c0s(2x+4 )}
2T DN D-D+1)2 Y
= l(—1)+l- 5 ! cos(2x +4y)
2 2 (D"-DD’'+D’-1)
1 1
= —1/2+4——————cos(2x+4y)

2 4+8+D"-1

4

= —1/2+1/2- Dz—_3cos(2x +4y)
(D" -9)

-1 1
= 7—5{—4Sin(2x +4y)—3cos(2x+4y)}

= %{4 sin(2x+4y)+3cosx+4y)}—1/2

General solution is
2= i)+ e fHL(y +x) + PR V)

1
+%{4 sin(2x+4y)+3cos(2x+4y)}

Example 21
Solve the equation (2D* — DD’ — D”* + 6D + 3D")z = xé’ + ye*

2D>-DD’'-D?+6D+3D =(2D +D')Y(D-D’) + 32D + D’)
=2D+D)D-D' +3)
The given equation is
2D+ D’)(D-D’ +3)z =xé" + ye*

CF = fl[y—gj+e_3xf2(y+x)

or [Q2y—x)+ e f(y +x)
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1
2D* -DD’-D’* +6D +3D’
1
2 ’ ’ 2 ’ ()C)
2D* = D(D’+1)= (D’ +1)> +6D +3(D’ +1)
1

=e - 3 5 (x)
2+5D+D’+2D° -DD’-D’

(PL), = (xe”)

Y.

=e

e’

-1
7-{1+%(5D+D’+2D2—DD'—D’Z)} (x)

e’ 5

1
~(2x=5)¢"
4(x Je

1
2D* —-DD’-D"* +6D+3D’
¥ 1
’ 2 ’ ’2 /(y)
2(D+1)"=(D+1)D’'—=D""+6(D+1)+3D
1

= ex- ’ 2 ’ ’2 (y)
8+10D+2D"+2D"-DD’—-D

(P1), = (ye")

X -1
- %{1+%(10D+2D’+2D2 —DD’—D’Z)} )

e’ 1
=" 1--p’

g { 2 }(y)
= L(4y—1)ex
General solution is 32

z= fl(Zy—x)+e_3xf2(y+x)+%(2x—5)ey +%(4y—l)ex

Example 22 . 9z
Solve the equation 2xa—— 3ya— =0, by the method of separation of variables.
X 'y

Let z = X(x) - Y(y) be a solution of

2xz,—3yz, =0 ()
, , , dX , dYy .
Then z, = X"Y and z, = XY’, where X’ = I and Y’ = e satisfy Eq. (1).
X Y

ie. 2xX'Y-3yXY' =0

X’ Y’

ie. 2x = 3y—

Y Y

L.H.S. is a function of x alone and R.H.S. is a function of y alone. They are equal
for all values of x and y. This is possible only if each is a constant.
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2x X =3 yY— =k
X Y
Xk
ie. 2 = — 2
X (2)
Y’ ok
and 3 = — 3)
Y Yy
Integrating both sides of (2) with respect to x,
2log X =k log x + log A
ie. X% = Ax* or X = ax*? 4)

Similarly, from (3), ¥ = byk/3

Required solution of (1) is

2 2 ki3
2= abx y¥3 or 7 = ek Y

Example 23
0z

Solve the equation % =2—+z, by the method of separation of variables, given
that x Oy

2(x, 0) = 6™
Let
z=X(x)-Y(y) (1)
be a solution of
7, =2z,+2 2)

Then z, = X"Y and z, = XY satisfy equation (2).
i.e. XY =2XY’' + XY

Dividing throughout by X, Y, we get

XY ik
Y
[+ the L.H.S. is a function of a x alone and the R.H.S. is a function of y alone]
X,
=k 3
X 3)
Y k-1
and —_— = — 4
v “4)



IE Linear Algebra and Partial Differential Equations

Integrating (3) and (4) with respect to x and y respectively, we get

log X = kx + log A and log Y:(%ijrlogB

k—l]
|y
ie X=Ae"and y = Be( 2

Required solution is

k-1
A1,
z=cekx-e( 2) (5)
Given that z(x, 0) = 6>
ce® =6
c=6and k=-3

Using these values in (5), the required solution is z = 6¢ "+,

Example 24
. 9%z _dz oz . .
Solve the equation —-—2—+— =0, by the method of separation of variables.
x> ox dy
Let 7=Xx).Y(y) (1)

be a solution of the equation
2y —22,+2,=0 (2)
Then z, = X"Y, z,, = X"Y and z, = XY” satisfy (2).
ie. X"Y-2X'Y+XY' =0

Dividing throughout by XY, we get

X// X/ Yr
-2—+— =0
X X Y
1. ﬂ = —Y =k
X Y
ie. X" -2X"-kX=0 3)

and Y +kY=0 )
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ie. (D*-2D-kX =0
where D = i and
dx
YI
-k 6
v (6)
AE.of (5)ism*—2m—k=0
+
m::zzlgiff-orlidk+1
Solution of (5) is
X = Ae(m/ﬁ)x +Be(1—ﬁ)x
Solution of (6) is
Y=ce®
Using these values in (1), the required solution is
7= {Ae(HM)X + Be(l_\/m)"}ce_ky
or 7= {Cle(1+M)x +c2e(1“/m”‘}e_ky
Example 25 2, 3
Solve the equation 2% _ %% | 5, by the method of separation of variables, given
ox?  dy
that u = 0 and g—u = ¢ when x = 0 and for all values of y.
X
Let u(x, y) = X(x)- Y(y) (1
be a solution of
Uy = Uy + Su 2
Then u,, = X"Y and u, = XY’ satisfy (2)
ie. XY =XY' +5XY
Dividing throughout by XY, we get
XI/ YI
= +5=k
X Y

X' kX =0 3)
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Y’
and — =k-5 4
v “)
Assuming that k is positive, the solutions of (3) and (4) are
X = A 4 e
and Y = cet =
Using these values in (1), the required solution is
u(x,y) = (Cle\/zx +Cze—\/zx)e(k—5)y 5)
Given: # = 0 when x = 0 and for all y
(Cy+Ce* =0
ie. C,+C,=0 (6)
Differentiating (5) partially with respect to x, we have
N (el — eIy tksn %
dx
. . Jdu -3y
Given: — = ¢, when x =0 and for all y.
ox
V(€ = Cpe ™ = o
V(€ -Cy) =1 ®)
and k-5=-3 )

Solving (6), (8) and (9), we get
1

22

k=2, C = and C, ==

1
22
Using these values in (5), the required solution is
1

sinh x\/i e

u(x, y) = E

Exercise 4(d)

Part A (Short-Answer Questions)
Solve the following equations:
1. (D*-3D’D' —4DD’?*+12D"%)z=0
2. (D-Dz=0
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(D*+Dz=0

(D* +4D°D’ —=5DD'*)z=0

(2D*D’ = 5DD’*-3D"%)z=0

(D+D' = 1)D-D +1)z=0

D(D-2D" +3)z=0

D'(D+3D' -2)z=0

(D+DYD-D -1)z=0

10. (D-D)D+D +1)z=0

e A

Find the particular integrals of the following equations:
11. (D*>+2DD’ +D'Hz=¢"""
12. (D*>-DD’*-2D’%)z = sin(3x + 4y)
13. (D*—4D'*)z =sin(2x +y)
14. {(D-1>-D'Hz=¢""
15. (D*>-D’*+ D)z =cos(x +y)

Solve the following partial differential equations by the method of separation of
variables.

16. 3@+26_u =0, given that u(x, 0) = 4e™™
ox  dy
17. ou_ 48—” , given that (0, y) = 8¢~
ox dy
0z 07 . 4 -3x
18. = 447==, given that z(x, 0) = 4e
ox ot
9. 2EL %
dy ox
2
20, QM _,0u
dy ox?
Part B

Solving the following partial differential equations:
21. (D*+3DD’ —4D' Yz = (¥ - %)’
22. (D?-7DD’*-6D’?)z = sinh(2x — 3y)
23. (D*-7DD’ + 12D'*)z = (¢ + )¢’
24, (D*+2DD" + D' Hz=x"+xy+ y*
25. (D} +2D°D')z=¢" - 3x%
26. (D*-3DD’ +2D'?*)z = (e *¥) + sin(x — 2y)
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27.
28.
29.
30.
31.
32.

33.

34.
35.
36.
37.
38.
39.
40.
41.
42.

43.

44.

45.

(D* = 6DD’ + 9D’ %)z = x*y* + cos(3x + y)
(D* —= DD’ )z = cos x cos 2y
(8D — 4D?D’ — 18DD’? + 9D’ )z = sin(3x + 2y)
(D* -3DD’ +2D'*)z=(2 +4x)e** >
(D +D’D’ —DD’*— D’ *)z = ¢“cos 2y
(D> + DD’ —6D"*)z =y cos x

8
x> +y?
D(D* +4DD’ +3D’* —=3D - 5D’ +2)z=¢"+ ¢
(D*-2DD’ +D’? -3D + 3D’ + 2)z = cosh(2x + y)
(D> - DD’ + D)z = x* + y*
(D+D -1)(D+2D" -3)z=4+3x+ 6y
(D*>-D'*-2D+ 1)z=xy + >+
(D*+ DD’ + D’ — 1)z = sinh(3x — 2y)
(D> = DD’ —=2D’*+ 2D + 2D’ )z = cos 2x cos y
(2DD’ + D’? - 3D’ )z = 4 sin’(x + 2y)
(D*>-D'*+D +3D" —2)z=xé" + ye'

(D*+D"*)z=

Solve equation 4a—u+? =3u, by the method of separation of variables,
given that u(0, y) =x 3e*yy — ¢ [Hint: Assume the R.H.S. of the solution
as the sum of two terms of the form Ce%m_k)y with different values of
c and k]

Solve equation g%— 2§—i+g—§ =0, by the method of separation of variables,

given that z =0 and 9% =4¢™ +6¢™> whenx=0.

by
0’z 9z .

Solve the equation — = ™ + 27, by the method of separation of variables,
ox

given that z =0 and g—z =1+¢> whenx=0.
X
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Answers

Exercise 4(a)

4-99

pg=z

pq = 4xyz
Z=px+qy+pq
z=px+qy+pi+q
px+qy =3z

p=q

1
px+qy=z-—
Z
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20. t=cosy

21. px+qy=pq

22. pg=p+q

23. pPHqi=z

24, pz=1+ qz

25. yp- xzq2 = xzy

26. p=gq

27. z=px+qy

28. py=gx

29. PP+ +1)=¢

30. (p2 + q2 + l)y2 = c2q2

31. (a) px=gqy;(b) py=gx

32. (@) x(y-2p +y@z—x)q=z(x-y);
(b) x(y = 2)p + y(z + 2x7)g = 2(x + 2x7)

33. (a) px2 + qy2 =7
(b) y'zp +x’zg = x)?

3. (@ O+ 2)p-xyg+xz=0;
() x(” +2p + 30 + g = 2% = )

35. (@) (@ —yap+ 0’ -2g =2 - xy;
(®) yp+xg==z

36. r+t=0

37. 2r+3s-9t=0
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38.

39.

40.

41.

42.

43.

44.

45.

10.

11.

12.

13.

14.

15.

16.

9’z 9’z 9’z
S - +2
ox’ (9x)* 9y E))c(ay)2

9r—12s+4t=0
r—2s+t=0
(x—iy)(r—1=2(p - iq)
4xr—t+2p=0

s =pq

XyS=px+py—-z
(d+q@r+(@q-ps—1+p)i=

Exercise 4(b)

9’z

ES

0

=0

4-101

k
Z=ax+—y+b
a

z=ax+yloga+b

z=axtV2-d° y+b

(1+alogz=x+ay+b
logz=a(x+ay)+b

daz=(x+ay+ b)2

2 2
z=ax—+y—+b
2 a

z=alog(xy) + b

z=ale"+&)+b
303

z=ax+by+—+—
b a
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17.

18.
19.

20.
21.

22.

23.

24.

25.
26.
27.
28.
29.
30.
31.
32.

33.

3

~

Linear Algebra and Partial Differential Equations

(a) CS.is z= axi(l—\/g)zy ; No singular solution (S.S.).
(b) z=axtVk>—a® y+;NoS.S.

1
CS.is z= ax+§(—2iJE)ay+b :No S.S.

5—a?

—za

CS.is z=ax+[ ]y+b;NOS.S.

logz= alogxi\/I—a2 logy+b.

Je=adx £41-a* [y +b.

lzﬂ_{_w_}_b.

z X y
2 =axi\/a2—4-y+b.

logz=%+(2a2 ~3)logy+b
Z=a2(x+y)+axy+b.
xy=1.

7297% = 1024 xy.

162° + 27x%* = 0.

#=16 xy.

4z =y2—x2.

41 +d)z=(x+ay+ b)*

V1+a® log(z+22 —1)=x+ay+b
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35.

36.
37.
38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

(a) z° izx/zz —4a® —4d° 10g(z+\/22 —4a%) = 4(x+ay+b)
(b) az’ izx/azzz -4+ i10g(az+\/azzz -4)=4(x+ay+b)
a

4(bz—ab—1) = (x + by + ¢)*.
(z + a2)3 =(x+ay+ b)z.

3(1 + a)log z =x+ ay3 +b.

Va* +17* =2(logx+ay+b).
210gz—(a+\/a + )( +— +b]

47=—x2 i{x\/)c2 +4a* +44° log()c+\/)c2 +44* )+4(a2y+b)} .

2z=ax2—Ly2+b.
a+1

3z=ax’ +2Ja—-1y"? +b

1.
Z=ax—cosx+—siny+b.
a

32

P=x+a)+ @ +a) +b.

Z=xvxt+d +d® sinh_1£+y\/y2 —a* —d?cosh L1p.
a a
Jax®
logz = 3 ++1—alogy+b.

Z=x"+ax+= (y+a)3/2

z=\/a(x+y)+\/(1—a)(x—y)+b,

z= %1og(x2y2)+\/1—a2 tan”’ (1)+b .

X

Exercise 4(c)

4-103

2= xf(y) + o).
2=y fx) + ¢x).
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3.

4.

10.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

2=f(x) + o).

2=xf() +¢y) +e 7

7= yf(x)+¢(x)—écos(2x+3y) .
z=f(x)+ ¢(y) + log x - log y.

2
z=xf<y>+¢<y)+x7siny.

z2=yf(x) + ¢(x) — cos y.

2= () + 9(y) + kxy.
z= f<x>+¢<y>+%<x2 +%).
f& =y y = =0.

f(Xy,X]=0~
Z

fx =y y=J=0.

f(s%nx’ si.nyjzo.
siny sinz

z=(1 + cos x)cos y.

z = c cosh ax + sinh ax sin y.
z=¢" cosh x + ¢ sinh x.
Z=3x2+3xy—2y2+c.
2=xf(y) - x - y/3.

2= f(O)+9(y)-3x%y’ —%sin(2x—y) .
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23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

z=e” f(x) + € g(x) + 2y + 5/3.
z=Axy+Bx+Cy+D

z=f(x+ at) + ¢(x — at).
z=f(x+iy) + @lx - iy).
z=f(x+y) + ¢lx—y).

2= (@)@ 450 + 90 + 7).

2=f(7+x) + 90° - ).

@ f(secx, secy)=0;

secy secz

(ii) f(z ’y‘l; z] 0.

f& =y = =0.

f(l 1 jzo;
x oy

(if) f(— ! J:o.
X y

fOlz, X+ Y +7) =0.

2 2 2
+y* +
f[z,u}o_

Z Z

—_—

flxloglx+y)—z,x+y] =
fxy, x +y2 + zz) =0.

@) f(x+y+z,x2+y2+zz)=0;
(i) f(x+y+z,x2+2yz)=0_
(i) fGx+y+z,xy2)=0;

(1) fx+y+z,xy2)=

4-105
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39. f(xyz, X+ y2 +729)=0.

40. f(u,xy+yz+z,szo.
y—z

41. (1) fx+y+zxX+y -2 =0;
(i) fQx+3y+4z, x> +y*+79)=0.

42 f[x?’y?’z,%-}-%]:o.
y X
43. xy+yz+zx=0.

44. 32x+2y-3y+3)’=(-x0)(x+y)’ .

Exercise 4(d)

1. z2=fi(y = 2%) + fo(y + 2%) + f5(y + 3x).
2. Z=fi(v+x) + xfH(0 +X) + Xf5(y + ).
3. 2=fi(y +ixX) + xfo(y + ix) + f5(5 — i) + xfy(y — ix).
4. z=fi) + L, = 5%) + 10 + x).
5. Z=f1(x)+f2(y—§j+ﬁ(y+3x).
6. z=e"fily—x)+e Sy +x).
7. 2=f0) + e fioly + 2x).
8. z=f(x) + ™ foly — 3x).
9. z=fily—x)+ ¢ fH(y +x).
10. z=fi(y +x)+ e,y —2x).

11. X xy.

1
12. —sin(B3x+4y).
35 ( y)



13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

Partial Differential Equations
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X
——cos(2x+y).
2 2x+y)
-,

sin(x + y).

—xtdy
u=4e 2",
_12x—3y
u=g8e1Z I
—3x+1

z=4de

4 43
7= e

u=e*? (Ae‘/zjC + Beﬂ/zx) .

L o6e 3 any 1 opoy 1 5
7= +x)+ —4x)+—e —=xe™ T =T ——e™
AO+0+HG—40+— . o v

1
Z=f1(y—x)+fz(y—2x)+f3(y+3x)+acosh(2x—3y) .

< :fl(y + 3x) +f2(y + 4x) + x(e4x+)' _ e3x+y).

1
z= fl(y—x)+xfz(y—x)+z-(x4 —2xXy+2x%y%) .

1 . 3
z= fl(y)-Fxfz(y)—i-f3(y+2)c)—i-zxe2 +2—0(y+§)

1 1
Z=f1(y+x)+f2(y+2x)+ze2“3y —Esin(x—Zy) .

4 2
z= Jq(y+3x)+xf2(y+3x)+’6“—0(9x2 +12xy+5y2)+%cos(3x+y),
1 1
z= f](y)+f2(y+x)+§cos(x+2y)—gcos(x—2y),

7= f1(2Y+x)+f2(2y+3x)+f3(2y—3x)—9i6sin(3x+2y) _

Z=fl(y+x)+f2(y+2x)+%ex+2y(l1+6x),
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X

3. Z=fl(y—x)+xf2(y—x)+f3(y+x)+;—5(25in2y+0052y).
32. z=fi(y=3x) +/£,(y + 2x) — y cos x + sin x.
| 2
33. z:fl(y+ix)+f2(y—ix)+5[log(x2+y2)]2+2[tan_' Xj .
X
34, z=fi +e fHrly—x)+ ezxf3(y —3x) —xe" + xye’.

1 ,
35, z=exfl(y+x)+ez"f2(y+x)—%ez’”y+Ee_2x_’.

3
36. Z=f1(y)+e_xf2(y+x)+XT—HLy2 —x% +2xy+4x.

37. z=€ fi(y—x) + € foy — 2x) + (x + 2y + 6).

1
38. Z:exf‘l(y+x)+exf2(y_x)+(x+2)y_§62x+3y'
— , X X l 3x-2y l 2y-3x
39. z=e " fily)+e fz(y—x)+§xe _ge .

1 1 1
40. z=f (y—x)+e_2xf2(y+2x)+ﬁsin(2x+y)+Zsin(2x— y)—Ecos(Zx— y.

41. z=f1(x)+e3X/2~f2(y—§)+%{3cos(x+2y)—4sin(x+2y)}

+ ﬁ{4sin(3x +6y)—cos(3x+6y)}.

X 2
42, z= exfl(y—)c)+e_2xf2(y+)c)+;—4(9)62 —-6x+2)+e’ [xy—x?—y—?aJ .
43, u=3e""V XY
44, z=(—eNe ™ + (" —ee™.

1 . 3y .
sinh xﬁ+e Dsinx.

T

45.



Unit

Fourier Series Solutions of
Partial Differential Equations

Fourier Series

5A.1 INTRODUCTION

Periodic functions appear in a variety of physical problems, such as those containing
vibrating springs and membranes, planetary motion, a swinging pendulum and musical
sounds. In some of these problems, the periodic function may be quite complicated
and hence in order to understand its basic nature batter, it may be convenient to
represent it in a series of simple periodic functions. Since trigonometric functions are
the simplest examples of periodic functions, we usually look for series representation
in terms of sines and cosines.

Originally Fourier series was applied in the study of vibration and heat diffusion.
There are numerous problems in Science and Engineering in which sinusoidal signals and
hence Fourier series play an important role. For example, sinusoidal signals are useful in
describing the periodic behaviour of the earth's climate. Alternting current sources generate
sinusoidal voltages and currents. Fourier analysis enables us to analyse the response of
a Linear Time Invariant system, such as a circuit, to such sinusoidal inputs. Waves in the
ocean consist of the linear combination of sinusoidal waves with different wavelengths.
Signals transmitted by radio and television stations are sinusoidal in nature.

Many of the ordinary functions that occur frequently in Science and Engineering
can be expressed in the form

a, < < .
—0+Zan cosnx+2bn sin nx (1)
n=1 n=1
or more generally in the form
ay = X ~ . NAX
7+ Zan cosTJrZsmT 2)
n=1 n=1

Now cos n (2m + x) = cos(2nm + nx) = cos nx, forn=1, 2, 3, ...; and
sin n(27 + x) = sin(2nm + nx) = sin nx, for 1, 2, 3, ...
Thus all the trigonometric functions in (1) are periodic with period 27. The constant

D may be regarded as periodic with period 2. Hence the infinite trigonometric
2

series (1) is periodic with period 2.
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5-2

If a function f(x) is to be expressed (or expanded) in the form of the series (1), as
a prerequisite, f(x) should be defined in an interval of length 27 and should satisfy
certain conditions, known as Dirichlet’s conditions, which are stated below.

The infinite trigonometric series (2) is periodic with period 2/, since

cos%(Zl +x)= cos# ; and

sin%(Zl +x)= sinmlr—x and L%O may be regarded as periodic with period 21.

If a function f(x) is to be expressed (or expanded) in the form of the series (2),
as a prerequisite, it should be defined in an interval of length 2/ and should satisfy
Dirichlet's conditions.

Note 25

Since series (1) is only a particular case of series (2) when | = &, we shall
develop the theory of Fourier series in the form (2) and obtain the derivations
with reference to series (2). Whenever results are required relating to series
(1), we simply replace [ by & and obtain the required results.

5A.2 DIRICHLET’S CONDITIONS

A function f(x) defined ¢ < x < ¢ + 2/ can be expanded as an infinite trigonometric
) a nwx . NmX .
series of the form 70 + 2 a, cosT + z b, sin 7 provided

1. f(x) is single-values and infinite in (c, ¢ + 21).

2. f(x) is continuous or piecewise continuous with finite number of finite
discontinuities in (c, ¢ + 21).

3. f(x) has no or finite number of maxima or minima in (c, ¢ + 21).

Note £

All functions that we deal with will satisfy the above Dirichlet’s conditions and
hence can be expanded in the form of the infinite trigonometric series given
above.

5A.3 EULER’S FORMULAS

If a function f(x) defined in (c, ¢ + 2I) can be expanded as the infinite trigonometric

series 204 Ya, cos L 4 b, sin X then
n=1 n=1 l
c+21
a =7 J f(x)cos#dx,nzo and

n
¢
c+21

b= | f(x)sin%dx,nzl and

[Formulas given above for a, and b, are called Euler’s formulas for Fourier
coefficients]
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Before we proceed to find the values of a, and b,, we shall obtain the values of certain
definite integrals, which are required in the evaluation of a, and b,

c+21 nITx
J cos T dx

c

c+21 X
.[ sin T dx

X .
SIn———

i — c+21
—| sin——
nmw ).

= L L Gn ™ (e vor)—sin M
nrw l l

ey

©))

3)

1l
~
Y
+
2
/N
—
+
o
Q
@
N——

= l><2l [
2

the second term vanishes as in (1)]
=1

21
1% { (m—n)x
— cos —cos

c

“)

(m +ln)7rx } dr

=0, if m#n [by (1)]

c+21
= l J‘ (1_0052n77:xjdx
2 l

&)

1
= EX 2/ [ the second term vanishes as in (1)]

=1 (6)
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! mmx  nmx 1<
sin cos P ax 3 [sin (m+n)wx +sin (m—n)n'x} dr
=0, when m # n and also when m =n (7)
[by (2)].
Now Jx) = a70+2an cosnlﬂ+2bn sinmlt—x 3
n=1 n=1

Integrating both sides of (8) with respect to x between the limits ¢ and ¢ + 2/, we
get

c+21 c+21 w 421 o 421 -
f f)dx = J dx+2a J‘ cos—dx+2b J. sin%dx,

assuming that the term by term integration is possible.

0[ ]C+21+Zan ><0+2b X0

n=1 n=1
[by (1) and (2)]
=ayl
1 c+21
ay = 7 ‘I f(x)dx 9)

Multiplying both sides of (8) by me where m is a fixed opposite integer and
integrating term by term with respect to x between ¢ and ¢ + 2/, we get
c+21 c+21 oo c+21

_Cl. f(x)COSm;rxdx _ 970 J cos 2 dx+2a _[ cos 2 l Cosnlﬂdx

c

) c+21

+Zb J s1n—cos m;txdx

c+21

2 MT
a, _[ cos
c

=a,l, [by (4)]

Zdx, [by (1), (3) and (7)]

dx ,wherem=1,2,3,... (10)

14 mux
= — X)COos
an=q ] e
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Combining (9) and (10), we have,

c+21

a,= - J f(x)cosgdx, forn>0 (11
Note &

Only if the constant term is taken as %0, formula (11) is true forn = 0

Similarly, multiplying both sides of (8) by sing , integrating term by term with

respect to x between ¢ and ¢ + 2/ and using (2), (5), (6) and (7), we get
c+21

:l J. f(x)sm dx or
1 . NTX
b= j f()sin==dx forn>1 (12)

5A.4 DEFINITION OF FOURIER SERIES

The infinite trigonometric series il + zan cosﬂ + an sin% is called the
n=1 n=1

Fourier series of f(x) in the interval ¢ < x < ¢ + 2/, provided the coefficients are given
by the Euler's formulas. Very often, the Fourier series expansions of f(x) are required in
the intervals (-/, /) and (0, 2/) which are obtained by taking ¢ =—/ and ¢ = 0 respectively
in the above discussions.

When we require Fourier series expansions of f(x) in (-7, 7) and (0, 27r) we simply
put / = xin all the assumptions and the results derived.

5A.5 IMPORTANT CONCEPTS

1. We have already observed that if a function f(x) is to be expanded in Fourier

series of the form a_0+ Zan cosﬂ+ an sinmlt—x which is of period 21,
n=1 n=1
f(x) should be defined in an interval of length 2/ and should satisfy Dirichlet’s
Conditions in that interval. Conversely, if a function f(x) is defined and
satisfied Dirichlet’s conditions in an interval of length 2/, it can be expanded
in Fourier series of period 21. WX
2. Since the Fourier series of f(x) in (0, 20) [or (-, )], 1.e. 7+ Za cos—— 7 +
n=1
nwx
zb SIHT is periodic with period 2/, we may expect f(x) also to be
n=1

periodic with period 2I. In fact, f(x) is periodic with period 2/, in the sense

. L4y~ ATX . NTx
that the Fourier series —-+ Zan cos——+ an s1nT represents (or
n=1 n=1
converges to) f(x) in (0, 2/) and its periodic extensions outside (0, 2/).
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3. We recall that the function f(x) is said to be periodic with period 21, if the
graphs of y = f(x) in the intervals (¢ — 4/, ¢ — 21), (c = 21, ¢), (¢ + 2, ¢ + 41),
(c + 41, c + 6l) etc. are periodic repetitions of the graph of y = f(x) in (¢, ¢ +
21) as given in Figs 5A.1, 5A.2 and 5A.3.

y

A\ A
_3ﬂw ﬂ\\/ 0 ﬂ\y 37:\% X

— 2 — > | —— 27— 21—

Fig 5A.1

y

-3 - 0 b 3n X
Fig 5A.3

The functions represented by the graph in Fig SA.1 and 5A.3 are periodic with
period 2, whereas the function represented by the graph in Fig 5A.2 is periodic with
period 2/. The function represented by Fig. 5A.1 take the same value f(x) = sin x in
(=00, o). The function represented by Fig. SA.1 assumes different values in (41, —2/),
(=21, 0), (0, 21), (21, 4]) etc. namely.



Fourier Series Solutions of Partial Differential Equations

5-7

(x+40)* in (-41,—-2I)
(x+20)* in(=21,0)
fx)y=1x* in (0, 21)
(x=20)%> in (21,40
(x—41)* in (41, 61)

The function represented by Fig. SA.3 assumes different values in (=37, —7),
(-m, m), (7, 3m), etc. namely,

x+3m, in(-3m,—2m)
—x—m, in(-2m,—x)

f(X)={

X+, in (-, 0)

f(X)={

—x+m, in(0,7)

)= {x—n, in (7, 27)

3 —x, in(2m,37m),etc.

4. Fromthe examples given above, a periodic function can be defined analytically
as follows.

(a) If f(x) = ¢(x) in (—oo, o), i.e. f(x) assumes the same value in (—oo, o),
then f(x) is said to be periodic with period 2/, if

O(x +2]) = P(x), for —co < x < 00

The Fourier series of f(x) of period 2/, in this case, will represent ¢(x)
everywhere.

(b) If f(x) assumes different values in different intervals of length 2/, i.e. if
¢, (x) in(c—4l,c-2])

¢_(x) in(c-2Lc)

fx)=3¢,(x) in(c,c+2l)

O, (x) in(c+2l,c+4l)

¢;(x) in(c+4l,c+6l)

then f(x) is said to be periodic with period 2/, if
O »(x) = @ (x +40), ¢_1(x) = ¢y (x + 20),
Oy(x) = @, (x — 21), P5(x) = @;(x — 41), etc.

In this case, the Fourier series of f(x) of period 2/ will represent ¢,(x) in
(c, ¢ +21), ¢,(x) in (c, 21, ¢ + 41), etc.

In other words, the Fourier series of ¢_;(x) in (¢ — 2[, c), that of ¢,(x)
in (c, ¢ + 21), that of ¢,(x) in (c, 21, ¢ + 41), etc. will be identical.
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5. Examples
(a) The Fourier series of f(x) = sin® x-cos® x in (0, 2m) or (-2, 0) or in

(2m, 4m) etc. will be icosx—icosSx—Lcos 5x+icos7x .
64 64 64 64

In other words, the Fourier series icosx—icos3x—Lcos 5x +
64 64 64

1
aCOS7x will represent sin® x cos® x in (-2m, 0) and in (27, 47) etc.,

since sin” Qr+x)- cos3(27't +x)= sin® x-cos® x for all x and f(x) assumes
the same value sin*x-cos’x for all x in (=00, 00).

(b) The Fourier series of f(x) = *in 0, 2D is

4> 4k & nmx Al 1 . nmx

R =T e

The same will be the Fourier series of f(x) = (x +2l)2 in (=21, 0) and
() = (x = 20)% in (21, 41), etc.

In other words, the above Fourier series represent x* in 0, 2D, (x+ 21)2
in (=21, 0), (x — 20)* in (21, 41), etc. This is because (x + 2/)* and (x —
2l)2 are periodic extensions in (-2/, 0) and (2/, 4I) respectively of + in

0, 21). .
( ) x+m, in(-m,0)

The Fouri i f = Xx)= i
(¢) The Fourier series of f(x) @ (x) {—x tx in 0. is
T 4 &

5 +— — cosnx . The same will be the Fourier series of its periodic
T = n
n=1,3

yeen

extensions in (=3, —m) and (7, 37) and (m, 37), etc., i.e., the above

Four . - o (x) x+3m, in (3w, -21)
= X)=

ourier series will represent f(x) 1 vem in(2m—m)

and

f(X)=¢1(X)={

x—m, in(m,2m)
3r—x, in(27,37)

5A.6 FOURIER SERIES OF EVEN AND ODD FUNCTIONS

Certain functions defined in symmetric ranges of the form (/, /), (-, 7) or (—eo, o) can
be classified as even and odd functions. If the graph of y = f(x) in (-/, ) is symmetric
about the y-axis, then the function f(x) is said to be an even function in (-/, /).

y y y
—n x . ! ! :
L7 0 \d x -0 I x -1 0 1 X
Graph of y = cos x Graph of y = cos x2 Graph of y = |x|

Fig. 5A.4 Fig. 5A.5 Fig. 5A.6
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Analytically, an even function can be defined as follows.

Iff(x) = ¢(x) in (-1, ) such that ¢(—x) = ¢(x), then f(x) is said to be an even function
of x in (-, /). [Refer to Fig. 5A.4 and 5A.5]

" )= {¢1 (x) in(=1,0)
¢, (x) in(0,0)
such that @;(—x) = ¢,(x) or ¢,(—x) = ¢,(x), then f(x) is said to be an even function of x
in (-, I). [Refer to Fig. 5A.6]
If the graph of y = f(x) in (-, /) is symmetric about the origin, then the function
f(x) is said to be an odd function of x in (-/, [).

y
y

0\/” X

Graph of y = sin x

x+1, in(-1,0)

Graph Ofy={x—1 in (0, 1)

Fig. 5A.7 Fig. 5A.8

Analytically, an odd function can be defined as follows:
Iff(x) = ¢(x) in (=L, I) such that ¢(—x) =—¢(x), then f(x) is said to be an odd function
of x in (-, [) [Refer to Fig. SA.7]
¢ (x) in(=L,0)

" Jto= {% (x) in(0,0)

such that ¢,(—x) = — ¢,(x) or ¢,(—x) = —¢,(x), then f(x) is said to be an odd function
of x in (-, [). [Refer to Fig. 5A.8].

Note £5

1. Function defined in (-1, 1) may be neither even nor odd.
2. The question of a function, defined in a non-symmetric range like (0, 2I),
being even or odd does not arise at all.

5A.7 THEOREM

(i) The Fourier series of an even function f(x) in (-, [) contains only cosine terms
(constant term included), i.e. the Fourier series of an even function f(x) in

(-1, D) is given by f(x)= a70+2an cosme

I
where a, :%J.f(x)cosnlﬂdx.
0



Transforms and Partial Differential Equations

5-10

(i) The Fourier series of an odd function f(x) in (—/, /) contains only sine terms,
i.e. the Fourier series of an odd function f(x) in (-/, /) is given by

!
. NI
fx)= an sm% where b, :%J.f(x)sjnmlt—xdx.
0

Proof
Since f(x) is defined in an interval of length 2/, it can be expanded as a Fourier series
of the form

a, = ATX ~ . nWX
f)y=—""+ Zan cos——+ zbn sin——
2 n=1 n=1 l

Case (1) f(x) is even in (-, [).

Since f(x) is even and sinm—x isodd in (-1, 1), f(x)- sinﬂ is an odd function
of xin (-1, 1). ! !

)

1

b, =~ [ f)sin™" " dx
1Y /

= 0, by the property of the definite integral of an
odd function in a symmetric range.

Since mlr_x is evenin (-1, 1), f(x) cos% is an even function of x in (-/, [)

By the property of the definite integral of an even function in a symmetric range,

]
1
a, =~ [ f(x)cos™Fdx
1Y !

I
- %If(x)cosﬂdx, n>0
Ly I
Case (ii) f(x) is odd in (-1, )

f(x) cosﬂ is an odd function of x and f(x) sinnﬂ:—x is an even function of x
l [
in (-1, 1)
I
1
a, =~ [ fx)cos™"*dx=0 and
l e [

1
2
b, =—jf(x)sin”—“dx, n>1
0 l

by the properties mentioned above. Hence the results.
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5A.8 CONVERGENCE OF FOURIER SERIES AT SPECIFIC
POINTS

. . . a nwx
When f(x) is expandable as a Fourier series of the form 70+ Zan cosT +
an s1nT in (c, ¢ + 20), f(x) is either continuous in (c, ¢ + 2[) or discontinuous

with a finite number of finite discontinuities in (c, ¢ + 2[) [by Dirichlet's conditional].
In both the cases, we say that the Fourier series represents or converges to f(x) in
(c, ¢, +21). Let us now consider a specific point x = o in (c, ¢ + 21).

(1) If x = aris a point of continuity of f(x) in (¢, ¢ + 2[), then the Fourier series
of f(x) at x = o converges to f(), since f() assumes a unique value.
i.e. [the sum of the Fourier series f(x)], - , = f(¢) (1)

Note 25

If x = a is a point of discontinuity of f(x) in (c, ¢ + 2I), the above result does
not hold good, since f(c) is not uniquely defined.]

(i) If x = ais a point of discontinuity of f(x) in (¢, ¢ + 2]),i.e, c < x<c +
. . 1.
21, then the Fourier series of f(x) at x = ¢ converges to Ehm [floe—h) +
h—0

f(a+ h)]. (Proof assumed),
i.e. [Sum of the Fourier series of f(x)],_, = %%in})[f(oc -+ f(e+h) (2)

(iii)) If o coincides with the left extremity c of the interval (c, ¢ + 21), (x + h) lies
within (¢, ¢ + 21), but (& — h) lies within (c — 21, ¢). We have already observed
that the Fourier series of f(x) in (c, ¢ + 2[) represents f(x) in this interval but
it represents f(x + 2[) in (¢ — 21, ¢).

Formula (ii) gets modified as follows:
[Sum of the Fourier series of f(x)]

= llim[f(oc—h+21)+f(oc+h)] 3)
2 h—0

X=0=c

(iv) If o coincides with the right extremity (c + 2/) of the interval (c, ¢ + 21), (ot —
h) lies within (c, ¢ + 2[), but (o + h) lies within (¢ + 21, ¢ + 4[). As observed
already, the Fourier series of f(x) in (c, ¢ + 2[) represents f(x) in this interval,
but it represents f(x — 2/) in (¢ + 21, ¢ + 41).

