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Preface

This book is exclusively designed for the first-year engineering students of 

Jawaharlal Nehru Technological University, Kakinada studying the ‘Network 

Analysis’ course in their second semester. The primary goal of this text is to enable 

the student have a firm grasp over basic principles of Network Analysis, and develop 

an understanding of circuits and the ability to design practical circuits that perform 

the desired operations. Emphasis is placed on basic laws, theorems and techniques 

which are used to develop a working knowledge of the methods of analysis used 

most frequently in further topics of electrical engineering.

Each chapter begins with principles and theorems together with illustrative and 

other descriptive material. A large number of solved examples showing students the 

step-by-step processes for applying the techniques are presented in the text. Several 

questions in worked examples have been selected from university question papers.

As an aid to both the instructor and the student, objective questions and tutorial 

problems provided at the end of each chapter progress from simple to complex. 

Answers to selected problems are given to instil confidence in the reader. Due care is 

taken to see that the reader can easily start learning the concepts of Network Analysis 

without prior knowledge of mathematics.

SAlieNt FeAtureS

 ● 100% coverage of JNTU Kakinada latest syllabus

 ● Individual topics very well supported by solved examples

 ● Roadmap to the syllabus provided for systematic reading of the text

 ● University questions incorporated at appropriate places in the text

 ● Excellent pedagogy:

 ■ Solved Examples: 490

 ■ Practice Problems: 214

 ■ Objective Type Questions: 191

 ■ Illustrations: 915

The book is organized in 7 chapters. All the elements with definitions, basic 

laws and configurations of the resistive circuits, capacitive and inductive elements 

are introduced in chapter 1. Kirchhoff’s laws, nodal and mesh analysis with only 

resistive elements are explained in this chapter. chapter 2 includes ac fundamentals 

with phasor representations. Network topology has been written in an easy-to-

understand manner in this unit. Steady-state analysis has been discussed in chapter 

3. Complex impedance, mesh and nodal analysis for ac circuits, star-delta conversion 

are discussed in this chapter. Coupled circuits, resonance phenomenon in series and 

parallel circuits are presented in chapter 4. Network theorems like Thevenin’s, 

Norton’s, Milliman’s, Reciprocity etc. are presented in chapter 5. chapter 6 deals 

with two-port networks, various parameters and their relations. Transient analysis 
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has been discussed with dc and ac excitations in chapter 7. Solutions using Laplace 

Transforms method are also presented in this chapter. 

Questions that have appeared in the University Examinations are included at 

appropriate places which will serve to enhance understanding and build the student’s 

confidence.
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Introduction 
to Electrical 
Circuits

1.1 NETWORK ELEMENTS CLASSIFICATION

Simply an electric circuit consists of three parts: (1) energy source, such as battery 

or generator, (2) the load or sink, such as lamp or motor, and (3) connecting wires 

as shown in Fig. 1.1. This arrangement represents a simple circuit. A battery is 

connected to a lamp with two wires. The purpose of the circuit is to transfer 

energy from source (battery) to the load (lamp). And this is accomplished by the 

passage of electrons through wires around the circuit.

The current flows through the filament of 

the lamp, causing it to emit visible light. The 

current flows through the battery by chemical 

action. A closed circuit is defined as a circuit 

in which the current has a complete path to 

flow. When the current path is broken so that 

current cannot flow, the circuit is called an 

open circuit.

More specifically, interconnection of two 

or more simple circuit elements (viz. voltage 

sources, resistors, inductors and capacitors) is called an electric network. If a network 

contains at least one closed path, it is called an electric circuit. By definition, a 

simple circuit element is the mathematical model of two terminal electrical devices, 

and it can be completely characterised by its voltage and current. Evidently then, a 

physical circuit must provide means for the transfer of energy.

Broadly, network elements may be classified into four groups, viz.

1. Active or passive

2. Unilateral or bilateral

3. Linear or nonlinear

4. Lumped or distributed

[JNTU Nov 2011]

1

Battery

Lamp

Wire

+

Fig. 1.1



1.2 Network Analysis

1.1.1 Active and Passive [JNTU Jan 2010]

Energy sources (voltage or current sources) are active elements, capable of 

delivering power to some external device. Passive elements are those which 

are capable only of receiving power. Some passive elements like inductors and 

capacitors are capable of storing a finite amount of energy, and return it later to 

an external element. More specifically, an active element is capable of delivering 

an average power greater than zero to some external device over an infinite time 

interval. For example, ideal sources are active elements. A passive element is 

defined as one that cannot supply average power that is greater than zero over an 

infinite time interval. Resistors, capacitors and inductors fall into this category.

1.1.2 Bilateral and Unilateral

In the bilateral element, the voltage-current relation is the same for current flowing 

in either direction. In contrast, a unilateral element has different relations between 

voltage and current for the two possible directions of current. Examples of bilateral 

elements are elements made of high conductivity materials in general. Vacuum 

diodes, silicon diodes, and metal rectifiers are examples of unilateral elements.

1.1.3 Linear and Nonlinear Elements

An element is said to be linear, if its voltage-current characteristic is at all times a 

straight line through the origin. For example, the current passing through a resistor 

is proportional to the voltage applied through it, and the relation is expressed as 

V  I or V  IR. A linear element or network is one which satisfies the principle 

of superposition, i.e. the principle of homogeneity and additivity. An element 

which does not satisfy the above principle is called a nonlinear element.

1.1.4 Lumped and Distributed

Lumped elements are those elements which are very small in size and in which 

simultaneous actions takes place for any given cause at the same instant of time. 

Typical lumped elements are capacitors, resistors, inductors and transformers. 

Generally the elements are considered as lumped when their size is very small 

compared to the wave length of the applied signal. Distributed elements, on the 

other hand, are those which are not electrically separable for analytical purposes. 

For example, a transmission line which has distributed resistance, inductance 

and capacitance along its length may extend for hundreds of miles.

1.2 ELECTRIC CHARGE AND CURRENT

There are free electrons available in all semiconductive and conductive materials. 

These free electrons move at random in all directions within the structure in the 

absence of external pressure or voltage. If a certain amount of voltage is applied 

across the material, all the free electrons move in one direction depending on the 

polarity of the applied voltage, as shown in Fig. 1.2.

This movement of electrons from one end of the material to the other end 

constitutes an electric current, denoted by either I or i. The conventional direction 



Introduction to Electrical Circuits 1.3

of current flow is opposite to 

the flow of –ve charges, i.e. the 

electrons.

Current is defined as the rate of 

flow of electrons in a conductive 

or semiconductive material. 

It is measured by the number 

of electrons that flow past a 

point in unit time. Expressed 

mathematically,

I
Q

t
=

where I is the current, Q is the charge of electrons, and t is the time, or

i
dq

dt
=

where dq is the small change in charge, and dt is the small change in time.

In practice, the unit ampere is used to measure current, denoted by A. One 

ampere is equal to one coulomb per second. One coulomb is the charge carried 

by 6.25  1018 electrons. For example, an ordinary 80 W domestic ceiling 

fan on 230 V supply takes a current of approximately 0.35 A. This means that 

electricity is passing through the fan at the rate of 0.35 coulomb every second, i.e. 

2.187  1018 electrons are passing through the fan in every second; or simply, 

the current is 0.35 A.

Five coulombs of charge flow past a given point in a wire in 2 s. How 

many amperes of current is flowing?

Example 1.1

Solution I
Q

t
= = =

5

2
2 5. A

1.3 ELECTRIC ENERGY AND POTENTIAL

According to the structure of an atom, we know that there are two types of 

charges: positive and negative. A force of attraction exists between these positive 

and negative charges. A certain amount of energy (work) is required to overcome 

the force and move the charges through a specific distance. All opposite charges 

possess a certain amount of potential energy because of the separation between 

them. The difference in potential energy of the charges is called the potential
difference.

Potential difference in electrical terminology is known as voltage, and is denoted 

either by V or  . It is expressed in terms of energy (W ) per unit charge (Q); i.e.

V
W

Q
v

dw

dq
= =or

Fig. 1.2
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dw is the small change in energy, and

dq is the small change in charge.

where energy (W ) is expressed in joules (J), charge (Q) in coulombs (C), and 

voltage (V ) in volts (V). One volt is the potential difference between two points 

when one joule of energy is used to pass one coulomb of charge from one point 

to the other.

If 70 J of energy is available for every 30 C of charge, what is 

the voltage?

Example 1.2

Solution V
W

Q
= = =

70

30
2 33. V

A resistor with a current of 3 A through it converts 500 J of 

electrical energy to heat energy in 12 s. What is the voltage across the resistor?

Example 1.3

Solution V
W

Q
=

Q  I  t

 3  12  36 C

V = =
500

36
13 88. V

1.4 POWER AND ENERGY

Energy is the capacity for doing work, i.e. energy is nothing but stored work. Energy 

may exist in many forms such as mechanical, chemical, electrical and so on. Power 

is the rate of change of energy, and is denoted by either P or p. If certain amount of 

energy is used over a certain length of time, then

Power
energy

time
or( ) ,P

W

t

p
dw

dt

= =

=

where dw is the change in energy and dt is the change in time. 

We can also write p
dw

dt

dw

dq

dq

dt

v i vi

= = ¥

= ¥ = W

Energy is measured in joules (J), time in seconds (s), and power in watts (W).

By definition, one watt is the amount of power generated when one joule of 

energy is consumed in one second. Thus, the number of joules consumed in one 

second is always equal to the number of watts. Amounts of power less than one 

watt are usually expressed in fraction of watts in the field of electronics; viz. 
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milliwatts (mW) and microwatts (mW). In the electrical field, kilowatts (kW) 

and megawatts (MW) are common units. Radio and television stations also use 

large amounts of power to transmit signals.

What is the power in watts if energy equal to 50 J is used in 

2.5 s?

Example 1.4

Solution P = = =
energy

time
W

50

2 5
20

.

A 5   resistor has a voltage rating of 100 V. What is its power 

rating?

Example 1.5

Solution P VI

I  V/R

P
V

R
= =

( )
=

2 2
100

5
2000W=2 kW

1.5 RESISTANCE PARAMETER

When a current flows in a material, the free electrons move through the material 

and collide with other atoms. These collisions cause the electrons to lose some of 

their energy. This loss of energy per unit charge is the drop in potential across the 

material. The amount of energy lost by the electrons is 

related to the physical property of the material. These 

collisions restrict the movement of electrons. The 

property of a material to restrict the flow of electrons 

is called resistance, denoted by R. The symbol for the resistor is shown in Fig. 1.3.

The unit of resistance is ohm ( ). Ohm is defined as the resistance offered by 

the material when a current of one ampere flows between two terminals with one 

volt applied across it.

According to Ohm’s law, the current is directly proportional to the voltage and 

inversely proportional to the total resistance of the circuit, i.e.

I
V

R
=

or i
v

R
=

We can write the above equation in terms of charge as follows.

V R
dq

dt
= , or i

v

R
Gv= =

R

Fig. 1.3
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where G is the conductance of a conductor. The units of resistance and 

conductance are ohm ( ) and mho ( ) respectively.

When current flows through any resistive material, heat is generated by the 

collision of electrons with other atomic particles. The power absorbed by the 

resistor is converted to heat. The power absorbed by the resistor is given by

P  vi  (iR) i  i2 R

where i is the current in the resistor in amps, and   is the voltage across the 

resistor in volts. Energy lost in a resistance in time t is given by

W pdt pt i Rt
v

R
t

t

= = = =Ú 2

2

0

where v is the volts

R is in ohms

t is in seconds and

W is in joules

A 10   resistor is connected across a 12 V battery. How much 

current flows through the resistor?

Example 1.6

Solution V IR

I = = =
V

R

12

10
1 2. A

1.6
INDUCTANCE PARAMETER

[JNTU June 2009 and May/June 2008]

A wire of certain length, when twisted into a coil becomes a basic inductor. 

If current is made to pass through an inductor, an electromagnetic field is 

formed. A change in the magnitude of the current changes the electromagnetic 

field. Increase in current expands the fields, and decrease in current reduces it. 

Therefore, a change in current produces change in 

the electromagnetic field, which induces a voltage 

across the coil according to Faraday’s law of 

electromagnetic induction.

The unit of inductance is henry, denoted by H.

By definition, the inductance is one henry when 

current through the coil, changing at the rate of one ampere per second, induces 

one volt across the coil. The symbol for inductance is shown in Fig. 1.4.

The current-voltage relation is given by

v L
di

dt
=

L

Fig. 1.4
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where  is the voltage across inductor in volts, and i is the current through 

inductor in amps. We can rewrite the above equation as

di
L

v dt=
1

Integrating both sides, we get

di
L

vdt

i t i
L

vdt

i t
L

vdt i

t t

t

t

0 0

0

0

1

0
1

1
0

Ú Ú

Ú

Ú

=

- =

= +

( ) ( )

( ) ( )

From the above equation we note that the current in an inductor is dependent 

upon the integral of the voltage across its terminals and the initial current in the 

coil, i(0).

The power absorbed by inductor is

P vi Li
di

dt
= = watts

The energy stored by the inductor is

W pdt

Li
di

dt
dt

Li

t

t

=

= =

Ú

Ú

0

2

0
2

From the above discussion, we can conclude the following.

1. The induced voltage across an inductor is zero if the current through it is 

constant. That means an inductor acts as short circuit to dc.

2. A small change in current within zero time through an inductor gives an 

infinite voltage across the inductor, which is physically impossible. In a 

fixed inductor the current cannot change abruptly.

3. The inductor can store finite amount of energy, even if the voltage across 

the inductor is zero, and

4. A pure inductor never dissipates energy, only stores it. That is why it is 

also called a non-dissipative passive element. However, physical inductors 

dissipate power due to internal resistance.
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The current in a 2 H inductor varies at a rate of 2 A/s. Find the 

voltage across the inductor and the energy stored in the magnetic field after 2 s.

Example 1.7

Solution v L
di

dt

W Li

=

= ¥ =

= ¥ ¥ =

2

2 4 8

1

2
1

2
2 4 162

V

 = 

J( )

Find the inductance of a coil through which flows a current of 

0.2 A with an energy of 0.15 J.

Example 1.8

Solution W LI

L
W

I

=

=
¥

=
¥

( )
=

1

2

2 2 0 15

0 2
7 5

2

2 2

.

.
. H

Find the inductance of a coil in which a current increases 

linearly from 0 to 0.2 A in 0.3 s, producing a voltage of 15 V.

Example 1.9

Solution v L
di

dt
=

Current in 1 second = =
0 2

0 3
0 66

.

.
. A

The current changes at a rate of 0.66 A/s,

 L
v

di

dt

=
Ê
ËÁ

ˆ
¯̃

L = =
15

0 66
22 73

V

A/s
H

.
.

A current of 1 A is supplied by a source to an inductor of 1 H. 

Calculate the energy stored in the inductor. What happens to this energy if the 

source is short circuited?

Example 1.10

Solution

Energy stored Joules
1

2

1

2
1 1 0 52 2LI = ¥ = .
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If the inductor has an internal resistance, the stored energy is dissipated in the 

resistance after the short circuit as per the time constant (1/r) of the coil.

If the coil is a pertect inductor. The current would circulate through the shorted 

coil continuously.

Derive the expression for the energy stored in an ideal inductor?Example 1.11

Solution Expression for Energy Stored in an ideal inductor

Let ‘L’ be the co-efficient of self inductance and i be the current flowing through it.

Let ‘dw’ be the small amount of work to be expended to overcome self-induced 

emf.

  dw  Ei dt

dw L
di

dt
idt E L

di

dt
= =È

ÎÍ
˘
˚̇

n

from lenz law

dw  Li di (1)

Hence, total work to be done in establishing a maximum current i0 is given by 

integrating (1) from 0 to i0.

\ = = =Ú Ú Úw dw Li di L i di

i i i

0 0 0

0 0 0

=
È

Î
Í
Í

˘

˚
˙
˙

=

L
i

w Li

1

2 1

1

2

0
2

0
2

 Energy stored in an inductor w Li=
1

2
0
2

1.6.1 Inductance in Series

Consider a voltage source is 

applied to the series combina-

tion of N inductors as shown in 

Fig. 1.5.

In the circuit, the current 

passing through each inductive 

element is same. Also, the source 

voltage applied to the circuit 

v(t) is equal to the sum of the individual voltages.

ie v(t)  v1(t)  v2(t)  v3(t)  ………  vN(t)

Fig. 1.5
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v t L
di

dt
L

di

dt
L

di

dt
L

di

dt

L L L L
di

dt

v t

N

N

( )

( )

( )

= + + + +

= + + + +

1 2 3

1 2 3

º

º

== L
di

dt
eq

Therefore, the equivalent inductance is

Leq  L1  L2  L3   …………  LN

The equivalent inductance of any number of inductors connected in series is 

the sum of the individual inductances.

Three inductances are 

connected as shown in Fig. 1.6. What is the 

equivalent inductance?

Example 1.12

Fig. 1.6

Solution Since the current passing through each inductance is same, the three 

inductances are connected in series.

The equivalent inductance Leq   (0.1   0.3   0.5) H 

Leq   0.9 H

1.6.2 Inductance in Parallel

Consider the circuit shown in Fig. 1.7. The current source i(t) is applied to circuit. 

Assume a voltage v(t) exists across the parallel combination and let the currents 

in L1, L2 ….., LN be i1(t), i2(t) ……, iN(t) respectively.

Fig. 1.7

Since the total current i
T
 is the sum of the branch currents.

i(t)  i1(t)  i2 (t)   ……… iN (t)

or

1 1 1 1

1 1
1 2L

v t dt
L

v t dt
L

v t dt
L

v t dt

L L

eq

eq

( ) ( ) ( ) ..... ( )= + + +

\ =

Ú ÚÚ Ú
N

11 2

1 1
+ + +
L L

...........
N
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Therefore, the reciprocal of the equivalent inductance of any number of 

inductors in parallel is the sum of the reciprocals of the individual inductances.

There pure inductances 

are connected as shown in Fig. 1.8. What 

equivalent inductance Leq may replace this 

circuit? 

Example 1.13

Fig. 1.8

Solution Equivalent inductance of parallel combination is

1 1

0 2

1

0 3

1

0 6
10

Leqp

= + + =
. . .

Leqp   0.1 H

The required equivalent inductance

Leq   0.1 H  Leqp

Leq   0.2 H

1.7 CAPACITANCE PARAMETER

Any two conducting surfaces separated by an insulating medium exhibit the 

property of a capacitor. The conducting surfaces are called electrodes, and 

the insulating medium is called dielectric. A capacitor stores energy in the 

form of an electric field that is established by the opposite charges on the two 

electrodes. The electric field is represented by lines of force between the positive 

and negative charges, and is concentrated within the dielectric. The amount of 

charge per unit voltage that is capacitor can 

store is its capacitance, denoted by C. The 

unit of capacitance is Farad denoted by F.

By definition, one Farad is the amount of 

capacitance when one coulomb of charge is 

stored with one volt across the plates. The symbol for capacitance is shown in 

Fig. 1.9.

A capacitor is said to have greater capacitance if it can store more charge per 

unit voltage and the capacitance is given by

C
Q

V
C

q

v
= =, or

(lowercase letters stress instantaneous values)

We can write the above equation in terms of current as

i C
dv

dt
= i

dq

dt
=Ê

ËÁ
ˆ
¯̃

Fig. 1.9
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where   is the voltage across capacitor, i is the current through it

dv
C
idt=

1

Integrating both sides, we have

dv
C

idt

v t v
C

idt

v t
C

idt v

t t

t

t

0 0

0

0

1

0
1

1
0

Ú Ú

Ú

Ú

=

- =

= +

( ) ( )

( ) ( )

where v(0) indicates the initial voltage across the capacitor.

From the above equation, the voltage in a capacitor is dependent upon the 

integral of the current through it, and the initial voltage across it.

The power absorbed by the capacitor is given by

p vi vC
dv

dt
= =

The energy stored by the capacitor is

W pdt vC
dv

dt
dt

W Cv

t t

= =

=

Ú Ú
0 0

21

2

From the above discussion we can conclude the following:

1. The current in a capacitor is zero if the voltage across it is constant; that 

means, the capacitor acts as an open circuit to dc.

2. A small change in voltage across a capacitance within zero time gives an 

infinite current through the capacitor, which is physically impossible. In a 

fixed capacitance the voltage cannot change abruptly.

3. The capacitor can store a finite amount of energy, even if the current 

through it is zero, and

4. A pure capacitor never dissipates energy, but only stores it; that is why it 

is called non-dissipative passive element. However, physical capacitors 

dissipate power due to internal resistance.

A capacitor having a capacitance 2  F is charged to a voltage 

of 1000 V. Calculate the stored energy in joules.

Example 1.14
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Solution W Cv= = ¥ ¥ ¥( ) =-1

2

1

2
2 10 1000 12 6 2

J.

When a dc voltage is applied to a capacitor, the voltage across 

its terminals is found to build up in accordance with VC  50(1 – e–100 t). After a 

lapse of 0.01 s, the current flow is equal to 2 mA.

(a) Find the value of capacitance in microfarads.

(b) How much energy is stored in the electric field at this time?

Example 1.15

Solution

(a) i C
dv

dt

C=

where  
C
 50(1 – e–100 t)

i C
d

dt
e

t= -( )-
50 1

100

 C  50  100e–100 t

At t  0.01 s, i  2 mA

C
e

F=
¥

¥ ¥
=

-

- ¥

2 10

50 100
1 089

3

100 0 01.
.  

(b) W Cv
C

=
1

2

2

At t  0.01 s,  
C
 50 (1 – e–100  0.01)  31.6 V

W = ¥ ¥ ¥( )-1

2
1 089 10 31 6

6 2
. .

 0.000543 J

1.7.1 Capacitance in Series

Consider a circuit consists of N

capacitors in series as shown in 

Fig. 1.10.

In the circuit, the total voltage 

applied to the circuit is equal 

to sum of the voltages across 

individual capacitive elements.
Fig. 1.10
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 v(t)  v1(t)  v2(t)  v3(t)   ……… .  vN(t)

Assuming zero initial voltage across each capacitor,

v t
C

i t dt
C

i t dt
C

i t dt
C

i t dt

N

( ) ( ) ( ) ( ) ......... ( )= + + + +Ú Ú Ú Ú
1 1 1 1

1 2 3

where v t
C

i t dt( ) ( )= Ú
1

eq

\ = + + + +
1 1 1 1 1

1 2 3C C C C Ceq N

......

The reciprocal of the equivalent capacitance of any number of capacitors 

connected in series is the sum of the reciprocals of the individual capacitances.

The two capacitors shown in 

Fig. 1.11 are connected in series. Find the equivalent 

capacitance of the circuit.

Example 1.16

Fig. 1.11

Solution The equivalent capacitance of the circuit shown in Fig. 1.11 is

1 1 1

1 2C C Ceq

= +

C
C C

C C
eq =

+
=

¥ ¥ ¥
¥

- -

-
1 2

1 2

6 6

6

0 5 10 0 2 10

0 7 10

. .

.

 Ceq   0.143  F.

1.7.2 Capacitance in Parallel

Consider the circuit shown in Fig. 1.12 consists of N parallel capacitors. A current 

source is applied to the circuit. The total current applied to the circuit is the sum 

of the individual currents flowing in the circuit.

Fig. 1.12

i(t)  i1(t)  i2(t)  i3(t)   ……… .  iN(t)

C
dv t

dt
C
dv t

dt
C

dv t

dt
C
dv t

dt
C

dv t

dt
Neq = = + + + +

( ) ( ) ( ) ( )
...

( )
1 2 3
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From the above equation, we get

Ceq  C1  C2  C3   ……… .  CN

The resultant capacitance of any number of capacitors in parallel is the sum of 

the individual capacitances.

Find the equivalent 

capacitance Ce of the combination of 

capacitors shown in Fig. 1.13.

Example 1.17

Fig. 1.13

Solution Equivalent capacitance of series branch is

C
C C

C C
s F=

+
=

¥ ¥
+

=
-

1 2

1 2

6
5 2 10

5 2
1 43.  

The required equivalent capacitance is

Ceq  Cs   5  F

Ceq   1.43   5   6.43  F

Find the total equivalent capacitance, total energy stored if the 

applied voltage is 100 V for the circuit as shown in Fig. 1.14. [JNTU Jan 2010]

Fig. 1.14

Example 1.18

Solution 4F and 3F in series

C = Feq

4 3

4 3

12

4

 

 
=

12

7
F in parallel with 5 F

\ C Feq    
 

 
12

7
5

35 12

7

47

7

  Ceq   2 F and 1 F in series
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C Feq = =
2 1

2 1

2

3

 

 

 

2

3
F in parallel with 

47

7
F

\ = + =
+

=C Feq

2

3

47

7

14 141

21

155

21

\ =E CV
1

2

2

\ = ¥ ¥E
1

2

155

21
100 100 

E  36900 J

1.7.3 V–I Relation of Passive Elements for Different Input Signals

In this section, we discuss about the voltage current relationship of passive 

elements for different input signals. Table 1.1 shows the voltage current relations 

of three circuit elements resistor R, inductor L and capacitor C.

Table 1.1 V–I relation of circuit elements

Circuit element Voltage (V) Current (A) Power (W)

Resistor R (Ohms  )  = Ri i
R

=
 

P  i2 R

Inductor L (Henry H)  = L
di

dt
i vdt i= +Ú

1

2
0

where i0 is the initial 

current in inductor

P L
di

dt
=

Capacitor C (Farad F) v
C

idt v= +Ú
1

0

where v0 is the 

initial voltage across 

capacitor

i c
dv

dt
= P cv

dv

dt
=

Resistive Element

Consider the voltage function is applied to a resistor 

R as shown in Fig. 1.15. The current i(t) is flowing 

through the circuit.

The relation between v(t) and i(t) is

v(t)  R i(t)

Now, let us determine the relation between voltage 

and current for various input signals through following 

examples.

v(t)
i(t)

R

Fig. 1.15
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T h e 

voltage function v(t) is a 

repeating square wave 

shown in Fig. 1.16, 

applied to a pure resistor 

of 10 ohms. Plot current 

i(t) and power p(t).

Example 1.19

Fig. 1.16

Solution Since v(t)  R i(t), the voltage varies directly as the current. The 

maximum value of current is

i
v

R
max

max= = =
10

10
1A

Since power P  vi, the maximum value of power is 

Pmax  vmax imax  10(1)  10 W

The resultant current and power waveforms are shown in Figs 1.17(a) and (b) 

respectively.

Fig. 1.17

A single pure 

resistance of 20 ohms passes a 

current of the waveform shown in 

Fig. 1.18. Determine and sketch the 

voltage V(t) and the instantaneous 

power p(t).

Example 1.20

Fig. 1.18

Solution From Fig. 1.18, the instantaneous current i(t) is given by i(t)  2 t

amperes

The corresponding voltage is

v(t)  R i(t)
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   20  2 t  40 t volts.

The corresponding instantaneous power is

p(t)  v(t) i(t)

   40 t  2 t  80 t2 watts.

The resultant voltage and power waveforms are shown in Figs 1.19 (a) and (b) 

respectively.

Fig. 1.19

T h e 

current function shown 

in Fig. 1.20 is a 

repeating sawtooth and 

exists in a pure resister 

of 8 . Find the voltage 

v(t) and instantaneous 

power p(t).

Example 1.21

Fig. 1.20

Solution Since v(t)  Ri(t)

vmax  Rimax  (8)(5)  40 V

when 0  t  2s, i t t t( ) .= =
5

2
2 5 amperes

Then, voltage v(t)  Ri(t)

   8(2.5 t)  20 t volts

Instantaneous power p(t)  v(t) i(t)

 20 t  2.5 t

 50 t2 watts.
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Therefore, the voltage v(t) and power p(t) waveforms are shown in Figs 1.21(a)

and (b) respectively.

Fig. 1.21

The voltage waveform shown in Fig. 1.22 is applied to a pure 

resistor of 10 V. Sketch the current waveform and instantaneous power.

0 2 4 6 8 t (sec)

50

Fig. 1.22

Example 1.22

Solution Since v(t)  Ri(t),

i
v

R
max

max= = =
50

10
5 amperes.

when 0  t  2s, v  25 t volts,

then amps.i
t

t= =
25

10
2 5.

when 2s  t  4s, v   25 t volts

then ampsi
t

t=
-

= -
25

10
2 5.

The instantaneous power p(t)  v(t) i(t)

when 0  t  2s, p  vi

 25 t  2.5 t

 62.5 t2 watts

when 2s  t  4s, p  vi

  25 t   2.5 t

 62.5 t2 watts
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Therefore, the current and power waveforms are shown in Figs 1.23(a) and (b) 

respectively.

0

5

2 4 6 8 t (sec)

i(t) amps

0

250

2 4 6 8 t (sec)

(b)(a)

Fig. 1.23

Capacitive Element

Consider a capacitive element shown in Fig. 1.24.

The capacitance c is given by the voltage–current relationship

i c
dv

dt

v
c

idt v

=

= +Ú

or

1
0

where v0 is the initial voltage across the capacitor.

Now let us determine the response of pure capacitor for various input 

waveforms through following examples.

The current 

waveform shown in Fig. 1.25 

is applied to capacitor of 5 F. 

Find the voltage across the 

capacitor. 

Example 1.23

0 2 4

20mA

i(t)

Fig. 1.25

Solution Assume initial voltage across the capacitor is zero.

The voltage across the capacitor is

v t
c

i t dt v( ) ( )= +Ú
1

0

i(t)  20 mA, 0  t  2ms

   0, t  2 ms

\ =
¥

¥ +-
-Úv t dt v( )

1

5 10
20 10

6

3
0

since v0  0

v(t)  4000 t 0  t  2ms
0 2 4

8

(v)

Fig. 1.26

Fig. 1.24
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At t  2ms, the voltage across the capacitor

v(t)  8 volts.

The resultant waveform is shown in Fig. 1.26.

A current of 

the waveform shown in Fig. 1.27 

flows through a capacitance 

C 100  F. Sketch the voltage 

waveform and determine Vm.

Example 1.24

Fig. 1.27

Solution Assume initial voltage across the capacitor is zero.

The voltage across the capacitor is 

v t
c

i t dt v( ) ( )= +Ú
1

0

i(t)  10  106 t ; 0  t  1 s

    20  10  106 t; 1 s  t  2  s

Since v0  0

v t t dt t( ) ;=
¥

¥ £ £- Ú
1

100 10
10 10 0 1

6

6  s

and

v t t dt t( ) [ ] ;=
¥

- + ¥ £ £- Ú
1

100 10
20 10 10 1 2

6

6   s s

Therefore

v t
t

t s

v t t
t

( ) ;

( )

=
¥
¥

£ £

=
¥

- + ¥

-

-

10 10

100 10 2
0 1

1

100 10
20 10 10

2

6

6

2

6

6
2

 

ÈÈ

Î
Í

˘

˚
˙ £ £; 1 2  s t s

The voltage waveform is shown in Fig. 1.28.
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The maximum voltage V
m
 0.05V.

Fig. 1.28

The voltage 

waveform shown in Fig. 1.29 

is applied to a pure capacitor 

of 50  F. Sketch i(t), p(t), and 

determine Im and pm.

Example 1.25

0

100

1 2 3 4 t (m sec)

Fig. 1.29

Solution Since i c
dv

dt
=

From the voltage waveform v(t)  100  103 t; 0  t  1ms

 200  100  103 t; 1ms  t  2 ms

Therefore, the current

i t c
dv t

dt

d

dt
t

t

( )
( )

( )

;

=

= ¥ ¥È
ÎÍ

˘
˚̇

= £ £

-50 10 100 10

5 0 1

6 3

A ms

i t c
d

dt
v t

d

dt
t

t

( ) [ ( )]

( )

;

=

= ¥ - ¥È
ÎÍ

˘
˚̇

= - £ £

-50 10 200 100 10

5 1 2

6 3

A ms mms

The instantaneous power p t t i t( ) ( ) ( )=  

 100  103 t  5

 500  103 t; 0  t  1ms
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and p(t)  [ 200  100  103t][ 5]

   500  103 t  103, 1ms  t  2ms.

The maximum value of current 

Im  5 A

and the maximum value of power

Pm  500 watts

The current and instantaneous power waveforms are shown in Figs 1.30(a) and 

(b) respectively.

Fig. 1.30

A capacitor is charged to 1 volt at t  0. A resistor of 1 ohm is 

connected across its terminals. The current is known to be of the form i(t)  e t

amperes for t  0. At a particular time the current drops to 0.37 A at that instant 

determine.

   (i) At what rate is the voltage across the capacitor changing?

(ii) What is the value of the charge on the capacitor?

(iii) What is the voltage across the capacitor?

(iv) How much energy is stored in the electric field of the capacitor?

(v) What is the voltage across the resistor?

Example 1.26

Solution

(i) The current equation is given as i(t) 5 i(0+) e–t/RC; given i(t) 5 e–t/RC

i(0+)  1A; RC  1; C  1F

When i(t)  0.37 amperes

i(t)  0.37  e t/1

 t logee  loge 0.37

t  0.9942 sec
Fig. 1.31
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i t C
dV t

dt

dV t

dt

i t

C
( )

( ) ( ) ( ) .
.= fi = = =

0 37

1
0 37 V/sec

or V t
C

i t dt V
i

t

( ) ( )= +Ú
1

0

0

= - + \ = --Ú
1

0

0
C

e dt V i t t
t

t

[ ( ) ( )]

=
-

-
+ =

= = >

-
-

-

1

1 1
1

0

e
e

V t e t

t

t

c

t

( )

( ) for

 

dV t

dt
e e

C t( )
..= - = - = -- -0 9942 0 37 V/sec

(ii) Charge on the capacitor

Q  C Vc   1.e t  0.37 coulombs

(iii) Voltage across the capacitor

Vc(t)  e t  0.37 volts

(iv) Energy stored in the capacitor

W CV e
e

C c

t

t

= = = =-
-1

2

1

2
1

2
0 068452 2

2

( ) . joules

(v) Voltage across the resistor at t  0.9942 sec

V
R
 i(t), R  e t 0.37 V

Inductive Element

Consider an inductive element shown in Fig. 1.32.

The inductance L is given by the voltage current relationship.

v L
di

dt

i
L

vdt i

=

= +Ú

or

1

0

where i0 is initial current flowing through inductor.

i L

v+ –

Fig. 1.32
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The current 

waveform shown in Fig. 1.33 is 

the current in a pure inductor 

L 0.5 H. Sketch the voltage 

waveform.

Example 1.27

Fig. 1.33

Solution The relation between voltage and current in an inductor is given by

v L
di

dt
=

From Fig. 1.33, the current

i(t)  0.5  103 t ; 0  t  1ms

   0; 1 ms  t  2ms

The voltage across inductor 

v
d

dt
t= ¥ ¥

= ¥ ¥ =

0 5 0 5 10

0 5 0 5 10 250

3

3

. ( . )

. . V

Practically, the current in an 

inductor never the discontinuous 

function as shown at 1ms and 

3ms. The derivative has an 

infinite negative value at the 

points of discontinuity, there 

will be negative infinite spikes 

on the voltage waveform at 

these points.

The voltage waveform is shown in Fig. 1.34.

An indictor element 10 mH passes a current i(t) of waveform 

shown in Fig. 1.35. Find the voltage across the element. Also sketch the voltage 

waveform.

Fig. 1.35

Example 1.28

Fig. 1.34



1.26 Network Analysis

Solution The voltage across inductor is given by

v L
di

dt
=

i(t)  5  103 t amp; 0  t  1m sec

v(t)  (10  10 3)(5  103)  50V

i(t)  5A; 1ms  t  2ms

v(t)  10  10 3 (0)  0

i(t)   5  103 t  15; 2ms  t  4ms

v(t)  (10  10 3)( 5  103)   50V

i(t)   5A; 4ms  t  6ms

v(t)  10  10 3(0)  0

i(t)  5  103 t  30 ; 5ms  t  6ms

 v(t)  10  10 3  5  103  50V

Therefore, the voltage waveform is shown in Fig. 1.36.

Fig. 1.36

A pure 

inductance of 0.01 H has an 

applied voltage with a wave 

form shown in Fig. 1.37. 

Sketch the corresponding 

current waveform and 

determine the expression 

for i in the first interval 

0  t  1 ms.

Example 1.29

Fig. 1.37

Solution The voltage current relation in an inductor is given by

i t
L

v t dt i( ) ( )= +Ú
1

0
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Since i0  0

i v t dt= Ú
1

0 01.
( )

v(t)  50  103 t; 0  t  1ms

  100  50  103 t ; 1ms  t  2ms.

Therefore, the current equation 

i t t dt( )
.

= ¥ ◊Ú
1

0 01
50 103

i(t)  25  105 t2 ; 0  t  1ms

and i t t dt

t
t

( )
.

[ ]

.
;

= - + ¥

= - + ¥
È

Î
Í

˘

˚
˙

Ú
1

0 01
100 50 10

1

0 01
100 50 10

2
1

3

3
2

ms ££ £t 2 ms

The current waveform is shown in Fig. 1.38.

Fig. 1.38

The following current wavefrom i(t) is passed through a series 

RL circuit with R   2 ; L   2 mH. Find the voltage across each element and 

sketch the same. (See Fig. 1.39) [JNTU April/May 2003]

Fig. 1.39

Example 1.30
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Solution

For line OA,m =
5

1

i t t

i t t

( ) ( )

( )

- = -

=

0
5

1
0

5

For line AB, i(t)  5

For line BD,

( ( ) ) ( )i t t- =
- -

-
-5

5 5

5 3
3

i(t)  5   5(t  3)

i(t)   5t  20

For line DE, i(t)   5

For line EF,

( ( ) ) ( )

( )

i t t

i t t

+ = -

= -

5
5

1
7

5 40

Voltage induced in the inductor

Along OA

V L
di

dt

d t

dt
OA

= = ¥ ¥ = ¥ ¥ ¥ =- - -2 10
5

2 10 5 10 103 3 3( )
 V

Along AB

V L
di

dt
AB

= = 0

Along BD

V L
di

dt

d t

dt
Bd

= = ¥ ¥
- +

= - ¥ = -- -2 10
5 20

10 10 103 6( )
V V 

Along DE

V L
di

dt
DE

= = 0

Along EF

V L
di

dt

d t

dt
EF

= = ¥ ¥
+ ¥

=-
-

2 10
5 40 10

103
3( )

 V

The wave is shown in Fig. 1.40.

μ

μ

Fig. 1.40



Introduction to Electrical Circuits 1.29

Voltage waveform across the resistor is the same as current through the circuit 

as shown in Fig. 1.41.

1 2 3 4 5 6 7 8
t

10V

–10V

V(t)

Fig. 1.41

Describe the volt-ampere relations for R, L and C parameters.Example 1.31

Solution Volt-ampere relations for R, L and C parameters

The passive elements R, L, C are defined by the way in which the current 

and voltage are related for individual element.

(i)  If the current ‘I’ and voltage ‘V’ are related by a constant for a single 

element then the element is a resistance ‘R’. The Resistance ‘R’ 

represents the constant of proportionality.

   Voltage, V  RI (ohms law)

Current I
V

R
=

Power, P  VI  I 2R

The units of resistance ‘R’ is ohms ( ).

(ii)  If the current and voltage are related such that the voltage is the 

time derivative of current, then the element is an inductance ‘L’. The 

inductance ‘L’ represents the constant of proportionality.

  Voltage, V L
dI

dt
=

Current, I
L

V dt K K= + =Ú
1

1 1[ ]constant

Power, P VI LI
dI

dt
= =

The units of inductance ‘L’ is Henry (H).

Fig. 1.42

Fig. 1.43
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(iii)  If the voltage and current are related such that the current is the time 

derivative of the voltage, then the element is a capacitance ‘C’. The 

capacitance ‘C’ is the constant of proportionality.

  Current, I C
dV

dt
=

Voltage, V
C

I dt K K= + =Ú
1

2 2[ ]constant

Power, P VI VC
dV

dt
= =

The units of capacitance ‘C’ is Farads (F).

1.8
ENERGY SOURCES: IDEAL, NON-IDEAL, INDEPENDENT

AND DEPENDENT SOURCES

According to their terminal voltage-current characteristics, electrical energy 

sources are categorised into ideal voltage sources and ideal current sources. 

Further they can be divided into independent and dependent sources.

An ideal voltage source is a two-terminal element in which the voltage  
s
 is 

completely independent of the current i
s
 through its terminals. The representation 

of ideal constant voltage source is shown in Fig. 1.45(a).

Fig. 1.45

If we observe the   – i characteristics for an ideal voltage source as shown 

in Fig. 1.45(c) at any time, the value of the terminal voltage  
s
 is constant with 

respect to the value of current i
s
. Whenever  

s
 0, the voltage source is the same 

as that of a short circuit. Voltage sources need not have constant magnitude; 

in many cases the specified voltage may be time-dependent like a sinusoidal 

waveform. This may be represented as shown in Fig. 1.45(b). In many practical 

voltage sources, the internal resistance is represented in series with the source as 

shown in Fig. 1.46(a). In this, the voltage across the terminals falls as the current 

through it increases, as shown in Fig. 1.46(b).

The terminal voltage  
t
 depends on the source current as shown in Fig. 1.46(b), 

where  
t
  

s
 – i

s
R.

[JNTU Nov 2011]

Fig. 1.44
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An ideal constant current source is a two-terminal element in which the current 

i
s
 completely independent of the 

voltage  
s
 across its terminals. 

Like voltage sources we can 

have current sources of constant 

magnitude i
s
 or sources whose 

current varies with time i
s
(t).

The representation of an ideal 

current source is shown in

Fig. 1.47(a).

Fig. 1.47

If we observe the   – i

characteristics for an ideal current 

source as shown in Fig. 1.47(b), at 

any time the value of the current 

i
s
 is constant with respect to the 

voltage across it. In many practical 

current sources, the resistance is in 

parallel with a source as shown in 

Fig. 1.48(a). In this the magnitude 

of the current falls as the voltage 

across its terminals increases. Its 

terminal   – i characteristics is 

shown in Fig. 1.48(b). The terminal 

current is given by i
t
 i

s
 – ( 

s
/R),

where R is the internal resistance of 

the ideal current source.

The two types of ideal sources we have discussed are independent sources for 

which voltage and current are independent and are not affected by other parts of 

the circuit. In the case of dependent sources, the source voltage or current is not 

fixed, but is dependent on the voltage or current existing at some other location 

in the circuit.

Dependent or controlled sources are of the following types:

(i)  voltage controlled voltage source (VCVS)

(ii)  current controlled voltage source (CCVS)

Fig. 1.46

Fig. 1.48

Fig. 1.49
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(iii)  voltage controlled current source (VCCS)

(iv)  current controlled current source (CCCS)

These are represented in a circuit diagram by the symbol shown in Fig. 1.49. 

These types of sources mainly occur in the analysis of equivalent circuits of 

transistors.

1.9 SOURCE TRANSFORMATION

In solving networks to find solutions one may have to deal with energy sources. 

It has already been discussed that basically, energy sources are either voltage 

sources or current sources. Sometimes it is necessary to convert a voltage source 

to a current source and vice-versa. Any practical voltage source consists of an 

ideal voltage source in series with an internal resistance. Similarly, a practical 

current source consists of an ideal current source in parallel with an internal 

resistance as shown in Fig. 1.50. R  and R
i
 represent the internal resistances of 

the voltage source V
s
, and current source I

s
, respectively.

Fig. 1.50

Any source, be it a current source or a voltage source, drives current through 

its load resistance, and the magnitude of the current depends on the value of the 

load resistance. Figure 1.51 represents a practical voltage source and a practical 

current source connected to the same load resistance R
L
.

From Fig. 1.51(a), the load voltage can be calculated by using Kirchhoff’s 

voltage law as

Fig. 1.51

[JNTU Nov 2011]
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V
ab
 V

s
 – I

L
R
v

The open circuit voltage V
OC
 V

s

The short circuit current I
V

R
SC

s

v

=

From Fig. 1.51(b),

I I I I
V

R
L S S

ab

I

= - = -

The open circuit voltage V
OC
 I

S
R
I

The short circuit current I
SC
 I

S

The above two sources are said to be equal, if they produce equal amounts 

of current and voltage when they are connected to identical load resistances. 

Therefore, by equating the open circuit voltages and short circuit currents of the 

above two sources we obtain

V
OC
 I

s
R
I
 V

S

I I
V

R
SC S

s

v

= =

It follows that RI  R
V
 R

s
  V

s
 I

S
R
S

where R
S
 is the internal resistance of the voltage or current source. Therefore, 

any practical voltage source, having an ideal voltage V
S
 and internal series 

resistance R
S
 can be replaced by a current source I

S
 V

S
/R

S
 in parallel with 

an internal resistance R
S
. The reverse transformation is also possible. Thus, a 

practical current source in parallel with an internal resistance R
S
 can be replaced 

by a voltage source V
S
 I

s
R
s
 in series with an internal resistance R

S
.

Determine the 

equivalent voltage source for the 

current source shown in Fig. 1.52.

Example 1.32

Fig. 1.52

Solution The voltage across terminals 

A and B is equal to 25 V. Since the internal 

resistance for the current source is 5  , the 

internal resistance of the voltage source is 

also 5  . The equivalent voltage source is 

shown in Fig. 1.53.

Fig. 1.53
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Determine the equivalent 

current source for the voltage source shown 

in Fig. 1.54.

Example 1.33

Fig. 1.54

Solution The short-circuit current at 

terminals A and B is equal to

I = =
50

30
1 66. A

Since the internal resistance for the voltage 

source is 30  , the internal resistance of the 

current source is also 30  . The equivalent 

current source is shown in Fig. 1.55.

Using source transformation, find the power delivered by the 

50 V voltage source in the circuit shown in Fig. 1.56.

Fig. 1.56

Example 1.34

Solution The current source in the circuit in Fig. 1.56 can be replaced by a voltage 

source as shown in Fig. 1.57.

V V V-
+

-
+

-
=

50

5

20

2

10

3
0

V [0.2   0.5   0.33]   23.33

or VV = =
23 33

1 03
22 65

.

.
.

Fig. 1.55
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  The current delivered 

by the 50 V voltage source is

(50 – V)/5

=
-

=
50 22 65

5
5 47

.
. A

Hence, the power delivered 

by the 50 V voltage source 

  50   5.47   273.5 W.

By using source transformation, source combination and 

resistance combination convert the circuit shown in Fig. 1.58 into a single voltage 

source and single resistance.

Fig. 1.58

Example 1.35

Solution The voltage source in the circuit of Fig. 1.58 can be replaced by a current 

source as shown in Fig. 1.59(a).

Here the current sources can be combined into a single source. Similarly, 

all the resistances can be combined into a single resistance, as shown in

Fig. 1.59(b).

Figure 1.59(b) can be replaced by single voltage source and a series resistance 

as shown in Fig. 1.59(c).

Fig. 1.57
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Fig. 1.59

Find the voltage and 

current source equivalent representa-

tion of the following network across 

AB, as shown in Fig. 1.60.

[JNTU Jan 2010]

Example 1.36

Fig. 1.60

Solution Voltage and current source equivalent representation of the following 

network across AB.

2 A

(a)

2 A 22

(b) Current source

equivalent representation

(c) Voltage source

equivalent representation

Fig. 1.61

F i n d 

the value of current Ii in

Fig. 1.62.

[JNTU April/May 2007]

Example 1.37

Fig. 1.62
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Solution Converting current source into equivalent voltage source

By applying KVL

10  7I1  15  5I1  9I1  45  4  0

36  21I1

I

I

1

1

36

21
1 714

1 714

= =

=

.

.

A

A

Fig. 1.63

Using source Transformation, reduce the network between 

A and B into an equivalent voltage source. (Fig. 1.64)

[JNTU May/June 2006]

Fig. 1.64

Example 1.38
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Solution Given circuit

Fig. 1.65(a)

Fig. 1.65(b)

Ω Ω

Ω

Ω

Ω

Ω



Introduction to Electrical Circuits 1.39

Reduce the network shown in Fig. 1.66, to a single loop network 

by successive source transformation, to obtain the current in the 12   resistor.

[JNTU May/June 2006]

Fig. 1.66

Example 1.39

Solution By source transformation I = ¥ =22 5
4 8

16 8
6 428.

.

.
. A.

Ω

Ω

ΩΩ

Fig. 1.67

Fig. 1.68

Ω

Ω
ΩΩ

Ω Ω Ω

Fig. 1.69

Ω

Ω Ω

Fig. 1.70
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Fig. 1.71

1.10
KIRCHHOFF’S LAWS—RESISTANCE SERIES AND

PARALLEL COMBINATION 

1.10.1 Kirchhoff’s Voltage Law [JNTU Nov 2011]

Kirchhoff’s voltage law states that the algebraic sum of all branch voltages around 

any closed path in a circuit is always zero at all instants of time. When the current 

passes through a resistor, there is a loss of energy and, therefore, a voltage drop. 

In any element, the current always flows from higher potential to lower potential. 

Consider the circuit in Fig. 1.72. It is customary to take the direction of current I as 

indicated in the figure, i.e. it leaves the positive terminal of the voltage source and 

enters into the negative terminal.

Fig. 1.72

As the current passes through the circuit, the sum of the voltage drop around 

the loop is equal to the total voltage in that loop. Here the polarities are attributed 

to the resistors to indicate that the voltages at points a, c and e are more than the 

voltages at b, d and f, respectively, as the current passes from a to f.

Vs  V1  V2  V3

Consider the problem of finding out the current supplied by the source V in 

the circuit shown in Fig. 1.73.

Our first step is to assume the reference current direction and to indicate the 

polarities for different elements. (See Fig. 1.74).
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R1

R2

R3

V

Fig. 1.73 Fig. 1.74

By using Ohm’s law, we find the voltage across each resistor as follows.

VR1  IR1, VR2  IR2, VR3  IR3

where VR1, VR2 and VR3 are the voltages across R1, R2 and R3, respectively. Finally, 

by applying Kirchhoff’s law, we can form the equation

 V  VR1  VR2  VR3

 V  IR1  IR2  IR3

From the above equation the current delivered by the source is given by

I
V

R R R
=

+ +
1 2 3

For the circuit 

shown in Fig. 1.75, determine the 

unknown voltage drop V1.

Example 1.40

Fig. 1.75

Solution According to Kirchhoff’s voltage law, the sum of the potential drops is 

equal to the sum of the potential rises;

Therefore, 30   2   1  V1   3   5

or V1   30 – 11   19 V
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What is the current in the 

circuit shown in Fig. 1.76 ? Determine the 

voltage across each resistor.

Example 1.41

Fig. 1.76

Solution We assume current I in the clockwise direction and indicate polarities 

(Fig. 1.77). By using Ohm’s law, we find the voltage drops across each resistor.

 V1M  I, V3.1M   3.1 I

 V500 K   0.5 I, V400 K   0.4 I

Now, by applying Kirchhoff’s voltage law, 

we form the equation.

 10  I   3.1 I   0.5 I   0.4 I

or 5 I   10

or I   2  A

Voltage across each resistor is as follows

V1M   1   2   2.0 V

V3.1M   3.1   2   6.2 V

V400 K   0.4   2   0.8 V

V500 K   0.5   2   1.0 V

In the circuit given in Fig. 1.78, find (a) the current I, and ( b) the 

voltage across 30  .

Fig. 1.78

Example 1.42

Solution We redraw the circuit as shown in Fig. 1.79 and assume current direction 

and indicate the assumed polarities of resistors.

Fig. 1.77

1 MΩ 3.1 MΩ

400 kΩ

500 kΩ

10 V

I
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By using Ohm’s law, we determine the voltage across each resistor as

V8  8I, V30  30I, V2  2I

By applying Kirchhoff’s law, we 

get

100  8I  40  30I  2I

40 60
60

40
1 5I I= = =or A.

Voltage drop across 30   V30  30  1.5  45 V

State Ohm’s law.

[JNTU May/June 2008]

Example 1.43

Solution Ohm’s law: Ohm’s law states that the voltage across any element is 

proportional to current flowing through the element.

V  I

V  RI

R is the proportionality constant and is defined as resistance. Its unit is ( ).

1.10.2 Voltage Division

The series circuit acts as a voltage divider. Since the same current flows through 

each resistor, the voltage drops are proportional to the values of resistors. Using 

this principle, different voltages can be obtained from a single source, called a 

voltage divider. For example, the voltage across a 40   resistor is twice that of 

20   in a series circuit shown in Fig. 1.80.

In general, if the circuit consists of a number of series resistors, the total 

current is given by the total voltage divided by equivalent resistance. This is 

shown in Fig. 1.81.

Fig. 1.80 Fig. 1.81

The current in the circuit is given by I  V
s  
/(R1  R2  …  R

m
). The voltage 

across any resistor is nothing but the current passing through it, multiplied by 

that particular resistor.

Fig. 1.79
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Therefore, V
R1  IR1

 V
R2  IR2

 V
R3  IR3

 V
Rm
 IR

m

or V
V R

R R R
Rm

s m

m

=
+ + +

( )

1 2 º

From the above equation, we can say that the voltage drop across any 

resistor, or a combination of resistors, in a series circuit is equal to the ratio 

of that resistance value to the total resistance, multiplied by the source 

voltage, i.e.

V
R

R
V

m

m

T

s
=

where V
m

 is the voltage across mth resistor, R
m

 is the resistance across which the 

voltage is to be determined and R
T
 is the total series resistance.

What is the voltage 

across the 10 W resistor in Fig. 1.82.

Example 1.44

Fig. 1.82

Solution Voltage across 10 50
10

10 5

500

15
33 310 = = ¥

+
= =V . V

Find the voltage between 

A and B in a voltage divider network shown 

in Fig. 1.83.

Example 1.45

Fig. 1.83

1 kΩ

5 kΩ

4 kΩ

100 V
A

B

Solution Voltage across 9 100
9

10
909k V = = = ¥ =V V

AB
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What is the voltage across A and B in the circuit shown in Fig. 1.84.

A

B

6 V 12 V
12 V

10 Ω4 Ω4 Ω

6 Ω

Fig. 1.84

Example 1.46

Solution The above circuit can be redrawn as shown in Fig. 1.85.

Assume loop currents I1 and I2 as shown in Fig. 1.85.

I1

I26 V

12 V

A B

12 V

6 Ω

4 Ω
4 Ω 10 Ω

Fig. 1.85

I

I

1

2

6

10
0 6

12

14
0 86

= =

= =

.

. A

A

V
A
  Voltage drop across 4   resistor   0.6   4   2.4 V

V
B
  Voltage drop across 4   resistor   0.86   4   3.44 V

The voltage between points 

A and B is the sum of voltages 

as shown in Fig. 1.86.

 V
AB
  –2.4   12   3.44

   13.04 V

1.10.3 Power in Series Circuit

The total power supplied by the source in any series resistive circuit is equal to 

the sum of the powers in each resistor in series, i.e.

P
S
 P1  P2  P3   …  P

m

where m is the number of resistors in series, P
S
 is the total power supplied by 

source and P
m

 is the power in the last resistor in series. The total power in the 

series circuit is the total voltage applied to a circuit, multiplied by the total 

current.

2.4 V

A B

4 Ω 4 Ω

3.44 V12 V

Fig. 1.86
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Expressed mathematically,

P V I I R
V

R
S s T

s

T

= = =2
2

where V
s
 is the total voltage applied, R

T
 is the total resistance, and I is the total 

current.

Determine the 

total amount of power in the series 

circuit in Fig. 1.87.

Example 1.47

Fig. 1.87

Solution Total resistance   5   2   1   2  10  

We know P
V

R
S

s

T

= = =
2 250

10
250

( )
W

Check We find the power absorbed by each resistor

Current A=
50

10
5=

P5   (5)2   5   125 W

 P2   (5)2   2   50 W

 P1   (5)2   1   25 W

 P2   (5)2   2   50 W

The sum of these powers gives the total power supplied by the source P
S
  250 W.

A 20 V battery with an internal resistance of 5 ohms is 

connected to a resistor of x ohms. If an additional resistance of 6   is connected 

across the battery, find the value of x, so that the external power supplied by the 

battery remain the same.

Example 1.48

Solution Power supplied to x by battery  
20

5

2

1+
Ê
ËÁ

ˆ
¯̃

=
x

x P

I
x

x

x
2

20

5
6

6

120

30 11
=

+
+

=
+

Power supplied to x
x

x P=
+

Ê
ËÁ

ˆ
¯̃

=
120

30 11

2

2

5 Ω

20 V

x

I1

Fig. 1.88
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P P
x x

x

1 2

20

5

120

11 30

0

= fi
+

=
+

=

1.10.4 Kirchhoff’s Current Law [JNTU Nov 2011]

Kirchhoff’s current law states that the sum of the currents entering into any node is 

equal to the sum of the currents leaving that node. The node may be an interconnection 

of two or more branches. In any parallel circuit, the node is a junction point of two 

or more branches. The total current entering into a node is equal to the current 

leaving that node. For example, consider the circuit shown in Fig. 1.89, which 

contains two nodes A and B. The total current I
T
 entering node A is divided into I1,

I2 and I3. These currents flow out of node A. According to Kirchhoff’s current law, 

the current into node A is equal to 

the total current out of node A: that 

is, I
T
 I1  I2  I3. If we consider 

node B, all three currents I1, I2, I3
are entering B, and the total current 

I
T
 is leaving node B, Kirchhoff’s 

current law formula at this node is 

therefore the same as at node A.

I1  I2  I3  I
T

In general, sum of the currents entering 

any point or node or junction equal to sum of 

the currents leaving from that point or node 

or junction as shown in Fig. 1.90.

I1  I2  I4  I7  I3  I5  I6

If all of the terms on the right side are 

brought over to the left side, their signs 

change to negative and a zero is left on the right side, i.e.

I1  I2  I4  I7 – I3 – I5 – I6   0

This means that the algebraic sum of all the currents meeting at a junction is 

equal to zero.

Determine the current in all resistors in the circuit shown in 

Fig. 1.91.

Fig. 1.91

Example 1.49

Fig. 1.89

Fig. 1.90
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Solution The above circuit contains a single node ‘A’ with reference node ‘B’. Our 

first step is to assume the voltage V at node A. In a parallel circuit the same voltage 

is applied across each element. According to Ohm’s law, the currents passing 

through each element are I1  V/2, I2  V/1, I3  V/5.

By applying Kirchhoff’s current law, we have

I I I I

I
V V V

V V

V

= + +

= + +

= + +È
ÎÍ

˘
˚̇

= + +

=

1 2 3

2 1 5

50
1

2

1

1

1

5
0 5 1 0 2

50

1 7

[ . . ]

.
== =
500

17
29 41. V

Once we know the voltage V at node A, we can find the current in any element 

by using Ohm’s law.

The current in the 2   resistor is I1   29.41/2   14.705 A.

Similarly, I
V

R

V

2
2 1

29 41= = = . A

I

I I I

3

1 2 3

29 41

5
5 882

14 7 29 4 5 88

= =

= = =

.
.

. . .

A

A, A, and A

For the circuit shown in Fig. 1.92, find the voltage across the 

10   resistor and the current passing through it.

Fig. 1.92

Example 1.50

Solution The circuit shown above is a parallel circuit, and consists of a single 

node A. By assuming voltage V at the node A w.r.t. B, we can find out the current 

in the 10   branch. (See Fig. 1.93)

According to Kirchhoff’s current law,

I1  I2  I3  I4   5   10
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Fig. 1.93

By using Ohm’s law, we have

I
V

I
V

I
V

I
V

V V V
V

V

1 2 3 4
5 10 2 1

5 10 2
5 10

1

5

1

10

1

2
1

= = = =

+ + + + =

+ + +È
ÎÍ

˘
˚̇

; , ,

==

+ + +[ ] =

= =

5

0 2 0 1 0 5 1 5

5

1 8
2 78

V

V

. . .

.
. V

the voltage across the 10   resistor is 2.78 V and the current passing 

through it is

I
V

2
10

2 78

10
0 278= = =

.
. A

Determine the current 

through resistance R3 in the circuit 

shown in Fig. 1.94.

Example 1.51

Fig. 1.94

Solution According to Kirchhoff’s current law,

I
T
 I1  I2  I3

where I
T
 is the total current and I1, I2 and I3 are the currents in resistances R1, R2

and R3 respectively.

50   30   10  I3

or I3   10 mA
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Using Kirchhoff’s 

current law, find the values of 

the currents i1 and i2 in the circuit 

shown in Fig. 1.95.

 [JNTU May/June 2006]
Fig. 1.95

+

–

V3 W 2 W2 A

i1 i2

4i1

Example 1.52

Solution Applying KCL at node V and also i
V

1
3

=

V V
i

V V V

3 2
2 4

3 2

4

3
21+ = + fi + = +

from which V   4 volts

i i1 2

4

3
2= - = -, A

1.10.5 Parallel Resistance

When the circuit is connected in parallel, the total resistance of the circuit 

decreases as the number of resistors connected in parallel increases. If we consider 

m parallel branches in a circuit as shown in Fig. 1.97, the current equation is

I
T
 I1  I2   ...  I

m

The same voltage is applied across each resistor. By applying Ohm’s law, the 

current in each branch is given by

I
V

R
I

V

R
I

V

R

s s

m

s

m

1

1

2

2

= = =, ,º

According to Kirchhoff’s current law,

 I
T
 I1  I2  I3   ...  I

m

V

R

V

R

V

R

V

R

V

R

s

T

s s s s

m

= + + + +
1 2 3

º

From the above equation, we have

1 1 1 1

1 2
R R R R
T m

= + + +º

Determine the parallel resistance between points A and B of 

the circuit shown in Fig. 1.98.

Fig. 1.98

Example 1.53

Fig. 1.96

Fig. 1.97
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Solution
1 1 1 1 1

1 2 3 4
R R R R R
T

= + + +

1 1

10

1

20

1

30

1

40R
T

= + + +

   0.1   0.05   0.033   0.025   0.208

or R
T
  4.8  

Determine the 

total current in the circuit shown 

in Fig. 1.99.

Example 1.54 R2

VS

R1 R3

R4

4 Ω

5 Ω

2 Ω

4 Ω

30 V
+
_

Fig. 1.99

Solution Resistances R2, R3 and R4 are in parallel

  Equivalent resistance R5  R2 || R3 || R4

=
+ +

1

1 1 1
2 3 4

/ / /R R R

 R5   1  

R1 and R5 are in series,

  Equivalent resistance R
T
 R1   R5   5   1   6  

And the total current I
V

R
T

s

T

= = =
30

6
5A

1.10.6 Current Division

In a parallel circuit, the current divides in all branches. Thus, a parallel circuit 

acts as a current divider. The total current entering into the parallel branches 

is divided into the branches currents according to the resistance values. The 

branch having higher resistance allows lesser current, and the branch with lower 

resistance allows more current. Let us find the current division in the parallel 

circuit shown in Fig. 1.100.

The voltage applied across each resistor is V
s
. The current passing through 

each resistor is given by

I
V

R
I

V

R

s s

1

1

2

2

= =,
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If R
T
 is the total resistance, which is given by R1R2/(R1 + R2),

Total current I
V

R

V

R R
R R

T

s

T

s= = +( )
1 2

1 2

or I
I R

R R
R R V I R

T s
= +( ) =1 1

1 2

1 2 1 1
since

I I
R

R R
T1

2

1 2

= ◊
+

Similarly, I I
R

R R
T2

1

1 2

= ◊
+

From the above equations, we can conclude that the current in any branch is 

equal to the ratio of the opposite branch resistance to the total resistance value, 

multiplied by the total current in the circuit. In general, if the circuit consists of 

m branches, the current in any branch can be determined by

I
R

R R
I

i

T

i T

T
=

+

where I
i
 represents the current in the ith branch

 R
i
 is the resistance in the ith branch

 R
T
 is the total parallel resistance to the ith branch, and

 I
T
 is the total current entering the circuit.

Determine the 

current through each resistor in 

the circuit shown in Fig. 1.101.

Example 1.55

Fig. 1.101

Solution I I1
1

= ¥
+( )T

T

T

R

R R

where R
R R

R R
T

=
+

=2 3

2 3

2  

R

T

1

1

4

12

12
2

2 4
4

=

=

= ¥
+

=

 

I

I

A

A

Similarly, I
2
12

2

2 4
4= ¥

+
= A

Fig. 1.100
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and  I
3
12

2

2 4
4= ¥

+
= A

Since all parallel branches have equal values of resistance, they share current 

equally.

Determine the current delivered by the source in the circuit 

shown in Fig. 1.102.

Fig. 1.102

Example 1.56

Solution The circuit can be modified as shown in Fig. 1.103, where R10 is the 

series combination of R2 and R3.

 R10  R2   R3   4  

Fig. 1.103

R11 is the series combination of R4

and R5

 R11  R4   R5   3  

Further simplification of the 

circuit leads to Fig. 1.104 where 

R12 is the parallel combination of 

R10 and R9.

 R12   (R10 || R9)   (4 || 4)   2  

Similarly, R13 is the parallel combination of R11 and R8

 R13   (R11 || R8)   (3 || 2)   1.2  

In Fig. 1.103 as shown, R12 and R13 are in series, which is in parallel with R7

forming R14. This is shown in Fig. 1.105.

Fig. 1.104
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 R14   [(R12   R13)//R7]

  [(2   1.2)//2]   1.23  

Further, the resistances R14 and R6 are in series, 

which is in parallel with R1 and gives the total 

resistance

 R
T
  [(R14   R6)//R1]

  [(1   1.23)//(2)]   1.05  

The current delivered by the source   30/1.05   28.57 A

Determine the current in the 10   resistance and find Vs in the 

circuit shown in Fig. 1.106.

Fig. 1.106

Example 1.57

Solution The current in 10   resistance

I10   total current   (R
T
)/(R

T
  R10)

where R
T
 is the total parallel resistance.

I10   4  
7

17

  1.65 A

Similarly, the current in resistance R5 is

I5   4  
10

10 7+

  2.35 A

or 4 – 1.65   2.35 A

The same current flows through the 2   resistance.

   Voltage across 2   resistance, V
s
 I5   2   2.35   2   4.7 V

Determine the value of 

resistance R and current in each branch 

when the total current taken by the circuit 

shown in Fig. 1.107 is 6 A.

Example 1.58

Fig. 1.107

Fig. 1.105
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Solution The current in branch ADB

I30   50/(25   5)   1.66 A

The current in branch ACB I10 R
  50/(10  R).

According to Kirchhoff’s current law

I
T
 I30   I(10 + R)

6A   1.66 A  I10 + R

 I10 + R
  6 – 1.66   4.34 A

 

50

10
4 34

+
=

R
.

10
50

4 34
11 52+ = =R

.
.

R   1.52  

1.10.7 Power in Parallel Circuit

The total power supplied by the source in any parallel resistive circuit is equal to 

the sum of the powers in each resistor in parallel, i.e.

P
S
 = P1 + P2 + P3 +  + P

m

where m is the number of resistors in parallel, P
S
 is the total power and P

m
 is the 

power in the last resistor.

Find the 

current in the 10   resistance, 

V1, and source voltage Vs in 

the circuit shown in Fig. 1.108.

Example 1.59

I5 I6

V1

5 Ω

10 Ω

6 Ω

30 V 4 A

1 A

+

_

A
C

D
B

VS

Fig. 1.108

Solution Assume voltage at node C  V

By applying Kirchhoff’s current law, we get the current in the 10   resistance

I10  I5   I6   4   1   5 A

The voltage across the 6   resistor is V6   24 V

   Voltage at node C is V
C
  –24 V.

The voltage across branch CD is the same as the voltage at node C.

Voltage across 10   only   10   5   50 V
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So V
C
 V10 – V1

–24   50 – V1

 V1   74 V

Now, consider the loop CABD shown 

in Fig. 1.109.

If we apply Kirchhoff’s voltage law we 

get

V
s
  5 – 30 – 24   – 49 V

Find the power delivered 

by the source in the circuit shown in 

Fig. 1.110.

Example 1.60

Fig. 1.110

Solution Between points C(E) and D, resistances R3 and R4 are in parallel, which gives

R8   (R3//R4)   2.5  

Between points B and C(E), resistances R2 and R7 are in parallel, which gives

R9   (R2 || R7)   1.5  

Between points C(E) and D, resistances R6 and R8 are in parallel and gives

R10   (R6 || R8)   1.25  

The series combination of R1 and R9 gives

R11  R1   R9   3   1.5   4.5  

Similarly, the series combination of R5 and R10 gives

R12  R5   R10   5.25  

The resistances R11 and R12 are in parallel, which gives

Total resistance   (R11 || R12)   2.42 ohms

These reductions are shown in Figs 1.111(a), (b), (c) and (d).

Current delivered by the source = =
10

2 42
4 13

.
. A

Power delivered by the source  VI

  10   4.13   41.3 W

5 V 30 V

24 VVC
VS

+

+
+

+–

–
–

–

A C

B D

Fig. 1.109
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Fig. 1.111(a, b, c and d)

Determine the voltage drop 

across the 10   resistance in the circuit as 

shown in Fig. 1.112.

Example 1.61

Fig. 1.112

Solution The circuit is redrawn as shown in Fig. 1.113.

This is a single node pair circuit. Assume voltage V
A
 at node A. By applying 

Kirchhoff’s current law at node A, we have

V V V

V

V

A A A

A

A

20 10 5
10 15

1

20

1

10

1

5
25

0 05 0 1 0 2

+ + = +

+ +È
ÎÍ

˘
˚̇

=

+ +( ) =

A

. . . 225

25

0 35
71 42

A

VV
A

= =
.

.

The voltage across 10   is nothing but the voltage at node A.

 V10  V
A
  71.42 V

Fig. 1.113
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In the circuit shown in Fig. 1.114 what are the values of R1 and 

R2, when the current flowing through R1 is 1 A and R2 is 5 A? What is the value 

of R2 when the current flowing through R1 is zero?

R1

R2

I1

I5

I2

5 Ω

50 V

100 V
30 V

A B

Fig. 1.114

Example 1.62

Solution The current in the 5   resistance

I5  I1   I2   1   5   6 A

Voltage across resistance 5   is V5   5   6   30 V

The voltage at node A, V
A
  100 – 30   70 V

  I
V

R R

A

2

2 2

30 70 30
=

-
=

-

R
I

2

2

70 30 40

5
8=

-
= =  

Similarly, R
I

1

1

70 50 20

1
20=

-
= =  

When V
A
  50 V, the current I1 in resistance R1 becomes zero

 I
R

2

2

50 30
=

-

where I
2
 becomes the total current

 I
V
A

2

100

5

100 50

5
10

=
-

=
-

= A

 R
I

2

2

20

20

10
2

=

= =  
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Determine the output voltage Vout in the circuit shown in 

Fig. 1.115.

10 A

5 A

R4

R6

R1

R5

1 Ω

R2

R3

Voutou

3

10 2

5

2

Fig. 1.115

Example 1.63

Solution The circuit shown in Fig. 1.115 can be redrawn as shown in Fig. 1.116.

In Fig. 1.116, R2 and R3 are in parallel, R4 and R5 are in parallel. The complete 

circuit is a single node pair circuit. Assuming voltage V
A
 at node A and applying 

Kirchhoff’s current law in the circuit, we have

R1

A

A

R2 R3

R4

R6

R5

10 A 5 A Vout

2 Ω

3 Ω

10 Ω

2 Ω

1 Ω
5 Ω

Fig. 1.116

10
4 43

5
2 67

0A A- - - =
V V
A A

. .

 V
A

1

4 43

1

2 67
5

. .
+È

ÎÍ
˘
˚̇

= A

V
A
0 225 0 375 5. .+[ ] =

 V
A

= =
5

0 6
8 33

.
. V

Vout  V
A
  8.33 V
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Determine the voltage VAB in the circuit shown in Fig. 1.117.

R1

R2

R6

R5 R7

R3

R4
R8

10 Ω 2 Ω

3 Ω

6 Ω

3 Ω

4 Ω5 Ω

6 Ω

100 V

A

B

Fig. 1.117

Example 1.64

Solution The circuit in Fig. 1.117 can be redrawn as shown in Fig. 1.118(a).

At node 3, the series combination of R7 and R8 are in parallel with R6, which gives 

R9   [(R7   R8)//R6]   3  .

At node 2, the series combination of R3 and R4 are in parallel with R2, which gives 

R10   [(R3   R4)//R2]   3  .

It is further reduced and is shown in Fig. 1.118(b).

Simplifying further we draw it as shown in Fig. 1.118(c).

R1

R2

R4

R5R7

I4 I5

I10

I3

R6

R3

R8

10 Ω

2 Ω

3 Ω

3 Ω
6 Ω 6 Ω

4 Ω

5 Ω

100 V

AB 3 1 2

Fig. 1.118(a)

R1
R5

R9 R103 Ω

5 Ω

3 Ω

10 Ω

100 V

3 1 2

Fig. 1.118(b) Fig. 1.118(c)

Total current delivered by the source =
100

R
T

= ( ) =
100

13 8
20 2

/ /
. A

Current in the 8   resistor is I
8

20 2
13

13 8
12 5= ¥

+
=. . A

Current in the 13   resistor is I
13

20 2
8

13 8
7 69= ¥

+
=. . A
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So I5   12.5 A, and I10   7.69 A

Current in the 4   resistance I4   3.845 A

Current in the 3   resistance I3   6.25 A

V
AB
 V

A
 – V

B

Where V
A
 I3   3    6.25   3   18.75 V

V
B
 I4   4    3.845   4   15.38 V

 V
AB
  18.75 – 15.38   3.37 V

Determine the 

value of R in the circuit shown in 

Fig. 1.119, when the current is 

zero in the branch CD.

Example 1.65

Fig. 1.119

Solution The current in the branch CD is zero, if the potential difference across 

CD is zero.

That means, voltage at point C   voltage at point D.

Since no current is flowing, the branch CD is open circuited. So the same voltage 

is applied across ACB and ADB

V V
A10

10

15
= ¥

V V
R

R
R A

= ¥
+20

 V10  V
R

and V V
R

R
A A

¥ = ¥
+

10

15 20

 R   40  

Find the power absorbed by each element in the circuit shown 

in Fig. 1.120.

R1

R2

2 A

24 V

14 V10 VV

ix
ix1

7 A
7
V

Fig. 1.120

Example 1.66
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Solution Power absorbed by any element  VI

where V is the voltage across the element and I is the current passing through that 

element

Here potential rises are taken as (–) sign.

Power absorbed by 10 V source   –10   2   –20 W

Power absorbed by resistor R1   24   2   48 W

Power absorbed by resistor R2   14   7   98 W

Power absorbed by resistor R3   –7   9   –63 W

Power absorbed by dependent voltage source   (1   –7)   9   –63 W

Show that the algebraic sum of the five absorbed power values 

in Fig. 1.121 is zero.

4 V
4 V 2 V2 A 7 A

2 V2ix

ix

1 A

3 A

–

2 V

Fig. 1.121

Example 1.67

Solution Power absorbed by 2 A current source   (–4)   2   –8 W

Power absorbed by 4 V voltage source   (–4)   10   –4 W

Power absorbed by 2 V voltage source   (2)   3   6 W

Power absorbed by 7 A current source   (7)   2   14 W

Power absorbed by 2i
x
 dependent current source   (–2)   2   2   –8 W

Hence, the algebraic sum of the five absorbed power values is zero.

For the circuit shown in Fig. 1.122, find the power absorbed by 

each of the elements.

Fig. 1.122

Example 1.68

Solution The above circuit can be redrawn as shown in Fig. 1.123.

Assume loop current I as shown in Fig. 1.223.

If we apply Kirchhoff’s voltage law, we get

–12  I – 2 1   1   4I   0

The voltage across 3   resistor is  1   3I
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Fig. 1.123

Substituting  1 in the loop equation, we get I   6 A

Power absorbed by the 12 V source   (–12)   6   –72 W

Power absorbed by the 1   resistor   6   6   36 W

Power absorbed by 2 1 dependent voltage source

  (2 1)I   2   3   6   6   –216 W

Power absorbed by 3   resistor   1  I   18   6   108 W

Power absorbed by 4   resistor   4   6   6   144 W

For the circuit 

shown in Fig. 1.124, find the 

power absorbed by each element.

Example 1.69

Fig. 1.124

Solution The circuit shown in Fig. 1.124 is a parallel circuit and consists of a single 

node A. By assuming voltage V at node A, we can find the current in each element.

According to Kirchhoff’s current law

i3 – 12 – 2i2 – i2   0

By using Ohm’s law, we have

  

i
V

i
V

V

V

i

3 2

3

3 2

1

3
1

1

2
12

12

1 83
6 56

6 56

3
2 187

= =
-

+ +È
ÎÍ

˘
˚̇

=

= =

= =

,

.
.

.
. A; ii2

6 56

2
3 28=

-
= -

.
. A

Power absorbed by the 3   resistor   ( 6.56)(2.187)   14.35 W

Power absorbed by 12 A current source   (–6.56)12   –78.72 W

Power absorbed by 2i2 dependent current source

  (–6.56)   2   (–3.28)   43.03 W

Power absorbed by 2   resistor   (–6.52)(–3.28)   21.51 W
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Find the value of E in the network shown in Fig. 1.125.

[JNTU April/May 2007]

Fig. 1.125(a)

Example 1.70

Solution Calculating current through all branches

E  2  I  5.916

E  2  5.04  5.916

E  15.99 V

E  16 V

Fig. 1.125(b)

Determine the current 

through the 6-  resistor and the power 

supplied by the current source for the circuit 

shown in Fig. 1.126. 

[JNTU April/May 2006]

Example 1.71

Fig. 1.126(a)

2 W 3 W

3 W 6 W

21 A

Solution Current through 6-  resistor and power supplied by the current source

I I

I

I

I I I

I I

1 2

2

1

1 3 4

4 3

21

21 5

7
15

6

6

6 6

9
4 2

+ =

=
¥

=

=
= + =

=
¥

= =

A

A

A

A

A, A

Current through 6-  resistor is  I3  2 A

I3  2 A

2 Ω 3 Ω

3 Ω 6 Ω

21 A

I1
I3

I4I2

Fig. 1.126(b)
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2 Ω 1.428 Ω5 Ω21 A 21 AÞ

Fig. 1.127

Power supplied by the current source.

Power supplied by current source  Power consumed in the resistor.

 I2R  (21)2  1.428

P  629.748 W

A circuit consisting of three resistances 12  , 18  and 36  

respectively joined in parallel is connected in series with a fourth resistance. 

Thewhole circuit is applied with 60V and it is found that the power dissipated in 

the 12   resistor is 36 W. Determine the value of the fourth resistance and the 

total power dissipated in the circuit. [JNTU May/June 2008]

Exaample 1.72

Solution Given that 12 , 18  and 36  respectively joined in parallel to each other. 

Let the fourth resistance be R   which is in series with the parallel combination as 

shown in the Fig. 1.128.

Fig. 1.128(a)

Equivalent resistance of parallel combination

1 1

12

1

18

1

36Req

= + +

Req = 6  

The figure reduces to

Voltage across 6   resistor , V
R

1

60 6

6
=

¥
+

 [voltage 

division]

As the voltage across 12   is also V1 and it is given that power dissipated by 

12   is 36 W

V 2
1/R = 36 W

60 V

R W

6 WV1

Fig. 1.128(b)
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( )

( )

60 6

6 12
36

2

2

¥
+ ¥

=
R

(6   R)2   60   5

R2   12R  36   300

R2   12R  264   0

R = - ±
+

= W12
144 4 264

2
11 32

( )
.

The current I flowing in the circuit is

I =
+

=
60

6 11 32
3 464

.
. A

Total power dissipated in the circuit P  VI

= 60   3.464   207.852 W

A circuit consists of three resistors of 3 ohms, 4 ohms and 

6ohms in parallel and a fourth resistor of 4 ohms in series. A battery of 12 V emf 

and an internal resistance of 6 ohms is connected across the circuit. Find the 

total current in the circuit and terminal voltage across the battery.

[JNTU May/June 2008]

Example 1.73

Solution Three resistors of 3  , 4   and 6   are in parallel and a fourth resistor 

of 4   is in series.

The 12 V battery has a internal resistance of 6  .

The circuit can be taken as 

Fig. 1.129

The circuit can be reduced to as shown in Fig. 1.130

The current I flowing in the circuit

=
+

=
12

10 4 3
1 0588

/
. A

Terminal voltage   battery voltage   drop due to 

internal resistance

12   6   1.0588   5.647 V
Fig. 1.130
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A 50 ohm resistor is in parallel with a 100 ohm resistor. The 

current in a 50 ohm resistor is 7.2 A. What is the value of the third resistance to be 

added in parallel to make the line current as 12.1 A?. [JNTU May/June 2008]

Example 1.74

Solution A 50   resistor is in parallel with 100  . The current in 50   is 7.2  .

Let the third resistance be R  .

The line current is 12.1 A.

The circuit is

12.1 A

7.2 A

R Ω

100 Ω

50 Ω

I

Fig. 1.131

Let I be the current flowing through parallel combination of 100 and 50  . The 

current I flowing through 50   resistor is

I

I A

¥
=

=

100

150
7 2

10 8

. [ ]

.

current division

The current through R   is   12.1   10.8   1.3 A.

Thus, by current division

1 3
12 1 33 33

33 33

1 3 1 3 33 33 12 1 33 33

1 3 359 99

.
. .

.

. . . . .

. .

=
¥

+
+ ¥ = ¥

=

R

R

R

R == 276 92. W

Find the current delivered by the source for the network shown 

in Fig. 1.132 using network reductions technique. [JNTU June 2009]

Fig. 1.132

Example 1.75
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Solution

Fig. 1.133(a)

Replacing series combination of 6 , 12  and 6  by (6  12  6)  24 

Fig. 1.133(b)

Replacing parallel combination of 24  and 24  by 24 24

24 24
12

¥
+

W = W

Fig. 1.133(c)

Replacing series combination of 8 ,

12  and 8  by (8 12 8)  28  

Replacing parallel combination of 

28   and 28   by 28 28

28 28
14

¥
+

W = W

Fig. 1.133(e)

Replacing series combination of 3 , 14  and 3  by (3  14  3)   20 

  Current delivered by the source

=

=

100

20
amp

5 amp

Fig. 1.133(d)
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Find the value of applied d.c. voltage for the network, shown in 

Fig. 1.134. [JNTU June 2009]

Fig. 1.134

Example 1.76

Solution Replacing parallel combination of 1  and

2   by 
2 1

2 1

2

3

¥
+

W = W

Replacing series combination of 0.5   and 2/3   by
1

2

2

3

7

6
+Ê

ËÁ
ˆ
¯̃

W = W

Fig. 1.135(a)

Replacing parallel combination of 2   and 7/6   by 
2 7 6

2 7 6
14 19

¥
+

W = W
( / )

( / )
( / )

Fig. 1.135(b)

Replacing series combination of 2   and 14/19   by (2   (14/19))    (52/19)  

Fig. 1.135(c)
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Replacing parallel combination of 2   and (52/19)   by

2 52 19

2 52 19
52 45

¥
+

W = W
( / )

( / )
( / )

Replacing series combination of 2  and (52/45)  by (2  (52/45))   (142/45)  

Fig. 1.135(d)

  Total current =
V

( / )142 45

  Current through 1  (DO) resistance

  

= ¥
+

¥
+

¥
+

= =

V

V

( / ) ( / ) ( / )

(

142 45

2

2 52 19

2

2 7 6

2

2 1

4

71
1 according to thee question)

volt voltV = =
71

4
17 75. .

Three resistances are connected is parallel having the ratio of 

1:2:3 the total power consumed is 100 W when 10 V is applied to the combinations, 

find the values of the resistances. [JNTU June 2009]

Example 1.77

Solution Let, the resistances be R, 2R and 3R.

Total power V I

Total I current I
V

A

I I I IR R R

=

= =

= + +

100

100
10

2 3

Then according to the question

or,
10 10

2

10

3
10

1
1
1

2

1

3
1

R R R

R

+ + =

+ +Ê
ËÁ

ˆ
¯̃

=

or, R = + + =
+ +

=1
1

2

1

3

6 3 2

6

11

6
ohm

  The resistances are 
11

6
ohm,

11

3
ohm and 

11

2
ohm.

Fig. 1.135(e)

Fig. 1.136
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Find the current through each element and the total power 

delivered by the source for the network as shown in Fig. 1.137. [JNTU Jan 2009]

Fig. 1.137

Example 1.78

Solution The circuit of Fig. 1.137 can be reduced to the circuit shown in Fig. 1.138.

+

–
10 V

5 Ω

1 Ω

1 Ω

2.5 Ω

Fig. 1.138(a)

+

–
10 V

I5

5 Ω

0.78 Ω
+

–
10 V

I3.5

5 Ω

1 Ω 3.5 Ω
Þ

Fig. 1.138(b)

The current through 5  resistor

I
5

10

5 78
1 73= =

.
. A

Total power delivered by 10V source   1.73   10

  17.3 watts

Current through 3.5  resistance

=
+

= =I
5

1

1 3 5

1 73

4 5
0 385 

.

.

.
. A

Current in 1  is same as the current in 3.5 
Current in 2  is divided equally

\ I2  0.1925 

Current in 5  is divided equally

\ I5  0.1925A
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Obtain the potential difference VAB in the circuit shown in 

Fig. 1.139 using Kirchhoff ’s laws. [JNTU Jan 2010]

6
ohms

3 ohms

5 ohms

5

ohms

A

10 V

B

9 V

Fig. 1.139

Example 1.79

Solution

Using KVL,

For loop-1, 10 (5 5) i1 or i1  1 amp

For loop-2, 9  (6  3) i2 or i2  1 amp

  Voltage drop across 6   (BO)  6i2  6 volt

  Voltage drop across 5   (OA)  5i1  5 volt

Voltage drop across VBA  VBO  VBA  11 volt

 VAB   11 volt

6 Ω

5 Ω

A

10 V

B

9 V

3 Ω

5 Ω

6 Ω

5 Ω

A

10 V

B

9 V

3 Ω

5 Ω

i1

i2

≡

O

Fig. 1.140
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In the circuit as shown in figure find the currents in all the 

resistors. Also calculate the supply voltage and power supplied by the source.

[JNTU Jan 2010]

Example 1.80

Solution Let current through 10   i amp

 Current through 5  2i amp

 Current through 2  5i amp

  According to the question:

i  2i  5i  8i  8 amp

 i  1 amp

 Current through10ohm  1 amp

Current through 5 ohm  2 amp

Current through 2 ohm  5 amp

Equivalent impedance  15 1
1

2

1

5

1

10
+ + +È

ÎÍ
˘
˚̇

Ê
ËÁ

ˆ
¯̃

ohm

 16.25 ohm

 According to the question,

V

16 25
8

.
=

or, V  130 volt

 Power supplied by the source  (130  8) watt

 1040 watt

1.11 MESH ANALYSIS

Mesh and nodal analysis are two basic important techniques used in finding 

solutions for a network. The suitability of either mesh or nodal analysis to a 

particular problem depends mainly on the number of voltage sources or current 

sources. If a network has a large number of voltage sources, it is useful to use 

mesh analysis; as this analysis requires that all the sources in a circuit be voltage 

sources. Therefore, if there are any current sources in a circuit they are to be 

converted into equivalent voltage sources, if, on the other hand, the network has 

more current sources, nodal analysis is more useful.

Mesh analysis is applicable only for planar networks. For non-planar circuits 

mesh analysis is not applicable. A circuit is said to be planar, if it can be drawn 

on a plane surface without crossovers. A non-planar circuit cannot be drawn on a 

plane surface without a crossover.

15 Ω

2 Ω

5 Ω

10 Ω

8 A

V

Fig. 1.141
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Figure 1.142(a) is a planar circuit. Figure 1.142(b) is a non-planar circuit 

and Fig. 1.142(c) is a planar circuit which looks like a non-planar circuit. It has 

already been discussed that a loop is a closed path. A mesh is defined as a loop 

which does not contain any other loops within it. To apply mesh analysis, our 

first step is to check whether the circuit is planar or not and the second is to select 

mesh currents. Finally, writing Kirchhoff’s voltage law equations in terms of 

unknowns and solving them leads to the final solution.

Fig. 1.142

Observation of the Fig. 1.143 indicates that there are two loops abefa, and 

bcdeb in the network. Let us assume loop currents I1 and I2 with directions as 

indicated in the figure. Considering the loop abefa alone, we observe that current 

I1 is passing through R1, and (I1 – I2) is passing through R2. By applying 

Kirchhoff’s voltage law, we can write

Vs = I1R1 + R2 (I1 – I2)

Similarly, if we consider the second mesh 

bcdeb, the current I2 is passing through R3

and R4, and (I2 – I1) is passing through 

R2. By applying Kirchhoff’s voltage law 

around the second mesh, we have

R2 (I2 – I1) + R3 I2 + R4 I2 = 0

By rearranging the above equations, the corresponding mesh current equations are

I1 (R1 + R2) – I2 R2 = Vs

– I1 R2 + (R2 + R3 + R4) I2 = 0 (1.1)

By solving the above equations, we can find the currents I1 and I2. If we 

observe Fig. 1.143, the circuit consists of five branches and four nodes, including 

the reference node. The number of mesh currents is equal to the number of mesh 

equations.

And the number of equations = branches – (nodes – 1). In Fig. 1.143, the required 

number of mesh currents would be 5 – (4 – 1) = 2.

In general, if we have B number of branches and N number of nodes including 

the reference node then the number of linearly independent mesh equations 

M = B – (N – 1).

Fig. 1.143
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Write the mesh 

current equations in the circuit 

shown in Fig. 1.144, and determine 

the currents.

Example 1.81

Fig. 1.144

Solution Assume two mesh currents in the direction as indicated in Fig. 1.144.

The mesh current equations are

 5I1 + 2(I1 – I2) = 10

 10I2 + 2(I2 – I1) + 50 = 0

We can rearrange the above equations as

 7I1 – 2I2 = 10

 –2I1 + 12I2 = –50

By solving the above equations, we 

have

I1 = 0.25 A, and I2 = – 4.125 A

Here the current in the second mesh, I2,

is negative; that is the actual current I2

flows opposite to the assumed direction of 

current in the circuit of Fig. 1.145.

Determine the mesh current I1 in the circuit shown in Fig. 1.146.

Fig. 1.146

Example 1.82

Solution From the circuit, we can form the following three mesh equations

10I1 + 5(I1 + I2) + 3(I1 – I3) = 50

 2I2 + 5(I2 + I1) + 1(I2 + I3) = 10

 3(I3 – I1) + 1(I3 + I2) = –5

Rearranging the above equations we get

 18I1 + 5I2 – 3I3 = 50

5I1 + 8I2 + I3 = 10

Fig. 1.145
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–3I1 + I2 + 4I3 = –5

According to Cramer’s rule

I
1

50 5 3

10 8 1

5 1 4

18 5 3

5 8 1

3 1 4

1175

356
=

-

-
-

-

=

or I1 = 3.3 A

Similarly,

I
2

18 50 3

5 10 1

3 5 4

18 5 3

5 8 1

3 1 4

355

356
=

-

- -
-

-

=
-

or I2 = –0.997 A

I
3

18 5 50

5 8 10

3 1 5

18 5 3

5 8 1

3 1 4

525

356
=

- -
-

-

=

or I3 = 1.47 A

\ I1 = 3.3 A, I2 = –0.997 A, I3 = 1.47 A

1.11.1 Mesh Equations by Inspection Method

The mesh equations for a general planar network can be written by inspection 

without going through the detailed steps. Consider a three mesh networks as 

shown in Fig. 1.147.

Fig. 1.147
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The loop equations are

I1R1 + R2(I1 – I2) = V1 (1.2)

R2(I2 – I1) + I2R3 = –V2 (1.3)

R4I3 + R5I3 = V2 (1.4)

Reordering the above equations, we have

(R1 + R2) I1 – R2I2 = V1 (1.5)

–R2I1 + (R2 + R3)I2 = –V2 (1.6)

(R4 + R5)I3 = V2 (1.7)

The general mesh equations for three mesh resistive network can be written as

R11I1 ± R12I2 ± R13I3 = V
a

(1.8)

± R21I1 + R22I2 ± R23I3 = V
b

(1.9)

± R31I1 ± R32I2 + R33I3 = V
c

(1.10)

By comparing the Eqs 1.5, 1.6 and 1.7 with Eqs 1.8, 1.9, and 1.10 respectively, 

the following observations can be taken into account.

1. The self-resistance in each mesh.

2. The mutual resistances between all pairs of meshes and

3. The algebraic sum of the voltages in each mesh.

The self resistance of loop 1, R11 = R1 + R2, is the sum of the resistances 

through which I1 passes.

The mutual resistance of loop 1, R12 = –R2, is the sum of the resistances 

common to loop currents I1 and I2. If the directions of the currents passing 

through the common resistance are the same, the mutual resistance will 

have a positive sign; and if the directions of the currents passing through 

the common resistance are opposite then the mutual resistance will have a 

negative sign.

V
a
 = V1 is the voltage which drives loop one. Here, the positive sign is used 

if the direction of the current is the same as the direction of the source. If the 

current direction is opposite to the direction of the source, then the negative sign 

is used.

Similarly, R22 = (R2 + R3) and R33 = R4 + R5 are the self resistances of loops 

two and three, respectively. The mutual resistances R13 = 0, R21 = –R2, R23 = 0, 

R31 = 0, R32 = 0 are the sums of the resistances common to the mesh currents 

indicated in their subscripts.

V
b
 = –V2, V

c
 = V2 are the sum of the voltages driving their respective loops.
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Write the mesh equations for the circuit shown in Fig. 1.148.

Fig. 1.148

Example 1.83

Solution The general equations for three mesh network are

R11I1 ± R12I2 ± R13I3 = V
a

(1.11)

± R21I1 + R22I2 ± R23I3 = V
b

(1.12)

± R31I1 ± R32I2 + R33I3 = V
c

(1.13)

Consider Eq. (1.11)

R11 = self resistance of loop 1 = (1 W + 3 W + 6 W) = 10 W
R12 = the mutual resistance common to loop 1 and loop 2 = –3 W

Here, the negative sign indicates that the currents are in opposite direction

R13 = the mutual resistance common to loop 1 and 3 = –6 W
V

a
 = +10 V, the voltage driving the loop 1.

Here, the positive sign indicates the loop current I1 is in the same direction as the 

source element.

Therefore, Eq. (1.11) can be written as

10I1 – 3I2 – 6I3 = 10 V (1.14)

Consider Eq. (1.12)

R21 = mutual resistance common to loop 1 and loop 2 = –3 W
R22 = self resistance of loop 2 = (3 W + 2 W + 5 W) = 10 W
R23 = 0, there is no common resistance between loop 2 and loop 3.

V
b
 = –5 V, the voltage driving the loop 2.

Therefore, Eq. (1.12) can be written as

–3I1 + 10I2 = –5 V (1.15)

Consider Eq. (1.13)

R31 = mutual resistance common to loop 3 and loop 1 = –6 W
R32 = mutual resistance common to loop 3 and loop 2 = 0

R33 = self resistance of loop 3 = (6 W + 4 W) = 10 W
V

c
 = the algebraic sum of the voltages driving loop 3

= (5 V + 20 V) = 25 V
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Therefore, Eq. (1.13) can be written as

–6I1 + 10I3 = 25 V (1.16)

The three mesh equation are

 10I1 – 3I2 – 6I3 = 10 V

 –3I1 + 10I2 = –5 V

 –6I1 + 10I3 = 25 V

Determine the power dissipation in the 4   resistor of the circuit 

shown in Fig. 1.149 by using mesh analysis.

Fig. 1.149

Example 1.84

Solution Power dissipated in the 4   resistor is P4   4(I2 – I3)
2

By using mesh analysis, we can find the currents I2 and I3.

From Fig. 1.149, we can form three equations.

From the given circuit in Fig. 1.149, we can obtain three mesh equations in terms 

of I1, I2 and I3

8I1   3I2   50

3I1   9I2 – 4I3   0

– 4I2   10I3   10

By solving the above equations we can find I1, I2 and I3.

I
2

8 50 0

3 0 4

0 10 10

8 3 0

3 9 4

0 4 10

1180

502
2 35=

-

+
-

-

=
-

= - . A

I
3

8 3 50

3 9 0

0 4 10

8 3 0

3 9 4

0 4 10

30

502
0 06=

-

-
-

= = . A
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The current in the 4   resistor   (I2 – I3)

  (–2.35 – 0.06)A   –2.41 A

Therefore, the power dissipated in the 4   resistor, P4   (2.41)2   4   23.23 W.

  Using 

mesh analysis, determine 

the voltage VS which 

gives a voltage of 50 V 

across the 10   resistor 

as shown in Fig. 1.150.

Example 1.85

Ω

Ω

Ω

Ω

Ω Ω

Fig. 1.150

Solution Since the voltage across the 10   resistor is 50 V, the current passing 

through it is I4   50/10   5 A.

From Fig. 1.150, we can form four equations in terms of the currents I1, I2, I3 and I4, as

4I1 – I2   60

–I1   8I2 – 2I3   5I4   0

–2I2   6I3   50

5I2   15I4  VS

Solving the above equations, using Cramer’s rule, we get

I
V
S

4

4 1 0 60

1 8 2 0

0 2 6 50

0 5 0

4 1 0 0

1 8 2 5

0 2 6 0

0 5 0 15

=

-
- -

-

-
- -

-

 =
-

- +
- -

4

8 2 5

2 6 0

5 0 15

1

1 2 5

0 6 0

0 0 15

  4{8(90)   2(– 30)   5(– 30)}   1{–1(90)}

   1950
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Determine the voltage V which causes the current I1 to be zero 

for the circuit shown in Fig. 1.151. Use Mesh analysis.

Ω

Ω

Ω

Ω

Ω

Ω

Fig. 1.151

Example 1.86

Solution From Fig. 1.151, we can form three loop equations in terms of I1, I2, I3

and V, as follows

13I1 – 2I2 – 5I3   20 – V

–2I1   6I2 – I3   0

–5I1 – I2   10I3  V

Using Cramer’s rule, we get

I

V

V

1

20 2 5

0 6 1

1 10

13 2 5

2 6 1

5 1 10

=

- - -
-

- +
- -

- + -
- - +

 1   (20 – V)(  60 – 1)   2(V) – 5(–6 V)

  1180 – 27 V

we have    557

I
1

1

557
=
 

  1   0

–27 V   1180   0

 V   43.7 V

 
4

4

8 2 0

2 6 50

5 0

1

1 2 0

0 6 50

0 0

60

1 8 2

0 2 6

0 5 0

=
-

- +
- -

-
- -

-
V V
S S

  4{8(6 V
S
)   2(– 2V

S
 – 250)}   1{–1(6V

S
)} – 60 {–1(–30)}

  170 V
S
 – 3800
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I
V
S

4

170 3800

1950
=

-

 V
I

S
=

¥ +
=

1950 3800

170
79 7

4
. V

Write and solve the equation for Mesh Current in the network 

shown.

Fig. 1.152

Example 1.87

Solution By source transformation technique transform 5 A and 4 A current sources 

into voltage sources.

5A current source in parallel with 3  can be transformed to 15V in series 

with 3  and 4A current source in parallel with 3  can be transformed 

to 12 volts in series with 3  . The equivalent circuit is as shown below:

Fig. 1.153

The mesh equations are

2I1  5I1  1(I1 I2)  15

1(I2 I1)  4I2  41

fi 8I1  I2  15 (1)

5I2 I1  41 (2)

on solving equations (1) and (2) we get 

I1  2.97 Amps

I2  8.74 Amps
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Determine the current in all branches of the following network 

and the voltage across for resistors using loop method.

5 V
+

5 W 6 W

10 W

7 W 5 W
- 5 AI1 I2

I3

Fig. 1.154

Example 1.88

Solution Applying mesh equation to the loops (1), (2) and (3), we get

5 V
+

5 W 6 W

10 W

7 W

5 W

-
25 VI1 I2

VBVA

+

-

I3

Fig. 1.155

5(I1 I3)  7(I1 I2)  5

12I1  7I2 5I3  5 (1)

7(I2 I1)  6(I2 I3)  5I2   25

  7I1  18I2 6I3   25 (2)

10I3  5(I3  I1)  6(I3  I2)  0

  5I1  6I2  21I3  0 (3)

By solving above three equations, we get

I1   1.231 A

I2   2.172 A

I3   0.9138 A

Current in 5  resistor is  0.3172 A

7  resistor is 0.941 A

6  resistor is 1.2582 A

10  resistor is  0.9138 A

5  resistor is  2.172 A
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Write the matrix loop equation for the given network and 

determine the loop currents, as shown in figure and find the current through 

each element in the network. [JNTU June 2009]

Example 1.89

Loop equations

4  10I1  4I2  4I3

0   4I1  10I2  4I3

0   4I1  4I2  10I3

Matrix loop equation

10 4 4

4 10 4

4 4 10

4

0

0

1

2

3

- -
- -
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

I

I

I

Let D =
- -

- -
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= - - =

D =
- -

-

10 4 4

4 10 4

4 4 10

840 224 224 392

4 4 4

0 101 44

0 4 10

336

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

D =
-

- -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

D =
-

-
- -

È

Î

Í
Í
Í

˘

˚

˙

2

3

10 4 4

4 0 4

4 0 10

224

10 4 4

4 10 0

4 4 0
˙̇
˙

= 224

\ =
D
D

=

\ =
D
D

=

\ =
D
D

=

I

I

I

1
1

2
2

3
3

336

392

6

7

224

392

4

7

224

3

amp= amp

amp= amp

992

4

7
amp= amp

\ =

\ =

\

Current through AB = amp

Current through AC = amp

I

I

1

2

6

7

4

7

CCurrent through BC = amp= I3

4

7

Fig. 1.156
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\ = - -Ê
ËÁ

ˆ
¯̃

=

\

Current through AD = amp amp

Current thr

2I I1

6

7

4

7

2

7

oough BD = amp amp

Current through CD

3= - -Ê
ËÁ

ˆ
¯̃

=

\ = -

I I

I

1

2

6

7

4

7

2

7

II3

4

7

4

7
0= amp amp-Ê

ËÁ
ˆ
¯̃

=

F i n d 

the power dissipated 

in 1 ohms resistor and 

voltage drop across 

each resistor as shown 

in Fig. 1.157.

 [JNTU Jan 2010]

Example 1.90

Fig. 1.157

Solution

1 Ω

1 Ω1.2 Ω

1.4 Ω

0.4 Ω
0.6 Ω

1.4 Ω

12.5 V 1.7 V

A B

C D

P

Q

i2
i1

Fig. 1.158

Using KVL,

 12.5   4i1  i2

 1.7   4i2  i1

  i1   3.22 amp

  i2   0.38 amp

  Current through PQ   (3.22   0.38) amp   2.84 amp

  Power dissipation in PQ   (2.842   1) watt

  8.0656 watt

 Voltage drop across AP   (1.2   3.22) volt   3.864 V

 Voltage drop across PB   (1   0.38) volt   0.38 V

 Voltage drop across PQ   (1   2.84) volt   2.84 V

 Voltage drop across QC   (1.4   3.22) volt   4.508 V

 Voltage drop across QD   (1.4   0.38) volt   0.532 V
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In the circuit shown in 

figure, determine the current through the 2  

resistor and the total current delivered by the 

battery. Use Kirchhoff’s laws.

[JNTU Jan 2010]

Example 1.91 c

a b

d

1 ohms

5

ohms

3

ohms

1

ohms

2

ohms

4

ohms

10 V

Fig. 1.159

Solution

 11i1   2i2   5i3   0

   2i1   6i2   3i3   0

   5i1   3i2   93   10

\
- -

- -
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

11 2 5

2 6 3

5 3 9

0

0

10

1

2

3

i

i

i

\ D =
- -

- -
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= - - =
11 2 5

2 6 3

5 3 9

495 66 180 249

\ D =
- -

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=1

0 2 5

0 6 3

10 3 9

366

\ D =
-

- -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=2

11 0 5

2 0 3

5 10 9

430

\ D =
-

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=3

11 2 0

2 6 0

5 3 10

620

i2

i3

i1i2

2 Ω
1 Ω

5 Ω 3 Ω

1 Ω 10 V

4 Ω

d

a

c

b

Fig. 1.160
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\ =
D
D

= =
D
D

= =
D
D

=i i i1
1

2
2

3
31 45 1 73 2 49. , . , .amp amp amp

  Current through 2   i1  i2 a  0.28 amp

Total current  i3   2.49 amp

What is the value of R such that the power supplied by both the 

sources are equal? [JNTU April/May 2003]

Fig. 1.161

Example 1.92

Solution  Converting current source into voltage source, we have

Fig. 1.162

Applying KVL for both the meshes,

4R = (R + 3) i1 + i2 (1)

50 = i1 + i2 (2)

The power supplied by both the source are equal

4R i1 = 50i2

R
i

i
= 12 5

2

1

.

(3)

From Eq. (1),

4R i1R i1 i2 = 0

R i1 i1 i2 = 0 (4)
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Substituting equation 3 in 4,

12 5 4 3 0

50 13 5 3 0

2

1
1 1 2

2

1
2 1

. ( )

.

i

i
i i i

i

i
i i

- - - =

- - =

(5)

(6)

From equation 2, i2 = 50  i1 (7)

Substituting equation 7 in 6

50
50

13 5 50 3 01

1
1 1

-Ê
ËÁ

ˆ
¯̃

- - - =
i

i
i i. ( ) (8)

10.5i21 i1 + 2500 = 0 (9)

from which i1
725

21
=

±
=

717.72
68.7or 0.347A

If i1= 68.7 A:

from equation (2) i2

and R =
-

= -
12 5 18 7

68 7
3 4

. ( . )

.
. W

If i1 = 0.347 A

i2 = 46.3598 A

and R = ¥ =12 5
46 3598

3 6402
.

.

.
1788.6W

Considering positive value of R = 1768.6  

Power supplied by current source

= 4 × 1788.6 × 0.347 = 2482.65 W

Power supplied by voltage source

= 50 × 49.653 = 2482.65 W

The value of R = 1788.6  

1.11.2 Supermesh Analysis

Suppose any of the branches in the network has a current source, then it is 

slightly difficult to apply mesh analysis straight forward because first we should 

assume an unknown voltage across the current source, writing mesh equations as 

before, and then relate the source current to the assigned mesh currents. This is 

generally a difficult approach. One way to overcome this difficulty is by applying 

the supermesh technique. Here we have to choose the kind of supermesh. 

A supermesh is constituted by two adjacent loops that have a common current 

source. As an example, consider the network shown in Fig. 1.163.
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Here, the current source I is in the common boundary for the two meshes 1 and 2. 

This current source creates a supermesh, which is nothing but a combination of 

meshes 1 and 2.

Fig. 1.163

R1I1 + R3(I2 – I3) = V

or R1I1 + R3I2 – R4I3 = V

Considering mesh 3, we have

R3(I3 – I2) + R4I3 = 0

Finally, the current I from current source is equal to the difference between 

two mesh currents, i.e.

I1 – I2 = I

We have, thus, formed three mesh equations which we can solve for the three 

unknown currents in the network.

Determine 

the current in the 5 W
resistor in the network given 

in Fig. 1.164.

Example 1.93

Fig. 1.164

Solution From the first mesh, i.e. abcda, we have

50 = 10(I1 – I2) + 5(I1 – I3)

or 15I1 – 10I2 – 5I3 = 50 (1.17)

From the second and third meshes, we can form a supermesh

10(I2 – I1) + 2I2 + I3 + 5(I3 – I1) = 0
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or –15I1 + 12I2 + 6I3 = 0 (1.18)

The current source is equal to the difference between II and III mesh currents, i.e.

I2 – I3 = 2 A (1.19)

Solving 1.17, 1.18 and 1.19, we have

I1 = 19.99 A, I2 = 17.33 A, and I3 = 15.33 A

The current in the 5 W resistor = I1 – I3

 = 19.99 – 15.33 = 4.66 A

\ The current in the 5 W resistor is 4.66 A.

Write the mesh equations for the circuit shown in Fig. 1.165 

and determine the currents, I1, I2 and I3.

Fig. 1.165

Example 1.94

Solution In Fig. 1.165, the current source lies on the perimeter of the circuit, and 

the first mesh is ignored. Kirchhoff’s voltage law is applied only for second and 

third meshes.

From the second mesh, we have

3(I2 – I1) + 2(I2 – I3) + 10 = 0

or –3I1 + 5I2 – 2I3 = –10 (1.20)

From the third mesh, we have

I3 + 2(I3 – I2) = 10

or –2I2 + 3I3 = 10 (1.21)

From the first mesh,

I1 = 10 A (1.22)

From the above three equations, we get

I1 = 10 A,  I2 = 7.27 A, I3 = 8.18 A
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Determine the 

loop currents for the circuit shown in 

Fig. 1.166 by using mesh analysis.

Example 1.95

Ω

Ω

Ω

Ω

Ω

Ω

Fig. 1.166

Solution The branches AE, DE and BC consists of current sources. Here we have 

to apply supermesh analysis.

The combined supermesh equation is

10(I1 – I3)  I1 – 10   4I2 – 20

  8I4 – 30   20(I4 – I3)   0

or 11I1   4I2 – 30I3   28I4   60

In branch AE, I2 – I1   5 A

In branch BC, I3   15 A

In branch DE, I2 – I4   10 A

Solving the above four equations, we can get the four currents I1, I2, I3 and I4 as

I1   14.65 A

I2   19.65 A, I3   15 A, and I4   9.65 A

Determine the 

power delivered by the voltage 

source and the current in the 

10  V resistor for the circuit shown 

in Fig. 1.167.

Example 1.96
Ω Ω

Ω
Ω

Ω

Fig. 1.167
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Solution Since branches AC and BD consist of current sources, we have to use the 

supermesh technique.

The combined supermesh equation is

– 50   5I1   3I2   2I2   10(I2 – I3)   1(I1 – I3)   0

or 6I1   15I2 – 11I3   50

or I1 – I2   3 A and I3   10 A

From the above equations we can solve for I1, I2 and I3 follows

I1   9.76 A, I2   6.76 A, I3   10 A

In the 

circuit shown in Fig.  

1.168, find the power 

delivered by 4 V source 

using mesh analysis 

and voltage across the 

2 V resistor.

Example 1.97

Fig. 1.168

Solution Since branches BC and DE consists of current sources, we use the 

supermesh technique.

The combined supermesh equation is

2I1   6I1   4(I1 – I3)   (I2 – I3) – 4   5I2   0

or

12I1   6I2 – 5I3   4

In branch BC, I2 – I1   5

In branch DE, I
V

3

2

2
=

Solving the above equations

I1   –2 A; I2   3 A

The voltage across the 2   resistor V2   2I1   2   (–2)   – 4 V

Power delivered by 4 V source P4   4I2   4(3)   12 W

For the circuit shown in Fig. 1.169, find the current through the 

10   resistor by using mesh analysis.

Fig. 1.169

Example 1.98
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Solution The parallel branches consist of current sources. Here we use supermesh 

analysis. The combined supermesh equation is.

or –15  10I1  20  5I2  4I3 – 40  0

and

10I1  5I2  4I3  35

I1 – I2  2

I3 – I2  2I1

Solving the above equations, we get

I1  1.96 A

The current in the 10   resistor is I1  1.96 A

1.12 NODAL ANALYSIS

In Chapter 1, we discussed simple circuits containing only two nodes, including 

the reference node. In general, in a N node circuit, one of the nodes is chosen 

as reference or datum node, then it is possible to write N – 1 nodal equations 

by assuming N – 1 node voltages. For example, a 10 node circuit requires nine 

unknown voltages and nine equations. Each node in a circuit can be assigned 

a number or a letter. The node voltage is the voltage of a given node with 

respect to one particular node, called 

the reference node, which we assume 

at zero potential. In the circuit shown 

in Fig. 1.170, node 3 is assumed as 

the reference node. The voltage at 

node 1 is the voltage at that node 

with respect to node 3. Similarly, 

the voltage at node 2 is the voltage 

at that node with respect to node 3. 

