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Preface

Statistical mechanics is a theoretical framework that aims to predict the observable
static and dynamic properties of a many-body system starting from its microscopic
constituents and their interactions. Its scope is as broad as the set of “many-body”
systems is large: as long as there exists a rule governing the behavior of the fun-
damental objects that comprise the system, the machinery of statistical mechanics
can be applied. Consequently, statistical mechanics has found applications outside of
physics, chemistry, and engineering, including biology, social sciences, economics, and
applied mathematics. Because it seeks to establish a bridge between the microscopic
and macroscopic realms, statistical mechanics often provides a means of rationalizing
observed properties of a system in terms of the detailed “modes of motion” of its basic
constituents. An example from physical chemistry is the surprisingly high diffusion
constant of an excess proton in bulk water, which is a single measurable number.
However, this single number belies a strikingly complex dance of hydrogen bond re-
arrangements and chemical reactions that must occur at the level of individual or
small clusters of water molecules in order for this property to emerge. In the physical
sciences, the technology of molecular simulation, wherein a system’s microscopic in-
teraction rules are implemented numerically on a computer, allow such “mechanisms”
to be extracted and, through the machinery of statistical mechanics, predictions of
macroscopic observables to be generated. In short, molecular simulation is the com-
putational realization of statistical mechanics. The goal of this book, therefore, is to
synthesize these two aspects of statistical mechanics: the underlying theory of the
subject, in both its classical and quantum developments, and the practical numerical
techniques by which the theory is applied to solve realistic problems.

This book is aimed primarily at graduate students in chemistry or computational
biology and graduate or advanced undergraduate students in physics or engineering.
These students are increasingly finding themselves engaged in research activities that
cross traditional disciplinary lines. Successful outcomes for such projects often hinge
on their ability to translate complex phenomena into simple models and develop ap-
proaches for solving these models. Because of its broad scope, statistical mechanics
plays a fundamental role in this type of work and is an important part of a student’s
toolbox.

The theoretical part of the book is an extensive elaboration of lecture notes I devel-
oped for a graduate-level course in statistical mechanics I give at New York University.
These courses are principally attended by graduate and advanced undergraduate stu-
dents who are planning to engage in research in theoretical and experimental physical
chemistry and computational biology. The most difficult question faced by anyone
wishing to design a lecture course or a book on statistical mechanics is what to in-
clude and what to omit. Because statistical mechanics is an active field of research, it
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comprises a tremendous body of knowledge, and it is simply impossible to treat the
entirety of the subject in a single opus. For this reason, many books with the words
“statistical mechanics” in their titles can differ considerably. Here, I have attempted
to bring together topics that reflect what I see as the modern landscape of statisti-
cal mechanics. The reader will notice from a quick scan of the table of contents that
the topics selected are rarely found together in individual textbooks on the subject;
these topics include isobaric ensembles, path integrals, classical and quantum time-
dependent statistical mechanics, the generalized Langevin equation, the Ising model,
and critical phenomena. (The closest such book I have found is also one of my favorites,
David Chandler’s Introduction to Modern Statistical Mechanics.)

The computational part of the book joins synergistically with the theoretical part
and is designed to give the reader a solid grounding in the methodology employed to
solve problems in statistical mechanics. It is intended neither as a simulation recipe
book nor a scientific programmer’s guide. Rather, it aims to show how the develop-
ment of computational algorithms derives from the underlying theory with the hope
of enabling readers to understand the methodology-oriented literature and develop
new techniques of their own. The focus is on the molecular dynamics and Monte
Carlo techniques and the many novel extensions of these methods that have enhanced
their applicability to, for example, large biomolecular systems, complex materials,
and quantum phenomena. Most of the techniques described are widely available in
molecular simulation software packages and are routinely employed in computational
investigations. As with the theoretical component, it was necessary to select among the
numerous important methodological developments that have appeared since molecu-
lar simulation was first introduced. Unfortunately, several important topics had to be
omitted due to space constraints, including configuration-bias Monte Carlo, the ref-
erence potential spatial warping algorithm, and semi-classical methods for quantum
time correlation functions. This omission was not made because I view these methods
as less important than those I included. Rather, I consider these to be very powerful
but highly advanced methods that, individually, might have a narrower target audi-
ence. In fact, these topics were slated to appear in a chapter of their own. However,
as the book evolved, I found that nearly 700 pages were needed to lay the foundation
I sought.

In organizing the book, I have made several strategic decisions. First, the book is
structured such that concepts are first introduced within the framework of classical
mechanics followed by their quantum mechanical counterparts. This lies closer perhaps
to a physicist’s perspective than, for example, that of a chemist, but I find it to be a
particularly natural one. Moreover, given how widespread computational studies based
on classical mechanics have become compared to analogous quantum investigations
(which have considerably higher computational overhead) this progression seems to
be both logical and practical. Second, the technical development within each chapter
is graduated, with the level of mathematical detail generally increasing from chapter
start to chapter end. Thus, the mathematically most complex topics are reserved
for the final sections of each chapter. I assume that readers have an understanding of
calculus (through calculus of several variables), linear algebra, and ordinary differential
equations. This structure hopefully allows readers to maximize what they take away



Preface

from each chapter while rendering it easier to find a stopping point within each chapter.
In short, the book is structured such that even a partial reading of a chapter allows
the reader to gain a basic understanding of the subject. It should be noted that I
attempted to adhere to this graduated structure only as a general protocol. Where I
felt that breaking this progression made logical sense, I have forewarned the reader
about the mathematical arguments to follow, and the final result is generally given at
the outset. Readers wishing to skip the mathematical details can do so without loss
of continuity.

The third decision I have made is to integrate theory and computational methods
within each chapter. Thus, for example, the theory of the classical microcanonical
ensemble is presented together with a detailed introduction to the molecular dynamics
method and how the latter is used to generate a classical microcanonical distribution.
The other classical ensembles are presented in a similar fashion as is the Feynman
path integral formulation of quantum statistical mechanics. The integration of theory
and methodology serves to emphasize the viewpoint that understanding one helps in
understanding the other.

Throughout the book, many of the computational methods presented are accom-
panied by simple numerical examples that demonstrate their performance. These ex-
amples range from low-dimensional “toy” problems that can be easily coded up by the
reader (some of the exercises in each chapter ask precisely this) to atomic and molecu-
lar liquids, aqueous solutions, model polymers, biomolecules, and materials. Not every
method presented is accompanied by a numerical example, and in general I have tried
not to overwhelm the reader with a plethora of applications requiring detailed expla-
nations of the underlying physics, as this is not the primary aim of the book. Once
the basics of the methodology are understood, readers wishing to explore applications
particular to their interests in more depth can subsequently refer to the literature.

A word or two should be said about the problem sets at the end of each chapter.
Math and science are not spectator sports, and the only way to learn the material is
to solve problems. Some of the problems in the book require the reader to think con-
ceptually while others are more mathematical, challenging the reader to work through
various derivations. There are also problems that ask the reader to analyze proposed
computational algorithms by investigating their capabilities. For readers with some
programming background, there are exercises that involve coding up a method for a
simple example in order to explore the method’s performance on that example, and
in some cases, reproduce a figure from the text. These coding exercises are included
because one can only truly understand a method by programming it up and trying
it out on a simple problem for which long runs can be performed and many different
parameter choices can be studied. However, I must emphasize that even if a method
works well on a simple problem, it is not guaranteed to work well for realistic systems.
Readers should not, therefore, näıvely extrapolate the performance of any method they
try on a toy system to high-dimensional complex problems. Finally, in each problem
set, some problem are preceded by an asterisk (∗). These are problems of a more chal-
lenging nature that require deeper thinking or a more in-depth mathematical analysis.
All of the problems are designed to strengthen understanding of the basic ideas.

Let me close this preface by acknowledging my teachers, mentors, colleagues, and
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coworkers without whom this book would not have been possible. I took my first
statistical mechanics courses with Y. R. Shen at the University of California Berkeley
and A. M. M. Pruisken at Columbia University. later, I audited the course team-taught
by James L. Skinner and Bruce J. Berne, also at Columbia. I was also privileged to
have been mentored by Bruce Berne as a graduate student, by Michele Parrinello
during a postdoctoral appointment at the IBM Forschungslaboratorium in Rüschlikon,
Switzerland, and by Michael L. Klein while I was a National Science Foundation
postdoctoral fellow at the University of Pennsylvania. Under the mentorship of these
extraordinary individuals, I learned and developed many of the computational methods
that are discussed in the book. I must also express my thanks to the National Science
Foundation for their continued support of my research over the past decade. Many of
the developments presented here were made possible through the grants I received from
them. I am deeply grateful to the Alexander von Humboldt Foundation for a Friedrich
Wilhelm Bessel Research Award that funded an extended stay in Germany where I was
able to work on ideas that influenced many parts of the book. In am equally grateful
to my German host and friend Dominik Marx for his support during this stay, for
many useful discussions, and for many fruitful collaborations that have helped shaped
the book’s content. I also wish to acknowledge my long-time collaborator and friend
Glenn Martyna for his help in crafting the book in its initial stages and for his critical
reading of the first few chapters. I have also received many helpful suggestions from
Bruce Berne, Giovanni Ciccotti, Hae-Soo Oh, Michael Shirts, and Dubravko Sabo. I
am indebted to the excellent students and postdocs with whom I have worked over the
years for their invaluable contributions to several of the techniques presented herein
and for all they have taught me. I would also like to acknowledge my former student
Kiryn Haslinger Hoffman for her work on the illustrations used in the early chapters.
Finally, I owe a tremendous debt of gratitude to my wife Jocelyn Leka whose finely
honed skills as an editor were brought to bear on crafting the wording used throughout
the book. Editing me took up many hours of her time. Her skills were restricted to
the textual parts of the book; she was not charged with the onerous task of editing
the equations. Consequently, any errors in the latter are mine and mine alone.

M.E.T.
New York
December, 2009
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1

Classical mechanics

1.1 Introduction

The first part of this book is devoted to the subject of classical statistical mechanics,
the foundation of which are the fundamental laws of classical mechanics as originally
stated by Newton. Although the laws of classical mechanics were first postulated to
study the motion of planets, stars and other large-scale objects, they turn out to be
a surprisingly good approximation at the molecular level (where the true behavior is
correctly described by the laws of quantum mechanics). Indeed, an entire computa-
tional methodology, known as molecular dynamics, is based on the applicability of the
laws of classical mechanics to microscopic systems. Molecular dynamics has been re-
markably successful in its ability to predict macroscopic thermodynamic and dynamic
observables for a wide variety of systems using the rules of classical statistical mechan-
ics to be discussed in the next chapter. Many of these applications address important
problems in biology, such as protein and nucleic acid folding, in materials science,
such as surface catalysis and functionalization, and structure and dynamics of glasses
and their melts, as well as in nanotechnology, such as the behavior of self-assembled
monolayers and the formation of molecular devices. Throughout the book, we will be
discussing both model and realistic examples of such applications.

In this chapter, we will begin with a discussion of Newton’s laws of motion and
build up to the more elegant Lagrangian and Hamiltonian formulations of classical
mechanics, both of which play fundamental roles in statistical mechanics. The origin
of these formulations from the action principle will be discussed. The chapter will
conclude with a first look at systems that do not fit into the Hamiltonian/Lagrangian
framework and the application of such systems in the description of certain physical
situations.

1.2 Newton’s laws of motion

In 1687, the English physicist and mathematician Sir Isaac Newton published the
Philosophiae Naturalis Principia Mathematica, wherein three simple and elegant laws
governing the motion of interacting objects are stated. These may be stated briefly as
follows:

1. In the absence of external forces, a body will either be at rest or execute motion
along a straight line with a constant velocity v.

2. The action of an external force F on a body produces an acceleration a equal to
the force divided by the mass m of the body:
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a =
F

m
, F = ma. (1.2.1)

3. If body A exerts a force on body B, then body B exerts an equal and opposite
force on body A. That is, if FAB is the force body A exerts on body B, then the
force FBA exerted by body B on body A satisfies

FBA = −FAB. (1.2.2)

In general, two objects can exert attractive or repulsive forces on each other, depending
on their relative spatial location, and the precise dependence of the force on the relative
location of the objects is specified by a particular force law.

Although Newton’s interests largely focused on the motion of celestial bodies in-
teracting via gravitational forces, most atoms are massive enough that their motion
can be treated reasonably accurately within a classical framework. Hence, the laws
of classical mechanics can be approximately applied at the molecular level. Naturally,
there are numerous instances in which the classical approximation breaks down, and
a proper quantum mechanical treatment is needed. For the present, however, we will
assume the approximate validity of classical mechanics at the molecular level and
proceed to apply Newton’s laws as stated above.

The motion of an object can be described quantitatively by specifying the Carte-
sian position vector r(t) of the object in space at any time t. This is tantamount to
specifying three functions of time, the components of r(t),

r(t) = (x(t), y(t), z(t)). (1.2.3)

Recognizing that the velocity v(t) of the object is the first time derivative of the
position, v(t) = dr/dt, and that the acceleration a(t) is the first time derivative of the
velocity, a(t) = dv/dt, the acceleration is easily seen to be the second derivative of
position, a(t) = d2r/dt2. Therefore, Newton’s second law, F = ma, can be expressed
as a differential equation

m
d2r

dt2
= F. (1.2.4)

(Throughout this book, we shall employ the overdot notation for differentiation with
respect to time. Thus, ṙi = dri/dt and r̈i = d2ri/dt2.) Since eqn. (1.2.4) is a second
order equation, it is necessary to specify two initial conditions, these being the initial
position r(0) and initial velocity v(0). The solution of eqn. (1.2.4) subject to these
initial conditions uniquely specifies the motion of the object for all time.

The force F that acts on an object is capable of doing work on the object. In order
to see how work is computed, consider Fig. 1.1, which shows a force F acting on a
system along a particular path. The work dW performed along a short segment dl of
the path defined to be

dW = F · dl = F cos θdl. (1.2.5)

The total work done on the object by the force between points A and B along the
path is obtained by integrating over the path from A to B:
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qdW = -Fcos dl

dl

F

q

F

dl

θ

Fig. 1.1 Example of mechanical work. Here dW = F · dl = F cos θdl.

WAB(path) =

∫ B

A

F · dl. (1.2.6)

In general, the work done on an object by a force depends on the path taken between A
and B. For certain types of forces, called conservative forces, the work is independent
of the path and only depends on the endpoints of the path. We shall describe shortly
how conservative forces are defined.

Note that the definition of work depends on context. Eqn. (1.2.6) specifies the
work done by a force F. If this force is an intrinsic part of the system, then we refer to
this type of work as work done by the system. If we wish to calculate the work done
against such a force by some extrinsic agent, then this work would be the negative of
that obtained using Eqn. (1.2.6), and we refer to this as work done on the system. An
example is the force exerted by the Earth’s gravitational field on an object of mass
m. If the mass falls under the Earth’s gravitational pull through a distance h. We
can think of the object and the gravitational force as defining the mechanical system.
Thus, if the object falls through a distance h under the action of gravity, the system
does work, and eqn. (1.2.6) would yield a positive value. Conversely, if we applied eqn.
(1.2.6) to the opposite problem of raising the object to a height h, it would yield a
negative result. This is simply telling us that the system is doing negative work in this
case, or that some external agent must do work on the system, against the force of
gravity, in order to raise to a height h, and the value of this work must be positive.
Generally, it is obvious what sign to impart to work, yet the distinction between work
done on and by a system will become important in our discussions of thermodynamics
and classical statistical mechanics in Chapters 2–6.

Given the form of Newton’s second law in eqn. (1.2.4), it can be easily shown that
Newton’s first law is redundant. According to Newton’s first law, an object initially
at a position r(0) moving with constant velocity v will move along a straight line
described by

r(t) = r(0) + vt. (1.2.7)

This is an example of a trajectory, that is, a specification of the object’s position as a
function of time and initial conditions. If no force acts on the object, then, according
to Newton’s second law, its position will be the solution of

r̈i = 0. (1.2.8)
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The straight line motion of eqn. (1.2.7) is, in fact, the unique solution of eqn. (1.2.8)
for an object whose initial position is r(0) and whose initial (and constant) velocity is
v. Thus, Newton’s second law embodies Newton’s first law.

Statistical mechanics is concerned with the behavior of large numbers of objects
that can be viewed as the fundamental constituents of a particular microscopic model
of the system, whether they are individual atoms or molecules or groups of atoms in
a macromolecules, such as the amino acids in a protein. We shall, henceforth, refer to
these constituents as “particles” (or, in some cases, “pseudoparticles”). The classical
behavior of a system of N particles in three dimensions is given by the generalization
of Newton’s second law to the system. In order to develop the form of Newton’s second
law, note that particle i will experience a force Fi due to all of the other particles in
the system and possibly the external environment or external agents as well. Thus, Fi

will depend on the positions r1, ..., rN of all of the particles in the system and possibly
the velocity of the particle ṙi, i.e., Fi = Fi(r1, ..., rN , ṙi). For example, if the force Fi

depends only on individual contributions from every other particle in the system, that
is, if the forces are pairwise additive, then the force Fi can be expressed as

Fi(r1, ..., rN , ṙi) =
∑
j �=i

fij(ri − rj) + f (ext)(ri, ṙi). (1.2.9)

The first term in eqn. (1.2.9) describes forces that are intrinsic to the system and are
part of the definition of the mechanical system, while the second term describes forces
that are entirely external to the system. For a general N -particle system, Newton’s
second law for particle i takes the form

mir̈i = Fi(r1, ..., rN , ṙi). (1.2.10)

These equations, referred to as the equations of motion of the system, must be solved
subject to a set of initial positions, {r1(0), ..., rN (0)}, and velocities, {ṙ1(0), ..., ṙN (0)}.
In any realistic system, the interparticle forces are highly nonlinear functions of the N
particle positions so that eqns. (1.2.10) possess enormous dynamical complexity, and
obtaining an analytical solution is hopeless. Moreover, even if an accurate numerical
solution could be obtained, for macroscopic matter, where N ∼ 1023, the computa-
tional resources required to calculate and store the solutions for each and every particle
at a large number of discrete time points would exceed by many orders of magnitude
all those presently available, making such a task equally untenable. Given these con-
siderations, how can we ever expect to calculate physically observable properties of
realistic systems starting from a microscopic description if the fundamental equations
governing the behavior of the system cannot be solved?

The rules of statistical mechanics provide the necessary connection between the
microscopic laws and macroscopic observables. These rules, however, cannot circum-
vent the complexity of the system. Therefore, several approaches can be considered for
dealing with this complexity: A highly simplified model for a system that lends itself
to an analytical solution could be introduced. Although of limited utility, important
physical insights can often be extracted from a clever model, and it is often possible to
study the behavior of the model as external conditions are varied, such as the number
of particles, containing volume, applied pressure, and so forth. Alternatively, one can
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consider a system, not of 1023 particles, but of a much smaller number, perhaps 102–
109 particles, depending on the nature of the system, and solve the equations of motion
numerically subject to initial conditions and the boundary conditions of a containing
volume. Fortunately, many macroscopic properties are well-converged with respect to
system size for such small numbers of particles! The rules of statistical mechanics are
then used to analyze the numerical trajectories thus generated. This is the essence
of the molecular dynamics technique. Although the molecular dynamics approach is
very powerful, a significant disadvantage exists: in order to study the dependence on
external conditions, a separate calculation must be performed for every choice of these
conditions, hence a very large number of calculations are needed in order to map out a
phase diagram, for example. In addition, the “exact” forces between particles cannot
be determined and, hence, models for these forces must be introduced. Usually, the
more accurate the model, the more computationally intensive the numerical calcula-
tion, and the more limited the scope of the calculation with respect to time and length
scales and the properties that can be studied. Often, time and length scales can be
bridged by combining models of different accuracy, including even continuum models
commonly used in engineering, to describe different aspects of a large, complex system
and devising clever numerical solvers for the resulting equations of motion. Numeri-
cal calculations (typically referred to as simulations) have become an integral part of
modern theoretical research, and, since many of these calculations rely on the laws of
classical mechanics, it is important that this subject be covered in some detail before
proceeding on to any discussion of the rules of statistical mechanics. The remainder
of this chapter will, therefore, be devoted to introducing the concepts from classical
mechanics that will be needed for our subsequent discussion of statistical mechanics.

1.3 Phase space: visualizing classical motion

Newton’s equations specify the complete set of particle positions {r1(t), ..., rN (t)} and,
by differentiation, the particle velocities {v1(t), ...,vN (t)} at any time t, given that
the positions and velocities are known at one particular instant in time. For reasons
that will be clear shortly, it is often preferable to work with the particle momenta,
{p1(t), ...,pN (t)}, which, in Cartesian coordinates, are related to the velocities by

pi = mivi = miṙi. (1.3.1)

Note that, in terms of momenta, Newton’s second law can be written as

Fi = mai = mi
dvi

dt
=

dpi

dt
. (1.3.2)

Therefore, the classical dynamics of an N -particle system can be expressed by specify-
ing the full set of 6N functions, {r1(t), ..., rN (t),p1(t), ...,pN (t)}. Equivalently, at any
instant t in time, all of the information about the system is specified by 6N numbers
(or 2dN in d dimensions). These 6N numbers constitute the microscopic state of the
system at time t. That these 6N numbers are sufficient to characterize the system
entirely follows from the fact that they are all that is needed to seed eqns. (1.2.10),
from which the complete time evolution of the system can be determined.
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Suppose, at some instant in time, the positions and momenta of the system are
{r1, ..., rN ,p1, ...,pN}. These 6N numbers can be regarded as an ordered 6N -tuple or
a single point in a 6N -dimensional space called phase space. Although the geometry
of this space can, under certain circumstances, be nontrivial, in its simplest form, a
phase space is a Cartesian space that can be constructed from 6N mutually orthogonal
axes. We shall denote a general point in the phase space as

x = (r1, ...rN ,p1, ...,pN ) (1.3.3)

also known as the phase space vector. (As we will see in Chapter 2, phase spaces play
a central role in classical statistical mechanics.) Solving eqns. (1.2.10) generates a set
of functions

xt = (r1(t), ..., rN (t),p1(t), ...,pN (t)), (1.3.4)

which describe a parametric path or trajectory in the phase space. Therefore, classical
motion can be described by the motion of a point along a trajectory in phase space.
Although phase space trajectories can only be visualized for a one-particle system in
one spatial dimension, it is, nevertheless, instructive to study several such examples.

Consider, first, a free particle with coordinate x and momentum p, described by
the one-dimensional analog of eqn. (1.2.7), i.e x(t) = x(0) + (p/m)t, where p is the
particle’s (constant) momentum. A plot of p vs. x is simply a straight horizontal line
starting at x(0) and extending in the direction of increasing x if p > 0 or decreasing x
if p < 0. This is illustrated in Fig. 1.2. The line is horizontal because p is constant for
all x values visited on the trajectory.

x

p

x(0)

p > 0

p < 0

Fig. 1.2 Phase space of a one-dimensional free particle.

Another important example of a phase space trajectory is that of a simple harmonic
oscillator, for which the force law is given by Hooke’s law, F (x) = −kx, where k is
a constant known as the force constant. In this case, Newton’s second law takes the
form

mẍ = −kx. (1.3.5)
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For a given initial condition, x(0) and p(0), the solution of eqn. (1.3.5) is

x(t) = x(0) cosωt +
p(0)

mω
sin ωt, (1.3.6)

where ω =
√

k/m is the natural frequency of the oscillator. Eqn. (1.3.6) can be
verified by substituting into eqn. (1.3.5). Differentiating once with respect to time and
multiplying by the mass gives an expression for the momentum

p(t) = p(0) cosωt − mωx(0) sin ωt. (1.3.7)

Note that p(t) and x(t) are related by

(p(t))2

2m
+

1

2
mω2(x(t))2 = C, (1.3.8)

where C is a constant determined by the initial condition according to

C =
(p(0))2

2m
+

1

2
mω2(x(0))2. (1.3.9)

(This relation is known as the conservation of energy, which we will discuss in greater
detail in the next few sections.) From eqn. (1.3.8), it can be seen that the phase space
plot, p vs. x, specified by p2/2m + mω2x2/2 = C is an ellipse with axes (2mC)1/2

and (2C/mω2)1/2 as shown in Fig. 1.3. The figure also indicates that different initial
conditions give rise to different values of C and, therefore, change the size of the ellipse.
The phase space plots determine the values of position and momentum the system will
visit along a trajectory for a given set of initial conditions. These values constitute the
accessible phase space. For a free particle, the accessible phase space is unbounded,
since x lies in the interval, x ∈ [x(0),∞) for p > 0 or x ∈ (−∞, x(0)] for p < 0.
The harmonic oscillator, by contrast, provides an example of a phase space that is
bounded.

Consider, finally, the example of a particle of mass m rolling over a hill under the
influence of gravity, as illustrated in Fig. 1.4(a). (This example is a one-dimensional
idealization of a situation that should be familiar to anyone who has ever played
miniature golf and also serves as a paradigm for chemical reactions.) We will assume
that the top of the hill corresponds to a position, x = 0. The force law for this
problem is non-linear, so that a simple, closed-form solution to Newton’s second law
is, generally, not available. However, an analytical solution is not needed in order to
visualize the motion using a phase space picture. Several kinds of motion are possible
depending on the initial conditions. First, if it is not rolled quickly enough, the particle
cannot roll completely over the hill. Rather, it will climb part way up the hill and then
roll back down the same side. This type of motion is depicted in the phase space plot
of Fig. 1.4(b). Note that the plot only shows the motion in a region close to the hill. A
full phase space plot would extend to x = ±∞. On the other hand, if the initial speed
is high enough, the particle can reach the top of the hill and roll down the other side
as depicted in Fig. 1.4(d). The crossover between these two scenarios occurs for one
particular initial rolling speed in which the ball can just climb to the top of the hill
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Fig. 1.3 Phase space of the one-dimensional harmonic oscillator.
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Fig. 1.4 Phase space of a one-dimensional particle subject to the “hill” potential: (a) Two

particles approach the hill, one from the left, one from the right. (b) Phase space plot if the

particles have insufficient energy to roll over the hill. (c) Same if the energy is just sufficient

for a particle to reach the top of the hill and come to rest there. (d) Same if the energy is

larger than that needed to roll over the hill.

and come to rest there, as is shown in Fig. 1.4(c). Such a trajectory clearly divides
the phase space between the two types of motion shown in Figs. 1.4(b) and 1.4(d) and
is known as a separatrix. If this example were extended to include a large number of
hills with possibly different heights, then the phase space would contain a very large
number of separatrices. Such an example is paradigmatic of the force laws that one
encounters in complex problems such as protein folding, one of the most challenging
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computational problems in biophysics.
Visualizing the trajectory of a complex many-particle system in phase space is not

possible due to the high dimensionality of the space. Moreover, the phase space may
be bounded in some directions and unbounded in others. For formal purposes, it is
often useful to think of an illustrative phase space plot, in which some particular
set of coordinates of special interest are shown collectively on one axis and their
corresponding momenta are shown on the other with a schematic representation of
a phase space trajectory. This technique has been used to visualize the phase space of
chemical reactions in an excellent treatise by De Leon et al. (1991). In other instances,
it is instructive to consider a particular cut or surface in a large phase space that
represents a set of variables of interest. Such a cut is known as a Poincaré section
after the French mathematician Henri Poincaré (1854–1912), who, among other things,
contributed substantially to our modern theory of dynamical systems. In this case, the
values of the remaining variables will be fixed at the values they take at the location
of this section. The concept of a Poincaré section is illustrated in Fig. 1.5.

.
.

. .

.

Fig. 1.5 A Poincaré section.

1.4 Lagrangian formulation of classical mechanics: A general

framework for Newton’s laws

Statistical mechanics is concerned with characterizing the number of microscopic states
available to a system and, therefore, requires a formulation of classical mechanics that
is more closely connected to the phase space description then the Newtonian formu-
lation. Since phase space provides a geometric description of a system in terms of
positions and momenta, or equivalently in terms of positions and velocities, it is nat-
ural to look for an algebraic description of a system in terms of these variables. In
particular, we seek a “generator” of the classical equations of motion that takes the
positions and velocities or positions and momenta as its inputs and produces, through
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some formal procedure, the classical equations of motion. The formal structure we
seek is embodied in the Lagrangian and Hamiltonian formulations of classical me-
chanics (Goldstein, 1980). The introduction of such a formal structure places some
restrictions on the form of the force laws. Specifically, the forces are required to be
conservative. Conservative forces are defined to vector quantities that are derivable
from a scalar function U(r1, ..., rN ), known as a potential energy function, via

Fi(r1, ..., rN ) = −∇iU(r1, ..., rN ), (1.4.1)

where ∇i = ∂/∂ri. Consider the work done by the force Fi in moving particle i from
points A to B along a particular path. The work done is

WAB =

∫ B

A

Fi · dl. (1.4.2)

Since Fi = −∇iU , the line integral simply becomes the difference in potential between
points A and B: WAB = UA − UB. Note that the work only depends on the difference
in potential energy independent of the path taken. Thus, we conclude that the work
done by conservative forces is independent of the path taken between A and B. It
follows, therefore, that along a closed path∮

Fi · dl = 0. (1.4.3)

Given the N particle velocities, ṙ1, ..., ṙN , the kinetic energy of the system is given
by

K(ṙ1, ..., ṙN ) =
1

2

N∑
i=1

miṙ
2
i . (1.4.4)

The Lagrangian L of a system is defined as the difference between the kinetic and
potential energies expressed as a function of positions and velocities:

L(r1, ..., rN , ṙ1, ..., ṙN ) = K(ṙ1, ..., ṙN ) − U(r1, ..., rN ). (1.4.5)

The Lagrangian serves as the generator of the equations of motion via the Euler–
Lagrange equation:

d

dt

(
∂L

∂ṙi

)
− ∂L

∂ri
= 0. (1.4.6)

It can be easily verified that substitution of eqn. (1.4.5) into eqn. (1.4.6) gives eqn.
(1.2.10):

∂L

∂ṙi
= miṙi

d

dt

(
∂L

∂ṙi

)
= mir̈i
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∂L

∂ri
= −∂U

∂ri
= Fi

d

dt

(
∂L

∂ṙi

)
− ∂L

∂ri
= mir̈i − Fi = 0, (1.4.7)

which is just Newton’s second law of motion.
As an example of the application of the Euler–Lagrange equation, consider the

one-dimensional harmonic oscillator discussed in the previous section. The Hooke’s
law force F (x) = −kx can be derived from a potential

U(x) =
1

2
kx2, (1.4.8)

so that the Lagrangian takes the form

L(x, ẋ) =
1

2
mẋ2 − 1

2
kx2. (1.4.9)

Thus, the equation of motion is derived as follows:

∂L

∂ẋ
= mẋ

d

dt

(
∂L

∂ẋ

)
= mẍ

∂L

∂x
= −kx

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= mẍ + kx = 0, (1.4.10)

which is the same as eqn. (1.3.5).
It is important to note that when the forces in a particular system are conserva-

tive, then the equations of motion satisfy an important conservation law, namely the
conservation of energy. The total energy is given by the sum of kinetic and potential
energies:

E =
N∑

i=1

1

2
miṙ

2
i + U(r1, ..., rN ). (1.4.11)

In order to verify that E is a constant, we need only show that dE/dt = 0. Differen-
tiating eqn. (1.4.11) with respect to time yields

dE

dt
=

N∑
i=1

miṙi · r̈i +

N∑
i=1

∂U

∂ri
· ṙi

=

N∑
i=1

ṙi ·
[
mir̈i +

∂U

∂ri

]
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=

N∑
i=1

ṙi · [mir̈i − Fi]

= 0 (1.4.12)

where the last line follows from the fact that Fi = mir̈i.
The power of the Lagrangian formulation of classical mechanics lies in the fact that

the equations of motion in an arbitrary coordinate system, which might not be easy
to write down directly from Newton’s second law, can be derived straightforwardly
via the Euler–Lagrange equation. Often, the standard Cartesian coordinates are not
the most suitable coordinate choice for a given problem. Suppose, for a given system,
there exists another set of 3N coordinates, {q1, ..., q3N}, that provides a more natural
description of the particle locations. The generalized coordinates are related to the
original Cartesian coordinates, r1, ..., rN , via a coordinate transformation

qα = fα(r1, ..., rN ) α = 1, ..., 3N. (1.4.13)

Thus, each coordinate qα is a function of the N Cartesian coordinates, r1, ..., rN . The
coordinates, q1, ..., q3N are known as generalized coordinates. It is assumed that the
coordinate transformation eqn. (1.4.13) has a unique inverse

ri = gi(q1, ..., q3N ) i = 1, ..., N. (1.4.14)

In order to determine the Lagrangian in terms of generalized coordinates, eqn.
(1.4.14) is used to compute the velocities via the chain rule:

ṙi =
3N∑
α=1

∂ri

∂qα
q̇α, (1.4.15)

where ∂ri/∂qα ≡ ∂gi/∂qα. Substituting eqn. (1.4.15) into eqn. (1.4.4) gives the kinetic
energy in terms of the new velocities q̇1, ..., q̇3N :

K̃(q, q̇) =
1

2

3N∑
α=1

3N∑
β=1

[
N∑

i=1

mi
∂ri

∂qα
· ∂ri

∂qβ

]
q̇αq̇β

=
1

2

3N∑
α=1

3N∑
β=1

Gαβ(q1, ..., q3N )q̇αq̇β , (1.4.16)

where

Gαβ(q1, ..., q3N ) =
N∑

i=1

mi
∂ri

∂qα
· ∂ri

∂qβ
(1.4.17)

is called the mass metric matrix or mass metric tensor and is, in general, a function of
all the generalized coordinates. The Lagrangian in generalized coordinates takes the
form
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L =
1

2

3N∑
α=1

3N∑
β=1

Gαβ(q1, ..., q3N )q̇αq̇β − U(r1(q1, ..., q3N ), ..., rN (q1, ..., q3N )), (1.4.18)

where the potential U is expressed as a function of the generalized coordinates through
the transformation in eqn. (1.4.14). Substitution of eqn. (1.4.18) into the Euler–
Lagrange equation, eqn. (1.4.6), gives the equations of motion for each generalized
coordinate, qγ , γ = 1, ..., 3N :

d

dt

⎛
⎝ 3N∑

β=1

Gγβ(q1, ..., q3N )q̇β

⎞
⎠ −

3N∑
α=1

3N∑
β=1

∂Gαβ(q1, ..., q3N )

∂qγ
q̇αq̇β = − ∂U

∂qγ
. (1.4.19)

In the remainder of this section, we will consider several examples of the use of the
Lagrangian formalism.

1.4.1 Example: Motion in a central potential

Consider a single particle in three dimensions subject to a potential U(r) that depends
only on the particle’s distance from the origin. This means U(r) = U(|r|) = U(r),

where r =
√

x2 + y2 + z2 and is known as a central potential. The most natural
set of coordinates are not the Cartesian coordinates (x, y, z) but the spherical polar
coordinates (r, θ, φ) given by

r =
√

x2 + y2 + z2, θ = tan−1

√
x2 + y2

z
, φ = tan−1 y

x
(1.4.20)

and the inverse transformation

x = r sin θ cosφ, y = r sin θ sin φ, z = r cos θ. (1.4.21)

The mass metric matrix is a 3×3 diagonal matrix given by

G11(r, θ, φ) = m

G22(r, θ, φ) = mr2

G33(r, θ, φ) = mr2 sin2 θ

Gαβ(r, θ, φ) = 0 α �= β. (1.4.22)

Returning to our example of a single particle moving in a central potential, U(r), we
find that the Lagrangian obtained by substituting eqn. (1.4.22) into eqn. (1.4.18) is

L =
1

2
m

(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
− U(r). (1.4.23)

In order to obtain the equations of motion from the Euler–Lagrange equations, eqn.
(1.4.6), derivatives of L with respect to each of the variables and their time derivatives
are required. These are given by:

∂L

∂ṙ
= mṙ,

∂L

∂r
= mrθ̇2 + mr sin2 θφ̇2 − dU

dr
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∂L

∂θ̇
= mr2θ̇,

∂L

∂θ
= mr2 sin θ cos θφ̇2

∂L

∂φ̇
= mr2 sin2 θφ̇,

∂L

∂φ
= 0. (1.4.24)

Note that in eqn. (1.4.24), the derivative ∂L/∂φ = 0. The coordinate φ is an example
of a cyclic coordinate. In general, if a coordinate q satisfies ∂L/∂q = 0, it is a cyclic
coordinate. It is also possible to make θ a cyclic coordinate by recognizing that the
quantity l = r × p, called the orbital angular momentum, is a constant (l(0) = l(t))
when the potential only depends on r. (Angular momentum will be discussed in more
detail in Section 1.11.) Thus, the quantity l is conserved by the motion and, therefore,
satisfies dl/dt = 0. Because l is constant, it is always possible to simplify the problem
by choosing a coordinate frame in which the z axis lies along the direction of l. In such
a frame, the motion occurs solely in the xy plane so that θ = π/2 and θ̇ = 0. With
this simplification, the equation of motion becomes

mr̈ − mrφ̇2 = −dU

dr

mr2φ̈ + 2mrṙφ̇ = 0. (1.4.25)

The second equation can be expressed in the form

d

dt

(
1

2
r2φ̇

)
= 0, (1.4.26)

which expresses another conservation law known as the conservation of areal velocity,
defined as the area swept out by the radius vector per unit time. Setting the quantity,
mr2φ̇ = l, the first equation of motion can be written as

mr̈ − l2

mr3
= −dU

dr
. (1.4.27)

Since the total energy

E =
1

2
m

(
ṙ2 + r2φ̇2

)
+ U(r) =

1

2
mṙ2 +

l2

2mr2
+ U(r) (1.4.28)

is conserved, eqn. (1.4.28) can be inverted to give an integral expression

dt =
dr√

2
m

(
E − U(r) − l2

2mr2

)
t =

∫ r

r(0)

dr′√
2
m

(
E − U(r′) − l2

2mr′2

) , (1.4.29)

which, for certain choices of the potential, can be integrated analytically and inverted
to yield the trajectory r(t).
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1.4.2 Example: Two-particle system

Consider a two-particle system with masses m1 and m2, positions r1 and r2 and
velocities ṙ1 and ṙ2 subject to a potential U that is a function of only the distance
|r1 − r2| between them. Such would be the case, for example, in a diatomic molecule.
The Lagrangian for the system can be written as

L =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 − U(|r1 − r2|). (1.4.30)

Although such a system can easily be treated directly in terms of the Cartesian posi-
tions r1 and r2, for which the equations of motion are

m1r̈1 = −U ′(|r1 − r2|) r1 − r2

|r1 − r2|

m2r̈2 = U ′(|r1 − r2|) r1 − r2

|r1 − r2| , (1.4.31)

a more natural set of coordinates can be chosen. To this end, we introduce the center-
of-mass and relative coordinates defined by

R =
m1r1 + m2r2

M
, r = r1 − r2, (1.4.32)

respectively. The inverse of this transformation is

r1 = R +
m2

M
r, r2 = R − m1

M
r. (1.4.33)

When eqn. (1.4.33) is substituted into eqn. (1.4.30), the Lagrangian becomes

L =
1

2
MṘ2 +

1

2
μṙ2 − U(|r|), (1.4.34)

where μ = m1m2/M is known as the reduced mass. Since ∂L/∂R = 0, we see that
the center-of-mass coordinate is cyclic, and only the relative coordinate needs to be
considered. After elimination of the center-of-mass, the reduced Lagrangian is L =
μṙ2/2 − U(|r|) which gives a simple equation of motion

μr̈ = −U ′(|r|) r

|r| . (1.4.35)

Alternatively, one could transform r into spherical-polar coordinates as described
above, and solve the resulting one-dimensional equation for a single particle of mass
μ moving in a central potential U(r).

We hope that the reader is now convinced of the elegance and simplicity of the
Lagrangian formulation of classical mechanics. Primarily, it offers a framework in which
the equations of motion can be obtained in any set of coordinates. Beyond this, we shall
see how it connects with a more general principle, the action extremization principle,
which allows the Euler–Lagrange equations to be obtained by extremization of a
particular mathematical form known as the classical action, a concept of fundamental
importance in quantum statistical mechanics to be explored in Chapter 12.
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1.5 Legendre transforms

We shall next derive the Hamiltonian formulation of classical mechanics. Before we
can do so, we need to introduce the concept of a Legendre transform.

Consider a simple function f(x) of a single variable x. Suppose we wish to express
f(x) in terms of a new variable s, where s and x are related by

s = f ′(x) ≡ g(x) (1.5.1)

with f ′(x) = df/dx. Can we determine f(x) at a point x0 given only s0 = f ′(x0) =
g(x0)? The answer to this question, of course, is no. The reason, as Fig. 1.6 makes
clear, is that s0, being the slope of the line tangent to f(x) at x0, is also the slope
of f(x) + c at x = x0 for any constant c. Thus, f(x0) cannot be uniquely determined

x
x0

slope = f ’(x0)

f(x) + c

f(x)

Fig. 1.6 Depiction of the Legendre transform.

from s0. However, if we specify both the slope, s0 = f ′(x0), and the y-intercept, b(x0),
of the line tangent to the function at x0, then f(x0) can be uniquely determined. In
fact, f(x0) will be given by the equation of the line tangent to the function at x0:

f(x0) = f ′(x0)x0 + b(x0). (1.5.2)

Eqn. (1.5.2) shows how we may transform from a description of f(x) in terms of x to
a new description in terms of s. First, since eqn. (1.5.2) is valid for all x0 it can be
written generally in terms of x as

f(x) = f ′(x)x + b(x). (1.5.3)
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Then, recognizing that f ′(x) = g(x) = s and x = g−1(s), and assuming that s = g(x)
exists and is a one-to-one mapping, it is clear that the function b(g−1(s)), given by

b(g−1(s)) = f(g−1(s)) − sg−1(s), (1.5.4)

contains the same information as the original f(x) but expressed as a function of s
instead of x. We call the function f̃(s) = b(g−1(s)) the Legendre transform of f(x).
f̃(s) can be written compactly as

f̃(s) = f(x(s)) − sx(s), (1.5.5)

where x(s) serves to remind us that x is a function of s through the variable transfor-
mation x = g−1(s).

The generalization of the Legendre transform to a function f of n variables x1, ..., xn

is straightforward. In this case, there will be a variable transformation of the form

s1 =
∂f

∂x1
= g1(x1, ..., xn)

· · ·
sn =

∂f

∂xn
= gn(x1, ..., xn). (1.5.6)

Again, it is assumed that this transformation is invertible so that it is possible to ex-
press each xi as a function, xi(s1, ..., sn) of the new variables. The Legendre transform
of f will then be

f̃(s1, ..., sn) = f(x1(s1, ..., sn), ..., xn(s1, ..., sn)) −
n∑

i=1

sixi(s1, ..., sn). (1.5.7)

Note that it is also possible to perform the Legendre transform of a function with
respect to any subset of the variables on which the function depends.

1.6 Generalized momenta and the Hamiltonian formulation of

classical mechanics

For a first application of the Legendre transform technique, we will derive a new
formulation of classical mechanics in terms of positions and momenta rather than
positions and velocities. The Legendre transform will appear again numerous times
in subsequent chapters. Recall that the Cartesian momentum of a particle pi is just
pi = miṙi. Interestingly, the momentum can also be obtained as a derivative of the
Lagrangian with respect to ṙi:

pi =
∂L

∂ṙi
=

∂

∂ṙi

⎡
⎣ N∑

j=1

1

2
mj ṙ

2
j − U(r1, ..., rN )

⎤
⎦ = miṙi. (1.6.1)

For this reason, it is clear how the Legendre transform method can be applied. We
seek to derive a new function of positions and momenta as a Legendre transform of
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the Lagrangian with respect to the velocities. Note that, by way of eqn. (1.6.1), the
velocities can be easily expressed as functions of momenta, ṙi = ṙi(pi) = pi/mi.
Therefore, substituting the transformation into eqn. (1.5.7), the new function is given
by

L̃(r1, ..., rN ,p1, ...,pN ) = L(r1, ..., rN , ṙ1(p1), ..., ṙN (pN )) −
N∑

i=1

pi · ṙi(pi)

=
1

2

N∑
i=1

mi

[
pi

mi

]2

− U(r1, ..., rN ) −
N∑

i=1

pi · pi

mi

= −
N∑

i=1

p2
i

2mi
− U(r1, ..., rN ). (1.6.2)

The function, −L̃(r1, ..., rN ,p1, ...,pN ) is known as the Hamiltonian:

H(r1, ..., rN ,p1, ...,pN ) =

N∑
i=1

p2
i

2mi
+ U(r1, ..., rN ). (1.6.3)

The Hamiltonian is simply the total energy of the system expressed as a function of
positions and momenta and is related to the Lagrangian by

H(r1, ..., rN ,p1, ...,pN ) =

N∑
i=1

pi · ṙi(pi) − L(r1, ..., rN , ṙ1(p1), ...., ṙN (pN )). (1.6.4)

The momenta given in eqn. (1.6.1) are referred to as conjugate to the positions
r1, ..., rN .

The relations derived above also hold for a set of generalized coordinates. The
momenta p1, ..., p3N conjugate to a set of generalized coordinates q1, ..., q3N are given
by

pα =
∂L

∂q̇α
(1.6.5)

so that the new Hamiltonian is given by

H(q1, ..., q3N , p1, ..., p3N ) =

3N∑
α=1

pαq̇α(p1, ..., p3N )

− L(q1, ..., q3N , q̇1(p1, ..., p3N), ..., q̇3N (p1, ..., p3N )). (1.6.6)

Now, according to eqn. (1.4.18), since Gαβ is a symmetric matrix, the generalized
conjugate momenta are given by

pα =
3N∑
β=1

Gαβ(q1, ..., q3N )q̇β (1.6.7)
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and the inverse relation is

q̇α =

3N∑
β=1

G−1
αβpβ, (1.6.8)

where the inverse of the mass-metric tensor is

G−1
αβ(q1, ..., q3N ) =

N∑
i=1

1

mi

(
∂qα

∂ri

)
·
(

∂qβ

∂ri

)
. (1.6.9)

It follows that the Hamiltonian in terms of a set of generalized coordinates is

H(q1, ..., q3N , p1, ..., p3N ) =
1

2

3N∑
α=1

3N∑
β=1

pαG−1
αβ(q1, ..., q3N )pβ

+ U(r1(q1, ..., q3N ), ..., rN (q1, ..., q3N )). (1.6.10)

Given the Hamiltonian (as a Legendre transform of the Lagrangian), one can obtain
the equations of motion for the system from the Hamiltonian according to

q̇α =
∂H

∂pα
, ṗα = − ∂H

∂qα
(1.6.11)

which are known as Hamilton’s equations of motion. Whereas the Euler–Lagrange
equations constitute a set of 3N second-order differential equations, Hamilton’s equa-
tions constitute an equivalent set of 6N first-order differential equations. When subject
to the same initial conditions, the Euler–Lagrange and Hamiltonian equations of mo-
tion must yield the same trajectory.

Hamilton’s equations must be solved subject to a set of initial conditions on the
coordinates and momenta, {p1(0), ..., p3N (0), q1(0), ..., q3N (0)}. Eqns. (1.6.11) are com-
pletely equivalent to Newton’s second law of motion. In order to see this explicitly, let
us apply Hamilton’s equations to the simple Cartesian Hamiltonian of eqn. (1.6.3):

ṙi =
∂H

∂pi
=

pi

mi

ṗi = −∂H

∂ri
= −∂U

∂ri
= Fi(r). (1.6.12)

Taking the time derivative of both sides of the first equation and substituting the
result into the second yields

r̈i =
ṗi

mi

ṗi = mir̈i = Fi(r1, ..., rN ) (1.6.13)

which shows that Hamilton’s equations reproduce Newton’s second law of motion. The
reader should check that the application of Hamilton’s equations to a simple harmonic
oscillator, for which H = p2/2m + kx2/2 yields the equation of motion mẍ + kx = 0.
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Hamilton’s equations conserve the total Hamiltonian:

dH

dt
= 0. (1.6.14)

Since H is the total energy, eqn. (1.6.14) is just the law of energy conservation. In
order to see that H is conserved, we simply compute the time derivative dH/dt via
the chain rule in generalized coordinates:

dH

dt
=

3N∑
α=1

[
∂H

∂qα
q̇α +

∂H

∂pα
ṗα

]

=

3N∑
α=1

[
∂H

∂qα

∂H

∂pα
− ∂H

∂pα

∂H

∂qα

]

= 0 (1.6.15)

where the second line follows from Hamilton’s equation, eqns. (1.6.11). We will see
shortly that conservation laws, in general, are connected with physical symmetries of
a system and, therefore, play an important role in the analysis of the system.

Hamilton’s equations of motion describe the unique evolution of the coordinates
and momenta subject to a set of initial conditions. In the language of phase space,
they specify a trajectory, xt = (q1(t), ..., q3N (t), p1(t), ..., p3N (t)), in the phase space
starting from an initial point, x(0). The energy conservation condition,

H(q1(t), ..., q3N (t), p1(t), ..., p3N (t)) = const,

is expressed as a condition on a phase space trajectory. It can also be expressed as
a condition on the coordinates and momenta, themselves, H(q1, ..., q3N , p1, ..., p3N ) =
const, which defines a 3N − 1 dimensional surface in the phase space on which a
trajectory must remain. This surface is known as the constant-energy hypersurface or
simply the constant-energy surface. An important theorem, known as the work–energy
theorem, follows from the law of conservation of energy. Consider the evolution of the
system from a point xA in phase space to a point xB. Since energy is conserved, the
energy HA = HB. But since H = K + U , it follows that

KA + UA = KB + UB, (1.6.16)

or
KA − KB = UB − UA. (1.6.17)

The right side expresses the difference in potential energy between points A and B and
is, therefore, equal to the work, WAB, done on the system in moving between these
two points. The left side is the difference between the initial and final kinetic energy.
Thus, we have a relation between the work done on the system and the kinetic energy
difference

WAB = KA − KB. (1.6.18)

Note that if WAB > 0, net work is done on the system, which means that its potential
energy increases, and its kinetic energy must decrease between points A and B. If
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WAB < 0, work is done by the system, its potential energy decreases, and its kinetic
energy must, therefore, increase between points A and B.

In order to understand the formal structure of a general conservation law, consider
the time evolution of any arbitrary phase space function, a(x). Viewing x as a function
of time xt, the time evolution can be analyzed by differentiating a(xt) with respect to
time:

da

dt
=

∂a

∂xt
· ẋt

=

3N∑
α=1

[
∂a

∂qα
q̇α +

∂a

∂pα
ṗα

]

=
3N∑
α=1

[
∂a

∂qα

∂H

∂pα
− ∂a

∂pα

∂H

∂qα

]

≡ {a, H}. (1.6.19)

The last line is known as the Poisson bracket between a(x) and H and is denoted
{a,H}. The general definition of a Poisson bracket between two functions a(x) and
b(x) is

{a, b} =

3N∑
α=1

[
∂a

∂qα

∂b

∂pα
− ∂a

∂pα

∂b

∂qα

]
. (1.6.20)

Note that the Poisson bracket is a statement about the dependence of functions on
the phase space vector and no longer refers to time. This is an important distinction,
as it will often be necessary for us to distinguish between quantities evaluated along
trajectories generated from the solution of Hamilton’s equations and quantities that
are evaluated at arbitrary (static) points in the phase space. From eqn. (1.6.20), it
is clear that if a is a conserved quantity, then da/dt = 0 along a trajectory, and,
therefore, {a, H} = 0 in the phase space. Conversely, if the Poisson bracket between
any quantity a(x) and the Hamiltonian of a system vanishes, then the quantity a(x)
is conserved along a trajectory generated by Hamilton’s equations.

As an example of the Poisson bracket formalism, suppose a system has no external
forces acting on it. In this case, the total force

∑N
i=1 Fi = 0, since all internal forces

are balanced by Newton’s third law.
∑N

i=1 Fi = 0 implies that

N∑
i=1

Fi = −
N∑

i=1

∂H

∂ri
= 0. (1.6.21)

Now, consider the total momentum P =
∑N

i=1 pi. Its Poisson bracket with the Hamil-
tonian is

{P, H} =
N∑

i=1

{pi, H} = −
N∑

i=1

∂H

∂ri
=

N∑
i=1

Fi = 0. (1.6.22)

Hence, the total momentum P is conserved. When a system has no external forces
acting on it, its dynamics will be the same no matter where in space the system lies.



Classical mechanics

That is, if all of the coordinates were translated by a constant vector a according
to r′i = ri + a, then the Hamiltonian would remain invariant. This transformation
defines the so-called translation group. In general, if the Hamiltonian is invariant with
respect to the transformations of a particular group G, there will be an associated
conservation law. This fact, known as Noether’s theorem, is one of the cornerstones of
classical mechanics and also has important implications in quantum mechanics.

Another fundamental property of Hamilton’s equations is known as the condi-
tion of phase space incompressibility. To understand this condition, consider writing
Hamilton’s equations directly in terms of the phase space vector as

ẋ = η(x), (1.6.23)

where η(x) is a vector function of the phase space vector x. Since

x = (q1, ..., q3N , p1, ..., p3N ),

it follows that

η(x) =

(
∂H

∂p1
, ...,

∂H

∂p3N
,−∂H

∂q1
, ...,− ∂H

∂q3N

)
. (1.6.24)

Eqn. (1.6.23) illustrates the fact that the general phase space “velocity” ẋ is a function
of x, suggesting that motion in phase space described by eqn. (1.6.23) can be regarded
as a kind of “flow field” as in hydrodynamics, where one has a physical velocity flow
field, v(r). Thus, at each point in phase space, there will be a velocity vector ẋ(x)
equal to η(x). In hydrodynamics, the condition for incompressible flow is that there
be no sources or sinks in the flow, expressible as ∇ ·v(r) = 0. In phase space flow, the
analogous condition is ∇x · ẋ(x) = 0, where ∇x = ∂/∂x is the phase space gradient
operator. Hamilton’s equations of motion guarantee that the incompressibility condi-
tion in phase space is satisfied. To see this, consider the compressibility in generalized
coordinates

∇x · ẋ =
3N∑
α=1

[
∂ṗα

∂pα
+

∂q̇α

∂qα

]

=

3N∑
α=1

[
− ∂

∂pα

∂H

∂qα
+

∂

∂qα

∂H

∂pα

]

=

3N∑
α=1

[
− ∂2H

∂pα∂qα
+

∂2H

∂qα∂pα

]

= 0 (1.6.25)

where the second line follows from Hamilton’s equations of motion.
One final important property of Hamilton’s equations that merits comment is the

so-called symplectic structure of the equations of motion. Given the form of the vector
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function, η(x), introduced above, it follows that Hamilton’s equations can be cast in
the form

ẋ = M
∂H

∂x
(1.6.26)

where M is a matrix expressible in block form as

M =

(
0 I

−I 0

)
(1.6.27)

where 0 and I are 3N×3N zero and identity matrices, respectively. Dynamical systems
expressible in the form of eqn. (1.6.26) are said to possess a symplectic structure.
Consider a solution xt to eqn. (1.6.26) starting from an initial condition x0. Because
the solution of Hamilton’s equations is unique for each initial condition, xt will be
a unique function of x0, that is, xt = xt(x0). This dependence can be viewed as
defining a variable transformation on the phase space from an initial set of phase
space coordinates x0 to a new set xt. The Jacobian matrix, J, of this transformation,
whose elements are given by

Jkl =
∂xk

t

∂xl
0

(1.6.28)

satisfies the following condition:
M = JTMJ (1.6.29)

where JT is the transpose of J. Eqn. (1.6.29) is known as the symplectic property.
We will have more to say about the symplectic property in Chapter 3. At this stage,
however, let us illustrate the symplectic property in a simple example. Consider, once
again, the harmonic oscillator H = p2/2m + kx2/2 with equations of motion

ẋ =
∂H

∂p
=

p

m
ṗ = −∂H

∂x
= −kx. (1.6.30)

The general solution to these for an initial condition (x(0), p(0)) is

x(t) = x(0) cosωt +
p(0)

mω
sin ωt

p(t) = p(0) cosωt − mωx(0) sinωt, (1.6.31)

where ω =
√

k/m is the frequency of the oscillator. The Jacobian matrix is, therefore,

J =

⎛
⎜⎝

∂x(t)
∂x(0)

∂x(t)
∂p(0)

∂p(t)
∂x(0)

∂p(t)
∂p(0)

⎞
⎟⎠ =

⎛
⎝ cosωt 1

mω sin ωt

−mω sin ωt cosωt

⎞
⎠ . (1.6.32)

For this two-dimensional phase space, the matrix M is given simply by

M =

(
0 1
−1 0

)
. (1.6.33)

Thus, performing the matrix multiplication JTMJ, we find

JTMJ =

⎛
⎝ cosωt −mω sinωt

1
mω sin ωt cosωt

⎞
⎠

⎛
⎝ 0 1

−1 0

⎞
⎠

⎛
⎝ cosωt 1

mω sin ωt

−mω sin ωt cosωt

⎞
⎠
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=

⎛
⎝ cosωt −mω sinωt

1
mω sin ωt cosωt

⎞
⎠

⎛
⎝−mω sinωt cosωt

− cosωt − 1
mω sin ωt

⎞
⎠

=

⎛
⎝ 0 1

−1 0

⎞
⎠

= M. (1.6.34)

1.7 A simple classical polymer model

Before moving on to more formal developments, we present a simple classical model for
a free polymer chain that can be solved analytically. This example will not only serve
as basis for more complex models of biological systems presented later but will also
reappear in our discussion of quantum statistical mechanics. The model is illustrated
in Fig. 1.7 and consists of a set of N point particles connected by nearest neighbor
harmonic interactions. The Hamiltonian for this system is

H =
N∑

i=1

p2
i

2m
+

1

2

N−1∑
i=1

mω2(|ri − ri+1| − bi)
2 (1.7.1)

where bi is the equilibrium bond length. For simplicity, all of the particles are assigned

Fig. 1.7 The harmonic polymer model.
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the same mass, m. Consider a one-dimensional analog of eqn. (1.7.1) described by

H =

N∑
i=1

p2
i

2m
+

1

2

N−1∑
i=1

mω2(xi − xi+1 − bi)
2. (1.7.2)

In order to simplify the problem, we begin by making a change of variables of the form

ηi = xi − xi0 (1.7.3)

where xi0 − x(i+1)0 = bi. The Hamiltonian in terms of the new variables and their
conjugate momenta is, then, given by

H =
N∑

i=1

p2
ηi

2m
+

1

2

N−1∑
i=1

mω2(ηi − ηi+1)
2. (1.7.4)

The equations of motion obeyed by this simple system can be obtained directly from
Hamilton’s equations and take the form

η̇i =
pηi

m

ṗη1 = −mω2(η1 − η2)

ṗηi = −mω2(2ηi − ηi+1 − ηi−1), i = 2, ..., N − 1

ṗηN = −mω2(ηN − ηN−1), (1.7.5)

which can be expressed as second-order equations

η̈1 = −ω2(η1 − η2)

η̈i = −ω2(2ηi − ηi+1 − ηi−1), i = 2, ..., N − 1

η̈N = −ω2(ηN − ηN−1). (1.7.6)

In eqns. (1.7.5) and (1.7.6), it is understood that the η0 = ηN+1 = 0, since these
have no meaning in our system. Eqns. (1.7.6) must be solved subject to a set of initial
conditions η1(0), ..., ηN (0), η̇1(0), ..., η̇N (0).

The general solution to eqns. (1.7.6) can be written in the form of a Fourier series

ηi(t) =
N∑

k=1

Ckaikeiωkt (1.7.7)

where ωk is a set of frequencies, aik is a set of expansion coefficients, and Ck is a
complex scale factor. Substitution of this ansatz into eqns. (1.7.6) gives

N∑
k=1

Ckω2
ka1keiωkt = ω2

N∑
k=1

Ckeiωkt(a1k − a2k)

N∑
k=1

Ckω2
kaikeiωkt = ω2

N∑
k=1

Ckeiωkt (2aik − ai+1,k − ai−1,k)
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N∑
k=1

Ckω2
kaNkeiωkt = ω2

N∑
k=1

Ckeiωkt(aNk − aN−1,k). (1.7.8)

Since eqns. (1.7.8) must be satisfied independently for each function exp(iωkt), we
arrive at an eigenvalue equation of the form:

ω2
kak = Aak. (1.7.9)

Here, A is a matrix given by

A = ω2

⎛
⎜⎜⎜⎝

1 −1 0 0 0 · · · 0 0
−1 2 −1 0 0 · · · 0 0

0 −1 2 −1 0 · · · 0 0
· · ·

0 0 0 0 0 · · · −1 1

⎞
⎟⎟⎟⎠ (1.7.10)

and the ω2
k and ak are the eigenvalues and eigenvectors, respectively. The square roots

of the eigenvalues are frequencies that correspond to a set of special modes of the chain
known as the normal modes. By diagonalizing the matrix A, the frequencies can be
shown to be

ω2
k = 2ω2

[
1 − cos

(
(k − 1)π

N

)]
. (1.7.11)

Moreover, the orthogonal matrix U whose columns are the eigenvectors ak of A defines
a transformation from the original displacement variables ηi to a new set of variables
ζi via

ζi =
∑

k

ηkUki (1.7.12)

known as normal mode variables. By applying this transformation to the Hamiltonian
in eqn. (1.7.4), it can be shown that the transformed Hamiltonian is given by

H =

N∑
k=1

p2
ζk

2m
+

1

2

N∑
k=1

mω2
kζ2

k . (1.7.13)

(The easiest way to derive this result is to start with the Lagrangian in terms of
η1, ..., ηN , η̇1, ..., η̇N , apply eqn. (1.7.12) to it, and then perform the Legendre transform
to obtain the Hamiltonian. Alternatively, one can directly compute the inverse of the
mass-metric tensor and substitute it directly into eqn. (1.6.10).) In eqn. (1.7.13), the
normal modes are decoupled from each other and represent a set of independent modes
with frequencies ωk.

Note that independent of N , there is always one normal mode, the k = 1 mode,
whose frequency is ω1 = 0. This zero-frequency mode corresponds to overall transla-
tions of the entire chain in space. In the absence of an external potential, this transla-
tional motion is free, with no associated frequency. Considering this fact, the solution
of the equations of motion for each normal mode

ζ̈k + ω2
kζk = 0 (1.7.14)
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can now be solved analytically:

ζ1(t) = ζ1(0) +
pζ1(0)

m
t

ζk(t) = ζk(0) cosωkt +
pζk

(0)

mωk
sinωkt k = 2, ..., N (1.7.15)

where ζ1(0), ..., ζN (0), pζ1(0), ..., pζN (0) are the initial conditions on the normal mode
variables, obtainable by transformation of the initial conditions of the original coordi-
nates. Note that pζ1(t) = pζ1(0) is the constant momentum of the free zero-frequency
mode.

In order to better understand the physical meaning of the normal modes, consider
the simple case of N = 3. In this case, there are three normal mode frequencies given
by

ω1 = 0 ω2 = ω ω3 =
√

3ω. (1.7.16)

Moreover, the orthogonal transformation matrix is given by

U =

⎛
⎜⎜⎜⎜⎜⎝

1√
3

1√
2

1√
6

1√
3

0 − 2√
6

1√
3

− 1√
2

1√
6

⎞
⎟⎟⎟⎟⎟⎠ . (1.7.17)

Therefore, the three normal mode variables corresponding to each of these frequencies
are given by

ω1 = 0 : ζ1 =
1√
3

(η1 + η2 + η3)

ω2 = ω : ζ2 =
1√
2

(η1 − η3)

ω3 =
√

3ω : ζ3 =
1√
6

(η1 − 2η2 + η3) . (1.7.18)

These three modes are illustrated in Fig. 1.8. Again, the zero-frequency mode corre-
sponds to overall translations of the chain. The ω2 mode corresponds to the motion
of the two outer particles in opposite directions, with the central particle remaining
fixed. This is known as the asymmetric stretch mode. The highest frequency ω3 mode
corresponds to symmetric motion of the two outer particles with the central particle
oscillating out of phase with them. This is known as the symmetric stretch mode. On a
final note, a more realistic model for real molecules should involve additional terms be-
yond just the harmonic bond interactions of eqn. (1.7.1). Specifically, there should be
potential energy terms associated with bend angle and dihedral angle motion. For now,
we hope that this simple harmonic polymer model illustrates the types of techniques
used to solve classical problems. Indeed, the use of normal modes as a method for
efficiently simulating the dynamics of biomolecules has been proposed (Sweet et al.,
2008). Additional examples and solution methods will be presented throughout the
course of the book.
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   1:ω
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Fig. 1.8 Normal modes of the harmonic polymer model for N = 3 particles.

1.8 The action integral

Having introduced the Lagrangian formulation of classical mechanics and derived the
Hamiltonian formalism from it using the Legendre transform, it is natural to ask if
there is a more fundamental principle that leads to the Euler–Lagrange equations.
In fact, we will show that the latter can be obtained from a variational principle
applied to a certain integral quantity, known as the action integral. At this stage,
however, we shall introduce the action integral concept without motivation because in
Chapter 12, we will show that the action integral emerges naturally and elegantly from
quantum mechanics. The variational principle to be laid out here has more than formal
significance. It has been adapted for actual trajectory calculations for large biological
macromolecules by Olender and Elber (1996) and by Passerone and Parrinello (2001).

In order to define the action integral, we consider a classical system with generalized
coordinates q1, ..., q3N and velocities q̇1, ..., q̇3N . For notational simplicity, let us denote
by Q the full set of coordinates Q ≡ {q1, ..., q3N} and Q̇ the full set of velocities
Q̇ ≡ {q̇1, ..., q̇3N}. Suppose we follow the evolution of the system from time t1 to t2
with initial and final conditions (Q1, Q̇1) and (Q2, Q̇2), respectively, and we ask what
path the system will take between these two points (see Fig. 1.9). We will show that
the path followed renders stationary the following integral:

A =

∫ t2

t1

L(Q(t), Q̇(t)) dt. (1.8.1)

The integral in eqn. (1.8.1) is known as the action integral. We see immediately that the
action integral depends on the entire trajectory of the system. Moreover, as specified,
the action integral does not refer to one particular trajectory but to any trajectory
that takes the system from (Q1, Q̇1) to (Q2, Q̇2) in a time t2 − t1. Each trajectory
satisfying these conditions yields a different value of the action. Thus, the action can
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Q

Q

(Q(t1), Q(t1))

(Q(t2), Q(t2))

Fig. 1.9 Two proposed paths joining the fixed endpoints. The actual path followed is a

stationary path of the action integral in eqn. (1.8.1.)

be viewed as a “function” of trajectories that satisfy the initial and final conditions.
However, this is not a function in the usual sense since the action is really a “function
of a function.” In mathematical terminology, we say that the action is a functional
of the trajectory. A functional is a quantity that depends on all values of a function
between two points of its domain. Here, the action is a functional of trajectories Q(t)
between t1 and t2. In order to express the functional dependence, the notation A[Q]
is commonly used. Also, since at each t, L(Q(t), Q̇(t)) only depends on t (and not on
other times), A[Q] is known as a local functional in time. Functionals will appear from
time to time throughout the book, so it is important to become familiar with these
objects.

Stationarity of the action means that the action does not change to first order if
a small variation of a path is made keeping the endpoints fixed. In order to see that
the true classical path of the system is a stationary point of A, we need to consider a
path Q(t) between points 1 and 2 and a second path, Q(t) + δQ(t), between points 1
and 2 that is only slightly different from Q(t). If a path Q(t) renders A[Q] stationary,
then to first order in δQ(t), the variation δA of the action must vanish. This can be
shown by first noting that the path, Q(t) satisfies the initial and final conditions:

Q(t1) = Q1, Q̇(t1) = Q̇1, Q(t2) = Q2, Q̇(t2) = Q̇2. (1.8.2)

Since all paths begin at Q1 and end at Q2, the path Q(t) + δQ(t) must also satisfy
these conditions, and since Q(t) satisfies eqn. (1.8.2), the function δQ(t) must satisfy
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δQ(t1) = δQ(t2) = 0, δQ̇(t1) = δQ̇(t2) = 0. (1.8.3)

The variation in the action is defined to be the difference

δA =

∫ t2

t1

L(Q(t) + δQ(t), Q̇(t) + δQ̇(t)) dt −
∫ t2

t1

L(Q(t), Q̇(t)) dt. (1.8.4)

This variation must vanish to first order in the path difference, δQ(t). Expanding to
first order, we find:

δA =

∫ t2

t1

L(Q(t), Q̇(t)) dt +

∫ t2

t1

3N∑
α=1

[
∂L

∂qα
δqα(t) +

∂L

∂q̇α
δq̇α(t)

]
dt

−
∫ t2

t1

L(Q(t), Q̇(t)) dt

=

∫ t2

t1

3N∑
α=1

[
∂L

∂qα
δqα(t) +

∂L

∂q̇α
δq̇α(t)

]
dt. (1.8.5)

We would like the term in brackets to involve only δqα(t) rather than both δqα(t) and
δq̇α(t) as it currently does. We thus integrate the second term in brackets by parts to
yield

δA =

3N∑
α=1

∂L

∂q̇α
δqα(t)

∣∣∣∣
t2

t1

+

∫ t2

t1

3N∑
α=1

[
∂L

∂qα
− d

dt

(
∂L

∂q̇α

)]
δqα(t) dt. (1.8.6)

The boundary term vanishes by virtue of eqn. (1.8.3). Then, since δA = 0 to first
order in δqα(t) at a stationary point, and each of the generalized coordinates qα and
their variations δqα are independent, the term in brackets must vanish independently
for each α. This leads to the condition

d

dt

(
∂L

∂q̇α

)
− ∂L

∂qα
= 0 (1.8.7)

which is just the Euler–Lagrange equation. The implication is that the path for which
the action is stationary is that which satisfies the Euler–Lagrange equation. Since the
latter specifies the classical motion, the path is a classical path.

There is a subtle difference, however, between classical paths that satisfy the end-
point conditions specified in the formulation of the action and those generated from
a set of initial conditions as discussed in Sec. 1.2. In particular, if an initial-value
problem has a solution, then it is unique assuming smooth, well-behaved forces. By
contrast, if a solution exists to the endpoint problem, it is not guaranteed to be a
unique solution. However, it is trivial to see that if a trajectory with initial conditions
Q(t1) and Q̇(t1) passes through the point Q2 at t = t2, then it must also be a solution
of the endpoint problem. Fortunately, in statistical mechanics, this distinction is not
very important, as we are never interested in the unique trajectory arising from one



Constraints

particular initial condition, and in fact, initial conditions for Hamilton’s equations are
generally chosen at random (e.g., random velocities). Typically, we are interested in
the behavior of large numbers of trajectories all seeded differently. Similarly, we are
rarely interested in paths leading from one specific point in phase space to another as
much as paths that evolve from one region of phase space to another. Therefore, the
initial-value and endpoint formulations of classical trajectories can often be two routes
to the solution of a particular problem.

The action principle suggests the intriguing possibility that classical trajectories
could be computed from an optimization procedure performed on the action given
knowledge of the endpoints of the trajectory. This idea has been exploited by various
researchers to study complex processes such as protein folding. As formulated, however,
stationarity of the action does not imply that the action is minimum along a classical
trajectory, and, indeed, the action is bounded neither from above nor below. In order
to overcome this difficulty, alternative formulations of the action principle have been
proposed which employ an action or a variational principle that leads to a minimization
problem. The most well known of these is Hamilton’s principle of least action. The
least action principle involves a somewhat different type of variational principle in
which the variations are not required to vanish at the endpoints. A detailed discussion
of this type of variation, which is beyond the scope of this book, can be found in
Goldstein’s Classical Mechanics (1980).

1.9 Lagrangian mechanics and systems with constraints

In mechanics, it is often necessary to treat a system that is subject to a set of externally
imposed constraints. These constraints can be imposed as a matter of convenience, e.g.
constraining high-frequency chemical bonds in a molecule at fixed bond lengths, or as
true constraints that might be due, for example, to the physical boundaries of a system
or the presence of thermal or barostatic control mechanisms.

Constraints are expressible as mathematical relations among the phase space vari-
ables. Thus, a system with Nc constraints will have 3N − Nc degrees of freedom and
a set of Nc functions of the coordinates and velocities that must be satisfied by the
motion of the system. Constraints are divided into two types. If the relationships that
must be satisfied along a trajectory are functions of only the particle positions r1, ..., rN

and possibly time, then the constraints are called holonomic and can be expressed as
Nc conditions of the form

σk(q1, ..., q3N , t) = 0, k = 1, ..., Nc. (1.9.1)

If they cannot be expressed in this manner, the constraints are said to be nonholo-
nomic. A class of a nonholonomic constraints consists of conditions involving both the
particle positions and velocities:

ζ(q1, ..., q3N , q̇1, ..., q̇3N ) = 0. (1.9.2)

An example of a nonholonomic constraint is a system whose total kinetic energy is kept
fixed (thermodynamically, this would be a way of fixing the temperature of the system).
The nonholonomic constraint in Cartesian coordinates would then be expressed as
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1

2

N∑
i=1

miṙ
2
i − C = 0 (1.9.3)

where C is a constant.
Since constraints reduce the number of degrees of freedom in a system, it is often

possible to choose a new system of 3N − Nc generalized coordinates, known as a
minimal set of coordinates, that eliminates the constraints. For example, consider the
motion of a particle on the surface of a sphere. If the motion is described in terms
of Cartesian coordinates (x, y, z), then a constraint condition of the form x2 + y2 +
z2 − R2 = 0, where R is the radius of the sphere, must be imposed at all times.
This constraint could be eliminated by choosing the spherical polar angle θ and φ as
generalized coordinates. However, it is not always convenient to work in such minimal
coordinate frames, particularly when there is a large number of coupled constraints.
An example of this is a long hydrocarbon chain in which all carbon–carbon bonds are
held rigid (an approximation, as noted earlier, that is often made to eliminate the high
frequency vibrational motion). Thus, it is important to consider how the framework
of classical mechanics is affected by the imposition of constraints. We will now show
that the Lagrangian formulation of mechanics allows the influence of constraints to be
incorporated into its framework in a transparent way.

In general, it would seem that the imposition of constraints no longer allows the
equations of motion to be obtained from the stationarity of the action, since the
coordinates (and/or velocities) are no longer independent. More specifically, the path
displacements δqα (cf. eqn. (1.8.6)), are no longer independent. In fact, the constraints
can be built into the action formalism using the method of Lagrange undetermined
multipliers. However, in order to apply this method, the constraint conditions must
be expressible in a differential form as:

3N∑
α=1

akαdqα + aktdt = 0, k = 1, ..., Nc (1.9.4)

where akα is a set of coefficients for the displacements dqα. For a holonomic constraint
as in eqn. (1.9.1), it is clear that the coefficients can be obtained by differentiating the
constraint condition

N∑
α=1

∂σk

∂qα
dqα +

∂σk

∂t
dt = 0 (1.9.5)

so that

akα =
∂σk

∂qα
, akt =

∂σk

∂t
. (1.9.6)

Nonholonomic constraints cannot always be expressed in the form of eqn. (1.9.4). A
notable exception is the kinetic energy constraint of eqn. (1.9.3):
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N∑
i=1

1

2
miṙ

2
i − C = 0

N∑
i=1

1

2
miṙi ·

(
dri

dt

)
− C = 0

N∑
i=1

1

2
miṙi · dri − Cdt = 0 (1.9.7)

so that

a1l =
1

2
mlṙl a1t = C (1.9.8)

(k = 1 since there is only a single constraint).
Assuming that the constraints can be expressed in the differential form of eqn.

(1.9.4), we must also be able to express them in terms of path displacements δqα in
order to incorporate them into the action principle. Unfortunately, doing so requires a
further restriction, since it is not possible to guarantee that a perturbed path Q(t) +
δQ(t) satisfies the constraints. The latter will hold if the constraints are integrable, in
which case they are expressible in terms of path displacements as

3N∑
α=1

akαδqα = 0. (1.9.9)

The coefficient akt does not appear in eqn. (1.9.9) because there is no time displace-
ment. The equations of motion can then be obtained by adding eqn. (1.9.9) to eqn.
(1.8.6) with a set of Lagrange undetermined multipliers, λk, where there is one multi-
plier for each constraint, according to

δA =

∫ t2

t1

3N∑
α=1

[
∂L

∂qα
− d

dt

(
∂L

∂q̇α

)
+

Nc∑
k=1

3N∑
α=1

λkakα

]
δqα(t) dt. (1.9.10)

The equations of motion obtained by requiring that δA = 0 are then

d

dt

(
∂L

∂q̇α

)
− ∂L

∂qα
=

Nc∑
k=1

λkakα. (1.9.11)

It may seem that we are still relying on the independence of the displacements δqα,
but this is actually not the case. Suppose we choose the first 3N−Nc coordinates to be
independent. Then, these coordinates can be evolved using eqns. (1.9.11). However, we
can choose λk such that eqns. (1.9.11) apply to the remaining Nc coordinates as well.
In this case, eqns. (1.9.11) hold for all 3N coordinates provided they are solved subject
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to the constraint conditions. The latter can be expressed as a set of Nc differential
equations of the form

3N∑
α=1

akαq̇α + akt = 0. (1.9.12)

Eqns. (1.9.11) together with eqn. (1.9.12) constitute a set of 3N +Nc equations for the
3N + Nc unknowns, q1, ..., q3N , λ1, ..., λNc . This is the most common approach used in
numerical solutions of classical-mechanical problems.

Note that, even if a system is subject to a set of time-independent holonomic
constraints, the Hamiltonian is still conserved. In order to see this, note that eqns.
(1.9.11) and (1.9.12) can be cast in Hamiltonian form as

q̇α =
∂H

∂pα

ṗα = − ∂H

∂qα
−

∑
k

λkakα

∑
α

akα
∂H

∂pα
= 0. (1.9.13)

Computing the time-derivative of the Hamiltonian, we obtain

dH

dt
=

∑
α

[
∂H

∂qα
q̇α +

∂H

∂pα
ṗα

]

=
∑

α

[
∂H

∂qα

∂H

∂pα
− ∂H

∂pα

(
∂H

∂qα
+

∑
k

λkakα

)]

=
∑

k

λk

∑
α

∂H

∂pα
akα

= 0. (1.9.14)

From this, it is clear that no work is done on a system by the imposition of holonomic
constraints.

1.10 Gauss’s principle of least constraint

The constrained equations of motion (1.9.11) and (1.9.12) constitute a complete set of
equations for the motion subject to the Nc constraint conditions. Let us study these
equations in more detail. For the purposes of this discussion, consider a single particle
in three dimensions described by a single Cartesian position vector r(t) subject to a
single constraint σ(r) = 0. According to eqns. (1.9.11) and (1.9.12), the constrained
equations of motion take the form
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mr̈ = F(r) + λ∇σ

∇σ · ṙ = 0. (1.10.1)

These equations will generate classical trajectories of the system for different initial
conditions {r(0), ṙ(0)} provided the condition σ(r(0)) = 0 is satisfied. If this condition
is true, then the trajectory will obey σ(r(t)) = 0. Conversely, for each r visited along
the trajectory, the condition σ(r) = 0 will be satisfied. The latter condition defines
a surface on which the motion described by eqns. (1.10.1) must remain. This surface
is called the surface of constraint. The quantity ∇σ(r) is a vector that is orthogonal
to the surface at each point r. Thus, the second equation (1.10.1) expresses the fact
that the velocity must also lie in the surface of constraint, hence it must be perpen-
dicular to ∇σ(r). Of the two force terms appearing in eqns. (1.10.1), the first is an
“unconstrained” force which, alone, would allow the particle to drift off of the surface
of constraint. The second term must, then, correct for this tendency. If the particle
starts from rest, this second term exactly removes the component of the force perpen-
dicular to the surface of constraint as illustrated in Fig. 1.10. This minimal projection
of the force, first conceived by Karl Friedrich Gauss (1777-1855), is known as Gauss’s
principle of least constraint (Gauss, 1829). The component of the force perpendicular
to the surface is

F⊥ = [n(r) ·F(r)] n(r), (1.10.2)

where n(r) is a unit vector perpendicular to the surface at r; n is given by

Constraint surface

F

F
||

Fig. 1.10 Representation of the minimal force projection embodied in Gauss’s principle of

least constraint.

n(r) =
∇σ(r)

|∇σ(r)| . (1.10.3)

Thus, the component of the force parallel to the surface is

F‖(r) = F(r) − [n(r) · F(r)] n(r). (1.10.4)

If the particle is not at rest, the projection of the force cannot lie entirely in the surface
of constraint. Rather, there must be an additional component of the projection which
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can project any free motion of the particle directed off the surface of constraint. This
additional term must sense the curvature of the surface in order to affect the required
projection; it must also be a minimal projection perpendicular to the surface.

In order to show that Gauss’s principle is consistent with the Lagrangian formula-
tion of the constraint problem and find the additional projection when the particle’s
velocity is not zero, we make use of the second of eqns. (1.10.1) and differentiate it
once with respect to time. This yields:

∇σ · r̈ + ∇∇σ · ·ṙṙ = 0, (1.10.5)

where the double dot-product notation in the expression ∇∇σ · ·ṙṙ indicates a full
contraction of the two tensors ∇∇σ and ṙṙ. The first of eqns. (1.10.1) is then used to
substitute in for the second time derivative appearing in eqn. (1.10.5) to yield:

∇σ ·
[
F

m
+

λ∇σ

m

]
+ ∇∇σ · ·ṙṙ = 0. (1.10.6)

We can now solve for the Lagrange multiplier λ to yield the analytical expression

λ = −∇∇σ · ·ṙṙ + ∇σ ·F/m

|∇σ|2/m
. (1.10.7)

Finally, substituting eqn. (1.10.7) back into the first of eqns. (1.10.1) yields the equa-
tion of motion:

mr̈ = F − ∇∇σ · ·ṙṙ + ∇σ ·F/m

|∇σ|2/m
∇σ, (1.10.8)

which is known as Gauss’s equation of motion. Note that when ṙ = 0, the total force
appearing on the right is

F − (∇σ · F)∇σ

|∇σ|2 = F −
( ∇σ

|∇σ| · F
) ∇σ

|∇σ| , (1.10.9)

which is just the projected force in eqn. (1.10.4). For ṙ �= 0, the additional force term
involves a curvature term ∇∇σ contracted with the velocity–vector dyad ṙṙ. Since this
term would be present even if F = 0, this term clearly corrects for free motion off the
surface of constraint.

Having eliminated λ from the equation of motion, eqn. (1.10.8) becomes an equa-
tion involving a velocity-dependent force. This equation, alone, generates motion on
the correct constraint surface, has a conserved energy, E = mṙ2/2 + U(r), and, by
construction, conserves σ(r) in the sense that dσ/dt = 0 along a trajectory. However,
this equation cannot be derived from a Lagrangian or a Hamiltonian and, therefore,
constitutes an example of non-Hamiltonian dynamical system. Gauss’s procedure for
obtaining constrained equations of motion can be generalized to an arbitrary number
of particles or constraints satisfying the proper differential constraints relations.

1.11 Rigid body motion: Euler angles and quaterions

The discussion of constraints leads naturally to the topic of rigid body motion. Rigid
body techniques can be particularly useful in treating small molecules such as water
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or ammonia or large, approximately rigid subdomains of large molecules, in that these
techniques circumvent the need to treat large numbers of explicit degrees of freedom.
Imagine a collection of n particles with all interparticle distances constrained. Such a
system, known as a rigid body, has numerous applications in mechanics and statistical
mechanics. An example in chemistry is the approximate treatment of small molecules
with very high frequency internal vibrations. A water molecule (H2O) could be treated
as a rigid isosceles triangle by constraining the two OH bond lengths and the distance
between the two hydrogens for a total of three holonomic constraint conditions. An am-
monia molecule (NH3) could also be treated as a rigid pyramid by fixing the three NH
bond lengths and the three HH distances for a total of six holonomic constraint con-
ditions. In a more complex molecule, such as the alanine dipeptide shown in Fig. 1.11,
specific groups can be treated as rigid. Groups of this type are shaded in Fig. 1.11.

H3C
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H3CH3C
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H3CCC

H3CC

H

N

O

C

C

H

Fig. 1.11 Rigid subgroups in a large molecule, the alanine dipeptide.

Of course, it is always possible to treat these constraint conditions explicitly using
the Lagrange multiplier formalism. However, since all the particles in a rigid body
move as a whole, a simple and universal formalism can be used to treat all rigid
bodies that circumvents the need to impose explicitly the set of holonomic constraints
that keep the particles at fixed relative positions. Before discussing rigid body motion,
let us consider the problem of rotating a rigid body about an arbitrary axis in a fixed
frame. Since a rotation performed on a rigid body moves all of the atoms uniformly, it
is sufficient for us to consider how to rotate a single vector r about an arbitrary axis.
The problem is illustrated in Fig. 1.12. Let n designate a unit vector along the axis of
rotation, and let r′ be the result of rotating r by an angle θ clockwise about the axis.
In the notation of Fig. 1.12, straightforward geometry shows that r′ is the result of a
simple vector addition:

r′ =
−→
OC +

−→
CS +

−→
SQ (1.11.1)

Since the angle CSQ is a right angle, the three vectors in eqn. (1.11.1) can be expressed
in terms of the original vector r, the angle θ, and the unit vector n according to

r′ = n(n · r) + [r − n(n · r)] cos θ + (r×n) sin θ (1.11.2)
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Fig. 1.12 Rotation of the vector r to r′ about an axis n.

which can be rearranged to read

r′ = r cos θ + n(n · r)(1 − cos θ) + (r×n) sin θ (1.11.3)

Eqn. (1.11.3) is known as the rotation formula, which can be used straightforwardly
when an arbitrary rotation needs to be performed.

In order to illustrate the concept of rigid body motion, consider the simple problem
of a rigid homonuclear diatomic molecule in two dimensions, in which each atom has
a mass m. We shall assume that the motion occurs in the xy plane. Let the Cartesian
positions of the two atoms be r1 and r2 and let the molecule be subject to a potential
of the form V (r1 − r2). The Lagrangian for the molecule can be written as

L =
1

2
mṙ2

1 +
1

2
mṙ2

2 − V (r1 − r2). (1.11.4)

For such a problem, it is useful to transform into center-of-mass R = (r1 + r2)/2 and
relative r = r1 − r2 coordinates, in terms of which the Lagrangian becomes

L =
1

2
MṘ2 +

1

2
μṙ2 − V (r) (1.11.5)

where M = 2m and μ = m/2 are the total and reduced masses, respectively. Note
that in these coordinates, the center-of-mass has an equation of motion of the form
MR̈ = 0, which is the equation of motion of a free particle. As we have already seen,
this means that the center-of-mass velocity Ṙ is a constant. According to the principle
of Galilean relativity, the physics of the system must be the same in a fixed coordinate
frame as in a coordinate frame moving with constant velocity. Thus, we may transform
to a coordinate system that moves with the molecule. Such a coordinate frame is called
a body-fixed frame. The origin of the body-fixed frame lies at the center of mass of the
molecule, and in this frame the coordinates of the two atoms r1 = r/2 and r2 = −r/2.
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It is, therefore, clear that only the motion of the relative coordinate r needs to be
considered. Note that we may use the body-fixed frame even if the center-of-mass
velocity is not constant in order to separate the rotational and translational kinetic
energies of the rigid body. In the body-fixed frame, the Lagrangian of eqn. (1.11.5)
becomes

L =
1

2
μṙ2 − V (r). (1.11.6)

In a two-dimensional space, the relative coordinate r is the two-component vector
r = (x, y). However, if the distance between the two atoms is fixed at a value d, then
there is a constraint in the form of x2 + y2 = d2. Rather than treating the constraint
via a Lagrange multiplier, we could transform to polar coordinates according to

x = d cos θ y = d sin θ. (1.11.7)

The velocities are given by

ẋ = −d(sin θ)θ̇ ẏ = d(cos θ)θ̇ (1.11.8)

so that the Lagrangian becomes

L =
1

2
μ
(
ẋ2 + ẏ2

)− V (x, y) =
1

2
μd2θ̇2 − Ṽ (θ) (1.11.9)

where the notation, V (r) = V (x, y) = V (d cos θ, d sin θ) ≡ Ṽ (θ), indicates that the
potential varies only according to the variation in θ. Eqn. (1.11.9) demonstrates that
the rigid body has only one degree of freedom, namely, the single angle θ. According
to the Euler–Lagrange equation (1.4.6), the equation of motion for the angle is

μd2θ̈ = −∂Ṽ

∂θ
. (1.11.10)

In order to understand the physical content of eqn. (1.11.10), we first note that the
origin of the body-fixed frame lies at the center-of-mass position R. We further note
the motion occurs in the xy plane and therefore consists of rotation about an axis
perpendicular to this plane, in this case, about the z-axis. The quantity ω = θ̇ is called
the angular velocity about the z-axis. The quantity I = μd2 is a constant known as the
moment of inertia about the z-axis. Since the motion is purely angular, we can define
an angular momentum, analogous to the Cartesian momentum, by l = μd2θ̇ = Iω. In
general, angular momentum, like the Cartesian momentum, is a vector quantity given
by

l = r×p. (1.11.11)

For the present problem, in which all of the motion occurs in the xy-plane (no motion
along the z-axis) l has only one nonzero component, namely lz, given by

lz = xpy − ypx

= x(μẏ) − y(μẋ)
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= μ(xẏ − yẋ)

= μd2(θ̇ cos2 θ + θ̇ sin2 θ)

= μd2θ̇. (1.11.12)

Eqn. (1.11.12) demonstrates that although the motion occurs about the z-axis, the
direction of the angular momentum vector is along the z-axis. Since the angular mo-
mentum lz is given as the product of the moment of inertia I and the angular velocity
ω (lz = Iω), the angular velocity must also be a vector whose direction is along the
z-axis. Thus, we write the angular velocity vector for this problem as ω = (0, 0, θ̇) and
l = Iω. Physically, we see that the moment of inertia plays the role of “mass” in an-
gular motion; however, its units are mass×length2. The form of the moment of inertia
indicates that the farther away from the axis of rotation an object is, the greater will
be its angular momentum, although its angular velocity is the same at all distances
from the axis of rotation.

It is interesting to calculate the velocity in the body-fixed frame. The components
of the velocity v = (vx, vy) = (ẋ, ẏ) are given by eqn. (1.11.8). Note, however, that
these can also be expressed in terms of the angular velocity vector, ω. In particular,
the velocity vector is expressible as a cross product

v = ṙ = ω×r. (1.11.13)

Since ω = (0, 0, θ̇), the cross product has two nonvanishing components

vx = −ωzy = −d(sin θ)θ̇

vy = ωzx = d(cos θ)θ̇, (1.11.14)

which are precisely the velocity components given by eqn. (1.11.8). Eqn. (1.11.14)
determines the velocity of the relative position vector r. In the body-fixed frame, the
velocities of atoms 1 and 2 would be −ṙ/2 and ṙ/2, respectively. If we wish to determine
the velocity of, for example, atom 1 at position r1 in a space-fixed frame rather than
in the body-fixed frame, we need to add back the velocity of the body-fixed frame. To
do this, write the position r1 as

r1 = R +
1

2
r. (1.11.15)

Thus, the total velocity v1 = ṙ1 is

ṙ1 = Ṙ +
1

2
ṙ. (1.11.16)

The first term is clearly the velocity of the body-fixed frame, while the second term is
the velocity of r1 relative to the body-fixed frame. Note, however, that if the motion
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of r1 relative to the body-fixed frame is removed, the remaining component of the
velocity is just that due to the motion of the body-fixed frame, and we may write(

dr1

dt

)
body

=
dR

dt
. (1.11.17)

Since ṙ = ω×r, the total time derivative of the vector r1 becomes(
dr1

dt

)
space

=

(
dr1

dt

)
body

+ ω×
1

2
r

(
dr1

dt

)
space

=

(
dr1

dt

)
body

+ ω×r1 (1.11.18)

where the first term in the second line is interpreted as the velocity due solely to
the motion of the body-fixed frame and the second term is the rate of change of r1

in the body-fixed frame. A similar relation can be derived for the time derivative of
the position r2 of atom 2. Indeed, eqn. (1.11.18) applies to the time derivative of any
arbitrary vector G: (

dG

dt

)
space

=

(
dG

dt

)
body

+ ω×G. (1.11.19)

Although it is possible to obtain eqn. (1.11.19) from a general consideration of rota-
tional motion, we content ourselves here with this physically motivated approach.

Consider, next, the force term −∂V/∂θ. This is also a component of a vector
quantity known as the torque about the z-axis. In general, τ is defined by

τ = r×F. (1.11.20)

Again, because the motion is entirely in the xy-plane, there is no z-component of the
force, and the only nonvanishing component of the torque is the z-component given
by

τz = xFy − yFx

= −d cos θ
∂V

∂y
+ d sin θ

∂V

∂x

= −d cos θ
∂V

∂θ

∂θ

∂y
+ d sin θ

∂V

∂θ

∂θ

∂x
(1.11.21)

where the chain rule has been used in the last line. Since θ = tan−1(y/x), the two
derivatives of θ can be worked out as

∂θ

∂y
=

1

1 + (y/x)2
1

x

=
x

x2 + y2
=

cos θ

d
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∂θ

∂x
=

1

1 + (y/x)2

(
− y

x2

)

= − y

x2 + y2
= − sin θ

d
. (1.11.22)

Substitution of eqn. (1.11.22) into eqn. (1.11.21) gives

τz = −∂V

∂θ

(
d cos θ

cos θ

d
+ d sin θ

sin θ

d

)

= −∂V

∂θ

(
cos2 θ + sin2 θ

)

= −∂V

∂θ
. (1.11.23)

Therefore, we see that the torque is simply the force on an angular coordinate. The
equation of motion can thus be written in vector form as

dl

dt
= τ , (1.11.24)

which is analogous to Newton’s second law in Cartesian form

dp

dt
= F. (1.11.25)

A rigid diatomic, being a linear object, can be described by a single angle coordinate
in two dimensions or by two angles in three dimensions. For a general rigid body
consisting of n atoms in three dimensions, the number of constraints needed to make
it rigid is 3n−6 so that the number of remaining degrees of freedom is 3n−(3n−6) = 6.
After removing the three degrees of freedom associated with the motion of the body-
fixed frame, we are left with three degrees of freedom, implying that three angles
are needed to describe the motion of a general rigid body. These three angles are
known as the Euler angles. They describe the motion of the rigid body about three
independent axes. Although several conventions exist for defining these axes, any choice
is acceptable.

A particularly convenient choice of the axes can be obtained as follows: Consider
the total angular momentum of the rigid body, obtained as a sum of the individual
angular momentum vectors of the constituent particles:

l =
n∑

i=1

ri×pi =

n∑
i=1

miri×vi. (1.11.26)

Now, vi = dri/dt is measured in the body-fixed frame. From the analysis above, it
follows that the velocity is just ω×ri so that

l =

n∑
i=1

miri×(ω×ri). (1.11.27)
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Expanding the double cross product, we find that

l =

n∑
i=1

mi

(
ωr2

i − ri(ri · ω)
)

(1.11.28)

which, in component form, becomes

lx = ωx

n∑
i=1

mi(r
2
i − x2

i ) − ωy

n∑
i=1

mixiyi − ωz

n∑
i=1

mixizi

ly = −ωx

n∑
i=1

miyixi + ωy

n∑
i=1

mi(r
2
i − y2

i ) − ωz

n∑
i=1

miyizi

lz = −ωx

n∑
i=1

mizixi − ωy

n∑
i=1

miziyi + ωz

n∑
i=1

mi(r
2
i − z2

i ). (1.11.29)

Eqn. (1.11.29) can be written in matrix form as⎛
⎝ lx

ly
lz

⎞
⎠ =

⎛
⎝ Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎞
⎠

⎛
⎝ωx

ωy

ωz

⎞
⎠ . (1.11.30)

The matrix elements are given by

Iαβ =

n∑
i=1

mi

(
r2
i δαβ − ri,αri,β ,

)
(1.11.31)

where α, β = (x, y, z) and ri,α is the αth component of the ith position vector in the
body-fixed frame. The matrix Iαβ is known as the inertia tensor and is the general-
ization of the moment of inertia defined previously. The inertial tensor is symmetric
(Iαβ = Iβα), can therefore be diagonalized via an orthogonal transformation and will
have real eigenvalues denoted I1, I2 and I3. The eigenvectors of the inertial tensor de-
fine a new set of mutually orthogonal axes about which we may describe the motion.
When these axes are used, the inertial tensor is diagonal. Since the angular momentum
is obtained by acting with the inertial tensor on the angular velocity vector, it follows
that, in general, l is not parallel to ω as it was in the two-dimensional problem con-
sidered above. Thus, ω×l �= 0 so that the time derivative of l in a space-fixed frame
obeys eqn. (1.11.19): (

dl

dt

)
space

=

(
dl

dt

)
body

+ ω×l. (1.11.32)

Accordingly, the rate of change of l in the space-fixed frame will be determined simply
by the torque according to (

dl

dt

)
space

= τ . (1.11.33)

Expressing this in terms of the body-fixed frame (and dropping the “body” subscript)
eqn. (1.11.32) yields
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dl

dt
+ ω×l = τ . (1.11.34)

Finally, using the fact that l = Iω and working with a set of axes in terms of which
I is diagonal, the equations of motion for the three components ω1, ω2, and ω3 of the
angular velocity vector become

I1ω̇1 − ω2ω3(I2 − I3) = τ1

I2ω̇2 − ω3ω1(I3 − I1) = τ2

I3ω̇3 − ω1ω2(I1 − I2) = τ3. (1.11.35)

These are known as the rigid body equations of motion. Given the solutions of these
equations of motion for ωi(t), the three Euler angles, denoted (φ, ψ, θ), are then given
as solutions of the differential equations

ω1 = φ̇ sin θ sin ψ + θ̇ cosψ

ω2 = φ̇ sin θ cosψ − θ̇ sin ψ

ω3 = φ̇ cos θ + ψ̇. (1.11.36)

The complexity of the rigid body equations of motion and the relationship be-
tween the angular velocity and the Euler angles renders the solution of the equations
of motion a nontrivial problem. (In a numerical scheme, for example, there are singu-
larities when the trigonometric functions approach 0.) For this reason, it is preferable
to work in terms of a new set of variables known as quaternions. As the name sug-
gests, a quaternion is a set of four variables that replaces the three Euler angles. Since
there are only three rotational degrees of freedom, the four quaternions cannot be
independent.

In order to illustrate the idea of the quaternion, let us consider the analogous prob-
lem in a smaller number of dimensions (where we might call the variables “binarions”
or “ternarions” depending on the number of angles being replaced). Consider again a
rigid diatomic moving in the xy plane. The Lagrangian for the system is given by eqn.
(1.11.9). Introduce a unit vector

q = (q1, q2) ≡ (cos θ, sin θ). (1.11.37)

Clearly, q · q = q2
1 + q2

2 = cos2 θ + sin2 θ = 1. Note also that

q̇ = (q̇1, q̇2) = (−(sin θ)θ̇, (cos θ)θ̇) (1.11.38)

so that
L = μd2q̇2 − V (q), (1.11.39)

where V (q) indicates that the potential depends on q since r = dq. The present
formulation is completely equivalent to the original formulation in terms of the angle
θ. However, suppose we now treat q1 and q2 directly as the dynamical variables. If we
wish to do this, we need to ensure that the condition q2

1 + q2
2 = 1 is obeyed, which

could be achieved by treating this condition as a constraint (in Chapter 3, we shall see



Rigid body motion

how to formulate the problem so as to avoid the need for an explicit constraint on the
components of q). In this case, q would be an example of a “binarion.” The “binarion”
structure is rather trivial and seems to bring us right back to the original problem we
sought to avoid by formulating the motion of a rigid diatomic in terms of the angle θ
at the outset! For a diatomic in three dimensions, the rigid-body equations of motion
would be reformulated using three variables (q1, q2, q3) satisfying q2

1 + q2
2 + q2

3 = 1 so
that they are equivalent to (sin θ cosφ, sin θ sinφ, cos θ).

For a rigid body in three dimensions, we require four variables, (q1, q2, q3, q4), the

quaternions, that must satisfy
∑4

i=1 q2
i = 1 and are, by convention, formally related

to the three Euler angles by

q1 = cos

(
θ

2

)
cos

(
φ + ψ

2

)

q2 = sin

(
θ

2

)
cos

(
φ − ψ

2

)

q3 = sin

(
θ

2

)
sin

(
φ − ψ

2

)

q4 = cos

(
θ

2

)
sin

(
φ + ψ

2

)
. (1.11.40)

From eqn. (1.11.40), it is straightforward to verify that
∑

i q2
i = 1. The advantage of

the quaternion structure is that it leads to a simplification of the rigid-body motion
problem. First, note that at any time, a Cartesian coordinate vector in the space fixed
frame can be transformed into the body-fixed frame via a rotation matrix involving
the quaternions. The relations are

r(b) = A(θ, φ, ψ)r(s) r(s) = AT(θ, φ, ψ)r(b). (1.11.41)

The rotation matrix is the product of individual rotations about the three axes, which
yields

A(θ, φ, ψ) =

⎛
⎜⎝

cos φ sin ψ − cos θ cos ψ sinφ − sin φ cos ψ cos θ − cos φ sin ψ − sin θ sin ψ

− sin φ cos ψ cos θ − cos φ sin ψ cos φ sinψ cos θ − cos ψ sinφ − sin θ cos φ

− sin θ sinψ − sin θ cos φ cos θ

⎞
⎟⎠ .

(1.11.42)

In terms of quaterions, the matrix can be expressed in a simpler-looking form as

A(q) =

⎛
⎜⎜⎜⎝

q2
1 + q2

2 − q2
3 − q2

4 2(q2q3 − q1q4) 2(q2q4 − q1q3)

2(q2q3 − q1q4) q2
1 − q2

2 + q2
3 − q2

4 2(q3q4 + q1q2)

2(q2q4 + q1q3) 2(q3q4 − q1q2) q2
1 − q2

2 − q2
3 + q2

4

⎞
⎟⎟⎟⎠ . (1.11.43)

It should be noted that in the body-fixed coordinate, the moment of inertia tensor is
diagonal. The rigid body equations of motion, eqns. (1.11.35), can now be transformed
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into a set of equations of motion involving the quaternions. Direct transformation of
these equations leads to a new set of equations of motion given by

q̇ =
1

2
S(q)ω

ω̇x =
τx

Ixx
+

(Iyy − Izz)

Ixx
ωyωz

ω̇y =
τy

Iyy
+

(Izz − Ixx)

Iyy
ωzωx

ω̇z =
τz

Izz
+

(Ixx − Iyy)

Izz
ωxωy. (1.11.44)

Here, ω = (0, ωx, ωy, ωz) and

S(q) =

⎛
⎜⎝

q1 −q2 −q3 −q4

q2 q1 −q4 q3

q3 q4 q1 −q2

q4 −q3 q2 q1

⎞
⎟⎠ . (1.11.45)

These equations of motion must be supplemented by the constraint condition
∑

i =
q2
i = 1. The equations of motion have the conserved energy

E =
1

2

[
Ixxω2

x + Iyyω2
y + Izzω

2
z

]
+ U(q). (1.11.46)

Conservation of the energy in eqn. (1.11.46) can be shown by recognizing that the
torques can be written as

τ = −1

2
S(q)T

∂U

∂q
. (1.11.47)

1.12 Non-Hamiltonian systems

There is a certain elegance in the symmetry between coordinates and momenta of
Hamilton’s equations of motion. Up to now, we have mostly discussed systems obeying
Hamilton’s principle, yet it is important for us to take a short detour away from this
path and discuss more general types of dynamical equations of motion that cannot
be derived from a Lagrangian or Hamiltonian function. These are referred to as non-
Hamiltonian systems.

Why might we be interested in non-Hamiltonian systems in the first place? To begin
with, we note that Hamilton’s equations of motion can only describe a conservative
system isolated from its surroundings and/or acted upon by an applied external field.
However, Newton’s second law is more general than this and could involve forces
that are non-conservative and, hence, cannot be derived from a potential function.
There are numerous physical systems that are characterized by non-conservative forces,
including equations for systems subject to frictional forces and damping effects as well
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as the famous Lorenz equations of motion that lead to the study of chaotic dynamics.
We noted previously that Gauss’s equations of motion (1.10.8) constituted another
example of a non-Hamiltonian system.

In order to understand how non-Hamiltonian systems may be useful in statistical
mechanics, consider a physical system in contact with a much larger system, referred
to as a bath, which regulates some macroscopic property of the physical system such
as its pressure or temperature. Were we to consider the microscopic details of the
system plus the bath together, we could, in principle, write down a Hamiltonian for
the entire system and determine the evolution of the physical subsystem. However, we
are rarely interested in all of the microscopic details of the bath. We might, therefore,
consider treating the effect of the bath in a more coarse-grained manner by replacing
its microscopic coordinates and momenta with a few simpler variables that couple to
the physical subsystem in a specified manner. In this case, a set of equations of motion
describing the physical system plus the few additional variables used to represent the
action of the bath could be proposed which generally would not be Hamiltonian in
form because the true microscopic nature of the bath had been eliminated. For this
reason, non-Hamiltonian dynamical systems can be highly useful and it is instructive
to examine some of their characteristics.

We will restrict ourselves to dynamical systems of the generic form

ẋ = ξ(x) (1.12.1)

where x is a phase space vector of n components and ξ(x) is a continuous, differen-
tiable function. A key signature of a non-Hamiltonian system is that it can have a
nonvanishing phase-space compressibility:

κ(x) =
n∑

i=1

∂ẋi

∂xi
=

n∑
i=1

∂ξi

∂xi
�= 0, (1.12.2)

When eqn. (1.12.2) holeds, many of the theorems about Hamiltonian systems no longer
apply. However, as will be shown in Chapter 2, some properties of Hamiltonian systems
can be generalized to non-Hamiltonian systems provided certain conditions are met. It
is important to note that when a Hamiltonian system is formulated in non-canonical
variables, the resulting system can also have a nonvanishing compressibility. Strictly
speaking, such systems are not truly non-Hamiltonian since a simple transformation
back to a canonical set of variables can eliminate the nonzero compressibility. How-
ever, throughout this book, we will group such cases in with our general discussion of
non-Hamiltonian systems and loosely refer to them as non-Hamiltonian because the
techniques we will develop for analyzing dynamical systems with nonzero compress-
ibility factors can be applied equally well to both types of systems.

A simple and familiar example of a non-Hamiltonian system is the case of the
damped forced harmonic oscillator described by an equation of motion of the form

mẍ = −mω2x − ζẋ (1.12.3)

This equation describes a harmonic oscillator subject to the action of a friction force
−ζẋ, which could arise, for example, by the motion of the oscillator on a rough sur-
face. Obviously, such an equation cannot be derived from a Hamiltonian. Moreover,
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the microscopic details of the rough surface are not treated explicitly but rather are
modeled grossly by the simple dissipative term in the equation of motion for the phys-
ical subsystem described by the coordinate x. Writing the equation of motion as two
first order equations involving a phase space vector (x, p) we have

ẋ =
p

m

ṗ = −mω2x − ζ
p

m
(1.12.4)

It can be seen that this dynamical system has a non-vanishing compressibility

κ(x, p) =
∂ẋ

∂x
+

∂ṗ

∂p
= − ζ

m
. (1.12.5)

The fact that the compressibility is negative indicates that the effective “phase space
volume” occupied by the system will, as time increases, shrink and eventually collapse
onto a single point in the phase space (x = 0, p = 0) as t → ∞ under the action of
the damping force. All trajectories regardless of their initial condition will eventually
approach this point as t → ∞. Consider an arbitrary volume in phase space and let all
of the points in this volume represent different initial conditions for eqns. (1.12.4). As
these initial conditions evolve in time, the volume they occupy will grow ever smaller
until, as t → ∞, the volume tends toward 0. In complex systems, the evolution of such
a volume of trajectories will typically be less trivial, growing and shrinking in time as
the trajectories evolve. If, in addition, the damped oscillator is driven by a periodic
forcing function, so that the equation of motion reads:

mẍ = −mω2x − ζẋ + F0 cosΩt (1.12.6)

then the oscillator will never be able to achieve the equilibrium situation described
above but rather will achieve what is known as a steady state. The existence of a
steady state can be seen by considering the general solution

x(t) = e−γt [A cosλt + B sin λt] +
F0√

(ω2 − Ω2)2 + 4γ2Ω2
sin(Ωt + β) (1.12.7)

of eqn. (1.12.6), where

γ =
ζ

2m
λ =

√
ω2 − γ2 β = tan−1 ω2 − Ω2

2γΩ
(1.12.8)

and A and B are arbitrary constants set by the choice of initial conditions x(0) and
ẋ(0). In the long-time limit, the first term decays to zero due to the exp(−γt) prefac-
tor, and only the second term remains. This term constitutes the steady-state solution.
Moreover, the amplitude of the steady-state solution can become large when the de-
nominator is a minimum. Considering the function f(Ω) = (ω2 − Ω2)2 + 4γ2Ω2, this
function reaches a minimum when the frequency of the forcing function is chosen to
be Ω = ω

√
1 − γ2/(2ω2). Such a frequency is called a resonant frequency. Resonances
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play an important role in classical dynamics when harmonic forces are present, a phe-
nomenon that will be explored in greater detail in Chapter 3.

1.13 Problems

1.1. Solve the equations of motion given arbitrary initial conditions for a one-
dimensional particle moving in a linear potential U(x) = Cx, where C is a
constant, and sketch a representative phase space plot.

∗1.2. A particle of mass m moves in a potential of the form

U(x) = − ω2

8a2

(
x2 − a2

)2

a. Show that the function

x(t) = atanh[(t − t0)ω/2]

is a solution to Hamilton’s equations for this system, where t0 is an arbi-
trary constant.

b. Let the origin of time be t = −∞ rather than t = 0. To what initial
conditions does this solution correspond?

c. Determine the behavior of this solution as t → ∞.
d. Sketch the phase space plot for this particular solution.

1.3. Determine the trajectory r(t) for a particle of mass m moving in three di-
mensions subject to a central potential of the form U(r) = kr2/2. Verify your
solution for different values of l and given values of m and k by numerically
integrating eqn. (1.4.29). Discuss the behavior of the solution for different
values of l.

1.4. Repeat problem 3 for a potential of the form U(r) = κ/r.

∗1.5. Consider Newton’s equation of motion for a one-dimensional particle subject
to an arbitrary force, mẍ = F (x). A numerical integration algorithm for the
equations of motion, known as the velocity Verlet algorithm (see Chapter 3),
for a discrete time step value Δt is

x(Δt) = x(0) + Δt
p(0)

m
+

Δt2

2m
F (x(0))

p(Δt) = p(0) +
Δt

2
[F (x(0)) + F (x(Δt))]

By considering the Jacobian matrix:
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J =

⎛
⎜⎝

∂x(Δt)
∂x(0)

∂x(Δt)
∂p(0)

∂p(Δt)
∂x(0)

∂p(Δt)
∂p(0)

⎞
⎟⎠

show that the algorithm is symplectic, and show that det[J] = 1.

1.6. A water molecule H2O is subject to an external potential. Let the positions
of the three atoms be denoted rO, rH1 , rH2 , so that the forces on the three
atoms can be denoted FO, FH1 , and FH2 . Consider treating the molecule
as completely rigid, with internal bond lengths dOH and dHH, so that the
constraints are:

|rO − rH1 |2 − d2
OH = 0

|rO − rH2 |2 − d2
OH = 0

|rH1 − rH2 |2 − d2
HH = 0

a. Derive the constrained equations of motion for the three atoms in the
molecule in terms of undetermined Lagrange multipliers.

b. Show that the forces of constraint do not contribute to the work done on
the molecule in moving it from one spatial location to another.

c. Determine Euler’s equations of motion about an axis perpendicular to
the plane of the molecule in a body-fixed frame whose origin is located
on the oxygen atom.

d. Determine the equations of motion for the quaternions that describe this
system.

1.7. Calculate the classical action for a one-dimensional free particle of mass m.
Repeat for a harmonic oscillator of spring constant k.

1.8. A simple mechanical model of a diatomic molecule bound to a flat surface
is illustrated in Fig. 1.13. Suppose the atom with masses m1 and m2 carry
electrical charges q1 and q2, respectively, and suppose that the molecule is
subject to a constant external electric field E in the vertical direction, directed
upwards. In this case, the potential energy of each atom will be qiEhi, i = 1, 2
where hi is the height of the atom i above the surface.
a. Using θ1 and θ2 as generalized coordinates, write down the Lagrangian

of the system.
b. Derive the equations of motion for these coordinates.
c. Introduce the small-angle approximation, which assumes that the angles

only execute small amplitude motion. What form do the equations of
motion take in this approximation?

1.9. Use Gauss’s principle of least constraint to determine a set of non-Hamiltonian
equations of motion for the two atoms in a rigid diatomic molecule of bond
length d subject to an external potential. Take the constraint to be
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   2θ

θ

l2

l1

m1

m2

Fig. 1.13 Schematic of a diatomic molecule bound to a flat surface.

σ(r1, r2) = |r1 − r2|2 − d2.

Determine the compressibility of your equations of motion.

1.10. Consider the harmonic polymer model of Section 1.7 in which the harmonic
neighbor couplings all have the same frequency ω but the masses have al-
ternating values m and M , respectively. For the case of N = 5 particles,
determine the normal modes and their associated frequencies.

1.11. The equilibrium configuration of a molecule is represented by three atoms
of equal mass at the vertices of a right isosceles triangle. The atoms can be
viewed as connected by harmonic springs of equal force constant. Find the
normal mode frequencies of this molecule, and, in particular, show that there
the zero-frequency mode is triply degenerate.

1.12. A particle of mass m moves in a double-well potential of the form

U(x) =
U0

a4

(
x2 − a2

)2

Sketch the contours of the constant-energy surface H(x, p) = E in phase
space for the following cases:
a. E < U0.
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b. E = U0 + ε, where ε 
 U0.
c. E > U0.

∗1.13. The Hamiltonian for a system of N charged particles with charges qi, i =
1, ..., N and masses mi, i = 1, ..., N , positions, r1, ..., rN and momenta p1, ...,pN

interacting with a static electromagnetic field is given by

H =

N∑
i=1

(pi − qiA(ri)/c)2

2mi
+

N∑
i=1

qiφ(ri)

where A(r) and φ(r) are the vector and scalar potentials of the field, respec-
tively, and c is the speed of light. In terms of these quantities, the electric and
magnetic components of the electromagnetic field, E(r) and B(r) are given
by

E(r) = −∇φ(r)

B(r) = ∇× A(r)

It is assumed that, although the particles are charged, they do not interact
with each other, i.e. an ideal gas in an electromagnetic field. If the density is
low enough, this is not an unreasonable assumption, as the interaction with
the field will dominate over the Coulomb interaction.

a. Derive Hamilton’s equations for this system, and determine the force
on each particle in terms of the electric and magnetic fields E(r) and
B(r), respectively. This force is known as the Lorentz force. Express the
equations of motion in Newtonian form.

b. Suppose N = 1, that the electric field is zero everythere (E = 0), and
that the magnetic is a constant in the z direction, B = (0, 0, B). For this
case, solve the equations of motion for an arbitrary initial condition and
describe the motion that results.

1.14 Prove that the energy in eqn. (1.11.46) is conserved making use of eqn.
(1.11.47) for the torques.

∗1.15 (For amusement only): Consider a system with coordinate q, momentum p,
and Hamiltonian

H =
pn

n
+

qn

n

where n is an integer larger than 2. Show that, if the energy E of the system
is chosen such that nE = mn, where m is a positive integer, then no phase
space trajectory can ever pass through a point for which p and q are both
positive integers.
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Theoretical foundations of classical
statistical mechanics

2.1 Overview

The field of thermodynamics began in precursory form with the work of Otto von
Guericke (1602–1686) who designed the first vacuum pump in 1650 and with Robert
Boyle (1627–1691) who, working with von Guericke’s design, discovered an inverse
proportionality between the pressure and volume of a gas at a fixed temperature for
a fixed amount of gas. This inverse proportionality became known as Boyle’s Law.
Thermodynamics matured in the nineteenth century through the seminal work of R.
J. Mayer (1814–1878) and J. P. Joule (1818–1889), who established that heat is a form
of energy, of R. Clausius (1822–1888) and N. L. S. Carnot (1796–1832), who originated
the concept of entropy, and of numerous others. This work is neatly encapsulated in
what we now refer to as the laws of thermodynamics (see Section 2.2). As these laws
are based on experimental observations, thermodynamics is a phenomenological theory
of macroscopic matter, which has, nevertheless, withstood the test of time. The frame-
work of thermodynamics is an elegantly self-consistent one that makes no reference
to the microscopic constituents of matter. If, however, we believe in a microscopic
theory of matter, then it must be possible to rationalize thermodynamics based on
microscopic mechanical laws.

In Chapter 1, we presented the laws of classical mechanics and applied them to
several simple examples. The laws of classical mechanics imply that if the positions
and velocities of all the particles in a system are known at a single instant in time,
then the past evolution of the system leading to that point in time and the future
evolution of the system from that point forward are known. The example systems
considered in Chapter 1 consisted of one or a small number of degrees of freedom with
simple forces, and we saw that the past and future of each system could be worked out
from Newton’s second law of motion (see, for example, eqn. (1.2.10)). Thus, classical
mechanics encodes all the information needed to predict the properties of a system at
any instant in time.

In order to provide a rational basis for thermodynamics, we should apply the micro-
scopic laws of motion to macroscopic systems. However, two serious problems confront
this näıve approach: First, macroscopic systems possess an enormous number of de-
grees of freedom (1 mole consists of 6.022×1023 particles); second, real-world systems
are characterized by highly nontrivial interactions. Hence, even though we should be
able, in principle, to predict the microscopic detailed dynamics of any classical system
knowing only the initial conditions, we quickly realize the hopelessness of this effort.



Theoretical foundations

The highly nonlinear character of the forces in realistic systems means that an analyt-
ical solution of the equations of motion is not available. If we propose, alternatively, to
solve the equations of motion numerically on a computer, the memory requirement to
store just one phase space point for a system of 1023 particles exceeds what is available
both today and in the foreseeable future. Thus, while classical mechanics encodes all
the information needed to predict the properties of a system, the problem of extracting
that information is seemingly intractable.

In addition to the problem of the sheer size of macroscopic systems, another, more
subtle, issue exists. The second law of thermodynamics prescribes a direction of time,
namely, the direction in which the entropy increases. This “arrow” of time is seem-
ingly at odds with the microscopic mechanical laws, which are inherently reversible in
time.1 This paradoxical situation, known as Loschmidt’s paradox, seems to pit ther-
modynamics against microscopic mechanical laws.

The reconciliation of macroscopic thermodynamics with the microscopic laws of
motion required the development of a new field, statistical mechanics, which is the main
topic of this book. Statistical mechanics began with ideas from Clausius and James C.
Maxwell (1831–1879) but grew principally out of the work of Ludwig Boltzmann (1844–
1906) and Josiah W. Gibbs (1839–1903). (Other significant contributors include Henri
Poincaré, Albert Einstein, and later, Lars Onsager, Richard Feynman, Ilya Prigogine,
Kenneth Wilson, and Benjamin Widom, to name just a few.) Early innovations in
statistical mechanics derived from the realization that the macroscopic observable
properties of a system do not depend strongly on the detailed dynamical motion
of every particle in a macroscopic system but rather on gross averages that largely
“wash out” these microscopic details. Thus, by applying the microscopic mechanical
laws in a statistical fashion, a link can be provided between the microscopic and
macroscopic theories of matter. Not only does this concept provide a rational basis for
thermodynamics, it also leads to procedures for computing many other macroscopic
observables. The principal conceptual breakthrough on which statistical mechanics is
based is that of an ensemble, which refers to a collection of systems that share common
macroscopic properties. Averages performed over an ensemble yield the thermodynamic
quantities of a system as well as other equilibrium and dynamic properties.

In this chapter, we will lay out the fundamental theoretical foundations of ensemble
theory and show how the theory establishes the link between the microscopic and
macroscopic realms. We begin with a discussion of the laws of thermodynamics and
a number of important thermodynamic functions. Following this, we introduce the
notion of an ensemble and the properties that an ensemble must obey. Finally, we will
describe, in general terms, how to use an ensemble to calculate macroscopic properties.
Specific types of ensembles and their use will be detailed in subsequent chapters.

1It can be easily shown, for example, that Newton’s second law retains its form under a time-
reversal transformation t → −t. Under this transformation, d/dt → −d/dt, but d2/dt2 → d2/dt2.
Time-reversal symmetry implies that if a mechanical system evolves from an initial condition x0 at
time t = 0 to xt at a time t > 0, and all the velocities are subsequently reversed (vi → −vi),
the system will return to its initial microscopic state x0. The same is true of the microscopic laws of
quantum mechanics. Consequently, it should not be possible to tell if a “movie” made of a mechanical
system is running in the “forward” or “reverse” direction.
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2.2 The laws of thermodynamics

Our discussion of the laws of thermodynamics will make no reference to the microscopic
constituents of a particular system. Concepts and definitions we will need for the
discussion are described below:

i. A thermodynamic system is a macroscopic system. Thermodynamics always di-
vides the universe into the system and its surroundings. A thermodynamic system
is said to be isolated if no heat or material is exchanged between the system and
its surroundings and if the surroundings produces no other change in the thermo-
dynamic state of the system.

ii. A system is in thermodynamic equilibrium if its thermodynamic state does not
change in time.

iii. The fundamental thermodynamic parameters that define a thermodynamic state,
such as the pressure P , volume V , the temperature T , and the total mass M or
number of moles n are measurable quantities assumed to be provided experimen-
tally. A thermodynamic state is specified by providing values of all thermodynamic
parameters necessary for a complete description of a system.

iv. The equation of state of a system is a relationship among the thermodynamic
parameters that describes how these vary from one equilibrium state to another.
Thus, if P , V , T , and n are the fundamental thermodynamic parameters of a
system, the equation of state takes the general form

g(n, P, V, T ) = 0. (2.2.1)

As a consequence of eqn. (2.2.1), there are in fact only three independent thermo-
dynamic parameters in an equilibrium state. When the number of moles remains
fixed, the number of independent parameters is reduced to two. An example of
an equation of state is that of an ideal gas, which is defined (thermodynamically)
as a system whose equation of state is

PV − nRT = 0, (2.2.2)

where R = 8.315 J·mol−1·K−1 is the gas constant. The ideal gas represents the
limiting behavior of all real gases at sufficiently low density ρ ≡ n/V .

v. A thermodynamic transformation is a change in the thermodynamic state of a
system. In equilibrium, a thermodynamic transformation is effected by a change
in the external conditions of the system. Thermodynamic transformations can be
carried out either reversibly or irreversibly. In a reversible transformation, the
change is carried out slowly enough that the system has time to adjust to each
new external condition imposed along a prescribed thermodynamic path, so that
the system can retrace its history along the same path between the endpoints of
the transformation. If this is not possible, then the transformation is irreversible.

vi. A state function is any function f(n, P, V, T ) whose change under any thermody-
namic transformation depends only on the initial and final states of the transfor-
mation and not on the particular thermodynamic path taken between these states
(see Fig. 2.1).
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P

V

T

2

1

Fig. 2.1 The thermodynamic state space defined by the variables P , V , and T with two paths

(solid and dashed lines) between the state points 1 and 2. The change in a state function

f(n, P, V, T ) is independent of the path taken between any two such state points.

vii. In order to change the volume or the number of moles, work must be performed
on a system. If a transformation is performed reversibly such that the volume
changes by an amount dV and the number of moles changes by an amount dn,
then the work performed on the system is

dWrev = −PdV + μdn. (2.2.3)

The quantity μ is called the chemical potential, defined to be the amount of
work needed to add 1.0 mole of a substance to a system already containing that
substance.

viii. In order to change the temperature of a system, heat must be added or removed.
The amount of heat dQ needed to change the temperature by an amount dT in
a reversible process is given by

dQrev = CdT. (2.2.4)

The quantity C is called the heat capacity, defined to be the amount of heat
needed to change the temperature of 1.0 mole of a substance by 1.0 degree on a
chosen scale. If heat is added at fixed pressure, then the heat capacity is denoted
CP . If heat is added at fixed volume, it is denoted CV .

2.2.1 The first law of thermodynamics

The first law of thermodynamics is a statement of conservation of energy. We saw in
Section 1.6 that performing work on a system changes its potential (or internal) energy
(see Section 1.4). Thermodynamics recognizes that heat is also a form of energy. The
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first law states that in any thermodynamic transformation, if a system absorbs an
amount of heat ΔQ and has an amount of work ΔW performed on it, then its internal
energy will change by an amount ΔE given by

ΔE = ΔQ + ΔW. (2.2.5)

(Older books define the first law in terms of the heat absorbed and work done by the
system. With this convention, the first law is written ΔE = ΔQ−ΔW .) Although nei-
ther the heat absorbed ΔQ nor the work ΔW done on the system are state functions,
the internal energy E is a state function. Thus, the transformation can be carried out
along either a reversible or irreversible path, and the same value of ΔE will result.
If E1 and E2 represent the energies before and after the transformation respectively,
then ΔE = E2 −E1, and it follows that an exact differential dE exists for the energy
such that

ΔE = E2 − E1 =

∫ E2

E1

dE. (2.2.6)

However, since ΔE is independent of the path of the transformation, ΔE can be
expressed in terms of changes along either a reversible or irreversible path:

ΔE = ΔQrev + ΔWrev = ΔQirrev + ΔWirrev. (2.2.7)

Suppose that reversible and irreversible transformations are carried out on a system
with a fixed number of moles, and let the irreversible process be one in which the
external pressure drops to a value Pext by a sudden volume change ΔV , thus allowing
the system to expand rapidly. It follows that the work done on the system is

ΔWirrev = −PextΔV. (2.2.8)

In such a process, the internal pressure P > Pext. If the same expansion is carried
out reversibly (slowly), then the internal pressure has time to adjust as the system
expands. Since

ΔWrev = −
∫

PdV, (2.2.9)

where the dependence of the internal pressure P on the volume is specified by the
equation of state, and since Pext in the irreversible process is less than P at all states
visited in the reversible process, it follows that −ΔWirrev < −ΔWrev, or ΔWirrev >
ΔWrev. However, because of eqn. (2.2.7), the first law implies that the amounts of heat
absorbed in the two processes satisfy

ΔQirrev < ΔQrev. (2.2.10)

Eqn. (2.2.10) will be needed in our discussion of the second law of thermodynamics.
Of course, since the thermodynamic universe is, by definition, an isolated system (it

has no surroundings), its energy is conserved. Therefore, any change ΔEsys in a system
must be accompanied by an equal and opposite change ΔEsurr in the surroundings so
that the net energy change of the universe ΔEuniv = ΔEsys + ΔEsurr = 0.
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2.2.2 The second law of thermodynamics

Before discussing the second law of thermodynamics, it is useful to review the Carnot
cycle. The Carnot cycle is the thermodynamic cycle associated with an ideal device
or “engine” that takes in heat and delivers useful work. The ideal engine provides an
upper bound on the efficiency that can be achieved by a real engine.

The thermodynamic cycle of a Carnot engine is shown in Fig. 2.2, which is a plot
of the process in the P–V plane. In the cycle, each of the four transformations (curves

D

A

B

CD

P

V

Fig. 2.2 The Carnot cycle.

AB, BC, CD and DA in Fig. 2.2) is assumed to be performed reversibly on an ideal
gas. The four stages of the cycle are defined as follows:

• Path AB: An amount of heat Qh is absorbed at a high temperature Th, and the
system undergoes an isothermal expansion at this temperature.

• Path BC: The system further expands adiabatically so that no further heat is
gained or lost.

• Path CD: The system is compressed at a low temperature Tl, and an amount of
heat Ql is released by the system.

• Path DA: The system undergoes a further adiabatic compression in which no
further heat is gained or lost.

Since the cycle is closed, the change in the internal energy in this process is ΔE = 0.
Thus, according to the first law of thermodynamics, the net work output by the Carnot
engine is given by

−Wnet = ΔQ = Qh + Ql. (2.2.11)
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The efficiency of the any engine ε is defined as the ratio of the net work output to the
heat input

ε = −Wnet

Qh
, (2.2.12)

from which it follows that the efficiency of the Carnot engine is

ε = 1 +
Ql

Qh
. (2.2.13)

On the other hand, the work done on (or by) the system during the adiabatic expansion
and compression phases cancels, so that the net work comes from the isothermal
expansion and compression segments. From the ideal gas law, eqn. (2.2.2), the work
done on the system during the initial isothermal expansion phase is simply

Wh = −
∫ VB

VA

PdV = −
∫ VB

VA

nRTh

V
dV = −nRTh ln

(
VB

VA

)
, (2.2.14)

while the work done on the system during the isothermal compression phase is

Wl = −
∫ VD

VC

nRTl

V
dT = −nRTl ln

(
VD

VC

)
. (2.2.15)

However, because the temperature ratio for both adiabatic phases is the same, namely,
Th/Tl, it follows that the volume ratios VC/VB and VD/VA are also the same. Since
VC/VB = VD/VA, it follows that VB/VA = VC/VD, and the net work output is

−Wnet = nR(Th − Tl) ln

(
VB

VA

)
. (2.2.16)

The internal energy of an ideal gas is E = 3nRT/2, and therefore the energy change
during an isothermal process is ΔE = 0. Hence, for the initial isothermal expansion
phase, ΔE = 0, and Wh = −Qh = nRTh ln(VB/VA). The efficiency can also be
expressed in terms of the temperatures as

ε = −Wnet

Qh
=

nR(Th − Tl) ln(VB/VA)

nRTh ln(VB/VA)
= 1 − Tl

Th
. (2.2.17)

Equating the two efficiency expressions, we have

1 +
Ql

Qh
= 1 − Tl

Th

Ql

Qh
= − Tl

Th

Qh

Th
+

Ql

Tl
= 0. (2.2.18)

Eqn. (2.2.18) indicates that there is a quantity ΔQrev/T whose change over the
closed cycle is 0. The “rev” subscript serves as reminder that the Carnot cycle is
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carried out using reversible transformations. Thus, the quantity ΔQrev/T is a state
function, and although we derived this fact using an idealized Carnot cycle, it turns
out that this quantity is always a state function. This means that there is an exact
differential dS = dQrev/T such that S is a state function. The quantity ΔS, defined
by

ΔS =

∫ 2

1

dQrev

T
, (2.2.19)

is therefore independent of the path over which the transformation from state “1” to
state “2” is carried out. The quantity S is the entropy of the system.

The second law of thermodynamics is a statement about the behavior of the en-
tropy in any thermodynamic transformation. From eqn. (2.2.10), which implies that
dQirrev < dQrev, we obtain

dS =
dQrev

T
>

dQirrev

T
, (2.2.20)

which is known as the Clausius inequality. If this inequality is now applied to the
thermodynamic universe, an isolated system that absorbs and releases no heat (dQ =
0), then the total entropy dStot = dSsys + dSsurr satisfies

dStot ≥ 0. (2.2.21)

That is, in any thermodynamic transformation, the total entropy of the universe
must either increase or remain the same. dStot > 0 pertains to an irreversible process
while dStot = 0 pertains to a reversible process. Eqn. (2.2.21) is the second law of
thermodynamics.

Our analysis of the Carnot cycle allows us to understand two equivalent statements
of the second law. The first, attributed to William Thomson (1824–1907), known later
as the First Baron Kelvin or Lord Kelvin, reads: There exists no thermodynamic trans-
formation whose sole effect is to extract a quantity of heat from a high-temperature
source and convert it entirely into work. In fact, some of the heat absorbed at Th is
always lost in the form of waste heat, which in the Carnot cycle is the heat Ql released
at Tl. The loss of waste heat means that −Wnet < −Wh or that the net work done
by the system must be less than the work done during the first isothermal expansion
phase.

Now suppose we run the Carnot cycle in reverse. so that an amount of heat Ql

is absorbed at Tl and released as Qh at Th. In the process, an amount of work Wnet

is consumed by the system. Thus, the Carnot cycle operated in reverse performs as
a refrigerator, moving heat from a cold source to a hot source. This brings us to the
second statement of the second law, attributed to Clausius: There exists no thermo-
dynamic transformation whose sole effect is to extract a quantity of heat from a cold
source and deliver it to a hot source. That is, heat does not flow spontaneously from
cold to hot; moving heat in this direction requires that work be done.

2.2.3 The third law of thermodynamics

As with any state function, it is only possible to define changes in the entropy, which
make no reference to an absolute scale. The third law of thermodynamics defines such
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an absolute entropy scale: The entropy of a system at the absolute zero of temperature
is a universal constant, which can be taken to be zero. Absolute zero of temperature is
defined as T = 0 on the Kelvin scale; it is a temperature that can never be physically
reached. The unattainability of absolute zero is sometimes taken as an alternative
statement of the third law. A consequence of the unattainability of absolute zero tem-
perature is that the ideal (Carnot) engine can never be one-hundred percent efficient,
since this would require sending Tl → 0 in eqn. (2.2.17), which is not possible. As
we will see in Chapter 10, the third law of thermodynamics is actually a macroscopic
manifestation of quantum mechanical effects.

2.3 The ensemble concept

We introduced the laws of thermodynamics without reference to the microscopic origin
of macroscopic thermodynamic observables. Without this microscopic basis, thermo-
dynamics must be regarded as a phenomenological theory. We now wish to provide
this microscopic basis and establish a connection between the macroscopic and micro-
scopic realms. As we remarked at the beginning of the chapter, we cannot solve the
classical equations of motion for a system of 1023 particles with the complex, nonlin-
ear interactions that govern the behavior of real systems. Nevertheless, it is instructive
to pose the following question: If we could solve the equations of motion for such a
large number of particles, would the vast amount of detailed microscopic information
generated be necessary to describe macroscopic observables?

Intuitively, we would answer this question with “no.” Although the enormous quan-
tity of microscopic information is certainly sufficient to predict any macroscopic ob-
servable, there are many microscopic configurations of a system that lead to the same
macroscopic properties. For example, if we connect the temperature of a system to an
average of the kinetic energy of the individual particles composing the system, then
there are many ways to assign the velocities of the particles consistent with a given
total energy such that the same total kinetic energy and, hence, the same measure
of temperature is obtained. Nevertheless, each assignment corresponds to a different
point in phase space and, therefore, a different and unique microscopic state. Similarly,
if we connect the pressure to the average force per unit area exerted by the particles
on the walls of the container, there are many ways of arranging the particles such that
the forces between them and the walls yields the same pressure measure, even though
each assignment corresponds to a unique point in phase space and hence, a unique
microscopic state. Suppose we aimed, instead, to predict macroscopic time-dependent
properties. By the same logic, if we started with a large set of initial conditions drawn
from a state of thermodynamic equilibrium, and if we launched a trajectory from
each initial condition in the set, then the resulting trajectories would all be unique in
phase space. Despite their uniqueness, these trajectories should all lead, in the long
time limit, to the same macroscopic dynamical observables such as vibrational spectra,
diffusion constants, and so forth.

The idea that the macroscopic observables of a system are not sensitive to pre-
cise microscopic details is the basis of the ensemble concept originally introduced by
Gibbs. More formally, an ensemble is a collection of systems described by the same
set of microscopic interactions and sharing a common set of macroscopic properties
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(e.g. the same total energy, volume, and number of moles). Each system evolves under
the microscopic laws of motion from a different initial condition so that at any point
in time, every system has a unique microscopic state. Once an ensemble is defined,
macroscopic observables are calculated by performing averages over the systems in
the ensemble. Ensembles can be defined for a wide variety of thermodynamic situ-
ations. The simplest example is a system isolated from its surroundings. However,
ensembles also describe systems in contact with heat baths, systems in contact with
particle reservoirs, systems coupled to pressure control mechanisms such as mechan-
ical pistons, and various combinations of these influences. Such ensembles are useful
for determining static properties such as temperature, pressure, free energy, average
structure, etc. Thus, the fact that the systems in the ensemble evolve in time does
not affect properties of this type, and we may freeze the ensemble at any instant and
perform the average over the ensemble at that instant. These ensembles are known
as equilibrium ensembles, and we will focus on them up to and including Chapter 12.
Finally, ensembles can also be defined for systems driven by external forces or fields
for the calculation of transport coefficients and other dynamical properties. These are
examples of non-equilibrium ensembles, which will be discussed in Chapters 13 and
14.

In classical ensemble theory, every macroscopic observable of a system is directly
connected to a microscopic function of the coordinates and momenta of the system.
A familiar example of this comes from the kinetic theory, where the temperature of
a system is connected to the average kinetic energy. In general, we will let A de-
note a macroscopic equilibrium observable and a(x) denote a microscopic phase space
function that can be used to calculate A. According to the ensemble concept, if the
ensemble has Z members, then the “connection” between A and a(x) is provided via
an averaging procedure, which we write heuristically as

A =
1

Z

Z∑
λ=1

a(xλ) ≡ 〈a〉. (2.3.1)

This definition is not to be taken literally, since the sum may well be a continuous sum
or integral. However, eqn. (2.3.1) conveys the notion that the phase space function a(x)
must be evaluated for each member of the ensemble at that point in time when the
ensemble is frozen. Finally, A is obtained by performing an average over the ensemble.
(The notation 〈a〉 in eqn. (2.3.1) will be used throughout the book to denote an
ensemble average.)

Let us recall the question we posed earlier: If we could solve the equations of motion
for a very large number of particles, would the vast amount of detailed microscopic
information generated be necessary to describe macroscopic observables? Previously,
we answered this in the negative. However, the other side can also be argued if we take
a purist’s view. That is, all of the information needed to describe a physical system is
encoded in the microscopic equations of motion. Indeed, there are many physical and
chemical processes for which the underlying atomic and molecular mechanics are of
significant interest and importance. In order to elucidate these, it is necessary to know
how individual atoms and molecules move as the process occurs. Experimental tech-
niques such as ultrafast laser spectroscopy can resolve processes at increasingly short
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time scales and thus obtain important insights into such motions. (The importance
of such techniques was recognized by the award of the 1999 Nobel Prize in chemistry
to the physical chemist Ahmed Zewail for his pioneering work in their development.)
While we cannot expect to solve the equations of motion for 1023 particles, we actu-
ally can solve them numerically for systems whose particle numbers range from 102 to
109, depending on the complexity of the interactions in a particular physical model.
The technique of solving the equations of motion numerically for small representa-
tive systems is known as molecular dynamics, a method that has become one of the
most important theoretical tools for solving statistical mechanical problems. Although
the system sizes currently accessible to molecular dynamics calculations are not truly
macroscopic ones, they are large enough to capture the macroscopic limit for certain
properties. Thus, a molecular dynamics calculation, which can be viewed as a kind of
detailed “thought experiment” performed in silico, can yield important microscopic
insights into complex phenomena including the catalytic mechanisms of enzymes, de-
tails of protein folding and misfolding processes, formation supramolecular structures,
and many other fascinating phenomena.

We will have more to say about molecular dynamics and other methods for solv-
ing statistical mechanical problems throughout the book. For the remainder of this
chapter, we will focus on the fundamental underpinnings of ensemble theory.

2.4 Phase space volumes and Liouville’s theorem

As noted previously, an ensemble is a collection of systems with a set of common
macroscopic properties such that each system is in a unique microscopic state at
any point in time as determined by its evolution under some dynamical rule, e.g.,
Hamilton’s equations of motion. Given this definition, and assuming that the evolution
of the collection of systems is prescribed by Hamilton’s equations, it is important first
to understand how a collection of microscopic states (which we refer to hereafter simply
as “microstates”) moves through phase space.

Consider a collection of microstates in a phase space volume element dx0 centered
on the point x0. The “0” subscript indicates that each microstate in the volume element
serves as an initial condition for Hamilton’s equations, which we had written in eqn.
(1.6.23) as ẋ = η(x). The equations of motion can be generalized to the case of a set
of driven Hamiltonian systems by writing them as ẋ = η(x, t). We now ask how the
entire volume element dx0 moves under the action of Hamiltonian evolution. Recall
that x0 is a complete set of generalized coordinates and conjugate momenta:

x0 = (q1(0), ..., q3N (0), p1(0), ..., p3N (0)). (2.4.1)

(We will refer to the complete set of generalized coordinates and their conjugate mo-
menta collectively as the phase space coordinates.) If we follow the evolution of this
volume element from t = 0 to time t, dx0 will be transformed into a new volume
element dxt centered on a point xt in phase space. The point xt is the phase space
point that results from the evolution of x0. As we noted in Section 1.2, xt is a unique
function of x0 that can be expressed as xt(x0). Since the mapping of the point x0 to xt

is one-to-one, this mapping is equivalent to a coordinate transformation on the phase
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space from initial phase space coordinates x0 to phase space coordinates xt. Under
this transformation, the volume element dx0 transforms according to

dxt = J(xt; x0)dx0, (2.4.2)

where J(xt; x0) is the Jacobian of the transformation, the determinant of the matrix
J defined in eqn. (1.6.28), from x0 to xt. According to eqn. (1.6.28), the elements of
the matrix are

Jkl =
∂xk

t

∂xl
0

. (2.4.3)

We propose to determine the Jacobian in eqn. (2.4.2) by deriving an equation of motion
it obeys and then solving this equation of motion. To accomplish this, we start with
the definition,

J(xt; x0) = det(J), (2.4.4)

analyze the derivative
d

dt
J(xt; x0) =

d

dt
det(J), (2.4.5)

and derive a first-order differential equation obeyed by J(xt; x0).
The time derivative of the determinant is most easily computed by applying an

identity satisfied by determinants

det(J) = eTr[ln(J)], (2.4.6)

where Tr is the trace operation: Tr(J) =
∑

k Jkk. Eqn. (2.4.6) is most easily proved by
first transforming J into a representation in which it is diagonal. If J has eigenvalues
λk, then ln(J) is a diagonal matrix with eigenvalues ln(λk), and the trace operation
yields Tr[ln(J)] =

∑
k ln λk. Exponentiating the trace yields

∏
k λk, which is just the

determinant of J. Substituting eqn. (2.4.6) into eqn. (2.4.5) gives

d

dt
J(xt; x0) =

d

dt
eTr[ln(J)]

= eTr[ln(J)]Tr

[
dJ

dt
J−1

]

= J(xt; x0)
∑
k,l

[
dJkl

dt
J−1

lk

]
. (2.4.7)

The elements of the matrices J−1 and dJ/dt are easily seen to be

dJkl

dt
=

∂ẋk
t

∂xl
0

. J−1
lk =

∂xl
0

∂xk
t

. (2.4.8)

Substituting eqn. (2.4.8) into eqn. (2.4.7) gives

d

dt
J(xt; x0) = J(xt; x0)

∑
k,l

[
∂ẋk

t

∂xl
0

∂xl
0

∂xk
t

]
. (2.4.9)
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The summation over l of the term in square brackets, is just the chain-rule expression
for ∂ẋk

t /∂xk
t . Thus, performing this sum yields the equation of motion for the Jacobian:

d

dt
J(xt; x0) = J(xt; x0)

∑
k

∂ẋk
t

∂xk
t

. (2.4.10)

The sum in the last line of eqn. (2.4.10) is easily recognized as the phase space com-
pressibility ∇ · ẋt defined in eqn. (1.6.25). Eqn. (1.6.25) also revealed that the phase
compressibility is 0 for a system evolving under Hamilton’s equations. Thus, the sum
on the right side of eqn. (2.4.10) vanishes, and the equation of motion for the Jacobian
reduces to

d

dt
J(xt; x0) = 0. (2.4.11)

This equation of motion implies that the Jacobian is a constant for all time. The initial
condition J(x0; x0) on the Jacobian is simply 1 since the transformation from x0 to
x0 is an identity transformation. Thus, since the Jacobian is initially 1 and remains
constant in time, it follows that

J(xt; x0) = 1. (2.4.12)

Substituting eqn. (2.4.12) into eqn. (2.4.2) yields the volume element transformation
condition

dxt = dx0. (2.4.13)

Eqn. (2.4.13) is an important result known as Liouville’s theorem (named for the
nineteenth-century French mathematician, Joseph Liouville (1809–1882)). Liouville’s
theorem is essential to the claim made earlier that ensemble averages can be performed
at any point in time.

If the motion of the system is driven by highly nonlinear forces, then an initial
hypercubic volume element dx0, for example, will distort due to the chaotic nature of
the dynamics. Because of Liouville’s theorem, the volume element can spread out in
some of the phase space dimensions but must contract in other dimensions by an equal
amount so that, overall, the volume is conserved. That is, there can be no net attractors
or repellors in the phase space. This is illustrated in Fig. 2.3 for a two-dimensional
phase space.

