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Linear Algebra and Partial Differential Equations, has been designed specifically 

to cater to the needs of third semester B Tech students. The current edition aims 

at preparing the students for examination alongside strengthening the fundamental 

concepts related to Partial Differential Equations. Lucidity of the text, ample worked 

examples and notes highlighted within the text help students navigate through 

complex topics seamlessly. Stepwise explanation, use of multiple methods of 

problem solving, and additional information presented by the means of appendices 

are few other notable features of the content.

Salient Features

 ∑ Strict adherence to the syllabus 

 ∑ Stepwise solutions of solved problems which will enable students to score 

marks

Chapter Organization

The book is organised into 5 units. Unit 1 deals with Vector Spaces. Unit 2 explains 

in detail about Linear Transformation. Unit 3 discusses the Inner Product Spaces. 

Unit 4 focuses on Partial Differential Equations while Chapter 5 elaborates on Fourier 

Series Solutions of Partial Differential Equations.
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Vector Spaces

Unit 1
Vector Spaces

1.1 Vector SpaceS – Definition

A vector space is a non-empty set of objects (called vectors) for which rules of addition 

and scalar multiplication are defined as follows and for which the following axioms 

hold good:

Addition means a rule that assigns to each pair of vectors u and v in the vector space 

V, a vector (u + v) in V.

Scalar multiplication means a rule that assigns to each scalar c in a field F (viz., a 

set of real or complex scalars which obey the elementary rules of algebra) and each 

vector in V, a vector cu in V.

axioms:

 1. Addition is commutative. viz., for any two vectors, u, v, Œ V, u + v = v + u.

 2. Addition is associative. viz., for any vectors u, v, Œ V, (u + v) + w = u + (v + w)

 3. There is a unique vector 0 in V (called zero vector) such that u + 0 = 0 + u = 

u for any vector u in V.

 4. For each vector u in V. there is a unique vector – u in V, such that u + (–u) = 0

 5. For any scalar c in F and any vector u, v in V, c(u + v) = Cu + Cv.

 6. For any two scalars C1 and C2 in F and any vector u Œ V, (C1 + C2)u = C1u 

+ C2u.

 7. For the unit scalars 1 Œ F, 1u = u for any u Œ V.

 8. For any two scalars C1 and C2 in F and any vector u Œ V, (C1C2) u =  

C1 (C2u).

Note 
The Vector space is also referred to as the vector space over the field F or 

linear space.

examples of Vector Spaces

 1. The set of all n-triples of scalars in any field F with addition and scalar 

multiplication defined by:

  (a1, a2, ..., an) + (b1, b2, ..., bn) = a1 + b1, a2 + b2, ..., an + bn and c (a1, a2, ..., 

an) = (ca1, ca2, ..., can), where ai, bi, c Œ F. This vector space is denoted by 

F
n. Particular cases are Rn and Cn.
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Note 
The zero vector of Fn is 0 = (0, 0, ..., 0)

 2. The set of all (m × n) matrices with entries from any field F is a vector space 

over F w.r.t. the operations of matrix addition and scalar multiplication is 

denoted by Fm × n

Note 
  F1 × n = Fn

 3. The set of all polynomials c0 + c1x + c2x
2 + L + cnx

n, with the coefficients ci 

from any field F with respect to additions of polynomials and multiplication 

by a constant.

 4. The set V of all function from a non-empty set X into any arbitrary field F 

for which addition and scalar multiplication are defined as follows is a vector 

space.

  The sum of any two functions f and g Œ V is the function (f + g) (x) = f(x) + g(x)

  The product of a scalar c Œ F and a function f Œ V in the function cf ŒV, 

defined by (cf) (x) = cf(x).

Subspaces

If W is a subset of a vector space V over a field F, such that W is itself a vector space 

over F w.r.t. vector addition and scalar multiplication [viz., (1) W is non-empty, 

(2) v, w Œ W implies v + w Œ W and (3) v Œ W implies c v Œ W for every c Œ F], then 

W is called a sub-space of V.

Examples of Subspaces

 1. If V is R3, then the set W consisting of those vectors whose first component 

is zero. i.e., W = {(0, a, b): a, b Œ R} is a sub-space of V.

 2. If V is the space of all n × n matrices, then the set of all symmetric matrices 

of order n is a sub-space of V.

 3. If V is any space, then the set {0} consisting of the zero vector alone and the 

entire space V are sub-spaces V.

Span

If S is a non-empty sub set of a vector space V, the set of all linear combinations of 

vectors in S is a subspace of V and is called the span of S and denoted by L(S). The 

subspace L(S) is said to be generated by S.

If L(S) = V, then V is said to be finitely generated by S.

Examples
 1. The vector e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1) and span the vector 

space R, for, any vector (a, b, c) in R3 can be expressed as a linear combination 

of e1, e2, e3 as (a, b, c) = ae1 + be2 + ce3

 2. The polynomial 1, t, t2, ... generate the vector space of all polynomials in t, 

as any polynomial can be expressed as a linear combination of 1, t, t2, ... .
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Linear Dependence and independence of Vectors

The vectors u1, u2, ..., um are said to be linear by dependent if scalars, c1, c2, ... cm (not 

all zero simultaneously) can be found such that

 c1u1 + c2 u2 + L + cmum = 0 (1)

where the symbol 0 on the right denotes the null vector.

Otherwise the m vectors are said to be linearly independent. In this case the 

equation (1) will be satisfied only if c1 = c2 = ... = cm = 0.

In (1), suppose ck π 0, then

 ckuk = –c1u1 – c2u2 – L – ck – 1 uk – 1 – ck + 1 uk + 1 – L – cmum

or equivalently uk = d1u1 + d2u2 + L + dmum. In the case, the vector uk is said to be a 

linear combination of all the others.

1.2 BaSiS anD DimenSion

A vector space V is said to be finite-dimensional (n-dimensional or dim V = n), if there 

exists a linearly independent set of vectors {e1, e2, ..., en) in V which spans the space 

V. The set {e1, e2, ..., en} is called a basis of V and the number of elements in a basis 

is called the dimension of V

Examples

 1. The vectors e1, (1, 0, 0, ..., 0), e2 = (0, 1, 0, ..., 0), e3 = (0, 0, 1, ..., 0), en = (0, 

0, 0, ..., 1) form a basis of Rn, called the standard basis and dim (Rn) = n.

 2. If V is the vector space of all ( m × n) matrices over F, then dim V = mn.

  In particular, if V is the vector space of all (2 × 2) matrices over R, then dim 

V = 4.

  The matrices 
1 0 0, 1 0 0 0 0

, , and
0 0 0, 0 1 0 0 1

Ê ˆ Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

 from the basis of V.

 3. If V is the vector space of polynomials in t of degree n, then dim (V) = n + 1, 

for the linearly independent set {1, t, t2, ..., tn} is a basis of V.

 Worked Examples (1)

Example 1

Determine whether the vector v = (3, 9, –4, –2) belongs to the space spanned by 

u1 = (1, –2, 0, 3), u2 = (2, 3, 0, –1) and u3 = (2, –1, 2, 1)

If v belongs to the space spanned by u1, u2 and u3, then constants k1, k2, k3 should 

exist such that v = k1u1 + k2u2 + k3u3.

viz.,  (3, 9, –4, –2) = k1(1, –2, 0, 3) + k2(2, 3, 0, –1) + k2(2, –1, 2, 1)

viz., k1 + 2k2 + 2k3 = 3 (1)

 –2k1 + 3k2 – k3 = 9 (2)

 2k3 = –4 (3)
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and 3k1 – k2 + k3 = –2 (4)

Equations (1), (2), (3) and (4) are satisfied by k1 = 1, k2 = 3 and k3 = –2

\ The vector v belongs to the space spanned by the vectors u1, u2, u3. 

Example 2

Find whether the vector (2, 4, 6, 7, 8) is in the subspace of R5 spanned by (1, 2, 0, 3, 

0), (0, 0, 1, 4, 0) and (0, 0, 0, 0, 1)

If possible, let (2, 4, 6, 7, 8) = k1(1, 2, 0, 3, 0) + k2(0, 0, 1, 4, 0) + k3(0, 0, 0, 0, 1).

Then k1 = 2, 2k, = 4, k2 = 6, 3k1 + 4k2 = 7, k3 = 8

There equations are not satisfied by the same set of values of k1, k2 and k3,

\ The given vector does not belong to the subspace of R5.

Example 3

Examine the linear dependence or independence of the following vectors:

u1 = (1, –2, 3, 4), u2 = (–2, 4, –1, –3) and u3 = (–1, 2, 7, 6)

Writing the vectors as row vectors, one below the other, we have

    

- -Ê ˆ Ê ˆ
Á ˜ Á ˜- - + +Á ˜ Á ˜
-Ë ¯ Ë ¯

-Ê ˆ
Á ˜ + + - +Á ˜
Ë ¯

1 2 1 3 1

1 2 1 3 1 2 1

1, 2, 3, 4 1, 2, 3, 4

2, 4, 1, 3 0, 0, 5, 5 ( , 2 , )

1, 2, 7, 6 0, 0, 10, 10

1, 2, 3, 4

0, 0, 5, 5 [ , 2 , 2 ( 2 )

0, 0, 0, 0

u u u u u

u u u u u u u





We see that u3 – 3u1 – 2u2 = 0

\ The 3 vectors are linearly dependent.

Example 4

Find the maximum number of linearly independent vectors among the following and 

express each of the remaining vectors as a linear combination of these.

 u1 = (1, 2, 1); u2 = (4, 1, 2);  u3 = (6, 5, 4) and u4 = (–3, 8, 1).

Writing the vectors as row vectors one below the other, we have

    

1 2 1 3 1 4 1

1 2 3 2

1, 2, 1 1, 2, 1

[ , , 4 , 6 , 3 ]4, 1, 2 0, 7, 2

[ , , , say]6, 5, 4 0, 7, 2

3, 8, 1 0, 14, 4

u u u u u u u

u u u u

Ê ˆ Ê ˆ
Á ˜ Á ˜ - - +-Á ˜ Á ˜ ¢ ¢ ¢ ¢- -Á ˜ Á ˜
Á ˜ Á ˜-Ë ¯ Ë ¯



          

1 2 3 2 4 2

1, 2, 1

0, 7, 2
( , , , 2 )

0, 0, 0

0, 0, 0

u u u u u n

Ê ˆ
Á ˜- -Á ˜ - +¢ ¢ ¢ ¢ ¢ ¢
Á ˜
Á ˜Ë ¯


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Maximum number of linearly independent vectors = 2

Also u¢3 – u¢2 = 0

viz., u3 – 6u1 – (u2 – 4u1) = 0

viz., u3 = 2u1 + u2

and u¢4 + 2u¢2 = 0

viz., u4 = 3u1 + 2(u2 – 4u1) = 0

viz., u4 = 5u1 – 2u2.

Example 5

Determine whether the set of vectors (4, 1, 2, 0), (1, 2, –1, 0), (1, 3, 1, 2) and 

(6, 1, 0, 1) is linearly independent.

Let k1(4, 1, 2, 0) + k2(1, 2, –1, 0) + k3(1, 3, 1, 2) + k4(6, 1, 0, 1) = 0 (A)

Then  4k1 + k2 + k3 + 6k4 = 0 (1)

 k1 + 2k2 + 3k3 + k4 = 0 (2)

 2k1 – k2 + k3 = 0 (3)

and 2k3 + k4 = 0 (4)

using (4) in (1); 4k1 + k2 – 11k3 = 0 (5)

using (4) in (2); k1 + 2k2 + k3 = 0 (6)

Eliminating k3 from (3) and (5); 26k1 – 10k2 = 0 or 13k1 – 5k2 = 0  (7)

Eliminating k3 from (3) and (6); k1 – 3k2 = 0  (8)

Solving (7) and (8), we get k1 = 0 and k2 = 0

From (3), k3 = 0 and from (4), k4 = 0
viz., the only values satisfying (A) are k1 = k2 = k3 = k4 = 0.

\ The given system in linearly independent.

Example 6

Show that the vectors u = (1, 2, 3), v = (0, 1, 2) and w = (0, 0, 1) generate R3
.

If u, v, w generate R3, a general vectors (a, b, c) in R3 should expressed as a linear 

combination of  u, v, w.

Let (a, b, c) = k1(1, 2, 3) + k2(0, 1, 2) + k3(0, 0, 1)

\   k1 = a; 2k1 + k2 = b  \ k2 = b – 2a

and   3k1 + 2k2 + k3 = c  \ k3 = c – 3a – 2(b – 2a) = c – 2b + a

Hence the three given vectors generate R3.

Example 7

Find the condition on a, b, c so that (a, b, c) ŒR
3 belong to the space generated by 

u = (2, 1, 0), v = (1, –1, 2) and w = (0, 3, –4)

Let (a, b, c) = k1(2, 1, 0) + k2(1, –1, 2) + k3(0, 3, –4)
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Then 2k1 + k2 = a (1)

 k1 – k2 + 3k3 = b (2)

 2k2 – 4k3 = c (3)

Eliminating k3 from (2) and (3), 4k1 + 2k2 = 4b + 3c

   viz., 2a = 4b + 3c from (1)

Example 8
Show that the vectors u = (1, 0, –1), v = (1, 2, 1) and w = (0, –3, 2) form a basis for 

R
3. Express each of the standard basis vectors as a linear combination of u, v, w.

Writing u, v, w as row vectors one below the other and row reducing, we get

       

1 2 1 3

1 2 3 2

1, 0, 1 1, 0, 1

1, 2, 1 0, 2, 2 ( , , )

0, 3, 2 0, 3, 2

1, 0, 1
3

0, 2, 2 ( , , )
2

0, 0, 5

R R R R

R R R R

- -Ê ˆ Ê ˆ
Á ˜ Á ˜ -Á ˜ Á ˜

- -Ë ¯ Ë ¯

-Ê ˆ
Á ˜ +¢ ¢ ¢ ¢Á ˜
Ë ¯





\ The given vectors are linearly independent.

Let (a, b, c) = k1(1, 0, –1) + k2(1, 2, 1) and k3(0, –3, 2)

Then k1 + k2 = a

 2k2 – 3k3 = b

 –k1 + k2 + 2k3 = c

Solving, 
1 2 3

1 1 1
(7 2 3 ); (3 2 3 ) and (2 2 2 )

10 10 10
k a b c k a b c k a b c= - - = + + = - +

The standard basis vectors and given by

 e1 = (1, 0, 0) = 
7 3 2

10 10 10
u v w+ +

 e2 = (0, 1, 0) = 
2 2 2

10 10 10
u v w- + -

and e3 = (0, 0, 1) = 
3 3 2

10 10 10
u v w- + +

Example 9
Find a basis and the dimension of the sub space W of R4, generated by the vectors 

(1, –2, 5, –3), (2, 3, 1, –4) and (3, 8, –3, –5).
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We form the matrix with the given vectors as rows and then row-reduce to echelon 

form as given below:

    

1 2 1 3 1 2

1 2 3 2

1, 2, 5, 3 1, 2, 5, 3

2, 3, 1, 4 0, 7, 9, 2 ( , 2 , )

3, 9, 3, 5 0, 7, 9, 2

1, 2, 5, 3

0, 7, 9, 2 ( , , )

0, 0, 0, 0

R R R R R R

R R R R

- - - -Ê ˆ Ê ˆ
Á ˜ Á ˜- - - - -Á ˜ Á ˜

- - -Ë ¯ Ë ¯

-Ê ˆ
Á ˜- -Á ˜
Ë ¯





The non zero row vectors in the echelon form, namely, (1, –2, 5, –3) and (0, 7, –9, 2) 

form a basis of W and dim (W) = 2

Example 10
If W is the space spanned by the polynomial v1 = t3 – 2t

2 + 4t + 1, v2 = t3 + 6t – 5, v3 

= 2t
3 – 3t

2 + 9t – 1 and v4 = 2t
3 – 5t

2 + 7t + 5, find a basis and dimension of W.

The coefficient vectors relative to the basis (t3, t2, t, 1) are (1, –2, 4, 1), (1, 0, 6, –5), 

(2, –3, 9, –1) and (2, –5, 7, 5)

We form the matrix with these coefficient vectors as rows and row-reduce to the 

echelon form as given below:

    

1 2 1 3 1 4 1

1 2 4 1 1 2 4 1

1 0 6 5 0 2 2 6
( , , 2 , 2 )

2 3 9 1 0 1 1 3

2 5 7 5 0 1 1 3

R R R R R R R

- -Ê ˆ Ê ˆ
Á ˜ Á ˜- -Á ˜ Á ˜ - - -

- - -Á ˜ Á ˜
Á ˜ Á ˜- - -Ë ¯ Ë ¯



 

1 2 3 4

1 2 4 1

0 1 1 3
( , 2, , )

0 1 1 3

0 1 1 3

R R R R

-Ê ˆ
Á ˜-Á ˜ ∏

-Á ˜
Á ˜- -Ë ¯



 

1 2 3 2 4 2

1 2 4 1

0 1 1 3
( , , , )

0 0 0 0

0 0 0 0

R R R R R R

-Ê ˆ
Á ˜-Á ˜ - +
Á ˜
Á ˜Ë ¯



\ (1, –2, 4, 1) and (0, 1, 1, –3) form a basis for the space generated by the coefficient 
vectors 

viz., t3 –2t
2 + 4t + 1 and t2 + t –3 form a basis for the space W and dim (W) = 2.

Example 11
Find the dimension and a basis for the solution space W of the system of homogeneous 

equation given below.

 x1 + 2x2 + 2x3 – x4 + 3x5 = 0
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 x1 + 2x2 + 3x3 + x4 + x5 = 0

 3x1 + 6x2 + 8x3 + x4 + 5x5 = 0

Row-reducing the given system of equation, we get

 x1 + 2x2 + 2x3 – x4 + 3x5 = 0 (1)

 x3 + 2x4 – 2x5 = 0 (2)

 dim (W) = No. of unknowns – No. of non-zero equations

  = 5 – 2 = 3.

The free variables are taken as x2, x4 and x5 (\ x2 is not present in (2))

Taking x2 = 1, x4 = 0, x5 = 0; v1 = (x1, x2, x3, x4, x5) = (–2, 1, 0, 0, 0), using (1) and (2)

Taking x2 = 0, x4 = 1, x5 = 0; v2 = (5, 0, –2, 1, 0), using (1) and (2)

Taking x2 = 0, x4 = 0, x5 = 1; v3 = (–7, 0, 2, 0, 1), using (1) and (2)

v1, v2, v3 form a basis for the solution space W.

Example 12
Find a homogenous system of equations whose solution set W is spanned by (1, –2, 

0, 3 –1), (2, –3, 2, 5, –3) and (1, –2, 1, 2, –2).

v = (x1, x2, x3, x4, x5) ŒW, if and only if v is a linear combination of the given vectors.
\ (x1, x2, x3, x4, x5) = k1(1, –2, 0, 3, –1) + k2 (2, –3, 2, 5, –3) + k3(1, –2, 1, 2, –2)

viz., k1 + 2k2 + k3 = x1 (1)

 –2k1 – 3k2 – 2k3 = x2 (2)

 2k2 + k3 = x3 (3)

 3k1 + 5k2 + 2k3 = x4 (4)

 –k1 –3k2 – 2k3 = x5 (5)

Row-reducing the above equation, we get

 k1 + 2k2 + k3 = x1 (1¢)

 k2 = 2x1 + x2 (2¢)

 2k2 + k3 = x3 (3¢)

 –k2 – k3 = x4 – 3x1 (4¢)

 –k2 –k3 = x1 + x5 (5¢)

(3¢) + (4¢) gives k2 = –3x1 + x3 + x4

Also k2 = 2x1 + x2

\ 2x1 + x2 = –3x1 + x3 + x4

viz; 5x1 + x2 – x3 – x4 = 0 (6)

Equating (4¢) and (5¢), we also get

 x1 + x5 = x4 – 3x1
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viz; 4x1 – x4 + x5 = 0

(OR) 4x1 – (5x1 + x2 – x3) + x5 = 0 viz., x1 + x2 – x3 – x5 = 0 (7)

v Œ W, if and only if the above system has a solution.

viz., if 5x1 + x2 – x3 – x4 = 0 (6)

and x1 + x2 – x3 – x5 = 0 (7¢)

Equations (6) and (7¢) form the required homogeneous system of equations.

       Exercise 1

Part A (Short-Answer Questions)

 1. Define vector space with two examples.

 2. Define subspace with two examples.

 3. Define span of a vector space.

 4. Define standard vectors in R3 and prove that they span the vector space R3

 5. Define linear dependence and independence of vectors.

 6. Define basis and dimension of a vector space.

 7. If V is the vector space of all (2 × 2) matrices over R, give a basis of V and 

dimension of V.

 8. Determine whether the vectors (1, 1, 1) and (1, –1, 5) form a basis for the 

vector space R3.

 9. Find whether the vectors (1, 1, 2), (1, 2, 5) and (5, 3, 4) form a basis for the 

vector space R3.

 10. Find whether the vector (1, 1, 1), (1, 2, 3) and (2, –1, 1) form a basis for the 

vector space R3.

Part B

 11. Is the vector (3, –1, 0, –1) in the sub-space of R4 spanned by the vectors 

(2, –1, 3, 2), (–1, 1, 1, –3) and (1, 1, 9, –5)?

 12. Find whether the vector (–3, –6, 1, –5, 2) is in the sub space of R5 spanned 

by (1, 2, 0, 3, 0), (0, 0, 1, 4, 0) and (0, 0, 0, 0, 1).

 13. Examine the linear dependence or independence of the following vectors:

  (i) u1 = (2, –1, 3, 2), u2 = (1, 3, 4, 2) and u3 = (3, –5, 2, 2).

  (ii) u1 = (1, –1, 0, 1), u2 = (–1, –1, –1, 2) and u3 = (2, 0, 1, –1)

 14. Find the maximum number of linearly independent vectors among the 

following and express each of the remaining vectors as a linear combination 

of these:

  u1 = (3, 1, –4); u2 = (2, 2, –3); u3 = (0, –4, 1) and u4 = (–4, –4, 6)

 15. Show that the vectors u1 (2, 3, –1, –1); u2 = (1, –1, –2, –4); u3 = (3, 1, 3, –2) 

and u4 = (6, 3, 0, –7) form a linearly dependent system, also express u4 as a 

linear combination of other.

 16. Determine whether the vector (4, 2, 1, 0) is a linear combination of 

the vectors u1 = (6, –1, 2, 1), u2 = (1, 7, –3, –2), u3 = (3, 1, 0, 0) and 

u4 = (3, 3, –2, –1).

 17. Show that the vector (a, b, 0) in R3 is generated by

  (i) u1 = (1, 2, 0) and u2 = (0, 1, 0)
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  (ii) u1 = (2, –1, 0) and u2 = (1, 3, 0)

 18. Show that the vector (a, b, 0) in R3 is generated by

  (i) u1 = (0, 1, 1) and u2 = (0, 2, –1)

  (ii) u1 = (0, 1, 2) and u2 = (0, 2, 3)

 19. Show that the vectors (1, 1, 1), (1, 2, 3) and (2, 3, 8) form a basis for R3. 

Express each of the standard basis vectors as a linear combination of these 

vectors.

 20. Show that the vectors u = (1, 2, 2), v = (2, 1, –2) and w = (2, –2, 1) form a basis 

for R3. Express each of the standard basis vectors as a linear combination of 

u, v  and w.

 21. Find a basis and dimension for the subspace of R4 spanned by the four vectors 

v1 = (1, 1, 2, 4), v2 = (2, –1, –5, 9), v3 = (1, –1, –4, 0) and v4 = (2, 1, 1, 6)

 22. Find a basis and dimension of the subspace of R4 spanned by

  (i) (1, 4, –1, 3); (2, 1, –3, –1) and (0, 2, 1, –5)

  (ii) (1, –4, –2, 1); (1, –3, –1, 2) and (3, –8, –2, 7)

 23. Find a basis and dimension of the solution space W of the homogeneous 

system x + 3y + 2z = 0, x + 5y + z = 0 and 3x + y + 8z = 0.

 24. Find a basis and dimension of the solution space W of the homogeneous 

system:  x1 + 2x2 – x3
 
+ x4 = 0 and x1 – 2x2 + x3 + 2x4 = 0

 25. Find a homogeneous system of equations whose solution set W is spanned 

by (1, –2, 0, 3), (1, –1, –1, 4) and (1, 0, –2, 5)

Answers

        Exercise 1

 8. No, since dim (R3) = 3, but there are only 2 elements.

 9. No, since the vectors are linearly dependent.

 10. Yes, since the vectors are linearly independent.

 11. No, the given vectors are linearly dependent.

 12. Yes, since (–3, –6, 1, –5, 2) = –3u1 + u2 + 2u3

 13. (i) Linearly dependent, since u3 = 2u1 – u2

  (ii) Linearly dependent since u1 = u2 + u3

 14. 2, let them be u1 and u2. Then u3 = 2u1 – 3u2 and u4 = 0 u1 – 2u2

 15. u4 = u1 + u2 + u3

 16. Yes since u = 2u1 + u2 – 3u3 + 0.u4

 17. (i) (a, b, 0) = a(1, 2, 0) + (b – 2a)(0, 1, 0)

  (ii) (a, b, 0) = 
1 1
(3 ) (2, 1,0) ( 2 ) (1, 3, 0)

7 7
a b a b- - + +

 18. (i) (0, b, c) = 
1 1
( 2 ) (0, 1, 1) ( )(0, 2, 1)

3 3
b c b c+ + - -

  (ii) (0, b, c) = (–3b + 2c) (0, 1, 2) + (2b – c) (0, 2, 3)
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 19. 1 1 2 3 2 1 2 3

3 1 2 3

7 5 1 1 3 1
;

4 4 4 2 2 2

1 1 1
and

4 4 4

e u u u e u u u

e u u u

= - + = - + -

= - - +

 20. 1 2 3

1 2 2 2 1 2 2 2 1
; ;

9 9 9 9 9 9 9 9 9
e u v w e u v w e u v w= + + = + - = - +

 21. (1, 1, 2, 4), (0, –3, –11, 1) and (0, –2, –6, –4) form a basis and dim = 3.

 22. (i) dim (W) = 3; Basis ∫ [(1, 4, –1, 3), (0, –7, –1, –7) and (0, 2, 1, 5)

  (ii) dim (W) = 2; Basis ∫ [(1, –4, –2, 1) and (0, 1, 1, 1)]

 23. Basis ∫ (7, –1, 2) and dim (W) = 1

 24. dim (W) = 2; Basis ∫ [(–5, 1, 0, 3) and (3, 0, 1 –2)]

 25. 2x1 + x2 + x3 = 0 and 5x1 + x2 – x4 = 0





2-1
Linear Transformation

Unit 2
Linear Transformation

2.1 Linear TransformaTion–DefiniTion

If V and W are vector spaces over the same field F, a function T from V into W is 

called a linear transformation or linear mapping, provided it preserves the two basic 

operations of a vector space and denoted by T : V Æ W.

viz.,   (i) T(v + w) = T(v) + T(w) for any v, w Œ V

  (ii) T(cv) = cT(v), for any v Œ V and c Œ F.

Note 
T(0) = T(0v) = 0. T(v) = 0.

examples of Linear Transformation

 1. Zero transformation: Let N : V Æ W be a transformation such that N(v) = 0 Œ W,  

for every v Œ V.

  Now N(v + w) = 0 = 0 + 0 = N(v) + N(w)

  and N(cv) = 0 = c × 0 = cN(v)

  Hence W is a linear transformation, usually denoted by 0.

 2. Identity transformation: Let I: V Æ V be a transformation such that I(v) = v, 

for every v Œ V.

  Now I(v + w) = v + w = I(v) + I(w)

  and I (cv) = cv = cI(v)

  Hence I is a linear transformation.

 3. If V is the vector of polynomials in the variable x over the real field R and if 

D(f) = 
1

0

and ( ) ( ) ,
df

I x f x dx
dx

= Ú  then

  D : V Æ V and : V Æ R are linear transformation, for 

  D(c1v + c2w) = c1 D(v) + c2 D(w) and,

  

1 1 1

1 2 1 2 1 2 1 2

0 0 0

( ) ( ) ( ) ( )I c v c w c v c w dx c v dx c wdx c I v c I w+ = + = + = +Ú Ú Ú

 4. Let P be a fixed (m × m) matrix with entries over F and Q be a fixed (n × n) 

matrix over F.
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  If T is a transformation over the space Fm × n
 is defined as T(A) = PAQ, then 

T is a linear transformation, for

  T(c1A + c2B) = P(c1A + c2B)Q = [c1(PA) + c2(PB)]Q  = c1(PAQ) + c2(PBQ)  

= c1T(A) + c2T(B)

Note 
T: V Æ W can be uniquely determined by arbitrarily assigning elements of W 

to the elements of a basis of V as per the following theorem which is stated 

without proof.

Theorem: If V is a finite dimensional vector space over a field F, with {v1, v2, ..., vn} 

as a basis and W is another vector space over the same field containing the arbitrary 

vector {w1, w2, ..., wn} (which may be linearly dependent or equal to each other), there 

exists a unique linear transformation T : V Æ W such that T(vj) = wj ij = 1, 2, ..., n.

For example, let us find T : R2 Æ R3 defined by T((1, 2) = (3, –1, 5) and T(0, 1) 

= (2, 1, –1)

Since (1, 2) and (0, 1) are linearly independent, they form a basis of R2. The vectors 

(3, –1, 5) and (2, 1, –1) have been arbitrarily chosen in R3

Now (a, b) = c1(1, 2) + c2(0, 1) \ c1 = a and c2 = b – 2a

\   T(a, b) = a(3, –1, 5) + (b – 2a) (2, 1, –1)

     = (2b – a, b – 3a, 7a – b), which is the unique linear transformation 
required.

2.2 nuLL space anD range space

Definitions: If V and W are vector spaces over the field F and if T : V Æ W is a linear 

transformation, the set of all vectors v in V such that T(v) = 0 is called the null space 

of T or kernel of T and denoted by NT.

The set of all vector w is W such that T(v) = w, v Œ V is called  the range space or 

the image space of T and denoted by RT.

Note 
Null space of T is a subspace of V and range space of T is a subspace of 

W.)

If V is finite dimensional, the dimension of the range of T is called the rank of T 

and that of the null space of T is called the nullity of T

Dimension Theorem

The sum of the dimension of the range space and null space of a linear transformation 

is equal to the dimension of its domain viz., if V and W are vector spaces over the 

field F and if T : V Æ W is a linear transformation and if V is finite dimensional, then 

rank (T) + nullity (T) = dim (V).

Proof: Let {v1, v2, ..., vk} be a basis for NT, so that dim (NT) = k



2-3
Linear Transformation

We can find vectors vk + 1, vk + 2, ... vn such that (v1, v2, ... vn) is a basis of V, so that 

dim (V) = n.

The theorem is proved, if we can prove that (Tvk + 1, Tvk + 2, ... Tvn) is basis for RT

Clearly the vectors Tv1, Tv2, ... Tvn span RT

But Tv1 = Tv2 = ... = Tvk = 0

\  Tvk + 1, Tvk + 2, ..., Tvn span RT

These vector Tvk +1, Tvk +2, Tvn will be a basis of RT, provided they are linearly 

independent.

Let these be scalars ci such that 
1

( ) 0

n

i i

i k

c Tv

= +

=Â

viz., 

1

0 ( is linear)

n

i i

i k

T c v T

= +

=Â Q

This means that v = 
1

is (in )

n

i i T

i k

c v N

= +

Â  viz., 
1

0 [ is linear]

n

i i

i k

T c v T

= +

=Â Q  

 (1)

Since {v1, v2, ..., vk} is a basis of NT, there exist scalars b1, b2, ..., bk such that 

      

1

k

i i

i

v b v

=

= Â  (2)

From (1) and (2), we get 
1 1

0

k n

i i i i

i i K

b v c v

= = +

- =Â Â

Since v1, v2, .., vn form a basis of V, they are linearly independent.

\ b1 = b2 = ... = bk = ck + 1 = ck + 2 = ... = cn = 0

\ Tvk + 1, Tvk + 2, ..., Tvn form a basis for RT

\ dim (RT) = n – k and dim (NT) = k

\ Rank (T) + nullity (T) = dim(V)

 Worked Examples 2(a)

Example 1

Show that the transformation T : R3 Æ R2 defined by T(x, y, z) = (z, x + y) is linear.

Let       v = (x, y, z) and w = (x¢, y¢, z¢)

Then   c1v + c2w = (c1x + c2x¢, c1y + c2y¢, c1z + c2z¢)

\ T(c1v + c2w) = {c1z + c2z¢, c1(x + y) + c2(x¢ + y¢)}, by definition of T

        = c1(z, x + y) + c2(z¢, x¢ + y¢)
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        = c1T(x, y, z) + c2T(x¢, y¢, z¢)

        = c1T(v) + c2T(w)

\ T is linear.

Example 2

Show that the transformation T : R2 Æ R2 defined by T(x, y) = (sin x, y) is not linear.

Let  v = (x, y) and w = (x¢, y¢)

Then   c1v + c2w = (c1x + c2x¢, c1y + c2y¢)

\   T(c1v + c2w) = {sin(c1x + c2x¢), c1y + c2y¢} (1)

But c1T(v) + c2T(w) = c1 (sin x, y) + c2 (sin x¢, y¢)

         = {c1 sin x + c2 sin x¢, c1y + c2y¢} (2)

From (1) and (2), we see that T(c1v + c2w) π c1T(v) + c2T(w)

\ T is not linear.

Example 3

Find whether the transformation T : R2 Æ R3 defined by

        T(x, y) = (x + 1, 2y, x + y) is linear.

Let v (x, y) and w = (x¢, y¢)

Then   c1v + c2w = (c1x + c2x¢, c1y + c2y¢)

\    T(c1v + c2w) = {c1x + c2x¢ + 1, 2(c1y + c2y¢), c1(x + y) + c¢2(x¢ + y¢)

           π c1T(v) + c2T(w)

\ T is not linear.

Example 4

If V is the vector space of all n × n matrices over F and if B is an arbitrary matrix in 

V, show that the transformation T : V Æ V defined by T(A) = AB – BA, where A Œ V 

is linear. Show also that T(A) = A + B  is not linear, unless B = 0.

 T(c1A + c2A¢) = (c1A + c2A¢)B – B(c1A + c2A¢)

 = c1(AB – BA) + c2(A¢B – BA¢) (1)

   c1T(A) + c2T(A¢) = c1(AB – BA) + c2(A¢B – BA¢) (2)

From (1) and (2), we see that T is linear.

Now     T(c1A + c2A¢) = c1A + c2A¢ + B (3)

and c1T(A) + c2T(A¢) = c1(A + B) + c2(A¢ + B)

         = c1A + c2A¢ + 2B (4)

From (3) and (4); we see that T is not linear, but linear when B = 0
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Example 5

Find T(1, 0), where T : R2 Æ R3 is defined by T(1, 2) = (3, 2, 1) and T(3, 4) = (6, 5, 4)

Since (1, 2) and (3, 4) are linearly independent, they form a basis of R2.(3. 2, 1) 

and (6, 5, 4) are arbitrary vectors in R3.

\ T : R2 Æ R3 can be uniquely determined.

Let     (1, 0) = c1(1, 2) + c2(3, 4)

Then   c1 + 3c2 = 1 and 2c1 + 4c2 = 0

Solving there equations, c1 = –2 and c2 = 1

\    T(1, 0) = –2T(1, 2) + T(3, 4)

        = –2(3, 2, 1) + (6, 5, 4)

        = (0, 1, 2)

Example 6

Find a basis and dimension of RT and NT for the linear transformation T : R3 Æ R3, 

defined by T(x1, x2, x3) = (x1 – x2 + 2x3 = 2x1 + x2, –x1 –2x2 + 2x3)

The images of standard basis vectors of R3, viz: (1, 0, 0), (0, 1, 0) and (0, 0, 1) 

generate RT

     T(1, 0, 0) = (1, 2, –1); T(0, 1, 0) = (–1, 1, –2) and T(0, 0, 1) = (2, 0, 2)

We have to test wether three images can form the basis of RT

viz., to find the number of independent vectors from the images.

Now  

1 2 1 1 2 1 1 2 1

1 1 2 0 3 3 0 1 1

2 0 2 0 4 4 0 0 0

-Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜- - -Á ˜ Á ˜ Á ˜

-Ë ¯ Ë ¯ Ë ¯

 

\ {(1, 2, 1) and (0, 1, 1)} is a basis of RT and rank of T = 2.

Let (x1, x2, x3) be an element of NT

Then    T(x1, x2, x3) = (0, 0, 0)

viz.,  x1 – x2 + 2x3 = 0, (1)

 2x1 + x2 = 0 (2)

and    –x1 – 2x2 + 2x3 = 0 (3)

viz.,    x1 – x2 + 2x3 = 0   (1)

         3x2 – 4 x3 = 0   [(2) –3 × (1)]

        –3x2 + 4x3 = 0   [(1) + (3)]

viz.,    x1 – x2 + 2x3 = 0

and      3x2 – 4x3 = 0
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\ dim (NT) = 1 (No. of unknowns–No. of non-zero equations)

Taking x3 as the free variable and putting x3 = 3, we get x2 = 4 and x1 = –2

\ (–2, 4, 3) is a basis of NT.

Example 7

Find a basis and dimension of RT and NT for the linear transformation T : R4 Æ R3 

defined by T(x1, x2, x3, x4) = (x1 – x2 + x3 + x4, x1 + 2x3 – x4, x1 + x2 + 3x3 – 3x4).

The images of the standard basis vectors of R4 generate RT.

viz., T(1, 0, 0, 0) = (1, 1, 1), T(0, 1, 0, 0) = (–1, 0, 1), T(0, 0, 1, 0) = (1, 2, 3) and  

T(0, 0, 0, 1) = (1, –1, –3)

Now let us find the number of independent vectors from the images

    

1 1 1 1 1 1 1 1 1

1 0 1 0 1 2 0 1 2

1 2 3 0 1 2 0 0 0

1 1 3 0 2 4 0 0 0

Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜-Á ˜ Á ˜ Á ˜
Á ˜ Á ˜ Á ˜
Á ˜ Á ˜ Á ˜- - -Ë ¯ Ë ¯ Ë ¯

 

 \  {(1, 1, 1,) and (0, 1, 2) 
from a basis of RT and 
dim (RT) = 2

Let (x1, x2, x3, x4) Œ NT

Then T(x1, x2, x3, x4) = (0, 0, 0)

\  
1 2 3 4 1 2 3 4 1 2 3 4

1 3 4 2 3 4 2 3 4

1 2 3 4 2 3 4

0 viz., 0 viz., 0

2 0 2 0 and 2 0

3 3 0 2 2 4 0

x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x

- + + = - + + = - + + =

+ - = + - = + - =

+ + - = + - =

Since x3 and x4 can be taken as free variables,

   x2 = –1, x1 = 0 (corresponding to x3 = 1 and x4 = 0)

and x2 = 2, x1 = 1 (corresponding to x3 = 0 and x4 = 1)

\ dm (NT) = 2 and {(0, –1, 1,0), (1, 2, 0, 1)} is a basis of NT.

Example 8

If V is the vector space of 2 × 2 matrices, if 
1 1

2 2
M

-Ê ˆ
= Á ˜-Ë ¯

 and if T : V Æ V be the 

linear  transformation defined by T(A) = MA, find a basis and dimension of (i) RT and 

(ii) NT.

The images of the standard basis element of V are given by

  

1 1 1, 0 1 0 1 1 0 1 0 1 1 1 0 0
; ;

2, 2 0, 0 2 0 2 2 0 0 0 2 2, 2 1 0

1 0 1 1 0 0 0 1
and

2, 0 2 2 0 1 0 2

- - -Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ
= =Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Á ˜- - - - -Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯

- - -Ê ˆ Ê ˆ Ê ˆ Ê ˆ
= =Á ˜ Á ˜ Á ˜ Á ˜-Ë ¯ Ë ¯ Ë ¯ Ë ¯

These images span RT. To find the basis of RT, we have to find the number of 
independent vectors among these images. Writing these images as row vector, we 
have
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1 0 2 0 1 0 2 0 1 0 2 0

0 1 0 2 0 1 0 2 0 1 0 2

1 0 2 0 0 0 0 0 0 0 0 0

0 1 0 2 0 1 0 2 0 0 0 0

- - -Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜- - -Á ˜ Á ˜ Á ˜
-Á ˜ Á ˜ Á ˜

Á ˜ Á ˜ Á ˜- -Ë ¯ Ë ¯ Ë ¯

 

\ dim (RT) = 2 and a basis is 
1, 0 0 1

,
2, 0 0 2

Ï ¸È ˘ È ˘Ô Ô
Ì ˝Í ˙ Í ˙- -Ô ÔÎ ˚ Î ˚Ó ˛

Let 
1 2

3 4

x x

x x

È ˘
Í ˙
Î ˚

 be an element of NT.

Then 1 2 1 2

3 4 3 4

1 1 0 0

2 2 0 0

x x x x
T

x x x x

-È ˘ È ˘È ˘ È ˘
= =Í ˙ Í ˙Í ˙ Í ˙

-Î ˚ Î ˚Î ˚ Î ˚

viz.,   1 3

2 4 1 3 2 4

1 3 3 4

2 4

0 The non- zero eqautions are

0 0 and 0

2 2 0 dim( ) 2 and and can be

2 2 0 treeted as free variable

T

x x

x x x x x x

x x N x x

x x

- = \

- = - = - =

- + = \ =

- + =

Taking x3 = 1 and x4 = 0, we get 
1 0

1 0

È ˘
Í ˙
Î ˚

Taking x3 = 0 and x4 = 1, we get 
0 1

0 1

È ˘
Í ˙
Î ˚

\ A basis of NT is 
1 0 0 1

,
1 0 0 1

Ï ¸È ˘ È ˘Ô Ô
Ì ˝Í ˙ Í ˙
Ô ÔÎ ˚ Î ˚Ó ˛

Example 9

Find a linear transformation R3 Æ R3 whose range space RT is generated by (1, 2, 3) 

and (4, 5, 6)

Consider the standard basis of R3, namely e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1)

The images of e1, e2, e3, which are the elements of the basis of RT1
 are given by 

T(1, 0, 0) = (1, 2, 3); T(0, 1, 0) = (4, 5, 6); T(0, 0, 1) = (0, 0, 0).

Now xe1 + ye2 + ze3 = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) = (x, y, z)

\  T(x, y, z) = T(xe1 + ye2 + xe3)

 = xT(e1) + yT(e2) + zT(e3)

 = x(1, 2, 3) + y(4, 5, 6) + z(0, 0, 0)

 = (x + 4y, 2x + 5y, 3x + 6y)
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Example 10

Find a linear transformation T : R4 Æ R3 whose null space NT is generated by (1, 2, 

3, 4) and (0, 1, 1, 1)

Let T(x, y, z, w) = [(a1x + b1y + c1z + d1w, a2x + b2y + c2z + d2w), 

         (a3x + b3y + c3z + d3w)] (since T is linear)

Since (1, 2, 3, 4) and (0, 1, 1, 1) generate the null space,

         T(1, 2, 3, 4) = (0, 0, 0) and T(0, 1, 1, 1) = (0, 0, 0)

viz.,   1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

2 3 4 0 (1) viz., 0 (4)

2 3 4 0 (2) 0 (5)

2 3 4 0 (3) 0 (6)

a b c d b c d

a b c d b c d

a b c d b c d

+ + + = + + =

+ + + = + + =

+ + + = + + =

Taking d1 = 0 and solving (1) and (4), we have

viz.,  (a1, b1, c1,) = (–1, –1, 1)

Solving taking c2 = 0 and solving (2) and (5), we get

      (a2, b2, d2) = (–2, –1, 1)

Taking b3 = 0 and solving (3) and (6), we get

      (a3, c3, d3) = (–1, –1, + 1)

\    T(x, y, z, w) = {–x –y + z, –2x – y + w, –x – z + w}

or    (x + y, – z, 2x + y – w, x + z – w)

       Exercise 2(A)

Part A (Short-Answer Questions)

 1. Define linear transformation with an example

 2. How can we find the unique linear transformation T : V Æ W?

 3. Show that the transformation T : R Æ R
2 defined by T(x) = (2x, 3x) is 

linear.

 4. Show that the transformation T : R2 Æ R defined by T(x, y) = |x – y| not 

linear.

 5. Find the linear transformation T : R2 Æ R defined by T(1, 1) = 3 and T(0, 1) = –2.

 6. Define the null space of a linear transformation.

 7. Define the range space of a linear transformation.

 8. Define rank and nullity of a linear transformation. How are they related?

Part B

 9. Show that the transformation T : R2 Æ R2 defined by T(x, y) = (ax + by, cx + 

dy); where a, b, c, d Œ R, is linear.

 10. Show that the transformation T : R3 Æ R2 defined by T(x, y, z) = (x + 1, y + 

z) is not linear.

 11. Show that the transformation T : R2 Æ R2, defined by T(x, y) = (x2, y2) is not 

linear.

 12. Show that the transformation T : R
2 Æ R, defined by T(x, y) = xy is not 

linear.
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 13. If V is the vector space of all n × n matrices over F and if B is an arbitrary 

matrix in V, show that the transformation T : V Æ V, defined by T(A) = AB + 

BA, where A Œ V is linear.

 14. If V is the vector space of polynomials in t over F, show that T : V Æ V, 

defined by (i) T(a0 + a1t + a2t
2 + L + ant

n) = a0t + a1t
2 + L + ant

n + 1 and (ii) 

T(a0 + a1t + a2t
2 + L + antn) = 0 + a1 + a2t + L + ant

n – 1 are linear.

 15. Find T(a, b, c), where T : R3 Æ R is defined by T(1, 1, 1) = 3, T(0, 1, –2) = 1 

and T(0, 0, 1) = –2.

 16. Is there a linear transformation T : R
2 Æ R

2 such that T(1, –1) = (1, 0),  

T(2, –1) = (0, 1) and T(–3, 2) = (1, 1)?

 17. Find a basis and dimension for RT and NT for the linear transformation T : R3 

Æ R3, given by T(x, y, z) = (x + 2y – z, y + z, x + y – 2z)

 18. Find a basis and dimension for RT and NT, for the linear transformation T : 

R
3 Æ R3, defined by T(x, y, z) = (x + 2y, y – z, x + 2z)

 19. Find a basis and dimension for RT and NT for the linear transformation T : R2 

Æ R2, defined by T(x, y) = (x + y, x + y). 

 20. Find a basis and dimension for RT and NT for the linear transformation T : R3 

Æ R2 defined by T(x, y, z) = (x + y, y + z).

 21. If V is the vector space of 2 × 2 matrices over R and M = 
1 2

0 3

È ˘
Í ˙
Î ˚

 and if T : 

V Æ V is the linear transformation, defined by T(A) = AM – MA, find a basis 

and dimension of NT.

 22. Find a linear transformation T : R3 Æ R4 whose range space is generated by 

(1, 2, 0, –4) and (2, 0, –1, –3)

 23. If T is the linear operator on R3 [viz; T : R3 – R3], the matrix of which in the 

usual basis is 

1 2 1

[ ] 0 1 1

1 3 4

A

e
A

È ˘
Í ˙

= Í ˙
Í ˙-Î ˚

, find a basis for RT and NT.

  [Hint: T(x, y, z) = (x + 2y + z, y + z, –x + 3y + 4z)

 24. Find a basis and dimension for RT and NT of the linear transformation T : R4 

Æ R3 determined by 

1 2 0 1

2 1 2 1

1 3 2 2

A

Ê ˆ
Á ˜= - -Á ˜

- -Ë ¯

 25. Find a basis and dimension for RT and NT of the linear transformation T : R4 

Æ R3 determined by 

1 0 2 1

0 3 1 1

2 0 5 3

B

-Ê ˆ
Á ˜= -Á ˜
- -Ë ¯

2.3  maTrix represenTaTion of Linear 
TransformaTion

Definition: Let V and W be vector spaces over the field F, of dimensions n and m 

respectively. Let e = {e1, e2, L ,en} and f = {f1, f2, L ,fm} be ordered (arbitrary but 

fixed) bases for V and W respectively. If v Œ V, then v = c1e1 + c2e2 +  + cnen.
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The column vector 

1

2

n

c

c

c

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯

M

 is called the co-ordinate vector of v relative to {ej} and 

denoted as [v]e.

Let T : V Æ W be a linear transformation. Since T(e1), T(e2), L, T(en) are vectors 

in W, each can be expressed as a linear combination of f1, f2, L, fm uniquely as 

T(ej) = 
1

m

ij i

i

a f
=

Â

viz.,  T(ej) = a1jf1 + a2j f2 + L + amj fm (j = 1, 2, L n)

viz., T(e1) = a11 f1 + a21 f2 + L + am1 fm

 T(e2) = a12 f1 + a22 f2 + L + am2 fm

 -----------------------------------------

 T(en) = a1n f1 + a2n f2 + L + amn fm

The co-ordinate vector of T(ej) relative to {fi} is 

1

2

j

j

mj

a

a

a

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯

M

The matrix of dimension (m × n) for by the co-ordinate vectors T(ej) (j = 1, 2, 

L , n) which determine T is called the matrix of T relative to the bases e and f and 

denoted by AT or A.

Working rule: To get the matrix representation of T w.r.t. e and f, we have to express 

each T(ej) as a linear combination of fi' s. The transpose of the matrix of coefficients 

in the above equations is the required matrix.

Definition: If T : V Æ V, where V is a vectors space over the field F, the linear 

transformation T is called a linear operator on V

Note 
If T is a linear operator on a vector space V over the field F and if e = {e1, e2, L , en} 

is a basis of V, then the matrix of T relative to e is the (n × n) square 

matrix A whose elements of aij are defined by the equation T(ej) = 

=

= =Â L

1

( 1, 2, )(since )
n

ij i
i

a e j n e f

Also [T(v)]e = A[v)e (1)

Since A depends on the basis e used, it is usually denoted by [T]e.

Thus [T(v)]e = [T]e[v]e (2)
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eigenvalue and eigenvectors

In equation (1) above, we shall take [v]e = X = 

1 1

2 2
and [ ( )] ,e

n n

x y

x y
T v Y

x y

Ê ˆ Ê ˆ
Á ˜ Á ˜
Á ˜ Á ˜= =
Á ˜ Á ˜
Á ˜ Á ˜Ë ¯ Ë ¯

M M

 it takes 

the form Y = AX, where A is the square matrix [aij] (i, j = 1, 2, L , n).

There are situation where certain column vectors are transformed into scalar 

multiples of themselves.

viz., Y = AX = lX (1), where l is a scalar,

From (1), we get AX = lIX or (A – lI)X = 0  (2), where I is the unit matrix of 

order n.

If X is a non-zero column vector, then l is called an eigenvalue of A and X is the 

Eigenvalues of A and the corresponding eigenvectors are as follows:

If l is an eigenvalue of A and X is the corresponding eighenvector, then (A –lI)

X = 0

viz., 11 1 12 2 1

21 1 22 2 2

1 1 2 2 2

( ) 0

( ) 0

( ) 0

n n

n n

n n n n

a x a x a x

a x a x a x

a x a x a x

l

l

l

- + + + = ¸
Ô

+ - + + = Ô
˝

- - - - - - - - - - - - - - - - - - Ô
Ô+ + + - = ˛

L

L

L

 
 
 (3)

Equations (3) are a system of homogeneous linear equations in the unknowns x1, 

x2, L , xn (which are the element of the non-zero vector X). The condition for the 

system (3) to have a non-zero solution is

      

11 12 1

21 22 2

1 2

0, viz., 0

n

n

n n nn

a a a

a a a A I

a a a

l

l l

l

----------------

- -

- = - =

-

L

L

 (4)

The equation (3) is called the characteristic equation of A 

The n roots of the characteristic equation are called the eigenvaluses of A.

Note 
 (1) Corresponding to each value of l, equation (2) possess a non-trivial 

solution which will be a one-parameter family of solutions. Hence the 

eigenvector corresponding to an eigenvalue is not unique.

 (2) If all the eighenvalues of a matrix A are distinct, then the corresponding 

eigenvectors are linearly independent.

 (3) If two or more eigenvalues are equal, then the eigenvectors may be 

linearly independent or linearly dependent.

Properties of Eigenvalues

We state certain properties of eignevalues without proof: They may be verified in 

individual problems

 1. A square matrix A and it transpose AT have the same eighenvlaues.

 2. The sum of the eigenvalues of A is equal to the trace of the matrix, viz., to 

the sum of the principal diagonal elements of A.
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 3. The product of the eigenvalues of a matrix A is equal to | A |. If | A | = 0, viz. 

If A is a singular matrix, at least one of the eigenvalues of A is zero and 

conversely.

 4. If l1, l2, L , ln are the eigenvalues of A, then

 (a) kl1, kl2, L kln are the eigenvalues of kA, where k is a non-zero scalar.

 (b) l1
p, l2

p, L ln
p are the eigenvalues of Ap, where p is a +ve integer.

 (c) 
1 2

1 1 1
, ,

n
l l l

L  are the eigen values of A–1, viz., the inverse of A, provided 

lr π 0, viz., Ais non-singular.

 5. The eigenvalues of a real symmetric matrix, viz., symmetric matrix with real 

elements are real.

 6. The eigen vectors corresponding to distinct eigenvalues of a real symmetric 

matrix are orthogonal.

2.2  simiLariTy TransformaTion anD 
DiagonaLisaTion

Definition: If A and B are (n × n) square matrices over F for which there exists an 

invertible (non-singular) (n × n) matrix P over F such that B = P–1
AP, B is said to be 

similar to A or B is said to be obtained from A by a similarity transformation.

Note 
 (1) When B is similar to A, Ais similar B, for

  B = P–1AP; viz., PBP–1 = PP–1APP–1 = IAI = A

  Assuming P–1 = Q, this means that A =Q–1BQ

  viz., A is similar to B.

 (2)  Since A = [T]e and B = [T]f, A and B represent the same linear operator 

T, if and only if they are similar to each other.

Definition: A linear operator T is said to be diagonalisable if for some basis {ei} it is 

represented by a diagonal matrix.

viz., T is diagonalisable if and only if its matrix representation can be diagonalised 

by a similarity transformation.

Property (1) (Proof omitted)

If A is a square matrix with distinct eigenvalues and P is the matrix whose columns 

are the eighenvectors of A, then A can be diagonalised by the similarity transformation 

P
–1

AP = D, where D is the diagonal matrix whose diagonal element are the eighenvalues 

of A.

Property (2)

If A is a real symmetric matrix, then the eigen vectors will be linearly independent and 

pairwise orthogonal. If we normalise each eigenvector Xr, viz., divide each element 
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of Xr by the square root of the sum of the squares of all the elements of Xr and use the 

normalised eigenvector of A as columns of Q, then Q will be an orthogonal matrix 

such that Q–1 = QT.

The the similarity transformation P–1
AP = D takes the form QT

AQ = D. In this case, 

A is said to be diagonalised by an orthogonal transformation.

 Worked Examples 2(b)

Example 1

If T : R3 Æ R2 is the linear transformation defined by T(x, y, z) = (2x + y – z, 3x – 2y 

+ 4z), find the matrix of T relative to the bases e and f where e ∫ {e1 = (1, 1, 1), e2 = 

(1, 1, 0) and e3 = (1, 0, 0) and f ∫ {f1 = (1, 3); f2 = (1, 4)}. Also verify that [T(v)]f = 

[T]e
f[v]e.

Let (a, b) = k1f1 + k2f2 = k1(1, 3) + k2(1, 4)

\      k1 + k2 = a (1)

       3k1 + 4k2 = b (2)

Solving (1) and (2), we get k1 = 4a – b and k2 = b – 3a \ (a + b) = (4a – b)f1 

 + (b – 3a)f2

1 2( , ) (4 ) ) 3 )a b a b f b a f= - + -
 

Using the definition of T(x, y, z) and step (1),

        T(e1) = T(1, 1, 1) = (2, 5) = 3f1 – f2,

        T(e2) = T(1, 1, 0) = (3, 1) = 11f1 – 8f2,

        T(e3) = T(1, 0, 0) = (2, 3) = 5f1 – 3f2

        
3 11 5

[ ]
1 8 3

t

e
T

Ê ˆ
= Á ˜- - -Ë ¯

Let (a, b, c) = k1e1 + k2b2 + k3e3 = k1(1, 1, 1) + k2(1, 1, 0) + k3(1, 0, 0)

\     k1 + k2 + k3 = a (3)

         k1 + k2 = b (4)

          k1 = c (5)

Solving (3), (4) and (5), we get k1 = c, k2 = b – c, k3 = a – b

If (a, b, c) = v Œ R3, then v = ce1 + (b – c)e2 + (a – b) e3

\       [ ]
e

c

v b c

a b

Ê ˆ
Á ˜= -Á ˜

-Ë ¯
\         T(v) = T(a, b, c) = [(2a + b – c), (3a – 2b + 4c)], using T(x, y, z)

 = [{4(2a + b – c) – (3a – 2b + 4c)}f1 + (3a – 2b + 4c) – 3(2a + b – c)f2, using (1)

           = (5a + 6b – 8c)f1 + (–3a – 5b + 7c)f2

\         
5 6 8

[ ( )
3 5 7

f

a b c
T v

a b c

+ -Ê ˆ
= Á ˜- - +Ë ¯
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Now 
3 11 5 5 6 8

[ ] [ ] [ ( )] ,
1 8 3 3 5 7

f
e e f

c
a b c

T v b c T v
a b c

a b

Ê ˆ
+ -Ê ˆ Ê ˆÁ ˜= - = =Á ˜ Á ˜Á ˜- - - - - +Ë ¯ Ë ¯

-Ë ¯
 which com-

pletes the verification.

Example 2

If T is the linear operator on R2 defined by T(x1, x2) = (–x2, x1), find the matrix of T in 

the basis e = {e1 = (1, 2), e2 = (1, –1)

Since T is the linear operator, T : R2 Æ R2 and hence f = {f1 = (1, 2); f2 = (1, –1)}.

Let (a, b) = k1(1, 2) + k2(1, –1) we have k1 + k2 = a and 2k1 – k2 = b.

Solving these equation, we get 
1 2

2
and

3 3

a b a b
k k

+ -
= =

\    (a, b) = 1 2

2 1 1
(1, 2) (1, 1) ( ) (2 )

3 3 3 3

a b a b
a b e a b e

È ˘+ -Ê ˆ Ê ˆ
+ - = + + -Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

\     T(e1) = T(1, 2) = (–2, 1) = 
1 2

1 5

3 3
e e- -

       T(e2) = T(1, –1) = (1, 1) = 
1 2

2 1

3 3
e e+

\ [T]e = 

1 2

3 3

5 1

3 3

Ê ˆ
-Á ˜

Á ˜
Á ˜-Ë ¯

Example 3

The matrix A = 
2 5 3

1 4 7

-Ê ˆ
Á ˜-Ë ¯

 determines a linear transformation T : R3 Æ R2, defined 

by T(v) = Av, where v is a column vector.

 (i) Show that the matrix representation of T relative to the usual bases of R3 and 

R
2 is A itself.

 (ii) Find the matrix representation of T relative to the following bases of R3 and 

R
2

  e = {e1= (1, 1, 1), e2 = (1, 1, 0), e3 = (1, 0, 0) and

  f = {f1 = (1, 3), f2 = (2, 5)

 (i)  T(1, 0, 0) = 
1 2

1
2 5 3 2 1 0

0 2 1 2 2
1 4 7 1 0 1

0

f f

Ê ˆ
-Ê ˆ Ê ˆ Ê ˆ Ê ˆÁ ˜ = = + = +Á ˜ Á ˜ Á ˜ Á ˜Á ˜-Ë ¯ Ë ¯ Ë ¯ Ë ¯

Ë ¯

  T(0, 1, 0) = 
1 2

0
2 5 3 5

1 5 4
1 4 7 4

0

f f

Ê ˆ
-Ê ˆ Ê ˆÁ ˜ = = -Á ˜ Á ˜Á ˜- -Ë ¯ Ë ¯

Ë ¯
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  T(0, 0, 1) = 
1 2

0
2 5 3 3

0 3 7
1 4 7 7

1

f f

Ê ˆ
- -Ê ˆ Ê ˆÁ ˜ = = +Á ˜ Á ˜Á ˜-Ë ¯ Ë ¯

Ë ¯

      \      [T]e
f = 

2 5 3

1 4 7
A

-Ê ˆ
=Á ˜-Ë ¯

 (ii) Let (a, b) = k1f1 + k2f2 = k1(1, 3) + k2(2, 5) (1)

    \ k1 + 2k2 = a and 3k1 + 5k2 = b

  Solving these equation, we get k1 = 2b – 5a and k2 = 3a – b

Since   [T]e
f = A, T(e1) = 1 2

1
2 5 3 4

1 12 8 ,
1 4 7 4

1

f f

Ê ˆ
-Ê ˆ Ê ˆÁ ˜ = = - +Á ˜ Á ˜Á ˜-Ë ¯ Ë ¯

Ë ¯
 by (1)

        T(e2) = 1 1

1
2 5 3 7

1 41 24 ,
1 4 7 3

0

f f

Ê ˆ
Ê ˆ Ê ˆÁ ˜ = = - +Á ˜ Á ˜Á ˜- -Ë ¯ Ë ¯

Ë ¯
 by (1)

and   T(e3) = 1 2

1
2 5 3 2

0 8 5 ,
1 4 7 1

0

f f

Ê ˆ
-Ê ˆ Ê ˆÁ ˜ = = - +Á ˜ Á ˜Á ˜-Ë ¯ Ë ¯

Ë ¯
 by (1)

\    
12 41 8

[ ]
8 24 8

f
eT

- - -Ê ˆ
= Á ˜Ë ¯

Example 4

If T(x, y) = (2x – 3y, x + y), find (T]e where e ∫ f{e1 = (1, 2), e2(2, 3)}.

Verify also that [T]e[v]e = [T(v)]e for any v Œ R2.

Let     (a, b) = k1e1 + k2e2 = k1(1, 2) + k2(2, 3)

\    k1 + 2k2 = a and 2k1 + 3k2 = b

Solving these equation, we get k1 = –3a + 2b and k2 = 2a – b

\     (a, b) = (–3a + 2b)e1 + (2a – b)e2 (1)

\      T(e1) = T(1, 2) = (–4, 3) = 18e1 – 11e2

      T(e2) = T(2, 3) = (–5, 5) = 25e1 – 15e2

\       [T]e = 
18 25

11 15

È ˘
Í ˙
- -Î ˚

Let (a, b) = v = (–3a + 2b)e1 + (2a – b)e2

\       [v]e = 
3 2

2

a b

a b

- +È ˘
Í ˙

-Î ˚

using (1)
¸
˝
˛



Linear Algebra and Partial Differential Equations
2-16

\          [T]e[v]e = 
18 25 3 2

11 15 2

a b

a b

- +È ˘ È ˘
Í ˙ Í ˙
- - -Î ˚ Î ˚

         
[ 54 36 50 25 , 33 22 30 15 ]

T
a b a b a b a b= - + + - - - +

         ( 4 11 , 3 7 )
T

a b a b= - + -  (2)

Let T(v) = (2a – 3b, a + b), by the definition of T(x, y)

          = k1e1 + k2e2 = k1(1, 2) + k2(2,3)

\    k1 + 2k2 = 2a –3b

      2k1 + 3k2 = a + b

Solving these equation, we get k1 = –4a + 11b and k2 = 3a – 7b

\ [T(v)]e = 
4 11

3 7

a b

a b

- +È ˘
Í ˙

-Î ˚
 (3)

From (2) and (3), the result [T(v)]e = [T]e 
. [v]e has been verified 

Example 5

If V is the vector space of 2 × 2 matrices over R and ,

a b
M

c d

È ˘
= Í ˙

Î ˚
 find the matrix of 

the linear operator on V in the usual basis when (i) T(A) = MA, (ii) T(A) = AM and 

(iii) T(A) = MA – AM.

The usual basis is E ∫ 1 2 3 4

1 0 0 1 0 0 0 0
; ; ;

0 0 0 0 1 0 0 1
E E E E

Ï ¸Ê ˆ Ê ˆ Ê ˆ Ê ˆÔ Ô= = = =Ì ˝Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Ô ÔÓ ˛

 (i) 1 1 1 2 3 4

1 0 0
( ) 0 0

0 0 0

a b a
T E ME aE E cE E

c d c

Ê ˆ Ê ˆ Ê ˆ
= = = = + ◊ + + ◊Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

  Similarly T(E2) = ME2 = 0 . E1 + aE2 + 0 . E3 +cE4

        T(E3) = ME3 = b . E1 + 0 . E2 + dE3 + 0 . E4

      and T(E4) = ME4 = 0 . E1 + bE2 + 0 . E3 + dE4

\       

Ê ˆ
Á ˜
Á ˜=
Á ˜
Á ˜Ë ¯

0 0

0 0
[ ]

0 0

0 0

E

a b

a b
T

c d

c d

 (ii) When T(A) = AM, [T]E = 

0 0

0 0

0 0

0 0

a c

b d

a c

b d

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯



2-17
Linear Transformation

 (iii) When T(A) = MA – AM, [T]E = 

0 0

( ) 0

0 ( )

0 0

c b

b a d b

c d a c

c b

-Ê ˆ
Á ˜- -Á ˜

- -Á ˜
Á ˜-Ë ¯

Example 6

In the vector space of polynomials in x of degree £ 3 over R if D : V Æ V is the differential 

operator defined by Df(x) = 
d

dx
 f(x), find the matrix of D in the basis (1, x, x2, x3). 

Verify that [D]e 
. [f(x)]e = [Df(x)]e, where f(x) = a + bx + cx2 + dx3.

       D(e1) = D(1) = 0 = 0e1 + 0e2 + 0e3 + 0e4

       D(e2) = D(x) = 1 = e1 + 0e2 + 0e3 + 0e4

       D(e3) = D(x2) = 2x = 0e1 + 2e2 + 0e3 + 0e4

       D(e4) = D(x3) = 3x
2 = 0e1 + 0e2 + 3e3 + 0e4

\             

0 1 0 0

0 0 2 0
[ ]

0 0 0 3

0 0 0 0

e
D

Ê ˆ
Á ˜
Á ˜=
Á ˜
Á ˜Ë ¯

As f(x) = a + bx + cx
2 + dx

3 viz., f(x) = ae1 + be2 + ce3 + de4, [f(x)]2 = 

a

b

c

d

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯

As Df(x) = b + 2cx + 3dx
2 viz., Df(x) = be1 + 2ce2 + 3de3, [Df(x)] = 

2

3

0

b

c

d

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯

Now [D]e 
. [F(x)e = 

2
[ ( )] .

3

0

e

b

c
Df x

d

Ê ˆ
Á ˜
Á ˜ =
Á ˜
Á ˜Ë ¯

 Verification is completes.

Example 7

If V is a two dimensional vector space over R and if T is a linear operator on V 

such that its matrix representation in the usual basis is [ ] ,
e

a b
T

c d

È ˘
= Í ˙

Î ˚
 prove that 

T
2 – (a + d)T + (ad – bc)I = 0.

       T(x, y) = ( , )
a b x

ax by cx dy
c d y

Ê ˆ Ê ˆ
= + +Á ˜ Á ˜Ë ¯ Ë ¯
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       T
2(x, y) = T{T(x, y} = T(ax + by, cx + dy)

           = {a(ax + by + b(cx + dy), c(ax + by) + d(cx + dy)}

           = {(a2 + bc)x + (ab + bd)y, (ac + dc)x + (bc + d2)y} (1)

    –(a + d)T(x, y) = {–(a + d) (ax + by), – (a + d) (cx + dy)} (2)

   (ad – bc) I(x, y) = {(ad – bc)x, (ad – bc)y} (3)

Adding (1), (2) and (3), we get T2 – (a + d)T + (ad – bc)I = 0.

Example 8

Find the eigenvalues and eigenvectors of the matrix A = 

1 0 0

0 3 1

1 1 3

È ˘
Í ˙

-Í ˙
Í ˙-Î ˚

 Verify that their 

sum and product are equal to the trace of A and | A | respectively.

The characteric equation of A is 

1 0 0

0 3 1 0

1 1 3

l

l

l

-

- - =

- -

viz., (1 – l)(l2 – 6l + 8) = 0. \ The eigenvalues are 1, 2, 4.

When l = 1, the eigenvector is given by

    

31 2

1 2 3

1 2 3

0 2 0
4 1 1 0 0 2

and 2 0

xx x

x x x

x x x

◊ + - = \ = =

- - - -

- + =

\         X1 = (3, –1, –2)T

When l = 2, the eigenvector is given by

      

31 2

1 2 3

1 2 3

1 2 3

0 0 0
0 0 0 1 1 0

0 0

0

xx x

x x x

x x x

x x x

- + ◊ + ◊ = \ = =

- - - -

+ - =

- + =

\         X2 = (0, 1, 1)T

When l = 4, the eigenvector is given by

   

31 2

1 2 3

1 2 3

1 2 3

3 0 0 0
0 0 0 3 3 0

0 0

0

xx x

x x x

x x x

x x x

- + + ◊ = \ = =

- - -

- - =

- + =

\         X3 = (0, –1, 1)T

Sum of the eigenvalues = 1 + 2 + 4 = 7

             = Trace of the matrix = 1 + 3 + 3
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Product of the eigenvalue  = 8 = | A |

Example 9

Verify that the eigenvalues of A2 and A–1 are respectively the squares and reciprocals 

of the eigenvalues of A, given that A = 

3 1 4

0 2 6

0 0 5

È ˘
Í ˙
Í ˙
Í ˙Î ˚

The characteristic equation of A is 

3 1 4

0 2 6 0

0 0 5

l

l

l

-

- =

-

viz., (3  – l) (2 – l) (5 – l) = 0

\ Eigenvalues of A are 2, 3, 5.

Now      A2 = 

3 1 4 3 1 4 9 5 38

0 2 6 0 2 6 0 4 42

0 0 5 0 0 5 0 0 25

Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜=Á ˜ Á ˜ Á ˜
Ë ¯ Ë ¯ Ë ¯

The characteristic equation of A2 is 

9 5 38

0 4 42 0

0 0 25

l

l

l

-

- =

-

viz., (9 – l) (4 – l) (25 – l) = 0

\ The eigenvalues of A2 are 4, 9, 25, which are the square of eigenvalue of A.

Let        A = 

11 12 13

21 22 23

31 32 33

3 1 4

0 2 6

0 0 5

a a a

a a a

a a a

È ˘ È ˘
Í ˙ Í ˙

=Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

A11 = cofactor of a11 = 10; A12 = 0; A13 = 0; A21 = – 5; A22 = 15;

A23 = 0; A31 = –2; A32 = –18; A33 = 0 and | A | = 30

\      1

1 1 1

3 6 15
10 5 2

1 1 3
0 15 18 or 0

30 2 5
0 0 6

1
0 0

5

A
-

È ˘
- -Í ˙

- -È ˘ Í ˙
Í ˙ Í ˙= - -Í ˙ Í ˙
Í ˙ Í ˙Î ˚

Í ˙
Í ˙Î ˚

Characteristic equation of A–1 is 

1 1 1

3 6 15

1 3
0

2 5

1
0 0

5

l

l

l

- - -

- -

-
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viz., 
1 1 1

0
3 2 5

l l l
Ê ˆ Ê ˆ Ê ˆ

- - - =Á ˜Á ˜ Á ˜Ë ¯Ë ¯ Ë ¯

\ The eigenvalues of A–1 are 
1 1 1
, , ,

2 3 5
 which are the reciprocals of the eigenvalues 

of A.

Hence the two properties have been verified.

Example 10

Verify that the eigenvectors of the following real symmetric matrix are orthogonal 

in pairs.

            

3 1 1

1 5 1

1 1 3

A

-È ˘
Í ˙

= - -Í ˙
Í ˙-Î ˚

The caracteristic equation of A is 

3 1 1

1 5 1 0

1 1 3

l

l

l

- -

- - - =

- -

viz., l
3 – 11l

2 + 30l – 36 = 0

viz., (l – 2)(l – 3)(l – 6) = 0

\ The eigenvalues of A are 2, 3, 6.

When l = 2, the eigenvector is given by

      

1 2 3

31 2
1 2 3 1

1 2 3

0

3 0 ( 1, 0, 1)
1 3 1 1 3 1

0

T

x x x

xx x
x x x X

x x x

- + =

- + - = \ = = \ = -

- - + -

- + =

When l = 3, the eigenvector is given by

      

1 2 3

31 2
1 2 3 2

1 2 3

0 0

2 0 (1, 1, 1)
1 2 1 0 0 1

0 0

T

x x x

xx x
x x x X

x x x

◊ - + =

- + - = \ = = \ =

- - - -

- + ◊ =

When l = 6, the eigenvector is given by

      

1 2 3

31 2
1 2 3 3

1 2 3

3 0

0 (1, 2, 1)
2 1 3 3 1

3 0

T

x x x

xx x
x x x X

x x x

- + =

- - - = \ = = \ = -

- - -

- + =
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Now 1 2 2 3

1 1

[ 1, 0 1] 1 0; [1, 1, 1] 2 0 and

1 1

T T
X X X X

È ˘ È ˘
Í ˙ Í ˙

= - + = = - =Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

   
3 1

1

[1, 2, 1] 0 0.

1

T
X X

-È ˘
Í ˙

= - =Í ˙
Í ˙Î ˚

 \ Eigenvectors are orthogonal in pairs;

Example 11

If l is an eigenvalues of the matrix A = 

2 2 1
1

2 1 2 ,
3

1 2 2

È ˘
Í ˙
-Í ˙

Í ˙-Î ˚

 verify that 
1

l
 is also an 

eigenvalue of A. Also verify that the eigenvalues are of unit modulus.

The characterstic equation of the matrix 3A is 0 = 

2 2 1

2 1 2

1 2 2

l

l

l

-

- -

- -

viz., (2 – l)(l2 – 3l + 6) –2(2l – 4 – 2) + (4 – 1 + l) = 0

viz., l
3 – 5l

2 + 15l – 27 = 0

viz., (l – 3) (l2 – 2l + 9) = 0

\ l = 3 and l = 
2 4 36

or 1 2 2
2

i
± -

±

\ Eigenvalues of A are l1 = 1, l2 = 
3

1 2 2 2 2
and

3 3

i i i
l

+ -
=

Now 1 3

1 2

1 1 3 3(1 2 2) 2 2
1 ;

1 8 31 2 2

i i i

i

l l
l l

- -
= = = = = =

++

Similarly 
2

3

1
.l

l
=

Thus, when l is an eigenvalue of A, 
1

l
 is also an eigenvalue of A.

Now | l1 | = 1 and | l2 | = 
1 2 2 1 8

1
3 9 9

i±
= + =

Hence the eigenvalues of A are of unit modulus.

Note 
The two results verified above are properties of an orthogonal matrix. In fact, 

the matrix A is an orthogonal matrix as it satisfies the definition of an orthogonal 

matrix, namely A . AT = ATA = I.
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Example 12

Diagonalise the matrix A = 

2 2 7

2 1 2

0 1 3

-È ˘
Í ˙
Í ˙
Í ˙-Î ˚

 by similarity transformation and hence 

find A4.

The characteristic equation of A is 

2 2 7

2 1 2

0 1 3

l

l

l

- -È ˘
Í ˙

-Í ˙
Í ˙- -Î ˚

 = 0

i.e., (2 – l) (l2 + 2l – 5) –2 (–6 –2l + 7) = 0

i.e.,           l3 –13l + 12 = 0

i.e.,       (l – 1) (l – 3) (l + 4) = 0. i.e., l = –4, 1, 3

When l = –4, the eigenvector is given by

       

31 2
1 2 3

31 2
1 2 3 1

1 2 3

6 2 7 0
4 35 14 12 30 4

2 5 2 0 i.e., . i .e., (3, 2, 2)
3 2 2

0 0

T

xx x
x x x

xx x
x x x X

x x x

+ - = \ = =

+ - - -

+ + = = = = -

-

◊ + + =

When l = 1, the eigenvector is given by

      

31 2
1 2 3

31 2
1 2 3 1

1 2 3

2 7 0
4 0 14 2 0 4

2 0 2 0 i.e., . i .e., (1, 4, 1)
1 4 1

0 4 0

T

xx x
x x x

xx x
x x x X

x x x

+ - = \ = =

- - - -

+ ◊ + = = = = - -

- -

+ - =

When l = 3, the eigenvector is given by 

      

31 2
1 2 3

31 2
1 2 3 3

1 2 3

2 7 0
4 14 14 2 2 4

2 2 2 0 i.e., . i .e., (5, 6, 1)
10 12 2

0 6 0

T

xx x
x x x

xx x
x x x X

x x x

- + - = \ = =

- - + -

- + = = = =

- - -

+ - =

\ The modal (diagonalising) matrix P is given by

     P = 

11 12 13

21 22 23

31 32 33

3 1 5

2 4 6 ; Let

2 1 1

a a a

P a a a

a a a

È ˘ È ˘
Í ˙ Í ˙
- - =Í ˙ Í ˙

Í ˙ Í ˙-Î ˚ Î ˚

Then A11 = 2, A12 = 14, A13 = 10, A21 = –6, A22 = –7, A23 = 5
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       A31 = 26, A32 = –28, A33 = –10 and | P | = 70

\            
1

2 6 26
1

14 7 28
70

10 5 10

P
-

-È ˘
Í ˙

= - -Í ˙
Í ˙-Î ˚

\ The required similarity transformation is

           P–1
AP = D(–4, 1, 3)

\            A = PDP
–1

\           A
4 = PD

4
P

–1

Now         D
4
P

–1 = 

256 0 0 2 6 26
1

0 1 0 14 7 28
70

0 0 81 10 5 10

-È ˘ È ˘
Í ˙ Í ˙

¥ - -Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

             

512 1536 6656
1

14 7 28
70

810 405 810

-È ˘
Í ˙

= - -Í ˙
Í ˙-Î ˚

and         PD
4
P

–1 = 

3 1 5 512 1536 6656
1

2 4 6 14 7 28
70

2 1 1 810 405 810

-È ˘ È ˘
Í ˙ Í ˙
- - - -Í ˙ Í ˙

Í ˙ Í ˙- -Î ˚ Î ˚

                

5600 2590 15890
1

3780 5530 18060
70

1820 2660 12530

-È ˘
Í ˙

= -Í ˙
Í ˙-Î ˚

i.e.,          4

80 37 227

54 79 258

26 38 179

A

-È ˘
Í ˙

= -Í ˙
Í ˙- -Î ˚

Example 13

Find the matrix P that diagonalises the matrix A = 

2 2 1

1 3 1

1 2 2

Ê ˆ
Á ˜
Á ˜
Ë ¯

 by means of similarity 

transformation. Verify your answer.

The characteristic equation A is 

2 2 1

1 3 1 0

1 2 2

l

l

l

-

- =

-

i.e., (2 – l) (l2 – 5l + 4) – 2 (1 – l) + (l – 1) = 0

i.e.,          A3 – 7l
2 + 11l – 5 = 0
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i.e.,           (l – 1)2 (l – 5) = 0

\ The eigenvalue are 5, 1, 1.

When l = 5, the eigenvector is given by

    

31 2
1 2 3

1 2 3 1

1 2 3

3 2 0
2 2 1 3 6 2

2 0 (1,1, 1)

2 3 0

T

xx x
x x x

x x x X

x x x

- + + = \ = =

+ + -

- + = \ =

- - =

When l = 1, the eigenvector is given by the same single equation, namely, 

x1 + 2x2 + x3 = 0

Treating x2 and x3 as free variables and putting x2 = –1 and x3 = 0, we get x1 = 2.

Putting x2 = 0 and x3 = –1, we x1 = 1

\   X2 = [2, –1, 0]T and X3 = (1, 0, –1)T

\ the modal matrix P = 

11 12 13

21 22 23

31 32 33

1 2 1

1 1 0

1 0 1

a a a

a a a

a a a

È ˘ È ˘
Í ˙ Í ˙

- =Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

Then the cofactos are given by A11 = 1, A12, = 1, A13 = 1, A21 = 2, A22 = –2, 

A23 = 2, A31 = 1, A32 = 1 and A33 = –3

         11 11 12 12 13 13
4P a A a A a A= + + =

\       1

1 2 1
1

1 2 1
4

1 2 3

P
-

È ˘
Í ˙

= -Í ˙
Í ˙-Î ˚

\ The required similarity transformation is

Verification:

           AP = 

2 2 1 1 2 1 5 2 1

1 3 1 1 2 0 5 1 0

1 2 2 1 0 1 5 0 1

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙

- = -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- -Î ˚ Î ˚ Î ˚

\             
1

1 2 1 5 2 1
1

1 2 1 5 1 0
4

1 2 3 5 0 1

P AP
-

È ˘ È ˘
Í ˙ Í ˙

= - ¥ -Í ˙ Í ˙
Í ˙ Í ˙- -Î ˚ Î ˚

            

20 0 0 5 0 0
1

0 4 0 0 1 0
4

0 0 4 0 0 1

È ˘ È ˘
Í ˙ Í ˙

= =Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚
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Example 14

Diagonalise the matrix A = 

2 1 1

1 1 2

1 2 1

-È ˘
Í ˙

-Í ˙
Í ˙- -Î ˚

 by means of an orthogonal transformation. 

Verify your answer.

The characteristic equation of A is 

2 1 1

1 1 2 0

1 2 1

l

l

l

- -

- - =

- - -

i.e.,      (2 – l) (l2 – 2l –3) – (l – 1) – (l – 1) = 0

i.e., l3 – 4l
2 – l + 4 = 0 ; i.e., (l + 1) (l – 1) (l – 4) = 0

\ The eigenvalues of A are –1, 1, 4.

When l = –1, the eigenvector is given by

      

31 2
1 2 3

1 2 3 1

1 2 3

3 0
2 2 1 6 6 1

2 2 0 (0,1, 1)

2 2 0

T

xx x
x x x

x x x X

x x x

+ - = \ = =

- + - + -

+ - = \ =

- - + =

When l = 1, the eigenvector is given by

      

31 2
1 2 3

1 2 3 2

1 1 3

0
2 10 1 2 0 1

2 0 (2, 1, 1)

2 0. 0

T

xx x
x x x

x x x X

x x x

+ - = \ = =

- + - + -

+ - = \ = -

- - + =

When l = 4, the eigenvector is given by

      

31 2
1 2 3

1 2 3 3

1 2 3

2 0
2 3 1 4 6 1

3 2 0 (1,1, 1)

2 3 0

T

xx x
x x x

x x x X

x x x

- + - = \ = =

- - - - -

- - = \ = -

- - - =

Hence the modal matrix P = 

0 2 1

1 1 1

1 1 1

È ˘
Í ˙

-Í ˙
Í ˙-Î ˚

The normalised modal matrix Q is got by normalising each column vector of P, viz., 
by dividing the elements of each column vector by its norm.
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Thus         Q = 

2 1
0

6 3

1 1 1

2 6 3

1 1 1

2 6 3

È ˘
Í ˙
Í ˙
Í ˙

-Í ˙
Í ˙
Í ˙

-Í ˙
Î ˚

The required orthogonal transformation that diagonalises A is QT
AQ = D(–1, 1, 4)

Verification:

     AQ = 

2 1 2 4
0 0

6 3 6 3
2 1 1

1 1 1 1 1 4
1 1 2

2 6 3 2 6 3
1 2 1

1 1 1 1 1 4

2 6 3 2 6 3

È ˘ È ˘
Í ˙ Í ˙
Í ˙ Í ˙-È ˘
Í ˙ Í ˙Í ˙

- - = - -Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙- -Î ˚ Í ˙ Í ˙
- - - -Í ˙ Í ˙

Î ˚ Î ˚

and 

2 41 1
00

6 32 2
1 0 0

2 1 1 1 1 4
0 1 0 ( 1,1, 4)

6 6 6 2 6 3
0 0 4

1 1 1 1 1 4

3 3 3 2 6 3

T
Q AQ D

È ˘È ˘
Í ˙Í ˙
Í ˙Í ˙ -È ˘
Í ˙Í ˙ Í ˙

= - - - = = -Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙Î ˚Í ˙Í ˙

- - -Í ˙Í ˙
Í ˙Î ˚ Î ˚

Example 15

Diagonalise the matrix A = 

2 0 4

0 6 0

4 0 2

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 by means of an orthogonal transformation, 

Verify your answer.

The characteristic equation of A is 

2 0 4

0 6 0 0

4 0 2

l

l

l

-È ˘
Í ˙

- =Í ˙
Í ˙-Î ˚

i.e., (2 – l) (6 – l) (2 – l) –16 (6 – l) = 0

i.e.,     (6 – l) (l2 – 4l – 12) = 0

i.e.,     (6 – l) (–6 + l) (l + 2) = 0

\ The eigenvalues of A are l = –2, 6, 6.

When l = –2, the eigenvector is given by 
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31 2
1 2 3

1 2 3 1

1 2 3

4 0 4 0
0 32 0 0 32 0

0 8 0 0 (1, 0, 1)

4 0 4 0

T

xx x
x x x

x x x X

x x x

+ + = \ = =

- - -

+ + ◊ = \ = -

+ + =

When l = 6, the eigenvector is given by

      –4x1 + 0 . x2 + 4x3 = 0

       4x1 + 0 . x2 – 4x3 = 0

or         x1 – x3 = 0

\ x2 is free variable, but it must be so chosen that X2 and X3 are orthogonal among 

themselves and also each orthogonal with X (by the property or orthogonal matrix)

Taking x2 = 0 arbitrarily, we choose X2 = (1, 0, 1)T

This choice makes X1 and X2 orthogonal.

To find X3, we assume it as X3 (a, b, c)T

Since X3  is orthogonal to X1, a – c = 0 (1)

Since X3 is orthogonal to X2, a + c = 0 (2)

Solving (1) and (2), we get a = c = 0 and b arbitrary. 

\ Let X3 = (0, 1, 0)T

\ The modal matrix P = 

1 1 0

0 0 1

1 1 0

È ˘
Í ˙
Í ˙
Í ˙-Î ˚

The normalised modal matrix Q  = 

1 1
0

2 2

0 0 1

1 1
0

2 2

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

The required orthogonal transformation that diagonalises A is QT
AQ = D(–2, 6, 6)

Verification

      AQ = 

1 1 2 6
0 0

2 0 4 2 2 2 2

0 6 0 0 0 1 0 0 6

4 0 2 1 1 2 6
0 0

2 2 2 2

È ˘ È ˘
-Í ˙ Í ˙È ˘ Í ˙ Í ˙Í ˙ Í ˙ Í ˙=Í ˙ Í ˙ Í ˙Í ˙Î ˚ Í ˙ Í ˙-

Í ˙ Í ˙Î ˚ Î ˚
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and  Q
T
AQ = 

1 1
0 2 6

02 2
2 0 02 2

1 1
0 0 0 6 0 6 0 ( 2, 6, 6)

2 2
2 6 0 0 6

00 1 0
2 2

D

È ˘
- È ˘Í ˙ -Í ˙Í ˙ -È ˘Í ˙Í ˙ Í ˙Í ˙ = = -Í ˙ Í ˙Í ˙Í ˙ Í ˙Î ˚Í ˙Í ˙Î ˚ Í ˙Î ˚

Note 
Had we assumed another values for x2, say, 2, we would have got a different 

X2. For example, if X2 = [1, 2, 1]T, X3 would have [1, –1, 1]. In this case the 

modal matrix Q will be 

1 1 1

0 2 1

1 1 1

È ˘
Í ˙

-Í ˙
Í ˙-Î ˚

       Exercise 2(B)

Part A (Short-Answer Questions)

 1. Define matrix of a linear transformation relative to the bases e and f.

 2. Define the matrix representation of a linear operator T on a vector space V.

  Find the matrix representation of the following linear transformations relative 

to the usual basis of Rn:

 3. T : R2 Æ R3 defined by T(x, y) = (3x – y, 2x + 4y, 5x – 6y)

 4. T : R4 Æ R2 defined by T(x, y, s, t) = (3x – 4y + 2s – 5t, 5x + 7y – s – 2t)

 5. T : R3 Æ R4 defined by T(x, y, z) = (2x + 3y – 8z, x + y + z, 4x – 5z, 6y)

 6. T : R3 Æ R2 defined by T(x, y, z) = (2x – 4y + 9z, 5x + 3y – 2z)

 7. T : R2 Æ R4 defined by T(x, y, z) = (3x + 4y, 5x – 2y, x + 7y, 4x)

 8. T : R3 Æ R3 defined by T(x, y, z) = (a1x + a2y + a3z, b1x + b2y + b3z, c1x + c2y 

+ c3z)

 9. Define eigenvalues and eigenvaectors of a square matrix.

 10. State five properties of eigenvalues.

 11. Define similarity transformation.

 12. When are two matrices said to be similar?

 13. What is meant by diagonalising a linear operator?

 14. Define orthogonal transformation.

 15. How will you derive an orthogonal matrix from a real symmetric matrix?

Part B

 16. If T : R3 Æ R2 is the linear transformation defined by T(x, y, z) = (3x + 2y – 4z, 

x – 5y + 3z), find the matrix of T relative to the bases e and f, where e ∫ {e1 

= (1, 1, 1), e2 = (1, 1, 0), e3 = (1, 0, 0)} and f ∫ {f1 = (1, 3), f2 =  (2, 5). Also 

verify that [T(v)]f = [T]e
f [v]e.