Applying Kirchhoff’s current law at 

node 1; the current entering is equal 

to the current leaving. (See Fig. 

1.171).

I
V

R

V V

R
1

1

1

1 2

2

= +
-

where V1 and V2 are the voltages at 

node 1 and 2, respectively. Similarly, 

at node 2, the current entering is equal 

to the current leaving as shown in 

Fig. 1.172.

V V

R

V

R

V

R R

2 1

2

2

3

2

4 5

0
-

+ +
+

=

Fig. 1.170

Fig. 1.171

Fig. 1.172
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Rearranging the above equations, we have

V
R R

V
R

I

V
R

V
R R R R

1

1 2

2

2

1

1

2

2

2 3 4

1 1 1

1 1 1 1

+
È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚
˙ =

-
È

Î
Í

˘

˚
˙ + + +

+
55

0
È

Î
Í

˘

˚
˙ =

From the above equations, we can find the voltages at each node.

Write the node voltage equations and determine the currents in 

each branch for the network shown in Fig. 1.173.

Fig. 1.173

Example 1.99

Solution The first step is to assign voltages at each node as shown in Fig. 1.174.

Fig. 1.174

Applying Kirchhoff’s current law at node 1,

we have 5
10 3

1 1 2= +
-V V V

or V
1 2

1

10

1

3

1

3
5+È

ÎÍ
˘
˚̇

- È
ÎÍ

˘
˚̇

=V (1.23)

Applying Kirchhoff’s current law at node 2,

we have 
V V V V
2 1 2 2

3 5

10

1
0

-
+ +

-
=

or - È
ÎÍ

˘
˚̇

+ + +È
ÎÍ

˘
˚̇

=V V
1 2

1

3

1

3

1

5
1 10 (1.24)
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From Eqs 1.23 and 1.24, we can solve for V1 and V2 to get

V1   19.85 V, V2   10.9 V

I
V V V

10
1

3
1 2

10
1 985

3

19 85 10 9

3
2 98= = =

-
=

-
=.

. .
.A, AI

I
V V

5
2

1
2

5

10 9

5
2 18

10

1
0 9= = = =

-
=

.
. .A, AI

Determine the voltages at each node for the circuit shown in 

Fig. 1.175.

Fig.  1.175

Example 1.100

Solution At node 1, assuming that all currents are leaving, we have

or

V V V V V V

V V

1 1 2 1 1 2

1 2

10

10 3 5 3
0

1

10

1

3

1

5

1

3

1

3

1

3

-
+

-
+ +

-
=

+ + +È
ÎÍ

˘
˚̇

- +È
ÎÍ

˘̆
˚̇

=1

0.96 V1 – 0.66 V2   1 (1.25)

At node 2, assuming that all currents are leaving except the current from current 

source, we have

V V V V V V

V V V

2 1 2 1 2 3

1 2 3

3 3 2
5

2

3

1

3

1

3

1

2

1

2

-
+

-
+

-
=

- È
ÎÍ

˘
˚̇

+ + +È
ÎÍ

˘
˚̇

- È
ÎÍ

˘̆
˚̇

=5

– 0.66 V1   1.16 V2 – 0.5 V3   5 (1.26)

At node 3, assuming all currents are leaving, we have

V V V V3 2 3 3

2 1 6
0

-
+ + =

– 0.5 V2   1.66 V3   0 (1.27)
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Applying Cramer’s rule, we get

V
1

1 0 66 0

5 1 16 0 5

0 0 5 1 66

0 96 0 66 0

0 66 1 16 0 5

0 0 5 1

=

-
-

-
-

- -
-

.

. .

. .

. .

. . .

. .666

7 154

0 887
8 06= =

.

.
. V

Similarly,

V
2

0 96 1 0

0 66 5 0 5

0 0 1 66

0 96 0 66 0

0 66 1 16 0 5

0 0 5 1 66

=

- -

-
- -

-

=

.

. .

.

. .

. . .

. .

99 06

0 887
10 2

.

.
.= V

V
3

0 96 0 66 1

0 66 1 16 5

0 0 5 0

0 96 0 66 0

0 66 1 16 0 5

0 0 5 1

=

-
-

-
-

- -
-

. .

. .

.

. .

. . .

. ..

.

.
.

66

2 73

0 887
3 07= = V

1.12.1 Nodal Equations by Inspection Method

The nodal equations for a general planar network can also be written by inspection,

without going through the detailed steps. Consider a three node resistive network, 

including the reference node, as shown in Fig. 1.176.

In Fig. 1.176, the points a and b are the actual nodes and c is the reference node. 

Now consider the nodes a and b separately as shown in Figs 1.177(a) and (b).

Fig. 1.176
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Fig. 1.177

In Fig. 1.176(a), according to Kirchhoff’s current law, we have

I1  I2  I3  0

  

V V

R

V

R

V V

R

a a a b
-

+ +
-

=1

1 2 3

0 (1.28)

In Fig. 1.176(b), if we apply Kirchhoff’s current law, we get

I4  I5  I3

 

V V

R

V

R

V V

R

b a b b
-

+ +
-

=
3 4

2

5

0 (1.29)

Rearranging the above equations, we get

1 1 1 1 1

1 2 3 3 1

1
R R R

V
R

V
R

V
a b

+ +
Ê
ËÁ

ˆ
¯̃

-
Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

(1.30)

-
Ê
ËÁ

ˆ
¯̃

+ + +
Ê
ËÁ

ˆ
¯̃

=
1 1 1 1

3 3 4 5

2

5
R

V
R R R

V
V

R
a b

(1.31)

In general, the above equations can be written as

G
aa
V
a
 G

ab
V
b
 I1 (1.32)

G
ba
V
a
 G

bb
V
b
 I2 (1.33)

By comparing Eqs 1.30, 1.31 and Eqs 1.32, 1.33 we have the self 

conductance at node a, G
aa
 (1/R1  1/R2  1/R3) is the sum of the 

conductances connected to node a. Similarly, G
bb
 (1/R3  1/R4  1/R5), is 

the sum of the conductances connected to node b. G
ab
 (–1/R3), is the sum of 

the mutual conductances connected to node a and node b. Here all the mutual 

conductances have negative signs. Similarly, G
ba
 (–1/R3) is also a mutual 

conductance connected between nodes b and a. I1 and I2 are the sum of the 

source currents at node a and node b, respectively. The current which drives 

into the node has positive sign, while the current that drives away from the 

node has negative sign.
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For the circuit shown in Fig. 1.178, write the node equations by 

the inspection method.

Fig. 1.178

Example 1.101

Solution The general equations are

G
aa

V
a
  G

ab
V

b
 I1 (1.34)

G
ba

V
a
  G

bb
V

b
 I2 (1.35)

Consider Eq. 1.34.

G
aa
  (1   1/2   1/3) mho, the self conductance at node a is the sum of the 

conductances connected to node a.

G
bb
  (1/6   1/5   1/3) mho the self conductance at node b is the sum of the 

conductances connected to node b.

G
ab
  –(1/3) mho, the mutual conductance between nodes a and b is the sum of the 

conductances connected between nodes a and b.

Similarly, G
ba
  –(1/3), the sum of the mutual conductances between nodes b

and a.

I1

10

1
10= = A, the source current at node ,a

I b2

2

5

5

6
1 23= +Ê

ËÁ
ˆ
¯̃

= . .A, the source current at node

Therefore, the nodal equations are

1.83 V
a
 – 0.33 V

b
  10 (1.36)

–0.33 V
a
  0.7 V

b
  1.23 (1.37)

Determine 

the voltage ratio Vout / Vin for 

the circuit shown in Fig. 1.179 

by using nodal analysis.

Example 1.102

Fig. 1.179
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Solution I10   I3  I11   0

I
V V

I
V

I
V V

A

A

A

10

3

11

10

3

11 6

=
-

=

=

in

outor,

V V V V
A A A

-
+ + =in

10 3 11
0

Also
V V
A

11 6
= out

 VA  Vout   1.83

From the above equations, Vout /Vin   1/9.53   0.105

Find the voltages V in the circuit shown in Fig. 1.180 which 

makes the current in the 10 V resistor zero by using nodal analysis.

Fig. 1.180

Example 1.103

Solution In the circuit shown, assume voltages V1 and V2 at nodes 1 and 2. At 

node 1, the current equation in Fig. 1.181(a) is

Fig. 1.181(a)
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V V V V V1 1 1 2

3 2 10
0

-
+ +

-
=

or 0.93 V1 – 0.1 V2  V/3

At node 2, the current equation in Fig. 1.181(b) is

Fig. 1.181(b)

V V V V
2 1 2 2

10 5

50

7
0

-
+ +

-
=

or –0.1 V1   0.443 V2   7.143

Since the current in 10   resistor is zero, the voltage at node 1 is equal to the 

voltage at node 2.

  V1 – V2   0

From the above three equations, we can solve for V

V1   20.83 Volts and V2   20.83 volts

 V   51.87 V

U s e 

nodal analysis to find 

the power dissipated 

in the 6   resistor for 

the circuit shown in 

Fig. 1.182.

Example 1.104

Fig. 1.182

Solution Assume voltage V1, V2 and V3 at nodes 1, 2 and 3 as shown in Fig. 1.182.

By applying current law at node 1, we have

V V V V V
1 1 2 1 320

3 1 2
0

-
+

-
+

-
=
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or 1.83V1 – V2 – 0.5V3  6.67 (1.38)

At node 2,

V V V V
2 1 2 3

1 6
5

-
+

-
= A

or –V1 + 1.167V2 – 0.167V3  5 (1.39)

At node 3,

V V V V V
3 1 3 2 3

2 6 5
0

-
+

-
+ =

or –0.5 V1 – 0.167 V2  0.867 V3  0 (1.40)

Applying Cramer’s rule to Eqs 1.38, 1.39 and 1.40, we have

V2
2=

D
D

where D =
- -

- - -
- -

= -
1 83 1 0 5

1 1 167 0 167

0 5 0 167 0 867

2 64

. .

. .

. . .

.

 

D =
-

- -
-

=

=
-

= -

2

2

1 83 6 67 0 5

1 5 0 167

0 5 0 0 867

13 02

13 02

2 64
4 9

. . .

.

. .

.

.

.
.V 33V

Similarly,

V
3

3=
D
D

3

1 83 1 6 67

1 1 167 5

0 5 0 167 0

1 25D =
-

- -
- -

=
. .

.

. .

.

  V
3

1 25

2 64
0 47=

-
= -

.

.
. V

The current in the 6   resistor is

I
V V

6

2 3

6

4 93 0 47

6
0 74

=
-

=
- +

= -
. .

. A

The power absorbed or dissipated  I R
6

2

6

 (0.74)2  6

 3.29 W
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For the circuit shown in Fig. 1.183 find the voltage across the 

4 V resistor by using nodal analysis.

Fig. 1.183

Example 1.105

Solution In the circuit shown, assume voltages V1 and V2 at nodes 1 and 2. At 

node 1, the current equation is

5
3

5

4 2
0

1 1 2 1 2+ +
+ -

+
-

=
V V V V V

or 1.08 V1 – 0.75 V2   –6.25 (1.41)

At node 2, the current equation is

V V V V
V

V

x

2 1 2 1 2
5

4 2
4

1
0

- -
+

-
- + =

V
x
 V1   5 – V2

or – 4.75 V1   5.75 V2   21.25 (1.42)

Applying Cramer’s rule to Eqs 1.41 and 1.42, we have

where

V
2

2

2

1 08 0 75

4 75 5 75
2 65

1 08 6 25

4 75 21 25
6 7

=
D
D

D =
-

-
=

D =
-

-
= -

. .

. .
.

. .

. .
. 44

6 74

2 65
2 54

2

2
V =

D
D

=
-

= -
.

.
. V 

Similarly, V

V

1
1

1

1
1

6 25 0 75

21 25 5 75
20

20

2 65

=
D
D

D =
- -

= -

=
D
D

=
-

= -

. .

. .

.
77 55. V
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The voltage across the 4   resistor is

V
x
 V1   5 – V2   –7.55   5 – (–2.54)

V
x
  –0.01 volts

For the circuit shown in Fig. 1.184, find the current passing 

through the 5   resistor by using the nodal method.

Fig. 1.184

Example 1.106

Solution In the circuit shown, assume the voltage V at node 1.

At node 1, the current equation is

V V I-
- +

- -
=

30

5
2

36 6

6
0

1

where I
V

1

30

5
=

-

From the above equation

V   48 V

The current in the 5   resistor is

I
V

1

30

5
3 6=

-
= . A

Use nodal analysis, 

to determine the voltage V1 and V2 in 

the circuit shown.

Fig. 1.185

Example 1.107

Solution The nodal equations for the two nodes are

V V V V
1 1 1 2
5

2 3 2
0

-
+ +

-
= (1)

V V V
2 1 2

2 1
3

-
+ = (2)
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From l 1.333 V1   0.5 V2   2.5

From 2  0.5 V1   1.5 V2   3

Solving the above equations for V1 and V2 yields

V1   3 V and V2   3 V.

For the 

circuit shown in Fig. 1.186, 

find the current through 20  

resistor?

 [JNTU May/June 2006]

Example 1.108

Ω

Ω

Ω

Ω

Fig. 1.186

Solution Applying nodal analysis

V V V-
+ +

+
=

10

75 20

15

50
0

V I= -2 volts

I =
V

= -
20

0 1 A.

1.12.2 Supernode Analysis

Suppose any of the branches in the network has a voltage source, then it is slightly 

difficult to apply nodal analysis. One way to overcome this difficulty is to apply the 

supernode technique. In this method, the two adjacent nodes that are connected by 

a voltage source are reduced to a single node and then the equations are formed by 

applying Kirchhoff’s current law as usual. This is explained with the help of Fig. 1.186.

It is clear from Fig. 1.187, that node 4 is the reference node. Applying 

Kirchhoff’s current law at node 1, we get

I
V

R

V V

R
= +

-
1

1

1 2

2

Due to the presence of voltage source V
x
 in between nodes 2 and 3, it is slightly 

difficult to find out the current. The supernode technique can be conveniently 

applied in this case.
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Fig. 1.187

Accordingly, we can write the combined equation for nodes 2 and 3 as under.

V V

R

V

R

V V

R

V

R

y2 1

2

2

3

3

4

3

5

0
-

+ +
-

+ =

The other equation

V2 – V3  V
x

From the above three equations, we can find the three unknown voltages.

Determine the current in the 5   resistor for the circuit shown 

in Fig. 1.188.

Fig. 1.188

Example 1.109

Solution At node 1

10
3 2

1 1 2= +
-V V V

or V
V

1

21

3

1

2 2
10 0+È

ÎÍ
˘
˚̇

- - =

0.83 V1 – 0.5 V2 – 10   0 (1.43)

At node 2 and 3, the supernode equation is

or

V V V V V

V
V V

2 1 2 3 3

1

2 3

2 1

10

5 2
0

2

1

2
1

1

5

1

2
2

-
+ +

-
+ =

-
+ +È

ÎÍ
˘
˚̇

+ +È
ÎÍ

˘
˚̇

=

– 0.5 V1   1.5 V2   0.7 V3 – 2   0 (1.44)
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The voltage between nodes 2 and 3 is given by

V2 – V3   20 (1.45)

The current in the 5   resistor I
V

5

3
10

5
=

-

Solving Eqs 1.43, 1.44 and 1.45, we obtain

V3   –8.42 V

  Current I5 = 
- -

= -
8 42 10

5
3 68

.
. A  (current towards node 3) i.e. the current 

flows towards node 3.

Determine the power dissipated by 5   resistor in the circuit 

shown in Fig. 1.189.

Fig. 1.189

Example 1.110

Solution In Fig. 1.189, assume voltages V1, V2 and V3 at nodes 1, 2 and 3. At 

node 1, the current law gives

V V V V1 3 1 2
40

4 6
3 5 0

- -
+

-
- - =

or 0.42 V1 – 0.167 V2 – 0.25 V3   18

Applying the supernode technique between nodes 2 and 3, the combined equation 

at node 2 and 3 is

V V V V V V
2 1 2 3 3 1

6
5

3 5

40

4
0

-
+ + + +

+ -
=

or –0.42 V1   0.5 V2   0.45 V3   –15

Also V3 – V2   20 V

Solving the above three equations, we get

V1   52.89 V, V2   –1.89 V and

V3   18.11 V
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   The current in the 5   resistor I
V

5

3

5
=

= =
18 11

5
3 62

.
. A

The power absorbed by the 5   resistor P I R
5 5

= 
5

2

  (3.62)2   5

  65.52 W

Find the power delivered by the 5 A current source in the circuit 

shown in Fig. 1.190 by using the nodal method.

Fig. 1.190

Example 1.111

Solution Assume the voltages V1, V2 and V3 at nodes 1, 2, and 3, respectively. Here, 

the 10 V source is common between nodes 1 and 2. So applying the supernode 

technique, the combined equation at node 1 and 2 is

V V V V V1 3 2 3 2

3
2

1
5

5
0

-
+ +

-
- + =

or 0.34 V1   1.2 V2 – 1.34 V3   3

At node 3, 
V V V V V

3 1 3 2 3

3 1 2
0

-
+

-
+ =

or –0.34 V1 – V2   1.83 V3   0

Also V1 – V2   10

Solving the above equations, we get

V1   13.72 V; V2   3.72 V

V3   4.567 V

Hence the power delivered by the source (5 A)  V2   5

  3.72   5   18.6 W
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Using 

nodal method, find the 

current through 5  

resistor, in the following 

circuit.

 [May/June 2006]

Example 1.112
Ω

Ω

Ω
Ω

Fig. 1.191

Solution
Ω

Ω

Ω
Ω

Fig. 1.192

Equation at V1;
V V V V1 3 1 2

5 3
5

-
+

-
=

8 5 3 75
1 2 3

V V V- - = (1)

Equation at supernode

V V
V

V V V
2 1

2

3 1 3

3 5 2
0

-
+ +

-
+ =

- + + =16 40 21 0
1 2 3

V V V (2)

V V i

i V V

V V V V V

3 2

2 1 2

3 2 2 3 2

2

2 3

- =

= =

- = fi =

/

Solving for V1, V2 and V3

V1   12.87; V2   2; V3   6 volts

Current through 5   from V1 to V3 is equal to 
V V1 3

5
1 347

-
= . amps.

Find the power supplied by 12 V source as shown in Fig. 1.193.

[JNTU April/May 2006]

ΩΩ

Ω Ω Ω Ω Ω

Fig. 1.193

Example 1.113
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Solution

ΩΩ

Ω Ω Ω Ω Ω

Fig. 1.194

The nodal equations are

1
6 6

01 1 2+ +
+

=
V V V

(1)

V V V V V2 2 1 2 3

6 6 2
0+

-
+

-
= (2)

V V V V V3 2 3 4 4

2 4 2 2
2 0

-
+ + + + = (3)

V4  V3  12 is the supernode equation

(1) fi È
ÎÍ

˘
˚̇

- È
ÎÍ

˘
˚̇

+ =V V1 2

1

3

1

6
1 0

(2) fi -È
ÎÍ

˘
˚̇

+ È
ÎÍ

˘
˚̇

- È
ÎÍ

˘
˚̇

=V V V1 2 3

1

6

5

6

1

2
0

(3) fi -È
ÎÍ

˘
˚̇

+ È
ÎÍ

˘
˚̇

+ + =V V V2 3 4

1

2

3

4
1 2 0[ ]

- + + + + =

- + + =

1

2

7

4
12 2 0

1

2

7

4
14 0

2 3 3

2 3

V V V

V V

fi = -È
ÎÍ

˘
˚̇

= -V V V3 2 2

4

7

1

2
14

2

7
8 (4)

From (2), - + - -È
ÎÍ

˘
˚̇

=
1

6

5

6

1

2

2

7
8 0

1 2 2
V V V

- + - + =
1

6

5

6

1

7
4 0

1 2 2
V V V

V V V
1 2 2

6
29

42
4

29

7
24= +Ï

Ì
Ó

¸
˝
˛

= + (5)

1

3

1

6
1 0

1 2
V V- + =
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Substitute for V1

From (1), 
1

3

29

7
24

1

6
1 0

29

21
8

1

6
1 0

126

17

2

7

2 2

2 2 2

3

V V

V V V V

V

+È
ÎÍ

˘
˚̇

- + =

+ - + - fi =
-

= VV V

V V V

2

4 3

8
172

17

12
32

17

- =
-

= + =

Current through 12 V source is

I
V V

= + + =4 4

2 2
2

66

17
A

Power V1 12
66

17

792

17
= ¥ = W

Find the currents I1 and I2 using Nodal Analysis (Fig. 1.195)

[JNTU May/June 2006]

Fig. 1.195

Example 1.114

Solution At node (1):

V V V V I V V

V

1 1 1 2 1 2

1

10

2 2

1

1

2

1
0

1

2

1

2
1 1 1

-
+ +

- +
+

+ -
=

fi + + +Ê
ËÁ

ˆ
¯̃

+ - -

( ) ( )

( 11
10

2
1 2 6 22)V I I= + - = -

fi - = -3 2 6 21 2V V I (1)

At node (2):

V V V V V I

V V I

2 2 1 2 1

1 2

2

1

1

2

1
0

1 1
1

2
1 1 1 2

+
+ -

+
- -

=

fi - - + + +Ê
ËÁ

ˆ
¯̃

= - +

( )

( )
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fi - + = -2
5

2
2 11 2V V I (2)

But I
V

= 1

2
(3)

From (3) and (1) ⇒ 4V1   2V2   6

From (3) and (2) ⇒ 3
5

2
11 2V V- =

Solving,

V1   3.25 V

V2   3.5 V

\ =
-

= = =I
V

I
V

1
1

2
210

2
3 375

2
1 75. .A; A.

For the network shown (Fig. 1.196), determine the node 

voltages V1 and V2. Determine the power dissipated in each resistor.

[JNTU May/June 2006]

Fig. 1.196

Example 1.115

Solution

Fig. 1.197

Applying KCL,

5
1 2

1
1

2 2
52 2 1

2
1= +

-
fi +Ê

ËÁ
ˆ
¯̃

- =
V V V

V
V

3 102 1V V- = (1)
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I
V V

=
-

2 1

2
(2)

V V V
I

V V

V V V

1 1 2 2 1

1 2 1

3 2
10 2 10 2

2

1

2

1

3
10

+
-

= + = +
-Ê

ËÁ
ˆ
¯̃

fi +Ê
ËÁ

ˆ
¯̃

= + -

\ - =11 9 601 2V V (3)

Solving (1) and (3),

V1   11.25 volts

and  V2   7.083 volts

Power dissipated in 1   resistor = = = = =

=

VI I R
V

R

V2
2

2
2

2

1
7 083

50 17

( . )

. watts

Power dissipated in 2   resistor  
V

R

V V
2

2 1
2

2
8 682=

-
=

( )
. watts

Power dissipated in 3   resistor  
V1

2 2

3

11 25

3
42 19= =

( . )
. watts

Using

nodal analysis, deter-

mine the power sup-

plied by 8 V voltage 

source. (Fig. 1.198)

 [JNTU May/June 2006]

Example 1.116

Fig. 1.198

Ω

Ω

Ω

Ω

Ω Ω

Solution

Ω

Ω

Ω

Ω

Ω Ω

Fig. 1.199
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Applying KCL at node (1);

V V V
V V

1 1 3

3 1

2

5

8

1
6 5 6 8

-
+

- +
= fi - = (1)

Applying KCL at node (2);

6
4 6

0 5 2 72 0
2 2 3

2 3
+ +

-
= fi - + =

V V V
V V (2)

Applying KCL at node (3);

V V V V V
V V V

3 2 3 3 1

3 2 1
6 3

8

1
0 9 6 48

-
+ +

- -
= fi - + = (3)

Solving (1), (2) and (3), we get

V1   4.593 volts

V2   11.56 volts

V3   7.11 volts

From the circuit, i
V V

=
+ -

=1 3
8

1
10 517. A

Power supplied by 8 V source is (8   10.517)

  84.136 watts

Find the current through 12   resistor for the given circuit by 

nodal method as shown in Fig. 1.200.

+

-

+

-

1W 3W

3W

2W

121 W
4V2V

Fig. 1.200

Example 1.117

Solution

Fig. 1.201
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Applying KCL at node 1

V V V V
1 1 1 2

2

2 12 1

-
+ +

-

Applying KCL at node 2

\
-

+ +
-V V V V

2 2 2 1
4

3 3 1

\ + + - =
V V V V
1 1 1 2

2 12 1 1
1

(1)

\ + + - =
V V V V
2 2 2 1

3 3 1 1

4

3

(2)

\ + +È
ÎÍ

˘
˚̇

- =V V
1 2
1

1

2

1

12
1

From (1),

V V
1 2

12 6 1

12
1

+ +È
ÎÍ

˘
˚̇

- =

19

12
1

1 2
V V- = (3)

From (2),

\ + +È
ÎÍ

˘
˚̇

- =V V
2 1

1

3

1

3
1

4

3 (4)

\
+ +È

ÎÍ
˘
˚̇

- =V V
2 1

1 1 3

3

4

3

\ - =
5

3

4

3
2 1
V V (4)

\ - =
19

12
1

1 2
V V (5)

- + =V V
1 2

5

3

4

3
(6)

Simplifying (5) and (6), we get

 V2  1.89 V

  V1  1.82 V
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Practice Problems

1.1 (i) Determine the current in each of the following cases:

  (a) 75 C in 1 s (b) 10 C in 0.5 s

  (c) 5 C in 2 s

(ii) How long does it take 10 C to flow past a point if the current is 5 A?

1.2 A resistor of 30   has a voltage rating of 500 V; what is its power rating?

1.3 A resistor with a current of 2 A through it converts 1000 J of electrical 

energy to heat energy in 15 s. What is the voltage across the resistor?

1.4 The filament of a light bulb in the circuit has a certain amount of resistance. 

If the bulb operates with 120 V and 0.8 A of current, what is the resistance 

of its filament?

1.5 Find the capacitance of a circuit in which an applied voltage of 20 V gives 

an energy store of 0.3 J.

1.6 A 6.8 k  resistor has burned out in a circuit. It has to be replaced with 

another resistor with the same ohmic value. If the resistor carries 10 mA, 

what should be its power rating?

1.7 If you wish to increase the amount of current in a resistor from 100 mA 

to 150 mA by changing the 20 V source, by how many volts should you 

change the source? To what new value should you set it?

1.8 A 12 V source is connected to a 10   resistor.

(a) How much energy is used in two minutes?

(b)  If the resistor is disconnected after one minute, does the power 

absorbed in resistor increase or decrease?

1.9 A capacitor is charged to 50  C. The voltage across the capacitor is 150 V. 

It is then connected to another capacitor four times the capacitance of the 

first capacitor. Find the loss of energy.

1.10 The voltage across two parallel capacitors 5  F and 3  F changes 

uniformly from 30 to 75 V in 10 ms. Calculate the rate of change of 

voltage for (i) each capacitor, and (ii) the combination.

1.11 The voltage waveform 

shown in Fig. 1.202 

is applied to a pure 

capacitor of 60  F. 

Sketch i(t), p(t) and 

determine Im and Pm.

Fig. 1.202
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1.12 Determine an expression for the current if the voltage across a pure 

capacitor is given as

v V wt
wt wt wt

= - + - +
È

Î
Í

˘

˚
˙m

( )

!

( )

!

( )

!
.....

3 5 7

3 5 7

1.13 A 2 F capacitor has a charge function q =100 [1 ]5 104¥ ¥
e

t  c.

Determine the corresponding voltage and current functions.

1.14 A pure inductance of 0.05 H

has an applied voltage with 

the waveform shown in Fig. 

1.203. Sketch the corresponding 

current waveform and determine 

the expression for i in the first 

internal.

1.15 An inductor of 0.004 H contains a current with a waveform shown in

Fig. 1.204. Sketch the voltage waveform.

Fig. 1.204

1.16 A single pure inductance of 3mH passes a current of the waveform shown 

in Fig. 1.205. Determine and sketch the voltage  (t) and the instantaneous 

power p(t).

Fig. 1.205

1.17 Simplify the circuit shown in 

Fig. 1.206 using series parallel 

combinations.

Fig. 1.203

Fig. 1.206
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1.18 Determine the equivalent capacitance 

of the circuit shown in Fig. 1.207 if

 all the capacitors are 10  F.

1.19 Reduce the circuit shown in Fig. 1.208 to a single equivalent capacitance 

across terminals a and b.

Fig. 1.208

1.20 For the circuit shown in Fig. 1.209, find the equivalent inductance.

Fig. 1.209

1.21 The following voltage drops are measured across each of three resistors 

in series: 5.5 V, 7.2 V and 12.3 V. What is the value of the source voltage 

to which these resistors are connected? If a fourth resistor is added to the 

circuit with a source voltage of 30 V. What should be the drop across the 

fourth resistor?

1.22 What is the voltage VAB across the resistor shown in Fig. 1.210?

Fig. 1.210(b)Fig. 1.210(a)

1.23 The source voltage in the circuit shown in Fig. 1.211 is 100 V. How much 

voltage does each metre read?

Fig. 1.207
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Fig. 1.211

1.24 Using the current divider formula, determine the current in each branch of 

the circuit shown in Fig. 1.212.

1 kΩ

2.2 kΩ

3.3 kΩ

5.6 kΩ

10 mA

Fig. 1.212

1.25 Six light bulbs are connected in parallel across 110 V. Each bulb is rated 

at 75 W. How much current flows through each bulb, and what is the total 

current?

1.26 For the circuit shown in Fig. 1.213, find the total resistance between terminals 

A and B; the total current drawn from a 6 V source connected from A to B; and 

the current through 4.7 k ; voltage across 3 k .

Fig. 1.213

1.27 For the circuit shown in Fig. 1.214, find the total resistance.

100

82

60

40

76

18

100 V
+

–

Fig. 1.214
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1.28 The current in the 5   resistance of the circuit shown in Fig. 1.215 is 5 A.

Find the current in the 10   resistor. Calculate the power consumed by the 

5   resistor.

Fig. 1.215

1.29 A battery of unknown emf is connected across resistances as shown in 

Fig. 1.216. The voltage drop across the 8   resistor is 20 V. What will be 

the current reading in the ammeter? What is the emf of the battery.

8 Ω 11 Ω

11 Ω
15 Ω

13 Ω

V

V

A

Fig. 1.216

1.30 An electric circuit has three terminals A, B, C. Between A and B is 

connected a 2   resistor, between B and C are connected a 7   resistor 

and 5   resistor in parallel and between A and C is connected a 1  
resistor. A battery of 10 V is then connected between terminals A and C.

Calculate (a) total current drawn from the battery (b) voltage across the 

2   resistor (c) current passing through the 5   resistor.

1.31 Use Ohm’s law and Kirchhoff’s laws on the circuit given in Fig. 1.217, 

find Vin, Vs and power provided by the dependent source.

Ω

Ω Ω

Fig. 1.217
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1.32 Use Ohm’s law and Kirchhoff’s laws on the circuit given in Fig. 1.218, 

find all the voltages and currents.

Fig. 1.218

1.33 Find the power absorbed by each element and show that the algebraic sum 

of powers is zero in the circuit shown in Fig. 1.219.

Fig. 1.219

1.34 Find the power absorbed by each element in the circuit shown in Fig. 

1.220.

Fig. 1.220

1.35 In the circuit shown in Fig. 1.221, use mesh analysis to find out the power 

delivered to the 4   resistor. To what voltage should the 100 V battery be 

changed so that no power is delivered to the 4   resistor?

Fig. 1.221
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1.36 Find the voltage between A and B of the circuit shown in Fig. 1.222 by 

mesh analysis.

Fig. 1.222

1.37 In the circuit shown in Fig. 1.223, use nodal analysis to find out the voltage 

across 40   and the power supplied by the 5 A source.

Fig. 1.223

1.38 In the network shown in Fig. 1.224, the resistance R is variable from zero 

to infinity. The current I through R can be expressed as I  a  bV, where 

V is the voltage across R as shown in the figure, and a and b are constants. 

Determine a and b.

Fig. 1.224
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1.39 Determine the currents in bridge circuit by using mesh analysis in Fig. 1.225.

Fig. 1.225

1.40 Use nodal analysis in the circuit shown 

in Fig. 1.226 and determine what value 

of V will cause V10  0.

1.41 For the circuit shown in Fig. 1.227, use 

mesh analysis to find the values of all 

mesh currents.

i1= 5A i2

i4 i3

= 3A

= ? = 4A

i
0=

7A

Fig. 1.227

1.42 For the circuit shown in Fig. 1.228, use node analysis to find the current 

delivered by the 24 V source.

Fig. 1.228

1.43 Using mesh analysis, determine the voltage across the 10 k  resistor at 

terminals A and B of the circuit shown in Fig. 1.229.

Fig. 1.226
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Fig. 1.229

1.44 Determine the current I in the circuit by using loop analysis in Fig. 1.230.

Fig. 1.230

1.45 Write nodal equations for the circuit shown in Fig. 1.231, and find the 

power supplied by the 10 V source.

Fig. 1.231

1.46 Use nodal analysis to find V2 in the circuit shown in Fig. 1.232.

Fig. 1.232
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1.47 Use mesh analysis to find Vx in the circuit shown in Fig. 1.233.

Fig. 1.233

1.48 For the circuit shown in Fig. 1.234, find the value of V2 that will cause the 

voltage across 20    to be zero by using mesh analysis.

Fig. 1.234

Objective Type Questions

1.1 How many coulombs of charge do 50  1031 electrons possess?

(a) 80  1012 C (b) 50  1031 C

(c) 0.02  10–31 C (d) 1/80  1012 C

1.2 Determine the voltage of 100 J/25 C.

(a) 100 V (b) 25 V

(c) 4 V (d) 0.25 V

1.3 What is the voltage of a battery that uses 800 J of energy to move 40 C of 

charge through a resistor?

(a) 800 V (b) 40 V

(c) 25 V (d) 20 V

1.4 Determine the current if a 10 coulomb charge passes a point in 0.5 seconds.

(a) 10 A (b) 20 A

(c) 0.5 A (d) 2 A
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1.5 If a resistor has 5.5 V across it and 3 mA flowing through it, what is the 

power?

(a) 16.5 mW (b) 15 mW

(c) 1.83 mW (d) 16.5 W

1.6 Identify the passive element among the following.

(a) Voltage source (b) Current source

(c) Inductor (d) Transistor

1.7 If a resistor is to carry 1 A of current and handle 100 W of power, how many 

ohms must it be? Assume that voltage can be adjusted to any required value.

(a) 50  (b) 100  
(c) 1  (d) 10  

1.8 A 100   resistor is connected across the terminals of a 2.5 V battery. What 

is the power dissipation in the resistor?

(a) 25 W (b) 100 W

(c) 0.4 W (d) 6.25 W

1.9 Determine total inductance of a parallel combination of 100 mH, 50 mH 

and 10 mH.

(a) 7.69 mH (b) 160 mH

(c) 60 mH (d) 110 mH

1.10 How much energy is stored by a 100 mH inductance with a current of 1 A?

(a) 100 J (b) 1 J

(c) 0.05 J (d) 0.01 J

1.11 Five inductors are connected in series. The lowest value is 5  H. If the 

value of each inductor is twice that of the preceding one, and if the inductors 

are connected in order ascending values. What is the total inductance?

(a) 155  H (b) 155 H

(c) 155 mH (d) 25  H

1.12 Determine the charge when C  0.001  F and   1 KV.

(a) 0.001 C (b) 1  C

(c) 1 C (d) 0.001 C

1.13 If the voltage across a given capacitor is increased, does the amount of 

stored charge

(a) increase (b) decrease

(c) remain constant (d) is exactly doubled

1.14 A 1  F, a 2.2  F and a 0.05  F capacitors are connected in series. The 

total capacitance is less than

(a) 0.07 (b) 3.25

(c) 0.05 (d) 3.2

1.15 How much energy is stored by a 0.05  F capacitor with a voltage of 100 V?

(a) 0.025 J (b) 0.05 J

(c) 5 J (d) 100 J
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1.16 Which one of the following is an ideal voltage source?

(a) voltage independent of current

(b) current independent of voltage

(c) both (a) and (b)

(d) none of the above

1.17 The following voltage drops are measured across each of three resistors in 

series: 5.2 V, 8.5 V and 12.3 V. What is the value of the source voltage to 

which these resistors are connected?

(a) 8.2 V (b) 12.3 V (c) 5.2 V (d) 26 V

1.18 A certain series circuit has a 100  , a 270  , and a 330   resistor in series. 

If the 270   resistor is removed, the current

(a) increases (b) becomes zero

(c) decrease (d) remain constant

1.19 A series circuit consists of a 4.7 k , 5.6 k , 9 k  and 10 k  resistor. 

Which resistor has the most voltage across it?

(a) 4.7 k (b) 5.6 k  (c) 9 k (d) 10 k 

1.20 The total power in a series circuit is 10 W. There are five equal value 

resistors in the circuit. How much power does each resistor dissipate?

(a) 10 W (b) 5 W (c) 2 W (d) 1 W

1.21 When a 1.2 k  resistor, 100   resistor, 1 k  resistor and 50   resistor are 

in parallel, the total resistance is less than

(a) 100  (b) 50  (c) 1 k (d) 1.2 k 

1.22 If a 10 V battery is connected across the parallel resistors of 3  , 5  ,

10   and 20  , how much voltage is there across 5   resistor?

(a) 10 V (b) 3 V (c) 5 V (d) 20 V

1.23 If one of the resistors in a parallel circuit is removed, what happens to the 

total resistance?

(a) decreases (b) increases

(c) remain constant (d) exactly doubles

1.24 The power dissipation in each of three parallel branches is 1 W. What is 

the total power dissipation of the circuit?

(a) 1 W (b) 4 W

(c) 3 W (d) zero

1.25 In a four branch parallel circuit, 10 mA of current flows in each branch. If 

one of the branch opens, the current in each of the other branches

(a) increases (b) decreases

(c) remains unaffected (d) doubles

1.26 Four equal value resistors are connected in parallel. Five volts are applied 

across the parallel circuit, and 2.5 mA are measured from the source. What 

is the value of each resistor?
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(a) 4  (b) 8  
(c) 2.5  (d) 5  

1.27 Six light bulbs are connected in parallel across 110 V. Each bulb is related 

at 75 W. How much current flows through each bulb?

(a) 0.682 A (b) 0.7 A

(c) 75 A (d) 110 A

1.28 A 330   resistor is in series with the parallel combination of four 1 k 
resistors. A 100 V source is connected to the circuit. Which resistor has the 

most current through it.

(a) 330   resistor

(b) parallel combination of three 1 k  resistors

(c) parallel combination of two 1 k  resistors

(d) 1 k  resistor

1.29 The current i4 in the circuit shown in Fig. 1.235 is equal to

(a) 12 A (b)  12 A

(c) 4 A (d) None of the above

i1= 5A i2

i4 i3

= 3A

= ? = 4A

i
0=

7A

Fig. 1.235

1.30 The voltage V in Fig. 1.236 is equal to

(a) 3 V

(b)  3 V

(c) 5 V

(d) None of the above

i2

5 i22 Ω

3 Ω

4 V

V

5 V

4 V

–

Fig. 1.236
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1.31 The voltage V in Fig. 1.237 is always equal to

(a) 9 V

(b) 5 V

(c) 1 V

(d) None of the above

Fig. 1.237

1.32 The voltage V in Fig. 1.238 is

(a) 10 V (b) 15 V

(c) 5 V (d) None of the above

Fig. 1.238

1.33 Mesh analysis is based on

(a)  Kirchhoff’s current law (b)  Kirchhoff’s voltage law

(c) Both (d) None

1.34 If a network contains B branches, and N nodes, then the number of mesh 

current equations would be

(a) B   (N   1) (b) N 2 (B 2 1)

(c) B 2 N 2 1 (d) (B  N)   1

1.35 A network has 10 nodes and 17 branches. The number of different node 

pair voltages would be

(a) 7 (b) 9 (c) 45 (d) 10

1.36 A circuit consists of two resistances, R1 and R2, in parallel. The total 

current passing through the circuit is IT. The current passing through R1 is

(a)
I R

R R

T 1

1 2
+

(b)
I R R

R

T 1 2

1

+( )

(c)
I R

R R

T 2

1 2
+ (d)

I R R

R

T 1 2

2

+
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1.37 A network has seven nodes and five independent loops. The number of 

branches in the network is

(a) 13 (b) 12 (c) 11 (d) 10

1.38 The nodel method of circuit analysis is based on

(a) KVL and Ohm’s law (b) KCL and Omp’s law

(c) KCL and KVL (d) KCL, KVL and Omp’s law

1.39 The number of independent loops for a network with n nodes and b

branches is

(a) n   1 (b) b  n

(c) b n  1 (d)  independent of the number of 

nodes
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2.1

DEFINITIONS OF TERMS ASSOCIATED

WITH PERIODIC FUNCTIONS

2.1.1 Time Period, Angular Velocity and Frequency [JNTU Nov 2011]

Sinusoidal Alternating Quantities

Many a time, alternating voltages and currents are represented by a sinusoidal 
wave, or simply a sinusoid. It is a very common type of alternating current (ac) 
and alternating voltage. The sinusoidal wave is generally referred to as a sine 
wave. Basically an alternating voltage (current) waveform is defined as the 
voltage (current) that fluctuates with time periodically, with change in polarity 
and direction. In general, the sine wave is more useful than other waveforms, 
like pulse, sawtooth, square, etc. There are a number of reasons for this. One 
of the reasons is that if we take any second order system, the response of this 
system is a sinusoid. Secondly, any periodic waveform can be written in terms 
of sinusoidal function according to Fourier theorem. Another reason is that its 
derivatives and integrals are also sinusoids. A sinusoidal function is easy to 
analyse. Lastly, the sinusoidal function is easy to generate, and it is more useful 
in the power industry. The shape of a sinusoidal waveform is shown in Fig. 2.1.

The waveform may be either 
a current waveform, or a voltage 
waveform. As seen from the Fig. 
2.1, the wave changes its magnitude 
and direction with time. If we start 
at time t  0, the wave goes to a 
maximum value and returns to zero, 
and then decreases to a negative 
maximum value before returning to 
zero. The sine wave changes with 
time in an orderly manner. During 
the positive portion of voltage, the 

Fig. 2.1

or
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current flows in one direction; and during the negative portion of voltage, the 
current flows in the opposite direction. The complete positive and negative portion 
of the wave is one cycle of the sine wave. Time is designated by t. The time taken 
for any wave to complete one full cycle is called the period (T). In general, any 
periodic wave constitutes a number of such cycles. For example, one cycle of a 
sine wave repeats a number of times as shown in Fig. 2.2. Mathematically, it can 
be represented as f(t)  f (t  T ) for any t.

o
r

Fig. 2.2

The period can be measured in 
the following different ways (See 
Fig. 2.3).

1.  From zero crossing of one 
cycle to zero crossing of the 
next cycle.

2.  From positive peak of one 
cycle to positive peak of the 
next cycle, and

3.  From negative peak of one cycle to negative peak of the next cycle.

The frequency of a wave is defined as the number of cycles that a wave completes 
in one second.

In Fig. 2.4, the sine wave completes three cycles in one second. Frequency is 
measured in hertz. One hertz is equivalent to one cycle per second, 60 hertz is 
60 cycles per second and so on. In Fig. 2.4, the frequency denoted by f is 3 Hz, 
that is three cycles per second. The relation between time period and frequency 
is given by

f
T

=
1

A sine wave with a longer period consists of fewer cycles than one with a 
shorter period.

t (sec)

1 sec

V (volts)

Fig. 2.4

Fig. 2.3
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What is the period of sine wave shown in Fig. 2.5?

6 (sec)4 (sec)2 (sec) t (sec)

V (volts)

Fig. 2.5

Example 2.1

Solution From Fig. 2.5, it can be seen the sine wave takes two seconds to complete 

one period in each cycle

T  2s

The period of a sine wave is 20 milliseconds. What is the 

frequency?

Example 2.2

Solution

f
T

=

= =

1

1

20
50

ms
Hz

The frequency of a sine wave is 30 Hz. What is its period?Example 2.3

Solution

T
f

=

= =

=

1

1

30
0 03333. s

33.33 ms

Calculate the frequency for each of the following values of time 

period.

(a) 2 ms (b) 100 ms (c) 5 ms  (d) 5 s

Example 2.4

Solution The relation between frequency and period is given by

f
T

=
1

Hz

(a) Frequency f =
¥

=-
1

20 10
50

3
Hz

(b) Frequency f =
¥

=-
1

100 10
10

3
Hz
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(c) Frequency f =
¥

=-
1

5 10
200

6
kHz

(d) Frequency f = =
1

5
0 2. Hz

Calculate the period for each of the following values of 

frequency.

(a) 50 Hz (b) 100 kHz (c) 1 Hz  (d) 2 MHz

Example 2.5

Solution The relation between frequency and period is given by

f
T

=
1
Hz

(a) Time period T
f

= = =
1 1

50
0 02. s

(b) Time period T
f

= =
¥

=
1 1

100 10
10

3
 s

(c) Time period T
f

= = =
1 1

1
1s

(d) Time period T
f

= =
¥

=
1 1

2 10
0 5

6
.  s

A sine wave has a frequency of 50 kHz. How many cycles does 

it complete in 20 ms?

Example 2.6

Solution The frequency of sine wave is 50 kHz.

That means in 1 second, a sine wave goes through 50 103 cycles.

In 20 ms the number of cycles 20  10–3  50  103

 1 kHz

That means in 20 ms the sine wave goes through 103 cycles.

Angular Relation of a Sinusoidal Wave

A sine wave can be measured along the X-axis on a time base which is 

frequency-dependent. A sine wave can also be expressed in terms of an angular 

measurement. This angular measurement is expressed in degrees or radians. 

A radian is defined as the angular distance measured along the circumference of a 

circle which is equal to the radius of the circle. One radian is equal to 57.3°. In a 

360° revolution, there are 2  radians. The angular measurement of a sine wave is 

based on 360° or 2  radians for a complete cycle as shown in Figs 2.6(a) and (b).
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Fig. 2.6

A sine wave completes a half cycle in 180° or   radians; a quarter cycle in 90° 

or  /2 radians, and so on.

Phase of a Sinusoidal Wave

The phase of a sine wave is an angular measurement that specifies the position 

of the sine wave relative to a reference. The wave shown in Fig. 2.7 is taken as 

the reference wave.

When the sine wave is shifted left or right 

with reference to the wave shown in Fig. 2.7, 

there occurs a phase shift. Figure 2.8 shows 

the phase shifts of a sine wave.

In Fig. 2.8(a), the sine wave is shifted 

to the right by 90° ( /2 rad) shown by the 

dotted lines. There is a phase angle of 90° 

between A and B. Here the waveform B

is lagging behind waveform A by 90°. In 

other words, the sine wave A is leading the waveform B by 90°. In Fig. 2.8(b) the 

sine wave A is lagging behind the waveform B by 90°. In both cases, the phase 

difference is 90°.

Fig. 2.8

V
(volts)

V
(volts)

A

A

B

B

90°

– 90°

q (degrees)

q (degrees)

(a)

(b)

Fig. 2.7
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What are the phase angles between the two sine waves shown 

in Figs 2.9(a) and (b)?

Fig. 2.9

Example 2.7

Solution In Fig. 2.9(a), sine wave A is in phase with the reference wave; sine 

wave B is out of phase, which lags behind the reference wave by 45°. So we say 

that sine wave B lags behind sine wave A by 45°.

In Fig. 2.9(b), sine wave A leads the reference wave by 90°; sine wave B lags 

behind the reference wave by 30°. So the phase difference between A and B is 120°, 

which means that sine wave B lags behind sine wave A by 120°. In other words, 

sine wave A leads sine wave B by 120°.

Sine wave ‘A’ has a positive going zero crossing at 45 . Sine 

wave ‘B’ has a positive going zero crossing at 60 . Determine the phase angle 

between the signals. Which of the signal lags behind the other?

Example 2.8

Solution The two signals drawn are shown in 

Fig. 2.10.

From Fig. 2.10, the signal B lags behind 

signal A by 15 . In other words, signal A leads 

signal B by 15 .

One sine wave has a positive peak at 75 , and another has a 

positive peak at 100 . How much is each sine wave shifted in phase from the 0 

reference? What is the phase angle between them?

Example 2.9

Solution The two signals are drawn as shown 

in Fig. 2.11.

The signal A leads the reference signal by 15 .

The signal B lags behind the reference 

signal by 10 .

The phase angle between these two signals 

is 25 .

Fig. 2.11

Fig. 2.10
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The Mathematical Representation of Sinusoidal Quantity

A sine wave is graphically represented as shown in Fig. 2.12(a). The amplitude of 

a sine wave is represented on vertical axis. The angular measurement (in degrees 

or radians) is represented on horizontal axis. Amplitude A is the maximum value 

of the voltage or current on the Y-axis.

In general, the sine wave is represented by the equation

v(t)  V
m

sin  t

The above equation states that any point on the sine wave represented by an 

instantaneous value v(t) is equal to the maximum value times the sine of the 

angular frequency at that point. For example, if a certain sine wave voltage has 

peak value of 20 V, the instantaneous voltage at a point  /4 radians along the 

horizontal axis can be calculated as

v t V t
m

( ) sin

sin . .

=

= Ê
ËÁ

ˆ
¯̃

= ¥ =

v

p

20
4

20 0 707 14 14V

When a sine wave is shifted to the left of the reference wave by a certain 

angle  , as shown in Fig. 2.12(b), the general expression can be written as

v(t)  V
m

sin( t   )

When a sine wave is shifted to the right of the reference wave by a certain 

angle  , as shown in Fig. 2.12(c), the general expression is

v(t)  V
m

sin( t   )

Fig. 2.12
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Determine the instantaneous 

value at the 90° point on the X-axis for each 

sine wave shown in Fig. 2.13.

Example 2.10

Fig. 2.13

Solution From Fig. 2.13, the equation for the sine wave A

v(t)  10 sin  t

The value at  /2 in this wave is

v t( ) = =10 sin
2

10V
 

The equation for the sine wave B

v(t)  8 sin( t   /4)

At  t   /2

2.2 VOLTAGE AND CURRENT VALUES OF SINUSOIDAL WAVE

As the magnitude of the waveform is not constant, the waveform can be measured 

in different ways. These are instantaneous, peak, peak to peak, root mean square 

(rms) and average values.

2.2.1 Instantaneous Value

Consider the sine wave shown in Fig. 2.14. At any given time, it has some 

instantaneous value. This value is different at different points along the waveform.

In Fig. 2.14 during the positive cycle, the instantaneous values are positive 

and during the negative cycle, the instantaneous values are negative. In Fig. 2.14

shown at time 1 ms, the value is 4.2 V; 

the value is 10 V at 2.5 ms, –2 V at 6 ms 

and –10 V at 7.5 and so on.

2.2.2 Peak Value

The peak value of the sine wave is the 

maximum value of the wave during 

positive half cycle, or maximum value Fig. 2.14
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of wave during negative half cycle. 

Since the value of these two are equal in 

magnitude, a sine wave is characterised 

by a single peak value. The peak value of 

the sine wave is shown in Fig. 2.15; here 

the peak value of the sine wave is 4 V.

2.2.3 Peak to Peak Value

The peak to peak value of a sine wave is 

the value from the positive to the negative 

peak as shown in Fig. 2.16. Here the peak 

to peak value is 8 V.

2.2.4 Average Value

[JNTU May/June 2006, Jan 2010, Nov 2011]

In general, the average value of any 

function v(t), with period T is given by

v
T

v t dt

T

av = Ú
1

0

( )

That means that the average value of a curve in the X-Y plane is the total area 

under the complete curve divided by the distance of the curve. The average value 

of a sine wave over one complete cycle is always zero. So the average value of a 

sine wave is defined over a half-cycle, and not a full cycle period.

The average value of the sine wave is the total area under the half-cycle curve 

divided by the distance of the curve.

The average value of the sine wave

v(t)  V
P

sin  t is given by

v V t d t

V t

V
V

P

P

P

P

av =

= -[ ]

= =

Ú
1

1

2
0 637

0

0

 
  

 
 

 

 

 

sin ( )

cos

.

The average value of a sine wave is shown by the dotted line in Fig. 2.17.

Find the average value of a 

cosine wave f(t) = cos  t shown in Fig. 2.18.

Example 2.11

Fig. 2.18

Fig. 2.17

t (ms)

V t( )
+ 4V

–4V

Fig. 2.16

t (ms)

V t
V

( )
+ 4Vp

–4V

Fig. 2.15
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Solution The average value of a cosine wave

v t V t

V V t d t

V t

P

P

P

( ) cos

cos ( )

( sin )

/

/

/
/

=

=

= -

Ú

 

 
  

 
 

 

 

 
 

av

1

1

2

3 2

2
3 2

==
-

- -[ ] = =
V V

V
P P

P
  

1 1
2

0 637.

2.2.5 Root Mean Square Value or Effective Value

[JNTU May/June 2006, Jan 2010, Nov 2011]

The root mean square (rms) value of a sine wave is a measure of the heating 

effect of the wave. When a resistor is connected across a dc voltage source as 

shown in Fig. 2.19(a), a certain amount of heat is produced in the resistor in a 

given time. A similar resistor is connected across an ac voltage source for the 

same time as shown in Fig. 2.19(b). The value of the ac voltage is adjusted such 

that the same amount of heat is 

produced in the resistor as in 

the case of the dc source. This 

value is called the rms value.

That means the rms value of 

a sine wave is equal to the dc 

voltage that produces the same 

heating effect. In general, the rms value of any function with period T has an 

effective value given by

V
T

v t dt

T

rms = Ú
1 2

0

( )

Consider a function v(t)  V
P

sin  t

The rms value, V
T

V t d t

T
V

t
d t

V

P

T

P

P

rms =

=
-È

ÎÍ
˘
˚̇

=

Ú

Ú

1

1 1 2

2

2

0

2

0

2

( sin ) ( )

cos
( )

  

 
 

 

22
0 707= . V

P

If the function consists of a number of sinusoidal terms, that is

v t V V t V t V t V t
c c s s

( ) ( cos cos ) ( sin sin )= + + + ◊ ◊ ◊ + + + ◊ ◊ ◊0 1 2 1 22 2    

+

–
V R Rv t( )

(a) (b)

Fig. 2.19
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The rms, or effective value is given by

V V V V V V
c c s srms = + + + ◊ ◊ ◊ + + + ◊ ◊ ◊0

2
1
2

2
2

1
2

2
21

2

1

2
( ) ( )

A wire is carrying a direct current of 20 A and a sinusoidal 

alternating current of peak value 20 A. Find the rms value of the resultant current 

in the wire.

Example 2.12

Solution The rms value of the combined wave

= +

= + = =

20
20

2

400 200 600 24 5

2
2

. A

Find the rms value of the voltage wave whose equation 

v(t) 10 200 sin (wt  30 )  100 cos 3 wt   50 sin (5wt 60 ).

Example 2.13

Solution

Vrms = + + +

= + + +

=

10
200

2

100

2

50

2

100 20000 5000 1250

162 32

2
2 2 2( ) ( ) ( )

. 77V

Find rms and average value of the following waveform.

Fig. 2.20

Example 2.14

Solution

The rms value,  V V d
mrms = Ú

1

2

2

0

2

 
  

 

sin
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=
-

Ú
V

d
m

2

0
2

1 2

2 

 
 

 
( cos )

= -È
ÎÍ

˘
˚̇

=

V

V

m

m

2

0
4

2

2

2

 
 

 
 

sin

Average value V V d
V

m

m

av = = -Ú
1

2 2
0

2

0
2

 
  

 
 

 
 sin [ cos ] =

V
m

 

For the trapezoidal waveform shown in the Fig. 2.21, determine

average value. [JNTU Jan 2010]

Fig. 2.21

Example 2.15

Solution

V
T

v t
T

V t

T
V V

V

T
t

m

TT

m m

m

av = =
◊È

Î
Í
Í

+ ◊ + - -ÚÚ
1 1 20

3

20

3

7

0

3 20

0

( )

/

dt dt dt
TT

V
V

T

T

T

T

m

T

T

m

20

20

7 20

13 20

3 20

7 20

13 20

17 20

Ê
ËÁ

ˆ
¯̃

- +

ÚÚ

Ú

dt

dt

/

/

/

/

/

/

33
17 20

T
t T

T

T

( )

/

-
˘

˚
˙
˙

Ú dt

=
¥ ¥ ¥

Ê

ËÁ
ˆ

¯̃
+ ¥Ê

ËÁ
ˆ
¯̃

+ ¥Ê
ËÁ

ˆ
¯̃

-
1 20 9

3 2 20 20

4

20

10

3

6

20

2

T

V T

T
V

T V Tm

m

m
220

3 2

13

20

7

20

4

20

20

30

2
V

T

T T

V
T V

m

m

m

¥
Ê
ËÁ

ˆ
¯̃

- Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

- ¥Ê
ËÁ

ˆ
¯̃

- ¥
33

20

20

3 2

17

20

20

3 2

2
2

2

T V

T
T

T

V T

T T

m

m

Ê
ËÁ

ˆ
¯̃

+
¥

- Ê
ËÁ

ˆ
¯̃

Ê

Ë
Á

ˆ

¯
˜

˘

˚
˙
˙

=
¥ ¥

[[ . . ]0 0225 0 0225 0- =
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2.2.6 Peak Factor [JNTU Nov 2011]

The peak factor of any waveform is defined as the ratio of the peak value of the 

wave to the rms value of the wave.

Peak factor
rms

=
V

V

P

Peak factor of the sinusoidal waveform = = =
V

V

P

P
/

.
2

2 1 414

2.2.7 Form Factor [JNTU May/June 2006, Nov 2011]

Form factor of a waveform is defined as the ratio of rms value to the average 

value of the wave.

Form factor =
V

V

rms

av

Form factor of a sinusoidal waveform can be found from the above relation.

For the sinusoidal wave, the form factor = =
V

V

P

P

/

.
.

2

0 637
1 11

Find the 

form factor for the following 

waveform.

Example 2.16

Fig. 2.22

Solution

Form factor =
rms value

Average value

Average value of the triangular waveform 0 to 2 sec

Vav  = 

= 

1

2
2

1

2 2 2
2

0

1

1

2

2

0

1
2

1

2

V t dt V t dt

V
t

V
t

V

. ( )+ - -
È

Î
Í
Í

˘

˚
˙
˙

+ - +

Ú Ú

..t

V
V V

V

1

2

1

2 2

3

2
2

2

È

Î

Í
Í

˘

˚

˙
˙

- +È
ÎÍ

˘
˚̇

== 

rms value (Vrms) = + -
È

Î
Í
Í

˘

˚
˙
˙

Ú Ú
1

2
22 2

0

1
2 2

1

2
1 2

V t dt V t dt( )

/
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= 

= 

1

2 3 3
4 4

2

1

2

2
3

0

1

2
3

2

1

2
2

2

1

2
1 2

V
t

V
t

V t V
t

+ + -
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î

Í
Í

˘

˚

˙
˙

/

VV V
V

V V

2 2
2

1 2

2 2

3

7

3
2

1

2

8 6

3

- -
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î
Í
Í

˘

˚
˙
˙

-Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î

/

= ÍÍ
Í

˘

˚
˙
˙

=
1 2

3

/

V

Form factor = V V/ / / .3 2
2

3
1 155= =

A sinusoidal current wave is given by i 50 sin l00  t. Determine

(a) The greatest rate of change of current.

(b) Derive average and rms values of current.

(c)  The time interval between a maximum value and the next zero value of 

current. [JNTU Jan 2010]

Example 2.17

Solution (a) i  50 sin 100  t

⬖ sin  t ⬖   2 f

⬖ 2 f  100  

f = =
100

2
50

 

 
Hz

\ = ¥ =
di

dt
50 100 100 5000 100    cos cost t

\ Ê
ËÁ

ˆ
¯̃

=
di

dt
max

5000 

(b) Average

I
Im

av
A= =

¥
=

2 2 50

3 142
31 826

 .
.

rms I
Im= = =
2

50

2
35 35. A

(c) Time interval

t
f

= = = =
1 1

50
0 023 20. ms

⬖ Time interval fi
20

4
5= ms
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A sine wave has a peak value of 25 V. Determine the following 

values.

(a) rms (b) peak to peak  (c) average

Example 2.18

Solution (a) rms value of the sine wave

Vrms  0.707 V
P
 0.707  25  17.68 V

(b) peak to peak value of the sine wave V
PP
 2V

P

V
PP
 2  25  50 V

(c) average value of the sine wave

Vav  0.637 V
P
 (0.637)25  15.93 V

A sine wave has a peak value of 12 V. Determine the following 

values.

(a) rms (b) average (c) crest factor (d) form factor

Example 2.19

Solution (a) rms value of the given sine wave

 (0.707)12 8.48 V

(b) average value of the sine wave (0.637)12 7.64 V

(c) crest factor of the sine wave =

= =

Peak value

rms value

12

8 48
1 415

.
.

(d) Form factor = = =
rms value

average value

8 48

7 64
1 11

.

.
.

Find the form factor of the half-wave rectified sine wave shown 

in Fig. 2.23.

Fig. 2.23

Example 2.20

Solution v  V
m

sin  t,  for 0   t   

    0,   for    t  2 

the period is 2 .
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V V t d t d t
mav = +

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
Ú Ú

1

2
0

0

2

 
   

 

 

 

sin ( ) ( )

Average value V
m

=0 318.

  

Vrms =
12

22

1

4

1

2

2

0

2

 
  

 

( sin ) ( )V t d t

V

V V

m

m

m

Ú

=

=rms

Form factor
0 5

0 318

.

.

V

V

V

V

m

m

= = =rms

av

11 572.

Find the average 

and effective values of the saw tooth 

waveform shown in Fig. 2.24.

Example 2.21

Fig. 2.24

Solution From Fig. 2.24 shown, the period is T.

Effective value

V
T

V

T
t dt

T

V

T
t dt

V

T

T V

V
T

v dt

T

V

m

T

m

T

m m

T

m

av

rms

=

=

= =

=

=

Ú

Ú

Ú

1

1

2 2

1

1

0

0

2

2

2

0

TT
t dt

V

T

m

È
ÎÍ

˘
˚̇

=

Ú
0

2

3
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Find the average and 

rms value of the full wave rectified sine 

wave shown in Fig. 2.25.

Example 2.22

Fig. 2.25

Solution Average value V t d tav =

=

Ú
1

5

3 185

0
 

  sin ( )

.

 

Effective value or rms value =

= =

Ú
1

5

25

2
3 54

2

0
 

 

( sin ) ( )

.

  t d t

The full wave rectified 

sine wave shown in Fig. 2.26 has a 

delay angle of 60 . Calculate Vav and 

Vrms.

Example 2.23

Fig. 2.26

Solution Average value V t d t

t d t

V t

av

av

o

=

=

= -

Ú

Ú

1
10

1
10

10

0

60

 
  

 
  

 
 

 

 

sin ( ) ( )

sin ( )

( cos )660 4 78 = .

Effective value V t d t

t
d t

rms
o

o

=

=
-Ê

ËÁ
ˆ
¯̃

=

Ú

Ú

1
10

100 1 2

2

2

60

60

 
  

 

 
 

 

 

( sin ) ( )

cos
( )

66 33.
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Find the form factor of 

the square wave as shown in Fig. 2.27.

Example 2.24

Fig. 2.27

Solution v  20 for 0 t  0.01

 0 for 0.01  t  0.03

The period is 0.03 sec.

Average value V dtav =

= =

Ú
1

0 03
20

20 0 01

0 03
6 66

0

0 01

.

( . )

.
.

.

Effective value V dteff = = =Ú
1

0 03
20 66 6 0 8162

0

0 01

.
( ) . .

.

Form factor = =
0 816

6 66
0 123

.

.
.

Find the form factor of the following waveform shown in Fig. 2.28.

[JNTU April/May 2007]

 Fig. 2.28

Example 2.25

Solution From 0 to  /3, V
V
t=

3 1

 
From  /3 to 2 /3 V  V1

From 2 /3 to  

V V
V
t= -3

3
1

1

 

Form factor  
V

V

rms

avgFig. 2.29
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V
T
V t dt

V
t dt V dt V

V
t dt

T

avg =

= + + -

Ú

Ú Ú

1

1 3
3

3

0

1

0

3

1

3

2 3

1
1

2

( )

/

/

/

   

 

 

 

 //3

1
1 1

1 3

3

1

2

2

3 3
3

2

3

 

  

   
 

 

Ú
È

Î
Í
Í

˘

˚
˙
˙

= ◊Ê
ËÁ

ˆ
¯̃

+ -Ê
ËÁ

ˆ
¯̃

+ -Ê
ËÁ

V
V V

ˆ̂
¯̃

- ◊ -
È

Î
Í

˘

˚
˙

È

Î
Í
Í

˘

˚
˙
˙

= ◊ + + ◊ -È
Î

3 1

2

4

9

1

6 3

5

6

1 2
2

1 1
1 1

V

V V
V V

 
 

 

 
   ÍÍ

˘
˚̇

=

= Ú

2

3

1

1

2

0

V

V
T

V t dt
T

rms [ ( )]

= Ê
ËÁ

ˆ
¯̃

+ + -Ê
ËÁ

ˆ
¯̃Ú Ú

1 3
3

31

0

3 2

1
2

3

2 3

1
1

2

2
   

 

 

 
V
t dt V dt V

V
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/

/

/

( )

  

 

 
    

/ 3

1
2

2

2
1
2

1
2 1

2

2

2 1

2

1 9
9

9 18

Ú
È

Î

Í
Í

˘

˚
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˙

= + + + -
V
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V

t
V
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///

//
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2 3

0

3

1
2

2
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1
21 9 1

3 3

2

 

 

  

  

  

ÚÚÚ
È

Î
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˘

˚
˙
˙

= ◊ ◊Ê
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ˆ
¯̃

+Sqrt
V

V
33 3

9
2

3

9 1

3

8
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1
2

1
2

2

3
3
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ˆ
¯̃
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ˆ
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È

Î
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Ï
Ì
Ô

ÓÔ
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V

V ˆ̂
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Ê

ËÁ
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˙
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Ô
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2

4

9

1 2
2
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9

3
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9 5

9

1
2

2
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1
2

1
2 1

2

2

3
1
2 2

  

   

 

 

 

 V
V V

V V

ÎÎ
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Í

˘

˚
˙
˙

= + + + -È
ÎÍ

˘
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= =

1

9 3
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9
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1
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V V11

Form factor
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rms

avg
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Find the average 

and effective values of a full wave 

rectified sine wave shown in 

Fig. 2.30.

[JNTU May/June 2002]

Example 2.26

Fig. 2.30

π π π

Solution Average value

V
T
V d
m

T

avg = Ú
1

0

sin  V d
m

= Ú
1

0

sin
 

  

 

V

V

m

m

= -

=
2

0[ cos ]
 

 

 

 

Effective value

V
T
V d
m

T

eff = Ú
1 2 2

0

sin   V d
m

= Ú
1 2 2

0

sin
 

  

 

V d
m

= Ú
2 2

0

2

sin
 

  

 

V
m

= ¥
2

 

11

2 2
¥
 

2
=
V
m

Determine the RMS value of a half-wave rectified sinusoidal 

voltage of peak value, Vm. [JNTU May/June 2002]

0 p 2p 3p

Fig. 2.31

Example 2.27
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Solution

RMS value =

=

= -Ê

Ú

Ú

1

2

2

2 2

2

4

2 2

0

2
2

0

2

 
  

 
  

 

  

 

 

V d

V
d

V

m

m

m

sin

sin

sin

ËËÁ
ˆ
¯̃

= ¥ =

\ =

0

2

2 2 2

2

 

 

 V V

V
V

m m

m

rms

Find RMS and average value of the following waveform.

[JNTU May/June 2004]

Fig. 2.32

Example 2.28

Solution

RMS value V V d

V
d

V

m

m

m

rms =

=
-

= -È
Î

Ú

Ú

1

2

2

1 2

2

4

2

2

2

0

2

2

0

2

 
  

 

 
 

 
 

 

 

 

sin

( cos )

sin
ÍÍ

˘
˚̇

=

0

2

 

V
m
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Average value, V V d

V V

m

m m

ave =

= -[ ] =

Ú
1

2

2

0

2

0

2

 
  

 
 

 

 

 

sin

cos

Derive expression for rms and average value of a sinusoidal 

alternating quantity. [JNTU May /June 2008]

Example 2.29

Solution Average value of a sine wave:

The average value of a curve in the 

X Y plane is the total area under the 

complete curve divided by the distance 

of the curve. The average value of a 

sine wave over one complete cycle is 

always zero. So the average value of a 

sine wave is defined over a half-cycle, 

and not a full-cycle period.

The average value of sine wave

V(t)  VP sin  t

V V t d t V t
V

VP P

p

Pav = = - = =Ú
1 1 2

0 637

0

0
 

  
 

 
 

 
 sin ( ) [ cos ] .

RMS value of a sine wave:

The root mean square (rms) value of a sine wave is a measure of the heating 

effect of the wave.

RMS value of any waveform is determined by using

V
T

V t dt

T

rms = Ú
1 2

0

( ( ))

Let the function V(t) be VP sin  t.

= =

=
-

Ú Ú
1 1

2

1

2

1 2

2

0

2 2

0

2

2

T
V t d t V t d t

V
t

p

T

p

p

( sin ) ( ) sin ( )

cos
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1

2
1
2

2

4
0

2

0

2
2È

ÎÍ
˘
˚̇

= -È
ÎÍ

˘
˚̇

¥Ú d t t
t

Vp( ) ( )
sin

 
 

 
 

  

= -È
ÎÍ

˘
˚̇

= =

1

2

2

2
0

2
0 707

2

 

 
V

V
V

V

p

p

prms . .

Fig. 2.33
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Define

(i) frequency,

(ii) phase,

(iii) form factor, and

(iv) peak factor. [JNTU May/June 2008]

Example 2.30

Solution (i)  Frequency: The frequency of a wave is defined as the number of 

cycles that a wave completes in one second. The unit of frequency 

is hertz.

One hertz is equivalent to one cycle per second.

(ii)  Phase: The phase of a sine wave is an angular measurement that 

specifies the position of sine wave relative to reference.

  When the sine wave is shifted left or right with reference to wave 

shown in Fig. 2.34, there occurs a phase shift.

(iii)  Form Factor: Form factor of a wave is defined as the ratio of rms 

value to average value of the wave.

Form factor

For sine wave

=

= =

V

V

V

V

RMS

avg

p

p

2

0 637
1 11

.
.

(iv)  Peak Factor: The peak factor of any waveform is defined as the ratio 

of peak value of the wave to the rms value of the wave

Peak factor =
V

V

p

RMS

For sine wave

Peak factor = = =
V

V

p

p
2

2 1 414.

2.3 PHASE ANGLE AND PHASOR REPRESENTATION

A phasor diagram can be used to represent a sine wave in terms of its magnitude 

and angular position. Examples of phasor diagrams are shown in Fig. 2.35.

In Fig. 2.35(a), the length of the arrow represents the magnitude of the sine 

wave; angle   represents the angular position of the sine wave. In Fig. 2.35(b), the 

magnitude of the sine wave is one and the phase angle is 30°. In Fig. 2.35(c) and (d), 

the magnitudes are four and three, and phase angles are 135° and 225°, respectively. 

The position of a phasor at any instant can be expressed as a positive or negative angle. 

Positive angles are measured counterclockwise from 0°, whereas negative angles 

p/2

V

3p/2p 2p

wt (rad)

Fig. 2.34
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are measured clockwise from 0°. For a given positive angle  , the corresponding 

negative angle is   360°. This is shown in Fig. 2.36(a). In Fig. 2.36(b), the positive 

angle 135° of vector A can be represented by a negative angle 225°, (135° 360°).

Fig. 2.35

A phasor diagram can be used to represent the relation between two or more sine 

waves of the same frequency. For example, the sine waves shown in Fig. 2.37(a)

can be represented by the phasor diagram shown in Fig. 2.37(b).

In the above Figure, sine wave B lags behind sine wave A by 45°; sine wave C

leads sine wave A by 30°. The length of the phasors can be used to represent 

peak, rms, or average values.

Fig. 2.36

Fig. 2.37
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Draw the phasor 

diagram to represent the two sine 

waves shown in Fig. 2.38.

Example 2.31

Fig. 2.38

Solution The phasor diagram representing the sine 

waves is shown in Fig. 2.39. The length of the each 

phasor represents the peak value of the sine wave.

Explain the term, phase difference.Example 2.32

Solution The difference in phase between two waves is called phase difference. 

In the figure below the sine wave is shifted to the right by 90  shown by the dotted 

lines.

q

Fig. 2.40

There is a phase difference of 90  between A and B. The waveform B is lagging 

behind waveform A by 90  or in other words, wave A is leading the waveform B

by 90 .

2.3.1 j Notation

j is used in all electrical circuits to denote imaginary numbers. Alternate symbol 

for j is -1 , and is known as j factor or j operator.

Fig. 2.39
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Thus

- = - =
- = - =
- = - =
- = - =

1 1 1 1

2 1 2 2

4 1 4 2

5 1 5 5

( )( ) ( )

( )

( )

( )

j

j

j

j

Since j is defined as -1 , it follows that ( )( )j j j= = -( ) -( ) = -2 1 1 1

\ =( )( )j j j3 3 32 2

Since j2   1

( j3) ( j3)   9

(i.e.) the square root of  9 is j3

Therefore j3 is a square root of  9

The use of j factor provides a solution to an equation of the form x2    4

Thus

With

x

x

j x j

= - = -
= -( )
= - =

4 1 4

1 2

1 2

( )

,

The real number 9 when multiplied three times by j becomes  j9.

( j) ( j) ( j)  ( j)2 j  ( 1)j   j

Finally when real number 10 is multiplied four times by j, it becomes 10

j   j

j 2  ( j) ( j)   1

j 3  ( j2) ( j)  ( 1)j   j

j 4  ( j2) ( j)2  ( 1) ( 1)   1

Express the following imaginary numbers using the j factor.

(a) -13 (b) -9 (c) -29 (d) -49

Example 2.33

Solution

( ( )( )

( ) ( )

( ) ( )

( ) (

a)

b

c

d

- = - =
- = - =
- = - =
- =

13 1 13 13

9 1 9 3

29 1 29 29

49

j

j

j

-- =1 49 7)( ) j

2.3.2 Complex and Polar Forms

A complex number (a jb) can be represented by a point whose coordinates are (a, b). 

Thus, the complex number 3 j4 is located on the complex plane at a point having 

rectangular coordinates (3, 4).
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This method of representing complex numbers is known as the rectangular 

form. In ac analysis, impedances, currents and voltages are commonly represented 

by complex numbers that may be either in the rectangular form or in the polar 

form. In Fig. 2.41 the complex number in the polar form is represented. Here R is 

the magnitude of the complex number and f is the angle of the complex number. 

Thus, the polar form of the complex number is R⬔f. If the rectangular coordinates 

(a, b) are known, they can be converted into polar form. Similarly, if the polar 

coordinates (R, f) are known, they can be converted into rectangular form.

In Fig. 2.41, a and b are the horizontal and vertical components of the vector R,

respectively. From Fig. 2.41, R can be found as R a b= +2 2 .

Also from Fig. 2.41,

sin

cos

tan

tan

f

f

f

f

=

=

=

=

= +

-

b

R

a

R

b

a

b

a

R a b

1

2 2

Express 10 ⬔53.1° in rectangular form.Example 2.34

Solution a  jb  R (cos f j sin f)

 R  10; ⬔f ⬔53.1°

a  jb  R cos f jR sin f
 R cos f 10 cos 53.1°  6

 R sin f 10 sin 53.1°  8

a  jb  6  j8

Express 3 j4 in polar form.Example 2.35

Solution R cos f 3 (1)

R sin f 4 (2)

Squaring and adding the above equations, we get

R2  32  42

R = + =3 4 5
2 2

From (1) and (2), tan f 4/3

f = = ∞-
tan .

1 4

3
53 13

Hence the polar form is 5 ⬔53.13°

Fig. 2.41
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2.4
OPERATIONS WITH COMPLEX NUMBERS (ADDITION,

SUBTRACTION, MULTIPLICATION, DIVISION)

The basic operations such as addition, subtraction, multiplication and division 

can be performed using complex numbers.

Addition It is very easy to add two complex numbers in the rectangular 

form. The real parts of the two complex numbers are added and the imaginary 

parts of the two complex numbers are added. For example,

(3  j4)  (4  j5)  (3  4)  j(4  5)  7  j9

Subtraction Subtraction can also be performed by using the rectangular 

form. To subtract, the sign of the subtrahand is changed and the components are 

added. For example, subtract 5 j3 from 10  j6:

10  j6  5  j3  5  j3

Multiplication To multiply two complex numbers, it is easy to operate in polar 

form. Here we multiply the magnitudes of the two numbers and add the angles 

algebraically. For example, when we multiply 3 ⬔30° with 4 ⬔20°, it becomes (3) 

(4) ⬔30° 20° 12 ⬔50°.

Division To divide two complex numbers, it is easy to operate in polar form. 

Here we divide the magnitudes of the two numbers and subtract the angles. For 

example, the division of

9 50
9 50

3 15
3 50– – =

–
–

= – - –° by3 15°
°

°
° 15° = 3 35°.

2.5 PRINCIPLE OF DUALITY

In an electrical circuit itself there are pairs of terms which can be interchanged to 

get new circuits. Such pair of dual terms are given below.

Current — Voltage

Open — Short

L — C

R — G

Series — Parallel

Voltage source — Current source

KCL — KVL

Consider a network containing 

R—L—C elements connected in 

series, and excited by a voltage 

source as shown in Fig. 2.42.

The integrodifferential equation 

for the above network is

Ri L
di

dt C
idt+ + =Ú

1
VFig. 2.42
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Similarly, consider a network 

containing R—L—C elements 

connected in parallel and driven 

by a current source as shown in

Fig. 2.43.

The integrodifferential equation 

for the network in Fig. 2.43 is

i Gv C
dv

dt L
vdt= + + Ú

1

If we observe both the equations, the solutions of these two equations are the 

same. These two networks are called duals.

To draw the dual of any network, the following steps are to be followed.

1. In each loop of a network place a node; and place an extra node, called the 

reference node, outside the network.

2. Draw the lines connecting adjacent nodes passing through each element, 

and also to the reference node; by placing the dual of each element in the 

line passing through original elements.

For example, consider the network shown in Fig. 2.44.

Our first step is to place the nodes in each loop and a reference node outside 

the network.

Drawing the lines connecting the 

nodes passing through each element, 

and placing the dual of each element 

as shown in Fig. 2.45(a) we get a new 

circuit as shown in Fig. 2.45(b).

Fig. 2.45

Fig. 2.43

Fig. 2.44
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Draw the dual 

network for the given network 

shown in Fig. 2.46.

Example 2.36

Fig. 2.46

Solution Place nodes in each loop and one reference node outside the circuit. 

Joining the nodes through each element, and placing the dual of each element in the 

line, we get the dual circuit as shown in Fig. 2.47(a).

The dual circuit is redrawn as shown in Fig. 2.47(b).

Fig. 2.47(a)

Fig. 2.47(b)

What is duality? Explain the procedure for obtaining the dual of 

the given planar network shown in Fig. 2.48.

[JNTU May/June 2004]

Example 2.37
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Fig. 2.48

Solution Rule 1: If a voltage source in the original network produces a clock-

wise current in the mesh, the corresponding dual element is a current source 

whose direction is towards the node representing the corresponding mesh.

Rule 2: If a current 

source in the original 

network produces a 

current in the clockwise 

direction in the mesh, 

the voltage source in 

the dual network will 

have a polarity such that 

the node representing 

the corresponding mesh 

is positive.

Dual of the planar 

circuit given in Fig. 

2.49.

Draw the dual circuit for 

the given circuit shown in Fig. 2.50.

Example 2.38

Ω

Fig. 2.50

Fig. 2.49
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Solution Our first step is to place nodes in each loop, and a reference node outside 

the circuit.

Join the nodes with lines passing through each element and connect these lines 

with dual of each element as shown in Fig. 2.51(a).

The dual circuit of the given circuit is shown in Fig. 2.51(b).

Fig. 2.51

Draw the dual 

circuit of Fig. 2.52.

Example 2.39

Fig. 2.52

Solution Our first step is to mark nodes in each of the loop and a reference node 

outside the circuit.

Join the nodes with lines passing through each element and connect these lines 

with dual of each element as shown in Fig. 2.53(a).



AC Fundamentals and Network Topology 2.33

The dual circuit of given circuit is shown in Fig. 2.53(b).

Fig. 2.53

Draw the dual network for the following circuit. Shown in

Fig. 2.54. [JNTU June 2006]

Example 2.40

Solution

Fig. 2.54(a)
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Fig. 2.54(b)

Explain clearly what you understand by "Duality" and "Dual 

network". Illustrate the procedure for drawing the dual of a given network.

[JNTU June 2006]

Example 2.41

Solution Two circuits are duals, if the mesh equations that characterise one of them 

have the same mathematical form as the nodal equations that characterise other.

Then they are said to duals (OH) satisfy duality of property i.e., if each mesh equation 

of one circuit is numerically identical with the corresponding nodal equation of other.

Network that satisfy duality property are called "Dual networks."

Dual pairs:

Resistance (R) Æ Conductance (G )

Inductance (L) Æ Capacitance (C )

Voltage (V ) Æ Current (I )

Voltage Source Æ Current source

Node Æ Mesh

Series path Æ Parallel path

Open circuit Æ Short ckt 

Thevenin Æ Norton

Steps to construct a dual circuit

1. Place a node at the centre of each mesh of the given circuit. Place the reference 

node of the dual circuit outside the given circuit.

2. Draw dotted lines between the nodes such that each line crosses a network 

element by its dual.
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3. A voltage source that produces a positive (clockwise) mesh current has 

it dual or current source whose reference direction is from ground to 

non-reference node.

\ Two circuits are said to be dual if they are described by the same characterising 

equations with dual quantities interchanged.

Draw the dual network of circuit. [JNTU June 2009]Example 2.42

Solution

Fig. 2.55
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Draw the dual 

network for the given network as 

in Fig. 2.56.

Example 2.43

Fig. 2.56

20 V
3 6

10 H F

Solution

20 V
3W 6W

10 H F

20 A x H
10 F

Dual Network

Fig. 2.57

Explain the procedure for obtaining the dual of the given planar 

network shown below.

Fig. 2.58

Example 2.44



AC Fundamentals and Network Topology 2.37

Solution Rule 1:  If a voltage source in the original network produces a c.w current in 

the mesh, the corresponding dual element is a current source whose 

direction is towards node representing the corresponding mesh.

Rule 2:  If a current source in the original network produces a current in 

clockwise direction in the mesh, the voltage source in the dual 

network will have a polarity such that the node representing the 

corresponding mesh is positive.

V

1 2 3

Fig. 2.59

Dual of the planar circuit given in Fig. 2.59.

2.6
DEFINITIONS OF BRANCH, NODE, PLANAR

AND NON-PLANAR GRAPHS

A division of mathematics called topology or graph theory deals with graphs 

of networks and provides information that helps in the formulation of network 

equations. In circuit analysis, all the elements in a network must satisfy Kirchhoff’s 

laws, besides their own characteristics. Based on these laws, we can form a 

number of equations. These equations can be easily written by converting the 

network into a graph. Certain aspects of network behaviour are brought into better 

perspective if a graph of the network is drawn. If each element or a branch of a 

network is represented on a diagram by a line irrespective of the characteristics 

of the elements, we get a graph. Hence, network topology is network geometry.

A network is an interconnection of elements in various branches at different nodes 

as shown in Fig. 2.60. The corresponding graph is shown in Fig. 2.61(a).

The graphs shown in Figs 2.61(b) and (c) are also graphs of the network in 

Fig. 2.60.

It is interesting to note that the graphs shown in Figs 2.61(a), (b) and (c) 

may appear to be different but they are topologically equivalent. A branch is 

represented by a line segment connecting a pair of nodes in the graph of a 

network. A node is a terminal of a branch, which is represented by a point. Nodes 

are the end points of branches. All these graphs have identical relationships 

between branches and nodes.

The three graphs in Fig. 2.61 have six branches and four nodes. These 

graphs are also called undirected. If every branch of a graph has a direction as 

shown in Fig. 2.62, then the graph is called a directed graph.

[JNTU Nov 2011]
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Fig. 2.60 Fig. 2.61(a)

Fig. 2.61(b) Fig. 2.61(c)

A node and a branch are incident if the 

node is a terminal of the branch. Nodes can 

be incident to one or more elements. The 

number of branches incident at a node of a 

graph indicates the degree of the node. For 

example, in Fig. 2.62 the degree of node 1 is 

three. Similarly, the degree of node 2 is three. 

If each element of the connected graph is 

assigned a direction as shown in Fig. 2.62 it is 

then said to be oriented. A graph is connected 

if and only if there is a path between every pair 

of nodes. A path is said to exist between any 

two nodes, for example 1 and 4 of the graph in

Fig. 2.62, if it is possible to reach node 4 from node 1 by traversing along 

any of the branches of the graph. A graph can be drawn if there exists a path 

between any pair of nodes. A loop exists, if there is more than one path between 

two nodes.

Fig. 2.62
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Planar and Non-Planar Graphs

A graph is said to be planar if it can be 

drawn on a plane surface such that no 

two branches cross each other as shown 

in Fig 2.61. On the other hand in a non-

planar graph there will be branches which 

are not in the same plane as others, i.e., 

a non-planar graph cannot be drawn 

on a plane surface without a crossover. 

Figure 2.63 illustrates a non-planar graph.

2.7 TREE AND CO-TREE

A tree is a connected subgraph of a network which consists of all the nodes 

of the original graph but no closed paths. The graph of a network may have 

a number of trees. The number of nodes in a graph is equal to the number 

nodes in the tree. The number of branches in a tree 

is less than the number of branches in a graph. A 

graph is a tree if there is a unique path between 

any pair of nodes. Consider a graph with four 

branches and three nodes as shown in Fig. 2.64.

Five open-ended graphs based on Fig. 2.64 are 

represented by Figs 2.65(a) to (e). Since each of these 

open-ended graphs satisfies all the requirements of a 

tree, each graph in Fig. 2.65 is a tree corresponding 

to Fig. 2.64.

Fig. 2.65

[JNTU Nov 2011]

Fig. 2.63

Fig. 2.64
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In Fig. 2.65, there is no closed path or loop; the number of nodes n  3 is the 

same for the graph and its tree, whereas the number of branches in the tree is only 

two. In general, if a tree contains n nodes, then it has (n – 1) branches.

In forming a tree for a given graph, certain branches are removed or opened. The 

branches thus opened are called links or link branches. The links for Fig. 2.65(a)

for example are a and d and for Fig. 2.65(b) are b and c. The set of all links of 

a given tree is called the co-tree of the graph. Obviously, the branches a, d are a

co-tree for Fig. 2.65(a) and b, c are the co-tree. Similarly, for the tree in Fig. 2.65(b),

the branches b, c are the co-tree. Thus, the link branches and the tree branches 

combine to form the graph of the entire network.

For the given graph shown in Fig. 2.66 

draw the number of possible trees.

Example 2.45

Fig. 2.66

Solution The number of possible trees for Fig. 2.66 are 

represented by Figs 2.67(a)–(l).

Fig. 2.67

For the 

network shown in Fig. 2.68 

draw oriented graph and 

draw all possible trees.

[JNTU Jan 2010]

Example 2.46

Fig. 2.68

+

−

V1

V2

R1

R2

R3

R4

R5

R6

R7

R8
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Solution Short circuiting the voltage 

sources, we obtain the oriented graph 

as, we obtain the trees as given in 

Fig. 2.69.

Fig. 2.69

2.8 TWIGS AND LINKS

The branches of a tree are called its ‘twigs’. For a given graph, the complementary 

set of branches of the tree is called the co-tree of the graph. The branches of a 

co-tree are called links, i.e., those elements of the connected graph that are not 

included in the tree links and form a subgraph. For example, the set of branches 

(b, d, f ) represented by dotted lines in Fig. 2.72 form a co-tree of the graph in 

Fig. 2.70 with respect to the tree in Fig. 2.71.

+

-

V1

V2

R1

R2

R3

R4

R5

R6

R7

R8
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Fig. 2.71Fig. 2.70

The branches a, c and e are the twigs 

while the branches b, d and f are the links 

of this tree. It can be seen that for a network 

with b branches and n nodes, the number of 

twigs for a selected tree is (n – 1) and the 

number of links I with respect to this tree 

is (b – n  1). The number of twigs (n – 1)

is known as the tree value of the graph.

It is also called the rank of the tree. If a 

link is added to the tree, the resulting graph 

contains one closed path, called a loop. 

The addition of each subsequent link forms one or more additional loops. Loops 

which contain only one link are independent and are called basic loops.

2.9 INCIDENCE MATRIX (A)

The incidence of elements to nodes in a connected graph is shown by the element 
node incidence matrix (A). Arrows indicated in the branches of a graph result in an 
oriented or a directed graph. These arrows are the indication for the current flow or 
voltage rise in the network. It can be easily identified from an oriented graph regarding 
the incidence of branches to nodes. It is possible to have an analytical description of 
an oriented-graph in a matrix form. The dimensions of the matrix A is n b where n
is the number of nodes and b is number of branches. For a graph having n nodes and 
b branches, the complete incidence matrix A is a rectangular matrix of order n b.

In matrix A with n rows and b columns an entry aij in the ith row and jth column 
has the following values.
aij  1, if the jth branch is incident to and oriented away from the ith node.
aij   1, if the jth branch is incident to and oriented towards the ith node. (2.1)
aij  0, if the jth branch is not incident to the ith node.

Figure 2.71 shows a directed graph.
Following the above convention its incidence matrix A is given by

nodes branchesÆ
Ø

= - - +
-

- - -

a b c d e f

A

1

2

3

4

1 0 1 0 0 1

1 1 0 1 0 0

0 1 0 0 1 1

0 0 1 1 1 0

ÈÈ

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Fig. 2.72
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The entries in the first row indicates that three 

branches a, c and f are incident to node 1 and they are 

oriented away from node 1 and therefore the entries 

a11; a13 and a16 are  1. Other entries in the 1st row are 

zero as they are not connected to node 1. Likewise, we 

can complete the incidence matrix for the remaining 

nodes 2, 3 and 4.

Construct the incident 

matrix for the graph shown in Fig. 2.74.

Example 2.47

Fig. 2.74

Solution The dimensions of incidence matrix ‘A’ is n  b where n is number of 

nodes and b is number of branches, hence the dimensions of the incidence matrix 

for the above graph is 3 4.

Incidence matrix

n — nodes

b — branches

n

b
1 2 3 4

A  
1 1 0  1  1

2  1 1 0 0

3 0  1 1 1

The incidence matrix is given by

A =
- -

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 1 1

1 1 0 0

0 1 1 1

Fig. 2.73
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2.9.1 Properties of Incidence Matrix (A) [JNTU Nov 2011]

Following properties are some of the simple conclusions from incidence matrix A.

1. Each column representing a branch contains two non-zero entries 1

and –1; the rest being zero. The unit entries in a column identify the nodes 

of the branch between which it is connected.

2. The unit entries in a row identify the branches incident at a node. Their 

number is called the degree of the node.

3. A degree of 1 for a row means that there is one branch incident at the 

node. This is commonly possible in a tree.

4. If the degree of a node is two, then it indicates that two branches are 

incident at the node and these are in series.

5. Columns of A with unit entries in two identical rows correspond to two 

branches with same end nodes and hence they are in parallel.

6. Given the incidence matrix A the corresponding graph can be easily 

constructed since A is a complete mathematical replica of the graph.

7. If one row of A is deleted the resulting (n – 1)  b matrix is called the 

reduced incidence matrix A1. Given A1, A is easily obtained by using the 

first property.

It is possible to find the exact number of trees that can be generated from 

a given graph if the reduced incidence matrix A1 is known and the number 

of possible trees is given by Det (A1A1
T) where A1

T is the transpose of the 

matrix A1.

Draw the graph corresponding to the given incidence matrix.

A =

 

  

    

 

1 0 0 0 +1 0 +1 0

0 1 0 0 0 0 1 +1

0 0 1 1 0 1 0 1

0 0 0 0 1 +1 0 0

+1 +1 +1 +1 0 0 0 0

ÈÈ

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

Example 2.48

Solution There are five rows and eight columns which indicate that there are five 

nodes and eight branches. Let us number the columns from a to h and rows as

1 to 5.

a b c d e f g h

A =

-
- -

- - - -
-

1

2

3

4

5

1 0 0 0 1 0 1 0

0 1 0 0 0 0 1 1

0 0 1 1 0 1 0 1

0 0 0 0 1 1 0 0

1 1 1 11 0 0 0 0

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
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Mark the nodes corresponding to the rows 1, 2, 3, 4 and 5 as dots as shown in 

Fig. 2.75(a). Examine each column of A and connect the nodes (unit entries) by a 

branch; label it after marking an arrow.

For example, examine the first column of A. There are two unit entries one in 

the first row and 2nd in the last row, hence connect branch a between node 1 and 5.

The entry of A11 is –ve and that of A51 is  ve. Hence the orientation of the branch 

is away from node 5 and towards node 1 as per the convention. Proceeding in this 

manner we can complete the entire graph as shown in Fig. 2.75(b).

From the incidence matrix A, it can be verified that branches c and d are in 

parallel (property 5) and branches e and f are in series (property 4).

Fig. 2.75(a) Fig. 2.75(b)

Obtain the incidence matrix A from the following reduced 

incidence matrix A
1
 and draw its graph.

A
1

1 1 0 0 0 0 0

0 1 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 1 0

0 0 1 0 0 1 1

ÈÎ ˘̊ =

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

 

 

 

 

  

˙̇
˙
˙
˙
˙
˙

Example 2.49

Solution There are five rows and seven columns in the given reduced incidence 

matrix [A1]. Therefore, the number of rows in the complete incidence matrix A

will be 5  1  6. There will be six nodes and seven branches in the graph. The 

dimensions of matrix A is 6  7. The last row in A, i.e., 6th row for the matrix A

can be obtained by using the first property of the incidence matrix. It is seen that 

the first column of [A1] has a single non-zero element –1. Hence, the first element 

in the 6th row will be  1 (–1  1  0). Second column of A1 has two non-zero 

elements 1 and –1, hence the 2nd element in the 6th row will be 0. Proceeding in 

this manner we can obtain the 6th row. The complete incidence matrix can therefore 

be written as
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[ ]A

a

b

c

d

e

f

=

-
-

-
-

- -
-

1 1 0 0 0 0 0

0 1 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 1 0

0 0 1 0 0 1 1

1 0 0 0 0 0 11

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

We have seen that any one of the rows of 

a complete incidence matrix can be obtained 

from the remaining rows. Thus it is possible 

to delete any one row from A without 

loosing any information in A1. Now the 

oriented graph can be constructed from the 

matrix A. The nodes may be placed arbitrarily. 

The number of nodes to be marked will be 

six. Taking node 6 as reference node the 

graph is drawn as shown in Fig. 2.76.

2.9.2 Incidence Matrix and KCL [JNTU June 2009, Nov 2011]

Kirchhoff’s current law (KCL) of a graph can be expressed in terms of the 

reduced incidence matrix as A1 I  0.

A1, I is the matrix representation of KCL, where I represents branch current 

vectors I1, I2 º I6.
Consider the graph shown in Fig. 2.77. It has four nodes a, b, c and d.

Let node d be taken as the reference node. The positive reference direction 

of the branch currents corresponds to the 

orientation of the graph branches. Let the 

branch currents be i1, i2, º i6. Applying 

KCL at nodes a, b and c.

– i1  i4  0

– i2 – i4  i5  0

– i3  i5 – i6  0

These equations can be written in the 

matrix form as follows:

-
- -

- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

1 0 0 1 0 0

0 1 0 1 1 0

0 0 1 0 1 1

1

2

3

4

5

6

I

I

I

I

I

I

˙̇
˙
˙
˙
˙
˙
˙
˙

=
È

Î
Í
Í

˘

˚
˙
˙

0

0

0

Fig. 2.76

Fig. 2.77
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A1 Ib  0 (2.2)

Here, Ib represents column matrix or a vector of branch currents.

I

i

i

i

b

b

=

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1

2

⯗

A1 is the reduced incidence matrix of a graph with n nodes and b
branches. And it is a (n – 1)  b matrix obtained from the complete 

incidence matrix of A deleting one of its rows. The node corresponding 

to the deleted row is called the reference node or datum node. It is to be 

noted that A1 Ib  0 gives a set of n – 1 linearly independent equations in 

branch currents I1, I2, º I6. Here n  4. Hence, there are three linearly 

independent equations.

For the 

network shown in Fig. 2.78 

obtain the incidence matrix 

and mesh equations. Obtain 

the current through 20  .

[JNTU Jan 2010]

Example 2.50

Fig. 2.78

10 Ω 10 Ω

20 Ω
20 V10 V

Solution

Ω Ω

Ω

The graph obtained

Fig. 2.79 Fig. 2.80

Incidence matrix is given as

nodes branches Æ
Ø

- -
-

È

Î
Í

˘

˚
˙

1 2 3

1

2

1 1 1

1 1 1
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Mesh equations are given as

10  30i1  20i2 fi 1  3i1  2i2
20  20i1  30i2 fi 2  2i1  3i2

⬖ i1   0.2 amp

⬖ i2  0.8 amp

⬖ Current through 20 V i1  i2  0.6 amp

2.10 BASIC TIE-SET MATRICES FOR PLANAR NETWORKS

For a given tree of a graph, addition of each link between any two nodes forms 

a loop called the fundamental loop. In a loop there exists a closed path and a 

circulating current, which is called the link current. The current in any branch of 

a graph can be found by using link currents.

The fundamental loop formed by one link has a unique path in the tree joining 

the two nodes of the link. This loop is also called f-loop or a tie-set.

Consider a connected graph shown in Fig. 2.81(a). It has four nodes and six 

branches. One of its trees is arbitrarily chosen and is shown in Fig. 2.81(b). The 

twigs of this tree are branches 4, 5 and 6. The links corresponding to this tree are 

branches 1, 2 and 3. Every link defines a fundamental loop of the network.

No. of nodes n  4

No. of branches b  6

No. of tree branches or twigs n – 1  3

No. of link branches I  b – (n – 1)  3

Fig. 2.81

Let i1, i2, … i6 be the branch currents with directions as shown in Fig. 2.81(a).

Let us add a link in its proper place to the tree as shown in 2.81(c). It is seen 

that a loop I1 is formed by the branches 1, 5 and 6. There is a formation of link 

current, let this current be I1. This current passes through the branches 1, 5 and 6.

By convention a fundamental loop is given the same orientation as its defining 

link, i.e., the link current I1 coincides with the branch current direction i1 in ab. A 

tie set can also be defined as the set of branches that forms a closed loop in which 

the link current flows. By adding the other link branches 2 and 3, we can form 

two more fundamental loops or f-loops with link currents I2 and I3 respectively 

as shown in Figs 2.81(d) and (e).
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Fig. 2.81

2.10.1 Tie-Set Matrix

Kirchhoff’s voltage law can be applied to the f-loops to get a set of linearly 

independent equations. Consider Fig. 2.82.

There are three fundamental loops 

I1, I2 and I3 corresponding to the link 

branches 1, 2 and 3 respectively. If V1,

V2, º V6 are the branch voltages the 

KVL equations for the three f-loops can 

be written as

V1  V5 – V6  0

V2  V4 – V5  0 (2.3)

V3 – V4  0

In order to apply KVL to each fundamental loop, we take the reference direction 

of the loop which coincides with the reference direction of the link defining the loop.

The above equation can be written in matrix form as

loop branches Æ ¥
Ø

-
-

-

È

Î

Í
Í
Í

˘

˚

˙

3 6

1 2 3 4 5 6

1 0 0 0 1 1

0 1 0 1 1 0

0 0 1 1 0 0

1

2

3

I

I

I
˙̇
˙

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

V

V

V

V

V

V

1

2

3

4

5

6

0

0

0

B Vb  0 (2.4)

Fig. 2.82
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where B is an I  b matrix called the tie-set matrix or fundamental loop matrix 

and Vb is a column vector of branch voltages.

The tie-set matrix B is written in a compact form as B [bij] (2.5)

The element bij of B is defined as

bij 1 when branch bj is in the f-loop Ii (loop current) and their reference 

directions coincide.

bij  1 when branch bj is in the f-loop Ii (loop current) and their reference 

directions are opposite.

bij 0 when branch bj is not in the f-loop Ii.

2.10.2 Tie-set Matrix and Branch Currents

It is possible to express branch currents as a linear combination of link current 

using matrix B.

If IB and II represents the branch current matrix and loop current matrix 

respectively and B is the tie-set matrix, then

[Ib]  [BT] [IL] (2.6)

where [BT] is the transpose of the matrix [B]. Equation (2.6) is known as link 

current transformation equation.

Consider the tie-set matrix of Fig. 2.80.

B=
-

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 0 0 1 1

0 1 0 1 1 0

0 0 1 1 0 0

B
T =

-
-

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

1 0 0

0 1 0

0 0 1

0 1 1

1 1 0

1 1 0

The branch current vector [Ib] is a column vector.

I

i

i

i

i

i

i

b[ ]=

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

1

2

3

4

5

6

The loop current vector [IL] is a column vector.

I

I

I

I
L[ ]=

È

Î

Í
Í

˘

˚

˙
˙

1

2

3
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Therefore the link current transformation equation is given by [Ib]   [BT ] [IL]

i

i

i

i

i

i

1

2

3

4

5

6

1 0 0

0 1 0

0 0 1

0 1 1

1 1 0

1 0 0

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

=
-

-
-

È

Î

Í
Í
Í
Í
Í
Í
ÍÍ
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

È

Î

Í
Í

˘

˚

˙
˙

I

I

I

1

2

3

The branch currents are

i1  I1

i2  I2

i3  I3

i4  I2 – I3

i5  I1 – I2

i6   –I1

For the electrical network shown in Fig. 2.83 draw its topological 

graph and write its incidence matrix, tie-set matrix, link current transformation 

equation and branch currents.

Fig. 2.83

Example 2.51

Solution Voltage source is short circuited, current source is open circuited, the 

points which are electrically at same potential are combined to form a single node. 

The graph is shown in Fig. 2.84(a).

Combining the simple nodes and arbitrarily selecting the branch current 

directions the oriented graph is shown in Fig. 2.84(b). The simplified consists of 

three nodes. Let them be x, y and z and five branches 1, 2, 3, 4 and 5. The complete 

incidence matrix is given by

nodes branches Æ
Ø

=
-

-
- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 2 3 4 5

1 0 1 0 1

1 1 0 1 0

0 1 1 1 1

A

x

y

z
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Fig. 2.84(a) Fig. 2.84(b)

Let us choose node z as the reference or datum node for writing the reduced 

incidence matrix A1 or we can obtain A1 by deleting the last row elements in A.

nodes branches Æ
Ø

=
-

-
È

Î
Í

˘

˚
˙

1 2 3 4 5

1 0 1 0 1

1 1 0 1 0
1
A

x

y

For writing the tie-set matrix, consider the tree in the graph in Fig. 2.84(b).

No. of nodes n  3

No. of branches  5

No. of tree branches or twigs n – 1  2

No. of link branches I  b – (n – 1)  5 – (3 – 1)  3

The tree shown in Fig. 2.84(c) consists of two 

branches 4 and 5 shown with solid lines and the 

link branches of the tree are 1, 2 and 3 shown with 

dashed lines. The tie-set matrix or fundamental 

loop matrix is given by

loop branches Æ
Ø

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 2 3 4 5

1 0 0 1 1

0 1 0 1 0

0 0 1 0 1

1

2

3

I

I

I

B =

To obtain the link current transformation equation and thereby branch currents 

the transpose of B should be calculated.

B
T =

-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

Fig. 2.84(c)
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The equation [I
b
]  [BT] [I

L
]

i

i

i

i

i

I

I

1

2

3

4

5

1

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=
-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

22

3
I

È

Î

Í
Í

˘

˚

˙
˙

The branch currents are given by

i1 I1

i2 I2

i3  I3

i4  I1  I2

i5  I1  I3

Write the tie-set matrix 

for the graph shown in Fig. 2.85, taking the 

tree consisting of branches 2, 4, 5.

Example 2.52

Fig. 2.85

Solution The twigs of the tree are 2, 4 and 5.

The links corresponding to the tree are 1, 3 

and 6 as shown in the Fig. 2.86(a).

Number of nodes n  4

Number of branches b   6

Number of tree branches of twigs

 n   1  3

Number of link branches b  (n   1)  3

For writing the tie-set matrix consider the three links one at a time. The tie-set 

matrix of fundamental loop matrix is given by

branches

loops

Æ

Ø=
-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 2 3 4 5 6

1 0 0 1 1 0

0 1 1 0 1 0

0 1 0 1 1 1

1

2

3

B

I

I

I

Fig. 2.86(a)
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The tie-sets are shown in the Figs 2.86(b), (c) and (d)

Fig. 2.86(b) Fig. 2.86(c) Fig. 2.86(d)

For the given graph and tree shown in Fig. 2.87, write the tie-set 

matrix and obtain the relationship between the branch currents and link currents.

Fig. 2.87

Example 2.53

Solution Number of link branches b(n  1)

where b is number of branches and n is number of nodes

⬖ Link branches 4  (3  1)  2

The link branches are a and b

Let the branch currents are i
a
, i

b
, i

c
 and i

d
.

The two links currents are i1 and i2 as shown in the Fig. 2.88.

d

b

d

a

c c

i1

i2

3

22

3

1 1

Fig. 2.88
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There are two fundamental loops corresponding to the link branches a and b.

If V
a
 and V

b
 are the branch voltages, the KVL equations for the two f-loops can be 

written as

V
a
 V

d
 V

c
 0

V
b
 V

d
 V

c
 0

The above equation can be written as

loop

currents branches

a b c d

Æ
Ø

-
- +

È

Î
Í

˘

˚
˙

È

Î

Í
i

i

V

V

V

V

a

b

c

d

1

2

1 0 1 1

0 1 1 1 ÍÍ
Í
Í

˘

˚

˙
˙
˙
˙

= 0

For the topological graph shown in 

Fig. 2.89, obtain the fundamental tie-set matrix choosing 

the tree containing the two elements 5 and 6.

[JNTU May/June 2004]

Fig. 2.89

Example 2.54

Solution The tree of the graph is shown with solid lines (5 and 6) and the links are 

shown with dashed lines (1, 2, 3, 4) as in Fig. 2.90.

For a given tree of a graph, addition of each link between any two nodes forms 

a loop called the fundamental loop. In a loop, there exists a closed path and a 

circulating current, which is called the link current.

The fundamental loop formed by one link at a time, 

has a unique path in the tree joining the two nodes of 

the link. This loop is also called f-loop or a tie-set. 

Every link defines a fundamental loop of the network.

No. of nodes in the graph n  3  (A, B, C )

No. of branches b  6  (1, 2, 3, 4, 5, 6)

No. of tree branches or twigs n  1  2  (5, 6)

No. of link branches, l  b   (n  1)  4(1, 2, 3, 4)
Fig. 2.90
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Tie-sets are formed as shown in Fig. 2.91.

5

5 5

5

6

6

6

6
1

3

4

2

1

3

4

2

(a) (b)

(c) (d)

Fig. 2.91

The KVL equations for the three f-loops can be written as

V1  V5  V6  0

V2  V5  0

V3  V6  0

V4  V5  V6  0

In order to apply KVL to each loop, we take the reference direction of the loop 

which coincides with the reference direction of the link defining the loop.

The above equations can be written as

[B] [V
b
]   0, where B is a 4  6 tie-set matrix.

loops branches Æ
Ø

-
-

È

Î

Í

1 2 3 4 5 6

1 0 0 0 1 1

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 1 1

1

2

3

4

I

I

I

I

ÍÍ
Í
Í

˘

˚

˙
˙
˙
˙

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

=

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙

V

V

V

V

V

V

1

2

3

4

5

6

0

0

0

0
˙̇
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Therefore, tie-set matrix, B =
-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1 0 0 0 1 1

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 1 1

Draw the oriented graph of the network shown in Fig. 2.92 and 

write the incidence matrix. [JNTU May 2007]

Fig. 2.92

Example 2.55

Solution Directions of currents are arbitrarily assumed as shown in the circuit of 

Fig. 2.93(a).

Ideal voltage sources and current sources do not appear in the graph of a linear 

network. Ideal voltage source is represented by short circuit and an ideal current source 

is replaced by an open circuit. The nodes that appear in the graph are numbered (1) (2) 

(3) (4) and (5); branches as a, b, c, d, e, f and g. The graph is as shown in the Fig. 2.93(b)

For a graph with n nodes and b branches, the order of the incidence matrix is 

(n  1)  b. Choose node (5) as reference (or datum) node for writing incidence 

matrix. The required incidence matrix is given by

a b c d e f g

A =

-
-

- -
-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1

2

3

4

1 1 0 0 0 0 0

0 1 1 0 0 0 1

0 0 1 1 0 1 0

0 0 0 1 1 0 0

υ

υ

Fig. 2.93(a)
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Fig. 2.93(b)

Draw the 

oriented graph of the network 

shown in Fig. 2.94.

[JNTU May 2007]

Example 2.56

Fig. 2.94

Solution The graph represented in figure itself represents the oriented graph in which 

(1)–(5) are nodes and 1–7 are branches.

Oriented graph

Fig. 2.95
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Write 

the Tie-set matrix for 

the graph shown in

Fig. 2.96, taking the tree 

consisting of branches.

[JNTU May 2006]

Example 2.57

Fig. 2.96

Solution

Fig. 2.97

1 2 3 4 5 6

(5, 3, 2) 0  1  1 0 1 0

(6, 3, 4) 0 0  1  1 0 1

(1, 2, 3, 4) 1  1  1  1 0 0

Basic tie-sets

e

For the network shown in Fig. 2.98 find the tie-set matrix loop 

current. [JNTU June 2008]

Fig. 2.98

Example 2.58
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Solution First replace the circuit with the network graph.

I1, I2, I3 are loop currents corresponding to the branches.

There are three f-loops. We can apply 

KVL for these f-loops.

V1  V5  V6  0

V2  V4  V5  0

V3  V4  0

The above equations can be written in 

matrix form as

loop branches Æ
Ø

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 2 3 4 5 6

1 0 0 0 1 1

0 1 0 1 1 0

0 0 1 1 0 0

1

2

3

I

I

I

VV

V

V

V

V

V

1

2

3

4

5

6

0

0

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

It is possible to express branch currents as a linear combination of link currents 

using matrix B.

Let I
b
 represents branch current matrix.

I
L
 represents loop current matrix.

I
b
 [BT] [I

L
]

B = -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 0 0 1 1

0 1 0 1 1 0

0 0 1 1 0 0

BT =
-

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

1 0 0

0 1 0

0 0 1

0 1 1

1 1 0

1 0 0

I

i

i

i

i

i

i

I

I

I

I

b L=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

2

3

4

5

6

1

2

3

Fig. 2.99
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i

i

i

i

i

i

1

2

3

4

5

6

1 0 0

0 1 0

0 0 1

0 1 1

1 1 0

1 0 0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

=
-

-

È

Î

Í
Í
Í
ÍÍ
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

I

I

I

I i I I

1

2

3

1 1 1 2Loop currents are , , II

I i

I i

3

2 2

3 3

=
=

Write the matrix 

loop equation for the network shown 

in Fig. 2.100 and determine the loop 

currents.