Formula (ii) gets modified as follows:
[Sum of the Fourier series of f(x)

x=o=c+2l

=llim[f((x—h)+f(a+h—21)] 4)
2 h—=0
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Worked Examples m_
Example 1
Find the Fourier series of period 2!/ for the function f(x) = x(2/ — x) in (0, 2/). Deduce
1 1
the sum of 1—2—2—2+3—2—"'
Let fx) = %MZan cos 243 b, sin@in (0,21) (1)

n=l n=1

21
1
a, = —jx(zz—x)cos’m—xdx
0 /

. NmWXx nmwx
1 5 SIHT —COST
=—|QIx— —|-Q2I-2
J| @b — |- Cl=20) —

[ 2

21

. NTX
—sin——
+(=2) 3—3l , using Bernoulli's formula
n'm
3
! 0
! 41
== [-2lcos2nm —21]=— )
nm nm

Note £

Though Euler’s formula for ag is a particular case of that of a,, corresponding
to n = 0, the value of a, cannot be deduced from that of a, by putting n = 0
in this example. In some problems, a, can be deduced from a,. Hence in all
problem we shall first find a,, and if possible deduce the value of a, from it.

1% 1 21 4
—jx(zz—x)dxz— K- =2
1 /

an =
0 3], 3
1 A nrwx
b, = —jx(zz—x)sin—dx
l 0 1
21
cos s sin nex cos nex
1 o 1 e 1
=—|Qlx—x") —(21-2x) +(-2)
l n*n? n’r
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Using these values in (1), we have
2, 7S 1
2@ -x) =22 -2 3 L eos " 00, 20) @)
3 oo’ /
. o111 . . .
The required series —2—2—2+3—2—“-°° can be obtained by putting x = [ in the

Fourier series in (2).
x =llies in (0, 2/) and is a point of continuity of the function f(x) = x(2/ — x).
[Sum the Fourier series in (2)], - ,=f())

2 e
ie. gl2 —i Lcosm‘c =1Q21-1)
3 71'2 ~ I’l2
ie __fiéi..__l_4__l____l_.+ —-Zf_
- o 12 22 32 3
L e
ro2r 3 12
ExampleZ . . . . 0, in—-r<x<0
Find the Fourier series expansion of the function f(x)=< . )
sinx, in0<x<rm
Hence find the values of
, L.t .
1.3 35 57
, L v, v
1.3 35 57

Since f(x) is defined in a range of length 27, it can be expanded as a Fourier series
of period 27

Let fx) = a70+2an cos nx+2bn sinnx in(—m,7m) (1)

n=1 n=1

Q
I

V4
- 1 J. f(x)cosnxdx
7[*7[

0 T
1
— j O.cosnxdx+jsinxcosnxdx
T - 0

LJ.[sin(n +1)x—sin(n—1)x]dx
2r o

,ifn#l

L —cos(n+1) N cos(n—1)x g
2 n+1 n—1

0
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n+l n—1
s
2r n+l n—1 n+l n-1
L L N P
271'{[11—1 n+1){( D 1}’

ifnzl[ )" ="

= (=
(n”—1)
2 .
- when 7 is even
= n(n” —1)

0, when 7 is odd, but # 1

2
Putting n = 0 in the value of a,, we get gy = ;
1 0 n
a; = — J. 0- cosxdx-i—J-sinxcos dx |, by Euler’s formula
T - 0
= L(sin2 x)g =0
2r 0
1 2r
b, = — j F(x)sinnxdx
T

0 T
1
= — JO-sinnxdx-%J-sinxsinnxdx
4 - 0

L [[cos(n—1)x = cos(n+1)x] dx
2r 0

. . T
1 {sm(n—l)x_sm(n+1)x} ifn 1

:E n—1 n+1
=0,ifn=1

0

0 T
1
b, = —[ f 0,sinxdx+.|.sin2 by dx} , by Euler’s formula
T

- 0

17 1 in2x )" 1
= —j(l—coszx)dxz—(x—sm ==
2y 2 2 ), 2
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Using these values in (1),
I 2 < 1 1
X)= ——— ——cosnx+—sinx in (-m,mr) (2
fG0 - 2246 P > (-mm) (2)
. . . .o . 1 1 1
Putting x = 0 in the Fourier series in (2), we get the series —+—+—+
1.3 35 5.7

The value of f(x) at x = 0 is uniquely found as 0, both from the value of f(x) in
- < x <0 and from the value of f(x) in0 <x < 7.

x =0 1is a point of continuity of f(x).

[Sum of the Fourier series of f(x)], -, =/(0).

. 1
1.e. —_—— +---oo}+—><0=0.
2

Now putting x =—, which is a point of continuity of f(x), in the Fourier series
in (2) we get

i.e.

Example 3

Find the Fourier series of period 2 for the function
fl) = {

k, in—-1<x<0

x, mO0<x<l1
Hence find the sum of

i) I-——+——= oo
@ 3 5 7
1
(ii) 1+—2+5—2+—2+ oo
Let fx)= a70+2an COSHmTX + an sinam x in (—1,1)
n=1 n=1
[+ 2l=2and hence [ =1] (1)

1
1
a, = ij(x) cosnm x dx
0
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0 1
= jkcosnﬂxdx+chosn7rxdx

-1 0
. 0 . 1
SInnwx SINnnwx —Ccosnmwx
=[] ()
ntro ), nr nrw 0
=Ly —nifn£0
l’l277:2 ’
= |—=—, ifnisodd
n2n'2
0, if nis even
1] ¢ ‘ 1 1
0 241
a= 7 jlkdx+£xdx =kl (% =kt

1
b = %jf(x)sinnﬂxdx
-1

0 1
= J-ksinnn'xdx+J-xsinnn'dx
-1 0

0 . 1

cosnmx cosnmx sinniwx

= k|- + x| - -1 -2
nmw 1 nmw nr 0

- -y -Ly
nmw nmw

Using these values in (1), we have
k 1 2 - 1 1 "
fx) = (—+—j——2 Y, —cosnmx—— Y [k{l—-(-1)"}

2 4) 1 -izs.n r
R .
+(—=1)"]—sinnr x in (-1,1)
n

1 1
By putting x = 0 in (2), we get the series 1+3—2+5—2+"'°°

We require the sum of the Fourier series of f(x) at x = 0.
Since f(0-) = k and f(0+) = 0, as per the definition of f(x).
x = 01is a point of discontinuity of f(x).

[Sum of the Fourier series of f(x)], -, = % }11irr(1) [f(O-h)+ f(O+h)]
-

= llim[k+h]=5
2 h—=0 2

©))
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- 2 4 22 323 2
i+i+i+... —ﬂ_z
? 3 5 8

1 1 1
By putting x = ) in (2), we get the series 1—§+§+---

1
x =— 1is a point of continuity for f(x).

1
[Sum of the Fourier series of f(x)] | =f (—J
*=

2
kK 1) 1 1 . onm 1
Le. —+—|-—Qk-1Y —sin—=—
(2 4) - );n 2 2
ie. Q= L 1 1 Y _k_ 1 Qk=D
T 35 7 2 4 4
1 1 1 T
1__+__—+-OO:—
3 5 7 4
Example 4
Find the Fourier series of f(x) = xin (0, 21). Hence deduce that
G Ll L _®
1 2% 3 6
L1 1 1 2
() ———+——iico="
12 22 3 12
iy Lyl o™
? 3 5 8

Since f(x) is defined in a range of length 2/, it can be expanded as a Fourier series
of period 21.

Let fx) = %%2% cos@Jern sin@in (0,21 )
n=1 n=1

21

X nwx nwx
sin—— —COS—— —sin—
! 2 +2
= —| X —ZX
I ni 22 I
l 2 3
I [ 0
lz
3 2 ifnz0
nm
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1 A nwx
b, = — [ +”sin="= dx
n l 0 l
21
nmwx . WX nwx
1 s —COST —SIHT COST
= - -2 +2
l g nr g n’m? n’r’
! 12 Fol,
_ 4P
nr

Using these values in (1), we have

4P AP &L 4P Sl
e —2cos(’m—x]—iz—sin(m—xjin((),zl) @)
3 T n=1 1N l T n=]n l

1

1 1
Putting x = 0 in the R.H.S. of (2), we get the series —+-—+—+::-00.
1 27 3

x=01is the left extremity of the range (0, 2/). Since the Fourier series in (2) represents
**in (0, 2) and (x + 21)2 in (=27, 0), x = 0 is a point discontinuity.

1
[Sum of the Fourier series of f(x),_, = E}ILin(l) [f(O-h)+ f(O+h)]
—

1
=3 }llin(l) [(=h+20)* +h*] [+ x=—hliesin (-2/, 0) and x = A lies in (0, 20)]
—

=2/

2 2 o
ie. R Y
3 ”2 ot n2
111 >
_+_+_+...oo=7r_ (3)
1?22 3 6
. ) o1 1 1
Putting x =/ in the R.H.S. of (2), we get the series 1—2+2—2+3—2+“' 0

x =l is a point of continuity of the function f(x) = X%
[Sum of the Fourier series of f(x)],_,=f()

2 2
i.e. i i i(—l)" =2
3 7_[2 = n2
i ﬁ(_i+L_L+._. )l_
- 2\ 12 22 32 3
1 1 1 2
___+__...°o=n-_ 4)
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Adding (3) and (4), we get
1 1 1 Vol L
2l —+—+—+o |=—+—="—
? 3 5 6 12 4
LI R R
> 3 5 8
Example 5
Find the Fourier series expansion of f(x) = ¥ +xin (-2, 2). Hence find the sum of
1 1
the series —+—5+—+--
2752 32

Since f(x) is defined in a range of length 4, it can be expanded as a Fourier series
of period 4.

Let flx) = 7"'2 a COST+Z b, sm—[smce 21 =4] (1)

n=1 n=1
1 : nrwx
2
=— | (x*+x)cos——dx
=7 [+ 2
-2
nwx 1 : nwx
= jx cos—dx+—jxcos—dx
2 2

2
nwx nwx . .
= sz cosde +0, { x2 COST is an even function and
0

nwx . .
xcosT is an odd function of x}

. nmx nmwx nmwx
sin —Cos—— —sin——
=1x? 2x 5 22 +2 3 32
nw n’m n'r
2 4 8 0
16 .
> 2(—1)”,1fn¢0
n°m

1 [ 8
a, = Ej(x2+x)dx=_[x2dx=§
-2 0

(~+ x° is an even function and x is an odd function of x)
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2
1
b, =~ [ (6 +0)sin 2" dx
2 2

2 2
1 1
= — J X2 sinﬂdx+— J xsinm—xdx
2_2 2 2_2 2
nwx

xS n—dx

x? s1n— is an odd function and

|
:

. NTX . . .
xsmT is an even function of x in (-2, 2)}

2

nIx nwx
—cos—= —sin——
=| x| —2 |_1.
* nm )
2 4 0
4
= ——(1)
nw

Using these values in (1), we have
4 16 & (=D nwx 4~ . nmx .
2
X' +x=—+—7) ——cos———— ) sin——in (-2,2 (2)
3 2 z n2 2 T 2 2 ( )

1 1

Putting x = -2 or 2 in the R.H.S. of (2), we get the required series 1_2+2_2+
1

+

32

Let us consider x = 2, which is the right extremity of the range (-2, 2).

The fourier series of f(x) represents f(x) in (-2, 2) and f(x — 4) in the next period
(2, 6), i.e. The Fourier series in the R.H.S. of (2) represents ¥+ xin (-2, 2) and
{(x—4)+(x-4)}in (2, 6).

Evidently x = 2 is a point of discontinuity of f(x).

[Sum of the Fourier series of f(x),_,= %%in(l) {2 —h)2 +(Q2-h)}
+{(2+h—4)2+(2+h—4)}] =4

i.e. i E D (-D)" =4
3 nt4a R
1 € i + i + L + = 71'-_2
- 22 3 6
Example 6

Find the Fourier series expansion of f(x) = x(1 — x) (2 — x) in (0, 2). Deduce the sum
1 1 1 1
of the series 1_3_3_3+5—3—7—3—---oo )
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Since the function f(x) (1) is defined in a range of length 2, it can be expanded as
a Fourier series of period 2.

Let f(x) = o + 2 a, COSNTTX + an sinnrm x [since 21 = 2]

n=1 n=1

2
1
a, = Ij.x(l—x)(Z—x)cosnﬂ:xdx
0

n’n?

. 2
+(_6+6x)(—51;1n:txj_6.[coin2tx)
nm nm 0

2 4 2
1
aq = Ij(Zx—3x2+x3)dx=[x2—x3+xTJ =0
0 0

= {(2)6—3)62 +x3)(smnmj—(2—6x+3x2)(Mj
nw

2
1
b, = Ij(zx—3x2 +x%)sin a7 dx
0

ni )
. 2
V4 T
+(_6+6x)(c0s3n3xj_6.[sn:n4x)
n'rn n'rw 0
12

wn’

= |:(2X—3x2 +x3)(Mj_(2_6x+3x2)(—51nn7tx)

Using these values in (1), we have

12 <1
x(1-x)(2-x)=— Y —sinnzmx )
/-
. 1. N N
Putting x =5 in the R.H.S. of (2), we get the series 1—3—3—3+5—3—7—3+"'°°.

1
X = ) is a point of continuity of f(x).
1
[Sum of the Fourier series of f(x)] 1= S (—)

X

i.e. il

ie. ——— .=
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Example 7
Find the Fourier series of period 27 for the function f(x) = x cos x in 0 < x < 27.
Let fx) = a—0+2an cosnx+2bn sinnx
2 n=l n=l
2r
a,=— J xcosxcosnxdx
o
2
=— j x[cos(n + 1)x +cos(n — 1)x]dx
2r 0
2
1 sin(n+1)x cos(n—1)x
= —|<x- + >
27 n-1 n+1° J,
. 1 1 2r
+ x.SIH(n_ ))C+COS(”_2).X ,lfnil
n-1 (n=1) 0
=0,ifn#1
ao = 0
1 2r 1 2r
a, = — J xcos? xdx = — J‘ x(1+cos2x)dx
Ty 2m

2
1 {xz N sin2x+cos2x:| T

2 2 4
0

b, = —chosxsinnxdx
Ty

2r
L j x[sin(z + 1)x + sin(n — 1)x] dx
2r 0

1{ {—Cos(n+1)x} sin(n+1)x:|2”
—| x +
2 n+1 (n+1)?

0

. 2r
+L x{—cos(n—l)x}Jrsm(n—l)x if n
2n n—1 n-1° |,

1
|
S
+ | =
—_
|
S
| |-
—
I
|
|
—
S
+ .
—
S
| |-
—_
—
Il
|
S
o
|

#1

ey
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2r 2

1
b =— J xcosxsinxdx = — j xsin2xdx
2

5 %

1 —cos2x ) sin2x o 1
= —| X + =__
21 2 4 0 2

Using these values in (1), we get

fx) = ncosx—lsinx—Z 2
2 n=23,. 1 -1

sin nx

Example 8
Find the Fourier series of period 27 for the function f(x) = V1—cosx in-r<x< 7.

f=) = \/I—COS(—X) =l1-cosx = f(x)
f(x) = J1—cosx is an even function of x in - < x < 7.

Note &5

Since \J1—cos x = J_r\/E sing , we should not conclude that \J1- cos x is an odd

function of x in —n < x < &. If we note the values of N1—cosx and \/§sin£
, we can find that 2

_2sinY, in (-7, 1)
NJl-cosx = 2 (D
P2 sin%, in (0, 7)

From (1) also, it is evident that v/1—cosx is an even function of x in (-7, 7).
Fourier series of f(x) will not contain sine terms.

Let fx) = %M Y a, cosnx in (-7, )

n=1

n
a, = gJ‘\/l—cosx cosnxdx
b4
0
227

= _[ sin— cos nxdx

%

e
e ) ”

1 1
n+— n——
2 2

\S)

=||§|
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1 T_ . .
. CoS niz ﬂ=CosnﬂCOSE+Slnnﬂ'81nE=0

s

T \2n+l 2n-1
_ _4\/5 2
= 2
w(4n”-1)
and ay = —% [by putting n =0 in (2)]
-
M2

T

Using these values in (1), we have

J1—cosx = 2\/5—4\/5 z ! cosnx in (-7, )
V3

oo An? -1

Example 9

Find the Fourier series of period 27 for the function f(x) = Icos xl in —r < x < 7 f(—x)
=lcos(—x)l = Icos xl = f(x)
oo f(x)is an even function of xin -t <x < 7.
Fourier series of f(x) will not contain sine terms.

a -
Let fx) = —°+Zan cosnxin—nmw<x<m (1)

n=1

Vs
2
a, = —.[I cos x | cosnxdx

)
_77.'
2 E V4
= — Jcosxcosnxdx+j(—cosx)cosnxdx
Ty o
L 2
i . T . (T . ..
cosx>0in (O,E) and <0 in (E,n) and | cos x | is positive
Vs
1 2 T
= —{ [ [cos(n+1)x+cos(n - )x]dx — [ [cos(n+1)x+cos(n - )x]dx
T
0 T

2
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r
2

T n+l1 n—1

1 {sin(n +0), sin(n— 1)x}

0

. . T
_i{sm(n+l)x + sm(n—l)x} fnzl

b4 n+l1 n—1

SR

. /4 . T . T . T
sin(n+1)— sin(n—1)— sin(n+1)— sin(n—1)—
| |sinCe+DZ sine=D— |y sinGe+ D sin(e=1)—

= — + +— +
T n+1 n—1 T n+1 n—1

2 1 1 nrw
= — - cos— ¢,
T |\n+l n-1 2

Sincesin(nil)ﬁ = sinﬂcoslicosﬂsinz = icosﬂ
2 2 2 2 2 2

niw .
—2—cos—,1fn¢l
r(n”—1)
/2

=— | lcosxlcosxdx
Ty

=

4
an = —,da
°“r

T
2
2
= — Jcoszxdx— cos® xdx
an

D[N =

T
12 T
=— J(l+cost)dx—J.(1+0052x)dx
0 /4

E NN

2

Vs
. — . T
(x+31n2xj2 _(x_'_stxj =l T n—ﬁ _0
2 ), 2 )m |2 2
2

Using these values in (1), we get

3|~

2 4 1 nw
Icos x| = ———2 3 COS—COS nx
T omwoont -1 2
2 4 - 1
= ——— Z 5——COS——COS nx
7,276, 11
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2 4L

COS nfr cos2 nx

TowT A’ -1

2 4 & 1
—+—Z(—1)""- S——cos2nx in (-7, 7)
dn® -1

n=1

Example 10
Find the Fourier series expansion of f(x) = sin ax in (-1, [).

Since f(x) is defined in a range of length 2/, we can expand f(x) in Fourier series
of period 21.

Also f(—x) sin[a(—x)] = —sin ax = —f(x)

- f(x) is an odd function of x in (-1, I).

Hence Fourier series of f(x) will not contain cosine terms.

- nmwx
Let X) = b sin——
fx) 21 wSin—
! nwx
b = —Jsinax-sin—dx
I 0 l

1
= l [cos(ﬂ—ajx—cos[ﬂ+ajx:|dx
l l l
0
1
. nmw . nmw
sin| ——a |[x sin| —+a |x
I i e )
) nw nmw
1 . [ nm 1 . [ nw
= sin| ——a |l— sin| —+a |/
nrw—la l nrw+la l

= ! sin(nr —al)—
nw—la

! sin(nr +al)
la

= ! {—(-=1)" sinal} —;{(—1)” sinal}
nr—al nw+al

(-t sinal{ 1 1 }

nt—al nr+al

(=D)""2nxsinal
I e
Using this value in (1), we get

o 1
. - . nmX
sin ax = 27rsmalz 2( 3 ) 55 sin
oan e —a’l l
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Example 11
Find the Fourier series expansion of f(x) = ¢™* in (-7, 7). Hence obtain a series for
cosec TT.

Though the range (-, ) is symmetric about the origin, ¢ is neither an even
function nor an odd function.

Let flx) = a70+2ancosnx+2bn sin nx (1)
n=1 n=1
in (-, ) [~ the length of the range is 27]

1 Vs
a = — J e " cosnxdx
n._

1| e” "
=—1 (—cosnx+nsinnx
—T

T |n°+1

S T | T

n(n* +1)

and ay =

e .
= —{ 3 (—smnx—ncosnx)}
-

= —————{e " (D" =" (-D"}

7r(n +1)

= zn(z;l)sinh T
(n” +1)

Using these values in (1), we get

s1nh7r 2sinh z ="
/4 VA — n? +1

e = cosnx

. 2sinh 7 2 (- 1)

sinnx in (-7, )
4 - n® +1 M

[Sum of the Fourier series of f(x)], - o =f(0),
[Since x = 0 is a point of continuity of f(x)]
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) sinh (-1 o0
1.€. +2 =1
{ nzl n’ +1:|
i.e. ﬂCOSCChﬂ:—1+2X( )+22
n=2 l’l +1

. 2 «
i.e. cosechm= — Z

71- :
Example 12

Find the Fourier series of period 27 for the function f(x) = sinh ox in (-7, 7).
f(=x) = sinh(-ox) = —sinh ox = —f(x) in (-7, 7)

cosine

Let

sinh ox is an odd function of x in (-7, 7).

Fourier series of sinh o in (=7, ) will not contain the constant term and the

terms.

fx) = ibn sinnx in (-7, )

n=1

2 n
b, = —Jsinh ax sinnx dx

T

1
= —j(e‘” —e *)sinnxdx
T

elZX T
> > (o sinnx —ncosnx
n+a 0

—ox
e .
—{ 3 3 (—Ocsmnx—ncosnx)}

T

0

= ;[ n(=1)" e + n+ne® (-1)" —n]

Jr(n2 +o )

_ _n(_l)n om
= 2. 2.~
nT(n”+o)

Using this value of b, in (1), we get

sinh ax =

-om 2n(~1)"" sinh ax

71'(n2 +a?)

2sinh ar (="
>

T nln+0£

3 SlIl nx

D
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Example 13
Find the Fourier series expansion of period 2 for the function

X, in0<x<1
n(2-x), inl<x<2

fx) = {
- 1
Deduce the sum of Z .

Let fx) = %0+ Z a, cosnwx+ an sinnmwx (1)

n=1 n=1

2
a = %J‘f(x)cosmrxdx [+ 2l=2o0rl=1]
0

1 2
= Jnxcosnnxdx+jﬂ(2—x) cosnmxdx
0 1

sinnmwx —COSNTX l
- ()
nmw nrm 0
. 2
innmw - T
. (2—x)(S " xj+1( Rl xj
nw nn 1

S UL TR T
nmw nmw

0, if niseven, #0

4
R if n is odd
nm

12 1 2
a = Tb[f(x)dxzb[nxdx+.!.7t(2—x)dx

27! 272
2 -2
0 1

=—+—=x
2 2

2
1
b = —jf(x)sinnnxdx
10
1 2

J‘n'xsinnﬂ:xdx+J‘n'(2—x)sinnn'xdx
0 1
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1
—COSNmX —sinnmwx
e ()
ni n°m N
2
o (2_x)(—cosmrxj_'_l'(—si?nznx)
niw n°m |

Ly Ly =o
n n

5-30

Using these values in (1), we get

4 & 1
fx) = r.z D —-cosnmx in (0< x<2) 2)
2 m,iG.n

x = 11s a point of continuity of f(x).
: [Sum of Fourier series of f(x)], -, =f(1)

) T 4(1 1 1 B
i.e. E+; 1—2+3—2+5—2+"'°° =T
2
ie. .1, 1, .=
1> 3 5 8
Example 14 -
sin x, inOSxSZ
Find the Fourier series of period g for the function f(x) = T T
. . cosx, iIn—<x<—
Here 2= — .. [=— 4 2
2 4
ay <. . T
Let fx) = 7+2an cos4nx+2bn sin4nx in 0’3 (1)
n=1 n=1
r
42
a,=— j F(x)cosdnx dx
/4
0
(= z
44 2
= — jsinxcos4nxdx+jcosxcos4nxdx
/4
0 z
4

sin(4n+1)x —sin(4n—1)x}dx

I}
Qe
S t—ra

+ | {cosdn+1)x+cos(4n—1)x}dx

Ay —|8 7
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T

2 _{ —cos(4n—Dx _cos(4n— 1)xH4 n {sin(4n +Dx  sin(4n—Dx }2

x| 4n+l 4n—-1 an+l an-l )z
i T T . T
—cos| nw+— cos| nwr—— sin| 2nmw+—
N i P G PO S O G
- = + + - +
- dn+1 dn—-1 dn+1 4n-1 dn+1
. T . /4 . /4
sin| 2nw—— | sin|ng+—| sin| nwr——
si(2on=3) snfm+2) sn{ra-5)
4n—-1 4n+1 4n—-1

2 { —(=1)" (=1)" 1 1 1 1

== + + - + -
T @n+V2  (dn—1)2 4n+1 4n—1 4n+1 4n-1

GV
@n+1\2  dn-12

_i(—l)"(l_ljJr[l_l]
o V2 \dn—1 4n+1 4n+1 4n-1
= 8 S VA

(160> —1)| 2

vl

T

2
b= j F(x)sin4nxdx
4 0

n

cosxsin4nxdx

EHEN

[
4

= jsinxsin4nxdx+
0

£y —y

r

ale

i ;
= j {cos(4n—1)x —cos(dn+1)} dx + j{sin(4n +1)x+sin(4n—1)x}dx
0 b4

4

T T

_ 2| [sin(4n-Dx sin(4n+1) 4 [cos(4n+1)x . cos(4n—1)x |2
T 4n—-1 4n+1 4n+1 4n—-1

T
4

0
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. T . T /4 b4
sin| nw—— sin| nmw+— cos| 2nm+— | cos|2nm——
2 4 _ 4 3 2 _ 2

5-32

T dn—1 dn+1 dn+1 dn—-1
T T
cos| nm+— 1| cos| nwr——
( 4) ( 4)
+ +
dn+1 dn—1

= A O + =1" 4 (=" _0
T rl@n-12  @n+DV2 @n+DN2 @n-10\2 |

Using these values in (1), we get

_Af L) 88 L Dt o &
f(X)_n(l \/5]+7r,,2_{16n2—1{\/§ 1}cos4nx,1n(0,2)

Example 15

x, mO0<x<?2

Find the Foureir series expansion of f(x) given by f(x) = ]
0, in2<x<4

Since f(x) is defined in a range of length 4, we can expand it as a Fourier series

of period 4.
ie.  20=4
=2
Let fo=24Ya, cos%wLan sin%in ©,4) (1)

n=1 n=1

N
I

4 2

1 nwx 1 nwx

— cos——dx =— | xcos——dx
2 { flayeos=) 2 {x 2

2

. N nwx
S |
=—lx + ,ifn#0
2| nm n’n’
2 4 0
2
= {-D" -1}
n*r?
- , if nisodd
- 22
0, if niseven and #0

12

1
ay = ijdx =Z(x2)§ =1
0
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2
b, = —[xsin="=dx
0
2
nrw . NEX
1 —Ccos—— sin——
L 2|, 2
2 niw n2n_2
2 4 0
-2y
niw
Using these values in (1), we get
1 4 ¢ 1 1
fx) == Z —zcosﬂ—— Sl sin 2% in 0,4)
2 7 n=135.. 1 2 myoon 2

Example 16
1, forO<x<l1
2, forl<x<3

Since the function is defined in a range of length 3, it can be expanded as a Fourier
series period 3.

Find the Fourier series expansion of f(x) given that f(x) = {

=

N | W

Let fx) = a70+ian cos +2b 1n 0, 3) (1)
n=1

ﬂxdx

3
2
a, = 3J‘f(x)cos n
3 0

== jl~cos '[2 oS

M1 3
2nmx e+ [2c 2nmwx dx:l
Lo 3 1 3
B 1 3
2| 3 (. 2nnx 3 (. 2n7rxj
= sin +2- sin
2nm 3 ) 2nm 3 )

1| . 2nr . 2nw 1 . 2nr;
= —Jsin——-2sin—— =——-sin——,n#0
nrw 3 3 nmw 3

) 1 3
ay = 5hldwjzdx]

1

W |

2 10
= Sll+4]=—
3[ ]
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2nmwx 2nwx
—Cos 0s
= 3
3 2nmw 2nrw
3 0 3 1

= —L coszn—ﬂ—l +2 l—coszn—ﬂ
nrw 3 3

Using these values in (1), we have

1l <1 2nw 2ntx 1w 1 2nr 2nmx
X)= ——— ) —sin——cos - —| 1—cos— [sin in (0,3
fo= 3 on 3 3 ﬂz n( 3 j 3 ©-3)

n=1

Example 17

Find the Fourier series expansion of period 27 for the function

x(r—x), m—mw<x<0
J) = .
x(m+x), in 0<x<nm

Since the range (-, 7) is symmetrically divided into two subranges and f(x) assumes
the values ¢,(x) = x(7 — x) in (-, 0) and @,(x) = x(7 + x) in (0, 7), the function f(x)
may be odd or even. Let us first test for the oddness or evenness of f(x).

O,(—=x) = —x( + x)
=—0,(x)
f(x) is an odd function in (-7, 7).
The Fourier series of f(x) will contain only since terms.

Let flx) = an sinnx in (-7, ) (D)

n=1
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b = gjf(x)sinmcdx
ﬂO

2 V4
= —Jx(n+x)sinnxdx
o

_ E{(ﬂx_'_xz)(—cosnxj_(ﬂ+2x)(—signx)+2(cos3nxﬂ”
T n n n 0

2-2
(D" -1)
T-n

= _—2~2n2(—1)" +
wn

4 4
e e (G VR
n n

Using this value in (1), we get

=3

flo) = Z[—4—ﬂ(—l)n +i3{(—1)” - 1} sinnx in (=7.7)
n n

n=1

Example 18 1+2—x, in-/<x<0

Obtain the Fourier series for the function given by f(x) =
1- TX in 0<x<lI
111 :
Hence deduce that —+—+—+:-rco=—:
P35 8
The range is symmetrically divided into two subranges and

flx) = ¢1(x):1+%in—leSO
= q)z(x):l—zl—xinOSxSl

by(—x) = 1—21—"=¢2<x>

- f(x)is an even function of x in (-, /). .. The Fourier will not contain sine terms
and will be of period 21.

Let fx) = a70+ Zan cosnlﬂ in (-1,1)

n=1

I
a, = 3_[f()c)cosﬂdx
l 0 l

1
= % (1—2—xjcos—mrx dx
0 l l
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2 25 ) Sin ; 5| —cos——
=—||1-—— +
I I nr n’r’
l 12 o
4 ne
=S5 {1-(=D"},ifn#0
nm
0, if nisevenand # 0
T2, itnisodd
n’m?
1 27!
ay= 2| 1-2 |ar =2 x-2| =0
Ly [ l l
0
Using these values in (1), we get
8 — 1 nwx
J&x) = — —COS——
ﬂz n:%i... I’l2 l
x =0 is a point of continuity of f(x).
[Sum of the Fourier series of f(x)], - o =f(0)
. 811 1 1 _1
1.€. F 1—2+3—2+5—2+"'°° =
LI R R
P 35 8
Example 19
Find the Fourier series expansion of f(x) in (-2, 2) which is defined as follows:
0, in (-2,-1)
x+x*, in(~1,0)
fw=1""",
x—x", in(0,1)
0, in (1,2)
The symmetric range (-2, 2) is symmetrically divided into 4 subranges.
@ (x)=0, in(-2,-1)
2 .
=x+x", in(-1,0
Let fay = (PO =xHx, L)
¢;(x)=x—x>, in(0,1)
¢,(x)=0, in(l,2)

We note that ¢;(x) = —@,(x)

and ¢,(—x) = —¢5(x)

.~ f(x) is an odd function in (-2, 2)

This can also be graphically verified shown in Fig. 5A.9.
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<V

Fig. 5A.9

The Fourier series of f(x) will be of period 4 and will contain only the sine terms

Let  f(0)= ibn sinﬂzxin (=2,2) )
n=1

2 1
2 . nmwx nrwx
== sin——dx = — xY)sin—=
b, 2_([f(x) > _([(x x*)sin 5 dx

X . NmX nwx
—COS——— —SIHT COST
= | (x=x%) —(1-2x) +(-2)
nw n’n? n’r
2 4 8 0
-4 | nmw 16 nr
= ﬁmn—%—ﬂ 1—cos—
nr 2 rwr 2

Using this value in (1), we get

—| -4 . nm 16 nw|| . nwx .
fx) = 2{ﬁs1n—+?{1—0057}}5m7 in (-2, 2)

n=1 2 nmw

Example 20
Find the Fourier series expansion of f(x) in (-7, ), when f(x) is defined as follows:

. T
T+ X, 1n—n'£x£—5

—X, in—%SxSO
Jx) = (1)
X, inOSxSE
2

T—x, in r <x<rm
2
The symmetric range (-7, ) is symmetrically divided into 4 subranges.
¢ (x)=m+x, in(-m,—7/2)
@, (x) =—x, in(-x/2,0)
fO=6 =2, i 72 )
O, (x)=mr—x, in(w/2), 1)
We note that ¢,(—x) = ¢,(x) and ¢,(—x) = ¢5(x).
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o f(x) is an even function of x in (-7, ). This is verified graphically also as shown

in Fig. 5A.10.

Ay

o
¥

Fig. 5A.10

The Fourier series of f(x) will be of period 27 and will not contain sine terms.

Let flx) =

aop

a70+ Y a, cosnx in (-7, ) @

2 j F(x)cosnxdx
T 0

2 n/2 n
— J xcosnxdx+ _[ (= x)cosnxdx
V3

0 /2

. /2 . T
sin nx cosnx sin nx cosnx
x +— +1(T—x) -—
n n 0 n n /2

7 . nm 1 nr 1 }
—sin—+—cos—— —
2 2

e

| o

— 3
T

=

=

1 n T . onmo 1 nrw
——(-1)" =——sin—+-—cos—
2 2 2 n? 2

Qe

2 nr 1 |
|:—2C087—n—2{1 +(-1) }:|, ifnz0

0, if n is odd

20 1
—{—z(cos mi — 1)], if nisevenand =2m
T 2m

0, if m is even

2
-—— if m is odd

——

Tm
2 T
5[ 72 r ) 2\* .2
—{dex+J‘(7r—x)dx A | I =z
b4 || 2 -2 2
0 /2 0 w2
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Using these values in (1), we have

fx) =

2 & 1 .
-— 2 —2c052mx, in (-, )
T =135, M

NG

Exercise 5A(a)

Part A (Short-Answer Questions)

1.

10.

11.

12.
13.

14.

15.

16.

17.

State the Dirichlet’s conditions that a function f(x) should satisfy so that it
may be expanded in the form 6%0 + z a, cosnx + z b, sinnx in(c,c+2m).

State Euler’s formulas for the Fourier coefficients.
Define Fourier series of f(x) in (c, ¢ + 20).

. . . a V4
If f(x) is to be expanded as a Fourier series of the form 70+ Zan cos% +

an sin n7ltx , in what range is f(x) to be defined?

If the Fourier series of f(x) in (0, 27) is (%O+ Zan cosnx + an sinnx , what
are the functions represented by the same series in (-2, 0) and (27, 47)?

If the Fourier series of f(x) in (-1, ) is a70+2an cos$+2bn sinnlﬂ,

what is the Fourier series of f(x — 2[) in (I, 31)?

If the Fourier series of f(x) in (-7, ) is a70+ Zan cosnx + an sinnx , what

is the Fourier series of f(x + 2x) in (=37, —7)?

Give the complete definition of a periodic function.

The Fourier series of sin® x cos* x in (-m, m), that in (=37, —m) and that in
(m, 3m) are identical. Support or refute this statement with reason.

The Fourier series of x” in (0, 2), that of (x + 2)*in (-2, 0) and that of (x —2)*
in (2, 4) are identical. Support or refute this statement with reason.

Only if f(x + 2]) = f(x) can be expanded as a Fourier series of period 2.
Support or refute the above statement with reason.

Define even and odd functions graphically.

Since x* = (—x)? in (0, 2), x* is an even function of x in (0, 2). Support or refute
the above statement with reason.

Since —x° = (—x)3 in (0, 2m), *° is an odd function of x in (0, 2m). Support or
refute the above statement with reason.

Write down the form of the Fourier series of an even function in (-7, ) and
the associated Euler’s formulas for the Fourier coefficients.

Write down the form of the Fourier series of an odd function in (—/, /) and the
associated Euler’s formulas for the Fourier coefficients.

Write down the formula for the sum of the Fourier series of f(x) at the point
x=o,if
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(1) x = ais a point of continuity of f(x)
(i) x = ais an interior point of discontinuity of f(x)

18. Write down the formula for the sum of the Fourier series of f(x) in (c, ¢ + 27)
at the point of discontinuity x = ¢, if
(1) it coincides with the left end ¢
(i1) it coincides with the right end ¢ + 27

19. Find the Fourier series of f(x) = sin’x + cos® x in (-m, m).

20. Find the Fourier series of f(x) = cos* xin 0, 2m).

Part B
21. Find the Fourier series of period 27 for the function f(x) = x(27 — x) in

1 1 1 1
(0, 2m). Deduce the sum of the series ———+———+::-00.

2 22 32 g2 ’
22. Find the Fourier series of period 2/ for the function f(x) = (I - x)2 in (0, 20).