 17. If  T : R3 Æ R2 is the linear transformation defined by T(x1, x2, x3) = (x1 + x2, 

2x3 – x1), find the matrix of T relative to the bases e and f, where (i) e ∫ {(1, 

0, 0), (0, 1, 0), (0, 0, 1)} and f ∫ {(1, 0), (0, 1)} (ii) e = {1, 0, –1), (1, 1, 1), 

(1, 0, 0) and f ∫ {(0, 1), (1, 0)}
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 18. If T is the linear operator on R3, defined by T(x1, x2, x3) = (3x1 + x3, – 2x1 + 

x2,–x1 + 2x2 + 4x3), find the matrix of T in the basis e ∫ {e1 = (1, 0, 1), e2 = 

(–1, 2, 1) and e3 = (2, 1, 1). Also verify that [T]e[v]e = [T(v)]e.

 19. If T is the linear operator on R3, defined by T(x, y, z) = (2y + z, x – 4y, 3x) 

Find [T]e, where e ∫ {e1 = (1, 1, 1), e2 = (1, 1, 0) and e3 = (1, 0, 0)

 20. If T(x, y) = (2y, 3x – y), find [T]e, where e ∫ {e1 = (1, 2) and e2 = (2, 5)

 21. If T(x, y) = (5x + y, 3x – 2y), find [T]e, where e ∫ {e1 = (1, 3) and e2 = (1, 4)}

 22. If A = 
È ˘
Í ˙
Î ˚

1 2

3 4
 and T is the linear operator on R2, defined by T(v) = Av, where 

v is written as column, find the matrix of T in the (i) usual basis and (ii) basis 

e ∫ {(1, 3), (2, 5)

 23. Find the eigenvalues and eigenvectors of the matrix 

2 2 0

2 1 1

7 2 3

È ˘
Í ˙
Í ˙
Í ˙- -Î ˚

 24. Find the eigenvalues and eigenvectors of the matrix 

2 2 1

1 3 1

1 2 2

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 25. Find the eigenvalues and eigenvectors of A = 

8 6 2

6 7 4

2 4 3

-È ˘
Í ˙
- -Í ˙

Í ˙-Î ˚
  What can you infer about the matrix A from the eigenvalues? Verify your 

answer.

 26. Verify that the sum and product of the eigenvalues of A are equal to the trace 

of A and | A | respectively, given that A = 

15 4 1

10 12 6

20 4 2

-È ˘
Í ˙

-Í ˙
Í ˙-Î ˚

 27. Diagonalise the matrix A = 

2 2 0

2 1 1

7 2 3

È ˘
Í ˙
Í ˙
Í ˙- -Î ˚

 by similarity transformation.

 28. Diagonalise the matrix A = 

1 3 3

1 5 3

0 6 4

-È ˘
Í ˙

-Í ˙
Í ˙-Î ˚

 by similarity transformation.

 29. Diagonalise the matrix A = 

3 1 0

1 2 1

0 1 3

-È ˘
Í ˙
- -Í ˙

Í ˙-Î ˚

 by orthogonal transformation.



Linear Algebra and Partial Differential Equations
2-30

 30. Diagonalise the matrix A = 

2 1 1

1 2 1

1 1 2

-È ˘
Í ˙
- -Í ˙

Í ˙-Î ˚

 by orthogonal transformation

Answers

        Exercise 2(A)

 5. T(a, b) = 5a –2b

 15. T(a, b, c) = 8a – 3b – 2c

 16. No

 17. dim(RT) = 2 Basis ∫ {(1, 0, 1), (0, 1, –1)}; dim(NT) = 1, Basis ∫ (3, –1, 1)

 18. dim(RT) = 2, Basis ∫ {(1, 0, 1), (0, 1, –2); dim(NT) = 1, Basis ∫ (2, –1, 1)

 19. dim(RT) = 1, Basis ∫ (1, 1); dim (NT) = 1, Basis ∫ (1, –1)

 20. dim(RT) = 2, Basis .∫ {(1, 0), (0, 1)}; dim(NT) = 1, Basis ∫ (1, –1, 1)

 21. dim(NT) = 2, Basis ∫ 
1 1 1 0

,
0 0 0 1

Ï ¸-Ê ˆ Ê ˆÔ Ô
Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ô ÔÓ ˛

 22. T(x, y, z) = (x + 2y, 2x, –4x –3y)

 23. dim(RT) = 2, Basis ∫ {(1, 0, –1), (0, 1, 5)}; dim (NT) = 1, Basis ∫ (1, 1, –1)

 24. dim(RT) = 2, Basis ∫ 

4 1
1 0

2 3
2 , 1 ; dim ( ) 1, Basis ,

5 0
1 1

0 5

T
N

Ï ¸- -Ê ˆ Ê ˆ
Ï ¸Ê ˆ Ê ˆ Ô ÔÁ ˜ Á ˜Ô Ô Ô ÔÁ ˜ Á ˜ Á ˜ Á ˜= ∫Ì ˝ Ì ˝Á ˜ Á ˜ Á ˜ Á ˜Ô Ô Ô ÔË ¯ Ë ¯ Á ˜ Á ˜Ó ˛ Ô Ô-Ë ¯ Ë ¯Ó ˛

 25. dim(RT) = 3 and RT = R3, Basis 

1

1 0 0 2

0 , 1 0 ; dim( ) 1 Basis 3

10 0 1

1

T
N

-Ê ˆ
Á ˜Ï ¸Ê ˆ Ê ˆ Ê ˆ
Á ˜Ô ÔÁ ˜ Á ˜ Á ˜∫ = ∫Ì ˝ Á ˜Á ˜ Á ˜ Á ˜Ô Ô Á ˜Ë ¯ Ë ¯ Ë ¯Ó ˛ Á ˜
Ë ¯

        Exercise 2(B)

 3. [T] = 

3 1

2 4

5 6

-È ˘
Í ˙
Í ˙
Í ˙-Î ˚

 4. 
3 4 2 5

5 7 1 2

- -È ˘
Í ˙

- -Î ˚
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 5. 

2 3 8

1 1 1

4 0 5

0 6 0

-È ˘
Í ˙
Í ˙
Í ˙-
Í ˙
Î ˚

 6. 
2 4 9

[ ]
5 3 2

T
-È ˘

= Í ˙
-Î ˚

 7 

3 4

5 2
[ ]

1 7

4 0

T

È ˘
Í ˙

-Í ˙=
Í ˙
Í ˙
Î ˚

 8. 

1 2 3

1 2 3

1 2 3

a a a

b b b

c c c

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 16. 
7 33 13

4 19 8

- - -È ˘
Í ˙
Î ˚

  17. (i)    
1 1 0

1 0 2

È ˘
Í ˙
-Î ˚

  (ii)    
3 1 1

1 2 1

- -È ˘
Í ˙
Î ˚

 18. 

17 35 22
1

[ ] 3 15 6
4

2 14 0

e
T

È ˘
Í ˙

= - -Í ˙
Í ˙- -Î ˚

 19. 

3 3 3

6 6 2

6 5 1

È ˘
Í ˙
- - -Í ˙

Í ˙-Î ˚

 20. 
30 48

18 29

- -È ˘
Í ˙
Î ˚

 21. 
35 41

27 32

È ˘
Í ˙
- -Î ˚

 22. (i)    [ ]
e

T A=

  (ii)    
5 8

[ ]
6 10

e
T

-È ˘
= Í ˙

Î ˚
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 23. 1, 3, –4; (–2, 1, 4)T, (2, 1, –2)T, (1, –3, 13)T

 24. 5, 1, 1; (1, 1, 1)T, (2, –1, 0)T, (1, 0, –1)T

 25. 0, 3, 15; (1, 2, 2)T, (2, 1, –2)T, (2, –2, 1)T; A singular.

 26. Eigenvalues are 5, –10, –20; Trace = –25; | A | = 1000

 27. 

2 2 1

(1, 3, 4); 1 1 3

4 2 13

D P

È ˘
Í ˙

- = - -Í ˙
Í ˙- -Î ˚

 28. 

1 1 1

(4, 2, 2); 1 1 0

2 0 1

D P

È ˘
Í ˙

- - = Í ˙
Í ˙-Î ˚

 29. 

1 1 1

6 2 3

2 1
(1, 3, 4); 0

6 3

1 1 1

6 2 3

D Q

È ˘
Í ˙
Í ˙
Í ˙

= -Í ˙
Í ˙
Í ˙

-Í ˙
Î ˚

 30. 

1 1 1

3 2 6

1 1 1
(4,1, 1);

3 2 6

1 2
0

3 6

D Q

È ˘
-Í ˙

Í ˙
Í ˙

= -Í ˙
Í ˙
Í ˙
Í ˙
Î ˚
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Unit 3
Inner Product Spaces

3.1 Inner Product – defInItIon

If V is a vector space over F, viz., the field of real or complex numbers and there 

exists a function (or mapping), which assigns a scalar (u,v) ŒF corresponding to each 

ordered pair of vectors u,v ŒY, then (u,v) is called an inner product in V, provided it 

satisfies the following axioms:

 (i) 1 2 1 2( , ) ( , ) ( , )au bu v a u v b u v+ = +

 (ii) ( , ) ( , ).u v v u=  If F is the field of real numbers, then ( , ) ( , )v u v u=

 (iii) ( , ) 0u u ≥  and equality holds if 0 [ ( , ) ( , ) and so real]u u u u u= =Q

The vector space with an inner product is called an inner product space.

A finite dimensional real inner product space is called an Euclidean space and 

complex inner product space is called a unitary space.

Note 
 (1) In  axiom (i), if v = av1 + bv2, then (u, av1 + bv2) = 

1 2( , ) ( , ), fora u v b u v+

   1 2 1 2( , ) ( , ), by axiom (ii)u av bv av bv u+ = +

    
= +1 2( , ) ( , ), by axiom (i)a v u b v u

    
= +1 2( , ) ( , )a v u b v u

    1 2( , ) ( , ), by axiom (ii)a u v b u v= +

 (2) If ∫ ∫K K1 2 1 2( , , ) and ( , , ) over ,n
n nu a a a v b b b R  then, (u, v) = (a1b1) 

+ a2b2 + L + anbn) is called the standard inner product in Rn. It is also 

called the scalar product or the dot product and denoted by u.v 

 (3) If u = (z1, z2, … zn) and v = (w1, w2, … wn) are in Cn, then 

1 1 2 2( , ) ( )n nu v z w z w z w= + + +L  is called the standard inner 

product in C n, It is also denoted as (u / v).
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 (4) The non-negative real number ( , )u u  is called the norm or 

length of u and denoted by . If 1,u u u=  is called a unit vector. 

To normalize u ŒV, we have to divide u by q =

,( )
and cos

.

u v
u

u v
 

where q is the angle between u and v. The non-negative real 

number ( , )d u v v u= -  is called the distance between u and v. It 

can be verified that (i) d(u, v) ≥ 0 (equality holds good when u = v), 

(ii) d(u, v) = d (v, u) and (iii) d(u, v) £ d (u, w) + d(w, v).

theorem

If V is an inner product space, then for any vectors u, v in V and any scalar C,

 (i) cu c u= ◊

 (ii) 0, for 0u u> π

 (iii) Cauchy-schwraz inequality: ( , ) .u v u v£

 (iv) Triangle Inequality: .u v u v+ £ +

Proof

 (i) 
2

2 2

( , ) ( , )cu cu cu cc u u

c u

= =

=

  \ 
.cu c u=

 (ii) By axiom (iii), (u, u) ≥ 0, viz., 
2

0 0.u u≥ \ ≥

  Also 0, only when 0u u= =

  \    0, only when 0u u> π .

 (iii) The inequality is valid when u = 0 (viz., 0 £ 0)

  When u π 0, consider 
2

( , ) 0, where is realu u v t v t- ≥  

  
( – ( , ) , – ( , ) 0u u v tv u u v tv= ≥

  viz., 2
( , ) ( , ) ( , ) – ( , ) ( , ) ( , ) ( , ) ( , ) 0u v u u t u v t u v v u u v u v t v v- + ≥

  viz., 
2 2 2 2 22

2 , ) , ) 0 [ ( , ) ( , ) and ]u t u v u v t v v u u v zz z- + ≥ = =Q

  Now putting 
2

1
t

v

=  in (1), we get ...(1)

  

2

2

2

( , )
0

u v

u

v

- ≥

  viz., 
22 2

( , )u v u v£ ◊
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  viz., ( , ) .u v u v£ ◊

 (iv) Consider 
2

( ) ( , )u v u v u v+ = + +

          
( , ) ( , ) ( , ) ( , )u u u v u v v v= + + +

          2 2
2 ( , )u R u v v= + +

          

2 2
2 , since ( , ) , as ( )

and so ( , ) by (iii)

u u v v R u v u v R z

z R u v u v

£ + ◊ + £

£ £ ◊

          
{ }

2

u v£ +

  \     
u v u v+ £ +

Note 
 (1) In the Cauchy-Schwarz inequality, the equality holds when u = (u, v)t v

  i.e., 
2

( , )u v v
u

v
=

  i.e., when u and v are linearly dependent.

 (2) If u = (a1, a2, … an ) and v = (b1, b2, … bn), then (iii) becomes

+ + +L
2

1 1 2 2( )n na b a b a b £ + + +L
2 2 2

1 2{ }na a a + +L
2 2 2

1 2{ }nb b b

 (3) If f and g are real continuous functions over 0 £ t £ 1, then (iii) gives

È ˘
£ +Í ˙

Í ˙Î ˚
Ú Ú Ú

2
1 1 1

2 2

0 0 0

( ) ( ) ( ) ( ) .f t g t dt f t dt g t dt  

orthogonality

Definition: The vectors u, v Œ an inner product space V are said to be orthogonal, 

if (u, v) = 0.

Note 
 (1) If u is orthogonal to v, then (u, v) = 0 

  Now ( , ) ( , ) 0 0v u u v= = =

  \ v is orthogonal to u.

 (2) 0 Œ V is orthogonal to every v ŒV for

    (0, v) = (0v, v) = 0 (v, v) = 0 

 (3) If u is orthogonal to ever v ŒV, then u = 0, 

  for (u, u)= 0 \ u = 0 , by axiom (iii)

Definition: A set (ui) of vector in V is said to be an orthogonal set, if all pairs of 

distinct vectors are orthogonal, i.e., (ui, uj) = 0 when i π j.

Definition: The set {ui} of vectors in V is said to be an orthonormal set, if it is or-

thogonal and if 1
i
u =  for each ui.

For example, the standard basis (e1, e2, e3) is an orthonormal set with respect to 

the standard inner product, for 1
i
e =  and (ei, ej) = 0, when i π j.
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theorem

An orthogonal set of non-zero vectors (or an orthonormal set of vectors) is linearly 

independent. 

Proof

Let (u1, u2, …, un) be an orthogonal set of vectors in a given inner product space.

Let v = c1u1 + c2u2 + … + cnun

Now  ( , ) ,j i i j

i

v u c u u
Ê ˆ

= Á ˜Ë ¯
Â

    

( , ), by axiom (1)i i j

i

c u u= Â

    
( , )j j jc u u=

\       
2

( , )
; 1,2, , since ( , ) 0,

j

j j j

j

v u
c j m u u

u

= = πL

 as uj is a non-zero vector 

\ when v = 0 cj (j = 1, 2, …, m) = 0

This means that (u1, u2, …, um) is linearly independent.

Corollary: If v Œ V then 1 2
1 22 2 2

1 2

( , )( , ) ( , )
m

m

m

v uv u v u

v u u u

u u u

- - - -L
 is orthogonal 

to each ui.

for 1 2
1 22 2 2 2

1 2

( – ) ( , )( , ) ( , )
, ( , ) ( , ) 0m i

m i i i i

m i

v u v uv u v u
v u u u u v u u u

u u u u

Ê ˆ
Á ˜- - - = - =
Á ˜Ë ¯

L

3.2  Gram–SchmIdt orthoGonalISatIon 
ProceSS

Constructions of an orthogonal basis for an inner product space can be done according 

to the following theorem which is stated below without proof.

If (v1, v2, … ,vn) is a basis of an inner product space V, then an orthogonal basis 

(u1, u2,  ,un) can be found out using the rules u1 = v1 and 

um +1

1

1 2
1

( , )
–

m
m i

m i

i
i

v u

v u

u

+

+

=

= Â

Working rule for the construction of an orthogonal basis.

 (1) u1 = v1

 (2) 2 1
2 2 12

1

( , )
,

v u

u v u

u

= -

 (3) 3 1 3 2
3 3 1 22 2

1 2

( , ) ( , )
–

v u v u

u v u u

u u

= -
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 (4) 4 34 1 4 2
4 4 1 2 32 2 2

1 2 3

( , )( , ) ( , )
–

v uv u v u

u v u u u

u u u

= - -  and so on.

adjoint of linear operations

Definition: A linear operator T on an inner product space V is said to have an adjoint-

operator T* on V, if (T(u), v) = (u, T* (v)) for all u, v Œ V.

Note 
 (1) If V is finite dimensional, T* exists for every T. This is not true, if V is 

infinite dimensional.

 (2) [ *] [ ] .
T

e eT T=  This will not be true, if e is an artillery basis of V.

theorem

If V is a finite dimensional inner product space and if T and S are linear operators on 

V and c is scalar, then

 (i) (T + S)* = T* + S*; (ii) (cT)* = c
_

T*,

 (iii) (TS)* = S*T* (iv) (T*)* = T and

 (v) If T is invertible, T* is also invertible such that (T–1)* = (T*)–1 

Proof

 (i) If u, v Œ v, then ((T + S) (u), v) = (T (u) + S (u), v)

 = (T (u),v) + (S (u), v)

 = (u, T* (v)) + (u, S* (v))

i.e., (u, (T + S)*v) = (u, T*(v) + S* (v))

  \ (T + S)* = T* + S*, (since adjoint operator is unique)

 (ii) ((cT)u, v) = (c T(u), v) = c(T(u),v) = c(u, T*v) = (u, c
_ 

T*(v))

  \    (cT)* = c
_ 

T*

 (iii) (TS(u), v) = (T(S(u),v) = (S(u), T*(v)

  = (u, S* (T*(v)))

  = (u, S* T*(v))

    \    (TS)* = S*T*

 (iv) ( * ( ), ) ( , * ( )) ( ( ), ) ( , ( )) ( *)* )T u v v T u T v u u T v T T= = = \ =

 (v) [Note: The linear operator T is said to be invertible, if [T]e is invertible, 

Equivalently [T–1]e [T]e = [T]e [T
–1]e = I

 viz., [T ]e
–1 = [T–1]e]

  For every u, v Œ V, (I(u), v) = (u, v) = (u, I (v)  \  I * = I

    \    I = I* = (TT 
–1)* = (T  

–1)* T*, by (iii)

  \    (T 
–1)* = (T*)–1 
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A linear operator T is called self-adjoint, if T* = T.

A self-adjoint operator is called Hermitian in the complex case and symmetric in 

the real case.

A linear operator T is called skew-adjoint, if T* = –T.

Proof: Any operator T can be expressed as the sum of a self-adjoint operator and a 

skew adjoint operator.

Property: Let S and U be any linear operators

Let   
1 1
( *) and ( *), so that

2 2
S T T U T T T S U= + = - = +

   Now 

*
1 1 1

* ( * ( * **) ( *)
2 2 2

S T T T T T T S
Ê ˆ

= + = + = + =Á ˜Ë ¯

\  S is self-adjoint

    

*
1 1 1

* ( – *) ( * – ) ( *)
2 2 2

U T T T T T T U
-Ê ˆ

= = = - = -Á ˜Ë ¯

\  S is skew-adjoint.

 Worked Examples (3)

Example 1
If u = (x1, x2) and v = (y1, y2), prove that (u, v) = x1y1 – x1y2 –x2y1 + 4x2y2 is an inner 

product in R2

Let u¢ = (x¢1, x¢2), Then au + bu¢ = (ax1 + bx¢1, ax2 + bx¢2)

\ (au + bu¢1, v) = (ax1 + bx¢1)y1 – (ax1 + bx¢1)y2 – (ax2 + bx2¢)y1 + (ax2 + bx2¢ )y2

    1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2( – 4 ) ( – 4 )a x y x y x y x y b x y x y x y x y¢ ¢= - + + - +¢ ¢

    
( , ) ( , )a u v b u v= + ¢

\  Axiom (1) of I.P. is satisfied

     (v, u) = y1x1 – y1x2 – y2x1 + 4y2x2

          = x1y1 – x2y1 – x2y2 + 4x2y2

\  Axiom (2) is satisfied

  
2 2

1 1 2 2 1 2( , ) – 4u u x x x x x x= - +

  
22

1 2 2( – ) 3 0x x x= + ≥

Equality holds only when x1 = x2 = 0

\  Axiom (3) is satisfied.

\ (u, v) is an inner product in R2.

Example 2
For what values of a, b, c, d, for which f (u, v) = ax1y1 + bx1y2 + cx2y1 = dx2y2 is an 

inner product on R2?
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Axioms (1) and (2) will hold good for all real values of a, b, c, d.

       
2 2

1 1 2 1 2 2( , ) .f u u ax b x x c x x d x= + + +

             

2 2

1 1 2 2

( )b c d
a x x x x

a a

+È ˘
= + +Í ˙

Î ˚

            

2 2
2

1 2 22

( ) ( )

2 4

b c d b c
a x x x

a a a

È ˘Ï ¸Ï ¸+ +Ê ˆ Ô ÔÍ ˙= + + -Ì ˝ Ì ˝Á ˜Ë ¯Í ˙Ô ÔÓ ˛ Ó ˛Î ˚

          

2 2
2

1 2 22

( ) 4 – ( )

2 4

b c ad b c
a x x x

a a

È ˘Ï ¸Ï ¸+ +Ê ˆ Ô ÔÍ ˙= + +Ì ˝ Ì ˝Á ˜Ë ¯Í ˙Ô ÔÓ ˛ Ó ˛Î ˚

      
2

0, if 0 and 4 ( )a ad b c≥ > > +

 i.e., 
2

2 2 2( )
, since ( – ) 0 i.e., 2 i.e., ( ) 4

4

b c
ad bc b c b c bc b c bc

+
> > > + > + >

  \ f(u, v) is an inner product on R2, if a > 0 and ad – bc > 0

Example 3
If V is a vector space of m × n matrices over R, prove that (A, B) = Tr (BT

A) is an 

inner product in V.

         1 1 2 2 1 1 2 2( , ) { ( )}
T

c A c A B Tr B c A c A+ = +

                1 1 2 2( ) ( )
T T

c Tr B A c Tr B A= +

                1 1 2 2( , ) ( , )c A B c A B= +

i.e., Axiom (1) holds good

  (A, B) = Tr (BT
A) can be proved to be equal to (B, A) = Tr (AT

B)

  (A, A) = Tr (AT
A) = Tr (I) = n ≥ 0. Equality holds only when A is a null matrix 

\ (A, B) = Tr (BT
A) is an inner product in R.

Example 4
If V is the vector space of real continuous functions on the real interval a £ t £ b, prove 

that 

1

0

( , ) ( ) ( )f g f t g t dt= Ú  is an inner product on V.

 

1 1 2 2 1 1 2 2( , ) ( )

b

a

c f c f g c f c f g dt+ = +Ú

        

1 1 2 2

b b

a a

c f g dt c f g dt= +Ú Ú

        1 1 2 2( , ) ( , )c f g c f g t= +

\  Axiom (1) holds good.
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( ) ( ) ( ) ( ) . ., ( , ) ( , )

b b

a a

f t g t dt g t f t dt viz f g g f= =Ú Ú

\  Axiom (2) holds good.

 

2
( , ) [ ( )] 0, since ( ) )

b

a

f f f t dt a f t b= ≥ £ £Ú

\  Axiom (3) holds good.

\ (f, g) is an inner product

Example 5
If V is the vector space of m × n matrices over R, find the norm of 

1 2

3 – 4
A

Ê ˆ
= Á ˜Ë ¯

 w.r.t. 

the inner product (A, B) = Tr(B+
A)

     

2
( , ) ( )

1 3 1 2

2 4 3 4

10 10

10 20

10 20 30

T
A A A Tr A A

Tr

Tr

= =

Ï ¸Ê ˆ Ê ˆÔ Ô= Ì ˝Á ˜ Á ˜- -Ë ¯ Ë ¯Ô ÔÓ ˛
-Ê ˆ

= Á ˜-Ë ¯

= + =

\    30A =

Example 6
Find the vectors which form an orthogonal basis with the vectors (1, –2, 2,–3) and 

(2, –3, 2, 4) in R4. 

Let the required vector be w = (x, y, z, t)

w is orthogonal with u = (1, –2, 2, –3)

\ (u, w) = 0. viz., x – 2y + 2z – 3t = 0 …(1)

w is orthogonal with v = (2, –3, 2, 4)

\ (v, w) = 0. viz., 2x – 3y + 2z + 4t = 0 …(2)

 (2) – 2 ×(1) gives y – 2z + 10t = 0 …(3)

\ z and t are free variables. 

Putting t = 0, z = 1, we get y = 2 from (3); x = 2 from (2).

Putting t = 1, z = 0, we get y = –10 from (3); x = –17 from (2)

\ The required vectors are (2, 2, 1, 0) and (–17, –10, 1, 0)

Example 7
Find the vectors which form an orthonormal basis with 

1 1 1 1
, , , and

2 2 2 2
u

Ê ˆ
= Á ˜Ë ¯

41 1 1 1
, , – , in .

2 2 2 2
v R

Ê ˆ
= -Á ˜Ë ¯

Let the required vector be w = (x, y, z, t)

Then ( , ) 0. viz., 0
2 2 2 2

x y z t
u w = + + + =  …(1)
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and ( , ) 0. viz., – – 0
2 2 2 2

x y z t
v w = + =  …(2)

(1) + (2) gives x + y = 0 and z + t = 0 from (1) or (2)

     viz., x = –y and z = –t

Taking y = –1 x = 1 x = –1 or y = 1: Taking t = –1, z = 1 or if t = 1, z = –1

\ The orthogonal basis is given by (1, –1, –1, 1)and (1, –1, 1, –1)

The corresponding orthonormal basis is given by 
1 1 1 1

, – , – ,
4 4 4 4

Ê ˆ
Á ˜Ë ¯

and 
1 1 1 1 1 1 1 1 1 1 1 1

, – , , – ; viz., , – , – , and , – , ,
2 2 2 2 2 2 2 24 4 4 4

Ê ˆ Ê ˆ Ê ˆ
-Á ˜ Á ˜Á ˜ Ë ¯ Ë ¯Ë ¯

Example 8
Find an orthonormal basis of R3, given that an arbitrary basis of R3 is {v1 (1, 1,1), 

v2 = (0, 1, 1) and v3 = (0, 0, 1)} using Gram-Schmidt process.

Let (u1, u2, u3) be the required orthogonal basis.

Then by Gram-Schmidt process,

 u1 = v1 = (1, 1, 1)

       

2 1
2 2 12 2

1

( , ) 2 2 1 1
(0, 1, 1) (1, 1, 1) , ,

3 3 3( 3)

v u

u v u

u

Ê ˆ
= - = - = -Á ˜Ë ¯

        

3 1 3 2
3 3 1 22 2

1 1

( , ) ( , )v u v u

u v u u

u u

= - -

        

1 2 1 11/2
(0,0,1) – (1, 1, 1) , ,

3 2/3 3 3 3

Ê ˆ
= - -Á ˜Ë ¯

        

1 2 1 11
(0,0,1) – (1, 1, 1) , ,

3 2 3 3 3

Ê ˆ
= - -Á ˜Ë ¯

        

1 1
0, – ,

2 2

Ê ˆ
= Á ˜Ë ¯

The corresponding orthonormal basis (u1¢, u 2¢, u 3¢) by normalizing each of 

(u1, u2, u3)

\ The orthonormal basis required is 
1 2

1 1 1 1
, , ; ( 2, 1, 1);

3 3 3 6
u u

Ï Ê ˆÔ ¢ ¢= = -Ì Á ˜Ë ¯ÔÓ
3

1 1
0, ,

2 2
u

Ê ˆ¢ = -Á ˜Ë ¯

Example 9
Find an orthogonal basis of the subspace of R

4, given than an arbitrary basis  

{v1 = (2, 1, 3, –1) , v2 = (7, 4, 3 , –3), and v1 = (5, 7, 7, 8)

Let (u1, u2, u3, u4) be the required orthogonal basis. Then, by G.S.O process, 

u1 = v1 = (2, 1, 3, –1)
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2 1
2 2 12

1

( , ) 30
(7, 4,3, – 3) (2, 1, 3, –1) (3, 2, – 3, –1)

15

v u

u v u

u

= - = - =

      

3 1 3 2
3 3 1 22 2

2
1 2

( , ) ( , )v u v u

u v u u

u u

= - -

         

30 0
(5, 7, 7, 8) (2, 1, 3, –1) (3, 2, 3, –1)

15 23
= - - -

       
(5, 7, 7, 8) 2, (2, 1, 3, –1) (1, 5, 1, 10)= - =

\ The required orthogonal basis is {u1 = (2, 1, 3,–1); u2 = (3, 2, –3, –1); u3 = (1, 5, 1, 10)}

Example 10
Find an orthonormal basis of R

3, given that an arbitrary basis is {v1 (3, 0, 4), 

v2 = (–1, 0, 7), v3 = (2, 9, 11). Express (x, y, z) as a linear combination of the orthogonal 

basis vectors.

Let (u1, u2, u3) be an orthogonal basis of R3.

Then by G.S.O process, u1 = v1 = (3, 0, 4)

     

2 1
2 2 12

1

( , ) 25
(–1, 0, 7) (3, 0, 4) (–4, 0, 3)

25

v u

u v u

u

= - = - =

     

3 1 3 2
3 3 1 22 2

1 2

( , ) ( , )v u v u

u v u u

u u

= - -

     
= -

50 25
(2, 9, 11) – (3, 0, 4) (–4, 0, 3)

25 25

       = (2, 9, 11) – (6, 0, 8) – (–4, 0, 3)

       = (0, 9, 0)

\ The orthogonal basis is {u1 = (3, 0, 4); u2 = (–4, 0, 3); u3 = (0, 9, 0)}

\ The corresponding orthonormal basis is

        
1 2 3

3 4 4 3
, 0, ; – , 0, ; (0, 1,0

5 5 5 5
u u u

Ï ¸Ê ˆ Ê ˆ¢ ¢ ¢= = =Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ó ˛

Let u = k1u1 + k2u2 + k3u3 …(1)

\ 2
1 1 1 2 1 3 1( , ) [ ( , ) 0, ( , ) 0, by orthogonality]u u k u u u u u= = =Q

\  31 1
1 2 32 2 2

1 2 0

( , )( , ) ( , )
. Similarly, and

u uu u u u
k k k

u u u

= =

If we take u = (x, y, z ) in (1), we get

   
3 4 –4 3 9

( , , ) (3, 0, 4) ( 4, 0, 3) (0,9,0)
25 25 81

x z x z y
x y z

+ +Ê ˆ Ê ˆ
= + - +Á ˜ Á ˜Ë ¯ Ë ¯

 …(2)

(2) is the required linear combination of u1, u2, and u3 equivalent to (x, y, z)
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Example 11
Find an orthonormal basis of the subspace w of C 

3, spanned by v1 = (1, i, 0) and v2 

(1, 2, 1–i)

Let u1 and u2 be the orthogonal basis of the subspace.

Then by GSO process, u1= v1 = (1, i, 0)

and 2 1
2 2 12

1

( , ) (1 – 2 )
(1, 2, 1 – ) (1, , 0)

2

v u i
u v u i i

u

= - = -

    

1
{2(1, 2, 1 – ) – (1 – 2 ) (1, , 0)

2
i i i=

     

1
{1 2 , 2 – , 2 – }

2
i i i= +

The corresponding orthonormal basis given by 1 2
,
12

18
2

u u

Ï ¸
Ô Ô
Ì ˝
Ô Ô
Ô ÔÓ ˛

 

1 1
1 2

1 1
viz., , ,0 ; (1 2 , 2 – , 2 2 )

2 2 18

i
u u i i i
Ï ¸Ê ˆÔ Ô= + -Ì ˝Á ˜Ë ¯Ô ÔÓ ˛

Example 12
If V is the vector space of polynomials over R of degree £ 2 with inner product 

1

0

( , ) ( ) ( ) ,f g f t g t dt= Ú  (i) find a basis of the subspace W orthogonal to f(t) = 2t + 1 

and (ii) apply G.S.O. process to the basis (1, t, t2) to find an orthonormal basis {u1(t), 

u2(t), u3(t)}

 (i) Let g(t) = at
2 + bt + c be orthogonal to f(t) = 2t + 1.

  Then 

1 1

2

0 0

( ) ( ) ( ) (2 1) 0f b g t dt at bt c t dt= + + + =Ú Ú

      

1

3 2

0

viz., [2 ( 2 ) ( 2 ) ] 0at a b t b c t c dt+ + + + + =Ú

      
1

viz., ( 2 ) ( 2 ) 0 or 5 7 12 0
2 3 2

a
a b b c c a b c

1
+ + + + + = + + =  …(1)

  b and c are free variables in (1)

  Taking b = –5 and c = 0, we get, from (1), a = 7

  Taking b = 0 and c = –5, we get from (1), a = 12.

    \   g1(t) = 7t
2 – 5t and g2(t) 12t

2  –5 form a basis of W, orthogonal to 

f(t) = 2t + 1.

 (ii) By G.S.O process, u1(t) = v1(t) = 1
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1

02
2 2 12 1

1

0

( , ) 1
( ) ( ) 1

2
1

t dt

v u
u t v t u t t

u
dt

= - = - ¥ = -
Ú

Ú

       

3 1 3 2
3 3 1 22 2

1 2

( , ) ( , )
( ) ( )

v u v u
u t v t u u

u u

= - -

         

1 1

2 2

2 0 0

1 21

0 0

1

2 1
.1

21
1

2

t dt t t

t t

dt t

Ê ˆ-Á ˜Ë ¯ Ê ˆ
= - - ◊ -Á ˜Ë ¯Ê ˆ-Á ˜Ë ¯

Ú Ú

Ú Ú

         

2 2 2

1 1

1 1 1 1 14 6

1 13 2 3 2 6

24 24

t t t t t t

Ê ˆ-Á ˜Ë ¯ Ê ˆ Ê ˆ
= - - ◊ - = - - - = - +Á ˜ Á ˜Ë ¯ Ë ¯+

  Normalizing the vectors u1(t), u2(t), u3(t), we get the orthonormal basis .

       

1 2
21

0

1 1

2 2( ) 1; ( )
11

122

t t

u t u t

t dt

- -
¢ ¢= = =

Ê ˆ-Á ˜Ë ¯Ú

          

1
2 3 3 (2 1)

2
t t

Ê ˆ
= - = -Á ˜Ë ¯

         

21

2 2
3

0

1 1
( )

6 6
u t t t t t dt

Ê ˆ Ê ˆ¢ = - + ∏ - +Á ˜ Á ˜Ë ¯ Ë ¯Ú

          

1 2

2 4 2 3

0

1 1
2

6 36 3 3

t t
t t t t t dt

Ê ˆÊ ˆ
= - + ∏ + + - - +Á ˜Á ˜Ë ¯ Ë ¯Ú

          

2 1 1 4 1 2 1 1
–

6 5 3 3 4 6 36
t t

Ê ˆ
= - + ∏ + ◊ - +Á ˜Ë ¯

          

2 21 1
5 (6 6 1)

6 6 5
t t t t

Ê ˆ
= - + ∏ = - +Á ˜Ë ¯

  Required orthonormal basis is 2
{1, 3(2 1), 5 (6 6 1)}t t t- - +

Example 13
Define orthogonal projection of the vector v ŒV on W, which is a subspace of V. Find 

the orthogonal projection v = (–10, 2, 8) on the subspace W spanned by {w1 = (–1, 1, 1) 

and w2 = (1, –2, 2)}
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definition

If V is an inner product space and W a subspace of V and if v ŒV and (w1, w2, L wr 

span W, then 

1

( , )r

i

i

ii

v w
w

w=

Â  is called the orthogonal projection of v on W.

For the given problem, the orthogonal projection of v = (–10, 2, 8) on 

  

1 2
1 22 2

1 2

( , ) ( , )v w v w

w w w

w w

= +

         

(10 2 8) ( 10 4 16)
(–1,1, 1) (1, 2, 2)

3 9

+ + - - +
= + -

         

(20) 2
(–1,1, 1) (1, 2, 2)

3 9
= + -

         

20 2 20 4 20 4
, ,

3 9 3 9 3 9

Ï ¸Ê ˆ Ê ˆ Ê ˆ= - + - +Ì ˝Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Ó ˛

         

58 56 64
, ,

9 9 9

Ê ˆ
= -Á ˜Ë ¯

Example 14
Find the angle between u = f(t)=2t – 1 and v = g(t) = t2 in the space in which the inner 

product is defined by 
1

0

( , ) ( ) ( ) .f g f t g t dt= Ú
If q is the angle between the vector u, v ŒV, then 

( , )
cos

u v

u v

q =

◊

        

1

2

0

2 1 1
( , ) { ( ), ( )} (2 1)

4 3 6
u v f t g t t t dt= = - = - =Ú

        

1 1
2 2 2

0 0

4 1
[ ( )] (4 4 1) 2 1

3 3
u f t dt t t dt= = - + = - + =Ú Ú

        

1 1
2 2 4

0 0

1
[ ( )]

5
v g t dt t dt= = =Ú Ú

\      

1

16
cos 15

1 1 6

3 5

q = =

◊

Example 15
If V is the vector space C2 with standard inner product and if T is an adjoint operator 

on C2 defined by T(e1) = (1, –2), T(e2) = (i, –1), find T* assuming that v = (x1, x2).

     1 2 1 2 1 1 2 2( , ) (1, 0) (0, 1)x x x x x e x e= + = +
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\      
1 2 1 2( , ) (1, 2) ( , 1)T x x x x i= - + -

        1 2 1 2( , 2 )x i x x x= + - -

       

1
[ ]

–2 –1
e

i
T

Ê ˆ
= Á ˜Ë ¯

Since e is an orthonormal basis for c2, *
[ ] [ ]

T

e e
T T=

Now *1 – 1 –2
[ ] [ ] [ ]

–2 1 – 1

T

e e e

i
T T T

i

Ê ˆ Ê ˆ
= \ = =Á ˜ Á ˜- -Ë ¯ Ë ¯

\    T*(x1, x2) = (x1 – 2x2, – ix1 – x2

Example 16
If T : C3 Æ C3, defined by T(x, y, z) = {ix + (2 + 3i)y, 3x + (3 – i)z, (2 – 5i) y + iz}, 

find T* (x, y, z)

      

(2 3 ) 0

[ ] 3 0 (3 – )

0 (2 – 5 )

e

i i

T i

i i

+Ê ˆ
Á ˜= Á ˜
Ë ¯

Since e is the stand and orthonormal basis for c3, *
[ ] [ ]

T

e e
T T=

Now    

– 2 – 3 0

[ ] 3 0 3

0 2 5 –

e

i i

T i

i i

Ê ˆ
Á ˜= +Á ˜

+Ë ¯

      

*

– 3 0

[ ] [ ] 2 3 0 2 5

0 3 –

e

T

e

i

T T i i

i i

Ê ˆ
Á ˜= = - +Á ˜

+Ë ¯

\     T* (x, y, z) = {–ix + 3y, (2 – 3i)x + (2 + 5i)z, (3 + i)y – iz}

Example 17
If T is the linear operator on C3 with the standard inner product whose matrix in the 

standard basis is defined by Aj k = i j + k, where –1i =  find a basis for the null space 

of T*

  

2 3 4

3 4 5

4 5 6

–1 – 1

[ ] – 1

1 –1

e

i i i i

T i i i i i

ii i i

Ê ˆ Ê ˆ
Á ˜ Á ˜= =Á ˜ Á ˜Á ˜ Ë ¯Ë ¯

\  *

–1 1

[ ] [ ] 1 –

1 – –1

T

e e

i

T T i i

i

Ê ˆ
Á ˜= = Á ˜
Ë ¯
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\ T*(x, y, z) = (–x + iy + z, ix + y – iz, x –iy – z)

Let (x, y, z) ŒNT*. Then T* (x, y, z) = (0, 0, 0)

viz.,  –x + iy + z = 0

   ix + y – iz = 0

   x – iy – z = 0

viz.,   –x + iy + z = 0 \  dim (NT*) = 2 and y and z are free variable.

\ Basis of NT* = {(i, 1, 0); (1, 0, 1)}

Example 18
Express the linear operator T(x, y, z) = (x + 2y, 3x – 4z, y) as the sum of a self-adjoint 

operator and a skew adjoint operator.

      

1 3 0 1 2 0

[ ] 2 0 1 [ ] 3 0 4 [ *]

0 4 0 0 1 0

T

e e e
T T T

Ê ˆ Ê ˆ
Á ˜ Á ˜= \ = - =Á ˜ Á ˜

-Ë ¯ Ë ¯

\ T*(x, y, z) = {x + 3y, 2x + z, – 4y}

Let 
1 1
( *) and ( – *)

2 2
S T T U T T= + =

 

1
( , , ) { ( , , ) * ( , , )}

2
S x y z T x y z T x y z= +

      

2 5 5 – 3 3
, ,

2 2 2

x y x z y+Ê ˆ
= -Á ˜Ë ¯

and *1
( , , ) { ( , , ) ( , , )}

2
U x y z T x y z T x y z= -

      
(– , – 5 , 5 )y x z y=

     

*

5
1 0

2

5 3
[ ] 0 – [ ] [ ] is self-adjoint

2 2

3
0 – 0

2

T

e e e
S S S S

Ê ˆ
Á ˜
Á ˜
Á ˜= = = \
Á ˜
Á ˜
Á ˜
Ë ¯

    

*

0 1 0

[ ] –1 0 5 – [ ] – [ ] is self-adjoint

0 –5 0

T

e e e
U U U U

Ê ˆ
Á ˜= = = \Á ˜
Ë ¯

Hence the result.
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       Exercise 3

Part A (Short-Answer Questions)

 1. Define inner product.

 2. When is a vector space called inner product space.

 3. Define standard inner product in Rn and Cn.

 4. Show that, for any vector a in R2, a = (a, e1) e1 + (a, e2) e   .

 5. Define the norm of a vector and find it when 41 1 1 1
, – , , .

2 4 3 6
u R

Ê ˆ
= ŒÁ ˜Ë ¯

 6. State Cauchy-Shwary inequality and use it to prove that

       
a b a b
r r r rÂ Â Â( ) £ ¥

2 2 2

.

 7. If f and g are real continuous functions over 0 £ t £ 1, prove that

 

2
1 1

1
2 2

0
0 0

( ) ( ) ( ) . ( ) .f t g t dt f t dt g t dt
È ˘

£Í ˙
Í ˙Î ˚
Ú Ú Ú

 8. Define orthonormal set of vectors and give an example.

 9. State the working rule for construction of orthogonal basis from a given 

basis

 10. Find a unit vector orthogonal to u = (1, 1, 2) and v = (0, 1, 3) in R3.

 11. Find the orthogonal projection of v = (1, –1, 2) on w = (0, 1, 1)

 12. Find the orthogonal projection of v = (–10, 2, 8) on the subspace spanned by 

w = (3, 12, –1)

 13. Define adjoint operator of a linear operator on an inner product space.

 14. State the relation between a linear operator T and its adjoint T*

 15. If T(x, y, z) = x + 2y + 3z, prove that T is a self-adjoint operator.

Part B

 16. If u = (x1, x2) and v = (y1, y2), prove that f(u, v)= x1y1 – 2x1y2–2x2y1 + 5x2y2 

is an inner product.

 17. For what value of k, is f(u, v) = x1y1 – 3x1y2 – 3x2y1 + kx2y2, where u = (x1, x2) 

and v = (y1, y2), an inner product?

 18. If a = (1, 2) and b = (–1, 1) are vector in R2 such that (a, r) = –1 and (b, r) = 3, 

 find r where (a, r) and (b, r) are standard inner products in R2.

 19. Find the norm of u = (1, 2) ŒR
2
 w.r.t. (i) the standard inner product and 

(ii) the inner product defined by (u, v) = x1y1– 2x1y2 – 2x2y1 + 5x2y2.

 20. If V is the vector space of polynomials over R, find the norm of the vector 

f(t) = t2 – 2t + 3 w.r.t. the inner product 

1

0

( ) ( ) .f t g t dtÚ

 21. If V is the vector space of real continuous functions in the interval –p £ t £ p, 

prove that {1, cos t, cos 2t, 
L 

, sin t, sin 2t, …} is an orthogonal set.

 22. Find the vector which forms an orthonormal basis with 

2 1 2 1 2 2
, , and , , –

3 3 3 3 3 3

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

 in R3.
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 23. Find the vectors which form an orthogonal basis with (1, 1, 1, 2) and (1, 2, 3, –3) 

in R4.

 24. Find the vectors which form an orthogonal basis with 

1 1 1 1 1 1 1 1
, , , and , , – , –

2 2 2 2 2 2 2 2

Ê ˆ Ê ˆ
+Á ˜ Á ˜Ë ¯ Ë ¯

 in R4.

 25. Find an orthonormal basis of R3 with the standard inner product, given that 

an arbitrary basis is {v1 = (1, 0, 1), v2 = (1, 0, –1), v3 = (0, 3, 4)}

 26. Find a basis of the subspace W of R4, orthogonal to u1 = (1, –2, 3, 4) and 

u2 = (3 –5, 7, 8).

 27. Find a basis of the subspace W of R4, orthogonal to u1 = (1, 0, –1, 1) and 

u2 = (2, 3, –1, 2).

 28. Construct an orthogonal basis of the subspace of R4, spanned by (1, 2, 2, –1), 

(1, 1, – 5, 3) and (3, 9, 3, –7).

 29. Construct an orthogonal basis of the subspace of R4, spanned by (1, 1, –1, –2), 

(5, 8, – 2, –3) and (3, 9, 3, 8).

 30. Find an orthonormal basis of the subspace W of C3, spanned by v1 = (1, i, 1) 

and v2 (1 + i, 0, 2).

 31. Find an orthonormal basis of the subspace W of C3, spanned by (1, 0, i) and 

v
2 = (2, 1, 1 + i).

 32. Find the angle between the vector 
2 1 0 –1

and
3 –1 2 3

u v

Ê ˆ Ê ˆ
= =Á ˜ Á ˜Ë ¯ Ë ¯

 in the space 

in which the inner product is defined as (A, B) = Tr (BT
A).

 33. If T is the linear operator on C2 with standard inner product defined by T(e1) 

= (1 + i, 2) and T(e2) = (i, i) find T* (x1, x2).

 34. If T is the linear operator on C3 with standard inner product defined by T(x, 

y, z) = {2x + iy, y – 5 iz, x + (1–i) y + 3z}, find T* (x, y, z)

 35. Express the linear operator T(x, y, z) = {x – 2y, 2y – 3z, 3z – 4x} as the sum 

of a self adjoint operator and a skew-adjoint operator.

Answers

        Exercise 3

 5. 
65

;
12

 10. 
1 3 1

, – , ;
1111 11

Ê ˆ
Á ˜Ë ¯

 11. 
1
(0,1, 1);

2

 12. 
1

– (3,12 –1);
11

 17. k > 9
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 18. 
7 2

– , ;
3 3

Ê ˆ
Á ˜Ë ¯

 19. 5, 13;

 20. 
83

;
15

 22. 
2 2 1
, – , – ;

3 3 3

 23. (1, –2, 1, 0 and (25, 4, –17, –6); 

 24. ,
1 1 1 1 1 1 1 1
, – , – and , – , –

2 2 2 2 2 2 2 2

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

 25. 
1 1 1 1

, 0 and , 0 – , (0, 1, 0)
2 2 2 2

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

;

 26. v1 = (1, 2, 1, 0), v2 = (4, 4, 0, 1);

 27. (–1, 0, 0, 1) and (– 3, 1, –3, 0);

 28. u1 = (1, 2, 2, –1), u2 = (2, 3, –3, 2), u3 = (2, –1, –1, –2);

 29. u1 (1, 1,–1, –2), u2 = (2, 5, 1, 3), and u3 = (0, 0, 0, 0);

 30. 1 2

1 1
(1, , 1) and (2 ,1 – 3 , 3 – );

3 24
u i u i i i= =

 31. 1 2

1 1
(1,0, 1) and (1 , 2, 1– );

2 2 2
u u i i= = +

 32. * 1 – 22
cos ;(33)

– –210

i
T

i i
q

Ê ˆ
= = Á ˜Ë ¯

 34. *
{2 , – (1 ) , 5 3 }T x z ix y i z iy z= + + + + +

 35. 
3 3

( , , ) – – 2 , – 2 – , – 2 – 3
2 2

3 3
( , , ) – 2 , – , – 2

2 2

S x y z x y z x y z x y z

U x y z y z x z x y

Ï ¸
= + +Ì ˝
Ó ˛

Ï ¸
= + +Ì ˝
Ó ˛
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Chapter 4
Partial Differential 

Equations

4.1 IntroductIon

Partial differential equations are found in problems involving wave phenomena, heat 

conduction in homogeneous solids and potential theory. As an equation containing 

ordinary differential coefficients is called an ordinary differential equation, an equation 

containing partial differential coefficients is called a partial differential equation. Partial 

derivatives come into being only when there is a dependent variable which is a function 

of two or more independent variables. Hence in a partial differential equation, there 

will be one dependent variable and two or more independent variables. However we 

will mostly deal with partial differential equations containing only two independent 

variables. In what follows, z ill be taken as the dependent variable and z and y the 

independent variables so that z = f(x, y). We will use the following standard notations 

to denote the partial derivatives:

2 2 2

2 2
, , , and

z z z z z
p q r s t

x y x yx y

∂ ∂ ∂ ∂ ∂
= = - = =

∂ ∂ ∂ ∂∂ ∂

The order of a partial differential equation is that of the highest order derivative 

occurring in it.

4.2 formatIon of partIal dIfferentIal equatIons

Thought our main interest is to solve partial differential equations, it will be 

advantageous if we know how partial differential equations are formed. Knowledge 

of the formation of partial differential equations will help us to distinguish between 

two kinds of solutions of the equation. Partial differential equations can be formed 

by eliminating either arbitrary constants or arbitrary functions from functional 

relations satisfied by the dependent and independent variables. When we form partial 

differential equations the following points may be considered for proper procedure 

and checking.

 1. If the number of arbitrary constants to be eliminated is equal to the number 

of independent variables, the process of elimination results in a partial 

differential equation of the first order.
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Note 
 4. In the formation of ordinary differential equations, the order of the 

equation is equal to the number of constants eliminated.

 2. If the number of arbitrary constants to be eliminated is more than the 

number of independent variables, the process of elimination will lead 

to partial differential equation of second or higher order.

 3. If the partial differential equation is formed by eliminating arbitrary 

functions, the order of the equation will be, in general, equal to the 

number of arbitrary functions eliminated.

4.3 elImInatIon of arbItrary constants

By way of verifying point 3 of Section 4.2, let us consider the functional relation 

among

 x, y, z, i.e. f(x, y, z, a, b) = 0 (1)

where a and b are arbitrary constants to be eliminated.

Differentiating (1) partially with respect to x and y, we get

 0, i.e. 0
f f z f f

p
x z x x z

∂ ∂ ∂ ∂ ∂
+ ◊ = + ◊ =

∂ ∂ ∂ ∂ ∂
 (2)

and 0, i.e. 0
f f z f f

q
y z y y z

∂ ∂ ∂ ∂ ∂
+ ◊ = + ◊ =

∂ ∂ ∂ ∂ ∂
 (3)

Equations (2) and (3) will contain a and b.

If we eliminate a and b from equations (1), (2) and (3), we get partial differential 

equation (involving p and q) of the first order. This justifies point 1 of Section 4.2.

4.4 elImInatIon of arbItrary functIons

By way of verifying point 3 of Section 4.2 above, let us consider the relation

 f(u, v) = 0 (1)

where u and v are functions of x, y, z and f is an arbitrary function to be eliminated. 

Differentiating (1) partially with respect to x, 

 0
f u u f v v

p p
u x z v x z

∂ ∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ
+ + + =Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂

 (2)

[since u and v are functions of x, y, z and z is z is in turn, a function of x, y] 

Differentiating (2) partially with respect to y,

 0
f u u f v v

q q
u y z v y z

Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂
+ + + =Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯

 (3)

Instead of eliminating, f, let us eliminate 
f

u

∂

∂
 and 

f

v

∂

∂
 from (2) and (3).
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From (2) and (3), we get

, where , etc.
x z x z

x

y z y z

u u p v v p u
u

u u q v v q x

+ + ∂
= =

+ + ∂

i.e. uxvy + uxvzq + uzvy p = uyvx + uyvzp + uzvxq

i.e. (uyvz – uzvy)p + (uzvz –uxvz)q = (uxvy – uyv x) (4)

i.e. Pp + Qq = R, say, where P, Q and R are functions of x, y, z.

Now equation (4) is a partial differential equation of order 1.

This justifies point 3 of Section 4.2.

Note 

 1. To verify point 3 of Section 4.2, we could have taken a functional 

relation containing a function of one argument, but we have shown 

that the order of the partial differential equation formed depends only 

on the number of arbitrary functions eliminated and not on the number 

of arguments of the function.

 2. The equation (4) is called Lagrange's linear equation, whose solution 

will be discussed later.

 Worked Examples 4(a)

Example 1

Form the partial differential equation by eliminating the arbitrary constants a and b 

from the following. 

(i) log z = a log x + 21 loga y b- +

(ii) (x – a)2 + (y – b)2 = z2 cot 2 a

  (i) log z = a log x + 21 loga y b- +  (1)

  Differentiating (1) partially with respect to x and then with respect to y, we 

get

 
1 a
p

z x
=  (2)

and  
2

1 1 a
q

z y

-

=  (3)

If we ignore (1), b is eliminated.
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  Form (2), 
px

a
z

=  and using this in (3), we get

2 2

2

2 2 2

1 1
1

p x
q

z y z

Ï ¸Ô Ô
= -Ì ˝

Ô ÔÓ ˛

i.e. 
2 2 2 2

2 2

p x q y

z z

+  = 1

or p
2 x2 + q2 y2 = z2

(ii)     (x – a)2 + (y – b)2 = z2 cot2 a (1)

Differentiating (1) partially with respect to x and then respect to y, we get

 2(x – a) = 2zp cot2 a (2)

and 2(y – b) = 2zq cot2 a (3)

Using (2) and (3) in (1), we have

 z
2(p2 + q2) cot4 a = z2 cot2 a

i.e. p
2 + q2 = tan2 a

Example 2

Form the partial differential equation by eliminating the arbitrary constants a and b 
from the following. 

 (i) 2 21 log ( 1)a z z x ay b+ + - = + +

 (ii) z = 

2 2 2
2 2 2 2

2 2

1 1
log

2 2 2

a x x a
x x a y y a b

y y a

Ï ¸+ +Ô Ô
+ + - + +Ì ˝

+ -Ô ÔÓ ˛

(i)      2 21 log ( 1)a z z x ay b+ + - = + +  (1)

  Differentiating (1) partially with respect to z and then with respect to y, we 

get

 2

2 2

1
1 1

1 1

z
a p

z z z

Ï ¸Ô Ô
+ ◊ ◊ +Ì ˝

+ - -Ô ÔÓ ˛

 = 1

i.e. 2 2
1 / 1a p z+ ◊ -  = 1 (2)

and  2

2 2

1
1 1

1 1

z
a q

z z z

Ï ¸Ô Ô
+ ◊ ◊ +Ì ˝

+ - -Ô ÔÓ ˛

 = a

i.e. 2

2

1

1

q
a

z

+ ◊

-

 = a (3)
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  From (2) and (3), we get 
1p

q a
=  (4)

  Using (4) in (2), we get

        

2

2

2
1 1

q
p z

p

+ ◊ = -

  i.e. 
2 2 2

1p q z+ = -  or p
2 + q2 + 1 = z2

 (ii) 
2

2 2 2 2 2 21 1
log( )

2 2 2

a
z x x a y y a x x a= + + - + + +

  
2

2 2
log( )

2

a
y y a b- + - +  (1)

  Differentiating (1) partially with respect to x,

2

2 2

2 2 2 2 2 2

1 1
1

2 2

x a x
p x x a

x a x x a x a

Ï ¸ Ï ¸
Ô Ô Ô Ô

= ◊ + + + ◊ +Ì ˝ Ì ˝
+ + + +Ô Ô Ô ÔÓ ˛ Ó ˛

      
2 2 2

2 2

2 2 2 2

1 2

2

x a a

x a

x a x a

È ˘+Í ˙= + = +
Í ˙+ +Î ˚

 (2)

  Similarly, differentiating (1) partially with respect to y, we get

 q = 2 2
y a-

  From (2) and (3),

 p
2
 – x

2 = y2
 – q

2

i.e. p
2
 + q

2 = x2
 + y

2

Example 3
Form the partial differential equation by eliminating the arbitrary constants a, b and 

c from 
2 2 2

2 2 2
1.

x y z

a b c
+ + =

We note that the number of constants is more than the number of independent 

variables. Hence the order of the resulting equation will be more than 1.

 
2 2 2

2 2 2

x y z

a b c
+ +  = 1 (1)

Differentiating (1) partially with respect to x and then with respect to y, we get

 
2 2

2 2x z
p

a c

+  = 0 (2)

and 
2 2

2 2y z
q

b c
+  = 0 (3)
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Differentiating (2) partially with respect to x,

  2

2 2

1 1
( )zr p

a c

+ +  (4)

where r = 
2

2

z

x

∂

∂

From (2),       
2

2

c zp

xa

- =  (5)

From (4),        
2

2

2

c
zr p

a

-
= +  (6)

From (5) and (6), we get

22

2

z z z

xz x z

x xx

∂ ∂ ∂Ê ˆ
+ =Á ˜Ë ¯∂ ∂∂

 which is the required partial differential equation. This 

is not the only way of eliminating a, b and c. Had we differentiated (2) partially with 

respect to y, we would have got

                          

2

2

2
{ } 0, where

z
zs pq s

x yc

∂
+ = =

∂ ∂

i.e. 
2
z z z

z
x y x y

∂ ∂ ∂
+ ◊

∂ ∂ ∂ ∂
 = 0

which is also a partial equation corresponding to (1).

If we differentiate (3) partially with respect to y and eliminate b and c, we will get 

yet another partial differential equation, namely

 

22

2

z z z
yz z

y yy

Ê ˆ∂ ∂ ∂
+ -Á ˜∂ ∂Ë ¯∂

 = 0

Example 4
Find the partial differential equation of the family of planes, the sum of whose x, y, 

z intercepts is unity. 

The equation of a plane which cuts off intercepts a, b, c on the coordinate axes is 

 
x y z

a b c
+ +  = 1 (1)

If sum of the intercepts is unity, a + b + c = 1 or

 c = 1 – a – b (2)

Using (2) in (1), we get the equation of a plane, the sum of whose x, y, z-intercepts 

is unity as

  1
1

x y z

a b a b
+ + =

- -

or        b(1 – a – b)x + a(1 – a – b)y + abz = ab(1 – a – b) (3)
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If a and b are treated as arbitrary constants, (3) represents the family of planes 

having the given property. Differentiating (3) partially with respect to x and then with 

respect to y, we have

 b(1 – a – b) + abp = 0 or 1 – a – b = –ap (4)

and  a(1 – a – b) + abq = 0 or 1 – a – b = –bq (5)

From (4) and (5), we get

 ap = bq or 
a b

k
q p
= =  (5)

Using (6) in (4), 1 – k(p + q) = –kpq

i.e. k = 
1

p q pq+ -

 

\ , and 1
q p pq

a b a b
p q pq p q pq p q pq

-
= = - - =

+ - + - + -

Using these values in (3), we have

 –k
2
p

2
qx –k

2
pq

2
y + k2

pqz = –k
3
p

2
q

2

i.e. –px – qy + z = –kpq

or z = px + qy – ,

pq

p q pq+ -

 which is the required partial differential equation. 

Example 5

Find differential equation of all planes which are at a constant distance k from the 

origin. 

The equation of a plane which is at a distance k from the origin is 

x cos a + y cos b + z cos n = k

where cos a, cos b, cos n are the direction cosines of a normal to the plane.

Taking cos a = a, cos b = b and cos n = c and noting that a2 + b2 + c2 = 1, the 

equation of the plane can be assumed as

  
2 2

1ax by a b z k+ + - - =
 (1)

If a and b are treated as arbitrary constants, equation (1) represents all planes 

having the given property.

Differentiating (1) partially with respect to x and then with respect to y, we have

  2 2
1 0a a b p+ - - =  (2)

and   2 2
1 0b a b q+ - - =  (3)
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From (2) and (3), 2 2
1

a b
a b

p q
= = - - -  = l say

\ a = lp, b = lq and 2 2 2
1 ( )p ql- +  = –l

i.e. 1 – l2(p2 + q2) = l2

\ l2 = 
2 2 2 2

1 1
or =

1 1p q p q

l -

+ + + +

 (Q l is negative, as l = 2 2
1 a b- - -

) 

Using these values in (1), we get 

 lpx + lqy – lz = k

i.e. z = px + qy 
k

l
-  or 

z = px + qy + 2 2
1 ,k p q+ +  which is the required partial differential equation. 

Example 6
Find the differential equation of all spheres of the same radius c having their centres 

on the yoz-plane.

The equation of a sphere having its centre at (0, a, b), that lies on the yoz-plane 

and having its radius equal to c is

  x2 + (y – a)2 + (z – b)2 = c2 (1)

If a and b are treated as arbitrary constants, (1) represents the family of spheres 

having the given property.

 2x + 2(z – b)q = 0 (2)

and  2(y – a) + 2(z – b)q = 0 (3)

From (2),  z – b = 
x

p
-  (4)

Using (4) in (3),  y – a = 
qx

p
 (5)

Using (4) and (5) in (1), we get

  

2 2 2

2 2

2 2

q x x
x c

p p

+ + =

i.e. (1 + p2 + q2)x2 = c2 p2, which is the required partial differential equation.
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Example 7
Find the differential equation of all spheres whose centres lie on the x-axis. 

The equation of any sphere whose centre is (a, 0, 0) (that lies on the x-axis) and whose 

radius is b is

 (x – a)2 + y2 + z2 = b2 (1)

If a and b are treated as arbitrary constants, (1) represents the family of spheres 

having the given property. 

Differentiating (1) partially with respect to z and then with respect to y, we have

 2(x – a) + 2zp = 0 (2)

 2y + 2zq  = 0 (3)

The required equation is provided by (3).

i.e.  it is 0
z

z y
y

∂
+ =

∂

Example 8

Find the differential equation of all spheres whose radii are the same.

The equation of all spheres with equal radius can be taken as

 (x – a)2 + (y – b)2 + (z – c)2 = R2 (1)

where a, b, c are arbitrary constants and R is a given constant.

Differentiating (1) partially with respect to x and then with respect to y, we have 

  (x – a) + (z – c)p = 0 (2)

  (y – b) + (z – c)q = 0 (3)

Differentiating (2) and (3) with respect to x and y respectively, we get

  1 + (z – c) r + p2 = 0 (4)

and  1 + (z – c) t + q2 = 0 (5)

Eliminating (z – c) from (4) and (5), we have

  

2

2

1

1

r p

t q

+
=

+

i.e. r (1 + q2) = t (1 + p2), where r = 
2

2

z

x

∂

∂
 and t = 

2

2

z

y

∂

∂
.

Note 
The answer is not unique. We can get partial differential equations.
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Example 9

Form the partial differential equation by eliminating the arbitrary function ‘f ’ from

 (i) z = eay f(x + by); and

 (ii) 2 1
2 logz y f y

x

Ê ˆ
= + +Á ˜Ë ¯

 (i) z = eay
 . f(x + by)

i.e. e
–ay

z = f(x + by) (1)

  Differentiating (1) partially with respect to x and then with respect to y, we 

get

 e
–ay

p = f ¢(u) ◊ 1 (2)

 e
–ay

q – ae
–ay

z = f ¢(u)b (3)

  where u = x + by

  Eliminating f¢(u) from (2) and (3), we get

 
q az

p

-

 = b

i.e. q = az + bp

 (ii)                                     z = 2 1
2 logy f y

x

Ê ˆ
+ +Á ˜Ë ¯

i.e. z – y2 = 
1

2 logf y
x

Ê ˆ
+Á ˜Ë ¯

  Differentiating (1) partially with respect to x and then with respect to y, we 

get

 p = 
2

1
2 ( )f u

x

-Ê ˆ
◊¢ Á ˜Ë ¯

 (2)

and  q – 2y = 
1

2 ( )f u
y

Ê ˆ
◊¢ Á ˜Ë ¯

 (3)

where 
1

logu y
x

= +

Dividing (2) by (3), we have

       
2

2

p y

q y x

-

=

-

i.e. px
2 + qy = 2y

2

which is the required partial differential equation.
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Example 10
From the partial differential equation by eliminating function ‘f ’ from 

 (i) xy + yz + zx = 
z

f
x y

Ê ˆ
Á ˜+Ë ¯

 and 

 (ii) f(z – xy, x2 + y2) = 0

 (i) xy + yz + zx = 
z

f
x y

Ê ˆ
Á ˜+Ë ¯

 (1)

  Differentiating (1) partially with respect to x and then with respect to y, we 

have

 y + yp + xp + z = f ¢ (u) 
2

( )

( )

x y p z

x y

Ï ¸+ -Ô Ô
Ì ˝

+Ô ÔÓ ˛
 (2)

and  y + yp + z + xq = f ¢ (u) 
2

( )

( )

x y q z

x y

Ï ¸+ -Ô Ô
Ì ˝

+Ô ÔÓ ˛
 (3)

Dividing (2) by (3), we have

 
( ) ( )

( ) ( )

y z x y p

z x x y q

+ + +

+ + +

 = 
( )

( )

x y p z

x y q z

+ -

+ -

  i.e. (x + y) (z + x) p – z(z + x) – z(x + y)q

  = (x + y) (y + z)q – z (y + z) –z(x + y)p

  i.e. (x + y)(x + 2z) p – (x + y) (y + 2z)q = z(x – y)

  which  is a Lagrange linear equation.

 (ii) f (z – xy, x2 + y2) = 0 (1)

 f (u ◊ v) = 0

  If we assume that u can be expressed as a single-valued function of v, (1) can 

be rewritten as
  z – xy = f (x2 + y2)  (2)

where f is an arbitrary function. 

Differentiating (2) partially with respect to x and then with respect to y, we have 

  p – y = f ¢(u)·2x (3)

and   q – x = f ¢(u)·2y (4)

Eliminating f¢ (u) from (3) and (4), we get

  

2 2
or

p y x
yp xq y x

q x y

-

= - = -

-

Note 
Without assuming that u = f(v), we can eliminate ‘f ’ and form the equation 
alternatively as given in the following example.
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Example 11

Form the differential equation by eliminating ‘f ’ from

 (i) f (z – xy, x2 + y2) = 0 and

 (ii) f (x2 + y2 + z2, ax + by + cz) = 0

(i) f (z – xy, x2 + y2) = 0 (1)

By putting z – xy = u and x2 + y2 = v, (1) becomes

  f (u, v) = 0 (2)

Differentiating (2) partially with respect to x and then with respect to y, we have

  
( ) (2 ) 0

f f
p y x

u v

∂ ∂
◊ - + =

∂ ∂  (3)

and   
( ) (2 ) 0

f f
q x y

u v

∂ ∂
- + =

∂ ∂  (4)

Eliminating and
f f

u v

∂ ∂

∂ ∂
 from (3) and (4), we get

  

2
0

2

p y x

q x y

-

=

-

i.e.  2y(p – y) –2x(q – x)  = 0

or  yp – xq = y2 – x2

(ii)  f (x2 + y2 + z2, ax + by + cz) = 0 (1)

Putting u = x2 + y2 + z2 and v = ax + by + cz, (1) becomes

  f(u, v) = 0 (2)

Differentiating (2) partially with respect to x and then with respect to y, we have

  
(2 2 ) ( ) 0

f f
x zp a cp

u v

∂ ∂
+ + + =

∂ ∂  (3)

and  
(2 2 ) ( ) 0

f f
y zq b cq

u v

∂ ∂
+ + + =

∂ ∂  (4)

Eliminating and
f f

u v

∂ ∂

∂ ∂
 from (3) and (4), we get

  

0
x zp a cp

y zq b cq

+ +

=

+ +

i.e.  (x + zp) (b + cq) = (y + zq) (a + cp)

i.e.  (cy – bz)p + (az – cx)q = b – ay
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Example 12

Form the partial differential equation by eliminating the arbitrary functions f and g 

from z = f(2x + y) + g(3x – y)

 z = f (2x + y) + g(3x – y) (1)

Differentiating (1) partially with respect to x,

 p = f¢(u)·2 + g¢ (v)·3 (2)

where u = 2x + y and v = 3x – y

Differentiating (1) partially with respect to y,

 q = f ¢(u)·1 + g¢(v) (–1) (3)

Differentiating (2) partially with respect to x and then with respect to y, 

 r = f ¢¢(u)·4 + g¢¢(v)·9 (4)

and  s = f ¢¢(u)·2 + g¢¢(v)·(–3) (5)

Differentiating (3) partially with respect to y,

 t = f ¢¢(u)·1 + g¢¢(v)·1 (6)

Eliminating f¢¢(u) and g¢¢(v) from (4), (5) and (6) using determinants, we have

  

4 9

2 3 0

1 1

r

s

t

- =

i.e.  5r + 5s – 30t = 0

or  

2 2 2

2 2
6 0

z z z

x yx y

∂ ∂ ∂
+ - =
∂ ∂∂ ∂

Example 13

Form the differential equation by eliminating the arbitrary function f and f from  

z = f (ax + by) + f (cx + dy).

 z = f(u) + f(v) (1)

where u = ax + by  and  v = cx + dy
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Differentiating partially with respect to x and y,

 p = f¢(u)◊ a + f¢(v) ◊ c (2)

 q = f¢(u) ◊ b + f¢(v)d (3)

 r = f¢¢(u) ◊ a2 + f¢¢(v) ◊ c2 (4)

 s = f¢¢(u) ◊ ab + f¢¢(v) ◊ cd (5)

 t = f¢¢(u) ◊ b2 + f¢¢(v) ◊ d2 (6)

Eliminating f¢¢(u) and f¢¢(v) from (4), (5), (6), we have

  

2 2

2 2

0

r a c

s ab cd

t b d

=

i.e.  (abd
2 – b2

cd)r – (a2
d

2 – b2
c

2)s + (a2
cd – abc

2)t = 0

i.e.  bd(ad – bc)r – (ad + bc) (ad – bc)s + ac(ad – bc )t = 0

i.e.  

2 2 2

2 2
( ) 0.

z z z
bd ad bc ac

x yx y

∂ ∂ ∂
- + + =

∂ ∂∂ ∂

Example 14

Form the differential equation by eliminating f and g from z = xf (ax + by) + g(ax + by).

 z = x ◊ f(u) + g(u) (1)

where u = ax + by.

Differentiating partially with respect to x and y, 

 p = x f ¢ (u) ◊ a + f (u) + g¢(u) ◊ a (2)

 q = x f¢ (u) ◊ b + g¢(u) ◊ b (3)

 r = x ◊ f ¢¢(u)a2 + f ¢ (u) ◊ 2a + g¢¢(u) ◊ a2 (4)

 s = x f ¢¢ (u)ab + f ¢ (u)b + g¢¢(u)ab (5)

 t = x f ¢¢ (u)b
2 + g¢¢ (u) ◊ b2 (6)

[(4) × b – (5) × 2a] gives

 br – 2as = –a
2
b[xf ¢¢ (u) + g¢¢(u)]  (7)

  = 
2

2

1
,a b t

b

- ¥  from (6)

i.e.    

2 2 2

2 2

2 2
2 0

z z z
b ab a

x yx y

∂ ∂ ∂
- + =

∂ ∂∂ ∂
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Example 15

Form the differential equation by eliminating the arbitrary functions f and g from

z = f(x + iy) + (x + iy)g (x – iy),   where i = 1-  and x + iy π z

z = f(u) + (x + iy) g(v) (1)

where u = x + iy  and   v = x – iy.

Differentiating partially with respect to x and y,

  p = f ¢ (u) ◊ 1 + (x + iy)g¢(v) ◊ 1 + g(v) (2)

  q = f ¢ (u) ◊ i + (x + iy)g¢(v) (–i) + g(v) ◊ i (3)

  r = f ¢¢ (u) ◊ 1 + (x + iy)g¢¢(v) ◊ 1 + 2g¢(v) ◊ 1 (4)

  s = f ¢¢ (u) ◊ i + (x + iy)g¢¢(v) (–i) (5)

  t = f ¢¢ (u) (–1) + (x + iy)g¢¢(v) ◊ (–1) + 2g¢(v) (6)

Adding (4) and (6), we get

  r + t = 4g¢(v) (7)

From (2) and (3), we get

  p + iq = 2(x + iy)g¢(v) (8)

Eliminating g¢(v) from (7) and (8), we get

  r + t = 
( )

2
p iq

x iy

+

+

i.e.  (x + iy) 

2 2

2 2
2

z z z z
i

x yx y

Ê ˆ Ê ˆ∂ ∂ ∂ ∂
+ = +Á ˜ Á ˜∂ ∂Ë ¯∂ ∂Ë ¯

Note 
Equation (5), giving the value of s, is not all used.

Example 16

If u = f (x2 + y) + f(x2 – y), show that 

2 2

2

2 2

1
4 0.

u u u
x

x xx y

∂ ∂ ∂
- - =

∂∂ ∂

  u = f(v) + f (w) (1)

where v = x2 + y and w = x2 – y.
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Differentiating partially with respect to x and y,

 
u

x

∂

∂
 = ( ) 2 ( ) 2f v x w xf◊ + ◊¢ ¢  (2)

 
u

y

∂

∂
 = ( ) 1 ( ) ( 1)f v wf◊ + ◊ -¢ ¢  (3)

 
2

2

u

dx

∂
 = 2 2

( ) 2 ( ) 4 ( ) 2 ( ) 4f v f v x w w xf f◊ + ◊ + ◊ + ◊¢ ¢¢ ¢ ¢¢  (4)

 
2
u

x y

∂

∂ ∂
 = ( ) 2 ( ) ( 2 )f v x w xf◊ + ◊ -¢¢ ¢¢  (5)

 
2

2

u

y

∂

∂
 = ( ) 1 ( ) 1f v wf◊ + ◊¢¢ ¢¢  (6)

Eq. (4) can be rewritten as

 
2

2

u

x

∂

∂
 = 2

2{ ( ) ( )} 4 { ( ) ( )}f v w x f v wf f+ + +¢ ¢ ¢¢ ¢¢

  = 
2

2

2

1
2 4 ,

2

u u
x

x x y

∂ ∂
¥ + ◊

∂ ∂
  from (2) and (6)

i.e. 
2 2

2

2 2

1
4

u u u
x

x xx y

∂ ∂ ∂
- -

∂∂ ∂
 = 0

Example 17

Form the differential equation by eliminating f and f from z = f (x + y) ◊ f(x – y).

  z = f (u) ◊ f(v) (1)

where u = x + y and v = x – y.

Differentiating partially with respect to x and y, we get

  p = f (u) ◊ f¢ (v) + f ¢ (u) ◊ f(v) (2)

  q = f (u)f¢ (v) (–1) + f ¢ (u)f (v) (3)

  r = f (u)f¢¢ (v) + 2f ¢(u)f¢ (v) + f ¢¢ (u) ◊ f (v) (4)

  s = f (u)f¢¢(v) (–1) + f ¢¢ (u) ◊ f (v) (5)

  t = f (u) ◊ f¢¢ (v) – 2 f ¢ (u)f¢ (v) + f ¢¢ (u)f(v) (6)

Subtracting (5) from (3), we get

  r – t = 4f ¢(u) ◊ f¢(v) (7)
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From (1) and (2), we get

 p
2 – q2 = 4f(u) ◊ f(u) ◊ f ¢ (u) ◊ f¢ (v)

  = z (r – t) from (1) and (7)

i.e. 
2 2

2 2

z z
z

x y

Ê ˆ∂ ∂
-Á ˜∂ ∂Ë ¯

 = 

22

z z

x y

Ê ˆ∂ ∂Ê ˆ
-Á ˜ Á ˜Ë ¯∂ ∂Ë ¯

Example 18

Form the differential equation by eliminating f and f from z = xf (y/x) + yf(x).

  z = xf (u) + yf(x) (1)

where u = 
y

x

Differentiating partially with respect to x and y, we get

  p = 
2

( ) ( ) ( )
y

xf u f u y x
x

f
Ê ˆ
◊ - + +¢ ¢Á ˜Ë ¯

i.e.  p = ( ) ( ) ( )
y

f u f u y x
x

f- ◊ + +¢ ¢  (2)

  q = 
1

( ) ( )x f u x
x

f◊ ◊ +¢

i.e.  q = f ¢(u) + f ¢(x) (3)

  r = 
2

( ) ( )
y y

f u y x
x x

f
Ê ˆ

- ◊ - +¢¢ ¢¢Á ˜Ë ¯

i.e.  r = 
2

3
( ) ( )

y
f u y x

x
f+¢¢ ¢¢  (4)

  s = 
2

( ) ( )
y

f u x
x

f- +¢¢ ¢  (5)

  t = 
1

( )f u
x

¢¢  (6)

Eliminating f ¢¢(u) from (5) and (6), we get

  
y

s t
x

+  = f¢(x) (7)

From (2) and (3), we get

 px + qy = {xf(u) + yf(x)} + dyf¢ (x)

i.e. px + qy = z + xyf¢ (x) (8)

Eliminating f ¢(x) from (7) and (8), we get

 xys + y2
t = px + qy – z

i.e. 

2 2

2

2

z z
xy y

x y y

∂ ∂
+

∂ ∂ ∂
 = 

z z
x y z

x y

∂ ∂
+ -

∂ ∂
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Example 19

Form differential equation by eliminating f and f from z = f(y) + f(x + y + z)

  z = f(y) + f(u) (1)

where u = x + y + z. 

Differentiating partially with respect to x and y, we get

  p = f¢(u) (1 + p) (2)

  q = f ¢(y) + f¢ (u) (1 + q) (3)

  r = f¢(u) ◊ r = f¢¢(u) ◊ (1 + p)2 (4)

  s = f¢(u) ◊ s + f¢¢(u) (1 + p) (1 + q) (5)

  t = f ¢¢ (y) + f¢(u)t + f¢ (u) (1 + q)2 (6)

From (4),   r{1 – f¢ (u)} = (1 + p)2f¢¢ (u) (7)

From (5),   s{1 – f¢ (u)} = (1 + p) (1 + q)f¢¢ (u) (8)

Dividing (7) by (8), we get

  

1

1

r p

s p

+
=

+

i.e.  
2 2

2 2
1 1

z z z z

y xx x

Ê ˆ∂ ∂ ∂ ∂Ê ˆ
+ = +Á ˜Á ˜ Ë ¯∂ ∂Ë ¯ ∂ ∂

Example 20

Form the differential equation by eliminating the arbitrary function f from

  z = 
1

( ) ( ).y x y x
x
f f- + -¢

Note 
Though f¢ is the derivative of f, we should not assume that only one function 
is to be eliminated. We have to eliminate two functions f and f¢ and hence 
the resulting partial differential equation will be of order 2. 

  z = 
1

( ) ( )u u

x

f f+ ¢  (1)

where u = y – x

Differentiating partially with respect to x and y, we get

 p = 
2

1 1
( ) ( 1) ( ) ( )( 1)u u u

x x

f f f◊ - - + -¢ ¢¢  (2)

 q = 
1

( ) 1 ( ) 1u u

x

f f◊ + ◊¢ ¢¢  (3)

 r = f f f f◊ + + + ◊¢¢ ¢ ¢¢¢
2 3

1 2 2
( ) 1 ( ) ( ) ( ) 1u u u u

x x x

 (4)
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 s = 
2

1 1
( ) ( ) ( )( 1)u u u

xx

f f f- - + -¢ ¢¢ ¢¢¢  (5)

  t = 
1

( ) 1 ( ) 1u u

x

f f◊ + ◊¢¢ ¢¢¢  (6)

From (4) and (6), we get

 r – t = 
2 3

2 2
( ) ( )u u

x x

f f+¢

  = 
2

2 1
( ) ( )u u

xx

f f
Ï ¸

+ ¢Ì ˝
Ó ˛

  = 
2

2
z

x

i.e. 
2 2

2

2 2

z z
x

x y

Ê ˆ∂ ∂
-Á ˜∂ ∂Ë ¯

 = 2z

       Exercise 4(a)

Part A (Short-Answer Questions)

 1. Write down the form of the P.D.E. (partial differential equation), obtained by 

eliminating ‘f ’ from f(u, v) = 0.

Form the P.D.E.s by eliminating the arbitrary constants a and b from the following 

relations:

 2. z = (x + a) (y + b)

 3. z = (x2 + a2) (y2 + b2)

 4. z = ax + by + ab

 5. z = ax + by + a2 + b2

 6. z = ax
3 + by

3

 7. z = a(x + y) + b

 8. ax
2 + by

2 + z2 = 1

 9. (x – a)2 + (y – b)2 = z2.

Form the P.D.E.s by eliminating the arbitrary functions from the following 

relations.

 10. z = f (x2 + y2)

 11. z = f (x3 – y3)

 12. z = f (bx – ay)
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 13. z = f(xy)

 14. z = 
y

f
x

Ê ˆ
Á ˜Ë ¯

 15. z = f (x) + f(y)

 16. z = f (x) + f(y) + axy

 17. z = f (y) + xf(y)

 18. z = yf (x) + f(x)

 19. z = xf (y) + f(y) – sin x

 20. z = yf (x) + f(x) – cos y

Part B

 21. Form the P.D.E. by eliminating a and b from z = xy + 2 2
.y x a b- +

 22. From the P.D.E. by eliminating a and b from z = .
1

a
ax y b

a
- +

+

 23. Form the P.D.E. by eliminating a and b from 4z(1 + a2) = (x + ay + b)2.

 24. Form the P.D.E. by eliminating a and b from z z z a
2 2 2

4+ -{
  - + - } = + +4 4 42 2 2

a z z a x ay blog( ) ( ).

 25. Form the P.D.E. by eliminating a and b from 3z = 3 3/2
2 1 .ax a y b+ - +

 26. Form the P.D.E. of all planes which cut off equal intercepts on the x and y 

axes.

 27. Form the P.D.E. of all planes passing through the origin.

 28. Form the P.D.E. of all spheres whose centres lie on the z-axis.

 29 Form the P.D.E. of all spheres of radius c having their centres on the  

xoy-plane.

 30. Final the P.D.E. of all spheres of radius c having their centres on the  

zox-plane. 

 31. Form the P.D.E. by eliminating the arbitrary function ‘f ’ from 

2 2 2
(a) ; (b) ( )

xy
z f z f x y z

z

Ê ˆ
= = + +Á ˜Ë ¯

 32. Form the P.D.E. by eliminating the arbitrary function f from 

  (a) xyz = f (x + y + z);   (b) 2
( )

xy
f x y z

z
= - +

 33. Form the P.D.E. by eliminating ‘f’ from

  
1 1 1 1

, 0;
x y y z

f
Ê ˆ

- - =Á ˜Ë ¯
  (b) f(x3 – y3, x2 – z2) = 0

 34. Form the P.D.E. by eliminating ‘f’ from

  

2 2 2 2 2
(a) , 0; (b) 2 , 0

y y
x y z x y z

z zx
f f
Ê ˆ Ê ˆ

+ + = - - =Á ˜ Á ˜Ë ¯ Ë ¯
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 35. Form the P.D.E. by eliminating ‘f’ from

  

2 2
(a) , 0; (b) , 0

x y x y z
xy yz zx x y

y z z
f f
Ê ˆ- + +Ê ˆ

+ + = - =Á ˜Á ˜ Ë ¯-Ë ¯

From the P.D.E.s by eliminating the arbitrary functions from the following 

relations.

 36. z = f(x + iy) + g(x – iy),   where i = 1-  and x + iy π z.

 37. z = f(2y + 3x) + g(y + x).

 38. z = f1(y – x) + f2(y + x) + f3(y + 2x).

 39. z = xf(2x + 3y) + g(2x + 3y)

 40. z = f(x + y) + yg(x + y)

 41. z = (x – iy) f(x + iy) + g(x – iy),  where i = 1-  and x + iy π z.

 42. z = ( ) ( )f x y g x y+ + -

 43. z = f(x) ◊ f(y)

 44. z = yf(x) + xf(y)

 45. z = f(x + y + z)+ f(x – y)

4.5  solutIons of partIal dIfferentIal equatIons

The relation between the independent variables and the dependent variable (containing 

arbitrary constants or functions) from which a partial differential equation is formed 

is called the primitive or solution of the P.D.E.

In other words, a solution of a P.D.E. is a relation between the independent and 

the dependent variables, which satisfies the P.D.E. solution of a P.D.E. is also called 

integral of the P.D.E.

As was seen in Section 4.2, the primitive of a P.D.E. may contain arbitrary constants 

or arbitrary function. Accordingly, we have two types of solutions for a P.D.E.

A solution of a P.D.E. which contains as many arbitrary constants as the number 

of independent variables is called the complete solution or complete integral of the 

equation. 

A solution of a P.D.E. which contains as many arbitrary functions as the order of 

the equation is called the general solution or general integral of the equation. 

Both these types of solutions can be obtained for the same P.D.E. For example, 

the equation z = px + qy is obtained when we eliminate the arbitrary constants a and 

b from z = ax + by or the arbitrary functions ‘f ’ from .

y
z x f

x

Ê ˆ
= ◊ Á ˜Ë ¯

Thus z = ax + by is the complete solution and 
y

z x f
x

Ê ˆ
= ◊ Á ˜Ë ¯

 is the general solution 

of the P.D.E. z = px + qy.
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The complete solution z = ax + by can be rewritten as .

y
z x a b

x

Ï ¸Ê ˆ= +Ì ˝Á ˜Ë ¯Ó ˛
 

Comparing this with the general solution ,

y
z xf

x

Ê ˆ
= Á ˜Ë ¯  we note that 

y
a b

x

Ê ˆ
+ Á ˜Ë ¯

 is a 

particular case of f(y/x). Hence the general solution of a P.D.E. is more general than 

the complete solution. Thus when the solution of a P.D.E. is required, we should try 

to give the general solution. However there are certain. P.D.E.s for which methods 

are not available for finding the general solutions directly, but methods are available 

for finding the complete solutions only in other cases. In such cases, we indicate the 

procedure for finding the general solution from the complete solution as explained 

in Section 4.6.

4.6 procedure to fInd general solutIon

Let F(x, y, z, p, q) = 0 (1)

be a first order P.D.E. Let its complete solution be 

 f(x, y, z, a, b) = 0 (2)

where a and b are arbitrary constants.

Let b = f(a) [or a = g(b)], where ‘f ’ is an arbitrary function. 

Then (2) becomes

 f [x, y, z, a, f(a)] = 0 (3)

Differentiating (2) partially with respect to a, we get

 ( )
d

f a
a b

f f∂
+ ◊ ¢

∂ ∂
 = 0 (4)

Theoretically, it is possible to eliminate ‘a’ between (3) and (4).

This eliminant, which contains the arbitrary function ‘f ’, is general solution of (1). 

A solution obtained by giving particular values to the arbitrary constants in the 

complete solution or to the arbitrary functions in the general solution is called a 

particular solution or particular integral of the P.d.E.

Thus for the P.D.E. z = px + qy, for which the complete solution is z = ax + by and 

the general solution is ,

y
z x f

x

Ê ˆ
= ◊ Á ˜Ë ¯

 the following are particular solution.

 (i) z = 2x + 3y

 (ii) z = 3x – 4y

 (iii) 

y

xz x e= ◊

 (iv) sin
y

z x
x

Ê ˆ
= Á ˜Ë ¯

There is yet another type of solution of a P.D.E., called the singular solution or singular 

integral. Geometrically the singular solution of a P.D.E. represents the envelope of 

the family of surfaces represented by the complete solution of that P.d.E. the singular 

solution will neither contain arbitrary constants nor arbitrary functions but at the same 

time cannot be obtained as particular case of the complete or general solution.
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4.7 procedure to fInd sIngular solutIon

Let F(x, y, z, p, q) = 0 (1)

be a first order P.D.E.