2.5 The ensemble distribution function and the Liouville equation

Phase space consists of all possible microstates available to a system of N particles.
However, an ensemble contains only those microstates that are consistent with a given
set of macroscopic observables. Consequently, the microstates of an ensemble are either
a strict subset of all possible phase space points or are clustered more densely in certain
regions of phase space and less densely in others. We, therefore, need to describe
quantitatively how the systems in an ensemble are distributed in the phase space at
any point in time. To do this, we introduce the ensemble distribution function or
phase space distribution function f(x, t). The phase space distribution function of an
ensemble has the property that f(x, t)dx is the fraction of the total ensemble members
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q
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dx0

dxt

Fig. 2.3 Illustration of phase space volume conservation prescribed by Liouville’s theorem.

contained in the phase space volume element dx at time t. From this definition, it is
clear that f(x, t) satisfies the following properties:

f(x, t) ≥ 0∫
dx f(x, t) = 1. (2.5.1)

Therefore, f(x, t) is a probability density.
When the phase space distribution is expressed as f(x, t), we imagine ourselves

sitting at a fixed location x in the phase space and observing the ensemble distribution
evolve around us as a function of time. In order to determine the number of ensemble
members in a small element dx at our location, we could simply “count” the number
of microstates belonging to the ensemble in dx at any time t, determine the fraction
f(x, t)dx, and build up a picture of the distribution. On the other hand, the ensemble
consists of a collection of systems all evolving in time according to Hamilton’s equations
of motion. Thus, we can also let the ensemble distribution function describe how a
bundle of trajectories in a volume element dxt centered on a trajectory xt is distributed
at time t. This will be given by f(xt, t)dxt. The latter view more closely fits the
originally stated definition of an ensemble and will, therefore, be employed to determine
an equation satisfied by f in the phase space.

The fact that f has a constant normalization means that there can be neither
sources of new ensemble members nor sinks that reduce the number of ensemble mem-
bers – the number of members remains constant. This means that any volume Ω in
the phase space with a surface S (see Fig. 2.4) contains no sources or sinks. Thus, the
rate of decrease (or increase) of ensemble members in Ω must equal the rate at which
ensemble members leave (or enter) Ω through the surface S. The fraction of ensemble
members in Ω at time t can be written as

Fraction of ensemble members in Ω =

∫
Ω

dxt f(xt, t). (2.5.2)

Thus, the rate of decrease of ensemble members in Ω is related to the rate of decrease
of this fraction by
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n̂

dS

Fig. 2.4 An arbitrary volume in phase space. dS is a hypersurface element and n̂ is the unit

vector normal to the surface at the location of dS.

− d

dt

∫
Ω

dxt f(xt, t) = −
∫

Ω

dxt
∂

∂t
f(xt, t). (2.5.3)

On the other hand, the rate at which ensemble members leave Ω through the surface
can be calculated from the flux, which is the number of ensemble members per unit
area per unit time passing through the surface. Let n̂ be the unit vector normal to the
surface at the point x+ t (see Fig. 2.4). Then, as a fraction of ensemble members, this
flux is given by ẋt · n̂f(xt, t). The dot product with n̂ ensures that we count only those
ensemble members actually leaving Ω through the surface, that is, members whose
trajectories have a component of their phase space velocity ẋt normal to the surface.
Thus, the rate at which ensemble members leave Ω through the surface is obtained by
integrating over S: ∫

S

dS ẋt · n̂f(xt, t) =

∫
Ω

dxt∇ · (ẋtf(xt, t)) , (2.5.4)

where the right side of the equation follows from the divergence theorem applied to
the hypersurface integral. Equating the right sides of eqns. (2.5.4) and (2.5.3) gives∫

Ω

dxt∇ · (ẋtf(xt, t)) = −
∫

Ω

dxt
∂

∂t
f(xt, t) (2.5.5)

or ∫
Ω

dxt

[
∂

∂t
f(xt, t) + ∇ · (ẋtf(xt, t))

]
= 0. (2.5.6)

Since the choice of Ω is arbitrary, eqn. (2.5.6) must hold locally, so that the term in
brackets vanishes identically, giving
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∂

∂t
f(xt, t) + ∇ · (ẋtf(xt, t)) = 0. (2.5.7)

Finally, since ∇ · (ẋtf(xt, t)) = ẋt · ∇f(xt, t) + f(xt, t)∇ · ẋt, and the phase space
divergence ∇ · ẋt = 0, eqn. (2.5.7) reduces to

∂

∂t
f(xt, t) + ẋt · ∇f(xt, t) = 0. (2.5.8)

The quantity on the left side of eqn. (2.5.8) is just the total time derivative of f(xt, t),
which includes both the time dependence of the phase space vector xt and the explicit
time dependence of f(xt, t). Thus, we obtain finally

df

dt
=

∂

∂t
f(xt, t) + ẋt · ∇f(xt, t) = 0, (2.5.9)

which states that f(xt, t) is conserved along a trajectory. This result is known as the
Liouville equation. The conservation of f(xt, t) implies that

f(xt, t) = f(x0, 0), (2.5.10)

and since dxt = dx0, we have

f(xt, t)dxt = f(x0, 0)dx0. (2.5.11)

Eqn. (2.5.11) states that the fraction of ensemble members in the initial volume element
dx0 is equal to the fraction of ensemble members in the volume element dxt. Eqn.
(2.5.11) ensures that we can perform averages over the ensemble at any point in time
because the fraction of ensemble members is conserved. Since ẋt = η(xt, t), eqn. (2.5.9)
can also be written as

df

dt
=

∂

∂t
f(xt, t) + η(xt, t) · ∇f(xt, t) = 0. (2.5.12)

Writing the Liouville equation this way allows us to recover the “passive” view of the
ensemble distribution function in which we remain at a fixed location in phase space.
In this case, we remove the t label attached to the phase space points and obtain the
following partial differential equation for f(x, t):

∂

∂t
f(x, t) + η(x, t) · ∇f(x, t) = 0, (2.5.13)

which is another form of the Liouville equation. Since eqn. (2.5.13) is a partial differ-
ential equation, it can only specify a class of functions as solutions. Specific solutions
for f(x, t) require input of further information; we will return to this point again as
specific ensembles are considered in subsequent chapters.

Finally, note that if we use the definition of η(x, t) in eqn. (1.6.24) and apply the
analysis leading up to eqn. (1.6.19), it is clear that η(x, t)·∇f(x, t) = {f(x, t), H(x, t)},
where {..., ...} is the Poisson bracket. Thus, the Liouville equation can also be written
as

∂

∂t
f(x, t) + {f(x, t), H(x, t)} = 0, (2.5.14)

a form we will employ in the next section for deriving general equilibrium solutions.
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2.6 Equilibrium solutions of the Liouville equation

In Section 2.3, we argued that thermodynamic variables can be computed from averages
over an ensemble. Such averages must, therefore, be expressed in terms of the ensemble
distribution function. If a(x) is a microscopic phase space function corresponding to a
macroscopic observable A, then a proper generalization of eqn. (2.3.1) is

A = 〈a(x)〉 =

∫
dx f(x, t)a(x). (2.6.1)

If f(x, t) has an explicit time dependence, then so will the observable A, in general.
However, we also remarked earlier that a system in thermodynamic equilibrium has a
fixed thermodynamic state. This means that the thermodynamic variables characteriz-
ing the equilibrium state do not change in time. Thus, if A is an equilibrium observable,
the ensemble average in eqn. (2.6.1) must yield a time-independent result, which is
only possible if the ensemble distribution of a system in thermodynamic equilibrium
has no explicit time dependence, i.e., ∂f/∂t = 0. This will be the case, for example,
when no external driving forces act on the system, in which case H(x, t) → H(x) and
η(x, t) → η(x).

When ∂f/∂t = 0, the Liouville equation eqn. (2.5.14) reduces to

{f(x), H(x)} = 0. (2.6.2)

The general solution to eqn. (2.6.2) is any function of the Hamiltonian H(x):

f(x) ∝ F(H(x)). (2.6.3)

This is as much as we can say from eqn. (2.6.2) without further information about
the ensemble. In order to ensure that f(x) is properly normalized according to eqn.
(2.5.1), we write the solution as

f(x) =
1

Z
F(H(x)) (2.6.4)

where Z is defined to be

Z =

∫
dx F(H(x)). (2.6.5)

The quantity Z, referred to as the partition function, is one of the central quantities in
equilibrium statistical mechanics. The partition function is a measure of the number of
microscopic states in the phase space accessible within a given ensemble. Each ensemble
has a particular partition function that depends on the macroscopic observables used to
define the ensemble. We will show Chapters 3 to 6 that the thermodynamic properties
of a system are calculated from the various partial derivatives of the partition function.
Other equilibrium observables are computed according to

A = 〈a(x)〉 =
1

Z

∫
dx a(x)F(H(x)). (2.6.6)

Note that the condition f(x0)dx0 = f(xt)dxt implied by eqn. (2.5.11) guarantees that
the equilibrium average over the systems in the ensemble can be performed at any
point in time.
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Eqns. (2.6.5) and (2.6.6) constitute the essence of equilibrium statistical mechanics.
As Richard Feynman remarks in his book Statistical Mechanics: A Set of Lectures,
eqns. (2.6.5) and (2.6.6) embody “the summit of statistical mechanics, and the entire
subject is either the slide-down from this summit, as the [principles are] applied to
various cases, or the climb-up where the fundamental [laws are] derived and the con-
cepts of thermal equilibrium . . .[are] clarified” (Feynman, 1998).2 We shall, of course,
embark on both, and we will explore the methods by which equilibrium ensemble
distributions are generated and observables are computed for realistic applications.

2.7 Problems

2.1. Consider n moles of an ideal gas in a volume V at pressure P and temperature
T . The equation of state is PV = nRT as given in eqn. (2.2.2). If the gas
contains N molecules, so that n = N/N0, where N0 is Avogadro’s number,
then the total number of microscopic states available to the gas can be shown
(see Section 3.5) to be Ω ∝ V N (kT )3N/2, where k = R/N0 is known as
Boltzmann’s constant. The entropy of the gas is defined via Boltzmann’s
relation (see Chapter 3) as S = k ln Ω. Note the total energy of an ideal gas
is E = 3nRT/2.
a. Suppose the gas expands or contracts from a volume V1 to a volume V2

at constant temperature. Calculate the work done on the system.
b. For the process in part a, calculate the change of entropy using Boltz-

mann’s relation and using eqn. (2.2.19) and show that they yield the
same entropy change.

c. Next, suppose the temperature of the gas is changed from T1 to T2 under
conditions of constant volume. Calculate the entropy change using the
two approaches in part (a) and show that they yield the same entropy
change.

d. Finally, suppose that the volume changes from V1 to V2 in an adiabatic
process (ΔQ = 0). The pressure also changes from P1 to P2 in the process.
Show that

P1V
γ
1 = P2V

γ
2

and find the numerical value of the exponent γ.

2.2. A substance has the following properties:
i. When its volume is increased from V1 to V2 at constant temperature T ,

the work done in the expansion is

W = RT ln

(
V2

V1

)
.

2This quote is actually made in the context of quantum statistical mechanics (see Chapter 10
below), however, the sentiment applies equally well to classical statistical mechanics.
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ii. When the volume changes from V1 to V2 and the temperature changes
from T1 to T2, its entropy changes according to

ΔS = k

(
V1

V2

)(
T2

T1

)α

,

where α is a constant. Find the equation of state and Helmholtz free energy
of this substance.

2.3. Reformulate the Carnot cycle for an ideal gas as a thermodynamic cycle in
the T –S plane rather than the P–V plane, and show that the area enclosed
by the cycle is equal to the net work done by the gas during the cycle.

2.4. Consider the thermodynamic cycle shown in Fig. 2.5 below. Compare the
efficiency of this engine to that of a Carnot engine operating between the
highest and lowest temperatures of the cycle in Fig. 2.5. Which one is greater?

T

S

Fig. 2.5 Thermodynamic cycle.

2.5. Consider an ensemble of one-particle systems, each evolving in one spatial
dimension according to an equation of motion of the form

ẋ = −αx,
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where x(t) is the position of the particle at time t and α is a constant. Since the
compressibility of this system is nonzero, the ensemble distribution function
f(x, t) satisfies a Liouville equation of the form

∂f

∂t
− αx

∂f

∂x
= αf.

(see eqn. (2.5.7)). Suppose that at t = 0, the ensemble distribution has a
Gaussian form

f(x, 0) =
1√

2πσ2
e−x2/2σ2

.

a. Find a solution of the Liouville equation that also satisfies this initial
distribution.

Hint: Show that the substitution f(x, t) = eαtf̃(x, t) yields an equation
for a conserved distribution f̃(x, t). Next, try multiplying the x2 in the
initial distribution by an arbitrary function g(t) that must satisfy g(0) =
1. Use the Liouville equation to derive an equation that g(t) must satisfy
and then solve this equation.

b. Describe the evolution of the ensemble distribution qualitatively and ex-
plain why it should evolve this way.

c. Show that your solution is properly normalized in the sense that∫ ∞

−∞
dxf(x, t) = 1.

∗2.6. An alternative definition of entropy was proposed by Gibbs, who expressed
the entropy in terms of the phase space distribution function f(x, t) as

S(t) = −k

∫
dx f(x, t) ln f(x, t).

Here, f(x, t) satisfies the Liouville equation eqn. (2.5.13). The notation S(t)
expresses the fact that an entropy defined this way is an explicit function of
time.
a. Show that for an arbitrary distribution function, the entropy is actually

constant, i.e., that dS/dt = 0, S(t) = S(0), so that S(t) cannot increase
in time for any ensemble. Is this in violation of the second law of thermo-
dynamics?

Hint: Be careful how the derivative d/dt is applied to the integral!

b. The distribution f(x, t) is known as a “fine-grained” distribution function.
Because f(x, t) is fully defined at every phase space point, it contains all of
the detailed microstructure of the phase space, which cannot be resolved
in reality. Consider, therefore, introducing a “coarse-grained” phase space
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distribution f̄(x, t) defined via the following operation: Divide phase space
into the smallest cells over which f̄(x, t) can be defined. Each cell C is
then subdivided into small subcells such that each subcell of volume Δx
centered on the point x has an associated probability f(x, t)Δx at time
t (Waldram, 1985). Assume that at t = 0, f(x, 0) = f̄(x, 0). In order to
define f̄(x, t) for t > 0, at each point in time, we transfer probability from
subcells of C where f > f̄ to cells where f < f̄ . Then, we use f̄(x, t) to
define a coarse-grained entropy

S̄(t) = −k

∫
dx f̄(x, t) ln f̄(x, t)

where the integral should be interpreted as a sum over all cells C into
which the phase space has been divided. For this particular coarse-graining
operation, show that S̄(t) ≥ S̄(0) where equality is only true in equilib-
rium.

Hint: Show that the change in S̄ on transferring probability from one
small subcell to another is either positive or zero. This is sufficient to
show that the total coarse-grained entropy can either increase in time or
remain constant.

2.7. Consider a single particle moving in three spatial dimensions with phase space
vector (px, py, pz, x, y, z). Derive the complete canonical transformation to
spherical polar coordinates (r, θ, φ) and their conjugate momenta (pr, pθ, pφ)
and show that the phase space volume element dpdr satisfies

dpxdpydpzdxdydz = dprdpθdφdrdθdφ



3

The microcanonical ensemble and
introduction to molecular dynamics

3.1 Brief overview

In the previous chapter, it was shown that statistical mechanics provides the link be-
tween the classical microscopic world described by Newton’s laws of motion and the
macroscopic observables that are actually measured in experiments, including thermo-
dynamic, structural, and dynamical properties. One of the great successes of statistical
mechanics is its provision of a rational microscopic basis for thermodynamics, which
otherwise is only a phenomenological theory. We showed that the microscopic connec-
tion is provided via the notion of an ensemble—an imaginary collection of systems
described by the same Hamiltonian with each system in a unique microscopic state at
any given instant in time.

In this chapter, we will lay out the basic classical statistical mechanics of the sim-
plest and most fundamental of the equilibrium ensembles, that of an isolated system
of N particles in a container of volume V and a total energy E corresponding to
a Hamiltonian H(x). This ensemble is known as the microcanonical ensemble. The
microcanonical ensemble provides a starting point from which all other equilibrium
ensembles are derived. Our discussion will begin with the classical partition function,
its connection to the entropy via Boltzmann’s relation, and the thermodynamic and
equilibrium properties that it generates. Several simple applications will serve to illus-
trate these concepts. However, it will rapidly become apparent that in order to treat
any realistic system, numerical solutions are needed, which will lead naturally to a
discussion of the numerical simulation technique known as molecular dynamics (MD).
MD is a widely used, immensely successful computational approach in which the clas-
sical equations of motion are solved numerically and the trajectories thus generated
are used to extract macroscopic observables. MD also permits direct “visualization”
of the detailed motions of individual atoms in a system, thereby providing a “win-
dow” into the microscopic world. Although such animations of MD trajectories should
never be taken too seriously, they can be useful as a guide toward understanding the
mechanisms underlying a given chemical process. At the end of the chapter, we will
consider a number of examples that illustrate the power and general applicability of
molecular dynamics to realistic systems.



Basic thermodynamics

3.2 Basic thermodynamics, Boltzmann’s relation, and the

partition function of the microcanonical ensemble

We begin by considering a system of N identical particles in a container of volume
V with a fixed internal energy E. The variables N , V , and E are all macroscopic
thermodynamic quantities referred to as control variables. Control variables are simply
quantities that characterize the ensemble and that determine other thermodynamic
properties of the system. Different choices of these variables lead to different system
properties. In order to describe the thermodynamics of an ensemble of systems with
given values of N , V , and E, we seek a unique state function of these variables.
We will now show that such a state function can be obtained from the First Law of
Thermodynamics, which relates the energy E of a system to a quantity Q of heat
absorbed and an amount of work W done on the system:

E = Q + W. (3.2.1)

The derivation of the desired state function begins by examining how the energy
changes if a small amount of heat dQ is added to the system and a small amount
of work dW is done on the system. Since E is a state function, this thermodynamic
transformation may be carried out along any path, and it is particularly useful to
consider a reversible path for which

dE = dQrev + dWrev. (3.2.2)

Note that since Q and W are not state functions, it is necessary to characterize their
changes by the “rev” subscript. The amount of heat absorbed by the system can be
related to the change in the entropy ΔS of the system by

ΔS =

∫
dQrev

T
, dS =

dQrev

T
, (3.2.3)

where T is the temperature of the system. Therefore, dQrev = TdS. Work done on the
system is measured in terms of the two control variables V and N . Let P (V ) be the
pressure of the system at the volume V . Mechanical work can be done on the system
by compressing it from a volume V1 to a new volume V2 < V1:

W
(mech)
12 = −

∫ V2

V1

P (V )dV, (3.2.4)

where the minus sign indicates that work is positive in a compression. A small volume

change dV corresponds to an amount of work dW
(mech)
rev = −P (V )dV . Although we

will typically suppress the explicit volume dependence of P on V and write simply,

dW
(mech)
rev = −PdV , it must be remembered that P depends not only on V but also on

N and E. In addition to the mechanical work done by compressing a system, chemical
work can also be done on the system by increasing the number of particles. Let μ(N)
be the chemical potential of the system at particle number, N (μ also depends on V
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and E). If the number of particles is increased from N1 to N2 > N1, then chemical
work

W
(chem)
12 =

N2∑
Ni=N1

μ(Ni) (3.2.5)

will be done on the system. Clearly, the number of particles in a system can only
change by integral amounts, ΔN . However, the changes we wish to consider are so
small compared to the total particle number (N ∼ 1023) that they can be regarded
approximately as changes dN in a continuous variable. Therefore, the chemical work

corresponding to such a small change dN can be expressed as dW
(chem)
rev = μ(N)dN .

Again, we suppress the explicit dependence of μ on N (as well as on V and E) and

write simply dW
(chem)
rev = μdN . Therefore, the total reversible work done on the system

is given by
dWrev = dW (mech)

rev + dW (chem)
rev = −PdV + μdN, (3.2.6)

so that the total change in energy is

dE = TdS − PdV + μdN. (3.2.7)

By writing eqn. (3.2.7) in the form

dS =
1

T
dE +

P

T
dV − μ

T
dN, (3.2.8)

it is clear that the state function we are seeking is just the entropy of the system,
S = S(N, V, E), since the change in S is related directly to the change in the three
control variables of the ensemble. However, since S is a function of N , V , and E, the
change in S resulting from small changes in N , V , and E can also be written using
the chain rule as

dS =

(
∂S

∂E

)
N,V

dE +

(
∂S

∂V

)
N,E

dV +

(
∂S

∂N

)
V,E

dN. (3.2.9)

Comparing eqn. (3.2.9) with eqn. (3.2.8) shows that the thermodynamic quantities T ,
P , and μ can be obtained by taking partial derivatives of the entropy with respect to
each of the three control variables:

1

T
=

(
∂S

∂E

)
N,V

,
P

T
=

(
∂S

∂V

)
N,E

,
μ

T
= −

(
∂S

∂N

)
V,E

. (3.2.10)

We now recall that the entropy is a quantity that can be related to the number of
microscopic states of the system. This relation was first proposed by Ludwig Boltz-
mann in 1877, although it was Max Planck who actually formalized the connection. Let
Ω be the number of microscopic states available to a system. The relation connecting
S and Ω states that

S(N, V, E) = k ln Ω(N, V, E). (3.2.11)

Since S is a function of N , V , and E, Ω must be as well. The constant, k, appearing in
eqn. (3.2.11) is known as Boltzmann’s constant; its value is 1.3806505(24)×10−23J·K−1.
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That logarithmic dependence of the entropy on Ω(N, V, E) will be explained shortly.
Assuming we can determine Ω(N, V, E) from a microscopic description of the system,
eqn. (3.2.11) then provides a connection between this microscopic description and
macroscopic thermodynamic observables.

In the last chapter, we saw that the most general solution to the equilibrium Li-
ouville equation, {f(x), H(x)} = 0, for the ensemble distribution function f(x) is any
function of the Hamiltonian: f(x) = F (H(x)), where x is the phase space vector.
The specific choice of F (H(x)) is determined by the conditions of the ensemble. The
microcanonical ensemble pertains to a collection of systems in isolation obeying Hamil-
ton’s equations of motion. Recall, however, from Section 1.6, that a system obeying
Hamilton’s equations conserves the total Hamiltonian

H(x) = E (3.2.12)

with E being the total energy of the system. Conservation of H(x) was demonstrated
explicitly in eqn. (1.6.15). Moreover, the ensemble distribution function f(x) is static
in the sense that ∂f/∂t = 0. Therefore, each member of an equilibrium ensemble is in
a single unique microscopic state. For the microcanonical ensemble, each unique state
is described by a unique phase space vector x that satisfies eqn. (3.2.12). It follows that
the choice of F (H(x)) must be consistent with eqn. (3.2.12). That is, F (H(x)) must
restrict x to those microscopic states for which H(x) = E. A function that achieves
this is the Dirac δ-function

F (H(x)) = Nδ(H(x) − E) (3.2.13)

expressing the conservation of energy condition. Here, N is an overall normalization
constant. For readers not familiar with the properties of the Dirac δ-function, a detailed
discussion is provided in Appendix A. Since eqn. (3.2.12) defines the constant-energy
hypersurface in phase space, eqn. (3.2.13) expresses the fact that, in the microcanon-
ical ensemble, all phase space points must lie on this hypersurface and that all such
points are equally probable; all points not on this surface have zero probability. The
notion that Ω(N, V, E) can be computed from an ensemble in which all accessible
microscopic states are equally probable is an assumption that is consistent with clas-
sical mechanics, as the preceding discussion makes clear. More generally, we assume
that for an isolated system in equilibrium, all accessible microscopic states are equally
probable, which is known as the assumption of equal a prior probability. The quantity
1/Ω(N, V, E) is a measure of the probability of randomly selecting a microstate in any
small neighborhood of phase space anywhere on the constant-energy hypersurface.

The number Ω(N, V, E) is a measure of the amount of phase space available to
the system. It must, therefore, be proportional to the fraction of phase space consis-
tent with eqn. (3.2.12), which is proportional to the (6N − 1)-dimensional “area” of
the constant-energy hypersurface. This number can be obtained by integrating eqn.
(3.2.13) over the phase space, as indicated by eqn. (2.6.5).1 An integration over the

1If we imagined discretizing the constant-energy hypersurface such that each discrete patch con-
tained a single microstate, then the integral would revert to a sum that would represent a literal
counting of the number of microstates contained on the surface.
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entire phase space is an integration over the momentum pi and position ri of each
particle in the system and is, therefore, a 6N -dimensional integration. Moreover, while
the range of integration of each momentum variable is infinite, integration over each
position variable is restricted to that region of space defined by the containing vol-
ume. We denote this region as D(V ), i.e., the spatial domain defined by the containing
volume. For example, if the container is a cube of side length L, lying in the positive
octant of Cartesian space with a corner at the origin, then D(V ) would be defined
by x ∈ [0, L], y ∈ [0, L], z ∈ [0, L] for each Cartesian vector r = (x, y, z). Therefore,
Ω(N, V, E) is given by the integral

Ω(N, V, E) = M

∫
dp1 · · ·

∫
dpN

∫
D(V )

dr1 · · ·
∫

D(V )

drN δ(H(r,p) − E), (3.2.14)

where M is an overall constant whose value we will discuss shortly. Eqn. (3.2.14) defines
the partition function of the microcanonical ensemble. For notational simplicity, we
often write eqn. (3.2.14) in a briefer notation as

Ω(N, V, E) = M

∫
dNp

∫
D(V )

dNr δ(H(r,p) − E), (3.2.15)

or more simply as

Ω(N, V, E) = M

∫
dx δ(H(x) − E), (3.2.16)

using the phase space vector. However, it should be remembered that these shorter
versions refer to the explicit form of eqn. (3.2.14).

In order to understand eqn. (3.2.14) somewhat better and define the normalization
constant M , let us consider determining Ω(N, V, E) in a somewhat different way. We
perform a thought experiment in which we “count” the number of microstates via a
“device” capable of determining a position component, say x, to a precision Δx and
a momentum component p to a precision Δp. Since quantum mechanics places an
actual limit on the product ΔxΔp, namely Planck’s constant h (this is Heisenberg’s
uncertainty relation to be discussed in Chapter 9), h is a natural choice for our thought
experiment. Thus, we can imagine dividing phase space up into small hypercubes of
volume Δx = (Δx)3N (Δp)3N = h3N , such that each hypercube contains a single
measurable microstate. Let us denote this phase space volume simply as Δx. We
will also assume that we can only determine the energy of each microstate to be
within E and E + E0, where E0 defines a very thin energy shell above the constant-
energy hypersurface. For each phase space hypercube, we ask if the energy of the
corresponding microstate lies within this shell, we incrementing our counting by 1,
which we represent as Δx/h3N . We can therefore write Ω as

Ω(N, V, E) =
∑

hypercubes
E<H(x)<E+E0

Δx

h3N
, (3.2.17)

where the summand Δx/h3N is added only if the phase space vector x in a given hy-
percube lies in the energy shell. Since the hypercube volume Δx is certainly extremely
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small compared to all of phase space, eqn. (3.2.17) can be very well approximated by
an integral

Ω(N, V, E) =
1

h3N

∫
E<H(x)<E+E0

dx. (3.2.18)

Finally, since eqn. (3.2.18) is measuring the volume of a very thin 6N -dimensional
shell in phase space, we can approximate this volume by the (6N − 1)-dimensional
area of the surface defined by H(x) = E times the thickness E0 of the shell, leading to

Ω(N, V, E) =
E0

h3N

∫
dx δ(H(x) − E), (3.2.19)

which is eqn. (3.2.16) with M = E0/h3N . In principle, eqn. (3.2.19) should be sufficient
to define the microcanonical partition function. However, remember we assumed at
the outset that all particles are identical, so that exchanging any two particles does
not yield a uniquely different microstate. Unfortunately, classical mechanics is not
equipped to handle this situation, as all classical particles carry an imaginary “tag”
that allows them to be distinguished from other particles. Thus, in order to avoid
overcounting, we need to include a factor of 1/N ! in M for the number of possible
particle exchanges that can be performed. This factor can only be properly derived
using the laws of quantum mechanics, which we will discuss in Chapter 9. Adding the
1/N ! in by hand yields the normalization factor

M ≡ MN =
E0

N !h3N
. (3.2.20)

Note that the constant E0 is irrelevant and will not affect any thermodynamic or
equilibrium properties. However, this normalization constant renders Ω(N, V, E) di-
mensionless according to eqn. (3.2.16).2

Since Ω(N, V, E) counts the number of microscopic states available to a system with
given values of N , V , and E, the thermodynamics of the microcanonical ensemble can
now be expressed directly in terms of the partition function via Boltzmann’s relation:

1

kT
=

(
∂ ln Ω

∂E

)
N,V

,
P

kT
=

(
∂ ln Ω

∂V

)
N,E

,
μ

kT
= −

(
∂ ln Ω

∂N

)
V,E

. (3.2.21)

Moreover, the ensemble average of an observable A described by a phase space function
a(x) is given by

A = 〈a〉 =
MN

Ω(N, V, E)

∫
dx a(x)δ(H(x) − E) =

∫
dx a(x)δ(H(x) − E)∫

dx δ(H(x) − E)
. (3.2.22)

2Of course, in a multicomponent system, if the system contains NA particles of species A, NB

particles of species B,...., and N total particles, then the normalization factor becomes M{N}, where

M{N} =
E0

h3N [NA!NB! · · ·]
Throughout the book, we will not complicate the expressions with these general normalization factors
and simply use the one-component system factors. However, the reader should always keep in mind
when the factors MN , CN (canonical ensemble), and IN (isothermal-isobaric ensemble) need to be
generalized.
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The form of the microcanonical partition function shows that the phase space vari-
ables are not all independent in this ensemble. In particular, the condition H(x) = E
specifies a condition or constraint placed on the total number of degrees of freedom.
An N -particle system in the microcanonical ensemble therefore has 3N − 1 degrees of
freedom (or dN−1 in d dimensions). In the limit where N → ∞ and V → ∞ such that
N/V = const, a limit referred to as the thermodynamic limit, we may approximate,
3N − 1 ≈ 3N so that the system behaves approximately as if it had 3N degrees of
freedom.

Eqn. (3.2.22) now allows us to understand Boltzmann’s relation S(N, V, E) =
k ln Ω(N, V, E) between the entropy and the partition function. From eqn. (3.2.10),
it is clear that quantities such as 1/T , P/T , and μ/T , which are themselves macro-
scopic observables, must be expressible as ensemble averages of phase space functions,
which we can denote as aT (x), aP (x) and aμ(x). Consider, for example, 1/T , which
can be expressed as

1

T
=

MN

Ω(N, V, E)

∫
dx aT (x)δ(H(x) − E) =

(
∂S

∂E

)
N,V

. (3.2.23)

We seek to relate these two expressions for 1/T by postulating that S(N, V, E) =
CG(Ω(N, V, E)), where G is an arbitrary function and C is an arbitrary constant, so
that (

∂S

∂E

)
N,V

= CG′(Ω(N, V, E))

(
∂Ω

∂E

)
N,V

. (3.2.24)

Now, (
∂Ω

∂E

)
N,V

= MN

∫
dx

∂δ(H(x) − E)

∂E

= MN

∫
dx δ(H(x) − E)

∂ ln δ(H(x) − E)

∂E
. (3.2.25)

Thus,(
∂S

∂E

)
N,V

= CG′(Ω(N, V, E))MN

∫
dx δ(H(x) − E)

∂ ln δ(H(x) − E)

∂E
. (3.2.26)

Eqn. (3.2.26) is in the form of a phase space average as in eqn. (3.2.23). If we iden-
tify aT (x) = (1/k)∂[ln δ(H(x) − E)]/∂E, where k is an arbitrary constant, then it is
clear that G′(Ω(N, V, E)) = k/Ω(N, V, E), which is only satisfied if G(Ω(N, V, E)) =
k ln Ω(N, V, E), with the arbitrary constant identified as Boltzmann’s constant. In the
next few sections, we shall see how to use the microcanonical and related ensembles to
derive the thermodynamics for several example problems and to prove an important
theorem known as the virial theorem.

3.3 The classical virial theorem

In this section, we prove an important theorem of statistical mechanics known as the
classical virial theorem. Consider a system with Hamiltonian H(x). Let xi and xj be
specific components of the phase space vector. The classical virial theorem states that
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〈
xi

∂H

∂xj

〉
= kT δij, (3.3.1)

where the average is taken with respect to a microcanonical ensemble.
To prove this theorem, we begin with the following ensemble average:〈

xi
∂H

∂xj

〉
=

MN

Ω(N, V, E)

∫
dx xi

∂H

∂xj
δ(E − H(x)). (3.3.2)

In eqn. (3.3.2), we have used the fact that δ(x) = δ(−x) to write the energy conserving
δ-function as δ(E −H(x)). It is convenient to express eqn. (3.3.2) in an alternate way
using the fact that the Dirac δ-function δ(x) = dθ(x)/dx, where θ(x) is the Heaviside
step function, θ(x) = 1 for x ≥ 0 and θ(x) = 0 for x < 0. Using these relations, eqn.
(3.3.2) becomes〈

xi
∂H

∂xj

〉
=

MN

Ω(N, V, E)

∂

∂E

∫
dx xi

∂H

∂xj
θ(E − H(x)). (3.3.3)

The step function restricts the phase space integral to those microstates for which
H(x) < E. Thus, eqn. (3.3.3) can be expressed equivalently as〈

xi
∂H

∂xj

〉
= =

MN

Ω(N, V, E)

∂

∂E

∫
H(x)<E

dx xi
∂H

∂xj

=
MN

Ω(N, V, E)

∂

∂E

∫
H(x)<E

dx xi
∂(H(x) − E)

∂xj
, (3.3.4)

where the last line follows from the fact that E is a constant. Recognizing that
∂xi/∂xj = δij since all phase space components are independent, we can express
the phase space derivative as

xi
∂(H(x) − E)

∂xj
=

∂

∂xj
[xi(H(x) − E)] − δij(H(x) − E). (3.3.5)

Substituting eqn. (3.3.5) into eqn. (3.3.4) gives〈
xi

∂H

∂xj

〉
=

MN

Ω(N, V, E)

× ∂

∂E

∫
H(x)<E

dx

{
∂

∂xj
[xi(H(x) − E)] + δij(E − H(x))

}
. (3.3.6)

The first integral is over a pure derivative. Hence, when the integral over xj is per-
formed, the integrand xi(H(x) − E) must be evaluated at the limits of xj which lie
on the constant energy hypersurface H(x) = E. Since H(x)−E = 0 at the limits, the
first term will vanish leaving〈

xi
∂H

∂xj

〉
=

MN

Ω(N, V, E)
δij

∂

∂E

∫
H(x)<E

dx (E − H(x)). (3.3.7)

If we now carry out the energy derivative in eqn. (3.3.7), we obtain
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〈
xi

∂H

∂xj

〉
=

MNδij

Ω(N, V, E)

∫
H(x)<E

dx

=
δij

Ω(N, V, E)
MN

∫
dx θ (E − H(x)) .

=
E0δij

Ω(N, V, E)
CN

∫
dx θ (E − H(x)) , (3.3.8)

where CN = 1/(N !h3N). The phase space integral appearing in eqn. (3.3.8) is the
partition function of an ensemble that closely resembles the microcanonical ensemble,
known as the uniform ensemble:

Σ(N, V, E) = CN

∫
dx θ (E − H(x)) . (3.3.9)

The partition function of this ensemble is related to the microcanonical partition
function by

Ω(N, V, E) = E0
∂Σ(N, V, E)

∂E
. (3.3.10)

As noted previously, the uniform ensemble requires that the phase space integral be
performed over a phase space volume for which H(x) < E, which is the volume enclosed
by the constant-energy hypersurface. While the dimensionality of the constant energy
hypersurface is 6N − 1, the volume enclosed has dimension 6N . However, in the ther-
modynamic limit, where N → ∞, the difference between the number of microstates
associated with the uniform and microcanonical ensembles becomes vanishingly small
since 6N ≈ 6N − 1 for N very large. Thus, the entropy S̃(N, V, E) = k ln Σ(N, V, E)
derived from the uniform ensemble and that derived from the microcanonical ensemble
S(N, V, E) = k ln Ω(N, V, E) become very nearly equal as the thermodynamic limit is
approached. Substituting eqn. (3.3.10) into eqn. (3.3.8) gives〈

xi
∂H

∂xj

〉
= δij

Σ(E)

∂Σ(N, V, E)/∂E

= δij

(
∂ ln Σ(E)

∂E

)−1

= kδij

(
∂S̃

∂E

)−1

≈ kδij

(
∂S

∂E

)−1

= kT δij , (3.3.11)

which proves the theorem. The virial theorem allows for the construction of microscopic
phase space functions whose ensemble averages yield macroscopic thermodynamic
observables.
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As an example of the use of the virial theorem, consider the choice xi = pi, a
momentum component, and i = j. If H =

∑
i p

2
i /2mi + U(r1, ..., rN ), then according

to the virial theorem, 〈
pi

∂H

∂pi

〉
= kT〈

p2
i

mi

〉
= kT〈

p2
i

2mi

〉
=

1

2
kT.

Thus, at equilibrium, the kinetic energy of each particle must be kT/2. By summing
both sides over all the particles, we obtain the familiar result:

3N∑
i=1

〈
p2

i

2mi

〉
=

3N∑
i=1

〈
1

2
miv

2
i

〉
=

3

2
NkT. (3.3.12)

3.4 Conditions for thermal equilibrium

Another important result that can be derived from the microcanonical ensemble and
that will be needed in the next chapter is the equilibrium state reached when two
systems are brought into thermal contact. By thermal contact, we mean that the
systems can exchange only heat. Thus, they do not exchange particles, and there is
no potential coupling between the systems. This type of interaction is illustrated in

N , V , E

H ( x )

Heat-conducting

        divider

1  1  1

1 1

N , V , E

H ( x )

2  2  2  

2 2

Fig. 3.1 Two systems in thermal contact. System 1 (left) has N1 particles in a volume V1;

system 2 (right) has N2 particles in a volume V2.

Fig. 3.1, which shows two systems (system 1 and system 2), each with fixed particle
number and volume, separated by a heat-conducting divider. If system 1 has a phase
space vector x1 and system 2 has a phase space vector x2, then the total Hamiltonian
can be written as

H(x) = H1(x1) + H2(x2). (3.4.1)

Additionally, we let system 1 have N1 particles in a volume V1 and system 2 have N2

particles in a volume V2. The total particle number N and volume V are N = N1 +N2
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and V = V1 + V2, respectively. The entropy of each system is given in terms of the
partition function for each system as

S1(N1, V1, E1) = k ln Ω1(N1, V1, E1)

S2(N2, V2, E2) = k ln Ω2(N2, V2, E2), (3.4.2)

where the partition functions are given by

Ω1(N1, V1, E1) = MN1

∫
dx1 δ(H1(x1) − E1)

Ω2(N2, V2, E2) = MN2

∫
dx2 δ(H2(x2) − E2). (3.4.3)

Of course, if we solved Hamilton’s equations for H(x) in eqn. (3.4.1), H1(x1) and
H2(x2) would be separately conserved because H(x) is separable. However, the frame-
work of the microcanonical ensemble allows us to consider the full set of microstates
for which only H(x) = H1(x1) + H2(x2) = E without H1(x1) and H2(x2) being inde-
pendently conserved. Indeed, since the systems can exchange heat, we do not expect
H1(x1) and H2(x2) to be individually conserved. The total partition function is then

Ω(N, V, E) = MN

∫
dx δ(H1(x1) + H2(x2) − E)

�= Ω1(N1, V1, E1)Ω2(N2, V2, E2). (3.4.4)

Because Ω1 and Ω2 both involve δ-functions, it can be shown that the total partition
function is given by

Ω(N, V, E) = C′
∫ E

0

dE1 Ω1(N1, V1, E1)Ω2(N2, V2, E − E1), (3.4.5)

where C′ is an overall constant independent of the energy. In order to realize eqn.
(3.4.5) by solving Hamilton’s equations, we would need to solve the equations for all
values of E1 between 0 and E with E2 = E − E1. We can imagine accomplishing

this by choosing a set of P closely spaced values for E1, E
(1)
1 , ..., E

(P )
1 and solving the

equations of motion for each of these P values. In this case, eqn. (3.4.5) would be
replaced by a Riemann sum expression:

Ω(E) = C′Δ
P∑

i=1

Ω1(E
(i)
1 )Ω2(E − E

(i)
1 ), (3.4.6)

where Δ is the small energy interval Δ = E
(i+1)
1 − E

(i)
1 . The integral is exact when

Δ → 0 and P → ∞. When the integral is written in this way, we can make use of a
powerful theorem on sums with large numbers of terms.
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Consider a sum of the form

σ =

P∑
i=1

ai, (3.4.7)

where ai > 0 for all ai. Let amax be the largest of all the ai’s. Clearly, then

amax ≤
P∑

i=1

ai

Pamax ≥
P∑

i=1

ai. (3.4.8)

Thus, we have the inequality

amax ≤ σ ≤ Pamax (3.4.9)

or
ln amax ≤ ln σ ≤ ln amax + lnP. (3.4.10)

This gives upper and lower bounds on the value of lnσ. Now suppose that ln amax >>
ln P . Then the above inequality implies that

ln σ ≈ ln amax. (3.4.11)

This would be the case, for example, if amax ∼ eP . In this case, the value of the sum
is given to a very good approximation by the value of its maximum term (McQuarrie,
2000).

Why should this theorem apply to the sum expression for Ω(N, V, E) in eqn. (3.4.6)?
In the next section, we will see, for example, that the partition function of an ideal
gas, that is, a collection of N free particles, varies as Ω ∼ [g(E)V ]N , where g(E) is
some function of the energy. Thus, we have at least motivated the idea that the terms
in the sum vary exponentially with N . But the number of terms in the sum P also
varies like N since P = E/Δ and E ∼ N , since E is extensive. Thus, the terms in the
sum under consideration obey the conditions for the application of the theorem.

Let the maximum term in the sum be characterized by energies Ē1 and Ē2 =
E − Ē1. Then, according to the above analysis,

S(N, V, E) = k ln Ω(N, V, E)

= k ln Δ + k ln
[
Ω1(N1, V1, Ē1)Ω2(N2, V2, E − Ē1)

]
+ k ln P + k ln C′. (3.4.12)

Since P = E/Δ, ln Δ+lnP = ln Δ+lnE− lnΔ = lnE. But E ∼ N , while ln Ω1 ∼ N .
Since N >> ln N , the above expression becomes, to a good approximation

S(N, V, E) ≈ k ln
[
Ω1(N1, V1, Ē1)Ω2(N2, V2, E − Ē1)

]
+ O(lnN) + const. (3.4.13)

Thus, apart from constants, the entropy is approximately additive:



Microcanonical ensemble

S(N, V, E) = k ln Ω1(N1, V1, Ē1) + k ln Ω2(N2, V2, Ē2)

= S1(N1, V1, Ē1) + S2(N2, V2, Ē2) + O(lnN) + const. (3.4.14)

Finally, in order to compute the temperature of each system, we vary the energy Ē1

by a small amount dĒ1. But since Ē1 + Ē2 = E, dĒ1 = −dĒ2. Also, this variation is
made such that the total entropy S and energy E remain constant. Thus, we obtain

0 =
∂S1

∂Ē1
+

∂S2

∂Ē1

0 =
∂S1

∂Ē1
− ∂S2

∂Ē2

0 =
1

T1
− 1

T2
, (3.4.15)

from which it is clear that T1 = T2. Thus, when two systems in thermal contact reach
equilibrium, their temperatures become equal.

3.5 The free particle and the ideal gas

Our first example of the microcanonical ensemble is a single free particle in one spatial
dimension and its extension to an ideal gas of N particles in three dimensions. The
microcanonical ensemble for a single particle in one dimension is not especially inter-
esting (it has only one degree of freedom). Nevertheless, it is instructive to go through
the pedagogical exercise in order to show how the partition function is computed so
that the subsequent calculation for the ideal gas becomes more transparent.

The particle is described by a single coordinate x, confined to a region of the real
line between x = 0 and x = L, and a single momentum p. The free particle Hamiltonian
is just

H =
p2

2m
. (3.5.1)

The phase space is two-dimensional, and the microcanonical partition function is

Ω(L, E) =
E0

h

∫ L

0

dx

∫ ∞

−∞
dp δ

(
p2

2m
− E

)
. (3.5.2)

Note that, since N = 1, Ω only depends on E and the one-dimensional “volume” L.
We see immediately that the integrand is independent of x so that the integral over x
can be done immediately, yielding

Ω(L, E) =
E0L

h

∫ ∞

−∞
dp δ

(
p2

2m
− E

)
. (3.5.3)

In order to perform the momentum integral, we start by introducing a change of
variables, y = p/

√
2m so that the integral becomes
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Ω(L, E) =
E0L

√
2m

h

∫ ∞

−∞
dy δ

(
y2 − E

)
. (3.5.4)

Then, using the properties of Dirac δ-functions in Appendix A, in particular eqn.
(A.15), we obtain

Ω(L, E) =
E0L

√
2m

h

1

2
√

E

∫ ∞

−∞
dy

[
δ(y −

√
E) + δ(y +

√
E
]
. (3.5.5)

Therefore, integrating over the δ-function using eqn. (A.2), we obtain

Ω(L, E) =
E0L

√
2m

h
√

E
. (3.5.6)

It is easily checked that eqn. (3.5.6) is a dimensionless number.
The free particle example leads naturally into a discussion of the classical ideal

gas. An ideal gas is defined to be a system of particles that do not interact. An ideal
gas of N particles is, therefore, simply a collection of N free particles. Therefore, in
order to treat an ideal gas, we need to consider N free particles in three dimensions
for which the Hamiltonian is

H =

N∑
i=1

p2
i

2m
. (3.5.7)

A primary motivation for studying the ideal gas is that all real systems approach ideal
gas behavior in the limit of low density and pressure.

In the present discussion, we shall consider an ideal gas of N classical particles in
a cubic container of volume V with a total internal energy E. The partition function
in this case is given by

Ω(N, V, E) =
E0

N !h3N

∫
dNp

∫
D(V )

dNr δ

(
N∑

i=1

p2
i

2m
− E

)
. (3.5.8)

As in the one-dimensional case, the integrand is independent of the coordinates, hence
the position-dependent part of the integral can be evaluated immediately as

∫
D(V )

dNr =

∫ L

0

dx1

∫ L

0

dy1

∫ L

0

dz1 · · ·
∫ L

0

dxN

∫ L

0

dyN

∫ L

0

dzN = L3N . (3.5.9)

Since L3 = V , L3N = V N .
For the momentum part of the integral, we change integration variables to yi =

pi/
√

2m so that the partition function becomes

Ω(N, V, E) =
E0(2m)3N/2V N

N !h3N

∫
dNy δ

(
N∑

i=1

y2
i − E

)
. (3.5.10)

Note that the condition required by the δ-function is
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N∑
i=1

y2
i = E. (3.5.11)

Eqn. (3.5.11) is the equation of a (3N −1)-dimensional spherical surface of radius
√

E.
Thus, the natural thing to do is transform into spherical coordinates; what we need,
however, is a set of spherical coordinates for a 3N -dimensional sphere. Recall that
ordinary spherical coordinates in three dimensions consist of one radial coordinate, r,
and two angular coordinates, θ and φ, with a volume element given by r2drd2ω, where
d2ω = sin θdθdφ is the solid angle element. In 3N dimensions, spherical coordinates
consist of one radial coordinate and 3N − 1 angular coordinates, θ1, ..., θ3N−1 with a
volume element dNy = r3N−1drd3N−1ω. The radial coordinate is given simply by

r2 =

N∑
i=1

y2
i . (3.5.12)

After transforming to these coordinates, the partition function becomes

Ω(N, V, E) =
E0(2m)3N/2V N

N !h3N

∫
d3N−1ω

∫ ∞

0

dr r3N−1δ
(
r2 − E

)
. (3.5.13)

Since the integrand does not depend on angles, we do not need to know the explicit
forms of the angular coordinate transformations or of d3N−1ω, only the result of per-
forming the integration. For any n, the general formula is∫

dnω =
2π(n+1)/2

Γ
(

n+1
2

) , (3.5.14)

where Γ(x) is the Gamma function defined by

Γ(x) =

∫ ∞

0

dt tx−1e−t. (3.5.15)

According to eqn. (3.5.15), for any integer n, we have

Γ(n) = (n − 1)!

Γ

(
n +

1

2

)
=

(2n − 1)!!

2n
π1/2. (3.5.16)

Finally, expanding the δ-function using eqn. (A.15), we obtain

Ω(N, V, E) =
E0(2m)3N/2V N

N !h3N

2π3N/2

Γ(3N/2)

×
∫ ∞

0

dr r3N−1 1

2
√

E

[
δ(r −

√
E) + δ(r +

√
E)

]
. (3.5.17)

Because the integration range on r is [0,∞), only the first δ-function gives a nonzero
contribution, and, by eqn. (A.13), the result of the integration is

Ω(N, V, E) =
E0(2m)3N/2V N

N !h3N

2π3N/2

Γ(3N/2)

1

2
√

E
E(3N−1)/2
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=
E0

E

1

N !

1

Γ(3N/2)

[
V

(
2πmE

h2

)3/2
]N

. (3.5.18)

The prefactor of 1/E causes the actual dependence of Ω(N, V, E) on E to be E3N/2−1.
In the thermodynamic limit, we may approximate 3N/2 − 1 ≈ 3N/2, in which case,
we may simply neglect the E0/E prefactor altogether. We may further simplify this
expression by introducing Sterling’s approximation for the factorial of a large number:

N ! ≈ e−NNN , (3.5.19)

so that the Gamma function can be written as

Γ

(
3N

2

)
=

(
3N

2
− 1

)
! ≈

(
3N

2

)
! ≈ e−3N/2

(
3N

2

)3N/2

. (3.5.20)

Substituting eqn. (3.5.20) into eqn. (3.5.18) gives the partition function expression

Ω(N, V, E) =
1

N !

[
V

h3

(
4πmE

3N

)3/2
]N

e3N/2. (3.5.21)

We have intentionally not applied Sterling’s approximation to the prefactor 1/N !
because, as was discussed earlier, this factor is appended a posteriori in order to
account for the indistinguishability of the particles not treated in the classical description.
Leaving this factor as is will allow us to assess its effects on the thermodynamics of
the ideal gas, which we will do shortly.

Let us now use the machinery of statistical mechanics to compute the temperature
of the ideal gas. From eqn. (3.2.21), we obtain

1

kT
=

(
∂ ln Ω

∂E

)
N,V

. (3.5.22)

Since Ω ∼ E3N/2, ln Ω ∼ (3N/2) lnE so that the derivative yields

1

kT
=

3N

2E
(3.5.23)

or

kT =
2E

3N
E =

3

2
NkT, (3.5.24)

which expresses a familiar relationship between temperature and internal energy from
kinetic theory. Similar, the pressure of the ideal gas is given by

P

kT
=

(
∂ ln Ω

∂V

)
N,E

. (3.5.25)

Since Ω ∼ V N , ln Ω ∼ N ln V so that the derivative yields

P

kT
=

N

V
(3.5.26)

or
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P =
NkT

V
= ρkT, (3.5.27)

where we have introduced the number density, ρ = N/V , i.e., the number of particles
per unit volume. Eqn. (3.5.27) is the familiar ideal gas equation of state or ideal gas
law (cf. eqn. (2.2.1)), which can be expressed in terms of the number of moles by
multiplying and dividing by Avogadro’s number, N0:

PV =
N

N0
N0kT = nRT. (3.5.28)

The product N0k yields the gas constant R, whose value is 8.314472 J·mol−1 · K−1.
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Fig. 3.2 (Left) Pressure vs. volume for different temperatures (isotherms of the equation of

state (2.2.1)). (Right) Pressure vs. temperature for different densities ρ = N/V .

In Fig. 3.2, a plot of P vs. 1/ρ for different values of T . The curves are known as the
isotherms of the ideal gas. From the figure, the inverse relationship between pressure
and volume can be clearly seen. Similarly, Fig. 3.2 shows a plot of P vs. kT for
different densities. The lines are the isochores of the ideal gas. Because of the absence of
interactions, the ideal gas can only exist as a gas under all thermodynamic conditions.

3.5.1 The Gibbs Paradox

According to eqn. (3.5.21), the entropy of an ideal gas is

S(N, V, E) = k ln Ω(N, V, E)

= Nk ln

[
V

h3

(
4πmE

3N

)3/2
]

+
3

2
Nk − k ln N ! (3.5.29)

or, using eqn. (3.5.24),
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S(N, V, T ) = Nk ln

[
V

h3
(2πmkT )3/2

]
+

3

2
Nk − k ln N ! (3.5.30)

Recall, however, that the 1/N ! factor in eqn. (3.5.21) was added a posteriori to correct
for overcounting the number of microstates due to the identical nature of the gas
particles. If this factor is not included, then the entropy, known as the classical entropy,
becomes

S(cl)(N, V, T ) = Nk ln

[
V

h3
(2πmkT )

3/2

]
+

3

2
Nk. (3.5.31)

Let us now work through a thought experiment that reveals the importance of the
1/N ! correction. Consider an ideal gas of N indistinguishable particles in a container
with a volume V and uniform temperature T . An impermeable partition separates the
container into two sections with volumes V1 and V2, respectively, such that V1+V2 = V .
There are are N1 particles in the volume V1, and N2 particles in the volume V2, with
N = N1 +N2 It is assumed that the number density ρ = N/V is the same throughout
the system so that N1/V1 = N2/V2. If the partition is now removed, will the total
entropy increase or remain the same? Since the particles are identical, exchanges of
particles before and after the partition is removed will yield identical microstates.
Therefore, the entropy should remain the same. We will now analyze this thought
experiment more carefully using eqns. (3.5.29) and (3.5.31) above.

From eqn. (3.5.31), the entropy expressions for each of the two sections of the
container are (apart from additive constants)

S
(cl)
1 ∼ N1k ln V1 +

3

2
N1k

S
(cl)
2 ∼ N2k ln V2 +

3

2
N2k (3.5.32)

and, since entropy is additive, the total entropy is S = S1 + S2. After the partition is
removed, the total classical entropy is

S(cl) ∼ (N1 + N2)k ln(V1 + V2) +
3

2
(N1 + N2)k. (3.5.33)

Therefore, the difference ΔS(cl) is

ΔS(cl) = (N1 + N2)k ln(V1 + V2) − N1k ln V1 − N2k ln V2

= N1k ln(V/V1) + N2k ln(V/V2) > 0, (3.5.34)

which contradicts anticipated result that ΔS = 0. Without the 1/N ! correction factor,
a paradoxical result is obtained, which is known as the Gibbs paradox.

Let us now repeat the analysis using eqn. (3.5.29). Introducing Sterling’s approx-
imation as a logarithm of eqn. (3.5.19), lnN ! ≈ N ln N − N , eqn. (3.5.29) can be
rewritten as

S = Nk ln

[
V

Nh3

(
2πm

β

)3/2
]

+
5

2
Nk, (3.5.35)
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which is known as the Sackur–Tetrode equation. Using eqn. (3.5.35), the entropy
difference ΔS becomes

ΔS = (N1 + N2)k ln

(
V1 + V2

N1 + N2

)
− N1k ln(V1/N1) − N2k ln(V2/N2)

= N1k ln(V/V1) + N2k ln(V/V2) − N1k ln(N/N1) − N2k ln(N/N2)

= N1k ln

(
V

N

N1

V1

)
+ N2k ln

(
V

N

N2

V2

)
. (3.5.36)

However, since the density ρ = N1/V1 = N2/V2 = N/V is constant, the logarithms all
vanish, which leads to the expected results ΔS = 0. A purely classical treatment of
the particles is, therefore, unable to resolve the paradox. Only by accounting for the
identical nature of the particles a posteriori or via a proper quantum treatment of the
ideal gases (see Chapter 11) can a consistent thermodynamic picture be obtained.

3.6 The harmonic oscillator and harmonic baths

The second example we will study is a single harmonic oscillator in one dimension and
its extention to a system of N oscillators in three dimensions (also known as a “har-
monic bath”). We are returning to this problem again because harmonic oscillators are
at the heart of a wide variety of important problems. They are often used to describe
intramolecular bond and bend vibrations in biological force fields, they are used to
describe ideal solids, they form the basis of normal mode analysis (see Section 1.7),
and they turn up repeatedly in quantum mechanics.

Consider first a single particle in one dimension with coordinate x and momentum
p moving in a harmonic potential

U(x) =
1

2
kx2, (3.6.1)

where k is the force constant. The Hamiltonian is given by

H =
p2

2m
+

1

2
kx2. (3.6.2)

In Section 1.3, we saw that the harmonic oscillator is an example of a bound phase
space. We shall consider that the one-dimensional “container” is larger than the maxi-
mum value of x (as determined by the energy E), so that the integration can be taken
over all space.

The partition function is

Ω(E) =
E0

h

∫ ∞

−∞
dp

∫ ∞

−∞
dx δ

(
p2

2m
+

1

2
kx2 − E

)
. (3.6.3)

In order to evaluate the integral in eqn. (3.6.3), we first introduce a change of variables

p̃ =
p√
2m

x̃ =

√
k

2
x (3.6.4)
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so that the partition function can be written as

Ω(E) =
E0

h

√
m

k

∫ ∞

−∞
dp̃

∫ ∞

−∞
dx̃ δ

(
p̃2 + x̃2 − E

)
. (3.6.5)

Recall from Section 1.3, however, that
√

k/m = ω is just the fundamental frequency
of the oscillator. The partition function then becomes

Ω(E) =
E0

hω

∫ ∞

−∞
dp̃

∫ ∞

−∞
dx̃ δ

(
p̃2 + x̃2 − E

)
. (3.6.6)

The δ-function requires that p̃2 + x̃2 = E, which defines a circle in the scaled (p̃, x̃)
phase space. Therefore, it is natural to introduce polar coordinates in the form

p̃ =
√

Iω cos θ

x̃ =
√

Iω sin θ. (3.6.7)

Here, the usual “radial” coordinate has been expressed as
√

Iω. The new coordinates
(I, θ) are known as action-angle variables. They are chosen such that the Jacobian is
simply a constant, ω, so that the partition function becomes

Ω(E) =
E0

h

∫ 2π

0

dθ

∫ ∞

0

dI δ(Iω − E). (3.6.8)

In action-angle variables, the harmonic Hamiltonian has the rather simple form H =
Iω. If one were to derive Hamilton’s equations in terms of action-angle variables, the
result would be simply, θ̇ = ∂H/∂I = ω and İ = −∂H/∂θ = 0 so that the action I is a
constant I(0) for all time, and θ = ωt+ θ(0). The constancy of the action is consistent
with energy conservation; I ∝ E. The angle then gives the oscillatory time dependence
of x and p. In eqn. (3.6.8), the angular integration can be performed directly to yield

Ω(E) =
2πE0

h

∫ ∞

0

dI δ(Iω − E). (3.6.9)

Changing the action variable to I ′ = Iω, we obtain

Ω(E) =
E0

h̄ω

∫ ∞

0

dI ′ δ(I ′ − E), (3.6.10)

where h̄ = h/2π. The integration over I ′ now proceeds using eqn. (A.2) and yields
unity, so that

Ω(E) =
E0

h̄ω
. (3.6.11)

Interestingly, Ω(E) is a constant independent of E. All one-dimensional harmonic
oscillators of frequency ω have the same number of accessible microstates! Thus, no
interesting thermodynamic properties can be derived from this partition function, and
the entropy S is simply a constant k ln(E0/h̄ω).
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Consider next a collection of N independent harmonic oscillators with different
masses and force constants, for which the Hamiltonian is

H =

N∑
i=1

[
p2

i

2mi
+

1

2
kir

2
i

]
. (3.6.12)

For this system, the microcanonical partition function is

Ω(N, E) =
E0

h3N

∫
dNp dNr δ

(
N∑

i=1

[
p2

i

2mi
+

1

2
miω

2
i r

2
i

]
− E

)
. (3.6.13)

Since the oscillators are all different, the N ! factor is not needed. Let us first introduce
scaled variables according to

yi =
pi√
2mi

ui =

√
ki

2
ri, (3.6.14)

so that the partition function becomes

Ω(N, E) =
23NE0

h3N

N∏
i=1

1

ω3
i

∫
dNy dNu δ

(
N∑

i=1

(
y2

i + u2
i

)− E

)
, (3.6.15)

where ωi =
√

ki/m is the natural frequency for each oscillator. As in the ideal gas

example, we recognize that the condition
∑N

i=1(y
2
i + u2

i ) = E defines a (6N − 1)-
dimensional spherical surface, and we may introduce 6N -dimensional spherical coor-
dinates to yield

Ω(N, E) =
8E0

h3N

N∏
i=1

1

ω3
i

∫
d6N−1ω̃

∫ ∞

0

dR R6N−1 δ
(
R2 − E

)
. (3.6.16)

Using eqn. (3.5.14) and eqn. (A.15) allows the integration to be carried out in full with
the result:

Ω(N, E) =
23NE0π

3N

Eh3N

EN

Γ(3N)

N∏
i=1

1

ω3
i

. (3.6.17)

In the thermodynamic limit, 3N − 1 ≈ 3N , and we can neglect the prefactor E0/E,
leaving

Ω(N, E) =

(
2πE

h

)3N
1

Γ(3N)

N∏
i=1

1

ω3
i

(3.6.18)

or, using Sterling’s approximation Γ(3N) ≈ (3N)! ≈ (3N)3Ne−3N ,

Ω(N, E) =

(
2πE

3Nh

)3N

e3N
N∏

i=1

1

ω3
i

. (3.6.19)

We can now calculate the temperature of the collection of oscillators via
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1

kT
=

(
∂ ln Ω(N, E)

∂E

)
N

=
3N

E
, (3.6.20)

which leads to the familiar relation E = 3NkT . Note that this result is readily evi-
dent from the virial theorem eqn. (3.3.1), which also dictates that the average of the
potential and kinetic energies each be 3NkT/2, respectively.

The harmonic bath and ideal gas systems illustrate that the microcanonical en-
semble is not a particularly convenient ensemble in which to carry out equilibrium
calculations due to the integrations that must be performed over the Dirac δ-function.
In the next three chapters, three different statistical ensembles will be considered that
employ different sets of thermodynamic control variables other than N , V , and E. It
will be shown that all statistical ensembles become equivalent in the thermodynamic
limit and, therefore, one has the freedom to choose the most convenient statistical en-
semble for a given problem (although some care is needed when applying this notion
to finite systems). The importance of the microcanonical ensemble lies not so much
in its utility for equilibrium calculations but rather in that it is the only ensemble in
which the dynamics of a system can be rigorously generated. In the remainder of this
chapter, therefore, we will begin our foray into the numerical simulation technique
known as molecular dynamics, which is a computational approach capable both of
sampling an equilibrium distribution and producing true dynamical observables.

3.7 Introduction to molecular dynamics

Calculating the partition function and associated thermodynamic and equilibrium
properties for a general many-body potential that includes nonlinear interactions
becomes an insurmountable task if only analytical techniques are employed. Unless
a system can be transformed into a more tractable form, it is very unlikely that the
integrals in eqns. (3.2.16) and (3.2.22) can be performed analytically. In this case, the
only recourses are to introduce simplifying approximations, replace a given system by
a simpler model system, or employ numerical methods. In the remainder of this chap-
ter, our discussion will focus on such a numerical approach, namely, the methodology
of molecular dynamics.

Molecular dynamics is a technique that allows a numerical “thought experiment”
to be carried out using a model that, to a limited extent, approximates a real physical
or chemical system. Such a “virtual laboratory” approach has the advantage that many
such “experiments” can be easily set up and carried out in succession by simply varying
the control parameters. Moreover, extreme conditions, such as high temperature and
pressure, can be created in a straightforward (and considerably safer) manner. The
obvious downside is that the results are only as good as the numerical model. In
addition, the results can be artificially biased if the molecular dynamics calculation
is unable to sample an adequate number of microstates over the time it is allowed to
run.

One of the earliest examples of such a numerical thought experiment was the
Fermi–Pasta–Ulam calculation (1955), in which the equations of motion for a one-
dimensional chain of nonlinear oscillators were integrated numerically in order to quan-
tify the degree of ergodicity and energy equipartitioning in the system. Later, Alder
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and Wainwright carried out the first condensed-phase molecular dynamics calculation
on a hard-sphere system (Alder and Wainwright, 1957; Alder and Wainwright, 1959),
showing that a solid–liquid phase transition exists. Following this, Rahman (1964) and
Verlet (1967) carried out the first simulations using a realistic continuous potential for
systems of 864 argon atoms. The next major milestone came when Berne and cowork-
ers (Harp and Berne, 1968; Berne et al., 1968; Harp and Berne, 1970; Berne, 1971)
carried out molecular dynamics simulations of diatomic liquids and characterized the
time dependence of molecular reorientation in these systems. Following these studies,
Stillinger and Rahman (1971, 1972, 1974) carried out the first molecular dynamics
simulations of liquid water. Soon thereafter, Karplus and coworkers reported the first
molecular dynamics calculations of proteins (McCammon et al., 1976; McCammon
et al., 1977). Explicit treatment of molecular systems was enabled by the introduction
of techniques for maintaining specific bonding patterns either by stiff intramolecular
forces (Berne and Harp, 1970a) or by imposing holonomic constraints into the simu-
lation (Ryckaert et al., 1977).

The evolution of the field of molecular dynamics has benefitted substantially by
advances in high-performance computing. The original Alder and Wainwright calcu-
lations required the use of a “supercomputer” at Lawrence Livermore National Lab-
oratory in California, namely, the UNIVAC system. Nowadays, molecular dynamics
calculations with force fields can be carried out on desktop computers. Neverthe-
less, another major milestone in molecular dynamics, the technique now known as
ab initio or first-principles molecular dynamics (Car and Parrinello, 1985), currently
requires large-scale high-performance supercomputing resources. In an ab initio molec-
ular dynamics calculation, the interatomic interactions are computed directly from the
electronic structure “on the fly” as the simulation proceeds, thereby allowing chemi-
cal bonding breaking and forming events to be treated explicitly. The computational
overhead of solving the electronic Schrödinger equation using widely employed ap-
proximation schemes is considerable, which is why such calculations demand the use
of these resources. The field of molecular dynamics is an exciting and rapidly evolving
one, and the immediate availability of free software packages capable of performing
many different types of molecular dynamics calculations has dramatically increased
the number of users of the methodology.

We begin our treatment of the subject of molecular dynamics by noting a few
important properties of the microcanonical ensemble. The microcanonical ensemble
consists of all microscopic states on the constant energy hypersurface H(x) = E.
This fact suggests an intimate connection between the microcanonical ensemble and
classical Hamiltonian mechanics. In the latter, we have seen that the equations of
motion conserve the total energy, dH/dt = 0 ⇒ H(x) = const. Imagine that we have
a system evolving according to Hamilton’s equations:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (3.7.1)

Since the equations of motion conserve the Hamiltonian H(x), a trajectory computed
via Eqs. (3.7.1) will generate microscopic configurations belonging to a microcanoni-
cal ensemble with energy E. Suppose, further that given an infinite amount of time,
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the system with energy E is able to visit all configurations on the constant energy
hypersurface. A system with this property is said to be ergodic and can be used to
generate a microcanonical ensemble. In general, dynamical systems provide a powerful
approach for generating an ensemble and its associated averages and for the basis of
the molecular dynamics methodology, which has evolved into one of the most widely
used techniques for solving statistical mechanical problems.

Given an ergodic trajectory generated by a Hamiltonian H(x), microcanonical
phase space averages can be replaced by time averages over the trajectory according
to

〈a〉 =

∫
dx a(x)δ(H(x) − E)∫

dx δ(H(x) − E)
= lim

T→∞
1

T

∫ T

0

dt a(xt) ≡ ā. (3.7.2)

In a molecular dynamics calculation, eqns. (3.7.1) are solved numerically subject to
a given set of initial conditions. Doing so requires the use of a particular numerical
integrator or solver for the equations of motion, a topic we shall take up in the next
section. An integrator generates phase space vectors at discrete times that are multiples
of a fundamental time discretization parameter, Δt, known as the time step. Starting
with the initial condition x0, phase space vectors xnΔt where n = 0, ..., M are generated
by applying the integrator or solver iteratively. The ensemble average of a property
a(x) is then related to the discretized time average by

A = 〈a〉 =
1

M

M∑
n=1

a(xnΔt). (3.7.3)

The molecular dynamics method has the particular advantage of yielding equilibrium
averages and dynamical information simultaneously. This is an aspect of molecular
dynamics that is not shared by other equilibrium methods such as Monte Carlo (see
Chapter 7). Although the present discussion of molecular dynamics will be kept rather
general, our aim, for the time being, will be to calculate equilibrium averages only. We
will not see how to use the dynamical information available from molecular dynamics
calculations until Chapter 13.

In the preceding discussion, many readers will have greeted the the assumption
of ergodicity, which seems to underly the molecular dynamics approach, with a dose
of skepticism. Indeed, this assumption is a rather strong one that clearly will not
hold for a system whose potential energy U(r) possesses high barriers—regions where
U(r) > E, leading to separatrices in the phase space. In general, it is not possible to
prove the ergodicity or lack thereof in a system with many degrees of freedom. The
ergodic hypothesis tends to break down locally rather than globally. The virial theorem
tells us that the average energy in a given mode is kT at equilibrium if the system
has been able to equipartition the energy. Instantaneously, however, the energy of a
mode fluctuates. Thus, if some particular mode has a high barrier to surmount, a very
long time will be needed for a fluctuation to occur that amasses sufficient energy in
this mode to promote barrier-crossing. Biological macromolecules such as proteins and
polypeptides exemplify this problem, as important conformations are often separated
by barriers in the space of the backbone dihedral angles or other collective variables in
the system. Many other types of systems have severe ergodicity problems that render
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them challenging to treat via numerical simulation, and one must always bear such
problems in mind when applying numerical methods such as molecular dynamics. With
such caveats in mind, we begin with a discussion of numerical integrators.

3.8 Integrating the equations of motion: Finite difference methods

3.8.1 The Verlet algorithm

There are three principal aspects to a molecular dynamics calculation: 1) the model
describing the interparticle interactions; 2) the calculation of energies and forces from
the model, which should be done accurately and efficiently; 3) the algorithm used to
integrate the equations of motion. Each of these can strongly influence the quality of
the calculation and its ability to sample a sufficient number of microstates to obtain
reliable averages. We will start by considering the problem of devising a numerical
integrator or solver for the equations of motion. Later in this chapter, we will consider
different types of models for physical systems. Technical aspects of force calculations
are provided in Appendix B.

By far the simplest way to obtain a numerical integration scheme is to use a Taylor
series. In this approach, the position of a particle at a time t+Δt is expressed in terms
of its position, velocity, and acceleration at time t according to:

ri(t + Δt) ≈ ri(t) + Δtṙi(t) +
1

2
Δt2r̈i(t), (3.8.1)

where all terms higher than second order in Δt have been dropped. Since ṙi(t) = vi(t)
and r̈i(t) = Fi(t)/mi by Newton’s second law, eqn. (3.8.1) can be written as

ri(t + Δt) ≈ ri(t) + Δtvi(t) +
Δt2

2mi
Fi(t). (3.8.2)

Note that the shorthand notation for the force Fi(t) is used in place of the full expres-
sion, Fi(r1(t), ..., rN (t)). A velocity-independent scheme can be obtained by writing a
similar expansion for ri(t − Δt):

ri(t − Δt) = ri(t) − Δtvi(t) +
Δt2

2mi
Fi(t). (3.8.3)

Adding eqns. (3.8.2) and (3.8.3), one obtains

ri(t + Δt) + ri(t − Δt) = 2ri(t) +
Δt2

mi
Fi(t) (3.8.4)

which, after rearrangement, becomes

ri(t + Δt) = 2ri(t) − ri(t − Δt) +
Δt2

mi
Fi(t). (3.8.5)

Eqn. (3.8.5) is a numerical solver known as the Verlet algorithm (Verlet, 1967). Given
a set of initial coordinates r1(0), ..., rN (0) and initial velocities v1(0), ...,vN (0), eqn.
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(3.8.2) can be used to obtain a set of coordinates, r1(Δt), ..., rN (Δt), after which eqn.
(3.8.5) can be used to generate a trajectory of arbitrary length. Note that the Verlet
algorithm only generates positions. If needed, the velocities can be constructed at any
point in the trajectory via

vi(t) =
ri(t + Δt) − ri(t − Δt)

2Δt
. (3.8.6)

3.8.2 The velocity Verlet algorithm

Although appealing in its simplicity, the Verlet algorithm does not explicitly evolve
the velocities, and this is somewhat inelegant, as phase space is composed of both
positions and velocities (or momenta). Here, we will derive a variant of the Verlet
integrator, known as the velocity Verlet algorithm (Swope et al., 1982), that explicitly
evolves positions and velocities. Consider, again, the expansion of the coordinates up
to second order in Δt:

ri(t + Δt) ≈ ri(t) + Δtvi(t) +
Δt2

2mi
Fi(t). (3.8.7)

Interestingly, we could also start from ri(t + Δt) and vi(t + Δt), compute Fi(t + Δt)
and evolve backwards in time to ri(t) according to

ri(t) = ri(t + Δt) − Δtvi(t + Δt) +
Δt2

2mi
Fi(t + Δt). (3.8.8)

Substituting eqn. (3.8.7) for ri(t + Δt) into eqn. (3.8.8) and solving for vi(t + Δt)
yields

vi(t + Δt) = vi(t) +
Δt

2mi
[Fi(t) + Fi(t + Δt)] . (3.8.9)

Thus, the velocity Verlet algorithm uses both eqns. (3.8.7) and (3.8.9) to evolve the
positions and velocities simultaneously. The Verlet and velocity Verlet algorithms sat-
isfy two properties that are crucial for the long-time stability of numerical solvers.
The first is time-reversibility, which means that if we take as initial conditions r1(t +
Δt), ..., rN (t + Δt),v1(t + Δt), ...,vN (t + Δt) and step backward in time using a time
step −Δt, we will arrive at the state r1(t), ..., rN (t),v1(t), ...,vN (t). Time-reversibility
is a fundamental symmetry of Hamilton’s equations that should be preserved by a nu-
merical integrator. The second is symplectic property of eqn. (1.6.29); we will discuss
the importance of the symplectic property for numerical stability in Section 3.13.

While there are classes of integrators that purport to be more accurate than
the simple second-order Verlet and velocity Verlet algorithms, for example predictor-
corrector methods, we note here that many of these methods are neither symplectic
nor time-reversible and, therefore, lead to significant drifts in the total energy when
used. In choosing a numerical integration method, one should always examine the
properties of the integrator and verify its suitability for a given problem.
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3.8.3 Choosing the initial conditions

At this point, it is worth saying a few words about how the initial conditions for a
molecular dynamics calculation are chosen. Indeed, setting up an initial condition can,
depending on the complexity of the system, be a nontrivial problem. For a simple
liquid, one might start with initial coordinates corresponding to the solid phase of the
substance and then simply melt the solid structure under thermodynamic conditions
appropriate to the liquid. Alternatively, one can begin with random initial coordi-
nates, restricting only the distance between particles so as to avoid strong repulsive
forces initially. For a molecular liquid, initial bond lengths and bend angles may be
dictated by holonomic constraints or may simply be chosen to be equilibrium values.
For more complex systems such as molecular crystals or biological macromolecules, it
is usually necessary to obtain initial coordinates from an experimental X-ray crystal
structure. Many such crystal structures are deposited into structure databases such
as the Cambridge Structure Database, the Inorganic Crystal Structure Database, or
the Protein Data Bank. When using experimental structures, it might be necessary to
supply missing information, such as the coordinates of hydrogen atoms that cannot
be experimentally resolved. For biological systems, it is often necessary to solvate the
macromolecule in a bath of water molecules. For this purpose, one might take coordi-
nates from a large, well-equilibrated pure water simulation, place the macromolecule
into the water bath, and then remove waters that are closer than a certain distance
(e.g. 1.8 Å) from any atom in the macromolecule, being careful to retain crystallo-
graphic waters bound within the molecule. After such a procedure, it is necessary to
re-establish equilibrium, which typically involves adjusting the energy to give a certain
temperature and the volume to give a certain pressure (Chapters 4 and 5).

Once initial coordinates are specified, it remains to set the initial velocities. This is
generally done by “sampling” the velocities from a Maxwell–Boltzmann distribution,
taking care to ensure that the sampled velocities are consistent with any constraints
imposed on the system. We will treat the problem of sampling a distribution more
generally in Chapter 7, however, here we provide a simple algorithm for obtaining an
initial set of velocities.

The Maxwell–Boltzmann distribution for the velocity v of a particle of mass m at
temperature T is

f(v) =
( m

2πkT

)1/2

e−mv2/2kT . (3.8.10)

The distribution f(v) is an example of a Gaussian probability distribution. More gen-
erally, if x is a Gaussian random variable with zero mean, its probability distribution
is

f(x) =

(
1

2πσ2

)1/2

e−x2/2σ2
, (3.8.11)

where σ is the width of the Gaussian (see Fig. 3.3). Here, f(x)dx is the probability
that a given value of the variable, x, will lie in an interval between x and x+ dx. Note
that f(x) satisfies the requirements of a probability distribution function:
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f(x) ≥ 0

∫ ∞

−∞
dx f(x) = 1. (3.8.12)

The cumulative probability that a randomly chosen value of x lies in the interval
x ∈ (−∞, X) for some upper limit X is

P (X) =

∫ X

−∞
dx f(x) =

(
1

2πσ2

)1/2 ∫ X

−∞
dx e−x2/2σ2

. (3.8.13)

Since P (X) is a number between 0 and 1, the problem of sampling f(x) consists,

x

f(x)

σ

Fig. 3.3 Gaussian distribution given in eqn. (3.8.11).

therefore, in choosing a probability ξ ∈ [0, 1] and solving the equation P (X) = ξ,
the probability that x ∈ (−∞, X ] for X . The resulting value of X is known as a
Gaussian random number. If the equation is solved for M values ξ1, ..., ξM to yield
values X1, ..., XM , then we simply set xi = Xi, and we have a sampling of f(x) (see
Chapter 7 for a more detailed discussion).

Unfortunately, we do not have a simple closed form expression for P (X) that allows
us to solve the equation P (X) = ξ easily for X . The trick we need comes from recog-
nizing that if we square eqn. (3.8.13), we obtain a probability distribution for which a
simple closed form does exist. Note that squaring the cumulative probability requires
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introduction of another variable, Y , yielding a two-dimensional Gaussian cumulative
probability

P (X, Y ) =

(
1

2πσ2

)∫ X

−∞

∫ Y

−∞
dx dy e−(x2+y2)/2σ2

. (3.8.14)

The integral in eqn. (3.8.14) can be carried out analytically by introducing polar
coordinates:

x = r cosφ y = r sinφ

X = R cosΦ Y = R sin Φ. (3.8.15)

Substituting this transformation into eqn. (3.8.14) gives

P (R, Φ) =
1

2π

∫ Φ

0

dφ
1

σ2

∫ R

0

dr r e−r2/2σ2
. (3.8.16)

These are now elementary integrals, which can be performed to yield

P (R, Φ) =

(
Φ

2π

)(
1 − e−R2/2σ2

)
. (3.8.17)

Note that eqn. (3.8.17) is in the form of a product of two independent probabilities.
One is a uniform probability that φ ≤ Φ and the other is the nonuniform radial
probability that r ≤ R. We may, therefore, set each of these equal to two different
random numbers, ξ1 and ξ2, drawn from [0, 1]:

Φ

2π
= ξ1

1 − e−R2/2σ2
= ξ2. (3.8.18)

Introducing ξ′2 = 1 − ξ2 (which is also a random number uniformly distributed on
[0, 1]) and solving for R and Φ yields

Φ = 2πξ1

R = σ
√

−2 ln ξ′2. (3.8.19)

Therefore, the values of X and Y are

X = σ
√

−2 ln ξ′2 cos 2πξ1

Y = σ
√

−2 ln ξ′2 sin 2πξ1. (3.8.20)

Thus, we obtain two Gaussian random numbers X and Y . This algorithm for gener-
ating Gaussian random numbers is known as Box–Muller sampling. By applying the
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algorithm to the Maxwell–Boltzmann distribution in eqn. (3.8.10), initial velocities
can be generated. Note, however, that if there are any constraints in the system, the
velocities must be projected back to the surface of constraint after the sampling is
complete in order to ensure that the first time derivatives of the constraint conditions
are also satisfied. Moreover, for systems in which the total force

∑N
i=1 Fi = 0, the

center-of-mass velocity

vcm =

∑N
i=1 mivi∑N

i=1 mi

, (3.8.21)

is a constant of the motion. Therefore, it is often useful to choose the initial velocities
in such a way that vcm = 0 in order to avoid an overall drift of the system in space.

Once the initial conditions are specified, all information needed to start a simulation
is available, and an algorithm such as the Verlet or velocity Verlet algorithm can be
used to integrate the equations of motion.

3.9 Systems subject to holonomic constraints

In Section 1.9, we discussed the formulation of classical mechanics for a system sub-
ject to a set of holonomic constraints, that is, constraints which depend only on the
positions of the particles and possibly time:

σk(r1, ..., rN , t) = 0 k = 1, ..., Nc. (3.9.1)

For the present discussion, we shall consider only time-independent constraints. In this
case, according to eqn. (1.9.11), the equations of motion can be expressed as

mir̈i = Fi +

Nc∑
k=1

λk∇iσk, (3.9.2)

where λk is a set of Lagrange multipliers for enforcing the constraints. Although it is
possible to obtain an exact expression for the Lagrange multipliers using Gauss’s prin-
ciple of least constraint, the numerical integration of the equations of motion obtained
by substituting the exact expression for λk into eqn. (3.9.2) would not exactly pre-
serve the constraint condition due to numerical errors, which would lead to unwanted
instabilities and artifacts in a simulation. In addition Gauss’s equations of motion are
complicated non-Hamiltonian equations that cannot be treated using simple method
such as the Verlet and velocity Verlet algorithms. These problems can be circumvented
by introducing a scheme for computing the multipliers “on the fly” in a simulation
in such a way that the constraint conditions are exactly satisfied within a particular
chosen numerical integration scheme. This is the approach we will now describe.

3.9.1 The SHAKE and RATTLE algorithms

For time-independent holonomic constraints, the Lagrangian formulation of the equa-
tions of motion, eqns. (1.9.11) and (1.9.12), in Cartesian coordinates are

d

dt

(
∂L

∂ṙi

)
− ∂L

∂ri
=

Nc∑
k=1

λkaki
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N∑
i=1

aki · ṙi = 0, (3.9.3)

where
aki = ∇iσk(r1, ..., rN ). (3.9.4)

Note that these are equivalent to

mir̈i = Fi +

Nc∑
k=1

λk∇iσk

d

dt
σk(r1, ..., rN ) = 0. (3.9.5)

The constraint problem amounts to integrating eqn. (3.9.3) subject to the conditions
that σi(r1, ..., rN ) = 0 and σ̇(r1, ..., rN ) =

∑
i ∇iσk(r1, ..., rN ) · ṙi = 0. We wish to

develop a numerical scheme in which the constraint conditions are satisfied exactly as
part of the integration algorithm.

Starting from the velocity Verlet approach, for example, we begin with the position
update, which, when holonomic constraints are imposed, reads

ri(Δt) = ri(0) + Δtvi(0) +
Δt2

2mi
Fi(0) +

Δt2

2mi

∑
k

λk∇iσk(0), (3.9.6)

where σk(0) ≡ σk(r1(0), ..., rN (0)). In order to ensure that the constraint is satisfied
exactly at time Δt, we impose the constraint condition directly on the numerically
obtained positions ri(Δt) and determine, on the fly, the multipliers needed to enforce
the constraint. Let us define

r′i = ri(0) + Δtvi(0) +
Δt2

2mi
Fi(0) (3.9.7)

so that
ri(Δt) = r′i +

∑
k

λ̃k∇iσk(0), (3.9.8)

where λ̃k = (Δt2/2)λk. Then, for each constraint condition σl(r1, ..., rN ) = 0, we
impose

σl(r1(Δt), ..., rN (Δt)) = 0, l = 1, ..., Nc. (3.9.9)

Substituting in for ri(Δt), we obtain a set of Nc nonlinear equations for the Nc un-
known multipliers λ̃1, ..., λ̃Nc :

σl

(
r′1 +

1

m1

∑
k

λ̃k∇1σk(0), ..., r′N +
1

mN

∑
k

λ̃k∇Nσk(0)

)
= 0. (3.9.10)

Unless the constraints are of a particularly simple form, eqns. (3.9.10) will need to
be solved iteratively. A simple procedure for doing this is, known as the SHAKE
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algorithm (Ryckaert et al., 1977), proceeds as follows. First, if a good initial guess

of the solution, {λ̃(1)
k }, is available (for example, the multipliers from the previous

molecular dynamics time step), then the coordinates can be updated according to

r
(1)
i = r′ +

1

mi

∑
k

λ̃
(1)
k ∇iσk(0). (3.9.11)

The exact solution for the multipliers is now written as λ̃k = λ̃
(1)
k +δλ̃

(1)
k , and ri(Δt) =

r
(1)
i + (1/mi)

∑
k δλ̃

(1)
k ∇iσk(0), so that eqn. (3.9.10) becomes

σl

(
r
(1)
1 +

1

m1

∑
k

δλ̃k∇1σk(0), ..., r
(1)
N +

1

mN

∑
k

δλ̃
(1)
k ∇Nσk(0)

)
= 0. (3.9.12)

Next, eqn. (3.9.12) is expanded to first order in a Taylor series about δλ̃
(1)
k = 0:

σl(r
(1)
1 , ..., r

(1)
N ) +

N∑
i=1

Nc∑
k=1

1

mi
∇iσl(r

(1)
1 , ..., r

(1)
N ) · ∇iσk(r1(0), ..., rN (0))δλ̃

(1)
k ≈ 0. (3.9.13)

Eqn. (3.9.13) is a matrix equation for the changes δλ̃
(1)
k in the multipliers. If the

dimensionality of this equation is not too large, then it can be inverted directly to

yield the full set of δλ̃
(1)
k simultaneously. This procedure is known as matrix-SHAKE

or M-SHAKE (Kraeutler et al., 2001). Because eqn. (3.9.12) was approximated by

linearization, however, adding the correction
∑

k δλ̃
(1)
k ∇iσk(0) to r

(1)
i does not yield

a fully converged ri(Δt). We, therefore, define r
(2)
i = r

(1)
i + (1/mi)

∑
k δλ̃

(1)
k ∇iσk(0)

and write ri(Δt) = r
(2)
i +(1/mi)

∑
k δλ̃

(2)
k ∇iσk(0) and use eqn. (3.9.13) with the “(1)”

superscript replaced by “(2)” for another iteration. The procedure is repeated until
the constraint conditions are satisfied to a given small tolerance.

If the dimensionality of eqn. (3.9.13) is high due to a large number of constraints,
then a further time-saving approximation can be made. We replace the full matrix

Alk =
∑N

i=1(1/mi)∇iσl(r
(1)
1 , ..., r

(1)
N ) · ∇iσk(r1(0), ..., rN (0))δλ̃

(1)
k by its diagonal ele-

ments only, leading to

σl(r
(1)
1 , ..., r

(1)
N ) +

N∑
i=1

1

mi
∇iσl(r

(1)
1 , ..., r

(1)
N ) · ∇iσl(r1(0), ..., rN (0))δλ̃

(1)
l ≈ 0. (3.9.14)

Eqn. (3.9.14) has a simple solution

δλ̃
(1)
l = − σl(r

(1)
1 , ..., r

(1)
N )∑N

i=1(1/mi)∇iσl(r
(1)
1 , ..., r

(1)
N ) · ∇iσl(r1(0), ..., rN (0))

. (3.9.15)

Eqn. (3.9.15) could be used, for example, to obtain δλ̃
(1)
1 followed immediately by

an update of r
(1)
1 to obtain r

(2)
1 . Given the updated position, eqn. (3.9.15) is used to
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obtain δλ̃
(1)
2 immediately followed by an update of r

(1)
2 , and so forth. After cycling

through all of the constraints in this manner, the procedure repeats again until the
full set of constraints is converged to within a given tolerance. Once the multipliers are
obtained, and the coordinates fully updated, the velocities must be updated as well
according to

vi(Δt/2) = vi(0) +
Δt

2mi
Fi(0) +

1

miΔt

∑
k

λ̃k∇iσk(0). (3.9.16)

Once the positions are fully updated, we can proceed to the next step of updating
the velocities, which requires that the condition σ̇k(r1, ..., rN ) = 0 be satisfied. Once
the new forces are obtained from the updated positions, the final velocities are written
as

vi(Δt) = vi(Δt/2) +
Δt

2mi
Fi(Δt) +

Δt

2mi

∑
k

μk∇iσk(Δt)

= v′
i +

1

mi

∑
k

μ̃k∇iσk(Δt), (3.9.17)

where μk has been used to denote the multipliers for the velocity step to indicate
that they are different from those used for the position step, and μ̃k = (Δt/2)μk. The
multipliers μk are now obtained by enforcing the condition

N∑
i=1

∇iσk(Δt) · vi(Δt) = 0 (3.9.18)

on the velocities. Substituting in for vi(Δt), we obtain a set of Nc linear equations

N∑
i=1

∇iσk(Δt) ·
(

v′
i +

1

mi

∑
l

μ̃l∇iσl(Δt)

)
= 0 (3.9.19)

for the multipliers μ̃l. These can be solved straightforwardly by matrix inversion or,
for large systems, iteratively by satisfying the condition for each constraint in turn and
then cycling through the constraints again to compute a new increment to the multi-
plier until convergence is reached as was proposed for the position update step. The
latter iterative procedure is known as the RATTLE algorithm (Andersen, 1983). Once
converged multipliers are obtained, the final velocity update is performed by substi-
tuting into eqn. (3.9.17). The SHAKE algorithm can be used in conjunction with the
Verlet and velocity Verlet algorithms while RATTLE is particular to velocity Verlet.
For other numerical solvers, constraint algorithms need to be adapted or tailored for
consistency with the particulars of the solver.

3.10 The classical time evolution operator and numerical

integrators

Thus far, we have discussed numerical integration in a somewhat simplistic way, relying
on Taylor series expansions to generate update procedures. However, because there
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are certain formal properties of Hamiltonian systems that should be preserved by
numerical integration methods, it is important to develop a formal structure that
allows numerical solvers to be generated more rigorously. The framework we seek is
based on the classical time evolution operator approach, and we will return to this
framework repeatedly throughout the book.

We begin by considering the time evolution of any function a(x) of the phase space
vector. If a(x) is evaluated along a trajectory xt, then in generalized coordinates, the
time derivative of a(xt) is given by the chain rule

da

dt
=

3N∑
α=1

[
∂a

∂qα
q̇α +

∂a

∂pα
ṗα

]
. (3.10.1)

Hamilton’s equations

q̇α =
∂H

∂pα
, ṗα = − ∂H

∂qα
(3.10.2)

are now used for the time derivatives appearing in eqn. (3.10.1), which yields

da

dt
=

3N∑
α=1

[
∂a

∂qα

∂H

∂pα
− ∂a

∂pα

∂H

∂qα

]

= {a, H}. (3.10.3)

The bracket {a,H} appearing in eqn. (3.10.3) is the Poisson bracket from eqns. (1.6.19)
and (1.6.20). Eqn. (3.10.3) indicates that the Poisson bracket between a(x) and H(x)
is a generator of the time evolution of a(xt).

The Poisson bracket allows us to introduce an operator on the phase space that
acts on any phase space function. Define an operator, iL, where i =

√−1, by

iLa = {a, H}, (3.10.4)

where L is known as the Liouville operator. Note that iL can be expressed abstractly
as iL = {..., H}, which means “take whatever function iL acts on and substitute it
for the ... in the Poisson bracket expression.” It can also be written as a differential
operator

iL =
3N∑
α=1

[
∂H

∂pα

∂

∂qα
− ∂H

∂qα

∂

∂pα

]
. (3.10.5)

The equation da/dt = iLa can be solved formally for a(xt) as

a(xt) = eiLta(x0). (3.10.6)

In eqn. (3.10.6), the derivatives appearing in eqn. (3.10.5) must be taken to act on
the initial phase space vector elements x0. The operator exp(iLt) appearing in eqn.
(3.10.6) is known as the classical propagator. With the i appearing in the definition

of iL, exp(iLt) strongly resembles the quantum propagator exp(−iĤt/h̄) in terms of

the Hamiltonian operator Ĥ, which is why the i is formally included in eqn. (3.10.4).
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Indeed, the operator L can be shown to be a Hermitian operator so that the classical
propagator exp(iLt) is a unitary operator on the phase space.

By applying eqn. (3.10.6) to the function vector function a(x) = x, we have a
formal solution to Hamilton’s equations

xt = eiLtx0. (3.10.7)

Although elegant in its compactness, eqn. (3.10.7) amounts to little more than a formal
device since we cannot evaluate the action of the operator exp(iLt) on x0 exactly. If
we could, then any and every problem in classical mechanics could be solved exactly
analytically and we would not be in the business of developing numerical methods in
the first place! What eqn. (3.10.7) does do is it provides us with a very useful starting
point for developing approximate solutions to Hamilton’s equations. As eqn. (3.10.5)
suggests, the Liouville operator can be written as a sum of two contributions

iL = iL1 + iL2, (3.10.8)

where

iL1 =
N∑

α=1

∂H

∂pα

∂

∂qα

iL2 = −
N∑

α=1

∂H

∂qα

∂

∂pα
. (3.10.9)

The operators in eqn. (3.10.9) are examples of noncommuting operators. This means
that, given any function φ(x) on the phase space,

iL1iL2φ(x) �= iL2iL1φ(x). (3.10.10)

That is, the order in which the operators are applied is important. The operator
difference iL1iL2 − iL2iL1 is an object that arises frequently both in classical and
quantum mechanics and is known as the commutator between the operators:

iL1iL2 − iL2iL1 ≡ [iL1, iL2]. (3.10.11)

If [iL1, iL2] = 0, then the operators iL1 and iL2 are said to commute.
That iL1 and iL2 do not generally commute can be seen in a simple one-dimensional

example. Consider the Hamiltonian

H =
p2

2m
+ U(x). (3.10.12)

According to eqn. (3.10.9),

iL1 =
p

m

∂

∂x
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iL2 = F (x)
∂

∂p
, (3.10.13)

where F (x) = −dU/dx. The action of iL1iL2 on a function φ(x, p) is

p

m

∂

∂x
F (x)

∂

∂p
φ(x, p) =

p

m
F (x)

∂2φ

∂p∂x
+

p

m
F ′(x)

∂φ

∂p
, (3.10.14)

whereas the action of iL2iL1 on φ(x, p) is

F (x)
∂

∂p

p

m

∂

∂x
φ(x, p) = F (x)

p

m

∂2φ

∂p∂x
+ F (x)

1

m

∂φ

∂x
, (3.10.15)

so that [iL1, iL2]φ(x, p) is

[iL1, iL2]φ(x, p) =
p

m
F ′(x)

∂φ

∂p
− F (x)

m

∂φ

∂x
. (3.10.16)

Since the function φ(x, p) is arbitrary, we can conclude that the operator

[iL1, iL2] =
p

m
F ′(x)

∂

∂p
− F (x)

m

∂

∂x
, (3.10.17)

from which it can be seen that [iL1, iL2] �= 0.
Since iL1 and iL2 generally do not commute, the classical propagator exp(iLt) =

exp[(iL1+iL2)t] cannot be separated into a simple product exp(iL1t) exp(iL2t). This is
unfortunate because in many instances, the action of the individual operators exp(iL1t)
and exp(iL2t) on the phase space vector can be evaluated exactly. Thus, it would be
useful if the propagator could be expressed in terms of these two factors. In fact, there
is a way to do this using an important theorem known as the Trotter theorem (Trotter,
1959). This theorem states that for two operators A and B for which [A, B] �= 0,

eA+B = lim
P→∞

[
eB/2P eA/P eB/2P

]P

, (3.10.18)

where P is an integer. In fact, eqn. (3.10.18) is commonly referred to as the symmetric
Trotter theorem or Strang splitting formula (Strang, 1968). The proof of the Trotter
theorem is somewhat involved and is, therefore, presented in Appendix C for interested
readers. Applying the symmetric Trotter theorem to the classical propagator yields

eiLt = e(iL1+iL2)t = lim
P→∞

[
eiL2t/2P eiL1t/P eiL2t/2P

]P

. (3.10.19)

Eqn. (3.10.19) can be expressed more suggestively by defining a time step Δt = t/P .
Introducing Δt into eqn. (3.10.19) yields

eiLt = lim
P→∞,Δt→0

[
eiL2Δt/2eiL1ΔteiL2Δt/2

]P

. (3.10.20)

Equation (3.10.20) states that we can propagate a classical system using the separate
factor exp(iL2Δt/2) and exp(iL1Δt) exactly for a finite time t in the limit that we



Microcanonical ensemble

let the number of steps we take go to infinity and the time step go to zero! Of course,
this is not practical, but if we do not take these limits, then eqn. (3.10.20) leads to a
useful approximation for classical propagation.

Note that for finite P , eqn. (3.10.20) implies an approximation to exp(iLt):

eiLt ≈
[
eiL2Δt/2eiL1ΔteiL2Δt/2

]P

+ O
(
PΔt3

)
, (3.10.21)

where the leading order error is proportional to PΔt3. Since P = t/Δt, the error
is actually proportional to Δt2. According to eqn. (3.10.21), an approximate time
propagation can be generated by performing P steps of finite length Δt using the
factorized propagator

eiLΔt ≈ eiL2Δt/2eiL1ΔteiL2Δt/2 + O
(
Δt3

)
(3.10.22)

for each step. Eqn. (3.10.22) results from taking the 1/P power of both sides of eqn.
(3.10.21). An important difference between eqns. (3.10.22) and (3.10.21) should be
noted. While the error in a single step of length Δt is proportional to Δt3, the error in
a trajectory of P steps is proportional to Δt2. This distinguishes the local error in one
step from the global error in a full trajectory of P steps. The utility of eqn. (3.10.22)
is that if the contributions iL1 and iL2 to the Liouville operator are chosen such the
action of the operators exp(iL1Δt) and exp(iL2Δt/2) can be evaluated analytically,
then eqn. (3.10.22) can be used as a numerical propagation scheme for a single time
step.

In order to see how this works, consider again the example of a single particle mov-
ing in one dimension with a Hamiltonian H = p2/2m+U(x) and the two contributions
to the overall Liouville operator given by eqn. (3.10.13). Using these operators in eqn.
(3.10.22) gives the approximate single-step propagator:

exp(iLΔt) ≈ exp

(
Δt

2
F (x)

∂

∂p

)
exp

(
Δt

p

m

∂

∂x

)
exp

(
Δt

2
F (x)

∂

∂p

)
(3.10.23)

The exact evolution specified by eqn. (3.10.7) is now replaced by the approximation
evolution of eqn. (3.10.23). Thus, starting from an initial condition (x(0), p(0)), the
approximation evolution can be expressed as(

x(Δt)
p(Δt)

)
≈ exp

(
Δt

2
F (x(0))

∂

∂p(0)

)

× exp

(
Δt

p(0)

m

∂

∂x(0)

)

× exp

(
Δt

2
F (x(0))

∂

∂p(0)

)(
x(0)
p(0)

)
. (3.10.24)

In order to make the notation less cumbersome in the proceeding analysis, we will
drop the “(0)” label and write eqn. (3.10.24) as(

x(Δt)
p(Δt)

)
≈ exp

(
Δt

2
F (x)

∂

∂p

)
exp

(
Δt

p

m

∂

∂x

)
exp

(
Δt

2
F (x)

∂

∂p

)(
x
p

)
. (3.10.25)

The “(0)” label will be replaced at the end.
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The propagation is determined by acting with each of the three operators in suc-
cession on x and p. But how do we apply exponential operators? Let us start by asking
how the operator exp(c∂/∂x), where c is independent of x, acts on an arbitrary func-
tion g(x). The action of the operator can be worked out by expanding the exponential
in a Taylor series

exp

(
c

∂

∂x

)
g(x) =

∞∑
k=0

1

k!

(
c

∂

∂x

)k

g(x)

=

∞∑
k=0

1

k!
ckg(k)(x), (3.10.26)

where g(k)(x) = dkg/dxk. The second line of eqn. (3.10.26) is just the Taylor expansion
of g(x + c) about c = 0. Thus, we have the general result

exp

(
c

∂

∂x

)
g(x) = g(x + c), (3.10.27)

which we can use to evaluate the action of the first operator in eqn. (3.10.25):

exp

(
Δt

2
F (x)

∂

∂p

)(
x
p

)
=

⎛
⎝ x

p + Δt
2 F (x)

⎞
⎠ . (3.10.28)

The second operator, which involves a derivative with respect to position acts on the
x appearing in both components of the vector appearing on the right side of eqn.
(3.10.28):

exp

(
Δt

p

m

∂

∂x

)⎛
⎝ x

p + Δt
2 F (x)

⎞
⎠ =

⎛
⎝ x + Δt p

m

p + Δt
2 F

(
x + Δt p

m

)
⎞
⎠ . (3.10.29)

In the same way, the third operator, which involves another derivative with respect to
momentum, yields:

exp

(
ΔtF (x)

∂

∂p

)⎛
⎝ x + Δt p

m

p + Δt
2 F

(
x + Δt p

m

)
⎞
⎠

=

⎛
⎝ x + Δt

m

(
p + Δt

2 F (x)
)

p + Δt
2 F (x) + Δt

2 F
[
x + Δt

m

(
p + Δt

2 F (x)
)]

⎞
⎠ . (3.10.30)

Using the fact that v = p/m, the final position, x(Δt) can be written as (replacing
the “(0)” label on the initial conditions):
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x(Δt) = x(0) + Δtv(0) +
Δt2

2m
F (x(0)). (3.10.31)

Eqn. (3.10.31) is equivalent to a second-order Taylor expansion of x(Δt) up to second
order in Δt and is also the position update part of the velocity Verlet algorithm. From
eqn. (3.10.31), the momentum update step can be written compactly (using v = p/m
and replacing the “(0)” label) as

v(Δt) = v(0) +
Δt

2m
[F (x(0)) + F (x(Δt))] , (3.10.32)

which is the velocity update part of the velocity Verlet algorithm.
The above analysis demonstrates how we can obtain the velocity Verlet algorithm

via the powerful formalism provided by the Trotter factorization scheme. Moreover,
it is now manifestly clear that the velocity Verlet algorithm constitutes a symplectic,
unitary, time-reversible propagation scheme that preserves the important symmetries
of classical mechanics (see also Problem 1.5 in Chapter 1). Since eqns. (3.10.31) and
(3.10.32) together constitute a symplectic algorithm, each term of the product implied
by eqn. (3.10.20) is symplectic. Finally, in the limit Δt → 0 and P → ∞, exact
classical mechanics is recovered, which allows us to conclude that time evolution under
Hamilton’s equations is, indeed, symplectic, as claimed in Section 1.6. While it may
seem as though we arrived at eqns. (3.10.31) and (3.10.32) using an overly complicated
formalism, the power of the Liouville operator approach will be readily apparent as
we encounter increasingly complex numerical integration problems in the upcoming
chapters.

Extending the analysis to N -particle systems in three dimensions is straightfor-
ward. For the standard Hamiltonian in Cartesian coordinates

H =
N∑

i=1

p2
i

2mi
+ U(r1, ..., rN ), (3.10.33)

the Liouville operator is given by

iL =

N∑
i=1

pi

mi
· ∂

∂ri
+

N∑
i=1

Fi · pi. (3.10.34)

If we write iL = iL1 + iL2 with iL1 and iL2 defined in a manner analogous to eqn.
(3.10.13), then it can be easily shown that the Trotter factorization of eqn. (3.10.22)
yields the velocity Verlet algorithm of eqns. (3.8.7) and (3.8.9) because all of the terms
in iL1 commute with each other, as do all of the terms in iL2. It should be noted that
if a system is subject to a set of holonomic constraints imposed via the SHAKE and
RATTLE algorithms, the symplectic and time-reversibility properties of the Trotter-
factorized integrators are lost unless the iterative solutions for the Lagrange multipliers
are iterated to full convergence.

Before concluding this section, one final point should be made. It is not necessary
to grind out explicit finite difference equations by applying the operators in a Trotter
factorization analytically. Note that the velocity Verlet algorithm can be expressed as
a three-step procedure:
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p(Δt/2) = p(0) +
Δt

2
F (x(0))

x(Δt) = x(0) +
Δt

m
p(Δt/2)

p(Δt) = p(Δt/2) +
Δt

2
F (x(Δt)). (3.10.35)

This three-step procedure can also be rewritten to resemble actual lines of computer
code

p = p + 0.5 ∗ Δt ∗ F

x = x + Δt ∗ p/m

Recalculate the force

p = p + 0.5 ∗ Δt ∗ F. (3.10.36)

The third line involves a call to some function or subroutine that updates the force
from the new positions generated in the second line. When written this way, the spe-
cific instructions are: i) perform a momentum translation; ii) follow this by a position
translation; iii) recalculate the force using the new position; iv) use the new force to
perform a momentum translation. Note, however, that these are just the steps required
by the operator factorization scheme of eqn. (3.10.23): The first operator that acts on
the phase space vector is exp[(Δt/2)F (x)∂/∂p], which produces the momentum trans-
lation; the next operator exp[Δt(p/m)∂/∂p] takes the output of the preceding step
and performs the position translation; since this step changes the positions, the force
must be recalculated; the last operator exp[(Δt/2)F (x)∂/∂p] produces the final mo-
mentum translation using the new force. The fact that instructions in computer code
can be written directly from the operator factorization scheme, bypassing the lengthy
algebra needed to derive explicit finite-difference equations, is an immensely powerful
technique that we term the direct translation method (Martyna et al., 1996). Because
direct translation is possible, we can simply let a factorization of the classical propa-
gator denote a particular integration algorithm; we will employ the direct translation
technique in many of our subsequent discussions of numerical solvers.

3.11 Multiple time-scale integration

One of the most ubiquitous aspects of complex systems in classical mechanics is the
presence of forces that generate motion with different time scales. Examples include
long biological macromolecules such as proteins as well as other types of polymers. In
fact, virtually any chemical system will span a wide range of time scales from very
fast bond and bend vibrations to global conformational changes in macromolecules or
slow diffusion/transport molecular liquids, to illustrate just a few cases. To make the
discussion more concrete, consider a simple potential energy model commonly used
for biological macromolecules:
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U(r1, ..., rN ) =
∑

bonds

1

2
Kbond(r − r0)

2 +
∑

bends

1

2
Kbend(θ − θ0)

2

+
∑
tors

6∑
n=0

An [1 + cos(Cnφ + δn)]

+
∑

i,j∈nb

{[
4εij

(
σij

rij

)12

−
(

σij

rij

)6
]

+
qiqj

rij

}
. (3.11.1)

The first term is the energy for all covalently bonded pairs, which are treated as
harmonic oscillators in the bond length r, each with their own force constant Kbond.
The second term is the bend energy of all neighboring covalent bonds, and again
the bending motion is treated as harmonic on the bend angle θ, each bend having a
force constant Kbend. The third term is the conformational energy of dihedral angles
φ, which generally involves multiple minima separated by energy barriers of various
sizes. The first three terms constitute the intramolecular energy due to bonding and
connectivity. The last term describes the so-called nonbonded (nb) interactions, which
include van der Waals forces between spheres of radius σi and σj (σij = (σi + σj)/2)
separated by a distance rij with well-depth εij , and Coulomb forces between particles
with charges qi and qj separated by a distance rij . If the molecule is in a solvent
such as water, then eqn. (3.11.1) also describes the solvent–solute and solvent–solvent
interactions as well. The forces Fi = −∂U/∂ri derived from this potential will have
large and rapidly varying components due to the intramolecular terms and smaller,
slowly varying components due to the nonbonded interactions. Moreover, the simple
functional forms of the intramolecular terms renders the fast forces computationally
inexpensive to evaluate while the slower forces, which involve sums over many pairs
of particles, will be much more time-consuming to compute. On the time scale over
which the fast forces vary naturally, the slow forces change very little. In the simple
velocity Verlet scheme, one time step Δt is employed whose magnitude is limited by
the fast forces, yet all force components must be computed at each step, including
those that change very little over a time Δt. Ideally, it would be advantageous to
develop a numerical solver capable of exploiting this separation of time scales for a
gain in computational efficiency. Such an integrator should allow the slow forces to
be recomputed less frequently than the fast forces, thereby saving the computational
overhead lost by updating the slow forces every step. The Liouville operator formalism
allows this to be done in a rigorous manner, leading to a symplectic, time-reversible
multiple time-scale solver.

We will show how the algorithm is developed using, once again, the example of a
single particle in one dimension. Suppose the particle is subject to a force, F (x), that
has two components, Ffast(x) and Fslow(x). The equations of motion are

ẋ =
p

m
ṗ = Ffast(x) + Fslow(x). (3.11.2)
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Since the system is Hamiltonian, the equation of motion can be integrated using a
symplectic solver. The Liouville operator is given by

iL =
p

m

∂

∂x
+ [Ffast(x) + Fslow(x)]

∂

∂p
(3.11.3)

and can be separated into pure kinetic and force components as was done in Sec-
tion 3.10:

iL = iL1 + iL2

iL1 =
p

m

∂

∂x

iL2 = [Ffast(x) + Fslow(x)]
∂

∂p
. (3.11.4)

Using this separation in a Trotter factorization of the propagator would lead to the
standard velocity Verlet algorithm. Consider instead separating the Liouville operator
as follows:

iL = iLfast + iLslow

iLfast =
p

m

∂

∂x
+ Ffast(x)

∂

∂p

iLslow = Fslow(x)
∂

∂p
. (3.11.5)

We now define a reference Hamiltonian system Href(x, p) = p2/2m + Ufast(x), where
Ffast(x) = −dUfast/dx. The reference system obeys the equations of motion ẋ = p/m,
ṗ = Ffast(x) and has the associated single-time-step propagator exp(iLfastΔt). The
full propagator is then factorized by applying the Trotter scheme as follows:

exp(iLΔt) = exp

(
iLslow

Δt

2

)
exp(iLfastΔt) exp

(
iLslow

Δt

2

)
. (3.11.6)

This factorization leads to the reference system propagator algorithm or RESPA for
short (Tuckerman et al., 1992). The idea behind the RESPA algorithm is that the step
Δt appearing in eqn. (3.11.6) is chosen according to the time scale of the slow forces.
There are two ways to achieve this: Either the propagator exp(iLfastΔt) is applied
exactly analytically, or exp(iLfastΔt) is further factorized with a smaller time step δt
that is appropriate for the fast motion. We will discuss these two possibilities below.

First, suppose an analytical solution for the reference system is available. As a
concrete example, consider a harmonic fast force Ffast(x) = −mω2x. Acting with the
operators directly yields an algorithm of the form
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x(Δt) = x(0) cosωΔt +
1

ω

[
p(0)

m
+

Δt

2m
Fslow(x(0))

]
sin ωΔt

p(Δt) =

[
p(0) +

Δt

2
Fslow(x(0))

]
cosωΔt − mωx(0) sin ωΔt

+
Δt

2
Fslow(x(Δt)), (3.11.7)

which can also be written as a step-wise set of instructions using the direct translation
technique:

p = p + 0.5 ∗ dt ∗ Fslow

x temp = x ∗ cos(arg) + p/(m ∗ ω) ∗ sin(arg)

p temp = p ∗ cos(arg) − m ∗ ω ∗ x ∗ sin(arg)

x = x temp

p = p temp

Recalculate slow force

p = p + 0.5 ∗ dt ∗ Fslow, (3.11.8)

where arg = ω ∗ dt. Generalizations of eqn. (3.11.8) for complex molecular systems
described by potential energy models like eqn. (3.11.1) were recently presented by
Janežič and coworkers (Janežič et al., 2005). Similar schemes can be worked out for
other analytically solvable systems.

When the reference system cannot be solved analytically, the RESPA concept can
still be applied by introducing a second time step δt = Δt/n and writing

exp(iLfastΔt) =

[
exp

(
δt

2
Ffast

∂

∂p

)
exp

(
δt

p

m

∂

∂x

)
exp

(
δt

2
Ffast

∂

∂p

)]n

. (3.11.9)

Substitution of eqn. (3.11.9) into eqn. (3.11.6) yields a purely numerical RESPA prop-
agator given by

exp(iLΔt) = exp

(
Δt

2
Fslow

∂

∂p

)

×
[
exp

(
δt

2
Ffast

∂

∂p

)
exp

(
δt

p

m

∂

∂x

)
exp

(
δt

2
Ffast

∂

∂p

)]n

× exp

(
Δt

2
Fslow

∂

∂p

)
. (3.11.10)

In eqn. (3.11.10), two time steps appear. The large time step Δt is chosen according
to the natural time scale of evolution of Fslow, while the small time step δt is chosen
according to the natural time scale of Ffast. Translating eqn. (3.11.10) into a set of
instructions yields the following pseudocode:
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p = p + 0.5 ∗ Δt ∗ Fslow

for i = 1 to n

p = p + 0.5 ∗ δt ∗ Ffast

x = x + δt ∗ p/m

Recalculate fast force

p = p + 0.5 ∗ δt ∗ Ffast

endfor

Recalculate slow force

p = p + 0.5 ∗ Δt ∗ Fslow. (3.11.11)

RESPA factorizations involving more than two time steps can be generated in the
same manner. As an illustrative example, suppose the force F (x) is composed of three
contributions, F (x) = Ffast(x)+Fintermed(x)+Fslow(x) with three different time scales.
We can introduce three time steps δt, Δt = nδt and ΔT = NΔt = nNδt and factorize
the propagator as follows:

exp(iLΔT ) = exp

(
ΔT

2
Fslow

∂

∂p

){
exp

(
Δt

2
Fintermed

∂

∂p

)
[
exp

(
δt

2
Ffast

∂

∂p

)
exp

(
δt

p

m

∂

∂x

)
exp

(
δt

2
Ffast

∂

∂p

)]n

exp

(
Δt

2
Fintermed

∂

∂p

)}m

exp

(
ΔT

2
Fslow

∂

∂p

)
. (3.11.12)

It is left as an exercise to the reader to translate eqn. (3.11.12) into a sequence of
instructions in pseudocode. As we can see, an arbitrary number of RESPA levels can
be generated for an arbitrary number force components, each with different associated
time scales.

3.12 Symplectic integration for quaternions

In Section 1.11, we showed that the rigid body equations of motion could be expressed
in terms of a quantity known as the quaternion (cf. eqns. (1.11.44) to (1.11.47)). Eqn.
(1.11.40) showed how the four-component vector q = (q1, q2, q3, q4) could be related to
the Euler angles. The rigid body equations of motion expressed in terms of quaternions
require the imposition of an addition constraint that the vector q be a unit vector:

4∑
i=1

q2
i = 1. (3.12.1)

As was noted in Section 3.10, the iterations associated with the imposition of holo-
nomic constraints affect the symplectic and time-reversibility properties of otherwise
symplectic solvers. However, the simplicity of the constraint in eqn. (3.12.1) allows the
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quaternion equations of motion to be reformulated in such a way that the constraint is
satisfied automatically by the dynamics, thereby allowing symplectic integrators to be
developed using the Liouville operator. In this section, we will present such a scheme
following the formulation of Miller et al. (2002).

Recall that the angular vector ω was defined by ω = (0, ωx, ωy, ωz), which has
one trivial component that is always defined to be zero. Thus, there seems to be an
unnatural asymmetry between the quaternion q and the angular ω. The idea of Miller,
et al. is to restore the symmetry between q and ω by introducing a fourth angular
velocity component ω1 and redefining the angular velocity according to

ω
(4) = 2ST(q)q̇ ≡ (ω1, ωx, ωy, ωz). (3.12.2)

The idea of extending phase spaces is a common trick in molecular dynamics, and
we will examine numerous examples throughout the book. This new angular velocity
component can be incorporated into the Lagrangian for one rigid body according to

L =
1

2

[
I11ω

2
1 + Ixxω2

x + Iyyω2
y + Izzω

2
z

]− U(q). (3.12.3)

Here I11 is an arbitrary moment of inertia associated with the new angular velocity
component. We will see that the choice of I11 has no influence on the dynamics.
From eqns. (3.12.2) and (3.12.3), the momentum conjugate to the quaternion and
corresponding Hamiltonian can be worked out to yield

p =
2

|q|4 S(q)D−1
ω

(4)

H =
1

8
pTS(q)D−1ST(q)p + U(q) (3.12.4)

where the matrix D is given by

D =

⎛
⎜⎝

I11 0 0 0
0 Ixx 0 0
0 0 Iyy 0
0 0 0 Izz

⎞
⎟⎠ (3.12.5)

Eqn. (3.12.4) leads to a slightly modified set of equations for the angular velocity
components. Instead of those in eqn. (1.11.44), one obtains

ω̇1 =
ω2

1

|q|2

ω̇x =
ω1ωx

|q|2 +
τx

Ixx
+

(Iyy − Izz)

Ixx
ωyωz

ω̇y =
ω1ωy

|q|2 +
τy

Iyy
+

(Izz − Ixx)

Iyy
ωzωx
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ω̇z =
ω1ωz

|q|2 +
τz

Izz
+

(Ixx − Iyy)

Izz
ωxωy. (3.12.6)

If ω1(0) = 0 and eqn. (3.12.1) is satisfied by the initial quaternion q(0), then the
new equations of motion will yield rigid body dynamics in which eqn. (3.12.1) is
satisfied implicitly, thereby eliminating the need for an explicit constraint. This is
accomplished through the extra terms in the angular velocity equations. Recall that
implicit treatment of constraints can also be achieved via Gauss’s principle of least
constraint discussed in Section 1.10, which also leads to extra terms in the equations
of motion. The difference here is that, unlike in Gauss’s equations of motion, the
extra terms here are derived directly from a Hamiltonian and, therefore, the modified
equations of motion are symplectic.

All that is needed now is an integrator for the new equations of motion. Miller et al.
showed that the Hamiltonian could be decomposed into five contributions that are par-
ticularly convenient for the development of a symplectic solver. Defining four vectors
c1, .., c4 as the columns of the matrix S(q), c1 = (q1, q2, q3, q4), c2 = (−q2, q1, q4,−q3),
c3 = (−q3,−q4, q1, q2), and c4 = (−q4, q3,−q2, q1), the Hamiltonian can be written as

H(q,p) =
4∑

k=1

hk(q,p) + U(q)

hk(q,p) =
1

8Ik
(p · ck)2 (3.12.7)

where I1 = I11, I2 = Ixx, I3 = Iyy, and I4 = Izz. Note that if ω1(0) = 0, then
h1(q,p) = 0 for all time. In terms of the Hamiltonian contributions hk(q,p), Liouville
operator contributions iLk = {..., hk} are introduced, with an additional Liouville
operator iL5 = −(∂U/∂q) · (∂/∂p), and a RESPA factorization scheme is introduced
for the propagator

eiLΔt ≈ eiL5Δt/2

×
[
eiL4δt/2eiL3δt/2eiL2δteiL3δt/2eiL4δt/2

]n

× eiL5Δt/2 (3.12.8)

Note that since h1(q,p) = 0, the operator iL1 does not appear in the integrator.
What is particularly convenient about this decomposition is that the operators

exp(iLkδt/2) for k = 2, 3, 4, can be applied analytically according to

eiLktq = q cos(ζkt) + sin(ζkt)ck

eiLktp = p cos(ζkt) + sin(ζkt)dk (3.12.9)

where
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ζk =
1

4Ik
p · ck (3.12.10)

and dk is defined analogously to ck but with the components of p replacing the
components of q. The action of exp(iL5Δt) is just a translation p ← p + (Δt/2)F,
where F = −∂U/∂q. Miller et al. present several numerical examples that exhibit the
performance of eqn. (3.12.8) on realistic systems, and the interested reader is referred
to the aforementioned paper (Miller et al., 2002) for more details.

3.13 Exactly conserved time step dependent Hamiltonians

As already noted, the velocity Verlet algorithm is an example of a symplectic algo-
rithm or symplectic map, the latter indicating that the algorithm maps the initial
phase space point x0 into xΔt without destroying the symplectic property of classi-
cal mechanics. Although numerical solvers do not exactly conserve the Hamiltonian
H(x), a symplectic solver has the important property that there exists a Hamiltonian
H̃(x, Δt) such that, along a trajectory, H̃(x, Δt) remains close to the true Hamilto-
nian and is exactly conserved by the map. By close, we mean that H̃(x, Δt) approaches
the true Hamiltonian H(x) as Δt → 0. Because the auxiliary Hamiltonian H̃(x, Δt)
is a close approximation to the true Hamiltonian, it is referred to as a “shadow”
Hamiltonian (Yoshida, 1990; Toxvaerd, 1994; Gans and Shalloway, 2000; Skeel and
Hardy, 2001). The existence of H̃(x, Δt) ensures the error in a symplectic map will be
bounded. After presenting an illustrative example of a shadow Hamiltonian, we will
indicate how to prove the existence of H̃(x, Δt).

That existence of a shadow Hamiltonian does not mean that it can be constructed
exactly for a general Hamiltonian system. In fact, the general form of the shadow
Hamiltonian is not known. Skeel and coworkers have described how approximate
shadow Hamiltonians can be constructed practically (Skeel and Hardy, 2001) and have
provided formulas for shadow Hamiltonians up to 24th order in the time step (Engle
et al., 2005). The one example for which the shadow Hamiltonian is known is, not sur-
prisingly, the harmonic oscillator. Recall that the Hamiltonian for a harmonic oscillator
of mass m and frequency ω is

H(x, p) =
p2

2m
+

1

2
mω2x2. (3.13.1)

If the equations of motion ẋ = p/m ṗ = −mω2x are integrated via the velocity Verlet
algorithm

x(Δt) = x(0) + Δt
p(0)

m
− 1

2
Δt2mω2x(0)

p(Δt) = p(0) − mω2Δt

2
[x(0) + x(Δt)] , (3.13.2)

then it can be shown that the Hamiltonian

H̃(x, p; Δt) =
p2

2m(1 − ω2Δt2/4)
+

1

2
mω2x2 (3.13.3)
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is exactly preserved by eqns. (3.13.2). Of course, the form of the shadow Hamiltonian
will depend on the particular symplectic solver used to integrate the equations of
motion. A phase space plot of H̃ vs. that of H is provided in Fig. 3.4. In this case, the
eccentricity of the ellipse increases as the time step increases. The curves in Fig. 3.4
are exaggerated for illustrative purposes. For any reasonable (small) time step, the
difference between the true phase space and that of the shadow Hamiltonian would
be almost indistinguishable. As eqn. (3.13.3) indicates, if Δt = 2/ω, H̃ becomes ill-
defined, and for Δt > 2/ω, the trajectories are no longer bounded. Thus, the existence
of H̃ can only guarantee long-time stability for small Δt.

p

x

Fig. 3.4 Phase space plot of the shadow Hamiltonian in eqn. (3.13.3) for different time steps.

The eccentricity of the ellipse increases as the time step increases.

Although it is possible to envision developing novel simulation techniques based on
a knowledge of H̃ (Izaguirre and Hampton, 2004), the mere existence of H̃ is sufficient
to guarantee that the error in a symplectic map is bounded. That is, given that we
have generated a trajectory x̃nΔt, n = 0, 1, 2, ... using a symplectic integrator, then if
we evaluate H(x̃nΔt) at each point along the trajectory, it should not drift away from
the true conserved value of H(xt) evaluated along the exact (but, generally, unknown)
trajectory xt. Note, this does not mean that the numerical and true trajectories will
follow each other. It simply means that x̃nΔt will remain on a constant energy hyper-
surface that is close to the true constant energy hypersurface. This is an important
fact in developing molecular dynamics codes. If one uses a symplectic integrator and
finds that the total energy exhibits a dramatic drift, the integrator cannot be blamed,
and one should search for other causes!

In order to understand why the shadow Hamiltonian exists, let us consider the
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Trotter factorization in eqn. (3.10.22). The factorization scheme is not an exact rep-
resentation of the propagator exp(iLΔt), however, a formally exact relation connects
the two propagators

exp

[
iL2

Δt

2

]
exp [iL1Δt] exp

[
iL2

Δt

2

]
= exp

[
Δt

(
iL +

∞∑
k=1

Δt2kCk

)]
, (3.13.4)

which is known as the Baker–Campbell–Hausdorff formula (see, for example, Yoshida,
1990). Here, the operators Ck are nested commutators of the operators iL1 and iL2.
For example, the operator C1 is

C1 = − 1

24
[iL2 + 2iL1, [iL2, iL1]] . (3.13.5)

Now, an important property of the Liouville operator for Hamiltonian systems is that
such commutators as those in eqn. (3.13.5) yield new Liouville operators that cor-
respond to Hamiltonians derived from analogous expressions involving the Poisson
bracket. Consider, for example, the simple commutator [iL1, iL2] ≡ −iL3. It is pos-
sible to show that iL3 is derived from the Hamiltonians H1(x) and H2(x), which
define iL1 and iL2, respectively, via iL3 = {..., H3}, where H3(x) = {H1(x), H2(x)}.
The proof of this is straightforward and relies on an important identity satisfied by
the Poisson bracket known as the Jacobi identity: If P (x), Q(x), and R(x) are three
functions on the phase space, then

{P, {Q, R}} + {R, {P, Q}}+ {Q, {R, P}} = 0. (3.13.6)

Note that the second and third terms are generated from the first by moving the
functions around in a cyclic manner. Thus, consider the action of [iL1, iL2] on an
arbitrary phase space function F (x). Since iL1 = {...,H1(x)} and iL2 = {...,H2(x)},
we have

[iL1, iL2]F (x) = {{F (x), H2(x)}, H1(x)} − {{F (x), H1(x)}, H2(x)}. (3.13.7)

From the Jacobi identity, it follows that

{{F (x), H2(x)}, H1(x)} =

−{{H1(x), F (x)}, H2(x)} − {{H2(x), H1(x)}, F (x)}. (3.13.8)

Substituting eqn. (3.13.8) into eqn. (3.13.7) yields, after some algebra,

[iL1, iL2]F (x) = −{F (x), {H1(x), H2(x)}} = −{F (x), H3(x)}, (3.13.9)

from which we see that iL3 = {..., H3(x)}.
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A similar analysis can be carried out for each of the terms Ck in eqn. (3.13.4).
Thus, for example, the operator C1 corresponds to a Hamiltonian H̃1(x) given by

H̃1(x) =
1

24
{H2 + 2H1, {H2, H1}}. (3.13.10)

Consequently, each operator Ck corresponds to a Hamiltonian H̃k(x), and it follows
that the operator iL +

∑∞
k=1 Δt2kCk is generated by a Hamiltonian H̃(x; Δt) of the

form

H̃(x; Δt) = H(x) +

∞∑
k=1

Δt2kH̃k(x). (3.13.11)

This Hamiltonian, which appears as a power series in Δt, is exactly conserved by the
factorized operator appearing on the left side of eqn. (3.13.4). Note that H̃(x; Δt) →
H(x) as Δt → 0. The existence of H̃(x; Δt) guarantees the long-time stability of
trajectories generated by the factorized propagator provided Δt is small enough that
H̃ and H are not that different, as the example of the harmonic oscillator above makes
clear. Thus, care must be exercised in the choice of Δt, as the radius of convergence
of eqn. (3.13.11) is generally unknown.

3.14 Illustrative examples of molecular dynamics calculations

In this section, we present a few illustrative examples of molecular dynamics calcu-
lations (in the microcanonical ensemble) employing symplectic numerical integration
algorithms. We will focus primarily on investigating the properties of the numerical
solvers, including accuracy and long-time stability, rather than on the direct calculation
of observables (we will begin discussing observables in the next chapter). Throughout
the section, energy conservation will be measured via the quantity

ΔE(δt, Δt, ΔT, ...) =
1

Nstep

Nstep∑
k=1

∣∣∣∣Ek(δt, Δt, ΔT, ...) − E(0)

E(0)

∣∣∣∣ , (3.14.1)

where the quantity, ΔE(δt, Δt, ΔT, ...) depends on however many time steps are em-
ployed, Nstep is the total number of complete time steps taken (defined as on appli-
cation of the factorized total classical propagator); Ek(δt, Δt, ΔT, ...) is the energy
obtained at the kth step, and E(0) is the initial energy. Equation (3.14.1) measures
the average absolute relative deviation of the energy from its initial value (which
determines the energy of the ensemble). Thus, it is a stringent measure of energy
conservation that is sensitive to drifts in the total energy over time.

3.14.1 The harmonic oscillator

The phase space of a harmonic oscillator with frequency ω and mass m was shown
in Fig. 1.3. Fig. 3.5(left) shows the comparison between the numerical solution of
the equations of motion ẋ = p/m, ṗ = −mω2x using the velocity Verlet algorithm
analytical solutions. Here, we choose ω = 1, m = 1, Δt = 0.01, x(0) = 0, and
p(0) = 1. The figure shows that, over the few oscillation periods shown, the numerical
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trajectory follows the analytical trajectory nearly perfectly. However, if the difference
|xnum(t) − xanalyt(t)| between the numerical and analytical solutions for the position
is plotted over many periods, it can be seen that the solutions eventually diverge
over time (Fig. 3.5 (middle)) (the error cannot grow indefinitely since the motion is
bounded). Nevertheless, the numerical trajectory conserves energy to within approx-
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Fig. 3.5 (Left) Numerical (solid line) and analytical (dashed line) solutions for a harmonic

oscillator of unit mass and frequency ω = 2. The solutions are shown for 0 ≤ t/T ≤ 4, where T

is the period, and for 32542 ≤ t/T ≤ 32546. (Middle) Deviation Δ(t) ≡ |xnum(t)−xanalyt(t)|.
(Right) Energy conservation measure over time as defined by eqn. (3.14.1)

imately 10−5 as measured by eqn. (3.14.1), and shown in Fig. 3.5(right). It is also
instructive to consider the time step dependence of ΔE depicted in Fig. 3.6. The fig-
ure shows log(ΔE) vs. Δt and demonstrates that the time step dependence is a line
with slope 2. This result confirms the fact that global error in a long trajectory is Δt2

as expected. Note that if a fourth-order integration scheme had been employed, then
a similar plot would be expected to yield a line of slope 4.

Next, suppose we express the harmonic force F (x) = −mω2x as

F (x) = −λmω2x − (1 − λ)mω2x = Fλ(x) + F1−λ(x). (3.14.2)

It is clear that if λ is chosen very close to 1, then Fλ(x) will generate motion on a time
scale much faster than F1−λ(x). Thus, we have a simple example of a multiple time-
scale problem to which the RESPA algorithm can be applied with Ffast(x) = Fλ(x)
and Fslow(x) = F1−λ(x). Note that this examples only serves to illustrate the use of the
RESPA method; it is not recommended to separate harmonic forces in this manner!
For the choice λ = 0.9, Fig. 3.6 shows how the energy conservation for fixed δt varies
as Δt is increased. For comparison, the pure velocity Verlet result is also shown.
Fig. 3.6 demonstrates that the RESPA method yields a second order integrator with
significantly better energy conservation than the single time step case. A similar plot
for λ = 0.99 is also shown in Fig. 3.6. These examples illustrate the fact that the
RESPA method becomes more effective as the separation in time scales increases.

3.14.2 The Lennard–Jones fluid

We next consider a system of N identical particles interacting via a pair-wise additive
potential of the form
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Fig. 3.6 Logarithm of the energy conservation measure in eqn. (3.14.1) vs. logarithm of the

time step for a harmonic oscillator with m = 1, ω = 2 using the velocity Verlet algorithm

(solid line), RESPA with λ = 0.9, and a fixed small time step of δt = 10−4 and variable large

time step (dashed line), and RESPA with λ = 0.99 and the same fixed small time step.

U(r1, ..., rN ) =

N∑
i=1

N∑
j=i+1

4ε

[(
σ

|ri − rj |
)12

−
(

σ

|ri − rj |
)6

]
. (3.14.3)

This potential is often used to describe the Van der Waals forces between simple rare-
gas atom systems as well as in more complex systems. The numerical integration of
Hamilton’s equations ṙi = pi/m, ṗi = −∇iU requires both the specification of initial
conditions, which was discussed in Section 3.8.3, as well as boundary conditions on the
simulation cell. In this case, periodic boundary conditions are employed as a means of
reducing the influence of the walls of the box. When periodic boundary conditions are
employed, a particle that leaves the box through a particular face reenters the system
at the same point of the face directly opposite. Handling periodic boundary conditions
within the force calculation is described in Appendix B. Numerical calculations in
periodic boxes rarely make use of the Lennard–Jones potential in the form given in eqn.
(3.14.3) but rather exploit the short-range nature of the function u(r) = 4ε[(σ/r)12 −
(σ/r)6] by introducing a truncated interaction

ũ(r) = u(r)S(r) (3.14.4)

where S(r) is a switching function that smoothly truncates the Lennard–Jones poten-
tial to 0 at a value r = rc, where rc is typically chosen to be between 2.5σ and 3.0σ.
A useful choice for S(r) is
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S(r) =

⎧⎨
⎩

1 r < rc − λ
1 + R2(2R − 3) rc − λ < r ≤ rc

0 r > rc

(3.14.5)

(Watanabe and Reinhardt, 1990), where R = [r − (rc − λ)]/λ. The parameter λ is
called the healing length of the switching function. This switching function has two
continuous derivatives, thus ensuring that the forces, which require ũ′(r) = u′(r)S(r)+
u(r)S′(r), are continuous.

It is important to note several crucial differences between a simple system such
as the harmonic oscillator and a highly complex system such as the Lennard–Jones
(LJ) fluid. First, the LJ fluid is an example of a system that is highly chaotic. A
key characteristic of a chaotic system is known as sensitive dependence on initial
conditions. That is, two trajectories in phase space with only a minute difference
in their initial conditions will diverge exponentially in time. In order to illustrate this
fact, consider two trajectories for the Lennard–Jones potential whose initial conditions
differ in just a single particle. In one of the trajectories, the initial position of a
randomly chosen particle is different from that in the other by only 10−10%. In this
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Fig. 3.7 (Left) The y coordinate for particle 1 as a function of time for two identical

Lennard–Jones systems whose initial conditions differ by only 10−10% in the position of

a single particle. (Right) The energy conservation as measured by eqn. (3.14.1) for one of the

two systems. The light grey background shows the instantaneous fluctuations of the summand

in eqn. (3.14.1).

simulation, the Lennard–Jones parameters corresponding to fluid argon (ε = 119.8
Kelvin, σ = 3.405 Å, m = 39.948 a.u.). Each system contains N = 864 particles
in a cubic box of volume V = 42811.0867 Å3, corresponding to a density of 1.34
g/cm3. The equations of motion are integrated with a time step of 5.0 fs using a cutoff
of rc = 2.5σ. The value of the total Hamiltonian is approximately 0.65 Hartrees or
7.5×10−4 Hartrees/atom. The average temperature over each run is approximately
227 K. The thermodynamic parameters such as temperature and density, as well as
the time step, can also be expressed in terms of the so-called Lennard–Jones reduced
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units, in which combinations of m, σ, and ε are multiplied by quantities such as number
density (ρ = N/V ), temperature and time step to yield dimensionless versions of these.
Thus, the reduced density, denoted ρ∗, is given in terms of ρ by ρ∗ = ρσ3. The reduced
temperature, T ∗, is T ∗ = T/ε, and the reduced time step Δt∗ = Δt

√
ε/mσ2. For the

fluid argon parameters above, we find ρ = 0.02Å−3 and ρ∗ = 0.8, T ∗ = 1.9, and
Δt∗ = 2.3 × 10−3.

Fig. 3.7 shows the y position of this particle (particle 1 in this case) in both
trajectories as functions of time when integrated numerically using the velocity Verlet
algorithm. Note that the trajectories follow each other closely for an initial period
but then begin to diverge. Soon, the trajectories do not resemble each other at all.
The implication of this exercise is that a single dynamical trajectory conveys very
little information because a slight change in initial conditions changes the trajectory
completely. In the spirit of the ensemble concept, dynamical observables do not rely
on single trajectories. Rather, as we will explore further in Chapter 13, observables
require averaging over an ensemble of trajectories each with different initial conditions.
Thus, no single initial condition can be given special significance. Despite the sensitive
dependence on initial conditions of the LJ fluid, Fig. 3.7 shows that the energy is well
conserved over a single trajectory. The average value of the energy conservation based
on eqn. (3.14.1), which is around 10−4, is typical in molecular dynamics simulations.

3.14.3 A realistic example: The alanine dipeptide in water

As a realistic example of a molecular dynamics calculation, we consider the alanine
dipeptide in water. An isolated alanine dipeptide is depicted in Fig. 3.8. The solvated

Fig. 3.8 (Top) Ball-and-stick model of the isolated alanine dipeptide. (Bottom) Schematic

representation of the alanine dipeptide, showing the angles φ and ψ.

alanine dipeptide is one of the most studied simple peptide systems, both theoretically
and experimentally, as it provides important clues about the conformational variability
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and thermodynamics of more complex polypeptides and biological macromolecules. At
the same time, the system is simple enough that its conformational equilibria can be
mapped out in great detail, which is important for benchmarking new models for the
interactions. Fig. 1.11 shows a schematic of the alanine dipeptide, which has been
capped at both ends by methyl groups. In the present simulation, a force field of
the type given in eqn. (3.11.1) is employed with the parameters corresponding to
the CHARMM22 model (MacKerell et al., 1998). In addition, water is treated as
a completely rigid molecule, which requires three internal distance constraints (see
Problem 3.3). The three constraints in each molecule are treated with the explicit
matrix version of the constraint algorithms described in Section 3.9.

In this simulation, the dipeptide is solvated in a cubic box of length 25.64 Å on a
side containing 558 water molecules for a total of 1696 atoms. A simulation of 1.5 ns
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Fig. 3.9 (Left) Instantaneous and cumulative energy conservations measures for the alanine

dipeptide in water. (Right) Instantaneous and cumulative temperature.

is run using the RESPA integrator of Section 3.11 with a small time step of 1.0 fs and
a large time step of 6.0 fs. The reference system includes all intramolecular bonding
and bending forces of the solute. Fig. 3.9 shows energy conservation of eqn. (3.14.1)
and its instantaneous fluctuations as well as the cumulative average and instantaneous
temperature fluctuations produced by the total kinetic energy divided by (3/2)Nk. It
can be seen that the temperature exhibits regular fluctuations, leading to a well defined
thermodynamic temperature of 300 K. The figure also shows that the energy is well
conserved over this run. The CPU time needed for one step of molecular dynamics
using the RESPA integrator is nearly the same as the time that would be required
for a single time step method such as velocity Verlet with a 1.0 fs time step because
of the low computational overhead of the bonding and bending forces compared to
that of a full force calculation. Hence, the gain in efficiency using the RESPA solver
is very close to a factor of 6. In order to examine the conformational changes taking
place in the dipeptide over the run, we plot the dihedral angles φ and ψ in Fig. 3.10
as functions of time. Different values of these angles correspond to different stable
conformations of the alanine dipeptide. We see from the figure that the motion of these
angles is characterized by local fluctuations about about these stable conformations
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Fig. 3.10 Trajectories of the angles φ (left) and ψ (right) over a 1.5 ns run of the alanine

dipeptide in water.

with occasional abrupt transitions to a different stable conformation. The fact that
such transitions are rare indicates that the full conformational space is not adequately
sampled on the 1.5 ns time scale of the run. The problem of enhancing conformational
sampling in molecular dynamics will be treated in greater detail in Chapter 8.

3.15 Problems

3.1. Consider the standard Hamiltonian for a system of N identical particles

H =
∑
i=1

p2
i

2m
+ U(r1, ..., rN )

a. Show that the microcanonical partition function can be expressed in the
form

Ω(N, V, E) = MN

∫
dE′

∫
dNp δ

(∑
i=1

p2
i

2m
− E′

)

×
∫

D(V )

dNr δ (U(r1, ..., rN ) − E + E′)

which provides a way to separate the kinetic and potential contributions
to the partition function.

b. Based on the result of part (a), show that the partition function can,
therefore, be expressed as

Ω(N, V, E) =
E0

N !Γ
(

3N
2

)
[(

2πm

h2

)3/2
]N
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×
∫

D(V )

dNr [E − U(r1, ..., rN )]
3N/2−1

θ (E − U(r1, ..., rN ))

where θ(x) is the Heaviside step function.

∗3.2. Figure 1.7 illustrates the harmonic polymer model introduced in Section 1.7.
If we take the equilibrium bond lengths all to be zero, then the potential
energy takes the simple form

U(r1, ..., rN ) =
1

2
mω2

N∑
k=0

(rk − rk+1)
2

where m is the mass of each particle, ω is the frequency of the harmonic cou-
plings. Let r and r′ be the positions of the endpoints, with the definition that
r0 ≡ r and rN+1 ≡ r′. Consider making the following change of coordinates:

rk = uk +
k

k + 1
rk+1 +

1

k + 1
r, k = 1, ..., N

Using this change of coordinates, calculate the microcanonical partition func-
tion Ω(N, V, E) for this system. Assume the polymer to be in a cubic box of
volume V .

Hint: Note that the transformation is defined recursively. How should you
start the recursion? It might help to investigate how it works for a small
number of particles, e.g. 2 or 3.

3.3. A water molecule H2O is subject to an external potential. Let the positions
of the three atoms be denoted rO, rH1 , rH2 , so that the forces on the three
atoms can be denoted FO, FH1 , and FH2 . Consider treating the molecule
as completely rigid, with internal bond lengths dOH and dHH, so that the
constraints are:

|rO − rH1 |2 − d2
OH = 0

|rO − rH2 |2 − d2
OH = 0

|rH1 − rH2 |2 − d2
HH = 0

a. Derive the constrained equations of motion for the three atoms in the
molecule in terms of undetermined Lagrange multipliers.

b. Assume that the equations of motion are integrated numerically using the
velocity Verlet algorithm. Derive a 3×3 matrix equation that can be used
to solve for the multipliers in the SHAKE step.

c. Devise an iterative procedure for solving your matrix equation based on
a linearization of the equation.

d. Derive a 3×3 matrix equation that can be used to solve for the multipliers
in RATTLE step. Show that this equation can be solved analytically
without iteration.
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3.4. A one-dimensional harmonic oscillator of mass m and frequency ω is described
by the Hamiltonian

H =
p2

2m
+

1

2
mω2x2.

For the phase space function a(x, p) = p2, prove that the microcanonical
ensemble average 〈a〉 and the time average

ā =
1

T

∫ T

0

dt a(x(t), p(t))

are equal. Here, T = 2π/ω is one period of the motion.

3.5. Consider a single particle moving in one dimension with a Hamiltonian of the
form H = p2/2m + U(x), and consider factorizing the propagator exp(iLΔt)
according to the following Trotter scheme:

exp(iLΔt) ≈ exp(

(
Δt

2

p

m

∂

∂x

)
exp

(
ΔtF (x)

∂

∂p

)
exp(

(
Δt

2

p

m

∂

∂x

)

a. Derive the finite-difference equations determining x(Δt) and p(Δt) for
this factorization. This algorithm is known as the position Verlet algo-
rithm (Tuckerman et al., 1992).

b. From the matrix of partial derivatives

J =

⎛
⎝ ∂x(Δt)

∂x(0)
∂x(Δt)
∂p(0)

∂p(Δt)
∂x(0)

∂p(Δt)
∂p(0)

⎞
⎠

show that the algorithm is measure-preserving and symplectic.
c. If U(x) = −mω2x2/2, find the exactly conserved Hamiltonian.

Hint: Assume the exactly conserved Hamiltonian takes the form

H̃(x, p; Δt) = a(Δt)p2 + b(Δt)x2

and determine a specific choice for the unknown coefficients a and b.
d. Write a program that implements this algorithm and verify that it exactly

conserves your Hamiltonian for part c and that the true Hamiltonian
remains stable for a suitably chosen small time step.

3.6. A single particle moving in one dimension is subject to a potential of the form

U(x) =
1

2
m

(
ω2 + Ω2

)
x2

where Ω 
 ω. The forces associated with this potential have two time scales,
Ffast = −mω2x and Fslow = −mΩ2x. Consider integrating this system for
one time step Δt using the propagator factorization scheme in eqn. (3.11.6),
where iLfast is the full Liouville operator for the fast oscillator.
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a. The action of the operator exp(iLfastΔt) on the phase space vector (x, p)
can be evaluated analytically as in eqn. (3.11.8). Using this fact, show
that the phase space evolution can be written in the form(

x(Δt)
p(Δt)

)
= A(ω, Ω, Δt)

(
x(0)
p(0)

)

where A(ω, Ω, Δt) is a 2×2 matrix. Derive the explicit form of this matrix.
b. Show that det(A) = 1.
c. Show that, depending on Δt, the eigenvalues of A are either complex

conjugate pairs such that −2 < Tr(A) < 2, or both real, such that
|Tr(A)| ≥ 2.

d. Discuss the numerical implication of the choice Δt = π/ω.

3.7. A single particle moving in one dimension is subject to a potential of the form

U(x) =
1

2
mω2x2 +

g

4
x4

Choosing m = 1, ω = 1, g = 0.1, x(0) = 0, p(0) = 1, write a program that
implements the RESPA algorithm for this problem. If the small time step δt
is chosen to be 0.01, how large can the big time step Δt be chosen for accurate
integration? Compare the RESPA trajectory to a single time step trajectory
using a very small time step. Use your program to verify that the RESPA
algorithm is globally second order.