[JNTU June 2008]

Example 2.59

Fig. 2.100

Solution The graph for the following 

circuit is shown in Fig. 2.101.

This can be represented in matrix 

form as follows.

nodes          branches Æ
Ø

-
- -

-

a b c d e f

A

B

C

D

1 1 0 1 0 0

1 0 1 0 1 0

0 1 1 0 0 1

0 00 0 1 1 1- -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Consider the loop equations 

Va  Vd  Ve  0

Vb  Vf  Vd  0

 Ve  Vc  Vf  0

In order to find loop currents, we can apply mesh analysis.

Fig. 2.101
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Applying KVL to each loop,

10I1  4I2  4I3  4 (2.7)

10I2  4I1  4I3  0 (2.8)

10I3  4I1  4I2  0 (2.9)

From (2.9) we have

I3  4/10(I1  I2)

Substituting this in equation (2.8)

10 4
16

10
02 1 1 2I I I I- - + =( )

I2(10  1.6)  5.6I1  0

 5.6I1  8.4I2  0 (2.10)

The first equation reduces

8.4I1  5.6I2  4 (2.11)

By solving I1 and I2 (2.10) and (2.11)

we get

I1  0.857 A

I2  0.57 A

I3  4/10(I1  I2)  0.5708 A

For the resistive network 

as shown in Fig. 2.103 write a tie-set 

schedule and equilibrium equations, 

on current basis. Determine the branch 

currents and branch voltages.

[JNTU June 2009]

Example 2.60

Fig. 2.103

Solution In order to determine tie-set schedule, we must draw graph of given 

network, and to draw the graph, we have to replace all the resistors by line segments 

where as the voltage source must be replaced with short circuit.

Graph

There are 4 nodes, 6 branches.

Tree contains 4 nodes, 3 branches

d, e, f Æ Twigs

a, b, c Æ Links 

Fig. 2.102
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Fig. 2.104(a) Tie-sets

Fig. 2.104(b) Tie-set schedule

a b c d e f

A

B

C

1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 0 1

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Draw the oriented network graph from the incidence matrix 

given below. [JNTU June 2009]

Example 2.61

Nodes Branches

1 2 3 4 5 6

A  1 0 0 1  1 0

B 1  1 0 0 0  1

C 0 1  1 0 1 0

D 0 0 +1  1 0 +1
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Solution

Fig. 2.105

For the network shown 

in Fig. 2.106, draw the oriented graph, 

select a tree and obtain a tie-set matrix. 

Write down the KVL equations from the 

tie-set matrix. [JNTU June 2009]

Example 2.62

−

Fig. 2.106

Solution

Fig. 2.107

Replacing voltage source by a short circuit, we obtain the graph as

Fig. 2.108(a)
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The chosen tree is shown in 

Fig. 2.108(b).

The tie-set matrix is given as

Loop current  Branches

Ø
Æ

-

1 2 3 4 5 6 7 8 9

1 1 0 0

0 1

1

2

3

4

I

I

I

I

11 1

0 0 0 1

1 0 1 0

0 0 0 1 0

0 0 1 0 0

1 1 0 0 0

1 0 0 0 1

-
- - -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

The KVL equations are as follows:

v1  v2  v8  0
 v2  v3  v4  v7  0

 v4  v5  v6  0

 v1  v3  v5  v9  0

For the given graph shown in Fig. 2.109 write the tie-set schedule 

and obtain the relation between branch currents and link currents.

[JNTU June 2009]

Fig. 2.109(a) Fig. 2.109(b)

Example 2.63

Solution

Fig. 2.110

Fig. 2.108(b)
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Tie-set matrix

loop currents    branches

Ø
Æ

-
-

È

Î
Í

˘

˚
˙

a b c d

I

I

1

2

1 1 0 0

0 1 1 1

Relation between link current (IL) and branch current (ib)

I1  ia
   I1  I2  ib
   I2  ic

I2  id

Write the tie-set 

schedule and write tie-set matrices 

also. Write the relationship between the 

branch current and link currents of the 

given Fig. 2.111.

[JNTU Jan 2010]

Example 2.64

Fig. 2.111

Solution

Fig. 2.112(a)

Fig. 2.112(b)
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loop current branches

a b c d e f g h

I

I

I

I

Æ
Ø

-
-

1

2

3

4

1 0 0 0 1 0 0 1

0 0 1 0 0 1 1 0

1 0 0 11 1 0 1 0

0 1 1 0 1 0 1 0

-
-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Tie-set matrix

Relation between

branch and loop current

ja  I1  I3 jb  I4 jc  I2  I4, jd  I3

je   (I1  I3), ij  I2, jg  I3  (I2  I4), jh  I1

( ja, jb, jc… .are the branch currents)

2.11 BASIC CUT-SET FOR PLANAR NETWORKS

A cut-set is a minimal set of branches of a connected graph such that the removal 

of these branches causes the graph to be cut into exactly two parts. The important 

property of a cut-set is that by restoring anyone of the branches of the cut-set the 

graph should become connected. A cut-set consists of one and only one branch of 

the network tree, together with any links which must be cut to divide the network 

into two parts.

Consider the graph shown in Fig. 2.113(a).

Fig. 2.113
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If the branches 3, 5 and 8 are removed from the graph, we see that the 

connected graph of Fig. 2.113(a) is separated into two distinct parts, each of 

which is connected as shown in Fig. 2.113(b). One of the parts is just an isolated 

node. Now suppose the removed branch 3 is replaced, all others still removed.

Fig. 2.113(c) shows the resultant graph. The graph is now connected. Likewise 

replacing the removed branches 5 and 8 of the set {3, 5, 8} one at a time, all 

other ones remaining removed, we obtain the resulting graphs as shown in

Figs 2.113(d) and (e). The set formed by the branches 3, 5 and 8 is called the 

cut-set of the connected graph of Fig. 2.113(a).

2.11.1 Cut-set Orientation

A cut-set is oriented by arbitrarily selecting the direction. A cut-set divides a 

graph into two parts. In the graph shown in Fig. 2.114, the cut-set is {2, 3}. It 

is represented by a dashed line passing through branches 2 and 3. This cut-set 

separates the graph into two parts shown as part-1 and part-2. We may take 

the orientation either from part-1 to part-2 or 

from part-2 to part-1.

The orientation of some branches of the

cut-set may coincide with the orientation of 

the cut-set while some branches of the cut-

set may not coincide. Suppose we choose the 

orientation of the cut-set {2, 3} from part-1 

to part-2 as indicated in Fig. 2.114, then the 

orientation of branch 2 coincides with the cut-

set, whereas the orientation of the branch 3 is 

opposite.

2.11.2 Cut-set Matrix and KCL for Cut-sets

KCL is also applicable to a cut-set of a network. For any lumped electrical network, 

the algebraic sum of all the cut-set branch currents is equal to zero. While writing 

the KCL equation for a cut-set, we assign positive sign for the current in a branch 

if its direction coincides with the orientation of the cut-set and a negative sign to 

the current in a branch whose direction is 

opposite to the orientation of the cut-set. 

Consider the graph shown in Fig. 2.115. 

It has five branches and four nodes. The 

branches have been numbered 1 through 

5 and their orientations are also marked. 

The following six cut-sets are possible as 

shown in Fig. 2.116(a)–(f ).

Cut-set C1: {1, 4}; cut-set C2: {4, 2, 3}

Cut-set C3: {3, 5}; cut-set C4: {1, 2, 5}

Cut-set C5: {4, 2, 5}; cut-set C6: {1, 2, 3}

Fig. 2.114

Fig. 2.115
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Applying KCL for each of the cut-set we obtain the following equations. Let 

i1, i2 º i6 be the branch currents.

C i i

C i i i

C i i

C i i i

C i i

1 1 4

2 2 3 4

3 3 5

4 1 2 5

5 2 4

0

0

0

0

:

:

:

:

:

- =
- + + =
- + =

- + =
- + + ii

C i i i

5

6 1 2 3

0

0

=
- + =

¸

˝

Ô
ÔÔ

˛

Ô
Ô
Ô:

(2.12)

Fig. 2.116(a to f)

These equations can be put into matrix form as

1 0 0 1 0 0

0 1 1 1 0 0

0 0 1 0 1 0

1 1 0 0 1 0

0 1 0 1 1 0

1 1 1 0 0 0

-
-

-
-
-
-

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

ii
1

2

3

4

5

6

0

0

0

0

0

0

i

i

i

i

i

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

=

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

or

QIb  0 (2.13)

where the matrix Q is called augmented cut-set matrix of the graph or all cut-set 

matrix of the graph. The matrix Ib is the branch-current vector.

The all cut-set matrix can be written as Qth  [qij].

Where qij is the element in the ith row and jth column. The order of Q is number 

of cut-sets  number of branch as in the graph.
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qij 1, if branch j in the cut-set i and the orientation 

coincides with each other

qij –1, if branch j is in the cut-set i and the orientation } (2.14)

is opposite.

qij 0, if branch j is not present in cut-set i.

For the network-graph 

shown in Fig. 2.117 with given orientation 

obtain the all cut-set (augmented cut-set) 

matrix.

Example 2.65

Fig. 2.117

Solution The graph has four nodes and eight branches. There are in all 12 possible 

cut-sets as shown with dashed lines in Figs 2.118(a) and (b). The orientation of the 

cut-sets has been marked arbitrarily. The cut-sets are

C1: {1, 46}; C2: {1, 2, 3}; C3: {2, 5, 8}

C4: {6, 7, 8}; C5: {1, 3, 5, 8}; C6: {1, 4, 7, 8}

C7: {2, 5, 6, 7}; C8: {2, 3, 4, 6} C9: {1, 4, 7, 5, 2}

C10: {2, 3, 4, 7, 8}; C11: {6, 4, 3, 5, 8}; C12: {1, 3, 5, 7, 6}

Fig. 2.118(a) Fig. 2.118(b)

Eight cut-sets C1 to C8 are shown if Fig. 2.118(a) and four cut-sets C9 to C11 are 

shown in Fig. 2.118(b) for clarity.
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As explained in Section 2.11.2 with the help of Eq. 2.14, the all cut-set matrix 

Q is given by

cut-sets branches Æ
Ø

=

-
1 2 3 4 5 6 7 8

1 01

2

3

4

5

6

7

8

9

10

11

12

Q

C

C

C

C

C

C

C

C

C

C

C

C

00 1 0 1 0 0

1 1 1 0 0 0 0 0

0 1 0 0 1 0 0 1

0 0 0 0 0 1 1 1

1 0 1 0 1 0 0 1

1 0 0 1 0 0 1 1

0 1 0 0

-
- -

-

- -
-

11 1 1 0

0 1 1 1 0 1 0 0

1 1 0 1 1 0 1 0

0 1 1 1 0 0 1 1

0 0 1 1 1 1 0 1

1 0 1 0 1 1

- - -
- - - -

- - -
- -

- - - --

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙1 0

Matrix Q is a 12  8 matrix since there are 12 cut-sets and eight branches in the 

graph.

Determine the basic cut-set 

matrix for the oriented graph given in Fig. 2.119 

where the elements 1, 2 and 3 are tree branches.

Example 2.66

Fig. 2.119

Solution Branches 1, 2 and 3 are the twigs of the tree. The remaining branches 4, 5

and 6 are called links. Let us consider a tree as in Fig. 2.120.

For each twig, there will be a basic cut-set. Therefore, for a network graph with 'r '

nodes and 'b' branches there will be (n  1) number of basic cut-sets.

The link that must be added to twig 1 to form a 

cut-set 1 is 4. Thus Corresponding to twig 1 the basic 

cut-set {1, 4} as shown.

As a convention the orientation of a cut-set is chosen 

to consider with that of its defining twig similarly, other 

cut-sets C2 and C3 corresponding to twigs 2 and 3 are 

also shown in the Figs 2.121(b) and (c).Fig. 2.120
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C1   {1, 4} Corresponding to twig 1

C2  {2, 4, 5, 6} Corresponding to twig 2

C3  {3, 5, 6} Corresponding to twig 3 

Fig. 2.121

The basic cut-set matrix Qf of a graph with n nodes and b branches corresponds 

to a tree T is an (n   1)  b matrix.

Thus the basic cut-set Matrix is given by

f

Q

C

C

C

f

cut-sets branches Æ
Ø

=
-
- - -

È

Î

1 2 3 4 5 6

1 0 0 1 0 0

0 1 0 1 1 1

0 0 1 0 1 1

1

2

3

ÍÍ
Í
Í

˘

˚

˙
˙
˙

For the given network 

Fig. 2.122, draw the oriented graph and choose 

one possible tree and construct the basic cutest 

schedule. Write down the network equations 

from the above matrix. 

[JNTU June 2006]

Example 2.67

Fig. 2.122

Solution The oriented graph for the given network can be as shown in Fig. 2.123.

C1: i1  i5  i6  i7  0
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C
2
: i

2
 i

4
 i

6
 i

7
 0

C
3
: i

3
 i

4
 i

5
 0

branches

-cut-setsf

a

b

c

1 2 3 4 5 6 7

7 6 2 4

7 6 1 4

3 4 5

0 1 0 1[ , , , ]

[ , , , ]

[ , , ]

- 00 1 1

1 0 0 0 1 1 1

0 0 1 1 1 0 0

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Draw the graph for network shown obtain a tree. What is the 

number of mesh currents required for network? [JNTU June 2009]

Fig. 2.124

Example 2.68

Solution

Graph

Tree

No. of mesh currents  4

Fig. 2.123

Fig. 2.125
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2.11.3 Fundamental Cut-sets

Observe the set of Eq. 2.12 in Section 2.11.2 with respect to the graph in 

Fig. 2.116. Only first three equations are linearly independent, remaining 

equations can be obtained as a linear combination of the first three. The concept of 

fundamental cut-set ( f-cut-set) can be used to obtain a set of linearly independent 

equations in branch current variables. The f-cut-sets are defined for a given tree 

of the graph. From a connected graph, first a tree is selected, and then a twig is 

selected. Removing this twig from the tree separates the tree into two parts. All 

the links which go from one part of the disconnected tree to the other, together 

with the twig of the selected tree will constitute a cut-set. This cut-set is called 

a fundamental cut-set or f-cut-set or the graph. Thus a fundamental cut-set of a 

graph with respect to a tree is a cut-set that is formed by one twig and a unique 

set of links. For each branch of the tree, i.e. for each twig, there will be a f-cut-set.

So, for a connected graph having n nodes, there will be (n – 1) twigs in a tree, the 

number of f-cut-sets is also equal to (n – 1).

Fundamental cut-set matrix Qf is one in which each row represents a

cut-set with respect to a given tree of the graph. The rows of Q1 correspond 

to the fundamental cut-sets and the columns correspond to the branches of the 

graph. The procedure for obtaining a fundamental cut-set matrix is illustrated in 

Example 2.54.

Obtain the fundamental cut-set matrix Qf for the network graph 

shown in Fig. 2.126(a).

Example 2.69

Solution A selected tree of the graph is shown in Fig. 2.126(a).

Fig. 2.126

The twigs of the tree are {3, 4, 5, 7}. The remaining branches 1, 2, 6 and 8 are 

the links, corresponding to the selected tree. Let us consider twig 3. The minimum 

number of links that must be added to twig 3 to form a cut-set C1 is {1, 2}. This set 

is unique for C1. Thus corresponding to twig 3. The f-cut-set C1 is {1, 2, 3}. This 

is shown in Fig. 2.126(b). As a convention the orientation of a cut-set is chosen to 

coincide with that of its defining twig. Similarly, corresponding to twig 4, the f-cut-set 
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C2 is {1, 4, 6} corresponding to twig 5, the f-cut-set C3 is {2, 5, 8} and corresponding 

to twig 7, the f-cut-set is {6, 7, 8}. Thus the f-cut-set matrix is given by

f

f

-cut-sets branches

Q

C

C

C

C

=

-
- -

+ -

1

2

3

4

1 1 1 0 0 0 0 0

1 0 0 1 0 1 0 0

0 1 0 0 1 0 0 1

00 0 0 0 0 1 1 1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

(2.15)

2.11.4 Tree Branch Voltages and f-Cut-set Matrix

From the cut-set matrix the branch voltages can be expressed in terms of tree 

branch voltages. Since all tree branches are connected to all the nodes in the 

graph, it is possible to trace a path from one node to any other node by traversing 

through the tree-branches.

Let us consider Example 2.69, there are eight branches. Let the branch voltages 

be V1, V2, º V8. There are, four twigs, let the twig voltages be Vt3, Vt4, Vt5 and Vt7

for twigs 3, 4, 5 and 7 respectively.

We can express each branch voltage in terms of twig voltages as follows.

V1  –V3 – V4  –Vt3 – Vt4

V2   V3  V5   Vt3  Vt5

V3  Vt3

V4  Vt4

V5  Vt5

V6  V7 – V4  Vt7 – Vt4

V7  Vt7

V8  V7 – V5  Vt7 – Vt5

The above equations can be written in matrix form as

V

V

V

V

V

V

V

V

1

2

3

4

5

6

7

8

1 1 0 0

1 0 1 0

1 0 0 0

0 1 0 0

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

=

- -
+ +

00 1 0

0 1 0 1

0 0 0 1

0 0 1 1

3

4

5

7-

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

È

Î

V

V

V

V

t

t

t

t

ÍÍ
Í
Í
Í

˘

˚

˙
˙
˙
˙ (2.16)

The first matrix on the right hand side of Eq. 2.16 is the transpose of the f-cut-set 

matrix Qf given in Eq. 2.15 in Example. 2.67. Hence, Eq. 2.11 can be written as 

Vb QT
f Vt . (2.17)
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where Vb is the column matrix of branch-voltages Vt is the column matrix of 

twig voltages corresponding to the selected tree and QT
f  in the transpose of

f-cut-set matrix.

Equation 2.17 shows that each branch voltage can be expressed as a linear 

combination of the tree-branch voltages. For this purpose fundamental cut-set 

( f-cut-set) matrix can be used without writing loop equations.

Find the 

fundamental tie-set and cut-set 

matrix for the graph and for the 

tree shown in Fig. 2.127.

[JNTU June 2006]

Example 2.70

Fig. 2.127

Solution Three are 5 nodes, n  5

There are 7 branches, b  7

No. of twigs or tree branches

 n  1  4(2, 3, 4, 5)

No. of link branches

 b   (n  1) 3(1, 6, 7)

The tie-sets are shown below.

Fig. 2.128(a)

V1  V2  V3  V4  0

V2  V3  V5  V6  0

V3  V5  V7  0
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Fig. 2.128(b)

branchesTie-set matrix loop Æ
Ø

- -

1 2 3 4 5 6 7

1 1 1 1 0 0 0

0 1 1 0 1 1 0

0 0

1

2

3

i

i

i 11 0 1 0 1

1

2

3

4

5

6

7

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

V

V

V

V

V

V

V

The required tie-set matrix is given by

B = - -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 1 1 1 0 0 0

0 1 1 0 1 1 0

0 0 1 0 1 0 1

Cut-set

For the given tree, there are four fundamental cut-sets each for one twig and is 

given by

Twig 2; f-cut-set [1,2,6]

Twig 3; f-cut-set [1, 3, 6, 7]

Twig 4; f-cut-set [1, 4]

Twig 5; f-cut-set [5, 7]

The cut-sets are formed as shown

f

C

C

C

C

-cut set  matrix

1

2

3

4

1 1 0 0 0 1 0

1 0 1 0 0 1 1

1 0 0 1 0 0 0

0 0 0 0 1 0 1

-
- -
-

È

Î

ÍÍ
Í
Í
Í

˘

˚

˙
˙
˙
˙

Draw the oriented graph of the network shown in Fig. 2.129 

and write the cut-set matrix. [JNTU June 2006]

Example 2.71

Fig. 2.128(c)
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Fig. 2.129

Solution The oriented graph of the network is shown in Fig. 2.130. An arbitrary tree is 

selected to form fundamental cut-set ( f-cut-set) matrix. The tree branches (Twigs) 

are shown with thick lines and the line branches are shown with dashed lines.

No. of branches   7

No. of nodes (n)   4

Twigs  n   1   3(2, 3, 6)

No. of links (l)  b   (n   1)  4(1, 4, 5, 7)

For twig 2;  f-cut-set C1 Æ (1, 2, 5)

For twig 3; f-cut-set C2 Æ (1, 3, 4, 5)

For twig 6;  f-cut-setC3 Æ (4, 5, 6, 7)

Fundamental cut-set matrix

f

C

C

C

-cut-set branches

1 2 3 4 5 6 7

1 1 0 0 1 0 0

1 0 1 1 1 0 0

0 0 0 1 1 1 1

1

2

3

-
-

- -

È

Î

Í
ÍÍ
Í

˘

˚

˙
˙
˙

Obtain the fundamental 

loop and fundamental cut-set matrices for 

the graph shown in Fig. 2.131.

[JNTU May 2007]

Example 2.72

Fig. 2.131

Fig. 2.130
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Solution For the given graph, an arbitrary tree is chosen for which the no. of nodes 

n  5

No. of branches b  7

No. of tree branches of twigs 

(n  1)  4(2, 5, 6, 7)

No. of link branches l b  (n 1)

 3(1, 3, 4)

For a given tree of a graph, addition 

of each link between any two nodes 

forms a loop called the fundamental 

loop, (  f-loop) or a tie-set. By adding 

links 1, 3 and 4, we can form three 

fundamental loops as shown in the 

figure. By convention, a fundamental 

loop is marked with the same 

orientation as its defining link current.

Fig. 2.132(b)

Tie-sets

Tie-set schedule (Fundamental loop matrix)

Link no
Branch No

1 2 3 4 5 6 7

1 1  1 0 0  1 0 0

3 0  1 1 0 0  1 1

4 0 0 0 1 1  1 0

Cut-set

Consider the tree of the graph shown in 

figure with 5 nodes 1–5 and four tree 

branches.

The following are the fundamental 

cut-sets

f-cut-set corresponding to twig 2; 

C1  {1, 2, 3}

f-cut-set corresponding to twig 5; 

C2  {1, 4, 5}

f-cut-set corresponding to twig 6; 

C3  {3, 4, 6}

Fig. 2.132(a)

Tree

Fig. 2.132(c)
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Fig. 2.133

f-cut-set corresponding to twig 7; C4   {3, 7}

Thus, the f-cut-set matrix is given by f-cut-sets.

1 2 3 4 5 6 7

1 1 1 0 0 0 0

1 0 0 1 1 0 0

0 0 1 1 0 1 0

0 0 1 0 0 0 1

1

2

3

4

C

C

C

C -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

Obtain the fundamental cut-set matrices for the network shown 

in Fig. 2.134. [JNTU May 2007]

Fig. 2.134

Example 2.73

Solution By short circuiting 

voltage source and open 

circuiting current source, the 

oriented graph can be drawn as 

shown.

The number of nodes are 

4 and branches are five. An 

arbitrary tree is chosen as 

shown, with twig branches as a,

c, e and links as d and b.
Fig. 2.135
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f

a b c d e

b

d

-loop matrix

branches

links

0 1 1 0 1

1 0 1 1 1- -
È

Î
Í

˘

˚
˙

The cut-sets are given by

C1  {a, d}

C2  {b, c, d}

C3  {b, d, e}

Fig. 2.137

f

a b c d e

C

C

C

-cut-set matrix

branches

1

2

3

1 0 0 1 0

0 1 1 1 0

0 1 0 1 1

-
-
-

È

Î

Í
Í
Í

˘̆

˚

˙
˙
˙

For the 

given network Fig. 2.138 

graph, construct the basic 

tieset incidence matrix, 

tracking elements 1, 6, 8, 3 

as tree branches. Express 

the link branch voltage 

in terms of tree branch 

voltages

[JNTU June 2006]

Example 2.74

Fig. 2.138

Tree

Fig. 2.136
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Solution

(a) Cut-set incidence matrix is

1 2 3 4 5 6 7 8

1 0 0 1 1 0 0

0 1 0 1 1 1 0

0 1 0 1 0 0 1

0 0 1 1 0 0 1

0

0

1

0

1

2

3

4

Q =

- -
- -
- -
- -

C

C

C

C

ÈÈ

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

The link branch voltage in terms of 

tree branch voltages is given by

V

V

V

V

V

V

V

V

1

2

3

4

5

6

7

8

1 0 0 0

0 1 1 0

0 0 0 1

1

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

= - -11 1 1

1 1 0 0

0 1 0 0

0 0 1 1

0 0 1 0

1

2

3

- -
- -

- -

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

C

C

C

CC
4

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

(b)  Write the tie-set matrix for the graph shown in Fig. 2.140 taking the 

tree consisting of branches 2, 3, 4.

Fig. 2.140

Solution

Fig. 2.141

Fig. 2.139
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1 2 3 4 5 6

(5, 3, 2) 0  1  1 0 1 0

(6, 3, 4) 0 0  1  1 0 1

(1, 2, 3, 4) 1  1  1  1 0 0

Basic tie-sets

e

For the 

given network (Fig. 2.142) 

graph, construct the basic 

cutest incidence matrix, 

tracking elements 1, 6, 

8, 3 as tree branches. 

Express the link branch 

voltage in terms of tree 

branch voltages.

[JNTU May 2007]

Example 2.75

Fig. 2.142

Solution The incidence matrix is given by

1 2 3 4 5 6 7 8

A 1 0 0  1  1 0 0 0

B  1 1 0 0 0 1 0 0

C 0  1 1 0 0 0 0  1

D 0 0  1 1 0 0 1 0

E 0 0 0 0 1  1  1 1

Elements
Nodes

Cut-set matrix is given by

1 2 3 4 5 6 7 8

C1  1 0 0 1 1 0 0 0

C2 0 0 1  1 0 0  1 0

C3 0  1 0 1 1  1 0 0

C4 0 1 0  1 0 0  1 1

Elements

Cut-set

Branch
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We have V1  V6  V5  0

fi V5   (V1  V6)

V2  V8  V6  0 fi V2  V6  V8

V8  V3  V7  0 fiV7   (V3  V8)

V5  V7  V4  0

fi V4  V5  V7   V1  V6  V3  V8

V4   (V1  V3  V6  V8)

For the network shown in Fig. 2.144, draw the oriented graph 

and draw all possible trees. [JNTU June 2008]

Fig. 2.144

Example 2.76

Solution Replace the network with a graph. The voltage sources have been 

short-circuited.

H

G

I

F

E

D

K L

J

Fig. 2.145 

Fig. 2.143
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Some possible trees are

Fig. 2.146
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For the graph in Fig. 2.147,

write the cut-set schedule and obtain the 

relation between tree branch voltages and 

branch voltages.

[JNTU June 2008]

Example 2.77

Fig. 2.147

Solution 6 cut-sets are possible for the graph.

Fig. 2.148(a)

Fig. 2.148(b)

Fig. 2.148(c)

Applying KCL for each cut-set we get the following equations.

C1: i
d
 i

a
 0

C2: i
b
 i

e
 i

d
 0

C3: i
e
 i

c
 0
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C4: i
a
 i

b
 i

c
 0

C5: ib  ie  id  0

C6: i
a
 i

b
 i

e
 0.

The equations can be put into matrix form.

a b c d e

Qf =

-
-

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

1 0 0 1 0

0 1 0 1 1

0 0 1 0 1

1 1 1 0 0

0 1 1 1 0

1 1 0 0 1

˙̇
˙
˙

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙

i

i

i

i

i

i

a

b

c

d

e

f

0

0

0

0

0

0

˙̇
˙
˙
˙
˙

In order to find the relation between branch voltage and tree branch voltage. 

Let us consider the tree.

There are 5 branches. Let the branch voltages be V
a
, V

b
, V

c
,V

d
 and V

e
.

There are 3 twigs the twig–voltages be V
td

, V
te

, V
tb

.

We can express branch voltages in terms of twig voltages.

V
d
 V

b
 V

a
V

a
 V

td
 V

tb

V
e
 V

c
 V

b
V

c
 V

tb
 V

te

V
b
 V

tb

V
d
 V

td

V
e
 V

te

The above equations can be written in matrix form as

V Q V

V

V

V

V

V

V

V

V

V

V

b f
T

t

a

b

c

d

e

b

td

te

tb

=

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= tt

V
b
 is column matrix of branch–voltages and V

t
 is 

column matrix of twig voltages.

\ The relation can be expressed as

V

V

V

V

V

a

b

c

d

e

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

= -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

1 0 1

0 0 1

0 1 1

1 0 0

0 1 0
˙̇

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

V

V

V

td

te

tb

Fig. 2.149(a)

Fig. 2.149(b)
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For the graph shown 

in Fig. 2.150, find the tie-set and cut-set 

matrices.

[JNTU June 2009]

Example 2.78

Fig. 2.150

Solution

Fig. 2.151

Tie-set matrix

Loop currents   Branches

Ø
Æ

- -

1 2 3 4 5 6 7

1 0 1 1 0 0 0

0 0 0 1 1 0

1

2

3

I

I

I

11

0 1 0 0 1 1 0-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Cut-set matrix

Cut-sets  Branches
Ø

Æ

-

1 2 3 4 5 6 7

1 0 1 0 0 0 0

0 1 0 0 0 1 0

1 0 0

1

2

3

4

C

C

C

C

--
-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1 0 0 1

0 1 0 0 1 0 1

Obtain the cut-

set matrix for the given network, 

as shown in Fig. 2.152.

[JNTU Jan 2010]

Example 2.79

Fig. 2.152

510 A 1

5

5
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Solution Cut-set matrix

Fig. 2.153

Cut-sets Branches Æ
Ø

-
È

Î
Í

˘

˚
˙

1 2 3 4

1 1 0 0

0 1 1 1

1

2

C

C

Find the 

cut-set matrix of the network 

as shown in Fig. 2.154 and 

obtain relationship between 

the branch currents.

[JNTU Jan 2010]

Example 2.80

Fig. 2.154

Solution

Fig. 2.155
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Cut set Branches- Æ
Ø

-
1 2 3 4 5 6

1 6 4

2 4 5

3 6 4

1 0 0 1 0 1

0

1

2

3

C

C

C

( , , )

( , , )

( , , )

11 0 1 1 0

0 0 1 1 0 1

- -
- +

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

KCL equations

i1  i4  i6  0

i2  i4  i5  0

i3  i4  i6  0

Obtain the cut-set matrix for the network as shown in Fig. 2.156.

[JNTU Jan 2010]

Fig. 2.156

Example 2.81

Solution Graph obtained by open circuiting current 

source.

Fundamental cut-set matrix is formed as

Cut sets Branches- Æ
Ø

-
È

Î
Í

˘

˚
˙

1 2 3 4

1 1 0 0

0 1 1 1

1

2

C

C

Practice Problems

2.1 Calculate the frequency of the following values of period.

(a) 0.2 s (b) 50 ms

(c) 500  s (d) 10  s

2.2 Calculate the period for each of the values of frequency.

(a) 60 Hz (b) 500 Hz

(c) 1 kHz (d) 200 kHz

(e) 5 MHz

3

3

221

1 4

Fig. 2.157
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2.3 A certain sine wave has a positive going zero crossing at 0  and an rms value 

of 20 V. Calculate its instantaneous value at each of the following angles.

(a) 33 (b) 110 
(c) 145 (d) 325 

2.4 For a particular 0  reference sinusoidal current, the peak value is 

200 mA; determine the instantaneous values at each of the following.

(a) 35 (b) 190 
(c) 200 (d) 360 

2.5 Sine wave A lags sine wave B

by 30 . Both have peak values 

of 15 V. Sine wave A is the 

reference with a positive going 

crossing at 0 . Determine the 

instantaneous value of sine wave 

B at 30 , 90 , 45 , 180  and 300 .

2.6 Find the average values of the 

voltages across R1 and R2. In 

Fig. 2.158 values shown are rms.

2.7 A sinusoidal voltage is applied to 

the circuit shown in Fig. 2.159, 

determine rms current, average 

current, peak current, and peak 

to peak current.

2.8 A sinusoidal voltage of v(t)  50 sin (500t) applied to a capacitive circuit. 

Determine the capacitive reactance, and the current in the circuit.

2.9 A sinusoidal voltage source in series with a dc source is shown in Fig. 2.160.

+

–
200 V

RL

150

w

V

– 150 V

Fig. 2.160

Sketch the voltage across R
L
. Determine the maximum current through R

L

and the average voltage across R
L
.

2.10 Find the effective value of the resultant current in a wire which carries a 

direct current of 10 A and a sinusoidal current with a peak value of 15 A.

2.11 An alternating current varying sinusoidally, with a frequency of 50Hz,

has an rms value of 20 A. Write down the equation for the instantaneous 

value and find this value at (a) 0.0025 s (b) 0.0125 s after passing through 

5Ω

2Ω
R1 R2

20 V

100 V 50 V

Fig. 2.158

1 kΩ

10 VVp

Fig. 2.159
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a positive maximum value. At what time, measured from a positive 

maximum value, will the instantaneous current be 14.14 A?

2.12 Determine the rms value of the voltage defined by

v  5  5 sin (314t   /6)

2.13 Find the effective value of 

the function v  100  50

sin  t.

2.14 A full wave rectified sine 

wave is clipped at 0.707 

of its maximum value as 

shown in Fig. 2.161. Find 

the average and effective 

values of the function.

2.15 Find the rms value of the 

function shown in Fig. 2.162 and 

described as follows

0  t  0.1 v  40 (1  e 100t)

0.1 t 0.2v  40 e 50(t  0.1)

2.16 Calculate average and effective 

values of the waveform shown in 

Fig. 2.163 and hence find from 

factor.

2.17 A full wave rectified sine wave is clipped 

such that the effective value is 0.5 V
m

as shown in Fig. 2.164. Determine the 

amplitude at which the wave form is 

clipped.

2.18 A delayed full wave rectified sine wave 

has an average value of half the maximum 

value as shown in Fig. 2.165. Find the 

angle  .

2π t
0

πθ

vm

Fig. 2.165

Fig. 2.162

Fig. 2.163

Fig. 2.161

Fig. 2.164
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ObjectiveType Questions

2.1 One sine wave has a period of 2 ms, another has a period of 5 ms, and 

other has a period of 10 ms. Which sine wave is changing at a faster rate?

(a) sine wave with period of 2 ms (b) sine wave with period of 5 ms

(c) all are at the same rate (d) sine wave with period of 10 ms

2.2 How many cycles does a sine wave go through in 10 s when its frequency 

is 60 Hz?

(a) 10 cycles (b) 60 cycles (c) 600 cycles (d) 6 cycles

2.3 If the peak value of a certain sine wave voltage is 10 V, what is the peak to 

peak value?

(a) 20 V (b) 10 V (c) 5 V (d) 7.07 V

2.4 If the peak value of a certain sine wave voltage is 5 V, what is the rms 

value?

(a) 0.707 V (b) 3.535 V (c) 5 V (d) 1.17 V

2.5 What is the average value of a sine wave over a full cycle?

(a) V
m

(b) V
m

2
(c) zero (d) 2V

m

2.6 A sinusoidal current has peak value of 12 A. What is its average value?

(a) 7.64 A (b) 24 A (c) 8.48 A (d) 12 A

2.7 Sine wave A has a positive going zero crossing at 30 . Sine wave B has a 

positive going zero crossing at 45 . What is the phase angle between two 

signals?

(a) 30 (b) 45 (c) 75 (d) 15 

2.8 A sine wave has a positive going zero crossing at 0  and an rms value of 

20 V. What is its instantaneous value at 145 ?

(a) 7.32 V (b) 16.22 V (c) 26.57 V (d) 21.66 V

2.9 In a pure resistor, the voltage and current are

(a) out of phase (b) in phase

(c) 90  out of phase (d) 45  out of phase

2.10 The rms current through a 10 k  resistor is 5 mA. What is the rms voltage 

drop across the resistor?

(a) 10 V (b) 5 V (c) 50 V (d) zero

2.11 In a pure capacitor, the voltage

(a) is in phase with the current (b) is out of phase with the current

(c) lags behind the current by 90 (d) leads the current by 90 

2.12 A sine wave voltage is applied across a capacitor; when the frequency of 

the voltage is increased, the current

(a) increases (b) decreases (c) remains the same (d) is zero
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2.13 The current in a pure inductor

(a) lags behind the voltage by 90 (b) leads the voltage by 90 
(c) is in phase with the voltage (d) lags behind the voltage by 45 

2.14 A sine wave voltage is applied across an inductor; when the frequency of 

voltage is increased, the current

(a) increases (b) decreases (c) remains the same (d) is zero

2.15 The rms value of the voltage for a voltage function v  10  5

cos (628t  30 ) volts through a circuit is

(a) 5 V (b) 10 V (c) 10.6 V (d) 15 V

2.16 For the same peak value, which is of the following wave will have the 

highest rms value

(a) sine wave (b) square wave

(c) triangular wave (d) half wave rectified sine wave

2.17 For 100 volts rms value triangular wave, the peak voltage will be

(a) 100 V (b) 111 V (c) 141 V (d) 173 V

2.18 The form factor of dc voltage is

(a) zero (b) infinite (c) unity (d) 0.5

2.19 For the half wave rectified sine wave shown in Fig. 2.166, the peak 

factor is

Fig. 2.166

(a) 1.41 (b) 2.0 (c) 2.82 (d) infinite

2.20 For the square wave shown in Fig. 2.167, the form factor is

Fig. 2.167

(a) 2.0 (b) 1.0 (c) 0.5 (d) zero
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2.21 The power consumed in a circuit element will be least when the phase 

difference between the current and voltage is

(a) 0  (b) 30 (c) 90 (d) 180 

2.22 The voltage wave consists of two components: A 50 V dc component and 

a sinusoidal component with a maximum value of 50 volts. The average 

value of the resultant will be

(a) zero (b) 86.6 V (c) 50 (d) none of the above

2.23 A tree has

(a) a closed path (b) no closed paths

(c) none

2.24 The number of branches in a tree is_______the number of branches in a 

graph.

(a) less than (b) more than

(c) equal to

2.25 The tie-set schedule gives the relation between

(a) branch currents and link currents

(b) branch voltages and link currents

(c) branch currents and link voltages

(d) none of the above

2.26 The cut-set schedule gives the relation between

(a) branch currents and link currents

(b) branch voltages and tree branch voltages

(c) branch voltages and link voltages

(d) branch current and tree currents

2.27 Mesh analysis is based on

(a) Kirchhoff’s current law (b) Kirchhoff’s voltage law

(c) Both (d) None

2.28 If a network contains B branches, and N nodes, then the number of mesh 

current equations would be

(a) B  (N  1) (b) N  (B  1)

(c) B  N  1 (d) (B  N)  1

2.29 A network has seven nodes and five independent loops. The number of 

branches in the network is

(a) 13 (b) 12 (c) 11 (d) 10

2.30 The nodal method of circuit analysis is based on

(a) KVL and Ohm’s law (b) KCL and Ohm’s law

(c) KCL and KVL (d) KCL, KVL and Ohm’s law

2.31 The number of independent loops for a network with n nodes and b

branches is

(a) n  1

(b) b  n
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(c) b  n  l

(d) independent of the number of nodes

2.32 Relative to a given fixed tree of a network

(a) link currents form an independent set

(b) branch currents form an independent set

(c) link voltages form an independent set

(d) branch voltages form an independent set

2.33 The number of independent loops for a network with 3 nodes and 

6 branches is

(a) 2 (b) 1 (c) 4 (d) 6

2.34 A circuit consists of two resistances, 4  and 4  in parallel. The total 

current passing through the circuit is 10 A. The current passing through R1 is

(a) 5 A (b) 10 A (c) 4 A (d) 2 A

2.35 A network has eight nodes and five independent loops. The number of 

branches in the network is

(a) 13 (b) 11 (c) 12 (d) 15



Steady State 
Analysis of 
AC Circuits

3
3.1 RESPONSE TO SINUSOIDAL EXCITATION

3.1.1 Pure Resistance

When a sinusoidal voltage of certain magnitude is applied to a resistor, a certain 

amount of sine wave current passes through it. We know the relation between v(t)

and i(t) in the case of a resistor. The voltage/current relation in case of a resistor 

is linear,

i.e. v(t)  i(t)R

Consider the function

i t I t IM I e Im m
j t

m( ) sin= = È
Î

˘
˚ – ∞  or 0

If we substitute this in the above equation, we have

where

v t I R t V t

IM V e V

V I R

m m

m
j t

m

m m

( ) sin sin= =

= È
Î

˘
˚ – ∞

=

  

 or 0

If we draw the waveform for both voltage and 

current as shown in Fig. 3.1, there is no phase 

difference between these two waveforms. The 

amplitudes of the waveform may differ according 

to the value of resistance.

As a result, in pure resistive circuits, the voltages 

and currents are said to be in phase. Here the 

term impedance is defined as the ratio of voltage 

to current function. With ac voltage applied to Fig. 3.1
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elements, the ratio of exponential voltage to the corresponding current (impedance) 

consists of magnitude and phase angles. Since the phase difference is zero in case 

of a resistor, the phase angle is zero. The impedance in case of resistor consists only 

of magnitude, i.e.

Z
V

I
Rm

m

=
– ∞

– ∞
=

0

0

A sinusoidal voltage is applied to 

the resistive circuit shown in Fig. 3.2. Determine 

the following values.

(a) Irms  (b) Iav  (c) IP  (d) IPP

Example 3.1

Fig. 3.2

Solution The function given to the circuit shown is

v (t)  V
P
 sin  t   20 sin  t

The current passing through the resistor

i t
v t

R

i t t

( )
( )

( ) sin

=

=
¥

20

2 103
 

t

I p

sin= ¥

= ¥

-

-

10 10

10 10

3

3

 

A

The peak value I
P
  10 mA

Peak to peak value I
PP

  20 mA

rms value Irms   0.707 I
P

  0.707   10 mA   7.07 mA

Average value Iav   (0.637) I
P

  0.637   10 mA   6.37 mA

3.1.2 Pure Inductance

As discussed earlier in Chapter 1, the voltage current relation in the case of an 

inductor is given by

v t L
di

dt
( ) =
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Consider the function i t I t IM I e Im m
j t

m( ) sin= = ÈÎ ˘̊ – ∞   or 0

v t L
d

dt
I t

L I t L I t

v t V t V

m

m m

m m

( ) ( sin )

cos cos

( ) cos , sin

=

= =

=

 

    

 or (( )

( )

 

 

t

IM V e Vm
j t

m

+ ∞

= È
Î

˘
˚ – ∞+

90

9090o

or

where V
m
  L I

m
 X

L
I
m

and e j
j90 1 90∞ = = – ∞

If we draw the waveforms for both, voltage and current, as shown in Fig. 3.3, we 

can observe the phase difference between these two waveforms.

As a result, in a pure inductor the voltage and current are out of phase. The 

current lags behind the voltage by 90° in a pure inductor as shown in Fig. 3.3.

The impedance which is the ratio of exponential voltage to the corresponding 

current, is given by

Z
V t

I t

V L I

I L t

I t

m

m

m m

m

m

=
+ ∞

=

=
+ ∞

sin ( )

sin

sin ( )

sin

 

 

 

  

 

90

90

where

  

=
– ∞
– ∞

= =

 

 

L I

I

Z j L jX

m

m

L

90

0

where X
L
  L and is called the inductive 

reactance.

Hence, a pure inductor has an impedance 

whose value is  L.

A sinusoidal voltage is applied 

to the circuit shown in Fig. 3.5. The frequency is 

3 kHz. Determine the inductive reactance.

Example 3.2

Fig. 3.5

Solution XL = 2 f L

    2   3   103   2   10 3

    37.69  

Fig. 3.3

Fig. 3.4
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Determine the rms current in 

the circuit shown in Fig. 3.6.

Example 3.3

Fig. 3.6

Solution  XL = 2 f L

  2   10   103   50   10 3

 XL   3.141 k 

I
V

X L
rms

rms

mA

=

=
¥

=
10

3 141 10
3 18

3.
.

3.1.3 Pure Capacitance

As discussed in Chapter 1, the relation between voltage and current is given by

v t
C

i t dt( ) ( )= Ú
1

Consider the function i t I t IM I e Im m
j t

m( ) sin= = ÈÎ ˘̊ – ∞   or 0

v t
C

I t d t

C
I t

m

m

( ) sin ( )

[ cos ]

=

= -

Ú
1

1

 

 
 

= -

\ = -

= È
Î

˘
˚

-

I

C
t

v t V t

IM I e V

m

m

m
j t

m

 
 

 

 

sin ( )

( ) sin ( )

( )

90

90

90

o

o

o

or –– -

=

\
–-
–

= =
-

90

90

0

o

o

o

where V
I

C

V

I
Z

j

C

m
m

m

m

 

 

Hence, the impedance is Z
j

C
jXC=

-
= -

 

where X
C

C =
1

 
 and is called the capacitive reactance.
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If we draw the waveform for both, voltage 

and current, as shown in Fig. 3.7, there is a 

phase difference between these two waveforms.

As a result, in a pure capacitor, the current

leads the voltage by 90°. The impedance 

value of a pure capacitor

X
C

C =
1

 

A sinusoidal voltage is applied to 

a capacitor as shown in Fig. 3.8. The frequency of 

the sine wave is 2 kHz. Determine the capacitive 

reactance.

Example 3.4

Fig. 3.8

Solution X
fC

C =

=
¥ ¥ ¥ ¥

=

-

1

2

1

2 2 10

7 96

3 6

 

 0.01 10

k.  

Determine the rms current in the 

circuit shown in Fig. 3.9.

Example 3.5

Fig. 3.9

Solution X
fC

I
V

X

C

C

=

=
¥ ¥ ¥ ¥

=

= = =

-

1

2

1

2 5 10 0 01 10

3 18

5

3 18
1 57

3 6

 

 .

.

.
.

k

K
rms

rms

 

mmA

Fig. 3.7
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3.2 IMPEDANCE CONCEPT AND PHASE ANGLE

So far our discussion has been confined to resistive circuits. Resistance restricts 

the flow of current by opposing free electron movement. Each element has some 

resistance; for example, an inductor has some resistance; a capacitance also has 

some resistance. In the resistive element, there is no phase difference between the 

voltage and the current. In the case of pure inductance, the current lags behind 

the voltage by 90 degrees, whereas in the case of pure capacitance, the current 

leads the voltage by 90 degrees. Almost all electric circuits offer impedance to 

the flow of current. Impedance is a complex quantity having real and imaginary 

parts; where the real part is the resistance and the imaginary part is the reactance 

of the circuit.

Consider the RL series circuit shown in Fig. 3.10. If we apply the real function 

Vm cos  t to the circuit, the response may be Im cos  t. Similarly, if we apply

the imaginary function jVm sin  t to the same circuit, the response is jIm sin  t. If we 

apply a complex function, which is a combination of real and imaginary functions, we 

will get a complex response.

This complex function is Vm e j t  Vm

(cos  t  j sin  t). Applying Kirchhoff’s law to the 

circuit shown in Fig. 3.10,

we get V e Ri t L
di

dt
m

j t = +( )

The solution of this differential equation is

i(t)  Im e  j t

By substituting i(t) in the above equation, we get

V e R I e L
d

dt
I em

j t
m

j t
m

j t   = + ( )

Vm e j t  RIm e j t  LIm j e j t

Vm  (R  j L)Im

Impedance is defined as the ratio of the voltage to current function

Z
V e

V

R j L
e

R j Lm
j t

m j t

=

+

= +
 

 

 

 

Complex impedance is the total opposition offered by the circuit elements to ac 

current, and can be displayed on the complex plane. The impedance is denoted 

by Z. Here the resistance R is the real part of the impedance, and the reactance 

XL is the imaginary part of the impedance. The resistance R is located on the real 

axis. The inductive reactance XL is located on the positive j axis. The resultant of 

R and XL is called the complex impedance.

Fig. 3.10
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Figure 3.11 is called the impedance diagram for the RL circuit. From Fig. 3.11, 

the impedance Z R L= +2 2( ) , and angle   tan 1 L/R. Here, the impedance 

is the vector sum of the resistance and inductive reactance. The angle between 

impedance and resistance is the phase angle between the current and voltage 

applied to the circuit.

Similarly, if we consider the RC series circuit, and apply the complex function 

Vm e j t to the circuit in Fig. 3.12, we get a complex response as follows.

Applying Kirchhoff’s law to the above circuit, we get

V e Ri t
C

i t dtm
j t = + Ú( ) ( )

1

Solving this equation we get,

i(t)  Im e j t

V e R I e
C
I

j
e

RI
j

C
I e

V R

m
j t

m
j t

m
j t

m m
j t

m

   

 

 

 

= +
+Ê

ËÁ
ˆ
¯̃

= -È
ÎÍ

˘
˚̇

= -

1 1

jj

C
Im

 

Ê
ËÁ

ˆ
¯̃

The impedance

Z
V e

V R j C e

m
j t

m
j t

=
-

 

  / [ / ]

  [R  ( j/ C )]

Here impedance Z consists of resistance (R), which is the real part, and capacitive 

reactance (XC  1/ C ), which is the imaginary part of the impedance. 

The resistance, R, is located on the real axis, and the capacitive reactance XC is 

located on the negative j axis in the impedance diagram in Fig. 3.13.

From Fig. 3.13, impedance Z R XC= +2 2 or 

R C2 21+ ( / )  and angle   tan 1 (1/ CR). Here, 

the impedance, Z, is the vector sum of resistance and 

capacitive reactance. The angle between resistance 

and impedance is the phase angle between the applied 

voltage and current in the circuit.

The impedance, Z is composed of real and 

imaginary parts

Z = R + jX

Fig. 3.11

Fig. 3.12

Fig. 3.13
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where R is the resistance, measured in ohms

X is the reactance, measured in ohms

The admittance (Y ) is the inverse of the impedance (Z ).

Y Z
Z

= =-1 1

where Y is the admittance, measured in Siemens.

Admittance is a measure of how easily a circuit will allow a current to flow.

Y Z
R jX

R

R X
j

X

R X
= =

+
=

+
Ê
ËÁ

ˆ
¯̃
+

-
+

Ê
ËÁ

ˆ
¯̃

-1
2 2 2 2

1

Admittance is a complex number

Y   G   jB

where G (conductance) and B (susceptance) are given by

G
R

R X

B
X

R X

=
+

=
-
+

2 2

2 2

The magnitude and phase of the admittance are given by

| |Y G B
R X

= + =
+

2 2

2 2

1

–Y
B

G

X

R
= Ê

ËÁ
ˆ
¯̃
=

-Ê
ËÁ

ˆ
¯̃

arctan arctan

where G is the conductance, measured in Siemens.

where B is the susceptance, measured in Siemens.

3.3 SERIES RL, RC, RLC CIRCUITS

The impedance diagram is a useful tool for analysing series ac circuits. Basically 

we can divide the series circuits as RL, RC and RLC circuits. In the analysis 

of series ac circuits, one must draw the impedance diagram. Although the 

impedance diagram usually is not drawn to scale, it does represent a clear picture 

of the phase relationships.

If we apply a sinusoidal input to an RL circuit, the current in the circuit and 

all voltages across the elements are sinusoidal. In the analysis of the RL series 

circuit, we can find the impedance, current, phase angle and voltage drops. In 

Fig. 3.14(a) the resistor voltage (VR) and current (I ) are in phase with each other, 

but lag behind the source voltage (VS). The inductor voltage (VL) leads the source 

voltage (VS). The phase angle between current and voltage in a pure inductor is 

always 90°. The amplitudes of voltages and currents in the circuit are completely 

[JNTU Nov 2011]
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dependent on the values of elements (i.e. the resistance and inductive reactance). 

In the circuit shown, the phase angle is somewhere between zero and 90° because 

of the series combination of resistance with inductive reactance, which depends 

on the relative values of R and X
L
.

The phase relation between 

current and voltages in a series RL 

circuit is shown in Fig. 3.14(b).

Here V
R
 and I are in phase. The 

amplitudes are arbitrarily chosen. 

From Kirchhoff’s voltage law, 

the sum of the voltage drops 

must equal the applied voltage. 

Therefore, the source voltage V
S

is the phasor sum of V
R
 and V

L
.

\ = +V V V
S R L

2 2

The phase angle between resistor voltage and source voltage is

   tan 1 (V
L
/V

R
)

where   is also the phase angle between the source voltage and the current. The phasor 

diagram for the series RL circuit that represents the waveforms in Fig. 3.14(c).

Fig. 3.14(b)

V
L

V
R

I

θ

90º

0

V

Fig. 3.14(c)

To the circuit shown 

in Fig. 3.15, consisting a 1 kW resistor 

connected in series with a 50 mH coil, a 

10 V rms, 10 kHz signal is applied. Find 

impedance Z, current I, phase angle u,

voltage across resistance VR, and the 

voltage across inductance VL.

Example 3.6

Fig. 3.15

Fig. 3.14(a)
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Solution Inductive reactance XL  L

   2 f L   (6.28)(104)(50   10 3)   3140  

In rectangular form,

Total impedance Z   (1000  j3140)  

= +

= + =

R X
2 2

2 21000 3140 3295 4

L

( ) ( ) . W

Current I  VS /Z   10/3295.4   3.03 mA

Phase angle    tan 1 (XL/R)   tan 1 (3140/1000)   72.33°

Therefore, in polar form total impedance Z   3295.4 – 72.33°

Voltage across resistance VR  IR   3.03   10 3   1000   3.03 V

 Voltage across inductive reactance VL  IXL   3.03   10 3   3140   9.51 V

Determine the source 

voltage and the phase angle, if voltage 

across the resistance is 70 V and voltage 

across the inductive reactance is 20 V as 

shown in Fig. 3.16.

Example 3.7

Fig. 3.16

Solution In Fig. 3.16, the source voltage is given by

V
S L
= +

= + =

V V
R

2 2

2 270 20 72 8( ) ( ) . V

The angle between current and source voltage is

   tan 1 (VL/VR)   tan 1 (20/70)   15.94°

A signal 

generator supplies a 30 V, 

100 Hz signal to a series 

circuit as shown in Fig. 3.17. 

Determine the impedance, 

the line current and phase 

angle in the given circuit.

Example 3.8
10 Ω

30 V, 100 Hz 30 Ω

20 mH 50 mH

Fig. 3.17
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Solution In Fig. 3.18, the resistances and inductive reactances can be combined.

30 V, 100 Hz

40 Ω

70 mH

Fig. 3.18

First, we find the inductive reactance

 XL   2 f L   2   100   70   10–3   43.98  

In rectangular form, the total impedance is

 ZT   (40  j43.98)  

Current I
V

Z j

S

T

= =
–

+
30 0

40 43 98

o

.

Here we are taking source voltage as the reference voltage

\ I =
–
–+

= –-
30 0

59 45 47 7
0 5 47 7

o

o

o
A

. .
. .

The current lags behind the applied voltage by 47.7 

Hence, the phase angle between voltage and current

    47.7 

For the circuit shown in Fig. 3.19, find the effective voltages 

across resistance and inductance, and also determine the phase angle.

Fig. 3.19

Example 3.9

Solution In rectangular form,

Total impedance ZT  R   jXL

where XL   2 f  L

  2   100   50   10–3   31.42  

\ ZT   (100  j31.42)  
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Current I
V

Z j

S

T

= =
–

+
=

–
–

= –-
10 0

100 31 42

10 0

104 8 17 44
0 095 17 44

o o

o

o

( . ) . .
. .

Therefore, the phase angle between voltage and current

   17.44 

Voltage across resistance is V
R
 IR 0.095  100  9.5 V

Voltage across inductive reactance is V
L
 IX

L
 0.095  31.42  2.98 V

When a sinusoidal voltage is applied to an RC series circuit, the current in the 

circuit and voltages across each of the elements are sinusoidal. The series RC 

circuit is shown in Fig. 3.20(a).

Here the resistor voltage and 

current are in phase with each other. 

The capacitor voltage lags behind 

the source voltage. The phase angle 

between the current and the capacitor 

voltage is always 90°. The amplitudes 

and the phase relations between

the voltages and current depend on 

the ohmic values of the resistance 

and the capacitive reactance. The circuit is a series combination of both resistance 

and capacitance; and the phase angle between the applied voltage and the total 

current is somewhere between zero and 90°, depending on the relative values 

of the resistance and reactance. In a series RC circuit, the current is the same 

through the resistor and the capacitor. Thus, the resistor voltage is in phase with 

the current, and the capacitor voltage lags behind the current by 90° as shown in 

Fig. 3.20(b).

Here, I leads V
C
 by 90°. 

V
R
 and I are in phase. From 

Kirchhoff’s voltage law, the sum 

of the voltage drops must be equal 

to the applied voltage. Therefore, 

the source voltage is given by

V V V
S R C
= +2 2

The phase angle between the 

resistor voltage and the source 

voltage is

  tan 1 (V
C

/V
R
)

Since the resistor voltage and the current are in phase,   also represents the phase 

angle between the source voltage and current. The voltage phasor diagram for 

the series RC circuit, voltage and current phasor diagrams represented by the 

waveforms in Fig. 3.20(b) are shown in Fig. 3.20(c).

Fig. 3.20(a)

Fig. 3.20(b)
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Fig. 3.20(c)

A sine wave 

generator supplies a 500 Hz, 

10 V rms signal to a 2 k W resistor 

in series with a 0.1 mF capacitor as 

shown in Fig. 3.21. Determine the 

total impedance Z, current I, phase 

angle q, capacitive voltage VC, and 

resistive voltage VR.

Example 3.10

Fig. 3.21

Solution To find the impedance Z, we first solve for XC

XC = =
¥ ¥ ¥ -

1

2

1

6 28 500 0 1 10
6pfC . .

  3184.7  

In rectangular form,

Total impedance Z   (2000  j3184.7)  

Z = ( ) + ( )2000 3184 7
2 2

.

  3760.6  

Phase angle    tan 1( XC /R)   tan 1( 3184.7/2000)    57.87°

Current I  VS /Z   10/3760.6   2.66 mA

Capacitive voltage VC  IXC

   2.66   10 3   3184.7   8.47 V

Resistive voltage VR  IR

   2.66   10 3   2000   5.32 V

The arithmetic sum of VC and VR does not give the applied voltage of 10 volts. In 

fact, the total applied voltage is a complex quantity. In rectangular form,

Total applied voltage VS   5.32  j8.47 V

In polar form

 VS   10 – 57.87°  V

The applied voltage is complex, since it has a phase angle relative to the resistive current.
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Determine the source 

voltage and phase angle when the voltage 

across the resistor is 20 V and the capacitor 

is 30 V as shown in Fig. 3.22.

Example 3.11

Fig. 3.22

Solution Since VR and VC are 90° out of phase, they cannot be added directly. The 

source voltage is the phasor sum of VR and VC .

\ = + = ( ) + ( ) =V V VS R C
2 2 2 2

20 30 36V

The angle between the current and source voltage is

   tan–1 (VC /VR)   tan–1 (30/20)   56.3°

A resistor of 100    is 

connected in series with a 50  F capacitor. 

Find the effective voltage applied to 

the circuit at a frequency of 50 Hz. The 

effective voltage across the resistor is 

170 V. Also determine voltage across the 

capacitor and phase angle. (See Fig. 3.23)

Example 3.12

Fig. 3.23

Solution Capacitive reactance X
fC

C =

=
¥ ¥ ¥

=-

1

2

1

2 50 50 10
63 66

6

 

 
.  

Total impedance ZT   (100 – j63.66)  

Voltage across 100   resistor is VR  170 V

Current in resistor, I = =
170

100
1.7 A

Since the same current passes through capacitive reactance, the effective voltage 

across the capacitive reactance is

VC  IXC

  1.7   63.66   108.22 V

The effective applied voltage to the circuit

V V VS R C= +

= + =

2 2

2 2170 108 22 201 5( ) ( . ) . V
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Total impedance in polar form

ZT   118.54  –32.48 

Therefore, the current leads the applied voltage by 32.48 .

For the circuit 

shown in Fig. 3.24, determine 

the value of impedance when 

a voltage of (30   j50)V is 

applied to the circuit and the 

current flowing is ( 5   j15) A. 

Also determine the phase 

angle.

Example 3.13

Fig. 3.24

Solution Impedance Z
V

I

j

j

S
=

o

o

o

=
+

- +

=
–

–
= –-

30 50

5 15

58 31 59

15 81 108 43
3 69 49 43

.

. .
. .

In rectangular form, the impedance Z   2.4  j2.8

Therefore, the circuit has a resistance of 2.4   in series with capacitive reactance 

2.8  .

Phase angle between voltage and current is    49.43 . Here, the current leads 

the voltage by 49.43 .

A series RLC circuit is the series combination of resistance, inductance and 

capacitance. If we observe the impedance diagrams of series RL and series

RC circuits as shown in Fig. 3.25(a) and (b), the inductive reactance, XL , is 

displayed on the   j axis and the capacitive reactance, XC , is displayed on the – j

axis. These reactance are 180° apart and tend to cancel each other.

Fig. 3.25

The magnitude and type of reactance in a series RLC circuit is the difference 

of the two reactance. The impedance for an RLC series circuit is given by 

Z R X XL C   2 2( ) . Similarly, the phase angle for an RLC circuit is

 =
-Ê

ËÁ
ˆ
¯̃

-
tan

1 X X

R

L C
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In the circuit 

shown in Fig. 3.26, determine 

the total impedance, current I, 

phase angle u, and the voltage 

across each element.

Example 3.14

Fig. 3.26

Solution To find impedance Z, we first solve for XC and XL

X
fC

C = =
¥ ¥ ¥ -

1

2

1

6 28 50 10 10
6 .

  318.5  

XL   2 fL   6.28   0.5   50   157  

Total impedance in rectangular form

Z   (10  j157 – j 318.5)  

  10  j(157 – 318.5)    10 – j161.5  

Here, the capacitive reactance dominates the inductive reactance.

Z = ( ) + ( )

= + =

10 161 5

100 26082 2 161 8

2 2
.

. .  

Current AI ZS= = =V /
.

.
50

161 8
0 3

Phase angle    tan–1 [(XL  XC)/R]   tan–1 ( 161.5/10)    86.45°

Voltage across the resistor VR  IR   0.3   10   3 V

Voltage across the capacitive reactance  IXC   0.3   318.5   95.55 V

Voltage across the inductive reactance  IXL   0.3   157   47.1 V

3.4
COMPLEX IMPEDANCE AND PHASOR NOTATION FOR 

RL, RC, RLC CIRCUITS

The complex number system simplifies the analysis of parallel ac circuits. In 

series circuits, the current is the same in all parts of the series circuit. In parallel 

ac circuits, the voltage is the same across each element.

The voltages for an RC series circuit can be expressed using complex 

numbers, where the resistive voltage is the real part of the complex voltage and 

the capacitive voltage is the imaginary part. For parallel RC circuits, the voltage 

is the same across each component. Here the total current can be represented by a 

complex number. The real part of the complex current expression is the resistive 

current; the capacitive branch current is the imaginary part.
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A signal 

generator supplies a sine 

wave of 20 V, 5 kHz to the 

circuit shown in Fig. 3.27. 

Determine the total current 

IT, the phase angle and total 

impedance in the circuit.

Example 3.15

Fig. 3.27

Solution Capacitive reactance

XC = =
¥ ¥ ¥ ¥

=-
1

2

1

6 28 5 10 0 2 10
159 2

3 6pfC . .
.  

Since the voltage across each element is the same as the applied voltage, we can 

solve for the two branch currents.

  Current in the resistance branch

I
R

R
S= = =
V 20

100
0 2. A

and current in the capacitive branch

IC = = =
V

X

S

C

20

159 2
0 126

.
. A

The total current is the vector sum of the two branch currents.

  Total current IT   (IR jIC) A   (0.2  j0.13) A

In polar form IT   0.24 – 33°

So the phase angle   between applied voltage and total current is 33°. It indicates 

that the total line current is 0.24 A and leads the voltage by 33°. Solving for 

impedance, we get

Z =
V

I

S

T

= = -
20 0

0 24 33
83 3 33

 

 
  

.
.

Determine the impedance and phase angle in the circuit shown 

in Fig. 3.28.

100 V,

50 Hz
50 Ω 100 μF

Example 3.16



3.18 Network Analysis

Solution Capacitive reactance X
fC

C = =
¥ ¥ ¥

=-
1

2

1

2 50 100 10
31 83

6  
.  

Capacitive susceptance B
X

C
C

=

= =

1

1

31 83
0 031

.
. S

Conductance G = = =
1 1

50
0 02

R
. S

Total admittance 

Y G BC= +

= +

=

2 2

2 20 02 0 031

0 037

( . ) ( . )

. S

Total impedance Z
Y

= = =
1 1

0 037
27 02

.
.  

Phase angle 
 

 

=
Ê
ËÁ

ˆ
¯̃
= Ê

ËÁ
ˆ
¯̃

= ∞

- -tan tan
.

.

1 1 50

31 83

57 52

R

XC

For the parallel circuit in Fig. 3.29, find the magnitude of current 

in each branch and the total current. What is the phase angle between the applied 

voltage and total current?

Fig. 3.29

100 Ω
200 Ω

300 μF100 μF

10 V, 50 Hz

C1
C2

R2
R1

Example 3.17

Solution First let us find the capacitive reactances.

X
fC

X
fC

C

C

1

2

1

2

1

2 50 100 10
31 83

1

2

1

2 50 300 10

1

6

2

=

=
¥ ¥ ¥

=

= =
¥ ¥ ¥

-

-

 

 

  

.  

66

10 61= .  

Here the voltage across each element is the same as the applied voltage.
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Current in the 100  F capacitor I
V

X
C

S

C

=

=
–
–-

= –

1

10 0

31 83 90
0 31 90

o

o

o
A

.
.

Current in the 300  F capacitor I
V

X
C

S

C
2

2

10 0

10 61 90
0 94 90

=

=
–
–-

= –
o

o

o
A

.
.

Current in the 100  resistor is I
V

R
R

S

1

1

10

100
0 1= = = . A

Current in the 200  resistor is I
V

R
R

S

2

2

10

200
0 05= = = . A

Total current IT  IR1
 IR2

 j(IC1
 IC2

)

  0.1  0.05  j(0.31  0.94)

 1.26  83.2  A

The circuit shown in Fig. 3.29 can be simplified into a single parallel RC circuit 

as shown in Fig. 3.30.

Fig. 3.30

In Fig. 3.30, the two resistances are in parallel and can be combined into a 

single resistance. Similarly, the two capacitive reactances are in parallel and can be 

combined into a single capacitive reactance.

R
R R

R R

X
X X

X X
C

C C

C C

=
+

=

=
+

=

1 2

1 2

66 67

7 96
1 2

1 2

.

.

 

 

Phase angle   between voltage and current is

 =
Ê
ËÁ

ˆ
¯̃
= Ê

ËÁ
ˆ
¯̃
= ∞- -

tan tan
.

.
.

1 1 66 67

7 96
83 19

R

X
C

Here the current leads the applied voltage by 83.19 .
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In a parallel RL circuit, the inductive current is imaginary and lies on the – j axis. 

The current angle is negative when the impedance angle is positive. Here also 

the total current can be represented by a complex number. The real part of the 

complex current expression is the resistive current; and inductive branch current 

is the imaginary part.

A 50   resistor 

is connected in parallel with an 

inductive reactance of 30  .  

A 20 V signal is applied to the 

circuit. Find the total impedance 

and line current in the circuit 

shown in Fig. 3.31.

Example 3.18

Fig. 3.31

Solution Since the voltage across each element is the same as the applied voltage,  

current in the resistive branch,

I
V

R
R
= =

–
–

=s 20 0

50 0
0 4

o

o
A.

current in the inductive branch

I
L

L

= =
–
–

= –-
V

X

s 20 0

30 90
0 66 90

o

o

o
.

Total current is IT   0.4  j0.66

In polar form, IT   0.77 – 58.8°

Here the current lags behind the voltage by 58.8°

Total impedance Z
I
T

= =
–

–-
= –

V
s 20 0

0 77 58 8
25 97 58 8

o

o

o

. .
. .  

For the 

circuit shown in Fig. 3.32, 

determine the total current, 

impedance Z and phase 

angle.

Example 3.19

Fig. 3.32

100 Ω
50 V,

50 Hz
0.5 H

Solution Here, the voltage across each element is the same as the applied voltage.

Current in resistive branch I
V

R
R

S= = =
50

100
0 5. A

Inductive reactance XL   2 f  L
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 2  50  0.5  157.06  

Current in inductive branch

Total current

I
V

X

I I I

L

S

L

T R L

= = =

= +

50

157 06
0 318

2 2

.
. A

or (0.5   j0.318)A 0.59   32.5 

For parallel RL circuits, the inductive susceptance is

B
X

L

L

= = =
1 1

157 06
0 0064

.
. S

Conductance G = =
1

100
0 01. S

\ Admittance = + = +G B
L

2 2 2 20 01 0 0064( . ) ( . )

 0.0118 S

Converting to impedance, we get

Z
Y

= = =
1 1

0 012
83 33

.
.  

Phase angle  =
Ê
ËÁ

ˆ
¯̃
= Ê

ËÁ
ˆ
¯̃
= ∞- -tan tan

.
.1 1 100

157 06
32 48

R

X
L

3.4.1 Instantaneous Power

In a purely resistive circuit, all the energy delivered by the source is dissipated in the 

form of heat by the resistance. In a purely reactive (inductive or capacitive) circuit, all 

the energy delivered by the source is stored by the inductor or capacitor in its magnetic 

or electric field during a portion of the voltage cycle, and then is returned to the source 

during another portion of the cycle, so that no net energy is transferred. When there is 

complex impedance in a circuit, part of the energy is alternately stored and returned 

by the reactive part, and part of it is dissipated by the resistance. The amount of energy 

dissipated is determined by the relative values of resistance and reactance.

Consider a circuit having complex impedance. Let v(t)  Vm cos  t be the 

voltage applied to the circuit and let i(t)  Im cos ( t   ) be the corresponding 

current flowing through the circuit. Then the power at any instant of time is

P(t)  v(t) i(t)  Vm cos  t Im cos ( t   ) (3.1)

From Eq. 3.1, we get

P t
V I

t

m m
( )

cos( ) cos

=

+ +[ ]
2

2   (3.2)
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Equation 3.2 represents instan-

taneous power. It consists of 

two parts. One is a fixed part, 

and the other is time-varying 

which has a frequency twice that 

of the voltage or current wave-

forms. The voltage, current and 

power waveforms are shown in 

Figs 3.33 and 3.34.

Here, the negative portion 

(hatched) of the power cycle 

represents the power returned 

to the source. Figure 3.34 shows 

that the instantaneous power is 

negative whenever the voltage 

and current are of opposite 

sign. In Fig. 3.34, the positive 

portion of the power is greater 

than the negative portion of 

the power; hence the average 

power is always positive, which 

is almost equal to the constant 

part of the instantaneous power 

(Eq. 3.2). The positive portion 

of the power cycle varies with 

the phase angle between the 

voltage and current waveforms. 

If the circuit is pure resistive, 

the phase angle between 

voltage and current is zero; 

then there is no negative cycle 

in the P(t) curve. Hence, all the 

power delivered by the source 

is completely dissipated in the 

resistance.

If   becomes zero in Eq. 3.1,

we get

P(t)  v(t) i(t)

 Vm Im cos2  t

= +( )V I
t

m m

2
1 2cos  (3.3)

The waveform for Eq. 3.3, is shown in Fig. 3.35, where the power wave has a 

frequency twice that of the voltage or current. Here the average value of power 

is VmIm /2.

Fig. 3.33

Fig. 3.34

Fig. 3.35(b)

Fig. 3.35(a)
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When phase angle   is increased, the negative portion of the power cycle 

increases and lesser power is dissipated. When   becomes  /2, the positive 

and negative portions of the power cycle are equal. At this instant, the power 

dissipated in the circuit is zero, i.e. the power delivered to the load is returned 

to the source.

3.4.2 Average Power

To find the average value of any power function, we have to take a particular 

time interval from t1 to t2; by integrating the function from t1 to t2 and dividing 

the result by the time interval t2 – t1, we get the average power.

P
t t

P t dt

t

t

=
- Ú
1

2 1
1

2

( ) (3.4)

In general, the average value over one cycle is

P
T

P t dt

T

av = Ú
1

0

( ) (3.5)

By integrating the instantaneous power P(t) in Eq. 3.5 over one cycle, we get 

average power

P
T

V I
t dt

T

V I
t

m m

T

m m

T

av = + +[ ]Ï
Ì
Ó

¸
˝
˛

= +

Ú

Ú

1

2
2

1

2
2

0

0

cos( ) cos

cos(

   

    ) cos[ ] + Údt
T

V I
dt

m m

T
1

2
0

(3.6)

In Eq. 3.6, the first term becomes zero, and the second term remains. The average 

power is therefore

P
V I
m m

av W=
2
cos (3.7)

We can write Eq. 3.7 as

P
V I
m m

av =
Ê
ËÁ

ˆ
¯̃
Ê
ËÁ

ˆ
¯̃2 2
cos (3.8)

In Eq. 3.8, V
m

2  and I
m

2  are the effective values of both voltage and current.

\ Pav  Veff Ieff cos  

To get average power, we have to take the product of the effective values of both 

voltage and current multiplied by cosine of the phase angle between voltage and 

the current.

If we consider a purely resistive circuit, the phase angle between voltage and 

current is zero. Hence, the average power is

P V I I R
m m mav

= =
1

2

1

2

2
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If we consider a purely reactive circuit (i.e. purely capacitive or purely 

inductive), the phase angle between voltage and current is 90°. Hence, the 

average power is zero or Pav  0.

If the circuit contains complex impedance, the average power is the power 

dissipated in the resistive part only.

A voltage of v(t)   100 sin  t is applied to a circuit. The current 

flowing through the circuit is i(t)   15 sin ( t – 30°). Determine the average 

power delivered to the circuit.

Example 3.20

Solution The phase angle between voltage and current is 30°.

Effective value of the voltage Veff =
100

2

Effective value of the current  Ieff =
15

2

Average power Pav  Veff Ieff cos  

= ¥ ∞

=
¥

¥ =

100

2

15

2
30

100 15

2
0 866 649 5

cos

. . W

Determine the average power delivered to the circuit 

consisting of an impedance Z  5  j8 when the current flowing through the 

circuit is I  5 30°.

Example 3.21

Solution The average power is the power dissipated in the resistive part only.

or P
I
Rm

av
=

2

2

Current Im  5A

 P
av

W= ¥ =
5

2
5 62 5

2

.

3.4.3 Apparent Power and Power Factor

The power factor is useful in determining useful power (true power) transferred 

to a load. The highest power factor is 1, which indicates that the current to a load 

is in phase with the voltage across it (i.e. in the case of resistive load). When the 

power factor is 0, the current to a load is 90° out of phase with the voltage (i.e. 

in case of reactive load).

Consider the following equation

P
V Im m

av
W=

2
cos (3.9)
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In terms of effective values

P
V Im m

av
=Ê
ËÁ

ˆ
¯̃
Ê
ËÁ

ˆ
¯̃2 2
cos 

 Veff Ieff cos   W (3.10)

The average power is expressed in watts. It means the useful power transferred 

from the source to the load, which is also called true power. If we consider a dc 

source applied to the network, true power is given by the product of the voltage 

and the current. In case of sinusoidal voltage applied to the circuit, the product of 

voltage and current is not the true power or average power. This product is called 

apparent power. The apparent power is expressed in volt amperes, or simply VA.

 Apparent power  Veff Ieff

In Eq. 3.10, the average power depends on the value of cos  ; this is called the 

power factor of the circuit.

\ ( )= =Power factor
avpf
P

V Ieff eff

cos 

Therefore, power factor is defined as the ratio of average power to the 

apparent power, whereas apparent power is the product of the effective values of 

the current and the voltage. Power factor is also defined as the factor with which 

the volt amperes are to be multiplied to get true power in the circuit.

In the case of sinusoidal sources, the power factor is the cosine of the phase 

angle between voltage and current

pf  cos  

As the phase angle between voltage and total current increases, the power factor 

decreases. The smaller the power factor, the smaller the power dissipation. The 

power factor varies from 0 to 1. For purely resistive circuits, the phase angle 

between voltage and current is zero, and hence the power factor is unity. For purely 

reactive circuits, the phase angle between voltage and current is 90°, and hence 

the power factor is zero. In an RC circuit, the power factor is referred to as leading

power factor because the current leads the voltage. In an RL circuit, the power factor 

is referred to as lagging power factor because the current lags behind the voltage.

A sinusoidal voltage v  50 sin  t is applied to a series RL 

circuit. The current in the circuit is given by i  25 sin ( t  53°). Determine 

(a) apparent power (b) power factor and (c) average power.

Example 3.22

Solution (a) Apparent power P  Veff Ieff

= ¥

=
¥

=

V

VA

m mI

2 2

50 25

2
625
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(b) Power factor  cos   

where   is the angle between voltage and current

    53°

 power factor  cos   cos 53°  0.6

(c) Average power Pav  Veff Ieff cos  

 625  0.6  375 W

Find the total current and the power consumed by the circuit.

+ -

5

6

Ω

- 8

5

200 Ð0 V

Fig. 3.36

Example 3.23

Solution Total impedance of the circuit,

ZT  (5  j5) || (6  j8)  10

ZT  16.15  j0.769

I
V

Z j
j= =

–
+

= -

= –- ∞

200 0

16 15 0 769
12 35 0 588

12 36 2 72

. .
. .

. .

A

Power consumed  I 2R

 (12.36)2  16.15  2467W

or VI cos  200  12.36  cos ( 2.72)  2467 W.

3.4.4 Real and Reactive Power

We know that the average power dissipated is

Pav  Veff [Ieff cos  ] (3.11)

From the impedance triangle shown in Fig. 3.37

cos =
R

Z
(3.12)

and Veff Ieff Z (3.13)
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If we substitute Eqs (3.12) and (3.13) in 

Eq. (3.11), we get

P I Z I
R

Z
eff effav = È

ÎÍ
˘
˚̇

  I 2
eff R watts (3.14)

This gives the average power dissipated in 

a resistive circuit.

If we consider a circuit consisting of a 

pure inductor, the power in the inductor

Pr  ivL (3.15)

= iL
di

dt

Consider i  Im sin ( t   )

Then Pr  I 2
m sin ( t   ) L  cos ( t   )

= +
I

L t
m

2

2
2( )sin ( )   

 Pr  I 2
eff ( L) sin 2 ( t   ) (3.16)

From the above equation, we can say that the average power delivered to the 

circuit is zero. This is called reactive power. It is expressed in volt-amperes 

reactive (VAR).

Pr  I 2
eff XL VAR (3.17)

From Fig. 3.37, we have

XL  Z sin  (3.18)

Substituting Eq. 3.18 in Eq. 3.17, we get

Pr  I 2
eff Z sin  

   (Ieff Z)Ieff  sin  

   Veff Ieff sin   VAR

3.4.5 The Power Triangle

A generalised impedance phase diagram is shown in Fig. 3.38. A phasor relation 

for power can also be represented by a similar diagram because of the fact that 

true power Pav and reactive power Pr differ from R and X by a factor I 2
eff , as 

shown in  Fig. 3.38.

The resultant power phasor I 2
eff Z, represents the apparent power Pa.

Fig. 3.37
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At any instant in time, Pa is the total power that appears to be transferred between 

the source and reactive circuit. Part of the apparent power is true power and 

part of it is reactive power. Absolute value of complex power is called apparent 

power.

 Pa  I 2
eff Z

Fig. 3.38 Fig. 3.39

The power triangle is shown in Fig. 3.39.

From Fig. 3.39, we can write

Ptrue  Pa cos  

or average power Pav  Pa cos  

and reactive power Pr  Pa sin  

In an electrical circuit R, L and C are connected in parallel. 

R = 10 , L = 0.1H, C = 100 F. The circuit is energized with a supply at 230 V, 

50 Hz. Calculate

(a) Impedance

(b) Current taken from supply

(c) p.f. of the circuit

(d) Power consumed by the circuit

Example 3.24

Solution The circuit is as shown in Fig. 3.40.

The impedance of 3 branches are

Z1   10 

Z2 j2 fL  2       50   0.1  j31.41 

Z
j

fc

j
j

3 6
2 2 50 100 10

31 84=
-

=
-

¥ ¥ ¥ ¥
= --  

. W

Fig. 3.40
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(a) Impedance of circuit Z
Z Z Z

= + +
È

Î
Í

˘

˚
˙

-
1 1 1

1 2 3

1

= + +
-

È

Î
Í

˘

˚
˙

ª

-
1

10

1

31 41

1

31 84

10

1

j j. .

W

(b) Current taken from supply I
V

Z
A= =

– ∞
= – ∞

230 0

10
23 0. i.e. 23 A

(c) p.f. of the circuit   cos    1

(d) Power consumed by the circuit

Real power consumed  I2R   232  10   5.3 kW

Reactive power consumed   0 KVAR

A coil of resistance l0 V and an inductance of 0.1 H is connected 

in series with a capacitor of capacitance 150  F a cross at 200 V, 50  Hz supply. 

Calculate (i) impedance 

(ii) current (iii) power and 

power factor of the circuit.

Example 3.25

200 V

50 Hz

10 W 0.1 H

150 mF

Fig. 3.41

Solution (i) Total impedance

Z R j L
j

c
= + - 

 

  10  j31.45  j21.22

  10  j10.194

= 14 279 45 55. .

 (ii) Current I
V

Z
=

=
∞

∞
200 0

14 279 45 55. .

= - ∞14 45 55.

 (iii) Power factor   cos (45.55 )

  0.7 lagging

 Real power  VI cos  

  200   14   0.7
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 1.9 kW

Reactive power  VI sin  

 200   14   sin ( 45.55)

  1.998 KVAR

“ 1” Sign indicates that it absorbs the reactive power.

Two coils A and B have resistance of 12 V and 6 Vand

inductances of 0.02 and 0.03 H respectively. These are connected in parallel 

and a voltage of 200 V at 50 Hz is applied to their combination. Find

(a) Current in the each coil.

(b) The total current and the

(c) The power factor of the circuit.

(d) Power consumed by each coil and total power. [JNTU June 2009]

Example 3.26

Solution

Fig. 3.42

Impedance of coil A (12  j  50  0.02  2 )   (12  j6.28)  .

Impedance of coil B  (6  j  50  0.03  2 )   (6  j9.42)  .

(a)   Current in coil A amp amp

amp

=
+

= -

= -

200

12 6 28
14 767 27 63

13 083 6 848

j

j

.
. .

( . . )

–  

       Current in coil B amp amp

amp

=
+

= -

= -

200

6 9 42
17 907 57 51

9 619 15 104

j

j

.
. .

( . . )

–  

(b)   The total current [(13.083  9.619) j(6.848  15.104)] amp

 (22.702   j21.952) amp

 31.579– 44.04  amp

(c)   Power factor  cos ( 44.04 )    0.719
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(d)   Real power consumed by coil  A 200 14.769 cos (27.63 ) watt

 2616.59 watt

          Real power consumed by coil B  200  17.907  cos ( 57.51 ) watt

 1923.76 watt

 Real power consumed by the total network

 200  31.579  cos (44.04 ) watt

 4540.14 watt

  Reactive power consumed by coil A 200  14.767  sin (27.63 ) VAR

 1369.67 VAR

  Reactive power consumed by coil B 200 17.907 sin ( 57.51 ) VAR

  3020.85 VAR

  Reactive power consumed by the total network

 200  31.579  sin (44.04 ) VAR

 4390.49 VAR

Find complex 

power in the following circuit.

[JNTU May/June 2004]

Example 3.27

Fig. 3.43

Solution Taking the source voltage as reference

V

I
j j

j

j

= –

=
–

+
+ -

+

= + = –

200 0

200 0

10
6 8 3 4

9 4

13 396 1 886 13 52 8

V

( )( )

( )

. . . ∞∞

Complex power  VI*

   (200 – 0)(13.52 –  8 )

S  VI*  2704 –  8  VA

Complex power (P  jQ)  2704 –  8°  (2677.68  j376.32)

P  2677.68 W; Q  376.32 VAR leading.
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In the circuit shown in 

Fig. 3.44, a voltage of v(t)   50 sin ( t   30 )

is applied. Determine the true power, reactive 

power and power factor.

Example 3.28

Fig. 3.44

Solution The voltage applied to the circuit is

 v(t)   50 sin ( t   30 )

The current in the circuit is

I
V

Z j
= =

–
+

=
–
–

50 30

10 30

50 30

31 6 71 56

o o

o
. .

    1.58  – 41.56  A

The phasor diagram is shown in Fig. 3.45.

The phase angle between voltage and current    71.56 

Power factor   cos    cos 71.56   0.32

True power or average power

Pav  Veff Ieff cos  

  

=
¥
¥

∞
50 1 58

2 2

.
 cos 71.56

     12.49 W

Reactive power  Veff Ieff sin  

=
¥
¥

∞
50 1 58

2 2
71 56

.
sin .

  37.47 VAR

Determine the circuit constants in 

the circuit shown in Fig. 3.46, if the applied voltage to 

the circuit v(t)   100 sin (50t   20 ). The true power 

in the circuit is 200 W and the power factor is 0.707 

lagging.

Example 3.29

Fig. 3.46

Solution Power factor   cos    0.707

\ The phase angle between voltage and current

    cos–1 0.707   45 

Here the current lags behind the voltage by 45 .

30°

41.56°

V

I

Fig.  3.45
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Hence, the current equation is i(t)  Im sin (50t – 25 )

True power  Veff Ieff cos    200 W

I
V

eff
eff

=
200

cos 

=
¥

=
200

100 2 0 707
4

( / ) .
A

Im = ¥ =4 2 5 66. A

\ The current equation is i(t)   5.66 sin (50t – 25 )

The impedance of the circuit

Z
V

I
= =

–
–-

( / )

( . / )

100 2 20

5 66 2 25

o

o

\ Z   17.67  45   12.5  j12.5

Since Z  R   jXL   12.5  j12.5

\ R   12.5 ohms, XL   12.5 ohms

 XL   L   12.5

L = =
12 5

50
0 25

.
. H

A voltage v(t)   150 

sin 250t is applied to the circuit shown 

in Fig. 3.47. Find the power delivered to 

the circuit and the value of inductance in 

Henrys.

Example 3.30 10 Ω

v(t)

j 15 Ω

Fig. 3.47

Solution Z   10  j15  

The impedance Z   18  56.3 

The impedance of the circuit Z
V

I
=

18 56 3
o

– ∞ =
–

.
( / )150 2 0

I

\ Phasor current  I =
–

= –- ∞
150 2

18 56 3
5 89 56 3

/

.
. .

o
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The current equation is i(t)    5.89 2 sin (250t – 56.3 )

  8.33 sin (250t – 56.3 )

The phase angle between the current and the voltage

    56.3 

The power delivered to the circuit

Pav  VI cos  

 
150

2

8 33

2
¥ ∞

.
.cos 56 3

  346.6 W

The inductive impedance X
L
  15  

\  L   15

\ L = =
15

250
0 06. H

Determine the 

power factor, true power, reactive 

power and apparent power in the 

circuit in Fig. 3.48.

Example 3.31 100 Ω

Vs
50 V

– j200 Ω

Fig. 3.48

Solution The impedance of the circuit

Z R X
C

= +2 2

= + = W( ) ( ) .100 2002 2 223 6

The current I
V

Z

S= = =
50

223 6
0 224

.
.

The phase angle

 =
-Ê

ËÁ
ˆ
¯̃

=
-Ê

ËÁ
ˆ
¯̃
= - ∞

-

-

tan

tan .

1

1 200

100
63 4

X

R

C

\ The power factor pf   cos    cos (63.4 )   0.448

The true power Pav  VI cos  

  50   0.224   0.448   5.01 W
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The reactive powerPv I 2 XC

 (0.224)2  200  10.03 VAR

The apparent power

Pa  I 2Z  (0.224)2  223.6  11.21 VA

In a certain RC circuit, the true power is 300 W and the reactive 

power is 1000 W. What is the apparent power?

Example 3.32

Solution The true power Ptrue or Pav  VI cos  

 300 W

The reactive power Pr  VI sin  

 1000 W

From the above results

tan . = =
1000

300
3 33

The phase angle between voltage and current,   tan–1 3.33  73.3 

The apparent power P VIa = = =
300

73 3
1043 9

cos .
.

o
VA

A sine wave of v(t)  200 sin 50t is applied to a 10   resistor 

in series with a coil. The reading of a voltmeter across the resistor is 120 V and 

across the coil, 75 V. Calculate the power and reactive volt-amperes in the coil 

and the power factor of the circuit.

Example 3.33

Solution The rms value of the sine wave

V = =
200

2
141 4. V

Voltage across the resistor,VR  120 V

Voltage across the coil, VL  75 V

\ IR  120 V

The current in resistor, I = =
120

10
12A

Since IXL  75 V

\ XL = =
75

12
6 25.  

Power factor, pf
R

Z
= =cos 
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where Z   10  j6.25   11.8  32 

\ cos
.

. = = =
R

Z

10

11 8
0 85

True power Ptrue  I 2 R   (12)2   10   1440 W

Reactive power Pr  I 2 XL   (12)2   6.25   900 VAR

For the circuit 

shown in Fig. 3.49, determine 

the true power, reactive power 

and apparent power in each 

branch. What is the power 

factor of the total circuit?

Example 3.34

Fig. 3.49

Solution In the circuit shown in Fig. 3.49, we can calculate Z1 and Z2.

Impedance Z j
1

100 15

50 10
2 5 1 99 0 174=

–
–

= – = +( )
o

o

o
. .  

Impedance Z j
2

100 15

20 30
5 15 4 83 1 29=

–
–

= –- = -( )
o

o

o
. .  

True power in branch Z1 is Pt1
 I  21 R   (50)2   1.99   4975 W

Reactive power in branch Z1, Pr1
 I  21 XL

  (50)2   0.174   435 VAR

Apparent power in branch Z1, Pa1
 I  21 Z1

  (50)2   2

  2500   2   5000 VA

True power in branch Z2, Pt2
 I2

2 R

  (20)2   4.83   1932 W

Reactive power in branch Z2, Pr2
 I  22 XC

  (20)2   1.29   516 VAR

Apparent power in branch Z2, Pa2
 I2

2 Z2

  (20)2   5   2000 VA

Total impedance of the circuit, Z
Z Z

Z Z
=

+
1 2

1 2
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=
– ¥ ¥–-

+ + -

=
–-
-

=
–

2 5 5 15

1 99 0 174 4 83 1 29

10 10

6 82 1 116

10

o o

o

. . . .

. .

j j

j

--
–-

= –-
10

6 9 9 29
1 45 0 71

o

o

o

. .
. .

The phase angle between voltage and current,    0.71 

\  Power factor  pf   cos  

  cos 0.71   0.99 leading

A voltage of v(t)   141.4 sin  t is applied to the circuit shown 

in Fig. 3.50. The circuit dissipates 450 W at a lagging power factor, when the 

voltmeter and ammeter readings are 100 V and 6 A, respectively. Calculate the 

circuit constants.

Fig. 3.50

Example 3.35

Solution The magnitude of the current passing through (10  jX2)   is

I   6 A

The magnitude of the voltage across the (10  jX2) ohms, V   100 V. The 

magnitude of impedance (10  jX2) is V/I.

Hence 10
100

6
16 67

16 67 10 13 33

2
2
2

2
2 2

+ = =

= - =

X

X

.

( . ) ( ) .

 

 \

Total power dissipated in the circuit  VI cos    450 W

\ V = =
141 4

2
100

.
V

I   6 A

 100   6   cos    450
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The power factor pf = = =cos . 
450

600
0 75

    41.4 

The current lags behind the voltage by 41.4 

The current passing through the circuit, I   6  – 41.4 

The voltage across (10  j13.33)  , V   6  – 41.4   16.66  53.1 

  100  11.7 

The voltage across parallel branch, V1   100  0  – 100  11.7 

  100 – 97.9 – j20.27

  (2.1 – j20.27)V   20.38  – 84.08 

The current in ( j20) branch, I2
20 38 84 08

20 90
1 02 5 92=

–-
–-

= –+
. .

. .

o

o

o

The current in (R1 – jX1) branch, I1

    6  – 41.4  – 1.02  5.92   4.5 – j3.97 – 1.01 – j0.1

    3.49 – j4.07   5.36  – 49.39 

The impedance Z
V

I
1

1

1

20 38 84 08

5 36 49 39
= =

–-
–-

. .

. .

o

o

  3.8  – 34.69   (3.12 – j2.16)  

Since  R1  jX1   (3.12 – j2.16)  

R1   3.12  

X1   2.16  

Determine 

the value of the voltage 

source and power factor in 

the following network if it 

delivers a power of 100 W to 

the circuit shown in Fig. 3.51. 

Find also the reactive power 

drawn from the source.

Example 3.36

Fig. 3.51

Solution Total impedance in the circuit,

Z
j j

j j

j

j

eq

o

= +
+( ) -( )
+ -

= +
-
-

= +
–-

–-

5
2 2 5

2 2 5

5
10 10

2 3
5

14 14 45

3 6 56

.

. .33
5 3 93 11 3

o

o= + –. .

  5   3.85  j0.77   8.85  j0.77   8.88  4.97 
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Power delivered to the circuit, PT  I 2RT   100 W

\ I 2   8.85   100

Current in the circuit, I = =
100

8 85
3 36

.
. A

Power factor  pf
R

Z
= =

= =

cos

.

.
.

 

8 85

8 88
0 99

Since VI cos    100 W

 V   3.36   0.99   100

\ V =
¥

=
100

3 36 0 99
30 06

. .
. V

The value of the voltage source, V   30.06 V

Reactive power Pr  VI sin  

  30.06   3.36   sin (4.97 )

  30.06   3.36   0.087   8.8 VAR

For the circuit shown in Fig. 3.52, determine the circuit 

constants when a voltage of 100 V is applied to the circuit, and the total power 

absorbed is 600 W. The circuit constants are adjusted such that the currents in 

the parallel branches are equal and the voltage across the inductance is equal 

and in quadrature with the voltage across the parallel branch.

Fig. 3.52

Example 3.37

Solution Since the voltages across the parallel branch and the inductance are in 

quadrature, the total voltage becomes 100 45  as shown in Fig. 3.53.

Total voltage is 100  45  V   j0   0  jV
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From the above result, 70.7  j70.7  V   jV

\ V   70.7

If we take current as the reference, then current 

passing through the circuit is I  0 . Total power 

absorbed by the circuit  VI cos    600 W

or 100  I   cos 45   600 W

\ I   8.48 A

Hence, the inductance, X
V

I
1

90

0

70 7 90

8 48
8 33 90=

–
–

=
–

= –
o

o

o

o.

.
.

\ X1   8.33  

Current through the parallel branch, R1 is I/2   4.24 A

Resistance, R
V

I
1

0

2 0

70 7

4 24
16 6=

–
–

= =
/

.

.
.  

Current through parallel branch R2 is I/2   4.24 A

Resistance is R
2

70 7

4 24
16 67= =

.

.
.  

Determine 

the average power delivered 

by the 500  0  voltage 

source in Fig. 3.54 and also 

dependent source.

Example 3.38

Fig. 3.54

Solution The current I can be determined by using Kirchhoff’s voltage law.

I
v

=
– -
+

500 0 3

7 4

4

o

where v4   4I

I
I

=
–

-
500 0

11

12

11

o

 I   21.73  0 

Power delivered by the 500 0° voltage source =
¥

=
500 21 73

2
5 432

.
. kW

Power delivered by the dependent voltage source

=
¥

=
¥ ¥

=
3

2

3 4

2
2 833

4
v I I I

. kW

Fig. 3.53
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Find the average power delivered by the dependent voltage 

source in the circuit shown in Fig. 3.55.

Fig. 3.55

Example 3.39

Solution The circuit is redrawn as shown in Fig. 3.56.

Fig. 3.56

Assume current I1 flowing in the circuit.

The current I1 can be determined by using Kirchhoff’s voltage law.

I
I

j

I
I

j j

1
1

1
1

100 20 10 5

5 4

50

5 4

100 20

5 4

=
– + ¥

+

-
+

=
–
+

o

o

 I1   2.213  –154.9 

Average power delivered by the dependent source

= =

=

=
¥

=

V I

V I

m m

2

10

2

50 2 213

2
122 43

5 1

2

cos

cos

( . )
.

q

q

W
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For the circuit shown in Fig. 3.57, find the average power 

delivered by the voltage source.

Fig. 3.57

Example 3.40

Solution Applying Kirchhoff’s current law at node

V V

j

V V

j

x- –
+

+
+

-
-

=
100 0

2 1 3

50

4
0

o

V
V

j
x =

+1 3
volts

Substituting in the above equation, we get

V V

j

V

j j j

- –
+

+
+
-

-
+ -

=
100 0

2 1 3 4

50

1 3 4
0

o V

( )( )

V   14.705  157.5 

I
V

=
- –

=
– - –

= –
100 0

2

14 705 157 5 100 0

2
56 865 177 18

o o o
o. .

. .

Power delivered by the source =
¥100 56 865 177 18

2

. cos . o

  2.834 kW

For the 

circuit shown in Fig. 3.58, 

find the average power 

delivered by the dependent 

current source.

Example 3.41

Fig. 3.58

Solution Applying Kirchhoff’s current law at node

V
V

V- –
- + =

20 0

10
0 5

20
01

o

.

where V1   20  0  – V



Steady State Analysis of AC Circuits 3.43

Substituting V1 in the above equation, we get

V  18.46  0 

V1  1.54  0 

Average power delivered by the dependent source

V I
m m

cos . . .
.

 

2

18 46 0 5 1 54

2
7 107=

¥ ¥
= W

In the circuit shown in Fig. 3.59, calculate,

(i) The total impedance

(ii) The total current

(iii) Power factor

(iv) The total S, P and Q

(v) The total admittance. Also, draw vector diagram. [JNTU May/June 2006]

Ω

Ω

Ω Ω

Ω Ω Ω

40    

−

Fig. 3.59

Example 3.42

Solution (i)

2

2

2 5

1 1 1

V, 50 Hz, 1- supply

Fig. 3.60
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Admittance between A and B is

1

2 5

1

1 2

1

2

1

5 38 68 2

1

2 24 63 4
0 5

0 069 0 17 0

+
+

-
+

= +
-

+

= - +

j j

j

. . . .
.

. . .

– –  

1199 0 399 0 5

0 768 0 229 0 8 16 6

+ +

= + =

j

j

. .

. . . .–  

Impedance between A and B  
1

0 8 16 6
1 25 16 6

. .
. .

 

 
 

 = -

Total impedance  1 1 1 198 0 36 2 29 16 23+ + - = Wj j. . . . 
 

   (ii) Total current  
40

2 29 16 23
17 47 16 23

. .
. .

–
= –-∞

∞A

(iii) Power factor  cos 16.23  0.96 lagging

  (iv) P  VI cos  

 40  17.47 cos 16.23  670.95 W

Q  VI sin  

 40  17.47 sin 16.23  195.31 VAR

S  P jQ   640.95  j195.31

= – ∞698 798 16 23. . VA.

    (v) Total admittance = – ∞
= –- ∞

1

2 29 16 23
0 43 16 23

. .
. . n

The voltage of a circuit is V   200 sin ( t  30 ) and the 

current is I  50 sin ( t  60 ). Calculate

  (i) the average power, reactive volt-amperes and apparent power

(ii) the circuit elements if   100  rad/sec [JNTU April/May 2007]

Example 3.43

Solution V 200 sin ( t  30 )

i  50 sin ( t  60 )

(i) Avg. power  VmIm cos  

= ¥ -

=

200

2

50

2
60 30

4330 127

cos( )

.Pav W.

Reactive volt ampere  VmIm sin  

= ◊ -

=

200

2

50

2
60 30

2500

sin( )

Pr VAR

16.23°
40Ð0°

17.47I

V

Fig. 3.61

30

60

Fig. 3.62
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Apparent power 

= = =
pav

cos

.

cos 

4330 127

30
5000

 
VA

(ii)  The current leads the voltage by 30 . Hence 

the circuit must contain R and C.

tan tan 
  

= fi ∞ =
¥

1
30

1

100RC RC

.
.

 

fi = fi =

= = +

0 0055
0 0055

12

RC C
R

Z
Vm

I
R

cm

ÊÊ
ËÁ

ˆ
¯̃

= +
¥

Ê
ËÁ

ˆ
¯̃

= fi = =

2

2

2
200

50 100 0 0055

4 1 155
4

1 155
3 46

R
R

R

 .

.
.

.R WW

= =and mFC
0 0055

3 46
1 59

.

.
.

 In the 

circuit shown in Fig. 3.64, 

what 50-Hz voltage is to 

be applied across A B 

terminals so that a current 

of 10 A will flow in the 

capacitor.

Example 3.44

Fig. 3.64

Ω

Ω

Ω

Solution

Ω

Ω

Ω

Fig.3.65

Z j j

Z
j

j

Z j

1

2

3

5 2 50 0 0191 5 6

7
1

2 50 398
7 8

8 2 50

= + ¥ ¥ = + W

= +
¥ ¥

= - W

= + ¥

 

  

 

.

¥¥ = + W0 0318 8 10. j

Given that current through the capacitor is 10 A I2. Hence voltage across Z2 is

V1  10  Z2  10(7  j8)  70  j80 V

Fig. 3.63
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The current through the other branch is

I
V

Z

j

j
j

1
1

1

70 80

5 6
2 13 13 44

=

=
-
+

= - -. . A

Total current in the network is

I  I1  I2
    2.13 – j13.44  10

    7.87  j13.44 A

Let V2 be the voltage across Z3.

V2  IZ3

 (7.87  j13.44) (8  j10)

 197.38 – j28.85 V

The voltage to be applied across AB terminals so that a current of 10 A will 

flow in the capacitor V  V1  V2

 70 – j80  197.38 – j28.85

 267.38 – j108.85

= - ∞288 68 22 15. . .V

Find the values of R 

and C in the circuit shown in Fig. 3.66 

so that Vb  4Va and Va and Vb are in 

phase quadrature.

[JNTU May/June 2002]

Example 3.45
W W

Fig. 3.66

Solution V I Ib = + =6 8 10
2 2

Z j Z R X

V I R X V V

I I R X

b a a

a a b a

a

= + - – ∞ = +

= + =

= ¥ + fi

6 8 10 53 13

4

10 4

2 2

2 2

2 2

. ,

,

RR X

R X

a

a

2 2

2 2

2 5

6 25

+ -

+ =

.

.

Let Za be at an angle   with reference. Given 

that Va and Vb are in phase quadrature.

\ + = fi =

= =

= = W

∞ ∞ ∞  

 

 

53 13 90 36 87

2

1 5

. .

cos

sin .

R Z

X Z

a

a a

Fig. 3.67



Steady State Analysis of AC Circuits 3.47

fi = =
¥ ¥

=C
f Xa

1

2

1

2 50 1 5
2 12

  .
. mF

Determine 

the branch and total active 

and reactive powers in the 

parallel circuit shown in

Fig. 3.68. Use j notation.

 [JNTU May/June 2002]

Example 3.46

Fig. 3.68

Solution Branch I

I1   10 A –0 

Active power

 I 2R   102 (10)

  1 kW

Reactive power   0

Branch II

I
j

j
2

100

8 6
10 36 86 8 6=

+
= –- ∞ = -.

Complex power   VI*   100 (8  j6)

  800  j 600

Active power   0.8 kW

Reactive power   0.6 KVAR

  Total active power in the circuit   1.8 kW

  Total reactive power in the circuit   0.6 KVAR

Find the branch 

currents, total current and the total 

power in the circuit shown in Fig. 

3.69. [JNTU May/June 2004]

Example 3.47

∠ 10 Ω

Fig. 3.69

Solution Branch currents I
j

j
j

I
j

j
j

I

1

2

3

100 0

5 5
10 10

100 0

4 3
16 12

=
+
-

= +

=
+
+

= -

==
+

= +
100 0

10
10 0

j
j
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Total current ( )

. .

I I I I

j

= + +

= -

= - ∞

1 2 3

36 2

36 055 3 179

Total power  VI  cos  

 100  36.055  cos 3.179 

 3599.95 watts.

Find the total current and the power consumed by the circuit.

[JNTU May/June 2004]

+ -

5

6

Ω

- 8

5

200 Ð0 V

Fig. 3.70

Example 3.48

Solution Total impedance of the circuit,

ZT  (5  j5) || (6  j8)  10

ZT  16.15  j0.769

I
V

Z j

j

T

= =
–

+ +

= -

= – - ∞

200 0

16 5 0 769

12 35 0 588

12 36 2 72

.

. .

. .

A

Power consumed  I 2R

 (12.36)2  16.15  2467 W

or VI cos   200  12.36  cos ( 2.72)

 2467 W.

Find the value of R1 and X1 when a lagging current in the circuit 

gives a power of 2 kW. [JNTU May/June 2004]

Example 3.49
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Fig. 3.71

Solution  Let us take the voltage across (10  j13.3 ) impedance as reference and 

calculate the total current I.

I
j

j=
–

+
= - = –- ∞

200 0

10 13 3
7 223 9 606 12 02 53 06

.
. . . . A

 Let us assume the phase angle between supply voltage and total current as  

which is equal to (   53.06 ).

Hence, real power in the circuit 2000   200   12.02 cos (   53.06)

Therefore,    19.5  and source voltage V   200 –  19.5 

Voltage across R1  jX1   200 –  19.5   200 – 0 

  11.47  j 66.76

I
j

j
j

I I I

j

2

1 2

11 47 66 76

20
3 338 0 5735

7 223 9 606 3 3

=
- -

-
= -

= -

= - -

. .
. .

. . . 338 0 5735

9 8325 66 72

+

= -

j .

. . 
n

Z
V

I

j

j

1

1

11 47 66 76

9 8325 66 72

5 776 3 7543

= =
- -

–-

= -

. .

. .

. .

Thus, R1   5.776   and X1   3.7543  .

A metal filament lamp, rated at 750 watts, 100 V is to be 

connected in series with a capacitor across a 230 V, 60 Hz supply. Calculate

(a) the capacitance required, and

(b) the power factor. [JNTU May/June 2008]

Example 3.50
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Solution Given power across metal filament lamp   750 watts

Voltage across metal filament lamp   100 V

Supply voltage   230 V

Supply frequency   60 Hz

Resistance across metal filament lamp  

R
V

P
= = = W

2 2100

750
13 33

( )
.

Current through metal filament lamp  I
V

R
= = =

100

13 33
7 5

.
. Amp

Impedance in the circuit

Z R X
V

I

R X

X

C

C

C

= + =

+ = =

+ =

2 2

2 2

2 2

230

7 5
30 66

13 33 30 66

.
.

( . ) .

X
c

C F

F

C = fi =

fi = ¥

\ =

-

2 7 617
1

27 617

9 605 10

96 05

5

. . .

.

.

 

 Capacitance 

c

C

oos

Power factor

 

 

= =
+

=

= =

R

Z

R

R XC
2 2

13 33

30 66

0 43468

.

.

cos .

In the circuit (Fig. 3.73) shown, determine the voltage VAB to 

be applied to the circuit if a current of 2.5 A is required to flow in the capacitor. 

Determine also total power factor and total active and reactive powers. Draw the 

phasor diagram. [JNTU May/June 2006]

1 W -  5 W

4 W 2 W

Fig. 3.73

Example 3.51

Solution Vcd   2.5(1  j5)  I (4  j2)

(Assuming  “I” is the current through ‘4  j2’  )

Fig. 3.72
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¢ =
-

+
= – ∞

= - -

I
2 5 1 5

4 2
2 85

0 75 2 75

. ( )
.

. .

j

j

j

-105.25

  

I j I I

j

V I

T T

AB

= - - = + ¢

= - = – ∞

=

2 5 0 75 2 75 2 5

1 75 2 75 3 26

. . . ( . )

. . .

 

- 57.53

TT j j

j j j

( ) . ( )

( . . ) ( ) . ( )

. .

2 3 2 5 1 5

1 75 2 75 2 3 2 5 1 5

14 25 12 7

+ + -

= - + + -

= - 55 19 12 41 82

41 82

3 26
5 865

j

Z
V

I
AB

AB

T

= – ∞

= =
– ∞
– ∞

=

. .

.

.
.

-

-
-

19.12

57.53
–– ∞

= ∞

15 71

15 71

.

. 

Total power factor  cos   cos 15.71  0.962

Total active power

9 12 3 26 962 59 96

avg

=

= ¥ ¥ =

V IAB T cos

( )

. . . .

 

P

1 0 WW

Total reactive power

9 12 3 26 sin 15.71

=

= ¥ ¥

V I

P
AB T

r

sin

( )

. .

 

1 o ==

= = ¥ =

16 87

19 12 3 26 62 3112

.

. . .

VAR

Apparent power P V I VAa AB T

A current of 5 A flows 

through a non-inductive resistance in series 

with a chocking coil when supplied at 250V, 

50 Hz. If the voltage across the non inductive 

resistance is 125 V and that across that coil 

200 V, calculate the impedance, reactance 

and resistance of the coil, power absorbed by 

the coil and the total power draw the phasor diagram. [JNTU May/June 2006]

Example 3.52

Fig. 3.75

Solution Given |V
R
|  125 V

|V
L
|  200 V

|I|  5 A

V I R R I

V I X I j L V

R

L L L

= = fi = = W =

= = \ =

fi

| | (

| | | | ( ) | |

125
125

5
25 5

200

V A)

V

n

 

XX LL = fi ¥ =40 5 2 50 200( ) 

= 15.71°q

Fig. 3.74
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fi = =

+ = ∞

L

Z = j

200

500
127 3

25 40 47 16 57 99

 
.

. .

mH

Power absorbed by coil =

= ¥ ¥

=

1

2

1

2
0 1273 25

1 59

2
LI

.

. watts

True power Pav  VI cos    250   5   cos 57.99 

    662.58 watts

Reactive power, P
r
 I 2X

L
  25   40

   1000 VAR

Apparent power, P
a
 I 2Z   25   47.16

   1179 VA

In the following circuit (Fig. 3.77), when 220 V ac is applied 

across A and B, current drawn is 20 A and power input is 3000 W. Find the value 

of Z and its parameters. [JNTU May/June 2006]

5 Ω

5 Ω

20 A

220 V

20 Ω

10 Ω

Fig. 3.77

Example 3.53

Solution

Fig. 3.78

5 Ω

5 Ω

20

220 V

20 Ω

10 Ω

Fig. 3.76
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i
j

1

220

5 20
=

+
A

But i1  i2  20 A

i
j

i
Z j

2

2

20
220

5 20

220

5 10

= -
+

=
+ +

Also, (2)

(1)

From (1) and (2)

20
220

5 20

220

5 20

120 400

5 20

220

5 20

5700 360

-
+

=
+ +

- +
+

=
+ +

=
+

j Z j

j

j Z j

Z
j 00

120 400

4 33 15 55

16 14 105 56

- +

= - +

=

j

Z j

Z

. .

. .–  

When a 

voltage of 220 V ac supply 

connected across the AB 

terminals, the total power input 

is 3.25 kW and the current is 

20 A. Find the current through 

Z3. (Fig. 3.79)

[JNTU May/June 2006]

Example 3.54

Fig. 3.79

5Ω

5 Ω

20

220 V

20 Ω

10 Ω

Solution Voltage across (5 + j10)   branch

V  20 (5  j10)  223.6 –63.43  100  j200

I (5  j20)  100  j200  220.

(Let I be the current through 5  j20   branch)

I
j

j
i

I I iZ

=
-
+

= - -

= - = + = ∞

120 200

5 20
8 8

20 28 8 29 12 15 9
3

. .–

What is complex power? Explain in detail.