Let its complete solution be

 f(x, y, z, a, b) = 0 (2)

Differentiating (2) partially with respect to a and then b, we have

 
a

f∂

∂
 = 0 (3)

and 
b

f∂

∂
 = 0 (4)

The eliminant of a and b from equations (2), (3) and (4), if it exists, is the singular 

solution of the P.D.E. (1).

As pointed out earlier, P.D.E.s can be divided into two categories — one for which 

methods are readily available only for finding complete solutions and the other for 

which methods are available for finding general solutions. first order non-linear 

equations that belong to the first category will be discussed in Section 4.8.

4.8  complete solutIons of fIrst order 
nonlInear p.d.e.s

A P.D.E., the partial derivatives occurring in which are of the first degree, is said to 

be linear; otherwise it is said to be non-linear.

First order non-linear P.D.E.s, for which complete solution can be found out, are 

divided into four standard types. Some first-order non-linear P.D.E.s, which do not 

fall under any of the four standard types, can be transformed into one or the other of 

the standard types by suitable changes of variables. We shall discuss below the special 

methods of finding the complete solutions for these types of equations. 

Type I

Equations of the form f(p, q) = 0, i.e. the P.D.E.s that contain p and q only 

explicitly. 

For equations of this type, it is known that a solution will be of the following 

form, 

  z = ax + by + c (1)

But this solution contains three arbitrary constants, whereas the number of independent 

variables is two. Hence if we can reduce the number of arbitrary constants in (1) by 

one, it becomes the complete solution of the equation f(p, q) = 0. Now from (1), p = a 

and q = b. If (1) is to be a solution of f(p, q) = 0, the values of p and q obtained from 

(1) should satisfy the given equation. 

i.e.  f(a, b) = 0



Linear Algebra and Partial Differential Equations
4-24

Solving this, we can get b = f(a), where f is a known function. Using this value 

of b in (1), the complete solution of the given P.D.E. is

 z = ax + f(a)y + c (2)

The general solution can be obtained from (2) by the method given earlier. 

To find the singular solution, we have to eliminate a and c from 

 z = ax + f(a)y + c,  x + f¢(a)y = 0 and 1 = 0

of which the last equation is absurd. Hence there is no singular solution for equations 

of type I. 

Type II

Clairaut’s type, the P.D.E.s of the form

 z = px + qy + f (p, q) (1)

For equations of this type also, it is known that a solution will be on the form 

 z = ax + by + c (2)

If we can reduce the number of arbitrary constants in (2) by one, it becomes the 

complete solution of (1).

From (2) we get p = a and q = b.

As before,  z = ax + by + f(a, b) (3)

From (2) and (3), we get c = f(a, b)

Thus the complete solution of (1) is given by (3).

Note 
Without going through all these formalities, we can quickly write down the 
complete solution of a clairaut’s type of P.D.E. by simply replacing p and q by 
a and b in it respectively. 

The general and singular solution of (1) can be found out by the usual methods. 

For clairaut’s type of equations, singular solutions will normally exist.

Type III

Equations not containing x and y explicitly, i.e. equations of the form

 f (z, p, q) = 0 (1)

For equations of this type, it is known that a solution will be of the form 

 z = f (x + ay) (2)

where ‘a’ is an arbitrary constant and f is a specific function to be found out.
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Putting x + ay = u, (2) becomes z = f (u) or z(u)

\ p = 
d d

d d

z u z

u x u

∂
◊ =
∂

and  q = 
d d

d d

z u z

a

u u u

∂
◊ =
∂

If (2) is to be a solution of (1), the values of p and q obtained should satisfy (1).

i.e. 
d

, ,
d d

z z
f z a

u u

∂Ê ˆ
Á ˜Ë ¯

 = 0 (3)

From (3), we can get

 
d

d

z

u

 = y (z, a) (4)

Now (4) is an ordinary differential equation, which can be solved by the variable 
separable method. 

The solution of (4), which will be of the form g(z, a) = u + b or g(z, a) = x + ay + 

b, is the complete solution of (1).

The general and singular solutions of (1) can be found out by the usual methods. 

Type IV

Equations of the form

  f (x, p) = g(y, q) (1)

that is equations which do not contain z explicitly and in which terms containing p 

and x can be separated from those containing q and y.

To find the complete solution of (1), we assume that f(x, p) = g(y, q) = a, where 

‘a’ is an arbitrary constant.

Solving f(x, p) = a, we can get p = f(x, a) and solving g(y, q) = a, we can get q = 

y(y, a).

Now 

 dz = d d or d d
z z

x y p x q y
x y

∂ ∂
+ +

∂ ∂

i.e. dz = f(x, a)dx + y (y, a)dy

Integrating with respect to the concerned variables, we get

 z = ( , ) d ( , ) dx a x y a y bf y+ +Ú Ú  (2)

The complete solution of (1) is given by (2), which contains two arbitrary constants 

a and b.

The general and singular solutions of (1) are found out by the usual methods.
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4.9  equatIons reducIble to standard 
types transformatIon

Type A

Equations of the form f(xm p, yn q) = 0 or f (xm p, yn q, z) = 0,

where m and n are constants, each not equal to 1. 

We make the transformations x1 – m = X and y1 – n = Y.

Then p = (1 ) , where and
mz z X z

m x P P
x X x X

-∂ ∂ ∂ ∂
= ◊ = - ∫

∂ ∂ ∂ ∂

 q = (1 ) , where
nz z Y z

n y Q Q
y Y y Y

-∂ ∂ ∂ ∂
= ◊ = - ∫

∂ ∂ ∂ ∂

Therefore the equation f (xm p, yn
q) = 0 reduces to f{(1 – m)P, (1 – n)Q} = 0, which 

is a type I equation.

The equation f (xm p, yn 
q, z) = 0 reduces to f{(1 – m)P, (1 – n)Q, z} = 0, which is 

a type III equation. 

Type B

Equations of the form f (px, qy) = 0 or f (px, qy, z) = 0

Note 
These equations correspond to m = 1 and n = 1 of the type A equations.

The required transformations are

 log x = X and log y = Y

In this case, 
1
or and

z z X z z z Y
p px P q

x X x X x y Y y

∂ ∂ ∂ ∂ ∂ ∂ ∂
= = ◊ = ◊ = = = ◊ =

∂ ∂ ∂ ∂ ∂ ∂ ∂

1
or , where and .

z z z
qy Q P Q

Y y X Y

∂ ∂ ∂
◊ = ∫ ∫

∂ ∂ ∂

Therefore the equation f (px, qy) = 0 reduces to f (P, Q) = 0, which is a type I 

equation.

The equation f (px, qy, z) = 0 reduces to f (P, Q, z) = 0, which is a type III 

equation.

Type C

Equations of the form f(zk
p, zk

q) = 0 or f (zk
p, zk

q, x, y) = 0, where k is a constant  

π –1.

We make the transformation Z = zk + 1

Then P = ( 1) and
kZ

k z p
x

∂
= +

∂

 Q = ( 1)
kZ

k z q
y

∂
= +

∂
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Therefore the equation f (zk p, zk q) = 0 reduces to , 0,
1 1

P Q
f

k k

Ê ˆ
=Á ˜Ë ¯+ +

 which is a  

type I equation and the equation f(zk p, zk
q, x, y) = 0 reduces to , , , 0,

1 1

P Q
f x y

k k

Ê ˆ
=Á ˜Ë ¯+ +

 

which may be a type IV equation.

Type D

Equations of the form , 0
p q

f
z z

Ê ˆ
=Á ˜Ë ¯

 or f (p/z, q/z, x, y) = 0, which correspond to  

k = – 1 of type C equations.

The required transformation is Z = log z

Then P = 
1 1

and
Z Z

p Q q
x z y z

∂ ∂
= = =

∂ ∂

Therefore the equations f (p/z, q/z) = 0 and f (p/z, q/z, x, y) = 0 reduce respectively 
to type I and type IV equations.

Type E

Equations of the from f (xm
z

k
p, yn

z
k
q) = 0 where m, n π 1; k π –1

We make the transformations

 X = x1 – m, Y = y1 – n and Z = zk + 1

Then P = 
∂ ∂

= ◊ ◊
∂ ∂

d d

d d

Z Z z x

X z x X

  = + ◊

-

( 1)
1

m
k x

k z p
m

and  Q = ( 1)
1

n
k y

k z q
n

+

-

\   The given equation reduces to

 
1 1

,
1 1

m n
f P Q

k k

Ï ¸- -Ê ˆ Ê ˆ
Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯+ +Ó ˛

 = 0

which is a type I equation.

Type F

Equations of the form , 0
px qy

f
z z

Ê ˆ
=Á ˜Ë ¯

By putting X = log x, Y = log y and Z = log z the equation reduces to f (P, Q) = 0 

where and .
Z Z

P Q
X Y

∂ ∂
= =
∂ ∂
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 Worked Examples 4(b)

Example 1

Solve the equation pq + p + q = 0.

This equation contains only p and q explicitly.

\   Let a solution of the equation be

 z = ax + by + c (1)

From (1), we get p = a and q = b.

Since (1) is a solution of the given equation,

  ab + a + b = 0 (1)

\ b = 
1

a

a

-

+

 (2)

Using (2) in (1), the required complete solution of the equation

 z = 
1

a
ax y c

a
- +

+

 (3)

To find the general solution, we put c = f (a) in (3), where ‘f ’ is an arbitrary function.

i.e. z  = ( )
1

a
ax y f a

a
- +

+

 (4)

Differentiating (4) partially with respect to a, we get

 
2

1
( )

( 1)
x y f a

a
- + ¢

+
 = 0 (5)

Eliminating a between (4) and (5), we get the required general solution. 

To find the singular solution, we have to differentiate (3) partially with respect to 

a and c.

When we differentiate (3) partially with respect to c, we get 0 = 1, which is 

absurd. 

Hence, no singular solution exists for the given equation.

Example 2

Solve the equation p2 + q2 = 4pq.

 p
2 + q2 – 4pq = 0 (1)

As (1) contains only p and q, a solution of (1) will be of the form

 z = ax + by + c (2)

From (2), we get p = a and q = b.
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Since (2) is a solution of (1), 

  a2 + b2 – 4ab = 0

Solving for b, we get

 b = 
2 2

4 16 4

2

a a a± -

  = (2 3)a±

Using in (2), the complete solution of (1) is 

 z = (2 3)ax ay c+ ± +  (3)

There is no singular solution for (1), as in Example 1.

To get the general solution, we put c = f (a) in (3), which becomes

 z = (2 3) ( )ax ay f a+ ± +  (4)

where f is an arbitrary function.

Differentiating (4) partially with respect to a, we get

 0 = (2 3) ( )x y f a+ ± + ¢  (5)

The eliminant of ‘a’ between (4) and (5) gives the general solution of (1).

Example 3

Solve the equation x4 p2 – yzq – z2 = 0

As it is, the equation
  x4 p2 – yzq – z2 = 0 (1)

does not belong to any of the four standard types.

Rewriting Eq. (1), we get

 

2
2

x p yq

z z

Ê ˆ Ê ˆ
-Á ˜ Á ˜Ë ¯Ë ¯

 = 1 (2)

As L.H.S. of (2) is a function of 

2
x p

z
 and 

yq

z
, we make the transformations 

 X = x–1, Y = log y and Z = log z

(by the transformation rules for type A and type F equations)

Then  p = 
2

d d 1

d d

z z Z X
zP

x Z X x x

∂ ∂ Ê ˆ
= ◊ ◊ = -Á ˜Ë ¯∂ ∂

\ 
2
x p

x

 = – P

and  q = 
d d 1

d d

z z Z Y
zQ

y Z Y y y

∂ ∂
= ◊ ◊ = ◊

∂ ∂

\ 
yq

z

 = Q
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Equation (2) becomes

 P
2 – Q = 1 (3)

Equation 3 contains only P and Q explicitly.

Therefore a solution of (3) will be of the form 

 Z = aX + bY + c (4)

\   P = a and Q = b, obtained from (4), satisfy Eq. 3.

\ a
2 – b = 1

\ b = a2 – 1

\   The complete solution of (3) is

 Z =aX + (a2 – 1)Y + c

\   The complete solution of (1) is

 log z = 2( 1) log
a

a y c
x
+ - +

Singular solution does not exist and general solution is found out as usual.

Example 4

Solve the equation 
2 2

2

2 2
1.

p q
z

x y

Ê ˆ
+ =Á ˜

Ë ¯

The given equation does not belong to any of the four standard types.

It can be rewritten as 

  (x–1
zp)2 + (y–1 zq)2 = 1 (1)

which of the form (xm
z

k
p)2 + (yn

z
k
q)2 = 1 [Refer to type E equations]

\   We make the transformations

 X = z1 – m, Y = y1–n and Z = zk + 1

i.e. X = x2, Y = y2 and Z = z2

Then

 p = 
d d 1

2
d d 2

z z Z X
P x

x Z X x z

∂ ∂
= ◊ ◊ = ◊ ◊

∂ ∂

\ P = x–1
zp

Similarly, Q = y–1
zq.
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Using these in (1), it becomes

  P2 + Q2 = 1 (2)

As (2) contains only P and Q explicitly, a solution of the equation will be of the 
form

 Z = aX + bY + c (3)

\   P = a and Q = b, obtained form (3), satisfy Eq. 2.

i.e.  a2 + b2 = 1.

\   The complete solution of (2) is

 Z  = 
2

1aX a Y c± - +

\   The complete solution of (1) is 

 z
2 = 

2 2 2
1ax a y c± - +

Singular solution does not exist and general solution is found out as usual.

Example 5

Solve the equation pq xy = z2.

The equation 

 pq xy = z2 (1)

does not belong to any of the four standard types. 

Rewriting (1),

 
px qy

z z

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

 = 1 (2)

As (2) contains 
px

z

 and ,

qy

z

 we make the substitutions X = log x, Y = log y and  

Z = log z [Refer to type F equations]

Then  P = 
d d 1

d d

z z Z X
z P

x Z X x x

∂ ∂
= ◊ ◊ = ◊ ◊

∂ ∂

i.e. 
px

x

 = P

Similarly  
qy

z
 = Q
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Using these in (2), it becomes

 PQ = 1 (3)

which contains only P and Q explicitly. A solution of (3) is of the form

 Z = aX + bY + c (4)

\   P = a and Q = b, obtained from 4, satisfy (3)

i.e. ab = 1 or b = 
1

a

\   The complete solution of (3) is Z = 
1

aX Y c
a

+ +

\   The complete solution of (1) is 

 log z = 
1

log loga x y c
a

+ +  (5)

General solution of (1) is obtained as usual.

Note 
To find the singular solution of (1), we should not use the complete solution 
of (3). We should use only that of (1) given in (5).

If we put c = log k, (5) becomes 

 log z = log (xa y1/a
k)

i.e. z = xa
 y

1/a
k (6)

Differentiating (6) partially with respect to a, 

 
2

1
log logx y

a

-  = 0 (7)

Differentiating (6) partially with respect to k,

 0 = xa
y

1/a (8)

Eliminating a and k form (6), (7) and (8), that is using (8) in (6), the singular solution 
of equation (1) is z = 0.

Example 6

Solve the equation z4
q

2 – z2 p = 1.

The equation can be solved directly, as it contains p, q and z only explicitly. 

However we shall transform it into a simpler equation and solve it. 

The equation can be rewritten as 

 (z2 q)2 – (z2
p) = 1 (1)

which contains z2
p and z2

q.
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Hence we make the transformation Z = z3 [Refer to type C equations]

\ P = 2
3

Z
z p

x

∂
=

∂

i.e. z
2 p = 

3

P

Similarly 2

3

Q
z q =

Using these values in (1), we get

 Q
2 – 3P = 0 (2)

As (2) is an equation containing P and Q only a solution of (2) will be of the form

 Z = ax + by + c (3)

Now P = a and Q = b, obtained from (3) satisfy Eq. 2.

\ b
2 – 3a = 9

i.e. b = 3 9a± +

\   Complete solution of (2) is 3 9Z ax a y c= ± + + , i.e. complete solution of (1) 

is z3 = 3 9 .ax a y c± + +  Singular solution does not exist. General solution is found 

out as usual. 

Example 7

Solve the equation z = px + qy + p2 + pq + q2

The given equation 
 z = px + qy + (p2 + pq + q2) (1)

is a Clairaut’s type equation.

\   The complete solution of (1) is 

 z = ax + by + a2 + ab + b2 (2)

[got by replacing p and q in (1) by a and b]

Let us now find the singular solution of (1).

Differentiating (2) partially with respect to a and then b, we get

 x + 2a + b = 0 (3)

and  y + a + 2b = 0 (4)

The eliminant of a and b from (2), (3) and (4) is the required singular solution. 

Solving (3) and (4) for a and b, we get

 a = 
1 1
( 2 ) and ( 2 )

3 3
y x b x y- = -
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Using these values in (2), the singular solution is

 z = 21
( 2 ) ( 2 ) ( 2 )

2 3 9

x y
y x x y y x- + - + -

  

21 1
( 2 )( 2 ) ( 2 )

9 9
y x x y x y+ - - + -

i.e. 9z = 3x(y – 2x) + 3y(x – 2y)

  + (y – 2x)2 + (y – 2x)(x – 2y) + (x – 2y)2

i.e. 3z + x2 – xy + y2 = 0

General solution of (1)  is found out as usual.

Example 8

Solve the equation z = .

q
px qy p

p

Ê ˆ
+ + -Á ˜Ë ¯

The given equation

 z = 
q

px qy p
p

Ê ˆ
+ + -Á ˜Ë ¯

 (1)

is a Clairaut’s type equation. 

\   The complete solution of (1) is

 z = 
b

ax by a
a

+ + -  (2)

The general solution of (1) is found out as usual.

To find the singular solution of (1), we differentiate (2) partially with respect to 

a and then b.

We get

 0 = x – b/a2 – 1 (3)

and  0 = y + 1/a (4)

Using 
1

a
y

= -  got from (4) in (3), we get

 x – by
2 – 1 = 0

i.e. b = 
2

1x

y

-

Using thee values of a and b in (2), we get

 z = 
1 1 1

/
x x

x y
y y y

Ê ˆ- -
- + - +Á ˜Ë ¯

i.e.    yz = 1 – x, which is the singular solution of (1).
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Example 9

Solve the equation Z = 
2 2

1 .px qy c p q+ + + +

The given equation

 z = 
2 2

1px qy c p q+ + + +  (1)

is a Clairaut’s type equation.

\ Its complete solution is 

 z = 2 2
1ax by c a b+ + + +  (2)

where a and b are arbitrary constants and c is a given constant. 

The general solution of (1) is found out from (2) as usual.

To find the singular solution of (1), we differentiate (2) partially with respect to 

a and then b.

 0 = 
2 2

1

ca
x

a b

+

+ +

 (3)

and  0 = 
2 2

1

cb
y

a b
+

+ +

 (4)

From (3) and (4), we get or ,
a x a b

k
b y x y
= = =  say

\ a = kx and b = ky

Using these values in (3), we have

 
2 2 2

1 ( )

kc

k x y+ +

 = –1

since k is negative,

i.e. 1+ k2(x2 + y2) = k2
c

2

or  k
2(c2 – x2 – y2) = 1

i.e. k = 
2 2 2

1

c x y

-

- -

\  a = 
2 2 2 2 2 2

,
x y

b
c x y c x y

- = -

- - - -

and  2 2
1 a b+ +  = 

2 2 2

c

c x y- -

Using these values in (2), the singular solution of (1) is got as

 z = 

2 2 2

2 2 2 2 2 2 2 2 2

x y c

c x y c x y c x y

- - +

- - - - - -

i.e. z = 2 2 2
c x y- -

 or

   x2 + y2 + z2 = c2



Linear Algebra and Partial Differential Equations
4-36

Example 10

Solve the equation (pq – p – q) (z – px – qy) = pq.

Rewriting the given equation as 

 z = 
pq

px qy
pq p q

+ +

- -

 (1)

we identify it as Clairaut’s type equation. 

Hence its complete 

 z = 
ab

ax by
ab a b

+ +

- -

 (2)

The general solution of (1) is found out as usual from (2).

Let us now find the singular solution of (1).

Differentiating (2) partially with respect to a and then b, we get

 0 = 
2

( ) ( 1)

( )

ab a b b ab b
x

ab a b

- - - -
+

- -

i.e. 0 = 
2

2
( )

b
x

ab a b

-

- -

 (3)

and similarly  0 = 

2

2
( )

a
y

ab a b
-

- -

 (4)

From (3) and (4), we get 
2

2
/

a
y x

b
=  or

 
a

y

 = ,

b
k

x

=  say

\ a = andk y b k x=

Using thee values in (3), we get 

 2 2 2
( )k x k xy k y k x x- - -  = 0

i.e. ( )k xy x y- -  = 1

\ k = 
1 x y

xy

+ +

Hence a = 
1 1

and
x y x y

b
x y

+ + + +

=

Also

 
ab

ab a b- -

 = 
1 1

1 1/ 1/
1

1 1

b a y x

x y x y

=

- -

- -

+ + + +

  = 1 x y+ +

Using these values in (2), the singular solution of (1) is

 z = (1 ) (1 ) (1 )x x y y x y x y+ + + + + + + +

i.e. z = 
2

(1 ) .x y+ +
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Example 11

Transform the equation 4xyz = pq + 2px
2
y + 2qxy

2 by means of the substitutions  

X = x2 and Y = y2 and hence solve it.

 P = 
2

z z x p

X x X x

∂ ∂ ∂
= ◊ =

∂ ∂ ∂

and similarly Q = 
2

q

y

Rewriting the given equation, we have

 1z  = 2 2
pq

px qy
xy

+ +  (1)

Using the transformations in (1), it becomes

 4z = 4P Q + 4P X + 4Q Y

i.e. z = P X + Q Y + P Q (2)

which is a Clairaut’ type of equation.

The complete solution of (2) is
 z = aX + bY + ab (3)

Therefore the complete solution (1) is

 z  = ax
2 + by

2 + ab (4)

The general solution of (1) is obtained form (4) as usual.

The singular solution of (1) is obtained as follows.

Differentiating (4) partially with, respect to a and then, b, we get

 0 = x2 + b (5)

and  0 = y2 + a (6)

From (5) and (6), a = –y
2 and b = –x

2. Using these values in (4), the singular solution 
of (1) is 

 z = 
2 2 2 2 2 2

x y x y x y- - +

i.e. z + x2
y

2 = 0

Example 12

Solve the equation z2(p2 + q2 + 1) = c2, where c is a constant. 

The given equation 
  z2(p2 + q2 + 1) = c2 (1)

does not contain x and y explicity.

Therefore (1) has a solution of the form
 z = y(u) = z(x + ay)

where z(u) = z(x + ay) is a function of (x + ay), where a is an arbitrary constant. 
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From (2) we have p = 
d d

and
d d

z z
q a

u u
= ◊

Since (2) is a solution of (1), we get

 

2 2

2 2d d
1

d d

z z

z a

u u

Ï ¸Ê ˆ Ê ˆÔ Ô+ +Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ô ÔÓ ˛
 = c2

i.e. 

2

2 d
(1 )

d

z

a

u

Ê ˆ
+ Á ˜Ë ¯

 = 
2

2
1

c

z

-

i.e. 2 d
1

d

z

a

u

+  = 
2 2

c z

z

-

i.e. 
2

2 2

d
1

z z

a

c z

- +

-

 = du (3)

Integrating (3), the complete solution of (1) is

 
2

2 2

1 2 d
1

2

z z

a

c z

-
- +

-
Ú  = u + b

i.e. 
2 2 2

1 a c z- + -  = x + ay + b   or

 (1 + a2)(c2 – z2) = (x + ay + b)2 (4)

The general and singular solutions of (1) are found out from (4) as usual.

Example 13

Solve the equation p(1 – q2) = q(1 – z)

The given equation 

 p(1 – q2) = q(1 – z) (1)

does not contain x and y explicitly.

Therefore (1) has a solution of the form

 z = z(u) = z(x + ay) (2)

where a is an arbitrary constant. 

From (2), 
d d

and
d d

z z
p q a

z u
= =

Since (2) is a solution of (1), we get

 

2

2d d
1

d d

z z

a

u u

Ï ¸Ê ˆÔ Ô-Ì ˝Á ˜Ë ¯Ô ÔÓ ˛
 = 

d
(1 )

d

z

a z

u

-

i.e. 

2

2 d
1

d

dz z
a a az

du u

È ˘Ê ˆÍ ˙- - +Á ˜Ë ¯Í ˙Î ˚
 = 0
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As z is not constant, 
d

0
d

z

u

π

\ 

2

2 d
1

d

z

a a az

u

Ê ˆ
- - +Á ˜Ë ¯  = 0

i.e. 

2

2 d

d

z

a

u

Ê ˆ
Á ˜Ë ¯

 = az + 1 – a

or 
d

d

z

a

u

 = 1az a+ -  (3)

Solving (3), we get

 
d

1

z

a

az a+ -
Ú  = u + b

i.e. 2 1az a+ -  = x + ay + b or

 4(az + 1 – a) = (x + ay + b)2 (4)

which is the complete solution of (1).

The general and singular solution of (1) are found out from (4) as usual.

Example 14

Solve the equation  9pqz
2 = 4(1 + z3).

The given equation
 9pqz

4 = 4(1 + z3) (1)

does not contain x and y explicitly.

Therefore (1) has got a solution of the form

 z = z(u) = z(x + ay) (2)

where a is an arbitrary constant.

From (2), 
d d

and
d d

z z
p q a

u u
= = .

Since (2) is solution of (1), we get

 

2

4d
9

d

z

a z

u

Ê ˆ
Á ˜Ë ¯  = 4(1 + z3)

i.e. 2 d
3

d

z

az

u

 = 3
2 1 z+  (3)

Solving (3), we get

 

2

3

3 d

2 1

a z z

z+
Ú  = u + b

i.e. 
3

1a z◊ +  = x + ay + b  or

 a(1 + z3) = (x + ay + b)2 (4)

which is the complete solution of (1).

The general and singular of (1) are found out form (4) as usual.
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Example 15 

Solve the equation 

2 2

.
x y

z
p q
+ =

The given equation does not belong to any of the standard types.

It can be rewritten as

 
2 2

1 1

px qy
- -

+  = z  (1)

As equation (1) contains px
–2 and qy

–2, we make the substitution X = x3 and Y = y2. 
[Refer type A equations]

Then 2

2

1
or 3

3

z
P p px P

X x

-∂
= = =

∂
◊  and similarly qy

–2 = 3Q.

Then (1) becomes 

 
1 1

P Q
+  = 3Z (2)

As (2) does not contain X and Y explicitly, it has a solution of the form

 z = z(u) = z(X + aY) (3)

Form (3), P = 
d d

and
d d

z z
Q a

u u
=  

Since (3) is a solution of (2), we get

 
d

(1 )
d

z

a

u

+  = 

2
d

3
d

z

az

u

Ê ˆ
Á ˜Ë ¯

 
d d

3 1
d d

z z

az a

u u

Ê ˆ
- -Á ˜Ë ¯

 = 0

 As  
d d

0, 3 1
d d

z z

az a

u u

π = +  (4)

Solving (4), 3 ( 1)az dz a u b= + +Ú

i.e. 
23

2
az  = (a + 1)(X + aY) + b

which is the complete solution of equation (2).

\   The complete solution of equation (1) is

 
23

2
az  = (a + 1)(x3 + ay

3) + b

where a and b are arbitrary constants.

The general and singular solutions are found out as usual.
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Example 16

Solve the equation 

 p
2 + x2 y2 q2 = x2 z2

The given equation does not belong to any of the standard types. 

Rewriting, it, we have

 (x–1
p)2 + (yq)2 = z2 (1)

As equation (1) contains x
–1 p and yq, we make the transformations X = x

2 and  
Y = log y [Refer to type A and type B equations]

\ 
z

X

∂

∂
 = 

1
and

2

z
p Q qy

x Y

∂
◊ = =

∂

i.e. x
–1 p = 2P  and   yq = Q

Using these values in (1), it becomes

  4P
2 + Q2 = z2 (2)

As (2) does not contain X and Y explicitly, it has got a solution of the form 

 z = z(u) = z(X + aY) (3)

From (3), we have 

 P = 
d d

and
d d

z z
Q a

u u
=

Using these values in (2), we get 

 

2

2d
(4 )

d

z

a

u

Ê ˆ
+Á ˜Ë ¯  = z2

i.e. 2 d
4
d

z

a

u

+  = z (4)

Solving (4), we get 

 
2 4 loga z+  = X + aY + b

which is the complete solution of (2).

\   The complete solution of (1) is

 
2 4 loga z+  = x2 + a log y + b

where a and b are arbitrary constants.

The general and singular solutions are found out as usual.
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Example 17

Solve the equation 

 x
2 p2 + xpq = z2

The given equation can be rewritten as 

 (xp)2 + (xp)q = z2 (1)

Putting X = log x, we get P = 
z

px
X

∂
=

∂

Using this in (1), it becomes

  P2 + Pq = z2 (2)

As Eq. 2 does not contain X and y explicitly, it has a solution of the form

 z = z(u) = z(X + ay) (3)

From (3),

 P = 
d d

and
d d

z z
q a

u u
=

Using these values in (2), we have

 

2 2
d d

d d

z z

a

u u

Ê ˆ Ê ˆ
+Á ˜ Á ˜Ë ¯ Ë ¯  = z2

i.e. 
d

1
d

z

a

u

+  = z (4)

Solving (4), we get 1 log ,a z X ay b+ = + +  which is the complete solution of (2).

\  The complete solution of (1) is

  
1 log loga z x ay b+ = + +

The general and singular solution are found out as usual.

Example 18

Solve the equation

  q2 y2 = z(z – px)

As the given equation contains px and qy, we make the following substitutions.

 X = log x  and   Y = log y

\ P = and
z z

px Q qy
X Y

∂ ∂
= = =

∂ ∂
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Using these in the given equation, it becomes

 Q
2 = z(z – P)  or  Pz + Q2 = z2 (1)

As Eq. (1) does not contain X and Y explicitly, it has a solution of the form

 z = z(u) = z(X + aY) (2)

From (2),

 P = 
d d

and
d d

z z
Q a

u u
=

Using these values in (1), it becomes

 

2

2d d

d d

z z

z a

u u

Ê ˆ
+ Á ˜Ë ¯

 = z2

or 

2

2 2d d

d d

z z

a z z

u u

Ê ˆ
+ -Á ˜Ë ¯  = 0 (3)

Solving (3) for 
d

,
d

z

u

 we get 

 
d

d

z

u

 = 
2 2 2

2

4

2

z z a z

a

- ± +

  = 
2

2

( 1 1 4 )

2

a z

a

- ± +

Solving this equation, we get

 Ú
2 d

2
z

a

z

 = 2
( 1 1 4 )a u b- ± + +

i.e. 2a
2 log z = ( )( )- ± + + +1 1 4

2
a X aY b

which is the complete solution of (1).

\   The complete solution of the given equation is 

 2a log z = 2( 1 1 4 )(log log )a x a y b- ± + + +

The general and singular solution are found out as usual.

Example 19

Solve the equation

 p q+  = x + y

The given equation does not contain z explicitly and is variable separable.
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That is the equation can be rewritten as 

 p x-  = , sayy q a- =  (1)

\ p =(x + a)2  and   q = (y – a)2

No dz = pdx + qdy

  = (x + a)2dx + (y – a)2 dy (2)

Integrating both sides with respect to the concerned variables, we get

 z = 
3 3

( ) ( )

3 3

x a y a
b

+ -
+ +  (3)

where a and b are arbitrary constants. Equation (3) is the complete solution of the 
given equation. 

General solution is found out as usual. Singular solution does not exist.

Example 20

Solve the equation

 yp = 2xy + log q

The given equation, which does not contain, z, can be rewritten as

 p – 2x = 
1

log ,q a
y

=  say (1)

 p = 2x + a   and   q = eay

\ dz = pdx + qdy

i.e. dz = (2x + a)dx + eaydy (2)

Integrating (2), we get 

 z = 2 1 ay
x ax e b

a
+ + +  (3)

where a and b are arbitrary constant.

Equation (3) is the complete solution of the given equation.

General solution is found out as usual.

Singular solution does not exist.

Example 21

Solve the equation

  p2(1 + x2)y = qx
2

The given equation, which does not contain z, can be rewritten as

  

2
2

2

(1 )
,

x q
p a

yx

+
= =  say (1)
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 p = 
2

1

a x

x

◊

+

  and   q = ay

 dz = pdx + qdy

  = 
2

d d

1

x
a x ay y

x

◊ +

+

 (2)

Integrating (2), we get the complete solution of the given equation as

 z = 
2

2
(1 )

2

ay
a x b+ + +  (3)

where a and b are arbitrary constants. 

From (3), we get the general solution as usual. Singular solution does not exist. 

Example 22

Solve the equation z
2(p2 + q2) = x + y

The given equation
  z2(p2 + q2) = x + y (1)

does not belong to any of the standard types. 

Equation (1) can be rewritten as 

  (zp)2 + (zp)2 = x + y

Since the equation contains zp and zq, we make the substitution Z = z2

\  P = 2 and 2
Z Q

zp Q zq
x y

∂ ∂
= = =

∂ ∂

Using these in (1), it becomes

  P2 + Q2 = 4x + 4y (2)

which does not contain Z explicitly.

Rewriting (2), we get 

  P2 – 4x = 4y – Q2 = 4a, say (3)

\ P = 2 and 2x a Q y a+ = -

 dZ = Pdx + Qdy

 = 2 d 2 dx a x y a y+ + -

Integrating, we get

 Z = 3/2 3/24 4
( ) ( )

3 3
x a y a b+ + - +

i.e. z
2 =

3/2 3/24 4
( ) ( )

3 3
x a y a b◊ + + ◊ - +

which is the complete solution of (1).

General solution is found out as usual.

Singular solution does not exist.
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Example 23

Solve the equation

 p
2 + q2 = z2(x2 + y2)

The given equation does not belong to any of the standard types. 

It can be rewritten as 

 (z–1 p)2 + (z–1 q)2 = x2 + y2 (1)

As the Eq. (1) contains z–1
p and z–1

q, we make the substitution Z = log z

\ P = and =
p q

Q
z z

Using these values in (1), it becomes 

 P
2 + Q2 = x2 + y2 (2)

As Eq. 2 doe not contain Z explicitly, we rewrite it as

 P
2 – x2 = y2 – Q2 = a2, say (3)

From (3), P = 2 2 2 2
andx a Q y a+ = -

 dZ = Pdx + Qdy

 = 2 2 2 2
d dx a x y a y+ + -

Integrating, we get

 Z = 
2 2

2 2 1 2 2 1
sinh cosh ( / )

2 2 2 2

x a x y a
x a y a y a b

a

- -Ê ˆ
+ + + - - +Á ˜Ë ¯

\   The complete solution of (1) is

    

2 2
2 2 1 2 2 1log sinh cosh ( / )

2 2 2 2

x a x y a
z x a y a y a b

a

- -Ê ˆ
= + + + - - +Á ˜Ë ¯

where a and b are arbitrary constants.

General solution is found out as usual.

Singular solution does not exist.

Example 24

Solve the equation (x + pz)2 + (y + qz)2 = 1.

The given equation does not belong to any of the standard types.

But the equation contains pz and qz.
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Therefore we make the substitution Z = z2.

Then 2
Z

P zp
x

∂
= =
∂

 and Q = 2zq.

Using these values in the given equation, it becomes

 

2 2

2 2

P Q
x y

Ê ˆ Ê ˆ
+ + +Á ˜ Á ˜Ë ¯ Ë ¯  = 1 (1)

Equation (1) does not contain Z explicitly. Rewriting (1), we have

 

2 2

1
2 2

P Q
x y

Ê ˆ Ê ˆ
+ = - +Á ˜ Á ˜Ë ¯ Ë ¯

 = a2, say (2)

From (2), 2 2
or 2( ) and 1 or 2( 1 )

2 2

P Q
x a P a x y a Q a y+ = = - + = - = - -

Now dZ = Pdx + Qdy

 = 2
2( )d 2( 1 )da x x a y y- + - -  (3)

Integrating (3) and replacing Z by z2, the complete solution of the given equation 

is 

 z
2 = 2 2 2

( ) 2 1a x a y y b- - + - - +

General solution is found out as usual. Singular solution does not exist.

Example 25

Solve the equation pz
2 sin2 x + qz

2 cos2 y = 1. The given equation does not belong 
to any of the standard types. 

The given equation contains (z2
p) and (z2

q).

Therefore we make the substitution Z = z3

\ P = 
2 2

3 and 3
Z

z p Q z q
x

∂
= =

∂

Using these values in the given equation, it becomes

 2 2
sin cos

3 3

P Q
x y+  = 1 (1)

Equation (1) does not contain Z explicitly. Rewriting (1), we have

 2 2
sin 1 cos

3 3

P Q
x y= -  = a, say (2)

From (2), P = 3a cosec2 x and Q = 3(1 – a)sec2 y
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Now dZ = Pdx + Qdy

 = 3a cosec2 xdx + 3(1 – a) sec2 ydy (3)

Integrating (3) and replacing Z by z3, the complete solution of the given equation 

is

 z
3 = –3a cot x + 3(1 – a) tan y + b

General solution is found out as usual. Singular solution does not exist.

     Exercise 4(b)

part a (short-answer questions)

 1. Define complete solution and general solution of a P.D.E.

 2. How will you find the general solution of a P.D.E. from its complete 

solution?

 3. What is the geometrical significance of the singular solution of a P.D.E.?

 4. How will you find the singular solution of a P.D.E. from its complete 

solution?

 5. Find the complete solution of the P.D.E. q = f(p)

 6. Find the complete solution of the P.D.E. z = px + qy + f(p, q).

Find the complete solution of the following P.D.E.s.

 7. pq = k

 8. p = eq

 9. p
2 + q2 = 2

 10. p + q = z

 11. p
2 = qz

 12. pq = z

 13. pq = xy

 14. px = qy

 15. pe
y = qe

x

 16. Rewrite the equation pqz = p2(qx + p2) + q2(py + q2) as a Clairaut’s equation 

and hence write down its complete solution.

Part B

 17. Solve the equation (a) 1;p q+ =  (b) p
2 + q

2 = k
2. Find the singular 

solution, if they exist.

 18. Solve the equation 3p
2 – 2q

2 = 4pq. Find the singular solution, if it exist.
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 19. Solve the equation p2 – 2pq + 3q = 5. Find the singular solution, if it exists.  

Convert the following equations into equations of the form f(p, q) = 0 and hence 

solve them. 

 20. p
2 x2 + q2 y2 = z2

 21. p
2 x + q2 y = z

 22. px
2 + qy

2 = z2

 23. z
2(p2 – q2) = 1

 24. 2x
4 p2 – yzq – 3z

2 = 0

 25. (y – x) (qy – px) = (p – q)2 [Hint: Put x + y = X and xy = Y]

Find the singular solution os the following partial differential equations.

 26. z = px + qy – 2 pq

 27. 
z x y

pq
pq q p

= + -

 28. z = px + qy + p2 q2

 29. (p + q) (z – px – qy) = 1

 30. z = px + qy + p2 – q2

 31. z = px + qy + 
2 2

p q+

 32. (1 – x) –p (2 – y)q = 3 – z

Solve the following equations. 

 33. p
2 + q2 = z

 34. 1 + p2 + q2 = z2

 35. (a) pz = 1 + q2;   (b) qz = 1 + p2

 36. p(1 + q2) = q(z – a)

 37. 9(p2
z + q2) = 4

Convert the following equations into equations of the form f (p, q, z) = 0 and hence 

solve them. 

 38. 
2 2

p q
z

x y

+ =

 38. (p2 x2 + q2)z2 = 1

 40. p
2 x4 + y2 zq = 2z

2

Solve the following equations 

 41. q = px + p2
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 42. yp + xq + pq = 0

 43. yp – x2 q2 = x2
y

 44. q(p – sin x) = cos y

Convert the following equations into equations of the form f (p, q, x, y) = 0 and hence 

solve them.

 45. (p2 – q2)z = x – y

 46. (p2 + q2)z2 = x2 + y2

 47. p
2 + x2 y2 q2 = x2 z2

 48. 4z
2
q

2 = y – x + 2zp

 49. (x + y) (p + q)2 + (x – y) (p – q)2 = 1 [Hint: Put x + y = X and x – y = Y]

 50. (p2 + q2) (x2 + y2) = 1 [Hint: Put x = r cos q and y = r sin q]

4.10  general solutIons of partIal 
dIfferentIal equatIons

Partial differential equations, for which the general solution can be obtained directly, 

can be divided into the following three categories. 

 1. Equations that can be solved by direct (partial) integration. For example, 

consider the equation.

 
z

x

∂

∂
 = a (1)

  If z were a function of x only, direct integration with respect to x will give the 

solution as

 z = ax + b (2)

  If (2) is to be the general solution of (1), b need not be a constant, but it may 

be an arbitrary function of y, say f (y). Then (2) becomes

 z = ax + f (y) (3)

  When we differentiate (3) partially with respect to x, we get Eq. (1). As (3) 

contains an arbitrary function, it is the general solution.

  Thus when we get the solution of an equation by partial integration with 

respect to x [or y], we should take an arbitrary function of y [or x] in the place 

of arbitrary constants taken when ordinary integration is performed.

  Equations, in which the dependent variable occurs only in the partial 

derivatives, can be solved by this partial integration method.

 2. Lagrange’s linear equation of the first order, which will be discussed in 

Section 4.11.

 3. Linear partial differential of higher order with constant coefficients, which 

will be discussed in Section 4.12.
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4.11 lagrange’s lInear equatIon

A linear partial differential equation of the first order, which is of the form Pp + Qq = R 

where P, Q, R are functions of x, y, z, is called Lagrange’s linear equation.

We have already shown that the elimination of the arbitrary function ‘f ’ from  

f(u, v) = 0  leads to Lagrange’s linear equation.

general solution of lagrange’s linear equation

The general solution of the equation Pp + Qq = R is f (u, v) = 0, where ‘f ’ is an 

arbitrary function and u(x, y, z) = a and v(x, y, z) = b are independent solutions of the 

simultaneous differential equations 
d d d

.
x y z

p Q R
= =

Proof 

  f(u, v) = 0 (1)

Differentiating (1) partially with respect to x and then y, we have

  0
f u u f v v

p p
u x z v x z

∂ ∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ
+ + + =Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂

 (2)

and   0
f u u f v v

q q
u y z v y z

Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂
+ + + =Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯

 (3)

Eliminating and
f f

u v

∂ ∂

∂ ∂
 from (2) and (3), we get 

  

x z x z

y z y z

u u p v v p

u u q v v q

+ +

=

+ +

i.e. (uyvz – uzvy)p + (uz vx – ux vz)q = ux vy – uy vx (4)

Taking , P = uy vz – uz vy, Q = uzvx – uxvz and R = ux vy – uy vx, Eq. (4) takes the 

form

  Pp + Qq = R (5)

Since the primitive of equation (5) is equation (1), that contains an arbitrary 

function ‘f ’, we conclude that f (u, v) = 0 is the general solution of the Lagrange’s 

linear equation (5).

Now consider u = a and v = b

\   du = 0 and dv = 0

i.e. uxdx + uydy + uzdz = 0 (6)

and  vxdx + vydy + vzdz = 0 (7)
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Solving (6) and (7) for dx, dy, dz, we get

  
d d d

y z z y z x x z x y y x

x y z

u v u v u v u v u v u v
= =

- - -

 (8)

When we eliminate a and b from u = a and v = b, we get the simultaneous equations 
(8). In other words, the solutions of equations (8) are u = a and v = b.

Therefore the general solution of Pp + Qq = R is f (u, v) = 0, where u = a and  

v = b are independent solutions of 
d d dx y z

P Q R
= = .

Working rule to solve Pp + Qq = R

 (i) To solve Pp + Qq = R, we form the corresponding subsidiary simultaneous 

equations 
d d dx y z

P Q R
= = .

 (ii) Solving these equations, we get two independent solution u = a and v = b.

 (iii) Then the required general is f (u, v) = 0 or u = f(v) or v = y(u).

4.12  solutIon of the sImultaneous 

equatIons 
x y z

P Q R

d d d
= =

method of grouping 

By grouping any two of three ratios, it may be possible to get an ordinary differential 

equation containing only two variables, even though P; Q; R are, in general, functions 

of x, y, z. By solving this equation, we can get a solution of the simultaneous equations. 

By this method, we may be able to get two independent solutions, by using different 

groupings.

method of multipliers

If we can find a set of three quantities l, m, n, which may be constants or functions of 

the variables x, y, z, such that lP + mQ + nR = 0, then a solution of the simultaneous 

equations is found out as follows. 

  

d d d d d dx y z l x m y n z

P Q R lP mQ nR

+ +
= = =

+ +

Since lP + mQ + nR = 0, ldx + mdy + ndz = 0. If ldx + mdy + ndz is an exact differential 

of some function u(x, y, z), then we get du = 0. Integrating this, we get u = a, which 

is a solution of 
d d d

.
x y z

P Q R
= =

Similarly, if we can find another set of independent multipliers l¢, m¢, n¢, we can 

get another independent solution v = b.
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Note 
 1. We may use the method of grouping to get one solution and the method 

of multipliers to get the other of 
d d dx y z

P Q R
= =

 2. The subsidiary equations are called Lagrange’s subsidiary simultane-
ous equations.

 3. The multipliers l, m, n are called Lagrange multipliers. 

 Worked Examples 4(c)

Example 1

Solve the equations 
2 2

2 2
(i) ; (ii) sin

z z
xy xy

x y

∂ ∂
= =

∂ ∂

(i) 
2

2

z

x

∂

∂
 = xy (1)

Integrating both sides of (1) partially with respect to x (i.e. treating y as a 

constant), 

 
z

x

∂

∂
 = 

2

( )
2

x
y yf+  (2)

Integrating (2) partially with respect to x, 

 z = 
3

( ) ( )
6

x
y f y x yf+ + ◊  (3)

where f(y) and f(y) are arbitrary functions. Equation (3) is the required general 
solution of (1).

(ii) 
2

2

z

y

∂

∂
 = sin xy (4)

Integrating (4) partially with respect to y,

 
z

y

∂

∂
 = 

1
cos ( )xy x

x
f- +  (5)

Integrating (5) partially with respect to y, 

 z = 
2

1
sin ( ) ( )xy f x y x

x
f- + + ◊  (6)

where f(x) and f(x) are arbitrary functions. Equations (6) is the required general 
solution of (4)
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Example 2

Solve the equation 
2

cos , if 0 when 0 and 0
t

u u
e x u t

x t t

-∂ ∂
= = = =

∂ ∂ ∂
 when x = 0

Also show that u Æ sin x, when t Æ •.

 
2
u

x t

∂

∂ ∂
 = e–t cos x (1)

Integrating (1) partially with respect to x,

 
u

t

∂

∂
 = e–t sin x + f (t) (2)

When x = 0, 0
u

t

∂
=

∂
. (given)

Using this in (2), we get f(t) = 0.

\  Equation (2) becomes sin
t

u
e x

t

-∂
=

∂
 (3)

Integrating (3) partially with respect to t, we get 

 u = –e
–t sin x + g(x) (4)

Using the given condition, namely, u = 0 when t = 0, in (4), we get

 0 = –sin x + g(x) or g(x) = sin x

Using the value in (4), the required particular solution of (1) is u = sin x (1 – e–t).

 Now    lim( )
t

u

Æ•

 = sin lim(1 )
t

t

x e
-

Æ•

È ˘-
Í ˙Î ˚

  =sin x

That is when t Æ •  u Æ sin x.

Example 2

Solve the equation 
2

2
0,

z

z

x

∂
+ =

∂
 given that z = ey and 1

z

x

∂
=

∂
 when x = 0.

 

2

2

z

z

x

∂
+

∂
 = 0 (1)

If z were a function of x alone, the equation (1) would have been the ordinary 

differential equation

 
2

2

d

d

z

z

x

+  = 0, i.e., (D2, + 1)z = 0 (2)

The auxiliary equation of (2) is m2 + 1 = 0. Its roots are ±i. Hence the solution of (2) 

is

 z = A cos x + B sin x (3)

Solution (3) can be assumed to be obtained by integrating (2) ordinarily with respect 

to x. 
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If we replace A and B in (3) by arbitrary functions of y, the solution can be assumed 

to have been obtained by integrating (1) partially with respect to x. 

Thus the general solution of (1) is

 z = f (y) ◊ cos x + g(y) ◊ sin x (4)

From (4),  
z

x

∂

∂
 = – f (y) sin x + g(y) cos x (5)

Using the condition that z = ey when x = 0 in (4), we get

  f (y) = ey (6)

Using the condition that 1
z

x

∂
=

∂
 when x = 0 in (5),

  g(y) = 1 (7)

Using (6) and (7) in (4), the required solution of (1) is z = ey cos x + sin x.

Example 4

Solve the equations 3 and cos
z z

x y x y
x y

∂ ∂
= - = - +

∂ ∂
 simultaneously.

 
z

x

∂

∂
 = 3x – y (1)

 
z

y

∂

∂
 = –x + cos y (2)

Integrating (1) partially with respect to x, 

 z = 
2

3
( )

2

x
yx f y- +  (3)

Differentiating (3) partially with respect to y,

 
z

y

∂

∂
 = –x + f¢(y) (4)

Comparing (2) and (4), we get f¢(y) = cos y

\ f(y) = sin y + c (5)

\   The required solution is

z = 23
sin ,

2
x xy y c- + +  where c is an arbitrary constant. 

Example 5

By changing the independent variables by the transformations u = x – y and  

v = x + y, show that the equation 
2 2 2

2 2
2 0

z z z

x yx y

∂ ∂ ∂
+ + =

∂ ∂∂ ∂
 can be transformed as 

2

2
0

z

v

∂
=

∂
 and hence solve it. 
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 u = x – y and v = x + y

\ x = and
2 2

u v v u
y

+ -
=

If we express x and y in z in terms of u and v, z becomes a function of u and v.

 zx = where and , etc.
u x v x u x

z z u
z u z v z u

x u x

∂ ∂ ∂
= ◊ + ◊ = =

∂ ∂ ∂

  = zu + zv.

 zy = zu ◊ uy + zv ◊ vy = –zu + zv

 zxx = (zuu + zuv) + (zvu + zvv) = zuu + 2zuv + zvv

 zxy = (–zuu + zuv) + (–zvu + zvv) = –zuu + zvv

 zyy = zuu – zuv + (–zvu + zvv) = zuu – 2zuv + zvv

Using these values in the given equation zxx + 2zxy + zyy = 0, it becomes 4zvv = 0.

i.e. 
2

2

z

v

∂

∂
 = 0 (1)

Integrating (1) partially with respect to v,

 
z

v

∂

∂
 = g(u) (2)

Integrating (2) partially with respect to v, 

 z = v ◊ g(u) + f (u) (3)

\ The solution of the given equation is 

 z = f (x – y) + (x + y)g (x – y)

Example 6

By changing the independent variables by the transformations u = x and v = 
y

x
, 

transformation the equation 
2 2 2

2 2

2 2
2 0

x z z
x xy y

x yx y

∂ ∂ ∂
+ + =

∂ ∂∂ ∂
 and hence solve it.

When u = x and v = y/x,   x = u and y = uv.

\   z, which is a function of x and y, can also treated as a function of u and v.

 zx = ◊ + ◊ = -
2u x v x u v

y
z u z v z z

x

 zy = 
1

u y v y v
z u z v z

x
◊ + ◊ = ◊

 zxx = 
2 3 2 2

2

uu uv v vu vv

y y y y
z z z z z

x x x x

È ˘-Ê ˆ Ê ˆ
+ - + - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

 zxy = 
2 2

1 1 1 1
;

v vu vv yy vv

y
z z z z z

x x xx x

È ˘Ê ˆ Ê ˆ È ˘
◊ - + + - = ◊Í ˙Á ˜ Á ˜ Í ˙Ë ¯ Ë ¯ Î ˚Î ˚
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Using these values in the given equation, it becomes,

  

2

2

2

2

uu uv v uv vv

y y
x z yz z yz z

x x

Ê ˆ
- + - +Á ˜

Ë ¯

  

2 2

2 2

2 2
2 0

v uv vv vv

y y y
z yz z z

x x x

Ê ˆ Ê ˆ
+ - + - + =Á ˜ Á ˜
Ë ¯ Ë ¯

i.e. x
2
zuu = 0 or zuu = 0 (1)

Integrating (1) partially with respect to u,

 zu = f(v) (2)

Integrating (2) partially with respect to u, 

 z = f (v) + u ◊ f(v) (3)

\   Solution of the given equation is 

 z = f (y/x) + x ◊ f (y/x)

Example 7

Transform the partial differential equation 
2 2 2

2 2
5 6 0

z z z

x yx y

∂ ∂ ∂
- + =

∂ ∂∂ ∂
 to the form 

2

0
z

u v

∂
=

∂ ∂
 by using the substitutions u = x + ay and v = x + by, where a and b are 

appropriate constants and hence solve the given equation.

Clearly z, which is a function of x and y, can also be treated as a function of u and v. 

 zx = zu + zv;  zy = azu + bzv

 zxx = zuu + 2zuv + zvv;  zxy = zuu ◊ a + zuv ◊ b

  + zvu ◊ a + zvv ◊ b or azuu + (a + b)zuv + bzvv

 zyy = a(zuu ◊ a + zuv ◊ b) + b(zvu ◊ a + zvv ◊ b)

  = a2
zuu + 2abzuv + b2

zvv.

Using these values in the given equation, it becomes 

  (zuu + 2zuv + zvv) – 5[azuu + (a + b)zuv + bzvv]

  + 6[a2
zuu + 2abzuv + b2

zvv] = 0

i.e. (6a2 – 5a + 1)zuu + [2 – 5(a + b) + 12ab]zuv + (6b2 – 5b + 1)zvv = 0 (1)
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Since (1) has to reduce to the form zuv = 0, coefficient of zuu = 0 coefficient of 

zvv. 

i.e. 6a2 – 5a + 1 = 0 and 6b2 – 5b + 1 = 0

i.e. a = 
1 1 1 1
, and ,

2 3 2 3
b =

If we choose equal values for a and b, coefficient of zuv also becomes zero. Hence 

we choose 
1 1

and .
2 3

a b= =

For these value of a and b, equation (1) becomes 

 
1

6
uv
z-  = 

2

0 or 0
z

u v

∂
=

∂ ∂
 (2)

Integrating (2) partially with respect to u, 

 
z

v

∂

∂
 = f(v) (3)

Integrating (3) partially with respect to v, 

 z = ( )d ( )v v f uf +Ú
i.e. z = f (u) + g(v)

\ The  solution of the given equation is

 z = 
1 1

2 3
f x y g x y
Ê ˆ Ê ˆ

+ + +Á ˜ Á ˜Ë ¯ Ë ¯

 or z = f(y + 2x) + g(y + 3x)

Example 8

Solve the equation x2
p + y2

q + z2 = 0

The given equation 

 x
2 p + y2 q = –z

2 (1)

is a Lagrange’s linear equation with P = x2, Q = y2 and R = –z
2

The subsidiary equations are

 
2

dx

x

 = 
2 2

d dy z

y z

=

-

Taking the first two ratios, we get an ordinary differential equation in x and y, namely, 

2 2

d dx y

x y

= .
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Integrating, we get 
1 1

a
x y

- = - -

i.e. 
1 1

x y
-  = a (2)

Taking the last two raties, we get the equation 
2 2

d dy z

y z

-

=

 
2

dy

y
 = 

2

dz

z

-

Integrating, we get 
1 1

b
y z

-

= -

Solving,

 
1 1

y z
+  = b (3)

\ The general solution of the given equation is 
1 1 1 1

, 0,f
x y y z

Ê ˆ
- + =Á ˜Ë ¯

 where ‘f’ is 
an arbitrary function. 

Example 9

Solve the equation y2
p – xyq = x(z – 2y).

The given equation is a Lagrange’s linear equation with P = y
2, Q = –xy,  

R = x(z – 2y). The subsidiary equations are

 
2

dx

y
 = 

d d

( 2 )

y z

xy x z y
=

- -

Taking the first two ratios, we get 

 
dx

y
 = 

d
or d d

y
x x y y

x
- =

-

Integrating, we get + = + =

2 2

2 2
or

2 2 2

x y a
x y a  (1)

From the subsidiary equations, we have

 
2

dx

y
 = 

2

d d d d

( 2 ) 2

y z z y y z

xy x z y xy

+
= =

- - -

From the first and last ratios, we get

 
d

1

x

 = 
d( )

or 2 d d( )
2

yz
x x yz

x
- =

-

Integrating, we get  x
2 + yz = b (2)

From (1) and (2) the general solution of the given equation is f (x2 + y2, x2 + yz) = 0.
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Example 10

Solve the equation (p – q)z = z2 + (x + y). This is a Lagrange’s linear equation with  

P = z, Q = – z and R = z2 + (x + y).

The subsidiary equations are 

 
dx

z

 = 
2

d d

( )

y z

z z x y

=

- + +

From the first two ratios, we get dx = – dy

Integrating, we get   x + y = a2 (1)

Note 
Neither the method of grouping nor the method of multipliers can be used to 
get the second solution. 

We make use of solution (1), i.e. we put x + y = a2 in the third ratio.

From the first and third ratios, we get

 
dx

z

 = 
2 2 2 2

d 2 d
or 2d

z z z

x

z a z a

=

+ +

Integrating, we get 2x = log (z2 + a2)+ b. Now using the value of a2 from (1), the 

second solution is 

 2x – log (z2 + x + y) = b (2)

From (1) and (2), the general solution of the given equation is 

 f [x + y, 2x – log (x + y + z2)] = 0

Example 11

Solve the equation (z2 – 2yz – y2)p + (xy + zx)q = xy – zx.

This is a Lagrange’s linear equation with P = (z2 – 2yz – y2), Q = xy + zx and  

R = xy – zx.

The subsidiary equations are 

 
2 2

d

2

x

z yz y- -

 = 
d d

( ) ( )

y z

x y z x y z
=

+ -

From the last two ratio, we have 

 (y – z)dy = (y = z)dz

i.e. ydy – (zdy + ydz) – zdz = 0

i.e. ydy – d(yz) – zdz = 0
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Integrating, we get 

 
2 2

2 2

y z
yz- -  = or

2

a

 y
2 – 2yz – z2 = a (1)

Using the multipliers, x, y, z, each of the above ratios = 
d d d

0

x x y y a z+ +

\   xdx + ydy + zdz = 0

Integrating, we get   x2 + y2 + z2 = b (2)

Therefore the general solution of the given equation is f (y2 – 2yz – z
2, x

2, +  
y

2 + z2) = 0

Example 12

Solve the equation (x – 2z)p + (2z – y)q = y – x. This is a Lagrange's linear equation 

with P = x – 2z, Q = 2z – y and R = y – x.

The subsidiary equations are

 
d

2

x

x z-

 = 
d d

2

y z

z y y x
=

- -

 (1)

Using the multipliers 1, 1, 1, each ratio in (1) = 
d d d

0

x y z+ +

\  dx + dy + dz = 0

Integrating, we get,   x + y + z = a (2)

Using the multipliers y, x, 2z, each ratio in (1) = 
d d 2 d

0

y x x y z z+ +

\  d(xy) + 2zdz = 0

Integrating, we get   xy + z2 = b (3)

Therefore the general solution of the given equation is f (x + y + z, xy + z2) = 0

Example 13

Solve the equation (x2 – y2 – z2)p + 2xyq = 2zx. This is a Lagrang’s linear equation 

with P = x2 – y2 – z2,   Q = 2xy,   R = 2zx.

The subsidiary equations are 

 
2 2 2

dx

x y z- -

 = 
d d

2 2

y z

xy zx
=  (1)
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Taking the last two ratios, we get

 
dy

y
 = 

dz

z

Integrating, we get log y = log z + log a

i.e. 
y

z
 = a (2)

Using the multipliers, x, y, z, each of the ratios in (1) = 
+ +

+ +
2 2 2

d d d

( )

r x y y z z

x x y z

 (3)

Taking the last ratio in (1) and the ratio in (3), 

 
d

2

z

zx

 = 

2 2 2

2 2 2

1
d( )

2

( )

x y z

x x y z

+ +

+ +

i.e. 
dz

z

 = 
2 2 2

2 2 2

d( )x y z

x y z

+ +

+ +

Integrating, we get log b + log z = log (x2 + y2 + z2)

i.e. 
2 2 2

x y z

z

+ +
 = b (4)

Therefore the general solution of the given equation is 
2 2 2

, 0.
y x y z

f
z z

Ê ˆ+ +
=Á ˜

Ë ¯

Example 14

Solve the equations x2(y – z)p + y2(z – x)q = z2(x – y).

This is a Lagrange’s linear equation with P = x2(y – z), Q = y2(z – x), R = z2(x – y).

The subsidiary equations are 

 
2

d

( )

x

x y z-
 = 

2 2

d d

( ) ( )

y z

y z x z x y

=

- -

 (1)

Using the multipliers 
2 2 2

1 1 1
, , ,

x y z
 each of the ratios in (1) = 

2 2 2

1 1 1
d d d

0

x y z

x y z

+ +

\ 
2 2 2

1 1 1
d d dx y z

x y z

+ +  = 0

Integrating, we get 
1 1 1

a
x y z

- - - = -

or 
1 1 1

x y z
+ +  = a (2)

Using the multipliers 
1 1 1

, , ,
x y z

 each of the ratios in (1) = 

1 1 1
d d d

0

x y z
x y z

+ +
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\ 
1 1 1
d d dx y z

x y z
+ +  = 0

Integrating, we get log x + log + log z = log b

or  xyz = b (3)

Therefore the general solution of the given equation is 
1 1 1

, 0f xyz
x y z

Ê ˆ
+ + =Á ˜Ë ¯

.

Example 15

Solve the equation (mz – ny)p + (nx – lz)q = ly – mx. Hence down the solution of the 

equation (2z – y)p + (x + z)q + 2x + y = 0.

The equation (mz – ny)p + (nx – lz)q = ly – mx

is a Lagrang’s linear equation with P = mz – ny, Q = nx – lz, R = ly – mx.

The subsidiary equations are

 
dx

mz ny-

 = 
d dy z

nx lz ly mx
=

- -

 (1)

Using the two set of multipliers l, m, n and x, y, z, each of the above ratios in (1)

  = 
d d d d d d

and also
0 0

l x m y n z x x y y z z+ + + +
=

\ ldx + mdy + ndz = 0 and xdx + ydy + zdz = 0

Integrating both the equations, we get

 lx + my + nz = a and x2 + y2 + z2 = b

Therefore the general solution of the given equation is f (lx + my + nz, x
2 + y

2  

+ z2) = 0.

Comparing the equation 

 (2z – y)p + (x + z)q = –2x – y (2)

with the previous equations (1), we get l = –1, m = 2, n = 1.

Therefore the solution of equation (2) is 

 f (–x + 2y = z, x2 + y2 + z2) = 0

Example 16

Solve the equation (y + z)p + (z + x)q = x + y.

This is a Lagrange’s equation with P = y + z, Q = z + x and R = x + y.
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The subsidiary equations are

 
dx

y z+
 = 

d dy z

z x x y
=

+ +

 (1)

Each of the ratios in (1) is equal to

 
d( )

( )

x y

x y

-

- -

 = 
d( ) d( )

( ) ( )

y z z x

y z z x

- -

=

- - - -

 (2)

Taking the first two ratios in (2), we get

 
d( )x y

x y

-

-

 = 
d( )y z

y z

-

-

Integrating, we get log (x – y) = log (y – z) + log a

i.e. 
x y

y z

-

-

 = a (3)

Note 
Taking the last two ratios in (2) and integrating, we get another solution, 
namely 

 
z x

y z

-

-

 = b (4)

But solution (4) is not independent of solution (3), since 1
x y

y z

Ê ˆ-
- +Á ˜-Ë ¯

 =  

–(1 + a), 
. . .

z x
i e b

y z

-

=

-

Hence we should use solution, (3) or (4) only to write down the general solu-

tion of the give equation. 

Now each of the ratios in (1) is also equal to

  
d( )

2( )

x y z

x y z

+ +

+ +

 (5)

Taking the first ratio in (2) and the ratio (5), we have 
d( )

( )

x y z

x y z

+ +

+ +

 = 
2d( )x y

x y

-

-

-

Integrating, we get log (x + y + z) = –2 log (x – y) + log c

i.e.  (x – y)2 (x + y + z) = c (6)

Therefore the general solution of the 2
, ( ) ( ) 0

x y
f x y x y z

y z

Ï ¸-
- + + =Ì ˝

-Ó ˛

Example 17

Solve the equation x(y2 + z2)p + y(z2 + x2)q = z(y2 – x2).

This is a Lagrange’s linear equation with P = x(y2 + z2),   Q = y(z2 + x2) and  

R = z (y2 – x2).
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The subsidiary equations are

 
2 2

d

( )

x

x y z+

 = 
2 2 2 2

d d

( ) ( )

y z

y z x z y x

=

+ -

 (1)

Using the multipliers 
1 1 1

, , ,
x y z

-

 each of the ratios in (1) = 

1 1 1
d d d

0

x y z
x y z

- + +

Integrating, we get – log x + log y + log z = log a

i.e. 
yz

x
 = a (2)

Using the multipliers x, –y, z, each of the ratios in (1) = 
d d d

0

x x y y z z- +

\ xdx – ydy + zdx = 0

Integrating, we get x
2 – y2 + z2 = b (3)

Therefore the general solution of the given equation is 2 2 2
, 0

yz
f x y z

x

Ê ˆ
- + =Á ˜Ë ¯

Example 18

Find the integral surface of the equation px + qy = x, passing through x + y = 1 and 

x
2 + y2 + z2 = 4.

The general solution or integral of the Lagrange’s linear equation

 px + qy = z (1)

represent a surface. This surface is called the integral surface of the equation.

Now the particular integral passing through the circle given by (2) and (3) is 

required.

 x + y = 1 (2)

 x
2 + y2 + z2 = 4 (3)

First let us find the general integral surface of equation (1).

The subsidiary equations are 

 
dx

x

 = 
d dy y

y x
=  (4)

Two independent solution of (4) are easily found as

 
x

y
 = a (5)

and  
y

z

 = b (5)¢
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Therefore the general integral surface of (1) is

 ,

x y
f

y z

Ê ˆ
Á ˜Ë ¯

 = 0 (6)

Instead of finding the particular value of ‘f ’ that satisfies (2) and (3), we proceed 

alternatively as follow.

We eliminate x, y, z from (2), (3), (5) and (5)¢ and get a relation satisfied by a and 

b, which are then replaced by their equivalents, namely, and
x y

y z
 respectively. 

Using (5)¢ in (3),  x
2 + y2 + 

2

2

y

b
 = 4 (7)

Using (5) in (2) and (7), we have

 
1

1x

a

Ê ˆ
+Á ˜Ë ¯  = 1 (8)

and 
2

2 2 2

1 1
1x

a a b

Ê ˆ
+ +Á ˜Ë ¯  = 4 (9)

Eliminating x between (8) and (9), we get

 
2 2 2

2 2

( 1)

( 1)

a b b

b a

+ +

+

 = 4 (10)

Substituting for a and b from (5) and (6) in (10), we get

  

22 2 2

2 2 2
1 4

x y y x y

yz z z

Ê ˆ+
+ + = Á ˜Ë ¯

viz., x2 + y2 + z2 = 4(x + y)2, which is the equation of the required integral surface.

Example 19

Show that the integral surface of the equation 2y(z – 3)p + (2x – z)q = y(2x – 3) that 

passes through the circle x2 + y2 = 2x, z = 0 is x2 + y2 – z2 – 2x + 4z = 0.

The subsidiary equations of the given Lagrange’s equation are

 
d

2 ( 3)

x

y z -
 = 

d d

2 (2 3)

y z

x z y x
=

- -

 (1)

Taking the first and lat ratios in (1), we have

 
d

2 6

x

z -

 = 
d

2 3

z

x -

 or (2x – 3)dx = (2z – 6)dz

Integrating, we get         x2 – z2 – 3x + 6z = a (2)

Using the multipliers 1, 2y, –2, each ratio in (1) = 
d 2 d 2d

0

x y y z+ -
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\ dx + 2ydy – 2dz = 0

Integrating, we get  x + y2 –2z = b (3)

The required surface has to pass through

 x
2 + y2 = 2x  and (4)

 z = 0 (5)

Using (5) in (2) and (3), we get

 x
2 – 3x = a (6)

and  x + y2 = b (7)

From (6) and (7), we get

 x
2 + y2 – 2x = a + b (8)

Using (4) in (8), we have

 a + b = 0 (9)

Substituting for a and b from (2) and (3) in (9), we get x2 + y2 – z2 – 2x + 4z = 0, 
which is the equation of the required integral surface.

Example 20

Show that the integral surface of the partial differential equation x(y2 + z)p – y(x2 +  z)q 

= (x2 – y2)z which contains the straight line x + y = 0, z = 1 is x2 + y2 + 2xyz – 2z  

+ 2 = 0.

The subsidiary equations of the given Lagrange’s equation are 

 
2

d

( )

x

x y z+

 = 
2 2 2

d d

( ) ( )

y z

y x z x y z

=

- + -

 (1)

Using the multipliers 
1 1 1

, , ,
x y z

 each of the ratios in (1) = 

1 1 1
d d d

0

x y z
x y z

+ +

\ 
1 1 1
d d dx y z

x y z
+ +  = 0

Integrating, we get 

 xyz = a (2)

Using the multipliers x, y, –1, each of the ratios in (1) = 
d d d

0

x x y y z+ -

\ xdx + ydy – dz = 0
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Integrating, we get

 x
2 + y – 2z = b (3)

The required surface has to pass through 

 x + y = 0 (4)

and z = 1 (5)

Using (4) and (5) in (2) and (3), we have

 –x
2 = a (6)

and 2x
2 – 2 = b (7)

Eliminating x between (6) and (7), we get

 2a + b + 2 = 0 (8)

Substituting for a and b from (2) and (3) in (8), we get 2xyz + x2 + y2 – 2z + 2 = 0 or 

x
2 + y2 + 2xyz – 2z + 2 = 0, which is the equation of the required surface. 

       Exercise 4(c)

part a (short-answer questions)

Solve the following equations.

 1. 
2

2
0

z

x

∂
=

∂

 2. 
2

2
0

z

y

∂
=

∂

 3. 
2

0
z

x y

∂
=

∂ ∂

 4. 
2

2

x yz
e

x

+∂
=

∂

 5. 
2

2
cos(2 3 )

z
x y

y

∂
= +

∂

 6. 
2

1z

x y xy

∂
=

∂ ∂

 7. 
2

2
sin

z
y

x

∂
=

∂
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 8. 
2

2
cos

z
y

y

∂
=

∂

 9. 
2
z

k
x y

∂
=

∂ ∂

 10. 
2

2 2z
x y

x y

∂
= +

∂ ∂

 11. Give the working rule to solve the Lagrange’s linear equation.

Find the general solutions of the following Lagrange’s equations.

 12. pyx + qzx = xy

 13. yq – xp = z

 14. p x q y z+ =

 15. p tan x + q tan y = tan z

 16. px
2 + qy

2 = z2

part b

 17. Solve the equation 

2
z

x y

∂

∂ ∂
 = sin x sin y, given that 2

z

y

∂
= -

∂
 sin y when x = 0 

and z = 0 when y is an odd multiple of .
2

p

 18. Solve the equation 
2

2

2
,

z

a z

x

∂
=

∂
 given that 

z

a

x

∂
=

∂
 sin y and 0

z

y

∂
=

∂
 when  

x = 0. 

 19. Solve the equation 

2

2
,

z
z

y

∂
=

∂
 given that z = ex and xz

e
y

-∂
=

∂
 when y = 0.

 20. Solve the equation p = 6x + 3y,  q = 3x – 4y simultaneously. 

 21. Solve the equation 2 3 .
z

x x y z
y

∂
= + +

∂

 22. Solve the equation
2

2
18 sin(2 ) 0.

z
xy x y

x y

∂
+ + - =

∂ ∂

 23. Solve the equation 
2

2
5 6 12 .

z z
z y

yy

∂ ∂
- + =

∂∂

 24. Solve the equation 
2 2

2 2
0, 0

z z

x y

∂ ∂
= =

∂ ∂
 simultaneously.

 25. By changing the independent variables by the transformations u = x + at,  

v = x – at, show that the equation 
2 2

2

2 2

z z
a

y x

∂ ∂
=

∂ ∂
 get transformed into the 

equation 
2

0.
z

u v

∂
=

∂ ∂
 Hence obtain the general solution of the equation.
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 26. By changing the independent variable by the transformations z = x + iy, 

z* = x – iy, where i = 1,-  show that the equation 
2 2

2 2
0

u u

x y

∂ ∂
+ =

∂ ∂
 gets 

transformed into the equation 
2

0.
*

u

z z

∂
=

∂ ∂
 Hence obtain the general solution 

of the equation.

 27. Use the transformations x = u + v, y = u – v to change the equation 
2 2 2

2 2
0 as 0

z z z

u vx y

∂ ∂ ∂
- = =

∂ ∂∂ ∂
 and hence solve it.

 28. Find the solution of the equation 
2 2 2 2

2 2

2 2
2

z z z y z
y xy x

x y x xx y

∂ ∂ ∂ ∂
- + =

∂ ∂ ∂∂ ∂
 

2
x z

y y

∂
+

∂
, by transforming it to a simpler form using the substitutions u = x2 

+ y2, v = x2 – y2.

 29. Reduce the equation 4y
3
zxx – yzyy + zy – 0 to a simpler form by using the 

transformations u = y2 + x and v = y2 – x and hence solve it.

Find the general solutions of following linear partial differential equations. 

 30.  (i)   p cot x + q cot y = cot z

 (ii) (a – x)p + (b – y)q = (c – z)

 31. 
2

2y z
p xzq y

x
+ =

 32. (i) x2
p + y2

q = (x + y)z; (ii) x2
p – y2

q = (x – y)z

 33. (y2 + z2)p – xyq + xz = 0

 34. (y2 + z2 – x2)p – 2xyq + 2zx = 0

 35. p – q = log (x + y)

 36. x(xp – yq) = y2 – x2

 37. (i)  (y – z)p + (z – x)q = x – y;  (ii) (y – z)p + (x – y)q = z – x

 38. (i)  x(y – z)p + y(z – x)q = z(x – y)

  (ii) 
y z z x x y

p q
yz zx xy

- - -
+ ◊ =

 39. x(y2 – z2)p + y(z2 – x2)q = z (x2
 – y

2)

 40. (x2 – yz)p + (y2 – zx)q = z2
 – xy. [See example (16)]

 41. (i) (y + z)p – (x + z)q = x – y (ii) (3z – 4y)p + (4x – 2z)q = 2y – 3x

 42. (y3
x – 2x

4)p + (2y
4 – x3

y)q = (x3 – y3)z.

 43. Find the integral surface of the equation px + qy = z, that passes through the 

circle x2 + y2 + z2 = 4, x + y + z = 2.

 44. Find the integral surface of the equation yp + xq + 1 = z, that passes through 

the curve z = x2 + y + 1 and y = 2x.
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 45. Show that the integral surface of the equation (x2 – a2)p + (xy – az tan a) 

q = xz – ay cot a, that passes through the curve x2 + y2 = a2, z = 0 is x2 + 

y
2 – a2 = z2 tan2 a.

4.13  lInear p.d.e.’s of hIgher order wIth 
constant coeffIcIents

Linear partial differential equations of higher order with constant coefficient may be 

divided into two categories as given below. 

 (i) Equations in which the partial derivatives occurring are all of the same order 

(of course, with degree 1 each) and the coefficients are constants. Such 

equations are called homogeneous linear P.D.E.s with constant coefficients. 

 (ii) Equations in which the partial derivatives occurring are not of the same order 

and the coefficients are constants are called non-homogeneous linear P.D.E.s 

with constant coefficients.

For example,

 

2 2 2

2 2
5 6

z z z

x yx y

∂ ∂ ∂
- +

∂ ∂∂ ∂
 = ex + y and

 
3 3 3 3

3 2 2 3
3 4 12

z z z z

x x y x y y

∂ ∂ ∂ ∂
- - +

∂ ∂ ∂ ∂ ∂ ∂
 = x + 2y

are equation of the first category.

 
2 2

2

z z z

x y xx

∂ ∂ ∂
- +
∂ ∂ ∂∂

 = x2 + y2 and

 
2 2

2 2
3 3

z z z z

x yx y

∂ ∂ ∂ ∂
- - +

∂ ∂∂ ∂
 = cos (x + 2y)

The standard form of a homogeneous linear partial differential equation of nth order 

with constant coefficients is 

 
0 1 21 2 2

n n n n

nn n n n

z z z z
a a a a

x x y x y y
- -

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂ ∂ ∂
L  = R(x, y) (1)

where a¢ are constants.

If we use operators and ,D D
x y

∂ ∂
∫ ∫¢

∂ ∂
 we can symbolically write equation 

(1) as

  (a0D
n + a1D

n – 1
D¢ + a2D

n – 2 D ¢2 + … + anD¢n)z = R(x, y) (2)

i.e.  f (D, D¢)z = R(x, y) (3)

where f (D, D¢) is a homogeneous polynomial of the nth degree in D and D¢.
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The method of solving (3) is similar to that of solving ordinary linear differential 

equations with constant coefficients.

The general solution of (3) is of the form z = (Complementary function) + 

(Particular integral), where the complementary function (C.F.) is the R.H.S. of the 

general solution of f (D, D¢)z = 0 and the particular integral (P.I.) is given symbolically 

by 
1

( , ).
( , )

R x y
f D D¢

Complementary function of f (D, D¢)z = R(x, y)

C.F. of the solution of f (D, D¢)z = R(x, y) is the R.H.S. of the solution of 

 f (D, D¢)z = 0 (1)

Let us assume that

 z = f(y + mx) (2)

is a solution of equation (1), where f is an arbitrary function. 

Differentiating (2) partially with respect to x and then with respect to y, we have

 Dz = ( )
z

m y mx
x

f
∂

= +¢
∂

 D
2
z = 

2
2

2
( )

z
m y mx

x

f
∂

= +¢¢
∂

    M

 D
n
z = 

( )
( )

n

n n

n

z
m y mx

x

f
∂

= +
∂

Similarly,  
n

n
r

z n

z
D

y

∂

∂
 = f(n)(y + mx) and

 
n r r

yD D
-

 = 
( )

( )

n

n r n

n r r

z
m y mx

x y

f
-

-

∂
= +

∂ ∂

Since (2) is solution of (1), we have

  (a0 m
n + a1m

n–1 + a2m
n – 2 + … + an) f

(n) (y + mx) = 0 (3)

Since f is arbitrary, 
( )
( ) 0

n
y mxf + ∫/

\   (3) reduces to a0 m
n + a1m

n – 1 + … + an = 0 or f (m, 1) = 0 (4)

Thus z = f (y + mx) will be a solution of (1), if m satisfies the algebraic equation 

(4) or m is a root of equation (4), which we get by replacing D by m and D¢ by 1 in 

the equation f (D, D¢)z = 0 and by dropping z from it.

The equation f (m, 1) = 0 is called the auxiliary equation, which is an algebraic 

equation of the nth degree in m and hence will have n roots.
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Case (i)

The roots of (4) are distinet (real or complex).

Let them be m1, m2, … mn.

The solutions of (1) corresponding to these roots are z = f1(y + m1x),  

z = f2(y + m2x)…, z = fn(y + mnx). The general solution of (1) is given by a linear 

combination of these  solutions. 

That is the general solution of (1) is given by

 z = f1(y + m1x) + f2(y + m2x)+ … + fn(y + mnx)

\   C.F. of the solution of f (D, D¢ )z = R(x, y) is f1(y + m1x) + f2(y + m2x) + ... +  
fn(y + mnx), where fr’s are arbitrary functions.

Case (ii)

Two of the roots of (4) are equal and other are distinct.

Let them be m1, m3, m4, …, mn.

Note 

If we apply the rule arrived at in Case (i), the solution of (1) will be z = [f1(y 

+ m1x) + f2(y + m1x)] + f3(y + m3x) + … + fn(y + mnx), i.e. z = f (y + m1x) + 

f3(y + m3x) + … + fn(y + mnx), which contains only (n – 1) arbitrary functions. 

Hence it cannot be the general solution of Equation (1).

Then f (m, 1) ∫ a0(m – m1)
2 (m – m3) ... (m – mn)

\ f (D, D¢) = a0(D – m1D¢)2 (D – m3D¢) ... (D – mnD¢)

Hence solution of (1) will be a combination of the solutions of the component 

equations 

 (D – m1D¢)2
z = 0, (D – m3D ¢)z = 0, …, (D – mnD¢)z = 0

Consider (D – mrD¢)z = 0, i.e p – mr q = 0 which is a Lagrange’s linear equation. 

The subsidiary equations are

 
d

1

x

 = 
d d

0
r

y z

m
=

-

Solving, we get y + mr x = a and z = b.

\   General solution of (D – mrD¢)z = 0 is fr(y + mr x, z) = 0 or z = fr(y + mr x).

Now consider  (D – m1D¢)2
z = 0 (5)

Let (D – m1D¢)z = u (6)

\   becomes (D – m1D¢)u = 0 (7)
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The solution of (7) is u = f1(y + m1x). Using this value of u in (6), it becomes 

 (D – m1D¢)z = f1(y + m1x)

or p – m1q = f1(y + m1x) (8)

which is a Lagrange’s equation.

The subsidiary equations are

 
d

1

x

 = 
1 1 1

d d

( )

y z

m y m xf
=

- +

Solving, we get y + m1x = a and z – xf1(y + m1x) = b

\   The solution of Eq. (8) and hence Eq. (5) is 

 f [y + m1x, z – x ◊ f1(y + m1x)] = 0

or  z – x ◊ f1(y + m1x) = f2(y + m1x)

or z = x ◊ f1(y + m1x) + f2(y + m1x)

\   General solution of equation (1) is

 z = xf1(y + m1x) + f2(y + m1x) + f3(y + m3x) + ... + fn(y + mnx)

\   C.F. of the solution of f (D, D¢)z = R(x, y) is

  xf1(y + m1x) + f2(y + m1x) + f3(y + m3x) + … + fn(y + mnx)

Case (iii)

‘r’ of the roots of Eq. (4) are equal and others distinct. 

i.e. m1 = m2 = m3 = … = mr

Proceeding as in Case (ii), we can show that the part of the C.F. of the solution of 

f(D, D¢)z = R(x, y) is

  f1(y + m1x) + xf2(y + m1x) + x2f3(y + m1x) + … + xr – 1 fr(y + m1x)

The Particular Integral of the solution of f (D, D¢)z = R(x, y).

As in the case of ordinary differential equations, there are formulas/methods 

for finding particular integrals (P.I.) of the solution of homogeneous (and also 

nonhomogeneous) linear P.D.E.s with constant coefficients. The formulas/methods 

are given below without proof.

1. 
+ +

= π
¢

1 1
, if ( , ) 0

( , ) ( , )

ax by ax by
e e f a b

f D D f a b

1(a).

If f (a, b) = 0, 
a

D D
b

Ê ˆ- ¢Á ˜Ë ¯
 or its power will be a factor of f(D, D¢). In this case 

we factorise f (D, D¢) and proceed as in ordinary differential equations and use the 

following results.
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2

1 1
;

ax by ax by ax by
e xe e

a aD D D D
b b

+ + += =
Ê ˆ Ê ˆ- ¢ - ¢Á ˜ Á ˜Ë ¯ Ë ¯

  

2
1

, ,
2! !

r
ax by ax by ax by

r

x x
e e e

ra
D D

b

+ + +=
Ê ˆ- ¢Á ˜Ë ¯

L

The above results can be derived by using Lagrange’s linear equation method. 

For example, let 
1

.
ax by

r
e z

a
D D

b

+ =
Ê ˆ- ¢Á ˜Ë ¯

i.e., 
ax bya

p q e
b

+

- =

The subsidiary equations are

  

d d d

1
ax by

x b y z

a e
+

= =

-

The solutions of these equations are ax + by = c1 and z = xe
c1 or z = xe

ax + by.

 2. 
sin

cos2 2

1
( )

( , , )
ax by

f D DD D
+

¢ ¢

  

sin

cos2 2

1
( )

( , , )
ax by

f a ab b
= +

- - -

provided f (a2, –ab, –b
2) π 0.

 2(a).

If f (–a
2, –ab, –b

2) = 0, then  will be 
2

2 2

2

a
D D

b

Ê ˆ
- ¢Á ˜Ë ¯

 will be a factor of 

¢ ¢

2 2
( , , ).f D DD D  In this case, we proceed as in ordinary differential equations and 

use the results.

 +

- ¢
2

2
2

2

1
sin( )ax by

a
D D

b

 = cos( ) and
2

x
ax by

a
- +

 +

- ¢
2

2
2

2

1
cos( )ax by

a
D D

b

 = sin( )
2

x
ax by

a
+

which may be verified by the reader.

 3. 
11

[ ( , )]
( , )

m n m n
x y f D D x y

f D D

-
= ¢

¢

where [f (D, D¢)]–1 is to be expanded in 

series of power of D and D¢.
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 4. 
1 1

( , ) ( , ).
( , ) ( , )

ax by ax by
e F x y e F x y

f D D f D a D b

+ +
= ◊

+ +¢ ¢

 5. 
1

( , ) ( , )d
a y mx

F x y F x a x x
D mD Æ +

È ˘= -Î ˚- ¢ Ú

This result can be derived by assuming that 
1

( , )F x y z
D mD

=

- ¢

 and solving for  

z by using Lagrange’s linear equation method.

4.14  complementary functIon for a 
non-homogeneous lInear equatIon

Let the non-homogeneous linear equation be f (D, D¢) = 0.

We resolve f (D, D¢) into linear factor of form (D – aD¢ – b).

The C.F. is the linear combination or simply the sum of (the R.H.S. functions of) the 

solution of the component equations (D – arD¢ – br)z = 0.

Now let us consider the equation (D – aD¢ – b)z = 0.

i.e. p – aq = bz, which is a Lagrang’s linear equation

The subsidiary equations are

 
d

1

x

 = 
d dy z

a bz
=

-

One solution of these equations y + ax = c1. The other solution is log z = bx + 
log c2

or z = c2e
bx

\   The general solution of the equation is

 ,

bx

z
y ax

e
f
Ê ˆ

+Á ˜Ë ¯  = 0  or  z = ebx f (y + ax)

Note 
The rules/methods for finding P.l.s are the same as those for homogeneous 
linear equations.

4.15  solutIon of p.d.e.s by the method of 
separatIon of varIables

In the next few chapters on applications of partial differential equations, we will have 

to solve boundary value problems, i.e. partial differential equations that satisfy certain 

given conditions called boundary conditions.

When solving a boundary value problem, if we first find the general solution of the 

concerned partial differential equation, it will be very difficult to find particular values 

of the arbitrary functions involved in the general solution that satisfy the boundary 

conditions. Hence in such situations, we try to find particular solutions of the partial 
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differential equation that satisfy the boundary conditions and then combine them to 

get the solution of the boundary value problem.

A simple but powerful method of obtaining such particular solution is the method 

of separation of variables. In this method of solving a P.D.E. with z as the dependent 

variable and x and y as independent variables, the solution is assumed to be of the form 

z = f (x)·g(y), where f is a function of x alone and g is a function of y alone.

This assumption makes the solution of the P.D.E. depend on solutions of ordinary 

differential equations.

This variable separable solution of a P.D.E. is called a particular solution, as it can 

be verified to be a particular form of the general solution of the P.D.E.

For example, consider the equation

 
2

2

z

t

∂

∂
 = 

2

2

2

z

a

x

∂

∂
 (1)

A variable separable solution of (1) can be obtained as

 z = (ae
px + be

–px) (ce
pat + de

–pat)  (2)

where a, b, c, d, p are constants.

(2) can be rewritten as

 z = {ac ep(x + at) + bd e
–p(x + at)} + {ad e

p(x – at) + bc e
–p(x – at)} (3)

(3) is a particular case of

 z = f(x + at) + f(x – at)

which is the general solution of (1) [see Problem 25 in Exercise 1(c)].

 Worked Examples 4(d)

Example 1

Solve the equation

 (D3 + 2D
2
D¢ – DD¢2 – 2D¢3)z = 0

The auxiliary equation (got by replacing D by m and D¢ by 1 in the given P.D.E.) 

is

 m
3 + 2m

2 – m – 2 = 0

i.e. m
3 + (m2 + 2) – (m + 2) = 0

i.e. (m – 1) (m + 1) (m + 2) = 0

\ m = 1, –1, –2

\   General solution of the given equation is

 z = f1(y + x) + f2(y – x) + f3(y – 2x)
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Note 
There is no particular integral in the general solution, since the R.H.S. member 
of the given P.D.E. is zero.

Example 2

Solve the equation

 (D3 – D2
D¢ – 8DD¢ 2 + 12D¢3)z = 0

The auxiliary equation is m3 – m2 – 8m + 12 = 0

 m = 2 is a root of the auxiliary equation.