3.8. Use the direct translation technique to produce a pseudocode for the algo-
rithm in eqn. (3.11.12).

3.9. Use the Legendre transform to determine the energy that results by trans-
forming from volume V to pressure P in the microcanonical ensemble. What
thermodynamic function does this energy represent?
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The canonical ensemble

4.1 Introduction: A different set of experimental conditions

The microcanonical ensemble is composed of a collection of systems isolated from
any surroundings. Each system in the ensemble is characterized by fixed values of the
particle number N , volume V , and total energy E. Moreover, since all members of the
ensemble have the same underlying Hamiltonian H(x), the phase space distribution of
the system is uniform over the constant energy hypersurface H(x) = E and zero off the
hypersurface. Therefore, the entire ensemble can be generated by a dynamical system
evolving according to Hamilton’s equations of motion q̇i = ∂H/∂pi and ṗi = −∂H/∂qi,
under the assumption that the dynamical system is ergodic, i.e., that in an infinite
time, it visits all points on the constant energy hypersurface. Under this assumption, a
molecular dynamics calculation can be used to generate a microcanonical distribution.

The main disadvantage of the microcanonical ensemble is that conditions of con-
stant total energy are not those under which experiments are performed. It is, there-
fore, important to develop ensembles that have different sets of thermodynamic control
variables in order to reflect more common experimental setups. The canonical ensem-
ble is an example. Its thermodynamic control variables are constant particle number
N , constant volume V , and constant temperature T , which characterize a system in
thermal contact with an infinite heat source. Although experiments are more com-
monly performed at conditions of constant pressure P , rather than constant volume,
or constant chemical potential μ, rather than constant particle number, the canoni-
cal ensemble nevertheless forms the basis for the NPT (isothermal-isobaric) and μV T
(grand canonical) ensembles, which will be discussed in subsequent two chapters. More-
over, for large systems, the canonical distribution is often a good approximation to the
isothermal-isobaric and grand canonical distributions, and when this is true, results
from the canonical ensemble will not deviate much from results of the other ensembles.

In this chapter, we will formulate the basic thermodynamics of the canonical en-
semble. Recall that thermodynamics always divides the universe into a system and
its surroundings. When a system is in thermal contact with an infinite external heat
source, its energy will fluctuate in such a way that its temperature remains fixed,
leading to the conditions of the canonical ensemble. This thermodynamic paradigm
will be used in a microcanonical formulation of the universe (system + surroundings)
to derive the partition function and phase space distribution of the system under
these conditions. It will be shown that the Hamiltonian, H(x), of the system, which
is not conserved, obeys a Boltzmann distribution, exp[−βH(x)]. Once the underlying
statistical mechanics are laid out, a number of examples will be worked out employ-
ing the canonical ensemble. In addition, we will examine how physical observables of
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experimental interest are obtained in this ensemble, including both thermodynamic
and structural properties of real system. Finally, we will show how molecular dynamics
methods capable of generating a sampling of the canonical distribution can be devised.

4.2 Thermodynamics of the canonical ensemble

The Legendre transformation technique introduced in Section 1.5 is the method by
which thermodynamic potentials are transformed between ensembles. Recall that in
the microcanonical ensemble, the control variables are particle number N , volume V ,
and total energy E. The state function that depends on these is the entropy S(N, V, E),
and the thermodynamic variables obtained from the partial derivatives of the entropy
are:

1

T
=

(
∂S

∂E

)
N,V

,
P

T
=

(
∂S

∂V

)
N,E

,
μ

T
=

(
∂S

∂N

)
V,E

. (4.2.1)

Note that the entropy S = S(N, V, E) can also be inverted to give E as a function,
E(N, V, S). In terms of E, the above thermodynamic relations become

T =

(
∂E

∂S

)
N,V

, P = −
(

∂E

∂V

)
N,S

, μ =

(
∂E

∂N

)
V,S

. (4.2.2)

For transforming from the microcanonical to the canonical ensemble, eqn. (4.2.2) is
preferable, as it gives the temperature directly, rather than 1/T . Thus, we seek to
transform the function E(N, V, S) from a function of N , V , and S to a function of
N , V , and T . Since T = ∂E/∂S, the Legendre transform method can be applied.
According to eqn. (1.5.5), the new function, which we will denote as A(N, V, T ), is
given by

A(N, V, T ) = E(N, V, S(N, V, T )) − ∂E

∂S
S(N, V, T )

= E(N, V, S(T )) − TS(N, V, T ). (4.2.3)

The function A(N, V, T ) is a new state function known as the Helmholtz free energy.
Physically, when a thermodynamic transformation of a system from state 1 to state
2 is carried out on a system along a reversible path, then the work needed to effect
this transformation is equal to the change in the Helmholtz free energy ΔA. From
eqn. (4.2.3), it is clear that A has both energetic and entropic terms, and the delicate
balance between these two contributions can sometimes have a sizeable effect on the
free energy. Free energy is a particularly useful concept as it determines whether a
process is thermodynamically favorable, indicated by a decrease in free energy, or
unfavorable, indicated by an increase in free energy. It is important to note that
although thermodynamics can determine if a process is favorable, it has nothing to
say about the time scale on which the process occurs.
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A process in which N , V , and T change by small amounts dN , dV , and dT leads
to a change dA in the Helmholtz free energy of

dA =

(
∂A

∂N

)
V,T

dN +

(
∂A

∂V

)
N,T

dV +

(
∂A

∂T

)
N,V

dT (4.2.4)

via the chain rule. However, since A = E −TS, the change in A can also be expressed
as

dA = dE − SdT − TdS

= TdS − PdV + μdN − SdT − TdS

= −PdV + μdN − SdT, (4.2.5)

where the second line follows from the first law of thermodynamics. By comparing the
last line of eqn. (4.2.5) with eqn. (4.2.4), we see that the thermodynamic variables
obtained from the partial derivatives of A are:

μ =

(
∂A

∂N

)
V,T

, P = −
(

∂A

∂V

)
N,T

, S = −
(

∂A

∂T

)
N,V

. (4.2.6)

These relations define the basic thermodynamics of the canonical ensemble. We must
now establish the link between these thermodynamic relations and the microscopic
description of the system in terms of its Hamiltonian H(x).

4.3 The canonical phase space distribution and partition function

In the canonical ensemble, we assume that a system can only exchange heat with its
surroundings. As was done in Section 3.2, we consider two systems in thermal contact.
We denote the physical system as “System 1” and the surroundings as “System 2” (see
Fig. 4.1). System 1 is assumed to contain N1 particles in a volume V1, while system
2 contains N2 particles in a volume V2. In addition, system 1 has an energy E1, and
system 2 has an energy E2, such that the total energy E = E1+E2. System 2 is taken to
be much larger than system 1 so that N2 � N1, V2 � V1, E2 � E1. System 2 is often
referred to as a thermal reservoir, which can exchange energy with system 1 without
changing its energy appreciably. The thermodynamic “universe”, composed of system 1
+ system 2, is treated within the microcanonical ensemble. Thus, the total Hamiltonian
H(x) of the universe is expressed as a sum of contributions, H1(x1)+H2(x2) of system
1 and system 2, where x1 is the phase space vector of system 1, and x2 is the phase
space vector of system 2.

As was argued in Section 3.4 of the previous chapter, if we simply solved Hamilton’s
equations for the total Hamiltonian H(x) = H1(x1) + H2(x2), H1(x1) and H2(x2)
would be separately conserved because the Hamiltonian is separable. However, the
microcanonical distribution, which is proportional to δ(H(x)−E) allows us to consider
all possible energies E1 and E2 for which E1 + E2 = E without explicitly requiring
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N  , V  , E
2 2 2

H ( x )2 2

N  , V  , E1 1 1

H ( x )
1 1

Fig. 4.1 A system (system 1) in contact with a thermal reservoir (system 2). System 1 has

N1 particles in a volume V1; system 2 has N2 particles in a volume V2.

a potential coupling between the two systems. Since the two systems can exchange
energy, we do not expect H(x1) and H(x2) to be separately conserved.

The microcanonical partition function of this thermodynamic universe is

Ω(N, V, E) = MN

∫
dx δ(H(x) − E)

= MN

∫
dx1 dx2 δ (H1(x1) + H2(x2) − E) . (4.3.1)

The corresponding phase space distribution function f(x1) is obtained by integrating
only over the phase space variables of system 2, yielding

f(x1) =

∫
dx2 δ (H1(x1) + H2(x2) − E) , (4.3.2)

which is unnormalized. Because thermodynamic quantities are obtained from deriva-
tives of the logarithm of the partition function, it is preferable to work with the
logarithm of the distribution:

ln f(x1) = ln

∫
dx2 δ (H1(x1) + H2(x2) − E) . (4.3.3)

We now exploit the fact that system 1 is small compared to system 2. Since E2 � E1,
it follows that H2(x2) � H1(x1). Thus, we expand eqn. (4.3.3) about H(x1) = 0 at an
arbitrary phase space point x1. Carrying out the expansion to first order in H1 gives
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ln f(x1) ≈ ln

∫
dx2 δ (H2(x2) − E)

+
∂

∂H(x1)
ln

∫
dx2 δ (H1(x1) + H2(x2) − E)

∣∣∣∣
H1(x1)=0

H1(x1). (4.3.4)

Since the δ-function requires H1(x1) + H2(x1) − E = 0, we may differentiate with
respect to E instead, using the fact that

∂

∂H1(x1)
δ(H1(x1) − E) = − ∂

∂E
δ(H1(x1) − E). (4.3.5)

Then, eqn. (4.3.4) becomes

ln f(x1) ≈ ln

∫
dx2 δ (H2(x2) − E)

− ∂

∂E
ln

∫
dx2 δ (H1(x1) + H2(x2) − E)

∣∣∣∣
H1(x1)=0

H1(x1). (4.3.6)

Now, H1(x1) can be set to 0 in the second term of eqn. (4.3.6) yielding

ln f(x1) ≈ ln

∫
dx2 δ (H2(x2) − E) − ∂

∂E
ln

∫
dx2 δ (H2(x2) − E)H1(x1). (4.3.7)

Recognizing that ∫
dx2 δ (H2(x2) − E) ∝ Ω2(N2, V2, E), (4.3.8)

where Ω2(N2, V2, E) is the microcanonical partition function of system 2 at energy
E. Since ln Ω2(N2, V2, E) = S2(N2, V2, E)/k, eqn. (4.3.7) can be written (apart from
overall normalization) as

ln f(x1) =
S2(N2, V2, E)

k
− H1(x1)

∂

∂E

S2(N2, V2, E)

k
. (4.3.9)

Moreover, because ∂S2/∂E = 1/T , where T is the common temperature of systems 1
and 2, it follows that

ln f(x1) =
S2(N2, V2, E)

k
− H1(x1)

kT
. (4.3.10)

Exponentiating both sides, and recognizing that exp(S2/k) is just an overall constant,
we obtain

f(x1) ∝ e−H1(x1)/kT . (4.3.11)

At this point, the “1” subscript is no longer necessary. In other words, we can conclude
that the phase space distribution of a system with Hamiltonian H(x) in equilibrium
with a thermal reservoir at temperature T is
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f(x) ∝ e−H(x)/kT . (4.3.12)

The overall normalization of eqn. (4.3.12) must be proportional to

∫
dx e−H(x)/kT .

As was the case for the microcanonical ensemble, the integral is accompanied by an
N -dependent factor that accounts for the identical nature of the particles and yields
an overall dimensionless quantity. This factor is denoted CN and is given by

CN =
1

N !h3N
, (4.3.13)

so that the phase space distribution function becomes

f(x) =
CNe−βH(x)

Q(N, V, T )
. (4.3.14)

(As we noted in Section 3.2, in a multicomponent system with NA particles of type
A, NB particles of type B,..., and N total particles,CN would be replaced by C{N} =
1/[h3N(NA!NB! · · ·)].) The parameter β = 1/kT has been introduced, and the denom-
inator in eqn. (4.3.14) is given by

Q(N, V, T ) = CN

∫
dx e−βH(x). (4.3.15)

The quantity Q(N, V, T ) (or, equivalently, Q(N, V, β)) is the partition function of
the canonical ensemble, and, as with the microcanonical ensemble, it represents the
total number of accessible microscopic states. In contrast to the microcanonical en-
semble, however, the Hamiltonian is not conserved. Rather, it obeys the Boltzmann
distribution as a consequence of the fact that the system can exchange energy with
its surroundings. This energy exchange changes the number of accessible microscopic
states. Note that the canonical partition function Q(N, V, T ) can be directly related
to the microcanonical partition function Ω(N, V, E) as follows:

Q(N, V, T ) =
1

E0

∫ ∞

0

dE e−βEMN

∫
dx δ(H(x) − E)

=
1

E0

∫ ∞

0

dE e−βEΩ(N, V, E). (4.3.16)

In the first line, if the integration over energy E is performed first, then the δ-function
allows E to be replaced by the Hamiltonian H(x) in the exponential, leading to eqn.
(4.3.15). The second line shows that the canonical partition function is simply the
Laplace transform of the microcanonical partition function.
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The link between the macroscopic thermodynamic properties in eqn. (4.2.6) and
the microscopic states contained in Q(N, V, T ) is provided through the relation

A(N, V, T ) = −kT ln Q(N, V, T ) = − 1

β
ln Q(N, V, β). (4.3.17)

In order to see that eqn. (4.3.17) provides the connection between the thermody-
namic state function A(N, V, T ), the Helmholtz free energy, and the partition function
Q(N, V, T ), we note that A = E − TS and that S = −∂A/∂T , from which we obtain

A = E + T
∂A

∂T
. (4.3.18)

We also recognize that E = 〈H(x)〉, the ensemble average of the Hamiltonian. By
definition, this ensemble average is

〈H〉 =
CN

∫
dx H(x)e−βH(x)

CN

∫
dx e−βH(x)

= − 1

Q(N, V, T )

∂

∂β
Q(N, V, T )

= − ∂

∂β
ln Q(N, V, T ). (4.3.19)

Thus, eqn. (4.3.18) becomes

A +
∂

∂β
ln Q(N, V, β) + β

∂A

∂β
= 0, (4.3.20)

where the fact that

T
∂A

∂T
= T

∂A

∂β

∂β

∂T
= −T

∂A

∂β

1

kT 2
= −β

∂A

∂β
(4.3.21)

has been used. We just need to show that eqn. (4.3.17) is the solution to eqn. (4.3.20),
which is a first-order differential equation for A. Differentiating eqn. (4.3.17) with
respect to β gives

β
∂A

∂β
=

1

β
ln Q(N, V, β) − ∂

∂β
ln Q(N, V, β). (4.3.22)

Substituting eqs. (4.3.17) and (4.3.22) into eqn. (4.3.20) yields

− 1

β
ln Q(N, V, β) +

∂

∂β
ln Q(N, V, β) +

1

β
ln Q(N, V, β) − ∂

∂β
ln Q(N, V, β) = 0,

which verifies that A = −kT ln Q is the solution. Therefore, from eqn. (4.2.6), it is clear
that the macroscopic thermodynamic observables are given in terms of the partition
function by



Canonical ensemble

μ = −kT

(
∂ ln Q

∂N

)
N,V

P = kT

(
∂ ln Q

∂V

)
N,T

S = k ln Q + kT

(
∂ ln Q

∂T

)
N,V

E = −
(

∂

∂β
ln Q

)
N,V

. (4.3.23)

Noting that

kT
∂ ln Q

∂T
= kT

∂ ln Q

∂β

∂β

∂T
= −kT

∂ ln Q

∂β

1

kT 2
= − 1

T

∂ ln Q

∂β
=

E

T
, (4.3.24)

one finds that the entropy is given by

S(N, V, T ) = k ln Q(N, V, T ) +
E(N, V, T )

T
, (4.3.25)

which is equivalent to S = (−A + E)/T . Other thermodynamic relations can be ob-
tained as well. For example, the heat capacity CV at constant volume is defined to be

CV =

(
∂E

∂T

)
N,V

. (4.3.26)

Differentiating the last line of eqn. (4.3.19) using ∂/∂T = −(kβ2)∂/∂β gives

CV = kβ2 ∂2

∂β2
ln Q(N, V, β). (4.3.27)

Interestingly, the heat capacity in eqn. (4.3.27) is an extensive quantity. The corre-
sponding intensive molar heat capacity is obtained from eqn. (4.3.27) by dividing by
the number of moles in the system.

4.4 Energy fluctuations in the canonical ensemble

Since the Hamiltonian H(x) is not conserved in the canonical ensemble, it is natural
to ask how the energy fluctuates. Energy fluctuations can be quantified using the
standard statistical measure of variance. The variance of the Hamiltonian is given by

ΔE =

√
〈(H(x) − 〈H(x)〉)2〉, (4.4.1)
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which measures the width of the energy distribution, i.e. the root-mean-square devia-
tion of H(x) from its average value. The quantity under the square root can also be
expressed as

〈(H(x) − 〈H(x)〉)2〉 = 〈(H2(x) − 2H(x)〈H(x)〉 + 〈H(x)〉2)〉
= 〈H2(x)〉 − 2〈H(x)〉〈H(x)〉 + 〈H(x)〉2

= 〈H2(x)〉 − 〈H(x)〉2. (4.4.2)

The first term in the last line of eqn. (4.4.2) is, by definition, given by

〈H2(x)〉 =
CN

∫
dx H2(x)e−βH(x)

CN

∫
dx e−βH(x)

=
1

Q(N, V, β)

∂2

∂β2
Q(N, V, β). (4.4.3)

Now, consider the quantity

∂2

∂β2
ln Q(N, V, β) =

∂

∂β

[
1

Q(N, V, β)

∂Q(N, V, β)

∂β

]

= − 1

Q2(N, V, β)

[
∂Q(N, V, β)

∂β

]2

+
1

Q(N, V, β)

∂2Q(N, V, β)

∂β2
. (4.4.4)

The first term in this expression is just the square of eqn. (4.3.19) or 〈H(x)〉2, while
the second term is the average 〈H2(x)〉. Thus, we see that

∂2

∂β2
ln Q(N, V, β) = −〈H(x)〉2 + 〈H2(x)〉 = (ΔE)2. (4.4.5)

However, from eqn. (4.3.27),

∂2

∂β2
ln Q(N, V, β) = kT 2CV = (ΔE)2, (4.4.6)

Thus, the variance in the energy is directly related to the heat capacity at constant
volume. If we now consider the energy fluctuations relative to the total energy, ΔE/E,
we find

ΔE

E
=

√
kT 2CV

E
. (4.4.7)

Since CV is an extensive quantity, CV ∼ N . The same is true for the energy, E ∼ N , as
it is also extensive. Therefore, according to eqn. (4.4.7), the relative energy fluctuations
should behave as

ΔE

E
∼

√
N

N
∼ 1√

N
. (4.4.8)

In the thermodynamic limit, when N → ∞, the relative energy fluctuations tend to
zero. For very large systems, the magnitude of ΔE relative to the total average energy
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E becomes negligible. The implication of this result is that in the thermodynamic limit,
the canonical ensemble becomes equivalent to the microcanonical ensemble, where, in
the latter, the Hamiltonian is explicitly fixed. In the next two chapters, we will analyze
fluctuations associated with other ensembles, and we will see that the tendency of these
fluctuations to become negligible in the thermodynamic limit is a general result. The
consequence of this fact is that all ensembles become equivalent in the thermodynamic
limit. Thus, we are always at liberty to choose the ensemble that is most convenient
for a particular problem and still obtain the same macroscopic observables. It must
be stressed, however, that this freedom only exists in the thermodynamic limit. In
numerical simulations, for example, systems are finite, and fluctuations might be large,
depending on the system size chosen. Thus, the choice of ensemble can influence the
results of the calculation, and one should choose the ensemble that best reflects the
experimental conditions of the problem.

Now that we have the fundamental principles of the classical canonical ensemble
at hand, we proceed next to consider a few simple analytical solvable examples of this
ensemble in order to demonstrate how it is used.

4.5 Simple examples in the canonical ensemble

4.5.1 The free particle and the ideal gas

Consider a free particle of mass m moving in a one-dimensional “box” of length L.
The Hamiltonian is simply H = p2/2m. The partition function for an ensemble of such
systems at temperature T is

Q(L, T ) =
1

h

∫ L

0

dx

∫ ∞

−∞
dp e−βp2/2m. (4.5.1)

The position x can be integrated trivially, yielding a factor of L. The momentum
integral is an example of a Gaussian integral, for which the general formula is∫ ∞

−∞
dy e−αy2

=

√
π

α
(4.5.2)

(see Section 3.8.3, where a method for performing Gaussian integrals is discussed).
Applying eqn. (4.5.2) to the partition function gives the final result

Q(L, T ) = L

√
2πm

βh2
. (4.5.3)

The quantity
√

βh2/2πm appearing in eqn. (4.5.3) can be easily seen to have units
of a length. For reasons that will become clear when we consider quantum statistical
mechanics in Chapter 10, this quantity, denoted λ, is often referred to as the thermal
wavelength of the particle. Thus, the partition function is simply the ratio of the box
length L to the thermal wavelength of the particle:

Q(L, T ) =
L

λ
. (4.5.4)
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We now extend this derivation to the case of N particles in three dimensions, i.e.,
an ideal gas of N particles in a cubic box of side L (volume V = L3), for which the
Hamiltonian is

H =

N∑
i=1

p2
i

2m
. (4.5.5)

Since each momentum vector pi has three components, we may also write the Hamil-
tonian as

H =
N∑

i=1

3∑
α=1

p2
αi

2m
, (4.5.6)

where α = (x, y, z) indexes the Cartesian components of pi. The sum in eqn. (4.5.6)
contains 3N terms. Thus, the partition function is given by

Q(N, V, T ) =
1

N !h3N

∫
D(V )

dNr

∫
dNp exp

[
−β

N∑
i=1

p2
i

2m

]
(4.5.7)

Since the Hamiltonian is separable in the each of the N coordinates and momenta,
the partition function can be simplified according to

Q(N, V, T ) =
1

N !

[
1

h3

∫
D(V )

dr1

∫
dp1 e−βp2

1/2m

][
1

h3

∫
D(V )

dr2

∫
dp2 e−βp2

2/2m

]

· · ·
[

1

h3

∫
D(V )

drN

∫
dpN e−βp2

N/2m

]
. (4.5.8)

Since each integral in brackets is the same, we can write eqn. (4.5.8) as

Q(N, V, T ) =
1

N !

[
1

h3

∫
D(V )

dr

∫
dp e−βp2/2m

]N

. (4.5.9)

The six-dimensional integral in brackets is just

1

h3

∫
D(V )

dr

∫
dp e−βp2/2m =

1

h3

∫ L

0

dx

∫ L

0

dy

∫ L

0

dz

×
∫ ∞

−∞
dpxe−βp2

x/2m

∫ ∞

−∞
dpye−βp2

y/2m

∫ ∞

−∞
dpze

−βp2
z/2m. (4.5.10)

Eqn. (4.5.10) can also be written as

1

h3

∫
D(V )

dr

∫
dp e−βp2/2m =

[
1

h

∫ L

0

dx

∫ ∞

−∞
dpe−βp2/2m

]3

, (4.5.11)
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which is just the cube of eqn. (4.5.1). Using eqn. (4.5.4), we obtain the partition
function as

Q(N, V, T ) =
1

N !

(
L

λ

)3N

=
V N

N !λ3N
. (4.5.12)

From eqn. (4.5.12), the thermodynamics can now be derived. Using eqn. (4.3.23) to
obtain the pressure yields

P = kT
∂

∂V
ln

[
V N

N !λ3N

]
= NkT

∂ ln V

∂V
=

NkT

V
, (4.5.13)

which we recognize as the ideal gas equation of state. Similarly, the energy is given by

E = − ∂

∂β
ln

[
V N

N !λ3N

]
= 3N

∂ ln λ

∂β
=

3N

β
=

3N

2β
=

3

2
NkT, (4.5.14)

which follows from the fact that λ =
√

βh2/2πm and is the expected result from
the Virial theorem. From eqn. (4.5.14), it follows that the heat capacity at constant
volume is

CV =

(
∂E

∂T

)
=

3

2
Nk. (4.5.15)

Note that if we multiply and divide by N0, Avogadro’s number, we obtain

CV =
3

2

N

N0
N0k =

3

2
nR, (4.5.16)

where n is the number of moles of gas and R is the gas constant. Dividing by the
number of moles yields the expected result for the molar heat capacity cV = 3R/2.

4.5.2 The harmonic oscillator and the harmonic bath

We begin by considering a one-dimensional harmonic oscillator of mass m and fre-
quency ω for which the Hamiltonian is

H =
p2

2m
+

1

2
mω2x2. (4.5.17)

The canonical partition function becomes

Q(β) =
1

h

∫
dp dx e−β(p2/2m+mω2x2/2)

=
1

h

∫ ∞

−∞
dp e−βp2/2m

∫ L

0

dx e−βmω2x2/2. (4.5.18)

Although the coordinate integration is restricted to the physical box containing the
oscillator, we will assume that the width of the distribution exp(−mω2x2/2) is very
small compared to the size of the (macroscopic) container so that we can perform
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the integration of x over all space with no significant loss of accuracy. Therefore, the
partition function becomes

Q(β) =
1

h

∫ ∞

−∞
dp e−βp2/2m

∫ ∞

−∞
dx e−βmω2x2/2

=
1

h

(
2πm

β

)1/2 (
2π

mω2

)1/2

=
2π

βhω
=

1

βh̄ω
, (4.5.19)

where h̄ = h/2π. From eqn. (4.5.19), it follows that the energy is E = kT , the pressure
is P = 0 (which is expected for a bound system), and the heat capacity is CV = k.

If we now consider a collection of N uncoupled harmonic oscillators with different
masses and frequencies with a Hamiltonian

H =

N∑
i=1

[
p2

i

2mi
+

1

2
miω

2
i x2

i

]
. (4.5.20)

Since the oscillators are not identical, the 1/N ! factor is not needed, and the partition
function is just a product of single particle partition functions for the N oscillators:

Q(N, β) =
N∏

i=1

1

βh̄ωi
. (4.5.21)

For this system, the energy is E = NkT , and the heat capacity is simply Cv = Nk.

4.5.3 The harmonic bead-spring model

Another important class of harmonic models is a simple model of a polymer chain
based on harmonic nearest-neighbor interactions. Consider a polymer with endpoints
at positions r and r′ with N repeat units in between, each of which will be treated
as a single ’particle’. The particles are indexed from 0 to N + 1, and the Hamiltonian
takes the form

H =

N+1∑
i=0

p2
i

2m
+

1

2
mω2

N∑
i=0

(ri − ri+1)
2, (4.5.22)

where r0, ..., rN+1 and p0, ...,pN+1 are the positions and momenta of the particles
with the additional identification r0 = r and rN+1 = r′ and p0 = p and pN+1 = p′ as
the positions and momenta of the endpoint particles, and mω2 is the force constant.
The polymer is placed in a cubic container of volume V = L3 such that L is much
larger than the average distance between neighboring particles |rk − rk+1|.

Let us first consider the case in which the endpoints are fixed at given positions r
and r′ so that p = p′ = 0. We seek to calculate the partition function Q(N, V, T, r, r′)
given by
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Q(N, V, T, r, r′) =

1

h3N

∫
dNp dNr exp

{
−β

[
N∑

i=1

p2
i

2m
+

1

2
mω2

N∑
i=0

(ri − ri+1)
2

]}
. (4.5.23)

We will regard the particles as truly distinguishable so that no 1/N ! is needed. The
Gaussian integrals over the N momenta can be performed immediately, yielding

Q(N, V, T, r, r′) =

1

h3N

(
2πm

β

)3N/2 ∫
dNr exp

[
−1

2
βmω2

N∑
i=0

(ri − ri+1)
2

]
. (4.5.24)

The coordinate integrations can be performed straightforwardly, if tediously, by simply
integrating first over r1, then over r2,... and recognizing the pattern that results after
n < N such integrations have been performed. We will first follow this procedure, and
then we will show how a simple change of integration variables can be used to simplify
the integrations by uncoupling the harmonic interaction term.

Consider, first, the integration over r1. Defining α = βmω2/2, and using the fact
that V is much larger than the average nearest-neighbor particle distance to extend
the integration over all space, the integral that must be performed is

I1 =

∫
all space

dr1 e−α[(r1−r)2+(r2−r1)
2]. (4.5.25)

Expanding the squares gives

I1 = e−α(r2+r2
2)

∫
all space

dr1 e−2α[r2
1−r1·(r+r2)]. (4.5.26)

Now, we can complete the square to give

I1 = e−α(r2+r2
2)eα(r+r2)

2/2

∫
all space

dr1 e−2α[r1−(r+r2)/2]2

= e−α(r2−r)2/2
( π

2α

)3/2

. (4.5.27)

We can now proceed to the r2 integration, which is of the form

I2 =
( π

2α

)3/2
∫

all space

dr2 e−α(r2−r)2/2−α(r3−r2)
2
. (4.5.28)

Again, we begin by expanding the squares to yield

I2 =
( π

2α

)3/2

e−α(r2+2r2
3)/2

∫
all space

dr2 e−3α[r2
2−2r2·(r+2r3)/3]/2. (4.5.29)

Completing the square gives

I2 =
( π

2α

)3/2

e−α(r2+2r2
3)/2eα(r+2r3)2/6

∫
all space

dr2 e−3α[r2−(r+2r3)]
2/2
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=
( π

2α

)3/2
(

2π

3α

)3/2

e−α(r−r3)2/3

=

(
π2

3α2

)3/2

e−α(r−r3)2/3. (4.5.30)

From the calculation of I1 and I2, a pattern can be discerned from which the result of
performing all N integrations can be predicted. Specifically, after performing n < N
integrations, we find

In =

(
πn

(n + 1)αn

)3/2

e−α(r−rn+1)
2/(n+1). (4.5.31)

Thus, setting n = N , we obtain

IN =

(
πN

(N + 1)αN

)3/2

e−α(r−rN+1)
2/(N+1). (4.5.32)

Identifying rN+1 = r′ and attaching the prefactor (2πm/βh2)3N/2, we obtain the
partition function for fixed r and r′ as

Q(N, T, r, r′) =

(
2π

βhω

)3N
1

(N + 1)3/2
e−βmω2(r−r′)2/(N+1). (4.5.33)

The volume dependence has dropped out because the integrations were extended over
all space. Eqn. (4.5.33) can be regarded as a probability distribution function for the
distance |r− r′|2 between the endpoints of the polymer. Note that this distribution is
Gaussian in the end-to-end distance |r − r′|.

If we now allow the endpoints to move, then the full partition function can be
calculated by introducing the momenta p0 and pN+1 of the endpoints and performing
the integration

Q(N, V, T ) =
1

h6

(
2π

βhω

)3N
1

(N + 1)3/2

∫
dp0 dpN+1 e−β(p2

0+p2
N+1)/2m

×
∫

dr0 drN+1 e−βmω2(r0−rN+1)
2/(N+1). (4.5.34)

Here, the extra factor of 1/h6 has been introduced along with the kinetic energy of
the endpoints. Performing the momentum integrations gives
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Q(N, V, T ) =
1

h6

(
2π

βhω

)3N (
2πm

β

)3
1

(N + 1)3/2

×
∫

dr0 drN+1 e−βmω2(r0−rN+1)
2/(N+1). (4.5.35)

We now introduce a change of variables to the center-of-mass R = (r0 + rN+1)/2 of
the endpoint particles and their corresponding relative coordinate s = r0 − rN+1. The
Jacobian of the transformation is 1. With this transformation, we have

Q(N, V, T ) =
1

h6

(
2π

βhω

)3N (
2πm

β

)3
1

(N + 1)3/2

∫
dR ds e−βmω2s2/(N+1). (4.5.36)

The integration over s can be performed over all space because the Gaussian rapidly
decays to 0. However, the integration over the center-of-mass R is completely free and
must be restricted to the containing volume V . The result of performing the last two
coordinate integrations is

Q(N, V, T ) =

(
V

λ3

)(
2π

βhω

)3(N+1)

, (4.5.37)

where λ =
√

βh2/2πm.
Now that we have seen how to perform the coordinate integrations directly, let

us demonstrate how a change of integration variables in the partition function can
simplify the problem considerably. The use of variable transformations in a partition
function is a powerful technique that can lead to novel computational algorithms for
solving complex problems (Zhu et al., 2002; Minary et al., 2007). Consider, once again,
the polymer chain with fixed endpoints, so that the partition function is given by eqn.
(4.5.23), and consider a change of integration variables from rk to uk given by

uk = rk − krk+1 + r

(k + 1)
, (4.5.38)

where, again, the condition rN+1 = r′ is implied. In order to express the harmonic
coupling in terms of the new variables u1, ...,uN , we need the inverse of this transfor-
mation. Interestingly, if we simply solve eqn. (4.5.38) for rk, we obtain

rk = uk +
k

k + 1
rk+1 +

1

k + 1
r. (4.5.39)

Note that eqn. (4.5.39) defines the inverse transformation recursively, since knowledge
of how rk+1 depends on u1, ...,uN allows the dependence of rk on u1, ...,uN to be
determined. Consequently, the inversion process is “seeded” by starting with the k = N
term and working backwards to k = 1.
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In order to illustrate how the recursive inverse works, consider the special case of
N = 3. If we set k = 3 in eqn. (4.5.39), we find

r3 = u3 +
3

4
r′ +

1

4
r, (4.5.40)

where the fact that r4 = r′ has been used. Next, setting k = 2,

r2 = u2 +
2

3
r3 +

1

3
r

= u2 +
2

3

[
u3 +

3

4
r′ +

1

4
r

]
+

1

3
r

= u2 +
2

3
u3 +

1

2
r′ +

1

2
r (4.5.41)

and similarly, we find that

r1 = u1 +
1

2
u2 +

1

3
u3 +

1

4
r′ +

3

4
r. (4.5.42)

Thus, if we now use these relations to evaluate (r′−r3)
2+(r3−r2)

2+(r2−r1)
2+(r1−r)2,

after some algebra, we find

(r′−r3)
2 +(r3−r2)

2 +(r2−r1)
2 +(r1−r)2 = 2u2

1 +
3

2
u2

2 +
4

3
u2

3 +
1

4
(r−r′)2. (4.5.43)

Extrapolating to arbitrary N , we have

N∑
i=0

(ri − ri+1)
2 =

N∑
i=1

i + 1

i
u2

i +
1

N + 1
(r − r′)2. (4.5.44)

Finally, since the variable transformation must be applied to a multidimensional in-
tegral, we need to compute the Jacobian of the transformation. Consider, again, the
special case of N = 3. For any of the spatial directions α = x, y, z, the Jacobian matrix
Jij = ∂rα,i/∂uα,j is

J =

⎛
⎝ 1 1/2 1/3

0 1 2/3
0 0 1

⎞
⎠ . (4.5.45)

This matrix, being both upper triangular and having 1s on the diagonal, has unit
determinant, a fact that generalizes to arbitrary N , where the Jacobian matrix takes
the form

J =

⎛
⎜⎜⎜⎜⎝

1 1/2 1/3 1/4 · · · 1/N
0 1 2/3 2/4 · · · 2/N
0 0 1 3/4 · · · 3/N
...

...
...

... · · · ...
0 0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎠ . (4.5.46)
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Thus, substituting the transformation into eqn. (4.5.24), we obtain

Q(N, V, T, r, r′) =
1

h3N

(
2πm

β

)3N/2 ∫
dNu exp

[
−1

2
βmω2

N∑
i=1

i + 1

i
u2

]
, (4.5.47)

Now, each of the integrals over u1, ...,uN can be performed independently and straight-
forwardly to give

Q(N, V, T, r, r′) =

1

h3N

(
2πm

β

)3N/2 (
2π

βmω2

)3N/2

e−βmω2(r−r′)2/N+1
N∏

i=1

(
i

i + 1

)3/2

. (4.5.48)

Expanding the product, we find

N∏
i=1

(
i

i + 1

)3/2

=

(
N∏

i=1

i

i + 1

)3/2

=

(
1

2

2

3

3

4
· · · N − 1

N

N

N + 1

)3/2

=

(
1

N + 1

)3/2

. (4.5.49)

Thus, substituting this result into eqn. (4.5.48) yields eqn. (4.5.33).
Finally, let us use the partition function expressions in eqns. (4.5.37) and (4.5.33)

to compute an observable, specifically, the expectation value 〈|r− r′‖2〉, known as the
mean-square end-to-end distance of the polymer. From eqn. (4.5.35), we can set up
the expectation value as

〈|r − r′|2〉 =
1

Q(N, V, T )

1

h6

(
2π

βhω

)3N (
2πm

β

)3

× 1

(N + 1)3/2

∫
dr dr′ |r − r′|2e−βmω2(r−r′)2/(N+1). (4.5.50)

Using the fact that 1/Q(N, V, T ) = (λ3/V )(βhω/2π)3(N+1), and transforming to
center-of-mass (R) and relative (s) coordinates yields

〈|r − r′|2〉 =

(
λ3

V

)(
βhω

2π

)3N+3
1

h6

(
2π

βhω

)3N (
2πm

β

)3

× 1

(N + 1)3/2

∫
dR ds s2e−βmω2s2/(N+1). (4.5.51)

The integration over R yields, again, a factor of V , which cancels the V factor in the
denominator. For the s integration, we change to spherical polar coordinates, which
yields
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〈|r − r′|2〉 = λ3

(
βhω

2π

)3N+3
1

h6

(
2π

βhω

)3N (
2πm

β

)3

× 4π

(N + 1)3/2

∫ ∞

0

ds s4e−βmω2s2/(N+1). (4.5.52)

A useful trick for performing integrals of the form
∫ ∞
0 dx x2n exp(−αx2) is to express

them as ∫ ∞

0

dx x2ne−αx2
= (−1)n ∂n

∂αn

∫ ∞

0

dx e−αx2

= (−1)n ∂n

∂αn

1

2

√
π

α

=
(n + 1)!!

2 · 2nαn

√
π

α
. (4.5.53)

Applying eqn. (4.5.53) yields, after some algebra,

〈|r − r′|2〉 =
3

4
√

2

(N + 1)

βmω2
. (4.5.54)

The mean-square end-to-end distance increases both with temperature and with the
number of repeat units in the polymer. Because of the latter, mean-square end-to-end
distances are often reported in dimensionless form as 〈|r − r′|2〉/(Nd2

0), where d0 is
some reference distance that is characteristic of the system. In an alkane chain, for
example, d0 might be the equilibrium carbon–carbon distance.

4.6 Structure and thermodynamics in real gases and liquids from

spatial distribution functions

Characterizing the equilibrium properties of real systems is a significant challenge due
to the rich variety of behavior arising from the particle interactions. In real gases and
liquids, among the most useful properties that can be described statistically are the
spatial distribution functions. That spatial correlations exist between the individual
components of a system can be seen most dramatically in the example of liquid water
at room temperature. Because a water molecule is capable of forming hydrogen bonds
with other water molecules, liquid water is best described as a complex network of hy-
drogen bonds. Within this network, there is a well-defined local structure that arises
from the fact that each water molecule can both donate and accept hydrogen bonds.
Although it might seem natural to try to characterize this coordination shell in terms
of a set of distances between the molecules, such an attempt misses something funda-
mental about the system. In a liquid at finite temperature, the individual atoms are
constantly in motion, and distances are constantly fluctuating, as is the coordination
pattern. Hence, a more appropriate measure of the solvation structure is a distribution
function of distances in the coordination structure. In such a distribution, we would
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expect peaks at a particular values characteristic of the structure peak widths largely
determined by the temperature, density, etc. This argument suggests that the spatial
distribution functions in a system contain a considerable amount of information about
the local structure and the fluctuations. In this section, we will discuss the formulation
of such distribution functions as ensemble averages and relate these functions to the
thermodynamics of the system.

We begin the discussion with the canonical partition function for a system of N
identical particles interacting via a potential U(r1, ..., rN ).

Q(N, V, T ) =

1

N !h3N

∫
dNp

∫
D(V )

dNr exp

{
−β

[
N∑

i=1

p2
i

2m
+ U(r1, ..., rN )

]}
. (4.6.1)

Since the momentum integrations can be evaluated independently, the partition func-
tion can also be expressed as

Q(N, V, T ) =
1

N !λ3N

∫
D(V )

dNr e−βU(r1,...,rN). (4.6.2)

Note that in the Hamiltonian

H =

N∑
i=1

p2
i

2m
+ U(r1, ..., rN ), (4.6.3)

the kinetic energy term is a universal term that appears in all such Hamiltonians.
It is only the potential U(r1, ..., rN ) that determines the particular properties of the
system. In order to make this fact manifest in the partition function, we introduce the
configurational partition function

Z(N, V, T ) =

∫
D(V )

dr1 · · ·drN e−βU(r1,...,rN) (4.6.4)

in terms of which, Q(N, V, T ) = Z(N, V, T )/(N !λ3N ). Note that the ensemble average
of any phase space function a(r1, ..., rN ) that depends only on the positions can be
expressed as

〈a〉 =
1

Z

∫
D(V )

dr1 · · ·drN a(r1, ..., rN )e−βU(r1,...,rN). (4.6.5)

(Throughout the discussion, the arguments of the configurational partition function
Z(N, V, T ) will be left off for notational simplicity.) From the form of eqn. (4.6.4), we
see that the probability of finding particle 1 in a small volume element dr1 about the
point r1 and particle in a small volume element dr2 about the point r2,..., and particle
N in a small volume element drN about the point rN is

P (N)(r1, ..., rN )dr1 · · ·drN =
1

Z
e−βU(r1,...,rN)dr1 · · ·drN . (4.6.6)

Now suppose that we are interested in the probability of finding only the first n < N
particles in small volume elements about the points r1, ..., rn, respectively, independent
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of the locations of the remaining n+1, ..., N particles. This probability can be obtained
by simply integrating eqn. (4.6.6) over the last N − n particles:

P (n)(r1, ..., rn)dr1 · · ·drn =

1

Z

[∫
D(V )

drn+1 · · ·drN e−βU(r1,...,rN)

]
dr1 · · ·drn. (4.6.7)

Since the particles are indistinguishable, we are actually interested in the probability
of finding any particle in a volume element dr1 about the point r1 and any particle in
dr2 about the point r2, etc., which is given by the distribution

ρ(n)(r1, ..., rn)dr1 · · ·drn =

N !

(N − n)!Z

[∫
D(V )

drn+1 · · ·drN e−βU(r1,...,rN)

]
dr1 · · · drn. (4.6.8)

The prefactor N !/(N − n)! = N(N − 1)(N − 2) · · · (N − n + 1)! comes from the fact
that the first particle can be chosen in N ways, the second particle in N − 1 ways, the
third particle in N − 2 ways and so forth.

Eqn. (4.6.8) is really a measure of the spatial correlations among particles. If, for
example, the potential U(r1, ..., rN ) is attractive at long and intermediate range, then
the presence of a particle at r1 will increase the probability that another particle will
be in its vicinity. If the potential contains strong repulsive regions, then a particle at
r1 will increase the probability of a void in its vicinity. More formally, an n-particle
correlation function is defined in terms of ρ(n)(r1, ..., rn) via

g(n)(r1, ..., rn) =
1

ρn
ρ(n)(r1, ..., rn)

=
N !

(N − n)!ρnZ

∫
D(V )

drn+1 · · ·drN e−βU(r1,...,rN), (4.6.9)

where ρ = N/V is the number density. The n-particle correlation function eqn. (4.6.9)
can also be formulated in an equivalent manner by introducing δ-functions for the first
n particles and integrating over all N particles:

g(n)(r1, ..., rn) =
N !

(N − n)!ρnZ

∫
D(V )

dr′1 · · ·dr′N e−βU(r′1,...,r′N)
n∏

i=1

δ(ri − r′i). (4.6.10)

Note that eqn. (4.6.10) is equivalent to an ensemble average of the quantity

n∏
i=1

δ(ri − r′i)

using r′1, ..., r
′
N as integration variables:
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g(n)(r1, ..., rn) =
N !

(N − n)!ρn

〈
n∏

i=1

δ(ri − r′i)

〉
r′1,...,r′

N

. (4.6.11)

Of course, the most important cases of eqn. (4.6.11) are the first few integers for n.
If n = 1, for example, g(1)(r) = V ρ(1)(r), where ρ(1)(r)dr is the probability of finding
a particle in dr. For a perfect crystal, ρ(1)(r) is a periodic function, but in a liquid,
due to isotropy, ρ(1)(r) is independent of r1. Thus, since ρ(1)(r) = (1/V )g(1)(r), and
ρ(1)(r) is a probability ∫

dr ρ(1)(r) = 1 =
1

V

∫
dr g(1)(r) (4.6.12)

However, g(1)(r) is also independent of r for an isotropic system, in which case, eqn.
(4.6.12) implies that g(1)(r) = 1.

4.6.1 The pair correlation function and the radial distribution function

The case n = 2 is of particular interest. The function g(2)(r1, r2) that results when
n = 2 is used in eqn. (4.6.11) is called the pair correlation function.

g(2)(r1, r2) =
1

Z

N(N − 1)

ρ2

∫
D(V )

dr3 · · ·drN e−βU(r1,r2,r3...,rN)

=
N(N − 1)

ρ2
〈δ(r1 − r′1)δ(r2 − r′2)〉r′1,...,r′

N
. (4.6.13)

Although eqn. (4.6.13) suggests that g(2) depends on r1 and r2 individually, in a
homogeneous system such as a liquid, we anticipate that g(2) actually depends only
on the relative position between two particles. Thus, it is useful to introduce a change
of variables to center-of-mass and relative coordinates of particles 1 and 2:

R =
1

2
(r1 + r2) r = r1 − r2. (4.6.14)

The inverse of this transformation is

r1 = R +
1

2
r r2 = R − 1

2
r, (4.6.15)

and its Jacobian is unity: dRdr = dr1dr2. Defining g̃(2)(r,R) = g(2)(R+r/2,R−r/2),
we find that

g̃(2)(r,R) =
N(N − 1)

ρ2Z

∫
D(V )

dr3 · · ·drN e−βU(R+ 1
2 r,R− 1

2 r,r3,...,rN)

=
N(N − 1)

ρ2

〈
δ

(
R +

1

2
r − r′1

)
δ

(
R − 1

2
r − r′2

)〉
r′1,...,r′

N

(4.6.16)

In a homogeneous system, the location of the particle pair, determined by the center-of-
mass coordinate R, is of little interest since, on average, the distribution of particles
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around a given pair does not depend on where the pair is in the system. Thus, we
integrate over R, yielding a new function g̃(r) defined as

g̃(r) ≡ 1

V

∫
D(V )

dR g̃(2)(r,R)

=
(N − 1)

ρZ

∫
D(V )

dR dr3 · · ·drNe−βU(R+ 1
2 r,R− 1

2 r,r3,...,rN)

=
(N − 1)

ρ
〈δ(r − r′)〉R′,r′,r′3,...,r′

N
, (4.6.17)

where the last line follows from eqn. (4.6.16) by integrating one of the δ-functions
over R and renaming r′1 − r′2 = r′. Next, we recognize that a system such as a liquid
is spatially isotropic, so that there are no preferred directions in space. Thus, the
correlation function should only depend on the distance between the two particles,
that is, on the magnitude |r|. Thus, we introduce the spherical polar resolution of the
vector r = (x, y, z)

x = r sin θ cosφ

y = r sin θ sin φ

z = r cos θ, (4.6.18)

where θ is the polar angle and φ is the azimuthal angle. Defining the unit vector
n = (sin θ cosφ, sin θ sin φ, cos θ), it is clear that r = rn. Also, the Jacobian is dxdydz =
r2 sin θdrdθdφ. Thus, integrating g̃(r) over angles gives a new function

g(r) =
1

4π

∫ 2π

0

dφ

∫ π

0

dθ sin θg̃(r)

=
(N − 1)

4πρZ

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫
D(V )

dRdr3 · · ·drN

× e−βU(R+ 1
2 rn,R− 1

2 rn,r3,...,rN)

=
(N − 1)

4πρr2
〈δ(r − r′)〉r′,θ′,φ′,R′,r′3,....,r′

N
, (4.6.19)

known as the radial distribution function. The last line follows from the identity

δ(r − r′) =
δ(r − r′)

rr′
δ(cos θ − cos θ′)δ(φ − φ′). (4.6.20)

From the foregoing analysis, we see that the radial distribution function is a measure
of the probability of finding two particles a distance r apart under the conditions of
the canonical ensemble.

As an example of a radial distribution function, consider a system of N identical
particles interacting via the pair-wise additive Lennard-Jones potential of eqn. (3.14.3).
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Fig. 4.2 (a) Potential as a function of the distance r between two particles with σ = 3.405

Å and ε = 119.8 K. (b) Radial distribution functions at four temperatures.

The potential between any two particles is shown in Fig. 4.2(a), where we can clearly
see an attractive well at r = 21/6σ of depth ε. The radial distribution function for such
a system with σ = 3.405 Å, ε = 119.8 K, m=39.948 amu, ρ =0.02 Å−3 (ρ∗ = 0.8) and
a range of temperatures corresponding to liquid conditions is shown in Fig. 4.2(b).
In all cases, the figure shows a pronounced peak in the radial distribution function
at r =3.57 Å, compared to the location of the potential energy minimum r = 3.82
Å. The presence of such a peak in the radial distribution function indicates a well-
defined coordination structure in the liquid. Figure 4.2 also shows clear secondary
peaks at larger distances, indicating second and third solvation shell structures around
each particle. We see, therefore, that spatial correlations survive out to at least two
solvation shells at the higher temperatures and three (or nearly 11 Å) at the lower
temperatures.

Note that the integral of g(r) over all distances gives

4πρ

∫ ∞

0

r2g(r) dr = N − 1 ≈ N, (4.6.21)

indicating that if we integrate over the correlation function, we must find all of the
particles. Eqn. (4.6.21) further suggests that the integration of the radial distribution
function under the first peak should yield the number of particles coordinating a given
particle in its first solvation shell. This number, known as the coordination number,
can be written as

N1 = 4πρ

∫ rmin

0

r2g(r) dr, (4.6.22)

where rmin is the location of the first minimum of g(r). In fact, a more general “run-
ning” coordination number, defined as the average number of particles coordinating a
given particle out to a distance r, can be calculated via according to

N(r) = 4πρ

∫ r

0

r̃2g(r̃) dr̃. (4.6.23)
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Fig. 4.3 (a) Oxygen–oxygen (O–O) and oxygen–hydrogen (O–H) radial distribution func-

tions for a particular model of water (Lee and Tuckerman, 2006; Marx et al., 2010). (b) The

corresponding running coordination numbers computed from eqn. (4.6.23).

It is clear that N1 = N(rmin). As an illustration of the running coordination number,
we show a plot of the oxygen–oxygen and oxygen–hydrogen radial distribution func-
tions for a particular model of water (Lee and Tuckerman, 2006; Marx et al., 2010)
in Fig. 4.3(a) and the corresponding running coordination numbers in Fig. 4.3(b).
For the oxygen–oxygen running coordination number, the plot is nearly linear except
for a slight deviation in this trend around N(r) = 4. The r value of this deviation
corresponds to the first minimum in the oxygen–oxygen radial distribution function
of Fig. 4.3(a) and indicates a solvation shell with a coordination number close to 4.
By contrast, the oxygen–hydrogen running coordination number shows more clearly
defined plateaus at N(r) = 2 and N(r) = 4. The first plateau corresponds to the
first minimum in the O–H radial distribution function and counts the two covalently
bonded hydrogens to an oxygen. The second plateau counts two additional hydrogens
that are donated in hydrogen bonds to the oxygen in the first solvation shell. The
plateaus in the O–H running coordination number plot are more pronounced than in
the O–O plot because the peaks in the O–H radial distribution function are sharper
with correspondingly deeper minima due to the directionality of water’s hydrogen-
bonding pattern.

4.6.2 Scattering intensities and radial distribution function

An important property of the radial distribution function is that many useful observ-
ables can be expressed in terms of g(r). These include neutron or X-ray scattering
intensities and various thermodynamic quantities. In this and the next subsections,
we will analyze this aspect of radial distribution functions.

Let us first review the simple Bragg scattering experiment from ordered planes in a
crystal illustrated in Fig. 4.4. Recall that the condition for constructive interference is
that the total path difference between radiation scattered from two different planes is
an integral number of wavelengths. Since the path difference (see Fig. 4.4) is 2d sinψ,
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Fig. 4.4 Illustration of Bragg scattering from neighboring planes in a crystal

where d is the distance between the planes, the condition can be expressed as

2d sinψ = nλ. (4.6.24)

where λ is the wavelength of the radiation used. However, we can look at the scattering
experiment in another way. Consider two atoms in the crystal at points r1 and r2 (see
figure), with r1 − r2 the relative vector between them. Let ki and ks be the wave
vectors of the incident and scattered radiation, respectively. Since the form of a free
wave is exp(±ik · r), the phase of the incident wave at the point r2 is just −ki · r2 (the
negative sign arising from the fact that the wave is incoming), while the phase at r1

is −ki · r1. Thus, the phase difference of the incident wave between the two points is
−ki · (r1 − r2). If θ is the angle between −ki and r1 − r2, then this phase difference
can be written as

δφi = −|ki||r1 − r2| cos (π − θ) = |ki||r1 − r2| cos θ =
2π

λ
d cos θ. (4.6.25)

By a similar analysis, the phase difference of the scattered radiation between points
r1 and r2 is

δφs = |ks||r1 − r2| cos θ =
2π

λ
d cos θ. (4.6.26)

The total phase difference is just the sum

δφ = δφi + δφs = q · (r1 − r2) =
4π

λ
d cos θ. (4.6.27)

where q = ks − ki is the momentum transfer. For constructive interference, the total
phase difference must be an 2π times an integer, giving the equivalent Bragg condition

4π

λ
d cos θ = 2πn

2d cos θ = nλ. (4.6.28)

Since θ = π/2 − ψ, cos θ = sin ψ, and the original Bragg condition is recovered.
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This simple analysis suggests that a similar scattering experiment performed in a
liquid could reveal the presence of ordered structures, i.e. significant probability that
two atoms will be found a particular distance r apart, leading to a peak in the radial
distribution function. If two atoms in a well-defined structure are at positions r1 and
r2, then the function exp[iq · (r1 − r2)] will peak when the phase difference is an
integer multiple of 2π. Of course, we need to consider all possible pairs of atoms, and
we need to average over an ensemble because the atoms are constantly in motion. We,
therefore, introduce a scattering function

S(q) ∝ 1

N

〈∑
i,j

exp (iq · (ri − rj))

〉
. (4.6.29)

Note that eqn. (4.6.29) also contains terms involving the interference of incident and
scattered radiation from the same atom. Moreover, the quantity inside the angle brack-
ets is purely real, which becomes evident by writing the double sum as the square of
a single sum:

S(q) ∝ 1

N

〈∣∣∣∣∣
∑

i

exp (iq · ri)

∣∣∣∣∣
2〉

. (4.6.30)

The function S(q) is called the structure factor. Its precise shape will depend on certain
details of the apparatus and type of radiation used. Indeed, S(q) could also include
q-dependent form factors, which is why eqns. (4.6.29) and (4.6.30) are written as
proportionalities. For isotropic systems, S(q) should only depend on the magnitude |q|
of q, since there are no preferred directions in space. In this case, it is straightforward
to show (see Problem 4.11) that S(q) is related to the radial distribution function by

S(q) = 4πρ

∫ ∞

0

dr r2 (g(r) − 1)
sin qr

qr
. (4.6.31)

If a system contains several chemical species, then radial distribution functions gαβ(r)
among the different species can be introduced (see Fig. 4.3). Here, α and β range over
the different species, with gαβ(r) = gβα(r). Eqn. (4.6.31) then generalizes to

Sαβ(q) = 4πρ

∫ ∞

0

dr r2 (gαβ(r) − 1)
sin qr

qr
. (4.6.32)

Sαβ(r) are called the partial structure factors, and ρ is the full atomic number density.
Fig. 4.5(a) shows the structure factor, S(q), for the Lennard-Jones system studied in
Fig. 4.2. Fig. 4.5(b) shows a more realistic example of the N–N partial structure factor
for liquid ammonia measured via neutron scattering (Ricci et al., 1995). In both cases,
the peaks occur at wavelengths where constructive interference occurs. Although it
is not straightforward to read the structural features of a system off a plot of S(q),
examination of eqn. (4.6.31) shows that at values of r where g(r) peaks, there will be
corresponding peaks in S(q) for those values of q for which sin(qr)/qr is maximal. The
similarity between the structure factors of Fig. 4.2(a) and 4.2(b) indicate that, in both
systems, London dispersion forces play an important role in their structural features.



Canonical ensemble

0 2 4 6 8 10
q (Å

-1
)

-1

0

1

2
S(

q)

100 K
200 K
300 K
400 K

0 2 4 6 8 10
q (Å

-1
)

-1

0

1

2

S(
q)

213 K
273 K

(a) (b)

Fig. 4.5 (a) Structure factors corresponding to the radial distribution functions in Fig. 4.2.

(b) N–N partial structure factors for liquid ammonia at 213 K and 273 K from Ricci et al.

(1995).

4.6.3 Thermodynamic quantities from the radial distribution function

The spatial distribution functions discussed previously can be used to express a number
of important thermodynamic properties of a system. Consider first the total internal
energy. In the canonical ensemble, this is given by the thermodynamic derivative

E = − ∂

∂β
ln Q(N, V, T ). (4.6.33)

Since Q(N, V, T ) = Z(N, V, T )/(N !λ3N), it follows that

E = − ∂

∂β
[lnZ(N, V, T )− ln N ! − 3N ln λ] . (4.6.34)

Recall that λ is temperature dependent, so that ∂λ/∂β = λ/(2β). Thus, the energy is
given by

E =
3N

λ

∂λ

∂β
− ∂ ln Z

∂β

=
3N

2
kT − 1

Z

∂Z

∂β
. (4.6.35)

From eqn. (4.6.4), we obtain

− 1

Z

∂Z

∂β
=

1

Z

∫
dr1 · · ·drN U(r1, ..., rN )e−βU(r1,....,rN) = 〈U〉, (4.6.36)

and the total energy becomes
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E =
3

2
NkT + 〈U〉. (4.6.37)

Moreover, since 3NkT/2 = 〈∑N
i=1 p2

i /2mi〉, we can write eqn. (4.6.37) as

E =

〈
N∑

i=1

p2
i

2mi
+ U(r1, ..., rN )

〉
= 〈H(r,p)〉, (4.6.38)

which is just the sum of the average kinetic and average potential energies over the
canonical ensemble. In eqns. (4.6.37) and (4.6.38), we have expressed a thermody-
namic quantity as an ensemble average of a phase space function. Such a phase space
function is referred to as an instantaneous estimator for the corresponding thermo-
dynamic quantity. For the internal energy E, it should come as no surprise that the
corresponding estimator is just the Hamiltonian H(r,p).

Let us now apply eqn. (4.6.37), to a pair potential, such as that of eqn. (3.14.3).
Taking the general form of the potential to be

Upair(r1, ..., rN ) =

N∑
i=1

N∑
j>i

u(|ri − rj |), (4.6.39)

the ensemble average of Upair becomes

〈Upair〉 =
1

Z

N∑
i=1

N∑
j>i

∫
dr1 · · ·drN u(|ri − rj |)e−βUpair(r1,...,rN). (4.6.40)

Note, however, that every term in the sum over i and j in the above expression can
be transformed into ∫

dr1 · · ·drN u(|r1 − r2|)e−βUpair(r1,...,rN)

by simply relabeling the integration variables. Since there are N(N −1)/2 such terms,
the average potential energy becomes

〈Upair〉 =
N(N − 1)

2Z

∫
dr1 · · ·drN u(|r1 − r2|)e−βUpair(r1,...,rN)

=
1

2

∫
dr1 dr2 u(|r1 − r2|)

×
[
N(N − 1)

Z

∫
dr3 · · ·drN e−βUpair(r1,...,rN)

]
. (4.6.41)

However, the quantity in the square brackets is nothing more that the pair correlation
function g(2)(r1, r2). Thus,

〈Upair〉 =
ρ2

2

∫
dr1 dr2 u(|r1 − r2|)g(2)(r1, r2). (4.6.42)
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Proceeding as we did in deriving g(r) (Section 4.6), we introduce the change of variables
in eqn. (4.6.14), which gives

〈Upair〉 =
N2

2V 2

∫
dr dR u(r)g̃(2)(r,R). (4.6.43)

Next, assuming g(2) is independent of R, then integrating over this variable simply
cancels a factor of volume in the denominator, yielding

〈Upair〉 =
N2

2V

∫
dr u(r)g̃(r). (4.6.44)

Introducing spherical polar coordinates and assuming g̃(r) is independent of θ and φ,
integrating over the angular variables leads to

〈Upair〉 =
N2

2V

∫ ∞

0

dr4πr2u(r)g(r). (4.6.45)

Finally, inserting eqn. (4.6.45) into eqn. (4.6.37) gives the energy expression

E =
3

2
NkT + 2πNρ

∫ ∞

0

dr r2 u(r)g(r), (4.6.46)

which involves only the functional form of the pair potential and the radial distribution
function. Note that extending the integral over r from 0 to ∞ rather than limiting
it to the physical domain is justified if the potential is short-ranged. Interestingly, if
the potential energy U(r1, ..., rN ) includes additional N -body terms, such as 3-body
or 4-body terms, then by extension of the above analysis, an expression analogous to
eqn. (4.6.46) for the average energy would include additional terms involving general
N -point correlation functions, e.g. g(3) and g(4), etc.

Let us next consider the pressure, which is given by the thermodynamic derivative

P = kT
∂

∂V
ln Q(N, V, T ) =

kT

Z(N, V, T )

∂Z(N, V, T )

∂V
. (4.6.47)

This derivative can be performed only if we have an explicit volume dependence in
the expression for Z(N, V, T ). For a Hamiltonian of the standard form

H =

N∑
i=1

p2
i

2mi
+ U(r1, ..., rN ), (4.6.48)

the configurational partition function is

Z(N, V, T ) =

∫
D(V )

dr1 · · ·
∫

D(V )

drN e−βU(r1,...,rN), (4.6.49)

where D(V ) is spatial domain defined by the physical container. It can be seen imme-
diately that the volume dependence is contained implicitly in the integration limits, so
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that the volume differentiation cannot be easily performed. The task would be made
considerably simpler if the volume dependence could be moved into the integrand by
some means. In fact, we can achieve this by a simple change of variables in the integral.
The change of variables we seek should render the limits independent of the box size.
In a cubic box of length L, for example, the range of all of the integrals is [0, L], which
suggests that if we introduce new Cartesian coordinates

si =
1

L
ri i = 1, ..., N, (4.6.50)

all of the integrals range from 0 to 1. The coordinates s1, ..., sN are called scaled
coordinates. For orthorhombic boxes, the transformation can be generalized to

si =
1

V 1/3
ri, (4.6.51)

where V is the volume of the box. Performing this change of variables in Z(N, V, T )
yields

Z(N, V, T ) = V N

∫
ds1 · · ·dsN exp

[
−βU

(
V 1/3s1, ..., V

1/3sN

)]
. (4.6.52)

The volume derivative of Z(N, V, T ) may now be easily computed as

∂Z

∂V
=

N

V
Z(N, V, T ) − βV N

∫
ds1 · · ·dsN

1

3V

[
N∑

i=1

ri · ∂U

∂ri

]
e−βU(r1,...,rN)

=
N

V
Z(N, V, T ) +

β

3V

∫
dr1 · · ·drN

[
N∑

i=1

ri · Fi

]
e−βU(r1,...,rN) (4.6.53)

Thus,

1

Z

∂Z

∂V
=

N

V
+

β

3V

〈
N∑

i=1

ri ·Fi

〉
, (4.6.54)

so that the pressure becomes

P =
NkT

V
+

1

3V

〈
N∑

i=1

ri · Fi

〉
. (4.6.55)

Again, using the fact that NkT/V = (1/3V )〈∑N
i=1 p2

i /mi〉, eqn. (4.6.55) becomes

P =
1

3V

〈
N∑

i=1

[
p2

i

mi
+ ri ·Fi

]〉
. (4.6.56)

The quantity in the angle brackets in eqn. (4.6.56) is an instantaneous estimator P(r,p)
for the pressure

P(r,p) =
1

3V

N∑
i=1

[
p2

i

mi
+ ri ·Fi

]
. (4.6.57)

Note the presence of the virial in eqns. (4.6.55) and (4.6.56). When, Fi = 0, the
pressure reduces to the usual ideal gas law. In addition, because of the virial theorem,
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the two terms in eqn. (4.6.57) largely cancel, so that this estimator essentially measures
boundary effects. One final note concerns potentials that have an explicit volume
dependence. Volume dependence in the potential arises, for example, in molecular
dynamics calculations in systems with long-range forces. For such potentials, eqn.
(4.6.57) is modified to read

P(r,p) =
1

3V

[
N∑

i=1

p2
i

mi
+

N∑
i=1

ri ·Fi − 3V
∂U

∂V

]
. (4.6.58)

We now consider eqn. (4.6.55) for the case of a pair-wise additive potential (with no
explicit volume dependence). For such a potential, it is useful to introduce the vector,
fij , which is the force on particle i due to particle j with

Fi =
∑
j �=i

fij . (4.6.59)

From Newton’s third law
fij = −fji. (4.6.60)

In terms of fij , the virial can be written as

N∑
i=1

ri · Fi =

N∑
i=1

N∑
j=1,j �=i

ri · fij ≡
∑

i,j,i�=j

ri · fij . (4.6.61)

By interchanging the i and j summations in the above expression, we obtain

N∑
i=1

ri ·Fi =
1

2

⎡
⎣ ∑

i,j,i�=j

ri · fij +
∑

i,j,i�=j

rj · fji

⎤
⎦ (4.6.62)

so that, using Newton’s third law, the virial can be expressed as

N∑
i=1

ri · Fi =
1

2

⎡
⎣ ∑

i,j,i�=j

ri · fij −
∑

i,j,i�=j

rj · fij

⎤
⎦

=
1

2

∑
i,j,i�=j

(ri − rj) · fij ≡ 1

2

∑
i,j,i�=j

rij · fij , (4.6.63)

where rij = ri − rj . The ensemble average of this quantity is

β

3V

〈
N∑

i=1

ri · Fi

〉
=

β

6V

〈 ∑
i,j,i�=j

rij · fij
〉

=
β

6V Z

∫
dr1 · · ·drN

⎡
⎣ ∑

i,j,i�=j

rij · fij

⎤
⎦ e−βUpair(r1,...,rN). (4.6.64)

As we saw in the derivation of the internal energy, all of the integrals can be made
identical by changing the particle labels. Hence,
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β

3V

〈
N∑

i=1

ri · Fi

〉
=

βN(N − 1)

6V Z

∫
dr1 · · ·drN r12 · f12 e−βUpair(r1,...,rN)

=
β

6V

∫
dr1dr2 r12 · f12

[
N(N − 1)

Z

∫
dr3 · · · drNe−βUpair(r1,...,rN)

]

=
β

6V

∫
dr1dr2 r12 · f12 ρ(2)(r1, r2)

=
βN2

6V 3

∫
dr1dr2 r12 · f12 g(2)(r1, r2), (4.6.65)

and we obtain

f12 = −∂Upair

∂r12
= −u′(|r1 − r2|) (r1 − r2)

|r1 − r2| = −u′(r12)
r12

r12
, (4.6.66)

where u′(r) = du/dr, and r12 = |r12|. Substituting this into the ensemble average
gives

β

3V

〈
N∑

i=1

ri · Fi

〉
= −βN2

6V 3

∫
dr1dr2 u′(r12)r12g

(2)(r1, r2). (4.6.67)

As was done for the average energy, we change variables using eqn. (4.6.14), which
yields

β

3V

〈
N∑

i=1

ri · Fi

〉
= −βN2

6V 3

∫
dr dR u′(r)rg̃(2)(r,R)

= −βN2

6V 2

∫
dr u′(r)rg̃(r)

= −βN2

6V 2

∫ ∞

0

dr4πr3u′(r)g(r). (4.6.68)

Therefore, the pressure becomes

P

kT
= ρ − 2πρ2

3kT

∫ ∞

0

dr r3u′(r)g(r), (4.6.69)

which is a simple expression for the pressure in terms of the derivative of the pair
potential form and the radial distribution function.

Eqn. (4.6.69) is in the form of an equation of state and is exact for pair-wise
potentials. The dependence of the second term on ρ and T is more complicated it
appears because g(r) depends on both ρ and T : g(r) = g(r; ρ, T ). At low density,
however, where the thermodynamic properties of a system should dominated by those
of an ideal gas, the second term, which has a leading ρ2 dependence, should be small.
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This fact suggests the low density limit can be accurately approximated by expanding
the ρ dependence of g(r) in a power series in ρ

g(r; ρ, T ) =
∞∑

j=0

ρjgj(r; T ). (4.6.70)

Substituting eqn. (4.6.70) into eqn. (4.6.69) gives the equation of state in the form

P

kT
= ρ +

∞∑
j=0

Bj+2(T )ρj+2. (4.6.71)

Eqn. (4.6.71) is known as the virial equation of state. The coefficients Bj+2(T ) are
given by

Bj+2(T ) = − 2π

3kT

∫ ∞

0

dr r3u′(r)gj(r; T ) (4.6.72)

and are known as the virial coefficients. Eqn. (4.6.71) is still exact. However, in the
low density limit, the expansion can be truncated after the first few terms. If we stop
after the second-order term, for example, then the equation of state reads

P

kT
≈ ρ + B2(T )ρ2 (4.6.73)

with

B2(T ) ≈ − 2π

3kT

∫ ∞

0

dr r3u′(r)g(r) (4.6.74)

since g0(r; T ) ≈ g(r). Thus, the second virial coefficient B2(T ) gives the leading order
deviation from ideal gas behavior. In this limit, the radial distribution function, itself,
can be approximated by (see Problem 4.5)

g(r) ≈ e−βu(r), (4.6.75)

and the second virial coefficient is given approximately by

B2(T ) ≈ −2π

∫ ∞

0

dr r2
(
e−βu(r) − 1

)
. (4.6.76)

These concepts will be important for our development of perturbation theory and the
derivation of the van der Waals equation of state, to be treated in the next section.

4.7 Perturbation theory and the van der Waals equation

Up to this point, the example systems we have considered (ideal gas, harmonic bead-
spring model,...) have been simple enough to permit an analytical treatment but lack
the complexity needed for truly interesting behavior. The theory of distributions pre-
sented in Section 4.6 is useful for characterizing structural and thermodynamic prop-
erties of real gases and liquids, and as Figs. 4.2, 4.3, and 4.5 suggest, these properties
reflect the richness that arises from even mildly complex interparticle interactions. In
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particular, complex systems can exist in different phases (e.g. solid, liquid, gas,...) and
can undergo phase transitions between these different states. By contrast, the ideal
gas, in which the molecular constituents do not interact, cannot exist as anything but
a gas.

In this section, we will consider a model system sufficiently complex to exhibit a
gas–liquid phase transition but simple enough to permit an approximate analytical
treatment. We will see how the phase transition manifests itself in the equation of
state, and we will introduce some of the basic concepts of critical phenomena (to be
discussed in greater detail in Chapter 16).

Before introducing our real-gas model, we first need to develop some important
machinery, specifically, a statistical mechanical perturbation theory for calculating
partition functions. To this end, consider a system whose potential energy can be
written in the form

U(r1, ..., rN ) = U0(r1, ..., rN ) + U1(r1, ..., rN ). (4.7.1)

Here, U1(r1, ..., rN ) is assumed to be a small perturbation to the potential U0(r1, ..., rN ).
We define the configurational partition function for the unperturbed system, described
by U0(r1, ..., rN ), as

Z(0)(N, V, T ) =

∫
dr1 · · ·drN e−βU0(r1,...,rN). (4.7.2)

Then, the total configurational partition function

Z(N, V, T ) =

∫
dr1 · · ·drN e−βU(r1,...,rN) (4.7.3)

can be expressed as

Z(N, V, T ) =

∫
dr1 · · ·drN e−βU0(r1,...,rN)e−βU1(r1,...,rN)

Z(N, V, T ) =
Z(0)(N, V, T )

Z(0)(N, V, T )

∫
dr1 · · ·drN e−βU0(r1,...,rN)e−βU1(r1,...,rN)

= Z(0)(N, V, T )〈e−βU1〉0, (4.7.4)

where an average over the unperturbed ensemble has been introduced. In general, an
unperturbed average 〈a〉0 is defined to be

〈a〉0 =
1

Z(0)(N, V, T )

∫
dr1 · · ·drN a(r1, ..., rN ) e−βU0(r1,...,rN). (4.7.5)

If U1 is a small perturbation to U0, then the average 〈exp(−βU1)〉0 can be expanded
in powers of U1:

〈e−βU1〉0 = 1 − β〈U1〉0 +
β2

2!
〈U2

1 〉0 −
β3

3!
〈U3

1 〉0 + · · · =

∞∑
l=0

(−β)l

l!
〈U l

1〉0. (4.7.6)
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Since the total partition function is given by

Q(N, V, T ) =
Z(N, V, T )

N !λ3N
, (4.7.7)

the Helmholtz free energy becomes

A(N, V, T ) = − 1

β
ln

(
Z(N, V, T )

N !λ3N

)

= − 1

β
ln

(
Z(0)(N, V, T )

N !λ3N

)
− 1

β
ln〈e−βU1〉0. (4.7.8)

The free energy naturally separates into two contributions

A(N, V, T ) = A(0)(N, V, T ) + A(1)(N, V, T ), (4.7.9)

where

A(0)(N, V, T ) = − 1

β
ln

(
Z(0)(N, V, T )

N !λ3N

)
(4.7.10)

is independent of U1 and

A(1)(N, V, T ) = − 1

β
ln〈e−βU1〉0 = − 1

β
ln

∞∑
l=0

(−β)l

l!
〈U l

1〉0, (4.7.11)

where, in the second expression, we have expanded the exponential in a power series.
We easily see that A(0) is the free energy of the unperturbed system, and A(1) is a
correction to be determined perturbatively. To this end, we propose an expansion for
A(1) of the general form

A(1) =

∞∑
k=1

(−β)k−1

k!
ωk, (4.7.12)

where {ωk} is a set of (as yet) unknown expansion coefficients. These coefficients are
determined by the condition that eqn. (4.7.12) be consistent with eqn. (4.7.11) at each
order in the two expansions.

We can equate the two expressions for A(1) by further expanding the natural log
in eqn. (4.7.11) using

ln(1 + x) =

∞∑
k=1

(−1)k−1 xk

k
. (4.7.13)

Substituting eqn. (4.7.13) into eqn. (4.7.11) gives

A(1)(N, V, T ) = − 1

β
ln〈e−βU1〉0

= − 1

β
ln

(
1 +

∞∑
l=1

(−β)l

l!
〈U l

1〉0
)
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= − 1

β

∞∑
k=1

(−1)k−1 1

k

( ∞∑
l=1

(−β)l

l!
〈U l

1〉0
)k

. (4.7.14)

Equating eqn. (4.7.14) to eqn. (4.7.12) and canceling an overall factor of 1/β gives

∞∑
k=1

(−1)k−1 1

k

( ∞∑
l=1

(−β)l

l!
〈U l

1〉0
)k

=

∞∑
k=1

(−β)k ωk

k!
. (4.7.15)

In order to determine the unknown coefficients ωk, we equate like powers of β on
both sides. Note that this will yield an expansion in powers such as 〈U1〉k and 〈Uk

1 〉,
consistent with the perturbative approach we have been following. To see how the
expansion arises, consider working to first order only and equating the β1 terms on
both sides. On the right side, the β1 term is simply −βω1/1!. On the left side, the
term with l = 1, k = 1 is of order β1 and is −β〈U1〉0/1!. Thus, equating these two
expressions allows us to determine ω1:

ω1 = 〈U1〉0. (4.7.16)

The coefficient ω2 can be determined by equating terms on both sides proportional
to β2. On the right side, this term is β2ω2/2!. On the left side, the l = 1, k = 2 and
l = 2, k = 1 terms both contribute, giving

β2

2

(〈U2
1 〉0 − 〈U1〉20

)
.

By equating the two expressions, we find that

ω2 = 〈U1〉20 − 〈U2
1 〉0 =

〈
(U1 − 〈U1〉0)2

〉
0
. (4.7.17)

Interestingly, ω2 is related to the fluctuation in U1 in the unperturbed ensemble. This
procedure can be repeated to generate as many orders in the expansion as desired. At
third order, for example, the reader should verify that ω3 given by

ω3 = 〈U3
1 〉0 − 3〈U1〉0〈U2

1 〉0 + 2〈U1〉30. (4.7.18)

The expressions for ω1, ω2 and ω3 are known as the first, second, and third cumulants
of U1(r1, ..., rN ), respectively. The expansion in eqn. (4.7.12) is, therefore, known as a
cumulant expansion, generally given by

A(1) =

∞∑
k=1

(−β)k−1

k!
〈Uk

1 〉c, (4.7.19)

where 〈Uk
1 〉c denotes the kth cumulant of U1.

In general, suppose a random variable y has a probability distribution function
P (y). The cumulants of y can all be obtained by the use of a cumulant generating
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function. Let λ be an arbitrary parameter. Then, the cumulant generating function
R(λ) is defined to be

R(λ) = ln
〈
eλy

〉
(4.7.20)

The nth cumulant of y, denoted 〈y〉c is then obtained from

〈yn〉c =
dn

dλn
R(λ)

∣∣∣∣
λ=0

(4.7.21)

Eqn. (4.7.21) can be generalized to N random variables y1, ..., yN with a probability
distribution function P (y1, ..., yN ). The cumulant generating function now depends on
N parameters λ1, ..., λN and is defined to be

R(λ1, ..., λN ) = ln

〈
exp

(
N∑

i=1

λiyi

)〉
. (4.7.22)

A general cumulant is now defined to be

〈yν1
1 yν2

2 · · · yνN

N 〉c =

[
∂ν1

∂λν1
1

∂ν2

∂λν2
2

· · · ∂νN

∂λνN

N

]
R(λ1, ..., λN )

∣∣∣∣
λ1=···=λN =0

(4.7.23)

More detailed discussion about cumulants and their application in quantum chem-
istry and quantum dynamics are provided by Kladko and Fulde (1998) and Causo et
al. (2006), respectively, for the interested reader.

Substituting eqns. (4.7.16), (4.7.17), and (4.7.18) into eqn. (4.7.19) and adding A(0)

gives the free energy up to third order in U1:

A = A(0) + ω1 − β

2
ω2 +

β2

6
ω3 · · ·

= − 1

β
ln

(
Z(0)(N, V, T )

N !λ3N

)
+ 〈U1〉0

− β

2

(〈U2
1 〉0 − 〈U1〉20

)
+

β2

6

(〈U3
1 〉0 − 3〈U1〉0〈U2

1 〉0 + 2〈U1〉30
)

+ · · · . (4.7.24)

It is evident that each term in eqn. (4.7.24) involves increasingly higher powers of U1

and its averages.
Suppose next that U0 and U1 are both pair-wise additive potentials of the form

U0(r1, ..., rN ) =

N∑
i=1

N∑
j>i

u0(|ri − rj |)

U1(r1, ..., rN ) =

N∑
i=1

N∑
j>i

u1(|ri − rj |). (4.7.25)

By the same analysis that led to eqn. (4.6.45), the unperturbed average of U1 is
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〈U1〉0 = 2πNρ

∫ ∞

0

dr r2u1(r)g0(r), (4.7.26)

where g0(r) is the radial distribution function of the unperturbed system at a given
density and temperature. In this case, the Helmholtz free energy, to first order in U1,
is

A(N, V, T ) ≈ − 1

β
ln

(
Z(0)(N, V, T )

N !λ3N

)
+ 2πρN

∫ ∞

0

dr r2u1(r)g0(r). (4.7.27)

We now wish to use the framework of perturbation theory to formulate a statistical
mechanical model capable of describing real gases and a gas–liquid phase transition. In
Fig. 4.2(a), we depicted a pair-wise potential energy capable of describing both gas and
liquid phases. However, the form of this potential, eqn. (3.14.3), is too complicated for
an analytical treatment. Thus, we seek a crude representation of such a potential that
can be treated within perturbation theory. Consider replacing the 4ε(σ/r)12 repulsive
wall by a simpler hard sphere potential,

u0(r) =

{
0 r > σ
∞ r ≤ σ

(4.7.28)

which we will use to define the unperturbed ensemble. Since we are interested in the
gas–liquid phase transition, we will work in the low density limit appropriate for the
gas phase. In this limit, we can apply eqn. (4.6.75) and write the unperturbed radial
distribution function as

g0(r) ≈ e−βu0(r) =

{
1 r > σ
0 r ≤ σ

= θ(r − σ) (4.7.29)

For the perturbation u1(r), we need to mimic the attractive part of Fig. 4.2(a), which
is determined by the −4ε(σ/r)6 term. In fact, the particular form of u1(r) is not
particularly important as long as u1(r) < 0 for all r and u1(r) is short-ranged. Thus,
our crude representation of Fig. 4.2(a) is shown in Fig. 4.6. Despite the simplicity of
this model, some very interesting physics can be extracted.

Consider the perturbative correction A(1), which is given to first order in U1 by

A(1) ≈ = 2πNρ

∫ ∞

0

r2u1(r)g0(r) dr

= 2πNρ

∫ ∞

0

r2u1(r)θ(r − σ) dr

= 2πNρ

∫ ∞

σ

r2u1(r) dr ≡ −aNρ,

where

a = −2π

∫ ∞

σ

r2u1(r) dr > 0. (4.7.30)

Since u1(r) < 0, a must be positive. Next, in order to determine A(0), it is necessary
to determine Z(0)(N, V, T ). Note that if σ were equal to 0, the potential u0(r) would
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Fig. 4.6 Plot of the potential u0(r) + ur(r). The dashed line corresponds to r = 0.

vanish, and Z(0)(N, V, T ) would just be the ideal gas configurational partition func-
tion Z(0)(N, V, T ) = V N . Thus, in the low density limit, we might expect that the
unperturbed configurational partition function, to a good approximation, would be
given by

Z(0)(N, V, T ) ≈ V N
available, (4.7.31)

where Vavailable is the total available volume to the system. For a hard sphere gas,
Vavailable < V since there is a distance of closest approach between any pair of parti-
cles. Smaller interparticle separations are forbidden, as the potential u0(r) suddenly
increases to ∞. Thus, there is an excluded volume Vexcluded that is not accessible to
the system, and the available volume can be reexpressed as Vavailable = V − Vexcluded.
The excluded volume, itself, can be written as Vexcluded = Nb where b is the excluded
volume per particle. In order to see what this excluded volume is, consider Fig. 4.7,
which shows two spheres at their minimum separation, where the distance between
their centers is σ. If we now consider a larger sphere that encloses the two particles
when they are at closest contact (shown as a dashed line), then the radius of this sphere
is exactly σ, and the its volume is 4πσ3/3. This is the total excluded volume for two
particles. Hence, the excluded volume per particle is just half of this or b = 2πσ3/3,
and the unperturbed configurational partition function is given approximately by

Z(0)(N, V, T ) =

(
V − 2Nπσ3

3

)N

= (V − Nb)N . (4.7.32)

Therefore, the free energy, to first order, becomes
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σ

σ

Fig. 4.7 Two hard spheres of diameter σ at closest contact. The distance between their cen-

ters is also σ. A sphere of radius σ just containing the two particles is shown in cross-section.

A(N, V, T ) ≈ − 1

β
ln

[
(V − Nb)N

N !λ3N

]
− aN2

V
. (4.7.33)

We now use this free energy to compute the pressure from

P = −
(

∂A

∂V

)
, (4.7.34)

which gives

P =
NkT

V − Nb
− aN2

V 2

P

kT
=

ρ

1 − ρb
− aρ2

kT
. (4.7.35)

Eqn. (4.7.35) is known as the van der Waals equation of state. Specifically, it is an
equation of state for a system described by the pair potential u(r) = u0(r) + u1(r) to
first order in perturbation theory in the low density limit. Given the many approxi-
mations made in the derivation of eqn. (4.7.35) and the crudeness of the underlying
model, we cannot expect it to be applicable over a wide range of P , V , and T values.
Nevertheless, if we plot the isotherms of the van der Waals equation, something quite
interesting emerges (see Fig. 4.8). For temperatures larger than a certain tempera-
ture Tc, the isotherms resemble those of an ideal gas. At Tc, however, we see that the
isotherm is flat in a small region. That is, at this point, the “flatness” of the isotherm
is characterized by the conditions

∂P

∂V
= 0,

∂2P

∂V 2
= 0. (4.7.36)

The first and second conditions imply that the slope of the isotherm and its curvature,
respectively, vanish at the point of “flatness”. For temperatures below Tc, the isotherms
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Fig. 4.8 Isotherms of the van der Waals equation of state for four different temperatures.

take on an unphysical character: They all possess a region in which simultaneously P
and V increase. As already noted, considering the many approximations made, regions
of unphysical behavior should come as no surprise. A physically realistic isotherm for
T < Tc should have the unphysical region replaced by the thin solid line in Fig. 4.8.
From the placement of this thin line, we see that the isotherm exhibits a discontinuous
change in the volume for a very small change in pressure, signifying a gas–liquid phase
transition. The isotherm at T = Tc is a kind of “boundary” between isotherms along
which V is continuous (T > Tc) and those that exhibit discontinuous volume changes
(T < Tc). For this reason, the T = Tc isotherm is called the critical isotherm. The
point at which the isotherm is flat is known as the critical point. On a phase diagram,
this would be the point at which the gas–liquid coexistence curve terminates. The
conditions in eqn. (4.7.36) define the temperature, volume, and pressure at the critical
point. The first and second derivatives of eqn. (4.7.35) with respect to V yield two
equations in the two unknowns V and T :

− NkT

(V − Nb)2
+

2aN2

V 3
= 0

2NkT

(V − Nb)3
− 6aN2

V 4
= 0. (4.7.37)

Solving these equations leads to the critical volume Vc and critical temperature Tc:

Vc = 3Nb, kTc =
8a

27b
. (4.7.38)
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Substitution of the critical volume and temperature into the van der Waals equation
gives the critical pressure Pc:

Pc =
a

27b2
. (4.7.39)

Let us now consider the behavior of a particular thermodynamic quantity as the
critical point is approached. Because we are interested in the relationship between
pressure and volume as the critical point is approached, it is useful to study the
isothermal compressibility, defined to be

κT = − 1

V

(
∂V

∂P

)
T

= − 1

V (∂P/∂V )
. (4.7.40)

At V = Vc, the pressure derivative gives

∂P

∂V

∣∣∣∣
V =Vc

= − NkT

2N2b2
+

2aN2

27N3b3

=
1

4Nb2

(
8a

27b
− kT

)

∼ (Tc − T ), (4.7.41)

so that

κT ∼ (T − Tc)
−1. (4.7.42)

This shows that at V = Vc, as T approaches Tc from above, the isothermal com-
pressibility diverges according to a power law. That κT diverges is also confirmed
experimentally. The power-law divergence of κT can be expressed generally in the
form

κT ∼ |T − Tc|−γ , (4.7.43)

where γ is an example of what is termed a critical exponent. The van der Waals theory
clearly predicts that the value of γ = 1.

Briefly, critical exponents describe the behavior of systems near their critical points.
A critical point is a point in the phase diagram where a coexistence curve terminates.
For example, a simple molecular system that can exist as a solid, liquid, or gas has a
critical point on the gas–liquid coexistence curve. Similarly, a ferromagnetic material
has a critical point on the coexistence curve between its two ordered phases. As a
critical point is approached, certain thermodynamic properties are observed to diverge
according to power laws that are characterized by the critical exponents. These will
be explored in more detail in Chapter 16. What is particularly fascinating about
these exponents is that they are the same across large classes of systems that are
otherwise very different physically. These classes are known as universality classes, and
their existence suggests that the local detailed interactions among particles become
swamped by long-range cooperative effects that dominate the behavior of a system at
its critical point.
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Other critical exponents are defined as follows: The heat capacity, CV at V = Vc

is observed to diverge, as T approaches Tc, according to

CV ∼ |T − Tc|−α. (4.7.44)

Near the critical point, the equation of state is observed to behave as

P − Pc ∼ |ρ − ρc|δsign(ρ − ρc). (4.7.45)

Finally, the shape of the gas–liquid coexistence curve (in the ρ–T plane) near the
critical point for T < Tc is

ρL − ρG ∼ (Tc − T )β. (4.7.46)

The four exponents, α, β, γ, δ comprise the four principal critical exponents.
In order to calculate α, we first compute the energy according to

E = − ∂

∂β
ln Q(N, V, T ) =

∂

∂β
[βA(N, V, T )]

= − ∂

∂β

{
ln

[
(V − Nb)N

N !λ3N

]
− aN2

V

}
. (4.7.47)

Since the only temperature dependence comes from λ, it is clear that the energy
will just be given by the ideal gas result E = 3NkT/2, so that the heat capacity
CV = (∂E/∂T ) is independent of T or simply CV ∼ |T − Tc|0. From this, it follows
that the van der Waals theory predicts α = 0. The value of δ can be easily deduced
as follows: In the van der Waals theory, the equation of state is the analytical form of
eqn. (4.7.35). Thus, we may expand P in a power series in ρ about the critical values
according to

P = Pc+
∂P

∂ρ

∣∣∣∣
ρc,Tc

(ρ−ρc)+
1

2

∂2P

∂ρ2

∣∣∣∣
ρc,Tc

(ρ−ρc)
2+

1

6

∂3P

∂ρ3

∣∣∣∣
ρc,Tc

(ρ−ρc)
3+· · · . (4.7.48)

Since

∂P

∂ρ
=

∂P

∂V

∂V

∂ρ

∂2P

∂ρ2
=

[
∂2P

∂V 2

(
∂V

∂ρ

)2

+
∂P

∂V

∂2V

∂ρ2

]
. (4.7.49)

Both derivatives vanish at the critical point because of the conditions in eqn. (4.7.36).
It can be easily verified, however, that the third derivative is not zero, so that the first
nonvanishing term in eqn. (4.7.48) (apart from the constant term) is

P − Pc ∼ (ρ − ρc)
3, (4.7.50)

which leads to the prediction that δ = 3. The calculation of β is somewhat more
involved, so for now, we simply quote the result, namely, that the van der Waals
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theory predicts β = 1/2. We will discuss this exponent in more detail in Chapter 16.
In summary, the van der Waals theory predicts the four principal exponents to be
α = 0, β = 1/2, γ = 1, and δ = 3. Experimental determination of these exponents
gives α = 0.1, β = 0.34, γ = 1.35, and δ = 4.2, and we can conclude that the van der
Waals theory is only a qualitative theory.

4.8 Molecular dynamics in the canonical ensemble: Hamiltonian

formulation in an extended phase space

Our treatment of the canonical ensemble naturally raises the question of how molecular
dynamics simulations can be performed under the external conditions of this ensemble.
After all, as noted in the previous chapter, simply integrating Hamilton’s equations of
motion generates a microcanonical ensemble as a consequence of the conservation of
the total Hamiltonian. By contrast, in a canonical ensemble, energy is not conserved
but fluctuates so as to generate the Boltzmann distribution exp[−βH(q, p)] due to
exchange of energy between the system and the thermal reservoir to which it is coupled.
Although we argued that these energy fluctuations vanish in the thermodynamic limit,
most simulations are performed far enough from this limit that the fluctuations cannot
be neglected.

In order to generate these fluctuations in a molecular dynamics simulation, we
need to mimic the effect of the thermal reservoir. Various methods to achieve this
have been proposed (Andersen, 1980; Nosé and Klein, 1983; Berendsen et al., 1984;
Nosé, 1984; Evans and Morriss, 1984; Hoover, 1985; Martyna et al., 1992; Liu and
Tuckerman, 2000). We will discuss several of these approaches in the remainder of this
chapter. It must be mentioned at the outset, however, that most canonical “dynamics”
methods do not actually yield any kind of realistic dynamics for a system coupled to
a thermal bath. Rather, the trajectories generated by these schemes comprise a set of
microstates consistent with the canonical distribution. In other words, they produce a
sampling of the canonical phase space distribution from which equilibrium observables
can be computed. The problem of generating dynamical properties consistent with a
canonical distribution will be treated later in Chapters 13–15.

The most straightforward approach to kinetic control is a simple periodic rescaling
of the velocities such that the instantaneous kinetic energy corresponds to a desired
temperature. While easy to implement, this approach does not guarantee that a canon-
ical phase space distribution is obtained. We can improve upon this approach by re-
placing the velocity scaling by a periodic resampling of the velocities from the Maxwell-
Boltzmann distribution. Such a scheme only guarantees that a canonical momentum–
space distribution is obtained. Nevertheless, it can be useful in the initial stages of
a molecular dynamics calculation as a means of relaxing unfavorable contacts arising
from poorly chosen initial positions. This method can be further refined (Andersen,
1980) by selecting a subset of velocities to be resampled at each time step according to
preset collision frequency ν. The probability that any particle will suffer a “collision”
(a resampling event) in a time Δt is νΔt. Thus, if a random number in the interval
[0, 1] is less than νΔt, the particle’s velocity is resampled.

Of all the canonical dynamics methods, by far the most popular are the “extended
phase space” approaches (Andersen, 1980; Nosé and Klein, 1983; Nosé, 1984; Hoover,
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1985; Martyna et al., 1992; Liu and Tuckerman, 2000). These techniques supplement
the physical phase space with additional variables that serve to mimic the effect of a
heat bath within a continuous, deterministic dynamical scheme. The extended phase
space methodology allows the greatest amount of flexibility and creativity in devis-
ing canonical dynamics algorithms. Moreover, the idea of extending the phase space
has lead to other important algorithmic advances such as the Car–Parrinello molec-
ular dynamics approach (Car and Parrinello, 1985) for marrying electronic structure
with finite temperature dynamics as well as methods for computing free energies (see
Chapter 8).

4.8.1 The Nosé Hamiltonian

Extended phase space methods can be either Hamiltonian or non-Hamiltonian in their
formulation. Here, we begin with a Hamiltonian approach originally introduced by S.
Nosé (1983, 1984). Nosé’s approach can be viewed as a kind of Maxwell daemon. An
additional “agent” is introduced into a system that “checks” whether the instantaneous
kinetic energy is higher or lower than the desired temperature and then scales the
velocities accordingly. Denoting this variable as s and its conjugate momentum as ps,
the Nosé Hamiltonian for a system with physical coordinates r1, ..., rN and momenta
p1, ...,pN , takes the form

HN =
N∑

i=1

p2
i

2mis2
+ U(r1, ..., rN ) +

p2
s

2Q
+ gkT ln s, (4.8.1)

where Q is a parameter that determines the time scale on which the daemon acts. Q is
not a mass! In fact, it has units of energy × time2. T is the desired temperature of the
canonical distribution. If d is the number of spatial dimensions, then the phase space
now has a total of 2dN + 2 dimensions with the addition of s and ps. The parameter
g appearing in eqn. (4.8.1) will be determined by the condition that a microcanonical
distribution of 2dN +2-dimensional phase space of HN yields a canonical distribution
in the 2dN -dimensional physical phase space. The presence of s in the kinetic energy
is essentially what we would expect for an agent that must scale the kinetic energy
in order to control its fluctuations. The choice gkT ln s as the potential in s, though
seemingly mysterious, is carefully chosen to ensure that a canonical distribution in the
physical phase space is obtained.

In order to see how the canonical distribution emerges from HN, consider the
microcanonical partition function of the full 2dN + 2-dimensional phase space:

Ω =

∫
dNr dNp ds dps

×δ

(
N∑

i=1

p2
i

2mis2
+ U(r1, ..., rN ) +

p2
s

2Q
+ gkT ln s − E

)
, (4.8.2)

where E is the energy of the ensemble. (For clarity, prefactors preceding the inte-
gral have been left out.) The distribution of the physical phase space is obtained by
integrating over s and ps. We first introduce a change of momentum variables:
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p̃i =
pi

s
, (4.8.3)

which gives

Ω =

∫
dNr dN p̃ ds dps sdNδ

(
N∑

i=1

p̃2
i

2mi
+ U(r1, ..., rN ) +

p2
s

2Q
+ gkT ln s − E

)

=

∫
dNr dNp ds dps sdNδ

(
H(r,p) +

p2
s

2Q
+ gkT ln s − E

)
, (4.8.4)

where H(r,p) is the physical Hamiltonian

H =
N∑

i=1

p2
i

2mi
+ U(r1, ..., rN ). (4.8.5)

In the last line of eqn. (4.8.4), we have renamed p̃i as pi. We can now integrate over
s using the δ-function by making use of the following identity: Given a function f(s)
that has a single zero at s0, δ(f(s)) can be replaced by

δ(f(s)) =
δ(s − s0)

|f ′(s0)| . (4.8.6)

Taking f(s) = H(r,p) + p2
s/2Q + gkT ln s − E, the solution of f(s0) = 0 is

s0 = e(E−H(r,p)−p2
s/2Q)/gkT

1

|f ′(s0)| =
1

gkT
e(E−H(r,p)−p2

s/2Q)/gkT . (4.8.7)

Substituting eqn. (4.8.7) into eqn. (4.8.4) yields

Ω =
1

gkT

∫
dNp dNr dps e(dN+1)(E−H(r,p)−p2

s/2Q)/gkT . (4.8.8)

Thus, if the parameter g is chosen to be dN + 1, then, after performing the ps inte-
gration, eqn. (4.8.8) becomes

Ω =
eE/kT

√
2πQkT

(dN + 1)kT

∫
dNp dNr e−H(r,p)/kT , (4.8.9)

which is the canonical partition function, apart from the prefactors. Our analysis
shows how a microcanonical distribution of the Nosé Hamiltonian HN is equivalent to
a canonical distribution in the physical Hamiltonian. This suggests that a molecular
dynamics calculation performed using HN should generate sampling of the canonical
distribution exp[−βH(r,p)] under the usual assumptions of ergodicity. Because the
Nosé Hamiltonian mimics the effect of a heat bath by controlling the fluctuations
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in the kinetic energy, the mechanism of the Nosé Hamiltonian is also known as a
thermostatting mechanism.

The equations of motion generated by HN are

ṙi =
∂HN

∂pi
=

pi

mis2

ṗi = −∂HN

∂ri
= Fi

ṡ =
∂HN

∂ps
=

ps

Q

ṗs = −∂HN

∂s
=

N∑
i=1

p2
i

mis3
− gkT

s
=

1

s

[
N∑

i=1

p2
i

mis2
− gkT

]
. (4.8.10)

The ṙi and ṗs equations reveal that the thermostatting mechanism works on an un-
conventional kinetic energy

∑
i p

2
i /(2mis

2). This form suggests that the more familiar
kinetic energy can be recovered by introducing the following (noncanonical) change of
variables:

p′
i =

pi

s
, p′s =

ps

s
, dt′ =

dt

s
. (4.8.11)

When eqn. (4.8.11) is substituted into eqns. (4.8.10), the equations of motion become

dri

dt′
=

p′
i

mi

dp′
i

dt′
= Fi − sp′s

Q
p′

i

ds

dt′
=

s2p′s
Q

dp′s
dt′

=
1

s

[
N∑

i=1

(p′
i)

2

mi
− gkT

]
− s(p′s)

2

Q
. (4.8.12)

Because of the noncanonical transformation, these equations lose their symplectic
structure, meaning that they are no longer Hamiltonian. In addition, they involve
an unconventional definition of time due to the scaling by the variable s. This scaling
makes the equations somewhat cumbersome to use directly in the form of (4.8.12). In
the next few sections, we will examine two methods for transforming the Nosé equa-
tions into a form that is better suited for use in molecular dynamics calculations.

4.8.2 The Nosé-Poincaré Hamiltonian

The Nosé–Poincaré method (Bond et al., 1999) is named for a class of transformations
known as Poincaré transformations, which are time-scaling transformations commonly
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used in celestial mechanics (Zare and Szebehely, 1975). Given a Hamiltonian H(x), we
define a transformed Hamiltonian H̃(x) by

H̃(x) = f(x)
(
H(x) − H(0)

)
, (4.8.13)

where H(0) is the initial value of the Hamiltonian H(x). The equations of motion
derived from H̃(x) are

ẋ = f(x)M
∂H

∂x
+

(
H(x) − H(0)

)
M

∂f

∂x
, (4.8.14)

where M is the matrix in eqn. (1.6.27). Eqn. (4.8.14) shows that when H(x) = H(0),
the equations of motion are related to the usual Hamiltonian equations dx/dt′ =
M(∂H/∂x) by the time scaling transformation dt′ = dt/f(x).

Bond, et al. (1999) exploited this type of transformation to yield a new ther-
mostatting scheme with the correct intrinsic definition of time. Based on our analysis
of the Nosé Hamiltonian, it is clear that to “undo” the time scaling, we should choose
f(x) = s and define a transformed Hamiltonian

H̃N =
(
HN(r, s,p, ps) − H

(0)
N

)
s

=

(
N∑

i=1

p2
i

2mis2
+ U(r1, ..., rN ) +

p2
s

2Q
+ gkT ln s − H

(0)
N

)
s, (4.8.15)

which is known as the Nosé–Poincaré Hamiltonian. The proof that the microcanonical
ensemble in this Hamiltonian is equivalent to a canonical distribution in the physical
Hamiltonian H(r,p) follows a procedure similar to that used for the Nosé Hamiltonian
and, therefore, will be left as an exercise at the end of the chapter. Note that the
parameter g = dN in this case. Eqn. (4.8.15) generates the following set of equations
of motion:

ṙi =
pi

mis

ṗi = −s
∂U

∂ri

ṡ =
sps

Q

ṗs =
N∑

i=1

p2
i

mis2
− gkT − ΔHN(r, s,p, ps), (4.8.16)

where

ΔHN(r, s,p, ps) =

N∑
i=1

p2
i

2mis2
+ U(r1, ..., rN ) +

p2
s

2Q
+ gkT ln s − H

(0)
N
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= HN(r, s,p, ps) − H
(0)
N . (4.8.17)

Eqns. (4.8.16) possess the correct intrinsic definition of time and can, therefore, be
used directly in a molecular dynamics calculation. Moreover, because the equations
of motion are Hamiltonian and, hence, manifestly symplectic, integration algorithms
such as those introduced in Chapter 4, can be employed with minor modifications as
discussed by Bond, et al. (1999).

The disadvantage of adhering to a strictly Hamiltonian structure is that a measure
of flexibility in the design of molecular dynamics algorithms for specific purposes is
lost. In fact, there is no particular reason, apart from the purely mathematical, that
a Hamiltonian structure must be preserved when seeking to developing molecular dy-
namics methods whose purpose is to sample an ensemble. Therefore, in the remainder
of this chapter, we will focus on techniques that employ non-Hamiltonian equations
of motion. We will illustrate how the freedom to stray outside the tight Hamiltonian
framework allows a wider variety of algorithms to be created.

4.8.3 The Nosé–Hoover equations

In 1985, Hoover (1985) introduced a reformulation of the Nosé dynamics that has
become one of the staples of molecular dynamics. Starting from the Nosé equations of
motion, one introduces a noncanonical change of variables

p′
i =

pi

s
, dt′ =

dt

s
,

1

s

ds

dt′
=

dη

dt′
, ps = pη (4.8.18)

and a redefinition g = dN , which leads to new equations of motion of the form

ṙi =
pi

mi

ṗi = Fi − pη

Q
pi

η̇ =
pη

Q

ṗη =

N∑
i=1

p2
i

mi
− dNkT. (4.8.19)

(The introduction of the η variable was actually not in the original Hoover formulation
but was later recognized by Martyna et al. (1992) as essential for the analysis of the
phase space distribution.) The additional term in the momentum equation acts as
a kind of friction term, which, however, can be either negative of position in sign.
In fact, the evolution of the “friction” variable pη is driven by the difference in the
instantaneous value of the kinetic energy (multiplied by 2) and its canonical average
dNkT .

Eqns. (4.8.19) constitute an example of a non-Hamiltonian system. In this case,
they are, in a sense, trivially non-Hamiltonian because they are derived from a Hamil-
tonian system using a noncanonical choice of variables. As we proceed through the
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remainder of this chapter, however, we will encounter examples of systems that are
intrinsically non-Hamiltonian, meaning that there is no set of canonical variables that
transforms the equations of motion into a Hamiltonian structure. In order to analyze
any non-Hamiltonian system, whether trivial or not, we need to generalize some of
the concepts from Chapter 2 for non-Hamiltonian phase spaces. Thus, before we can
proceed to analyze the Nosé–Hoover equations, we must first visit this subject.

4.9 Classical non-Hamiltonian statistical mechanics

Generally, Hamiltonian mechanics describe a system in isolation from its surroundings.
We have also seen that, with certain tricks, a Hamiltonian system can be used to gen-
erate a canonical distribution. But let us examine the problem of a system interacting
with its surroundings more closely. If we are willing to treat the system plus surround-
ings together as an isolated system, then the use of Hamiltonian mechanics to describe
the whole is appropriate within a classical description. The distribution of the system
alone can be determined by integrating over the variables that represent the surround-
ings in the microcanonical partition function, as was done above. In most situations,
when the surroundings are integrated out in this way, the microscopic equations of
motion obeyed by the system are no longer Hamiltonian. In fact, it is often possible to
model the effect of the surroundings simply positing a set of non-Hamiltonian equa-
tions of motion and then proving that the equations of motion generate the desired
ensemble distribution. Under such a protocol, it is possible to treat systems interacting
with heat and particle reservoirs or systems subject to external driving forces. Con-
sequently, it is important to develop an approach that allows us to predict what the
phase space distribution function is for a given set of non-Hamiltonian equations of
motion.

Let us begin by assuming that a system interacting with its surroundings and pos-
sibly subject to driving forces is described by non-Hamiltonian microscopic equations
of the form

ẋ = ξ(x, t). (4.9.1)

We do not restrict the vector function ξ(x, t) except to assume that it is smooth and at
least once differentiable. In particular, the phase space compressibility ∇·ẋ = ∇·ξ(x, t)
need not vanish for a non-Hamiltonian system. If it does not vanish, then the system
is non-Hamiltonian. Note, however, that the converse is not necessarily true. That is,
there are dynamical systems for which the phase space compressibility is zero but which
cannot be derived from a Hamiltonian. Recall that the vanishing of the phase space
compressibility was central to the derivation of the Liouville theorem and Liouville’s
equation in Sections 2.4 and 2.5. Thus, in order to understand how these results change
when the dynamics is not Hamiltonian, we need to revisit these derivations.

4.9.1 The phase space metric

Recall from Section 2.4 that a collection of trajectories initially in a volume element
dx0 about the point x0 will evolve to dxt about the point xt, and the transformation
x0 → xt is a unique one with a Jacobian J(xt; x0) satisfying the equation of motion

d

dt
J(xt; x0) = J(xt; x0)∇ · ẋt. (4.9.2)
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Since the compressibility will occur many times in our discussion of non-Hamiltonian
systems, we introduce the notation κ(xt, t), to represent this quantity

κ(xt, t) = ∇ · ẋt = ∇ · ξ(xt, t). (4.9.3)

Since κ(xt, t) cannot be assumed to be zero, the Jacobian is not unity for all time, and
the Liouville theorem dxt = dx0 no longer holds.

The Jacobian can be determined by solving eqn. (4.9.2) using the method of char-
acteristics subject to the initial condition J(x0; x0) = 1 yielding

J(xt; x0) = exp

[∫ t

0

ds κ(xs, s)

]
. (4.9.4)

However, eqn. (4.9.2) implies that there exists a function w(xt, t) such that

κ(xt, t) =
d

dt
w(xt, t) (4.9.5)

or that there exists a function whose derivative yields the compressibility. Substitution
of eqn. (4.9.5) into eqn. (4.9.4) yields

J(xt; x0) = exp [w(xt, t) − w(x0, 0)] . (4.9.6)

Since the phase space volume element evolves according to

dxt = J(xt; x0)dx0, (4.9.7)

we have

dxt = exp [w(xt, t) − w(x0, 0)] dx0

exp [−w(xt, t)] dxt = exp [−w(x0, 0)] dx0 (4.9.8)

(Tuckerman et al., 1999; Tuckerman et al., 2001). Eqn. (4.9.8) constitutes a gen-
eralization of Liouville’s theorem; it implies that a weighted phase space volume
exp[−w(xt, t)]dxt is conserved rather than simply dxt.

Eqn. (4.9.8) implies that a conservation law exists on a phase space that does not
follow the usual laws of Euclidean geometry. We therefore need to view the phase space
of a non-Hamiltonian system in a more general way as a non-Euclidean or Riemannian
space or manifold. Riemannian spaces are locally curved spaces and, therefore, it
is necessary to consider local coordinates in each neighborhood of the space. The
coordinate transformations needed to move from one neighborhood to another give
rise to a nontrivial metric and a corresponding volume element denoted

√
g(x)dx,

where g(x) is the determinant of a second-rank tensor gij(x) known as the metric
tensor. Given a coordinate transformation from coordinates x to coordinates y, the
Jacobian is simply the ratio of the metric determinant factors:

J(x; y) =

√
g(y)√
g(x)

. (4.9.9)
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It is clear, then, that eqn. (4.9.6) is nothing more than a statement of this fact for a
coordinate transformation x0 → xt

J(xt; x0) =

√
g(x0, 0)√
g(xt, t)

, (4.9.10)

where √
g(xt, t) = e−w(xt,t) (4.9.11)

when the metric
√

g(xt, t) is allowed to have an explicit time dependence. Although
such coordinate and parameter-dependent metrics are not standard features in the
theory of Riemannian spaces, they do occasionally arise (Sardanashvily, 2002a; Sar-
danashvily, 2002b). Most of the metric factors we will encounter in our treatments of
non-Hamiltonian systems will not involve explicit time-dependence and will therefore
obey eqn. (4.9.9). The implication of eqn. (4.9.8) is that any phase space integral that
represents an ensemble average should be performed using

√
g(x)dx as the volume ele-

ment, when
√

g has no explicit time dependence, so that the average can be performed
at any instant in time.

Imbuing phase space with a metric is not as strange as it might at first seem. After
all, phase space is a fictitious mathematical construction, a background space on which
a dynamical system evolves. There is no particular reason that we need to attach the
same fixed, Euclidean space to every dynamical system. In fact, it is more natural to
allow the properties of a given dynamical system dictate the geometry of the phase
space on which it lives. Thus, if imbuing a phase space with a metric that is particular
to a given dynamical system leads to a volume conservation law, then such a phase
space is the most natural choice for that dynamical system. Once the geometry of the
phase space is chosen, the form of the Liouville equation and its equilibrium solution
are determined, as we will now show.

4.9.2 Generalizing the Liouville equation

In order to generalize the Liouville equation for the phase space distribution f(xt, t)
for a non-Hamiltonian system, it is necessary to recast the derivation of Section 2.5 on
a space with a nontrivial metric. The mathematics required to do this are beyond the
scope of the general discussion we wish to present here but are discussed elsewhere by
Tuckerman et al. (1999, 2001), and we simply quote the final result,

∂

∂t

(
f(x, t)

√
g(x, t)

)
+ ∇ ·

(
ẋ
√

g(x, t)f(x, t)
)

= 0. (4.9.12)

Now, combining eqns. (4.9.10) and (4.9.2), we find that the phase space metric factor√
g(x, t) satisfies

d

dt

√
g(xt, t) = −κ(xt, t)

√
g(xt, t) (4.9.13)

which, by virtue of eqn. (4.9.12), leads to an equation for f(x, t) alone,

∂

∂t
f(x, t) + ξ(x, t) · ∇f(x, t) = 0 (4.9.14)
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or simply
d

dt
f(xt, t) = 0. (4.9.15)

That is, when the non-Euclidean nature of the non-Hamiltonian phase space is properly
accounted for, the ensemble distribution function f(xt, t) is conserved just as it is in
the Hamiltonian case, but it is conserved on a different phase space, namely, one with
a nontrivial metric. Consequently, eqn. (2.5.11) generalizes to

f(xt, t)
√

g(xt, t)dxt = f(x0, 0)
√

g(x0, 0)dx0. (4.9.16)

Eqn. (4.9.12) assumes smoothness both of the metric factor
√

g(x, t) and of the distri-
bution function f(x, t), which places some restrictions on the class of non-Hamiltonian
systems for which it is valid. This and related issues have been discussed by oth-
ers (Ramshaw, 2002; Ezra, 2004) and are beyond the scope of this book.

4.9.3 Equilibrium solutions

In equilibrium, both f(xt, t) and
√

g(xt, t) have no explicit time dependence, and eqn.
(4.9.16) reduces to

f(xt)
√

g(xt)dxt = f(x0)
√

g(x0)dx0, (4.9.17)

which means that equilibrium averages can be performed at any instant in time, the
same as in the Hamiltonian case.

Although the equilibrium Liouville equation takes the same form as it does in the
Hamiltonian case

ξ(x) · ∇f(x) = 0, (4.9.18)

we cannot express this in terms of a Poisson bracket with the Hamiltonian because
there is no Hamiltonian to generate the equations of motion ẋ = ξ(x). In cases for which
we can determine the full metric tensor gij(x), then a non-Hamiltonian generalization
of the Poisson bracket is possible (Sergi, 2003; Tarasov, 2004; Ezra, 2004), however, no
general theory of this metric tensor yet exists. Nevertheless, the fact that df/dt = 0
allows us to construct a general equilibrium solution that is suitable for our purposes
in this book. The non-Hamiltonian systems we will be studying in subsequent chapters
are assumed to be complete in the sense that they represent the physical system plus
some additional variables that grossly represent the surroundings. Thus, in order to
construct a distribution function f(x) that satisfies df/dt = 0, it is sufficient to know
all of the conservation laws satisfied by the equations of motion. Let there be Nc

conservation laws of the form

Λk(xt) − Ck = 0,
d

dt
Λk(xt) = 0, (4.9.19)

where k = 1, ..., Nc. If we can identify these, then a general solution for f(x) can be
constructed from these conservation laws in the form

f(x) =

Nc∏
k=1

δ(Λk(x) − Ck). (4.9.20)

This solution simply states that the distribution generated by the dynamics is one that
samples the intersection of the hypersurfaces represented by all of the conservation laws
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in eqn. (4.9.19). Under the usual assumptions of ergodicity, the system will sample all
of the points on this intersection surface in an infinite time. Consequently, the non-
Hamiltonian system has an associated “microcanonical” partition function obtained
by integrating the distribution in eqn. (4.9.20):

Z =

∫
dx

√
g(x)f(x) =

∫
dx

√
g(x)

Nc∏
k=1

δ (Λk(x) − Ck) . (4.9.21)

The appearance of the metric determinant in the phase space integral conforms to the
requirement of eqn. (4.9.17), which states that the number of microstates available to
the system is determined by f(x) when it is integrated with respect to the conserved
volume element

√
g(x)dx. Eqns. (4.9.20) and (4.9.21) lie at the heart of our theory of

non-Hamiltonian phase spaces and will be used to analyze a variety of non-Hamiltonian
systems in this and subsequent chapters.

4.9.4 Analysis of the Nosé–Hoover equations

We now turn to the analysis of eqns. (4.8.19). Our goal is to determine the physical
phase space distribution generated by the equations of motion. We begin by identifying
the conservation laws associated with the equations. First, there is a conserved energy
of the form

H′(r, η,p, pη) = H(r,p) +
p2

η

2Q
+ dNkTη, (4.9.22)

where H(r,p) is the physical Hamiltonian. If
∑N

i=1 Fi �= 0, then except for very
simple systems, eqn. (4.9.22) is the only conservation law. Next, we compute the
compressibility as

κ =

N∑
i=1

[∇pi · ṗi + ∇ri · ṙi] +
∂η̇

∂η
+

∂ṗη

∂pη

= −
N∑

i=1

d
pη

Q

= −dNη̇, (4.9.23)

from which it is clear that the metric
√

g = exp(−w) = exp(dNη). The microcanonical
partition function at a given temperature T can be constructed using

√
g and the

energy conservation condition,

ZT (N, V, C1) =

∫
dNp

∫
D(V )

dNr

∫
dpη dη edNη

×δ

(
H(r,p) +

p2
η

2Q
+ dNkTη − C1

)
, (4.9.24)

where the T subscript indicates that the microcanonical partition function depends
parametrically on the temperature T .
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The distribution function of the physical phase space can now be obtained by
integrating over η and pη. Using the δ-function to perform the integration over η
requires that

η =
1

dNkT

(
C1 − H(r,p) − p2

η

2Q

)
. (4.9.25)

Substitution of this result into eqn. (4.9.24) and using eqn. (4.8.6) yields

ZT (N, V, C1) =
eβC1

dNkT

∫
dpηe−βp2

η/2Q

∫
dNp

∫
D(V )

dNr e−βH(r,p) (4.9.26)

which is the canonical distribution function apart from constant prefactors. This
demonstrates that the Nosé–Hoover equations are capable of generating a canoni-
cal distribution in the physical subsystem variables when H′ is the only conserved
quantity. Unfortunately, this is not the typical situation. In the absence of external
forces, Newton’s third law requires that

∑N
i=1 Fi = 0, which leads to an additional

conservation law
Peη = K, (4.9.27)

where P =
∑N

i=1 pi is the center-of-mass momentum of the system and K is an
arbitrary constant vector in d dimensions. When this additional conservation law
is present, the Nosé–Hoover equations do not generate the correct distribution (see
Problem 4.3). Fig. 4.9 illustrates the failure of the Nosé–Hoover equations for a
single free particle in one dimension. The distribution f(p) should be a Gaussian
f(p) = exp(−p2/2mkT )/

√
2πmkT , which it clearly is not. Finally, Fig. 4.10 shows

that the Nosé–Hoover equations also fail for a simple harmonic oscillator, for which
eqn. (4.9.27) does not hold. Problem 4.4 suggests that an additional conservation law
different from eqn. (4.9.27) is the likely culprit in the failure of the Nosé–Hoover equa-
tions for the harmonic oscillator.

4.10 Nosé–Hoover chains

The reason for the failure of the Nosé–Hoover equations when more than one conser-
vation law is obeyed by the system is that the equations of motion do not contain
a sufficient number of variables in the extended phase space to offset the restrictions
placed on the accessible phase space caused by multiple conservation laws. Each con-
servation law restricts the accessible phase space by one dimension. In order to coun-
terbalance this effect, more phase space dimensions must be introduced, which can be
accomplished by introducing additional variables. But how should these variables be
added so as to give the correct distribution in the physical phase space? The answer
can be gleaned from the fact that the momentum variable pη in the Nosé–Hoover
equations must have a Maxwell-Boltzmann distribution, just as the physical momenta
do. In order to ensure that such a distribution is generated, pη itself can be coupled
to a Nosé–Hoover-type thermostat, which will bring in a new set of variables, η̃ and
pη̃. But once this is done, we have the problem that pη̃ must also have a Maxwell-
Boltzmann distribution, which requires introducing a thermostat for this variable. We
could continue in this way ad infinitum, but the procedure must terminate at some
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Fig. 4.9 Momentum distribution obtained by integrating the Nosé–Hoover equations

ṗ = −(pη/Q)p, η̇ = pη/Q, ṗη = p2/m − kT for a free particle with m = 1, Q = 1,

kT = 1, p(0) = 1, η(0) = 0, pη(0) = 1. The solid line is the distribution obtained

from the simulation (see Problem 4.3), and the dashed line is the correct distribution

f(p) = exp(−p2/2mkT )/
√

2πmkT .

point. If we terminate it after the addition of M new thermostat variable pairs ηj and
pηj , j = 1, ..., M , then the equations of motion can be expressed as

ṙi =
pi

mi

ṗi = Fi − pη1

Q1
pi

η̇j =
pηj

Qj
j = 1, ..., M

ṗη1 =

[
N∑

i=1

p2
i

mi
− dNkT

]
− pη2

Q2
pη1

ṗηj =

[
p2

ηj−1

Qj−1
− kT

]
− pηj+1

Qj+1
pηj j = 2, ..., M − 1

ṗηM =

[
p2

ηM−1

QM−1
− kT

]
. (4.10.1)
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Fig. 4.10 Phase space and distribution functions obtained by integrating the Nosé–Hoover

equations ẋ = p/m ṗ = −mω2x − (pη/Q)p, η̇ = pη/Q, ṗη = p2/m − kT for a harmonic

oscillator with m = 1, ω = 1, Q = 1, kT = 1, x(0) = 0, p(0) = 1, η(0) = 0, pη(0) = 1.

(a) shows the phase space p vs. x independent of η and pη, (b) shows the phase space for

pη = ±ε, where ε = 0.001, (c) and (d) show distributions f(p) and f(x) obtained from the

simulation (solid line) compared with the correct canonical distributions (dashed line).

(Martyna et al., 1992). Eqns. (4.10.1) are known as the Nosé–Hoover chain equa-
tions. These equations ensure that the first M − 1 thermostat momenta pη1 , ..., pηM−1

have the correct Maxwell-Boltzmann distribution. Note that for M = 1, the equa-
tions reduce to the simpler Nosé–Hoover equations. However, unlike the Nosé–Hoover
equations, which are essentially Hamiltonian equations in noncanonical variables, the
Nosé–Hoover chain equations have no underlying Hamiltonian structure, meaning no
canonical variables exist that transform eqns. (4.10.1) into a Hamiltonian system.

Concerning the parameters Q1, ..., QM , Martyna et al. (1992) showed that an op-
timal choice for these is

Q1 = dNkTτ2

Qj = kT τ2, j = 2, ..., M (4.10.2)

where τ is a characteristic time scale in the system. Since this time scale might not be
known explicitly, in practical molecular dynamics calculations, a reasonable choice is
τ ≥ 20Δt, where Δt is the time step.

In order to analyze the distribution of the physical phase space generated by eqns.
(4.10.1), we first identify the conservation laws. If

∑N
i=1 Fi �= 0, then the equations of
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motion conserve

H′ = H(r,p) +
M∑

j=1

p2
ηj

2Qk
+ dNkTη1 + kT

M∑
j=2

ηj (4.10.3)

which, in general, will be the only conservation law satisfied by the system. Next, the
compressibility of eqns. (4.10.1) is

∇x · ẋ = −dN
pη1

Q1
−

M∑
j=2

pηj

Qj
= −dNη̇1 − η̇c. (4.10.4)

Here, we have introduced the variable ηc =
∑M

j=2 ηj as a convenience since this par-
ticular combination of the η variables comes up frequently. From the compressibility,
we see that the phase space metric is

√
g = exp [dNη1 + ηc] . (4.10.5)

Using eqns. (4.10.3) and (4.10.5), proving that the Nosé–Hoover equations generate
a canonical ensemble is analogous to eqns. (4.9.24) to (4.9.26) for the Nosé–Hoover
equations and, therefore, will not be repeated here but left as an exercise at the end
of the chapter (see problem 4.3).

An important property of the Nosé–Hoover chain equations is the fact that when∑N
i=1 Fi = 0, the equations of motion still generate a correct canonical distribution in

all variables except the magnitude of the center-of-mass momentum P (see problem
3). When there are no external forces, eqn. (4.9.27) becomes

K = Peη1 . (4.10.6)

In order to illustrate this for the simple cases considered in Figs. 4.9, 4.10, 4.11 shows
the momentum distribution of the one-dimensional free particle coupled to a Nosé–
Hoover chain, together with the correct canonical distribution. The figure shows that
the correct distribution is, indeed, obtained. In addition, Fig. 4.12 also shows the phys-
ical phase space and position and momentum distributions for the harmonic oscillator
coupled to a Nosé–Hoover chain. Again, it can be seen that the correct canonical
distribution is generated, thereby solving the failure of the Nosé–Hoover equations.
By working through Problem 4.3, it will become clear what mechanism is at work in
the Nosé–Hoover chain equations that leads to the correct canonical distributions and
why, therefore, these equations are recommended over the Nosé–Hoover equations.

As one final yet important note, consider rewriting eqns. (4.10.1) such that each
particle has its own Nosé–Hoover chain thermostat. This would be expressed in the
equations by adding an additional index to the thermostat variables:
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Fig. 4.11 Momentum distribution obtained by integrating the Nosé–Hoover chain equations

for a free particle with m = 1, Q = 1, kT = 1. Here, p(0) = 1, ηk(0) = 0, pηk(0) = 1. The

solid line is the distribution obtained from the simulation (see Problem 4.3), and the circles

are the correct distribution f(p) = exp(−p2/2mkT )/
√

2πmkT .

ṙi =
pi

mi

ṗi = Fi −
pη1,i

Q1
pi

η̇j,i =
pηj,i

Qj
j = 1, ..., M

ṗη1,i =

[
p2

i

mi
− dkT

]
− pη2,i

Q2
pη1,i

ṗηj,i =

[
p2

ηj−1,i

Qj−1
− kT

]
− pηj+1,i

Qj+1
pηj j = 2, ..., M − 1

ṗηM,i =

[
p2

ηM−1,i

QM−1
− kT

]
. (4.10.7)

The introduction of a separate thermostat for each particle has the immediate practi-
cal advantage of yielding a molecular dynamics scheme capable of rapidly equilibrat-
ing a system by ensuring that each particle satisfies the virial theorem. Even in a
large homogeneous system such as the Lennard-Jones liquid studied in Section 3.14.2
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Fig. 4.12 Phase space and distribution functions obtained by integrating the Nosé–Hoover

chain equations for a harmonic oscillator with m = 1, ω = 1, Q = 1, kT = 1, x(0) = 0,

p(0) = 1, ηk(0) = 0, pη1(0) = pη3(0) = 1, pη2(0) = pη4(0) = −1. (a) shows the phase space p

vs. x independent of η and pη, (b) shows the phase space for pη = ±ε, where ε = 0.001, (c)

and (d) show distributions f(p) and f(x) obtained from the simulation (solid line) compared

with the correct canonical distributions (circles).

where rapid energy transfer between particles usually leads to rapid equilibration,
eqns. (4.10.7) provide a noticeable improvement in the convergence of the kinetic
energy fluctuations as shown in Fig. 4.13. In complex, inhomogeneous systems such
protein in aqueous solution, polymeric materials, or even “simple” molecular liquids
such as water and methanol, there will be a wide range of time scales. Some of these
time scales are only weakly coupled so that equipartition of the energy in accordance
with the virial theorem happens only very slowly. In such systems, the use of separate
thermostats as in eqns. (4.10.7) can be very effective. Unlike the global thermostat of
eqns. (4.10.1), which can actually allow “hot” and “cold” spots to develop in a system
while only ensuring that the average total kinetic energy is dNkT , eqns. (4.10.7) avoid
this problem by allowing each particle to exchange energy with its own heat bath.
Moreover, it can be easily seen that even if

∑
i Fi = 0, conservation laws such as eqn.

(4.10.6) no longer exist in the system, a fact which leads to a simplification of the
proof that the canonical distribution is generated. In fact, it is possible to take this
idea one step further and couple a Nosé–Hoover chain to each Cartesian degree of
freedom in the system, for a total of dN heat baths. Such a scheme is known collo-
quially as “massive” thermostatting and was shown by Tobias, et al. (1993) to lead to
very rapid thermalization of a protein in aqueous solution. Such multiple thermostat-
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Fig. 4.13 Convergence of kinetic energy fluctuations (in Kelvin) normalized by the number

of degrees of freedom for the argon system of Section 3.14.2 at a temperature of 300 K for

a global Nosé–Hoover chain thermostat (left) and individual Nosé–Hoover chain thermostats

attached to Cartesian degree of freedom of each particle.

ting constructs are not possible within the Hamiltonian framework of the Nosé and
Nosé-Poincaré approaches.

4.11 Integrating the Nosé–Hoover chain equations

Numerical integrators for non-Hamiltonian systems such as the Nosé–Hoover chain
equations can be derived using the Liouville operator formalism developed in Sec-
tion 3.10 (Martyna et al., 1996). However, certain subtleties arise due to the generalized
Liouville theorem in eqn. (4.9.8) and, therefore, the subject merits some discussion. Re-
call that for a Hamiltonian system, any numerical integration algorithm must preserve
the symplectic property, in which case, it will also conserve the phase space volume.
For non-Hamiltonian systems, there is no clear analog of the symplectic property.
Nevertheless, the existence of a generalized Liouville theorem, eqn. (4.9.8), provides
us with a minimal requirement that numerical solvers for non-Hamiltonian systems
should satisfy, specifically, the preservation of the measure

√
g(x)dx. Integrators that

fail to obey the generalized Liouville theorem cannot be guaranteed to generate correct
distributions. Therefore, in devising numerical solvers for non-Hamiltonian systems,
care must be taken to ensure that they are measure-preserving (Ezra, 2007).

Keeping in mind the generalized Liouville theorem, let us now develop an integrator
for the Nosé–Hoover chain equations. Despite the fact that the eqns. (4.10.1) are non-
Hamiltonian, they can be expressed as an operator equation just as in the Hamiltonian
case. Indeed, a general non-Hamiltonian system

ẋ = ξ(x) (4.11.1)

can always be expressed as
ẋ = iLx (4.11.2)
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where
iL = ξ(x) · ∇x. (4.11.3)

Note that we are considering systems with no explicit time dependence, although the
Liouville operator formalism can be extended to systems with explicit time depen-
dence (Suzuki, 1992). The Liouville operator corresponding to eqns. (4.10.1) can be
written as

iL = iLNHC + iL1 + iL2, (4.11.4)

where

iL1 =
N∑

i=1

pi

mi
· ∂

∂ri

iL2 =

N∑
i=1

Fi · ∂

∂pi

iLNHC = −
N∑

i=1

pη1

Q1
pi · ∂

∂pi
+

M∑
j=1

pηj

Qj

∂

∂ηj

+

M−1∑
j=1

(
Gj − pηj

pηj+1

Qj+1

)
∂

∂pηj

+ GM
∂

∂pηM

. (4.11.5)

Here, the thermostat “forces” are represented as

G1 =
N∑

i=1

p2
i

mi
− dNkT

Gj =
p2

ηj−1

Qj−1
− kT. (4.11.6)

Note that the sum iL1+iL2 in eqn. (4.11.4) constitute a purely Hamiltonian subsystem.
The evolution of the full phase space vector

x = (r1, ..., rN , η1, ..., ηM ,p1, ...,pN , pη1 , ..., pηM ) (4.11.7)

is given by the usual relation x(t) = exp(iLt)x(0) As was done in the Hamiltonian
case, we will employ the Trotter theorem to factorize the propagator exp(iLΔt) for a
single time step Δt. Consider a particular factorization of the form

eiLΔt = eiLNHCΔt/2 eiL2Δt/2 eiL1Δt eiL2Δt/2eiLNHCΔt/2 + O
(
Δt3

)
. (4.11.8)

Note that the three operators in the middle are identical to those in eqn. (3.10.22). By
the analysis of Section 3.10, this factorization, on its own, would generate the velocity
Verlet algorithm. However, in eqn. (4.11.8), it is sandwiched between the thermostat
propagators. This type of separation between the Hamiltonian and non-Hamiltonian
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parts of the Liouville operator is both intuitively appealing and, as will be seen below,
allows for easy implementation of both multiple time-scale (RESPA) schemes and
constraints.

The operator iLNHC contains many terms, so we still need to break down the
operator exp(iLNHCΔt/2) further. Experience has shown, unfortunately, that a simple
factorization of the operator based on the separate terms in iLNHC is insufficient to
achieve a robust integration scheme. The reason is that the thermostat forces in eqn.
(4.11.6) vary rapidly, thereby limiting the time step. To alleviate this problem, we can
apply the RESPA methodology of Section 3.11 to this part of the propagator. Once
again, experience shows that several hundred RESPA steps are needed to resolve the
thermostat part of the propagator accurately, so RESPA alone cannot easily handle the
rapidly varying thermostat forces. Consider, however, employing a higher-order (than
Δt3) factorization together with RESPA to exp(iLNHCΔt/2). A judiciously chosen
algorithm could improve the accuracy of RESPA without adding significantly to the
computational overhead. Fortunately, high order methods suitable for our purposes
exist and are straightforward to apply. One scheme in particular, due to Suzuki(1991a,
1991b) and Yoshida (1990), has proved particularly useful for the Nosé–Hoover chain
system.

The Suzuki–Yoshida scheme works as follows: Let S(λ) be a primitive factorization
of the operator exp[λ(A1 + A2)]. For example, a primitive factorization could be the
simple Trotter scheme S(λ) = exp(λA2/2) exp(λA1) exp(λA2/2). Next, introduce a
set of nsy weights wα such that

nsy∑
α=1

wα = 1. (4.11.9)

These weights are chosen in such a way that error terms up to a certain order 2s are
eliminated in a general factorization of exp[λ(A1 +A2)], yielding a high order scheme.
In the original Suzuki scheme, it was shown that

nsy = 5s−1 (4.11.10)

so that a fourth-order scheme would require 5 weights, a sixth-order scheme would
require 25 weights, etc., with all weights having a simple analytical form. For example,
for 2s = 4, the five weights are

w1 = w2 = w4 = w5 =
1

4 − 41/3

w3 = 1 − (w1 + w2 + w4 + w5).

Since the number of weights grows exponentially quickly with the order, an alternative
set of weights, introduced by Yoshida, proves beneficial. In the Yoshida scheme, a
numerical procedure for obtaining the weights is introduced, leading to a much smaller
number of weights. For example, only three weights are needed for a fourth-order
scheme, and these are given by

w1 = w3 =
1

2 − 21/3
w2 = 1 − w1 − w3. (4.11.11)
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For a sixth-order scheme, seven weights are needed, and these are only specified nu-
merically as

w1 = w7 = 0.784513610477560

w2 = w6 = 0.235573213359357

w3 = w5 = −1.17767998417887

w4 = 1 − w1 − w2 − w3 − w5 − w6 − w7. (4.11.12)

Once a set of weights is chosen, the factorization of the operator is then expressed as

eλ(A1+A2) ≈
nsy∏
α=1

S(wαλ). (4.11.13)

In the present discussion, we will let S(Δt/2) be a primitive factorization of the
operator exp(iLNHCΔt/2). Applying eqn. (4.11.13) to exp(iLNHCΔt/2), we obtain

eiLNHCΔt/2 ≈
nsy∏
α=1

S(wαΔt/2). (4.11.14)

Finally, RESPA is introduced very simply by applying the operator S n times with a
time step wαΔt/2n, i.e.

eiLNHCΔt/2 ≈
nsy∏
α=1

[S(wαΔt/2n)]
n

. (4.11.15)

Using the Suzuki–Yoshida scheme allows the propagator in eqn. (4.11.8) to be written
as

eiLΔt ≈
nsy∏
α=1

[S(wαΔt/2n)]n eiL2Δt/2 eiL1Δt eiL2Δt/2

nsy∏
i=1

[S(wαΔt/2n)]n . (4.11.16)

Finally, we need to choose a primitive factorization S(wαΔt/2n) for the operator
exp(iLNHCΔt/2). Although this choice is not unique, we must nevertheless ensure
that our factorization scheme preserves the generalized Liouville theorem. Defining
δα = wαΔt/n, one such possibility is the following:

S(δα/2) = exp

[
δα

4
GM

∂

∂pηM

]

×
1∏

j=M ′

{
exp

[
−δα

8

pηj+1

Qj+1
pηj

∂

∂pηj

]
exp

[
δα

4
Gj

∂

∂pηj

]
exp

[
−δα

8

pηj+1

Qj+1
pηj

∂

∂pηj

]}

×
N∏

i=1

exp

[
−δα

2

pη1

Q1
pi · ∂

∂pi

] M∏
j=1

exp

[
−δα

2

pηj

Qj

∂

∂ηj

]
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×
M ′∏
j=1

{
exp

[
−δα

8

pηj+1

Qj+1
pηj

∂

∂pηj

]
exp

[
δα

4
Gj

∂

∂pηj

]
exp

[
−δα

8

pηj+1

Qj+1
pηj

∂

∂pηj

]}

× exp

[
δα

4
GM

∂

∂pηM

]
. (4.11.17)

Eqn. (4.11.17) may look intimidating, but each of the operators appearing in the
primitive factorization has a simple effect on the phase space. In fact, one can easily see
that most of the operators are the just translation operators introduced in Section 3.10.
The only exception are operators of the general form exp(cx∂/∂x), which also appear
in the factorization. What is the effect of this type of operator?

Consider the action of the operator exp(cx∂/∂x) on x. We can work this out using
a Taylor series:

exp

[
cx

∂

∂x

]
x =

[ ∞∑
k=0

ck

k!

(
x

∂

∂x

)k
]

x

= x

∞∑
k=0

ck

k!

= xec. (4.11.18)

We see that the operator scales x by the constant ec. Similarly, the action of the
operator exp(cx∂/∂x) on a function f(x) is f(xec). Using this general result, each of
the operators in eqn. (4.11.17) can be turned into a simple instruction in code (either
translation or scaling) via the direct translation technique from Section 3.10.

At this point, several comments are in order. First, the separation of the non-
Hamiltonian component of the equations of motion from the Hamiltonian component
in eqn. (4.11.8) makes implementation of RESPA integration with Nosé–Hoover chains
relatively straightforward. For example, suppose a system has fast and slow forces as
discussed in Section 3.11. Instead of decomposing the Liouville operator as was done
in eqn. (4.11.8), we could express iL as

iL = iLfast + iLslow + iLNHC (4.11.19)

and further decompose iLfast into kinetic and force terms iL
(1)
fast + iL

(2)
fast, respectively.

Then, the propagator can be factorized according to

eiLΔt = eiLNHCΔt/2 eiLslowΔt/2

×
[
eiL

(2)
fastδt/2 eiL

(1)
fastδteiL

(2)
fastδt/2

]n

× eiLslowΔt/2eiLNHCΔt/2, (4.11.20)

where δt = Δt/n. In such a factorization, the τ parameter in eqn. (4.10.2) should
be chosen according to the time scale of the slow forces. On the other hand, if the
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thermostats are needed to act on a faster time scale, then they can be pulled into the
reference system by writing the propagator as:

eiLΔt = eiLNHCδt/2 eiLslowΔt/2e−iLNHCδt/2

×
[
eiLNHCδt/2 eiL

(2)
fastδt/2 eiL

(1)
fastδteiL

(2)
fastδt/2eiLNHCδt/2

]n

× e−iLNHCδt/2 eiLslowΔt/2eiLNHCΔt/2. (4.11.21)

Here, the operator exp(−iLNHCδt/2) is never really applied; its presence in eqn.
(4.11.21) indicates that on the first and last RESPA steps the Nosé–Hoover chain
part of the propagator acts on the outside but with the small time step. We de-
note the schemes in eqn. (4.11.20) and (4.11.21) as XO-RESPA (eXtended-system
Outer RESPA) and XI-RESPA (eXtended-system Inner RESPA), respectively (Mar-
tyna et al., 1996).

The next point we address concerns the use of Nosé–Hoover chains with holonomic
constraints. Constraints were discussed in Section 1.9 in the context of Lagrangian
mechanics and numerical procedures for imposing them within a given integration
algorithm were presented in Section 3.9. Recall that the numerical procedure employed
involved the imposition of the constraint conditions

σk(r1, ..., rN ) = 0 k = 1, ..., Nc (4.11.22)

and their first derivatives with respect to time

N∑
i=1

∇iσk · ṙk =

N∑
i=1

∇iσk · pk

mk
= 0. (4.11.23)

Note that the time derivatives above are linear in the velocities or momenta. Thus, the
velocities or momenta can be multiplied by any arbitrary constant, and eqn. (4.11.23)
will still be satisfied. Since the factorization in eqn. (4.11.17) only scales the particle
momenta in each application, when all particles involved in a common constraint are
coupled to the same thermostat, their velocities will be scaled in exactly the same way
by the thermostat operators because

exp

[
−δα

2

pη1

Q1
pi · ∂

∂pi

]
pi = pi exp

[
−δα

2

pη1

Q1

]
,

which preserves eqn. (4.11.23).

4.12 The isokinetic ensemble: A simple variant of the canonical

ensemble

Extended phase space methods are not unique in their ability to generate canoni-
cal distributions in molecular dynamics calculations. In this section, we will discuss
an alternative approach known as the isokinetic ensemble. As the name implies, the
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isokinetic ensemble is one in which the total kinetic energy of a system is maintained
at a constant value. It is, therefore, described by a partition function of the form

Q(N, V, T ) =
K0

N !h3N

∫
dNp

∫
D(V )

dNr δ

(
N∑

i=1

p2
i

2mi
− K

)
e−βU(r1,...,rN), (4.12.1)

where K is preset value of the kinetic energy, and K0 is an arbitrary constant having
units of energy. Eqn. (4.12.1) indicates that while the momenta are constrained to a
spherical hypersurface of constant kinetic energy, the position-dependent part of the
distribution is canonical. Since this is the most important part of the distribution for
the calculation of equilibrium properties, the fact that the momentum distribution is
not canonical is of little consequence. Nevertheless, since the momentum- and position-
dependent parts of the distribution are separable, the isokinetic partition function can
be trivially related to the true canonical partition function by

Q(N, V, T ) =
(1/N !)V N (2πmkT/h2)3N/2

(1/N !)(K0/K)(1/Γ(3N/2))V N (2πmK/h2)3N/2
Q(N, V, T )

=
Ωideal(N, V, K)

Qideal(N, V, T )
Q(N, V, T ), (4.12.2)

where Ωideal and Qideal are the ideal gas partition functions in the microcanonical and
canonical ensembles, respectively.

Equations of motion for the isokinetic ensemble were first written down by D. J.
Evans and G. P. Morriss (1980) by applying Gauss’s principle of least constraint. The
equations of motion are obtained by imposing a kinetic-energy constraint

N∑
i=1

miṙ
2
i =

N∑
i=1

p2
i

mi
= K (4.12.3)

on the Hamiltonian dynamics of the system. According to the discussion in Section 1.9,
eqn. (4.12.3) is a nonholonomic constraint, but one that can be expressed in differential
form. Thus, the Lagrangian form of the equations of motion is

d

dt

(
∂L

∂ṙi

)
− ∂L

∂ri
= α

∑
i

miṙi, (4.12.4)

which can also be put into Hamiltonian form

ṙi =
pi

mi

ṗi = Fi − αpi. (4.12.5)

Here, α is the single Lagrange multiplier needed to impose the constraint. Using
Gauss’s principle of least constraint gives a closed-form expression for α. We first
differentiate eqn. (4.12.3) once with respect to time, which yields
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N∑
i=1

pi

mi
· ṗi = 0. (4.12.6)

Thus, substituting the second of eqns. (4.12.5) into eqn. (4.12.6) gives

N∑
i=1

pi

mi
· [Fi − αpi] , (4.12.7)

which can be solved for α giving

α =

∑N
i=1 Fi · pi/mi∑N

i=1 p2
i /mi

. (4.12.8)

When eqn. (4.12.8) is substituted into eqn. (4.12.5), the equations of motion for the
isokinetic ensemble become

ṙi =
pi

mi

ṗi = Fi −
[∑N

j=1 Fj · pj/mj∑N
j=1 p2

j/mj

]
pi. (4.12.9)

Because eqns. (4.12.9) were constructed to preserve eqn. (4.12.3), they manifestly
conserve the kinetic energy, however, that eqn. (4.12.3) is a conservation law of the
isokinetic equations of motion can also be verified by direct substitution. Eqns. (4.12.9)
are non-Hamiltonian and can, therefore, be analyzed via the techniques Section 4.9.

In order to carry out the analysis, we first need to calculate the phase space com-
pressibility:

κ =

N∑
i=1

[∇ri · ṙi + ∇pi · ṗi]

=

N∑
i=1

∇pi ·
{

Fi −
[∑N

j=1 Fj · pj/mj∑N
j=1 p2

j/mj

]
pi

}

= − (dN − 1)
∑N

i=1 Fi · pi/mi

K

=
(dN − 1)

K

dU(r1, ..., rN )

dt
. (4.12.10)

Thus, the function w(x) is just (dN − 1)U(r1, ..., rN )/K, and the phase space metric
becomes √

g = e−(dN−1)U(r1,...,rN)/K . (4.12.11)

Since the equations of motion explicitly conserve the total kinetic energy
∑N

i=1 p2
i /mi,

we can immediately write down the partition function generated by the equations of
motion:
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Ω =

∫
dNp dNr e−(dN−1)U(r1,...,rN)/Kδ

(
N∑

i=1

p2
i

mi
− (dN − 1)kT

)
. (4.12.12)

The analysis shows that if the constant parameter K is chosen to be (dN −1)kT , then
the partition function becomes

Ω =

∫
dNp dNr e−βU(r1,...,rN)δ

(
N∑

i=1

p2
i

mi
− (dN − 1)kT

)
, (4.12.13)

which is the partition function of the isokinetic ensemble. Indeed, the constraint con-
dition

∑N
i=1 p2

i /mi = (dN − 1)kT is exactly what we would expect for a system with
a single kinetic-energy constraint based on the virial theorem, since the number of
degrees of freedom is dN − 1 rather than dN .