Deduce the sum of the series ziz .
n

23. Find the Fourier series expansion of f(x) = T-min-T<x<m.

24. Obtain the Fourier expansion of f(x) = 1 —x in -1 < x < 1. Deduce the sum

of the series 1_l+l_l+...°o_

7
25. Obtain the Fourier series of period 2/ for the function

fx)=1-x,in0<x<[=0, inl<x<2l

2
Hence deduce that 1_1+l_l+...°¢ -7 and i+i+i+...w -
3 5 7 4 2 32 52 8
26. Find the Fourier series of period 27 for the function
0, in (-7, 0) o
f=9mx . . Deduce the sum of the series ) ————
- O % 2n+1)?
cosmx, in(-1,0
27. Find the Fourier series expansion of the function f(x) = . ( )
0, in (0, 1)
28. Find the Fourier series expansion of the function f(x) = * ?n ©,7)
1 1 1 2r—x, in(m,27m)
Deduce the sum of the series —+—+—+---c.
1 3 5

29. Find the Fourier series expansion of the function
f(x) =x,when-l<x<0=k whenO0<x<l

2
Deducethati+i+i+...oo:n_.
12 32 5 8
30. Find the Fourier series of f(x) = x? in -7 < x < mand hence prove that
R T | 1 1 1 n’
1) —+—+—+co=—m, ———F+——--r0o=—;and
() 12 22 32 ()12 22 32 12

R B | 1
(iii) St e =,

? 3 5 8



31.

32.

33.

34.

35.

36.

37.

38.
39.

40.
41.
42.

43.

44.

45.
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Find the Fourier series expansion of f(x) = ¥ —xin (=1, ). Deduce the values
1 1 1 1 1

of (1) ——2—2+3—2—"'°° N and (ll) 1—2+2—2+3—2—"'°° .
Find the Fourier series expansion of period 27 for the function f(x) =
1 1
x sin x in 0 < x < 27. Deduce the sum of the series ———+———":-00
1.3 35 57

Find the Fourier series of period 2z for the function f(x) = x cos x in
—T<X<T.

Find the Fourier series of period 2 for the function f(x) = x sin 7 x in

—1 < x < 1. Deduce the value of L—L+L—-~~fx’

1.3 35 57
Find the Fourier series of period 27 for the function f(x) = +/1+cosx in
~T<Xx<T. |
Find the Fourier series of period 27z for the function f(x) = E x (m—m

(2m—x) in (0, 271). Deduce the sum of the series 173345273+ ...
Find the Fourier series of period 2!/ for the function f(x) = Ixl in (—/, /). Hence
find the value of 172+ 372 + 572 4 - oo

Find the Fourier series of period 27 for the function f(x) = Isin x| in (-7, 7).
Find the Fourier series of period 27 for the function f(x) = _cos ax in

—r<x < when ‘a’ is not an integer. Deduce the sum of the series z
n= 19” —1

Find the Fourier series of period 2/ for the function f(x) = ¢* in (0, 20).
Find the Fourier series expansion for the function f(x) = cosh ax in (-7, 7).
Find the Fourier series of period 4 for the function f(x) defined as follows in (-2, 2):
-2, in-2<x<l1
B -1, in-1<x<0
TO=101 no<x<
2, inl<x<?2
Find the fourier series of period 27 for the function
cosx—sinx, in(-m,0)
Jo) = { . .
cosx+sinx, in (0, )
11

1
Hence deduce the sum of the sum of the series — ——
1.3 3.5 5 7

Find the Fourier series of period 6 for the function

) 2x+x%, in(=3,0)
X) =
2x—x%, in(0,3)

Find the Fourier series of period 27 for the function

£ = {—nx — xz, in (-, 0)

nx—x%,  in(0,7)

"
2

Deduce the sum of the series (i) 2— and (ii) 2
n=1
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46. Find the Fourier series of period 4 for the function

0, in(-2,-1)
fx) =<x+x3, in(-11)
0, in (1,2)

47. Find the Fourier series of period 2I for the function
I+x, in(=1,-1/2)

f(x) =40, in (-1/2,1/2)

[—x, in(l/2,1)

48. Find the Fourier series of period 27 for the function

x—1, m—-nw<x<0
&)= {x+1, in0<x<rw

49. Find the Fourier series of period 27 for the function

—(r+x), in(-m,—m/2)

fx) =3z, in(-z/2,7/2)

T—X, in (w/2, )

50. Find the Fourier series of period 6 for the function

0, in-3<x<-1

f(x) = y1+cosmx, in—-l1<x<l1

0, inl<x<3

5A.9 HALF-RANGE FOURIER SERIES AND
PARSEVAL'S THEOREM

Introduction

If a function f(x) is to be expanded as a Fourier series of period 2/, f(x) should be
defined in a range of length 2/, in particular, in the range (-, /) or (0, 2/). But in some
situations, the value of f(x) will be available only in a range of length /, in particular
in the range (0, /). Without knowing the value of f(x) in the full range, i.e., either in
(1, 1) or in (0, 2I), we cannot expand f(x) as a Fourier series of period 2/, since the
Fourier coefficients cannot be found out.

In such situations, i.e., when the value of f(x) is given in (0, /), we assign some
value for f(x) in (-, 0) [or in (I, 2/)], so that f(x) is defined completely in the full range
(=1, ) [or in (0, 2])]. If we assign arbitrary value of f(x) in (-/, 0), the Fourier series of
f(x) will contain both cosine and sine terms. This kind of Fourier series of period 2/,
resulting from arbitrary assignment of value for f(x) in (-, 0) is not of interest.

If we assign a suitable value for f(x) in (-, 0) so that the given value of f(x) in
(0, /) and the assigned value of f(x) in (I, 0) together make f(x) even or odd in (-, [),
then the Fourier series of f(x) will be of period 2/ and will contain only cosine terms
or sine terms respectively. Such series are called Fourier half-range cosine series or
sine series respectively and will represent the given value of f(x) in (0, /).
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Note &5

The term ‘half-range series’is used because the Fourier series is of period 2I,
even though the function is defined in a range of length .

Theorem

A function f(x) defined in (0, /) can be expanded as a Fourier series of period 2/
containing (i) only cosine terms and (ii) only sine terms, by extending f(x) suitably
in (-1, 0).

Proof

Let f(x) =¢(x)in (0, )

(i) Let us assign the value f(x) = ¢(—x) in (-/, 0). By the definition of an even
function given in Section 5A.6, f(x) is even in (-/, [).

Fourier series of f(x) will be of the form

a - nmwx
flx) = 70+ Zan cosT , Where

n=1

I
2

a. = —_[f(x)cosﬂdx,nzo
l0 I

(i) Let us assign the value f(x) = —¢(—x) in (-, 0). By the definition of an odd
function given in the previous section, f(x) is odd in (-, /).

Fourier series of f(x) will be of the form

- . NTmw
fx) = zbn Slnnl—x, where

n=1

2[
7jf(x)sm—dx
0

Note £5

1. The values ¢(—x) and —¢(—x) assigned to f(x) in (—I, 0) in order to make f(x)
even and odd respectively in (-, [) are called the even and odd extensions
of f(x) in (-, 0).

2. The evaluation of a, and b, by the modified Euler’s formulas requires only
the given value of f(x) in (0, ).

Theorem

A function f(x) defined in (0, /) can be expanded as a Fourier series of period 2/
containing (i) only cosine terms and (ii) only sine terms, by extending f(x) suitabley
in (1, 20).
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Proof
Let J(x) = ¢(x)in (0, ])
(i) Letus assign the value f(x) = ¢(21 —x) in (1, 21). Let the Fourier series of f(x)
be given by
fx) = oy Zan cos X 4 an sinml[—x
n=1 n=1
1% nmwx
Now b, = YJf(x) sianx
0

1 21
- jq)(x)sin%dx+J‘(])(Zl—x)sinmlr—xdx}
0 )

(1 0
. NWX . nTm
= | [ oCosin==dv+ [ 9y sin==(21 - y)(—dy)}
Lo 1
on putting 2/ — x =y in the second integral.
1] | . nmx r . nmwy
=7 j¢(x)sdex—j¢(y)sdey =0
0 0

This means that the Fourier series will contain only cosine terms.

o

) a nmwx
i.e. Jfx) = U a, cos——

n=1

~ | —

Now a

1 21
Iq)(x) cosmedx + J 621 —x) cos#dxil
0 I

[ 0
= jd)(x)cosmedx + J‘q&(y)cos%(Zl - y)(—dy)] .
0 !

on putting 2/ — x = y in the second integral.

1 I
= Jq)(x)cosﬂlxdx+‘|‘¢(y)cos@dy}
0 0

l
2
ie. a,= = [px)cos™ 2 dx, n20
1 !
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(i) Let us assign the value f(x) = -¢(2/ — x) in (I, 2I).

Letf(x)= 20 4 Y a, cos X 4 Y b, sin?™*  Proceeding as in (i), we an prove
that n=1 n=1

a,=0, h=0
The Fourier series of f(x) will contain only sine terms.
ie. 1 = b, sin
n=1

Proceeding as in (i), we can prove that

1
2
b=~ Fosin 2T gy
1 /

Note &5

1. The extended values of f(x) in (I, 2l), namely ¢(2] — x) and —¢(2] — x) are
only the periodic extensions in (i, 2I) of ¢(—x) and —¢(—x), that are the even
and odd extensions of f(x) in (-1, 0).

2. Evenin this case, the evaluation of a,, and b,, requires only the given value
of f(x) in (0, 1).

5A.10 ROOT-MEAN SQUARE VALUE OF A FUNCTION

Definition ;e
If a function y = f(x) is defined in (c, ¢ + 2/), then 5 J- y2 dx 1is called the root

mean-square (R.M.S.) value of y in (c, ¢ + 2[) and is denoted by y .

c+21

ljyzdx

Thus yi= —
Y

If y=f(x) can be expanded as a Fourier series in (c, ¢ + 2[), then iz can be expressed
in terms of Fourier coefficients a,, a, and b,. The formula that expresses ¥ 2 in terms
of ay, a, and b, is known as Parseval’s formula which is stated as a theorem.

If y = f(x) can be expanded as Fourier series of the form a_0+ Zan cos

n=1

Parseval’s theorem ( )
— |+

o ' -
an sin (%) in (¢, ¢ + 2I), then the root-mean square value y of y = f(x) in
n=1

(c, ¢+ 20) is given by
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Proof
fx) = %Mianc +Zb sin X in (e 0 +210) (1)
n=1
By Euler’s formulas for the Fourier coefficients,
a, = % [ f(x)cos#dx, n>0 @)
b, = % [ f(x)sin$dx, n>1 3)
Now, by definition,
7= = [ a
_ 2% :+2lf(x)[a70+gancosm;—x+gbn sinml[—x}dx, using (1)

_ay 1 c+21 °°a_n 1 c+21 nwx
- 4ch f(x)dx}+§ 2{1L f(x)eos= dx}

< b, |1 fer2l . NTTX
+,§?{7L f(x)sdex}

=0 a0+2— a, +2 b,, by using (2) and (3)

1 2
=—ay;+—) a, +—an

2 n=l 2 n=l
Corollary 1
If the Fourier half-range cosine series of y = f(x) in (0, /) is —+2a cos— nx
then n=1

y2= la +— Za where y? —ljlyzdx
470 24T 170

Corollary 2

. . . ) . ~, . hmx
If the Fourier half-range sine series of y = f(x) in (0, 1) is Zb,, SIHT , then

n=1

= —an,where y =—jly2 dx

n 1
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Example 1
Find the half-range (i) cosine series and (ii) sine series for f(x) = +in 0, )
(i) To get the half-range cosine series for f(x) in (0, 7), we should given an even
extension for f(x) in (-7, 0).
i.e. put f(x) = (—x)* = x* in (-7, 0)
Now f(x) is even in (-7, 7)

fx) = %Mian cosnx (1)

n=1

a, = E_[ﬂf(x)cosnxdx
Y0

n

2 e
= —J x% cosnxdx
7T 70

. . /4
_ 2 xz(smnx)_zx(—cozsnx)_'_ 2(—s11;nx)
V4 n n n 0

4
= " -1 = ,n#0
7[”2 n2

_ 2 3 _2 ) _2 2
ao—;fof(x)dx—;fox dv="7

The Fourier half-range cosine series of X is given by

2

2= ﬂ_+42 (_12) cosnx in (0, )

n=1 N
(i) To get the half-range sine series of f(x) in (0, 7), we should give an odd
extension for f(x) in (-7, 0).
ie. put  f(x) =—(—x)*in (-7, 0)
=—x"in (-7, 0)

Now f(x) is odd in (-7, 7).

flx) = ibn sin nx (2)

n=1
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27 2
b, = = [ foosinnxdx == " sinnxdx
Ty 20

. T
_ g xz(_cosnx)_zx(_51n2nx)+2(cos3nx)
T n n n 0

2|’ 2
= ;{%(—1)"“ e —1}}

2
3[”——1}, if nis odd
n n

-, if nis even

Using this value in (2), we get the half-range sine series of X in 0, m).

Example 2
Find (i) the Fourier half-range cosine series and (ii) the Fourier half-range series of

f(x)z{x’ in0<x<l

2—x, inl<x<?2
(i) To get the half-range cosine series, we give an even extension for f(x) in
(=2, 0).
. 24x, In—-2<x<-1
ie. we put fx) = )
—X, in-1<x<0
Now f(x) has been made an even function in (-2, 2). Here 2/ = 4.

Let the half-range cosine series be

fx)

a4y nwx

—+ ) a, cos—— 1

> Zl )OS (1
22 nmwx

a, = E-[O f(x)cos == d

2
1
= j xcosm—xdx+j(2—x)cosm—xdx
0 2 f 2

. nmwx . nmwx
SIn—— T SIHT COST
=|4x = +:(2-x) -
nw n°rmw nm

2 2 0 2 4 .
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2 . nm 4 nrw 4

cosnmw
nmw 2 n'mw

——sin—+——cos—
nmw 2 nrw 2

8 nrw
= cOS— —
n*r? 2

0, if n is odd

4
— - 1+C1)

2
— 5 (D" —1], if nisevenand =2m
m

0, if m = is even
_ 2

] 4

. ifm="isodd
mm 2

0, if n is a multiple of 4

-16

_’
}1271'2

if n is even, but not a multiple of 4

22 1 2
ay = ng(x)dﬁ _([xdx+!(2—x)dx

Using these values in (1), the required cosine series is given by
1 16| 1 1 1
flx) = ———2[—zcos7rx+—200537rx+—200557tx+---oo}
2 w72 6 10
(i) To get the half-range sine series of f(x), we give an odd extension for f(x) in
(-2, 0).
—-(2+x), in—-2<x<-1

X, nm-1<x<0

ie. we put f) = {

Now f(x) has been made an odd function in (-2, 2). Here 2/ = 4.
Let the half-range sine series be

fx) = ibn sin%

n=1
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2
2 nwx
= i _dx
b > _([f(x) sin 5

2
xsinﬂdx+j(2—x)sinﬂdx
2 1 2

si
=[qx| - + 2
nr )
2 4 0
2
n nwx
—Ccos—— BN
+32-x) 55
nw nr
2 4 |
2 nrw 4 nwr 2 V4 4 nr
= ——COS——+— 5 sin——+—Cos——+——-sin
niw 2 n'rm nmw 2 nrm 2
8 S.nmr
_ in 2t
n*r? 2
8 . nm .. .
— 5 sin—-, if nis odd
= n-m 2
0, if nis even

8|11 . nwr 1 . 3nx 1 . Snx
fx) = —| —sin———sin——+—sin———---o0
2 ¥ 2 5 2

Note £5

From the above two examples, it is clear that any function defined in (0, [)
can be expanded as a cosine series and also as a sine series. Depending on
the nature of the Fourier series required, we give corresponding extension
for the function in (-, 0)

Example 3
Find the Fourier half-range cosine series of the function f(x) = (x + 1)2 in (-1, 0).
Hence find the value of 1+L2+i2+i2+---oo .

2° 3 4

To get the half-range cosine series of f(x), we give an even extension to f(x) in
(0, 1), i.e. we put f(x) = (=x + 1)*in (0, 1)
Now f(x) is even in (-1, 1)

fx) = a—0+ Zan cosnmx,since 21 =2

n=l
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2 ¢l
a, = TJ.O f(x)cosnmxdx

1
= ZJ(I —x)* cosnmxdx
0

Note &5

We do not use the given value of f(x) in (-1, 0) for evaluating a,, but use

the assigned value of f(x) in (0, 1). Hence extra care should be taken while

assigning the value of f(x) in (0, 1). However, a, can also be found out by
0

using the formula a,, = %J‘ (x+ 1)2 cosnmxdx
1

i . 1
0

4
=ﬁ,ifn¢0
nmw

1 1 371
ay= %Jf(x)dx=2J‘(1—x)2dx:2{(1__;) }
0 0 0

=2/3

The required half-range cosine series is

This series represents (x + 1)2 in (-1, 0) and (1 - %)% in (0, ).
x = 01is a point of continuity for f(x).

[Sum of the Fourier series of f(x)], -, =/(0)

1
ie SR
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Example 4

Find the half-range sine series of the function f(x) = 7 — x in (7, 27),by suitably
extending f(x) in (0, 7). Deduce the sum of the series 1 — 1/3 + 1/5 — 1/7 + -+ oo, If
f(x) = ¢(x) in (0, [), we should assign f(x) = —¢ (2] — x) in (/, 2/) in order to get a sine
series.

Hence if f(x) = y(x) in (I, 2/), we should assign f(x) = —y(2/ — x) in (0, /) in order
to get a sine series. This is obtained by putting —¢(2/ — x) = y(x) and by making the
transformation 2/ — x = u.

Since f(x) = 7 — x in (7, 27), we put f(x) = —{mr— 27w —x)} in (0, 7) i.e. we put
f(x)=m—x1in (0, 7) to get sine series.

Let the Fourier sine series of f(x) be

f&)= Y b,sinnx
n=1
2 V4
b = —J(n’—x)sinnxdx
o

2 cosnx sin nx 4
< Flemo(= ()
T n n 0

2

n

Hence ~
fx) = 2lein nx (1)
n=l n
Putting x = /2, we can get the series, whose sum is required.
x = m/2 is a point of continuity for f(x).
[Sum of the Fourier series of f(x)], - z» =f(7/2)

ie 21—l l—l-i----oo =n-r/2
1 3 5 7
1 1 1 1 T
_——t——— oo = —
1 3 5 7 4
Note &
If the specific value of the extension of f(x) in (0, ) is not required, we can

2r

also evaluate b, by using the formula b, = — J. (m — x)sinnx dx
V4

Example 5
Find the half-range cosine series of f(x) = x(/—x) in (0, /). How should f(x) be extended
in order to get this cosine series (i) in the range (—/, 0) and (ii) in the range (/, 2/)?

Let f(x) = a_0+ 2 a, cos% , since the length of the given half-range = /.

n=1
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2 ! nwx
a, = —jf(x)cos—dx
l l
0
2 2 nmwx
- —j(lx—x )cos——dx
l l
0
1
nmwx nmwx nmwx
SIHT —COST —SlnT
= = (x—x%) —(-2%)| —55— [+ ()| —=
nm n

21
== [—lcosnm—I]
n°r
20°
= -+
n’m?
0, if nis odd
=3 47
-— if nisevenand # 0
n'm
I
2 ¢l 2 2| X 12
ay=—| (x—x)dx=—|———| =—
0 l-[O( ) 1[ 2 3 3
Required half-range cosine series is given by
2 2 e
Sx) = L s icosn)c or
2 2
6 77,3761
=——— —20052nx
6 T o=

To get this half-range cosine series, we should assign f(x) = —(Ix + xz) in (-1, 0) and
assign f(x) = (21 — x) (x =) in (1, 21).
Example 6
Find the half-range sine series of f(x) in (0, A), given that
Fo) = {(/’L o)x, ?n 0, ¢)
(A=x)c, in(c, A)

We give an odd extension to f(x) in (A4, 0).

. ) 00 —(A+x)c, in(=A,—c¢)
1.C. =
e wepd Y7 A-ox  in(c0)
Now f(x) is odd in (-4, A).
Let f@) =3 b, sinTx (1)

A
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b = z}f(x)sinm—xdx
L) 0 A
21 ¢ nmwx 4 nmwx
= — J.(/'L—c)xsin—dx+J.(/'L—x)csin—dx
A 0 A . A
Cos nex sin nex C
2. Rl A
= /l(l o)l x l + e
A 22 0
2
cos nrx sin nex
2, AT A
+ n (A=x) w )
A 22

———cos + sin
A

_ 2(A-c)| cA nme  A* | nme
- o A nlm A

2¢ {l(/l—c) nwe A% nn’c:l
+ = cos +

A nr A nig? A
3 272 in nmc
n*r? A

Using in (1), we get the required half-range sine series as

nmwx

A

2 o
fx) = 2); ZSin nre sin
T n=1 2’

Example 7

Find the half-range cosine series of f(x) = sin x in (0, 7).
We give an even extension for f(x) in (-, 0).

i.e. we put f(x) = —sin x in (-7, 0).

Now f(x) is even in (-7, 7).

Let fx) = a70+2an COSnx

n=1
2 4

a, = —Jf(x)cosnxdx
s

V4 a3
= EJ‘sinxcos nxdx = lJ‘[sin(n +1)x—sin(n—1)x]dx
s s

1 [—cos(n +1)x | cos(n—1x } g

T n+l n—1

0
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n+l 1yl
e eyt o
| n+l n—1 n+l n-1

B %Knil_nl—J{l_(_Dn_l}}

5-55

= ————{1-(D"")
717(n -1
L, if nis even
= 7r(n -1
0, if nisodd and # 1
4 . .
ay= —,onputtingn=0ina,
T
T
a, = gjﬂsinxcosxdx=l'|‘ sin2xdx
-0 T

_1 —cos2x " _
b4

Using these values in (1), the requlred half-range cosine series is obtained as

Example 8
Find the half-range sine series of f(x) = sin ax in (0, /).
We give an odd extension for f(x) in (-, 0).
i.e. we put f(x) = —sin [a(—x)] = sin ax in (-/, 0)
. f(x)isodd in (-, )

Let f(x)

- . NTX
z b, sin——
[
n=1

i
2

b = —Jsin ax-sinﬂdx
1 0 l

1
= l cos(ﬂ—ajx—cos(ﬂ-%ajx dx
lO l l
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1 1
= sin(nw —al) — . sin(nx + al)
a

nrw—al

1 .
=——(-)"sinal +
nw—al nrw+al

(=D)"sinal

2nrw

= (=1)"sinal-
n*n? —a*l?

Using this value in (1), we get the half-range sine series as

) . & =D"n | onmx
sin ax = 2xwsinal sin
,% n’r* —a*l? )
Example 9
Find the half-range cosine series of f(x) = x sin x in (0, 7). Deduce the sum of the
series L_L_i_L...oo
1.3 35 57

We give an even extension for f(x) in (-7, 0)
ie. we put f(x) = —x sin (—x)
=x sin x in (-7, 0)
Now f(x) is even in (-7, 7).

Let fx) = a?0+2an CcoSnx (1)
n=1
2 V4
a, = —_[xsinxcosnxdx
o

_ L j x[sin(z+ 1)x —sin(n — 1)x] dx
4 0

1{ {—cos(n+1)x} sin(n+1)xT
=—|x +
T n+l1 (n+1)2

0

1{ {—cos(n—l)x} sin(n—l)xT
——|x +
n n—1 (n—1)*

0
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1 1
- _ -1 n+l —(—1 n—1
n+1( ) n—l( )

n—1
=<—1)”“{ L1 }:2(‘1) fn
n

|

-1 n+l
ay=2
271'
a, = —jxsinxcosxdx
o

171'
= —jxsinzxdx
7[0

1 —Ccos2x sin2x "
=—|x +
T 2 4 0

-1
2

Using these values, we get the required cosine series as
) 1 < ()"
X sin x = 1——c0sx+22 ( 2)
2 n=2 N =

cosnx in (0, )
T, . o .
x= By is a point of continuity of x sin x

[Sum of the Fourier series of f(x)] , =f (%j
A

. Y 7 A
i.e. 1+2 cos— =—
Z; n® -1 2 2
ie I3 R S SN
1.3 35 57 2
1 1 1 o T-2
1.3 35 57 4
Example 10 )
sinh ax

Find the half-range sine series of f(x) =

in (0, )
T

We give an odd extension for f(x) in (-7, 0).

—sinh(-x) _sinh ax .

ie.  we put fx) = — - in (-, 0)
sinh am sin ax
Now f(x) is odd in (-7, 7).
. Let f&) = Y b, sinnx

sinnx dx

) =£Ts'inhax :
nosmhan

5-57

2

ey
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1 T T
=— jew‘ sinnxdx—je_‘”‘ sinnx dx
zsinh ar 0 0

4

1 eax
= — > (asinnx —ncosnx
wsinhar| | n® +a

0

T

—ax
e .
- (—asinnx —ncosnx
2, 2

n“+a 0

1 l:—n(—l)"e“” . n(—l)”e_“”}

mwsinhar| n?+4d? n* +a°

1 2(=1)"'nsinh ar
zwsinhar n? +a>

sinhax 2 i -D""'n
sinhar 74 52 +4?

Example 11
Find the Fourier series of period 2 for the function f(x) = ¥ —xin (—m, m). Hence de-
.11 1 1 . | 2
duce the sum of the series —+—+—+—-+--c0, assuming that 2 — - .
]4 24 34 44 ot n2 6
Let Pox= a—0+2ancosnx+2bn sinnx in (-7, 1) (1)
n=1 n=1

1 V4
a = —j(xz—x)cosnxdx
/4
-
T

2
= —J x% cosnxdx [ xcosnxisoddin (-7, )
Vg
0

. . 4
_ 2 xz(s1nnx)_2x(—00§nx)+2(—sn;nxj
T n n n 0

4
= —2(—1)”, ifn#0
n
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17 2% 2
ay = - j (x* —x)dx =;jx2dx =§n'2
- 0

V3

1
= — J (x2 —x)sinnxdx
77:—71.’

Ny
|

4
EJ‘ xsinnxdx [ x% sinnx is odd in (—m, m)]

o
2 [—cosnxj sinnx |
=—|x +—
/9 n n 0
) ;
=—(-D
n
Using these values in (1), we get
3 oo n ) n+l
-1 -1
f(x) = %+42( 2) cosnx-i-ZZ( ) sinnx in (-7, )
n=1 N n=1

Now the terms of the series z — whose sum is required, are the square of the
n=1 1
Fourier coefficients a,, multiplied by a constant. Whenever this situation arises, we
apply Parseval’s theorem, which states that

1 1 & 1 & _
Zaé +Ez aﬁ+§2 b,f =Y2, the square of the R.M.S. value of y = f(x) in
n=l n=1
(=m, )
14 4, 1316-(=D" 1S 4-(=1)>?
Thus — =T +— +—
4 9 ZZ; n? 2; n?
_ LT(XZ_X)Z dx
T 2rm
-t
4 oo oo T
. V4 1 1 1 4 2
1.e. —+8)) —+2) — = — 2| (x" +x7)dx
9 %n“ %nz 2w '([( )
1
L L
5 3
. S 11 1 <1
1.€. 8 — = ——— ﬂ4+_7[2_2 i

. o | rt 1
ie. 2—4 = —( —=—
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Example 12
Find the Fourier series expansion of period 2/ for the function

I OD e deduce th f the series 4L 41
= t t 400,
fx) 0. in(L20) ence deduce the sum of the series 14+ 4+54+
2
assuming that i+i+i+...m:”_.
12 22 3 6
Let f) = a70+2an cosnlﬂ+2bn sin—mlrx in (0, 21)
n=1 n=1

21
a, = lJ-f()c)cosmr—xdx
l0 l

1
= l-'I‘xcos@clx
l l

0
I
. nwx
1 sin—— —
_ l
=—|x +
l ﬂ n2n.2
l l 0
-
n’m?
=, if nisodd
=22
0, if niseven and # 0
I
1
ay = —'[xdx = L
Ly 2
y nwx
b, = —[xsin——dx
0
l
cos nmwx
1 T R - n
= | x ||| ==
l nr n°rmw nmw
l I 0
Using these values in (1), we get
I 20 & 1 nmx 1&ED" | oamx
= ——— —Cos +— sin in (0, 2/
fo=3"—> 123,5 eos— nz‘; . 7= in (0,21)

Now the series to be summed up contains constant multiples of squares of a,. Hence
we apply Parseval’s theorem.
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21
—a0+ Z 24— sz = lj[f(x)]zdx
0

lzli 4 1& P 1!

i. —+— += = — [ +%dx
e 16 2 n=13.5,... n'nt 2 n=1 n*n’ 21 '([x
. ? o2 1 ? r 1
1.e. —t )t = —
16 z* = @en-* 272* 6 6

. 2.3 1 11
1.€. =N - - -
42‘ 12 48

“@en-»* 6 16

Example 13

Find the Fourier series expansion of period / for the function

X, in (O, L)
2

Jfx) =

1

; Hence deduce the sum of the series z
-, i (_ zj -

Here the length of the full range = period of the Fourier series required = /.

The Fourier series of f(x) is of the form

fx) = —+Za cos ﬂx+2b 1n(0 I)
X
a,= X cos dx
¥ /2Jf< )
12 l
= % f cos n-xdx+ '[(l—x)cosznﬂxdx
l
L0 112
_ I
. 2nmx 2nmx |2 . 2nmx 2nmwx
2 sin ; cos ; sin 7 cos ]
z [ —
= 71" 2um 4n*m? e 2nr1 4n*m?
I 2 ! 5

5-61

1

2n-1)*

| ~

ey
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21

T3 2 if n is odd

0, if niseven and #0

1l 2 é 1

ag = Tjf(x)dx=7 J.xdx+‘!‘(l—x)dx
—0 0
2 2

2
nwx dx

L
j in 217X dx+ I(l Xx)sin
0

2

~

2nmx . 2nmx
sin

~ |
~
~

+
2nm 4n*m?

I
2nmx . 2nmx
—cos—— | sin

l
1— —_ =
+1(1-x) - i 0

l i

|~

Using these values in (1), we get

2 1 2nmx
fo="-= 3 —cos
4 7[2 n= 123‘5 i’l2

in (0,1)

Since the series to be summed up contains constant multiples of squares of a
apply Parseval’s theorem.

we

n’

1, 1 2 1 , 1% 2
J— +— +— b = —
a0 XX = gfireord:
I
2 2 e 2 I
1 4
ie. = - 2 :i_[xdx J-(l x)*dx
16 2 nt n=135,.. ” l 0 1
2
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? oara 1 e B
ie. R . N
16 r* nz:{(zn—l)4 lli

24 24
l2
"2
28 1 1
ﬂ4,§{(2n—l)4 48

Example 14
Find the Fourier series of period 27 for the function

o) = {1, in (0, 1)

2, in(m,2m)
. 1 1 1
Hence find the sum of the series —2+3—2+5—2+-~oo.
1
Let fx) = %Mzan cosnx+ Y b, sinnx in (0, 27)
127r
a,= — J. f(x)cosnxdx
T
0

1 K 2

= — J.1~cosnxdx+ J 2-cosnxdx
T

L0 T

1 I sinnx \" sin nx

=—[ j +2( j ,if n#0
b4 noJy n o).

=0,ifn=0
1 K 2r

ay=—| [1dx+ [ 2dx|=3

”_0 T

1 2
b, =— j F(x)sinmxdx
4 0

1 T 2r
- = J.l-sinnxdx+ jzsinnxdx
T 0 T

5-63

ey
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T 2r
l [ cosnx s COSnx
(o] of e

Loy
niw

5-64

-2
—, if nisodd
=3nm
0, if nis even
Using these values in (1), we get
3 2 « 1
fe)==== 3 =sinnxin(0,27)

2 w351

Since the series to be summed up contains constant multiples of squares of b,, we
apply Parseval’s theorem.

1 1 1 1 2
2 2 2 2
—as +— a- +— b = — X dx

9 1 43 1 1%,  ,
ie. ==Y ——— = —||1?dx+ [ 2% dx
4 2 g? 2:; 2n-1% 2r¢ h i
9 2L 1 5
ie. 4=y ——— ==
I 2_; Q2n-1% 2

Example 15 .

Find the half-range sine series of f(x) = a in (0, /). Deduce the sum of li2+3—2+ 5—2+ cero0
Giving an odd extension for f(x) in (-/, 0), f(x) is made an odd function in (-1, /).

Let fo = b, sin# (1)
1
b = 3jasinﬂdx
"= I
0
1
_cos X
2a l 2a
S5 S .
T =)
) 0
4
24 ifnisodd
= Nnmw

0, if nis even
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Using this value in (1), we get

4 |
a=—=Y —sinin(,1)
T =135, 1 l

Since the series whose sum is required contains constant multiples of squares of b,,
we apply Parseval’s theorem.

LESYRTN | SO
S 2bn = li[f(x)] dx

2 I
O O (T S
2 7 i5s. @n-1y
2

ie. SLZZ _ > = a’
n=1 (Zl’l - 1)
y_L =
o @n-1* 8

Example 16

Find the half-range cosine series of f(x) = x in (0, 1). Deduce the sum of the series

1 1 1
1_4 3_4 + 5_4 + e 00 |

Giving an even extension for f(x) in (=1, 0), f(x) is made an even function
in (-1, 1).

Let fx) = a—0+ian COSnmTX @))

n=1

1
2
a, = T‘[f(x)cosmrxdx
0

. 1
sinmwx cosnmwx
= 2 X + > 2
nmw nn 0

2
= {-D" -1}
n*rn?
—, ifnisodd
=22
0, if nisevenand # 0

1
2
ag = T_[xdle
0

Using these values in (1), we get

1 4 & 1
X=———:" —-cosnmx in (0, 1)
2 ﬂz n=1,23,’5,... l’l2
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Since the series to be summed up contains constant multiples of squares of a,, we
apply Parseval’s theorem.
1 1
—at+=Yal = —J-xzdx
4 2 Ly
1 116 « 1 1
ie. —t—— — ==
4 2 7[4 n=1,z3}5,‘.. l’l4 3
. 8 < 1 1
ie. — 2 = —
x E(zn—l)“ 12
51
“en-p* 9%
Example 17
Find the half-range sine series of f(x) = [ — x in (0, /). Hence prove that
R _=
222 3 6
Giving an odd extension for f(x) in (-/, 0), f(x) is made an odd function in (-1, [).
- . NmX
Let f@) = b, sin—= (1)
n=1

]
2
b, = = [U-x)sin " dx
i I

nmwx . nmx
2 _COST —SIHT
= Zla-» -
l nr n*r?
[ 2 0
2
- niw

Using this value in (1), we get

2AS
Iox= 2 LG X 0.
T l

n=1

Since the series to be summed up contains constant multiples of squares of b,, we
apply Parseval’s theorem.

Iy, 1 2
2 -7£<l—x> dx
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1 4P &1 l(l—x)3l &
i.e — —z— = - —— -
2 7t2 =1 n2 l _3 3
" 0
1.7
n=1 l’l2 - 6
Example 18
Find the half-range cosine series of f(x) = (71— )c)2 in (0, 7). Hence find the sum of the
.11 1
series 1—4+2_4+3_4+...°°,

Giving an even extension for f(x) in (-7, 0), the function f(x) is made an even

function in (-7, 7).

)
Let flx) = 7+ a, cosnx

2% )
a. = —j(n—x) cosnxdx

ey

=g{(”_ )Z(mnnxj (=207 - x)}( cozsnxj+2[—sir;nxﬂ”
T n n n 0

4
= —2,1fn¢0
n

2 2 ((m-x?)" 2
“07“”"‘)2“’“:;{%} =37
0

0

2

2 oo
Using these values in (1), we get (7 — x)* = %+ 16 2 izcosnx in (0, 7r) . Since

n=1 1

the series to be summed up contains constant multiples of squares of a,, we apply

Parseval’s theorem.

a(§+1 2 1” 4
—_— a = — —_
RPN ﬂ!(n ' dr

- ARSI SO B (G Sl . 4
e 9o 2 & T 5 [ s
. o | 4 4
ie 8 —/ =—=m
,,zzln“ 45
vz
290

=
Il
—_
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Example 19

Find the half-range sine series of

X, in [O, ﬁj
2

flx)= in (0, m). Hence find the sum of the series
T—Xx, in (E,ﬂ:)
2
1 1 1
1—4+3—4+ pr +--

Giving an odd extension for f(x) in (-7, 0), the function f(x) is made an odd
function in (-7, 7).

Let f(x)= an sin nx (D
27[
b = —jf(x)sinnxdx
i1
0
_ 20 prr2 . dr p.d . e
= 71;_-[0 X sin nx +jﬂ/2(n—x)s1nnx

. /2 . T
2 COSnx sin nx cosnx | sinnx
= —|3x| - +— +4(T—x)| — -—
T n n o n o

2| —m nt 1 . nm 1w nt 1 . nm
= — —COS—+—2$11‘1—+—COS—+—28111—
T _271 2 n 2 2n 2 n

4

. nw .
= —2s1n7 , which becomes zero for even values of n.
n

Using this value in (1), we get

4 &
fx)=— z —sm—smnx in (0, )
T pizs,.n°

Since the series whose sum is required contains constant multiples of squares of b,,
we apply Parseval’s theorem.