It is (m – 2) (m2 + m – 6) = 0 or (m – 2)(m – 2)(m + 3) = 0

\ m = 2, 2, –3

\   The general solution of the given equation is

 z = xf1(y + 2x) + f2(y + 2x) + f3(y – 3x)

Example 3

Solve the equation (D2 – 3DD¢ + 2D¢2)z = 2 cosh (3x + 4y)

The auxiliary equation is m
2 – 3m + 2 = 0

i.e. (m – 1)(m – 2) = 0

 m = 1, 2

\   The C.F. of the given P.D.E. = f1(y  x) + f2(y + 2x)

 P.I. = 
2 2

1
2cosh (3 4 )

3 2
x y

D DD D
+

- +¢ ¢

  = 3 4 (3 4 )

2 2

1
[ ]

3 2

x y x y
e e

D DD D

+ - +
+

- +¢ ¢

  = 
3 4 (3 4 )

2 2 2 2

1 1

3 3.34 2.4 ( 3) 3( 3)( 4) 2( 4)

x y x y
e e

+ - +
+

- + - - - - + -

  = 3 4 (3 4 )1
[ ]

5

x y x y
e e

+ - +
+

  = 
2
cosh (3 4 )

5
x y+
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\   The general solution of the given equation is z = f1(y + x) + f2(y + 2x) + 
2

3
 cosh 

(3x + 4y).

Example 4

Solve the equtation

 (9D
2 + 6DD¢ + D¢2)z = (ex + e–2y)2

The auxiliary equation is

 9m
2 + 6m + 1 = 0  i.e.  (3m + 1)2 = 0

\ m = –1/3, –1/3

\ C.F. = 1 2

1 1

3 3
x f y x f y x

Ê ˆ Ê ˆ
- ◊ + - ◊Á ˜ Á ˜Ë ¯ Ë ¯   or

  x f1(3y – x) + f2(3y – x)

 P.I. = 2 2

2 2

1
( )

9 6

x y
e e

D DD D
+

+ +¢ ¢

  = 2 4 2

2 2

1
( 2 )

9 6

x y x y
e e e

D DD D

- -
+ +

+ +¢ ¢

  = 2 4 2

2 2

1 1 1
2

(3 )(3 ) (3 )

x y x y
e e e

D DD D D D

- -
+ + ◊

+ ¢+ +¢ ¢

  = 2 4 21 1
2

36 16

x y x y
e e e

- -
+ +

\  The general solution of the given equation is

 z = - -
- + - + + +

2 4 2
1 2

1 1
(3 ) (3 ) 2

36 16

x y x y
x f y x f y x e e e

Example 5

Solve the equation

 (D3 – 3DD¢2 + D¢2)z = e2x – y + ex + y

The auxiliary equation is m3 – 3m + 2 = 0

i.e. (m – 1)(m2+ m – 2) = 0

i.e. (m – 1)2(m + 2) = 0

\ m = 1, 1, –2

\ C.F. = x f1(y + x) + f2(y + x) + f3(y – 2x)
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 P.I. = 
2

3 2 3

1
( )

3 2

x y x y
e e

D DD D

- +
+

+ +¢ ¢

  = 
2

2 2

1 1

( 2 )( ) ( ) ( 2 )

x y x y
e e

D D D D D D D D

- +
+

+ - - +¢ ¢ ¢ ¢

  = 2

2

1 1 1 1

9 2 9 ( )

x y x y
e e

D D D D

- +
◊ + ◊

+ ¢ - ¢

  = 
2

21

9 2

x y x yx
xe e

- +
È ˘

+Í ˙
Í ˙Î ˚

\   The general solution of the given equation is

 z = - +
+ + + + - + +

2
2

1 2 3( ) ( ) ( 2 )
9 18

x y x yx x
x f y x f y x f y x e e

Example 6
Solve the equation

 (D3 – 6D
2
D¢ + 12DD¢2 – 8D¢3)z = (1 + e2x + y)2

The auxiliary equation is m3 – 6m
2 + 12m – 8 = 0

i.e. (m – 2)3 = 0

\ m = 2, 2, 2

\ C.F. = x2
f1(y + 2x) + x ·f2(y + 2x) + f3(y + 2x)

 P.I. = 
2 2

3

1
(1 )

( 2 )

x y
e

D D

+
+

- ¢

  = 
2 4 2

3 3 3

1 1 1
(1) 2

( 2 ) ( 2 ) ( 2 )

x y x y
e e

D D D D D D

+ +
+ ◊ +

- - -¢ ¢ ¢

  = 
3 3 3

2 4 2
2

3! 3! 3!

x y x yx x x
e e

+ +
+ +

    
3

1
since (1)

( 2 )D D

È
Í

- ¢Î
 = 0 0

3

1

( 2 )

x y
e

D D

◊ + ◊

- ¢
 and

    3

1 ax by
e

a
D D

b

+

Ê ˆ- ¢Á ˜Ë ¯

 = 
3

3!

ax byx
e

+
˘
˙
˙̊

  = 
3

2 2
(1 )

6

x yx
e

+
+

\   The general solution of the given equation is

  z = 
+

+ + + + + + +

2
3

2 2 )
1 2 3( 2 ) ( 2 ) ( 2 ) (1

6

x yx
x f y x x f y x f y x e

Example 7

Solve the equation (D2 + 2DD¢ + D¢2)z = x2
y + ex – y

The auxiliary equation is m2 + 2m + 1 = 0 or (m + 1)2 = 0   \   m = –1, –1

\ C.F. = x f1(y – x) + f2(y – x)
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 (P.I.)1 = 2

2

1

( )
x y

D D+ ¢

  = 2

2

2

1

1

x y
D

D
D

¢Ê ˆ+Á ˜Ë ¯

  = 

2

2

2

1
1 ( )

D
x y

DD

-¢Ê ˆ
+Á ˜Ë ¯

  = 
2

2

2 2

1 2
1 3 ( )

D D
x y

DD D

Ê ˆ¢ ¢
- +Á ˜

Ë ¯

  = 2 2

2

1 2
x y x

DD

Ï ¸
-Ì ˝

Ó ˛

  = 2 2

2 3

1 1
( ) 2 ( )y x x

D D
◊ - ◊

  = 
4 5

2
3.4 3.4.5

x x
y ◊ - ◊

  = 
4 5

12 30

x y x
-

 (P.I.)2 = 
2

2

1

2!( )

x y x yx
e e

D D

- -
=

+ ¢

\   The general solution is

 z = -
- + - + - +

4 5 2

1 2( ) ( )
12 30 2

x yx y x x
x f y x f y x e

Example 8
Solve the equation

 (D3 – 7DD¢ 2 – 6D¢3)z = x2 + xy
2 + y3

The auxiliary equation is

 m
3 – 7m – 6 = 0,   i.e. (m + 1)(m2 – m – 6) = 0

i.e. (m + 1)(m + 2)(m – 3) = 0

\ m = –1, –2, 3

\ C.F. = f1(y – x) + f2(y – 2x) + f3(y + 3x)

 P.I. = 2 2 3

3 2 3

1
( )

7 6
x xy y

D DD D
+ +

- -¢ ¢

  = 

1
2 3

2 2 3

3 3

1 (7 6
1 ( )

DD D
x xy y

D D

-
Ï ¸+¢ ¢Ô Ô

- + +Ì ˝
Ô ÔÓ ˛

  = 
2

2 2 3

3 3

1
1 (7 6 ) ( )

D
D D x xy y

D D

È ˘¢
+ + + + +¢Í ˙

Í ˙Î ˚
L
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  = 2 3 2 2 3

3 6

1 1
(7 6 ) ( )DD D x xy y

D D

È ˘
+ + + +¢ ¢Í ˙

Î ˚

  = 2 2 3

3 6

1 1
( ) {7 (2 6 ) 36}x xy y D x y

D D
+ + + ◊ + +

  = 2 2 3

3 6

1 1
( ) (50)x xy y

D D
+ + +

  = 
5 4 3 3

2 3
50

3.4.5 2.3.4 1.2.3 1.2.3

x x x x
y y+ ◊ + ◊ + ◊

  = 5 3 4 2 3 31 25 1 1

60 3 24 6
x x x y x y+ + +

\   The general solution is

 z = 
5

3 4 2 3 3
1 2 3

25 1 1
( ) ( 2 ) ( 3 )

60 3 24 6

x
f y x f y x f y x x x y x y- + - + + + + + +

Example 9
Solve the equation

 (D2 + 4DD¢ – 5D¢ 2)z = xy + sin (2x + 3y)

The auxiliary equation is m2 + 4m – 5 = 0

i.e. (m + 5)(m – 1) = 0

\ m = – 5.1

\ C.F. = f1(y – 5x) + f2(y + x)

 (P.I.)1 = 
2 2

1
( , )

4 5
x y

D DD D+ -¢ ¢

  = 
2

2

1
( )

1 (4 5 )

xy
D

D D D
D

¢Ï ¸
+ - ¢Ì ˝

Ó ˛

  = 

1

2 2

1
1 (4 5 ) ( )

D
D D xy

D D

-
¢Ï ¸

+ - ¢Ì ˝
Ó ˛

  = 
2 2

1
1 (4 5 ) ( )

D
D D xy

D D

¢Ï ¸
- - +¢Ì ˝

Ó ˛
L

  = 
2 4

1 1
( ) 4 ( )xy D xy

D D
- ◊ ¢

  = 
3

4

1
(4 )

6

x y
x

D
-

  = 3 51 1

6 30
x y x-
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 (P.I.)2 = 
2 2

1
sin (2 3 )

4 5
x y

D DD D
+

+ +¢ ¢

  = 
2 2

1
sin(2 3 )

2 4 ( 2.3) 5( 3 )
x y+

- + ◊ - - -

  = 
1
sin(2 3 )

17
x y+

\   General solution is

 z = 3 5
1 2

1 1 1
( 5 ) ( ) sin (2 3 )

6 30 17
y x y x x y x x yf f- + + + - + +

Example 10
Solve the equation

 (D2 + D¢ 2)z = sin 2x sin 3y + 2 sin2(x + y)

The auxiliary equation is m2 + 1 = 0

i.e. m = ± i

\ C.F. = f1(y + ix) + f2(y – ix)

 (P.I.)1 = 
2 2

1
sin 2 sin3x y

D D+ ¢

  = 
2 2

1 1
{cos(2 3 ) cos(2 3 )}

2
x y x y

D D
◊ - - +

+ ¢

  = 
1 1 1

cos(2 3 ) cos(2 3 )
2 4 9 4 9

x y x y
È ˘

- - +Í ˙- - - -Î ˚

  = [ ]- ◊ - - +
1 1

{cos(2 3 ) cos(2 3 )}
13 2

x y x y

  = 
1
sin 2 sin3

13
x y-

 (P.I.)2 = 2

2 2

1
2sin ( )x y

D D
+

+ ¢

  = 
2 2

1
{1 cos(2 2 )}x y

D D
- +

+ ¢

  = 

1
2

2 2 2 2

1 1
1 (1) cos(2 2 )

D
x y

D D D D

-
Ê ˆ¢

+ - +Á ˜ + ¢Ë ¯

  = 
2

1 1
(1) cos(2 2 )

4 4
x y

D
- +

- -

  = 
2

1
cos(2 2 )

2 8

x
x y+ +

\   General solution is

 z = 
2

1 2

1 1
( ) ( ) sin 2 sin3 cos(2 2 )

13 2 8

x
y ix y ix x y x yf f+ + - - + + +
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Example 11
Solve the equation

 (16D
4 – D¢ 4)z = cos(x + 2y)

The auxiliary equation is 16 m4 – 1 = 0

i.e. (m2 – 1/4)(m2 + 1/4) = 0

\ m = ±1/2, ± i /2

\ C.F. = 1 2 3 4

1 1

2 2 2 2

ix ix
f y x f y x f y f y
Ê ˆ Ê ˆ Ê ˆ Ê ˆ

+ + - + + + -Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

 P.I. = 
4 4

1
cos( 2 )

16
x y

D D
+

- ¢

  = 
2 2 2 2

1
cos( 2 )

(4 )(4 )
x y

D D D D
+

- +¢ ¢

  = 
2 2

1 1
cos( 2 )

4( 1) ( 4)(4 )
x y

D D
◊ +

- + -- ¢

  = 
2 2

1 1
cos( 2 )

8 4
x y

D D
- ◊ +

- ¢

  = 
2 2

1 1
cos( 2 )

132

4

x y

D D

- ◊ +

- ¢

  = 
2

2 2

2

1 1
sin( 2 ) cos( ) sin( )

32 2 2

x x
x y ax by ax by

aa
D D

b

È ˘
Í ˙
Í ˙- ◊ + + = +
Í ˙

- ¢Í ˙
Î ˚

Q

  = 
1

sin( 2 )
64

x x y- +

\   General solution is

 z = 1 2 3 4

1
sin( 2 )

2 2 2 2 64

x x ix ix
f y f y f y f y x x y
Ê ˆ Ê ˆ Ê ˆ Ê ˆ

+ + - + + + - - +Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

Example 12
Solve the equation

 (D3 + D2
D¢ – 4DD¢ 2 – 4D¢3)z = cos (2x + y)

The auxiliary equation is m3 + m2 – 4m – 4 = 0

i.e. m
2(m + 1) – 4(m + 1) = 0

i.e. (m + 1)(m + 2)(m – 2) = 0

\ m = –1, –2, 2
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\ C.F. = f1(y – x) + f2(y – 2x) + f3(y + 2x)

 P.I. = 
2 2

1
cos(2 )

( 4 )( )
x y

D D D D
+

- +¢ ¢

  = 
2 2 2 2

1 ( )
cos(2 )

( 4 )

D D
x y

D D D D

- ¢
◊ -

- -¢ ¢

  = ◊ - -¢

- - -- ¢
2 2

1 1
( )cos(2 )

4 ( 1)( 4 )
D D x y

D D

  = 
2 2

1 1
{ 2sin(2 ) sin(2 )}

3 4
x y x y

D D
◊ - - - -

- ¢

  = 
2 2

1
sin(2 )

4
x y

D D
-

- ¢

  = 
2

2 2

2

1
cos(2 ) sin( ) cos( )

4 2

x x
x y ax by ax by

aa
D D

b

È ˘
Í ˙
Í ˙- - + = - +
Í ˙

- ¢Í ˙
Î ˚

Q

\   General solution is

 z = 1 2 3( ) ( 2 ) ( 2 ) cos(2 )
4

x
y x y x y x x yf f f- + - + + - -

Example 13
Solve the equation

 (D2 – 2DD¢ + D¢ 2)z = x2
y

2
e

x + y

The auxiliary equation is m2 – 2m + 1 = 0

\ m = 1, 1

\ C.F. = x f1(y + x) + f2(y + x)

 P.I. = 2 2

2

1
( )

( )

x y
e x y

D D

+

- ¢

  = 
2 2

2

1

{( 1) ( 1)}

x y
e x y

D D

+

+ - +¢

  = 
2 2

2

1

( )

x y
e x y

D D

+

- ¢

  = 

2

2 2

2

1
1 ( )

x y D
e x y

DD

-
+ ¢Ê ˆ

-Á ˜Ë ¯

  = 
2

2 2

2 2

1 2
1 3 ( )

x y D D
e x y

DD D

+ Ê ˆ¢ ¢
+ +Á ˜

Ë ¯

  = 2 2 2 2

2 2

1 2 3
(2 (2 )

x y
e x y x y x

DD D

+ Ï ¸
+ +Ì ˝

Ó ˛
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  = 2 2 2 2

2 3 4

1 1 1
( ) 4 ( ) 6 ( )

x y
e y x y x x

D D D

+ È ˘
◊ + ◊ + ◊Í ˙

Î ˚

  = 4 2 5 61 1 1

12 15 60

x y
x y x y x e

+Ê ˆ
+ +Á ˜Ë ¯

\   General solution is

 z = +Ê ˆ
+ + + + + +Á ˜Ë ¯

2 2 4
1 2

1 1 1
( ) ( )

12 15 60

x y
x f y x f y x y xy x x e

Example 14
Solve the equation

 (D2 – D¢ 2)z = ex – y sin(2x + 3y)

The auxiliary equation is m2 – 1 = 0
\ m = ±1

\ C.F. = f1(y + x) + f2(y – x)

 P.I. = 
2 2

1
sin(2 3 )

x y
e x y

D D

-
+

- ¢

  = 
2 2

1
sin(2 3 )

( 1) ( 1)

x y
e x y

D D

-
+

+ - -¢

  = 
2 2

1
sin(2 3 )

2( )

x y
e x y

D D D D

-
+

- + +¢ ¢

  = 
1

sin(2 3 )
2( ) 5

x y
e x y

D D

-
+

+ +¢

  = 
2

2( ) 5
sin(2 3 )

4( ) 25

x y D D
e x y

D D

- + -¢
+

+ -¢

  = 
2 2

1
{2( ) 5} sin(2 3 )

4( 2 ) 25

x y
e D D x y

D DD D

-
+ - ◊ +¢

+ + -¢ ¢

  = 
1

{2( ) 5} sin (2 3 )
125

x y
e D D x y

- Ê ˆ
+ - ◊ - +¢ Á ˜Ë ¯

  = 
1

{4cos(2 3 ) 6cos(2 3 ) 5sin(2 3 )}
125

x y
e x y x y x y

-
- + + + - +

  = 
1

{sin(2 3 ) 2cos(2 3 )}
25

x y
e x y x y

-
+ - +

\   General solution is

 z = 1 2

1
( ) ( ) {sin(2 3 ) 2cos(2 3 )}

25

x y
f y x f y x e x y x y

-
+ + - + + - +

Example 15
Solve the equation

 (D2 – 5DD¢ + 6D¢2)z = y sin x

The auxiliary equation is m2 – 5m  6 = 0
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i.e. (m – 2)(m – 3) = 0

\ m = 2, 3

\ C.F. = f1(y + 2x) + f2(y + 3x)

 P.I. = 
1

sin
( 2 )( 3 )

y x
D D D D+ -¢ ¢

  = 
3

1
( 3 )sin d

2 a y x
a x x x

D D Æ +
È ˘-
Î ˚- ¢ Ú

  = 3

1
[( 3 )( cos ) 3( sin )]

2
a y xa x x x

D D
Æ +

- - + -
- ¢

  = 
1

[ cos 3sin ]
2

y x x
D D

- -

- ¢

  = [( )cos sin ]a x x x x
a y x

- +{ }Ú Æ +
2 3

2
d

  = –[(a – 2x) sin x + 2(–cos x) – 3cos x]a Æ y + 2x

  = 5 cos x – y sin x

\   General solution is

 z = f1(y + 2x) + f2(y + 3x) + 5 cos x – y sin x

Example 16
Solve the equation

 (4D
2 – 4DD¢ + D¢2)z = 16 log (x + 2y)

The auxiliary equation is 4m
2 – 4m + 1 = 0

i.e. (2m – 1)2 = 0

\ m = 1/2, 1/2

\ C.F. = 
Ê ˆ Ê ˆ

+ + +Á ˜ Á ˜Ë ¯ Ë ¯1 2

1 1

2 2
x f y x f y x  or

  x f1(2y + x) + f2(2y + x)

 P.I. = 
2

1
16 log( 2 )

(2 )
x y

D D
+

- ¢

  = 
1 1

4 log( 2 )
( 1/2 ) 1/2

x y
D D D D

◊ ◊ +
- -¢ ¢

  = 
1

2

1 1
4 log 2 d

1/2 2
a y x

x a x x
D D

Æ +

Ï ¸È ˘Ê ˆÔ Ô◊ + -Ì ˝Í ˙Á ˜Ë ¯- ¢ Ô ÔÎ ˚Ó ˛
Ú
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  = 1

2

1
4 log(2 )d

1/2 a y x
a x

D D Æ +
È ˘◊
Î ˚- ¢ Ú

  = 
1

4 { log( 2 )}
1/2

x x y
D D

◊ +
- ¢

  = 
1

2

1
4 log 2 d

2
a y x

x x a x x

Æ +

È ˘Ï ¸Ê ˆ+ -Í ˙Ì ˝Á ˜Ë ¯Í ˙Ó ˛Î ˚
Ú

  = 
Æ +

È ˘
Î ˚Ú 1

2

4 log(2 )d
a y x

x a x

  = 
Æ +

2 1

2

2 (log2 )
a y x

x a

  = 2x
2 log(x + 2y)

\   General solution is

 z = x f1(x + 2y) + f2(x + 2y) + 2x
2 log (x + 2y)

Example 17

Solve the equation

 (D2 + 2DD¢ + D¢ 2 – 2D – 2D¢)z = cosh(x – y)

The given equation is a non-homogeneous linear equation

 D
2 + 2DD¢ + D¢ 2 – 2D – 2D¢ ∫ (D + D¢)2 – 2(D + D¢)

  = (D + D¢) (D + D¢ – 2)

\   The given equation

 (D + D¢) (D + D¢ – 2)z = cosh(x – y)

\   C.F. = f1(y – x) + e2x · f2(y – x) [Q   the part of C.E. corresponding to

         (D – aD¢ – b)z = 0 is ebx f (y + ax)]

 P.I. = 
1 1

{ }
( )( 2) 2

x y x y
e e

D D D D

- - +
+

+ + -¢ ¢

  = 
1 1 1

( )
2 2

x y x y
e e

D D

- - +-
◊ ◊ +

+ ¢

  = 
1

( )
4

x y x y
xe xe

- - +
- ◊ +

  = cosh( )
2

x
x y- -

\   General solution is

 z = 2
1 2( ) ( ) cosh( )

2

x x
f y x e f y x x y- + - - -
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Example 18

Solve the equation (D2 – D¢2 – 3D + 3D¢)z = ex+ 2y + xy

 D
2 – D¢2 – 3D + 3D¢ ∫ (D + D¢) (D – D¢) – 3(D – D¢)

  = (D – D¢) (D + D¢ – 3)

\   The given equation is

 (D – D¢) (D + D¢ – 3)z = ex + 2y + xy

\ C.F. = f1(y + x) + e3x f2(y – x)

 P.I. = 21

( )( 3)

x y
e

D D D D

+

- + -¢ ¢

  = 21
( 1)

( 3)

x y
e

D D

+
◊ -

+ -¢

  = –xe
x + 2y

 (P.I.)2 = 
1

( )( 3)
xy

D D D D- + -¢ ¢

  = 

1 1
1

1 1
3 3

D D D
xy

D D

- -+¢ ¢Ê ˆ Ï ¸- - -Ì ˝Á ˜Ë ¯ Ó ˛

  = 
¢Ê ˆ Ï ¸+ + + + + + + +¢ ¢ ¢Ì ˝Á ˜Ë ¯ Ó ˛

L

2 31 1 1 1
1 1 ( ) ( ) ( )

3 3 9 27

D
D D D D D D xy

D D

  = 
¢Ê ˆ Ï ¸- + + + + + + +¢ ¢ ¢Ì ˝Á ˜Ë ¯ Ó ˛

2 3 21 1 1 1 1 2 1 1
1 ( )

3 2 3 3 9 9 27 9

D
D D D DD D D D xy

D D

  = 
¢ ¢ ¢È ˘

- + + + + + + + + +¢ ¢ ¢ ¢Í ˙
Î ˚2

1 1 1 1 1 2 1 1 1 1
( )

3 3 3 9 9 9 3 9 27

D D D
D D DD D DD xy

D D DD

  = 
2

1 2 1 1 1 1 4

3 3 3 9 3 27

D D
D D DD xy

D DD

¢ ¢È ˘
- + + + + + +¢ ¢Í ˙

Î ˚

  = 
3 2 2

1 1 1 1 4

3 6 3 2 3 9 3 27

x x x y
xy y x

È ˘
- + + + + + +Í ˙

Í ˙Î ˚

\   General solution is

 z = C.F. + (P.I.)1 + (P.I.)2

Example 19
Solve the equation (D2 – 3DD¢ + 2D¢2 + 2D – 2D¢)z = x + y + sin(2x + y)

 D
2 – 3DD¢ + 2D¢ 2 + 2D – 2D¢ ∫ (D – D¢) (D – 2D¢) + 2(D – D¢)

  = (D – D¢) (D – 2D¢ + 2)
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\   The given equation is

 (D – D¢) (D – 2D¢ + 2)z = (x + y) + sin(2x + y)

 C.F. = f1(y + x) + e–2x
 f2(y + 2x)

 (P.I.)1 = 
1

( )
( )( 2 2)

x y
D D D D

+
- - +¢ ¢

  = 

1 1

2

1 2
1 1 ( )

2 2

D D D
x y

D D

- --¢ ¢Ê ˆ Ê ˆ
- + +Á ˜ Á ˜Ë ¯ Ë ¯

  = 2

2

1 1 1 1
1 ( 2 ) ( 2 ) ( )

2 2 4

D
D D D D x y

D D

¢Ê ˆ Ï ¸+ - - + - + +¢ ¢Ì ˝Á ˜Ë ¯ Ó ˛
L

  = 2

2

1 1 1 1
1 ( )

2 2 4

D
D D D DD x y

D D

¢È ˘ È ˘
+ - + + - +¢ ¢Í ˙ Í ˙

Î ˚ Î ˚

  = 
2

1 1 1 1 1 1
( )

2 2 4 2 4

D D D
D D D x y

D D DD

¢ ¢ ¢È ˘
- + + - + - + +¢ ¢Í ˙

Î ˚

  = 
2

1 1 1 1 1 3
( )

2 2 2 4 4

D D
D D x y

D DD

¢ ¢Ê ˆ
+ ◊ + - + - +¢Á ˜Ë ¯

  = 
2 2

1 1 1
1/4 3/4

2 2 2 2 2 2

x x x
xy y x

È ˘
+ + + - - + -Í ˙

Í ˙Î ˚

  = 21 1 1
1/4

2 2 4
x xy y+ - -

 (P.I.)2 = 
2 2

1
sin(2 )

3 2 2 2
x y

D DD D D D
+

- + + -¢ ¢ ¢

  = 
1

sin(2 )
4 6 2 2( )

x y
D D

+
- + - + - ¢

  = 
2 2

( )
sin(2 )

2( )

D D
x y

D D

+ ¢
+

- ¢

  = 
1
{2cos(2 ) cos(2 )}

6
x y x y

-
+ + +

  = 
1

cos(2 )
2

x y
-

+

\   General solution is

 z = 2 2
1 2

1 1 1 1 1
( ) ( 2 ) cos(2 )

2 2 4 4 2

x
f y x e f y x x xy y x y

-
+ + + + + - - - +

Example 20
Solve the equation (D2 – DD¢ + D¢ – 1)z = e2x + 3y + cos2(x + 2y)

 D
2 – DD¢ + D¢ – 1 ∫ (D2 – 1) – D¢ (D – 1)

  = (D – 1)(D – D¢ + 1)
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\   The given equation is

 (D – 1)(D – D¢ + 1)z = e2x + 3y + cos2(x + 2y)

 C.F. = ex
 f1(y) + e–x

 f2(y + x)

 (P.I.)1 = 2 31

( 1)( 1)

x y
e

D D D

+

- - +¢

  = 2 31

(2 1)( 1)

x y
e

D D

+

- - +¢

  = xe
2x + 3y

 (P.I.)2 = + +
- - +¢

1 1
{1 cos(2 4 )}

( 1)( 1) 2
x y

D D D

  = 
2

1 1 1
( 1) cos(2 4 )

2 2 ( 1)
x y

D DD D
- + ◊ +

- + -¢ ¢

  = 
1 1

1/2 cos(2 4 )
2 4 8 1

x y
D

- + ◊ +
- + + -¢

  = 
2

3
1/2 1/2 cos(2 4 )

( 9)

D
x y

D

-¢
- + ◊ +

-¢

  = 
1 1

{ 4sin(2 4 ) 3cos(2 4 )}
2 50

x y x y
-

- - + - +

  = 
1
{4sin(2 4 ) 3cos(2 4 )} 1/2

50
x y x y+ + + -

\   General solution is

 z = ex
 f1(y) + e–x f2(y + x) + xe

2x + 3y  – 1/2

  
1
{4sin(2 4 ) 3cos(2 4 )}

50
x y x y+ + + +

Example 21
Solve the equation (2D

2 – DD¢ – D¢2 + 6D + 3D¢)z = xe
y + ye

x

 2D
2 – DD¢ – D¢2 + 6D + 3D¢ ∫ (2D + D¢)(D – D¢) + 3(2D + D¢)

  = (2D + D¢)(D – D¢ + 3)

\   The given equation is

 (2D + D¢) (D – D¢ + 3)z = xe
y + ye

x

\ C.F. = 3
1 2 ( )

2

xx
f y e f y x

-Ê ˆ
- + +Á ˜Ë ¯

or  f1(2y – x) + e–3x · f2(y + x)
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 (P.I.)1 = 
2 2

1
( )

2 6 3

y
xe

D DD D D D- - + +¢ ¢ ¢

  = 
2 2

1
( )

2 ( 1) ( 1) 6 3( 1)

y
e x

D D D D D D
◊

- + - + + + +¢ ¢ ¢

  = 
2 2

1
( )

2 5 2

y
e x

D D D DD D
◊

+ + + - -¢ ¢ ¢

  = 

1

2 21
1 (5 2 ) ( )

2 2

y
e

D D D DD D x

-
Ï ¸
◊ + + + - -¢ ¢ ¢Ì ˝
Ó ˛

  = 
5

1 ( )
2 2

y
e

D x
Ï ¸

- ◊Ì ˝
Ó ˛

  = 
1
(2 5)

4

y
x e-

 (P.I.)2 = 
2 2

1
( )

2 6 3

x
ye

D DD D D D- - + +¢ ¢ ¢

  = 
2 2

1
( )

2( 1) ( 1) 6( 1) 3

x
e y

D D D D D D
◊

+ - + - + + +¢ ¢ ¢

  = 
2 2

1
( )

8 10 2 2

x
e y

D D D DD D
◊

+ + + - -¢ ¢ ¢

  = 

1

2 21
1 (10 2 2 ) ( )

8 8

x
e

D D D DD D y

-
Ï ¸

+ + + - -¢ ¢ ¢Ì ˝
Ó ˛

  = 
1

1 ( )
8 4

x
e

D y
Ï ¸

- ¢Ì ˝
Ó ˛

  = 
1
(4 1)

32

x
y e-

\   General solution is

 z = 3
1 2

1 1
(2 ) ( ) (2 5) (4 1)

4 32

x y x
f y x e f y x x e y e

-
- + + + - + -

Example 22
Solve the equation 2 3 0

z z
x y

x y

∂ ∂
- =

∂ ∂
, by the method of separation of variables.

Let z = X(x) · Y(y) be a solution of

 2xzx – 3yzy = 0 (1)

Then zx = X ¢Y and zy = XY ¢, where 
dX

X
dx

=¢  and 
dY

Y
dy

=¢  satisfy Eq. (1).

i.e. 2xX ¢Y – 3yXY ¢ = 0

i.e. 2
X

x
X

¢

 = 3
Y

y
Y

¢

L.H.S. is a function of x alone and R.H.S. is a function of y alone. They are equal 

for all values of x and y. This is possible only if each is a constant.
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\ 2
X

x
X

¢

 = 3
Y

y k
Y

¢
=

i.e. 2
X

X

¢

 = 
k

x
  (2)

and 
3Y

Y

¢

 = 
k

y
 (3)

Integrating both sides of (2) with respect to x,

 2log X = k log x + log A

i.e. X
2 = Ax

k or X = ax
k/2 (4)

Similarly, from (3), Y = by
k/3

\   Required solution of (1) is

 z = abx
k/2 yk/3 or z = cx

k/2 yk/3

Example 23

Solve the equation 2
z z

z
x y

∂ ∂
= +

∂ ∂
, by the method of separation of variables, given 

that

 z(x, 0) = 6e
–3x

Let

 z = X(x) · Y(y) (1)

be a solution of

 zx = 2zy + z (2)

Then zx = X ¢Y and zy = XY ¢ satisfy equation (2).

i.e. X ¢Y = 2XY ¢ + XY

Dividing throughout by X, Y, we get

 
X

X

¢

 = 2 1
Y

k
Y

¢
+ =

[Q   the L.H.S. is a function of a x alone and the R.H.S. is a function of y alone]

 
X

X

¢

 = k (3)

and 
Y

Y

¢

 = 
1

2

k -
  (4)
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Integrating (3) and (4) with respect to x and y respectively, we get

 log X = kx + log A and log 
1

log
2

k
Y y B

-Ê ˆ
= +Á ˜Ë ¯

i.e X = Ae
kx and 

1

2

k
y

Y Be

-Ê ˆ
Á ˜Ë ¯=

\   Required solution is

 z = 

1

2

k
y

kx
ce e

-Ê ˆ
Á ˜Ë ¯◊   (5)

Given that z(x, 0) = 6e
–3x

\ ce
kx = 6e

–3x

\ c = 6 and k = –3

Using these values in (5), the required solution is z = 6e
–(3x + 2y).

Example 24

Solve the equation 
2

2
2 0

z z z

x yx

∂ ∂ ∂
- + =

∂ ∂∂
, by the method of separation of variables.

Let z = X(x).Y(y)  (1)

be a solution of the equation

 zxx – 2zx + zy = 0 (2)

Then zx = X ¢Y, zxx = X ¢¢Y and zy = XY ¢ satisfy (2).

i.e. X ¢¢Y – 2X ¢Y + XY ¢  = 0

Dividing throughout by XY, we get

 2
X X Y

X X Y

¢¢ ¢ ¢
- +  = 0

i.e. 
2X X

X

-¢¢ ¢
 = 

Y
k

Y

¢
- =

i.e. X ¢¢ – 2X ¢ – kX = 0  (3)

and Y ¢ + kY = 0  (4)
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i.e. (D2 – 2D – k)X = 0

where 
d

D
dx

∫  and

 
Y

Y

¢

 = –k  (6)

A.E. of (5) is m2 – 2m – k = 0

\ m = 
2 4 4

or 1 1
2

k
k

± +
± +

\   Solution of (5) is

 X = (1 1) (1 1)k x k x
Ae Be

+ + - +
+

Solution of (6) is

 Y = ce
–ky

Using these values in (1), the required solution is

 z = (1 1) (1 1)
{ }

k x k x ky
Ae Be ce

+ + - + -
+

or z = (1 1) (1 1)
1 2{ }

k x k x ky
c e c e e

+ + - + -
+

Example 25
Solve the equation 

2

2
5

u u
u

yx

∂ ∂
= +
∂∂

, by the method of separation of variables, given 

that u = 0 and 3yu
e

x

-∂
=

∂
 when x = 0 and for all values of y.

Let u(x, y) = X(x) · Y(y)  (1)

be a solution of

 uxx = uy + 5u (2)

Then uxx = X ¢¢Y and uy = XY ¢ satisfy (2)

i.e. X ¢¢Y = XY ¢ + 5XY

Dividing throughout by XY, we get

 
X

X

¢¢

 = 5
Y

k
Y

¢
+ =

 X¢¢ – kX = 0 (3) 
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and 
Y

Y

¢

 = k – 5  (4)

Assuming that k is positive, the solutions of (3) and (4) are

 X = kx kx
Ae Be

-
+

and Y = ce
(k – 5)y

Using these values in (1), the required solution is

 u(x, y) = ( 5)
1 2( )

k x k x k y
C e C e e

- -
+   (5)

Given: u = 0 when x = 0 and for all y

\ (C1 + C2)e
(k – 5)y = 0

i.e. C1 + C2 = 0  (6)

Differentiating (5) partially with respect to x, we have

 
u

x

∂

∂
 = ( 5)

1 2( )
k x k x k y

k C e C e e
- -

-   (7)

Given: 3yu
e

x

-∂
=

∂
, when x = 0 and for all y.

\ 
( 5)

1 2( )
k y

k C C e
-

-  = e–3y

\ 1 2( )k C C-  = 1  (8)

and k – 5 = –3  (9)

Solving (6), (8) and (9), we get

 k = 2, 
1 2

1 1
and

2 2 2 2

C C= ==

Using these values in (5), the required solution is

 u(x, y) = 
31

sinh 2

2

y
x e

-

◊

         Exercise 4(d)

Part A (Short-Answer Questions)

Solve the following equations:

 1. (D3 – 3D
2
D¢ – 4DD¢ 2 + 12D¢ 3)z = 0

 2. (D – D¢)3
z = 0
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 3. (D2 + D¢2)2
z = 0

 4. (D3 + 4D
2
D¢ – 5DD¢ 2)z = 0

 5. (2D
2
D¢ – 5DD¢ 2 – 3D¢ 3)z = 0

 6. (D + D¢ – 1)(D – D¢  + 1)z = 0

 7. D(D – 2D¢ + 3)z = 0

 8. D¢(D + 3D¢ – 2)z = 0

 9. (D + D¢)(D – D¢  – 1)z = 0

 10. (D – D¢)(D + D¢  + 1)z = 0

Find the particular integrals of the following equations:

 11. (D2 + 2DD¢  + D¢ 2)z = ex – y

 12. (D2 – DD¢ 2 – 2D¢ 2)z = sin(3x + 4y)

 13. (D2 – 4D¢ 2)z = sin(2x + y)

 14. {(D – 1)2 – D¢ 2)z = ex + y

 15. (D2 – D¢ 2 + D)z = cos(x + y)

Solve the following partial differential equations by the method of separation of 

variables.

 16. 3 2 0
u u

x y

∂ ∂
+ =

∂ ∂
, given that u(x, 0) = 4e

–x

 17. 4
u u

x y

∂ ∂
=

∂ ∂
, given that u(0, y) = 8e

–3y

 18. 4
z z

z
x t

∂ ∂
+ =

∂ ∂
, given that z(x, 0) = 4e

–3x

 19. 2 3
0

z z
x y

y x

∂ ∂
+ =

∂ ∂

 20. 
2

2
2

u u

y x

∂ ∂
=

∂ ∂

Part B

Solving the following partial differential equations:

 21. (D2 + 3DD¢  – 4D¢ 2)z = (e2x – e– y)3

 22. (D3 – 7DD¢ 2 – 6D¢ 3)z = sinh(2x – 3y)

 23. (D2 – 7DD¢  + 12D¢ 2)z = (e3x + e4x)ey

 24. (D2 + 2DD¢  + D¢ 2)z = x2 + xy + 
 
y

2

 25. (D3 + 2D
2
D¢ )z = e2x – 3x

2
y

 26. (D2 – 3DD¢  + 2D¢ 2)z = (e2x + 3y) + sin(x – 2y)
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 27. (D2 – 6DD¢  + 9D¢ 2)z = x2
y

2 + cos(3x + y)

 28. (D2 – DD¢ )z = cos x cos 2y

 29. (8D
3 – 4D

2
D¢  – 18DD¢ 2 + 9D¢ 3)z = sin(3x + 2y)

 30. (D2 – 3DD¢  + 2D¢ 2)z = (2 + 4x)ex + 2y

 31. (D3 + D2
D¢  – DD¢ 2 – D¢ 3)z = ex cos 2y

 32. (D2 + DD¢  – 6D¢ 2)z = y cos x

 33. 2 2

2 2

8
( )D D z

x y
+ =¢

+

 34. D(D2 + 4DD¢  + 3D¢ 2  – 3D – 5D¢  + 2)z = ex + ey

 35. (D2 – 2DD¢  + D¢ 2 – 3D + 3D¢  + 2)z = cosh(2x + y)

 36. (D2 – DD¢  + D)z = x2 + y2

 37. (D + D¢  –1) (D + 2D¢  – 3)z = 4 + 3x + 6y

 38. (D2 – D¢ 2 – 2D
 + 1)z = xy + e2x + 3y

 39. (D2 + DD¢  + D¢  – 1)z = sinh(3x – 2y)

 40. (D2 – DD¢  – 2D¢ 2 + 2D + 2D¢ )z = cos 2x cos y

 41. (2DD¢  + D¢ 2 – 3D¢ )z = 4 sin3(x + 2y)

 42. (D2 – D¢ 2 + D 
 + 3D¢  – 2)z = xe

x + ye
y

 43. Solve equation 4 3
u u

u
x y

∂ ∂
+ =

∂ ∂
, by the method of separation of variables, 

given that u(0, y) = 3e
–y – e

–5y [Hint: Assume the R.H.S. of the solution 

as the sum of two terms of the form 
(3 )

4

kx
k y

Ce
+ -

 with different values of  

c and k]

 44. Solve equation 
2

2
2 0

z z z

x yx

∂ ∂ ∂
- + =

∂ ∂∂
, by the method of separation of variables, 

given that z = 0 and 3 8
4 6

y yz
e e

x

- -∂
= +

∂
 when x = 0.

 45. Solve the equation 
2

2
2

z z
z

yx

∂ ∂
= +
∂∂

, by the method of separation of variables, 

given that z = 0 and 3
1

yz
e

x

-∂
= +

∂
 when x = 0.
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Answers

        Exercise 4(a)

 2. pq = z

 3. pq = 4xyz

 4. z = px + qy + pq

 5. z = px + qy + p2 + q2

 6. px + qy = 3z

 7. p = q

 8. 
1

px qy z
z

+ = -

 9. p
2 + q2 = 1

 10. py = qx

 11. py
2 + qx

2 = 0

 12. ap + bq = 0

 13. px = qy

 14. px + qy = 0

 15. s = 0

 16. s = a

 17. r = 0

 18. t = 0

 19. r = sin x
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 20. t = cos y

 21. px + qy = pq

 22. pq = p + q

 23. p
2 + q2 = z

 24. pz = 1 + q2

 25. yp – x2
q

2 = x2
y

 26. p = q

 27. z = px + qy

 28. py = qx

 29. z
2(p2 + q2 + 1) = c2

 30. (p2 + q2 + 1)y2 = c2
q

2

 31. (a)  px = qy; (b)  py = qx

 32. (a)  x(y – z)p + y(z – x)q = z(x – y);

  (b)  x(y – z)p + y(z + 2x
2)q = z(x + 2x

2)

 33. (a)  px
2 + qy

2 = z2

  (b)  y2
zp + x2

zq = xy
2

 34. (a)  (y2 + z2)p – xyq + xz = 0;

  (b)  x(y2 + z)p + y(x2 + z)q = z(x2 – y2)

 35. (a)  (x2 – yz)p + (y2 – zx)q = z2 – xy;

  (b)  yp + xq = z

 36. r + t = 0

 37. 2r + 3s – 9t = 0
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 38. 
3 3 3 3

3 2 2 3
2 2 0

( ) ( )

z z z z

x x y x y y

∂ ∂ ∂ ∂
- - + =

∂ ∂ ∂ ∂ ∂ ∂

 39. 9r – 12s + 4t = 0

 40. r – 2s + t = 0

 41. (x – iy)(r – t) = 2(p – iq)

 42. 4xr – t + 2p = 0

 43. zs = pq

 44. xys = px + py – z

 45. (1 + q)r + (q – p)s – (1 + p)t = 0

        Exercise 4(b)

 7. 
k

z ax y b
a

= + +

 8. z = ax + y log a + b

 9. 2
2z ax a y b= ± - +

 10. (1 + a)log z = x + ay + b

 11. log z = a(x + ay) + b

 12. 4az = (x + ay + b)2

 13. 
2 2

2 2

x y
z a b

a
= + +

 14. z = a log(xy) + b

 15. z = a(ex + ey) + b

 16. 
3 3

a b
z ax by

b a
= + + +
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 17. (a)  C.S. is 
2

(1 )z ax a y= ± - ; No singular solution (S.S.).

 (b) = ± - +
2 2

; No S.S.z ax k a y

 18. C.S. is 
1

( 2 10)
2

z ax ay b= + - ± + ; No S.S.

 19. C.S. is 
2

5

3 2

a
z ax y b

a

Ê ˆ-
= + +Á ˜-Ë ¯

; No S.S.

 20. 2
log log 1 logz a x a y b= ± - + .

 21. 
2

1z a x a y b= ± - + .

 22. 
1 (1 )a a

b
z x y

-
= + + .

 23. 2 2
4z ax a y b= ± - ◊ + .

 24. 2log (2 3) log
a

z a y b
x

= + - +

 25. z = a2(x + y) + axy + b.

 26. xy = 1.

 27. 729z
2 = 1024 xy.

 28. 16z
3 + 27x

2
y

2 = 0.

 29. z
4 = 16 xy.

 30. 4z = y2 – x2.

 31. x
2 + y2 = 1.

 32. z = 3.

 33. 4(1 + a2)z = (x + ay + b)2.

 34. 2 21 log( 1)a z z x ay b+ + - = + +
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 35. (a)  2 2 2 2 2 2
4 4 log( 4 ) 4( )z z z a a z z a x ay b± - - + - = + +

  (b)  2 2 2 2 24
4 log( 4) 4( )az z a z az a z x ay b

a
- ± + - = + +m

 36. 4(bz – ab – 1) = (x + by + c)2.

 37. (z + a2)3 = (x + ay + b)2.

 38. 3(1 + a)log z = x3 + ay
3 + b.

 39. 2 2
1 2(log )a z x ay b+ = + + .

 40. 2 1
2 log ( 8)

a
z a a b

x y

Ê ˆ
= ± + + +Á ˜Ë ¯

.

 41. 2 2 2 2 2 2 24 { 4 4 log( 4 ) 4( )}z x x x a a x x a a y b= - ± + + + + + + .

 42. 2 2
2

1

a
z ax y b

a
= - +

+

.

 43. 
3 3/2

3 2 1z ax a y b= + - + .

 44. 
1

cos sinz ax x y b
a

= - + + .

 45. z
3/2 = (x + a)3/2 + (y + a)3/2 + b.

 46. 2 2 2 2 1 2 2 2 1
sinh cosh

x y
z x x a a y y a a b

a a

- -
= + + + - - + .

 47. 
2

log 1 log
2

ax
z a y b= + - + .

 48. 2 2 3/22
( )

3
z x ax y a b= + + + + .

 49. ( ) (1 )( )z a x y a x y b= + + - - + .

 50. 2 2 2 1log( ) 1 tan
2

a y
z x y a b

x

- Ê ˆ
= + - +Á ˜Ë ¯

.

         Exercise 4(c)

 1. z = x f (y) + f(y).

 2. z = y f (x) + f(x).
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 3. z = f (x) + f(y).

 4. z = x f (y) + f(y) + ex + y.

 5. f= + - +
1

( ) ( ) cos(2 3 )
9

z y f x x x y .

 6. z = f (x) + f(y) + log x · log y.

 7. f= + +

2

( ) ( ) sin
2

x
z x f y y y .

 8. z = y f (x) + f(x) – cos y.

 9. z = f (x) + f(y) + kxy.

 10. f= + + +
2 2

( ) ( ) ( )
3

xy
z f x y x y .

 12. f (x2 – y2, y2 – z2) = 0.

 13. , 0
y

f xy
z

Ê ˆ
=Á ˜Ë ¯

.

 14. ( , ) 0f x y y z- - = .

 15. 
Ê ˆ

=Á ˜Ë ¯
sin sin

, 0
sin sin

x y
f

y z
.

 16. 
1 1 1 1

, 0f
x y y z

Ê ˆ
- - =Á ˜Ë ¯

.

 17. z = (1 + cos x)cos y.

 18. z = c cosh ax + sinh ax sin y.

 19. z = ey cosh x + e–y sinh x.

 20. z = 3x
2 + 3xy – 2y

2 + c.

 21. z = x3
f (y) – x – y/3.

 22. 2 3 1
( ) ( ) 3 sin(2 )

2
z f x y x y x yf= + - - - .
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 23. z = e2y
 f (x) + e3y g(x) + 2y + 5/3.

 24. z = Axy + Bx + Cy + D.

 25. z = f (x + at) + f(x – at).

 26. z = f (x + iy) + f(x – iy).

 27. z = f (x + y) + f(x – y).

 28. z = (x2 –y
2) f (x2 + y2) + f(x2 + y2).

 29. z = f (y2 + x) + f(y2 – x).

 30. (i)    
sec sec

, 0
sec sec

x y
f

y z

Ê ˆ
=Á ˜Ë ¯

;

  (ii)   , 0
a x b y

f
b y c z

Ê ˆ- -
=Á ˜- -Ë ¯

.

 31. f (x3 – y3, x2 – z2) = 0.

 32. (i)    
1 1

, 0
x y

f
x y z

Ê ˆ-
- =Á ˜Ë ¯

;

  (ii)   
1 1

, 0
x y

f
x y z

Ê ˆ+
+ =Á ˜Ë ¯

.

 33. f (y/z, x2 + y2 + z2) = 0.

 34. 
2 2 2

, 0
y x y z

f
z z

Ê ˆ+ +
=Á ˜

Ë ¯
.

 35. f [x log(x + y) – z, x + y] = 0.

 36. f (xy, x2 + y2 + z2) = 0.

 37. (i)    f (x + y + z, x2 + y2 + z2) = 0;

  (ii)   f (x + y + z, x2 + 2yz) = 0.

 38. (i)    f (x + y + z, xyz) = 0;

  (ii)   f (x + y + z, xyz) = 0.
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 39. f (xyz, x2 + y2 + z2) = 0.

 40. , 0
x y

f xy yz zx
y z

Ê ˆ-
+ + =Á ˜-Ë ¯

.

 41. (i)    f (x + y + z, x2 + y2 – z2) = 0;

  (ii)   f (2x + 3y + 4z, x2 + y2 + z2) = 0.

 42. 3 3

2 2
, 0
x y

f x y z
y x

Ê ˆ
+ =Á ˜Ë ¯

.

 43. xy + yz + zx = 0.

 44. 3(2x + 2y – 3y + 3)2 = (y – x)(x + y)3.

       Exercise 4(d)

 1. z = f1(y – 2x) + f2(y + 2x) + f3(y + 3x).

 2. z = f1(y + x) + x f2(y + x) + x2
f3(y + x).

 3. z = f1(y + ix) + x f2(y + ix) + f3(y – ix) + x f4(y – ix).

 4. z = f1(y) + f2(y – 5x) + f3(y + x).

 5. 1 2 3( ) ( 3 )
2

x
z f x f y f y x

Ê ˆ
= + - + +Á ˜Ë ¯

.

 6. z = ex f1(y – x) + e–x f2(y + x).

 7. z = f1(y) + e–3x f2(y + 2x).

 8. z = f1(x) + e2x f2(y – 3x).

 9. z = f1(y – x) + ex f2(y + x).

 10. z = f1(y + x) + e–x f2(y – x).

 11. 
2

2

x yx
e

- .

 12. 
1
sin(3 4 )

35
x y+ .
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 13. cos(2 )
4

x
x y- + .

 14. –e
x + y.

 15. sin(x + y).

 16. 

3

24
x y

u e

- +

= .

 17. u = 8e
–12x – 3y.

 18. z = 4e
–3x + t.

 19. 
4 3

(3 4 )k y x
z ce

-

= .

 20. 2
( )

ky k x k x
u e Ae Be

-
= + .

 21. 
6 4 2 2 3

1 2

1 3 1 1
( ) ( 4 )

36 5 8 36

x x y x y y
z f y x f y x e xe e e

- - -
= + + - + - - - .

 22. 1 2 3

1
( ) ( 2 ) ( 3 ) cosh(2 3 )

44
z f y x f y x f y x x y= - + - + + + - .

 23. z = f1(y + 3x) + f2(y + 4x) + x(e4x + y – e3x + y).

 24. = - + - + ◊ - +
4 3 2 2

1 2

1
( ) ( ) ( 2 2 )

4
z f y x x f y x x x y x y .

 25. 
Ê ˆ

= + + + + + +Á ˜Ë ¯

5
2

1 2 3

1
( ) ( ) ( 2 )

4 60 3

x x x
z f y x f y f y x xe y .

 26. 
2 3

1 2

1 1
( ) ( 2 ) sin( 2 )

4 15

x y
z f y x f y x e x y

+
= + + + + - - .

 27. = + + + + + + + +

4 2
2 2

1 2( 3 ) ( 3 ) (9 12 5 ) cos(3 )
60 2

x x
z f y x x f y x x xy y x y .

 28. 1 2

1 1
( ) ( ) cos( 2 ) cos( 2 )

2 6
z f y f y x x y x y= + + + + - - .

 29. 1 2 3(2 ) (2 3 ) (2 3 ) sin(3 2 )
96

x
z f y x f y x f y x x y= + + + + - - + .

 30. 
2

1 2

2
( ) ( 2 ) (11 6 )

9

x y
z f y x f y x e x

+
= + + + + + .
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 31. = - + - + + + +1 2 3( ) ( ) ( ) (2sin 2 cos2 )
25

x
e

z f y x x f y x f y x y y .

 32. z = f1(y – 3x) + f2(y + 2x) – y cos x + sin x.

 33. 

2

2 2 2 1
1 2

1
( ) ( ) [log( )] 2 tan

2

y
z f y ix f y ix x y

x

-Ê ˆ
= + + - + + + Á ˜Ë ¯

.

 34. z = f1(y) + ex
f2(y – x) + e2x  

f3(y – 3x) – xe
x + xye

y.

 35. 2 2 2
1 2

1
( ) ( )

2 12

x x x y x yx
z e f y x e f y x e e

+ - -
= + + + - + .

 36. 
3

2 2
1 2( ) ( ) 2 4

3

x x
z f y e f y x xy x xy x

-
= + + + + - + + .

 37. z = ex
 f1(y – x) + e3x f2(y – 2x) + (x + 2y + 6).

 38. 2 3
1 2

1
( ) ( ) ( 2)

8

x x x y
z e f y x e f y x x y e

+
= + + - + + - .  

 39. - - -
= + - + -

3 2 2 3
1 2

1 1
( ) ( )

8 8

x x x y y x
z e f y e f y x xe e .

 40. 2
1 2

1 1 1
( ) ( 2 ) sin(2 ) sin(2 ) cos(2

12 4 2

x
z f y x e f y x x y x y x y

-
= - + + + + + - - - .

 41. 3 /2
1 2

3
( ) {3cos( 2 ) 4sin( 2 )}

2 50

x x
z f x e f y x y x y

Ê ˆ
= + ◊ - + + - +Á ˜Ë ¯

  
1

{4sin(3 6 ) cos(3 6 )}
306

x y x y+ + - + .

 42. 
2

2 2
1 2( ) ( ) (9 6 2) 3

54 2

x
x x ye x

z e f y x e f y x x x e xy y
- Ê ˆ

= - + + + - + + - - -Á ˜
Ë ¯

.

 43. u = 3e
x – y  – e2x – 5y .

 44. z = (e3x – e–x)e–3y + (e4x – e–2x)e–8y.

 45. 31
sinh 2 sin

2

y
z x e x

-
= + .



Unit 5
Fourier Series Solutions of 

Partial Differential Equations

5A.1 IntroductIon

Periodic functions appear in a variety of physical problems, such as those containing 

vibrating springs and membranes, planetary motion, a swinging pendulum and musical 

sounds. In some of these problems, the periodic function may be quite complicated 

and hence in order to understand its basic nature batter, it may be convenient to 

represent it in a series of simple periodic functions. Since trigonometric functions are 

the simplest examples of periodic functions, we usually look for series representation 

in terms of sines and cosines.

Originally Fourier series was applied in the study of vibration and heat diffusion. 

There are numerous problems in Science and Engineering in which sinusoidal signals and 

hence Fourier series play an important role. For example, sinusoidal signals are useful in 

describing the periodic behaviour of the earth's climate. Alternting current sources generate 

sinusoidal voltages and currents. Fourier analysis enables us to analyse the response of 

a Linear Time Invariant system, such as a circuit, to such sinusoidal inputs. Waves in the 

ocean consist of the linear combination of sinusoidal waves with different wavelengths. 

Signals transmitted by radio and television stations are sinusoidal in nature.

Many of the ordinary functions that occur frequently in Science and Engineering 

can be expressed in the form

  
0

1 1

cos sin
2

n n

n n

a
a nx b nx

• •

= =

+ +Â Â   (1)

or more generally in the form

  0

1 1

cos sin
2

n

n n

a n x n x
a

l l

p p
• •

= =

+ +Â Â   (2)

Now cos n (2p + x) = cos(2np + nx) = cos nx, for n = 1, 2, 3, ...; and

         sin n(2p + x) = sin(2np + nx) = sin nx, for 1, 2, 3, ...

Thus all the trigonometric functions in (1) are periodic with period 2p. The constant 

0

2

aÊ ˆ
Á ˜Ë ¯

 may be regarded as periodic with period 2p. Hence the infinite trigonometric 

series (1) is periodic with period 2p.

 Part A

Fourier Series
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If a function f (x) is to be expressed (or expanded) in the form of the series (1), as 

a prerequisite, f (x) should be defined in an interval of length 2p and should satisfy 

certain conditions, known as Dirichlet’s conditions, which are stated below.

The infinite trigonometric series (2) is periodic with period 2l, since

cos (2 ) cos
1

n n x
l x

l

p p

+ = ; and

0sin (2 ) sin and
1 2

an n x
l x

l

p p

+ =  may be regarded as periodic with period 2l.

If a function f (x) is to be expressed (or expanded) in the form of the series (2), 

as a prerequisite, it should be defined in an interval of length 2l and should satisfy 

Dirichlet's conditions.

Note 
Since series (1) is only a particular case of series (2) when l = p, we shall 
develop the theory of Fourier series in the form (2) and obtain the derivations 
with reference to series (2). Whenever results are required relating to series 
(1), we simply replace l by p and obtain the required results.

5A.2 dIrIchlet’s condItIons

A function f (x) defined c £ x £ c + 2l can be expanded as an infinite trigonometric 

series of the form 0
cos sin

2
n n

a n x n x
a b

l l

p p

+ +Â Â , provided

 1. f (x) is single-values and infinite in (c, c + 2l).

 2. f (x) is continuous or piecewise continuous with finite number of finite 

discontinuities in (c, c + 2l).

 3. f (x) has no or finite number of maxima or minima in (c, c + 2l).

Note 
All functions that we deal with will satisfy the above Dirichlet’s conditions and 
hence can be expanded in the form of the infinite trigonometric series given 
above.

5A.3 euler’s FormulAs

If a function f (x) defined in (c, c + 2l) can be expanded as the infinite trigonometric 

series 0

1 1

cos sin
2

n n

n n

a n x n x
a b

l l

p p
• •

= =

+ +Â Â  then

  
p

+

= ≥Ú
2

1
( )cos d , 0

c l

n

c

n x
a f x x n

l l
 and

  
p

+

= ≥Ú
2

1
( )sin d , 1

c l

n

c

n x
b f x x n

l l
 and

[Formulas given above for an and bn are called Euler’s formulas for Fourier 

coefficients]
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Proof

Before we proceed to find the values of an and bn, we shall obtain the values of certain 

definite integrals, which are required in the evaluation of an and bn.

 
p

+

Ú
2

cos d

c l

c

n x
x

l
 = 

2

sin

c l

c

l n x

n l

p

p

+
Ê ˆ
Á ˜Ë ¯

  = 
p p

p

Ï ¸
+ -Ì ˝

Ó ˛

1
sin ( 2 ) sin

n n c
c l

n l l

  = 
1

sin sin 0
n c n c

n l l

p p

p

Ï ¸
- =Ì ˝

Ó ˛
 (1)

 
p

+

Ú
2

sin d

c l

c

n x
x

l
 = 

2
1

cos

c l

c

n x

n l

p

p

+
Ê ˆ

- Á ˜Ë ¯

  = 
1

cos ( 2 ) cos
n n x

c l
n l l

p p

p

Ï ¸
- + -Ì ˝

Ó ˛

  = 
1

cos cos 0
n x n x

n l l

p p

p

Ï ¸
- - =Ì ˝

Ó ˛
  (2)

 

2

cos cos d

c l

c

n x n x
x

l l

p p
+

Ú  = 

2
( ) ( )

cos cos d
2

c l

c

l m n x m n x
x

l l

p p
+

+ -È ˘
+Í ˙

Î ˚
Ú

  = 0, if m π n [by (1)] (3)

 

2

2
cos d

c l

c

n x
x

l

p
+

Ú  = 

2
2

1 cos d
2

c l

c

l n x
x

l

p
+ Ê ˆ

+Á ˜Ë ¯Ú

  = ¥ Q

1
2 [ the second term vanishes as in (1)]

2
l

  = l  (4)

 

2

sin sin d

c l

c

m x n x
x

l l

p p
+

Ú  = 

2
1 ( ) ( )

cos cos d
2

c l

c

m n x m n x
x

l l

p p
+

- +È ˘
-Í ˙

Î ˚
Ú

  = 0, if m π n [by (1)]  (5)

 
p

+

Ú
2

2
sin d

c l

c

n x
x

l
 = 

2
1 2

1 cos d
2

c l

c

n x
x

l

p
+ Ê ˆ

-Á ˜Ë ¯Ú

  = 
1

2 [ the second term vanishes as in (1)]
2

l¥ Q

  = l (6)
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2

sin cos d

c l

c

m x n x
x

l l

p p
+

Ú  = 
p p

+
+ -È ˘

+Í ˙
Î ˚

Ú
2

1 ( ) ( )
sin sin d

2

c l

c

m n x m n x
x

l l

  = 0, when m π n and also when m = n (7)

[by (2)].

Now f (x) = 0

1 1

cos sin
2

n n

n n

a n x n x
a b

l l

p p
• •

= =

+ +Â Â   (8)

Integrating both sides of (8) with respect to x between the limits c and c + 2l, we 

get

 

2

( )d

c l

c

f x x

+

Ú  = 

2 2 2

0

1 1

d cos d sin d
2

c l c l c l

n n

n nc c c

a n x n x
x a x b x

l l

p p
+ + +• •

= =

+ +Â ÂÚ Ú Ú ,

assuming that the term by term integration is possible.

  = 20

1 1

[ ] 0 0
2

c l

c n n

n n

a
x a b

• •
+

= =

+ ¥ + ¥Â Â

[by (1) and (2)]

  = a0·l

\ a0 = 

2
1

( )d

c l

c

f x x
l

+

Ú   (9)

Multiplying both sides of (8) by 
m x

l

p

 where m is a fixed opposite integer and 

integrating term by term with respect to x between c and c + 2l, we get

 

2

( )cos d

c l

c

m x
f x x

l

p
+

Ú  = 

2 2

0

1

cos d cos cos d
2

c l c l

n

nc c

a m x m x n x
x a x

l l l

p p p
+ +•

=

+ ÂÚ Ú

  

2

1

sin cos d

c l

n

n c

n x m x
b x

l l

p p
+•

=

+Â Ú

  = 

2

2
cos d

c l

m

c

m x
a x

l

p
+

Ú , [by (1), (3) and (7)]

  = am·l, [by (4)]

\ am = 

2
1

( )cos d

c l

c

m x
f x x

l l

p
+

Ú , where m = 1, 2, 3, ... (10)
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Combining (9) and (10), we have,

 an = 

2
1

( )cos d

c l

c

n x
f x x

l l

p
+

Ú , for n ≥ 0  (11)

Note 
Only if the constant term is taken as 0

2

a
, formula (11) is true for n = 0

Similarly, multiplying both sides of (8) by 
mpx

l
sin , integrating term by term with 

respect to x between c and c + 2l and using (2), (5), (6) and (7), we get

  

2
1

( )sin d

c l

m

c

m x
b f x x

l l

p
+

= Ú  or

  

2
1

( )sin d

c l

n

c

n x
b f x x

l l

p
+

= Ú  for n ≥ 1 (12)

5A.4 deFInItIon oF FourIer serIes

The infinite trigonometric series 0

1 1

cos sin
2

n n

n n

a n x n x
a b

l l

p p
• •

= =

+ +Â Â  is called the 

Fourier series of f (x) in the interval c £ x £ c + 2l, provided the coefficients are given 

by the Euler's formulas. Very often, the Fourier series expansions of f (x) are required in 

the intervals (–l, l) and (0, 2l) which are obtained by taking c = –l and c = 0 respectively 

in the above discussions.

When we require Fourier series expansions of f (x) in (–p, p) and (0, 2p) we simply 

put l = p in all the assumptions and the results derived.

5A.5 ImportAnt concepts

 1. We have already observed that if a function f (x) is to be expanded in Fourier 

series of the form 0

1 1

cos sin
2

n n

n n

a n x n x
a b

l l

p p
• •

= =

+ +Â Â  which is of period 2l, 

f (x) should be defined in an interval of length 2l and should satisfy Dirichlet’s 

Conditions in that interval. Conversely, if a function f (x) is defined and 

satisfied Dirichlet’s conditions in an interval of length 2l, it can be expanded 

in Fourier series of period 2l.

 2. Since the Fourier series of f (x) in (0, 2l) [or (–l, l)], i.e. 0

1

cos
2

n

n

a n x
a

l

p
•

=

+ +Â  

1

sin
n

n

n x
b

l

p
•

=

Â  is periodic with period 2l, we may expect f (x) also to be 

periodic with period 2l. In fact, f (x) is periodic with period 2l, in the sense 

that the Fourier series 0

1 1

cos sin
2

n n

n n

a n x n x
a b

l l

p p
• •

= =

+ +Â Â  represents (or 

converges to) f (x) in (0, 2l) and its periodic extensions outside (0, 2l).
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 3. We recall that the function f (x) is said to be periodic with period 2l, if the 

graphs of y = f (x) in the intervals (c – 4l, c – 2l), (c – 2l, c), (c + 2l, c + 4l), 

(c + 4l, c + 6l) etc. are periodic repetitions of the graph of y = f (x) in (c, c + 

2l) as given in Figs 5A.1, 5A.2 and 5A.3.

y

0 x–3p –2p –p p 2p 3p 4p

2p 2p 2p

Fig 5A.1

y

–6l –4l – l2 0 2l 4l 6l x

Fig 5A.2

y

0 x–3p –p p 3p

Fig 5A.3

The functions represented by the graph in Fig 5A.1 and 5A.3 are periodic with 

period 2p, whereas the function represented by the graph in Fig 5A.2 is periodic with 

period 2l. The function represented by Fig. 5A.1 take the same value f (x) = sin x in 

(– •, •). The function represented by Fig. 5A.1 assumes different values in (–4l, – 2l), 

(–2l, 0), (0, 2l), (2l, 4l) etc. namely.
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2

2

2

2

2

( 4 ) in ( 4 , 2 )

( 2 ) in ( 2 , 0)

( ) in (0, 2 )

( 2 ) in (2 , 4 )

( 4 ) in (4 , 6 )

x l l l

x l l

f x x l

x l l l

x l l l

Ï + - -
Ô

+ -Ô
Ô

= Ì
Ô

-Ô
Ô -Ó

The function represented by Fig. 5A.3 assumes different values in (–3p, –p),  

(–p, p), (p, 3p), etc. namely,

  

3 in ( 3 , 2 )
( )

in ( 2 , )

x
f x

x

p p p

p p p

+ , - -Ï
= Ì

- - , - -Ó

  

in ( , 0)
( )

in (0, )

x
f x

x

p p

p p

+ , -Ï
= Ì

- + ,Ó

  

p p p

p p p

- ,Ï
= Ì

- ,Ó

in ( , 2 )
( )

3 in (2 , 3 ),etc.

x
f x

x

 4. From the examples given above, a periodic function can be defined analytically 

as follows.

 (a) If f (x) = f (x) in (– •, •), i.e. f (x) assumes the same value in (–•, •), 

then f (x) is said to be periodic with period 2l, if

  f (x + 2l) = f (x), for –• < x < •

  The Fourier series of f (x) of period 2l, in this case, will represent f (x) 

everywhere.

 (b) If f (x) assumes different values in different intervals of length 2l, i.e. if

  

2

1

1

2

3

... ....

( ) in ( 4 , 2 )

( ) in ( 2 , )

( ) ( ) in ( , 2 )

( ) in ( 2 , 4 )

( ) in ( 4 , 6 )

... ....

x c l c l

x c l c

f x x c c l

x c l c l

x c l c l

f

f

f

f

f

-

-

Ï
Ô - -Ô
Ô -
Ô

= +Ì
Ô + +
Ô

+ +Ô
Ô
Ó

  then f (x) is said to be periodic with period 2l, if

 f– 2(x) = f1(x + 4l), f–1(x) = f1(x + 2l),

 f2(x) = f1(x – 2l), f3(x) = f1(x – 4l), etc.

  In this case, the Fourier series of f (x) of period 2l will represent f1(x) in 

(c, c + 2l), f2(x) in (c, 2l, c + 4l), etc.

  In other words, the Fourier series of f–1(x) in (c – 2l , c), that of f1(x)  

in (c, c + 2l), that of f2(x) in (c, 2l, c + 4l), etc. will be identical.
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 5. Examples

 (a) The Fourier series of f (x) = sin4 x · cos3 x in (0, 2p) or (–2p, 0) or in  

(2p, 4p) etc. will be 
3 3 1 1
cos cos3 cos5 cos7

64 64 64 64
x x x x- - + .

  In other words, the Fourier series 
3 3 1
cos cos3 cos5

64 64 64
x x x- -  +  

1
cos7

64
x  will represent sin4 x cos3 x in (–2p, 0) and in (2p, 4p) etc., 

since sin4 (2p + x) · cos3(2p + x) = sin4 x · cos3 x for all x and f (x) assumes 

the same value sin4
x · cos3

x for all x in (–•, •).

 (b) The Fourier series of f (x) = x2 in (0, 2l) is

  

2 2

2 2

1 1

4 4 1 4 1
cos sin

3
n n

l l n x l n x

l n ln

p p

pp

• •

= =

+ -Â Â

  The same will be the Fourier series of f (x) = (x +2l)2 in (–2l, 0) and  

f (x) = (x – 2l)2 in (2l, 4l), etc.

  In other words, the above Fourier series represent x2 in (0, 2l), (x + 2l)2 

in (–2l, 0), (x – 2l)2 in (2l, 4l), etc. This is because (x + 2l)2 and (x – 

2l)2 are periodic extensions in (–2l, 0) and (2l, 4l) respectively of x2 in  

(0, 2l).

 (c) The Fourier series of f (x) = 0

, in ( ,0)
( )

, in (0, )

x

x

x

p p
f

p p

+ -Ï
= Ì

- +Ó
 is 

2
1,3,...

4 1
cos

2
n

nx

n

p

p

•

=

+ Â . The same will be the Fourier series of its periodic 

extensions in (–3p, –p) and (p, 3p) and (p, 3p), etc., i.e., the above 

Fourier series will represent f (x) = 1

3 , in ( 3 , 2 )
( )

, in ( 2 , )

x

x

x

p p p
f

p p p
-

+ - -Ï
= Ì

- - - -Ó
 

and

  
1

, in ( ,2 )
( ) ( )

3 , in (2 , 3 )

x
f x x

x

p p p
f

p p p

-Ï
= = Ì

-Ó
, etc.

5A.6 FourIer serIes oF even And odd FunctIons

Certain functions defined in symmetric ranges of the form (–l, l), (–p, p) or (–•, •) can 

be classified as even and odd functions. If the graph of y = f (x) in (–l, l) is symmetric 

about the y-axis, then the function f (x) is said to be an even function in (–l, l).

y

–p p

x0

Graph of = cosy x   

y

x0

Graph of = cosy x2

–I I

  

y

x0

Graph of = | |y x

–1 1

   Fig. 5A.4       Fig. 5A.5      Fig. 5A.6
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Analytically, an even function can be defined as follows.

If f (x) = f (x) in (–l, l) such that f (–x) = f (x), then f (x) is said to be an even function 

of x in (–l, l). [Refer to Fig. 5A.4 and 5A.5]

If  
f

f

-Ï
= Ì
Ó

1

2

( ) in ( , 0)
( )

( ) in (0, )

x l
f x

x l

such that f1(–x) = f2(x) or f2(–x) = f1(x), then f (x) is said to be an even function of x 

in (–l, l). [Refer to Fig. 5A.6]

If the graph of y = f (x) in (–l, l) is symmetric about the origin, then the function 

f (x) is said to be an odd function of x in (–l, l).

y

–p

0 p x

Graph of = siny x   

y

0 x–1 1

Graph of =y
x + 1,   in (–1, 0)

x – 1,   in (0, 1){
Fig. 5A.7            Fig. 5A.8

Analytically, an odd function can be defined as follows:

If f (x) = f (x) in (–l, l) such that f (–x) = –f (x), then f (x) is said to be an odd function 

of x in (–l, l) [Refer to Fig. 5A.7]

If  
f

f

-Ï
= Ì
Ó

1

2

( ) in ( , 0)
( )

( ) in (0, )

x l
f x

x l

such that f1(–x) = – f2(x)  or f2(–x) = – f1(x), then f (x) is said to be an odd function 

of x in (–l, l). [Refer to Fig. 5A.8].

Note 
1.   Function defined in (–l, l) may be neither even nor odd.
2.   The question of a function, defined in a non-symmetric range like (0, 2l), 

being even or odd does not arise at all.

5A.7 theorem

 (i) The Fourier series of an even function f (x) in (–l, l) contains only cosine terms 

(constant term included), i.e. the Fourier series of an even function f (x) in  

(–l, l) is given by 0( ) cos
2

n

a n x
f x a

l

p

= +Â

  where 

0

2
( )cos d

l

n

n x
a f x x

l l

p

= Ú .
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 (ii) The Fourier series of an odd function f (x) in (–l, l) contains only sine terms, 

i.e. the Fourier series of an odd function f (x) in (–l, l) is given by

  ( ) sinn

n x
f x b

l

p

= Â  where 

0

2
( )sin d

l

n

n x
b f x x

l l

p

= Ú .

Proof

Since f (x) is defined in an interval of length 2l, it can be expanded as a Fourier series 

of the form

  

0

1 1

( ) cos sin
2

n n

n n

a n x n x
f x a b

l l

p p
• •

= =

= + +Â Â

Case (i) f (x) is even in (–l, l).

Since f (x) is even and sin
n x

l

p

 is odd in (–l, l), ( ) sin
n x

f x
l

p

◊  is an odd function 

of x in (–l, l).

\ bn = 
1

( )sin d

l

l

n x
f x x

l l

p

-
Ú

  =  0, by the property of the definite integral of an 
odd function in a symmetric range.

Since 
n x

l

p
 is even in (–l, l), ( )cos

n x
f x

l

p

 is an even function of x in (–l, l)

\   By the property of the definite integral of an even function in a symmetric range,

 an = 
1

( )cos d

l

l

n x
f x x

l l

p

-
Ú

  = 
0

2
( )cos d , 0

l
n x

f x x n
l l

p

≥Ú

Case (ii) f (x) is odd in (–l, l)

\   ( )cos
n x

f x
l

p

 is an odd function of x and ( )sin
n x

f x
l

p

 is an even function of x 

in (–l, l)

  \   
1

( )cos d 0

l

n

l

n x
a f x x

l l

p

-

= =Ú  and

  
0

2
( )sin , 1

l

n

n x
b f x dx n

l l

p

= ≥Ú

by the properties mentioned above. Hence the results.
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5A.8  convergence oF FourIer serIes At specIFIc 

poInts

When f (x) is expandable as a Fourier series of the form 0
cos

2
n

a n x
a

l

p

+Â  + 

sin
n

n x
b

l

p

Â  in (c, c + 2l), f (x) is either continuous in (c, c + 2l) or discontinuous 

with a finite number of finite discontinuities in (c, c + 2l) [by Dirichlet's conditional]. 

In both the cases, we say that the Fourier series represents or converges to f (x) in 

(c, c, + 2l). Let us now consider a specific point x = a in (c, c + 2l).

 (i) If x = a is a point of continuity of f (x) in (c, c + 2l), then the Fourier series 

of f (x) at x = a converges to f (a), since f (a) assumes a unique value.

  i.e.  [the sum of the Fourier series f (x)]x = a = f (a) (1)

Note 
If x = a is a point of discontinuity of f (x) in (c, c + 2l), the above result does 
not hold good, since f (a) is not uniquely defined.]

 (ii) If x = a is a point of discontinuity of f (x) in (c, c + 2l), i.e., c < a < c + 

2l, then the Fourier series of f (x) at x = a converges to 
0

1
lim

2 hÆ

 [f (a – h) +  

f (a + h)]. (Proof assumed),

  i.e. [Sum of the Fourier series of 
0

1
( )] lim[ ( ) ( )

2
x

h
f x f h f h

a
a a

=
Æ

= - + +  (2)

 (iii) If a coincides with the left extremity c of the interval (c, c + 2l), (a + h) lies 

within (c, c + 2l), but (a – h) lies within (c – 2l, c). We have already observed 

that the Fourier series of f (x) in (c, c + 2l) represents f (x) in this interval but 

it represents f (x + 2l) in (c – 2l, c).

  \   Formula (ii) gets modified as follows:

  [Sum of the Fourier series of f (x)]x = a = c

  = 
0

1
lim[ ( 2 ) ( )]

2 h
f h l f ha a

Æ

- + + +   (3)

 (iv) If a coincides with the right extremity (c + 2l) of the interval (c, c + 2l), (a – 

h) lies within (c, c + 2l), but (a + h) lies within (c + 2l, c + 4l). As observed 

already, the Fourier series of f (x) in (c, c + 2l) represents f (x) in this interval, 

but it represents f (x – 2l) in (c + 2l, c + 4l).

  \   Formula (ii) gets modified as follows:

  [Sum of the Fourier series of f (x)x = a = c + 2l

  = 
0

1
lim[ ( ) ( 2 )]

2 h
f h f h la a

Æ

- + + -   (4)
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 Worked Examples 5A(a)

Example 1
Find the Fourier series of period 2l for the function f (x) = x(2l – x) in (0, 2l). Deduce 

the sum of 
2 2 2

1 1 1

1 2 3

- + -L

Let f (x)  = 0

1 1

cos sin in (0,2 )
2

n n

n n

a n x n x
a b l

l l

p p
• •

= =

+ +Â Â   (1)

 an = 

2

0

1
(2 )cos d

l
n x

x l x x
l l

p

-Ú

  = 2

2 2

2

sin cos
1

(2 ) (2 2 )

n x n x

l l
lx x l x

n xl n

l l

p p

p p

È Ê ˆÊ ˆÍ -Á ˜Á ˜Í Á ˜- - -Á ˜Í Á ˜Á ˜Í Á ˜Ë ¯ Ë ¯Î

  

2

3 3

3
0

sin

( 2)

l

n x

l

n

l

p

p

˘Ê ˆ
˙-Á ˜
˙Á ˜+ -
˙Á ˜
˙Á ˜Ë ¯ ˚

, using Bernoulli's formula

  = 

2

2 2 2 2

4
[ 2 cos2 2 ]

l l
l n l

n n

p

p p

- - = -

Note 
Though Euler’s formula for a0 is a particular case of that of an, corresponding 
to n = 0, the value of a0 cannot be deduced from that of an by putting n = 0 
in this example. In some problems, a0 can be deduced from an. Hence in all 
problem we shall first find an and if possible deduce the value of a0 from it.

 a0 = 

22 3
2 2

0 0

1 1 4
(2 )d

3 3

l
l

x
x l x x lx l

l l

È ˘
- = - =Í ˙

Í ˙Î ˚
Ú

 bn = 

2

0

1
(2 )sin d

l
n x

x l x x
l l

p

-Ú

  = 

2

2

2 2 3 3

2 3
0

cos sin cos
1

(2 ) (2 2 ) ( 2)

l

n x n x n x

l l l
lx x l x

nl n n

l l l

p p p

p p p

È Ê ˆ Ê ˆÊ ˆÍ - -Á ˜ Á ˜Á ˜Í Á ˜ Á ˜- - - + -Á ˜Í Á ˜ Á ˜Á ˜Í Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î
  = 0
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Using these values in (1), we have

         
p

p

•

=

- = - Â
2

2

2 2
1

2 4 1
(2 ) cos in (0, 2 )

3
n

l n x
x l x l l

ln

 (2)

The required series 
2 2 2

1 1 1

1 2 3

- + - •L  can be obtained by putting x = l in the 

Fourier series in (2).

x = l lies in (0, 2l) and is a point of continuity of the function f (x) = x(2l – x).

\ [Sum the Fourier series in (2)]x = l = f (l)

i.e.  
2

2

2 2
1

2 4 1
cos (2 )

3
n

l
l n l l l

n

p

p

•

=

- = -Â

i.e.  
2 2

2 2 2 2

4 1 1 1

31 2 3

l l

p

Ï ¸
- - + - + • =Ì ˝

Ó ˛
L

\  
2

2 2 2

1 1 1

122 3l

p

- + - • =L

Example 2
Find the Fourier series expansion of the function 

0, in 0
( )

sin , in 0

x
f x

x x

p

p

- £ £Ï
= Ì

£ £Ó

Hence find the values of

 1. 
1 1 1

1.3 3.5 5.7
+ + + •L

 2. 
1 1 1

1.3 3.5 5.7
- + - •L

Since f (x) is defined in a range of length 2p, it can be expanded as a Fourier series 

of period 2p

Let   f (x) = 0

1 1

cos sin in( ,
2

n n

n n

a
a nx b nx p p

• •

= =

+ + - )Â Â   (1)

  an = 
1

( )cos df x nx x

p

p
p

-
Ú

  = 

0

0

1
0.cos d sin cos dnx x x nx x

p

p
p

-

È ˘
+Í ˙

Í ˙Î ˚
Ú Ú

  = 

0

1
[sin( 1) sin( 1) ]d

2
n x n x x

p

p

+ - -Ú

  = 
0

1 cos( 1) cos( 1)

2 1 1

n n x

n n

p

p

- + -È ˘
+Í ˙+ -Î ˚

, if n π 1
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  = 

1 1
1 ( 1) ( 1) 1 1

2 1 1 1 1

n n

n n n np

+ -È ˘Ï ¸- - Ï ¸Ô Ô
- + - - +Í ˙Ì ˝ Ì ˝

+ - + -Ó ˛Í ˙Ô ÔÓ ˛Î ˚
,

  = 11 1 1
{( 1) 1

2 1 1

n

n np

-È ˘Ê ˆ
- - -Í ˙Á ˜Ë ¯- +Î ˚

,

      if n π 1 [Q   (–1)n + 1 = (–1)n – 1]

  = 1

2

1
{( 1) 1}

( 1)

n

np

-

- -

-

  = 2

2
, when is even

( 1)

0, when is odd, but 1

n

n

n

p

Ï
-Ô

-Ì
Ô πÓ

Putting n = 0 in the value of an, we get 0

2
a

p

= .

  a1 = 

p

p
p

-

È ˘
◊ +Í ˙

Í ˙Î ˚
Ú Ú
0

0

1
0 cos d sin cos dx x x x , by Euler’s formula

  = 2
0

1
(sin ) 0

2
x

p

p

=

 bn = 

2

0

1
( )sin df x nx x

p

p
Ú

  = 

p

p
p

-

È ˘
◊ +Í ˙

Í ˙Î ˚
Ú Ú
0

0

1
0 sin d sin sin dnx x x nx x

  = 

0

1
[cos( 1) cos( 1) ] d

2
n x n x x

p

p

- - +Ú

  = 
0

1 sin( 1) sin( 1)

2 1 1

n x n x

n n

p

p

- +È ˘
-Í ˙- +Î ˚

, if n π 1

  = 0, if n π 1

  b1 = 

0

2

0

1
0.sin d sin dx x x x

p

p
p

-

È ˘
+Í ˙

Í ˙Î ˚
Ú Ú , by Euler’s formula

  = 
00

1 1 sin 2 1
(1 cos2 )d

2 2 2 2

x

x x x

pp

p p

Ê ˆ
- = - =Á ˜Ë ¯Ú
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Using these values in (1),

   f (x) = 
2,4,6,...

1 2 1 1
cos sin in (

( 1)( 1) 2
n

nx x

n n

p p

p p

•

=

- + - , )
- +

Â   (2)

Putting x = 0 in the Fourier series in (2), we get the series 
1 1 1

1.3 3.5 5.7
+ + + •L .

The value of f (x) at x = 0 is uniquely found as 0, both from the value of f (x) in  

–p £ x £ 0 and from the value of f (x) in 0 £ x £ p.

\  x = 0 is a point of continuity of f (x).

\  [Sum of the Fourier series of f (x)]x = 0 = f (0).

i.e.  
p p

È ˘
- + + + • + ¥ =Í ˙◊ ◊ ◊Î ˚

L

1 2 1 1 1 1
0 0

1 3 3 5 5 7 2
.

\  + + + • =

◊ ◊ ◊

L

1 1 1 1

1 3 3 5 5 7 2

Now putting 
2

x

p

= , which is a point of continuity of f (x), in the Fourier series 

in (2) we get

  
p p

Ï ¸
- - + - + • + =Ì ˝

◊ ◊ ◊Ó ˛
L

1 2 1 1 1 1
1

1 3 3 5 5 7 2

i.e.  
p p

È ˘
- + - • = -Í ˙◊ ◊ ◊Î ˚

L

2 1 1 1 1 1

1 3 3 5 5 7 2

  

p -
- + • =

◊ ◊ ◊

L

1 1 1 2

1 3 1 3 5 7 4

Example 3
Find the Fourier series of period 2 for the function

  f (x) = 
, in 1 0

, in 0 1

k x

x x

- < <Ï
Ì

< <Ó
Hence find the sum of

 (i) 
1 1 1

1
3 5 7

- + - + •L

 (ii) 
2 2 2

1 1 1
1

3 5 7

+ + + + •L

Let  f (x) = 0

1 1

cos sin in ( 1, 1)
2

n n

n n

a
a n x b n xp p

• •

= =

+ + -Â Â

       [Q   2l = 2 and hence l = 1] (1)

 an = 

1

0

1
( ) cos d

1
f x n x xpÚ
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  = 

0 1

1 0

cos d cos dk n x x x n x xp p

-

+Ú Ú

  = 

10

2 2

1 0

sin sin cos
1

n x n x n x
k x

n n n

p p p

p p p-

È ˘-Ê ˆÊ ˆ Ê ˆ
= + -Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚

  = 
2 2

1
{( 1) 1}, if 0

n

n

n p

- - π

  = 
2 2

2
, if is odd

0, if is even

n

n

n

p

-Ï
Ô
Ì
Ô
Ó

 a0 = 

0 1

0 2 1
1 0

1 0

1 1 1
d d ( ) ( )

1 2 2
k x x x k x x k-

-

È ˘
+ = + = +Í ˙

Í ˙Î ˚
Ú Ú

 bn = 

1

1

1
( )sin d

1
f x n x xp

-
Ú

  = 

0 1

1 0

sin d sin dk n x x x n xp p

-

+Ú Ú

  = 

10

2 2

1 0

cos cos sin
1

n x n x n x
k x

n n n

p p p

p p p-

È ˘Ê ˆÊ ˆ Ê ˆ
- + - - ◊ -Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚

  = 
1

{1 ( 1) } ( 1)
n nk

n np p

- - - - -

Using these values in (1), we have

f (x) = 
2 2

1,3,5,...

1 2 1 1
cos [ {1 ( 1) }

2 4

n

n

k
n x k

n

p

pp

•

=

Ê ˆ
+ - - - -Á ˜Ë ¯ Â Â

   
1

( 1) ] sin in ( 1, 1)
n

n x

n

p+ - -   (2)

By putting x = 0 in (2), we get the series 
2 2

1 1
1

3 5

+ + + •L

\   We require the sum of the Fourier series of f (x) at x = 0.

Since f (0–) = k and f (0+) = 0, as per the definition of f (x).

\   x = 0 is a point of discontinuity of f (x).

\   [Sum of the Fourier series of f (x)]x = 0 = 
0

1
lim [ (0 ) (0 )]

2 h
f h f h

Æ

- + +

  = 
0

1
lim [ ]

2 2h

k
k h

Æ

+ =
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i.e.  
2 2 2 2

1 2 1 1 1

2 4 21 3 5

k k

p

Ê ˆ
+ - + + + • =Á ˜Ë ¯

L

  
2

2 2 2

1 1 1

81 3 5

p

+ + + • =L

By putting 
1

2
x =  in (2), we get the series 

1 1
1

3 5
- + +L

1

2
x =  is a point of continuity for f (x).

\  [Sum of the Fourier series of 1

2

1
( )]

2x
f x f

=

Ê ˆ
= Á ˜Ë ¯

i.e.  
1

1 1 1 1
(2 1) sin

2 4 2 2
n

k n
k

n

p

p

•

=

Ê ˆ
+ - - =Á ˜Ë ¯ Â

i.e.  
(2 1) 1 1 1 1 (2 1)

1 or
3 5 7 2 4 4

k k k

p

- -Ê ˆ
- + - + • = -Á ˜Ë ¯

L

\  
1 1 1

1
3 5 7 4

p

- + - + • =L

Example 4
Find the Fourier series of f (x) = x2 in (0, 2l). Hence deduce that

 (i) 
2

2 2 2

1 1 1

61 2 3

p

+ + + • =L

 (ii) 
2

2 2 2

1 1 1

121 2 3

p

- + - • =L

 (iii) 
2

2 2 2

1 1 1

81 3 5

p

+ + + • =L

Since f (x) is defined in a range of length 2l, it can be expanded as a Fourier series 

of period 2l.