A simple yet effective integrator for the isokinetic equations can be obtained by
applying the Liouville operator approach. As usual, we begin by writing the total
Liouville operator

iL =
N∑

i=1

[
pi

mi
· ∇ri +

(
Fi −

[∑N
j=1(Fj · pj)/mj

K

]
pi

)
· ∇pi

]
(4.12.14)

as the sum of two contributions iL = iL1 + iL2 where

iL1 =
N∑

i=1

pi

mi
· ∇ri

iL2 =

N∑
i=1

(
Fi −

[∑N
j=1(Fj · pj)/mj

K

]
pi

)
· ∇pi . (4.12.15)

The approximate evolution of an isokinetic system over a time Δt is obtained by acting
with a Trotter factorized operator exp(iLΔt) = exp(iL2Δt/2) exp(iL1Δt) exp(iL2Δt/2)
on an initial condition {p(0), r(0)}. The action of each of the operators in this factor-
ization can be evaluated analytically (Zhang, 1997; Minary et al., 2003). The action
of exp(iL2Δt/2) can be determined by first solving the coupled first-order differential
equations

dpi,α

dt
= Fi,α −

[∑N
j=1(Fj · pj)/mj

2K

]
pi,α

= Fi,α − ḣ(t)pi,α (4.12.16)

with r1, ..., rN (and hence Fi,α) held fixed. Here, we explicitly index both the spatial
components (α = 1, ..., d) and particle numbers i = 1, ..., N . The solution to eqn.
(4.12.16) can be expressed as

pi,α(t) =
pi,α(0) + Fi,αs(t)

ṡ(t)
, (4.12.17)
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where s(t) is a general integrating factor:

s(t) =

∫ t

0

dt′ exp[h(t′). (4.12.18)

By substituting into the time derivative of the constraint condition
∑N

i=1 pi·ṗi/mi = 0,
we find that s(t) satisfies a differential equation of the form

s̈(t) = ṡ(t)ḣ(t)

=

[∑N
j=1(Fj · pj(t))/mj

2K

]
ṡ(t)

=

[∑N
j=1(Fj · pj(0))/mj

2K

]
+

[∑N
j=1(Fj ·Fj)/mj

2K

]
s(t)

whose solution is

s(t) =
a

b

(
cosh(t

√
b) − 1

)
+

1√
b

sinh(t
√

b), (4.12.19)

where

a =

∑N
j=1(Fj · pj(0))/mj

2K

b =

∑N
j=1(Fj · Fj)/mj

2K
. (4.12.20)

The operator is applied by simply evaluating eqn. (4.12.19) and the associated eqn.
(4.12.20) at t = Δt/2. The action of the operator exp(iL1Δt) on a state {p, r} yields

exp(iL1Δt)pi = pi

exp(iL1Δt)ri = ri + Δtpi, (4.12.21)

which has no effect on the momenta.
The combined action of the three operators in the Trotter factorization leads to the

following reversible, kinetic energy conserving algorithm for integrating the isokinetic
equations:

1. Evaluate new {s(Δt/2), ṡ(Δt/2)} and update the momenta according to

pi ←− pi + Fis(Δt/2)

ṡ(Δt/2)
. (4.12.22)

2. Using the new momenta, update the positions according to

ri ←− ri + Δtpi. (4.12.23)

3. Calculate new forces using the new positions.
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4. Evaluate new {s(Δt/2), ṡ(Δt/2)} and update the momenta according to

pi ←− pi + Fis(Δt/2)

ṡ(Δt/2)
. (4.12.24)

Note, {s(Δt/2), ṡ(Δt/2)} are evaluated by substituting the present momentum and
the forces into eqns. (4.12.20) with t = Δt/2. The symbol, “←−”, indicates that on
the computer, the values on the left-hand side are overwritten in memory by the values
on the right-hand side.

The isokinetic ensemble method has recently been shown to be a useful method
for generating a canonical coordinate distribution. First, it is a remarkably stable
method, allowing very long time steps to be used, particularly when combined with
the RESPA scheme. Unfortunately, the isokinetic approach suffers from some of the
pathologies of the Nosé–Hoover approach so some care is needed when applying it.
Minary et al. (2004b) showed that such problems can be circumvented by combining
the isokinetic and Nosé–Hoover chain approaches.

4.13 Applying the canonical molecular dynamics: Liquid structure

Figures 4.2 and 4.3 showed radial distributions functions for liquid argon and water,
respectively. The importance of the radial distribution function in understanding the
structure of liquids and approximating their thermodynamic properties was discussed
in Section 4.6. In this section, we will describe how these plots can be extracted from a
molecular dynamics trajectory. Since the radial distribution function is an equilibrium
property, it is appropriate to employ a canonical sampling method such as Nosé–Hoover
chains or the isokinetic ensemble for this purpose.

The argon system represented in Fig. 4.2 was simulated using the “massive” Nosé–
Hoover chain approach on the argon system described in Section 3.14.2. The ther-
mostats maintained the system at a temperature of 300 K by controlling the kinetic
energy fluctuations. The system was integrated for a total of 105 steps using a time
step of 10.0 fs. Each Cartesian degree of freedom of each particle was coupled to its own
Noseé–Hoover chain thermostat with M = 4, using nsy = 7 and n = 4 in the Suzuki–
Yoshida integration scheme of eqn. (4.11.15). The parameter τ used to determine the
value of Q1, ..., Q4 was taken as 200.0 fs.

The water system represented in Fig. 4.3 was simulated using, once again, the “mas-
sive” Nosé–Hoover chain approach on a system of 64 water molecules in a cubic box of
length 12.4164 Å subject to periodic boundary conditions. The forces were obtained
directly from density functional theory electronic structure calculations performed at
each molecular dynamics step via the Car–Parrinello approach (Car and Parrinello,
1985). Details of the electronic structure methodology employed are described in the
work of Marx and Hutter (2009) and of Tuckerman (2002). The system was main-
tained at a temperature of 300 K using a time step of 0.1 fs. For the thermostats, the
following parameters were used: nsy = 7, n = 4, and τ = 20 fs. The system was run
for a total of 60 ps.

After the molecular dynamics calculation has been performed, the trajectory is
subsequently used to compute the radial distribution function using the following
algorithm:
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1. Divide the radial interval between r = 0 and r = rmax, where rmax is some radial
value beyond which no significant structure exists, into Nr intervals of length Δr.
It is important to note that the largest value rmax can have is half the length of
the box edge. Let these intervals be indexed by an integer i = 0, ..., Nr − 1 with
radial values r1, ..., rNr .

2. Generate a histogram hab(i) by counting the number of times the distance between
two atoms of type a and b lies between ri and ri+Δr. For this histogram, all atoms
of the desired types in the system can be used and all configurations generated
in the simulation should be considered. Thus, if we are interested in the oxygen–
oxygen histogram of water, we would use the oxygens of all waters in the system
and all configurations generated in the simulation. For each distance r calculated,
the index into the histogram is given by

i = int(r/Δr). (4.13.25)

3. Once the histogram is generated, the radial distribution function is obtained by

gab(ri) =
hab(i)

4πρbr2
i ΔrNconfNa

, (4.13.26)

where Nconf is the number of configurations in the simulation, Na is the number
of atoms of type a, and ρb is the number density of the atom type b.

This procedure was employed to produce the plots in Figs. 4.2 and 4.3.

4.14 Problems

4.1. Prove that the microcanonical partition function in the Nosé–Poincaré Hamil-
tonian of eqn. (4.8.15) is equivalent to a canonical partition function in the
physical Hamiltonian H(r,p). What choice must be made for the parameter
g in eqn. (4.8.15)?

4.2. Consider a one-dimensional system with momentum p and coordinate q cou-
pled to an extended-system thermostat for which the equations of motion
take the form

q̇ =
p

m

ṗ = F (q) − pη1

Q1
p − pη2

Q2

[
(kT )p +

p3

3m

]

η̇1 =
pη1

Q1
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η̇2 =

[
(kT ) +

p2

m

]
pη2

Q2

ṗη1 =
p2

m
− kT

ṗη2 =
p4

3m2
− (kT )2.

a. Show that these equations of motion are non-Hamiltonian.
b. Show that the equations of motion conserve the following energy

H′ =
p2

2m
+ U(q) +

p2
η1

2Q1
+

p2
η2

2Q2
+ kT (η1 + η2).

c. Use the non-Hamiltonian formalism of Section 4.9 to show that these
equations of motion generate the canonical distribution in the physical
Hamiltonian H = p2/2m + U(q).

∗d. These equations of motion are designed to control the fluctuations in
the first two moments of the Maxwell-Boltzmann distribution P (p) ∝
exp(−βp2/2m). A set of equations of motion designed to fix an arbitrary
number M of these moments is

q̇ =
p

m

ṗ = F (q) −
M∑

n=1

n∑
k=1

pηn

Qn

(kT )n−k

Ck−1

p2k−1

mk−1

η̇n =

[
(kT )n−1 +

n∑
k=2

(kT )n−k

Ck−2

(
p2

m

)k−1
]

pηn

Qn

ṗηn =
1

Cn−1

(
p2

m

)n

− (kT )n,

where Cn =
∏n

k=1(1 + 2k) and C0 ≡ 1. These equations were first intro-
duced by Liu and Tuckerman (who also introduced versions of these for
N -particle systems) (Liu and Tuckerman, 2000). Show that these equa-
tions conserve the energy

H′ =
p2

2m
+ U(q) +

M∑
n=1

p2
ηn

2Qn
+ kT

M∑
n=1

ηn

and therefore, that they generate a canonical distribution in the Hamil-
tonian H = p2/2m + U(q).
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4.3. a. Consider the Nosé–Hoover equations for a single free particle of mass m
moving in one spatial dimension. The equations of motion are

ṗ = −pη

Q
p, η̇ =

pη

Q
, ṗη =

p2

m
− kT

Show that these equations obey the following two conservation laws:

C =
p2

2m
+

p2
η

2Q
+ kTη ≡ H′

K = peη.

b. Show, therefore, that the distribution function in the physical momentum
p is

f(p) =

√
2Q√

p2 (C − (p2/2m) + kT ln(p/K))

rather than the expected Maxwell-Boltzmann distribution

f(p) =
1√

2πmkT
exp(−p2/2mkT ).

c. Plot the distribution f(p) and show that it matches the distribution shown
in Fig. 4.9.

d. Write a program that integrates the equations of motion using the algo-
rithm of Section 4.11 and verify that the numerical distribution matches
that of part c.

e. Next, consider the Nosé–Hoover chain equations with M = 2 for the same
free particle:

ṗ = −pη1

Q
p, η̇k =

pηk

Q
, ṗη1 =

p2

m
−kT − pη2

Q
pη1 , ṗη2 =

p2
η1

Q
−kT.

Here, k = 1, 2. Show that these equations of motion generate the correct
Maxwell-Boltzmann distribution in p.

∗f. Will these equations yield the correct Maxwell-Boltzmann distribution
in practice if implemented using the Liouville-based integrator of Sec-
tion 4.11?

Hint: Consider how an initial momentum p(0) > 0 evolves under the
action of the integrator? What happens if p(0) < 0?

∗g. Derive the general distribution generated by eqns. (4.8.19) when no exter-
nal forces are present, and the conservation law in eqn. (4.9.27) is obeyed.

Hint: Since the conservation law involves the center of mass momentum
P, it is useful to introduce a canonical transformation to center-of-mass
momentum and position (R,P) and the d(N − 1) corresponding relative
coordinates r′1, r

′
2, ... and momenta p′

1,p
′
2, ....
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∗h. Show that when
∑N

i=1 Fi = 0, the Nosé–Hoover chain equations generate
the correct canonical distribution in all variables except the center-of-
mass momentum.

i. Finally, show the conservation
∑N

i=1 Fi = 0 is not obeyed by eqns. (4.10.7)
and, therefore, that they also generate a correct canonical distribution in
all variables.

4.4. Consider a modified version of the Nosé–Hoover equations for a harmonic
oscillator with unit mass, unit frequency, and kT = 1:

ẋ = p − pηx, ṗ = −x − pηp η̇ = pη, ṗη = p2 + x2 − 2.

a. Show that these equations have the two conservation laws:

C =
1

2

(
p2 + x2 + p2

η

)
+ 2η

K =
1

2

(
p2 + x2

)
e2η.

b. Determine the distribution f(H) of the physical Hamiltonian H(x, p) =
(p2+x2)/2. Is the distribution the expected canonical distribution f(H) ∝
exp(−H)?

Hint: Try using the two conservation laws to eliminate the variables η
and pη.

∗c. Show that a plot of the physical phase space p vs. x necessarily must have
a hole centered at (x, p) = (0, 0), and find a condition that determines
the size of the hole.

4.5. Suppose the interactions in an N -particle system are described by a pair
potential of the form

U(r1, ..., rN ) =

N∑
i=1

N∑
j>i

u(|ri − rj |)

In the low density limit, we can assume that each particle interacts with at
most one other particle.

a. Show that the canonical partition function in this limit can be expressed
as

Q(N, V, T ) =
(N − 1)!!V N/2

N !λ3N

[
4π

∫ ∞

0

dr r2e−βu(r)

]N/2

b. Show that the radial distribution function g(r) is proportional to exp[−βu(r)]
in this limit.
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c. Show that the second virial coefficient in the low density limit becomes

B2(T ) = −2π

∫ ∞

0

dr r2f(r)

where f(r) = e−βu(r) − 1.

4.6. An ideal gas of N particles of mass m at temperature T is in a cylindrical
container with radius a and length L. The container rotates about its cylin-
drical axis (taken to be the z axis) with [angular velocity ω. In addition, the
gas is subject to a uniform gravitational field of strength g. Therefore, the
Hamiltonian for the gas is

H =
N∑

i=1

h(ri,pi)

where h(r,p) is the Hamiltonian for a single particle

h(r,p) =
p2

2m
− ω(r×p)z + mgz.

Here, (r×p)z is the z-component of the cross produce between r and p.

a. Show, in general, that when the Hamiltonian is separable in this manner,
the canonical partition function Q(N, V, T ) is expressible as

Q(N, V, T ) =
1

N !
[q(V, T )]

N
,

where

q(V, T ) =
1

h3

∫
dp

∫
D(V )

dr e−βh(r,p).

b. Show, in general, that the chemical potential μ(N, V, T ) is given by

μ(N, V, T ) = kT ln

[
Q(N − 1, V, T )

Q(N, V, T )

]

where Q(N − 1, V, T ) is the partition function for an (N − 1)-particle
system.

c. Calculate the partition function for the this ideal gas.

d. Calculate the Helmholtz free energy of the gas.

e. Calculate the total internal energy of the gas.

f. Calculate the heat capacity of the gas.

∗g. What is the equation of state of the gas?
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4.7. A classical system of N noninteracting diatomic molecules enclosed in a cubic
box of length L and volume V = L3 is held at a fixed temperature T . The
Hamiltonian for a single molecule is

h(r1, r2,p1,p2) =
p2

1

2m1
+

p2
2

2m2
+ ε|r12 − r0|,

where r12 = |r1 − r2| is the distance between the atoms in the diatomic.

a. Calculate the canonical partition function.

b. Calculate the Hemlholtz free energy.

c. Calculate the total internal energy.

d. Calculate the heat capacity.

e. Calculate the mean-square molecular bond length
〈|r1 − r2|2

〉
.

4.8. Write a program to integrate the Nosé–Hoover chain equations for a harmonic
oscillator with mass m = 1, frequency ω = 1, and temperature kT = 1 using
the integrator of Section 4.11. Verify that the correct momentum and position
distributions are obtained by comparing with the analytical results

f(p) =
1√

2πmkT
e−p2/2mkT , f(x) =

√
mω2

2πkT
e−mω2x2/2kT

∗4.9. Consider a system of N particles subject to a single holonomic constraint

σ(r1, ..., rN ) ≡ σ(r) = 0

Recall that the equations of motion derived using Gauss’s principle of least
constraint are

ṙi =
pi

mi

ṗi = Fi −
[∑

j Fj · ∇jσ/mj +
∑

j,k ∇j∇kσ · ·pjpk/(mjmk)∑
j(∇jσ)2/mj

]
∇iσ

Show using the techniques of Section 4.9 that these equations of motion gen-
erate the partition function

Ω =

∫
dNpdNrZ(r)δ(H(r,p) − E)δ(σ(r))δ(σ̇(r,p))

where

Z(r) =

N∑
i=1

1

mi

(
∂σ

∂ri

)2

This result was first derived by Ryckaert and Ciccotti (1983).
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4.10. The canonical ensemble version of the classical virial theorem is credited to
Richard C. Tolman (1918). Prove that the canonical average〈

xi
∂H

∂xj

〉
=

1

N !h3NQ(N, V, T )

∫
dx xi

∂H

∂xj
e−βH(x) = kT δij

holds. What assumptions must be made in the derivation of this result?

4.11. Prove that the structure factor S(q) of a one-component isotropic liquid or
gas is related to the radial distribution function g(r) via eqn. (4.6.31).

4.12. Consider a system of N identical noninteracting molecules, each molecule
being comprised of n atoms with some chemical bonding pattern within
the molecule. The atoms in each molecule are held together by a potential

u(r
(i)
1 , ..., r

(i)
n ), i = 1, ..., N , which rapidly increases as the distance between

any two pairs of atoms increases, and becomes infinite as the distance be-
tween any two atoms in the molecule becomes infinite. Assume the atoms in
each molecule have masses mk, where k = 1, ..., n.

a. Write down the Hamiltonian and the canonical partition function for this
system and show that the partition function can be reduced to a product
of single-molecule partition functions.

b. Make the following change of coordinates in your single-molecule partition
function:

s1 =
1

M

n∑
k=1

mkrk

sk = rk − 1

m′
k

k−1∑
l=1

mlrl k = 2, ..., n

where

m′
k ≡

k−1∑
l=1

ml

and where the i superscript has been dropped for simplicity. What is
the meaning of the coordinate s1? Show that if u(r1, ..., rn) only depends
on the relative coordinates between pairs of atoms in the molecule, then
single molecule partition function is of the form: general form

Q(N, V, T ) =
(V f(n, T ))N

N !
,

where f(n, T ) is a pure function of n and T .

c. Show, therefore, that the equation of state is always that of an ideal gas,
independent of the type of molecule in the system.
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d. Denote the single-molecule partition function as q(n, V, T ) = V f(n, T ).
Now suppose that the system is composed of different types of molecules
(see comment following eqn. (4.3.14)). Specifically, suppose the system
contains NA molecules of type A, NB molecules of type B, NC molecules
of type C and ND molecules of type D. Suppose, further, that the molecules
may undergo the following chemical reaction:

aA + bB ⇀↽ cC + dD,

which is a chemical equilibrium. The Helmholtz free energy A must now
be a function of V , T , NA, NB, NC , and ND. When chemical equilibrium
is reached, the free energy is a minimum, so that dA = 0. Assume that
the volume and temperature of the system are kept constant. Let λ be a
variable such that dNA = adλ, dNB = bdλ, dNC = −cdλ and dND =
−ddλ. λ is called the reaction extent. Show that, at equilibrium,

aμA + bμB − cμC − dμD = 0, (4.14.27)

where μA is the chemical potential of species A:

μA = −kT
∂ ln Q(V, T, NA, NB, NC , ND)

∂NA

with similar definitions for μB, μC , and μD.

e. Finally, show that eqn. (4.14.27) implies

ρc
Cρd

D

ρa
Aρb

B

=
(qC/V )c(qD/V )d

(qA/V )a(qB/V )b

and that both sides are pure functions of temperature. Here, qA is the
one-molecule partition function for a molecule of type A, qB, the one-
molecule partition function for a molecule of type B, etc., and ρA is the
number density of type A molecules, etc. How is th quantity on the right
related to the usual equilibrium constant

K =
P c

CP d
D

P a
AP b

B

for the reaction? Here, PA, PB ,... are the partial pressures of species A,
species, B,..., respectively?

4.13. Consider a system of N identical particles interacting via a pair potential

u(r1, ..., rN ) =
1

2

∑
i,j,i�=j

u(|ri − rj |),

where u(r) is a general repulsive potential of the form
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u(r) =
A

rn
,

where n is an integer and A > 0. In the low density limit, compute the
pressure of such a system as a function of n. Explain why a system described
by such a potential cannot exist stably for n ≤ 3.

Hint: You may express the answer in terms of the Γ-function

Γ(x) =

∫ ∞

0

dt tx−1e−t.

Also, the following properties of the Γ-function may be useful:

Γ(x) > 0 x > 0,

Γ(0) = ∞ x ≤ 0,

Γ(−n) = ∞ for integer n
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The isobaric ensembles

5.1 Why constant pressure?

Standard handbooks of thermodynamic data report numerical values of physical prop-
erties, including standard enthalpies, entropies and free energies of formation, redox
potentials, equilibrium constants (such as acid ionization constants, solubility prod-
ucts, inhibition constants) and other such data, under conditions of constant tem-
perature and pressure. This makes the isothermal-isobaric ensemble one of the most
important ensembles since it most closely reflects the conditions under which many
condensed-phase experiments are performed.

In order to maintain a fixed internal pressure, the volume of a system must be
allowed to fluctuate. We may therefore view an isobaric system as coupled to an
isotropic “piston” that compresses or expands the system uniformly in response to
instantaneous internal pressure fluctuations such that the average internal pressure
is equal to an external applied pressure. Remember that an instantaneous pressure
estimator is the total force exerted by the particles on the walls of their container, and
the average of this quantity gives the observable internal pressure. Coupling a system to
the piston leads to an ensemble known as the isoenthalpic-isobaric ensemble, since the
enthalpy remains fixed as well as the pressure. Recall that the enthalpy is H = E+PV .
If the system also exchanges heat with a thermal reservoir, which maintains a fixed
temperature T , then the system is described by the isothermal-isobaric ensemble.

In this chapter, the basic thermodynamics of isobaric ensembles will be derived by
performing a Legendre transformation on the volume starting with the microcanonical
and canonical ensembles, respectively. The condition of a fluctuating volume will be
seen to affect the ensemble distribution function, which must be viewed as a function
of both the phase space vector x and the volume V . Indeed, when considering how the
volume fluctuates in an isobaric ensemble, it is important to note that both isotropic
and anisotropic fluctuations are possible. Bulk liquids and gases in equilibrium only
support isotropic fluctuations. However, in any system that is not isotropic by nature,
anisotropic volume fluctuations are possible even if the applied external pressure is
isotropic. For solids, if one is interested in structural phase transitions under an ex-
ternal applied pressure or in mapping out the space of crystal structures of complex
molecular systems, it is often critical to include anisotropic shape changes of the con-
taining volume or supercell. Other examples that support anisotropic volume changes
include biological membranes, amorphous materials, and interfaces, to name a few.

After developing the basic statistical mechanics of the isobaric ensembles, we will
see how the extended phase space techniques of the previous chapter can be adapted
for molecular dynamics calculations in these ensembles. We will show how the volume
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distribution can be generated by treating the volume as an additional dynamical vari-
able with a corresponding momentum, the latter serving as a barostatic control of the
fluctuations in the internal pressure. This idea will be extended to anisotropic volume
shape-changes by treating the cell vectors as dynamical variables.

5.2 Thermodynamics of isobaric ensembles

We begin by considering the isoenthalpic-isobaric ensemble, which derives from a Leg-
endre transformation performed on the microcanonical ensemble. In the microcanon-
ical ensemble, the energy E is constant and is expressed as a function of the number
of particles N , the volume V , and the entropy S: E = E(N, V, S). Since we seek to
use an external applied pressure P as the control variable in place of the volume V ,
it is necessary to perform a Legendre transform of E with respect to the volume V .
Denoting the new energy as Ẽ, we find

Ẽ(N, P, S) = E(N, V (P ), S) − ∂E

∂V
V (P ). (5.2.1)

However, since P = −∂E/∂V , the new energy is just Ẽ = E+PV , which we recognize
as the enthalpy H :

H(N, P, S) = E(N, V (P ), S) + PV (P ). (5.2.2)

The enthalpy is naturally a function of N , P , and S. Thus, for a process in which
these variables change by small amounts, dN , dP , and dS, respectively, the change in
the enthalpy is

dH =

(
∂H

∂N

)
P,S

dN +

(
∂H

∂P

)
N,S

dP +

(
∂H

∂S

)
N,P

dS. (5.2.3)

Since H = E + PV , it also follows that

dH = dE + PdV + V dP

= TdS − PdV + μdN + PdV + V dP

= TdS + V dP + μdN, (5.2.4)

where the second line follows from the first law of thermodynamics. Comparing eqns.
(5.2.3) and (5.2.4) leads to the thermodynamic relations

μ =

(
∂H

∂N

)
P,S

, 〈V 〉 =

(
∂H

∂P

)
N,S

, T =

(
∂H

∂S

)
N,P

. (5.2.5)

The notation 〈V 〉 for the volume appearing in eqn. (5.2.5) serves to remind us that
the observable volume results from a sampling of instantaneous volume fluctuations.
Eqns. (5.2.5) constitute the basic thermodynamic relations in the isoenthalpic-isobaric
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ensemble. The reason that enthalpy is designated as a control variable rather than the
entropy is the same as for the microcanonical ensemble: It is not possible to “dial
up” a desired entropy, whereas, in principle, the enthalpy can be set by the external
conditions, even if it is never done in practice (except in computer simulations).

The isothermal-isobaric ensemble results from performing the same Legendre trans-
form on the canonical ensemble. The volume in the Helmholtz free energy A(N, V, T ) is
transformed into the external pressure P yielding a new free energy denoted G(N, P, T ):

G(N, P, T ) = A(N, V (P ), T ) − V (P )
∂A

∂V
. (5.2.6)

Using the fact that P = −∂A/∂V , we obtain

G(N, P, T ) = A(N, V (P ), T ) + PV (P ). (5.2.7)

The function G(N, P, T ) is known as the Gibbs free energy. Since G is a function of
N , P , and T , a small change in each of these control variables yields a change in G
given by

dG =

(
∂G

∂N

)
P,T

dN +

(
∂G

∂P

)
N,T

dP +

(
∂G

∂T

)
N,P

dT. (5.2.8)

However, since G = A + PV , the differential change dG can also be expressed as

dG = dA + PdV + V dP

= −PdV + μdN − SdT + PdV + V dP

= μdN + V dP − SdT, (5.2.9)

where the second line follows from eqn. (4.2.5). Thus, equating eqn. (5.2.9) with eqn.
(5.2.8), the thermodynamic relations of the isothermal-isobaric ensemble follow:

μ =

(
∂G

∂N

)
P,T

, 〈V 〉 =

(
∂G

∂P

)
N,T

, S = −
(

∂G

∂T

)
N,P

. (5.2.10)

As before, the volume in eqn. (5.2.10) must be regarded as an average over instanta-
neous volume fluctuations.

5.3 Isobaric phase space distributions and partition functions

The relationship between the isoenthalpic-isobaric and isothermal-isobaric ensembles is
similar to that between the microcanonical and canonical ensembles. In the isoenthalpic-
isobaric ensemble, the instantaneous enthalpy is given by H(x) + PV , where V is the
instantaneous volume, and H(x) is the Hamiltonian. Note that H is strictly conserved
under isoenthalpic conditions. Thus, the ensemble is defined by a collection of sys-
tems evolving according to Hamilton’s equations in a containing volume; in turn, the
volume of the container adjusts to keep the internal pressure equal to the external
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applied pressure such that H(x)+ PV is constant. The term PV in the instantaneous
enthalpy represents the work done by the system against the external pressure.

The fact that H(x) + PV is conserved implies that the ensemble is the collection
of all microstates on the constant enthalpy hypersurface defined by the condition

H(x) + PV = H, (5.3.1)

analogous to the constant energy hypersurface in the microcanonical ensemble. Since
the ensemble distribution function must satisfy the equilibrium Liouville equation and
therefore be a function F (H(x)) of the Hamiltonian, the appropriate solution for the
isoenthalpic-isobaric ensemble is simply a δ-function expressing the conservation of
the instantaneous enthalpy,

f(x) = F (H(x)) = Mδ(H(x) + PV − H), (5.3.2)

where M is an overall normalization constant.
As in the microcanonical ensemble, the partition function (the number of accessi-

ble microstates) is obtained by integrating over the constant enthalpy hypersurface.
However, as the volume is not fixed in this ensemble, each volume accessible to the
system has an associated manifold of accessible phase space points because the size
of the configuration is determined by the volume. The partition function must, there-
fore, contain an integration over both the phase space and the volume. Denoting the
partition function as Γ(N, P, H), we have

Γ(N, P, H) = M

∫ ∞

0

dV

∫
dp1 · · ·

∫
dpN

×
∫

D(V )

dr1 · · ·
∫

D(V )

drN δ(H(r,p) + PV − H), (5.3.3)

where the volume can, in principle, be any positive number. It is important to note
that the volume and position integrations cannot be interchanged, since the position
integration is restricted to the domain defined by each volume. For this reason, the
volume integration cannot be used to integrate over the δ-function. The definition of
the normalization constant M is similar to the microcanonical ensemble except that an
additional reference volume V0 is needed to make the partition function dimensionless:

M ≡ MN =
H0

V0N !h3N
. (5.3.4)

Although we can write eqn. (5.3.3) more compactly as

Γ(N, P, H) = M

∫ ∞

0

dV

∫
dx δ(H(x) + PV − H), (5.3.5)

where the volume dependence of the phase space integration is implicit. This volume
dependence must be determined before the integration over V can be performed.
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Noting that the thermodynamic relations in eqn. (5.2.5) can also be written in
terms of the entropy S = S(N, P, H) as

1

T
=

(
∂S

∂H

)
N,P

,
〈V 〉
T

=

(
∂S

∂P

)
N,H

,
μ

T
=

(
∂S

∂N

)
V,H

, (5.3.6)

the thermodynamics can be related to the number of microscopic states by the anal-
ogous Boltzmann relation

S(N, P, H) = k ln Γ(N, P, H) (5.3.7)

so that eqns. (5.3.6) can be expressed in terms of the partition function as

1

kT
=

(
∂ ln Γ

∂H

)
N,P

,
〈V 〉
kT

=

(
∂ ln Γ

∂P

)
N,H

,
μ

kT
=

(
∂ ln Γ

∂N

)
V,H

. (5.3.8)

The partition function for the isothermal-isobaric ensemble can be derived in much
the same way as the canonical ensemble is derived from the microcanonical ensemble.
The proof is similar to that in Section 4.3 and is left as an exercise (see Problem
5.1). As an alternative, we present a derivation of the partition function that parallels
the development of the thermodynamics: We will make explicit use of the canonical
ensemble.

Consider two systems coupled to a common thermal reservoir so that each system
is described by a canonical distribution at temperature T . Systems 1 and 2 have N1

and N2 particles respectively with N2 � N1 and volumes V1 and V2 with V2 � V1.
System 2 is coupled to system 1 as a “barostat,” allowing the volume to fluctuate such
that the internal pressure P of system 2 functions as an external applied pressure to
system 1 while keeping its internal pressure equal to P (see Fig. 5.1). The total particle
number and volume are N = N1 + N2 and V = V1 + V2, respectively. Let H1(x1) be
the Hamiltonian of system 1 and H2(x2) be the Hamiltonians of system 2. The total
Hamiltonian is H(x) = H1(x1) + H2(x2).

If the volume of each system were fixed, the total canonical partition function
Q(N, V, T ) would be

Q(N, V, T ) = CN

∫
dx1 dx2 e−βH1(x1)+H2(x2)

= g(N, N1, N2)CN1

∫
dx1 e−βH1(x2)CN2

∫
dx2 e−βH2(x2)

∝ Q1(N1, V1, T )Q2(N2, V2, T ), (5.3.9)

where g(N, N1, N2) is an overall normalization constant. Eqn. (5.3.9) does not produce
a proper counting of all possible microstates, as it involves only one specific choice of V1

and V2, and these volumes need to be varied over all possible values. A proper counting,
therefore, requires that we integrate over all V1 and V2, subject to the condition that
V1 + V2 = V . Since V2 = V − V1, we only need to integrate explicitly over one of the
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N  , V  , E
2 2 2

H ( x )2 2

N  , V  , E

H ( x )

1 1 1

1 1

Fig. 5.1 Two systems in contact with a common thermal reservoir at temperature T . System

1 has N1 particles in a volume V1; system 2 has N2 particles in a volume V2. Both V1 and V2

can vary.

volumes, say V1. Thus, we write the correct canonical partition function for the total
system as

Q(N, V, T ) = g(N, N1, N2)

∫ V

0

dV1 Q1(N1, V1, T )Q2(N2, V − V1, T ). (5.3.10)

The canonical phase space distribution function f(x) of the combined system 1
and 2 is

f(x) =
CNe−βH(x)

Q(N, V, T )
. (5.3.11)

In order to determine the distribution function f1(x1, V1) of system 1, we need to
integrate over the phase space of system 2:

f1(x1, V1) =
g(N, N1, N2)

Q(N, V, T )
CN1e

−βH1(x1)CN2

∫
dx2 e−βH2(x2)

=
Q2(N2, V − V1, T )

Q(N, V, T )
g(N, N1, N2)CN1e

−βH1(x1). (5.3.12)

The distribution in eqn. (5.3.12) satisfies the normalization condition:∫ V

0

dV1

∫
dx1 f1(x1, V1) = 1. (5.3.13)

The ratio of partition functions can be expressed in terms of Helmholtz free energies
according to
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Q2(N2, V − V1, T ) = e−βA(N2,V −V1,T )

Q(N, V, T ) = e−βA(N,V,T )

Q2(N2, V − V1, T )

Q(N, V, T )
= e−β[A(N−N1,V −V1,T )−A(N,V,T )]. (5.3.14)

Recalling that N � N1 and V � V1, the free energy A(N − N1, V − V1, T ) can be
expanded to first order about N1 = 0 and V1 = 0, which yields

A(N − N1, V − V1, T ) ≈ A(N, V, T )

− N1

(
∂A

∂N

)∣∣∣∣
N1=0,V1=0

− V1

(
∂A

∂V

)∣∣∣∣
N1=0,V1=0

(5.3.15)

Using the relations μ = ∂A/∂N and P = −∂A/∂V , eqn. (5.3.15) becomes

A(N − N1, V − V1, T ) ≈ A(N, V, T ) − μN1 + PV1. (5.3.16)

Substituting eqn. (5.3.16) into eqn. (5.3.12) yields the distribution

f1(x1, V1) = g(N, N1, N2)e
βμN1e−βPV1e−βH1(x1). (5.3.17)

System 2 has now been eliminated, and we can drop the extraneous “1” subscript.
Rearranging eqn. (5.3.17), integrating both sides, and taking the thermodynamic limit,
we obtain

e−βμN

∫ ∞

0

dV

∫
dx f(x, V ) = IN

∫ ∞

0

dV

∫
dx e−β(H(x)+PV ). (5.3.18)

Eqn. (5.3.18) defines the partition function of the isothermal-isobaric ensemble as

Δ(N, P, T ) = IN

∫ ∞

0

dV

∫
dx e−β(H(x)+PV ) (5.3.19)

where the definition of the prefactor IN is analogous to the microcanonical and canon-
ical ensembles but with an additional reference volume to make the overall expression
dimensionless:

IN =
1

V0N !h3N
. (5.3.20)

As noted in Sections 3.2 and 4.3, the factors IN and MN (see eqn. (5.3.4)) should be
generalized to I{N} and M{N} for multicomponent systems.

Eqn. (5.3.18) illustrates an important point. Since eqn. (5.3.13) is true in the limit
V → ∞, and Δ(N, P, T ) = exp(−βG(N, P, T )) (we will prove this shortly), it follows
that

e−βμN = e−βG(N,P,T ), (5.3.21)

or G(N, P, T ) = μN . This relation is a special case of a more general result known
as Euler’s theorem (see Section 6.2) Euler’s theorem implies that if a thermodynamic
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function depends on extensive variables such as N and V , it can be reexpressed as a
sum of these variables multiplied by their thermodynamic conjugates. Since G(N, P, T )
depends only one extensive variable N , and μ is conjugate to N , G(N, P, T ) is a simple
product μN .

The partition function of the isothermal-isobaric ensemble is essentially a canonical
partition function in which the Hamiltonian H(x) is replaced by the “instantaneous
enthalpy” H(x) + PV and an additional volume integration is included. Since IN =
CN/V0, it is readily seen that eqn. (5.3.19) is

Δ(N, P, T ) =
1

V0

∫ ∞

0

dV e−βPV Q(N, V, T ). (5.3.22)

According to eqn. (5.3.22), the isothermal-isobaric partition function is the Laplace
transform of the canonical partition function with respect to volume, just as the canon-
ical partition function is the Laplace transform of the microcanonical partition function
with respect to energy. In both cases, the variable used to form the Laplace transform
between partition functions is the same variable used to form the Legendre transform
between thermodynamic functions.

We now show that the Gibbs free energy is given by the relation

G(N, P, T ) = − 1

β
ln Δ(N, P, T ). (5.3.23)

Recall that G = A + P 〈V 〉 = E + P 〈V 〉 − TS, which can be expressed as

G = 〈H(x) + PV 〉 + T
∂G

∂T
(5.3.24)

with the help of eqn. (5.2.10). Note that the average of the instantaneous enthalpy is

〈H(x) + PV 〉 =
IN

∫∞
0 dV

∫
dx (H(x) + PV )e−β(H(x)+PV )

IN

∫∞
0 dV

∫
dx e−β(H(x)+PV )

= − 1

Δ(N, P, T )

∂

∂β
Δ(N, P, T )

= − ∂

∂β
ln Δ(N, P, T ). (5.3.25)

Therefore, eqn. (5.3.24) becomes

G +
∂

∂β
ln Δ(N, P, T ) + β

∂G

∂β
= 0 (5.3.26)

which is analogous to eqn. (4.3.20). Thus, following the procedure in Section 4.3 used
to prove that A = −(1/β) ln Q, we can easily show that G = −(1/β) lnΔ. Other
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thermodynamic quantities follow in a manner similar to the canonical ensemble. The
average volume is

〈V 〉 = −kT

(
∂ ln Δ(N, P, T )

∂P

)
N,T

, (5.3.27)

the chemical potential is given by

μ = kT

(
∂ ln Δ(N, P, T )

∂N

)
N,P

, (5.3.28)

the heat capacity at constant pressure CP is

CP =

(
∂H

∂T

)
N,P

= kβ2 ∂2

∂β2
ln Δ(N, P, T ), (5.3.29)

and the entropy is obtained from

S(N, P, T ) = k ln Δ(N, P, T ) +
H(N, P, T )

T
. (5.3.30)

5.4 Pressure and work virial theorems

In the isobaric ensembles, the volume adjusts so that the volume-averaged internal
pressure 〈P (int)〉 is equal to the external applied pressure P . Recall that the internal
pressure P (int) at a particular volume V is given in terms of the canonical partition
function by

P (int) = kT
∂ ln Q

∂V
=

kT

Q

∂Q

∂V
. (5.4.1)

In order to determine the volume-averaged internal pressure, we need to average eqn.
(5.4.1) over an isothermal-isobaric distribution according to

〈P (int)〉 =
1

Δ(N, P, T )

∫ ∞

0

dV e−βPV Q(N, V, T )
kT

Q(N, V, T )

∂

∂V
Q(N, V, T )

=
1

Δ(N, P, T )

∫ ∞

0

dV e−βPV kT
∂

∂V
Q(N, V, T ). (5.4.2)

Integrating by parts in eqn. (5.4.2), we obtain

〈P (int)〉 =
1

Δ

[
e−βPV kTQ(N, V, T )

]∣∣∞
0

− 1

Δ

∫ ∞

0

dV kT

(
∂

∂V
e−βPV

)
Q(N, V, T )

= P
1

Δ

∫ ∞

0

dV e−βPV Q(N, V, T ) = P. (5.4.3)

The boundary term in the first line of eqn. (5.4.3) vanishes at both endpoints: At
V = 0, the configurational integrals in Q(N, V, T ) over a box of zero volume must
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vanish, and at V = ∞, the exponential exp(−βPV ) decays faster than Q(N, V, T )
increases with V .1 Recognizing that the integral in the last line of eqn. (5.4.3) is just
the partition function Δ(N, P, T ), it follows that

〈P (int)〉 = P. (5.4.4)

Eqn. (5.4.4) expresses the expected result that the volume-averaged internal pressure
is equal to the external pressure. This result is known as the pressure virial theorem.
Any computational approach that seeks to generate the isothermal-isobaric ensemble
must obey this theorem.

We next consider the average of the pressure–volume product 〈P (int)V 〉. At a fixed
volume V , the product P (int)V is given in terms of the canonical partition function by

P (int)V = kTV
∂ ln Q

∂V
=

kTV

Q

∂Q

∂V
. (5.4.5)

Averaging eqn. (5.4.5) over an isothermal-isobaric ensemble yields

〈P (int)V 〉 =
1

Δ

∫ ∞

0

dV e−βPV kTV
∂

∂V
Q(N, V, T ). (5.4.6)

As was done for eqn. (5.4.3), we integrate eqn. (5.4.6) by parts, which gives

〈P (int)V 〉 =
1

Δ

[
e−βPV kTV Q(N, V, T )

]∣∣∞
0

− 1

Δ

∫ ∞

0

dV kT

[
∂

∂V
V e−βPV

]
Q(N, V, T )

=
1

Δ

[
−kT

∫ ∞

0

dV e−βPV Q(V ) + P

∫ ∞

0

dV e−βPV V Q(V )

]

= −kT + P 〈V 〉, (5.4.7)

or
〈P (int)V 〉 + kT = P 〈V 〉. (5.4.8)

Eqn. (5.4.8) is known as the work virial theorem. Note the presence of the extra kT
term on the left side. Since P 〈V 〉 and 〈P (int)V 〉 are both extensive quantities and hence
proportional to N , the extra kT term can be neglected in the thermodynamic limit,
and eqn. (5.4.8) becomes 〈P (int)V 〉 ≈ P 〈V 〉. Nevertheless, eqn. (5.4.8) is rigorously
correct, and it is interesting to consider the origin of the extra kT term, since it will
arise again in Section 5.9, where we discuss molecular dynamics algorithms for the
isothermal-isobaric ensemble.

The quantity 〈P (int)V 〉 can be defined for any ensemble. However, because the
volume can fluctuate in an isobaric ensemble, we can think of the volume as an ad-
ditional degree of freedom that is not present in the microcanonical and canonical
ensembles. If energy is equipartitioned, there should be an additional kT of energy in
the volume motion, giving rise to a difference of kT between 〈P (int)V 〉 and P 〈V 〉. Since
the motion of the volume is driven by an imaginary “piston” that acts to adjust the
internal pressure to the external pressure, this piston also adds an amount of energy
kT to the system so that eqn. (5.4.8) is satisfied.

1Recall that as V → ∞, Q(N, V, T ) approaches the ideal-gas and grows as V N .
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5.5 An ideal gas in the isothermal-isobaric ensemble

As an example application of the isothermal-isobaric ensemble, we compute the par-
tition function and thermodynamic properties of an ideal gas. Recall from Section 4.5
that canonical partition function for the ideal gas is

Q(N, V, T ) =
V N

N !λ3N
, (5.5.1)

where λ =
√

βh2/2πm. Substituting eqn. (5.5.1) into eqn. (5.3.22) gives the isothermal-
isobaric partition function

Δ(N, P, T ) =
1

V0

∫ ∞

0

dV e−βPV V N

N !λ3N
=

1

V0N !λ3N

∫ ∞

0

dV e−βPV V N . (5.5.2)

The volume integral can be rendered dimensionless by letting x = βPV , leading to

Δ(N, P, T ) =
1

V0N !λ3N

1

(βP )N+1

∫ ∞

0

dx xNe−x. (5.5.3)

The value of the integral is just N !. Hence, the isothermal-isobaric partition function
for an ideal gas is

Δ(N, P, T ) =
1

V0λ3N (βP )N+1
. (5.5.4)

The thermodynamics of the ideal gas follow from the relations derived in Sec-
tion 5.3. For the equation of state, we obtain the average volume from

〈V 〉 = −kT

(
∂ ln Δ

∂P

)
=

(N + 1)kT

P
(5.5.5)

or

P 〈V 〉 = (N + 1)kT ≈ NkT (5.5.6)

where the last expression follows from the thermodynamic limit. Using eqn. (5.4.8),
we can express eqn. (5.5.6) in terms of the average P (int)V product:

〈P (int)V 〉 = NkT. (5.5.7)

Eqn. (5.5.7) is generally true even away from the thermodynamic limit. The average
enthalpy of the ideal gas is given by

H = − ∂

∂β
ln Δ = (N + 1)kT +

3

2
NkT ≈ 5

2
NkT (5.5.8)

from which the constant pressure heat capacity is given by

CP =

(
∂H

∂T

)
=

5

2
Nk. (5.5.9)
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Eqns. (5.5.8) and (5.5.9) are usually first encountered in elementary physics and chem-
istry textbooks with no microscopic justification. This derivation shows the micro-
scopic origin of eqn. (5.5.9). Note that the difference between the constant volume and
constant pressure heat capacities is

CP = CV + Nk = CV + nR, (5.5.10)

where the product Nk has been replaced by nR, with n the number of moles of gas
and R the gas constant. (This relation is obtained by multiplying and dividing by N0,
Avogadro’s number, Nk = (N/N0)N0k = nR.) Dividing eqn. (5.5.10) by the number
of moles leads to the familiar relation for the molar heat capacities:

cP = cV + R. (5.5.11)

5.6 Extending of the isothermal-isobaric ensemble: Anisotropic

cell fluctuations

In this section, we will show how to account for anisotropic volume fluctuations within
the isothermal-isobaric ensemble. Anisotropic volume fluctuations can occur under a
wide variety of external conditions; however, we will limit ourselves to those that de-
velop under an applied isotropic external pressure. Other external conditions, such as
an applied pressure in two dimensions, would generate a constant surface tension en-
semble. The formalism developed in this chapter will provide the reader with the tools
to understand and develop computational approaches for different external conditions.

When the volume of a system can undergo anisotropic fluctuations, it is necessary
to allow the containing volume to change its basic shape. Consider a system con-
tained within a general parallelepiped. The parallelepiped represents the most general
“box” shape and is appropriate for describing, for example, solids whose unit cells are
generally triclinic. As shown in Fig. 5.2, any parallelepiped can be specified by the
three vectors a, b, and c, that lie along three edges originating from a vertex. Simple
geometry tells us that the volume V of the parallelepiped is given by

V = a · b×c. (5.6.1)

Since each edge vector contains three components, nine numbers can be used to char-
acterize the parallelepiped; these are often collected in the columns of a 3×3 matrix
h called the box matrix or cell matrix:

h =

⎛
⎝ ax bx cx

ay by cy

az bz cz

⎞
⎠ . (5.6.2)

In terms of the cell matrix, the volume V is easily seen to be

V = det(h). (5.6.3)

On the other hand, a little reflection shows that, in fact, only six numbers are needed
to specify the cell: the lengths of the edges a = |a|, b = |b|, and c = |c| and the angles
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a

b

c
α

β

γ

Fig. 5.2 A general parallelepiped showing the convention for the cell vectors and angles.

α, β, and γ between them. By convention, these three angles are defined such that α
is the angle between vectors b and c, β is the angle between vectors a and c, and γ
is the angle between vectors a and b. It is clear, therefore, that the full cell matrix
contains redundant information—in addition to providing information about the cell
lengths and angles, it also describes overall rotations of the cell in space, as specified
by the three Euler angles (see Section 1.11), which accounts for the three extra degrees
of freedom.

In order to separate isotropic from anisotropic cell fluctuations, we introduce a
unit box matrix h0 related to h by h = V 1/3h0 such that det(h0) = 1. Focusing
on the isothermal-isobaric ensemble, the changing cell shape under the influence of an
isotropic applied pressure P can be incorporated into the partition function by writing
Δ(N, P, T ) as

Δ(N, P, T ) =
1

V0

∫ ∞

0

dV

∫
dh0 e−βPV Q(N, V,h0, T ) δ (det(h0) − 1) (5.6.4)

where
∫

dh0 is an integral over all nine components of h0 and the δ-function restricts
the integration to unit box matrices satisfying det(h0) = 1. In eqn. (5.6.4), the explicit
dependence of the canonical partition function Q on both the volume V and the shape
of the cell described by h0 is shown.

Rather than integrate over V and h0 with the constraint of det(h0) = 1, it is
preferable to perform an unconstrained integration over h. This can be accomplished
by a change of variables from h0 to h. Since each element of h0 is multiplied by V 1/3 to
obtain h, the integration measure, which is a nine-dimensional integration, transforms
as dh0 = V −3dh. In addition, det(h0) = det(h)/V . Thus, substituting the cell-matrix
transformation into eqn. (5.6.4) yields

Δ(N, P, T ) =
1

V0

∫ ∞

0

dV

∫
dh V −3e−βPV Q(N,h, T ) δ

(
1

V
det(h) − 1

)
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=
1

V0

∫ ∞

0

dV

∫
dh V −3e−βPV Q(N,h, T )V δ (det(h) − V )

=
1

V0

∫ ∞

0

dV

∫
dh V −2e−βPV Q(N,h, T ) δ (det(h) − V ) (5.6.5)

where the dependence of Q on V and h0 has been expressed as an equivalent depen-
dence only on h. Performing the integration over the volume using the δ-function, we
obtain for the partition function

Δ(N, P, T ) =
1

V0

∫
dh [det(h)]

−2
e−βPdet(h)Q(N,h, T ). (5.6.6)

In an arbitrary number d of spatial dimensions, the transformation is h = V 1/dh0,
and the partition function becomes

Δ(N, P, T ) =
1

V0

∫
dh [det(h)]

1−d
e−βPdet(h)Q(N,h, T ). (5.6.7)

Before describing the generalization of the virial theorems of Section 5.4, we note
that the internal pressure of a canonical ensemble with a fixed cell matrix h describing
an anisotropic system cannot be described by a single scalar quantity as is possible for
an isotropic system. Rather, a tensor is needed; this tensor is known as the pressure
tensor, P(int). Since the Helmholtz free energy A = A(N,h, T ) depends on the full cell
matrix, the pressure tensor, which is a 3× 3 (or rank 3) tensor, has components given
by

P
(int)
αβ = − 1

det(h)

3∑
γ=1

hβγ

(
∂A

∂hαγ

)
N,T

, (5.6.8)

which can be expressed in terms of the canonical partition function as

P
(int)
αβ =

kT

det(h)

3∑
γ=1

hβγ

(
∂ ln Q

∂hαγ

)
N,T

. (5.6.9)

In Section 5.7, an appropriate microscopic estimator for the pressure tensor will be
derived.

If we now consider the average of the pressure tensor in the isothermal-isobaric
ensemble, a tensorial version of virial theorem can be proved for an applied isotropic
external pressure P . The average of the internal pressure tensor is

〈P (int)
αβ 〉 =

1

Δ(N, P, T )

∫
dh [det(h)]−2e−βPdet(h) kTQ(N,h, T )

det(h)

3∑
γ=1

hβγ

(
∂ ln Q

∂hαγ

)
N,T

=
1

Δ(N, P, T )

∫
dh [det(h)]−2e−βPdet(h) kT

det(h)

3∑
γ=1

hβγ

(
∂Q

∂hαγ

)
N,T

(5.6.10)

An integration by parts can be performed as was done in Section 5.4, and, recognizing
that the boundary term vanishes, we obtain
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〈P (int)
αβ 〉 = − kT

Δ(N, P, T )

∫
dh

∂

∂hαγ

{
[det(h)]−2e−βPdet(h) kT

det(h)

3∑
γ=1

hβγ

}
Q(N,h, T )

= − kT

Δ(N, P, T )

∫
dh

{
−3[det(h)]−4 ∂det(h)

∂hαγ
hβγ − βP [det(h)]−3 ∂det(h)

∂hαγ
hβγ

+ [det(h)]−3 ∂hβγ

∂hαγ

}
e−βPdet(h)Q(N,h, T ). (5.6.11)

In order to proceed, we need to know how to calculate the derivative of the deter-
minant of a matrix with respect to one of its elements. The determinant of a matrix
M can be written as det(M) = exp[Tr ln(M)]. Taking the derivative of this expression
with respect to an element Mij , we obtain

∂[det(M)]

∂Mij
= eTr ln(M)Tr

[
M−1 ∂M

∂Mij

]

= det(M)
∑
k,l

M−1
kl

∂Mlk

∂Mij
(5.6.12)

where the trace has been written out explicitly. The derivative ∂Mlk/∂Mij = δilδkj .
Thus, performing the sums over k and l leaves

∂[det(M)]

∂Mij
= det(M)M−1

ji . (5.6.13)

Applying eqn. (5.6.13) to eqn. (5.6.11), and using the fact that
∑

γ ∂hβγ/∂hαγ =∑
γ δβαδγγ = 3δβα, it can be seen that the first and last terms in the curly brackets

of eqn. (5.6.11) cancel, leaving

〈P (int)
αβ 〉 =

kT

Δ(N, P, T )

∫
dh βPδαβe−βPdet(h)Q(N,h, T )

= Pδαβ, (5.6.14)

which states that, on the average, the pressure tensor should be diagonal with each
diagonal element equal to the external applied pressure P . This is the generalization
of the pressure virial theorem of eqn. (5.4.4). In a similar manner, the generalization
of the work virial in eqn. (5.4.8) can be shown to be

〈P (int)
αβ det(h)〉 + kT δαβ = P 〈det(h)〉δαβ , (5.6.15)

according to which the average 〈P (int)
αβ det(h)〉 is diagonal.

5.7 Derivation of the pressure tensor estimator from the canonical

partition function

Molecular dynamics calculations in isobaric ensembles require explicit microscopic
estimators for the pressure. In Section 4.6.3, we derived an estimator for the isotropic
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internal pressure (see eqn. (4.6.57)). In this section, we generalize the derivation and
obtain an estimator for the pressure tensor. For readers wishing to skip over the
mathematical details of this derivation, we present the final result:

P
(int)
αβ (r,p) =

1

det(h)

N∑
i=1

[
(pi · êα)(pi · êβ)

mi
+ (Fi · êα)(ri · êβ)

]
, (5.7.1)

where êα and êβ are unit vectors along the α and β spatial directions, respectively.
Thus, (pi · êα) is just the αth component of the momentum vector pi, with α = x, y, z.

The internal pressure tensor P
(int)
αβ at fixed h is simply a canonical ensemble average

of the estimator in eqn. (5.7.1).
The derivation of the pressure tensor requires a transformation from the primitive

Cartesian variables r1, ..., rN , p1, ...,pN to scaled variables, as was done in Section 4.6.3
for the isotropic pressure estimator. In order to make the dependence of the Hamil-
tonian and the partition function on the box matrix h explicit, we introduce scaled
variables s1, ..., sN related to the primitive Cartesian positions by

ri = hsi. (5.7.2)

The right side of eqn. (5.7.2) is a matrix-vector product, which, in component form,
appears as

ri · êα =
∑

β

hαβ (si · êβ) , (5.7.3)

or in more compact notation,

ri,α =
∑

β

hαβsi,β (5.7.4)

where ri,α = ri · êα and si,β = si · êβ.
Not unexpectedly, the corresponding transformation for the momenta requires mul-

tiplication by the inverse box matrix h−1. However, since h and h−1 are not symmetric,
should the matrix be multiplied on the right or on the left¿ The Lagrangian formula-
tion of classical mechanics of Section 1.4 provides us with a direct route for answering
this question. Recall that the Lagrangian is given by

L(r, ṙ) =
1

2

∑
i

miṙ
2
i − U(r1, ..., rN ). (5.7.5)

The Lagrangian can be transformed into the scaled coordinates by substituting eqn.
(5.7.4) into eqn. (5.7.5) together with the velocity transformation

ṙi,α =
∑

β

hαβ ṡi,β (5.7.6)

to yield
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L(s, ṡ) =
1

2

∑
i

mi

∑
α,β,γ

hαβ ṡi,βhαγ ṡi,γ − U(hs1, ...,hsN )

=
1

2

∑
α,β,γ

hαβhαγ

∑
i

miṡi,β ṡi,γ − U(hs1, ...,hsN ). (5.7.7)

A component of momentum πj conjugate to sj is computed according to

πj,λ =
∂L

∂ṡj,λ
. (5.7.8)

The trickiest part of this derivative is keeping track of the indices. Since all of the
indices in eqn. (5.7.7) are summed over or contracted, eqn. (5.7.7) contains many
terms. The only terms that contribute to the momentum in eqn. (5.7.8) are those for
which i = j and β = λ or γ = λ. The easiest way to keep track of the bookkeeping is
to replace factors of ṡi,β or ṡi,γ with δijδβλ and δijδγλ, respectively, when computing
the derivative, and then perform the sums with the aid of the Kroenecker deltas:

πj,λ =
1

2

∑
α,β,γ

hαβhαγ

∑
i

mi [δijδβλṡi,γ + ṡi,βδijδγλ]

=
1

2
mj

⎡
⎣∑

α,γ

hαλhαγ ṡj,γ +
∑
α,β

hαβhαλṡj,β

⎤
⎦ . (5.7.9)

Since the two sums appearing in the last line of eqn. (5.7.9) are the same, the factor
of 1/2 can be cancelled, yielding

πj,λ = mj

∑
α,γ

hαλhαγ ṡj,γ = mj

∑
α

ṙj,αhαλ. (5.7.10)

Writing this in vector notation, we find

πj = mj ṙjh = pjh (5.7.11)

or
pj = πjh

−1. (5.7.12)

Thus, we see that πj must be multiplied on the right by h−1.
Having obtained the Lagrangian in scaled coordinates and the momentum trans-

formation from the Lagrangian, we must now derive the Hamiltonian in order to
determine the canonical partition function. The Hamiltonian is given by the Legendre
transform rule:

H =
∑

i

πi · ṡi − L =
∑

i

∑
α

πi,αṡi,α − L. (5.7.13)

Using the fact that ṡi = h−1ṙi = h−1pi/mi together with eqn. (5.7.12) to substitute
pi in terms of πi, the Hamiltonian becomes
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H =
∑

i

∑
α,β

1

mi
πi,αh−1

αβpi,β − L =
∑

i

∑
α,β,γ

1

mi
πi,αh−1

αβπi,γh−1
γβ − L. (5.7.14)

Since the kinetic energy term in L is just 1/2 of the first term in eqn. (5.7.14), the
Hamiltonian becomes

H =
∑

i

∑
α,β,γ

πi,απi,γh−1
αβh−1

γβ

2mi
+ U(hs1, ...,hsN). (5.7.15)

The pressure tensor in the canonical ensemble is given by

P
(int)
αβ =

1

Q(N,h, T )

kT

det(h)

∑
γ

hβγ
∂Q(N,h, T )

∂hαγ

=
kT

det(h)

1

Q(N,h, T )

∫
dN

πdNs
∑

γ

hβγ

(
−β

∂H

∂hαγ

)
e−βH

= −
〈

1

det(h)

∑
γ

hβγ
∂H

∂hαγ

〉
. (5.7.16)

Eqn. (5.7.16) requires the derivative of the Hamiltonian with respect to an arbitrary
element of h. This derivative must be obtained from eqn. (5.7.15), which requires
more index bookkeeping. Let us first rewrite the Hamiltonian using a different set of
summation indices:

H =
∑

i

∑
μ,ν,λ

πi,μπi,νh−1
μλh−1

νλ

2mi
+ U(hs1, ...,hsN ). (5.7.17)

Computing the derivative with respect to hαγ , we obtain

∂H

∂hαγ
=

∑
i

∑
μ,ν,λ

πi,μπi,ν

2mi

(
∂h−1

μλ

∂hαγ
h−1

νλ + h−1
μλ

∂h−1
νλ

∂hαγ

)
+

∂

∂hαγ
U(hs1, ...,hsN). (5.7.18)

In order to proceed, we will derive an identity for the derivative of the inverse of a
matrix M(λ) with respect to an arbitrary parameter λ. Let M(λ) be a matrix that
depends on a parameter λ. Differentiating the relation

M(λ)M−1(λ) = I (5.7.19)

with respect to λ, we obtain

dM

dλ
M−1 + M

dM−1

dλ
= 0. (5.7.20)

Solving eqn. (5.7.20) for dM−1/dλ yields
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dM−1

dλ
= −M−1 dM

dλ
M−1. (5.7.21)

Applying eqn. (5.7.21) to eqn. (5.7.18), we obtain

∂H

∂hαγ
= −

∑
i

∑
μ,ν,λ

πi,μπi,ν

2mi

∑
ρ,σ

(
h−1

μρ

∂hρσ

∂hαγ
h−1

σλh−1
νλ + h−1

μλh−1
νρ

∂hρσ

∂hαγ

)
h−1

σλ

+
∂

∂hαγ
U(hs1, ...,hsN ). (5.7.22)

Using ∂hρσ/∂hαγ = δαρδσγ and performing the sums over ρ and σ, we find

∂H

∂hαγ
= −

∑
i

∑
μ,ν,λ

πi,μπi,ν

2mi

∑
ρ,σ

(
h−1

μαh−1
γλh−1

νλ + h−1
μλh−1

ναh−1
γλ

)

+
∂

∂hαγ
U(hs1, ...,hsN ). (5.7.23)

Since

∂

∂hαγ
U(hs1, ...,hsN) =

∑
i

∑
μ,ν

∂U

∂(hsi)μ

∂hμν

∂hαγ
si,ν

=
∑

i

∑
μ,ν

∂U

∂(hsi)μ
δαμδγνsi,ν

=
∑

i

∂U

∂(hsi)α
si,γ , (5.7.24)

we arrive at the result

∂H

∂hαγ
= −

∑
i

∑
μ,ν,λ

πi,μπi,ν

2mi

∑
ρ,σ

(
h−1

μαh−1
γλh−1

νλ + h−1
μλh−1

ναh−1
γλ

)

+
∑

i

∂U

∂(hsi)α
si,γ . (5.7.25)

To obtain the pressure tensor estimator, we must multiply by hβγ and sum over γ.
When this is done and the sum over γ is performed according to

∑
γ hβγh−1

γλ = δβλ,
then the sum over λ can be performed as well, yielding

∑
γ

hβγ
∂H

∂hαγ
= −

∑
i

∑
μ,ν

πi,μπi,ν

2mi

∑
ρ,σ

(
h−1

μαh−1
νβ + h−1

μβh−1
να

)

+
∑

i

∑
γ

∂U

∂(hsi)α
hβγsi,γ . (5.7.26)
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We now recognize that
∑

α πi,μh−1
μα = pi,α,

∑
ν πi,νh−1

νβ = pi,β , ∂U/∂(hsi) = ∂U/∂ri

and
∑

γ hβγsi,γ = ri,β . Substituting these results into eqn. (5.7.26) and multiplying
by −1/det(h) gives

P
(int)
αβ (r1, ..., rN ,p1, ...,pN ) =

1

det(h)

N∑
i=1

[
pi,αpi,β

mi
+ Fi,αri,β

]
, (5.7.27)

which is equivalent to eqn. (5.7.1), thus completing the derivation. The isotropic pres-
sure estimator for P (int) in eqn. (4.6.57) can be obtained directly from the pressure
tensor estimator by tracing:

P(int)(r,p) =
1

3

∑
α

P(int)
αα (r,p) =

1

3
Tr

[
P(int)](r,p)

]
, (5.7.28)

where P(int)(r,p) is the tensorial representation of eqn. (5.7.27). Finally, note that if
the potential has an explicit dependence on the cell matrix h, then the estimator is
modified to read

P
(int)
αβ (r,p) =

1

det(h)

N∑
i=1

[
(pi · êα)(pi · êβ)

mi
+ (Fi · êα)(ri · êβ)

]

− 1

det(h)

3∑
γ=1

∂U

∂hαγ
hγβ. (5.7.29)

5.8 Molecular dynamics in the isoenthalpic-isobaric ensemble

The derivation of the isobaric ensembles requires that the volume be allowed to vary in
order to keep the internal pressure equal, on average, to the applied external pressure.
This suggests that if we wish to develop a molecular dynamics technique for generat-
ing isobaric ensembles, we could introduce the volume as an independent dynamical
variable in the phase space. Indeed, the work-virial theorem of eqn. (5.4.8) strongly
supports such a notion, since it effectively assigns an energy of kT to a “volume
mode.” The idea of incorporating the volume into the phase space as an additional
dynamical degree of freedom, together with its conjugate momentum, as a means of
generating an isobaric ensemble was first introduced by Andersen (1980) and later gen-
eralized for anisotropic volume fluctuations by Parrinello and Rahman (1980). This
idea inspired numerous other powerful techniques based on extended phase spaces, in-
cluding the canonical molecular dynamics methods from Chapter 4, the Car-Parrinello
approach (Car and Parrinello, 1985) for performing molecular dynamics with forces
obtained from “on the fly” electronic structure calculations, and schemes for including
nuclear quantum effects in molecular dynamics (see Chapter 12). In this section, we
present Andersen’s original method for the isoenthalpic-isobaric ensemble and then use
this idea as the basis for a non-Hamiltonian isothermal-isobaric molecular dynamics
approach in Section 5.9.
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Andersen’s method is based on the remarkably simple yet very elegant idea that
the scaling transformation used to derive the pressure,

si = V −1/3ri, πi = V 1/3pi, (5.8.1)

is all we need to derive an isobaric molecular dynamics method. This transformation is
used not only to make the volume dependence of the coordinates and momenta explicit
but also to promote the volume to a dynamical variable. Moreover, it leads to a force
that is used to propagate the volume. In order to make the volume dynamical, we need
to introduce a momentum pV conjugate to the volume and a kinetic energy p2

V /2W
term into the Hamiltonian. Here, W is a mass-like parameter that determines the
time scale of volume motion. Since we already know that the instantaneous pressure
estimator is −∂H/∂V , we seek a Hamiltonian and associated equations of motion that
drive the volume according to the difference between the instantaneous pressure and
the external applied pressure P . The Hamiltonian postulated by Andersen is obtained
from the standard Hamiltonian for an N -particle system by substituting eqn. (5.8.1)
for the coordinates and momenta into the Hamiltonian, adding the volume kinetic
energy and an additional term PV for the action of the imaginary “piston” driving
the volume fluctuations. Andersen’s Hamiltonian is

H =
∑

i

V −2/3
π

2
i

2mi
+ U(V 1/3s1, ..., V

1/3sN) +
p2

V

2W
+ PV, (5.8.2)

The parameter W is determined by a relation similar to eqn. (4.10.2)

W = (3N + 1)kT τ2
b , (5.8.3)

where τb is a time scale for the volume motion. The factor of 3N + 1 arises because
the barostat scales all 3N particles and the volume. Eqn. (5.8.2) is now used to de-
rive equations of motion for generating the isoenthalpic-isobaric ensemble. Applying
Hamilton’s equations, we obtain

ṡi =
∂H

∂πi
=

V −2/3
πi

mi

π̇i = −∂H

∂si
= − ∂U

∂(V 1/3si)
V 1/3

V̇ =
∂H

∂pV
=

pV

W

ṗV = −∂H

∂V
=

1

3
V −5/3

∑
i

π
2
i

mi
− 1

3
V −1/3

∑
i

∂U

∂(V −2/3si)
· si − P. (5.8.4)

These equations of motion could be integrated numerically using the techniques in-
troduced in Section 3.10 to yield a trajectory in the scaled coordinates. However, it is
not always convenient to work in these coordinates, as they do not correspond to the
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physical coordinates. Fortunately, eqns. (5.8.4) can be easily transformed back into
the original Cartesian coordinates by inverting the transformation as follows:

si = V −1/3ri

ṡi = V −1/3ṙi − 1

3
V −4/3V̇ ri

πi = V 1/3pi

π̇i = V 1/3ṗi +
1

3
V −2/3V̇ pi. (5.8.5)

Substituting eqns. (5.8.5) into eqns. (5.8.4) yields

ṙi =
pi

mi
+

1

3

V̇

V
ri

ṗi = −∂U

∂ri
− 1

3

V̇

V
pi

V̇ =
pV

W

ṗV =
1

3V

∑
i

[
p2

i

mi
− ∂U

∂ri
· ri

]
− P. (5.8.6)

Note that the right side of the equation of motion for pV is simply the difference
between the instantaneous pressure estimator of eqn. (4.6.57) or (4.6.58) and the ex-
ternal pressure P . Although eqns. (5.8.6) cannot be derived from a Hamiltonian, they
nevertheless possess the important conservation law

H′ =

N∑
i=1

p2
i

2mi
+ U(r1, ..., rN ) +

p2
V

2W
+ PV

= H0(r,p) +
p2

V

2W
+ PV, (5.8.7)

and they are incompressible. Here, H0 is the physical Hamiltonian of the system. Eqns.
(5.8.6) therefore generate a partition function of the form

ΩP =

∫
dpV

∫ ∞

0

dV

∫
dNp

∫
D(V )

dNr δ

(
H0(r,p) +

p2
V

2W
+ PV − H

)
(5.8.8)

at a pressure P .2 Eqn. (5.8.8) is not precisely equivalent to the true isoenthalpic-
isobaric partition function given in eqn. (5.3.3) because the conserved energy in eqn.

2If
∑

i
Fi = −

∑
i
∂U/∂ri = 0, then an additional conservation law of the form K =

P exp[(1/3) ln V ] exists, and the equations will not generate eqn. (5.8.8). Note that the equations
of motion in scaled variables, eqns. (5.8.4), do not suffer from this pathology.
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(5.8.7) differs from the true enthalpy by p2
V /2W . However, when the system is equipar-

titioned, then according to the classical virial theorem, 〈p2
V /W 〉 = kT , and for N very

large, this constitutes only a small deviation from the true enthalpy. In fact, this kT
is related to the extra kT appearing in the work-virial theorem of eqn. (5.4.8).

In most molecular dynamics calculations, the isoenthalpic-isobaric ensemble is em-
ployed only seldomly: the most common experimental conditions are constant pres-
sure and temperature. Nevertheless, eqns. (5.8.6) provide the foundation for molecular
dynamics algorithms capable of generating an isothermal-isobaric ensemble, which we
discuss next.

5.9 Molecular dynamics in the isothermal-isobaric ensemble I:

Isotropic volume fluctuations

Since most condensed-phase experiments are carried out under the conditions of con-
stant temperature and pressure (e.g. thermochemistry), the majority of isobaric molec-
ular dynamics calculations are performed in the isothermal-isobaric ensemble. Because
N , P , and T are the control variables, we often refer to the NPT ensemble for short.
Calculations in the NPT ensemble require one of the canonical methods of Chapter 4
to be grafted onto an isoenthalpic method in order to induce fluctuations in the en-
thalpy. In this section, we will develop molecular dynamics techniques for isotropic
volume fluctuations under isothermal conditions. Following this, we will proceed to
generalize the method for anisotropic cell fluctuations.

Although several algorithms have been proposed in the literature for generating an
NPT ensemble, they do not all give the correct ensemble distribution function (Mar-
tyna et al., 1994; Tuckerman et al., 2001). Therefore, we will restrict ourselves to a
method, the approach of Martyna, Tobias, and Klein (1994) (MTK), which has been
proved to yield the correct volume distribution. The failure of other schemes is the
subject of Problem 5.7.

The starting point for developing the MTK algorithm is eqns. (5.8.6). In order to
avoid having to write V̇ /3V repeatedly, we introduce, as a convenience, the variable
ε = (1/3) ln(V/V0), where V0 is the reference volume appearing in the isothermal-
isobaric partition function of eqn. (5.3.22). A momentum pε corresponding to ε can be
defined according to ε̇ = pε/W = V̇ /3V . Note that in d dimensions, ε = (1/d) ln(V/V0)
and pε = V̇ /dV . In terms of these variables, eqns. (5.8.6) become, in d dimensions,

ṙi =
pi

mi
+

pε

W
ri

ṗi = −∂U

∂ri
− pε

W
pi

V̇ =
dV pε

W

ṗε = dV (P(int) − P ), (5.9.1)

where P(int) is the internal pressure estimator of eqn. (5.7.28). Although eqns. (5.9.1)
are isobaric, they still lack a proper isothermal coupling and therefore, they do not
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generate an NPT ensemble. However, we know from Section 4.10 that temperature
control can be achieved by coupling eqns. (5.9.1) to a thermostat.

Before we discuss the thermostat coupling, however, we need to analyze eqns.
(5.9.1) in greater detail, for in introducing the “convenient” variables ε and pε, we have
transformed the incompressible equations (5.8.6) into compressible ones; the compress-
ibility of eqs. (5.9.1) now leads to an incorrect volume dependence in the phase space
measure. Applying the rules of Section 4.9 for analyzing non-Hamiltonian systems, we
find that the compressibility of eqns. (5.9.1) is

κ =
N∑

i=1

[
∂

∂ri
· ṙi +

∂

∂rp
· ṗi

]
+

∂V̇

∂V

= dN
pε

W
− dN

pε

W
+ d

pε

W

= d
pε

W

=
V̇

V

=
d

dt
ln

(
V

V0

)
, (5.9.2)

Thus, the function w(x) = ln(V/V0) and the phase space metric becomes
√

g =
exp(−w) = V0/V . The inverse volume dependence in the phase space measure leads to
an incorrect volume distribution. The origin of this problem is the volume dependence
of the transformation leading to eqns. (5.9.1).

We can make the compressibility vanish, however, by a minor modification of eqns.
(5.9.1). All we need is to add a term that yields an extra −dpε/W in the compressibility.
One way to proceed is to modify the momentum equation and add a term to the pε

equations to ensure conservation of energy. If the momentum equation is modified to
read

ṗi = F̃i −
(

1 +
d

Nf

)
pε

W
pi, (5.9.3)

where Nf is the number of degrees of freedom (dN − Nc) with Nc the number of
constraints, then the compressibility κ will be zero, as required for a proper isobaric
ensemble. Here, F̃i is the total force on atom i including any forces of constraint. If
Nc = 0, then F̃i = Fi = −∂U/∂ri. In addition, if the pε equation is modified to read:

ṗε = dV (P(int) − P ) +
d

Nf

N∑
i=1

p2
i

mi
, (5.9.4)

then eqns. (5.9.1), together with these two modifications, will conserve eqn. (5.8.7).
Since, eqns. (5.9.1), together with eqns. (5.9.3) and (5.9.4), possess the correct phase
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space metric and conserved energy, they can now be coupled to a thermostat in or-
der to generate a true isothermal-isobaric ensemble. Choosing the Nosé–Hoover chain
approach of Section 4.10, we obtain the equations of motion

ṙi =
pi

mi
+

pε

W
ri

ṗi = F̃i −
(

1 +
d

Nf

)
pε

W
pi − pη1

Q1
pi

V̇ =
dV pε

W

ṗε = dV (P(int) − P ) +
d

Nf

N∑
i=1

p2
i

mi
− pξ1

Q′
1

pε

η̇j =
pηj

Qj
ξ̇j =

pξj

Q′
j

ṗηM = GM

ṗξj = G′
j −

pξj+1

Q′
j+1

pξj

ṗξM = G′
M , (5.9.5)

where the Gk are defined in eqn. (4.11.6). Note that eqns. (5.9.5) possess two Nosé–
Hoover chains. One is coupled to the particles and the other to the volume. The reason
for this seemingly baroque scheme is that the particle positions and momenta move on
a considerably faster time scale than the volume. Thus, for practical applications, they
need to be thermalized independently. The volume thermostat forces G′

j are defined
in a manner analogous to the particle thermostat forces:

G′
1 =

p2
ε

2W
− kT

G′
j =

pξj−1

Q′
j−1

− kT. (5.9.6)

Eqns. (5.9.5) are the MTK equations, which have the conserved energy

H′ =
N∑

i=1

p2
i

2mi
+ U(r1, ..., rN ) +

p2
ε

2W
+ PV

+

M∑
j=1

[
p2

ηj

2Qj
+

p2
ξj

2Q′
j

+ kT ξj

]
+ NfkTη1 + kT

M∑
j=2

ηj . (5.9.7)

The metric factor associated with these equations is
√

g = exp(dNη1 + η2 + · · · +
ηM + ξ1 + · · · ξM ). With this metric and eqn. (5.9.7), it is straightforward to prove,
using the techniques of Section 4.9, that these equations do, indeed, generate the
correct isothermal-isobaric phase space distribution (see problem 5). Moreover, they
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can be modified to include a thermostat on each particle or on each degree of freedom
(“massive” thermostatting), as discussed in Section 4.10.

To illustrate the use of eqns. (5.9.5), consider the simple example of a particle of
mass m moving a one-dimensional box with length L subject to periodic potential. Let
p and q be the momentum and coordinate of the particle, respectively. The potential
is given by

U(q, L) =
mω2L2

4π2

[
1 − cos

(
2πq

L

)]
, (5.9.8)

where ω is a parameter having units of inverse time. Such a potential could be used,
for example, as a simple model for the motion of particles through a nanowire. We will
use eqns. (5.9.5) to determine the position and box-length distributions for a given
pressure P and temperature T . These distributions are given by

P (q) ∝
∫ ∞

q

dL exp [−βPL] exp

{
−β

mω2L2

4π2

[
1 − cos

(
2πq

L

)]}

P (L) ∝ exp [−βPL]

∫ L

0

dq exp

{
−β

mω2L2

4π2

[
1 − cos

(
2πq

L

)]}

∝ L exp [−βPL]

∫ 1

0

ds exp

{
−β

mω2L2

4π2
[1 − cos (2πs)]

}
, (5.9.9)

where the last line is obtained by introducing the scaled coordinate s = q/L. The
one-dimensional integrals can be performed using a standard numerical quadrature
scheme, yielding “analytical” distributions that can be compared to the simulated
ones. The simulations are carried out using a numerical integration scheme that we
will present in Section 5.12). Fig. 5.3 shows the comparison for the specific case that
ω = 1, m = 1, kT = 1, and P = 1. The parameters of the simulation are: W = 18,
M = 4, Qk = 1, Q′

k = 1, and Δt = 0.05. It can be seen that the simulated and
analytical distributions match extremely well, indicating that eqns. (5.9.5) generate
the correct phase space distribution.

5.10 Molecular dynamics in the isothermal-isobaric ensemble II:

Anisotropic cell fluctuations

Suppose we wish to map out the space of stable crystal structures for a given sub-
stance. We can only be do this within a molecular dynamics framework if we can
sample different cell shapes. For this reason, the development of molecular dynamics
approaches with a fully flexible cell or box is an extremely important problem. We
have already laid the groundwork in the isotropic scheme developed above and in our
derivation of the pressure tensor estimator in eqn. (5.7.1). The key modification we
need here is that the nine components of the box matrix h must be treated as dy-
namical variables with nine corresponding momenta. Moreover, we must devise a set
of equations of motion whose compressibility lead to the metric factor

√
g = [det(h)]

1−d
exp

[
dNη1 + ηc + d2ξ1 + ξc

]
, (5.10.1)
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Fig. 5.3 Position and box-length distributions for a particle moving in the one-dimensional

potential of eqn. (5.9.8).

where ηc =
∑M

k=2 ηk and ξc =
∑M

k=2 ξc, as required by the partition function in eqn.
(5.6.6).

We begin by defining the 3×3 matrix of box momenta, denoted pg. pg is analogous

to pε in that we let pg/Wg = ḣh−1 where Wg is the time-scale parameter analogous
to W in the isotropic case. Rather than repeat the full development presented for
isotropic case, here we will simply propose a set of equations of motion that represent
a generalization of eqs. (5.9.5) for fully flexible cells and then prove that they generate
the correct distribution. A proposed set of equations of motion is (Martyna, Tobias
and Klein, 1994)

ṙi =
pi

mi
+

pg

Wg
ri

ṗi = F̃i − pg

Wg
pi − 1

Nf

Tr [pg]

Wg
pi − pη1

Q1
pi

ḣ =
pgh

Wg

ṗg = det[h](P(int) − IP ) +
1

Nf

N∑
i=1

p2
i

mi
I− pξ1

Q′
1

pg
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η̇j =
pηj

Qj
, ξ̇j =

pξj

Q′
j

ṗηM = GM

ṗξj = G′
j −

pξj+1

Q′
j+1

pξj

ṗξM = G′
M , (5.10.2)

where P(int) is the internal pressure tensor, whose components are given by eqn. (5.7.1)
or (5.7.29), I is the 3×3 identity matrix, the thermostat forces Gj are given by eqs.
(4.11.6), and

G′
1 =

Tr
[
pT

g pg

]
Wg

− d2kT

G′
j =

pξj−1

Q′
j−1

− kT. (5.10.3)

The matrix pT
g is the transpose of pg. Eqns. (5.10.2) have the conserved energy

H′ =
N∑

i=1

p2
i

2mi
+ U(r1, ..., rN ) +

Tr
[
pT

g pg

]
2Wg

+ Pdet[h]

+

M∑
j=1

[
p2

ηj

2Qj
+

p2
ξj

2Q′
j

]
+ NfkTη1 + d2kT ξ1 + kT (ηc + ξc) . (5.10.4)

Furthermore, if
∑

i F̃i = 0, i.e., there are no external forces on the system, then when
a global thermostat is used on the particles, there is an additional vector conservation
law of the form

K = hP {det [h]}1/Nf eη1 , (5.10.5)

where P =
∑

i pi is the center-of-mass momentum.
We will now proceed to show that eqns. (5.10.2) generate the ensemble described

by eqn. (5.6.7). For the purpose of this analysis, we will consider that there are no
constraints on the system, so that Nf = dN and that

∑
i Fi �= 0. The more slightly

complex case that arises when
∑

i Fi = 0 will be left for the reader to ponder in
Problem 5.6.

We start by calculating the compressibility of eqns. (5.10.2). Since the matrix mul-
tiplications give rise to a mixing among the components of the position and momentum
vectors, it is useful to write the equations of motion for ri, pi, h, and pg explicitly in
terms of their Cartesian components:

ṙi,α =
pi,α

mi
+

∑
β

pg,αβ

Wg
ri,β

ṗi,α = Fi,α −
∑

β

pg,αβ

Wg
pi,β − 1

dN

Tr [pg]

Wg
pi,α − pη1

Q1
pi,α
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ḣαβ =
∑

γ

pg,αγhγβ

Wg

ṗg,αβ = det(h)
[
P

(int)
αβ − Pδαβ

]
+

1

dN

∑
i

p2
i

mi
δαβ − pξi

Q′
1

pg,αβ . (5.10.6)

Now, the compressibility is given by

κ =
∑
i,α

[
∂ṙi,α

∂ri,α
+

∂ṗi,α

∂pi,α

]
+

∑
α,β

[
∂ḣαβ

∂hαβ
+

∂ṗg,αβ

∂pg,αβ

]

+

M∑
j=1

[
∂η̇j

∂ηj
+

∂ṗηj

∂pηj

+
∂ξ̇j

∂ξj
+

∂ṗξj

∂pξj

]
. (5.10.7)

Carrying out the differentiation using eqns. (5.10.7) and (5.10.2), we find that

κ = N
∑
α,β

pg,αβ

Wg
δαβ − N

∑
α,β

pg,αβ

Wg
δαβ − 1

dN

Tr [pg]

Wg
dN

− dN
pη1

Q1
−

M∑
j=2

pηj

Qj
+ d

pg,αβ

Wg
δαβ − d2 pξ1

Q′
1

−
M∑

j=2

pξj

Q′
j

= −(1 − d)
Tr [pg]

Wg
− dN

pη1

Q1
− d2 pξ1

Q′
1

−
M∑

j=2

[
pηj

Qj
+

pξj

Q′
j

]
. (5.10.8)

Since pg/Wg = ḣh−1,
Tr [pg]

Wg
= Tr

[
ḣh−1

]
. (5.10.9)

Using the identity det[h] = exp [Tr(lnh)], we have

d

dt
det[h] = eTr[lnh]Tr

[
ḣh−1

]
= det[h]Tr

[
ḣh−1

]

Tr
[
ḣh−1

]
=

1

det[h]

d

dt
det[h] =

d

dt
ln [det(h)] . (5.10.10)

Thus, the compressibility becomes

κ = −(1 − d)
d

dt
ln [det(h)] − dNη̇1 − d2ξ̇1 −

[
η̇c + ξ̇c

]
, (5.10.11)

which leads to the metric in eqn. (5.10.1). Assuming that eqn. (5.10.4) is the only
conservation law, then by combining the metric in eqn. (5.10.1) with eqn. (5.10.4) and
inserting these into eqn. (4.9.21) we obtain
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Z =

∫
dNp dNr dh dpg dη1 dηc dξ1 dξc dMpηdMpξ [det(h)]1−d edNη1+ηced2ξ1+ξc

× δ

⎛
⎝H(r,p) +

M∑
j=1

[
p2

ηj

2Qj
+

p2
ξj

2Q′
j

]
+ NfkTη1 + d2kT ξ1 + kT [ηc + ξc]

+
Tr

[
pT

g pg

]
2Wg

+ Pdet[h] − H

)
. (5.10.12)

If we now integrate over η1 using the δ-function, we find

Z ∝
∫

dh [det(h)]
1−d

e−βPdet(h) dNp dNr e−βH(r,p), (5.10.13)

where the constant of proportionality includes uncoupled integrations over the re-
maining thermostat/barostat variables. Thus, the correct isothermal-isobaric partition
function for fully flexible cells is recovered.

5.11 Atomic and molecular virials

The isotropic pressure estimator in eqn. (5.7.28) and pressure tensor estimator in eqn.
(5.7.1) were derived assuming a scaling or matrix multiplication of all atomic positions.
The resulting virial term in the estimator

N∑
i=1

ri · Fi

is, therefore, known as an atomic virial. Although mathematically correct and physi-
cally sensible for purely atomic systems, the atomic virial might seem to be an overkill
for molecular systems. In a collection of molecules, assuming no constraints, the force
Fi appearing in the atomic virial contains both intramolecular and intermolecular
components. If the size of the molecule is small compared to its container, it is more
intuitive to think of the coordinate scaling (or multiplication by the cell matrix) as
acting only on the centers of mass of the molecules rather than on each atom indi-
vidually. That is, the scaling should only affect the relative positions of the molecules
rather than the bond lengths and angles within each molecule. In fact, an alternative
pressure estimator can be derived by scaling only the positions of the molecular centers
of mass rather than individual atomic positions.

Consider a system of N molecules with centers of mass at positions R1, ...,RN .
For isotropic volume fluctuations, we would define the scaled coordinates S1, ...,SN of
the centers of mass by

Si = V −1/dRi. (5.11.1)

If each molecule has n atoms with masses mi,1, ..., mi,n and atomic positions ri,1, ..., ri,n,
then the center-of-mass position is
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Ri =

∑n
α=1 mi,αri,α∑n

α=1 mi,α
. (5.11.2)

We saw in Section 1.11 that the center-of-mass motion of each molecule can be sep-
arated from internal motion relative to a body-fixed frame. Thus, if the derivation
leading up to eqn. (4.6.57) is repeated using the transformation in eqn. (5.11.1), the
following pressure estimator is obtained:

Pmol(P,R) =
1

dV

N∑
i=1

[
P2

i

Mi
+ Ri · Fi

]
, (5.11.3)

where Mi is the mass of the ith molecule, and Pi is the momentum of its center of
mass:

Pi =

n∑
α=1

pi,α, (5.11.4)

and Fi is the force on the center of mass

Fi =

n∑
α=1

Fi,α. (5.11.5)

The virial term appearing in eqn. (5.11.3)

N∑
i=1

Ri · Fi

is known as the molecular virial.
Given the molecular virial, it is straightforward to derive a molecular dynamics

algorithm for the isoenthalpic-isobaric ensemble that uses a molecular virial. The key
feature of this algorithm is that the barostat coupling acts only on the center-of-mass
positions and momenta. Assuming three spatial dimensions and no constraints between
the molecules, the equations of motion take the form

ṙi,α =
pi,α

mi,α
+

pε

W
Ri

ṗi,α = Fi,α −
(

1 +
1

N

)
pε

W

mi,α

Mi
Pi

V̇ =
dV pε

W

ṗε = dV (Pmol − P ) +
1

N

N∑
i=1

P2
i

Mi
. (5.11.6)

These equations have the conserved energy

H′ =
∑
i,α

p2
i,α

2mi,α
+ U(r) +

p2
ε

2W
+ PV, (5.11.7)

where the r in U(r) denotes the full set of atomic positions. The proof that these
equations generate the correct isothermal-isoenthalpic ensemble is left as an exercise
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in problem 8. These equations can easily be generalized for the isothermal-isobaric
ensemble with a molecular virial by coupling Nosé-Hoover chain thermostats as in eqns.
(5.9.5). Moreover, starting from the transformation for anisotropic cell fluctuations

Si = h−1Ri, (5.11.8)

the algorithm in eqn. (5.11.6) can be turned into an algorithm capable of handling
anisotropic volume fluctuations with a molecular virial.

5.12 Integrating the MTK equations of motion

Integrating the MTK equations is only slightly more difficult than integrating the NHC
equations and builds on the methodology we have already developed. We begin with
the isotropic case, and for the present, we consider a system in which no constraints
are imposed so that Nf = dN and F̃i = Fi = −∂U/∂ri. In Section 5.13, we will see
how to account for forces of constraint. We first write the total Liouville operator as

iL = iL1 + iL2 + iLε,1 + iLε,2 + iLNHC−baro + iLNHC−part, (5.12.1)

where

iL1 =

N∑
i=1

[
pi

mi
+

pε

W
ri

]
· ∂

∂ri

iL2 =

N∑
i=1

[
Fi − α

pε

W
pi

]
· ∂

∂pi

iLε,1 =
pε

W

∂

∂ε

iLε,2 = Gε
∂

∂pε
, (5.12.2)

and the operators iLNHC−part and iLNHC−baro are the particle and barostat Nosé-
Hoover chain Liouville operators, respectively, which are defined in the last two lines
of eqn. (4.11.5). In eqn. (5.12.2), α = 1 + d/Nf = 1 + 1/N , and

Gε = α
∑

i

p2
i

mi
+

N∑
i=1

ri ·Fi − dV
∂U

∂V
− PV. (5.12.3)

The propagator is factorized following the scheme of eqn. (4.11.8) as

exp(iLΔt) = exp

(
iLNHC−baro

Δt

2

)
exp

(
iLNHC−part

Δt

2

)

× exp

(
iLε,2

Δt

2

)
exp

(
iL2

Δt

2

)
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× exp (iLε,1Δt) exp (iL1Δt)

× exp

(
iL2

Δt

2

)
exp

(
iLε,2

Δt

2

)

× exp

(
iLNHC−part

Δt

2

)
exp

(
iLNHC−baro

Δt

2

)
+ O(Δt3) (5.12.4)

(Tuckerman et al., 2006). In evaluating the action of this propagator, the Suzuki-
Yoshida decomposition developed in eqns. (4.11.16) and (4.11.17) is applied to the op-
erators exp(iLNHC−baroΔt/2) and exp(iLNHC−partΔt/2). The operators exp(iLε,1Δt)
and exp(iLε,2Δt/2) are simple translation operators. The operators exp(iL1Δt) and
exp(iL2Δt/2) are somewhat more complicated than their microcanonical or canoni-
cal ensemble counterparts due to the barostat coupling and need further explication.
The action of the operator exp(iL1Δt) can be determined by solving the first-order
differential equation

ṙi = vi + vεri, (5.12.5)

keeping vi = pi/mi and vε = pε/W constant with an arbitrary initial condition ri(0)
and then evaluating the solution at t = Δt. Note that vi must not be confused with
the atomic velocity vi = ṙi = vi + vεri. vi = pi/mi, introduced here for notational
convenience to avoid having to write pi/mi explicitly everywhere. Solving eqn. (5.12.5)
yields the finite-difference expression

ri(Δt) = ri(0)evεΔt + Δtvi(0)evεΔt/2 sinh(vεΔt/2)

vεΔt/2
. (5.12.6)

Similarly, the action of exp(iL2Δt/2) can be determined by solving the differential
equation

v̇i =
Fi

mi
− αvεvi, (5.12.7)

keeping Fi and vε constant with an arbitrary initial condition vi(0) and then evaluating
the solution at t = Δt/2. This yields the evolution

vi(Δt/2) = vi(0)e−αvεΔt/2 +
Δt

2mi
Fi(0)e−αvεΔt/4 sinh(αvεΔt/4)

αvεΔt/4
. (5.12.8)

In practice, the factor sinh(x)/x should be evaluated by a power series for small x to
avoid numerical instabilities.3

Eqns. (5.12.4), (5.12.6) and (5.12.8), together with the Suzuki-Yoshida factorization
of the thermostat operators, completely define an integrator for eqns. (5.9.5). The
integrator can be easily coded using the direct translation technique.

3The power series expansion of sinh(x)/x up to tenth order is

sinh(x)

x
≈

5∑
n=0

a2nx2n (5.12.9)

where a0 = 1, a2 = 1/6, a4 = 1/120, a6 = 1/5040, a8 = 1/362880, a10 = 1/39916800.
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Integrating eqns. (5.10.2) for the fully flexible case employs the same basic factor-
ization scheme as in eqn. (5.12.4). First, we decompose the total Liouville operator
as

iL = iL1 + iL2 + iLg,1 + iLg,2 + iLNHC−baro + iLNHC−part, (5.12.10)

where

iL1 =

N∑
i=1

[
pi

mi
+

pg

Wg
ri

]
· ∂

∂ri

iL2 =

N∑
i=1

[
Fi −

(
pg

Wg
+

1

Nf

Tr [pg]

Wg
I

)
pi

]
· ∂

∂pi

iLg,1 =
pgh

Wg
· ∂

∂h

iLg,2 = Gg
∂

∂pg
, (5.12.11)

with

Gg = det[h](P(int) − IP ) +
1

Nf

N∑
i=1

p2
i

mi
I. (5.12.12)

The propagator is factorized exactly as in eqn. (5.12.4) with the contributions to
iLε replaced by the contributions to iLg. In the flexible case, the application of the
operators exp(iL1Δt) and exp(iL2Δt/2) requires solution of the following matrix-
vector equations:

ṙi = vi + vgri (5.12.13)

v̇i =
Fi

mi
− vgvi − bTr [vg] vi, (5.12.14)

where vg = pg/Wg, and b = 1/Nf . In order to solve eqn. (5.12.13), we introduce a
transformation

xi = Ori, (5.12.15)

where O is a constant orthogonal matrix. We also let ui = Ovi. Since O is orthogonal,
it satisfies OTO = I. Introducing this transformation into eqn. (5.12.13) yields

Oṙi = Ovi + Ovgri

ẋi = ui + OvgO
TOri = ui + OvgO

Txi, (5.12.16)

where the second line follows from the orthogonality of O. Now, since the pressure
tensor is symmetric, vg is also symmetric. Therefore, it is possible to choose O to be
the orthogonal matrix that diagonalizes vg according to
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v(d)
g = OvgO

T, (5.12.17)

where v
(d)
g is a diagonal matrix with the eigenvalues of vg on the diagonal. The columns

of O are just the eigenvectors of vg. Let λα, α = 1, 2, 3 be the eigenvectors of vg. Since
vg is symmetric, its eigenvalues are real. In this representation, the three components
of xi are uncoupled in eqn. (5.12.16) and can be solved independently using eqn.
(5.12.6). The solution at t = Δt for each component of xi is

xi,α(Δt) = xi,α(0)eλαΔt + Δtvi,αeλαΔt/2 sinh(λαΔt/2)

λαΔt/2
. (5.12.18)

Transforming back to ri, we find that

ri(Δt) = OTDOri(0) + ΔtOTD̃Ovi, (5.12.19)

where the matrices D and D̃ have the elements

Dαβ = eλαΔtδαβ

D̃αβ = eλαΔt/2 sinh(λαΔt/2)

λαΔt/2
δαβ . (5.12.20)

In a similar manner, eqn. (5.12.14) can be solved for vi(t) and the solution evaluated
at t = Δt/2 with the result

vi(Δt/2) = OTΔOvi(0) +
Δt

2mi
OTΔ̃OFi, (5.12.21)

where the matrices Δ and Δ̃ are given by their elements

Δαβ = e−(λα+bTr[vg])Δt/2δαβ

Δ̃αβ = e−(λα+bTr[vg])Δt/4 sinh[(λα + bTr[vg])Δt/4]

(λα + bTr[vg])Δt/4
δαβ . (5.12.22)

A technical comment is in order at this point. As noted in Section 5.6, if all nine
elements of the box matrix h are allowed to vary independently, then the simulation
box could execute overall rotational motion, which makes analysis of molecular dy-
namics trajectories difficult. Overall cell rotations can be eliminated straightforwardly,
however (Tobias et al., 1993). One scheme for accomplishing this is to restrict the box
matrix to be upper (or lower) triangular only. Consider, for example, what an upper
triangular box matrix represents. According to eqn. (5.6.2), if h is upper triangular,
then the vector a has only one nonzero component, which is its x-component. Hence,
h lies entirely along the x direction. Similarly, b lies entirely in the x-y plane. Only c
has complete freedom. With the base of the box firmly rooted in the x-y plane with
its a vector pinned to the x-axis, overall rotations of the cell are eliminated. The other
option, which is preferable when the system is subject to holonomic constraints, is
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explicit symmetrization of the pressure tensor P
(int)
αβ . That is, we can simply replace

occurrences of P
(int)
αβ in eqns. (5.10.2) with P̃

(int)
αβ = (P

(int)
αβ + P

(int)
βα )/2. This has the

effect of ensuring that pg and vg are symmetric matrices. If the initial conditions are
chosen such that the angular momentum of the cell is initially zero, then the cell should
not rotate. Both techniques can actually be derived using simple holonomic constraints
and Lagrange undetermined multipliers (see Problem 5.13). When the number of de-
grees of freedom in the cell matrix is restricted, factors of d2 in eqns. (5.10.3) and
(5.10.4) must be replaced by the correct number of degrees of freedom. If overall cell
rotations are eliminated, then this number is d2 − d.

The new NPT integrator can also be applied within the multiple time-step RESPA
framework of Section 3.11. For two time steps, δt and Δt = nδt, the following contri-
butions to the total Liouville operator are defined as

iL1 =

N∑
i=1

[
pi

mi
+

pε

W
ri

]
· ∂

∂ri

iL
(fast)
2 =

N∑
i=1

[
F

(fast)
i − α

pε

W
pi

]
· ∂

∂pi

iL
(slow)
2 =

N∑
i=1

F
(slow)
i · ∂

∂pi

iLε,1 =
pε

W

∂

∂ε

iL
(fast)
ε,2 = G(fast)

ε

∂

∂pε

iL
(slow)
ε,2 = G(slow)

ε

∂

∂pε
, (5.12.23)

where fast and slow components are designated with superscripts with

G(fast)
ε = α

∑
i

p2
i

mi
+

N∑
i=1

ri · F(fast)
i − 3V

∂U (fast)

∂V
− 3P (fast)V (5.12.24)

G(slow)
ε =

N∑
i=1

ri · F(slow)
i − 3V

∂U (slow)

∂V
− 3P (slow)V. (5.12.25)

The variables P (fast) and P (slow) are external pressure components corresponding to the
fast and slow virial contributions and must be chosen such that P = P (fast) + P (slow).
Although the subdivision of the pressure is arbitrary, a physically meaningful choice
can be made. One possibility is to perform a short calculation with a single time step
and compute the contributions to the pressure from
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P (fast) =

〈
1

3V

{
N∑

i=1

[
p2

i

2mi
+ ri · F(fast)

i

]
− 3V

∂U (fast)

∂V

}〉

P (slow) =

〈
1

3V

{
N∑

i=1

ri · F(slow)
i − 3V

∂U (slow)

∂V

}〉
, (5.12.26)

that is, using the definitions of the reference system and correction contributions to
the internal pressure. Another simple choice is

P (fast) =
n

n + 1
P

P (slow) =
1

n + 1
P. (5.12.27)

The factorized propagator then takes the form

exp(iLΔt) = exp

(
iLNHC−baro

Δt

2

)
exp

(
iLNHC−part

Δt

2

)

× exp

(
iL

(slow)
ε,2

Δt

2

)
exp

(
iL

(slow)
2

Δt

2

)

×
[
exp

(
iL

(fast)
2

δt

2

)
exp

(
iL

(fast)
ε,2

δt

2

)

× exp (iLε,1δt) exp (iL1δt)

× exp

(
iL

(fast)
ε,2

δt

2

)
exp

(
iL

(fast)
2

δt

2

)]n

× exp

(
iL

(slow)
2

Δt

2

)
exp

(
iL

(slow)
ε,2

Δt

2

)

× exp

(
iLNHC−part

Δt

2

)
exp

(
iLNHC−baro

Δt

2

)
+ O(Δt3). (5.12.28)

Note that because Gε depends on the forces Fi, it is necessary to update both the
particles and the barostat in the reference system.

The integrators presented in this section can be generalized to handle systems
with constraints under constant pressure. It is not entirely straightforward, however,
because self-consistency conditions arise from the nonlinearity of some of the operators.
A detailed discussion of the implementation of constraints under conditions of constant
pressure can be found in Section 5.13.
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Fig. 5.4 (a) Box-length fluctuations at pressures of P = 0.5 kbar (top curve), P = 1.0

kbar (middle curve), and P = 1.5 kbar (bottom curve), respectively. (b) Radial distribution

functions at each of the three pressures.

5.12.1 Example: Liquid argon at constant pressure

As an illustrative example of molecular dynamics in the isothermal-isobaric ensemble,
we consider first the argon system of Section 3.14.2. Three simulations at applied
external pressures of 0.5 kbar, 1.0 kbar, and 1.5 kbar and a temperature of 300 K
are carried out, and the radial distribution functions computed at each pressure. The
parameters of the Lennard-Jones potential are described in Section 3.14.2, together
with the integration time step used in eqn. (5.12.4). Temperature control is achieved
using the “massive” Nosé-Hoover chain scheme of Section 4.10. The values of τ for the
particle and barostat Nosé-Hoover chains are 100.0 fs and 1000.0 fs, respectively, while
τb = 500.0 fs. Nosé-Hoover chains of length M = 4 are employed using nsy = 7 and
n = 4 in eqn. (4.11.16). Each simulation is 75 ps in length and carried out in a cubic
box with periodic boundary conditions subject only to isotropic volume fluctuations.
In Fig. 5.4(a), we show the fluctuations in the box length at each pressure, while in
Fig. 5.4(b), we show the radial distribution functions obtained at each pressure. Both
panels exemplify the expected behavior of the system. As the pressure increases, the
box length decreases. Similarly, as the pressure increases, the liquid becomes more
structured, and the first and second peaks in the radial distribution function become
sharper. Fig. 5.5 shows the density distribution (in reduced units) obtained form the
simulation at P = 0.5 kbar (P ∗ = Pσ3/ε = 1.279). The solid and dashed curves
correspond to τb values of 500.0 fs and 5000.0 fs, respectively. It can be seen that the
distribution is fairly sharply peaked in both cases around a density value ρ∗ ≈ 0.704,
and that the distribution is only sensitive to the value of τb near the peak. Interestingly,
the distribution can be fit very accurately to a Gaussian form,

PG(ρ∗) =
1√

2πσ2
e−(ρ∗−ρ0)2/2σ2

(5.12.29)

with a width σ = 0.01596 and average ρ0 = 0.7038. Such a fit is shown in circles on
the solid curve in Fig. 5.5.
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Fig. 5.5 Density distribution for the argon system at P = 0.5 kbar for two different values

of τb (Tuckerman et al., 2006). The solid curve with filled circles represents the fit to the

Gaussian form in eqn. (5.12.29)

5.13 The isothermal-isobaric ensemble with constraints: The

ROLL algorithm

Incorporating holonomic constraints into molecular dynamics calculations in the iso-
baric ensembles introduces new technical difficulties. The forces in the virial contri-
butions to the pressure and pressure tensor estimators must also include the forces of
constraint. According to eqn. (3.9.5), the force on atom i in an N -particle system is

F̃i = Fi +
∑

k λkF
(k)
c,i , where F

(k)
c,i = ∇iσk(r1, ..., rN ), where Fi = −∂U/∂ri, and the

virial part of the pressure is

P(vir) =
1

3V

N∑
i=1

[
ri · Fi + ri ·

∑
k

λkF
(k)
c,i

]
. (5.13.1)

The integration algorithm for eqns. (5.9.5) encoded in the factorization of eqn. (5.12.4)
generates a nonlinear dependence of the coordinates and velocities on the barostat
variables vε or vg, while these variables, in turn, depend linearly on the pressure
or pressure tensor. The consequence is that the coordinates and velocities acquire a
complicated dependence on the Lagrange multipliers, and solving for multipliers is
much less straightforward then in the constant-volume ensembles (see Section 3.9).

In order to tackle this problem, we need to modify the SHAKE and RATTLE
algorithms of Section 3.9. We refer to the modified algorithm as the “ROLL” algo-
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rithm (Martyna et al., 1996).4 It is worth noting that a version of the ROLL algorithm
was developed by Martyna, et al. (1996), however, the version that will be described
here based on eqn. (5.12.4) is considerably simpler.

Here, we will only consider the problem of isotropic cell fluctuations; the extension
to fully flexible cells is straightforward, though tedious (Yu et al., 2010). Because of the
highly nonlinear dependence of eqn. (5.12.6) on the Lagrange multipliers, the operators
exp(iLtΔt) exp(iL2Δt/2) exp(iLε,2Δt/2) must be applied in an iterative fashion until
a self-consistent solution that satisfies the constraints is obtained. The full evolution
of the coordinates ri is obtained by combining eqns. (5.12.6) and (5.12.8) to give

ri(Δt) = ri(0)evεΔt + Δtvi(Δt/2)evεΔt/2 sinh(vεΔt/2)

vεΔt/2

= ri(0)evεΔt + ΔtevεΔt/2 sinh(vεΔt/2)

vεΔt/2
(5.13.2)

×
[
v

(NHC)
i e−αvεΔt/2 +

Δt

2mi

(
Fi(0) +

∑
k

λkF
(k)
c,i (0)

)
sinh(αvεΔt/4)

αvεΔt/4

]

or

ri(Δt) = ri(0)evεΔt + Δtv
(NHC)
i e−vε(α−1)Δt/2 sinh(vεΔt/2)

vεΔt/2
(5.13.3)

+
Δt2

2mi

[
Fi(0) +

∑
k

λkF
(k)
c,i (0)

]
e−vε(α−2)Δt/4 sinh(vεΔt/2)

vεΔt/2

sinh(αvεΔt/4)

αvεΔt/4
,

where α = 1+d/Nf . Here, v
(NHC)
i is the “velocity” generated by the thermostat oper-

ator, exp(iLNHC−partΔt/2). Because the evolution of vε is determined by the pressure,
many of the factors in eqn. (5.13.4) depend on the Lagrange multipliers. Thus, let us
write eqn. (5.13.4) in the suggestive shorthand form

ri(Δt) = Rxx(λ, 0)ri(0) + Rvx(λ, 0)Δtv
(NHC)
i

+
Δt2

2mi
RFx(λ, 0)

[
Fi(0) +

∑
k

λkF
(k)
c,i (0)

]
, (5.13.4)

where λ denotes the full set of Lagrange multipliers. The factors Rxx(λ, 0), Rvx(λ, 0)
and RFx(λ, 0) denote the vε-dependent factors in eqn. (5.13.4); we refer to them as the
“ROLL scalars”. (In the fully flexible cell case, these scalars are replaced by 3×3 matri-
ces.) Note the three operators exp(iLtΔt) exp(iL2Δt/2) exp(iLε,2Δt/2) also generate
the following half-step velocities:

vi(Δt/2) = v
(NHC)
i e−αvεΔt/2 +

Δt

2mi

[
Fi(0) +

∑
k

λkF
(k)(0)
c,i

]
e−αvεΔt/4 sinh(αvεΔt/4)

αvεΔt/4

4Yes, the “ROLL” moniker does fit well with “SHAKE” and “RATTLE,” however, there is an
actual “rolling” procedure in the ROLL algorithm when used in fully flexible cell calculations.
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≡ Rvv(λ, 0)v
(NHC)
i +

Δt

2mi
RFv(λ, 0)

[
Fi(0) +

∑
k

λkF
(k)(0)
c,i

]
, (5.13.5)

where we have introduce the ROLL scalars Rvv(λ, 0) and RFv(λ, 0).
The first half of the ROLL algorithm is derived by requiring that the coordinates

in eqn. (5.13.4) satisfy the constraint conditions σk(r1(Δt), ..., rN (Δt)) = 0. That is,
eqns. (5.13.4) are inserted into the conditions σk(r1(Δt), ..., rN (Δt)) = 0, which are
then solved for the Lagrange multipliers λ. Once the multipliers are determined, they
are substituted into eqns. (5.13.4), (5.13.5), and (5.13.1) to generate final coordinates,
half-step velocities, and the virial contribution to the pressure. Unfortunately, unlike
the NVE and NVT cases, where the coordinates and velocities depend linearly on the
Lagrange multipliers, the highly nonlinear dependence of eqn. (5.13.4) on λ complicates
the task of solving for the multipliers. To see how we can solve this problem, we begin

by letting λ̃k = (Δt2/2)λk. We now seed the ROLL algorithm with a guess {λ̃(1)
k } for

the multipliers and write the exact multipliers as λ̃k = λ̃
(1)
k +δλ̃

(1)
k . We also assume, at

first, that the ROLL scalars are independent of the multipliers. Thus, when this ansatz
for the multipliers is substituted into eqn. (5.13.4), the coordinates can be expressed
as

ri(Δt) = r
(1)
i +

1

mi
RFx(λ, 0)

∑
k

δλ̃
(1)
k F

(k)
c,i (0), (5.13.6)

where r
(1)
i contains everything except the δλ̃

(1)
k -dependent term. Since we are ignoring

the dependence of the ROLL scalars on the multipliers, r
(1)
i has no dependence on

δλ̃
(1)
k . The constraint conditions now become

σl

(
r
(1)
1 +

1

m1
RFx(λ, 0)

∑
k

δλ̃
(1)
k F

(k)
c,1 (0), ...,

r
(1)
N +

1

mN
RFx(λ, 0)

∑
k

δλ̃
(1)
k F

(k)
c,i (0)

)
= 0. (5.13.7)

As we did in eqn. (3.9.13), we linearize these conditions using a first-order Taylor
expansion:

σl(r
(1)
1 , ..., r

(1)
N ) +

N∑
i=1

Nc∑
k=1

F
(k)
c,i (1) · 1

mi
RFx(λ, 0)δλ̃

(1)
k F

(k)
c,i (0) ≈ 0, (5.13.8)

where F
(k)
c,i (1) = ∇iσk(r

(1)
1 , ..., r

(1)
N ) are the constraint forces evaluated at the positions

r
(1)
i . As noted in Section 3.9, we can either solve the full matrix equation in eqn.

(5.13.8) if the dimensionality is not too large, or as a time-saving measure, we neglect
the dependence of eqn. (5.13.8) on l �= k terms, write the condition as

σl(r
(1)
1 , ..., r

(1)
N ) +

N∑
i=1

F
(l)
c,i(1) · 1

mi
RFx(λ, 0)δλ̃

(1)
l F

(l)
c,i(0) ≈ 0, (5.13.9)
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and iterate the corrections δλ̃
(1)
l to convergence as in Section 3.9. Eqn. (5.13.9) can be

solved easily for the multiplier corrections δλ̃
(1)
l to yield

δλ̃
(1)
l = − σl(r

(1)
1 , ..., r

(1)
N )∑N

i=1(1/mi)RFx(λ, 0)F
(l)
c,i(1) · F(l)

c,i(0)
. (5.13.10)

Whichever procedure is used to obtain the corrections δλ̃
(1)
l , once we have them, we

substitute them into eqn. (5.13.1) to obtain a new update to the pressure virial. Using
this new pressure virial, we now cycle again through the operators

exp(iLtΔt) exp(iL2Δt/2) exp(iLε,2Δt/2),

which are applied on the original coordinates ri(0) and v
(NHC)
i . This will generate a

new set of ROLL scalars, which we use to generate a new set of corrections δλ̃
(1)
l using

the above procedure. This cycle is now iterated, each producing successively smaller

corrections δλ̃
(n)
l to the multipliers, until the ROLL scalars stop changing. Once this

happens, the constraints will be satisfied and the pressure virial will be fully converged.
Using the final multipliers, the half-step velocities are obtained from eqn. (5.13.5). It
is important to note that, unlike the algorithm proposed by Martyna et al. (1996),
this version of the first half of the ROLL algorithm requires no iteration through the
thermostat operators.

The second half of the ROLL algorithm requires an iteration through the opera-
tors exp(iLε,2Δt/2)exp(iL2Δt/2). However, it is also necessary to apply the operators
exp(iLNHC−partΔt/2) and exp(iLNHC−baroΔt/2) in order to obtain the overall scaling
factors on the velocities vi(Δt) and vε(Δt), which we will denote Si(Δt) and Sε(Δt).
Thus, the entire operator whose application must be iterated is

Ô = exp(iL2Δt/2) exp(iLε,2Δt/2)

× exp(iLNHC−partΔt/2) exp(iLNHC−baroΔt/2). (5.13.11)

The evolution of vi can now be expressed as

vi(Δt) =

{
vi(Δt/2)e−αvεΔt/2 +

Δt

2mi

(
Fi(Δt) +

∑
k

μkF
(k)
c,i (Δt)

)

× e−αvεΔt/4

[
sinh(αvεΔt/4)

αvεΔt/4

]}
Si(Δt), (5.13.12)

which we express as
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vi(Δt) =

{
Rvv(μ, Δt)vi(Δt/2)

+
Δt

2mi
RFv(μ, Δt)

[
Fi(Δt) +

∑
k

μkF
(k)
c,i (Δt)

]}
Si(Δt), (5.13.13)

and for vε, we obtain

vε(Δt) =

[
vε(Δt/2) +

Δt

2W
Gε(μ, Δt)

]
Sε(Δt). (5.13.14)

In eqns. (5.13.13) and (5.13.14), the use of μk and μ for the Lagrange multipliers
indicates that these multipliers are used to enforce the first time derivative of the
constraint conditions as described in Section 3.9. Let μ̃k = (Δt/2)μk, and suppose we

have a good initial guess to the multipliers μ̃
(1)
k . Then, μ̃k = μ̃

(1)
k + δμ̃

(1)
k , and we can

write eqns. (5.13.13) and (5.13.14) in shorthand as

vi(Δt) = v
(1)
i +

1

mi
RFv(λ, Δt)

∑
k

δμ̃
(1)
k F

(k)
c,i (Δt)Si(Δt)

vε(Δt) = v(1)
ε +

1

W
S̃ε(Δt)

∑
i

∑
k

δμ̃
(1)
k ri(Δt) · F(k)

c,i (Δt), (5.13.15)

where S̃ε(Δt) = (Δt/2)Sε(Δt).
As in the first half of the ROLL algorithm, we assume that the ROLL scalars and

scaling factors are independent of the multipliers and use eqns. (5.13.15) to determine

the corrections δμ̃
(1)
k such that the first time derivative of each constraint condition

vanishes. This requires

σ̇k =

N∑
i=1

F
(k)
c,i · ṙi = 0. (5.13.16)

However, a slight subtlety arises because according to eqns. (5.9.5), ṙi �= vi but rather
ṙi = vi + vεri. Thus, eqn. (5.13.16) becomes a condition involving both vi(Δt) and
vε(Δt) at t = Δt: ∑

i

F
(k)
c,i (Δt) · [vi(Δt) + vε(Δt)ri(Δt)] = 0. (5.13.17)

Substituting eqns. (5.13.15) into eqn. (5.13.17) yields
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∑
i

F
(k)
c,i (Δt) ·

[
v

(1)
i +

1

mi
RFv(μ, Δt)Si(Δt)

∑
l

δμ̃
(1)
l F

(l)
c,i(Δt)

+ ri(Δt)

(
v(1)

ε +
1

W
S̃ε(Δt)

∑
j

∑
l

δμ̃
(1)
l rj(Δt) · F(l)

c,j(Δt)

)]
= 0. (5.13.18)

As we did with eqn. (5.13.8), we can solve eqn. (5.13.18) as a full matrix equation, or
we can make the approximation of independent constraints and iterate to convergence
as in Section 3.9. When the latter procedure is used, eqn. (5.13.18) becomes

∑
i

F
(l)
c,i(Δt) ·

[
v

(1)
i +

1

mi
RFv(μ, Δt)Si(Δt)δμ̃

(1)
l F

(l)
c,i(Δt)

+ ri(Δt)

(
v(1)

ε +
1

W
S̃ε(Δt)

∑
j

δμ̃
(1)
l rj(Δt) ·F(l)

c,j(Δt)

)]
= 0. (5.13.19)

Denoting F
(l)
c,i · [v(1)

i + v
(1)
ε ri(Δt)] as σ̇l(Δt), eqn. (5.13.19) can be solved for the mul-

tiplier corrections δμ̃
(1)
l to yield δμ̃

(1)
l = −σ̇l(Δt)/D, where D is given by

D =
∑

i

1

mi
RFv(λ, Δt)Si(Δt)F

(l)
c,i(Δt) · F(l)

c,i(Δt)

+
1

W
Sε(Δt)

[∑
i

ri(Δt) ·F(l)
c,i(Δt)

]2

. (5.13.20)

As in the first part of the ROLL algorithm, once a fully converged set of correction

multipliers δμ̃
(1)
l is obtained, we update the pressure virial according to

P(vir) =
1

3V

N∑
i=1

[
ri · Fi + ri ·

∑
k

(
μ̃

(1)
k + δμ̃

(1)
k

)
F

(k)
c,i

]
. (5.13.21)

We then apply the operators in eqn. (5.13.11) again on the velocities and the vε

that emerged from the first part of the ROLL procedure in order to obtain a new
set of ROLL scalars and scaling factors. We cycle through this procedure, obtaining

successively smaller corrections δμ̃
(n)
l , until the ROLL scalars stop changing.

5.14 Problems

5.1. Show that the distribution function for the isothermal-isobaric ensemble can
be derived starting from a microcanonical description of a system coupled to
both a thermal reservoir and a mechanical piston.
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5.2. Calculate the volume fluctuations ΔV given by

ΔV =
√
〈V 2〉 − 〈V 〉2

in the isothermal-isobaric ensemble. Express the answer in terms of the isother-
mal compressibility κ defined to be

κ = − 1

〈V 〉
(

∂〈V 〉
∂P

)
N,T

.

Show that ΔV/〈V 〉 ∼ 1/
√

N and hence vanish in the thermodynamic limit.

5.3. Prove the tensorial version of the work virial theorem in eqn. (5.6.15).

∗5.4. a. For the ideal gas in Problem 4.6 of Chapter 4, calculate the isothermal-
isobaric partition function assuming that only the length of the cylinder
can vary.

Hint: You might find the binomial theorem helpful in this problem.

b. Derive an expression for the average length of the cylinder.

5.5. Prove that the isotropic NPT equations of motion in eqns.(5.9.5) generate
the correct ensemble distribution function using the techniques of Section 4.9
for the following cases:

a.
∑N

i=1 Fi �= 0

b.
∑N

i=1 Fi = 0, for which there is an additional conservation law

K = P exp

[(
1 +

d

Nf

)
ε + η1

]
,

where P =
∑N

i=1 pi is the center-of-mass momentum;

c. “Massive” thermostatting is used on the particles.

5.6. Prove that eqns. (5.10.2) for generating anisotropic volume fluctuations gen-

erate the correct ensemble distribution when
∑N

i=1 Fi = 0.

5.7. One of the first algorithms proposed for generating the isotropic NPT en-
semble via molecular dynamics is given by the equations of motion

ṙi =
pi

mi
+

pε

W
ri

ṗi = −∂U

∂ri
− pε

W
pi − pη

Q
pi
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V̇ =
dV pε

W

ṗε = dV (P(int) − P ) − pη

Q
pε

η̇ =
pη

Q

ṗη =

N∑
i=1

p2
i

mi
+

p2
ε

W
− (Nf + 1)kT

(Hoover, 1985), where P(int) is the pressure estimator of eqn. (5.7.28). These
equations have the conserved energy

H′ = H(r,p) +
p2

ε

2W
+

p2
η

2Q
+ (Nf + 1)kTη + PV.

Determine the ensemble distribution function f(r,p, V ) generated by these
equations for

a.
∑N

i=1 Fi �= 0. Would the distribution be expected to approach the correct
isothermal-isobaric ensemble distribution in the thermodynamic limit?

∗b.
∑N

i=1 F = 0, in which case, there is an additional conservation law

K = Peε+η,

where P is the center-of-mass momentum. Be sure to integrate over all
nonphysical variables.

5.8. Prove that eqns. (5.11.6) generate the correct isobaric-isoenthalpic ensemble
distribution when the pressure is determined using a molecular virial.

5.9. A simple model for the motion of particles through a nanowire consists of a
one-dimensional ideal gas of N particles moving in a periodic potential. Let
the Hamiltonian for one particle with coordinate q and momentum p be

h(q, p) =
p2

2m
+

kL2

4π2

[
1 − cos

(
2πq

L

)]
,

where m is the mass of the particle, k is a constant, and L is the length of
the one-dimensional “box” or unit cell.
a. Calculate the change in the Helmholtz free energy per particle required

to change the length of the “box” from L1 to L2. Express your answer in
terms of the zeroth-order modified Bessel function

I0(x) =
1

π

∫ π

0

dθe±x cos θ.
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b. Calculate the equation of state by determining the one-dimensional “pres-
sure” P . Do you obtain an ideal-gas equation of state? Why or why not?
You might find the following properties of modified Bessel functions use-
ful:

dIν(x)

dx
=

1

2
[Iν+1(x) + Iν−1(x)]

Iν(x) = I−ν(x).

c. Write down integral expressions for the position and length distribution
functions in the isothermal-isobaric ensemble.

5.10. Write a program to integrate the isotropic NPT equations of motion (5.9.5)
for the one-dimensional periodic potential in eqn. (5.9.8) using the integrator
in eqn. (5.12.4). The program should be able to generate the distributions in
Fig. 5.3.

5.11. How should the algorithm in Section 4.13 for calculating the radial distribu-
tion function be modified for the isotropic NPT ensemble?

∗5.12. Generalize the ROLL algorithm of Section 5.13 to the case of anisotropic
cell fluctuations based on eqns. (5.10.2) and the integrator defined by eqns.
(5.12.10) and (5.12.11).

5.13. a. Using the constraint condition on the box matrix hαβ = 0 for α > β,
show using Lagrange undetermined multipliers, that overall cell rotations
in eqns. (5.10.2) can be eliminated simply by working with an upper
triangular box matrix.

b. Using the constraint condition that pg − pT
g = 0, show using Lagrange

undetermined multipliers, that overall cell rotations in eqns. (5.10.2) can

be eliminated by explicity symmetrization of the pressure tensor P
(int)
αβ .

Why is this scheme easier to implement within the ROLL algorithm of
Section 5.13?



6

The grand canonical ensemble

6.1 Introduction: The need for yet another ensemble

The ensembles discussed thus far all have the common feature that the particle number
N is kept fixed as one of the control variables. The fourth ensemble to be discussed, the
grand canonical ensemble, differs in that it permits fluctuations in the particle number
at constant chemical potential, μ. Why is such an ensemble necessary? As useful
as the isothermal-isobaric and canonical ensembles are, numerous physical situations
correspond to a system in which the particle number varies. These include liquid–vapor
equilibria, capillary condensation, and, notably, molecular electronics and batteries, in
which a device is assumed to be coupled to an electron source. In computational
molecular design, one seeks to sample a complete “chemical space” of compounds in
order to optimize a particular property (e.g. binding energy to a target), which requires
varying both the number and chemical identity of the constituent atoms. Finally, in
certain cases, it simply proves easier to work in the grand canonical ensemble, and
given that all ensembles become equivalent in the thermodynamic limit, we are free
to choose the ensemble that proves most convenient for the problem at hand.

In this chapter, we introduce the basic thermodynamics and classical statistical
mechanics of the grand canonical ensemble. We will begin with a discussion of Euler’s
theorem and a derivation of the free energy. Following this, we will consider the par-
tition function of a physical system coupled to both thermal and particle reservoirs.
Finally, we will discuss the procedure for obtaining an equation of state within the
framework of the grand canonical ensemble.

Because of the inherently discrete nature of particle fluctuations, the grand canon-
ical ensemble does not easily fit into the continuous molecular dynamics framework
we have discussed so far for kinetic-energy and volume fluctuations. Therefore, a dis-
cussion of computational approaches to the grand canonical ensemble will be deferred
until Chapters 7 and 8. These chapters will develop the machinery needed to design
computational approaches suitable for the grand canonical ensemble.

6.2 Euler’s theorem

Euler’s theorem is a general statement about a certain class of functions known as
homogeneous functions of degree n. Consider a function f(x1, ..., xN ) of N variables
that satisfies

f(λx1, ..., λxk, xk+1, ..., xN ) = λnf(x1, ..., xk, xk+1, ...xN ) (6.2.1)
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for an arbitrary parameter, λ. We call such a function a homogeneous function of degree
n in the variables x1, ..., xk. The function f(x) = x2, for example, is a homogeneous
function of degree 2. The function f(x, y, z) = xy2 + z3 is a homogeneous function
of degree 3 in all three variables x, y, and z. The function f(x, y, z) = x2(y2 + z)
is a homogeneous function of degree 2 in x only but not in y and z. The function
f(x, y) = exy − xy is not a homogeneous function in either x or y.

Euler’s theorem states the following: Let f(x1, ..., xN ) be a homogeneous function
of degree n in x1, ..., xk. Then,

nf(x1, ..., xN ) =

k∑
i=1

xi
∂f

∂xi
. (6.2.2)

The proof of Euler’s theorem is straightforward. Beginning with eqn. (6.2.1), we dif-
ferentiate both sides with respect to λ to yield:

d

dλ
f(λx1, ..., λxk, xk+1, ..., xN ) =

d

dλ
λnf(x1, ..., xk, xk+1, ..., xN )

k∑
i=1

xi
∂f

∂(λxi)
= nλn−1f(x1, ..., xk, xk+1, ..., xN ). (6.2.3)

Since λ is arbitrary, we may freely choose λ = 1, which yields

k∑
i=1

xi
∂f

∂xk
= nf(x1, ..., xk, xk+1, ..., xN ), (6.2.4)

which proves the theorem.
What does Euler’s theorem have to do with thermodynamics? Consider the Helmholtz

free energy A(N, V, T ), which depends on two extensive variables, N and V . Since A
is, itself, extensive, A ∼ N , and since V ∼ N , A must be a homogeneous function of
degree 1 in N and V , i.e. A(λN, λV, T ) = λA(N, V, T ). Applying Euler’s theorem, it
follows that

A(N, V, T ) = V
∂A

∂V
+ N

∂A

∂N
. (6.2.5)

From the thermodynamic relations of the canonical ensemble for pressure and chemical
potential, we have P = −(∂A/∂V ) and μ = (∂A/∂N). Thus,

A = −PV + μN. (6.2.6)

We can verify this result by recalling that

A(N, V, T ) = E − TS. (6.2.7)

From the First Law of Thermodynamics,

E − TS = −PV + μN, (6.2.8)
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so that
A(N, V, T ) = −PV + μN, (6.2.9)

which agrees with Euler’s theorem. Similarly, the Gibbs free energy G(N, P, T ) is a
homogeneous function of degree 1 in N only, i.e. G(λN, V, T ) = λG(N, V, T ). Thus,
from Euler’s theorem,

G(N, P, T ) = N
∂G

∂N
= μN, (6.2.10)

which agrees with the definition G = E − TS + PV = μN . From these two examples,
we see that Euler’s theorem allows us to derive alternate expressions for extensive ther-
modynamic functions such as the Gibbs and Helmholtz free energies. As will be shown
in the next section, Euler’s theorem simplifies the derivation of the thermodynamic
relations of the grand canonical ensemble.

6.3 Thermodynamics of the grand canonical ensemble

In the grand canonical ensemble, the control variables are the chemical potential μ, the
volume V , and the temperature T . The free energy of the ensemble can be obtained
by performing a Legendre transformation of the Helmholtz free energy A(N, V, T ). Let
Ã(μ, V, T ) be the transformed free energy, which we obtain as

Ã(μ, V, T ) = A(N(μ), V, T ) − N

(
∂A

∂N

)
V,T

Ã(μ, V, T ) = A(N(μ), V, T ) − N(μ)μ. (6.3.1)

Since Ã is a function of μ, V , and T , a small change in each of these variables leads
to a change in Ã given by

dÃ =

(
∂Ã

∂μ

)
V,T

dμ +

(
∂Ã

∂V

)
μ,T

dV +

(
∂Ã

∂T

)
μ,V

dT. (6.3.2)

However, from the First Law of Thermodynamics,

dÃ = dA − Ndμ − μdN

= −PdV − SdT + μdN − Ndμ − μdN

= −PdV − SdT − μdN (6.3.3)

and we obtain the thermodynamic relations

〈N〉 = −
(

∂Ã

∂μ

)
V,T

, P = −
(

∂Ã

∂V

)
μ,T

, S = −
(

∂Ã

∂T

)
V,μ

. (6.3.4)

In the above relations, 〈N〉 denotes the average particle number. Euler’s theorem can
be used to determine a relation for Ã in terms of other thermodynamic variables. Since
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Ã depends on a single extensive variable, V , it is a homogeneous function of degree 1
in V , i.e. Ã(μ, λV, T ) = λÃ(μ, V, T ). From Euler’s theorem,

Ã = V
∂Ã

∂V
(6.3.5)

which, according to eqn. (6.3.4) becomes

Ã = −PV. (6.3.6)

Thus, −PV is the natural free energy of the grand canonical ensemble. Unlike other
ensembles, Ã = −PV is not given a unique symbol. Rather, because it leads directly
to the equation of state, the free energy is simply denoted −PV .

6.4 Grand canonical phase space and the partition function

Since the grand canonical ensemble uses μ, V , and T as its control variables, it is
convenient to think of this ensemble as a canonical ensemble coupled to a particle
reservoir, which drives the fluctuations in the particle number. As the name implies,
a particle reservoir is a system that can gain or lose particles without appreciably
changing its own particle number. Thus, we imagine two systems coupled to a common
thermal reservoir at temperature T , such that system 1 has N1 particles and volume
V1, system 2 has N2 particles and a volume V2. The two systems can exchange particles,
with system 2 acting as a particle reservoir (see Fig. 6.1). Hence, N2 � N1. The total

N  , V  , E
2 2 2

H ( x )2 2

N  , V  , E1 1 1

H ( x )
1 1

Fig. 6.1 Two systems in contact with a common thermal reservoir at temperature T . System

1 has N1 particles in a volume V1; system 2 has N2 particles in a volume V2. The dashed

lines indicate that systems 1 and 2 can exchange particles.
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particle number and volume are

N = N1 + N2, V = V1 + V2. (6.4.1)

In order to carry out the derivation of the ensemble distribution function, we will need
to consider explicitly the dependence of the Hamiltonian on particle number, usually
appearing as the upper limit of sums in the kinetic and potential energies. Therefore,
let H1(x1, N1) be the Hamiltonian of system 1 and H(x2, N2) be the Hamiltonian of
system 2. As usual, we will take the total Hamiltonian to be

H(x, N) = H1(x1, N1) + H2(x2, N2). (6.4.2)

Consider first the simpler case in which systems 1 and 2 do not exchange particles.
The overall canonical partition function in this limit is

Q(N, V, T ) =
1

N !h3N

∫
dx1

∫
dx2 e−β[H1(x1,N1)+H2(x2,N2)]

=
N1!N2!

N !

1

N1!h3N1

∫
dx1 e−βH1(x1,N1)

1

N2!h3N2

∫
dx2 e−βH2(x2,N2)

=
N1!N2!

N !
Q1(N1, V1, T )Q2(N2, V2, T ), (6.4.3)

where Q1(N1, V1, T ) and Q2(N2, V2, T ) are the canonical partition functions of systems
1 and 2, respectively, at the common temperature T .

When the systems are allowed to exchange particles, the right side of eqn. (6.4.3)
represents one specific choice of N1 particles for system 1 and N2 = N − N1 particles
for systems 2. In order to account for particle number variations in systems 1 and 2, the
true partition function must contain a sum over all possible values of N1 and N2 on the
right side of eqn. (6.4.3) subject to the restriction that N1 + N2 = N . The restriction
is accounted for by summing only N1 or N2 over the range [0, N ]. For concreteness,
we will carry out the sum over N1 and set N2 = N − N1. Additionally, we need to
weight each term in the sum by a degeneracy factor g(N1, N2) = g(N1, N − N1) that
accounts for the number of distinct configurations that exist for particular values of
N1 and N2. Thus, the partition function for varying particle numbers is

Q(N, V, T ) =

N∑
N1=0

g(N1, N − N1)
N1!(N − N1)!

N !

× Q1(N1, V1, T )Q2(N − N1, V − V1, T ), (6.4.4)

where we have used the fact that V1 + V2 = V .
We now determine the degeneracy factor g(N1, N − N1). For the N1 = 0 term,

g(0, N) represents the number of ways in which system 1 can have 0 particles and
system 2 can have all N particles. There is only one way to create such a configuration,
hence g(0, N) = 1. For N1 = 1, g(1, N − 1) represents the number of ways in which
system 1 can have one particle and system 2 can have (N−1) particles. Since there are



Grand canonical ensemble

N ways to choose that one particle to place in system 1, it follows that g(1, N−1) = N .
When N1 = 2, we need to place two particles in system 1. The first particle can be
chosen in N ways, while the second can be chosen in (N − 1) ways, which seems to
lead to a product N(N − 1) ways that this configuration can be created. However,
choosing particle 1, for example, as the first particle to put into system 1 and particle
2 as the second one leads to the same physical configuration as choosing particle 2 as
the first particle and particle 1 as the second. Thus, the degeneracy factor g(2, N − 2)
is actually N(N − 1)/2. In general, g(N1, N1 − 1) is nothing more the number of ways
of placing N “labeled” objects into 2 containers, which is just the well-known binomial
coefficient

g(N1, N1 − N) =
N !

N1!(N − N1)!
. (6.4.5)

We can check eqn. (6.4.5) against the specific examples we analyzed:

g(0, N) =
N !

0!N !
= 1

g(1, N − 1) =
N !

1!(N − 1)!
= N

g(2, N − 2) =
N !

2!(N − 2)!
=

N(N − 1)

2
. (6.4.6)

Interestingly, the degeneracy factor exactly cancels the N1!(N −N1)!/N ! appearing in
eqn. (6.4.4). This cancellation is not unexpected since, as we recall, the latter factor was
included as a “fudge factor” to correct for the fact that classical particles are always
distinguishable, and we need our results to be consistent with the indistinguishable
nature of the particles (recall Section 3.5.1). Thus, all N configurations in which one
particle is in system 1 are physically the same, and so forth. Inserting eqn. (6.4.5) into
eqn. (6.4.4) gives

Q(N, V, T ) =
N∑

N1=0

Q1(N1, V1, T )Q2(N − N1, V − V1, T ). (6.4.7)

Now the total phase space distribution function

f(x, N) =
e−βH(x,N)

N !h3NQ(N, V, T )
(6.4.8)

satisfies the normalization condition∫
dx f(x, N) = 1, (6.4.9)

since it is just a canonical distribution. However, the phase space distribution of system
1, obtained by integrating over x2 according to
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f1(x1, N1) =

(
e−βH1(x1,N1)

Q(N, V, T )N1!h3N1

)
1

(N − N1)!h3(N−N1)

∫
dx2 e−βH2(x2,N−N1)

=
Q2(N − N1, V − V1, T )

Q(N, V, T )

1

N1!h3N1
e−βH1(x1,N1) (6.4.10)

satisfies the normalization condition

N∑
N1=0

∫
dx1 f(x1, N1) = 1. (6.4.11)

Since the total partition function is canonical, Q(N, V, T ) = exp[−βA(N, V, T )] where
A(N, V, T ) is the Helmholtz free energy, and it follows that

Q2(N − N1, V − V1, T )

Q(N, V, T )
= e−β[A(N−N1,V −V1,T )−A(N,V,T )], (6.4.12)

where we have assumed that system 1 and system 2 are described by the same set of
physical interactions, so that the functional form of the free energy is the same for
both systems and for the total system. Since N � N1 and V � V1, we may expand
A(N − N1, V − V1, T ) about N1 = 0 and V1 = 0. To first order, the expansion yields

A(N − N1, V − V1, T ) ≈ A(N, V, T ) − ∂A

∂N
N1 − ∂A

∂V
V1

= A(N, V, T ) − μN1 + PV1. (6.4.13)

Thus, the phase space distribution of system 1 becomes

f(x1, N1) =
1

N1!h3N1
eβμN1e−βPV1e−βH1(x1,N1)

=
1

N1!h3N1
eβμN1

1

eβPV1
e−βH1(x1,N1). (6.4.14)

Since system 2 quantities no longer appear in eqn. (6.4.14), we may drop the “1”
subscript and write the phase space distribution for the grand canonical ensemble as

f(x, N) =
1

N !h3N
eβμN 1

eβPV
e−βH(x,N). (6.4.15)

Moreover, taking the thermodynamic limit, the summation over N is now unrestricted
(N ∈ [0,∞)), so the normalization condition becomes

∞∑
N=0

∫
dx f(x, N) = 1, (6.4.16)

which implies that
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1

eβPV

∞∑
N=0

eβμN 1

N !h3N

∫
dx e−βH(x,N) = 1. (6.4.17)

Taking the exp(βPV ) factor to the right side, we obtain

∞∑
N=0

eβμN 1

N !h3N

∫
dx e−βH(x,N) = eβPV . (6.4.18)

However, recall that −PV = Ã(μ, V, T ) is the free energy of the grand canonical
ensemble. Thus, exp(βPV ) = exp[−β(−PV )] is equal to the partition function. In
the grand canonical ensemble, we denote the partition function as Z(μ, V, T ), and it
is given by

Z(μ, V, T ) =

∞∑
N=0

eβμN 1

N !h3N

∫
dx e−βH(x,N)

=
∞∑

N=0

eβμNQ(N, V, T ). (6.4.19)

The product PV is thus related to Z(μ, V, T ) by

PV

kT
= ln Z(μ, V, T ). (6.4.20)

According to eqn. (6.4.20), the equation of state can be obtained directly from the
partition function in the grand canonical ensemble. Recall, however, the equation of
state is of the general form (cf. eqn. (2.2.1))

g(〈N〉, P, V, T ) = 0, (6.4.21)

which is a function of 〈N〉 rather than μ. This suggests that a second equation for the
average particle number 〈N〉 is needed. By definition,

〈N〉 =
1

Z(μ, V, T )

∞∑
N=0

NeβμNQ(N, V, T ), (6.4.22)

which can be expressed as a derivative of Z with respect to μ as

〈N〉 = kT

(
∂

∂μ
ln Z(μ, V, T )

)
V,T

. (6.4.23)

Eqns. (6.4.23) and (6.4.20) give a prescription for finding the equation of state in the
grand canonical ensemble. Eqn. (6.4.23) must be solved for μ in terms of 〈N〉 and then
substituted back into eqn. (6.4.20) in order to obtain an equation in the proper form.
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For other thermodynamic quantities, it is convenient to introduce a new variable

ζ = eβμ (6.4.24)

known as the fugacity. Since ζ and μ are directly related, the fugacity can be viewed
as an alternative external control variable for the grand canonical ensemble, and the
partition function can be expressed in terms of ζ as

Z(ζ, V, T ) =

∞∑
N=0

ζNQ(N, V, T ) (6.4.25)

so that
PV

kT
= ln Z(ζ, V, T ). (6.4.26)

Since
∂

∂μ
=

∂ζ

∂μ

∂

∂ζ
= βζ

∂

∂ζ
, (6.4.27)

the average particle number can be computed from Z(ζ, V, T ) by

〈N〉 = ζ
∂

∂ζ
ln Z(ζ, V, T ). (6.4.28)

Thus, the equation of state results when eqn. (6.4.28) is solved for ζ in terms of 〈N〉
and substituted back into eqn. (6.4.26). Other thermodynamic quantities are obtained
as follows: The average energy, E = 〈H(x, N)〉, is given by

E = 〈H(x, N)〉 =
1

Z

∞∑
N=0

ζN 1

N !h3N

∫
dx H(x, N)e−βH(x,N)

= −
(

∂

∂β
ln Z(ζ, V, T )

)
ζ,V

. (6.4.29)

In eqn. (6.4.29), it must be emphasized that the average energy is computed as the
derivative with respect to β of lnZ at fixed T and ζ rather than at fixed T and μ.
Finally, the entropy is given in terms of the derivative of the free energy with respect
to T :

S(μ, V, T ) = −
(

∂(−PV )

∂T

)
μ,V

= k ln Z(μ, V, T ) − kβ

(
∂

∂β
ln Z(μ, V, T )

)
μ,V

. (6.4.30)

For the entropy, the temperature derivative must be taken at fixed μ rather than at
fixed ζ.



Grand canonical ensemble

6.5 Illustration of the grand canonical ensemble: The ideal gas

In Chapter 11, the grand canonical ensemble will be used to derive the properties of
the quantum ideal gases. It will be seen that the use of the grand canonical ensemble
greatly simplifies the treatment over the canonical ensemble. Thus, in order to prepare
for this analysis, it is instructive to illustrate the grand canonical procedure for deriving
the equation of state with a simple example, namely, the classical ideal gas. Since the
partition function of the grand canonical ensemble is given by eqn. (6.4.25), we can
start by recalling the expression of the canonical partition function of the classical
ideal gas

Q(N, V, T ) =
1

N !

[
V

(
2πm

βh2

)3/2
]N

=
1

N !

(
V

λ3

)N

. (6.5.1)

Substituting this expression into eqn. (6.4.25) gives

Z(ζ, V, T ) =

∞∑
N=0

ζN 1

N !

(
V

λ3

)N

=
∞∑

N=0

1

N !

(
V ζ

λ3

)N

. (6.5.2)

Eqn. (6.5.2) is in the form a Taylor series expansion for the exponential:

ex =

∞∑
k=0

xk

k!
. (6.5.3)

Eqn. (6.5.2) can, therefore, be summed over N to yield

Z(ζ, V, T ) = eV ζ/λ3
. (6.5.4)

The procedure embodied in eqns. (6.4.28) and (6.4.26) requires first the calculation of
ζ as a function of 〈N〉. From eqn. (6.4.28),

〈N〉 = ζ
∂

∂ζ
ln Z(ζ, V, T ) =

V ζ

λ3
. (6.5.5)

Thus,

ζ(〈N〉) =
〈N〉λ3

V
. (6.5.6)

From eqn. (6.5.4), we have

PV

kT
= ln Z(ζ, V, T ) =

V ζ

λ3
. (6.5.7)

By substituting ζ(〈N〉) into eqn. (6.5.7), the expected equation of state results:

PV

kT
= 〈N〉, (6.5.8)
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which contains the average particle number 〈N〉 instead of N as would appear in the
canonical ensemble. Similarly, the average energy is given by

E = − ∂

∂β
ln Z(ζ, V, T ) = − ∂

∂β

V ζ

λ3
=

3V ζ

λ4

∂λ

∂β
=

3

2
〈N〉kT. (6.5.9)

Finally, in order to compute the entropy, Z must be expressed in terms of μ rather
than ζ, i.e.

ln Z(μ, V, T ) =
V eβμ

λ3
. (6.5.10)

Then,

S(μ, V, T ) = k ln Z(μ, V, T )− kβ

(
∂ ln Z(μ, V, T )

∂β

)
μ,V

= k
V eβ

λ3
− kβ

[
V μeβμ

λ3
− 3V eβμ

λ4

∂λ

∂β

]
. (6.5.11)

Using the facts that

V eβμ

λ3
=

V ζ

λ3
= 〈N〉, ∂λ

∂β
=

λ

2β
, (6.5.12)

we obtain

S = k〈N〉 − kβ〈N〉kT ln ζ + kβ
3

2

〈N〉
β

=
5

2
〈N〉k − 〈N〉k ln

( 〈N〉λ3

V

)

=
5

2
〈N〉k + 〈N〉k ln

(
V

〈N〉λ3

)
. (6.5.13)

which is the Sackur–Tetrode equation derived in Section 3.5.1. Note that because the
1/N ! is included a posteriori in the expression for Q(N, V, T ), the correct quantum
mechanical entropy expression results.