1 T
30 = [P dx
7T Y0

/2 2 T 2
-[0 X dx+Jn/2(ﬂ—x) dx}

116 & 1 anm 1[
.. —— E —SsIn- — = —
2 o 2
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. 8 < o
ie. — —
n 2:‘ -1t 12
[ sin% ==1, when n is odd and sin® % = 1)
y_L =
a1 2n— n* 96

Example 20

Find the half-range cosine series of f(x) = x (r — x) in (0, 7). Hence find the sum of
the series 1/1% + 1/2% + 1/3* + -+ oo,

Giving an even extension for f(x) in (-, 0), the function f(x) is made an even function
in (-7, )

Let fx) = a?O+ a, cosnx (1)

n=1

2
a, = —Iﬂx(ﬂ—x)cosnxdx
Y0

_ 2 (n_x_xz)(sinnxj_(n__zx)(_ cosznxj+zsin;1x i
T n n n ],

2
= — (D" +1)
n

0, if nis odd

4 .
- if nisevenand #0

n
© 2 3" 2
ag = zJ‘(n'x—xz)d.)c=g n_x__x_ -
b4 b1 2 3 3
0 0
Using these values in (1), we get
n? - 1
x(m—x)= ——4- » —cosnxin(0,7)
6 n=2,46,.. 1
n? 1
or x(m—x) = ?—Z—ZCOSZYLX in (0, 1)

n=1
Since the series to be summed up contains constant multiples of squares of a,, we

apply Parseval’s theorem.

n’

Lo I 2 _Ll(7o 2
—ay+—Y a, =—| x(r—x)dx
470 2Z " nJO 7=

- nt 131 Ler 5 3, 4
ie. g"‘znz:{n—“ = ;jo (m°x” =2mx” +x")dx
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3 4 5\ 4
Y T E AN 2 I
T 3 45 ) 30

o 4

i, Iyl 7

24, 180

vl _n=

“nt 90

Exercise SA(b)
Part A (Short-Answer Questions)

1. Why is Fourier half-range series called so?

2. When a function is defined in (0, 21), is it possible to expand it as a Fourier
half-range series? How?

3. If f(x) is defined in (0, /), how should f(x) be defined in (/, 0), so that the
Fourier half-range series of f(x) may contain (i) only cosine terms and (ii)
only sine terms?

4. 1If f(x) is defined in (0, ), how should f(x) be defined in (/, 2/), so that the
Fourier half-range series of f(x) may contain (i) only cosine terms and (ii)
only sine terms?

5. When f(x), defined in (-7, 0), is expanded as a Fourier half-range cosine
series, write down the formula for the Fourier coefficients.

6. When f(x) defined in (-/, 0) is expanded as a Fourier half-range sine series,
write down the formula for the Fourier coefficients.

7. Write down the even and odd extensions of f(x) in (-, 0), if f(x) = X +xin
©, I).

8. Write down the extension of f(x) in (I, 20), if f(x) = x({ — x) in (0, [) so as to
get cosine and sine series.

9. Define the root-mean square value of a function f(x) in (0, 27).

10. State Parseval’s theorem.
11. If the impressed voltage E at time ¢ is given by the series E =

2 E, sin(nwt +c,) , find the effective value of E.
n=135...

Note &5

The R.M.S. value is also called the effective value. Rewrite E as

E= 2 (E, sina, )cosnot + 2 (E, coso,)sinnwt and use Parseval’s

n=135,... n=135,...
theorem. -
12. If an alternating current / is represented by the series / = z I, sin(nwt +c,),
find the effective value of 1. n=135,...
13. If the half-range series of f(x) = 1 in (0, [) is given by
4 < 1 . 2n-Drx

, find the value of 12 +3 72+ 572+ ... oo,

— sin
= @2n-1) I
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14.

15.

Part B
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.
29.

5-71

If the half-range cosine series of (*—x+1/6)in0<x<1is a_0+ Zan cos
nrx, find the value of aj +2 aj, . 2

If the half-range sine series of x(7—x) in 0 <x < 7wis Xb,, sin nx, find the value
of b2,

Obtain the half-range cosine series of f(x) = 7 —x*in (0, m). Deduce the sum

of the series i—i 1

+—.
1> 2% 3
Find the half-range sine series of f(x) in (0, 2[), given that

oo [ in (0, 1)
T = -0, .2

Deduce the sum of the series i+i+i+-uoo.
2732 g2

++ 00 .,

Find the half-range cosine series of the function f(x) = (x + 2)2 in (=2, 0).

— 1
Hence find the value of 2—2 .

n=1
Find the half-range sine series of the function f(x) = [ — x in (I, 2/). Deduce
the sum of the series 1 — 1/3 + 1/5 - 1/7 + - oo,
Find the half-range sine series of f(x) = x(« — x) in (0, 7). How should f(x)
be extended in order to get this sine series in (-7, 0) and in (7, 27)? Also find
the sum of the series 1 — 1/3° + 1/5° -+ co.
Find the half-range sine series of f(x) in (0, /), given that

éx, in (0, a)
f=3"

—({-x), in(al)
l—a

Find the half-range sine series of f(x) = cos x in 0 < x < . How should f(x) be
defined at x = 0 and x = 7, so that the series converges to f(x) in 0 < x < 71?7
Find the half-range cosine series of f(x) = cos ax in (0, ), where a is neither
Zero nor an integer.

. . ) sinx, in0<x<7n/4
Find the half-range sine series of f(x) = .
cosx, mm/A<x<rm/2

Find the half-range sine series of f(x) = x cos 7x in (0, 1). Deduce the sum of

the series L_L_,_L .00

12 23 34
Find the half-range sine series of f(x) = x sin x in (0, 7).
Find the half-range cosine series of f(x) = 6x> —6x + 1 in (0, 1). Deduce the

sum of the the series LZ_L.FL_L.,. oo

1> 22 3 4
Find the Fourier sine series of f(x) = ¢* in (0, 7).
Find the Fourier series of period 27 for the function f(x) = x in (-7, 7).

Lo 1
Hence find the sum of the series 2—4.
n=11
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30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Find the Fourier series of period 2 for the function fx)= *in (0, 2). Deduce

71_2

the sum of the series Z— , assuming that z > = ? .
n=11 n=1 N

Find the Fourier series of period 2 for the function f(x) = ¥ +xin (-1, 1).

”2

Deduce the sum of the series in%, given that 2’% = ? .
n= n=
Find the Fourier series of period 3 for the function f(x) = 2x — %% in (0, 3).
Deduce the sum of the series 2’%4, given that inlz =72/6.
n= n=
Find the Fourier series of period r for the function1

X, in (0, /2)
fX)=1<r ) Hence find the sum of z—, given that
E—x, 1n(7r/2,7t) n= 1(2 - )
y_L .~
~(2n-1% 8
nm1@n=D7 8 . . 2, in(=2,0)
Find the Fourier series of period 4 for the function f(x) = .
x, in(0,2)
oo 2
1 . b4
Hence find the sum of the series Z—, assuming that 2—2 =—.
S@en-1t mn 0
. . . . . 0, in (0, )
Find the Fourier series of period 27 for the function f(x) = .
I, 1 a, in(m,2m)
Hence deduce the sum of the series 2—2
n=l1 (2n-1)

1, in(0,1)
Find the half-range cosine series of f(x) = in (0, 2). Hence find

) 2, in(1,2)
the sum of the series Z—
n=l1 (2n- 1)
Find the half-range sine series of f(x) = %— x in (0, ) . Deduce the sum of
|
the series Z{ .
Find the half-range cosine series of f(x) = 1 + x in (0, 1). Deduce the sum of

the series 2—
n= ]( n— 1)

. . 2x, in (0, 1)
Find the half-range sine series of f(x) = )
4-2x, in(1,2)
Hence deduce the sum of the series Z;
S @n-1*

Find the half i ies of v O

t - = )
in e half-range cosine sirles of f(x) T—x. in(/2.7) ence
deduce the sum of the series 2;
= n-n*
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5A.11 HARMONIC ANALYSIS
Introduction
We know that the Fourier series of f(x) in (0, 2[) or (-, ) is of the form
fx) = a_0+ zan Cosﬂ+ an sin——
2 n=1 l n=1
ie. f(x) = a—0+2(an cos@+bn sinm—x]
: 2 5 [ l
b
= +21/a +b? nﬂx+ nsin 5L ()
n=1 \/ + bz \/a,zl + bz l
b
Let A, = \lai +b2 and ¢, = tan 1—", so that
a

n

a ) b
cos o, = ————=and sin¢, = ———
[ 2,2 [2 + b2
a, +b, a, +b;

Using these in (1), we get the Fourier series as

a - nwx . nmx .
)= 243 A | cos—=cosa, +sin——sina
2 n l n l n

n=1

a — nwx
= 70+2An cos(T—an) (2)

n=1

If we assume A, = +/a’ +b> and B, = tan Z—

n

(1) will take the form

fx) = a?0+iAnsin(MTx+ﬁnj 3)
n=1

A, cos(@ - Ocnj or A, sin (mlz'_x+ ,an is called the n™ harmonic in the Fourier

expansion of f(x).

The first harmonic A, cos(%—aljor A sin(%+ﬁlj is also called the

Sfundamental term in the Fourier expansion of f(x).
2 2
The second harmonic A, cos (%ﬂ - 052) or A, sin (%ﬂ + ﬁzj is also called the

octave in the Fourier expansion of f(x).

Itis clear that we require the values of a, and b, to calculate the n™ harmonic. When
f(x) is defined by one or more mathematical expressions, the Fourier coefficients a,,
and b, are found out by integration using Euler’s formulas. But in some practical
problems, f(x) will be defined by means of its values at equally spaced values of x in
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the given interval. In such problems, f(x) will be defined in (0, 2/) in a tabular form
as given below:

X Xo | X1 | X2 | T | Kk1

Y=L | Yo [ 2| Y2 | = | Ve

21
Here x| —xp=x, —x; ==X, — X, _| = % and x, = 0 and x, = 21.

When y = f(x) is defined in a tabular form as given above, a, and b, cannot be
evaluated exactly by mathematical integration, but are evaluated approximately by
numerical integration as explained below:

12 nmwx
a, = 7j0 f(x)cos==dx

x isz(x)cosﬂdx
21 !

=2 x Mean value of f(x) cos# over (0, 20)

Note £5

We recall that the mean square value of y = f(x) over (0, 2I) was defined as

j y2dx or j [F(X)]? dx

- nmx nmx
a, ~ 2 x statistical average value of f(x) COST or ycos—— over (0, 20)

1 K nwx /
~2x -3 y,cos——,n=0,12..
K= I
k 1
In particular, ag = 2X— Z v,
r 0
Similarly b ~2x— Zyr sin ””lx n=12..
r 0
Note £

1. When the interval (0, 2l) is divided into k equal sub-intervals, each of length

2 , only k values of y = f(x) are taken into consideration for numerical

computation of a,, and b,,.

i.e. either the values yq, y,, ..., Yx_ 1 corresponding to the left ends of the
various sub-intervals, namely x,, X4, ..., X,_4 are considered or the values
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Y1, Yo, -, Yi corresponding to the right ends of the various sub-intervals,
namely x,, X,, ..., X, are considered, where x, = 0 and x, = 2I.

2. The process of finding the harmonics in the Fourier expansion of a function
numerically is known as harmonic analysis.

3. In most situations, the amplitudes of the successive harmonics A,, A,, As,
... will decrease very rapidly. Hence inmost harmonic analysis problems,
we may have to find the first new harmonics only.

4. Though A, cos (mlr_x - anj or A, sin (mlr_x + ﬁn) is called the n"™ harmonic,

it need not be put in either of these forms. It is enough if we give the n'"

. nmx . NmX
harmonic in the form (a,, cosT + b, smTj .

5A.12 COMPLEX FORM OF FOURIER SERIES

The Fourier series of f(x) in (¢, ¢ + 2[) can also be put in the exponential form with
complex coefficients as explained below:
The trigonometric form of the Fourier series of f(x) defined in (c, ¢ + 2) is

fx) = a—0+2an cosﬂ+2bn sinnlﬂ (1)
n=l1 n=1

. . nwx . NEx
Using the exponential values of COST and smT , we have

f( ) a, +i einfrx/l +e—inn’x/l b einﬂ.’x/l _e—imrx/l
X) = — a _— _—
2 &t 2 " 2i

do S a, ~ lbn inmtx/l S a + lbn i”;”‘
= —+4 _— + 2

n=l1 n=I

a, —ib, a, +ib,

=c, and

If we put %’ =g, =c_,» then (2) can be put as

f(x) = ¢, +zcnein7rx/l +Zc_ne—inﬂ'x/l

n=1 n=1
had . | .
ie. f) = ¢ +26ne"””/l + z cne"””/l
n=1 N=—oc0
ie. f=3 ¢ (3)

n=—co

Equation (3) is called the complex form or exponential form of the Fourier series
of f(x) in (c, ¢ + 2). The coefficient c, in (3) is given by
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n

1
¢, = —(a,—ib
f 2(,, ib,)

1 c+21 . c+21
[ J f(x) OS—dx—— J f(x)sm—dx}

by Euler’s formulas for Fourier Coefficients.
c+21

1
]
c+21

_l J' f(x)eimrx/l dx )

f(x) [cosm;—x —isin ”lﬂ} dx

This formula for ¢, holds good for positive and negative integral values of n and for
n=0.

Note £5

When [ = &, the complex form of Fourier series of f(x) in (c, ¢ + 2r) takes the
form

f =Y c,e™ . where
n=—oco
1 c+2m

&= 5], F(x)e ™ dx

Worked Examples m_

Example 1

Obtain the first three harmonics in the Fourier series expansion in (0, 12) for the
function y = f(x) defined by the table given below:

X 0 1 2 3 4 5 6 7 8 9 10 11
y: 1.8 1.1 03 016 05 15 216 1.88 1.25 130 1.76 2.00
The length of the interval =2/ =12 .. [=6.
The Fourier series of y = f(x) is of the form

fx) = —+Za cos +Zb sm—

The interval (0, 12) is divided into 12 submtervals, each of length 1.
The values of y at the left end-points of the 12 sub-intervals, namely at x =0, 1,
2, ... 11, are given.
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To compute a,, a,, a,, az, by, b,, b;, we tabulate the values of x,, y,, cos

(n=1,2,3)and sin N,

5-77

1 11
a,= 2X—
0 lzrgoyr

a,=2X—
12

r=0

11
! z ¥, cos m?’ 3b, =2 x%z ¥y, sin il

6

nwx,

(n=1, 2, 3) as shown below:

X Yr nX, | . WX, nx, | . TX, X, | . WX,
cos 5 sin 5 cos sin cos 5 sin

0 1.8 1 0 1 0 1 0

1 1.1 0.866 0.5 0.5 0.866 0

2 0.3 0.5 0.866 -0.5 0.866 -1 0

3 0.16 0 1 -1 0 0 -1

4 0.5 0.5 0.866 -0.5 -0.866 1 0

5 0.15 -0.866 0.5 0.5 -0.866 0

6 2.16 -1 0 1 0 -1 0

7 1.88 -0.866 | -0.5 0.5 0.866 0 -1

8 1.25 -0.5 -0.866 |-0.5 0.866 1 0

9 1.30 0 -1 -1 0 0

10 1.76 0.5 -0.866 | -0.5 -0.866 -1 0

11 2.00 0.866 0.5 0.5 -0.866 0 -1

1 1
ag= EZyr = x1436=2.393

1
a, = EZy, cos 5

Tx,

= % [(1.8 =2.16) + (1.1 +2.00 — 0.15 — 1.88) x
0.866 + (0.3 + 1.76 — 0.5 — 1.25) x 0.5]

0.120

b, = _Zyr

g [(0.16 — 1.30) + (0.3 + 0.5 — 1.25 — 1.76) x

0.866

=-0.728

sin—=—

+(1.1+0.15-1.88-2.00) x 0.5]
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1
a, = gZy cos r—Zyr
1
= 5 [(1.8-0.16+2.16-1.30)+ (1.1 -0.3-0.5
+0.15+1.88-1.25-1.76 + 2.00) x 0.5]
=0.527
1 .
b2: gzyr
= é [(1.1+03-0.5-0.15+1.88+1.25-1.76
—2.00) x .866]
=0.104
as = Zyr cos z v, cos—
= g (1.8-03+05-2.16+1.25-1.76)
=-0.112
b —12 i
3= 6 Yr
= % [1.1 -0.16 +0.15-1.88 1.30-2.00]
=-0.248

The Fourier series of f(x) in (0, 12) upto the third harmonic is

f(x) = 1.197+ [0.120 cos%— 0.728 sin%)
+ (0.527 cos%+ 0.104sin %) +(—O.112cos%— 0.248sin %)

Example 2
The following are 12 values of y corresponding to equidistant values of the angles x°
in the range 0° to 360°. Find the first three harmonics in the Fourier series expansion
of yin (0, 27m)

x°: 0 30 60 90 120 150 180 210 240

y 105 205 264 293 270 215 128 1.6 -11.2

x 270 300 330

y:  -180 -158 -35

Since f(x) is defined in(0, 2m), the Fourier series is of the form

7+2a COSnx +2b sinnx .

n=l n=1
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1 1
= 2x— =—-x100.8=16.8
aO 12 rgoyr 6

To compute a,, a,, as, b;, b,, b;, we may use the following graphical method, known
as Harrison’s method, instead of the tabulation method.

Y3, Yo

A
S

Y5 Y11

Fig. 5A.12

Y3, Y7, Y11

Fig. 5A.13

We draw a circle of convenient radius and divide the central angle into 12 equal
parts each of magnitude 30° by means of radii vectors. The radii vectors which
measure the angles 0°, 30°, 60°, 90°, ..., 330° are supposed to be of lengths y,, ¥;, ¥»,
.., 11 (not geometrically) and this is indicated near the ends of corresponding radii
vectors. [Fig. (5A.11)]

1
Now a; = gZy, cosx,
1 (o] (o] o O
=5 [yo cos 0° + y, cos 30° + y, cos 60°+ -+ + y,; cos 330°]

1 . L . ..
= — x sum of the horizontal projections of the various radii
vectors in the Harrison’s circle for 30°.

While computing the sum, those horizontal projections that lie on the right of the
vertical are taken to be positive and those on the left are taken to be negative. Also
those horizontal projections that contain cos 30° are grouped separately and so are
those that contain cos 60°.
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Thus

1
1= = Do =36 + (1 + Y11 = Vs = ¥7) €08 30°+ (3, + y10 = 4 ~ yg)cos 60°]

Note £5

The horizontal projections of y; and y, are zero each.

a, é [(10.5-12.8) +(20.2 -3.5-21.5-1.6) x 0.866 +
(26.4-158-27.0+11.2) x0.5]

-1.740

1
b, = EZyr sin x,

[yo sin 0° + y; sin 30° + y, sin 60° + ... + y;; sin 330°]

— x Sum of the vertical projections of the various radii vectors in
the Harrison’s circle for 30°

While computing the sum, those vertical projections that lie above the horizontal line
are taken to be positive and those below the horizontal line are taken to be negative. As
before the term with sin 30° are grouped together and those with sin 60° are grouped
separately. The vertical projections of the horizontal radii vectors (i.e. y, and y4) are

taken as zero each.
Thus

1 o o
b= 2 (05 =39+ 01 + Y5 = Y7 = yi) $in 30°+ (3 + 34 = yg — 1) 5in 60°]

1
2 (293 +18.0) + (202 +21.5— 1.6 + 3.5) x 0.5 + (26.4 + 27.0
6 + 11.2 + 15.8) x 0.866]

=23.121
To compute a, and b,, we use Harrison’s circle for 60° [Fig. (5A.12)]

1
a, = gz Y, COS2x,

1
’ (o + Y6 =Y3=Y9) + (01 + Y7+ Y5 + Y11= Y2 =Yg = Ya = Y10) X 0.5]

=3.117
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b, éz v, sin2x,

1
5 Vi + Y7+ Y2+ Y3 = Ya— Y10~ Ys = ¥11) X 0.866

=1.126
To compute a; and b;, we use Harrison’s circle for 90° [Fig. (5A.13)]

0.866]

1
a = gZy, cos3x,
1
= g (Vo + Y4+ Yg—Y2—Ys—y10) = 0.483

1 . 1
by = EZyr sin3x, =g O +Ys+Y9—y3—y;—y) =-0.617

The required Fourier series is
f(x) =8.4 + (-1.740 cos x + 23.121 sin x) + (3.117 cos 2x
+ 1.126 sin 2x) + (0.483 cos 3x — 0.167 sin 3x) + -
Example 3

A function y = f(x) is given by the following table of values. Make a harmonic analysis
of the function upto the third harmonic.

x° 45 90 135 180 225 270 315 360 405
y 15 10 05 0 05 10 15 20 15
x°: 450 495 540 585 630 675 720

y 10O 05 0 05 10 15 10

We note that f(27 + x) = f(x)
- f(x) is periodic with period 27
It is enough we consider the values of f(x) in one period, say (0, 27). We also
note that
S(360° —45°) = 1.5 = f(45°)
f(360°-90° = 1.0 =£(90°), etc.
ie. fQRr—x)=f(x)

Hence the Fourier series of f(x) will contain only cosine terms, i.e. b, = b, =
by = 0. The interval (0, 27) is divided into sub-intervals, each of length r ,Le. it is
divided into 8 sub-intervals. 4

Hence we should consider only 8 values of y = f(x) for harmonic analysis, i.e. the
values of y = f(x) at the right ends of various sub-intervals, namely, 45°, 90°, 135°, ...,
360°. We shall call the values of y as y;, ¥,, 3, ... s

1 1
ay = 2><§Zy, = X80=20
r=1
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The values of a,, a, and a; are found out using Harrison’s circles for 45°, 90° and 135°
as shown in Figs 5A.14, 5A.15 and 5A.16 respectively.

Fig. 5A.14 Fig. 5A.15 Fig. 5A.16

1
a, = Z [(Vg—y4) + (v + y7— 3~ y5) cos 45°] = 0.854

1
a, = 1 Vat+yg—y2—Y6) =0

ay=— [(yg—y4) + 3+ y5—y,—y7) cos 45°] = 0.147

The required Fourier series is
f(x) =1.0+0.854 cos x + 0.147 cos 3 x

Example 4
A function y = f(x) is given by the following table of values. Make a harmonic analysis
of the function in (0, T) upto the second harmonic.
X: 0 T/6 1/3 12 27/3 5T/6 T
y: 0 92 144 178 173 11.7 0
The interval (0, 7) is divided into sub-intervals each of length 77/6, i.e., it is divided

into 6 sub-intervals.
Hence we consider only 6 values of y = f(x) i.e., ¥, y;, ..., Y5 corresponding to

x=0,TJ6, ..., S_T . Since 2/ = T, the Fourier series is of the form y = %)+ cos Zan
6

n=1

2NTX . 2nmx
cos + an sin——

n=1
1 1
a, = ZXEZyr =§><70.4: 23.47
1 2 1 2
Since a; = EZy, cos% and b, = §Zyr sin?nxr and hence the arguments

of cosine and sine functions increase by 7/3, we use a Harrison circle for 60°
[Fig. 5A.17]
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Y1, Y4

Y2, Y5

Fig. 5A.18

1
a, = 5[(y0—y3)+y1 + Y5 =Yy =¥y —¥4) c0s 60°]

%[—17.8+(—10.8)><0.5]
~7.33

1 . o
b, = g(y1 +¥, — Y4 — ¥5)sin60

1
= EX (=5.4)x0.866 = —1.599
As the arguments of the cosine and sine functions in the functions in the formula
1 4 1 .4 . 2 .
a,= EZyr cos?ﬂ:xr and b,= 52 v, sm%xr increase by il , we use a Harrison’s

circle for 120° [Fig. SA.18].

1
a, = g[)’0+Y3)_()’1+)’4+)’2+Y5)COS60°]

1
3 [17.8—-52.6x0.5] =-2.833

1 .
by = g[(yl +Y4 =¥, —Y5)sin60°]

_ %x0.4x0.866:0.115

The Fourier series upto the second harmonic is

fx) = 11.735—7.733005277:Tx—1.559 sinzﬂTx

283305 40.115sin T~
T T

Example 5
The turning moment 7 units of the crank shaft of a steam engine is given for a series
of values of the crank-angle 0 in degrees in the following table:

0: 0 30 60 90 120 150 180
T: 0 5224 8097 7850 5499 2626 0
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Find the first three terms in a series of sines to represent 7. Also find 7 when
6 =75° The half-range sine series of 7' = f(0) in (0, 7) is required. Let it be

[ = ibn sin @

n=1

2w .
Then b,= =" f(®)sinnodo

7T 70

= 2 x Mean value of f(6) sin n6 over (0, 1)
=)

= 2><—2Tr sinnb,
k r=0

Since the interval (0, ) is divided into sub-intervals, each of length % , we consider
only 6 values of T, namely Ty, T, T5...., Ts, corresponding to 6 = 0, 30°, 60°, ...,
150°

T4 T3 T2 T2 T1
N AVA
‘@ T, T3 "v To
Ty Ts
Fig. 5A.19 Fig. 5A.20
1 5
by =2x— T, sin6,
6 r=0
1
= 3 [T + (T, +T5)sin30° + (T, +T,)sin60° ]
(from the Harrison’s circle for 30°, Fig. 5A.19)
1
= 3 [7850+3925+11774]= 7850
13
b, = 2><EZT, sin 26,
r=0

1
3 (T, +T, =T, —T5)sin60°]
(from the Harrison’s circle for 60°, Fig. 5A.20)

= %x5196x0.866= 1500
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1 5
by = ZXEZTrsin30,
r=0

(T +75 —1T;), (from the Harrison’s circle for
90°, Fig. 5A.21)

%(7850 ~7850)=0

The required Fourier sine series upto the third harmonic is

Ty, Ty

Fig. 5A.21

T = 7850 sin 6 + 1500 sin 26 + 0.sin 36, in (0, 7)
[T]y 70 = 7850 sin 75° + 1500 sin 150°
= 8332.5 units
Example 6

Obtain the constant term and the first three harmonics in the Fourier cosine series of
vy =f(x) in (0, 6) using the following table:

x 0 1 2 3 4 5
vy 4 8 15 7 6 2

The interval (0, 6) is divided into 6 sub-intervals each of length /. Hence, we consider
the 6 values of y, namely y,, y, ..., s, corresponding to x = 0, 1, ..., 5 for harmonic
analysis. As the half-range cosine series is required (0, 6), [ =6

Fourier cosine series of f(x) in (0, 6) is of the form

fx) = a70+ Zan cosnlﬂ in (0, 6)

n=1

2 (6 1
ay = gjo f(x)dx=2><g§6yr =14
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1L X
a, = 2><—Zyrcos—’
6.3 3
1 o o
= §[y0+(y1—y5)cos30 +(y, = ¥4)c0s60°]

(from the Harrison’s circle for 30°, Fig. 5A.22)
=4.565

Y3

A, e

Y, Ys
Fig. 5A.22 Fig. 5A.23
Y, Yo, Yy
Fig. 5A.24
1< X
a, = 2X— cos——
4 6 2 yr 3

r=0

1
= E[(yo = ¥3)+ (¥, +¥s — ¥, —¥4)c0s60°]

(from the Harrison’s circle for 60°, Fig. 5A.23)
-2.833

1L X
ar = 2X— cos—=—
3 6§)yr 7

1 (¥o Y4 —¥,) (from the Harrison’s circle 90°,
3 Fig. 5A.24)

=-1.667
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The required half-range cosine series is
F(x) = T+4.565 cos%— 2.833 cos%— 1.667 cos% in (0,6)

Example 7

Find the complex form of the Fourier series of f(x) = ¢" in (0, 2).
Since 2] =2 or [ = 1, the complex form of the Fourier series is

f@=3 e (1)

1 2 inmwx
6= 5 [ Fe™ dx
1 ¢2 .
- _-[ exe—mn'x dx
270
1 e(lfinn)x 2
T2l 1—inm
0

1

_ {20 _ 1)
2(1—inx)
1+i
_ %{ez(cos 27 —isin2n7)—1)
+n'w

_ (=D +inn)
2(1+n’7?)
Using this value in (1), we get

2 o .
e —1 (I+inx) ;
eX - elnﬂ'x
[2]2

= +ntn?)

Example 8

Find the complex form of the Fourier series of f(x) = ¢ * in (-1, [).
Let the complex form of the Fourier series be

f(x) — 2 Cneimrx/l (1)
I
¢, = i efuxeimrx/l dx
207
1 l

— _J'e—(alﬂnn')x/l dx

207
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1 [ otatsinmxn !
" 20| ~(al+inmyll ||

" 2(al +inx)

al (_\n _ —al ,_1\n
2(al+in7r)[e G-

[ tinm

e =cosnmtisinnw=(-1)"]

sinh al(-1)"
al+inm

_ sinh al - (al - inz)(=1)"

a*1> +n*rn?

Using this value in (1), we have

¢ = sinh al 2 EVal=in®) im0 )y

212 +n277:2

n=—oo

Example 9

Find the complex form of the Fourier series of f(x) = sin x in (0, 7).
Here 2l = mor [l = /2.
The complex form of Fourier series is

f(x) — i C”eian

n=—oo

1 V3
c, = —jsinxe_’znxdx
T

0
. /4
1 —i2nx
S > {=i2n sin x —cos x}
| 1-4n 0
1 ; 2
— > _ethx 1N=- >
w(4n” —1) w(4n® —1)
Using this value in (1), we get
sinx = —= 2 ¢ in (0, )

Y/ A 4n® -

Example 10

1 e—(al+imr) _ e(al+in7r)]

ey

Find the complex form of the Fourier series of f(x) = cos ax in (-7, 1), where a is

neither zero nor an integer.
Here 2l =2rxorl=rm.
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The complex form of Fourier series is
fx) = 2 c,e™ (h
1 T
= — | cosax-e™ dx
“= o j
-
1| ™ . "
= —| ———={—incosax+asinax}
2T a2 _n2
=T
1 —inx . :
= ———< [e™™ (—in cos am + a sin arm)
2n(a” —n") —e "™ (=in cos am— a sin an)]
1 N
= ————-(-D"2asinar
2n(a” —n")

Using this value in (1), we get

™ in (-7, )

Cos ax =

asinarm i (="
T 2_ 2

Py

Exercise 5A(c)

Part A (Short-Answer Questions)

1. What do you mean by harmonics and harmonic analysis in Fourier series?

2. Give the formula used for computing a, numerically in the Fourier half-range
cosine series of f(x) in (0, /).

3. Give the formula used for computing b, numerically in the Fourier half-range
sine series of f(x) in (0, 7).

4.  Write down the complex form of the Fourier series of f(x) in (0, 2/) and the
Euler’s formula for the associated Fourier coefficient.

5. [If the trigonometric and complex forms of Fourier series of f(x) in (0, 27) are

n®

ay - > 4
. 0 .
respectively EY + Zan cosnx + an sinnx and Z c,e™  how are ay, a
n=l n=l n=—oo
b, and c, related?

Part B

6. Find the Fourier series of period 27 as far as the third harmonic to represent
the function y = f(x) defined by the following table.

x°: 0 30 60 90 120 150 180 210 240
yi 234 301 3.69 415 3.69 220 0.83 0.51 0.88
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10.

11.

12.

13.
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x°: 270 300 330 360
y: 1.09 1.19 1.64 234
Obtain the first three harmonics in the Fourier series of y = f(x) which is
denied by means of the table given below in (0, 12).
X: 0 1 2 3 4 5 6 7
y: 6.824 7976 8.026 7.204 5.676 3.674 1.764 0.552
x: 8 9 10 11
y: o 0.262 0.904 2.492 4.736
Obtain the first three harmonics in the Fourier series of y = f(x) which is
defined by means of the following table in (0, 27).
x° 0 45 90 135 180 225 270 315
y:  6.824 8.001 7.204 4.675 1.764 0.407 0.904 3.614

Find the first three harmonics in the Fourier series of period 8 for the function
y = f(x) which is defined by means of the following table.

X: 1 2 3 4 5 6 7 8
y: 365 337 205 80 56 93 184 298

Find the Fourier series of y = f(x) in (0, 27) upto the third harmonic, using
the definition of y given by the following table:

x: 0 3 2m3 T 4n/3  Sn/3 2r
y: 198 130 1.05 130 -0.88 -0.25 1.98
Find the first three harmonics in the Fourier series of y = f(x), which is
defined in the following table, in (0, 6).
x 0 1 2 3 4 5 6
y: 1.0 14 19 1.7 15 12 1.0

Find the first three harmonics in the Fourier series of y = f(x) in (0, 27), using
the following table of values of x and y.

X: 0 /6 /3 2 2n/3  5n/6 /4 /6 43w
y: 0 026 052 079 1.05 131 0 -131 -1.05
x: 3m2 5n/3 117/6
y: =079 -0.52 -0.26
[Hint: /(27 — x) = —f(x). Hence the Fourier series of f(x) in (0, 27) will not
contain cosine terms]

Analyse the current i given by the following table into its constituent
harmonics as far as the third harmonic.

0°: 0 30 60 90 120 150 180 210
i(amp): O 240 325 275 182 13.0 0 240
0°: 240 270 300 330

i(amp): -32.5 -27.5 -18.2 -13.0

[Hint: f(7+ x) = —f(x). Hence ay, a,, a4, ..., by, by, ... are all zero. It is enough
to compute a,, as, b; and b;]
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15.

16.
17.
18.
19.
20.

19.

20.

21.

22.

23.

24.

25.

26.
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Find the constant term and the first three harmonics in the Fourier cosine
series of y = f(x) in (0, 7) using the following table.
X 0 6 w3 w2 2m/3 576
y: 10 12 15 20 17 11
Find the first three harmonics in the Fourier sine series of y = f(x) in (0, 180°)
using the following table.
x> 0 15 30 45 60 75 90 105 120 135
y: 0 27 52 70 81 83 79 68 55 4.1
x: 150 165 180
y: 26 12 0

Find the complex form of the Fourier series of f(x) = ¢ in (-7, 7).
Find the complex form of the Fourier series of f(x) = ¢ in (0, 21).
Find the complex form of the Fourier series of f(x) = cos x in (0, 7).
Find the complex form of the Fourier series of f(x) = sin 2x in (0, 1).
Find the complex form of the Fourier series of f(x) = sin ax in (-7, 7).

Answers

Exercise 5A(a)

flx)= zcosx+lcos3x+§sinx—lsin3x .
4 4 4 4

3 1 1
Xx)=—+—cos2x+—cos4x .
F 8 2 4

2

2 T
i — 4 P -
f(x) = 3 7Z E cosnx; 1

n=11
Poarg nwx m*
_—+ cos——; —.
F) DI
f(x )——— Z coSnx -
fx)= 2 smnnx%-
21 1 2n-Drx 1< . nnx
f(x)— cos +— ) sin—.
2n 12n-1 ! nzl
2 o n+l 2
1 1 =D . T
=———» ——cos2n—-Dx+— sinnx; —.
f()16 22 1y (2n—1)x nz{ ——sinnx
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sin2nmx .

27. f(x)——cosn'x——z

nln—l

28.  f(x )_

k1) 201 Qn—-1mx
> f(X)=(———j+?2;(2n_l)2cos l '

1
Y eos(n-Dx; r
0 8

1< nil . NTX 717
+ﬂ,§[”( 1) { -(=1)" }} g
2 ) n
30. f(x):n—+4z(_l) COSNX -
3 n=1 N

(1) x2S (1) . n* r?

31 f()— sin— o

1 - 1
32. f(x):—1+7rsinx—zcosx+2z 3 cosnx; w/l4—1/2 .

n=2 N -1

33. f(x)= ——s1nx+2z -

nln—l

sin nx -

1 1 > (=D" 1
34. xsin7tx=———cos7rx——2( ) cosnn’x;l——.
T 2m Taon —1 2

1yt
35. /l+cosx = 2\/_ 4\/_2( D cosnx -

ToASAn’ -1

36. —x(n’ X)2m—x) = 2—smnx7r/32

n= ln
n7rx 7'C
37. |x|————2—cos
n=11 8
38. Is1nxl————z -cos2nx -

T 7T,,14n -1

: : oo 1yn-1
39, Cosax=31naﬂ:+2as1na7tz( 1) cosnx;l(l_?’j})

amlw T n=1 n2 — a2 2
2al
ax e 2al nwx
e +al e -1 5 COs
40. 2 Tl )Z 12a2 +nln? |
201 nTCX
) .
2 12a2 +n’r? l
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20 1 & (=D
41. cosh(xxzisinhomli 2+2 > )Zcosnx}
/3 o =1t
|2 nmw 4 nmwx
42. x)= —| 1+cos— |——(=1)" } sin——.
F ;{nﬂ( 2] nﬂ:( ) 2
2 4 1 T 1
43, fx)==-— cos2nx, ———.
f T owS4n® -1
| 6 36 nwx
44, x)= — (D" ———{(-1)" -1} |sin—.
f(x) ;Lﬂ( L e S (ol }} 3
2 e 2 2
T 1 T
45. = —cos2nx; —;—-
J 6 nz:;nz ™ 6 12
46. f(x)zz —icosﬂ+ 16 sin 2% + 48 cos2Z.
=1 nw 2 n271,'2 2 }1371'3 2
- %6 sin—ﬂ7 si nrx
ntrt 2
1 nr 1 nr nwx
47. ——+2l COS NTT ———SiN — 4+ ———C0S —  COS —— .
f@) z{nﬂ BT S 2} I
48. fx)== 2 {1=(m+1)(—=1)"}sinnx -
n 1
4 & 1
49. f(x)=;2_’—zsm—smnx
— 2 1
50. f(x)zl z in— —nsinﬂ cosm—x+—cos7tx.
34 "3 nn>-9) 3 3 3
( #3)
Exercise 5A(b)
7. xz—x;x—xz.
8. —x(I+x); x(I +x).
e
11. Elegn_z.
n=l
1o 2
12. E212,1_1.
n=l
2
13.