Let   f (x) = 
0

1 1

cos sin in (0, 2 )
2

n n

n n

a n x n x
a b l

l l

p p
• •

= =

+ +Â Â   (1)

 an  = 

2

2

0

1
cos d

l
n x

x x
l l

p

Ú

  = 

2

2

2 2 3 3

2 3

0

sin cos sin
1

2 2

l

n x n x n x

l l l
x x

nl n n

l l l

p p p

p p p

È ˘Ê ˆ Ê ˆÊ ˆÍ ˙- -Á ˜ Á ˜Á ˜Í ˙Á ˜ Á ˜- - +Á ˜Í ˙Á ˜ Á ˜Á ˜Í ˙Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚

  = 
2

2 2

4
, if 0

l
n

n p

π .

 a0 = 

2
2 3 2

2

0 0

1 1 8
d

3 3

l
l

x l
x x

l l

Ê ˆ
= =Á ˜

Ë ¯Ú
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 bn  = 

2

2

0

1
sin d

l
n x

x x
l l

p

Ú

  = 

2

2

2 2 3 3

2 3

0

cos sin cos
1

2 2

l

n x n x n x

l l l
x x

nl n n

l l l

p p p

p p p

È ˘Ê ˆ Ê ˆÊ ˆÍ ˙- -Á ˜ Á ˜Á ˜Í ˙Á ˜ Á ˜- +Á ˜Í ˙Á ˜ Á ˜Á ˜Í ˙Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚

  = 
2

4l

np

-

Using these values in (1), we have

  x2 = 
2 2 2

2 2
1 1

4 4 1 4 1
cos sin in (0, 2 )

3
n n

l l n x l n x
l

l n ln

p p

pp

• •

= =

Ê ˆ Ê ˆ
+ -Á ˜ Á ˜Ë ¯ Ë ¯Â Â   (2)

Putting x = 0 in the R.H.S. of (2), we get the series 
2 2 2

1 1 1

1 2 3

+ + + •L .

x = 0 is the left extremity of the range (0, 2l). Since the Fourier series in (2) represents 

x
2 in (0, 2l) and (x + 2l)2 in (–2l, 0), x = 0 is a point discontinuity.

\   [Sum of the Fourier series of f (x)x = 0 = 
0

1
lim [ (0 ) (0 )]

2 h
f h f h

Æ

- + +

     = 2 2

0

1
lim [( 2 ) ]

2 h

h l h
Æ

- + +  [Q   x = –h lies in (–2l, 0) and x = h lies in (0, 2l)]

    = 2l
2

i.e.  
2 2

2

2 2

1

4 4 1
2

3
n

l l
l

np

•

=

+ =Â

\  
2

2 2 2

1 1 1

61 2 3

p

+ + + • =L   (3)

Putting x = l in the R.H.S. of (2), we get the series + + + •L
2 2 2

1 1 1

1 2 3

x = l is a point of continuity of the function f (x) = x2.

\  [Sum of the Fourier series of f (x)]x = l = f (l)

i.e.  
p

•

=

+ - =Â
2 2

2

2 2
1

4 4 1
( 1)

3

n

n

l l
l

n

i.e.  
2 2

2 2 2 2

4 1 1 1

31 2 3

l l

p

Ê ˆ
- + - + • = -Á ˜Ë ¯

L

  
2

2 2 2

1 1 1

121 2 3

p

- + - • =L  (4)
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Adding (3) and (4), we get

  

2 2 2

2 2 2

1 1 1
2

6 12 41 3 5

p p pÊ ˆ
+ + + • = + =Á ˜Ë ¯

L

\  

2

2 2 2

1 1 1

81 3 5

p

+ + + • =L

Example 5

Find the Fourier series expansion of f (x) = x2 + x in (–2, 2). Hence find the sum of 

the series 
2 2 2

1 1 1

1 2 3

+ + + •L .

Since f (x) is defined in a range of length 4, it can be expanded as a Fourier series 

of period 4.

Let  f (x) = 
p p

• •

= =

+ + =Â Â
0

1 1

cos sin [since 2 4]
2 2 2

n n

n n

a n x n x
a b l   (1)

 an = 

2

2

2

1
( )cos d

2 2

n x

x x x

p

-

+Ú

  = 

2 2

2

2 2

1 1
cos d cos d

2 2 2 2

n x n x

x x x x

p p

- -

+Ú Ú

  = 

2

2 2

0

cos d 0, cos is an even function and
2 2

n x n x

x x x

p pÈ
+ Í

Î
Ú Q

  cos is an odd function of 
2

n x

x x

p ˘
˙
˚

  = 

2

2

2 2 3 3

0

sin cos sin
2 2 2

2 2

2 4 8

n x n x n x

x x

n n n

p p p

p p p

È ˘Ê ˆÊ ˆÊ ˆ - -Í ˙Á ˜Á ˜Á ˜Í ˙- + Á ˜Á ˜Á ˜Í ˙Á ˜Á ˜Á ˜ Á ˜ Á ˜Í ˙Ë ¯ Ë ¯ Ë ¯Î ˚

  = 
2 2

16
( 1) , if 0

n

n

n p

- π

 a0 = 

2 2

2 2

2 0

1 8
( )d d

2 3
x x x x x

-

+ = =Ú Ú

(Q  x2 is an even function and x is an odd function of x)
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 bn  = 

2

2

2

1
( )sin d

2 2

n x

x x x

p

-

+Ú

  = 

2 2

2

2 2

1 1
sin d sin d

2 2 2 2

n x n x

x x x x

p p

- -

+Ú Ú

  = 

2

0

sin d
2

n x

x x

p

Ú

  

2
sin is an odd function and

2

n x

x

pÈ
Í
Î
Q

  

sin is an even function of  in ( – 2, 2)
2

n x

x x

p ˘
˙
˚

  = 

p p

p p

È ˘Ê ˆÊ ˆ- -Í ˙Á ˜Á ˜Í ˙◊ - ◊ Á ˜Á ˜Í ˙Á ˜Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

2

2 2

0

cos sin
2 2

1

2 4

n x n x

x

n n

  = 
4

( 1)
n

np

- -

Using these values in (1), we have

  2

2 2
1 1

4 16 ( 1) 4
cos sin in ( 2, 2)

3 2 2

n

n n

n x n x

x x

n

p p

pp

• •

= =

-
+ = + - -Â Â   (2)

Putting x = –2 or 2 in the R.H.S. of (2), we get the required series 
2 2

1 1

1 2

+ +  

2

1

3

+ •L .

Let us consider x = 2, which is the right extremity of the range (–2, 2).

The fourier series of f (x) represents f (x) in (–2, 2) and f (x – 4) in the next period  

(2, 6), i.e. The Fourier series in the R.H.S. of (2) represents x2 + x in (–2, 2) and  

{(x – 4)2 + (x – 4)} in (2, 6).

Evidently x = 2 is a point of discontinuity of f (x).

\   [Sum of the Fourier series of f (x)x = 2
 = 2

0

1
lim [{(2 ) (2 )}

2 h

h h
Æ

- + -

        +{(2 + h – 4)2 + (2 + h – 4)}] = 4

i.e.  
p

•

=

-
+ ◊ - =Â2 2

1

4 16 ( 1)
( 1) 4

3

n

n

n
n

i.e.  
2

2 2 2

1 1 1

61 2 3

p

+ + + • =L
.

Example 6
Find the Fourier series expansion of f (x) = x(1 – x) (2 – x) in (0, 2). Deduce the sum 

of the series 
3 3 3 3

1 1 1 1

1 3 5 7

- + - - •L .
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Since the function f (x) (1) is defined in a range of length 2, it can be expanded as 

a Fourier series of period 2.

\   Let  f (x)  = 0

1 1

cos sin [since 2 2]
2

n n

n n

a
a n x b n x lp p

• •

= =

+ + =Â Â

 an  = 

2

0

1
(1 )(2 )cos d

1
x x x n x xp- -Ú

  = 
2 3 2

2 2

sin cos
(2 3 ) (2 6 3 )

n x n x

x x x x x

n n

p p

p p

È -Ê ˆÊ ˆ
- + - - +Í Á ˜ Á ˜Ë ¯ Ë ¯Î

  

2

3 3 4 4

0

sin cos
( 6 6 ) 6

n x n x

x

n n

p p

p p

˘-Ê ˆ Ê ˆ
+ - + - ◊ ˙Á ˜ Á ˜Ë ¯ Ë ¯ ˚

 a0  = 

22 4
2 3 2 3

0 0

1
(2 3 )d 0

1 4

x

x x x x x x

Ê ˆ
- + = - + =Á ˜

Ë ¯Ú

 bn  = 

2

2 3

0

(2 3 )sin d
1

x x x n xp

1
- +Ú

  = 
2 3 2

2 2

cos sin
(2 3 ) (2 6 3 )

n x n x

x x x x x

n n

p p

p p

È - -Ê ˆÊ ˆ
- + - - +Í Á ˜ Á ˜Ë ¯ Ë ¯Î

  

2

3 3 4 4

0

cos sin
( 6 6 ) 6

n x n x

x

n n

p p

p p

˘Ê ˆ Ê ˆ
+ - + - ◊ ˙Á ˜ Á ˜Ë ¯ Ë ¯ ˚

  = 
3 3

12

n p

Using these values in (1), we have

  
3 3

1

12 1
(1 )(2 ) sin

n

x x x n x

n

p

p

•

=

- - = Â   (2)

Putting 
1

2
x =  in the R.H.S. of (2), we get the series 

3 3 3 3

1 1 1 1

1 3 5 7

- + - + •L .

1

2
x =  is a point of continuity of f (x).

\  [Sum of the Fourier series of 1

2

1
( )]

2x
f x f

=

Ê ˆ
= Á ˜Ë ¯

i.e.  
p

p

•

=

= ◊ ◊Â3 3

1

12 1 1 1 3
sin

2 2 2 2
n

n

n

i.e.  
p

- + - + =L

3

3 3 3 3

1 1 1 1
.

321 3 5 7
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Example 7
Find the Fourier series of period 2p for the function f (x) = x cos x in 0 < x < 2p.

Let f (x) = 0

1 1

cos sin
2

n n

n n

a
a nx b nx

• •

= =

+ +Â Â   (1)

 an  = 

2

0

1
cos cos dx x nx x

p

p
Ú

  = 

2

0

1
[cos( 1) cos( 1) ]d

2
x n x n x x

p

p

+ + -Ú

  = 

2

2

0

1 sin( 1) cos( 1)

2 1 ( 1)

n x n x

x

n n

p

p

ÈÏ ¸+ -Ô ÔÍ ◊ +Ì ˝
Í - +Ô ÔÓ ˛Î

  

2

2

0

sin( 1) cos( 1)
, if 1

1 ( 1)

n x n x

x n

n n

p ˘Ï ¸- -Ô Ô ˙+ ◊ + πÌ ˝
˙- -Ô ÔÓ ˛ ˚

  = 0, if n π 1

 a0  = 0

 a1  = 

2 2

2

0 0

1 1
cos d (1 cos2 )d

2
x x x x x x

p p

p p

= +Ú Ú

  = 

2
2

0

1 sin 2 cos2

2 2 2 4

x x x

x

p

p

p

È ˘
+ + =Í ˙

Í ˙Î ˚
.

 bn  = 

2

0

1
cos sin dx x nx x

p

p
Ú

  = 

2

0

1
[sin( 1) sin( 1) ]d

2
x n x n x x

p

p

+ + -Ú

  = 

2

2

0

1 cos( 1) sin( 1)

2 1 ( 1)

n x n x

x

n n

p

p

È ˘- + +Ï ¸
+Ì ˝Í ˙

+ +Ó ˛Î ˚

  

2

2

0

1 cos( 1) sin( 1)
, if 1

2 1 ( 1)

n x n x

x n

n n

p

p

È ˘- - -Ï ¸
+ + πÌ ˝Í ˙

- -Ó ˛Î ˚

  = 
2

1 1 1 1 2
, if 1

1 1 1 1 1

n

n

n n n n n

Ï ¸
- - = - - + = - πÌ ˝

+ - + - -Ó ˛
.



5-23
Fourier Series Solutions of Partial Differential Equations

 b1 = 

2 2

0 0

1 1
cos sin d sin 2 d

2
x x x x x x x

p p

p p

=Ú Ú

  = 

2

0

1 cos2 sin 2 1

2 2 4 2

x x

x

p

p

È ˘-Ê ˆ
+ = -Í ˙Á ˜Ë ¯Î ˚

Using these values in (1), we get

 f (x) = p
•

=

- -
-

Â 2
2,3,...

1
cos sin 2 sin

2 1
n

n

x x nx

n

Example 8

Find the Fourier series of period 2p for the function f (x) = 1 cos x-  in –p < x < p.

 f (–x) = 1 cos( ) 1 cos ( )x x f x- - = - =

\ f (x) = 1 cos x-

 is an even function of x in –p < x < p.

Note 

Since - = ±1 cos 2 sin
2

x
x , we should not conclude that -1 cos x  is an odd 

function of x in –p < x < p. If we note the values of -1 cos x  and 2 sin
2

x

, we can find that

 1 cos x-  = 

2 sin , in ( , )
2

2 sin , in (0, )
2

x

x

p p

p

Ï
- -ÔÔ

Ì
Ô
ÔÓ

  (1)

From (1) also, it is evident that 1 cos x-  is an even function of x in (–p, p).

\   Fourier series of f (x) will not contain sine terms.

Let  f (x) = 0

1

cos in ( , )
2

n

n

a

a nx p p

•

=

+ -Â

 an  = 

0

2
1 cos cos dx nx x

p

p

-Ú

  = 

0

2 2
sin cos d

2

x

nx x

p

p
Ú

  = 

0

2 1 1
sin sin d

2 2
n x n x x

p

p

È ˘Ê ˆ Ê ˆ
+ - -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

Ú

  = 

0

1 1
cos cos

2 2 2

1 1

2 2

n x n x

n n

p

p

È ˘Ê ˆ Ê ˆ- + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙+
Í ˙+ -Í ˙
Î ˚
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  = 
2 1 1

1 1

2 2
n n

p

È ˘
Í ˙

-Í ˙
Í ˙+ -
Í ˙Î ˚

  

1
cos cos cos sin sin 0

2 2 2
n n n

p p

p p p

È ˘Ê ˆ
± = =Í ˙Á ˜Ë ¯Î ˚

Q m

  = 
2 2 1 1

2 1 2 1n np

Ê ˆ
-Á ˜Ë ¯+ -

  = 
2

4 2

(4 1)np

-

-

  (2)

and a0  = 
4 2

( )p
-

-

 [by putting n = 0 in (2)]

  = 
4 2

p

Using these values in (1), we have

 1 cos x-  = p p

p p

•

=

- - , )
-

Â 2
1

2 2 4 2 1
cos in (

4 1
n

nx

n

Example 9

Find the Fourier series of period 2p for the function f (x) = |cos x| in –p £ x £ p f (–x) 

= |cos(–x)| = |cos x| = f (x)

\   f (x) is an even function of x in –p £ x £ p.

\   Fourier series of f (x) will not contain sine terms.

Let f (x) = 0

1

cos in
2

n

n

a

a nx xp p

•

=

+ - £ £Â   (1)

 an = 

0

2
| cos | cos dx nx x

p

p
Ú

  = 
2

0

2

2
cos cos d ( cos )cos dx nx x x nx x

p

p

p
p

È ˘
Í ˙

+ -Í ˙
Í ˙
Í ˙Î ˚

Ú Ú

  

p p

p

È ˘Ê ˆ Ê ˆ
> <Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

Q cos 0 in 0, and 0 in , and | cos | is positive
2 2

x x

  = 
2

0

2

1
[cos( 1) cos( 1) ]d [cos( 1) cos( 1) ]dn x n x x n x n x x

p

p

p
p

Ï ¸
Ô ÔÔ Ô

+ + - - + + -Ì ˝
Ô Ô
Ô ÔÓ ˛

Ú Ú
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  = 
2

0

1 sin( 1) sin( 1)

1 1

n n x

n n

p

p

+ -Ï ¸
+Ì ˝

+ -Ó ˛

  2

1 sin( 1) sin( 1)
, if 1

1 1

n x n x

n

n n

p

pp

+ -Ï ¸
- + πÌ ˝

+ -Ó ˛

  = 

sin( 1) sin( 1) sin( 1) sin( 1)
1 12 2 2 2

1 1 1 1

n n n n

n n n n

p p p p

p p

Ï ¸ Ï ¸
+ - + -Ô Ô Ô Ô

+ + +Ì ˝ Ì ˝
+ - + -Ô Ô Ô Ô

Ô Ô Ô ÔÓ ˛ Ó ˛

  = 
2 1 1

cos
1 1 2

n

n n

p

p

Ï ¸Ê ˆ-Ì ˝Á ˜Ë ¯+ -Ó ˛
,

  

Sincesin( 1) sin cos cos sin cos
2 2 2 2 2 2

n n n

n

p p p p p pÈ ˘
± = ± ◊ = ±Í ˙

Î ˚

  = 
2

4
cos , if 1

2( 1)

n

n

n

p

p

- π

-

 a0 = 

/2

1

0

4 2
; | cos | cos da x x x

p

p p

= Ú

  = 
2

2 2

0

2

2
cos d cos dx x x x

p

p

p
p

È ˘
Í ˙

-Í ˙
Í ˙
Í ˙Î ˚

Ú Ú

  = 
2

0

2

2 1
(1 cos2 )d (1 cos2 )d

2
x x x x

p

p

p
p

È ˘
Í ˙

◊ + - +Í ˙
Í ˙
Í ˙Î ˚

Ú Ú

  = 
2

0
2

1 sin 2 sin 2

2 2

x x

x x

p
p

pp

È ˘
Ê ˆ Ê ˆÍ ˙+ - +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯
Í ˙Î ˚

 = 
1

0
2 2

p p

p

p

È ˘Ê ˆ
- - =Í ˙Á ˜Ë ¯Î ˚

Using these values in (1), we get

 |cos x| = 
p

p p

•

=

-
-

Â 2

1

2 4 1
cos cos

21
n

n

nx

n

  = 
p

p p

•

=

-
-

Â 2
2,4,6,...

2 4 1
cos cos

21
n

n

nx

n

  cos 0 when is odd
2

n

n

pÈ ˘
=Í ˙

Î ˚
Q
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  = p

p p

•

=

-
-

Â 2

1

2 4 1
cos cos2

4 1
n

n nx

n

  = p p

p p

•
-

=

+ - ◊ - )
-

Â 1

2
1

2 4 1
( 1) cos2 in ( ,

4 1

n

n

n x

n

Example 10

Find the Fourier series expansion of f (x) = sin ax in (–l, l).

Since f (x) is defined in a range of length 2l, we can expand f (x) in Fourier series 

of period 2l.

Also f (–x) sin[a(–x)] = –sin ax = –f (x)

\   f (x) is an odd function of x in (–l, l).

Hence Fourier series of f (x) will not contain cosine terms.

Let f (x) = 
1

sin
n

n

n x
b

l

p
•

=

Â

 bn = 
0

2
sin sin d

l
n x

ax x
l l

p

◊Ú

  = 
0

1
cos cos d

l
n n

a x a x x
l l l

p pÈ ˘Ê ˆ Ê ˆ
- - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

Ú

  = 

0

sin sin
1

l

n n
a x a x

l l

n nl
a a

l l

p p

p p

È ˘Ê ˆ Ê ˆ- +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙-
Í ˙- +Í ˙
Î ˚

  = 
1 1

sin sin
n n

a l a l
n la l n la l

p p

p p

Ê ˆ Ê ˆ
- - +Á ˜ Á ˜Ë ¯ Ë ¯- +

  = 
1 1

sin( ) sin( )n al n al
n la n la

p p

p p

- - +

- +

  = 
1 1

{ ( 1) sin } {( 1) sin }
n n

al al
n al n alp p

- - - -

- +

  = 1 1 1
( 1) sin

n
al

n al n alp p

+ Ï ¸
- +Ì ˝

- +Ó ˛

  = 
1

2 2 2 2

( 1) 2 sin
n

n al

n a l

p

p

+
-

-

Using this value in (1), we get

 sin ax = 

1

2 2 2 2
1

( 1)
2 sin sin

n

n

n x
al

ln a l

p

p

p

+•

=

-

-
Â
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Example 11

Find the Fourier series expansion of f (x) = e–x in (–p, p). Hence obtain a series for 

cosec p.

Though the range (–p, p) is symmetric about the origin, e–x is neither an even 

function nor an odd function.

\   Let f (x) = 
0

1 1

cos sin
2

n n

n n

a
a nx b nx

• •

= =

+ +Â Â   (1)

in (–p, p) [Q   the length of the range is 2p]

 an = 
1

cos d
x

e nx x

p

p
p

-

-
Ú

  = 
2

1
( cos sin

1

x

e

nx n nx

n

p

p

p

-

-

Ï ¸Ô Ô
- +Ì ˝

+Ô ÔÓ ˛

  = 
2

1
{ ( 1) ( 1) }

( 1)

n n

e e

n

p p

p

-
- - - -

+

  = 
2

2( 1)
sinh

( 1)

n

n

p

p

-

+

and a0 = 
2sinh p

p

 bn = 

p

p
p

-

-

◊ Ú
1

sin d
x

e nx x

  = 
2

1
( sin cos )

1

x

e

nx n nx

n

p

p

p

-

-

Ï ¸Ô Ô
- -Ì ˝

+Ô ÔÓ ˛

  = 
2

{ ( 1) ( 1) }
( 1)

n n
n

e e

n

p p

p

-
- - - -

+

  = 
2

2 ( 1)
sinh

( 1)

n

n

n

p

p

-

+

Using these values in (1), we get

 e
–x = 

p p

p p

•

=

-
+

+
Â 2

1

sinh 2sinh ( 1)
cos

1

n

n

nx

n

  
p

p p

p

•

=

-
+ - , )

+
Â 2

1

2sinh ( 1)
sin in (

1

n

n

n

nx

n

 (1)

[Sum of the Fourier series of f (x)]x = 0 = f (0),

[Since x = 0 is a point of continuity of f (x)]
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i.e. 
p

p

•

=

È ˘-
+Í ˙

+Í ˙Î ˚
Â 2

1

sinh ( 1)
1 2

1

n

n
n

 = e–0 = 1

i.e. p cosech p = 
•

=

- -Ê ˆ
+ ¥ +Á ˜Ë ¯ +

Â 2
2

1 ( 1)
1 2 2

2 1

n

n
n

i.e. cosech p = 
p

•

=

-

+
Â 2

2

2 ( 1)

1

n

n
n

Example 12

Find the Fourier series of period 2p for the function f (x) = sinh ax in (–p, p).

 f (–x) = sinh(–ax) = –sinh ax = –f (x) in (–p, p)

\   sinh ax is an odd function of x in (–p, p).

\   Fourier series of sinh ax in (–p, p) will not contain the constant term and the 

cosine terms.

Let f (x) = 
1

sin in (
n

n

b nx p p

•

=

- , )Â   (1)

 bn = 

0

2
sinh sin dax nx x

p

p
Ú

  = 

0

1
( )sin d

x x

e e nx x

p

a a

p

--Ú

  = 
2 2

0

1
( sin cos

x

e

nx n nx

n

p
a

a

p a

ÈÏ ¸Ô ÔÍ -Ì ˝
Í +Ô ÔÓ ˛Î

  

p
a

a

a

- ˘Ï ¸Ô Ô ˙- - -Ì ˝
˙+Ô ÔÓ ˛ ˚

2 2

0

( sin cos )

x

e

nx n nx

n

  = 
2 2

1
[ ( 1) ( 1) ]

( )

n n

n e n ne n

n

ap ap

p a

- - + + - -

+

  = ap ap
ap

p a p a

-
-- - -

- =
+ ( +

1

2 2 2 2

( 1) 2 ( 1) sinh
( )

( ) )

n n

n n

e e

n n

Using this value of bn in (1), we get

 sinh ax = 
ap

p a

-•

=

-

+
Â

1

2 2
1

2sinh ( 1)
sin

n

n

n

nx

n
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Example 13

Find the Fourier series expansion of period 2 for the function

 f (x) = 
, in 0 1

(2 ), in 1 2

x x

x x

p

p

£ £Ï
Ì

- £ £Ó

Deduce the sum of 

•

=

Â 2
1,3,...

1

n
n

.

Let f (x) = p p

• •

= =

+ +Â Â
0

1 1

cos sin
2

n n

n n

a
a n x b n x  (1)

 an = 

2

0

1
( )cos d [ 2 2 or ]

1
f x n x x l l lp = =Ú Q

  = 

1 2

0 1

cos d (2 ) cos dx n x x x n x xp p p p+ -Ú Ú

  = 

1

2 2

0

sin cos
1

n x n x

x

n n

p p

p

p p

È ˘-Ê ˆÊ ˆ
- ◊Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

  

2

2 2

1

sin cos
(2 ) 1

n x n x

x

n n

p p

p

p p

È ˘-Ê ˆÊ ˆ
+ - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

  = 
2 2

1 1
{( 1) 1} {( 1) 1}, if 0

n n

n

n np p

- - + - - π

  = 

2

0, if is even, 0

4
, if is odd

n

n

n p

πÏ
Ô
Ì
-Ô

Ó

 a0 = 

2 1 2

0 0 1

1
( )d d (2 )d

1
f x x x x x xp p= + -Ú Ú Ú  

  = 

1 2
2 2

0 1

(2 )

2 2

x x

p p

È ˘ È ˘-
+Í ˙ Í ˙

-Í ˙ Í ˙Î ˚ Î ˚

  = 
2 2

p p

p+ =

 bn = 

2

0

1
( )sin d

1
f x n x xpÚ

  = 

1 2

0 1

sin d (2 )sin dx n x x x n x xp p p p+ -Ú Ú
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  = 

1

2 2

0

cos sin
1

n x n x

x

n n

p p

p

p p

È ˘- -Ê ˆÊ ˆ
- ◊Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

  

2

2 2

1

cos sin
(2 ) 1

n x n x

x

n n

p p

p

p p

È ˘- -Ê ˆÊ ˆ
+ - + ◊Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

  = 
1 1
( 1) ( 1) 0

n n

n n

- - + - =

Using these values in (1), we get

 f (x) = 
p

p

p

•

=

- £ £Â 2
1,3,...

4 1
cos in (0 2)

2
n

n x x

n

  (2)

x = 1 is a point of continuity of f (x).

\  [Sum of Fourier series of f (x)]x = 1 = f (1)

i.e.  
2 2 2

4 1 1 1

2 1 3 5

p

p

p

Ê ˆ
+ + + + • =Á ˜Ë ¯

L

i.e.  
2

2 2 2

1 1 1

81 3 5

p

+ + + • =L

Example 14

Find the Fourier series of period 
2

p

 for the function f (x) = 

sin , in 0
4

cos , in
4 2

x x

x x

p

p p

Ï
£ £ÔÔ

Ì
Ô £ £
ÔÓ

Here 2l = 
2

p

 \   l = 
4

p

Let f (x) = 
0

1 1

cos4 sin 4 in 0,
2 2

n n

n n

a
a nx b nx

p
• •

= =

Ê ˆ
+ + Á ˜Ë ¯Â Â   (1)

 an = 
2

0

4
( )cos4 df x nx x

p

p
Ú

  = 

4 2

0

4

4
sin cos4 d cos cos4 dx nx x x nx x

p p

p
p

È ˘
Í ˙

+Í ˙
Í ˙
Í ˙Î ˚

Ú Ú

  = 
4

0

2
sin(4 1) sin(4 1) }dn x n x x

p

p

È
Í

+ - -Í
Í
ÍÎ

Ú

  

2

4

{cos4 1) cos(4 1) }dn x n x x

p

p

˘
˙

+ + + - ˙
˙
˙̊

Ú
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  = 
42 cos(4 1) cos(4 1)

4 1 4 1

n x n x

n n

p

p

È ˘- - -Ï ¸
+Ì ˝Í ˙

+ -Ó ˛Î ˚

2

4

sin(4 1) sin(4 1)

4 1 4 1

n x n x

n n

p

p

˘
+ -Ï ¸ ˙+ +Ì ˝ ˙+ -Ó ˛ ˙̊

  = 

cos cos sin 2
2 1 14 4 2

4 1 4 1 4 1 4 1 4 1

n n n

n n n n n

p p p
p p p

p

È Ê ˆ Ê ˆ Ê ˆ- + - +Í Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í + + - +
Í + - + - +
Í
Î

  

sin 2 sin sin
2 4 4

4 1 4 1 4 1

n n n

n n n

p p p
p p p

˘Ê ˆ Ê ˆ Ê ˆ- + - ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ ˙+ - -
˙- + -
˙
˚

  = 
2 ( 1) ( 1) 1 1 1 1

4 1 4 1 4 1 4 1(4 1) 2 (4 1) 2

n n

n n n nn np

È - - -
+ + - + -Í

+ - + -+ -ÍÎ

  
( 1) ( 1)

(4 1) 2 (4 1) 2

n n

n n

˘- -
- + ˙

+ - ˙̊

  = 
4 ( 1) 1 1 1 1

4 1 4 1 4 1 4 12

n

n n n np

È ˘- Ê ˆ Ê ˆ
- + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯- + + -Í ˙Î ˚

  = 
2

8 ( 1)
1

(16 1) 2

n

np

È ˘-
-Í ˙

- Í ˙Î ˚

 a0 = 
8 1

1

2p

Ï ¸
-Ì ˝

Ó ˛

 bn = 
2

0

4
( )sin 4 df x nx x

p

p
Ú

  = 
4 2

0

4

4
sin sin 4 d cos sin 4 dx nx x x nx x

p p

p
p

È ˘
Í ˙

+Í ˙
Í ˙
Í ˙Î ˚

Ú Ú

  = 
4 2

0

4

2
{cos(4 1) cos(4 1)}d {sin(4 1) sin(4 1) }dn x n x n x n x x

p p

p
p

È ˘
Í ˙

- - + + + + -Í ˙
Í ˙
Í ˙Î ˚

Ú Ú

  = 
4 2

0
4

2 sin(4 1) sin(4 1) cos(4 1) cos(4 1)

4 1 4 1 4 1 4 1

n x n n x n x

n n n n

p p

pp

È ˘
- + + -Ï ¸ Ï ¸Í ˙- - +Ì ˝ Ì ˝Í ˙- + + -Ó ˛ Ó ˛Í ˙Î ˚
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  = 

sin sin cos 2 cos 2
2 4 4 2 2

4 1 4 1 4 1 4 1

n n n n

n n n n

p p p p
p p p p

p

È Ê ˆ Ê ˆ Ê ˆ Ê ˆ- + + -Í Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Í - - -
Í - + + -
Í
Î

  

cos cos
4 4

4 1 4 1

n n

n n

p p
p p

˘Ê ˆ Ê ˆ+ - ˙Á ˜ Á ˜Ë ¯ Ë ¯ ˙+ +
˙+ -
˙
˚

  = 
2 ( 1) ( 1) ( 1) ( 1)

(4 1) 2 (4 1) 2 (4 1) 2 (4 1) 2

n n n n

n n n np

È ˘- - - - -
- + +Í ˙

- + + -Í ˙Î ˚
 = 0

Using these values in (1), we get

 f (x) = 
p

p p

•

=

Ï ¸Ê ˆ - Ê ˆÔ Ô- + -Ì ˝ Á ˜Á ˜ Ë ¯Ë ¯ - Ô ÔÓ ˛
Â 2

1

4 1 8 1 ( 1)
1 1 cos4 , in 0,

216 12 2

n

n

nx

n

Example 15

Find the Foureir series expansion of f (x) given by f (x) = 
, in 0 2

0, in 2 4

x x

x

< <Ï
Ì

< <Ó

Since f (x) is defined in a range of length 4, we can expand it as a Fourier series 

of period 4.

i.e. 2l = 4

\ l = 2

Let f (x) = 0

1 1

cos sin in (0,4)
2 2 2

n n

n n

a n x n x
a b

p p
• •

= =

+ +Â Â   (1)

 an = 
p p

=Ú Ú
4 2

0 0

1 1
( )cos d cos d

2 2 2 2

n x n x
f x x x x

  = 

2

2 2

0

sin cos
1 2 2

, if 0
2

2 4

n x n x

x n

n n

p p

p p

È ˘Ê ˆÊ ˆ
Í ˙Á ˜Á ˜Í ˙+ πÁ ˜Á ˜Í ˙Á ˜Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

  = 
2 2

2
{( 1) 1}

n

n p

- -

  = 2 2

4
, if is odd

0, if is even and 0

n

n

n

p

Ï
-Ô

Ì
Ô πÓ

 a0 = 

2

2 2
0

0

1 1
d ( ) 1

2 4
x x x= =Ú
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 bn = 

2

0

1
sin d

2 2

n x

x x

p

Ú

  = 

2

2 2

0

cos sin
1 2 2

2

2 4

n x n x

x

n n

p p

p p

È ˘Ê ˆÊ ˆ-Í ˙Á ˜Á ˜Í ˙+ Á ˜Á ˜Í ˙Á ˜Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

  = 
2

( 1)
n

np

- -

Using these values in (1), we get

 f (x) = 
p p

pp

• •

= =

-
- -Â Â2 2

1,3,5,... 1

1 4 1 2 ( 1)
cos sin in (0, 4)

2 2 2

n

n n

n x n x

nn

Example 16

Find the Fourier series expansion of f (x) given that f (x) = 
1, for 0 1

2, for 1 3

x

x

< <Ï
Ì

< <Ó
Since the function is defined in a range of length 3, it can be expanded as a Fourier 

series period 3.

\ l = 
3

2

Let f (x) = 0

1 1

2 2
cos sin in (0, 3)

2 3 3
n n

n n

a n x n x
a b

p p
• •

= =

+ +Â Â   (1)

 an = 

3

0

2 2
( )cos d

3 3

n x
f x x

p

Ú

  = 

1 3

0 1

2 2 2
1 cos d 2cos d

3 3 3

n x n x

x x

p p
È ˘

◊ +Í ˙
Í ˙Î ˚
Ú Ú

  = 

1 3

0 1

2 3 2 3 2
sin 2 sin

3 2 3 2 3

n x n x

n n

p p

p p

È ˘Ê ˆ Ê ˆÍ ˙+ ◊Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

  = 
1 2 2 1 2

sin 2sin sin , 0
3 3 3

n n n

n

n n

p p p

p p

Ï ¸
- = - πÌ ˝

Ó ˛

 a0 = 

1 3

0 1

2
1d 2d

3
x x

È ˘
+Í ˙

Í ˙Î ˚
Ú Ú

  = 
2 10
[1 4]

3 3
+ =
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 bn = 

3

0

2 2
( )sin d

3 3

n x
f x x

p

Ú

  = 

1 3

0 1

2 2 2
1 sin d 2 sin d

3 3 3

n x n x

x x

p p
È ˘

◊ + ◊Í ˙
Í ˙Î ˚
Ú Ú

  

1 3

0 1

2 2
cos cos

2 3 3
2

2 23

3 3

n x n x

n n

p p

p p

È ˘Ê ˆ Ê ˆÍ ˙-Á ˜ Á ˜Í ˙-Á ˜ Á ˜Í ˙Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

  = 
1 2 2

cos 1 2 1 cos
3 3

n n

n

p p

p

È ˘Ï ¸ Ï ¸
- - + -Ì ˝ Ì ˝Í ˙

Ó ˛ Ó ˛Î ˚

  = 
1 2

1 cos
3

n

n

p

p

Ê ˆ
- -Á ˜Ë ¯

Using these values in (1), we have

   f (x) = 
p p p p

p p

• •

= =

Ê ˆ
- - -Á ˜Ë ¯Â Â

1 1

5 1 1 2 2 1 1 2 2
sin cos 1 cos sin in (0,3)

3 3 3 3 3
n n

n n x n n x

n n

Example 17

Find the Fourier series expansion of period 2p for the function

 f (x) = 
( ), in 0

( ), in 0

x x x

x x x

p p

p p

- - £ £Ï
Ì

+ £ £Ó

Since the range (–p, p) is symmetrically divided into two subranges and f (x) assumes 

the values f1(x) = x(p – x) in (–p, 0) and f2(x) = x(p + x) in (0, p), the function f (x) 

may be odd or even. Let us first test for the oddness or evenness of f (x).

 f1(–x) = –x(p + x)

  = –f2(x)

\ f (x) is an odd function in (–p, p).

\ The Fourier series of f (x) will contain only since terms.

Let f (x) = 
1

sin in (
n

n

b nx p p

•

=

- , )Â   (1)
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 bn = 
0

2
( )sin df x nx x

p

p
Ú

  = 
0

2
( )sin dx x nx x

p

p

p

+Ú

  = 2

2 3

0

2 cos sin cos
( ) ( 2 ) 2

nx nx nx

x x x

n n n

p

p p

p

È ˘- -Ê ˆ Ê ˆ Ê ˆ
+ - + +Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚

  = 2

3

2 2 2
2 ( 1) {( 1) 1}

n n

n n

p

p p

- ◊
◊ - + - -

◊

  = 
3

4 4
( 1) {( 1) 1}

n n

n n

p

p

- - + - -

Using this value in (1), we get

 f (x) = 
3

1

4 4
( 1) {( 1) 1 sin in (

n n

n

nx

n n

p

p p

p

•

=

È ˘
- - + - - - . )Í ˙
Î ˚

Â

Example 18

Obtain the Fourier series for the function given by f (x) = 

2
1 , in 0

2
1 , in 0

x
l x

l

x
x l

l

Ï
+ - £ £ÔÔ

Ì
Ô - £ £
ÔÓ

Hence deduce that 
2

2 2 2

1 1 1

81 3 5

p

+ + + • =L :

The range is symmetrically divided into two subranges and

 f (x) = 1

2
( ) 1 in 0

x
x l x

l
f = + - £ £

  = 2

2
( ) 1 in 0

x
x x l

l
f = - £ £

 f1(–x) = 2

2
1 ( )

x
x

l
f- =

\   f (x) is an even function of x in (–l, l). \   The Fourier will not contain sine terms 

and will be of period 2l.

Let f (x) = 0

1

cos in ( , )
2

n

n

a n x
a l l

l

p
•

=

+ -Â

 an = 

0

2
( )cos d

l
n x

f x x
l l

p

Ú

  = 

1

0

2 2
1 cos d

x n x
x

l l l

pÊ ˆ
-Á ˜Ë ¯Ú
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  = 

1

2 2

2

0

sin cos
2 2 2

1

n x n x

x l l

nl l l n

l l

p p

p p

È ˘Ê ˆÊ ˆÍ ˙-Á ˜Á ˜Ê ˆÍ ˙Á ˜- +Á ˜Á ˜Í ˙Ë ¯ Á ˜Á ˜Í ˙Á ˜Ë ¯ Ë ¯Î ˚

  = 
2 2

4
{1 ( 1) }, if 0

n

n

n p

- - π

  = 

2 2

0, if is even and 0

8
, if is odd

n

n

n p

πÏ
Ô
Ì
Ô
Ó

 a0 = 
2

0 0

2 2 2
1 d 0

l
l

x x
x x

l l l l

È ˘Ê ˆ
- = - =Í ˙Á ˜Ë ¯ Í ˙Î ˚

Ú

Using these values in (1), we get

 f (x) = 
p

p

•

=

Â2 2
1,3,5,...

8 1
cos

n

n x

ln

  (1)

x = 0 is a point of continuity of f (x).

\   [Sum of the Fourier series of f (x)]x = 0 = f (0)

i.e.  
2 2 2 2

8 1 1 1
1

1 3 5p

È ˘
+ + + • =Í ˙

Î ˚
L

\  
2

2 2 2

1 1 1

81 3 5

p

+ + + • =L

Example 19

Find the Fourier series expansion of f (x) in (–2, 2) which is defined as follows:

 f (x) = 

2

2

0, in ( 2, 1)

, in ( 1,0)

, in (0,1)

0, in (1,2)

x x

x x

- -Ï
Ô

+ -Ô
Ì

-Ô
Ô
Ó

The symmetric range (–2, 2) is symmetrically divided into 4 subranges.

Let f (x) = 

1

2
2

2
3

4

( ) 0, in ( 2, 1)

( ) , in ( 1, 0)

( ) , in (0, 1)

( ) 0, in (1, 2)

x

x x x

x x x

x

f

f

f

f

= - -Ï
Ô

= + -Ô
Ì

= -Ô
Ô =Ó

We note that f1(x) = –f4(x)

and f2(–x) = –f3(x)

\   f (x) is an odd function in (–2, 2)

This can also be graphically verified shown in Fig. 5A.9.
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0 x–1 1–2 2

Fig. 5A.9

The Fourier series of f (x) will be of period 4 and will contain only the sine terms

Let f (x) = 
1

sin in ( 2, 2)
2

n

n

n x
b

p
•

=

-Â   (1)

 bn = 

2

0

2
( )sin d

2 2

n x
f x x

p

Ú  = 

1

2

0

( )sin d
2

n x

x x x

p

-Ú

  = 

1

2

2 2 3 3

0

cos sin cos
2 2 2( ) (1 2 ) ( 2)

2 4 8

n x n x n x

x x x

n n n

p p p

p p p

È ˘Ê ˆÊ ˆÊ ˆ- -Í ˙Á ˜Á ˜Á ˜Í ˙- - - + - Á ˜Á ˜Á ˜Í ˙Á ˜Á ˜Á ˜ Á ˜ Á ˜Í ˙Ë ¯ Ë ¯ Ë ¯Î ˚

  = 
2 2 3 3

4 16
sin 1 cos

2 2

n n

n n

p p

p p

- Ï ¸
+ -Ì ˝

Ó ˛

Using this value in (1), we get

 f (x) = 
2 2 3 3

1

4 16
sin 1 cos sin in ( 2, 2)

2 2 2
n

n n n x

n n

p p p

p p

•

=

È ˘- Ï ¸
+ - -Ì ˝Í ˙

Ó ˛Î ˚
Â

Example 20
Find the Fourier series expansion of f (x) in (–p, p), when f (x) is defined as follows:

 f (x) = 

, in
2

, in 0
2

, in 0
2

, in
2

x x

x x

x x

x x

p

p p

p

p

p

p p

Ï
+ - £ £ -Ô

Ô
Ô- - £ £
Ô
Ì
Ô £ £
Ô
Ô
Ô - £ £
Ó

  (1)

The symmetric range (–p, p) is symmetrically divided into 4 subranges.

 f (x) = 

1

2

3

4

( ) , in ( , /2)

( ) , in ( / 2, 0)

( ) , in (0, /2)

( ) , in ( / 2), )

x x

x x

x x

x x

f p p p

f p

f p

f p p p

= + - -Ï
Ô = - -Ô
Ì

=Ô
Ô = -Ó

  (2)

We note that f1(–x) = f4(x) and f2(–x) = f3(x).
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\    f (x) is an even function of x in (–p, p). This is verified graphically also as shown 

in Fig. 5A.10.

0 x
–p/2 – /2p

–p p

y

Fig. 5A.10

The Fourier series of f (x) will be of period 2p and will not contain sine terms.

Let f (x) = 0 cos (
2

n

a
a nx in p p+ - , )Â   (3)

 an = 

0

2
( )cos df x nx x

p

p
Ú

  = 

/2

0

2
cos ( )cos dx nx dx x nx x

p p

p

p

p
/2

È ˘
+ -Í ˙

Í ˙Î ˚
Ú Ú

  = 
2 2

0

2 sin cos sin cos
( )

nx nx nx nx

x x

n nn n

p p

p

p

p

/2

/2

È ˘Ê ˆ Ï ¸Í ˙+ + - -Ì ˝Á ˜Ë ¯Í ˙Ó ˛Î ˚

  = 
2 2

2 1 1
sin cos

2 2 2

n n

n n n

p p p

p

ÈÏ ¸
+ -Ì ˝Í

Ó ˛Î

  
2 2

1 1
( 1) sin cos

2 2 2

n
n n

nn n

p p p ˘Ï ¸
+ - - - +Ì ˝˙

Ó ˛˚

  = 
2 2

2 2 1
cos {1 ( 1) } , if 0

2

n
n

n

n n

p

p

È ˘
- + - πÍ ˙

Î ˚

  = 

2

0, if is odd

2 1
(cos 1) , if is even and 2

2

n

m n m

m

p

p

Ï
Ô

È ˘Ì
- =Í ˙Ô

Î ˚Ó

  = 

2

0, if is even

2
, if is odd

m

m

mp

Ï
Ô
Ì
-Ô

Ó

 a0 = 

p p
p p

p p

p p

p

p p

/2/2

/2 /2

È ˘È ˘ Ê ˆ Ï ¸-Ô ÔÍ ˙+ - = + =Í ˙ Ì ˝Á ˜Í ˙-Ë ¯Í ˙ Ô ÔÓ ˛Î ˚ Î ˚
Ú Ú

2 2

0 0

2 2 (
d ( )d

2 2 2

x x

x x x x
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Using these values in (1), we have

 f (x) = 
2

1,3,5,...

2 1
cos2 , in ( ,

4
m

mx

m

p

p p

p

•

=

- - )Â

                          Exercise 5A(a)

Part A (Short-Answer Questions)

 1. State the Dirichlet’s conditions that a function f (x) should satisfy so that it 

may be expanded in the form 0 cos sin in ( , 2
2

n n

a
a nx b nx c c p+ + + )Â Â .

 2. State Euler’s formulas for the Fourier coefficients.

 3. Define Fourier series of f (x) in (c, c + 2l).

 4. If f (x) is to be expanded as a Fourier series of the form 0
cos

2
n

a n x
a

l

p

+ +Â  

sin
n

n x
b

l

p

Â , in what range is f (x) to be defined?

 5. If the Fourier series of f (x) in (0, 2p) is 0
cos sin

2
n n

a
a nx b nx+ +Â Â , what 

are the functions represented by the same series in (–2p, 0) and (2p, 4p)?

 6. If the Fourier series of f (x) in (–l, l) is 0
cos sin

2
n n

a n x n x
a b

l l

p p

+ +Â Â , 

what is the Fourier series of f (x – 2l) in (l, 3l)?

 7. If the Fourier series of f (x) in (–p, p) is 0
cos sin

2
n n

a
a nx b nx+ +Â Â , what 

is the Fourier series of f (x + 2p) in (–3p, –p)?

 8. Give the complete definition of a periodic function.

 9. The Fourier series of sin3 x cos4 x in (–p, p), that in (–3p, –p) and that in 

(p, 3p) are identical. Support or refute this statement with reason.

 10. The Fourier series of x2 in (0, 2), that of (x + 2)2 in (–2, 0) and that of (x – 2)2 

in (2, 4) are identical. Support or refute this statement with reason.

 11. Only if f (x + 2l) = f (x) can be expanded as a Fourier series of period 2l. 

Support or refute the above statement with reason.

 12. Define even and odd functions graphically.

 13. Since x2 = (–x)2 in (0, 2), x2 is an even function of x in (0, 2). Support or refute 

the above statement with reason.

 14. Since –x
3 = (–x)3 in (0, 2p), x3 is an odd function of x in (0, 2p). Support or 

refute the above statement with reason.

 15. Write down the form of the Fourier series of an even function in (–p, p) and 

the associated Euler’s formulas for the Fourier coefficients.

 16. Write down the form of the Fourier series of an odd function in (–l, l) and the 

associated Euler’s formulas for the Fourier coefficients.

 17. Write down the formula for the sum of the Fourier series of f (x) at the point 

x = a, if
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 (i) x = a is a point of continuity of f (x)

 (ii) x = a is an interior point of discontinuity of f (x)

 18. Write down the formula for the sum of the Fourier series of f (x) in (c, c + 2p) 

at the point of discontinuity x = a, if

 (i) it coincides with the left end c

 (ii) it coincides with the right end c + 2p
 19. Find the Fourier series of f (x) = sin3

x + cos3 x in (–p, p).

 20. Find the Fourier series of f (x) = cos4 x in (0, 2p).

Part B

 21. Find the Fourier series of period 2p for the function f (x) = x(2p – x) in  

(0, 2p). Deduce the sum of the series 
2 2 2 2

1 1 1 1

1 2 3 4

- + - + •L .

 22. Find the Fourier series of period 2l for the function f (x) = (l – x)2 in (0, 2l). 

Deduce the sum of the series 
2

1

n

Â .

 23. Find the Fourier series expansion of f (x) = p2 – p2 in –p < x < p.

 24. Obtain the Fourier expansion of f (x) = 1 – x in –1 < x < 1. Deduce the sum 

of the series 
1 1 1

1
3 5 7

- + - + •L .

 25. Obtain the Fourier series of period 2l for the function

 f (x) = l – x, in 0 < x £ l = 0,  in l £ x < 2l

  Hence deduce that 
2

2 2 2

1 1 1 1 1 1
1 and

3 5 7 4 81 3 5

p p

- + - + • = + + + • =L L
.

 26. Find the Fourier series of period 2p for the function

 f (x) = 

0, in ( , 0)

, in (0, )
4

x

p

p

p

-Ï
Ô
Ì
ÔÓ

. Deduce the sum of the series 
2

0

1

(2 1)
n

n

•

= +
Â

 27. Find the Fourier series expansion of the function f (x) = 
cos , in ( 1, 0)

0, in (0, 1)

xp -Ï
Ì
Ó

 28. Find the Fourier series expansion of the function f (x) = 
, in (0,

2 , in ( , 2 )

x

x

p

p p p

)Ï
Ì

-Ó
  Deduce the sum of the series 

2 2 2

1 1 1

1 3 5

+ + + •L .

 29. Find the Fourier series expansion of the function

 f (x) = x, when –l < x < 0 = k, when 0 < x < l

  Deduce that 
2

2 2 2

1 1 1

81 3 5

p

+ + + • =L
.

 30. Find the Fourier series of f (x) = x2 in –p £ x £ p and hence prove that

 (i) 
2

2 2 2

1 1 1

61 2 3

p

+ + + • =L
, (ii) 

2

2 2 2

1 1 1

121 2 3

p

- + • =L ; and

 (iii) 
2

2 2 2

1 1 1

81 3 5

p

+ + • =L
.
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 31. Find the Fourier series expansion of f (x) = x2 – x in (–l, l). Deduce the values 

of (i) 
2 2 2

1 1 1

1 2 3

- + - •L ; and (ii) 
2 2 2

1 1 1

1 2 3

+ + - •L .

 32. Find the Fourier series expansion of period 2p for the function f ( x) =  

x sin x in 0 < x < 2p. Deduce the sum of the series 
1 1 1

1.3 3.5 5.7
- + - •L .

 33. Find the Fourier series of period 2p for the function f (x) = x cos x in  

–p < x < p.

 34. Find the Fourier series of period 2 for the function f (x) = x sin p x in  

–1 £ x £ 1. Deduce the value of 
1 1 1

1.3 3.5 5.7
- + - •L .

 35. Find the Fourier series of period 2p for the function f (x) = 1 cos x+  in  

–p < x < p.

 36. Find the Fourier series of period 2p for the function f (x) = 
1

12
x (p – p) 

(2p – x) in (0, 2p). Deduce the sum of the series 1–3 – 3–3 + 5–3 – 7–3 + ....

 37. Find the Fourier series of period 2l for the function f (x) = |x| in (–l, l). Hence 

find the value of 1–2 + 3–2 + 5–2 + ... •.

 38. Find the Fourier series of period 2p for the function f (x) = |sin x| in (–p, p).

 39. Find the Fourier series of period 2p for the function f (x) = cos ax in  

–p £ x £ p, when ‘a’ is not an integer. Deduce the sum of the series 
2

1

1

9 1
n

n

•

= -
Â .

 40. Find the Fourier series of period 2l for the function f (x) = eax in (0, 2l).

 41. Find the Fourier series expansion for the function f (x) = cosh ax in (–p, p).

 42. Find the Fourier series of period 4 for the function f (x) defined as follows in (–2, 2):

 f (x) = 

2, in 2 1

1, in 1 0

1, in 0 1

2, in 1 2

x

x

x

x

- - < <Ï
Ô- - < <Ô
Ì

< <Ô
Ô < <Ó

 43. Find the fourier series of period 2p for the function

 f (x) = 
cos sin , in ( , 0)

cos sin , in (0, )

x x

x x

p

p

- -Ï
Ì

+Ó

  Hence deduce the sum of the sum of the series 
1 1 1

1.3 3.5 5.7
- + L

 44. Find the Fourier series of period 6 for the function

 f (x) = 

2

2

2 , in ( 3, 0)

2 , in (0, 3)

x x

x x

Ï + -Ô
Ì

-ÔÓ
 45. Find the Fourier series of period 2p for the function

 f (x) = 

2

2

, in ( 0)

, in (0, )

x x

x x

p p

p p

Ï- - - ,Ô
Ì

-ÔÓ

  Deduce the sum of the series (i) 
2

1

n

Â  and (ii) 

1

2
1

( 1)
n

n
n

-•

=

-
Â .
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 46. Find the Fourier series of period 4 for the function 

 f (x) = 3

0, in ( 2, 1)

, in ( 1, 1)

0, in (1, 2)

x x

- -Ï
Ô

+ -Ì
Ô
Ó

 47. Find the Fourier series of period 2l for the function

 f (x) = 

, in ( , /2)

0, in ( /2, /2)

, in ( /2, )

l x l l

l l

l x l l

+ - -Ï
Ô

-Ì
Ô -Ó

 48. Find the Fourier series of period 2p for the function

 f (x) = 
1, in 0

1, in 0

x x

x x

p

p

- - < <Ï
Ì

+ < <Ó

 49. Find the Fourier series of period 2p for the function

 f (x) = 

( ), in ( /2)

, in ( /2 /2)

, in ( /2 )

x

x

x

p p p

p p

p p p

- + - , -Ï
Ô

- ,Ì
Ô - ,Ó

 50. Find the Fourier series of period 6 for the function

 f (x) = 

0, in 3 1

1 cos , in 1 1

0, in 1 3

x

x x

x

p

- < < -Ï
Ô

+ - < <Ì
Ô < <Ó

5A.9  hAlF-rAnge FourIer serIes And 

pArsevAl’s theorem

Introduction

If a function f (x) is to be expanded as a Fourier series of period 2l, f (x) should be 

defined in a range of length 2l, in particular, in the range (–l, l) or (0, 2l). But in some 

situations, the value of f (x) will be available only in a range of length l, in particular 

in the range (0, l). Without knowing the value of f (x) in the full range, i.e., either in 

(–l, l) or in (0, 2l), we cannot expand f (x) as a Fourier series of period 2l, since the 

Fourier coefficients cannot be found out.

In such situations, i.e., when the value of f (x) is given in (0, l), we assign some 

value for f (x) in (–l, 0) [or in (l, 2l)], so that f (x) is defined completely in the full range 

(–l, l) [or in (0, 2l)]. If we assign arbitrary value of f (x) in (–l, 0), the Fourier series of 

f (x) will contain both cosine and sine terms. This kind of Fourier  series of period 2l, 

resulting from arbitrary assignment of value for f (x) in (–l, 0) is not of interest.

If we assign a suitable value for f (x) in (–l, 0) so that the given value of f (x) in 

(0, l) and the assigned value of f (x) in (–l, 0) together make f (x) even or odd in (–l, l), 

then the Fourier series of f (x) will be of period 2l and will contain only cosine terms 

or sine terms respectively. Such series are called Fourier half-range cosine series or 

sine series respectively and will represent the given value of f (x) in (0, l).
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Note 
The term ‘half-range series’ is used because the Fourier series is of period 2l, 
even though the function is defined in a range of length l.

Theorem

A function f (x) defined in (0, l) can be expanded as a Fourier series of period 2l 

containing (i) only cosine terms and (ii) only sine terms, by extending f (x) suitably 

in (–l, 0).

Proof

Let f (x) = f (x) in (0, l)

 (i) Let us assign the value f (x) = f (–x) in (–l, 0). By the definition of an even 

function given in Section 5A.6, f (x) is even in (–l, l).

  \   Fourier series of f (x) will be of the form

 f (x) = 
0

1

cos
2

n

n

a n x
a

l

p
•

=

+Â , where

 an = 
0

2
( )cos d , 0

l
n x

f x x n
l l

p

≥Ú

 (ii) Let us assign the value f (x) = –f (–x) in (–l, 0). By the definition of an odd 

function given in the previous section, f (x) is odd in (–l, l).

  \   Fourier series of f (x) will be of the form

 f (x) = 
1

sin
n

n

n x
b

l

p
•

=

Â , where

 bn
 = 

0

2
( )sin d

l
n x

f x x
l l

p

Ú

Note 
1.   The values f (–x) and –f (–x) assigned to f (x) in (–l, 0) in order to make f (x) 

even and odd respectively in (–l, l) are called the even and odd extensions 

of f (x) in (–l, 0).

2.   The evaluation of an and bn by the modified Euler’s formulas requires only 

the given value of f (x) in (0, l).

Theorem

A function f (x) defined in (0, l) can be expanded as a Fourier series of period 2l 

containing (i) only cosine terms and (ii) only sine terms, by extending f (x) suitabley 

in (l, 2l).



Transforms and Partial Differential Equations
5-44

Proof

Let f (x) = f (x) in (0, l)

 (i) Let us assign the value f (x) = f (2l – x) in (l, 2l). Let the Fourier series of f (x) 

be given by

 f (x) = 0

1 1

cos sin
2

n n

n n

a n x n x
a b

l l

p p
• •

= =

+ +Â Â

Now bn = 

2

0

1
( )sin d

l
n x

f x x
l l

p

Ú

  = 

2

0

1
( )sin d (2 )sin d

l l

l

n x n x
x x l x x

l l l

p p
f f

È ˘
+ -Í ˙

Í ˙Î ˚
Ú Ú

  = 
p p

f f
È ˘

+ - -Í ˙
Í ˙Î ˚
Ú Ú

0

0

1
( )sin d ( )sin (2 )( d )

l

l

n x n
x x y l y y

l l l

  on putting 2l – x = y in the second integral.

  = 
p p

f f
È ˘

- =Í ˙
Í ˙Î ˚
Ú Ú
0 0

1
( )sin d ( )sin d 0

l l
n x n y

x x y y
l l l

  This means that the Fourier series will contain only cosine terms.

i.e. f (x) = 0

1

cos
2

n

n

a n x
a

l

p
•

=

+Â

Now an = 

2

0

1
( )cos d (2 )cos d

l l

l

n x n x
x x l x x

l l l

p p
f f

È ˘
+ -Í ˙

Í ˙Î ˚
Ú Ú

  = 

0

0

1
( )cos d ( )cos (2 )( d )

l

l

n x n
x x y l y y

l l l

p p
f f

È ˘
+ - -Í ˙

Í ˙Î ˚
Ú Ú .

  on putting 2l – x = y in the second integral.

  = 

0 0

1
( )cos d ( )cos d

l l
n x n y

x x y y
l l l

p p
f f

È ˘
+Í ˙

Í ˙Î ˚
Ú Ú

i.e. an = 
p

f ≥Ú
0

2
( )cos d , 0

l
n x

x x n
l l
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 (ii) Let us assign the value f (x) = –f (2l – x) in (l, 2l).

Let f (x) = 
p p

• •

= =

+ +Â Â
0

1 1

cos sin
2

n n

n n

a n x n x
a b

l l

. Proceeding as in (i), we an prove 

that

 an = 0,  h ≥ 0

\   The Fourier series of f (x) will contain only sine terms.

i.e. f (x) = 

1

sin
n

n

n x
b

l

p
•

=

Â

Proceeding as in (i), we can prove that

 bn = 

0

2
( )sin d

l
n x

f x x
l l

p

Ú

Note 
1.   The extended values of f (x) in (l, 2l), namely f (2l – x) and –f (2l – x) are 

only the periodic extensions in (l, 2l) of f (– x) and –f (– x), that are the even 
and odd extensions of f (x) in (–l, 0).

2.   Even in this case, the evaluation of an and bn requires only the given value 
of f (x) in (0, 1).

5A.10 root-meAn squAre vAlue oF A FunctIon

Definition

If a function y = f (x) is defined in (c, c + 2l), then 
2

2
d

2

c l

c

l
y x

l

+

Ú  is called the root 

mean-square (R.M.S.) value of y in (c, c + 2l) and is denoted by y .

Thus y
2 = 

2

21
d

2

c l

c

y x
l

+

Ú

If y = f (x) can be expanded as a Fourier series in (c, c + 2l), then y 2 can be expressed 

in terms of Fourier coefficients a0, an and bn. The formula that expresses y 2 in terms 

of a0, an and bn is known as Parseval’s formula which is stated as a theorem.

Parseval’s theorem

If y = f (x) can be expanded as Fourier series of the form 0

1

cos
2

n

n

a n x
a

l

p
•

=

Ê ˆ
+ +Á ˜Ë ¯Â  

1

sin
n

n

n x
b

l

p
•

=

Ê ˆ
Á ˜Ë ¯Â  in (c, c + 2l), then the root-mean square value y  of y = f (x) in  

(c, c + 2l) is given by

 y
2 = 

• •

= =

+ +Â Â
2 2 2

0

1 1

1 1 1

4 2 2
n n

n n

a a b



Transforms and Partial Differential Equations
5-46

Proof

 f (x) = 0

1 1

cos sin in ( , 2 )
2

n n

n n

a n x n x
a b c c l

l l

p p
• •

= =

+ + +Â Â   (1)

\   By Euler’s formulas for the Fourier coefficients,

 an = 
21

( )cos d , 0
c l

c

n x
f x x n

l l

p+
≥Ú   (2)

 bn = 
21

( )sin d , 1
c l

c

n x
f x x n

l l

p+
≥Ú   (3)

Now, by definition,

 y
2 = 

2 2
2 21 1
d [ ( )] d

2 2

c l c l

c c
y x f x x

l l

+ +
=Ú Ú

  = 
2

0

1 1

1
( ) cos sin d

2 2

c l

n n
c

n n

a n x n x
f x a b x

l l l

p p
• •+

= =

È ˘
+ +Í ˙

Í ˙Î ˚
Â ÂÚ , using (1)

  = 
2 2

0

1

1 1
( ) ( )cos d

4 2

c l c l
n

c c
n

a a n x
f x dx f x x

l l l

p
•+ +

=

È ˘ Ï ¸
+ Ì ˝Í ˙

Î ˚ Ó ˛
ÂÚ Ú

  
2

1

1
( )sin d

2

c l
n

c
n

b n x
f x x

l l

p
• +

=

Ï ¸
+ Ì ˝

Ó ˛
Â Ú

  = 0

0

1 1
4 2 2

n n

n n

n n

a a b
a a b

• •

= =

◊ + ◊ + ◊Â Â ,  by using (2) and (3)

  = 2 2 2

0

1 1

1 1 1

4 2 2
n n

n n

a a b

• •

= =

+ +Â Â

Corollary 1

If the Fourier half-range cosine series of y = f (x) in (0, l) is 0

1

cos
2

n

n

a n x
a

l

p
•

=

+Â , 

then

 y
2 = 

•

=

+ =Â Ú2 2 22
0

0
1

1 1 1
, where d

4 2

l

n

n

a a y y x
l

Corollary 2

If the Fourier half-range sine series of y = f (x) in (0, 1) is 
1

sin
n

n

n x
b

l

p
•

=

Â , then

 y
2 = 

2 22

0
1

1 1
, where d

2

l

n

n

b y y x
l

•

=

=Â Ú
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 Worked Examples 5A(b)

Example 1
Find the half-range (i) cosine series and (ii) sine series for f (x) = x2 in (0, p)

 (i) To get the half-range cosine series for f (x) in (0, p), we should given an even 

extension for f (x) in (–p, 0).

  i.e. put f (x) = (–x)2 = x2 in (–p, 0)

  Now f (x) is even in (–p, p)

\ f (x) = 0

1

cos
2

n

n

a

a nx

•

=

+Â   (1)

 an = 
0

2
( )cos df x nx x

p

p
Ú

  = 2

0

2
cos dx nx x

p

p
Ú

  = 

p

p

È ˘- -Ê ˆ Ê ˆ Ê ˆ
- +Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚

2

2 3

0

2 sin cos sin
2 2

nx nx nx

x x

n n n

  = 
2 2

4 4( 1)
( 1) , 0

n

n

n

n n

p

p

-
◊ - = π

 a0 = 2 2

0 0

2 2 2
( )d d

3
f x x x x

p p

p

p p

= =Ú Ú

\   The Fourier half-range cosine series of x2 is given by

 x
2 = 

2

2
1

( 1)
4 cos in (0,

3

n

n

nx

n

p

p

•

=

-
+ )Â

 (ii) To get the half-range sine series of f (x) in (0, p), we should give an odd 

extension for f (x) in (–p, 0).

i.e.  put      f (x) = –(–x)2 in (–p, 0)

  = –x
2 in (–p, 0)

Now f (x) is odd in (–p, p).

\ f (x) = 
1

sin
n

n

b nx

•

=

Â  (2)
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 bn = 
2

0
0

2 2
( )sin d sin df x nx x x nx x

p

p

p p

=Ú Ú

  = 2

2 3

0

2 cos sin cos
2 2

nx nx nx

x x

n n n

p

p

È ˘Ê ˆ Ê ˆ Ê ˆ
- - - +Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚

  = 
2

1

3

2 2
( 1) {( 1) 1}

n n

n n

p

p

+
È ˘

- + - -Í ˙
Í ˙Î ˚

  = 

2

3

2 4
, if is odd

2
, if is even

n

n n

n

n

p

p

p

Ï È ˘
-Ô Í ˙

Ô Í ˙Î ˚Ì
Ô
-Ô

Ó

Using this value in (2), we get the half-range sine series of x2 in (0, p).

Example 2

Find (i) the Fourier half-range cosine series and (ii) the Fourier half-range series of 

f (x) = 
, in 0 1

2 , in 1 2

x x

x x

< <Ï
Ì

- < <Ó

 (i) To get the half-range cosine series, we give an even extension for f (x) in  

(–2, 0).

i.e.          we put f (x) = 
2 , in 2 1

, in 1 0

x x

x x

+ - < < -Ï
Ì
- - < <Ó

Now f (x) has been made an even function in (–2, 2). Here 2l = 4.

Let the half-range cosine series be

 f (x) = 0

1

cos
2 2

n

n

a n x

a

p
•

=

+Â   (1)

 an = 
2

0

2
( )cos d

2 2

n x
f x x

p

Ú

  = 

2
1

0
1

cos d (2 )cos d
2 2

n x n x

x x x x

p p

+ -Ú Ú

  = 

1 2

2 2 2 2

0 1

sin cos sin cos
2 2 2 2(2 )

2 22 4

n x n x n x n x

x x

n nn n

p p p p

p pp p

È ˘Ï ¸ Ï ¸Ê ˆ Ê ˆÍ ˙Ô Ô Ô ÔÁ ˜ Á ˜Ô Ô Ô ÔÍ ˙+ + - -Ì ˝ Ì ˝Á ˜ Á ˜Í ˙
Ô Ô Ô ÔÁ ˜ Á ˜Í ˙Ë ¯ Ë ¯Ô Ô Ô ÔÓ ˛ Ó ˛Í ˙Î ˚
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  = 
2 2 2 2 2 2

2 4 4 4
sin cos cos

2 2

n n

n

n n n n

p p

p

p p p p

+ - -

  
2 2

2 4
sin cos

2 2

n n

n n

p p

p p

- +

  = 
2 2 2 2

8 4
cos {1 ( 1) }

2

n
n

n n

p

p p

- + -

  = 

2 2

0, if is odd

2
[( 1) 1], if is even and 2

m

n

n m

m p

Ï
Ô
Ì

- - =Ô
Ó

  = 

2 2

0, if is even
2

4
, if is odd

2

n

m

n

m

m p

Ï
=ÔÔ

Ì
-Ô =

ÔÓ

  = 

2 2

0, if is a multiple of 4

16
, if is even, but not a multiple of 4

n

n

n p

Ï
Ô
-Ì

Ô
Ó

 a0 = 

2 1 2

0 0 1

2
( )d d (2 )d

2
f x x x x x x= + -Ú Ú Ú

  = 

1 2
2 2

0 1

(2 )

2 2

x xÊ ˆ È ˘-
+ Í ˙Á ˜ -Ë ¯ Í ˙Î ˚

  = 
1 1

1
2 2
+ = .

Using these values in (1), the required cosine series is given by

 f (x) = 
2 2 2 2

1 16 1 1 1
cos cos3 cos5

2 2 6 10

x x xp p p

p

È ˘
- + + + •Í ˙

Î ˚
L

 (ii) To get the half-range sine series of f (x), we give an odd extension for f (x) in 

(–2, 0).

i.e.        we put f (x) = 
(2 ), in 2 1

, in 1 0

x x

x x

- + - < < -Ï
Ì

- < <Ó

Now f (x) has been made an odd function in (–2, 2). Here 2l = 4.

Let the half-range sine series be

 f (x) = 

1

sin
2

n

n

n x
b

p
•

=

Â
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 bn = 

2

0

2
( )sin d

2 2

n x
f x x

p

Ú

  = 

1 2

0 1

sin d (2 )sin d
2 2

n x n x

x x x x

p p

+ -Ú Ú

  = 

1

2 2

0

cos sin
2 2

2 4

n x n x

x

n n

p p

p p

ÈÏ ¸Ê ˆÍÔ ÔÁ ˜Ô ÔÍ - +Ì ˝Á ˜Í
Ô ÔÁ ˜Í Ë ¯Ô ÔÓ ˛ÍÎ

  

2

2 2

1

cos sin
2 2(2 )

2 4

n x n x

x

n n

p p

p p

˘Ï ¸Ê ˆ ˙-Ô ÔÁ ˜Ô Ô ˙+ - -Ì ˝Á ˜ ˙
Ô ÔÁ ˜ ˙Ë ¯Ô ÔÓ ˛ ˙̊

  = 
2 2 2 2

2 4 2 4
cos sin cos sin

2 2 2 2

n n n n

n nn n

p p p p

p pp p

- + + +

  = 
2 2

8
sin

2

n

n

p

p

  = 2 2

8
sin , if is odd

2

0, if is even

n

n

n

n

p

p

Ï
Ô
Ì
Ô
Ó

Using this value in (2), the required sine series is given by

 f (x) = 
2 2 2 2

8 1 1 3 1 5
sin sin sin

2 2 21 3 5

n x xp p p

p

È ˘
- + - •Í ˙

Î ˚
L

Note 
From the above two examples, it is clear that any function defined in (0, l) 
can be expanded as a cosine series and also as a sine series. Depending on 
the nature of the Fourier series required, we give corresponding extension 
for the function in (–l, 0)

Example 3
Find the Fourier half-range cosine series of the function f (x) = (x + 1)2 in (–1, 0). 

Hence find the value of 
2 2 2

1 1 1
1

2 3 4

+ + + + •L .

To get the half-range cosine series of f (x), we give an even extension to f (x) in 

(0, 1), i.e. we put f (x) = (–x + 1)2 in (0, 1)

Now f (x) is even in (–1, 1)

 f (x) = 0

1

cos , since 2 2
2

n

n

a
a n x lp

•

=

+ =Â
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 an
 = 

1

0

2
( )cos d

1
f x n x xpÚ

  = 

1

2

0

2 (1 ) cos dx n x xp-Ú

Note 
We do not use the given value of f (x) in (–1, 0) for evaluating an, but use 
the assigned value of f (x) in (0, 1). Hence extra care should be taken while 
assigning the value of f (x) in (0, 1). However, an can also be found out by 

using the formula an = p

-

+Ú
0

2

1

2
( 1) cos d

1
x n x x

  = 

1

2

2 2 3 3

0

sin cos sin
2 (1 ) { 2(1 )} 2

n x n x n x

x x

n n n

p p p

p p p

È ˘- -Ê ˆ Ê ˆÊ ˆ
- - - - +Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚

  = 
2 2

4
, if 0n

n p

π

 a0 = 

11 1 3
2

0 0 0

2 (1 )
( )d 2 (1 ) d 2

1 3

x
f x x x x

È ˘-
= - = Í ˙

-Í ˙Î ˚
Ú Ú

  = 2/3

\   The required half-range cosine series is

 f (x) = 
2 2

1

1 4 1
cos

3
n

n x

n

p

p

•

=

+ Â

This series represents (x + 1)2 in (–1, 0) and (1 – x)2 in (0, 1).

x = 0 is a point of continuity for f (x).

\ [Sum of the Fourier series of f (x)]x = 0 = f (0)

i.e  
2 2

1

1 4 1
1

3
n

np

•

=

+ =Â

\  
p

•

=

=Â
2

2

1

1
.

6
n

n
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Example 4

Find the half-range sine series of the function f (x) = p – x in (p, 2p),by suitably 

extending f (x) in (0, p). Deduce the sum of the series 1 – 1/3 + 1/5 – 1/7 + ... •. If 

f (x) = f (x) in (0, l), we should assign f (x) = –f (2l – x) in (l, 2l) in order to get a sine 

series.

Hence if f (x) = y(x) in (l, 2l), we should assign f (x) = –y(2l – x) in (0, l) in order 

to get a sine series. This is obtained by putting –f (2l – x) = y(x) and by making the 

transformation 2l – x = u.

Since f (x) = p – x in (p, 2p), we put f (x) = –{p – (2p – x)} in (0, p) i.e. we put  

f (x) = p – x in (0, p) to get sine series.

Let the Fourier sine series of f (x) be

 f (x) = 
1

sin
n

n

b nx

•

=

Â

 bn = 
0

2
( )sin dx nx x

p

p

p

-Ú

  = 
2

0

2 cos sin
( )

nx nx

x

n n

p

p

p

È ˘Ê ˆ Ê ˆ
- - -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

  = 
2

n

Hence

 f (x) = 
1

1
2 sin

n

nx

n

•

=

Â   (1)

Putting x = p/2, we can get the series, whose sum is required.

x = p/2 is a point of continuity for f (x).

\   [Sum of the Fourier series of f (x)]x = p/2 = f (p/2)

i.e.  p p
È ˘

- + - + • = -Í ˙
Î ˚

L

1 1 1 1
2 /2

1 3 5 7

\  
p

- + - + • =L

1 1 1 1

1 3 5 7 4

Note 
If the specific value of the extension of f (x) in (0, p) is not required, we can 

also evaluate bn by using the formula bn = 

p

p

p

p

-Ú
2

2
( )sin dx nx x

Example 5

Find the half-range cosine series of f (x) = x(l – x) in (0, l). How should f (x) be extended 

in order to get this cosine series (i) in the range (–l, 0) and (ii) in the range (l, 2l)?

Let f (x) = 0

1

cos
2

n

n

a n x
a

l

p
•

=

+Â , since the length of the given half-range = l.
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 an = 

0

2
( )cos d

l
n x

f x x
l l

p

Ú

  = 
2

0

2
( )cos d

l
n x

lx x x
l l

p

-Ú

  = 2

2 2 3 3

2 3
0

sin cos sin
2

( ) ( 2 ) ( 2)

l

n x n x n x

l l l
lx x l x

nl n n

l l l

p p p

p p p

È ˘Ê ˆ Ê ˆÊ ˆÍ ˙- -Á ˜ Á ˜Á ˜Í ˙Á ˜ Á ˜- - - + -Á ˜Í ˙Á ˜ Á ˜Á ˜Í ˙Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚

  = 
2 2

2
[ cos ]

l
l n l

n

p

p

- -

  = 
2

2 2

2
{( 1) 1}

nl

n p

- - +

  = 2

2 2

0, if is odd

4
, if is even and 0

n

l
n

n p

Ï
Ô
Ì
- πÔ

Ó

 a0 = 
2 3 2

2

0
0

2 2
( )d

2 3 3

l

l lx x l
lx x x

l l

È ˘
- = - =Í ˙

Í ˙Î ˚
Ú

\   Required half-range cosine series is given by

 f (x) = 
2 2

2 2
2,4,6,...

4 1
cos

6
n

l l
nx

np

•

=

- Â   or

  = 
2 2

2 2

1

1
cos2

6
n

l l
nx

np

•

=

- Â

To get this half-range cosine series, we should assign f (x) = –(lx + x2) in (–l, 0) and 

assign f (x) = (2l – x) (x – l) in (l, 2l).

Example 6

Find the half-range sine series of f (x) in (0, l), given that

 f (x) = 
( ) , in (0, )

( ) , in ( ,

c x c

x c c

l

l l

-Ï
Ì

- )Ó
We give an odd extension to f (x) in (–l, 0).

i.e. we put  f (x) = 
( ) , in ( , )

( ) , in ( , 0)

x c c

c x c

l l

l

- + - -Ï
Ì

-Ó

Now f (x) is odd in (–l, l).

Let f (x) = sin
n

n x
b

p

l
Â   (1)
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 bn = 
0

2
( )sin d

n x
f x x

l
p

l l
Ú

  = 
0

2
( ) sin d ( ) sin

c

c

n x n x
c x x x c dx

l
p p

l l
l l l

È ˘
- + -Í ˙

Í ˙Î ˚
Ú Ú

  = 
2 2

2
0

cos sin
2

( )

c

n x n x

c x

n n

p p

l l
l

pl p

l l

È ˘Ê ˆ-Í ˙Á ˜Í ˙- +Á ˜Í ˙Á ˜Í ˙Ë ¯Î ˚

  
2 2

2

cos sin
2

( )

c

n x n x

c

x

n n

l

p p

l l
l

pl p

l l

È ˘Ê ˆ-Í ˙Á ˜Í ˙+ - -Á ˜Í ˙Á ˜Í ˙Ë ¯Î ˚

  = 
2

2 2

2( )
cos sin

c c n c n c

n n

l l p l p

l p l lp

È ˘-
- +Í ˙

Í ˙Î ˚

  
2

2 2

2 ( )
cos sin

c c n c n c

n n

l l p l p

l p l lp

È ˘-
+ +Í ˙

Í ˙Î ˚

  = 
2

2 2

2
sin

n c

n

l p

lp

Using in (1), we get the required half-range sine series as

 f (x) = 
2

2

1

2
sin sin

n

n c n xl p p

l lp

•

=

Â

Example 7

Find the half-range cosine series of f (x) = sin x in (0, p).

We give an even extension for f (x) in (–p, 0).

i.e. we put f (x) = –sin x in (–p, 0).

Now f (x) is even in (–p, p).

Let f (x) = 0

1

cos
2

n

n

a

a nx

•

=

+Â

 an = 

0

2
( )cos df x nx x

p

p
Ú

  = 
0 0

2 1
sin cos d [sin( 1) sin( 1) ]dx nx x n x n x x

p p

p p

= + - -Ú Ú

  = 
0

1 cos( 1) cos( 1)

1 1

n x n x

n n

p

p

- + -È ˘
+Í ˙+ -Î ˚
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  = 

1 1
1 ( 1) ( 1) 1 1

1 1 1 1

n n

n n n np

+ -È ˘- - -
+ + -Í ˙

+ - + -Í ˙Î ˚

  = 
1 1

1

1

1
1 1

1

p n n

n

+
-

-
Ê
ËÁ

ˆ
¯̃

- -{ }È

Î
Í

˘

˚
˙

-
( )

  = 1

2

2
{1 ( 1) }

( 1)

n

np

-

- - -

-

  = 2

4
, if is even

( 1)

0, if is odd and 1

n

n

n

p

Ï
-Ô

-Ì
Ô πÓ

 a0 = 
4

p

, on putting n = 0 in an

 a1 = 

p

p

p p

=Ú Ú
0

0

2 1
sin cos d sin 2 dx x x x x

  = 
0

1 cos2
0

2

x

p

p

-Ê ˆ
=Á ˜Ë ¯

Using these values in (1), the required half-range cosine series is obtained as

 sin x = 
2

2,4,6,...

4 1 1
cos

2 1
n

nx

np

•

=

È ˘
- ◊Í ˙

-Í ˙Î ˚
Â

  = 
2

1

4 1 1
cos2

2 4 1
n

nx

np

•

=

È ˘
-Í ˙

-Í ˙Î ˚
Â

Example 8

Find the half-range sine series of f (x) = sin ax in (0, l).

We give an odd extension for f (x) in (–l, 0).

i.e. we put f (x) = – sin [a(–x)] = sin ax in (–l, 0)

\   f (x) is odd in (–l, l)

Let f (x) = 
1

sin
n

n

n x
b

l

p
•

=

Â

 bn = 

0

2
sin sin d

l
n x

ax x
l l

p

◊Ú

  = 

0

1
cos cos d

l
n n

a x a x x
l l l

p pÈ ˘Ê ˆ Ê ˆ
- - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

Ú
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  = 

0

sin sin
1

l

n n
a x a x

l l

n nl
a a

l l

p p

p p

È ˘Ê ˆ Ê ˆ- +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙-
Í ˙Ê ˆ Ê ˆ- +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

  = 
1 1

sin( ) sin( )n al n al
n al n al

p p

p p

- - +

- +

  = 1 11 1
( 1) sin ( 1) sin

n n
al al

n al n alp p

+ +
- + -

- +

  = 1

2 2 2 2

2
( 1) sin

n n
al

n a l

p

p

+
- ◊

-

Using this value in (1), we get the half-range sine series as

 sin ax = 
1

2 2 2 2
1

( 1)
2 sin sin

n

n

n n x
al

ln a l

p

p

p

+•

=

- ◊

-
Â

Example 9

Find the half-range cosine series of f (x) = x sin x in (0, p). Deduce the sum of the 

series 
1 1 1

1.3 3.5 5.7
- + •L .

We give an even extension for f (x) in (–p, 0)

i.e.         we put f (x) = –x sin (–x)

  = x sin x in (–p, 0)

Now f (x) is even in (–p, p).

\   Let f (x) = 0

1

cos
2

n

n

a

a nx

•

=

+Â   (1)

 an = 

0

2
sin cos dx x nx x

p

p
Ú

  = 

0

1
[sin( 1) sin( 1) ]dx n x n x x

p

p

+ - -Ú

  = 
2

0

1 cos( 1) sin( 1)

1 ( 1)

n x n x

x

n n

p

p

È ˘- + +Ï ¸
+Ì ˝Í ˙

+ +Ó ˛Î ˚

  
2

0

1 cos( 1) sin( 1)

1 ( 1)

n x n x

x

n n

p

p

È ˘- - -Ï ¸
- +Ì ˝Í ˙

- -Ó ˛Î ˚
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  = 1 11 1
( 1) ( 1)

1 1

n n

n n

+ -
- - + -

+ -

  = 
1

1

2

1 1 2( 1)
( 1)

1 1 1

n

n

n n n

-
- -Ï ¸

- - =Ì ˝
- + -Ó ˛

, if n π 1

 a0 = 2

 a1 = 

0

2
sin cos dx x x x

p

p
Ú

  = 

0

1
sin 2 dx x x

p

p
Ú

  = 

p

p

È ˘-Ê ˆ
+Í ˙Á ˜Ë ¯Î ˚ 0

1 cos2 sin 2

2 4

x x

x

  = 
1

2

-

Using these values, we get the required cosine series as

 x sin x = 
1

2
2

1 ( 1)
1 cos 2 cos in (0,

2 1

n

n

x nx

n

p

-•

=

-
- + )

-
Â   (2)

 x = 
2

p

 is a point of continuity of x sin x

\   [Sum of the Fourier series of 

2

( )]
2x

f x f
p

p

=

Ê ˆ
= Á ˜Ë ¯

i.e.  
1

2
2

( 1)
1 2 cos

2 21

n

n

n

n

p p
-•

=

-
+ =

-
Â

i.e.  
1 1 1

1 2
1.3 3.5 5.7 2

pÏ ¸
+ - + - • =Ì ˝

Ó ˛
L

\  
1 1 1 2

1.3 3.5 5.7 4

p -
- + - • =L

Example 10

Find the half-range sine series of f (x) = 
sinh

in (0,
sinh

ax

a

p

p

)

We give an odd extension for f (x) in (–p, 0).

i.e.      we put f (x) = 
sinh ( ) sinh

in ( , 0)
sinh sin

x ax

a ax

p

p

- -

= -

Now f (x) is odd in (–p, p).

\   Let f (x) = sin
n

b nxÂ   (1)

 bn = 

0

2 sinh
sin d

sinh

ax

nx x

a

p

p p
Ú
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  = 

0 0

1
sin d sin d

sinh

ax ax

e nx x e nx x

a

p p

p p

-
È ˘

-Í ˙
Í ˙Î ˚
Ú Ú

  = 
2 2

0

1
( sin cos

sinh

ax

e

a nx n nx

a n a

p

p p

ÈÏ ¸Ô ÔÍ -Ì ˝
Í +Ô ÔÓ ˛Î

  
2 2

0

( sin cos

ax

e

a nx n nx

n a

p
- ˘Ï ¸Ô Ô ˙- - -Ì ˝

˙+Ô ÔÓ ˛ ˚

  = 
2 2 2 2

1 ( 1) ( 1)

sinh

n a n a

n e n e

a n a n a

p p

p p

-È ˘- - -
+Í ˙

+ +Í ˙Î ˚

  = 
1

2 2

1 2( 1) sinh

sinh

n

n a

a n a

p

p p

-
-

◊

+

  = 
1

2 2

2 ( 1)
n

n

n ap

-
- ◊

◊

+

Using this value in (1), we get the required half-range sine series as

 
sinh

sinh

ax

ap

 = 
1

2 2
1

2 ( 1)
sin in (0, )

n

n

n

nx

n a

p

p

-•

=

-

+
Â

Example 11

Find the Fourier series of period 2p for the function f (x) = x2 – x in (–p, p). Hence de-

duce the sum of the series 
4 4 4 4

1 1 1 1

1 2 3 4

+ + + + •L , assuming that 
p

•

=

=Â
2

2

1

1

6
n

n

.

Let x
2 – x = 0

1 1

cos sin in (
2

n n

n n

a
a nx b nx p p

• •

= =

+ + - , )Â Â   (1)

 an = 
21

( )cos dx x nx x

p

p
p

-

-Ú

  = 2

0

2
cos d [ cos is odd in (x nx x x nx

p

p p

p

- , )Ú Q

  = 2

2 3

0

2 sin cos sin
2 2

nx nx nx

x x

n n n

p

p

È ˘- -Ê ˆ Ê ˆ Ê ˆ
- +Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚

  = 
2

4
( 1) , if 0

n

n

n

- π
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 a0 = 2 2 2

0

1 2 2
( )d

3
x x x x dx

p p

p

p

p p
-

- = =Ú Ú

 bn = 
21

( )sin dx x nx x

p

p
p

-

-Ú

  = 2

0

sin d [ sin is odd in (x nx x x nx

p

p p

p

2
- , )]Ú Q

  = 
2

0

2 cos sinnx nx

x

n n

p

p

È ˘-Ê ˆ
+Í ˙Á ˜Ë ¯Î ˚

  = 
2

( 1)
n

n

-

-

Using these values in (1), we get

 f (x) = 

3 1

2
1 1

( 1) ( 1)
4 cos 2 sin in (

3

n n

n n

nx nx

nn

p

p p

+• •

= =

- -
+ + - , )Â Â

Now the terms of the series 
•

=

Â 4

1

1

n
n

, whose sum is required, are the square of the 

Fourier coefficients an multiplied by a constant. Whenever this situation arises, we 

apply Parseval’s theorem, which states that

• •

= =

+ + =Â Â
2 2 2 2
0

1 1

1 1 1

4 2 2
n n

n n

a a b y , the square of the R.M.S. value of y = f (x) in  

(–p, p)

Thus  
2 2 2

4

4 2
1 1

1 4 1 16 ( 1) 1 4 ( 1)

4 9 2 2

n n

n n
n n

p

+• •

= =

◊ - ◊ -
◊ + +Â Â

  = 
2 21

( ) d
2

x x x

p

p
p

-

-Ú

i.e. 
4

4 2

1 1

1 1
8 2

9
n n

n n

p
• •

= =

+ +Â Â  = 4 2

0

1
2 ( )d

2
x x x

p

p

◊ +Ú

  = 4 21 1

5 3
p p+

i.e. 
4

1

1
8

n
n

•

=

Â  = 4 2

2

1

1 1 1 1
2

5 9 3
n

n

p p

•

=

Ê ˆ
- + -Á ˜Ë ¯ Â

i.e. 
4

1

1

n
n

•

=

Â  = 
4 2

2

1

90 6n

p pÊ ˆ
=Á ˜

Ë ¯
ÂQ
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Example 12

Find the Fourier series expansion of period 2l for the function

f (x) = 
, in (0, )

0, in ( , 2 )

x l

l l

Ï
Ì
Ó

 Hence deduce the sum of the series 
4 4 4

1 1 1

1 3 5

+ + + •L , 

assuming that 
2

2 2 2

1 1 1

61 2 3

p

+ + + • =L
.