6.6 Particle number fluctuations in the grand canonical ensemble

In the grand canonical ensemble, the total particle number fluctuates at constant
chemical potential. It is, therefore, instructive to analyze these fluctuations, as was
done for the energy fluctuations in the canonical ensemble (Section 4.4) and volume
fluctuations in the isothermal-isobaric ensemble (see Problem 5.2 in Chapter 5). Parti-
cle number fluctuations in the grand canonical ensemble can be studied by considering
the variance

ΔN =
√
〈N2〉 − 〈N〉2 (6.6.1)

In order to compute this quantity, we start by examining the operation
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ζ
∂

∂ζ
ζ

∂

∂ζ
ln Z(ζ, V, T ) (6.6.2)

Using eqn. (6.4.25), this becomes

ζ
∂

∂ζ
ζ

∂

∂ζ
ln Z(ζ, V, T ) = ζ

∂

∂ζ

1

Z

∞∑
N=0

NζNQ(N, V, T )

=
1

Z

∞∑
N=0

N2ζNQ(N, V, T )− 1

Z2

[ ∞∑
N=0

NζNQ(N, V, T )

]2

= 〈N2〉 − 〈N〉2. (6.6.3)

Thus, we have

(ΔN)
2

= ζ
∂

∂ζ
ζ

∂

∂ζ
ln Z(ζ, V, T ). (6.6.4)

Expressing eqn. (6.6.4) as derivatives of Z(μ, V, T ) with respect to μ, we obtain

(ΔN)
2

= (kT )2
∂2

∂μ2
ln Z(μ, V, T ) = (kT )2

∂2

∂μ2

PV

kT
. (6.6.5)

Since μ, V and T are the independent variables in the ensemble, only the pressure in
the above expression depends on μ, and we can write

(ΔN)2 = kTV
∂2P

∂μ2
. (6.6.6)

Therefore, computing the particle number fluctuations amounts to computing the
second derivative of the pressure with respect to chemical potential. This is a rather
nontrivial bit of thermodynamics, which can be carried out in a variety of ways. One
approach is the following: Let A(N, V, T ) be the canonical Helmholtz free energy at a
particlar value of N . Recall that the pressure can be obtained from A(N, V, T ) via

P = −
(

∂A

∂V

)
. (6.6.7)

Since A(N, V, T ) is an extensive quantity, and we want to make the N dependence
in the analysis as explicit as possible, we define an intensive Helmholtz free energy
a(v, T ) by

a(v, T ) =
1

N
A

(
N,

V

N
, T

)
, (6.6.8)

where v = V/N is the volume per particle and a(v, T ) is clearly the Helmholtz free
energy per particle. Then,

P = −N
∂a

∂v

∂v

∂V
= −N

∂a

∂v

1

N
= −∂a

∂v
. (6.6.9)
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From eqn. (6.6.9), it follows that

∂P

∂μ
=

∂P

∂v

∂v

∂μ
= −∂2a

∂v2

∂v

∂μ
. (6.6.10)

We can obtain an expression for ∂μ/∂v by

μ =
∂A

∂N

= a(v, T ) + N
∂a

∂v

∂v

∂N

= a(v, T ) − v
∂a

∂v
, (6.6.11)

so that

∂μ

∂v
=

∂a

∂v
− ∂a

∂v
− v

∂2a

∂v2

= −v
∂2a

∂v2
. (6.6.12)

Substituting this result into eqn. (6.6.10) gives

∂P

∂μ
= −∂2a

∂v2

[
∂μ

∂v

]−1

=
∂2a

∂v2

[
v
∂2a

∂v2

]−1

=
1

v
. (6.6.13)

Differentiating eqn. (6.6.13) once again with respect to μ gives

∂2P

∂μ2
= − 1

v2

∂v

∂μ
=

1

v2

[
v
∂2a

∂v2

]−1

= − 1

v3∂P/∂v
. (6.6.14)

Now, recall that the isothermal compressibility is given by

κT = − 1

V

∂V

∂P
= −1

v

∂v

∂P
= − 1

v∂P/∂v
. (6.6.15)

and is an intensive quantity. It is clear from eqn. (6.6.14) that ∂2P/∂μ2 can be ex-
pressed in terms of κT as

∂2P

∂μ2
=

1

v2
κT (6.6.16)

so that

(ΔN)
2

= kT 〈N〉v 1

v2
κT
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=
〈N〉kTκT

v
, (6.6.17)

where the specific value of N has been replaced by its average value 〈N〉 in the grand
canonical ensemble. The relative fluctuations in particle number can now be computed
from

ΔN

〈N〉 =
1

〈N〉

√
〈N〉kTκT

v
=

√
kTκT

〈N〉v ∼ 1√
〈N〉 . (6.6.18)

Thus, as 〈N〉 −→ 0 in the thermodynamic limit, the particle fluctuations vanish and
the grand canonical ensemble is seen to be equivalent to the other ensembles in this
limit.

6.7 Problems

6.1. Using a Legendre transform, determine if it is possible to define an ensemble
in which μ, P , and T are the control variables. Can you rationalize your result
based on Euler’s theorem?

6.2. a. Derive the thermodynamic relations for an ensemble in which μ, V , and
S are the control variables.

b. Determine the partition function for this ensemble.

6.3. For the ideal gas in Problem 4.6 of Chapter 4, imagine dividing the cylinder
into rings of radius r, thickness Δr, and height Δz. Within each ring, assume
that r and z are constant.

a. Within each ring, explain why it is possible to work within the grand
canonical ensemble.

b. Show that the grand canonical partition function within each ring satisfies

Z(μ, Vring, r, z, T ) = Z(0)(μeff(r, z), Vring, T ),

Z(0) is the grand canonical partition function for ω = 0 and g = 0, Vring

is the volume of each ring, and μeff(r, z) is an effective local chemical
potential that varies from ring to ring. Derive an expression for μeff(r, z).

c. Is this result true even if there are interactions among the particles? Why
or why not?
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6.4. Consider an equilibrium chemical reaction K molecular species denoted X1, ..., XK ,
where some of the species are reactants and some are products. Denote the
chemical equation governing the reaction as

K∑
i=1

νiXi = 0,

where νi are the stoichiometric coefficients in the reaction. Using this nota-
tion, the coefficients of the products are, by definition, negative. As the re-
action proceeds, there will be a change δNi in the number Ni of each species
such that the law of mass balance is

δN1

ν1
=

δN2

ν2
= · · · δNK

νK
.

In order to find a condition describing the chemical equilibrium, we can make
use of the Helmholtz free energy A(N1, N2, ..., NK , V, T ). At equilibrium, the
changes δNi should not change the free energy to first order. That is, δA = 0.
a. Show that this assumption leads to the equilibrium condition

K∑
i=1

μiνi = 0.

b. Now consider the reaction

2H2(g) + O2(g) ⇀↽ 2H2O(g)

Let ρ0 be the initial density of H2 molecules and ρ0/2 be the initial density
of O2 molecules, and let the initial amount of H2O be zero. Calculate the
equilibrium densities of the three components as a function of temperature
and ρ0.

∗6.5. Prove the following fluctuations theorems for the grand canonical ensemble:

a.

〈NH(x)〉 − 〈N〉〈H(x)〉 =

(
∂E

∂N

)
V,T

(ΔN)2.

b.

ΔF2 = kT 2CV +

[(
∂E

∂N

)
V,T

− μ

]2

(ΔN)2.

where CV is the constant-volume heat capacity, F = E−Nμ = TS−PV ,
and

ΔF =
√
〈F2〉 − 〈F〉2.
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6.6. In a multicomponent system with K components, show that the fluctuations
in the particle numbers of each component are related by

ΔNiΔNj = kT

(
∂〈Ni〉
∂μj

)
V,T,μi

= kT

(
∂〈Nj〉
∂μi

)
V,T,μj

,

where ΔNi =
√
〈N2

i 〉 − 〈Ni〉2, with a similar definition for ΔNj .
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Monte Carlo

7.1 Introduction to the Monte Carlo method

In our treatment of the equilibrium ensembles, we have, thus far, exclusively developed
and employed dynamical techniques for sampling the phase space distributions. This
choice was motivated by the natural connection between the statistical ensembles
and classical (Hamiltonian or non-Hamiltonian) mechanics. The dynamical aspect of
these approaches is, however, irrelevant for equilibrium statistical mechanics, as we
are interested only in sampling the accessible microscopic states of the ensemble.

In this chapter, we will introduce another class of sampling techniques known as
Monte Carlo methods. As the name implies, Monte Carlo techniques are based on
games of chance (driven by sequences of random numbers) which, when played many
times, yield outcomes that are the solutions to particular problems. The first use of
random methods to solve a physical problem dates back to 1930 when Enrico Fermi
(1901-1954) employed such an approach to study the properties of neutrons. Monte
Carlo simulations also played a central role in the Manhattan Project. It was not until
after computers could be leveraged that the power of Monte Carlo methods could
be realized. In the 1950s, Monte Carlo methods were used at Los Alamos National
Laboratory in New Mexico for research on the hydrogen bomb. Eventually, it was
determined that Monte Carlo techniques constitute a power suite of tools for solving
statistical mechanical problems involving integrals of very high dimension.

As a simple example, consider the evaluation of the definite integral

I =

∫ 1

0

dx

∫ √
1−x2

0

dy =
π

4
. (7.1.1)

The result π/4 can be obtained straightforwardly, since this is an elementary integral.
Note that the answer π/4 is also the ratio of the area of circle of arbitrary radius to the
area of its circumscribed square. This fact suggests that the following game could be
used to solve the integral: Draw a square and an inscribed circle on a piece of paper,
tape the paper to a dart board, and throw darts randomly at the board. The ratio of
the number of darts that land in the circle to the number of darts that land anywhere
in the square will, in the limit of a very large number of such dart throws, yield a
good estimate of the area ratio and hence of the integral in eqn. (7.1.1).1 In practice,
it would take about 106 such dart throws to achieve a reasonable estimate of π/4,

1Kalos and Whitlock (1986) suggested putting a round cakepan in a square one, placing the
combination in a rain storm, and measuring the ratio of raindrops that fall in the round cakepan to
those that fall in the square one.
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which would try the patience of even the most avid dart player. For this reason, it is
more efficient to have the computer do the dart throwing. Nevertheless, this example
shows that a simple random process can be used to produce a numerical estimate of a
two-dimensional integral; no fancy sets of dynamical differential equations are needed.

In this chapter, we will discuss an important underpinning of the Monte Carlo
technique, namely the central limit theorem, and then proceed to describe a number
of commonly used Monte Carlo algorithms for evaluating high-dimensional integrals
of the type that are ubiquitous in classical equilibrium statistical mechanics.

7.2 The Central Limit theorem

The integrals that must be evaluated in equilibrium statistical mechanics are generally
of the form

I =

∫
dx φ(x)f(x), (7.2.1)

where x is an n-dimensional vector, φ(x) is an arbitrary function, and f(x) is a function
satisfying the properties of a probability distribution function, namely f(x) ≥ 0 and

f(x) ≥ 0

∫
dx f(x) = 1. (7.2.2)

The integral in eqn. (7.2.1) represents the ensemble average of a physical observable in
equilibrium statistical mechanics. Let x1, ..., xM be a set of M n-dimensional vectors
that are sampled from f(x). That is, the vectors x1, ..., xM are distributed according
to f(x), so that the probability that the vector xi is in a small region dx of the
n-dimensional space on which the vectors x1, ..., xM are defined is f(xi)dx. Recall
that in Section 3.8.3, we described an algorithm for sampling the Maxwell-Boltzmann
distribution, which is a particularly simple case. In general, the problem of sampling
a distribution f(x) is a nontrivial one that we will address in this chapter. For now,
however, let us assume that an algorithm exists for carrying out the sampling of f(x)
and generating the vectors x1, ..., xM . We will establish that the simple arithmetic
average

ĨM =
1

M

M∑
i=1

φ(xi) (7.2.3)

is an estimator for the integral I, meaning that

lim
M→∞

ĨM = I. (7.2.4)

This result is guaranteed by a theorem known as the central limit theorem, which
we will now prove. Readers wishing to proceed immediately to the specifics of Monte
Carlo methodology can take the results in eqns. (7.2.3) and (7.2.4) as given and skip
to the next section.
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For simplicity, we introduce the notation∫
dx φ(x)f(x) = 〈φ〉f , (7.2.5)

where 〈· · ·〉f indicates an average of φ(x) with respect to the distribution f(x). We

wish to compute the probability P(y) that the estimator ĨM will have a value y. This
probability is given formally by

P(y) =

∫
dx1 · · ·dxM

[
M∏
i=1

f(xi)

]
δ

(
1

M

M∑
i=1

φ(xi) − y

)
, (7.2.6)

where the Dirac δ-function restricts the integral to those sets of vectors x1, ..., xM for
which the estimator is equal to y. Eqn. (7.2.6) can be simplified by introducing the
integral representation of the δ-function (see Appendix A)

δ(z) =
1

2π

∫ ∞

−∞
dσ eizσ. (7.2.7)

Substituting eqn. (7.2.7) into eqn. (7.2.6) and using the general property of δ-functions
that δ(ax) = (1/|a|)δ(x) yields

P(y) = M

∫
dx1 · · ·dxM

[
M∏
i=1

f(xi)

]
δ

(
M∑
i=1

φ(xi) − My

)

=
M

2π

∫
dx1 · · ·dxM

[
M∏
i=1

f(xi)

] ∫ ∞

−∞
dσ e

iσ
(∑M

i=1
φ(xi)−My

)
. (7.2.8)

Interchanging the order of integrations gives

P(y) =
M

2π

∫ ∞

−∞
dσ e−iMσy

∫
dx1 · · ·dxM

[
M∏
i=1

f(xi)

]
eiσ

∑M

i=1
φ(xi)

=
M

2π

∫ ∞

−∞
dσ e−iMσy

[∫
dx f(x)eiσφ(x)

]M

=
M

2π

∫ ∞

−∞
dσ e−iMσyeM ln

∫
dx f(x)eiσφ(x)

=
M

2π

∫ ∞

−∞
dσ eMF (σ,y), (7.2.9)

where in the second line, we have used the fact that the integrals over x1, x2,... in the
product are all identical. In the last line of eqn. (7.2.9), the function F (σ, y) is defined
to be

F (σ, y) = −iσy + g(σ), (7.2.10)
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with

g(σ) = ln

∫
dx f(x)eiσφ(x). (7.2.11)

Although we cannot evaluate the integral over σ in eqn. (7.2.9) exactly, we can
approximate it by a technique known as the stationary phase method. This technique
applies to integrals of functions F (σ, y) that are sharply peaked about a global max-
imum at σ = σ̃(y) where the integral is expected to have its dominant contribution.
For σ = σ̃(y) to be a maximum, the following conditions must hold:

∂F

∂σ

∣∣∣∣
σ=σ̃(y)

= 0,
∂2F

∂σ2

∣∣∣∣
σ=σ̃(y)

< 0 (7.2.12)

when σ = σ̃(y). Thus, the function of σ̃(y) is derived from the solution of the condition
on the left in eqn. (7.2.12), which depends on the value of y. We will return to this
point shortly. Expanding F (σ, y) in a Taylor series about σ = σ̃(y) up to second order
and taking into account that ∂F/∂σ = 0 at σ = σ̃(y), gives

F (σ, y) = F (σ̃(y), y) +
1

2

∂2F

∂σ2

∣∣∣∣
σ=σ̃(y)

(σ − σ̃(y))2 + · · · . (7.2.13)

Substituting eqn. (7.2.13) into eqn. (7.2.9) yields

P(y) ≈ M

2π
eMF (σ̃(y),y)

∫ ∞

−∞
dσ exp

[
M

2

∂2F

∂σ2

∣∣∣∣
σ=σ̃(y)

(σ − σ̃(y))2

]
. (7.2.14)

Since the integral in eqn. (7.2.14) is now just a Gaussian integral over σ, it can be
performed straightforwardly to give

P(y) ≈
√

M

−2π (∂2F/∂σ2)|σ=σ̃(y)

eMF (σ̃(y),y). (7.2.15)

Thus, in order to specify the distribution, we need to find σ̃(y) and (∂2F/∂σ2)|σ=σ̃(y).
The condition ∂F/∂σ = 0 leads to −iy + g′(σ) = 0 or

y = −ig′(σ) =

∫
dx φ(x)f(x)eiσφ(x)∫

dx f(x)eiσφ(x)
. (7.2.16)

The last line in eqn. (7.2.16) can, in principle, be inverted to give the solution σ = σ̃(y).
Moreover,

∂2F

∂σ2

∣∣∣∣
σ=σ̃(y)

= g′′(σ̃(y)). (7.2.17)

Therefore,

P(y) =

√
M

−2πg′′(σ̃(y))
eMF (σ̃(y),y). (7.2.18)
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Eqn. (7.2.18) is a function of y alone, and we can now analyze its y dependence in
greater detail. First, the extrema of F (σ̃(y), y) are given by the solution of

0 =
dF

dy
=

∂F

∂y
+

∂F

∂σ̃

∂σ̃

∂y
= −iσ̃(y). (7.2.19)

Since ∂F/∂σ̃(y) = 0 by the definition of σ̃(y), the extrema of F occur where σ̃(y) = 0.
According to eqn. (7.2.16), this implies

y =

∫
dx φ(x)f(x)∫

dx f(x)
= 〈φ〉f . (7.2.20)

Because this solution is unique, we can expand F (σ̃(y), y) to second order about y =
〈φ〉f . For this, we need

d2F

dy2

∣∣∣∣
σ̃=0

= −i
dσ̃

dy

∣∣∣∣
σ̃=0

. (7.2.21)

Differentiating eqn. (7.2.16) at σ = σ̃(y) with respect to y, we obtain

1 = −ig′′(σ̃)
dσ̃

dy
, (7.2.22)

so that
dσ̃

dy

∣∣∣∣
σ̃=0

=
i

g′′(0)
. (7.2.23)

Note, however, that

g′′(0) = i

[∫
dx φ2(x)f(x)∫

dx f(x)
−

(∫
dx φ(x)f(x)

)2(∫
dx f(x)

)2

]
= i

[〈φ2〉f − 〈φ〉2f
]
, (7.2.24)

which (apart from the factor of i) is just the square of the fluctuation δφ in φ(x) with
respect to the distribution f(x). From this analysis, we see that P(y) has a single
maximum at y = 〈φ〉f and decreases monotonically in either direction from this point.
In the limit that M becomes very large, all higher-order contributions, which are
simply higher-order moments of f with respect to P(y), vanish, so that P(y) becomes
just a Gaussian normal distribution

P(y) −→
√

M

2πδφ2
exp

[
−M (y − 〈φ〉f )

2

2δφ2

]
. (7.2.25)

We conclude, finally, that for large M , eqn. (7.2.5) can be approximated via eqn.
(7.2.3) with a variance consistent with a normal distribution in the limit of large M ,
i.e.∫

dx φ(x)f(x) =
1

M

M∑
i=1

φ(xi) ± 1√
M

[〈φ2〉f − 〈φ〉2f
]1/2

=

M∑
i=1

φ(xi) ± δφ (7.2.26)

thus guaranteeing convergence in the limit M → ∞. Since the variance (second) term
in eqn. (7.2.26), decreases as 1/

√
M , efficient convergence relies on making this vari-

ance as small as possible, which is one of the challenges in designing Monte Carlo
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algorithms. Otherwise, a very large sample will be needed before ĨM becomes a good
estimator for the integral.

7.3 Sampling distributions

7.3.1 Sampling simple distributions

In Section 3.8.3, we showed how to sample a Gaussian distribution using the Box–
Muller method. In that context, we introduced some of the basic principles underlying
sampling schemes. Here, we review and generalize the discussion for arbitrary distri-
bution functions.

Consider a simple one-dimensional distribution function f(x), x ∈ [a, b] satisfying
f(x) ≥ 0 on the interval [a, b] and normalized such that∫ b

a

f(x)dx = 1. (7.3.1)

Since f(x) is normalized, then the value of any integral of the form

P (X) =

∫ X

a

f(x)dx, (7.3.2)

with X ∈ [a, b], lies in the interval [0, 1]. P (X) measures the probability that a
particular x randomly chosen from the distribution f(x) lies in the interval [a, X ].
Because f(x) ≥ 0, P (X) is a monotonically increasing function of X . Note also that
f(X) = dP/dX .

Now, suppose we perform a variable transformation from x to y, where y = g(x)
and g(x) is a nondecreasing function of x. In this case, if X ≥ x, then g(X) ≥ g(x),
and the probability P̃ (Y ) that g(X) = Y ≥ y = g(x) must be equal to the probability
that X ≥ x, since the function g uniquely maps each value of x onto a value of y.
Thus, the cumulative probabilities P̃ (Y ) and P (X) are equal:

P̃ (Y ) = P (X). (7.3.3)

Conventional random number generators produce random sequences that are uni-
formly distributed on the interval [0, 1]. (In actuality, the numbers are not truly random
since they are generated by a deterministic algorithm. Thus, they are more accurately
called pseudo random numbers, although it is conventional to refer to them as “ran-
dom.”) If r is a random number, it will have a probability distribution w(r) given
by

w(r) =

{
1 0 ≤ r ≤ 1
0 otherwise

. (7.3.4)

The cumulative probability W (ξ) is then

W (ξ) =

∫ ξ

0

w(r) dr =

⎧⎨
⎩

0 ξ < 0
ξ 0 ≤ ξ ≤ 1
1 ξ > 1

. (7.3.5)

The function W (ξ) = ξ for ξ ∈ [0, 1] is the probability that a random number r chosen
by a random number generator lies in the interval [0, ξ]. Let us assume that there
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exists a variable transformation r = g(x) where g(x) is a nondecreasing function of
x. This function maps the interval x ∈ [a, b] onto the interval r ∈ [0, 1]. In this case,
by eqn. (7.3.3), the cumulative probabilities can be equated in the interval ξ ∈ [0, 1],
yielding the relation

P (X) = ξ. (7.3.6)

Thus, a sampling the distribution function f(x) can be achieved by randomly choosing
a probability between 0 and 1 and then solving eqn. (7.3.6) for the corresponding
probability that x chosen from f(x) lies in the interval x ∈ [a, X ]. The invertibility of
eqn. (7.3.6) to yield X as a function of ξ guarantees the existence of the transformation
r = g(x). Therefore, for a set of M random numbers ξ1, ..., ξM , eqn. (7.3.6) yields M
values X1, ..., XM . We simply set xi = Xi, and we have a sampling of M values from
the distribution f(x).

As an example, consider the distribution function f(x) = ce−cx on the interval
x ∈ [0,∞). Clearly, f(x) satisfies the conditions of a properly normalized probability
distribution function. In order to sample f(x), we first need P (X):

P (X) =

∫ X

0

ce−cx dx = 1 − e−cX . (7.3.7)

Next, we equate 1− exp(−cX) to the random number ξ, i.e.,

1 − e−cX = ξ, (7.3.8)

and solve for X , which can be done straightforwardly to yield

X = −1

c
ln(1 − ξ). (7.3.9)

The example from Section 3.8.3 using the Box–Muller method to sample the Gaus-
sian distribution illustrates that a single-variable distribution can be sampled by turn-
ing it into a two-variable distribution F (x, y) that could be factorized into a product
of two identical single-variable distributions f(x)f(y). A simple change of variables
to polar coordinates yielded another separable distribution g(r)h(θ), each factor of
which could be sampled straightforwardly using eqn. (7.3.6) (see eqns. (3.8.14) to
(3.8.20)). In general, the problem of sampling a multi-variable distribution f(x), where
x = (x1, ..., xn) is an n-dimensional vector, is nontrivial and will be discussed below.
However, let us consider the special case that f(x) is separable into a product of n
single-variable distributions,

f(x) =

n∏
α=1

fα(xα). (7.3.10)

If there exists a general transformation yα = gα(x) such that the new distribution
f̃(y), y = (y1, ..., yn), is separable in the transformed variables

f̃(y) =

n∏
α=1

f̃α(yα), (7.3.11)

then eqn. (7.3.6) can be applied to each individual distribution fα(xα) or f̃α(yα) to
yield variables X1, ..., Xn or Y1, ..., Yn and hence a complete sampling of the multi-
variable distribution.



Monte Carlo

7.3.2 Importance sampling

Let us return to the problem of calculating the multidimensional integral

I =

∫
dx φ(x)f(x). (7.3.12)

Instead of sampling the distribution f(x), we could sample a different distribution h(x)
by rewriting the integral as

I =

∫
dx

[
φ(x)f(x)

h(x)

]
h(x) (7.3.13)

and introducing ψ(x) = φ(x)f(x)/h(x). When this is done, eqn. (7.2.3) leads to

I =

∫
dxψ(x)h(x) =

1

M

M∑
i=1

ψ(xi) ± 1√
M

[〈ψ2〉h − 〈ψ〉2h
]1/2

, (7.3.14)

where the vectors xi are sampled from the distribution h(x). The use of the distribution
h(x) in lieu of f(x) is known as importance sampling.

There are several reasons to employ an importance function h(x) in a Monte Carlo
calculation. First, the function h(x) might be easier to sample than f(x). If h(x) retains
some of the most important features of f(x), then h(x) will be a good choice for an
importance function. In this sense, employing importance sampling is akin to using
a reference potential in molecular dynamics, which we discussed in Section 3.11. A
second reason concerns the behavior of the integrand φ(x) itself. If φ(x) is a highly
oscillatory function, then positive and negative contributions will tend to cancel in the
Monte Carlo evaluation of eqn. (7.3.12), rendering the convergence of the sampling
algorithm extremely slow and inefficient because of the large variance. A judiciously
chosen importance function can help tame such oscillatory behavior, leading to a
smaller variance and better convergence.

We now ask if there is an optimal choice for an importance function h(x). The best
choice is one that leads to the smallest possible variance. According to eqn. (7.3.14),
the variance, which is a functional of h(x), is given by

σ2[h] =

[∫
dxψ2(x)h(x) −

(∫
dx ψ(x)h(x)

)2
]

=

[∫
dx

φ2(x)f2(x)

h2(x)
h(x) −

(∫
dx φ(x)f(x)

)2
]

. (7.3.15)

We seek to minimize this variance with respect to the choice of h(x) subject to the
constraint that h(x) be properly normalized:∫

dx h(x) = 1. (7.3.16)

This can be done by introducing a Lagrange multiplier and minimizing the functional
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F [h] = σ2[h] − λ

∫
dx h(x). (7.3.17)

Computing the functional derivative δF/δh(x), we obtain the condition

φ2(x)f2(x)

h2(x)
+ λ = 0 (7.3.18)

or

h(x) =
1√−λ

φ(x)f(x) (7.3.19)

The Lagrange multiplier can be determined by requiring that h(x) be normalized so
that ∫

dx h(x) =
1√−λ

∫
dx φ(x)f(x) = 1 (7.3.20)

or
√−λ = − ∫

dxφ(x)f(x) = −I. Thus, the optimal choice for h(x) is

h(x) =
φ(x)f(x)

I
. (7.3.21)

In fact, with this choice of h(x), the variance is identically zero, meaning that a perfect
Monte Carlo algorithm can be constructed based on h(x). Of course, this choice of h(x)
is only of academic interest because if we knew I, we would not need to perform the
calculation in the first place! However, eqn. (7.3.21) provides a guideline for choosing
h(x) so as to keep the variance low.

As an example, consider the Monte Carlo evaluation of the integral

I =

∫ 1

0

dx e−x = 1 − 1

e
= 0.632120558829. (7.3.22)

The simplest Monte Carlo sampling scheme for this problem consists in sampling
x uniformly on the interval (0, 1) (f(x) = 1 for x ∈ (0, 1) and 0 otherwise) and
then evaluating the function φ(x) = exp(−x). The integrand exp(−x) is shown as
the solid line in Fig. 7.1(a), and the instantaneous value of the estimator φ(x) =
exp(−x) is shown in Fig. 7.1(b). After 106 steps, uniform sampling gives the answer
as I ≈ 0.6322 ± 0.000181. Now let us attempt to devise an importance function h(x)
capable of reducing the variance. We might be tempted to try a first-order Taylor
expansion exp(−x) ≈ 1 − x, which is shown as the dotted line in Fig. 7.1(a). After
normalization, h(x) becomes h(x) = 2(1− x), and the use of this importance function
gives, after 106 steps of sampling, I ≈ 0.6318±0.000592. Interestingly, this importance
function makes things worse, yielding a larger variance than simple uniform sampling!
The reason for the failure of this importance function is that 1 − x is only a good
representation of exp(−x) for x very close to 0, as Fig. 7.1(a) clearly shows. Over the
full interval x ∈ (0, 1), however, 1 − x does not accurately represent exp(−x) and,
therefore, biases the sampling toward regions of x that are more unfavorable than
uniform sampling. Consider, next, using a more general linear function h(x) = 1− ax,
where the parameter a is chosen to give a better representation of exp(−x) over the
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(a) (b) (c)

Fig. 7.1 (a) The integrand exp(−x) (solid line) and two possible importance functions

1 − x (dotted line) and 1 − 0.64x (dashed line). (b) Instantaneous value of the estimator

φ(x) = exp(−x) for a Monte Carlo calculation with f(x) = 1 on the interval x ∈ (0, 1). (c)

Instantaneous value of the estimator φ(x) = exp(−x)/h(x) when the importance function

h(x) = (1 − ax)/(1 − a/2) is used with a = 0.64 to improve sampling.

full interval. The dashed line in Fig. 7.1(a) shows this linear function for a = 0.64,
which, although a poorer representation of exp(−x) near x = 0 than the Taylor series,
is still a better representation of exp(−x) overall for the full interval. The general
normalization of h(x) is h(x) = (1 − ax)/(1 − a/2). After 106 Monte Carlo sampling
steps with a = 0.64, we obtain the approximate answer I ≈ 0.63212 ± 0.0000234,
which is nearly a full order of magnitude better in the variance than simple uniform
sampling. The lesson from this example is that importance functions must be chosen
carefully. Unless the importance function is a good representation of the integrand,
the sampling efficiency can actually degrade over simple uniform sampling.

7.3.3 The M(RT)2 algorithm: Acceptance and rejection

In the application of eqn. (7.2.3) to any Monte Carlo calculation, the vectors x1, ..., xM

can be generated independently and randomly. However, better convergence can often
be achieved if the vectors are generated sequentially x1 → x2 → · · · → xM with a rule
that specifies how to generate xi+1 given xi. Such a sequence of vectors, in which xi+1

is generated based only knowledge of xi is called a Markov chain. Markov chains are
the core of many Monte Carlo algorithms.

Let R(x|y) be a probability distribution function for obtaining a vector x from a
given vector y. If x and y are accessible microstates of a physical system, then R(x|y)
is the probability for moving to a state x given that the system is currently in the state
y. Thus, R(x|y) potentially constitutes a rule for generating a Markov chain. However,
in order for R(x|y) to be valid as such a rule, it must satisfy the condition of detailed
balance, which states that

R(x|y)f(y) = R(y|x)f(x). (7.3.23)

Here, R(x|y)f(y) is the a priori probability of a move from y to x, which is simply
the probability R(x|y) for the move from y to x times the probability f(y) that the
system is at y when the move is initiated. The detailed balance condition ensures
that the Markov process is microscopically reversible and hence guarantees unbiased
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sampling of the state space. It has been argued that the detailed balance condition is
a sufficient but not strictly necessary condition to ensure proper sampling of the state
space (Manousiouthakis and Deam, 1999). In the present discussion, however, we will
assume that eqn. (7.3.23) is satisfied by the process R(x|y).

The sampling technique to be discussed in this section, which was proposed by
Metropolis et al. in 1953 , which we will refer to as the M(RT)2 algorithm (M(RT)2

stands in for the last names of the five authors), belongs to a class of Monte Carlo
schemes known as rejection methods. The M(RT)2 method starts with a rule for gener-
ating trial or proposed moves from y to x, denoted T (x|y). The normalization condition
on T (x|y) is ∫

dx T (x|y) = 1. (7.3.24)

Once a trial move is generated, a decision is made either to accept the move in which
case, the system is advanced to x, or to reject it, in which case, it is returned to y
by setting x = y. Let A(x|y) be the probability that the move is accepted. Then, the
transition probability R(x|y) can be expressed as

R(x|y) = A(x|y)T (x|y). (7.3.25)

When eqn. (7.3.25) is substituted into eqn. (7.3.23), we find

A(x|y)T (x|y)f(y) = A(y|x)T (y|x)f(x), (7.3.26)

so that the acceptance probabilities are related by

A(x|y) =
T (y|x)f(x)

T (x|y)f(y)
A(y|x) = r(x|y)A(y|x). (7.3.27)

The implication of eqn. (7.3.27) is an interesting one. Suppose A(x|y) = 1 so that
the move from y to x is favorable. In this case, we expect that the reverse move from
x to y is less favorable so that A(y|x) < 1, implying that r(x|y) > 1. On the other
hand, if A(x|y) < 1 so that the move x to y is not perfectly favorable, then we expect
A(y|x) = 1 so that r(x|y) < 1. Combining these facts, we see that the acceptance
probability is given conveniently by

A(x|y) = min[1, r(x|y)], (7.3.28)

where function min[a, b] chooses the smaller of a and b.
Given the ideas developed above, the M(RT)2 algorithm can now be stated suc-

cinctly. At the kth step of a Markov chain, the trial distribution T (xk+1|xk) is used to
generate a proposed move from xk to xk+1. Using xk and xk+1, we compute the ratio

r(xk+1|xk) =
T (xk|xk+1)f(xk+1)

T (xk+1|xk)f(xk)
. (7.3.29)

Next the decision must be made whether this trial move is to be accepted or rejected.
If r(xk+1|xk) ≥ 1, then the move is accepted with probability 1 according to eqn.
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(7.3.28). If, however, r(xk+1|xk) < 1, then a random number ξ ∈ [0, 1] is generated. If
r(xk+1|xk) > ξ, the move is accepted, and the value of xk+1 is retained. If r(xk+1|xk) <
ξ, the move is rejected, and xk+1 is set equal to xk. Remember, however, that even
when a move is rejected, the value xk to which xk+1 is “reset” must be considered as
the next point in the Markov chain and must be used in the calculation of estimators.
Thus, in any Markov chain, there will be points that are repeated and used more than
once in the calculation of averages.

In the Markov chain generated by the M(RT)2 algorithm, each of the points
x1, x2, ..., xn will have an associated probability π1(x), π2(x), ..., πn(x). We wish to
prove that in the limit of an infinite chain, limn→∞ πn(x) = f(x), for which we will
use inductive reasoning. That is, we will show that if πn(x) = f(x) for some n, then it
follows that πn+1(x) = f(x). The proof proceeds first by finding a recursive relation
between for πn+1(x) in terms of πn(x), and then by showing that f(x) is a fixed-point
of the recursion.

The recursion is derived as follows: πn+1(x) has a contribution from attempted
moves that start at y, lead to x, and are accepted. It also has contributions from
attempted moves that start at x, lead to y, and are rejected. Let us begin with the
former. The quantity πn(y)dy is the probability that a given point is in a neighborhood
dy about the value y in the nth step of the Markov chain. Thus, the probability that
a trial move yields a new point x starting from y in dy is A(x|y)T (x|y)πn(y)dy, which
involves a product of the trial and acceptance probabilities, as expected. Therefore, the
probability that a point x is reached from any starting point is obtained by integrating
the product over all y: ∫

A(x|y)T (x|y)πn(y)dy.

Similarly, the probability that an attempted move to any y starting from a particular
x is rejected is ∫

[1 − A(y|x)] T (y|x)dy

which needs to be multiplied by πn(x), the probability density for being at x to begin
with. When these two expressions are combined, the total probability density πn+1(x)
becomes

πn+1(x) =

∫
A(x|y)T (x|y)πn(y)dy + πn(x)

∫
[1 − A(y|x)] T (y|x)dy. (7.3.30)

From eqn. (7.3.30), it is possible to show that the distribution f(x) is a fixed point
of the recursion. We substitute the assumed condition of the induction, πn(x) = f(x),
into the recursion relation, which yields

πn+1(x) =

∫
A(x|y)T (x|y)f(y)dy + f(x)

∫
[1 − A(y|x)] T (y|x)dy. (7.3.31)

However, due to the detailed balance condition in eqn. (7.3.23), eqn. (7.3.31) reduces
to

πn+1(x) = f(x)

∫
T (y|x)dy = f(x) (7.3.32)

which follows from eqn. (7.3.24).
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A simple yet fairly standard way to apply the M(RT)2 algorithm is based on
choosing the trial probability T (x|y) to be uniform for x in some domain of radius Δ
about y. For this choice, T (x|y) takes the form

T (x|y) =

{
1/Δ |x − y| < Δ/2

0 otherwise
. (7.3.33)

This T (x|y) clearly satisfies eqn. (7.3.24) and also has the property that T (x|y) =
T (y|x). Thus, the acceptance probability is given simply by

A(x|y) = min

[
1,

f(x)

f(y)

]
. (7.3.34)

Sampling the canonical distribution

Eqns. (7.3.33) and (7.3.34) can be straightforwardly applied to the problem of cal-
culating the canonical configurational partition function for a system of monatomic
particles such as a Lennard-Jones liquid (see Section 3.14.2). Recall that the partition
function for a system of N particles with coordinates r1, ..., rN and potential energy
U(r1, ..., rN ) is given by

Q(N, V, T ) =
1

N !λ3N

∫
dr1 · · ·drNe−βU(r1,...,rN), (7.3.35)

where λ =
√

βh2/2πm and the integral is the configurational partition function. In-
troducing the usual notation r ≡ r1, ..., rN as the complete set of coordinates, we
wish to devise a trial move from r to r′ and determine the corresponding acceptance
probability. If the move is based on eqn. (7.3.33), then, since f(r) ∝ exp[−βU(r)], the
acceptance probability is simply

A(r′|r) = min
[
1, e−β[U(r′)−U(r)]

]
. (7.3.36)

In other words, the acceptance probability is determined solely by the change in the
potential energy that results from the move. If the potential energy decreases in a trial
move, the move will be accepted with probability 1; if the energy increases, the move
will be accepted with a probability that decreases exponentially with the change in
energy.

An immediate problem arises when attempting to apply eqn. (7.3.33) as written.
As a general rule, it is not possible to move all of the particles simultaneously! Re-
member that the potential energy U is an extensive quantity, meaning that U ∼ N .
Thus, if we attempt to move all of the particles at once, the change in the potential
energy can be quite large unless the particle positions change by only minimally. This
problem becomes increasingly severe as the number of particles grows. According to
eqn. (7.3.36), a large change in the potential energy leads to a very small probability
that the move is accepted, and the M(RT)2 algorithm becomes inefficient as a means
of generating canonical configurations.
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A simple remedy for this problem lies at the other extreme in which we attempt
to only move one particle at a time. Of course, eqn. (7.3.33) includes this possibility
as well. Thus, we begin by choosing a particle at random from among the N particles
in the system. Suppose the randomly chosen particle has an index i. Each of the three
components of ri is displaced at random using three uniform random numbers ξx, ξy,
and ξz, with ξα ∈ [0, 1]. α = x, y, z. The displacements are then given by

x′
i = xi +

1√
3

(ξx − 0.5)Δ

y′
i = yi +

1√
3

(ξy − 0.5)Δ

z′i = zi +
1√
3

(ξz − 0.5)Δ. (7.3.37)

All other particle coordinates remain unchanged. The random numbers are shifted to
the interval [−0.5, 0.5] to ensure that the sphere of radius Δ is centered on ri, and
the

√
3 factor ensures that |r′i − r| < Δ/2 and consequently that |r′ − r| < Δ/2 as

required by eqn. (7.3.33). A Monte Carlo pass through the system is a collection of N
such trial moves which, in principle, is a sufficient number to attempt a move on each
of the particles, although in any Monte Carlo pass, attempts will be made on some
particles more than once while others will have no attempted moves.

At this point, several comments are in order. First, for a large majority of sys-
tems, it is not necessary to recompute the potential energy U(r′) in full in order to
determine the acceptance probability when a single particle is moved. We only need
to recompute the terms that involve ri. Thus, for a short-ranged pair potential, only
the interaction of particle i with other particles that lie within the cutoff radius of i
need to be recomputed, which is a relatively inexpensive operation (see Appendix B).
Second, it is natural to ask if maximal efficiency could be achieved via an optimal
target for the average number of accepted moves. While this question can be answered
in the affirmative, it is impossible to give a particular number for the target fraction
of accepted moves. Note that the acceptance probability depends on the choice of Δ,
hence the efficiency of the algorithm depends on this critical parameter. A large value
for Δ generates large displacements for each particle with possible significant increases
in the potential energy and consequently, a low acceptance probability. A small value
for Δ generates small displacements and a correspondingly high acceptance probabil-
ity. Thus, choosing Δ is a compromise between large displacements and a reasonable
number of accepted moves. One occasionally reads in the literature that a good target
is between 20% and 50% acceptance of trial moves, with an optimal value around
30% (Allen and Tildesley, 1989; Frenkel and Smit, 2002). This range can be a useful
rule of thumb or serve as a starting point for refining the target acceptance rate. How-
ever, the optimal value depends on the system, the thermodynamic control variables
N , V , and T , and even on how the computer program is written. In general, tests
should be performed for each system to determine the optimal acceptance probability
and displacement Δ.
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As a final observation, it is interesting to compare Monte Carlo with molecular
dynamics as methods for sampling ensemble distributions. A key difference, readily
apparent from the preceding discussion, is that in a Monte Carlo calculation, particles
are moved one at a time (or, at most, a few at a time); in molecular dynamics, all of the
particles are moved simultaneously. It might seem, therefore, that molecular dynamics
calculations are more efficient than Monte Carlo, but if we recall that molecular dy-
namics moves are limited by the size of the time step, we find that, in many instances,
the methods are comparable in their efficiency when molecular dynamics is used with
appropriate thermostatting and/or barostatting schemes. An advantage of molecular
dynamics over Monte Carlo is that it is straightforward to couple and uncouple ther-
mostats and barostats in order to switch between sampling and dynamics calculations,
which makes writing an elegant, object-oriented code that encompasses both types of
calculations conceptually seamless. Monte Carlo, as described here, is only useful as
a sampling technique and therefore, a separate molecular dynamics module would be
needed to study the dynamics of a system. Because molecular dynamics moves all par-
ticles simultaneously, it is also easier to devise and implement algorithms suitable for
parallel computing architectures in order to tackle very large-scale applications. On
the other hand, Monte Carlo allows for considerable flexibility to invent new types of
moves since one needs to worry only about satisfying detailed balance. It is, of course,
likewise possible to devise clever molecular dynamics methods, as we have seen in
Chapters 4–5. However, in molecular dynamics, “cleverness” appears in the equations
of motion and the demonstration that the algorithm achieves its objective. Finally,
due to inherent randomness, Monte Carlo calculations are, by construction, ergodic,
even if a large number of Monte Carlo passes is required to achieve converged results.
In molecular dynamics, because of its deterministic nature, achieving ergodicity is a
significant challenge.

Before considering other ensembles, it is worth mentioning how the algorithm in
eqn. (7.3.37) is modified for systems consisting of rigid molecules. Since a rigid body
has both translational and rotational degrees of freedom (see Section 1.11), two types
of uniform moves are needed. Suppose a rigid body has a center-of-mass position R
and n constituent particles with coordinates r1, ..., rn relative to the center-of-mass.
In a system consisting of N such rigid bodies, we first choose one of them at random.
Then, eqn. (7.3.37) is applied to the center-of-mass in order to generate a move from
R to R′ according to:

X ′ = X +
1√
3

(ξx − 0.5)Δ

Y ′ = Y +
1√
3

(ξy − 0.5)Δ

Z ′ = Z +
1√
3

(ξz − 0.5)Δ. (7.3.38)

Eqn. (7.3.38) generates a translation of the rigid body. Next, a unit vector n is ran-
domly chosen to define an axis through the center-of-mass. This can be accomplished
by choosing three additional random numbers ζx, ζy and ζ′z to give the components of
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a random vector and normalizing the vector by the length

l =
√

ζ2
x + ζ2

y + ζ2
z (7.3.39)

to give n = (ζx/l, ζy/l, ζz/l). One final random number η is used to determine a random
rotation angle θ = 2πη, and the rotation formula (see eqn. (1.11.3))

r′i = ri cos θ + n(n · ri)(1 − cos θ) + (ri×n) sin θ (7.3.40)

is applied to each particle in the rigid body. Once the trial move is generated, eqn.
(7.3.36) is used to determine if the move is accepted or rejected. Such rotational
moves can also be generated using the three Euler angles or quaternions described in
Section 1.11.

Sampling the isothermal-isobaric distribution

The isothermal-isobaric partition function for a system of N particles at constant
external pressure P and temperature T is

Δ(N, P, T ) =
1

V0

∫ ∞

0

dV e−βPV Q(N, V, T )

=
1

V0N !λ3N

∫ ∞

0

dV e−βPV

∫
D(V )

dr1 · · ·drN e−βU(r1,...,rN), (7.3.41)

where the coordinate integrations are limited to the spatial domain D(V ) defined by
the containing volume.

Sampling the isothermal-isobaric distribution requires sampling both the particle
coordinates and the volume V . The former can be done using the uniform sampling
schemes of the previous subsection. A trial volume move from V to V ′ can also be
generated from a uniform distribution. A random number ξV is generated and the trial
volume move is given by

V ′ = V + (ξV − 0.5) δ, (7.3.42)

where δ determines the size of the volume displacement. Volume moves need to be
handled with some care because each time the volume changes, the particle coordi-
nates must be scaled by r′i = (V ′/V )1/3ri and the total potential energy recalculated
before the decision to accept or reject the move can be made. Also, the dependence
of the integration limits in eqn. (7.3.42) on the volume presents an additional compli-
cation. As we saw in eqn. (4.6.51), we can make the volume dependence explicit by
transforming the spatial integrals to scaled coordinates si = ri/V 1/3, which gives
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Δ(N, P, T ) =
1

V0N !λ3N

∫ ∞

0

dV e−βPV V N

×
∫

ds1 · · ·dsN e−βU(V 1/3s1,...,V 1/3sN ). (7.3.43)

From eqn. (7.3.43), we see that the acceptance probability for volume moves is, there-
fore, given by

A(V ′|V ) = min
[
1, e−βP (V ′−V )e−β[U(r′)−U(r)]eN ln(V ′/V )

]
. (7.3.44)

Since a volume move leads to a change in potential energy that increases with N ,
volume moves have a low probability of acceptance unless δ is small. Moreover, the fact
that all terms in the potential energy must be updated when the volume changes means
that volume moves are computationally demanding. For this reason, volume moves are
usually made less frequently and have a slightly higher target average acceptance rate
than particle moves.

Sampling the grand canonical distribution

The grand canonical partition function for a system of particles maintained at constant
chemical potential μ in a volume V at temperature T is

Z(μ, V, T ) =
∞∑

N=0

eβμNQ(N, V, T )

=

∞∑
N=0

eβμN 1

N !λ3N

∫
dr1 · · ·drN e−βU(r1,...,rN). (7.3.45)

The relative ease with which this ensemble can be sampled in Monte Carlo is an
interesting advantage over molecular dynamics.

Sampling the grand canonical ensemble requires sampling the particle coordinates
and the particle number N . Particle moves can, once again, be generated using the
scheme of eqn. (7.3.37). Sampling the particle number N is achieved via attempted
particle insertion and particle deletion moves. As these names imply, periodic attempts
are made to insert a particle at a randomly chosen spatial location or to delete a
randomly chosen particle from the system as a means of generating particle-number
fluctuations. From eqn. (7.3.45), the acceptance probability of a trial insertion move
can be seen to be

A(N + 1|N) = min

[
1,

V

λ3(N + 1)
eβμe−β[U(r′)−U(r)]

]
, (7.3.46)

where r′ is the configuration of an (N + 1)-particle system generated by the insertion
and r is the original N -particle configuration. The volume factor in eqn. (7.3.46)
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arises from the use of scaled coordinates in the configurational partition function in
eqn. (7.3.45). Similarly, the acceptance probability of a trial deletion move is

A(N − 1|N) = min

[
1,

λ3N

V
e−βμe−β[U(r′)−U(r)]

]
, (7.3.47)

where r′ is the configuration of an (N − 1)-particle system generated by the deletion
and r is, again, the original N -particle configuration. Particle insertion and deletion
moves require calculation of only the change in potential energy due to the addi-
tion or removal of one particle, which is computationally no more expensive than the
calculation associated with a particle displacement. Thus, particle insertion and dele-
tion moves can be performed with greater frequency than can volume moves in the
isothermal-isobaric ensemble. In general, one Monte Carlo pass consists of N particle
displacements and Ni/d insertion/deletion attempts. Note that Ni and Nd are new
parameters that need to be optimized for each particular system.

7.4 Hybrid Monte Carlo

In the remaining sections of this chapter we will discuss several algorithms that build
on the basic ideas developed so far. Although we will focus on sampling the canon-
ical distribution, the techniques we will introduce can be easily generalized to other
ensembles.

In Section 7.3, we showed how the canonical distribution can be generated using
uniform trial particle displacements. We argued that we can only attempt to move one
or just a few particles at a time in order to maintain a reasonable average acceptance
probability. We also noted that a key difference between Monte Carlo and molecular
dynamics calculations is the ability of the latter to generate moves of the entire system
(global moves) with acceptance probability 1. In molecular dynamics, however, such
moves are deterministic and fundamentally limited by the time step Δt, which needs
to be sufficiently small to yield reasonable energy conservation. In this section, we
describe the Hybrid Monte Carlo approach (Duane et al., 1987), which is a synthesis
of M(RT)2 Monte Carlo and molecular dynamics and, therefore, derives advantages
from each of these methods.

Hybrid Monte Carlo seeks to relax the restriction on the size of Δt in a molecular
dynamics calculations by introducing an acceptance criterion for molecular dynamics
moves with a large Δt. Of course, when Δt is too large, the numerical integration
algorithm for Hamilton’s equations leads to large changes in the Hamiltonian H, which
should normally be approximately conserved. In principle, this is not a problem since
in the canonical ensemble, H is not constant but is allowed to fluctuate as the system
exchanges energy with a surrounding thermal bath. By using molecular dynamics as
an engine for generating moves, the system naturally tends to move toward regions
of configuration space that are energetically favored, and hence the moves are more
“intelligent” than simple uniform displacements. However, when we use a time step
that is too large, we are simply performing a “bad” molecular dynamics calculation,
and the changes in H caused by inaccurate integration of the equations of motion will
not be consistent with the canonical distribution. Thus, we need a device for ensuring
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this consistency. We can achieve this by accompanying each “bad” molecular dynamics
move by an acceptance step based on the change ΔH in the Hamiltonian. Since Hybrid
Monte Carlo uses the full phase space, the acceptance probability is expressed in terms
of the change from one phase space point (r,p) to another (r′,p′), where p and r are
sets of N momenta and coordinates, respectively, and similarly for p′ and r′. Thus,
the acceptance probability is given by

A(r′,p′|r,p) = min

[
1, e−β{H(r′,p′)−H(r,p)}

]
= min

[
1, e−βΔH

]
. (7.4.1)

Eqn. (7.4.1) ensures that the acceptance is based on the correct canonical distribution
form f(r,p) ∝ exp[−βH(r,p)].

There is a subtlety in eqn. (7.4.1). As with the other M(RT)2 schemes we have
considered, eqn. (7.4.1) assumes that the probability distribution T (r′,p′|r,p) for trial
moves satisfies

T (r′,p′|r,p) = T (r,−p|r′,−p′), (7.4.2)

i.e., that the original configuration r can be reached from r′ by simply reversing the
momenta and running the integrator backwards. In addition, detailed balance requires
that phase space volume be preserved. These conditions will only be met if the molec-
ular dynamics move is carried out using a symplectic, reversible integration algorithm
such as the velocity Verlet integrator of eqns. (3.8.7) and (3.8.9). If H is given by

H(r,p) =

N∑
i=1

p2
i

2mi
+ U(r1, ..., rN ), (7.4.3)

then the molecular dynamics move can be expressed in terms of the Trotter-factorized
classical propagator scheme of Section 3.10. If Fi = −∂U/∂ri is the force on particle
i, then the Liouville operator is

iL =

N∑
i=1

pi

mi
· ∂

∂ri
+

N∑
i=1

Fi · ∂

∂pi
= iL1 + iL2 (7.4.4)

and the trial molecular dynamics move can be expressed as(
p′

r′

)
=

[
eiL2Δt/2eiL1ΔteiL2Δt/2

]m
(

p
r

)
, (7.4.5)

which in general, allows the point (r′,p′) to be generated from the initial condition
(r,p) from m iterations of the velocity Verlet integrator using the time step Δt before
eqn. (7.4.1) is applied.

When implementing hybrid Monte Carlo, the values of m, Δt, and the target
average acceptance probability need to be optimized. As with the M(RT)2 algorithms
previously presented, it is difficult to provide guidelines for choosing m and Δt, as
optimal values are strongly dependent on the system and efficiency of the computer
program. It is important to note, however, that a single trial move generated via eqn.
(7.4.5) requires m full force evaluations, in comparison to the relatively inexpensive
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uniform moves of Section 7.3. Typically, in a hybrid Monte Carlo calculation, one aims
for a higher average acceptance probability (40% to 70%) than was recommended in
Section 7.3, and larger m and smaller Δt yield better trial moves that are more likely to
be accepted. If force calculations are very expensive and/or the code is inefficient, then
smaller m and larger Δt are preferable. Finally, if a move is rejected, the positions
r′ are set to their original values r. However, if we similarly reset the momenta to
their original values and reapply eqn. (7.4.5), we will end up at the same point (r′,p′)
and reject the move again. Thus, the momenta should be resampled from a Maxwell-
Boltzmann distribution before initiating the next trial move via eqn. (7.4.5).

We conclude this section with a short proof that the detailed balance condition
in eqn. (7.3.23) is satisfied when time-reversible integrator is used. Since we are only
interested in the configurational distribution, the detailed balance condition for hybrid
Monte Carlo can be stated as∫

dNp dNp′ T (r′,p′|r,p)A(r′,p′|r,p)f(r,p)

=

∫
dNp dNp′ T (r,p|r′,p′)A(r,p|r′,p′)f(r′,p′). (7.4.6)

In order to prove this, we first note that

A(r′,p′|r,p)f(r,p) =
1

Q(N, V, T )
min

[
1, e−β[H(r′,p′)−H(r,p)]

]
e−βH(r,p)

=
1

Q(N, V, T )
min

[
e−βH(r,p), e−βH(r′,p′)

]
. (7.4.7)

Similarly,

A(r,p|r′,p′)f(r′,p′) =
1

Q(N, V, T )
min

[
1, e−β[H(r,p)−H(r′,p′)]

]
e−βH(r′,p′)

=
1

Q(N, V, T )
min

[
e−βH(r′,p′), e−βH(r,p)

]
. (7.4.8)

Therefore
A(r′,p′|r,p)f(r,p) = A(r,p|r′,p′)f(r′,p′). (7.4.9)

Multiplying both sides of eqn. (7.4.9) by T (r′,p′|r,p) and integrating over momenta
gives ∫

dNp dNp′ T (r′,p′|r,p)A(r′,p′|r,p)f(r,p)

=

∫
dNp dNp′ T (r′,p′|r,p)A(r,p|r′,p)f(r′,p′). (7.4.10)

By using the property of the integrator that T (r′,p′|r,p) = T (r,−p|r′,−p′), changing
the integration variables on the right side from p and p′ to −p and −p′, and noting
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that d(−p) d(−p′) = dp dp′, we obtain eqn. (7.4.6), which emphasizes the importance
of using a reversible, measure-preserving integration algorithm such as velocity Verlet.

As a final comment, we note that the trial moves in eqn. (7.4.5) need not be purely
Hamiltonian in nature. We could have used thermostatted equations of motion, for
example, as described in Chapter 4 and still generate a proper canonical sampling
using the acceptance criterion in eqn. (7.4.1) or a modified acceptance criterion based
on a conserved extended energy in (see, e.g. eqn. (4.10.3)).

7.5 Replica exchange Monte Carlo

One of the most challenging computational problems met by researchers in statistical
mechanics is the development of methods capable of sampling a canonical distribution
when the potential energy U(r1, ..., rN ) is characterized by a large number of local
minima separated by high barriers. Such potential energy functions describe many
physical systems including proteins, glasses, polymer membranes, and polymer blends,
to name just a few. An illustration of a surface is shown in Fig. 7.2. Potential energy
surfaces that resemble Fig. 7.2 (but in 3N dimensions) are referred to as rough energy
landscapes. The ongoing development of general and robust techniques capable of
adequately sampling statistically relevant configurations on such a surface continues
to impact computational biology and materials science in important ways as newer
and more sophisticated methods become available.

Fig. 7.2 A two-dimensional rough potential energy surface.
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Clearly, a straightforward molecular dynamics or Monte Carlo calculation car-
ried out on a rough potential energy surface exhibits hopelessly slow convergence of
equilibrium properties because the probability of crossing a barrier of height U ‡ is
proportional to exp(−βU ‡). Thus, the system tends to become trapped in a single
local minimum and requires an enormously long time to escape the minimum. As an
illustration, the Boltzmann factor for a barrier of height 15 kJ/mol at a temperature of
300 K is roughly 3×10−3, and for a barrier height of 30 kJ/mol, it is roughly 6 ×10−6.
As a result, barrier crossing becomes a “rare event”. In Chapter 8, we will discuss a
number of methods for addressing the rare-event problem. Here, we begin studying
this problem by introducing a powerful and popular method, replica-exchange Monte
Carlo, designed to accelerate barrier crossing.

The term “replica exchange” refers to a class of Monte Carlo methods in which
simultaneous calculations are performed on a set of M independent copies or replicas
of a physical system. Each replica is assigned a different value of some physical control
parameter, and Monte Carlo moves in the form of exchanges of the coordinates between
different replicas are attempted. In this section, we will describe a replica-exchange
approach called parallel tempering (Marinari and Parisi, 1992; Tesi et al., 1996), in
which temperature is used as the control variable, and different temperatures are
assigned to the replicas.

In the parallel tempering scheme, a set of temperatures T1, ..., TM , with TM >
TM−1 > · · · > T1 is selected and assigned to the M replicas. The lowest tempera-
ture T1 is taken to be the temperature T of the canonical distribution to be sampled.
The motivation for this scheme is that the high-temperature replicas can easily cross
barriers on the potential energy surface if the temperatures are high enough. The at-
tempted exchanges between the replicas cause the coordinates of the high-temperature
copies to “percolate” down to the low-temperature copies, allowing the latter to sam-
ple larger portions of the configuration space at the correct temperature. The idea
is illustrated in Fig. 7.3. On the rough one-dimensional surface shown in the figure,
the low-temperature copies sample the lowest energy minima on the surface, while the
high-temperature copies are able to “scan” the entire surface.

Let r(1), ..., r(M) be the complete configurations of the M replicas, i.e. r(K) ≡
r
(K)
1 , ..., r

(K)
N . Since the replicas are independent, the total probability distribution

F (r(1), ..., r(K)) for the full set of replicas is just a product of the individual distribution
functions of the replicas

F (r(1), ..., r(K)) =

M∏
K=1

fK

(
r(K)

)
(7.5.1)

and is, therefore, separable. Here,

fK

(
r(K)

)
=

exp
[−βKU

(
r(K)

)]
Q(N, V, TK)

. (7.5.2)

A replica-exchange calculation proceeds by performing either a molecular dynamics
or simple M(RT)2 Monte Carlo calculation on each individual replica. Periodically,
a neighboring pair of replicas K and K + 1 are selected, and an attempted move
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Fig. 7.3 Schematic of the parallel-tempering replica exchange Monte Carlo.

(r(K), r(K+1)) → (r̃(K), r̃(K+1)) is made, where r̃(K) = r(K+1) and r̃(K+1) = r(K); this
move is simply an exchange of coordinates between the systems. Since the coordinates
are not actually changed (they are not displaced, rotated,...) but merely exchanged,
the probability distribution for such trial moves satisfies

T
(
r̃(K), r̃(K+1)|r(K), r(K+1)

)
= T

(
r(K), r(K+1)|r̃(K), r̃(K+1)

)
(7.5.3)

so that the acceptance probability becomes

A
(
r̃(K), r̃(K+1)|r(K), r(K+1)

)
= A

(
r(K+1), r(K)|r(K), r(K+1)

)

= min

[
1,

fk

(
r(K+1)

)
fK+1

(
r(K)

)
fk

(
r(K)

)
fK+1

(
r(K+1)

)
]

= min
[
1, e−ΔK,K+1

]
, (7.5.4)

where
ΔK,K+1 = (βK − βK+1)

[
U

(
r(K)

)
− U

(
r(K+1)

)]
. (7.5.5)

The improvement in conformational sampling efficiency gained by employing a
parallel-tempering replica-exchange Monte Carlo approach is illustrated using the sim-
ple example of a 50-mer alkane system C50H102 in the gas phase using the CHARMM22



Monte Carlo

force field (MacKerell et al., 1998). Here, the conformational preferences of the molecule
can characterized using the set of backbone dihedral angles. Since each dihedral angle
has three attractive basins corresponding to two gauche and a trans conformation, the
number of local minima is 350 ≈ 7×1023. Fig. 7.4 displays a histogram of the number
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Fig. 7.4 Comparison of hybrid Monte Carlo (a) and parallel tempering replica exchange (b)

for C50H102.

of times each of the backbone dihedral angles crosses an energy barrier(Minary et al.,
2007). The replica-exchange calculations are carried out using hybrid Monte Carlo
to evolve each of ten individual replicas. The temperatures of the replicas all lie in
the range 300 K to 1000 K with a distribution chosen to give an average acceptance
probability of 20%, as recommended by Rathore et al. (2005) and Kone and Kofke
(2005). The replica-exchange Monte Carlo calculations are compared to a straight hy-
brid Monte Carlo calculation on a single system at a temperature of T = 300 K. The
figure shows a significant improvement in sampling efficiency with replica-exchange
compared to simple hybrid Monte Carlo. Although the replica-exchange calculation is
ten times more expensive than straight hybrid Monte Carlo, the gain in efficiency more
than offsets this cost. It is interesting to note, however, that even for this simple sys-
tem, replica-exchange does not improve the sampling uniformly over the entire chain.
Achieving more uniform sampling requires algorithms of considerable sophistication.
An example of such an approach was introduced by Zhu et al. (2002) and by Minary
et al. (2007).

It is important to note that a direct correlation exists between the number of repli-
cas and the acceptance probability. If sufficient computational resources are available,
then a replica-exchange calculation can be set up that contains a large number of
replicas. In principle, this facilitates exchanges between neighboring replicas, thereby
increasing the average acceptance probability. However, more attempted exchanges
(and hence more computational time) are needed for high-temperature copies to “per-
colate” down to the low-temperature copies. Thus, the number of replicas and average
acceptance probability need to be optimized for each system, computer program, and
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available computational platform. Indeed, since U ∼ N , as the system size increases,
one is forced to use a finer temperature “grid” in order to have a reasonable average
acceptance probability, thereby increasing the overhead of the method considerably.
Several improvements to the algorithm have been suggested to alleviate this problem.
For example, for biomolecules in aqueous solution, Berne and coworkers introduced a
modification of the algorithm in which attempted exchanges are made between coordi-
nates of the solute only rather than the complete set of coordinates (Liu et al., 2005).

7.6 Wang–Landau sampling

In this section, we will consider a rather different approach to Monte Carlo calcula-
tions pioneered by Wang and Landau (2001). Until now, we have focused on Monte
Carlo methods aimed at generating the canonical distribution of the coordinates, mo-
tivated by the fact that the canonical partition function can be written in the form of
eqn. (7.3.35). However, let us recall that the canonical partition function can also be
expressed in terms of the microcanonical partition function Ω(N, V, E) as

Q(N, V, T ) =
1

E0

∫ ∞

0

dE e−βEΩ(N, V, E), (7.6.1)

(see eqn. (4.3.16)), where E0 is an arbitrary reference energy. Since we know that N
and V are fixed, let us simplify the notation by dropping N and V in this section, set
E0 = 1, and write eqn. (7.6.1) as

Q(β) =

∫ ∞

0

dE e−βEΩ(E). (7.6.2)

Eqn. (7.6.2) suggests that we can calculate the partition function, and hence all ther-
modynamic quantities derivable from it, if we can devise a method to generate the
unknown function Ω(E) for a wide range of energies. Ω(E), in addition to being the
microcanonical partition function, is also referred to as the density of states, since it is
a measure of the number of microscopic states available to a system at a given energy
E.2 The probability, therefore, that a microscopic state with energy E will be visited
is proportional to 1/Ω(E).

The approach of Wang and Landau is to sample the function Ω(E) directly and,
once known, calculate the partition function via eqn. (7.6.2). The rub, of course, is that
we do not actually know Ω(E) a priori, and trying to generate it using ordinary M(RT)2

sampling and eqn. (7.3.36) is extremely inefficient. The Wang–Landau algorithm is a
simple yet elegant approach that can generate Ω(E) with impressive efficiency. We
begin by assuming that Ω(E) = 1 for all values of E. Numerical implementation
requires that Ω(E) be discretized into a number of energy bins. Now imagine that
a trial move, such as a uniform displacement as in eqn. (7.3.37), is attempted. The
move changes the energy of the system from E1 to E2. For such a move, the energy

2In fact, if the E0 is left off the prefactor in eqn. (3.2.20), then Ω(N, V, E) has units of inverse
energy.
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is determined entirely by the potential energy U . For any trial move, the acceptance
probability is taken to be

A(E2|E1) = min

[
1,

Ω(E1)

Ω(E2)

]
. (7.6.3)

Of course, the move is initially accepted with probability 1. After such a move, the
system will have an energy E that is either E1 or E2 depending on whether the move is
accepted or rejected. The key step in the Wang–Landau algorithm is that the density
of states Ω(E) is modified after each move according to Ω(E) → Ω(E)f , where f
is a scaling factor with f > 1. Note that the scaling is applied only to the energy
bin in which E happens to fall. All other bins remain unchanged. In addition, we
accumulate a histogram h(E) of each energy visited as a result of such moves. After
many iterations of this procedure h(E) starts to “flatten out”, meaning that it has
roughly the same value in each energy bin. Once we decide that h(E) is “flat enough”
for the given value of f , we start refining the procedure. We choose a new value of
f , for example, fnew =

√
fold (an arbitrary formula suggested by Wang and Landau)

and begin a new cycle. As before, we wait until h(E) is flat enough and then switch
to a new value of f (using the square-root formula again, for example). After many
refinement cycles, we will find that f → 1 and h(E) becomes smoothly flat. When
this happens, Ω(E) is a converged density of states. The Wang–Landau approach can
be used for both discrete lattice-based models as well as continuous systems such as
simple fluids (Yan et al., 2002) and proteins (Rathore et al., 2003).

An interesting point concerning the Wang–Landau algorithm is that it does not
satisfy detailed balance due to the application of the scaling factor to the density
of states Ω(E), causing the latter to change continually throughout the calculation.
As f approaches unity, the algorithm just starts to satisfy detailed balance. Thus,
the Wang–Landau approach represents a Monte Carlo method that can work without
strict adherence to detailed balance throughout the sampling procedure. Note that it
is also possible to use molecular dynamics to generate trial moves before application
of eqn. (7.6.3). If a large time step is used, for example, then after m steps, energy
will not be conserved (which also occurs in the hybrid Monte Carlo scheme), meaning
that there will be an energy change from E1 to E2. Thus, the potential energy will
change from U1 to U2, and the kinetic energy will also change from K1 to K2, with
E1 = K1 + U1 and E2 = K2 + U2. In this case, the acceptance criterion should be
modified, as suggested by Rathmore et al. (2003), according to

A(E2|E1) = min

[
1, e−βΔK Ω(U1)

Ω(U2)

]
, (7.6.4)

where ΔK = K2 − K1.

7.7 Transition path sampling and the transition path ensemble

The last technique we will describe in this chapter is something of a departure from
the methods we have described thus far. Up to now, we have discussed approaches
for sampling configurations from a specified probability distribution, and because our
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concern has only been to sample, there is no dynamical information in the sequence
of configurations we have produced. Consequently, these methods can only be used to
calculate equilibrium and thermodynamic properties. But suppose we could devise a
Monte Carlo scheme capable of producing actual dynamical trajectories from one part
of phase space to another. The framework of Monte Carlo is flexible enough that such
a thing ought to be possible. In fact, this is something that can be achieved, but doing
so requires a small shift in the way we think of statistical ensembles and the sampling
problem.

The technique we will discuss, known as transition path sampling was pioneered by
Chandler and coworkers (Dellago et al., 1998; Bolhuis et al., 2002; Dellago et al., 2002;
Frenkel and Smit, 2002). This approach is a particularly powerful one for generating
dynamical trajectories between two regions of phase space when the passage of the
system from one to the other is exceedingly rare. When such rare events (which we
will discuss in more detail in Section 8.5) cannot be accessed using ordinary molec-
ular dynamics, transition path sampling provides a means of producing the desired
trajectories. A classic example of a rare event is the dissociation of a water molecule
according to 2H2O(l) −→ H3O

+(aq) + OH−(aq) (Geissler et al., 2001). The reaction
ostensibly only requires transferring a proton from one water molecule to another.
However, if we attach ourselves to a particular water molecule and wait for the chem-
ical reaction to occur, the average time we would have to wait is 10 hours for a single
event, a time scale that is well beyond the range of the type of molecular dynamics cal-
culation that would be needed to capture this process. Generally, a process is termed
a rare-event process when the system must cross one or more high energy barriers (see
Fig. 7.2). The actual passage time over the barrier can be quite rapid, while most of
the time is spent waiting for a sufficient amount of energy to amass in a small number
of modes in the system to allow the barrier to be surmounted. When a system is in
equilibrium, where equipartitioning holds, such a fluctuation is, indeed, a rare event.
This is illustrated in Fig. 7.5, which shows a thermostatted trajectory of a particle in
a one-dimensional double-well potential with minima at x = ±1 and a barrier height
of 8kT . The figure shows that actual crossing events are rapid but times between such
events are quite long.

In the transition path sampling method, we approach the problem in a way that
is qualitatively different from what we have done up to now. Let us assume that we
know a priori the regions of phase space in which the trajectory initiates and in which
it finally ends up. We denote these regions generically as A and B, respectively (see
Fig. 7.6). Let us also assume that a time T is needed for the system to pass from A to B.
If we could generate a molecular dynamics trajectory from A to B, then this trajectory
would consist of a sequence of discrete phase space points x0, xΔt, x2Δt, ..., xnΔt, where
nΔt = t, such that x0 ∈ A and xnΔt ∈ B (see Fig. 7.6). Let us denote this set of
phase space points as X(T). That is, X(T) is a time-ordered sequence of microscopic
states visited by the system as it passes from A to B. If we view X(T) as belonging to
an ensemble of trajectories from A to B, then we can derive a probability PAB[X(T)]
associated with a given trajectory. Note that we are using functional notation because
PAB depends on the entire trajecotry. If we regard the sequence of phase space points
x0, xΔt, x2Δt, ..., xnΔt as a Markov chain, then there exists a rule T (x(k+1)Δt|xkΔt) for
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Fig. 7.5 Rare-event trajectory in a double-well potential with barrier height 8kT .
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points along the path: Initial (x0), final (xnΔt = xt), and several intermediate (x(k−1)Δt, xkΔt,

x(k+1)Δt) points.

generating x(k+1)Δt given xkΔt. For example, suppose we posit that the trajectory is
to generated determinstically via a symplectic integrator such as the velocity Verlet
method of Sec. 3.10. Then, x(k+1)Δt would be generated from xkΔt using a Trotter
factorization of the propagator

x(k+1)Δt = eiL2Δt/2eiL1ΔteiL2Δt/2xkΔt ≡ φΔt(xkΔt). (7.7.1)

Here, φΔt(xkΔt) is a shorthand notation for the Trotter factorized single-step propa-
gator acting on xkΔt. The rule T (x(k+1)Δt|xkΔt) must specify that there is only one
possible choice for x(k+1)Δt given xkΔt, which means we must take the rule as

T (x(k+1)Δt|xkΔt) = δ
(
x(k+1)Δt − φΔt(xkΔt)

)
(7.7.2)

In an ensemble of trajectories X(T), the general statistical weight P[X(T)] that we
would assign to any single trajectory is

P[X(T)] = f(x0)

n−1∏
k=0

T (x(k+1)Δt|xkΔt) (7.7.3)
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where f(x0) is the equilibrium distribution of initial conditions x0, for example, a
canonical distribution f(x0) = exp(−βH(x0))/Q(N, V, T ). However, since our interest
is in trajectories that start in the phase space region A and end in the region B, we
need to restrict the trajectory distribution in eqn. (7.7.3) to this subset of trajectories.
We do this by multiplying eqn. (7.7.3) by functions hA(x0) and hB(xnΔt), where
hA(x) = 1 if x ∈ A and hA(x) = 0 otherwise, with a similar definition for hB(x). This
gives the transition path probability PAB[X(T)] as

PAB[X(T)] =
1

FAB(T)
hA(x0)P[X(T)]hB(xnΔt) (7.7.4)

where FAB is a normalization constant given by

FAB(T) =

∫
dx0 · · ·dxnΔthA(x0)P[X(T)]hB(xnΔt) (7.7.5)

Eqns. (7.7.4) and (7.7.5) can be regarded as the probability distribution and partition
function for an ensemble of trajectories that begin in A and end in B and thus, they
can be regarded as defining an ensemble called the transition path ensemble (Dellago
et al., 1998; Bolhuis et al., 2002; Dellago et al., 2002). Although eqns. (7.7.4) and (7.7.5)
are valid for any trajectory rule T (x(k+1)Δt|xkΔt), if we take the specific example of
deterministic molecular dynamics in eqn. (7.7.2), then eqn. (7.7.5) becomes

FAB(T) =

∫
dx0 · · ·dxnΔthA(x0)f(x0)

n−1∏
k=0

δ
(
x(k+1)Δt − φΔt(xkΔt)

)
hB(xnΔt)

=

∫
dx0f(x0)hA(x0)hB(xnΔt(x0)) (7.7.6)

where we have used the Dirac δ-functions to integrate over all points xkΔt except k = 0.
When this is done the hB factor looks like hB(φΔt(φΔt(· · ·φΔt(x0)))), where the inte-
grator φΔt acts n times on the inital condition x0 to give the unique numerical solution
xnΔt(x0) appearing in eqn. (7.7.6). Thus, for deterministic molecular dynamics, eqn.
(7.7.6) simply counts those microstates belonging to the equilibrium ensemble f(x0)
that are contained in A and, when integrated for n steps, end in B. In Chapter 15,
we will show how to define and generate the transition path ensemble for trajectories
obeying stochastic rather than determinstic dynamics.

Having now defined the an ensemble of transition paths, we need a Monte Carlo al-
gorithm for sampling this ensemble. The method we will describe here is an adaptation
of the M(RT)2 algorithm for an ensemble of paths rather than one of configurations.
Accordingly, we seek to generate a Markov chain of M trajectories X1(T), ...,XM (T),
and to accomplish this, we begin, as we did in Section 7.3.3 with a generalization of
the detailed balance condition. Let RAB[X(T)|Y(T)] be the conditional probability to
generate a trajectory X(T) starting from Y(T). Both X(T) and Y(T) must be transi-
tion paths from A to B. The detailed balance condition appropriate for the transition
path ensemble is

RAB[X(T)|Y(T)]PAB[Y(T)] = RAB[Y(T)|X(T)]PAB[X(T)] (7.7.7)
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As we did in eqn. (7.3.25), we decompose RAB[X(T)|Y(T)] into a product

RAB[X(T)|Y(T)] = ΛAB[X(T)|Y(T)]TAB[X(T)|Y(T)] (7.7.8)

of a trial probability TAB and an acceptance probability ΛAB. The same logic used to
obtain eqn. (7.3.28) leads to the acceptance rule for transition path sampling

Λ[X(T)|Y(T)] = min

[
1,

PAB[X(T)]TAB[X(T)|Y(T)]

PAB[Y(T)]TAB[Y(T)|X(T)]

]
(7.7.9)

Since the trajectory Y(T) as assumed to be a proper transition path from A to B,
hA(y0) = 1 and hB(ynΔt) = 1. Thus, we can write eqn. (7.7.9) as

Λ[X(T)|Y(T)] = hA(x0)hB(xnΔt)min

[
1,

P[X(T)]TAB[X(T)|Y(T)]

P[Y(T)]TAB[Y(T)|X(T)]

]
, (7.7.10)

which is zero unless the new trajectory X(T) is also a proper transition path.
As with any Monte Carlo algorithm, the key to efficient sampling of transition paths

is the design of the rule TAB[X(T)|Y(T)] for generating trial moves from one path to
another. Here, we will discuss a particular type of trial move known as a “shooting
move”. Shooting moves are conceptually simple. We randomly select a point yjΔt (by
randomly choosing the integer j) from the starting trajectory Y(T) and modify it in
some way to give a point xjΔt on the trial trajectory X(T) known as a “shooting
point”. Starting from this point, trajectories are launched forward and backward in
time. If the new trajectory X(T) thus generated is a transition path from A to B, it is
accepted with some probability, otherwise, it is rejected. The idea of shooting moves
is illustrated in Fig. 7.7.

A

B.y
jΔt

.x jΔt

.
x jΔt

Accepted

Rejected

Fig. 7.7 The shooting algorithm. The original path Y(T) is shown as the solid line. A point

yjΔt randomly chosen from this path is used to determine the shooting point xjΔt. Two

example shooting paths are shown as dashed lines. The long dashed lines is a successful path

that is accepted, while the short dashed line shows an unsuccessful path that is rejected.



Transition path sampling

Let τ(xjΔt|yjΔt) denote the rule for generating a trial shooting point xjΔt from
yjΔt. Then, we can express TAB[X(T)|Y(T)] as

TAB[X(T)|Y(T)] =

τ(xjΔt|yjΔt)

⎡
⎣n−1∏

k=j

T (x(k+1)Δt|xkΔt)

⎤
⎦[

j∏
k=1

T (x(k−1)Δt|xkΔt)

]
. (7.7.11)

The first product in eqn. (7.7.11) is the probability for the forward trajectory, and
the second product, which requires the rule to generate x(k−1)Δt from xkΔt via time-
reversed dynamics, is the weight for the backward trajectory. For molecular dynamics,
this part of the trajectory is just obtained via eqn. (7.7.1) using −Δt instead of Δt,
i.e., x(k−1)Δt = φ−Δt(xkΔt), which can be generated by integrating forward in time
with time step Δt but with velocities reversed at the shooting point. Combining eqn.
(7.7.11) with (7.7.10), we obtain for the acceptance probability

Λ[X(T)|Y(T)] = hA(x0)hB(xnΔt)min

[
1,

f(x0)

f(y0)

(
n−1∏
k=0

T (x(k+1)Δt|xkΔt)

T (y(k+1)Δt|ykΔt)

)

×
⎛
⎝τ(yjΔt|xjΔt)

τ(xjΔt|yjΔt)

n−1∏
k=j

T (y(k+1)Δt|ykΔt)

T (x(k+1)Δt|xkΔt)

j−1∏
k=0

T (ykΔt|y(k+1)Δt)

T (xkΔt|x(k+1)Δt)

⎞
⎠

⎤
⎦

= hA(x0)hB(xnΔt)

×min

[
1,

f(x0)

f(y0)

τ(yjΔt|xjΔt)

τ(xjΔt|yjΔt)

j−1∏
k=0

T (ykΔt|y(k+1)Δt)T (x(k+1)Δt|xkΔt)

T (xkΔt|x(k+1)Δt)T (y(k+1)Δt|ykΔt)

]
. (7.7.12)

Although eqn. (7.7.12) might seem rather involved, consider what happens when the
trajectories are generated by molecular dynamics, with the trial probability given by
eqn. (7.7.2). Since a symmetric Trotter factorization of the classical propagator is time
reversible, as discussed in Section 3.10, the ratio T (ykΔt|ry(k+1)Δt)/T (y(k+1)Δt|ykΔt is
unity, as is the ratio T (x(k+1)Δt|xkΔt)/T (xkΔt|x(k+1)Δt), and the acceptance criterion
simplifies to

Λ[X(T)|Y(T)] = hA(x0)hB(xnΔt)min

[
1,

f(x0)

f(y0)

τ(yjΔt|xjΔt)

τ(xjΔt|yjΔt)

]
(7.7.13)

Finally, suppose the new shooting point xjΔt is generated from the old point yjΔt

using the following rule;
xjΔt = yjΔt + Δ (7.7.14)

where the phase space displacement Δ is chosen randomly from a symmetric distribu-
tion π(Δ) satisfying π(−Δ) = π(Δ). In this case, the ratio τ(yjΔt|xjΔt)/τ(xjΔt|yjΔt)
in eqn. (7.7.13) is unity, and the acceptance rule becomes simply
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Λ[X(T)|Y(T)] = hA(x0)hB(xnΔt)min

[
1,

f(x0)

f(y0)

]
(7.7.15)

which is determined just by the initial conditions and whether the new trajectory is a
proper transition path from A to B.

At this point several comments on the shooting algorithm are in order. First, a very
common and simple choice for the phase space displacement is Δ = (0, δp), meaning
that only the momenta are altered, while the configuration is left unchanged (Dellago
et al., 2002). If δp is chosen from a Maxwell-Boltzmann distribution, then the symmetry
condition is satisfied and will continue to be satisfied if the new momenta are projected
onto a surface of constraint or modified to give zero total linear or angular momentum
in the system. As a rule of thumb, the displacement Δ should be chosen to give a
roughly 40% acceptance probability (Dellago et al., 2002).

The basic steps of the shooting algorithm can now be summarized as follows:

1. Choose an index j randomly on the old trajectory Y(T).

2. Generate a random phase space displacement Δ in order to generate the new
shooting point xjΔt from the old point yjΔt.

3. Integrate the equations of motion backwards in time from the shooting point to
the initial condition x0.

4. If the initial condition x0 is not in the phase space region A, reject the trial move.

5. If x0 ∈ A, accept the move with probability min[1, f(x0)/f(y0)]. Note that if
the distribution of initial conditions is microcanonical rather than canonical (or
isothermal-isobaric), this step can be skipped.

6. Integrate the equations of motion forward in time to generate the final point xnΔt.

7. If xnΔt ∈ B, accept the trial move, and reject it otherwise.

8. If the path is rejected at steps 4, 5, or 7, then the old trajectory Y(T) is counted
again in the calculation of averages over the transition path ensemble. Otherwise,
invert the momenta along the backward path of the path to yield a forward moving
transition path X(T) and replace the old trajectory Y(T) by the new trajectory
X(T).

Another important point to note about the transition path sampling approach is that
an initial transition path X0(T) is needed in order to seed the algorithm. Generating
such a path can be difficult, particularly for extremely rare event processes. However,
a few tricks can be employed, for example, running a system at high temperature
to accelerate a process or possibly starting a path in B and letting it evolve to A.
The latter could be employed, for example, in protein folding, where it is generally
easier to induce a protein to unfold than fold. Although initial paths generated via
such tricks are not likely to have a high weight in the transition path ensemble, they
should quickly relax to more probable paths under the shooting algorithm. However,
as with any Monte Carlo scheme, this fast relaxation cannot be guaranteed if the
initial path choice is a particularly poor one. Just as configurational Monte Carlo
methods can become trapped in local regions of configuration space, so transition
path sampling can become trapped in local regions of path space where substantial
barriers keep the system from accessing regions of the space containing paths of higher
probability. The design of path-generation algorithms capable of enhancing sampling



Problems

of the transition path ensemble is still an open an interesting question with room for
novel improvements.

7.8 Problems

7.1. Write a Monte Carlo program to calculate the integral

I =

∫ 1

0

e−x2
dx

using
a. uniform sampling of x on the interval [0, 1]
b. an importance function h(x), where

h(x) =
3

2

(
1 − x2

)
constitutes the first to terms in the Taylor series expansion of exp(−x2).

In both cases, compare the converged result you obtain to the value of I
generated using a simple numerical integration algorithm such as Simpson’s
rule.

7.2. Devise an importance function for performing the integral

I =

∫ 1

0

cos
(πx

2

)
dx

and show using a Monte Carlo program that your importance function leads
to a smaller variance than uniform sampling for the same number of Monte
Carlo moves. How many steps are required with your importance function to
converge the Monte Carlo estimator to within 10−6 of the analytical value of
I?

7.3. The following example (Kalos and Whitlock, 1986) illustrates the recursion
associated with the M(RT)2 algorithm. Consider the M(RT)2 algorithm for
sampling the one-dimensional probability distribution f(x) = 2x for x ∈
(0, 1). Let the probability for trial moves from y to x be

T (x|y) =

{
1 x ∈ (0, 1)
0 otherwise

}
.

In this case, r(x|y) = x/y for in (0, 1).
a. Show that the sequence of distributions πn(x) satisfies the recursion

πn+1(x) =

∫ 1

x

x

y
πn(y)dy +

∫ x

0

πn(y)dy + πn(x)

∫ x

0

(
1 − y

x

)
dy.
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b. Show, therefore, that πn(x) = cx is a fixed point of the recursion, where
c is an arbitrary constant. By normalization, c must be equal to 2.

c. Now suppose that we start the recursion with π0(x) = 3x2 and that at
the nth step of the iteration

πn(x) = anx + cnxn+2,

where an and cn are constants. Show that as n → ∞, cn goes asymptot-
ically to 0, leaving a distribution that is purely linear.

∗7.4. In this problem, we will compare some of the Monte Carlo schemes introduced
in this chapter to thermostatted molecular dynamics for a one-dimensional
harmonic oscillator for which

U(x) =
1

2
mω2x2

in the canonical ensemble. For this problem, you can take the mass m and
frequency ω both equal to 1.
a. Write a Monte Carlo program that uses uniform sampling of x within the

M(RT)2 algorithm to calculate the canonical ensemble average 〈x4〉. Try
to optimize the step size Δ and average acceptance probability to obtain
the lowest possible variance.

b. Write a hybrid Monte Carlo program that uses the velocity Verlet inte-
grator to generate trial moves of x. Use your program to calculate the
same average 〈x4〉. Try to optimize the time step and average acceptance
probability to obtain the lowest possible variance.

c. Write a thermostatted molecular dynamics program using the Nosé-Hoover
chain equations together with the integrator described by eqns. (4.11.8)-
(4.11.17). Try using nsy = 7 with the weights in eqn. (4.11.12) and n = 4.
Adjust the time step so that the energy in eqn. (4.10.3) is conserved to
10−4 as measured by eqn. (3.14.1).

d. Compare the number of steps of each algorithm needed to converge the
average 〈x4〉 to within the same error as measured by the variance. What
are your conclusions about the efficiency of Monte Carlo versus molecular
dynamics for this problem?

∗7.5. Consider Hamilton’s equations in the form ẋ = η(x). Consider a two-dimensional
phase space x = (q, p) and the following numerical solver

x(Δt) = x(0) + Δtη

(
x(0) +

Δt

2
η(x(0))

)
.

Can this algorithm be used in conjunction with hybrid Monte Carlo? Why or
why not?
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7.6. Write a replica-exchange Monte Carlo algorithm to sample the Boltzmann
distribution corresponding to a double-well potential U(x) of the form

U(x) = D0

(
x2 − a2

)2

for a = 1 and D0 values of 5 and 10. For each case, optimize the temperature
ladder T1, ..., TM , the number of replicas M , and the frequency of exchange
attempts. Use separate Nosé-Hoover chains to control the temperatures on
each of the M replicas. For each simulation, plot the following measure of
convergence:

ζk =
1

Nbins

Nbins∑
i=1

|Pk(xi) − Pexact(xi)|

where where Pexact(x) is the exact probability distribution, Pk(x) is the prob-
ability at the kth step of the simulation, and Nbins is the number of bins used
in the calculation of the histogram of the system with temperature T1.

∗7.7 Suppose a non-Hamiltonian molecular dynamics algorithm, such as the Nosé-
Hoover chain method of Section 4.10, is used to generate paths in the transi-
tion path sampling algorithm. Assuming symmetry of the rule for generating
shooting points, i.e., τ(yjΔt|xjΔt)/τ(xjΔt|yjΔt), show that the acceptance rule
in eqn. (7.7.15) must be modified to read

Λ[X(T)|Y(T)] = hA(x0)hB(xnΔt)min

[
1,

f(x0)

f(y0)

J(yjΔt; y0)

J(xjΔt; x0)

]

where J(xt; x0) is the Jacobian of the transformation from x0 to xt(x0) de-
termined by eqn. (4.9.2).
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Free energy calculations

Our treatment of the classical equilibrium ensembles makes clear that the free energy
is a quantity of particular importance in statistical mechanics. Being related to the log-
arithm of the partition function, the free energy is the generator through which other
thermodynamic quantities are obtained via differentiation. Often, however, we are less
interested in the absolute free energy than we are in the free energy difference between
two thermodynamic states. Free energy differences tells us, for example, whether a
chemical reaction occurs spontaneously or requires input of work or whether a given
solute is hydrophobic or hydrophilic, and they are directly related to equilibrium con-
stants for chemical processes. Thus, from free energy differences, we can compute acid
or base ionization constants. We can also quantify the therapeutic viability of a can-
didate drug compound by calculating its inhibition constant or IC50 value from the
binding free energy. Another type of free energy often sought is the free energy as a
function of one or more generalized coordinates in a system, such as the free energy
surface as a function of a pair of Ramachandran angles φ and ψ in an oligopeptide.
This surface provides a map of the stable conformations of the molecule, the relative
stability of these conformations, and the barrier heights that must be crossed for a
change in conformation.

In this chapter, we describe a variety of widely used techniques that have been
developed for calculating free energies and discuss the relative merits and disadvan-
tages of the methods. The fact that the free energy is a state function, ensuring that
the system can be transformed from one state to another along physical or unphysical
paths without affecting the free energy difference, allows for considerable flexibility in
the design of novel techniques and will be frequently exploited in the developments we
will present.

The techniques described in this chapter are constructed within the framework of
the canonical ensemble with the aim of obtaining Helmholtz free energy differences
ΔA. Generalization to the isothermal-isobaric ensemble and the Gibbs free energy
difference ΔG is, in all cases, straightforward. (For a useful compendium of free energy
calculation methods, readers are referred to Free Energy Calculations, C. Chipot and
A. Pohorille, eds (2007)).

8.1 Free energy perturbation theory

We begin our treatment of free energy differences by considering the problem of
transforming a system from one thermodynamic state to another. Let these states
be denoted generically as A and B. At the microscopic level, these two states are char-
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acterized by potential energy functions UA(r1, ..., rN ) and UB(r1, ..., rN ). For example,
in a drug-binding study, the state A might correspond to the unbound ligand and en-
zyme while B would correspond to the bound complex. In this case, the potential UA

would exclude all interactions between the ligand and the enzyme, but the potential
UB would include them.

The Helmholtz free energy difference between the states A and B is simply ΔAAB =
AB − AA. The two free energies AA and AB are given in terms of their respective
canonical partition functions QA and QB, respectively by AA = −kT ln QA and AB =
−kT ln QB, where

QA(N, V, T ) = CN

∫
dNp dNr exp

{
−β

[
N∑

i=1

p2
i

2mi
+ UA(r1, ..., rN )

]}

=
ZA(N, V, T )

N !λ3N

QB(N, V, T ) = CN

∫
dNp dNr exp

{
−β

[
N∑

i=1

p2
i

2mi
+ UB(r1, ..., rN )

]}

=
ZB(N, V, T )

N !λ3N
. (8.1.1)

The free energy difference is, therefore,

ΔAAB = AB − AA = −kT ln

(
QB

QA

)
= −kT ln

(
ZB

ZA

)
, (8.1.2)

where ZA and ZB are the configurational partition functions for states A and B,
respectively:

ZA =

∫
dNr e−βUA(r1,...,rN)

ZB =

∫
dNr e−βUB(r1,...,rN). (8.1.3)

The ratio of full partition functions QB/QA reduces to the ratio of configurational
partition functions ZB/ZA because the momentum integrations in the former cancel
out of the ratio.

Eqn. (8.1.2) is difficult to implement in practice because in any numerical calcula-
tion via either molecular dynamics or Monte Carlo we can compute averages of phase
space functions, but we do not have direct access to the partition function.1 Thus,
eqn. (8.1.2) can be computed directly if it can be expressed in terms of a phase space
average. To this end, consider inserting unity into the expression for ZB as follows:

1The Wang–Landau method of Section 7.6 is an exception
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ZB =

∫
dNr e−βUB(r1,...,rN)

=

∫
dNr e−βUB(r1,...,rN)e−βUA(r1,...,rN)eβUA(r1,...,rN)

=

∫
dNr e−βUA(r1,...,rN)e−β(UB(r1,...,rN)−UA(r1,...,rN)). (8.1.4)

If we now take the ratio ZB/ZA, we find

ZB

ZA

=
1

ZA

∫
dNr e−βUA(r1,...,rN)e−β(UB(r1,...,rN)−UA(r1,...,rN))

=
〈
e−β(UB(r1,...,rN)−UA(r1,...,rN))

〉
A

, (8.1.5)

where the notation 〈· · ·〉
A

indicates an average taken with respect to the canonical
configurational distribution of the state A. Substituting eqn. (8.1.5) into eqn. (8.1.2)
gives

ΔAAB = −kT ln
〈
e−β(UB−UA)

〉
A

. (8.1.6)

Eqn. (8.1.6) is known as the free energy perturbation formula (Zwanzig, 1954); it
should be reminiscent of the thermodynamic perturbation formula in eqn. (4.7.8).

Eqn. (8.1.6) can be interpreted as follows: We sample a set of configurations
{r1, ..., rN} from the canonical distribution of state A and simply use them, un-
changed, to sample the canonical distribution of state B with potential UB. How-
ever, because these configurations are not sampled from exp(−βUB)/ZB direction, we
need to “unbias” our sampling by removing the factor exp(−βUA) and reweighting
with exp(−βUB), which leads to eqn. (8.1.6). The difficulty with this approach is that
configuration spaces of states A and B might not have significant overlap. By this,
we mean that configurations sampled from the canonical distribution of state A may
not be states of high probability in the canonical distribution of state B. When this
is the case, then the potential energy difference UB − UA becomes large, hence the
exponential factor exp[−β(UB − UA)] becomes negligibly small. Thus, most of the
configurations have very low weight in the ensemble average, and the free energy dif-
ference converges slowly. For this reason, it is clear that the free energy perturbation
formula is only useful when the two states A and B do not differ significantly. In other
words, the state B must be a small perturbation to the state A.

Even if B is not a small perturbation to A, the free energy perturbation idea can
still be salvaged by introducing a set of M − 2 intermediate states with potentials
Uα(r1, ..., rN ), where α = 1, ..., M , α = 1 corresponds to the state A, and α = M
corresponds to the state B. Let ΔUα,α+1 = Uα+1 −Uα. We now transform the system
from state A to state B along a path through each of the intermediate states and
compute the average of ΔUα,α+1 in each state α. The free energy difference ΔAAB



Adiabatic switching and thermodynamic integration

is the sum of contributions obtained using the free energy perturbation formula from
each intermediate state along the path:

ΔAAB = −kT
M−1∑
α=1

ln
〈
e−βΔUα,α+1

〉
α

, (8.1.7)

where 〈· · ·〉α represents an average taken over the distribution exp(−βUα). The key
to applying eqn. (8.1.7) is to choose the thermodynamic path between A and B so as
to achieve sufficient overlap between successive intermediate states without requiring
a large number of them.

8.2 Adiabatic switching and thermodynamic integration

The free energy perturbation approach evokes a physical picture in which configura-
tions sampled from the canonical distribution of state A are immediately “switched” to
the state B by simply changing the potential from UA to UB. When there is insufficient
overlap between the states A and B, a set of intermediate states can be employed to
define an optimal transformation path. The use of intermediate states evokes a picture
in which the system is slowly switched from A to B. In this section, we will discuss
an alternative approach in which the system is continuously, adiabatically switched
from A to B. An adiabatic path is one along which the system is fully relaxed at
each point of the path. In order to effect the switching from one state to the other,
we employ a common trick of introducing an “external” switching variable λ in order
to parameterize the adiabatic path. This parameter is used to define a new potential
energy function, sometimes called a “metapotential”, defined as

U(r1, ..., rN , λ) ≡ f(λ)UA(r1, ..., rN ) + g(λ)UB(r1, ..., rN ). (8.2.1)

The functions f(λ) and g(λ) are switching functions that must satisfy the conditions
f(0) = 1, f(1) = 0, g(0) = 0, g(1) = 1. Thus U(r1, ..., rN , 0) = UA(r1, ..., rN ) and
U(r1, ..., rN , 1) = UB(r1, ..., rN ). Apart from these conditions, f(λ) and g(λ) are com-
pletely arbitrary. The mechanism of eqn. (8.2.1) is one in which an imaginary external
controlling influence (“hand of God” in the form of the λ parameter) starts the system
off in state A (λ = 0) and slowly switches off the potential UA while simultaneously
switching on the potential UB. The process is complete when λ = 1. A simple choice
for the functions f(λ) and g(λ) is f(λ) = 1 − λ and g(λ) = λ.

In order to see how eqn. (8.2.1) is used to compute the free energy difference ΔAAB,
consider the canonical partition function of a system described by the potential of eqn.
(8.2.1) for a particular choice of λ:

Q(N, V, T, λ) = CN

∫
dNp dNr exp

{
−β

[
N∑

i=1

p2
i

2mi
+ U(r1, ..., rN , λ)

]}
. (8.2.2)

This partition function leads to a free energy A(N, V, T, λ) via

A(N, V, T, λ) = −kT ln Q(N, V, T, λ). (8.2.3)
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In Section 4.2, we showed that derivatives of A with respect to N , V , or T give the
chemical potential, pressure, or entropy, respectively. For A(N, V, T, λ), what does the
derivative with respect to λ represent? According to eqn. (8.2.3),

∂A

∂λ
= −kT

Q

∂Q

∂λ
= −kT

Z

∂Z

∂λ
. (8.2.4)

Computing the derivative of Z with respect to λ, we find

kT

Z

∂Z

∂λ
=

kT

Z

∂

∂λ

∫
dNr e−βU(r1,...,rN ,λ)

=
kT

Z

∫
dNr

(
−β

∂U

∂λ

)
e−βU(r1,...,rN ,λ)

= −
〈

∂U

∂λ

〉
. (8.2.5)

Note that the free energy difference ΔAAB can be obtained trivially from the relation

ΔAAB =

∫ 1

0

∂A

∂λ
dλ. (8.2.6)

Substituting eqns. (8.2.4) and (8.2.5) into eqn. (8.2.6) yields the free energy difference
as

ΔAAB =

∫ 1

0

〈
∂U

∂λ

〉
λ

dλ, (8.2.7)

where 〈· · ·〉λ denotes an average over the canonical ensemble described by the distri-
bution exp[−βU(r1, ..., rN , λ)] with λ fixed at a particular value. The special choice
of f(λ) = 1 − λ and g(λ) = λ has a simple interpretation: With these functions, eqn.
(8.2.7) becomes

ΔAAB =

∫ 1

0

〈UB − UA〉λ dλ. (8.2.8)

Eqn. (8.2.8) recalls the relationship between work and free energy from the second law
of thermodynamics. If, in transforming the system from state A to state B, an amount
of work W is performed on the system, then

W ≥ ΔAAB, (8.2.9)

where equality holds only if the transformation is carried out along a reversible path.
We will refer to this inequality as the “work–free–energy inequality.” Since reversible
work is related to a change in potential energy (see Section 1.6), eqn. (8.2.8) is actually
a statistical version of eqn. (8.2.9) for the special case of equality. Eqn. (8.2.8) tells us
that the free energy difference is the ensemble average of the microscopic reversible
work needed to change the potential energy of each configuration from UA to UB

along the chosen λ-path. Note, however, that eqn. (8.2.7), which is known as the
thermodynamic integration formula (Kirkwood, 1935), is independent of the choice of
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f(λ) and g(λ), which means that eqn. (8.2.7) always yields the reversible work via
the free energy difference. The flexibility in the choice of the λ-path, however, can be
exploited to design adiabatic switching algorithms of greater efficiency than can be
achieved with the simple choice f(λ) = 1 − λ, g(λ) = λ.

In practice, the thermodynamic integration formula is implemented as follows: A
set of M values of λ is chosen from the interval [0, 1], and at each chosen value λk a
full molecular dynamics or Monte Carlo calculation is carried out in order to generate
the average 〈∂U/∂λk〉λk

. The resulting values of 〈∂U/∂λk〉λk
, k = 1, ..., M , are then

substituted into eqn. (8.2.7), and the result is integrated numerically to produce the
free energy difference ΔAAB. The selected values {λk} can be evenly spaced, for
example, or they could be a set of Gaussian quadrature nodes, depending on the
anticipated variation of A(N, V, T, λ) with λ for particular f(λ) and g(λ).

Let us now consider an example of a particular type of free energy calculation of
particular relevance, specifically, the binding of a lead drug candidate to the active
site of an enzyme E. The purpose of the drug candidate is to inhibit the catalytic
mechanism of an enzyme used, for instance, by a virus to attack a host cell, hijack its
cellular machinery, or replicate itself. We will refer to the candidate drug compound as
“I” (inhibitor). The efficacy of the compound as an inhibitor of the enzyme is measured
by an equilibrium constant known as the inhibition constant Ki = [E][I]/[EI], where
[E], [I], and [EI] refer to the concentrations in aqueous solution of the uncomplexed
enzyme, uncomplexed inhibitor, and enzyme–inhibitor complex EI, respectively. Since
Ki is an equilibrium constant, it is also related to the binding Gibbs free energy
ΔGb, which is the free energy of the reaction E(aq) + I(aq) ⇀↽ EI(aq). That is, Ki =
exp(ΔGb/kT ). For the purposes of this discussion, we will assume that the binding
Helmholtz free energy ΔAb is approximately equal to the Gibbs free energy, so that
the former can be reasonably used to estimate the inhibition constant. If we wish to
determine Ki for a given drug candidate by calculating the binding free energy, a
technical complication immediately arises. In principle, we can let the potential UA

contain all interactions except that between the enzyme and the inhibitor and then
let this excluded interaction be included in UB. Now consider placing an enzyme and
inhibitor in a bath of water molecules in order to perform the calculation. First, in
order to sample the unbound state, the enzyme and inhibitor need to be separated by
a distance large enough that both are fully solvated. If we then attempt to let them
bind by turning on the enzyme–inhibitor interaction in stages, the probability that
they will “find” each other and bind properly under this interaction is small, and the
calculation will be inefficient. For this reason, a more efficient thermodynamic path
for this problem is a three-stage one in which the enzyme and the inhibitor are first
desolvated by transferring them from solution to vacuum. Following this, the enzyme
and inhibitor are allowed to bind in vacuum, and finally, the complex EI is solvated
by transferring it back to solution. Fig. 8.1 illustrates the direct and indirect paths.
Since free energy is a state function, the final result is independent of the path taken.
The advantage of the indirect path, however, is that once desolvated, the enzyme
and inhibitor no longer need to be at such a large separation. Hence, we can start
them much closer to each other in order to obtain the vacuum binding free energy.
Moreover, this part of the calculation will have a low computational overhead because
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ΔAb

ΔA1

ΔA2

ΔA 3

E

I

H  O2

Fig. 8.1 Representation of two thermodynamic pathways for the calculation of the binding

free energy of an enzyme E and inhibitor I. According the figure ΔAb = ΔA1 + ΔA2 + ΔA3.

the expensive water–water interactions have been removed. Although the desolvation
and solvation parts of the cycle are still expensive to carry out, they are considerably
more straightforward than direct binding in solution (see Problem 8.8). The method
shown in Fig. 8.1 is known as the “double decoupling method” (Gilson et al., 1997;
Deng and Roux, 2009).

As with free energy perturbation theory, the thermodynamic integration approach
can be implemented easily. An immediate disadvantage of the method, however, is
the same as applies to eqn. (8.1.7): in order to perform the numerical integration,
it is necessary to perform many simulations of a system at physically uninteresting
intermediate values of λ where the potential U(r1, ..., rN , λ) is, itself, unphysical. Only
λ = 0, 1 correspond to actual physical states, and ultimately we can only attach
physical meaning to the free energy difference ΔAAB = A(N, V, T, 1) − A(N, V, T, 0).
Nevertheless, the intermediate averages must be accurately calculated in order for the
integration to yield a correct result. The approach in the next section attempts to
reduce the time spent in such unphysical intermediate states, thereby focusing the
sampling in the important regions λ = 0, 1.
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8.3 Adiabatic free energy dynamics

Although we cannot entirely eliminate the need to visit the unphysical states between
λ = 0 and λ = 1 in adiabatic switching methods, we can substantially alleviate it. If,
instead of preselecting a set of λ values, we are willing to allow λ to vary continuously
in a molecular dynamics calculation as an additional dynamical degree of freedom,
albeit a fictitious one, then we can exploit the flexibility in our choice of the switching
functions f(λ) and g(λ) to make the region between λ = 0 and λ = 1 energetically
unfavorable. When such a choice is used within a molecular dynamics calculation, λ
will spend most of its time in the physically relevant regions close to λ = 0 and λ = 1.

To understand how to devise such a scheme, let us consider a Hamiltonian that
includes a kinetic energy term p2

λ/2mλ, where pλ is a “momentum” conjugate to λ and
mλ is a mass-like parameter needed to define the kinetic energy. The parameter mλ

also determines the time scale on which λ evolves dynamically. The total Hamiltonian
is then

Hλ(r, λ,p, pλ) =
p2

λ

2mλ
+

N∑
i=1

p2
i

2mi
+ U(r1, ..., rN , λ). (8.3.1)

In eqn. (8.3.1), λ and its conjugate momentum pλ are now part of an extended phase
space (see, for example, the discussion Section 4.8). We can now define a canonical
partition function for the Hamiltonian in eqn. (8.3.1),

Q(N, V, T ) =

∫
dpλ

∫
dNp

∫ 1

0

dλ

∫
D(V )

dNr e−βHλ(pλ,λ,p,r), (8.3.2)

and therefore compute any ensemble average with respect to the corresponding canon-
ical distribution. In particular, the probability distribution function P (λ′) = 〈δ(λ −
λ′)〉λ, leads directly to a λ-dependent free energy function A(λ) through the relation

A(λ′) = −kT ln P (λ′). (8.3.3)

Eqn. (8.3.3) defines an important quantity known as a free energy profile. We will
have more to say about free energy profiles starting in Section 8.6. Note that the free
energy difference

A(1) − A(0) = −kT ln

[
P (1)

P (0)

]
= −kT ln

[
QB

QA

]
= ΔAAB, (8.3.4)

since P (0) and P (1) are the partition functions QA and QB, respectively. The distribu-
tion function 〈δ(λ−λ′)〉λ can be generated straightforwardly in a molecular dynamics
calculation by accumulating a histogram of λ values visited over the course of the
trajectory.

We still need to answer the question of how to maximize the time λ spends near the
endpoints λ = 0 and λ = 1. Eqn. (8.3.3) tells us that free energy is a direct measure of
probability. Thus, consider choosing the functions f(λ) and g(λ) such that A(λ) has
a significant barrier separating the regions near λ = 0 and λ = 1. According to eqn.
(8.3.3), where the free energy is high the associated phase space probability is low.
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Thus, if the region between λ = 0 and λ = 1 is transformed into a low-probability
region, λ will spend a very small fraction of its time there in a molecular dynamics
run, and sampling near the endpoints λ = 0 and λ = 1 will be enhanced.

To illustrate how we can achieve a barrier in the free energy profile A(λ), let us
examine a simple example. Consider taking two uncoupled harmonic oscillators and
using λ-switching to “grow in” a bilinear coupling between them. If x and y represent
the coordinates of the two oscillators with masses mx and my and frequencies ωx and
ωy, respectively, then the two potential energy functions UA and UB take the form

UA(x, y) =
1

2
mxω2

xx2 +
1

2
myω2

yy2

UB(x, y) =
1

2
mxω2

xx2 +
1

2
myω2

yy2 + κxy, (8.3.5)

where κ determines the strength of the coupling between the oscillators. For this
problem, the integration over x and y can be performed analytically (see Problem 8.1),
leading to the exact probability distribution function in λ

P (λ) =
C√

mxω2
xmyω2

y (f(λ) + g(λ))
2 − κ2g2(λ)

, (8.3.6)

where C is a constant, from which the free energy profile A(λ) = −kT ln P (λ) becomes

A(λ) =
kT

2
ln

[
mxω2

xmyω
2
y (f(λ) + g(λ))2 − κ2g2(λ)

]
. (8.3.7)

The reader can easily verify that the free energy difference ΔA = A(1) − A(0) does
not depend on the choice of f(λ) and g(λ). Now consider the choice of parameters
mx = my = 1, ωx = 1, ωy = 2, kT = 1, and κ = 1. First, consider switches of the form
f(λ) = (λ2 − 1)2 and g(λ) = ((λ − 1)2 − 1)2. The solid line in Fig. 8.2(a) shows the
free energy profile obtained from eqn. (8.3.7). The free energy profile clearly contains
a barrier between λ = 0 and λ = 1. If, on the other hand, we choose f(λ) = (λ2 − 1)4

and g(λ) = ((λ − 1)2 − 1)4, the free energy profile appears as the dashed line in
Fig. 8.2(a), and we see that the profile exhibits a deep well. A well indicates a region
of high probability and suggests that in a molecular dynamics calculation, λ will spend
considerably more time in this irrelevant region than it will near the endpoints. In this
case, therefore, the quartic switches are preferable. For comparison, these two choices
for f(λ) (g(λ) is just the mirror image of f(λ)) are shown in Fig. 8.2(b). It can be seen
that small differences in the shape of the switches lead to considerable differences in
the free energy profiles.

Suppose we now try to use a molecular dynamics calculation based on the Hamil-
tonian in eqn. (8.3.1) to generate a free energy profile A(λ) with a substantial barrier
between λ = 0 and λ = 1. We immediately encounter a problem: The probability for
λ to cross this barrier becomes exponentially small! So have we actually accomplished
anything by introducing the barrier? After all, what good is enhancing the sampling
in the endpoint regions if the barrier between them cannot be easily crossed? It seems
that we have simply traded the problem of inefficient sampling at the endpoints of the



Adiabatic free energy dynamics

0 0.2 0.4 0.6 0.8 1
λ

0.2

0.3

0.4

0.5

0.6

0.7

0.8
A

(λ
)

0 0.2 0.4 0.6 0.8 1
λ

0

0.2

0.4

0.6

0.8

1

f (
λ)

(a) (b)

Fig. 8.2 (a) Free energy profiles from eqn. (8.3.7). The solid line indicates switches

f(λ) = (λ2 − 1)2 and g(λ) = ((λ − 1)2 − 1)2, and the dashed line indicates f(λ) = (λ2 − 1)4

and g(λ) = ((λ − 1)2 − 1)4. (b) Corresponding switch f(λ).

λ-path for the problem of crossing a high barrier. That is, we have created what is
commonly referred to as a rare-event problem (see also Section 8.5).

In order to overcome the rare-event problem, we introduce an approach in this sec-
tion known as adiabatic free energy dynamics (AFED) (Rosso et al., 2002; Rosso et al.,
2005; Abrams et al., 2006). Let U ‡ be the value of the potential energy at the top of the
barrier. In the canonical ensemble, the probability that the system will visit a configu-
ration whose potential energy is U ‡ at temperature T is proportional to exp[−U ‡/kT ],
which is exceedingly small when kT 
 U ‡. The exponential form of the probability
suggests that we could promote barrier crossing by simply raising the temperature.
If we do this näıvely, however, we broaden the ensemble distribution and change the
thermodynamics. On the other hand, suppose we raise the “temperature” of just the
λ degree of freedom. We can achieve this by coupling λ to a thermostat designed to
keep the average 〈p2

λ/2mλ〉 = kTλ, where Tλ > T . In general, the thermodynamics
would still be affected. However, under certain conditions, we can still recover the
correct free energy. In particular, we must also increase the “mass” parameter mλ to
a value high enough that λ is adiabatically decoupled from all other degrees of free-
dom. When this is done, it can be shown that the adiabatically decoupled dynamics
generates the correct free energy profile even though the phase space distribution is
not the true canonical one. Here, we will give a heuristic argument showing how the
modified ensemble distribution and free energy can be predicted and corrected. (Later,
in Section 8.10, we will analyze the adiabatic dynamics more thoroughly and derive
the phase space distribution rigorously.)

Under the assumption of adiabatic decoupling between λ and the physical degrees
of freedom, λ evolves very slowly, thereby allowing the physical degrees of freedom to
sample large portions of their available phase space while λ samples only a very local-
ized region of its part of phase space. Since the physical degrees of freedom are coupled
to a thermostat at the physical temperature T , we expect the adiabatic dynamics to
generate a distribution Z(λ, β) in λ in which the physical coordinates sample essentially
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all of their configuration space at temperature T at each λ, leading to

Z(λ, β) =

∫
dNr e−βU(r1,...,rN ,λ). (8.3.8)

In the extreme limit, where λ is fixed at each value, this is certainly the correct
distribution function if the physical degrees of freedom are properly thermostatted.
The adiabatic decoupling approximates the more extreme situation of fixed λ. Eqn.
(8.3.8) leads to an important quantity known as the potential of mean force in λ,
obtained from −(1/β) lnZ(λ, β). In the limit of adiabatic decoupling, the potential of
mean force becomes an effective potential on which λ can be assumed to move quasi-
independently from the physical degrees of freedom. Note that −(1/β) ln Z(λ, β) is
also equal to the free energy profile A(λ) we originally sought to determine. Using the
potential of mean force, we can construct an effective Hamiltonian for λ:

Heff(λ, pλ) =
p2

λ

2mλ
− 1

β
ln Z(λ, β). (8.3.9)

Now, if λ is thermostatted to a temperature Tλ, then a canonical distribution in eqn.
(8.3.9) at temperature Tλ will be generated. This distribution takes the form

Padb(λ, pλ, β, βλ) ∝ e−βλHeff (λ,pλ), (8.3.10)

where βλ = 1/kTλ, and the “adb” subscript indicates that the distribution is valid
in the limit of adiabatic decoupling of λ. Integrating over pλ yields a distribution
P̃adb(λ, βλ, β) ∝ [Z(λ, β)]βλ/β , from which the free energy profile can be computed as

A(λ) = −kTλ ln P̃adb(λ, β, βλ) = −kT ln Z(λ, β) + const. (8.3.11)

Thus, apart from a trivial additive constant, the free energy profile can be computed
from the distribution P̃adb(λ) generated by the adiabatic dynamics. Note that eqn.
(8.3.11) closely resembles eqn. (8.3.3), the only difference being the prefactor of kTλ

rather kT . Despite the fact that ln P̃adb(λ, β, βλ) is multiplied by kTλ, the free energy
profile is obtained at the correct ensemble temperature T . As an example of the AFD
approach, Abrams and Tuckerman (2006) employed this approach to calculate the
hydration free energies of alanine and serine side-chain analogs using the CHARMM22
force field (MacKerell et al., 1998) in a bath of 256 water molecule. These simulations
required kTλ = 40kT = 12, 000 K, mλ one-thousand times the mass of an oxygen
atom, and could obtain the desired free energies within an error of 0.25 kcal/mol in
1-2 ns using a time step of 1.0 fs. In order to keep the λ degree of freedom in the range
[0, 1], reflecting boundaries were placed at λ = −ε and 1 + ε where ε = 0.01.

8.4 Jarzynski’s equality and nonequilibrium methods

In this section, we investigate the connection between free energy and nonequilibrium
work. We have already introduced the work–free–energy inequality in eqn. (8.2.9),
which states that if an amount of work WAB takes a system from state A to state B,
then WAB ≥ ΔAAB, where equality holds only if the work is performed reversibly.
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WAB is a thermodynamic quantity, which means that it can be expressed as an en-
semble average of a phase space function. Specifically, WAB must be an average of
the mechanical WAB(x) performed on a single member of the ensemble to drive it
from a microstate of A to a microstate of B. However, we need to be careful about
how we define this ensemble average because, as we saw in Chapter 1 (eqn. (1.2.6)),
the work WAB(x) is defined along a particular path or trajectory, while equilibrium
averages are performed over the microstates that describe a particular thermodynamic
state. This distinction is emphasized by the fact that the work could be carried out
irreversibly, such that the system is driven out of equilibrium.

To illustrate the use of the microscopic function WAB(x), suppose we prepare an
initial distribution of microstates x0 belonging to A, and we initiate a trajectory from
each of these initial states. Then, the ensemble average that determines the thermo-
dynamic work WAB is an average of WAB(x0) over this initial ensemble, which we
will take to be a canonical ensemble. The trajectory xt along which the work is com-
puted is a unique function of the initial condition x0, i.e. xt = xt(x0). Thus, the work
WAB(x0) is actually a functional of the path WAB[xt]. However, since the trajectory
xt is uniquely determined by the initial condition x0, WAB is also determined by x0,
and we have

WAB = 〈WAB(x0)〉A =
CN

QA(N, V, T )

∫
dx0 e−βHA(x0)WAB(x0). (8.4.1)

Thus, the work–free–energy inequality can be stated as 〈WAB(x0)〉A ≥ ΔAAB.
From this inequality, it would seem that performing work on a system as a method

to compute free energy leads, at best, to an upper bound on the free energy. It turns
out, however, that irreversible work can be used to calculate free energy differences
by virtue of a connection between the two quantities first established in 1997 by C.
Jarzynski (1997) that is now referred to as the Jarzynski equality. The equality states
that if instead of averaging WAB(x0) over the initial canonical distribution (that of
state A), an average of exp[−βWAB(x0)] is performed over the same distribution, the
result is exp[−βΔAAB], that is,

e−βΔAAB =
〈
e−βWAB(x0)

〉
A

=
CN

QA(N, V, T )

∫
dx0 e−βHA(x0)e−βWAB(x0). (8.4.2)

Hence, the free energy difference ΔAAB = −kT ln 〈exp(−βWAB(x0)〉A. This remark-
able result not only provides a foundation for the development of nonequilibrium free
energy methods but has important implications for thermodynamics in general.2 Since
its introduction, the Jarzynski equality has been the subject of both theoretical and
experimental investigation (Park et al., 2003; Liphardt et al., 2002).

The Jarzynski equality can be derived using different strategies, as we will now
show. Consider first a time-dependent Hamiltonian of the form

H(r,p, t) =

N∑
i=1

p2
i

2mi
+ U(r1, ..., rN , t). (8.4.3)

2Jarzynski’s equality is actually implied by a more general theorem known as the Crooks fluctuation
theorem (Crooks, 1998,1999) .
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For time-dependent Hamiltonians, the usual conservation law dH/dt = 0 does not
hold, which can be seen by computing

dH

dt
= ∇xtH · ẋt +

∂H

∂t
, (8.4.4)

where the phase space vector x = (r1, ..., rN ,p1, ...,pN ) ≡ (r,p) has been introduced.
Integrating both sides over time from t = 0 to an endpoint t = τ , we find∫ τ

0

dt
dH

dt
=

∫ τ

0

dt ∇xtH · ẋt +

∫ τ

0

dt
∂H

∂t
. (8.4.5)

Eqn. (8.4.5) can be regarded as a microscopic version of the First Law of Thermody-
namics, where the first and second terms represent the heat absorbed by the system and
the work done on the system over the trajectory, respectively.3 That the work depends
on the initial phase space vector x0 can be seen by defining the work associated with
the trajectory xt(x0) obtained up to time t = t′ as

Wt′(x0) =

∫ t′

0

dt
∂

∂t
H(xt(x0), t). (8.4.6)

Note that WAB(x0) = Wτ (x0).
The derivation of the Jarzynski equality requires the calculation of the ensemble

average of exp[−βWAB(x0)] = exp[−βWτ (x0)] over a canonical distribution in the
initial conditions x0. Before we examine how this average might be performed along
a molecular dynamics trajectory for a finite system, let us consider the simpler case
where each initial condition x0 evolves in isolation according to Hamilton’s equations
as derived from eqn. (8.4.3). If Hamilton’s equations are obeyed, then the first (heat)
term on the right in eqn. (8.4.4) vanishes, ∇xtH · ẋt = 0, and we can express the work
as

Wt′ =

∫ t′

0

dt
d

dt
H(xt(x0), t) = H(xt′ (x0), t

′) − H(x0, 0). (8.4.7)

Taking t′ = τ , and recognizing that H(x0, 0) = HA(x0), we can write the ensemble
average of exp[−βWAB(x0)] as

〈
e−βWAB

〉
A

=
CN

QA(N, V, T )

∫
dx0 e−βHA(x0)e−β[H(xτ(x0),τ)−HA(x0)]

=
CN

QA(N, V, T )

∫
dx0 e−βH(xτ(x0),τ). (8.4.8)

Now let us change variables from x0 to xτ (x0) in the integral in eqn. (8.4.8). Since
the trajectory xt(x0) is generated from Hamilton’s equations of motion, the mapping

3To see this, consider, for example, a mechanical piston slowly compressing a gas. Such a device
can be viewed as an explicitly time-dependent external agent acting on the system, which can be
incorporated into the potential. For this reason, the second term on the right in eqn. (8.4.5) represents
the work performed on the system. However, even in the absence of an external agent, if the system
interacts with a thermal reservoir (see Section 4.3) then the Hamiltonian is not conserved, and the
first term on the right in eqn. (8.4.5) will be nonzero. Hence, this term represents the heat absorbed.
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of x0 to xτ (x0) is unique. Moreover, by Liouville’s theorem, the phase space measure
dxτ = dx0. Therefore, we find that

〈
e−βWAB

〉
A

=
CN

Q(N, V, T )

∫
dxτ e−βHB(xτ )

=
QB(N, V, T )

QA(N, V, T )

= e−βΔAAB , (8.4.9)

which is Jarzynski’s equality. Note that by Jensen’s inequality,

〈
e−βWAB

〉
A
≥ e−β〈WAB〉

A , (8.4.10)

which implies that

e−βΔAAB ≥ e−β〈WAB〉
A . (8.4.11)

Taking the natural log of both sides of eqn. (8.4.11) leads to the work–free–energy
inequality.

We now present a proof of Jarzynski’s equality that is relevant for finit systems
coupled to thermostats typically employed in molecular dynamics. The original ver-
sion of this derivation is due to M. Cuendet (2006) and was subsequently generalized
by Schöll-Paschinger and Dellago (2006). The proof does not depend critically on
the particular thermostatting mechanism as long as the scheme rigorously generates
a canonical distribution. For notational simplicity, we will employ the Nosé–Hoover
scheme in eqns. (4.8.19). Although we already know that the Nosé–Hoover equations
have many weaknesses which can be fixed using, for example, Nosé–Hoover chains,
the former is sufficient for our purpose here and keeps the notation simpler. We start,
therefore, with the equations of motion

ṙi =
pi

mi

ṗi = − ∂

∂ri
U(r, t) − pη

Q
pi

η̇ =
pη

Q

ṗη =
∑

i

p2
i

mi
− 3NkT, (8.4.12)

which are identical to eqns. (4.8.19) except for the time-dependent potential U(r, t)
and the choice of d = 3 for the dimensionality. As was discussed in Section 4.9, these
equations have an associated phase space metric

√
g = e3Nη. Note that the heat

term in eqn. (8.4.4) does not vanish for the Nosé–Hoover equations because energy is
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exchanged between the physical system and the thermostat. Nevertheless, the work in
eqn. (8.4.6) allows us to construct a conserved energy according to

H̃(xt, t) =
N∑

i=1

p2
i

2mi
+ U(r, t) +

p2
η

2Q
+ 3NkTη − Wτ (x0)

= H′(xt, t) − Wτ (x0). (8.4.13)

Here x is the extended phase space vector x = (r1, ..., rN , η,p1, ...,pN , pη). According
to the procedure outlined described in Section 4.9, the average of exp[−βWτ (x0)] is
computed as

〈
e−βWAB

〉
A

=
1

ZT (0)

∫
dx0 e3Nηe−βWτ (x0)δ (H′(x0, 0) − C) , (8.4.14)

where dx0 = dNp0d
Nr0dpη,0dη0, C is a constant and ZT (0) is the “microcanonical”

partition function generated by the Nosé–Hoover equations for the t = 0 Hamiltonian

ZT (0) =

∫
dx0 e3Nη0δ (H′(x0, 0) − C) . (8.4.15)

In eqns. (8.4.14) and (8.4.15), the ensemble distribution must be the distribution of the
initial state, which is the state A. In Section 4.9, we showed that when eqn. (8.4.15)
is integrated over η, the canonical partition function is obtained in the form

ZT (0) =
eβC

3NkT

∫
dpη,0 e−βp2

η,0/2Q

∫
dNp0 dNr0 e−βH(r0,p0)

∝ QA(N, V, T ). (8.4.16)

In order to complete the proof, we need to carry out the integration over η in the
numerator of eqn. (8.4.14). As was done above, we change variables from x0 to xτ (x0).
Recalling from Section 4.9 that the measure exp(3Nη)dx is conserved, it follows that
exp(3Nη0)dx0 = exp(3Nητ )dxτ . Therefore, the variable transformation leads to

〈
e−βWAB

〉
A

=
1

ZT (0)

∫
dxτ e3Nητ e−βWτ (x0(xτ ))δ (H′(x0(xτ ), 0) − C) . (8.4.17)

From eqn. (8.4.13), it follows that H′(x0(xτ ), 0) = H′(xτ , τ) − Wτ (x0(xτ )). Inserting
this into eqn. (8.4.17), we obtain

〈
e−βWAB

〉
A

=
1

ZT (0)

∫
dxτ e3Nητ e−βWτ (x0(xτ ))

×δ (H′(xτ , τ) − Wτ (x0(xτ )) − C) . (8.4.18)

The integration over ητ can now be performed by noting that the δ-function requires
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ητ =
1

3NkT

[
C − H(rτ ,pτ ) − p2

η,τ

2Q
+ Wτ (x0(xτ ))

]
. (8.4.19)

Using eqn. (8.4.19), together with eqn. (4.8.6), to perform the integration over ητ

causes the exponential factors of Wτ (x0(xτ )) to cancel, yielding

〈
e−βWAB

〉
A

=
1

ZT (0)

eβC

3NkT

∫
dpη,τ e−βp2

η,τ /2Q

∫
dNpτ dNrτ e−βH(rτ ,pτ )

∝ 1

ZT (0)
QB(N, V, T ), (8.4.20)

where, since the integration is performed using the phase space vector and Hamiltonian
at t = τ , the result is proportional to the canonical partition function in state B. In
fact, when eqn. (8.4.16) for ZT (0) is substituted into eqn. (8.4.20), the prefactors
cancel, yielding simply

〈
e−βWAB

〉
A

=
QB

QA

= e−βΔAAB (8.4.21)

which, again, is Jarzynski’s equality.
Jarzynski’s equality has an intriguing connection with mechanical pulling experi-

ments involving laser trapping (Liphardt et al., 2002) as suggested by Hummer and
Szabo (2001), or atomic force microscopy (Binnig et al., 1986) applied, for example, to
biomolecules (Fernandez and Li, 2004). Experiments such as these can be mimicked in
molecular dynamics calculations (Park et al., 2003; Park and Schulten, 2004). For in-
stance, suppose we wish to unfold a protein or polypeptide by “pulling” on the ends as
illustrated in Fig. 8.3. Within the Jarzynski framework, we could perform nonequilib-
rium calculations and obtain the free energy change ΔA associated with the unfolding
process. This could be accomplished by adding a time-dependent term to the potential
that “drives” the distance between the two ends of the molecule from its (small) value
in the folded state to a final (large) value in the unfolded state. For concreteness, let
us designate the atomic coordinates at the ends of the molecule by r1 and rN . (In
practice, r1 and rN could be nitrogen atoms at the N- and C-termini of a protein or
polypeptide.) The time-dependent potential would then take the form

U(r1, ..., rN , t) = U0(r1, ..., rN ) +
1

2
κ (|r1 − rN | − req − vt)

2
, (8.4.22)

where U0 is the internal potential described, for example, by a force field. The second
term in eqn. (8.4.22) is a harmonic potential with force constant κ that drives the
end-to-end distance |r1 − rN | away from its equilibrium value at the folded state req

by means of the time-dependent term vt, where v is the pulling rate (see Fig. 8.3).
In practice, applying Jarzynski’s formula to such a problem requires generating an
ensemble of initial conditions x0 and then performing the pulling “experiment” in
order to obtain a work value Wτ (x0) for each one. The final average of exp(−βWτ (x0))
then leads to the free energy difference.
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fixed

v

Fig. 8.3 Extension of deca-alanine by pulling via eqn. (8.4.22) (reprinted with permission

from Park et al., J. Chem. Phys. 119, 3559 (2003), copyright 2003, American Institute of

Physics).

Several challenges arise in the use of Jarzynski’s formula. First, while it is an elegant
approach to free energy calculations, a potential bottleneck needs to be considered. The
work values that are generated from an ensemble of nonequilibrium processes have a
distribution P (Wτ ). Thus, we could imagine calculating the average exp(−βWτ ) using
this distribution according to

〈
e−βWτ

〉
=

∫
dWτP (Wτ )e−βWτ . (8.4.23)

However, as illustrated in Fig. 8.4, P (Wτ ) and P (Wτ ) exp(−βWτ ) can peak at very
different locations, depending on the value of β. In Fig. 8.4, the average is dominated
by small values of Wτ , which lie predominantly in the left tail of the work probabil-
ity distribution P (Wτ ) and occur only rarely. Consequently, many “fast-switching”
trajectories with high pulling rates v are needed in order to sample the tail of the
work distribution adequately. Alternatively, trajectories with very slow pulling rates
(“slow-switching” trajectories) could be used, in which case, a smaller ensemble can
be employed, however, the method will then have an efficiency comparable to equilib-
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Fig. 8.4 Shift in a Gaussian work distribution as a result of the multiplication by exp(−βWτ )

for various values of β.

rium methods (Oberhofer et al., 2005). It is worth noting that if the work distribution
P (Wτ ) is Gaussian or nearly Gaussian, then the exponential average can be computed
reliably using a truncated cumulant expansion (see eqns. (4.7.21) and (4.7.23)):

ln
〈
e−βWτ

〉 ≈ −β〈Wτ 〉 +
β2

2

(〈W 2
τ 〉 − 〈Wτ 〉2

)
, (8.4.24)

which eliminates the problem of poor overlap between P (Wτ ) and P (Wτ ) exp(−βWτ )
in the exponential average.

A second challenge raises a more fundamental question concerning the proof of the
equality. In the proof we have presented, it is tacitly assumed that after the transfor-
mation x0 to xτ is made, the integral that results constitutes an actual equilibrium
partition function (see eqn. (8.4.9)). That is, we assume an equilibrium distribution
of phase space points xτ , but if the the driving force is too strong, this might not be
valid in a finite system. Certainly, if the driving force is sufficiently mild to maintain
the system close to equilibrium along the time-dependent path between states A and
B, then the assumption is valid, and indeed, in this limit, the Jarzynski equality seems
to be most effective in actual applications (Oberhofer et al., 2005). Away from this
limit, it might be necessary to allow the final states xτ (x0) to relax to an equilibrium
distribution by performing a short run with a thermostat coupling, even if such a
relaxation process has been shown to be formally unnecessary (Jarzynski, 2004).
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8.5 The problem of rare events

In Section 8.3, we alluded to the rare-event problem associated with large barriers
separating important minima on a potential energy surface. Such energy surfaces are
known as rough energy landscapes and characterize, for example, proteins, glasses,
and polymers. As we noted in Section 8.3, when high barriers separate the minima,
the probability that a fluctuation capable of driving the system from one minimum to
another over such a barrier will occur becomes exponentially small with the ratio of
the barrier height to kT . Consequently, such an event is described as a rare event (see
Fig. 7.5). In the remainder of this chapter, we will discuss this problem at length and
methods for enhancing conformational sampling on rough potential energy surfaces.

In order to illustrate the concept of “roughness,” consider the alanine dipeptide,
shown in Fig. 3.8. This small dipeptide can exist in a number of stable conformations,
which can be characterized by two backbone dihedral angles φ and ψ known as the
Ramachandran angles (see Fig. 3.8). Fig. 8.5 shows the two-dimensional free energy
surface in these two angles obtained by “integrating out” the remaining degrees of
freedom (we will discuss methods for generating such surfaces later in this chapter).
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Fig. 8.5 Free energy surface in the Ramachandran angles for an alanine dipeptide in solution.

The figure shows that there are four pronounced minima on the surface for the par-
ticular model employed, indicating four stable conformations with different relative
free energies. These relative free energies can be used to rank the minima in terms
of their thermodynamics importance. The full free energy surface also contains the
locations and heights of barriers, from which information about transition states and
rates of conformational changes. If we now consider that the free energy surface of just
two dihedral angles contains four minima, then in a protein of modes size containing
50 such pairs, the number of possible conformations would be 450 = 2100. From this
simple exercise, we have a crude measure of the roughness of an energy landscape.
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The large number of free energy minima exhibited by our modest protein is far
more than can be sampled in a typical computer simulation, and in fact, many of
these minima tend to be high enough energy as to contribute little to an ensemble
average. How, then, can we limit sampling to the most important regions of an energy
landscape? There is no definitive answer at present, and the question remains an active
area of research. In many cases, however, it is possible to identify a subset of generalized
coordinates that is particularly well suited for characterizing a given process. In the
next few sections, we will describe how to make use of such variables in enhanced
sampling schemes for mapping out their corresponding free energy surfaces.

8.6 Reaction coordinates

It is frequently the case that the progress of some chemical, mechanical, or thermody-
namics process can be characterized using a small set of generalized coordinates in a
system. When generalized coordinates are used in this manner, they are typically re-
ferred to as reaction coordinates, collective variables, or order parameters, depending
on the context and type of system. Whenever referring to these coordinates, we will
refer to them as reaction coordinates, although the reader should be aware that the
other two designations are also used in the literature.

As an example of a reaction coordinate, consider a simple gas-phase diatomic dis-
sociation process AB −→ A+B. If rA and rB denote the Cartesian coordinates of
atoms A and B, respectively, then a useful generalized coordinate for describing a dis-
sociation reaction is simply the distance r = |rB − rA|. As we saw in Section 1.4.2, a
set of generalized coordinates that contains r as one of the coordinates is the center-
of-mass R = (mArA + mBrB)/(mA + mB), the magnitude of the relative coordinate

r = |rB − rA|, and the two angles φ = tan−1(y/x) and θ = tan−1(
√

x2 + y2/z), where
x, y, and z are the components of r = rB−rA. Of course, in the gas phase, r is the most
relevant coordinate when the potential depends only on r. If the dissociation reaction
takes place in solution, then some thought is needed as to whether a simple coordinate
like r is sufficient to describe the reaction. If the solvent drives or hinder the reaction
by some mechanism, then a more complex coordinate that involves solvent degrees of
freedom is likely needed. If the role of the solvent is a more “passive” one, then the
free energy A(r), obtained by “integrating out” all other degrees of freedom, will yield
important information about the thermodynamics of the solution-phase reaction.

Another example is the gas-phase proton transfer reaction A–H· · ·B−→A· · ·H–B.
Here, although the two distances |rH − rA| and |rH − rB| can be used to monitor
the progress of the proton away from A and toward B, respectively, neither distance
alone is sufficient for following the progress of the reaction. However, the difference
δ = |rH − rB| − |rH − rA|, which is positive (negative) when the proton is near A (B)
and zero when the proton is equidistant between A and B, is suitable for describing
the process. A complete set of generalized coordinates involving δ can be constructed
as follows. If rA, rB and rH denote the Cartesian coordinates of the three atoms, then
first introduce the center-of-mass R = (mArA + mBrB + mHrH)/(mA + mB + mH),
the relative coordinate between A and B, r = rB − rA, and a third relative coordinate
s between H and the center-of-mass of A and B, s = r− (mArA + mBrB)/(mA + mB).
Finally, r is transformed into spherical polar coordinates (r, θ, φ), and from r and s,
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three more coordinates are formed as

σ = |s +
mB

mA + mB
r| + |s− mA

mA + mB
r|,

δ = |s +
mB

mA + mB
r| − |s− mA

mA + mB
r|, (8.6.1)

and the angle α, which measures the “tilt” of the plane containing the three atoms
from the vertical. These coordinates could also be useful if the reaction takes place in
solution, but as noted above, some careful thought about relevant solvent coordinates
is needed.

As a third example, conformational changes in small peptides, such as di- and
tripeptides can be described in terms of the Ramachandran backbone dihedral angles
φ and ψ (see Fig. 3.8, for example). For longer oligopeptides that can fold into protein
secondary structure elements such as helices and β-sheets, other coordinates such as
the radius of gyration of Nb heavy backbone atoms, given by

RG =

√√√√√ 1

Nb

Nb∑
i=1

⎛
⎝ri − 1

Nb

Nb∑
j=1

rj

⎞
⎠

2

, (8.6.2)

or the number of hydrogen bonds of length approximately d0 between nO oxygens and
nH hydrogens, which can be expressed as

NH =

nO∑
i=1

nH∑
j=1

1 − [(ri − rj)/d0]
6

1 − [(ri − rj)/d0]12
(8.6.3)

could be used in addition to the Ramachandran angles. These coordinates have been
shown to be useful in characterizing the folded and unfolded states of polypeptides (Bussi
et al., 2006). In all of these examples, the reaction coordinates are functions of the
primitive Cartesian coordinates of some or all of the atoms in the system.

While reaction coordinates or collective variables are potentially very useful con-
structs and intuitively appealing, they must be used with care. Enhanced sampling
approaches applied to poorly chosen reaction coordinates can bias the system mislead-
ing ways and generate erroneous predictions of free energy barriers, transition states,
and mechanisms. A dramatic illustration of this can be seen with the autodissociation
of liquid water according to the classic reaction 2H2O(l) −→ H3O

+(aq) + OH−(aq),
as discussed in Section 7.7. The reaction ostensibly only requires transferring a proton
from one water molecule to another. If we pursue this simple picture, a seemingly
sensible reaction coordinate might simply be the distance between the oxygen and
the transferring proton or the number of hydrogens covalently bonded to one of the
oxygens. As it turns out, these coordinates are inadequate to describe the true nature
of the reaction and consequently fail to yield an accurate free energy or autoionization
constant Kw (Trout and Parrinello, 1998). A clearer picture of this reaction was pro-
vided by Chandler and coworkers (2001) using the transition path sampling (Dellago
et al., 1998; Bolhuis et al., 2002; Dellago et al., 2002) discussed in Section 7.7. From
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their calculations, these authors posited that that the dissociation reaction is complete
only when the H3O

+ and OH− ions separate in such a way that no contiguous path
of hydrogen bonds exists between them that would allow them to recombine through
a series of proton transfer steps. In order to describe such a process correctly, a very
different type of reaction coordinate that involves many solvent degrees of freedom
would be needed. Later, in Section 8.12, we will describe a technique for judging the
quality of a reaction coordinate.

Keeping in mind our caveats about the use of reaction coordinates, we now describe
a number of popular methods designed to enhance sampling along preselected reaction
coordinates. All of these methods are designed to generate either directly or indirectly,
the probability distribution function of a subset of n reaction coordinates of interest
in a system. If these reaction coordinates are obtained from a transformation of the
Cartesian coordinates to generalized coordinates qα = fα(r1, ..., rN ), α = 1, ..., n,
then the probability density that these n coordinates will have values qα = sα in the
canonical ensemble is

P (s1, ..., sn) =
CN

Q(N, V, T )

∫
dNp dNre−βH(r,p)

n∏
α=1

δ(fα(r1, ..., rN ) − sα), (8.6.4)

where the δ-functions are introduced to fix the reaction coordinates q1, ..., qn at s1, ..., sn.
Once P (s1, ..., sn) is known, the free energy hypersurface in these coordinates is given
by

A(s1, ..., sn) = −kT ln P (s1, ..., sn). (8.6.5)

8.7 The blue moon ensemble approach

The term “blue moon,” as the name implies, colloquially describes a rare event.4 The
blue moon ensemble approach was introduced by Carter et al. (1989) and Sprik and
Ciccotti (1998) for computing the free energy profile of a reaction coordinate when
one or more high barriers along this coordinate direction lead to a rare-event problem
in an ordinary thermostatted molecular dynamics calculation.

Suppose a process of interest can be monitored by a single reaction coordinate
q1 = f1(r1, ..., rN ). Then according to eqns. (8.6.4) and (8.6.5), the probability that
f1(r1, ..., rN ) has the value s and the associated free energy profile, are given by

P (s) =
CN

Q(N, V, T )

∫
dNp dNre−βH(r,p)δ(f1(r1, ..., rN ) − s)

=
1

N !λ3NQ(N, V, T )

∫
dNre−βU(r)δ(f1(r1, ..., rN ) − s)

A(s) = −kT ln P (s). (8.7.1)

In the second line, the integration over momenta has been performed giving the thermal
prefactor factor λ3N . In the blue moon ensemble approach, a holonomic constraint

4Technically, a “blue moon” refers to the occurrence of thirteen full moons in a calendar year as
opposed to the usual twelve. The extra full moon, which occurs roughly every 2.72 years, is called a
blue moon.
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(see Section 1.9 and Section 3.9) σ(r1, ..., rN ) = f1(r1, ..., rN ) − s is introduced in a
molecular dynamics calculation as a means of “driving” the reaction coordinate from
an initial value s(i) of the parameter s to a final value s(f) via a set of intermediate
points s(1), ..., s(n) between s(i) and s(f). As we saw in Section 3.9, the introduction
of a holonomic constraint does not yield the single δ-function condition δ(σ(r) =
δ(f1(r) − s), where r ≡ r1, ..., rN , as required by eqn. (8.7.1), but rather the product
δ(σ(r))δ(σ̇(r,p)), since both the constraint and its first time derivative are imposed in
a constrained dynamics calculation. We will return to this point shortly. In addition,
the blue moon ensemble approach does not yield A(s) directly but rather the derivative

dA

ds
= − kT

P (s)

dP

ds
, (8.7.2)

from which the free energy profile A(q) along the reaction coordinate and the free
energy difference ΔA = A(sf ) − A(si) are given by the integrals

A(q) = A(s(i)) +

∫ q

s(i)

dA

ds
ds, ΔA =

∫ s(f)

s(i)

dA

ds
ds. (8.7.3)

In the free energy profile expression A(s(i)) is just an additive constant that can
be left off or adjusted so the minimum value of the profile at qmin corresponds to
A(qmin = 0. In practice, these integrals are evaluated numerically using the integration
points s(1), ..., s(n). These points can be chosen equally-spaced between s(i) and s(f), so
that the integrals can be evaluated using a standard numerical quadrature, or they can
be chosen according to a more sophisticated quadrature scheme. If the full profile A(q)
is desired, however, the number of quadrature points should be sufficient to capture
the detailed shape of the profile.

We next show how to evaluate the derivative in eqn. (8.7.2). Noting that P (s) =
〈δ(f1(r) − s)〉, the derivative can be written as

1

P (s)

dP

ds
=

CN

Q(N, V, T )

∫
dNp dNr e−βH(r,p) ∂

∂sδ(f1(r) − s)

〈δ(f1(r) − s)〉 . (8.7.4)

In order to avoid the derivative of the δ-function, an integration by parts is performed.
We first introduce a complete set of 3N generalized coordinates qα = fα(r1, ..., rN )
and their conjugate momenta pα. This transformation, being canonical, has a unit
Jacobian so that dNp dNr = d3Np d3Nq. Denoting the transformed Hamiltonian as
H̃(q, p), eqn. (8.7.4) becomes

1

P (s)

dP

ds
=

CN

Q(N, V, T )

∫
d3Np d3Nq e−βH̃(q,p) ∂

∂sδ(q1 − s)

〈δ(q1 − s)〉 . (8.7.5)

Next, we change the derivative in front of the δ-function from ∂/∂s to ∂/∂q1, using
the fact that

∂

∂s
δ(q1 − s) = − ∂

∂q1
δ(q1 − s). (8.7.6)

Finally, we integrate by parts to obtain
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1

P (s)

dP

ds
=

CN

Q(N, V, T )

∫
d3Np d3Nq

[
∂

∂q1
e−βH̃(q,p)

]
δ(q1 − s)

〈δ(q1 − s)〉

= − βCN

Q(N, V, T )

∫
d3Np d3N q ∂H̃

∂q1
e−βH̃(q,p)δ(q1 − s)

〈δ(q1 − s)〉

= − β

〈δ(q1 − s)〉

〈(
∂H̃

∂q1

)
δ(q1 − s)

〉
. (8.7.7)

The last line defines a new ensemble average. Specifically, the average must be per-
formed subject to the condition q1 = s. Note, however, that this is not equivalent to
a mechanical constraint since the additional condition q̇1 = 0 is not imposed. This
new ensemble average will be denoted 〈· · ·〉cond

s . Hence, the derivative dP/ds can be
expressed as

1

P (s)

dP

ds
= −β

〈
∂H̃

∂q1

〉cond

s

. (8.7.8)

Substituting eqn. (8.7.8) yields the free energy profile

A(q) = A(si) +

∫ q

s(i)
ds

〈
∂H̃

∂q1

〉cond

s

. (8.7.9)

Noting that −〈∂H̃/∂q1〉cond
s is the expression for the average of the generalized force

on q1 when q1 = s, the integral represents the work done on the system in moving from
s(i) to an arbitrary final point q. Since the conditional average implies a full simulation
at each fixed value of q1, the thermodynamic transformation is carried out reversibly,
and eqn. (8.7.9) is consistent with the work–free–energy inequality.