8
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26.
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i
45
Ll
15
2 oo 1yn—1 2
mr-x*== 2+4z( 5 cosnx;n—
n=1 n 12
= 2
f(x)—gkzl 2 —zsinﬂsinﬂ;n—.
T n=135,.. 1 2 21 8
4 1 2
(x+2)* ——+—6 —zcosﬂ;n—.
3 7[ n=11 2 6
2
x2S LG M 21)
T [

x(m—x)= EZ;msin(Zn —Dx in (0, 7);

3

T+ x);(m—x)2m — x);—— -
x(7r + x); (T — x)( X) 0
2b1° < 1 . nma . nmx
—-2—sm—sm—.
2 l l

fl)=

a(l - a)r? =y}

oo

COoS x =§2

sin2nx ; f(0) and f(7r) must be defined as 0 each.

T n=1 471 —1
sinar  2asinam < (—1)"!
cosax = + z 5 COSNX .
am T =1 —a
\/_ 1 . nmw .
flx )—— 2—51n—s1n2nx-
T n=1 4” _1 2

1
XCOSTTX=——-sInwTx+— Zusmnnxl

f(x)=(m/2)sinx+— 2(() ) sinnx .
nl

2

6 1
— —zcos 2nmwx, —-.
12

”2

6x% —6x+1=

ng

=—Z —— {1+ (1" e™}sinnx.
n n ta



Fourier Series Solutions of Partial Differential Equations

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
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2 oo 4
x2:”—+42( cosnx;n—.
3 o 90
4 431 431 4
x? =—+—2—cosnﬂx——2—sinnﬂx;ﬂ—.
3 g2 — n? 90

n=1

n=1

2a 1 P
f=-=> cos2(2n— l)x+2 o 1) sin2(2n—1)x; —6

n=1 (Zl’l 1) n=1
3 4 - 1 2 w1
fX)=——— 2 —cos@—— —sinmr—)C 71'_
2 n=13,5,... n’ 2 m,on 29
2a & 2
f(x)=£——a z —sinnx
2 n=135,. 1
2 2
f(x):g—— z Lin ™™ nn’_x;n'_.
2 T,i3s. 2 8
o 2
£—x=2‘—sm2nx,
n=l n
3 04 1
1+x———— —cos(2n—1)7rx.

2”11](2_)

f(x)— Z—sm . I’lﬂx 7'L'

2 96
T 2 < rt
X)=——— cos2nx; —
F 4 ”n=1,23,:5,... 96
Exercise SA(c)

f(x) =2.102 + 0.559 cos x + 1.535 sin x — 0.519 cos 2x — 0.091 sin 2x + 0.20
cos 3x + 0 sin 3x.

f(x)=4.174+ 2.450c0s%+ 3.160sin%+ 0.120003%+0.034sin%+

0.080 cos%-% 0.010sin%
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8. f(x)=4.174 + 2.420 cos x + 3.105 sin x + 0.12 cos 2x + 0.03 sin 2x +
0.110 cos 3x — 0.045 sin 3x.

9. f(x)=202+(159cos%+105in%)+(—21cos%+l3sin%)+

3gx . 3nx
—4cos———sin——
4 4

10. f(x) =0.75 + 0.373 cos x + 1.005 sin x + 0.890 cos 2x — 0.110 sin 2x —
0.067 cos 3x.

2 2
11. f(x)=1.45—O.367cos%+0.173sin%—0.1cos%—0.0Ssin%+

0.033 cos mx.
12. f(x) =0.978 sin x — 0.456 sin 2x + 0.26 sin 3x.
13. i=5.559 cos 0+ 29.969 sin 0—4.767 cos 360 + 3.167 sin 36.
14. f(x)=14.167 + 3.289 cos x — 4.833 cos 2x + 4 cos 3x.
15. f(x)=7.837 sin x + 1.484 sin 2x — 0.028 sin 3x.
16, o = sinh 7© i (—1)”(1;in) o
T . l+n

2al oo .
17. ™ = [e _1] Z (al+m7r) eimrx/l

2 = PP e

18. cosx:ﬂ 2 " > e
T, —.1-4n

oo

19. sin2x=% Z

oo 1l

i2nmwx

o) (cos2—1+inmsin2)e

) isinar - (=1)" ;
20. sinax= 2 (2 ) > ne™
Y n-—a

n=—oo
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5B.1 INTRODUCTION

The partial differential equation m =a?’Vu governs the distribution of temperature
t
u in homogeneous solids. As a consequence of Maxwell’s electromagnetic equations,
the current density J satisfies the equation V2] = MO-E;—J . If U is the concentration of
t

a certain material in gms/cc in a certain homogeneous medium of diffusivity constant
. . . 1
k measured in sq cm/sec, U satisfies the equation V2{J = Zaa_U .
t
In the theory of consolidation of soil, it is shown that, if U is the excess hydrostatic

pressure at any point, at any time ¢ and C, is the coefficient of consolidation, U satisfies

1 U
the equation ViU = c_aa_ . All these equations are of the heat flow equation form.
t

v

In this chapter, we shall derive and discuss the equation of heat flow in one
dimension.

5B.2 EQUATION OF VARIABLE HEAT FLOW IN
ONE DIMENSION

yd o/ |
) s
P|\/s P,}/

O| I X AX

Fig. 5B.1

Consider a homogeneous bar or rod of constant cross-sectional area A made up of
conducting material of density p, specific heat ¢ and thermal conductivity k. It is
assumed that the surface of the bar is insulated in order to make heat flow along parallel
lines perpendicular to the area A.
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Take one end of the bar as the origin and the direction of heat flow as the positive
X-axis.

Let us now consider the heat flow in an element of the bar contained between two
parallel sections PQRS and P” Q" R’ §” which are at distances x and x + Ax from the
origin as shown in Fig. 5B.1.

Let u and u + Au be the temperatures of this element at times ¢ and 7 + At
respectively.

Increase in temperature in the element in Af time = Au
Increase of heat in the element in Af time

= (specific heat) - (mass of the element) - (increase
in temperature) [by a law of thermodynamics]
= c(pAAx)Au
Rate of increase of heat in the element at time ¢
du

= cpAAx-— (1)

Let R, and R, be the rate of inflow through the section P Q R S and rate of outflow
through the section P* Q" R’ §” of the element.

Now R, = —kA(a—uj and R, = — [a_u) )
ox 0X ) ax

X

Since the rate of flow of heat across any area A is proportional to A and the temperature
. . du .
gradient normal to the area, that is, 8_ , by a law of thermodynamics. The constant
X

of proportionality is the thermal conductivity.

Note £
The negative sign is taken in (2), since R, and R, are positive but g_u is
X
negative. E;_u is negative, since u is a decreasing function of x, as heat flows
X

from a higher to lower temperature.

Rate of increase of heat in the element at time ¢
=R, -R,

du du
-w(3],. 3]
From (1) and (3), we have

Mt
au k a‘x X+Ax a‘x X

a cp Ax @

Equation (4) gives the temperature distribution at time 7 in the element of the bar.
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Taking limits of Eq. (4) as Ax — 0, we get the equation of one dimensional heat
flow as

w_ kou 5
ot cp axz

This equation gives the temperature u(x, f) at any point of the bar at a distance x from

one end of the bar at time .

k . . .
Let —, a positive constant depending on the material of the bar, be denoted as o’
cp
or K. o is called the diffusivity of the material of the bar.

Thus the equation takes the form

du 2 azu
e i 6
o 0 (6)
Note &
Equation (6) is also called one dimensional diffusion equation.
5B.3 VARIABLE SEPARABLE SOLUTIONS OF THE
HEAT EQUATION
The one dimensional heat flow equation is
Jdu 5 0%u
= = el 1
ot * ax2 ( )
Let u(x, t) = X(x).7(r) 2)

be a solution of Eq. (1), where X(x) is a function of x alone and 7() is a function of
t alone.

2 2
T X .
Then % = XT’ and a_u = X"T, where T’ = d—and X" = d , satisfy Eq. (1).
ot axz dr dxz

ie. XT' = o*X"T
X// T’

i.e. = 3
X o’T )

The L.H.S. of (3) is a function of x alone and the R.H.S. is a function of ¢ alone.

They are equal for all values of independent variables x and ¢. This is possible only
if each is a constant.

X = T =k, where k is a constant
X a’T
X" —kX=0 “)

and T’ —ke’T=0 (5)
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The nature of the solutions of (4) and (5) depends on the nature of the values of k.
Hence the following three cases come into being.
Case 1 k is positive. Let k = I's
Then equations (4) and (5) become
(D*-pHX =0 and (D’ - p*o)T =0, where

D= iandD'Ei
dx dr

The solutions of these equations are
X=Ce"+ Cre™ and T = Cse”
Case 2 k is negative. Let k = .

202t

Then equations (4) and (5) become
(D*+pHX =0 and (D’ + p*0P)T=0

The solution of these equations are

X=C,cospx+C,sinpx and T = Cseﬁnzazt
Case3 k=0
Then equations (4) and (5) become
d’x
—— =0 and d—T: 0
dx dr

The solutions of these equations are
X=Cx+C, and T=0C4

Since u(x, ) = X-T is the solution of Eq. (1), the three mathematically possible
solutions of Eq. (1) are

u(x, 1) = (A" + Be ")t (6)
u(x, 1) = (A cos px + B sin px)e %" )
and ulx,t)=Ax+B (8)

where C;C; and C,C; have been taken as A and B.

Choice of Proper Solution

Out of the three mathematically possible solutions derived, we have to choose that
solution which is consistent with the physical nature of the problem and the given
boundary conditions. As we are dealing with heat conduction, u(x, f), representing
the temperature at any point at time 7, must decrease when ¢ increases. In other words,
u(x, t) cannot be infinite as t — co. Hence solution (7) is the proper solution in all
variable (transient) heat flow problems.
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When heat flow is under steadystate conditions, the temperature at any point does not
vary with time, that it is independent of time. Hence the proper solution in steadystate
heat flow problems is solution (8).

In problems, we may directly assume that (7) or (8) is the proper solution, according
to whether the temperature distribution in the bar is under transient or steadystate
conditions. Of course, the arbitrary constants in the suitable solution are to be found
out by using the boundary conditions of the problem.

Worked Examples E_

PROBLEMS WITH ZERO BOUNDARY VALUES
(TEMPERATURES OR TEMPERATURE GRADIENTS)

Example 1
A uniform bar of length / through which heat flows is insulated at its sides. The ends
are kept at zero temperature. If the initial temperature at the interior points of the bar

is given by (i) k sin® % , (i1) k(Ix — xz), for 0 < x </, find the temperature distribution

in the bar after time ¢.

The temperature u(x, ¢) at a point of the bar, which is at a distance x from one end,
at time ¢, is given by the equation

2
3—’; =a2§x—Z (1)
p
u=0| | | u=0 .
0] X | A
| ! |
Fig. 5B.2

Since the ends x = 0 and x = [ are kept at zero temperature, that is, the ends are
maintained at zero temperature at all times (Fig. 5B.2) we have

u(0,)=0, forallt=>0 )
u(l,t)=0, forallt=>0 3)

Since the initial temperature at the interior points of the bar is f(x), we have
u(x,0) =f(x), forO<x<l/ “4)

where f(x) = ksin® % in (i) and = k(Ix — 22) in (ii).
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We have to get the solution of Eq. (1) that satisfies the boundary conditions (2),
(3) and (4).

Of the three mathematically possible solutions of Eq. (1), the appropriate solution
that satisfies the condition u # oo as t — oo is

u(x, £) = (A cos px + B sin px)e™” Pot (5)
where A, B and p are arbitrary constants that are to be found out by using the boundary

conditions.
Usmg boundary condition (2) in (5), we have

Ae?* =0, forall 1> 0
A=0
Using boundary condition (3) in (5), we have
B sin pl e = 0, forall t>0

Bsinpl=0
ie. either B=0orsinpl=0
If we assume that B = 0, the solution becomes u(x, ) = 0, which is meaningless.
sinpl =0
pl=nrx
or p=%,wheren=0, 1,2, ...,

Using these values of A and p in (5), the solution reduces to

nznz(xzt

u(x, 1) = BsinnTm P (6)

wheren=1, 2, ...,

Note £5

n = 0 is omitted, since the solution corresponding to n = 0 is meaningless.

Superposing the infinitely many solution contained in Step (6), we get the most
general solution of Eq. (1) as

X 2.2

uGe )= 3B, sin k7' s )

n=1

Using the boundary condition (4) in (7), we have

- . nmXx
Y B, sin== =f(x), for0<x<I (®)
-1
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If we can express f(x) in a series comparable with the L.H.S. series of (8), we can

. < . NTX . . . .
get the values of B,. Since 2 B, sin—— is of form of Fourier half-range sine series
n=1
of a function, in most situations we may have to expand f(x) as a Fourier half-range

sine series. Tx
(i) f(x) = ksin® (T]
k . Tx . 3mx
= —| 3sin— —sin——
4 l l

Using this form of f(x) in (8) and comparing like terms, we get
3k k
B, = R B, =7 B,=B,=Bs=..=0

Using these values in (7), the required solution is
u(x, 1) = %sinﬂeﬁrzazm2 —Esin—&rx g omocilr?
(i) f)=k(x—x)in0<x<l
Let the Fourier half-range sine series of f(x) in (0, /) be an Sin#

n=1

Using this form of f(x) in (8) and comparing like terms, we get

1
2
B, = b, == [k(tx—x")sin""~ dx
0 l

d
nwx . NWX nwx
2% ) _COST Sin—— COST
= —|(x—x")| ——— |- (I-2x) +(=2)| ————
[ nr n*n? n’n’
[ 2 / 0
4kI*
= S 1= (-1")
B
2
83kl3, if nis odd
=\n'7m
0, if nis even

Using this value of B, in (7), the required solution is

—@2n-12 20t

8k & 1 . (2n-Drx 2
3 3 S ‘e
T p=1 (2n - 1) l

u(x, t) =
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Example 2

2
2 M , satisfying the following conditions.

Solve the equation 8_14 =
t ox?

(i) u remains finite as t — oo
(i1) u =0, when x ==a, forall >0

(iii) u=x,whent=0and-a<x<a

We have to solve the equation

2
g—”; = o S%‘ (M

satisfying the following boundary conditions.
u(-a,t) =0, forallr>0 )
u(a,t)y=0, forallt=>0 3)
u(x,0)=x, for-a<x<a 4)

We have observed in Example 1 that the arbitrary constant A in the proper solution
of Eq. (1) was easily calculated, when the left boundary condition was of the form
u(0, t) =0, for all £ = 0. Using the boundary condition (2), namely, u(-a, f) = 0, for all
t 2 0 in the proper solution, the constant A cannot be immediately calculated.

Hence, to bring the left boundary condition to the required form, we shift the origin
to the point —a, so that we have x = X — a, where X is the coordinate of the point x with
reference to the new origin.

With reference to the new origin, Eq. (1) becomes

g O

o ox> (y
and the boundary conditions become
u(0,1) =0, forall1>20 2y
u(2a, t) =0, forall 1>0 3)
u(X,0)=X-a, forall0<X<2a 4y

The appropriate solution of Eq. (1°), that satisfies the condition u # o as t — oo is
u(X, 1) = (A cos pX + B sin pX)e 7% (5)
Using boundary condition (2)” in (5), we have

A% =0 forall = 0
A=0
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Using boundary condition (3)” in (5), we have
B sin 2ap e - 0, forall t>0
B sin 2ap =0
Either B =0 or sin 2ap =0

But B = 0 leads to a trivial solution

sin 2ap =0
2ap = nr
or p=ﬂ,wheren=0,1,2, ...,
2a

Using these values of A and p in (5), it reduces to

nﬂX 7n27r2a2t/4a

u(X, t) = Bsin
2a

whenn=1,2, ..,

Therefore the most general solution of Eq. (1)

2.2 2

M(X l) - ZB s1n —n n2a’t/4d?

Using boundary condition (4”) in (7), we have

- . nnX
2 B, sin n
n=1 2a

=X-ain0<X<2a

- X
= Z b, sin ne
o 2a
which is a Fourier half-range sine series of (X — a) in (0, 2a).
Comparing like terms, we get

2a
2 X
B,=b,=— [ (X-a)sin n
2a 2a
0
niw
1 —COS 2
=—|(X-a) 4
2a

= 2y
nw

0, if n is odd

—4da .. .
——, if niseven
nrw
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Using this value of B, in (7), we have

—4 - 1 . nmX _2.2,2/,.2
u(X, t)=—a 2 _Smn2a e Tt da

n=246.."1
Noting that u(x, f) = u(X, t), the required solution of Eq. (1), with reference to the old
origin, is

u(x, ) = —ha i {Lsin M} g ntetilad?

T ,pa6. 20 2a
: 2(1 - 1 n+l - nwx —71271:2&2[/112
ie. u(x, 1) = ==y —(=1)""'sin—=-e¢

Toon l

Example 3

Find the temperature distribution in a homogeneous bar of length 7 which is insulated
laterally, if the ends are kept at zero temperature and if, initially, the temperature is k
at the centre of the bar and falls uniformly to zero at its ends.

Figure 5B.3 represents the graph of the initial temperature in the bar.

y=u(x 0)
Tz k
a2
Lk
0 i .
£ | £
2 2 (z. 0)
Fig. 5B.3
. . 2k . . y-0 x-=m
Equation of O A is y =—x and the equation of AB is =
T k=0 7 _
2
. 2k
1.e. y=—(@m—-x)
T
%x, inOSxSE
T 2

Hence u(x, 0) =
—(mr—x), inESxSTc
b3 2

The temperature distribution u(x, #) in the bar is given by

% _ 28214

ot o or2 0
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We have to solve Eq. (1) satisfy the following boundary conditions.

u(0,t)=0, forallt=>0 )
u(rw,t) =0, forallt=>0 3)
%x, in0<x< %
/4
,0) = 4
u(x, 0) ok (4)

As u(x, ) has to remain finite when # — oo, the proper solution of Eq. (1) is
u(x, 1) = (A cos px + B sin px)e 7" (5)
Using boundary condition (2) in (5), we have
A-e? =0, forall >0
A=0
Using boundary condition (3) in (5), we have
B sin pr- e = 0, forallz=0
B=0 or sinpr=0
B =0 leads to a trivial solution.
sinpr=0
pr=nmorp=n,wheren=0, 1,2, ..00

Using these values of A and p in (5),it reduces to
u(x, t) = B sin nx e (6)

wheren=1, 2, 3, ...
Therefore the most general solution of Eq. (1) is

— 2.2
u(x, 1) ="y B, sinnxe " *" (7

n=1

Using boundary condition (4) in (7), we have

an sinnx = f(x) in (0, 7), where
n=1
2k

— X, in0<x<mw/2
T

2—k(ﬂ—x), inn/2<x<nm
T

f) =
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If the Fourier half-range sine series of f(x) in (0, 7) is an sinnx , it is comparable
oo n=1
with Z B, sinnx .

n=1

Hence B

|

N
hlN|?~7‘
—
VR

|

8

S w
S

=
N—

|

/N

|

2]

So| 5
S

=
N—
(———
< [N

—cosnx —sinnx i
+{(7r—x)( " )+( - )}”
2

8k nrw
S sin—

nrw 2

Using this value of B, in (7),the required solution is

8k — 1 2 2
ux, 1) = — 5 — sin ™ Ginnxe O
T p=1 2
8k « s 2 2
or u(x, 1) = z (2 D —sin(2n — 1)xe” """
n=1 ( -

Example 4
A rod of length 20 cm has its ends A and B kept at 30°C respectively, until steadystate
conditions prevail. If the temperature at each end is then suddenly reduced to 0°C and
maintained so, find the temperature u(x, ) at a distance x from A at time 7.

When steadystate conditions prevail, the temperature at any point of the bar does
not depend on ¢, but only on x. Hence when steadystate conditions prevail in the bar,
the temperature distribution is given by

2
Lu g (1)
dx
2 2
au =0and 8_u becomes B_u
or ox’ ox’
We have to solve (1) satisfying the following boundary conditions
u(0) =30 (2)

and u(20) = 90 3)
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Solving Eq. (1), we get
uix) =Cix+ G,

Using (2) in (4), we get C, = 30

Using (3) in (5), we get C; =3

Using these values in (4), the solution of Eq. (1) is
u(x) =3x+ 30

5-109

“)

)

That is, as long as the steadystate conditions prevail in the bar, the temperature

distribution in it is given by (5).

Once we alter the end temperatures (or the end conditions), the heat flow or the
temperature distribution in the bar will not be under steadystate conditions and hence
will depend on time also. However the temperature distribution at the interior points
of the bar in the steadystate will be initial temperature distribution in the transient

state.

In the transient state, the temperature distribution in the bar is given by

Ju 5 0%u
— = —
ot ox?
The corresponding boundary conditions are
u(0, 1) =0, forall t>0
u(20,1) =0, forall t>0
u(x,0) =3x+30, forO<x<?20
As u # oo when t — oo, the proper solution of Eq. (6) is
u(x, ) = (A cos px + B sin px)e™” 2ot
Using boundary condition (7) in (10), we have
A PP = 0, forallz>0
A=0
Using boundary condition (8) in (10), we have
Bsin20p-e?%" =0, forallr>0
B=0 orsin20p=0
B =0 leads to a trivial solution.

sin20p =0

20 p = nmwor %,wherenzo, 1,2, , o

(6)

(N
®)
(€))

(10)
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Using these values of A and p in (10), it reduces to

NTX  _n2n?at120°

u(x, 1) = Bsinz—oe (1Y
wheren=1, 2, 3, ..., c.
Therefore the most general solution Eq. (6) is
i 222
utx, )= 3B, sin%e_” mact400 (12)
n=1

Using boundary condition (9) in (12), we have

- . nmx )
Y B, sin—== =3x+301in (0, 20)

n=1

which is Fourier half-range sine series of (3x + 30) in (0, 20).
Comparing like terms,

20
B,=b, =ij Gx+30)sin ¥ dx
200 20

20

n nmwx
COS 720 n 720
= —|(x+10)
nm n’m?
20 207

~ 8 o1y 10 =L -3y
niw niw

Using this value of B, in (12), the required solution is

ulx, 1) = @21{1 —3(=1)"}sin ”27? 'e—n2n2a21/400

n=1

Example 5

Solve the one dimensional heat flow equation
u _ 20
ot ox?

satisfying the following boundary conditions.
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(1) %(o, 1)=0,forall1>0
ox

(ii) ?(ﬂ, £)=0, for all > 0; and
X
(i) u(x,0)=cos’x,0<x< 7

Note &5

When conditions (i) and (ii) are satisfied, it means that the ends x = 0 and
= & of the bar are thermally insulated, so that heat cannot flow in or out
through these ends.

The appropriate solution of the equation

u _ %
o A =
satisfying the condition that u # co when ¢ — oo is
u(x, t) = (A cos px + B sin px)e™” Polt )
Differentiating (2) partially with respect to x, we have
g—';(x, 1) = p(=A sin px + B cos px)e %! 3)

Using boundary condition (i) in (3), we have
p-B-e_pZ'XZ’:O, forall 1>0
B=0[ ifp=0,u(x, f)=A, which is meaningless]

Note 25

When the zero left end temperature condition was used in the proper solution,
we got A = 0 in all the earlier examples. When the zero left end temperature
gradient condition is used, we get B = 0.
Using boundary condition (ii) in (3), we have
—pA sin pr-e % =0, forall1>0
Either A=0 orsinpr=0

A =0 leads to a trivial solution.

sinpr=0

pr=nmorp=n,wheren=0,1,2, ..., 0

Using these values of B and p in (2), it reduces to

u(x, t) = A cos nx- oo 4)

where n=0, 1, 2, ..., oo,
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Note &5

n =0 gives u(x, t) = A, which cannot be omitted.

Therefore the most general solution of Eq. (1) is

u(x, t) = z A, cosnx e (5)
n=0
Using boundary condition (iii) in (5), we have
z A, cosnx = cos? x in 0, m) (6)

n=0

In general, we have to expand the function in the R.H.S. as a Fourier half-range cosine
series in (0, ) so that it may be compared with L.H.S. series.

2

. . . 1
In this problem, it is not necessary. We can rewrite cos” x as E(l +cos 2x), so that

comparison is possible.

< 11
Thus Z A, COSNX = —4—cos 2x
n=0 2 2

Comparing like terms, we have
1
Ay = E,A2= 1/2,A;=A;=A,=..=0

Using these values of A/ s in (5), the required solution is

1 1 2
u(x, 1) = —+—cos2x e **!
2 2

Example 6

The temperature at one end of a bar 20 cm long and with insulated sides is kept at
0°C and that the other end is kept at 60°C until steadystate conditions prevail. The
two ends are then suddenly insulated, so that the temperature gradient is zero at each
end thereafter. Find the temperature distribution in the bar.

Show also that the sum of the temperature at any two points equidistant from the
centre of the bar is 60°C.

When steady state conditions prevail in the bar, the temperature distribution is
given by

o’u

ax_z =0 (D)
The corresponding boundary conditions are

u(0)=0 2)

and u(20) = 60 3)
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Solving the Eq. (1), we get
ux)=Cux+C, @)
Using (2) and (3) in (4), we get
C,=3and C, =0
u(x) = 3x )

Once the ends are insulated, the heat flow is under transient state and the subsequent
temperature distribution is given by

du 2 azu
Ere ©
The corresponding boundary conditions are
Jdu
a—x(O, t) =0, forallt=0 @)
du
5(20, t) =0, forallz=0 8)
u(x, 0) =3x, for0<x<20 9
As u # oo when t — oo, the appropriate solution of Eq. (6) is
u(x, t = (A cos px + B sin px)e? (10)
Differentiating (10) partially with respect to x, we have
ou . —pzazt
a(x, t) = p(-A cos px + B sin px)e (11)

Using boundary condition (7) in (11), we have
p-B-e”’zazt =0, forallt>0
Either=p=00orB=0
But p = 0 makes u(x, r) = A, which is meaningless.
B=0
Using boundary condition (8) in (11), we have
_pAsin20-e7% =0, forall1>0
Either A=0orsin20p =0
A =0 leads to a trivial solution

sin20p =0

20 p =nmor pz%,wheren:O, 1,2, ...,
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Using these values of B and p in (10), it reduces to

nTx . 2.2.2 502
u(x, t) = Acosw-e nmtect/20

wheren=0, 1, 2, ...,
Therefore the most general solution of Eq. (6) is

hnd nTx 222
u(x’ t) — ZAH COS—— 20 n“w-a”t/400

Using boundary condition (9) in (12), we have

— nwx )
ZAncos— =3xin0<x<20
0 20

= —+Z cos—

which is the Fourier half-range cosine series of 3x in (0, 20).
Comparing like terms, we get

1 2 2
Ag= 2 -~ 2 [P3xdx
2 2 207
5\20
S . (Y
20\ 2
0
20
and A, =a,= 2 3xcos ot dy
2070 20
20
. AT nwx
sin—— —Ccos——
_3 2 20
= X
10 nrw n’n’
2
20 20 0
5 120
24
- 02, when 7 is odd
=3 nr
0, when 7 is even
Using these values of A, and A, in (12), the required solution is
—@2n-1? 2ot
u(x, 1) = 30—@2 L cos @ mx "
n= 1(2’1 1) 20

12)

13)

Points P and Q which are equidistant from the centre of the bar can be assumed to

have the x coordinates x and 20 — x [Fig. 5B.4]
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. X ¢ 20 x .
A P 10 Q B
| -~ X —> ~ X —>|
| 20 |
Fig. 5B.4

Temperature at P is given by (13).

Temperature at Q is given by

) _ (2n71)2 2ot
u(20 —x, f) = 30—£20 2 ! 5-cos (2n = Dm(20 = x) e 400
n” 5 2n-1) 20
_ - 2n—1
Now  cos 2n-Dr(20—-x) _ cosd(2n—1)r— (2n-Drx
20 20
= =¥ cos 2n-Nmx
20
Cn-Drx
= —cos—————
20
o —@n-12 7%
w20 —x, 1) = 30+@2 ! 2cos(2n DZx = a0 (14)
T p=1 (21’1 - 1) 20
Adding (13) and (14), we get
U, +uy= u(x, 1)y + u(20 —x, t) = 60
Example 7 s
Solve the equation 8_14 = o g—l; satisfying the following conditions.
t X
(i) wuis finite when t — oo.
... du
(i) 8_ =0 when x = 0, for all values of ¢
X
(iii)) u =0 when x = [, for all values of ¢
(iv) u=uywhenr=0,forO<x<l
We have to solve the equation
au 2 8214
a0 u M

satisfying the following boundary conditions.
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a—u(O, t) =0, forallz>0 2)
0x
u(l,t)=0, forallt>0 3)
u(x,0) =uy, forO<x<l 4)

Since u is finite as t — oo, the proper solution of Eq. (1) is
u(x, £) = (A cos px + B sin px)e™” Polt 5)
Differentiating (5) partially with respect to x, we have
d . -
a—Z(x, 1) = p(-A sin px + B cos px)e pPo’t (6)
Using boundary condition (2) in (6), we have
PBe? %1 = 0, for all values of 7> 0
Eitherp =0or B=0
p =0 makes u(x, r) = A, which is meaningless.
: B=0

Using boundary condition (3) in (5), we have
A cos pl-e*pz‘xz’ =0forallt>0

Either A =0 orcos pl=0

A =0 leads to a trivial solution.
cospl=0

pl = an odd multiple of % or (2n— 1)%

p= GO e n=1,2.3, . o)
21
Note 25
In all the problems considered so far, we had p = anr on using the second
boundary condition; but in this problem, we have p = % .

Using these values of B and p in (5), it reduces to

@n-Drx @ a4l

u(x, t) = Acos @)
wheren=1, 2, 3, ..., o.
Therefore the most general solution of Eq. (1) is
> 2n—1 2 2 .2
u(x, 1) = ZAZn—l cos( n—Drx - @n-12 a4l ®)

21

n=1
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Note &5

While superposing the solutions in (7), the unknown constants have
been assumed as A,, _ 4 instead of the usual A,, just to have one-to-one
correspondence between the suffix of A and the arguments of the cosine and
exponential functions in all the terms of the solution (8).

Using boundary condition (4) in (8), we have

< 2n—-Dm
X gy cos 2D =i 0.1 ©

n=1
The series in the L.H.S. of (9) is not in the form of the Fourier half-range cosine series

.. . a >
of any functionin (0, /), thatis — + 2 a, cos X Hence, to find A,, ,, we proceed
I
n=1
as in the derivation of Euler’s formula for the Foureir coefficients.

2n—1
Multiplying both sides of (9) by cosM and integrating with respect to x
between 0 and /, we get 21
! !
s 2n—-Drx 2n-Drx
AZ,HE’)‘COS de = MO£COS2—ldx

[-  All other integrals in the L.H.S. vanish]

! 1
1 sin @n=Drx —ll)n'x sin @n-Drx ;ll)ﬂ:x
| 7 7 ] R v
l 0 21 0
. [, 2 @n-Drm
v Ay = 2 2
4
Azn_] — uO (_1)n+]
Cn-Dr

Using this value of A,, _; in (8), the required solution is

u(x, 1) = “0 z (- cos (2n-Drx o-2n-1P a2t/
2n-1 21

Example 8
An insulated metal rod of length 100 cm has one end A kept at 0°C and the other end
B at 100°C until steady state conditions prevail. At time ¢ = 0, the end B is suddenly
insulated while the temperature at A is maintained at 0°C. Find the temperature at any
point of the rod at any subsequent time.

When steady state conditions prevail in the rod, the temperature distribution is
given by

— =0 (1)
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The corresponding boundary conditions are

u(0) =0 )
and u(100) = 100 3)
Solving the Eq. (1), we get

u(x) =c;x+c, 4
Using (2) and (3) in (4), we getc;=1and ¢, =0
: ulx) =x 5)

Once end B is insulated, though the temperature at A is not altered, the heat flow is
under transient conditions and the subsequent temperature distribution in the rod is
given by
au 2 azu
_— =0 —

= 6
ot ox? ©
The corresponding boundary conditions are
u(0, 1) =0, forall 1> 0 @)
%(l, t) =0, forallt>0 ()
ox
ulx,0)=x,forO<x</ )
where [ = 100.
As u # oo when t — oo, the appropriate solution of Eq. (6) is
u(x, 1) = (A cos px + B sin px)e_pzazt (10)
Using boundary condition (7) in (10), we have
AP = 0, forall >0
A=0
Differentiating (10) partially with respect to x, we have
%(x, t) = Bp cos px- A (11)
ox
Using boundary condition (8) in (11), we have
Bp cos pl e 2

Either B=0,p=0o0rcos pl =0

B =0 and p = 0 lead to meaningless solutions.

cospl=0
/= 2n-Dr
P 2
2n—1
or p:u,wheren=l,2,3, reey O

21
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Using these values of A and p in (10), it reduces to

2n—-Nrx e e

u(x, t) = Bsin (12)
wheren=1,2,3, ...,
Therefore the most general solution of Eq.(6) is
M(.x, t) — ian_l Sin (zn_l)ﬂ‘-x —(2n 1)271'20!21/41 (13)
st 21
Using boundary condition (9) in (13),we have
sin (2n Drx .
B =
2 e Sin-—— = =xin (0.1)
Proceeding as in Example 7, we get
2 ¢l 2n—1
an—l = _-[ xSlnde
170 21
1
2n-Drx . 2n-Drx
) —cos———F—— —sin————
=4y 21 _ 21
I (2n-Dr Ql-1*7*
2l 472 0
8l-1) . @2n-Drm
= 5 sin
Cn-1)r 2
_ 81(_1)n+1
Qn-17*n?

Using this value of B,, _; in (13), the required solution is

u(x, r) = ﬁ S (_1)"+1 i (2”—1)77,’x g~ 2n- V?nlo’t/4s?
4 B 2 S 2
o5 (2n—-1)

where [ = 100

PROBLEMS ON TEMPERATURE IN A SLAB WITH FACES
WITH ZERO TEMPERATURE

Example 9
Faces of a slab of width c are kept at temperature zero. If the initial temperature in the
slab is f(x), determine the temperature formula. If f(x) = u,, a constant, find the flux

ou
—k—(xy, 1) across any plane x = x,(0 <x, < c) and show that no heat flows across

ox

the central plane x, = % , where k* is the diffusivity of the substance.
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face x = O/( ’ face x=c

Fig. 5B.5

Though the slab is a three dimensional solid (Fig. 5B.5). It is assumed that the
temperature in it at a given time ¢ depends only on and varies with respect to x, the
distance measured from one face along the width of the slab. Hence, the temperature
function u(x, f) at any interior point of the slab is given by

du , 9%y !
> % (D

Note £

The problem of temperature distribution in a slab is exactly similar to that in
a homogeneous bar.

We have to solve Eq. (1) satisfying the following boundary conditions.

u(0, 1) =0, forall >0 2)
u(c, 1) =0, forallt>0 3)
uix,0) =f(x), forO<x<c 4)

Proceeding as in Example 1, the most general solution of Eq. (1) is

i 22,22
u(x, ) = 3 B, sin s g (5)
n=1 ¢
Using boundary condition (4) in (5), we have
- . NTX
2 B,sin== = f(x)in (0,¢)= ¥.b, sin 22X
n=1 Cc

which is the Fourier half-range sine sere is of f(x) in (0, ¢).
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Comparing like terms, we get

2 C
B,= b, == f()sin"*dx (6)
<y c
Using this value of B, given by (6) in (5), the required solution is
o _ 2
u(x, t) = 2 z sin 222X exp kK jf(@)s n—d9 (7)
¢ n=1 ¢ C 0
When f(x) = u,, from (6), we get
Iuo sinm—xdx
cos X
2 2
o c = ﬂ{1 —cosnm}
c nw nw
c 0
4
= if nisodd
=3 nr
0, if nis even

Therefore the required solution in this case is

. (2n-1 —@2n-1)21*k%t
u(x, t) = _ZZH—IS (2n— C )X exp{%} ®)

/2 c

Differentiating (8) partially with respect to x,

( Y - 4uoZ @n-Dhrx {—(Zn—l)znzkzt}
C

2

n=1 c

Therefore the flux across the plane x = x;, is given by

du dkuy & 2n—-1mx -2n-1* k%t
_k_ X0 t = — 0 0
. (xg,1) . z cos . exp

2

n=1 C

Therefore the flux across the central plane x :g is given by

Seoufe ) dku Qn-Dr  [-@n-1 7%k
kax( j = : 2 5 XP >

n=1 c

Qn-r

=0, since cos =0

That is no heat flows across the central plane of the slab.
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Example 10

Two slabs of the same material, one 60 cm thick and the other 30 cm thick are placed
face to face in perfect contact. The thicker slab is initially at temperature 100°C, the
thinner one initially at zero. The outer faces are kept at zero temperature for ¢ > 0.
Find the temperature at the centre of the thicker slab (Fig. 5B.6)

L u =100 i u=0

|<— 60 cm —>| |<— 30cm —>=
Fig: 5B.6

u(x, 1), the temperature function at any point of the slab at time # is given by

W _ e (1)
o ox’
The corresponding boundary conditions are the following:
u(0,1) =0, forallz=0 2)
u(90,1) =0, forallz>0 3)

100, in0<x<60
u(x, 0) = “)

0, in60<x<90
Proceeding as in Example 1, the most general solution of Eq. (1) is
u(e, 1) = 3 B, sin 0t gm0 )
n=1

Using boundary condition (4) in (5), we have

Y B, sinn;r—ox = £(x) in (0, 90), where
n=1
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5-123
100, in0<x<60

f@)z{a in 60 < x < 90

If the Fourier half-range sine series of f(x) in (0, 90) is 2 b, sin@ , then comparison
of like terms gives n=1 9

2 % nwx
B, = b, =—[100sin——dx
90 90

60
_cos X
_ 200790
=5 w
90 0
200 2nw 400 . ,( nm
= ——yl-cos——p=——sin" | —
nrw 3 nr 3

Using this value of B,, in (5), the required solution is

400 1 . o(nm) . nax —n*r*at
ulx, t) = — —sin T sin exp
T

90 902

n=1
Therefore the temperature at the centre (x = 30) of the slab is given by

- 2.2 9
u(30, t) = 400 1 os [%)exp{—n ra t}

moaan 90?