Let f (x) = 0

1 1

cos sin in (0, 2 )
2

n n

n n

a n x n x
a b l

l l

p p
• •

= =

+ +Â Â

 an = 

2

0

1
( )cos d

l
n x

f x x
l l

p

Ú

  = 

0

1
cos d

l
n x

x x
l l

p

◊ Ú

  = 
2 2

0

sin cos
1

l

n x n x

l l
x

nl n

l l

p p

p p

È ˘Ê ˆÊ ˆ
Í ˙Á ˜Á ˜Í ˙+ Á ˜Á ˜Í ˙Á ˜Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

  = 
2 2

{( 1) 1}
nl

n p

- -

  = 2 2

2
, if is odd

0, if is even and 0

l
n

n

n

p

-Ï
Ô
Ì
Ô πÓ

 a0 = 

0

1
d

2

l
l

x x
l

=Ú

 bn = 

0

1
sin d

l
n x

x x
l l

p

Ú

  = 

p p

p pp

È ˘Ê ˆÊ ˆ-Í ˙Á ˜Á ˜ -Í ˙+ = -Á ˜Á ˜Í ˙Á ˜Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

2 2

0

cos sin
1

( 1)

l

n

n x n x

ll l
x

nl nn

l l

Using these values in (1), we get

 f (x) = 

1

2 2
1,3,5,... 1

2 1 1 ( 1)
cos sin in (0, 2 )

4

n

n n

l l n x n x
l

l n ln

p p

pp

+• •

= =

-
- +Â Â

Now the series to be summed up contains constant multiples of squares of an. Hence 

we apply Parseval’s theorem.
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 2 2 2

0

1 1 1

4 2 2
n n

a a b+ +Â Â  = 

2

2

0

[ ( )] d
2

l
l

f x x
l Ú

i.e 

2 2 2

4 4 2 2
1,3,5,... 1

1 4 1

16 2 2
n n

l l l

n np p

• •

= =

+ +Â Â  = 2

0

1
d

2

l

x x
l
Ú

i.e. 
2 2 2 2

4 4 2
1

2 1

16 6(2 1) 2n

l l l

n

p

p p

•

=

+ + ◊
-

Â  = 
2

6

l

 
2

1

n

Ê
ÁË ÂQ  = 

2

6

p ˆ
˜
¯

i.e. 
4 4

1

2 1

(2 1)
n

np

•

= -
Â  = - - =

1 1 1 1

6 16 12 48

\ 
4

1

1

(2 1)
n

n

•

= -
Â  = 

4

96

p

Example 13

Find the Fourier series expansion of period l for the function

 f (x) = 

, in 0,
2

, in ,
2

l
x

l
l x l

Ï Ê ˆ
Ô Á ˜Ë ¯Ô
Ì

Ê ˆÔ - Á ˜Ô Ë ¯Ó

 Hence deduce the sum of the series 
4

1

1

(2 1)
n

n

•

= -
Â

.

Here the length of the full range = period of the Fourier series required = l.

\   The Fourier series of f (x) is of the form

 f (x) = 0 2 2
cos sin in (0, )

2
n n

a n x n x
a b l

l l

p p

+ +Â Â  (1)

 an = 

0

1 2
( )cos d

/2

l
n x

f x x
l l

p

Ú

  = 

/2

0 /2

2 2 2
cos d ( )cos d

l l

l

n x n x
x x l x x

l l l

p p
È ˘

+ -Í ˙
Í ˙Î ˚
Ú Ú

  = 

2

2 2 2 2

2 2
0

2

2 2 2 2
sin cos sin cos

2
( )

2 24 4

l
l

l

n x n x n x n x

l l l l
x l x

n nl n n

l ll l

p p p p

p pp p

˘
È Ï ¸Ï ¸ Ê ˆ ˙Ê ˆ Ê ˆÍ Ô ÔÔ Ô ˙Á ˜Á ˜ Á ˜Ô Ô Ô ÔÍ ˙Á ˜+ + - -Ì ˝ Ì ˝Á ˜ Á ˜Í ˙Á ˜Ô Ô Ô ÔÁ ˜ Á ˜Í Á ˜ ˙Ë ¯ Ë ¯Ô Ô Ô ÔË ¯Ó ˛Î Ó ˛ ˙̊
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  = 2 2
2 2

2
, if is odd

{( 1) 1}

0, if is even and 0

n

l
nl

n
n

n

p

p

Ï
-Ô

- - = Ì
Ô πÓ

 a0 = 

2

0 0

2

1 2
( )d d ( )d

2

l

l l

l

f x x x x l x x
l l

È ˘
Í ˙

= + -Í ˙
Í ˙
Í ˙Î ˚

Ú Ú Ú

  = 
2 22

0
2

2 ( )

2 2 2

l
l

l

x l x l

l

È ˘
Ê ˆ Ï ¸Í ˙-Ô Ô+ =Ì ˝Í ˙Á ˜ -Ë ¯ Ô ÔÓ ˛Í ˙
Î ˚

 bn = 

0

1 2
( )sin d

2

l
n x

f x x
l l

p

Ú

  = 
2

0

2

2 2 2
sin d ( )sin d

l

l

l

n x n x
x x l x x

l l l

p p

È ˘
Í ˙

+ -Í ˙
Í ˙
Í ˙Î ˚

Ú Ú

  = 

2

2 2

2

0

2 2
cos sin

2

2 4

l

n x n x

l l
x

nl n

l l

p p

p p

ÈÏ ¸Ê ˆÍ -Ô ÔÁ ˜Ô ÔÍ +Ì ˝Á ˜ÍÔ ÔÁ ˜Í Ë ¯Ô ÔÓ ˛Î

  
2 2

2

2 2
cos sin

(1 ) 0
2 4

l

l

n x n x

l l
x

n n

l l

p p

p p

˘
Ï ¸Ê ˆ ˙-Ô Ô ˙Á ˜Ô Ô+ - - =˙Ì ˝Á ˜

˙Ô ÔÁ ˜
Ë ¯ ˙Ô ÔÓ ˛ ˙̊

Using these values in (1), we get

 f (x) = 
2 2

1,3,5,...

2 1 2
cos in (0, )

4
n

l l n x
l

ln

p

p

•

=

- Â

Since the series to be summed up contains constant multiples of squares of an, we 

apply Parseval’s theorem.

 2 2 2

0

1 1 1

4 2 2
n n

a a b+ +Â Â  = 2

0

1
[ ( )] d

l

f x x
l Ú

i.e. 
2 2

4 4
1,3,5,...

1 4 1

16 2
n

l l

np

•

=

+ ◊ Â  = 
2

2 2

0

2

d ( ) d

l

l

l

l
x x l x x

l

È ˘
Í ˙

+ -Í ˙
Í ˙
Í ˙Î ˚

Ú Ú
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i.e. 

2 2

4 4
1

2 1

16 (2 1)n

l l

np

•

=

+
-

Â  = 
3 3

1

24 24

l l

l

È ˘
+Í ˙

Í ˙Î ˚

  = 
2

12

l

 
4 4

1

2 1

(2 1)
n

np

•

= -
Â  = 

1

48

\ 
4

1

1

(2 1)
n

n

•

= -
Â  = 

4

96

p

Example 14

Find the Fourier series of period 2p for the function

 f (x) = 
1, in (0, )

2, in ( , 2 )

p

p p

Ï
Ì
Ó

Hence find the sum of the series 
2 2 2

1 1 1

1 3 5

+ + + •L .

Let f (x) = 0 cos sin in (0, 2 )
2

n n

a
a nx b nx p+ +Â Â   (1)

 an = 
2

0

1
( )cos df x nx x

p

p
Ú

  = 

2

0

1
1 cos d 2 cos dnx x nx x

p p

p
p

È ˘
◊ + ◊Í ˙

Í ˙Î ˚
Ú Ú

  = 

2

0

1 sin sin
2 , if 0

nx nx

n

n n

p p

p
p

È ˘Ê ˆ Ê ˆÍ ˙+ πÁ ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
  = 0, if n π 0

 a0 = 

2

0

1
1 2d 3dx x

p p

p
p

È ˘
+ =Í ˙

Í ˙Î ˚
Ú Ú

 bn = 

2

0

1
( )sin df x nx x

p

p
Ú

  = 

2

0

1
1 sin d 2sin dnx x nx x

p p

p
p

È ˘
◊ +Í ˙

Í ˙Î ˚
Ú Ú
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  = 

2

0

1 cos cos
2

nx nx

n n

p p

p
p

È ˘Ê ˆ Ê ˆÍ ˙- -Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

  = 
1

{1 ( 1) }
n

np

- - -

  = 

2
, if is odd

0, if is even

n

n

n

p

-Ï
Ô
Ì
Ô
Ó

Using these values in (1), we get

 f (x) = 
1,3,5,...

3 2 1
sin in (0, 2 )

2
n

nx

n

p

p

•

=

- Â

Since the series to be summed up contains constant multiples of squares of bn, we 

apply Parseval’s theorem.

 2 2 2

0

1 1 1

4 2 2
n n

a a b+ +Â Â  = 

2

2

0

1
[ ( )] d

2
f x x

p

p
Ú

i.e. 
p

•

=

+ ◊
-

Â2 2
1

9 1 4 1

4 2 (2 1)
n

n

 = 

2

2 2

0

1
1 2 d

2
dx x

p p

p
p

È ˘
◊ + ◊Í ˙

Í ˙Î ˚
Ú Ú

i.e. 
p

•

=

+
-

Â2 2
1

9 2 1

4 (2 1)
n

n

 = 
5

2

\ 

•

= -
Â 2

1

1

(2 1)
n

n

 = 
2 2

5 9

2 2 4 8

p pÊ ˆ
- =Á ˜Ë ¯

Example 15

Find the half-range sine series of f (x) = a in (0, l). Deduce the sum of 
2 2 2

1 1 1

1 3 5

+ + + •L .

Giving an odd extension for f (x) in (–l, 0), f (x) is made an odd function in (–l, l).

\           Let f (x) = sin
n

n x
b

l

p

Â   (1)

 bn = 
0

2
sin d

l
n x

a x
l l

p

Ú

  = 

0

cos
2 2

{1 ( 1) }

l

n

n x

a al

nl n

l

p

p p

Ï ¸
-Ô ÔÔ Ô

= - -Ì ˝
Ô Ô
Ô ÔÓ ˛

  = 

4
, if is odd

0, if is even

a

n

n

n

p

Ï
Ô
Ì
Ô
Ó
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Using this value in (1), we get

 a = 
1,3,5,...

4 1
sin in (0, )

n

a n x
l

n l

p

p

•

=

Â

Since the series whose sum is required contains constant multiples of squares of bn, 

we apply Parseval’s theorem.

 21

2
n
bÂ  = 2

0

1
[ ( )] d

l

f x x
l Ú

i.e. 
p

•

=

◊
-

Â
2

2 2
1,3,5,...

1 16 1

2 (2 1)
n

a

n

 = a2

i.e. 
p

•

= -
Â

2

2 2
1

8 1

(2 1)
n

a

n

 = a2

\ 
•

= -
Â 2

1

1

(2 1)
n

n

 = 
2

8

p

Example 16

Find the half-range cosine series of f (x) = x in (0, 1). Deduce the sum of the series 

4 4 4

1 1 1

1 3 5

+ + + •L .

Giving an even extension for f (x) in (–1, 0), f (x) is made an even function  

in (–1, 1).

\   Let f (x) = 0

1

cos
2

n

n

a

a n xp

•

=

+Â   (1)

 an = 

1

0

2
( )cos d

1
f x n x xpÚ

  = 

1

2 2

0

sin cos
2

n x n x

x

n n

p p

p p

È ˘Ê ˆÊ ˆ
+Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

  = 
2 2

2
{( 1) 1}

n

n p

- -

  = 2 2

4
, if is odd

0, if is even and 0

n

n

n

p

-Ï
Ô
Ì
Ô πÓ

 a0 = 

1

0

2
d 1

1
x x =Ú

Using these values in (1), we get

 x = 
2 2

1,3,5,...

1 4 1
cos in (0, 1)

2
n

n x

n

p

p

•

=

- Â
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Since the series to be summed up contains constant multiples of squares of an, we 

apply Parseval’s theorem.

 2 2

0

1 1

4 2
n

a a+ Â  = 

1

2

0

1
d

1
x xÚ

i.e. 4 4
1,3,5,...

1 1 16 1

4 2
n

np

•

=

+ ◊ Â  = 
1

3

i.e. 
4 4

1

8 1

(2 1)
n

np

•

= -
Â  = 

1

12

\ 
4

1

1

(2 1)
n

n

•

= -
Â  = 

4

96

p

Example 17

Find the half-range sine series of f (x) = l – x in (0, l). Hence prove that 
2

2 2 2

1 1 1

61 2 3

p

+ + + • =L
.

Giving an odd extension for f (x) in (–l, 0), f (x) is made an odd function in (–l, l).

\   Let f (x) = 
1

sin
n

n

n x
b

l

p
•

=

Â   (1)

 bn = 
0

2
( )sin d

l
n x

l x x
l l

p

-Ú

  = 
2 2

2
0

cos sin
2

( )

l

n x n x

l l
l x

nl n

l l

p p

p p

È ˘Ê ˆÊ ˆÍ ˙- -Á ˜Á ˜Í ˙Á ˜- -Á ˜Í ˙Á ˜Á ˜Í ˙Á ˜Ë ¯ Ë ¯Î ˚

  = 
2l

np

Using this value in (1), we get

 l – x = 
p

p

•

=

Â
1

2 1
sin in (0, )

n

l n x
l

n l

Since the series to be summed up contains constant multiples of squares of bn, we 

apply Parseval’s theorem.

 
21

2
n
bÂ  = 2

0

1
( ) d

l

l x x
l

-Ú
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i.e 
2

2 2

1

1 4 1

2
n

l

np

•

=

◊ Â  = 
3 3

0

1 ( )

3 3

l

l x l

l

È ˘-
=Í ˙

-Í ˙Î ˚

\ 
2

1

1

n
n

•

=

Â  = 
2

6

p

Example 18

Find the half-range cosine series of f (x) = (p – x)2 in (0, p). Hence find the sum of the 

series 
4 4 4

1 1 1

1 2 3

+ + + •L .

Giving an even extension for f (x) in (–p, 0), the function f (x) is made an even 

function in (–p, p).

\   Let f (x) = 0
cos

2
n

a

a nx+Â   (1)

 an = 
2

0

2
( ) cos dx nx x

p

p

p

-Ú

  = 
2

2 3
0

2 sin cos sin
( ) { 2( )} 2

nx nx nx

x x

n n n

p

p p

p

È ˘- -Ê ˆ Ê ˆ Ê ˆ
- = - - +Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚

  = 
2

4
, if 0n

n

π

 a0 = 
3

2 2

0 0

2 2 ( ) 2
( ) d

3 3

x

x x

p
p

p

p p

p p

Ï ¸-Ô Ô
- = =Ì ˝

-Ô ÔÓ ˛
Ú

Using these values in (1), we get (p – x)2 = 
p

p

•

=

+ Â
2

2
1

1
16 cos in (0, )

3
n

nx

n

. Since 

the series to be summed up contains constant multiples of squares of an, we apply 

Parseval’s theorem.

 

2

20 1

4 2
n

a

a+ Â  = 4

0

1
( ) dx x

p

p

p

-Ú

i.e. 
p

•

=

+ ◊ Â
4

4

1

1 1
16

9 2
n

n

 = 

5 4

0

1 ( )

5 5

x

p

p p

p

Ï ¸-Ô Ô
=Ì ˝

-Ô ÔÓ ˛

i.e 

•

=

Â 4

1

1
8

n
n

 = 44

45
p

\ 
•

=

Â 4

1

1

n
n

 = 
4

90

p
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Example 19

Find the half-range sine series of

, in 0,
2

( )

, in ,
2

x

f x

x

p

p

p p

Ï Ê ˆ
Ô Á ˜Ë ¯Ô= Ì

Ê ˆÔ - Á ˜Ô Ë ¯Ó

 in (0, p). Hence find the sum of the series 

4 4 4

1 1 1

1 3 5

+ + + •L

Giving an odd extension for f (x) in (–p, 0), the function f (x) is made an odd 

function in (–p, p).

\   Let f (x) = sin
n

b nxÂ   (1)

 bn = 

0

2
( )sin df x nx x

p

p
Ú

  = 
/2

0 /2

2
sin d ( )sin dx nx x x nx x

p p

p

p

p

È ˘+ -Í ˙Î ˚Ú Ú

  = 
2 2

0 /2

2 cos sin cos sin
( )

nx nx nx nx

x x

n nn n

p p

p

p

p

/2È ˘Ï ¸ Ï ¸Ê ˆ Ê ˆÍ ˙- + + - - -Ì ˝ Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Ó ˛ Ó ˛Î ˚

  = 
2 2

2 1 1
cos sin cos sin

2 2 2 2 2 2

n n n n

n nn n

p p p p p p

p

-È ˘
+ + +Í ˙

Î ˚

  = 
2

4
sin

2

n

n

p

p

, which becomes zero for even values of n.

Using this value in (1), we get

 f (x) = 
2

1,3,5,...

4 1
sin sin in (0, )

2
n

n

nx

n

p

p

p

•

=

Â

Since the series whose sum is required contains constant multiples of squares of bn, 

we apply Parseval’s theorem.

 
21

2
n
bÂ  = 2

0

1
[ ( )] df x x

p

p
Ú

i.e. 2

2 4
1,3,5,...

1 16 1
sin

2 2
n

n

n

p

p

•

=

◊ Â  = 
/2

2 2

0 /2

1
d ( ) dx x x x

p p

p

p

p

È ˘+ -Í ˙Î ˚Ú Ú
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i.e. 
2 4

1

8 1

(2 1)
n

np

•

= -
Â  = 

2

12

p

   2
sin 1, when is odd and sin 1

2 2

n n

n

p pÊ ˆ
= ± =Á ˜Ë ¯

Q

\ 
4

1

1

(2 1)
n

n

•

= -
Â  = 

4

96

p

Example 20
Find the half-range cosine series of f (x) = x (p – x) in (0, p). Hence find the sum of 

the series 1/14 + 1/24 + 1/34 + ... •.

Giving an even extension for f (x) in (–p, 0), the function f (x) is made an even function 

in (–p, p)

\   Let f (x) = 0

1

cos
2

n

n

a

a nx

•

=

+Â  (1)

 an = 
0

2
( )cos dx x nx x

p

p

p

-Ú

  = 2

2 3

2 sin cos sin
( ) ( 2 ) 2

nx nx nx

x x x

n n n

p

q

p p
p

È ˘Ê ˆ Ê ˆ
- - - - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

  = 
2

2
{( 1) 1}

n

n

- - +

  = 

2

0, if is odd

4
, if is even and 0

n

n

n

Ï
Ô
Ì
- πÔ

Ó

 a0 = 
2 3 2

2

0 0

2 2
( )d

2 3 3

x x

x x x

p
p

p

p p

p p

Ï ¸Ô Ô
- = - =Ì ˝

Ô ÔÓ ˛
Ú

Using these values in (1), we get

 x(p – x) = 
2

2
2,4,6,...

1
4 cos in (0, )

6
n

nx

n

p

p

•

=

- ◊ Â

or x(p – x) = 
2

2
1

1
cos2 in (0, )

6
n

nx

n

p

p

•

=

-Â

Since the series to be summed up contains constant multiples of squares of an, we 

apply Parseval’s theorem.

 2 2

0

1 1

4 2
n

a a+ Â  = 2 2

0

1
( ) dx x x

p

p

p

-Ú

i.e. 

4

4

1

1 1

36 2
n

n

p
•

=

+ Â  = 2 2 3 4

0

1
( 2 )dx x x x

p

p p

p

- +Ú
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  = 
3 4 5

2

0

1
2

3 4 5

x x x

p

p p

p

Ê ˆ
- +Á ˜

Ë ¯
 = 

4

30

p

i.e. 
4

1

1 1

2
n

n

•

=

Â  = 
4

180

p

\ 
4

1

1

n
n

•

=

Â  = 
4

90

p

        Exercise 5A(b)

Part A (Short-Answer Questions)

 1. Why is Fourier half-range series called so?

 2. When a function is defined in (0, 2l), is it possible to expand it as a Fourier 

half-range series? How?

 3. If f (x) is defined in (0, l), how should f (x) be defined in (–l, 0), so that the 

Fourier half-range series of f (x) may contain (i) only cosine terms and (ii) 

only sine terms?

 4. If f (x) is defined in (0, l), how should f (x) be defined in (l, 2l), so that the 

Fourier half-range series of f (x) may contain (i) only cosine terms and (ii) 

only sine terms?

 5. When f (x), defined in (–p, 0), is expanded as a Fourier half-range cosine 

series, write down the formula for the Fourier coefficients.

 6. When f (x) defined in (–l, 0) is expanded as a Fourier half-range sine series, 

write down the formula for the Fourier coefficients.

 7. Write down the even and odd extensions of f (x) in (–l, 0), if f (x) = x2 + x in 

(0, l).

 8. Write down the extension of f (x) in (l, 2l), if f (x) = x(l – x) in (0, l) so as to 

get cosine and sine series.

 9. Define the root-mean square value of a function f (x) in (0, 2p).

 10. State Parseval’s theorem.

 11. If the impressed voltage E at time t is given by the series E = 

1,3,5,...

sin( )
n n

n

E n tw a

•

=

+Â , find the effective value of E.

Note 
The R.M.S. value is also called the effective value. Rewrite E as  

E = 
1,3,5,... 1,3,5,...

( sin )cos ( cos )sinn n n n
n n

E n t E n ta w a w

• •

= =

+Â Â  and use Parseval’s 

theorem.

 12. If an alternating current I is represented by the series I = 
1,3,5,...

sin( )
n n

n

I n tw a

•

=

+Â , 

find the effective value of I.

 13. If the half-range series of f (x) = 1 in (0, l) is given by  

1 = 
1

4 1 (2 1)
sin

(2 1)
n

n x

n l

p

p

•

=

-

-
Â , find the value of 1–2 + 3–2 + 5–2 + ... •.
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 14. If the half-range cosine series of (x2 – x + 1/6) in 0 £ x £ 1 is 0

2
n

a

a+Â  cos 

npx, find the value of 2 2

0
2

n
a a+ Â .

 15. If the half-range sine series of x(p – x) in 0 £ x £ p is Sbn sin nx, find the value 

of Sbn
2.

Part B

 16. Obtain the half-range cosine series of f (x) = p2 – x2 in (0, p). Deduce the sum 

of the series 
2 2 2

1 1 1

1 2 3

- + •L .

 17. Find the half-range sine series of f (x) in (0, 2l), given that

 f (x) = 
, in (0, )

(2 ), in ( , 2 )

kx l

k l x l l

Ï
Ì

-Ó

  Deduce the sum of the series 
2 2 2

1 1 1

1 3 5

+ + + •L .

 18. Find the half-range cosine series of the function f (x) = (x + 2)2 in (–2, 0). 

Hence find the value of 
2

1

1

n
n

•

=

Â .

 19. Find the half-range sine series of the function f (x) = l – x in (l, 2l). Deduce 

the sum of the series 1 – 1/3 + 1/5 – 1/7 + ... •.

 20. Find the half-range sine series of f (x) = x(p – x) in (0, p). How should f (x) 

be extended in order to get this sine series in (–p, 0) and in (p, 2p)? Also find 

the sum of the series 1 – 1/33 + 1/53 ... •.

 21. Find the half-range sine series of f (x) in (0, l), given that

 f (x) = 

, in (0, )

( ), in ( , )

b
x a

a

b
l x a l

l a

Ï
ÔÔ
Ì
Ô -
Ô -Ó

 22. Find the half-range sine series of f (x) = cos x in 0 < x < p. How should f (x) be 

defined at x = 0 and x = p, so that the series converges to f (x) in 0 £ x £ p?

 23. Find the half-range cosine series of f (x) = cos ax in (0, p), where a is neither 

zero nor an integer.

 24. Find the half-range sine series of f (x) = 
sin , in 0 /4

cos , in /4 /2

x x

x x

p

p p

£ £Ï
Ì

£ £Ó
 25. Find the half-range sine series of f (x) = x cos px in (0, 1). Deduce the sum of 

the series 
1 1 1

1.2 2.3 3.4
- + •L .

 26. Find the half-range sine series of f (x) = x sin x in (0, p).

 27. Find the half-range cosine series of f (x) = 6x
2 – 6x + 1 in (0, 1). Deduce the 

sum of the the series 
2 2 2 2

1 1 1 1

1 2 3 4

- + - + •L .

 28. Find the Fourier sine series of f (x) = eax in (0, p).

 29. Find the Fourier series of period 2p for the function f (x) = x2 in (–p, p).

  Hence find the sum of the series 
4

1

1

n
n

•

=

Â .
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 30. Find the Fourier series of period 2 for the function f (x) = x2 in (0, 2). Deduce 

the sum of the series 4

1

1

n
n

•

=

Â , assuming that 
2

2

1

1

6
n

n

p
•

=

=Â .

 31. Find the Fourier series of period 2 for the function f (x) = x2 + x in (–1, 1). 

Deduce the sum of the series 
4

1

1

n
n

•

=

Â , given that 
2

2

1

1

6
n

n

p
•

=

=Â .

 32. Find the Fourier  series of period 3 for the function f (x) = 2x – x2 in (0, 3). 

Deduce the sum of the series 
4

1

1

n
n

•

=

Â , given that 2

2

1

1
/6

n
n

p

•

=

=Â .

 33. Find the Fourier series of period p for the function

  f (x) = 

, in (0, /2)

, in ( /2, )
2

x

x

p

p

p p

Ï
Ô
Ì

-ÔÓ

 Hence find the sum of 
4

1

1

(2 1)
n

n

•

= -
Â , given that 

2

2
1

1

8(2 1)
n

n

p
•

=

=
-

Â .

 34. Find the Fourier series of period 4 for the function f (x) = 
2, in ( 2, 0)

, in (0, 2)x

-Ï
Ì
Ó

. 

Hence find the sum of the series 
4

1

1

(2 1)
n

n

•

= -
Â , assuming that 

2

2

1

1

6
n

n

p
•

=

=Â .

 35. Find the Fourier series of period 2p for the function f (x) = 
0, in (0, )

, in ( , 2 )a

p

p p

Ï
Ì
Ó

  Hence deduce the sum of the series 
2

1

1

(2 1)
n

n

•

= -
Â

 36. Find the half-range cosine series of f (x) = 
1, in (0, 1)

2, in (1, 2)

Ï
Ì
Ó

 in (0, 2). Hence find 

the sum of the series 
2

1

1

(2 1)
n

n

•

= -
Â .

 37. Find the half-range sine series of f (x) = in (0, )
2

x

p

p-

. Deduce the sum of 

the series 
2

1

1

n
n

•

=

Â .

 38. Find the half-range cosine series of f (x) = 1 + x in (0, 1). Deduce the sum of 

the series 
4

1

1

(2 1)
n

n

•

= -
Â .

 39. Find the half-range sine series of f (x) = 
2 , in (0, 1)

4 2 , in (1, 2)

x

x

Ï
Ì

-Ó

  Hence deduce the sum of the series 
4

1

1

(2 1)
n

n

•

= -
Â .

 40. Find the half-range cosine series of f (x) = 
, in (0, /2)

, in ( /2, )

x

x

p

p p p

Ï
Ì

-Ó
. Hence 

deduce the sum of the series 
4

1

1

(2 1)
n

n

•

= -
Â .
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5A.11 hArmonIc AnAlysIs

Introduction

We know that the Fourier series of f (x) in (0, 2l) or (–l, l) is of the form

 f (x) = 0

1 1

cos sin
2

n n

n n

a n x n x
a b

l l

p p
• •

= =

+ +Â Â

i.e. f (x) = 
0

1

cos sin
2

n n

n

a n x n x
a b

l l

p p
•

=

Ê ˆ
+ +Á ˜Ë ¯Â

  = 
2 20

2 2 2 2
1

cos sin
2

n n

n n

n
n n n n

a a bn x n x
a b

l la b a b

p p
•

=

Ï ¸
Ô Ô

+ + +Ì ˝
+ +Ô ÔÓ ˛

Â  (1)

Let An = 
2 2 1

and tan
n

n n n

n

b
a b

a
a

-
+ = , so that

 cos an = 
2 2 2 2

and sin
n n

n

n n n n

a b

a b a b

a =

+ +

Using these in (1), we get the Fourier series as

 f (x) = 0

1

cos cos sin sin
2

n n n

n

a n x n x
A

l l

p p
a a

•

=

Ê ˆ
+ +Á ˜Ë ¯Â

  = 0

1

cos
2

n n

n

a n x
A

l

p
a

•

=

Ê ˆ
+ -Á ˜Ë ¯Â   (2)

If we assume An = 2 2 1
and tan

n

n n n

n

a
a b

b
b -

+ = ,

(1) will take the form

 f (x) = 0

1

sin
2

n n

n

a n x
A

l

p
b

•

=

Ê ˆ
+ +Á ˜Ë ¯Â   (3)

cos or sin
n n n n

n x n x
A A

l l

p p
a b

Ê ˆ Ê ˆ
- +Á ˜ Á ˜Ë ¯ Ë ¯

 is called the nth harmonic in the Fourier 

expansion of f (x).

The first harmonic 
1 1 1 1
cos or sin

n n
A A

l l

p p
a b

Ê ˆ Ê ˆ
- +Á ˜ Á ˜Ë ¯ Ë ¯

 is also called the 

fundamental term in the Fourier expansion of f (x).

The second harmonic 
2 2 2 2

2 2
cos or sin

n n
A A

l l

p p
a b

Ê ˆ Ê ˆ
- +Á ˜ Á ˜Ë ¯ Ë ¯

 is also called the 

octave in the Fourier expansion of f (x).

It is clear that we require the values of an and bn to calculate the nth harmonic. When 

f (x) is defined by one or more mathematical expressions, the Fourier coefficients an 

and bn are found out by integration using Euler’s formulas. But in some practical 

problems, f (x) will be defined by means of its values at equally spaced values of x in 
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the given interval. In such problems, f (x) will be defined in (0, 2l) in a tabular form 

as given below:

  
0 1 2 1

0 1 2 1( )

k

k

x x x x x

y f x y y y y

-

-

-

= -

Here x1 – x0 = x2 – x1 = ... = xk – xk – 1
 = 

2l

k
 and x0 = 0 and xk = 2l.

When y = f (x) is defined in a tabular form as given above, an and bn cannot be 

evaluated exactly by mathematical integration, but are evaluated approximately by 

numerical integration as explained below:

 an = 
2

0

1
( )cos d

l n x
f x x

l l

p

Ú

  = 

2

0

1
2 ( )cos d

2

l
n x

f x x
l l

p
È ˘

¥ Í ˙
Í ˙Î ˚

Ú

  = 2 × Mean value of f (x) cos
n x

l

p

 over (0, 2l)

Note 
We recall that the mean square value of y = f (x) over (0, 2l) was defined as

 y 2 = 
2 22 2

0 0

1 1
d or [ ( )] d

2 2

l l
y x f x x

l lÚ Ú

an  2 × statistical average value of f (x) 
p p

cos or cos
n x n x

y
l l

 over (0, 2l)  

 2 × 
1

0

1
cos , 0,1, 2,...

k

r
r

n x
y n

k l

p
-

=

=Â

In particular, 
1

0

0

1
2

k

r

r

a y
k

-

=

¥ Â

Similarly 
1

0

1
2 sin , 1, 2,...

k
r

n r

r

n x
b y n

k l

p
-

=

¥ =Â

Note 
1.  When the interval (0, 2l) is divided into k equal sub-intervals, each of length 

2

k

l
, only k values of y = f (x) are taken into consideration for numerical 

computation of an and bn.

    i.e. either the values y0, y1, ..., yk – 1 corresponding to the left ends of the 
various sub-intervals, namely x0, x1, ..., xk–1 are considered or the values  
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y1, y2, ..., yk corresponding to the right ends of the various sub-intervals, 
namely x1, x2, ..., xk are considered, where x0 = 0 and xk = 2l.

2.   The process of finding the harmonics in the Fourier expansion of a function 
numerically is known as harmonic analysis.

3.   In most situations, the amplitudes of the successive harmonics A1, A2, A3, 
... will decrease very rapidly. Hence inmost harmonic analysis problems, 
we may have to find the first new harmonics only.

4.   Though cos or sinn n n n

n x n x
A A

l l

p p
a b

Ê ˆ Ê ˆ
- +Á ˜ Á ˜Ë ¯ Ë ¯

 is called the nth harmonic, 

it need not be put in either of these forms. It is enough if we give the nth 

harmonic in the form cos sinn n

n x n x
a b

l l

p pÊ ˆ
+Á ˜Ë ¯

.

5A.12 complex Form oF FourIer serIes

The Fourier series of f (x) in (c, c + 2l) can also be put in the exponential form with 

complex coefficients as explained below:

The trigonometric form of the Fourier series of f (x) defined in (c, c + 2l) is

 f (x) = 
0

1 1

cos sin
2

n n

n n

a n x n x
a b

l l

p p
• •

= =

+ +Â Â   (1)

Using the exponential values of cos and sin
n x n x

l l

p p

, we have

 f (x) = 
/ / / /

0

1
2 2 2

i n x l in x l i n x l in x l

n n

n

a e e e e
a b

i

p p p p- -•

=

È ˘Ê ˆ Ê ˆ+ -
+ +Í ˙Á ˜ Á ˜

Ë ¯ Ë ¯Í ˙Î ˚
Â

  = /0

1 1
2 2 2

in x

in x ln n n n l

n n

a a ib a ib
e e

p

p

• •

= =

- +Ê ˆ Ê ˆ
+ +Á ˜ Á ˜Ë ¯ Ë ¯Â Â   (2)

If we put 0
0 , and

2 2 2

n n n n

n n

a a ib a ib
c c c

-

- +

= = = , then (2) can be put as

 f (x) = 
/ /

0

1 1

in x l in x l

n n

n n

c c e c e
p p

• •
-

-

= =

+ +Â Â

i.e. f (x) = 
1

/ /

0

1

in x l in x l

n n

n n

c c e c e
p p

• -

= =-•

+ +Â Â

i.e. f (x) = /in x l

n

n

c e
p

•

=-•

Â   (3)

Equation (3) is called the complex form or exponential form of the Fourier series 

of f (x) in (c, c + 2l). The coefficient cn in (3) is given by
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 cn = 
1
( )

2
n n

a ib-

  = 

2 2
1 1

( )cos d ( )sin d
2

c l c l

c c

n x i n x
f x x f x x

l l l l

p p
+ +È ˘

-Í ˙
Í ˙Î ˚

Ú Ú ,

          by Euler’s formulas for Fourier Coefficients.

  = 

2
1

( ) cos sin d
2

c l

c

n x n x
f x i x

l l l

p p
+

È ˘
-Í ˙

Î ˚
Ú

  = 

2

/1
( ) d

2

c l
in x l

c

f x e x
l

p

+

Ú   (4)

This formula for cn holds good for positive and negative integral values of n and for 

n = 0.

Note 
When l = p, the complex form of Fourier series of f (x) in (c, c + 2p) takes the 
form

 f (x) = inx

n

n

c e

•

=-•

Â , where

 cn =  

21
( ) d

2

c inx

c
f x e x

p

p

+ -
Ú

 Worked Examples 5A(c)

Example 1

Obtain the first three harmonics in the Fourier series expansion in (0, 12) for the 

function y = f (x) defined by the table given below:

x: 0 1 2 3 4 5 6 7 8 9 10 11

y: 1.8 1.1 0.3 0.16 0.5 1.5 2.16 1.88 1.25 1.30 1.76 2.00

The length of the interval = 2l = 12   \   l = 6.

\   The Fourier series of y = f (x) is of the form

 f (x) = 0
cos sin

2 6 6
n n

a n x n x
a b

p p

+ +Â Â

The interval (0, 12) is divided into 12 subintervals, each of length 1.

The values of y at the left end-points of the 12 sub-intervals, namely at x = 0, 1, 

2, ... 11, are given.
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\ a0 = 
11

0

1
2

12
r

r

y

=

¥ Â

 an = 
11

0

1 1
2 cos ; 2 sin

12 6 12 6

r r
r n r

r

n x n x
y b y

p p

=

¥ = ¥Â Â

To compute a0, a1, a2, a3, b1, b2, b3, we tabulate the values of xr, yr, cos
6

r
n xp

  

(n = 1, 2, 3) and sin
6

r
n xp

 (n = 1, 2, 3) as shown below:

xr yr
cos

6

r
xp

sin
6

r
xp

cos
3

r
xp

sin
3

r
xp

cos
2

r
xp

sin
2

r
xp

0 1.8 1 0 1 0 1 0

1 1.1 0.866 0.5 0.5 0.866 0 1

2 0.3 0.5 0.866 –0.5 0.866 –1 0

3 0.16 0 1 –1 0 0 –1

4 0.5 –0.5 0.866 –0.5 –0.866 1 0

5 0.15 –0.866 0.5 0.5 –0.866 0 1

6 2.16 –1 0 1 0 –1 0

7 1.88 –0.866 –0.5 0.5 0.866 0 –1

8 1.25 –0.5 –0.866 –0.5 0.866 1 0

9 1.30 0 –1 –1 0 0 1

10 1.76 0.5 –0.866 –0.5 –0.866 –1 0

11 2.00 0.866 0.5 0.5 –0.866 0 –1

 a0 = 
1 1

14.36 2.393
6 6

r
y = ¥ =Â

 a1 = 
1

cos
6 6

r

r

x
y

p

Â

  = 
1

6
 [(1.8 – 2.16) + (1.1 + 2.00 – 0.15 – 1.88) × 

  0.866 + (0.3 + 1.76 – 0.5 – 1.25) × 0.5]

  = 0.120

 b1 = 61
sin

6 6
r

x
y

p

Â

  = 
1

6
 [(0.16 – 1.30) + (0.3 + 0.5 – 1.25 – 1.76) × 

  0.866 + (1.1 + 0.15 – 1.88 – 2.00) × 0.5]

  = –0.728
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 a2 = 
21 1

cos or cos
6 6 6 3

r r

r r

x x
y y

p p

Â Â

  = 
1

6
 [(1.8 – 0.16 + 2.16 – 1.30) + (1.1 – 0.3 – 0.5 

  + 0.15 + 1.88 – 1.25 – 1.76 + 2.00) × 0.5]
  = 0.527

 b2 = 
1

sin
6 3

r

r

x
y

p

Â

  = 
1

6
 [(1.1 + 0.3 – 0.5 – 0.15 + 1.88 + 1.25 – 1.76 

     – 2.00) × .866]

  = 0.104

 a3 = 
31 1

cos or cos
6 6 6 2

r r

r r

x x
y y

p p

Â Â

  = 
1

6
 (1.8 – 0.3 + 0.5 – 2.16 + 1.25 – 1.76)

  = –0.112

 b3 = 
1

sin
6 2

r

r

x
y

p

Â

  = 
1

6
 [1.1 – 0.16 + 0.15 – 1.88  1.30 – 2.00]

  = – 0.248

\   The Fourier series of f (x) in (0, 12) upto the third harmonic is

 f (x) = 1.197 0.120cos 0.728sin
6 6

x xp pÊ ˆ
+ -Á ˜Ë ¯

  0.527cos 0.104sin 0.112cos 0.248sin
3 3 2 2

x x x xp p p pÊ ˆ Ê ˆ
+ + + - -Á ˜ Á ˜Ë ¯ Ë ¯

Example 2

The following are 12 values of y corresponding to equidistant values of the angles xº 

in the range 0º to 360º. Find the first three harmonics in the Fourier series expansion 

of y in (0, 2p)

xº: 0 30 60 90 120 150 180 210 240

y: 10.5 20.5 26.4 29.3 27.0 21.5 12.8 1.6 –11.2

xº: 270 300 330

y: –18.0 –15.8 –3.5

Since f  (x) is defined in(0, 2p),  the Fourier series is of the form 

0

1 1

cos sin
2

n n

n n

a
a nx b nx

• •

= =

+ +Â Â .
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 a0 = 
11

0

1 1
2 100.8 16.8

12 6
r

r

y

=

¥ = ¥ =Â

To compute a1, a2, a3, b1, b2, b3, we may use the following graphical method, known 

as Harrison’s method, instead of the tabulation method.

y0

y1

y2

y3y4

y5

y6

y7

y8
y9

y10

y11

30°

    

y1, y7

60°

y2, y8

y3, y9

y4, y10 y5, y11

y0, y6

Fig. 5A.11          Fig. 5A.12

90°

y1, y5, y9

y0, y4, y8

y3, y7, y11

y2, y6, y10

Fig. 5A.13

We draw a circle of convenient radius and divide the central angle into 12 equal 

parts each of magnitude 30º by means of radii vectors. The radii vectors which 

measure the angles 0º, 30º, 60º, 90º, ..., 330º are supposed to be of lengths y0, y1, y2, 

..., y11 (not geometrically) and this is indicated near the ends of corresponding radii 

vectors. [Fig. (5A.11)]

Now a1 = 
1

cos
6

r r
y xÂ

  = 
1

6
 [y0 cos 0º + y1 cos 30º + y2 cos 60º+ ... + y11 cos 330º]

  = 
1

6
 × sum of the horizontal projections of the various radii

  vectors in the Harrison’s circle for 30º.

While computing the sum, those horizontal projections that lie on the right of the 

vertical are taken to be positive and those on the left are taken to be negative. Also 

those horizontal projections that contain cos 30º are grouped separately and so are 

those that contain cos 60º.
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Thus

 a1 = 
1

6
 [y0 – y6) + (y1 + y11 – y5 – y7) cos 30º + (y2 + y10 – y4 – y8)cos 60º]

Note 

The horizontal projections of y3 and y9 are zero each.

 a1 = 
1

6
 [(10.5 – 12.8) + (20.2 – 3.5 – 21.5 – 1.6) × 0.866 +

           (26.4 – 15.8 – 27.0 + 11.2) × 0.5]

  = –1.740

 b1 = 
1

sin
6

r r
y xÂ

  = [y0 sin 0º + y1 sin 30º + y2 sin 60º + ... + y11 sin 330º]

  = 
1

6
 ×  Sum of the vertical projections of the various radii vectors in 

the Harrison’s circle for 30º

While computing the sum, those vertical projections that lie above the horizontal line 

are taken to be positive and those below the horizontal line are taken to be negative. As 

before the term with sin 30º are grouped together and those with sin 60º are grouped 

separately. The vertical projections of the horizontal radii vectors (i.e. y0 and y6) are 

taken as zero each.

Thus

 b1 = 
1

6
 [(y3 – y9) + (y1 + y5 – y7 – y11) sin 30º + (y2 + y4 – y8 – y10) sin 60º]

  = 
1

6
 [(29.3  + 18.0) + (20.2 + 21.5 – 1.6 + 3.5) × 0.5 + (26.4 + 27.0 

+                11.2 + 15.8) × 0.866]

  = 23.121

To compute a2 and b2, we use Harrison’s circle for 60º [Fig. (5A.12)]

 a2 = 
1

cos2
6

r r
y xÂ

  = 
1

6
 [(y0 + y6 – y3 – y9) + (y1 + y7 + y5 + y11 – y2 – y8 – y4 – y10) × 0.5]

  = 3.117
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 b2 = 
1

sin 2
6

r r
y xÂ

  = 
1

6
 [y1 + y7 + y2 + y8 – y4 – y10 – y5 – y11) × 0.866 

0.866]
  = 1.126

To compute a3 and b3, we use Harrison’s circle for 90º [Fig. (5A.13)]

 a3 = 
1

cos3
6

r r
y xÂ

   = 
1

6
 (y0 + y4 + y8 – y2 – y6 – y10) = 0.483

 b3 = 
1 1

sin3
6 6

r r
y x =Â  (y1 + y5 + y9 – y3 – y7 – y11) = –0.617

\   The required Fourier series is

 f (x) = 8.4 + (–1.740 cos x + 23.121 sin x) + (3.117 cos 2x  
            + 1.126 sin 2x) + (0.483 cos 3x – 0.167 sin 3x) + ...

Example 3

A function y = f (x) is given by the following table of values. Make a harmonic analysis 

of the function upto the third harmonic.

xº: 45 90 135 180 225 270 315 360 405

y: 1.5 1.0 0.5 0 0.5 1.0 1.5 2.0 1.5

xº: 450 495 540 585 630 675 720

y: 1.0 0.5 0 0.5 1.0 1.5 1.0

We note that f (2p + x) = f (x)

\   f (x) is periodic with period 2p

\   It is enough we consider the values of f (x) in one period, say (0, 2p). We also 

note that
 f (360º – 45º) = 1.5 = f (45º)

 f (360º – 90º) = 1.0 = f (90º), etc.

i.e. f (2p – x) = f (x)

Hence the Fourier series of f (x) will contain only cosine terms, i.e. b1 = b2 =  

b3 = 0. The interval (0, 2p) is divided into sub-intervals, each of length 
4

p

, i.e. it is 

divided into 8 sub-intervals.

Hence we should consider only 8 values of y = f (x) for harmonic analysis, i.e. the 

values of y = f (x) at the right ends of various sub-intervals, namely, 45º, 90º, 135º, ..., 

360º. We shall call the values of y as y1, y2, y3, ..., y8.

 a0 = 
8

1

1 1
2 8.0 2.0

8 4
r

r

y

=

¥ = ¥ =Â
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The values of a1, a2 and a3 are found out using Harrison’s circles for 45º, 90º and 135º 

as shown in Figs 5A.14, 5A.15 and 5A.16 respectively.

y1

y2

y3

y4

y5

y6

y7

y8

45°

  

90°

y1, y5

y4, y8

y3, y7

y2, y6

  

y1

y2

y3

y4

y5

y6

y7

y8

135°

Fig. 5A.14        Fig. 5A.15        Fig. 5A.16

 a1 = 
1

4
 [(y8 – y4) + (y1 + y7 – y3 – y5) cos 45º] = 0.854

 a2 = 
1

4
 (y4 + y8 – y2 – y6) = 0

 a3 = 
1

4
 [(y8 – y4) + (y3 + y5 – y1 – y7) cos 45º] = 0.147

\   The required Fourier series is

 f (x) = 1.0 + 0.854 cos x + 0.147 cos 3 x

Example 4

A function y = f (x) is given by the following table of values. Make a harmonic analysis 

of the function in (0, T) upto the second harmonic.

x: 0 T/6 T/3 T/2 2T/3 5T/6 T

y: 0 9.2 14.4 17.8 17.3 11.7 0

The interval (0, T) is divided into sub-intervals each of length T/6, i.e., it is divided 

into 6 sub-intervals.

Hence we consider only 6 values of y = f (x) i.e., y0, y1, ..., y5 corresponding to  

x = 0, T/6, ..., 
5

6

T
. Since 2l = T, the Fourier series is of the form y = 0

1

cos
2

n

n

a

a

•

=

+ Â

1

2 2
cos sin

n

n

n x n x
b

l l

p p
•

=

+Â

 a0 = 
1 1

2 70.4 23.47
6 3

r
y¥ = ¥ =Â

Since 
1 1

1 2 1 2
cos sin

3 3
r r r

x
a y and b y x

T T

p p

= =Â Â  and hence the arguments 

of cosine and sine functions increase by p/3, we use a Harrison circle for 60º  

[Fig. 5A.17]
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y1
y2

y3

y4 y5

y0

60°

    

120°

y1, y4

y0, y3

y2, y5

120°120°

         Fig. 5A.17 Fig. 5A.18

 a1 = - + + - - -0 3 1 5 2 2 4

1
[( ) ) cos 60º ]

3
y y y y y y y

  = 
1
[ 17.8 ( 10.8) 0.5]

3
- + - ¥

  = –7.33

 b1 = 1 2 4 5

1
( )sin60º

3
y y y y+ - -

  = 
1

( 5.4) 0.866 1.599
3
¥ - ¥ = -

As the arguments of the cosine and sine functions in the functions in the formula  

a2 = 
1 4

cos
3

r ry x
T

p

Â  and b2
 = 

1 4
sin

3
r ry x

T

p

Â  increase  by 
2

3

p

, we use a Harrison’s 

circle for 120º [Fig. 5A.18].

 a2 = + - + + +0 3 1 4 2 5

1
[ ) ( ) cos 60º ]

3
y y y y y y

  = 
1
[17.8 52.6 0.5] 2.833

3
- ¥ = -

 b2 = 1 4 2 5

1
[( )sin60º ]

3
y y y y+ - -

  = 
1

0.4 0.866 0.115
3
¥ ¥ =

\   The Fourier series upto the second harmonic is

 f (x) = 
2 2

11.735 7.733cos 1.559 sin
x x

T T

p p

- -

  
p p

- +
4 4

2.833cos 0.115sin
x x

T T

Example 5

The turning moment T units of the crank shaft of a steam engine is given for a series 

of values of the crank-angle q in degrees in the following table:

q : 0  30  60  90  120  150 180

T : 0 5224 8097 7850 5499 2626  0
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Find the first three terms in a series of sines to represent T. Also find T when  

q = 75º. The half-range sine series of T = f (q) in (0, p) is required. Let it be

 f (q) = 
1

sin
n

n

b q

•

=

Â

Then bn = 
0

2
( )sinf n d

p

q q q
p

Ú
  = 2 × Mean value of f (q) sin nq over (0, p)

  = 
1

0

1
2 sin

k

r r

r

T n
k

q

-

=

¥ Â

Since the interval (0, p) is divided into sub-intervals, each of length 
6

p

, we consider 

only 6 values of T, namely T0, T1, T2,..., T5, corresponding to q = 0, 30º, 60º, ..., 

150º

30°
T0

T1

T2

T3T4

T5

    

60°
T0

T1
T2

T3

T4 T5

         Fig. 5A.19 Fig. 5A.20

 b1 = 
5

0

1
2 sin

6
r r

r

T q

=

¥ Â

  = 
3 1 5 2 4

1
[ ( )sin30º ( )sin60º ]

3
T T T T T+ + + +

  (from the Harrison’s circle for 30º, Fig. 5A.19)

  = 
1

[7850 3925 11774] 7850
3

+ + =

 b2 = 
5

0

1
2 sin 2

6
r r

r

T q

=

¥ Â

  = 1 2 4 5

1
[( )sin60º ]

3
T T T T+ - -

  (from the Harrison’s circle for 60º, Fig. 5A.20)

  = 
1

5196 0.866 1500
3
¥ ¥ =



5-85
Fourier Series Solutions of Partial Differential Equations

 b3 = 
5

0

1
2 sin3

6
r r

r

T q

=

¥ Â

  = 1 5 3

1
( )

3
T T T+ - , ( from the Harrison’s circle for 

90º, Fig. 5A.21)

  = 
1
(7850 7850) 0

3
- =

\   The required Fourier sine series upto the third harmonic is

90°

T1, T5

T0, T4

T3

T2

Fig. 5A.21

 T = 7850 sin q + 1500 sin 2q + 0.sin 3q, in (0, p)

 [T ]q = 75º  = 7850 sin 75º + 1500 sin 150º

  = 8332.5 units

Example 6

Obtain the constant term and the first three harmonics in the Fourier cosine series of 

y = f (x) in (0, 6) using the following table:

x: 0 1 2 3 4 5

y: 4 8 15 7 6 2

The interval (0, 6) is divided into 6 sub-intervals each of length l. Hence, we consider 

the 6 values of y, namely y0, y1, ..., y5, corresponding to x = 0, 1, ..., 5 for harmonic 

analysis. As the half-range cosine series is required (0, 6), l = 6.

\   Fourier cosine series of f (x) in (0, 6) is of the form

 f (x) = 0

1

cos in (0, 6)
2

n

n

a n x
a

l

p
•

=

+Â

 a0 = 
5

6

0
0

2 1
( )d 2 14

6 6
r

r

f x x y
=

= ¥ =ÂÚ
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 a1 = 
5

0

1
2 cos

6 3

r

r

r

x
y

p

=

¥ Â

  = 0 1 5 2 4

1
[ ( )cos30º ( )cos60º ]

3
y y y y y+ - + -

  (from the Harrison’s circle for 30º, Fig. 5A.22)

  = 4.565

30°
Y0

Y1

Y2

Y3Y4

Y5

    

60°
Y0

Y1
Y2

Y3

Y4 Y5

        Fig. 5A.22 Fig. 5A.23

90°

Y1, Y5

Y0, Y4

Y3

Y2

Fig. 5A.24

 a4 = 
5

0

1
2 cos

6 3

r

r

r

x
y

p

=

¥ Â

  = 0 3 1 5 2 4

1
[( ) ( )cos60º ]

3
y y y y y y- + + - -

  (from the Harrison’s circle for 60º, Fig. 5A.23)

  = –2.833

 a3 = 
5

0

1
2 cos

6 2

r

r

r

x
y

p

=

¥ Â

  = 0 4 2

1
( )

3
y y y+ -  ( from the Harrison’s circle 90º, 

Fig. 5A.24)

  = –1.667
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\   The required half-range cosine series is

 f (x) = 7 4.565cos 2.833cos 1.667cos in (0, 6)
6 3 2

x x xp p p

+ - -

Example 7

Find the complex form of the Fourier series of f (x) = ex in (0, 2).

Since 2l = 2 or l = 1, the complex form of the Fourier series is

 f (x) = in x

n

n

c e
p

•

=-•

Â  (1)

 cn = 
2

0

1
( ) d

2

in x
f x e x

p

Ú

  = 
2

0

1
d

2

x in x
e e x

p-
Ú

  = 

2
(1 )

0

1

2 1

in x
e

in

p

p

-È ˘
Í ˙

-Í ˙Î ˚

  = 2(1 )1
{ 1}

2(1 )

in
e

in

p

p

-

-

-

  = 
2

2 2

(1 )
{ (cos2 sin 2 ) 1}

2(1 )

in
e n i n

n

p

p p

p

+
- -

+

  = 
2

2 2

( 1)(1 )

2(1 )

e in

n

p

p

- +

+

Using this value in (1), we get

 e
x = 

2

2 2

1 (1 )

2 (1 )

in x

n

e in
e

n

p
p

p

•

=-•

Ê ˆ- +
Á ˜ +Ë ¯

Â
Example 8

Find the complex form of the Fourier series of f (x) = e–ax in (–l, l).

Let the complex form of the Fourier series be

 f (x) = /in x l

n

n

c e
p

•

=-•

Â  (1)

 cn = /1
d

2

l

ax in x l

l

e e x
l

p-

-
Ú

  = ( ) /1
d

2

l

al in x l

l

e x
l

p- +

-
Ú
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  = 
( ) /

1

2 ( )/

l
al in x l

l

e

l al in l

p

p

- +

-

È ˘
Í ˙
- +Í ˙Î ˚

  = p p

p

- + +
- -

+

( ) ( )1
[ ]

2( )

al in al in
e e

al in

  = 
1

[ ( 1) ( 1) ]
2( )

al n al n
e e

al inp

-
- - -

+

    [Q   e±inp = cos np ± i sin np = (–1)n]

  = 
sinh ( 1)

n
al

al inp

-

+

  = 
2 2 2 2

sinh ( )( 1)
n

al al in

a l n

p

p

◊ - -

+

Using this value in (1), we have

 e
–ax = /

2 2 2 2

( 1) ( )
sinh in ( , )

n

in x l

n

al in
al e l l

a l n

p
p

p

•

=-•

- -
-

+
Â

Example 9

Find the complex form of the Fourier series of f (x) = sin x in (0, p).

Here 2l = p or l = p/2.

\   The complex form of Fourier series is

 f (x) = 2i nx

n

n

c e

•

=-•

Â  (1)

 cn = 2

0

1
sin d

i nx
xe x

p

p

-
Ú

  = 
2

2

0

1
{ 2 sin cos }

1 4

i nx
e

i n x x

n

p

p

-È ˘
- -Í ˙

-Í ˙Î ˚

  = 2

2 2

1 2
[ 1]

(4 1) (4 1)

i nx
e

n np p

- - = -

- -

Using this value in (1), we get

 sin x = 2

2

2 1
in (0, )

4 1

i nx

n

e

n

p

p

•

=-•

- ◊
-

Â

Example 10

Find the complex form of the Fourier series of f (x) = cos ax in (–p, p), where a is 

neither zero nor an integer.

Here 2l = 2p or l = p.
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\   The complex form of Fourier series is

 f (x) = inx

n

n

c e

•

=-•

Â   (1)

 cn = 
1

cos d
2

inx
ax e x

p

p
p

-

◊Ú

  = 
2 2

1
{ cos sin }

2

inx
e

in ax a ax

a n

p

p

p
-

È ˘
- +Í ˙

-Í ˙Î ˚

  = 
2 2

1

2 ( )a np -

   [e–inx (–in cos ap + a sin ap)
  –e

–inx (–in cos ap – a sin ap)]

  = 
2 2

1
( 1) 2 sin

2 ( )

n

a a

a n

p

p

-

-

Using this value in (1), we get

 cos ax = 
2 2

sin ( 1)
in ( , )

n

inx

n

a a
e

a n

p

p p

p

•

=-•

-
-

-
Â

           Exercise 5A(c)

Part A (Short-Answer Questions)

 1. What do you mean by harmonics and harmonic analysis in Fourier series?

 2. Give the formula used for computing an numerically in the Fourier half-range 

cosine series of f (x) in (0, l).

 3. Give the formula used for computing bn numerically in the Fourier half-range 

sine series of f (x) in (0, p).

 4. Write down the complex form of the Fourier series of f (x) in (0, 2l) and the 

Euler’s formula for the associated Fourier coefficient.

 5. If the trigonometric and complex forms of Fourier series of f (x) in (0, 2p) are 

respectively 
0

1 1

cos sin
2

n n

n n

a
a nx b nx

• •

= =

+ +Â Â  and inx

n

n

c e

•

=-•

Â , how are a0, an, 

bn and cn related?

Part B

 6. Find the Fourier series of period 2p as far as the third harmonic to represent 

the function y = f (x) defined by the following table.

xº: 0 30 60 90 120 150 180 210 240

y: 2.34 3.01 3.69 4.15 3.69 2.20 0.83 0.51 0.88
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xº: 270 300 330 360

y: 1.09 1.19 1.64 2.34

 7. Obtain the first three harmonics in the Fourier series of y = f (x) which is 

denied by means of the table given below in (0, 12).

x: 0 1 2 3 4 5 6 7

y: 6.824 7.976 8.026 7.204 5.676 3.674 1.764 0.552

x: 8 9 10 11

y: 0.262 0.904 2.492 4.736

 8. Obtain the first three harmonics in the Fourier series of y = f (x) which is 

defined by means of the following table in (0, 2p).

xº: 0 45 90 135 180 225 270 315

y: 6.824 8.001 7.204 4.675 1.764 0.407 0.904 3.614

 9. Find the first three harmonics in the Fourier series  of period 8 for the function 

y = f (x) which is defined by means of the following table.

x: 1 2 3 4 5 6 7 8

y: 365 337 205 80 56 93 184 298

 10. Find the Fourier series of y = f (x) in (0, 2p) upto the third harmonic, using 

the definition of y given by the following table:

x: 0 p/3 2p/3 p 4p/3 5p/3 2p

y: 1.98 1.30 1.05 1.30 –0.88 –0.25 1.98

 11. Find the first three harmonics in the Fourier series of y = f (x), which is 

defined in the following table, in (0, 6).

x: 0 1 2 3 4 5 6

y: 1.0 1.4 1.9 1.7 1.5 1.2 1.0

 12. Find the first three harmonics in the Fourier series of y = f (x) in (0, 2p), using 

the following table of values of x and y.

x: 0 p/6 p/3 p/2 2p/3 5p/6 p 7/6p 4/3p

y: 0 0.26 0.52 0.79 1.05 1.31 0 –1.31 –1.05

x: 3p/2 5p/3 11p/6

y: –0.79 –0.52 –0.26

  [Hint: f (2p – x) = –f (x). Hence the Fourier series of f (x) in (0, 2p) will not 

contain cosine terms]

 13. Analyse the current i given by the following table into its constituent 

harmonics as far as the third harmonic.

q º: 0 30 60 90 120 150 180 210

i(amp): 0 24.0 32.5 27.5 18.2 13.0 0 –24.0

q º: 240 270 300 330

i(amp): –32.5 –27.5 –18.2 –13.0

  [Hint: f (p + x) = –f (x). Hence a0, a2, a4, ..., b2, b4, ... are all zero. It is enough 

to compute a1, a3, b1 and b3]
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 14. Find the constant term and the first three harmonics in the Fourier cosine 

series of y = f (x) in (0, p) using the following table.

x: 0 p/6 p/3 p/2 2p/3 5p/6

y: 10 12 15 20 17 11

 15. Find the first three harmonics in the Fourier sine series of y = f (x) in (0, 180º) 

using the following table.

xº: 0 15 30 45 60 75 90 105 120 135

y: 0 2.7 5.2 7.0 8.1 8.3 7.9 6.8 5.5 4.1

x: 150 165 180

y: 2.6 1.2 0

 16. Find the complex form of the Fourier series of f (x) = e–x in (–p, p).

 17. Find the complex form of the Fourier series of f (x) = eax in (0, 2l).

 18. Find the complex form of the Fourier series of f (x) = cos x in (0, p).

 19. Find the complex form of the Fourier series of f (x) = sin 2x in (0, 1).

 20. Find the complex form of the Fourier series of f (x) = sin ax in (–p, p).

Answers

       Exercise 5A(a)

 19. 
3 1 3 1

( ) cos cos3 sin sin3
4 4 4 4

f x x x x x= + + - .

 20. 
3 1 1

( ) cos2 cos4
8 2 4

f x x x= + + .

 21. 
2

2

2
1

2 1
( ) 4 cos ;

3 12n

f x nx
n

p

p

•

=

= - Â .

 22. 
3 2 2

2 2
1

4 1
( ) cos ;

3 6n

l l n x
f x

ln

p p

p

•

=

= + Â .

 23. 
2

2
1

2 ( 1)
( ) 4 cos

3

n

n

f x nx
n

p
•

=

-
= - Â .

 24. 

1

2 ( 1)
( ) 1 sin ;

4

n

n

f x n x
n

p

p

p

•

=

-
= + Â .

 25. 
2 2

1 1

2 1 (2 1) 1
( ) cos sin

4 (2 1)n n

l l n x n x
f x

l ln

p p

pp

• •

= =

-
= + +

-
Â Â .

 26. 
2 1 2

2
1 1

1 1 ( 1)
( ) cos(2 1) sin ;

16 2 4 8(2 1)

n

n n

f x n x nx
nn

p p p
+• •

= =

-
= - - +

-
Â Â .
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 27. 
2

1

1 4
( ) cos sin 2

2 4 1n

n
f x x n x

n
p p

p

•

=

= -
-

Â .

 28. 
2

2
1

4 1
( ) cos(2 1) ;

2 8(2 1)n

f x n x
n

p p

p

•

=

= - -
-

Â .

 29. 
2 2

1

2 1 (2 1)
( ) cos

2 4 (2 1)n

k l l n x
f x

ln

p

p

•

=

-Ê ˆ
= - +Á ˜Ë ¯ -

Â .

  
2

1

1

1
( 1) {1 ( 1) } sin ;

8

n n

n

l k n x

n n l

p p

p

•
+

=

È ˘
+ - + - -Í ˙

Î ˚
Â .

 30. 
2

2
1

( 1)
( ) 4 cos

3

n

n

f x nx
n

p
•

=

-
= + Â .

 31. 
2 2 2 2

2 2
1 1

4 ( 1) 2 ( 1)
( ) cos sin ; ;

3 12 6

n n

n n

l l n x l n x
f x

l n ln

p p p p

pp

• •

= =

- -
= + +Â Â .

 32. 
2

2

1 1
( ) 1 sin cos 2 cos ; /4 1/2

2 1n

f x x x nx
n

p p

•

=

= - + - + -
-

Â .

 33. 
2

1

1 ( 1)
( ) sin 2 sin

2 1

n

n

n
f x x nx

n

•

=

-
= - +

-
Â .

 34. 
2

2

1 1 2 ( 1) 1
sin cos cos ;

2 4 21

n

n

x x x n x

n

p

p p p

p p p

•

=

-
= - - -

-
Â .

 35. 
1

2
1

2 2 4 2 ( 1)
1 cos cos

4 1

n

n

x nx

np p

+•

=

-
+ = +

-
Â .

 36. 3

3
1

1 1
( )(2 ) sin ; /32

12
n

x x x nx

n

p p p

•

=

- - = Â .

 37. 
2

2 2
1

4 1
| | cos ;

2 8
n

l l n x
x

ln

p p

p

•

=

= - Â .

 38. 
2

1

2 4 1
| sin | cos2

4 1
n

x nx

np p

•

=

= - ◊
-

Â .

 39. 
1

2 2
1

sin 2 sin ( 1) cos 1
cos ; 1

2 3 3

n

n

a a a nx

ax

a n a

p p p

p p

-•

=

Ê ˆ-
= + -Á ˜Ë ¯-

Â .

 40. 

2
2

2 2 2 2
1

1 1
( 1) cos

2

al

ax al

n

e n x
e al e

al ll a n

p

p

•

=

-
= + -

+
Â .

  
2

2 2 2 2
1

( 1) sin
al

n

n n x
e

ll a n

p

p

p

•

=

- -
+

Â .
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 41. 
2

2 2 2
1

2 1 ( 1)
cosh sinh cos

2

n

n

x nx

n

a
a ap

p a a

•

=

È ˘-
= +Í ˙

+Í ˙Î ˚
Â .

 42. 
1

2 4
( ) 1 cos ( 1) sin

2 2

n

n

n n x
f x

n n

p p

p p

•

=

Ï ¸Ê ˆ= + - -Ì ˝Á ˜Ë ¯Ó ˛
Â .

 43. 
2

1

2 4 1 1
( ) cos2 ;

4 24 1n

f x nx
n

p

p p

•

=

= - -
-

Â .

 44. 
3 3

1

6 36
( ) ( 1) {( 1) 1} sin

3

n n

n

n x
f x

n n

p

p p

•

=

È ˘
= - - - -Í ˙

Î ˚
Â .

 45. 
2 2 2

2
1

1
( ) cos2 ; ;

6 6 12n

f x nx
n

p p p
•

=

= -Â .

 46. 
2 2 3 3

1

4 16 48
( ) cos sin cos

2 2 2n

n n n
f x

n n n

p p p

p p p

•

=

Ï
= - + +Ì

Ó
Â .

  
4 4

96
sin sin

2 2

n n x

n

p p

p

¸
- ˝

˛
.

 47. 
2 2 2 2

1

1 1 1
( ) 2 cos sin cos cos

8 2 2 2n

l n n n x
f x l n

n ln n

p p p

p

pp p

•

=

Ï ¸
= + - - +Ì ˝

Ó ˛
Â .

 48. 

1

2 1
( ) {1 ( 1)( 1) }sin

n

n

f x nx
n

p

p

•

=

= - + -Â .

 49. 
p

p

•

=

= Â 2
1

4 1
( ) sin sin

2
n

n
f x nx

n
.

 50. 
2

1
( 3)

1 2 2 1
( ) sin sin cos cos

3 3 3 3 3( 9)n
n

n n n n x
f x x

n n

p p p

p

p p

•

=
π

Ï ¸Ô Ô
= + - +Ì ˝

-Ô ÔÓ ˛
Â .

       Exercise 5A(b)

 7. x
2 – x; x – x2.

 8. –x(l + x); x(l + x).

 11. 2

2 2

1

1

2
n

n

E

•

-

=

Â .

 12. 2

2 1

1

1

2
n

n

I

•

-

=

Â .

 13. 
2

8

p
.
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 14. 
1

45
.

 15. 
4

15

p
.

 16. 
1 2

2 2 2

2
1

2 ( 1)
4 cos ;

3 12

n

n

x nx

n

p

p p

-•

=

-
- = + Â .

 17. 
2

2 2
1,3,5,...

8 1
( ) sin sin ;

2 2 8n

kl n n x
f x

ln

p p p

p

•

=

= Â .

 18. 
2

2

2 2
1

4 16 1
( 2) cos ;

3 2 6
n

n x

x

n

p p

p

•

=

+ = + Â .

 19. 

1

2 1
sin ( , 2 );

4
n

l n x
l x in l l

n l

p p

p

•

=

- = Â .

 20. 
3

1

8 1
( ) sin(2 1) in (0, );

(2 1)
n

x x n x

n

p p

p

•

=

- = -
-

Â

  
3

( );( )(2 );
32

x x x x

p

p p p+ - - .

 21. 
2

2 2
1

2 1
( ) sin sin

( ) n

bl n a n x
f x

l la l a n

p p

p

•

=

= ◊
-

Â .

 22. 
2

1

8
cos sin 2

4 1
n

n

x nx

np

•

=

=
-

Â ; f (0) and f (p) must be defined as 0 each.

 23. 
1

2 2
1

sin 2 sin ( 1)
cos cos

n

n

a a a

ax nx

a n a

p p

p p

+•

=

-
= +

-
Â .

 24. 
2

1

4 2 1
( ) sin sin 2

24 1n

n
f x nx

n

p

p

•

=

=
-

Â .

 25. 
2

2

1 2 ( 1)
cos sin sin ; 1

2 1

n

n

x x x n x

n

p p p

p p

•

=

-
= - +

-
Â .

 26. 
1

2 2
1

4 ( 1)
( ) ( /2)sin sin

( 1)

n

n

n
f x x nx

n
p

p

-•

=

- ◊
= +

-
Â .

 27. 
2

2

2 2
1

6 1
6 6 1 cos2 ;

12
n

x x n x

n

p

p

p

•

=

- + = Â .

 28. 1

2 2
1

2
{1 ( 1) }sin

ax n ax

n

n

e e nx

n ap

•
-

=

= + -
+

Â .
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 29. 
2 4

2

2
1

( 1)
4 cos ;

3 90

n

n

x nx

n

p p
•

=

-
= + Â .

 30. 
4

2

2 2
1 1

4 4 1 4 1
cos sin ;

3 90
n n

x n x n x

nn

p

p p

pp

• •

= =

= + -Â Â .

 31. 
4

2

2 2
1 1

1 4 ( 1) 2 ( 1)
cos sin ;

3 90

n n

n n

x x n x n x

nn

p

p p

pp

• •

= =

- -
+ = + -Â Â .

 32. 
4

2

2 2
1 1

9 1 2 3 1 2
2 cos sin ;

3 3 90
n n

n x n x

x x

nn

p p p

pp

• •

= =

- = - +Â Â .

 33. 
4

1 1

2 1 1
( ) cos2(2 1) sin 2(2 1) ;

(2 1) (2 1) 96n n

f x n x n x
n n

p

p

• •

= =

= - - + -
- -

Â Â .

 34. 
4

2 2
1,3,5,... 1

3 4 1 2 1
( ) cos sin ;

2 2 2 96n n

n x n x
f x

nn

p p p

pp

• •

= =

= - -Â Â .

 35. 
2

1,3,5,...

2 1
( ) sin ;

2 8n

a a
f x nx

n

p

p

•

=

= - Â .

 36. 
2

1,3,5,...

3 2 1
( ) sin cos ;

2 2 2 8n

n n x
f x

n

p p p

p

•

=

= - Â .

 37. 
2

1

1
sin 2 ;

2 6
n

x nx

n

p p
•

=

- = Â .

 38. 
2 2

1

3 4 1
1 cos(2 1)

2 (2 1)
n

x n x

n

p

p

•

=

+ = - -
-

Â .

 39. 
4

2 2
1

16 1
( ) sin sin ;

2 2 96n

n n x
f x

n

p p p

p

•

=

= Â .

 40. 
4

1,3,5,...

2
( ) cos2 ;

4 96n

f x nx
p p

p

•

=

= - Â .

       Exercise 5A(c)

 6. f (x) = 2.102 + 0.559 cos x + 1.535 sin x – 0.519 cos 2x – 0.091 sin 2x + 0.20 

cos 3x + 0 sin 3x.

 7. 
p p p p

= + + + + +( ) 4.174 2.450cos 3.160sin 0.120cos 0.034sin
6 6 3 3

x x x x
f x

  0.080cos 0.010sin
2 2

x xp p

+
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 8. f (x) = 4.174 + 2.420 cos x + 3.105 sin x + 0.12 cos 2x + 0.03 sin 2x +

  0.110 cos 3x – 0.045 sin 3x.

 9. ( ) 202 159cos 10sin 21cos 13sin
4 4 2 2

x x x x
f x

p p p pÊ ˆ Ê ˆ
= + + + - + +Á ˜ Á ˜Ë ¯ Ë ¯

  
p pÊ ˆ

- -Á ˜Ë ¯
3 3

4cos sin
4 4

x x

 10. f (x) = 0.75 + 0.373 cos x + 1.005 sin x + 0.890 cos 2x – 0.110 sin 2x –

  0.067 cos 3x.

 11. 
2 2

( ) 1.45 0.367cos 0.173sin 0.1cos 0.05sin
3 3 3 3

x x x x
f x

p p p p

= - + - - +

  0.033 cos px.

 12. f (x) = 0.978 sin x – 0.456 sin 2x + 0.26 sin 3x.

 13. i = 5.559 cos q + 29.969 sin q – 4.767 cos 3q + 3.167 sin 3q.

 14. f (x) = 14.167 + 3.289 cos x – 4.833 cos 2x + 4 cos 3x.

 15. f (x) = 7.837 sin x + 1.484 sin 2x – 0.028 sin 3x.

 16. 
2

sinh ( 1) (1 )

1

n

x inx

n

in
e e

n

p

p

•
-

=-•

- -
=

+
Â

 17. p
p

p

•

=-•

Ê ˆ- +
= Á ˜ +Ë ¯

Â
2

/

2 2 2 2

1 ( )

2

al

ax in x l

n

e al in
e e

a l n

 18. 2

2

4
cos

1 4

i nx

n

i n
x e

np

•

=-•

=
-

Â

 19. 2

2 2

1 1
sin 2 (cos2 1 sin 2)

2 1

i n x

n

x in e

n

p

p

p

•

=-•

= - +
-

Â

 20. 
2 2

sin ( 1)
sin

n

inx

n

i a
ax ne

n a

p

p

•

=-•

-
=

-
Â
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 Part B

 One-Dimensional
 Heat Flow

5B.1 introduction

The partial differential equation 2 2u
u

t

a
∂
= —

∂
 governs the distribution of temperature 

u in homogeneous solids. As a consequence of Maxwell’s electromagnetic equations, 

the current density J satisfies the equation 2 J
J

t
ms

∂
— =

∂
. If U is the concentration of 

a certain material in gms/cc in a certain homogeneous medium of diffusivity constant 

k measured in sq cm/sec, U satisfies the equation 2 1 U
U

k t

∂
— =

∂
.

In the theory of consolidation of soil, it is shown that, if U is the excess hydrostatic 

pressure at any point, at any time t and Cv is the coefficient of consolidation, U satisfies 

the equation 2 1

v

U
U

C t

∂
— =

∂
. All these equations are of the heat flow equation form.

In this chapter, we shall derive and discuss the equation of heat flow in one 

dimension.

5B.2  equation of variaBle heat flow in 
one dimension

0

A

R1

Q

P

R

S

x Dx

P¢

Q¢

R¢

S¢

R2

x

Fig. 5B.1

Consider a homogeneous bar or rod of constant cross-sectional area A made up of 

conducting material of density r, specific heat c and thermal conductivity k. It is 

assumed that the surface of the bar is insulated in order to make heat flow along parallel 

lines perpendicular to the area A.
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Take one end of the bar as the origin and the direction of heat flow as the positive 

x-axis.

Let us now consider the heat flow in an element of the bar contained between two 

parallel sections PQRS and P¢ Q¢ R¢ S¢ which are at distances x and x + Dx from the 

origin as shown in Fig. 5B.1.

Let u and u + Du be the temperatures of this element at times t and t + Dt 

respectively.

\   Increase in temperature in the element in Dt time = Du

\   Increase of heat in the element in Dt time

  = (specific heat) · (mass of the element) · (increase

   in temperature) [by a law of thermodynamics]

  = c(rADx)Du

\   Rate of increase of heat in the element at time t

  = 
u

c A x
t

r
∂

D ◊
∂

  (1)

Let R1 and R2 be the rate of inflow through the section P Q R S and rate of outflow 

through the section P¢ Q¢ R¢ S¢ of the element.

Now R1 = 
2

and

x x x

u u
kA R kA

x x +D

∂ ∂Ê ˆ Ê ˆ
- = -Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂

  (2)

Since the rate of flow of heat across any area A is proportional to A and the temperature 

gradient normal to the area, that is, 
u

x

∂

∂
, by a law of thermodynamics. The constant 

of proportionality is the thermal conductivity.

Note 

The negative sign is taken in (2), since R1 and R2 are positive but 
u

x

∂

∂
 is 

negative. 
u

x

∂

∂
 is negative, since u is a decreasing function of x, as heat flows 

from a higher to lower temperature.

\   Rate of increase of heat in the element at time t

  = R1 – R2

  = 
x x x

u u
kA

x x+D

È ˘∂ ∂Ê ˆ Ê ˆ
-Í ˙Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂Í ˙Î ˚

  (3)

From (1) and (3), we have

 
u

t

∂

∂
 = 

x x x

u u

x xk

c xr

+D

È ˘∂ ∂Ê ˆ Ê ˆ-Í ˙Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂Í ˙
Í ˙D
Í ˙
Î ˚

 (4)

Equation (4) gives the temperature distribution at time t in the element of the bar.
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Taking limits of Eq. (4) as Dx Æ 0, we get the equation of one dimensional heat 

flow as

 
u

t

∂

∂
 = 

2

2

k u

c xr

∂

∂
  (5)

This equation gives the temperature u(x, t) at any point of the bar at a distance x from 

one end of the bar at time t.

Let 
k

cr
, a positive constant depending on the material of the bar, be denoted as a2 

or K. a2 is called the diffusivity of the material of the bar.

Thus the equation takes the form

 
u

t

∂

∂
 = 

2

2

2

u

x

a
∂

∂
  (6)

Note 
Equation (6) is also called one dimensional diffusion equation.

5B.3  variaBle separaBle solutions of the 
heat equation

The one dimensional heat flow equation is

 
u

t

∂

∂
 = 

2

2

2

u

x

a
∂

∂
  (1)

Let u(x, t) = X(x) .T(t)  (2)

be a solution of Eq. (1), where X(x) is a function of x alone and T(t) is a function of 

t alone.

Then 
∂ ∂

= = = =¢ ¢¢ ¢ ¢¢
∂ ∂

2 2

2 2

d d
and , where and

d d

u u T X
XT X T T X

t tx x

, satisfy Eq. (1).

i.e. XT ¢ = a2
X≤T

i.e. 
¢¢X

X
 = 

2

T

Ta

¢

  (3)

The L.H.S. of (3) is a function of x alone and the R.H.S. is a function of t alone.

They are equal for all values of independent variables x and t. This is possible only 

if each is a constant.

\ 
¢¢X

X
 = 

2

T
k

Ta

¢
= ,  where k is a constant

\ X≤ – kX = 0 (4)

and T ¢ – ka2
T = 0 (5)
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The nature of the solutions of (4) and (5) depends on the nature of the values of k. 

Hence the following three cases come into being.

Case 1 k is positive. Let k = p2

Then equations (4) and (5) become

 (D2 – p2)X  = 0  and  (D¢ – p2a2)T = 0, where

 D = 
d d

and
d d

D
x t

∫¢

The solutions of these equations are

 X = C1e
px + C2e

–px and T = C3e
p2a2t

Case 2 k is negative. Let k = –p
2.

Then equations (4) and (5) become

 (D2 + p2)X = 0  and (D¢ + p2a2)T = 0

The solution of these equations are 

 X = C1 cos px + C2 sin px  and T = C3e
–p2a2t

Case 3 k = 0

Then equations (4) and (5) become

 

2

2

d

d

X

x
 = 0 and 

d
0

d

T

t
=

The solutions of these equations are

 X = C1x + C2 and T = C3

Since u(x, t) = X ·T is the solution of Eq. (1), the three mathematically possible 

solutions of Eq. (1) are

 u(x, t) = (Ae
px + Be

–px)ep2a2t  (6)

 u(x, t) = (A cos px + B sin px)e–p2a2t  (7)

and u(x, t) = Ax + B  (8)

where C1C3 and C2C3 have been taken as A and B.

choice of proper solution

Out of the three mathematically possible solutions derived, we have to choose that 

solution which is consistent with the physical nature of the problem and the given 

boundary conditions. As we are dealing with heat conduction, u(x, t), representing 

the temperature at any point at time t, must decrease when t increases. In other words,  

u(x, t) cannot be infinite as t Æ •. Hence solution (7) is the proper solution in all 

variable (transient) heat flow problems.
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When heat flow is under steadystate conditions, the temperature at any point does not 

vary with time, that it is independent of time. Hence the proper solution in steadystate 

heat flow problems is solution (8).

In problems, we may directly assume that (7) or (8) is the proper solution, according 

to whether the temperature distribution in the bar is under transient or steadystate 

conditions. Of course, the arbitrary constants in the suitable solution are to be found 

out by using the boundary conditions of the problem.

 Worked Examples 5B

proBlems with zero Boundary values 
(temperatures or temperature gradients)

Example 1
A uniform bar of length l through which heat flows is insulated at its sides. The ends 

are kept at zero temperature. If the initial temperature at the interior points of the bar 

is given by (i) 3
sin

n
k

l

p

, (ii) k(lx – x2), for 0 < x < l, find the temperature distribution 

in the bar after time t.

The temperature u(x, t) at a point of the bar, which is at a distance x from one end, 

at time t, is given by the equation

 
u

t

∂

∂
 = 

2

2

2

u

x

a
∂

∂
  (1)

u = 0

0

P

A

u = 0
x

x

l

Fig. 5B.2

Since the ends x = 0 and x = l are kept at zero temperature, that is, the ends are 

maintained at zero temperature at all times (Fig. 5B.2) we have

 u(0, t) = 0, for all t ≥ 0  (2)

 u(l, t) = 0, for all t ≥ 0  (3)

Since the initial temperature at the interior points of the bar is f (x), we have

 u(x, 0) = f (x), for 0 < x < l  (4)

where f (x) = 3
sin

n
k

l

p

 in (i) and = k(lx – x2) in (ii).
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We have to get the solution of Eq. (1) that satisfies the boundary conditions (2), 

(3) and (4).

Of the three mathematically possible solutions of Eq. (1), the appropriate solution 

that satisfies the condition u π • as t Æ • is

 u(x, t) = (A cos px + B sin px)e
–p2a2t (5)

where A, B and p are arbitrary constants that are to be found out by using the boundary 

conditions.

Using boundary condition (2) in (5), we have

\ Ae
–p2a2t = 0, for all t ≥ 0

\ A = 0

Using boundary condition (3) in (5), we have

 B sin pl e–p2a2t = 0, for all t ≥ 0

\ B sin pl = 0

i.e. either B = 0 or sin pl = 0

If we assume that B = 0, the solution becomes u(x, t) = 0, which is meaningless.

\ sin pl = 0

\ pl = np

or p = 
n

l

p

, where n = 0, 1, 2, ..., •

Using these values of A and p in (5), the solution reduces to

 u(x, t) = 
p a

p
-

◊

2 2 2

2sin

n t

l

n x
B e

l

  (6)

where n = 1, 2, ..., •.

Note 
n = 0 is omitted, since the solution corresponding to n = 0 is meaningless.

Superposing the infinitely many solution contained in Step (6), we get the most 

general solution of Eq. (1) as

 u(x, t) = 
2 2 2 2

/

1

sin
n t l

n

n

n x
B e

l

p a
p

•
-

=

Â   (7)

Using the boundary condition (4) in (7), we have

 
1

sin
n

n

n x
B

l

p
•

=

Â  = f (x), for 0 < x < l  (8)
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If we can express f (x) in a series comparable with the L.H.S. series of (8), we can 

get the values of Bn. Since 
1

sin
n

n

n x
B

l

p
•

=

Â  is of form of Fourier half-range sine series 

of a function, in most situations we may have to expand f (x) as a Fourier half-range 

sine series.

 (i) f (x) = 3
sin

x
k

l

pÊ ˆ
Á ˜Ë ¯

  = 
3

3sin sin
4

k x x

l l

p pÊ ˆ
-Á ˜Ë ¯

  Using this form of f (x) in (8) and comparing like terms, we get

 B1 = = -3

3
,

4 4

k k
B , B2 = B4 = B5 = ... = 0

  Using these values in (7), the required solution is

 u(x, t) = p a p a
p p

- -

-

2 2 2 2 2 2
/ 9 /3 3

sin sin
4 4

t t t tk x k x
e e

l l

 (ii) f (x) = k(lx – x2) in 0 < x < l

  Let the Fourier half-range sine series of f (x) in (0, l) be 

1

sin
n

n

n x
b

l

p
•

=

Â

  Using this form of f (x) in (8) and comparing like terms, we get

 Bn = 2

0

2
( )sin d

l

n

n x
b k lx x x

l l

p

= -Ú

  = 

p p p

p p p

È ˘Ê ˆ Ê ˆÊ ˆÍ ˙- Á ˜ Á ˜Á ˜Í ˙Á ˜- - - + - Á ˜Á ˜Í ˙Á ˜ Á ˜Á ˜Í ˙Á ˜Á ˜Ë ¯ Ë ¯Ë ¯Î ˚

2

2 2 3 3

2
0

cos sin cos
2

( ) ( 2 ) ( 2)

d

n x n x n x

k l l l
lx x l x

nl n n

l ll

  = 
p

- -

2

3 3

4
{1 ( 1) }

nkl

n

  = 

2

3 3

8
, if is odd

0, if is even

kl
n

n

n

p

Ï
Ô
Ì
Ô
Ó

Using this value of Bn in (7), the required solution is

 u(x, t) = 

2 2 2

2

(2 1)
2

3 3
1

8 1 (2 1)
sin

(2 1)

n t

l

n

kl n x
e

ln

p a

p

p

- -
•

=

-
◊

-
Â
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Example 2

Solve the equation 
2

2

2

u u

t x

a
∂ ∂

=
∂ ∂

, satisfying the following conditions.

 (i) u remains finite as t Æ •

 (ii) u = 0, when x = ±a, for all t > 0

 (iii) u = x, when t = 0 and –a < x < a

We have to solve the equation

 
u

t

∂

∂
 = 

2

2

2

u

x

a
∂

∂
  (1)

satisfying the following boundary conditions.

 u(–a, t) = 0, for all t ≥ 0  (2)

 u(a, t) = 0, for all t ≥ 0  (3)

 u(x, 0) = x, for –a < x < a  (4)

We have observed in Example 1 that the arbitrary constant A in the proper solution 

of Eq. (1) was easily calculated, when the left boundary condition was of the form  

u(0, t) = 0, for all t ≥ 0. Using the boundary condition (2), namely, u(–a, t) = 0, for all 

t ≥ 0 in the proper solution, the constant A cannot be immediately calculated.

Hence, to bring the left boundary condition to the required form, we shift the origin 

to the point –a, so that we have x = X – a, where X is the coordinate of the point x with 

reference to the new origin.

With reference to the new origin, Eq. (1) becomes

 
u

t

∂

∂
 = 

2

2

2

u

X

a
∂

∂
  (1)¢

and the boundary conditions become

 u(0, t) = 0,    for all t ≥ 0  (2)¢

 u(2a, t) = 0,    for all t ≥ 0  (3)¢

 u(X, 0) = X – a, for all 0 < X < 2a  (4)¢

The appropriate solution of Eq. (1¢), that satisfies the condition u π • as t Æ • is

 u(X, t) = (A cos pX + B sin pX)e–p2a2t  (5)

Using boundary condition (2)¢ in (5), we have

 A·e–p2a2t = 0 for all t ≥ 0

\ A = 0
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Using boundary condition (3)¢ in (5), we have

 B sin 2ap e
–p2a2t = 0, for all t ≥ 0

\ B sin 2ap = 0

 Either B = 0 or sin 2ap = 0

But B = 0 leads to a trivial solution

\ sin 2ap = 0

 2ap = np

or p = 
2

n

a

p

, where n = 0, 1, 2, ..., •

Using these values of A and p in (5), it reduces to

 u(X, t) = 
2 2 2 2

/4
sin

2

n t an X
B e

a

p a
p

-

◊
  (6)

 when n = 1, 2, ..., •

Therefore the most general solution of Eq. (1¢)

 u(X, t) = 
2 2 2 2

/4

1

sin
2

n t a

n

n

n X
B e

a

p a
p

•
-

=

Â   (7)

Using boundary condition (4¢) in (7), we have

 
1

sin
2

n

n

n X
B

a

p
•

=

Â  = X – a in 0 < X < 2a

  = 

1

sin
2

n

n

n X
b

a

p
•

=

Â

which is a Fourier half-range sine series of (X – a) in (0, 2a).

Comparing like terms, we get

 Bn = 

2

0

2
( )sin d

2 2

a

n

n X
b X a X

a a

p

= -Ú

  = 

2

2 2

2
0

cos sin
1 2 2

( )

2 4

a

n X n X

a a
X a

na n

a a

p p

p p

È ˘Ê ˆÊ ˆÍ ˙- Á ˜Á ˜Í ˙Á ˜- - -Á ˜Í ˙Á ˜Á ˜Í ˙Á ˜Ë ¯ Ë ¯Î ˚

  = 
2

{( 1) 1}
n

a

np

- - +

  = 

0, if is odd

4
, if is even

n

a

n

np

Ï
Ô
-Ì

Ô
Ó
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Using this value of Bn in (7), we have

 u(X, t) = 
2 2 2 2

/4

2,4,6,...