[JNTU May/June 2006]

Example 3.55
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Solution Complex power

Active power (P):

The active power or real power in an a.c. circuit is given by the product of 

voltage, current and cosine of the phase angle. It is always positive

P  VI cos   watts

Reactive power (Q):

The reactive power in an a.c. circuit is given by the product of voltage, current 

and sine of the phase angle  .

If   is leading then reactive power is taken as  ve and it is capacitive.

If   is lagging then reactive power is taken as  ve and it is inductive

Q  VI sin   VARs.

Apparent power:

The apparent power in an a.c. circuit is the product of voltage and current. It is 

measured in voltamps.

S  VI volt amps.

The component I cos   Active component or real component or in phase 

component of a current.

The product of voltage and the above component (active component) gives active 

power. The component I sin   Reactive component or quadrature component 

of current.

Fig. 3.80

The produce of this component with voltage V gives the reactive power.

Power factor cos 
Real power

Apparent power
 =

The factor sin   is called the reactive factor.

Complex power  (Active power)  j (Reactive power)

The current in a given circuit is I  (12 – j5) A when the applied 

voltage is V  (160 – j120)V. Determine

(i) The complex expression for power

(ii) Power factor of the circuit

(iii) The complex expression for impedance of the circuit

(iv) Draw the phasor diagram.

[JNTU May/June 2006]

Example 3.56
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Solution (i) Pa  Veff Ieff VA

Par  Veff Ieff cos   watts

Pr  Veff Ieff sin   VAR

Z
V

I

j

j
j

I

P

= =
-
-

= -

=

= - ∞

\ =

160 120

12 5
14 91 3 786

13

15 38 14 25

. .

| |

. .

A

avg

–

II R

I X

P I Za

2

2

2

2519 79

639 834

2599 22

=

= =

= =

.

.

.

W

VAR

VA

Pr

Complex power  2519.79  j 639.834

(ii) Pf  cos   cos ( 14.25 )  0.969

(iii) Z  14.91  j3.786

Fig. 3.81

A series RLC circuit consists of resistor of 100  , an inductor 

of 0.318H and a capacitor of unknown value. When this circuit is energised by 

a 230 V, 50 Hz ac supply, the current was found to be 23  A. Find the value of 

capacitor and the total power consumed. [JNTU June 2009]

Example 3.57

Solution The circuit is series RLC and is shown in Fig. 3.82

XL = 2p f L

= 2p   50   0.318 = 99.9  
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100 W 0.318 H

23 A

230 V, 50 Hz230 V, 50 Hz

C 100 W j99.9 –jXC

Fig. 3.82

Total impedance Z =100 + j(99.9  XC)

Z
V

I

Z X

X

c

C

C

C

= = =

= + - =

=

=

=

230

23
10

100 99 9 10

0 41

1
0 41

7 7

2 2

 

 

 

( ) ( . )

.

.

.

 

66mF

Power consumed = I 2R = (23)2  100

= 52900 W

= 52.9 kW

Two circuits, the impedances of which Z1  (10  j15)   and 

Z2  (6  j8)   are connected in parallel. If the total current supplied is 15 A,

what is the power taken by each branch?

[JNTU Jan 2010]

Example 3.58

Solution

Equivalent impedance =
+

=
+ +
+ + +

=
- + +
+ +

Z Z

Z Z

j j

j j

j1 2

1 2

10 5 6 8

10 5 6 8

60 40 30 80

10 6

( )( ) ( ) ( )

( ) jj

j

j

( )

. .

5 8

20 110

16 13
5 42 40 60

+

+
+

= – ∞

ohm

= ohm

  Voltage across the network  (15  5.42 40.60°) volt

 81.3 40.60° volt

 Current through Z
Z

Z Z

j

j

1
2

1 2

15

6 8

16 13
15 7 28 14 04

=
+

¥

=
+
+

¥ = – ∞

( )

. .

amp

amp amp

 Current through Z
Z

Z Z

j

j

2
1

1 2

15

10 5

16 13
15 8 13 12 53

=
+

¥

=
+
+

¥ = –- ∞

( )

. .

amp

amp amp
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  Power taken by Z1  81.3  7.28  cos 26.2° watt

 529.38 watt

  Power taken by Z2  81.3  8.13  cos 53.13° watt

 396.58 watt

3.5 STEADY STATE AC MESH ANALYSIS

We have earlier discussed mesh analysis but have applied it only to resistive 

circuits. Some of the ac circuits presented in this chapter can also be solved 

by using mesh analysis. In Chapter 2, the two basic techniques for writing 

network equations for mesh analysis and node analysis were presented. These 

concepts can also be used for sinusoidal steady-state condition. In the sinusoidal 

steady-state analysis, we use voltage phasors, current phasors, impedances and 

admittances to write branch equations, KVL and KCL equations. For ac circuits, 

the method of writing loop equations is modified slightly. The voltages and 

currents in ac circuits change polarity at regular intervals. At a given time, the 

instantaneous voltages are driving in either the positive or negative direction. 

If the impedances are complex, the sum of their voltages is found by vector 

addition. We shall illustrate the method of writing network mesh equations with 

the following example.

Consider the circuit shown in Fig. 3.83, containing a voltage source and 

impedances.

Z1

I1 I2
V1

Z2 Z3

Fig. 3.83

The current in impedance Z1 is I1, and the current in Z2, (assuming a positive 

direction downwards through the impedance) is I1 – I2. Similarly, the current in 

impedance Z3 is I2. By applying Kirchhoff’s voltage law for each loop, we can 

get two equations. The voltage across any element is the product of the phasor 

current in the element and the complex impedance.

Equation for loop 1 is

I1Z1  (I1 – I2)Z2  V1 (3.19)

Equation for loop 2, which contains no source is

Z2(I2 – I1)  Z3I2  0 (3.20)
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By rearranging the above equations, the corresponding mesh current equations 

are

I1(Z1   Z2) – I2Z2  V1 (3.21)

–I1Z2   I2(Z2   Z3)   0 (3.22)

By solving the above equations, we can find out currents I1 and I2. In general, 

if we have M meshes, B branches and N nodes including the reference node, we 

assume M branch currents and write M independent equations; then the number 

of mesh currents is given by M  B – (N – 1).

Write the mesh 

current equations in the circuit 

shown in Fig. 3.84, and determine 

the currents.

Example 3.59

2 Ω6 Ω

j 3 Ωj 4 Ω

5 ∠0°V

Fig. 3.84

Solution The equation for loop 1 is

I1(  j4)   6(I1 – I2)   5 0 (3.23)

The equation for loop 2 is

6(I2 – I1)   (  j3)I2   (2)I2   0 (3.24)

By rearranging the above equations, the corresponding mesh current equations are

I1(6  j4) – 6I2   5 0 (3.25)

–6I1   (8  j3)I2   0 (3.26)

Solving the above equations, we have

I
j

I

j j
I I

I
j

1 2

2 2

2

8 3

6

8 3 6 4

6
6 5 0

8 3 6

=
+( )È

Î
Í

˘

˚
˙

+( ) +( )È

Î
Í

˘

˚
˙ - = –

+( ) +

°

jj4

6
6 5 0

( )
-

È

Î
Í

˘

˚
˙ = – °

I2 [10.26  54.2  – 6  0 ]   5 0 

I2 [(6  j8.32) – 6]   5 0 

I

I

2

1

5 0

8 32 90
0 6 90

8 54 20 5

6
0 6 90

=
–
–

= –-

=
–

¥ –-

°

°
°

°
°

.
.

. .
.
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I1  0.855  –69.5 

Current in loop 1, I
1

0 855 69 5= - ∞. .

Current in loop 2, I2  0.6  – 90 

3.5.1 Mesh Equations by Inspection

In general, mesh equations can be written by observing any network. Consider 

the three mesh network shown in Fig. 3.85.

Fig. 3.85

The loop equations are

I1 Z1  Z2(I1 – I2)  V1 (3.27)

Z2(I2 – I1)  Z3 I2  Z4(I2 – I3)  0 (3.28)

Z4(I3 – I2)  Z5 I3  –V2 (3.29)

By rearranging the above equations, we have

(Z1  Z2)I1 – Z2 I2  V1 (3.30)

–Z2 I1  (Z2  Z3  Z4)I2 – Z4I3  0 (3.31)

–Z4 I2  (Z4  Z5)I3  –V2 (3.32)

In general, the above equations can be written as

Z11 I1  Z12 I2  Z13 I3  Va (3.33)

 Z21 I1  Z22 I2  Z23 I3  Vb (3.34)

 Z31 I1  Z32 I2  Z33 I3  Vc (3.35)

If we compare the general equations with the circuit equations, we get the self 

impedance of loop 1

Z11  Z1  Z2

i.e. the sum of the impedances through which I1 passes. Similarly, Z22  (Z2  Z3

 Z4), and Z33  (Z4  Z5) are the self impedances of loops 2 and 3. This is 

equal to the sum of the impedances in their respective loops, through which

I2 and I3 passes, respectively.

Z12 is the sum of the impedances common to loop currents I1 and I2. Similarly 

Z21 is the sum of the impedances common to loop currents I2 and I1. In the circuit 

shown in Fig. 3.85, Z12  – Z2, and Z21  – Z2. Here, the positive sign is used if 
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both currents passing through the common impedance are in the same direction; 

and the negative sign is used if the currents are in opposite directions. Similarly, 

Z13, Z23, Z31, Z32 are the sums of the impedances common to the mesh currents 

indicated in their subscripts. Va, Vb and Vc are sums of the voltages driving their 

respective loops. Positive sign is used, if the direction of the loop current is the 

same as the direction of the source current. In Fig. 3.85, Vb   0 because no source 

is driving loop 2. Since the source, V2 drives against the loop current I3, Vc   –V2.

For the 

circuit shown in Fig. 3.86, 

write the mesh equations 

using the inspection method.

Example 3.60

Fig. 3.86

Solution The general equations are

Z11 I1   Z12 I2   Z13 I3  Va (3.36)

 Z21 I1   Z22 I2   Z23 I3  Vb (3.37)

 Z31 I1   Z32 I2   Z33 I3  Vc (3.38)

Consider Eq. 3.36

 Z11   the self impedance of loop 1   (5   3 – j4)  

 Z12   the impedance common to both loop 1 and loop 2   –5  

The negative sign is used because the currents are in opposite directions.

 Z13   0, because there is no common impedance between loop 1 and loop 3.

 Va   0, because no source is driving loop 1.

\ Equation 3.36 can be written as

(8 – j4)I1 – 5I2   0 (3.39)

Now, consider Eq. 3.37

 Z21   –5, the impedance common to loop 1 and loop 2.

 Z22   (5  j5 – j6), the self impedance of loop 2.

 Z23   –(– j6), the impedance common to loop 2 and loop 3.

 Vb   –10  30 , the source driving loop 2.

The negative sign indicates that the source is driving against the loop current, I2.

Hence, Eq. 3.37 can be written as

- + - + = - ∞5 5 1 6 10 301 2 3I j I j I( ) ( ) (3.40)
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Consider Eq. 3.38

 Z31   0, there is no common impedance between loop 3 and loop 1

 Z32   –(– j6), the impedance common to loop 2 and loop 3

 Z33   (4 – j6), the self impedance of loop 3

 Vb   20  50 , the source driving loop 3

The positive sign is used because the source is driving in the same direction as 

the loop current 3. Hence, the equation can be written as

(j6)I2   (4 – j6)I3   20  50 (3.41)

The three mesh equations are

(8 – j4)I1 – 5I2   0

– 5I1   (5 – j1)I2   (j6)I3   –10  30 

(j6)I2   (4 – j6)I3   20  50 

For the circuits shown in Fig. 3.87, determine the line currents 

IR, IY and IB using mesh analysis.

Fig. 3.87

Example 3.61

Solution From Fig. 3.87, the three line currents are

IR  I1 – I3

IY  I2 – I1

IB  I3 – I2

Using the inspection method, the three loop equations are

5  10 I1   100  0 

5  10 I2   100  120 

5  10 I3   100  –120 

\ I
1

100 0

5 10
20 10=

– ∞
– ∞

= –- ∞
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I
2

100 120

5 10
20 110=

– ∞
– ∞

= –+ ∞

I
3

100 120

5 10
20 130=

–- ∞
– ∞

= –- ∞

The line currents are

 IR  I1  I3   20   10   20  –130 

    19.69 – j3.47   12.85  j15.32

    32.54  j11.85   34.63  20 

 IY  I2 – I1   20  110  – 20  –10 

    –6.84  j18.79 – 19.69  j3.47

    –26.53  j22.26   34.63  140 

 IB  I3 – I2   20  – 130  – 20  110 

  –12.85 – j15.32   6.84 – j18.79   – 6.01 – j34.11   34.63  –100 

For the circuit shown in Fig. 3.88, determine the value of V2

such that the current (3   j4)   impedance is zero.

Fig. 3.88

Example 3.62

Solution The three loop equations are

(4  j3) I1 – (j3)I2   20  0 

(– j3)I1   (3  j2)I2   j5I3   0

(j5)I2   (5 – j5)I3   –V2

Since the current I2 in (3  j4)   is zero

I2
2 0=

D
D

=

\  2   0

where D =
+ – ∞
-

- -
=2

2

4 3 20 0 0

3 0 5

0 5 5

0

( )

( )

( )

j

j j

V j

 (4  j3) V2 (j5) – 20  0  {(– j3) (5 – j5)}   0
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V
j j

j j

j

j

2

20 0 3 5 5

5 4 3

20 0
15 15

15 20
20 0

=
– ∞ - -

+

= – ∞
- -
- +

= –

{( )( )}

( )( )

{ }
∞∞ ¥

– - ∞
– ∞

21 21 135

25 126 86

.

.

 V2   16.97 –261.86 V

Using mesh analysis, determine the voltage Vs which gives a 

voltage of 30  0  V across the 30   resistor shown in Fig. 3.89.

Fig. 3.89

Example 3.63

Solution By the inspection method, we can have four equations from four loops.

(5  j4)I1   ( j4)I2   60  30 (3.42)

(– j4)I1   (3 – j1)I2 – 3I3   ( j5)I4   0 (3.43)

–3I2   (7  j8)I3   50  0 (3.44)

( j5)I2   (30 – j5)I4   –Vs (3.45)

Solving the above equations using Cramer’s rule, we get

I

j j

j j

j

j Vs
4

5 4 4 0 60 30

4 3 1 3 0

0 3 7 8 50 0

0 5 0
=

+ - – ∞
- - -

- + – ∞
-

( ) ( )

( ) ( )

( )

( )

(( ) ( )

( ) ( ) ( )

( )

( ) ( )

5 4 4 0 0

4 3 1 3 5

0 3 7 8 0

0 5 0 30 5

+ -
- - -

- +
-

j j

j j j

j

j j

D = +
- -
- +

-

+
- -

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

5 4

3 1 3 5

3 7 8 0

5 0 30 5

4

4 3 5

0

j

j j

j

j j

j

j j

(( )

( )

7 8 0

0 0 30 5

+
-

j

j
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   (5  j4) {(3 – j1) (7  j8) (30 – j5)  3 [(–3) (30 – j5)]

   j5 [(– j5) (7  j8)]}  ( j4) {(–j4) (7  j8) (30 – j5)}

   (5  j4) {[3.16  –18.4  10.6  48.8  30.4  –9.46 ]

– 9  30.4  –9.46  25 (10.6  48.8 )}

   ( j4) {4  –90  10.6  48.8  30.4  –9.46 }

   (5  j4) {1018.27  20.94  – 273  .6  –9.46  265  48.8 }

   j4 {1288.96  –50.66 }

   (5  j4) {951  j363.9 – 269.8  j44.97  174.55  j199.38}

   4  90  {1288.96  –50.66 }

   (5  j4) {855.75  j608.25}  4  90  {1288.96  –50.66 }

   6.4  38.6  1049.9  35.4  4  90  1288.96  –50.66 

   6719.36  74  5155.84  39.34 

   1852.1  j6459  3987.5  j3268.3

   5839.6  j9727.3

   11345.5  59 

D = +
- -
- + – ∞

-
4 5 4

3 1 3 0

3 7 8 50 0

5 0

( )

( )

( )

( )

j

j

j

j Vs

+
- -

+ – ∞
-

- – ∞
- - -

- +j

j

j

V

j j

j

js

4

4 3 0

0 7 8 50 0

0 0

60 30

4 3 1 3

0 3 7 8

0 5 0

( )

( )

( )

   (5  j4) {[(3 – j1) (7  j8) (–Vs)]  3[(3Vs) – ( j5) 50  0 ]}

   ( j4) {(– j4) (7  j8) (–Vs)} – 60  30  {(–j4) (–j5) (7  j8)}

   6.4  38.6  {[3.16  – 18.4  10.6  48.8  (–Vs)]

   [9Vs – (15j) 50  0 ]  4  90  {4  – 90  10.6  48.8 ) (–Vs)}

– 60  30  {4  – 90  5  – 90  10.6  48.8 }

   6.4  38.6  {–33.49  30.4 Vs}  6.4  38.6  9Vs

   4  90  {–42.4  – 41.2 Vs} – 60  30  {212  – 131.2 }

– 6.4  38.6  {  750  90 }

   Vs {–214.33  69  57.6  38.6  – 169.6  48.8 }

– {12720  – 101.2  4800  128.6 }

   Vs {–76.8 – j200  45  j35.93 – 111.7 – j127.6}

– {–2470.6 – j12477.75 – 2994.6  j3751.2}

   Vs {–143.5 – j291.67} – {–5465.2 – j8726.55}



Steady State Analysis of AC Circuits 3.65

\ =
- - + +

– ∞
I

j V js
4

143 5 291 67 5465 2 8726 5

11345 5 59

( . . ) ( . . )

.

Since voltage across the 30   resistor is 30  0  V. Current passing through

it is I4   1  0  A

\ – ∞ =
- - + +

– ∞
1 0

143 5 291 67 5465 2 8726 5

11345 5 59

( . . ) ( . . )

.

j V js

11345.5  59   325  – 116.19 Vs   5465.2  j8726.5

V
j j

j

s =
- - + +

–- ∞

=
+

5465 2 8726 5 5843 36 9724 99

325 116 19

378 16 99

. . . .

.

. 88 49

325 116 19

1067 7 69 26

325 116 19

.

.

. .

.–- ∞
=

+ ∞
– - ∞

j

Vs   3.29  185.45 .

Determine the voltage V which results in a zero current through 

the impedance in the circuit shown in Fig. 3.90

V

+ v4 –

2v430 Ð0°

4 Wj3 W

j5 W

2 W5 W

I1

I2

I3

Fig. 3.90

Example 3.64

Solution Choosing mesh currents as shown in Fig. 3.90, the three loop equations 

are

(5  j5)I1  j5 I2   30  0 

 j5 I1   (2  j8) I2   –2V4

–2V4  V4  V   0

V4  V

Since the current (2 + j3)   is zero

I2
2 0=

D
D

=
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where D =
+ – ∞
- -

=

+ - + – ∞ =

=
– ∞
+

2

5 5 30 0

5 2
0

5 5 2 5 30 0 0

30 0 5

2 5

j

j V

j V j

V
j

( )( ) ( )

( )

( jj

V

5

150 90

14 14 45

10 608 45

) .

.

=
– ∞
– ∞

= – ∞volts

3.6 STEADY STATE AC NODAL ANALYSIS

The node voltage method can also be used with networks containing complex 

impedances and excited by sinusoidal voltage sources. In general, in an

N node network, we can choose any node as the reference or datum node. 

In many circuits, this reference is most conveniently chosen as the common 

terminal or ground terminal. Then it is possible to write (N – 1) nodal 

equations using KCL. We shall illustrate nodal analysis with the following 

example.

Consider the circuit shown in Fig. 3.91.

Fig. 3.91

Let us take a and b as nodes, and c as 

reference node. V
a
 is the voltage between 

nodes a and c. V
b
 is the voltage between 

nodes b and c. Applying Kirchhoff’s 

current law at each node, the unknowns 

V
a
 and V

b
 are obtained.

In Fig. 3.92, node a is redrawn with all 

its branches, assuming that all currents 

are leaving the node a.

In Fig. 3.92, the sum of the currents leaving node a is zero.

\ I1  I2  I3  0 (3.46)

Z1

I1 I3

Z2

Z3

I2
V1

a b

Fig. 3.92
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where I
V V

Z
I

V

Z
I

V V

Z

a a a b

1
1

1

2

2

3

3

=
-

= =
-

, ,

Substituting I1, I2 and I3 in Eq. 3.46, we get

V V

Z

V

Z

V V

Z

a a a b
-

+ +
-

=1

1 2 3

0  (3.47)

Similarly, in Fig. 3.93, node b

is redrawn with all its branches, 

assuming that all currents are leaving 

the node b.

In Fig. 3.93, the sum of the currents 

leaving the node b is zero.

\ I3   I4  I5   0 (3.48)

where I
V V

Z
I

V

Z
I

V

Z Z

b a b b

3

3

4

4

5

5 6

=
-

= =
+

, ,

Substituting I3, I4 and I5 in Eq. 3.48

we get V V

Z

V

Z

V

Z Z

b a b b
-

+ +
+

=
3 4 5 6

0 (3.49)

Rearranging Eqs 3.47 and 3.49, we get

1 1 1 1 1

1 2 3 3 1

1
Z Z Z

V
Z

V
Z

V
a b

+ +
Ê
ËÁ

ˆ
¯̃

-
Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

(3.50)

-
Ê
ËÁ

ˆ
¯̃

+ + +
+

Ê
ËÁ

ˆ
¯̃

=
1 1 1 1

0
3 3 4 5 6Z

V
Z Z Z Z

V
a b

(3.51)

From Eqs 3.50 and 3.51, we can find the unknown voltages V
a
 and V

b
.

In the network shown in Fig. 3.94, determine Va and Vb.

Fig. 3.94

Example 3.65

Z3Va Vb

I5I3

Z4
Z6

Z5

I4

Fig. 3.93
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Solution To obtain the voltage V
a
 at a, consider the branch currents leaving the 

node a as shown in Fig. 3.95(a).

Fig. 3.95 (a)

In Fig. 3.95(a), I
j

I
j

I
Va a a b

1 2 3

10 0

6 6 3
=

- –
=
-

=
-V V V°

, ,

Since the sum of the currents leaving the node a is zero,

I1  I2  I3  0

V V V

V V

a a a b

a b

j j

V

j j j

- –
+
-

+
-

=

- +
Ê
ËÁ

ˆ
¯̃

- =
–

10 0

6 6 3
0

1

6

1

6

1

3

1

3

10 0

6

°

°

(3.52)

\ - =
– ∞1

3

1

3

10 0

6
V Va b

j
(3.53)

To obtain the voltage V
b
 at 

b, consider the branch currents 

leaving node b as shown in

Fig. 3.95(b).

In Fig. 3.95(b), I I
j

I
j j

b a b b
3 4 5

3 4 5 4
=

-
= =

-( )
V V V V

, ,

Since the sum of the currents leaving node b is zero

I3  I4  I5  0

V V V Vb a b b

j j

-
+ + =

3 4 1
0 (3.54)

Fig. 3.95 (b)



Steady State Analysis of AC Circuits 3.69

- + + +
Ê
ËÁ

ˆ
¯̃

=
1

3

1

3

1

4

1

1
0V Va b

j j
(3.55)

From Eqs 3.54 and 3.55, we can solve for Va and Vb.

0.33Va – 0.33Vb  1.67  – 90 (3.56)

–0.33Va  (0.33 – 0.25j – j)Vb  0 (3.57)

Adding Eqs 3.56 and 3.57 we get (–1.25j)Vb  1.67  – 90 

–1.25  90 Vb  1.67  – 90 

V
b
=

–-
- –
1 67 90

1 25 90

.

.

°

°

 –1.34  –180 

Substituting Vb in Eq. (3.56), we get

0.33Va – (0.33) (–1.34  –180 )  1.67  –90 

V
a
=

–-
= -

1 67 90

0 33
1 31

.

.
.

°
V

Va  5.22  –104.5  V

Voltages Va and Vb are 5.22  –104.5  V and –1.34  –180  V respectively.

3.6.1 Nodal Equations by Inspection

In general, nodal equations can also be written by observing the network. 

Consider a four node network including a reference node as shown in Fig. 3.96.

V
a

V
b

V
c

Z1

I3 I
3

V1 V
2

I
2

I
5

I
4

I
5

I
7

I
6

Z
2

Z
3 Z

5
Z
7

Z
4

Z
6

I1

Fig. 3.96

Consider nodes a, b and c separately as shown in Figs 3.97(a), (b) and (c).
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Fig. 3.97

Assuming that all the currents are leaving the nodes, the nodal equations at

a, b and c are

I1  I2  I3  0

I3  I4  I5  0

I5  I6  I7  0

V V

Z

V

Z

V V

Z

a a a b
-

+ +
-

=1

1 2 3

0 (3.58)

V V

Z

V

Z

V V

Z

b a b b c
-

+ +
-

=
3 4 5

0 (3.59)

V V

Z

V

Z

V V

Z

c b c c
-

+ +
-

=
5 6

2

7

0 (3.60)

Rearranging the above equations, we get

1 1 1 1 1

1 2 3 3 1

1
Z Z Z

V
Z

V
Z

V
a b

+ +
Ê
ËÁ

ˆ
¯̃

-
Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

(3.61)

-Ê
ËÁ

ˆ
¯̃

+ + +
Ê
ËÁ

ˆ
¯̃

-
Ê
ËÁ

ˆ
¯̃

=
1 1 1 1 1

0

3 3 4 5 5
Z

V
Z Z Z

V
Z

V
a b c

(3.62)
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-Ê
ËÁ

ˆ
¯̃

+ + +
Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

1 1 1 1 1

5 5 6 7 7

2
Z

V
Z Z Z

V
Z

V
b c

(3.63)

In general, the above equations can be written as

Y
aa

V
a
  Y

ab
V

b
 Y

ac
V

c
 I1

Y
ba

V
a
  Y

bb
V

b
 Y

bc
V

c
 I2

Y
ca

V
a
  Y

cb
V

b
 Y

cc
V

c
 I3

If we compare the general equations with the circuit equations, the self-admittance 

at node a is

Y
Z Z Z

aa = + +
1 1 1

1 2 3

which is the sum of the admittances connected to node a.

Similarly, Y
Z Z Z

Y
Z Z Z

bb cc= + + = + +
1 1 1 1 1 1

3 4 5 5 6 7

, and

are the self-admittances at node b and node c, respectively. Y
ab

 is the mutual 

admittance between nodes a and b, i.e., it is the sum of all the admittances 

connecting nodes a and b. Y
ab
  –1/Z3 has a negative sign. All the mutual 

admittances have negative signs. Similarly, Y
ac

, Y
ba

, Y
bc

, Y
ca

 and Y
cb

 are also 

mutual admittances. These are equal to the sums of the admittances connecting 

to nodes indicated in their subscripts. I1 is the sum of all the source currents at 

node a. The current which drives into the node has a positive sign, while the 

current driving away from the node has a negative sign.

For the circuit shown in Fig. 3.98, write the node equations by 

the inspection method.

Ð

Ð

Fig. 3.98

Example 3.66

Solution The general equations are

Y
aa

V
a
  Y

ab
V

b
 I1 (3.64)

Y
ba

V
a
  Y

bb
V

b
 I2 (3.65)
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Consider Eq. 3.64.

Y
j j

aa = + +
-

1

3

1

4

1

6

The self-admittance at node a is the sum of admittances connected to node a.

Y
j j

bb =
-

+ +
1

6

1

5

1

5

The self-admittance at node b is the sum of admittances connected to node b.

Y
j

ab = -
-

Ê
ËÁ

ˆ
¯̃

1

6

The mutual admittance between nodes a and b is the sum of admittances connected 

between nodes a and b. Similarly, Yba   –(–1/j6), the mutual admittance between 

nodes b and a is the sum of the admittances connected between nodes b and a.

I
1

10 0

3
=

– °

The source current at node a

I
2

10 30

5
=
- – °

The source current leaving at node b.

Therefore, the nodal equations are

1

3

1

4

1

6

1

6

10 0

3
+ -

Ê
ËÁ

ˆ
¯̃

-
-Ê

ËÁ
ˆ
¯̃

=
–

j j j
a bV V

°
(3.66)

-
-Ê

ËÁ
ˆ
¯̃

+ + -
Ê
ËÁ

ˆ
¯̃

=
- –1

6

1

5

1

5

1

6

10 30

5j j j
a bV V

°
(3.67)

Using nodal 

analysis, find V2 in Fig. 3.99.

I I

Y j S

Y j S

Y

1 2

1

2

3

10 0 10 60

0 5 1 0

0 2 0 6

0 8

= ∞ = ∞
= -
= -

=

A A, ;

( . . ) ;

( . . ) ;

( . -- j S0 6. ) ;

Example 3.67

Fig. 3.99

Solution To obtain the voltage V1, applying KCL at the node 1 considering the 

branch currents.

 I1  V1 Y1   (V1  V2) Y2

 V1(Y1  Y2)  V2 Y2  I1 (3.68)

To obtain the voltage V2, applying KCL at the node 2 considering the branch 

currents.
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I2   (V2  V1) Y2  V2Y3

  V1Y2   V2(Y2  Y3)  I2 (3.69)

For the given data, the equation (3.64) and (3.65) becomes

V j j V j

V j V

1 2

1 2

0 5 1 0 0 2 0 6 0 2 0 6 10 0

0 2 0 6 0

( . . . . ) ( . . )

( . . ) ( .

- + - - - = ∞

- - + 22 0 6 0 8 0 6 10 60- + - = ∞j j. . . )

Simplifying we get

( . . ) ( . . )

( . . ) ( . )

0 7 1 6 0 2 0 6 10 0

0 2 0 6 1 1 2 10 6
1 2

1 2

- - - = ∞
- - + - =

j V j V

j V j V 00∞

By using the Cramer's rule,

( . . ) ( . . )

( . . ) ( . )

0 7 1 6 0 2 0 6

0 2 0 6 1 1 2

11

2

- - -
- - -
È

Î
Í

˘

˚
˙
È

Î
Í

˘

˚
˙ =

j j

j j

V

V

00 0

10 60

0 7 1 6 0 2 0 6

0 2 0 6 1 1 2

∞
∞

È

Î
Í

˘

˚
˙

D =
- - -

- - -
È ( . . ) ( . . )

( . . ) ( . )

j j

j jÎÎ
Í

˘

˚
˙ = - -

D =
- ∞

- - ∞
È

Î
Í

˘

˚
˙ =

0 9 2 2

0 7 1 6 10 0

0 2 0 6 10 60
192

. .

( . . )

( . . )

j

j

j
.. .

. .

( . . )
. .

356 7 938

19 356 7 938

0 9 2 2
8 8 89 9512

-

=
-

- +
= ∞

j

V
j

j

For the circuit shown in Fig. 3.100, write the nodal equations 

using the inspection method and express them in matrix form.

Fig. 3.100

Example 3.68

Solution The number of nodes and reference node are selected as shown in 

Fig. 3.100, by assuming that all currents are leaving at each node. 

At node a,
1

4

1

1

1

1 1

1

1

1

1 1

50 0

1
+
-

+
+

Ê
ËÁ

ˆ
¯̃

-
-

Ê
ËÁ

ˆ
¯̃

-
+

Ê
ËÁ

ˆ
¯̃

=
- – ∞

+j j
V

j
V

j
V

j
a b c

11
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At node b, -
-

Ê
ËÁ

ˆ
¯̃

+ +
-

+
Ê
ËÁ

ˆ
¯̃

-
Ê
ËÁ

ˆ
¯̃

=
– ∞1

1

1

3

1

1

1

3

1

3

20 30

3j
V

j j
V

j
V

j
a b c

At node c, -
+

Ê
ËÁ

ˆ
¯̃

-
Ê
ËÁ

ˆ
¯̃

+ + +
+

Ê
ËÁ

ˆ
¯̃

=
– ∞
+

-
1

1 1

1

3

1

2

1

3

1

1 1

50 0

1 1j
V

j
V

j j
V

j
a b c

220 30

3

– ∞
j

In matrix form, the nodal equations are

1

4

1

1 1

1

1

1

1

1

1 1

1

1

1

3

1

1

1

3

1

3

1

1 1

1

3

1

+
+

- + -
+

- + -

-
+

-

( ) ( )

( ) ( )

j j j j

j j j j

j j 22

1

3

1

1 1
+ +

+

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

j j

V

V

V

a

b

c

=

- – ∞
+

– ∞

– ∞
+

-
– ∞Ê

ËÁ
ˆ
¯̃

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
50 0

1 1

20 30

3

50 0

1 1

20 30

3

( )j

j

j j

˙̇
˙
˙
˙
˙
˙
˙

For the circuit shown in Fig. 3.101, determine the voltage VAB,

if the load resistance RL is infinite. Use node analysis.

Ω

 ∠ 0°  ∠ 90°

Ω

Ω Ω

Fig. 3.101

Example 3.69

Solution If the load resistance is infinite, no current passes through R
L
. Hence R

L

acts as an open circuit. If we consider A as a node and B as the reference node

V V

j

A A- – ∞
+

+
- – ∞

+
=

20 0

3 2

20 90

4 3
0

V V

j j

A A

5 3 4

20 0

5

20 90

3 4
+

+
=

– ∞
+

– ∞
+( ) ( )
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V
j

A

1

5

1

3 4
4 0

20 90

5 53 13
+

+
È

Î
Í

˘

˚
˙ = – ∞+

– ∞
– ∞.

  4  0   4  36.87   4   3.19  j2.4   7.19  j2.4

VA [0.2   0.12 – j0.16]   7.19  j2.4

V
j

j
A =

+
-

=
– ∞
–- ∞

7 19 2 4

0 32 0 16

7 58 18 46

0 35 26 56

. .

. .

. .

. .

Voltage across AB is VAB  VA  21.66  45.02  V

For the 

circuit shown in Fig. 3.102, 

determine the power out- 

put of the source and the 

power in each resistor of 

the circuit.

Example 3.70

Fig. 3.102

Solution  Assume that the voltage at node A is VA. By applying nodal analysis, we have

V V

j

V

j

V
j j

A A A

A

- –
+
-

+
+

=

+
+

-
È

Î
Í

˘

˚
˙ =

–

20 30

3 4 2 5
0

1

3

1

2 5

1

4

20 30

3

°

°

VA [0.33   0.068  j0.078]   6.67  30 

\ VA =
–

–
= –

6 67 30

0 41 11 09
16 27 18 91

.

. .
. .

°

°
°

Current in the 2   resistor

I
V

j

A
2

2 5

16 27 18 91

5 38 68 19
=

+
=

–
–

. .

. .

°

°

\ I2   3.02 – 49.28 

Power dissipated in the 2   resistor

P2  I2
2R   (3.02)2   2   18.24 W

Current in the 3   resistor

I
3

20 30 16 27 18 91

3
=
- – + –° °. .

    –6.67 30   5.42  18.91 
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   –5.78 – j3.34  5.13  j1.76  – 0.65 – j1.58

I3  1.71 –112 

Power dissipated in the 3   resistor

   (1.71)2  3  8.77 W

Total power delivered by the source

   VI cos   20  1.71 cos 142  26.95 W

Determine the current in the 10   resistor in the circuit shown 

in the Fig. 3.103 below.

Fig. 3.103

Example 3.71

Solution Apply nodal analysis at point (1), we get

V

j

V V

j

- ∞
-

+ +
- ∞
+

=
50 0

4 5 10

50 30

5 5
0

V
j j j j

1

4 5

1

10

1

5 5

50 0

4 5

50 30

5 5-
+ +

+
È

Î
Í

˘

˚
˙ =

∞
-

+
∞

+

V[0.297  j0.0219]  11.708  j4.267

V [ . . ] . .0 298 4 219 12 46 20 02∞ = ∞

fi = ∞V 41 81215 801. .

Current through the 10   resistor I
V

R
10 =

=
∞41 81215 801

10

. .

= ∞4 1812 15 801. . Amp
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Find the value of voltage V which results in V0   5  0   V in the 

circuit shown in Fig. 3.104.

Fig. 3.104

Example 3.72

Solution Assuming all currents are leaving the nodes, the nodal equations are

V
j j

V
j

V

j

V
j

V
j

1 2

1 2

1

5 2

1

3

1

5

1

5 5 2

1

5

1

5

1

-
+ +

È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚
˙ = -

-
È

Î
Í

˘

˚
˙ + +

22 2
2

5
5 2

5

5

1

-
È

Î
Í

˘

˚
˙ =

=
-
-

Ê
ËÁ

ˆ
¯̃

j
V

V
V V

j
where

The second equations becomes

V
j j

V
j j

V

j

V V

1 2

0 2

2

1

5

10

5 2

1

5

1

2 2

10

5 2

5

-
-

-
È

Î
Í

˘

˚
˙ + +

-
È

Î
Í

˘

˚
˙ =

-
-

= =
D
D

= –00

1

5 2

1

3

1

5 5 2

1

5

10

5 2

10

5 2

1

5 2

1

3

1

5

1

5

1

∞

-
+ +

-
-

-
-

-
-

-
+ +

-

-

j j

V

j

j j

V

j

j j j

j55

10

5 2

1

5

1

2 2

5 0

-
-

+
-

= – ∞

j j j

The source voltage V = 2.428 – 88.74  volts.
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3.7 STAR-DELTA CONVERSION

3.7.1 Star-Delta Transformation: Resistances [JNTU Nov 2011]

In the preceding chapter, a simple technique called the source transformation

technique has been discussed. The star delta transformation is another technique 

useful in solving complex networks. Basically, any three circuit elements, i.e. 

resistive, inductive or capacitive, may be connected in two different ways. 

One way of connecting these elements is called the star connection, or the Y

connection. The other way of connecting these elements is called the delta ( )

connection. The circuit is said to be in star connection, if three elements are 

connected as shown in Fig. 3.105(a), when it appears like a star (Y). Similarly, 

the circuit is said to be in delta connection, if three elements are connected as 

shown in Fig. 3.105(b), when it appears like a delta ( ).

Fig. 3.105

The above two circuits are equal if their respective resistances from the 

terminals AB, BC and CA are equal. Consider the star connected circuit in 

Fig. 3.105(a); the resistance from the terminals AB, BC and CA respectively are

R Y R R

R Y R R

R Y R R

AB A B

BC B C

CA C A

( )

( )

( )

= +
= +
= +

Similarly, in the delta connected network in Fig. 3.105(b), the resistances seen 

from the terminals AB, BC and CA, respectively, are

R R R R
R R R

R R R

R R R R
R R

AB

BC

D( )= +( )= +( )
+ +

D( )= +( )=

1 2 3
1 2 3

1 2 3

3 1 2
3

||

|| 11 2

1 2 3

2 1 3
2 1 3

1 2 3

+( )
+ +

D( )= +( )= +( )
+ +

R

R R R

R R R R
R R R

R R R
CA

||
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Now, if we equate the resistances of star and delta circuits, we get

R R
R R R

R R R
A B
+ =

+( )
+ +

1 2 3

1 2 3

(3.70)

R R
R R R

R R R
B C
+ =

+( )
+ +

3 1 2

1 2 3

(3.71)

R R
R R R

R R R
C A
+ =

+( )
+ +

2 1 3

1 2 3

(3.72)

Subtracting Eq. 3.71 from Eq. 3.70, and adding Eq. 3.72 to the resultant, we have

R
R R

R R R
A
=

+ +
1 2

1 2 3

(3.73)

Similarly R
R R

R R R
B
=

+ +
1 3

1 2 3

(3.74)

and R
R R

R R R
C
=

+ +
2 3

1 2 3

(3.75)

Thus, a delta connection of R1, R2 and R3 may be replaced by a star connection 

of R
A
, R

B
 and R

C
 as determined from Eqs 3.73, 3.74 and 3.75. Now if we multiply 

the Eqs 3.73 and 3.74, 3.74 and 3.75, 3.75 and 3.73, and add the three, we get the 

final equation as under:

R R R R R R
R R R R R R R R R

R R R
A B B C C A

+ + =
+ +

+ +( )
1

2

2 3 3

2

1 2 2

2

1 3

1 2 3

2
(3.76)

In Eq. 3.76 dividing the LHS by R
A
, gives R3; dividing it by R

B
 gives R2, and 

doing the same with R
C
, gives R1.

Thus R
R R R R R R

R

A B B C C A

C

1 =
+ +

R
R R R R R R

R

A B B C C A

B

2 =
+ +

and R
R R R R R R

R

A B B C C A

A

3 =
+ +

From the above results, we can 

say that a star connected circuit can 

be transformed into a delta connected 

circuit and vice-versa.

From Fig. 3.106 and the above 

results, we can conclude that any 

resistance of the delta circuit is equal to 

the sum of the products of all possible 

pairs of star resistances divided by the 

opposite resistance of the star circuit. 

Similarly, any resistance of the star Fig. 3.106
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circuit is equal to the product of two adjacent resistances in the delta connected 

circuit divided by the sum of all resistances in delta connected circuit.

Obtain the star 

connected equivalent for the 

delta connected circuit shown in 

Fig. 3.107.

Example 3.73

 Fig. 3.107

Solution The above circuit can be replaced by a star connected circuit as shown in 

Fig. 3.108(a).

Fig. 3.108

Performing the   to Y transformation, we obtain

R R1 2

13 12

14 13 12

13 14

14 13 12
=

¥
+ +

=
¥

+ +
,

and R3

14 12

14 13 12
=

¥
+ +

 R1   4  , R2   4.66  , R3   4.31  

The star-connected equivalent is shown in Fig. 3.108(b).

Obtain the delta-connected equivalent for the star-connected 

circuit shown in Fig. 3.109.

Example 3.74
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Fig. 3.109

Solution The above circuit can be replaced by a delta-connected circuit as shown 

in Fig. 3.110(a).

Performing the Y to   transformation, we get from the Fig. 3.110(a)

Fig. 3.110

and

R

R

R

1

2

3

20 10 20 5 10 5

20
17 5

20 10 20 5 10 5

10
35

20 10

=
¥ + ¥ + ¥

=

=
¥ + ¥ + ¥

=

=
¥

.  

 

++ ¥ + ¥
=

20 5 10 5

5
70 

The equivalent delta circuit is shown in Fig. 3.110(b).
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Determine the current drawn by the circuit shown in Fig. 3.111.

Ω Ω

Ω

Ω

Ω

Ω Ω

Ω

Fig. 3.111

Example 3.75

Solution To simplify the network, the star circuit in Fig. 3.111 is converted into a 

delta circuit as shown under.

Ω Ω

Ω

Fig. 3.112(a)

Ω

Ω

Ω

Ω

Ω

Ω

Ω Ω

Fig. 3.112(b)

R

R

R

1

2

3

4 3 4 2 3 2

2
13

4 3 4 2 3 2

4
6 5

4 3 4 2 3 2

3
8 7

=
¥ + ¥ + ¥

=

=
¥ + ¥ + ¥

=

=
¥ + ¥ + ¥

=

 

 .

.   

The original circuit is redrawn as shown in Fig. 3.112(b).
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It is further simplified as shown in Fig. 3.112(c). Here the resistors 5   and 13  

are in parallel, 6   and 6.5   are in parallel, and 8.7   and 2   are in parallel.

ΩΩ Ω

ΩΩ

Fig. 3.112(c)

In the above circuit the resistors 6   and 1.6   are in parallel, the resultant of which

is in series with 3.6   resistor and is equal to 3 6
6 1 6

7 6
4 9.

.

.
.+

¥È
ÎÍ

˘
˚̇
=   as shown in 

Fig. 3.112(d).

50 V

3 W

3 .1 W 4.9 W

(d)

Fig. 3.112(d) and (e)

In the above circuit 4.9   and 3.1   resistors are in parallel, the resultant of which 

is in series with 3   resistor.

Therefore, the total resistance R
T
= +

¥
=3

3 1 4 9

8
4 9

. .
.  

The current drawn by the circuit I
T
  50/4.9   10.2 A (See Fig. 3.112(e)).

In Fig. 3.113 

determine the equivalent 

resistance by using star-delta 

transformation.

Example 3.76

Fig. 3.113

Ω Ω

ΩΩ

Ω Ω Ω

Solution In Fig. 3.113, we have two star circuits, one consisting of 5  , 3   and 

4  resistors, and the other consisting of 6  , 4   and 8   resistors. We convert the 

star circuits into delta circuits, so that the two delta circuits are in parallel.
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In Fig. 3.114(a)

R

R

R

1

2

3

5 3 4 3 5 4

4
11 75

5 3 4 3 5 4

4
15 67

5 3 4 3 5 4

=
¥ + ¥ + ¥

=

=
¥ + ¥ + ¥

=

=
¥ + ¥ + ¥

.

.

 

 

55
9 4= .  

Fig. 3.114(a)

Ω

Ω

Ω

Similarly, in Fig. 3.114(b)

R

R

R

1

2

3

6 4 4 8 8 6

8
13

6 4 4 8 8 6

4
26

6 4 4 8 8 6

6
17 3

=
¥ + ¥ + ¥

=

=
¥ + ¥ + ¥

=

=
¥ + ¥ + ¥

=

 

 

.   

Ω

Ω

Ω

Fig. 3.114(b)

The simplified circuit is shown in Fig. 3.114(c)

Ω

Ω

ΩΩ Ω Ω Ω

Fig. 3.114(c)

In the above circuit, the three resistors 10  , 9.4   and 17.3   are in parallel.

Equivalent resistance  (10 || 9.4 || 17.3)  3.78  
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Resistors 13   and 11.75   are in parallel

Equivalent resistance   (13 || 11.75)   6.17  

Resistors 26   and 15.67   are in parallel

Equivalent = resistance   (26 || 15.67) 

  9.78  

The simplified circuit is shown in 

Fig. 3.114(d)

From the above circuit, the equivalent 

resistance is given by

Req   (9.78) || (6.17   3.78)

  (9.87) || (9.95)   4.93  

Find the 

voltage to be applied across AB 

in order to drive a current of 5A 

into the circuit by using star-delta 

transformation. Refer Fig. 3.115.

 [JNTU May/June 2006]

Example 3.77

Fig. 3.115

Solution
Ω Ω Ω

Ω Ω

Ω Ω

Ω

Fig. 3.116(a)

Using star-delta transformation

Ω

Ω

Ω Ω

Ω Ω

Ω

Ω

Fig. 3.116(b)

Ω Ω

Ω

ΩΩ

Ω

Fig. 3.116(c)

Ω

Ω Ω

Fig. 3.114(d)
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Ω Ω Ω

Fig. 3.116(d)

Fig. 3.116(e)

Determine the volt-

age appearing across terminals yZ,

when it a d.c. voltage of 100 V is 

appplied across x-y terminals in the 

figure below. 

Example 3.78

Fig. 3.117

Solution Converting delta network to star network

3.846 W

3 W

1 W

2 W
7.7 W0.77 W

100 V i

x

y z

Fig. 3.118

Current, i A=
+ + +

= =
100

1 3 846 0 77 2

100

7 616
13 13

. . .
.

Voltage across y Vz
N

z, . ( . )

.

= - ¥ +

= -

13 13 2 0 77

36 37V
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Find equivalent resistance between AB in the circuit shown in 

the Fig. 3.119. All resistances are equal to R.

A C

B

D

R

R

R

R

R

R

R

R

Fig. 3.119

Example 3.79

Solution Converting the star point C into  .

Fig. 3.120(a)

Further reducing the circuit shown in Fig. 3.120 between terminals AB

Fig. 3.120(b)

Resistance between terminals AB

R R R

R R

AB
= Ê
ËÁ

ˆ
¯̃
Ê
ËÁ

ˆ
¯̃

= =

10

6

10

9

10

15
0 667.
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3.7.2 Star – Delta Transformation: Impedances

While dealing with currents and voltages in loads, it is often necessary to convert 

a star load to delta load, and vice-versa. Delta (D) connection of resistances can 

be replaced by an equivalent star (Y ) connection and vice-versa. Similar methods 

can be applied in the case of networks containing general impedances in complex 

form. So also with ac, where the same formulae hold good, except that resistances 

are replaced by the impedances. These formulae can be applied even if the loads 

are unbalanced. Thus, considering Fig. 3.121(a), star load can be replaced by an 

equivalent delta-load with branch impedances as shown.

R

Z
R

B
Y

Z
Y

Z
B

N

(a)

R

Z
BR

Z
RY

Z
YB

(b)

Fig. 3.121

Delta impedances, in terms of star impedances, are

Z
RY

 =
Z Z Z Z Z Z

Z

R Y Y B B R

B

+ +

Z
YB

 =
Z Z Z Z Z Z

Z

R Y Y B B R

R

+ +

and Z
BR

 =
Z Z Z Z Z Z

Z

R Y Y B B R

Y

+ +

The converted network is shown in Fig. 3.46(b). Similarly, we can replace the 

delta load of Fig. 3.121(b) by an equivalent star load with branch impedances as

Z
R
 =

Z Z

Z Z Z

RY BR

RY YB BR
+ +

Z
Y
 =

Z Z

Z Z Z

RY YB

RY YB BR
+ +

and Z
B
 =

Z Z

Z Z Z

BR YB

RY YB BR
+ +

It should be noted that all impedances are to be expressed in their complex 

form.
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A symmetrical three-phase, three-wire 440 V supply is 

connected to a star-connected load as shown in Fig. 3.122(a). The impedances 

in each branch are ZR = (2 +J3)  , ZY = (1 – J2)   and ZB = (3 + J4)  . Find its 

equivalent delta-connected load. The phase sequence is RYB.

ZR

2 W

j3 W

1 W

– j2 W

3 W

j4 W
ZB ZY

(a)

R

ZBR ZRY

ZYB

B Y

(b)

Y

B

R

Fig. 3.122

Example 3.80

Solution The equivalent delta network is shown in Fig. 3.122(b). From Section 

9.6, we can write the equations to find ZRY, ZYB and ZBR. We have

ZRY =
Z Z Z Z Z Z

Z

R Y Y B B R

B

+ +

ZR = 2 + j3 = 3.61  56.3°

ZY = 1 – j2 = 2.23  –63.4°

ZB = 3 + j4 = 5  53.13°

ZRZY + ZYZB + ZBZR = (3.61  56.3°) (2.23  –63.4°) + (2.23  –63.4°) (5  53.13°)

+ (5  53.13°) (3.61  56.3°)

= 8.05  –7.1° + 11.15  –10.27° + 18.05  109.43°

= 12.95 + j14.04= 19.10  47.3°

ZRY =
19 10 47 3

5 53 13

. .

.

– ∞
– ∞

 = 3.82  –5.83° = 3.8 – j0.38

ZYB =
Z Z Z Z Z Z

Z

R Y Y B B R

R

+ +

=
19 10 47 3

3 61 56 3

. .

. .

– ∞
– ∞

 = 5.29  –9° = 5.22 – j0.82
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ZBR =
Z Z Z Z Z Z

Z

R Y Y B B R

Y

+ +

=
19 10 47 3

2 23 63 4

. .

. .

– ∞
–- ∞

 = 8.56  110.7° = –3.02 + j8

The equivalent delta impedances are

ZRY = (3.8 – j0.38) 

ZYB = (5.22 – j0.82) 

ZBR = (–3.02 + j8) 

A symmetrical three-phase, three-wire 400 V, supply is 

connected to a delta-connected load as shown in Fig. 3.123(a). Impedances in 

each branch are ZRY 10  30° ; ZYB = 10 –45°  and ZBR = 2.5 60° . Find its 

equivalent star-connected load; he phase sequence is RYB.

Y

(a)

10 – 30°–

ZBR
ZRY

ZYB 10 – 45°–

2.5 60°–

Z
B

Z
Y

B

Y

Z
R

R

(b)

400 V

Fig. 3.123

Example 3.81

Solution The equivalent star network is shown in Fig. 9.18(b). From Section 9.6, 

we can write the equations to find ZR, ZY and ZB as

ZR =
Z Z

Z Z Z

RY BR

RY YB BR
+ +

ZRY + ZYB + ZBR = 10  30° + 10 –45° + 2.5  60°

= (8.66 + j5) + (7.07 – j7.07) + (1.25 + j2.17)

= 16.98 + j0.1 = 16.98  0.33° 

ZR = ( )( . )

. .
. .

10 30 2 5 60

16 98 0 33
1 47 89 67

– ∞ – ∞
– ∞

= – ∞

= (0.008 + j1.47) 
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Z
Y
 =

Z Z

Z Z Z

RY YB

RY YB BR
+ +

= ( )( )

. .
. .

10 30 10 45

16 98 0 33
5 89 15 33

– ∞ –- ∞
– ∞

= –- ∞W

Z
B
 =

Z Z

Z Z Z

BR YB

RY YB BR
+ +

=
( . )( )

. .
. .

2 5 60 10 45

16 98 0 33
1 47 14 67

– ∞ –- ∞
– ∞

= – ∞W

The equivalent star impedances are

Z
R
 = 1.47  89.67° , Z

Y
 = 5.89  –15.33°  and Z

B
 = 1.47  14.67° 

Balanced Star-Delta and Delta-Star Conversion

If the three-phase load is balanced, then the conversion formulae in Section 3.19 

get simplified. Consider a balanced star-connected load having an impedance Z1

in each phase as shown in Fig. 3.124(a).

Z2 Z2

Z2

Y

(b)

B

R

Z1
Z1

Y

Z1

R

(a)

B

Fig. 3.124

Let the equivalent delta-connected load have an impedance of Z2 in each 

phase as shown in Fig. 3.124(b). Applying the conversion formulae from Section 

3.19 for delta impedances in terms of star impedances, we have

Z2 = 3Z1

Similarly, we can express star impedances in terms of delta Z1 = Z2/3.

Three identical impedances are connected in delta as shown 

in Fig. 3.125(a). Find an equivalent star network such that the line current is the 

same when connected to the  same supply.

Example 3.82

Solution The equivalent star network is shown in Fig. 3.50(b). From Section 

3.14.2.1, we can write the equation to Find Z1 = Z2/3
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Z2 = 3 + j4 = 5  53.13° 

Z1 =
5

3
 53.13° = 1.66  53.15° = (1.0 + j1.33) 

Y

(a)

B

R

Supply 3 + 4j 3 + 4j

3 + 4j

Z1

Z1

Y

Z1

R

(b)

B

Supply

Fig. 3.125

Practice Problems

3.1 A delayed full wave rectified sine wave has an average value of half the 

maximum value as shown in Fig. 3.126. Find the angle  .

2π t
0

πθ

vm

Fig. 3.126

3.2 For the circuit shown in Fig. 3.127, determine the impedance, phase angle 

and total current.

Fig. 3.127
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3.3 Calculate the total current in the circuit in Fig. 3.128, and determine the 

voltage across resistor V
R
, and across capacitor V

C
.

100 kΩ

0.01 μF

50 rms

f = 50 Hz

Fig. 3.128

3.4 Determine the impedance and phase angle in the circuit shown in 

Fig. 3.129.

Fig. 3.129

3.5 Calculate the impedance at each of the following frequencies; also 

determine the current at each frequency in the circuit shown in Fig. 3.130.

(a) 100 Hz (b) 3 kHz

3.6 A signal generator 

supplies a sine wave of 

10 V, 10 kHz, to the circuit 

shown in Fig. 3.131. 

Calculate the total current 

in the circuit. Determine 

the phase angle   for 

the circuit. If the total 

inductance in the circuit is 

doubled, does   increase 

or decrease, and by how 

many degrees?

Fig. 3.130
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Fig. 3.131

3.7 For the circuit shown in Fig. 3.132, determine the voltage across each 

element. Is the circuit predominantly resistive or inductive? Find the 

current in each branch and the total current.

Fig. 3.132

3.8 Determine the total impedance Z
T
, the total current I

T
, phase angle  ,

voltage across inductor L, and voltage across resistor R3 in the circuit 

shown in Fig. 3.133.

Fig. 3.133

3.9 For the circuit shown in Fig. 3.134, determine the value of frequency of 

supply voltage when a 100 V, 50 A current is supplied to the circuit.

3.10 A sine wave generator supplies 

a signal of 100 V, 50 Hz to the 

circuit shown in Fig. 3.135. 

Find the current in each branch, 

and total current. Determine the 

voltage across each element and 

draw the voltage phasor diagram.
Fig. 3.134



Steady State Analysis of AC Circuits 3.95

Fig. 3.135

3.11 Determine the voltage across each element in the circuit shown in 

Fig. 3.136. Convert the circuit into an equivalent series form. Draw the 

voltage phasor diagram.

Fig. 3.136

3.12 For the circuit shown in Fig. 3.137, determine the total current I
T
, phase 

angle   and voltage across each element.

Fig. 3.137

3.13 For the circuit shown 

in Fig. 3.138, the 

applied voltage v  V
m

cos  t. Determine the 

current in each branch 

and obtain the total 

current in terms of the 

cosine function.

3.14 For the circuit shown in 

Fig. 3.139, the voltage across 

the inductor is v
L
 15 sin 

200 t. Find the total voltage 

and the angle by which the 

current lags the total voltage.

Fig. 3.138

Fig. 3.139
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3.15 In a parallel circuit having 

a resistance R  5   and 

L  0.02 H, the applied 

voltage is v  100 sin 

(1000 t  50 ) volts. 

Find the total current and 

the angle by which the 

current lags the applied 

voltage.

3.16 In the parallel circuit 

shown in Fig. 3.140, the 

current in the inductor 

is five times greater 

than the current in the 

capacitor. Find the 

element values.

3.17 In the parallel circuit 

shown in Fig. 3.141, 

the applied voltage 

is v  100 sin 5000 tV. 

Find the currents in each 

branch and also the total 

current in the circuit.

3.18 For the circuit shown 

in Fig. 3.143, a voltage 

of 250 sin  t is applied. 

Determine the power factor of the circuit, if the voltmeter readings are 

V1  100 V, V2  125 V, V3  150 V and the ammeter reading is 5 A.

Fig. 3.143

3.19 For the circuit shown in Fig. 3.144, a voltage v(t) is applied and the 

resulting current in the circuit i(t)  15 sin ( t  30 ) amperes. Determine 

the active power, reactive power, power factor, and the apparent power.

Fig. 3.140

F

Fig. 3.142

Fig. 3.141
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i(t)
Z

V(t) = 250 sin (wt + 100°)

Fig. 3.144

3.20 A series RL circuit draws a current of i(t)  8 sin (50t  45 ) from the 

source. Determine the circuit constants, if the power delivered by the 

source is 100 W and there is a lagging power factor of 0.707.

3.21 Two impedances, Z1  10 -60   and Z2  16  70   are in series and 

pass an effective current of 5 A. Determine the active power, reactive 

power, apparent power and power factor.

3.22 For the circuit shown in Fig. 3.145, determine the value of the impedance 

if the source delivers a power of 200 W and there is a lagging power factor 

of 0.707. Also find the apparent power.

3.23 A voltage of v(t) 100 sin 500 t is applied 

across a series R-L-C circuit where 

R 10 , L 0.05 H and C 20  F. 

Determine the power supplied by the 

source, the reactive power supplied by the 

source, the reactive power of the capacitor, 

the reactive power of the inductor, and the 

power factor of the circuit.

3.24 For the circuit shown in Fig. 3.146, determine the power dissipated and 

the power factor of the circuit.

Fig. 3.146

3.25 For the circuit shown in Fig. 3.147, determine the power factor and the 

power dissipated in the circuit.

Fig. 3.147

Fig. 3.145
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3.26 For the circuit shown in Fig. 3.148, determine the power factor, active 

power, reactive power and apparent power.

Fig. 3.148

3.27 In the parallel circuit shown in Fig. 3.149, the power in the 5   resistor 

is 600 W and the total circuit takes 3000 VA at a leading power factor of 

0.707. Find the value of impedance Z.

Z

j 5 Ω

V ∠ 0

5 Ω

Fig. 3.149

3.28 For the parallel circuit shown 

in Fig. 3.150, the total power 

dissipated is 1000 W. Determine the 

apparent power, the reactive power, 

and the power factor.

3.29 A voltage source v(t)  150 sin  t
in series with 5   resistance is 

supplying two loads in parallel, 

Z
A
 60 30 , and Z

B
 50  25 .

Find the average power delivered to 

Z
A
, the average power delivered to 

Z
B
, the average power dissipated in 

the circuit, and the power factor of the circuit.

3.30 For the circuit shown in Fig. 3.151, determine the true power, reactive 

power and apparent power in each branch. What is the power factor of the 

total circuit?

Fig. 3.150
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Fig. 3.151

3.31 Determine the value 

of the voltage source, 

and the power factor in 

the network shown in 

Fig. 3.152 if it delivers 

a power of 500 W to 

the circuit shown in 

Fig. 3.151. Also find 

the reactive power 

drawn from the source.

3.32 Find the average power 

dissipated by the 500 
resistor shown in Fig. 

3.153.

3.33 Find the power dissipated 

by the voltage source 

shown in Fig. 3.154.

Fig. 3.154

3.34 Find the power delivered 

by current source shown 

in Fig. 3.155.

3.35 For the circuit shown in 

Fig. 3.156, determine 

the power factor, active 

power, reactive power 

and apparent power.

Fig. 3.152

Fig. 3.153

Fig. 3.155
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Fig. 3.156

3.36 Determine the voltage

V
ab

 and V
bc

 in the 

network shown in

Fig. 3.157 by loop 

analysis, where source

voltage e t( ) = ¥2 1

tcos( )+ ∞100 314 45 .

3.37 Determine the power output 

of the voltage source by loop 

analysis for the network shown 

in Fig. 3.158. Also determine 

the power extended in the 

resistors.

3.38 Determine the value of source 

currents by loop analysis 

for the circuit shown in

Fig. 3.159 and verify the results 

by using node analysis.

Ð

Fig. 3.159

3.39 Determine the power out 

of the source in the circuit 

shown in Fig. 3.160 by 

nodal analysis and verify 

the results by using loop 

analysis.

Ω

Fig. 3.157

Fig. 3.158

− 10 Ω

5 Ω

3 Ω

2 Ω

10 °0∠

Fig. 3.160
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3.40 For the circuit shown in 

Fig. 3.161 find the voltage 

across the dependent source 

branch by using mesh 

analysis.

3.41 For the circuit shown in Fig. 

3.162, obtain the voltage 

across 500 k  resistor.

Fig. 3.162

3.42 For the circuit shown in Fig. 3.163, the load resistance R
L
 is adjusted until 

it absorbs the maximum average power. Calculate the value of R
L
 and the 

maximum average power.

Fig. 3.163

ObjectiveType Questions

3.1 A 1 kHz sinusoidal voltage is applied to an RL circuit, what is the 

frequency of the resulting current?

(a) 1 kHz (b) 0.1 kHz (c) 100 kHz (d) 2 kHz

3.2 A series RL circuit has a resistance of 33 k , and an inductive reactance 

of 50 k . What is its impedance and phase angle?

(a) 56.58  , 59.9 (b) 59.9 k , 56.58 
(c) 59.9  , 56.58 (d) 5.99  , 56.58 

Fig. 3.161
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3.3 In a certain RL circuit, V
R
   2 V and V

L
   3 V. What is the magnitude of 

the total voltage?

(a) 2 V (b) 3 V (c) 5 V (d) 3.61 V

3.4 When the frequency of applied voltage in a series RL circuit is increased 

what happens to the inductive reactance?

(a) decreases (b) remains the same

(c) increases (d) becomes zero

3.5 In a certain parallel RL circuit, R  0  , and X
L
   75  . What is the 

admittance?

(a) 0.024 S (b) 75 S (c) 50 S (d) 1.5 S

3.6 What is the phase angle between the inductor current and the applied 

voltage in a parallel RL circuit?

(a) 0  (b) 45 (c) 90 (d) 30 

3.7 When the resistance in an RC circuit is greater than the capacitive reactance, 

the phase angle between the applied voltage and the total current is closer to

(a) 90 (b) 0 (c) 45 (d) 120 

3.8 A series RC circuit has a resistance of 33 k , and a capacitive reactance 

of 50 k . What is the value of the impedance?

(a) 50 k (b) 33 k (c) 20 k (d) 59.91  

3.9 In a certain series RC circuit, V
R
   4 V and V

C
   6 V. What is the 

magnitude of the total voltage?

(a) 7.2 V (b) 4 V (c) 6 V (d) 52 V

3.10 When the frequency of the applied voltage in a series RC circuit is 

increased what happens to the capacitive reactance?

(a) it increases (b) it decreases (c) it is zero (d) remains the same

3.11 In a certain parallel RC circuit, R  50   and X
C
 75  . What is Y?

(a) 0.01 S (b) 0.02 S (c) 50 S (d) 75 S

3.12 The admittance of an RC circuit is 0.0035 S, and the applied voltage is 

6 V. What is the total current?

(a) 6 mA (b) 20 mA (c) 21 mA (d) 5 mA

3.13 What is the phase angle between the capacitor current and the applied 

voltage in a parallel RC circuit?

(a) 90 (b) 0 (c) 45 (d) 180 

3.14 In a given series RLC circuit, X
C
 is 150  , and X

L
 is 80  , what is the total 

reactance? What is the type of reactance?

(a) 70  , inductive (b) 70  , capacitive

(c) 70  , resistive (d) 150  , capacitive

3.15 In a certain series RLC circuit V
R
   24 V, V

L
   15 V, and V

C
   45 V. 

What is the source voltage?

(a) 38.42 V (b) 45 V (c) 15 V (d) 24 V
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3.16 When R  10  , X
C
 18   and X

L
 12  , the current

(a) leads the applied voltage (b) lags behind the applied voltage

(c) is in phase with the voltage (d) is none of the above

3.17 A current i A sin 500 t A passes through the circuit shown in Fig. 3.164. 

The total voltage applied will be

(a) B sin 500 t (b) B sin (500 t –   )
(c) B sin (500 t    ) (d) B cos (200 t    )

R

i

L

Fig. 3.164

3.18 A current of 100 mA through an inductive reactance of 100   produces a 

voltage drop of

(a) 1 V (b) 6.28 V (c) 10 V (d) 100 V

3.19 When a voltage v  100 sin 5000 t volts is applied to a series circuit of 

L  0.05 H and unknown capacitance, the resulting current is i  2 sin 

(5000 t  90 ) amperes. The value of capacitance is

(a) 66.7 pF (b) 6.67 pF (c) 0.667  F (d) 6.67  F

3.20 A series circuit consists of two elements has the following current and 

applied voltage.

i  4 cos (2000 t  11.32 ) A
v  200 sin (2000 t  50 ) V

The circuit elements are

(a) resistance and capacitance (b) capacitance and inductance

(c) inductance and resistance (d) both resistances

3.21 A pure capacitor of C  35  F is in parallel with another single circuit 

element. The applied voltage and resulting current are

v  150 sin 300 t V

i  16.5 sin (3000 t  72.4 ) A

The other element is

(a) capacitor of 30  F (b) inductor of 30 mH

(c) resistor of 30  (d) none of the above

3.22 The phasor combination of resistive power and reactive power is called

(a) true power (b) apparent power

(c) reactive power (d) average power
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3.23 Apparent power is expressed in

(a) volt-amperes (b) watts

(c) volt-amperes or watts (d) VAR

3.24 A power factor of ‘1’ indicates

(a) purely resistive circuit, (b) purely reactive circuit

(c) combination of both, (a) and (b) (d) none of these

3.25 A power factor of 0 indicates

(a) purely resistive element (b) purely reactive element

(c) combination of both (a) and (b) (d) none of the above

3.26 For a certain load, the true power is 100 W and the reactive power is 

100 VAR. What is the apparent power?

(a) 200 VA (b) 100 VA (c) 141.4 VA (d) 120 VA

3.27 If a load is purely resistive and the true power is 5 W, what is the apparent 

power?

(a) 10 VA (b) 5 VA (c) 25 VA (d) 50 VA

3.28 True power is defined as

(a) VI cos  (b) VI (c) VI sin  (d) none of these

3.29 In a certain series RC circuit, the true power is 2 W, and the reactive power 

is 3.5 VAR. What is the apparent power?

(a) 3.5 VA (b) 2 VA (c) 4.03 VA (d) 3 VA

3.30 If the phase angle   is 45 , what is the power factor?

(a) cos 45 (b) sin 45 (c) tan 45 (d) none of these

3.31 To which component in an RC circuit is the power dissipation due?

(a) capacitance (b) resistance (c) both (d) none

3.32 A two element series circuit with an instantaneous current I  4.24

sin (5000 t  45 ) A has a power of 180 watts and a power factor of 

0.8 lagging. The inductance of the circuit must have the value.

(a) 3 H (b) 0.3 H (c) 3 mH (d) 0.3 mH

3.33 In the circuit shown in Fig. 3.165, 

if branch A takes 8 KVAR, the 

power of the circuit will be

(a) 2 kW (b) 4 kW

(c) 6 kW (d) 8 kW

3.34 In the circuit shown in Fig. 

3.166, the voltage across 30  

resistor is 45 volts. The reading 

of the ammeter A will be

Fig. 3.165
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Fig. 3.166

(a) 10 A (b) 19.4 A

(c) 22.4 A (d) 28 A

3.35 In the circuit shown in Fig. 3.167, v1 and v2 are two identical sources of 

10 90 . The power supplied by V1 is

(a) 6 W (b) 8.8 W (c) 11 W (d) 16 W

Fig. 3.167

3.36 Mesh analysis is based on

(a) Kirchhoff’s current law (b) Kirchhoff’s voltage law

(c) Both (d) None





Coupled
Circuits and 
Resonance

4
4.1 INTRODUCTION TO COUPLED CIRCUITS

Two circuits are said to be ‘coupled’ when energy transfer takes place from one 

circuit to the other when one of the circuits is energised. There are many types of 

couplings like conductive coupling as shown by the potential divider in Fig.4.1(a)

inductive or magnetic coupling as shown by a two winding transformer in

Fig. 4.1(b) or conductive and inductive coupling as shown by an auto transformer 

in Fig. 4.1(c). A majority of the electrical circuits in practice are conductively or 

electromagnetically coupled. Certain coupled elements are frequently used in 

network analysis and synthesis. Transformer, transistor and electronic pots, etc. 

are some among these circuits. Each of these elements may be represented as a 

two port network as shown in Fig. 4.1(d).

Fig. 4.1



4.2 Network Analysis

4.1.1 Conductively Coupled Circuit and Mutual Impedance

A conductively coupled circuit which does not involve magnetic coupling is 

shown in Fig. 4.2(a).

In the circuit shown the impedance Z12 or Z21 common to loop 1 and loop 2 is 

called mutual impedance. It may consist of a pure resistance, a pure inductance, 

a pure capacitance or a combination of any of these elements. Mesh analysis, 

nodal analysis or Kirchhoff’s laws can be used to solve these type of circuits as 

described in Chapter 1.

The general definition of mutual impedance is explained with the help of

Fig. 4.2(b).

The network in the box may be of any configuration of circuit elements with 

V2

unit current (I1

is defined as the voltage developed (V1 I2

Find the mutual impedance 

for the circuit shown in Fig. 4.3.

Example 4.1

Fig. 4.3

Solution Mutual impedance is given by

V

I

V

I

2

1

1

2

or

V I
V

I
2 1

1

1

3

2
1 5= =or .  

V I
V

I
1 2

2

2

5
3

10
1 5= ¥ ¥ =or .  

Fig. 4.2(a) Fig. 4.2(b)
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4.1.2 Self Inductance and Mutual Inductance [JNTU Nov 2011]

The property of inductance of a coil was introduced in Section 1.6. A voltage is induced 

in a coil when there is a time rate of change of current through it. The inductance 

parameter L, is defined in terms of the voltage across it and the time rate of change 

of current through it v t L
di t

dt
( )

( )
=  where, v(t) is the voltage across the coil, I(t) is 

the current through the coil and L is the inductance of the coil. Strictly speaking, this 

definition is of self-inductance and this is considered as a circuit element with a pair 

of terminals. Whereas a circuit element “mutual inductor” does not exist. Mutual 

inductance is a property associated with two or more coils or inductors which are in 

close proximity and the presence of common magnetic flux which links the coils. 

A transformer is such a device whose operation is based on mutual inductance.

Let us consider two coils, L1, and L2 as shown in Fig. 4.4(a), which are 

sufficiently close together, so that the flux produced by i1 in coil L1, also link coil 

L2. We assume that the coils do not move with respect to one another, and the 

medium in which the flux is established has a constant permeability. The two coils 

may be also arranged on a common magnetic core, as shown in Fig. 4.4(b). The 

two coils are said to be magnetically coupled, but act as a separate circuits. It is 

possible to relate the voltage induced in one coil to the time rate of change of 

current in the other coil. When a voltage v1 is applied across L1, a current i1 will 

start flowing in this coil, and produce a flux  . This flux also links coil L2. If i1 were 

to change with respect to time, the flux ‘ ’ would also change with respect to time. 

The time-varying flux surrounding the second coil, L2 induces an emf, or voltage, 

across the terminals of L2; this voltage is proportional to the time rate of change of 

current flowing through the first coil L1. The two coils, or circuits, are said to be 

inductively coupled, because of this property they are called coupled elements or 

coupled circuits and the induced voltage, or emf is called the voltage/emf of mutual 

induction and is given by v t M
di t

dt
2 1

1( )
( )

=  volts, where v2 is the voltage induced 

in coil L2 and M1 is the coefficient of proportionality, and is called the coefficient 

of mutual inductance, or simple mutual inductance.

If current i2 is made to pass through coil L2 as shown in Fig. 4.4(c) with coil L1

open, a change of i2 would cause a voltage v1 in coil L1, given by v t M
di t

dt
1 2

2( )
( )

= .

In the above equation, another coefficient of proportionality M2 is involved. 

Though it appears that two mutual inductances are involved in determining 

the mutually induced voltages in the two coils, it can be shown from energy 

considerations that the two coefficients are equal and, therefore, need not be 

represented by two different letters. Thus M1  M2  M.

\ v t M
di t

dt
2

1( )
( )

= Volts (4.1)

v t M
di t

dt
1

2( )
( )

= Volts (4.2)
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In general, in a pair of linear time invariant coupled coils or inductors, a 

non-zero current in each of the two coils produces a mutual voltage in each coil due 

to the flow of current in the other coil. This mutual voltage is present independently 

of, and in addition to, the voltage due to self induction. Mutual inductance is also 

measured in Henrys and is positive, but the mutually induced voltage, M
di

dt
 may 

be either positive or negative, depending on the physical construction of the coil 

and reference directions. To determine the polarity of the mutually induced voltage 

(i.e. the sign to be used for the mutual inductance), the dot convention is used.

4.1.3 Dot Rule of Coupled Circuits

Dot convention is used to establish the choice of correct sign for the mutually 

induced voltages in coupled circuits.

Circular dot marks and/or special symbols are placed at one end of each 

of two coils which are mutually coupled to simplify the diagrammatic 

representation of the windings around its core.

Let us consider Fig. 4.5 which shows a pair of 

linear, time invariant, coupled inductors with self 

inductances L1 and L2 and a mutual inductance M.

If these inductors form a portion of a network, 

currents i1 and i2 are shown, each arbitrarily assumed 

entering at the dotted terminals, and voltages v1 and 

v2 are developed across the inductors. The voltage 

across L1 is, thus composed of two parts and is 

given by

Fig. 4.4

Fig. 4.5
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v t L
di t

dt
M
di t

dt
1 1

1 2( )
( ) ( )

= ± (4.3)

The first term on the RHS of the above equation is the self induced voltage 

due to i1, and the second term represents the mutually induced voltage due to i2.

Similarly, v t L
di t

dt
M
di t

dt
2 2

2 1( )
( ) ( )

= ± (4.4)

Although the self-induced voltages are designated with positive sign, mutually 

induced voltages can be either positive or negative depending on the direction of 

the winding of the coil and can be decided by the presence of the dots placed at 

one end of each of the two coils. The convention is as follows.

If two terminals belonging to different coils in a coupled circuit are marked 

identically with dots then for the same direction of current relative to like 

terminals, the magnetic flux of self and mutual induction in each coil add 

together. The physical basis of the dot convention can be verified by examining 

Fig. 4.6. Two coils ab and cd are shown wound on a common iron core.

It is evident from Fig. 4.6 

that the direction of the winding 

of the coil ab is clock-wise 

around the core as viewed at X,

and that of cd is anti-clockwise 

as viewed at Y. Let the direction 

of current i1 in the first coil be 

from a to b, and increasing with 

time. The flux produced by i1 in 

the core has a direction which may be found by right hand rule, and which is 

downwards in the left limb of the core. The flux also increases with time in the 

direction shown at X. Now suppose that the current i2 in the second coil is from c

to d, and increasing with time. The application of the right hand rule indicates that 

the flux produced by i2 in the core has an upward 

direction in the right limb of the core. The flux 

also increases with time in the direction shown 

at Y. The assumed currents i1 and i2 produce 

flux in the core that are additive. The terminals 

a and c of the two coils attain similar polarities 

simultaneously. The two simultaneously positive 

terminals are identified by two dots by the side of 

the terminals as shown in Fig. 4.7.

The other possible location of the dots is the 

other ends of the coil to get additive fluxes in the 

core, i.e. at b and d. It can be concluded that the mutually induced voltage is positive 

when currents i1 and i2 both enter (or leave) the windings by the dotted terminals. If 

the current in one winding enters at the dot-marked terminals and the current in the 

other winding leaves at the dot-marked terminal, the voltages due to self and mutual 

induction in any coil have opposite signs.

Fig. 4.6

Fig. 4.7
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Using dot convention, 

write voltage equations for the coils 

shown in Fig. 4.8.

Example 4.2

Fig. 4.8

Solution Since the currents are entering at the dot marked terminals the mutually 

induced voltages or the sign of the mutual inductance is positive; using the sign 

convention for the self inductance, the equations for the voltages are

v L
di

dt
M
di

dt

v L
di

dt
M
di

dt

1 1

1 2

2 2

2 1

= +

= +

Write the equation for voltage v0 for the circuits shown in 

Fig. 4.9.

Fig. 4.9

Example 4.3
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Solution v0 is assumed positive with respect to terminal C and the equation is given by

(a) v M
di

dt
0 = (b) v M

di

dt
0 = -

(c) v M
di

dt
0 = - (d) v M

di

dt
0 =

Formulate the loop equation for the network shown in Fig. 4.10.

[JNTU 2004]

R1

i(t)e(t)
+

- i2(t)

R3

R2

L2L1

L3

Fig. 4.10

Example 4.4

Solution For the loop (1)

e t i R L
dl

dt
M

d

dt
i i M

d

dt
i L

d

dt
i i

M

l

i( ) ( ) ( ) ( )= + + - + - + -

+

1 1 31 1 2 21 2 3 1 2

113 1 23 2 1 2 3

d

dt
i M

d

dt
i i i R( ) ( ) ( )+ - + -

e t i R L i M i i M i L i i

M i M

( ) ( ) ( ) ( )= + + - + - + -

+ +

1 1 1 1 31 1 2 21 2 3 1 2

13 1 2

S S S S

S 33 2 1 2 3( ) ( )- + -Si i i R

e t i R R L L M M i

M M L M R

( )

( )

= + +ÈÎ ˘̊ -

+ + +ÈÎ ˘

1 1 3 13 1

31 21 3 23 3

S( + + + )

S

1 3 31

˚̊

For the loop (2)

L
di

dt

d

dt
i

d

dt
i i i R i i R2

2
12 1 32 1 2 2 2 2 1 3+ - + - - + + -M M( ) ( ) ( )

+ - + - + =L
di

dt
i i M

d

dt
i M

d

dt
i3 2 1 13 1 2 3 2 0( ) ( ) /
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i L M M R L R R2 2 32 23 3 3 2 3S( )+ + + + + +[ ]

- + + + +[ ] =i M M M L R1 12 32 13 3 3 0S( )

In the circuit shown in 

Fig. 4.11, write the equation for the voltages 

across the coils ab and cd; also mention the 

polarities of the terminals.

Example 4.5

Fig. 4.11

Solution Current i1 is only flowing in coil ab, whereas coil cd is open. Therefore, 

there is no current in coil cd. The emf due to self induction is zero on coil cd.

\ v t M
di t

dt
C2

1( )
( )

= with beingpositive

Similarly the emf due to mutual induction in coil ab is zero.

\ v t L
di t

dt
1

1( )
( )

=

In the circuit shown 

in Fig. 4.12, write the equation for the 

voltages v1 and v2. L1 and L2 are the 

coefficients of self inductances of coils 1 

and 2, respectively, and M is the mutual 

inductance.

Example 4.6

Fig. 4.12

Solution In the figure, a and d are like terminals.

Currents i1 and i2 are entering at dot marked terminals.

v L
di t

dt

M di t

dt
1 1

1 2= +
( ) ( )

v L
di t

dt

M di t

dt
2 2

2 1= +
( ) ( )
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For the circuit shown 

in Fig. 4.13, write the mesh equations.

Example 4.7

Fig. 4.13

Solution There exists mutual coupling between coil 1 and 3, and 2 and 3. Assuming 

branch currents i1, i2 and i3 in coils 1, 2 and 3, respectively, the equation for mesh 1 is

v  v1  v2

v  i1 j2  i3  j4  i2   j4  i3  j6 (4.5)

j4 i3 is the mutual inductance drop between coils (1) and (3), and is considered 

negative according to dot convention and i3 j6 is the mutual inductance drop 

between coils 2 and 3.

For the 2nd mesh 0   v2  v3   (  j4i2  j6i3)  j3i3  j6i2  j4i1 (4.6)

   j4i1  j10i2  j9i3 (4.7)

 i1  i3  i2

Explain the Dot Convention for mutually coupled coils.

[JNTU June 2006]

Example 4.8

Solution Dot Convention

Mutual inductance is the ability of one inductor to induce voltage across the neighbouring 

inductor measured in Henrys (H).

The mutually induced emf M
di

dt
 may be positive (or) negative but M is always 

positive.

We apply dot convention to determine 

the polarity of the induced emf. Consider 

two coils (1) and (2) as shown.

1.  Place a dot at one end of coil (1) 

and assume that the current enters 

at that dotted end in coil (1).

2.  Place another dot at one of the ends 

of coil (2) such that the current 

entering at that end in coil (2) 

establishes magnetic flux in the 

same direction.
Fig. 4.14
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In order that the flux produced by I2 flowing in coil (2) produce flux in the 

same upward direction it should enter at lower end of coil (2). Hence place a 

dot at that end of coil (2).

4.1.4 Coefficient of Coupling [JNTU June 2009, Nov 2011]

The amount of coupling between the inductively coupled coils is expressed in 

terms of the coefficient of coupling, which is defined as

K
M

L L
=

1 2

where M = mutual inductance between the coils 

L1 = self inductance of the first coil, and

L2 = self inductance of the second coil

Coefficient of coupling is always less than unity, and has a maximum value of 

1 (or 100%). This case, for which K = 1, is called perfect coupling, when the 

entire flux of one coil links the other. The greater the coefficient of coupling 

between the two coils, the greater the mutual inductance between them, and vice-

versa. It can be expressed as the fraction of the magnetic flux produced by the 

current in one coil that links the other coil.

For a pair of mutually coupled circuits shown in Fig. 4.15, let us assume 

initially that i1, i2 are zero at t = 0

then v t L
di t

dt
M
di t

dt
1 1

1 2( )
( ) ( )

= +

and v t L
di t

dt
M
di t

dt
2 2

2 1( )
( ) ( )

= +

Initial energy in the coupled circuit at t  0

is also zero. The net energy input to the system 

shown in Fig. 4.15 at time t is given by

W t v t i t v t i t dt

t

( ) ( ) ( ) ( ) ( )= + ]ÈÎÚ 1 1 2 2

0

Substituting the values of v1(t) and v2(t) in the above equation yields

W t L i t
di t

dt
L i t

di t

dt

M i t
di t

d

t

( ) ( )
( )

( )
( )

( ( ))
( )

= +È
ÎÍ

+

Ú 1 1
1

2 2
2

0

1
2

tt
i t

di t

dt
dt+ ˘

˚̇
2

1( )
( )

From which we get

W t L i t L i t M i t i t( ) ( ) ( ) ( ) ( )= [ ] + [ ] + [ ]1

2

1

2
1 1

2

2 2

2

1 2

Fig. 4.15
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If one current enters a dot-marked terminal while the other leaves a dot marked 

terminal, the above equation becomes

W t L i t L i t M i t i t( ) ( ) ( ) ( ) ( )= [ ] + [ ] - [ ]1

2

1

2
1 1

2

2 2

2

1 2

According to the definition of passivity, the net electrical energy input to 

the system is non-negative. W(t) represents the energy stored within a passive 

network, it cannot be negative.

 W(t)  0 for all values of i1, i2; L1, L2 or M

The statement can be proved in the following way. If i1 and i2 are both positive 

or negative, W (t) is positive. The other condition where the energy equation 

could be negative is

W t L i t L i t M i t i t( ) ( ) ( ) ( ) ( )= [ ] + [ ] - [ ]1

2

1

2
1 1

2

2 2

2

1 2 (4.8)

The above equation can be rearranged as

W t L i
M

L

i L
M

L
i( ) = -Ê

ËÁ
ˆ
¯̃

+ -
Ê

ËÁ
ˆ

¯̃
1

2

1

2
1 1

1

2

2

2

2

1
2
2

The first term in the parenthesis of the right side of the above equation is positive 

for all values of i1 and i2, and, thus, the last term cannot be negative; hence

L
M

L
2

2

1

0- ≥ (4.9)

L L M

L

1 2
2

1

0
-

≥ (4.10)

L L M1 2
2 0- ≥ (4.11)

L L M
1 2

≥ (4.12)

M L L£
1 2

(4.13)

Obviously the maximum value of the mutual inductance is L L
1 2 . Thus, we 

define the coefficient of coupling for the coupled circuit as

K
M

L L

=
1 2

(4.14)

The coefficient, K, is a non negative number and is independent of the reference 

directions of the currents in the coils. If the two coils are a great distance apart 

in space, the mutual inductance is very small, and K is also very small. For iron-

core coupled circuits, the value of K may be as high as 0.99, for air-core coupled 

circuits, K varies between 0.4 to 0.8.



4.12 Network Analysis

Two inductively coupled coils have self inductances L1  50mH

and L2  200 mH. If the coefficient of coupling is 0.5 (i), find the value of mutual 

inductance between the coils, and (ii) what is the maximum possible mutual 

inductance?

Example 4.9

Solution (i) M K L L= 1 2

= ¥ ¥ ¥ = ¥- - -0 5 50 10 200 10 50 103 3 3. H

(ii) Maximum value of the inductance when K  1,

M L L= =1 2 100 mH

Derive the expression for coefficient coupling between pair of 

magnetically coupled coils. [JNTU June 2006]

Example 4.10

Solution Coefficient of Coupling

It is a measure of the flux linkages between the two coils.

The coefficient of coupling is defined as the fraction of the total flux produced 

by one coil linking with another and it is denoted by ‘k’.

Let  1 fi flux produced by coil   1

 2 Æ flux produced by coil   2

 12 Æ flux produced by coil  1 linking with coil  2

 21 Æ flux produced by coil  2 linking with coil  1

\ Coefficient of coupling k = =
 

 

 

 

12

1

21

2

k value lies between 0 and 1.

we know that M
M

i
M

M

i
12

2 12

1
21

1 21

2

= =
  

,

M M
M M

i i
12 21

2 12 1 21

1 2

¥ =
¥  

M
M k

i

M k

i

2 2 1

1

1 2

2

=
¥

¥
¥  

M k
M

i

M

i
k L L

2 2 1 1

1

2 2

2

2
1 2= ¥ =

  

fi k
M

L L
=

1 2
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Obtain the equivalent 'T' for magnetically coupled circuit shown 

in Fig. 4.16. [JNTU June 2006]

Fig. 4.16

Example 4.11

Solution
R1 R2

I2I1
L1V1(t) V2(t)

L2

m

+ +

Fig. 4.17

V t I R L
d I

d t
M

d I

d t
1 1 1 1

1 2( ) = + +

V t I R L
d I

d t
M

d I

d t
2 2 2 2

2 1( ) = + +

The equivalent ‘T’ for magnetically coupled circuit is

R1

M

R2

I2I1

L1– M

V1 V2

L2– M

+ +

––

Fig. 4.18

Write down the loop equations for the network shown in Fig. 4.19.

[JNTU June 2006]

+

i1 i2

R1

V1(t) V2(t)

C1 C2

L2L1

+

M

Fig. 4.19

Example 4.12



4.14 Network Analysis

Solution As i1 is entering at the dot terminal, and i2 is leaving the dot terminal, sign 

of M (mutual inductance) is  ve

i1(R1   j/wC1  jwL1)  i2  jwM  V1(t)

is loop equation for 1st mesh.

I2(  jwL2  j/wC2)  i1(  jwM)   V2(t)

is loop equation for 2nd mesh

Obtain the equivalent ‘T’ for a magnetically coupled circuit 

shown in Fig. 4.20. [JNTU May 2007]

Fig. 4.20

Example 4.13

Solution The equivalent for ‘T’ the given magnetically coupled circuit is

Fig. 4.21

Write down the loop equations for the network shown in Fig. 4.22.

[JNTU May 2007]

Fig. 4.22

Example 4.14

Solution The loop equations for the given network is

V I R jwL
jwc

I jwMI1 1 1 1
1

1 2

1
= + + -( ) ( )

jwL I
jwc

I I jwM V2 2
2

2 1 2

1
0+ - + =( ) ( ) .
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4.1.5 Ideal Transformer

Transfer of energy from one circuit to another circuit through mutual induction is 
widely utilised in power systems. This purpose is served by transformers. Most 
often, they transform energy at one voltage (or current) into energy at some other 
voltage (or current).

A transformer is a static piece of apparatus, having two or more windings or 
coils arranged on a common magnetic core. The transformer winding to which 
the supply source is connected is called the primary, while the winding connected 
to load is called the secondary. Accordingly, the voltage across the primary is 
called the primary voltage, and that across the secondary, the secondary voltage. 
Correspondingly i1 and i2 are the currents in the primary and secondary windings. 
One such transformer is shown in Fig. 4.23(a). In circuit diagrams, ideal 
transformers are represented by Fig. 4.23(b). The vertical lines between the coils 
represent the iron core; the currents are assumed such that the mutual inductance 
is positive. An ideal transformer is characterised by assuming (i) zero power 
dissipation in the primary and secondary windings, i.e. resistances in the coils 
are assumed to be zero, (ii) the self inductances of the primary and secondary are 
extremely large in comparison with the load impedance, and (iii) the coefficient 
of coupling is equal to unity, i.e. the coils are tightly coupled without having any 
leakage flux. If the flux produced by the current flowing in a coil links all the 
turns, the self inductance of either the primary or secondary coil is proportional 
to the square of the number of turns of the coil. This can be verified from the 
following results.

The magnitude of the self induced emf is given by

v L
di

dt
= (4.15)

If the flux linkages of the coil with N turns and current are known, then the 

self induced emf can be expressed as

Fig. 4.23

L N
d

dt
=

 
(4.16)

L
di

dt
N
d

dt
=

 
(4.17)

L N
d

dt
=

 



4.16 Network Analysis

But  =
Ni

reluctance

\ = Ê
ËÁ

ˆ
¯̃L N

d

di

Ni

reluctance

L
N

=
2

reluctance

L N2 (4.18)

From the above relation it follows that

L

L

N

N
a

2

1

2
2

1
2

2= = (4.19)

where a  N2/Nl is called the turns ratio of the transformer. The turns ratio, a,

can also be expressed in terms of primary and secondary voltages. If the magnetic 

permeability of the core is infinitely large then the flux would be confined to the 

core. If   is the flux through a single turn coil on the core and N1, N2 are the 

number of turns of the primary and secondary, respectively, then the total flux 

through windings 1 and 2, respectively, are

 1  N1  ;  2  N2  

Also we have v
d

dt
v

d

dt
1

1 2= =
  

, and 2 (4.20)

so that V

V

N
d

dt

N
d

dt

N

N

2

1

2

1

2

1

= =

 

 
 (4.21)

Figure 4.17 shows an ideal transformer to which the secondary is connected to a 

load impedance ZL. The turns ratio 
N

N
a

2

1

= .

The ideal transformer is a very useful model for circuit calculations, 

because with few additional elements like R, L and C, the actual behaviour 

of the physical transformer can be accurately represented. Let us analyse this 

transformer with sinusoidal excitations. When the excitations are sinusoidal 

voltages or currents, the steady state response will also be sinusoidal. We can 

use phasors for representing these voltages and currents. The input impedance 

of the transformer can be determined by writing mesh equations for the circuit 

shown in Fig. 4.24

V1  j L1L1  j MI2 (4.22)

0   j MI1   (ZL  j L2)I2 (4.23)



Coupled Circuits and Resonance 4.17

where V1, V2 are the voltage phasors, 

and I1, I2 are the current phasors in the 

two windings. j L1 and j L2 are the 

impedances of the self inductances and 

j M is the impedance of the mutual 

inductance,   is the angular frequency.

From Eq. 4.25, I
j MI

Z j LL

2
1

2

=
+
 

 ( )

Substituting in Eq. 4.24, we have

V I j L
I M

Z j LL

1 1 1
1

2 2

2

= +
+

 
 

 

The input impedance Z
V

I
in = 1

1

\ Z j L
M

Z j LL

in = +
+( )

 
 

 
1

2 2

2

When the coefficient of coupling is assumed to be equal to unity,

\

M L L

Z j L
L L

Z j LL

=

= +
+

1 2

1

2
1 2

2
in  

 

 ( )

We have already established that 
L

L
a2

1

2=

where a is the turns ratio N2/N1

\ Z j L
L a

Z j LL

in = +
+

 
 

 
1

2
1
2 2

2( )

Further simplification leads to

Z
Z j L j L L a

Z j L

Z
j L Z

Z j L

L

L

L

L

in

in

=
+ +

+

=
+

( )

( )

( )

   

 

 

 

2 1
2

1
2 2

2

1

2

As L2 is assumed to be infinitely large compared to Z
L

Z
j L Z

j a L

Z

a

N

N
ZL L
Lin = = = Ê

ËÁ
ˆ
¯̃

 

 

1

2
1

2

1

2

2

Fig. 4.24
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The above result has an interesting interpretation, that is the ideal transformers 

change the impedance of a load, and can be used to match circuits with different 

impedances in order to achieve maximum power transfer. For example, the 

input impedance of a loudspeaker is 

usually very small, say 3 to 12   for 

connecting directly to an amplifier. 

The transformer with proper turns 

ratio can be placed between the output 

of the amplifier and the input of the 

loudspeaker to match the impedances 

as shown in Fig. 4.25.

An ideal transformer has N1  10 turns, and N2  100 turns. 

What is the value of the impedance referred to as the primary, if a 1000 V resistor 

is placed across the secondary?

Example 4.15

Solution The turns ratio a = =
100

10
10

Z
Z

a

L
in

= = =
2

1000

100
10 

The primary and secondary currents can also be expressed in terms of turns ratio.

From Eq. 4.25, we have

I1 jwM   I2 (ZL + jwL2)

I

I

Z j L

j M

L1

0

2=
+  

 

When L2, is very large compared to ZL,

I

I

j L

j M

L

M

1

2

2 2= =
 

 

Substituting the value of M L L=
1 2

 in the above equation
I

I

L

M

1

2

2=

I

I

L

L L

L

L

I

I

L

L
a

N

N

1

2

2

1 2

2

1

1

2

2

1

2

1

= =

= = =

An amplifier with an output impedance of 1936 V is to feed a 

loudspeaker with an impedance of 4 V.

(a)  Calculate the desired turns ratio for an ideal transformer to connect the two 

systems.

Example 4.16

Fig. 4.25
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(b)  An rms current of 20 mA at 500 Hz is flowing in the primary. Calculate the 

rms value of current in the secondary at 500 Hz.

(c) What is the power delivered to the load?

Solution (a)  To have maximum power transfer the output impedance of the 

amplifier
Load impedence

=
a
2

\ 1936
4
2

=
a

\ a = =
4

1936

1

22

or
N

N

2

1

1

22
=

(b) I1  20 mA

We have 
I

I
a

1

2

=

RMS value of the current in the secondary winding

= =
¥

=
-

I

a

1
320 10

1 22
0 44

/
. A

(c) The power delivered to the load (speaker)

 (0.44)2  4  0.774 W

The impedance changing properties of an ideal transformer may be utilised 

to simplify circuits. Using this property, we can transfer all the parameters of the 

primary side of the transformer to the secondary side, and vice-versa. Consider the 

coupled circuit shown in Fig. 4.26(a).

To transfer the secondary side load and voltage to the primary side, the secondary 

voltage is to be divided by the ratio, a, and the load impedance is to be divided by a2.

The simplified equivalent circuits shown in Fig. 4.26(b).

Fig. 4.26



4.20 Network Analysis

For the circuit shown in Fig. 4.27 with turns ratio, a  5, draw 

the equivalent circuit referring (a) to primary and (b) secondary. Take source 

resistance as 10 V.

Fig. 4.27

Example 4.17

Solution (a) Equivalent circuit referred to primary is as shown in Fig. 4.28(a).

Fig. 4.28(a)

(b) Equivalent circuit referred to secondary is as shown in Fig. 4.28(b).

Fig. 4.28(b)
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In Fig. 4.29, L1   4 H; 

L2   91, H, K   0.5, i1   5 cos (50t   30 ) A, 

i2   2 cos (50t   30 ) A. Find the values of 

(a) v1, (b) v2, and (c) the total energy stored 

in the system at t   0.

Example 4.18

Fig. 4.29

Solution Since the current in coil ab is entering at the dot marked terminal, whereas 

in coil cd the current is leaving, we can write the equations as

v L
di

dt
M
di

dt
1 1

1 2= -

v M
di

dt
L
di

dt
2

1
2

2= - +

M K L L= = =1 2 0 5 36 3.

(a) v
d

dt
t

d

dt
t1 4 5 50 30 3 2 50 30= - ∞ - - ∞[ ]È

ÎÍ
˘
˚̇

cos( ) cos( )

v t t1 20 50 30 50 6 50 30 50= - - ∞ ¥[ ]- - - ∞[ ]sin ( ) sin ( )

v1   500   150   350 V

(b) v
d

dt
t

d

dt
t2 3 5 50 30 9 2 50 30= - - ∞[ ]+ - ∞[ ]cos( ) cos( )

= - - - ∞ ¥[ ]+ - - ∞[ ]15 50 30 50 18 50 30 50sin ( ) sin ( )t t

at t   0

v2   375   450   75 V

(c) The total energy stored in the system

W t L i t L i t M i t i t( ) ( ) ( ) ( ) ( )= [ ] + [ ] - [ ]1

2

1

2
1 1

2
2 2

2
1 2

= ¥ - ∞[ ] + ¥ - ∞[ ]
- - ∞ ¥

1

2
4 5 50 30

1

2
9 2 50 30

3 5 50 30

2 2
cos( ) cos( )

cos( )

t t

t 22 50 30cos( )t - ∞[ ]
at t   0 W(t)   28.5 j



4.22 Network Analysis

Solve for the currents I1, and I2 in the circuit shown in Fig. 4.30 .

Also, find the ratio of V2/V1. [JNTU June 2006]

Fig. 4.30

Example 4.19

Solution w  2 rad/sec

J  L1 J2  

J  L2 J(4  2)  J8

KVL to Loop 1

M  J4

I1(1  J2)  (J4)I2  V1 (4.24)

KVL to Loop 2

(J4)I1  (2   J8)I2  0

So the mesh equation are

(1   J2)I1   (J4)I2  V1  10

(J4)I1   (2  J8)I2  0

1 2 4

4 2 8

10

0
1

2

+
+

È
ÎÍ

˘
˚̇

È
ÎÍ

˘
˚̇

= È
ÎÍ

˘
˚̇

J J

J J

I

I

I

J

J
I

J

J

1 2

10 4

0 2 8

1 2 10

4 0
=

+
D

=

+

D

D =
+

+ = +
1 2 4

4 2 8
2 12

J J

J J
i

I
i

i
I

i

i
1 2

20 80

2 12

40

2 12
=

+
+

=
-
+

I1  6.75  0.540i I2   3.243  0.540i

V2  2I2 I2  3.287–  170.53  A

Ratio V

V

2

1

2 3 287 170 53

10 0
=

¥ –- ∞
– ∞

( . . )

V

V

2

1

0 657 170 537= –- ∞. .
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4.2 ANALYSIS OF COUPLED CIRCUITS

Inductively coupled multi-mesh circuits can be analysed using Kirchhoff ’s 

laws and by loop current methods. Consider Fig. 4.31, where three coils are 

inductively coupled. For such a system of inductors we can define a inductance 

matrix L as

L

L L L

L L L

L L L

=
È

Î
Í
Í

˘

˚
˙
˙

11 12 13

21 22 23

31 32 33

where L11, L22 and L33 are self inductances of the coupled circuits, and L12  L21;

L23  L32 and L13  L31 are mutual inductances. More precisely, L12 is the mutual 

inductance between coils 1 and 2, L13 is the mutual inductance between coils

1 and 3, and L23 is the mutual inductance between coils 2 and 3. The inductance 

matrix has its order equal to the number of inductors and is symmetric. In terms 

of voltages across the coils, we have a voltage vector related to i by

[ ] [ ]v L
di

dt
= È

ÎÍ
˘
˚̇

where v and i are the vectors of the branch voltages and currents, respectively.

Thus the branch volt-ampere relationships of the three inductors are given by

V

V

V

L L L

L L L

L L L

di dt

di

1

2

3

11 12 13

21 22 23

31 32 33

1È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í
Í

˘

˚
˙
˙

/

22

3

/

/

dt

di dt

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Using KVL and KCL, the effective inductances can be calculated. The polarity 

for the inductances can be determined by using passivity criteria, whereas the 

signs of the mutual inductances can be determined by using the dot convention.

Fig. 4.31



4.24 Network Analysis

For the circuit shown in Fig. 4.32, write the inductance matrix.Example 4.20

Fig. 4.32

Solution Let L1, L2 and L3 be the self inductances, and L12  L21, L23   L32 and

L13  L31 be the mutual inductances between coils, 1, 2, 2, 3 and 1, 3, respectively.

L12  L21 is positive, as both the currents are entering at dot marked terminals, 

whereas L13  L31, and L23  L32 are negative.

\ The inductance matrix is L

L L L

L L L

L L L

=
-
-

- -

È

Î

Í
Í

˘

˚

˙
˙

1 12 13

21 2 23

31 32 3

4.2.1 Series Connection of Coupled Circuits

Let there be two inductors connected in series, with self inductances L1 and L2

and mutual inductance of M. Two kinds of series connections are possible; series 

aiding as in Fig. 4.33(a), and series opposition as in Fig. 4.33(b).

In the case of series aiding connection, the currents in both inductors at any 

instant of time are in the same direction relative to like terminals as shown in 

Fig. 4.33(a). For this reason, the magnetic fluxes of self induction and of mutual 

induction linking with each element add together.

In the case of series 

opposition connection, the 

currents in the two inductors 

at any instant of time are in 

opposite direction relative 

to like terminals as shown in 

Fig. 4.33(b). The inductance of 

an element is given by L   /i

where   is the flux produced 

by the inductor.

\   Li

Fig. 4.33
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For the series aiding circuit, if  1, and  2 are the flux produced by the coils 1 

and 2, respectively, then the total flux

   1    2

where  1  L1i1  Mi2

 2  L2i2  Mi1

\   Li  L1i1  Mi2  L2i2  Mi1

Since i1  i2  i

L  L1  L2   2M

Similarly, for the series opposition

   1   2

where  1  L1i1  Mi2

 2  L2i2  Mi2

  Li  L1i1  Mi2  L2i2  Mi1

Since i1  i2  i

L  L1  L2   2M

In general, the inductance of two inductively coupled elements in series is 

given by L  L1,  L2   2M.

Positive sign is applied to the series aiding connection, and negative sign to 

the series opposition connection.

Two coils connected in series have an equivalent inductance 

of 0.4 H when connected in aiding, and an equivalent inductance 0.2 H when the 

connection is opposing. Calculate the mutual inductance of the coils.

Example 4.21

Solution  When the coils are arranged in aiding connection, the inductance 

of the combination is L1  L2   2M   0.4; and for opposing connection, it is 

L1 L2   2M   0.2. Solving the two equations, we get

 4M   0.2 H

 M   0.05 H

Calculate the effective 

inductance of the current shown in Fig. 

4.34.

Example 4.22

Fig. 4.34



4.26 Network Analysis

Solution Let ‘i’ be the current from A to B and v be the voltage across AB.

v
di

dt
= + + - - + +[ ]2 4 3 4 4 3 3

The first three terms are self-induced terms and the later four terms are mutual 

terms.

\ v
di

dt
= 7

 L   7H

Calculate the 

effective inductance 

of the circuit shown in Fig. 4.35 across 

terminals a and b.

Example 4.23

Fig. 4.35

Solution Let the current in the circuit be i

v
di

dt

di

dt

di

dt

di

dt

di

dt

di

dt

di

dt
= - + - + + +8 4 10 4 5 6 5

or di

dt

di

dt
v34 8 26-[ ] = =

Let L be the effective inductance of the circuit across ab. Then the voltage across 

ab v L
di

dt

di

dt
= = = 26

Hence, the equivalent inductance of the circuit is given by 26 H.

Write down the voltage equation for the following, and  

determine the effective inductance. [JNTU June 2006]

Example 4.24

Solution Apply KVL in the given loop

V t L
di t

dt
L
di t

dt
M

di t

dt
M

di t

dt

L
di t

dt
M

d

A A

B

( )
( ) ( ) ( ) ( )

( )

= + + + +

-

1 2

3

ii t

dt
M

di t

dt
M

di t

dt
M

di t

dt
B C C

( ) ( ) ( ) ( )
- - -

\ V t L L L M M M
di t

dt
A B C

( )
( )

= + + + - -[ ]1 2 3 2 2 2
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Fig. 4.36

is the required voltage equation.

We have V t L
di t

dt
( )

( )
=

L
di t

dt
L L L M M M

di t

dt
A B C

( ) ( )
= + + + - -[ ]1 2 3 2 2 2

\ L  L1 L2 L3 2M
A
 2M

B
 2M

C
 is the equivalent inductance.

Two identical coils connected in series gave an inductance of 

800 mH and when one of the coils is reversed gave an inductance of 400 mH.

Determine self-inductance, mutual inductance between the coils and the 

co-efficient of coupling. [JNTU June 2006]

Example 4.25

Solution Let ‘L’ be the self inductance of the coils and M be the mutual inductance 

between the coils.

Given data

Two identical coils connected in series gave an inductance of 800 mH

i.e. L   L   2M  800 [  identical coils L1  L2  L]

2L   2M  800

When one of the coils is reversed gave an inductance of 400 mH

i.e. L   L  2M  400

2L  2M  400

Add (1) and (2) we get 4L  1200

L  300 mH

Subtracting (2) from (1) we get 4M  400 mH

M  100 mH

\ Self inductance of each coil  L  300 mH

Mutual inductance between the coils  M  100 mH

Co-efficient of coupling = =K
M

L L1 2

\ K
M

LL

= [ L1  L2  L]
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\ K
M

L

M

L
= =

2

\ K =
100

300

mH

mH

\ K    1/3

\ Co-efficient of coupling   1/3.

In the circuit shown in Fig. 

4.37 find the voltage across the terminals A 

and B if the current changes at the rate of 

100 A/sec. The value of L1, L2 and M are 1 H, 

2 H, and 0.5 H respectively. [JNTU May 2007]

Example 4.26

L1 L2

A B

Solution V L
di

dt
M

di

dt
L

di

dt
M

di

dt

L L M
di

dt

AB
= - + -

= + -

1 2

1 2 2( )

V
AB
  (1   2   2(0.5)) 100

 V
AB
  200 volts

A 15 mH coil is connected in series with another coil. The total 

inductance is 70 mH. When one of the coils is reversed, the total inductance is 

30 mH. Find the inductance of second coil, mutual inductance and coefficient of 

coupling. Derive the expression used. [JNTU June 2009]

Example 4.27

Solution Total inductance  L1  L2   2 M

  15 mH  x   2 M   70 mH (4.25)

Total inductance  L1  L2 2 M

  15 mH  2 M   30 mH (4.26)

So inductance of 2nd coil:

(4.25)   (4.26) 15 2 70

15 2 30

30 2 100

35

mH M mH

mH M mH

mH mH

mH

+ + =

+ - =

+ =

=

x

x

x

x

or

\

Now putting this in (4.25)

 15 35 2 70

2 20

10

mH mH M mH

M mH

M mH

+ + =
=

=\

Fig. 4.37
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10 35 15

0 436

1 2M =

= ¥
=

k L L

k

k .

\

\

4.2.2 Parallel Connection of Coupled Circuits

Consider two inductors with self inductances L1 and L2 connected parallel which 

are mutually coupled with mutual inductance M as shown in Figs 4.38(a) and (b).

Fig. 4.38

Let us consider Fig. 4.38(a) where the self-induced emf in each coil assists the 

mutually induced emf as shown by the dot convention.

i  i1  i2

di

dt

di

dt

di

dt
= +1 2 (4.27)

The voltage across the parallel branch is given by

v L
di

dt
M
di

dt
L
di

dt
M
di

dt
= + +1

2 2 2 1or 2

also L
di

dt
M
di

dt
L
di

dt
M
di

dt
1

1 2
2

2 1+ = +

di

dt
L M

di

dt
L M

1
1

2
2( ) ( )- = -

\ di

dt

di

dt

L M

L M
=

-
-

2 2

1

( )

( )
(4.28)

Substituting Eq. 4.28 in Eq. 4.27, we get

di

dt

di

dt

L M

L M

di

dt

di

dt

L M

L M
=

-
-

+ =
-
-

+È

Î
Í

˘

˚
˙

2 2

1

2 1 2

1

1
( )

( )

( )
(4.29)



4.30 Network Analysis

If Leq is the equivalent inductance of the parallel circuit in Fig. 4.38(a) then v

is given by

v L
di

dt

L
di

dt
L
di

dt
M
di

dt

di

dt L
L
di

dt
M
di

dt

=

= +

= +È
ÎÍ

˘

eq

eq

eq

1
1 2

1
1 21

˚̇̊

Substituting Eq. 4.30 in the above equation we get

di

dt L
L
di L M

dt L M
M
di

dt
=

-
-

+È

Î
Í

˘

˚
˙

1
1

2 2

2

2

eq

( )

( )

=
-
-

+È

Î
Í

˘

˚
˙

1
1

2

1

2

L
L
L M

L M
M
di

dteq

( )
(4.30)

Equating Eq. 4.30 and Eq. 4.29, we get

L M

L M L
L
L M

L M
M

2

2
1

2

1

1
1-

-
+ =

-
-

Ê
ËÁ

ˆ
¯̃

+
È

Î
Í

˘

˚
˙

eq

Rearranging and simplifying the above equation results in

L
L L M

L L M
eq =

-
+ -
1 2

2

1 2 2

If the voltage induced due to mutual inductance oppose the self induced emf in 

each coil as shown by the dot convention in Fig. 4.38(b), the equivalent inductance 

its given by

L
L L M

L L M
eq =

-
+ +
1 2

2

1 2 2

For the circuit 

shown in Fig. 4.39, find the ratio 

of output voltage to the source 

voltage.

Example 4.28

Fig. 4.39
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Solution Let us consider i1 and i2 as mesh currents in the primary and secondary 

windings.

As the current i1 is entering at the dot marked terminal, and current i2 is leaving 

the dot marked terminal, the sign of the mutual inductance is to be negative. Using 

Kirchhoff's voltage law, the voltage equation for the first mesh is

 il(R1  j L1)  i2  j M  v1

 i1(10  j500)  i2   j250   10 (4.31)

Similarly, for the 2nd mesh

 il(R2  j L2)  i1  j M   0

 i2(400  j5000)  i1  j250   0 (4.32)

i

j

j

j j

j j

2

10 500 10

250 0

10 500 250

250 400 5000

=

+
-

+ -
- +

( )

( )

( )

i2   0.00102 – 84.13 

v2  i2  R2

  0.00102 – 84.13   400

  0.408– 84.13 

v

v

2

1

0 408

10
84 13= – - ∞

.
.

v

v

2

1

340 8 10 84 13= ¥ – - ∞-. .