PROBLEMS WITH NON-ZERO BOUNDARY VALUES
(TEMPERATURES OR TEMPERATURE GRADIENTS)

Example 11

A bar 10 cm long has originally a temperature of 0°C throughout its length. At time
t = 0 sec, the temperature at the end x = 0 is raised to 20°C, while that at the end
x = 10 is raised to 40°C. Determine the resulting temperature distribution in the bar.
The temperature distribution u(x, f) in the bar is given by the equation

d_ g2 du (1)
ot ox>
We have to solve Eq. (1) satisfying the following boundary conditions.
u(0,1) =20, forallr>0 2)
u(10,1) =40, forallz=0 3)
u(x,0)=0, forO<x<10 “)

In all the earlier problems, the boundary values in (2) and (3) were zero each and
hence we were able to get the values of two of the unknown constants in the proper
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solution easily. The usual procedure will not give the values of unknown constants in
the proper solution in this example, since we have non-zero values in the boundary
conditions (2) an (3). Hence we adopt a slightly different procedure, similar to the
one used in Example 16 of Chapter 3(A).

Let u(x, 1) = uy(x) + u,(x, t) 5)
Using (5) in (1), we get

d 0
—(u +u,) = azg(ul +u,)

ot
This gives rise to the two equations
J ? d’
1, (x) - o2 d u,(x) or W _ 0 (6)
ot ox? dx?

[ u,(x)is a function of x only]

2
ou o“u
2 _ 2 0%

or ox?

and

(N

Since u,(x) is independent of ¢ and the end values at x = 0 and x = 10 do not change
with 7, we assume that u,(x) corresponds to the end points and u,(x, ) corresponds to
the interior points 0 < x < 10.

Note £

u4(x) is referred to as the steadystate part and u,(x, t) as the transient part
of u(x, t).

Thus we have to solve Eq. (6) satisfying the end conditions

u,(0) =20 ()
and u,(10) =40 )
Solving Eq. (6), we get

u(x) =cx+c, (10)

Using boundary conditions (8) and (9) in (10), we get ¢; =2 and ¢, = 20.
uy(x) = 2x + 20 (11
Now we have to solve Eq. (7), satisfying the following boundary conditions which
are obtained by using (5) and the boundary conditions (2), (3), (4), (8), (9) and

Step (11).

u5(0, 1) = u(0, 1) —u;(0) =0, forallt>0 (12)
u(10, t) = u(10, 1) — u,(10) = 0O, forall >0 (13)
uy(x, 0) = u(x, 0) — u;(x) =—-(2x +20), forO<x<10 (14)
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Note &5

Equation 7 is readily solvable, as the boundary conditions (12) and (13) have
zero values in the R.H.S.

Proceeding as in Example 1, we get the most general solution of Equation (7) as
Uus(x, 1) = ZBn sin 2EX gn*rtali1o? (15)
n=1 10
Using boundary condition (14) in (15), we get

i . NmwXx .
Y'.B, sin— = = ~(2x+20) in (0, 10)
n=1

which is the Fourier half-range sineseries of —(2x + 20) in (0, 10).
Comparing like terms, we have

10
2
B, = b, = [ (~2x+20)}sin "~ dx
107 10

n nwx

2 o || 70
= ——|(x+10) T3
5 nr nrm
10 10

4 4
2201y -10) or 221y -1y
nmw nrw
Using this value of B, in (15), we get
401 ATX  _ 22,2 102
u(x,t) = — _2_1"_1Sin e—nﬂat/lo 16
2%, 1) n%ﬂ{() Jsin == (16)

Using (11) and (16) in (5), the required solution is

40 < 1 nmwx -n’rlat
H=02x+20)0+— Y —{2(=D" =1}sin ex
u(x, 1) = ( )”2{() Jsin=r2 p{ 00 }

n=1 1

Example 12

The ends A and B of a rod 40 cm long have their temperatures kept at 0°C and 80°C
respectively, until steadystate conditions prevail. The temperature of the end B is then
suddenly reduced to 40°C and kept so, while that of the end A is kept at 0°C. Find the
subsequent temperature distribution u(x, f) in the rod.
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When steadystate conditions prevail, the temperature distribution is given by

AT (1)
ox?
We have to solve Eq. (1), satisfying the boundary conditions
u(0)=0 (2)
u(40) = 80 (3)
Solving Eq. (1), we get
u(x) =ax+b 4

Using the boundary conditions (2) and (3) in (4), we geta=2and b =0
Therefore the solution of Eq. (1) is

u(x) =2x (5)

In the transient state, the temperature distribution in the rod is given by

2
g—”t‘ = o’ ;—Z (6)
The corresponding boundary conditions are

u(0,1)=0, forallt=0 (7
u(40, 1) =40, forallr=0 ®)
u(x,0) =2x, for0<x<40 9)

Since one of the end values is non-zero, we adopt the modified procedure explained
in Example 11.

Let u(x, 1) = uy(x) + u,(x, t) (10)

where u,(x) is given by

du,
2 =0 (11)
and u,(x, t) is given by
Ju, > 07w,
—2 gt 2 12
5 Y (12)

The boundary conditions for Eq. (11) are
u;(0) =0 (13)
and u,(40) = 40 (14)
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Solving Eq. (11), we get

u(x) =cx+c, (15)
Using boundary conditions (13) and (14) in (15), we get ¢; = 1 and ¢, = 0.
u(x) =x (16)
The boundary conditions for Eq. (12) are
u5(0, 1) = u(0, ) — u;(0) =0, forall 120 a7
uy(40, 1) = u(40, r) — u,(40) =0, forallt=0 (18)
u,(x, 0) = u(x, 0) — u;(x) = x, for 0 <x <40 (19)
Proceeding as in Example 1, we get the most general solution of Equation (12) as
-\ MY 2020217407
uy(x, 1) = ng{ B, sin= e (20)

Using boundary condition (19) in (20), we get

3 B, sin™™X ¢ in (0, 40)
o 40

which is the Fourier half-range sine series of x in (0, 40). Comparing like terms in
the two series, we have

2 40 X
B,=b,=—| xsin——dx
40 0
0
40
X
coOS——— n—-—
_ Lo 40 || 4
20 nr n*n?
40 40?

-2
= = x40cosnw = &(—1)’”1
nmw niw

Using this value of B, in (20), we get
80« 1 nmwx 222 0
w(x, ) = — —(-1 n+l sin—-e”’ neo"t/40 21
A0 = — 21 ~(D 20 1)
Using (16) and (21) in (10), the required solution is

X _p2n2621/40°
2 e

u(x, 1) = x+&21(—1)"+1 sin i

n=1
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Example 13

A bar of length 10 cm has its ends A and B kept at 50°C and 100°C until steadystate
conditions prevail. The temperature at A is then suddenly raised to 90°C and at the
same instant, that at B is lowered to 60°C and the end temperature are maintained

thereafter. Find the temperature at distance x from the end A at time 7.
When steadystate conditions prevail, the temperature distribution is given by
d*u
a7 W

We have to solve Eq. (1), satisfying the following boundary conditions.

u(0) =50 (2)
and u(10) = 100 (3)
Solving Eq. (1), we get

u(x) =ax+b “4)

Using the boundary conditions (2) and (3) in (4), we get a =5 and b = 50.
Therefore the solution of Eq. (1) is

u(x) =5x+ 50 5)

In the transient state, the temperature distribution in the bar is given by

2
3—Z = o’ gx—f 6)
The corresponding boundary conditions are

u(0, 1) =90, forallt>0 7
u(10, 1) = 60, forallt>0 ()
u(x, 0) =5x+50, forO<x<10 ©))

Since the end values (7) and (8) are non-zero each, we adopt the modified procedure
as in Examples 11 and 12.

Let u(x, 1) = uy(x) + u,(x, t) (10

where u,(x) is given by

2
J 2 -0 (11
ox
and u,(x, t) is given by
9 _ e Py (12)

ot ox>
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The boundary conditions for Eq. (11) are
u;(0) =90
and u,(10) = 60
Solving Eq. (11), we get
u(x) =cx+c,

Using boundary conditions (13) and (14) in (15), we get ¢, =-3 and ¢, =90

u(x) =90 -3x

The boundary conditions for Eq. (12) are
uy(0, 1) = u(0, 1) —u,;(0) =0, forall >0
uy(10, 1) = u(10, 1) — u,(10) = 0, forallt>0

uy(x, 0) = u(x, 0) — u;(x) =8x—-40, forO<x<10
Proceeding as in Example 1, we get the most general solution of Eq. (12) as
> niwx 2.2 2 02
u (x’ t) - B sin—=.p" - a”t/10
? é "0
Using boundary condition (19) in (20), we get
- . NEX
D B,sin—— =8x—40in (0, 10)
o 10
= zbn sinm—x
10

which is the Fourier half-range sine series of (8x — 40) in (0, 10).
Comparing like terms in the two series, we have

10
2
B, = b, = [ 8x—40)sin" " dx
107 10

10

nwx . NTTx
8 —COSW SIHW
= g (.X_S) ﬂ - nzﬂz
10 100 /],
= _—16{5005n7r+5}
nw

ey
niw

_160
nr
0, if nis odd

, if niseven

5-129

(13)
(14)

5)
(16)
a7)

(18)
19)

(20)
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Using this value of B, in (20) and then using (16) and (20) in (10), the required
solution is

1 oo 1 2.2 2
u(x, t)= 90—3x—ﬂ 2 —sin nx exp nrat
per a6, 1 10 100

25

n=1

o 2.2 2
ie. u(x, t)= 90—3x—@z lsin msrx exp( nr o t]

Example 14
A bar AB with insulated sides is initially at temperature 0°C throughout. Heat is

suddenly applied at the end x = [ at a constant rate A, so that g—u = A for x =/, while
X

the end A is not disturbed. Find the subsequent temperature distribution in the bar.
The temperature distribution u(x, f) in the bar is given by the equation

% = o’ ﬂ (1)
ot ox?
We have to solve Eq. (1) satisfying the following boundary conditions.
u(0,1)=0, forallt>0 2)
%(l, t) =A, foralltr>0 3)
ox
u(x,0)=0, forallO<x<! 4)
Since condition (3) has a non-zero value on the right side, we adopt the modified
procedure.
Let u(x, 1) = uy(x) + u,(x, t) (®))
where u,(x) is given by
d*u,
dx2 = (6)
and u,(x, f) is given by
aﬁ = o? % (7
ot ox?
The boundary conditions for Eq. (6) are
u;(0)=0 (3)
du
and —L@) =4 9
o 0] ©)
Solving Eq. (6), we get
u(x) =Ci(x) + G, (10)

Using boundary condition (8) in (10), we get C, =0
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From (10), we have

du,
1 =C 11
o (x) | (11)
Using boundary condition (9) in (11), we get C; = A.
u(x) = Ax (12)
The boundary conditions for Eq. (7) are
uy(x, 1) = u(0, 1) — u,;(0) =0, forallz>0 (13)
du, Ju du
1) = —,t)-—L1)=0, forallt>0 14
" S Ln=—L0) (14)
uy(x, 0) = u(x, 0) —uy(x) =—Ax, forO<x<l (15)

Proceeding as in Example 8, we get the most general solution of Eq. (7) as

o _ 1222
ur(x, 1) = Y B, sin (2n le)ﬂx exp{ @n-D'7a t} (16)

47*

n=l

Using boundary condition (15) in (16), we have

3B, sinZ VT a0, )
n=1 21
]
By, = %J.—Ax sin —(2n —Dmx dx
I 20

0

2n-Drx . 2n-Drx
2A —Ccos————— —sin————
- =4 21 _ 21
I 2n-Dr Qn-1>*n?
21 472

__ 8AL_ . Qn-Dm
n-1>*n* 2
_ BAL(-1)"
n-17*n*

Using this value of B,, _, in (16) and then using (12) and (16) in (5),the required
solution is

u(x, 1) = Ax+—— 5
4]

8Al & (=)' . (2n—-Dax -Qn-1)’n’o’t
5 sin exp
2 2 @2n-1) 21
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Example 15

An insulated metal rod of length 100 cm has one end A kept at 0°C and the other end
B at 100°C until steady state conditions prevail. At time ¢ = 0, the temperature at B
is suddenly reduced to 50°C and thereafter maintained, while at the same time ¢ = 0,
the end A is insulated. Find the temperature at any point of the rod at any subsequent
time.

When steadystate conditions prevail, the temperature distribution in the rod is
given by

% =0 (1
We have to solve Eq. (1) satisfying the boundary conditions

u(0)=0 2)
and u(100) = 100 3)
Solving Eq. (1), we get

u(x)y=ax+>b 4)

Using boundary conditions (2) in (3) in (4), we gata =1 and b = 0.
Therefore the solution of Eq. (1) is

u(x) =x (®))
In the transient state, the temperature distribution in the rod is given by
Jdu o’u
— =0 (©6)
ot ox
The corresponding boundary conditions are
a—M(O, t) =0, forallt>0 @)
ox
u(100, 1) = 50, forall >0 8)
u(x,0)=x, for0<x<100 )
Since the boundary value in (8) is non-zero, we adopt the modified procedure.
Let u(x, 1) = uy(x) + u,(x, t) (10)
where u,(x) is given by
d’u,
? =0 (11D
and u,(x, 1) is given by
ou, > 071,

7 = _ax2 (12)
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The boundary conditions for Eq. (11) are

du,

—(0) =0
o )
u;(100) = 50

Solving Eq. (11), we get
u(x) =cx+c,
From (15), we have

du,
o (x) =¢

Using boundary condition (13) in (16), we get ¢; = 0.
Using boundary condition (14) in (16), we get ¢, = 50.
: u(x) =50
The boundary conditions for Eq. 12 are
oy
ox
u,(100, 1) = u(100, 1) —u;(100) =0, forallz=0
uy(x, 0) = u(x, 0) — u;(x) =x - 50, for 0 <x< 100

Proceeding as in Example 7, we get the most general solution of Eq. (12) as

Ju du
0,1) = —(0,)——L(0)=0, forallr>0
0,1) ax( ) dx()

Q2n-Drx o @n=1P wlal/4x1007

ur(x, 1) = Y Ay, cos 500

n=1

Using boundary condition (20) in (21), we get

= -1
3 Ay cos DX 501n (0, 100)

~ 200
100
2n-1
Ay = — | (x=50)cos 2 DIX 4
100 ¢ 200
. 2n-Drmx 2n-Drx
1 sin 7200 —COS 7200
= —|(x-50 -
50 ( ) n-Dr n-1)*r?
200 200

200 . 2n-Dx 2002
= Sin - 3 2
2n-Dr 2 QCn-1’r

_ 200(-1)""! ~ 2002
Qn-Hr  Q2n-1>*x?

13)

(14)

5)

(16)

a7)

(18)

19)

(20)

21

100
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Using this value of A,, , in (21) and then using (17) and (21) in (10), the required
solution is

I _1yntl _
u(x, 1) = 50 +@z SV 2002 5 [0S (2n - Dzx
| 2n=1 @2n-1)r 200
2n- 1)2 rla’t
exXpy—————
40000
Example 16 )
Solve the equation g—l: =o’ g—z with the boundary conditions
X

u=ue (@>0)atx=0andu=0atx=1
using the method of separation of variables. Show that the temperature at the mid-point

1 l
of the rod is —u,e”® sec—A~ o .
20 20

We have to solve the equation

d_ g2 du (1)
ot ox>
Satisfying the boundary conditions
u(0, 1) = upe™™, forallt>0 )
and u(l, 1) =0, forall >0 3)
As u # oo, when t — oo, the appropriate solution of Eq. (1) is
u(x, 1) = (A cos px + B sin px)e " (4)

Using boundary condition (2) in (4), we have
A e—pzazt _ uofa)t

) O
A=uyjand p"=— Of p=—-r

Using boundary condition (3) in (4), we have

Jo

(”0 cosﬁl + Bsin—tjewt =0, forallr>0
o o

(0] . N
g cosS——I[+Bsin—I[ =0
o o
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Using the values of A, B and p in (4), the required solution is

cos wl —
_ o . w —ot
u(x, ) = Uy cos——x ———F=—sin—ux e
o NI o
sin—1[
o

sin@(l - X)
ie. u(x, ) = g —E——e (5)

. w
SiIn———
04

The temperature at the mid point of the rod is given by u(é, t) .

l
From (5), on putting x = 5 we get

. 0]
(l ) Slngl
u _,t u, —e_ml
2 "o,

sin

U, Vor o _
gec—. 7@
2 200

Example 17

The end x = 0 of a very long homogeneous rod is maintained at a temperature
u=ugsin ot. If u — 0 as x — oo, find an expression giving u at any time, at any point
of the bar.

The temperature distribution in the rod is given by

O (1)
ot ox?
We have to solve Eq. (1) satisfying the boundary conditions
u(0, 1) = u, sin o, forallt>0 2)
u(x, 1) > 0,as x > oo, forallz>0 3)

The variable separable solution of (1) will not give the required solution.

In order that the solution of Eq. (1) may satisfy the boundary conditions (2) and
(3), let us assume the solution of (1) as

u(x, 1) = Ae " sin (Ct — Dx) 4)
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From (4), g_l;t = ACe™ B cos(Ct — Dx)

? = —ABe % sin (Ct — Dx) — ADe™®* cos (Ct — Dx)

by

P u 2 _Bx —Bx

8_2 =AB“¢ " sin (Ct — Dx) + ABDe ™" cos (Ct — Dx)
X

+ ABDe ™ cos (Ct — Dx) — AD*¢®* sin (Ct — Dx)
Since (4) is a solution of (1), we have
Ccos 6= 052(B2 - Dz)sin 6+ 2BDo’ cos 6
where 6 = Ct — Dx.

Equating like terms, we get

A(B*-DH) =0 (5)

and 2BDo? =C (6)
From (5),

D=B>0 @)

[~ ¢ and hence u(x, 1) — 0 as x — o]
Using (7) in (6), we get
2B’ =C 3)
Using boundary condition (2) in (4), we have
A sin Ct = u, sin wt
A=uyyand C=w

From (8), B’ = % or B:l @
20 o2
From (7), D= l\/E
a\?2
Note &5
Had we assumed the solution as u(x, t) = Ae ®*sin (Ct + Dx), (6) would have
been —2BDo? = C and hence (8) would have been —2B*o? = wor B? = —2&2
o

which is absurd. Hence the assumption of the solution in the form (4) is
justified.

Using the values of A, B, C and D in (4), the required solution is

X @O ®

- . X /
ulx, 1) = uge 2 sin| 0t —=,|—
o\?2
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PROBLEMS ON TRANSMISSION LINE EQUATIONS

Example 18

A telegraph is a km long. Initially the line is uncharged so that V(x, 0) = 0. If, at r =0,
the end x = a is connected to a constant e.m.f. E, find V(x, 7) and i(x, #). In particular,
show that the current at the end x = 0 is given by

E 2ES n’m’t
——+— (-1)""exp| - 5
aR  aR "’} a’RC

(Refer to the discussion on transmission line equations in Chapter 3(A)
The potential at any point at time ¢ in a telegraph cable is given by

2
IV = Rca_v
ox> ot
2
or B_V = o2 _8 14 (1)
ot ox2
where ¢ = 1
We have to solve Eq. (1) satisfying the following boundary conditions.
V(0,t)=0, forallt=>0 2)
V(a,t)=E, forallz>0 3)
V(x,0)=0, forall0<x<a (@)

Since condition (3) contains a non-zero boundary value, we adopt the modified
procedure.

Let V(x, ) = V(x) + V,(x, 1) (5)
where V,(x) is given by
d’v,
dle =0
and V,(x, f) is given by
2
a& = o? _8 V2 (7
ot ox?
The boundary conditions for Eq. (6) are
V,(0) =0 @®)
Vi(a)=E 9

Solving Eq. (6), we get
Vi) =Cix+ C, (10)
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Using boundary conditions (8) and (9) in (10), we get C, = £ and C, =0
a
Ex

Vi) = o (11

The boundary conditions for Eq. (7) are
V,(0, 1) = V(0, 1) — V,(0) =0, forall1>0 (12)
Vy(a, t) = V(a, t) - V,(a) =0, forallt=0 (13)

E
Vo(x, 0) = V(x, 0) - Vi(x) = —7)6, forO<x<a (14)
Proceeding as in Example 1, we get the most general solution of Eq. (7) as
X _n’n’a’tia”

Vyx,n) = B, sinnTe_”

n=1

15)

Using boundary condition (14) in (15), we have

- . nmx E
ZBn sin—— — _&X in (0,a)
n=1 a a

- . NTX
2 b, sin——
n=1 a

which is the Fourier half-range sine series of (—Ej in (0,a)-
a

Comparing like terms in the two series, we have

2t E T
B,=b, :—J‘ ~Esin gy
ay a a
T
2E cos—— nx
- B a_ |_|_ a
o2 nm 22
a 02
2E
= =y
nrw

Using this value of B, in (15) and using (11) and (15) in (5), the required solution is

X _p?z’0’tia?

Ex 2E .
V(x, ;)=7x+72(—1)"sm . e (16)
n=1

For the telegraph equation (L = G =0),

Ri = %—Z or i(x, t)=—%?)—:(x, 1)
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Differentiating (16) partially with respect to x, we have

2.2 2

i, 1) = __+_2( 1)n+1 g t1a

2.2
a’R

. , 1
since o6 =——.
RC

Example 19

A transmission line 1000 km long is initially under steadystate conditions with
potential 1200 volts at the sending end and 1100 volts at the load (x = 1000). The
terminal end of the line is suddenly grounded, reducing its potential to zero, but the

potential at the sending end is kept at 1200 volts. Find the potential function e(x, 7).
Assume that L = G =0.

When L = G = 0, the potential function e(x, ¢) in the transmission line is given by

2
de _ p0%€ (1)
ot ox’
where g% = — .
R
When steadystate conditions prevail, the potential function is given by
2
The boundary conditions for Eq. (2) are
e(0) = 1200 (3)
and ¢(1000) = 1100 (4)
Solving Eq. (2), we get
e(x)=ax+>b (5)

Using boundary conditions (3) and (4) in (5), we have a = -0.1 and b = 1200.
Therefore the solution of Eq. (2) is
e(x) =1200-0.1x (6)
In the transient state, the potential function is given by Eq. (1).
The corresponding boundary conditions are

e(0, 1) = 1200, forall1=0 (7
e(1000, 1) =0, forall £=0 (8)
e(x, 0) =1200 — 0.1x, for 0 < x < 1000 )

Since the boundary value in (7) is non-zero, we adopt the modified procedure.
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Let e(x, 1) = e (x) +ey(x, 1)
where e;(x) is given by
dze]

dx2

and e, (x, ?) is given by

de, , d%e,

ot * ax2

The boundary conditions for Eq. (11) are

e,(0) = 1200
and €,(1000) =0
Solving Eq. (11), we get

e(x)=Cix+GC,

(10)

Y

(12)

(13)
(14)

15)

Using boundary conditions (13) and (14) in (15), we get C; =-1.2 and C, = 1200

e;(x) =1200 - 1.2x
The boundary conditions for Eq. (12) are
e,(0, 1) =e(0, 1) —e,(0) =0, forall1=0
e,(1000, 1) = (1000, f) — €,(1000) =0, forallt=0
e)(x, 0) =e(x, 0) — e (x) = 1.1x, for 0 < x < 1000
Proceeding as in Example 1, we get the most general solution of Eq. (12) as

o 2.2 2
. nmwx -n"rat
e)(x, t) = ZB sin exp{ }
=7 71000 10002

Using boundary condition (19) in (20), we get

Y B, sin——— = 1.1x in (0, 1000)
=7"1000

= an sin
1000

which is Fourier half-range sine series of 1.1x in (0, 1000).

(16)

7)

(18)
(19)

(20)
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Comparing like terms, we get

1000
§= ﬁij 1 1xsin 22 gy
1000 Jo 0
1000
—cos Y _gin X
_ 22 1000 | _ 1000
1000 nm nm?
1000 10002
_ 2200 1y
nmw

Using this value of B, in (20) and then using (16) and (20) in (10), the required

solution is
2200 & (=™ . (nwx —n*r’t
1) = 1200-1.2x + sin -ex
e ) T ; n 100 ) P 10°RC

Example 20
A submarine cable ( L=G=0and a= éj of length [ has zero initial current and

charge. The end x = 0 is insulated and a constant voltage E is applied at x = [. Show
that the voltage at any point is given by

4E & (-1) -
Y n=1 2n—1 21

The voltage function function v(x, f) is given by the equation

v 1LV v o

= ———— or —= o))
ot RC 9x? ot ox?
We have to solve Eq. (1) satisfying the following boundary conditions.
a—V(O, t) =0, forallz>0 2)
dx
v(l,t)=E, forallt=0 3)
v(ix,0)=0, forO<x<I 4)
Since the boundary value in (3) is non-zero, we adopt the modified procedure.
Let v(x, 1) = vi(x) + vo(x, 1) 5
where v,(x) is given by
dzvl
=0 (6)

dx2
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and v,(x, ?) is given by
W _ ey

ot ox*
The boundary conditions for Eq. (6) are

0
V‘ “LO0) =0
and () =E
Solving Eq. (6), we get
vix)=Cix+C,
From (10), we have
v, (x)
1M _
ox !

Using boundary condition (8) in (11),we get C; =0

Using boundary condition (9) in (10), we get C, = E.
vix) =E

The boundary conditions for Eq. (7) are

d
aﬁ(o 1 = V(o, H=L0)=0, forall 120
ox dx

vyl 1) = v(l, £) —v,(1) = 0, forall £>0

vo(x, 0) =v(x, 0) —vi(x)=—E, forO<x<!

Proceeding as in Example 7, with u,, replaced by —E, the solution of Eq. (7) is

COSs
~ (2n-1) 21 41

n—1 ) o
vy, 1) = _4E2( 1) 2n-Drx exp{_(zn_l) 2at

Using (12) and (16) in (5), the required solution is

n 2.2
V1) = E+4EZ( 1) cos(2n—1)7rx.exp{(—(2n—l) moat

“2n-1 21 4%

(N

®)

©)

(10)

(1)

(12)

(13)

(14)

15)

(16)
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Exercise 5B(b)

Part A (Short-Answer Questions)

1.

Part B
10.

11.

State the two laws of thermodynamics used in the derivation of one
dimensional heat flow equation.

What does o represent in the equation?
du_ s
ot ox?

Write down the three mathematically possible solutions of one dimensional
heat flow equation.

Write down the appropriate solution of the one dimensional heat flow
equation. How is it chosen?

Write down the form of the general solution of one dimensional heat flow
equation, when both the ends of the bar are kept at zero temperature.

Write down the form of the general solution of one dimensional heat flow
equation, when both the ends of the rod are insulated?

In what type of one dimensional heat flow problems, will neither the Fourier
sine series nor cosine series be useful?

Write down the form of the temperature function, when heat flow in a bar is
under steadystate conditions.

2
Explain briefly the procedure used to solve % = o 8_124 satisfying, the
conditions ot X

u©0, ) =A, u(l, =B and u(x, 0) = f(x)

A uniform bar of length 10 cm through which heat flows is insulated at its
sides. The ends are kept at zero temperature. If the initial temperature at the
interior points of the bar is given by

2
() 3sin X+ 2sin X
5 5

(i) 2sinﬂcoszﬂ find the temperature distribution in the bar
5

Obtain the solution of the equation

ou 5 0%u

— = —

ot ox?
satisfying the following conditions: (i) u # oo, as t — oo; (il)) u = 0 for x =0
and x = x for any value of #; (iii) u = mx — x°, when 7 = 0 in the range (0, 7).
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12.  Find the solution of the equation
W _ a0
ot ox?
that satisfies the condition u(0, t) = 0 and u(/, t) = 0 for t > 0 and

X, f0r0<x<i
u(x, 0) = 2
[—x, for—<x<l

2

13. Arodoflength /hasits ends A and B kept at 0°C and 7°C respectively, until
steadystate conditions prevail. If the temperature at B is reduced suddenly to
0°C and kept so, while that of A is maintained, find the temperature u(x, ) at
a distance x from the end A at time ¢.

14.  Solve the one dimensional heat flow equation

w0
or ox>

satisfying the following boundary conditions.

() %(0, 1)=0, forallt>0
ox

i) 24 y=0. forall1>0
ox

2
(iii) (a) u(x, 0) = ZCOSS”TxCOS%, forO0<x <!

(b) u(x,0) = cos* % in (0,1):

(¢) u(x,0)=1Ix—x"in (0, ])

15. The temperature at one end of a bar, 50 cm long and with insulated sides,
is kept at 0°C and that at the other end is kept at 100°C until steadystate
conditions prevail. The two ends are then suddenly insulated, so that the
temperature gradient is zero at each end thereafter. Find the temperature
distribution. Show also that the sum of the temperature at any two points
equidistant from the centre of the bar is always 100°C.

16. A uniform rod of length a whose surface is thermally insulated is initially at
temperature 6 = 6,. At time ¢ = 0, one end is suddenly cooled to temperature
6= 0 and subsequently maintained at this temperature. The other end remains
thermally insulated. Show that the temperature at this end at time 7 is given
by

46, < (D" 2.2 2., 2
o= — exp{-(2n+1)° o’ n’t/4a
. 20 S ORI+ )

17. An insulated metal rod of length 20 cm has one end A kept at 0°C and the
other end B at 60°C until steadystate conditions prevail. At time ¢ = 0, the
end B is suddenly insulated while the temperature at A is maintained at 0°C.
Find the temperature at any point of the rod at any subsequent time.



18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
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Two slabs of iron each 20 cm thick, one at temperature 100°C and the other
at temperature 0°C throughout, are placed face to face in perfect contact
and their outer faces are kept at 0°C. Find the temperature 10 minutes after
contact was made, at a point on their common face.

Find the temperature in a flat slab of unit width such that (i) its initial
temperature varies uniformly from zero at one face to i, at the other, (ii) the
temperature of the face initially at zero remains at zero for £ > 0 and (iii) the
face initially at temperature u, is insulated for ¢ > 0.

Find the temperature 6(x, f) in an infinite slab of thickness /, if the faces x =0
and x =/ are kept at a constant temperature 7°, the initial temperature of the
slab being 0°.

A bar 40 cm long has originally a temperature of 0°C along all its length. At
time ¢ = 0 sec, the temperature at the end x = 0 is raised to 50°C, while that
at the end x = 40 is raised to 100°C. Determine the resulting temperature
distribution.

The ends A and B of a rod 10 cm long have their temperatures kept at 0°C
and 20°C respectively, until steadystate conditions prevail. The temperature
of the end B is then suddenly raised to 60°C and kept so while that of the end
A is kept at 0°C. Find the temperature u(x, 1).

A rod [ cm long with insulated lateral surface is initially at the temperature
100°C throughout. If the temperatures at the ends are suddenly reduced to
25°C and 75°C respectively, find the temperature distribution in the rod at
any subsequent time.

The ends A and B of a bar 50 cm long are kept at 0°C and 100°C respectively,
until steadystate conditions prevail. The temperatures at A and B are then
suddenly raised to 50°C and 150°C respectively and they are maintained
thereafter. Find an expression for the temperature at a distance x from A at
any time ¢ subsequent to the changes in the end temperatures.

A rod AB of length 10 cm has the ends A and B kept at temperature 40°C and
100°C respectively, until the steadystate is reached. At some time thereafter
the temperatures at A and B are lowered to 10°C and 50°C and they are
maintained thereafter. Find the subsequent temperature distribution.

The ends A and B of a rod 20 cm long have the temperatures at 30°C and
80°C until steadystate prevails. The temperatures of the ends are changed to
40°C and 60°C respectively. Find the temperature distribution in the rod at
time 7.

A bar 25 long with its sides impervious to heat, has its ends A and B kept at
100°C and 200°C respectively. After the temperature distribution becomes
steady, the end A is suddenly cooled to 50°C and at the same instant, the end
B is warmed to 300°C. Find an expression for the temperature at a distance
x from A at any time 7 subsequent to the changes in the end temperatures.

A bar with insulated sides is initially at temperature 0°C throughout. Heat

is suddenly applied at the end x = O at a constant rate A, so that % =A for
X
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29.

30.

31.

32.

33.

34.

35.

x = 0, while the end x = [/ is maintained at 0°C temperature. Find the
temperature in the bar at a subsequent time.

An insulated metal rod of length 60 cm has one end A kept at 0°C and the
other end B at 60°C until steadystate conditions prevail. At time ¢ = 0, the
temperature at A is suddenly increased to 30°C and thereafter maintained,
while at the same time ¢ = 0 the end B is insulated. Find the subsequent
temperature distribution in the rod.
2
Solve the equation —u=a—;‘, satisfying the conditions: (i) u(0, ) = 0;
X

ot
(ii) u(1, t) = t and (iii) u(x, 0) = 0.
[Hint: Assume u(x, t) = )c{a(x2 — 1) + 1} + uy(x, ). When u(x,t) satisfies

. . . 1 .
the given equation and boundary conditions, a =g and u,(x, t) satisfies

2
Juy _ 9ty such that 1,(0, 1) = 0, u(1, £) = 0 and u,(x, 0) = lx(l -x)].
ot ax2 6

2
Solve the equation %:a_b;, satisfying the conditions: (i) u(0, ) = ¢,
t ox

(i) u(l, ) = 0 and (iii) u(x, 0) = 0. [Hint: Assume u(x, 1) =

{ax(xz _1)+(x_1)(§_t)} + uy(x, t). When u(x, t) satisfies the given

2
equation and the boundary conditions, a =—1/6 and u,(x, 1) = satisfies % = a_u;
t ox

such that u,(0, £) = 0, u,(1, £) = 0 and u,(x, 0) = %x(xz -3x+2)]-

A transmission line 1000 km long is initially under steadystate conditions
with potential 1300 volts at the sending end (x = 0) and 1200 volts at the
receiving end (x = 1000). The terminal end of the line is suddenly grounded,
but the potential at the source is kept at 1300 volts. Assuming the inductance
and leakage to be negligible, find the potential e(x, ?).

A steady voltage distribution of 20 volts at the sending end and 12 volts at the
receiving end is maintained in a telephone wire of length /. At time ¢ = 0, the
receiving end is grounded. Find the voltage and current ¢ secs. later. Neglect
leakage and inductance.

In a telegraph wire, the sending end of the line is at potential ¢, the far
end being earthed until steadystate conditions prevail. The sending end is
suddenly earthed. Show that the potential at a point distant x from the sending

end at time 7 is given by e(x, t) = 2ﬁz“lmt—xexp{—nzﬂzz‘/CRlz} , where

l
n=1
[ is the length of the wire and C, R have their usual meanings.
A submarine cable of length / has the end x = [ grounded and constant voltage

E is applied at the end x = 0 with zero initial conditions. Find the expression
for the current at x = 0.



10.

11.

12.

13.

14.

15.

17.

18.

19.

20.
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Answers

Exercise 5B(b)

- 27X 167202
(]) u(x t) 3Sln 5 477.' o 1/100 +2Sln 5 167°0c“t/100

X _47202 . 3Tx 36,242
(]1) u(x t) = —gin—= 5 471: o“t/100 +sin e 36m°a“t/100 )

u(x, t)——z( sm(2n Dx exp{-(2n—1)* o’} .
n=1 2n-1

n+l
u(vn=— 4 2 CD n =D e @n— 12 R2a ) .
n= 1(21’1 1) l

1 n+l
u(x,t)y=— Z( ) sm%exp( —n’mlattil? ).
V3 n

n=1

(@) u(x,t)= cos%exp(—ﬂzazt/lz) + cos ST exp(—257r2052t/12)

1 2 1 4
(b) u(x, t)—§+zcos 7; exp (— -An’a t/lz)+gcos%exp(—l&tzoczt/l2

2

2 2 e
©) u(x,t)= l— — l— z %cos 2nmx exp (—4n27r2a2t/12) .
6 - on l

PP RGN
nl(zn 1) 50

exp{—(2n—1)>m*a*1/2500} .

480Z (="t Gy 2n—Drmx

exp{—(2n—1)*a*1/1600} .
Zon-n? 4 F

u(x, t)=

400 & 1
1(20, 600) = ﬂZ—snP (”f ] sin ( "2” ) exp(=3nm2 a2 /8).
T

n=1

du, (1)’”1 . @n-Dmx —@n-1*n0’t
u(x,t)=—-+ ,,ZI(Zn 1) 3 exp{ 1 .

ur =721 2 . ! sin (2”_11)“ “expl—2n—12m2a /%) .
n-—



22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.
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1
u(x,;)z%ﬂso 002 (2cosnm—1)- sm4i0 expl—n*m2a’1 11600} .

n=1

u(x, 1) = 6x+—z (-1)"s nW exp(—n*m01/100) -
T

n=1M

u(x, t)—%x+25 502 {3— cosnn}sm# exp{— n’ 2t/lz}.

T =11

200 1 . 2n-Drx 2 .22
ulx,t)=2+50)——— sin exp{—2n—-1)"m a"t/2500} .
(x,1)=( )7[212”_1 5 oel-@n-D) }
u(x, t)—(4x+10)+£2 (3- 5cosmr)smT exp(—n’ma®1/100).