4 1
sin

2

n t a

n

a n X
e

n a

p a
p

p

•
-

=

-
Â

Noting that u(x, t) ∫ u(X, t), the required solution of Eq. (1), with reference to the old 

origin, is

 u(x, t) = p a
p

p

•
-

=

- +Ï ¸
Ì ˝
Ó ˛

Â
2 2 2 2

4 /4

2,4,6,...

4 1 2 ( )
sin

2 2

n t a

n

a n x a
e

n a

i.e. u(x, t) = 
2 2 2 2

1 /

1

2 1
( 1) sin

n n t a

n

a n x
e

n l

p a
p

p

•
+ -

=

- ◊Â

Example 3

Find the temperature distribution in a homogeneous bar of length p which is insulated 

laterally, if the ends are kept at zero temperature and if, initially, the temperature is k 

at the centre of the bar and falls uniformly to zero at its ends.

Figure 5B.3 represents the graph of the initial temperature in the bar.

y u x= ( , 0)

0

A

k

p

2

( p

2
, k (

( , 0)p

B
p

2

Fig. 5B.3

Equation of O A is 
2k

y x
p

=  and the equation of AB is 
0

0

2

y x

k

p

p
p

- -

=

-

-

i.e. y = 
2

( )
k

xp

p

-

Hence u(x, 0) = 

2
, in 0

2

2
( ), in

2

k
x x

k
x x

p

p

p

p p

p

Ï
£ £ÔÔ

Ì
Ô - £ £
ÔÓ

The temperature distribution u(x, t) in the bar is given by

 
u

t

∂

∂
 = 

2

2

2

u

t

a
∂

∂
 (1)
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We have to solve Eq. (1) satisfy the following boundary conditions.

 u(0, t) = 0, for all t ≥ 0  (2)

 u(p, t) = 0, for all t ≥ 0  (3)

 u(x, 0) = 

2
, in 0

2

2
( ), in

2

k
x x

k
x x

p

p

p

p p

p

Ï
£ £ÔÔ

Ì
Ô - £ £
ÔÓ

  (4)

As u(x, t) has to remain finite when t Æ •, the proper solution of Eq. (1) is

 u(x, t) = (A cos px + B sin px)e
–p2a2t  (5)

Using boundary condition (2) in (5), we have

 A ·e–p2a2t = 0, for all t ≥ 0

\ A = 0

Using boundary condition (3) in (5), we have

 B sin pp ·  e–p2a2t = 0, for all t ≥ 0

\ B = 0  or sin pp = 0

B = 0 leads to a trivial solution.

\ sin pp = 0

\ pp = np or p = n, where n = 0, 1, 2, ...•

Using these values of A and p in (5),it reduces to

 u(x, t) = B sin nx e–n2a2t (6)

where n = 1, 2, 3, ...•

Therefore the most general solution of Eq. (1) is

 u(x, t) = 
2 2

1

sin
n t

n

n

B nx e
a

•
-

=

Â   (7)

Using boundary condition (4) in (7), we have

 
1

sin
n

n

B nx

•

=

Â  = f (x) in (0, p), where

 f (x) = 

2
, in 0 /2

2
( ), in /2

k
x x

k
x x

p

p

p p p

p

Ï
£ £ÔÔ

Ì
Ô - £ £
ÔÓ
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If the Fourier half-range sine series of f (x) in (0, p) is 
1

sin
n

n

b nx

•

=

Â , it is comparable 

with 
1

sin
n

n

B nx

•

=

Â .

Hence Bn = 
2

0

2

2 2 2
sin d ( )sin d

n

k k
b x nx x x nx x

p

p

p

p

p p p

È ˘
Í ˙

= + -Í ˙
Í ˙
Í ˙Î ˚

Ú Ú

  = 
2

2 2

0

4 cos sink nx nx
x

n n

p

p

È
Ï ¸- -Ê ˆ Ê ˆÍ -Ì ˝Á ˜ Á ˜Í Ë ¯ Ë ¯Ó ˛ÍÎ

   
2

2

cos sin
( )

nx nx

x

n n

p

p

p

˘
Ï ¸- -Ê ˆ Ê ˆ ˙+ - +Ì ˝Á ˜ Á ˜ ˙Ë ¯ Ë ¯Ó ˛ ˙̊

  = 
2 2

8
sin

2

k n

n

p

p

Using this value of Bn in (7),the required solution is

 u(x, t) = 
2 2

2 2

1

8 1
sin sin

2

n t

n

k n
nxe

n

a
p

p

•
-

=

Â

or u(x, t) = 
2 2

1
(2 1)

2 2
1

8 ( 1)
sin(2 1)

(2 1)

n

n t

n

k
n xe

n

a

p

+•
- -

=

-
-

-
Â

Example 4
A rod of length 20 cm has its ends A and B kept at 30ºC respectively, until steadystate 

conditions prevail. If the temperature at each end is then suddenly reduced to 0°C and 

maintained so, find the temperature u(x, t) at a distance x from A at time t.

When steadystate conditions prevail, the temperature at any point of the bar does 

not depend on t, but only on x. Hence when steadystate conditions prevail in the bar, 

the temperature distribution is given by

 
2

2

d u

dx

 = 0  (1)

2 2

2 2
0 and becomes

u u u

t x x

È ˘∂ ∂ ∂
=Í ˙

∂ ∂ ∂Í ˙Î ˚
Q

We have to solve (1) satisfying the following boundary conditions

 u(0) = 30  (2)

and u(20) = 90  (3)
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Solving Eq. (1), we get

 u(x) = C1x + C2  (4)

Using (2) in (4), we get C2 = 30

Using (3) in (5), we get C1 = 3

Using these values in (4), the solution of Eq. (1) is

 u(x) = 3x + 30  (5)

That is, as long as the steadystate conditions prevail in the bar, the temperature 

distribution in it is given by (5).

Once we alter the end temperatures (or the end conditions), the heat flow or the 

temperature distribution in the bar will not be under steadystate conditions and hence 

will depend on time also. However the temperature distribution at the interior points 

of the bar in the steadystate will be initial temperature distribution in the transient 

state.

In the transient state, the temperature distribution in the bar is given by

 
u

t

∂

∂
 = 

2

2

2

u

x

a
∂

∂
  (6)

The corresponding boundary conditions are

 u(0, t) = 0,    for all t ≥ 0  (7)

 u(20, t) = 0,    for all t ≥ 0  (8)

 u(x, 0) = 3x + 30, for 0 < x < 20  (9)

As u π • when t Æ •, the proper solution of Eq. (6) is

 u(x, t) = (A cos px + B sin px)e–p2a2t  (10)

Using boundary condition (7) in (10), we have

 A ·  e–p2a2t = 0, for all t ≥ 0

\ A = 0

Using boundary condition (8) in (10), we have

 B sin 20 p ·e–p2a2t = 0, for all t ≥ 0

\ B = 0  or sin 20 p = 0

B = 0 leads to a trivial solution.

\ sin 20 p = 0

\ 20 p = np or 
20

np
, where n = 0, 1, 2,   , •
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Using these values of A and p in (10), it reduces to

 u(x, t) = p a
p

-

2 2 2 2
/20

sin
20

n tn x
B e   (11)

where n = 1, 2, 3, ..., •.

Therefore the most general solution Eq. (6) is

 u(x, t) = 
2 2 2

/400

1

sin
20

n t

n

n

n x
B e

p a
p

•
-

=

Â   (12)

Using boundary condition (9) in (12), we have

 
1

sin
20

n

n

n x
B

p
•

=

Â  = 3x + 30 in (0, 20)

  = 
1

sin
20

n

n

n x
b

p
•

=

Â

which is Fourier half-range sine series of (3x + 30) in (0, 20).

Comparing like terms,

 Bn = 
20

0

2
(3 30)sin d

20 20
n

n x
b x x

p

= +Ú

  = 

20

2 2

2
0

cos sin
3 20 20

( 10)
10

20 20

n x n x

x

n n

p p

p p

È ˘Ê ˆÊ ˆÍ ˙- Á ˜Á ˜Í ˙Á ˜+ - -Á ˜Í ˙Á ˜Á ˜Í ˙Á ˜Ë ¯ Ë ¯Î ˚

  = 
6 60

{30( 1) 10} {1 3( 1) }
n n

n np p

- - - = - -

Using this value of Bn in (12), the required solution is

 u(x, t) = 
2 2 2

/400

1

60 1
{1 3( 1) }sin

20

n n t

n

n x
e

n

p a
p

p

•
-

=

- - ◊Â

Example 5
Solve the one dimensional heat flow equation

 
u

t

∂

∂
 = 

2

2

2

u

x

a
∂

∂

satisfying the following boundary conditions.
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 (i) 
∂

=
∂

(0, ) 0
u

t

x

, for all t ≥ 0

 (ii) ( , ) 0
u

t

x

p

∂
=

∂
, for all t ≥ 0; and

 (iii) u(x, 0) = cos2 x, 0 < x < p

Note 
When conditions (i) and (ii) are satisfied, it means that the ends x = 0 and  
x = p of the bar are thermally insulated, so that heat cannot flow in or out 
through these ends.

The appropriate solution of the equation

 
u

t

∂

∂
 = 

2

2

2

u

x

a
∂

∂
  (1)

satisfying the condition that u π • when t Æ • is

 u(x, t) = (A cos px + B sin px)e–p2a2t  (2)

Differentiating (2) partially with respect to x, we have

 ( , )
u

x t

x

∂

∂
 = p(–A sin px + B cos px)e–p2a2t  (3)

Using boundary condition (i) in (3), we have

 p ·B ·e–p2a2t = 0, for all t ≥ 0

\ B = 0 [Q   if p = 0, u(x, t) = A, which is meaningless]

Note 
When the zero left end temperature condition was used in the proper solution, 
we got A = 0 in all the earlier examples. When the zero left end temperature 
gradient condition is used, we get B = 0. 

Using boundary condition (ii) in (3), we have

 –pA sin pp ·e–p2a2t = 0, for all t ≥ 0

\ Either A = 0  or sin pp = 0

A = 0 leads to a trivial solution.

\ sin pp = 0

\ pp = np or p = n, where n = 0, 1, 2, ..., •

Using these values of B and p in (2), it reduces to

 u(x, t) = A cos nx ·e
–n2a2t (4)

where n = 0, 1, 2, ..., •.
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Note 
n = 0 gives u(x, t) = A, which cannot be omitted.

Therefore the most general solution of Eq. (1) is

 u(x, t) = a

•
-

=

Â
2 2

0

cos
n t

n

n

A nx e   (5)

Using boundary condition (iii) in (5), we have

 
0

cos
n

n

A nx

•

=

Â  = cos2 x in (0, p)  (6)

In general, we have to expand the function in the R.H.S. as a Fourier half-range cosine 

series in (0, p) so that it may be compared with L.H.S. series.

In this problem, it is not necessary. We can rewrite 2 1
cos as (1 cos 2 )

2
x x+ , so that 

comparison is possible.

Thus 
0

cos
n

n

A nx

•

=

Â  = 
1 1

cos 2
2 2

x+

Comparing like terms, we have

 A0 = 
1

2
, A2 = 1/2, A1 = A3 = A4 = ... = 0

Using these values of A¢n s in (5), the required solution is

 u(x, t) = a-
+

2
41 1

cos2
2 2

t
x e

Example 6
The temperature at one end of a bar 20 cm long and with insulated sides is kept at 

0°C and that the other end is kept at 60°C until steadystate conditions prevail. The 

two ends are then suddenly insulated, so that the temperature gradient is zero at each 

end thereafter. Find the temperature distribution in the bar.

Show also that the sum of the temperature at any two points equidistant from the 

centre of the bar is 60°C.

When steady state conditions prevail in the bar, the temperature distribution is 

given by

 

2

2

u

x

∂

∂
 = 0  (1)

The corresponding boundary conditions are 

 u(0) = 0  (2)

and u(20) = 60  (3)
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Solving the Eq. (1), we get

 u(x) = C1x + C2  (4)

Using (2) and (3) in (4), we get

 C1 = 3 and C2 = 0

\ u(x) = 3x  (5)

Once the ends are insulated, the heat flow is under transient state and the subsequent 

temperature distribution is given by

 
u

t

∂

∂
 = 

2

2

2

u

x

a
∂

∂
  (6)

The corresponding boundary conditions are

 (0, )
u

t

x

∂

∂
 = 0,  for all t ≥ 0  (7)

 (20, )
u

t

x

∂

∂
 = 0,  for all t ≥ 0  (8)

 u(x, 0) = 3x, for 0 < x < 20  (9)

As u π • when t Æ •, the appropriate solution of Eq. (6) is

 u(x, t = (A cos px + B sin px)e–p2a2t  (10)

Differentiating (10) partially with respect to x, we have

 ( , )
u

x t

x

∂

∂
 = p(–A cos px + B sin px)e–p2a2t  (11)

Using boundary condition (7) in (11), we have

 p ·B ·e–p2a2t = 0, for all t ≥ 0

\ Either = p = 0 or B = 0

But p = 0 makes u(x, t) = A, which is meaningless.

\ B = 0

Using boundary condition (8) in (11), we have

 –pA sin 20 ·e
–p2a2t = 0, for all t ≥ 0

\ Either A = 0 or sin 20 p = 0

A = 0 leads to a trivial solution

\ sin 20 p = 0

\ 20 p = np or 
20

n
p

p

= , where n = 0, 1, 2, ..., • 
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Using these values of B and p in (10), it reduces to

 u(x, t) = 
2 2 2 2

/20
cos

20

n tn x
A e

p a
p

-

◊

where n = 0, 1, 2, ..., •

Therefore the most general solution of Eq. (6) is

 u(x, t) = 
2 2 2

/400

0

cos
20

n t

n

n

n x
A e

p a
p

•
-

=

Â   (12)

Using boundary condition (9) in (12), we have

 
0

cos
20

n

n

n x
A

p
•

=

Â  = 3x in 0 < x < 20

  = 0

1

cos
2 20

n

n

a n x

a

p
•

=

+Â

which is the Fourier half-range cosine series of 3x in (0, 20).

Comparing like terms, we get

 A0 = 
20

0

0

1 2
3 d

2 2 20

a

x x= ◊ Ú

  = 

20
2

0

3
30

20 2

xÊ ˆ
=Á ˜

Ë ¯

and An = 
20

0

2
3 cos d

20 20
n

n x

a x x

p

= Ú

  = 

20

2 2

2

0

sin cos
3 20 20

10

20 20

n x n x

x

n n

p p

p p

È ˘Ê ˆÊ ˆÍ ˙-Á ˜Á ˜Í ˙Á ˜-Á ˜Í ˙Á ˜Á ˜Í ˙Á ˜Ë ¯ Ë ¯Î ˚

  = 
2 2

120
{( 1) 1}

n

n p

- -

  = 2 2

240
, when is odd

0, when is even

n

n

n

p

Ï
-Ô

Ì
Ô
Ó

Using these values of A0 and An in (12), the required solution is

 u(x, t) = 

p a

p

p

- -•

=

-
- ◊

-
Â

2 2 2
(2 1)

400
2 2

1

240 1 (2 1)
30 cos

20(2 1)

n t

n

n x
e

n

  (13)

Points P and Q which are equidistant from the centre of the bar can be assumed to 

have the x coordinates x and 20 – x [Fig. 5B.4]
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20

BPA

x

Q

x

� �x C �20 � �x

10

Fig. 5B.4

Temperature at P is given by (13).

Temperature at Q is given by

 u(20 – x, t) = 

p a

p

p

-• -

=

- -
- ◊

-
Â

2 2 2
(2 1)

400
2 2

1

240 1 (2 1) (20 )
30 cos

20(2 1)

n t

n

n x
e

n

Now 
(2 1) (20 )

cos
20

n xp- -

 = 
(2 1)

cos (2 1)
20

n x

n

p

p

-Ï ¸
- -Ì ˝

Ó ˛

  = 2 1 (2 1)
( 1) cos

20

n
n xp

-

-

-

  = 
(2 1)

cos
20

n xp-

-

\ u(20 – x, t) = 

p a

p

p

- -•

=

-
+

-
Â

2 2 2
(2 1)

400
2 2

1

240 1 (2 1)
30 cos

20(2 1)

n t

n

n x
e

n

  (14)

Adding (13) and (14), we get

 up + uQ = u(x, t) + u(20 – x, t) = 60

Example 7

Solve the equation 
2

2

2

u u

t x

a
∂ ∂

=
∂ ∂

 satisfying the following conditions.

 (i) u is finite when t Æ •.

 (ii) 0
u

x

∂
=

∂
 when x = 0, for all values of t

 (iii) u = 0 when x = l, for all values of t

 (iv) u = u0 when t = 0, for 0 < x < l.

We have to solve the equation

 
u

t

∂

∂
 = 

2

2

2

u

x

a
∂

∂
  (1)

satisfying the following boundary conditions.
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 (0, )
u

t

x

∂

∂
 = 0,  for all t ≥ 0  (2)

 u(l, t) = 0,  for all t ≥ 0  (3)

 u(x, 0) = u0, for 0 < x < l  (4)

Since u is finite as t Æ •, the proper solution of Eq. (1) is

 u(x, t) = (A cos px + B sin px)e–p2a2t (5)

Differentiating (5) partially with respect to x, we have

 ( , )
u

x t

x

∂

∂
 = p(–A sin px + B cos px)e–p2a2t  (6)

Using boundary condition (2) in (6), we have

 pBe
–p2a2t

  = 0, for all values of t ≥ 0

\ Either p = 0 or B = 0

p = 0 makes u(x, t) = A, which is meaningless.

\ B = 0

Using boundary condition (3) in (5), we have

 A cos pl ·e–p2a2t = 0 for all t ≥ 0

\ Either A = 0 or cos pl = 0

A = 0 leads to a trivial solution.

\ cos pl = 0

\ pl = an odd multiple of or (2 1)
2 2

n

p p

-

\ p = 
(2 1)

2

n

l

p-

, where n = 1, 2, 3, ..., •.

Note 

In all the problems considered so far, we had 
n

p
l

p

= , on using the second 

boundary condition; but in this problem, we have 
(2 1)

2

n
p

l

p-

= .

Using these values of B and p in (5), it reduces to

 u(x, t) = 
2 2 2 2

(2 1) /4(2 1)
cos

2

n t tn x
A e

l

p a
p

- -

-

◊   (7)

where n = 1, 2, 3, ..., •.

Therefore the most general solution of Eq. (1) is

 u(x, t) = 
2 2 2

(2 1) /4
2 1

1

(2 1)
cos

2

n t l

n

n

n x
A e

l

p
p

•
- -

-

=

-
◊Â   (8)
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Note 
While superposing the solutions in (7), the unknown constants have 
been assumed as A2n – 1 instead of the usual An, just to have one-to-one 
correspondence between the suffix of A and the arguments of the cosine and 
exponential functions in all the terms of the solution (8).

Using boundary condition (4) in (8), we have

 
p

•

-

=

-
Â 2 1

1

(2 1)
cos

2
n

n

n x
A

l
 = u0 in (0, l)  (9)

The series in the L.H.S. of (9) is not in the form of the Fourier half-range cosine series 

of any function in (0, l), that is 
p

•

=

+ Â
0

1

cos
2

n

n

a n x
a

l

. Hence, to find A2n – 1, we proceed 

as in the derivation of Euler’s formula for the Foureir coefficients.

Multiplying both sides of (9) by 
p-(2 1)

cos
2

n x

l
 and integrating with respect to x 

between 0 and l, we get

 
2

2 1

0

(2 1)
cos d

2

l

n

n x
A x

l

p

-

-
Ú  = 0

0

(2 1)
cos d

2

l
n x

u x
l

p-
Ú

  [Q   All other integrals in the L.H.S. vanish]

i.e. 2 1

0

(2 1)
sin

1

(2 1)2

l

n

n x

l
A x

n

l

p

p
-

-È ˘
Í ˙

◊ +Í ˙
-Í ˙

Í ˙Î ˚

 = 0

0

(2 1)
sin

2

(2 1)

2

l
n x

l
u

n

l

p

p

-È ˘
Í ˙
Í ˙

-Í ˙
Í ˙Î ˚

i.e 
2 1

2
n

l
A

-

◊  = 0

2 (2 1)
sin

(2 1) 2

l n
u

n

p

p

-

◊

-

 

\ A2n – 1 = 104
( 1)

(2 1)

n
u

n p

+
-

-

Using this value of A2n – 1 in (8), the required solution is

 u(x, t) = p a
p

p

+•
- -

=

- -
◊

-
Â

2 2 2 2
1

(2 1) /40

1

4 ( 1) (2 1)
cos

(2 1) 2

n

n t t

n

u n x
e

n l

Example 8
An insulated metal rod of length 100 cm has one end A kept at 0°C and the other end 

B at 100°C until steady state conditions prevail. At time t = 0, the end B is suddenly 

insulated while the temperature at A is maintained at 0°C. Find the temperature at any 

point of the rod at any subsequent time.

When steady state conditions prevail in the rod, the temperature distribution is 

given by

 

2

2

d

d

u

x

 = 0 (1)
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The corresponding boundary conditions are

 u(0) = 0  (2)

and u(100) = 100  (3)

Solving the Eq. (1), we get

 u(x) = c1x + c2  (4)

Using (2) and (3) in (4), we get c1 = 1 and c2 = 0

\ u(x) = x  (5)

Once end B is insulated, though the temperature at A is not altered, the heat flow is 

under transient conditions and the subsequent temperature distribution in the rod is 

given by

 
u

t

∂

∂
 = 

2

2

2

u

x

a
∂

∂
  (6)

The corresponding boundary conditions are

 u(0, t) = 0, for all t ≥ 0  (7)

 ( , )
u

l t
x

∂

∂
 = 0, for all t ≥ 0  (8)

 u(x, 0) = x, for 0 < x < l  (9)

where l = 100.

As u π • when t Æ •, the appropriate solution of Eq. (6) is

 u(x, t) = (A cos px + B sin px)e–p2a2t  (10)

Using boundary condition (7) in (10), we have

 A ·e–p2a2t = 0, for all t ≥ 0

\ A = 0

Differentiating (10) partially with respect to x, we have

 ( , )
u

x t

x

∂

∂
 = Bp cos px ·e

–p2a2t  (11)

Using boundary condition (8) in (11), we have

 Bp cos pl e–p2a2t = 0

\ Either B = 0, p = 0 or cos pl = 0

B = 0 and p = 0 lead to meaningless solutions.

\ cos pl = 0

\ pl = 
(2 1)

2

n p-

or p = 
(2 1)

2

n

l

p-

, where n = 1, 2, 3, ..., •
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Using these values of A and p in (10), it reduces to

 u(x, t) = 
2 2 2 2

(2 1) /4(2 1)
sin

2

n t ln x
B e

l

p a
p

- -

-

  (12)

where n = 1, 2, 3, ..., •

Therefore the most general solution of Eq.(6) is

 u(x, t) = 
2 2 2 2

(2 1) /4
2 1

1

(2 1)
sin

2

n t l

n

n

n x
B e

l

p a
p

•
- -

-

=

-
Â   (13)

Using boundary condition (9) in (13),we have

 2 1

1

(2 1)
sin

2
n

n

n x
B

l

p
•

-

=

-
Â  = x in (0, l)

Proceeding as in Example 7, we get

 B2n – 1 = 
0

2 (2 1)
sin d

2

l n x
x x

l l

p-
Ú

  = 
2 2

2
0

(2 1) (2 1)
cos sin

2 2 2

(2 1) (2 1)

2 4

l

n x n x

l l
x

nl l

l l

p p

p p

È ˘Ï ¸- -Ï ¸
Í ˙- -Ô ÔÔ ÔÔ Ô Ô ÔÍ ˙-Ì ˝ Ì ˝Í ˙- -Ô Ô Ô ÔÍ ˙Ô Ô Ô ÔÓ ˛ Ó ˛Î ˚

  = 
2 2

8 ( 1) (2 1)
sin

2(2 1)

l n

n

p

p

- -

-

  = 
1

2 2

8 ( 1)

(2 1)

n
l

n p

+
-

-

Using this value of B2n – 1 in (13), the required solution is

 u(x, t) = 
2 2 2 2

1
(2 1) /4

2 2
1

8 ( 1) (2 1)
sin

2(2 1)

n

n t t

n

l n x
e

ln

p a
p

p

+•
- -

=

- -
◊

-
Â

where l = 100

proBlems on temperature in a slaB with faces 
with zero temperature

Example 9
Faces of a slab of width c are kept at temperature zero. If the initial temperature in the 

slab is f (x), determine the temperature formula. If f (x) = u0, a constant, find the flux 

0( , )
u

k x t
x

∂
-

∂
 across any plane  x = x0(0 £ x0 £ c) and show that no heat flows across 

the central plane 
0

2

c

x = , where k2 is the diffusivity of the substance.
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face = 0x
face =x c

c

x

Fig. 5B.5

Though the slab is a three dimensional solid (Fig. 5B.5). It is assumed that the 

temperature in it at a given time t depends only on and varies with respect to x, the 

distance measured from one face along the width of the slab. Hence, the temperature 

function u(x, t) at any interior point of the slab is given by

 
u

t

∂

∂
 = 

2

2

2

y
k

x

∂

∂
  (1)

Note 
The problem of temperature distribution in a slab is exactly similar to that in 
a homogeneous bar.

We have to solve Eq. (1) satisfying the following boundary conditions.

 u(0, t) = 0,  for all t ≥ 0  (2)

 u(c, t) = 0,  for all t ≥ 0  (3)

 u(x, 0) = f (x), for 0 < x < c  (4)

Proceeding as in Example 1, the most general solution of Eq. (1) is

 u(x, t) = 
2 2 2 2

/

1

sin
n k t c

n

n

n x
B e

c

p
p

•
-

=

Â   (5)

Using boundary condition (4) in (5), we have

 
1

sin
n

n

n x
B

c

p
•

=

Â  = ( ) in (0, ) sinn

n x
f x c b

c

p

= Â

which is the Fourier half-range sine sere is of f (x) in (0, c).
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Comparing like terms, we get

 Bn = 

0

2
( )sin d

c

n

n x
b f x x

c c

p

= Ú   (6)

Using this value of Bn given by (6) in (5), the required solution is

 u(x, t) = 
p p pq

q q

•

=

Ê ˆ-
Á ˜
Ë ¯

Â Ú
2 2 2

2
1 0

2
sin exp ( )sin d

c

n

n x n k t n
f

c c cc
  (7)

When f (x) = u0, from (6), we get

 Bn = 
0

0

2
sin d

c

n x

u x

c c

p

Ú

  = 0 0

0

cos
2 2

{1 cos }

c

n x

u u
c

n

nc n

c

p

p

p p

Ê ˆ
Á ˜
- = -Á ˜

Á ˜Ë ¯

  = 
04
, if is odd

0, if is even

u

n

n

n

p

Ï
Ô
Ì
Ô
Ó

Therefore the required solution in this case is

 u(x, t) = 
p p

p

•

=

Ï ¸- - -Ô Ô
◊ Ì ˝

- Ô ÔÓ ˛
Â

2 2 2
0

2
1

4 1 (2 1) (2 1)
sin exp

2 1
n

u n x n k t

n c c
  (8)

Differentiating (8) partially with respect to x, 

 ( , )
u

x t

x

∂

∂
 = 

2 2 2
0

2
1

4 (2 1) (2 1)
cos exp

n

u n x n k t

c c c

p p
•

=

Ï ¸- - -Ô Ô
Ì ˝
Ô ÔÓ ˛

Â

Therefore the flux across the plane x = x0 is given by

 0( , )
u

k x t
x

∂
-

∂
 = 

p p
•

=

Ï ¸- - -Ô Ô
- Ì ˝

Ô ÔÓ ˛
Â

2 2 2
0 0

2
1

4 (2 1) (2 1)
cos exp

n

ku n x n k t

c c c

Therefore the flux across the central plane 
2

c

x =  is given by

 ,
2

u c
k t

x

∂ Ê ˆ
- Á ˜Ë ¯∂  = 

p p
•

=

Ï ¸- - -Ô Ô
- Ì ˝

Ô ÔÓ ˛
Â

2 2 2
0

2
1

4 (2 1) (2 1)
cos exp

2
n

ku n n k t

c c

  = 0, since 
(2 1)

cos 0
2

n p-

=

That is no heat flows across the central plane of the slab.
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Example 10

Two slabs of the same material, one 60 cm thick and the other 30 cm thick are placed 

face to face in perfect contact. The thicker slab is initially at temperature 100°C, the 

thinner one initially at zero. The outer faces are kept at zero temperature for t > 0. 

Find the temperature at the centre of the thicker slab (Fig. 5B.6)

60 cm

x

u = 0

30 cm

x = 0 x = 90

u = 100

0

Fig: 5B.6

u(x, t), the temperature function at any point of the slab at time t is given by

 
u

t

∂

∂
 = 

2

2

2

u

x

a
∂

∂
  (1)

The corresponding boundary conditions are the following:

 u(0, t) = 0, for all t ≥ 0  (2)

 u(90, t) = 0, for all t ≥ 0  (3)

 u(x, 0) = 
100, in 0 60

0, in 60 90

x

x

< <Ï
Ì

< <Ó
  (4)

Proceeding as in Example 1, the most general solution of Eq. (1) is

 u(x, t) = 
2 2 2 2

/90

1

sin
90

n t

n

n

n x
B e

p a
p

•
-

=

Â   (5)

Using boundary condition (4) in (5), we have

 
1

sin
90

n

n

n x
B

p
•

=

Â  = f (x) in (0, 90), where
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 f (x) = 
100, in 0 60

0, in 60 90

x

x

< <Ï
Ì

< <Ó

If the Fourier half-range sine series of f (x) in (0, 90) is 
1

sin
90

n

n

n x
b

p
•

=

Â , then comparison 

of like terms gives

 Bn = 

60

0

2
100sin d

90 90
n

n x
b x

p

= Ú

  = 

p

p

Ê ˆ-Á ˜
Á ˜
Á ˜Ë ¯

60

0

cos
20 90

9

90

n x

n

  = 
2200 2 400

1 cos sin
3 3

n n

n n

p p

p p

Ï ¸ Ê ˆ◊ - =Ì ˝ Á ˜Ë ¯Ó ˛
Using this value of Bn in (5), the required solution is

 u(x, t) = 
p p p a

p

•

=

Ï ¸-Ê ˆ Ô Ô
Ì ˝Á ˜Ë ¯ Ô ÔÓ ˛

Â
2 2 2

2

2
1

400 1
sin sin exp

3 90 90
n

n n x n t

n

Therefore the temperature at the centre (x = 30) of the slab is given by

 u(30, t) = 
p p a

p

•

=

Ï ¸-Ê ˆ Ô Ô
Ì ˝Á ˜Ë ¯ Ô ÔÓ ˛

Â
2 2 2

3

2
1

400 1
sin exp

3 90
n

n n t

n

proBlems with non-zero Boundary values 
(temperatures or temperature gradients)

Example 11

A bar 10 cm long has originally a temperature of 0°C throughout its length. At time 

t = 0 sec, the temperature at the end x = 0 is raised to 20°C, while that at the end  

x = 10 is raised to 40°C. Determine the resulting temperature distribution in the bar. 

The temperature distribution u(x, t) in the bar  is given by the equation

 
u

t

∂

∂
 = 

2

2

2

u

x

a
∂

∂
  (1)

We have to solve Eq. (1) satisfying the following boundary conditions.

 u(0, t) = 20, for all t ≥ 0  (2)

 u(10, t) = 40, for all t ≥ 0  (3)

 u(x, 0) = 0,  for 0 < x < 10 (4)

In all the earlier problems, the boundary values in (2) and (3) were zero each and 

hence we were able to get the values of two of the unknown constants in the proper 
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solution easily. The usual procedure will not give the values of unknown constants in 

the proper solution in this example, since we have non-zero values in the boundary 

conditions (2) an (3). Hence we adopt a slightly different procedure, similar to the 

one used in Example 16 of Chapter 3(A).

Let u(x, t) = u1(x) + u2(x, t)  (5)

Using (5) in (1), we get

 1 2( )u u

t

∂
+

∂
 = 

2
2

1 22
( )u u

x

a
∂

+
∂

This gives rise to the two equations

 1( )u x

t

∂

∂
 = a

∂
=

∂

22
2 1

12 2

d
( ) or 0

d

u

u x

x x

  (6)

[∵   u1(x) is a function of x only]

and 
∂

∂

2
u

t

 = 

2

2 2

2

u

x

a

∂

∂
  (7)

Since u1(x) is independent of t and the end values at x = 0 and x = 10 do not change 

with t, we assume that u1(x) corresponds to the end points and u2(x, t) corresponds to 

the interior points 0 < x < 10.

Note 
u1(x) is referred to as the steadystate part and u2(x, t) as the transient part 
of u(x, t).

Thus we have to solve Eq. (6) satisfying the end conditions

 u1(0) = 20  (8)

and u1(10) = 40  (9)

Solving Eq. (6), we get

 u1(x) = c1x + c2  (10)

Using boundary conditions (8) and (9) in (10), we get c1 = 2 and c2 = 20.

\ u1(x) = 2x + 20  (11)

Now we have to solve Eq. (7), satisfying the following boundary conditions which 

are obtained by using (5) and the boundary conditions (2), (3), (4), (8), (9) and  

Step (11).

 u2(0, t) = u(0, t) – u1(0) = 0,     for all t ≥ 0  (12)

 u2(10, t) = u(10, t) – u1(10) = 0,    for all t ≥ 0  (13)

 u2(x, 0) = u(x, 0) – u1(x) = –(2x + 20), for 0 < x < 10  (14)
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Note 
Equation 7 is readily solvable, as the boundary conditions (12) and (13) have 
zero values in the R.H.S.

Proceeding as in Example 1,  we get the most general solution of Equation (7) as

 u2(x, t) = 
2 2 2 2

/10

1

sin
10

n t

n

n

n x
B e

p a
p

•
-

=

Â   (15)

Using boundary condition (14) in (15), we get

 
1

sin
10

n

n

n x
B

p
•

=

Â  = –(2x + 20) in (0, 10)

which is the Fourier half-range sineseries of –(2x + 20) in (0, 10).

Comparing like terms, we have

 Bn = 
10

0

2
{ (2 20)}sin d

10 10
n

n x
b x x

p

= - +Ú

  = 

10

2 2

2
0

cos sin
2 10 10( 10)
5

10 10

n x n x

x

n n

p p

p p

È ˘Ê ˆÊ ˆÍ ˙- -Á ˜Á ˜Í ˙Á ˜- + -Á ˜Í ˙Á ˜Á ˜Í ˙Á ˜Ë ¯ Ë ¯Î ˚

  = 
4 40

{20( 1) 10} or {2( 1) 1}
n n

n np p

- - - -

Using this value of Bn in (15), we get

 u2(x, t) = 
2 2 2 2

/10

1

40 1
{2( 1) 1}sin

10

n n t

n

n x
e

n

p a
p

p

•
-

=

- -Â   (16)

Using (11) and (16) in (5), the required solution is

 u(x, t) = 
p p a

p

•

=

Ï ¸-Ô Ô
+ + - - Ì ˝

Ô ÔÓ ˛
Â

2 2 2

1

40 1
(2 20) {2( 1) 1}sin exp

10 100

n

n

n x n t
x

n

Example 12

The ends A and B of a rod 40 cm long have their temperatures kept at 0°C and 80°C 

respectively, until steadystate conditions prevail. The temperature of the end B is then 

suddenly reduced to 40°C and kept so, while that of the end A is kept at 0°C. Find the 

subsequent temperature distribution u(x, t) in the rod.
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When steadystate conditions prevail, the temperature distribution is given by

 
2

2

u

x

∂

∂
 = 0  (1)

We have to solve Eq. (1), satisfying the boundary conditions

 u(0) = 0  (2)

 u(40) = 80  (3)

Solving Eq. (1), we get

 u(x) = ax + b  (4)

Using the boundary conditions (2) and (3) in (4), we get a = 2 and b = 0

Therefore the solution of Eq. (1) is

 u(x) = 2x  (5)

In the transient state, the temperature distribution in the rod is given by

 
u

t

∂

∂
 = 

2

2

2

u

x

a
∂

∂
  (6)

The corresponding boundary conditions are

 u(0, t) = 0,  for all t ≥ 0  (7)

 u(40, t) = 40, for all t ≥ 0  (8)

 u(x, 0) = 2x, for 0 < x < 40  (9)

Since one of the end values is non-zero, we adopt the modified procedure explained 

in Example 11.

Let  u(x, t) = u1(x) + u2(x, t)  (10)

where u1(x) is given by

 

2

1

2

d

d

u

x

 = 0  (11)

and u2(x, t) is given by

 2
u

t

∂

∂
 = 

2

2 2

2

u

x

a

∂

∂
  (12)

The boundary conditions for Eq. (11) are

 u1(0) = 0  (13)

and u1(40)  = 40  (14)
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Solving Eq. (11), we get

 u1(x) = c1x + c2  (15)

Using boundary conditions (13) and (14) in (15), we get c1 = 1 and c2 = 0.

 u1(x) = x  (16)

The boundary conditions for Eq. (12) are

 u2(0, t) = u(0, t) – u1(0) = 0,  for all t ≥ 0  (17)

 u2(40, t) = u(40, t) – u1(40) = 0, for all t ≥ 0  (18)

 u2(x, 0) = u(x, 0) – u1(x) = x,  for 0 < x < 40  (19)

Proceeding as in Example 1, we get the most general solution of Equation (12) as

 u2(x, t) = 
2 2 2 2

/40

1

sin
40

n t

n

n

n x
B e

p a
p

•
-

=

Â   (20)

Using boundary condition (19) in (20), we get

 
1

sin
40

n

n

n x
B

p
•

=

Â  = x in (0, 40)

  = 

1

sin
40

n

n

n x
b

p
•

=

Â

which is the Fourier half-range sine series of x in (0, 40). Comparing like terms in 

the two series, we have

 Bn = 

40

0

2
sin d

40 40
n

n x
b x x

p

= Ú

  = 

40

2 2

2

0

cos sin
1 40 40

20

40 40

n x n x

x

n n

p p

p p

È ˘Ê ˆÊ ˆÍ ˙Á ˜Á ˜Í ˙Á ˜- - -Á ˜Í ˙Á ˜Á ˜Í ˙Á ˜Ë ¯ Ë ¯Î ˚

  = 12 80
40cos ( 1)

n

n

n n

p

p p

+
-

¥ = -

Using this value of Bn in (20), we get

 u2(x, t) = 
2 2 2 2

1 /40

1

80 1
( 1) sin

40

n n t

n

n x
e

n

p a
p

p

•
+ -

=

- ◊Â   (21)

Using (16) and (21) in (10), the required solution is

 u(x, t) = 
2 2 2 2

1 /40

1

80 1
( 1) sin

40

n n t

n

n x
x e

n

p a
p

p

•
+ -

=

+ - ◊Â
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Example 13

A bar of length 10 cm has its ends A and B kept at 50°C and 100°C until steadystate 

conditions prevail. The temperature at A is then suddenly raised to 90°C and at the 

same instant, that at B is lowered to 60°C and the end temperature are maintained 

thereafter. Find the temperature at distance x from the end A at time t.

When steadystate conditions prevail, the temperature distribution is given by

 
2

2

d

d

u

x

 = 0  (1)

We have to solve Eq. (1), satisfying the following boundary conditions.

 u(0) = 50  (2)

and u(10) = 100  (3)

Solving Eq. (1), we get

 u(x) = ax + b  (4)

Using the boundary conditions (2) and (3) in (4), we get a = 5 and b = 50.

Therefore the solution of Eq. (1) is

 u(x) = 5x + 50  (5)

In the transient state, the temperature distribution in the bar is given by

 
u

t

∂

∂
 = 

2

2

2

u

x

a
∂

∂
  (6)

The corresponding boundary conditions are

 u(0, t) = 90,   for all t ≥ 0  (7)

 u(10, t) = 60,   for all t ≥ 0  (8)

 u(x, 0) = 5x + 50, for 0 < x < 10  (9)

Since the end values (7) and (8) are non-zero each, we adopt the modified procedure 

as in Examples 11 and 12.

Let  u(x, t) = u1(x) + u2(x, t)  (10

where u1(x) is given by

 

2

1

2

u

x

∂

∂
 = 0  (11)

and u2(x, t) is given by

 2
u

t

∂

∂
 = 

2

2 2

2

u

x

a

∂

∂
  (12)
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The boundary conditions for Eq. (11) are

 u1(0) = 90  (13)

and u1(10) = 60  (14)

Solving Eq. (11), we get

 u1(x) = c1x + c2  (15)

Using boundary conditions (13) and (14) in (15), we get c1 = –3 and c2 = 90

\ u1(x) = 90 – 3x  (16)

The boundary conditions for Eq. (12) are

 u2(0, t) = u(0, t) – u1(0) = 0,    for all t ≥ 0  (17)

 u2(10, t) = u(10, t) – u1(10) = 0,   for all t ≥ 0  (18)

 u2(x, 0) = u(x, 0) – u1(x) = 8x – 40, for 0 < x < 10  (19)

Proceeding as in Example 1, we get the most general solution of Eq. (12) as

 u2(x, t) = 
2 2 2 2

/10

1

sin
10

n t

n

n

n x
B e

p a
p

•
-

=

◊Â   (20)

Using boundary condition (19) in (20), we get

 
1

sin
10

n

n

n x
B

p
•

=

Â  = 8x – 40 in (0, 10)

  = sin
10

n

n x
b

p

Â

which is the Fourier half-range sine series of (8x – 40) in (0, 10).

Comparing like terms in the two series, we have

 Bn = 
10

0

2
(8 40)sin d

10 10
n

n x
b x x

p

= -Ú

  = 

10

2 2

0

cos sin
8 10 10( 5)
5

10 100

n x n x

x

n n

p p

p p

È ˘Ê ˆÊ ˆ-Í ˙Á ˜Á ˜Í ˙- - Á ˜Á ˜Í ˙Á ˜Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

  = 
16

{5cos 5}n

n

p

p

-
+

  = 
8

{( 1) 1}
n

np

-
- - +

  = 

160
, if is even

0, if is odd

n

n

n

p

Ï
-Ô

Ì
Ô
Ó
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Using this value of Bn in (20) and then using (16) and (20) in (10), the required 

solution is

 u(x, t) = 
p p a

p

•

=

Ï ¸-Ô Ô
- - Ì ˝

Ô ÔÓ ˛
Â

2 2 2

2,4,6,...

160 1
90 3 sin exp

10 100
n

n x n t
x

n

i.e. u(x, t) = 
p p a

p

•

=

Ê ˆ-
- - Á ˜

Ë ¯
Â

2 2 2

1

80 1
90 3 sin exp

5 25
n

n x n t
x

n

Example 14

A bar AB with insulated sides is initially at temperature 0°C throughout. Heat is 

suddenly applied at the end x = l at a constant rate A, so that 
u

A
x

∂
=

∂
 for x = l, while 

the end A is not disturbed. Find the subsequent temperature distribution in the bar.

The temperature distribution u(x, t) in the bar is given by the equation

 
u

t

∂

∂
 = 

2

2

2

u

x

a
∂

∂
  (1)

We have to solve Eq. (1) satisfying the following boundary conditions.

 u(0, t) = 0, for all t ≥ 0  (2)

 ( , )
u

l t
x

∂

∂
 = A, for all t ≥ 0  (3)

 u(x, 0) = 0, for all 0 < x < l  (4)

Since condition (3) has a non-zero value on the right side, we adopt the modified 

procedure.
Let  u(x, t) = u1(x) + u2(x, t)  (5)

where u1(x) is given by

 

2

1

2

d

d

u

x

 = 0  (6)

and u2(x, t) is given by

 2
u

t

∂

∂
 = 

2

2 2

2

u

x

a

∂

∂
  (7)

The boundary conditions for Eq. (6) are

 u1(0) = 0  (8)

and 1d
( )

d

u
l

x
 = A  (9)

Solving Eq. (6), we get

 u1(x) = C1(x) + C2  (10)

Using boundary condition (8) in (10), we get C2 = 0
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From (10), we have

 1d
( )

d

u

x

x

 = C1  (11)

Using boundary condition (9) in (11), we get C1 = A.

\ u1(x) = Ax  (12)

The boundary conditions for Eq. (7) are

 u2(x, t) = u(0, t) – u1(0) = 0,   for all t ≥ 0  (13)

 
2 ( , )

u
l t

x

∂

∂
 = 

∂
- =

∂

1d
( , ) ( ) 0

d

uu
l t l

x x
, for all t ≥ 0  (14)

 u2(x, 0) = u(x, 0) – u1(x) = – Ax, for 0 < x < l  (15)

Proceeding as in Example 8, we get the most general solution of Eq. (7) as

 u2(x, t) = 
2 2 2

2 1 2
1

(2 1) (2 1)
sin exp

2 4
n

n

n x n t
B

l l

p p a
•

-
=

Ï ¸- - -Ô Ô
Ì ˝
Ô ÔÓ ˛

Â   (16)

Using boundary condition (15) in (16), we have

 2 1

1

(2 1)
sin

2
n

n

n x
B

l

p
•

-

=

-
Â  = –Ax in (0, l)

\ B2n – 1 = 

0

2 (2 1)
sin d

2

l
n x

Ax x
l l

p-
-Ú

  = 
2 2

2
0

(2 1) (2 1)
cos sin

2 2 2

(2 1) (2 1)

2 4

l

n x n x

A l l
x

nl n

l l

p p

p p

È ˘Ï ¸- -Ï ¸
Í ˙- -Ô ÔÔ ÔÔ Ô Ô ÔÍ ˙- -Ì ˝ Ì ˝Í ˙- -Ô Ô Ô ÔÍ ˙Ô Ô Ô ÔÓ ˛ Ó ˛Î ˚

  = 
2 2

8 (2 1)
sin

2(2 1)

Al n

n

p

p

-

-

-

  = 
2 2

8 ( 1)

(2 1)

n
Al

n p

◊ -

-

Using this value of B2n – 1 in (16) and then using (12) and (16) in (5),the required 

solution is

 u(x, t) = 
p p a

p

•

=

Ï ¸- - - -Ô Ô
+ Ì ˝

- Ô ÔÓ ˛
Â

2 2 2

2 2
1

8 ( 1) (2 1) (2 1)
sin exp

(2 1) 2 4

n

n

Al n x n t
Ax

n l l
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Example 15

An insulated metal rod of length 100 cm has one end A kept at 0°C and the other end 

B at 100°C until steady state conditions prevail. At time t = 0, the temperature at B 

is suddenly reduced to 50°C and thereafter maintained, while at the same time t = 0, 

the end A is insulated. Find the temperature at any point of the rod at any subsequent 

time.

When steadystate conditions prevail, the temperature distribution in the rod is 

given by

 
2

2

d

d

u

x

 = 0  (1)

We have to solve Eq. (1) satisfying the boundary conditions

 u(0) = 0  (2)

and u(100) = 100  (3)

Solving Eq. (1), we get

 u(x) = ax + b  (4)

Using boundary conditions (2) in (3) in (4), we gat a = 1 and b = 0.

Therefore the solution of Eq. (1) is

 u(x) = x  (5)

In the transient state, the temperature distribution in the rod is given by

 
u

t

∂

∂
 = 

2

2

2

u

x

a
∂

∂
  (6)

The corresponding boundary conditions are

 (0, )
u

t

x

∂

∂
 = 0, for all t ≥ 0  (7)

 u(100, t) = 50,  for all t ≥ 0  (8)

 u(x, 0) = x, for 0 < x < 100  (9)

Since the boundary value in (8) is non-zero, we adopt the modified procedure.

Let u(x, t) = u1(x) + u2(x, t)  (10)

where u1(x) is given by

 

2

1

2

d

d

u

x

 = 0  (11)

and u2(x, t) is given by

 2
u

t

∂

∂
 = 

2

2 2

2

u

x

a

∂

∂
  (12)
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The boundary conditions for Eq. (11) are

 1d
(0)

d

u

x

 = 0  (13)

 u1(100) = 50  (14)

Solving Eq. (11), we get

 u1(x) = c1x + c2  (15)

From (15), we have

 1d
( )

d

u

x

x

 = c1  (16)

Using boundary condition (13) in (16), we get c1 = 0.

Using boundary condition (14) in (16), we get c2 = 50.

\ u1(x) = 50  (17)

The boundary conditions for Eq. 12 are

 2 (0, )
u

t

x

∂

∂
 = 

∂
- =

∂

1d
(0, ) (0) 0

d

uu
t

x x

,  for all t ≥ 0  (18)

 u2(100, t) = u(100, t) – u1(100) = 0, for all t ≥ 0  (19)

 u2(x, 0) = u(x, 0) – u1(x) = x – 50, for 0 < x < 100  (20)

Proceeding as in Example 7, we get the most general solution of Eq. (12) as

 u2(x, t) = 
2 2 2 2

(2 1) /4 100
2 1

1

(2 1)
cos

200

n t

n

n

n x
A e

p a
p

•
- - ¥

-

=

-
Â   (21)

Using boundary condition (20) in (21), we get

 2 1

1

(2 1)
cos

200
n

n

n x
A

p
•

-

=

-
Â  = x – 50 in (0, 100)

\ A2n – 1 = 

100

0

2 (2 1)
( 50)cos d

100 200

n x

x x

p-
-Ú

  = 

100

2 2

0

(2 1) (2 1)
sin cos

1 200 200( 50)
(2 1)50 (2 1)

200 200

n x n x

x

n n

p p

p p

È ˘Ï ¸- -Ï ¸
-Í ˙Ô ÔÔ ÔÔ Ô Ô ÔÍ ˙- -Ì ˝ Ì ˝-Í ˙-Ô Ô Ô Ô

Í ˙Ô Ô Ô ÔÓ ˛ Ó ˛Î ˚

  = 
2

2 2

200 (2 1) 200
sin

(2 1) 2 (2 1)

n

n n

p

p p

-

-

-

-

  = 
1 2

2 2

200( 1) 200

(2 1) (2 1)

n

n np p

+
-

-

- -
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Using this value of A2n – 1 in (21) and then using (17) and (21) in (10), the required 

solution is

 u(x, t) = 
1

2 2
1

200 ( 1) 200 (2 1)
50 cos

2 1 200(2 1)

n

n

n x

n n

p

p p

+•

=

Ï ¸- -Ô Ô
+ -Ì ˝

- -Ô ÔÓ ˛
Â

   

2 2 2
(2 1)

exp
40000

n tp aÏ ¸-Ô Ô
Ì ˝
Ô ÔÓ ˛

Example 16

Solve the equation 
2

2

2

u u

t x

a
∂ ∂

=
∂ ∂

 with the boundary conditions

 u = u0e
–w t(w  > 0) at x = 0 and u = 0 at x = l

using the method of separation of variables. Show that the temperature at the mid-point 

of the rod is 
0

1
sec

2 2

t l
u e

w
w

a

- .

We have to solve the equation

 
u

t

∂

∂
 = 

2

2

2

u

x

a
∂

∂
  (1)

Satisfying the boundary conditions

 u(0, t) = u0e
–wt, for all t ≥ 0  (2)

and u(l, t) = 0,    for all t ≥ 0  (3)

As u π •, when t Æ •, the appropriate solution of Eq. (1) is

 u(x, t) = (A cos px + B sin px)e–p2a2t  (4)

Using boundary condition (2) in (4), we have

 Ae
–p2a2t = u0

–wt

\ A = u0 and 
2

2
orp p

w w

aa

= =

Using boundary condition (3) in (4), we have

 0
cos sin

t
u l B t e

w
w w

a a

-Ê ˆ
+Á ˜

Ë ¯
 = 0, for all t ≥ 0

\ 
0
cos sinu l B l

w w

a a

+  = 0

\ B = 
0
cos

sin

u l

l

w

a

w

a

-
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Using the values of A, B and p in (4), the required solution is

 u(x, t) = 
0

cos

cos sin

sin

t

l

u x x e

l

w

w

w wa

a aw

a

-

Ï ¸
Ô ÔÔ Ô

-Ì ˝
Ô Ô
Ô ÔÓ ˛

i.e. u(x, t) = 0

sin ( )

sin

t

l x

u e
w

w

a

w

a

-

-

 (5)

The temperature at the mid point of the rod is given by ,
2

l
u t
Ê ˆ
Á ˜Ë ¯

.

From (5), on putting 
2

l
x = , we get

 ,
2

l
u t
Ê ˆ
Á ˜Ë ¯  = 

0

sin
2

sin

t

l

u e

l

w

w

a

w

a

-

  = 0
sec

2 2

t
u t

e
w

w

a

-

◊

Example 17

The end x = 0 of a very long homogeneous rod is maintained at a temperature  

u = u0 sin wt. If u Æ 0 as x Æ •, find an expression giving u at any time, at any point 

of the bar.

The temperature distribution in the rod is given by

 
u

t

∂

∂
 = 

2

2

2

u

x

a
∂

∂
  (1)

We have to solve Eq. (1) satisfying the boundary conditions

 u(0, t) = u0 sin wt,      for all t ≥ 0  (2)

  u(x, t) Æ 0, as x Æ •, for all t ≥ 0  (3)

The variable separable solution of (1) will not give the required solution.

In order that the solution of Eq. (1) may satisfy the boundary conditions (2) and 

(3), let us assume the solution of (1) as

 u(x, t) = Ae
–Bx sin (Ct – Dx)  (4)



Transforms and Partial Differential Equations
5-136

From (4), cos( )
Bxu

ACe Ct Dx
t

-∂
= -

∂

 
u

x

∂

∂
 = –ABe

–Bx sin (Ct – Dx) – ADe
–Bx cos (Ct – Dx)

 

2

2

u

x

∂

∂
 = AB

2
e

–Bx sin (Ct – Dx) + ABDe
–Bx cos (Ct – Dx)

  + ABDe
–Bx cos (Ct – Dx) – AD

2
e

–Bx sin (Ct – Dx)

Since (4) is a solution of (1), we have

 C cos q = a2(B2 – D2)sin q + 2BDa2 cos q

where q = Ct – Dx.

Equating like terms, we get

 a2(B2 – D2) = 0  (5)

and 2BDa2 = C  (6)

From (5),
 D = B > 0  (7)

[Q   e–Bx and hence u(x, t) Æ 0 as x Æ •]

Using (7) in (6), we get

 2B
2a2 = C  (8)

Using boundary condition (2) in (4), we have

 A sin Ct = u0 sin w t

\ A = u0 and C = w

From (8),  B
2 = 

2

1
or

22

B
w w

aa

=

From (7), D = 
1

2

w

a

Note 
Had we assumed the solution as u(x, t) = Ae–Bxsin (Ct + Dx), (6) would have 

been –2BDa2 = C and hence (8) would have been –2B2a2 = w or 2

22
B

w

a

= -  

which is absurd. Hence the assumption of the solution in the form (4) is 
justified.

Using the values of A, B, C and D in (4), the required solution is

 u(x, t) = 2

0
sin

2

x

x
u e t

w

a
w

w

a

- Ê ˆ
◊ -Á ˜

Ë ¯
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proBlems on transmission line equations

Example 18

A telegraph is a km long. Initially the line is uncharged so that V(x, 0) = 0. If, at t = 0, 

the end x = a is connected to a constant e.m.f. E, find V(x, t) and i(x, t). In particular, 

show that the current at the end x = 0 is given by

  
2 2

1

2

2
( 1) exp

n

aR

E E n t

aR aR a RC

p
•

+ Ê ˆ
- + - -Á ˜

Ë ¯
Â

(Refer to the discussion on transmission line equations in Chapter 3(A)

The potential at any point at time t in a telegraph cable is given by

 
2

2

V

x

∂

∂
 = 

V
RC

t

∂

∂

or 
V

t

∂

∂
 = 

2

2

2

V

x

a
∂

∂
  (1)

where 2 1

RC
a =

We have to solve Eq. (1) satisfying the following boundary conditions.

 V(0, t) = 0, for all t ≥ 0  (2)

 V(a, t) = E, for all t ≥ 0  (3)

 V(x, 0) = 0, for all 0 < x < a  (4)

Since condition (3) contains a non-zero boundary value, we adopt the modified 

procedure.

Let  V(x, t) = V1(x) + V2(x, t)  (5)

where V1(x) is given by

 

2

1

2

d

d

V

x

 = 0

and V2(x, t) is given by

 2
V

t

∂

∂
 = 

2

2 2

2

V

x

a

∂

∂
  (7)

The boundary conditions for Eq. (6) are

 V1(0) = 0  (8)

 V1(a) = E  (9)

Solving Eq. (6), we get

 V1(x) = C1x + C2  (10)
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Using boundary conditions (8) and (9) in (10), we get 
1 2

and 0
E

C C
a

= =

 V1(x) = 
Ex

a
  (11)

The boundary conditions for Eq. (7) are

 V2(0, t) = V(0, t) – V1(0) = 0,   for all t ≥ 0  (12)

 V2(a, t) = V(a, t) – V1(a) = 0,   for all t ≥ 0  (13)

 V2(x, 0) = V(x, 0) – V1(x) = 
Ex

a
- , for 0 < x < a (14)

Proceeding as in Example 1, we get the most general solution of Eq. (7) as

 V2(x, t) = 
2 2 2 2

/

1

sin
n t a

n

n

n x
B e

a

p a
p

•
-

=

Â   (15)

Using boundary condition (14) in (15), we have

 
1

sin
n

n

n x
B

a

p
•

=

Â  = in (0, )
Ex

a
a

-

  = 
1

sin
n

n

n x
b

a

p
•

=

Â

which is the Fourier half-range sine series of in (0, )
Ex

a
a

Ê ˆ
-Á ˜Ë ¯

.

Comparing like terms in the two series, we have

 Bn = 

0

2
sin d

a

n

Ex n x
b x

a a a

p

= -Ú

  = 
2 2 2

2

0

cos sin
2

a

n x n x

E a a
x

na n

a a

p p

p p

È ˘Ê ˆÊ ˆÍ ˙Á ˜Á ˜Í ˙Á ˜- - - -Á ˜Í ˙Á ˜Á ˜Í ˙Á ˜Ë ¯ Ë ¯Î ˚

  = 
2

( 1)
nE

np
-

Using this value of Bn in (15) and using (11) and (15) in (5), the required solution is

 V(x, t) = 
2 2 2 2

/

1

2
( 1) sin

n n t a

n

Ex E n x
e

a a

p a
p

p

•
-

=

+ -Â   (16)

For the telegraph equation (L = G = 0),

 Ri = 
1

or ( , ) ( , )
V V

i x t x t
x R x

∂ ∂
= -

∂ ∂
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Differentiating (16) partially with respect to x,  we have

 i(x, t) = 
2 2 2 2

1 /

1

2
( 1) cos

n n t a

n

E E n x
e

aR aR a

p a
p

•
+ -

=

- + -Â

\ i(0, t) = 
2 2

1

2
1

2
( 1) exp

n

n

E E n t

aR aR a RC

p
•

+

=

Ê ˆ
- + - -Á ˜

Ë ¯
Â

since 2 1

RC
a = .

Example 19

A transmission line 1000 km long is initially under steadystate conditions with 

potential 1200 volts at the sending end and 1100 volts at the load (x = 1000). The 

terminal end of the line is suddenly grounded, reducing its potential to zero, but the 

potential at the sending end is kept at 1200 volts. Find the potential function e(x, t). 

Assume that L = G = 0.

When L = G = 0, the potential function e(x, t) in the transmission line is given by

 
e

t

∂

∂
 = 

2

2

2

e

x

a
∂

∂
  (1)

where 2 1

RC
a = .

When steadystate conditions prevail, the potential function is given by

 
2

2

d

d

e

x

 = 0  (2)

The boundary conditions for Eq. (2) are

 e(0) = 1200  (3)

and e(1000) = 1100  (4)

Solving Eq. (2), we get

 e(x) = ax + b  (5)

Using boundary conditions (3) and (4) in (5), we have a = –0.1 and b = 1200.

Therefore the solution of Eq. (2) is

 e(x) = 1200 – 0.1x  (6)

In the transient state, the potential function is given by Eq. (1).

The corresponding boundary conditions are

 e(0, t) = 1200,     for all t ≥ 0  (7)

 e(1000, t) = 0,      for all t ≥ 0  (8)

 e(x, 0) = 1200 – 0.1x, for 0 < x < 1000  (9)

Since the boundary value in (7) is non-zero, we adopt the modified procedure.
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Let  e(x, t) = e1(x) + e2(x, t)  (10)

where e1(x) is given by

 

2

1

2

d

d

e

x

 = 0  (11)

and e2(x, t) is given by

 2
e

t

∂

∂
 = 

2

2 2

2

e

x

a

∂

∂
  (12)

The boundary conditions for Eq. (11) are

 e1(0) = 1200  (13)

and e1(1000) = 0  (14)

Solving Eq. (11), we get

 e1(x) = C1x + C2  (15)

Using boundary conditions (13) and (14) in (15), we get C1 = –1.2 and C2 = 1200

\ e1(x) = 1200 – 1.2x  (16)

The boundary conditions for Eq. (12) are

 e2(0, t) = e(0, t) – e1(0) = 0,    for all t ≥ 0  (17)

 e2(1000, t) = e(1000, t) – e1(1000) = 0, for all t ≥ 0  (18)

 e2(x, 0) = e(x, 0) – e1(x) = 1.1x,    for 0 < x < 1000  (19)

Proceeding as in Example 1, we get the most general solution of Eq. (12) as

 e2(x, t) = 
2 2 2

2
1

sin exp
1000 1000

n

n

n x n t
B

p p a
•

=

Ï ¸-Ô Ô
Ì ˝
Ô ÔÓ ˛

Â   (20)

Using boundary condition (19) in (20), we get

 
1

sin
1000

n

n

n x
B

p
•

=

Â  = 1.1x in (0, 1000)

  = sin
1000

n

n x
b

p

Â

which is Fourier half-range sine series of 1.1x in (0, 1000).
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Comparing like terms, we get

 Bn = 
1000

0

2
1.1 sin d

1000 1000
n

n x
b x x

p

= Ú

  = 

1000

2 2

2

0

cos sin
2.2 1000 1000

1000

1000 1000

n x n x

x

n n

p p

p p

È ˘Ê ˆÊ ˆÍ ˙- -Á ˜Á ˜Í ˙Á ˜-Á ˜Í ˙Á ˜Á ˜Í ˙Á ˜Ë ¯ Ë ¯Î ˚

  = 12200
( 1)

n

np

+
-

Using this value of Bn in (20) and then using (16) and (20) in (10), the required 

solution is

 e(x, t) = 

1 2 2

6
1

2200 ( 1)
1200 1.2 sin exp

100 10

n

n

n x n t
x

n RC

p p

p

+•

=

Ï ¸- -Ê ˆ Ô Ô- + ◊ Ì ˝Á ˜Ë ¯ Ô ÔÓ ˛
Â

Example 20

A submarine cable 
1

0 andL G a
RC

Ê ˆ
= = =Á ˜Ë ¯

 of length l has zero initial current and  

charge. The end x = 0 is insulated and a constant voltage E is applied at x = l. Show 

that the voltage at any point is given by

 v(x, t) = 
2 2 2

(2 1) /4

1

4 ( 1) (2 1)
cos

2 1 2

n

a n t t

n

E n x
E e

n l

p
p

p

•
- -

=

- -Ï ¸
+ Ì ˝

- Ó ˛
Â

The voltage function function v(x, t) is given by the equation

 
v

t

∂

∂
 = 

2 2

2 2

1
or

V v v
a

RC tx x

∂ ∂ ∂
=

∂∂ ∂
  (1)

We have to solve Eq. (1) satisfying the following boundary conditions.

 (0, )
v

t

x

∂

∂
 = 0, for all t ≥ 0  (2)

 v(l, t) = E, for all t ≥ 0  (3)

 v(x, 0) = 0, for 0 < x < l  (4)

Since the boundary value in (3) is non-zero, we adopt the modified procedure.

Let  v(x, t) = v1(x) + v2(x, t)  (5)

where v1(x) is given by

 

2

1

2

d

d

v

x

 = 0 (6)
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and v2(x, t) is given by

 2
v

t

∂

∂
 = 

2

2 2

2

v

x

a

∂

∂
 (7)

The boundary conditions for Eq. (6) are

 1 (0)
v

x

∂

∂
 = 0  (8)

and v1(l) = E (9)

Solving Eq. (6), we get

 v1(x) = C1x + C2  (10)

From (10), we have

 1( )v x

x

∂

∂
 = C1  (11)

Using boundary condition (8) in (11),we get C1 = 0

Using boundary condition (9) in (10), we get C2 = E.

\ v1(x) = E  (12)

The boundary conditions for Eq. (7) are

 2 (0, )
v

t

x

∂

∂
 = 1d

(0, ) (0) 0
d

vv
t

x x

∂
- =

∂
, for all t ≥ 0  (13)

 v2(l, t) = v(l, t) –v1(l) = 0,    for all t ≥ 0  (14)

 v2(x, 0) = v(x, 0) – v1(x) = – E,  for 0 < x < l  (15)

Proceeding as in Example 7, with u0 replaced by –E, the solution of Eq. (7) is

 v2(x, t) = 
1 2 2

2
1

4 ( 1) (2 1) (2 1)
cos exp

(2 1) 2 4

n

n

E n x n at

n l l

p p

p

-•

=

Ï ¸- - - -Ô Ô
- Ì ˝

- Ô ÔÓ ˛
Â   (16)

Using (12) and (16) in (5), the required solution is

 v(x, t) = 
2 2

2
1

4 ( 1) cos(2 1) ( (2 1)
exp

2 1 2 4

n

n

E n x n at
E

n l l

p p

p

•

=

Ï ¸- - - -Ô Ô
+ ◊ Ì ˝

- Ô ÔÓ ˛
Â



5-143
Fourier Series Solutions of Partial Differential Equations

        Exercise 5B(b)

Part A (Short-Answer Questions)

 1. State the two laws of thermodynamics used in the derivation of one 

dimensional heat flow equation.

 2. What does a2 represent in the equation?

  

2

2

2

u u

t x

a
∂ ∂

=
∂ ∂

 3. Write down the three mathematically possible solutions of one dimensional 

heat flow equation.

 4. Write down the appropriate solution of the one dimensional heat flow 

equation. How is it chosen?

 5. Write down the form of the general solution of one dimensional heat flow 

equation, when both the ends of the bar are kept at zero temperature.

 6. Write down the form of the general solution of one dimensional heat flow 

equation, when both the ends of the rod are insulated?

 7. In what type of one dimensional heat flow problems, will neither the Fourier 

sine series nor cosine series be useful?

 8. Write down the form of the temperature function, when heat flow in a bar is 

under steadystate conditions.

 9. Explain briefly the procedure used to solve 
2

2

2

u u

t x

a
∂ ∂

=
∂ ∂

 satisfying, the 

conditions

 u(0, t) = A, u(l, t) = B  and  u(x, 0) = f (x)

Part B

 10. A uniform bar of length 10 cm through which heat flows is insulated at its 

sides. The ends are kept at zero temperature. If the initial temperature at the 

interior points of the bar is given by

  (i)   
2

3sin 2sin
5 5

x xp p

+

  (ii)  
2

2sin cos
5 5

x xp p
 find the temperature distribution in the bar

 11. Obtain the solution of the equation

 
u

t

∂

∂
 = 

2

2

2

u

x

a
∂

∂

  satisfying the following conditions: (i) u π •, as t Æ •; (ii) u = 0 for x = 0 

and x = p for any value of t; (iii) u = px – x2, when t = 0 in the range (0, p).
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 12. Find the solution of the equation

 
u

t

∂

∂
 = 

2

2

2

u

x

a
∂

∂

  that satisfies the condition u(0, t) = 0 and u(l, t) = 0 for t ≥ 0 and

 u(x, 0) = 

, for 0
2

, for
2

l
x x

l
l x x l

Ï
< <ÔÔ

Ì
Ô - < <
ÔÓ

 13. A rod of length l has its ends A  and B kept at 0°C and T°C respectively, until 

steadystate conditions prevail. If the temperature at B is reduced suddenly to 

0°C and kept so, while that of A is maintained, find the temperature u(x, t) at 

a distance x from the end A at time t.

 14. Solve the one dimensional heat flow equation

 
u

t

∂

∂
 = 

2

2

2

u

x

a
∂

∂

  satisfying the following boundary conditions.

 (i) (0, ) 0, for all 0
u

t t

x

∂
= ≥

∂

 (ii) ( , ) 0, for all 0
u

l t t
x

∂
= ≥

∂

 (iii) (a)  u(x, 0) = 
3 2

2cos cos , for 0
x x

x l
l l

p p

< <

  (b)  u(x, 0) = 4
cos in (0, )

x
l

l

p
;

  (c)  u(x, 0) = lx – x2 in (0, l)

 15. The temperature at one end of a bar, 50 cm long and with insulated sides, 

is kept at 0°C and that at the other end is kept at 100°C until steadystate 

conditions prevail. The two ends are then suddenly insulated, so that the 

temperature gradient is zero at each end thereafter. Find the temperature 

distribution. Show also that the sum of the temperature at any two points 

equidistant from the centre of the bar is always 100°C.

 16. A uniform rod of length a whose surface is thermally insulated is initially at 

temperature q = q0. At time t = 0, one end is suddenly cooled to temperature 

q = 0 and subsequently maintained at this temperature. The other end remains 

thermally insulated. Show that the temperature at this end at time t is given 

by

 q = 2 2 2 20

0

4 ( 1)
exp{ (2 1) /4 }

2 1

n

n

n t a

n

q
a p

p

•

=

-
- +

+
Â

 17. An insulated metal rod of length 20 cm has one end A kept at 0°C and the 

other end B at 60°C until steadystate conditions prevail. At time t = 0, the 

end B is suddenly insulated while the temperature at A is maintained at 0°C. 

Find the temperature at any point of the rod at any subsequent time.
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 18. Two slabs of iron each 20 cm thick, one at temperature 100°C and the other 

at temperature 0°C throughout, are placed face to face in perfect contact 

and their outer faces are kept at 0°C. Find the temperature 10 minutes after 

contact was made, at a point on their common face.

 19. Find the temperature in a flat slab of unit width such that (i) its initial 

temperature varies uniformly from zero at one face to u0 at the other, (ii) the 

temperature of the face initially at zero remains at zero for t > 0 and (iii) the 

face initially at temperature u0 is insulated for t > 0.

 20. Find the temperature q(x, t) in an infinite slab of thickness l, if the faces x = 0 

and x = l are kept at a constant temperature T°, the initial temperature of the 

slab being 0°.

 21. A bar 40 cm long has originally a temperature of 0°C along all its length. At 

time t = 0 sec, the temperature at the end x = 0 is raised to 50°C, while that 

at the end x = 40 is raised to 100°C. Determine the resulting temperature 

distribution.

 22. The ends A and B of a rod 10 cm long have their temperatures kept at 0°C 

and 20°C respectively, until steadystate conditions prevail. The temperature 

of the end B is then suddenly raised to 60°C and kept so while that of the end 

A is kept at 0°C. Find the temperature u(x, t).

 23. A rod l cm long with insulated lateral surface is initially at the temperature 

100°C throughout. If the temperatures at the ends are suddenly reduced to 

25°C and 75°C respectively, find the temperature distribution in the rod at 

any subsequent time.

 24. The ends A and B of a bar 50 cm long are kept at 0°C and 100°C respectively, 

until steadystate conditions prevail. The temperatures at A and B are then 

suddenly raised to 50°C and 150°C respectively and they are maintained 

thereafter. Find an expression for the temperature at a distance x from A at 

any time t subsequent to the changes in the end temperatures.

 25. A rod AB of length 10 cm has the ends A and B kept at temperature 40°C and 

100°C respectively, until the steadystate is reached. At some time thereafter 

the temperatures at A and B are lowered to 10°C and 50°C and they are 

maintained thereafter. Find the subsequent temperature distribution.

 26. The ends A and B of a rod 20 cm long have the temperatures at 30°C and 

80°C until steadystate prevails. The temperatures of the ends are changed to 

40°C and 60°C respectively. Find the temperature distribution in the rod at 

time t.

 27. A bar 25 long with its sides impervious to heat, has its ends A and B kept at 

100°C and 200°C respectively. After the temperature distribution becomes 

steady, the end A is suddenly cooled to 50°C and at the same instant, the end 

B is warmed to 300°C. Find an expression for the temperature at a distance 

x from A at any time t subsequent to the changes in the end temperatures.

 28. A bar with insulated sides is initially at temperature 0°C throughout. Heat 

is suddenly applied at the end x = 0 at a constant rate A, so that 
u

A
x

∂
=

∂
 for  
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x = 0, while the end x = l is maintained at 0°C temperature. Find the 

temperature in the bar at a subsequent time.

 29. An insulated metal rod of length 60 cm has one end A kept at 0°C and the 

other end B at 60°C until steadystate conditions prevail. At time t = 0, the 

temperature at A is suddenly increased to 30°C and thereafter maintained, 

while at the same time t = 0 the end B is insulated. Find the subsequent 

temperature distribution in the rod.

 30. Solve the equation 
2

2

u u

t x

∂ ∂
=

∂ ∂
, satisfying the conditions: (i) u(0, t) = 0;  

(ii) u(1, t) = t and (iii) u(x, 0) = 0.

  [Hint: Assume u(x, t) = x{a(x2 – 1) + t} + u2(x, t). When u(x,t) satisfies 

the given equation and boundary conditions, 
1

6
a =  and u2(x, t) satisfies 

2

2 2

2

u u

t x

∂ ∂
=

∂ ∂
 such that u2(0, t) = 0, u2(1, t) = 0 and u2(x, 0) = 21

(1 )]
6
x x- .

 31. Solve the equation 
2

2

u u

t x

∂ ∂
=

∂ ∂

, satisfying the conditions: (i) u(0, t) = t,  

(ii) u(1, t) = 0 and (iii) u(x, 0) = 0. [Hint: Assume u(x, t) = 

2
( 1) ( 1)

2

x
ax x x t

Ï ¸Ê ˆ- + - -Ì ˝Á ˜Ë ¯Ó ˛
 + u2(x, t). When u(x, t) satisfies the given 

equation and the boundary conditions, a = –1/6 and u2(x, t) = satisfies 
∂ ∂

=
∂ ∂

2

2 2

2

u u

t x

 

such that u2(0, t) = 0, u2(1, t) = 0 and u2(x, 0) = 21
( 3 2)]

6
x x x- + .

 32. A transmission line 1000 km long is initially under steadystate conditions 

with potential 1300 volts at the sending end (x = 0) and 1200 volts at the 

receiving end (x = 1000). The terminal end of the line is suddenly grounded, 

but the potential at the source is kept at 1300 volts. Assuming the inductance 

and leakage to be negligible, find the potential e(x, t).

 33. A steady voltage distribution of 20 volts at the sending end and 12 volts at the 

receiving end is maintained in a telephone wire of length l. At time t = 0, the 

receiving end is grounded. Find the voltage and current t secs. later. Neglect 

leakage and inductance. 

 34. In a telegraph wire, the sending end of the line is at potential e0, the far 

end being earthed until steadystate conditions prevail. The sending end is 

suddenly earthed. Show that the potential at a point distant x from the sending 

end at time t is given by 2 2 20

1

2 1
( , ) exp{ / }

n

e n x
e x t n t CRl

n l

p

p

p

•

=

= -Â , where  

l is the length of the wire and C, R have their usual meanings.

 35. A submarine cable of length l has the end x = l grounded and constant voltage 

E is applied at the end x = 0 with zero initial conditions. Find the expression 

for the current at x = 0.
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Answers

        Exercise 5B(b)

 10. (i)   
2 2 2 2

4 /100 16 /1002
( , ) 3sin 2sin

5 5

t t
x x

u x t e e
p a p a

p p
- -

= +

  (ii)  
2 2 2 2

4 /100 36 /1003
( , ) sin sin

5 5

t t
x x

u x t e e
p a p a

p p
- -

= - + .

 11. 2 2

3
1

8 1
( , ) sin(2 1) exp{ (2 1) }

(2 1)
n

u x t n x n t

n

a

p

•

=

= - - -
-

Â .

 12. 
p

p a

p

+•

=

- -
= - -

-
Â

1
2 2 2 2

2 2
1

4 ( 1) (2 1)
( , ) sin exp{ (2 1) / }

(2 1)

n

n

l n x
u x t n t l

ln

.

 13. 
p

p a

p

+•

=

-
= -Â

1
2 2 2 2

1

2 ( 1)
( , ) sin exp( / )

n

n

T n x
u x t n t l

n l
.

 14. (a) 
p p

p a p a= - + -
2 2 2 2 2 25

( , ) cos exp( / ) cos exp( 25 / )
x x

u x t t l t l
l l

  (b) 2 2 2 2 2 23 1 2 1 4
( , ) cos exp( 4 / ) cos exp( 16 /

8 2 8

x x
u x t t l t l

l l

p p
p a p a= + - + -

  (c) 
p

p a

p

•

=

= - -Â
2 2

2 2 2 2

2 2
1

1 2
( , ) cos exp( 4 / )

6
n

l l n x
u x t n t l

ln

.

 15. 2 2 2

2 2
1

400 1 (2 1)
( , ) 50 cos exp{ (2 1) /2500}

50(2 1)
n

n x
u x t n t

n

p
p a

p

•

=

-
= - ◊ - -

-
Â .

 17. 
1

2 2 2

2 2
1

480 ( 1) (2 1)
( , ) sin exp{ (2 1) /1600}

40(2 1)

n

n

n x
u x t n t

n

p
p a

p

+•

=

- -
= - -

-
Â .

 18. 2 2 2 2

1

400 1
(20, 600) sin sin exp( 3 /8)

4 2
n

n n

u n

n

p p
p a

p

•

=

Ê ˆ Ê ˆ
= ◊ -Á ˜ Á ˜Ë ¯ Ë ¯Â .

 19. 
1 2 2 2

0

2 2
1

4 ( 1) (2 1) (2 1)
( , ) sin exp

2 4(2 1)

n

n

u n x n t
u x t

n

p p a

p

+•

=

Ï ¸- - - -Ô Ô
= ◊ Ì ˝

- Ô ÔÓ ˛
Â .

 20. 2 2 2 24 1 (2 1)
( , ) sin exp{ (2 1) / }

2 1

T n x
u x t T n t l

n l
p

p
p a

p

•
-

= - ◊ - -
-

Â .
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 21. 2 2 2

1

5 100 1
( , ) 50 (2cos 1) sin exp{ /1600}

4 40
n

x n x
u x t n n t

n

p
p p a

p

•

=

= + + - ◊ ◊ -Â .

 22. 2 2 2

1

80 1
( , ) 6 ( 1) sin exp( /100)

10

n

n

n x
u x t x n t

n

p
p a

p

•

=

= + - ◊ -Â .

 23. 2 2 2 2

1

50 50 1
( , ) 25 {3 cos }sin exp{ / }

n

n x
u x t x n n t l

l n l

p
p p a

p

•

=

= + + - ◊ -Â .

 24. 2 2 2

1

200 1 (2 1)
( , ) (2 50) sin exp{ (2 1) /2500}

2 1 50
n

n x
u x t n t

n

p
p a

p

•

=

-
= + - - -

-
Â .

 25. 2 2 2

1

20 1
( , ) (4 10) (3 5cos )sin exp( /100)

10
n

n x
u x t x n n t

n

p
p p a

p

•

=

= + + - ◊ -Â .

 26. 2 2 2

1

20 1
( , ) 40 (2cos 1)sin exp( /400)

20
n

n x
u x t x n n t

n

p
p p a

p

•

=

= + - + ◊ -Â .

 27. 2 2 2

1

100 1
( , ) 10 50 (2cos 1)sin exp( /625)

25
n

n x
u x t x n n t

n

p
p p a

p

•

=

= + + + ◊ -Â .

 28. 2 2 2 2

2 2
1

8 1 (2 1)
( , ) ( ) cos exp{ (2 1) /4 }

2(2 1)n

Al n x
u x t A x l n t l

ln

p
p a

p

•

=

-
= - + - -

-
Â

 29. 
1

2
1

120 1 4( 1) (2 1)
( , ) 30 sin

2 1 120(2 1)

n

n

n x
u x t

n n

p

p p

+•

=

Ï ¸- -Ô Ô
= + - +Ì ˝

- -Ô ÔÓ ˛
Â 2 2 2 2

exp{ (2 1) /120 }n tp a- -

 30. 
1

3 2 2

3 3
1

1 2 ( 1)
( , ) ( 6 ) sin exp( )

6

n

n

u x t x x xt n x n t

n

p p

p

-•

=

-
= - + + ◊ -Â .

 31. 3 2 2 2

3 3
1

1 2 ( 1)
( , ) ( 3 2 6 6 ) sin exp( )

6

n

n

u x t x x x xt t n x n t

n

p p

p

•

=

-
= - - + + - + ◊ -Â .

 32. 
p

p

p

+•

=

-
= - + -Â

1
2 2 2

1

2400 ( 1)
( , ) 1300 1.3 sin exp{ /1000 }

1000

n

n

n x
e x t x n t RC

n
.
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 33. e (x, t) = 
2 2

2
1

20 24 ( 1)
( ) sin exp

n

n

n x n t
l x

l n l l RC

p p

p

•

=

Ê ˆ- -
- - ◊ Á ˜

Ë ¯
Â

  i (x, t) = 2 2 2

1

20 24
( 1) cos exp( / )

n

n

n x
n t l RC

lR lR l

p

p

•

=

+ - -Â .

 35. 2 2 2

1

1 2 exp( / )
n

E
i n t l RC

lR
p

•

=

Ï ¸Ô Ô
= - + -Ì ˝

Ô ÔÓ ˛
Â .
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 Part C

 Steady State Heat Flow in

 Two Dimensions

 [Cartesian Coordinates]

3c.1 introduction

When the heat flow is along plane curves, lying in the same or parallel planes, 

instead of along straight lines, then the heat flow is said to be two dimensional. 

When we consider heat flow or temperature distribution in this uniform plate 

or sheet made of conducting material, the heat flow is assumed to be two 

dimensional.

When all the edges of the plate are straight lines, that is, when the plate is in 

the form of a rectangle or square, cartesian coordinates will be used to discuss the 

temperature distribution in the plate, as the straight edges can be easily represented 

in the cartesian system. When one or more edges of the plate are circular arcs, that is, 

when the plate is in the form of a circle, semicircle, sector of a circle or circular ring, 

polar coordinates will be used to discuss the temperature distribution in the plate, as 

the circular edges can be easily represented in the polar system.

In this chapter, we shall fist derive the partial differential equation of variable heat 

flow in two dimensional cartesians and then deduce the equation of steadystate heat 

flow.

3c.2  equation of variaBle heat flow in two 
dimensions in cartesian coordinates

Let us consider heat flow in a thin plate or sheet, of thickness h, which is made up of 

conducting material of density r, thermal conductivity k and specific heat c. Let the 

xoy-plane be taken in one face of plate. Let us assume that the surfaces of the plate 

are insulated, so that heat flow takes place only in the xoy-plane and not along the 

normal to xoy-plane.

Let us now consider the heat flow in an element of the plate in the form of a small 

rectangle ABCD, the coordinates of the vertices of which are shown in Fig. 3C.1. Let 

u and u + Du be the temperatures of this element at times t and t + Dt respectively.

Therefore increase in temperature in the element in Dt time = Du.
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y

( , + )x y yD

R1

R4

R2

R3

C x x y y( + , + )D D

A x y( , ) B x x y( + , )D

0
x

D

Fig. 3C.1

Therefore increase of heat in the element in Dt time =(specific heat) (mass of the 

element) (increase in temperature) [by a law of thermodynamics] = c(rh Dx Dy) Du.

Therefore rate of increase of heat in the element at time t is

  = r
∂

D D ◊
∂

u
h c x y

t
 (1)

Let R1 and R3 be the rates of inflow of heat into the element through the sides AD 

and AB respectively at time t.

Let R2 and R4 be the rates of outflow of heat from the element through the sides 

BC and DC respectively at time t.

Therefore rate of increase of heat in the element at time t is

  = R1 – R2 + R3 – R4

  = 
+D

È ˘È ˘∂ ∂Ê ˆ Ê ˆ
- D - - DÍ ˙Í ˙Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂Í ˙Î ˚ Î ˚

( ) ( )

x x x

u u
k h y k h y

x x

  

+D

È ˘ È ˘Ê ˆ Ê ˆ∂ ∂Í ˙ Í ˙+ - D - - DÁ ˜ Á ˜∂ ∂Ë ¯ Ë ¯Í ˙ Í ˙Î ˚ Î ˚
( ) ( )

y y y

u u
k h y k h x

y y

by a law of thermodynamics. (For explanation, sec the derivation of one dimensional 

heat flow equation in Chapter 3(B)

  = 
y y yx x x

u uu u

y yx x
hk x y

x y

+D+D

È ˘Ï ¸Ê ˆ Ê ˆ∂ ∂Ï ¸∂ ∂Ê ˆ Ê ˆ -Í ˙Ô Ô- Á ˜ Á ˜Ô ÔÁ ˜ Á ˜ ∂ ∂Ë ¯ Ë ¯Ë ¯ Ë ¯∂ ∂Í ˙Ô Ô Ô ÔD D +Ì ˝ Ì ˝Í ˙D DÔ Ô Ô ÔÍ ˙
Ô Ô Ô ÔÍ ˙Ó ˛ Ó ˛Î ˚

  (2)

Equating (1) and (2), we get

 
u

t

∂

∂
 = 

y y yx x

u uu u

y yx xk

c x yr

+D+D

È ˘Ï ¸Ê ˆ Ê ˆ∂ ∂Ï ¸∂ ∂Ê ˆ Ê ˆ -Í ˙Ô Ô- Á ˜ Á ˜Ô ÔÁ ˜ Á ˜ ∂ ∂Ë ¯ Ë ¯Ë ¯ Ë ¯∂ ∂Í ˙Ô Ô Ô Ô+Ì ˝ Ì ˝Í ˙D DÔ Ô Ô ÔÍ ˙
Ô Ô Ô ÔÍ ˙Ó ˛ Ó ˛Î ˚

 (3)

Equation (3) gives the temperature distribution at time t in the element ABCD of the 

plate.



Transforms and Partial Differential Equations
5-152

Taking limits as Dx Æ 0 and Dy Æ 0 in (3), we get the equation that gives the 

temperature at the point A(x, y) at time t.

Thus the partial differential equation, representing variable temperature distribution 

in a two dimensional plate or variable heat flow in two dimensions is

 
u

t

∂

∂
 = 

2 2

2 2

k u u

c x yr

Ê ˆ∂ ∂
+Á ˜∂ ∂Ë ¯

Since 
k

cr
 depends on the material of the plate and positive, we denote it by a2, which 

is called the diffusivity of the material of the plate.

Thus the equation of variable heat flow in two dimensional cartesians is

 
u

t

∂

∂
 = 

2 2

2

2 2

u u

x y

a

Ê ˆ∂ ∂
+Á ˜∂ ∂Ë ¯

  (4)

deduction

When steadystate conditions prevail in the plate, the temperature at any point of the 

plate does not depend on t, but depends on x and y only.

i.e. 
u

t

∂

∂
 = 0 in Eq. (4)

Thus steadystate temperature distribution in a two plate is given by 
2 2

2 2
0

u u

x y

∂ ∂
+ =

∂ ∂
, 

which is the familiar Laplace equation in two dimensional cartesians.

Note 

1.   If the surfaces of the plate are not insulated, heat flow will be along non-
planar curves, so that heat flow is three dimensional. In this case, the 
equation of heat flow will take the form

 
u

t

∂

∂
 = 

2 2 2
2

2 2 2

u u u

x y z
a

Ê ˆ∂ ∂ ∂
+ +Á ˜∂ ∂ ∂Ë ¯

2.   If heat flows along straight lines all parallel to x-axis, then R3 = 0 = R4. In 

this case, heat flow is one dimensional and Eq. (4) reduced to 

2
2

2

u u

t x
a

∂ ∂
=

∂ ∂
, 

which has been directly derived in Chapter 3(B).

3.   The following functions which occur in various branches of Applied 
Mathematics and Engineering satisfy Laplace equation D2u = 0.

    (i)  the temperature in the theory of thermal equilibrium of solids.

    (ii)  the gravitational potential in regions not occupied by attracting matter.
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   (iii)   the electrostatic potential in a uniform dielectric, in the theory of 
electrostatics.

   (iv)  the magnetic potential in free space, in the theory of magnetostatics.

   (v)   the electric potential, in the theory of the steady flow of electric current 
in solid conductors.

   (vi)   the velocity potential at points of a homogeneous liquid moving 
irrotationally in hydrodynamic problems.

3c.3  variaBle separaBle solutions of 
laplace equation

Laplace equation in two dimensional cartesians is

 
2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0  (1)

Let  u(x, y) = X(x) ·Y(y)  (2)

be a solution of Eq. (1), where X(x) is a function of x alone and Y(y) is a function  

o y alone.