Calculate the 

effective inductance of the circuit 

shown in Fig. 4.40 across AB.

Example 4.29

Fig. 4.40

Solution The inductance matrix is

L L L

L L L

L L L

11 12 13

21 22 23

31 32 33

5 0 2

0 6 3

2 3 17

È

Î

Í
Í

˘

˚

˙
˙

=
-
-

- -

È

Î

Í
Í

˘

˚

˙
˙
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From KVL v  v1  v2 (4.33)

and v2  v3 (4.34)

From KCL i1  i2   i3 (4.35)

v

v

v

di dt

di dt

di dt

1

2

3

1

2

3

5 0 2

0 6 3

2 3 17

È

Î

Í
Í

˘

˚

˙
˙

=
-
-

- -

È

Î

Í
Í

˘

˚

˙
˙

È

Î

Í
Í

˘

˚

˙̇
˙

v
di

dt

di

dt
1

1 3
5 2= - (4.36)

and v
di

dt

di

dt
2

2 3
6 3= - (4.37)

v
di

dt

di

dt

di

dt
3

1 2 3
2 3 17= - - + (4.38)

From Eq. 4.33, we have

v  v1  v2

= - + -5 2 6 3
1 3 2 3

di

dt

di

dt

di

dt

di

dt

v
di

dt

di

dt

di

dt
= + -5 6 5

1 2 3 (4.39)

From Eq. 4.35,

di

dt

di

dt

di

dt

1 2 3= + (4.40)

Substituting Eq. 4.40 in Eq. 4.39, we have

v
di

dt

di

dt

di

dt

di

dt
3

2 3 2 3
2 3 17= - +È

ÎÍ
˘
˚̇

- È
ÎÍ

˘
˚̇

+ È
ÎÍ

˘
˚̇

or - + =5 15
2 3

3

di

dt

di

dt
v (4.41)

Multiplying Eq. 4.37 by 5, we get

30 15 5
2 3

2

di

dt

di

dt
v- = (4.42)

Adding Eqs (4.41) and (4.42), we get

25 5
2

3 2

di

dt
v v= +

25 6
2

2

di

dt
v=
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  6v3, since v2  v3

or v
di

dt
2

225

6
=

From Eq. 4.39

25

6
6 3

2 2 3di

dt

di

dt

di

dt
= -

from which 
di

dt

di

dt

2 318

11
=

From Eq. 4.42

di

dt

di

dt

di

dt

di

dt

2 2 2 211

18

29

18
= + =

Substituting the values of 
di

dt

2  and 
di

dt

3  in Eq. 4.41 yields

v
di

dt

di

dt

di

dt
= + -5 6

18

29
5

11

18

1 1 2

= + -5
108

29

55

18

18

29

2 1 1
di

dt

di

dt

di

dt

v
di

dt

di

dt
= =

198

29
6 827

1 1
.

\ equivalent inductance across AB   6.827 H

Write the mesh 

equations for the network shown in 

Fig. 4.41.

Example 4.30

Fig. 4.41

Solution The circuit contains three meshes. Let us assume three loop currents i1
i2 and i3.

For the first mesh

5i1  j3(i1  i2)  j4(i3  i2)  v1 (4.43)

The drop due to self inductance is j3(i1  i2) is written by considering the: Current 

(i1  i2) entering at dot marked terminal in the first coil, j4(i3  i2) is the mutually 

induced voltage in coil 1 due to current (i3  i2) entering at dot marked terminal 

of coil 2.

Similarly, for the 2nd mesh,

j3(i2  i1)  j5(i2  i3)  j2i2  j4(i2  i3)  j4(i2  i1)   0 (4.44)
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j4(i2  i1) is the mutually induced voltage in coil 2 due to the current in coil 1, and 

j4(i2  i3) is the mutually induced voltage in coil 1 due to the current in coil 2.

For the third mesh,

3i3  j5(i3  i2)  j4(i1  i2)   0 (4.45)

Further simplification of Eqs 4.43, 4.44 and 4.45 leads to

(5  j3)i1  j7i2  j4i3  v1 (4.46)

 j7i1  j14i2  j9i3   0 (4.47)

 j4i1  j9i2   (3  j5)i3   0 (4.48)

The inductance matrix for the circuit of three series connect 

coupled coils is given in Fig. 4.42. Find the inductances, and indicate the dots 

for the coils.

L =
-

- -
-

È

Î

Í
Í

˘

˚

˙
˙

4 4 1

4 2 3

1 3 6

All elements are in Henrys.

Example 4.31

Fig. 4.42

Solution The diagonal elements (4, 2, 6) in the matrix represent the self 

inductances of the three coils 1, 2 and 3, respectively. The second element in the 

1st row (  4) is the mutual inductance 

between coil 1 and 2, the negative sign 

indicates that the current in the first 

coil enters the dotted terminal, and 

the current in the second coil enters at 

the undotted terminal. Similarly, the 

remaining elements are fixed. The values 

of inductances and the dot convention is 

shown in Fig. 4.43.

Find the 

voltage across the 10 V

resistor for the network 

shown in Fig. 4.44. 

Example 4.32

Fig. 4.44

Solution From Fig. 4.43 it is clear that

v2  i210 (4.49)

Fig. 4.43
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Mesh equation for the first mesh is

j4i1  j15(i1  i2)  j3i2  10 – 0 
  j11i1  j18i2  10 – 0 (4.50)

Mesh equation for the 2nd mesh is

j2i2   10i2  j15(i2  i1)  j3i1  0

j18i1  j13i2   10i2  0

j18i1  i2(10  j13)  0 (4.51)

Solving for i2 from Eqs 4.50 and 4.51, we get

i
j

j

j j

j j2

11 10 0

18 0

11 18

18 10 3
=

- – ∞È
ÎÍ

˘
˚̇

-
-

È
ÎÍ

˘
˚̇

=
- – ∞

-
180 90

291 110j

=
- – ∞

– ∞
= - – ∞

180 90

311 20 70
0 578 110 7

.
. .

 v2  i2 10   5.78 – 110.7 

v
2

5 78= .

Write the loop equations for the coupled circuit shown in 

Fig. 4.45. [JNTU June 2006]

Fig. 4.45

Example 4.33

Solution

Fig. 4.46
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Loop Equations: (By Dot Rule Convention)

(1) fi = + + - +V t i t R R L
di t

dt
i t R M

di t

dt
1 1 1 2 1

1
2 2 12

2( ) ( )( )
( )

( )
( )

- - -M
di t

dt
L

di t

dt
M

di t

dt
13

3
1

2
12

3( ) ( ) ( )

(2) fi R i t i t L
di t

dt

di t

dt
M

di t

dt

di

d
2 2 1 1

2 1
12

2 3( ( ) ( ))
( ) ( ) ( )

- + -Ê
ËÁ

ˆ
¯̃ - -

tt

Ê
ËÁ

ˆ
¯̃

+ + -Ê
ËÁ

ˆ
¯̃ - -Ê

ËÁ
ˆ
¯̃ -M

di

dt
L

di

dt

di

dt
M

di

dt

di

dt
M

di

d
13

3
2

2 3
12

2 1
23

3

tt

+ - =R i i3 2 3 0( )

(3) fi R i i L
di

dt

di

dt
M

di

dt

di

dt
M

di

d
3 3 2 2

3 2
12

1 2
23

3( )- + -Ê
ËÁ

ˆ
¯̃ - -Ê

ËÁ
ˆ
¯̃ +

tt

+ - -Ê
ËÁ

ˆ
¯̃ + -Ê

ËÁ
ˆ
¯̃ +L

di

dt
M

di

dt

di

dt
M

di

dt

di

dt C
i dt3

3
13

1 2
23

3 2

1
3

1
==Ú 0.

Write the loop equations for the coupled circuits shown in 

Fig. 4.47. [JNTU May 2007]

Fig. 4.47

Example 4.34

Solution Given circuit is

The loop equations are

V t R i t L
d

dt
i t i t M

d

dt
i t i t

M
d

d

1 1 1 1 1 2 12 2 3

13

( ) ( ) ( ) ( ) ( ) ( )= + -[ ]- [ ]

-

 

tt
i t R i t i t3 2 1 2( ) ( ) ( )[ ]+ -[ ]

(4.52)

Loop 2

R i t i t L
di t

dt

di t

dt
M

d

dt
i t i t

i

2 2 1 1
2

12 2 3( ) ( )
( ) ( )

( ) (-[ ]+ -È
ÎÍ

˘
˚̇

- - ))[ ]
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( ) ( ) ( ) ( ) ( )
+ +

-[ ]
- -È

Î
M

di t

dt
L

d i t i t

dt
M

di t

dt

di t

dt

i

13
3

2
2 3

12
2

ÍÍ
˘
˚̇

- + - =M
di t

dt
R i i23

3
3 2 3 0

( )
( )

Loop 3

R i i L
d i i

dt
M

d i i

dt
M

di

dt

L
di

dt
M

d

l

3 3 2 2
3 2

12
2

23
3

3
3

13

( )
( ) ( )

- +
-

-
-

+

+ -
ddt

M
d i i

dt C
i dt-

-
+ =Ú23

3 2

1
3

1
0

( )

4.3
CONDUCTIVELY COUPLED EQUIVALENT

CIRCUITS—TUNED CIRCUITS

Tuned circuits are, in general, single tuned and double tuned. Double tuned 

circuits are used in radio receivers to produce uniform response to modulated 

signals over a specified bandwidth; double tuned circuits are very useful in 

communication system.

4.3.1 Single Tuned Circuit

Consider the circuit in Fig. 4.48. A tank circuit (i.e. a parallel resonant circuit) on 

the secondary side is inductively coupled to coil (1) which is excited by a source, 

vi. Let Rs be the source resistance and 

R1, R2 be the resistances of coils, 1 and 

2, respectively. Also let L1, L2 be the 

self inductances of the coils, 1 and 2, 

respectively.

Let Rs  R1  j L1  Rs with the 

assumption that Rs >> R1 >> j L1

The mesh equations for the circuit 

shown in Fig. 4.48 are

i1Rs  j Mi2  vi

- + + -Ê
ËÁ

ˆ
¯̃ =j Mi R j L

j

C
i  

 
1 2 2 2 0

i
R v

j M

R j M

j M R j L
i

C

s i
s

2
2 20

= -

-

- + -Ê
ËÁ

ˆ
¯̃ 

 

  
 

( )

( )

or i
jv M

R R j L
j

C
M

i

s

2

2 2
2 2

=
+ -Ê

ËÁ
ˆ
¯̃ +

 

 
 

 

Fig. 4.48
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The output voltage v i
j C

o
= ◊

2

1

 

v
jv M

j C R R j L
C

M

o
i

s

=

+ -Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙ +

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

 

  
 

 
2 2

2 21

The voltage transfer function, or voltage amplification, is given by

v

v
A

M

C R R j L
C

M

o

i

s

= =

+ -Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙ +

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
2 2

2 21
 

 
 

When the secondary side is tuned, i.e. when the value of the frequency   is such 

that  L2  1/ C, or at resonance frequency  
r
, the amplification is given by

A
v

v

M

C R R M

o

i s r

= =
+ÈÎ ˘̊

2

2 2 

the current i2 at resonance i
jv M

R R M

i r

s r

2

2

2 2
=

+
 

 

Thus, it can be observed that the output voltage, current and amplification 

depends on the mutual inductance M at resonance frequency, when 

M K L L=
1 2

.

The maximum output voltage or the maximum amplification depends on M. To 

get the condition for maximum output voltage, make dvo/dM  0.

dv

dM

d

dM

v M

C R R M

o i

s r

=
+ÈÎ ˘̊

È

Î
Í

˘

˚
˙

2

2 2 

= - +ÈÎ ˘̊ =
-

1 2 0
2 2

2

2 2
1

M R R Mr s r  

From which, R R Ms r2

2 2=  

or M
R Rs

r

= 2

 

From the above value of M, we can calculate the maximum output voltage.

Thus v
v

C R R
oM

i

r s

=
2 2 

,

or the maximum amplification is given by

A
C R R

m

r s

=
1

2 2 
and i

jv

R R

i

s

2

2
2

=

The variation of the amplification factor or output voltage with the coefficient 

of coupling is shown in Fig. 4.49.
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Fig. 4.49

Consider the single tuned circuit shown in Fig. 4.50 and 

determine (i) the resonant frequency (ii) the output voltage at resonance and 

(iii) the maximum output voltage. Assume Rs >> wrL1, and K = 0.9.

Fig. 4.50

Example 4.35

Solution M K L L=

= ¥ ¥ ¥

=

- -

1 2

6 6
0 9 1 10 100 10

9

.

 H

(i) Resonance frequency

or  

 r

r

L C

f

= =
¥ ¥ ¥

=

=

- -

1 1

100 10 0 1 10

10

10

50 292

2
6 6

6

.

/ sec.

.

rad

kHz

The value of  r L1

6

610

10
1 10 0 316= ¥ =-

.



4.40 Network Analysis

Thus the assumption that  
r
L1 R

s
 << is justified,

(ii) Output voltage

v
Mv

C R R M
o

i

s r

=
+ÈÎ ˘̊

2
2 

=
¥ ¥

¥ ¥ +
Ê
ËÁ

ˆ
¯̃

¥ ¥
È

Î
Í
Í

˘

˚
˙
˙

=
-

- -

9 10 15

0 1 10 10 10
10

10
9 10

1 5
6

6
6

2

6.

. mV

(iii) Maximum value of output voltage

v
C R R

oM

i

r s

=
 

 2 2

=
¥ ¥ ¥

=

-

15

2
10

10
0 1 10 100

23 7

6
6.

.voM V

The resonant 

frequency of the tuned circuit 

shown in Fig. 4.51 is 1000 rad/sec. 

Calculate the self inductances of 

the two coils and the optimum 

value of the mutual inductance.

Example 4.36

Fig. 4.51

Solution We know that

 
r

L C L C

2

1 1 2 2

1 1
= =

L
C
r

1 2
1

2 6

1 1

1000 1 10
1= =

¥
=- ( )
H

L
C
r

2 2
2

2 6

1 1

1000 2 10
0 5= =

¥ ¥
=- ( )
. H

Optimum value of the mutual inductance is given by

M
R R

r

optimum = 1 2

 

where R1 and R2 are the resistances of the primary and secondary coils

M = =
15

1000
3 87. mH
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4.3.2 Double Tuned Coupled Circuits

Figure 4.52 shows a double tuned transformer circuit involving two series 

resonant circuits.

For the circuit shown in the figure, a special case where the primary and 

secondary resonate at the same frequency  
r
, is considered here,

i.e,  r
L C L C

2

1 1 2 2

1 1
= =

Fig. 4.52

The two mesh equations for the circuit are

v i R R j L
j

C
i j Msin = + + -Ê

ËÁ
ˆ
¯̃

-1 1 1
1

2 
 

 

0 1 2 2 2
2

= - + + -Ê
ËÁ

ˆ
¯̃

j Mi i R j L
j

C
  

 

From which

i
V j M

R R j L
C

R j L
C

s

2

1 1
1

2 2
2

1 1
=

+ + -Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙ + -Ê

ËÁ
ˆ
¯̃

È

Î

in  

 
 

 
 

( ) ÍÍ
˘

˚
˙ +  2 2

M

also  r
L C L C

= =
1 1

1 1 2 2

 at resonance

or

v
V M

C R R R M

v Av

o

s r

o in

=
+ +ÈÎ ˘̊

=

in

2 1 2
2 2( )  

where A is the amplification factor given by

A
M

C R R R M
s r

=
+ +ÈÎ ˘̊

2 1 2
2 2( )  
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The maximum amplification or the maximum output voltage can be obtained 

by taking the first derivative of vo with respect to M, and equating it to zero.

\ 
dV

dM

dA

dM

o = =0 0, or

dA

dM
R R R M M

s r r
= + + - =( )1 2

2 2 2 22 0  

 
r s
M R R R

2 2
2 1= +( )

M
R R R

c

s

r

=
+2 1( )

 

where M
c
 is the critical value of mutual inductance. Substituting the value of M

c

in the equation of v
o
, we obtain the maximum output voltage as

v
V

C M

V

C R R R

o

r c

r s

=

=
+

in

in

2

2

2
2

2 2 1

 

 ( )

and i
V

M

V

R R Rr c s

2

2 1
2 2

= =
+

in in

 ( )

By definition, M K L L= 1 2 ,  the coefficient of coupling, K at M  M
c
 is called 

the critical coefficient of coupling, and is given by K M L L
c c

= / 2 1.

The critical coupling causes the secondary current to have the maximum 

possible value. At resonance, the maximum value of amplification is obtained 

by changing M, or by changing the coupling coefficient for a given value of L1

and L2. The variation of output voltage with frequency for different coupling 

coefficients is shown in Fig. 4.53.

Fig. 4.53
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The tuned frequency of a double tuned circuit shown in 

Fig. 4.54 is 104 rad/sec. If the source voltage is 2 V and has a resistance of 0.1 V;

calculate the maximum output voltage at resonance if R1   0.01 V, L1    2 mH;

R2   0.1 V, and L2   25 mH.

Fig. 4.54

Example 4.37

Solution The maximum output voltage v
v

C M
o

i

r c

=
2 2

2 

where Mc is the critical value of the mutual inductance given by

M
R R R

c

s

r

=
+2 1( )

 

M
c

=
+

=
0 1 0 01 0 1

10
10 48

4

. ( . . )
.  H

At resonance  
r

L C

2

2 2

1
=

C
L

r

2 2
2

4 2 6

31 1

10 25 10
0 4 10= =

¥ ¥
= ¥-

-

 ( )
. F

v0 4 2 3 6

2

2 10 0 4 10 10 48 10
=

¥ ¥ ¥ ¥- -( ) . .

  2.385 V

4.4 SERIES RESONANCE

Frequency response analysis is important to us for two primary reasons. First, if we 

know the frequency response then we can predict the response of the circuit to any 
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input. Sinusoidal waveforms have the elegant property that they can be combined 

to form other (non-sinusoidal) waveforms. Therefore the frequency response 

allows us to understand a circuits response to more complex inputs. Second, we 

are often interested in designing circuits with particular frequency characteristics. 

For example, in the design of an audio 3-way loud speaker system, we would like 

to direct low frequency signals to the woofers, high frequency signals to the tweets, 

and mid frequency signals to the mid range speakers. Therefore we would need a 

circuit that is capable of passing certain frequencies of a signal and rejecting others. 

The concept of resonance is highly useful in the design of basic filtering circuits for 

use in everyday applications such as an audio amplifiers.

Consider an AC circuit with a single voltage source and any number of resistors, 

capacitors and inductors. If the frequency of the source is fixed, then a complete 

analysis in either the time domain or the frequency domain is possible. In the 

time domain, a differential is extracted from the circuit and solved. In general, 

the order of the differential equation is equal to the number of energy storage 

elements in the circuit. A much easier method is to solve the circuit using phasor 

analysis in the frequency domain. The analysis is easier in the frequency domain 

because differentiation in time transforms to multiplication by jv. As a result, an 

algebraic equation arises rather than a differential equation. Algebraic equations 

are easier to solve the differential equations. If the frequency of the voltage source 

is varied, the impedance of each storage element changes, as the response of the 

circuit varies as a function of input frequency. The frequency response of a circuit 

is a quantitative description of its behaviour in the frequency domain.

In many electrical circuits, resonance is a very important phenomenon. The 

study of resonance is very useful, particularly in the area of communications. For 

example, the ability of a radio receiver to select a certain frequency, transmitted by 

a station and to eliminate frequencies from other stations is based on the principle 

of resonance. In a series RLC circuit, the current lags behind, or leads the applied 

voltage depending upon the values of XL and XC  XL causes the total current to lag 

behind the applied voltage, while XC causes the total current to lead the applied 

voltage. When XL   XC, the circuit is 

predominantly inductive, and when 

XC XL the circuit is predominantly 

capacitive. However, if one of the 

parameters of the series RLC circuit 

is varied in such a way that the 

current in the circuit is in phase with 

the applied voltage, then the circuit is 

said to be in resonance.

Consider the series RLC circuit shown in Fig. 4.55.

The total impedance for the series RLC circuit is

Z R j X X R j L
C

L C= + -( ) = + -Ê
ËÁ

ˆ
¯̃

 
 

1

It is clear from the circuit that the current I  VS /Z

Fig. 4.55
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The circuit is said to be in resonance if the current is in phase with the applied 

voltage. In a series RLC circuit, series resonance occurs when XL  XC. The 

frequency at which the resonance occurs is called the resonant frequency.

Since XL  XC, the impedance in a series RLC circuit is purely resistive. At 

the resonant frequency, fr, the voltages across capacitance and inductance are 

equal in magnitude. Since they are 180  out of phase with each other, they cancel 

each other and, hence zero voltage appears across the LC combination.

At resonance

XL  XC i.e.  
 

L
C

=
1

Solving for resonant frequency, we get

2
1

2
 

 
f L

f C
r

r

=

f
LC

f
LC

r

r

2

2

1

4

1

2

=

=

 

 

In a series RLC circuit, resonance may be produced by varying the frequency, 

keeping L and C constant; otherwise, resonance may be produced by varying 

either L or C for a fixed frequency.

For the circuit shown 

in Fig. 4.56, determine the value of 

capacitive reactance and impedance at 

resonance.

Example 4.38

Fig. 4.56

Solution At resonance

XL  XC

Since XL   25  

XL   25  \ =
1

25
 C

The value of impedance at resonance is

Z  R

\ Z   50   
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Determine the 

resonant frequency for the circuit 

shown in Fig. 4.57.

Example 4.39

Fig. 4.57

Solution The resonant frequency is f
LC

f

r

r

=

=

=

- -

1

2

1

2 10 10 0 5 10

2 25

6 3

 

    .

. kHz

A 50 Ω resistor is 

connected in series with an inductor 

having internal resistance, a capacitor 

and 100 V variable frequency supply 

as shown in Fig. 4.58. At a frequency 

of 200 Hz, a maximum current of 

0.7 A flows through the circuit and 

voltage across the capacitor is 200 V. 

Determine the circuit constants.

Example 4.40

Fig. 4.58

Solution At resonance, current in the circuit is maximum

I   0.7 A

Voltage across capacitor is V
C
 IX

C

Since V
C
  200, I   0.7

X
C

C
=

1

 

 C =
0 7

200

.

  C =
¥ ¥

=

0 7

200 2 200

2 785

.

.

 

 F

At resonance

X
L
 X

C
  0

  X
L
 X

C
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Since X
C

C
= = =
1 200

0 7
285 7

 .
.  

XL   L  285.7  

 L =
¥

=
285 7

2 200
0 23

.
.

 
H

At resonance, the total impedance

Z  R  50

  R
V

I
+ = =50

100

0 7.

R  50  142.86  

 R  92.86  

4.4.1 Impedance and Phase Angle of a Series Resonant Circuit

The impedance of a series RLC circuit is

Z R L
C

= + -Ê
ËÁ

ˆ
¯̃

2

2
1

 
 

The variation of XC and XL with frequency is shown in Fig. 4.59(a).
At zero frequency, both XC and Z are infinitely large, and XL is zero because 

at zero frequency the capacitor acts as an open circuit and the inductor acts as a 
short circuit. As the frequency increases, XC decreases and XL increases. Since 
XC is larger than XL, at frequencies below the resonant frequency fr , Z decreases 
along with XC. At resonant frequency XC  XL, and Z  R. At frequencies above 
the resonant frequency fr , XL is larger than XC, causing Z to increase. The phase 
angle as a function of frequency is shown in Fig. 4.59(b).

Fig. 4.59(a)
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Fig. 4.59(b)

At a frequency below the resonant frequency, current leads the source voltage 

because the capacitive reactance is greater than the inductive reactance. The 

phase angle decreases as the frequency approaches the resonant value, and is 0 
at resonance. At frequencies above resonance, the current lags behind the source 

voltage, because the inductive reactance is greater than capacitive reactance. As 

the frequency goes higher, the phase angle approaches 90 .

For the circuit shown 

in Fig. 4.60, determine the impedance 

at resonant frequency, 10 Hz above 

resonant frequency, and 10 Hz below 

resonant frequency.

Example 4.41

Fig. 4.60

Solution Resonant frequency f
LC

r =

=
¥ ¥

=
-

1

2

1

2 0 1 10 10

159 2
6

 

 .

. Hz

At 10 Hz below fr   159.2 – 10   149.2 Hz

At 10 Hz below fr   159.2   10   169.2 Hz

Impedance at resonance is equal to R

 Z   10  
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Capacitive reactance at 149.2 Hz is

  

X
C

X

C

C

1

1

1 1

2 149 2 10 10

106 6

1
6

= =
¥ ¥ ¥

=

-  .

.  

Capacitive reactance at 169.2 Hz is

  

X
C

X

C

C

2

2

1 1

2 169 2 10 10

94 06

2
6

= =
¥ ¥ ¥

=

-  .

.  

Inductive reactance at 149.2 Hz is

X L
L1 2 2 149 2 0 1 93 75= = ¥ ¥ =  . . .  

Inductive reactance at 169.2 Hz is

X L
L2 2 2 169 2 0 1 106 31= = ¥ ¥ =  . . .  

Impedance at 149.2 Hz is

Z R X X
L C

= + -( )
= + - =

2 2

2 2

1 1

10 93 75 106 6 16 28( ) ( . . ) .  

Here X
C1

 is greater than XL1
, so Z is capacitive.

Impedance at 169.2 Hz is

Z R X X
L C

= + -

= + - =

2 2

2 2

2 2

10 106 31 94 06 15 81

( )

( ) ( . . ) .  

Here X
L1

 is greater than X
C1

, so Z is inductive.

A series RLC circuit consists of resistance R 20  , inductance, 

L 0.01 H and capacitance, C 0.04  F. Calculate the frequency at resonance. If 

a 10 volts of frequency equal to the frequency of resonance is applied to this circuit, 

calculate the values of VC and VL across C and L respectively. Find the frequencies 

at which these voltages VC and VL are maximum? [JNTU June 2006]

Example 4.42

Solution R = 20   ; L = 0.01 H; C = 0.04  F

f
LC

r = =
¥ ¥

=
-

1

2

1

2 0 01 0 04 10
7 957

6  . .
. kHz

At resonance I
V

R
= = =

10

20
0 5. A
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The voltage drop across the inductor is

V I X

LV

R L
C

L L=

=

+ -Ê
ËÁ

ˆ
¯̃

=
¥ ¥ ¥ ¥

+ ¥

 

 
 

 

 

2
2

3

2

1

2 7 957 10 0 01 10

20 2 7

. .

( ) .9957 10 0 01
1

2 7 957 10 0 04 10

250

3

3 6

2

¥ ¥ -
¥ ¥ ¥ ¥

Ê
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V

V I X
V

R L
C

C
C C= =
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ËÁ

ˆ
¯̃

¥

=
¥

¥ ¥ ¥ ¥ -

2
2

3 6

1

1

10
1

2 7 957 10 0 04 10

20

 
 

 

 . .

( )) . .
. .

2 3

3 6

2

2 7 957 10 0 01
1

2 7 957 10 0 04 10
+ ¥ ¥ ¥ -

¥ ¥ ¥ ¥
Ê
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ˆ
¯̃- 

 

VC = 250 V

The frequency at which the voltage across inductor maximum

f
LC R C

L

L =
-

1

2

1

1
2

2 

=
¥ ¥ -

¥ ¥
¥

- -
1

2 0 01 0 04 10

1

1
20 0 04 10

2 0 01

6 2 6
 . . ( ) .

.

fL = 7960 Hz

The frequency at which the voltage across capacitor maximum

\

f
LC

R

L
C = −

=

× × −
×

=

−

1

2

1

2

1

2

1

0 01 0 04 10
20

2 0 01

7949

2

6
2

 

 
. .

( )

.

Hz
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The maximum voltage across the capacitor occurs below resonant frequency, and 

the maximum voltage across the inductor occurs above the resonant frequency.

A series circuit comprising R, L and C is supplied at 220 V, 50 Hz. 

At resonance, the voltage across the capacitor is 550 V. The current at resonance 

is 1 A. Determine the circuit parameters R, L and C. [JNTU May 2006]

Example 4.43

Solution At resonance

X
L

= X
C

Current at resonance = I
V

R j X X

V

RL C

=
+ -( ) =

I
R

=
220

\ R = 220  

V
C

= I
O
X
C

550 1
1

= ¥
 oc

C
f

=
¥

=
¥ ¥ ¥

1

550 2

1

550 2 50  

C = 5.78  F

f
LC

o =
1

2 

LC
fo

=
Ê
ËÁ

ˆ
¯̃

1

2

2

 

L
C fo

=
Ê
ËÁ

ˆ
¯̃

=
¥

Ê
ËÁ

ˆ
¯̃

=-

1 1

2

1

5 78 10

1

100
1 750

2

6

 

 .
. H

\ Circuit elements at resonance are

R = 220  , L = 1.75 H, C = 5.78  F

4.4.2 Voltage and Current in a Series Resonant Circuit

The variation of impedance and current with frequency is shown in Fig. 4.61.
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Fig. 4.61

At resonant frequency, the capacitive reactance is equal to inductive reactance, 
and hence the impedance is minimum. Because of minimum impedance, maximum 
current flows through the circuit. The current variation with frequency is plotted.

The voltage drop across resistance, inductance and capacitance also varies 
with frequency. At f  0, the capacitor acts as an open circuit and blocks current. 
The complete source voltage appears across the capacitor. As the frequency 
increases, XC decreases and XL increases, causing total reactance XC  XL to 
decrease. As a result, the impedance decreases and the current increases. As the 
current increases, VR also increases, and both VC and VL increase.

When the frequency reaches its resonant value fr, the impedance is equal to R,
and hence, the current reaches its maximum value, and VR is at its maximum value.

As the frequency is increased above resonance, XL continues to increase and 
XC continues to decrease, causing the total reactance, XL – XC to increase. As a 
result there is an increase in impedance and a decrease in current. As the current 
decreases, VR also decreases, and both VC and VL decrease. As the frequency 
becomes very high, the current approaches zero, both VR and VC approach zero, 
and VL approaches VS.

The response of different voltages with frequency is shown in Fig. 4.62.

Fig. 4.62
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The drop across the resistance reaches its maximum when f fr. The maximum 

voltage across the capacitor occurs at f fc. Similarly, the maximum voltage 

across the inductor occurs at f  fL.

The voltage drop across the inductor is

VL  IXL

where I
V

Z
=

\ V
LV

R L
C

L =

+ -Ê
ËÁ

ˆ
¯̃

 

 
 

2

2
1

To obtain the condition for maximum voltage across the inductor, we have to 

take the derivative of the above equation with respect to frequency, and make it 

equal to zero.

  
dV

d

L

 
= 0

If we solve for  , we obtain the value of   when VL is maximum.

dV

d

d

d
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2 2 2
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C

=

From this,

R
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C
C2 2 22

2 0- + =/  

   L
LC R C LC R C

L

=
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=
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2
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1 2
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Similarly, the voltage across the capacitor is

V IX
I

C
C C= =

 

  V
V

R L
C

C
C =

+ -Ê
ËÁ

ˆ
¯̃

¥
2

2
1

1

 
 

 

To get maximum value dV

d

C

 
= 0

If we solve for  , we obtain the value of   when V
C
 is maximum.

dV

d
C R L

C
L

C
L

C
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From this,

 C
LC

R

L

2

2
1

2
= -

 C
LC

R

L
= -

1

2

2

  f
LC

R

L
C = -

1

2

1

2

2

 

The maximum voltage across the capacitor occurs below the resonant 

frequency; and the maximum voltage across the inductor occurs above the 

resonant frequency.

4.4.3 Bandwidth of Series Resonance [JNTU Nov 2011]

The bandwidth of any system is the range of frequencies for which the current or 

output voltage is equal to 70.7% of its value at the resonant frequency, and it is 

denoted by BW. Figure 4.63 shows the response of a series RLC circuit.
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Fig. 4.63

Here the frequency f1 is the frequency at which the current is 0.707 times 

the current at resonant value, and it is called the lower cut-off frequency. 

The frequency f2 is the frequency at which the current is 0.707 times the 

current at resonant value (i.e. maximum value), and is called the upper cut-

off frequency. The bandwidth, or BW, is defined as the frequency difference 

between f2 and f1.

\ BW  f2 – f1

The unit of BW is hertz (Hz).

If the current at P1 is 0.707 Imax, the impedance of the circuit at this point is 

2 R,  and hence

1

1

1
 

 
C

L R- = (4.53)

Similarly,  
 

2

2

1
L

C
R- = (4.54)

If we equate both the above equations, we get

1 1

1

1 2

2 
  

 C
L L

C
- = -

L
C

  
  

  
1 2

1 2

1 2

1
+( ) =

+Ê
ËÁ

ˆ
¯̃

(4.55)

From Eq. 4.55, we get

  1 2

1
=

LC
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we have  
r

LC

2 1
=

  2
r
  1 2 (4.56)

If we add Eqs 4.53 and 4.54, we get

1 1
2

1
1 2

2 
  

 C
L L

C
R- + - =

  
  

  
2 1

2 1

1 2

1
2-( ) +

-Ê
ËÁ

ˆ
¯̃

=L
C

R (4.57)

Since

C
Lr

=
1
2 

and

 1 2   2
r

( )
( )

  
   

 
2 1

2
2 1

2
2- +

-
=L

L
Rr

r

(4.58)

From Eq. 4.58, we have

  2 1- =
R

L
(4.59)

f f
R

L
2 1

2
- =

 
(4.60)

or BW
R

L
=
2 

From Eq. 4.60, we have

f f
R

L
2 1

2
- =

 

\ - =f f
R

L
r 1

4 

f f
R

L
r2

4
- =

 

The lower frequency limit f f
R

L
r1

4
= -

 
(4.61)

The upper frequency limit f f
R

L
r2

4
= +

 
(4.62)
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If we divide the equation on both sides by fr , we get

f f

f

R

f Lr r

2 1

2

-
=

 
(4.63)

Here an important property of a coil is defined. It is the ratio of the reactance of the 

coil to its resistance. This ratio is defined as the Q of the coil. Q is known as a figure 

of merit, it is also called quality factor and is an indication of the quality of a coil.

Q
X

R

f L

R

L r= =
2 

(4.64)

If we substitute Eq. 4.63 in Eq. 4.64, we get

f f

f Qr

2 1 1-
= (4.65)

The upper and lower cut-off frequencies are sometimes called the half-power

frequencies. At these frequencies the power from the source is half of the power 

delivered at the resonant frequency.

At resonant frequency, the power is

Pmax  I 2
max R

At frequency f1, the power is P
I

R
I R

1

2 2

2 2
= Ê

ËÁ
ˆ
¯̃

=max max

Similarly, at frequency f2, the power is

P
I

R

I R

2

2

2

2

2

= Ê
ËÁ

ˆ
¯̃

=

max

max

The response curve in Fig. 4.63 is also called the selectivity curve of the 

circuit. Selectivity indicates how well a resonant circuit responds to a certain 

frequency and eliminates all other frequencies. The narrower the bandwidth, the 

greater the selectivity.

4.4.4 The Quality Factor (Q) and its Effect on Bandwidth

The quality factor, Q, is the ratio of the reactive power in the inductor or capacitor 

to the true power in the resistance in series with the coil or capacitor.

The quality factor

Q = ¥2 
Maximumenergystored

Energydissipated per cycle

In an inductor, the max energy stored is given by 
LI 2

2

Energy dissipated per cycle = Ê
ËÁ

ˆ
¯̃

¥ =
I

R T
I RT

2 2

2 2
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 Quality factor of the coil Q

LI

I R

f

fL

R

L

R
= ¥

¥
= =2

1

2

2

1

2
2

2
 

  

Similarly, in a capacitor, the max energy stored is given by
CV 2

2

The energy dissipated per cycle = ¥( / )I R T2 2

The quality factor of the capacitance circuit

Q

C
I

C

I
R

f

CR
=

Ê
ËÁ

ˆ
¯̃

¥
=

2
1

2

2

1

1

2

2

 
 

 

In series circuits, the quality factor Q
L

R CR
= =
 

 

1

We have already discussed the relation between bandwidth and quality 

factor, which is Q
f

BW

r= .

A higher value of circuit Q results in a smaller bandwidth. A lower value of 

Q causes a larger bandwidth.

4.4.5 Magnification in Series Resonant Circuit

If we assume that the voltage applied to the series RLC circuit is V, and the 

current at resonance is I, then the voltage across L is VL  IXL  (V/R)  rL
Similarly, the voltage across C

V I X
V

R C
C C

r

= =
 

Since Q  l/ rCR   r L/R

where  r is the frequency at resonance.

Therefore VL  VQ

VC  VQ

The ratio of voltage across either L or C to the voltage applied at resonance 

can be defined as magnification.

\ Magnification  Q  VL/V or VC /V
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A series circuit with R   10  , L 0.1 H and C  50  F has 

an applied voltage V  50 –0  with a variable frequency. Find the resonant 

frequency, the value of frequency at which maximum voltage occurs across the 

inductor and the value of frequency at which maximum voltage occurs across 

the capacitor.

Example 4.44

Solution The frequency at which maximum voltage occurs across the inductor is

f
LC R C

L

L =

-
Ê

ËÁ
ˆ

¯̃

=
¥ ¥ -

¥ ¥
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Similarly, f
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L
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..08 Hz

Resonant frequency f
LC

r = =
¥ ¥

=
-

1

2

1

2 0 1 50 10
71 18

6  .
. Hz

It is clear that the maximum voltage across the capacitor occurs below the 

resonant frequency and the maximum inductor voltage occurs above the resonant 

frequency.

A constant voltage at a frequency of 1 MHz is applied to an 

inductor in series with a variable capacitor when the capacitor is set to 500 PF, 

the current has the max. value, while it is reduced to one half when capacitance 

600 PF, find (i) resistance (ii) inductance (iii) Q factor of inductor.

Example 4.45

Solution Given f  1 MHz

Let the max. current be Imax

Given at 1 MHz, for C  500 Pf

I  Imax
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  Imaginary part of impedance is zero, i.e. XL  XC

2
1

2
 

 
fL

fc
=

6.283   106  L  318.31

L  50.66 H

Now also given I
I

= max

2
 at C  600 PF

I
I V

R j L
= =

+ ¥ -
max

( . . )2 6 283 10 265 256
(4.66)

 X
fc

C = =
¥ ¥ ¥

=
Ê
ËÁ

ˆ
¯̃-

1

2

1

2 10 600 10
265 25

6 12  
.

and I
V

R
max = (4.67)

Dividing Eq. 4.67 by Eq. 4.66

Z
R j L

R
=

+ ¥ -( . . )6 283 10 265 256

⇒ 2R  R  j(6.283   106 L 265.25)

R  j(318.31 265.25)

R  53.06 

 (i) R  53.06 

(ii) L  50.66 H

(iii) Q
L

R
= = ª
 

5 999 6.

Obtain the expression for the frequency at which maximum 

voltage occurs across the capacitance in series resonance circuit in terms of the 

Q-factor and resonance frequency.

Example 4.46

Solution The frequency at which Vc is maximum is given by

f
LC

R

L

f
LC

R C

L

R

LC R

C

c

c

= -

= -
È

Î
Í

˘

˚
˙

È

Î
Í
Í

˘

˚
˙
˙

= -

1

2

1

2

1

2

1
1

2

1

2

1

2

2

2

2

2

 

 

 22L

Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

Fig. 4.64
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1

2

1

2

1

2

1

2

2

2

R

LC R

C

L

R

LC

C

L

L

CR

= -
È

Î
Í

˘

˚
˙

= -È
ÎÍ

˘
˚

 

 ˙̇
È

Î
Í
Í

˘

˚
˙
˙

= -È
ÎÍ

˘
˚̇

= = fi =

1

2

1

2

1

2

1 1

2

1 2

 

 

LC
R

C

L

L

CR

f
LC

Q
R

L

C Q
R

C

L
o

.

;

/

 f
f

Q

L

CR
c

o= -È
ÎÍ

˘
˚̇2

1 2
1

2

/

In a series RLC circuit if the applied voltage is 10  V, and 

resonance frequency is 1 kHz, and Q factor is 10, what is the maximum voltage 

across the inductance.

Example 4.47

Solution Resonance frequency ( )f
LC

r = =
1

2
1000

 
(4.68)

Quality factor ( )Q
R

L

C
= =

1
10 (4.69)

LC

LC

=
¥

=

= ¥

1

2 1000
6283 18

39 47 106

 
.

.

From 4.68,
1

2
1000

 
= LC (4.70)

From 4.69, 1
10

R

C

L
= (4.71)

From 4.70 and 4.71,

1

2
10

1

2
10000

1 59154 10 1 6 10

4

5 5

 

 

R
LC

C

L

RC

RC

=

=

= ¥ ¥- -. .⯝

The maximum voltage across the inductance occurs at frequency greater than the 

resonance frequency which is given by
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f

LC
RC

f

L

L

=

-

=

¥ -
¥

=
-

1

2
2

1

2 39 47 10
1 6 10

2

1002 5

2

6
5 2

 

 

( )

.
( . )

.

It can be observed that, the above frequency is approximately equal to resonance 

frequency,

f
LC

r = =
¥

1

2

1

2 39 47 10
6  .

Hence we can take the voltage across the inductor  Q  V

 10  10

 100 volts

A series RLC circuit is connected across a variable frequency 

supply and has R  12 ohms, L l mH and C  l000 pF. Calculate

(a) Resonant frequency.

(b) Q factor and

(c) Half power frequencies. Derive the formulae used. [JNTU Jan 2010]

Example 4.48

Solution (a) Resonant frequency  
1

2

1

2 1 10 1000 10
3 12  LC

Hz=
¥ ¥ ¥- -

  159.155 kHz

(b) Q-factor  
1

R

L

C

=
¥

¥
=

-

-
1

12

1 10

1000 10
83 33

3

12
.

(c) Half power frequencies are given as,

f
R

L

R

L LC
1

2
1

2 2 2

1
158 203= - + Ê

ËÁ
ˆ
¯̃

+
È

Î

Í
Í

˘

˚

˙
˙

=
 

. kHz

and f
R

L

R

L LC
2

2
1

2 2 2

1
160 113= + Ê

ËÁ
ˆ
¯̃

+
È

Î

Í
Í

˘

˚

˙
˙

=
 

. kHz

Determine the quality factor of a coil for the series circuit 

consisting of R  10  , L 0.1 H and C  10  F.

Example 4.49

12 Ω 1000pF1mH

Fig. 4.65



Coupled Circuits and Resonance 4.63

Solution Quality factor Q
f

BW

r=

f
LC

r = =
¥ ¥

=
-

1

2

1

2 0 1 10 10

159 2
6  .

. Hz

At lower half power frequency, X
C
 X

L

1

2
2

1

1
 

 
f C

f L R- =

From which f
R R L C

L
1

2
4

4
=

- + + /

 

At upper half power frequency X
L
 X

C

2
1

2
2

2

 
 

f L
f C

R- =

From which f
R R L C

L
2

2
4

4
=

+ + + /

 

Bandwidth BW f f
R

L
= - =

2 1
2 

Hence Q
f

BW

f L

R

r r
0

2 2 159 2 0 1

10
= = =

¥ ¥ ¥  . .

Q
f

BW

r
0

10= =

A voltage v(t)  10 sin  t is applied to a series RLC circuit. At 

the resonant frequency of the circuit, the maximum voltage across the capacitor 

is found to be 500 V. Moreover, the bandwidth is known to be 400 rad/sec and 

the impedance at resonance is 100 Ω. Find the resonant frequency. Also find the 

values of L and C of the circuit.

Example 4.50

Solution The applied voltage to the circuit is

Vmax  10 V

V
rms

V= =
10

2
7 07.

The voltage across capacitor V
C
 500 V

The magnification factor Q
V

V

C= = =
500

7 07
70 7

.
.
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The bandwidth BW  400 rad/sec

 2   1  400 rad/sec

The impedance at resonance Z  R  100 W

Since Q r=
-
 

  2 1

 r  Q( 2   1)  28280 rad/sec

fr = =
28280

2
4499

 
Hz

The bandwidth   2 1- =
R

L

L
R

=
-

= =
  2 1

100

400
0 25. H

Since f
LC

r =
1

2 

C
f L

n

r

=
( ) ¥

=
¥ ¥

=
1

2

1

2 4499 0 25
5

2 2
  ( ) .

F

A series RLC circuit consists of a 50  . resistance, 0.2 H

inductance and 10  F capacitor with an applied voltage of 20 V. Determine the 

resonant frequency. Find the Q factor of the circuit. Compute the lower and upper 

frequency limits and also find the bandwidth of the circuit.

Example 4.51

Solution Resonant frequency

f
LC

r = =
¥ ¥

=
-

1

2

1

2 0 2 10 10

112 5
6  .

. Hz

Quality factor Q
L

R
= =

¥ ¥
=

  2 112 5 0 2

50
2 83

. .
.

Lower frequency limit

f f
R

L
r1

4
112 5

50

4 0 2
92 6= - = -

¥ ¥
=

  
.

.
. Hz

Upper frequency limit

f f
R

L
r2

4
112 5

50

4 0 2
112 5 19 89 132 39= + = +

¥
= + =

  
.

.
. . . Hz

Bandwidth of the circuit

BW  f2 – f1  132.39 – 92.6  39.79 Hz
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Determine the quality factor, bandwidth and the half power 

frequencies of a series resonant circuit with R  5  , L 0.05 H and C  5  f.

Example 4.52

Solution Resonance frequency 

f
LC

r =

=
¥ ¥

=

-

1

2

1

2 0 05 5 10

318 3

6

 

 .

. Hz

Quality factor Q
W L

R

r= =

=

2 318 3 0 05

5

20

 ( . )( . )

Bandwidth = = =
f

Q

r 318 3

20
15 915

.
. Hz

f f f

f f f f
f

f

r

r
r

=

= fi =

1 2

2
1 2 1

2

2

Also f2  f1  15.915 Hz

f
f

f

r
2

2

2

15 915- = .

f f fr2
2 2

215 915 0- - =.

fi f f2
2

2
415 915 10 13 10 0- - ¥ =. .

f2  326 Hz

f1  310 Hz

Half power points can also be calculated using

f f
R

L
r1

4
318 3

5

4 0 05
310= - = -

¥
=

  
.

.
Hz

f f
R

L
r2

4
318 3

5

4 0 05
326= + = +

¥
=

  
.

.
Hz
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A series 

RLC circuit with Q = 250 is 

resonant at 1.5 MHz. Find 

the frequencies at half power 

points and also bandwidth.

Example 4.53
CLR

A

B

Fig. 4.66

Solution Given Q   250

Q
L

R

o=
 

250
2 2 1 5 10

250
37 7 10

6

3=
¥ ¥

fi =
¥ ¥

= ¥
  f L

R

R

L

o .
.

Lower half power frequency f f
R

L
r1

4
= -

 

= ¥ -
¥

1 5 10
37 7 106

3

.
.

4 

   1.5 106 3 103

   1.496 MHz

Upper half power frequency f f
R

L
r2

4
= +

 

= ¥ +
¥

1 5 10
37 7 10

4

6

3

.
.

 

   1.5 M   3k   1.503 MHz

Bandwidth  f2 f1   1.503 M   1.496 M   7 kHz

For the 

circuit shown in Fig. 4.67, 

determine the value of Q at 

resonance and bandwidth 

of the circuit.

Example 4.54

Fig. 4.67
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Solution The resonant frequency,

f
LC

r =

=
¥ ¥

=

-

1

2

1

2 5 100 10

7 12

6

 

 

. Hz

Quality factor Q X R f L RL r= =

=
¥ ¥

=

/ /

.
.

2

2 7 12 5

100
2 24

 

 

Bandwidth of the circuit is BW
f

Q

r= = =
7 12

2 24
3 178

.

.
. Hz

For the circuit

shown in Fig. 4.68, determine 

the frequency at which the circuit 

resonates. Also find the voltage 

across the inductor at resonance and 

the Q factor of the circuit.

Example 4.55

Fig. 4.68

Solution The frequency of resonance occurs when X
L
 X

C

 
 

L
C

=
1

   =
¥ ¥

=

-

1 1

0 1 50 10

447 2

6LC
radians/sec =

radians/sec

.

.

fr = =
1

2
447 2 71 17

 
( . ) . Hz

The current passing through the circuit at resonance,

I
V

R
= = =

100

10
10 A

The voltage drop across the inductor

V
L
 IX

L
 I L

  10   447.2   0.1   447.2 V
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The quality factor Q
L

R
=

=
¥

=

 

447 2 0 1

10
4 47

. .
.

A series RLC circuit has a quality factor of 5 at 50 rad/sec. The 

current flowing through the circuit at resonance is 10 A and the supply voltage is 

100 V. The total impedance of the circuit is 20 Ω. Find the circuit constants.

Example 4.56

Solution The quality factor Q   5

At resonance the impedance becomes resistance.

The current at resonance is I
V

R
=

  10
100

=
R

R   10  

Q
L

R
=
 

Since Q   5, R   10

  L   50

  L = =
50

1
 

H

Q
CR

=
1

 

C
Q R

=

=
¥ ¥

1

1

5 50 10

 

C   400  F

In the circuit shown 

in Fig. 4.69 a maximum current of 

0.1 A flows through the circuit when 

the capacitor is at 5  F with a fixed 

frequency and a voltage of 5 V. 

Determine the frequency at which 

the circuit resonates, the bandwidth, 

the quality factor Q and the value of 

resistance at resonant frequency.

Example 4.57

Fig. 4.69
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Solution At resonance, the current is maximum in the circuits

I
V

R
=

 R
V

I
= = =

5

0 1
50

.
 

The resonant frequency is

 r
LC

= =
¥ ¥

=
-

1 1

0 1 5 10

1414 2
6

.

. rad/sec

fr = =
1414 2

2
225

.

 
Hz

The quality factor is

Q
L

R
= =

¥
=

 1414 2 0 1

50
2 8

. .
.

Since
f

BW
Qr =

The bandwidth BW  
f

Q

r = =
225

2 8
80 36

.
. Hz

In the circuit shown 

in Fig. 4.70, determine the circuit 

constants when the circuit draws 

a maximum current at 10  F with 

a 10 V, 100 Hz supply. When the 

capacitance is changed to 12  F, the 

current that flows through the circuit 

becomes 0.707 times its maximum 

value. Determine Q of the coil at 

900 rad/sec. Also find the maximum 

current that flows through the circuit.

Example 4.58

Fig. 4.70

Solution At resonant frequency, the circuit draws maximum current. So, the 

resonant frequency fr   100 Hz

f
LC

L
C f

r

r

=

=
¥

=
¥ ¥

=-

1

2

1

2

1

10 10 2 100
0 25

2

6 2

 

 

 

( )

( )
. H
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We have  
 

L
C

R- =
1

900 0 25
1

900 12 10 6
¥ -

¥ ¥
=-. R

  R   132.4   

The quality factor Q
L

R
= =

¥
=

 900 0 25

132 4
1 69

.

.
.

The maximum current in the circuit is I = =
10

132 4
0 075

.
. A

In the circuit shown in Fig. 4.71 the current is at its maximum 

value with capacitor value C   20  F and 0.707 times its maximum value with 

C   30  F. Find the value of Q at    500 rad/sec, and circuit constants.

Fig. 4.71

Example 4.59

Solution The voltage applied to the circuit is V   20 V. At resonance, the current 

in the circuit is maximum. The resonant frequency  
r
  500 rad/sec.

Since  r
LC

=
1

  L
Cr

= =
¥ ¥

=-
1 1

500 20 10
0 2

2 2 6 ( )
. H

Since we have  
 

L
C

R- =
1

500 0 2
1

500 30 10
6

¥ -
¥ ¥

=-. R

 R   100   66.6   33.4

The quality factor is Q
L

R
= =

¥
=

 500 0 2

33 4
2 99

.

.
.
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A coil having R  15   and L 40 mH is connected in series 

with a capacitor across a 240 V source resonates at 350 Hz. Find the value of

(a) capacitance (b) power dissipated in the coil

(c) Q factor (d) voltage across the capacitor and coil

Example 4.60

Solution (a) At f  fr , XL  XC

fi C
Lfr

= =
¥ ¥ ¥ ¥

=

-
1

4

1

4 40 10 350

5 17

2 2 2 3 2  ( )

.  F

(b) At resonance I
V

R
= = =

240

15
16 A

Power dissipated  I 2 R  (16)2  15  4.84 kW

(c) Q
R

L

C
= =

¥
¥

=
-

-
1 1

15

40 10

5 17 10
5 863

3

6.
.

(d) V jQV Vc = - = ¥ = - ∞5 863 240 1407 12 90. .

Let the voltage across the inductance of the coil be VL  VC in magnitude

  VL = ∞1407 12 90.

Let VR is the voltage across the resistance of the coil then

V VR = = ∞240 0

The voltage across the coil Vcoil = VL + VR

= ∞ + ∞

= +

= ∞

1407 12 90 240 0

240 1407 12

1427 44 80 32

.

.

. .

j

With respect to a (resonant circuit), i.e., series resonant circuit, 

prove that the bandwidth is inversely proportional to the Q-factor at resonance

Example 4.61

Solution The bandwidth of any system is the range of frequencies for which the 

current (or) the output voltage equals to 70.7% of it’s value at resonance.

Bandwidth  f2 – f1

Fig. 4.72
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If the current at P
1
 is 0.707 Imax, the impedance of the circuit at this point is 

2 R.

1

1
1

 
 

c
L R- = (4.72)

 
 

2
2

1
L

c
R- = (4.73)

By equating 4.72 and 4.73 we get,

1 1 2

1 2
1 2

c
L

  

  
  

+È

Î
Í

˘

˚
˙ = +( ) (4.74)

  1 2

1
=

LC

we have     
r r

LC

2 2
1 2

1
= fi = (4.75)

Adding the equations 4.74 and 4.75,

fi 
 

1 1
2

1 2
2 1

  
  

c c
L R- + - =( )

1
21 2

1 2
2 1

c
L R

  

  
  

-È

Î
Í

˘

˚
˙ + - =( )

Since c
L

r

r
= =

1

2 1 2
2

 
   ,

( 2 –  1) L  L( 2 –  1)  2R

L ( 2 –  1)  R

  2 1- =
R

L

fi f f
R

L
2 1

2
- =

 

  
f f

f

R

f L Qr r

2 1

2

1-
= =

 

  Q
f

BW

r= (4.76)
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A series R-L-C circuit with R  100 V, L 0.5 H and C  

40  F has an applied voltage of 50 V with variable frequency. Calculate

(a) Resonance frequency

(b) Current at resonance

(c) Voltage across R, L and C

(d) Upper and Lower half frequencies

(e) Bandwidth

(f ) Q-factor of the circuit [JNTU May 2007]

Example 4.62

Solution R = 100  , L = 0.5 H, C = 40 mF, V = 50 V

(a) Resonance frequency, f
LC

r = =
¥ ¥ -

1

2

1

2 0 5 40 10
6  .

fr = 35.58 Hz

(b) Current at resonance, I
V

Z

V

R
= =

I
V

R
= = =

50

100
0 5. A

(c) Voltage across resistance, VR  IR  0.5  100  50 volts

Voltage across inductance, VL   L  2  0.5  35.58  111.8 volts

Voltage across capacitance,

V
C

C = =
¥ ¥ ¥

=-
1 1

2 40 10 35 58
111 8

6  .
. volts

(d) f f
R

L
fr - = fi - =

¥1 1
4

35 59
100

4 0 5  
.

.

\ Lower-half frequency, f1  19.6745 Hz

f f
R

L
fr2 2

4
35 59

100

4 0 5
- = fi - =

¥  
.

.

\ Upper-half frequency, f2  51.5055 Hz

(e) Bandwidth, BW  
R

L2

100

2 0 5
31 831

  
=

¥
=

.
. Hz

(f) Q-factor, Q
f

BW

r= = =
35 59

31 831
1 1181

.

.
.
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4.5
PARALLEL RESONANCE, ANTI-RESONANCE

AT ALL FREQUENCIES [JNTU June 2009]

4.5.1 Resistance Present in Both Branches [JNTU Nov 2011]

Basically, parallel resonance occurs when X
C
 X

L
. The frequency at which resonance 

occurs is called the resonant frequency. When X
C
 X

L
, the two branch currents are 

equal in magnitude and 180  out of phase with each other. Therefore, the two currents 

cancel each other out, and the total current is zero. Consider the circuit shown in 

Fig. 4.73. The condition for resonance 

occurs when X
L
– X

C
.

In Fig. 4.73, the total admittance

Y
R j L R j C

R j L

R L

R j C

R
C

L C

L

L

C

C

=
+

+
-

=
+
+

+
+

+

1 1

12 2 2
2

2 2

  

 

 

 

 

( / )

( / )

=
+

+
+

+
+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

-
+

R

R L

R

R
C

j
C

R
C

L

R

L

L

C

C C
L

2 2 2
2

2 2

2

2 2

21

1

1 

 

 

 

 

 

/
22 2
L

È

Î
Í

˘

˚
˙

Ï

Ì
ÔÔ

Ó
Ô
Ô

¸

˝
ÔÔ

˛
Ô
Ô

(4.77)

At resonance the susceptance part becomes zero

 

 

 

 

r

L r

r

C

r

L

R L

C

R
C

2 2 2
2

2 2

1

1+
=

+
(4.78)

 
  

 r C

r r
L rL R

C C
R L

2

2 2

2 2 21 1
+

È

Î
Í

˘

˚
˙ = +ÈÎ ˘̊

 
 

 r C

r

L rR
C LC

R L
2 2

2 2

2 2 21 1
+

È

Î
Í

˘

˚
˙ = +ÈÎ ˘̊

 
 

r C
r

LR
L

C LC
R

C

2 2
2

2

2

1 1
- = -

 r C LR
L

C LC
R

L

C

2 2 21
-È

ÎÍ
˘
˚̇

= -È
ÎÍ

˘
˚̇

 r
L

CLC

R L C

R L C
=

-
-

1
2

2

( / )

( / )
(4.79)

Fig. 4.73
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The condition for resonant frequency is given by Eq. 4.79. As a special case, 

if R
L
 R

C
, then Eq. 4.79 become

 r
LC

=
1

Therefore

f
LC

r =
1

2 

Find the 

resonant frequency in the 

ideal parallel LC circuit 

shown in Fig. 4.74.

Example 4.63

Fig. 4.74

Solution f
LC

r = =
¥ ¥ ¥

=
- -

1

2

1

2 50 10 0 01 10
7117 6

3 6  .
. Hz

For the parallel circuit shown in the Fig. 4.75.

Find the resonance frequency at R
L
 R

C

Fig. 4.75

Example 4.64

Solution

f
LC

R L C

R L C
r

L

C

=
-
-

1

2

2

2 

( / )

( / )

=
¥ ¥

- ¥
- ¥

=

-

-

-
1

2 3 12 10

4 3 12 10

5 3 12 10

26
249984

2499

6

2 6

2 6
 

( ) ( / )

( ) ( / )

775
26= Hz
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Compare series and parallel resonant circuits.

[JNTU June 2009]

Example 4.65

Solution

Series Resonant Circuit Parallel Resonant Circuit

1.  The applied voltage and the resulting 

current are in phase which also mean that 

the p.f. of RLC series resonant circuit is 

unity.

1. Power factor is unity.

2.  The net reactance is zero at resonance 

and the impedance does have the resistive 

part only.

2.  Net impedance at resonance of the 

parallel circuit is maximum and equal to 

(L/CR) .

3.  The current in the circuit is maximum 

and is (V/R) A. Since at resonance, the 

line current in the series LCR circuit is 

maximum hence it is called acceptor 

circuit.

3.  Current at resonance is [V/(L/CR)] and 

is in phase with the applied voltage. The 

value of current at resonance is minimum.

4.  At resonance the circuit has got minimum 

impedance and maximum admittance.

4.  The admittance is minimum and the net 

susceptance is zero at resonance.

5.  Frequency of resonance is given by is 

given by f
LC

o =
1

2 
Hz.

5.  The resonance frequency of this  circuit is 

f
LC

R

L
o = -

1

2

1
2

2 
.

4.5.2 Resonant Frequency for a Tank Circuit [JNTU June 2009]

The parallel resonant circuit is generally 

called a tank circuit because of the 

fact that the circuit stores energy in 

the magnetic field of the coil and in 

the electric field of the capacitor. The 

stored energy is transferred back and 

forth between the capacitor and coil and 

vice–versa. The tank circuit is shown 

in Fig. 4.76. The circuit is said to be in 

resonant condition when the susceptance 

part of admittance is zero.

The total admittance is

  Y
R jX jXL L C

=
+

+
-

1 1
(4.80)

Fig. 4.76
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Simplifying Eq. 4.80, we have

Y
R jX

R X

j

X

R

R X
j
X

X

R X

L L

L L C

L

L L C

L

L L

=
-
+

+ =
+

+ -
+

È

Î
Í

˘

˚
˙

2 2 2 2 2 2

1

To satisfy the condition for resonance, the susceptance part is zero.

 

1

2 2X

X

R XC

L

L L

=
+

(4.81)

 
 

 
C

L

R LL

=
+

Ê

ËÁ
ˆ

¯̃2 2 2
(4.82)

From Eq. 4.82, we get

R L
L

C
L
2 2 2+ = 

 2 2 2L
L

C
RL= -

 2

2

2

1
= -
LC

R

L

L

\  = -
1

2

2LC

R

L

L (4.83)

The resonant frequency for the tank circuit is

f
LC

R

L
r

L= -
1

2

1
2

2 (4.84)

In a parallel resonance circuit 

shown in Fig. 4.77 find the resonance frequency, 

dynamic resistance and bandwidth.

Example 4.66

Fig. 4.77

Solution The circuit shown in the above figure is the most common form of parallel 

resonant circuit in practical use and is also called the tank circuit.

The admittance of the circuit is

Y
Z Z ZC L

= = +
1 1 1
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Y
jX R jX

j C
R j L

j C
R j L

R L
R

R

C L

=
-

+
+

= +
+

= +
-
+

=

1 1

1

2 2 2

2

 
 

 
 

 

++
+ -

+
Ê
ËÁ

ˆ
¯̃ 

 
 2 2 2 2 2L

j C
L

R L

At resonance the susceptance part is zero.

Hence at   
 

= =
+

=r C
L

R Lr
,

2 2 2
0

R L
L

C
r

2 2 2+ = 

  r rL
L

C
R

LC

R

L

2 2 2
2

2

1
= - fi = - (4.85)

Resonance frequency, f
LC

R

L
r = -

1

2

1
2

2 
(4.86)

 

f
LC

R

L L

L

C
Rr = - = -

=
¥ ¥

¥
¥

-

=

-

-

-

1

2

1 1

2

1

2 1 10

1 10

10 10
4

1559 4

2

2

2

3

3

6

  

 

. Hzz

Dynamic impedance:

The input admittance at resonance is given by

Y
R

R L
r

r

=
+2 2 2 

The impedance at resonance is

Z
y

R L

R
R

L

R
r

r

r r

= =
+

= +
1

2 2 2 2 2  

Substituting  2
r L2 from Eq. 4.85 gives,

Z R

L

C
R

R
R

L

CR
Rr = +

-
= + -

2

Z
L

CR
r =  which is called dynamic impedance.
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This is a pure resistance because it is independent of the frequency.

Here, dynamic resistance =
¥

¥ ¥
=

-

-
1 10

10 10 2
50

3

6
Ω

Bandwidth of the parallel resonance circuit =
 r

Q

 r
L

L

C
R= - =

1
9797 952 .

Q
oL

R
o = =

¥ ¥
=

- 9797 95 1 10

2
4 898

3.
.

Bandwidth = =
9797 5

4 898
2000 4

.

.
.

 For the tank 

circuit shown in Fig. 4.78, find the 

resonant frequency.

Example 4.67

Fig. 4.78

Solution The resonant frequency

f
LC

R

L
r

L= - =
¥ ¥

-

= -

-
1

2

1 1

2

1

0 1 10 10

10

0 1

1

2
10 10

2

2 6

2

2

6 2

  

 

.

( )

( . )

( ) ( ) == =
1

2
994 98 158 35

 
( . ) . Hz

Find the value of L at 

which the circuit resonates at a frequency 

of 1000 rad/sec in the circuit shown in 

Fig.  4.79.

Example 4.68

Fig. 4.79

Solution Y
j jXL

=
-

+
+

1

10 12

1

5
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Y
j jX

X

X
j

X

L

L

L

=
+
+

+
-
+

=
+

+
+

+
+

-

10 12

10 12

5

25

10

10 12

5

25

12

10 12

2 2 2

2 2 2 2 2

LL

LX25 2+

È

Î
Í
Í

˘

˚
˙
˙

At resonance the susceptance becomes zero.

Then
X

X

X X

L

L

L L

25

12

10 12

12 244 300 0

2 2 2

2

+
=

+

- + =

From the above equation

X X

X

L L

L

2

2

20 3 25 0

20 3 20 3 4 25

2

20 3 412 100

2

20 3

- + =

=
+ ± - ¥

=
+ - -

.

. ( . )

. .
or

4412 100

2

18 98

-

= .   or 1.32

   X
L
  L  18.98 or 1.32  

L =
18 98

1000

1 32

1000

. .
or

L  18.98 mH or 1.32 mH

Two impedances Z1  20 j10 and Z2  10 j30 are connected 

in parallel and this combination is connected in series with Z3  30 jX. Find the 

value of X which will produce resonance.

Example 4.69

Solution Total impedance is

Z Z Z Z

jX
j j

j j

= +

= + +
+ -
+ + -

Ï
Ì
Ó

¸
˝
˛

=

3 1 2

30
20 10 10 30

20 10 10 30

( || )

( )
( )( )

(( )30
200 600 100 300

30 20

30
500 500

30 20

+ +
- + +

-

= + +
-
-

Ê
ËÁ

ˆ
¯

jX
j j

j

jX
j

j ˜̃

= + +
- +

+

È

Î
Í

˘

˚
˙30

500 1 30 20

30 202 2
jX

j j( )( )

( ) ( )
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= + +
+ - +

+
È
ÎÍ

˘
˚̇

= + + -

( )
( )

( )

30
500 30 20 30 20

900 400

30
5

13
50 10

jX
j j

jX j

== + ¥Ê
ËÁ

ˆ
¯̃

+ - ¥Ê
ËÁ

ˆ
¯̃

30
5

13
50

5

13
10j X

At resonance, the imaginary part is zero

  X - =
50

13
0

X = =
50

13
3 85.  

For the circuit 

shown in Fig. 4.80, find the value of 

capacitance which results in resonance, 

when fr   2000/ .

Example 4.70
3 C

5 j 6

Vif

Fig. 4.80

Solution At resonance, the imaginary part of the admittance is zero. Hence, the 

complex admittance is a real number

Y
j jx

j jx

jx jx

j jx

x

c

c

c c

c

c

=
+

+
-

=
-

+
+

- +

=
-

+
+
+

1

5 6

1

3

5 6

61

3

3 3

5 6

61

3

9

( )( )

22

Separating the real and imaginary parts

Y
x

j
x

xc

c

c

= +
+

Ê

ËÁ
ˆ

¯̃
+

+
-

Ê

ËÁ
ˆ

¯̃

5

61

3

9 9

6

612 2

Equating the j term to zero.

x

x

c

c
9

6

61
2+

=
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6 61 54 0
2

x x
c c

- + =

From which X
c
 9.18 (or) 0.979  

1
9 18

1
0 979

  C C
= =. .(or)

An impedance 

Z1  10   j10    is connected in 

parallel with another impedance 

of 8.5   resistance and a variable 

capacitance connected in series. 

Find C such that the circuit is in 

resonance at 5 kHz.

Example 4.71

10 8.5

 10

Fig. 4.81

Solution Considering the admittance

Y
j jX

j jX

X

c

c

c

=
+

+
−

=
−

+
+

+

+

=
+

1

10 10

1

8 5

10 10

10 10

8 5

8 5

10

10 1

2 2 2 2

2

.

.

( . )

00

8 5

8 5 8 5

10

2002 2 2 2 2
+

+
+

+
−

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

.

( . ) ( . )X
j

X

Xc

c

c

At resonance the susceptance becomes zero.

X

X

C

c( . )8 5

1

202 2+
=

20 X
c

= X
c
2   72.25

X 2
c
  20X

c
   72.25 = 0

X
c

= 15.267 or 4.732

1
15 267 4 732

 c
Xc= = . .or

c =
¥ ¥ ¥ ¥ ¥ ¥

1

2 5000 15 267

1

2 5000 4 732  . .
or

c = 2.084 mF or 6.726 mF
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For the parallel network 

shown in Fig. 4.82, determine the value of 

R at 10    resonance.

Example 4.72

Fig. 4.82

Solution Z   (10  j10) || (R j2)

=
+ -
+ + -

( )( )10 10 2

10 10 2

j R j

j R j

=
- + +

+ +
10 20 10 20

10 8

R j j R

R j

)

=
+ + -

+ +
10 20 10 20

10 8

R j R

R j

( )

=
+ + - + -

+ +
[( ) ( )][ ]

( )

10 20 10 20 10 8

10 642

R j R R j

R

= + + + - - + + +

-

[( ) ( ) ( ) ( ) ( )

( )]
(

10 20 10 8 10 20 8 10 20 10

10 20
1

10

R R R j R j R

R
++ +R)2 64

At resonance imaginary part   0

 ⇒ 8(10R   20)   (10  R)(10R   20) = 0

10R2   360

R   6  

An impedance Z1   10   j10   is connected in parallel with 

another impedance of resistance 8.5   and a variable capacitance connected 

in series. Find C such that the circuit is in resonance at 5 kHz.

[JNTU Jan 2010]

Example 4.73

Solution Z1   10  j10   

Z2   8.5   jXC

XC
2(R2

2  XC
2)  XL(R1

2  XC
2)

or XC
2(102   102)   10(8.52  XC

2)

or 200XC
2   722.5   10XC

2
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or XC  3.8

or 2 5 1000
1

3 8
¥ ¥ ¥ ¥ = C

.

or C  8.5  F

4.5.3 Condition for Maximum Impedance

The impedance of a parallel resonant 

circuit is maximum at the resonant 

frequency and decreases at lower and 

higher frequencies as shown in Fig. 4.83.

At very low frequencies, XL is very 

small and XC is very large, so the total 

impedance is essentially inductive. As 

the frequency increases, the impedance 

also increases, and the inductive 

reactance dominates until the resonant 

frequency is reached. At this point 

XL  XC and the impedance is at its 

maximum. As the frequency goes above resonance, capacitive reactance 

dominates and the impedance decreases.

Determine

the value of the capacitance C 

in order that the circuit in Fig. 

4.84 is resonant at 6366 Hz.

Example 4.74

Fig. 4.84

Solution The admittance considered is

Y
j jX

j jX

X

C

C

C

=
+

+
-

=
-
+

+
+

+

=
+

1

10 5

1

12 5

10 5

10 5

12 5

12 5

10

10 5

2 2 2 2

2

.

.

( . )

22 2 2 2 2

12 5

12 5 12 5

5

102 52
+

+
+

+
-

+

Ê

Ë
Á

ˆ

¯
˜

.

. ( . )X
j

X

XC

C

C

At resonance the susceptance becomes zero.

Fig. 4.83
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X

X

C

C( . )12 5

5

10 52 2 2 2+
=

+

5Xc
2   5(12.5) 2  (102   52)XC

5Xc
2  125XC    781.25  0

XC = ±
-

¥
=125

125 4 781 25 5

2 5
125

2( ) ( . )

1
12 5

 C
= .

C

F F

=
¥ ¥ ¥

= ¥ =-

1

2 6366 12 5

2 10 26

 

 

.

4.5.4 Bandwidth and Q Factor of Parallel Resonance [JNTU Jan 2010]

Consider the parallel RLC circuit 

shown in Fig. 4.85.

In the circuit shown, the 

condition for resonance occurs 

when the susceptance part is zero.

Admittance Y G jB (4.87)

= + +

= + -Ê
ËÁ

ˆ
¯̃

1 1

1 1

R
j C

j L

R
j C

L

 
 

 
 

(4.88)

The frequency at which resonance occurs is

 
 

r
r

C
L

- =
1

0

(4.89)

 r
LC

=
1

(4.90)

The voltage and current variation with frequency is shown in Fig. 4.86. At 

resonant frequency, the current is minimum.

The bandwidth, BW  f2 – f1

For parallel circuit, to obtain the lower half power frequency, 

 
 

1

1

1 1
C

L R
- = - (4.91)

Fig. 4.85
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Fig. 4.86

From Eq. 4.91, we have

 
 

1

2 1 1
0+ - =

RC LC
(4.92)

If we simplify Eq. 4.92, we get

 
1

2
1

2

1

2

1
=

-
+ Ê

ËÁ
ˆ
¯̃

+
RC RC LC

(4.93)

Similarly, to obtain the upper half power frequency

 
 

2

2

1 1
C

L R
- = (4.94)

From Eq. 4.94, we have

 
2

2
1

2

1

2

1
= + Ê

ËÁ
ˆ
¯̃

+
RC RC LC

(4.95)

Bandwidth

BW
RC

= - =  
2 1

1

The quality factor is defined as Qr
r=

-
 

  
2 1

Q
RC

RCr
r

r= =
 

 
1/

In other words,

Q = ¥2 
Maximumenergystored

Energydissipated/cycle
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In the case of an inductor,

The maximum energy stored =
1

2

2LI

Energy dissipated per cycle = Ê
ËÁ

ˆ
¯̃

¥ ¥
I

R T
2

2

The quality factor Q
LI

I
R

f

= ¥
¥

2
1 2

2

1

2

2
 

/ ( )

  Q

L
V

L
R

V

f

fLR

L

R

L
= ¥

Ê
ËÁ

ˆ
¯̃

¥
= =2

1

2

2

1

2

2

2 2 2
 

  

  

For a capacitor, maximum energy stored  1/2(CV 2)

Energy dissipated per cycle = ¥ =
¥

¥P T
V

R f

2

2

1

The quality factor Q
CV

V

R f

fCR CR= ¥
¥

= =2
1 2

2

1
2

2

2
   

/ ( )

4.5.5 Magnification in Parallel Resonant Circuit

Current magnification occurs in a parallel resonant circuit. The voltage applied 

to the parallel circuit, V  IR

Since I
V

L

IR

L
IQL

r r
r= = =

  

For the capacitor, I
V

C
IR C IQC

r
r r= = =

1 /  
 

Therefore, the quality factor Qr  IL/I or IC  /I

4.5.6 Reactance Curves in Parallel Resonance

The effect of variation of frequency on the reactance of the parallel circuit is 

shown in Fig. 4.87.

The effect of inductive susceptance,

B
fL

L =
-1

2 

Inductive susceptance is inversely proportional to the frequency or  .

Hence it is represented by a rectangular hyperbola, MN. It is drawn in fourth 
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quadrant, since BL is negative. Capacitive susceptance, BC   2 fC. It is directly 

proportional to the frequency f or  . Hence it is represented by OP, passing 

through the origin. Net susceptance B  BC  BL. It is represented by the curve 

JK, which is a hyperbola. At point  r, the total susceptance is zero, and resonance 

takes place. The variation of the admittance Y and the current I is represented by 

curve VW. The current will be minimum at resonant frequency.

Fig. 4.87

From the parallel circuit shown in Fig. 4.88

I

IR IL IC

Fig. 4.88

(a) Find the resonance frequency

(b) Find the currents in all the branches at resonance

(c) Quality factor

Example 4.75

Solution (a) f
LC

r = =
¥ ¥

=
-

1

2

1

2 0 5 200 10
15 91

6  .
. Hz

(b)  At resonance, the current through the resistance is same as the current 

from the source

  IR  I  2  A

The voltage across the parallel branch  IRR

fi V t( ) = ¥ = ∞2 400 800 0
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  I t
JWL

L ( )
.

= =
¥

= - ∞
800 0 800 0

100 0 5 90
16 90

I t
J WC

C ( )
/

=
-

=
- ∞

= ∞
800 0 800 0

50 90
16 90

(c) The quality factor = = =
I

I

I

I

L C(or)
16

2
8

In the circuit shown in 

Fig. 4.89, an inductance of 0.1 H having a Q 

of 5 is in parallel with a capacitor. Determine 

the value of capacitance and coil resistance 

at resonant frequency of 500 rad/sec.

Example 4.76

Fig. 4.89

Solution The quality factor Q
L

R

r=
 

Since L   0.1 H, Q   5 and

 r   500 rad/sec

Q
R

=
¥500 0 1.

 R =
¥

=
500 0 1

5
10

.
 

Since  r
LC

2 1
=

( )
.

500
1

0 1

2 =
¥ C

  The capacitance value C =
¥

=
1

0 1 500
40

2. ( )
 F

In the parallel resonant 

circuit, determine the resonance frequency, 

dynamic resistance and bandwidth for the 

circuit shown in the Fig. 4.90.

[JNTU May/June 2006] 

Example 4.77

Fig. 4.90
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Solution Total admittance (tank circuit)

Y
R j L j C

R j L

R L
j C

R

R C
j C

L

R L

=
+

+
-

=
-
+

+

=
+

+ -
+

Ê
ËÁ

1 1

2 2 2

2 2 2 2 2 2

  

 

 
 

 
 

 

 

/

ˆ̂
¯̃

At resonance, the susceptance part (B) becomes zero.

Reactance

Y = G + jB Z = R + jX

Conductance Susceptance Resistance

 
 

 
r

r

r

C
L

R L
=

+2 2 2

R L
L

C L

L

C
Rr r

2 2 2 2

2

21
+ = fi = -Ê

ËÁ
ˆ
¯̃

  

fi   2

2

2

2

2

1 1

r r
LC

R

L LC

R

L
= - fi = -

Here R  2   , L  1mH, C  10  F

 r = - = ¥ = ¥- -
1

10

4

10
10 96 9 79 10

8 6

6 3
. Hz

fr
r= =

 

2
1 559

 
. kHz

Dynamic resistance ( )R
R L

R

R L

R

r

r

=
+

=
+

= +
¥ ¥

=
=

-

2 2 2

2 2 2 6 6

2
96 10 10

2
50

 

 

  

 

Bandwidth =
1

RC
(for lid resonant ckt) 

=
¥

=
1

50 10
2

 f
kHz

BW
R

L mH
= = =

2

1
2 kHz.
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Practice Problems

4.1 Using the dot convention, write the 

voltage equations for the coils shown 

in Fig. 4.91.

4.2 Two inductively coupled coils have 

self inductances L1  40 mH and 

L2  150 mH. If the coefficient of 

coupling is 0.7, (i) find the value 

of mutual inductance between the 

coils, and (ii) the maximum possible 

mutual inductance.

4.3 For the circuit shown in Fig. 4.92 write the inductance matrix.

Fig. 4.92

4.4 Two coils connected in series have an 

equivalent inductance of 0.8 H when 

connected in aiding, and an equivalent 

inductance of 0.5 H when the connection 

is opposing. Calculate the mutual 

inductance of the coils.

4.5 In Fig. 4.93, L1,  2 H; L2  6 H;

K  0.5; i1  4 sin (40t  30 ) A; i2  2

sin (40t  30 ) A. Find the values of (i) v1,

and (ii) v2.

4.6 For the circuit shown in Fig. 4.94, write 

the mesh equations.

Fig. 4.91

Fig. 4.93
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Fig. 4.94

4.7 Calculate the effective inductance of the circuit shown in Fig. 4.95 across XY.

Fig. 4.95

4.8 For the circuit shown in Fig. 4.96, find the ratio of output voltage to the 

input voltage.

Fig. 4.96

4.9 Calculate the effective inductance 

of the circuit shown in Fig. 4.97.

4.10 Write the mesh equations for the 

network shown in Fig. 4.98.

Fig. 4.97



Coupled Circuits and Resonance 4.93

Fig. 4.98

4.11 Find the source voltage if the voltage across the 100 ohms is 50 V for the 

network in the Fig. 4.99.

Fig. 4.99

4.12 The inductance matrix for the circuit of a three series connected coupled 

coils is given below. Find the inductances and indicate the dots for the 

coils.

L =
-

- -
-

È

Î
Í
Í

˘

˚
˙
˙

8 2 1

2 4 6

1 6 6

4.13 For the circuit shown in Fig. 

4.100 determine the frequency 

at which the circuit resonates. 

Also find the voltage across the 

capacitor at resonance, and the Q 

factor of the circuit.

4.14 A series RLC circuit has a quality 

factor of 10 at 200 rad/sec. The 

current flowing through the circuit 

at resonance is 0.5 A and the 

supply voltage is 10 V. The total 

impedance of the circuit is 40  .

Find the circuit constants.

Fig. 4.100
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4.15 The impedance Z1 
(5   j3)  , and Z2   (10

  j30)    . are connected 

in parallel as shown in 

Fig. 4.101. Find the value 

of X3 which will produce 

resonance at the terminals 

a and b.

4.16 A RLC series circuit is to be chosen to produce a magnification of 10 at 

100 rad/sec. The source can supply a maximum current of 10 A and the 

supply voltage is 100 V. The power frequency impedance of the circuit 

should not be more than 14.14  . Find the values of R, L and C.

4.17 A voltage v(t) = 50 sin vt is applied to a series RLC circuit. At the resonant 

frequency of the circuit, the maximum voltage across the capacitor is found 

to be 400 V. The bandwidth is known to be 500 rad/sec and the impedance at 

resonance is 100  . Find the resonant frequency, and compute the upper and 

lower limits of the bandwidth. Determine the values of L and C of the circuit.

4.18 A current source is applied to the parallel arrangement of R, L and C where 
R = 12  , L = 2  H and C = 3 mF. Compute the resonant frequency in rad/sec. 

Find the quality factor. Calculate the value of bandwidth. Compute the lower 

and upper frequency of the bandwidth. Compute the voltage appearing across 

the parallel elements when the 

input signal is i(t) =  10 sin 1800 t.

4.19 For the circuit shown in Fig. 

4.102, determine the value of 

RC for which the given circuit 

resonates.

4.20 For the circuit shown in Fig. 

4.103 the applied voltage 

v(t)  15 sin 1800t. Determine 

the resonant frequency. Calculate 

the quality factor and bandwidth. 

Compute the lower and upper 

limits of the bandwidth.

4.21 In the circuit shown in Fig. 

4.104, the current is at its 

maximum value with inductor 

value L   0.5 H, and 0.707 

times of its maximum value with 

L   0.2 H. Find the value of Q

at   200 rad/sec and circuit 

constants.

Fig. 4.103

Fig. 4.101

Fig. 4.102
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Fig. 4.104

4.22 The voltage applied to the series RLC circuit is 5 V. The Q of the coil is 

25 and the value of the capacitor is 200 PF. The resonant frequency of the 

circuit is 200 kHz. Find the value of inductance, the circuit current and the 

voltage across the capacitor.

Objective Type Questions

4.1 Mutual inductance is a property associated with

(a) only one coil

(b) two or more coils

(c) two or more coils with magnetic coupling

4.2 Dot convention in coupled circuits is used

(a) to measure the mutual inductance

(b) to determine the polarity of the mutually induced voltage in coils

(c) to determine the polarity of the self induced voltage in coils

4.3 Mutually induced voltage is present independently of, and in addition to, 

the voltage due to self induction.

(a) true (b) false

4.4 Two terminals belonging to different coils are marked identically with dots, 

if for the different direction of current relative to like terminals the magnetic 

flux of self and mutual induction in each circuit add together.

(a) true (b) false

4.5 The maximum value of the coefficient of coupling is

(a) 100% (b) more than 100% (c) 90%

4.6  The case for which the coefficient of coupling K  1 is called perfect 

coupling

(a) true (b) false

4.7  The maximum possible mutual inductance of two inductively coupled 

coils with self inductances L1  25 mH and L2  100 mH is given by

(a) 125 mH (b) 75 mH (c) 50 mH

4.8  The value of the coefficient of coupling is more for aircored coupled 

circuits compared to the iron core coupled circuits.

(a) true (b) false



4.96 Network Analysis

4.9 Two inductors are connected 

as shown in Fig. 4.105. What 

is the value of the effective 

inductance of the combination.

(a) 8H (b) 10H

(c) 4H

4.10 Two coils connected in series 

have an equivalent inductance of 

3 H when connected in aiding. If 

the self inductance of the first coil 

is 1 H, what is the self inductance 

of the second coil (Assume 

M  0.5 H)

(a) 1 H (b) 2 H (c) 3 H

4.11 For Fig. 4.106 shown below, the inductance matrix is given by

Fig. 4.106

(a)

2 3 1

3 1 2

1 2 3

È

Î
Í
Í

˘

˚
˙
˙

(b)

2 3 1

3 1 2

1 2 3

-
- -

-

È

Î
Í
Í

˘

˚
˙
˙

(c)

2 3 1

3 1 2

1 2 3

-
-

È

Î
Í
Í

˘

˚
˙
˙

4.12 What is the total reactance of a series RLC circuit at resonance?

(a) equal to XL (b) equal to Xc (c) equal to R (d) zero

4.13 What is the phase angle of a series RLC circuit at resonance?

(a) zero (b) 90° (c) 45° (d) 30°

4.14 In a series circuit of L  = 15 mH and C = 0.015  F and R  = 80  , what is 

the impedance at the resonant frequency?

(a) (15 mH)  (b) (0.015 F)  (c) 80  (d) l/(   (0.015))

4.15 In a series RLC circuit operating below the resonant frequency, the current

(a) I leads VS (b) I lags behind VS (c) I is in phase with VS

4.16 In a series RLC circuit, if C is increased, what happens to the resonant 

frequency?

(a) It increases (b) It decreases

(c) It remains the same (d) It is zero

Fig. 4.105
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4.17 In a certain series resonant circuit, Vc =  150 V, VL  = 150 V and VR  = 50 V. 

What is the value of the source voltage?

(a) zero (b) 50 V (c) 150 V (d) 200 V

4.18 A certain series resonant circuit has a bandwidth of 1000 Hz. If the existing 

coil is replaced by a coil with a lower Q, what happens to the bandwidth?

(a) It increases (b) It decreases

(c) It is zero (d) It remains the same

4.19 In a parallel resonance circuit, why does the current lag behind the source 

voltage at frequencies below resonance?

(a) because the circuit is predominantly resistive

(b) because the circuit is predominantly inductive

(c) because the circuit is predominantly capacitive

(d) none of the above

4.20 In order to tune a parallel resonant circuit to a lower frequency, the 

capacitance must

(a) be increased (b) be decreased

(c) be zero (d) remain the same

4.21 What is the impedance of an ideal parallel resonant circuit without 

resistance in either branch?

(a) zero (b) inductive (c) capacitive (d) infinite

4.22 If the lower cut-off frequency is 2400 Hz and the upper cut-off frequency 

is 2800 Hz, what is the bandwidth?

(a) 400 Hz (b) 2800 Hz (c) 2400 Hz (d) 5200 Hz

4.23 What values of L and C should be used in a tank circuit to obtain a resonant 

frequency of 8 kHz? The bandwidth must be 800 Hz. The winding 

resistance of the coil is 10 V.

(a) 2mH, 1  F (b) 10 H, 0.2  F

(c) 1.99 mH, 0.2  F (d) 1.99 mH, 10   F





Network 
Theorems

5
5.1 NETWORK THEOREMS WITH DC EXCITATION

5.1.1 Thevenin’s Theorem [JNTU May/June 2008]

In many practical applications, it is always not necessary to analyse the complete 

circuit; it requires that the voltage, current, or power in only one resistance of 

a circuit be found. The use of this theorem provides a simple, equivalent circuit 

which can be substituted for the original network. Thevenin’s theorem states 

that any two terminal linear network having a number of voltage current sources 

and resistances can be replaced by a simple equivalent circuit consisting of a 

single voltage source in series with a resistance, where the value of the voltage

source is equal to the open circuit voltage across the two terminals of the network, 

and resistance is equal to the equivalent resistance measured between the terminals 

with all the energy sources are 

replaced by their internal resistances. 

According to Thevenin’s theorem, 

an equivalent circuit can be found to 

replace the circuit in Fig. 5.1.

In the circuit, if the load resistance 

24   is connected to Thevenin’s 

equivalent circuit, it will have the 

same current through it and the 

same voltage across its terminals as 

it experienced in the original circuit. To verify this, let us find the current passing 

through the 24   resistance due to the original circuit.

I I
T24

12

12 24
= ¥

+

Fig. 5.1
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where A

A

I

I

T
=

+
= =

\ = ¥
+

=

10

2 12

10

10
1

1
12

12 24
0 3324

( )

.

储 24

The voltage across the 24   resistor   0.33   24   7.92 V. Now let us find 

Thevenin’s equivalent circuit.

The Thevenin voltage is equal to the open circuit voltage across the terminals 

‘AB’, i.e. the voltage across the 12   resistor. When the load resistance is 

disconnected from the circuit, the Thevenin voltage

V
Th

V= ¥ =10
12

14
8 57.

The resistance into the open 

circuit terminals is equal to the 

Thevenin resistance

R
Th

=
¥

=
12 2

14
1 71.  

Thevenin’s equivalent circuit is shown in Fig. 5.2.

Now let us find the current passing through the 24   resistance and voltage 

across it due to Thevenin’s equivalent circuit.

I
24

8 57

24 1 71
0 33=

+
=

.

.
. A

The voltage across the 24   resistance is equal to 7.92 V. Thus, it is proved 

that R
L
 (   24  ) has the same values of current and voltage in both the original 

circuit and Thevenin’s equivalent circuit.

Determine the 

Thevenin’s    equivalent     circuit 

across ‘AB’ for the given circuit 

shown in Fig. 5.3.

Example 5.1

Fig. 5.3

Solution The complete circuit can be replaced by a voltage source in series with a 

resistance as shown in Fig. 5.4(a)

where VTh is the voltage across terminals AB and

RTh is the resistance seen into the terminals AB.

Fig. 5.2
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To solve for VTh, we have to find the voltage drops around the closed path as 

shown in Fig. 5.4(b).

Fig. 5.4

We have 50 – 25   10I   5I

or 15I   25

 I = =
25

15
1 67. A

Voltage across 10    16.7 V

Voltage drop across 5    8.35 V

or VTh  V
AB

  50  V10

 = 50   16.7   33.3 V

To find RTh, the two voltage sources are 

removed and replaced with short circuit. 

The resistance at terminals AB then is the 

parallel combination of the 10   resistor 

and 5   resistor; or

R
Th

=
¥

=
10 5

15
3 33.  

Thevenin’s equivalent circuit is shown in 

Fig. 5.4(c).

U s e 

Thevenin’s theorem to 

find the current in 3  

resistor in Fig. 5.5.

Example 5.2

Fig. 5.5

Solution Current in the 3   resistor can be found by using Thevenin’s theorem.

In circuit shown in Fig. 5.6(a) can be replaced by a single voltage source in 

series with a resistor as shown in Fig. 5.6(b).

V V
ABTh

V= = ¥ =
50

15
10 33 3.

Fig. 5.4(c)
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Fig. 5.6

A

B

RTh

VTh

RTh  R
AB

, the resistance seen into 

the terminals AB

R
AB

= +
¥

= W2
5 10

15
5 33.

The 3   resistor is connected to the 

Thevenin equivalent circuit as shown in 

Fig. 5.6.

Current passing through the 3   resistor

I3

33 3

5 33 3
4 00=

+
=

.

.
. A

Use Thevenin’s 

theorem to find the current through 

the 5   resistor in Fig. 5.7.

Example 5.3

Fig. 5.7

Solution Thevenin’s equivalent circuit can be formed by obtaining the voltage 

across terminals AB as shown in Fig. 5.8(a).

Current in the 6   resistor I6

100

16
6 25= = . A

Voltage across the 6  resistor 6 6.25 37.5 V

Current in t

 V6 = ¥ =

hhe 8  resistor A I8

100

23
4 35= = .

Voltage across the 8   resistor is V8   4.35   8   34.8 V

Voltage across the terminals AB is V
AB

  37.5   34.8   2.7 V

Fig. 5.6

(c)
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Fig. 5.8

8.97

2.7 V

8

15

6

5

The resistance as seen into the terminals R
AB

=
¥
+

+
¥
+

6 10

6 10

8 15

8 15

  3.75   5.22   8.97  

Thevenin’s equivalent circuit is shown in Fig. 5.8(b).

Current in the 5   resistor I
5

2 7

5 8 97
0 193=

+
=

.

.
. A

Find Thevenin’s 

equivalent circuit for the circuit 

shown in Fig. 5.9.

Example 5.4

Fig. 5.9

Solution Thevenin’s voltage is equal to the voltage across the terminals AB.

 V
AB

 V3  V6   10

Here the current passing through the 3   resistor is zero.

Hence  V3  0

By applying Kirchhoff’s law we have

50 10 10 6

A

- = +

= =

I I

I
40

16
2 5.

The voltage across 6   is V6 with polarity as shown in Fig. 5.10(a), and is given by

 V6   6   2.5   15 V

The voltage across terminals AB is V
AB

  0  15  10  25 V.

The resistance as seen into the terminals AB

R
AB

= +
¥
+

=3
10 6

10 6
6 75.  
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Thevenin’s equivalent circuit is shown in Fig. 5.10(b).

6V6

6.75

25 V

Fig. 5.10

Determine the Thevenin’s equivalent circuit across terminals 

AB for the circuit in Fig. 5.11.

Fig. 5.11

Example 5.5

Solution The given circuit is redrawn as shown in Fig. 5.12(a).

Voltage V
AB

 V2 V1

Applying Kirchhoff’s voltage law to loop 1 and loop 2, we have the following

Voltage across the 2   resistor VV
2

2
10

7
2 85= ¥ = .

Voltage across the 1   resistor VV
1

1
5

5
1= ¥ =

\ V
AB

 V2  V1

  2.85   151.85 V

The resistance seen into the terminals AB

R
AB

  (5    2) (4    1)

=
¥
+

+
¥
+

5 2

5 2

4 1

4 1

  1.43   0.8   2.23  
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Thevenins’s equivalent circuit is shown in Fig. 5.12(b).

Fig. 5.12  

10 V 5 V

5 W 4 W

2.23 W

2 W 1 W

+

–

+

++

–

––

I1 I2V2 V1

A
A

B

B

1.85 V

(a) (b)

For the circuit 

shown in Fig. 5.13, obtain 

Thevenin’s equivalent circuit.

Example 5.6

Fig. 5.13

Solution The circuit consists of a dependent source. In the presence of dependent 

source RTh can be determined by finding v
OC

 and i
SC

\ =R
v

i

OC

SC

Th

Open circuit voltage can be found from the circuit shown in Fig. 5.14(a).

Since the output terminals are open, current passes through the 2   branch only.

 v
x
  2   0.1 v

x
  4

v
x

= =
4

0 8
5

.
V

Short circuit current can be calculated from the circuit shown in Fig. 5.14(b).

Since v
x
  0, dependent current source is opened.

Fig. 5.14
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The current iSC =
+

=
4

2 3
0 8. A

\ = = =R
v

i

OC

SC

Th

5

0 8
6 25

.
. W

The Thevenin’s equivalent circuit is 

shown in Fig. 5.14(c).

For the circuit shown 

in Fig. 5.15, find the current i2 in the 

2   resistor by using Thevenin’s 

theorem.

Example 5.7

Fig. 5.15

Solution From the circuit, there is open voltage at terminals AB which is

V
OC

  4V
i

where V
i
  4V

i
  5

  V
i
  1

Thevenin’s voltage V
OC

  4 V

From the circuit, short circuit current is determined by shorting terminals a and b.

Applying Kirchhoff’s voltage law, we have

4V
i
  2i

SC
  0

We know V
i
  5

Substituting V
i
 in the above equation, we get

 i
SC

  10 A

\ = = =R
V

i

OC

SC

Th

4

10
0 4. W

The Thevenin’s equivalent circuit is 

as shown in Fig. 5.16.

The current in the 2 V resistor

i
2

4

2 4
1 67= =

.
. A

Fig. 5.14

Fig. 5.16
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Find Thevenin’s equivalent circuit at terminal AB for the 

network shown in Fig. 5.17. [JNTU April/May 2002]

Fig. 5.17

A B
+

–

24

250 Ω

20 Ω

500 Ω

40 Ω

Example 5.8

Solution For finding RTh

Remove voltage source and short the 

terminals

R
AB

= +

=
¥
+

+
¥
+

=

20 250 40 500

20 250

20 250

40 500

40 500
55 54

|| ||

. W

For finding V
OC

 (V
AB

)

Fig. 5.19

A B

+

–

24

250 W

20 W

500 W

40 W

I2I1

A B

250  

20  

500  

40  

Fig. 5.18
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I1

24

20 250
0 0888=

+
= . A

I2

24

40 500
0 0444=

+
= . A

For loop OAB apply KVL

VAB   20   0.0888   40   0.0444   0

VAB   0

Thevenin’s equivalent circuit is given in Fig. 5.20.

Find the 

Thevenin's equivalent for the 

circuit in Fig. 5.21.

 [JNTU April/May 2003]

Example 5.9

Fig. 5.21

+

–

–

5 V

8 V
+

5 W 7 W 5 W

8 W

6 W

V2 V1

A

B

Solution The     Thevenin's equivalent resistance is calculated assuming all voltage 

sources shorted and as seen from AB, the circuit will be as shown below:

R
Th

= +( ){ }ÈÎ ˘̊ +5 6 7 8 5// //

30

11
7 8 5

107

11
8

107

11
8

5

4 389 5

+Ï
Ì
Ó

¸
˝
˛

È

Î
Í

˘

˚
˙ + =

¥

+

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+

= +

//

.

== 9 389. W
Let us assume voltages at nodes (1) and (2) be V1 and V2.

Now writing node equations.

V V V
1 1 2

8

8 7
0

-
+

-
=

7V1 56   8V1 8V2   0 fi 15 V1 8V2   56 (1)

V V V V
V V

2 2 1 2

1 2
6 7

5

5
0 30 107 210+

-
+

-
= fi - + = (2)

on solving equations (1) and (2) we get 

V1   5.6 fi V
OC

  5.6 

\ Thevenin’s equivalent circuit is

55.54

0 V

A

B

Fig. 5.20

5 W 7 W 5 W

8 W6 W RTh

Fig. 5.22

+

–

5.6 V

9.389 W

A

B

Fig. 5.23
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Find the current through 10   resistor using Thevenin’s theorem.

[JNTU May/June 2004]

Fig. 5.24

Example 5.10

Solution Let us redraw the circuit by removing 10  

Applying KCL at V1

V V V
1 1 1

100

2 10 20
0

-
+ + =

from which 

V1   76.92 V

 VTh  V
a
 V

b

=
+

¥ -
+

¥

=

V V
1 1

6 4
4

15 5
5

11 538. V

R
1

6 15 15 2 2 6

2
66=

¥ + ¥ + ¥
=

R
2

132

15
8 8= = .

R
3

132

6
22= =

a b

6 Ω

100 V

V1
2 Ω

4 Ω

15 Ω

5 Ω

Fig. 5.25
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a b

6 W

RTh = 2 W

4 W

15 W

5 W

a b

6 W

2 W

4 W

15 W

5 W

=

Fig. 5.26

6 W 15 W

4 W

2 W

5 W

a b

R1

R2

R3

Fig. 5.27

1.53

Fig. 5.28

R R
ab th

= = =
66 4 28

70 28
4 02

¥ .

.
.  
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Thevenin’s equivalent circuit is given by

where

I = =
11 538

14 02
0 823

.

.
. A

What are the limitations of Thevenin’s Theorem?

[JNTU May/June 2008]

Example 5.11

Solution Limitations of Thevenin’s theorem:

If there are two sub-networks which are connected between the terminals 

AB, at which we have to replace the Thevenin’s network then the independent 

sources on one network do not depend on the voltages and currents in the other 

network.

Explain the steps to apply Thevenin’s theorem and draw the 

Thevenin’s equivalent circuit. [JNTU May/June 2008]

Example 5.12

Solution Steps to apply Thevenin’s theorem:

Let us consider the given circuit.

10 V

2 Ω

12 Ω 24 Ω

A

B

Fig. 5.30

An equivalent circuits should be replaced across AB.

In the circuit, if the load resistance of 24   is connected to Thevenin’s equivalent 

circuit, it will have the same current through it and the same voltage across its 

terminals as it experienced in the original circuit. To verify this, let us find the 

current passing through the 24   resistance due to the original circuit.

I I
T24

12

12 24
= ¥

+

I
10 Ω

6.184 Ω

11.538

Fig. 5.29
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I
T

=
+

= =
10

2 12 24

10

10
1

( || )
A

I24 1
12

12 24
0 33= ¥

+
= . A

The voltage across the 24   resistor   0.33   24   7.92 V.

The Thevenin’s voltage is equal to the open circuit voltage across the terminals 

‘A’ i.e., the voltage across the 12   resistor. When the load resistance is disconnected 

from the circuit, the Thevenin’s voltage

V
th

= ¥ =10
12

14
8 57. V

The resistance into the open circuit 

terminals is equal to the Thevenin 

resistance

R
Th

=
¥

=
12 2

14
1 71. W

Thevenin’s equivalent circuits is 

shown in Fig. 5.31.

The current passing through the

24   resistance and voltage across it 

due to Thevenin’s equivalent circuit

I
24

8 57

24 1 71
0 33=

+
=

.

.
. A

The voltage across the 24   resistance is equal to 7.92 V. Thus, it is proved that 

R
L
 (  24  ) has the same values of current and voltage in both the original circuit 

and Thevenin equivalent circuit.

Using Thevenin’ s theorem, find the current through 1   resistor 

in the circuit shown in Fig. 5.32. [JNTU May/June 2006]

2V

2 Ω

3 Ω

1 Ω

2 Ω

3 A

5 A

Fig. 5.32

Example 5.13

8.57 V

1.71 Ω

24 Ω

A

B

Fig. 5.31
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Solution The given circuit is

Fig. 5.33

To find RTh

By keeping all the sources to zero, the circuit reduces to

RTh  2||3  2

R
Th

= +
6

5
2

R
Th

=
16

5

To find VTh

Transforming current source of 5 A to voltage 

source the circuit reduces to

Fig. 5.35

Applying nodal analysis,

V V V V
1 2 1 2

2

2 3
3

- -
+

-
=

V V
1 2

24

5
- = (1)

Fig. 5.34
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V V V V V
2 1 2 1 2

2

2 3

10

2
0

- +
+

-
+

+
=

 10 V1  16 V2    72 (2)

From (1) and (2)

V1 0 8= . V

V2   4 V

The Thevenin’s circuit with 1   resistance 

is shown in figure

\ The current through 1   resistor

i1

0 8

16

5
1

0 19=
+

=
.

. A

Determine the Thevenin’s equivalent across the terminals

A and B as shown in Fig. 5.37. [JNTU June 2009]

Fig. 5.37

Example 5.14

Solution

Fig. 5.38

i i1 2

20

20
1 1=

W
= =

V
A, A

  V
AB

  5 V  15 V  5 V   5 V  VTh

16/5 W

1 WV1 = Vth

i1

Fig. 5.36
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Fig. 5.39

\ R
AB

  11.25    RTh

The Thevenin’s equivalent circuit is 

VTh = 5 V

RTh = 11.25 W

A

B

Fig. 5.41

5.1.2 Norton’s Theorem [JNTU Jan 2010]

Another method of analysing the circuit is given by Norton’s theorem, which states 

that any two terminal linear network with current sources, voltage sources and 

resistances can be replaced by an equivalent circuit consisting of a current source 

in parallel with a resistance. The value of the current source is the short circuit 

current between the two terminals of the network and the resistance is the equivalent 

resistance measured between the 

terminals of the network with all the 

energy sources are replaced by their 

internal resistance.

According to Norton’s theorem, 

an equivalent circuit can be found 

to replace the circuit in Fig. 5.42.

In the circuit if the load 

resistance 6   is connected to 

Norton’s equivalent circuit, it will have the same current through it and the same 

voltage across its terminals as it experiences in the original circuit. To verify this, 

let us find the current passing through the 6   resistor due to the original circuit.

I I

I

I

T

T

6

6

10

10 6
20

5 10 6
2 285

2 285
10

16
1 43

= ¥
+

=
+

=

\ = ¥ =

where A

A

( )
.

. .

储

3.75 W 5 W 2.5 W BA

Fig. 5.40

Fig. 5.42
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i.e. the voltage across the 6   resistor 

is 8.58 V. Now let us find Norton’s 

equivalent circuit. The magnitude of 

the current in the Norton’s equivalent 

circuit is equal to the current passing 

through short circuited terminals as 

shown in Fig. 5.43.

Here I
N

= =
20

5
4A

Norton’s resistance is equal to the 

parallel combination of both the 5  

and 10   resistors

R
N

=
¥

=
5 10

15
3 33.  

The Norton’s equivalent source is shown in Fig. 5.44.

Now let us find the current passing through the 6   resistor and the voltage 

across it due to Norton’s equivalent circuit.

I
6

4
3 33

6 3 33
1 43= ¥

+
=

.

.
. A

The voltage across the 6   resistor  1.43  6  8.58 V

Thus, it is proved that R
L
 ( 6  ) has the same values of current and voltage 

in both the original circuit and Norton’s equivalent circuit.

Determine Norton’s 

equivalent circuit at terminals AB for 

the circuit shown in Fig. 5.45.

Example 5.15

Fig. 5.45

Solution The complete circuit can be replaced by a current source in parallel with 

a single resistor as shown in Fig. 5.46(a), where I
N
 is the current passing through 

the short circuited output terminals AB and R
N
 is the 

resistance as seen into the output terminals.

To solve for I
N

, we have to find the current passing 

through the terminals AB as shown in Fig. 5.46(b).

From Fig. 5.46(b), the current passing through 

the terminals AB is 4 A. The resistance at terminals

AB is the parallel combination of the 10  resistor 

and the 5   resistor,

Fig. 5.44

Fig. 5.43

Fig. 5.46
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Fig. 5.46

or R
N

=
¥
+

=
10 5

10 5
3 33.  

Norton’s equivalent circuit is shown in Fig. 5.46(c).

Determine 

Norton’s equivalent circuit for 

the circuit shown in Fig. 5.47.

Example 5.16

Fig. 5.47

Solution Norton’s equivalent circuit is given by Fig. 5.48(a).

where I
N
  Short circuit current at terminals AB

R
N
  Open circuit resistance at terminals AB

The current I
N
 can be found as shown in Fig. 5.48(b).

I
N

= =
50

3
16 7. A

Norton’s resistance can be found from Fig. 5.48(c).

R R
N AB

= =
¥
+

=
3 4

3 4
1 71.  

Norton’s equivalent circuit for the given circuit is shown in Fig. 5.48(d).

Fig. 5.48
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Fig. 5.48

Determine 

Norton’s equivalent circuit 

for the given circuit shown in 

Fig. 5.49.

Example 5.17

Fig. 5.49

Solution The short circuit current at terminals AB can be found from Fig. 5.50(a) 

and Norton’s resistance can be found from Fig. 5.50(b).

Fig. 5.50

The current I
N
 is same as the current in the 3   resistor or 4   resistor.

I I
N

= = ¥
+

=
3

25
2

7 2
5 55. A

The resistance as seen into the 

terminals AB is

R
AB

  5 || (4   3   2)
Fig. 5.50(c)
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=
¥
+

=
5 9

5 9
3 21.  

Norton’s equivalent circuit is shown in Fig. 5.50(c).

Determine the current flowing through the 5   resistor in the 

circuit shown in Fig. 5.51 by using Norton’s theorem.

Fig. 5.51

Example 5.18

Solution The short circuit current at terminals AB can be found from the circuit as 

shown in Fig. 5.52(a). Norton’s resistance can be found from Fig. 5.52(b).

In Fig. 5.52(a), the current I
N
  30 A.

Fig. 5.52

The resistance in Fig. 5.52(b)

R
AB

= +
¥Ê

ËÁ
ˆ
¯̃

= =
¥

=

5 2
1 1

2

5 2 5
5 2 5

7 5
1 67

||

|| ( . )
.

.
. W

Norton’s equivalent circuit is shown in Fig. 5.52(c).

\ The current in the 5   resistor

I5 30
1 67

6 67
7 51= ¥ =

.

.
. A

Fig. 5.52(c)
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Replace the given 

network shown in Fig. 5.53 by a 

single current source in parallel with 

a resistance.

Example 5.19

Fig. 5.53

Solution Here, using superposition technique and Norton’s theorem, we can convert

the given network.

We have to find a short circuit current at terminals AB in Fig. 5.54(a) as shown

The current I 
N
 is due to the 10 A source I 

N
 10 A

The current I 
N
 is due to the 20 V source (See Figs 5.54(b) and (c))

¢¢ = =I
N

20

6
3 33. A

Fig. 5.54

The current I
N
 is due to both the sources

I
N
 I 

N
 I 

N

   10  3.33  13.33 A

The resistance as seen from terminals AB

R
AB

 6   (from the Fig. 5.54(d))

Hence, the required circuit is as shown in Fig. 5.54(e).
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Fig. 5.54

For the circuit 

shown in Fig. 5.55, find Norton’s 

equivalent circuit.

Example 5.20

Fig. 5.55

Solution In the case of circuit having only dependent sources (without independent 

sources), both V
OC

 and i
SC

 are zero. We apply a 1 A source externally and determine 

the resultant voltage across it, and then find R
V

Th
=
1

 or we can also apply the 1 V 

source externally and determine the current through it and then we find RTh  1/i.

By applying the 1 A source externally as shown in Fig. 5.56(a).

Fig. 5.56

and application of Kirchhoff’s current law, we have

V V V
x x x

5

4

2
1+

+
=

V
x
 0.37 V

The current in the 4   branch is

V V
x

-
= -

4
1
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Substituting V
x
 in the above equation, we get

V   4.37 V

\ = =R
V

Th
1

4 37. W

If we short circuit the terminals a and b we have

V V
x x

-
=

4

2
0

 V
x
  0

I
V

SC

x= =
4

0

Therefore, Norton’s equivalent circuit is as shown in Fig. 5.56(b).

Obtain the 

Norton’s equivalent circuit at the 

terminals A, B for the following 

Fig. 5.57.

[JNTU April/May 2003]

Example 5.21

Fig. 5.57

100 V

20 V

1 W

10 W 10 W

2 W

A

B

Solution For finding the Norton’s 

resistance, replace the voltage 

sources by the short circuit.

Req = +[ ]{ }( | | ) | |1 10 2 10

  2.253  

For finding the I
N
 short the 

terminals A and B find current I
N
.

Apply superposition

(i) With 100 V source

Z = [(2||10) + 1] = 2.67

I
Z

SN1 =
100

= =
100

2 67
37 45

.
. A

Fig. 5.58

100 V

1 W

10 W

2 W

ISN1

I

Fig. 5.59



Network Theorems 5.25

(ii) With 20 V source

20 V

1 Ω 10 Ω

2 Ω

ISN2

20 V

0.91 Ω

2 Ω

ISN2

Fig. 5.60

I
SN 2

20

2 91
6 872= =

.
. A

 I
SN

 I
SN1  I

SN2

 37.45  6.872

 44.322 A

 Nortons equivalent circuit is 

shown in Fig. 5.61.