T = ln

2031
u(x, 1) = x+40——02—(2 cosn +1)sin%~exp(—n2n2a2z/400) .
T n

n=1

1
u(x, r)_10x+50+ﬂ2 (2c0sn7t+1)sm2L5 exp(-n’m°a’11625).
T n

n=l

u(x,t)=A(x— l)+8—/§l ! co S(2n—1)7rx
i 2n=1)° 21

1yt _
u(x, )= 30+@2 1 + 4(-D sin 2n—-Drx
T 2n-1" @2n-1’n 120

exp{—2n—1)* o’ t/41%)

n=1

exp{—(2n—1)* a1 11207}

u(x, t)——(x —-x+6 t)+—z( D™ 51nn7rx-exp(—n27r2t)-
71' n=1 l’l

1 2 3
u(x, t) = —g(x3 —3x7 +2x+6xt —61)+ —32 sinnx-exp(-n’m’t) .

oo o qyn+l
2009 D G0 Y e -n?7*1/1000° RC)
no 1000

e(x,)=1300—13x+

n=l
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20 24 & (=" . nmx —n*n’t
33 e(x, )= —(l-x)—— sin -exp
I n Zz; ! I’RC

exp(—nzn'zt/lzRC) )

] ——+— cos
HED= TR anz;( v

35. = %{—1 +2) exp(—nzn'zt/lzRC)} .

n=1

5-149
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T C BN

Steady State Heat Flow in
Two Dimensions
[Cartesian Coordinates]

3C.1 INTRODUCTION

When the heat flow is along plane curves, lying in the same or parallel planes,
instead of along straight lines, then the heat flow is said to be two dimensional.
When we consider heat flow or temperature distribution in this uniform plate
or sheet made of conducting material, the heat flow is assumed to be two
dimensional.

When all the edges of the plate are straight lines, that is, when the plate is in
the form of a rectangle or square, cartesian coordinates will be used to discuss the
temperature distribution in the plate, as the straight edges can be easily represented
in the cartesian system. When one or more edges of the plate are circular arcs, that is,
when the plate is in the form of a circle, semicircle, sector of a circle or circular ring,
polar coordinates will be used to discuss the temperature distribution in the plate, as
the circular edges can be easily represented in the polar system.

In this chapter, we shall fist derive the partial differential equation of variable heat

flow in two dimensional cartesians and then deduce the equation of steadystate heat
flow.

3C.2 EQUATION OF VARIABLE HEAT FLOW IN TWO
DIMENSIONS IN CARTESIAN COORDINATES

Let us consider heat flow in a thin plate or sheet, of thickness %, which is made up of
conducting material of density p, thermal conductivity k£ and specific heat c. Let the
xoy-plane be taken in one face of plate. Let us assume that the surfaces of the plate
are insulated, so that heat flow takes place only in the xoy-plane and not along the
normal to xoy-plane.

Let us now consider the heat flow in an element of the plate in the form of a small
rectangle ABCD, the coordinates of the vertices of which are shown in Fig. 3C.1. Let
u and u + Au be the temperatures of this element at times ¢ and # + Ar respectively.

Therefore increase in temperature in the element in Af time = Au.
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y
Ry
(X’E'\)/+Ay) T C(x + Ax, y + Ay)
— R2
R
A(x, y) TR3 B(x + Ax, y)
X
0

Fig. 3C.1

Therefore increase of heat in the element in Af time =(specific heat) (mass of the
element) (increase in temperature) [by a law of thermodynamics] = c(ph Ax Ay) Au.
Therefore rate of increase of heat in the element at time 7 is

= hpcAxAy- % (D

Let R, and R; be the rates of inflow of heat into the element through the sides AD
and AB respectively at time 7.

Let R, and R, be the rates of outflow of heat from the element through the sides
BC and DC respectively at time 7.

Therefore rate of increase of heat in the element at time ¢ is

ou ou
~[rom(3) || om(3).
+ —k(hAy)[a—uj - —k(hAx)(%j
ay y ay y+Ay

by a law of thermodynamics. (For explanation, sec the derivation of one dimensional
heat flow equation in Chapter 3(B)

), ) |55
= hkaxay A% s %) » “AAyy ), )
Equating (1) and (2), we get
du du Jdu du
du _ k (axjﬁm_(axj + (ay .v+Ay_(ay]y 3)

o pc Ax Ay

Equation (3) gives the temperature distribution at time # in the element ABCD of the
plate.
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Taking limits as Ax — 0 and Ay — 0 in (3), we get the equation that gives the
temperature at the point A(x, y) at time 7.

Thus the partial differential equation, representing variable temperature distribution
in a two dimensional plate or variable heat flow in two dimensions is

Ju k [*u o%u
_— = — | — 4 —
ot pc ax2 ay2
Since LS depends on the material of the plate and positive, we denote it by oZ, which
pc
is called the diffusivity of the material of the plate.
Thus the equation of variable heat flow in two dimensional cartesians is

ou o[ *u du
ou _ ogn, o4 4
o ¢ [aﬁ +8yzj @

Deduction

When steadystate conditions prevail in the plate, the temperature at any point of the
plate does not depend on ¢, but depends on x and y only.

Jdu
ie. — =0inEq. 4
oy q. (4) 2 2
Thus steadystate temperature distribution in a two plate is given by 8_1;£+8_124 =0,
ox~ dy

which is the familiar Laplace equation in two dimensional cartesians.

Note 25

1. If the surfaces of the plate are not insulated, heat flow will be along non-
planar curves, so that heat flow is three dimensional. In this case, the
equation of heat flow will take the form

ot ox? ay? oz’

2. If heat flows along straight lines all parallel to x-axis, then R; =0 =R,. In

au 0%u
this case, heat flow is one dimensional and Eq. (4) reduced to — = 2 —,
which has been directly derived in Chapter 3(B). ot ax

3. The following functions which occur in various branches of Applied
Mathematics and Engineering satisfy Laplace equation A“u = 0.
(i) the temperature in the theory of thermal equilibrium of solids.
(i) the gravitational potential in regions not occupied by attracting matter.
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(iii) the electrostatic potential in a uniform dielectric, in the theory of
electrostatics.

(iv) the magnetic potential in free space, in the theory of magnetostatics.

(v) the electric potential, in the theory of the steady flow of electric current
in solid conductors.

(vi) the velocity potential at points of a homogeneous liquid moving
irrotationally in hydrodynamic problems.

3C.3 VARIABLE SEPARABLE SOLUTIONS OF

LAPLACE EQUATION
Laplace equation in two dimensional cartesians is
*u  ’u
eIy )| 1
oxr 9y’ W
Let u(x, y) = X(x)- Y(y) 2

be a solution of Eq. (1), where X(x) is a function of x alone and Y(y) is a function
oy alone.

2 2 2 2
X X .
Then a—Z:X”Yanda—l;=XY”,whereX”=d—2andY”=d—2, satisfy
Eq.(1). 0x dy dx dy
i.e. XY+ XY” =0
X// Y//
i.e. = - 3
X Y (3)

The L.H.S. of (3) is a function of x alone and the R.H.S. is a function of y alone. They
are equal for all values of the independent variables x and y. This is possible only if
each is a constant.

X = - Y =k, where k is a constant.

X
- X" —kX=0 “)
and Y +ky=0 (@)

The nature of the solutions of (4) and (5) depends on the nature of values of k.
Hence the following three cases arise:

Case (1)
k is positive. Let k = P
Then Eq. (4) and (5) become
(D*=pHX =0and (D} + pHY =0



5154 Transforms and Partial Differential Equations

where D =
The solutions of these equations are X = Ae”™ + Be? and Y = C cos py +
D sin py.
Case (2)
k is negative. Let k = —pz.
Then Eq. (4) and (5) become
D*+pHX=0 and (D} -pHY=0

The solutions of these equations are X = A cos px + B sin px and Y = ce” + De ™.

Case (3)
k=0.
Then Eq. (4) and (5) become
d’x d’y
— =0 and — =0.
dx dy

The solutions of these equations are
X=Ax+B and Y=Cy+D

Since u(x, y) = X(x)-Y(y) is solution of Eq. (1), the three mathematically possible
solutions of Eq. (1) are

u(x, y) = (Ae”™ + B~P%)(C cos py + D sin py) (6)
u(x, y) = (A cos px + B sin px)(Ce” + De™) (7
and u(x,y) =(Ax + B)(Cy + D) (8)

3C.4 CHOICE OF PROPER SOLUTION

Out of the three mathematically possible solutions derived, we have to choose that
solution which is consistent with the given boundary conditions. We have already
observed that Laplace equation represents steadystate heat flow in two dimensional
plates in the form of rectangles or squares whose sides are parallel to the coordinate
axes, that is, whose sides are x =0, x=a,y=0and y = b.

Laplace Equation is readily solvable, that is, the arbitrary constants in the solutions
can be easily found out, if three of the boundary values (either temperatures or
gradients) prescribed on any three sides of the rectangle are zero each and the fourth
boundary value is non-zero.

If the non-zero boundary value is prescribed either on x = 0 or on x = a (in which
y is varying), that solution in which periodic functions in y occur will be the proper
solution. That is, (6) will be the proper solution. It can be verified in individual problems
that solutions (7) and (8) become trivial in such situations.
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If the non-zero boundary value if prescribed either on y = 0 or y = b (in which x is
varying), that solution in which periodic functions in x occur will be the proper solution.
That is, (7) will be the proper solution. It can be verified in individual problems that
solutions (6) and (8) become trivial in such situations.

Thus we cannot choose a single solution as the appropriate solution in all situations.
Invariably, solution (8) need not be considered, as it will result in a trivial solution.
Solution (6) or (7) will be the suitable solution, according as non-zero boundary value
is prescribed on the side x = k or y = k.

Worked Examples m_

PROBLEMS ON TEMPERATURE DISTRIBUTION IN VERY
LONG PLATES

Example 1

A rectangular plate with insulated surfaces is a cm wide and so long compared
to its width that it may be considered infinite in length without introducing an
appreciable error. If the two long edges x = 0 and x = @ and the short edge at infinity
are kept at temperature 0°C, while the other short edge y = 0 is kept at temperature

. . nmw .. . .
(i) uysin— and (ii) T (constant). Find the steadystate temperature at any point
a

(x, y) of the plate (Fig. 3C.2)
y

The temperature u(x, y) at any point (x, y) of the plate in the steadystate is given
by the equation

Tu,u |
ox® 9yt )
We have to solve Eq. (1) satisfying the following boundary conditions.
u0,y)=0, forally>0 2)
u(a,y) =0, forally>0 3)
u(x, =) =0, for0<x<a 4)
u(x,0) =f(x), for0<x<a 5

where f(x)=u, sin® 2% for (i) and f(x) = T for (i).
a
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The three possible solutions of Eq. (1) are

u(x, y) = (Ae”™ + B~")(C cos py + D sin py) (6)
u(x, y) = (A cos px + B sin px)(Ce” + De™) (7
and u(x, y) = (Ax + B)(Cy + D) (8)

By boundary condition (4), u — 0 when y — oo. Of the three possible solutions, only
Solution (7) can satisfy this condition. Hence we reject the other two solutions.

Rewriting (7), we have

u(x, y)e” = (A cos px + B sin px)(C + De ) ay

Using boundary condition (4) in (7)’, we have (A cos px + B sin px)C = 0, for
0<x<a.
Cc=0

Using boundary condition (2) in (7), we have
A-D-e? =0, forall y>0
EitherA=0orD=0
If we assume that D = 0, we get a trivial solution.
A=0
Using boundary condition (3) in (7), we have
Bsinpa-De™ =0, forally>0
The assumption that B = 0 leads to a trivial solution.
sinpa =0

nr
pa=nmw or p=—
a

where n =0, 1, 2, ..., .

Using these values of A, C and p in (7), it reduces to

u(x, y) = lsinm—x- e e 9)
a
where n=0, 1, 2, ..., oo,
The most general solution of Eq. (1) [got by superposing all the solutions in (9) except
the one corresponding to n = 0] is

_nry

ux,y)= Y 4, sinr e a (10)
a

n=1
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Using boundary condition (5) in (10), we have

. NTX
2 A, sin——
a

f(x) in (0, a) (11)

1) f(x)=u, sin’ x
a

o 3sin rx sin —37”
4 a a

Using this form of f(x) in (11) and comparing like terms, we get

/1l=3ﬂ,,13:_’%0 and Ay=0=7,= A= ..

Using these values of 4, in (10), the required solution is

X _ uy . 3mx _
e nyla __OSln e 3nyla

3
u(x,y) = 2 Gin
4 a 4 a

(i) f(x)=Tin (0, )
nmwx

Let the fourier half-range sines series of f(x) in (0, a) be an sin——.
n=1 a
Using this form of f(x) in (11) and comparing like terms, we get

2% . nmx
A, = b, =—J-Ts1n—dx
a a
0
nmwx
cos——
a nmw
a 0

2Ty
niw

4T

—, ifnisodd
=<nr

0, if n is even

Using this value of 4, in (10), the required solution is

TS 1 Qn-Drx
sin

4
ulx,y) = —
() T EZn—l

exp{—(2n—-ryl/a}

Example 2

An infinitely long metal plate in the form of an area is enclosed between the lines
y =0 and y = 7« for positive values of x. The temperature is zero along the edges
y =0, y = mwand the edge at infinity. If the edge x = 0 is kept at temperature ky, find
the steadystate temperature distribution in the plate (Fig. 3C.3)
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y
y=n
u=0 i

x=0|u=ky 1u=0

y=0 i

0 u=0 X

Fig. 3C.3

The steadystate temperature u(x, y) at any point (x, y) of the plane is given by the

equation
*u  9’u

PR

We have to solve Eq. (1) satisfying the following boundary conditions.

u(x,0) =0, forall x>0
u(x, ) =0, forall x>0
(o, 1) =0, for0<y<nm
u(0,y) =ky,forO<y<mrm
Of the three possible solutions of Eq. (1), the solution
u(x, y) = (Ae”™ + Be)(C cos py + D sin py)
can satisfy the boundary condition (4). Rewriting (6), we have
u(x, y)e? = (A + Be ’*)(C cos py + D sin py)
Using boundary condition (4) in (6”), we have
A(Ccospy+ Dsinpy) =0, forO<y<r
A=0
Using boundary condition (2) in (6), we have
B.Ce?” =0, forall x>0
Either B=0 or C=0

If we assume that B =0, we get a trivial solution.

Cc=0

ey

2
3)
“)
(&)

(6)

(6"
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Using boundary condition (3) in (6), we have
Be?-Dsin pr =0, forall x>0

B=0,D=0 or sinpr=0

The values B = 0 and D = 0 lead to trivial solution.

sinpr=0
p=n
where n=0,1,2,3, .., 0.

Using these values of A, C and p in (6), it reduces to
u(x,y) = Ae™-sin ny

where n=0,1,2,..,co.
Therefore the most general solution of Eq. 1 is

u(x,y) = Y A,e " sinny (7)

n=1

Using boundary condition (5) in (7), we have

z&n sinny =kyin (0, m)

n=1
= an sinny

which is the Fourier half-range sine series of ky in (0, ). Computing like terms in
the two series, we get

V3
A, = b, :%Jkysinnydy
0

_ 2k —cosny | ( —sinny i
T Y n n2 0
%(_l)nﬂ

n

Using this value of 4, (7), the required solution is

(_1)n+1

e ™ sinny

u(x,y) = 2ki
n=1



5160 Transforms and Partial Differential Equations

Example 3

A long rectangular plate with insulated surface is 1 cm wide. If the temperature along
one short edge (y = 0) is u(x, 0) = k(Ix — x2) degrees, for 0 < x < /, while the two long
edge x =0 and x =/ as well as the other short edge are kept of 0°C, find the steadystate
temperature function u(x, y).

The steadystate temperature u(x, y) at any point (x, y) of the plate is given by the
equation

2 2
gx—z+§y—z = ey
We have to solve Eq. (1), satisfying the following boundary conditions.
u(0,y) =0, forall y >0 2)
u(l, y) =0, forally >0 3)
u(x, ) =0, for0 <x<1 (@)
u(x, 0) = k(Ix — x%), for0<x <1 (5)

Proceeding as in Example 1, most general solution of Eq. (1) can be obtained as
u(r.y) = YA, sin e ©)
n=1

Using boundary condition (5) in (6), we have

3 4, sin ’”lt—x = k(lx— %) in (0, [)

n=1

which is the Fourier half-range sine series of k(/x — x2) in (0, 1).

Comparing like terms, we have

[
2
A= b, == [kr—a*)sin " dx
I I

nmwx . nmwx nmwx

2k 5 COST sin—— COST

= 2 2| ———L |~ 20| 5L |+ (2)| L
l n*r? n’r’
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4kI*
= =1
n’nd
8kl*
3 3 if n is odd
=\n’m
0, if nis even

Using this value of A, (6), the required solution is

Sk’ & 1 . 2n-Drx
= Sin

exp{—(2n—-1rmyl/l}
© Zn-1y ! P Y

Example 4
A rectangular plate with insulated surfaces is 20 cm wide and so long compared to its
width that it may be considered infinite in length without introducing an appreciable
error. If the temperature of the short edge x = 0 is given by

u=10y, for0<y<10

=10(20 - y), for 10 <y <20

and the two long edges as well as the other short edge are kept at 0°C, find the
steadystate temperature distribution in the plate.

The steadystate temperature u(x, y) at any point (x, y) of the plate is given by the
equation

2 2
a—l;+a—”2‘ =0 (1)
dx~  dy
We have to solve Eq. (1), satisfying the following boundary conditions.
u(x, 0) =0, forall x>0 2)
u(x, 20) =0, forallx>0 3)
u(eo,y) =0, for0<y<20 4
u(0,y) =f(@), for0<y<20 5)
10y, in0<y<10
where fO) = .
10(20—-y), in10<y<20
Proceeding as in Example 2, the most general solution of Eq. (1) can be obtained as
ux,y) = z/lne_”“/ 2 Gin %Y (6)
o 20
nmwy

Using boundary condition (5) in (6), we have in (0, 20) = b, sin o

S 7 sin”E _
32,55 =)

which is the Fourier half-range since series of f(y) in (0, 20).
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Comparing like terms, we get

2 X nmwy
A =b =— sin—=—d
w= b= ! F)sin==dy

10 20
. nmy . nmy
sin——dy+ | (20— y)sin—=d
!y 0 Y ljo( y) 0 Y

10

—cos—y — 1n@
=11y 2 _ 20
nmw n*n?
2
20 20 o
20
—cos% —sin%
+<(20-y) -1 o)
nw nn
2
20 20 10
200 nt 400 . nrw 200 nt 400 . nrw
=|4———Ccos—+ sin— p+4——cos—+ sin—
niw 2 n2n2 2 niw 2 n27'[2 2
_ 800 sin nmw
n*r? 2

Using this value of 4, in (6), the required solution is

800 1 . nm . nmy
u(x,y) = — Y —sin— exp(-nmx/20)sin—= or
y P > p(—nmx/20) 0
800 & (—1)™*! . (2n-Dmy
u(x,y) = — Y ———exp{—-2n—-Drx/20)sin——
n’ ,,2:;(2;1—1)2 20

Example 5

A plate is in the form of the semi-infinite strip 0 < x <, 0 <y < oo. The edges x =0
and x = [ are insulated. The edge y = 0 is kept at temperature

4
6) 2COSS7ITX+3COS% and

(i) kx,0<x<L.
Find the steadystate temperature distribution in the plate (Fig. 3C.4).
The temperature u(x, y) at any point (x, y) of the plate in the steadystate is given
by the equation
Tu Iy )
ox® 9y

We have to solve Eq. (1) satisfying the following boundary conditions.
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M u=0_]
x=0 x=1
ou u_
& = E% =0
y=0
0 wu=fix) 1 X
Fig. 3C.4
du
—(@0,y) =0, forally >0 2)
ox
Ju
—(,y) =0, forally >0 3)
ox
u(x, ) =0, for0<x <1 4)
u(x,0) =f(x), for0<x<l| (®))
3rx 4rx .
where fx) = ZCOST+3COST for (i) and

f(x) = kx for (ii)

Note £

When an edge is insulated, the temperature gradient at all points on that
edge is zero, that is, the derivative of u with respect to the variable along the
perpendicular to that edge is zero.

Though the boundary condition in the edge at infinity is not specified, we
assume that the temperature in that edge is kept at zero.

Of the three mathematically possible solutions of Eq. (1), the solution
u(x, y) = (A cos px + B sin px) (Ce”” + De™?) (6)
is the proper solution, as it alone can satisfy the boundary condition (4).
Rewriting (6), we have
u(x, y)e? = (A cos px + B sin px) (C + De ") 6)
Using boundary condition (4) in (6)’, we have
c=0

Using this value of C in (6), it reduces to
u(x, y) = (A cos px + B sin px)De "’ )
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Differentiating (7) partially with respect to x, we have
du i -py
a(x, y) =p(=A sin px + B cos px)De (8)

Using boundary condition (2) in (8), we have p.B.D ¢ =0, for all y > 0.
p=0orB=0orD=0

If we assume that p = 0 and D = 0, we get trivial solutions.
B=0

Using boundary condition (3) in (8), we have

—p.A sin pl.De™? =0, for all y >0
The values p =0, A =0 and D =0 lead to trivial solutions.
sin pl =0

pl=nrmor p :% ,wheren=0, 1, 2, ..., oo,
Using the values of B, C and p in (6), it reduces to

u(x,y) = /lcos’mee"”y” ,where L\ =AD andn=0, 1, 2, ..., oo.
Therefore the most general solution of Eq. (1) is

u(x,y) = 2 A, cos#e_"”y” 9)
n=0

Note £5

The solution corresponding to n = 0 is non-trivial and hence it is to be included
in the general solution.

Using boundary condition (5) in (9), we have

Z/Incosrllﬂ —f()in0<x<I (10)
n=0

O f(x)= ZCOS?,”TX+3COS4—7;X

Using this value of f(x) in (10) and comparing like terms, we get

Ay =2, 4=3and 4,=0=A4, =4, =A;=A = ...

Using these values of 4, in (9), the required solution is

3mx _ 4r
u(x,y) = 2cosTxe 3”y”+3cosTxe_4”y”
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(ii) f(x) = kxin (0, ])

a - nwx S . . . .
= 70"‘2% COST’ which is the Fourier half-range cosine series of kx in
n=1

O, D).
Using this form of f(x) in (10) and comparing like terms, we get
2 ¢l
A, = a, =—I x cos 2 dx
170 /
2% sin—— S ——
- ! nm n271'2
l 12 o
2kl
= (D)1
22
- jklz , if nisodd
=3y nr
0, if nis even
1
1 2
Also 4, =a—°=—x—jkxdx=ﬂ.
2 2 1y 2

Using these values of 4, and 1, in(9), the required solution is

kI 4kl & 1 2n-Drx

u(x, y)= ——— cos -exp{—-Q2n-Dry/l}
2 22 Z@n-1y ! P

Example 6

A plate is in the form of the semi-infinite strip 0 <x < oo, 0 <y < /. The surface of the
plate and the edge y =/ are insulated. If the temperatures along the edge y = 0 and the
short edge at infinity are kept at temperature 0°C, while the temperature along the
other short edge is kept at temperature 7°C, find the steady temperature distribution
in the plate (Fig. 3C.5).

y=1
y du _
—=0
A
x=0 i -
u=T EU_O
0 y:O X
u=0
Fig. 3C.5
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The temperature u(x, y) at any point (x, y) of the plate in the steadystate is given
by the equation

—+— =0 (1)

We have to solve Eq. (1), satisfying the following boundary conditions.

u(x,0)=0, forallx>0 2)
du
—(x,1) =0, forallx>0 3)
dy

(o, y) =0, for0<y<| 4)

u,y)=7T, for0<y<lI %)

As u(x, y) = 0 when x — oo, as per boundary condition (4), the proper solution of
Eq. (1) is

u(x, y) = (Ae”™ + Be*)(C cos py + D sin py) (6)
Rewriting (6), we have
u(x, y)-e™ = (A + Be P)(C cos py + D sin py) 6)
Using boundary condition (4) in (6)’, we have
A-(Ccospy+Dsinpy)=0,for0<y</
A=0
Using this value of A in (6), it reduces to
u(x, y) = Be ”*(C cos py + D sin py) @)
Using boundary condition (2) in (7), we have
Be?-C =0, forall x>0
EitherB=0or C=0

If we assume that B = 0,we get a trivial solution.
c=0
Using this value of C in (7), it reduces to

u(x, y) = BDe P sin py (8)

Differentiating (8) partially with respect to y, we get

du
g(x, Y) =BDp-e™ cos py ®)
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Using boundary condition (3) in (8)’, we have
B Dpe™ cos pl =0
AsB#0,D#0,p#0,cospl=0

/4
pl= (2n—1)5
_ @2n-Dr
P="
where n=1,2,3, .., 0.

Using this value of p in (8), it becomes

—@n- . 2n-Drm
@t o Ty

’ = A’
u(x, y) e Y
wheren=1, 2, 3, ..., o.
Therefore the most general solution of Eq. (1) is
had 2n—1
u(x, y) = len_]e—(2n—l)ﬂx/21 -sin( n—Dry ©)
ot 21
Using boundary condition (5) in (9), we have
- . 2n-Dx
2}“2n—1 S]nw - TlIl (O’ l)
po 21
l
2 . 2n-Dmy
= —|Tsin———=d
2'211 -1 ) _([ 21 Y
I
2n—-Drmy
Cor| cos | ar
l (2n-Drm 2n-Dr
21 0
Using this value of A,, _; in (9), the required solution is
4TS 1 2n-Drmy

uey)= -y —

n=1

1 exp{—2n—1)mx/2l}sin

PROBLEMS ON TEMPERATURE DISTRIBUTION IN FINITE PLATES
Example 7

Find the steadystate temperature distribution in a rectangular plate of sides a
and b, which is insulated on the lateral surface and three of whose edges x = 0,
x =a,y = b are kept at zero temperature, if the temperature in the edge y = 0 is

2
(i) 3sin 2% 4+ 25in "% and (i) kx(a — x)(Fig. 3C.6).
a a
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y y=b
u=0
x=0 Xx=a
u=0 u=0
0 u=0 X
y=1(x)
Fig. 3C.6

The temperature u(x, y) at any point (x, y) of the plate in the steadystate is given
by the equation

T T (1)
x> 9y’
We have to solve Eq. (1), satisfying the following boundary conditions.
u(0,y) =0, for0<y<b 2)
u(a,y) =0, for0<y<b 3)
u(x, b) =0, forO0<y<a 4)
uix,0) =f(x), for0<x<a (@)
where f(x)= 3sin%+ sin3”7x for (i) and f(x) = kx(a — x) for (ii)

The three mathematically possible solutions of Eq. (1) are

u(x, y) = (Ae”™ + Be*)(C cos py + D sin py) (6)
u(x, y) = (A cos px + B sin px) (Ce” + De ™) (7
u(x, y) = (Ax + B)(Cy + D) (8)
Using boundary conditions (2) and (3) in solution (6), we get
A+B=0
and A’ + Be?" =0

Solving these equations we get A = 0 = B, which lead to a trivial solution. Similarly, we
will get a trivial solution if we use the boundary conditions in (8). Hence the suitable
solution for the present problem is solution (7).

Note £

This conclusion is in accordance with the discussion on the choice of proper
solution seen already.

Using boundary condition (2) in (7), we have
A(Ce” + De?)=0,for0<y<bh
A=0
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Using boundary condition (3) in (7), we have
B sin pa(Ce” + De?) =0,for0<y<b
Either B =0 or sin pa =0

If B is taken as zero, we get a trivial solution

sinpa =0

nw
pa=nmwor p=——
a

where n=0,1,2, ..,
Using boundary condition (4) in (7), we have

B sin px(Ce”” + De) =0, for0<x<a
As B#0, Ce’ +De™ =0
or D =-Ce*?
Using these values of A, D and p in (7), it reduces to

nwy 2nmb nwy

. nmwx - - I

u(x,y)= BCsin——<e @ —e 4 -¢ ¢
a

nmw nmw
—(y-b) —(y-b)
_ (BCe"””’“)sin@{e a7 _ga” }
a

= A, sinm—xsinhﬂ(y—b) where n=0, 1, 2, ...,oo and
a a

)‘n =9 Bcenn'b/a

Therefore the most general solution of Eq. (1) is

ute,y) = Y2, sin%sinh%(y _b) 9)

n=1
Using boundary conditions (5) in (9), we have

o

2(—/1,, sinh”aibjsin@ = () (10)

n=1 a

2 3
() f(x)=3sin—> +2sin 2>
a a
Using this value of f(x) in (10) and comparing like terms, we get

b
—Aqsinh%nb = 3,—A3sinh3%=2 and A=A, =As=...=0
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Using these values of 4, in (9), the required solution is

2m 2
u(x,y) = -3 cosech—bsm X smh—(y b)
a
—2cosechﬁsm 3 smh (y b)
a a
or u(x,y) = 3cosech@sm2ﬂ—xsmh—(b y)
a a a
b
+ 2 cosech _37r sm—3nx s1nh—(b y)
a a a

(i1) f(x) =kx(a —x) in (0, a)
Let the Fourier half-range sine series of

f(x)in (0, a) be Zb sm—

n=1

Using this form of f(x) in (10) and comparing like terms, we get

b 29
2, sinh ™2 = b, == [kn(a—x)sin " dx
a a /
nmwx
COS— SiIn——
= (ax—x7) 4 _|_(ga—2x)| - 2%
nw nr
a a2
cos nmwx
4ka?
+(-2) 4 \= {1-(-D"}
n3n_3 n37t3
a3
2
b
2 _cosech™. if nisodd
;]’n= n37f3 a

0, if nis even

Using this value of A, in (9), the required solution is

2 S - —_—
u(x, y) = 8]“31 Y ! —-cosech @n-lmb sin 2n-Drx
T n=1 (2)’1 - 1) a a
IREIE )
a

Example 8
A square plate of length 20 cm has its faces insulated and its edges along x = 0,
x =20, y=0and y = 20. If the temperature along the edge x = 20 is given by
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T
u=—y, for0<y<10
10)’ y

T
= 5(20—}/), for 10<y <20

while the other three edges are kept at 0°C, find the steadystate temperature distribution
in the place (Fig. 3C.7).

y=20
u=0
x=0 x=20
u=0 u=1(y)
0 =0 X
=0
Fig. 3C.7

The steadystate temperature u(x, y) at any point (x, y) of the plate is given by the
equation

u du
PP @

We have to solve Eq. (1), satisfy the following boundary conditions.

u(x, 0) =0, for0 <x <20 2)
u(x, 20) =0, for0<x<20 3)
u(0,y) =0, for0<y <20 4)
u(20,y) =f(y), for0<y<20 (5)

Since non-zero temperature is prescribed on the edge x = 20 in which y is varying,
the proper solution of Eq. (1) is

u(x, y) = (Ae”™ + Be™) (C cos py + D sin py) (6)
Using boundary condition (2) in (6), we have
(Ae™ + Be?) C =0, for 0<x<20
c=0
Using boundary condition (3) in (6), we have
(A" + Be™)-Dsin20 p =0, for 0 <x<20
Either D =0o0rsin20p =0

If D =0, we get a trivial solution.
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where

sin20p =0
nr
20p =nmwor p=—
P P=%0
n=0,1,2, .., 0.

Using boundary condition (4) in (6), we have

(A+B)Dsinpy=0,for0<y<20

AsD#0,A+B=0orB=-A
Using these values of B, C and p in (6), it reduces to

or

L2 N
u(x,y)= AD| e 20 —¢ 20 sin 22

u(x,y) = Asinh P gin P2V
0 20

Therefore the most general solution of Eq. (1) is

,wWheren =0, 1, 2, ..., .

20

nrwy

u(x,y) = Y 4, sinhlgr—oxsin—

n=1

Using boundary condition (5) in (7), we have

n=1

n=1

20

which is the Fourier half-range sine series of f(y) in (0, 20).
Comparing like terms, we get

20
2
A,sinh iz = b, =— [ f(y)sin"2>dy
20

Z(An sinh nr) sin}?—oy =f(y) in (0, 20) = zbn Sinnzﬂ_oy

20
T 10 nmwy 2 nwy
= —/| | -ysin—=dy+ | (20 — y)sin——d
100 iy 20 IIO( ysin= 5-dy
B 10
cos@ sin@
Ty 20 20
100 nr n’r’
2
I 20 20 .
cos%oy sin%oy
+1Q20-y)| - (D] ——52
nmw b4
20 207

20

10

(N
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T K 200 nam 400 | nn)

= —|| ———cos—+——-sin—
100 nrw 2 't 2
200  nm 400 . nm
+| ——cos—+ sin—
nmw 2 n27172 2
_ 8T o
n’nt 2
8T
A== 2sinﬂcosech niw
n'm 2

Using this value of A, in (7), the required solution is

8T 1
u(x,y) = smﬂcosech nrw s1nhﬂ sin nry
e ) 20 20
8T n+l
or u(x,y) = z (2 D cosech Cn-Dr
n= 1( -
oh 2n-Drx sin 2n-Dry
20 20

Example 9

If a square plate is bounded by the lines x =+ @ and y = % a and three of its edges are
kept at temperature 0°C, while the temperature along the edge y =a is kept at u = x +
a,—a < x < a, find the steadystate temperature in the plate (Fig. 3C.8).

y y
y=a
u=x+a Y=2a
u=X
X=-a X=a X=0 X=2a
u=0 0 u=0x u=0 u=0
X
(-a,-a) y=-a 0 Y=0
u=0 u=0
Fig. 3C.8 Fig. 3C.9

In Examples 7 and 8, we have observed that the arbitrary constants in the appropriate
solution of the Laplace equation can be readily found out, only if two adjacent edges of
the square (or rectangle) are taken as coordinate axes. As this condition is not satisfied
in the present problem, we shift the origin to the point (—a, —a), so that two adjacent
edges may lie along the coordinate axes in the new system (Fig. 3C.9).
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The transformation equations are
x=X-a
y=Y-a
The equations of the edges are X = 0, X =2a, Y= 0 and Y = 2a in the new system.

Let us work out the problem with reference to the new system. The steadystate
temperature u(X, Y) at any point (X, Y) of the plate is given by the equation

2 2
We have to solve Eq. (1), satisfying the following boundary conditions.

u0,Y)=0, forO0<Y<2a 2)

ua,Y)=0, for0<Y<2a 3)

u(X,0)=0, for0<X<2a @

u(X,2a)=X, for0<X<2a (&)

Since non-zero temperature is prescribed on the edge Y = 2a, in which X is varying,
the proper solution of equation (1) is

u(X, Y) = (A cos pX + B sin pX) (Ce’* + De™"") (6)
Using boundary conditions (2) in (6), we have
A(CY + DePY) =0, for 0S Y<2a
A=0
Using boundary condition (3) in (6), we have
B sin 2 pa (Ce”” + De?') =0, for 0 < Y < 2a
Either B=0 or sin2 pa =0
If B =0, we get a trivial solution and so B # 0
sin 2 pa =0

T
2pa = nm or pzz—,wherenzo, 1,2, ..., 0.
a

Using boundary condition (4) in (6), we have
Bsin pX(C+D)=0,for0<X<2a
AsB#0,wegetC+D=0 or D=-C
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Using these values A, D and p in (6), it reduces to

X
ulX, Y) = BCsin%{ oY 12a _e—er/Za}

X sinhﬂ , where A =2BC
2a 2a

and n=0,1,2,..., 0.

Therefore the most general solution of Eq. (1) is

= Asin

= X Y
wX, V)= Y 4, sin ”Za sinh 2%

n=1

(N

Using boundary condition (5) in (7), we have

- . . neX
2 (A, sinh nm)sin =Xin (0, 2a)
o 2a
- X
= 2 b, sin ne
o 2a

which is the Fourier half-range sine series of X in (0, 2a).
Comparing like terms in the two series, we get

2 nrwX
A, sinh nr= b, =— [ Xsin——dX
2a a
0
2a
n nwX
—cos -
- x a |_ 2a
a nz n’n’
2a 2
4a 0
= ———COSNT
nmw
4a
A, = —(=1)"" cosech nx
nm

Using this value of A, in (7), the required solution with reference to the new system
is

da & (-1 . nnX . . nnY
ulX,Y) = _az( ) cosech nr - sin " sinh n
T a 2a
With reference to the old system, the required solution is
4 (_1 n+l

. /4 . T
cosech nr - smn—(x +a)- smhn—(y +a)
n 2a 2a

mw=f2
n=1
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Example 10

A rectangular place is bounded by the lines x =0, x =a, y =0 and y = b. Its surfaces
are insulated. The temperature along x = 0 and y = 0 are kept at 0°C and the others at
100°C. Find the steadystate temperature at any point of the plate (Fig. 3C.10, 3C.11
and 3C.12).

y y=hb y y=b y y=b
u=100 uq =100 up =100
x=0 xX=a x=0 x=a x=0 X
u=0 u=100 U1=0 uy =100 Up =0 up = 100
0 y=0 X 0 y=0 X 0 y=0 X
u=0 up=0 ur=0
Fig. 3C.10 Fig. 3C.11 Fig. 3C.12

The steadystate temperature u(x, y) at any point (x, y) of the plate is given by the
equation

82_u+82_u =0 (1)
oxr 9y’
The corresponding boundary conditions are
u(0,y) =0, forO<y<b 2)
u(a,y) =100, forO<y<b 3)
u(x, 0) =0, forO<x<a (@)
u(x, b) =100, forO<x<b 5)

From previous examples, it is obvious that Eq. (1) is readily solvable, that is, the
arbitrary constants in the proper solution of Eq. (1) can easily found out, only if three
of the boundary values (temperatures along three of the edges) are zero each and the
fourth boundary value (temperature along the fourth edge) in non-zero.

As two boundary values are non-zero each in this problem, we adopt a slightly
modified procedure as explained below.