Eqn. (8.7.9) provides insight into the underlying statistical mechanical expression
for the free energy. Technically, however, the need for a full canonical transformation
generalized coordinates and conjugate momenta is inconvenient (see eqn. (1.4.16)). A
more useful expression results when we perform the momentum integrations before
introducing the transformation to generalized coordinates. Starting again with eqn.
(8.7.4), we integrate out the momenta to yield

1

P (s)

dP

ds
=

1

N !λ3NQ(N, V, T )

∫
dNr e−βU(r) ∂

∂sδ(f1(r) − s)

〈δ(f1(r) − s)〉 . (8.7.10)

Next, we transform just the coordinates to generalized coordinates qα = fα(r1, ..., rN ).
However, because there is no corresponding momentum transformation, the Jacobian
of the transformation is not unity. Let J(q) ≡ J(q1, ..., q3N ) = |∂(r1, ..., rN )/∂(q1, ..., q3N )|
denote the Jacobian of the transformation. Eqn. (8.7.10) then becomes

1

P (s)

dP

ds
=

1

N !λ3NQ(N, V, T )

∫
d3Nq J(q)e−βŨ(q) ∂

∂sδ(q1 − s)

〈δ(q1 − s)〉
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=
1

N !λ3NQ(N, V, T )

∫
d3Nq e−β(Ũ(q)−kT ln J(q)) ∂

∂sδ(q1 − s)

〈δ(q1 − s)〉 , (8.7.11)

where, in the last line, the Jacobian has been exponentiated. Changing the derivative
∂/∂s to ∂/∂q1 and performing the integration by parts as was done in eqn. (8.7.7), we
obtain

1

P (s)

dP

ds
=

1

N !λ3NQ(N, V, T )

∫
d3Nq ∂

∂q1
e−β(Ũ(q)−kT lnJ(q))δ(q1 − s)

〈δ(q1 − s)〉

= − β

N !λ3NQ(N, V, T )

×
∫

d3N q
[

∂Ũ
∂q1

− kT ∂
∂q1

ln J(q)
]
e−β(Ũ(q)−kT ln J(q))δ(q1 − s)

〈δ(q1 − s)〉

= −β

〈[
∂Ũ

∂q1
− kT

∂

∂q1
ln J(q)

]〉cond

s

. (8.7.12)

Therefore, the free energy profile becomes

A(q) = A(s(i)) +

∫ q

s(i)
ds

〈[
∂Ũ

∂q1
− kT

∂

∂q1
ln J(q)

]〉cond

s

. (8.7.13)

The derivative of Ũ , the transformed potential, can be computed form the original
potential U using the chain rule

∂Ũ

∂q1
=

N∑
i=1

∂U

∂ri
· ∂ri

∂q1
. (8.7.14)

Eqn. (8.7.13) can be applied straightforwardly to simple reaction coordinates for which
the full transformation to generalized coordinates is known. Let us return to the prob-
lem of computing conditional ensemble averages from constrained molecular dynamics.
We will use this discussion as a vehicle for introducing yet another expression for A(q)
that does not require a coordinate transformation at all.

Recall from Section 1.9 that the equations of motion for a system subject to a
single holonomic constraint σ(r1, ..., rN ) = 0 are

ṙi =
pi

mi

ṗi = Fi + λ
∂σ

∂ri
, (8.7.15)

where λ is the Lagrange multiplier needed to impose the constraint. In order to carry
out the statistical mechanical analysis of the constrained dynamics, we shall make use
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of Gauss’s principle of least constraint introduced in Section 1.10. There we showed
that the Lagrange multiplier is given by

λ = −
∑

j Fj · ∇jσ/mj +
∑

j,k ∇j∇kσ · ·pjpk/(mjmk)∑
j (∇jσ)

2
/mj

. (8.7.16)

When eqn. (8.7.16) is substituted into eqn. (8.7.15), the result is a set of non-Hamiltonian
equations of motion that explicitly satisfy the two conservation laws σ(r) = 0 and
σ̇(r,p) = 0. In addition, the equations of motion conserve the Hamiltonian H(r,p),
since the forces of constraint do no work on the system. The methods of classical
non-Hamiltonian statistical mechanics introduced in Section 4.9 allow us to derive
the phase space distribution sampled by eqns. (8.7.15). According to Section 4.9, we
need to determine the conservation laws and the phase space metric in order to con-
struct the “microcanonical” partition function in eqn. (4.9.21). The partition function
corresponding to eqns. (8.7.15) is given by

Z =

∫
dNr dNp

√
g(r,p)δ (H(r,p) − E) δ (σ(r)) δ (σ̇(r,p)) . (8.7.17)

From eqn. (4.9.11), the metric factor is
√

g = exp(−w), where dw/dt = κ, and κ is
the compressibility of the system,

κ =
N∑

i=1

[∇ri · ṙi + ∇pi · ṗi] . (8.7.18)

Note that ∇ri · ṙi = 0 so that

κ =
∑

i

∇pi · ṗi

= −2
∑

i ∇iσ/mi · ∇i

∑
j ∇jσ · pj/mj∑

j (∇jσ)2 /mj

= −2
∑

i ∇iσ · ∇iσ̇/mi∑
j (∇jσ)

2
/mj

= − d

dt
ln

[∑
i

(∇iσ)
2
/mi

]

=
dw

dt
. (8.7.19)

The metric, therefore, becomes

√
g = e−w =

∑
i

1

mi

(
∂σ

∂ri

)2

≡ z(r). (8.7.20)
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This metric factor arises frequently when holonomic constraints are imposed on a sys-
tem and is, therefore, given the special symbol z(r). The partition function generated
by eqns. (8.7.15) now becomes

Z =

∫
dNr dNp z(r)δ (H(r,p) − E) δ (σ(r)) δ (σ̇(r,p)) . (8.7.21)

The energy-conserving δ-function, δ(H(p, r) − E) becomes a proper canonical distri-
bution exp[−βH(r,p)] simply by coupling eqns. (8.7.15) to a thermostat such as the
Nosé–Hoover chain thermostat (see Section 4.10), and eqn. (8.7.21) is replaced by

Z =

∫
dNr dNp z(r)e−βH(r,p)δ (σ(r)) δ (σ̇(r,p)) . (8.7.22)

In order to compare eqn. (8.7.21) to eqn. (8.7.1), we need to perform the integration
over the momenta in order to clear the second δ-function. Noting that

σ̇(r,p) =
∑

i

∂σ

∂ri
· ṙi =

∑
i

∂σ

∂ri
· pi

mi
, (8.7.23)

the partition function becomes

Z =

∫
dNr dNp z(r)e−βH(r,p)δ (σ(r)) δ

(∑
i

∂σ

∂ri
· pi

mi

)
. (8.7.24)

Fortunately, the second δ-function is linear in the momenta and can be integrated over
relatively easily (Problem 8.4), yielding

Z ∝
∫

dNr z1/2(r)e−βU(r)δ (σ(r)) . (8.7.25)

Apart from prefactors irrelevant to the free energy, eqns. (8.7.25) and eqn. (8.7.1),
differ only by the factor of z1/2(r). We have already seen that the conditional average
of any function O(r) of the positions is

〈O(r)〉cond
s =

∫
dr e−βU(r)O(r)δ(f1(r) − s)

〈δ(f1(r) − s)〉 . (8.7.26)

The above analysis suggests that the average of O(r) in the ensemble generated by the
constrained dynamics is

〈O(r)〉constr
s =

∫
dr e−βU(r)z1/2(r)O(r)δ(f1(r) − s)

〈z1/2(r)δ(f1(r) − s)〉 , (8.7.27)

since σ(r) = f1(r)−s. Thus, the conditional average of O(r) can be generated using the
constrained ensemble if, instead of computing the average of O(r) in this ensemble, we
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compute the average of z−1/2(r)O(r) and normalize by the average of z−1/2(r). That
is,

〈O(r)〉cond
s =

〈z−1/2(r)O(r)〉constr
s

〈z−1/2(r)〉constr
s

. (8.7.28)

Given the connection between the conditional and constrained averages, eqn. (8.7.13)
for the free energy profile can be written as

A(q) = A(s(i)) +

∫ q

s(i)
ds

〈
z−1/2(r)

[
∂Ũ
∂q1

− kT ∂
∂q1

ln J(q)
]〉constr

s

〈z−1/2(r)〉constr
s

. (8.7.29)

Having now demonstrated how to compute a conditional average from constrained
dynamics, we quote an important result of Sprik and Ciccotti (1998) who showed that
a transformation to a complete set of generalized coordinates is not required. Rather,
all we need is the form of transformation function f1(r1, ..., rN ) associated with the
reaction coordinate q1. Then, when eqns. (8.7.15) are used to constrain f1(r1, ..., rN ),
the free energy profile can be expressed as

A(q) = A(s(i)) +

∫ q

s(i)
ds

〈
z−1/2(r) [λ + kTG]

〉constr

s

〈z−1/2(r)〉constr
s

, (8.7.30)

where λ is the Lagrange multiplier for the constraint and

G =
1

z2(r)

∑
i,j

1

mimj

∂f1

∂ri
· ∂2f1

∂ri∂rj
· ∂f1

∂rj
. (8.7.31)

In a constrained molecular dynamics calculation, the Lagrange multiplier λ is calcu-
lated “on the fly” at every step and can be used, together with the calculation of
G from eqn. (8.7.31), to construct the average in eqn. (8.7.30) at each value of the
constraint. An interesting twist on the blue moon method was introduced by Darve
and Pohorille (2001, 2007, 2008) whos suggested that the free energy derivative could
also be computed using unconstrained dynamics by connecting the former to the in-
stantaneous force acting on the reaction coordinate.

As an illustration of the use of the blue moon ensemble method, we show Helmholtz
free energy profiles for the addition of two organic molecule, 1,3-butadiene, and 2-F-
1,3-butadiene to a silicon (100)-2×1 reconstructed surface (see Fig. 8.6). The surface
contains rows of silicon dimers with a strong double-bond character that can form
[4+2] Diels–Alder type adducts with these two molecules (see inset to Fig. 8.6). An
important challenge is the design of molecules that can chemisorb to the surface but
can also be selectively removed for surface patterning, thus requiring a relatively low
free energy for the retro-Diels–Alder reaction. By computing the free energy profile
using a reaction coordinate ξ = (1/2)|(rSi1 +rSi2)− (rC1 +rC4)|, where Si1 and Si2 are
the two silicon atoms in a surface dimer, and C1 and C4 are the outer carbons in the
organic molecule, it was possible to show that a simple modification of the molecule
substantially lowers the free energy of the retro–Diels–Alder reaction. Specifically, if
the hydrogen at the 2 position is replaced by a flourine, the free energy is lowered by
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Fig. 8.6 Free energy profiles for the addition of 1,3-butadiene and 2-F-1,3-butadiene to a

Si(100)-2×1 surface.

8-10 kcal/mol (Minary and Tuckerman, 2004; Iftimie et al., 2005). These calculations
were performed using a molecular dynamics protocol in which forces are obtained “on
the fly” from an electronic structure calculation (this is called ab initio molecular
dynamics (Car and Parrinello, 1985; Marx and Hutter, 2009)). The calculations are
performed at 300 K using 13 different values for ξ separated by a distance of 0.15 Å.

8.8 Umbrella sampling and weighted histogram methods

In this section, we will discuss another free energy technique known as umbrella sam-
pling (Torrie and Valleau, 1974; Torrie and Valleau, 1977). This method bears some
similarity to the blue moon ensemble approach, however, rather than constraining the
reaction coordinate, the latter is restrained with a biasing potential. The bias is usually
taken to be a harmonic potential of the form

W (f1(r1, ..., rN ), s) =
1

2
κ (f1(r1, ..., rN ) − s)2 , (8.8.1)

which is also known as an umbrella potential. Eqn. (8.8.1) is added to U(r) so that
the total potential is U(r) + W (f1(r), s). This potential is then used in a molecular
dynamics or Monte Carlo calculation. As is done in the blue moon ensemble approach,
the equilibrium value of the harmonic restraining potential is chosen to be a set of
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intermediate points s(1), ..., s(n) between s(i) and s(f), so that the reaction coordinate
q = f1(r) is “driven” between the two endpoint values. Each molecular dynamics
or Monte Carlo simulation will then yield a biased probability distribution P̃ (s, s(k))
k = 1, ..., n with s(1) = s(i) and s(n) = s(f) about each point s(k). From this set
of distribution functions, the true free energy profile across the entire range of the
reaction coordinate must be reconstructed.

When a biasing potential is used, reconstructing the full distribution requires an
unbiasing procedure. This parallels the use of a constraint in the blue moon ensemble
approach, which also requires an unbiasing factor in ensemble averages. The technique
we will present in this section is known as the weighted histogram analysis method,
or WHAM (Kumar et al., 1992). WHAM begins by defining the biased probability
distribution generated from each molecular dynamics or Monte Carlo simulation

P̃ (q, s(k)) = eβAk

∫
dNr e−βU(r)e−βW (f1(r),s(k))δ(f1(r) − q), (8.8.2)

where Ak is (apart from additive constants) the free energy associated with the biased
potential

e−βAk =

∫
dNr e−βU(r)e−βW (f1(r),s

(k)) = e−βA0

〈
e−βW (f1(r),s

(k))
〉

. (8.8.3)

In eqn. (8.8.3), the average is taken with respect to the unbiased potential U(r), and

e−βA0 =

∫
dNr e−βU(r) (8.8.4)

is just the unbiased configurational partition function. The factor exp(βAk) is, there-
fore, the correct normalization constant for eqn. (8.8.2).

Next, we define the unbiased probability distribution function Pk(q) corresponding
to the distribution P̃ (q, s(k)) as

Pk(q) = e−β(Ak−A0)eβW (q,s(k))P̃ (q, s(k)). (8.8.5)

We now “glue” these distributions together to give the full probability distribution
function P (q) by expressing P (q) as a linear combination of the distributions Pk(q):

P (q) =
n∑

k=1

Ck(q)Pk(q)

=

n∑
k=1

Ck(q)
[
e−β(Ak−A0)eβW (q,s(k))P̃ (q, s(k))

]
, (8.8.6)

where {Ck(q)} is a set of coefficients that must be optimized to give the best repre-
sentation of the true distribution P (q). The coefficients must satisfy the constraint

n∑
k=1

Ck(q) = 1. (8.8.7)

In order to determine the coefficients, we seek to minimize the statistical error
in the distribution generated by the WHAM procedure. Let H̃k(q) be the (biased)
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histogram obtained from each molecular dynamics or Monte Carlo simulation. Then,
the biased distribution is estimated by

P̃ (q, s(k)) ≈ 1

nkΔq
H̃k(q), (8.8.8)

where nk is the number of configurations sampled in the kth simulation and Δq is
the bin width used to compute the histogram. The statistical error in the biased
distribution for the kth umbrella window is then σ̃2

k = εk(q)H̃k(q)/(nkΔq), where
εk(q) measures the deviation as a function of q between the numerically sampled
distribution and the true distribution P (q) in the kth umbrella window. The error in
Pk(q) is then given by applying the square of the unbiasing factor

σ2
k = e−2β(Ak−A0)e2βW (q,s(k))σ̃2

k. (8.8.9)

We aim to minimize the total error

σ2 =

n∑
k=1

C2
k(q)σ2

k (8.8.10)

subject to eqn. (8.8.7). The constraint can be imposed by means of a Lagrange mul-
tiplier λ; then the error function to be minimized is

Σ2 =

n∑
k=1

C2
k(q)e−2β(Ak−A0)e2βW (q,s(k)) εk(q)H̃k(q)

(nkΔq)
− λ

(
n∑

k=1

Ck(q) − 1

)
. (8.8.11)

Thus, setting the derivative ∂Σ2/∂Ck(q) = 0 and solving for Ck(q) in terms of the
Lagrange multiplier, we find

Ck(q) =
λnkΔq

2εk(q)H̃k(q)e−2β(Ak−A0)e2βW (q,s(k))
. (8.8.12)

The Lagrange multiplier is now determined by substituting eqn. (8.8.12) into eqn.
(8.8.7). This yields

λ

n∑
k=1

nkΔq

2εk(q)H̃k(q)e−2β(Ak−A0)e2βW (q,s(k))
= 1 (8.8.13)

so that

λ =
1∑n

k=1 nkΔq/[2εk(q)H̃k(q)e−2β(Ak−A0)e2βW (q,s(k))]
. (8.8.14)

Substituting the Lagrange multiplier back into eqn. (8.8.12) gives the coefficients as

Ck(q) =
nk/[εk(q)H̃k(q)e−2β(Ak−A0)e2βW (q,s(k))]∑n
j=1 nj/[εj(q)H̃j(q)e−2β(Aj−A0)e2βW (q,s(j))]

. (8.8.15)

At this point, we make two vital assumptions. First, we assume that the error
function εk(q) is the same in all n umbrella windows, which is tantamount to assuming
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that the sampling is of equal quality for each simulation. Note that this does not
necessarily mean that all simulations should be of equal length, as the relaxation of
the system along directions in configuration space orthogonal to q might be longer
or shorter depending on the value of q. The second assumption is that the biased
histogram in each umbrella window H̃k(q) is well estimated by simply applying the
biasing factor directly to the target distribution P (q), i.e.

H̃k(q) ∝ eβ(Ak−A0)e−βW (q,s(k))P (q) (8.8.16)

which, again, will be approximately true if there is adequate sampling. Once these
assumptions are introduced into eqn. (8.8.15), the coefficients are finally given by

Ck(q) =
nkeβAke−βW (q,s(k))∑n
j=1 njeβAje−βW (q,s(j))

. (8.8.17)

Therefore, the distribution is given by

P (q) =

∑n
k=1 nkPk(q)∑n

k=1 nkeβ(Ak−A0)e−βW (q,s(k))
. (8.8.18)

Although the WHAM procedure might seem straightforward, eqn. (8.8.18) only defines
P (q) implicitly because the free energy factors in eqn. (8.8.18) are directly related to
P (q) by

e−β(Ak−A0) =

∫
dq P (q)e−βW (q,s(k)). (8.8.19)

Eqns. (8.8.18) and (8.8.19), therefore, constitute a set of self-consistent equations, and
the solution for the coefficients and the free energy factors must be iterated to self-
consistency. The iteration is usually started with an initial guess for the free energy
factors Ak. Note that the WHAM procedure only yields Ak up to an overall addi-
tive constant A0. When applying the WHAM procedure, care must be taken that the
assumption of equal quality sampling in each umbrella window is approximately sat-
isfied. If this is not the case, the WHAM iteration can yield unphysical results which
might, for example, appear as holes in the final distribution. Once P (q) is known, the
free energy profile is given by eqn. (8.6.5).

We note, finally, that Kästner and Thiel (2005) showed how to combine the um-
brella sampling and thermodynamic integration techniques. Their approach makes use
of the bias in eqn. (8.8.1) as a means of obtaining the free energy derivative dA/dq in
each umbrella window. The method assumes that if the bias is sufficiently strong to
keep the reaction coordinate q = f1(r) very close to s(k) in the kth window, then the
probability distribution P (q) can be well represented by a Gaussian distribution:

P (q) ≈ 1√
2πσ2

k

e−(q−q̄k)2/2σ2
k . (8.8.20)

Here, q̄k is the average value of the reaction coordinate in the kth window and σ2
k is

the variance, both of which are computed via a molecular dynamics or Monte Carlo
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simulation in the window. Because we have assumed a specific form for the distribution,
we can calculate the unbiased approximation to the derivative dAk/dq in the kth
window

dAk

dq
=

1

βσ2
k

(q − q̄k) − κ(q − s(k)). (8.8.21)

Let nw and n represent the number of umbrella windows and thermodynamic inte-
gration points, respectively. We now obtain the full derivative profile dA/dq at each
integration point q(i) by “gluing” the windows together as in the original WHAM
procedure:

dA

dq(i)
=

nw∑
k=1

Ck(q(i))
dAk

dq

∣∣∣∣
q=q(i)

. (8.8.22)

The coefficients Ck(q) satisfy eqn. (8.8.7). Eqns. (8.8.20), (8.8.21), and (8.8.22) are the
starting points for the development of a weighted histogram method that is consider-
ably simpler than the one developed previously as it eliminates the global constant A0.
Once the values of dA/dq(i) are obtained (see Problem 8.12), a numerical integration
is used to obtain the full free energy profile A(q).

8.9 Wang–Landau sampling

In Section 7.6 of Chapter 7, we introduced the Wang–Landau approach for obtaining
a flat density of energy states g(E). There we showed that in addition to a move in
configuration space from r0 to r leading to an energy change from E0 to E, with a
Metropolis acceptance probability

acc(r0 → r) = min

[
1,

g(E0)

g(E)

]
, (8.9.1)

the density of states g(E) is scaled at each energy E visited by a factor f : g(E) →
fg(E). Here r0 is a complete set of initial Cartesian coordinates, and r is the complete
set of trial Cartesian coordinates. Initially, we take g(E) to be 1 for all possible energies.

The Wang–Landau sampling scheme has been extended to reaction coordinates
by F. Calvo (2002). The idea is to use the Wang–Landau scaling f (see Section 7.6)
to generate a function that approaches the probability P (s) in eqn. (8.7.1) over many
Monte Carlo passes. Let g(s) be a function that we initially take to be 1 over the entire
range of s, i.e. over the entire range of the reaction coordinate q1 = f1(r1, ..., rN ) ≡
f(r). Let h(s) = ln g(s) so that h(s) is initially zero everywhere. A Monte Carlo
simulation is performed with the Metropolis acceptance rule:

acc(r0 → r) = min

[
1,

exp (−βU(r))

exp (−βU(r0))

g(s0)

g(s)

]

=

[
1,

exp (−βU(r))

exp (−βU(r0))

exp (−h(s))

exp (−h(s0))

]
. (8.9.2)

Here s0 = f1(r0) and s = f1(r). In addition to this acceptance rule, for each value s
of the reaction coordinate q1 = f1(r) visited, the function h(s) is updated according
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to h(s) → h(s) + α, where α = ln f . This is equivalent to scaling g(s) → fg(s). As
the simulation proceeds, g(s) approaches the true probability P (s), and the histogram
H(s) will become flat. Typically, f is initially chosen large, e.g. f = e1, and is gradually
reduced to 1, which means that α is initially chosen to near 1 and is reduced to 0. Note
that the Metropolis acceptance rule in eqn. (8.9.2) is equivalent to the usual acceptance
rule using a modified potential Ũ(r1, ..., rN ) = U(r1, ..., rN ) − kTh(f1(r1, ..., rN )).

8.10 Adiabatic dynamics

In this section, we show how the AFED approach introduced in Section 8.3 can be
extended to treat reaction coordinates, and we will provide a detailed analysis of the
adiabatic dynamics, demonstrating how it leads to the free energy profile directly from
the adiabatic probability distribution function.

Suppose there are n < 3N generalized coordinates qα that describe a certain pro-
cess and for which we are interested in the free energy hypersurface A(q1, ..., qn).
Consider the full canonical partition function

Q(N, V, T ) = CN

∫
dNp dNr exp

{
−β

[
N∑

i=1

p2
i

2mi
+ U(r1, ..., rN )

]}
. (8.10.1)

We now introduce the transformation to generalized coordinates qα = fα(r1, ..., rN )
in the configurational part of the partition function, leaving the momenta unchanged,
which yields

Q(N, V, T ) = CN

∫
dNp d3N q exp

{
−β

[
N∑

i=1

p2
i

2mi
+ Ṽ (q1, ..., q3N , β)

]}
, (8.10.2)

where Ṽ (q1, ..., q3N , β) = Ũ(q1, ..., q3N ) − kT ln J(q1, ..., q3N ) and J(q1, ..., q3N ) is the
Jacobian of the transformation. Of course, the partition functions in eqns. (8.10.1)
and (8.10.2) are equal and, therefore, yield the same thermodynamic properties of
the system. However, consider using the argument of eqn. (8.10.2) as a Hamiltonian
with the 3N Cartesian components of the momenta as “conjugate” to the generalized
coordinates q1, ..., q3N . This Hamiltonian takes the form

H̃(q,p, β) =

N∑
i=1

p2
i

2mi
+ Ṽ (q1, ..., q3N , β)

=
N∑

i=1

p2
i

2mi
+ Ũ(q1, ..., q3N ) − kT ln J(q1, ..., q3N ) (8.10.3)

and is not equivalent to the physical Hamiltonian in the argument of the exponential in
eqn. (8.10.1). Therefore, H̃ does not yield the same dynamics. Nevertheless, trajectories
of either Hamiltonian, if used in conjunction with a thermostat, yield configurations
consistent with the canonical ensemble for the system, underscoring the fact that
the integrals in the configurational partition function can be performed in any set of
coordinates.
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In order to exploit eqn. (8.10.3) for the development of a free energy method, it
is useful to express both kinetic and potential energies as explicit functions of 3N
variables. To this end, let us reindex the N masses m1, ..., mN using the notation m′

α,
where α = 1, ..., 3N . Here, of course, m′

1 = m′
2 = m′

3 = m1, m′
4 = m′

5 = m′
6 = m2,

and so forth. Let α index the 3N Cartesian components of the N momentum vectors,
we can write eqn. (8.10.3) as

H̃(q,p, β) =

3N∑
α=1

p2
α

2m′
α

+ Ṽ (q1, ..., q3N ). (8.10.4)

Eqn. (8.10.4) is the starting point for our analysis of adiabatic motion.
We now develop a scheme for computing the free energy surface A(q1, ..., qn) of

the first n reaction coordinates when this surface is characterized by high barriers and
direct sampling of the probability distribution function is not possible. As was done
in Section 8.3, we propose to assign these first n coordinates a temperature Tq � T
so that the free energy barriers can be easily surmounted. However, we recognize
that introducing two temperatures into the system leads to incorrect thermodynamics
unless we also allow the masses m′

1, ..., m
′
n to be much larger than the remaining 3N−n

masses. In this way, the first n coordinates will be adiabatically decoupled from the
remaining 3N − n coordinates, and it can be shown that the adiabatic probability
distribution function Padb(q1, ..., qn) generated by the dynamics of eqn. (8.10.4) under
the adiabatic conditions is

A(q1, ..., qn) = −kTq ln Padb(q1, ..., qn) + const. (8.10.5)

The remainder of this section will be devoted to a derivation of eqn. (8.10.5) by a
detailed analysis of the adiabatic dynamics followed by several illustrative examples.
Readers wishing to skip the analysis can jump ahead to the examples without loss of
continuity.

In order to maintain the two temperatures, we introduce two separate thermostats,
one at Tq for the first n coordinates and the second at T for the remaining 3N − n
coordinates. For notational simplicity, we express the equations of motion in terms of
a simple Nosé–Hoover type (see Section 4.8.3),

q̇α =
pα

m′
α

ṗα = − ∂Ṽ

∂qα
− pη1

Q1
pα α = 1, ..., n

ṗα = − ∂Ṽ

∂qα
− pη2

Q2
pα α = n + 1, ..., 3N

η̇j =
pηj

Qj

ṗη1 =

n∑
α=1

p2
α

2m′
α

− nkTq
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ṗη2 =

3N∑
α=n

p2
α

2m′
α

− (3N − n)kT. (8.10.6)

In practice, it is recommended to employ a more robust thermostatting scheme such
as Nosé–Hoover chains (see Section 4.10), the method in Problem 4.2 of Chapter 4, or
Langevin thermostats to be discussed in Chapter 15.

The time evolution of the system is generated by the Liouville operator. In order
to keep the discussion general, we write this operator as

iL =
3N∑
α=1

[
pα

m′
α

∂

∂qα
+ Fα(q)

∂

∂pα

]
+ iLtherm,1(Tq) + iLtherm,2(T ), (8.10.7)

where Fα(q) = −∂Ṽ /∂qα and iLtherm,1(Tq) and iLtherm,2(T ) are the Liouville opera-
tors for the two thermostats. If xt denotes the full phase space vector, including all
variables related to the thermostats, then the time evolution of the system is formally
given by

xt = eiLtx0. (8.10.8)

The key to analyzing this unusual dynamics is to factorize the propagator exp(iLt) in
a way consistent with the adiabatic decoupling. To this end, we define the following
combinations of terms in eqn. (8.10.7):

iLref,1 =

n∑
α=1

pα

m′
α

∂

∂qα
+ iLtherm,1(Tq)

iLref,2 =
3N∑

α=n+1

pα

m′
α

∂

∂qα
+ iLtherm,2(T )

iL2 = iLref,2 +

3N∑
α=1

Fα(q)
∂

∂pα
(8.10.9)

and express the total Liouville operator as

iL = iLref,1 + iL2. (8.10.10)

Let Δt be a time interval characteristic of the motion of the hot, heavy, and slow-
moving reaction coordinates q1, ..., qn. Then, a Trotter decomposition of the propagator
appropriate for the adiabatically decoupled motion is

eiLΔt = eiL2Δt/2eiLref,1ΔteiL2Δt/2 + O
(
Δt3

)
. (8.10.11)

Note that the operator exp(iL2Δt/2) has terms that vary on a time scale much faster
than Δt and must be further decomposed. Using the ideas underlying the multiple
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time-scale integrators of Section 3.11, we write this operator using the Trotter theorem
as

exp

(
iL2

Δt

2

)
= lim

M→∞

[
exp

(
Δt

4M

3N∑
α=1

Fα
∂

∂qα

)

× exp

(
iLref,2

Δt

2M

)
exp

(
Δt

4M

3N∑
α=1

Fα
∂

∂qα

)]M

. (8.10.12)

It proves useful to decompose the phase space vector as x = (X, Y, PX , PY , ΓX , ΓY ),
where X denotes the full set of reaction coordinates, PX , their momenta, Y , the
remaining 3N − n coordinates, PY , their momenta, and ΓX and ΓY , the thermostat
variables associated with the temperatures Tq and T , respectively. Thus, when eqn.
(8.10.12) is substituted into eqn. (8.10.11) and the resulting operator is taken to act
on the initial phase space vector x0, the result for heavy, slow reaction coordinates is

Xα(Δt) = Xα,ref [X(0), Ẋ(Δt/2), ΓX(0); Δt]

Ẋα(Δt) = Ẋα,ref [X(0), Ẋ(Δt/2), ΓX(0); Δt]

+

(
Δt

2m′
α

)
2

Δt

∫ Δt

Δt/2

dt Fα[X(Δt), Yadb(Y (Δt/2), Ẏ (Δt/2), ΓY (Δt/2), X(Δt); t)]

Ẋα(Δt/2) = Ẋα(0)

+

(
Δt

2m′
α

)
2

Δt

∫ Δt/2

0

dt Fα[X(0), Yadb(Y (0), Ẏ (0), ΓY (0), X(0); t)]

Yγ(Δt/2) = Yα,adb[Y (0), Ẏ (0), ΓY (0), X(0); Δt/2]

Ẏγ(Δt/2) = Ẏα,adb[Y (0), Ẏ (0), ΓY (0), X(0); Δt/2]

Yγ(Δt) = Yγ,adb[Y (Δt/2), Ẏ (Δt/2), ΓY (Δt/2), X(Δt); Δt]

Ẏγ(Δt) = Ẏγ,adb[Y (Δt/2), Ẏ (Δt/2), ΓY (Δt/2), X(Δt); Δt]. (8.10.13)

In eqn. (8.10.13), Xα,ref [X(0), Ẋ(0), ΓX(0); Δt] represents the evolution of Xα (α =
1, ..., n) up to time Δt under the action of the reference-system operator exp(iLref,1Δt)

starting from the initial conditions X(0), Ẋ(0), ΓX(0), with an analogous meaning
for Ẋα[X(0), Ẋ(0), ΓX(0); Δt]. Yγ,adb[Y (0), Ẏ (0), ΓY (0), X(0); Δt/2] denotes the exact
evolution of Yα up to time Δt/2 under the first action of the operator exp(iL2Δt/2)
given in the form of eqn. (8.10.12) starting from initial conditions Y (0), Ẏ (0), ΓY (0),
X(0) with an analogous meaning for Ẏγ,adb[Y (0), Ẏ (0), ΓY (0), X(0); Δt/2]. The func-
tions in the last two lines of eqn. (8.10.13) are similarly defined for the second action
of exp(iL2Δt/2). Although we do not have closed-form expressions for these functions
in general, we do not such closed forms for the present analysis. The important terms
in eqn. (8.10.13) are the time integrals of the forces on the slow reaction coordinates.
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These time integrals result from the action of the operator exp(iL2Δt/2) on the reac-
tion coordinates which, for finite M , leads to a sum of force terms at different times
Δt/M . This sum is in the form of a trapezoidal rule for a numerical integration in
time. Thus, when the limit M → ∞ is taken, these sums become continuous time
integrals.

Physically, eqn. (8.10.13) tells us that the force driving the slow reaction coordi-
nates is a time average over the motion of the 3N − n adiabatically decoupled fast
variables. If the n masses assigned to the reaction coordinates are very large, the
remaining variables will follow the slow reaction coordinates approximately instanta-
neously and sample large regions of their phase space at roughly fixed values of the
reaction coordinates. In this limit, the time integrals in eqn. (8.10.13) can be replaced
by configuration-space integrals, assuming that the motion of the fast variables is
ergodic:

2

Δt

∫ τ+Δt/2

τ

dt Fα[X, Yadb(Y (τ), Ẏ (τ), ΓY (τ), X ; t)]

=

∫
dY Fα(X, Y )e−βṼ (X,Y )∫

dY e−βṼ (X,Y )

=
∂

∂qα

1

β
ln ZY (q1, ..., qn; β). (8.10.14)

Here

ZY (q1, ..., qn; β) = ZY (X ; β) =

∫
dY e−βṼ (X,Y ) (8.10.15)

is the configurational partition function at fixed values of the reaction coordinates X =
(q1, ..., qn). Eqn. (8.10.14) defines an effective potential, the potential of mean force,
on which the reaction coordinates move. Thus, we can define an effective Hamiltonian
for the reaction coordinates as

Heff(X, PX) =

n∑
α=1

p2
α

2m′
α

− 1

β
ln ZY (q1, ..., qn; β). (8.10.16)

Since we assume the dynamics to be adiabatically decoupled, thermostats applied to
this Hamiltonian yield the canonical distribution of Heff(X, PX) at temperature Tq:

Padb(X) = Cn

[∫
dnp exp

{
−βq

n∑
α=1

p2
α

2m′
α

}]

× exp

{
−βq

(
− 1

β
ln ZY (q1, ..., qn)

)}
. (8.10.17)

From eqn. (8.10.17), we see that

Padb(X) ∝ [ZY (q1, ..., qn)]
βq/β

. (8.10.18)
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Since ZY (q1, ..., qn) is the potential of mean force for the reaction coordinates, the free
energy hypersurface A(q1, ..., qn) is, by definition,

A(q1, ..., qn) = − 1

β
ln ZY (q1, ..., qn), (8.10.19)

but from eqn. (8.10.18), it follows that

A(q1, ..., qn) = − 1

βq
ln Padb(q1, ..., qn) + const, (8.10.20)

which is eqn. (8.10.5). The constant in the second term comes from factors dropped
in eqn. (8.10.17) and is irrelevant to the overall free energy hypersurface.
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Fig. 8.7 Free energy profile for the potential in eqn. (8.10.21) shown together with the

bare double-well potential and the results of two simulations using the adiabatic free energy

approach. The simulations correspond to Tx = 10Ty and mx = 10my or mx = 300my .

As an illustration of adiabatic dynamics, consider a simple problem with two de-
grees of freedom x and y. The potential is chosen to be a double well in x coupled
linearly to a harmonic oscillator in y:

U(x, y) = D0

(
x2 − a2

)2
+

1

2
ky2 + λxy. (8.10.21)

The free energy profile A(x) for this system can be derive analytically with the result
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A(x) = D0

(
x2 − a2

)2 − λ2

2k
x2. (8.10.22)

The bare double well has minima at x = ±a and a barrier height of D0a
4 while the free

energy in eqn. (8.10.22) has minima at x = ±√
a2 + λ2/(4D0k) and a barrier height

of D0a
4+λ2a2/(2k)+λ4/(16D0k

2). Thus, in order to ensure sufficient barrier-crossing
in an adiabatic dynamics simulation, the temperature of the “reaction coordinate” x
should satisfy kTx > D0a

4. Now we only need to choose a mass mx such that x is
adiabatically decoupled from y. Consider the specific example of D0 = 5, a = 1, k = 1,
λ = 2.878, my = 1, and kTy = 1. To see how the choice of the mass mx affects the
final result, we plot, in Fig. 8.7, the free energy profile obtained in a simulation of
length 108 steps for Tx = 10Ty and two different choices of mx. The bare double-well
potential is also shown on the plot for reference. We see that as mx increases from
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Fig. 8.8 Schematic showing a coordinate system that can be used to obtain a dihedral angle

as an explicit coordinate from the positions of four atoms.

10my to 300my, the free energy profile obtained approaches the analytical result in
eqn. (8.10.22).

The adiabatic free energy dynamics approach can be used to generate the two-
dimensional free energy surface of the alanine dipeptide in Fig. 8.5. Its use requires a
transformation to a coordinate system that includes the backbone dihedral angles as
explicit coordinates (however, see Abrams and Tuckerman, 2008 ). Fig. 8.8 illustrates
how the transformation can be carried out. Each set of four neighboring atoms along
the backbone of a polymer or biomolecule define a dihedral angle. Fig. 8.8 shows that
when any four atoms with positions rk+1, ..., rk+4 labeled as 1, 2, 3, and 4 in the figure
are arranged in a coordinate frame such that the vector r3 − r2 lies along the z-axis
and the vector r2−r1 is parallel to the x-axis, then when the vector r4−r3 is resolved
into spherical-polar coordinates, the azimuthal angle is the dihedral angle denoted φ in
the figure. Since the transformation can be applied anywhere in the chain, let the four
atoms in an arbitrary dihedral angle be denoted rk+1, ..., rk+4. The transformation
can be carried out in the following simple steps:
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1. Transform rk+4 into a coordinate system whose origin is located at rk+3:

r′k+1 = rk+1, r′k+2 = rk+2, r′k+3 = rk+3, r′k+4 = rk+4 − rk+3. (8.10.23)

2. Rotate r′k+4 such that the vector r′k+2 − r′k+1 lies along the x-axis:

r′′k+1 = r′k+1, r′′k+2 = r′k+2, r′′k+3 = r′k+3

r′′k+4 = R(r′k+1, r
′
k+2, r

′
k+3)r

′
k+4. (8.10.24)

where R(r′k+1, r
′
k+2, r

′
k+3) is a rotation matrix given by

R(r′k+1, r
′
k+2, r

′
k+3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

(r′k+3−r′k+2)×(r′k+1−r′k+2)

|(r′
k+3

−r′
k+2

)×(r′
k+1

−r′
k+2

)| ×
r′k+3−r′k+2

|r′
k+3

−r′
k+2

|
(r′

k+3
−r′

k+2
)×(r′

k+1
−r′

k+2
)

|(r′
k+3

−r′
k+2

)×(r′
k+1

−r′
k+2

)|
r
′
k+3−r

′
k+2

|r′
k+3

−r′
k+2

|

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(8.10.25)
The rows of this matrix are the x, y, and z components of the three vectors shown.

3. The vectors r′′k+4 is resolved into spherical polar coordinates r′′k+4, θ
′′
k+4, φ

′′
k+4.

When this is done, the angle φ′′
k+4 is the dihedral angle.

The free energy surface in Fig. 8.5 is expressed in terms of the Ramachandran dihedral
angles φ and ψ, which characterize rotations about the bonds between the alpha-
carbon and the amide nitrogen and the alpha- and carbonyl carbons, respectively.
The surface was generated in an adiabatic dynamics calculation (Rosso et al., 2005)
using m(φ,ψ) = 50mC, T(φ,ψ) = 1500 K, in a periodic box of length 25.64 Å, which
contains one alanine-dipeptide and 558 water molecules. The simulation was performed
using the CHARMM22 force field (MacKerell et al., 1998). Data were collected over
4.7 ns. Note that in order to obtain the same level of convergence with two-dimensional
umbrella sampling, a total of 35 ns would be needed. Fig. 8.5 shows four local minima,
corresponding to the most favored conformations, which are known as αR at (φ, ψ) =
(−81,−63), C7eq (also β or C5) at (φ, ψ) = (−90, 170), C7ax at (φ, ψ) = (60,−115),
and αL at (φ, ψ) = (50, 63). These minima are ordered energetically such that if αR is
at zero free energy, then C7eq is 0.2 kcal/mol above it, followed by C7ax at 4.6 kcal/mol,
and αL at 8.2 kcal/mol. These minima are extended and helical motifs characteristic
of those found in protein folds.

8.11 Metadynamics

The last method we will describe for computing a free energy hypersurface is akin to a
dynamical version of the Wang–Landau approach from Section 7.6. The metadynamics
method (Laio and Parrinello, 2002) is a dynamical scheme in which energy basins are
“filled in” using a time-dependent potential that depends on the history of the system’s
trajectory. Once a basin is filled in, the system is driven into the next basin, which
is subsequently filled in, and so forth until the entire landscape is “flat.” When this
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state is achieved, the accumulated time-dependent potential is used to construct the
free energy profile.

In order to see how such a dynamics can be constructed, consider once again the
probability distribution function in eqn. (8.6.4). Since P (s1, ..., sn) is an ensemble
average

P (s1, ..., sn) =

〈
n∏

α=1

δ(fα(r1, ..., rN ) − sα)

〉
, (8.11.1)

we can replace the phase space average with a time average over a trajectory as

P (s1, ..., sn) = lim
T→∞

1

T

∫ T

0

dt

n∏
α=1

δ(fα(r1(t), ..., rN (t)) − sα), (8.11.2)

under the assumption of ergodic dynamics. In the metadynamics approach, we express
the δ-function as the limit of a Gaussian function as the width goes to 0 and the height
is goes to infinity:

δ(x − a) = lim
σ→∞

1√
2πσ2

e−(x−a)2/2σ2
(8.11.3)

Using eqn. (8.11.3), eqn. (8.11.2) can be rewritten as

P (s1, ..., sn) =

lim
T→∞

lim
Δs→0

1√
2πΔs2T

∫ T

0

dt

n∏
α=1

exp

[
− (sα − fα(r1(t), ..., rN (t)))2

2Δs2

]
. (8.11.4)

Thus, for finite T and finite Δs, eqn. (8.11.4) represents an approximation to P (s1, ..., sn),
which becomes increasingly accurate as T increases and the Gaussian width Δs de-
creases. For numerical evaluation, the integral in eqn. (8.11.4) is written as a discrete
sum so that the approximation becomes

P (s1, ..., sn) ≈

1√
2πΔs2T

N−1∑
k=0

exp

[
−

n∑
α=1

(sα − fα(r1(kΔt), ..., rN (kΔt)))
2

2Δs2

]
. (8.11.5)

Eqn. (8.11.5) suggests an intriguing bias potential that can be added to the original
potential U(r1, ..., rN ) to help the system sample the free energy hypersurface while
allowing for a straightforward reconstruction of this surface directly from the dynamics.
Consider a bias potential of the form

UG(r1, ..., rN , t) = W
∑

t=τG,2τG,...,

exp

[
−

n∑
α=1

(fα(r) − fα(rG(t)))
2

2Δs2

]
, (8.11.6)

where r ≡ r1, ..., rN , as usual, and rG(t) is the time evolution of the complete set of
Cartesian coordinates up to time t under the action of the potential U + UG, and τG
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is a time interval. The purpose of this bias potential is to add Gaussians of height W
and width Δs at intervals τG to the potential energy so that as time increases, these
Gaussians accumulate. If the system starts in a deep basin on the potential energy
surface, then this basin will be “filled in” by the Gaussians, thereby lifting the system
up toward the barrier until it is able to cross into the next basin, which is subsequently
filled by Gaussians until the system can escape into the next basin, and so forth.

Our analysis of the adiabatic dynamics approach shows that if the reaction co-
ordinates move relatively slowly, then they move instantaneously not on the bare
potential energy surface but on the potential of mean force surface A(q1, ..., qn). Thus,
if Gaussians are added slowly enough, then as time increases, UG takes on the shape of
−A(q1, ..., qn), since it has maxima where A has minima, and vice versa. Thus, given a
long trajectory rG(t) generated using the bias potential, the free energy hypersurface
is constructed using

A(q1, ..., qn) ≈ −W
∑

t=τG,2τG,...,

exp

[
−

n∑
α=1

(qα − fα(rG(t)))2

2Δs2

]
. (8.11.7)

A proposed proof that eqn. (8.11.7) generates the free energy profile is beyond the
scope of this book; the reader is referred to the work of Laio et al. (2005) for an
analysis based on the Langevin equation (see Chapter 15). It has also been proposed
that the efficiency of metadynamics can be improved by feeding information about the
accumulated histogram into the procedure for adding the Gaussians (Barducci et al.,
2008).

Before closing this section, we note briefly that some of the ideas from metady-
namics have been shown by Maragliano and Vanden-Eijnden (2006) and by Abrams
and Tuckerman (2008) to be useful within the adiabatic free energy dynamics ap-
proach for eliminating the need of explicit variable transformations, as discussed in
Section 8.10 (Maragliano and Vanden-Eijnden, 2006; Abrams and Tuckerman, 2008).
In order to derive this scheme, we start by writing the δ-functions in eqn. (8.6.4) as
the limit of a product of Gaussians

P (s1, ..., sn) =
CN

Q(N, V, T )
lim

κ→∞

(
βκ

2π

)n/2 ∫
dNp dNre−βH(r,p)

×
n∏

α=1

exp

[
−1

2
βκ (fα(r1, ..., rN ) − sα)

2

]
. (8.11.8)

The product of Gaussians can be added to the potential U(r) as a set of harmonic
oscillators with force constant κ. If, in addition, we multiple eqn. (8.11.8) by a set of
n additional uncoupled Gaussian integrals

n∏
α=1

∫
dpα e−βp2

α/2mα ,

then we can define an extended phase-space Hamiltonian of the form of the following
form
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H =

n∑
α=1

p2
α

2mα
+

N∑
i=1

p2
i

2mi
+ U(r1, ..., rN ) +

n∑
α=1

1

2
k (sα − fα(r))

2
(8.11.9)

for sampling the distribution in eqn. (8.11.8). The exact probability distribution in
eqn. (8.6.4) is recovered in the limit κ → ∞. The extended variables s1, ..., sn are
coupled via a harmonic potential to the n collective variables defined by the trans-
formation functions qα = fα(r). Note that the physical variables are in their normal
Cartesian form in eqn. (8.11.9). In this scheme, which is known as “temperature-
accelerated molecular dynamics” or driven adiabatic free-energy dynamics (d-AFED),
we apply adiabatic conditions of Section 8.10 on the extended phase-space variables
rather than directly on the collective variables. In doing so, we circumvent the need
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Fig. 8.9 Free energy surface of an alanine hexamer generated using the d-AFED method.

The energy scale on the right is in kcal/mol.

for explicit variable transformations. Thus, we assign the variables s1, ..., sn a tem-
perature Ts � T and masses ms � mi. The harmonic coupling is used in much the
same way as in umbrella sampling, except that the dynamics of the extended vari-
ables s1, ..., sn effectively “drag” the collective variables of interest over the full range
of their values, thereby sampling the free energy hypersurface. As in the method of
Section 8.10, the equations of motion need to be coupled to thermostats at the two
different temperatures in order to ensure proper canonical sampling. The free energy
surface is then approximated by the adiabatic probability distribution generated in
the extended variables s1, ..., sn

A(q1, .., qn) ≈ A(s1, ..., sn) = −kTs ln Padb(s1, ..., sn) (8.11.10)

and becomes exact in the limit κ → ∞. Because the temperature-accelerated scheme
does not require explicit transformations, it improves on the flexibility of the adiabatic
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free energy dynamics method by allowing a wider range of collective variables to be
used, and emerges as a powerful technique for sampling free energy hypersurfaces.

As an illustrative example of a d-AFED application, an alanine hexamer N-acetyl-
(Ala)6-methylamide was simulated in a 27.97 Å box of 698 TIP3P water molecules
at T = 300 K using the AMBER95 force field (Cornell et al., 1995). The collective
variables were taken to be the radius of gyration and number of hydrogen bonds in
eqns. (8.6.2) and (8.6.3), which were heated to a temperature of 600 K and assigned
masses of fifteen times the mass of a carbon atom. The spring constant κ was taken
to be 5.4× 106 K/Å2. The RESPA algorithm of Section 3.11 was used with a small
time step of 0.5 fs and 5 RESPA steps on the harmonic coupling. The free energy
surface, which could be generated in a 5 ns simulation is shown in Fig. 8.9 and shows
a clear minimum at NH ≈ 4 and RG ≈ 3.8 indicating that the folded configuration is
an right-handed α-helix.

8.12 The committor distribution and the histogram test

A

B

p  = 1/2
B

Isocommittor surface

Fig. 8.10 Schematic of the committor concept. In the figure, trajectories are initiated from

the isocommittor surface pB(r) = 1/2, which is also the transition state surface, so that an

equal number of trajectories “commit” to basins A and B.

We conclude this chapter with a discussion of the following question: How do we
know if a given reaction coordinate is a good choice for representing a particular
process of interest? After all, reaction coordinates are often chosen based on some
intuitive mental picture we might have of the process, and intuition can be misleading.
Therefore, it is important to have a test capable of revealing the quality of a chosen
reaction coordinate. To this end, we introduce the concept of a committor and its
associated probability distribution function (Geissler et al., 1999).

Let us consider a process that takes a system from state A to state B. We define
the committor as the probability pB(r1, ..., rN ) ≡ pB(r) that a trajectory initiated
from a configuration r1, ..., rN ≡ r with velocities sampled from a Maxwell-Boltzmann
distribution will arrive in state B before state A. If the configuration r corresponds to
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a true transition state, then pB(r) = 1/2. Inherent in the definition of the committor
is the assumption that the trajectory is stopped as soon as it ends up in either state
A or B. Therefore, pB(r) = 1 if r belongs to the state B and pB(r) = 0 if r belongs to
A. Fig. 8.10. It can be seen that, In principle, pB(r) is an exact and universal reaction
coordinate for any system. The idea of the committor is illustrated in

Unfortunately, we do not have an analytical expression for the committor, and
mapping out pB(r) numerically is intractable for large systems. Nevertheless, the com-
mittor forms the basis of a useful test that is able to determine the quality of a chosen
reaction coordinate. This test, referred to as the histogram test (Geissler et al., 1999;
Bolhuis et al., 2002; Dellago et al., 2002; Peters, 2006), applies the committor concept
to a reaction coordinate q(r). If q(r) is a good reaction coordinate, then the isosur-
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Fig. 8.11 Example histogram tests for evaluating the quality of a reaction coordinate. (a)

An example of a poor reaction coordinate; (b) An example of a good reaction coordinate.

faces q(r) = const should approximate the isosurfaces pB(r) = const of the committor.
Thus, we can test the quality of q(r) by calculating an approximation to the commit-
tor distribution on an isosurface of q(r). The committoe distribution is defined to be
the probability that pB(r) has the value p when q(r) = q‡, the value of q(r) at a
presumptive transition state. This probability distribution is given by

P (p) =
CN

Q(N, V, T )

∫
dNp

∫
q(r)=q‡

dNre−βH(r,p)δ(pB(r1, ..., rN ) − p), (8.12.1)

In discussing the histogram test, we will assume that q(r) is the generalized coordinate
q1(r). The histogram test is then performed as follows: 1) Fix the value of q1(r) at
q‡. 2) Sample an ensemble of M configurations q2(r), ..., q3N (r) corresponding to the
orthogonal degrees of freedom. This will lead to many values of each orthogonal coordi-

nate. Denote this set of orthogonal coordinates q
(k)
2 (r), ..., q

(k)
3N (r), where k = 1, ..., M .

3) For each of these sampled configurations, sample a set of initial velocities from a

Maxwell-Boltzmann distribution. 4) For the configuration q‡, q(k)
2 , ..., q

(k)
3N , use each set

of sampled initial velocities to initiate a trajectory and run the trajectory until the sys-
tem ends up in A or B, at which point, the trajectory is stopped. Assign the trajectory
a value of 1 if it ends up in state B and a value of 0 if it ends up in state A. When the
complete set of sampled initial velocities is exhausted for this particular orthogonal
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configuration, average the 1s and 0s, and record the average value as p(k). 5) Repeat
for all of the configurations sampled in step 2 until the full set of averaged probabilities
p(1), ..., p(M) is generated. 6) Plot a histogram of the probabilities p(1), ..., p(M). If the
histogram from step 6 peaks sharply at 1/2, then q(r) is a good reaction coordinate.
However, if the histogram is broad over the entire range (0, 1), then q(r) is a poor reac-
tion coordinate. Illustrations of good and poor reaction coordinates obtained from the
histogram test are shown in Fig. 8.11. Although the histogram test can be expensive
to carry out, it is, nevertheless, an important evaluation of the quality of a reaction
coordinate and its associated free energy profile. Once the investment in the histogram
test is made, the payoff can be considerable, regardless of whether the reaction coor-
dinate passes the test. If it does pass the test, then the same coordinate can be used
in subsequent studies of similar systems. If it does not pass the test, then it is clear
that the coordinate q(r) should be avoided for the present and similar systems.

8.13 Problems

8.1. Derive eqn. (8.3.6).

8.2. Write a program to compute the free energy profile in eqn. (8.3.6) using
thermodynamic integration. How many λ points do you need to compute
the integral accurately enough to obtain the correct free energy difference
A(1) − A(0)?

8.3. Write a program to compute the free energy difference A(1) − A(0) from
eqn. (8.3.6) using the free energy perturbation approach. Can you obtain an
accurate answer using a one-step perturbation, or do you need intermediate
states?

8.4. Derive eqn. (8.7.25).

8.5. Derive eqn. (8.10.22).

8.6. Consider a classical system with two degrees of freedom x and y described by
a potential energy

U(x, y) =
U0

a4

(
x2 − a2

)2
+

1

2
ky2 + λxy

and consider a process in which x is moved from the position x = −a to the
position x = 0.

a. Calculate the Helmholtz free energy difference ΔA for this process in a
canonical ensemble.

b. Consider now an irreversible process in which the ensemble is frozen in
time and, in each member of the ensemble, x is moved instantaneously
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from x = −a to x = 0, i.e., the value of y remains fixed in each ensemble
member during this process. The work performed on each system in the
ensemble is related to the change in potential energy in this process by

W = U(0, y) − U(−a, y)

(see eqn. (1.4.2)). By performing the average over of W over the initial
ensemble, that is, an ensemble in which x = −a for each member of the
ensemble, show that 〈W 〉 > ΔA.

c. Now perform the average of exp(−βW ) for the work in part b using the
same initial ensemble and show that the Jarzynski equality 〈exp(−βW )〉 =
exp(−βΔA) holds.

8.7. Calculate the unbiasing (Z(r)) and curvature (G(r)) factors (see eqns. (8.7.20)
and (8.7.31)) in the blue moon ensemble method for the following constraints:
a. a distance between two positions r1 and r2,

b. the difference of distances between r1 and r2 and r1 and r3, i.e., σ =
|r1 − r2| − |r1 − r3|,

c. the bend angle between the three positions r1, r2, and r3. Treat r1 as the
central position,

∗d. the dihedral angle involving the four positions r1, r2, r3, and r4.

8.8. For the enzyme–inhibitor binding free energy calculation illustrated in Fig. 8.1,
describe, in detail, the algorithm that would be needed to perform the calcu-
lation along the indirect path. What are the potential energy functions that
we be needed to describe each endpoint?

∗8.9. a. Write a program to perform an adiabatic free energy dynamics calculation
of the free energy profile A(x) corresponding to the potential in problem
4. Using the following values in your program: a = 1, U0 = 5, kTy = 1,
kTx = 5, my = 1, mx = 1000, λ = 2.878. Use separate Nosé–Hoover
chains to control the x and y temperatures.

b. Use your program to perform the histogram test of Section 8.12. Does
your histogram peak at p = 1/2?

8.10. Write adiabatic dynamics and thermodynamic integration codes to generate
the λ free energy profile of Fig. 8.2 using the switches f(λ) = (λ2 − 1)4 and
g(λ) = ((λ − 1)2 − 1)4. In your adiabatic dynamics code, use kTλ = 0.3,
kT = 1, mλ = 250, m = 1. For the remaining parameters, take ωx = 1,
ωy = 2, and κ = 1.

∗8.11. Derive eqns. (8.10.13).
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∗8.12. Develop a weighted histogram procedure to obtain the free energy derivative
dA/dqi at a set of integration points qi starting with eqn. (8.8.22). Describe
the difference between your algorithm and that corresponding to the original
WHAM procedure for obtaining Ak.

∗8.13. In this problem, we will illustrate how a simple change of integration variables
in the partition function can be used to create an enhanced sampling method.
The approach was originally introduced by Zhu et al. (2002) later enhanced
by Minary et al. (2007). Consider the double-well potential

U(x) =
U0

a4

(
x2 − a2

)2

The configurational partition function is

Z(β) =

∫
dx e−βU(x)

a. Consider the change of variables q = f(x). Assume that the inverse x =
f−1(q) ≡ g(q) exists. Show that the partition function can be expressed
as an integral of the form

Z(β) =

∫
dq e−βφ(q)

and give an explicit form for the potential φ(q).

b. Now consider the transformation

q = f(x) =

∫ x

−a

dy e−βŨ(y)

for −a ≤ x ≤ a and q = x for |x| > a and Ũ(x) is a continuous poten-
tial energy function. This transformation is known as a spatial-warping
transformation (Zhu et al., 2002; Minary et al., 2007). Show that f(x) is a
monotonically increasing function of x and, therefore, that f−1(q) exists.
Write down the partition function that results from this transformation.

c. If the function Ũ(x) is chosen to be Ũ(x) = U(x) for −a ≤ x ≤ a and
Ũ(x) = 0 for |x| > a, then the function φ(x) is a single-well potential
energy function. Sketch a plot of q vs. x, and compare the shape of φ(x)
as a function of x to φ(g(q)) as a function of q.

d. Argue, therefore, that a Monte Carlo calculation carried out based on
φ(q) or molecular dynamics calculation performed using the Hamiltonian
H(q, p) = p2/2m + φ(q) leads to an enhanced sampling algorithm for
high barriers over one that samples U(x) directly using Monte Carlo or
molecular dynamics and that the same equilibrium and thermodynamic
properties will result when this is done.
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Hint: From the plot of q vs. x, argue that a small change in q leads to a
change in x large enough to move it from one well of U(x) to the other.

e. Develop a Monte Carlo approach for sampling the distribution function

P (q) =
1

Z
e−βφ(q)

from part d.

f. Derive molecular dynamics equations of motion, including full expressions
for the force on q using the chain rule on the derivatives (dU/dx)(dx/dq)
and (dŨ/dx)(dx/dq) and develop a numerical procedure for obtaining
these forces.

Hint: Consider expanding exp[−βŨ(x)] in a set of orthogonal polyno-
mials such as Legendre polynomials Pl(α(x)) with α(x) ∈ [−1, 1]. What
should the function α(x) be?

8.14. It has been suggested (Peters et al., 2007) that the committor probability
pB(r) for a single reaction coordinate q(r) can be approximated by a function
πB(q(r)) that depends on r only through q(r).
a. What are the advantages and disadvantages of such an approximation?

b. Suppose that πB(q(r)) can be accurately fit to the following functional
form

πB(q(r)) =
1 + tanh(q(r))

2

Is q(r) a good reaction coordinate? Why or why not?
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Quantum mechanics

9.1 Introduction: Waves and particles

The first half of the twentieth century witnessed a revolution in physics. Classical
mechanics, with its deterministic world view, was shown not to provide a correct de-
scription of nature. New experiments were looking deeper into the microscopic world
than had been hitherto possible, and the results could not be rationalized using classi-
cal concepts. Consequently, a paradigm shift occurred: the classical world view needed
to be overthrown, and a new perspective on the physical world emerged.

One of the earliest of these important experiments concerned the radiation of elec-
tromagnetic energy from a black body. The classical theory of electromagnetism pre-
dicts that the intensity of radiation from a blackbody at wavelength λ is proportional
to 1/λ2, which diverges as λ → 0 in contradiction with experiment. In 1901, the Ger-
man physicist Max Planck postulated that the radiated energy cannot take on any
value but is quantized according to the formula E = nhν, where ν is the frequency of
the radiation, n is an integer, and h is a constant. With this simple hypothesis, Planck
correctly predicted shape of the intensity versus wavelength curves and determined the
value of h. The constant h is now known as Planck’s constant and has the accepted
value of h = 6.6208× 10−34J·s.

A second key experiment concerned the so-called photoelectric effect. When light
of sufficiently high frequency impinges on a metallic surface, electrons are ejected
from the surface with a residual kinetic energy that depends on the light’s frequency.
According to classical mechanics, the energy carried by an electromagnetic wave is
proportional to its amplitude, independent of its frequency, which contradicts the
observation. However, invoking Planck’s hypothesis, the impingent light carried energy
proportional to its frequency. Using Planck’s hypothesis, Albert Einstein was able to
provide a correct explanation of the photoelectric effect in 1905 and was awarded the
Nobel prize for this work in 1921. The photoelectric effect also suggests that, in the
context of the experiment, the impingent light behaves less like a wave and more like
a massless “particle” that is able to transfer energy to the electrons.

Finally, a fascinating experiment carried out by Davisson and Germer in 1927 inves-
tigated the interference patterns registered by a photosensitive detector when electrons
are allowed to impinge on a diffraction grating. This experiment reveals an interference
pattern very similar to that produced when coherent light impinges on a diffraction
grating, suggesting that, within the experiment, the electrons behave less like parti-
cles and more like waves. Moreover, where an individual electron strikes the detector
cannot be predicted. All that can be predicted is the probability that the electron
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will strike the detector in some small region. This fact suggests an object that exhibits
“wave-like” behavior over one that follows a precise particle-like trajectory predictable
from a deterministic equation of motion.

The notions of energy quantization, unpredictability of individual experimental
outcomes, and particle–wave duality are aspects of the modern theory of the micro-
scopic world known as quantum mechanics. Yet even this particle/wave description is
incomplete. For what exactly does it mean for a particle to behave like a wave and
a wave to behave like a particle? To answer this, we need to specify more precisely
what we mean by “wave” and “particle.” In general, a wave is a type of field describing
something that can vary over an extended region of space as a function of time. Exam-
ples are the displacement of a plucked string over its length or the air pressure inside
of an organ pipe. Mathematically, a wave is described by an amplitude, A(x, t) (in
one dimension) that depends on both space and time. In classical wave mechanics, the
form of A(x, t) is determined by solving the (classical) wave equation. Quantum theory
posits that the probability of an experimental outcome is determined from a partic-
ular “wave” that assigns to each possible outcome a (generally complex) probability
amplitude Ψ. If, for example, we are interested in the probability that a particle will
strike a detector at a location x at time t, then there is an amplitude Ψ(x, t) for this
outcome. From the amplitude, the probability that the particle will strike the detector
in a small region dx about the point x at time t is given by P (x, t)dx = |Ψ(x, t)|2dx.
Here,

P (x, t) = |Ψ(x, t)|2 (9.1.1)

is known as the probability density or probability distribution. Such probability am-
plitudes are fundamental in quantum mechanics because they directly relate to the
possible outcomes of experiments and lead to predictions of average quantities ob-
tained over many trials of an experiment. These averages are known as expectation
values. The spatial probability amplitude, Ψ(x, t), is determined by a particular type
of wave equation known as the Schrödinger equation. As we will see shortly, the frame-
work of quantum mechanics describes how to compute the probabilities and associated
expectation values of any type of physical observable beyond the spatial probability
distribution.

We now seek to understand what is meant by “particle” in quantum mechanics. A
particularly elegant description was provided by Richard Feynman in the context of his
path integral formalism (to be discussed in detail in Chapter 12). As we noted above,
the classical notion that particles follow precise, deterministic trajectories, breaks down
in the microscopic realm. Indeed, if an experiment can have many possible outcomes
with different associated probabilities, then it should follow that a particle can follow
many different possible paths between the initiation and detection points of an ex-
perimental setup. Moreover, it must trace all of these paths simultaneously! In order
to build up a probability distribution P (x, t), the different paths that a particle can
follow will have different associated weights or amplitudes. Since the particle evolves
unobserved between initiation and detection, it is impossible to conclude that a parti-
cle follows a particular path in between, and according to Feynman’s concept, physical
predictions can only be made by summing over all possible paths that lead between
the initiation and detection points. This sum over paths is referred to as the Feynman
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path integral. As we will see in Chapter 12, the classical path, i.e. the path predicted
by extremizing the classical action, is the most probable path, thereby indicating that
classical mechanics naturally emerges as an approximation to quantum mechanics.

Proceeding as we did for classical statistical mechanics, this chapter will review
the basic principles of quantum mechanics. In the next chapter, we will lay out the
statistical mechanical rules for connecting the quantum description of the microscopic
world to macroscopic observables. These chapters are by no means meant to be an
overview of the entire field of quantum mechanics, which could (and does) fill entire
books. Here, we seek only to develop the quantum-mechanical concepts that we will
use in our treatment of quantum statistical mechanics.

9.2 Review of the fundamental postulates of quantum mechanics

The fundamental postulates and definitions of quantum mechanics address the follow-
ing questions:

1. How is the physical state of a system described?

2. How are physical observables represented?

3. What are the possible outcomes of a given experiment?

4. What is the expected result when an average over a very large number of obser-
vations is performed?

5. How does the physical state of a system evolve in time?

6. What types of measurements are compatible with each other?

Let us begin by detailing how we describe the physical state of a system.

9.2.1 The state vector

In quantum theory, it is not possible to determine the precise outcome of a given
experimental measurement. Thus, unlike in classical mechanics, where the microscopic
state of a system is specified by providing the complete set of coordinates and velocities
of the particles at any time t, the microscopic state of a system in quantum mechanics is
specified in terms of the probability amplitudes for the possible outcomes of different
measurements made on the system. Since we must be able to describe any type of
measurement, the specification of the amplitudes remains abstract until a particular
measurement is explicitly considered. The procedure for converting a set of abstract
amplitudes to probabilities associated with the outcomes of particular measurements
will be given shortly. For now, let us choose a mathematically useful construct for
listing these amplitudes. Such a list is conveniently represented as a vector of complex
numbers, which we can specify as a column vector:

|Ψ〉 =

⎛
⎜⎜⎜⎜⎜⎝

α1

α2

α3

·
·
·

⎞
⎟⎟⎟⎟⎟⎠ . (9.2.1)
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We have introduced a special type of notation of this column vector, “|Ψ〉” with
half of an angle bracket, which is called a Dirac ket vector, after its inventor, the
English physicist P. A. M. Dirac. This notation is now standard in quantum mechanics.
The components of |Ψ〉 are complex probability amplitudes αk that related to the
corresponding probabilities by

Pk = |αk|2. (9.2.2)

The vector |Ψ〉 is called the state vector (note its similarity to the phase space vector
used to hold the physical state in classical mechanics). The dimension of |Ψ〉 must
be equal to the number of possible states in which the system might be observed.
For example, if the physical system were a coin, then we might observe the coin in a
“heads-up” or a “tails-up” state, and a coin-toss experiment is needed to realize one of
these states. In this example, the dimension of |Ψ〉 is 2, and |Ψ〉 could be represented
as follows:

|Ψ〉 =

(
αH

αT

)
. (9.2.3)

Since the sum of all the probabilities must be unity∑
k

Pk = 1, (9.2.4)

it follows that ∑
k

|αk|2 = 1. (9.2.5)

In the coin-toss example, an unbiased coin would have amplitudes αH = αT = 1/
√

2.
Dirac ket vectors live in a vector space known as the Hilbert space, which we will

denote as H. A complementary or dual space to H can also be defined in terms of
vectors of the form

〈Ψ| = (α∗
1 α∗

2 α∗
3 · · · ) , (9.2.6)

which is known as a Dirac bra vector. Hilbert spaces have numerous interesting prop-
erties, however the most important one for our present purposes is the inner or scalar
product between 〈Ψ| and |Ψ〉. This product is defined to be

〈Ψ|Ψ〉 =
∑

k

α∗
kαk =

∑
k

|αk|2 (9.2.7)

Note that the inner product requires both a bra vector and a ket vector. The terms
“bra” and “ket” are meant to denote two halves of a “bracket” (〈· · · | · · ·〉), which is
formed when an inner product is constructed. Combining eqn. (9.2.7) with (9.2.5), we
see that |Ψ〉 is a unit vector since 〈Ψ|Ψ〉 = 1.

A more general inner product between two Hilbert-space vectors

|φ〉 =

⎛
⎜⎜⎜⎜⎜⎝

φ1

φ2

φ3

·
·
·

⎞
⎟⎟⎟⎟⎟⎠ |ψ〉 =

⎛
⎜⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

·
·
·

⎞
⎟⎟⎟⎟⎟⎠ (9.2.8)
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is defined to be
〈ψ|φ〉 =

∑
k

ψ∗
kφk. (9.2.9)

Note that 〈φ|ψ〉 = 〈ψ|φ〉∗.
9.2.2 Representation of physical observables

In quantum mechanics, physical observables are represented by linear Hermitian op-
erators, which act on the vectors of the Hilbert space (we will see shortly why the
operators must be Hermitian). When the vectors of H are represented as bra and
ket vectors, such operators are represented by matrices. Thus, if Â is an operator
corresponding to a physical observable, we can represent it as

Â =

⎛
⎝A11 A12 A13 · · ·

A21 A22 A13 · · ·
· · · · · ·

⎞
⎠ . (9.2.10)

Moreover, Â must be a Hermitian operator, which means that the elements of Â satisfy

A∗
ji = Aij . (9.2.11)

The Hermitian conjugate of Â is defined as

Â† =

⎛
⎝ A∗

11 A∗
21 A31∗ · · ·

A12∗ A∗
22 A∗

31 · · ·
· · · · · ·

⎞
⎠ , (9.2.12)

and the requirement that Â be Hermitian means Â† = Â. Since the vectors of H are
column vectors, it is clear that an operator Â can act on a vector |φ〉 to yield a new
vector |φ′〉 via Â|φ〉 = |φ′〉, which is a simple matrix-vector product.

9.2.3 Possible outcomes of a physical measurement

Quantum mechanics postulates that if a measurement is performed on a physical
observable represented by an operator Â, the result must be one of the eigenvalues of
Â. From this postulate, we now see why observables must be represented by Hermitian
operators: A physical measurement must yield a real number, and Hermitian operators
have strictly real eigenvalues. In order to prove this, consider the eigenvalue problem
for Â cast in Dirac notation:

Â|ak〉 = ak|ak〉, (9.2.13)

where |ak〉 denotes an eigenvector of Â with eigenvalue ak. For a general Â, the cor-
responding equation cast in Dirac bra form would be

〈ak|Â† = 〈ak|a∗
k. (9.2.14)

However, since Â† = Â, this reduces to

〈ak|Â = 〈ak|a∗
k. (9.2.15)

Thus, if we multiply eqn. (9.2.13) by the bra vector 〈ak| and eqn. (9.2.15) by the ket
vector |ak〉, we obtain the following two equations:

〈ak|Â|ak〉 = ak〈ak|ak〉
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〈ak|Â|ak〉 = a∗
k〈ak|ak〉. (9.2.16)

Consistency between these two relations requires that ak = a∗
k, which proves that

the eigenvalues are real. Note that the operator Â can be expressed in terms of its
eigenvalues and eigenvectors as

Â =
∑

k

ak|ak〉〈ak|. (9.2.17)

The product |ak〉〈ak| is known as the outer or tensor product between the ket and bra
vectors.

Another important property of Hermitian operators is that their eigenvectors form
a complete orthonormal set of vectors that span the Hilbert space. In order to prove
orthonormality of the eigenvectors, we multiply eqn. (9.2.13) by the bra vector 〈aj |,
which gives

〈aj |Â|ak〉 = ak〈aj |ak〉. (9.2.18)

On the other hand, if we start with the bra equation (remembering the Â = Â† and
aj = a∗

j )

〈aj |Â = aj〈aj | (9.2.19)

and multiply by the ket vector |ak〉, we obtain

〈aj |Â|ak〉 = aj〈aj |ak〉. (9.2.20)

Subtracting eqn. (9.2.18) from (9.2.20) gives

0 = (ak − aj)〈aj |ak〉. (9.2.21)

If the eigenvalues of Â are not degenerate, then for k �= j, ak �= aj, and it is clear
that 〈aj |ak〉 = 0. If k = j, then (aj − aj) = 0, and 〈aj |aj〉 can take on any value. This
arbitrariness reflects the arbitrariness of the overall normalization of the eigenvectors
of Â. The natural choice for this normalization is 〈aj |aj〉 = 1, so that the eigenvectors

of Â are unit vectors. Therefore, the eigenvectors are orthogonal and have unit length,
hence, they are orthonormal. If some of the eigenvalues of Â are degenerate, we can
choose the eigenvectors to be orthogonal by taking appropriate linear combinations of
the degenerate eigenvectors and a procedure such as Gram-Schmidt orthogonalization
to produce an orthogonal set (see Problem 9.1). The last property we need to prove
is completeness of the eigenvectors of Â. Since a rigorous proof is considerably more
involved, we will simply sketch out the main points of the proof. Let G be the or-
thogonal complement space to H. By this, we mean that any vector that lies entirely
in G has no components along the axes of H. Let |bj〉 be a vector in G. Since Â

is defined entirely in H, matrix elements of the form 〈bj |Â|ak〉 and 〈ak|Â|bj〉 vanish.

Thus, Â|bj〉 has no components along any of the directions |ak〉. As a consequence, the

operator Â maps vectors of G back into G. This implies that Â must have at least one
eigenvector in G. However, this conclusion contradicts our original assumption that
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G is the orthogonal complement to H. Consequently, G must be a null space, which
means that the eigenvectors of Â span H.1

The most important consequence of the completeness relation is that an arbitrary
vector |φ〉 on the Hilbert space can be expanded in terms of the eigenvectors of any
Hermitian operator. For the operator Â, we have

|φ〉 = Î|φ〉 =
∑

k

|ak〉〈ak|φ〉 =
∑

k

Ck|ak〉, (9.2.22)

where the expansion coefficient Ck is given by

Ck = 〈ak|φ〉. (9.2.23)

Thus, to obtain the expansion coefficient Ck, we simply compute the inner product of
the vector to be expanded with the eigenvector |ak〉. Finally, we note that any function
g(Â) will have the same eigenvectors of Â with eigenvalues g(ak) satisfying

g(Â)|ak〉 = g(ak)|ak〉. (9.2.24)

Now that we have derived the properties of Hermitian operators and their eigen-
vector/eigenvalue spectra, we next consider several other aspects of the measurement
process in quantum mechanics. We stated that the result of a measurement of an
observable associated with a Hermitian operator Â must yield one of its eigenvalues.
If the state vector of a system is |Ψ〉, then the probability amplitude that a specific
eigenvalue ak will be obtained in a measurement of Â is determined by taking the
inner product of the corresponding eigenvector |ak〉 with the state vector:

αk = 〈ak|Ψ〉 (9.2.25)

and the corresponding probability is Pk = |αk|2. Interestingly, {αk} are just the coef-
ficients of an expansion of |Ψ〉 in the eigenvectors of Â:

|Ψ〉 =
∑

k

αk|ak〉. (9.2.26)

Thus, the more aligned the state vector is with a given eigenvector of Â, the greater
is the probability of obtaining the corresponding eigenvalue in a given measurement.
Clearly, if |Ψ〉 is one of the eigenvectors of Â, then the corresponding eigenvalue must
be obtained with 100% probability, since no other result is possible in this state.

Although we have not yet discussed the time evolution of the state vector, one
aspect of this evolution can be established immediately. According to our discussion,
when a measurement is made and yields a particular eigenvalue of Â, then immedi-
ately following the measurement, the state vector must somehow “collapse” onto the
corresponding eigenvector since, at that moment, we know with 100% certainty that

1Note that the argument pertains to finite-dimensional discrete vector spaces. In Section 9.2.5,
continuous vectors spaces will be introduced, for which such proofs are considerably more subtle.
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a particular eigenvalue was obtained as the result. Therefore, the act of measurement
changes the state of the system and its subsequent time development.2

Finally, suppose a measurement of Â is performed many times, with each repetition
carried out on the same state |Ψ〉. If we average over the outcomes of these measure-
ments, what is the result? We know that each measurement yields a different result
with probability |αk|2. The average over these trials yields the expectation value of Â
defined by

〈Â〉 = 〈Ψ|Â|Ψ〉. (9.2.27)

In order to verify this definition, consider, again, the expansion in eqn. (9.2.26). Sub-
stituting eqn. (9.2.26) into eqn. (9.2.27) gives

〈Â〉 =
∑
j,k

α∗
jαk〈aj |Â|ak〉

=
∑
j,k

α∗
jαkak〈aj |ak〉

=
∑
j,k

α∗
jαkakδjk

=
∑

j

aj |αj |2. (9.2.28)

The last line shows that the expectation value is determined by summing the possible
outcomes of a measurement of Â (the eigenvalues aj) times the probability |αj |2 that
each of these results is obtained. This is precisely what we would expect the average
over many trials to yield as the number of trials goes to infinity, so that every possible
outcome is ultimately obtained, including those with very low probabilities.

We noted above that the act of measurement of an operator Â causes a “collapse”
of the state vector onto one of the eigenvectors of Â. Given this, it follows that no
experiment can be designed that can measure two observables simultaneously unless
the two observables have a common set of eigenvectors. This is simply a consequence
of the fact that the state vector cannot simultaneously collapse onto two different
eigenvectors. Suppose two observables represented by Hermitian operators Â and B̂
have a common set of eigenvectors {|ak〉} so that the two eigenvalue equations

Â|ak〉 = ak|ak〉, B̂|ak〉 = bk|ak〉 (9.2.29)

are satisfied. It is then clear that

ÂB̂|ak〉 = akbk|ak〉
2In fact, the notion of a “collapsing” wave function belongs to one of several interpretations of

quantum mechanics and the measurement process known as the Copenhagen Interpretation. Another
interpretation, the so-called “many-worlds” interpretation, states that our universe is part of an

essentially infinite “multiverse”; when Â is measured, a different outcome is obtained in each member
of the multiverse. Other fascinating interpretations exist beyond these two. It has been suggested that
a more fundamental theory of the universe’s origin (e.g. string theory or loop quantum gravity) will
encode a more fundamental interpretation. Many interesting articles and books exist on this subject
for curious readers who wish to explore the subject further.
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B̂Â|ak〉 = bkak|ak〉
ÂB̂|ak〉 = B̂Â|ak〉

(ÂB̂ − B̂Â)|ak〉 = 0. (9.2.30)

Since |ak〉 is not a null vector, ÂB̂ − B̂Â must vanish as an operator. The operator

ÂB̂ − B̂Â ≡ [Â, B̂] (9.2.31)

is known as the commutator between Â and B̂. If the commutator between two opera-
tors vanishes, then the two operators have a common set of eigenvectors and hence can
be simultaneously measured. Conversely, two operators Â and B̂ that do not commute
([Â, B̂] �= 0) are said to be incompatible observables and cannot be simultaneously
measured.

9.2.4 Time evolution of the state vector

So far, we have referred to the state vector |Ψ〉 as a static object. In actuality, the state
vector is dynamic, and one of the postulates of quantum mechanics specifies how the
time evolution is determined. Suppose the system is characterized by a Hamiltonian
operator Ĥ. (How the Hamiltonian is obtained for a quantum mechanical system
when the classical Hamiltonian is known will be described in the next subsection.) As
in classical mechanics, the quantum Hamiltonian plays the special role of determining
the time evolution of the physical state. Quantum mechanics postulates that the time-
evolved state vector |Ψ(t)〉 satisfies

ih̄
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉, (9.2.32)

which is known as the Schrödinger equation after the Austrian physicist Erwin Schrödinger
(1887–1961) (for which he was awarded the Nobel Prize in 1933). Here h̄ is related to
Planck’s constant by h̄ = h/2π and is also referred to as Planck’s constant. Since eqn.
(9.2.32) is a first-order differential equation, it must be solved subject to an initial con-
dition |Ψ(0)〉. Interestingly, eqn. (9.2.32) bears a marked mathematical similarity to
the classical equation that determines the evolution of the phase space vector ẋ = iLx.
The Schrödinger equation can be formally solved to yield the evolution

|Ψ(t)〉 = e−iĤt/h̄|Ψ(0)〉. (9.2.33)

Again, note the formal similarity to the classical relation x(t) = exp(iLt)x(0). The
unitary operator

Û(t) = e−iĤt/h̄ (9.2.34)

is known as the time evolution operator or the quantum propagator. The term unitary
means that Û †(t)Û (t) = Î. Consequently, the action of Û(t) on the state vector cannot
change the magnitude of the vector, only its direction. This is crucial, as |Ψ(t)〉 must
always be normalized to 1 in order that it generate proper probabilities. Suppose the
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eigenvectors |Ek〉 and eigenvalues Ek of the Hamiltonian are known. These satisfy the
eigenvalue equation

Ĥ|Ek〉 = Ek|Ek〉. (9.2.35)

It is then straightforward to show that

|Ψ(0)〉 =
∑

k

|Ek〉〈Ek|Ψ(0)〉

|Ψ(t)〉 =
∑

k

e−iEkt/h̄|Ek〉〈Ek|Ψ(0)〉. (9.2.36)

If we know the initial amplitudes for obtaining the various eigenvalues of Ĥ in an
experiment designed to measure the energy, the time evolution of the state vector can
be determined. In general, the calculation of the eigenvectors and eigenvalues of Ĥ is
an extremely difficult problem that can only be solved for systems with a very small
number of degrees of freedom, and alternative methods for calculating observables are
typically needed.

9.2.5 Position and momentum operators

Up to now, we have formulated the theory of measurement in quantum mechanics
for observables with discrete eigenvalue spectra. While there certainly are observables
that satisfy this condition, we must also consider operators whose spectra are possibly
continuous. The most notable examples are the position and momentum operators
corresponding to the classical position and momentum variables.3 In infinite space,
the classical position and momentum variables are continuous, so that in a quantum
description, we require operators with continuous eigenvalue spectra. If x̂ and p̂ denote
the quantum mechanical position and momentum operators, respectively, then these
will satisfy eigenvalue equations of the form

x̂|x〉 = x|x〉 p̂|p〉 = p|p〉, (9.2.37)

where x and p are the continuous eigenvalues. In place of the discrete orthonormality
and completeness relations, we have continuous analogs, which take the form

〈x|x′〉 = δ(x − x′), 〈p|p′〉 = δ(p − p′)

∫
dx |x〉〈x| = Î ,

∫
dp |p〉〈p| = Î

|φ〉 =

∫
dx |x〉〈x|φ〉, |φ〉 =

∫
dp |p〉〈p|φ〉. (9.2.38)

The last line shows how to expand an arbitrary vector |φ〉 in terms of the position or
momentum eigenvectors.

3Note, however, that there are important cases in which the momentum eigenvalues are discrete.
An example is a free particle confined to a finite spatial domain, where the discrete momentum
eigenvalues are related to the properties of standing waves. This case will be discussed in Section 9.3.



Quantum mechanics

Quantum mechanics postulates that the position and momentum of a particle
are not compatible observables. That is, no experiment can measure both properties
simultaneously. This postulate is known as the Heisenberg uncertainty principle and
is expressed as a relation between the statistical uncertainties Δx ≡ √

〈x̂2〉 − 〈x̂〉2 and

Δp ≡ √
〈p̂〉2 − 〈p̂〉2:

ΔxΔp ≥ h̄

2
. (9.2.39)

Since Δx and Δp are inversely proportional, the more certainty we have about a
particle’s position, the less certain we are about its momentum, and vice versa. Thus,
any experiment designed to measure a particle’s position with a small uncertainty
must cause a large uncertainty in the particle’s momentum. The uncertainty principle
also tells us that the concepts of classical microstates and phase spaces are fictions,
as these require a specification of a particle’s position and momentum simultaneously.
Thus, a point in phase space cannot correspond to anything physical. The uncertainty
principle, therefore, supports the idea of a “coarse-graining” of phase space, which
was considered in Problem 2.5 of Chapter 2 and in Section 3.2. A two-dimensional
phase space should be represented as a tiling with squares of minimum area h̄/2.
These squares would represent the smallest area into which the particle’s position
and momentum can be localized. Similarly, the phase space of an N -particle system
should be coarse-grained into hypervolumes of size (h̄/2)3N . In the classical limit,
which involves letting h̄ → 0, we recover the notion of a continuous phase space as an
approximation.

The action of the operators x̂ and p̂ on an arbitrary Hilbert-space vector |φ〉 can
be expressed in terms of a projection of the resulting vector onto the basis of either
position or momentum eigenvectors. Consider the vector x̂|φ〉 and multiply on the left
by 〈x|, which yields 〈x|x̂|φ〉. Since 〈x|x̂ = 〈x|x, this becomes x〈x|φ〉. Remembering
that the eigenvalue x is continuous, the vectors |x〉 form a continuous set of vectors,
and hence, the inner product 〈x|φ〉 is a continuous function of x, which we can denote
as φ(x). Similarly, the inner project 〈p|φ〉 is a continuous function of p, which we can
denote as φ(p).

The uncertainty principle tells us that x̂ and p̂ do not commute. Can we, never-
theless, determine what [x̂, p̂] is? If we take the particle–wave duality as our starting
point, then we can, indeed, derive this commutator. Consider a free particle, for which
the classical Hamiltonian is H = p2/2m. The corresponding quantum operator is ob-
tained by promoting the classical momentum p to the quantum operator p̂ to give the
quantum Hamiltonian Ĥ = p̂2/2m. Since this Hamiltonian is a function of p̂ alone,

it follows that [Ĥ, p̂] = 0, so that Ĥ and p̂ have simultaneous eigenvectors. Consider,
therefore, the eigenvalue equation for p̂

p̂|p〉 = p|p〉 (9.2.40)

When this equation is projected into the coordinate basis, we obtain

〈x|p̂|p〉 = p〈x|p〉. (9.2.41)

The quantity 〈x|p〉 is a continuous function of the eigenvalues x and p. We can write
eqn. (9.2.41) as
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p̂〈x|p〉 = p〈x|p〉 (9.2.42)

if we specify how p̂ acts on the continuous function 〈x|p〉. Eqn. (9.2.42) is actually an
equation for a continuous eigenfunction of p̂ with eigenvalue p. This eigenfunction must
be a continuous function of x. According to the particle–wave duality, a free particle
should behave as if it were a wave with amplitude ψ(x) = exp(±ikx), where k is the
wave vector k = 2π/λ. The de Broglie hypothesis assigns a wavelength to a particle
given by λ = h/p, so that k = p/h̄. We now posit that the function exp(±ipx/h̄) is an
eigenfunction of p̂ and, therefore, a solution to eqn. (9.2.42) with eigenvalue p. This
means that, with proper normalization,

〈x|p〉 =
1√
2πh̄

eipx/h̄. (9.2.43)

However, eqn. (9.2.42) will only be true if p̂ acts on 〈x|p〉 as the derivative

p̂ → h̄

i

∂

∂x
(9.2.44)

Now, consider the commutator x̂p̂ − p̂x̂. If we sandwich this between the vectors 〈x|
and |p〉, we obtain

〈x|x̂p̂ − p̂x̂|p〉 = 〈x|x̂p̂|p〉 − 〈x|p̂x̂|p〉

= xp〈x|p〉 − p̂〈x|x̂|p〉

= xp〈x|p〉 − h̄

i

∂

∂x
(x〈x|p〉)

= xp〈x|p〉 + ih̄〈x|p〉 − xp̂〈x|p〉

= ih̄〈x|p〉, (9.2.45)

where the penultimate line follows from eqns. (9.2.40) and (9.2.44). Since |x〉 and |p〉
are not null vectors, eqn. (9.2.45) implies that the operator

x̂p̂ − p̂x̂ = [x̂, p̂] = ih̄Î. (9.2.46)

Next, consider a classical particle of mass m moving in one dimension with a
Hamiltonian

H(x, p) =
p2

2m
+ U(x). (9.2.47)

The quantum Hamiltonian operator Ĥ is obtained by promoting both p̂ and x̂ to
operator, which yields

Ĥ(x̂, p̂) =
p̂2

2m
+ U(x̂). (9.2.48)

The promotion of a classical phase space function to a quantum operator via the
substitution x → x and p → p̂ is known as the quantum-classical correspondence
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principle. Using eqn. (9.2.44), we can now project the Schrödinger equation onto the
basis of position eigenvectors:

〈x|Ĥ(x̂, p̂)|Ψ(t)〉 = ih̄
∂

∂t
〈x|Ψ(t)〉

− h̄2

2m

∂2

∂x2
Ψ(x, t) + U(x)Ψ(x, t) = ih̄

∂

∂t
Ψ(x, t), (9.2.49)

where Ψ(x, t) ≡ 〈x|Ψ(t)〉. Eqn. (9.2.49) is a partial differential equation that is often
referred to as the Schrödinger wave equation, and the function Ψ(x, t) is referred to
as the wave function. Despite the nomenclature, eqn. (9.2.49) differs from a classical
wave equation in that it is complex and only first-order in time, and it includes a
multiplicative potential energy term U(x)Ψ(x, t). A solution Ψ(x, t) is then used to
compute expectation values at time t of any operator. In general, the promotion of
classical phase space functions a(x) or b(p), which depend only on position or momen-
tum, to quantum operators follows by simply replacing x by the operator x̂ and p by
the operator p̂. In this case, the expectation values Â(x̂) or B̂(p̂) are defined by

〈Â〉t = 〈Ψ(t)|Â(x̂)|Ψ(t)〉 =

∫
dx Ψ∗(x, t)Ψ(x, t)a(x)

〈B̂〉t = 〈Ψ(t)|B̂(p̂)|Ψ(t)〉 =

∫
dx Ψ∗(x, t)b

(
h̄

i

∂

∂x

)
Ψ(x, t) (9.2.50)

For phase space functions a(x, p) that depend on both position and momentum, pro-
motion to a quantum operator is less straightforward for the reason that in a classical
function, how the variables x and p are arranged is irrelevant, but the order matters
considerably in quantum mechanics! Therefore, a rule is needed as to how the opera-
tors x̂ and p̂ are ordered when the operator Â(x̂, p̂) is constructed. Since we will not
encounter such operators in this book, we will not belabor the point except to refer to
one rule for such an ordering due to H. Weyl (1927) (see also Hillery et al.,(1984)). If
a classical phase space function has the form a(x, p) = xnpm, its Weyl ordering is

xnpm −→ 1

2n

n∑
r=0

(
n
r

)
x̂n−rp̂mx̂r (9.2.51)

for n < m.
Using the analysis leading up to eqn. (9.2.50), the eigenvalue equation for the

Hamiltonian can also be expressed as a differential equation:[
− h̄2

2m

∂2

∂x2
+ U(x)

]
ψk(x) = Ekψk(x), (9.2.52)

where ψk(x) ≡ 〈x|Ek〉. The functions, ψk(x) are the eigenfunctions of the Hamilto-
nian. Because eqns. (9.2.49) and (9.2.52) differ only in their right-hand sides, the for-
mer and latter are often referred to as the “time-dependent” and “time-independent”
Schrödinger equations, respectively.
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Eqn. (9.2.52) yields the well-known quantum-mechanical fact of energy quantiza-
tion. Even in one dimension, the number of potential functions U(x) for which eqns.
(9.2.49) or (9.2.52) can be solved analytically is remarkably small.4 In solving eqn.
(9.2.52), if for any given eigenvalue Ek, there exist M independent eigenfunctions,
then that energy level is said to be M -fold degenerate.

Finally, let us extend this framework to three spatial dimensions. The position
and momentum operators are now vectors r̂ = (x̂, ŷ, ẑ) and p̂ = (p̂x, p̂y, p̂z). The
components of vectors satisfy the commutation relations

[x̂, ŷ] = [x̂, ẑ] = [ŷ, ẑ] = 0

[p̂x, p̂y] = [p̂x, p̂z] = [p̂y, p̂z] = 0

[x̂, p̂x] = [ŷ, p̂y] = [ẑ, p̂z] = ih̄Î. (9.2.53)

All other commutators between position and momentum components are 0. Therefore,
given a Hamiltonian of the form

Ĥ =
p̂2

2m
+ U(r̂), (9.2.54)

the eigenvalue problem can be expressed as a partial differential equation using the mo-
mentum operator substitutions p̂x → −ih̄(∂/∂x), p̂y → −ih̄(∂/∂y), p̂z → −ih̄(∂/∂z).
This leads to an equation of the form

[
− h̄2

2m
∇2 + U(r)

]
ψk(r) = Ekψk(r), (9.2.55)

where the label k = (kx, ky, kz) indicates that three quantum numbers are needed to
characterize the states.

9.2.6 The Heisenberg picture

An important fact about quantum mechanics is that it supports multiple equivalent
formulations, which allows us to choose the formulation that is most convenient for the
problem at hand. The picture of quantum mechanics we have been describing postu-
lates that the state vector |Ψ(t)〉 evolves in time according to the Schrödinger equation
and the operators corresponding to physical observables are static. This formulation
is known as the Schrödinger picture of quantum mechanics. In fact, there exists a
perfectly equivalent alternative formulation in which the state vector is taken to be
static and the operators evolve in time. This formulation is known as the Heisenberg
picture.

4An excellent treatise on such problems can be found in the book by S. Flügge, Practical Quantum
Mechanics (1994).
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In the Heisenberg picture, an operator Â corresponding to an observable evolves
in time according to the Heisenberg equation of motion:

dÂ

dt
=

1

ih̄
[Â, Ĥ]. (9.2.56)

Note the mathematical similarity to the evolution of a classical phase space function:

dA

dt
= {A, H}. (9.2.57)

This similarity suggests that the commutator [Â, Ĥ]/ih̄ becomes the Poisson bracket
{A, H} in the classical limit. Like the Schrödinger equation, the Heisenberg equation
can be solved formally to yield

Â(t) = eiĤt/h̄Â(0)e−iĤt/h̄ = Û †(t)Â(0)Û(t). (9.2.58)

The initial value Â(0) that appears in eqn. (9.2.58) is the operator Â in the Schrödinger
picture. Thus, given a state vector |Ψ〉, the expectation value of the operator Â(t) in
the Heisenberg picture is simply

〈Â(t)〉 = 〈Ψ|Â(t)|Ψ〉. (9.2.59)

The Heisenberg picture makes clear that any operator Â that commutes with the
Hamiltonian satisfies dÂ/dt = 0 and, hence, does not evolve in time. Such an operator
is referred to as a constant of the motion. In the Schrödinger picture, if an operator
is a constant of the motion, the probabilities associated with the eigenvalues of the
operator do not evolve in time. To see this, consider the evolution of the state vector
in the Schrödinger picture:

|Ψ(t)〉 = e−iĤt/h̄|Ψ(0)〉. (9.2.60)

The probability of obtaining an eigenvalue ak of Â at time t is given by |〈ak|Ψ(t)〉|2.
Thus, taking the inner product on both sides with 〈ak|, we find

〈ak|Ψ(t)〉 = 〈ak|e−iĤt/h̄|Ψ(0)〉. (9.2.61)

If [Â, Ĥ] = 0, then |ak〉 is an eigenvector of Ĥ with an eigenvalue, say Ek. Hence, the
amplitude for obtaining ak at time t is

〈ak|Ψ(t)〉 = e−iEkt/h̄〈ak|Ψ(0)〉. (9.2.62)

Taking the absolute squares of both sides, the complex exponential disappears, and
we obtain

|〈ak|Ψ(t)〉|2 = |〈ak|Ψ(0)〉|2, (9.2.63)

which implies that the probability at time t is the same as at t = 0. Any operator that
is a constant of the motion can be simultaneously diagonalized with the Hamiltonian,
and the eigenvalues of the operator can be used to characterize the physical states
along with those of the Hamiltonian. As these eigenvalues are often expressed in terms
of integers, and these integers are referred to as the quantum numbers of the state.
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9.3 Simple examples

In this section, we will consider two simple examples, the free particle and the harmonic
oscillator, which illustrate how energy quantization arises and how the eigenstates of
the Hamiltonian can be determined and manipulated.

9.3.1 The free particle

The first example is a single free particle in one dimension. In a sense, we solved this
problem in Section 9.2.5 using an argument based on the particle–wave duality. Here,
we work backwards, assuming eqn. (9.2.44) is true and solve the eigenvalue problem
explicitly. The Hamiltonian is

Ĥ =
p̂2

2m
. (9.3.1)

The eigenvalue problem for Ĥ can be expressed as

p̂2

2m
|Ek〉 = Ek|Ek〉 (9.3.2)

which, from eqn. (9.2.52), is equivalent to the differential equation

−h̄2

2m

d2

dx2
ψk(x) = Ekψk(x). (9.3.3)

Solution of eqn. (9.3.3) requires determining the functions ψk(x), the eigenvalues Ek

and the appropriate quantum number k. The problem can be simplified considerably
by noting that Ĥ commutes with p̂. Therefore, ψk(x) are also eigenfunctions of p̂,
which means we can determine these by solving the simpler equation p̂|p〉 = p|p〉. In
the coordinate basis, this is a simple differential equation

h̄

i

d

dx
φp(x) = pφp(x), (9.3.4)

which has the solution φp(x) = C exp(ipx/h̄). Here, C is a normalization constant
to be determined by the requirement of orthonormality. First, let us note that these
eigenfunctions are characterized by the eigenvalue p of momentum, hence the p sub-
script. We can verify that the functions are also eigenfunctions of Ĥ by substituting
them into eqn. (9.3.3). When this is done, we find that the energy eigenvalues are also
characterized by p and are given by Ep = p2/2m. We can, therefore, write the energy
eigenfunctions as

ψp(x) = φp(x) = Ceipx/h̄, (9.3.5)

and it is clear that different eigenvalues and eigenfunctions are distinguished by their
value of p.

The requirement that the momentum eigenfunctions be orthonormal is expressed
via eqn. (9.2.38), i.e., 〈p|p′〉 = δ(p− p′). By inserting the identity operator in the form
of Î =

∫
dx|x〉〈x| between the bra and ket vectors, we can express this condition as

〈p|p′〉 =

∫ ∞

−∞
dx〈p|x〉〈x|p′〉 = δ(p − p′). (9.3.6)
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Since, by definition, 〈p|x〉 = φp(x) = ψp(x), we have

|C|2
∫ ∞

−∞
dx e−ipx/h̄eip′x/h̄ = |C|22πh̄δ(p − p′), (9.3.7)

and it follows that C = 1/
√

2πh̄. Hence, the normalized energy and momentum eigen-
functions are ψp(x) = exp(ipx/h̄)/

√
2πh̄. These eigenfunctions are known as plane

waves. Note that they are oscillating functions of x defined over the entire spatial
range x ∈ (−∞,∞). Moreover, the corresponding probability distribution function
Pp(x) = |ψp(x)|2 is spatially uniform. If we consider the time dependence of the eigen-
functions

ψp(x, t) ∼ exp

[
ipx

h̄
− iEpt

h̄

]
(9.3.8)

(which can be easily shown to satisfy the time-dependent Schrödinger equation), then
this represents a free wave moving to the right for p > 0 and to the left for p < 0 with
frequency ω = Ep/h̄.

As noted in Section 9.2.5, the momentum and energy eigenvalues are continuous
because p is a continuous parameter that can range from −∞ to ∞. This results
from the fact that the system is unbounded. Let us now consider placing our free
particle in a one-dimensional box of length L, which is more in keeping with the
paradigm of statistical mechanics. If x is restricted to the interval [0, L], then we need
to impose boundary conditions x = 0 and x = L. We first analyze the case of periodic
boundary conditions, for which we require that ψp(0) = ψp(L). Imposing this on the
eigenfunctions leads to

Ceip·0/h̄ = 1 = CipL/h̄. (9.3.9)

Since eiθ = cos θ + i sin θ, the only way to satisfy this condition is to require that pL/h̄
is an integer multiple of 2π. Denoting this integer as n, we have the requirement

pL

h̄
= 2πn ⇒ p =

2πh̄

L
n ≡ pn, (9.3.10)

and we see immediately that the momentum eigenvalues are no longer continuous but
are quantized. Similarly, the energy eigenvalues are now also quantized as

En =
p2

n

2m
=

2π2h̄2

mL2
n2. (9.3.11)

In eqns. (9.3.10) and (9.3.11), n can be any integer.
This example illustrates the important concept that the quantized energy eigenval-

ues are determined by the boundary conditions. In this case, the fact that the energies
are discrete leads to a discrete set of eigenfunctions distinguished by the value of n
and given by

ψn(x) = Ceipnx/h̄ = Ce2πinx/L. (9.3.12)

These functions are orthogonal but not normalized. The normalization condition de-
termines the constant C: ∫ L

0

|ψn(x)|2dx = 1
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|C|2
∫ L

0

e−2πinx/Le2πinx/Ldx = 1

|C|2
∫ L

0

dx = 1

|C|2L = 1

C =
1√
L

. (9.3.13)

Hence, the normalized functions for a particle in a periodic box are

ψn(x) =
1√
L

exp(2πinx/L). (9.3.14)

Another interesting boundary condition is ψp(0) = ψp(L) = 0, which corresponds
to hard walls at x = 0 and x = L. We can no longer satisfy the boundary condition with
a right- or left-propagating plane wave. Rather, we need to take a linear combination
of right- and left-propagating waves to form a sin wave, which is also a standing wave
in the box. This is possible because the Schrödinger equation is linear, hence any linear
combination of eigenfunctions with the same eigenvalue is also an eigenfunction. In
this case, we need to take

ψp(x) = C sin
(px

h̄

)
=

C

2i

[
eipx/h̄ − e−ipx/h̄

]
, (9.3.15)

which manifestly satisfies the boundary condition at x = 0. This function satisfies
the boundary condition at x = L only if pL/h̄ = nπ, where n is a positive integer.
This leads to the momentum quantization condition p = nπL/h̄ ≡ pn and the energy
eigenvalues

En =
p2

n

2m
=

h̄2π2

2mL2
n2. (9.3.16)

The eigenfunctions become

ψn(x) = C sin
(nπx

L

)
. (9.3.17)

Normalizing yields C =
√

2/L for the constant. From eqn. (9.3.17), it is clear why n
must be strictly positive. If n = 0, then ψn(x) = 0 everywhere, which would imply that
the particle exists nowhere. Finally, since the eigenfunctions are already constructed
from combinations of right- and left-propagating waves, to form standing waves in the
box, allowing n < 0 only changes the sign of the eigenfunctions (which is a trivial
phase factor) but not the physical content of the eigenfunctions (probabilities and
expectation values are not affected by an overall sign). Note that the probability
distribution Pn(x) = (2/L) sin2(nπx/L) is no longer uniform.
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9.3.2 The harmonic oscillator

The second example we will consider is a single one-dimensional particle moving in a
harmonic potential U(x) = mω2x2/2, so that the Hamiltonian becomes

Ĥ =
p̂2

2m
+

1

2
mω2x̂2. (9.3.18)

The eigenvalue equation for Ĥ becomes, according to eqn. (9.2.52),[
− h̄2

2m

d2

dx2
+

1

2
mω2x2

]
ψn(x) = Enψn(x). (9.3.19)

Here, we have anticipated that because the particle is asymptotically bounded (U(x) →
∞ as x → ±∞), the energy eigenvalues will be discrete and characterized by an integer
n. Since the potential becomes infinitely large as x → ±∞, we have the boundary
conditions ψn(∞) = ψn(−∞) = 0.

The solution of this second-order differential equation is not trivial and, therefore,
we will not carry out its solution in detail. However, the interested reader is referred
to the excellent treatment in Principles of Quantum Mechanics by R. Shankar (1994).
The solution does, indeed, lead to a discrete set of energy eigenvalues given by the
familiar formula

En =

(
n +

1

2

)
h̄ω n = 0, 1, 2, .... (9.3.20)

and a set of normalized eigenfunctions

ψn(x) =

(
mω

22n(n!)2πh̄

)1/4

e−mωx2/2h̄Hn

(√
mω

h̄
x

)
, (9.3.21)

where {Hn(y)} are the Hermite polynomials

Hn(y) = (−1)ney2 d2

dyn
e−y2

. (9.3.22)

The first few of these eigenfunctions are

ψ0(x) =
(α

π

)1/4

e−αx2/2

ψ1(x) =

(
4α3

π

)1/4

xe−αx2/2

ψ2(x) =
( α

4π

)1/4 (
2αx2 − 1

)
e−αx2/2

ψ3(x) =

(
α3

9π

)1/4 (
2αx3 − 3x

)
e−αx2/2, (9.3.23)

where α = mω/h̄. These are plotted in Fig. 9.1. Note that the number of nodes in
each eigenfunction is equal to n. Doing actual calculations with these eigenfunctions is



Simple examples

x

ψ
0
(x)

x

ψ3(x)

x

ψ
2
(x)

x

ψ
1
(x)

Fig. 9.1 The first four eigenfunctions of a harmonic oscillator.

mathematically cumbersome. It turns out, however, that there is a simple and conve-
nient framework for the harmonic oscillator in terms of the abstract set of ket vectors
|n〉 that define the eigenfunctions through 〈x|n〉 = ψn(x).

If we exploit the symmetry between p̂ and x̂ in the harmonic-oscillator Hamiltonian,
we can factorize the sum of squares to give

Ĥ =

[
p̂2

2mh̄ω
+

mω

2h̄
x̂2

]
h̄ω

=

[(√
mω

2h̄
x̂ − i√

2mh̄ω
p̂

)(√
mω

2h̄
x̂ +

i√
2mh̄ω

p̂

)
+

1

2

]
h̄ω. (9.3.24)

The extra 1/2 appearing in eqn. (9.3.24) arises from the nonzero commutator between
x̂ and p̂, [x̂, p̂] = ih̄Î. Let us now define two operators

â =

√
mω

2h̄
x̂ +

i√
2mh̄ω

p̂

â† =

√
mω

2h̄
x̂ − i√

2mh̄ω
p̂ , (9.3.25)
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which can be shown to satisfy the commutation relation

[â, â†] = 1. (9.3.26)

In terms of these operators, the Hamiltonian can be easily derived with the result

Ĥ =

(
â†â +

1

2

)
h̄ω. (9.3.27)

The action of â and â† on the eigenfunctions of Ĥ can be worked out using the fact
that

âψn(x) =

[√
α

2
x +

1√
2α

d

dx

]
ψn(x) (9.3.28)

together with the recursion relation for Hn(y): H ′
n(y) = 2nHn−1(y). Here, we have

used the fact that p = (h̄/i)(d/dx). After some algebra, we find that

âψn(x) =
√

nψn−1(x). (9.3.29)

Similarly, it can be shown that

â†ψn(x) =
√

n + 1ψn+1(x). (9.3.30)

These relations make it possible to bypass the eigenfunctions and work in an abstract
ket representation of the energy eigenvectors, which we denote simply as |n〉. The
above relations can be expressed compactly as

â|n〉 =
√

n|n − 1〉, â†|n〉 =
√

n + 1|n + 1〉. (9.3.31)

Because the operator â† changes an eigenvector of Ĥ into the eigenvector corresponding
to the next highest energy, it is called a raising operator or creation operator. Similarly,
the operator â changes an eigenvector of Ĥ into the eigenvector corresponding to the
next lowest energy, and hence it is called a lowering operator or annihilation operator.
Note that â|0〉 = 0 by definition.

The raising and lowering operators simplify calculations for the harmonic oscillator
considerably. Suppose, for example, we wish to compute the expectation value of the
operator x̂2 for a system prepared in one of the eigenstates ψn(x) of Ĥ. In principle,
one could work out the scary-looking integral

〈n|x̂2|n〉 =

(
α

π22n(n!)2

)1/2 ∫ ∞

−∞
x2e−αx2

H2
n(
√

αx)dx. (9.3.32)

However, since x̂ has a simple expression in terms of the â and â†,

x̂ =

√
h̄

2mω

(
â + â†) , (9.3.33)

the expectation value can be evaluated in a few lines. Note that 〈n|n′〉 = δnn′ by
orthogonality. Thus,

〈n|x̂2|n〉 =
h̄

2mω
〈n| (â2 + ââ† + â†â + (â†)2

) |n〉
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=
h̄

2mω

[√
n(n − 1)〈n|n − 2〉 + (n + 1)〈n|n〉

+ n〈n|n〉 +
√

(n + 1)(n + 2)〈n|n + 2〉
]

=
h̄

2mω
(2n + 1). (9.3.34)

Thus, by expressing x̂ and p̂ in terms of â and â†, we can easily calculate expectation
values and arbitrary matrix elements, such as 〈n|x̂2|n′〉.

9.4 Identical particles in quantum mechanics: Spin statistics

In 1922, an experiment carried out by Otto Stern and Walter Gerlach showed that
quantum particles possess an intrinsic property that, unlike charge and mass, has
no classical analog. When a beam of silver atoms is sent through an inhomogeneous
magnetic field with a field increasing from the south to north poles of the magnet,
the beam splits into two distinct beams. The experiment was repeated in 1927 by
T. E. Phipps and J. B. Taylor with hydrogen atoms in their ground state in order to
ensure that the effect truly reveals an electronic property. The result of the experiment
suggests that the particles comprising the beam possess an intrinsic property that
couples to the magnetic field and takes on discrete values. This property is known
as the magnetic moment μ̂M of the particle, which is defined in terms of a more
fundamental property called spin Ŝ. These two quantities are related by μ̂M = γŜ,
where the constant of proportionality γ is the spin gyromagnetic ratio, γ = −e/mec.

The energy of a particle of spin Ŝ fixed in space but interacting with a magnetic field B
is E = −μ̂M ·B = −γŜ ·B. Unlike charge and mass, which are simple scalar quantities,
spin is expressed as a vector operator and can take on multiple values for a given
particle. When the beam in a Stern–Gerlach experiment splits in the magnetic field,
for example, this indicates that there are two possible spin states. Since a particle
with a magnetic moment resembles a tiny bar magnet, the spin state that has the
south pole of the bar magnet pointing toward the north pole of the external magnetic
field will be attracted to the stronger field region, and the opposite spin state will be
attracted toward the weaker field region.

The three components of the spin vector Ŝ = (Ŝx, Ŝy, Ŝz) satisfy the commutation
relations

[Ŝx, Ŝy] = ih̄Ŝz, [Ŝy, Ŝz] = ih̄Ŝx, [Ŝz, Ŝx] = ih̄Ŝy. (9.4.1)

These commutation relations are similar to those satisfied by the three components
of the angular momentum operator L̂ = r̂ × p̂. A convenient way to remember the
commutation relations is to note that they can be expressed compactly as Ŝ×Ŝ = ih̄Ŝ.
Since spin is an intrinsic property, a particle is said to be a spin-s particle, where s
can be either an integer of a half-integer. A spin-s particle can exist in 2s + 1 possible
spin states, which, by convention, are taken to be the eigenvectors of the operator Ŝz.
The eigenvalues of Ŝz then range from −sh̄, (−s + 1)h̄, ..., (s − 1)h̄, sh̄. For example,
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the spin operators for a spin-1/2 particle can be represented by 2×2 matrices of the
form

Ŝx =
h̄

2

(
0 1
1 0

)
, Ŝy =

h̄

2

(
0 −i
i 0

)
, Ŝz =

h̄

2

(
1 0
0 −1

)
(9.4.2)

and the spin-1/2 Hilbert space is a two-dimensional space. The two spin states have as-
sociated spin eigenvalues m = −h̄/2 and m = h̄/2, and the corresponding eigenvectors
are given by

|m = h̄/2〉 ≡ |χ1/2〉 =

(
1
0

)
, |m = −h̄/2〉 ≡ |χ−1/2〉 =

(
0
1

)
, (9.4.3)

which are (arbitrarily) referred to as “spin-up” and “spin-down,” respectively. The
spin-up and spin-down states are also sometimes denoted |α〉 and |β〉, though we will

not make use of this nomenclature. Note that the operator Ŝ2 = Ŝ · Ŝ = Ŝ2
x + Ŝ2

y + Ŝ2
z

is diagonal and, therefore, shares common eigenvectors with Sz. These eigenvectors
are degenerate, however, having the eigenvalue s(s + 1)h̄2. Finally, if the Hamiltonian

is independent of the spin operator, then eigenvectors of Ĥ are also eigenvectors of Ŝ2

and Ŝz, since all three can be simultaneously diagonalized.
How the physical states of identical particles are constructed depends on the spin

of the particles. Consider the example of two identical spin-s particles. Suppose a
measurement is performed that can determine that one of the particles has an Sz

eigenvalue of mah̄ and the other mbh̄ such that ma �= mb. Is the state vector of the total
system just after this measurement |ma; mb〉 ≡ |ma〉⊗|mb〉 or |mb; ma〉 ≡ |mb〉⊗|ma〉?
Note that, in the first state, particle 1 has an Ŝz eigenvalues mah̄, and particle 2 has
mbh̄ as the Ŝz eigenvalue. In the second state, the labeling is reversed. The answer
is that neither state is correct. Since the particles are identical, the measurement is
not able to assign the particular spin states of each particle. In fact, the two states
|ma; mb〉 and |mb; ma〉 are not physically equivalent states. Two states |Ψ〉 and |Ψ′〉
can only be physically equivalent if there is a complex scalar α such that

|Ψ〉 = α|Ψ′〉 (9.4.4)

and there is no such number relating |ma; mb〉 to |mb; ma〉. Therefore, we need to con-
struct a new state vector |Ψ(ma, mb)〉 such that |Ψ(mb, ma)〉 is physically equivalent to
|ψ(ma, mb)〉. Such a state is the only possibility for correctly representing the physical
state of the system immediately after the measurement. Let us take as an ansatz

|Ψ(ma, mb)〉 = C|ma; mb〉 + C′|mb; ma〉. (9.4.5)

If we require that
|Ψ(ma, mb)〉 = α|Ψ(mb, ma)〉, (9.4.6)

then
C|ma; mb〉 + C′|mb; ma〉 = α (C|mb; ma〉 + C′|ma; mb〉) , (9.4.7)

from which it can be seen that
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C = αC′ C′ = αC (9.4.8)

or

C′ = α2C′. (9.4.9)

The only solution to these equations is α = ±1 and C = ±C ′. This gives us two possible
physical states of the system, a state that is symmetric (S) under an exchange of Ŝz

eigenvalues and one that is antisymmetric (A) under such an exchange. These states
are given by

|ΨS(ma, mb)〉 ∝ |ma; mb〉 + |mb; ma〉

|ΨA(ma, mb)〉 ∝ |ma; mb〉 − |mb; ma〉. (9.4.10)

Similarly, suppose we have two identical particles in one dimension, and we perform an
experiment capable of determining the position of each particle. If the measurement
determines that one particle is at position x = a and the other is at x = b, then
the state of the system after the measurement would be one of the two following
possibilities:

|ΨS(a, b)〉 ∝ |a b〉 + |b a〉

|ΨA(a, b)〉 ∝ |a b〉 − |b a〉. (9.4.11)

How do we know whether a given pair of identical particles will opt for the symmetric
or antisymmetric state? In order to resolve this ambiguity, the standard postulates of
quantum mechanics need to be supplemented by an additional postulate that speci-
fies which of the two possible physical states the particle pair will assume. The new
postulate states the following: In nature, particles are of two possible types – those
that are always found in symmetric (S) states and those that are always found in
antisymmetric (A) states. The former are known as bosons (named for the Indian
physicist Satyendra Nath Bose (1894–1974)) and the latter as fermions (named for the
Italian physicist Enrico Fermi (1901-1954)). Fermions are half-integer-spin particles
(s = 1/2, 3/2, 5/2,...), while bosons are integer-spin particles (s = 0, 1, 2,...). Exam-
ples of fermions are the electron, the proton, neutron and 3He nucleus, all of which
are spin-1/2 particles. Examples of bosons are 4He, which is spin-0, and photons,
which are spin-1. Note that the antisymmetric state has the important property that
if ma = mb, |ΨA(ma, ma)〉 = |ΨA(mb, mb)〉 = 0. Since identical fermions are found in
antisymmetric states, it follows that no two identical fermions can be found in nature
in exactly the same quantum state. Put another way, no two identical fermions can
have the same set of quantum numbers. This statement is known as the Pauli exclusion
principle after its discoverer, the Austrian physicist Wolfgang Pauli (1900–1958).

Suppose a system is composed of N identical fermions or bosons with coordinate
labels r1, ..., rN and spin labels s1, ..., sN . The spin labels designate the eigenvalue of
Ŝz for each particle. Let us define, for each particle, a combined label xi ≡ ri, si. Then,



Quantum mechanics

for a given permutation P (1), ..., P (N) of the particle indices 1,..,N , the wave function
will be totally symmetric if the particles are bosons:

ΨB(x1, ...,xN ) = ΨB(xP (1), ....,xP (N)). (9.4.12)

For fermions, as a result of the Pauli exclusion principle, the wave function is antisym-
metric with respect to an exchange of any two particles in the systems. Therefore, in
creating the given permutation, the wave function will pick up a factor of −1 for each
exchange of two particles that is performed:

ΨF(x1, ...,xN ) = (−1)NexΨF(xP (1), ....,xP (N)), (9.4.13)

where Nex is the total number of exchanges of two particles required in order to
achieve the permutation P (1), ..., P (N). An N -particle bosonic or fermionic state can
be created from a state Φ(x1, ...,xN ) which is not properly symmetrized but which,
nevertheless, is an eigenfunction of the Hamiltonian

ĤΦ = EΦ. (9.4.14)

Since there are N ! possible permutations of the N particle labels in an N -particle
state, the bosonic state ΨB(x1, ...,xN ) is created from Φ(x1, ...,xN ) according to

ΨB(x1, ...,xN ) =
1√
N !

N !∑
α=1

P̂αΦ(x1, ...,xN ), (9.4.15)

where P̂α creates 1 of the N ! possible permutations of the indices. The fermionic state
is created from

ΨF(x1, ...,xN ) =
1√
N !

N !∑
α=1

(−1)
Nex(α)

P̂αΦ(x1, ...,xN ), (9.4.16)

where Nex(α) is the number of exchanges needed to create permutation α. The N ! that
appears in the physical states is exactly the N ! introduced ad hoc in the expressions
for the classical partition functions to account for the identical nature of the particles
not explicitly treated in classical mechanics.

9.5 Problems

9.1. Generalize the proof in Section 9.2.3 of orthogonality of the eigenvectors of a
Hermitian operator to the case that some of the eigenvalues of the operator are
degenerate. Start by considering two degenerate eigenvectors: If |aj〉 and |ak〉
are two eigenvectors of Â with eigenvalue aj , show that two new eigenvectors
|a′

j〉 and |a′
k〉 can be constructed such that |a′

j〉 = |aj〉 and |a′
k〉 = |ak〉+ c|aj〉,

where c is a constant, and determine c such that 〈a′
j |a′

k〉 = 0. Generalize the
procedure to an arbitrary degeneracy.
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9.2. A spin-1/2 particle that is fixed in space interacts with a uniform magnetic
field B. The magnetic field lies entirely along the z-axis, so that B = (0, 0, B).
The Hamiltonian for this system is therefore

Ĥ = −γBŜz.

The dimensionality of the Hilbert space for this problem is 2.
a. Determine the eigenvalues and eigenvectors of Ĥ.

b. Suppose the system is prepared with an initial state vector

|Ψ(0)〉 =

(
1
0

)
.

Determine the state vector |Ψ(t)〉 at time t.

c. Determine the expectation values 〈Ψ(t)|Ŝx|Ψ(t)〉, 〈Ψ(t)|Ŝy |Ψ(t)〉, 〈Ψ(t)|Ŝz|Ψ(t)〉
for the time-dependent state computed in part b.

d. Suppose, instead, the system is prepared with an initial state vector

|Ψ(0)〉 =
1√
2

(
1
1

)
.

Determine the state vector |Ψ(t)〉 at time t.

e. Using the time-dependent state computed in part (d), determine the fol-
lowing expectation values: 〈Ψ(t)|Ŝx|Ψ(t)〉, 〈Ψ(t)|Ŝy|Ψ(t)〉, 〈Ψ(t)|Ŝz |Ψ(t)〉.

f. For the time-dependent state in part (d), determine the uncertainties

ΔSx, ΔSy and ΔSz, where ΔSα =

√
〈Ψ(t)|Ŝ2

α|Ψ(t)〉 − 〈Ψ(t)|Ŝα|Ψ(t)〉2,
for α = x, y, z.

9.3. Consider a free particle in a one-dimensional box that extends from x =
−L/2 to x = L/2. Assuming periodic boundary conditions, determine the
eigenvalues and eigenfunctions of the Hamiltonian for this problem. Repeat
for infinite walls at x = −L/2 and x = L/2.

9.4. A rigid homonuclear diatomic molecule rotates in the xy plane about an
axis through its center of mass. Let m be the mass of each atom in the
molecule, and let R be its bond length. Show that the molecule has a discrete
set of energy levels (energy eigenvalues) and determine the corresponding
eigenfunctions.

9.5. Given only the commutator relation between x̂ and p̂, [x̂, p̂] = ih̄Î and the
fact that p̂ → −ih̄(d/dx) when projected into the coordinate basis, show that
the inner product relation
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〈x|p〉 =
1√
2πh̄

eipx/h̄

follows.

9.6. Using raising and lowering operators, calculate the expectation value 〈n|x̂4|n〉
and general matrix elemeng〈n′|x̂4|n〉 for a one-dimensional harmonic oscilla-
tor.

9.7. Consider an unbounded free particle in one dimension such that x ∈ (−∞,∞).
An initial wave function Ψ(x, 0), where

Ψ(x, 0) =

[
1

2πσ2

]1/4

e−x2/4σ2

is prepared.
a. Determine the time evolution of the initial wave function and the corre-

sponding time-dependent probability density.

b. Calculate the uncertainties in x̂ and p̂ at time t. What is the product
ΔxΔp?

∗9.8. A charged particle with charge q and mass m moves in an external magnetic
field B = (0, 0, B). Let r̂ and p̂ be the position and momentum operators for
the particle, respectively. The Hamiltonian for the system is

Ĥ =
1

2m

(
p̂ − q

c
A(r̂)

)2

,

where c is the speed of light and A(r) is called the vector potential. A is
related to the magnetic field B by

B = ∇× A(r).

One possible choice for A is

A(r) = (−By, 0, 0).

The particles occupy a cubic box of side L that extends from 0 to L in each
spatial direction subject to periodic boundary conditions. Find the energy
eigenvalues and eigenfunctions for this problem. Are any of the energy levels
degenerate?

Hint: Try a solution of the form

ψ(x, y, z) = Cei(pxx+pzz)/h̄φ(y)

and show that φ(y) satisfies a harmonic oscillator equation with frequency
ω = qB/mc and equilibrium position y0 = −(cpx/qB). You may assume L is
much larger than the range of y − y0.
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∗9.9. Consider a system of N identical particles moving in one spatial dimension.
Suppose the Hamiltonian for the system is separable, meaning that it can be
expressed as a sum

Ĥ =

N∑
i=1

ĥ(x̂i, p̂i),

where x̂i and p̂i are the coordinate and momentum operators for particle i.
These operators satisfy the commutation relations

[x̂i, x̂j ] = 0, [p̂i, p̂j ] = 0, [x̂i, p̂j ] = ih̄δij .

a. If the Hamiltonian ĥ(x̂, p̂) is of the form

ĥ(x̂, p̂) =
p̂2

2m
+ U(x̂),

show that the eigenvalue problem for Ĥ can be expressed as N single-
particle eigenvalue problems of the form[

− h̄2

2m

∂2

∂x2
+ U(x)

]
ψki(x) = εkiψki(x),

such that the N -particle eigenvalues Ek1,...,kN , which are characterized
by N quantum numbers, are given by

Ek1,...,kN =

N∑
i=1

εki .

b. Show that if the particles could be treated as distinguishable, then the
eigenfunctions of Ĥ could be expressed as a product

Φk1,...kN (x1, ..., xN ) =

N∏
i=1

ψki(xi).

c. Show that if the particles are identical fermions, then the application of
eqn. (9.4.16) leads to a set of eigenfunctions Ψk1,...,kN (x1, ..., xN ) that is
expressible as the determinant of a matrix whose rows are of the form

ψk1(xP (1)) ψk2(xP (2)) · · ·ψkN (xP (N)).

Recall that P (1), ..., P (N) is one of the N ! permutations of the indices
1,...,N . Give the general form of this determinant. (This determinant is
called a Slater determinant after its inventor John C. Slater (1900–1976).)

Hint: Try it first for N = 2 and N = 3.
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d. Show that if the particles are bosons rather than fermions, then the eigen-
functions are exactly the same as those of part c except for a replacement
of the determinant by a permanent.

Hint: The permanent of a matrix can be generated from the determinant
by replacing all of the minus signs with plus signs. Thus, for a 2×2 matrix

M =

(
a b
c d

)
,

perm(M) = ad + bc.

9.10 A single particle in one dimension is subject to a potential U(x). Another
particle in one dimension is subject to a potential V (x). Suppose U(x) �=
V (x)+C, where C is a constant. Prove that the ground-state wave functions
ψ0(x) and φ0(x) for each problem must be different.

Hint: Try using proof by contradiction. That is, assume ψ0(x) = φ0(x). What
relation between U(x) and V (x) is obtained?
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Quantum ensembles and the density
matrix

10.1 The difficulty of many-body quantum mechanics

We begin our discussion of the quantum equilibrium ensembles by considering a system
of N identical particles in a container of volume V . This is the same setup we studied in
Section 3.1 in developing the classical ensembles. In principle, the physical properties
of such a large quantum system can be obtained by solving the full time-dependent
Schrödinger equation. Suppose the Hamiltonian of the system is

Ĥ =

N∑
i=1

p̂2
i

2m
+ U(r̂1, ..., rN ). (10.1.1)

In d dimensions, there will be dN position and momentum operators. All the posi-
tion operators commute with each other as do all of the momentum operators. The
commutation rule between position and momentum operators is

[r̂iα, p̂jβ ] = ih̄δijδαβ , (10.1.2)

where α and β index the d spatial directions and i and j index the particle number.
Given the commutation rules, the many-particle coordinate and momentum eigen-
vectors are direct products (also called tensor products) of the eigenvectors of the
individual operators. For example, a many-particle coordinate eigenvector in three
dimensions is

|x1 y1 z1 · · ·xN yN zN 〉 = |x1〉 ⊗ |y1〉 ⊗ |z1〉 · · · |xN 〉 ⊗ |yN 〉 ⊗ |zN 〉. (10.1.3)

Thus, projecting the Schrödinger equation onto the coordinate basis, the N -particle
Schrödinger equation in three dimensions becomes[

− h̄2

2m

N∑
i=1

∇2
i + U(r1, ..., rN )

]
Ψ(r1, ..., rN , t) = ih̄

∂

∂t
Ψ(r1, ...., rN , t) (10.1.4)

and the expectation value of a Hermitian operator Â corresponding to an observable
is 〈Â〉t = 〈Ψ(t)|Â|Ψ(t)〉. The problem inherent in solving eqn. (10.1.4) and evaluating
the expectation value (which is a dN -dimensional integral) is that, unless an analyt-
ical solution is available, the computational overhead for a numerical solution grows
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exponentially with the number of degrees of freedom. If eqn. (10.1.4) were to be solved
on a spatial grid with M points along each spatial direction, then the total number
of points needed would be M3N . Thus, even on a very coarse grid with just M = 10
points, for N ∼ 1023 particles, the total number of grid points would be on the order
of 101023

points! But even for a small molecule of just N = 10 atoms in the gas phase,
after we subtract out over translations and rotations, Ψ is still a function of 24 coordi-
nates and time. The size of the grid needed to solve eqn. (10.1.4) is large enough that
the calculation is beyond the capability of current computing resources. The same is
true for the N -particle eigenvalue equation[

− h̄2

2m

N∑
i=1

∇2
i + U(r1, ..., rN )

]
ψ{k}(r1, ..., rN ) = E{k}ψ{k}(r1, ...., rN ) (10.1.5)

(see Problem 9.9 of Chapter 9). Here {k} ≡ k1, ...,kN are the 3N quantum numbers
needed to characterize the eigenfunctions and eigenvalues. In fact, explicit solution of
the eigenvalue equation for just 4–5 particles is considered a tour de force calculation.
While calculations yield a wealth of highly accurate dynamical information about
small systems, if one wishes to move beyond the limits of the Schrödinger equation
and the explicit calculation of the eigenvalues and eigenfunctions of Ĥ, statistical
methods are needed. Now that we have a handle on the magnitude of the many-body
quantum mechanical problem, we proceed to introduce the basic principles of quantum
equilibrium ensemble theory.

10.2 The ensemble density matrix

Quantum ensembles are conceptually very much like their classical counterparts. Our
treatment here will follow somewhat the development presented by Richard Feyn-
man (1998). We begin by considering a collection of Z quantum systems, each with a
unique state vector |Ψ(λ)〉, λ = 1, ...,Z, corresponding to a unique microscopic state.
At this stage, we imagine that our quantum ensemble is frozen in time, so that the
state vectors are fixed. (In Section 10.3 below, we will see how the ensemble devel-
ops in time.) As in the classical case, it is assumed that the microscopic states of
the ensemble are consistent with a set of macroscopic thermodynamic observables,
such as temperature, pressure, chemical potential, etc. The principle goal is to predict
observables in the form of expectation values. Therefore, we define the expectation
value of an operator Â as the ensemble average of expectation values with respect to
each microscopic state in the ensemble. That is,

〈Â〉 =
1

Z

Z∑
λ=1

〈Ψ(λ)|Â|Ψ(λ)〉. (10.2.1)

Since each state vector is an abstract object, it proves useful to work in a particular
basis. Thus, we introduce a complete set of orthonormal vectors |φk〉 on the Hilbert
space and expand each state of the ensemble in this basis according to

|Ψ(λ)〉 =
∑

k

C
(λ)
k |φk〉, (10.2.2)
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where C
(λ)
k = 〈φk|Ψ(λ)〉. Substituting eqn. (10.2.2) into eqn. (10.2.1) yields

〈Â〉 =
1

Z

Z∑
λ=1

∑
k,l

C
(λ)∗
k C

(λ)
l 〈φk|Â|φl〉

=
∑
k,l

(
1

Z

Z∑
λ=1

C
(λ)
l C

(λ)∗

k

)
〈φk|Â|φl〉. (10.2.3)

Eqn. (10.2.3) is in the form of the trace of a matrix product. Hence, let us introduce
a matrix

ρlk =

Z∑
λ=1

C
(λ)
l C

(λ)∗

k (10.2.4)

and a normalized matrix ρ̃lk = ρlk/Z. The matrix ρlk (or, equivalently, ρ̃lk) is known
as the ensemble density matrix. Introducing ρlk into eqn. (10.2.3), we obtain

〈Â〉 =
1

Z

∑
k,l

ρlkAkl =
1

Z

∑
l

(ρ̂Â)ll =
1

Z
Tr(ρ̂Â) = Tr(ρ̃Â) (10.2.5)

Here, Akl = 〈φk|Â|φl〉 and ρ̂ is the operator whose matrix elements in the basis are ρlk.
Thus, we see that the expectation value of Â is expressible as a trace of the product
of Â with the ensemble density matrix. According to eqn. (10.2.2), the operator ρ̂ can
be written formally using the microscopic state vectors:

ρ̂ =

Z∑
λ=1

|Ψ(λ)〉〈Ψ(λ)|. (10.2.6)

It is straightforward to show that this operator has the matrix elements given in eqn.
(10.2.4).

According to eqn. (10.2.6), ρ̂ is a Hermitian operator, so that ρ̂† = ρ̂ and ρ̃† = ρ̃.
Therefore, its eigenvectors, which satisfy the eigenvalue equation

ρ̃|wk〉 = wk|wk〉, (10.2.7)

form a complete orthonormal basis on the Hilbert space. Here, we have defined wk as
being an eigenvalues of ρ̃. In order to see what the eigenvalues of ρ̃ mean physically,
let us consider eqn. (10.2.5) for the choice Â = Î. Since 〈Î〉 = 1, it follows that

1 =
1

Z
Tr(ρ̂) = Tr(ρ̃) =

∑
k

wk. (10.2.8)

Thus, the eigenvalues of ρ̃ must sum to 1. Next, let Â be a projector onto an eigenstate
of ρ̃, Â = |wk〉〈wk| ≡ P̂k. Then
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〈P̂k〉 = Tr(ρ̃|wk〉〈wk|)
=

∑
l

〈wl|ρ̃|wk〉〈wk|wl〉

=
∑

l

wkδkl

= wk (10.2.9)

where we have used eqn. (10.2.7) and the orthogonality of the eigenvectors of ρ̃. Note,
however, that

〈P̂k〉 =
1

Z

Z∑
λ=1

〈Ψ(λ)|wk〉〈wk|Ψ(λ)〉

=
1

Z

Z∑
λ=1

|〈Ψ(λ)|wk〉|2 ≥ 0. (10.2.10)

Eqns. (10.2.9) and (10.2.10) imply that wk ≥ 0. Combining the facts that wk ≥ 0
and

∑
k wk = 1, we see that 0 ≤ wk ≤ 1. Thus, the wk satisfy the properties of

probabilities.
With this key property of wk in mind, we can now assign a physical meaning to the

density matrix. Let us now consider the expectation value of a projector |ak〉〈ak| ≡ P̂ak

onto one of the eigenstates of the operator Â. The expectation value of this operator
is given by

〈P̂ak
〉 =

1

Z

Z∑
λ=1

〈Ψ(λ)|P̂ak
|Ψ(λ)〉 =

1

Z

Z∑
λ=1

〈Ψ(λ)|ak〉〈ak|Ψ(λ)〉 =
1

Z

Z∑
λ=1

|〈ak|Ψ(λ)〉|2.

(10.2.11)

However, |〈ak|Ψ(λ)〉|2 ≡ P
(λ)
ak is just the probability that a measurement of the operator

Â in the λth member of the ensemble will yield the eigenvalue ak. Similarly.

〈P̂ak
〉 =

1

Z

Z∑
λ=1

P (λ)
ak

(10.2.12)

is just the ensemble average of the probability of obtaining the value ak in each member
of the ensemble. However, note that the expectation value of P̂ak

can also be written
as

〈P̂ak
〉 = Tr(ρ̃P̂ak

)

=
∑

k

〈wk|ρ̃P̂ak
|wk〉

=
∑

k

wk〈wk|ak〉〈ak|wl〉
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=
∑

k

wk|〈ak|wk〉|2. (10.2.13)

Equating the results of eqns. (10.2.12) and (10.2.13) gives

1

Z

Z∑
λ=1

〈P (λ)
ak

〉 =
∑

k

wk|〈ak|wk〉|2. (10.2.14)

We now interpret {|wk〉} as a complete set of microscopic states appropriate for the
ensemble, with wk the probability that a randomly selected member of the ensemble
is in the state |wk〉. Hence, the quantity on the right is the sum of probabilities that
a measurement of Â in a state |wk〉 yields the result ak weighted by the probability
that an ensemble member is in the state |wk〉. This is equal to the ensemble averaged
probability on the left. Thus, the density operator ρ̂ (or ρ̃) gives the probabilities wk

for an ensemble member to be in a particular microscopic state |wk〉 consistent with
a set of macroscopic observables, and therefore, it plays the same role in quantum
statistical mechanics as the phase space distribution function f(x) plays in classical
statistical mechanics.

10.3 Time evolution of the density matrix

The evolution in time of the density matrix is determined by the time evolution of
each of the state vectors |Ψ(λ)〉. The latter are determined by the time-dependent
Schrödinger equation. Starting from eqn. (10.2.6), we write the time-dependent density
operator as

ρ̂(t) =

Z∑
λ=1

|Ψ(λ)(t)〉〈Ψ(λ)(t)|. (10.3.1)

An equation of motion for ρ̂(t) can be determined by taking the time derivative of
both sides of eqn. (10.3.1):

∂ρ̂

∂t
=

Z∑
λ=1

[(
∂

∂t
|Ψ(λ)(t)〉

)
〈Ψ(λ)(t)| + |Ψ(λ)(t)〉

(
∂

∂t
〈Ψ(λ)(t)|

)]
. (10.3.2)

However, since ∂|Ψ(λ)(t)〉/∂t = (1/ih̄)Ĥ|Ψ(λ)(t)〉 from the Schrödinger equation, eqn.
(10.3.2) becomes

∂ρ̂

∂t
=

1

ih̄

Z∑
λ=1

[(
Ĥ|Ψ(λ)(t)〉

)
〈Ψ(λ)(t)| − |Ψ(λ)(t)〈

(
〈Ψ(λ)(t)|Ĥ

)]

=
1

ih̄
(Ĥρ̂ − ρ̂Ĥ) (10.3.3)

or
∂ρ̂

∂t
=

1

ih̄
[Ĥ, ρ̂]. (10.3.4)

Eqn. (10.3.4) is known as the quantum Liouville equation, and it forms the basis
of quantum statistical mechanics just as the classical Liouville equation derived in
Section 2.5 forms the basis of classical statistical mechanics.
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Recall that the time evolution of a Hermitian operator representing a physical
observable in the Heisenberg picture is given by eqn. (9.2.56). Although ρ̂ is a Hermi-
tian operator, its evolution equation differs from eqn. (9.2.56), as eqn. (10.3.4) makes
clear. This difference underscores the fact that ρ̂ does not actually represent a physical
observable.

The quantum Liouville equation can be solved formally as

ρ̂(t) = e−iĤt/h̄ρ̂(0)eiĤt/h̄ = U(t)ρ̂(0)U †(t). (10.3.5)

Eqn. (10.3.4) is often cast into a form that closely resembles the classical Liouville
equation by defining a quantum Liouville operator

iL =
1

ih̄
[..., Ĥ]. (10.3.6)

In terms of this operator, the quantum Liouville equation becomes

∂ρ̂

∂t
= −iLρ̂, (10.3.7)

which has the formal solution
ρ̂(t) = e−iLtρ̂(0). (10.3.8)

There is a subtlety associated with the quantum Liouville operator iL. As eqn. (10.3.6)
implies, iL is not an operator in the sense described in Section 9.2. The operators we
have encountered so far act on the vectors of the Hilbert space to yield new vectors.
By contrast, iL acts on an operator and returns a new operator. For this reason, it is
often called a “superoperator” or “tetradic” operator.1

10.4 Quantum equilibrium ensembles

As in the classical case, quantum equilibrium ensembles are defined by a density matrix
with no explicit time dependence, i.e. ∂ρ̂/∂t = 0. Thus, the equilibrium Liouville

equation becomes [Ĥ, ρ̂] = 0. This is precisely the condition required for a quantity to
be a constant of the motion. The general solution to the equilibrium Liouville equation
is any function F (Ĥ) of the Hamiltonian. Consequently, Ĥ and ρ̂ have simultaneous

eigenvectors. If |Ek〉 are the eigenvectors of Ĥ with eigenvalues Ek, then

ρ̂|Ek〉 = F (Ĥ)|Ek〉 = F (Ek)|Ek〉. (10.4.1)

Starting from eqn. (10.4.1), we could derive the quantum equilibrium ensembles
in much the same manner as we did for the classical equilibrium ensembles. That is,
we could begin by defining the microcanonical ensemble based on the conservation of
Ĥ, then derive the canonical, isothermal-isobaric, and grand canonical ensembles by
coupling the system to a heat bath, mechanical piston, particle reservoir, etc. However,

1As an example from the literature of the use of the superoperator formalism, S. Mukamel, in
his book Principles of Nonlinear Optical Spectroscopy (1995), uses the quantum Liouville operator
approach to develop an elegant framework for analyzing various types of nonlinear spectroscopies.



Quantum equilibrium ensembles

since we have already carried out this program for the classical ensembles, we can ex-
ploit the quantum-classical correspondence principle and simply promote the classical
equilibrium phase space distribution functions, which are all functions of the classical
Hamiltonian, to quantum operators. Thus, for the canonical ensemble at temperature
T , the normalized density operator becomes

ρ̃(Ĥ) =
e−βĤ

Q(N, V, T )
. (10.4.2)

Since ρ̃ must have unit trace, the partition function is given by

Q(N, V, T ) = Tr
[
e−βĤ

]
. (10.4.3)

Here, Q(N, V, T ) is identified with the number Z, the total number of microscopic

states in the ensemble. Thus, the unnormalized density matrix ρ̂ is exp(−βĤ). Casting

eqns. (10.4.2) and (10.4.3) into the basis of the eigenvectors of Ĥ, we obtain

〈Ek|ρ̃|Ek〉 =
e−βEk

Q(N, V, T )

Q(N, V, T ) =
∑

k

e−βEk . (10.4.4)

Eqn. (10.4.4) indicates that the microscopic states corresponding to the canonical

ensemble are eigenstates of Ĥ, and the probability of any member of the ensemble being
in a state |Ek〉 is exp(−βEk)/Q(N, V, T ). Once Q(N, V, T ) is known from eqn. (10.4.4),
the thermodynamics of the canonical ensemble are determined as usual from eqn.
(4.3.23). Finally, the expectation value of any operator Â in the canonical ensemble is
given by

〈Â〉 = Tr
(
ρ̃Â

)
=

1

Q(N, V, T )

∑
k

e−βEk〈Ek|Â|Ek〉 (10.4.5)

(Feynman regarded eqns. (10.4.4) and (10.4.5) as the core of statistical mechanics, and
they appear on the first page of his book Statistical Mechanics: A Set of Lectures.2)
If there are degeneracies among the eigenvalues, then a factor g(Ek), which is the
degeneracy of the energy level Ek, i.e., the number of independent eigenstates with this
energy, must be introduced into the above sums over eigenstates. Thus, for example,
the partition function becomes

Q(N, V, T ) =
∑

k

g(Ek)e−βEk (10.4.6)

2In reference to eqn.(10.4.5), Feynman flippantly remarks that, “This law is the summit of statis-
tical mechanics, and the entire subject is either the slide-down from this summit, as the principle is
applied to various cases, or the climb-up to where the fundamental law is derived and the concepts
of thermal equilibrium and temperature T clarified” (Feynman, 1998). Our program in the next two
chapters will be the former, as we apply the principle and develop analytical and computational tools
for carrying out quantum statistical mechanical calculations for complex systems.
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and the expectation value of the operator Â is given by

〈Â〉 =
1

Q(N, V, T )

∑
k

g(Ek)e−βEk〈Ek|Â|Ek〉. (10.4.7)

In an isothermal-isobaric ensemble at temperature T and pressure P , the density
operator, partition function and expectation value are given, respectively, by

ρ̃(Ĥ, V ) =
e−β(Ĥ+PV )

Δ(N, P, T )

〈Ek|ρ̃(Ĥ, V )|Ek〉 =
e−β(Ek+PV )

Δ(N, P, T )
(10.4.8)

Δ(N, P, T ) =

∫ ∞

0

dV Tr
[
e−β(Ĥ+PV )

]

=

∫ ∞

0

dV
∑

k

e−β(Ek+PV ) (10.4.9)

〈Â〉 =
1

Δ(N, P, T )

∫ ∞

0

dV Tr
[
Âe−β(Ĥ+PV )

]

=
1

Δ(N, P, T )

∑
k

e−β(Ek+PV )〈Ek|Â|Ek〉. (10.4.10)

Again, if there are degeneracies, then a factor of g(Ek) must be introduced into the
sums:

Δ(N, P, T ) =

∫ ∞

0

dV
∑

k

g(Ek)e−β(Ek+PV )

〈Â〉 =
1

Δ(N, P, T )

∫ ∞

0

dV
∑

k

g(Ek)e−β(Ek+PV )〈Ek|Â|Ek〉. (10.4.11)

Finally, for the grand canonical ensemble at temperature T and chemical potential
μ, the density operator, partition function, and expectation value are given by

ρ̃(Ĥ, N) =
e−β(Ĥ−μN)

Z(μ, V, T )

〈Ek|ρ̃(Ĥ, N)|Ek〉 =
e−β(Ek−μN)

Z(μ, V, T )
(10.4.12)

Z(μ, V, T ) =
∞∑

N=0

Tr
[
e−β(Ĥ−μN)

]
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=

∞∑
N=0

∑
k

e−β(Ek−μN) (10.4.13)

〈Â〉 =
1

Z(μ, V, T )

∞∑
N=0

Tr
[
Âe−β(Ĥ−μN)

]

=
1

Z(μ, V, T )

∞∑
N=0

∑
k

e−β(Ek−μN)〈Ek|Â|Ek〉. (10.4.14)

As before, if there are degeneracies, then a factor of g(Ek) must be introduced into
the above sums:

Z(μ, V, T ) =

∞∑
N=0

∑
k

g(Ek)e−β(Ek−μN)

〈Â〉 =
1

Z(μ, V, T )

∞∑
N=0

∑
k

g(Ek)e−β(Ek−μN)〈Ek|Â|Ek〉. (10.4.15)

The quantum grand canonical ensemble will prove particularly useful in our treatment
of the quantum ideal gases, which we will discuss in Chapter 11.

In the above list of definitions, a definition of the quantum microcanonical ensemble
is conspicuously missing for the reason that it is very rarely used for condensed-phase
systems. Moreover, in order to define this ensemble, the quantum-classical correspon-
dence must be applied carefully because the eigenvalues of Ĥ are assumed to be dis-
crete. Hence, the δ-function used in the classical microcanonical ensemble does not
make sense for quantum systems because a given eigenvalue may or may not be equal
to the energy E used to define the ensemble. However, if we define an energy shell
between E and E + ΔE, then we can certainly find a subset of energy eigenvalues in
this shell. The partition function is then related to the number of energy levels Ek

satisfying E < Ek < E + ΔE. Typically, when we take the thermodynamic limit of a
system, the energy levels becomes very closely spaced, and we can shrink the thickness
ΔE of the shell to zero.