Find the Norton’s equivalent across the terminals ab as shown 

in Fig. 5.62. Hence find current through 10 ohms. [JNTU June 2009]

Fig. 5.62

Example 5.22

Solution Short circuiting a-b terminal–

2 W V 3 W

iSC2 i

2 V
i

3 W

Fig. 5.63

44.322 A 2.253 W

A

B

Fig. 5.61
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2i  i  i
SC

fi i
SC

 i

i
V V

=
+

=
2

5 3

or, 6  3 V  5 V

or, 6  2 V

or, V  3

\ =
+

=i
2 3

5
1 amp

\ i
SC

 1 amp

Open circuiting a-b terminal and deactivating independent voltage source–

2 W V 3 W

vd.c.

id.c.

2 i

i

3 W

Fig. 5.64

2i  i
d.c.

 i

\ i
d.c.

  i

Now,
V

i
5

= or, V  5i

Now,
V V

i
d c

d c

. .
. .

-
=

3

or,
V i

i
d c. . -

= -
5

3

or, V
d.c.

5i  3i

or, V
d.c.

 2i  2i
d.c.

\ Rint  2 ohm

5.1.3 Millman’s Theorem [JNTU June 2009]

Millman’s theorem states that in any network, if the voltage sources V1, V2, º V
n

in series with internal resistances R1, R2, º R
n
, respectively, are in parallel, then 
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these sources may be replaced by a single voltage source V  in series with R  as 

shown in Fig. 5.65.

where ¢ =
+ + ◊ ◊ ◊
+ + ◊ ◊ ◊ +

V
VG V G V G

G G G

n n

n

1 1 2 2

1 2

Here G
n
 is the conductance of the nth branch,

and ¢ =
+ + ◊ ◊ ◊ +

R
G G G

n

1

1 2

Fig. 5.65

A similar theorem can be stated for n current sources having internal 

conductances which can be replaced by a single current source I  in parallel with 

an equivalent conductance.

Fig. 5.66

where  ¢ =
+ + ◊ ◊ ◊
+ + ◊ ◊ ◊ +

I
I R I R I R

R R R

n n

n

1 1 2 2

1 2

and ¢ =
+ + ◊ ◊ ◊ +

G
R R R

n

1

1 2

Calculate the current I shown in Fig. 5.67 using Millman’s 

Theorem.

Fig. 5.67

Example 5.23
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Solution According to Millman’s 

theorem, the two voltage sources can 

be replaced by a single voltage source 

in series with resistance as shown in 

Fig. 5.68.

we have V
V G V G

G G
 =

+
+

1 1 2 2

1 2

=
+[ ]
+

=
10 1 2 20 1 5

1 2 1 5
12 86

( / ) ( / )

/ /
. V

and R
G G

 =
+

=
+

=
1 1

1 2 1 5
1 43

1 2 / /
.  

Therefore, the current passing through the 3  resistor is

I =
+

=
12 86

3 1 43
2 9

.

.
. A

Find the current 

IL. Use Millman’s theorem.

 [JNTU May/June 2004]

Example 5.24

Fig. 5.69

Solution From Millman’s theorem,

¢ =
+ + +
+ + +

V
V G V G V G

G G G

n n

n

1 1 2 2

1 2

...

...

¢ =
+ + +

R
G G G

n

1

1 2 ...

\ ¢ =
¥ + ¥ + - ¥Ê

ËÁ
ˆ
¯̃

+ +
=V

20
1

5
40

1

4
10

1

2

1

5

1

4

1

2

9 47736.

Fig. 5.68
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¢ =
+ +

=R
1

1

5

1

4

1

2

1 0526.

I
L

=
+

=
9 4736

1 0526 10
0 857

.

.
. A

5.1.4 Reciprocity Theorem [JNTU June 2009]

In any linear bilateral network, if a single voltage source Va in branch ‘a’ produces 

a current Ib in branch ‘b’, then if the voltage source Va is removed and inserted 

in branch ‘b’ will produce a current Ib in branch ‘a’. The ratio of response to 

excitation is same for the two conditions mentioned above. This is called the 

reciprocity theorem.

Consider the network shown in Fig. 5.71. AA  denotes input terminals and 

BB  denotes output terminals.

The application of voltage V across AA  produces current I at BB . Now if the 

positions of the source and responses are interchanged, by connecting the voltage 

source across BB , the resultant current I will be at terminals AA . According to 

the reciprocity theorem, the ratio of response to excitation is the same in both 

cases.

Fig. 5.71

Verify the reciprocity theorem for the network shown in 

Fig. 5.72.

Fig. 5.72

Example 5.25

V ′ 10 Ω

R ′

IL

Fig. 5.70
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Solution Total resistance in the circuit   2   [3 ⱍⱍ (2   2 ⱍⱍ 2)]   3.5  .

The current drawn by the circuit (See Fig. 5.73(a)).

I
T

= =
20

3 5
5 71

.
.  

The current in the 2   branch cd is I   1.43 A.

Applying the reciprocity theorem, by interchanging the source and response we 

get (See Fig. 5.73(b)).

Fig. 5.73

Total resistance in the circuit   3.23  .

Total current drawn by the circuit = =
20

3 23
6 19

.
. A

The current in the branch AB is I   1.43 A

If we compare the results in both cases, the ratio of input to response is the same, 

i.e. (20/1.43)   13.99.

Verify the 

reciprocity theorem for the 

given circuit shown in Fig. 5.74.

Example 5.26

Fig. 5.74

Solution In Fig. 5.74, the current in the 5   resistor is

I I
5 2

4

8 4
2 14

4

12
0 71= ¥

+
= ¥ =. . A
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where I
R
T

2

10
=

and R
T
  4.67

\ I
2

10

4 67
2 14= =

.
. A

We interchange the source and 

response as shown in Fig. 5.75.

In Fig. 5.75, the current in 2  

resistor is

I I
2 3

4

4 2
= ¥

+

where I
R
T

3

10
= and R

T
  9.33  

\ = =I
3

10

9 33
1 07

.
. A

I
2

1 07
4

6
0 71= ¥ =. . A

In both cases, the ratio of voltage to current is
10

0 71
14 08

.
.= .

Hence the reciprocity theorem is verified.

Verify the 

reciprocity theorem in the 

circuit shown in Fig. 5.76.

Example 5.27

Fig. 5.76

Solution The voltage V across the 3   resistor is

 V  I3  R

where I
3

10
2

2 3
4= ¥

+
= A

 V   4   3   12 V

We interchange the current source 

and response as shown in Fig. 5.77.

To find the response, we have to 

find the voltage across the 2   resistor

V  I2  R

Fig. 5.75

Fig. 5.77
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where I
2
10

3

5
6= ¥ = A

 V   6   2   12 V

In both cases, the ratio of current to voltage is the same, i.e. it is equal to 0.833. 

Hence the reciprocity theorem is verified.

Verify reciprocity 

theorem in circuit shown in Fig. 5.78.

[JNTU April/May 2003]

Example 5.28

10 2A W

5 W

3 W

am

m
b

Fig. 5.78

Solution Let us find current in 3 V resistor.

I
3
10

2

2 3
= ¥

+
  4 A

V
ab
  3 4   12

According to reciprocity theorem 

the voltage across AB V
ab
  12

Now connect the current source 

across AB and find the voltage 

across m and n.

I
2
10

3

5
6= ¥ = A

The voltage across mn   2   6   12 volts, same as V
ah

. Hence, the reciprocity 

theorem is proved.

Verify 

reciprocity theorem for 

the network shown in 

Fig. 5.80. [JNTU May/

June 2006]

Example 5.29

Fig. 5.80

V1 = 20 V 10 Ω

5 Ω

5 Ω

10 Ω

I2

I

Solution Reciprocity theorem states that in any passive linear bilateral single 

source network interchanging the positions of ideal voltage source and an ammeter 

does not change the ammeter reading (current) and interchanging the positions of 

current source and voltmeter does not change voltmeter reading (voltmeter).

2 W

5 W

3 W

m

n

10 A
I2

Fig. 5.79
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Verifying theorem for the 

circuit shown in Fig. 5.81

I I=
+

= \ =
20

10 5

4

3

2

3
2

(Current divider rule)

Interchanging the voltage 

source,

I = =
20

15

4

3
fi =I1

2

3

20 V

10

5

5

10

10

1010

I

I1I1 20 V

Fig. 5.82 Fig. 5.83

\ The ratio of excitation to response when only one excitation is applied is 

constant when positions of excitation and response are interchanged. Hence 

reciprocity theorem is verified.

Verify reciprocity 

theorem for the voltage V and 

current I in the network shown in 

Fig. 5.84.

[JNTU Jan 2010]

Example 5.30

Fig. 5.84

Solution

Fig. 5.85

\ = +[ ] +Req ( )||4 4 6 4

\ =
¥

+Req
8 6

14
4

20 V 10 W

5 W

5 W

10 W

I2

I

Fig. 5.81



5.34 Network Analysis

Req = +
48

14
4

Req = +
24

7
4

Req 
52

7
 

I1

10 7

52

70

52

35

76

1 346

=
¥

= =

= . A

\ = ¥
+ +

I2 1 346
6

6 4 4
.

I2 1 346
6

14

0 576

= ¥

=

.

. A

I2  I  0.576 A

Req  (4||6) 4  4

\ = +Req

24

10
8

  Req  2.4  8  10.4  

I2

10

10 4
0 961= =

.
. A

\ = ¥
+

= ¥

I1 0 961
6

6 4

0 961
3

5

.

.

I1  0.576 A

 I1  I  0.576 A

5.1.5 Compensation and Substitution Theorem

The compensation theorem states that any element in the linear, bilateral network, 

may be replaced by a voltage source of magnitude equal to the current passing 

through the element multiplied by the value of the element, provided the currents 

and voltages in other parts of the circuit remain unaltered. Consider the circuit 

shown in Fig. 5.87(a). The element R can be replaced by voltage source V, which 

is equal to the current I passing through R multiplied by R as shown in Fig. 5.87(b).

4 W 4 W 4 W

6 W

a
I2

I3

I1

b

+

–

10 V

x

y

I

Fig. 5.86
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Fig. 5.87

This theorem is useful in finding the changes in current or voltage when the 

value of resistance is changed in the circuit. Consider the network containing 

a resistance R shown in Fig. 5.88(a). A small change in resistance R, that is 

(R   R), as shown in Fig. 5.88(b) causes a change in current in all branches. 

This current increment in other branches is equal to the current produced by the 

voltage source of voltage I.  R which is placed in series with altered resistance 

as shown in Fig. 5.88(c).

Fig. 5.88

Determine the 

current flowing in the ammeter 

having 1   internal resistance 

connected in series with a 3  

resistor as shown in Fig. 5.89.

Example 5.31

Fig. 5.89

Solution The current flowing through the 3   branch is I3   1.11 A. If we connect the 

ammeter having 1   resistance to the 3   branch, there is a change in resistance. The 

changes in currents in other branches 

then result as if a voltage source of 

voltage I3  R  1.11   1   1.11 V is 

inserted in the 3   branch as shown in 

Fig. 5.90.

Current due to this 1.11 V source 

is calculated as follows.

Fig. 5.90
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Current I 3   0.17 A

This current is opposite to the current I3 in the 3   branch.

Hence the ammeter reading   (1.11   0.17)   0.94 A.

Using the com-

pensation theorem, determine 

the ammeter reading where it is 

connected to the 6   resistor as 

shown in Fig. 5.91. The internal 

resistance of the ammeter is 2  .

Example 5.32

Fig. 5.91

Solution The current flowing through the 5   branch

I
5

20
3

3 6 5
6 315= ¥

+
=

.
. A

So the current in the 6   branch

I
6

6 315
2

6 2
1 58= ¥

+
=. . A

If we connect the ammeter having 

2     internal resistance to the 6    

branch, there is a change in resistance. 

The changes in currents in other 

branches results if a voltage source of voltage I6 R   1.58   2   3.16 V is 

inserted in the 6   branch as shown in Fig. 5.92.

The current due to this 3.16 V source is calculated.

The total impedance in the circuit

RT   {[(6 || 3)   5] || [2]}   {6   2}

  9.56  

The current due to 3.16 V source

¢ = =I
6

3 16

9 56
0 33

.

.
. A

This current is opposite to the current I6 in the 6   branch.

Hence, the ammeter reading   (1.58   0.33)

  1.25 A

5.1.6 Superposition Theorem

The superposition theorem states that in any linear network containing two or 

more sources, the response in any element is equal to the algebraic sum of the 

responses caused by individual sources acting alone, while the other sources are 

non-operative; that is, while considering the effect of individual sources, other 

ideal voltage sources and ideal current sources in the network are replaced by 

Fig. 5.92
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short circuit and open circuit across their terminals. This theorem is valid only for 

linear systems. This theorem can be better understood with a numerical example.

Consider the circuit which contains two sources as shown in Fig. 5.93.

Now let us find the current passing 

through the 3  resistor in the circuit. 

According to superposition theorem, 

the current I2 due to the 20 V voltage 

source with 5 A source open circuited 

 20/(5  3)  2.5 A.

(See Fig. 5.94)

The current I5 due to 5 A source 

with 20 V source short circuited is

I5 5
5

3 5
3 125= ¥

+
=

( )
. A

The total current passing through 

the 3   resistor is

(2.5  3.125)  5.625 A

Let us verify the above result by 

applying nodal analysis.

The current passing in the 3  

resistor due to both sources should be 

5.625 A.

Applying nodal analysis to Fig. 5.96, 

we have

V V

V

V

-
+ =

+È
ÎÍ

˘
˚̇

= +

= ¥ =

20

5 3
5

1

5

1

3
5 4

9
15

8
16 875. V

The current passing through the 

3   resistor is equal to V/3

i.e. AI = =
16 875

3
5 625

.
.

So the superposition theorem is verified.

Let us now examine the power responses.

Power dissipated in the 3   resistor due to voltage source acting alone

P20  (I2)
2R  (2.5)2 3  18.75 W

Power dissipated in the 3   resistor due to current source acting alone

P5  (I5)
2R  (3.125)2 3  29.29 W

Fig. 5.93

Fig. 5.94

Fig. 5.96

Fig. 5.95
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Power dissipated in the 3   resistor when both the sources are acting 

simultaneously is given by

P   (5.625)2   3   94.92 W

From the above results, the superposition of P20 and P5 gives

P20  P5   48.04 W

which is not equal to P   94.92 W

We can, therefore, state that the superposition theorem is not valid for power 

responses. It is applicable only for computing voltage and current responses.

Find the 

voltage across the 2  

resistor in Fig. 5.97 by 

using the super-position 

theorem.

Example 5.33

Fig. 5.97

Solution Let us find the voltage across the 2   resistor due to individual sources. 

The algebraic sum of these voltages gives the total voltage across the 2   resistor.

Our first step is to find the voltage across the 2   resistor due to the 10 V source, 

while other sources are set equal to zero.

The circuit is redrawn as shown in Fig. 5.98(a).

Assuming a voltage V at node ‘A’ as shown in Fig. 5.98(a), the current equation is

V V V-
+ + =

10

10 20 7
0

V [0.1   0.05   0.143]   1

or V   3.41 V

The voltage across the 2   resistor due to the 10 V source is

V
V

2
7

2 0 97= ¥ = . V

Our second step is to find out the voltage across the 2   resistor due to the 

20 V source, while the other sources are set equal to zero. The circuit is redrawn as 

shown in Fig. 5.98(b).

Fig. 5.98
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Assuming voltage V at node A as shown in Fig. 5.98(b), the current equation is

V V V-
+ + =

20

7 20 10
0

V [0.143   0.05   0.1]   2.86

or V = =
2 86

0 293
9 76

.

.
. V

The voltage across the 2   resistor due to the 20 V source is

V
V

2

20

7
2 2 92=

-Ê
ËÁ

ˆ
¯̃

¥ = - . V

The last step is to find the voltage across the 2   resistor due to the 2 A current 

source, while the other sources are set equal to zero. The circuit is redrawn as 

shown in Fig. 5.98(c).

The current in the 2  resistor

A

 = ¥
+

= =

2
5

5 8 67

10

13 67
0 73

.

.
.

The voltage across the 2   resistor   0.73   2   1.46 V

The algebraic sum of these 

voltages gives the total voltage 

across the 2   resistor in the 

network

V   0.97   2.92   1.46

    3.41 V

The negative sign of the 

voltage indicates that the voltage 

at ‘A’ is negative.

For the resistive network shown in Fig. 5.99, find the current in 

each resistor, using the superposition principle.

Fig. 5.99

Example 5.34

Solution The current due to the 50 V source can be found in the circuit shown in 

Fig. 5.100(a).

Fig. 5.98
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Total resistance R
T

= +
¥

= W10
5 3

8
11 9.

Current in the 10   resistor I
10

50

11 9
4 2= =

.
. A

Current in the 3   resistor I
3

4 2
5

8
2 63= ¥ =. . A

Current in the 5   resistor I
5

4 2
3

8
1 58= ¥ =. . A

The current due to the 25 V source can be found from the circuit shown in 

Fig. 5.100(b).

Total resistance

R
T

= +
¥

= W5
10 3

13
7 31.

Current in the 5   resistor

¢ = =I
5

25

7 31
3 42

.
. A

I10
I I I I3

I5
10 3 5

Fig. 5.100

Current in the 3  resistor ¢ = ¥ =I
3

3 42
10

13
2 63. . A

Current in the 10   resistor ¢ = ¥ =I
10

3 42
3

13
0 79. . A

According to superposition principle

Current in the 10   resistor

 I10  I 10  4.2  0.79  3.41 A

Current in the 3   resistor

 I3  I 3  2.63  2.63  5.26 A

Current in the 5   resistor

 I 5  I5  3.42  1.58  1.84 A

When both sources are operative, 

the directions of the currents are shown 

in Fig.5.100(c).

5.26 A
1.84 A3.41 A

(c)

Fig. 5.100
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Determine the voltage 

across the terminals AB in the circuit 

shown in Fig. 5.101.

Example 5.35

56 V

5 A

Fig. 5.101

Solution Voltage across AB is V
AB

 V10  V5.

To find the voltage across the 5   resistor, we have to use the superposition 

theorem.

Voltage across the 5   resistor V5 due to the 6 V source, when other sources are 

set equal to zero, is calculated using Fig. 5.102(a).

V5   6 V

Fig. 5.102

Voltage across the 5   resistor V 5 due to the 10 V sources, when other sources 

are set equal to zero, is calculated using Fig. 5.102(b).

V 5   0

Voltage across the 5   resistor V 5 due 

to the 5 A source only, is calculated using 

Fig. 5.102(c) 

V  5   0

According to the superposition theorem,

Total voltage  across  the  5   resistor

  6   0   0   6 V.

So the voltage across terminals AB is

V
AB

  10   6   16 V.

Fig. 5.102
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For the circuit shown 

in Fig. 5.103, find the current i4 using the 

superposition principle.

Example 5.36

Fig. 5.103

Solution The circuit can be redrawn as shown in Fig. 5.104(a).

The current i 4 due to the 20 V source can be found using the circuit shown in 

Fig. 5.104(b).

Fig. 5.104

Applying Kirchhoff’s voltage law,

 20   4i 4   2i 4   2i 4   0

i 4   2.5 A

The current i 4 due to the 5 A source can be found using the circuit shown in

Fig. 5.104(c).

By assuming V  at node shown in Fig. 5.104(c) and applying Kirchhoff’s current law

¢¢
- +

¢¢ - ¢¢
=

V V i

4
5

2

2
0

4

¢¢ =
- ¢¢

i
V

4
4

From the above equations

i 4   1.25 A

  Total current i4  i 4 i 4   1.25 AFig. 5.104(c)
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Determine the 

current through the 2   resistor 

as shown in the Fig. 5.105 by 

using the superposition theorem.

Example 5.37

Fig. 5.105

Solution The current I  due to the 5 V source can be found using the circuit shown 

in Fig. 5.106(a).

By applying Kirchhoff’s voltage law, we have

3I  5  2I   4V 3  0

we know V 3   3I 

From the above equations

I   0.294 A

The current I  due to the 4 A source can be found using the circuit shown in 

Fig. 5.106(b).

By assuming node voltage V 3, we find

¢¢ =
¢¢+ ¢¢

I
V V
3 3
4

2

By applying Kirchhoff’s current law at node, we have

¢¢
- +

¢¢+ ¢¢
=

V V V
3 3 3

3
4

4

2
0

Fig. 5.106

V 3  1.55 V

\ ¢¢ =
¢¢+ ¢¢

=I
V V
3 3
4

2
3 875. A

Total current in the 2   resistor I  I  I     0.294   3.875

 I  3.581 A
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Find the 

current I the circuit shown 

in Fig. 5.107.

[JNTU May/June 2006]

Example 5.38

Fig. 5.107

Solution Applying superposition

Open circuit the current source

I
1

1

5
=

Short the voltage source

I
2

1
1

5

1

5
= ¥ =

Total current through 4
1

5

1

5
0W = - =

Find the current i in the circuit shown in Fig. 5.111 using 

superposition theorem. [May/June 2006 Network Analysis]

i

Fig. 5.111

Example 5.39

Fig. 5.108

Fig. 5.109

Fig. 5.110
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Solution Consider 2 A current source acting alone by short circuiting voltage 

source 10 V as shown in Fig. 5.112(a) 6i1  2V
x
 V

x
 0

i2   2 A

V
x
  2(i1  i2)

  2i1  4

i1

i2

Fig. 5.112(a)

6i1  3V
x
 0 fi 6i1  3( 2i1  4)  0

6i1  6i1  12  0 fi i1   1 A

Consider 10V voltage source acting alone by opening 2A current source in 

Fig.5.112(b)

 10  6i1  2V
x
 V

x
 0

V i
x

= -2
1

¢

Fig. 5.112(b)

- + - = - + + = =

= + = - + = -

10 6 3 0 10 6 6 0 5 6

1 56 16

1 1 1 1

1 1

i V i i i

i i i

x

¢ ¢ ¢ ¢

¢

fi fi /

/ / AA

Is superposition valid for power? Explain.

[JNTU May/June 2004]

Example 5.40

Solution Superposition theorem is valid only for linear systems.

Superposition cannot be applied for power because the equation for power is 

non linear.
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Let us consider a network with 

a voltage source and current source 

as shown below and find the power 

consumed in 9   resistor by super 

position.

When 14 V source is acting, the 

current in 9   is 1 A

The power  i2   9  9 watts

When 14 A source is acting, the 

current in 9   is 5 A

The power  i2   9  225 watts

Total power  225  9  234 watts

When both are acting the KVL for 

loop 1 and 2

are 14  5i1  9(i1  i2)

14i1   112

i1   8 A; i2  14 A

Current in 9   resistor is i1  i2  6 A

Power  (6)2   9  324 watts

Since power is not the same in both 

the cases, the superposition theorem 

does not hold true.

Consider the circuit shown below.

When V
a
 is acting.

I  be the current through R
L
: and  

Power  (I  )2 R
L

When V
b
 is acting I   be the current

through R
L
 and Power  (I  )2R

L

Total current: Through R
L
 by 

superposition

I  I  I   and power  I 2 R
L

(I  )2 R
L
 (I  )2, R

L
 I 2 R

L

because I 2  (I  I   )2  (I  )2  (I  )2  2I I  

Hence (I )2  (I  )2  I 2 and therefore superposition theorem is not valid for 

power.

14 V

5 Ω

9 Ω 14 A

I1

I2

Fig. 5.113

Va
Vb

Ra

RL

Rb

+

–

+

–

I

Fig. 5.114

Va
Vb

Ra

RL

Rb

+

–

I ¢

Fig. 5.115

Vb

Ra

RL

Rb

+

–

I ¢¢

Fig. 5.116
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Using 

superposition theorem, 

find VAB.

[JNTU May/June 2004]

Example 5.41 – +

–+

Fig. 5.117

Solution  When 4 V source is acting 

alone, the circuit becomes

Current through the circuit

i ¢ =
-1
3
A

\ V
AB1   i   6   2 V

When 2 V source is acting alone, 

the circuit becomes

Current through the circuit 

 i ¢ = =
2

12

1

6
A

\ V
AB2    i     6   2

    1   2   1 V

When 2 A source is acting alone, the 

circuit becomes

Current in 4   resistor = ¥ =2
8

12

4

3
A

Voltage across 4   resistor =
16

3
V

 Current in 2   resistor = ¥ =2
4

12

2

3
A

 Voltage across 2   resistor =
4

3
V

\ V V V
AB3 4 2

16

3

4

3
4= - + =

-
+ = - V

6 W

2 A

4 W 2 WA B

Fig. 5.120

6 W

2 A

4 W 2 WA B

Fig. 5.119

6 W 4 V
– +

4 W 2 WA B

i¢

Fig. 5.118
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Voltage across AB

V
AB

 V
AB1   V

AB2   V
AB3

    2   1   4   5 volts.

Solve for current in 5 ohms resistor by principle of super 

position theorem shown in Fig. 5.121. [JNTU June 2009]

Fig. 5.121

Example 5.42

Solution Open circuiting current source
Replacing series combination of 

20  and 1   by (20   1)    21  

and 20 V voltage source with series

resistance of 15   by current 

source of 20

15

Ê
ËÁ

ˆ
¯̃

 amp with parallel

resistance of 15  .

\ 20

15 15 5 21
= + +
V V V

or, V   4.232 volt

  Current in 5  

=

=

4 232

5

0 846

.

.

amp 

amp
Short circuiting voltage source

Fig. 5.124

Fig. 5.122

Fig. 5.123
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Replacing 1 amp current source with parallel resistance of 1  by a voltage 

source of 1V with series resistance of 1 

Fig. 5.125

Replacing series combination of 20  and 1  by (20  1)  21 

Fig. 5.126

Replacing voltage source of 1V with series resistance of 21  by a current 

source of (1/21) amp with a parallel resistance of 21 

Fig. 5.127

\ 1

21 15 5 21
= + +
V V V

\   V  0.151 volt

  Current through 5  =
0 151

5

.
amp

   0.03 amp

  Total current in 5    (0.846  0.03) amp

 0.876 amp.

5.1.7 Maximum Power Transfer Theorem [JNTU Jan 2010]

Many circuits basically consist of sources, supplying voltage, current, or power 

to the load; for example, a radio speaker system, or a microphone supplying 
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the input signals to voltage pre-amplifiers. Sometimes it is necessary to 

transfer maximum voltage, current or power from the source to the load. In 

the simple resistive circuit shown in Fig. 5.128, R
S
 is the source resistance. 

Our aim is to find the necessary conditions so that the power delivered by the 

source to the load is maximum.

It is a fact that more voltage is delivered to the load when the load resistance 

is high as compared to the resistance of the source. On the other hand, maximum 

current is transferred to the load when the load resistance is small compared to 

the source resistance.

For many applications, an important consideration is the maximum power 

transfer to the load; for example, maximum power transfer is desirable from the 

output amplifier to the speaker of an 

audio sound system. The maximum 

Power Transfer Theorem states that 

maximum power is delivered from 

a source to a load when the load 

resistance is equal to the source 

resistance. In Fig. 5.128, assume that 

the load resistance is variable.

Current in the circuit is I  V
S  

/(R
S
 R

L
)

Power delivered to the load R
L
 is P  I 2R

L
 V 2

S
R

L
/(R

S
 R

L
)2

To determine the value of R
L
 for maximum power to be transferred to the load, 

we have to set the first derivative of the above equation with respect to R
L
, i.e. 

when
dP

dR
L

 equals zero.

dP

dR

d

dR

V

R R
R

V R R R R R

L L

S

S L

L

S S L L S L

=
+

È

Î
Í
Í

˘

˚
˙
˙

=
+ - +{ }

2

2

2 2 2

( )

( ) ( )( )

(( )R R
S L

+ 4

 (R
S
 R

L
)2  2R

L
(R

S
 R

L
)  0

R2
S
 R2

L
 2R

S
R

L
 2R2

L
 2R

S
R

L
 0

 R
S
 R

L

So, maximum power will be transferred to the load when load resistance is 

equal to the source resistance.

Fig. 5.128
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In    the    c ircui t 

shown in Fig. 5.129 determine the 

value of load resistance when the 

load resistance draws maximum 

power. Also find the value of the 

maximum power.

Example 5.43

Fig. 5.129

Solution In Fig. 5.129, the source delivers the maximum power when load 

resistance is equal to the source resistance.

R
L
  25  

The current I   50/(25  R
L
)   50/50   1 A

The maximum power delivered to the load P  I 2R
L

  1   25   25 W

Determine the 

maximum power delivered to 

the load in the circuit shown in 

Fig. 5.130.

Example 5.44

Fig. 5.130

Solution For the given circuit, let us find out the Thevenin’s equivalent circuit 

across AB as shown in Fig. 5.131(a).

The total resistance is

R
T
  [{(3   2) || 5}   10]

  [2.5   10]   12.5  

Total current drawn by the circuit is

I
T

= =
50

12 5
4

.
A

The current in the 3 V resistor is

I I
T3

5

5 5

4 5

10
2= ¥

+
=

¥
= A

Thevenin’s voltage V
AB

 V3   3   2   6 V

Thevenin’s resistance RTh  R
AB

  [((10 || 5)   2) || 3]    1.92  

Thevenin’s equivalent circuit is shown in Fig. 5.131(b).
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Fig. 5.131

From Fig. 5.131(b), and maximum power transfer theorem

R
L
  1.92  

  Current drawn by load resistance R
L

I
L

=
+

=
6

1 92 1 92
1 56

. .
. A

Power delivered to the load  I 2
L
R
L

  (1.56)2   1.92   4.67 W

Determine the 

load resistance to receive 

maximum power from the 

source; also find the maximum 

power delivered to the load in 

the circuit shown in Fig. 5.132.

Example 5.45

Fig. 5.132

Solution For the given circuit, 

we find out the Thevenin’s 

equivalent circuit.

Thevenin’s voltage across 

terminals A and B

V
AB

 V
A
 V

B

Voltage at point A is 

V
A

= ¥
+

=100
30

30 10
75 V

Voltage at point B is 

V
B

= ¥
+

=100
40

40 20
66 67. V

  V
AB

  75   66.67   8.33 V

Fig. 5.133
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To find Thevenin’s resistance, the circuit in Fig. 5.133(a) can be redrawn as 

shown in Fig. 5.133(b).

Fig. 5.133

From Fig. 5.133(b), Thevenin’s resistance

R
AB

  [(30 || 10)   (20 || 40)]

    [7.5   13.33]   20.83  

Thevenin’s equivalent circuit is shown in Fig. 5.133(c).

According to maximum power transfer theorem

 R
L
  20.83  

Current     drawn       by       the      load 

resistance

I
L

=
+

=
8 33

20 83 20 83
0 2

.

. .
. A

  Maximum power delivered to 

load  I 2
L

R
L

      (0.2)2 (20.83)   0.833 W

The circuit shown in the Fig. 5.134 below has resistance R 

which absorbs maximum power. Compute the value of R and maximum power. 

[JNTU April/May 2003]

2 W

5 W 3 W R

A

B

20 A

Fig. 5.134

Example 5.46

Fig. 5.133
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Solution According to maximum 

power transfer theorem, maximum 

power can be transferred when load 

resistance is equal to the interval 

resistance of the source which can be 

calculated as the resistance seen from

AB with source open.

\ RTh   (5   2)//3

21

10
2 1= . W

Fig. 5.135(b)

Now the circuit can be drawn as

According to current dividing rule

I1

20 5

5 3 235
12 14=

¥
+

=
( . )

. A

I
I

2
1 3

5 1

12 14 3

5
7 14=

¥
=

¥
=

.

.
. A

So the maximum power that can be delivered to resistor R is 

I 2R  (7.14)2  2.1  107 watts.

5.1.8 Tellegen's Theorem [JNTU Jan 2010]

Tellegen’s theorem is valid for any lumped network which may be linear or non 

linear, passive or active, time-varying or time-invarient. This theorem states that 

in an arbitrary lumped network, the algebraic sum of the powers in all branches 

at any instant is zero. All branch currents and voltages in that network must 

satisfy Kirchhoff’s laws. Otherwise, in a given network, the algebraic sum of 

the powers delivered by all sources is equal to the algebraic sum of the powers 

absorbed by all elements. This theorem is based on Kirchhoff’s two laws, but not 

on the type of circuit elements.

Consider two networks N1 and N2, having the same graph with different types 

of elements between the corresponding nodes.

2 W

5 W 3 W

A

B

Fig. 5.135(a)



Network Theorems 5.55

Then v i
K K

K

b

1 2

1

0=
=

Â

and v i
K K

K

b

2 1

1

0=
=

Â

To verify Tellegen’s theorem, consider two circuits having same graphs as 

shown in Fig. 5.136.

In Fig. 5.136(a)

i1  i2  2 A; i3  2 A

and v1  –2 V, v2  –8 V, v3  10 V

In Fig. 5.136(b)

i11  i12  4 A; i13  4 A

and v1
1  –20 V; v1

2  0 V; v1
3  20 V

Now v i v i v i v i
K K

K

1
1 1

1
2 2

1
3 3

1

1

3

2

= + +

= - + - + =
=

Â
( ) (4) ( 8) (4) (10) (4) 0

Fig. 5.136

and v i v i v i v i
K K

K

1
1
1

1 2
1

2 3
1

3

1

3

= + +

= - + + =
=

Â
( 20) (2) (0) (2) (20) (2) 0

Similarly,

v i v i v i v i
K K

K

= + +
=

Â 1 1 2 2 3 3

1

3

 (–2) (2)  (–8) (2)  (10) (2)  0

and v i
K K

K

1 1

1

3

20 4 0 4 20 4 0= - + + =
=

Â ( )( ) ( )( ) ( )( )

This verifies Tellegen’s theorem.
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Verify Tellegen’s theorem in the network shown in the Fig. 5.137.

[JNTU May/June 2006]

Fig. 5.137

Example 5.47

Solution Tellegens theorem states that in any arbitrary lumped network, the 

algebraic sum of the powers in all the branches at any instant is zero and all the 

branch currents and voltages must satisfy Kirchoff’s law.

Verifying Tellegens theorem for the above circuit.

V1 = 20 V 10 V = V2

2 W 2 W

2 W
I1

I2

Fig. 5.138

There are 5 elements in the above circuit.

Applying mesh equations.

4i1   2i2   20

fi 2i1  i2   10

2i1   4i2   10 (1)

i1   2i2   5 (2)

Solving (1) and (2)

i1   5, i2   0

V I
k k

k=
Â

1

5

for this circuit is

 100   50   50   (0)2 (2)   (0) (10)   0

Hence, verified.



Network Theorems 5.57

Verify Tellegen’s Theorem for the network shown in Fig. 5.139.

[JNTU Jan 2010]

Fig. 5.139

2 ohms2 ohms 4 ohms

8

ohms

4

ohms

30 V 20 V

Example 5.48

Solution

I1 I2 I3

i4

i5

i2

i3i1
2 W 2 W 4 W

4 W 8 W 20 V30 V

Fig. 5.140

30  6I1  4I2

0   4I1  14I2  8I3

20  8I2  12I3

D =
-

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= - =
6 4 0

4 14 8

0 8 12

624 192 432

D =
-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= - =
1

30 4 0

0 14 8

20 8 12

3120 640 2480

D = -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= - + =
2

6 30 0

4 0 8

0 20 12

960 1440 480

D =
-

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= - - =
3

6 4 30

4 14 0

0 8 20

1680 320 960 400

 I1  5.74 amp, I2  1.11 amp, I3  0.93 amp

 i1  I1  5.74 amp

i2  I1  I2  4.63 amp
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i3  I2  1.11 amp

i4  I2  I3  2.04 amp

i5   I3   0.93 amp

 Total power supplied  (30  5.74)  (20  0.93) watt

 Totalpowerdissipated  (5.742  2)  (4.632  4)  (1.112  2)  

(2.042  8)  (0.932  4) watt

  Total power in all branches  Power supplied – Power dissipated

 0

 Tellegeni’s theorem is verified.

5.2 NETWORK THEOREMS WITH AC EXCITATIONS

5.2.1 Thevenin’s Theorem [JNTU Jan 2010]

Thevenin’s theorem gives us a method for simplifying a given circuit. The 

Thevenin equivalent form of any complex impedance circuit consists of an 

equivalent voltage source VTh, and an equivalent impedance ZTh, arranged as 

shown in Fig. 5.141. The values of equivalent voltage and impedance depend on 

the values in the original circuit.

Though the Thevenin equivalent circuit is not the same as its original circuit, 

the output voltage and output current are the same in both cases. Here, the 

Thevenin voltage is equal to the open circuit voltage across the output terminals, 

and impedance is equal to the impedance seen into the network across the output 

terminals.

Consider the circuit shown in 

Fig. 5.142.

Thevenin equivalent for the circuit 

shown in Fig. 5.142 between points 

A and B is found as follows.

The voltage across points A and B

is the Thevenin equivalent voltage. 

In the circuit shown in Fig. 5.142, the 

voltage across A and B is the same as 

the voltage across Z2 because there is 

no current through Z3.

\ =
+

Ê
ËÁ

ˆ
¯̃

V V
Z

Z Z
Th

2

1 2

The impedance between points A and B with the source replaced by short 

circuit is the Thevenin equivalent impedance. In Fig. 5.142, the impedance from 

A to B is Z3 in series with the parallel combination of Z1 and Z2.

Fig. 5.141

Fig. 5.142
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\ = +
+

Z Z
Z Z

Z Z
Th 3

1 2

1 2

The Thevenin equivalent circuit is shown 

in Fig. 5.143.

Thevenin’s theorem is especially useful in 

analyzing power systems and other circuits 

where load resistance/impedance is subject to 

change, and re-calculation of the circuit is necessary with each trial value of load 

resistance, to determine voltage across it and current through it. Many circuits are 

only linear over a certain range of values, thus Thevenin’s equivalent is valid only 

within this linear range and may not be valid outside the range. The Thevenin’s 

equivalent has an equivalent I-V characteristic only from the point of view of 

the load. Since power is not linearly dependent on voltage or current, the power 

dissipation of the Thevenin’s equivalent is not identical to the power dissipation of 

the real system.

For the circuit 

shown in Fig. 5.144, determine 

Thevenin’s equivalent between the 

output terminals.

Example 5.49

Fig. 5.144

Solution The Thevenin voltage, VTh, is equal to the voltage across the (4  j6)  

impedance. The voltage across (4  j6)   is

V
j

j j

j

j

= – ∞ ¥
+

+ + -

= – ∞ ¥
+
+

= – ∞ ¥
–

50 0
4 6

4 6 3 4

50 0
4 6

7 2

50 0
7 21 56 3

( )

( ) ( )

. . ∞∞
– ∞7 28 15 95. .

   50  0   0.99 40.35 

   49.5 40.35  V

The impedance seen from terminals A and B is

Z j j
j j

j j
Th = - +

- +
- + +

( )
( ) ( )

5 4
3 4 4 6

3 4 4 6

= +
– ∞ ¥ – ∞

– ∞
j1

5 53 13 7 21 56 3

7 28 15 95

. . .

. .

Fig. 5.143

Fig. 5.145



5.60 Network Analysis

 j1   4.95  12.78  j1   4.83  j1.095

  4.83  j0.095

  ZTh   4.83  1.13  

The Thevenin equivalent circuit is shown in Fig. 5.145. 

For the circuit 

shown in Fig. 5.146, determine 

the load current by applying 

Thevenin’s theorem.

Example 5.50

Fig. 5.146

Solution Let us find the Thevenin equivalent circuit for the circuit shown in 

Fig. 5.147(a).

Fig. 5.147

Voltage across AB is the voltage across ( j3)  

\ = – ¥
+

= – = –

V
j

j j

j

j

AB 100 0
3

3 4

100 0
3

7
42 86 0

°

° °

( )

( ) ( )

( )
.

Impedance seen from terminals AB

Z j
j j

j
AB = +( )

( ) ( )
5

4 3

7

  j5  j1.71  j6.71  

Thevenin’s equivalent circuit is shown in Fig. 5.147(b).

If we connect a load to Fig. 5.147(b), the current passing through ( j5)  

impedance is

I
j j

L =
–
+

=
–

–
= –-

42 86 0

6 71 5

42 86 0

11 71 90
3 66 90

.

( . )

.

.
.

° °

°
°
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For the 

circuit shown in Fig. 5.148, 

determine        Thevenin’s 

equivalent circuit.

Example 5.51

Fig. 5.148

Solution Voltage across ( j4)   is

V
j

jj- =
– ∞
+

-4

5 90

2 2
4

( )
( )

=
– ∞
– ∞

= – - ∞
20 0

2 83 45
7 07 45

.
.

Voltage across AB is VAB    V10  V5  V
 j4

  10 0   5 90   7.07  45 

 j5   10   4.99  j4.99

  14.99  j9.99

VAB   18 146.31 

The impedance seen from terminals AB, when all voltage sources are short 

circuited is

Z
j j

j
AB = +

+ -
+

= +
– ¥ –-

–

4
2 6 4

2 2

4
6 32 71 56 4 90

2 83 45

( ) ( )

. .

.

° °

°

   4   8.93  63.44 

   4   4  j7.98   (8  j7.98)  

Thevenin’s equivalent circuit is shown in Fig. 5.149.

Convert the active

network shown in Fig. 5.150 by a 

single voltage source in series with 

impedance.

Example 5.52

Fig. 5.150

Solution Using the superposition theorem, we can find Thevenin’s equivalent 

circuit. The voltage across AB, with 20 0  V source acting alone, is V AB, and can 

be calculated from Fig. 5.151(a).

Fig. 5.149
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Since no current is passing through the (3  j4)   impedance, the voltage

V AB   20 0 

Fig. 5.151

The voltage across AB, with 5 0  A source acting alone, is V AB, and can be 

calculated from Fig. 5.151(b).

V AB   5 0  (3  j4)   5 0   5 53.13   25 53.13 V

The voltage across AB, with 10 90  A source acting alone, is V AB , and can be 

calculated from Fig. 5.151(c).

V AB   0

According to the superposition theorem, the voltage across AB due to all sources is

VAB  V AB  V AB  V AB

  VAB   20 0   25 53.13   20   15  j19.99

  (35  j19.99) V   40.3 29.73  V

The impedance seen from terminals AB

ZTh  ZAB   (3  j4)  

 The required Thevenin circuit is shown in Fig. 5.151(d).

Fig. 5.151
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For the 

circuit shown in Fig. 5.152, 

find the current in the 

j5   inductance by using 

Thevenin’s theorem.

Example 5.53

Fig. 5.152

Solution From the circuit shown in Fig. 5.152 the open circuit voltage at terminals 

a and b is

Voc   9 Vi

where Vi   9Vi  100 0 

10Vi   100 0 

Vi   10 0 

Thevenin’s voltage Voc   90 0 

From the circuit, short circuit current is determined by shorting terminals a

and b. Applying Kirchhoff ’s voltage law, we have

 9Vi  j10 isc   0

 isc   9 90 

\ = =
–

–
= – -Z

V

I

oc

sc

Th

90 0

9 90
10 90

 

 
 

 ZTh   j10  

The Thevenin’s equivalent circuit is 

shown in Fig. 5.153.

The current in the j 2   inductor is =
90 0

8

– ∞
j

   11.25 90 

Use   Thevenin’s   Theorem   and   find   the   current   through 

(5   j4) ohms impedance, for the network as shown in Fig. 5.154.

[JNTU May/June 2008]

Fig. 5.154

Example 5.54

Fig. 5.153
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Solution The given circuit is Thevenin’s equivalent circuit can be obtained across 

the terminals ab.

Current in the 6  resistor 

I
6

100

16
6 25= = . A

Voltage across the 6    resistor

V6  6  6.25  37.5 V

Current in the 8   resistor I
8

100

16
6 25= = . A

Voltage across the 8   resistor V8  8  6.25  50 V

Voltage across the terminals AB VAB  37.5   50

  12.5 V

The resistance as seen through the terminals

RAB =
¥
+

+
¥
+

= +

+ = W

6 10

6 10

8 8

8 8

60

16
4

3 75 4 7 75. .

Equivalent circuit is

The current flowing in (5  j4)   is

=
+ +

=
+

= = -

12 5

7 75 5 4

12 5

12 75 4

12 5

13 362 17 41
0 935 17 41

.

.

.

.

.

. .
. .

j j

A

Find the current in load impedance ZL of the network shown in 

Fig. 5.156, by applying Thevenin’s theorem.

Fig. 5.156

Example 5.55

Solution The current source has been replaced by the voltage source and the load 

impedance is removed from the network.

Then the network becomes as shown as Fig. 5.157(a)

The mesh equations are

Fig. 5.155(b)

Fig. 5.155(a)
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3 2

2 7

2 0

1 0

1

2

-
-

È

Î
Í

˘

˚
˙

È

ÎÍ
˘

˚̇
=

- –

- –

È

Î
Í
Í

˘

˚
˙
˙

∞

∞

I

I

3 2

2 1

3 2

2 7

2
\ =

-
- -

-
-

I ==
-7
17

Then V IAB

Th

= + –

= ¥
-

+

=

= = W

∞5 5 0

5
7

17
5

50

17

1 2 5
10

17

2

volts

R ( ) || ( ) || ( )

The Thevenin’s circuit is

Hence the current i through the load 

impedance is

i

j

=
+ +

= - ∞

50 17

10

17
2 2

0 899 37 69

/

. . A

Find the current through the branch A-B of the network shown 

in Fig. 5.158 using Thevenin's theorem. [JNTU Jan 2010]

Fig. 5.158

Example 5.56

Fig. 5.157(a)

Fig. 5.157(b)
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Solution

VTh is calculated by open circuiting AB terminal

\ =
+ +

¥ +

=
¥

– ∞

= – ∞

V
j

jTh volt

volt

vol

10

5 3 4
3 4

10 5

8 94
26 56

5 6 26 56

( )

.
.

. . tt.

Zint is determined by open circuiting A-B terminal and short circuiting voltage 

source

Z
j

j
int

( )

. .

=
+

+ +

= – ∞

3 4 5

3 4 5

2 8 26 56

ohm

ohm

  Current through AB
V

Z Z

th

L

=
+int

=
– ∞

– ∞ +
5 6 26 56

2 8 26 56 5

. .

. .
amp

=
– ∞
+

= – ∞

5 6 26 56

7 5 1 252

0 74 17 083

. .

. .

. .

j
amp

amp

5.2.2 Norton’s Theorem [JNTU Jan 2010]

Another method of analysing a complex 

impedance circuit is given by Norton’s 

theorem. The Norton equivalent form of 

any complex impedance circuit consists 

of an equivalent current source I
N
 and 

an equivalent impedance Z
N
, arranged 

as shown in Fig. 5.160. The values of 

equivalent current and impedance depend 

on the values in the original circuit.

Though Norton’s equivalent circuit is not 

the same as its original circuit, the output 

voltage and current are the same in both 

cases; Norton’s current is equal to the current 

passing through the short circuited output 

terminals and the value of impedance is equal 

to the impedance seen into the network across 

the output terminals.

Consider the circuit shown in Fig. 5.161.

Fig. 5.159(b)

Fig. 5.160

Fig. 5.161

Fig. 5.159(a)
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Norton’s equivalent for the circuit shown in Fig. 5.161 between points A and 

B is found as follows. The current passing through points A and B when it is 

short-circuited is the Norton’s equivalent current, as shown in Fig. 5.162.

Norton’s current I
N
 V/Z1

The impedance between points A and B, with the source replaced by a short 

circuit, is Norton’s equivalent impedance. In Fig. 5.161, the impedance from A

to B, Z2 is in parallel with Z1.

\ =
+

Z
Z Z

Z Z
N

1 2

1 2

Norton’s equivalent circuit is shown 

in Fig. 5.163.

The advantages seen with Thevenin’s 

theorem apply to Norton’s theorem. If we 

wish to analyze load resistor voltage and 

current over several different values of 

load resistance, we can use the Norton’s 

equivalent circuit again and again, 

applying nothing more complex than 

simple parallel circuit analysis to determine 

what’s happening with each trial load. 

This theorem is not applicable to circuits 

consisting of nonlinear elements and not 

valid to unilateral circuits. This theorem 

is not valid where the magnetic coupling 

exists between load and the circuit.

For   the   circuit 

shown   in   Fig.   5.164,   determine 

Norton’s equivalent circuit between 

the output terminals, AB.

Example 5.57

Fig. 5.164

Solution Norton’s current I
N
 is equal to the current passing through the short 

circuited terminals AB as shown in Fig. 5.165.

The current through terminals 

AB is

I
j

N =
–

+
=

–
–

= –-

25 0

3 4

25 0

5 53 13

5 53 13

° °

°

°

.

.

Fig. 5.162

Fig. 5.163

Fig. 5.165
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The impedance seen from terminals AB is

Z
j j

j j
N =

+ -
+ + -

=
– ∞ ¥ –- ∞

–-

( ) ( )

( ) ( )

. . .

. .

3 4 4 5

3 4 4 5

5 53 13 6 4 51 34

7 07 8 133

4 53 9 92

∞

= – ∞. .

Norton’s equivalent circuit is shown in Fig. 5.166.

For the circuit shown in Fig. 5.167, determine the load current IL 

by using Norton’s theorem.

Fig. 5.167

Example 5.58

Solution Norton’s impedance seen from terminals AB is

Z
j j

j j j
AB =

-
-

=
( )( )

( ) ( )

3 2

3 2

6

1

 ZAB   6  90 

Current passing through AB, when it is shorted

IN =
–

–
+

–
–-

10 0

3 90

5 90

2 90

°

°

°

°

  IN   3.33   90   2.5  180 

   j3.33   2.5

 IN   4.16   126.8 

Norton’s equivalent circuit is shown in Fig. 5.168.

Load current is I IL N= ¥
–- ∞

+ –- ∞

= –- ∞ ¥
–- ∞

-

6 90

5 6 90

4 16 126 8
6 90

5
. .

jj6

4 16 6 216 8

7 81 50 19
=

¥ –-
–-

. .

. .

°

°

  3.19   166.61 

Fig. 5.168

Fig. 5.166
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For the circuit 

shown in Fig. 5.169, determine 

Norton’s equivalent circuit.

Example 5.59

Fig. 5.169

Solution The impedance seen from the 

terminals when the source is reduced to zero

ZAB   (5  j6)  

Current passing through the short 

circuited terminals, A and B, is

 IN   30  30  A

Norton’s equivalent circuit is shown in Fig. 5.170.

Determine the current through the load impedance ZL   (8   j6)  

connected across AB in the network shown in Fig. 5.171 by applying Norton’s 

theorem. [JNTU April/May 2002]

Fig. 5.171

Example 5.60

Solution

(i) To find the Norton’s current

Short the load terminals as shown in Fig. 5.172.

I
j

N =
+

= - ∞100

5 5
14 142 45. – A

(ii) To find RN

Open the load terminals and replace the source with short circuit as shown in 

Fig. 5.173.

Fig. 5.170
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Fig. 5.172   Fig. 5.173

R
j j

N =
+ -

=
+

= W
( )( )5 5 5 5

10

25 25

10
5

I
j

I

L

L

=
-

+
=

-

= -

∞ ∞

∞
( . ) .

.

. .

14 14 45 5

13 6

70 7 45

14 317

4 93 69 77

– –
–24.77

– ∞∞

= -

A

AI jL 1 704 4 625. .

Fig. 5.174

Using Norton’s theorem, find the current through the load 

impedance ZL, for the network as shown in Fig. 5.175. [JNTU May/June 2008]

Fig. 5.175

Example 5.61
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Solution The given network is

Fig. 5.176(a)

–

First replace with Norton’s equivalent across the terminals AB. Norton’s current 

I
N
 is equal to the current passing through the short-circuited terminals AB.

Fig. 5.176(b)

∠

The impedance across the terminals AB

Z j

j

j

j

j

n = +

=
¥ +

+
=

¥ ¥ +
+

= ∞

5 10 10

5 10 10

15 10

5 10 1

3 2
3 92 11 31

|| ( )

( ) ( )
. .

The circuit when replaced is shown below.

∠ W

Fig. 5.176(c)

The current flowing through Z
L

I

j

1

20 3 92 11 31

3 92 11 31 7 071 45

20 3 92 11 31

3 843 0

=
¥

+

=
¥
+

∞

∞ ∞

∞

. .

. . .

. .

. .7768 5 5+ + j
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=
¥

+

=
¥

=

∞

∞

∞

20 3 92 11 31

8 843 5 768

20 3 92 11 31

10 557 33 11
7 426

. .

. .

. .

. .
.

j

-- ∞21 8.

Using Norton’s theorem, find the current through the load 

impedance ZL as shown in Fig. 5.177. [JNTU June 2009]

Fig. 5.177

Example 5.62

Solution

5 ohms

Fig. 5.178(a)

Short circuiting load terminal

Fig. 5.178(b)
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\ = =isc
100

5
20amp amp.

To determine the equivalent 

resistance of the circuit looking 

through load terminal, the constant 

source is deactivated as shown

\ =
+

+ +
=

+
+

=
+

+
R

j

j

j

j

j

j
int

( ) ( )

( )

( )

( )

10 10 5

10 10 5

50 1

5 3 2

10 1

3 2
ohm ohm oohms.

So, Norton’s equivalent circuit is given as

\ = = ¥
+

= ¥
+ +

Current through load I i
R

R z

j j

L sc
L

int

int

20
10 1 3 2( ) / ( ))

( ) / ( ) ( )

( )

( ) ( )( )

10 1 3 2 5 1

20
10 1

10 1 5 1 3 2

+ + + +

= ¥
+

+ + + +

j j j

j

j j j

=
¥
+

¥
+

+ +

=
+

= ∞

= -

20 10

5 1

1

2 3 2

40

5 2
7 428

6 897 2

( )

( )

.

.

j

j

j

j
amp amp– - 21.8

..758 j

Obtain Norton’s equivalent across terminals A and B for network 

shown in Fig. 5.179. [JNTU June 2009]

Fig. 5.179

Example 5.63

Fig. 5.178(c) 

Fig. 5.178(d)
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Solution

I
j

j

j

SC =
–

+

= +

= –

∞

∞

( )

( )

. .

15 10 0

5 15

9 3

9 486 18 435

A

Now deactivating the source

= ( 5)||(5+15j)

= 1 7.

Fig. 5.180(c)

Using Norton’s theorem, find the current through the load 

impedance ZL, for the network as shown in Fig. 5.181. [JNTU Jan 2010]

Fig. 5.181

Example 5.64

Solution

To measure internal resistance ZL is removed and voltage source is short 

circuited giving

Fig. 5.180(b)

Fig. 5.180(a)
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\ =
+

+ +
WR

j

j
int

( )10 10 5

10 10 5

=
/ ¥ +

/ +
=

+

+
– Ê

ËÁ
ˆ
¯̃

- Ê
ËÁ

ˆ- -5 10 1

5 3 2

10 1 1

3 2

1

1

2

3

2 2

2 2

1 1( )

( )
tan tan

j

j ¯̃̄

= – ∞W3 92 11 31. .

  Y
s s

s s

s s

s s
11

2

2

211
2

4 1

4 2

2 4 1

2 1 2
=

D
D

=
+ +

+
=

+ +
+( )

Y
s s

s s
12

2

= -
D21
D

=
1+ 2 + 2
2 (1+ 2 )

Y
s s

s s

Y

21

2

22

12 1 2 2

2 1 2

2

= -
D
D

=
+ +

+

=
D

( )

22 2 4 1

2 1 2

2

D
=

+ +
+

s s

s s( )

In this problem,  11   22,  12   21

 Y11  Y22, Y12  Y21

 The network is symmetrical and reciprocal.

5.2.3 Millman’s Theorem [JNTU June 2009, Jan 2010]

Millman’s Theorem states that in any network, if the voltage sources V1, V2, . . .V
n

in series with internal impedances Z1, Z2, . . . Zn, respectively, are in parallel, 

then these sources may be replaced by single voltage source V  in series with an 

impedance Z  as shown in Fig. 5.183.

Fig. 5.183

∠ θ
∠ θ ∠ θ

¢

¢

⇒

where ¢ = ¢ ==

= =

Â

Â Â
V

VY

Y

Z

Y

i i

i

n

i

i

n

i

i

n

1

1 1

1
and

5 W

10 W

j 10 W

Rint

Fig. 5.182
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A similar theorem can be stated for n current sources having internal admittances 

which can be replaced by a current source I ¢ in parallel with an equivalent admittance.

Fig. 5.184

where ¢ = ¢ =

=

=

= =

Â

Â Â
I

I Z

Z

Y

Z

Z
Y

i i

i

n

i

i

n

i

i

n

i

i

1

1 1

1

1

and

Millman’s theorem is very convenient for determining the voltage across a set 

of parallel branches, where there are enough voltage sources present to preclude 

solution via regular series – parallel reduction method. It doesn’t require the use of 

simultaneous equations. However, it is limited in that it only applied to circuits which 

can be redrawn to fit this form. It can not be used to solve an unbalanced bridge circuit.

Calculate the current flowing in 2    resistance shown in 

Fig. 5.185.

Fig. 5.185

∠

∠ ∠–

Ω

Ω

Ω Ω

Example 5.65
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Solution The above circuit can be 

redrawn as shown in Fig. 5.186.

  From Millman’s theorem, the 

equivalent impedance is given by

¢ =
+ +

=
- +

=Z
Y Y Y

j j

1 1

1
1

1

1

1

1
1 2 3

 

¢ =
+ +

= + - - +

= - -

∞ ∞

V
VY V Y V Y

Y

j j

1 1 2 2 3 3

200 200 120 1 200 120 1

200 200 3

( ) ( )

00 200 210

146 5 0

∞ ∞+

= - ∞. V

The current in 2   resistance

I
V

Z
=

+
=

-

= -

∞

∞

1

1 2

146 5 0

3

48 67 0

.

. A

Use Millman’s theorem to find the current in the load ZL in the 

circuit shown in Fig. 5.187.

Fig. 5.187

∠
∠

∠

Ω

Ω

Ω

Ω
Ω

Example 5.66

Solution First converting the current source 5 0∞  A in parallel with 5   resistance 

is connected into the voltage source in series with resistance.

∠
∠

∠

Ω
Ω

Ω

Ω
Ω

Fig. 5.188

Fig. 5.186

V ¢

Z
¢

2 W

I
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The above circuit can be redrawn as shown in Fig. 5.188.

Ω

¢ Ω

Fig. 5.189

   From Millman’s theorem, the equivalent impedance is given by

Z
Y Y Y

 =
+ +

=
+ +

= W

1

1

1

1

1

2

1

5

0 59

1 2 3

.

Voltage source V
VY V Y V Y

Y
 =

+ +
1 1 2 2 3 3

1

where Y
Z

¢ = = =
1 1

0 59
1 695

1
.

.

\ =
¥ + ¥ + ¥

=

=

∞ ∞ ∞

∞

∞

V

V

¢

¢

1 0 1 3 0
1

2
25 0

1

5

1 695

7 5 0

1 695

4 42 0

.

.

.

. Volts

The load current I
V

Z Z

j

I

L

L

L

=
+

=
+ + W

= = -

∞

∞

∞
∞

 

 

4 42 0

0 59 2 2

4 42 0

3 27 37 67
1 35 37 67

.

.

.

. .
. . AA

5.2.4 Reciprocity Theorem [JNTU Jan 2009]

In a linear bilateral single source network, if a single voltage (current) source in 

one branch ‘a’ of the network produces a current (voltage) in branch ‘b’, then 

if the voltage (current) source is shifted to branch ‘b’ will produce a current 

(voltage) in branch ‘a’. The ratio of excitation and response is same in both the 
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cases. This theorem is valid for networks comprising of linear, bilateral, passive 

elements energised by a single voltage or current source.

The above theorem can be verified by a simple example.

Verify the reciprocity theorem for the network shown in Fig. 5.190.

Fig. 5.190

Ω

Ω Ω

Ω

∠ °

Ω

Example 5.67

Solution Total impedance in the circuit   2 [(2 j5) || (2 j5)]   9.25  

The current drawn by the circuit

IT = =
∞

∞10 0

9 25
1 08 0

.
. A

The current in the (2  j5)   branch

I I
j

j j

j

T= ¥
+

+ + -

= ¥
+

=∞ ∞

2 5

2 5 2 5

1 08 0
2 5

4
1 45 68 2. . .

Applying the reciprocity theorem, by interchanging the source and response, 

we get

Total Impedance in the circuit   [2 || (2  j5)]   2  j5

=
+

+ +
+ -

= - ∞

2 2 5

2 2 5
2 5

5 8 50 1

( )

. .

j

j
j

W

Fig. 5.191

WW

W W

Ð °W
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Total current drawn by the circuit =
-

=

∞

∞

∞

10 0

5 8 50 1

1 72 50 1

. .

. . A

The current in the 2   branch is = ¥
+
+

=

∞

∞

1 72 50 1
2 5

4 5

1 45 67

. .

.

j

j

A

If we compare the results in both cases, the ratio of input to response is same.

Verify 

reciprocity theorem for 

the voltage source and 

the current I in the circuit 

shown in Fig. 5.192.

Example 5.68

Ω
Ω

Ω Ω

∠

Fig. 5.192

Solution Total impedance in the circuit ZT  [1 [(  j1) || (2 j1)]]

ZT = W∞
1 81 33 69. .

Total current drawn by the circuit

IT =

= -

∞

∞

∞

5 0

1 81 33 69

2 76 33 69

. .

. . A

The current in the (2  j1)   branch

I I
j

j j
T= ¥

- +

= - ¥

=

∞
∞

∞

1

2 1 1

2 76 33 69
1 90

2

1 38 56 31

. .

. . A

Applying the reciprocity theorem, by interchanging the source and response, we get

Total impedance in the circuit ZT   [1 || ( j1)   (2  j1)]

Z
T

= - W∞
2 55 11 30. .
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Ω

ΩΩ Ω

∠

Fig. 5.193

Total current drawn by the circuit

I
T

=
-

=

∞

∞

∞

5 0

2 55 11 30

1 96 11 30

. .

. . A

The current I in 1   branch

I =
¥

=

∞ ∞

∞

∞

1 96 11 30 1 90

1 414 45

1 38 56 36

. .

.

. . A

The voltage to current ratio is same in both the circuits.

In a single current source circuit shown in Fig. 5.194, find the 

voltage V. Verify the reciprocity theorem for the circuit.

Ω
Ω

Ω Ω

∠

Fig. 5.194

Example 5.69

Solution The voltage across ( j2)   impedance

V  I ( j2) volts

where the current passing through ( j2)   is

I
j

j j
= ¥

+
+ + -

=

∞

∞

5 90
5 5

5 5 2 2

4 65 111 8. . A

  The voltage V = ¥ -

=

∞ ∞

∞

4 65 111 8 2 90

9 24 21 8

. .

. . Volts
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Applying reciprocity theorem by interchanging source and response as shown in 

the circuit of Fig. 5.195.

Ω
Ω

Ω Ω

∠

Fig. 5.195

The current passing through (5  j5)   impedance

I
j

j j

I

= ¥
-

+ -

= -

∞

∞

5 90
2

7 5 2

1 31 23 2. . A

The voltage across (5  j5)   impedance

V j= + ¥ -

=

∞

∞

( ) . .

. .

5 5 1 31 23 2

9 25 21 8 voltage

The response to excitation ratio is same in both the circuits.

5.2.5 Compensation and Substitution Theorems

The compensation theorem states that any impedance having voltage across its 

terminal in the linear, bilateral network, may be replaced by a voltage source 

of zero internal impedance equal to the current passing through the impedance 

multiplied by the value of the impedance, provided the currents and voltages in 

other part of the network remain unaltered.

Let a branch of a network contain impedance Z1 and Z2. If the current in 

this branch is I, the voltage drop across Z1 is IZ1 with polarity as shown in

Fig. 5.196(a). Fig. 5.196(b) shows the compensation source VC  IZ1 which 

replace Z1. However VC must have polarity as shown in Fig. 5.196(b). If any 

chance which should effect I occurs in the network then the compensation source 

must be changed accordingly. The compensation is often referred as substitution 

theorem. This theorem is of use, when it is required to evaluate the changes in 

magnitudes of currents and voltages in the different branches of a network, due 

to a small change in the impedance of one of the branches.

Fig. 5.196(a) Fig. 5.196(b)
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Consider a network shown in Fig. 5.196(a).

The current in the circuit is I
V

Z Z

s

s

=
+ 1

Let the impedance of branch AB change from Z1 to (Z1   Z1). Let I1 be the 

new current. 

The current I
V

Z Z Z

s

s

1
1 1

=
+ +  

The impedance Z1 of the network 

shown in Fig. 5.196(a) may be replaced 

by a voltage source, V
C
. By substitution 

theorem V
C
 IZ1 with polarity as 

shown in Fig. 5.196(c).

Similarly, the network shown in Fig. 5.196(b) can be replaced by the network 

shown in Fig. 5.196(d).

Let   I1 denote the small change in current, due to the small change in the 

impedance value by   Z1.

\ = - =
+

-
+ +

=
◊

+ + +

 
 

 

 

I I I
V

Z Z

V

Z Z Z

V Z

Z Z Z Z Z

s

s

s

s

s

s s

1 1
1 1 1

1

1 1 1( )( )

 
 

 
I I

Z

Z Z Z

I
V

Z Z

s

s

s

1
1

1 1

1

= ◊
+ +

=
+

since

The network for which the 

above relationship holds good 

is as shown in Fig. 5.196(e).

By compensation theorem 

the small change in the 

magnitude of current due to 

a small change in a branch 

impedance is given by

 
 

 
I

I Z

Z Z Zs

1
1

1 1

=
+ +

Therefore, the original voltage 

source should be set equal to zero 

and a new voltage source I Z1

must be introduced with correct 

polarity.

Fig. 5.196(c)

Fig. 5.196(d)

Fig. 5.196(e)
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For the circuit 

shown in Fig. 5.197 find the change 

in the current by using compensation 

theorem when the reactance has 

changed to j5  .

Example 5.70

Ω

Ω

∠

Fig. 5.197

Solution The current in the circuit shown is I
j

=
+

=
∞

∞100 90

3 10
9 58 16 7. . A

The inductive reactance is changed from j10   to j5  

  Change in impedance  Z  j5 .

The new circuit is shown in Fig. 5.198.

The change in current due to change 

in impedance

 
 

 

I
I Z

Z

j

j

I

=
◊

=
¥

+

=

∞

∞
total

A.

9 58 16 7 5

3 5

8 22 47 7

. .

. .

In the network 

shown in Fig. 5.199, the 2   resistor 

is changed to 4  . Determine 

the resulting change in current 

through the load impedance, using 

compensation theorem.

Example 5.71

Fig. 5.199

Solution The thevenin’s equivalent circuit of a given network with open circuit 

terminals shown in Fig. 5.200.

Open circuit voltage across terminals AB

V j
j

V

AB

AB

=
+

=

=

∞ ∞ ∞

∞

∞

( )
. .

. .

10
50 0

5 10

10 90 50 0

11 18 63 43

44 72 26 57 Voltss

The impedance seen into the terminals AB

Z j
j

Z j

AB

AB

= =
+

= = + W

∞

∞

5 10
5 10 90

5 10

4 472 26 57 4 2

|| ( )
( )

. . ( )

Fig. 5.198

Ω

Ω

∠ 

Fig. 5.200
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The Thevenin’s equivalent circuit is shown in Fig. 5.201.

Current I
j

=
+

= -
∞

∞44 72 26 57

6 7
4 86 22 93

. .
. . A

when the impedance of   2  is 

change to 4 , the Thevenin’s 

equivalent circuit with new load 

impedance is shown in Fig. 5.202.

Change in impedance  Z

 4  2  2  

Total impedance  (8  j7)   

= W∞
10 63 41 18. .

By compensation theorem, we have

Change in current

 
 

 

I
I Z

Z

I

=
◊

=
- ¥

\ = -

∞

∞

∞

total

A

4 86 22 93 2

10 63 41 18

0 914 64 11

. .

. .

. .

44.72 ∠26.57°

(4 + j 2) Ω

j 5 Ω

4 Ω

Fig. 5.202

5.2.6 Superposition Theorem [JNTU Jan 2010]

The superposition theorem can be used to analyse ac circuits containing more 

than one source. The superposition theorem states that the response in any 

element in a circuit is the vector sum of the responses that can be expected 

to flow if each source acts independently of other sources. As each source is 

considered, all of the other sources are replaced by their internal impedances, 

which are mostly short circuits in the case of a voltage source, and open circuits 

in the case of a current source. This theorem is valid only for linear systems. 

In a network containing complex impedance, all quantities must be treated as 

complex numbers.

Consider a circuit which contains two sources as shown in Fig. 5.203.

Fig. 5.201

∠

Ω

Ω
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Now let us find the 

current I passing through 

the impedance Z2 in the 

circuit. According to the 

superposition theorem, 

the current due to voltage 

source V  0 V is I1 with 

current source I
a
 0  A open 

circuited.

I
V

Z Z
1

1 2

0
=

–
+

°

Fig. 5.204 Fig. 5.205

The current due to I
a
 0  A is I2 with voltage source V 0  short circuited. 

 I I
Z

Z Z
a2

1

1 2

0= – ¥
+

°

The total current passing through the impedance Z2 is

I  I1 + I2

The superposition theorem finds use in the study of AC circuits, amplifier 

circuits, where sometimes AC is often superimposed with DC. This theorem defines 

the behaviour of a linear circuit. Within the context of linear circuit analysis, this 

theorem provides the basis for all other theorems. Given a linear circuit, it is easy to 

see how mesh analysis and nodal analysis make use of the principle of superposition.

It is not possible to apply superposition theorem directly to determine power 

associated with an element. In addition, application of superposition theorem 

does not normally lead to simplification of analysis. It is not best technique 

to determine all currents and voltages in a circuit, driven by multiple sources. 

Superposition theorem works only for circuits that are reducible to series/

parallel combinations for each of the sources at a time. This theorem is useless 

for analyzing an unbalanced bridge circuit. Networks containing components 

like lamps or varistors could not be analyzed.

Fig. 5.203
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Determine the voltage across (2   j5)   impedance as shown 

in Fig. 5.206 by using the superposition theorem.

Fig. 5.206

Example 5.72

Solution According to the superposition theorem, the current due to the 50 0  V 

voltage source is I1 as shown in Fig. 5.207 with current source 20 30  A open 

circuited.

Current I
j j j

1

50 0

2 4 5

50 0

2 9

50 0

9 22 77 47
5 42

=
– ∞

+ +
=

– ∞
+

=
– ∞

– ∞
= –

( )

. .
. -- ∞77 47. A

Voltage across (2 + j5)   due to current I1 is

 V1 = 55.42  - 77.47  (2 + j5)

  = (5.38)(5.42)  - 77.47  + 68.19 

  = 29.16  - 9.28 

The current due to 20 30  A current 

source is I2 as shown in Fig. 5.208, with 

voltage source 50  0  V short circuited.

Fig. 5.208

Current I
j

j
2 20 30

4

2 9

20 30 4 90

9 22 77 47

= – ∞ ¥
+

=
– ∞ ¥ – ∞

– ∞

( )

( )

. .

 

 

  I2   8.68 120   77.47   8.68 42.53 

Fig. 5.207
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Voltage across (2  j5)   due to current I2 is

V2   8.68 42.53  (2  j5)

  (8.68) (5.38)  42.53   68.19 

  46.69  110.72 

Voltage across (2  j5)   due to both sources is

V  V1  V2

  29.16    9.28   46.69 110.72 

  28.78  j4.7   16.52  j43.67

  (12.26  j38.97) V

Voltage across (2  j5)   is V   40.85  72.53 .

For the circuit shown in Fig. 5.209, determine the voltage VAB

using the superposition theorem.

Fig. 5.209

Example 5.73

Solution Let source 50 0  V act on the circuit and set the source 4 0 A equal 

to zero. If the current source is zero, it becomes open-circuited. Then the voltage 

across AB is VAB   50 0 .

Now set the voltage source 50 0  V is zero, and is short circuited, or the voltage 

drop across AB is zero.

The total voltage is the sum of the two voltages.

 VT   50 0 

For the circuit shown in Fig. 5.210, determine the current in 

(2 j3)   by using the superposition theorem.

Fig. 5.210

Example 5.74
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Solution The current in (2  j3)  , when the voltage source 50 0  acting alone is

I
j

1

50 0

6 3

50 0

6 7 26 56
=

– ∞
+

=
– ∞

– ∞( ) . .

 I1   7.46   26.56  A

Current in (2  j3)  , when the current source 20 90  A acting alone is

I
j

2 20 90
4

6 3

80 90

6 7 26 56
11 94 63 44

= – ¥
+

=
–

–
= –

°

°

°
°A

( )

. .
. .

Total current in (2  j3)   due to both sources is

I  I1  I2

  7.46  26.56   11.94 63.44 

  6.67  j3.33   5.34  j10.68

  12.01  j7.35   14.08 31.46 

Total current in (2  j3)   is I   14.08 31.46 

Find the current in the 6    resistor using superposition theorem 

as shown in Fig. 5.211. [JNTU May/June 2006]

Fig. 5.211

Example 5.75

Solution

Fig. 5.212 (a)

Ω Ω

Ω
∠

I
j j j

1

10

6 6 8

10

6 2

10

6 32 18 43
1 58 78 43=

+ -
=

-
=

-
=

∞ ∞ ∞

∞
∞–60 –60 –60

–
–

. .
. . AA



5.90 Network Analysis

Fig. 5.212 (b)

I
j

j j

j

j

j

j

2 2 0
6

6 6 8
2 0

6

6 2

1 0
6

3 1

1 0 6 0

3 16

= ¥
+ -

= ¥
-

= ¥
-

=
¥

∞ ∞

∞
∞ ∞

– –

–
– –9

– -. 118.43
–108.43∞

∞= 1 899. A

By superposition theorem, current through

6   I1  I2

 1.58  78.43  1.899 108.43 

 0.317  j1.548  [ 0.6  j1.8]

  0.283  j3.348  3.36 94.83 A

Determine the current I in the circuit shown in Fig. 5.213 using 

superposition theorem: [JNTU May/June 2002]

Fig. 5.213

Example 5.76

Solution Consider 125 90– ∞ volt voltage source and short circuiting the other 

voltage source.

R
j j

j j

Is

eq =
-

+ -
+ = W

=

=

∞

25 15 2

25 15 2
25 37 9 9 01

125 90

37 9 9 01

3 29

( )
. .

. .

. 880 99. A
Fig. 5.214 (a)
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¢ = ¥
- +

= ¥

¢ =

∞

∞I I
j

j j

I

s

25

15 2 25
3 29 80 99

25 90

27 45 56 88

2 99 114 11

. .
. .

. . AA

Nowconsider 120 0– ∞ V voltage source 

and short circuit the other voltage source.

R
j

j
j

R

eq

eq

=
-

+ -
+

= ∞

25 15 2

25 15 2
25

25 99 68 75

( )

. .

I

I I
j

I

s

s s

= = -

¢¢ = ¥
- +

= ¥

∞

∞
∞120 0

25 99 68 75
4 617 68 75

25

15 2 25

25

40

. .
. . A

--

¢¢ = - ¥
-

¢¢ = - ∞

j

I
j

I

2

4 617 68 75
25

40 2

2 88 65 89

. .

. .

I I I

j j

= ¢ + ¢¢

= + -

= - + + -

=

∞ ∞2 99 114 11 2 88 65 89

1 22 2 729 1 176 2 62

. . . .

. . . .

-- + = ∞0 044 0 1 0 1 113 74. . . .j A

5.2.7 Maximum Power Transfer Theorem [JNTU Jan 2010]

The maximum power transfer theorem has been discussed for resistive loads. The 

maximum power transfer theorem states that the maximum power is delivered 

from a source to its load when the load resistance is equal to the source resistance. 

It is for this reason that the ability to obtain impedance matching between circuits 

is so important. For example, the audio output transformer must match the high 

impedance of the audio power amplifier output to the low input impedance of 

the speaker. Maximum power transfer is not always desirable, since the transfer 

occurs at a 50 per cent efficiency. In many situations, a maximum voltage transfer 

is desired which means that unmatched impedances are necessary. If maximum 

power transfer is required, the load resistance should equal the given source 

resistance.The maximum power transfer theorem can be applied to complex 

impedance circuits. If the source impedance is complex, then the maximum power 

transfer occurs when the load impedance is the complex conjugate of the source 

impedance.

Fig. 5.214 (b)
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Consider the circuit shown in 

Fig. 5.215, consisting of a source 

impedance delivering power to a 

complex load.

Current passing through the 

circuit shown

I
V

R j X R j X

s

s s L L

=
+ + +( ) ( )

Magnitude of current I I
V

R R X X

s

s L s L

= =
+ + +( ) ( )2 2

Power delivered to the circuit is

P I R
V R

R R X X
L

s L

s L s L

= =
+ + +

2
2

2 2( ) ( )

In the above equation, if R
L
 is fixed, the value of P is maximum when

X
s
  X

L

Then the power P
V R

R R

s L

s L

=
+

2

2( )

Let us assume that R
L
 is variable. In this case, the maximum power is 

transferred when the load resistance is equal to the source resistance (already 
discussed in Chapter 3). If R

L
 R

s
 and X

L
  X

s
, then Z

L
 Z*

s
. This means 

that the maximum power transfer occurs when the load impedance is equal to the 
complex conjugate of source impedance Z

s
.

Maximum power transfer does not coincide with maximum efficiency. 
Application of the maximum power transfer theorem to AC power distribution 
will not result in max or even high efficiency. The goal of high efficiency is more 
important for AC power distribution, which dictates a relatively low generator 
impedance compared to load impedance. Maximum power transfer does not 
coincide with the goal of lowest noise. The low level radio frequency amplifier 
between the antenna and a radio receiver is often designed for lowest possible 
noise. This often requires a mismatch of the amplifier input impedance to the 
antenna as compared with that dictated by the maximum power transfer theorem.

For the circuit 

shown in Fig. 5.216, find the value 

of load impedance for which the 

source delivers maximum power. 

Calculate the value of the maximum 

power.

Example 5.77

Fig. 5.216

Solution In the circuit shown in Fig. 5.216, the maximum power transfer occurs 

when the load impedance is complex conjugate of the source impedance

Fig. 5.215
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 ZL   Z*
s  15   j20

When ZL   15  j20, the current passing through circuit is

I
V

R R j j

s

s L

=
+

=
– ∞

+ + -
=

– ∞
= – ∞

50 0

15 20 15 20

50 0

30
1 66 0.

The maximum power delivered to the load is

P  I 2RL   (1.66)2   15   41.33 W

For the circuit shown 

in Fig. 5.217, find the value Z that will 

receive maximum power, also determine 

this power.

Example 5.78

Fig. 5.217

Solution The equivalent impedance at terminals AB with the source set equal to zero is

Z
j

j

j

j
AB =

+
+

-
-

=
–
–

+
–-

5 10

5 10

7 20

7 20

50 90

11 18 63 43

140 90

( ) ( )

( )

. .

°

°

°

221 19 70 7. .–- °

  4.47  26.57   6.6   19.3 

  3.99  j1.99   6.23  j2.18

  10.22  j0.19

The Thevenin equivalent circuit is shown in Fig. 5.218(a).

The circuit in Fig. 5.218(a) is redrawn as shown in Fig. 5.218(b).

Fig. 5.218

Current

A

I
j

1

100 0

5 10

100 0

11 18 63 43
8 94 63 43

=
– ∞

+

=
– ∞

– ∞
= – - ∞

. .
. .

Current I
j

2

100 0

7 20

100 0

21 19 70 7
4 72 70 7=

– ∞
-

=
– ∞

– - ∞
= – ∞

. .
. .
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Voltage at A, VA   8.94   63.43  j10   89.4   26.57 

Voltage at B, VB   4.72  70.7    j20   94.4   19.3 

Voltage across terminals AB

VAB  VA  VB

  89.4  26.57   94.4   19.3 

  79.96  j39.98   89.09  j31.2

  9.13  j71.18

VTh  VAB   71.76  97.3  V

To get maximum power, the load must be the complex conjugate of the source 

impedance.

  Load Z   10.22  j0.19

Current passing through the load Z

I
V

Z Z
=

+
=

– ∞
= – ∞Th

Th

71 76 97 3

20 44
3 51 97 3

. .

.
. .

Maximum power delivered to the load is

  (3.51)2   10.22   125.91 W

For the circuit 

shown in Fig. 5.219, the resistance 

Rs is variable from 2   to 50  .

What value of Rs results in 

maximum power transfer across 

the terminals AB?

Example 5.79

Fig. 5.219

Solution In the circuit shown the resistance RL is fixed. Here, the maximum power 

transfer theorem does not apply. Maximum current flows in the circuit when Rs is 

minimum. For the maximum current

Rs   2

But ZT  Rs  j5  RL   2  j5   20   (22  j5)

  22.56   12.8 

 I
V

Z

s

T

= = -
–

– -
= –

50 0

22 56 12 8
2 22 12 8

°

°
°

. .
. .

Maximum power P  I 2R   (2.22)2   20   98.6 W

For the 

circuit shown in Fig. 5.220, 

find the value of Z that will 

receive maximum power; 

also determine this power.

Example 5.80

Fig. 5.220
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Solution The equivalent impedance can be obtained by finding Voc and isc at 

terminals a b. Assume that current i is passing in the circuit.

i
V

j

j

i

j

=
– -
+

=
–

+
-

¥
+

100 0 5

4 10

100 0

4 10

5 4

4 10

4°

°

i   3.85   22.62 

Voc   100  0   4   3.85   22.62 

  86  3.94 

isc   25  j50   56  63.44 

Thevenin’s equivalent impedance

Z
V

i

oc

sc

Th = = – - ∞1 54 59 5. .

  0.78  j1.33

The circuit is drawn as shown in Fig. 5.221.

To get maximum power, the load must 

be the complex conjugate of the source 

impedance.

   Load Z   0.78  j1.33

Current passing through load Z

I
V

Z Z
=

+
=

– ∞
= – ∞Th

Th

86 3 94

1 56
55 13 3 94

.

.
. .

Maximum power delivered to the load is (55.13)2   (0.78)   2370.7 W.

In the network shown 

in Fig. 5.222, find the value of ZL so that 

the power transfer from the source is 

maximum. Also find Pmax.

[JNTU May/June 2006]

Example 5.81

Fig. 5.222

Solution Let us remove ‘zL’. The Internal impedance of the circuit looking through 

x  y is given by

z
j

j

j

j
in =

+
+ +

+
+

+ +
( )( ) ( )21 12 24

21 12 24

50 30 60

50 30 60

Fig. 5.221
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= +

=

∞

∞

∞

∞
563 44 63 43

40 8 36

3354 10 63 43

100 36 87

13 81 27 4

. .

.

. .

.

. .

–
–

–
–

– 33 33 54 26 56

42 19 21 49

∞ ∞+

= + W

. .

. .

–

z jin

As per maximum power transfer theorem, ZL
should be the complex of zin
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4
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0 1627

2 2

∞

= =
¥

=

V

mWP
V

R

OC

L
max

( . )

.
.

Pmax  0.1627 mW

In the circuit 

shown in the given Fig. 5.224, 

find the value of RL which results 

in max power transfer. Calculate 

the value of the maximum power.

Example 5.82

Fig. 5.224

Solution The value of RL for which the maximum power transfer 

R jL = + = + = W5 10 5 10 11 182 2 .

Fig. 5.223(a)

Fig. 5.223(b)
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Then the circuit current is

I
j

=
+ +

=

= -

∞ ∞

∞

∞

100 0

11 18 5 10

100 0

19 02 31 78

5 26 31 718

. . .

. . A

The maximum power across RL is

Pmax  I2 R  (5.26)2 11.18  309 watts

5.2.8 Tellegen’s Theorem [JNTU Jan 2010]

The Tellegen’s theorem states that the summation of instantaneous power or 

summation of complex power of sinusoidal sources in a network is zero. The network 

power may be linear or non linear, passive or active and time invariant or variant.

The Tellegen’s theorem is used to design filters in signal processing applications. 

The assumptions for electrical circuits are generalized for dynamic systems obeying 

the laws of irreversible thermodynamics. Topology and structure of reaction networks 

can be analyzed using the Tellegen’s theorem. Another application of Tellegen’s 

theorem is to determine stability and optimality of complex process systems.

Consider a network shown in Fig. 5.225.

Fig. 5.225

Applying Kirchhoff’s current law at nodes, we get

At node a,

i1  i2  i3  0

At node b,

i3  i4  i5  0

Total instantaneous powers delivered by the voltage sources

 V1 i1  V2 i4 (1)

Total instantaneous power absorbed by all the passive element

 i1( V1  Va)  Va i2  (Va  Vb) i3  (Vb  V2) i4  Vb i5 (2)

  Summation of all instantaneous powers  (1)  (2)
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V1 i1  V2 i4  V1 i1  Va i1  Va i2  Va i3  Vb i3  Vb i4  V2 i4  Vb i5

V1(i1  i1)  V2( i4  i4)  Va( i1  i2  i2)  Vb( i3  i4  i5)   0

Since the algebraic sum of the currents at each of the nodes is zero.

Verify 

Tellegen’s theorem for 

the network shown in 

Fig. 5.226.

Example 5.83

Fig. 5.226

20 30° j5 Ω–j– 4 Ω

3 Ω 2 Ω

i2 + j 5iji 4i3

A

Solution Assume that the voltage at node a is VA. By applying modal analysis, 

we have

20 30

3 4 2 5

1

3

1

2 5

1

4

20 30

3

6 67 30

∞ -
=

-
+

+

+
+

-
È

Î
Í

˘

˚
˙ =

=

V V

j

V

j

V
j j

V

A A A

A

A

∞

.
∞∞

∞
∞

0 41 11 09
16 27 18 91

. .
. .= V

Current in 3   branch

I
V

I

A
3

3

20 30

3

20 30 16 27 18 91

3

1 7 67 8

=
-

=
-

=

∞ ∞ ∞

∞

. .

. . A

Current in  j4   branch

I j-

∞

∞
∞=

-
=

4

16 27 18 91

4 90
4 067 108 91

. .
. . A

Current in (2  j5)   branch

I j2 5

16 27 18 91

5 385 68 198
3 021 49 3+

∞

∞
∞= = -

. .

. .
. . A

Power in 3   branch P3  V3  I3
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where voltage V I
3 3

3 1 7 67 8 3 5 1 67 8= ¥ = ¥ =∞ ∞
. . . . V

 P

j

3
5 1 67 8 1 7 67 8 8 67 135 6

6 2 6 066

= ¥ =

= - +

∞ ∞ ∞
. . . . . .

. .

W

W

Power in ( j4)   branch

P

j

j-
∞ ∞

∞

= ¥

=

= - +

4
16 27 18 91 4 067 108 91

66 161 127 82

40 6 52 26

. . . .

. .

. . W

Power in (2  j5)   branch

P

j

j2 5
16 27 18 91 3 02 49 3

49 135 30 39

42 2 24 86

+
∞ ∞

∞

= ¥ -

= -

= -

. . . .

. .

. . W

Power delivered by the source

P

j

20
20 30 1 7 67 8

34 97 8 4 61 33 68

= ¥

= = - +

∞ ∞

∞

. .

. . . W

Sum of the powers in the circuit is zero, which proves Tellegen’s theorem.

Practice Problems

5.1 Find the Thevenin’s and Norton’s equivalents for the circuit shown in Fig. 5.227 

with respect to terminals ab.

Fig. 5.227

5.2 Determine the Thevenin and Norton’s equivalent circuits with respect to 

terminals AB for the circuit shown in Fig. 5.228.
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412

5

Fig. 5.228

5.3 By using source transformation or any other technique, replace the circuit 

shown in Fig. 5.229 between terminals AB with the voltage source in 

series with a single resistor.

3 A
30

50 5

6

20 V

Fig. 5.229

5.4 For the circuit shown in 

Fig. 5.230, what will be 

the value of R
L
 to get the 

maximum power? What 

is the maximum power 

delivered to the load? 

What is the maximum 

voltage across the load? 

What is the maximum 

current in it?

5.5 For the circuit shown in 

Fig. 5.231 determine the value 

of R
L
 to get the maximum 

power. Also find the maximum 

power transferred to the load.

5.6 Determine the current passing 

through 2   resistor by using 

Thevenin’s theorem in the 

circuit shown in Fig. 5.232.

5.7 Find Thevenin’s equivalent 

circuit for the network shown 

in Fig. 5.233 and hence find 

the current passing through 

the 10   resistor.

Fig. 5.230

Fig. 5.231
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Fig. 5.232 Fig. 5.233

5.8 Obtain Norton’s equivalent circuit of 

the network shown in Fig. 5.234.

5.9 Determine (i) the equivalent voltage 

generator and (ii) the equivalent current 

generator which may be used to represent 

the given network in Fig. 5.235 at the 

terminals AB.

Fig. 5.235

5.10 For the circuit shown in 

Fig. 5.236, find the value of Z

that will receive the maximum 

power. Also determine this 

power.

5.11 Determine the voltage V
ab

and V
bc

 in the network shown 

in Fig. 5.237 by Thevenin’s 

theorem, where source voltage 

e t t( ) cos(

).

= ¥
+ ∞
2 100 314

45

5.12 Find the current in the 15 

resistor in the network shown 

in Fig. 5.238 by Thevenin’s 

theorem.

Fig. 5.236

Fig. 5.237

Fig. 5.234
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Fig. 5.238

5.13 Determine the power output of the voltage source by loop analysis for the 

network shown in Fig. 5.239. Also determine the power extended in the 

resistors.

5.14 In the circuit shown in Fig.5.240, determine the power in the impedance 

(2 j5)  connected between A and B using Norton’s theorem.

Fig. 5.239 Fig. 5.240

5.15 Convert the active network 

shown in Fig. 5.241 by a 

single voltage source in 

series with an impedance, 

and also by a single current 

source in parallel with the 

impedance.

5.16 Determine the power out 

of the source in the circuit 

shown in Fig. 5.242 by 

Thevenin’s theorem and 

verify the results by using 

Norton's theorem.

Fig. 5.241

Fig. 5.242
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5.17 Use Thevenin’s theorem 

to find the current 

through the (5  j4)  

impedance in Fig. 5.243. 

Verify the results using 

Norton’s theorem.

5.18 Determine Thevenin’s 

and Norton’s equivalent 

circuits across terminals 

AB, in Fig. 5.244.

5.19 Determine Norton’s and 

Thevenin’s equivalent 

circuits for the circuit 

shown in Fig. 5.245.

Fig. 5.245

5.20 Determine the maximum power delivered to the load in the circuit shown 

in Fig. 5.246.

Fig. 5.246

Ω

∠ 

Ω

Ω

Ω

Ω

Ω

Ω

5.21 For the circuit shown in Fig. 5.247, find the voltage across the dependent 

source branch by using Norton's theorem.

Fig. 5.243

Fig. 5.244
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Fig. 5.247

5.22 Find Thevenin’s 

equivalent for the 

network shown in 

Fig. 5.248.

5.23 For the circuit shown 

in Fig. 5.249, obtain 

the voltage across 

500 k  resistor.

Fig. 5.249

5.24 For the circuit shown in Fig. 

5.250, obtain the Thevenin’s 

equivalent circuit at terminals ab.

5.25 Find the current I in the circuit 

shown in Fig.  5.251 by using the 

superposition theorem.

5.26 Determine the current I in the 

circuit shown in Fig. 5.252 

by using the superposition 

theorem.

Fig. 5.250

Fig. 5.248

Fig. 5.251

I

5

5 V

3

1 10 A10 V

10

3
2

Ω

ΩΩ

Ω

Ω

Ω

1 Ω

Fig. 5.252
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5.27 Calculate the new current 

in the circuit shown in 

Fig. 5.253 when the 

resistor R3 is increased by 

30%.

5.28 The circuit shown in Fig. 5.254 

consists of dependent source 

Use the superposition theorem 

to find the current I in the 3  

resistor.

5.29 Obtain the current passing through 2  

resistor in the circuit shown in Fig. 5.255 

by using the superposition theorem.

Fig. 5.255

5.30 For the circuit shown in Fig. 5.256, find the current in each resistor using 

the superposition theorem.

Fig. 5.256

5.31 Determine the value of source currents by superposition theorem for the 

circuit shown in Fig. 5.257 and verify the results by using nodal analysis.

Fig. 5.257

Fig. 5.254

Fig. 5.253
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Objective Type Questions

5.1 Reduce the circuit shown in Fig. 5.258 to its Thevenin equivalent circuit 

as viewed from terminal A and B.

Fig. 5.258

(a) The circuit consists of 15 V battery in series with 100 k 

(b) The circuit consists of 15 V battery in series with 22 k 

(c)  The circuit consists of 15 V battery in series with parallel combination 

of 100 kV and 22 k 

(d) None of the above

5.2 Norton’s equivalent circuit consists of

(a) voltage source in parallel with resistance

(b) voltage source in series with resistance

(c) current source in series with resistance

(d) current source in parallel with resistance

5.3 Maximum power is transferred when load impedance is

(a) equal to source resistance

(b)  equal to half of the source resistance

(c) equal to zero

(d) none of the above

5.4  In the circuit shown in Fig. 5.259, 

what is the maximum power 

transferred to the load

(a) 5 W (b) 2.5 W

(c) 10 W (d) 25 W

5.5 Thevenins voltage in the circuit 

shown in Fig. 5.260 is

(a) 3 V (b) 2.5 V

(c) 2 V (d) 0.1 V

Fig. 5.259

Fig. 5.260
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5.6 Norton’s current in the circuit shown in 

Fig. 5.261 is

(a) 2

5

i (b) zero

(c) infinite (d) None

5.7 A dc circuit shown in Fig. 5.262 has 

a voltage V, a current source I and 

several resistors. A particular resistor R

dissipates a power of 4 W when V alone 

is active. The same resistor dissipates 

a power of 9 W when I alone is active. 

The power dissipated by R when both 

sources are active will be

(a) 1 W (b) 5 W

(c) 13 W (d) 25 W

5.8 While applying Thevenin’s theorem, the Thevenin’s voltage is equal to

(a) short circuit voltage at the terminals

(b) open circuit voltage at the terminals

(c) voltage of the source

(d) total voltage available in the circuit

5.9 Thevenin impedance ZTh is found

(a) by short-circuiting the given two terminals

(b) between any two open terminals

(c) by removing voltage sources along with the internal resistances

(d) between same open terminals as for VTh

5.10 Thevenin impedance of the 

circuit at its terminals A and 

B in Fig. 5.263 is

(a) 5 H

(b) 2  

(c) 1.4  

(d) 7 H

5.11 Norton’s equivalent form in any complex impedance circuit consists of

(a) an equivalent current source in parallel with an equivalent resistance.

(b)  an equivalent voltage source in series with an equivalent conductance.

(c)  an equivalent current source in parallel with an equivalent impedance.

(d) None of the above.

5.12 The maximum power transfer theorem can be applied

(a) only to dc circuits (b) only to ac circuits

(c) to both dc and ac circuits (d) neither of the two

Fig. 5.261

Fig. 5.262

Fig. 5.263
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5.13 Maximum power transfer occurs at a

(a) 100% efficiency (b) 50% efficiency

(c) 25% efficiency (d) 75% efficiency

5.14 In the circuit shown in 

Fig. 5.264, the power supplied 

by the 10 V source is

(a) 6.6 W

(b) 21.7 W

(c) 30 W

(d) 36.7 W

5.15 A source has an emf of 10 V and an impedance of 500  j100  . The amount 

of maximum power transferred to the load will be

(a) 0.5 mW

(b) 0.05 mW

(c) 0.05 W

(d) 0.5 W

5.16 For the circuit shown in 

Fig. 5.265, find the voltage 

across the dependent source.

(a) 8  0 

(b) 4  0 

(c) 4  90 

(d) 8   90 

5.17 Superposition theorem is 

valid only for

(a) linear circuits (b) non-linear circuits

(c) both linear and non-linear (d) neither of the two

5.18 Superposition theorem is not valid for

(a) voltage responses (b) current responses

(c) power responses (d) all the three

5.19 Determine the current I in the circuit shown in Fig. 5.266. It is

(a) 2.5 A (b) 1 A

(c) 3.5 A (d) 4.5 A

Fig. 5.266

Fig. 5.264

Fig. 5.265
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5.20 The reciprocity theorem is applicable to

(a) linear networks only

(b) bilateral networks only

(c) linear/bilateral networks

(d) neither of the two

5.21 Compensation theorem is applicable to

(a) linear networks only

(b) non-linear networks only

(c) linear and non-linear networks

(d) neither of the two

5.22 When the superposition theorem is applied to any circuit, the dependent 

voltage source in that circuit is always

(a) opened (b) shorted (c) active (d) none of the above

5.23 Superposition theorem is not applicable to networks containing.

(a) non-linear elements

(b) dependent voltage sources

(c) dependent current sources

(d) transformers

5.24 The superposition theorem is valid

(a) only for ac circuits

(b) only for dc circuits

(c) For both, ac and dc circuits

(d) neither of the two

5.25 When applying the superposition theorem to any circuit

(a) the voltage source is shorted, the current source is opened

(b) the voltage source is opened, the current source is shorted

(c) both are opened

(d) both are shorted

5.26 In a complex impedance circuit, the maximum power transfer occurs 

when the load impedance is equal to

(a) complex conjugate of source impedance

(b) source impedance

(c) source resistance

(d) none of the above

5.27 The Thevenin equivalent 

impedance of the circuit in 

Fig. 5.267 is

(a) (1  j5)  

(b) (2.5  j25)  

(c) (6.25  j6.25)  

(d) (2.5  j6.25)  Fig. 5.267





Two-Port 
Networks

6
6.1 RELATIONSHIP OF TWO-PORT NETWORK

Generally any network may be represented schematically by a rectangular box. 

A network may be used for representing either source or load, or for a variety 

of purposes. A pair of terminals at which a signal may enter or leave a network 

is called a port. A port of terminals into which energy is 

supplied, or from which energy is withdrawn, or where the network variables 

may be measured. One such network having only one pair of terminals (1 – 1¢ )
is shown in Fig. 6.1(a).

(a) (b)

Fig. 6.1

A two-port network is simply a network inside a black box, and the network has 

only two pairs of accessible terminals; usually one pair represents the input and the 

other represents the output. Such a building block is very common in electronic 

systems, communication systems, transmission and distribution systems. 

Figure 6.1(b) shows a two-port network, or two terminal pair network, in which 

the four terminals have been paired into ports 1–1¢  and 2–2¢. The terminals 
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1–1¢ together constitute a port. Similarly, the terminals 2–2¢ constitute another 

port. Two ports containing no sources in their branches are called passive ports;

among them are power transmission lines and transformers. Two ports containing 

sources in their branches are called active ports. A voltage and current assigned 

to each of the two ports. The voltage and current at the input terminals are 

V1 and I1; whereas V2 and I2

that the currents I1 and I2 are entering into the network at the upper terminals 

1 and 2, respectively. The variables of the two-port network are V1, V2, and I1, I2.

Two of these are dependent variables, the other two are independent variables. 

The number of possible combinations generated by the four variables, taken two 

at a time, is six. Thus, there are six possible sets of equations describing a two-

port network.

6.2 OPEN CIRCUIT IMPEDANCE (Z) PARAMETERS

any independent sources is shown in Fig. 6.2.

Fig. 6.2

The Z parameters of a two-port for the positive directions of voltages and currents 

V1 and V2 in terms of the currents 

I1 and I2. Here V1 and V2 are dependent variables, and I1, I2 are independent 

variables. The voltage at port 1–1¢  is the response produced by the two currents 

I1 and I2. Thus

V1 = Z11 I1 + Z12 I2 (6.1)

Similarly, V2 = Z21 I1 + Z22 I2 (6.2)

Z11, Z12, Z21 and Z22 are the network functions, and are called impedance 

(Z

represented by matrices.

We may write the matrix equation [V] = [Z] [I]

where V is the column matrix =
V

V
1

2

È
ÎÍ

˘
˚̇

Z is the square matrix =
Z Z

Z Z
11 12

21 22

È
ÎÍ

˘
˚̇



Two-Port Networks 6.3

and we may write |I | in the column matrix = 
I

I
1

2

È
ÎÍ

˘
˚̇

Thus,
V

V
1

2

È
ÎÍ

˘
˚̇

 =
Z Z

Z Z

11 12

21 22

È

ÎÍ
˘

˚̇

I

I
1

2

È
ÎÍ

˘
˚̇

The individual Z

of the port currents equal to zero. Suppose port 2–2¢ is left open-circuited, then 

I2 = 0

Thus Z11 =
V

I
I

1

1 02 =

where Z11 is the driving-point impedance at port 1–1¢ with port 2–2¢ open 

Similarly, Z21 =
V

I
I

2

1 02 =

where Z21 is the transfer impedance at port 1–1¢ with port 2–2¢
is also called the open circuit forward transfer impedance. Suppose port 1–1¢ is 

left open circuited, then I1 = 0

Thus, Z12 =
V

I
I

1

2 01 =

where Z12 is the transfer impedance at port 2–2¢, with port 1–1¢
is also called the open circuit reverse transfer impedance.

Z22 =
V

I
I

2

2 01 =

where Z22 is the open circuit driving point impedance at port 2–2¢ with port 1–1¢

impedance parameters is shown in Fig. 6.3.

Fig. 6.3

reciprocity principle
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V

I
I

2

1 02 =

 =
V

I
I

1

2 01 =

or Z21 = Z12

the ports is zero. This corresponds to one of the ports being open circuited from 

which the Z parameters also derive the name open circuit impedance parameters.

Find the Z parameters for the circuit shown in Fig. 6.4.

Fig. 6.4

Example 6.1

Solution

The circuit in the problem is a T

V1 = Z11 I1 + Z12 I2

V2 = Z21 I1 + Z22 I2

When port b-b¢ is open circuited, Z11 = 
V

I

1

1

where V1 = I1(Za + Zb)

\ Z11 = (Za + Zb)

Z21 =
V

I
I

2

1 02 =

where V2 = I1 Zb

\ Z21 = Zb

When port a-a¢ is open circuited, I1 = 0

Z22 =
V

I
I

2

2 01 =

where V2 = I2(Zb + Zc)

\ Z22 = (Zb + Zc)
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Z12 =
V

I
I

1

2 01 =

where V1 = I2 Zb

\ Z12 = Zb

Z12 = Z21, so the network is a bilateral network which 

6.3 SHORT CIRCUIT ADMITTANCE (Y) PARAMETERS

A general two-port network which is considered in Section 6.2 is shown in 

Fig. 6.5.

Fig. 6.5

The Y parameters of a two-port for the positive directions of voltages and currents 

I1 and I2 in terms of the voltages 

V1 and V2. Here I1, I2 are dependent variables and V1 and V2 are independent 

variables. I1 may be considered to be the superposition of two components, one 

caused by V1 and the other by V2.

Thus,

I1 = Y11 V1 + Y12 V2 (6.3)

Similarly, I2 = Y21 V1 + Y22 V2 (6.4)

Y11, Y12, Y21 and Y22 are the network functions and are also called the admittance 

(Y

represented by matrices as follows:

[I ] = [Y] [V ]

where I =
I

I
1

2

È
ÎÍ

˘
˚̇

; Y =
Y Y

Y Y
11 12

21 22

È
ÎÍ

˘
˚̇

and V = V

V
1

2

È
ÎÍ

˘
˚̇
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Thus,
I

I
1

2

È
ÎÍ

˘
˚̇

 =
Y Y

Y Y
11 12

21 22

È
ÎÍ

˘
˚̇

V

V
1

2

È
ÎÍ

˘
˚̇

The individual Y

V2 be zero by short circuiting port 2–2¢, then

Y11 =
I

V
V

1

1 02 =

Y11 is the driving point admittance at port 1–1¢, with port 2–2¢
is also called the short circuit input admittance.

Y21 =
I

V
V

2

1 02 =

Y21 is the transfer admittance at port 1–1¢ with port 2–2¢
V1 be zero by short 

circuiting port 1–1¢, then

Y12 =
I

V
V

1

2 01 =

Y12 is the transfer admittance at port 2–2¢ with port 1–1¢
called the short circuit reverse transfer admittance.

Y22 =
I

V
V

2

2 01 =

Y22 is the short circuit driving point admittance at port 2–2¢ with port 1–1¢ short 

Fig. 6.6

I

V
V

1

2 01 =

 =
I

V
V

2

1 02 =

or Y12 = Y21

are obtained by short circuiting either the output or the input port from which the 

parameters also derive their name, i.e. the short circuit admittance parameters.
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Find the Y parameters for the network shown in Fig. 6.7.

Fig. 6.7

Example 6.2

Solution

Y11 =
I

V
V

1

1 02 =

When b-b ¢ is short circuited, V2 = 0 and the network looks as shown in 

Fig. 6.8(a).

V1 = I1 Zeq

Zeq = 2 W
\ V1 = I1 2

Y11 =
I

V

1

1

1

2
=

Y21 =
I

V
V

2

2 02 =

With port b-b ¢ short circuited, – I2 = I1 ¥
2

4 2

1=
I

\ – I2 =
V1

4

Y21 =
I

V
V

2

1 02

1

4=

= -

Fig. 6.8(a)
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Similarly, when port a-a ¢ is short circuited, V1 = 0 and the network looks as 

shown in Fig. 6.8(b).

Y22 =
I

V
V

2

2 01 =

V2 = I2 Zeq

Fig. 6.8(b)

where Zeq is the equivalent impedance as viewed from b-b ¢.

Zeq =
8

5
W

V2 = I2 ¥
8

5

Y22 =
I

V
V

2

2 01 =

 = 
5

8

Y12 =
I

V
V

1

2 01 =

With a-a ¢ short circuited, – I1 = 
2

5
I2

Since I2 =
5

8

2V

– I1 =
2

5

5

8 4
2

2¥ =V
V

\ Y12 =
I

V

1

2

1

4
= -

The describing equations in terms of the admittance parameters are

I1 = 0.5 V1 – 0.25 V2

I2 = –0.25 V1 + 0.625 V2
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6.4 TRANSMISSION (ABCD) LINE PARAMETERS

Transmission parameters, or ABCD parameters, are widely used in transmission 

input variables V1 and I1 at port 1-1¢, usually called the sending end, are expressed 

in terms of the output variables V2 and I2 at port 2-2¢, called the receiving end.

The transmission parameters provide a direct relationship between input and 

output. Transmission parameters are also called general circuit parameters, or 

V1 = AV2 – BI2 (6.5)

I1 = CV2 – DI2 (6.6)

The negative sign is used with I2, and not for the parameter B and D. Both the 

port currents I1 and –I2 are directed to the right, i.e. with a negative sign in 

¢ which leaves the port is designated as 

positive. The parameters A, B, C and D are called the transmission parameters.

V

I
1

1

È
ÎÍ

˘
˚̇

 =
A B

C D

V

I

È
ÎÍ

˘
˚̇ -

È
ÎÍ

˘
˚̇

2

2

The matrix 
A B

C D

È
ÎÍ

˘
˚̇

 is called the transmission matrix.

Fig. 6.9

For a given network, these parameters can be determined as follows. With port 

2-2¢ open, i.e. I2 = 0; applying a voltage V1 at the port 1-1¢

A =
V

V
I

1

2 02 =

and C = 
I

V
I

1

2 02 =

1

A
 =

V

V
g

I I

2

1 0

21

0
2

2= =
=

1/A is called the open circuit voltage gain, a dimensionless parameter. 

And
1

C
 = 

V

I
I

2

1 02 =

 = Z21, which is the open circuit transfer impedance.  
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With port 2-2¢ short circuited, i.e. with V2 = 0, applying voltage V1 at port 1-1¢,

6.6, we have

– B =
V

I
V

1

2 0
2

=

and – D = 
I

I
V

1

2 02 =

- =
=

1 2

1 02

B

I

V
V

 = Y21, which is the short circuit transfer admittance

- = =
=

=
1 2

1 0

21 0

2

2D

I

I
V

V
a , which is the short circuit current gain, a dimensionless 

parameter.

6.4.1 Cascade Connection

The main use of the transmission matrix is in dealing with a cascade connection 

of two-port networks as shown in Fig. 6.10.

Fig. 6.10

Let us consider two two-port networks Nx and Ny connected in cascade with 

port voltages and currents as indicated in Fig. 6.10. The matrix representation of 

ABCD parameters for the network X is as under.

V

I

A B

C D

V

I
x x

x x

x

x

1

1

2

2

È
ÎÍ

˘
˚̇

= È
ÎÍ

˘
˚̇ -

È
ÎÍ

˘
˚̇

And for the network Y, the matrix representation is

V

I

A B

C D

V

I

y

y

y y

y y

y

y

1

1

2

2

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚
˙

¢
V2x = V1y and I2x = –I1y.

Combining the results, we have 

V

I
1

1

È
ÎÍ

˘
˚̇

 =
A B

C D

A B

C D

V

I

x x

x x

y y

y y

È

ÎÍ
˘

˚̇

È

Î
Í

˘

˚
˙ -

È

ÎÍ
˘

˚̇
2

1

V

I
1

1

È
ÎÍ

˘
˚̇

 =
A B

C D

V

I

È
ÎÍ

˘
˚̇ -

È
ÎÍ

˘
˚̇

2

2
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where
A B

C D

È
ÎÍ

˘
˚̇

 is the transmission parameters matrix for the overall network.

Thus, the transmission matrix of a cascade of a two-port networks is the product 

of transmission matrices of the individual two-port networks. This property is 

used in the design of telephone systems, microwave networks, radars, etc.

Find the transmission or general circuit parameters for the 

circuit shown in Fig. 6.11.

Fig. 6.11

Example 6.3

Solution

V1 = AV2 – BI2

I1 = CV2 – DI2

When b-b¢ is open, I2 = 0; A = 
V

V
I

1

2 02 =

where V1 = 6I1 and V2 = 5I1

\ A =
6

5

C =
I

V
I

1

2 02

1

5=

=

When b-b¢ is short circuited; V2 = 0 (See Fig. 6.12)

B =
-

=

V

I
V

1

2 02

; D = 
-

=

I

I
V

1

2 02

I2 =
5

17
 V1
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Fig. 6.12

\ B =
17

5
W

Similarly, I1 =
7

17
1V  and – I2 = 

5

17
1V

\ D =
7

5

6.5 INVERSE TRANSMISSION (A¢ B¢ C¢ D¢) LINE PARAMETERS

of output port voltage and current to describe the transmission parameters. While 

as the sending end and output port as receiving end. The voltage and current at 

the receiving end can also be expressed in terms of the sending end voltage and 

¢ is expressed in terms of voltage 

and current at port 1-1¢, we may write the following equations.

V2 = A¢V1 – B¢I1 (6.7)

I2 = C ¢V1 – D¢I1 (6.8)

A¢, B¢, C ¢ and D¢ in the above equations are called inverse 

A¢, B¢, C ¢, D¢ parameters have properties 

similar to ABCD parameters. Thus when port 1-1¢ is open, I1 = 0.

Fig. 6.13
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A¢ =
V

V
I

2

1 01 =

; C ¢ = 
I

V
I

2

1 01 =

¢ is short circuited, V1 = 0

B¢ =
-

=

V

I
V

2

1 01

; D = 
-

=

I

I
V

2

1 01

6.6 HYBRID (h) PARAMETERS

Hybrid parameters, or h

are well suited to transistor circuits as these parameters can be most conveniently 

measured. The hybrid matrices describe a two-port, when the voltage of one port 

and the current of other port are taken as the independent variables. Consider the 

network in Fig. 6.14.

Fig. 6.14

¢ and current at port 2-2¢ are taken as dependent variables, 

we can express them in terms of I1 and V2.

V1 = h11 I1 + h12 V2 (6.9)

I2 = h21 I1 + h22 V2 (6.10)

notation

V

I
1

2

È
ÎÍ

˘
˚̇

 =
h h

h h

I

V
11 12

21 22

1

2

È
ÎÍ

˘
˚̇

È
ÎÍ

˘
˚̇

h

I1 = 0 and V2 = 0.