Then  
∂ ∂

= = = =¢¢ ¢¢ ¢¢ ¢¢
∂ ∂

2 2 2 2

2 2 2 2

d d
and , where and

d d

u u X X
X Y XY X Y

x y x y
,  s a t i s fy  

Eq. (1).

i.e. X≤Y + XY ≤ = 0

i.e. 
¢¢X

X
 = 

¢¢

-

Y

Y
  (3)

The L.H.S. of (3) is a function of x alone and the R.H.S. is a function of y alone. They 

are equal for all values of the independent variables x and y. This is possible only if 

each is a constant.

\ 
¢¢X

X
 = 

¢¢
- =
Y

k
Y

, where k is a constant.

\ X≤ – kX = 0 (4)

and Y≤ + ky = 0  (5)

The nature of the solutions of (4) and (5) depends on the nature of values of k. 

Hence the following three cases arise:

Case (1)

k is positive. Let k = p2.

Then Eq. (4) and (5) become

 (D2 – p2)X = 0 and (D1
2 + p2)Y = 0
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where D  ∫ 
1

d d
and

d d
D

x y
∫

The solutions of these equations are X = Ae
px + Be

–px and Y = C cos py + 

D sin py.

Case (2)

k is negative. Let k = –p
2.

Then Eq. (4) and (5) become

 (D2 + p2)X = 0 and (D1
2 – p2)Y = 0

The solutions of these equations are X = A cos px + B sin px and Y = ce
py + De

–py.

Case (3)

k = 0.

Then Eq. (4) and (5) become

 
2

2

d

d

X

x

 = 0 and 
2

2

d
0

d

Y

y
= .

The solutions of these equations are

 X = Ax + B and Y = Cy + D

Since u(x, y) = X(x) ·Y(y) is solution of Eq. (1), the three mathematically possible 

solutions of Eq. (1) are

 u(x, y) = (Ae
px + B – px)(C cos py + D sin py)  (6)

 u(x, y) = (A cos px + B sin px)(Ce
py + De

–py)  (7)

and u(x, y) = (Ax + B)(Cy + D)  (8)

3c.4 choice of proper solution

Out of the three mathematically possible solutions derived, we have to choose that 

solution which is consistent with the given boundary conditions. We have already 

observed that Laplace equation represents steadystate heat flow in two dimensional 

plates in the form of rectangles or squares whose sides are parallel to the coordinate 

axes, that is, whose sides are x = 0, x = a, y = 0 and y = b.

Laplace Equation is readily solvable, that is, the arbitrary constants in the solutions 

can be easily found out, if three of the boundary values (either temperatures or 

gradients) prescribed on any three sides of the rectangle are zero each and the fourth 

boundary value is non-zero.

If the non-zero boundary value is prescribed either on x = 0 or on x = a (in which 

y is varying), that solution in which periodic functions in y occur will be the proper 

solution. That is, (6) will be the proper solution. It can be verified in individual problems 

that solutions (7) and (8) become trivial in such situations.
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If the non-zero boundary value if prescribed either on y = 0 or y = b (in which x is 

varying), that solution in which periodic functions in x occur will be the proper solution. 

That is, (7) will be the proper solution. It can be verified in individual problems that 

solutions (6) and (8) become trivial in such situations.

Thus we cannot choose a single solution as the appropriate solution in all situations. 

Invariably, solution (8) need not be considered, as it will result in a trivial solution. 

Solution (6) or (7) will be the suitable solution, according as non-zero boundary value 

is prescribed on the side x = k or y = k.

 Worked Examples 3C

proBlems on temperature distriBution in very 
long plates

Example 1

A rectangular plate with insulated surfaces is a cm wide and so long compared 

to its width that it may be considered infinite in length without introducing an 

appreciable error. If the two long edges x = 0 and x = a and the short edge at infinity 

are kept at temperature 0°C, while the other short edge y = 0 is kept at temperature  

(i) 
0
sin

n

u

a

p

 and (ii) T (constant). Find the steadystate temperature at any point  

(x, y) of the plate (Fig. 3C.2)

y

x
=

0

u = 0

x
a

=

y = 0

u f x= ( )

a x

u
=

0

u
=

0

0

Fig. 3C.2

The temperature u(x, y) at any point (x, y) of the plate in the steadystate is given 

by the equation

 

2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0 (1)

We have to solve Eq. (1) satisfying the following boundary conditions.

 u(0, y) = 0,  for all y > 0 (2)

 u(a, y) = 0,  for all y > 0 (3)

 u(x, •) = 0,  for 0 £ x £ a (4)

 u(x, 0) = f (x), for 0 £ x £ a (5)

where 3
0( ) sin

n
f x u

a

p

=  for (i) and f (x) = T for (ii).
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The three possible solutions of Eq. (1) are

 u(x, y) = (Ae
px + B – px)(C cos py + D sin py)  (6)

 u(x, y) = (A cos px + B sin px)(Ce
py + De

–py)  (7)

and u(x, y) = (Ax + B)(Cy + D)  (8)

By boundary condition (4), u Æ 0 when y Æ •. Of the three possible solutions, only 

Solution (7) can satisfy this condition. Hence we reject the other two solutions.

Rewriting (7), we have

 u(x, y)e–py = (A cos px + B sin px)(C + De
–2py)  (7)¢

Using boundary condition (4) in (7)¢, we have (A cos px + B sin px)C = 0, for  

0 £ x £ a.

\ C = 0

Using boundary condition (2) in (7), we have

 A ·D ·e–py = 0, for all y > 0

\ Either A = 0 or D = 0

If we assume that D = 0, we get a trivial solution.

\ A = 0

Using boundary condition (3) in (7), we have

 B sin pa ·De
–py = 0, for all y > 0

The assumption that B = 0 leads to a trivial solution.

\ sin pa = 0

\ pa = np  or  
n

p
a

p

=

where n = 0, 1, 2, ..., •.

Using these values of A, C and p in (7), it reduces to

 u(x, y) = /
sin

n y an x
e

a

pp
l

-

◊   (9)

where n = 0, 1, 2, ..., •.

The most general solution of Eq. (1) [got by superposing all the solutions in (9) except 

the one corresponding to n = 0] is

 u(x, y) = 

1

sin

n y

a
n

n

n x
e

a

p
p

l

•
-

=

Â   (10)
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Using boundary condition (5) in (10), we have

 sin
n

n x

a

p
lÂ  = f (x)  in (0, a)  (11)

 (i) 3
0( ) sin

x
f x u

a

p

=

  = 0 3
3sin sin

4

u x x

a a

p pÊ ˆ
-Á ˜Ë ¯

Using this form of f (x) in (11) and comparing like terms, we get

 l1 = 0 0
3

3
,

4 4

u u

l = -  and l2 = 0 = l4 = l5 = ...

Using these values of ln in (10), the required solution is

 u(x, y) = / 3 /0 0
3 3

sin sin
4 4

y a y a
u ux x

e e
a a

p p
p p

- -

-

 (ii) f (x) = T in (0, a)

Let the fourier half-range sines series of f (x) in (0, a) be 
1

sin
n

n

n x
b

a

p
•

=

Â .

Using this form of f (x) in (11) and comparing like terms, we get

 ln = 

0

2
sin d

a

n

n x
b T x

a a

p

= Ú

  = 

0

cos
2

a

n x

T a

na

a

p

p

Ê ˆ
Á ˜
-Á ˜

Á ˜
Ë ¯

  = 
2

{1 ( 1) }
nT

np
- -

  = 

4
, if is odd

0, if is even

T
n

n

n

p

Ï
Ô
Ì
Ô
Ó

Using this value of ln in (10), the required solution is

 u(x, y) = 
1

4 1 (2 1)
sin exp{ (2 1) / }

2 1
n

T n x
n y a

n a

p

p

p

•

=

-
- -

-
Â

Example 2

An infinitely long metal plate in the form of an area is enclosed between the lines  

y = 0 and y = p for positive values of x. The temperature is zero along the edges  

y = 0, y = p and the edge at infinity. If the edge x = 0 is kept at temperature ky, find 

the steadystate temperature distribution in the plate (Fig. 3C.3)
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y

x = 0

y = p

y = 0

0 x

u = 0

u = 0

u ky=

u = 0

Fig. 3C.3

The steadystate temperature u(x, y) at any point (x, y) of the plane is given by the 

equation

 

2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0  (1)

We have to solve Eq. (1) satisfying the following boundary conditions.

 u(x, 0) = 0,  for all x > 0  (2)

 u(x, p) = 0,  for all x > 0  (3)

 u(•, p) = 0,  for 0 £ y £ p  (4)

 u(0, y) = ky, for 0 £ y £ p  (5)

Of the three possible solutions of Eq. (1), the solution

 u(x, y) = (Ae
px + Be

–px)(C cos py + D sin py)  (6)

can satisfy the boundary condition (4). Rewriting (6), we have

 u(x, y)e–py = (A + Be
–2px)(C cos py + D sin py)  (6¢)

Using boundary condition (4) in (6¢), we have

 A(C cos py + D sin py) = 0,  for 0 £ y £ p

\ A = 0

Using boundary condition (2) in (6), we have

 B.Ce
–px = 0,  for all x > 0

\ Either B = 0  or  C = 0

If we assume that B = 0, we get a trivial solution.

\ C = 0
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Using boundary condition (3) in (6), we have

 Be
–px ·D sin pp = 0, for all x > 0

\ B = 0, D = 0  or  sin pp = 0

The values B = 0 and D = 0 lead to trivial solution.

\ sin pp = 0

\ p = n

where n = 0, 1, 2, 3, ..., •.

Using these values of A, C and p in (6), it reduces to

 u(x,y) = le
–nx · sin  ny

where n = 0, 1, 2, ..., •.

Therefore the most general solution of Eq. 1 is

 u(x, y) = 
1

sin
nx

n

n

e nyl

•
-

=

Â   (7)

Using boundary condition (5) in (7), we have

 
1

sin
n

n

nyl

•

=

Â  = ky in (0, p)

  = sinnb nyÂ

which is the Fourier half-range sine series of ky in (0, p). Computing like terms in 

the two series, we get

 ln = 

0

2
sin dnb ky ny y

p

p

= Ú

  = 
2

0

2 cos sink ny ny
y

n n

p

p

È ˘- -Ê ˆ Ê ˆ
-Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

  = 12
( 1)

nk

n

+
-

Using this value of ln (7), the required solution is

 u(x, y) = 
1

1

( 1)
2 sin

n
nx

n

k e ny
n

+•
-

=

-
Â
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Example 3

A long rectangular plate with insulated surface is 1 cm wide. If the temperature along 

one short edge (y = 0) is u(x, 0) = k(lx – x2) degrees, for 0 < x < l, while the two long 

edge x = 0 and x = l as well as the other short edge are kept of 0°C, find the steadystate 

temperature function u(x, y).

The steadystate temperature u(x, y) at any point (x, y) of the plate is given by the 

equation

 
2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0  (1)

We have to solve Eq. (1), satisfying the following boundary conditions.

 u(0, y) = 0,     for all y > 0  (2)

 u(l, y) = 0,     for all y > 0  (3)

 u(x, •) = 0,     for 0 £ x £ l  (4)

 u(x, 0) = k(lx – x2 ),  for 0 £ x £ l  (5)

Proceeding as in Example 1, most general solution of Eq. (1) can be obtained as

 u(x, y) = /

1

sin
n y l

n

n

n x
e

l

pp
l

•
-

=

◊Â   (6)

Using boundary condition (5) in (6), we have

 
1

sin
n

n

n x

l

p
l

•

=

Â  = k(lx – x2) in (0, l)

  = 

1

sin
n

n

n x
b

l

p
•

=

Â

which is the Fourier half-range sine series of k(lx – x2) in (0, l).

Comparing like terms, we have

 ln = 2

0

2
( )sin d

l

n

n x
b k lx x x

l l

p

= -Ú

  = 2

2 2 3 3

2 3
0

cos sin cos
2

( ) ( 2 ) ( 2)

l

n x n x n x

k l l l
lx x l x

nl n n

l l l

p p p

p p p

È ˘Ê ˆ Ê ˆÊ ˆÍ ˙Á ˜ Á ˜Á ˜Í ˙Á ˜ Á ˜- - - - - + -Á ˜Í ˙Á ˜ Á ˜Á ˜Í ˙Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚
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  = 
2

3 3

4
{1 ( 1) }

nkl

n p

- -

  = 

2

3 3

8
, if is odd

0, if is even

kl
n

n

n

p

Ï
Ô
Ì
Ô
Ó

Using this value of ln (6), the required solution is

 u(x, y) = 
2

3 3
1

8 1 (2 1)
sin exp{ (2 1) / }

(2 1)n

kl n x
n y l

ln

p

p

p

•

=

-
- -

-
Â

Example 4

A rectangular plate with insulated surfaces is 20 cm wide and so long compared to its 

width that it may be considered infinite in length without introducing an appreciable 

error. If the temperature of the short edge x = 0 is given by

 u = 10 y,    for 0 £ y £ 10

  = 10(20 – y), for 10 £ y £ 20

and the two long edges as well as the other short edge are kept at 0°C, find the 

steadystate temperature distribution in the plate.

The steadystate temperature u(x, y) at any point (x, y) of the plate is given by the 

equation

 
2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0  (1)

We have to solve Eq. (1), satisfying the following boundary conditions.

 u(x, 0) = 0,  for all x > 0  (2)

 u(x, 20) = 0,  for all x > 0  (3)

 u(• , y) = 0,  for 0 £ y £ 20  (4)

 u(0, y) = f (y), for 0 £ y £ 20  (5)

where f (y) = 
10 , in 0 10

10(20 ), in 10 20

y y

y y

£ £Ï
Ì

- £ £Ó

Proceeding as in Example 2, the most general solution of Eq. (1) can be obtained as

 u(x, y) = /20

1

sin
20

n x

n

n

n y
e

p p
l

•
-

=

Â   (6)

Using boundary condition (5) in (6), we have in (0, 20) sin
20

n

n y
b

p

= Â

 
1

sin
20

n

n

n yp
l

•

=

Â  = f (y)

which is the Fourier half-range since series of f (y) in (0, 20).
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Comparing like terms, we get

 ln = 

20

0

2
( )sin d

20 20
n

n y
b f y y

p

= Ú

  = 

10 20

0 10

sin d (20 )sin d
20 20

n y n y
y y y y

p p

+ -Ú Ú

  = 

10

2 2

2

0

cos sin
20 20

20 20

n y n y

y
n n

p p

p p

ÈÏ ¸Ê ˆÊ ˆÍÔ Ô- -Á ˜Í Á ˜Ô ÔÁ ˜-Ì ˝Í Á ˜
Á ˜Ô ÔÍ Á ˜ Á ˜Ë ¯Ô ÔÍ Ë ¯Ó ˛Î

  

p p

p p

˘Ï ¸Ê ˆÊ ˆ ˙Ô Ô- -Á ˜Á ˜ ˙Ô ÔÁ ˜+ - -Ì ˝ ˙Á ˜
Á ˜Ô Ô ˙Á ˜ Á ˜Ë ¯Ô ÔË ¯ ˙Ó ˛ ˚

20

2 2

2
10

cos sin
20 20

(20 ) 1

20 20

n y n y

y
n n

  = 
2 2 2 2

200 400 200 400
cos sin cos sin

2 2 2 2

n n n n

n nn n

p p p p

p pp p

È ˘Ï ¸ Ï ¸
- + + +Ì ˝ Ì ˝Í ˙

Ó ˛ Ó ˛Î ˚

  = 
2 2

800
sin

2

n

n

p

p

Using this value of ln in (6), the required solution is

 u(x, y) = 
2 2

1

800 1
sin exp( /20)sin

2 20
n

n n y
n x

n

p p

p

p

•

=

-Â   or

 u(x, y) = 
1

2 2
1

800 ( 1) (2 1)
exp{ (2 1) /20)sin

20(2 1)

n

n

n y
n x

n

p

p

p

+•

=

- -
- -

-
Â

Example 5

A plate is in the form of the semi-infinite strip 0 £ x £ l, 0 £ y £ •. The edges x = 0 

and x = l are insulated. The edge y = 0 is kept at temperature

 (i) 
3 4

2cos 3cos
x x

l l

p p

+  and 

 (ii) kx, 0 £ x £ l.

Find the steadystate temperature distribution in the plate (Fig. 3C.4).

The temperature u(x, y) at any point (x, y) of the plate in the steadystate is given 

by the equation

 
2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0  (1)

We have to solve Eq. (1) satisfying the following boundary conditions.
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y
u = 0

y = 0

u f x= ( ) 1 x0

x = 1

= 0
∂u

∂x

x = 0

= 0
∂u

∂x

Fig. 3C.4

 (0, )
u

y
x

∂

∂
 = 0,  for all y > 0  (2)

 ( , )
u

l y
x

∂

∂
 = 0,  for all y > 0 (3)

 u(x, •) = 0,  for 0 £ x £ l (4)

 u(x, 0) = f (x), for 0 £ x £ l  (5)

where f (x) = 
3 4

2cos 3cos
x x

l l

p p

+  for (i) and

 f (x) = kx for (ii)

Note 
When an edge is insulated, the temperature gradient at all points on that 
edge is zero, that is, the derivative of u with respect to the variable along the 
perpendicular to that edge is zero.

Though the boundary condition in the edge at infinity is not specified, we 
assume that the temperature in that edge is kept at zero.

Of the three mathematically possible solutions of Eq. (1), the solution

 u(x, y) = (A cos px + B sin px) (Ce
py + De

–py) (6)

is the proper solution, as it alone can satisfy the boundary condition (4).

Rewriting (6), we have

 u(x, y)e–py = (A cos px + B sin px) (C + De
–2py)  (6)¢

Using boundary condition (4) in (6)¢, we have

 c = 0

Using this value of C in (6), it reduces to

 u(x, y) = (A cos px + B sin px)De
–py

 (7)
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Differentiating (7) partially with respect to x, we have

 ( , )
u

x y
x

∂

∂
 = p(–A sin px + B cos px)De

–py  (8)

Using boundary condition (2) in (8), we have p.B.D e
–py = 0, for all y > 0.

\ p = 0 or B = 0 or D = 0

If we assume that p = 0 and D = 0, we get trivial solutions.

\ B = 0

Using boundary condition (3) in (8), we have

 –p.A sin pl.De
–py = 0, for all y > 0

The values p = 0, A = 0 and D = 0 lead to trivial solutions.

\ sin pl = 0

\ pl = np or 
n

p
l

p

= , where n = 0, 1, 2, ..., •.

Using the values of B, C and p in (6), it reduces to

 u(x, y) = /
cos

n y ln x
e

l

pp
l , where l = AD and n = 0, 1, 2, ..., •.

Therefore the most general solution of Eq. (1) is

 u(x,y) = /

0

cos
n y l

n

n

n x
e

l

pp
l

•
-

=

Â   (9)

Note 
The solution corresponding to n = 0 is non-trivial and hence it is to be included 
in the general solution.

Using boundary condition (5) in (9), we have

 
0

cos
n

n

n x

l

p
l

•

=

Â  = f (x) in 0 £ x £ l  (10)

(i)  
3 4

( ) 2cos 3cos
x x

f x
l l

p p

= +

Using this value of f (x) in (10) and comparing like terms, we get

 l4 = 2, l4 = 3 and l0 = 0 = l1 = l2 = l5 = l6 = ...

Using these values of ln in (9), the required solution is

 u(x, y) = 3 / 4 /3 4
2cos 3cos

y l y lx x
e e

l l

p p
p p

- -
+
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(ii)  f (x) = kx in (0, l)

=  0

1

cos
2

n

n

a n x
a

l

p
•

=

+Â , which is the Fourier half-range cosine series of kx in  

(0, l).

Using this form of f (x) in (10) and comparing like terms, we get

 ln = 
0

2
cos d

l

n

n x
a kx x

l l

p

= Ú

  = 

p p

p p

È ˘Ê ˆÊ ˆÍ ˙Á ˜Á ˜Í ˙Á ˜- -Á ˜Í ˙Á ˜Á ˜Í ˙Á ˜Ë ¯ Ë ¯Î ˚

2 2

2

0

sin cos
2

l

n x n x

k l l
x

nl n

l l

  = 
2 2

2
{( 1) 1}

nkl

n p

- -

  = 2 2

4
, if is odd

0, if is even

kl
n

n

n

p

Ï
-Ô

Ì
Ô
Ó

Also 0

0

0

1 2
d

2 2 2

l
a kl

kx x
l

l = = ¥ =Ú .

Using these values of l0 and ln in(9), the required solution is

u(x, y) = 
2 2

1

4 1 (2 1)
cos exp{ (2 1) / }

2 (2 1)n

kl kl n x
n y l

ln

p

p

p

•

=

-
- ◊ - -

-
Â

Example 6

A plate is in the form of the semi-infinite strip 0 £ x £ •, 0 £ y £ l. The surface of the 

plate and the edge y = l are insulated. If the temperatures along the edge y = 0 and the 

short edge at infinity are kept at temperature 0°C, while the temperature along the 

other short edge is kept at temperature T°C, find the steady temperature distribution 

in the plate (Fig. 3C.5).

y

x = 0

y = 00 x

u = 0
u T=

u = 0

∂u

y∂
= 0

y = l

Fig. 3C.5
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The temperature u(x, y) at any point (x, y) of the plate in the steadystate is given 

by the equation

 

2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0  (1)

We have to solve Eq. (1), satisfying the following boundary conditions.

 u(x, 0) = 0, for all x > 0  (2)

 ( , )
u

x l
y

∂

∂
 = 0, for all x > 0  (3)

 u(•, y) = 0, for 0 £ y £ l  (4)

 u(0, y) = T, for 0 £ y £ l  (5)

As u(x, y) = 0 when x Æ •, as per boundary condition (4), the proper solution of  

Eq. (1) is

 u(x, y) = (Ae
px + Be

–px)(C cos py + D sin py)  (6)

Rewriting (6), we have

 u(x, y) ·e–px = (A + Be
–2px)(C cos py + D sin py)  (6)¢

Using boundary condition (4) in (6)¢, we have

 A · (C cos py + D sin py) = 0, for 0 £ y £ l

\ A = 0

Using this value of A in (6), it reduces to

 u(x, y) = Be
–px(C cos py + D sin py)  (7)

Using boundary condition (2) in (7), we have

 Be
–px ·C = 0, for all x > 0

\ Either B = 0 or C = 0

If we assume that B = 0,we get a trivial solution.

\ C = 0

Using this value of C in (7), it reduces to

 u(x, y) = B De
–px sin py  (8)

Differentiating (8) partially with respect to y, we get

 ( , )
u

x y
y

∂

∂
 = B Dp ·e–px cos py  (8)¢
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Using boundary condition (3) in (8)¢, we have

 B Dpe
–px cos pl = 0

As B π 0, D π 0, p π 0, cos pl = 0

\ pl = (2 1)
2

n

p

-

\ p = 
(2 1)

2

n

l

p-

where n = 1, 2, 3, ..., •.

Using this value of p in (8), it becomes

 u(x, y) = (2 1) /2 (2 1)
sin

2

n x l n y
e

l

p p
l

- -

-

◊

where n = 1, 2, 3, ..., •.

Therefore the most general solution of Eq. (1) is

 u(x, y) = (2 1) /2
2 1

1

(2 1)
sin

2

n x l
n

n

n y
e

l

p p
l

•
- -

-

=

-
◊Â   (9)

Using boundary condition (5) in (9), we have

 2 1

1

(2 1)
sin

2
n

n

n y

l

p
l

•

-

=

-
Â  = T in (0, l)

 l2n – 1 = 
0

2 (2 1)
sin d

2

l
n y

T y
l l

p-
Ú

  = 

p

p p

-È ˘
Í ˙
- =Í ˙

- -Í ˙
Í ˙Î ˚ 0

(2 1)
cos

2 42

(2 1) (2 1)

2

l
n y

T Tl
nl n

l

Using this value of l2n – 1 in (9), the required solution is

 u(x, y) = 

1

4 1 (2 1)
exp{ 2 1) /2 }sin

2 1 2n

T n y
n x l

n l

p

p

p

•

=

-
- -

-
Â

proBlems on temperature distriBution in finite plates

Example 7

Find the steadystate temperature distribution in a rectangular plate of sides a 

and b, which is insulated on the lateral surface and three of whose edges x = 0, 

x = a, y = b are kept at zero temperature, if the temperature in the edge y = 0 is  

(i) 
2 3

3sin 2sin
x x

a a

p p

+  and (ii) kx(a – x)(Fig. 3C.6).
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y

x = 0

y = b

y f x= ( )

0 x

u = 0

u = 0

u = 0

u = 0
x a=

Fig. 3C.6

The temperature u(x, y) at any point (x, y) of the plate in the steadystate is given 

by the equation

 

2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0 (1)

We have to solve Eq. (1), satisfying the following boundary conditions.

 u(0, y) = 0,  for 0 £ y £ b  (2)

 u(a, y) = 0,  for 0 £ y £ b  (3)

 u(x, b) = 0,  for 0 £ y £ a  (4)

 u(x, 0) = f (x), for 0 £ x £ a  (5)

where 
2 3

( ) 3sin sin
x x

f x
a a

p p

= +  for (i) and f (x) = kx(a – x) for (ii)

The three mathematically possible solutions of Eq. (1) are

 u(x, y) = (Ae
px + Be

–px)(C cos py + D sin py)  (6)

 u(x, y) = (A cos px + B sin px) (Ce
py + De

–py) (7)

 u(x, y) = (Ax + B)(Cy + D)  (8)

Using boundary conditions (2) and (3) in solution (6), we get

 A + B = 0

and  Ae
pa + Be

–pa = 0

Solving these equations we get A = 0 = B, which lead to a trivial solution. Similarly, we 

will get a trivial solution if we use the boundary conditions in (8). Hence the suitable 

solution for the present problem is solution (7).

Note 
This conclusion is in accordance with the discussion on the choice of proper 
solution seen already.

Using boundary condition (2) in (7), we have

 A(Ce
py + De

–py) = 0, for 0 £ y £ b

 A = 0
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Using boundary condition (3) in (7), we have

 B sin pa(Ce
py + De

–py) = 0, for 0 £ y £ b

\ Either B = 0 or sin pa = 0

If B is taken as zero, we get a trivial solution

\ sin pa = 0

\ pa = np or 
n

p
a

p

=

where n = 0, 1, 2, ..., •

Using boundary condition (4) in (7), we have

 B sin px(Ce
pb + De

–pb) = 0, for 0 £ x £ a

As B π 0, Ce
pb + De

–pb = 0

or D = –Ce
2pb

Using these values of A, D and p in (7), it reduces to

 u(x, y) = 

p p p

p -Ï ¸Ô Ô
- ◊Ì ˝

Ô ÔÓ ˛

2

sin

n y n b n y

a a a
n x

BC e e e
a

  = 
( ) ( )

/
( )sin

n n
y b y b

n b a a a
n x

BCe e e
a

p p

p
p - -Ï ¸Ô Ô

-Ì ˝
Ô ÔÓ ˛

  = sin sinh ( )n

n x n
y b

a a

p p
l -  where n = 0, 1, 2, ...,•  and

 ln = 2 BCe
npb/a

Therefore the most general solution of Eq. (1) is

 u(x, y) = 
1

sin sinh ( )n

n

n x n
y b

a a

p p
l

•

=

-Â   (9)

Using boundary conditions (5) in (9), we have

 
1

sinh sin
n

n

n b n x

a a

p p
l

•

=

Ê ˆ
-Á ˜Ë ¯Â  = f (x)  (10)

(i)  
2 3

( ) 3sin 2sin
x x

f x
a a

p p

= +

Using this value of f (x) in (10) and comparing like terms, we get

 
2

2
sinh

b

a

p
l-  = 3

3
3, sinh 2

b

a

p
l- =  and l1 = l4 = l5 = ... = 0
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Using these values of ln in (9), the required solution is

 u(x, y) = 
p p p

- -

2 2 2
3 cosech sin sinh ( )

b x
y b

a a a

  
p p p

- -

3 3 3
2cosech sin sinh ( )

b x
y b

a a a

or u(x, y) = 
2 2 2

3cosech sin sinh ( )
b x

b y
a a a

p p p

-

  
3 3 3

2 cosech sin sinh ( )
b x

b y
a a a

p p p

+ -

(ii)  f (x) = kx(a – x) in (0, a)

Let the Fourier half-range sine series of

  

1

( ) in (0, ) be sinn

n

n x
f x a b

a

p
•

=

Â

Using this form of f (x) in (10) and comparing like terms, we get

 sinh
n

n b

a

p
l-  = 

0

2
( )sin d

a

n

n x
b kx a x x

a l

p

= -Ú

  = 2

2 2

2

cos sin
2

( ) ( 2 )

n x n x

k a a
ax x a x

na n

a a

p p

p p

È Ê ˆÊ ˆÍ Á ˜Á ˜Í Á ˜- - - - -Á ˜Í Á ˜Á ˜Í Á ˜Ë ¯ Ë ¯Î

  

p

p p

Ê ˆ
Á ˜
Á ˜+ - = - -
Á ˜
Á ˜Ë ¯

2

3 3 3 3

3

cos
4

( 2) {1 ( 1) }
n

n x

kaa

n n

a

 ln = 

2

3 3

8
cosech , if is odd

0, if is even

ka n b
n

an

n

p

p

Ï
-Ô

Ì
Ô
Ó

Using this value of ln in (9), the required solution is

 u(x, y) = 
p p

p

•

=

- -
◊

-
Â

2

3 3
1

8 1 (2 1) (2 1)
cosech sin

(2 1)n

ka n b n x

a an

  
(2 1) ( )

sinh
n b y

a

p- -

Example 8
A square plate of length 20 cm has its faces insulated and its edges along x = 0, 

x = 20, y = 0 and y = 20. If the temperature along the edge x = 20 is given by
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 u = 
10

T
y ,    for 0 £ y £ 10

  = (20 )
10

T
y- , for 10 £ y £ 20

while the other three edges are kept at 0°C, find the steadystate temperature distribution 

in the place (Fig. 3C.7).

x = 0
u = 0

y = 20

x = 20
u f y= ( )

y = 0

u = 0

u = 0
0

x

y

Fig. 3C.7

The steadystate temperature u(x, y) at any point (x, y) of the plate is given by the 

equation

 

2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0  (1)

We have to solve Eq. (1), satisfy the following boundary conditions.

 u(x, 0) = 0,  for 0 £ x £ 20  (2)

 u(x, 20) = 0,  for 0 £ x £ 20  (3)

 u(0, y) = 0,  for 0 £ y £ 20  (4)

 u(20, y) = f (y), for 0 £ y £ 20  (5)

Since non-zero temperature is prescribed on the edge x = 20 in which y is varying, 

the proper solution of Eq. (1) is

 u(x, y) = (Ae
px + Be

–px) (C cos py + D sin py)  (6)

Using boundary condition (2) in (6), we have

 (Ae
px + Be

–px) C = 0, for  0 £ x £ 20

\ C = 0

Using boundary condition (3) in (6), we have

 (Ae
px + Be

–px) ·D sin 20 p = 0, for  0 £ x £ 20

\ Either D = 0 or sin 20 p = 0

If D = 0, we get a trivial solution.
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\ sin 20 p = 0

\ 20 p = np or 
20

n
p

p

=

where n = 0, 1, 2, ..., •.

Using boundary condition (4) in (6), we have

 (A + B)D sin py = 0, for 0 £ y £ 20

As D π 0, A + B = 0 or B = –A

Using these values of B, C and p in (6), it reduces to

 u(x, y) = 20 20 sin
20

n x n y
n y

AD e e

p p

p-Ê ˆ
-Á ˜Á ˜Ë ¯

or u(x,y) = sinh sin
20 20

n x n yp p
l , where n = 0, 1, 2, ..., •.

Therefore the most general solution of Eq. (1) is

 u(x, y) = 

1

sinh sin
20 20

n

n

n x n yp p
l

•

=

Â   (7)

Using boundary condition (5) in (7), we have

 
1

( sinh )sin
20

n

n

n y
n

p
l p

•

=

Â  = f (y) in (0, 20) = 
1

sin
20

n

n

n y
b

p
•

=

Â

which is the Fourier half-range sine series of f (y) in (0, 20).

Comparing like terms, we get

 ln sinh np = 

20

0

2
( )sin d

20 20
n

n y
b f y y

p

= Ú

  = 

10 20

0 10

sin d (20 )sin d
100 20 20

T n y n y
y y y y

p p
È ˘

◊ + -Í ˙
Í ˙Î ˚
Ú Ú

  = 

10

2 2

2

0

cos sin
20 20

100

20 20

n y n y

T
y

n n

p p

p p

ÈÏ ¸Ê ˆÊ ˆÍÔ ÔÁ ˜Í Á ˜Ô ÔÁ ˜- - -Ì ˝Í Á ˜
Á ˜Ô ÔÍ Á ˜ Á ˜Ë ¯Ô ÔÍ Ë ¯Ó ˛Î

  

p p

p p

˘Ï ¸Ê ˆÊ ˆ ˙Ô ÔÁ ˜Á ˜ ˙Ô ÔÁ ˜+ - - - - -Ì ˝ ˙Á ˜
Á ˜Ô Ô ˙Á ˜ Á ˜Ë ¯Ô ÔË ¯ ˙Ó ˛ ˚

20

2 2

2
10

cos sin
20 20

(20 ) ( 1)

20 20

n y n y

y
n n
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  = 
p p

p p

ÈÊ ˆ
- +ÍÁ ˜Ë ¯Î 2 2

200 400
cos sin

100 2 2

T n n

n n

  
p p

p p

˘Ê ˆ
+ + ˙Á ˜Ë ¯ ˚2 2

200 400
cos sin

2 2

n n

n n

  = 
2 2

8
sin

2

T n

n

p

p

\ ln = 
2 2

8
sin cosech

2

T n
n

n

p

p

p

Using this value of ln in (7), the required solution is

 u(x, y) = 
2 2

8 1
sin cosech sinh sin

2 20 20

T n n x n y
n

n

p p p

p

p

◊Â

or u(x, y) = 
1

2 2
1

8 ( 1)
cosech (2 1)

(2 1)

n

n

T
n

n

p

p

+•

=

-
-

-
Â

  
(2 1) (2 1)

sinh sin
20 20

n x n yp p- -

Example 9

If a square plate is bounded by the lines x = ± a and y = ± a and three of its edges are 

kept at temperature 0°C, while the temperature along the edge y = a is kept at u = x + 

a, –a £ x £ a, find the steadystate temperature in the plate (Fig. 3C.8).

x a= –
u = 0

y a=

u x a= +

(– , – )a a

x a=
u = 0

y a= –
u = 0

0 x

y

  
0

x

y

X a= 2

u = 0

Y a= 2

u = X

X = 0
u = 0

Y = 0
u = 0

Fig. 3C.8            Fig. 3C.9

In Examples 7 and 8, we have observed that the arbitrary constants in the appropriate 

solution of the Laplace equation can be readily found out, only if two adjacent edges of 

the square (or rectangle) are taken as coordinate axes. As this condition is not satisfied 

in the present problem, we shift the origin to the point (–a, –a), so that two adjacent 

edges may lie along the coordinate axes in the new system (Fig. 3C.9).
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The transformation equations are

 x = X – a

 y = Y – a

The equations of the edges are X = 0, X = 2a, Y = 0 and Y = 2a in the new system.

Let us work out the problem with reference to the new system. The steadystate 

temperature u(X, Y) at any point (X, Y) of the plate is given by the equation

 
2 2

2 2

u u

X Y

∂ ∂
+

∂ ∂
 = 0  (1)

We have to solve Eq. (1), satisfying the following boundary conditions.

 u(0, Y) = 0, for 0 £ Y £ 2a  (2)

 u(2a, Y) = 0, for 0 £ Y £ 2a  (3)

 u(X, 0) = 0, for 0 £ X £ 2a  (4)

 u(X, 2a) = X, for 0 £ X £ 2a  (5)

Since non-zero temperature is prescribed on the edge Y = 2a, in which X is varying, 

the proper solution of equation (1) is

 u(X, Y) = (A cos pX + B sin pX) (Ce
pY + De

–pY) (6)

Using boundary conditions (2) in (6), we have

 A(Ce
pY + De

–pY) = 0, for 0 £ Y £ 2a

\ A = 0

Using boundary condition (3) in (6), we have

 B sin 2 pa (Ce
pY + De

–pY) = 0, for 0 £ Y £ 2a

\ Either B = 0  or  sin 2 pa = 0

If B = 0, we get a trivial solution and so B π 0

\ sin 2 pa = 0

\ 2pa = np  or  
2

n
p

a

p

= , where n = 0, 1, 2, ..., •.

Using boundary condition (4) in (6), we have

 B sin pX(C + D) = 0, for 0 £ X £ 2a

As B π 0, we get C + D = 0  or  D = –C
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Using these values A, D and p in (6), it reduces to

 u(X, Y) = BC
n X

a
e e
n Y a n Y a

sin
/ /p

p p

2

2 2
-{ }-

  = sin sinh
2 2

n X n Y

a a

p p
l , where l = 2BC

and n = 0, 1, 2, ..., •.

Therefore the most general solution of Eq. (1) is

 u(X, Y) = 
1

sin sinh
2 2

n

n

n X n Y

a a

p p
l

•

=

Â   (7)

Using boundary condition (5) in (7), we have

 
1

( sinh )sin
2

n

n

n X
n

a

p
l p

•

=

Â  = X in (0, 2a)

  = 
1

sin
2

n

n

n X
b

a

p
•

=

Â

which is the Fourier half-range sine series of X in (0, 2a).

Comparing like terms in the two series, we get

 ln sinh np = 

2

0

2
sin d

2 2

a

n

n X
b X X

a a

p

= Ú

  = 

2

2 2

2

0

cos sin
1 2 2

2 4

a

n X n X

a a
X

na n

a a

p p

p p

È ˘Ê ˆÊ ˆÍ ˙- -Á ˜Á ˜Í ˙Á ˜-Á ˜Í ˙Á ˜Á ˜Í ˙Á ˜Ë ¯ Ë ¯Î ˚

  = 
4

cos
a

n

n

p

p

-

\ ln = 14
( 1) cosech

n
a

n

n

p

p

+
-

Using this value of ln in (7), the required solution with reference to the new system 

is

 u(X, Y) = 
1

1

4 ( 1)
cosech sin sinh

2 2

n

n

a n X n Y
n

n a a

p p

p

p

+•

=

-
◊Â

With reference to the old system, the required solution is

 u(x, y) = 
1

1

4 ( 1)
cosech sin ( ) sinh ( )

2 2

n

n

a n n
n x a y a

n a a

p p

p

p

+•

=

-
◊ + ◊ +Â
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Example 10

A rectangular place is bounded by the lines x = 0, x = a, y = 0 and y = b. Its surfaces 

are insulated. The temperature along x = 0 and y = 0 are kept at 0°C and the others at 

100°C. Find the steadystate temperature at any point of the plate (Fig. 3C.10, 3C.11 

and 3C.12).

0 xy = 0

u = 0

x = 0

u = 0

y b=

u = 100

u = 100

x a=

y

 

y b=

u1 = 100

y

x = 0

u1 = 0 u1 = 100

x a=

0 xy = 0

u1 = 0  

y y b=

u2 = 100

u2 = 100

x a=

y = 0

u1 = 0

0 x

x = 0

u2 = 0

Fig. 3C.10      Fig. 3C.11       Fig. 3C.12

The steadystate temperature u(x, y) at any point (x, y) of the plate is given  by the 

equation

 

2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0  (1)

The corresponding boundary conditions are

 u(0, y) = 0,  for 0 £ y £ b  (2)

 u(a, y) = 100, for 0 £ y £ b  (3)

 u(x, 0) = 0,  for 0 < x < a (4) 

 u(x, b) = 100, for 0 < x < b  (5)

From previous examples, it is obvious that Eq. (1) is readily solvable, that is, the 

arbitrary constants in the proper solution of Eq. (1) can easily found out, only if three 

of the boundary values (temperatures along three of the edges) are zero each and the 

fourth boundary value (temperature along the fourth edge) in non-zero.

As two boundary values are non-zero each in this problem, we adopt a slightly 

modified procedure as explained below.

Let u(x, y) = u1(x, y) + u2(x, y)  (6)

Using (6) in (1), we get

 

2 2

1 2 1 22 2
( ) ( )u u u u

x y

∂ ∂
+ + +

∂ ∂
 = 0
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Separating the derivatives of u1 and those of u2 we have

 

2 2

1 1

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0  (7)

and 

2 2

2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0  (8)

We assume convenient boundary conditions for Eq. (7) [i.e. three zero and one 

non-zero boundary conditions] which are given below.

 u1(0, y) = 0,    for 0 £ y £ b  (9)

 u1(a, y) = 0,    for 0 £ y £ b  (10)

 u1(x, 0) = 0,    for 0 < x < a  (11)

 u1(x, b) = 100, for 0 < x < a  (12)

The boundary conditions for Eq. (8) are obtained by using (6) and the boundary 

conditions (2), (3), (4), (5) for u(x, y) and the boundary conditions (9), (10), (11), 

(12) for u1(x, y)

Thus
 u2(0, y) = 0,  for 0 £ y £ b  (13)

 u2(a, y) = 100, for 0 £ y £ b  (14)

 u2(x, 0) = 0,  for 0 < x < a (15) 

 u2(x, b) = 0,  for 0 x < a (16)

The appropriate solution of Eq. (7) consistent with the given boundary conditions 

for u1(x, y) is

 u1(x, y) = (A cos px + B sin px) (Ce
pY + De

–pY)  (17)

Using boundary conditions (9), (10) and (11) in (17) and proceeding as in Example 

9, we most general solution of Eq. (7) can be obtained as

 u1(x, y) = 
1

sin sinh
n

n

n x n y

a a

p p
l

•

=

Â   (18)

Using boundary condition (12) in (18), we have

 
1

sinh sin
n

n

n b n x

a a

p p
l

•

=

Ê ˆ
Á ˜Ë ¯Â  = 100, in (0, a)

  = sin
n

n x
b

a

p

Â

which is the Fourier half-range sine series of 100 (0, a).
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Comparing like terms in the two series, we get

 sinh
n

n b

a

p
l  = 

0

2
100sin d

a

n

n x
b x

a a

p

= Ú

  = 

0

cos
200

a

n x

a

na

a

p

p

Ê ˆ-Á ˜
Á ˜
Á ˜
Ë ¯

  = 
200

{1 ( 1) }
n

np

- -

  = 

400
, if is odd

0, if is even

n

n

n

p

Ï
Ô
Ì
Ô
Ó

Using this value of ln in (18), the required solution of Eq. (7) is

u1(x, y) = 

1

400 1 (2 1) (2 1) (2 1)
cosech sin sinh

2 1n

n b n x n y

n a a a

p p p

p

•

=

- - -

-
Â  (19)

Now solving Eq. (8) subject to the boundary conditions (13), (14), (15) and (16) 

[proceeding as in Example 8] or by interchanging x and y and also a and b in (19), 

we get

u2(x, y) = 
p p p

p

•

=

- - -

-
Â

1

400 1 (2 1) (2 1) (2 1)
cosech sinh sin

2 1
n

n a n x n y

n b b b
  (20)

Using (19) and (20) in (6), the required solution of Eq. (1) is

 u(x, y) = 
1

400 1 (2 1) (2 1)
cosech sin

2 1
n

n b n x

n a a

p p

p

•

=

- -È
◊Í- Î

Â

  
p p p p- - - - ˘

+ ◊ ◊ ˙
˚

(2 1) (2 1) (2 1) (2 1)
sinh cosech sin sinh

n y n a n y n x

a b b b

Note 
If non-zero temperatures are prescribed on all the four sides of the rectangle 
(or square), the concept used in the previous example is extended by assuming 

that 

4

1

( , ) ( , )r
r

u x y u x y
=

= Â . Three of the boundary values of each of the
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equations 
2

2 2
0r ru u

x y

∂ ∂
+ =

∂ ∂
 are assumed  to be zero and the fourth one non-

zero in such a way that we get the given boundary values of 

2 2

2 2
0

u u

x y

∂ ∂
+ =

∂ ∂
 

from those of 
2 2

2 2
0r ru u

x y

∂ ∂
+ =

∂ ∂
 by superposition.

Example 11
A square plate has its faces and its edge y = 0 insulated. Its edges x = 0 and x = 10 are 

kept at temperature zero and its edge y = 10 at temperature 100°C. Find the steadystate 

temperature distribution in the plate.

The steadystate temperature u(x, y) at any point (x, y) of the plate is given by the 

equation

 
2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0  (1)

We have to solve Eq. (1), satisfying the following boundary conditions.

 u(0, y) = 0,  for  0 £ y £ 10  (2)

 u(10, y) = 0,  for  0 £ y £ 10  (3)

 ( , 0)
u

x
y

∂

∂
 = 0,  for  0 < x < 10  (4)

 u(x, 10) = 100, for  0 < x < 10  (5)

Consistent with the non-zero boundary condition (5), the proper solution of  

Eq. (1) is

 u(x, y) = (A cos px + B sin px) (Ce
pY + De

–pY)  (6)

Using boundary conditions (2) and (3) in (6), we can get, as usual,

 A = 0

and p = 
10

np

where n = 0, 1, 2, ..., •.

Differentiating (6) partially with respect to y,

 ( , )
u

x y
y

∂

∂
 = Bp sin px (Ce

pY – De
–pY) (7)

Using boundary condition (4) in (7), we have

 Bp sin px(C – D) = 0, for 0 < x < 10

As B π 0 and p π 0, we get D = C
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Using these values of A, D and p in (6), it reduces to

 u(x, y) = /10 /10
sin ( )

10

n y n yn x
BC e e

p p
p

-
◊ +

  = sin cosh
10 10

n x n yp p
l , where l = 2BC and n = 0, 1, 2, ..., •.

Therefore the most general solution of Eq. (1) is

 u(x, y) = 

1

sin cosh
10 10

n

n

n x n yp p
l

•

=

Â   (8)

Using boundary condition (5) in (8), we have

 
1

( cosh )sin
10

n

n

n x

n

p
l p

•

=

Â  = 100 in (0, 10)

  = sin
10

n

n x
b

p

Â

which is the Fourier half-range sine series of 100 in (0, 10).

Comparing like terms in the two series, we get

 ln cosh np = 
10

0

2
100sin d

10 10
n

n x
b x

p

= Ú

  = 

10

0

cos
10

20

10

n x

n

p

p

Ê ˆ-Á ˜
Á ˜
Á ˜
Ë ¯

  = 
200

{1 ( 1) }
n

np

- -

  = 

400
, if is odd

0, if is even

n

n

n

p

Ï
Ô
Ì
Ô
Ó

Using this value of ln in (8), the required solution is

 u(x, y) = 
1

400 1 (2 1) (2 1)
sech(2 1) sin cosh

2 1 10 10
n

n x n y
n

n

p p

p

p

•

=

- -
- ◊ ◊

-
Â

Example 12
A rectangular plate of sides 20 cm and 10 cm has its faces and the edge x = 20 insulated. 

Its edges y = 0 and y = 10 are kept at temperature zero, while the edge x = 0 is kept at 

temperature ky. Find the steadystate temperature distribution in the plate.
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The steadystate temperature u(x, y) at any point (x, y) of the plate is given by the 

equation

 

2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0  (1)

We have to solve Eq. (1), satisfying the following boundary conditins.

 u(x, 0) = 0,  for 0 £ x £ 20  (2)

 u(x, 10) = 0,  for 0 £ x £ 20  (3)

 (20, )
u

y
x

∂

∂
 = 0,  for 0 < y < 10  (4)

 u(0, y) = ky, for 0 < y < 10  (5)

Consistent with the non-zero boundary condition (5), the proper solution of  

Eq. (1) is

 u(x, y) = (Ae
px + Be

–px)(C cos py + D sin py)  (6)

Using boundary conditions (2) and (3) in (6), we can get, as usual,

 C  = 0 and 
10

n
p

p

= , where n = 0, 1, 2, ..., •

Differentiating (6) partially with respect to x, we have

 ( , )
u

x y
x

∂

∂
 = p(Ae

px – Be
–px) ·D sin py (7)

Using boundary condition (4) in (7), we have

 p(A20p – Be
–20p)D sin py = 0, for 0 < y < 10

As p π 0 and D π 0, Ae
20p – Be

–20p = 0

\ B = Ae
40p

Using these values of B, C and p in (6), it reduces to

 u(x, y) = /10 40 /10 /10
{ }sin

10

n x n n x n y
AD e e e

p p p
p

-
+ ◊

  = 2 ( 20)
(2 )cosh sin

10 10

n n x n y
ADe

p
p p-

◊

  = 
(20 )

cosh sin
10 10

n

n x n yp p
l

-

◊

[Q   cosh q is an even function]

where n = 1, 2, 3, ..., •.
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\   The most general of Eq. (1) is

 u(x, y) = 

1

(20 )
cosh sin

10 10
n

n

n x n yp p
l

•

=

-
Â   (8)

Using boundary condition (5) in (8),we have

 
1

( cosh2 )sin
10

n

n

n y
n

p
l p

•

=

Â  = ky in (0, 10)

  = 

1

sin
10

n

n

n y
b

p
•

=

Â

which is the Fourier half-range sine series  of ky in (0, 10).

Comparing like terms in the two series, we have

 ln cosh 2np = 

10

0

2
sin d

10 10
n

n y
b ky y

p

= Ú

  = 

10

2 2

0

cos sin
2 10 10

10

10 100

n y n y

k
y

n n

p p

p p

È ˘Ê ˆÊ ˆ- -Í ˙Á ˜Á ˜Í ˙- Á ˜Á ˜Í ˙Á ˜Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

  = 120
( 1)

nk

np

+
-

Using this value of ln in (8), the required solution is

 u(x, y) = 
p p

p

p

+•

=

- -
◊ ◊Â

1

1

20 ( 1) (20 )
sech 2 cosh sin

10 10

n

n

k n x n y
n

n

Example 13

A square plate has its faces and its edges x = 0 and x = a insulated. If the edge y = a 

is kept at temperature zero, while the edge y = 0 is kept at temperature 3
4cos

x

a

pÊ ˆ
Á ˜Ë ¯

, find 

the steadystate temperature distribution in the plate.

The steady state temperature u(x, y) at any point (x, y) of the plate is given by the 

equation

 

2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0  (1)

We have to solve Eq. (1), satisfying the following boundary conditions.
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 (0, )
u

x

x

∂

∂
 = 0,      for 0 £ y £ a  (2)

 ( , )
u

a y
x

∂

∂
 = 0,      for 0 £ y £ a  (3)

 u(x, a) = 0,      for 0 < x < a  (4)

 u(x, 0) = 3
4cos

x

a

pÊ ˆ
Á ˜Ë ¯

, for 0 < x < a  (5)

Consistent with the non-zero boundary condition (5), the proper solution of Eq. (1) 

is

 u(x, y) = (A cos px + B cos px) (Ce
pY + De

–pY) (6)

Differentiating (6) partially with respect to x,

 ( , )
u

x y
x

∂

∂
 = p(–A sin px + B cos px) (Ce

pY + De
–pY) (7)

Using boundary conditions (2) and (3) in (7), we can get, as usual,

 B = 0 and 
n

p
a

p

= , where n = 0, 1, 2, ..., •

Using boundary conditions (4) in (6), we have

 A cos px(Ce
pY + De

–pa) = 0, for 0 < x < a

 As A π 0, D = –Ce
2pa

Using these values of B, D and p in (6), we get

 u(x, y) = / 2 / /
cos { }

n y a n ya a n y an x
AC e e e

a

p p p
p

-

- ◊

  = 
( )

(2 )cos sinh
n n x n y a

ACe
a a

p
p p -

   or u(x, y) = 
( )

cos sinh
n

n x n y a

a a

p p
l

-

where n = 0, 1, 2, ..., •

Therefore the most general solution of Eq. (1) is

 u(x, y) = 
1

( )
cos sinh

n

n

n x n y a

a a

p p
l

•

=

-
Â  (8)
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Using boundary condition (5) in (8), we have

 
1

( sinh )cos
n

n

n x

n

a

p
l p

•

=

-Â  = 3
4cos in (0, )

n

a

a

p

  = 
3

3cos cos
n x

a a

p p

+

Comparing like terms, we get

 –l1 sinh p = 3; – l3 sinh 3p = 1; l2 = 0 = l4 = l5 = ...

\ l1 = –3 cosech p ; l3 = cosech 3p ; l2 = 0 = l4 = l5 = ...

Using these values in (8), the required solution is

 u(x, y) = 
( ) 3 3 ( )

3 cosech cos sinh cosech 3 cos sinh
n a y x a y

a a a a

p p p p

p p

- -
+

Example 14

A rectangular plate of sides a and b has its faces and the edges y = 0 and y = b insulated. 

If the edge x = 0 is kept at temperature zero, while the edge x = a is kept at temperature 

k(2y – b), find the steadystate temperature distribution in the plate.

The steadystate temperature u(x, y) at any point (x, y) of the plate is given by the 

equation

 
2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0 (1)

We have to solve the Eq. (1), satisfying the following boundary conditions:

 ( , 0)
u

x
y

∂

∂
 = 0,    for 0 £ x £ a (2)

 ( , )
u

x b
y

∂

∂
 = 0,    for 0 £ x £ a (3)

 u(0, y) = 0,    for 0 < y < b (4)

 u(a, y) = k(2y – b), for 0 < y < b (5)

Consistent with the non-zero boundary condition (5), the proper solution of Eq. (1) 

is

 u(x, y) = (Ae
px + Be

–px)(C cos py + D sin py) (6)

Differentiating (6) partially with respect to y, we have

 ( , )
u

x y
y

∂

∂
 = (Ae

px + Be
–px) p(–C sin py + D cos py) (7)
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Using boundary conditions (2) and (3) in (7), we can get, as usual,

 D = 0 and 
n

p
b

p

= , where n = 0, 1, 2, ..., •

Using boundary condition (4) in (6), we have

 (A + B)C cos py  = 0, for 0 < y < b

As C π 0, we get B = –A.

Using these values of B, D and p in (6), it reduces to

 u(x, y) = AC e e
n y

b

n x

b

n x

b

p p

p

-( )-

cos

  = sinh cos
n x n y

b b

p p
l ◊

   where l = 2AC and n = 0, 1, 2, ..., •

Therefore the most general solution of Eq. (1) is

 u(x, y) = 
1

sinh cosn

n

n x n y

b b

p p
l

•

=

Â  (8)

Using boundary condition (5) in (8) we have

 
1

sinh cosn

n

n a n y

b b

p p
l

•

=

◊Â  = k(2y – b) in (0, b)

  = 0

1

cos
2

n

n

a n y
a

b

p
•

=

+ Â ,

which is Fourier half-range cosine series of k(2y – b) in (0, b).

Comparing like terms in the two series, we get

 sinh
n

n a

b

p
l  = 

0

2
(2 )cos

b

n

n y
a k y b dy

b b

p

= -Ú

  = 
2 2

2
0

sin cos
2

(2 ) 2

b

n y n y

k b by b
nb n

b b

p p

p p

È ˘Ê ˆÊ ˆÍ ˙-Á ˜Á ˜Í ˙Á ˜- -Á ˜Í ˙Á ˜Á ˜Í ˙Á ˜Ë ¯ Ë ¯Î ˚

  = 
2 2

4
{( 1) 1}

nkb

n p

- -

  = 2 2

8
, if is odd

0, if is even

kb
n

n

n

p

-Ï
Ô
Ì
Ô
Ó
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Also a0 = 
0

2
(2 )

b
k y b dy

b
-Ú

  = 2
0

2
( ) 0

bk
y by

b
- =

We note that the constant term in the R.H.S. series is also zero.

Using this value of ln in (8), the required solution is

 u(x, y) = 
2 2

1

8 1 (2 1) a
cosech

(2 1)n

kb n

bn

p

p

•

=

-
-

-
Â

  

(2 1) (2 1)
sinh cos

n x n y

b b

p p- -

Example 15

Find the steadystate temperature distribution on a square plate of side a insulated along 

three of its sides and with the side y = 0 kept at temperature zero for 0
2

a

x< <  and 

at temperature T for 
2

a

x a< < .

The steadystate temperature u(x, y) at any point (x, y) of the plate is given by the 

equation

 
2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0 (1)

We have to solve the Eq. (1), satisfying the following boundary conditions.

 (0, )
u

y
x

∂

∂
 = 0,  for 0 £ y £ a (2)

 ( , )
u

a y
x

∂

∂
 = 0,  for 0 £ y £ a (3)

 ( , )
u

x a
y

∂

∂
 = 0,  for 0 < x < a (4)

 u(x, 0) = f (x), for 0 < x < a (5)

where f (x) = 

0, in 0,
2

, in ,
2

a

a
T a

Ï Ê ˆ
Ô Á ˜Ë ¯Ô
Ì

Ê ˆÔ
Á ˜Ô Ë ¯Ó

Consistent with the non-zero boundary condition (5), the proper solution of Eq. (1) is

 u(x, y) = (A cos px + B sin px) (Ce
pY + De

–pY) (6)

Differentiating (6) partially with respect to x, we have

 ( , )
u

x y
x

∂

∂
 = p(–A sin px + B cos px) (Ce

pY + De
–pY) (7)



5-187
Fourier Series Solutions of Partial Differential Equations

Using boundary conditions (2) and (3) in (7), we can get, as usual,

 B = 0 and 
n

p
a

p

= , where n = 0, 1, 2, ..., •

Differentiating (6) partially with respect to y, we have

 ( , )
u

x y
y

∂

∂
 = A cos px · p(Ce

pY + De
–pY) (8)

Using boundary condition (4) in (7), we have

 A · cos px ·p(Ce
pa – De

–pa) = 0, for 0 < x < a

As A π 0 and p π 0, Ce
pa – De

–pa) = 0

\ D = Ce
2pa

Using these values of B, D, and p in (6), we have

 u(x, y) = / 2 / /
cos { }

n y a n a a n y an x
AC e e e

a

p p p
p

-
+ ◊

  = 
( )

(2 )cos cosh
n n x n y a

ACe
a a

p
p p -

  = 
( )

cos cosh
n

n x n a y

a a

p p
l

-

where n = 0, 1, 2, ..., • (Q   cosh q is even)

Therefore the most general solution of Eq. (1) is

 u(x, y) = 
0

( )
cos cosh

n

n

n x n a y

a a

p p
l

•

=

-
Â  (9)

Using boundary condition (5) in (9), we have

 
0

( cosh )cos
n

n

n x

n

a

p
l p

•

=

Â  = f (x) in (0, a)

  = 0

1

cos
2

n

n

a n x

a

a

p
•

=

+ Â

which is the Fourier half-range cosine series of f (x) in (0, a).
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Equating like terms in the two series, we get

 ln cosh np = an = 

0

2
( )cos

a
n x

f x dx
a a

p

Ú

  = 
/2

2
cos

a

a

n x
T dx

a a

p

Ú

  = 

/2

sin
2

a

a

n x

T a

na

a

p

p

Ê ˆ
Á ˜
◊Á ˜
Á ˜
Ë ¯

  = 
2

sin
2

T n

n

p

p

Ê ˆ
-Á ˜Ë ¯

 l0 = 0

/2

1 2
d

2 2 2

a

a

a T
T x

a
= ◊ =Ú

Using these values of ln in (9), the required solution is

 u(x, y) = 
1

2 1 ( )
sin sech cos cosh

2 2
n

T T n n x n a y
n

n a a

p p p

p

p

•

=

-
- ◊Â

   i.e. u(x, y) = 
1

2 ( 1) (2 1)
sech(2 1) cosh

2 (2 1)

n

n

T T n x
n

n a

p

p

p

•

=

- -
+ - ◊

-
Â

 

(2 1) ( )
cosh

n a y

a

p- -

Example 16

Find the steadystate temperature distribution u(x, y) in the uniform square 0 £ x £ p; 

0 £ y £ p, when the edge x = p is maintained at temperature (2 cos 3y – 5 cos 4y), the 

other three edges being thermally insulated.

The steadystate temperature u(x, y) at any point (x, y) of the plate is given by the 

equation

 

2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0 (1)

We have to solve the Eq. (1), satisfying the following boundary conditions.
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 ( , 0)
u

x
y

∂

∂
 = 0, for 0 £ x £ p (2)

 ( , )
u

x
y

p

∂

∂
 = 0, for 0 £ x £ p (3)

 (0, )
u

y
x

∂

∂
 = 0, for 0 < y < p (4)

 u(x, y) = 2 cos 3y – 5 cos 4y, for 0 < y < p (5)

Consistent with the non-zero boundary condition (5), the proper solution of Eq. (1) 

is

 u(x, y) = (Ae
px + Be

–px)(C cos py + D sin py) (6)

Differentiating (6) partially with respect to y, we have

 ( , )
u

x y
y

∂

∂
 = p(Ae

px + Be
–px)(–C sin py + D cos py) (7)

Using boundary conditions (2) and (3) in (7), we can get, as usual,

 D = 0 and p = n, where n= 0, 1, 2, ..., •

Differentiating (6) partially with respect to x, we have

 ( , )
u

x y
x

∂

∂
 = p(Ae

px – Be
–px ·C cos py (8)

Using boundary condition (4) in (8), we have

 p(A – B)C cos py = 0, for 0 < y < p

As p π 0 and C π 0, we get B = A.

Using these values of B, D, and p in (6), it reduces to

 u(x, y) = AC(enx + e–nx) cos ny

  = l cosh nx cos ny

where n = 0, 1, 2, ..., • and l = 2AC

Therefore the most general solution of Eq. (1) is

 u(x, y) = 
0

cosh cos
n

n

nx nyl

•

=

Â   (9)

Using boundary condition (5) in (9), we have

 
0

( cosh ) cos
n

n

n nyl p

•

=

Â  = 2 cos 3y – 5 cos 4y in (0, p)

Comparing like terms, we get

 l3 cosh 3p = 2; l4 cosh 4p = –5 and l0 = 0 = l1 = l2 = l5 ...
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i.e. l3 = 2 sech 3p, l4 = –5 sech 4p

 l0 = 0 = l1 = l2 = l5 = ...

Using thse values in (9), the required solution is

 u(x, y) = 2 sech 3p cosh 3x cos 3y – 5 sech 4p · cosh 4x cosh 4y

Example 17

A square metal plate of side a is bounded by the lines x = 0, x = a, y = 0 and y = a. 

The edges x = 0 and y = a are kept at zero temperature, the edge x = a is insulated and 

the edge y = 0 is kept at temperature kx. Find the steadystate temperature distribution 

in the plate.

The steadystate temperature u(x, y) at any point (x, y) of the plate is given by the 

equation

 
2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0 (1)

We have to solve the Eq. (1), satisfying the following boundary conditions:

 u(0, y) = 0,  for 0 £ y £ a (2)

 ( , )
u

a y
x

∂

∂
 = 0,  for 0 £ y £ a (3)

 u(x, a) = 0,  for 0 < x < a (4)

 u(x, 0) = kx, for 0 < x < a (5)

Consistent with the non-zero boundary condition (5), the proper solution of  

Eq. (1) is

 u(x, y) = (A cos px + B sin px) (Ce
pY + De

–pY) (6)

Using boundary condition (2) in (6), we can get A = 0.

Differentiating (6) partially with respect to x, we have

 ( , )
u

x y
x

∂

∂
 = Bp cos px (Ce

pY + De
–pY) (7)

Using boundary conditions (3) in (7), we have

  Bp cos pa(Ce
pY + De

–pY), for 0 £ y £ a

 Either B = 0, p = 0 or cos pa = 0
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If B = 0 and p = 0, we get trivial solutions

\ cos pa = 0

\ pa = 
(2 1) (2 1)

or
2 2

n n
p

a

p p- -

=

where n = 1, 2, ..., •

Using boundary condition (4) in (6), we have

 B sin px(Ce
pa + De

–pa) = 0

    As B π 0, Ce
pa + De

–pa  = 0

 D = –Ce
2pa

Using these values of A, D, and p in (6), it reduces to

 u(x, y) = (2 1) /2 2(2 1) /2 (2 1) /2(2 1)
sin { }

2

n y a n a a n y an x
BC e e e

a

p p p
p

- - - -

-

-

  = (2 1) /2 (2 1) 2 1) ( )
{(2 } sin sinh

2 2

n n x n y a
BCe

a a

p
p p- - ( - -

  = 2 1

(2 1) (2 1) ( )
sin sin

2 2
n

n x n y a

a a

p p
l

-

- - -

where n = 1, 2, ..., •

Therefore the most general solution of Eq. (1) is

 u(x, y) = 2 1

1

(2 1) (2 1) ( )
sin sinh

2 2
n

n

n x n y a

a a

p p
l

•

-

=

- - -
◊Â  (8)

Using boundary condition (5) in (8), we have

 2 1

1

(2 1) (2 1)
sinh sin

2 2
n

n

n n x

a

p p
l

•

-

=

- -
-Â  = kx in (0, a)

\ 2 1

(2 1)
sinh

2
n

n p
l

-

-

-  = 

0

2 (2 1)
sin d

2

a
n

kx x
a a

-
Ú

  = 
2 2

2
0

(2 1) (2 1)
cos sin

2 2 2

(2 1) (2 1)

2 4

a

n x n x

k a a
x

na n

a a

p p

p p

È ˘Ï ¸- -Ï ¸
Í ˙- -Ô ÔÔ ÔÔ Ô Ô ÔÍ ˙-Ì ˝ Ì ˝Í ˙- -Ô Ô Ô ÔÍ ˙Ô Ô Ô ÔÓ ˛ Ó ˛Î ˚

  = 
2 2

8 (2 1)
sin

2(2 1)

ka n

n

p

p

-

-

\ l2n – 1 = 
2 2

8 (2 1)
( 1) cosech

2(2 1)

nka n

n

p

p

-

◊ -

-
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Using these values of l2n – 1 in (8), the required solution is

     u(x, y) = 
1

2 2
1

8 ( 1) (2 1) (2 1)
cosech sin

2 2(2 1)

n

n

ka n n x

an

p p

p

+•

=

- - -

-
Â

 

(2 1) ( )
sinh

2

n a y

a

p- -

Example 18

A rectangular plate of sides a and b is bounded by the lines x = 0, x = a, y = 0 and  

y = b. The edges x = 0 and y = b are kept at zero temperature, while the edge y = 0 is 

kept insulated. If the temperature along the edge x = a is kept at T°C, find the steadystate 

temperature distribution in the plate.

The steadystate temperature distribution in the plate is given by the equation

 

2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0 (1)

We have to solve the Eq. (1), satisfying the following boundary conditions.

 ( , 0)
u

x
y

∂

∂
 = 0, for 0 £ x £ a (2)

 u(x, b) = 0, for 0 £ x £ a (3)

 u(0, y) = 0, for 0 < y < b (4)

 u(a, y) = T, for 0 < y < b (5)

Consistent with the non-zero boundary condition (5), the proper solution of Eq. (1) 

is

 u(x, y) = (Ae
px + Be

–px)(C cos py + D sin py) (6)

Differentiating (6) partially with respect to y and then using boundary condition 

(2), we can get D = 0.

Using boundary conditions (3) in (6), we can get

 p = 
(2 1)

2

n

b

p-

, where n = 1, 2, 3, ..., •

Using boundary condition (4) in (6), we can get B = –A.

Using these values of B, D and p in (6), it reduces to

 u(x, y) = 
(2 1) (2 1)

sinh cos
2 2

n x n y

b b

p p
l

- -

◊

where l = 2AC and n = 1, 2, ..., •



5-193
Fourier Series Solutions of Partial Differential Equations

Therefore the most general solution of Eq. (1) is

 u(x, y) = 2 1

1

(2 1) (2 1)
sinh cos

2 2
n

n

n x n y

b b

p p
l

•

-

=

- -
Â  (7)

Using boundary condition (5) in (7), we have

 2 1

1

(2 1) (2 1)
sinh cos

2 2
n

n

n a n y

b b

p p
l

•

-
=

- -Ï ¸
Ì ˝
Ó ˛

Â  = T in (0, b)

\ 2 1

(2 1)
sinh

2
n

n a

b

p
l

-

-

 = 

0

2 (2 1)
cos d

2

b
n

T y
b b

-
Ú

  = 

0

(2 1)
sin

2 2

(2 1)

2

b
n y

T b
nb

b

p-Ï ¸
Ô ÔÔ Ô
Ì ˝-Ô Ô
Ô ÔÓ ˛

  = 
4 (2 1)

sin
(2 1) 2

T n

n

p-

-

\ l2n – 1 = 14 (2 1)
cosech ( 1)

(2 1) 2

nT n a

n b

p

p

+
-

◊ ◊ -

-

Using this value of l2 – 1 in (7), the required solution is

 u(x, y) = 

1

1

4 ( 1) (2 1)
cosech

(2 1) 2

n

n

T n

n bp

+•

=

- -

-
Â

  

(2 1) (2 1)
sinh cos

2 2

n x n y

b b

p p- -

◊ ◊

Example 19

A square metal plate of side 10 cm has the edges represented by the lines x = 10 and 

y = 10 insulated. The edge x = 0 is kept at a temperature of zero degree and the edge 

y = 0 at a temperature of 100°C. Find the steadystate temperature distribution in the 

plate.

The steadystate temperature u(x, y) at any point (x, y) of the plate is given by the 

equation

 

2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0 (1)

We have to solve Eq. (1), satisfying the following boundary conditions.

 u(0, y) = 0, for 0 £ y £ 10 (2)

 (10, )
u

y
x

∂

∂
 = 0, for 0 £ y £ 10 (3)
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 ( , 10)
u

x
y

∂

∂
 = 0,  for 0 < x < 10 (4)

 u(x, 0) = 100, for 0 < x < 10 (5)

Consistent with the non-zero boundary condition (5), the proper solution of  

Eq. (1) is

 u(x, y) = (A cos px + B sin px) (Ce
pY + De

–pY) (6)

Using boundary condition (2) in (6), we can get A = 0.

Differentiating (6) partially with respect to x and then using the boundary condition 

(3), we can get

 p = 
(2 1)

20

n p-

, where n = 1, 2, ..., •

Differentiating (6) partially with respect to y and then using the boundary condition 

(4), we can get D = Ce
20p.

Using these values of A, D and p in (6), it reduces to

 u(x, y) = (2 1) /2 (2 1) (2 1) ( 10)
[2 ] sin cosh

20 20

n n x n y
BCe

p
p p

-

- - -

or u(x, y) = 
p p

l
-

- - -

2 1

(2 1) (2 1) (10 )
sin cosh

20 20
n

n x n y

where n = 1, 2, ..., • [Q   cosh q is even]

\    The most general solution of Eq (1) is

 u(x, y) = 
p p

l

•

-

=

- - -
=Â 2 1

1

(2 1) (2 1) (10 )
sin cosh

20 20
n

n

n x n y
 (7)

Using boundary condition (5) in (7), we have

 2 1

1

(2 1) (2 1)
cosh sin

2 20
n

n

n n xp p
l

•

-

=

- -
Â  = 100 in (0, 10)

\ 2 1

(2 1)
cosh

2
n

n p
l

-

-

 = 

p-
Ú
10

0

2 (2 1)
100sin d

10 20

n x

x

  = 

10

0

(2 1)
cos

20
20

(2 1)

20

n x

n

p

p

-Ï ¸
-Ô ÔÔ Ô

Ì ˝-Ô Ô
Ô ÔÓ ˛

  = 
400

(2 1)n p-

 l2n – 1 = 
400 (2 1)

sech
(2 1) 2

n

n

p

p

-

-
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Using this value of l2n – 1 in (7), the required solution is

 u(x, y) = 
p p

p

•

=

- - - -

-
Â

1

400 1 (2 1) (2 1) (2 1) (10 )
sech sin cosh

2 1 2 20 20
n

n n x n y

n

Example 20

A square metal plate of side a has the edges x = 0 and y = 0 insulated. The edge  

y = a is kept at temperature 0°C and the edge x = a is kept at temperature ky. Find the 

steadystate temperature distribution in the plate.

The steadystate temperature distribution in the plate is given by the equation

 

2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0 (1)

We have to solve the Eq. (1), satisfying the following boundary conditions.

 ( , 0)
u

x
y

∂

∂
 = 0, for 0 £ x £ a (2)

 u(x, a) = 0, for 0 £ x £ a (3)

 (0, )
u

y
x

∂

∂
 = 0, for 0 < y < a (4)

 u(a, y) = ky, for 0 < y < a (5)

Consistent with the non-zero boundary condition (5), the proper solution of  

Eq. (1) is

 u(x, y) = (Ae
px + Be

–px)(C cos py + D sin py) (6)

Differentiating (6) partially with respect to y and then using boundary condition (2), 

we can get D = 0.

Using boundary conditions (3), in (6), we can get

 p = 
(2 1)

2

n

a

p-

, where n = 1, 2, 3, ...•.

Differentiating (6) partially with respect to x and then using boundary condition (4), 

we can get B = A.

Using these values of B, D and p in (6), it reduces to

 u(x, y) = (2 1) /2 (2 1) /2 (2 1)
{ } cos

2

n x a n x a n y
AC e e

a

p p
p

- - -
-

+

or u(x, y) = 
(2 1) (2 1)

cosh cos
2 2

n x n y

a a

p p
l

- -

 where n = 1, 2, 3, ... •.
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Therefore the most general solution of Eq. 1 is

 u(x, y) = 2 1

1

(2 1) (2 1)
cosh cos

2 2
n

n

n x n y

a a

p p
l

•

-

=

- -
Â  (7)

Using boundary condition (5) in (7), we have

 2 1

1

(2 1) (2 1)
cosh cos

2 2
n

n

n n y

a

p p
l

•

-
=

- -È ˘
Í ˙
Î ˚

Â  = ky in (0, a)

\ 2 1

(2 1)
cosh

2
n

n p
l

-

-

 = 

0

2 (2 1)
cos d

2

a
n y

ky y
a a

p-
Ú

  = 
2 2

0

(2 1) (2 1)
sin cos

2 2 2

(2 1) (2 1)

2 4

a

n y n y

k a ay
na n

a a

p p

p p

È ˘Ï ¸- -Ï ¸
-Í ˙Ô ÔÔ ÔÔ Ô Ô ÔÍ ˙-Ì ˝ Ì ˝-Í ˙-Ô Ô Ô Ô

Í ˙Ô Ô Ô ÔÓ ˛ Ó ˛Î ˚

  = 

1

2 2

4 ( 1) 2

2 1 (2 1)

n
ka

n n

p

p

+Ï ¸-Ô Ô
-Ì ˝

- -Ô ÔÓ ˛

 l2n – 1 = 
1

2 2

4 ( 1) 2 (2 1)
sech

2 1 2(2 1)

n
ka n

n n

p p

p

+Ï ¸- -Ô Ô
-Ì ˝

- -Ô ÔÓ ˛

Using this value of l2n – 1 in (7), the required solution is

 u(x, y) = 
p p

p

+•

=

Ï ¸- -Ô Ô
-Ì ˝

- -Ô ÔÓ ˛
Â

1

2 2
1

4 ( 1) 2 (2 1) y
sech

2 1 2(2 1)

n

n

ka n

n n

  

(2 1) (2 1)
cosh cos

2 2

n x n y

a a

p p- -

◊

        Exercise 5C(c)

Part A (Short-answer Questions)

 1. State the two laws of thermodynamics used in the derivation of two 

dimensional heat flow equation.

 2. Write down the partial differential equation that represents variable heat 

flow in two dimensions. Deduce the equation of steadystate heat flow in two 

dimensions.

 3. Write down the three mathematically possible solutions of Laplace equation 

in two dimensions.
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 4. Given the boundary conditions on a square or a rectangular plate, how will 

you identify the proper solution?

 5. Explain why u(x, y) = (Ax + B) (Cy + D) cannot be the proper solution of 

Laplace equation in boundary value problems, by taking an example.

Part B

 6. A rectangular plate with insulated surfaces is a cm wide and so long 

compared to its width that it may be considered infinite in length without 

introducing an appreciable error. If the two long edges x = 0 and x = a and the 

short edge at infinity are kept at temperature 0°C, while the other short edge  

y = 0 is kept at temperature (i) 
3

2 sin cos
2

x x
u k

a

p p

= , (ii) u = kx and  

(iii) 

, for 0
2

( ), for
2

a
kx x

u
a

k a x x a

Ï
£ £ÔÔ

= Ì
Ô - £ £
ÔÓ

  Find the steadystate temperature at any point (x, y) of the plate.

 7. An infinitely long metal plate in the form of an area is enclosed between the 

lines y = 0 and y = 10 for positive values of x. The temperature is zero along 

the edges y = 0, y = 10 and the edge at infinity. If the edge x = 0 is kept at 

tempera true (i) 3
4 sin

10

y
u k

p

= , (ii) u = T and (iii) u = ky(10 – y), find the 

steadystate temperature at any point (x, y) of the plate.

 8. A plate is in the form of the semi-infinite strip 0 £ x £ p, 0 £ y £ •. The edges 

x = 0 and x = p are insulated. The edge at infinity is kept at temperature 0°C, 

while the edge y = 0 is kept at temperature 

, in 0
2

, in
2

x x

u

x x

p

p

p p

Ï
£ £ÔÔ

= Ì
Ô - £ £
ÔÓ

  Find the steadystate temperature distribution in the plate.

 9. The two long edges y = 0 and y = l of a long rectangular plate are insulated. 

If the temperature in the short edge at infinity is kept at 0°C, while that in 

the short edge x = 0 is kept at ky(l – y), find the steadystate temperature 

distribution in the plate.

 10. A plate is in the form of the semi-infinite strip 0 £ x £ •, 0 £ y £ l. The surface 

of the plate and the edge y = 0 are insulated. If the temperature along the 

edge y = l and the short edge at infinity are kept temperature 0°C, while the 

temperature along the other short edge is kept at temperature T°C, find the 

steadystate temperature distribution in the plate.

 11. If the temperatures along the long edge x = 0 and the short edge at infinity of 

a long plate kept at 0°C, the other long edge x = 10 is insulated and the other 

short edge y = 0 is kept at temperature kx, find the steadystate temperature 

distribution in the plate.

 12. Find the steadystate temperature distribution in a square plate of side a, 

which is insulated  on the lateral surface and three of whose edges x = a,  
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y = 0, y = a are kept at zero temperature, if the temperature in the edge  

x = 0 is (i) 
p

-

3
sin and (ii) ( ).

y
k ky a y

a

 13. A rectangular plate of sides a and b has its faces insulated and its edges along 

x = 0, x = a, y = 0 and y = b. If the temperature along the edge y = b is given 

by (i) 
4 6

3sin 5sin
x x

u

a a

p p

= +  and (ii) in 0
2

a

u x x= £ £  and u = a – x in 

2

a

x a£ £ , while the other three edges are kept at 0°C, find the steadystate 

temperature in the plate.

 14. If a square plate is bounded by the lines x = ±p and y = ±p and three of its 

edge are kept at temperature 0°C, while the edge x = p is kept at temperature 

u = y + p, –p £ y £ p, find the steadystate temperature in the plate.

 15. Find the electrostatic potential in the rectangle, 0 20, 0 40x y£ £ £ £& , 

whose upper edge is kept at potential 110 volts and whose other edges are 

grounded.

Note 
The electrical force of attraction or repulsion between charged particles 
(governed by Coulomb’s law) is the gradient of a function u, called electrostatic 
potential and at any point, free of charges u is a solution of Laplace equation 

2 2

2 2
0

u u

x y

∂ ∂
+ =

∂ ∂
. Hence we have to solve the Laplace equation satisfying the 

given boundary conditions, to get the potential distribution in the rectangle.

 16. A square plate has its face and its edge x = 0 insulated. Its edges y = 0 and  

y = a are kept at temperature zero, while its edges x = a is kept at temperature 

T°C. Find the steadystate temperature distribution in the plate.

 17. A rectangular plate of sides a and b has its faces and the edge y = b insulated. 

Its edges x = 0 and x = a are kept at temperature zero, while the edge y = 0 

kept at temperature kx. Find the steadystate temperature distribution in the 

plate.

 18. A square plate of side 20 cm has its faces and its edges x = 0 and x = 20 

insulated. If the edge y = 0 is kept at temperature zero, while the edge y = 20 is 

kept at temperature u = (10 – x), find the steadystate temperature distribution 

in the plate.

 19. A square plate of side p has its faces and the edges y = 0 and y = p insulated. 

If the edge x = p is kept at temperature zero, while the edge x = 0 is kept at 

temperature (2 cos 3y + 3 cos 4y), find the steadystate temperature distribution 

in the plate.

 20. Find the steadystate temperature distribution on a rectangular plate of sides 

a and b, insulated along three of its sides x = 0, x = a and y = 0 and with side 

y = b kept at temperature kx, 0 £ x £ a.
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 21. Find the steadystate temperature distribution in a square plate of side a, 

insulated along three of its sides y = 0, y = a and x = a and with the side  

x = 0 kept at temperature 0° for 0 and 100 for
2 2

a a

x x a< < ∞ < < .

 22. A square metal plate of side 10 cm is bounded by the lines x = 0, x = 10,  

y = 0 and y = 10. The edges y = 0 and x = 10 are kept at zero temperature, the 

edge x = 0 is kept insulated and the edge y = 10 is kept at temperature T°C. 

Find the steadystate temperature distribution in the plate.

 23. A square metal plate of side a is bounded by the lines x = 0, x = a, y = 0 and 

y = a. The edges x = a and y = 0 are kept at zero temperature, while the edge 

y = a is kept insulated. If the temperature along the edge x = 0 is ky, find the 

steadystate temperature distribution in the plate.

 24. A rectangular metal plate of sides a and b has the edge x = 0 and y = 0 

insulated. The edge x = a is kept at a temperature of 0°C and the edge y = b 

is kept at a temperature 100°C. Find the steadystate temperature distribution 

in the plate.

 25. A square metal plate of side 10 cm has the edges x = 10 and y = 10 insulated. 

The edge y = 0is kept at temperature zero and the edge x = 0 is kept at 

temperature ky. Find the steadystate temperature distribution in the plate.

 26. If the faces of a thin square plate of side p are perfectly insulated, the edges 

are kept at zero temperature and the initial temperature at any point (x, y) of 

the plate is u(x, y, 0) = f (x, y), show that the temperature in the plate at any 

subsequent time is given by

 u(x, y, t) = 
2 2 2
( )

1 1

sin sin
m n t

mn

m n

mx nye
a

l

• •
- +

= =

Â Â

  where lmn = 
2

0 0

4
( , )sin sin d df x y mx ny x y

p p

p
Ú Ú .

  Find the temperature in the plate at time t, if f (x, y) = xy(p – x) (p – y).

  [Hint: Solve 
2 2

2

2 2

u u u

t x y
a

Ê ˆ∂ ∂ ∂
= +Á ˜∂ ∂ ∂Ë ¯

 by the method of separation of variables. 

Proceed as in worked Example 19 of Chapter 3(A)]

Answers

        Exercise 5C(c)

 6. (i) 2 / 4 /2 4
( , ) sin sin

y a y ax x
u x y k e k e

a a

p p
p p

- -
= - + .

 (ii) 
p

p

p

+•

=

-
= ◊ -Â

1

1

2 ( 1)
( , ) sin exp( / )

n

n

ka n x
u x y n y a

n a
.
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 (iii) 
p

p

p

+•

=

- -
= - -

-
Â

1

2 2
1

4 ( 1) (2 1)
( , ) sin exp{ (2 1) / }

(2 1)

n

n

ka n x
u x y n y a

an
.

 7. (i)   
3 3

( , ) 3 exp( /10)sin exp sin
10 10 10

y x y
u x y k x k

p p p

p
Ê ˆ

= - - -Á ˜Ë ¯
.

 (ii) 
p

p

p

•

=

-Ï ¸
= - - Ì ˝

- Ó ˛
Â

1

4 1 (2 1)
( , ) exp { (2 1) /10} sin

2 1 10
n

T n y
u x y n x

n
.

 (iii) 
p

p

p

•

=

-Ï ¸
= - - Ì ˝

- Ó ˛
Â2 3

1

800 1 (2 1)
( , ) exp { (2 1) /10} sin

10(2 1)n

k n y
u x y n x

n

 8. 
p

p

•

=

= - - - -
-

Â 2
1

2 1
( , ) cos {2(2 1)} exp{ 2(2 1) }

4 (2 1)n

u x y n n y

n
.

 9. 
p

p

p

•

=

= - ◊ -Â
2 2

2 2
1

1 2
( , ) cos exp( 2 / )

6
n

kl kl n y
u x y n x l

ln
.

 10. p p

p

+•

=

-
= - - -

-
Â

1

1

4 ( 1)
( , ) exp{ (2 1) /2 } cos{(2 1) /2 }

(2 1)

n

n

T
u x y n x l n y l

n
.

 11. 
p p

p

p

+•

=

- -
= - -

-
Â

1

2
1

80 ( 1) (2 1)
( , ) sin exp{ (2 1) /20}

(2 1) 20

n

n

k x n x
u x y n y

n
.

   12. (i)  
p p p p

p p

- -

◊ ◊ - ◊ ◊ ◊

3 ( ) 3 ( ) 3
cosech sinh sin cosech 3 sinh sin

4 4

k a x y k a x y

a a a a

    (ii)   
2

3

8
( , )

ka
u x y

p

=

  
3

1

1 (2 1) ( ) (2 1)
cosech (2 1) sinh sin

(2 1)n

n a x n y
n

a an

p p

p

•

=

- - -
-

-
Â .

 13. (i)    
4 4 4 6 6

( , ) 3 cosech sin sinh 5 cosech sin
b x y b x

u x y
a a a a a

p p p p p

= + ◊ ◊

  
6

sinh
y

a

p

 (ii) 
2

4
( , )

a
u x y

p

=

  

1

2
1

( 1) (2 1) (2 1) (2 1)
cosech sin sinh

(2 1)

n

n

n b n x n y

a a an

p p p
+•

=

- - - -

-
Â .

 14. 

1

1

( 1)
( , ) 4 cosech sinh ( ) sin ( )

2 2

n

n

n n
u x y n x y

n
p p p

+•

=

-
= + ◊ +Â .
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 15. 
1

440 1 (2 1) (2 1)
( , ) cosech 2(2 1) sin sinh

2 1 20 20
n

n x n y
u x y n

n

p p

p

p

•

=

- -
= - ◊ ◊

-
Â .

 16. 
1

4 1 (2 1) (2 1)
( , ) sech (2 1) cosh sin

2 1
n

T n x n y
u x y n

n a a

p p

p

p

•

=

- -
= - ◊

-
Â .

 17. 
p p p

p

+•

=

- -
= ◊ ◊

=
Â

1

1

2 ( 1) ( )
( , ) sech sinh cosh

1

n

n

ka n b n x n b y
u x y

n a a a
.

 18. 
2 2

80 1 (2 1) (2 1)
( , ) cosech (2 1) cos sinh

20 20(2 1)

n x n y
u x y n

n

p p

p

p

- -

= - ◊

-

.

 19. u(x, y) = 2 cosech 3p · sinh 3(p – x) · cos 3y + 3 cosech 4p sinh 4(p – x) · cos 4y

 20. 
p p p

p

•

=

- - -
= - ◊

-
Â2 2

1

4 1 (2 1) (2 1) (2 1)
( , ) sech cos cosh

2 (2 1)n

ka k n b n x n y
u x y

a a an

 21. 
p p

p

p

•

=

- - - -
= + -

-
Â

1

200 ( 1) (2 1) ( ) (2 1)
( , ) 50 sech(2 1) cosh cos

2 1

n

n

n a x n y
u x y n

n a a

 22. 
p p p

p

+•

=

- - - -
= ◊ ◊

-
Â

1

1

4 ( 1) (2 1) (2 1) (2 1)
( , ) cosech cos sinh

(2 1) 2 20 20

n

n

T n n x n y
u x y

n
.

 23. 

1

2 2
1

8 ( 1) (2 1) (2 1) ( )
( , ) cosech sinh

2 2(2 1)

n

n

ka n n a x
u x y

an

p p

p

+•

=

- - - -
= ◊ ◊

-
Â

  
(2 1)

sin
2

n y

a

p-

.

 24. 
p p p

p

+•

=

- - - -
= ◊

-
Â

1

1

400 ( 1) (2 1) (2 1) (2 1)
( , ) sech cos cosh

2 1 2 2 2

n

n

n b n x n y
u x y

n a a a
.

 25. 
1

2 2
1

80 ( 1) (2 1) (2 1) (10 )
( , ) sech cosh

2 20(2 1)

n

n

k n n x
u x y

n

p

p

+•

=

- - - -
=

-
Â .

  
(2 1)

sin
20

n yp-

.

 26. 
2 3 3

1 1

64 1
( , )

(2 1) (2 1)m n

u x y

m np

• •

= =

=
- -

Â Â sin(2m – 1)x · sin(2n – 1)y·exp 

[–{(2m – 1)2 + (2n – 1)2}a2
t]
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