10.4.1 The harmonic oscillator

In order to illustrate the application of a quantum equilibrium ensemble, we consider
the case of a simple one-dimensional harmonic oscillator of frequency ω. We will derive
the properties of this system using the canonical ensemble. Recall from Section 9.3 that
the energy eigenvalues are given by

En =

(
n +

1

2

)
h̄ω n = 0, 1, 2, .... (10.4.16)

The canonical partition function is, therefore,
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Q(β) =

∞∑
n=0

e−βEn =

∞∑
n=0

e−β(n+1/2)h̄ω. (10.4.17)

Recalling that the sum of a geometric series is given by

∞∑
n=0

rn =
1

1 − r
, (10.4.18)

where 0 < r < 1, the partition function becomes

Q(β) = e−βh̄ω/2
∞∑

n=0

e−nβh̄ω = e−βh̄ω/2
∑
n=0

(
e−βh̄ω

)n
=

e−βh̄ω/2

1 − e−βh̄ω
. (10.4.19)

From the partition function, various thermodynamic quantities can be determined.
First, the free energy is given by

A = − 1

β
ln Q(β) =

h̄ω

2
+

1

β
ln

(
1 − e−βh̄ω

)
(10.4.20)

while the total energy is

E = − ∂

∂β
ln Q(β) =

h̄ω

2
+

h̄ωe−βh̄ω

1 − e−βh̄ω
=

(
1

2
+ 〈n〉

)
h̄ω. (10.4.21)

Thus, even if 〈n〉 = 0, there is still a finite amount of energy, h̄ω/2 in the system. This
residual energy is known as the zero-point energy. Next, from the average energy, the
heat capacity can be determined

C

k
= − (βh̄ω)2e−βh̄ω

(1 − e−βh̄ω)
2 . (10.4.22)

Finally, the entropy is given by

S = k ln Q(β) +
E

T
= −k ln

(
1 − e−βh̄ω

)
+

h̄ω

T

e−βh̄ω

1 − e−βh̄ω
, (10.4.23)

which is consistent with the third law of thermodynamics, as S → 0 as T → 0. The
expressions we have derived for the thermodynamic observables are often used to esti-
mate thermodynamic quantities of molecular systems under the assumption that the
system can be approximately decomposed into a set of uncoupled harmonic oscillators
corresponding to the normal modes of Section 1.7. By summing the expressions in
eqns. (10.4.20), (10.4.22), or (10.4.23) over a set of frequencies generated in a normal-
mode calculation, estimates of the quantum thermodynamics properties free energy,
heat capacity, and entropy, can be easily obtained.

As a concluding remark, we note that the formulation of the quantum equilibrium
ensembles in terms of the eigenvalues and eigenvectors of Ĥ suggests that the computa-
tional problems inherent in many-body quantum mechanics have not been alleviated.
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After all, one still needs to solve the eigenvalue problem for the Hamiltonian, which
involves solution eqn. (10.1.5). In Section 10.1, we described the difficulty inherent in
this approach. The eigenvalue equation can be solved explicitly only for systems with
a very small number of degrees of freedom. Looking ahead, in Chapter 12, we will
develop a framework, known as the Feynman path integral formulation of statistical
mechanics, that allows the calculation of N -particle eigenvalues to be circumvented,
thereby allowing quantum equilibrium properties of large condensed-phase systems to
be evaluated using molecular dynamics and Monte Carlo methods. Before exploring
this approach, however, we will use the traditional eigenvalue approach to study the
quantum ideal gases, the subject of the next chapter.

10.5 Problems

10.1. a. Prove that the trace of a matrix A is independent of the basis in which
the trace is performed.

b. Prove the cyclic property of the trace

Tr(ABC) = Tr(CAB) = Tr(BCA).

10.2. Recall from Problem 9.1 of Chapter 9 that the energy of a quantum particle
with magnetic moment μ interacting with a magnetic field B is E = −μ ·
B. Consider spin-1/2 particle such as an electron fixed in space interacting
with a uniform magnetic field in the z direction, so that B = (0, 0, B). The
Hamiltonian for the particle is given by

Ĥ = −γBŜz.

The spin operators are given in eqn. (9.4.2).
a. Suppose an ensemble of such systems is prepared such that the density

matrix initially is

ρ̃(0) =

(
1/2 0
0 1/2

)
.

Calculate ρ̃(t).

b. What are the expectation values of the operators Ŝx, Ŝy, and Ŝz at any
time t?

c. Suppose now that the initial density matrix is

ρ̃(0) =

(
1/2 −i/2
i/2 1/2

)
.

For this case, calculate ρ̃(t).
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d. What are the expectation values of the operators Ŝx, Ŝy, and Ŝz at time
t for this case?

e. What is the fluctuation or uncertainty in Ŝx at time t? Recall that

ΔŜx =

√
〈Ŝ2

x〉 − 〈Ŝx〉2

f. Suppose finally that the density matrix is given initially by a canonical
density matrix:

ρ̃(0) =
e−βĤ

Tr(e−βĤ)

What is ρ̃(t)?

g. What are the expectation values of Ŝx, Ŝy and Ŝz at time t?

10.3. Consider the one-dimensional quantum harmonic oscillator of frequency ω,
for which the energy eigenvalues are

En =

(
n +

1

2

)
h̄ω n = 0, 1, 2, ....

Using the canonical ensemble at temperature T , calculate 〈x̂2〉, 〈p̂2〉, and the
uncertainties Δx and Δp.

Hint: Might the raising and lowering operators of Section 9.3 be useful?

∗10.4. A weakly anharmonic oscillator of frequency ω has energy eigenvalues given
by

En =

(
n +

1

2

)
h̄ω − κ

(
n +

1

2

)2

h̄ω n = 0, 1, 2, ....

Show that, to first order in κ and fourth order in r = βh̄ω, the heat capacity
in the canonical ensemble is given by

C

k
=

[(
1 − r2

12
+

r4

240

)
+ 4κ

(
1

r
+

r3

80

)]

(Pathria, 1972).

10.5. Suppose a quantum system has degenerate eigenvalues.
a. If g(En) is the degeneracy of the energy level En, show that the expression

for the canonical partition function must be modified to read

Q(N, V, T ) =
∑

n

g(En)e−βEn .
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b. A harmonic oscillator of frequency ω in d dimensions has energy eigen-
values given by

En =

(
n +

d

2

)
h̄ω.

but the energy levels become degenerate. The degeneracy of each level is

g(En) =
(n + d − 1)!

n!(d − 1)!
.

Calculate the canonical partition function, free energy, total energy, and
heat capacity in this case.

10.6. The Hamiltonian for a free particle in one dimension is

Ĥ =
p̂2

2m
.

a. Using the free particle eigenfunctions, show that the canonical density
matrix is given by

〈x|e−βĤ|x′〉 =

(
m

2πβh̄2

)1/2

exp

[
− m

2βh̄2 (x − x′)2
]

b. Recall that an operator Â in the Heisenberg picture evolves in time ac-
cording to

Â(t) = eiĤt/h̄Âe−iĤt/h̄.

Now consider a transformation from real time t to an imaginary time
variable τ via t = −iτ h̄. In imaginary time, the evolution of an operator
becomes

Â(τ) = eτĤÂe−τĤ

Using this evolution, derive an expression for the imaginary-time mean-
square displacement of a free particle defined to be

R2(τ) = 〈[x̂(0) − x̂(τ)]
2〉.

Assume the particle is a one-dimensional box of length L. This function
can be used to quantify the quantum delocalization of a particle at tem-
perature T .

10.7. The following theorem is due to Peierls (1938): Let {|φn〉} be an arbitrary set
of orthonormal functions on the Hilbert space of a quantum system whose
Hamiltonian is Ĥ. The functions {|φn〉} are assumed to satisfy the same
boundary and symmetry conditions of the physical system. It follows that
the canonical partition function Q(N, V, T ) satisfies the inequality

Q(N, V, T ) ≥
∑

n

e−β〈φn|Ĥ|φn〉,

where equality holds only if {|φn〉} are the eigenfunctions of Ĥ. Prove this
theorem.
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Hint: You might find the Ritz variational principle of quantum mechanics
helpful. The Ritz principle states that for an arbitrary wave function |Ψ〉, the
ground-state energy E0 obeys the inequality

E0 ≤ 〈Ψ|Ĥ|Ψ〉

where equality only holds if |Ψ〉 is the ground state wave function of Ĥ.

10.8. Prove the following inequality: If A1 and A2 are the Helmholtz free energies
for systems with Hamiltonians Ĥ1 and Ĥ2, respectively, then

A1 ≤ A2 + 〈Ĥ1 − Ĥ2〉2
where 〈· · ·〉2 indicates an ensemble average calculated with respect to the
density matrix of system 2. This inequality is known as the Gibbs–Bogliubov
inequality (Feynman, 1998).

∗10.9. A simple model of a one-dimensional classical polymer consists of assigning
discrete energy states to different configurations of the polymer. Suppose the
polymer consists of flat, elliptical disc-shaped molecules that can align either
along their long axis (length 2a) or short axis (length a). The energy of a
monomer aligned along its short axis is higher by an amount ε so that the
total energy of the molecule is E = nε, where n is the number of monomers
aligned along the short axis.
a. Calculate the canonical partition function Q(N, T ) for such a polymer

consisting of N monomers.
b. What is the average length of the polymer?
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The quantum ideal gases:
Fermi–Dirac and Bose–Einstein
statistics

11.1 Complexity without interactions

In Chapters 3–6, the classical ideal gas was used to illustrate how the tools of classical
statistical mechanics are applied to a simple problem. The classical ideal gas was seen
to be a relatively trivial system with an uninteresting phase diagram. The situation
with the quantum ideal gas is dramatically different.

The symmetry conditions imposed on the wave function for a system of N non-
interacting bosons or fermions lead to surprisingly rich behavior. For bosonic systems,
the ideal gas admits a fascinating effect known as Bose–Einstein condensation. From
the fermionic ideal gas, we arrive at the notion of a Fermi surface. Moreover, many of
the results derived for a ideal gas of fermions have been used to develop approximations
to the electronic structure theory known as density functional theory (Hohenberg and
Kohn, 1964; Kohn and Sham, 1965). Thus, a detailed treatment of the quantum ideal
gases is instructive.

In this chapter, we will study the general problem of a quantum-mechanical ideal
gas using the rules of quantum statistical mechanics developed in the previous chapter.
Following this, we will specialize our treatment for the fermionic and bosonic cases,
examine a number of important limits, and finally derive the general concepts that
emerge from these limits.

11.2 General formulation of the quantum-mechanical ideal gas

The Hamiltonian operator for an ideal gas of N identical particles is

Ĥ =

N∑
i=1

p̂2
i

2m
. (11.2.1)

In order to compute the partition function, we must solve for the eigenvalues of this
Hamiltonian. In so doing, we will also determine the N -particle eigenfunctions. The
eigenvalue problem for the Hamiltonian in the coordinate basis reads

− h̄2

2m

N∑
i=1

∇2
i Φ(x1, ...,xN ) = EΦ(x1, ...,xN ), (11.2.2)
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where xi is the combined coordinate and spin label xi = (ri, si). The N -particle func-
tion Φ(x1, ....,xN ) is the solution to eqn. (11.2.2) before any symmetry conditions are
imposed. Since eqn. (11.2.2) is completely separable in the N -particle coordinate/spin
labels x1, ...,xN , the Hamiltonian can be written as a sum of single-particle Hamilto-
nians:

Ĥ =

N∑
i=1

ĥi

ĥi =
p̂2

i

2m
. (11.2.3)

Moreover, since Ĥ is independent of spin, the eigenfunctions must also be eigenfunc-
tions of Ŝ2 and Ŝz. Therefore, the unsymmetrized solution to eqn. (11.2.2) can be
written as a product:

Φα1m1,...,αNmN (x1, ...,xN ) =

N∏
i=1

φαimi(xi), (11.2.4)

where φαimi(xi) is a single-particle wave function characterized by a set of spatial
quantum numbers αi and Sz eigenvalues mi. The spatial quantum numbers αi are
chosen to characterize the spatial part of the eigenfunctions according to a set of ob-
servables that commute with the Hamiltonian. Each single-particle function φαimi(xi)
can be further decomposed into a product of a spatial function ψαi(ri) and a spin
eigenfunction χmi(si). The spin eigenfunctions are defined via components of the eigen-
vectors of Ŝz given in eqn. (9.4.3):

χm(s) = 〈s|χm〉 = δms. (11.2.5)

Thus, χh̄/2(h̄/2) = 1, χh̄/2(−h̄/2) = 0, and so forth. Substituting this ansatz into the
wave equation yields a single-particle wave equation:

− h̄2

2m
∇2

i ψαi(ri) = εαiψαi(ri). (11.2.6)

Here, εαi is a single-particle energy eigenvalue, and the N -particle eigenvalues are just
sums of these:

Eα1,...,αN =

N∑
i=1

εαi . (11.2.7)

Note that the single-particle wave equation is completely separable in x, y, and z.
If we impose periodic boundary conditions in all three directions, then the solution
of the wave equation is simply a product of one-dimensional wave functions of the
form given in eqn. (9.3.14). The one-dimensional wave functions are characterized by
integers nx,i, ny,i, and nz,i that arise from the quantization of momentum due to the
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periodicity of the box. These can be collected into a vector ni = (nx,i, ny,i, nz,i) of
integers, which leads to the following solution to eqn. (11.2.6):

ψni(ri) =

(
1√
L

)3/2

exp(2πinx,ixi/L) exp(2πiny,iyi/L) exp(2πinz,izi/L)

=
1√
V

exp(2πini · ri/L). (11.2.8)

Similarly, each component of momentum is quantized, so that the momentum eigen-
values can be expressed as

pni =
2πh̄

L
ni, (11.2.9)

and the energy eigenvalues in eqn. (11.2.6) are just sums of the energies in eqn. (9.3.11)
over x, y, and z:

εni =
p2

ni

2m
=

2π2h̄2

mL2
|ni|2. (11.2.10)

Multiplying the functions in eqn. (11.2.8) by spin eigenfunctions, the complete single-
particle eigenfunctions become

〈xi|ni mi〉 = φnimi(xi) =
1√
V

e2πini·ri/Lχmi(si), (11.2.11)

and the total energy eigenvalues are given by a sum over single-particle eigenvalues

En1,...,nN =

N∑
i=1

2π2h̄2

mL2
|ni|2. (11.2.12)

Finally, since the eigenvalue problem is separable, complete fermionic and bosonic
wave functions can be constructed as follows. Begin by constructing a matrix

M =

⎛
⎜⎜⎜⎜⎜⎝

φn1,m1(x1) φn2,m2(x1) · · · φnN ,mN (x1)
φn1,m1(x2) φn2,m2(x2) · · · φnN ,mN (x2)

· · · · · ·
· · · · · ·
· · · · · ·

φn1,m1(xN ) φn2,m2(xN ) · · · φnN ,mN (xN )

⎞
⎟⎟⎟⎟⎟⎠ . (11.2.13)

The properly symmetrized fermionic and bosonic wave functions are ultimately given
by

Ψ(F)
n1,m1,...,nN ,mN

(x1, ...,xN ) = det(M)

Ψ(B)
n1,m1,...,nN ,mN

(x1, ...,xN ) = perm(M), (11.2.14)

where det and perm refer to the determinant and permanent of M, respectively. (The
permanent of a matrix is just determinant in which all the minus signs are changed
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to plus signs.1) In the fermion case, the determinant leads to a wave function that is
completely antisymmetric with respect to an exchange of any two particle spin labels.
Such an exchange is equivalent to interchanging two rows of the matrix M , which has
the effect of changing the sign of the determinant. These determinants are known as
Slater determinants after the physicist John C. slater (1900–1976) who introduced the
procedure.

In the preceding discussion, each individual particle was treated separately, with
total energy eigenvalues expressed as sums of single-particle eigenvalues, and over-
all wave functions given as determinants/permanents constructed from single-particle
wave functions. We will now introduce an alternative framework for solving the quan-
tum ideal-gas problem that proves more convenient for the quantum statistical me-
chanical treatment to follow. Let us consider again the single-particle eigenvalue and
eigenfunction for a given vector of integers n and spin eigenvalue m:

φn,m(x) =
1√
V

e2πin·r/Lχm(s)

εn =
2π2h̄2

mL2
|n|2. (11.2.15)

We now ask: How many particles in the N -particle system are described by this wave
function and energy? Let this number be fnm, which is called an occupation number.
The occupation number fnm tells us how many particles have the energy εn and
probability amplitude φn,m(x). Since there are an infinite number of accessible states
φn,m(x) and associated energies εn, there are infinitely many occupation numbers,
and only a finite number of these can be nonzero. Indeed, the occupation numbers are
subject to the restriction that the sum over them yield the number of particles in the
system: ∑

m

∑
n

fnm = N, (11.2.16)

where ∑
n

≡
∞∑

nx=−∞

∞∑
ny=−∞

∞∑
nz=−∞

(11.2.17)

and ∑
m

≡
s∑

m=−s

(11.2.18)

runs over the (2s+1) possible values of m for a spin-s particle. The occupation numbers
can be used to characterize the total energy eigenvalues of the system. The total energy
eigenvalue can be expressed as

1The permanent of a 2×2 matrix

A =

(
a b
c d

)
would be perm(A) = ad + bc.
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E{fnm} =
∑
m

∑
n

εnfnm, (11.2.19)

which is just a sum over all possible energies multiplied by the number of particles
having each energy. The formulation of the eigenvalue problem in terms of accessible
states φn,m(x), the energies εn, and occupation numbers for these states and energies
is known as second quantization. The framework of second quantization leads to a
simple and elegant procedure for constructing the partition function.

11.3 An ideal gas of distinguishable quantum particles

To illustrate the use of occupation numbers in the evaluation of the quantum partition
function, let us suppose we can ignore the symmetry of the wave function under particle
exchange. Neglect of spin statistics leads to an approximation known as Boltzmann
statistics. Boltzmann statistics are equivalent to an assumption that the particles are
distinguishable because the N -particle wave function for Boltzmann particles is just
of the functions φnimi(xi). In this case, spin can also be neglected. The canonical
partition function Q(N, V, T ) can be expressed as a sum over the quantum numbers
n1, ...,nN for each particle:

Q(N, V, T ) =
∑
n1

∑
n2

· · ·
∑
nN

e−βEn1,...,nN

=
∑
n1

∑
n2

· · ·
∑
nN

e−βεn1 e−βεn2 · · · e−βεnN

=

(∑
n1

e−βεn1

)(∑
n2

e−βεn2

)
· · ·

(∑
nN

e−βεnN

)

=

(∑
n

e−βεnN

)N

. (11.3.1)

In terms of occupation numbers, the partition function is

Q(N, V, T ) =
∑
{f}

g({f})e−β
∑

n
εnfn , (11.3.2)

where g({f}) is a factor that tells how many distinct physical states can be represented
by a given set of occupation numbers {f}. For Boltzmann particles, exchanging the
momentum labels ni of two particles leads to a new physical state but leaves the occu-
pation numbers unchanged. Thus, the counting problem becomes one of determining
how many different ways N particles can be placed in the physical states. This means
that g({f}) is given simply by the combinatorial factor

g({f}) =
N !∏
n fn!

. (11.3.3)
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For example, if there were only two states, then the occupation numbers are f1 and
f2 where f1 + f2 = N . The above formula gives

g(f1, f2) =
N !

f1!f2!
=

N !

f1!(N − f1)!
, (11.3.4)

which is the expected binomial coefficient.
Substituting eqn. (11.3.3) into eqn. (11.3.2) gives

Q(N, V, T ) =
∑
{f}

N !∏
n fn!

∏
n

e−βfnεn , (11.3.5)

which is just a multinomial expansion for

Q(N, V, T ) =

(∑
n

e−βεn

)N

. (11.3.6)

Again, if there were two states, then the partition function would be

(e−βε1 + e−βε2)N =
∑

f1,f2,f1+f2=N

N !

f1!f2!
e−f1βε1e−f2βε2 (11.3.7)

from the binomial theorem. Therefore, in order to evaluate the partition function, we
just need to perform the sum∑

n

e−βεn =
∑
n

e−2π2βh̄2|n|2/mL2
. (11.3.8)

Ultimately, we are interested in the thermodynamic limit, where L → ∞. In this limit,
the spacing between the single-particle energy levels becomes quite small, and the
discrete sum over n can, to a very good approximation, be replaced by an integral
over a continuous variable (which we also denote as n):∑

n

e−2π2βh̄2|n|2/mL2
=

∫
dn e−2π2βh̄2|n|2/mL2

. (11.3.9)

Since the single-particle eigenvalues only depend on the magnitude of n, we can trans-
form the integral over nx, ny, and nz into spherical polar coordinates (n, θ, φ), where
n = |n|, and θ and φ retain their usual meaning. Thus, the integral becomes

4π

∫ ∞

0

dnn2e−2π2βh̄2|n|2/mL2
= V

(
m

2πβh̄2

)3/2

=

(
V

λ3

)
, (11.3.10)

where λ is the thermal wavelength. The partition function now becomes

Q(N, V, T ) =

(
V

λ3

)N

, (11.3.11)

which is just the classical canonical partition function for an ideal gas. Therefore, we see
that an ideal gas of distinguishable particles, even when treated quantum mechanically,
has precisely the same properties as a classical ideal gas. Thus, we conclude that all
the quantum effects are contained in the particle spin statistics, which we will now
consider.
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11.4 General formulation for fermions and bosons

For systems of identical fermions or identical bosons, an exchange of particles does not
change the physical state. Therefore the factor g({fnm}) is simply 1 for either particle
type. For fermions, the Pauli exclusion principle forbids two identical particles from
having the same set of quantum numbers. Note that the Slater determinant vanishes
if, for any two particles i and j, ni = nj and mi = mj . In the second quantization
formalism, this means that no two particles may occupy the same state φn,m(x).
Consequently, there is a restriction on the occupation numbers that they can only be
0 or 1:

fnm = 0, 1 (Fermions). (11.4.1)

By contrast, since a permanent does not vanish if ni = nj and mi = mj , the occupa-
tion numbers fnm for a system of identical bosons have no such restriction and can,
therefore, take on any value between 0 and N :

fnm = 0, 1, 2, ..., N (Bosons). (11.4.2)

For either set of occupation numbers, the canonical partition function can be written
generally as

Q(N, V, T ) =
∑

{fnm}
e−β

∑
m

∑
n

fnmεn =
∑

{fnm}

∏
n

∏
m

e−βfnmεn . (11.4.3)

Note that the sum over occupation numbers in eqn. (11.4.3) must be performed subject
to the restriction ∑

m

∑
n

fnm = N. (11.4.4)

This restriction makes performing the sum in eqn. (11.4.3) nontrivial when g({fnm}) =
1. Evidently the canonical ensemble is not the most convenient choice for deriving the
thermodynamics of boson or fermion ideal gases.

Fortunately, since all ensembles are equivalent in the thermodynamic limit, we may
choose from any of the other remaining ensembles. Of these, we will see shortly that
working in the grand canonical makes our task considerably easier. Recall that in the
grand canonical ensemble, μ, V , and T are the control variables, and the partition
function is given by

Z(μ, V, T ) =
∞∑

N=0

ζNQ(N, V, T )

=

∞∑
N=0

eβμN
∑

{fnm}

∏
m

∏
n

e−βfnmεn . (11.4.5)

Note that the inner sum in eqn. (11.4.5) over occupation numbers is still subject to
the restriction

∑
m

∑
n fnm = N . However, in the grand canonical ensemble, there is

a final sum over all possible values of N , and this sum allows us to lift the restric-
tion on the inner sum. The final sum over N combined with the restricted sum over
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occupation number is mathematically equivalent to an unrestricted sum over occupa-
tion numbers. For if we simply perform an unrestricted sum over occupation numbers,
then all possible values of N will be generated automatically. Thus, we can see why the
grand canonical ensemble is preferable for fermions and bosons. The grand canonical
partition function can be written compactly as

Z(μ, V, T ) =
∑

{fnm}

∏
m

∏
n

eβ(μ−εn)fnm . (11.4.6)

A second simplification results from rewriting the sum of products as a product of
sums: ∑

f1

∑
f2

∑
f3

· · · eβ(μ−ε1)f1eβ(μ−ε2)f2eβ(μ−ε3)f3 · · ·

=

⎛
⎝∑

f1

eβ(μ−ε1)f1

⎞
⎠

⎛
⎝∑

f2

eβ(μ−ε1)f2

⎞
⎠

⎛
⎝∑

f3

eβ(μ−ε1)f3

⎞
⎠ · · ·

=
∏
m

∏
n

∑
{fnm}

eβ(μ−εn)fnm . (11.4.7)

For fermions, each occupation-number sum contains only two terms corresponding
to fnm = 0 and fnm = 1, which yields

Z(μ, V, T ) =
∏
m

∏
n

(
1 + eβ(μ−εn)

)
(Fermions). (11.4.8)

For bosons, each occupation-number sum ranges from 0 to ∞ and can be computed
using the sum formula for a geometric series

∑∞
n=0 rn = 1/1 − r for 0 < r < 1. Thus,

eqn. (11.4.7) becomes

Z(μ, V, T ) =
∏
m

∏
n

1

1 − eβ(μ−εn)
(Bosons). (11.4.9)

Note that, in each case, the summands are independent of the quantum number m
so that we may perform the product over m values trivially with the result

Z(μ, V, T ) =

[∏
n

(
1 + eβ(μ−εn)

)]g

(11.4.10)

for fermions, and

Z(μ, V, T ) =

[∏
n

1

1 − eβ(μ−εn)

]g

(11.4.11)

for bosons, where g = (2s + 1) is the number of eigenstates of Ŝz, which is also known
as the spin degeneracy. For spin-1/2 particles such as electrons, g = 2.
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At this point, let us recall the procedure for calculating the equation of state in
the grand canonical ensemble. The free energy in this ensemble is PV/kT given by

PV

kT
= ln Z(ζ, V, T ), (11.4.12)

and the average particle number is the thermodynamic derivative with respect to the
fugacity ζ:

〈N〉 = ζ
∂

∂ζ
ln Z(ζ, V, T ). (11.4.13)

Next, the fugacity ζ must be eliminated in favor of 〈N〉 by solving for ζ in terms
of 〈N〉 and substituting into eqn. (11.4.12). Thus, in order to obtain the equation
of state in the grand canonical ensemble, we must carry out the products in eqn.
(11.4.10) and then apply the above procedure. Although we saw in Section 6.5 that
this is straightforward for the classical ideal gas, the procedure cannot be performed
exactly analytically for the quantum ideal gases. For an ideal gas of identical fermions,
the equations we must solve are

PV

kT
= lnZ(ζ, V, T ) = ln

[∏
n

(
1 + ζe−βεn

)]g

= g
∑
n

ln
(
1 + ζe−βεn

)

〈N〉 = ζ
∂

∂ζ
ln Z = g

∑
n

ζe−βεn

1 + ζe−βεn
, (11.4.14)

and for bosons, they become

PV

kT
= lnZ(ζ, V, T ) = ln

[∏
n

1

1 − ζe−βεn

]g

= −g
∑
n

ln
(
1 − ζe−βεn

)

〈N〉 = ζ
∂

∂ζ
ln Z = g

∑
n

ζe−βεn

1 − ζe−βεn
. (11.4.15)

It is not difficult to see that the problem of solving for ζ in terms of 〈N〉 is nontrivial
for both particle types. In the next two section, we will analyze the ideal fermion and
boson gases individually and investigate the limits and approximations that can be
applied to compute their thermodynamic properties.

11.5 The ideal fermion gas

As we did for the ideal Boltzmann gas in Section 11.3, we will consider the thermody-
namic limit L → ∞ of the ideal fermion gas, so that the spacing between energy levels
becomes small. Then the sums in eqns. (11.4.14) can be replaced by integrals over a
continuous variable denoted n. For the pressure, this replacement leads to
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PV

kT
= g

∫
dn ln

(
1 + ζe−βεn

)

= g

∫
dn ln

(
1 + ζe−2π2βh̄2|n|2/mL2

)

= 4πg

∫ ∞

0

dn n2 ln
(
1 + ζe−2π2βh̄2|n|2/mL2

)
(11.5.1)

where, in the last line, we have transformed to spherical polar coordinates. Next, we
introduce a change of variables

x =

√
2π2βh̄2

mL2
n, (11.5.2)

which gives

PV

kT
= 4πgV

(
m

2π2βh̄2

)3/2 ∫ ∞

0

dx x2 ln
(
1 + ζe−x2

)

=
4V g√
πλ3

∫ ∞

0

dx x2 ln
(
1 + ζe−x2

)
. (11.5.3)

The remaining integral can be evaluated by expanding the log in a power series and
integrating the series term by term. Using the fact that

ln(1 + y) =

∞∑
l=1

(−1)l+1 yl

l
, (11.5.4)

we obtain

ln
(
1 + ζe−x2

)
=

∞∑
l=1

(−1)l+1ζl

l
e−lx2

PV

kT
=

4V g√
πλ3

∞∑
l=1

(−1)l+1ζl

l

∫ ∞

0

dx x2e−lx2

=
V g

λ3

∞∑
l=1

(−1)l+1ζl

l5/2
. (11.5.5)

In the same way, it can be shown that the average particle number 〈N〉 is given by
the expression

〈N〉 =
V g

λ3

∞∑
l=1

(−1)l+1ζl

l3/2
. (11.5.6)

Multiplying eqns. (11.5.5) and (11.5.6) by 1/V , we obtain
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Pλ3

gkT
=

∞∑
l=1

(−1)l+1ζl

l5/2

ρλ3

g
=

∞∑
l=1

(−1)l+1ζl

l3/2
, (11.5.7)

where ρ = 〈N〉/V is the number density. Although we cannot solve these equations
to obtain a closed form for the equation of state, two interesting limits can be worked
out to a very good approximation.

11.5.1 The high-temperature, low-density limit

Solving for ζ as a function of 〈N〉 is equivalent to solving for ζ as a function of ρ.
Hence, in the low-density limit, we can take an ansatz for ζ = ζ(ρ) in the form of a
power series:

ζ(ρ) = a1ρ + a2ρ
2 + a3ρ

3 + · · · . (11.5.8)

How rapidly this series converges depends on how low the density actually is. Writing
out the first few terms in the pressure and density equations, we have

Pλ3

gkT
= ζ − ζ2

25/2
+

ζ3

35/2
− ζ4

45/2
+ · · ·

ρλ3

g
= ζ − ζ2

23/2
+

ζ3

33/2
− ζ4

43/2
+ · · · . (11.5.9)

Substituting eqn. (11.5.8) into eqns. (11.5.9) gives

ρλ3

g
= (a1ρ + a2ρ

2 + a3ρ
3 + · · ·) − 1

23/2
(a1ρ + a2ρ

2 + a3ρ
3 + · · ·)2

+
1

33/2
(a1ρ + a2ρ

2 + a3ρ
3 + · · ·)3 + · · · . (11.5.10)

Eqn. (11.5.10) can be solved perturbatively, equating like powers of ρ on both sides.
For example, if we work only to first order in ρ, then we have

ρλ3

g
= a1ρ ⇒ a1 =

λ3

g
⇒ ζ ≈ λ3ρ

g
. (11.5.11)

When eqn. (11.5.11) is substituted into eqn. (11.5.9) for the pressure and only terms
first order in the density are kept, we obtain

Pλ3

gkT
=

ρλ3

g
⇒ P

kT
= ρ =

〈N〉
V

, (11.5.12)

which is just the classical ideal gas equation. If we now go out to second order in ρ,
eqn. (11.5.9) gives
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λ3ρ

g
=

λ3ρ

g
+ a2ρ

2 − 1

23/2

λ6ρ2

g2
(11.5.13)

or

a2 =
λ6

23/2g2
, (11.5.14)

from which

ζ ≈ λ3ρ

g
+

λ6

23/2g2
ρ2, (11.5.15)

and the equation of state becomes

P

kT
= ρ +

λ3

25/2g
ρ2. (11.5.16)

From the equation of state, we can read off the second virial coefficient

B2(T ) =
λ3

25/2g
≈ 0.1768

λ3

g
> 0. (11.5.17)

Even at second order, we observe a nontrivial quantum effect, in particular, a second
virial coefficient with a nonzero value despite the absence of interactions among the
particles. The implication of eqn. (11.5.17) is that there is an effective “interaction”
among the particles as a result of the fermionic spin statistics. This “interaction” tends
to increase the pressure above the classical ideal gas result (B2(T ) > 0) and hence is
repulsive in nature. This result is a consequence of the Pauli exclusion principle: If
we imagine filling the energy levels, then since no two particles can occupy the same
quantum state, once the ground state n = (0, 0, 0) is fully occupied by particles with
different Ŝz eigenvalues, the next particle must go into a higher energy state. The
result is an effective “repulsion” among the particles that pushes them into increasingly
higher energy states so as not to violate the Pauli principle.

If the third-order contribution is worked out, one finds (see Problem 11.1) that

a3 =

(
1

4
− 1

33/2

)
λ9

g3

ζ =
λ3ρ

g
+

λ6

23/2g2
ρ2 +

(
1

4
− 1

33/2

)
λ9

g3
ρ3

P

kT
= ρ +

λ3

25/2g
ρ2 +

λ6

g2

(
1

8
− 2

35/2

)
ρ3, (11.5.18)

so that B3(T ) < 0. Since the third-order term is a second-order correction to the
ideal-gas equation of state, the fact that B3(T ) < 0 is consistent with time-independent
perturbation theory, wherein the second-order correction lowers all of the energy levels.
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11.5.2 The high-density, low-temperature limit

The high-density, low-temperature limit exhibits the largest departure from classi-
cal behavior. Using eqn. (11.5.3), we obtain the following integral expression for the
density:

ρλ3 =
4g√
π

∫ ∞

0

x2dx

ζ−1e−x2 + 1
. (11.5.19)

Starting with this expression, we can derive an expansion in the inverse powers of
ln ζ ≡ μ/kT , as these inverse powers will become decreasingly small as T → 0, allowing
the leading order behavior to be deduced. We begin by introducing the variable

ν = ln ζ =
μ

kT
(11.5.20)

and developing an expansion in its inverse powers. We will sketch out briefly how this
is accomplished. We first introduce a change of variable y = x2, from which x =

√
y

and dx = dy/(2
√

y). When this change is made in eqn. (11.5.19), we obtain

ρλ3 =
2g√
π

∫ ∞

0

√
ydy

ey−ν + 1
. (11.5.21)

The integral can be carried out by parts using

u =
1

ey−ν + 1
, du = − 1

(ey−ν + 1)2
ey−νdy

dv = y1/2dy, v =
2

3
y3/2, (11.5.22)

which gives

ρλ3 =
4g

3
√

π

∫ ∞

0

y3/2ey−νdy

(ey−ν + 1)2
. (11.5.23)

Next, we expand y3/2 about y = ν:

y3/2 = ν3/2 +
3

2
ν1/2(y − ν) +

3

8
ν−1/2(y − ν)2 + · · · . (11.5.24)

This expansion is now substituted into eqn. (11.5.23) and the resulting integrals over
y are performed, which yields

ρλ3 =
4g

3
√

π

[
(ln ζ)3/2 +

π2

8
(ln ζ)−1/2 + · · ·

]
+ O(1/ζ), (11.5.25)

where the fact that μ/kT � 1 has been used for the low temperature limit. The high
density limit implies a high chemical potential, which makes ζ(ρ) = eβμ(ρ) large as
well. A large ζ also helps ensure the convergence of the series in eqn. (11.5.25), since
the error falls off with powers of 1/ζ.
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As T → 0, ζ → ∞ and only the first term in the above expansion survives:

ρλ3 = ρ

(
2πh̄2

mkT

)
≈ 4g

3
√

π
(ln ζ)

3/2
=

4g

3
√

π

( μ

kT

)3/2

. (11.5.26)

According to the procedure of the grand canonical ensemble, we need to solve for ζ as
a function of ρ or equivalently for μ as a function of ρ. From eqn. (11.5.26), we find

μ =
h̄2

2m

(
6π2ρ

g

)2/3

≡ μ0 = εF, (11.5.27)

which is independent of T . The special value of the chemical potential μ0 = μ(T = 0)
is known as the Fermi energy, εF. The Fermi energy plays an important role in systems
of free or quasi-free many-fermion systems. Metals are an example of quasi-free many-
electron systems. In order to shed more light on the physical significance of the Fermi
energy, consider the expression for the average number of particles:

〈N〉 =
∑
m

∑
n

ζe−βεn

1 + ζe−βεn
. (11.5.28)

However, recall that the occupation numbers must sum to the total number of particles
in the system: ∑

m

∑
n

fnm = N. (11.5.29)

Thus, taking an average of both sides over the grand canonical ensemble, we obtain

〈N〉 =
∑
m

∑
n

〈fnm〉. (11.5.30)

Comparing eqns. (11.5.28) and (11.5.30), we can deduce that the average occupation
number of a given state with quantum numbers n and m is

〈fnm〉 =
e−β(εn−μ)

1 + e−β(εn−μ)
=

1

1 + eβ(εn−μ)
. (11.5.31)

Eqn. (11.5.31) gives the average occupancy of each quantum state in the ideal fermion
gas and is known as the Fermi–Dirac distribution function. As T → 0, β → ∞, and
eβ(εn−μ0) → ∞ if εn > μ0, and eβ(εn−μ0) → 0 if εn < μ0. Recognizing that μ0 = εF,
we have the T = 0 result

〈fnm〉 =

⎧⎨
⎩

0 εn > εF

1 εn < εF

. (11.5.32)

That is, at zero temperature, the Fermi–Dirac distribution becomes a simple step
function:

〈fnm〉 = θ(εF − εn). (11.5.33)

A plot of the average occupation number versus εn at T = 0 is shown in Fig. 11.1.
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ε

f (ε)

Fig. 11.1 The Fermi–Dirac distribution for T = 0 in eqn. (11.5.32) (solid line) and finite

temperature using eqn. (11.5.31) (dashed line).

The implication of eqn. (11.5.33) is that at T = 0, the particles fill all of the available
energy levels up to an energy value εF, above which all energy levels are unoccupied.
Thus, εF represents a natural cutoff between occupied and unoccupied subspaces of
energy levels. The highest occupied energy level must satisfy the condition εn = εF,
which implies

2π2h̄2

mL2
|n|2 =

2π2h̄2

mL2
(n2

x + n2
y + n2

z) = εF. (11.5.34)

Eqn. (11.5.34) defines a spherical surface in n space, which is known as the Fermi
surface. Although the Fermi surface is a simple sphere for the ideal gas, for interacting
systems, the geometry of the Fermi surface will be considerably more complicated. In
fact, characterizing the shape of a Fermi surface is an important component in the
understanding of a wide variety of properties (thermal, electrical, optical, magnetic)
of solid-state systems.

As T is increased, the probability of an excitation above the Fermi energy becomes
nonzero, and on average, some of the energy levels above the Fermi energy will be oc-
cupied, leaving some of the energy levels below the Fermi energy vacant. This situation
is represented with the dashed line in Fig. 11.1, which shows eqn. (11.5.31) for T > 0.
The combination of a particle excitation to an energy level above εF and a depletion
of an energy level below εF constitutes an “exciton-hole” pair. In real materials such
as metals, an exciton-hole pair can also be created by bombarding the material with
photons. The familiar concept of a work function—the energy needed to just remove
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an electron from one of the occupied energy levels—is closely related to the Fermi
energy.

11.5.3 Zero-temperature thermodynamics

The fact that states of finite energy are occupied even at zero temperature in the
fermion gas means that the thermodynamic properties at T = 0 are nontrivial. Con-
sider, for example, the average particle number. In order to obtain an expression for
this quantity, recall that

〈N〉 =
∑
m

∑
n

〈fnm〉 =
∑
m

∑
n

θ(εF − εn) = g
∑
n

θ(εF − εn). (11.5.35)

In the thermodynamic limit, the sum may be replaced by an integration in spherical
polar coordinates

〈N〉 = g

∫
dn θ(εF − εn)

= 4πg

∫ ∞

0

dn n2θ(εF − εn). (11.5.36)

However, since the energy eigenvalues are given by

εn =
2π2h̄2

mL2
n2, (11.5.37)

it proves useful to change variables of integration from n to εn using eqn. (11.5.37):

n =

(
mL2

2π2h̄2

)1/2

ε1/2
n

dn =
1

2

(
mL2

2π2h̄2

)1/2

ε−1/2
n . (11.5.38)

Inserting eqn. (11.5.38) into eqn. (11.5.36), we obtain

〈N〉 = 4πg

∫ ∞

0

dn n2θ(εF − εn)

= 2π

(
mL2

2π2h̄2

)3/2 ∫ ∞

0

dεn ε1/2
n θ(εF − εn)

= 2πg

(
mL2

2π2h̄2

)3/2 ∫ εF

0

dε ε1/2
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〈N〉 =
4πg

3

(
m

2πh̄2

)3/2

V εF
3/2. (11.5.39)

By a similar procedure, we can obtain an expression for the average energy. Recall
that the total energy for a given set of occupation numbers is given by

E{fn} =
∑
m

∑
n

fnmεn. (11.5.40)

Taking the ensemble average of both sides yields

〈H〉 = E =
∑
m

∑
n

〈fnm〉εn. (11.5.41)

At T = 0, this becomes

E = g
∑
n

θ(εF − εn)εn

→ g

∫
dn θ(εF − εn)εn

= 4πg

∫ ∞

0

dn n2 θ(εF − εn)εn, (11.5.42)

where, as usual, we have replaced the sum by an integral and transformed to spherical
polar coordinates. If the change of variables in Eqn. (11.5.38) is made, we find

E = 4πg

∫ ∞

0

dεn

1

2

(
mL2

2π2h̄2

)3/2

εn
3/2θ(εF − εn)

= 2πg

(
m

2π2h̄2

)3/2

V

∫ εF

0

dεn εn
3/2

=
4πg

5

(
m

2π2h̄2

)3/2

V εF
5/2. (11.5.43)

Combining eqns. (11.5.43) and (11.5.39), the following relation between E and 〈N〉
can be established:

E =
3

5
〈N〉εF. (11.5.44)

Moreover, since εF ∼ ρ2/3, we see that the total energy is related to the density ρ by

E

V
= CKρ5/3, (11.5.45)

where CK is an overall constant, CK = (3h̄2/10m)(6π2/g)2/3. Note that if we perform
a spatial integration on both sides of eqn. (11.5.45) over the containing volume, we
obtain the total energy as
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E =

∫
D(V )

dr
E

V
= CK

∫
D(V )

dr ρ5/3 = V CKρ5/3 (11.5.46)

In one of the early theories of the electronic structure of multielectron atoms, the
Thomas–Fermi theory, eqns. (11.5.45) and (11.5.46) were used to derive an expression
for the electron kinetic energy. In a fermion ideal gas, the density ρ is constant, whereas
in an interacting many-electron system, the density ρ varies in space and, is therefore, a
function ρ(r). A key assumption in the Thomas–Fermi theory is that in a multielectron
atom, the spatial variation in ρ(r) is mild enough that the kinetic energy can be
approximated by replacing the constant ρ in eqn. (11.5.45) with ρ(r), and then perform
a spatial integration over both sides. The result is an approximate kinetic-energy
functional given by

T [ρ] = CK

∫
dr ρ5/3(r). (11.5.47)

Since the functional in eqn. (11.5.47) depends on the function ρ(r), it is known as a
density functional. In 1964, Pierre Hohenberg and Walter Kohn proved that the total
energy of a quantum multielectron system E[ρ] can be expressed as a unique functional
of the density ρ(r) and that the minimum of this functional over the set of all densities
ρ(r) derivable from the set of all ground-state wave functions leads to the ground-state
density of the particular system under consideration. The implication is that knowledge
of the ground-state density ρ0(r) uniquely defines the quantum Hamiltonian of the
system. This theorem has led to the development of the modern theory of electronic
structure known as density functional theory, which has become one of the most
widely used electronic structure methods. The Hohenberg–Kohn theorem amounts to
an existence proof, since the exact form of the functional E[ρ] is unknown. The kinetic
energy functional in eqn. (11.5.47) is only an approximation to the exact kinetic-
energy functional known as a local density approximation because the integrand of
the functional depends only on one spatial point r. Eqn. (11.5.47) is no longer used
for actual applications because it, together with the rest of Thomas–Fermi theory, is
unable to describe chemical bonding. In fact, Thomas–Fermi theory and its variants
have been largely supplanted by the version of density functional theory introduced
by Walter Kohn and Lu Sham (1965). In Section 11.5.4 below, we will use our solution
to the fermion ideal gas to derive another approximation commonly used in density
functional theory, which is still used within the Kohn–Sham theory for certain classes
of systems.

The pressure at T = 0 can now be obtained straightforwardly. We first recognize
that the pressure is given by the sum in eqn. (11.5.5):

PV

kT
=

V g

λ3

∞∑
l=1

(−1)l+1ζl

l5/2
= ln Z(ζ, V, T ). (11.5.48)

However, the total energy can be obtained as a thermodynamic derivative of the
partition function via

E = −
(

∂

∂β
ln Z(ζ, V, T )

)
ζ,V

, (11.5.49)
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from which it follows that

E =
3

2β

V g

λ3

∞∑
l=1

(−1)l+1ζl

l5/2
. (11.5.50)

Comparing eqns. (11.5.48) and (11.5.50), we see that

E =
3

2
PV ⇒ P =

2

3

E

V
. (11.5.51)

As for the energy, the pressure at T = 0 is not zero. The zero-temperature values of
both the energy and pressure are:

E =
3

5
〈N〉εF

P =
2

5

〈N〉
V

εF. (11.5.52)

These are referred to as the zero-point energy and pressure and are purely quantum
mechanical in nature, arising from the required symmetry of the wave function. The
fact that the pressure does not vanish at T = 0 is again a consequence of the Pauli
exclusion principle and the effective repulsive interaction that also appeared in the low
density, high-temperature limit.

11.5.4 Derivation of the local density approximation

In Section 11.5.3, we referred to the local density approximation to density functional
theory. In this section, we will derive the local density approximation to the exact
exchange energy in density functional theory. The functional we will obtain is still used
in many density functional calculations and serves as the basis for more sophisticated
density functional schemes. The exact exchange energy is a component of the electronic
structure method known as Hartree–Fock theory. It takes the form

Ex = −1

4

∫
dr dr′

|ρ1(r, r
′)|2

|r− r′| , (11.5.53)

where ρ1(r, r
′) is known as the one-particle density matrix:

ρ1(r, r
′) =

∑
s,s′

∑
m

∑
n

〈fnm〉φnm(x)φ∗
nm(x′). (11.5.54)

Thus, for this calculation, we need both the energy levels and the corresponding eigen-
functions of the quantum ideal gas. We will show that for an ideal gas of electrons,
the exchange energy is given exactly by

Ex = V Cxρ
4/3, (11.5.55)

where
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Cx = −3

4

(
3

π

)1/3

. (11.5.56)

As we did for the kinetic energy, the volume factor in eqn. (11.5.55) can be written as
an integral:

Ex =

∫
dr Cxρ

4/3. (11.5.57)

The local density approximation consists in replacing the constant density in eqn.
(11.5.57) with the spatially varying density ρ(r) of a system of interacting electrons.
When this is done, we obtain the local density approximation to the exchange energy:

Ex =

∫
dr Cxρ

4/3(r). (11.5.58)

The remainder of this section will be devoted to the derivation of eqn. (11.5.55).
Since we are interested in the T = 0 limit, we willl make use the zero-temperature

occupation numbers in eqn. (11.5.33), and we will assume that the fermions are elec-
trons (spin-1/2) so that the spin degeneracy factor g = 2. The first step in the deriva-
tion is to determine the one-particle density matrix using the eigenvalues and eigen-
functions in eqn. (11.2.15). Substituting these into eqn. (11.5.54) gives

ρ1(r, r
′) =

1

V

∑
s,s′

∑
m

∑
n

χm(s)χm(s′)e2πin·(r−r′)/Lθ(εF − εn)

=
1

V

∑
s,s′

∑
m

∑
n

δmsδms′e2πin·(r−r′)/Lθ(εF − εn)

=
2

V

∑
n

e2πin·(r−r′)/Lθ(εF − εn)

=
2

V

∫
dn e2πin·(r−r′)/Lθ(εF − εn), (11.5.59)

where in the last line, the summation has been replaced by integration, and the factor
of 2 comes from the summation over spin states. At this point, notice that ρ1(r, r

′)
does not depend on r and r′ separately but only on the relative vector s = r − r′.
Thus, we can write the last line of eqn. (11.5.59) as

ρ1(r) =
2

V

∫
dn e2πn·s/Lθ(εF − εn). (11.5.60)

The integral over n can be performed by orienting the n coordinate system such that
the vector s lies along the nz axis. Then, transforming to spherical polar coordinates
in n, we find that ρ1 only depends on the magnitude s = |s| of s:

ρ1(s) =
2

V

∫ ∞

0

dn n2θ(εF − εn)

∫ 2π

0

∫ π

0

dφ sin θ dθ e2πns cos θ/L. (11.5.61)

Performing the angular integrals, we obtain

ρ1(s) =
4π

V

∫ ∞

0

dn n2 θ(εF − εn)
L

2πins

(
e2πins/L − e−2πins/L

)
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=
4

L2s

∫ ∞

0

dn nθ(εF − εn) sin

(
2πns

L

)
. (11.5.62)

For the remaining integral over n, because of the sin function in the integrand, trans-
forming from n to εn is not convenient. However, since n > 0, we recognize that the
step function simply restricts the upper limit of the integral by the condition

2π2h̄2

mL2
n2 < εF

n <

(
mL2εF

2π2h̄2

)1/2

≡ nF. (11.5.63)

Therefore,

ρ1(s) =
4

L2s

∫ nF

0

dn n sin

(
2πns

L

)

=
1

π2s3

[
sin

(
2πnFs

L

)
− s

lF
cos

(
2πnFs

L

)]
, (11.5.64)

where

lF =

(
h̄2

2mεF

)1/2

. (11.5.65)

Given ρ1(s), we can now evaluate the exchange energy. First, we need to transform
from integrations over r and r′ to center-of-mass and relative coordinate

R =
1

2
(r + r′) , s = r− r′. (11.5.66)

This transformation yields for Ex:

Ex = −1

4

∫
dR ds

ρ2
1(s)

s
. (11.5.67)

Integrating over R and transforming the s integral into spherical polar coordinates
gives, after performing the angular part of the s integration, we find

Ex = −V

4

∫
ds

ρ2
1(s)

s

= −πV

∫ ∞

0

ds sρ2
1(s)

=
V

π3

∫ ∞

0

1

s5

[
sin(kFs) − s

lF
cos(kFs)

]2

, (11.5.68)

where kF = 2πnF/L. If we now introduce the change of variables x = kFs, we find
that the expression separates into a density-dependent part and a purely numerical
factor in the form of an integral:
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Ex = − V

π3
k4
F

∫ ∞

0

dx
(sin x − x cosx)2

x5
. (11.5.69)

Even without performing the remaining integral over x, we can see that Ex ∼ k4
F

and, therefore, Ex ∼ ρ4/3. However, the integral turns out to be straightforward to
perform, despite its foreboding appearance. The trick (Parr and Yang, 1989) is to let
y = sin x/x. Then, it can be shown that

dy

dx
= − sin x − x cosx

x2

d2y

dx2
= − 2

x

dy

dx
− y. (11.5.70)

Finally,

∫ ∞

0

dx
(sin x − x cosx)2

x5
=

∫ ∞

0

dx
(sin x − x cosx)

x2

(sin x − x cosx)

x3

=

∫ ∞

0

dx

(
dy

dx

)(
1

x

dy

dx

)

= −1

2

∫ ∞

0

dx

(
d2y

dx2
+ y

)(
dy

dx

)

= −1

4

∫ ∞

0

dx
d

dx

[
y2 +

(
dy

dx

)2
]

= −1

4

[
y2 +

(
dy

dx

)2
]∣∣∣∣∣

∞

0

. (11.5.71)

Both y and dy/dx vanish at x = ∞. In addition, by L’Hôpital’s rule, dy/dx vanishes
at x = 0. Thus, only the sinx/x term does not vanish at x = 0, and the result of the
integral is simply 1/4. Using the definitions of kF and nF, we ultimately find that

Ex = CxV ρ4/3, (11.5.72)

which is the desired result.

11.5.5 Thermodynamics at low temperature

At low but finite temperature, the Fermi–Dirac distribution appears as the dashed line
in Fig. 11.1, which shows that small excitations above the Fermi surface are possible
due to thermal fluctuations. These excitations will give rise to small finite-temperature
corrections to the thermodynamic quantities we derived above at T = 0. Although we
will not give all of the copious mathematical details of how to obtain these corrections,
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we will outline how they are derived. First, consider the density equation obtained in
eqn. (11.5.25) with the lowest nonvanishing temperature-dependent term:

ρλ3 =
4g

3
√

π

[
(ln ζ)3/2 +

π2

8
(ln ζ)−1/2 + · · ·

]
. (11.5.73)

If (μ/kT )3/2 is factored out, we obtain

ρλ3 =
4g

3
√

π

[( μ

kT

)3/2

+
π2

8

( μ

kT

)−1/2

+ · · ·
]

=
4g

3
√

π

[( μ

kT

)3/2
(

1 +
π2

8

(
kT

μ

)2

+ · · ·
)]

. (11.5.74)

The term proportional to T 2 is a small thermal correction to the T = 0 limit. Working
only to order T 2, we can replace the μ appearing in this term with μ0 = εF, which
yields

ρλ3 =
4g

3
√

π

[( μ

kT

)3/2
(

1 +
π2

8

(
kT

εF

)2

+ · · ·
)]

. (11.5.75)

Solving eqn. (11.5.75) for μ (which is equivalent to solving for ζ) gives

μ ≈ kT

[
3ρλ3

√
π

4g

]2/3
[
1 + (

π2

8

(
kT

εF

)2
]−2/3

≈ εF

[
1 − π2

12

(
kT

εF

)2

+ · · ·
]

, (11.5.76)

where the second line in eqn. (11.5.76) is obtained by expanding 1/(1 + x)2/3 about
x = 0.

In order to obtain the thermal corrections, we must expand the average occupation
number formula about the μ0 = εF value using eqn. (11.5.76) and then carry out the
subsequent integrations. Skipping the details, it can be shown that to order T 2, the
total energy is given by

E =
3

5
NεF

[
1 +

5

12
π2

(
kT

εF

)2

+ · · ·
]

. (11.5.77)

This thermal correction is necessary in order to obtain the heat capacity at constant
volume (which is zero at T = 0):

CV =

(
∂E

∂T

)
V
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CV

〈N〉k =
π2kT

2εF
. (11.5.78)

From eqn. (11.5.77), the pressure can be obtained immediately:

P =
2

5
ρεF

[
1 +

5

12
π2

(
kT

εF

)2

+ · · ·
]

, (11.5.79)

which constitutes a low-temperature equation of state.

11.6 The ideal boson gas

The behavior of the ideal boson gas is dramatically different from that of the ideal
fermion gas. Indeed, bosonic systems have received considerable attention in the liter-
ature because of a phenomenon known as Bose–Einstein condensation, which we will
derive in the next section.

As with the fermion case, the treatment of the ideal boson gas begins with the
equations for the pressure and average particle number in terms of the fugacity:

PV

kT
= −g

∑
n

ln
(
1 − ζe−βεn

)
(11.6.1)

〈N〉 = g
∑
n

ζe−βεn

1 − ζe−βεn
. (11.6.2)

Careful examination of eqns. (11.6.1) and (11.6.2) reveals an immediate problem: The
term n = (0, 0, 0) diverges for both the pressure and the average particle number as
ζ → 1. These terms need to be treated carefully, hence we split them off from the rest
of the sums in eqns. (11.6.1) and (11.6.2), which gives

PV

kT
= −g

∑
n

′ ln
(
1 − ζe−βεn

)− g ln(1 − ζ)

〈N〉 = g
∑
n

′ ζe−βεn

1 − ζe−βεn
+ g

ζ

1 − ζ
. (11.6.3)

Here,
∑ ′ means that the n = (0, 0, 0) term is excluded. With these divergent terms

written separately, we can take the thermodynamic limit straightforwardly and convert
the remaining sums to integrals as was done in the fermion case. For the pressure, we
obtain

PV

kT
= −g

∫
dn ln

(
1 − ζe−βεn

)− g ln(1 − ζ)

= −4πg

∫ ∞

0

dn n2 ln
(
1 − ζe−2π2βh̄2|n|2/mL2

)
− g ln(1 − ζ)
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= − 4V g√
πλ3

∫ ∞

0

dx x2 ln(1 − ζe−x2
) − g ln(1 − ζ), (11.6.4)

where the change of variables in eqn. (11.5.2) has been made. Now, the function
ln(1 − x) has the following power series expansion:

ln(1 − y) = −
∞∑

l=1

yl

l
. (11.6.5)

Using eqn. (11.6.5) allows the pressure to be expressed as

Pλ3

gkT
=

∞∑
l=1

ζl

l5/2
− λ3

V
ln(1 − ζ), (11.6.6)

and by a similar procedure, the average particle number becomes

ρλ3

g
=

∞∑
l=1

ζl

l3/2
+

λ3

V

ζ

1 − ζ
. (11.6.7)

In eqn. (11.6.7), the term that has been split off represents the average occupation of
the ground (n = (0, 0, 0)) state:

〈f0m〉 =
ζ

1 − ζ
, (11.6.8)

where f0m ≡ fn=(0,0,0)m. Since 〈f0m〉 must be greater than or equal to 0, it follows that
there are restrictions on the allowed values of the fugacity ζ. First, since ζ = exp(βμ),
ζ must be positive. However, in order that the average occupation of the ground state
be positive, we must also have ζ < 1. Therefore, ζ ∈ (0, 1), so that μ < 0. The fact
μ < 0 suggests that adding particles to the ground state is favorable, a fact that turns
out to have fascinating consequences away from the classical limit. Before exploring
these in Section 11.6.2, however, we first treat the low-density, high-temperature limit,
where classical effects dominate.

11.6.1 Low-density, high-temperature limit

In a manner completely analogous to the fermion case, the low-density, high-temperature
limit can be treated using a perturbative approach. At high temperature, the fugac-
ity is sufficiently far from unity that the divergent terms in the pressure and density
expressions can be safely neglected. Although it may not be obvious that ζ 
 1 at
high temperature, recall that ζ = exp(−|μ|/kT ). Moreover, μ decreases sharply in the
low-density limit, and since μ < 0, this means |μ| is large, and ζ 
 1. Thus, if ζ is
very different from 1, then the divergent terms in eqns. (11.6.6) and (11.6.7), which
have a λ3/V prefactor, vanish in the thermodynamic limit.

As in the fermion case, we assume that the fugacity can be expanded as

ζ = a1ρ + a2ρ
2 + a3ρ

3 + · · · . (11.6.9)

Then, from eqn. (11.6.7), the density becomes
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ρλ3

g
= (a1ρ + a2ρ

2 + a3ρ
3 + · · ·) − 1

23/2
(a1ρ + a2ρ

2 + a3ρ
3 + · · ·)2

+
1

33/2
(a1ρ + a2ρ

2 + a3ρ
3 + · · ·)3 + · · · . (11.6.10)

By equating like powers of ρ on both sides, the coefficients a1, a2, a3, ... can be deter-
mined as for the fermion gas. Working to first order in ρ gives

a1 =
λ3

g
ζ ≈ λ3ρ

g
, (11.6.11)

and the equation of state is the expected classical result

P

kT
= ρ. (11.6.12)

Working to second order, we find

a2 = − λ6

23/2g2
ζ =

λ3ρ

g
− λ6

23/2g2
ρ2, (11.6.13)

and the second-order equation of state becomes

P

kT
= ρ − λ3

25/2g
ρ2. (11.6.14)

The second virial coefficient can be read off and is given by

B2(T ) = − 1

25/2g
λ3 = −0.1768

g
λ3 < 0. (11.6.15)

In contrast to the fermion case, the bosonic pressure decreases from the classical value
as a result of spin statistics. Thus, there appears to be an “effective attraction” between
the particles. Unlike the fermion gas, where the occupation numbers of the available
energy levels are restricted by the Pauli exclusion principle, any number of bosons
can occupy a given energy state. Thus, at temperatures slightly lower than those at
which a classical description is valid, particles can “condense” into lower energy states
and cause small deviations from a strict Maxwell-Boltzmann distribution of kinetic
energies.

11.6.2 The high-density, low-temperature limit

At high density, the work needed to insert an additional particle into the system be-
comes large. Since μ measures this work and μ < 0, the high-density limit is equivalent
to the μ → 0 or the ζ → 1 limit. In this limit, the full problem, including the divergent
terms, must be solved:



The ideal boson gas

Pλ3

gkT
=

∞∑
l=1

ζl

l5/2
− λ3

V
ln(1 − ζ)

ρλ3

g
=

∞∑
l=1

ζl

l3/2
+

λ3

V

ζ

1 − ζ
. (11.6.16)

We will need to refer to the two sums in eqns. (11.6.16) often in this section, so let us
define them as follows:

g3/2(ζ) =

∞∑
l=1

ζl

l3/2

g5/2(ζ) =
∞∑
l=1

ζl

l5/2
. (11.6.17)

Thus, eqns. (11.6.16) can be expressed as

Pλ3

gkT
= g5/2(ζ) − λ3

V
ln(1 − ζ) (11.6.18)

ρλ3

g
= g3/2(ζ) +

λ3

V

ζ

1 − ζ
. (11.6.19)

First, consider eqn. (11.6.19) for the density. The term ζ/(1 − ζ) diverges at ζ = 1. It
is instructive to ask about the behavior of g3/2(ζ) at ζ = 1. In fact, g3/2(1), given by

g3/2(1) =

∞∑
l=1

1

l3/2
, (11.6.20)

is a special type of a mathematical function known as a Riemann zeta-function. In
general, the Riemann zeta-function R(n) is defined to be

R(n) =

∞∑
l=1

1

ln
(11.6.21)

(values of R(n) are provided in many standard math tables). The quantity g3/2(1) =
R(3/2) is a pure number whose approximate value is 2.612. Moreover, from the form
of g3/2(ζ), it is clear that, since ζ < 1, g3/2(1) is the maximum value of g3/2(ζ). A plot
of g3/2(ζ) is given in Fig. 11.2.

The figure also indicates that the derivative g′3/2(ζ) diverges at ζ = 1, despite the
value of the function being finite. Since ζ < 1, it follows that

g3/2(ζ) < g5/2(ζ). (11.6.22)

It is possible to solve eqn. (11.6.19) for ζ by noting that unless ζ is very close to 1,
the divergent term must vanish in the thermodynamic limit as a result of the λ3/V
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Fig. 11.2 The function g3/2(ζ).

prefactor. It is, therefore, useful to ask precisely how close to 1 ζ must be for the
divergent term to be important. Because of the λ3/V prefactor, ζ can only be different
from 1 by an amount on the order of 1/V . In order to see this, let us assume that ζ
can be written in the form

ζ = 1 − a

V
, (11.6.23)

where a is a positive constant to be determined. The magnitude of a is a measure of
the amount by which ζ deviates from 1 at a given volume. Substituting this ansatz
into eqn. (11.6.19) gives

ρλ3

g
= g3/2(1 − a/V ) +

λ3

V

1 − a/V

a/V
. (11.6.24)

Since g3/2(ζ) does not change its value much if ζ is displaced slightly from 1, we can
replace the first term to a very good approximation by R(3/2), which yields

ρλ3

g
≈ g3/2(1) +

λ3

V

1 − a/V

a/V
. (11.6.25)

Eqn. (11.6.25) can be solved for the unknown parameter a to give

a =
λ3

ρλ3

g − R(3/2)
, (11.6.26)

where we have neglected a term proportional to λ3/V , which vanishes in the thermody-
namic limit. Since a must be positive, this solution is only valid for ρλ3/g > R(3/2).
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For ρλ3/g < R(3/2), ζ will be different from 1 by more than 1/V , and the diver-
gent term proportional to ζ/(1 − ζ) can, therefore, be safely neglected. Thus, for
ρλ3/g < R(3/2), we only need to solve ρλ3/g = g3/2(ζ) for ζ. Combining these re-
sults, the general solution for ζ valid at high density and low temperature can be
expressed as

ζ =

⎧⎨
⎩

1 − λ3/V
(ρλ3/g)−R(3/2)

ρλ3

g > R(3/2)

root of g3/2(ζ) = ρλ3

g
ρλ3

g < R(3/2)

, (11.6.27)

which in the thermodynamic limit becomes

ζ =

⎧⎨
⎩

1 ρλ3

g > R(3/2)

root of g3/2(ζ) = ρλ3

g
ρλ3

g < R(3/2)

. (11.6.28)

A plot of ζ vs. vg/λ3 = V g/〈N〉λ3 is shown in Fig. 11.3. According to the figure,

0 1 2 3
vg/λ

3

ζ

1

1/R(3/2)

Fig. 11.3 Plot of eqn. (11.6.28).

the point R(3/2) is special, as ζ undergoes a transition there to the (approximately)
constant value of 1.

In order to see what the effect of this transition has on the average occupation
numbers, recall that the latter can be determined using

〈N〉 =
∑
n,m

ζe−βεn

1 − ζe−βεn
=

∑
n,m

〈fnm〉, (11.6.29)
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from which it can be seen that the average occupation of each energy level is given by

〈fnm〉 =
ζe−βεn

1 − ζe−βεn
=

1

eβ(εn−μ) − 1
. (11.6.30)

Eqn. (11.6.30) is known as the Bose–Einstein distribution function. For the ground
state (n = (0, 0, 0)), the occupation number expression is

〈f0m〉 =
ζ

1 − ζ
. (11.6.31)

Substituting the ansatz in eqn. (11.6.23) for ζ into eqn. (11.6.31) gives

〈f0m〉 ≈ V

a
=

V

λ3

(
ρλ3

g
− R(3/2)

)
(11.6.32)

for ρλ3/g > R(3/2). At ρλ3/g = R(3/2), ζ → 0, and the occupation of the ground
state becomes 0. The temperature at which the n = (0, 0, 0) level starts to become
occupied can be computed by solving

ρλ3

g
= R(3/2)

ρ

g

(
2πh̄2

mkT0

)3/2

= R(3/2)

kT0 =

(
ρ

gR(3/2)

)2/3
2πh̄2

m
. (11.6.33)

For temperatures less than T0, the occupation of the ground state becomes

〈f0m〉 =
ρV

g

[
1 − g

ρλ3
R(3/2)

]

=
〈N〉
g

[
1 − g

ρλ3
R(3/2)

]

=
〈N〉
g

[
1 − gR(3/2)

ρ

(
mkT

2πh̄2

)3/2 (
kT0

kT0

)3/2
]

=
〈N〉
g

[
1 −

(
T

T0

)3/2
]

〈f0m〉
〈N〉 =

1

g

[
1 −

(
T

T0

)3/2
]

. (11.6.34)

At T = 0,
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〈f0m〉 =
〈N〉
g

. (11.6.35)

Summing both sides of eqn. (11.6.35) over m cancels the degeneracy factor g on the
right, yielding

∑
m

〈f0m〉 =
∑
m

〈N〉
g

〈f̄0〉 = 〈N〉, (11.6.36)

where 〈f̄0〉 indicates that the spin degeneracy has been summed over. For T > T0,
ρλ3/g < R(3/2) and ζ is not within 1/V of 1, implying that ζ/(1 − ζ) is finite and

〈f̄0〉
〈N〉 =

1

〈N〉
ζ

1 − ζ
−→ 0 (11.6.37)

as 〈N〉 → ∞. Thus, for the occupation of the ground state, we obtain

〈f̄0〉
〈N〉 =

⎧⎨
⎩

1 − (T/T0)
3/2 T < T0

0 T > T0

. (11.6.38)

A plot of eqn. (11.6.38) is given in Fig. 11.4.
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Fig. 11.4 Plot of eqn. (11.6.38).
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The occupation of the ground state undergoes a transition from a finite value at
T = 0 to zero at T = T0, and for all higher temperatures, it remains zero. Now,
〈f̄0〉/〈N〉 represents the probability that a particle will be found in the ground state
and is, therefore, the fraction of the total number of particles occupying the ground
state on average. For T << T0, this number is very close to 1, and at T = 0, it
becomes exactly 1, implying that at T = 0, all particles are in the ground state. This
phenomenon, in which all particles “condense” into the ground state, is known as
Bose–Einstein condensation. The temperature, T0, at which “condensation” begins is
known as the Bose–Einstein condensation temperature.

Bose–Einstein condensates were first realized experimentally using low-temperature
(170 nano-Kelvin) magnetically confined rubidium atoms (Anderson et al., 1995).
These and other experiments have sparked considerable interest in the problem of cre-
ating Bose–Einstein condensates for technological applications, including superfluidity.
Indeed, Bose–Einstein condensation is a striking example of a large-scale cooperative
quantum phenomenon.

Note that there is also a critical density corresponding to the Bose–Einstein con-
densation temperature, which is given by the solution of

ρλ3

g
= R(3/2). (11.6.39)

Eqn. (11.6.39) can be solved to yield

ρ =
gR(3/2)

λ3
= gR(3/2)

(
mkT0

2πh̄2

)3/2

≡ ρ0, (11.6.40)

and the occupation number, expressed in terms of the density is

〈f̄0〉
〈N〉 =

⎧⎨
⎩

1 − (ρ0/ρ) ρ > ρ0

0 ρ < ρ0

. (11.6.41)

The divergent term in eqn. (11.6.18), −(λ3/V ) ln(1− ζ), becomes, for ζ very close
to 1,

λ3

V
ln(V/a) ∼ ln V

V
, (11.6.42)

which clearly vanishes in the thermodynamic limit, since V ∼ 〈N〉. Thus, the pressure
simplifies even for ζ very close to 1, and the equation of state can be written as

P

gkT
=

⎧⎨
⎩

g5/2(1)/λ3 ρ > ρ0

g5/2(ζ)/λ3 ρ < ρ0

, (11.6.43)

where ζ is obtained by solving ρλ3/g = g3/2(ζ). It is interesting to note that the
pressure is approximately independent of the density for ρ > ρ0. Isotherms of the
ideal Bose gas are shown in Fig. 11.5. Here, v0 is the volume corresponding to the
critical density ρ0. The figure shows that P ∼ T 5/2, which is quite different from the
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Fig. 11.5 Plot of the isotherms of the equation of state in eqn. (11.6.43). Here T1 > T2 > T3.

The dotted line connects the transition points from constant to decreasing pressure and is of

the form P ∼ V −5/3.

classical ideal gas. This is likewise in contrast to the fermion ideal gas, where as T → 0,
the pressure remains finite. For the Boson gas, as T → 0, the pressure vanishes, in
keeping with the notion of an effective “attraction” between the particles that causes
them to condense into the ground state, which is a state of zero energy.

Other thermodynamic quantities follow from the equation of state. The energy can
be obtained from E = 3PV/2, yielding

E =

⎧⎨
⎩

3
2

kTV
λ3 g5/2(1) ρ > ρ0, T < T0

3
2

kTV
λ3 g5/2(ζ) ρ < ρ0, T > T0

, (11.6.44)

and the heat capacity at constant volume is obtained subsequently from CV = (∂E/∂T )v,
which gives

CV

〈N〉k =

⎧⎨
⎩

15
4

g5/2(1)

ρλ3 T < T0

15
4

g5/2(ζ)

ρλ3 − 9
4

g3/2(ζ)

g1/2(ζ) T > T0

. (11.6.45)

The plot of the heat capacity in Fig. 11.6 exhibits a cusp at T = T0. Experiments
carried out on liquid 4He, which has been observed to undergo Bose–Einstein conden-
sation at around T=2.18 K, have measured an actual discontinuity in the heat capacity
at the transition temperature, suggesting that Bose–Einstein condensation is a phase
transition known as a λ transition. By contrast, the heat capacity of the ideal Bose gas
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Fig. 11.6 CV as a function of T from eqn. (11.6.45). For T < T0, the curve increases as

T 3/2.

exhibits a discontinuous change at the transition temperature, signifying a first-order
phase transition (see also, Section 16.1). However, using the mass and density of liquid
He4 in the expression for T0 in eqn. (11.6.33), we obtain T0 of about 3.14 K from the
ideal gas, which is not far off the experimental transition temperature of 2.18 K for
real liquid helium.

11.7 Problems

11.1. Derive eqn. (11.5.18). What is the analogous term for bosons?

11.2. a. Can Bose–Einstein condensation occur for an ideal gas of bosons in one
dimension? If so, determine the temperature T0. If not, prove that it is
not possible.

b. Can Bose–Einstein condensation occur for an ideal gas of bosons in two
dimensions? If so, determine the temperature T0. If not, prove that it is
not possible.
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11.3. Determine how the average energy of an ideal gas of identical fermions in one
dimension at zero temperature depends on density. Repeat for a gas in two
dimensions.

11.4. Consider an ideal gas of massless spin-1/2 fermions in a cubic periodic box
of side L. The Hamiltonian for the system is

Ĥ =

N∑
i=1

c|p̂i|

where c is the speed of light.
a. Calculate the equation of state in the high-temperature, low-density limit

up to second order in the density. What is the second virial coefficient?
What is the classical limit of the equation of state?

b. Calculate the Fermi energy, εF, of the gas.

c. Determine how the total energy depends on the density.

∗11.5. Problem 9.7 of Chapter 9 considers the case of N charged fermions in a
uniform magnetic field. In that problem, the eigenfunctions and eigenvalues
of the Hamiltonian were determined. This problem uses your solution for
these eigenvalues and eigenfunctions.
a. Calculate the grand canonical partition function, Z(ζ, V, T ) in the high-

temperature (h̄ω/kT << 1) and thermodynamic limits. In this limit, it
is sufficient to work to first order in the fugacity, ζ.

Hint: Beware of degeneracies in the energy levels besides the spin degen-
eracy.

b. The magnetic susceptibility per unit volume is defined by

χ =
∂M

∂B
,

where M is the average induced magnetization per unit volume along the
direction of the magnetic field and is given by

M =
kT

V

(
∂ ln Z

∂B

)
ζ,V,T

.

Calculate M and χ for this system. Curie’s Law for the magnetic suscep-
tibility states that |χ| ∝ 1/T . Is your result in accordance with Curie’s
Law? If not, explain why it should not be.

c. If the fermions are replaced by Boltzmann particles, does the resulting
susceptibility still accord with Curie’s Law?

Hint: Consider using the canonical ensemble in this case.
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11.6. Consider a system of N identical bosons. Each particle can occupy one of
two single-particle energy levels with energies ε1 = 0 and ε2 = ε. Determine
a condition in terms of N , β, and ε that must be obeyed if the thermally
averaged occupation of the lower energy level is twice that of the upper level.

11.7. Derive expressions for the isothermal compressibility at zero temperature for
ideal boson and fermion gases. Recall that the isothermal compressibility is
given by

κT = − 1

V

(
∂V

∂P

)
T

.

11.8. A cylinder is separated into two compartments by a piston that can slide freely
along the length of the cylinder. In one of the compartments is an ideal gas
of spin-1/2 particles, and in the other is an ideal gas of spin-3/2 particles. All
particles have the same mass. At equilibrium, calculate the relative density
of the two gases at T = 0 and at high temperature (Huang, 1963).

11.9. a. Two identical, noninteracting fermions of mass m are in a harmonic os-
cillator potential U(x) = mωx2/2, where ω is the oscillator frequency.
Calculate the canonical partition function of the system at temperature
T .

b. Repeat for two identical, noninteracting bosons.

11.10. Consider a system with a Hamiltonian Ĥ0 that has two eigenstates |ψ1〉 and
|ψ2〉 with the same energy eigenvalue E:

Ĥ0|ψ1〉 = E|ψ1〉

Ĥ0|ψ2〉 = E|ψ2〉
with the orthonormality condition

〈ψi|ψj〉 = δij .

Let a perturbation Ĥ′ be applied that breaks the degeneracy such that the
new eigenstates of Ĥ = Ĥ0 + Ĥ′ are

|ψ+〉 =
1√
2

[|ψ1〉 + |ψ2〉]

|ψ−〉 =
1√
2

[|ψ1〉 − |ψ2〉]

with corresponding energies E+ and E−.

Ĥ|ψ+〉 = E+|ψ+〉
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Ĥ|ψ−〉 = E−|ψ−〉

with E+ < E− and

E± = E ∓ 1

2
Δ.

a. Show that if Δ/kT << 1 for an ensemble of such systems at temperature
T , then Δ is given approximately by

Δ ≈ 2kT
〈ψ1|ρ̂|ψ2〉
〈ψ1|ρ̂|ψ1〉

where ρ̂ is the canonical density matrix of the full Hamiltonian Ĥ.

b. For a system of N noninteracting Boltzmann particles with allowed en-
ergies E+ and E−, calculate the canonical partition function, average
energy and chemical potential.

c. For a system of N noninteracting Bosons with allowed energy E+ and E−,
calculate the canonical partition function, average energy and chemical
potential.

11.11. Consider an ideal boson gas and let ν = − ln ζ. Near ζ = 1, it can be shown
that that following expansion is valid (Huang, 1963):

g5/2(ζ) = aν3/2 + b + cν + dν2 + · · ·

where a = 2.36, b = 1.342, c = −2.612, d = −0.730. Using the recursion
formula gn−1 = −dgn/dν, show that the heat capacity exhibits a discontinuity
given by

lim
T→T+

c

(
∂

∂T

CV

Nk

)
− lim

T→T−
c

(
∂

∂T

CV

Nk

)
=

λ

Tc

and derive an approximate numerical value for λ.

11.12. Reproduce the plots in Figs. 11.3, 11.5, and 11.6.
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The Feynman path integral

12.1 Quantum mechanics as a sum over paths

The strangeness of the quantum world is evident even in the ideal gases of the previ-
ous chapter, where nothing more than the spin statistics leads to remarkably complex
behavior. Of course, we still have not yet included interactions in our treatment of
quantum systems, and as noted in Chapter 10, the eigenvalue problem for the Hamil-
tonian when interactions are included can only be solved for very small systems. For
large systems, we need a statistical approach, and this brings us to the formulation
of quantum mechanics proposed by Richard Feynman (Feynman, 1948; Feynman and
Hibbs, 1965). Not surprisingly, quantum strangeness is no less apparent in Feynman’s
formulation of quantum mechanics than it is in the pictures we have studied thus
far. Although mathematically equivalent to the Heisenberg and Schrödinger pictures
of quantum mechanics, Feynman’s view represents a qualitative departure from these
pictures.

In order to introduce Feynman’s picture, consider a particle prepared in a state
initially localized at a point x that evolves unobserved to a point x′. Invoking the
quantum wave-like nature of the particle, the wave packet representing the initial
state evolves under the action of the propagator U(t) = exp(−iĤt/h̄), and the wave
packet spreads in time, causing the state to become increasingly delocalized spatially
until it is finally observed at the point x′ through a measurement of position, where it
again localizes due to the collapse of the wave function. In contrast, Feynman’s view
resembles a classical particle picture, in which the particle evolves unobserved from x
to x′. Since we do not observe the particle, we have no way of knowing what path it will
take. In fact, it is not just our ignorance that prevents us from specifying a particle’s
path (which we could do for a classical particle), but it is the quantum nature of the
particle itself that makes specifying its path impossible. Instead of following a unique
path between x and x′, the particle follows a myriad of paths, specifically all possible
paths, simultaneously. h These paths represent interfering alternatives, meaning that
the total amplitude for the particle to be observed at x′ at time t is the sum of the
amplitudes associated with all possible paths between x and x′. Thus, according to
the Feynman picture, we must calculate the amplitude for each of the infinitely many
paths the particle follows and then sum them to obtain the complete amplitude for
the process. Recall that the probability P (x′, t) for the particle to be observed at
x′ is the square modulus of the amplitude; since the latter is a sum of amplitudes
for individual paths, the cross terms constitute the interference between individual
amplitudes. This picture of quantum mechanics is known as the sum over paths or
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path integral formulation. How we calculate the amplitude for a path will be made
explicit in the next section.

Before delving into the mathematics of path integrals, let us apply the Feynman
picture heuristically to a concrete example. Consider an experiment in which electrons
from a source S impinge on a double-slit system and are detected on a photosensitive
screen D (see Fig. 12.1). Invoking a wave-like picture, the interference of electron

S

D

y

Interference

pattern

Wave fronts

Fig. 12.1 Interference pattern observed in the electron double-slit experiment.

waves emanating from the two slits lead to the well known interference pattern at the
detector, as shown in the figure. This pattern is actually observed when the experiment
is performed (Merli et al., 1976). Next, consider Feynman’s sum over paths formulation.
If the electrons followed definite paths, as they would if they were classical particles,
each path would have a separate probability and no interference pattern would be
seen between the paths. We would, therefore, expect two bright spots on the screen
directly opposite the slits as shown in Fig. 12.2. However, the quantum sum over
paths requires that we consider all possible paths from the source S through the
double-slit apparatus and finally to the detector D. Several of these paths are shown
in Fig. 12.3. Let each path have a corresponding amplitude Ai(y). Specifically, Ai(y) is
the amplitude that an electron following path i is detected at a point y on the screen
at time t. The total amplitude A(y) for observing an electron at y is, therefore, the
sum A(y) = A1(y) + A2(y) + A3(y) + · · ·, and the corresponding probability P (y) is
given by P (y) = |A(y)|2 = |A1(y) + A2(y) + A3(y) + · · · |2. Suppose there were only
two such paths. Then P (y) = |A1(y) + A2(y)|2. Since each amplitude is complex, we
can write

A1(y) = |A1(y)|eiφ1(y), A2(y) = |A2(y)|eiφ2(y) (12.1.1)

and it can be easily shown that



The Feynman path integral

S

D

Fig. 12.2 Interference pattern expected for classical electrons impinging on the double-slit

apparatus.

S

D

. y

Fig. 12.3 Illustration of possible paths of quantum electrons through a double-slit apparatus.

P (y) = |A1(y)|2 + |A2(y)|2 + 2|A1(y)||A2(y)| cos (φ1(y) − φ2(y)) . (12.1.2)

The third term in eqn. (12.1.2) is the interference term between the two paths, and the
expression for P (y) gives us our first clue that this term, which contains an oscillating
function of the phase difference multiplied by an amplitude |A1(y)||A2(y)|, is largely
responsible for the overall shape of the observed interference pattern.



Sum over paths

Ultimately, an infinite number of amplitudes must be summed in order to obtain
the overall probability, which we can express suggestively as

P (y) =

∣∣∣∣∣∣
∑
paths

Apath(y)

∣∣∣∣∣∣
2

. (12.1.3)

In such an expression the number of interference terms is infinite. Nevertheless, if
the sum over paths is applied to the double-slit experiment, the correct observed
interference pattern, whose intensity I(y) is proportional to P (y), is obtained.

In his book Quantum Mechanics and Path Integrals, Feynman(1965) employs an
interesting visual device to help understand the nature of the many paths. Imagine
modifying the double-slit experiment by introducing of a large number of intermediate
gratings, each containing many slits, as shown in Fig. 12.4. The electrons may now

S

D

. y

Fig. 12.4 Passage of electrons through a large number of intermediate gratings in the ap-

paratus of the double-slit experiment.

pass through any sequence of slits before reaching the detector, and number of possible
paths increases with both the number of intermediate gratings and the number of slits
in each grating. If we now take the limit in which infinitely many gratings are placed
between the source and detector, each with an infinite number of slits, there will be an
infinite number of possible paths the electrons can follow. However, when the number
of slits in each intermediate grating becomes infinite, the space between the slits goes
to zero, and the grating disappear, reverting to empty space. The suggestion of this
thought experiment is that empty space allows for an infinity of possible paths, and
since the electrons are not observed until they reach the detector, we must sum over
all of these possible paths. Indeed, this sum should exactly recover the wave pattern
in a wave-like picture of the particles.
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With this heuristic introduction to the sum over paths, we now proceed to derive
the Feynman path integral more rigorously and, in the process, learn how to determine
the path amplitudes.

12.2 Derivation of path integrals for the canonical density matrix

and the time evolution operator

In this section, the path integral concept will be given a more precise mathematical
formulation and its computational advantages elucidated. For simplicity, the discus-
sion will initially focus on a single particle moving in one spatial dimension with a
Hamiltonian

Ĥ =
p̂2

2m
+ U(x̂) ≡ K̂ + Û . (12.2.1)

As noted in Section 12.1, the path integral describes a process in which a particle
moves unobserved between an initiation point x and a detection point x′. That is,
the particle is initially prepared in an eigenstate |x〉 of the position operator, which is

subsequently allowed to evolve under the action of the propagator exp(−iĤt/h̄). After
a time t, we ask what the amplitude will be for detection of a particle at a point x′.
This amplitude A is given by

A = 〈x′|e−iĤt/h̄|x〉 ≡ U(x, x′; t). (12.2.2)

Therefore, what we seek are the coordinate-space matrix elements of the quantum
propagator. More generally, if a system has an initial state vector |Ψ(0)〉, then from

eqn. (9.2.33), at time t, the state vector is |Ψ(t)〉 = exp(−iĤt/h̄)|Ψ(0)〉. Projecting
this into the coordinate basis gives

〈x′|Ψ(t)〉 = Ψ(x′, t) = 〈x′|e−iĤt/h̄|Ψ(0)〉

=

∫
dx 〈x′|e−iĤt/h̄|x〉〈x|Ψ(0)〉

=

∫
dx 〈x′|e−iĤt/h̄|x〉Ψ(x, 0), (12.2.3)

which also requires the coordinate-space matrix elements of the propagator. The Feyn-
man path integral provides a technique whereby these matrix elements can be com-
puted via a sum over all possible paths leading from x to x′ in time t.

Before presenting the detailed derivation of the path integral, it is worth noting an
important connection between the propagator and the canonical density matrix. If we
denote the latter by ρ̂(β) = exp(−βĤ), then it is clear that

ρ̂(β) = Û(−iβh̄), Û(t) = ρ̂(it/h̄). (12.2.4)

The first line implies that the canonical density matrix can be obtained by evaluating
the propagator at an imaginary time t = −iβh̄. For this reason, the density matrix
is often referred to as an imaginary time propagator. Similarly, the second line shows
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that the real-time propagator can be obtained by evaluating the density matrix at an
imaginary inverse temperature β = it/h̄. In fact, if we allow time and temperature to
be complex components of a general complex time parameter θ = t + iβh̄, then the
transformations t = −iβh̄ and β = it/h̄ can be performed by rotations in the complex
θ-plane from the real to the imaginary axes, as shown in Fig. 12.5. These rotations

Re θ

Im θ

t

-iβ�

Fig. 12.5 Wick rotation in the complex time plane.

are known as Wick rotations after the Italian physicist Giancarlo Wick (1909–1992),
and they permit the determination of the propagator given the density matrix, and
vice versa. Since it is generally easier to work with a damped exponential rather
than a complex one, we shall derive the Feynman path integral for the canonical
density matrix and then exploit eqn. (12.2.4) to obtain a corresponding path integral
expression for the quantum propagator.

Let us denote the coordinate-space matrix elements of ρ̂(β) as

ρ(x, x′; β) ≡ 〈x′|e−βĤ|x〉. (12.2.5)

Note that Ĥ is the sum of two operators K(p̂) and U(x̂) that do not commute with each

other ([K(p̂), U(x̂)] �= 0). Consequently, the operator exp(−βĤ) cannot be evaluated
straightforwardly. However, as we did in Section 3.10, we can exploit the Trotter
theorem (see eqn. (3.10.18) and Appendix C) to express the operator as

e−β(K̂+Û) = lim
P→∞

[
e−βÛ/2P e−βK̂/P e−βÛ/2P

]P

. (12.2.6)

Substituting eqn. (12.2.6) into eqn. (12.2.5) yields

ρ(x, x′; β) = lim
P→∞

〈x′|
[
e−βÛ/2P e−βK̂/P e−βÛ/2P

]P

|x〉. (12.2.7)

Let us now define an operator Ω̂ by

Ω̂ = e−βÛ/2P e−βK̂/P e−βÛ/2P . (12.2.8)
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Substituting Ω̂ into eqn. (12.2.7) gives

ρ(x, x′; β) = lim
P→∞

〈x′|Ω̂P |x〉 = 〈x′|Ω̂Ω̂Ω̂ · · · Ω̂|x〉. (12.2.9)

In order to simplify the evaluation of eqn. (12.2.9), we introduce an identity operator
in the form of

Î =

∫
dx |x〉〈x| (12.2.10)

(see also eqn. (9.2.38)) between each factor of Ω̂. Since there are P factors of Ω̂, P − 1
insertions of the identity operator are needed. This will introduce P − 1 integrations
over coordinate labels giving the following expression for the density matrix:

ρ(x, x′; β) = lim
P→∞

∫
dx2 · · ·dxP

× 〈x′|Ω̂|xP 〉〈xP |Ω̂|xP−1〉〈xP−1| · · · |x2〉〈x2|Ω̂|x〉. (12.2.11)

Inserting the identity operator P − 1 times is analogous to inserting P − 1 gratings
with many holes in Fig. 12.4. The integration over each xi is analogous to summing
over all possible ways a particle can pass through the infinitely many holes in each
grating.

The advantage of employing the Trotter theorem is that the matrix elements in
eqn. (12.2.11) can be evaluated in closed form. Consider the general matrix element

〈xk+1|Ω̂|xk〉 = 〈xk+1|e−βÛ/2P e−βK̂/P e−βÛ/2P |xk〉. (12.2.12)

Note that Û = U(x̂) is a function of the coordinate operator. Thus, |xk〉 and |xk+1〉,
being coordinate eigenvectors, are eigenvectors of exp(−βU(x̂)/2P ) with eigenvalues
exp(−βU(xk)/2P ) and exp(−βU(xk+1)/2P ), respectively. Hence, eqn. (12.2.12) sim-
plifies to

〈xk+1|Ω̂|xk〉 = e−βU(xk+1)/2P 〈xk+1|e−βK̂/P |xk〉e−βU(xk)/2P . (12.2.13)

Since K̂ is a function of the momentum operator, the matrix element of exp(−βK̂/P )
is less trivial to evaluate. However, if we insert another identity operator, this time
expressed in terms of momentum eigenvectors as

Î =

∫
dp |p〉〈p|, (12.2.14)

into eqn. (12.2.13), we obtain

〈xk+1|e−βK̂/P |xk〉 =

∫
dp 〈xk+1|e−βK̂/P |p〉〈p|xk〉. (12.2.15)

Now the operator exp(−βK̂/P ) acts on one of its eigenvectors |p〉 to yield
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〈xk+1|e−βK̂/P |xk〉 =

∫
dp 〈xk+1|p〉〈p|xk〉e−βp2/2mP . (12.2.16)

Finally, using eqn. (9.2.43), eqn. (12.2.16) becomes

〈xk+1|e−βK̂/P |xk〉 =
1

2πh̄

∫
dp e−βp2/2mP eip(xk+1−xk)/h̄. (12.2.17)

Since the range of the momentum integration is p ∈ (−∞,∞), the above integral is a
typical Gaussian integral that can be evaluated by completing the square. Thus, we
write

βp2

2mP
− ip(xk+1 − xk)

h̄

=
β

2mP

[
p2 − 2imPp(xk+1 − xk)

βh̄

]

=
β

2mP

{[
p − imP (xk+1 − xk)

βh̄

]2

+
m2P 2(xk+1 − xk)2

β2h̄2

}

=
β

2mP

[
p − imP (xk+1 − xk)

βh̄

]2

+
mP

2βh̄2 (xk+1 − xk)2. (12.2.18)

When the two last lines of eqn. (12.2.18) are substituted back into eqn. (12.2.17), and
a change of variables

p̃ = p − imP (xk+1 − xk)

βh̄
(12.2.19)

is made, we find

〈xk+1|e−βK̂/P |xk〉 =
1

2πh̄
exp

[
− mP

2βh̄2 (xk+1 − xk)
2

] ∫ ∞

−∞
dp̃ e−βp̃2/2mP

=

(
mP

2πβh̄2

)1/2

exp

[
− mP

2βh̄2 (xk+1 − xk)2
]

. (12.2.20)

Now, eqn. (12.2.20) is combined with eqn. (12.2.13) to yield

〈xk+1|Ω̂|xk〉 =

(
mP

2πβh̄2

)1/2

exp

[
− β

2P
(U(xk+1) + U(xk))

]

× exp

[
− mP

2βh̄2 (xk+1 − xk)2
]

. (12.2.21)

Finally, multiplying all P matrix elements together and integrating over the P − 1
coordinate variables, we obtain for the density matrix:
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ρ(x, x′; β) = lim
P→∞

(
mP

2πβh̄2

)P/2 ∫
dx2 · · ·dxP

× exp

{
− 1

h̄

P∑
k=1

[
mP

2βh̄
(xk+1 − xk)2 +

βh̄

2P
(U(xk+1) + U(xk))

]}∣∣∣∣∣
xP+1=x′

x1=x

. (12.2.22)

In eqn. (12.2.22), the quantum kinetic energy is present in the form of a harmonic
nearest-neighbor coupling term that acts between points along the path. The spring
constant for this interaction is mP/β2h̄2.

Eqn. (12.2.22) is the limit P → ∞ of a discretized path integral representation for
the density matrix. As eqn. (12.2.22) indicates, the endpoints of the paths at points x1

and xP+1 are fixed at the “initiation” and “detection” points, x and x′, respectively.
The intermediate integrations over x2, ..., xP constitute the sum over all possible paths
from x to x′ in imaginary time −iβh̄. For finite P , because the potential U only acts
at the discrete points xk, the paths are lines between successive imaginary time points,
as suggested by Fig. 12.4. Note that if the particle is confined to an interval x ∈ [0, L],
then all of the coordinate integrations must be restricted to this interval as well. The
weight or amplitude assigned to each path is the value of the integrand in eqn. (12.2.22)
evaluated along the discrete path.

A path integral representation for the real-time propagator can now be derived
from eqn. (12.2.22) by applying eqn. (12.2.4) and setting β = it/h̄. This yields a path
integral expression for the propagator, Û(t):

U(x, x′; t) = lim
P→∞

(
mP

2πith̄

)P/2 ∫
dx2 · · ·dxP

× exp

{
i

h̄

P∑
k=1

[
mP

2t
(xk+1 − xk)2 − t

2P
(U(xk+1) + U(xk))

]}∣∣∣∣∣
xP+1=x′

x1=x

. (12.2.23)

Notice the change in relative sign between the kinetic and potential energy terms
between eqns. (12.2.22) and (12.2.23) in the path integral expressions for the den-
sity matrix and the propagator. The path sums in eqns. (12.2.22) and (12.2.23) are
represented pictorially in Fig. 12.6.

From eqn. (12.2.22), a path integral expression for the canonical partition function
Q(L, T ) for a system confined to x ∈ [0, L] can be derived. Recall that Q(L, T ) =

Tr[exp(−βĤ)]. Evaluating the trace in the coordinate basis gives

Q(L, T ) =

∫ L

0

dx 〈x|e−βĤ|x〉 =

∫ L

0

dx ρ(x, x; β). (12.2.24)

In order to evaluate eqn. (12.2.24), the diagonal elements of the density matrix in the
coordinate basis are needed; these can be obtained by setting x1 = xP+1 = x in eqn.
(12.2.22). Finally, an integration over the diagonal elements must be performed. Since
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Fig. 12.6 Representative paths in the path sums of eqns. (12.2.22) and (12.2.23).

x1 = x, we may rename the integration variable in eqn. (12.2.24) x1 and perform a
P -dimensional integration

Q(L, T ) = lim
P→∞

∫
dx1 · · ·dxP

× exp

{
− 1

h̄

P∑
k=1

[
mP

2βh̄
(xk+1 − xk)2 +

βh̄

2P
(U(xk+1) + U(xk))

]}∣∣∣∣∣
xP+1=x1

(12.2.25)

which is subject to the condition xP+1 = x1. This condition restricts the integration to
paths that begin and end at the same point. All of the coordinate integrations in eqn.
(12.2.25), must be restricted to the spatial domain x ∈ [0, L], which we will denote

as D(L). Finally, note that
∑P

k=1(1/2)[U(xk) + U(xk+1)] = (1/2)[U(x1) + U(x2) +

U(x2) + U(x3) + · · ·+ U(xP−1) + U(xP ) + U(xP ) + U(x1)] =
∑P

k=1 U(xk), where the
condition x1 = xP+1 has been used. Thus, eqn. (12.2.25) simplifies to

Q(L, T ) = lim
P→∞

(
mP

2πβh̄2

)P/2 ∫
D(L)

dx1 · · ·dxP

× exp

{
− 1

h̄

P∑
k=1

[
mP

2βh̄
(xk+1 − xk)2 +

βh̄

P
U(xk)

]}∣∣∣∣∣
xP+1=x1

. (12.2.26)

The integration over cyclic paths implied by eqn. (12.2.26) is illustrated in Fig. 12.7.
Interestingly, as the temperature T → ∞ and β → 0, the harmonic spring constant
connecting neighboring points along the paths becomes infinite, which causes the cyclic
paths in the partition function to collapse onto a single point corresponding to a classi-
cal point particle. Thus, the path-integral formalism shows that the high temperature
limit is equivalent to the classical limit. Finally, note that the partition function can



The Feynman path integral

x

Imaginary time

0 β�/2 β�

x

Fig. 12.7 Representative paths in the discrete path sum for the canonical partition function.

be expressed compactly as the limit of an expression that resembles a classical config-
urational partition function

Q(L, T ) = lim
P→∞

(
mP

2πβh̄2

)P/2 ∫
D(L)

dx1 · · ·dxP e−βφ(x1,...,xP ), (12.2.27)

an analogy we will revisit when we discuss numerical methods for evaluating path
integrals in Section 12.6. Here,

φ(x1, ..., xP ) =

P∑
k=1

[
1

2
mω2

P (xk − xk+1)
2 +

1

P
U(xk)

]
, (12.2.28)

where ωP =
√

P/βh̄ and xP+1 = x1.
An analytical calculation of the density matrix, partition function, or propagator

via path integration proceeds first by carrying out the P -dimensional integration and
then taking the limit of the result as P → ∞. As a simple example, consider the
density matrix for a free particle (U(x) = 0). Assume x ∈ (−∞,∞). The density
matrix in this case is given by

ρ(x, x′; β) = lim
P→∞

(
mP

2πβh̄2

)P/2

×
∫

dx2 · · ·dxP exp

{
−

P∑
k=1

[
mP

2βh̄2 (xk+1 − xk)2
]}∣∣∣∣∣

xP+1=x′

x1=x

. (12.2.29)

In fact, we previously solved this problem in Section 4.5. Eqn. (4.5.33) is the partition
function for a classical polymer with harmonic nearest-neighbor particle couplings
and fixed endpoints. Applying the result of eqn. (4.5.33) to eqn. (12.2.29), recognizing
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the extra factor P in the force constant and the fact that eqn. (12.2.29) has P − 1
integrations in one spatial dimension, we obtain

ρ(x, x′; β) =

(
m

2πβh̄2

)1/2

exp

[
− m

2βh̄2 (x − x′)2
]

. (12.2.30)

Interestingly, the P dependence completely disappears so that the limit can be taken
trivially. Moreover, by substituting β = it/h̄, the quantum propagator for a free par-
ticle can also be deduced from eqn. (12.2.30):

U(x, x′; t) =
( m

2πih̄t

)1/2

exp

[
im

2h̄t
(x − x′)2

]
. (12.2.31)

Analytical evaluation of the path integral is only possible for general quadratic
potentials. Nevertheless, the path integral formalism renders quantum statistical me-
chanical calculations tenable with modern computers, even for large systems for which
determination of the eigenvalues of Ĥ is intractable. Of course, such computations
can only be performed numerically for finite P , which leads to discrete path integral
representations of the density matrix and partition function. P should be large enough
that the difference between the discrete path integral and the formal limit P → ∞ is
negligible. Methodology for performing path integral calculations in imaginary time
will be discussed in Sections 12.6.1 and 12.6.2. We will see that such calculations
are a little more complicated than analogous calculations in the classical canonical
ensemble (see Section 4.8) but straightforward, in principle. Moreover, they converge
on time scales similar to those of classical calculations. Unfortunately, the same is not
true for the quantum propagator in eqn. (12.2.23) due to the complex exponential in
the integrand. The latter causes numerical calculations to oscillate wildly as different
paths are sampled, lead to a severe convergence problem known as the dynamical sign
problem. Thus, while computing quantum equilibrium properties via path integrals
has become routine, the calculation of dynamical properties from path integrals re-
mains one of the most challenging problems in computational physics and chemistry.
As of the writing of this book, no truly satisfactory solution has been achieved.

12.3 Thermodynamics and expectation values from the path

integral

Path integral expressions for expectation values of Hermitian operators follow from
the basic relation

〈Â〉 =
1

Q(L, T )
Tr

[
Âe−βĤ

]
. (12.3.1)

Performing the trace in the coordinate basis gives

〈Â〉 =
1

Q(L, T )

∫
dx 〈x|Âe−βĤ|x〉. (12.3.2)

(We will not continue to include the spatial domain D(L) in the expressions, but it
must be remembered that the spatial integrals carry this restriction implicitly.) A
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common case for which we need to evaluate eqn. (12.3.2) is ultimately the simplest. If
Â is purely a function of x̂, then |x〉 is an eigenvector of Â(x̂) satisfying

Â(x̂)|x〉 = a(x)|x〉, (12.3.3)

where a(x) is the corresponding eigenvalue, and eqn. (12.3.2) reduces to

〈Â〉 =
1

Q(L, T )

∫
dx a(x)〈x|e−βĤ|x〉. (12.3.4)

Thus, for operators that are functions only of position, eqn. (12.3.4) indicates that only
the diagonal elements of the density matrix are needed. Substituting eqn. (12.2.22) for
x = x′ into eqn. (12.3.4) leads to a path integral expression for the expectation value
of Â(x̂):

〈Â〉 =
1

Q(L, T )
lim

P→∞

(
mP

2πβh̄2

)P/2 ∫
dx1 · · ·dxP a(x1)

× exp

{
− 1

h̄

P∑
k=1

[
mP

2βh̄
(xk+1 − xk)2 +

βh̄

P
U(xk)

]}∣∣∣∣∣
xP+1=x1

. (12.3.5)

Although eqn. (12.3.5) is perfectly correct, it appears to favor one particular posi-
tion variable (x1) over the others, since a(x) is evaluated only at this point. Eqn.
(12.3.5) will consequently converge slowly and is not particularly useful for actual
computations. Because the paths are cyclic, however, all points x1, ..., xP of a path
are equivalent. The equivalence can be proved by noting that the argument of the
exponential is invariant under a cyclic relabeling of the coordinate variables

x′
2 = x1, x′

3 = x2, · · ·x′
P = xP−1, x′

1 = xP . (12.3.6)

If such a relabeling is introduced into eqn. (12.3.5), a completely equivalent expression
for the expectation value results:

〈Â〉 =
1

Q(L, T )
lim

P→∞

(
mP

2πβh̄2

)P/2 ∫
dx′

1 · · ·dx′
P a(x′

2)

× exp

{
− 1

h̄

P∑
k=1

[
mP

2βh̄
(x′

k+1 − x′
k)2 +

βh̄

P
U(x′

k)

]}∣∣∣∣∣
x′

P+1=x′
1

. (12.3.7)

A second relabeling, x′′
3 = x′

2, x′′
4 = x′

3,....,x
′′
P = x′

P−1, x′′
1 = x′

P , x′′
2 = x′

1, would yield
a similar expression with a(x) evaluated at x′′

3 . Since P such relabelings are possible,
we can derive P equivalent expressions for the expectation value, each involving the
evaluation of the a(x) at the different coordinates x1, ..., xP . If these expressions are
added together and divided by P , we find
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〈Â〉 =
1

Q(L, T )
lim

P→∞

(
mP

2πβh̄2

)P/2 ∫
dx1 · · ·dxP

[
1

P

P∑
k=1

a(xk)

]

× exp

{
− 1

h̄

P∑
k=1

[
mP

2βh̄
(xk+1 − xk)2 +

βh̄

P
U(xk)

]}∣∣∣∣∣
xP+1=x1

, (12.3.8)

which treats the P coordinates x1, ..., xP on equal footing.
Eqn. (12.3.8) can be put into a compact form as follows: First, we define a proba-

bility distribution function f(x1, ..., xP ) by

f(x1, ..., xP ) =
1

QP (L, T )

(
mP

2πβh̄2

)P/2

× exp

{
− 1

h̄

P∑
k=1

[
mP

2βh̄
(xk+1 − xk)2 +

βh̄

P
U(xk)

]}∣∣∣∣∣
xP+1=x1

, (12.3.9)

where QP (L, T ) is the partition function for finite P , which is obtained by removing
the limit as P → ∞ from eqn. (12.2.26):

QP (L, T ) =

(
mP

2πβh̄2

)P/2 ∫
dx1 · · ·dxP

× exp

{
− 1

h̄

P∑
k=1

[
mP

2βh̄
(xk+1 − xk)2 +

βh̄

P
U(xk)

]}∣∣∣∣∣
xP+1=x1

. (12.3.10)

Note that Q(L, T ) = limP→∞ QP (L, T ). The function f(x1, ..., xP ) satisfies the con-
ditions of a probability distribution: f(x1, ..., xP ) ≥ 0 for all x1, ..., xP and∫

dx1 · · ·dxP f(x1, ..., xP ) = 1. (12.3.11)

In Section 7.2, we introduced the concept of an estimator for a multi-dimensional inte-
gral. In path integral calculations, equilibrium expectation values can be approximated
using estimator functions that depend on the P coordinates x1, ..., xP . Thus, for eqn.
(12.3.8), an appropriate estimator for 〈Â〉 is the function aP (x1, ..., xP ) defined to be

aP (x1, ..., xP ) =
1

P

P∑
k=1

a(xk). (12.3.12)

The expectation value 〈Â〉 can be approximated for finite P as an average of the estima-
tor in eqn. (12.3.12) with respect to the probability distribution function f(x1, ..., xP ).
We write this approximation as

〈Â〉P = lim
P→∞

〈aP (x1, ..., xP )〉f , (12.3.13)

where 〈· · ·〉f indicates an average over the probability distribution function f(x1, ..., xP ).

It follows that 〈Â〉 = limP→∞〈Â〉P .
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Suppose, next, that Â is a function of just the momentum operator: Â = Â(p̂). In
this case, it is no longer possible to express Â in terms of the diagonal elements of the
density matrix. Hence, starting with eqn. (12.3.2), |x〉is no longer an eigenvector of Â(p̂)

and cannot be brought outside the matrix element 〈x|Â(p̂) exp(−βĤ)|x〉. However, if

we insert an identity operator in the form of eqn. (12.2.10) between Â and exp(−βĤ),
then we have a product of two matrix elements:

〈Â〉 =
1

Q(L, T )

∫
dx dx′ 〈x|Â|x′〉〈x′|e−βĤ|x〉. (12.3.14)

Eqn. (12.3.14) requires diagonal and off-diagonal elements of the density matrix. Sub-
stituting eqn. (12.2.22) into eqn. (12.3.14) gives a path integral expression for 〈Â〉:

〈Â〉 =
1

Q(L, T )
lim

P→∞

(
mP

2πβh̄2

)P/2 ∫
dx1 · · ·dxP+1〈x1|Â|xP+1〉

× exp

{
− 1

h̄

P∑
k=1

[
mP

2βh̄
(xk+1 − xk)2 +

βh̄

2P
(U(xk+1) + U(xk))

]}
. (12.3.15)

Note that the paths in eqn. (12.3.15) are no longer cyclic, and x1 �= xP+1. In gen-
eral, a sum over open paths is more difficult to evaluate than a sum over closed,
cyclic paths because of the large fluctuations in the endpoints and quantities such as
〈x1|Â(p̂)|xP+1〉 that depend on them. According to eqn. (4.5.33), the distribution of
the end-to-end distance for a free particle is a Gaussian whose width grows as T → 0.
An interesting example of a quantity that requires such off-diagonal elements is the
momentum distribution n(p), which is obtained by taking Â(p̂) = δ(p̂− p′Î), where p′

is a pure number, so that

n(p′) = 〈δ(p̂ − p′Î)〉 =
1

2πh̄

∫
dx dx′eip′(x−x′)〈x′|e−βĤ|x〉. (12.3.16)

This distribution can be measured in neutron Compton scattering experiments and
can be computed using an algorithm introduced by Morrone et al. (2007).

Expectation values of operator functions that depend on both position and mo-
mentum can be equally difficult to evaluate depending on how the operators x̂ and p̂
appear in Â(x̂, p̂) (see eqn. (9.2.51)). The thermodynamic functions in the canonical
ensemble are exceptional in that they can be evaluated using cyclic path integrals, as
we will now demonstrate.

Consider first the evaluation of the average energy

E = 〈Ĥ〉 =

〈
p̂2

2m
+ U(x̂)

〉
. (12.3.17)

Although the Hamiltonian is a function of both position and momentum, and it would,
therefore, seem that both closed and open paths are needed to evaluate 〈Ĥ〉, we can
evaluate E straightforwardly via the thermodynamic relation
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E = − ∂

∂β
ln Q(L, T ) =

1

Q(L, T )

∂Q(L, T )

∂β
. (12.3.18)

Since Q(L, T ) is expressible using only cyclic paths, these are all we need to calculate
E. Taking the derivative of eqn. (12.2.26) with respect to β, we obtain the following
expression for the energy:

E =
1

Q(L, T )
lim

P→∞

(
mP

2πβh̄2

)P/2 ∫
dx1 · · · dxP εP (x1, ..., xP )

× exp

{
− 1

h̄

P∑
k=1

[
mP

2βh̄
(xk+1 − xk)2 +

βh̄

P
U(xk)

]}∣∣∣∣∣
xP+1=x1

= lim
P→∞

〈εP (x1, ..., xP )〉f , (12.3.19)

where

εP (x1, ..., xP ) =
P

2β
−

P∑
k=1

mP

2β2h̄2 (xk+1 − xk)2 +
1

P

P∑
k=1

U(xk). (12.3.20)

Therefore, εP (x1, ..., xP ) is an estimator for the energy, and the average 〈Ĥ〉P =
〈ε(x1, ..., xP )〉f converges to the true thermodynamic energy E in the limit P → ∞.

Similarly, we can obtain an estimator for the one-dimensional “pressure”, which
we will denote Π, from the thermodynamic relation

Π = kT
∂ ln Q

∂L
=

kT

Q

∂Q

∂L
. (12.3.21)

As was done in Section 4.6.3, the one-dimensional “volume” L is made explicit by
introducing scaled variables sk = xk/L into the path integral for the partition function,
which yields

Q(L, T ) = lim
P→∞

(
mP

2πβh̄2

)P/2

LP

∫
ds1 · · ·dsP

× exp

[
− 1

h̄

P∑
k=1

(
mP

2βh̄
L2(si+1 − si)

2 +
βh̄

P
U(Lsi)

)]∣∣∣∣∣
sP+1=s1

. (12.3.22)

Eqn. (12.3.22) can now be differentiated with respect to L and transformed back to
the original path variables x1, ..., xP to yield

Π =
1

Q(L, T )
lim

P→∞

(
mP

2πβh̄2

)P/2 ∫
dx1 · · · dxP PP (x1, ..., xP )

× exp

{
− 1

h̄

P∑
k=1

[
mP

2βh̄
(xk+1 − xk)2 +

βh̄

P
U(xk)

]}∣∣∣∣∣
xP+1=x1
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= lim
P→∞

〈PP (x1, ...,xP )〉f , (12.3.23)

where

PP (x1, ..., xP ) =
P

βL
− 1

L

P∑
k=1

[
mP

β2h̄2 (xk+1 − xk)
2

+
1

P
xk

∂U

∂xk

]
. (12.3.24)

Thus, PP (x1, ..., xP ) is an estimator for the pressure, and P = limP→∞〈PP (x1, ..., xP )〉f (Mar-
tyna et al., 1999). As we discussed in Section 4.6.3, if the potential U has an explicit
length (volume) dependence, then the estimator becomes

PP (x1, ..., xP ) =

P

βL
− 1

L

P∑
k=1

[
mP

β2h̄2 (xk+1 − xk)
2

+
1

P
xk

∂U

∂xk
− L

P

∂U(xk, L)

∂L

]
. (12.3.25)

The basic thermodynamic relations of the canonical ensemble can be used to derive
estimators for other thermodynamic quantities such as the constant-volume heat ca-
pacity (Glaesemann and Fried, 2002) (see Problem 12.2). We will explore the utility of
expressions like eqn. (12.3.20) and (12.3.24) in practical calculations in Section 12.6.1.

12.4 The continuous limit: Functional integrals

Before we discuss the numerical implementation of path integrals, let us examine the
physical content of the path integral in greater detail by formally analyzing the P → ∞
limit. This limit gives rise to a mathematical construct known as a functional integral.
Because the physical picture associated with the functional integral is clearer for real-
time quantum mechanics, we will begin the discussion by analyzing the propagator of
eqn. (12.2.23) and then perform the Wick rotation to imaginary time to obtain the
canonical density matrix and partition function. For this analysis, it is convenient to
introduce a parameter ε = t/P , so that P → ∞ implies ε → 0. In terms of ε, eqn.
(12.2.23) can be written as

U(x, x′; t) = lim
P→∞

ε→0

( m

2πiεh̄

)P/2
∫

dx2 · · ·dxP

× exp

{
iε

h̄

P∑
k=1

[
m

2

(
xk+1 − xk

ε

)2

− 1

2
(U(xk+1) + U(xk))

]}∣∣∣∣∣
xP+1=x′

x1=x

. (12.4.1)

In the limit P → ∞ and ε → 0, the time interval between the points x1, x2, ..., xP , xP+1

become infinitely small, while the number of points becomes infinite. Thus, in this
limit, x1, ..., xP+1 becomes the complete set of points needed to specify a continuous
function x(s) satisfying x(0) = x, x(t) = x′, with the identification

xk = x(s = (k − 1)ε). (12.4.2)
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Moreover, in the limit ε → 0, the quantity (xk+1 − xk)/ε becomes

lim
ε→0

(
xk+1 − xk

ε

)
=

dx

ds
. (12.4.3)

Finally, in the limit ε → 0, the argument of the exponential

ε

P∑
k=1

[
m

2

(
xk+1 − xk

ε

)2

− 1

2
(U(xk+1) + U(xk))

]

is just a Riemann sum representation of an integral. Thus, we can write

lim
ε→0

ε
P∑

k=1

[
m

2

(
xk+1 − xk

ε

)2

−
(

U(xk+1) + U(xk)

2

)]

=

∫ t

0

ds

[
1

2
mẋ2(s) − U(x(s))

]
, (12.4.4)

where ẋ(s) = dx/ds. Interestingly, we see that the integrand of eqn. (12.4.4) is the
classical Lagrangian L(x, ẋ) = (m/2)ẋ2 − U(x) for the system (see Section 1.4). In
eqn. (12.4.4), the integral of the Lagrangian is taken along the path x(s), and this
integral is just the action from Section 1.8:

A[x] =

∫ t

0

ds

[
1

2
mẋ2(s) − U(x(s))

]
. (12.4.5)

Thus, the weight factor for a given path x(s) that begins at x and ends at x′ in time
t is just the complex exponential exp(iA[x]/h̄).

We turn next to the integration measure dx2 · · ·dxP . As noted previously, the
points x1, ..., xP+1 comprise all of the points of the function x(s) in the limit P →
∞, with x1 = x and xP+1 = x′. Thus, the integration over x2, ..., xP constitutes
an integration over all possible functions x(s) that satisfy the endpoint conditions
x(0) = x, x(t) = x′. In other words, as P → ∞, integrating over x2, ..., xP varies all
points of the function x(s), which is equivalent to varying the function, itself. This
type of integration is referred to as functional integration. Symbolically, it is written
as follows:

lim
P→∞,ε→0

( m

2πiεh̄

)P/2

dx2 · · ·dxP ≡ Dx(s). (12.4.6)

Thus, the functional integral representation of the real-time propagator is

U(x, x′; t) =

∫ x(t)=x′

x(0)=x

Dx(s) exp

{
i

h̄

∫ t

0

ds

[
1

2
mẋ2(s) − U(x(s))

]}

=

∫ x(t)=x′

x(0)=x

Dx(s) exp

{
i

h̄

∫ t

0

ds L(x(s), ẋ(s))

}
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=

∫ x′

x

Dx eiA[x]h̄. (12.4.7)

At this point, several comments are in order. Eqn. (12.4.7) reveals that the functional
integral is truly an integral over all paths x(s) that begin at x at s = 0 and end at
x′ at s = t with a weight exp(iA[x]/h̄) assigned to each path. The integral over paths
is illustrated in Fig. 12.8. The last line in eqn. (12.4.7) implies that the time label

x(s)

0 t

x

x’

s

Fig. 12.8 Representative continuous paths in the path integral for the quantum propagator

in eqn. (12.4.7).

s is irrelevant, since the propagator U(x, x′; t) only depends on the endpoints of the
paths and the time t associated with paths. Similarly, the action A[x] is a function
only of x, x′, and t, A(x, x′; t). Consequently, the path integral sometimes appears in
the literature as

U(x, x′; t) =

∫ x(t)=x′

x(0)=x

Dx(·) eiA[x(·)]/h̄ (12.4.8)

to indicate that the symbol used as the integration variable in the action integral
is irrelevant. Finally, we point out that eqn. (12.4.7) is exactly equivalent to eqn.
(12.2.23); the former is only a symbolic representation of the latter. The functional
integral notation provides a convenient and compact way of representing the more
complicated discrete path-integral expressions such as eqn. (12.2.23). Nevertheless,
as we will see shortly, functional integrals can be directly manipulated and used for
analytical calculations involving path integrals. Hence, the functional integral notation
serves both a notational and a practical purpose.

Eqn. (12.4.7) contains some fascinating physical content. First, the weight factor
exp(iA[x]/h̄) implies that in the space of all possible paths x(s), x(0) = x, x(t) = x′,
the most important regions of the “path space” are those for which the action changes
very little upon moving from one path to another. Indeed, when the variation in A is
slow, then the complex exponential oscillates very slowly in moving from path to path.
Without frequent sign changes in exp(iA[x]/h̄), the paths in this region of path space
contribute significantly to the integral. On the other hand, there are other regions
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of path space for which A varies wildly in moving from one path to another. In this
case, the exponential oscillates rapidly, and the paths contribute negligibly to the
path integral. More concretely, if we consider a path x(s) and a slightly different path
x̃(s) = x(s)+ δx(s), where δx(s) is a small variation in x(s), then these two paths will
contribute significantly to the path integral if δA ≡ A[x + δx] − A[x] is small. This
condition is satisfied in a region where A[x] is flat, that is where δA/δx(s) ≈ 0. Note
that since x(0) = x and x(t) = x′, it follows that δx(0) = δx(t) = 0. Indeed, the most
significant contribution occurs when δA = 0. However, recall from Section 1.8 that the
condition δA = 0 is precisely the condition that leads to the Euler–Lagrange equation
for the classical path:

δA = 0 ⇒ d

ds

(
∂L

∂ẋ(s)

)
− ∂L

∂x(s)
= 0. (12.4.9)

For L = (m/2)ẋ2(s) − U(x(s)), the equation of motion is the usual Newtonian form

m
d2x

ds2
= −∂U

∂x
. (12.4.10)

We see, therefore, that the action integral and the principle of action extremization
emerge naturally from quantum mechanics and the path integral formulation. This re-
markable fact tells us that the most important contribution to the path integral is that
region of path space around the classical path. The importance of paths that deviate
from the classical path depends on the extent to which quantum effects dominate in a
given system. For example, when a process occurs via quantum tunneling, paths that
deviate considerably from the classical path have a significant contribution to the path
integral since tunneling is a classically forbidden phenomenon. In other cases, where
quantum effects are less important but not negligible, it may be possible to compute a
path integral to a reasonable level of accuracy by performing an expansion about the
classical path and working to a low order in the “quantum corrections.” This popular
approach is the basis of semiclassical methods for quantum dynamics. Finally, we note
that the solution to the Euler–Lagrange equation with endpoint conditions x(0) = x
and x(t) = x′ may not be unique. We noted in Section 1.8 that the solution of the
Euler–Lagrange equation subject to initial values for x and ẋ is unique; but as the
path integral requires that the paths satisfy endpoint conditions, there are contribu-
tion from regions in path space around each classical path satisfying the endpoint
conditions.

Eqn. (12.4.7) represents an integral over continuous real-time paths for the quan-
tum mechanical propagator. However, due to eqn. (12.2.4), we may perform a Wick
rotation and obtain functional integral expressions for the quantum mechanical den-
sity matrix and partition function in the canonical ensemble. This Wick rotation is
performed by substituting t = −iβh̄ into eqn. (12.4.7). Let the paths now be parame-
terized by a variable τ related to s by τ = is. When s = t = −iβh̄, τ = βh̄, and the
action integral becomes

∫ t

0

ds

[
m

2

(
dx

ds

)2

− U(x(s))

]
=

∫ −iβh̄

0

d(−iτ)

[
m

2

(
dx

d(−idτ)

)2

− U(x(−iτ))

]
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= i

∫ βh̄

0

dτ

[
m

2

(
dx

dτ

)2

+ U(x(τ))

]

≡ iS[x]. (12.4.11)

Note that the action S[x] is now the action for paths in imaginary time s = −iτ that
start at x and end at x′ in imaginary time τ = βh̄. The imaginary-time action S[x]
differs from the real-time action A[x] by the sign of the potential. The action S[x] is
often called the Euclidean action. In terms of imaginary-time paths, we may write the
density matrix element as

ρ(x, x′; β) =

∫ x(βh̄)=x′

x(0)=x

Dx(τ) exp

{
− 1

h̄

∫ βh̄

0

dτ

[
1

2
mẋ2(τ) + U(x(τ))

]}

=

∫ x(βh̄)=x′

x(0)=x

Dx(τ) exp

{
− 1

h̄

∫ βh̄

0

dτΛ(x(τ), ẋ(τ))

}

=

∫ x′

x

Dxe−S[x]/h̄. (12.4.12)

The quantity Λ(x, ẋ) = (m/2)ẋ2 + U(x) is called the imaginary-time Lagrangian or
Euclidean Lagrangian. The density matrix is constructed by integrating over all paths
x(τ) that satisfy x(0) = x, x(βh̄) = x′ weighted by exp(−S[x]/h̄). Since this weight
factor is positive definite, we can find the most important contributions to the func-
tional integral in eqn. (12.4.12) by minimizing the Euclidean action with respect to
the path x(τ). As we did for the propagator, we consider a path x(τ) and a nearby
path x̃(τ) = x(τ) + δx(τ). If x(0) = x and x(βh̄) = x′, then δx(0) = δx(βh̄) = 0.
We require that the variation δS = S[x + δx] − S[x] vanish to first order in the path
variation δx. Following the procedure in Section 1.8, the resulting equation of motion
will be exactly the form of the Euler–Lagrange equation applied to Λ:

d

dτ

(
∂Λ

∂ẋ(τ)

)
− ∂Λ

∂x(τ)
= 0. (12.4.13)

However, when we apply the Euler–Lagrange equation to the Euclidean Lagrangian,
we obtain an equation of motion of the form

m
d2x

dτ2
=

∂U

∂x
. (12.4.14)

Eqn. (12.4.14) resembles Newton’s second law except the force is calculated using not
the potential U(x) but an inverted potential surface −U(x). This result is not unex-
pected: If we transform Newton’s second law in real time md2x/ds2 = −∂U/∂x to
imaginary time using s = −iτ , then the equation of motion becomes md2x/ds2 −→
md2x/d(−iτ)2 = −md2x/dτ2 = −∂U/∂x, which is just eqn. (12.4.14). Thus, domi-
nant paths are solutions to eqn. (12.4.14) subject to the endpoint conditions x(0) = x
and x(βh̄) = x′.
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We can now use eqn. (12.4.12) to construct a functional integral expression for the
partition function Q(β). Since

Q(β) =

∫
dx ρ(x, x; β), (12.4.15)

we begin by taking the diagonal element of ρ in eqn. (12.4.12):

ρ(x, x; β) =

∫ x(βh̄)=x

x(0)=x

Dx(τ) exp

{
− 1

h̄

∫ βh̄

0

dτ

[
1

2
mẋ2(τ) + U(x(τ))

]}

=

∫ x(βh̄)=x

x(0)=x

Dx(τ) exp

{
− 1

h̄

∫ βh̄

0

dτΛ(x(τ), ẋ(τ))

}

=

∫ x

x

Dx e−S[x]/h̄. (12.4.16)

Note that although the upper and lower limits of integration on the functional measure
Dx are the same, the integral does not vanish. Rather, eqn. (12.4.16) denotes an
integral over all paths that begin and end at the same point x (x(0) = x(βh̄) = x). In
order to construct the partition function, we must integrate over all x, which gives

Q(β) =

∫
dx

∫ x(βh̄)=x

x(0)=x

Dx(τ) exp

{
− 1

h̄

∫ βh̄

0

dτ

[
1

2
mẋ2(τ) + U(x(τ))

]}

=

∫
dx

∫ x(βh̄)=x

x(0)=x

Dx(τ) exp

{
− 1

h̄

∫ βh̄

0

dτΛ(x(τ), ẋ(τ))

}

=

∫
dx

∫ x

x

Dx e−S[x]/h̄

≡
∮

Dx e−S[x]/h̄. (12.4.17)

The
∮

symbol in last line of eqn. (12.4.17) indicates that the functional integral is
to be taken over all paths that satisfy the condition x(0) = x(βh̄). These paths are
periodic in imaginary time with period βh̄. Consequently, the dominant contribution
to the path integral for the partition function are paths near the solutions to eqn.
(12.4.14) that satisfy x(0) = x(βh̄).

12.4.1 Example: The harmonic oscillator

In order to illustrate the use of the functional integral formalism, consider a simple
harmonic oscillator of mass m and frequency ω described by the Hamiltonian of eqn.
(9.3.18). The functional integral for the full density matrix is

ρ(x, x′; β) =

∫ x(βh̄)=x′

x(0)=x

Dx(τ) exp

[
− 1

h̄

∫ βh̄

0

dτ

(
1

2
mẋ2 +

1

2
mω2x2

)]
. (12.4.18)
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As we have already seen, paths in the vicinity of the classical path on the inverted
potential dominate the functional integral. Thus, in order to perform the functional
integral, we utilize a technique known as expansion about the classical path. Suppose
we are able to solve eqn. (12.4.14) for a classical path xcl(τ) satisfying xcl(0) = x and
xcl(βh̄) = x′. Given this path, we perform a “change of variables” in the functional
integral; that is, we change the function of integration x(τ) to a new function y(τ) via
the transformation

x(τ) = xcl(τ) + y(τ). (12.4.19)

Eqn. (12.4.19) is similar to a change of variables of the form x = a + y in an ordinary
integral

∫
f(x)dx, where a is a constant, so that dx = dy. Here, since xcl(τ) is a single

function, it is analogous to the constant a, and Dx(τ) = Dy(τ). For the harmonic
oscillator, xcl(τ) satisfies the classical equation of motion on the inverted potential
surface −U(x) = −mω2x2/2

mẍcl = mω2xcl, (12.4.20)

with xcl(0) = x and xcl(βh̄) = x′. Consequently, y(0) = y(βh̄) = 0.
Substitution of this change of variables into the action integral yields

S =

∫ βh̄

0

dτ

[
1

2
mẋ2 +

1

2
mω2x2

]

=

∫ βh̄

0

dτ

[
1

2
m(ẋcl + ẏ)2 +

1

2
mω2(xcl + y)2

]

=

∫ βh̄

0

dτ

[
1

2
mẋ2

cl +
1

2
mω2x2

cl

]
+

∫ βh̄

0

dτ

[
1

2
mẏ2 +

1

2
mω2y2

]

+

∫ βh̄

0

dτ
[
mẋclẏ + mω2xcly

]
. (12.4.21)

The last line of eqn. (12.4.21) contains cross terms between xcl(τ) and y(τ), but these
terms can be shown to vanish using an integration by parts:∫ βh̄

0

dτ
[
mẋclẏ + mω2xcly

]
= mẋcly

∣∣∣∣
βh̄

0

+

∫ βh̄

0

dτ
[−mẍcl + mω2xcl

]
y

= 0. (12.4.22)

The boundary term vanishes because y(0) = y(βh̄) = 0, and the second term vanishes
because xcl(τ) satisfies eqn. (12.4.20).

The first term in the penultimate line of eqn. (12.4.21) is the classical Euclidean
action integral. The solution of eqn. (12.4.20) that satisfies the endpoint conditions is

xcl(τ) =
x
(
e−ω(τ−βh̄) − eω(τ−βh̄)

)
+ x′ (eωτ − e−ωτ )

eβh̄ω − e−βh̄ω
, (12.4.23)

which we derive by assuming a solution of the form xcl(τ) = A exp(ωτ) +B exp(−ωτ)
and using the endpoint conditions to solve for the constants A and B. When this
solution is substituted into the classical action integral, we obtain
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∫ βh̄

0

dτ

[
1

2
mẋ2

cl(τ) +
1

2
mω2x2

cl(τ)

]
=

mω

2sinh(βh̄ω)

[
(x2 + x

′2)cosh(βh̄ω) − 2xx′
]
. (12.4.24)

Inserting eqn. (12.4.24) into eqn. (12.4.18), we obtain the density matrix for the har-
monic oscillator as

ρ(x, x′; β) = I[y] exp

[
− mω

2h̄sinh(βh̄ω)

(
(x2 + x

′2)cosh(βh̄ω) − 2xx′
)]

, (12.4.25)

where I[y] is the path integral

I[y] =

∫ y(βh̄)=0

y(0)=0

Dy(τ) exp

[
− 1

h̄

∫ βh̄

0

dτ

(
m

2
ẏ2 +

mω2

2
y2

)]
. (12.4.26)

Note that the remaining functional integral I[y] does not depend on the points x and
x′ and therefore can only contribute an overall (temperature-dependent) constant to
the density matrix. This affects the thermodynamics but not any averages of physical
observables. Nevertheless, it is instructive to see how such a functional integral is
performed.

We first note that I[y] is a functional integral over functions y(τ) satisfying y(0) =
y(βh̄) = 0. Because of these endpoint conditions, the paths y(τ) can be expanded in
a Fourier sine series:

y(τ) =

∞∑
n=1

cn sin(ωnτ), (12.4.27)

where
ωn =

nπ

βh̄
. (12.4.28)

Since a given y(τ) is uniquely determined by its expansion coefficients cn, integrating
over the functions y(τ) is equivalent to integrating over all possible values of the
expansion coefficients. Thus, we seek to change from an integral over the functions
y(τ) to an integral over the coefficients cn. Using eqn. (12.4.27), let us first determine
the argument of the exponential. We first note that

ẏ(τ) =

∞∑
n=1

ωncn cos(ωnτ). (12.4.29)

Thus, the terms in the action are:∫ βh̄

0

dτ
1

m
ẏ2 =

m

2

∞∑
n=1

∞∑
n′=1

cncn′ωnωn′

∫ βh̄

0

dτ cos(ωnτ) cos(ωn′τ). (12.4.30)

Since the cosines are orthogonal on the interval τ ∈ [0, βh̄], the integral simplifies to∫ βh̄

0

dτ
m

2
ẏ2 =

m

2

∞∑
n=1

c2
nω2

n

∫ βh̄

0

dτ cos2(ωnτ)
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=
m

2

∞∑
n=1

c2
nω2

n

∫ βh̄

0

dτ

[
1

2
+

1

2
cos(2ωnτ)

]

=
mβh̄

4

∞∑
n=1

c2
nω2

n. (12.4.31)

In a similar manner, we can show that∫ βh̄

0

dτ
1

2
mω2y2 =

mβh̄

4
ω2

∞∑
n=1

c2
n. (12.4.32)

Next, we need to change the integration measure from Dy(τ) to an integration over
the coefficients cn. This is rather subtle since we are transforming from a continuous
functional measure to a discrete one, and it is not immediately clear how the Jacobian
is computed. The simplest way to transform the measure is to assume that

Dy(τ) = g0

∞∏
n=1

gndcn, (12.4.33)

where the gn are constants, and then adjust the gn so that the final result yields the
correct free particle limit ω = 0. With this change of variables, I[y] becomes

I[y] = g0

∞∏
n=1

∫ ∞

−∞
gndcn exp

[
−mβ

4
(ω2 + ω2

n)c2
n

]

= g0

∞∏
n=1

gn

[
4π

mβ(ω2 + ω2
n)

]1/2

. (12.4.34)

From eqn. (12.4.34), we see that the free particle limit can be recovered by choosing

g0 =

[
m

2πβh̄2

]1/2

, gn =

[
mβω2

n

2π

]1/2

. (12.4.35)

When ω = 0, the product is exactly 1 for this choice of g0 and gn, which leaves the
overall free particle prefactor in eqn. (12.2.30).

For ω �= 0, the infinite product is

∞∏
n=1

[
ω2

n

ω2 + ω2
n

]1/2

=
∞∏

n=1

[
π2n2/β2h̄2

ω2 + π2n2/β2h̄2

]

=

[ ∞∏
n=1

(
1 +

β2h̄2ω2

π2n2

)]−1

. (12.4.36)

The product in the square brackets is one of many infinite product formulas for simple
functions.1 In this case, the product formula of interest is

1See, for example, Weber and Arfken’s Methods of Mathematical Physics (2005).



Many-body path integrals

sinh(x)

x
=

∞∏
n=1

[
1 +

x2

π2n2

]
. (12.4.37)

Using this formula, eqn. (12.4.36) becomes

I[y] = g0

[
βh̄ω

sinh(βh̄ω)

]1/2

=

[
mω

2πh̄sinh(βh̄ω)

]1/2

. (12.4.38)

Thus, the density matrix for a harmonic oscillator is finally given by

ρ(x, x′; β) =

[
mω

2πh̄sinh(βh̄ω)

]1/2

× exp

[
− mω

2h̄sinh(βh̄ω)

(
(x2 + x

′2)cosh(βh̄ω) − 2xx′
)]

. (12.4.39)

Note that in the free-particle limit, we take the limit ω → 0, set sinh(βh̄ω) ≈ βh̄ω and
cosh(βh̄ω) ≈ 1, so that eqn. (12.4.39) reduces to eqn. (12.2.30).

12.5 Many-body path integrals

Construction of a path integral for a system of N indistinguishable particles is nontriv-
ial because we must take into account the symmetry of the physical states. Consider,
for example, the case of two identical particles described by a Hamiltonian Ĥ. If we
wish to compute the partition function Q = Tr[exp(−βĤ)] by performing the trace in
the coordinate basis, how we write down the proper coordinate eigenvectors depends
on whether the overall state is symmetric or antisymmetric. If the coordinate labels
are x1 and x2, then, as we saw in Section 9.4, the coordinate eigenvectors for bosons
and fermions take the form

1√
2

[|x1 x2〉 + |x2 x1〉] (bosons)

1√
2

[|x1 x2〉 − |x2 x1〉] (fermions),

respectively. Thus, for bosons, the partition function is given by

Q =
1

2

∫
dx1 dx2 [〈x1 x2| + 〈x2 x1|] e−βĤ [|x1 x2〉 + |x2 x1〉]

=

∫
dx1 dx2

[
〈x1 x2|e−βĤ|x1 x2〉 + 〈x1 x2|e−βĤ|x2 x1〉

]
, (12.5.1)

while for fermions, it is

Q =

∫
dx1 dx2

[
〈x1 x2|e−βĤ|x1 x2〉 − 〈x1 x2|e−βĤ|x2 x1〉

]
. (12.5.2)
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Functional integral expressions for each of the two matrix elements appearing in eqns.
(12.5.1) and (12.5.2) can be derived using the techniques already developed in Sec-
tion 12.4. These expressions are

〈x1 x2|e−βĤ|x1 x2〉 =

∫ x1(βh̄)=x1,x2(βh̄)=x2

x1(0)=x1,x2(0)=x2

Dx1 Dx2 e−S[x1,x2]/h̄

〈x1 x2|e−βĤ|x1 x2〉 =

∫ x1(βh̄)=x2,x2(βh̄)=x1

x1(0)=x1,x2(0)=x2

Dx1 Dx2 e−S[x1,x2]/h̄. (12.5.3)

These two terms are illustrated in Fig. 12.9. In particular, note that the first term

x(τ)

0 β�

x

x

τ

1

2

x(τ)

0 β�

x

x

τ

1

2

Fig. 12.9 Representative paths in the direct (left) and exchange (right) terms in the path

integral of eqn. (12.5.3).

involves two independent closed paths for particles 1 and 2, respectively, in which the
paths x1(τ) and x2(τ) satisfy x1(0) = x1(βh̄) = x1 and x2(0) = x2(βh̄) = x2. This is
exactly the term that would result if the physical state of the system had no particular
symmetry and could be simply described as |x1 x2〉 or |x2 x1〉. The second term, which
results from the symmetry conditions placed on the state vector, “ties” the paths
together at the endpoints because of the endpoint conditions x1(0) = x2(βh̄) = x1 and
x2(0) = x1(βh̄) = x2. This second term, called an exchange term, is a purely quantum
mechanical effect arising from the symmetry of state vector. Exchange effects involve
long-range correlations of delocalized wave functions and can often be neglected for
particles such as protons unless the system is at a very low temperature. For electrons,
however, such effects are nearly always important and need to be included.

In order to underscore the difficulties associated with exchange effects, consider
writing eqns. (12.5.1) and (12.5.2) as limits of discrete path integrals. For compactness,

we use the notation of eqn. (12.2.28), with the discretized paths denoted as x
(1)
1 , ..., x

(P )
1

and x
(1)
2 , ..., x

(P )
2 for particles 1 and 2, respectively. Note that the path index is now

taken to be a superscript. The partition functions can be written as
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Q(L, T ) = lim
P→∞

(
mP

2πβh̄2

)P ∫
dx

(1)
1 · · ·dx

(P )
1 dx

(1)
2 · · ·dx

(P )
2

×
[
e
−βφ

(
x
(1)
1 ,...,x

(P)
1 ,x

(1)
2 ,...,x

(P)
2

)
± e

−βφ̃
(
x
(1)
1 ,...,x

(P)
1 ,x

(1)
2 ,...,x

(P)
2

)]
, (12.5.4)

where + and − are used for bosons and fermions, respectively, and

φ
(
x

(1)
1 , ..., x

(P )
1 , x

(1)
2 , ..., x

(P )
2

)
=

P∑
k=1

{
1

2
mω2

P

[(
x

(k)
1 − x

(k+1)
1

)2

+
(
x

(k)
2 − x

(k+1)
2

)2
]

+
1

P
U(x

(k)
1 , x

(k)
2 )

}
, (12.5.5)

with x
(P+1)
1 = x

(1)
1 and x

(P+1)
2 = x

(1)
2 . The definition of the function φ̃ has the same

mathematical form as eqn. (12.5.5) but with the endpoint conditions x
(P+1)
1 = x

(1)
2

and x
(P+1)
2 = x

(1)
1 . If the term exp(−βφ) is factored out of the brackets in eqn. (12.5.4),

then the partition functions for fermions and bosons can be shown to take the form

Q(L, T ) = lim
P→∞

(
mP

2πβh̄2

)P ∫
dx

(1)
1 · · ·dx

(P )
1 dx

(1)
2 · · · dx

(P )
2

× e
−βφ

(
x
(1)
1 ,...,x

(P)
1 ,x

(1)
2 ,...,x

(P)
2

) [
det

(
Ã
)]

(12.5.6)

for fermions and

Q(L, T ) = lim
P→∞

(
mP

2πβh̄2

)P ∫
dx

(1)
1 · · ·dx

(P )
1 dx

(1)
2 · · · dx

(P )
2

× e
−βφ

(
x
(1)
1 ,...,x

(P)
1 ,x

(1)
2 ,...,x

(P)
2

) [
perm

(
Ã
)]

(12.5.7)

for bosons. The matrix Ã is defined to be Ãij = Aij/Aii with

Aij = exp

[
−1

2
βmω2

P

(
x

(P )
i − x

(1)
j

)2
]

(12.5.8)

and det and perm denote the determinant and permanent of the matrix Ã, respectively.
In this two-particle example, A and Ã are 2×2 matrices. For N -particle systems, they
are N × N matrices, giving rise to N ! terms from the determinant or permanent.

The presence of the determinant or permanent in eqns. (12.5.6) and (12.5.7), respec-
tively, can be treated as objects to be averaged over direct paths; alternatively, they can
be added as additional terms in φ in the form −(1/β) ln det(Ã) or −(1/β) ln perm(Ã).
When exchange effects are important, the fermion case becomes particularly prob-
lematic, as the determinant is composed of the difference of two terms that are large
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and similar in magnitude. Hence, the determinant becomes a small difference of two
large numbers, which is very difficult to converge. This problem is known as the Fermi
sign problem, which is only exacerbated in a system of N fermions where det(Ã) is
the difference of two sums each containing N !/2 terms. Consequently, when det(Ã)
is absorbed into φ, it exhibits large fluctuations, which are numerically problematic.
The sign problem does not exist for bosons, since Ã and its permanent are positive
definite, which means that numerical calculations for bosonic systems are tractable.
Techniques for treating bosonic systems are discussed in detail, for example, in the
review by Ceperley (1995).

Now let us suppose that exchange terms can be safely ignored, which is the case of
Boltzmann statistics discussed in Section 11.3. In this limit, the path integral reduces
to a sum over independent particle paths. Consider the Hamiltonian of an N -particle
system in d dimensions of the standard form

Ĥ =
N∑

i=1

p̂2
i

2mi
+ U(r̂1, ..., r̂2). (12.5.9)

As the limit of a discrete path integral, each particle will be characterized by a path in

d dimensions specified by points r
(1)
i , ..., r

(P )
i , and the path integral for the partition

function takes the form

Q(N, V, T ) = lim
P→∞

N∏
i=1

(
miP

2πβh̄2

)dP/2 ∫ N∏
i=1

dr
(1)
i · · ·dr(P )

i

× exp

{
−

P∑
k=1

[
N∑

i=1

miP

2βh̄2

(
r
(k+1)
i − r

(k)
i

)2

+
β

P
U

(
r
(k)
1 , ..., r

(k)
N

)]}
r
(P+1)
i

=r
(1)
i

(12.5.10)

where we now let i index the particles and s index the imaginary-time intervals. Eqn.
(12.5.10) can also be written as an dN -dimensional functional integral:

Q(N, V, T ) =

∮
Dr1(τ) · · ·DrN (τ)

× exp

{
− 1

h̄

∫ βh̄

0

dτ
N∑

i=1

1

2
miṙ

2
i (τ) + U(r1(τ), ..., rN (τ))

}
. (12.5.11)

Using the techniques from Section 12.3, eqn. (12.5.10) yields the following estimators
for the energy and pressure:

εP

(
{r(1), ..., r(P )}

)
=

dNP

2β
−

P∑
k=1

N∑
i=1

1

2
miω

2
P

(
r
(k)
i − r

(k+1)
i

)2

+
1

P

P∑
k=1

U(r
(k)
1 , ..., r

(k)
N )

PP

(
{r(1), ..., r(P )}

)
=

NP

βV
− 1

dV

P∑
k=1

N∑
i=1

[
miω

2
P

(
r
(k)
i − r

(k+1)
i

)2

+
1

P
r
(k)
i · ∇

r
(k)
i

U

]
,
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(12.5.12)

where {r(1), ..., r(P )} represents the full set of N particle paths. If U has an explicit
volume dependence, then an additional term

− 1

P

P∑
k=1

∂

∂V
U(r

(k)
1 , ..., r

(k)
N , V )

must be added to eqn. (12.5.12) (Martyna et al., 1999). In eqn. (12.5.12), the quantum
kinetic energy terms grow linearly with P . From a numerical viewpoint, this is prob-
lematic, as these harmonic terms become quite stiff for systems with strong quantum
effects and exhibit large, rapid fluctuations, making them difficult to converge. In the
remainder of this chapter, we will discuss numerical techniques for the evaluation of
path integrals that explicitly address how to handle these stiff harmonic interactions.

12.6 Numerical evaluation of path integrals

In this section, we will discuss the use of molecular dynamics and Monte Carlo tech-
niques to evaluate path integrals numerically, identifying several technical challenges
that affect the construction of the numerical algorithms and the formulation of the
thermodynamic estimators.

12.6.1 Path-integral molecular dynamics

We begin our discussion with the molecular dynamics approach. It must be mentioned
at the outset that molecular dynamics is used here only as a means of sampling the
quantum canonical distribution. No quantum dynamical properties can be generated
using the techniques in this subsection. In Chapter 14, we will revisit the quantum
dynamics problem and see how approximate dynamical quantities can be generated
within a path-integral molecular dynamics framework.