When V2 = 0, the port 2-2¢ is short circuited.

Then h11 =
V

I
V

1

1 02 =

 Short circuit input impedance 
1

11Y

Ê
ËÁ

ˆ
¯̃

h21 = 
I

I
V

2

1 02 =

 Short circuit forward current gain 
Y

Y

21

11

Ê
ËÁ

ˆ
¯̃
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Similarly, by letting port 1-1¢ open, I1 = 0

  h12 = 
V

V
I

1

2 01 =

 Open circuit reverse voltage gain 
Z

Z

12

22

Ê
ËÁ

ˆ
¯̃

h22 = 
I

V
I

2

2 01 =

 Open circuit output admittance 
1

22Z

Ê
ËÁ

ˆ
¯̃

Since the h parameters represent dimensionally an impedance, an admittance, a 

voltage gain and a current gain, these are called hybrid parameters. An equivalent 

circuit of a two-port network in terms of hybrid parameters is shown in Fig. 6.15.

Fig. 6.15

Find the h parameters of the network shown in Fig. 6.16.

Fig. 6.16

Example 6.4

Solution

h11 = 
V

I
V

1

1 02 =

; h21 = 
I

I
V

2

1 02 =

; h12 = 
V

V
I

1

2 01 =

; h22 = 
I

V
I

2

2 01 =

b-b¢ is short circuited, V2 = 0. The circuit is shown in Fig. 6.17(a).

h11 =
V

I
V

1

1 02 =

; V1 = I1Zeq
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Fig. 6.17(a)

Zeq the equivalent impedance as viewed from the port a-a ¢ is 2 W

\ V1 = I1 2 V

h11 =
V

I

1

1

 = 2 W

h21 =
I

I
V

2

1 02 =

 when V2 = 0; – I2 = 
I1

2

\ h21 = -
1

2

a-a¢ is let open, I1 = 0. The circuit is shown in Fig. 6.17(b). 

Fig. 6.17(b)

Then h12 =
V

V
I

1

2 01 =

V1 = IY 2; IY = 
I2

2

V2 = IX 4; IX = 
I2

2

\ h12 =
V

V
I

1

2 01

1

2=

=

h22 =
I

V
I

2

2 01

1

2=

=
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6.7 INVERSE HYBRID (g) PARAMETERS

done in Section 6.6. This time the current at the input port I1 and the voltage at 

the output port V2 can be expressed in terms of I2 and V1. The equations are as 

follows.

I1 = g11 V1 + g12 I2 (6.11)

V2 = g21 V1 + g22 I2 (6.12)

I

V
1

2

È
ÎÍ

˘
˚̇

 =
g g

g g

V

I
11 12

21 22

1

2

È
ÎÍ

˘
˚̇

È
ÎÍ

˘
˚̇

h h

h h
11 12

21 22

1

È
ÎÍ

˘
˚̇

-

 = 
g g

g g
11 12

21 22

È
ÎÍ

˘
˚̇

The individual g I2 = 0 and V1 = 0 in 

Thus, when I2 = 0

  g11 = 
I

V
I

1

1 02 =

 = Open circuit input admittance 
1

11Z

Ê
ËÁ

ˆ
¯̃

g21 = 
V

V
I

2

1 02 =

 = Open circuit voltage gain

When V1 = 0

  g12 = 
I

I
V

1

2 01 =

 = Short circuit reverse current gain

g22 = 
V

I
V

2

2 01 =

 = Short circuit output impedance 
1

22Y

Ê
ËÁ

ˆ
¯̃

6.8 RELATIONSHIP BETWEEN PARAMETER SETS

6.8.1 Expression of Z-parameters in Terms of Y-parameters and Vice-versa

open circuit impedance parameters and the short circuit admittance parameters 

by means of two matrix equations of the respective parameters. By solving 

I1 and I2, we get
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I1 =
V Z

V Z
z

1 12

2 22

D ; and I2 = 
Z V

V V
z

11 1

21 2

D

where Dz is the determinant of Z matrix

Dz =
Z Z

Z Z
11 12

21 22

È
ÎÍ

˘
˚̇

I1 =
Z

V
Z

V

z z

22

1

12

2
D D

- (6.13)

I2 =
-

+
Z

V
Z

V

z z

21

1

11

2
D D

(6.14)

Y11 =
Z

z

22

D
; Y12 = 

-Z

z

12

D

Y21 =
Z

z

21

D
; Y22 = 

Z

z

11

D

Z parameters may be expressed in terms of the admittance 

V1 and V2

V1 =
I Y

I Y y
1 12

2 22

D  and V2 = 
Y I

Y I y
11 1

21 2

D

where Dy is the determinant of the Y matrix

Dy =
Y Y

Y Y
11 12

21 22

V1 =
Y

I
Y

I
y y

22

1

12

2
D D

- (6.15)

V2 =
-

+
Y

I
Y

I
y y

21

1

11

2
D D

(6.16)

Z11 =
Y

y

22

D
; Z12 = 

-Y

y

12

D

Z21 =
-Y

y

21

D
; Z22 =

Y

y

11

D

For a given, Z11 = 3 W, Z12 = 1 W; Z21 = 2 W and Z22 = 1 W, find 

the admittance matrix, and the product of Dy and Dz.

Example 6.5
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Solution

The admittance matrix =
Y Y

Y Y

Z Z

Z Z
z z

z z

11 12

21 22

22 12

21 11

È
ÎÍ

˘
˚̇

=

-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

D D

D D

given Z =
3 1

2 1

È
ÎÍ

˘
˚̇

\ Dz = 3 – 2 = 1

\ Dy =
- -
-

È
ÎÍ

˘
˚̇

1 1

2 3
 =1

(Dy) (Dz) = 1

6.8.2 General Circuit Parameters or ABCD Parameters in Terms of 

Z Parameters and Y Parameters

We know that

V1 = AV2 – BI2; V1 = Z11 I1 + Z12 I2; I1 = Y11 V1 + Y12 V2

I1 = CV2 – DI2; V2 = Z21 I1 + Z22 I2; I2 = Y21 V1 + Y22 V2

A = 
V

V
I

1

2 02 =

; C = 
I

V
I

1

2 02 =

; B = 
-

=

V

I
V

1

2 02

; D = 
-

=

I

I
V

1

2 02

Substituting the condition I2

V

V
I

1

2 02 =

 = 
Z

Z

11

21

 = A

Substituting the condition I2

V

V
I

1

2 02 =

 = 
-Y

Y

22

21

 = A

Substituting the condition I2

we get
I

V
I

1

2 02 =

=
1

21Z
 = C

Substituting the condition I2 V2 gives 

- I Y

y

1 21

D

where Dy is the determinant of the admittance matrix

I

V
I

1

2 02 =

 = 
-Dy
Y21

 = C
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Substituting the condition V2

V

I Y
V

1

2 0 21
2

1

=

= -  = B

Substituting the condition V2 I2 =
-V Z

z

1 21

D

–
V

I Z
V

z1

2 0 21
2 =

=
D

 = B

where Dz is the determinant of the impedance matrix.

Substituting V2

we get
-

=
=

I

I

Z

Z
V

1

2 0

22

21
2

= D

Substituting V2

-
=

-

=

I

I

Y

Y
V

1

2 0

11

21
2

 = D

The determinant of the transmission matrix is given by

– AD + BC

Substituting the impedance parameters in A, B, C and D, we have

BC – AD =
Dz

Z Z

Z

Z

Z

Z21 21

11

21

22

21

1
-

=
Dz

Z

Z Z

Z( ) ( )21
2

11 22

21
2

-

BC – AD =
- Z

Z

12

21

For a bilateral network, Z12 = Z21

\ BC – AD = –1

or AD – BC = 1

Therefore, in a two-port bilateral network, if three transmission parameters are 

known, the fourth may be found from equation AD – BC = 1.

h parameters may be expressed in terms of the admittance 

parameters, impedance parameters or transmission parameters. Transformations 

one set of parameters to another. Transformations between different parameters, 

and the condition under which the two-port network is reciprocal are given in 

Table 6.1.
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Table 6.1

Z Y ABCD A¢B ¢C¢D¢ h g

Z Z11 Z12

Z21 Z22

Y Y

y y

22 12

D D

-

-Y Y

y y

21 11

D D

A

C C

TD

1

C

D

C

¢
¢ ¢

D

C C

1

D ¢

¢
¢
¢

T

C

A

C

Dh

h

h

h22

22

22

- h

h h

21

22 22

1

1

11

12

11g

g

g

-

g

g g

g21

11 11

D

Y
Z Z

z z

22 12

D D

-

-Z
z

Z

z

21 11

D D

Y11 Y12

Y21 Y22

D

B B

T-D

-1
B

A

B

¢
¢

-
¢

A

B B

1

-
¢

¢
¢

¢DT
B

D

B

1

11

12

11h

h

h

-

h

h h

h21

11 11

D

Dg

g

g

g22

12

22

-g

g g

21

22 22

1

AB

CD

Z

Z

z

Z

11

21 21

D

1

21

22

21Z

Z

Z

- -Y

Y Y

22

21 21

1

DY

Y

Y

Y21

11

21

-

A B

C D

¢ ¢

¢ ¢

D B

T TD D

¢ ¢

¢ ¢

C A

T TD D

Dh

h

h

h21

11

21

- -h

h h

22

21 21

1

1

21

22

21g

g

g

g

g g

g11

21 21

D

A ¢ B¢
Z

Z

z

Z

22

12 12

D - -Y

Y Y

11

12 12

1 D B

T TD D
A¢ B ¢

1

12

11

12h

h

h

- -Dg

g

g

g12

22

12

C ¢ D ¢
1

12

11

12Z

Z

Z

- -DY

Y

Y

Y12

22

12

C A

T TD D
C ¢ D¢

h

h h

h22

12 12

D - -g

g g

11

12 12

1

h

Dz
Z

Z

Z22

12

22

- Z

Z Z

21

22 22

1

1

11

12

11Y

Y

Y

-

Y

Y Y

Y21

11 11

D

B

D D

TD

-1
D

C

D

¢
¢ ¢

B

A A

1

D ¢

¢
¢
¢

T

A

C

A

h11 h12

h21 h22

g g

g g

22 12

D D

-

- g g

g g

21 11

D D

g

1

11

12

11Z

Z

Z

-

Z

Z Z

Z21

11 11

D

DY

Y

Y

Y22

12

22

-Y

Y Y

21

22 22

1

C

A A

T-D

1

A

B

A

¢
¢

-
¢

C

D D

1

D ¢

¢
¢
¢

T

D

B

D

h h

h h

22 12

D D

-

- h h

h h

21 11

D D

g11 g12

g21 g22

The two 

port is 

reciprocal

Z12 = 

Z21

Y12 = Y21 The

determinant

of the 

transmission

matrix = 1 

(DT = 1)

The deter-

minant of 

the inverse 

transmission

matrix = 1

h12 = 

– h21

g12 = 

– g21
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The impedance parameters of a two port network are Z11 = 6W;

Z22 = 4 W; Z12 = Z21 = 3 W. Compute the Y parameters and ABCD parameters and 

write the describing equations.

Example 6.6

Solution

ABCD parameters are given by

A =
Z

Z

11

21

6

3
=  = 2; B = 

Z Z Z Z

Z

11 22 12 21

21

-
 = 5 W

C =
1 1

321Z
= ; D = 

Z

Z

22

21

4

3
=

Y parameters are given by

Y11 =
Z

Z Z Z Z

22

11 22 12 21

4

15-
= ; Y12 = 

-
-

=
-Z

Z Z Z Z

12

11 22 12 21

1

5
  

Y21 = Y12 = 
-

=
-Z

z

12 1

5D
; Y22 = 

Z

Z Z Z Z

11

11 22 12 21

2

5-
=

The equations, using Z parameters are

V1 = 6I1 + 3I2

V2 = 3I1 + 4I2

Using Y parameters

I1 =
4

15

1

5
1 2V V-

I2 =
-

+
1

5

2

5
1 2V V

Using ABCD parameters

V1 = 2V2 – 5I2

I1 =
1

3

4

3
2 2V I-

6.9 INTER CONNECTION OF TWO-PORT NETWORKS

6.9.1 Series Connection of Two-port Network

connected in cascade, the parameters of the interconnected network can be 

conveniently expressed with the help of ABCD

the Z-parameters can be used to describe the parameters of series connected 
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two-port networks; and Y parameters can be used to describe parameters of 

parallel connected two-port networks. A series connection of two-port networks 

is shown in Fig. 6.18.

Fig. 6.18

port has a common reference node for its input and output, and if these references 

are connected together then the equations of the networks X and Y in terms of Z

parameters are

V1X = Z11X I1X + Z12X I2X

V2X = Z21X I1X + Z22X I2 X

V1Y = Z11Y I1Y + Z12Y I2Y

V2Y = Z21Y I1Y + Z22Y I2Y

From the inter-connection of the networks, it is clear that

I1 = I1X = I1Y; I2 = I2X = I2Y

and V1 = V1X + V1Y; V2 = V2X + V2Y

\ V1 = Z11X I1 +Z12X I2 + Z11Y I1 + Z12Y I2

= (Z11X + Z11Y)I1 + (Z12 X + Z12Y) I2

V2 = Z21X I1 + Z22X I2 + Z21Y I1 + Z22Y I2

= (Z21X + X21Y)I1 + (Z22 X + Z22Y)I2

The describing equations for the series connected two-port network are

V1 = Z11 I1 + Z12 I2

V2 = Z21 I1 + Z22 I2

where Z11 = Z11X + Z11Y; Z12 = Z12X + Z12Y

Z21 = Z21X + Z21Y; Z22 = Z22X + Z22Y

Thus, we see that each Z parameter of the series network is given as the sum of 

the corresponding parameters of the individual networks.
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6.9.2 Parallel Connection of Two Two-port Networks

Let us consider two two-port networks connected in parallel as shown in 

and output port, and if the two ports are connected so that they have a common 

reference node, then the equations of the networks X and Y in terms of Y

parameters are given by

Fig. 6.19

I1X = Y11X V1X + Y12X V2X

I2X = Y21X V1X + Y22X V2X

I1Y = Y11Y V1Y + Y12Y V2Y

I2Y = Y21Y V1Y + Y22Y V2Y

From the interconnection of the networks, it is clear that

V1 = V1X = V1Y; V2 = V2X = V2Y

and I1 = I1X + I1Y; I2 = I2X + I2Y

\ I1 = Y11X V1 + Y12X V2 + Y11Y V1 + Y12Y V2

= (Y11X + Y11Y) V1 + (Y12X + Y12Y) V2

I2 = Y21X V1 + Y22X V2 + Y21Y V1 + Y22Y V2

= (Y21X + Y21Y) V1 + (Y22X + Y22Y) V2

The describing equations for the parallel connected two-port networks are

I1 = Y11 V1 + Y12 V2

I2 = Y21 V1 + Y22 V2

where Y11 = Y11X + Y11Y; Y12 = Y12X + Y12Y

Y21 = Y21X + Y21Y; Y22 = Y22X + Y22Y

Thus we see that each Y parameter of the parallel network is given as the sum of 

the corresponding parameters of the individual networks.
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Two networks shown in Figs. 6.20(a) and (b) are connected in 

series. Obtain the Z parameters of the combination. Also verify 

by direct calculation.

Fig. 6.20

Example 6.7

Solution

The Z parameters of the network in Fig. 6.20(a) are

Z11X = 3 W Z12X = Z21X = 2 W Z22X = 3 W

The Z parameters of the network in Fig. 6.20(b) are

Z11Y = 15 W Z21Y = 5 W Z22Y = 25 W Z12Y = 5 W

The Z parameters of the combined network are

Z11 = Z11X + Z11Y = 18 W
Z12 = Z12X + Z12Y = 7 W
Z21 = Z21X + Z21Y = 7 W
Z22 = Z22 X + Z22Y = 28 W

Check

the Z parameters are

Z11 =
V

I
I

1

1 02 =

 = 18 W

Z21 =
V

I
I

2

1 02 =

 = 7 W

Z22 =
V

I
I

2

2 01 =

 = 28 W

Z12 =
V

I
I

1

2 01 =

 = 7 W

Two identical sections of the network shown in Fig. 6.21 are 

connected in parallel. Obtain the Y parameters of the combination.

Example 6.8

Fig. 6.20(c)
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Fig. 6.21

Solution

The Y

Y11 =
1

2
Y21 = 

-1
4

Y22 = 
5

8
Y12 = 

-1
4

Y parameters of the 

combined network are

Y11 =
1

2

1

2
+  = 1 Y21 = 

-
¥ =

-1

4
2

1

2

Y22 =
5

8
2

5

4
¥ = Y12 = 

-
¥ =

-1

4
2

1

2

6.10 T AND p REPRESENTATIONS

A two-port network with any number of 

elements may be converted into a two-

port three-element network. Thus, a two-

port network may be represented by an 

equivalent T network, i.e. three impedances

are connected together in the form of a T as

shown in Fig. 6.22.

T-network in terms of Z parameters, or ABCD parameters as explained below.

Z parameters of the network

Z11 =
V

I
I

1

1 02 =

 = Za + Zc

Z21 =
V

I
I

2

1 02 =

 = Zc

Fig. 6.22
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Z22 =
V

I
I

2

2 01 =

 = Zb + Zc

Z12 =
V

I
I

1

2 01 =

 = Zc

From the above relations, it is clear that

Za = Z11 – Z21

Zb = Z22 – Z12

Zc = Z12 = Z21

ABCD parameters of the network

A =
V

V

Z Z

Z
I

a c

c

1

2 02 =

=
+

B =
-

=

V

I
V

1

2 02

When 2-2¢ is short circuited

–I2 =
V Z

Z Z Z Z Z

c

b c a b c

1

+ +( )

B = (Za + Zb) + 
Z Z

Z

a b

c

C =
I

V Z
I c

1

2 02

1

=

=

D =
-

=

I

I
V

1

2 02

When 2-2¢ is short circuited

–I2 = I1
Z

Z Z

c

b c+

D =
Z Z

Z

b c

c

+

From the above relations we can obtain

Za =
A

C

-1
; Zb = 

D

C

-1
; Zc = 

1

C
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The Z parameters of a

two-port network are Z11 = 10 W; Z22 = 15 

W; Z12 = Z21 = 5 W. Find the equivalent 

T network and ABCD parameters.

Fig. 6.23

Example 6.9

Solution

The equivalent T network is shown in Fig. 6.23,

where Za = Z11 – Z21 = 5 W
Zb = Z22 – Z12 = 10 W

and Zc = 5 W
The ABCD parameters of the network are

A =
Z

Z

a

c

 + 1 = 2; B = (Za + Zb) + 
Z Z

Z

a b

c

 = 25 W

C =
1

Zc

 = 0.2 D = 1 + 
Z

Z

b

c

 = 3

may be represented by an equivalent 

p-network, i.e. three impedances or 

admittances are connected together in 

the form of p as shown in Fig. 6.24.

the p-network in terms of Y parameters 

or ABCD parameters as explained below.

Y parameters of the network

Y11 =
I

V
V

1

1 02 =

 = Y1 + Y2

Y21 =
I

V
V

2

1 02 =

 = – Y2

Y22 =
I

V
V

2

2 01 =

 = Y3 + Y2

Y12 =
I

V
V

1

2 01 =

 = – Y2

From the above relations, it is clear that

Y1 = Y11 + Y21

Fig. 6.24
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Y2 = –Y12

Y3 = Y22 + Y21

Writing ABCD parameters in terms of Y parameters yields the following 

results.

A =
-

=
+Y

Y

Y Y

Y

22

21

3 2

2

B =
-

=
1 1

21 2Y Y

C =
-D y
Y21

 = Y1 + Y3 + 
Y Y

Y

1 3

2

D =
-

=
+Y

Y

Y Y

Y

11

21

1 2

2

From the above results, we can obtain

Y1 =
D

B

-1

Y2 =
1

B

Y3 =
A

B

-1

The port currents of a two-port network are given by

I1 = 2.5V1 – V2

I2 = –V1 + 5V2

Find the equivalent p-network.

Example 6.10

Solution

Y parameters of the network

Y11 =
I

V
V

1

1 02 =

 = 2.5 ; Y21 = 
I

V
V

2

1 02 =

 = –1 

Y12 =
I

V
V

1

2 01 =

 = – 1 ; Y22 = 
I

V
V

2

2 01 =

 = 5 

The equivalent p-network is shown in Fig. 6.25.

where Y1 = Y11 + Y21 = 1.5 ;

Y2 = –Y12 = –1 

and Y3 = Y22 + Y12 = 4 
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Fig. 6.25

6.11 TERMINATED TWO-PORT NETWORK

6.11.1 Driving Point Impedance at the Input Port of a Load Terminated 

Network

Figure 6.26 shows a two-port network connected to an ideal generator at the 

input port and to a load impedance at the output port. The input impedance of 

this network can be expressed in terms of parameters of the two port network.

Fig. 6.26

(i) In Terms of Z Parameters The load at the output port 2-2¢ impose the 

following constraint on the port voltage and current,

i.e., V2 = –ZL I2

V1 = Z11I1 + Z12I2

V2 = Z21I1 + Z22I2

Substituting the value of V2

–ZLI2 = Z21I1 + Z22I2

from which I2 =
-

+
I Z

Z ZL

1 21

22  
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Substituting the value of I2

V1 = Z11I1 – 
Z Z I

Z ZL

12 21 1

22+

V1 = I Z
Z Z

Z ZL
1 11

12 21

22

-
+

Ê
ËÁ

ˆ
¯̃

Hence, the driving point impedance at 1-1¢ is

V

I

1

1

 = Z11 – 
Z Z

Z ZL

12 21

22+

ZL Æ , the input impedance is given by V1/I1 = Z11

ZL Æ 0,

The short circuit driving point impedance is given by

Z Z Z Z

Z

11 22 12 21

22

-
 = 

1

11Y

(ii) In Terms of Y Parameters YL is connected across the 

output port. The constraint imposed on the output port voltage and current is

– I2 = V2 YL, where YL = 
1

ZL

I1 = Y11 V1 + Y12 V2

I2 = Y21 V1 + Y22 V2

Substituting the value of I2

–V2 YL = Y21 V1 + Y22 V2

V2 = –
Y

Y YL

21

22+
Ê
ËÁ

ˆ
¯̃
V1

Substituting V2

I1 = Y11 V1 – 
Y Y V

Y YL

12 21 1

22+

From which
I

V

1

1

 = Y11 – 
Y Y

Y YL

12 21

22+

Hence the driving point impedance is given by

V

I

1

1

 =
Y Y

Y Y Y Y Y

L22

11 1 22 12 21

+
+ -( )
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Table 6.2

In terms 

of

Driving point

impedance at

input port, or

input

impedance

V

I

1

1

Ê
ËÁ

ˆ
¯̃

Z parameters

Dz L

L

Z Z

Z Z

+
+
11

22

Y parameters

Y Y

Y Y

L

y L

22

11

+
+D

ABCD

AZ B

CZ D

L

L

+
+

A¢B¢C¢D¢

¢ - ¢
¢ - ¢

B D Z

C Z A

L

L

h parameter

Dh L

L

Z h

h Z

+
+

11

221

g parameter

1 22

11

+
+

g Y

g

L

gYLD

Driving point

impedance at 

output port, 

or

output

impedance

V

I

2

2

Ê
ËÁ

ˆ
¯̃

Dz sZ Z

Z Z

+
+

22

1 11

Y Y

Y Y

s

y s

11

22

+
+D

DZ B

CZ A

s

s

+
+

¢ + ¢
¢ + ¢

A Z B

C Z D

s

s

h Z

h Z

s

h s

11

22

+
+D

g

g Z

s

s

22

111

+
+

D

Note: The above relations are obtained, when Vs = 0 and Is = 0 at the input port.

YL Æ 0

V

I

1

1

 =
Y

y

22

D
 = Z11

YL Æ

Then Yin = Y11

be expressed in terms of other parameters by simple mathematical manipulations. 

The results are given in Table 6.2.

6.11.2  Driving Point Impedance at the Output Port with Source Impedance at 

the Input Port

Let us consider a two-port network connected to a generator at input port with a 

source impedance Zs as shown in Fig. 6.27. The output impedance, or the driving 

point impedance, at the output port can be evaluated in terms of the parameters 

of two-port network.

(i) In terms of Z parameters I1 is the current due to Vs at port 1-1¢

V2 = Z21 I1 + Z22 I2



6.32 Network Analysis

I2I1

Vs

Zs

1¢ 2¢

21

V1 V2

Fig. 6.27

V1 = Vs – I1Zs
= Z11 I1 + Z12 I2 – (I1) (Zs + Z11) = Z12 I2 – Vs

– I1 =
Z I V

Z Z

s

s

12 2

11

-
+

Substituting I1

V2 = – Z21
( )Z I V

Z Z

s

s

12 2

11

-
+

 + Z22 I2

With no source voltage at port 1-1¢, i.e. if the source Vs is short circuited

V2 =
-

+
Z Z

Z Zs

21 12

11

I2 + Z22 I2

Hence the driving point impedance at port 2-2¢ = 
V

I

2

2

V

I

2

2

 =
Z Z Z Z Z Z

Z Z

s

s

22 22 11 21 12

11

+ -
+

 or 
Dz s

s

Z Z

Z Z

+
+

22

11

Zs Æ

Then
V

I

2

2

 =

DZ

s

s Z

Z
Z

Z

Z
s

+

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

22

11
1

 = Z22

impedance at output port is given by

V

I

2

2

 =
DZ
Z Y11 22

1
=

(ii) In terms of Y parameters Let us consider a two-port network connected to 

a current source at input port with a source admittance Ys as shown in Fig. 6.28.

At port 1-1¢ I1 = Is – V1 Ys
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Fig. 6.28

I1 = Y11 V1 + Y12 V2

I2 = Y21 V1 + Y22 V2

Substituting I1

Is – V1Ys = Y11V1 + Y12V2

–V1(Ys + Y11) = Y12 V2 – Is

– V1 =
Y V I

Y Y

s

s

12 2

11

-
+

Substituting V1

I2 = –Y21
Y V I

Y Y

s

s

12 2

11

-
+

Ê
ËÁ

ˆ
¯̃

 + Y22 V2

With no source current at 1-1¢, i.e. if the current source is open circuited

I2 =
-

+
Y Y V

Y Ys

21 12 2

11

 + Y22 V2

Hence the driving point admittance at the output port is given by

I

V

2

2

 =
Y Y Y Y Y Y

Y Y

s

s

22 22 11 21 12

11

+ -
+

 or 
Dy s

s

Y Y

Y Y

+
+

22

11

point admittance at the output port is given by

I

V

2

2

 =
Dy

Y Z11 22

1
= = Y22

two port parameters by simple mathematical manipulations. The results are 

given in Table 6.2.
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Calculate the input impedance of the network shown in Fig. 6.29.

Fig. 6.29

Example 6.11

Solution

Let us calculate the input impedance in terms of Z parameters. The Z parameters 

of the given network (see Solved Problem 6.1) are Z11 = 2.5 W; Z21 = 1 W;

Z22 = 2 W; Z12 = 1 W
From section 6.11.1 we have the relation

V

I

1

1

 = Z11 – 
Z Z

Z ZL

12 21

22+

where ZL is the load impedance = 2 W

V

I

1

1

 = 2.5 – 
1

2 2+
 = 2.25 W

The source resistance is 1 W

\ Zin = 1 + 2.25 = 3.25 W

Calculate the output impedance of the network shown in Fig. 

6.30 with a source admittance of 1  at the input port.

Fig. 6.30

Example 6.12
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Solution

Let us calculate the output impedance in terms of Y parameters. The Y

Y11 =
1

2
; Y22 = 

5

8
, Y21 = Y12 = 

-1
4

From Section 6.11.2, we have the relation

I

V

2

2

 =
Y Y Y Y Y Y

Y Y

s

s

22 22 11 21 12

11

+ -
+

where Ys is the source admittance = 1 mho

Y22 =
I

V

2

2

 = 

5

8
1

5

8

1

2

1

16

1
1

2

7

12

¥ + ¥ -

+
=

or Z22 =
12

7

6.12 LATTICE NETWORKS

One of the common four-terminal two-port network is the lattice, or bridge 

are also used as attenuaters. Lattice structures are sometimes used in preference 

to ladder structures in some special applications. Za and Zd are called series arms, 

Zb and Zc Zd is zero, the 

lattice structure becomes a p-section. The lattice network is redrawn as a bridge 

network as shown in Fig. 6.31(b).

Za

ZaZc
Zc

Zb
Zb

Zd

Zd

V1 V1

I1

V2

2

2

1
1

2¢

2¢

1¢
1¢

++

––

V2

(a) (b)

Fig. 6.31

Z Parameters

Z11 =
V

I
I

1

1 02 =
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When I2 = 0; V1 = I
Z Z Z Z

Z Z Z Z

a b d c

a b c d
1

( ) ( )+ +
+ + +

(6.17)

\ Z11 =
( ) ( )Z Z Z Z

Z Z Z Z

a b d c

a b c d

+ +
+ + +

Za = Zd and Zb = Zc

\ Z11 =
Z Za b+

2

Z21 =
V

I
I

2

1 02 =

When I2 = 0, V2 is the voltage across 2–2¢

V2 = V
Z

Z Z

Z

Z Z

b

a b

d

c d

1 +
-

+
È

Î
Í

˘

˚
˙

Substituting the value of V1

V2 =
I Z Z Z Z

Z Z Z Z

Z Z Z Z Z Z

Z Z

a b d c

a b c d

b c d d a b

a b

1 ( ) ( ) ( ) ( )

(

+ +
+ + +

È

Î
Í

˘

˚
˙

+ - +
+ )) ( )Z Zc d+

È

Î
Í

˘

˚
˙

V

I

2

1

 =
Z Z Z Z Z Z

Z Z Z Z

Z Z Z Z

Z Z Z Z

b c d d a b

a b c d

b c a d

a b c d

( ) ( )+ - +
+ + +

=
-

+ + +

\ Z21 =
Z Z Z Z

Z Z Z Z

b c a d

a b c d

-
+ + +

Za = Zd, Zb = Zc

Z21 =
Z Zb a-

2

When the input port is open, I1 = 0

Z12 =
V

I
I

1

2 01 =

The network can be redrawn as shown in Fig. 6.31(c).

V1 = V
Z

Z Z

Z

Z Z

c

a c

d

b d

2 +
-

+
È

Î
Í

˘

˚
˙ (6.18)

V2 = I
Z Z Z Z

Z Z Z Z

a c d b

a b c d
2

( ) ( )+ +
+ + +

È

Î
Í

˘

˚
˙ (6.19)
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Fig. 6.31 (c)

Substituting the value of V2

V1 = I
Z Z Z Z Z Z

Z Z Z Z

c b d d a c

a b c d
2

( ) ( )+ - +
+ + +

È

Î
Í

˘

˚
˙

V

I

1

2

 =
Z Z Z Z

Z Z Z Z

c b a d

a b c d

-
+ + +

Za = Zd; Zb = Zc

V

I

1

2

 =
Z Z

Z Z

b a

a b

2 2

2

-
+( )

\ Z12 =
Z Zb a-

2

Z22 =
V

I
I

2

2 02 =

V

I

2

2

 =
( ) ( )Z Z Z Z

Z Z Z Z

a c d b

a b c d

+ +
+ + +

Za = Zd; Zb = Zc

Z22 =
Z Za b+

2
 = Z11

From the above equations, Z11 = Z22 = 
Z Za b+

2

and Z12 = Z21 = 
Z Zb a-

2

\ Zb = Z11 + Z12

Za = Z11 – Z12
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Obtain the lattice equivalent of a symmetrical T network shown 

in Fig. 6.32.

Fig. 6.32

Example 6.13

Solution

A two-port network can be realised as a 

symmetric lattice if it is reciprocal and 

symmetric. The Z parameters of the 

 Z11 = 3 W;

Z12 = Z21 = 2 W; Z22 = 3 W .

Since Z11 = Z22; Z12 = Z21, the given 

network is symmetrical and reciprocal.

\ The parameters of the lattice 

network are

Za = Z11 – Z12 = 1 W

Zb = Z11 + Z12 = 5 W

The lattice network is shown in Fig. 6.33.

Obtain the lattice equivalent of a symmetric p-network shown 

in Fig. 6.34.

Example 6.14

Solution

The Z parameters of the given network are

Z11 = 6 W = Z22; Z12 = Z21 = 4 W

Hence the parameters of the lattice network are

Za = Z11 – Z12 = 2 W
Zb = Z11 + Z12 = 10 W

The lattice network is shown in Fig. 6.35.

Fig. 6.33
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Fig. 6.34

Fig. 6.35

6.13 IMAGE PARAMETERS

The image impedance ZI 1 and ZI 2 of a two-port network shown in Fig. 6.36 are 

two values of impedance such that, if port 1–1¢ of the network is terminated in 

ZI1, the input impedance of port 2-2 ¢ is ZI2; and if port 2-2¢ is terminated in ZI 2,

the input impedance at port 1-1¢ is ZI1.

Fig. 6.36

Then, ZI1 and ZI2 are called image impedances of the two port network shown 

in Fig. 6.36. These parameters can be obtained in terms of two-port parameters. 

V1 = AV2 – BI2

I1 = CV2 – DI 2
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ZI 2 at 2-2¢ as shown in Fig. 6.37.

V2 = – I2 ZI 2

V

I

1

1

 =
AV BI

CV DI

2 2

2 2

-
-

 = ZI1

ZI1 =
- -
- -
AI Z BI

CI Z DI

I

I

2 2 2

2 2 2

ZI1 =
- -
- -
AZ B

CZ D

I

I

2

2

or ZI1 =
AZ B

CZ D

I

I

2

2

+
+

V1

I2
I1

2

2¢
1¢

1

ZI2

ZI1

V2

Fig. 6.37

Similarly, if the network is terminated in ZI1 at port 1-1¢ as shown in Fig. 6.38, 

then

V1 = – I1ZI1

V

I

2

2

 = ZI 2

\ –ZI1 =
V

I

AV BI

CV DI

1

1

2 2

2 2

=
-
-

–ZI1 =
AI Z BI

CI Z DI

I

I

2 2 2

2 2 2

-
-

–ZI1 =
AZ B

CZ D

I

I

2

2

-
-

From which ZI 2 =
DZ B

CZ A

I

I

1

1

+
+
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V1

I2I1

V2 ZI2

2

2¢
1¢

1

ZI1

Fig. 6.38

Substituting the value of ZI1 in the above equation

ZI2 C
AZ B

CZ D
A

I

I

( )

( )

- +
-

+
È

Î
Í

˘

˚
˙

2

2

 = D
- +

-
È

Î
Í

˘

˚
˙ +

AZ B

CZ D
B

I

I

2

2

From which ZI2 = 
BD

AC

ZI1 = 
AB

CD

A = D

\ ZI1 = ZI2 = 
B

C

ZI1 and ZI 2 are equal to 

each other; the image impedance is then called the characteristic impedance,

or the iterative impedance, i.e. if a symmetrical network is terminated in ZL,

its input impedance will also be ZL, or its impedance transformation ratio is 

unity. Since a reciprocal symmetric network can be described by two indepen-

dent parameters, the image parameters ZI1 and ZI 2

reciprocal symmetric networks. ZI1 and ZI 2 the two image parameters do not 

image transfer constant

f is also used to describe reciprocal networks. This parameter may be obtained 

from the voltage and current ratios.

ZI2 is connected across port 2-2 ¢, then

V1 = AV2 – BI2 (6.20)

V2 = – I2 ZI 2 (6.21)

\ V1 = A
B

Z
V

I

+
È

Î
Í

˘

˚
˙

2
2 (6.22)

I1 = CV2 – DI2 (6.23)

I1 = – [CZI 2 + D]I2 (6.24)
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V

V

1

2

 = A
B

ZI

+
È

Î
Í

˘

˚
˙

2

 = A + B
AC

BD

V

V

1

2

 = A + 
ABCD

D
(6.25)

- I

I

1

2

 = [CZI 2 + D] = D + C
BD

AC

- I

I

1

2

 = D + 
ABCD

A
(6.26)

-
¥

V

V

I

I

1

2

1

2

 =
AD ABCD

D

AD ABCD

A

+Ê

ËÁ
ˆ

¯̃

+Ê

ËÁ
ˆ

¯̃

-
¥

V

V

I

I

1

2

1

2

 = AD BC+( )2

or AD BC+  =
-

¥
V

V

I

I

1

2

1

2

AD AD+ -1  =
-

¥
V

V

I

I

1

2

1

2

  ( AD – BC = 1)

Let cos h f = AD ; sin h f = AD -1

tan h f =
AD

AD

BC

AD

-
=

1

\ f = tan h
–1 BC

AD

Also ef = cos h f + sin h f = -
V I

V I

1 1

2 2

f = log loge e

V I

V I

V

V

I

I
-

Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

1 1

2 2

1

2

1

2

1

2

Since V1 = ZI1 I1; V2 = – I2 ZI2

f =
1

2

1

2

1

2

log loge
I

I

Z

Z

I

I

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙
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For symmetrical reciprocal networks, ZI1 = ZI 2

f = loge

I

I

1

2

È

Î
Í

˘

˚
˙ = g

where g is called the propagation constant.

Determine the image parameters of the T network shown in 

Fig. 6.39.

Fig. 6.39

Example 6.15

Solution

The ABCD parameters of the network are

A =
6

5
; B = 

17

5
; C = 

1

5
; D = 

7

5

Since the network is not symmetrical, f, ZI1 and ZI2 are to be evaluated to 

describe the network.

ZI1 =
AB

CD
=

¥

¥

6

5

17

5

1

5

7

5

 = 3.817 W

ZI2 =
BC

AC
=

¥

¥

17

5

7

5

6

5

1

5

 = 4.453 W

f = tan h–1 BC

AD
 = tan h

–1 17

42

or f = In AD AD+ -È
Î

˘
˚1

f = 0.75
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Solved Problems

6.1 Find the Z parameters for the circuit shown in Fig. 6.40.

Fig. 6.40

Solution

Z11 =
V

I
I

1

1 02 =

When I2 = 0; V1 can be expressed in terms of I1 and the equivalent impedance of 

the circuit looking from the terminal a-a¢ as shown in Fig. 6.41(a).

Fig. 6.41(a)

Zeq = 1 + 
6 2

6 2

¥
+

 = 2.5 W

V1 = I1 Zeq = I1 2.5

Z11 =
V

I
I

1

1 02 =
 = 2.5 W

Z21 =
V

I
I

2

1 02 =

V2 is the voltage across the 4 W impedance as shown in Fig. 6.41(b).
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Fig. 6.41(b)

Let the current in the 4 W impedance be Ix

Ix = I1 ¥
2

8 4

1=
I

V2 = Ix4 = 
I1

4
¥ 4 = I1

Z21 =
V

I
I

2

1 02 =
 = 1 W

Z22 =
I

I
I

2

2 01 =

When port a-a¢ is open circuited the voltage at port b-b¢ can be expressed in terms 

2, and the equivalent impedance of the circuit viewed from b-b¢ as shown in 

Fig. 6.41(c).

Fig. 6.41 (c)

V2 = I2 ¥ 2

\ Z22 =
V

I
I

2

2 01 =
 = 2 W

Z12 =
V

I
I

1

2 01 =

V1 is the voltage across the 2 W (parallel) impedance, let the current in the 2 W
impedance is IY as shown in Fig. 6.41(d).
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IY =
I2

2

V1 = 2 IY

V1 = 2
I2

2

\ Z12 =
V

I
I

1

2 01 =

 = 1 W

Fig. 6.41(d)

HereZ12 = Z21, which indicates the bilateral property of the network. The describing 

equations for this two-port network in terms of impedance parameters are

V1 = 2.5I1 + I2
V2 = I1 + 2I2

6.2 Find the short circuit admittance parameters for the circuit shown in 

Fig. 6.42.

Fig. 6.42

Solution

The elements in the branches of the given two-port network are admittances. The 

admittance parameters can be determined by short circuiting the two-ports.
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When port b-b ¢ is short circuited, V2 = 0. This circuit is shown in Fig. 6.43(a).

Fig. 6.43(a)

V1 = I1 Zeq

where Zeq is the equivalent impedance as viewed from a-a¢.

Zeq =
1

Yeq

Yeq = YA + YB

V1 =
I

Y YA B

1

+

Y11 =
I

V
V

1

1 02 =
 = (YA + YB)

With port b-b¢ short circuited, the nodal equation at node 1 gives

– I2 = V1 YB

\ Y21 =
I

V
V

2

1 02 =
 = –YB

when port a-a¢ is short circuited; V1 = 0 

this circuit is shown in Fig. 6.43(b).

V2 = I2 Zeq

where Zeq is the equivalent impedance as 

viewed from b-b¢

Zeq =
1

Yeq

Yeq = Yb + Yc

\ V2 =
I

Y YB C

2

+

Y22 =
I

V
V

2

2 01 =
 = (YB + YC)

Fig. 6.43(b)
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With port a-a¢ short circuited, the nodal equation at node 2 gives

– I1 = V2 YB

Y12 =
I

V
V

1

2 01 =
 = –YB

The describing equations in terms of the admittance parameters are

I1 = (YA + YB)V1 – YBV2

I2 = –YBV1 + (YC + YB)V2

6.3 Find the Z parameters of the RC ladder network shown in Fig. 6.44.

Fig. 6.44

Solution

With port b-b¢ open circuited and assuming mesh currents with V1(S) as the voltage 

at a-a ¢, the corresponding network is shown in Fig. 6.45(a).

Fig. 6.45(a)

The KVL equations are as follows

V2(S ) = I3(S ) (6.27)

I3(S ) ¥ 2
1

+Ê
ËÁ

ˆ
¯̃S

 = I1(S ) (6.28)

1
1

+Ê
ËÁ

ˆ
¯̃S
I1(S ) – I3(S ) = V1(S ) (6.29)
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I3(S) = I1(S)
S

S1 2+
Ê

ËÁ
ˆ

¯̃

S

S

+Ê
ËÁ

ˆ
¯̃

1
I1(S) – I1(S)

S

S1 2+
 = V1(S)

I1(S)
1

1 2

+
-

+
Ê

ËÁ
ˆ

¯̃
S

S

S

S
 = V1(S)

I1(S)
S S

S S

2
3 1

1 2

+ +
+( )

Ê

Ë
Á

ˆ

¯
˜  = V1(S)

Z11 =
V S

I S

S S

S S
I

1

1
0

2

2

3 1

1 2

( )
( ) =

+ +( )
+( )

=

Also V2(S) = I3(S) = I1(S)
S

S1 2+

Z21 =
V S

I S

S

S
I

2

1
02

1 2

( )
( ) =

+
=

With port a-a¢ open circuited and assuming mesh currents with V2(S) as the voltage 

as b-b¢, the corresponding network is shown in Fig. 6.45(b).

Fig. 6.45(b)

The KVL equations are as follows:

V1(S ) = I3(S ) (6.30)

2
1

+Ê
ËÁ

ˆ
¯̃S
I3(S ) = I2(S ) (6.31)

V2(S ) = I2(S ) – I3(S ) (6.32)

I3(S ) = I2(S )
S

S2 1+
Ê

ËÁ
ˆ

¯̃

V2(S ) = I2(S ) – I2(S )
S

S2 1+
Ê

ËÁ
ˆ

¯̃
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V2(S) = I2(S) 1
2 1

-
+

Ê

ËÁ
ˆ

¯̃
S

S

Z22 =
V S

I S

S

S
I S

2

2
01

1

2 1

( )
( ) =

+
+( ) =

Also V1(S) = I3(S) = I2(S)
S

S2 1+
Ê

ËÁ
ˆ

¯̃

Z12 =
V S

I S

S

S
I S

1

2
01

2 1

( )
( ) =

+
Ê

ËÁ
ˆ

¯̃( ) =

The describing equations are

V1(S) =
S S

S
I

S

S
I

2

1 2

3 1

3 2 1 2 1

+ +
+( )

È

Î
Í
Í

˘

˚
˙
˙

+
+

È

Î
Í

˘

˚
˙

V2(S) =
S

S
I

S

S
I

2 1

1

2 1
1 2+

È

Î
Í

˘

˚
˙ +

+
+

È

Î
Í

˘

˚
˙

6.4 Find the transmission parameters for the circuit shown in Fig. 6.46.

Fig. 6.46

Solution

V1 = AV2 – BI2
I1 = CV2 – DI2

When port b-b¢ is short circuited with V1 across a-a¢, V2 = 0, B = 
-V

I

1

2

 and the 

circuit is as shown in Fig. 6.47(a).

– I2 =
V1

2
I1 = V1

\ B = 2 W

D =
- I

I

1

2

 = 2

When port b-b¢ is open with V1 across a-a¢, I2 = 0
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A = V1/V2 and the circuit is as shown in Fig. 6.47(b), where V1 is the voltage across 

the 2 W resistor across port a-a¢ and V2 is the voltage across the 2 W resistor across 

port b-b¢ when I2 = 0.

Fig. 6.47(b)

From Fig. 6.47(b), IY =
V1

4

V2 = 2 ¥ IY = 
V1

2

A = 2

From Fig. 6.47(b) Ix =
V1

2

C =
I

V

1

2

where I1 =
3

4

1V

Therefore C =
3

2

Fig. 6.47 (a)
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6.5 Find h parameters for the network in Fig. 6.48.

Fig. 6.48

Solution

When V2 = 0 the network is as shown in Fig. 6.49.

h11 =
V

I
V

1

1 02 =

 = 2 W

h21 =
I

I
V

2

1 02 =
; I2 = –I1

\ h21 = –1

When I1 = 0; h12 = 
V

V
I

1

2 01 =
; h22 = 

I

V
I

2

2 01 =

V1 = I2 4, V2 = I2 4

\ h12 = 1 h22 = 
1

4

Fig. 6.49

6.6 For the hybrid equivalent circuit shown in Fig. 6.50, (a) determine the 

current gain, and (b) determine the voltage gain.
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Fig. 6.50

Solution

From port 2-2¢

I2 =
25 0 05 10

1500 0 05 10

1

6

6

I( ) ¥( )
+ ¥( )

.

.

(a) current gain 
I

I

2

1

 = 
1 25 10

0 0515 10

6

6

.

.

¥

¥
 = 24.3

(b) applying KVL at port 1-1¢

V1 = 500 I1 + 2 ¥ 10–4
V2

I1 =
V V1

4

22 10

500

- ¥ -

(6.33)

Applying KCL at port 2-2¢

I2 = 25I1 + 
V2

0 05.
¥ 10–6

also I2 =
-V2

1500

-V2

1500
 = 25I1 + 

V2

0 05.
¥ 10–6

Substituting the value of I1

-V2

1500
 = 25

2 10

500 0 05
10

1

4

2 2 6V V V- ¥Ê

Ë
Á

ˆ

¯
˜ + ¥

-
-

.

– 6.6 ¥ 10–4
V2 =  0.05V1 – 0.1 ¥ 10–4

V2 + 0.2 ¥ 10–4
V2

\
V

V

2

1

 = –73.89

The negative sign indicates that there is a 180° phase shift between input and 

output voltage.
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6.7 The hybrid parameters of a two-port network shown in Fig. 6.51 are h11 = 

1 K; h12 = 0.003; h21 = 100; h22 = 50 m . Find V2 and Z parameters of the 

network.

V1

I2I1

V2

2

2¢1¢

2 K

1

500 W

10 0º x 10 V– –3

Fig. 6.51

Solution

V1 = h11 I1 + h12 V2 (6.34)

I2 = h21 I1 + h22 V2 (6.35)

At port 2-2¢ V2 = –I2 2000

I2 = h21I1 – h22I2 2000

I2 (1 + h22 2000) = h21 I1

I2(1 + 50 ¥ 10–6 ¥ 2000) = 100 I1

I2 =
100

1 1

1I

.

Substituting the value of V2

V1 = h11 I1 – h12 I2 2000

Also at port 1-1¢, V1 = VS – I1 500

\ VS – I1 500 = h11 I1 – h12

100

1 1

1I

.
¥ 2000

(10 ¥ 10–3) – 500 I1 = 1000 I1 – 0.003 ¥
100

1 1
1

.
I ¥ 2000

954.54I1 = 10 ¥ 10–3

I1 = 10.05 ¥ 10–6 A

V1 = VS – I1 ¥ 500

= 10 ¥ 10–3 – 10.5 ¥ 10–6 ¥ 500 = 4.75 ¥ 10–3 V

V2 =
V h I

h

1 11 1

12

-

V2 =
4 75 10 1000 10 5 10

0 003

3 6
. .

.

¥ - ¥ ¥- -

 = – 1.916 V
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(b) Z parameters of the network can be found from Table 6.1.

Z11 =
Dh

h

h h h h

h22

11 22 21 12

22

=
-

 = 
1 10 50 10 100 0 003

50 10

3 6

6

¥ ¥ ¥ - ¥

¥

-

-
.

= –5000 W

Z12 =
h

h

12

22
6

0 003

50 10

=
¥ -
.

 = 60 W

Z21 =
-

=
-

¥ -
h

h

21

22
6

100

50 10
 = –2 ¥ 106 W

Z22 =
1

22h
 = 20 ¥ 103 W

6.8 The Z parameters of a two port network shown in Fig. 6.52 are Z11 = Z22 = 

10 W; Z21 = Z12 = 4 W I1, V2, I2 and 

input impedance.

Fig. 6.52

Solution

Given V1 = VS = 20 V

From Section 6.11.1, V1 = I Z
Z Z

Z ZL
1 11

12 21

22

-
+

Ê

ËÁ
ˆ

¯̃

where ZL = 20 W

\ 20 = I1 10
4 4

20 10
-

¥
+

Ê

ËÁ
ˆ

¯̃

I1 = 2.11 A

I2 = –I1

Z

Z ZL

21

22+
 = –2.11 ¥

4

20 10+
 = –0.281 A
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At port 2-2¢
V2 = –I2 ¥ 20 = 0.281 ¥ 20 = 5.626 V

V

I

1

1

20

2 11
=

.
 = 9.478 W

6.9 The Y parameters of the two-port network shown in Fig. 6.53 are Y11 = Y22

= 6 ; Y12 = Y21 = 4 

(a) determine the driving point admittance at port 2-2¢ if the source voltage 

is 100 V and has an impedance of 1 ohm.

Fig. 6.53

Solution

From Section 6.11.2,

I

V

2

2

 =
Y Y Y Y Y Y

Y Y

S

S

22 22 11 21 12

11

+ -
+

where YS is the source admittance = 1 

\ The driving point admittance = 
6 1 6 6 4 4

1 6

¥ + ¥ - ¥
+

 = 3.714 

Or the driving point impedance at port 2-2¢ = 
1

3 714.
W

6.10 Obtain the Z parameters for the two-port unsymmetrical lattice network 

shown in Fig. 6.54.

Fig. 6.54
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Solution

From Section 6.12, we have 

Z11 =
Z Z Z Z

Z Z Z Z

a b d c

a b c d

+( ) +( )
+ + +

=
+( ) +( )
+ + +

1 3 2 5

1 3 5 2
 = 2.545 W

Z21 =
Z Z Z Z

Z Z Z Z

b c a d

a b c d

-
+ + +

=
¥ - ¥3 5 1 2

11
 = 1.181 W

Z21 = Z12

Z22 =
Z Z Z Z

Z Z Z Z

a c d b

a b c d

+( ) +( )
+ + +

=
+( ) +( )

=
1 5 2 3

11
2 727. W

6.11

driving point impedance at port 1-2.

A

1 W 1 W 1 W1 HH 1H 1H

V2

I1 I2

1 FF 1F 1F

++

––

1

2

3

4

V1

Fig. 6.55

Solution

The Laplace transform of the given network is shown in Fig. 6.56.

Fig. 6.56
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Then the open circuit driving point impedance at port 1-2 is given by

=
s s s s s s

s s s s s

6 5 4 3 2

5 4 3 2

3 8 11 11 6 1

2 5 4 3

+ + + + + +

+ + + +

6.12 For the bridged T

admittance y11 and transfer admittance y21 with a 2 W load resistor connected 

across port 2.

Fig. 6.57

Solution

The corresponding Laplace transform network is shown in Fig. 6.58.

Fig. 6.58
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The loop equations are

I
s

I
s

I1 2 31
1 1

+Ê
ËÁ

ˆ
¯̃

+ Ê
ËÁ

ˆ
¯̃

-  = V1

I
s

I
s

I1 2 3

1
1

1Ê
ËÁ

ˆ
¯̃

+ +Ê
ËÁ

ˆ
¯̃

+  = 0

I1 (–1) + I2 + I3 2
1

+Ê
ËÁ

ˆ
¯̃s

 = 0

Therefore,

D =

1
1 1

1

1
1

1
1

1 1 2
1

2

2

+Ê
ËÁ

ˆ
¯̃

-

+

- +

=
+

s s

s s

s

s

s

Similarly, D11 =

1
1 1

1 2
1

3 1
2

2

+Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

=
+ +s s

s

s s

s

and D12 =

1
1

1 2
1

2 1
2

2

s

s

s s

s

+

+ +Ê
ËÁ

ˆ
¯̃

=
+ +

Hence, y11 =
D

D

11

2
3 1

2
=

+ +
+

s s

s

and y21 =
D

D

12

2
2 1

2
=

- + +( )
+

s s

s

6.13 For the two port network shown in Fig. 6.59, determine the h-parameters.

Using these parameters calculate the output (Port 2) voltage, V2, when the 

output port is terminated in a 3 W resistance and a 1 V(dc) is applied at the 

input port (V1 = 1 V).

Fig. 6.59
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Solution

The h

V

I
1

2

È
ÎÍ

˘
˚̇

 =
h h

h h

I

V
11 12

21 22

1

2

È
ÎÍ

˘
˚̇

È
ÎÍ

˘
˚̇

For V2 = 0, the circuit is redrawn as shown in Fig. 6.60(a).

Fig. 6.60(a)

h11 =
V

I

i i

i
V

1

1 0

1 1

1
2

1 3

=

=
¥ +

 = 4

h21 =
I

I

i

i

i i

i
V

2

1 0

2

1

1 1

1
2

2

=

= =
-

 = 1

For I1 = 0, the circuit is redrawn as shown in Fig. 6.60(b).

Fig. 6.60(b)

h12 =
V

V

1

2

 = 1; h22 = 
I

V

2

2

1

2
=  = 0.5

Hence, h =
4 1

1 0 5.

È
ÎÍ

˘
˚̇

V1 = 1 V

V1 = 4I1 + V2

I2 = I1 + 0.5 V2
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I1 from the above equations and putting

V1 = 1 and I2 = 
-V2

3
 we get, V2 = 

-3
7

 V

6.14 Find the current transfer ratio 
I

I

2

1

 for the network shown in Fig. 6.61.

Fig. 6.61

Solution

By transforming the current source into voltage source, the given circuit can be 

redrawn as shown in Fig. 6.62.

1 W

1 W 1 W

2 W

I I+ 21 3

I1

I3
I2

V1 V2

2

Fig. 6.62

Applying Kirchhoff’s nodal analysis

V I I V V V1 1 3 1 1 2
2

1 1 2

- +( )
+ +

-
 = 0

and
V V I

I2 1 1

2
2 2

-
- -  = 0

Putting V1 = –I3 and V2 = –I2

The above equations become

–I3 – I1 – 2I3 – I3 + 
I I2 3

2

-
 = 0
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and
I I I2 3 1

2 2

-
-  – I2 = 0

or I1 0.5I2 – 4.5I3 = 0

and –0.5I1 – 1.5I2 + 0.5I3 = 0

By eliminating I3, we get

I

I

2

1

 =
-5 5

13

.
 = –0.42

Practice Problems

6.1 Find the Z parameters of the network shown in Fig. 6.63.

Fig. 6.63

6.2 Find the transmission parameters for the R–C network shown in Fig. 6.64.

2 W

2 F 2 F

Fig. 6.64

6.3 Find the inverse transmission parameters for the network in Fig. 6.65.

Fig. 6.65
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6.4 Calculate the overall transmission parameters for the cascaded network 

shown in Fig. 6.66.

Fig. 6.66

6.5 h parameters and the 

inverse h parameters.

Fig. 6.67

6.6 Determine the impedance parameters for the T network shown in 

Fig. 6.68 and draw the Z parameter equivalent circuit.

2 W j5 W

– j3W

Fig. 6.68

6.7 Determine the admittance parameters for the p-network shown in 

Fig. 6.69 and draw the Y parameter equivalent circuit.

Fig. 6.69
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6.8 Determine the impedance parameters and the transmission parameters for 

the network in Fig. 6.70.

Fig. 6.70

6.9 For the hybrid equivalent circuit shown in Fig. 6.71, determine (a) the input 

impedance (b) the output impedance.

40 I1

I1 I21.5 K

30 kW 1 kW0.003 V2

Fig. 6.71

6.10 Determine the input and output impedances for the Z parameter equivalent 

circuit shown in Fig. 6.72.

600 I1

I1 I2

V2

500 W

500 W

500 W

4 K

3000 90º– I
2

Fig. 6.72

6.11 The hybrid parameters of a two-port network shown in Fig. 6.73 are h11 = 

1.5 K; h12 = 2 ¥ 10–3; h21 = 250; h22 = 150 ¥ 10–6  (a) Find V2 (b). Draw 

the Z parameter equivalent circuit.
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V1

I2I1

V2

2

2¢1¢

1

2.5 KVS

1000 W

100 0º m.v–

Fig. 6.73

6.12 The Z parameters of a two-port network shown in Fig. 6.74 are Z11 = 5 W;

Z12 = 4 W; Z22 = 10 W; Z21 = 5 W
I1, V2 I2, and the driving point impedance at the input port.

Fig. 6.74

6.13 Obtain the image parameters of the symmetric lattice network given in 

Fig. 6.75.

Fig. 6.75

6.14 Determine the Z parameters and image parameters of a symmetric lattice 

network whose series arm impedance is 10 W and diagonal arm impedance 

is 20 W.
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6.15 For the network shown in Fig. 6.76, determine all four open circuit 

impedance parameters.

Fig. 6.76

6.16 For the network shown in Fig. 6.77, determine y12 and y21.

Fig. 6.77

6.17 For the network shown in Fig. 6.78, determine h parameters at w = 108 rad/

sec.

+

–

V2
V1

V1 2 kW 2 kW
4 PF

2 PF

100

Fig. 6.78
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6.18 For the network shown in Fig. 6.79, determine y parameters.

Fig. 6.79

Objective Type Questions

6.1 A two-port network is simply a network inside a black box, and the network 

has only

(a) two terminals

(b) two pairs of accessible terminals

(c) two pairs of ports

6.2 The number of possible combinations generated by four variables taken two 

at a time in a two-port network is

(a) four (b) two (c) six

6.3 What is the driving-point impedance at port one with port two open circuited 

for the network in Fig. 6.80?

Fig. 6.80

(a) 4 W (b) 5 W (c) 3 W
6.4 What is the transfer impedance of the two-port network shown in 

Fig. 6.87?

(a) 1 W (b) 2 W (c) 3 W
6.5

(a) Z11 = Z22 (b) Z12 = Z21 (c) Z11 = Z12

6.6 What is the transfer admittance of the network shown in Fig. 6.81.
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Fig. 6.81

(a) –2 (b) –3 (c) –4

6.7

(a) Y11 = Y22 (b) Y12 = Y22 (c) Y12 = Y11

6.8

(a) the input voltage and current are expressed in terms of output voltage 

and current.

(b) the input voltage and output voltage are expressed in terms of output 

current and input current.

(c) the input voltage and output current are expressed in terms of input 

current and output voltage.

6.9 Z11 = 2 W; Z12 = 1 W; Z21 = 1 W and Z22 = 3 W, what is the determinant of 

admittance matrix.

(a) 5 (b) 1/5 (c) 1

6.10 For a two-port bilateral network, the three transmission parameters are 

given

   by A = 
6

5
; B = 

17

5
 and C = 

1

5
, what is the value of D?

(a) 1 (b)
1

5
(c)

7

5

6.11 The impedance matrices of two, two-port networks are given by 
3 2

2 3

È
ÎÍ

˘
˚̇

   and
15 5

5 25

È
ÎÍ

˘
˚̇

  impedance matrix of the combination?

(a)
3 5

2 25

È
ÎÍ

˘
˚̇

(b)
18 7

7 28

È
ÎÍ

˘
˚̇

(c)
15 2

5 3

È
ÎÍ

˘
˚̇

6.12 The admittance matrices of two two-port networks are given by  

  
1 2 1 4

1 4 5 8

/ /

/ /

-
-

È
ÎÍ

˘
˚̇

and
1 1 2

1 2 5 4

-
-

È
ÎÍ

˘
˚̇

/

/ /

  parallel, what is the admittance matrix of the combination?
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(a)
1 1 2

1 2 5 4

-
-

È
ÎÍ

˘
˚̇

/

/ /
   (b)

2 1

1 5 2

-
-

È
ÎÍ

˘
˚̇/

(c)
3 2 3 4

3 4 15 8

/ /

/ /

-
-

È
ÎÍ

˘
˚̇

6.13 Z parameters of a two-port network are Z11 = 5 W Z22 = 7 W;

Z12 = Z21 = 3 W then the A, B, C, D parameters are respectively given by

(a)
5

3

26

3

1

3

7

3
; ; ;    (b)

10

3

52

3

2

3

14

3
; ; ;

(c)
15

3

78

3

3

3

21

3
; ; ;

6.14 For a symmetric lattice network the value of the series impedance is 3 W
and that of the diagonal impedance is 5 W, then the Z parameters of the 

network are given by

(a) Z11 = Z22 = 2 W   (b) Z11 = Z22 = 4 W
  Z12 = Z21 = 1/2 W    Z12 = Z21 = 1 W

(c) Z11 = Z22 = 8 W
  Z12 = Z21 = 2 W

6.15 For a two-port network to be reciprocal.

(a) Z11 = Z22 (b) y21 = y22 (c) h21 = –h12 (d) AD – BC = 0

6.16 Two-port networks are connected in cascade. The combination is to be 

represented as a single two port network. The parameters of the network are 

obtained by adding the individual

(a) Z parameter matrix (b) h parameter matrix

(c) A1 B1 C 1 D1 matrix (d) ABCD parameter matrix

6.17 The h parameters h11 and h12 are obtained

(a) By shorting output terminals (b) By opening input terminals

(c) By shorting input terminals (d) By opening output terminals

6.18 Which parameters are widely used in transmission line theory

(a) Z parameters   (b) Y parameters

(c) ABCD parameters (d) h parameters





7.1
TRANSIENT RESPONSE—DIFFERENTIAL EQUATION

APPROACH

A circuit having constant sources is said to be in steady state if the currents 

and voltages do not change with time. Thus, circuits with currents and voltages 

having constant amplitude and constant frequency sinusoidal functions are also 

considered to be in a steady state. That means that the amplitude or frequency of 

a sinusoid never changes in a steady state circuit.

In a network containing energy storage elements, with change in excitation, the 

currents and voltages change from one state to other state. The behaviour of 

the voltage or current when it is changed from one state to another is called 

the transient state. The time taken for the circuit to change from one steady 

state to another steady state is called the transient time. The application of KVL 

and KCL to circuits containing energy storage elements results in differential, 

rather than algebraic, equations. When we consider a circuit containing storage 

elements which are independent of the sources, the response depends upon 

the nature of the circuit and is called the natural response. Storage elements 

deliver their energy to the resistances. Hence the response changes with time, 

gets saturated after some time, and is referred to as the transient response. When 

we consider sources acting on a circuit, the response depends on the nature of 

the source or sources. This response is called forced response. In other words, 

the complete response of a circuit consists of two parts: the forced response and 

the transient response. When we consider a differential equation, the complete 

solution consists of two parts: the complementary function and the particular 

solution. The complementary function dies out after short interval, and is referred 

to as the transient response or source free response. The particular solution is 

Transients
7
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complete solution of a circuit is to form a differential equation for the circuit. By 

complete solution.

7.2
FIRST ORDER DIFFERENTIAL EQUATIONS—RL, RC

CIRCUITS WITH DC EXCITATION—TIME CONSTANTS

7.2.1 DC Response of R-L Circuit

Consider a circuit consisting of a re-

sistance and inductance as shown in 

Fig. 7.1. The inductor in the circuit is initially 

uncharged and is in series with the resistor. 

When the switch S

complete solution for the current. Application 

of Kirchhoff’s voltage law to the circuit re-

sults in the following differential equation.

V = Ri + L
di

dt
(7.1)

or
di

dt

R

L
i+ =

V

L
(7.2)

In the above equation, the current i is the solution to be found and V is the applied 

constant voltage. The voltage V is applied to the circuit only when the switch 

S

Comparing it with a non-homogeneous differential equation

dx

dt
 + Px = K (7.3)

whose solution is

x = e–pt Ú Ke+Pt dt + ce–Pt (7.4)

where c is an arbitrary constant. In a similar way, we can write the current 

equation as

i = ce–(R/L)t + e–(R/L)t V

LÚ e(R/L)t dt

\ i = ce–(R/L)t + 
V

R
(7.5)

To determine the value of c in Eq. 7.5, we use the initial conditions. In the circuit 

shown in Fig. 7.1, the switch S is closed at t = 0. At t = 0–, i.e. just before closing 

the switch S, the current in the inductor is zero. Since the inductor does not allow 

sudden changes in currents, at t = 0+ just after the switch is closed, the current 

remains zero.

Thus at t = 0, i = 0

Fig. 7.1
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Substituting the above condition in Eq. 7.5, we have

0 = c + 
V

R

Hence c = -
V

R

Substituting the value of c in Eq. 5, we get

i =
V

R

V

R

R

L
t- -Ê

ËÁ
ˆ
¯̃

exp

i =
V

R

R

L
t1- -Ê

ËÁ
ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

exp (7.6)

Equation 7.6 consists of two parts, the 

steady state part V/R, and the transient 

part (V/R)e–(R/L)t. When switch S is 

closed, the response reaches a steady 

state value after a time interval as 

shown in Fig. 7.2.

as the time taken for the current to reach 

initial value. In the transient part of the 

solution, the quantity L/R is important 

in describing the curve since L/R is the time required for the current to reach from 

value V/R. The time constant of a function 

V

R
e

R

L
t- ( )
 is the time at which the exponent of e is unity, where e is the base of the 

natural logarithms. The term L/R is called the time constant and is denoted by t

\ t =
L

R
 sec

\ the transient part of the solution is

i = - -Ê
ËÁ

ˆ
¯̃

V

R

R

L
texp  = - -V

R
e

t /t

At one TC, i.e. at one time constant, the transient term reaches 36.8 percent of its 

initial value.

i(t) = - -V

R
e

t /t  = - -V

R
e

1  = - 0 368.
V

R

Fig. 7.2
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Similarly,

i(2t) = - -V

R
e

2  = –0.135
V

R

i(3t) = - -V

R
e

3  = –0.0498
V

R

i(5t) = - -V

R
e

5  = –0.0067
V

R

the current.

Voltage across the resistor is

vR = Ri = R
V

R

R

L
t¥ - -Ê

ËÁ
ˆ
¯̃

È

Î
Í

˘

˚
˙1 exp

\ vR = V
R

L
t1- -Ê

ËÁ
ˆ
¯̃

È

Î
Í

˘

˚
˙exp

Similarly, the voltage across the inductance is

vL = L
di

dt

= L
V

R

R

L

R

L
t V

R

L
t¥ -Ê

ËÁ
ˆ
¯̃

= -Ê
ËÁ

ˆ
¯̃

exp exp

The response are shown in Fig. 7.3.

Fig. 7.3

Power in the resistor is

pR = vR i = V
R

L
t1- -Ê

ËÁ
ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

exp 1- -Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

exp
R

L
t

V

R

=
V

R

R

L
t

R

L
t

2

1 2
2

- -Ê
ËÁ

ˆ
¯̃

+ -Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

exp exp
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Power in the inductor is

pL = vL i = V exp -Ê
ËÁ

ˆ
¯̃

¥ - -Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

R

L
t

V

R

R

L
t1 exp

=
V

R

R

L
t

R

L
t

2
2

exp exp-Ê
ËÁ

ˆ
¯̃

- -Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

The responses are shown in Fig. 7.4.

Fig. 7.4

A series RL circuit with R = 30 W and L = 15 H has a constant 

voltage V = 60 V applied at t = 0 as shown in Fig. 7.5. Determine the current i, the 

voltage across resistor and the voltage across the inductor.

Fig. 7.5

Example 7.1

Solution

By applying Kirchhoff’s voltage law, we get

15
di

d t
 + 30i = 60

\
di

d t
 + 2i = 4

The general solution for a linear differential equation is

i = ce-Pt + e-Pt ÚKePt dt
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where  P = 2, K = 4

\ i = ce-2t + e-2t Ú 4e2t
dt

\ i = ce-2t + 2

At t = 0, the switch S is closed.

Since the inductor never allows sudden changes in currents. At t = 0+ the 

current in the circuit is zero.

Therefore at t = 0+, i = 0

\ 0 = c + 2

\ c = -2

Substituting the value of c in the current equation, we have

i = 2(1 - e-2t) A

Voltage across resistor vR = iR

= 2(1 - e-2t ) ¥ 30 = 60(1 - e-2t ) V

Voltage across inductor vL = L
di

d t

= 15 ¥
d

dt
 2(1 - e-2t ) = 30 ¥ 2e-2t = 60e-2t V

7.2.2 DC Response of R-C Circuit

Consider a circuit consisting of resistance 

and capacitance as shown in Fig. 7.6. The 

capacitor in the circuit is initially uncharged, 

and is in series with a resistor. When the 

switch S is closed at t = 0, we can determine 

the complete solution for the current. 

Application of the Kirchhoff’s voltage 

law to the circuit results in the following 

differential equation.

V = Ri + 
1

C
Ú i dt (7.7)

By differentiating the above equation, we get

0 = R
d i

d t

i

C
+ (7.8)

or
di

d t RC
i+

1
= 0 (7.9)

Fig. 7.6
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Equation 7.9 is a linear differential equation with only the complementary 

function. The particular solution for the above equation is zero. The solution for 

this type of differential equation is

i = ce
-t/RC (7.10)

c, we use the initial conditions.

In the circuit shown in Fig. 7.6, switch S is closed at t = 0. Since the capacitor 

never allows sudden changes in voltage, it will act as a short circuit at t = 0+. So, 

the current in the circuit at t = 0+ is V/R

\ At t = 0, the current i =
V

R

Substituting this current in Eq. 7.10, we get

V

R
= c

\ The current equation becomes

i =
V

R
e

t RC- / (7.11)

When switch S is closed, the response decays with time as shown in Fig. 7.7.

Fig. 7.7

In the solution, the quantity RC is the time constant, and is denoted by t,

where t = RC sec

Voltage across the resistor is

vR = Ri = R ¥
V

R
e

- (1/RC)t ; vR = V e

t

RC
-

Similarly, voltage across the capacitor is

vC =
1

C Ú i dt
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=
1

C Ú
V

R
e- t/RC dt

= - ¥Ê
ËÁ

ˆ
¯̃

-V

RC
RC e

t RC/
 + c = -Ve-t/RC + c

At t = 0, voltage across capacitor is zero

\ c = V

\ vC = V(1 - e-t/RC)

The responses are shown in Fig. 7.8.

Fig. 7.8

Power in the resistor

pR = vRi = Ve-t/RC ¥
V

R
e

V

R
e

t RC t RC- -=/ /

2

2

Power in the capacitor

pC = vCi = V(1 - e-t/RC)
V

R
e

t RC- /

=
V

R

2

(e-t/RC - e-2t/RC)

The responses are shown in Fig. 7.9.

Fig. 7.9
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A series RC circuit 

consists of resistor of 10 W and 

capacitor of 0.1 F as shown in Fig. 

7.10. A constant voltage of 20 V is 

applied to the circuit at t = 0. Obtain 

the current equation. Determine the 

voltages across the resistor and the 

capacitor.

Example 7.2

Solution

By applying Kirchhoff’s law, we get

10
1

0 1
i i d t+ Ú.

= 20

Differentiating with respect to t we get

10
01

di

d t

i
+

.
= 0

\
di

d t
i+ = 0

The solution for the above equation is i = ce-t

At t = 0, switch S is closed. Since the capacitor does not allow sudden changes 

in voltage, the current in the circuit is i = V/R = 20/10 = 2 A.

At t = 0, i = 2 A.

\ The current equation i = 2e-t

Voltage across the resistor is vR = i ¥ R = 2e-t ¥ 10 = 20e-t V

Voltage across the capacitor is vC = V e

t

RC1-
Ê

Ë
Á

ˆ

¯
˜

-

= 20 (1 - e-t ) V

7.3 FIRST ORDER DIFFERENTIAL EQUATIONS—RL, RC

CIRCUITS WITH AC EXCITATION—TIME CONSTANTS

7.3.1 Sinusoidal Response of R-L Circuit

Consider a circuit consisting of resistance and inductance as shown in Fig. 7.11. 

The switch, S, is closed at t = 0. At t = 0, a sinusoidal voltage V cos (w t + q) is 

applied to the series R-L circuit, where V is the amplitude of the wave and q is 

the phase angle. Application of Kirchhoff’s voltage law to the circuit results in 

the following differential equation.

Fig. 7.10
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Fig. 7.11

V cos (w t + q) = Ri + L
di

dt
(7.12)

\
di

dt

R

L
i+ =

V

L
cos (w t + q)

The corresponding characteristic equation is

D
R

L
i+Ê

ËÁ
ˆ
¯̃

=
V

L
cos (wt + q) (7.13)

For the above equation, the solution consists of two parts, viz. complementary 

function and particular integral.

The complementary function of the solution i is

ic = ce–t(R/L) (7.14)

By assuming ip = A cos (w t + q) + B sin (w t + q) (7.15)

i¢p = –Aw sin (wt + q) + Bw cos (w t + q) (7.16)

Substituting Eqs 7.15 and 7.16 in Eq. 7.13, we have

{–Aw sin (w t + q) + Bw cos (w t + q) + 
R

L
 {A cos (w t + q)

+ B sin (w t + q )} = 
V

L
 cos (wt + q)

or - +Ê
ËÁ

ˆ
¯̃

A
BR

L
w sin (w t + q) + B

AR

L
w +Ê

ËÁ
ˆ
¯̃

 cos (w t + q) = 
V

L
 cos (wt + q)

Comparing cosine terms and sine terms, we get

–Aw + 
BR

L
= 0

Bw + 
AR

L
=
V

L

From the above equations, we have

A = V
R

R L
2 2+ ( )w
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B = V
L

R L

w

w2 2+ ( )
Substituting the values of A and B in Eq. 7.15, we get

ip = V
R

R L
2 2+ ( )w

cos (w t + q) + V
L

R L

w

w2 2+ ( )
sin (w t + q) (7.17)

Putting M cos f =
VR

R L
2 2+ ( )w

and M sin f = V
L

R L

w

w2 2+ ( )
,

M and f, we divide one equation by the other

M

M

sin

cos

f

f
= tan f = 

w L

R

Squaring both equations and adding, we get

M
2 cos2 f + M 2 sin2 f =

V

R L

2

2 2+ ( )w

or M =
V

R L
2 2+ ( )w

\ The particular current becomes

ip =
V

R L

t
L

R2 2

1

+ ( )
+ -Ê

ËÁ
ˆ
¯̃

-

w
w q

w
cos tan (7.18)

The complete solution for the current i = ic + ip

i = ce
–t(R/L) + 

V

R L

t
L

R2 2

1

+ ( )
+ -Ê

ËÁ
ˆ
¯̃

-

w
w q

w
cos tan

Since the inductor does not allow sudden changes in currents, at t = 0, i = 0

\ c = – 
V

R L

L

R2 2

1

+ ( )
-Ê

ËÁ
ˆ
¯̃

-

w
q

w
cos tan

The complete solution for the current is

i = e
–(R/L) t -

+ ( )
-Ê

ËÁ
ˆ
¯̃

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-V

R L

L

R2 2

1

w
q

w
cos tan

+
V

R L

t
L

R2 2

1

+ ( )
+ -Ê

ËÁ
ˆ
¯̃

-

w
w q

w
cos tan
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In the circuit shown in Fig. 7.12, determine the complete 

solution for the current, when switch S is closed at t = 0. Applied voltage is v(t) = 

100 cos (103t + p/2). Resistance R = 20 W and inductance L = 0.1 H.

Fig. 7.12

Example 7.3

Solution

By applying Kirchhoff’s voltage law to the circuit, we have

20i + 0.1
di

dt
= 100 cos (103

t + p/2)

di

dt
 + 200i = 1000 cos (1000t + p/2)

(D = 200)i = 1000 cos (1000t + p/2)

The complementary function ic = ce–200t

By assuming particular integral as

ip = A cos (w t + q) + B sin (w t + q)

we get

ip =
V

R L

t
L

R2 2

1

+ ( )
+ -Ê

ËÁ
ˆ
¯̃

-

w
w q

w
cos tan

where w = 1000 rad/sec V = 100 V

q = p/2

L = 0.1 H, R = 20 W

Substituting the values in the above equation, we get

ip =
100

20 1000 0 1

1000
2

100

202 2

1

( ) + ¥( )
+ -Ê

ËÁ
ˆ
¯̃

-

.

cos tant
p

  =
100

101 9
1000

2
78 6

.
cos .t + - ∞Ê

ËÁ
ˆ
¯̃

p

  = 0.98 cos 1000
2

78 6t + - ∞Ê
ËÁ

ˆ
¯̃

p
.
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The complete solution is

i = ce–200t + 0.98 cos 1000
2

78 6t + - ∞Ê
ËÁ

ˆ
¯̃

p
.

At t i = 0

\ c = –0.98 cos
p

2
78 6- ∞Ê

ËÁ
ˆ
¯̃

.

\ The complete solution is

i = - - ∞Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙0 98

2
78 6. cos .

p
e

–200t + 0.98 cos 1000
2

78 6t + - ∞Ê
ËÁ

ˆ
¯̃

p
.

7.3.2 Sinusoidal Response of R-C Circuit

Consider a circuit consisting of resistance and capacitance in series as shown in 

Fig. 7.13. The switch, S, is closed at 

t = 0. At t = 0, a sinusoidal voltage 

V cos (w t + q) is applied to the R-C 

circuit, where V is the amplitude of 

the wave and q is the phase angle. 

Applying Kirchhoff’s voltage law 

to the circuit results in the following 

differential equation.

V cos (w t + q) = Ri
C

idt+ Ú
1

(7.19)

R
di

dt

i

C
+ = –Vw sin (w t + q)

D
RC

i+Ê
ËÁ

ˆ
¯̃

1
= –

V

R

w
sin (w t + q) (7.20)

The complementary function iC = ce–t/RC (7.21)

ip = A cos (w t + q) + B sin (wt + q) (7.22)

i ¢P = –Aw sin (w t + q) + Bw cos (w t + q) (7.23)

Substituting Eqs 7.22 and 7.23 in Eq. 7.20, we get

{–Aw sin (w t + q) + Bw cos (w t + q)}

+
1

RC
{A cos (w t + q) + B sin (w t + q)} = –

V

R

w
sin (w t + q)

Fig. 7.13
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Comparing both sides, - +A
B

RC
w = –

V

R

w

Bw + 
A

RC
= 0

From which,

A =
VR

R
c

2

2

1
+ Ê

ËÁ
ˆ
¯̃w

and B =
-

+
Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

V

C R
c

w
w

2

2

1

Substituting the values of A and B in Eq. 7.22, we have

ip =
VR

R
c

2

2

1
+ Ê

ËÁ
ˆ
¯̃w

cos (w t + q) + 
-

+ Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

V

C R
C

w
w

2

2

1

sin (wt + q)

Putting M cos f =
VR

R
C

2

2

1
+ Ê

ËÁ
ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙w

and M sin f =
V

C R
C

w
w

2

2
1

+ Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

M and f, we divide one equation by the other,

M

M

sin

cos

f

f
= tan f = 

1

wCR

Squaring both equations and adding, we get

M
2 cos2 f + M2 sin2 f =

V

R
C

2

2

2
1

+ Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙w

\ M =
V

R
C

2

2
1

+ Ê
ËÁ

ˆ
¯̃w
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The particular current becomes

ip =
V

R
C

t
CR

2

2

1

1

1

+ Ê
ËÁ

ˆ
¯̃

+ +
Ê
ËÁ

ˆ
¯̃

-

w

w q
w

cos tan (7.24)

The complete solution for the current i = ic + ip

\ i = ce–(t/RC) + 
V

R
C

t
CR

2

2

1

1

1

+ Ê
ËÁ

ˆ
¯̃

+ +
Ê
ËÁ

ˆ
¯̃

-

w

w q
w

cos tan (7.25)

Since the capacitor does not allow sudden changes in voltages at t = 0, i = 
V

R
cos q

\
V

R
cos q = c

V

R
C

CR
+

+
Ê
ËÁ

ˆ
¯̃

+
Ê
ËÁ

ˆ
¯̃

-

2

2

1

1

1

w

q
w

cos tan

c =
V

R

V

R
C

CR
cos cos tanq

w

q
w

-

+
Ê
ËÁ

ˆ
¯̃

+
Ê
ËÁ

ˆ
¯̃

-

2

2

1

1

1

The complete solution for the current is

i = e–(t/RC) V

R

V

R
C

CR
cos cos tanq

w

q
w

-

+
Ê
ËÁ

ˆ
¯̃

+
Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

-

2

2

1

1

1

+
V

R
C

t
CR

2

2

1

1

1

+
Ê
ËÁ

ˆ
¯̃

+ +
Ê
ËÁ

ˆ
¯̃

-

w

w q
w

cos tan (7.26)

In the circuit shown in Fig. 7.14, determine the complete 

solution for the current when switch S is closed at t = 0. Applied voltage is v(t) = 

50 cos

10
4

2t +
Ê
ËÁ

ˆ
¯̃

p
. Resistance R = 10 W and capacitance C = 1 m F.

Fig. 7.14

Example 7.4
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Solution

By applying Kirchhoff’s voltage law to the circuit, we have

10
1

1 10
6

i idt+
¥ - Ú = 50 cos 100

4
t +Ê

ËÁ
ˆ
¯̃

p

10
1 10

6

di

dt

i
+

¥ -
= –5(10)3 sin 100

4
t +Ê

ËÁ
ˆ
¯̃

p

di

dt

i
+ -
10

5
= –500 sin 100

4
t +Ê

ËÁ
ˆ
¯̃

p

D +Ê
ËÁ

ˆ
¯̃-

1

10
5

i = –500 sin 100
4

t +Ê
ËÁ

ˆ
¯̃

p

The complementary function is iC = ce–t/10–5
. By assuming particular integral 

as ip = A cos (w t + q) + B sin (w t + q),

we get ip =
V

R
C

t
CR

2

2

1

1

1

+
Ê
ËÁ

ˆ
¯̃

+ +
Ê
ËÁ

ˆ
¯̃

-

w

w q
w

cos tan

where w = 100 rad/sec q = p/4

C = 1mF R = 10 W

Substituting the values in the above equation, we have

ip =
50

10
1

100 10

4

1

100 10 10
2

6

2

1

6

( ) +
¥

Ê

ËÁ
ˆ

¯̃

+ +
¥ ¥

Ê

ËÁ
ˆ

¯̃
-

-
-cos tanw

p
t

ip = 4.99 ¥ 10–3 cos 100
4

89 94t + + ∞Ê
ËÁ

ˆ
¯̃

p
.

At t

V

R
 cos q =

50

10
 cos p/4 = 3.53 A

i =
V

R
cos q = 3.53 A

\ i = ce–t/10–5
 + 4.99 ¥ 10–3 cos 100

4
89 94t + + ∞Ê

ËÁ
ˆ
¯̃

p
.

At t = 0
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c = 3.53 – 4.99 ¥ 10–3 cos 
p

4
89 94+ ∞Ê

ËÁ
ˆ
¯̃

.

Hence the complete solution is

i = 3 53 4 99 10
4

89 94
3

. . cos .- ¥ + ∞Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

- p
e

–(t/10–5)

+ 4.99 ¥ 10–3 cos 100
4

89 94t + + ∞Ê
ËÁ

ˆ
¯̃

p
.

7.4

SECOND ORDER DIFFERENTIAL EQUATIONS—

HOMOGENEOUS, NON-HOMOGENEOUS—RLC CIRCUITS

WITH DC AND AC EXCITATION

7.4.1 DC Response of RLC Circuit

Consider a circuit consisting of resistance, 

inductance and capacitance as shown 

in Fig. 7.15. The capacitor and inductor 

are initially uncharged, and are in series 

with a resistor. When switch S is closed 

at t = 0, we can determine the complete 

solution for the current. Application of 

Kirchhoff’s voltage law to the circuit 

results in the following differential 

equation.

V = Ri L
di

dt C
idt+ + Ú

1
(7.27)

By differentiating the above equation, we have

0 = R
di

dt
L
d i

dt C
i+ +

2

2

1
(7.28)

or
d i

dt

R

L

di

dt LC
i

2

2

1
+ + = 0 (7.29)

The above equation is a second order linear differential equation, with only 

complementary function. The particular solution for the above equation is zero. 

Characteristic equation for the above differential equation is

D
R

L
D

LC

2 1
+ +Ê

ËÁ
ˆ
¯̃

= 0 (7.30)

The roots of Eq. 7.30 are

D1, D2 = - ± Ê
ËÁ

ˆ
¯̃

-
R

L

R

L LC2 2

1
2

Fig. 7.15
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By assuming K1 = -
R

L2
 and K2 = 

R

L LC2

1
2

Ê
ËÁ

ˆ
¯̃

-

D1 = K1 + K2 and D2 = K1 - K2

Here K2 may be positive, negative or zero.

K2 is positive, when 
R

L2

2
Ê
ËÁ

ˆ
¯̃  > 1/LC

The roots are real and unequal, and give the over damped response as shown in 

Fig. 7.16. Then Eq. 7.29 becomes

[D – (K1 + K2)] [D – (K1 – K2)] i = 0

The solution for the above equation is

i = c1e
(K1 + K2) t + c2 e

(K1 – K2)t

The current curve for the overdamped case is shown in Fig. 7.16.

Fig. 7.16

K2 is negative, when (R/2L)2 < 1/LC

The roots are complex conjugate, and give the underdamped response as shown 

in Fig. 7.17. Then Eq. 7.29 becomes

[D – (K1 + jK2)] [D – (K1 – jK2)]i = 0

The solution for the above equation is

i = eK1t [c1 cos K2t + c2 sin K2t]

The current curve for the underdamped 

case is shown in Fig. 7.17.

K2 is zero, when (R/2L)2 = 1/LC

The roots are equal, and give the 

critically damped response as shown in 

Fig. 7.18. Then Eq. 7.29 becomes

(D – K1) (D – K1)i = 0

Fig. 7.17
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The solution for the above equation is

i = eK1t (c1 + c2t)

The current curve for the critically damped case is shown in Fig. 7.18.

Fig. 7.18

The circuit shown in Fig. 7.19 consists of resistance, inductance 

and capacitance in series with a 100 V constant source when the switch is closed 

at t = 0. Find the current transient.

Example 7.5

Solution

At t = 0, switch S is closed when the 100 V source is applied to the circuit and 

results in the following differential equation.

100 = 20i + 0.05
di

dt
idt+

¥ - Ú
1

20 10
6

(7.31)

Differentiating the Eq. 7.31, we get

0 05 20
1

20 10

2

2 6
.

d i

dt

di

dt
i+ +

¥ - = 0

i

s R

20 W

C

L 0.05 H

20 Fm

100 V

Fig. 7.19

d i

dt

di

dt
i

2

2

6
400 10+ + = 0

\ (D2 + 400D + 106)i = 0
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D1, D2 = - ± Ê
ËÁ

ˆ
¯̃

-
400

2

400

2
10

2

6

= –200 ± ( ) -200 10
2 6

D1 = –200 + j979.8

D2 = –200 – j 979.8

Therefore the current

i = e+k1t [c1 cos K2t + c2 sin K2t)]

i = e–200t [c1 cos 979.8t + c2 sin 979.8t)] A

At t

i = 0 = (1) [c1 cos 0 + c2 sin 0]

\ c1 = 0

\ i = e–200t c2 sin 979.8t A

Differentiating, we have

di

dt
= c2 [e–200t 979.8 cos 979.8t + e–200t (– 200) sin 979.8t)]

At t = 0, the voltage across inductor is 100 V

\ L
di

dt
= 100

or
di

dt
= 2000

At t = 0
di

dt
= 2000 = c2 979.8 cos 0

\ c2 =
2000

979 8.
 = 2.04

The current equation is

i = e–200t (2.04 sin 979.8t) A

7.4.2 Sinusoidal Response of RLC Circuit

Consider a circuit consisting of resistance, inductance and capacitance in series 

as shown in Fig. 7.20. Switch S is closed at t = 0. At t = 0, a sinusoidal voltage 

V cos (w t + q) is applied to the 

RLC series circuit, where V is 

the amplitude of the wave and q

is the phase angle. Application 

of Kirchhoff’s voltage law to the 

circuit results in the following 

differential equation.

i t( ))

s
R

C

L

V t ++cos (( )w q

Fig. 7.20
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V cos (w t + q) = Ri + L
di

dt C
idt+ Ú

1
(7.32)

Differentiating the above equation, we get

R
di

dt
L
d i

dt
i C+ +

2

2
/ = –V w sin (w t + q)

D
R

L
D

LC
i

2 1
+ +Ê

ËÁ
ˆ
¯̃

= –
V

L

w
 sin (w t + q) (7.33)

assuming

ip = A cos (w t + q) + B sin (w t + q) (7.34)

i¢p = –Aw sin (wt + q) + Bw cos (w t + q) (7.35)

i¢¢p = –Aw2 cos (wt + q) – Bw2 sin (w t + q) (7.36)

Substituting ip, i¢p and i¢¢p in Eq. 7.33, we have

{–Aw2 cos (w t + q) – Bw2 sin (w t + q)} + 
R

L
 {–Aw sin (wt + q)

+ Bw cos (w t + q)} + 
1

LC
{A cos (w t + q) + B sin (w t

+ q)} = –
V

L

w
 sin (w t + q) (7.37)

Comparing both sides, we have

–Bw 2 – A
R

L

B

LC

w
+ = -

V

L

w

A
R

L
B

LC

w
w

Ê
ËÁ

ˆ
¯̃

+ -Ê
ËÁ

ˆ
¯̃

2 1
=
V

L

w
(7.38)

–Aw2 + B
R

L

A

LC

w
+ = 0

A
LC

B
R

L
w

w2 1
-Ê

ËÁ
ˆ
¯̃

- Ê
ËÁ

ˆ
¯̃

= 0 (7.39)

Solving Eqs 7.38 and 7.39, we get

A =

V
R

L

R

L LC

¥

Ê
ËÁ

ˆ
¯̃

- -Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

w

w
w

2

2

2

2

2

1
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B =

w w

w
w

2

2

2

2

1

1

-Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

- -Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

LC
V

L
R

L LC

Substituting the values of A and B in Eq. 7.34, we get

ip =

V
R

L

R

L LC

w

w
w

2

2

2

2

2
1Ê

ËÁ
ˆ
¯̃

- -Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

 cos (w t + q)

+

w w

w
w

2

2

2

2

1

1

-Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

- -Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

LC
V

L
R

L LC

 sin (w t + q) (7.40)

Putting M cos f =

V
R

L

R

L LC

w

w
w

2

2

2

2

2
1Ê

ËÁ
ˆ
¯̃

- -Ê
ËÁ

ˆ
¯̃

and M sin f =

V
LC

L
R

L LC

w w

w
w

2

2

2

2

1

1

-Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

- -Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

M and f we divide one equation by the other

or
M

M

sin

cos

f

f
= tan f = 

w
w

L
C

R

-
Ê
ËÁ

ˆ
¯̃

1

f = tan–1 w
w

L
C

R-
Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

1

Squaring both equations and adding, we get

M
2 cos2 f + M2 sin2 f =

V

R
C

L

2

2

2

1
+ -

Ê
ËÁ

ˆ
¯̃w

w
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\ M =
V

R
C

L
2

2

1
+ -

Ê
ËÁ

ˆ
¯̃w

w

The particular current becomes

ip =
V

R
C

L

t
C

L

R
2

2

1

1

1

+ -
Ê
ËÁ

ˆ
¯̃

+ +
-

Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

-

w
w

w q
w

w

cos tan (7.41)

The complementary function is similar to that of DC series RLC circuit. 

D
R

L
D

LC

2 1
+ +Ê

ËÁ
ˆ
¯̃

= 0 (7.42)

The roots of Eq. 7.42, are

D1, D2 =
-

± Ê
ËÁ

ˆ
¯̃

-
R

L

R

L LC2 2

1
2

By assuming K1 = -
R

L2
 and K2 = 

R

L LC2

1
2

Ê
ËÁ

ˆ
¯̃

-

\ D1 = K1 + K2 and D2 = K1 – K2

K2 becomes positive, when (R/2L)2 > 1/LC

The roots are real and unequal, which gives an overdamped response. Then 

Eq. 7.42 becomes

[D – (K1 + K2)] [D – (K1 – K2)]i = 0

The complementary function for the above equation is

ic = c1e
(K1 + K2)t + c2e

(K1 – K2)t

Therefore, the complete solution is

i = ic + ip

  = c1e
(K1 + K2)t + c2e

(K1 – K2)t

+
V

R
C

L

t
CR

L

R
2

2

1

1

1

+ -
Ê
ËÁ

ˆ
¯̃

+ + -
Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

-

w
w

w q
w

w
cos tan

K2 becomes negative, when 
R

L LC2

1
2

Ê
ËÁ

ˆ
¯̃

<
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Then the roots are complex conjugate, which gives an underdamped response. 

Equation 7.42 becomes

[D – (K1 + jK2)] [D – (K1 – jK2)]i = 0

The solution for the above equation is

ic = eK1t [c1 cos K2t + c2 sin K2t]

Therefore, the complete solution is

i = ic + ip

\ i = e
K1t [c1 cos K2t + c2 sin K2t]

+
V

R
C

L

t
CR

L

R
2

2

1

1

1

+ -
Ê
ËÁ

ˆ
¯̃

+ + -
Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

-

w
w

w q
w

w
cos tan

K2 becomes zero, when 
R

L
LC

2
1

2

Ê
ËÁ

ˆ
¯̃

= /

Then the roots are equal which gives critically damped response. Then, 

Eq. 7.42 becomes (D – K1) (D – K1)i = 0.

The complementary function for the above equation is

ic = eK1t (c1 + c2t)

Therefore, the complete solution is i = ic + ip

\ i = e
K1t [c1 + c2t]

+
V

R
C

L

t
CR

L

R
2

2

1

1

1

+ -
Ê
ËÁ

ˆ
¯̃

+ + -
Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

-

w
w

w q
w

w
cos tan

In the circuit shown in Fig. 7.21, determine the complete 

solution for the current, when the switch is closed at t = 0. Applied voltage is 

v(t) = 400 cos 500
4

t +
Ê
ËÁ

ˆ
¯̃

p
. Resistance R = 15 W, inductance L = 0.2 H and 

capacitance C = 3mF.

Fig. 7.21

Example 7.6
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Solution

By applying Kirchhoff’s voltage law to the circuit,

15 0 2
1

3 10 6
i t

di t

dt
( ) .

( )
+ +

¥ - Ú i(t)dt = 400 cos 500
4

t +Ê
ËÁ

ˆ
¯̃

p

Differentiating the above equation once, we get

15 0 2
3 10

2

6

di

dt

d i

dt

i
+ +

¥ -. = –2 ¥ 105 sin 500
4

t +Ê
ËÁ

ˆ
¯̃

p

(D 2 + 75D + 16.7 ¥ 105)i =
- ¥2 10

0 2

5

.
 sin 500

4
t +Ê

ËÁ
ˆ
¯̃

p

The roots of the characteristic equation are

D1 = –37.5 + j1290 and D2 = –37.5 – j1290

The complementary current

ic = e–37.5t (c1 cos 1290t + c2 sin 1290t)

Particular solution is

ip =
V

R
C

L

t
CR

L

R
2

2

1

1

1

+ -
Ê
ËÁ

ˆ
¯̃

+ + -
Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

-

w
w

w q
w

w
cos tan

\ ip = 0.71 cos 500
4

88 5t + + ∞Ê
ËÁ

ˆ
¯̃

p
.

The complete solution is

i = e–37.5t (c1 cos 1290t + c2 sin 1290t) + 0.71 cos (500t + 45° + 88.5°)

At t = 0, i0 = 0

\ c1 = –0.71 cos (133.5°) = + 0.49

Differentiating the current equation, we have

di

dt
= e

–37.5t (–1290c1 sin 1290t + c2 1290 cos 1290t) – 37.5e–37.5t (c1 cos

 1290t + c2 sin 1290t) – 0.71 ¥ 500 sin (500t + 45° + 88.5°)

At t = 0, 
di

dt
 = 1414

\ 1414 = 1290c2 – 37.5 ¥ 0.49 – 0.71 ¥ 500 sin (133.5°)

1414 = 1290c2 – 18.38 – 257.5

\ c2 = 1.31

The complete solution is

i = e–37.5t (0.49 cos 1290t + 1.31 sin 1290t) + 0.71 cos (500t + 133.5°)
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7.5 LAPLACE TRANSFORM METHODS

7.5.1 Definition of Laplace Transforms

The Laplace transform is used to solve differential equations and corresponding 

engineering, particularly when the driving function has discontinuities and 

appears for a short period only.

In circuit analysis, the input and output functions do not exist forever in time. 

f (t) u(t). The integral for the 

Laplace transform is taken with the lower limit at t = 0 in order to include the 

effect of any discontinuity at t = 0.

Consider a function f (t

t ≥ 0. The Laplace transform is then

L [ f (t)] = F(s) = Ú e–st f (t) u(t) dt = 

0

Ú f (t) e–st dt

f (t) is a continuous function for t ≥ 0 multiplied by e–st which is integrated with 

respect to t between the limits 0 and . The resultant function of the variable s is 

called Laplace transform of f(t). Laplace transform is a function of independent 

variable s corresponding to the complex variable in the exponent of e–st. The 

complex variable s is, in general, of the form s = s + jw and s and w being the real 

and imaginary parts, respectively. For a function to have a Laplace transform, it 

must satisfy the condition 

0

Ú f (t) e–st dt < . Laplace transform changes the time 

domain function f (t) to the frequency domain function F(s). Similarly, inverse

Laplace transformation converts frequency domain function F(s) to the time 

domain function f (t) as shown below.

L
–1[F(s)] = f (t) = 

1

2p j
j

j

-

+

ÚF (s) est ds

Here, the inverse transform involves a complex integration. f (t) can be represented 

as a weighted integral of complex exponentials. We will denote the transform 

relationship between f (t) and F(s) as

f (t)
L¨ Ææ F (s)

7.5.2 Properties of Laplace Transforms

Laplace transforms have the following properties.

(a) Superposition Property—The Laplace transform of the sum of the two or 

more functions is equal to the sum of transforms of the individual function,

  i.e. if f1(t)
L¨ Ææ F1(s) and



Transients 7.27

   f2(t)
L¨ Ææ F2(s), then

   L [ f1(t) ± f2(t)] = F1(s) ± F2(s)

  Consider two functions f1(t) and f2(t). The Laplace transform of the sum or 

difference of these two functions is given by

   L{ f1(t) ± f2(t)} =

0

Ú { f1(t) ± f2(t)}e–st dt

   =

0

Ú f1(t)e–st dt ± 
0

Ú f2(t)e–st dt

   = F1(s) ± F2(s)

  \ L{ f1(t) ± f2(t)} = F1(s) ± F2(s)

(b) Linearity property—If K is a constant, then

  L [Kf (t)] = K L [ f (t)] = K F(s)

  Consider a function f (t) multiplied by a constant K. The Laplace transform 

of this function is given by

   L [Kf (t)] =

0

Ú Kf (t)e–st dt

   = K

0

Ú f (t)e–st dt = KF(s)

  If we can use these two properties jointly, we have

   L [K1 f1(t) + K2 f2(t)] = K1 L [ f1(t)] + K2 L [ f2(t)]

   = K1F1(s) + K2F2(s)

7.5.3 Laplace Transform of Some Useful Functions

(i) The unit step function f (t) = u(t)

  where u(t) = 1 for t > 0

   = 0 for t < 0

   L [ f (t)] =

0

Ú u(t)e–st dt

   =

0

Ú1e–st dt = 
- ÈÎ ˘̊ =-1 1

0s

e

s

st

   L [u(t)] =
1

s
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(ii) Exponential function f (t) = e–at

   L (e–at) =

0

Ú e–at e–st dt

   =

0

Ú e–(s+a)t =
-
+

È
Î

˘
˚

- +( )1

0s a
e

s a t

   =
1

s a+

  \ L [e–at] =
1

s a+
(iii) The cosine function: cos w t

   L (cos wt) =

0

Ú cos w t e–st dt

   =

0
2

-
-

Ú
+È

Î
Í
Í

˘

˚
˙
˙

e
e e

dtst
j t j tw w

   =
1

2
0 0

- -( ) - +( )Ú Ú+
È

Î
Í
Í

˘

˚
˙
˙

e dt e dt
s j t s j tw w

   =
1

2

1

2
0 0

-
-

È

Î
Í
Í

˘

˚
˙
˙

+ -
+

È

Î
Í
Í

˘

˚
˙
˙

- -( ) - +( )
e

s j

e

s j

s j t s j tw w

w w

   =
1

2

1 1

2 2s j s j

s

s-
+

+
È

Î
Í

˘

˚
˙ =

+w w w

  \ L (cos w t) =
s

s2 2+ w

(iv) The sine function: sin w t

   L (sin wt) =

0

Ú sin wt e
–st

dt

   =

0

1

2

-Ú e
j

st
 [e jwt

– e– jwt
]dt

   =
1

2
0 0

j
e dt e dt

s j t s j t- -( ) - +( )Ú Ú-
È

Î
Í
Í

˘

˚
˙
˙

w w
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   =
1

2
0 0

j

e

s j

e

s j

s j t s j t

-
-( )

È

Î
Í
Í

˘

˚
˙
˙

+
+( )

È

Î
Í
Í

˘

˚
˙
˙

Ï
Ì
Ô - -( ) - +( )w w

w w
ÓÓÔ

¸
˝
Ô

Ǫ̂

   =
1

2

1 1

2 2j s j s j s-
-

+
È

Î
Í

˘

˚
˙ =

+w w

w

w

  \ L (sin wt) =
w

ws2 2+

(v) The function tn, where n is a positive integer

   L (tn) =

0

-Ú t e dt
n st

   =
t e

s

e

s
nt dt

n st st

n

- -
-

-

È

Î
Í
Í

˘

˚
˙
˙

-
-Ú

0 0

1

   =
n

s
0

Ú e
–st

t
n–1

dt

   =
n

s
L (tn–1)

  Similarly, L (tn–1) =
n

s

-1
L (t n–2)

  By taking Laplace transformations of t n–2, tn–3,.... and substituting in the 

above equation, we get

   L (tn) =
n

s

n

s

n

s s s
t
n n- - -1 2 2 1

L ( )

   =
–

=
–

¥ =
–

+
n

s
t

n

s s

n

s
n n n

L ( )0
1

1

  \ L (t) = 1/s2

(vi) The hyperbolic sine and cosine function

   L (cos h at) =

0

Ú cos h at e
–st

dt

   =

0
2

-
-Ú

+È

Î
Í
Í

˘

˚
˙
˙

e e
e dt

at at

st

   =
1

2
0

Ú e
–(s–a)t

dt + 
1

2
0

Ú e
–(s+a) t

dt

   =
1

2

1 1

2

1
2 2( ) ( )s a s a

s

s a-
+

+
=

-
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  Similarly,

   L (sin h at) =

0

Ú sin h (at)e–st
dt

   =

0
2

-
-Ú

-È

Î
Í
Í

˘

˚
˙
˙

e e
e dt

at at

st

   =
1

2

1

2 2 2( ) ( )s a s a

a

s a-
-

+
=

-

Find the Laplace transform of the function

f (t) = 4t 3 + t2 – 6t + 7

Example 7.7

Solution

L (4t3 + t2 – 6t + 7) = 4 L (t 3) + L (t2) – 6L (t) + 7L (1)

= 4 ¥
–

+
–

-
–

+
3 2

6
1

7
1

4 3 2s s s s

=
24 2 6 7
4 3 2s s s s

+ - +

Find the Laplace transform of the function f (t) = cos2 tExample 7.8

Solution

L (cos2
t) = L

1 2

2

+Ê
ËÁ

ˆ
¯̃

cos t

= L L
1

2

2

2

1

2

Ê
ËÁ

ˆ
¯̃

+ Ê
ËÁ

ˆ
¯̃

=
cos t

 [L (1) + L (cos 2t)]

=
1

2 2 4

2 4

2 4
2

2

2s

s

s

s

s s
+

+( ) =
+

+( )

Find the Laplace transform of the function

f (t) = 3t 4 – 2t3 + 4e–3t – 2 sin 5t + 3 cos 2t

Example 7.9

Solution

L (3t4 – 2t3 + 4e–3t – 2 sin 5t + 3 cos 2t)

= 3L (t4) – 2L (t3) + 4L (e–3t) – 2L (sin 5t) + 3L (cos 2t)
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= 3
–

-
–

+
+

- ¥
+

+ ¥
+

4
2

3
4

1

3
2

5

25
3

45 4 2 2s s s s

s

s

=
72 12 4

3

10

25

3

45 4 2 2s s s s

s

s
- +

+
-

+
+

+

7.5.4 Laplace Transform Theorems

(a) Differentiation Theorem If a function f (t) is piecewise continuous, then the 

Laplace transform of its derivative 
d

dt
 [ f (t)] is given by

L [ f ¢(t)] = sF(s) – f (0)

Proof

L [ f ¢(t)] =

0

Ú f ¢(t)e–st dt

=

0

Ú e–st d{f (t)}

Integrating by parts, we get

= e f tst-ÈÎ ˘̊ + Ú( )
0

0

se–st f (t) dt

= – f (0) + s

0

Ú e–st f (t) dt

= – f (0) + sF(s)

Hence we have

L [ f ¢(t)] = sF(s) – f (0)

This is applicable to higher order derivatives also. The Laplace transform of 

second derivative of f (t) is

L [ f ¢¢(t)] = L
d

dt
f t¢( )È

ÎÍ
˘
˚̇

( )

= s L [ f ¢(t)] – f ¢(0) = s{sF(s) – f (0)} – f ¢(0)

= s2F(s) – sf (0) – f ¢(0)

where f ¢ f (t)

Similarly,

L [ f ¢¢¢(t)] = s3 F(s) – s2 f (0) – sf ¢(0) – f ¢¢(0)
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In general, the nth order derivative is given by

L ( f n(t)] = snF(s) – sn–1f (0) – sn–2 f ¢(0)  – f n–1 (0)

Using the formula for Laplace transform of derivatives, obtain 

the Laplace transform of (a) sin 3t, (b) t3
Example 7.10

Solution

(a) Let f (t) = sin 3t

  Then f ¢ (t) = 3 cos 3t,f ¢¢ (t) = –9 sin 3t

   L [ f ¢¢(t)] = s2[L f (t)] – sf (0) – f ¢ (0) (7.43)

   f (0) = 0, f ¢ (0) = 3

   L [ f ¢¢ (t)] = L [–9 sin 3t]

  Substituting in Eq. 7.43, we get

   L [–9 sin 3t] = s2
L [ f(t)] – 3

   L [–9 sin 3t] – s2 [L (sin 3t)] = –3

   L [(s2 + 9) sin 3t] = 3

  \ L (sin 3t) =
3

92s +
(b) Let f (t) = t3

  Differentiating successively, we get

   f ¢(t) = 3t2, f¢¢ (t) = 6t, f ¢¢¢(t) = 6

   By using differentiation theorem, we get

   L [ f ¢¢¢(t)] = s3
L [ f (t )] – s2 f (0) – sf ¢(0) – f ¢¢(0)

   Substituting all initial conditions, we get

   L [ f ¢¢¢(t)] = s3
L [ f (t)]

   L  [6] = s3
L [ f (t)]

  \
6

s
= s3

L [ f (t)]

   F(s) = L [ f (t)] = 
6
4s

(b) Integration Theorem If a function f(t) is continuous, then the Laplace

  transform of its integral Ú f (t)dt is given by

   L

0

1
t

f t dt
s
F sÚ

È

Î
Í
Í

˘

˚
˙
˙

=( ) ( )

  Proof

   L

0 0 0

t t

stf t dt f t dt e dtÚ Ú Ú
È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í
Í

˘

˚
˙
˙

-( ) ( )
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  Integrating by parts, we get

   =
e

s
f t dt

s
e f t dt

st t

st
-

-

-

È

Î
Í
Í

˘

˚
˙
˙

+Ú Ú
0 0 0

1
( ) ( )

   L L

0

1
t

f t dt
s

f t
F s

sÚ
È

Î
Í
Í

˘

˚
˙
˙

= [ ] =( ) ( )
( )

Find the Laplace transform of ramp function r(t) = t.Example 7.11

Solution

We know that 

0

t

Ú u(t) = r (t) = t

Integration of unit step function gives the ramp function.