Let u(x, y) = uy(x, y) + uy(x, y) (6)
Using (6) in (1), we get
2 2
—(u +u,))+—(u;, + =0
ax2 (”1 ”2) ay2 (”1 ”2)
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Separating the derivatives of u; and those of u, we have

%u, +82ul o o
x> 9yt
*u, 9w,

and o +V =0 (8)

We assume convenient boundary conditions for Eq. (7) [i.e. three zero and one
non-zero boundary conditions] which are given below.

u,(0,y) =0, for0<y<b ©))
u(a,y) =0, forO0<y<b (10)
u(x,0)=0, forO<x<a (11D
u(x,b) =100, forO<x<a (12)

The boundary conditions for Eq. (8) are obtained by using (6) and the boundary
conditions (2), (3), (4), (5) for u(x, y) and the boundary conditions (9), (10), (11),
(12) for u;(x, y)

Thus
u5(0,y) =0, for0<y<b (13)
uy(a,y) =100, forO<y<b (14)
u,(x, 0) =0, forO<x<a (15)
uy(x, b) =0, forOx<a (16)

The appropriate solution of Eq. (7) consistent with the given boundary conditions
for u;(x, y) is

uy(x, y) = (A cos px + B sin px) (Ce’”” + De™"") (17)

Using boundary conditions (9), (10) and (11) in (17) and proceeding as in Example
9, we most general solution of Eq. (7) can be obtained as

u(x,y) = Zl SIHTSI h% (18)

Using boundary condition (12) in (18), we have
- . nmb) . nmx
Z(ln smh—) sin—— =100, in (0, a)
a a
= zbn sin 22
a

which is the Fourier half-range sine series of 100 (0, a).

n=1
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Comparing like terms in the two series, we get

A, sinh ™2 _ p =3j100sin””—xdx
a ay a
nmwx “
) @ —cos—a
== —ﬂ
a 0
200 .
= —{1-(-1)"}
nw
4
ﬂ, if nis odd
=< nr
0, if nis even

Using this value of A, in (18), the required solution of Eq. (7) is

u(x, y)= 400 ! cosech (2n = Dmb sin (2n - Drx sinh (2n=Dzy
w5 2n-1 a a a

(19)

Now solving Eq. (8) subject to the boundary conditions (13), (14), (15) and (16)
[proceeding as in Example 8] or by interchanging x and y and also a and b in (19),
we get

400 < 1 @n—-Dma . . Qn—-Drx . 2n-Dry
sinh sin

uy(x, y)= —— 211 cosech 5 ) 5

(20)

n=1

Using (19) and (20) in (6), the required solution of Eq. (1) is

ux,y) = 400 ﬁ{coseeh

2n-rb . 2n—-Drx
-sin
a a

n=l

sinhw + cosech (2n—lma sin @n-bry sinh n _bl)ﬂx}
a

Note £5

If non-zero temperatures are prescribed on all the four sides of the rectangle
(or square), the concept used in the previous example is extended by assuming
4

that u(x,y)=Y, u.(x,y). Three of the boundary values of each of the

r=1
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2
d

equations 5 uz, + au; =0 are assumed to be zero and the fourth one non-

X y )

o%u
zero in such a way that we get the given boundary values of a—2+ 8_2 =0
X y
o%u,  d°u

r

from those of >

+—= =0 by superposition.
ox oy? g

Example 11
A square plate has its faces and its edge y = 0 insulated. Its edges x =0 and x = 10 are
kept at temperature zero and its edge y = 10 at temperature 100°C. Find the steadystate
temperature distribution in the plate.
The steadystate temperature u(x, y) at any point (x, y) of the plate is given by the
equation
2 2
a—u + M =0 (1)
oxr 9y’

We have to solve Eq. (1), satisfying the following boundary conditions.

u(0,y) =0, for 0<y<10 )
u(10, y) =0, for 0<y<10 3)
%(x, 0) =0, for 0<x< 10 )
dy
u(x, 10) =100, for 0<x< 10 (5)

Consistent with the non-zero boundary condition (5), the proper solution of
Eq. (1) is

u(x, y) = (A cos px + B sin px) (Ce”" + De ") (6)
Using boundary conditions (2) and (3) in (6), we can get, as usual,
A=0
nw
and = —
"=
where n=0,1,2,..,co.

Differentiating (6) partially with respect to y,
du _ v v
g(% ¥) = Bp sin px (Ce’’ — De™™") @)

Using boundary condition (4) in (7), we have
Bp sin px(C-D) =0, for 0 <x < 10
AsB#0andp#0,wegetD=C
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Using these values of A, D and p in (6), it reduces to
u(x, )’) = BC Sin%. (emry/lo + e_"”y/lo)

Asinﬂcosh%, where A= 2BCandn=0, 1,2, ..., oo.

10

Therefore the most general solution of Eq. (1) is

u(x, y) = Y 4, sin%coshnlioy 3

n=1

Using boundary condition (5) in (8), we have
Y (A, coshnr) sin”liox =100 (0, 10)

n=1
= an sin "X
10

which is the Fourier half-range sine series of 100 in (0, 10).
Comparing like terms in the two series, we get

10
A, coshnw=p ZAJIOOsinm—xdx
10§ 0

10

nmwx
—CcoS——
nm
10 0
200 .
= —{1-(-1)"}
nmw
4
_ ﬂ, if nis odd
=4 nr
0, if nis even

Using this value of 4, in (8), the required solution is

ue, ) = 205 1 h@n—tyrsin GV ogp B DY
T =on- 10 10

Example 12

A rectangular plate of sides 20 cm and 10 cm has its faces and the edge x =20 insulated.
Its edges y = 0 and y = 10 are kept at temperature zero, while the edge x = 0 is kept at
temperature ky. Find the steadystate temperature distribution in the plate.
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The steadystate temperature u(x, y) at any point (x, y) of the plate is given by the

equation
Fu P
ox® 9y

We have to solve Eq. (1), satisfying the following boundary conditins.
u(x,0)=0, for0<x<20
u(x, 10) =0, for0<x<20

a_u(zo,y) =0, forO<y<10
ox

u0,y)=ky, forO<y<10

D

@)
3)
“)

&)

Consistent with the non-zero boundary condition (5), the proper solution of

Eq. (1) is
u(x, y) = (Ae”™ + Be *)(C cos py + D sin py)

Using boundary conditions (2) and (3) in (6), we can get, as usual,
C=0and p=%,wheren=0, 1,2, .., 0
Differentiating (6) partially with respect to x, we have
au X —pX: :
—(x,y) =p(Ae” = Be™)-D sin py
ox
Using boundary condition (4) in (7), we have
p(A*” — Be)D sin py = 0, for 0 < y < 10

Asp#0and D #0,A¢’” —Be?? =0
B = A&
Using these values of B, C and p in (6), it reduces to

u(x, y) - AD{emrx/IO +e40nn’/10 .e—mrx/IO}sin 0

= QAD™)cosh MPE =20 ) MY
10
2 —_
= A, cosh nm(20 - x) sin 22
10 10

[+ cosh @is an even function]
wheren=1, 2, 3, ..., o.

nrwy

(6)

(N
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The most general of Eq. (1) is

- 20-x) .
e, )= 3.2, cosh M in S (8)

n=1

Using boundary condition (5) in (8),we have

Y (4, cosh 2nﬂ)sin% = ky in (0, 10)

n=1

which is the Fourier half-range sine series of ky in (0, 10).

Comparing like terms in the two series, we have

10
A, cosh2nm = b, = % J‘ kysinmr—ydy
0

10
10
y nwy
COS—— —=Ssimn——
_ 2k 10 10
10 ﬂ I’L27'L'2
10 100 0
— ﬁ(_l)m—l
nw

Using this value of A, in (8), the required solution is

nm(20—x) sin nwy

=3 _1\ntl
u(x,y) = 20k 2 L-sech 2n7 - cosh
n=1

n 10 10
Example 13
A square plate has its faces and its edges x = 0 and x = a insulated. If the edge y = a
is kept at temperature zero, while the edge y = 0 is kept at temperature 4cos’ (ﬂj , find
a

the steadystate temperature distribution in the plate.
The steady state temperature u(x, y) at any point (x, y) of the plate is given by the
equation
Fu P N
x> 9y

We have to solve Eq. (1), satisfying the following boundary conditions.
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%(O,X =0, for0<y<a )
ox
du
5 (@ y) =0, for0<y<a 3)
ox

u(x, a) =0, forO<x<a 4)

TXx

u(x, 0) = 4c0s3(
a

), forO<x<a 5

Consistent with the non-zero boundary condition (5), the proper solution of Eq. (1)
is

u(x, y) = (A cos px + B cos px) (Ce’" + De™"") (6)

Differentiating (6) partially with respect to x,
2 . _
a—Z(x, ) = p(~A sin px + B cos px) (Ce’¥ + De ") )

Using boundary conditions (2) and (3) in (7), we can get, as usual,
nw
B=0and p=—,wheren=0,1, 2, ...,
a
Using boundary conditions (4) in (6), we have
A cos px(Ce’’ + De ) =0, for 0 <x <a
AsA#0,D =—Ce?

Using these values of B, D and p in (6), we get

nmwx —nry
M()C, y) = AC cos {emry/a _EZnﬂya/a e nn)/a}
a

nn(y —a)
a

= 2 ACe™)cos P inh
a

nr(y — a)

or u(x,y) = A, cos "X Ginh
a a
wheren=0, 1, 2, ..., o
Therefore the most general solution of Eq. (1) is
- nwx . na(y—a
u(x,y) = o, A, cos——sinh y=a) (8)
a a

n=1
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Using boundary condition (5) in (8), we have

z (=7, sinh nr) cosm—x = 4cos’ n in (0, a)
a a

n=1
nrw 3mx
= 3cos— + cos—

a a

Comparing like terms, we get
-Aysinh w=3;-A;sinh3r=1; 4, =0=4,=A5 ="
Ay =-3 cosech w; Ay =cosech 375 A, =0=A, = A5 =

Using these values in (8), the required solution is

. - 3mx . 3m(a-
u(x, y) = 3 cosech 7rcosﬂsmhM + cosech 37 cos~>~ sinh a=y)
a a a a

Example 14
A rectangular plate of sides @ and b has its faces and the edges y = 0 and y = b insulated.
If the edge x = 0 is kept at temperature zero, while the edge x = a is kept at temperature
k(2y — b), find the steadystate temperature distribution in the plate.
The steadystate temperature u(x, y) at any point (x, y) of the plate is given by the

equation

u 0

ox° dy

We have to solve the Eq. (1), satisfying the following boundary conditions:

a—u(x, 0) =0, for0<x<a (2)
dy
ou
—(x,b) =0, for0<x<a 3)
dy
u(0,y) =0, forO<y<b “4)
u(a,y) =k(Qy—b),forO<y<b (®))

Consistent with the non-zero boundary condition (5), the proper solution of Eq. (1)
is
u(x, y) = (Ae”™ + Be)(C cos py + D sin py) (6)

Differentiating (6) partially with respect to y, we have

0
a—;(x, ¥) = (Ae"™ + Be™) p(~C sin py + D cos py) (7)
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Using boundary conditions (2) and (3) in (7), we can get, as usual,

D=0and p=%,wheren=0,l,2, oo

Using boundary condition (4) in (6), we have
(A+B)Ccospy=0,forO<y<b
As C#0, we get B=-A.
Using these values of B, D and p in (6), it reduces to

( nmx —nn’x) i
u(x,y)= AC\e ® —e b cosTy
= lsinhm—x-cos@
b
where A=2ACandn=0,1,2, .., o

Therefore the most general solution of Eq. (1) is

u(x, y) = Zln sinh%cos?

n=1
Using boundary condition (5) in (8) we have

— . N7 T
z A, smhn—bacosnb—y =k(2y —b) in (0, b)

n=1

a — nmw
=04 Zan cos—y ,
2 O b

which is Fourier half-range cosine series of k(2y — b) in (0, b).
Comparing like terms in the two series, we get

b
. nma _2 B niy
A, sth =a,= !k(2y b)cos , dy

. nmy nrw

2k Sin—— —COS——
== 2y-b) 2 -

b nr nrw

b b2

4kb
= {(-D" -1}

l’l27172

%, if 1 is odd
= \n'rw

0, if nis even

5-185

(®)
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1 22 bk b)d

Also ay = b'[O 2y —->b)dy
2k

= (v* =by)y =0

‘We note that the constant term in the R.H.S. series is also zero.
Using this value of A, in (8), the required solution is
8kb & 1 2n—-Dra
uw.y) = =5 Y ——
o 2n-1) b

sinh 2n-Drx cos (2n —bl)n'y

Example 15
Find the steadystate temperature distribution on a square plate of side a insulated along

three of its sides and with the side y = 0 kept at temperature zero for ( < x <% and

a
at temperature 7for —< x<a .
2

The steadystate temperature u(x, y) at any point (x, y) of the plate is given by the
equation

2 2
T, du (1)
ox~ dy

We have to solve the Eq. (1), satisfying the following boundary conditions.

a—“(o,y) =0, for0<y<a )
ox
ou
—(a,y) =0, forO0<y<a 3)
ox
ou
—(x,a) =0, forO<x<a 4)
dy

ux, 0) =f(x),forO<x<a 5)

0, in (o, ﬁj
2
T, in (i, aj
2

Consistent with the non-zero boundary condition (5), the proper solution of Eq. (1) is
u(x, y) = (A cos px + B sin px) (Ce’”" + De ") (6)

Differentiating (6) partially with respect to x, we have

where fx) =

g—”(x, y) =p(-A sin px + B cos px) (Ce”" + De ") (7)
X
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Using boundary conditions (2) and (3) in (7), we can get, as usual,
B =0and pzﬂ,wheren=0, 1,2, ..,
a
Differentiating (6) partially with respect to y, we have

%(x, y) =A cos px - p(Ce”" + DePY) (8)
y

Using boundary condition (4) in (7), we have
A-cos px-p(Ce’ —De ) =0, forO<x<a
AsA#0andp=0, Ce’ —De ) =0
D = Ce¥
Using these values of B, D, and p in (6), we have

u(x y) — ACCOS {emry/a +62n7m/a . e—nﬂ:y/a}
a

= (2ACe")cos X cosh ey - a)
a a

= A cos X cosh nma - y)

" a a
where n=0,1, 2, ..., o0 (*.© cosh Ois even)
Therefore the most general solution of Eq. (1) is
- nwx nr(a —y)
u(x, y) = z A, cos ; cosh , 9)
n=0

Using boundary condition (5) in (9), we have

z (A, cosh nn)cos— = f(x) in (0, a)

n=0

= —+2 cos—

which is the Fourier half-range cosine series of f(x) in (0, a).
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Equating like terms in the two series, we get

2 a
A, coshnw=a,= —_[f(x)cosmdx
a a

—T —d
a‘!‘Z > a ’

a al2

Using these values of 4, in (9), the required solution is

T _
u(x,y) = —-— —Z—sm—”sech n cos 2% cosh nm(a — y)
o 2 a a
. T D" 2n—-1Drx
i.e. u(x, sech 2n—1)wr-cosch————
(x,y) = 2 - @n-1) -
4 2n=brta-y)
a

Example 16

Find the steadystate temperature distribution u(x, y) in the uniform square 0 < x < ;
0 <y < m, when the edge x = 7 is maintained at temperature (2 cos 3y — 5 cos 4y), the
other three edges being thermally insulated.

The steadystate temperature u(x, y) at any point (x, y) of the plate is given by the
equation

’u 82

=0 1
a? 8y M

We have to solve the Eq. (1), satisfying the following boundary conditions.
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a—u(x,O) =0, for 0<x<nm )
dy
du
—(x,m) =0, for 0<x<m 3)
dy
du
—(0,y) =0, for O<y<m 4)
ox

u(x,y)=2cos3y—-5cosdy, forO<y<r (5)

Consistent with the non-zero boundary condition (5), the proper solution of Eq. (1)
is

u(x, y) = (Ae™ + Be™)(C cos py + D sin py) (6)
Differentiating (6) partially with respect to y, we have

%(x, y) = p(Ae”™ + Be™)(—C sin py + D cos py) (7
y

Using boundary conditions (2) and (3) in (7), we can get, as usual,
D =0and p=n, wheren=0, 1, 2, ..., o

Differentiating (6) partially with respect to x, we have
g_u(x, y) =p(Ae”™ —Be™* - C cos py ®)
X

Using boundary condition (4) in (8), we have
p(A-B)Ccospy=0,forO<y<nm
Asp#0and C#0, we get B=A.
Using these values of B, D, and p in (6), it reduces to
u(x, y) = AC(e™ + e ™) cos ny
= A cosh nx cos ny

wheren=0,1, 2, ...,0cand A =2AC
Therefore the most general solution of Eq. (1) is

u(x, y) = 2 A, cosh nx cos ny )
n=0
Using boundary condition (5) in (9), we have
2 (A, cosh nm) cos ny =2cos 3y —5 cos 4y in (0, )

n=0

Comparing like terms, we get
Aycosh3m=2; A, coshdr=-5and Ay=0=4, =4, =45 ...
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ie. Ay =2sech3p, 4, =-5sech4rn

2.0=0=)~1=22=2~5=...
Using thse values in (9), the required solution is

u(x, y) = 2 sech 3 cosh 3x cos 3y — 5 sech 47- cosh 4x cosh 4y

Example 17
A square metal plate of side a is bounded by the linesx =0, x=a,y=0and y = a.
The edges x =0 and y = a are kept at zero temperature, the edge x = a is insulated and
the edge y = 0 is kept at temperature kx. Find the steadystate temperature distribution
in the plate.
The steadystate temperature u(x, y) at any point (x, y) of the plate is given by the
equation
2 2
M + M =0 (1)
oxr 9y’

We have to solve the Eq. (1), satisfying the following boundary conditions:

u0,y)=0, forO0<y<a 2)
du
—(a,y) =0, for0<y<a 3)
ox

ux,a)=0, forO<x<a 4

u(x,0) =kx,forO<x<a 5)

Consistent with the non-zero boundary condition (5), the proper solution of
Eq. (1) is

u(x, y) = (A cos px + B sin px) (Ce”" + De ") (6)
Using boundary condition (2) in (6), we can get A = 0.
Differentiating (6) partially with respect to x, we have
ou Y -pY
a—x(x, y) = Bp cos px (Ce’” + De™P") @)
Using boundary conditions (3) in (7), we have
Bp cos pa(Ce”” + De™), for0<y<a

Either B=0,p=0or cos pa=0
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If B=0and p =0, we get trivial solutions
cospa=0
2n-hr 2n-Dr
a=———orp=——"-—"-

2 2a
wheren=1, 2, ...,

Using boundary condition (4) in (6), we have
B sin px(Ce’* + De™™*) =0
As B#0,Ce+De? =0
D =—Ce”
Using these values of A, D, and p in (6), it reduces to

. 2n—-Drx _ _ —(n—
u(x, y) - BC s1n( ) {e(2n Dryl2a _ eZ(Zn 1)7m/2ae (2n l)n'y/2a}
a

= {(2BCe®" V™2 gin (2n - Drx sinh (2n - lin(y )
a a

. 2n-Drx . Cn-Dr(y—a)
= ’lzn—l sin sin
2a 2a

wheren=1, 2, ..., o

Therefore the most general solution of Eq. (1) is

N . (2n-Drx . (2n-Dr(y—a)
u(x, y) = nzzlﬂzn_l sin=—————"sinh - )

Using boundary condition (5) in (8), we have

S . @2n-Dr . 2n-Dr
Z_A'anl smh( n—1) s1n( n—hmx = kxin (0, a)
ot 2 2a

a

A, Sinhw - Ejkx Sinw dx
ay a
a
o —cos 2n—Drx sin 2n—-1Drx
_ X 2a _ 2a
a 2n-Dr Qn-17*n?
2a 4a®

8ka . (2n-Dr
~ i) Sin
Qn-1)’rn 2

8ka n 2n-Dr
w1 = ——(=1)"cosech———
Ao 2n -1 2
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Using these values of 1,, _; in (8), the required solution is

ka & (—1)"! 2n—1 2n—1
u(x, y)= S—fz%cosech( n—Dr sin( n—rex
n* Zi2n-1 2 2a

sinh (2n-Dr(a—y)
2a

Example 18

A rectangular plate of sides a and b is bounded by the lines x =0, x = a, y = 0 and
y=>b. The edges x =0 and y = b are kept at zero temperature, while the edge y = 0 is
kept insulated. If the temperature along the edge x = a is kept at 7°C, find the steadystate
temperature distribution in the plate.

The steadystate temperature distribution in the plate is given by the equation
Pu Pu N
x> 9y?

We have to solve the Eq. (1), satisfying the following boundary conditions.

g—z(x, 0) =0, for0<x<a )
u(x,b) =0, for0<x<a 3)
u0,y)=0, forO<y<b 4)
ua,y)=T, forO<y<b 5

Consistent with the non-zero boundary condition (5), the proper solution of Eq. (1)
is
u(x, y) = (Ae”™ + Be™)(C cos py + D sin py) (6)
Differentiating (6) partially with respect to y and then using boundary condition
(2), we can get D = 0.
Using boundary conditions (3) in (6), we can get
_@n-Dr
="
Using boundary condition (4) in (6), we can get B = —-A.

,wheren=1,2,3, ..., 00

Using these values of B, D and p in (6), it reduces to

2n—-Drx 2n-Dry
-COs
2b

,y) = Asinh
u(x, y) sin b

where A=2ACandn=1,2, .., 0



Fourier Series Solutions of Partial Differential Equations 5793

Therefore the most general solution of Eq. (1) is

N _ @2n—-Drx _ (2n-Dmy
u(x,y) = 2/12,171 sinh 5 cos 5 (7)

n=1
Using boundary condition (5) in (7), we have

o

2 Ay, sinh (2n = D7a cos (2n - Dmy =Tin (0, b)
2b 2b

n=1

.. (2n-Dra (2n - )
A h——— = T co
n2-1 S b _[

b

. 2n—-Dry
sin————
)7 2
b 2n-1
2b 0

4T . 2n-Drm
= sin
2n-1) 2

4T 2n—1
ZQV!—[ = —.CosechM

. _1 n+l
Qn-Dr T

Using this value of A, , in (7), the required solution is

AT p! 2n—1
u(x,y) = 2((2 )_ ) osech%

2n—-1Drx 2n-Dry
nh - -COS
2b 2b

Example 19

A square metal plate of side 10 cm has the edges represented by the lines x = 10 and
y = 10 insulated. The edge x = 0 is kept at a temperature of zero degree and the edge
y =0 at a temperature of 100°C. Find the steadystate temperature distribution in the
plate.
The steadystate temperature u(x, y) at any point (x, y) of the plate is given by the
equation
o%u N o%u o |
oxr 9y’ M

We have to solve Eq. (1), satisfying the following boundary conditions.
u(0,y)=0, for 0<y<10 2)

d
a—Z(IO, ¥) =0, for 0<y<10 3)
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g—u(x,IO) =0, for 0<x<10 )
y

u(x,0) =100, for 0<x< 10 5)
Consistent with the non-zero boundary condition (5), the proper solution of
Eq. (1) is
u(x, y) = (A cos px + B sin px) (Ce”" + De ") (6)
Using boundary condition (2) in (6), we can get A = 0.

Differentiating (6) partially with respect to x and then using the boundary condition
(3), we can get

_@n-Dr
P="0
Differentiating (6) partially with respect to y and then using the boundary condition
(4), we can get D = Ce*”.
Using these values of A, D and p in (6), it reduces to
. 2n-Drx 2n-Dr(y—-10)
in cosh
20
. 2n—-Drx Cn-Drd0-y)
in cosh
0 20

,wWheren=1,2, ...,

u(x, y) = [2BCe*" V™27

or u(x,y) = Ay, ;s
where n=1,2,..,0[. cosh@iseven]

The most general solution of Eq (1) is

r3) = 3 oy sin P o BDEOED

Using boundary condition (5) in (7), we have

Cn-Dr . 2n-Drx
sin
20

> Xy, cosh =100 in (0, 10)
n=1

2n—-Drx

10
A cosh 2= m % j 100sin dx
n—1
0

10
2n—1
—cosi(n )

_ 20
=20 2n-Drn

20 0
_ 400
C @2n-Drm
4 2n—1
Aoy = 00 sech(n )
" 2n-Drx 2
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Using this value of A,, _; in (7), the required solution is

400 < 1 2n—1 2n -1 2n — (10 —
u(x, y) = ﬂ sech( " )sin( n—Drx cosh( n=-Dz0-y)
r o 2n-1 2 20 20

Example 20

A square metal plate of side a has the edges x = 0 and y = O insulated. The edge
y = a is kept at temperature 0°C and the edge x = a is kept at temperature ky. Find the
steadystate temperature distribution in the plate.
The steadystate temperature distribution in the plate is given by the equation
Fu P N
oxr 9y’ -

We have to solve the Eq. (1), satisfying the following boundary conditions.
2]

—u(x, 0) =0, for 0<x<a )
dy

ux,a)=0, for 0<x<a 3)
%(0, y) =0, for O<y<a (@)
ox

u(a,y) =ky, for O<y<a (&)

Consistent with the non-zero boundary condition (5), the proper solution of
Eq. (1) is

u(x, y) = (Ae”™ + Be*)(C cos py + D sin py) 6)

Differentiating (6) partially with respect to y and then using boundary condition (2),
we can get D = 0.

Using boundary conditions (3), in (6), we can get

2n—1
p= u, wheren=1, 2, 3, ...o.
2a
Differentiating (6) partially with respect to x and then using boundary condition (4),
we can get B =A.
Using these values of B, D and p in (6), it reduces to
u(x, y) = Ac{e(Zn—l)nx/Za n e—(2n—1)77:x/2a} cos (2n ; Dry
a

2n—-Drx 2n-Dry
cos

or u(x, y) = Acosh wheren=1, 2,3, ... o.

a 2a



5196 Transforms and Partial Differential Equations

Therefore the most general solution of Eq. 1 is

~ 2n—-Dr 2n-Dr
u(x, y) = Z’IanlCOSh( n—1) xcos( n—Dry

7
jont 2a 2a )
Using boundary condition (5) in (7), we have
- 2n-r 2n-Dry )
A,,_; cosh cos =
21[ e 5 Sy =kin(©,0)
2n—1 2 2n—1
Ay cosh2n=br _ —fky Costy
2 asy 2a
o sin 2n ; Dry —cos 2n ; Dry
i T - 3
a (2n-Dr Qn-1)°n
2a 4a 0

@ (_1)n+17t B 2
| 2n-1  @2n-1)

4 —prtt 2 2n—1
2'211—1 = Lza ( ) £ - 2 SeCh( . )ﬂ
2n—-1  (2n-1) 2

/4

Using this value of A,, ; in (7), the required solution is

=3 _1\ntl _
u(x, y) = @ b7 - 2 5 sech (2n =Dy
r -1 @n-1) 2

n=1

2n-Nrx 2n-Dry
cosh -COoS
a 2a

Exercise 5C(c¢)

Part A (Short-answer Questions)

1. State the two laws of thermodynamics used in the derivation of two
dimensional heat flow equation.

2. Write down the partial differential equation that represents variable heat
flow in two dimensions. Deduce the equation of steadystate heat flow in two
dimensions.

3.  Write down the three mathematically possible solutions of Laplace equation
in two dimensions.



Part B
6.

10.

11.

12.

Fourier Series Solutions of Partial Differential Equations 5197

Given the boundary conditions on a square or a rectangular plate, how will
you identify the proper solution?

Explain why u(x, y) = (Ax + B) (Cy + D) cannot be the proper solution of
Laplace equation in boundary value problems, by taking an example.

A rectangular plate with insulated surfaces is ¢ cm wide and so long
compared to its width that it may be considered infinite in length without
introducing an appreciable error. If the two long edges x = 0 and x = @ and the
short edge at infinity are kept at temperature 0°C, while the other short edge

3 .
y = 0 is kept at temperature (i) u =2k sin%cosﬂ, (ii) u = kx and
a

kx, for0<x< a
2
(i) u=
a
k(a — x), forESxSa
Find the steadystate temperature at any point (x, y) of the plate.
An infinitely long metal plate in the form of an area is enclosed between the

lines y = 0 and y = 10 for positive values of x. The temperature is zero along
the edges y = 0, y = 10 and the edge at infinity. If the edge x = 0 is kept at

tempera true (i) u = 4k sin> %’ (ii) u = T and (iii) u = ky(10 — y), find the

steadystate temperature at any point (x, y) of the plate.
A plate is in the form of the semi-infinite strip 0 <x < 7, 0 < y < oo. The edges
x =0 and x = ware insulated. The edge at infinity is kept at temperature 0°C,

. T
X, in0<x< E
while the edge y = 0 is kept at temperature u =
. T
T—Xx, In 3 <x<rm

Find the steadystate temperature distribution in the plate.

The two long edges y = 0 and y =/ of a long rectangular plate are insulated.
If the temperature in the short edge at infinity is kept at 0°C, while that in
the short edge x = 0 is kept at ky(/ — y), find the steadystate temperature
distribution in the plate.

A plate is in the form of the semi-infinite strip 0 <x <o, 0 <y < /. The surface
of the plate and the edge y = 0 are insulated. If the temperature along the
edge y = [ and the short edge at infinity are kept temperature 0°C, while the
temperature along the other short edge is kept at temperature 7°C, find the
steadystate temperature distribution in the plate.

If the temperatures along the long edge x = 0 and the short edge at infinity of
a long plate kept at 0°C, the other long edge x = 10 is insulated and the other
short edge y = 0 is kept at temperature kx, find the steadystate temperature
distribution in the plate.

Find the steadystate temperature distribution in a square plate of side a,
which is insulated on the lateral surface and three of whose edges x = a,
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y =0, y = a are kept at zero temperature, if the temperature in the edge
o .3 .
x=0is (1) k sin’ 24 and (ii) ky(a — ).
a

13.  Arectangular plate of sides a and b has its faces insulated and its edges along
x=0,x=a,y=0andy=b. If the temperature along the edge y = b is given
4 6
by (i) u=3sin—=> + 5sin 2% and (ii) uzxinOSxS% and u = a—x in
a a
%S x < a , while the other three edges are kept at 0°C, find the steadystate

temperature in the plate.

14. If a square plate is bounded by the lines x = +7 and y = =7 and three of its
edge are kept at temperature 0°C, while the edge x = 7 is kept at temperature
u=y+m,—-r<y<r, find the steadystate temperature in the plate.

15. Find the electrostatic potential in the rectangle, 0 <x<20,0<y<40,
whose upper edge is kept at potential 110 volts and whose other edges are
grounded.

Note £

The electrical force of attraction or repulsion between charged particles
(governed by Coulomb’s law) is the gradient of a function u, called electrostatic
potential and at any point, free of charges u is a solution of Laplace equation

%u  d%u
T2 t5 2
ox°  dy

given boundary conditions, to get the potential distribution in the rectangle.

= 0. Hence we have to solve the Laplace equation satisfying the

16. A square plate has its face and its edge x = 0 insulated. Its edges y = 0 and
y = a are kept at temperature zero, while its edges x = a is kept at temperature
T°C. Find the steadystate temperature distribution in the plate.

17. A rectangular plate of sides a and b has its faces and the edge y = b insulated.
Its edges x = 0 and x = a are kept at temperature zero, while the edge y = 0
kept at temperature kx. Find the steadystate temperature distribution in the
plate.

18. A square plate of side 20 cm has its faces and its edges x = 0 and x = 20
insulated. If the edge y = 0 is kept at temperature zero, while the edge y =20 is
kept at temperature u = (10 — x), find the steadystate temperature distribution
in the plate.

19. A square plate of side 7 has its faces and the edges y = 0 and y = winsulated.
If the edge x = m is kept at temperature zero, while the edge x = 0 is kept at
temperature (2 cos 3y + 3 cos 4y), find the steadystate temperature distribution
in the plate.

20. Find the steadystate temperature distribution on a rectangular plate of sides
a and b, insulated along three of its sides x = 0, x = @ and y = 0 and with side
y = b kept at temperature kx, 0 <x < a.



21.

22.

23.

24.

25.

26.
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Find the steadystate temperature distribution in a square plate of side a,
insulated along three of its sides y = 0, y = @ and x = a and with the side

x = 0 kept at temperature 0° for 0 < x < % and 100° for % <x<a-.

A square metal plate of side 10 cm is bounded by the lines x = 0, x = 10,
y=0and y=10. The edges y =0 and x = 10 are kept at zero temperature, the
edge x = 0 is kept insulated and the edge y = 10 is kept at temperature 7°C.
Find the steadystate temperature distribution in the plate.

A square metal plate of side a is bounded by the lines x =0, x=a, y =0 and
y=a. The edges x = a and y = 0 are kept at zero temperature, while the edge
y = a is kept insulated. If the temperature along the edge x = 0 is ky, find the
steadystate temperature distribution in the plate.

A rectangular metal plate of sides a and b has the edge x =0 and y = 0
insulated. The edge x = a is kept at a temperature of 0°C and the edge y = b
is kept at a temperature 100°C. Find the steadystate temperature distribution
in the plate.

A square metal plate of side 10 cm has the edges x = 10 and y = 10 insulated.
The edge y = Ois kept at temperature zero and the edge x = 0 is kept at
temperature ky. Find the steadystate temperature distribution in the plate.

If the faces of a thin square plate of side 7 are perfectly insulated, the edges
are kept at zero temperature and the initial temperature at any point (x, y) of
the plate is u(x, y, 0) = f(x, y), show that the temperature in the plate at any
subsequent time is given by

O~ 2,2, 2
U, y, 1) = D, D, Ay sin mx sin nye”® )

m=1n=1

f(x, y)sin mx sin nydxdy .

S —

V3

4
where A4, = —2J
0

Find the temperature in the plate at time ¢, if f(x, y) = xy(r — x) (T —y).
. du u  u
[Hint: Solve — = o* | — + — by the method of separation of variables.
ot ox* 9y’
Proceed as in worked Example 19 of Chapter 3(A)]

Answers

Exercise 5C(c)

Amx oAmyla
a

—2ryla

2
() u(x, y) = — ksin 22X e2m%a 4 kin
a

n+1

sin—x -exp(—nryla) .
a

. 2ka &
(i) ulx ) == Z

n
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oo n+l1
(iii) u(x, y)—4—2 D~ n G DX o n - Dayla) .
2 = - a

3nx

7. (1) u(x,y)=3kexp(—nx/10) sin% — k exp (_T) sin3ﬂ:—y

10 °

o

4T
(i) u(x,y)=—7

T

2n—1

exp {—(2n — D)wx/10} sin {W} .

n=1

(111) u(x, y) = 87012]( ngl (2n 1_ 1)3 exp {—(Zn - 1)71')6/10} sin {—(zn Iol)ny}

T 2w 1
8. u(x,y)= Z —; ,,2::1 mcos {22n—-D}exp{—22n —-1)y}.

2 oo
_KE_ K 2 iz ELAN—

n+1
10.  u(x,y)= z (2 1)_ ) exp{—(2n — Drx/2l} cos{(2n — Dmy/2l}.

n+1
u(x, y) = 80k 2 (=D xsin 2n-Drx

11.
2n-1) 20

exp{—(2n —1)my/20} .

n=1

m(a — x) -sinﬂ 3n(a — x) sin 3y

3k k
12. (1) Tcosech 7T -sinh — —cosech 37 - sinh-

a a 4 a a
8ka’®
(i) ulx,y)=
n
2 cosech (2n —1) 7 sinh (2n = Drta = ») sin (2n = D7y .
(2n - a a
13. (i) wu(x,y)=3cosech 4zb sin dmx sinh 4zy +5 cosech@ sin6n-—x-
a a a a a
s1nh6n—y
a
.. 4a
{11) wu(x,y)= —
V4
n+1 _ _ _
2 (- ) ech (2n—-Drb sin 2n-1Drx sinh 2n-Dry .
San- a a a
oo n+l
14. u(x,y)= 42 -y cosech nm sinhg(n + x)-sing(n +y).

n=1
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44 _— -
15, ulx, y)__O cosech 2(2’1—1)717-Sin( n DAY Gop 20 )ﬂy.
T ao2n-1 20
4T & 1 7m—1 m—1
16. u(x,y)=—2Y sech(2n — 1)1 cosh 21— DX ¢, @Gn=Dry
w oo 2n-1 a a
n+1 B
17. u(x,y)= 2ka 2( 1) sech 2. sinh 77X cosh O =) _
T a 4 P
18, u(x, y)= 50 ;zcosech (2n—1)7-cos @n-Drx . @Cn-Dry
71' (2}1 - 1) 20
19. u(x, y) =2 cosech 37-sinh 3( - x) - cos 3y + 3 cosech 47 sinh 4(7 — x) - cos 4y
20, u(xy)= ’L“ _ % L oep@nomb o Cn=bmx o Gn=Dry
n=1 (2’1 - 1) a a a
20, ey =50+22y 3 U eeh@n - hrcosh G2 D@0 o (G DTy
oo 2n—1 a a
n+l
2n—1 2n—1 2n—1
22, u(x,y)=— 5 D7 osech ZDE (G DEx g Gn=Dry .
=l 2n-1 2 20 20
] n+1 2 _1 2 _1 _
23. u(x,y)_ 8ka < z =1 cosech( n—Dr nh( n—lnr(a—x)
oQn-1y 2 2a
sin 2n-Dry .
2a
n+l
- Db 2n -1 2n—1
24, u(x, )_@2( D) ( n-hr 'COS( n )ﬂxcosh( n )n'y.
= 2N —1 2a 2a 2a
had _1 n+l 2 _1 2 _1 1 _
25, u(r.y)= 2K T OV (o @17D) o @1 D00,
n=1(2n—=1) 20
in 2n-Dry .
20
SA Y 1
26. u(x,y)= sin2m - Dx-sin(2n — 1)y-exp
z:‘ z:’ 2m -1 @2n -1y

[—{2m - 1>+ 2n-1)*} 1]
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