L [r (t)] = L

0

t

u t dtÚ
È

Î
Í
Í

˘

˚
˙
˙

( )

Using the integration theorem, we get

L

0

t

u t dtÚ
È

Î
Í
Í

˘

˚
˙
˙

( ) =
1 1

2
s

u t
s

L ( )[ ] =

since L [u(t)] =
1

s

(c) Differentiation of Transforms If the Laplace transform of the function f (t)

exists, then the derivative of the corresponding transform with respect to 

s in the frequency domain is equal to its multiplication by t in the time 

domain.

  i.e. L [tf (t)] =
-d

ds
F(s)

  Proof

   
d

ds
F(s) =

d

ds
0

Ú f (t) e–st dt

   Since s and t are independent of variables, and the limits 0,  are constants 

not depending on s, we can differentiate partially with respect to s within 

the integration and then integrate the function obtained with respect to t.

   
d

ds
F(s) =

d

ds
0

Ú [ f (t) e–st] dt
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   =

0

Ú f (t) [–te–st]dt = –

0

Ú {tf (t)}e–st dt = –L [tf (t)]

  Hence L [tf (t)] = –
d

ds
F(s)

Find the Laplace transform of function

f (t) = t sin 2t

Example 7.12

Solution

Let f1(t) = sin 2t

L [f1(t)] = L [sin 2t] = F1(s)

where F1(s) =
2

42s +

L (tf1(t)) = L (t sin 2t) = 
-

+

È

Î
Í

˘

˚
˙ = +

+( )
d

ds s

s

s

2

4

4

4
2

2
2

(d) Integration of transforms If the Laplace transform of the function f (t)

exists, then the integral of corresponding transform with respect to s in the 

complex frequency domain is equal to its division by t in the time domain.

  i.e. L
f t

t
s

( )È
ÎÍ

˘
˚̇

= Ú F(s)ds

  Proof If f (t) ´ F(s)

   F(s) = L [ f (t)] = 

0

Ú f (t)e–st dt

  Integrating both sides from s to 

   

s

Ú F(s)ds =

s

stf t e dt-Ú Ú
È

Î
Í
Í

˘

˚
˙
˙

0

( ) ds

   By changing the order of integration, we get

   =

0

Ú f (t)

s

ste ds-Ú
È

Î
Í
Í

˘

˚
˙
˙

 dt

   =

0

Ú f (t)
e

t

st-Ê

ËÁ
ˆ

¯̃
 dt

   =

0

-Ú È
ÎÍ

˘
˚̇

= È
ÎÍ

˘
˚̇

f t

t
e dt

f t

t

st( ) ( )
L

  \
0

Ú F(s)ds = L
f t

t

( )È
ÎÍ

˘
˚̇
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Find the Laplace transform of the function

f (t) = 
2 2- -e

t

t

Example 7.13

Solution

Let f1(t) = 2 – 2e–2t then

L [ f1(t)] = L (2 – 2e–2t) = L (2) – L (2e–2t) = 
2 2

2s s
-

+

=
2 4 2

2

4

2

s s

s s s s

+ -
+

=
+( ) ( )

Hence L
2 2 2-È

Î
Í
Í

˘

˚
˙
˙

-
e

t

t

=

s

Ú F1(s) ds

=

s
s sÚ +( )

4

2
 ds

By taking partial fraction expansion,

we get
4

2s s( )+
=

A

s

B

s s s
+

+
= -

+2

2 2

2

\ L
2 2-È

Î
Í
Í

˘

˚
˙
˙

-
e

t

t

= L

s

t

s s

e ds
s
ds

s
ds

-Ú Ú Ú-ÈÎ ˘̊ = -
+

2 2
2 2

2

2

= 2 2 2log logs s
s

- +( )ÈÎ ˘̊

= 2
1

1 2
log

/+
È

Î
Í

˘

˚
˙

s
s

 = – 2 log 
s

s +
Ê
ËÁ

ˆ
¯̃2

L
2 2 2-Ê

ËÁ
ˆ

¯̃

-
e

t

t

= 2 log 
s

s

+Ê
ËÁ

ˆ
¯̃

2

(e) First Shifting Theorem If the function f (t) has the transform F(s), then the 

Laplace transform of e–at f (t) is F(s + a)

  Proof F(s) = 

0

Ú f (t) e–st dt

  and, therefore,

   F(s + a) =

0

Ú f (t)e–(s+a)t dt

   =

0

Ú e–at f (t)e–st dt = L [e–at f (t)]
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  \ F(s + a) = L [e–at f (t)]

  Similarly, we have

   L{eat f (t)} = F(s – a)

Find the Laplace transform of eat sin btExample 7.14

Solution

Let f (t) = sin bt

L [f (t)] = L [sin bt ] = 
b

s b
2 2+

since L [eat f (t)] = F(s – a)

L [eat sin bt] =
b

s a b-( ) +2 2

Find the Laplace transform of (t + 2)2 etExample 7.15

Solution

Let f (t) = (t + 2)2 = t2 + 2t + 4

L [ f (t)] = L [t 2 + 2t + 4] = 
2 2 4

3 2s s s
+ +

since L [eat f (t)] = F(s – a)

L [et f (t)] =
2

1

2

1

4

1
3 2

s s s-( )
+

-( )
+

-

(f) Second Shifting Theorem If the function f (t) has the transform F(s), then 

the Laplace transform of f (t – a)u (t – a) is e–as F(s).

  Proof L [ f (t – a) u(t – a)]

   =

0

Ú [ f (t – a) u(t – a)]e–st dt

  Since f (t – a) u(t – a) = 0 for t < a

   = f (t – a) for t > a

  \ L [ f (t – a) u(t – a)] =

0

Ú f (t – a)e–st dt

  Put t – a = t then t + a = t

   dt = dt
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  Therefore, the above becomes

   L [ f (t – a) u(t – a)] =

0

Ú f (t)e–s(t+a)dt

   = e–as

0

Ú f (t)e–st dt = e–as F(s)

  \ L [f (t – a) u(t – a)] = e–as F(s)

If u(t) = 1, for t ≥ 0 and u(t) = 0 for t < 0, determine the Laplace 

transform of [u(t) – u(t – a)].

Example 7.16

Solution

The function f(t) = u(t) – u(t – a) is shown in Fig. 7.22.

L [ f (t)] = L [u(t) – u(t – a)]

= L [u(t)] – L [u(t – a)]

=
1

s
 – e–as 1

s
 = 

1

s
 (1 – e–as)

L [ f (t)] =
1

s
(1 – e–as)

(g) Initial Value Theorem If the function f (t) and its derivative f ¢(t) are 

Laplace transformable then Lt
t Æ 0

 f (t) = Lt
s

sF(s)

  Proof We know that

   L [ f ¢(t)] = s[L (f (t))] – f (0)

   By taking the limit s Æ  on both sides

   Lt
s

L [ f ¢(t)] = Lt
s

[sF(s) – f (0)]

   Lt
s Ú

0

f ¢ (t)e–st dt = Lt
s

[sF(s) – f (0)]

   At s Æ  the integration of LHS becomes zero

  i.e.

0

Ú Lt
s

[ f ¢(t) e–st] dt = 0

   0 = Lt
s

sF(s) – f (0)

  \ Lt
s

sF(s) = f (0) = Lt
t Æ 0

f (t)

Fig. 7.22



7.38 Network Analysis

Verify the initial value theorem for the following functions

(i) 5e–4t (ii) 2 – e5t

Example 7.17

Solution

(i) Let f (t) = 5e–4t

   F(s) =
5

4s +

   sF(s) =
5

4

s

s +

   Lt
s

sF(s) = Lt
s s+

5

1 4/
 = 5

   Lt
t Æ 0

f (t) = Lt
t Æ 0

 5e–4t = 5

  Hence the theorem is proved.

(ii) Let f (t) = 2 – e5t

   F(s) = L (2 – e5t) = L (2) – L [e5t]

   =
2 1

5

10

5s s

s

s s
-

-
=

-
-( )

   sF(s) =
s

s

-
-
10

5

   Lt
s

sF(s) = Lt
s

1 10

1 5

-
-

Ê
ËÁ

ˆ
¯̃

/

/

s

s
 = 1

   Lt
t Æ 0

(2 – e5t) = 1

  Hence initial value theorem is proved.

(h) Final Value Thorem If f (t) and f ¢(t) are Laplace transformable, then 

  Lt
t

f (t) = Lt
s Æ 0

sF(s)

  Proof We know that

   L [ f ¢(t)] = sF(s) – f (0)

   By taking the limit s Æ 0 on both sides, we have

   Lt
s Æ 0

L [ f ¢(t)] = Lt
s Æ 0

 [sF(s) – f (0)]

   Lt
s

stf t e dt
Æ

-Ú ¢
0

0

( ) = Lt
s Æ 0

 [sF(s) – f (0)]

  \
0

Ú f ¢(t)dt = Lt
s Æ 0

[sF(s) – f (0)]

   f t( )ÈÎ ˘̊
0

= Lt
t

f (t) – Lt
t Æ 0

f (t) = Lt
s Æ 0

sF(s) – f (0)
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   Since f (0) is not a function of s, it gets cancelled from both sides.

  \ Lt
t

f (t) = Lt
s Æ 0

sF(s)

Verify the final value theorem for the following functions.

(i) 2 + e–3t cos 2t (ii) 6(1 – e–t)

Example 7.18

Solution

(i) Let f (t) = 2 + e–3t cos 2t

   F(s) =
2 3

3 42s

s

s
+

+
+ +
( )

( )

   sF(s) = 2 + 
s

s

s

s

2

2 2 2 23 4

3

3 4( ) ( )+ +
+

+ +

   Lt
s Æ 0

sF(s) = Lt
s

s s

sÆ
+

+
+ +

È

Î
Í

˘

˚
˙

0 2 2
2

3

3 4

( )

( )
 = 2

   Lt
t

f (t) = Lt
t

 (2 + e–3t cos 2t) = 2

(ii) Let f (t) = 6(1 – e–t)

   F(s) =
6 6

1

6

1s s s s
-

+
=

+( )

   sF(s) =
6

1s +
   Lt

s Æ 0

 sF(s) = 6

   Lt
t

f (t) = Lt
t

 6(1 – e–t) = 6

7.5.5 The Inverse Transformation

So far, we have discussed Laplace transforms of a functions f (t). If the function 

in frequency domain F(s) is given, the inverse Laplace transform can be 

determined by taking the partial fraction expansion which will be recognisable 

as the transform of known functions.

If F(s) = 
2

1 5( ) ( )s s+ +
, find the function f (t).

Example 7.19
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Solution

First we divide the given function into partial fractions

F(s) =
2

1 5( ) ( )s s+ +
2

1 5( ) ( )s s+ +
=

A

s

B

s+
+

+1 5

2 = A(s + 5) + B(s + 1)

Comparing both sides

A + B = 0

5A + B = 2

From which A =
1

2
, B = –

1

2

Hence
2

1 5( ) ( )s s+ +
=

1

2 1

1

2 5( ) ( )s s+
+

-
+

L
–1 2

1 5( ) ( )s s+ +
È

Î
Í

˘

˚
˙ = L L

- -

+
È

Î
Í

˘

˚
˙ -

+
È

Î
Í

˘

˚
˙

1 11

2 1

1

2 5( ) ( )s s

We know that L
-

+
Ê
ËÁ

ˆ
¯̃

1 1

1s
= e–t

and L
-

+
Ê
ËÁ

ˆ
¯̃

1 1

5s
= e–5t

\ L
–1[F(s)] = f (t) = 

1

2
e–t – 

1

2
e–5t

7.5.6 Laplace Transform of Periodic Functions

Periodic functions appear in many practical problems. Let function f (t) be a 

f (t) = f (t + T ) for all t > 0 where 

T is period of the function.

L [ f(t)] =

0

T

Ú f (t) e–st dt + 

T

T2

Ú f (t)e–st dt +  + 

nT

n T+( )

Ú
1

f (t)e–st dt +

=

0

T

Ú f (t) e–st dt + 

0

T

Ú f (t) e–st e–sT dt +  + 

0

T

Ú f (t) e–st e–nsT dt +

= (1 + e–sT + e–2sT +  + e–nsT + )

0

T

Ú f (t) e–st dt

=
1

1- -
e

sT

0

T

Ú f (t)e–st dt
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Find the transform of the waveform shown in Fig. 7.23

Fig. 7.23

Example 7.20

Solution

Here the period is 2T

\ L [ f (t)] =
1

1 2

0

2

-

È

Î
Í
Í

˘

˚
˙
˙-

-Úe
f t e dt

sT

T

st( )

=
1

1 2

0

2

-
+ -( )

È

Î
Í
Í

˘

˚
˙
˙-

- -Ú Úe
Ae dt A e dt

sT

T

st

T

T

st

=
1

1 2
0

2

-
-Ê

ËÁ
ˆ
¯̃

+ Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙-

- -

e

A

s
e

A

s
e

sT

st

T

st

T

T

=
1

1
1

2

2

-
- -( ) + -( )È

ÎÍ
˘
˚̇-

- - -

e

A

s
e

A

s
e e

sT

sT sT sT

=
1

1
1

1

12

2

-
-( )È

ÎÍ
˘
˚̇

=
-
+

Ê

ËÁ
ˆ

¯̃-
-

-

-e

A

s
e

A

s

e

esT

sT
sT

sT

\ L [ f (t)] =
A

s

e

e

sT

sT

1

1

-
+

Ê

ËÁ
ˆ

¯̃

-

-

7.5.7 The Convolution Integral

If F(s) and G(s) are the Laplace transforms of f(t) and g(t), then the product of 

F(s) G(s) = H(s), where H(s) is the Laplace transform of h(t) given by f (t) * g(t)

h(t) = f (t) * g(t) = 

0

t

Ú f (t) g(t – t)dt

Proof Let

0

t

Ú f (t) g(t – t) dt = h(t)
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L [h(t)] =

0

Ú e–st h(t) dt

=

0 0

-Ú Úe st

t

f (t) g(t – t) dt dt

=

0 0

Ú Ú
t

e–st f (t) g(t – t) dt dt

By changing the order of integration of the above equation, we have

L [h(t)] =

0

Ú Ú
t

e–st f (t) g(t – t) dt dt

=

0

Ú f (t)

t

t t-Ú -
È

Î
Í
Í

˘

˚
˙
˙

e g t dt dst ( )

Put t – t = y, and we get

L [h(t)] =

0

Ú f (t)

0

- +Ú
È

Î
Í
Í

˘

˚
˙
˙

e g y dy ds y( ) ( )t t

=

0

Ú f (t) e–st[G(s)] dt

= G(s) ◊ F(s)

Therefore, L [h(t)] = H(s) = G(s) ◊ F(s)

h(t) = 

0

t

Ú f (t) g(t – t)dt f (t) and g(t) and is 

expressed symbolically as

h(t) = f (t) * g(t)

This theorem is very useful in frequency domain analysis.

By using the convolution theorem, determine the inverse 

Laplace transform of the following functions.

(i)
1

2 2 2s s a-( )
(ii)

1

12s s( )+

Example 7.21
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Solution

(i) Let H(s) =
1

2 2 2
s s a-( )  and

  let F(s) =
1

2s
 and G(s) = 

1

2 2
s a-

  We know f(t) = L
–1[F(s)] = L –1 1

2s

Ê
ËÁ

ˆ
¯̃

 = t

   g(t) = L
–1[G(s)] = L –1 1

2 2
s a-

Ê

ËÁ
ˆ

¯̃
 = 

1

a
 sin h (at)

  Hence

   L–1 1

2 2 2
s s a-( )

È

Î
Í
Í

˘

˚
˙
˙

=

0

t

Ú g(t) f (t – t)dt

   =
1

0
a

t

Ú (t – t) sin h (a t)dt

  

1
1

0 0
a

t h a d h a d

t t

-( ) ( ) - -( ) ( )
È

Î
Í
Í

˘

˚
˙
˙Ú Ú Út t t t tsin sin

   =
1

0 0
a

t
ha

a

ha

a
d

t t

-( ) ˆ
¯̃

+
È

Î
Í
Í

˘

˚
˙
˙Út

t t
t

cos cos

   =
1

0a

t

a

ha

a

t-
+ ˆ

¯̃

È

Î
Í
Í

˘

˚
˙
˙

sin t

   =
1
2a

 [sin h at – t]

(ii) Let H(s) =
1

12s s( )+
 and F(s) = 

1
2s

G(s) = 
1

1s +

  We know that f (t) = L
–1 [F(s)] = t

   g(t) = L
–1 [G(s)] = e–t

   h(t) = L
–1[H(s)] = 

0

t

Ú g(t) f (t – t) dt

   =

0

t

Ú e–t (t – t) dt
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   = (t – t)(–e–t)t
0 – 

0

t

Ú (–1) (– e–t )dt

   = t – 

0

t

Ú e–t dt

   = t – (–e–t)t
0 = t + e–t – 1

7.5.8 Partial Fractions

Most transform methods depend on the partial fraction of a given transform 

function. Given any solution of the form N(s) = P(s)/Q(s), the inverse Laplace 

transform can be determined by expanding it into partial fractions. The partial 

fractions depend on the type of factor. It is to be assumed that P(s) and Q(s) have 

P(s) is lower than 

that of Q(s).

Case 1 When roots are real and simple

In this case N(s) = P(s)/Q(s)

where Q(s) = (s – a)(s – b)(s – c)

Expanding N(s) into partial fractions, we get

N(s) =
A

s a

B

s b

C

s c( ) ( ) ( )-
+

-
+

-
(7.44)

To obtain the constant A, multiplying Eq. 7.44 with (s – a) and putting s = a, we 

get

N (s)(s – a) |s =a = A

Similarly, we can get the other constants

B = (s – b)N(s) |s = b

C = (s – c)N(s) |s = c

Determine the partial fraction expansion for N(s) =
s s

s s s

2 1

5 3

+ +
+ +( )( )

.
Example 7.22

Solution

N(s) =
s s

s s s

2 1

5 3

+ +
+ +( )( )
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s s

s s s

2 1

5 3

+ +
+ +( )( )

=
A

s

B

s

C

s
+

+
+

+5 3

A = sN(s)|s=0 = 
s s

s s
s

2

0

1

5 3

+ +
+ +

=
( )( )

 = 
1

15

B = (s + 5) N(s) |s= –5 =
s s

s s
s

2

5

1

3

+ +
+

= -
( )

=
( ) ( )

( ) ( )

25 5 1

5 5 3

21

10

+ - +
- - +

=  = 2.1

C = (s + 3) N(s)|s=–3 =
s s

s s
s

2

3

1

5

+ +
+

= -
( )

=
9 3 1

3 3 5

7

6

- +
- - +

=
-( ) ( )

 = –1.17

Case 2 When roots are real and multiple

In this case N(s) = P(s)/Q(s)

where Q(s) = (s – a)n Q1(s)

The partial fraction expansion of N(s) is

N(s) =
A

s a

A

s a

A

s a

P s

Q sn n

n0 1

1

1 1

1( ) ( ) ( )

( )

( )-
+

-
+ +

-
+-

-
(7.45)

where
P s

Q s

1

1

( )

( )
 = R(s) represents the remainder terms of expansion. To obtain 

the constant A0, A1, ..., An–1, let us multiply both sides of Eq. 7.45 by (s – a)n

Thus

(s – a)n
N(s) = N1(s) = A0 + A1(s – a)

+ A2(s – a)2 + ... + An–1 (s – a)n–1 + R(s) (s – a)n (7.46)

where R(s) indicates the remainder terms.

Putting s = a, we get

A0 = (s – a)n
N(s)|s =a

Differentiating Eq. 7.46 with respect to s, and putting s = a, we get

A1 =
d

ds
N s

s a

1( )
=

Similarly, A2 =
1

2

2

2 1
!

( )
d

ds
N s

s a=

In general, An =
1 1

n

d N s

ds

n

n

s a
!

( )

=
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Determine the partial fraction expansion for

N(s) = 
s

s s

-

+

5

2 2( )

Example 7.23

Solution

N(s) =
s

s s

-
+
5

2 2( )

N(s) =
s

s s

A

s

B

s

B

s

-
+

= +
+

+
+

5

2 2 22

0

2

1

( ) ( )

A = N(s)s |s =0 = 
s

s
s

-
+

=
-

=

5

2

5

42

0
( )

 = –1.25

N1(s) = (s + 2)2
N(s) = 

s - 5

2

B0 = N(s) (s + 2)2 |s= –2 = 
s

s

-

= -

5

2 2

=
-
-
7

2
 = 3.5

B1 =
d

ds
N s

s

1

2

( )
= -

=
d

ds s
s

1
5

2

-Ê
ËÁ

ˆ
¯̃

-=

= + =
= -

5 5

42

2
s

s

 = 1.25

Case 3 When roots are complex

Consider a function N (s) = 
P s

Q s s j s j

( )

( ) ( ) ( )1 - + - -a b a b

The partial fraction expansion of N(s) is

N(s) =
A

s j

b

s j

P s

Q s- -
+

- +
+

a b a b
1

1

( )

( )
(7.47)

where P1(s)/Q1(s) is the remainder term.

Multiplying Eq. 7.47 by (s – a – jb ) and putting s = a + jb, we get

A =
P j

Q j j

a b

a b b

+( )
+( ) +( )1 2
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Similarly, B =
P j

j Q j

a b

b a b

-( )
-( ) -( )2 1

In general, B = A* where A* is complex conjugate of A.

If we denote the inverse transform of the complex conjugate terms as f (t)

f (t) = L
–1 A

s j

B

s j- -
+

- +
È

Î
Í

˘

˚
˙

a b a b

= L
–1 A

s j

A

s j- -
+

- +
È

Î
Í

˘

˚
˙

a b a b

*

where A and A* are conjugate terms.

If we denote A = C + jD, then

B = C – jD = A*

\ f (t) = eat (Ae jb t + A* e–jbt)

Find the inverse transform of the function

F(s) = 
s

s s s

+

+ +( )
5

2 52

Example 7.24

Solution

F(s) =
s

s s s

+

+ +( )
5

2 5
2

By taking partial fractions, we have

F(s) =
s

s s s

+

+ +( )
5

2 5
2

  = 
A

s

B

s j

B

s j
+

+ -
+

+ +1 2 1 2

*

A = F(s)s|s= 0 = 
s

s s

+

+ +( )
5

2 5
2

 = 1

B = F(s)(s + 1 – j2) |s= –1+j2 = 
s

s s j
s j

+
+ +( )

= - +

5

1 2
1 2

=
4 2

1 2 4

+
- +( )

j

j j

=
2

2 1 2

2

2 4

1

2

+
- +( ) =

+
- -

=
-j

j j

j

j
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B* = F(s)(s + 1 + j2) |s= –1– j2

=
s

s s j
s j

+
+ -( )

= - -

5

1 2
1 2

=
- - +

- -( ) - - + -( )
1 2 5

1 2 1 2 1 2

j

j j j

=
4 2

1 2 4

4 2

4 8

2 2

4 2

1

2

-
+ +( )( ) =

-
-

=
-( )

- -( ) =
-j

j j

j

j

j

j

\ F(s) =
1 1

2 1 2

1

2 1 2s s j s j
-

+ -( ) -
+ +( )

The inverse transform of F(s) is f (t)

f(t) = L
–1 [F(s)] = L –1 1 1

2 1 2

1

2 1 2s s j s j
-

+ -( ) -
+ +( )

È

Î
Í
Í

˘

˚
˙
˙

  = L L L
- - -È

ÎÍ
˘
˚̇

-
+ -( )

È

Î
Í
Í

˘

˚
˙
˙

-
+ +

È

Î
Í

˘

˚
˙

1 1 11 1

2

1

1 2

1

2

1

1 2s s j s j

  = 1 – 
1

2
e

(–1+j2)t – 
1

2
e

(–1–j2)t

7.5.9  Transient Response Related to S-Plane—Solution

Using Laplace Transform Method

equations are formed by applying Kirchhoff’s laws to the circuit, then these 

differential equations can be easily solved by using Laplace transformation 

methods.

Consider a series RL circuit shown in Fig. 7.24.

Fig. 7.24

When the switch is closed at t = 0, the voltage V is applied to the circuit.
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By applying Kirchhoff’s laws, we get

Ri(t) + L
di

dt
= V (7.48)

Now, application of Laplace transform to each term gives,

RI(s) + L[sI(s) – i(0)] =
V

s

RI(s) + sL I(s) – Li(0) =
V

s
(7.49)

i(0) is the current passing through the circuit just before the switch is closed. 

When i(0) = 0, Eq. 7.49, becomes

RI(s) + sLI(s) =
V

s

I(s) =
V L

s s
R

L

/

+Ê
ËÁ

ˆ
¯̃

The current i(t) can be determined by taking inverse Laplace transform.

i(t) = L –1 [I(s)] = 
V

L s s R L
L

-

+( )
È

Î
Í
Í

˘

˚
˙
˙

1 1

/

1

s s R L+( )/
=
A

s

B

s R L
+

+ /

A =
1

0
s s R L

s
L

R
s

+( ) ¥ =
=

/

B =
1

s s R L
s

R

L

L

R
s R L

+( ) ¥ +Ê
ËÁ

ˆ
¯̃

=
-

= -
/

/

\ i(t) = L
–1[I(s)] = 

V

L

L

Rs

L

R s R L
L

- -
+( )

È

Î
Í
Í

˘

˚
˙
˙

1

/

=
V

L

L

R

L

R
e

R L t¥ -È
ÎÍ

˘
˚̇

-( ) ( / )1

=
V

L

L

R
¥  [1 – e–(R/L)t]

Current i(t) =
V

L
 [1 – e

–(R/L)t]
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In the circuit shown in Fig. 7.25, determine the current i (t) when 

the switch is changed from position 1 to 2. The switch is moved from position 1 

to 2 at time t = 0.

Fig. 7.25

Example 7.25

Solution

When the switch is at position 2, application of Kirchhoff’s law gives

10i(t) + 0.5 
di

dt
= 50 (7.50)

Taking Laplace transforms on both sides

10I(s) + 0.5[sI(s) – i(0)] =
50

s
(7.51)

Where i (0) is the current passing through RL circuit when switch is at 

position 1.

Therefore, the initial current is 10/10 = 1 A

i (0) = 1 A

Then Eq. 7.51, becomes

10I(s) + 0.5[sI(s) – 1] =
50

s

I(s)[10 + 0.5s] – 0.5 =
50

s

I(s) =
50 0 5

10 0 5

0 5 100

0 5 20

/ .

.

. ( )

. ( )

s

s s

s

s

+
+

=
+

+

=
s

s s

+
+
100

20( )

i(t) = L  
–1 [I(s)] = L –1 s

s s

+
+

È

Î
Í

˘

˚
˙

100

20( )

s

s s

+
+
100

20( )
=
A

s

B

s
+

+ 20

A + B = 1
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20A = 100

A = 5, B = –4

i(t) = L L
- -È

ÎÍ
˘
˚̇

+
-
+

È

Î
Í

˘

˚
˙

1 15

8

4

20s

i(t) = 5 – 4e–20t

In the circuit shown in Fig. 7.26, obtain the equations for i1(t)

and i2(t) when the switch is closed at t = 0.

Fig. 7.26

Example 7.26

Solution

When the switch is closed, 50 V source is applied to the circuit. By applying 

Kirchhoff’s law, we have

20i1(t) – 20i2(t) = 50 (7.52)

30i2(t) + 1 
di

dt

2  – 20i1(t) = 0 (7.53)

Taking Laplace transform on both sides, we get

20I1(s) – 20I2(s) =
50

s
– 20I1(s) + (30 + s) I2(s) = i2(0)

Since the current passing through the inductance just after the switch closed 

is zero, i2(0) = 0

20 20

20 30
1

2

-
- +

È
ÎÍ

˘
˚̇

È
ÎÍ

˘
˚̇( )

( )

( )s

I s

I s
=

50

0
s

È

Î

Í
Í

˘

˚

˙
˙

I1(s) =

50
20

0 30

20 20

20 30

s
s

s

-

+
-

- +

( )  = 
50 30

20 10

/ ( )

( )

s s

s

+
+

=
2 5 30

10

. ( )

( )

s

s s

+
+
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I2(s) =

20
50

20 0

20 20

20 30

s

s

-
-

- +

 = 

50
20

20 10

s

s

¥

+( )

=
50

10s s( )+
Taking partial fractions, we get

I1(s) =
2 5 30

10 10

. ( )

( )

s

s s

A

s

B

s

+
+

= +
+

=
+

-
+

7 5 5

10

.

s s

Taking inverse transform, we get 

i1(t) = L [I1(s)] = L –1 +È
ÎÍ

˘
˚̇

7 5.

s
– L

–1 5

10s +
È

Î
Í

˘

˚
˙

i1(t) = +7.5 – 5e–10t

Similarly, I2(s) =
50

10 10s s

A

s

B

s( )+
= +

+

I2(s) =
+

-
+

5 5

10s s

Taking inverse transform, we have

i2(t) = L
–1 [I2(s)] = L

–1 +Ê
ËÁ

ˆ
¯̃

5

s
 – L –1 5

10s +
Ê
ËÁ

ˆ
¯̃

i2(t) = +5 – 5e–10t

Solved Problems

7.1

changed from position 1 to position 2 at t = 0.

Fig. 7.27
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Solution

When the switch is at position 2, the current equation can be written by using 

Kirchhoff’s voltage law as

30i(t) + 0.2 
di t

dt

( )
= 0

D i+
Ê
ËÁ

ˆ
¯̃

30

0 2.
= 0

(D + 150)i = 0

\ i = c1e
–150t

At t = 0, the switch is changed to position 2, i.e. i(0) = c1.

At t = 0, the initial current passing through the circuit is the same as the current 

passing through the circuit when the switch is at position 1. At t = 0–, the switch is 

at position 1, and the current passing through the circuit i = 100/50 = 2 A.

At t = 0+, the switch is at position 2. Since the inductor does not allow sudden 

changes in current, the same current passes through the circuit. Hence the initial 

current passing through the circuit, when the switch is at position 2 is i (0+) = 2A.

\ c1 = 2 A

Therefore, the current i = 2e–150t

7.2

opened at t = 0.

Fig. 7.28

Solution

At t = 0, switch S is opened. By using Kirchhoff’s voltage law, the current equation 

can be written as

20i + 20i + 2
di

dt
= 0

40i + 2
di

dt
= 0

\ D + 20i = 0
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The solution for the above equation is

i = c1 e
–20t

When the switch has been closed for a time, since the inductor acts as short circuit 

for dc voltages, the current passing through the inductor is 2.5 A.

That means, just before the switch is opened, the current passing through the 

inductor is 2.5 A. Since the current in the inductor cannot change instantaneously, 

i(0+) is also equal to 2.5 A.

At t = 0 c1 = i(0+) = 2.5

i(t) = 2.5e–20t

7.3

opened at t = 0.

50 W5 Fm200 VV

s

i t( ))

Fig. 7.29

Solution

By using Kirchhoff’s voltage law, the current equation is given by

1

5 10
6¥ - Ú idt + 50i = 0

Differentiating the above equation once, we get

50
1

5 10
6

di

dt
+

¥ -
i = 0

\ D i+
¥

Ê

Ë
Á

ˆ

¯
˜-

1

250 10
6

= 0

\ i = c1 exp 
-

¥

Ê

Ë
Á

ˆ

¯
˜-

1

250 10
6
t (7.54)

At t = 0–, just before the switch S is opened, the voltage across the capacitor is 

200 V. Since the voltage across the capacitor cannot change instantly, it remains 

equal to 200 V at t = 0+. At that instant, the current through the resistor is

i(0+) =
200

50
 = 4 A
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In Eq. 7.54, the current is i(0+) at t = 0

\ c1 = 4 A

Therefore, the current equation is

i = 4 exp 
-

¥

Ê

Ë
Á

ˆ

¯
˜-

1

250 10
6
t A

7.4

is opened at t = 0.

10 W
5 W

10 W

50 VV

2 Fm

s

i t( ))

Fig. 7.30

Solution

By using Kirchhoff’s voltage law, the current equation is given by

1

2 10
6¥ - Ú idt + 5i + 10i = 0

Differentiating the above equation, we have

15

2 10
6

di

dt

i
+

¥ -
= 0

D i+
¥

Ê

Ë
Á

ˆ

¯
˜-

1

30 10
6

= 0

\ i = c1 exp 
-

¥

Ê

Ë
Á

ˆ

¯
˜-

1

30 10
6

t

At t = 0–, just before switch S is opened, the current through 10 ohms resistor is 

2.5 A. The same current passes through 10 W at t = 0+

\ i(0+) = 2.5 A

At t = 0 i(0+) = 2.5 A

\ c1 = 2.5

The complete solution is i = 2.5 exp 
-

¥

Ê

Ë
Á

ˆ

¯
˜-

1

30 10
6
t
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7.5

when the switch is closed at t = 0.

Fig. 7.31

Solution

By using Kirchhoff’s law, the differential equation when the switch is closed at

t = 0 is given by

20i + 0.1
di

dt
= 100

(D + 200)i = 1000

i = c1e
–200t + e–200t Ú 1000e

200t
dt

\ i = c1 e
–200t + 5

At t = 0–, the current passing through the circuit is i(0–) = 
100

50
 = 2 A. Since, the 

inductor does not allow sudden changes in currents, at t = 0+, the same current

passes through circuit.

\ i(0+) = 2 A

At t = 0 i(0+) = 2

\ c1 = –3

The complete solution is i = –3e
–200t + 5 A

7.6 The circuit shown in Fig. 7.32, consists of series RL elements with R = 150 W
and L = 0.5 H. The switch is closed when f = 30°. Determine the resultant 

current when voltage V = 50 cos (100t + f) is applied to the circuit at f = 30°.

Fig. 7.32
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Solution

By using Kirchhoff’s laws, the differential equation, when the switch is closed at 

f = 30° is

150i + 0.5
di

dt
= 50 cos (100t + f)

0.5Di + 150i = 50 cos (100t + 30°)

(D + 300)i = 100 cos (100t + 30°)

The complementary current ic = ce–300t

ip = A cos (100t + 30°) + B sin (100t + 30°)

Then i¢p = –100A sin (100t + 30°) + 100B cos (100t + 30°)

Substituting ip and i¢p
get

–100A sin (100t + 30°) + 100B cos (100t + 30°) + 300A cos

(100t + 30°) + 300B sin (100t + 30°) = 100 cos (100t + 30°)

–100A + 300B = 0

300A + 100B = 100

From the above equation, we get

A = 0.3 and B = 0.1

The particular current is

ip = 0.3 cos (100t + 30°) + 0.1 sin (100t + 30°)

\ ip = 0.316 cos (100t + 11.57°) A

The complete equation for the current is i = ip + ic

\ i = ce–300t + 0.316 cos (100t + 11.57°)

At t = 0, the current i0 = 0

\ c = –0.316 cos (11.57°) = –0.309

Therefore, the complete solution for the current is

i = –0.309e–300t + 0.316 cos (100t + 11.57°) A

7.7 The circuit shown in Fig. 7.33, consists of series RC elements with R = 15 W
and C = 100 m F. A sinusoidal voltage v = 100 sin (500t + f) volts is applied 

to the circuit at time corresponding to f = 45°. Obtain the current transient.

F

Fig. 7.33
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Solution

By using Kirchhoff’s laws, the differential equation is

15
1

100 10
6

i +
¥ - Ú idt = 100 sin (500t + f)

Differentiating once, we have

15
1

100 10
6

di

dt
i+

¥ -
= (100)(500) cos (500t + f)

D i+
¥

Ê

Ë
Á

ˆ

¯
˜-

1

1500 10
6

= 3333.3 cos (500t + f)

(D + 666.67)i = 3333.3 cos (500t + f)

The complementary function ic = ce–666.67t

ip = A cos (500t + 45°) + B sin (500t + 45°)

i¢p = –500 A sin (500t + 45°) + 500 B cos (500t + 45°)

Substituting ip and i¢p in the differential equation, we get

–500A sin (500t + 45°) + 500B cos (500t + 45°)

+ 666.67A cos (500t + 45°) + 666.67B sin (500t + 45°)

= 3333.3 cos (500t + f)

500B + 666.67A = 3333.3

666.67B – 500A = 0

A = 3.2; B = 2.4

Therefore, the particular current is

ip = 3.2 cos (500t + 45°) + 2.4 sin (500t + 45°)

ip = 4 sin (500t + 98.13°)

The complete equation for the current is

i = ic + ip

i = ce–666.67t + 4 sin (500t + 98.13°)

At t = 0, the differential equation becomes

15i = 100 sin 45°

i =
100

15
 sin 45° = 4.71 A

\ At t = 0

4.71 = c + 4 sin (98.13°)

\ c = 0.75
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The complete current is

i = 0.75 e–666.67t + 4 sin (500t + 98.13°)

7.8 The circuit shown in Fig. 7.34 consisting of series RLC elements with R = 

10 W, L = 0.5 H and C = 200 mF has a sinusoidal voltage v = 150 sin (200t + f).

If the switch is closed when f = 30°, determine the current equation.

s
10 W

200 Fm

150 sin (200sin (200 + )t f i t( )
0.5 HH

Fig. 7.34

Solution

By using Kirchhoff’s laws, the differential equation is

10 0 5
1

200 10
6

i
di

dt
idt+ +

¥ - Ú.  = 150 sin (200t + f)

Differentiating once, we have

(D2 + 20D + 104)i = 60000 cos (200t + f)

The roots of the characteristics equation are

D1 = –10 + j99.49 and D2 = –10 – j99.49

The complementary function is

ic = e–10t (c1 cos 99.49t + c2 sin 99.49)

Let us assume

ip = A cos (200t + 30°) + B sin (200t + 30°)

i¢p = –200 A sin (200t + 30°) + 200 B cos (200t + 30°)

i¢¢p = –(200)2
A cos (200t + 30°) – (200)2

B sin (220t + 30°)

A = 0.1 B = 0.067

Therefore, the particular current is

ip = 1.98 cos (200t – 52.4°) A

The complete current is

i = e–10t (c1 cos 99.49t + c2 sin 99.49t) + 1.98 cos (200t – 52.4°) A

From the differential equation at t = 0, i0 = 0 and 
di

dt
 = 300
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\ At t = 0

c1 = –1.98 cos (–52.4°) = –1.21

Differentiating the current equation, we have

di

dt
 = e–10t (–99.49c1 sin 99.49t + 99.49c2 cos 99.49t)

–200 (1.98) sin (200t – 52.4°) – 10e–10t (c1 cos 99.49t + c2 sin 99.49t)

At t = 0, 
di

dt
 = 300 and c1 = –1.21

300 = 99.49 c2 – 396 sin (–52.4°) – 10 (–1.21)

300 = 99.49 c2 + 313.7 + 12.1

c2 = –25.8

Therefore, the complete current equation is

i = e–10t (0.07 cos 99.49t – 25.8 sin 99.49t) + 1.98 cos (200t – 52.4°) A

7.9 For the circuit shown in Fig. 7.35, determine the transient current when 

the switch is moved from position 1 to position 2 at t = 0. The circuit is in 

steady state with the switch in position 1. The voltage applied to the circuit is 

v = 150 cos (200t + 30°) V.

s

1 2 200 W

150 cos (200cos (200 + 30º)t
0.5 HH

Fig. 7.35

Solution

When the switch is at position 2, by applying Kirchhoff’s law, the differential 

equation is

200i + 0 5.
di

dt
= 0

(D + 400)i = 0

\ The transient current is

i = ce–400t

At t = 0, the switch is moved from position 1 to position 2. Hence the current 

passing through the circuit is the same as the steady state current passing through 

the circuit when the switch is in position 1.

When the switch is in position 1, the current passing through the circuit is

i =
v

z R j L
=

– ∞
+

150 30

w
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=
150 30

200 200 0 5

150 30

223 6 26 56

– ∞
+

=
– ∞
– ∞j ( ) ( . ) . .

 = 0.67 –3.44°

Therefore, the steady state current passing through the circuit when the switch is 

in position 1 is

i = 0.67 cos (200t + 3.44°)

Now substituting this equation in transient current equation, we get

0.67 cos (200t + 3.44°) = ce–400t

At t = 0; c = 0.67 cos (3.44°) = 0.66

Therefore, the current equation is i = 0.66e–400t

7.10 In the circuit shown in Fig. 7.36, determine the current equations for i1 and 

i2 when the switch is closed at t = 0.

Fig. 7.36

Solution

By applying Kirchhoff’s laws, we get two equations

35i1 + 20i2 = 100 (7.55)

20i1 + 20i2 + 0.5
di

dt

2 = 100 (7.56)

From Eq. 7.55, we have

35i1 = 100 – 20i2

i1 =
100

35

20

35
2- i

Substituting i1 in Eq. 7.56, we get

20
100

35

20

35
2-Ê

ËÁ
ˆ
¯̃

i  + 20i2 + 0.5
di

dt

2 = 100 (7.57)

57.14 – 11.43i2 + 20i2 + 0.5
di

dt

2 = 100

(D + 17.14)i2 = 85.72

From the above equation,

i2 = ce–17.14t + 5
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Loop current i2 passes through inductor and must be zero at t = 0

At t = 0, i2 = 0

\ c = –5

\ i2 = 5(1 – e–17.14t) A

and the current i1 = 2.86 – {0.57 ¥ 5(1 – e–17.14t)}

= (0.01 + 2.85 e–17.14t) A

7.11

is changed from position 1 to position 2 at t = 0.

500 VV 10 i 0.4 HH

40 W 60 W

2 i

+
–

Fig. 7.37

Solution

By using Kirchhoff’s voltage law, the current equation is given by

60i + 0.4
di

dt
 = 10i

At t = 0–, the switch is at position 1, the current passing through the circuit is

i(0–) =
500

100
 = 5 A

0.4
di

dt
 + 50i = 0

D +
Ê
ËÁ

ˆ
¯̃

50

0 4.
i = 0

i = ce
–125t

At t = 0, the initial current passing through the circuit is same as the current passing 

through the circuit when the switch is at position 1.

At t = 0, i(0) = i(0–) = 5 A

At t = 0, c = 5 A

\ The current I = 5e
–125t

7.12

S is opened at t = 0.
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100 V
5 i

4 Fm

10 W

S

10 W

i

+
–

Fig. 7.38

Solution

When the switch is closed for a long time,

At t = 0–, the current i(0–) = 
100

20
 = 5 A

When the switch is opened at t = 0, the current equation by using Kirchhoff’s 

voltage law is given by

1

4 10
6¥ - Ú i dt + 10i = 5i

1

4 10
6¥ - Ú i dt + 5i = 0

Differentiating the above equation

5
1

4 10
6

di

dt
i+

¥ - = 0

D i+
¥

Ê

Ë
Á

ˆ

¯
˜-

1

20 10
6

= 0

\ i = ce

t
-
¥ -
1

20 10
6

At t = 0–, just before switch S is opened, the current passing through the 10 W
resistor is 5 A. The same current passes through 10 W at t = 0.

\ At t = 0, i(0) = 5 A

At t = 0, c1 = 5 A

The current equation is i = 5
20 10

6

e

t-
¥ -

7.13 W when the 

switch is opened at t = 0.
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Fig. 7.39

Solution

When the switch is closed, the loop current i1 and i2

The loop equations are 30(i1 – i2) + 10i2 = 50

    30(i2 – i1) + 20i2 = 10i2

From the above equations, the current in the 20 W resistor i2 = 2.5 A.

t = 0.

When the switch is opened the current equations

30i + 20i + 2
di

dt
= 10i

40i + 
2di

dt
= 0

(D + 20)i = 0

i = ce
–20t

At t = 0, the current i(0) = 2.5 A

\ At t = 0, c = 2.5

The current in the 20 W resistor is i = 2.5 e–20t.

7.14

is opened at t = 0.

100 V

20 i

10 W

10 W

20 Wi

+
– 2 Fm

Fig. 7.40

Solution

When the switch is closed, the current in the 20 W resistor i can be obtained using 

Kirchhoff’s voltage law.
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10i + 20i + 20i = 100

50i = 100, \ i = 2 A

The same initial current passes through the 20 W resistor when the switch is 

opened at t = 0.

The current equation is

20i + 10i + 
1

2 10
6¥ - Ú idt = 20i

10i + 
1

2 10
6¥ - Ú idt = 0

Differentiating the above equation, we get

10
1

2 10
6

di

dt
i+

¥ -
= 0

D i+
¥

Ê

Ë
Á

ˆ

¯
˜-

1

20 10
6

= 0

The solution for the above equation is

i = ce
t

-
¥ -
1

20 10
6

At t = 0, i(0) = i(0–) = 2 A

\ At t = 0, c = 2 A

The current equation is

i = 2

1

20 10
6

e

t
-
¥ -

7.15

Fig. 7.41

Solution

The function for the waveform shown in Fig. 7.41 is 

f (t) = A sin t  for 0 < t < p

= 0 t > p
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L [ f (t)] =

0

Ú f (t)e–st dt

=

0

p

Ú f (t) e–st dt + 

p

Ú f (t) e–st dt

Since f (t) = 0 for t > p, the second term becomes zero

\ L [ f (t)] =

0

p

Ú f (t)e–st dt

=

0

p

Ú A sin t e–st dt

= A
e

s

st-

+( )2 1
 [– s sin t – cos t]p

0

= 2A 
e

s

s- -

+

p 1

12( )

7.16 Find the Laplace transform of

f (t) = t for 0 < t < 1

= 0 for t > 1

Fig. 7.42

Solution

L [ f (t)] =

0

Ú e–st f (t)dt

=

0

1

Ú f (t)e–st dt + 

1

Ú f (t) e–st dt

Since f (t) = 0 for t > 1, the second term becomes zero

L [ f (t)] =

0

1

Ú f (t)e–st dt
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=

0

1

Ú te–st dt

= t

0

1

Ú e–st dt – 

0

1

Ú
-

-
e

s

st

 dt

= t
e

s

e

s

st st- -

-

Ê

Ë
Á

ˆ

¯
˜ -

Ê

Ë
Á

ˆ

¯
˜

0

1

2

0

1

=
e

s

e

s s

s s- -

-
- +

2 2

1

=
1

2s
 – e–s 1 1

2s s
+È

ÎÍ
˘
˚̇

7.17

f (t) = e–t (sin 3t + cos 5t).

Solution

f (t) = e–t (sin 3t + cos 5t)

F(s) = L [ f (t)] = L [e–t (sin 3t + cos 5t)]

Since L (e–t sin 3t) =
3

1 3
2 2s +( ) +

and L (e–t cos 5t) =
s

s

+

+( ) +

1

1 5
2 2

\ F(s) = L [ f (t)] = 
3

1 3
2 2s +( ) +

 + 
s

s

+

+( ) +

1

1 5
2 2

According to the initial value theorem,

Lt
t Æ 0

f (t) = Lt
s

sF(s)

F(s) =
3

2 10

1

2 26
2 2s s

s

s s+ +
+

+

+ +

sF(s) =
3

1
2 10

1
2 262

2

2

2

2

s

s
s s

s s

s
s s

+ +Ê
ËÁ

ˆ
¯̃

+
+

+ +Ê
ËÁ

ˆ
¯̃

=
3

1
2 10

1

1
2 26

1

1
2 26

2 2 2
s

s s s s
s

s s
+ +Ê

ËÁ
ˆ
¯̃

+
+ +

+
+ +Ê

ËÁ
ˆ
¯̃

Lt
s

sF(s) = 1
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f (t) = e–t (sin 3t + cos 5t)

Lt
t Æ 0

f (t) = 1

Lt
t

f (t) = Lt
s Æ 0

sF(s)

Lt
s Æ 0

 sF(s) = 0

Lt
t

f (t) = 0

7.18 Determine the inverse Laplace transform of the function

F(s) = 
s

s s

-

+ +

3

4 13
2

Solution

F(s) =
s

s s

s

s

s

s

-

+ +
=

-

+( ) +
=

+( ) -

+( ) +

3

4 13

3

2 9

2 5

2 9
2 2 2

We can write the above equation as

s

s s

+

+( ) +
-

+( ) +

2

2 9

5

2 9
2 2

By taking the inverse Laplace transforms, we get

L
–1F(s) = L

–1 s

s

+

+( ) +

È

Î
Í
Í

˘

˚
˙
˙

2

2 9
2

 – L –1 5

2 9
2

s +( ) +

È

Î
Í
Í

˘

˚
˙
˙

= e–2t cos 3t – 
5

3
e–2t sin 3t = 

e
t-2

3
 [3 cos 3t – 5 sin 3t]

7.19 Find the inverse transform of the following

(a) log
s

s

+
+

Ê
ËÁ

ˆ
¯̃

5

6

   (b)
1

5
2 2

2

s +( )
Solution

(a) Let F(s) = log 
s

s

+
+

Ê
ËÁ

ˆ
¯̃

5

6

  Then
d

ds
 [F(s)] =

d

ds

s

s s s
log

+
+

Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

=
+

-
+

5

6

1

5

1

6
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  We know that L
 –1 d

ds
F s( )È

ÎÍ
˘
˚̇

= – t f (t)

  \ L
–1 d

ds
F s( )

È
ÎÍ

˘
˚̇

= L
–1 1

5

1

6s s+
-

+
È

Î
Í

˘

˚
˙  = e–5t – e–6t

  Hence – tf (t) = e–5t – e–6t

   f (t) =
e e

t

t t- --6 5

  (b) Let F(s) =
1

52 2
2

s +( )
   

1

52 2
2

s +( )
=

1

52 2
2s

s

s +( )

  Therefore L
 –1 1

52 2
2

s +( )
È

Î
Í
Í

˘

˚
˙
˙

= L
 –1 1

52 2
2s

s

s +( )
È

Î
Í
Í

˘

˚
˙
˙

  According to the integration theorem,

   L
 –1 1

52 2
2s

s

s +( )
È

Î
Í
Í

˘

˚
˙
˙

=

0

1

2 2
2

5

t

s

s
Ú -

+( )
È

Î
Í
Í

˘

˚
˙
˙

L dt

  If L [ f (t)] = F(s), then L
f t

t

( )È
ÎÍ

˘
˚̇

 = 

s

Ú F(s) ds

  Here

s

s

s

dsÚ
+( )2 2

2
5

=
-

+

È

Î
Í
Í

˘

˚
˙
˙

=
+

1

2

1

5

1

2

1

52 2 2 2s s
s

  Therefore
f t

t

( )
= L

–1 1

2

1

5

1

102 2
◊

+

Ê

Ë
Á

ˆ

¯
˜ =

s
 sin 5t

  \ f (t) =
t tsin 5

10

  or L
-

+( )
È

Î
Í
Í

˘

˚
˙
˙

1

2 2
2

1

5
s

s

s

=

0

5

10

t

t t
dtÚ

sin

   =
1

10

5

5

5

25
0

t
t t

t
-Ê

ËÁ
ˆ
¯̃

+
È

Î
Í

˘

˚
˙

cos sin

   =
1

250
 [sin 5t – 5t cos 5t]
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7.20

Fig. 7.43.

Fig. 7.43

Solution

We have

f (t) = 10 sin wt for 0 < t < 
p

w

Hence L [ f (t)] = 0

1

p w

p w

/

/

( )Ú -

-

( )

-

e f t dt

e

st

s

= 0

10

1

p w

p w

w

/

/

sinÚ -

-

( )

-

e t dt

e

st

s

=
10

1 2 2

0
- +

- -( )
È

Î
Í
Í

˘

˚
˙
˙-

-

e

e

s
s t t

s

st

p w

p w

w
w w w

/

/

sin cos

=
10

1 2 2-( ) +( )-e ssp w w/
 [w e

–sp/w + w]

=
10 1

1
2 2

w

w

p w

p ws

e

e

s

s+

+( )
-( )

-

-

/

/

=
10

2 2

2 2

2 2

w

w

p w p w

p w p w
s

e e

e e

s s

s s+

+

-

-

-

/ /

/ /

=
10

22 2

w

w

p

ws

h
s

+
Ê
ËÁ

ˆ
¯̃

cos

7.21 Find the Laplace transform of the square wave shown in Fig. 7.44.

Fig. 7.44
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Solution

We have

f (t) = A 0 < t < a

= –A a < t < 2a

L [ f (t)] =
1

1
2

0

2

-
+ -( )

È

Î

Í
Í

˘

˚

˙
˙-

- -Ú Ú
e

Ae dt A e dt
as

a

st

a

a

st

=
A

s

e e

e

as as

as

1 2

1

2

2

- +( )
-

- -

-

=
A

s

e

e e

A

s

as
as

as as

1

1 1 2

2

-( )
+( ) -( ) = Ê

ËÁ
ˆ
¯̃

-

- -
tanh

7.22 Obtain the inverse transform of F(s) = 
1

2s s +( )  by using the convolution 

  integral.

Solution

Let F1(s) =
1

s
 and F2(s) = 

1

2s +

We have f1(t) = L
–1 [F1(s)] = L–1 1

s

Ê
ËÁ

ˆ
¯̃

 = 1

Similarly, f2(t) = L
–1 [F2(s)] = L–1 1

2s +
Ê
ËÁ

ˆ
¯̃

 = e–2t

According to the convolution integral,

f1(t)* f2(t) =

0

t

Ú f1(t – t ) f2(t)dt

Since f1(t – t) = 1 and f2(t) = e–2t

\ f1(t)* f2(t) =

0

t

Ú 1 ◊ e–2t dt

=
e e

t
t- -

-

Ê

Ë
Á

ˆ

¯
˜ =

-
+ =

2

0

2

2 2

1

2

1

2

t

 [1 – e–2t]

\ L
–1 1

2s s +( )
È

Î
Í

˘

˚
˙ =

1

2
 [1 – e–2t]

7.23 Determine the convolution integral when f1(t) = e–2t and f2(t) = 2t.
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Solution

We have

f1(t) * f2(t) =

0

t

Ú f1(t) f2(t – t)dt

Then f1(t) * f2(t) =

0

t

Ú 2t e–2(t–t) dt = e–2t

0

t

Ú 2te2t dt

= 2e–2t
t t

t t
e e

d

t
2 2

0
2

1
2

- ◊
È

Î
Í
Í

˘

˚
˙
˙Ú

= 2e–2t te e
t t2 2

2 4

1

4
- +

È

Î
Í
Í

˘

˚
˙
˙

= t
e

t

- +
È

Î
Í
Í

˘

˚
˙
˙

-
1

2 2

2

7.24 The circuit shown in Fig. 7.45 consists of series R-L elements. The sine 

wave is applied to the circuit when the switch s is closed at t = 0. Determine 

the current i(t).

Fig. 7.45

Solution

In the circuit, the current i(t) can be determined by using Kirchhoff’s law.

5
di

dt
 + 10i = 50 sin 25t

Applying Laplace transform on both sides

 5[sI(s) – i(0)] + 10I(s) = 50 ¥
25

25
2 2
s + ( )

where i(0) is the initial current passing through the circuit. Since the inductor does 

not allow sudden changes in currents, the current i(0) = 0.

\  5sI(s) + 10I(s) =
50 25

25
2 2

¥

+ ( )s

I(s) =
1250

625 5 10

250

625 22 2s s s s+( ) +( )
=

+( ) +( )
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By taking partial fractions, we have

I(s) =
250

2 25 25s s j s j+( ) +( ) -( )

I(s) =
A

s

B

s j

C

s j+
+

+
+

-( )
È

Î
Í
Í

˘

˚
˙
˙2 25 25

where A = (s + 2) I(s) |s=–2

= (s + 2) 
250

2 25
2 2

2

s s
s

+( ) + ( )È
ÎÍ

˘
˚̇ = -

=
250

629
 = 0.397

B = (s + j25) I(s) |s=– j25

= (s + j25)
250

2 25 25
25

s s j s j
s j

+( ) +( ) -( )
= -

=
250

2 25 50

5

25 2-( ) -( ) =
-
+( )j j j

C = (s – j25) I(s)|s= j25

= (s – j25)
250

2 25 25
25

s s j s j
s j

+( ) +( ) -( )
=

=
250

2 25 50

5

25 2+( ) ( ) =
-( )j j j

Substituting the values of A, B, C in I(s), we get

I(s) = 
0 397

2

5

25 2 25

5

25 2 25

.

( ) ( ) ( ) ( )s j s j j s j+
-

+ +
+

- -

By taking the inverse transform on both sides, we get

i(t) = 0.397 e–2t – 
5

25 2+( )j
 e

–j25t + 
5

25 2-( )j
 e

j25t

7.25 For the circuit shown in Fig. 7.46, 

determine the current i(t) when the 

switch is at position 2. The switch 

s is moved from position 1 to 

position 2 at time t = 0. The switch 

has been in position 1 for a long 

time.

Fig. 7.46
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Solution

When the switch s is at position 2, by applying Kirchhoff’s voltage law, we get

2
di

dt
 + 50i = 0

di

dt
 + 25i = 0

Taking Laplace transform on both sides

s I(s) – i(0) + 25 I(s) = 0

where i(0) is the initial current passing through circuit just after the switch is at 

position 2. Since the inductor does not allow sudden changes in currents, i(0) is the 

same as the steady state current when the switch is at position 1.

\ i(0) = 
50

50
= 1 A

Hence s I(s) – 1 + 25 I(s) = 0

\ I(s) =
1

25s +

By taking inverse transform of the above equation, we have the current

i(t) = e–25t

7.26 W resistor 

when the switch, s, is opened at t = 0. Assume there is no charge on the 

capacitor and no current in the inductor before switching.

s
5 AA 0.5 W 1 HH 1F

Fig. 7.47

Solution

By applying Kirchhoff’s current law to the circuit, we have

2v + 1 Ú
t

vdt + 
d

dt

v

= 5

2v + 1 Ú
0

vdt + 1 

0

t

Ú vdt + 
d

dt

v

= 5
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Taking Laplace transforms on both sides, we get

2V(s) + L Ú
È

Î

Í
Í

˘

˚

˙
˙

+
( )

0

vdt
V s

s
 + [sV(s) – v (0)] = 

5

s

Since the initial voltage across the capacitor and the initial current in the inductor 

is zero, the above equation becomes 

2V(s) + 
V s

s

( )
 + sV(s) =

5

s

V(s) [2s + s2 + 1] = 5

V(s) =
5

2 1
2s s+ +

\ V(s) =
5

1
2

s +( )
Taking inverse transforms on both sides, we have

v(t) = +5te
–t

7.27 For the circuit shown in Fig. 7.48, determine the current in the 10 W resistor 

when the switch is closed at t = 0. Assume initial current through the 

inductor is zero.

Fig. 7.48

Solution

By taking mesh currents when the switch is closed at t = 0, we have

20 = 5i1(t) – 5i2(t)

and –5i1(t) + 15i2(t) + 2
di

dt

2 = 0

Taking Laplace transforms on both sides, we have

5I1(s) – 5I2(s) =
20

s

–5I1(s) + 15I2(s) + 2[sI2(s) – i(0)] = 0

Since the initial current through the inductor is zero i(0) = 0
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\ 5 5

5 2 15

20

0

1

2

-
- +( )

È

Î
Í

˘

˚
˙

( )
( )

È
ÎÍ

˘
˚̇

= È
ÎÍ

˘
˚̇s

I s

I s

s/

\ I2(s) =

5 20

5 0

5 5

5 2 15

/s

s

-
-

- +( )
 = 

20 5

5 2 15 25

/s

s

¥
+( ) -

I2(s) =
100

5 2 10s s +[ ]
Taking partial fractions, we get

10

5s s +( )  = 
A

s

B

s
+

+ 5

Solving for the constants

A =
10

5
0

s s
s

s
+( )

=

 = 2

B =
10

5
5

5
s s

s

s
+( ) +( )

= -

 = –2

\ I2(s) =
2 2

5s s
-

+

Taking inverse transform on both sides, we have

i2(t) = 2 – 2e–5t

Therefore, the current passing through the 10 W resistor is (2 – 2e–5t) A

7.28 For the circuit shown in Fig. 7.49, determine the current when the switch 

is moved from position 1 to position 2 at t = 0. The switch has been in 

position 1 for a long time to get steady state values.

Fig. 7.49

Solution

When the switch is at position 2, by applying Kirchhoff’s law, the current equation 

is

0.1
di

dt
 + 2i = 20
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Taking Laplace transform on both sides, we get

0.1[sI(s) – i(0)] + 2I(s) = 
20

s

i(0) is the current passing through the circuit just after the switch is at position 2. 

Since the inductor does not allow sudden changes in currents, this current is equal 

to the steady state current when the switch was at position 1.

Therefore, i(0) =
10

2
 = 5 A

Substituting i(0), in the equation, we get

0.1[sI(s) – 5] + 2I(s) =
20

s

I(s)[0.1s + 2] =
20

s
 + 0.5

I(s) =
5 40

20

s

s s

+( )
+( )

By taking partial fractions, we have 

5 40

20

s

s s

+( )
+( ) =

A

s

B

s
+

+ 20

A =
5 40

20
0

s

s s
s

s

+( )
+( ) ¥

=

 = 10

B =
5 40

20
20

20

s

s s
s

s

+( )
+( ) ¥ +( )

= -

 = – 5

\ I(s) =
10 5

20s s
-

+

Taking inverse transforms on both sides, we have

i(t) = 10 – 5e–20t A

7.29 For the circuit shown in Fig. 7.50, determine the current when the switch 

is closed at a time corresponding to f = 0. Assume initial charge on the 

capacitor is q0 = 2 coulombs with polarity shown.

i t( ))
qo

s 1 W

1 FF
+
–50 cos (50cos (50 t ++ f)

Fig. 7.50
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Solution

By applying Kirchhoff’s voltage law, we have

i(t) + 
1

1 Ú
t

idt = 50 cos (50t)

i(t) + Ú
0

dq

dt
dt + 

0

t

Ú idt = 50 cos (50t)

Taking Laplace transforms on both sides, we have

I(s) + 
I s

s

q

s

s

s

( )
+ =

+
0

2 2

50

50

I(s) 1
1 2 50

50
2 2

+È
ÎÍ

˘
˚̇

+ =
+s s

s

s

I(s) =
50

50

2

12 2

s

s s

s

s+
-

È

Î
Í
Í

˘

˚
˙
˙ +

=
50 2 2 50

50 1

2 2 2

2 2

s s

s s

- - ( )ÈÎ ˘̊

+ ( )ÈÎ ˘̊ +[ ]

=
48 2 50

50 1

2 2

2 2

s

s s

- ( )
+ ( )ÈÎ ˘̊ +[ ]

By taking partial fractions, we have

I(s) =
A

s j

B

s j

C

s+( ) +
-( ) +

+50 50 1

A = I(s)(s + j50)|s=–j50

=
48 2 50

50 1

2 2

50

s

s j s
s j

- ( )
-( ) +( )

= -

=
1250

50j +( )
Similarly, B = I(s)(s – j50) |s= j50

=
48 2 50

50 1

2 2

50

s

s j s
s j

- ( )
+( ) +( )

=

 = 
1250

50 - j

and C = I(s)(s + 1)|s=–1

=
48 2 50

50

2 2

2 2

1

s

s
s

- ( )
+ ( ) = -

 = – 1.98
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Substituting the values of A, B, C, we get

I(s) = 
1250

50 50

1250

50 50

1 98

1+( ) +( ) +
-( ) -( ) -

+j s j j s j s

.

Taking inverse transforms

i(t) = 
1250

50

1250

50
1 9850 50

+( ) +
-

-
È

Î
Í
Í

˘

˚
˙
˙

- + -

j
e

j
e ej t j t t.  A

7.30 For the circuit shown in Fig. 7.51, determine the current in the circuit when 

the switch is closed at t = 0. Assume that there is no initial charge on the 

capacitor or current in the inductor.

1

i t( )

2 W

100 VV

s

1 FF

H

Fig. 7.51

Solution

When the switch is closed, by applying Kirchhoff’s voltage law, we have

2i(t) + 
di

dt
 + 1 Ú idt = 100

Taking Laplace transforms on both sides

2I(s) + [sI(s) – i(0)] + 
I s

s

q

s s

( )
+ =0 100

Since the initial current in the inductor and initial charge on the capacitor is zero, 

the above equation reduces to

2I(s) + sI(s) + 
I s

s s

( )
=

100

I(s) 2
1 100

+ +È
ÎÍ

˘
˚̇

=s
s s

I(s) =
100

2 1
2s s+ +

\ I(s) =
100

1
2

s +( )
Taking inverse transforms on both sides, we get

i(t) = 100 te–t A
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7.31 For the circuit shown in Fig. 7.52, determine the total current delivered by 

the source when the switch is closed at t = 0. Assume no initial charge on 

the capacitor.

Fig. 7.52

Solution

By applying Kirchhoff’s law, the two mesh equations are

5i1 + 
1

1 Ú
t

i1 dt + 5i2 = 10e–t

5i1 + 5i2 + 10i2 = 10e–t

Taking Laplace transforms on both sides, we get

5I1(s) + 
I s

s

q

s

1 0( )
+  + 5I2(s) = 

10

1s +
Since the initial charge on the capacitor is zero, the equation becomes

5I1(s) + 
I s

s

1( )
 + 5I2(s) =

10

1s +

Similarly, 5I1(s) + 15I2(s) =
10

1s +
By forming a matrix, we have

( / ) ( )

( )

5 1 5

5 15

10

1

10

1

1

2

+È
ÎÍ

˘
˚̇

È
ÎÍ

˘
˚̇

=
+

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

s I s

I s

s

s

I1(s) =

10

1
5

10

1
15

5
1

5

5 15

s

s

s

+

+

+
 = 

150

1

50

1

15 5
1

25

s s

s

+
-

+
Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

-
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I1(s) =
100 1

50 0 3

2

0 3 1

/

. .

s s

s

s

s s

+( )ÈÎ ˘̊

+( ) =
+( ) +( )

By taking partial fractions, we have

I1(s) =
A

s

B

s+
+

+0 3 1.

To get A = I1(s)(s + 0.3)|s=–0.3

=
2

1

0 6

0 7
0 3

s

s
s

+
=

-( )
= - .

.

.
 = – 0.86

Similarly, B = I1(s)(s + 1)|s=–1

=
2

0 3

2

0 7
1

s

s
s

+
=

-
-= -. ( . )

 = 2.86

\ I1(s) =
-

+
+

+
0 86

0 3

2 86

1

.

.

.

s s

Taking inverse transforms on both sides, we have

i1(t) = (2.86 e–t – 0.86 e–0.3t)A

Similarly I2(s) =

5
1 10

1

5
10

1

5
1

5

5 15

+Ê
ËÁ

ˆ
¯̃ +

+

+Ê
ËÁ

ˆ
¯̃

s s

s

s

 = 
0 2

1 0 3

.

.s s+( ) +( )

By taking partial fractions, we have

I2(s) =
A

s

B

s+
+

+0 3 1.

To get A = I2(s)(s + 0.3)|s=–0.3 = 
0 2

1
0 3

.

.
s

s
+ = -

A = 0.286

B = I2(s)(s + 1)|s =–1

=
0 2

0 3

0 2

0 7
1

.

.

.

.s
s

+
=

-= -

 = – 0.286

\ I2(s) =
0 286

0 3

0 286

1

.

.

.

s s+
-

+
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By taking inverse transforms, we have

i2(t) = (0.286e
–0.3t – 0.286e

–t)A

Hence, the total current delivered by the source

i(t) = i1(t) + i2(t)

\ i(t) = (2.574e
– t – 0.574e

–0.3t)A

7.32 For the circuit shown in Fig. 7.53, determine the current delivered by the 

source when the switch is closed at t = 0. Assume that there is no initial 

charge on the capacitor and no initial current through the inductor.

Fig. 7.53

Solution

The circuit is redrawn in the s domain in impedance form as shown in Fig. 7.54.

Fig. 7.54

The equivalent impedance in the s domain

Z(s) =

2
1

2
1

2 0 5

2 12

+Ê
ËÁ

ˆ
¯̃

+ +Ê
ËÁ

ˆ
¯̃

=
+( )

+ +
s

s

s
s

s s

s s

.

The current I(s) =
V s

Z s

( )

( )

=

20
2 1

2 0 5

10 2 1

0 5

2 2

2

s
s s

s s

s s

s s

+ +( )
+( ) =

+ +( )
+( ). .
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By taking partial fractions, we have

I(s) = 
A

s

A

s

B

s2 0 5
+

¢
+

+ .

The constant B for the simple root at s = –0.5 is

B = (s + 0.5) I(s)|s=–0.5 = 10

I1(s).

I1(s) = s2
I(s) = 

10 2 1

0 5

2s s

s

+ +( )
+( . )

Using the general formula for multiple root expansion, we get

A =
1

0

10 2 1

0 5

0

0

2

0

! .

d

ds

s s

s
s

+ +( )
+

È

Î
Í
Í

˘

˚
˙
˙

=

 = 20

A¢ =
1

1

10 2 1

0 5

2

0

! .

¢
¢

+ +( )
+

È

Î
Í
Í

˘

˚
˙
˙

=

d

ds

s s

s
s

 = 0

Therefore, I(s) =
20 10

0 52s s
+

+ .

By taking inverse transform on both sides, we have

i(t) = (20t + 10 e–0.5t) A

7.33 Find the value of i(0+) using the initial value theorem for the Laplace 

transform given below.

I(s) = 
2 3

1 3

s

s s

+
+ +( ) ( )

Verify the result by solving it for i(t).

Solution

The initial value theorem is given by

Lt
t

i t
Æ 0

( ) = Lt
s

SI s( )

= Lt
s

s s

s s

+( )
+( ) +( )
2 3

1 3

Bringing s in the denominator and putting s = , we get

Lt
s

s
s

s
s s

+Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

2

2

2
3

1
1

1
3

 = 2

To verify the result, we solve for i(t) and put t .

Taking partial fractions

I(s) =
A

s

B

s+
+

+1 3
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where, A = (s + 1) 
2 3

1 3

1

2
1

s

s s
s

+
+ +

=
= -( ) ( )

B = (s + 3) 
2 3

1 3

3

2
3

s

s s
s

+
+ +

=
= -( ) ( )

Taking inverse transform, we get

i(t) = 
1

2
e–t + 

3

2
e–3t

By putting t = 0, we have i

7.34 Find L
–1 {F1(s)F2(s)} by using the convolution of the following functions.

F1(s) = 
1

1s +
and F2(s) = 

1

2s +
Solution

Taking inverse transforms

f1(t) = 5 e–t

f2(t) = e–2t

Convolution theorem is given by

f1(t) * f2(t) =

0

t

Ú f1(t – t) f2 (t) dt

=

0

t

Ú 5e–(t–t) e–2t dt

= 5e–t

0

t

Ú et ◊ e–2t dt

= 5e–t

0

t

Ú e–t dt

= 5e–t [1 – e–t]

7.35 In the circuit shown in Fig. 7.55, determine the voltage v (t). The capacitor 

and inductor are initially de-energised.

1 W

1 W1F

4 HH
v( ))t

i t2( ))
i t1( ))e(t) == (t)d

Fig. 7.55
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Solution

The transform of the given circuit will be as shown in Fig. 7.56.

Fig. 7.56

Applying Kirchhoff’s voltage law, we get

1 = I1(s)
1

s
 + {I1(s) – I2(s)]1

and O = I2(s)(1 + 4s) + [I2(s) – I1(s)] ¥ 1

or 1 = I1(s)
1

1
s

+Ê
ËÁ

ˆ
¯̃

 – I2(s)

and O = 2 I2(s)(1 + 2s) – I1(s)

Solving the above equations for I1(s) and I2(s), we get

I2(s) =
s

s s+( ) -Ê
ËÁ

ˆ
¯̃

1
1

2

I1(s) = 2 – 
2

1

2
s -

Taking inverse transform, we get

i2(t) =
2

3
e–t + 

1

3

1

2e

t

i1(t) = 2d(t) – 2e1/2t

\ v(t) = [i1(t) – i2(t)] ¥ 1

= 2d(t) – 
2

3
e–t + 

7

3

7

2e

t

7.36 Find the current in the circuit shown in Fig. 7.57 at an instant t, after opening 

the switch if a current of 1 A had been passing through the circuit at the 

instant of opening.

Fig. 7.57
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Solution

Applying Kirchhoff’s voltage law in the circuit, we get

6i(t) + 5 
di t

dt

( )
 = 12 + 24

Taking Laplace transform both sides

6I(s) + 5[sI(s) – i(0)] = 
36

s
where, i(0) = 1 A

I(s) [6 + 5s] =
36

s
 + 5

I(s) =
36 5

6 5

+
+

s

s s( )

Taking partial fractions

I(s) = 
6

8

5

6

5

-
+s

Taking inverse transform, we have

i(t) = 6 – 5

6

5e
t-

Practice Problems

7.1 (a) What do you understand by transient and steady state parts of response? 

  (b) Obtain an expression for the current i(t) from the differential equation

    
d i t

dt

di t

dt
i t

2

2
10 25

( ) ( )
( )+ +  = 0

    with initial conditions

    i(0+) = 2
0di

dt

( )+
 = 0

7.2 A series circuit shown in Fig. 7.58, comprising of resistance 10 W and 

inductance 0.5 H, is connected to a 100 V source at t = 0. Determine the 

complete expression for the current i(t).

Fig. 7.58
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7.3 In the network shown in Fig. 7.59, the capacitor c1 is charged to a voltage of 

100 V and the switch S is closed at t = 0. Determine the current expression 

i1 and i2.

2 kkW

1 Fm 1 Fm

s

C1
C2

i1 i2
1 kkW

Fig. 7.59

7.4 A series RLC circuit shown in Fig. 7.60, comprising R = 10 W, L = 0.5 H 

and C = 1 mF, is excited by a constant voltage source of 100 V. Obtain the 

expression for the current. Assume that the circuit is relaxed initially.

10 W

100 V 1 Fm

s

i t( )

0.5 H

Fig. 7.60

7.5 In the circuit shown in Fig. 7.61, the initial current in the inductance is 2 A 

is 200 C with polarity as shown when the switch is closed. Determine the 

current expression in the inductance.

Fig. 7.61

7.6 In the circuit shown in Fig. 7.62, the switch is closed at t = 0 with zero 

capacitor voltage and zero inductor current. Determine V1 and V2 at t = 0+.
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10 W

10 W

100 V

s

V1

V2

0.1 H
1 Fm

Fig. 7.62

7.7 In the network shown in Fig. 7.63, the switch is moved from position 1 to 

position 2 at t = 0. The switch is in position 1 for a long time. Determine the 

current expression i(t).

Fig. 7.63

7.8 In the network shown in Fig. 7.64, determine the current expression for i1(t)

and i2(t) when the switch is closed at t = 0. The network has no initial energy.

i1
i2

s

3 H

10 W

10 W

1 Fm

100 V

Fig. 7.64

7.9 In the network shown in Fig. 7.65, the switch is closed at t = 0 and there is 

no initial charge on either of the capacitances. Find the resulting current i(t).

Fig. 7.65
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7.10 In the RC circuit shown in Fig. 7.66, the capacitor has an initial charge q0 = 

25 ¥ 10–6 C with polarity as shown. A sinusoidal voltage v = 100 sin (200t + 

f) is applied to the circuit at a time corresponding to f = 30°. Determine the 

expression for the current i(t).

i t( )

250 W

100 sin (200 + )t f

s

0.5 Fm

Fig. 7.66

7.11 In the network shown in Fig. 7.67, the switch is moved from position 1 to 

position 2 at t = 0. The switch is in position 1 for a long time. Initial charge 

on the capacitor is 7 ¥ 10–4 coulombs. Determine the current expression i(t).

50 W

50 W

20 Fm

s
2

100 sin ( + 30º)w t

1

Fig. 7.67

7.12 In the network shown in Fig. 7.68, the switch is moved from position 1 to 

position 2 at t = 0. Determine the current expression.

100 W

50 Fm

s
2

200 V

1

0.1 H

Fig. 7.68

7.13 i2(t) for t > 0, if i1(0) = 5 A.

Fig. 7.69
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7.14 v5, if the switch is opened for 

t > 0.

Fig. 7.70

7.15 Calculate the voltage v1(t) across the inductance for t > 0 in the circuit shown 

in Fig. 7.71.

12 VV

1 W 2 W1 W

10 FF–44

v1( ))t10 HH

t = 00

Fig. 7.71

7.16 The network shown in Fig. 7.72 is initially under steady state condition with 

the switch in position 1. The switch is moved from position 1 to position 2 

at t π 0. Calculate the current i(t) through R1 after switching.

Fig. 7.72

7.17 Find the Laplace transforms of the following functions.

  (a) t3 + at2 + bt + 3   (b) sin2 5t

   (c) e5t+6   (d) cos h2 3t

7.18 Find the inverse transforms of the following functions.

  (a)
1

9
2s +

   (b)
2p

ps +
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(c)
8

3 5s s+( ) +( )    (d)
5

92s +

  (e)
k

s

k

s

k

s

1 2

2

3

3
+ +

7.19 Find the inverse transforms of the following functions.

  (a)
5 4

1 2 52

s

s s s

+
-( ) + +( ) (b)

4 2

2 52

s

s s

+

+ +

(c)
s

s s2 2 5- +
   (d)

s s

s s

( )+

+ +

1

4 52

7.20 Find the transforms of the following functions.

(a) te –2t sin 2t + 
cos 2t

t
(b) log

s

s s

2 1

1

-
+( )

È

Î
Í
Í

˘

˚
˙
˙

(c) (1 + 2t e –5t)3
   (d)

s

s s

+

+ +( )
4

5 122
2

7.21 Using the convolution theorem, determine the inverse transform of the 

following functions.

(a)
5

22 2
s s +( )

   (b)
s

s2
2

25+( )
(c)

s

s s2 2
9 25+( ) +( )

7.22 Find the Laplace transform of the periodic square wave shown in Fig. 7.73.

Fig. 7.73

7.23 Find the Laplace transform of a sawtooth waveform f (t) which is periodic, 

with period equal to unity, and is given by f (t) = a t for 0 < t < 1.

7.24 Find the Laplace transform of the periodic wave form shown in Fig. 7.74.
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Fig. 7.74

7.25 For the circuit shown in Fig. 7.75, determine the current when the switch is 

closed at t = 0. Assume zero charge on the capacitor initially.

Fig. 7.75

7.26 For the circuit shown in Fig. 7.76, determine the current when the switch is 

closed at t = 0.

s

10 W

5 W

5 W

1 HH

50 VV

Fig. 7.76

7.27 For the circuit shown in Fig. 7.77 determine the total current when the 

switch S is closed at t = 0.

Fig. 7.77
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7.28 For the circuit shown in Fig. 7.78, determine the voltage across the output 

terminals when the input is unit step function. Assume no initial charge on 

the capacitor.

Fig. 7.78

7.29 For the circuit shown in Fig. 7.79, determine the current through the circuit, 

when the switch is moved from position 1 to position 2.

s

1 W

1 HH

50 VV

21

50 sin 50sin 50 t

Fig. 7.79

7.30 For the circuit shown in Fig. 7.80, determine the current through the resistor 

when the switch is moved from position 1 to position 2. Assume that initial 

charge on the capacitor is 5 C.

s

5 W

5 HH100 VV

21

2 FF

Fig. 7.80

7.31 For the circuit shown in Fig. 7.81, determine the current when the switch is 

closed at t = 0.
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Fig. 7.81

7.32 For the given function f (t) = 3u(t) + 2e–t f (

value theorem.

7.33 An exponential voltage v(t) = 10e–t is suddenly applied at t = 0 to the circuit 

shown in Fig. 7.82. Obtain the particular solution for current i(t) through the 

circuit.

7 W

5 HHLv( )) 10t = e–t

R

K

Fig. 7.82

7.34 For the circuit shown in Fig. 7.83, the switch is closed at t = 0. Determine 

i1(t) and i2(t). The initial currents i1(0) = 1 A and i2(0) = 2 A.

6 W3 HH 6 H

t = 0

i1 i2

Fig. 7.83
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7.35 In the circuit shown in Fig. 7.84, the switch is changed from position 1 

to 2 at t = 0. A steady state position is existing in position 1 before t = 0. 

Determine the current i(t) using Laplace transform method.

i t( ))

LC

2

V

R 1

Fig. 7.84

Objective Type Questions 

7.1 Transient behaviour occurs in any circuit when

(a) there are sudden changes of applied voltage.

(b) the voltage source is shorted.

(c) the circuit is connected or disconnected from the supply.

(d) all of the above happen.

7.2 The transient response occurs

(a) only in resistive circuits (b) only in inductive circuits

(c) only in capacitive circuits (d) both in (b) and (c).

7.3 Inductor does not allow sudden changes

(a) in currents   (b) in voltages

(c) in both (a) and (b)  (d) in none of the above

7.4 When a series RL circuit is connected to a voltage V at t = 0, the current 

passing through the inductor L at t = 0+ is

(a)
V

R

V

L

7.5 The time constant of a series RL circuit is

(a) LR (b)
L

R
(c)

R

L
(d) e–R/L

7.6 A capacitor does not allow sudden changes

(a) in currents   (b) in voltages

(c) in both currents and voltages (d) in neither of the two

7.7 When a series RC circuit is connected to a constant voltage at t = 0, the current 

passing through the circuit at t = 0+ is

V

R
(d)

V

Cw



7.96 Network Analysis

7.8 The time constant of a series RC circuit is

(a)
1

RC
(b)

R

C
(c) RC (d) e

–RC

7.9 The transient current in a loss-free LC circuit when excited from an ac source 

is an ____________ sine wave.

(a) undamped   (b) overdamped

(c) underdamped   (d) critically damped

7.10 Transient current in an RLC circuit is oscillatory when

(a) R = 2 L C/    (b) R = 0

(c) R > 2 L C/    (d) R < 2 L C/

7.11 The initial current in the circuit shown in Fig. 7.85 when the switch is opened 

for t > 0 is

Fig. 7.85

(a) 1.67 A (b) 3 A (c) 0 A (d) 2 A

7.12 The initial current in the circuit shown in Fig. 7.86 below when the switch is 

opened for t > 0 is

5 W

2 Fm

10 ii

100 V

Fig. 7.86

(a) 1.5 A (b) 0 A (c) 2 A (d) 10 A

7.13 For the circuit shown in Fig. 7.87 the current in the 10 W resistor when the 

switch is changed from 1 to 2 is

Fig. 7.87

(a) 5 e
+20t (b) 5 e

–20t (c) 20 e
+5t (d) 20 e

–5t
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I B. Tech II Semester Regular Examinations August - 2014

NETWORK ANALYSIS

(Common to ECE, EIE, E Com. E.E Branches)

Time: 3 hours Max. Marks: 70

Question Paper Consists of Part-A and Part-B

Answering the question in Part-A is Compulsory, 

Three Questions should be answered from Part-B

PART-A

1. (i) Define electric potential, electric current and electric energy.

Ans. Refer Sections 1.2, 1.3 and 1.4.

(ii) A certain inductive coil takes 15 A when the supply voltage is 230 V, 

50 Hz. If the frequency is changed to 40 Hz, the current increases 

to 17.2 A. Calculate resistance and inductance of the coil.

Ans. Given: If V = 230 V, 50 Hz then I = 15 A

  If V = 230 V, 40 Hz then I = 17.2 A

Fig. 1

  We know that V = I ¥ Z

  From first condition, 230 = i(R + jwL)

   230 = 15(R + j(50)L) (1)

  From second condition, 230 = 17.2(R + j(40)L) (2)

  Solving eqns (1) and (2), we get

R = 8.87 W; L = 0.25 H

(iii) Write the differences between series and parallel resonance.

Ans. Refer Sections 4.4 and 4.5.

(iv) State compensation theorem.

Ans. Refer Sections 5.1.5 and 5.2.5.

Sample Question Paper Set-1
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(v) Write the Z-parameters of the following network (Fig. 2):

Fig. 2

Ans. To find the z-parameters

  We know that

V1 = z11I1 + z12I2

V2 = z21I1 + z22I2

  In the first loop, current is I1, but I2 = 0

  fi 1
11

1

13
V

z
I

= = W

2
21

1

10
V

z
I

= = W

  Similarly, in the second loop, current I1 = 0

  fi 22 16z = W

12 10z = W

(vi) What is the time constant? What are the time constant of series 

R-L and R-C circuits?

Ans. Refer Sections 7.2.1 and 7.2.2.

(vii) A series R-L circuit has R = 20 ohms and L = 8 H. The circuit is 

connected across a dc voltage source of 120 V at t = 0. Calculate the 

time at which the voltage drops across R and L are the same.

[2 + 4 + 3 + 2 + 4 + 3 + 4]

Ans. Given: R = 20 W; L = 8 H

  We know that for an RL circuit,

i(t) = /(1 )tV
e

R

t--  where i = 
L

R

=
( )120

(1 )
20

t R

Le
-

-

  Given that VR = VL fi i ◊ R = 
di

L
dt

  fi 20 6¥ ( / )(1 ) 8R t Le-- = 6¥
20

¥
8

( / )R t Le-Ê ˆ
Á ˜Ë ¯

Fig. 3

Fig. 4
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  fi 1 = 
( )

2
Rt
Le

-

  fi
Rt
Le  = 2

t = ln(2)
L

R

t = 0.2777 second

PART-B

2. (a) State and explain Kirchhoff’s voltage and current law with an 

example.

Ans. Refer Sections 1.10.1 and 1.10.4

(b) Find the voltage V(t) in the network shown in Fig. 5 using nodal 

technique. All impedances are in ohms. [6 + 10]

Fig. 5

Ans. Let the node voltages at nodes 1, 2, 3 be V1, V2 and V3 respectively.

Fig. 6

  Node 1 ix = 1

2

V

j-
(1)

  But V1 = 1.414 cos(40t + 135°)

  Node 2 Applying KCL,

2 32 1 2 0
2 2 2

V VV V V

j j

--
+ + =

-
(2)

  Node 3 Applying KCL again,

3 2 3 2
2 2

x

V V V
i

j j

-
+ =

- -
(3)



S1.4 Network Analysis

  Substituting Eq. (1) in (3),

  fi 3 2 3 12

2 2 2

V V V V

j j j

-
+ =

- - -

  fi 2V3 – V2 = 2V1

  fi 2V1 + V2 – 2V3 = 0 (4)

  From Eq. (2),

–jV2 + jV1 + V2 + jV2 – jV3 = 0

jV1 + V2 – jV3 = 0

  fi j(V1 – V3) + V2 = 0 (5)

  From Eq. (4), 2(V1 – V3) + V2 = 0

  In the above two equations, substitute (V1 – V3) = x

  We get 2x + V2 = 0 (6); jx + V2 = 0 (7)

  (6)-(7) fi x(2 – j) = 0 fi x = 0

  Substituting this in the assumption gives V1 = V3

  But V1 = 1.414 cos(40t + 135°)

  \ V1 = V3 = 1.414–135°

V(t) = V3 = 1.414–135°

3. (a) A sinusoidal 50 Hz voltage of 200 V supplies three parallel circuits 

as shown in Fig. 7. Find the current in each circuit and the total 

current. Draw the vector diagram. Assume supply voltage V = 200 

V, 50 Hz.

Fig. 7

Ans. Given: R1 = 3 W; R2 = 100 W; R3 = 7 W

Fig. 8
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L1 = 0.03 H; L2 = 0.02 H

C1 = 400 mF; C2 = 300 mF

VS = 200 V, 50 Hz

  The inductive reactance across L1 is given as

XL1 = 2p fL1 = 2p ¥ 50 ¥ 0.03

= 9.424 W

  Capacitive reactance XC1 =
6

1

1 1

2 2 50 400 10fCp p -=
¥ ¥ ¥

   = 7.957 W
XL2 = 2p fL2 = 2p ¥ 50 ¥ 0.02

= 6.2831 W

  Capacitive reactance XC2 = 6
2

1 1

2 2 50 300 10fCp p -=
¥ ¥ ¥

   = 10.6103 W
  Impedance of each branch is denoted as zi

  \ 2 2 2 2
1 1 1

3 2 2 2
2 2 1

2 2 2
3 3 2 2

2 2
3

3 (9.424) 9.889

(100) (7.957) 100.316

7 (10.6103 6.2831) 8.229

L

C

L C

z R X

z R X

z R X X

z

= + = + = W

= + = + = W

= + +

= + - = W

  Current in each branch is given by Ii:

1
1

2
2

3
3

200
20.225 A

9.889

200
1.99 2 A

100.316

200
24.304 A

8.229

= = =

= = = ª

= = =

S

S

S

V
I

z

V
I

z

V
I

z

  Phase angle q is given as

1 11
1

1

1 11
2

2

1 12 2
3

3

9.424
tan tan 72.34

3

7.957
tan tan 4.54

100

6.2831 10.6103
tan tan

7

31.723

L

C

L C

X

R

X

R

X X

R

q

q

q

- -

- -

- -

Ê ˆ Ê ˆ= = = ∞Á ˜Á ˜ Ë ¯Ë ¯
Ê ˆ Ê ˆ= - = - = - ∞Á ˜Á ˜ Ë ¯Ë ¯

- -Ê ˆ Ê ˆ= = Á ˜Á ˜ Ë ¯Ë ¯
= - ∞
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  Phasor Diagram:

Fig. 9

(b) The impedance of a parallel circuit are Z1 = (6 + j8) ohms and 

Z2 = (8 – j6) ohms. If the applied voltage is 120 V, find (i) current 

and power factor of each branch, (ii) overall current and power 

factor of the combination, and (iii) power consumed by each 

impedance. Draw a phasor diagram. [8 + 8]

Ans. Given z1 = (6 + j8) W;

z2 = (8 – j6) W
VS = 120 V

  From the given, the circuit can be drawn as shown in Figure 7.

Fig. 10

  Branch 1 consists of R1 and L1 whereas branch 2 consists of R2 and C1.

  Impedance in Branch 1

z1 = 2 2
1 1R L+

= 2 26 8+  = 10 W

  Current I1 = 
1

120

10

SV

z
=  = 12 A

  Phase angle q1 = tan–1 1

1

L

R

V

V

Ê ˆ
Á ˜Ë ¯

  But 1

120 8

6 8
L

j
V

j

¥
=

+
and 1

120 6

6 8
RV

j

¥
=

+
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  \ q1 = 1 8
tan

6

- Ê ˆ
Á ˜Ë ¯  = 53.13

  \ Power factor = cos q1 = 0.6

  Power consumed by first branch =
2

1

120 120

10

V

z

¥
=

   = 1440 W

  In Branch 2,

  Impedance z2 = 2 2 2 2
2 2 8 6R C+ = +  = 10 W

  Current I2 = 
2

120

10

SV

z
=  = 12 A

  Phase q2 = 1 11

2

6
tan tan

8

C

R

V

V

- -Ê ˆ Ê ˆ= Á ˜Á ˜ Ë ¯Ë ¯
   = –36.869°

  Power factor = cos q2 = 0.8

  Power consumed = 
2

2

120 120

10

V

z

¥
=  = 1440 W

  Phasor diagram:

Fig. 11

  Let overall impedance be denoted by Zeq.

eq 1 2

1 1 1

Z Z Z
= +

  fi 1 2
eq

1 2

(6 8)(8 6 )

14 2

96 28 48 14

14 2 7

+ -
= =

+ +
+ +

= =
+ +

Z Z j j
Z

Z Z j

j j

j j

Zeq = 
7

(3 )
5

j+
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  Overall phase angle f = tan–1
1

3

Ê ˆ
Á ˜Ë ¯  = 18.43°

  Overall power factor = cos f = cos(18.43)

   = 0.948

4. (a) Obtain an expression for efficient of coupling.

Ans. Refer Sections 4.1.4.

(b) Two similar coils connected in series gave a total inductance of 

600 mH and when one of the coil is reserved, the total inductance 

is 300 mH. Determine the mutual inductance between the coils and 

coefficient of coupling.

Ans. Given:

(i) When two coils are connected in series 

with inductances L1 and L2, the total 

inductance is 600 mH,

i.e., Ltotal = L1 + L2 + 2M = 600 mH (1)

where M = mutual inductance

(ii) When one coil is reversed inductance is 300 mH

i.e., Ltotal = L1 + L2 – 2M = 300 mH (2)

Taking ratio of Eq. (1) to Eq. (2),

fi 1 2

1 2

600 2

300 2

L L M

L L M

+ +
=

+ -

fi 2(L1 + L2) – 4M = L1 + L2 + 2M

fi L1 + L2 = 6M

But M = 1 2K L L

\ L1 + L2 = 1 26K L L

It is given that L1 =L2

fi 2L = 6KL

  
1

3
K =

fi M = 
1

3
L

Substitute this in Eq. (2),

fi 2L – 2M = 300

i.e., 2L – 
2

3

L
 = 300

fi 225 mHL =

  75 mHM =

Fig. 12(a)

Fig. 12(b)
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(c) State and explain maximum power transfer theorem. [5 + 5 + 6]

Ans. Refer Sections 5.1.7 and 5.2.7.

5. (a) For a series resonance circuit with constant voltage and variable 

frequency, obtain the frequency at which voltage across the 

inductor is maximum. Calculate this maximum voltage when 

R = 50 ohms, L = 0.05 H, C = 20 microfarads and V = 100 volts.

Ans. Given: R = 50 W; L = 0.05 H

  C = 20 mF; V = 100 V

  Maximum voltage across inductor occurs at frequency f L

2

2 66

1 1

2
1

2

1 1

(50) 20 102 0.05 20 10 1
2 0.05

225.079 Hz

p

p
--

=
Ê ˆ

-Á ˜Ë ¯

=
¥ ¥¥ ¥ -
¥

=

Lf
LC R C

L

Fig. 13

  The current I through the circuit is given by

eq

100 100

1 50 (70.7 35.353)
50

100

50 35.34

w
w

=

= =
+ -Ê ˆ+ -Á ˜Ë ¯

=
+

V
I

z

j
j L

C

j

  The voltage across the inductor VL is

100
70.7

50 35.34

115.47 54.74

= = ¥
+

= – ∞

L LV IX j
j

(b) Determine the current through RL = 10 W resistor as shown in 

Fig. 14 using Thevenin’s theorem. Verify the same with Norton’s 

theorem. [6 + 10]
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Fig. 14

Ans. Using Thevenin’s theorem:

  To find Vth:

Fig. 15

  The circuit can be redrawn in the following way:

Fig. 16

  And there are assumptions being made let the current flowing be I ¢ and 

node voltage be V ¢.
  Current through resistor 2 W I is

I = 
12

2

V-
  fi V = 12 – 2I (1)

I ¢ = 
12 2

2

I V+ - ¢
(2)
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  Applying KCL at V,

I + I ¢ = 1 (3)

  Substituting (2) in (3),

6 + I – 
2

V ¢
 + I = 1

2I – 
2

V ¢
 + 5 = 0

5

4 2

V
I

-¢
- = (4)

  Applying KCL at V ¢

2
1

V V
I

-¢
+ =¢

(5)

  Substituting (3) and (1) in Eq. (5),

  fi (1 – I) + 2 = V ¢ – (12 – 2I)

V ¢ + 3I = 15 (6)

  Solving eqns (4) and (5) gives

I = 0.7142 A; V ¢ = 12.857 V = Vth

  To find ISC:

  Let ISC be the current flowing through the 10 W resistor and the 

equivalent circuit to determine, it is drawn below:

Fig. 17

  From the above figure/circuit,

ISC = I ¢ + I ≤ + 2

  Applying KCL at the node V,

  fi I = 1 + 2 + 
1

V

I = V + 3 (1)
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  I can be also determined as

12

2

V
I

-
=

(2)

  Substituting (1) in (2),

3
6 3 3

2 2

V V
V- = + fi =

V = 2 V

  and I = 3 + V = 3 + 2 = 5 A

  Applying Ohm’s law across the resistor of 2W gives

12 2 12 10

2 2
11A

2 A
1

I
I

V
I

+ +
≤ = =

=

= =¢

  But ISC = I ¢ + I ≤ + 2

   = 2 + 11 + 2

   ISC = 15 A

   Rth = th 12.857

15SC

V

I
=  = 0.857 W

6. (a) Derive the symmetry and reciprocity conditions for ABCD-

parameters and h-parameters.

Ans. Refer Section 6.13.

(b) Determine Y-parameters of the network shown in Fig. 18. [8 + 8]

Fig. 18

Ans. The below p-configuration can be changed to T-configuration and the 

circuit changes to

Fig. 19
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Fig. 20

5(2) 10 5(2) 10
;

5 5 2 12 5 5 2 12

5(5) 25

5 5 2 12

a b

c

R R

R

= = = =
+ + + +

= =
+ +

  After substituting these values in the circuit, the above one reduces to

Fig. 21

  The above T-configuration can be changed to p-configuration as

Fig. 22

12 25 25

84 238 238

25 12 25

238 84 238
0.24 0.105

0.105 0.24

a c c

c b c

Y Y Y
Y

Y Y Y

Y

+ -È ˘
= Í ˙- +Î ˚

-È ˘+Í ˙
= Í ˙

-Í ˙+Í ˙Î ˚
-È ˘

= Í ˙-Î ˚

7. A series R-C circuit with R = 10 ohms and C = 2 F has a sinusoidal 

voltage source 200 sin (500t + f) applied at time when f = 0. (i) Find 

the expression for the current. (ii) At what value of f must the switch 

be closed so that the current directly enters steady state? [16]

Ans. R = 10 W, C = 2F, Vs(t) = 200 sin (500t + f)
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  From the given data, the circuit that is to be 

inferred is

i.e.  w = 500

  Capacitive reactance

1 1
0.001F

50 2
CX

Cw
= = =

¥

  Applying KVL around the loop gives

10i + 
1

2
idtÚ  = 200 sin (500t + f)

  Given f = 0

  fi
10

200 500 cos(500 )
2

di i
t

dt
+ = ¥

  fi 41
10 cos(500 )

20
D i t

Ê ˆ+ =Á ˜Ë ¯

  CF; ic = Ce–t/20

  Finding particular integral:

4

4

2

4

2
2

1
PI 10 cos(500 )

1

20
1

2010 cos(500 )
1

400
1

2010 cos 500
1

(500)
20

t

D

D

t

D

D

t

= ◊
+

Ê ˆ-Á ˜
= Á ˜

-Á ˜Ë ¯
È ˘-Í ˙

= Í ˙
Ê ˆÍ ˙- - Á ˜Í ˙Ë ¯Î ˚

  Approximating the denominator,

4

4

10 1
sin 500 500 cos 500

2025 10
t t

Ê ˆ= - - ◊ -Á ˜Ë ¯¥

  Particular current ip,

ip = 20 sin 500 t + 
1

500
 cos 500 t

i = Ce–t/20 + 20 sin 500 t + 
1

500
 cos 500 t

  To find C

  Given t = 0 fi i = 0

Fig. 23
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0 = C + 0 + 
1

500
fi C = 

1

500

-

i(t) = /201

500

te--
 + 20 sin 500t + 

1

500
 cos 500 t

(ii) To find value of f at which switch must be closed so that the current directly 

enters steady state:

w t0 + f = tan–1 (wRC)

  At t = 0,

f = tan–1 (500 ¥ 2 ¥ 10)

= tan–1(10000)

= 89.99°
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Question Paper Consists of Part-A and Part-B

Answering the question in Part-A is Compulsory, 

Three Questions should be answered from Part-B

PART-A

1. (i) Define average value, RMS value and form factor for an alternating 

quantity.

Ans. Refer Sections 2.2.4, 2.2.5 and 2.2.7.

(ii) Determine the source voltage and phase angle, if the voltage across 

the resistance is 70 V and across an inductive reactance is 20 V, in 

an R-L series circuit.

Fig. 1

Ans. Given: V
R
 = 70 V and V

L
 = 20 V

  To find: Source voltage V
S
, phase angle f

2 2 2 270 20S R LV V V= + = +  = 72.8 V

  phase angle f = tan–1 L

R

V

V

Ê ˆ
Á ˜Ë ¯

 = tan–1
20

70

Ê ˆ
Á ˜Ë ¯

   = 15.945°

(iii) For the circuit shown in Fig. 2, determine the value of capacitive 

reactance, impedance and current at resonance.

Fig. 2

Ans. At resonance, imaginary part of impedance is zero,
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Fig. 3

  i.e., XC = XL

  fi XC = 25 W

  \ z = 
2 2 2( )L CR X X R R+ - = =

   = 50 W

  Current I = 
10 1

A
50 5

V

z
= =  = 0.2 A

(iv) State the maximum power transfer theorem.

Ans. Refer Sections 5.1.7 and 5.2.7.

(v) Write the condition of symmetry and reciprocity for transmission, 

inverse transmission and inverse h-parameters.

Ans. Refer Sections 6.4 and 6.5.

(vi) What is meant by natural and forced response?

Ans. Refer Section 7.1.

(vii) In a series R-L circuit, the application of dc voltage results in a 

current of 0.741 times the final steady-state value of current after 

one second. However, after the current has reached its final value, 

the source is short-circuited. What would be the value of the 

current after one second? [3 + 3 + 3 + 2 + 4 + 3 + 4]

Ans. Let the final steady-state current be Io.

  Given: I = 0.741 Io

  We know that I = Io(1 – e–t/t)

  fi 0.741Io = Io(1 – e–t/t)

t = 1 fi t = 
L

R
 = 0.740

/ 1.3509=R L

PART-B

2. (a) For the circuit shown in Fig. 5, find all the branch currents using 

nodal analysis. Also show that total power delivered is equal to 

total power dissipated.

Fig. 4
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Fig. 5

Ans. Let the node voltages be V1, V2 and V3.

Fig. 6

  Applying KCL at the node 1 gives.

  At V1,
1 3 1 2 1110

0
2 8 16

V V V V V- - -
+ + =

  fi 11V1 – 8V3 – 2V2 = 880 (1)

  At V2,
2 32 2 1 0

24 3 8

V VV V V- -
+ + =

12V2 – 8V3 – 3V1 = 0 (2)

  At V3,
3 1 3 2 3

3 3 31 2

110 110
0

2 3 2

0
2 2 3 2 3

V V V V V

V V VV V

+ - - -
+ + =

- + + + - =

31 2 4
0

2 3 3

VV V
- - + = (3)

  Solving Eqns (1), (2) and (3) gives

V1 = 157.14 V; V2 = 94.28 V; V3 = 82.50 V

  The following circuit shows current through all branches.
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Fig. 7

  Power dissipiated = 110 ¥ 17.68 + 110 ¥ 13.75

   = 3457.3 W

  Power consumed = 2(17.68)2 + 8(7.86)2 + 3(3.926)2 + 24(3.93)2

+ 16(9.82)2 + 2(13.75)2 = 3457.36 W

  Since power dissipiated is equal to power consumed, Tellegen’s is 

theorem is verified.

(b) A current of 5 A flows through a non-inductive resistance in series 

with a chocking coil when supplied at 250 V, 50 Hz. If the voltage 

across the non-inductive resistance is 12 5 V and that across the coil 

is 200 V, calculate impedance, reactance and resistance of the coil, 

and power absorbed by the soil. Also draw the phasor diagram.

[8 + 8]

Ans. The current flowing through the circuit is 5 A.

R = 
125

5
 = 25 W

  The equivalent impedance is

2 2
eq (25 ) ( )z x Lw= + +

  Applying ohm’s law, V = IZeq

  fi 250 = 5 ◊ 2 2(25 ) ( )x Lw+ +

2 2(25 ) ( )x Lw+ +  = 50 (1)

  Similarly for coil,

V = IZeq

200 = 2 25 ( )x Lw+
x2 + (wL)2 = 1600 (2)

  From (1), 625 + x2 + 50x + (wL)2 = 2500

625 + 1600 + 50x = 2500 [from (2)]

x = 5.5 W

Fig. 8
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  Substituting the value of x
in Eqn (2),

(wL)2 = 402 – x2

  We know f = 50 Hz

  fi L = 0.126 H

wL = 39.62

  Impedance of coil = 40 W
  Reactance of coil = 39.62 

W (= wL)

  Resistance of coil = x = 5.5 W
  Power absorbed by coil = 5 ¥ 200 = 1000 W = 1 kW

3. (a) Define incidence matrix. For the graph shown in Fig. 10, find the 

complete incidence matrix.

Fig. 10

Ans. Given graph is

Fig. 11

  The incidence matrix for the graph can be written as

A = 

branches

nodes 1 2 3 4 5 6

1 1 0 0 0 1

0 1 1 1 0 0

0 0 0 1 1 1

1 0 1 0 1 0

a

b

c

d

-È ˘
Í ˙- - -Í ˙
Í ˙- -
Í ˙
Î ˚

Fig. 9
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(b) Two impedance Z1 = 10 + j31.4 ohms and Z1 = (10 + R) + j(31.4 – 

Xc) ohms are connected in parallel across a single-phase ac supply. 

The current taken by the two impedance branches are equal in 

magnitude and the phase angle between them is 90°. Calculate the 

value of R and XC and phase difference of the branch currents with 

respect to the applied voltage. [8 + 8]

Ans. Given: z1 = 10 + j31.4

z2 = (10 + R) + j(31.4 – XC)

I1 = I2

  Since the same voltage is applied to 

both impedances,

  \ |Z1| = |Z2| and

  it is given that tan–1f1 – tan–1 f2 = 90°

  From, |Z1| = |Z2| fi 2 2 2 2
1 1R X R X+ = +

2 2
2 2 1

12 2
1

1 1
X R

R X
R X

Ê ˆ Ê ˆ
+ = +Á ˜ Á ˜Ë ¯ Ë ¯

(1)

  and tan–1f1 – tan–1f2 = 90° (given)

tan–1

1

X X

R R
X X

R R

¢Ê ˆ-Á ˜¢
Á ˜¢

+ ◊Á ˜Ë ¯¢

 = 90°

  fi 1 + 
X X

R R

¢
◊

¢
 = 0

  fi X R

R X

¢
= -

¢
(2)

  Substituting Eq. (2) in (1),

  fi R = –X1

  and R1 = X

  fi R = 10 = –X1

  and also X = 31.4 W
  \ R1 = 31.4 W
  fi XC = 41.4 W

  Phase difference f1 = tan–1
31.4

10

Ê ˆ
Á ˜Ë ¯  = 72.33°

f2 = tan–1
31.4 41.4

21.4 10

-Ê ˆ
Á ˜+Ë ¯

= –17.66°

Fig. 12

Fig. 13(a)

Fig. 13(b)
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4. (a) State and explain Tellegen’s theorem.

Ans. Refer Sections 5.1.8 and 5.2.8.

(b) For the network shown in Fig. 14, determine (i) resonance 

frequency, (ii) input admittance at resonance, (iii) quality factor, 

and (iv) bandwidth.

Fig. 14

Ans. Let L = 2H, R = 6 W, C = 2mF

wo = 

2
1 R

LC L

Ê ˆ- Á ˜Ë ¯

LC = 2 ¥ 2 ¥ 10–6

= 4 ¥ 10–6

1

LC
 = 2,50,000

2 2
6

2

R

L

Ê ˆ Ê ˆ=Á ˜ Á ˜Ë ¯ Ë ¯  = 9

  Substituting these in wo equation,

   wo ª 500

   fo = 79.576 Hz

  (ii) QC = oL

R

w

   =
500 2

6

¥

   = 166.67

   LP = LS 2

1
1

CQ

Ê ˆ+Á ˜Ë ¯
ª 2 H

   RP = RS (1 + 2
CQ ) = 166.67 kW

   RSh = RP || 4k = 
166.67 4

170.67

k k

k

¥
 = 3.906 kW

   LP = LSh = 2 H

   CSh = C = 2 mF

Fig. 16

Fig. 17

Fig. 15
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  Quality factor of the entire circuit,

Qe = 
3.906

500 2w
=

¥
Sh

o Sh

R k

L
 = 3.906

  Bandwidth = 
79.576

3.906

o

e

f

Q
=  = 20.37 Hz

  Admittance =
1

Sh L C

j j

R X X
- +

   =
1

Sh Sh

j

R Lw
-  + jwCSh

   = 0.256 ¥ 10–3 – j ¥ 10–3 + j ¥ 10–3

   = 0.256 ¥ 10–3 (at resonance)

5. (a) Two coils A and B having turns 100 and 1000 respectively are 

wound side by side on closed circuit coil of mean length 80 cm and 

80 cm2 X-section area. The relative permeability of iron is 900. 

Calculate the mutual inductance between the coils.

Ans. Given N1 = 100; N2 = 1000

  X-section area A = 8 cm2 = 8 ¥ 10–4 m2

  and mean length l = 80 cm = 0.8 m

  Relative permeability mr = 900

  and mo = 4p ¥ 10–7

  Mutual inductance between the coils

m = 1 2 o rN N a

l

m m

=
7 4100 1000 900 4 10 8 10

0.8

p
- -¥ ¥ ¥ ¥ ¥ ¥

= 113.09 ¥ 10–3 H

= 0.113 H

5. (b) Determine the current through load resistance RL = 5 W for the 

circuit shown in Fig. 18 using Thevenin theorem. Also find the 

maximum power transfer to the resistance RL. [7 + 9]

Fig. 18
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Ans. To find Vth:

  The equivalent circuit is

Fig. 19

  Let the node voltages at nodes 1 and 2 be Vth and V¢.
V = 2I (1)

  Applying KCL at Node (1),

I ¢ = 
1

V V-¢
 – 1

  fi I ¢ + 1 = V ¢ – V (2)

  Applying KCL at Node (2),

8

2 2

V V-
+  = I ¢

I ¢ = V – 4 (3)

  Substituting (3) and (1) in (2),

8 2

2

V I- +¢
 + 1 = V ¢ – V

3V ¢ – 3V = 10 (4)

V – 4 + 1 = V ¢ – V

V ¢ – 2V = –3 (5)

  Solving (4) and (5),

3V ¢ = 29

  fi V ¢ = 
29

3

  fi Vth = 9.667 V

Rth = 
th

SC

V

I

  To find ISC.
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Fig. 20

  Applying KCL at Node 1,

8
1 0

2 2 1

V V V-
+ + + =

2V = 3 fi V = 3/2 = I ¢

I ≤ = 
8 2 8 8 1.5

2 2 2

I V+ + +
= =  = 4.75 A

ISC = I ¢ + 1 + I ≤ (KCL at ground)

= 1.5 + 1 + 4.75 = 7.25 A

Rth = th 9.667

7.25SC

V

I
=  = 1.33 W

  For maximum power transfer,

  Max power transfer =
2

th

th4

V

R

   = 17.56 W

6. (a) Express Y-parameters in terms of ABCD and Z-parameters.

Ans. Refer Sections 6.8.1 and 6.8.2.

(b) Determine the h-parameters of the following network as shown in 

Fig. 22. [7 + 9]

Fig. 22

Fig. 21
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Ans.

     
Fig. 23

  First, we’ll consider the T-network:

  To simplify the computation, we’ll transform it to a p-network:

R1 = 

1 1
2 2 4

1
s s

s

Ê ˆ Ê ˆ+ +Á ˜ Á ˜Ë ¯ Ë ¯

= 4 + 4s

R2 = 
4 4/ 2

2
2 8

s+
= +

R3 = 2 + 
2

s
RP = R1 || s

=
(4 4 )

4 4

s s

s s

+
+ +

=

24 4

4 5

s s

s

+
+

  The equivalent circuit is

11 12

21 22

+ -È ˘È ˘
= Í ˙Í ˙ - +Î ˚ Î ˚

a c c

c b c

Y Y YY Y

Y Y YY Y

Ya + Yc = Yb + Yc =
22 2 4 4

4 5

s s s

s s

+ +
+

+

= (2s + 2)
1 2

4 5

s

s s

Ê ˆ+Á ˜+Ë ¯

= (2s + 2)
24 5 2

(4 5 )

s s

s s

È ˘+ +
Í ˙+Î ˚

Fig. 26

Fig. 24

Fig. 25
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2

11 12

2
21 22

(2 2)(4 5 2 ) (4 4 )

(4 5 ) 4 5

(4 4 ) (2 2)(4 5 2 )

4 5 (4 5 )

s s s s s

Y Y s s s

Y Y s s s s s

s s s

È ˘+ + + +
Í ˙+ +È ˘ Í ˙=Í ˙ Í ˙- + + + +Î ˚ Í ˙

+ +Í ˙Î ˚

h11 = 
2

11

1 (4 5 )

(2 2)(4 5 2 )

s s

Y s s s

+
=

+ + +

h12 = 12
2

11

(4 4 ) (4 5 )

(4 5 ) (2 2)(4 5 2 )

Y s s s s

Y s s s s

- - + +È ˘= Í ˙+ + + +Î ˚

=
2

2

2

2 5 4

s

s s

-
+ +

h21 = 
2

12
2

11

2

2 5 4

Y s

Y s s
=

+ +

11 22 12 21 12
22 22 21

11 11 11
2

2

2 2

2

2 2 3

2

(2 2)(4 5 2 ) 2 2 2 2

(4 5 ) 4 52 5 4

2 2 4 5 2 4

4 5 2 5 4

2 2 (4 5 2 ) 4

4 5 (2 5 4)

D - Ê ˆ= = = - Á ˜Ë ¯
+ + + ¥ +Ê ˆ= - Á ˜+ +Ë ¯+ +

È ˘+ + +
= -Í ˙+ + +Î ˚

È ˘+ + + -
= Í ˙+ + +Î ˚

Y Y Y Y Y Y
h Y Y

Y Y Y

s s s s s s

s s ss s

s s s s

s s s s

s s s s

s s s s

7. In a series RLC circuit, R = 6, ohms, L = 1 H, C = 1 F. A dc voltage of 

40 V is applied at t = 0. Obtain the expression for i(t) using differential 

equation approach. Explain the procedure to evaluate conditions. [16]

Ans. Let the current through the circuit be i(t).

  Applying KVL around the loop,

   40 = i(t)R + 
1di

L idt
dt C

+ Ú
  Differentiating on both sides,

in = 

2

2

( ) 1
( ) ( ) 0+ + =

d d i t
R i t L i t

dt Cdt

2

2

( ) ( )
6

d i t di t

dtdt
+  + i(t) = 0

(D2 + 6D + 1) i(t) = 0

Fig. 27
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  Solving the equation gives

D = –0.171, –5.828

if = 
40

6
 = 6.66

i(t) = Ae–0.171t + Be–5.828t + 6.66

i(0) = 0 fi A + B + 6.66 = 0

A + B = – 6.66

0

( )

t

di t
L

dt =
 = 0 fi A(–0.171) + B(–5.828) = 0

A = 226.98, B = –6.66
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