Let us start by considering, once again, a single particle moving in a one-dimensional
potential U(x̂). In eqn. (12.3.9), we introduced the notion of the discrete partition
function QP (L, T ), which is explicitly defined to be

QP (L, T ) =

(
mP

2πβh̄2

)P/2 ∫
D(L)

dx1 · · ·dxP

× exp

{
− 1

h̄

P∑
k=1

[
mP

2βh̄
(xk+1 − xk)2 +

βh̄

P
U(xk)

]}∣∣∣∣∣
xP+1=x1

. (12.6.1)

Eqn. (12.6.1) can be manipulated to resemble the classical canonical partition function
of a cyclic polymer chain moving in a classical potential U(x)/P by recasting the
prefactor as a set of Gaussian integrals over variables we will call p1, ..., pP so that
they resemble momenta conjugate to x1, ..., xP :
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QP (L, T ) =

∫
dp1 · · ·dpP

∫
D(L)

dx1 · · ·dxP

× exp

{
−β

P∑
k=1

[
p2

i

2m′ +
1

2
mω2

P (xk+1 − xk)2 +
1

P
U(xk)

]}∣∣∣∣∣
xP+1=x1

. (12.6.2)

In the exponential of eqn. (12.6.2), we have replaced the prefactor of 1/h̄ with a β
prefactor. We have also introduced a frequency ωP =

√
P/(βh̄), which we call the chain

frequency, since it is the frequency of the harmonic nearest-neighbor coupling of our
cyclic chain. Finally, the parameter m′ appearing in the Gaussian integrals is formally
given by m′ = mP/(2πh̄)2. However, since the prefactor does not affect any equilibrium
averages, including those used to calculate thermodynamic estimators, we are free to
choose m′ as we like. The resemblance of the partition function in eqn. (12.6.2) to
that of a classical cyclic polymer chain of P points led Chandler and Wolynes (1981)
to coin the term classical isomorphism and to exploit the isomorphism between the
classical and approximate (since P is finite) quantum partition functions. The classical
isomorphism is illustrated in Fig. 12.10. The figure depicts a cyclic polymer having

1

2

3

45

6

7

8
k=mω2

P

Fig. 12.10 Classical isomorphism: The figure shows a cyclic polymer chain having P = 8

described by the partition function in eqn. (12.6.2).

P = 8 with a harmonic nearest-neighbor coupling constant k = mω2
P . Because the

cyclic polymer resembles a necklace, its P points are often referred to as “beads”.
According to the classical isomorphism, we can treat the cyclic polymer using all the
techniques we have developed for classical systems to obtain approximate quantum
properties, and the latter can be systematically improved simply by increasing P .

The classical isomorphism allows us, in principle, to introduce a molecular dynamics
scheme for eqn. (12.6.2), starting with the classical Hamiltonian
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Hcl(x, p) =

P∑
k=1

[
p2

k

2m′ +
1

2
mω2

P (xk+1 − xk)2 +
1

P
U(xk)

]∣∣∣∣∣
xP+1=x1

, (12.6.3)

which yields the following equations of motion:

ẋk =
pk

m′ , ṗk = −mω2
p (2xk − xk+1 − xk−1) − 1

P

∂U

∂xk
. (12.6.4)

If eqns. (12.6.4) are coupled to a thermostat, as discussed in Section 4.10, then the
dynamics will sample the canonical distribution in eqn. (12.6.2). Although one of the
first path-integral molecular dynamics calculations by Parrinello and Rahman (1984)
employed a scheme of this type, it was simultaneously recognized by Hall and Berne
that path-integral molecular dynamics based on eqns. (12.6.4) can suffer from very
slow convergence problems due to the wide range of time scales present in the dy-
namics (Hall and Berne, 1984). If one applies a normal mode transformation (see
Section 1.7) to the harmonic coupling term in eqn. (12.6.3), the normal-mode fre-
quencies range densely from 0 to 4P/(βh̄). Thus, even for moderately large P , this
constitutes a broad frequency spectrum. The time step that can be employed in a
molecular dynamics algorithm is limited by the highest frequency, which means that
the low-frequency modes, which are associated with large-scale changes in the shape
of the cyclic chain, will be inadequately sampled unless very long runs are performed.

Because the normal-mode frequencies are closely spaced (approaching a contin-
uum as P → ∞), multiple time-scale integration algorithms such as RESPA (see
Section 3.11) are insufficient to solve the problem. However, if we can devise a suitable
coordinate transformation capable of uncoupling the harmonic term in eqn. (12.6.3),
then we can replace the single fictitious mass m′ in the classical Hamiltonian with a set
of masses m′

1, ..., m
′
P such that only one harmonic frequency remains. Finally. we can

then adjust the time step for stable integration of motion having that characteristic
frequency. This will ensure adequate sampling of all modes of the cyclic chain. In fact,
we have already seen an example of such a transformation in Section 4.5. Eqns. (4.5.38)
and (4.5.39) illustrate how a simple transformation uncouples the harmonic term for a
model polymer that, when made cyclic, is identical to the discrete path integral. The
one-dimensional analog of this transformation appropriate for eqn. (12.6.2) is

u1 = x1

uk = xk − (k − 1)xk+1 + x1

k
, k = 2, ..., P, (12.6.5)

the inverse of which is

x1 = u1

xk = uk +
k − 1

k
xk+1 +

1

k
u1, k = 2, ..., P. (12.6.6)

Note that, as in eqn. (4.5.39), eqn. (12.6.6) is defined recursively. Because x1 = u1,
the recursion can be seeded by starting with the k = P term and working backwards
to k = 2. The inverse can also be expressed in closed form as
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x1 = u1

xk = u1 +

P∑
l=k

k − 1

l − 1
ul, k = 2, ..., P. (12.6.7)

The transformation defined in eqns. (12.6.5), (12.6.6), and (12.6.7) is known as a
staging transformation because of its connection to a particular path-integral Monte
Carlo algorithm (Ceperley and Pollock, 1984), which we will discuss in the next section.
The staging transformation was first introduced for path-integral molecular dynamics
by Tuckerman et al. (1993). The variables u1, ..., uP are known as staging variables, as
distinguished from the original variables, which are referred to as primitive variables.

We now proceed to develop a molecular dynamics scheme in terms of the staging
variables. When the harmonic coupling term is evaluated using these variables, the
result is

P∑
k=1

(xk − xk+1)
2 =

P∑
k=2

k

k − 1
u2

k, (12.6.8)

which is completely separable. Since the Jacobian of the transformation is 1, as we
showed in eqn. (4.5.45), the discrete partition function becomes

QP (L, T ) =

∫
dp1 · · ·dpP

∫
du1 · · ·duP

× exp

{
−β

P∑
k=1

[
p2

k

2m′
k

+
1

2
mkω2

P u2
k +

1

P
U(xk(u))

]}
. (12.6.9)

In eqn. (12.6.9), the parameters mk are defined to be

m1 = 0

mk =
k

k − 1
m, k = 2, ..., P, (12.6.10)

and m′
1 = m, m′

k = mk. The notation xk(u) indicates the inverse transformation in
eqn. (12.6.6) or (12.6.7). In order to evaluate eqn. (12.6.9), we can employ a classical
Hamiltonian of the form

H̃cl(u, p) =

P∑
k=1

[
p2

k

2m′
k

+
1

2
mkω2

P u2
k +

1

P
U(xk(u))

]
, (12.6.11)

which leads to the equations of motion
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u̇k =
pk

m′
k

ṗk = −mkω2
P uk − 1

P

∂U

∂uk
. (12.6.12)

From the chain rule, the forces on the staging variables can be expressed recursively
as

1

P

∂U

∂u1
=

1

P

P∑
l=1

∂U

∂xl

1

P

∂U

∂uk
=

1

P

[
∂U

∂xk
+

k − 2

k − 1

∂U

∂uk−1

]
. (12.6.13)

The recursive staging force calculation is performed starting with k = 2 and using
the first expression for ∂U/∂u1. Eqns. (12.6.12) need to be thermostatted to ensure
that the canonical distribution is generated. The presence of the high-frequency force
on each staging variable combined with the 1/P factor that attenuates the potential-
energy derivatives leads to a weak coupling between these two forces. Therefore, it is
important to have as much thermalization as possible in order to achieve equiparti-
tioning of the energy. It is, therefore, strongly recommended (Tuckerman et al., 1993)
that path-integral molecular dynamics calculations be carried out using the “massive”
thermostatting mechanism described in Section 4.10. This protocol requires that a
separate thermostat be attached to each Cartesian component of every staging vari-
able. Thus, for the single-particle one-dimensional system described by eqns. (12.6.12),
if Nosé–Hoover chain thermostats of length M are employed, the actual equations of
motion would be

u̇k =
pk

m′
k

ṗk = −mkω2
P uk − 1

P

∂U

∂uk
− pηk,1

Q1
pk

η̇k,γ =
pηk,γ

Qk

ṗηk,1 =
p2

k

m′
k

− kT − pηk,2

Qk
pηk,1

ṗηk,γ
=

[
p2

ηk,γ−1

Qk
− kT

]
− pηk,γ+1

Qk
pηk,γ

γ = 2, ..., M − 1

ṗηk,M
=

[
p2

ηk,M−1

Qk
− kT

]
, (12.6.14)

where γ indexes the thermostat chain elements. When ωP is the highest frequency
in the system, the optimal choice for the parameters Q1, ..., QP are Q1 = kT τ2 and
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Qk = kT/ω2
P for k = 2, ..., P . Here τ is a characteristic time scale of the corresponding

classical system. Since each staging variable has its own thermostat of length M , the
dimensionality of the thermostat phase space is 2MP , which is larger than the physical
phase space! Luckily, with the exception of simple “toy” problems, the computational
overhead of “massive” thermostatting is low relative to that of a force calculation in a
complex system. Moreover, the massive thermostatting method is rapidly convergent,
particularly when integrated using a multiple time scale algorithm such as the RESPA
of Section 3.11. The staging transformation is simple to implement and because of the
recursive relations in eqns. (12.6.6) and (12.6.13), it scales linearly with P .

As an interesting alternative to the staging transformation, it is also possible to use
the normal modes of the cyclic chain (Tuckerman et al., 1993; Cao and Voth, 1994b).
The normal mode transformation can be derived straightforwardly from a Fourier
expansion of the periodic path

xk =

P∑
l=1

ale
2πi(k−1)(l−1)/P . (12.6.15)

The complex expansion coefficients al are then used to construct a transformation to
a set of normal mode variables u1, ..., uP via

u1 = a1, uP = a(P+2)/2

u2k−2 = Re(ak), u2k−1 = Im(ak). (12.6.16)

The normal-mode transformation can also be constructed as follows: 1) Generate the
matrix Aij = 2δij − δi,j−1 − δi,j+1, i, j = 1, ..., P , with the path periodicity condi-
tions Ai0 = AiP , Ai,P+1 = Ai1; 2) Diagonalize the matrix and save the eigenvalues
and eigenvectors; 3) From the eigenvectors, construct the orthogonal matrix Oij that
diagonalizes A. The forward and inverse transformations are then given by

uk =
1√
P

P∑
l=1

Oklxl

xk =
√

P

P∑
l=1

OT
klul. (12.6.17)

Although the eigenvalues emerge directly from the diagonalization procedure, they can
also be constructed by hand according to

λ2k−1 = λ2k−2 = 2

[
1 − cos

(
2π(k − 1)

P

)]
. (12.6.18)

Note the twofold degeneracy. When evaluated in terms of the normal mode variables,
the harmonic coupling term becomes

P∑
k=1

(xk − xk+1)
2 =

P∑
k=2

λku2
k. (12.6.19)
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As with the staging transformation, the harmonic term is now separable. The trans-
formation also has unit Jacobian. Thus, the transformed partition function is identical
to eqn. (12.6.9) if the masses mk are defined as mk = mλk, m′

1 = m, and m′
k = mk.

With this identification, eqns. (12.6.11), (12.6.12), and (12.6.14) are applicable to the
normal-mode case exactly as written. The only difference occurs when the chain rule
is used to obtain the forces on the normal mode variables, whence we obtain

1

P

∂U

∂u1
=

1

P

P∑
l=1

∂U

∂xl

1

P

∂U

∂uk
=

1√
P

P∑
l=1

∂U

∂xl
OT

lk. (12.6.20)

In addition to its utility as a computational scheme, the normal-mode formulation
of the path integral has several other interesting features. First, the variable u1 can
be shown to be equal to

u1 =
1

P

P∑
k=1

xk
−→

P→∞
1

βh̄

∫ βh̄

0

dτ x(τ). (12.6.21)

The integral after the arrow in eqn. (12.6.21) is the continuous (P → ∞) limit. The
variable u1 is an average over all of the path variables and, therefore, corresponds,
for finite P , to the center-of-mass of the cyclic polymer. This point is also known
as the path centroid. Note that the force on this mode is also just the average force
(1/P )

∑P
k=1 ∂U/∂xk. It can be shown that, for the staging transformation, the force

on the mode u1 is also the average force, however this mode is not physically the same
as the centroid.

In a seminal paper by Feynman and H. Kleinert (1986), it was shown that the
path centroid could be used to capture approximate quantum effects in a system.
Consider eqn. (12.6.9) with the variables u1, ..., uP representing the normal modes. If
we integrate over the variables u2, ..., uP and the corresponding momenta p1, ..., pP ,
then the result can, in the spirit of Section 8.10, be written as

QP (L, T ) ∝
∫

dp1 du1 exp

{
−β

[
p2
1

2m1
+ W (u1)

]}
, (12.6.22)

where W (u1) is the potential of mean force on the centroid given by

W (u1) = −kT ln

{∫
du2 · · ·duP

× exp

[
−β

P∑
k=2

(
1

2
mkω2

P u2
k +

1

P
U(xk(u))

)]}
(12.6.23)

up to an additive constant. Although we cannot determine W (u1) for an arbitrary
potential U(x), Feynman and Kleinert were able to derive an analytical expression for
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W (u1) for a harmonic oscillator using the functional integral techniques discussed in
Section 12.4. In particular, they showed how to derive the parameters of a harmonic
oscillator potential Uho(x; u1) that minimize the expectation value 〈U(x)−Uho(x; u1)〉.
The parameters of the potential depend on the position of the centroid so that the
harmonic potential takes the general form Uho(x; u1) = (1/2)Ω2(u1)(x−u1)

2 +L(u1).
That is, the frequency and vertical shift depend on the centroid u1. The optimization
procedure leads to a simple potential function W̃ (u1) of the centroid that can then be
used in eqn. (12.6.22) to obtain approximate quantum equilibrium and thermodynamic
properties.

We close this section by showing how the path-integral molecular dynamics pro-
tocol extends to N Boltzmann particles in d dimensions. Since most path-integral
calculations fall into this category, we will limit our discussion to these. Excellent
descriptions of path-integral algorithms for bosons and fermions can be found in the
literature (Ceperley, 1995; Miura and Okazaki, 2000). The discrete N -particle partition
function for Boltzmann particles follows directly from eqn. (12.5.10). After introduc-
ing dNP momentum integrations as in eqn. (12.6.2), the discrete partition function
becomes

QP (N, V, T ) =

N∏
i=1

(
miP

2πβh̄2

)dP/2 ∫ N∏
i=1

dr
(1)
i · · · dr(P )

i dp
(1)
i · · · dp(P )

i

× exp

{
−β

P∑
k=1

[
N∑

i=1

p
(s)2

i

2m′
i

+

N∑
i=1

1

2
miω

2
P

(
r
(k+1)
i − r

(k)
i

)2

+
1

P
U

(
r
(k)
1 , ..., r

(k)
N

)]}
(12.6.24)

with the condition r
(P+1)
i = r

(1)
i . An important point to make about eqn. (12.6.24) is

that the potential U(r
(k)
1 , ..., r

(k)
N ) only acts between beads with the same imaginary

time index s. This means that all beads with imaginary-time index 1 interact with each
other, but these do not interact with beads having imaginary-time index 2,3,....,P and
so forth. This is illustrated for the case of two particles in Fig. 12.11.

The construction of a path-integral molecular dynamics algorithm for N Boltz-
mann particles in d dimensions proceeds in the same manner as for a single particle in
one dimension. First, a transformation from primitive to staging or normal-mode vari-
ables is performed for each quantum particle’s cyclic path. In staging or normal-mode
variables, the classical Hamiltonian from which the equations of motion are derived is

H =
P∑

k=1

[
N∑

i=1

p
(s)2

i

2m
(s)′

i

+

N∑
i=1

1

2
m

(k)
i ω2

Pu
(s)2

i +
1

P
U

(
r
(k)
1 (u1), ..., r

(k)
N (uN )

)]
. (12.6.25)

Here, each primitive variable r
(k)
i depends on the staging or normal-mode variables

with the same particle index i. In deriving the equations of motion from eqn. (12.6.25),
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Fig. 12.11 Interaction pattern between two quantum particles represented as cyclic polymer

chains within the discrete path-integral framework. The cyclic chains obey the rule that only

“beads” with the same imaginary-time index on different chains interact with each other.

the forces on the mode variables are obtained using eqns. (12.6.13) or (12.6.20). Im-
portantly, if the equations of motion are coupled to Nosé–Hoover chains, it is critical
to follow the protocol of coupling each component of each staging or normal-mode
variable to its own thermostat, for a total of dNP thermostats. At first sight, this
might seem like overkill because it adds dNMP additional degrees of freedom to a
system, where M is the length of each Nosé–Hoover chains. However, if we think back
to Fig. 4.12 and note that a path integral, according to eqn. (12.6.25), is a collection
of weakly coupled harmonic oscillators, then this protocol makes sense. Generally, the
computational overhead of dNMP thermostats is small compared to that associated
with the calculation of the forces.

12.6.2 Path-integral Monte Carlo

We saw in Chapter 7 that Monte Carlo methods are very effective for sampling an
equilibrium distribution such as the canonical ensemble. Therefore, it is worth using a
little space to discuss the calculation of path integrals using a Monte Carlo approach.
The algorithm we will describe here uses many of the same ideas discussed in the previ-
ous subsection. In particular, for a quantum free particle in one dimension (U(x̂) = 0),
the discretized action expressed in terms of staging or normal-mode variables is just
a sum of uncoupled harmonic oscillators, and as we saw in Section 3.8.3, these can be
easily sampled using the Box-Muller method. The idea of path-integral Monte Carlo,
then, is to construct an M(RT)2 algorithm (see Section 7.3.3), in which we sample
the free particle distribution directly and use the change in the potential energy to
build an acceptance probability. However, unlike path-integral molecular dynamics,
where a staging or normal-mode transformation can be applied to the entire cyclic
polymer chain, the same cannot always be done in path-integral Monte Carlo. The
reason for this is that if P is sufficiently large, the complete set of staging or normal
modes is simply too large to be sampled in its entirety in one Monte Carlo move:
the average acceptance probability would, for most problem, simply be too low. Thus,
in path-integral Monte Carlo, staging or normal-mode transformations are applied to
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segments of the cyclic polymer chain of a certain length j that must be optimized to
give a desired average acceptance probability.

In fact, we have already seen how to perform both normal-mode and staging trans-
formations to a set of j particles with a harmonic nearest-neighbor coupling anchored
to fixed endpoints in Sections 1.7 and 4.5, respectively. We first describe the staging
transformation. The idea of staging was originally introduced by Ceperley and Pol-
lock (1984) as a means of constructing an efficient Monte Carlo scheme. However,
explicit variable transformations were not employed in the original work. Here we
modify the original staging algorithm to incorporate explicit transformations. In order
to sample a segment of length j of the free particle distribution for the cyclic poly-
mer chain, we start by randomly choosing a starting bead. Suppose that the chosen
bead has an imaginary-time index l. This bead forms one of the fixed endpoints of
the segment and the other is l + j + 1 beads away from this one. This leaves us with
j intermediate beads having primitive coordinates xl+1, ..., xl+j . We now transform
these primitive variables to staging variables using eqn. (4.5.38), which, for this case,
appears as follows:

ul+k = xl+j − kxl+k+1 − xl

(k + 1)
k = 1, ..., j. (12.6.26)

Eqn. (4.5.39) also allows a recursive inverse to be defined as

xl+k = ul+k +
k

k + 1
xl+k+1 +

1

k + 1
xl. (12.6.27)

Applying the transformation to the following portion of the quantum kinetic energy

1

2
mω2

P

j∑
k=0

(xl+k − xl+k+1)
2

we obtain
j∑

k=0

(xl+k − xl+k+1)
2

=

j∑
k=1

k + 1

k
u2

l+k +
1

j + 1
(xl+j+1 − xl)

2
(12.6.28)

(see, also, eqn. (4.5.44)). Since the j staging variables have a distribution proportional
to exp(−βmkω2

P u2
l+k/2), where mk = (k + 1)mk/k, we sample each ul+k randomly

from its corresponding Gaussian distribution and then use eqn. (12.6.27) to generate
the proposed move to new primitive variables x′

l+k, k = 1, ..., j. Let x denote the
original coordinates xl+k, with k = 1, ..., j, and let x′ denote the coordinates x′

l+k of
the proposed move. The change in potential energy will be

ΔU(x, x′) =
1

P

j∑
k=1

[
U(x′

l+k) − U(xl+k)
]
, (12.6.29)

and the acceptance probability is then

A(x′|x) = min
[
1, e−βΔU(x,x′)

]
. (12.6.30)

Thus, if the move lowers the potential energy, it will be accepted with probability 1;
otherwise, it is accepted with probability exp[−βΔU(x, x′)]. On the average, P/j such
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moves will displace all the beads of the cyclic polymer chain, and hence the set of P/j
staging moves is called a Monte Carlo pass.

The algorithm works equally well with a normal-mode transformation between
fixed endpoints xl and xl+j+1, as in eqn. (1.7.12). In this case, the normal-mode
variables are sampled from independent Gaussian distributions, and eqn. (12.6.30) is
used to determine whether the move is accepted or rejected.

The staging and normal-mode schemes described above move only the internal
modes of the cyclic chain. Therefore, in both algorithms, one additional move is needed,
which is a displacement of the chain as a whole. This can be achieved by an attempted
displacement of the uncoupled mode variable u1 (recall that u1 is the centroid variable
in the normal-mode scheme) according to

u′
1,α = u1,α +

1√
d

(ζα − 0.5)Δ. (12.6.31)

Here, α runs over the spatial dimensions and Δ is a displacement length (see, also,
eqn. (7.3.33)). Since the positions of all the beads change under such a trial move, the
potential energy changes as

ΔU(x, x′) =
1

P

P∑
k=1

[U(x′
k) − U(xk)] . (12.6.32)

Again, eqn. (12.6.30) determines whether the move is accepted or rejected. A complete
Monte Carlo pass, therefore, requires P/j staging or normal-mode moves plus one
move of the centroid. Typically, the parameter j is chosen such that the average
acceptance probability is 40%. For a system of N particles, the algorithm extends
straightforwardly. First a cyclic polymer is chosen at random, and a Monte Carlo pass
is performed on that chain. On average, N such passes will move the entire system.

We conclude this subsection by noting an important difference between path-
integral Monte Carlo and path-integral molecular dynamics. In molecular dynamics,
a single time step generates a move of the entire system, while in Monte Carlo, each
individual attempted move only changes a part of the system. This difference becomes
important when implementing path integrals on parallel computing platforms. Path-
integral molecular dynamics parallelizes much more readily than staging or normal-
mode path-integral Monte Carlo. Thus, if a molecular dynamics algorithm could be
constructed with a convergence efficiency that rivals Monte Carlo, then the former
becomes a competitive method. As part of our discussion of thermodynamic estimators
in the next subsection, we will also present a comparison of the molecular dynamics
and Monte Carlo approaches for a simple system.

12.6.3 Numerical aspects of thermodynamic estimators

As noted in Section 12.3, the estimators in eqns. (12.3.20), (12.3.24), and (12.5.12)
suffer from large fluctuations in the kinetic energy due to their linear dependence on
P . The consequence of this dependence is that in highly quantum systems, which
require a large number of discretizations, it becomes increasingly difficult to converge
such estimators. A solution to this dilemma was presented by Herman, Bruskin, and
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Berne (1982), who employed a path integral version of the virial theorem. For a single
particle in one dimension, the theorem states

P

2β
−

〈
1

2
mω2

P

P∑
k=1

(xi − xk+1)
2

〉
f

=

〈
1

2P

P∑
k=1

xi
∂U

∂xk

〉
f

. (12.6.33)

Before we prove this theorem, we demonstrate its advantage in a simple application.
First, note that when eqn. (12.6.33) is substituted into eqn. (12.3.19), a new energy
estimator known as the virial energy estimator results:

εvir(x1, ..., xP ) =
1

P

P∑
k=1

[
1

2
xk

∂U

∂xk
+ U(xk)

]
. (12.6.34)

The elimination of the kinetic energy yields an energy estimator with much better
convergence behavior than the primitive estimator of eqn. (12.3.20). In Fig. 12.12, we
show a comparison between the instantaneous fluctuations and cumulative averages of
the primitive and virial estimators for a harmonic oscillator with m = 1 and ω = 10
computed using staging molecular dynamics with P = 32, P = 64, and P = 128
beads. The figure shows how the fluctuations, shown in grey, grow with P while the
fluctuations in the virial estimator are insensitive to P . Despite the fact that the
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Fig. 12.12 Instantaneous fluctuations (grey) and cumulative averages (black) of the primi-

tive (top row) and virial (bottom row) energy estimators for a harmonic oscillator simulated

with staging path-integral molecular dynamics using P = 32 (left column), P = 64 (middle

column), and P = 128 (right column) beads.
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fluctuations of the primitive estimator grow with P , the cumulative averages between
the two estimators agree for all P . This illustrates the idea that in any path-integral
simulation, one should monitor both estimators and ensure that they agree. If they do
not, this should be taken as a sign of a problem in the simulation.

We now proceed to prove the theorem. First, we define a function α(x1, ..., xP ) as

α(x1, ..., xP ) =
1

2
mω2

P

P∑
k=1

(xk − xk+1)
2
. (12.6.35)

Note that the effective potential in eqn. (12.2.28) can now be written as

φ(x1, ..., xP ) = α(x1, ..., xP ) +
1

P

P∑
k=1

U(xk)

≡ α(x1, ..., xP ) + γ(x1, ...., xP ). (12.6.36)

Recalling the discussion of Euler’s theorem in Section 6.2, the function α(x1, ..., xP )
is a homogeneous function of degree 2. Hence, applying Euler’s theorem, we can write
α(x1, ..., xP ) as

α(x1, ..., xP ) =
1

2

P∑
k=1

xk
∂α

∂xk
. (12.6.37)

Now consider the average 〈α〉f over the finite-P path-integral distribution f of eqn.
(12.3.9), which we can write as

〈α〉f =
1

2QP

∫
dx1 · · ·dxP

P∑
k=1

xk
∂α

∂xk
e−βα(x1,...,xP )e−βγ(x1,...,xP )

= − 1

2βQP

∫
dx1 · · ·dxP

P∑
k=1

(
xk

∂

∂xk
e−βα(x1,...,xP )

)
e−βγ(x1,...,xP ). (12.6.38)

Integrating eqn. (12.6.38) by parts yields

〈α〉f =
1

2βQP

∫
dx1 · · ·dxP e−βα(x1,...,xP )

P∑
k=1

P∑
k=1

∂

∂xk

[
xke−βγ(x1,...,xP )

]

=
1

2βQP

∫
dx1 · · ·dxP

[
P − β

P

P∑
k=1

xk
∂U

∂xk

]
e−βγ(x1,...,xP )

=
P

2β
−

〈
1

2P

P∑
k=1

xk
∂U

∂xk

〉
f

, (12.6.39)

from which eqn. (12.6.33) follows.
Using the virial estimator, we now present a comparison (Fig. 12.13) of path-

integral molecular dynamics with no variable transformations (top row), path-integral
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Fig. 12.13 Left column: Instantaneous virial estimator. Middle column: Cumulative average

of virial estimator. Right column: Error bar as a function of block size. Top row: Path-integral

molecular dynamics with no variable transformations. Middle row: Path-integral molecular

dynamics with staging transformation. Bottom row: Staging path-integral Monte Carlo with

j = 80. All energies are in units of h̄ω (reprinted with permission from Tuckerman et al. J.

Chem. Phys. 99, 2796 (1993), copyright, 1993, American Institute of Physics).

molecular dynamics with a staging transformation (middle row), and staging path-
integral Monte Carlo (bottom row). The system is a one-dimensional harmonic os-
cillator with βh̄ω = 15.8, mω/h̄ = 0.03, and P = 400. With these parameters, the
thermodynamic energy is dominated by the ground-state value h̄ω/2. The figure shows
the instantaneous value of the virial estimator (left column), the cumulative average
of the virial estimator (middle column), and the error bar in the value of the esti-
mator. The error bar is calculated by grouping individual samplings from molecular
dynamics or Monte Carlo into blocks of size n, computing the average over each block,
and then computing the error bar from these block averages with respect to the global
average (Cao and Berne, 1989). The purpose of this type of “block averaging” is to
remove unwanted correlations between successive samplings. As the right column in-
dicates, the error bar starts off small and then reaches a plateau when the blocks are
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large enough that correlations are no longer present. This example demonstrates that
without variable transformations, path-integral molecular dynamics performs rather
poorly, but when a staging transformation is employed, molecular dynamics and stag-
ing Monte Carlo are equally efficient, as evidenced by the fact that they converge to
the same error bar after the same number of steps.

As written, the virial estimator in qn. (12.6.34) is only valid for bound systems
because the term xk(∂U/∂xk) is not translationally invariant. This problem can be
circumvented by defining the virial term with respect to the path centroid. The gen-
eralization of eqn. (12.6.33) for N particles in d dimensions is

dNP

2β
−

〈
N∑

i=1

P∑
k=1

1

2
miω

2
P

(
r
(k)
i − r

(k+1)
i

)2
〉

=

〈
1

2P

N∑
i=1

P∑
k=1

r
(k)
i · ∂U

∂r
(k)
i

〉
. (12.6.40)

Thus, for N particles in d dimensions, the generalization of the virial estimator is

εvir({r(1), ..., r(P )}) =
dNkT

2
+

1

P

P∑
k=1

N∑
i=1

1

2

(
r
(k)
i − r

(c)
i

)
· ∂U

∂r
(k)
i

+
1

P

P∑
k=1

U
(
r
(k)
1 , ..., r

(k)
N

)
, (12.6.41)

where r
(c)
i is the centroid of particle i. Similarly, by applying the path-integral virial

theorem to the pressure estimator in eqn. (12.5.12), one can derive a virial pressure
estimator

Pvir({r(1), ..., r(P )}) =
dNkT

V
− 1

V

N∑
i=1

1

P
r
(c)
i ·

P∑
k=1

∂

∂r
(c)
i

U(r
(k)
1 , ..., r

(k)
N , V )

− 1

P

P∑
k=1

∂

∂V
U(r

(k)
1 , ..., r

(k)
N , V ), (12.6.42)

which includes the possibility that the potential depends explicitly on the volume.
One final word is still needed to address the question of when path-integral simula-

tions are needed. Broadly speaking, they should be applied whenever nuclear quantum
effects are expected to be important, for example, when light nuclei such as hydro-
gen are present. Proton transfer reactions will often exhibit nontrivial quantum effects
such as tunneling and zero-point motion. In malonaldehyde (C3H4O2), a small, cyclic
organic molecule with an internal O−H· · ·O hydrogen bond, the hydrogen bond can
reverse its polarity and become O· · ·H−O via a proton transfer reaction (see Fig. 12.14,
top). A free energy profile for this reaction can be computed using the blue moon en-
semble approach of Section 8.7 with a reaction coordinate δ = dO1H − dO2H, where
dO1H and dO2H are the distances between the two oxygens and the transferring pro-
ton. The free energy profile in this reaction coordinate exhibits a typical double-well
shaped as illustrated in Fig. 8.7. Interestingly, even at 300 K, there is a pronounced
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quantum effect on this free energy. The quantum free energy profiles can be com-
puted using the centroid of the reaction coordinate denoted δc in the figure (Voth
et al., 1989; Voth, 1993). Since enzymatic reaction barriers are in this neighborhood,
this simple example illustrates the important role that quantum effects, particularly
quantum tunneling, can play in such a reaction. Fig. 8.7 predicts that quantum free
energy barrier to the reaction decreases by approximately 2 kcal·mol−1 (Tuckerman
and Marx, 2001) from 3.6 kcal/mol to 1.6 kcal/mol, as shown in the bottom part
of Fig. 12.14. Another interesting point is that if only the transfering H is treated
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Fig. 12.14 Top: Sketch of the internal proton transfer reaction in malonaldehyde. Bottom:

Classical, quantum, and quantum-H free energy profiles at 300 K.

quantum mechanically, the reduction in the free energy is underestimated by roughly
0.4 kcal/mol, which shows that secondary nuclear quantum effects of the molecular
skeleton are also important. These free energy profiles are generated using ab initio
molecular dynamics (Car and Parrinello, 1985; Marx and Hutter, 2009) and ab initio
path-integral techniques, in which a dynamical or path-integral simulation is driven
by forces generated from electronic structure calculations performed “on the fly” as
the simulation is carried out (Marx and Parrinello, 1994; Marx and Parrinello, 1996;
Tuckerman et al., 1996).
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Liquid water also has been shown to have nonnegligible quantum effects even at
room temperature (Chen et al., 2003; Morrone and Car, 2008). At low temperature,
heavier nuclei such as 3He and 4He also exhibit significant quantum effects. However,
care is needed when deciding whether to apply path integrals to a given problem. One
must consider both the physical nature of the problem and the source of the potential-
energy model used in each application before deciding to embark on a path-integral in-
vestigation. Consider, for example, an empirical potential-energy function U(r1, ..., rN )
whose parameters are obtained by careful fits to experimental data. Since experiments
are inherently quantum mechanical, the potential model U contains nuclear quantum
effects by construction. Therefore, if such a model were used in conjunction with path
integrals, quantum effects would be “double counted.” By contrast, simulations per-
formed with potential models whose parameters are fit to ab initio calculations do
not contain quantum effects implicitly, and therefore, these models are strictly cor-
rect only when used in conjunction with path-integral methods. An example of such a
model is the water potential of Xantheas and coworkers (Fanourgakis and Xantheas,
2006; Fanourgakis et al., 2006), which yields accurate results when simulated as a path
integral. When nuclear quantum effects can be safely neglected, then models such as
these can be simulated using classical molecular dynamics or Monte Carlo algorithms.
Similarly, when potential energies and forces in a simulation are computed “on the fly”
from the electronic structure via the ab initio molecular dynamics technique (Car and
Parrinello, 1985; Marx and Hutter, 2009), these simulations should, strictly speaking,
be performed within the path-integral framework since nuclear quantum effects are
not implicitly included in this approach. Simulations using this technique have yielded
important insights, for example, into the solvation and transport of charge defects (in
the form of hydronium and hydroxide ions) in aqueous solution (Marx et al., 1999;
Tuckerman et al., 2002).

12.7 Problems

12.1. Derive primitive and virial estimators for the full pressure tensor Pαβ defined
by

Pαβ =
kT

det(h)

∑
γ

∂ ln Q

∂hαγ
hβγ ,

where hμν is the cell matrix.

∗12.2. Derive a virial form for the heat capacity at constant volume using the ther-
modynamic relation

CV = kβ2 ∂2 ln Q

∂β2
.
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12.3. Derive eqns. (12.5.6) and (12.5.7) and generalize these equations to the case
of N particles in three dimensions.

12.4. Derive eqn. (12.4.24).

12.5. The following problem considers the path-integral theory for the tunneling of
a particle through a barrier.
a. Show that the path-integral expression for the density matrix can be

written as:

ρ(x, x′; β) =

∫ x(βh̄/2)=x′

x(−βh̄/2)=x

D[x] exp

[
− 1

h̄

∫ βh̄/2

−βh̄/2

dτ

(
1

2
mẋ2 + U(x(τ))

)]
.

b. Consider a double well potential of the form

U(x) =
ω2

8a2
(x2 − a2)2.

Show that, for a particle of unit mass, the dominant path for the density
matrix ρ(−a, a; β) is given by

x(τ) = atanh[(τ − τ0)ω/2]

in the low-temperature limit with negligible error in the endpoint con-
ditions. This path is called an instanton or kink solution. Discuss the
behavior of this trajectory in imaginary time τ .

c. Calculate the classical imaginary-time action for the kink solution.
∗12.6. Consider two distinguishable particles in one dimension with respective coor-

dinates x and y and conjugate momenta px and py with a Hamiltonian

Ĥ =
p̂2

x

2m
+

p̂2
y

2M
+ U(x̂) +

1

2
Mω2ŷ2 − λx̂ŷ.

a. Show that the density matrix ρ(x, y, x′, y′; β) can be written in the form

ρ(x, y, x′, y′; β)

=

∫ x(βh̄)=x′

x(0)=x

Dx(τ) exp

[
− 1

h̄

∫ βh̄

0

dτ

(
1

2
mẋ2(τ) + U(x(τ))

)]
T [x; y, y′],

where T [x; y, y′] is known as the influence functional. What is the func-
tional integral expression for T [x; y, y′], and of what function is T [x; y, y′]
a functional?

b. Using the method of expansion about the classical path, derive a closed
form expression for T (x(τ), y, y′) by evaluating the functional integral.
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12.7. A fourth-order Trotter formula valid for traces (Takahashi and Imada, 1984)
is

Tr
[
e−λ(Â+B̂)

]
≈

{
Tr

[
e−λÂ/P e−λĈ/P

]}P

+ O
(
λ5P−4

)
,

when [Â, B̂] �= 0.

Ĉ = B̂ +
1

24

(
λ

P

)2 [
B̂,

[
Â, B̂

]]
.

Derive the discrete path integral expression for the canonical partition func-
tion Q(N, V, T ) for N Boltzmann particles in three dimensions that results
from applying this approximation. In particlar, show that the N -particle po-
tential U(r1, ..., rN ) is replaced by a new effective potential Ũ(r1, ..., rN ) and
derive the expression for this new potential.

12.8. Consider a system of two distinguishable degrees of freedom with position
operators x̂ and X̂ and corresponding momenta p̂ and P̂ , respectively, with
Hamiltonian

Ĥ =
p̂2

2m
+

P̂ 2

2M
+ U(x̂, X̂).

Assume that the masses M and m are such that M � m, meaning that the
two degrees of freedom are adiabatically decoupled.
a. Show that the partition function of the system can be approximated as

Q(β) =
∑

n

∮
DX(τ) exp

{
− 1

h̄

∫ βh̄

0

dτ

[
1

2
MẊ2(τ) + εn (X(τ))

]}
,

where εn(X) are the eigenvalues that result from the solution of the
Schrödinger equation[

− h̄2

2m

∂2

∂x2
+ U(x, X)

]
ψn(x; X) = εn(X)ψn(x; X)

for the light degree of freedom at a fixed value X of the heavy degree
of freedom. This approximation is known as the path-integral Born–
Oppenheimer approximation (Cao and Berne, 1993). The eigenvalues
εn(X) are the Born-Oppenheimer surfaces.

b. Under what conditions can the sum over n in the above expression be
approximated by a single term involving only the ground-state surface
ε0(X)? Why?

12.9. a. Consider making the following transformation in eqn. (12.3.14):

r =
1

2
(x + x′)/2, s = x − x′.

Show that the ensemble average of Â(p̂) can be written as
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〈Â〉 =
1

Q(L, T )

∫
dp dr a(p)ρW (r, p),

where ρW (r, p), known as the Wigner distribution function after Eugene
P. Wigner (1902–1995), is defined by

ρW (r, p) =

∫
ds eips/h̄

〈
r − s

2

∣∣∣e−βĤ

∣∣∣ r +
s

2

〉
.

b. Calculate ρW (r, p) for a harmonic oscillator of mass m and frequency
ω and show that in the classical limit, ρW (r, p) becomes the classical
canonical distribution.

12.10. Show that the transition path ensemble of Section 7.7 can be formulated as
a kind of path integral when the limit n → ∞ and Δt → 0 is taken. Given an
explicit functional integral expression for partition function in eqn. (7.7.5).

12.11. Write down a complete set of path-integral molecular dynamics equations of
motion (using Nosé-Hoover chain thermostats of length M) for the numerical
evaluation of an imaginary-time path integral for a system of N quantum
particles in d dimensions obeying Boltzmann statistics at temperature T .



13

Classical time-dependent statistical
mechanics

13.1 Ensembles of driven systems

Our discussion of both classical and quantum statistical mechanics has thus far been
restricted to equilibrium ensembles. The most fundamental of these, the microcanonical
ensemble, consists of a collection of systems and evolving according to Hamilton’s
equations of motion in isolation from the surroundings. Other ensembles are generated
by coupling a physical system to a heat bath, a barostat, or a particle reservoir in order
to control other equilibrium thermodynamic variables. The equilibrium ensembles
allow a wide variety of thermodynamic and structural properties of systems to be
computed.

However, there are many properties of interest that can only be measured by sub-
jecting the system to an external perturbation of some kind. For example, if we wish
to measure the coefficient of shear viscosity of a system, we could subject it to an ex-
ternal shear force by placing the system between to movable plates, pulling the plates
in opposite directions (see Fig. 13.1), and measuring the response of the system to the
force caused by plate motion. Properties of this type are known as transport proper-

Fig. 13.1 A model shearing experiment: A fluid placed between two plates is subject to a

shearing force by pulling the plates in opposite directions.
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ties. The coefficient of shear viscosity is an example of a transport coefficient. Other
examples of transport coefficients are the diffusion constant, the thermal conductivity,
the coefficient of bulk viscosity, and the electrical conductivity. Similarly, to measure a
vibrational spectrum, such as an infrared or Raman spectrum, it is necessary to induce
transitions between different vibrational states by subjecting the system to an exter-
nal electromagnetic field of a given frequency and measuring the frequencies at which
excitations occur (see Chapter 14). In general, the perturbations needed to measure
such dynamical properties are time-dependent and drive the system slightly away from
equilibrium. Thus, in order to calculate dynamical properties, we need to develop a
statistical mechanical framework for treating systems weakly perturbed from the equi-
librium state by possibly time-dependent external perturbations. In this chapter, we
will develop the classical theory of such weakly perturbed systems, and in the next
chapter, the corresponding quantum theory will be developed.

To see how the effect of a driving force can change the nature of an ensemble in
a simple and familiar example, consider the case of a harmonic oscillator of mass m
and frequency ω. In the absence of any driving forces, the equations of motion for
the oscillator are given by eqns. (1.6.30), and the motion conserves the Hamiltonian
H(x, p) = p2/2m + mω2x2/2. The trajectory traces out the phase space curve shown
in Fig. 1.3, which is simply the ellipse H(x, p) = E. Suppose, now, that the oscillator
is subject to an external driving force Fe(t). Hamilton’s equations of motion now read

ẋ =
p

m
, ṗ = −mω2x + Fe(t). (13.1.1)

Depending on the form of Fe(t), the phase space trajectory generated by eqns. (13.1.1)
is considerably more complicated than that of the undriven oscillator. For example,
suppose Fe(t) = F0 cosΩt, with Ω/ω =

√
2. The phase space trajectory generated is

shown in Fig. 13.2(a). Comparing Fig. 13.2(a) to Fig.1.3, perhaps the most strik-

x

p

t

x

(a) (b)

Transient
region

Steady-state
region

Fig. 13.2 (a) Phase space of a driven oscillator satisfying mẍ = −mω2x + F0 cosΩt

for Ω/ω =
√

2. (b) Trajectory of a damped-driven oscillator satisfying

mẍ = −mω2x − γẋ + F0 cos Ωt for Ω/ω =
√

2.
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ing feature of Fig. 13.2(a) is the fact that many more phase space points are visited,
even on the short time scale of the simulation used to generate the figure, than in
Fig. 1.3. Recalling that the equations of motion generate a distribution of accessible
microscopic states, the number of accessible states is larger for the driven oscillator.
Thus, the ensembles generated by the driven and undriven oscillators are not equiva-
lent. Indeed, the undriven oscillator generates a microcanonical ensemble, while eqns.
(13.1.1) generate a more complex ensemble, which is an example of a nonequilibrium
ensemble. Moreover, if Fe(t) were more complicated than the simple periodic function
considered, this complexity would be reflected in the phase space distribution.

Suppose, next, that the oscillator is subject to a frictional force −γp/m in addition
to the driving Fe(t). The equations of motion now read

ẋ =
p

m
, ṗ = −mω2x − γ

p

m
+ Fe(t). (13.1.2)

A typical position trajectory x(t), for Fe(t) = F0 cosΩt with Ω/ω =
√

2, is shown in
Fig. 13.2(b). The combination of damping and driving forces generates motion with
two components. There is an initial transient phase that disappears after a certain
length of time, leaving a regular component known as a steady state. The steady
state persists in the long time limit. In general, the phase space distribution of an
ensemble that is allowed to reach a steady state is significantly different from that
of the corresponding equilibrium distribution and, therefore, has different properties.
Moreover, it is clear that the phase space distribution function f(x, p, t) can have an
explicit time dependence due to the presence of the time-dependent driving force and
the transient component of the motion. From our analysis of this simple system, we
can conclude that ensembles of driven systems are more complex than equilibrium
ensembles. They generally contain many more accessible microscopic states due to
the presence of the driving forces, they are described by time-dependent phase space
distribution functions, and they often exhibit steady-state behavior.

We now proceed to make these simple arguments more formal by deriving an
approximation to the phase space distribution of a system weakly driven away from
equilibrium by a time-dependent perturbation. Interested readers are also referred
to the detailed article by B. J. Berne (1971) on time dependent properties in the
condensed phase.

13.2 Driven systems and linear response theory

In this section, we will consider a general class of driven classical systems and their
corresponding phase space distributions. Consider a classical system described by 3N
generalized coordinates q1, ..., q3N ≡ q, 3N generalized momenta p1, ..., p3N ≡ p, and
a Hamiltonian H(q, p), which, in the absence of driving forces, satisfies Hamilton’s
equations of motion, eqns. (1.6.11). We now wish to include the effect of a weak driving
force that is assumed to perturb the system only slightly away from equilibrium. To
this end, we introduce the following equations of motion:
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q̇i =
∂H

∂pi
+ Ci(q, p)Fe(t)

ṗi = −∂H

∂qi
+ Di(q, p)Fe(t), (13.2.1)

where Fe(t) is a time-dependent driving function and Ci(q, p) and Di(q, p) are phase
space functions whose forms are determined by the particular external perturbation. In
our treatment, we will not consider forces that give rise to a nonzero phase space com-
pressibility, such as frictional forces. Rather, we will impose the requirement that eqns.
(13.2.1), although possibly non-Hamiltonian, nevertheless satisfy an incompressibility
condition:

3N∑
i=1

[
∂q̇i

∂qi
+

∂ṗi

∂pi

]
= 0. (13.2.2)

We note, however, that if eqns. (13.2.1) can be generated by a time-dependent Hamil-
tonian H(x, t), where x = (q, p) is the phase space vector, then the usual conservation
law dH/dt = 0 is replaced by

dH

dt
=

∂H

∂t
, (13.2.3)

which states that a nonzero total time derivative of the Hamiltonian arises solely from
the explicit time dependence of H.

Substituting eqns. (13.2.1) into eqn. (13.2.2) leads to a restriction on the choice of
the phase space functions Ci(q, p) and Di(q, p)

3N∑
i=1

[
∂2H

∂pi∂qi
+

∂Ci

∂qi
Fe(t) − ∂2H

∂qi∂pi
+

∂Di

∂pi
Fe(t)

]
= 0 (13.2.4)

or simply
3N∑
i=1

[
∂Ci

∂qi
+

∂Di

∂pi

]
= 0. (13.2.5)

As we showed in Section 2.5, when the equations of motion have zero phase space
compressibility, the phase space distribution function f(x, t) satisfies the Liouville
equation

∂

∂t
f(x, t) + iLf(x, t) = 0, (13.2.6)

where iL = ẋ · ∇x is the Liouville operator.
Solving the Liouville equation for an ensemble of systems described by eqns.

(13.2.1) is nontrivial, in general, especially for large N . However, if we assume that the
external driving forces constitute only a small perturbation to Hamilton’s equations,
so that the ensemble remains relatively close to its equilibrium distribution, then we
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can use a perturbative approach to solve the Liouville equation. When the external
perturbation is small, we assume that the solution f(x, t) can be written in the form

f(x, t) = f0(H(x)) + Δf(x, t), (13.2.7)

where H(x) = H(q, p) is the Hamiltonian and f0(H(x)) is the equilibrium phase space
distribution function generated by the corresponding unperturbed system (Ci = Di =
0). Eqns. (13.2.1) could be coupled to a heat bath, barostat, or particle reservoir, so
that f0(H(x)) can be any of the equilibrium ensemble distributions introduced thus
far. All that is required of f0(H(x)) is that it satisfy the equilibrium Liouville equation

iL0f0(H(x)) = 0, (13.2.8)

where iL0 is the unperturbed Liouville operator iL0 = {...,H}. We will assume that
f(x, t) is normalized, so that ∫

dx f(x, t) = 1. (13.2.9)

Using the ansatz in eqn. (13.2.7) gives the expression for the ensemble average of any
function a(x):

〈a〉t =

∫
dx a(x)f(x, t)

=

∫
dx a(x)f0(H(x)) +

∫
dx a(x)Δf(x, t)

= 〈a〉 +

∫
dx a(x)Δf(x, t)

= A(t), (13.2.10)

where 〈a〉 is the average of a(x) in the unperturbed ensemble described by f0(H(x)),
and the notation A(t) = 〈a〉t indicates an average in the nonequilibrium ensemble
corresponding to the time-dependent property A(t). Note that if we assume the system
to be in equilibrium at t = 0, then 〈a〉0 = 〈a〉.

Since eqns. (13.2.1) are of the form ẋ = ẋ0 + Δẋ(t), the Liouville operator can be
written in the form

iL = ẋ · ∇x = (ẋ0 + Δẋ(t)) · ∇x = iL0 + iΔL(t). (13.2.11)

Thus, the Liouville equation becomes

∂

∂t
(f0(H(x)) + Δf(x, t)) + (iL0 + iΔL(t))(f0(H(x)) + Δf(x, t)) = 0. (13.2.12)

Assuming that the driving force terms in eqns. (13.2.1) constitute a small perturba-
tion, we neglect the second order term iΔLΔf(x, t). This approximation constitutes
a linearization of the Liouville equation, which is the basis of linear response theory.
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Thus, the results we derive by neglecting second-order terms will only be valid within
this approximation. Interestingly, however, the approximation of linear response the-
ory proves to be remarkably robust (Bianucci et al., 1996). Within linear response
theory, eqn. (13.2.12) reduces to(

∂

∂t
+ iL0

)
Δf(x, t) = −iΔL(t)f0(H(x)), (13.2.13)

which follows from the facts that ∂f0/∂t = 0 and iL0f0(H(x)) = 0. In order to solve
eqn. (13.2.13), we take the driving force to be 0 for t < 0, so that at t = 0, the ensemble
is described by f(x, 0) = f0(H(x)), and Δf(x, 0) = 0. Eqn. (13.2.13) is a simple first-
order inhomogeneous differential equation that can be solved using the unperturbed
classical propagator exp(iL0t) as an integrating factor. The solution that satisfies the
initial condition is

Δf(x, t) = −
∫ t

0

ds e−iL0(t−s)iΔL(s)f0(H(x)). (13.2.14)

In order to simplify eqn. (13.2.14), we note that

iΔL(s)f0(H(x)) = (iL(s) − iL0)f0(H(x))

= iL(s)f0(H(x))

= ẋ(s) · ∇xf0(H(x)) (13.2.15)

since iL0f0(H(x)) = 0. However,

ẋ(s) · ∇xf0(H(x)) = ẋ(s) · ∂f0

∂H

∂H

∂x

=
∂f0

∂H

3N∑
i=1

[
ṗi(s)

∂H

∂pi
+ q̇i(s)

∂H

∂qi

]

=
∂f0

∂H

3N∑
i=1

[
∂H

∂pi

(
−∂H

∂qi
+ DiFe(s)

)
+

∂H

∂qi

(
∂H

∂pi
+ CiFe(s)

)]

=
∂f0

∂H

3N∑
i=1

[
Di(x)

∂H

∂pi
+ Ci(x)

∂H

∂qi

]
Fe(s). (13.2.16)

The quantity

j(x) = −
3N∑
i=1

[
Di(x)

∂H

∂pi
+ Ci(x)

∂H

∂qi

]
(13.2.17)

appearing in eqn. (13.2.16) is known as the dissipative flux. In terms of this quantity,
we have
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iL(s)f0(H(x)) = −∂f0

∂H
j(x)Fe(s). (13.2.18)

Now, suppose that f0(H(x)) is given by a canonical distribution

f0(H(x)) =
exp[−βH(x)]

Q(N, V, T )
. (13.2.19)

Then, since ∂f0/∂H = −βf0, eqn. (13.2.18) becomes

iL(s)f0(H(x)) = βf0(H(x))j(x)Fe(s). (13.2.20)

Note that eqn. (13.2.16) also holds when f0(H(x)) is an isothermal-isobaric or grand
canonical distribution. When we substitute eqn. (13.2.20) into eqn. (13.2.14), we obtain

Δf(x, t) = −β

∫ t

0

ds e−iL0(t−s)f0(H(x))j(x)Fe(s). (13.2.21)

We now substitute eqn. (13.2.21) into eqn. (13.2.10) to obtain the average of a(x) in
the nonequilibrium ensemble as

A(t) = 〈a〉t = 〈a〉 − β

∫
dx a(x)

∫ t

0

ds e−iL0(t−s)f0(H(x))j(x)Fe(s)

= 〈a〉 − β

∫ t

0

ds

∫
dx a(x)e−iL0(t−s)f0(H(x))j(x)Fe(s)

= 〈a〉 − β

∫ t

0

ds

∫
dx f0(H(x))a(x)e−iL0(t−s)j(x)Fe(s). (13.2.22)

The second term in eqn. (13.2.22) involves a classical propagator exp[−iL0(t − s)].
However, since the propagator contains only iL0, its action generates the evolution
of the undriven system obtained by solving Hamilton’s equations in the absence of
any perturbation. If we write the propagator as exp[iL0(−(t − s))], it is clear that
this propagator evolves a system backwards in time. Recall from Section 3.10 that if
the phase space vector evolves in time from an initial condition x0 to xt according to
Hamilton’s equations (under the action of exp[iL0t]), the evolution of any phase space
function a(x) is determined by

da

dt
= iL0a

a(xt) = eiL0ta(x0). (13.2.23)

However, since it can be shown that L0 is a Hermitian operator, if we take the adjoint
of both sides, we obtain
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a∗(xt) = a∗(x0)e
−iL0t

a(xt) = a(x0)e
−iL0t, (13.2.24)

where the last line follows from the fact that physical observables are real. In eqn.
(13.2.24), the propagator acts to the left on a(x0). Thus, we see that the action of
exp(−iL0t) on the left evolves a(x0) forward in time just as exp(iL0t) produces for-
ward evolution when it acts to the right. According to this result, the propagator
exp[−iL0(t − s)] in eqn. (13.2.22) can be taken to act to the left on a(x) to pro-
duce a(xt−s), assuming x is an initial condition to the undriven equations of motion.
Consequently, we could also write eqn. (13.2.22) as

A(t) = 〈a〉 − β

∫ t

0

ds

∫
dx f0(H(x))j(x)eiL0(t−s)a(x)Fe(s). (13.2.25)

Both eqns. (13.2.25) and (13.2.22) indicate that the nonequilibrium ensemble average
can be expressed as

A(t) = 〈a〉 − β

∫ t

0

ds Fe(s)

∫
dx f0(H(x))a(xt−s)j(x). (13.2.26)

Since every solution to Hamilton’s equations is a unique function of the initial condi-
tions, i.e., xt−s = xt−s(x) is a unique function of the initial condition x, we can write
eqn. (13.2.26) more explicitly as

A(t) = 〈a〉 − β

∫ t

0

ds Fe(s)

∫
dx f0(H(x))a(xt−s(x))j(x). (13.2.27)

Eqn. (13.2.27) is an expression for the ensemble average of a phase space function a(x)
for the driven system described by eqns. (13.2.1) valid within linear response theory.

At this point, several comments are in order. First, we interpret the second term in
eqn. (13.2.27) as follows: We take each point x in phase space and use it as an initial
condition for Hamilton’s equations of motion, evolving each initial condition up to time
t− s. This evolution yields a new phase space point xt−s, which depends uniquely on
x. We evaluate the phase space function a(x) at the point xt−s, giving a(xt−s(x)).
We then take an average of a(xt−s(x))j(x) over the phase space with respect to the
unperturbed distribution function f0(H(x)) of all possible initial conditions. Finally,
we integrate the result multiplied by Fe(s) over s from 0 to t. The quantity∫

dx f0(H(x))a(xt−s(x))j(x) ≡ 〈a(t − s)j(0)〉 (13.2.28)

has a form we have not previously encountered. Specifically, it is known as an equi-
librium time correlation function; these functions play a fundamental role in time-
dependent statistical mechanics. The right side of eqn. (13.2.28) is a commonly used
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shorthand notation for a time correlation function that stands in for the left side of
the equation. Using this notation, eqn. (13.2.27) can be written compactly as

A(t) = 〈a〉t = 〈a〉 − β

∫ t

0

dsFe(s)〈a(t − s)j(0)〉. (13.2.29)

Second, as eqn. (13.2.27) suggests, in linear response theory, the observable A(t)
obtained by averaging the phase space function a(x) over the nonequilibrium ensemble
is expressible solely in terms of averages over the equilibrium ensemble characterized
by f0(H(x)). All information concerning the response of the system to the external
perturbation is embodied in the equilibrium time correlation function. This remarkable
result indicates that, within linear response theory, a nonequilibrium average can be
generated entirely within an equilibrium calculation. We will study several applications
of linear response theory in Section 13.3.

13.2.1 Properties of equilibrium time correlation functions

Before we apply the linear response theory to specific examples, we first explore some
of the properties of time correlation functions. Define the equilibrium time correlation
function CAB(t) between two observables A and B, corresponding to phase space
functions a(x) and b(x), with respect to a normalized equilibrium distribution function
f(x) and dynamics generated by a Liouville operator iL as

CAB(t) = 〈a(0)b(t)〉 =

∫
dx f(x)a(x)eiLtb(x)

=

∫
dx f(x)a(x)b(xt(x)). (13.2.30)

Since the propagator exp(iLt) can be taken to act either to the right as a forward
propagator or to the left as a backward propagator, the time correlation function
satisfies the property

〈A(0)B(t)〉 = 〈A(−t)B(0)〉. (13.2.31)

At t = 0,

CAB(0) = 〈AB〉 =

∫
dx f(x)a(x)b(x), (13.2.32)

which is a simple equilibrium average of a(x)b(x). The long time (t → ∞) limit,
by contrast, is a little more subtle. In complex many-body systems characterized by
highly nonlinear forces, the influence of each initial condition on the resultant trajec-
tories generated by exp(iLt) rapidly becomes negligible as time proceeds (recall the
rapid decay of the transient component of the forced-damped harmonic oscillator in
Section 13.1). This loss of memory of the initial condition means that there is a charac-
teristic time, called the correlation time, over which the trajectory xt(x) appears to be
particular to a given choice of x and beyond which xt(x) is essentially indistinguishable
from any other trajectory. This is merely a conceptual device, as every trajectory is
uniquely determined for all time by its initial conditions. However, in complex many-
body systems, nearly all trajectories will exhibit the same type of chaotic behavior
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and will resemble each other as they traverse the phase space. In order to see what the
existence of a correlation time implies for a correlation function, consider the special
case a(x) = b(x). The time correlation function

CAA(t) = 〈a(0)a(t)〉 =

∫
dx f(x)a(x)a(xt(x)) (13.2.33)

is known as an autocorrelation function. For very short times, a(xt(x)) and a(x) are
not very different, hence they are highly correlated. As long as t is small compared
to the correlation time, the trajectory xt(x) appears to be particular to the initial
condition x, and a(xt(x)) remains correlated with a(x). However, for times longer than
the correlation time, the trajectory loses memory of its initial condition and a(xt(x))
and a(x) become uncorrelated. Clearly, the length of a correlation time depends on
the nature of the system and the property under consideration. However, the notion
of two properties becoming uncorrelated after a sufficiently long time is the basis of
the Onsager regression hypothesis. The latter states that in complex systems in which
memory of initial condition is not retained, the long-time behavior of a time correlation
function is given by

lim
t→∞

CAB(t) = 〈a〉〈b〉. (13.2.34)

Clearly, this hypothesis does not apply to all systems and cannot be proved in general.
In fact, a harmonic oscillator is an example of a pathological system that has an
infinitely long memory of its initial condition and therefore violates the regression
hypothesis. However, for sufficiently chaotic systems with finite correlation times, the
regression hypothesis generally holds. Note that the initial value of an autocorrelation
function CAA(0) = 〈a2〉 is the equilibrium average of a2(x). If we define a phase space
function

δa(x) = a(x) − 〈a〉, (13.2.35)

then the corresponding macroscopic observable δA = 〈δa〉 = 0. However, the autocor-
relation function of δA is

CδAδA(t) = 〈δa(0)δa(t)〉 = 〈(a(x0) − 〈a〉) (a(xt) − 〈a〉)〉, (13.2.36)

whose initial value is

CδAδA(0) = 〈(a(x0) − 〈a〉) (a(x0) − 〈a〉)〉

= 〈a2〉 − 〈a〉2, (13.2.37)

which is just the equilibrium fluctuation in A. In the remainder of this and in Chap-
ters 14 and 15, we will see that time correlation functions play a central role in the
theory of transport coefficients and vibrational spectra.

13.3 Applying linear response theory: Green–Kubo relations for

transport coefficients

13.3.1 Shear viscosity

The coefficient of shear viscosity (denoted η) is an example of a transport property
that characterizes the resistance of a system to flow under the action of a shearing
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force. As described in Section 13.1, a shearing force can be generated by placing the
system between movable plates and pulling the plates apart in opposite directions
(see Fig. 13.1). Thinking for a moment in terms of a hydrodynamic description of the
system rather than an atomistic one, the shearing force sets up a flow field in the
direction of the force as shown in Fig. 13.1. The speed of the flow is maximum at the
top and bottom plates. Since the plates move in opposite directions, there must be
a point at which the speed of the flow is zero. Let this point be y = 0 as shown in
the figure, and let the plates be located at the points y = ±ymax. Note that, although
the direction of the flow is in the x direction, the flow pattern has a gradient in the y
direction: the flow velocity in the positive x direction increases from y = 0 to y = ymax

and increases in the negative x direction from y = 0 to y = −ymax. We will assume
that the rate γ at which the plates are pulled is small enough that the gradient of the
flow pattern is constant. The rate γ is known as the shear rate and has units of inverse
time. In this case, the flow rate itself increases linearly with y. Such a flow pattern is
known as planar Couette flow and can be expressed in terms of a flow field, which is
an equation giving the velocity u(r) of the flow as a function of each point in space.
For planar Couette flow, using the coordinate frame in Fig. 13.1, the flow field is given
by

u(r) = ux(r)êx + uy(r)êy + uz(r)êz = γyêx, (13.3.1)

which is valid for −ymax ≤ y ≤ ymax. Here êα, where α = x, y, z is the unit vector along
the α axis. Eqn. (13.3.1) expresses the fact that the flow is entirely in the x direction.
Consequently, only the x-component of the velocity vector field is nonzero, and that
the magnitude of the velocity in the x direction depends on how far from the center the
flow is observed. Therefore, the only nonvanishing component of the gradient ∇u(r)
(which is generally a tensor quantity) is the y-derivative of the x component:

∂ux

∂y
= γ. (13.3.2)

Because the flow profile is linear, the gradient is constant.
The application of the external shearing force breaks the usual spatial isotropy of

the system, causing numerous properties to develop a dependence on different spatial
directions. The coefficient of shear viscosity is related to the anisotropy in the pressure,
as expressed through the xy component of the pressure tensor Pxy (see Section 5.6
for a discussion of the pressure tensor, in particulary eqn. (5.6.8)) via Newton’s law
of viscosity. The latter states that the coefficient of shear viscosity η is the constant
of proportionality between the pressure anisotropy and the gradient of the flow field,
which we express as

Pxy = −η
∂ux

∂y
= −ηγ. (13.3.3)

(The minus sign arises because we choose to work with the pressure tensor Pαβ rather
than −Pαβ , which is the stress tensor σαβ .) Therefore,

η = −Pxy

γ
. (13.3.4)

Having provided a hydrodynamic picture of flow under the action of a shearing
force, we now seek an atomistic description in terms of a microscopic dynamics in
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the form of eqns. (13.2.1) so that we can apply the linear response formula in eqn.
(13.2.29). We consider a system with Cartesian coordinates r1, ..., rN and conjugate
momenta p1, ...,pN , described by a Hamiltonian of the usual form

H =
N∑

i=1

p2
i

2mi
+ U(r1, ..., rN ), (13.3.5)

where U(r1, ..., rN ) is the potential. The equation of motion for ṙi can be understood
on simple physical grounds. Since the shearing force induces a flow field u(ri) at the
position ri of a particle, we expect each velocity ṙi to have a contribution from this
flow field in addition to a contribution pi/mi from the usual mechanical kinetic energy.
Thus, we can write the equation of motion for ri as

ṙi =
pi

mi
+ u(ri) =

pi

mi
+ γyiêx

=
pi

mi
+ γ(ri · êy)êx. (13.3.6)

If we average ṙi over an equilibrium distribution such as the canonical distribution, the
quantity 〈pi/mi〉 vanishes, leaving only the overall flow component γ〈yi〉êx, indicating
that, on average, the net flow of the system follows the flow field, as expected from
hydrodynamics. The form of the momentum equation must now be chosen such that
the overall phase space compressibility is zero. The only possible choice consistent with
this requirement is

ṗi = Fi − γpyi êx

= Fi − γ(pi · êy)êx, (13.3.7)

where Fi = −∂U/∂ri.
Eqns. (13.3.6) and (13.3.7) constitute the microscopic equations of motion for a

system subject to a shearing force and have the conserved energy

H′ =

N∑
i=1

(pi + miγyiêx)2 + U(r1, ..., rN ). (13.3.8)

Eqns. (13.3.6) and (13.3.7) could, in fact, be used in a molecular dynamics calculation
to simulate the effect of a shearing force. In such a calculation, additional couplings to
a thermostat and possibly a barostat would be included in order generate a canonical
or isothermal-isobaric equilibrium distribution. We will describe such simulations in
detail in Section 13.5. For the purposes of the present analysis, we will assume an
initial equilibrium distribution and focus on the influence of the external field terms.
In order to apply eqn. (13.3.4), we need to cast it into a form useful for microscopic
analysis. Recall from eqn. (5.7.1) that the microscopic estimator for the xy component
of the pressure tensor is given by the phase space function
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Pxy(x) = pxy(r,p) =
1

V

N∑
i=1

[
(pi · êx)(pi · êy)

mi
+ (ri · êx)(Fi · êy)

]
. (13.3.9)

The pressure-tensor component Pxy appearing in eqn. (13.3.4) is the average of this
estimator over the nonequilibrium ensemble once a steady state has been achieved,
i.e., after transient behavior has died away in the presence of the external field. Thus,
we can rewrite eqn. (13.3.4) as

η = − lim
t→∞

〈Pxy〉t
γ

. (13.3.10)

We will compute the nonequilibrium average 〈Pxy〉t using eqn. (13.2.27). In order to
use linear response theory, we must first compute the dissipative flux. From eqns.
(13.3.6) and (13.3.7), we identify Ci(r,p) and Di(r,p) as

Ci(r,p) = γ(ri · êy)êx

Di(r,p) = −γ(pi · êy)êx. (13.3.11)

Also, Fe(t) = 1. In Cartesian coordinates with a Hamiltonian given by eqn. (13.3.5),
eqn. (13.2.17) for the dissipative flux becomes

j(r,p) =
N∑

i=1

[
Ci(r,p) · Fi − Di(r,p) · pi

mi

]
. (13.3.12)

Substituting eqn. (13.3.11) into eqn. (13.3.12) gives

j(r,p) = γ

N∑
i=1

[
(ri · êy)(êx · Fi) + (pi · êy)

(
êx · pi

mi

)]

= γV Pxy. (13.3.13)

Substituting eqn. (13.3.13) into eqn. (13.2.27) yields for 〈Pxy〉t

〈Pxy〉t = 〈Pxy〉 − βγV

∫ t

0

ds 〈Pxy(0)Pxy(t − s)〉. (13.3.14)

Finally, introducing the change of variables τ = t − s into the integral gives

〈Pxy〉t = 〈Pxy〉 − βγV

∫ t

0

dτ 〈Pxy(0)Pxy(τ)〉. (13.3.15)

Since the first term involves the average of Pxy over an equilibrium ensemble, which
describes an isotropic system, it is not difficult to see, again on purely physical grounds,
that 〈Pxy〉 = 0, however, this can also be proved analytically from the virial theorem
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(see Problem 13.8). Thus, taking the limit t → ∞, an expression for the coefficient of
shear viscosity is obtained:

η =
V

kT

∫ ∞

0

dτ 〈Pxy(0)Pxy(τ)〉 =
V

kT

∫ ∞

0

dt 〈Pxy(0)Pxy(t)〉, (13.3.16)

where we have renamed the integration variable “t” instead of “τ” in the final expres-
sion to comply with standard notation. Eqn. (13.3.16) is an example of a Green–Kubo
relation, which expresses a transport coefficient in terms of the integral of an equilib-
rium time correlation function. In this case, the coefficient of shear viscosity is given as
the time integral of the autocorrelation function of the xy component of the pressure
tensor. Interestingly, despite the fact that 〈Pxy〉 = 0, the equilibrium time correlation
function of Pxy does not vanish, suggesting that, even in equilibrium, there are short-
lived anisotropic fluctuations that cause Pxy to have a nonzero correlation time. The
length of the correlation time depends entirely on the details of the potential and the
external thermodynamic conditions of the equilibrium ensemble.

13.3.2 The diffusion constant

The diffusion constant is a measure of the tendency of particles to drift through a
system under the action of a constant external force (see Fig. 13.3). A microscopic

x

Jx

Fig. 13.3 A model diffusion experiment: A fluid is subject to an external force f in the

positive x direction, which gives rise to a particle current Jx.

description of diffusion can be provided by the simple addition of a constant force of
magnitude f to the negative gradient of the potential as

ṙi =
pi

mi

ṗi = Fi + f êx, (13.3.17)

where we have arbitrarily chosen the constant force to act in the position x direction.
Eqns. (13.3.17) conserve the total energy:

H′ =

N∑
i=1

p2
i

2mi
+ U(r1, ..., rN ) − f

N∑
i=1

xi. (13.3.18)
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Eqn. (13.3.18) indicates that the external force arises from an external potential field
of the form

φ(x) = −fx (13.3.19)

since the new term in the Hamiltonian is separable and of the form
∑N

i=1 φ(xi). The
potential field has a nonzero gradient given by

∇φ = −f êx. (13.3.20)

This external potential field causes particles to drift “down” the potential gradient,
which is in the positive x direction in this example. This drift causes a concentration
gradient ∇c to develop. In general, the concentration c(x) of particles in an external
potential φ(x) follows a Boltzmann distribution c(x) = c(x = 0) exp(−βφ(x)), where
we take φ(x = 0) = 0. Assuming that φ(x) is a weak perturbation and that the con-
centration is defined such that c(x = 0) = 1 (the standard state), then this expression
can be linearized to give c(x) ≈ −βφ(x), whose gradient is

∇c = − 1

kT
∇φ =

f

kT
êx

∂c

∂x
= − 1

kT

∂φ

∂x
=

f

kT
(13.3.21)

in a direction opposite to that of the potential gradient. Again, because the concen-
tration is linear in x, the gradient is constant.

The drift of particles in a given direction can be quantified in terms of a drift
velocity averaged over all the particles, which can be described by the following phase
space function:

ux(r,p) =
1

N

N∑
i=1

ẋi =
1

N

N∑
i=1

pi

mi
· êx. (13.3.22)

The average of ux(r,p) over the nonequilibrium ensemble, once a steady state has
been achieved, is denoted Jx, the average particle current. Thus, Jx is given by

Jx = lim
t→∞

〈ux〉t. (13.3.23)

The particle current Jx can be related to the concentration gradient ∂c/∂x using Fick’s
law of diffusion. The latter states that

Jx = D
∂c

∂x
. (13.3.24)

The constant of proportionality is the diffusion constant, denoted D, which has units
of (Length)2/Time. Substituting eqn. (13.3.21) into eqn. (13.3.24) gives

Jx = − D

kT

∂φ

∂x
=

D

kT
f. (13.3.25)

Thus, the diffusion constant can be written in terms of nonequilibrium ensemble av-
erage as
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D =
kT

f
Jx =

kT

f
lim

t→∞
〈ux〉t. (13.3.26)

The average 〈ux〉t can now be evaluated using linear response theory. From eqns.
(13.3.17), we see that Fe(t) = 1, Di(r,p) = f êx, Ci(r,p) = 1, so that the dissipative
flux becomes

j(r,p) = −f

N∑
i=1

pxi

mi
= −f

N∑
i=1

ẋi = −Nfux. (13.3.27)

Therefore, substituting eqn. (13.3.27) into eqn. (13.2.27), we obtain

〈ux〉t = 〈ux〉 + βNf

∫ t

0

ds 〈ux(0)ux(t − s)〉. (13.3.28)

Once again, letting τ = t − s gives

〈ux〉t = 〈ux〉 + βNf

∫ t

0

dτ 〈ux(0)ux(τ)〉. (13.3.29)

The average of ux over an equilibrium canonical ensemble vanishes, since the average
of any component of the velocity is zero. Letting the upper limit of the time integral
go to infinity, and changing the integration variable from τ to t, the diffusion constant
expression becomes

D = N

∫ ∞

0

dt 〈ux(0)ux(t)〉. (13.3.30)

Substituting eqn. (13.3.22) into eqn. (13.3.30) gives

D =

∫ ∞

0

dt
1

N

〈(
N∑

i=1

ẋi(0)

)(
N∑

i=1

ẋi(t)

)〉
. (13.3.31)

Recall that in equilibrium, the velocity (momentum) distribution is a product of inde-
pendent Gaussian distributions. Hence, 〈ẋiẋj〉 is 0, and moreover, all cross correlations
〈ẋi(0)ẋj(t)〉 vanish when i �= j. Thus, the Green–Kubo relation for the diffusion con-
stant becomes

D =

∫ ∞

0

dt
1

N

N∑
i=1

〈ẋi(0)ẋi(t)〉. (13.3.32)

The correlation function in eqn. (13.3.32) is known as the velocity autocorrelation
function. Since we could have chosen any direction for the external force, we can
compute D by averaging over the three spatial directions and obtain

D =
1

3

∫ ∞

0

dt
1

N

N∑
i=1

〈ṙi(0) · ṙi(t)〉. (13.3.33)

An example of a velocity autocorrelation function for a particular model of heavy
water (D2O) at 300 K (Lee and Tuckerman, 2007) is shown in Fig. 13.4(b). We note
that the velocity autocorrelation function exhibits a long-time algebraic decay in time
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Fig. 13.4 (a) Mean-square displacement for a particular model of heavy water (Lee and

Tuckerman, 2007) at 300 K. (b) Total velocity autocorrelation function for the same water

model.

that is ubiquitous in the velocity autocorrelation functions of diffusing particles and is
of hydrodynamic origin.1 In practice, convergence of the long-time tail of the velocity
autocorrelation function is slow and is influenced by finite-size effects as well. The noise
in this part of the correlation function makes the calculation of the diffusion constant
via eqn. (13.3.33) numerically difficult. Note, however, that the diffusion constant can
also be computed using the Einstein relation

D =
1

6
lim

t→∞
d

dt

1

N

N∑
i=1

〈|ri(t) − ri(0)|2〉, (13.3.34)

where the derivative of the average mean-square displacement of particles is taken.
The mean-square displacement in eqn. (13.3.34) is a time correlation function, as can
be seen by writing

〈|ri(0) − ri(t)|2〉 = 〈r2
i (0)〉 + 〈r2

i (t)〉 − 2〈ri(0) · ri(t)〉 (13.3.35)

By Liouville’s theorem, 〈r2
i (0)〉 = 〈r2

i (t)〉; the last time is the position autocorrelation
function. In general, the mean-square displacement becomes a linear function of time
in the long-time limit so that the diffusion constant is simply related to the slope of
this linear regime. The mean-square displacement for the same heavy water model
used in Fig. 13.4(b) is shown in Fig. 13.4(a). In this case, the model yields a diffusion
constant of 0.055 Å2/ps, which is smaller than the experimental value of 0.186 Å2/ps
at 298 K. Eqn. (13.3.34) and eqn. (13.3.33) are statistically equivalent; however, in

1As an example, Alder and Wainwright showed that the decay of the velocity autocorrelation
function of a hard-sphere system decays as t−d/2, where d is the number of spatial dimensions, in
a moderately dense system (Alder and Wainwright, 1967). The asymptotic behavior of the velocity
autocorrelation function can be analyzed in detail theoretically using an approach known as mode-
coupling theory, a discussion of which, however, is beyond the scope of this book (see, for example,
Ernst, et al. (1971)).
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molecular dynamics simulations, one form might yield numerically more stable results
than the other.

13.3.3 Example: The harmonic oscillator

To illustrate the concept of a time correlation function more explicitly, we calculate
the position and velocity autocorrelation functions for a simple harmonic oscillator of
mass m and frequency ω in the canonical ensemble. The Hamiltonian for the harmonic
oscillator is

H(x, p) =
p2

2m
+

1

2
mω2x2. (13.3.36)

From Section 1.3, we know that the solution (xt(x, p), pt(x, p)) of Hamilton’s equations
starting from an initial condition x and p for the position and momentum is

xt(x, p) = x cosωt +
p

mω
sin ωt

pt(x, p) = p cosωt − mωx sin ωt. (13.3.37)

Note that we have dropped the “0” subscript on the initial conditions, since we will
need to consider each point (x, p) in phase space as initial condition in order to calculate
the time corelation function. In Section 4.5, we showed that the classical canonical
partition function is Q(β) = 2π/βhω (see eqn. (4.5.19)). The position autocorrelation
function requires that eqn. (13.3.37) be integrated over all initial conditions weighted
by the canonical distribution exp[−βH(x, p)] according to the definition

Cxx(t) =
1

hQ(β)

∫ ∞

−∞
dx

∫ ∞

−∞
dp [xxt(x, p)]e−βH(x,p). (13.3.38)

Substitution of eqns. (13.3.37) into eqn. (13.3.38) gives

Cxx(t) = (βω)

∫ ∞

−∞
dx

∫ ∞

−∞
dp x

(
x cosωt +

p

mω
sinωt

)
exp

[
−β

(
p2

2m
+

1

2
mω2x2

)]

=
βω

2π
cosωt

∫ ∞

−∞
dx

∫ ∞

−∞
dp x2 exp

[
−β

(
p2

2m
+

1

2
mω2x2

)]

=
kT

mω2
cosωt. (13.3.39)

Because this correlation function never decays, the correlation time is infinite. In other
words, a harmonic oscillator never loses memory of its initial conditions and, therefore,
does not obey the Onsager regression hypothesis.

13.4 Calculating time correlation functions from molecular

dynamics

The use of the Green–Kubo relations for transport coefficients requires the calcula-
tion of classical time correlation functions, which, as we will show in this section,
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can be computed rather easily within a molecular dynamics simulation (Berne and
Harp, 1970a; Berne and Harp, 1970b; Berne, 1971). In particular, we will discuss three
commonly employed approaches for generating these functions.

13.4.1 The direct method

The most straightforward and rigorous approach for computing time correlation func-
tions from molecular dynamics calculations is based on a direct interpretation of eqn.
(13.2.30). In this scheme, a set of configurations is sampled from the equilibrium dis-
tribution f0(H(x)). This can be achieved either by a molecular dynamics or a Monte
Carlo simulation. If molecular dynamics is used to carry out the sampling, appropriate
thermostatting and/or barostatting techniques should be employed to generate the
desired equilibrium distribution. For Monte Carlo, the Metropolis or hybrid Monte
Carlo methods of Chapter 7 (see Sections 7.3 and 7.4) can be used for a canonical
distribution; these can be supplemented, if necessary, with volume sampling to gen-
erate an isothermal-isobaric distribution. An advantage of molecular dynamics is that
well-equilibrated coordinates and velocities are generated and can be retained for sub-
sequent calculation of the time correlation function. Given an adequate sampling of
f0(H(x)), each of the configurations obtained is used as an initial condition to Hamil-
ton’s equations in order to generate a dynamical trajectory of a pre-specified length.
The time correlation function is then computed by performing the average required
by eqn. (13.2.30) over all trajectories at each time step.

Suppose we have sampled K configurations from f0(H(x)), which we will denote
x(λ), λ = 1, ..., K. Note that x stands for a complete phase space vector of dN coordi-
nates and dN momenta in d dimensions. If each x(λ) is used to generate a trajectory
of M steps, then we will have, overall, K trajectories consisting of configurations at

discrete time points t = 0, Δt, 2Δt, ...., MΔt, denoted {x(λ)
0 , x

(λ)
Δt , ..., x

(λ)
MΔt}, where x

(λ)
0

is the sampled configuration x(λ). Then, the autocorrelation function CAB(t) between
two properties A and B with corresponding phase space functions a(x) and b(x) at
time t = nΔt is given by

CAB(nΔt) =
1

K

K∑
λ=1

a(x(λ))b(x
(λ)
nΔt). (13.4.1)

Thus, by letting n run from 0 to M , the time correlation function at M time points
will be generated. The calculational procedure is illustrated in Fig. 13.5(a). The length
of each trajectory is determined by the decay or correlation time of the particular time
correlation function under consideration.

While eqn. (13.4.1) is rigorous and straightforward to apply, its convergence usually
requires a large number of initial configurations to be sampled from f0(H(x)) and
subsequent generation of a large number of trajectories. The inefficiency of this method
lies in the fact that each trajectory gives just a single contribution to each time point
in the correlation function. Our next approach circumvents this problem by requiring
only a single trajectory.
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Fig. 13.5 Pictorial representations of (a) the calculation of the time correlation function

CAB(nΔt) at times Δt, 2Δt, 3Δt, and 4Δt via eqn. (13.4.1). (b) the calculation of CAB(nΔt)

at points Δt and 2Δt via eqn. (13.4.3). In each panel, terms connected by a square bracket

are multiplied. All similar brackets are then averaged.

13.4.2 Time correlation functions from a single trajectory

The use of a single trajectory to compute a time correlation function relies on two
assumptions: 1) The system under study is large enough that the thermodynamic
limit approximately applies, so that the microcanonical distribution is approximately
equivalent to the canonical distribution, and 2) Solutions to Hamilton’s equations are
ergodic enough to generate an adequate sampling of f0(H(x)). The first assumption
implies that microcanonical temperature fluctuations are negligibly small (recall that
such fluctuations decrease as 1/

√
N , where N is the number of particles), while the

second ensures that the trajectory can serve both as a means of sampling the equilib-
rium distribution and generating the dynamics of the system. If both conditions hold,
then the calculation of time correlation functions can be simplified considerably.

Consider rewriting eqn. (13.2.30) in a form that exploits the equivalence of the
time and phase space averages of an ergodic system (see Section 3.7):

CAB(τ) =

∫
dx f0(H(x))a(x)b(xτ (x)) = lim

T→∞
1

T

∫ T

0

dt a(xt)b(xt+τ ). (13.4.2)

Eqn. (13.4.2) seems to embody a contradiction. First, it implies that each configuration
xt generated by solving Hamilton’s equations is an independent sampling of f0(H(x)).
At the same time, however, it exploits the unique dependence of a trajectory on its
initial conditions, which implies that any point xt of the trajectory can be uniquely de-
termined from any other point in the trajectory. Thus, the point xt+τ evolves uniquely
from xt for τ > 0. These two conditions might appear incompatible, for how can the
point xt be both an independent sampling from f0(H(x)) and a source for any other
point xt+τ of the trajectory? Once again, the existence of a finite correlation time re-
solves the paradox. If the time correlation function eventually decays to zero on a time
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scale specified by the correlation time and the total time T of a finite-time trajectory is
much larger than the correlation time, then we can imagine breaking a trajectory into
segments of length similar to the correlation time. Each segment can then be regarded
as an independent “sampling” of the correlation function because over each segment,
the correlation function decays to zero.

Suppose a molecular dynamics trajectory is long compared to the correlation time
and consists of M points, xnΔt, n = 1, ..., M . We can break the trajectory up into seg-
ments each having K points, where K 
 M and KΔt is comparable to the correlation
time, and apply the procedure of eqn. (13.4.1) to each segment. For example, we could
choose x0, ..., xKΔt to be the first segment, x(K+1)Δt, ..., x2KΔt to be the next, etc., and
apply eqn. (13.4.1) on these segments. Note, however, that we could just as well start
with xΔt and assume xΔt, ..., x(K+1)Δt is the first segment, x(K+2)Δt, ..., x(2K+1)Δt is
the next, etc. By segmenting the trajectory in as many different ways as possible, each
point of the trajectory serves both as an independent sampling of f0(H(x)) and as a
time point in the correlation function. In fact, when eqn. (13.4.2) is written in discrete
form for a finite-time trajectory

CAB(nΔt) =
1

M − n

M−n∑
m=1

a(xmΔt)b(x(m+n)Δt), n = 1, ..., K, (13.4.3)

it is clear that eqn. (13.4.3) automatically exploits the idea of dividing the trajectory
in all possible ways. Each point of the trajectory, xmΔt, serves as an “initial condition”
from which the point x(m+n)Δt a time nΔt later is determined, i.e., as an independent
sampling of f0(H(x)), and as a point generated by an “initial condition” at some
earlier time in the trajectory. This approach is illustrated in Fig. 13.5(b). Indeed, as
n increases, the number of time intervals that fit into the trajectory decreases, and
hence, the statistics degrade. This is why it is imperative to ensure that the trajectory
is long compared to the correlation time when using eqn. (13.4.3).

13.4.3 The fast Fourier transform method

For correlation functions with very long decay times, eqn. (13.4.3) requires a very
long trajectory and could potentially need to be evaluated at a large number of
points. Consequently, the computational overhead of eqn. (13.4.3) could be quite high,
increasing roughly as M2 for a trajectory of M time steps. The third method we will
discuss is a highly efficient Fourier transform-based method that can take advantage
of fast Fourier transform algorithms (Futrelle and McGinty, 1971).

In order to derive the method, we start by noting that Hamilton’s equations are
invariant with respect to a change in the origin of time, so that we can shift the
time origin in eqn. (13.4.2) from t = 0 to t = −T/2. Such a shift gives an equivalent
definition of the time correlation function:

CAB(τ) = lim
T→∞

1

T

∫ T/2

−T/2

dt a(xt)b(xt+τ ). (13.4.4)

Since T formally is taken to be infinite, we may write a(xt) and b(xt) in terms of their
Fourier transforms:
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ã(ω) =
1√
2π

∫ ∞

−∞
dt e−iωta(xt)

b̃(ω) =
1√
2π

∫ ∞

−∞
dt e−iωtb(xt). (13.4.5)

Now, consider the product ã(ω)b̃∗(ω):

ã(ω)b̃∗(ω) =
1

2π

∫ ∞

−∞
dt

∫ ∞

−∞
dt′ e−iωteiωt′ a(xt′)b(xt)

=
1

2π

∫ ∞

−∞
dt

∫ ∞

−∞
dt′ e−iω(t−t′) a(xt′)b(xt). (13.4.6)

If a change of variables s = t − t′ is made for the t integral, we find

ã(ω)b̃∗(ω) =
1

2π

∫ ∞

−∞
ds

∫ ∞

−∞
dt′ e−iωsa(xt′)b(xt′+s)

=
1

2π

∫ ∞

−∞
ds e−iωs

∫ ∞

−∞
dt′ a(xt′)b(xt′+s). (13.4.7)

Multiplying both sides by eiωs′

and integrating over ω using the fact that∫ ∞

−∞
dωeiωs′

e−iωs = 2πδ(s − s′), (13.4.8)

we obtain ∫ ∞

−∞
dt a(xt)b(xt+s) =

∫ ∞

−∞
dω eiωsã(ω)b̃∗(ω). (13.4.9)

Thus, for very large T, we have, to a good approximation,

CAB(t) =
1

T

∫ ∞

−∞
dω eiωtã(ω)b̃∗(ω). (13.4.10)

In practice, since the time interval is actually finite and time is discrete, eqn. (13.4.10)
can be evaluated using discrete fast Fourier transforms (FFTs). FFTs are nothing
more than canned routines capable of evaluating the transforms in eqn. (13.4.5) as
discrete sums of the form

ãk =

M−1∑
j=0

a(xjΔt)e
−2πijk/M

b̃k =

M−1∑
j=0

b(xjΔt)e
−2πijk/M , (13.4.11)

corresponding to discrete frequencies and times ωk = 2πk/MΔt and tj = jΔt, respec-
tively, in O(M ln M) operations.
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The efficiency of the Fourier transform method lies in the fact that the correlation
function can be computed by performing just three FFTs: Two FFTs are needed to
transform a and b into the frequency domain, and a third one is needed to transform
the product ãb̃ back to the time domain via

CAB(tj) =
1

M

M−1∑
k=0

ãk b̃ke2πijk/M . (13.4.12)

Moreover, since the calculation of vibrational spectra requires the Fourier transform of
CAB(t), the final FFT in eqn. (13.4.12) can be eliminated. Finally, if an autocorrelation
function CAA(t) is sought, then only one FFT is needed to transform a into the
frequency domain, and one additional inverse FFT is required to obtain the real-time
autocorrelation function. Again, if only C̃AA(ω) is needed, the only one FFT is needed.
Since FFTs can be evaluated in M ln M operations, the scaling with the number of
trajectory points is considerably better than eqn. (13.4.3).

13.5 The nonequilibrium molecular dynamics approach

Although equilibrium time correlation functions are useful in the calculation of trans-
port properties, their connection to experiments that employ external driving forces
is obscured by the fact that the external perturbation is absent in eqn. (13.2.29). This
means we can determine transport coefficients without actually observing the behav-
ior of the system under the action of a driving force. A more intuitively appealing
approach would attempt to model the experimental conditions via direct solution of
eqns. (13.2.1). Early molecular dynamics calculations based on this idea were carried
out by Gosling et al. (1973), who employed a spatially periodic shearing force. Ciccotti
et al. (1976, 1979) showed that a variety of transport properties could be calculated
employing this approach. Lees and Edward (1972) introduced an approach by which
simulations at constant shear rate could be performed using periodic boundary con-
ditions. Finally, Ashurst and Hoover (1975) and later Edberg et al. (1987) introduced
a general approach whereby the technique of Lees and Edwards could be coupled to
thermostatting mechanisms. This methodology is known as nonequilibrium molecular
dynamics and is described in detail in a series of reviews (Hoover, 1983; Ciccotti et al.,
1992; Evans and Morriss, 1980; Mundy et al., 2000).

Not unexpectedly, molecular dynamics simulations based directly on the perturbed
equations (13.2.1) involve certain subtleties. To see what some of these might be,
consider again the example in Section 13.3.1 of flow under the action of a shearing
force. In order to perform a molecular dynamics simulation based on eqns. (13.3.6)
and (13.3.7), we could imagine placing N particles between movable plates, pulling the
plates in opposite directions, and using the trajectory to compute 〈Pxy〉t; eqn. (13.3.4)
would then be used to obtain the shear viscosity. However, let us take a closer look at
the influence of the plates. Because the plates are physical boundaries, they create a
strong inhomogeneity in the system. Moreover, the interactions between the plates and
the fluid particles are generally repulsive, fluid particles are “pushed” away from the
plates, thereby creating a void layer at each plate surface. In addition, these repulsive
interactions set up a layer of high particle density adjacent to each void layer. To a
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Fig. 13.6 Periodic boundary conditions under the box evolution of eqn. (13.5.1).

lesser extent, these high-density layers repel or “push” particles out of their vicinity
and into secondary layers of high but slightly smaller density. This effect propagates
across several layers until it dissipates into the bulk. However, in realistic applications,
the effect can persist for tens of angstroms before dissipating, so that very large system
sizes are needed in order to render this boundary effect negligible, leaving enough bulk
fluid to obtain reliable bulk properties.

As we discussed in Section 3.14.2, the effects of physical boundaries in equilibrium
molecular dynamics calculations can be eliminated employing periodic boundary con-
ditions. Thus, it is interesting to ask if the idea of periodic boundary conditions can
be adapted for systems undergoing shear flow as a means of eliminating the physical
plates. It is not immediately obvious how this can be accomplished, however, as the
plates are the very source of the driving force. One option is to replace the usual pe-
riodic array employed in equilibrium molecular dynamics calculations (see Fig. 13.7,
left) with an array in which layers stacked along the y-axis move in the x-direction
with a speed equal to ylγ, where yl is the position of the lth layer along the y-axis. This
scheme is depicted in Fig. 13.7, right. Such time-dependent boundary conditions are
known as Lees–Edwards boundary conditions (Lees and Edwards, 1972). As the right
panel in Fig. 13.7 suggests, it is the application of the Lees–Edwards boundary condi-
tions that drives the flow and establishes the linear velocity profile required for planar
Couette flow. The combination of eqns. (13.3.6) and (13.3.7) with the Lees–Edwards
boundary conditions is known as the SLLOD algorithm.2 A serious disadvantage of
Lees–Edwards boundary conditions is its implementation for systems of charged par-
ticles employing Ewald summation techniques (see Appendix B), which are based in
reciprocal space. In such systems, no clear definition of the reciprocal-space vectors
exists under Lees–Edwards boundary conditions (Mundy et al., 2000).

2For an explanation of the amusing origin of the “SLLOD” moniker, see Evans and Morriss (1984).
Suffice it to say, here, that SLLOD is not actually an acronym.
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Fig. 13.7 Left: Standard periodic boundary conditions. Right: Lees–Edwards boundary con-

ditions.

An alternative to the Lees–Edwards approach drives the flow by evolving the box
matrix h in time so as to “shear” the fluid in a particular direction (see Fig. 13.6).
For example, if we begin with a cubic box for which h = diag(L, L, L), then a shear
flow profile can be established by allowing h to evolve in time according to

h(t) =

⎛
⎝L γtL 0

0 L 0
0 0 L

⎞
⎠ (13.5.1)

This form of the box matrix allows the simulation cell to shear along the x-direction
without changing the volume (since deth(t) = deth(0)). As a practical matter, the
box cannot “roll over” indefinitely but needs to be reset periodically using a property
of the equations of motion known as modular invariance, which we will discuss in the
next subsection. Note that when using either Lees–Edwards boundary conditions or
eqn. (13.5.1), eqn. (13.3.8) is no longer conserved because the inter-particle distances
become time dependent, which in turn causes the potential to become time dependent.

Another subtlety associated with the nonequilibrium molecular dynamics approach
concerns the time scales that can be accessed in a typical simulation. The driving forces
used in actual experiments are orders of magnitude longer than those that can be rou-
tinely employed in calculations. For planar Couette flow, this means that a typical
experimental shear rate might be γ = 102 s−1 while the simulation might require
γ = 109 s−1. Under such enormously high shear rates, it is conceivable that the be-
havior of the system could differ significantly from the experiment. Consequently, a
careful extrapolation to the experimental limit from simulations performed at several
different shear rates is generally needed in nonequilibrium molecular dynamics calcu-
lations. Clearly, this problem does not arise in the Green–Kubo approach because of
the absence of explicit driving forces.
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Finally, when using nonequilibrium molecular dynamics, we must ensure that con-
ditions of linear response theory are valid in the molecular dynamics calculation. This
means that the coefficient of shear viscosity η must be independent of the choice of
shear rate γ. Since the extrapolation procedure requires a series of simulations at dif-
ferent shear rates, these simulations should be used to check that the average 〈Pxy〉t
varies linearly with γ. If it does not, the shear rate is too high and must be decreased.

13.5.1 Reversible integration of the SLLOD equations of motion

The developing reversible numerical integration methods for the general driven system
in eqns. (13.2.1) depends on the particular form for the functions Ci(q, p) and Di(q, p)
appearing in them; each problem needs to be treated as a separate case. While eqns.
(13.3.17) for the calculation of the diffusion constant are quite straightforward to
integrate, for example, the SLLOD equations for planar Couette flow are somewhat
more complicated. Hence, we will consider this latter case as an example of how to
construct an integration algorithm for a nontrivial nonequilibrium molecular dynamics
problem.

There are two issues that need to be considered in the SLLOD scheme. First,
the equations of motion are non-Hamiltonian and involve nontrivial driving terms.
Second, we must either impose Lees–Edwards boundary conditions or employ the time-
dependent box matrix of eqn. (13.5.1). When performing nonequilibrium molecular
dynamics simulations, the use of thermostats is often imperative, as the coupling to
the external field causes the system to heat continuously, and a steady state can never
be reached without some kind of temperature control mechanism. Thus, if the system
is coupled to a Nosé–Hoover chain thermostat, the simulation would be based on the
following equations of motion:

ṙi =
pi

mi
+ γyiêx

ṗi = Fi − γpyi êx − pη1

Q1
pi

η̇j =
pηj

Qj
j = 1, ..., M

ṗη1 =

[
N∑

i=1

p2
i

mi
− dNkT

]
− pη2

Q2
pη1

ṗηj =

[
p2

ηj−1

Qj−1
− kT

]
− pηj+1

Qj+1
pηj j = 2, ..., M − 1

ṗηM =

[
p2

ηM−1

QM−1
− kT

]
. (13.5.2)

In order to devise a numerical integration scheme for eqns. (13.5.2), we begin by writing
the Liouville operator for the system in a form similar to eqn. (4.11.4):

iL = iLmNHC + iL1 + iL2, (13.5.3)
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where the three terms are defined to be

iL1 =

N∑
i=1

[
pi

mi
· ∂

∂ri
+ γyi

∂

∂xi

]

iL2 =

N∑
i=1

Fi · ∂

∂pi

iLmNHC = iLNHC − γ

N∑
i=1

pyi

∂

∂pxi

. (13.5.4)

Here, iLNHC is the Nosé–Hoover chain Liouville operator of eqn. (4.11.5). The classical
propagator exp(iLΔt) for a single time step is now factorized in a manner analogous
to eqn. (4.11.8):

eiLΔt = eiLmNHCΔt/2
[
eiL2Δt/2 eiL1Δt eiL2Δt/2

]
eiLNHCΔt/2 + O

(
Δt3

)
. (13.5.5)

Consider, first, the three operators in the brackets. If γ = 0, these operators just
produce a step of velocity Verlet integration in eqns. (3.8.7) and (3.8.9). However, with
γ �= 0, the action of the operators is only slightly more complicated. For each particle,
the action of the operators can be deduced by solving the three coupled differential
equations

ẋi =
pxi

mi
+ γyi, ẏi =

pyi

mi
, żi =

pzi

mi
(13.5.6)

subject to initial conditions xi(0), yi(0), zi(0) with constant pxi , pyi , and pzi . The
solution for yi and zi is simply

yi(t) = yi(0) +
pyi

mi
t

zi(t) = zi(0) +
pzi

mi
t. (13.5.7)

Substituting eqn. (13.5.7) for yi(t) into eqn. (13.5.6) for xi gives

ẋi =
pxi

mi
+ γ

[
yi(0) +

pyi

mit

]

xi(t) = xi(0) +

[
pxi

mi
+ γyi(0)

]
t +

t2

2
γ

pyi

mi
. (13.5.8)

The evolution for xi can be understood by noting that the displacement of xi in time
is elongated by an amount that depends on the position yi(0), the shear rate, and
the momentum pyi . It is this yi-dependent elongation that gives rise to the linear flow
profile. Setting t = Δt and using the fact that exp(iL2Δt/2) is a simple translation,
we can express the action of the operator in brackets in eqn. (13.5.5) in pseudocode as
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pi ←− pi +
Δt

2
Fi

xi ←− xi + Δt

[
pxi

mi
+ γyi

]
+

Δt2

2mi
γpyi

yi ←− yi + Δt
pyi

mi

zi ←− zi + Δt
pzi

mi

Update Forces

pi ←− pi +
Δt

2
Fi. (13.5.9)

The action of the operator exp(iLmNHCΔt/2) is similar to the standard Nosé–Hoover
chain operator exp(iLNHCΔt/2) discussed in Section 4.11 (cf. eqn. (4.11.17)). The
presence of the γ-dependent operator requires only a slight modification. The operator

exp

{
−δα

2

pη1

Q1
pi · ∂

∂pi

}

in eqn. (4.11.17) is replaced by

exp

{
−δα

2

[
pη1

Q1
pi · ∂

∂pi
+ γpyi

∂

∂pxi

]}
due to the γ-dependent term in iLmNHC. The action of this operator can be derived
by solving the three coupled differential equations

ṗxi = −pη1

Q1
pxi − γpyi , ṗyi = −pη1

Q1
pyi , ṗzi = −pη1

Q1
pzi . (13.5.10)

The solutions for pyi and pzi are

pyi(t) = pyi(0)e−pη1 t/Q1

pzi(t) = pzi(0)e−pη1 t/Q1 . (13.5.11)

Substituting the solution for pyi(t) into the equation for pxi gives

ṗxi = −pη1

Q1
pxi − γpyi(0)e−pη1 t/Q1 . (13.5.12)

This equation can be solved using exp[pη1t/Q1] as an integrating factor, which yields
the solution

pxi(t) = [pxi(0) − γtpyi(0)] e−pη1 t/Q1 . (13.5.13)

Evaluating the solutions for pxi(t), pyi(t), and pzi(t) at t = δα/2 then gives the mod-
ification to the Suzuki-Yoshida Nosé–Hoover chain evolution necessary for treating
planar Couette flow.
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As shown in Appendix B, the application of periodic boundary conditions in a
cubic box of side L proceeds as follows: Given a pair of particles with indices i and j,
we first calculate the vector difference rij = ri−rj and then apply the minimum-image
convention

xij ←− xij − L × NINT (xij/L)

yij ←− yij − L × NINT (yij/L)

zij ←− zij − L × NINT (zij/L) . (13.5.14)

As Fig. 13.7 (right) suggests, the application of periodic boundary conditions in the
Lees–Edwards scheme requires a modification in the minimum-image procedure along
the x-direction. For a shear rate γ, a row of boxes will be displaced with respect to a
neighboring row by an amount γtL in time t. Hence, we must replace eqn. (13.5.14)
by

y′
ij = L × NINT (yij/L)

xij ←− xij −L ∗ NINT
[(

xij − γty′
ij

)
/L

]
yij ←− yij − y′

ij

zij ←− zij − L × NINT (zij/L) . (13.5.15)

Note that when γt = 1, neighboring rows come back into register with each other,
and the periodic array will produce the same set of minimum images as at t = 0.
Consequently, we could reset γt = 0 at this point and continue the simulation.

As noted previously, Lees–Edwards boundary conditions are not useful for systems
with long range interactions using Ewald summation techniques, as there is no well-
defined box matrix, hence no simple definition of the reciprocal-space vectors. In such
systems, the use of a time-dependent box matrix is preferable. In Appendix B, it is
shown that for a given box matrix h, the application of periodic boundary conditions
involves the four steps:

si = h−1ri

sij = si − sj

sij ←− sij − NINT(sij) (Minimum-image convention)

rij = hsij , (13.5.16)

where the third line is a reassignment of sij based on the minimum-image conven-
tion, and NINT(x) is the nearest integer function. In the time-dependent box-matrix
method, the above prescription is simply performed using h(nΔt) at each time step.
However, as eqn. (13.5.1) suggests, eventually the box will become long and skinny
in the x-direction, causing the system to distort severely. In order to avoid this sce-
nario, we may use a property of the minimum-image convention known as modular
invariance (Mundy et al., 2000). Note that the inverse of the matrix in eqn. (13.5.1) is

h−1(t) =

⎛
⎝ 1/L −γt/L 0

0 1/L 0
0 0 1/L

⎞
⎠ . (13.5.17)
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Applying the prescription in eqn. (13.5.16) using eqns. (13.5.1) and (13.5.17) gives the
three components of rij for a cubic box as

y′
ij = L × NINT (yij/L)

xij ←− xij −L ∗ NINT [(xij − γtyij) /L] + γty′
ij

yij ←− yij − y′
ij

zij ←− zij − L × NINT (zij/L) . (13.5.18)

In much the same way as occurs for Lees–Edwards boundary conditions, the same set
of images is obtained from eqns. (13.5.16) when γt = 1 as when γt = 0. Thus, as in the
Lees–Edwards scheme, when γt = 1 we can reset the time-dependent element h21 back
to 0, thereby preventing the simulation cell from becoming overly distorted. Note that
a similar modular invariance condition exists if h21 is allowed to vary between −L/2
and L/2 rather than between 0 and L. Thus, by resetting h21 to −L/2 when γt = 1/2,
the box can be kept closer to cubic, thereby allowing use of a larger cutoff radius on
the short-range interactions without requiring an increase in system size. When the
diagonal elements of h are not all identical, it can be shown that the equivalent reset
conditions for the two modular invariant forms occur when γth11/h22 = 1 and when
γth11/h22 = 1/2.

13.5.2 Other types of flows

Although u(r) could describe any type of velocity flow field and eqns. (13.3.6) and
(13.3.7) can describe both the linear and nonlinear regimes, the formal development
of nonlinear response theory is beyond the scope of this book. Therefore, we will
restrict ourselves to examples for which u(r) depends on linearly on r. This means
that the so-called strain-rate tensor, denoted ∇u, is a constant dyad. We will also
assume hydrodynamic incompressibility for which ∇ · u(r) = 0. For example, the
velocity profile u(r) = (γy, 0, 0) that describes planar Couette flow has the associated
strain-rate tensor

∇u =

⎛
⎝ 0 0 0

γ 0 0
0 0 0

⎞
⎠ . (13.5.19)

Note that the equation of motion for the matrix h is generally given by

ḣ = (∇u)T h, (13.5.20)

which reproduces the evolution in eqn. (13.5.1). An example of a different flow satis-
fying the above requirements is planar elongational flow described by the strain-rate
tensor

∇u =

⎛
⎝ ξ 0 0

0 ξ(b + 1)/2 0
0 0 ξ(b − 1)/2

⎞
⎠ (13.5.21)

(Ciccotti et al., 1992), where ξ is the elongation rate and b is a parameter such that
0 ≤ b ≤ 1 that describes the type of planar elongational flow.
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For a general incompressible flow with constant strain-rate tensor, we seek a set of
equations of motion that have a well-defined conserved energy in the absence of time-
dependent boundary conditions (Tuckerman et al., 1997). These equations of motion
take the form

ṙi =
pi

mi
+ ri · ∇u

ṗi = Fi − pi · ∇u − miri · ∇u · ∇u − pη1

Q1
pi

ζ̇ =
N∑

i=1

ri · ∇u · pi
pη1

Q1

η̇j =
pηj

Qj
j = 1, ..., M

ṗη1 =

[
N∑

i=1

p2
i

mi
− 3NkT

]
− pη2

Q2
pη1

ṗηj =

[
p2

ηj−1

Qj−1
− kT

]
− pηj+1

Qj+1
pηj j = 2, ..., M − 1

ṗηM =

[
p2

ηM−1

QM−1
− kT

]
, (13.5.22)

where a Nosé–Hoover chain has been coupled to the system. In the absence of time-
dependent boundary conditions, eqns. (13.5.22) have the conserved energy

H′ =

N∑
i=1

(pi + miri · ∇u)
2

2mi
+ U(r) +

M∑
j=1

p2
ηj

2Qj
+ 3NkTη1 + kT

M∑
j=2

ηj + ζ. (13.5.23)

An interesting problem to which nonequilibrium molecular dynamics with fixed
boundaries can be applied is the determination of hydrodynamic boundary conditions
for shear flow over a stationary corrugated surface (Tuckerman et al., 1997; Mundy
et al., 2000). In general, the flow field v(r, t) in a given geometry can be computed
using the Navier–Stokes equation

∂v

∂t
+ (v · ∇)v = ∇P + η∇2v, (13.5.24)

where P is the pressure tensor and η is the coefficient of shear viscosity. The most gen-
eral boundary condition on the velocity profile at the surface (assuming the geometry
of Fig. 13.8) is

∂vx(r, t)

∂y

∣∣∣∣
y=ysurf

=
1

δsurf
vx(r, t)|y=ysurf

(13.5.25)

(Tuckerman et al., 1997), where δsurf and ysurf are known as the slip length and
hydrodynamic thickness, respectively. When δsurf = ∞, the right side of eqn. (13.5.25)
is zero, which corresponds to “slip” boundary conditions, and when δsurf = 0, the
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Fig. 13.8 Two-dimensional representation of a fluid confined between corrugated plates.

right side is infinite, corresponding to the “no-slip” conditions. In general, δsurf is
related to the coefficient of shear viscosity via the relation δsurf = ηλsurf , where λsurf

is the friction coefficient of the surface. Thus, in order to use eqn. (13.5.25), one needs
to determine both λsurf and ysurf , assuming that η is already known (or has been
determined by a nonequilibrium simulation with Lees–Edwards boundary conditions or
a time-dependent box matrix approach). These quantities can be obtained by relating
them to a nonequilibrium average of the force Fx on the fluid due to the surface:

〈Fx〉nonequil = −Sλsurfvx(ysurf) = −Sλsurfγ(ysurf − y0), (13.5.26)

where S is the area of surface in contact with the fluid, γ is the shear rate, and y0

is the location along the y-axis where the drift velocity due to the external field is
0. By performing two simulations with two different values of y0, one obtains two
values of 〈Fx〉nonequil, which gives two equations in the two unknowns λsurf and ysurf .
From these equations, the boundary condition can be determined via eqn. (13.5.25).
In Fig. 13.9, we illustrate one such simulation by showing that a linear velocity profile
can be achieved when a fluid confined between corrugated plates in the absence of
moving boundaries. In this nonequilibrium molecular dynamics simulation, the fluid
is described by a pair potential of the form u(r) = ε(σ/r)12, known as a soft-sphere
potential. In the present simulations, ε = 480 K, σ = 3.405 Å, and the temperature
and density are T = 480 K, ρ = 0.0162 Å−3. The particles interact with the corrugated
walls via a potential of the form
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Uwf(x, y) = ε

{[
σ

y − f (l)(x)

]12

+

[
σ

Ly − y − f (u)(x)

]12
}

, (13.5.27)

where Ly is the length of the box in the y direction, and f (l)(x) = f (u)(x) = a cos(kx)
characterizes the corrugation of the lower and upper walls, respectively. In Fig. 13.9,
a corrugation amplitude of a = 0.02σ is used with a corrugation period of 1.0 Å, and
the zero of the shear field occurs at y0 = −26.6 Å. The shear rate is γ =0.05 ps−1. The
massive thermostatting scheme of Section 4.10 is used in order to stabilize the linear
profile. Because moving boundaries are absent, the quality of the simulation can be
monitored by using the conservation law in eqn. (13.5.23).
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Fig. 13.9 Velocity profile at regularly spaced slabs in the y direction of a soft-sphere fluid

confined between corrugated plates (Fig. 13.8) at T = 480 K.

13.6 Problems

13.1. Consider two models of a velocity autocorrelation function:

C1(t) = 〈v2〉e−γt, C2(t) = 〈v2〉e−γt cos(αt).

a. Calculate the diffusion constants D1 and D2 for each model. Which one
is larger?
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b. Comparing the two diffusion constants, what two physical situations do
these two models describe?

13.2. The classical isotropic isothermal-isobaric (NPT) ensemble is particularly use-
ful for determining the bulk viscosity of a substance via Green–Kubo theory.
a. Show that the linear response formula does not change if the initial dis-

tribution is chosen to be f0(H(r,p), V ), i.e., the isothermal-isobaric dis-
tribution function exp(−β(H(r,p) + PV ))/Δ(N, P, T ).

b. Next, consider coupling a system to an external compression field de-
scribed by the equations of motion

ṙi,α =
pi,α

mi
+

∑
β

ri,βMβα

ṗi,α = Fi,α −
∑

β

pi,βMβα,

where α and β index the three spatial directions x, y, and z. Show that
the equations of motion satisfy the incompressibility condition.

c. Consider the specific choice

Mαβ =
1

3
γδαβ ,

where γ is the compression rate. The coefficient of bulk viscosity ηV is
given by a generalization of Newton’s law of viscosity:

〈V 〉ηV = − lim
t→∞

〈P (t)V (t)〉
γ

,

where 〈· · ·〉 represents an average over the equilibrium isotropic NPT
distribution function and 〈· · ·〉 is the full nonequilibrium average. Using
the linear response formula to evaluate 〈P (t)V (t)〉, derive the appropriate
Green–Kubo expression for ηV.

∗13.3. Show that the Einstein relation in eqn. (13.3.34) can be derived from the
Green–Kubo relation in eqn. (13.3.33).

13.4. Verify that eqn. (13.5.23) is conserved by eqn. (13.5.22) in the absence of
time-dependent boundary conditions.

∗13.5. In Problem 5.9, we considered a particle moving through a periodic potential.
Now suppose we add a linear potential −fq to this system, so that the particle
is driven by a constant force f . The total potential that results is known as
Galton’s staircase

U(q) = V0 cos(kq) − fq
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a. Write a program to integrate the driven equations of motion under con-
ditions of constant energy, and use the program to show that the system
never reaches a steady state by computing the average 〈q̇〉t in the long
time limit.

b. Next try coupling the system to a Nosé–Hoover chain thermostat (see
Section 4.10) at temperature kT = 1. Does the system now reach a steady
state? If so, calculate the average 〈q̇〉t for different values of f and find
a regime for which the dependence of the average on f is linear, and
estimate the value of the diffusion constant D. Take m = 1, k = 1, and
V0 = 1.

∗∗c. Finally, couple the system to the thermostat of Problem 4.2, using M = 2.
Algorithms for integrating these equations are given by Liu and Tucker-
man (2000) and by Ezra (2007). Repeat the analysis of part (b), and
estimate the diffusion constant for different values of V0.

13.6. Verify that the cell matrix evolution in eqn. (13.5.20) reproduces eqn. (13.5.1)
for planar Couette flow starting with h(0) = diag(L, L, L).

13.7. Consider a fluid confined between corrugated plates as in Fig. 13.8 but with
the fluid particles obeying the equations of motion

ṙi =
pi

m

ṗi = Fi + Feêx,

where Fe is a constant, and Fi is the force on particle i due to the other fluid
particles and the corrugated wall. Describe the velocity profile you would be
expect to develop in a steady state, and give the mathematical form of this
profile.

13.8. Prove that 〈Pxy〉 = 0 in the canonical ensemble.
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Quantum time-dependent statistical
mechanics

14.1 Time-dependent systems in quantum mechanics

In this chapter, we will explore how the physical properties of a quantum system
described by a Hamiltonian Ĥ0 can be probed by applying a small external time-
dependent perturbation. As we showed in Section 10.4, if the energy levels and energy
eigenfunctions of Ĥ0 are known, then using the rules of quantum statistical mechan-
ics, all of the thermodynamic and equilibrium properties can be computed from eqns.
(10.4.4) and (10.4.5). This fact emphasizes the importance of techniques that can

provide information about the eigenvalue structure of Ĥ0. The essence of the experi-
mental technique known as spectroscopy is to employ an external electromagnetic field
to induce transitions between the different eigenstates of Ĥ0; from the frequencies of
photons needed to induce these transitions, information about different parts of the
eigenvalue spectrum can be gleaned for different electromagnetic frequency ranges (in-
frared, visible, ultraviolet, etc.) As we will see in the discussion to follow, the rules of
quantum statistical mechanics help us both to interpret such experiments and to con-
struct approximate computational procedures for calculating quantum spectral and
transport properties of a condensed-phase system.

An external electromagnetic field is described by its electric and magnetic field
components E(r, t) and B(r, t), respectively. The term “electromagnetic” arises from
the notion that the electric and magnetic fields can be unified into a single classical
field theory, an idea that was demonstrated by James Clerk Maxwell (1831–1879)
between the years 1864 and 1873. Maxwell’s theory of electromagnetism is embodied
in a set of field equations known as Maxwell’s equations which describe how the electric
and magnetic fields are coupled in such a unified theory. In the absence of external
sources, i.e., for free fields, Maxwell’s equations specify how the divergence and curl of
the electric and magnetic fields are related to the time rates of change of these fields.1

Once the divergence and curl of a vector field are specified, then these, together with
a knowledge of the time derivatives of the fields, are sufficient to determine the spatial

1The “divergence” of a vector field tells us the extent to which the field expands or contracts at a
point while the “curl” tells us the degree to which the field circulates around a point; these modes of
behavior are about all a vector field can do. The importance of the divergence and curl of a vector
field can be understood using a theorem known as Helmholtz’s theorem, which states that if C(r) and
D(r) are, respectively, smooth scalar and vector functions that decay faster than 1/|r|2 as |r| → ∞,
then there exists a unique vector field F such that ∇ · F = C(r) and ∇× F = D(r). Consequently,
the divergence and curl of F are sufficient to determine F(r), and conversely, F can be decomposed
in terms of its divergence and curl.
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and time dependence of the vector fields. The elegance and beauty of Maxwell’s theory
lies in the simple connection it establishes between these quantities. For free fields,
Maxwell’s equations take the form (in cgs units)

∇ ·E = 0, ∇× E = −1

c

∂B

∂t

∇ · B = 0, ∇× B =
1

c

∂E

∂t
, (14.1.1)

where c is the speed of light in vacuum. While the magnetic field is always divergence-
free (there are no magnetic monopoles), the electric field has zero divergence only in the
absence of sources. The rates of change of the magnetic and electric fields determine,
respectively, how the electric and magnetic fields “curl” to form closed loops.

Notice that the free-field Maxwell equations constitute a set of eight homogeneous
partial differential equations for the six field components, Ex(r), Ey(r), Ez(r), Bx(r),
By(r), Bz(r). Hence, the set is overdetermined, and there is some redundancy among
the field equations. This redundancy arises because of a property exhibited by this
and other types of field theories known as gauge invariance or gauge freedom.

In order manifest the gauge freedom and remove the redundancy, it is convenient to
work with related fields A(r, t) and φ(r, t) known as the vector and scalar potentials,
respectively. These are related to the electric and magnetic fields by the transformation

B = ∇× A, E = −∇φ − 1

c

∂A

∂t
. (14.1.2)

The relation B = ∇×A follows from the fact that any divergence-free field can always
be expressed as the curl of another field since ∇·(∇×A) = 0. The relation for E(r, t) in
eqn. (14.1.2) arises from the fact that if B = 0 (even if static charges are present), then
∇×E = 0, so that E can be expressed as a gradient E = −∇φ. The second term in the
equation for E is included when a nonzero magnetic field is present. Although these
relations uniquely define the electric and magnetic fields, they possess some ambiguity
in how the vector and scalar potentials A(r, t) and φ(r, t) are defined. Specifically, if
new potentials A′(r, t) and φ′(r, t) are constructed from the original potentials via

A′(r, t) = A(r, t) + ∇χ(r, t)

φ′(r, t) = φ(r, t) − 1

c

∂

∂t
χ(r, t), (14.1.3)

where χ(r, t) is an arbitrary scalar field, then the same electric and magnetic fields
will result when A′ and φ′ are substituted into eqns. (14.1.2). The transformations in
eqn. (14.1.3) are known as gauge transformations, and the freedom to choose χ(r, t)
arbitrarily is the manifestation of the gauge invariance of the electric and magnetic
fields mentioned above. Moreover, if the definitions in eqns. (14.1.2) are substituted
into the free-field Maxwell equations, then the vector potential is seen to satisfy the
classical wave equation

∇2A(r, t) − 1

c2

∂2

∂t2
A(r, t) = 0, (14.1.4)
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provided the gauge function χ(r, t) is also chosen to be a solution of Laplace’s equation
∇2χ(r, t) = 0. This choice, known as the Coulomb gauge, is tantamount to requiring
that A(r, t) satisfy

∇ · A(r, t) = 0. (14.1.5)

In the Coulomb gauge, the scalar potential satisfies Laplace’s equation ∇2φ = 0, which,
in free space with no charges present, means that φ is, at most, a linear function of r
and independent of time. If we require that φ → 0 as |r| → ∞, then the only possible
choice is φ = 0, which we can take with no loss of generality. in the Coulomb gauge,
we can simply choose φ = 0.2

The appropriate solutions to eqns. (14.1.4) for an electromagnetic field in a vacuum
describe freely propagating waves of frequency ω, wavelength λ, and wave vector k
describing the direction of propagation with |k| = 2π/λ:

A(r, t) = A0 cos (k · r − ωt + ϕ0) . (14.1.6)

Here, ω = c|k|, ϕ0 is an arbitrary phase, and A0 is the amplitude of the wave. Since
∇ ·A = 0, it follows that k · A = k ·A0 = 0, and A is perpendicular to the direction
of propagation. From eqns. (14.1.2), the electric and magnetic fields that result are

E(r, t) =
ω

c
A0 sin (k · r − ωt + ϕ0) ≡ E0 sin (k · r − ωt + ϕ0)

B(r, t) = −k× A0 sin (k · r− ωt + ϕ0) ≡ B0 sin (k · r− ωt + ϕ0) . (14.1.7)

Note that, since k × A is perpendicular to k and A0, it follows that E0 ⊥ B0 ⊥ k. A
snapshot in time of the free electromagnetic wave described by eqns. (14.1.7) is shown
in Fig. 14.1.

E

B

k

λ

Fig. 14.1 Sketch of an electromagnetic wave described by eqn. (14.1.7).

2These choices are particular to the free-field theory. For time-dependent fields in the presence of
sources, a more appropriate gauge choice is the Lorentz gauge:

∇ · A(r, t) +
1

c

∂

∂t
φ(r, t) = 0.
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In general, when an electromagnetic field interacts with matter, the field must be
included in the Hamiltonian of the physical system, which complicates the mathemat-
ical treatment considerably. Therefore, in the present discussion, we will work in an
approximation in which the field can be treated as an external perturbation whose
degrees of freedom do not need to be explicitly included in the quantum description of
the system, i.e., they do not need to be included in the state vector of the system. In
this approximation, the Hamiltonian for a system of N particles with charges q1, .., qN

and masses m1, ..., mN , including the external electromagnetic field, is specified in
terms of the vector and scalar potentials and is given by

Ĥ(t) =

N∑
i=1

1

2mi

(
p̂i − qi

c
A(r̂i, t)

)2

+

N∑
i=1

qiφ(r̂i, t) + U(r̂1, ..., r̂N ). (14.1.8)

When the square in the kinetic energy is expanded out, the Hamiltonian takes the
general form

Ĥ(t) = Ĥ0 + Ĥ1(t), (14.1.9)

where Ĥ0 is the pure system Hamiltonian in the absence of the field

Ĥ0 =

N∑
i=1

p̂2
i

2mi
+ U(r̂1, ..., r̂N ), (14.1.10)

and Ĥ1(t) involves the coupling to the field

Ĥ1(t) = −
N∑

i=1

qi

2mic
[p̂i · A(r̂i, t) + A(r̂i, t) · p̂i]

+

N∑
i=1

q2
i

2mic2
A2(r̂i, t) +

N∑
i=1

qiφ(r̂i, t). (14.1.11)

For a Hamiltonian of the form given in eqn. (14.1.9), the eigenstates of Ĥ0, which
satisfy

Ĥ0|Ek〉 = Ek|Ek〉, (14.1.12)

are no longer eigenstates of Ĥ(t), which means that they are not stationary states.

Thus, the effect of Ĥ1(t) is to induce transitions among the eigenstates of Ĥ0. If the
system absorbs energy from the field, it can be excited from an initial state |Ei〉 with
energy Ei to a final state |Ef 〉 with energy Ef as depicted in Fig. 14.2. When the system
returns to its initial state, the energy emitted is detected, providing information about
the eigenvalue spectrum of Ĥ0. This is one facet of the experimental technique known
as spectroscopy.

The remainder of this chapter will be devoted to analyzing the process in Fig. 14.2
both as an isolated event and in an ensemble of quantum systems. We will examine
the behavior of quantum systems subject to time-dependent perturbations of both
a general nature and specific to an external electromagnetic field-coupling, thereby
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|E >i

|E >f

Fig. 14.2 A transition from an initial eigenstate of H0 with energy Ei to a final state with

energy Ef due to the external field coupling.

providing an introduction to quantum time correlation functions and the field of linear
spectroscopy. Finally, we will discuss numerical approaches for approximating quantum
correlation functions. We begin with a discussion of the time-dependent Schrödinger
equation when Ĥ1(t) is a weak perturbation.

14.2 Time-dependent perturbation theory in quantum mechanics

14.2.1 The interaction picture

For a system described by a Hamiltonian Ĥ(t) = Ĥ0 + Ĥ1(t), the unperturbed Hamil-

tonian Ĥ0 is taken to describe a physical system of interest, such as a gas, liquid, solid,
or solution. Ĥ1(t) represents an arbitrary time-dependent perturbation that induces

transitions between the eigenstates of Ĥ0.
The state vector of the system |Ψ(t)〉 evolves in time from an initial state vector

|Ψ(t0)〉 according to the time-dependent Schrödinger equation

Ĥ(t)|Ψ(t)〉 =
(
Ĥ0 + Ĥ1(t)

)
|Ψ(t)〉 = ih̄

∂

∂t
|Ψ(t)〉. (14.2.1)

Although it might seem that obtaining an appropriate propagator from eqn. (14.2.1)
is straightforward, the presence of operators on the left side of the equation, together
with the fact that [Ĥ0, Ĥ1(t)] �= 0, in general, renders this task nontrivial. However, if

we view Ĥ1(t) as a weak perturbation, then we can develop a perturbative approach
to the solution of eqn. (14.2.1). We begin by noting that eqn. (14.2.1) can be cast in
a form more amenable to a perturbative treatment by transforming the state vector
from |Ψ(t)〉 to |Φ(t)〉 via

|Ψ(t)〉 = e−iĤ0(t−t0)/h̄|Φ(t)〉. (14.2.2)

In Section 9.2.6, we introduced the concept of a picture in quantum mechanics and
discussed the difference between the Schrödinger and Heisenberg pictures. The state
vector |Φ(t)〉 in eqn. (14.2.2) represents yet another quantum mechanical picture called
the interaction picture. The interaction picture can be considered as “intermediate”
between the Schrödinger and Heisenberg pictures. Recall that in the Schrödinger pic-
ture, operators are static and the state evolves in time, while the opposite is true in the
Heisenberg picture. In the interaction picture, both the state vector and the operators
evolve in time.
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The transformation of an operator Â from the Schrödinger picture to the interac-
tion picture is given by

ÂI(t) = eiĤ0(t−t0)/h̄Âe−iĤ0(t−t0)/h̄, (14.2.3)

which is equivalent to an equation of motion of the form

dÂI(t)

dt
=

1

ih̄
[ÂI(t), Ĥ0]. (14.2.4)

Note the similarity between this transformation and that of eqn. (9.2.58) between the
Schrödinger and Heisenberg pictures. Eqn. (14.2.4) implies that the time evolution of
operators in the interaction picture is determined by the unperturbed Hamiltonian
Ĥ0.

Eqn. (14.2.2) represents a transformation of the state vector between the Schrödinger
and interaction pictures. The time-evolution equation for the state |Φ(t)〉 can be de-
rived by substituting eqn. (14.2.2) into eqn. (14.2.1), which yields

(
Ĥ0 + Ĥ1(t)

)
e−iĤ0(t−t0)/h̄|Φ(t)〉 = ih̄

∂

∂t
e−iĤ0(t−t0)/h̄|Φ(t)〉

(
Ĥ0 + Ĥ1(t)

)
e−iĤ0(t−t0)/h̄|Φ(t)〉 = Ĥ0e

−iĤ0(t−t0)/h̄|Φ(t)〉 + e−iĤ0(t−t0)/h̄ih̄
∂

∂t
|Φ(t)〉

Ĥ1(t)e
−iĤ0(t−t0)/h̄|Φ(t)〉 = e−iĤ0(t−t0)/h̄ih̄

∂

∂t
|Φ(t)〉. (14.2.5)

Multiplying on the left by eiĤ0(t−t0)/h̄ yields

eiĤ0(t−t0)/h̄Ĥ1(t)e
−iĤ0(t−t0)/h̄|Φ(t)〉 = ih̄

∂

∂t
|Φ(t)〉. (14.2.6)

According to eqn. (14.2.3), the exp[iĤ0(t − t0)/h̄]Ĥ1(t) exp[−iĤ0(t − t0)/h̄] is the
interaction-picture representation of the perturbation Hamiltonian, which we will de-
note as ĤI(t). The time evolution of the state vector in the interaction picture is,
therefore, given by a Schrödinger equation of the form

ĤI(t)|Φ(t)〉 = ih̄
∂

∂t
|Φ(t)〉. (14.2.7)

Eqn. (14.2.7) shows that this time evolution is determined entirely by the interaction-

picture representation of the perturbation, ĤI(t). According to eqn. (14.2.2), the initial
condition to eqn. (14.2.7) is |Φ(t0)〉 = |Ψ(t0)〉. In the next subsection, we will develop
an iterative solution to eqn. (14.2.7), which will reveal the detailed structure of the
propagator for time-dependent systems.
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14.2.2 Iterative solution for the interaction-picture state vector

The solution to eqn. (14.2.7) can be expressed in terms of a unitary operator ÛI(t; t0),
which is the interaction-picture propagator. The initial state |Φ(t0)〉 evolves in time
according to

|Φ(t)〉 = ÛI(t; t0)|Φ(t0)〉 = ÛI(t; t0)|Ψ(t0)〉. (14.2.8)

Substitution of eqn. (14.2.8) into eqn. (14.2.7) yields an evolution equation for the
propagator ÛI(t; t0):

ĤI(t)ÛI(t; t0) = ih̄
∂

∂t
ÛI(t; t0). (14.2.9)

Eqn. (14.2.9) has the initial condition ÛI(t0; t0) = Î. In developing a solution to

eqn. (14.2.9), we assume that ĤI(t) is a small perturbation so that the solution can

be constructed in terms of a power series in ĤI(t). Such a solution is generated by
rewriting eqn. (14.2.9) as an integral equation:

ÛI(t; t0) = ÛI(t0; t0) − i

h̄

∫ t

t0

dt′ ĤI(t
′)ÛI(t

′; t0)

= Î − i

h̄

∫ t

t0

dt′ ĤI(t
′)ÛI(t

′; t0). (14.2.10)

We can easily verify that eqn. (14.2.10) is the solution for ÛI(t; t0). Taking the time
derivative of both sides of eqn. (14.2.10) gives

ih̄
∂

∂t
ÛI(t; t0) = −ih̄

i

h̄

∂

∂t

∫ t

t0

dt′ ĤI(t
′)ÛI(t

′; t0)

= ĤI(t)ÛI(t; t0). (14.2.11)

Eqn. (14.2.10) allows a perturbation series solution to be developed systematically. We

start with a zeroth-order solution by setting ĤI(t) = 0 in eqn. (14.2.10), which gives
the trivial result

Û
(0)
I (t; t0) = Î . (14.2.12)

This solution is now fed back into the right side of eqn. (14.2.10) to develop a first-order
solution:

Û
(1)
I (t; t0) = Î − i

h̄

∫ t

t0

dt′ ĤI(t
′)Û (0)

I (t′; t0)

= Î − i

h̄

∫ t

t0

dt′ ĤI(t
′). (14.2.13)

This first-order solution is now substituted back into the right side of eqn. (14.2.10)
to generate a second-order solution:
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Û
(2)
I (t; t0) = Î − i

h̄

∫ t

t0

dt′ ĤI(t
′)Û (1)

I (t′; t0)

= Î − i

h̄

∫ t

t0

dt′ ĤI(t
′) +

(
i

h̄

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′ ĤI(t
′)ĤI(t

′′) (14.2.14)

and so forth. Thus we see that the kth-order solution is generated from the (k − 1)th-
order solution according to the recursion formula:

Û
(k)
I (t; t0) = Î − i

h̄

∫ t

t0

dt′ ĤI(t
′)Û (k−1)

I (t′; t0). (14.2.15)

Setting k = 3 in eqn. (14.2.15), for example, yields the third-order solution

Û
(3)
I (t; t0) = Î − i

h̄

∫ t

t0

dt′ ĤI(t
′) +

(
i

h̄

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′ ĤI(t
′)ĤI(t

′′)

−
(

i

h̄

)3 ∫ t

t0

dt′
∫ t′

t0

dt′′
∫ t′′

t0

dt′′′ ĤI(t
′)ĤI(t

′′)ĤI(t
′′′). (14.2.16)

By taking the limit k → ∞ in eqn. (14.2.15) and summing over all orders, we obtain
the exact solution for ÛI(t; t0) as a series:

ÛI(t; t0) =

∞∑
k=0

(
− i

h̄

)k ∫ t

t0

dt(1) · · ·
∫ t(k−1)

t0

dt(k) ĤI(t
(1)) · · · ĤI(t

(k)). (14.2.17)

The propagator ÛI(t; t0), approximated at any order in perturbation theory, can
be used to approximate the time evolution of the state vector |Φ(t)〉 in the interaction
picture. In general, this evolution is

|Φ(t)〉 = ÛI(t; t0)|Φ(t0)〉, (14.2.18)

and from this expression, the time evolution of the original state vector |Ψ(t)〉 in the
Schrödinger picture can be determined as

|Ψ(t)〉 = e−iĤ0(t−t0)/h̄|Φ(t)〉

= e−iĤ0(t−t0)/h̄ÛI(t; t0)|Φ(t0)〉

= e−iĤ0(t−t0)/h̄ÛI(t; t0)|Ψ(t0)〉
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≡ Û(t; t0)|Ψ(t0)〉. (14.2.19)

Here, we have used the fact that |Φ(t0)〉 = |Ψ(t0)〉. In the last line, the full propagator
in the Schrödinger picture is identified as

Û(t; t0) = e−iĤ0(t−t0)/h̄ÛI(t; t0). (14.2.20)

From eqn. (14.2.20), the structure of the full propagator is revealed. Let us use eqn.
(14.2.20) to generate the first few orders in the propagator. Substituting eqn. (14.2.12)
into eqn. (14.2.20) yields the lowest order contribution to Û(t; t0):

Û (0)(t; t0) = e−iĤ0(t−t0)/h̄ = Û0(t; t0). (14.2.21)

Thus, at zeroth order, eqn. (14.2.21) implies that the system is propagated using the
unperturbed propagator Û0(t; t0) as though the perturbation did not exist. At first
order, we obtain

Û (1)(t; t0) = e−iĤ0(t−t0)/h̄ − i

h̄
e−iĤ0(t−t0)/h̄

∫ t

t0

dt′ ĤI(t
′)

= e−iĤ0(t−t0)/h̄ − i

h̄
e−iĤ0(t−t0)/h̄

∫ t

t0

dt′e−iĤ0(t
′−t0)/h̄Ĥ1(t

′)e−iĤ0(t
′−t0)/h̄

= e−iĤ0(t−t0)/h̄ − i

h̄

∫ t

t0

dt′ e−iĤ0(t−t′)/h̄Ĥ1(t
′)e−iĤ0(t′−t0)/h̄

= Û0(t; t0) − i

h̄

∫ t

t0

dt′ Û0(t; t
′)Ĥ1(t

′)Û0(t
′; t0), (14.2.22)

where in the second line, the definition

ĤI(t) = eiĤ0(t−t0)/h̄Ĥ1(t)e
−iĤ0(t−t0)/h̄ (14.2.23)

has been used. Eqn. (14.2.22) indicates that at first order, the propagator is composed
of two terms. The first term is simply the unperturbed propagation from t0 to t. In
the second term, the system undergoes unperturbed propagation from t0 to t′. At t′,
the perturbation Ĥ1(t

′) acts, and finally, from t′ to t, the propagation is unperturbed.
In addition, we must integrate over all possible intermediate times t′ at which the
perturbation is applied.

In a similar manner, it can be shown that up to second order, the full propagator
is given by

Û (2)(t; t0) = Û0(t; t0) − i

h̄

∫ t

t0

dt′ Û0(t; t
′)Ĥ1(t

′)Û0(t
′; t0)

+

(
i

h̄

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′ Û0(t; t
′)Ĥ1(t

′)Û0(t
′; t′′)Ĥ1(t

′′)Û0(t
′′; t0). (14.2.24)

At second order, the new (last) term involves unperturbed propagation from t0 to

t′′, action of Ĥ1(t
′′) at t′′, unperturbed propagation from t′′ to t′, action of Ĥ1(t

′)
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at t′, and finally unperturbed propagation from t′ to t. Again, we must integrate
over intermediate times t′ and t′′ at which the perturbation is applied. A pictorial
representation of the full propagator is given in Fig. 14.3. The picture on the left side
of the equal sign in Fig. 14.3 indicates that the perturbation causes the system to
undergo some undetermined dynamical process between t0 and t. On the right side of
the equal sign, the process is broken down in terms of the action of the perturbation Ĥ1

= + + + ...

t0

t

t0

t

t0

t

t’

t0

t

t’’

t’

t0

t

t’’’

t’’

t’

Fig. 14.3 Pictorial representation of the perturbation expansion of the time-dependent prop-

agator.

at specific intermediate times (which must be integrated over), indicated in the figure

by the dots. At the kth order, the perturbation Hamiltonian Ĥ1 acts on the system
at k instances in time. The limits of integration indicate that these time instances are
ordered chronologically.

The specific ordering of the times at which Ĥ1 acts on the unperturbed system
raises an important point. In each term in the expansion for ÛI(t; t0), the order in

which the operators ĤI(t
′), ĤI(t

′′),... are multiplied is critical. The reason for this is

that the commutator [ĤI(t), ĤI(t
′)] does not vanish if t �= t′. Thus, to remove any

ambiguity when specifying the order of the operators ĤI(t
′), ĤI(t

′′),... in a time series,
we introduce the time-ordering operator, T . The action of T on a product of time-
dependent operators Â(t1)B̂(t2)Ĉ(t3) · · · D̂(tn) reorders the operators in the product
chronologically in time from earliest to latest. For example, the action of T on two
operators Â(t1) and B̂(t2) is

T
[
Â(t1)B̂(t2)

]
=

⎧⎨
⎩

Â(t1)B̂(t2) t2 < t1

B̂(t2)Â(t1) t1 < t2

(14.2.25)

Let us now apply the time-ordering operator T to the second-order term. We first
write the double integral

I2(t0, t) =

∫ t

t0

dt′
∫ t′

t0

dt′′ ĤI(t
′)ĤI(t

′′) (14.2.26)
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as a sum of two terms generated by interchanging the dummy variables t′ and t′′:

I2(t0, t) =
1

2

[∫ t

t0

dt′
∫ t′

t0

dt′′ĤI(t
′)ĤI(t

′′) +

∫ t

t0

dt′′
∫ t′′

t0

dt′ĤI(t
′′)ĤI(t

′)

]
. (14.2.27)

Fig. 14.4(a) illustrates the integration region t′′ ∈ [t0, t], t′ ∈ [t0, t
′′] in the t′-t′′ plane,

which is covered in the second term on the right side of eqn. (14.2.27). The same region
can be covered by choosing t′ ∈ [t0, t] and t′′ ∈ [t′, t], as illustrated Fig. 14.4(b). With

t’

t’’

t t
0

t
0

t

t’

t’’

t t
0

t
0

t

(a) (b)

Fig. 14.4 The two integration regions in eqn. (14.2.27): (a) The region t′′ ∈ [t0, t], t′ ∈ [t0, t
′′].

(b) The region t′ ∈ [t0, t], g′′ ∈ [t′, t].

this choice, eqn. (14.2.27) becomes

I(t0, t) =
1

2

[∫ t

t0

dt′
∫ t′

t0

dt′′ ĤI(t
′)ĤI(t

′′) +

∫ t

t0

dt′
∫ t

t′
dt′′ ĤI(t

′′)ĤI(t
′)

]
. (14.2.28)

In the first term on the right side of eqn. (14.2.28), t′′ < t′ and HI(t
′′) acts first,

followed by HI(t
′). In the second term, t′ < t′′ and ĤI(t

′) acts first, followed by

ĤI(t
′′). The two terms can thus be combined with both t′ and t′′ lying in the interval

[t0, t] by introducing the time-ordering operator:

∫ t

t0

dt′
∫ t′

t0

dt′′ ĤI(t
′)ĤI(t

′′) =
1

2

∫ t

t0

dt′
∫ t

t0

dt′′ T
[
ĤI(t

′)ĤI(t
′′)

]
. (14.2.29)

The same analysis can be applied to each order in eqn. (14.2.17), recognizing that a
product of k operators can be ordered in k! ways by the time-ordering operator. Eqn.
(14.2.17) can then be rewritten using the time-ordering operator as
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ÛI(t; t0) =
∞∑

k=0

(
− i

h̄

)k
1

k!

×
∫ t

t0

dt1

∫ t

t0

dt2 · · ·
∫ t

t0

dtkT
[
ĤI(t1)ĤI(t2) · · · ĤI(tk)

]
. (14.2.30)

The sum in eqn. (14.2.30) resembles the power-series expansion of an exponential, and
consequently we can write the sum symbolically as

ÛI(t; t0) = T

[
exp

(
− i

h̄

∫ t

t0

dt′ ĤI(t
′)
)]

, (14.2.31)

which is known as a time-ordered exponential. Since eqn. (14.2.31) is just a shorthand
for eqn. (14.2.30), it is understood that the time-ordering operator orders the operators
in each term of an expansion of the exponential.

Given the formalism of time-dependent perturbation theory, we now seek to answer
the following question: If the system is initially in an eigenstate of Ĥ0 with energy Ei,
what is the probability as a function of time t that the system will undergo a transition
to a new eigenstate of Ĥ0 with energy Ef? To answer this question, we first set the

initial state vector |Ψ(t0)〉 equal to the eigenvector |Ei〉 of Ĥ0. Then, the amplitude
as a function of time that the system will undergo a transition to the eigenstate |Ef 〉
is obtained by propagating this initial state to time t with the propagator Û(t; t0) and
then taking the overlap of the resulting state with the eigenstate |Ef 〉:

Afi(t) = 〈Ef |Û(t; t0)|Ei〉. (14.2.32)

The probability is just the square modulus of this complex amplitude:

Pfi(t) =
∣∣∣〈Ef |Û(t; t0)|Ei〉

∣∣∣2 . (14.2.33)

Consider first the amplitude at zeroth order in perturbation theory. At this order,
Û(t; t0) = Û0(t; t0), and the amplitude is simply

A
(0)
fi (t) = 〈Ef |e−iĤ0(t−t0)/h̄|Ei〉

= e−iEi(t−t0)/h̄〈Ef |Ei〉, (14.2.34)

which clearly vanishes by orthogonality if Ei �= Ef . Thus, at zeroth order, the only
possibility is a trivial one in which no transition occurs.

The lowest nontrivial (Ei �= Ef ) result occurs at first order, where the transition
amplitude is given by
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A
(1)
fi (t) = 〈Ef |Û (1)(t; t0)|Ei〉

= − i

h̄

∫ t

t0

dt′ 〈Ef |Û0(t; t
′)Ĥ1(t

′)Û0(t
′; t0)|Ei〉

= − i

h̄

∫ t

t0

dt 〈Ef |e−iĤ0(t−t′)/h̄Ĥ1(t
′)e−iĤ0(t′−t0)/h̄|Ei〉

= − i

h̄

∫ t

t0

dt′ e−iEf (t−t′)/h̄e−iEi(t
′−t0)/h̄〈Ef |Ĥ1(t

′)|Ei〉

= − i

h̄
e−iEf t/h̄eiEit0/h̄

∫ t

t0

dt′ ei(Ef−Ei)t
′/h̄〈Ef |Ĥ1(t

′)|Ei〉. (14.2.35)

We now define a transition frequency ωfi as ωfi = (Ef − Ei)/h̄. Taking the absolute
square of the last line of eqn. (14.2.35), we obtain the probability at first order as

P
(1)
fi (t) =

1

h̄2

∣∣∣∣
∫ t

t0

dt′ eiωfit
′〈Ef |Ĥ1(t

′)|Ei〉
∣∣∣∣
2

. (14.2.36)

At first order, the probability depends on the matrix element of the perturbation
between the initial and final eigenstates.

Thus far, the formalism we have derived is valid for any perturbation Ĥ1(t). The

specific choice of this perturbation determines the manifold of eigenstates of Ĥ0 it
probes, as we will demonstrate in the next subsection.

14.2.3 Fermi’s Golden Rule

In Section 14.1, we formulated the Hamiltonian of a material system coupled to an
external electromagnetic field. Moreover, we derived expressions for the electromag-
netic field in the absence of sources or physical boundaries as solutions of the free-field
wave equation. For the remainder of this chapter, we will focus on weak fields, so
that the term in eqn. (14.1.11) proportional to A2 can be neglected. We will also
focus on a class of experiments for which the wavelength of the electromagnetic ra-
diation is long compared to the size of the sample under investigation. Under this
condition, the spatial dependence of the electromagnetic field can also be neglected,
since cos(k · r − ωt + ϕ0) = Re[exp(ik · r − iωt + ϕ0)], and exp(ik · r) ≈ 1 in the

long-wavelength limit where |k| = 2π/λ ≈ 0. Thus, Ĥ1(t) reduces to the specific form

Ĥ1(t) = −2V̂F (ω) cos(ωt) = −V̂F (ω)
[
eiωt + e−iωt

]
, (14.2.37)

where V̂ is a Hermitian operator.
As noted above, we are interested in the probability that the system will undergo

a transition from an eigenstate |Ei〉 to |Ef 〉 of Ĥ0 under the perturbation of eqn.
(14.2.37). However, since the perturbation is periodic in time, the problem must be
stated a little differently. If we apply the perturbation over a long time, what is the
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mean probability per unit time of a transition or mean transition rate? In order to
simplify the calculation of this rate, let us consider a time interval T and choose
t0 = −T/2 and t = T/2. The mean transition rate can be expressed as

R
(1)
fi (T ) =

P
(1)
fi (T )

T

=
|F (ω)|2

T h̄2

∣∣∣∣∣
∫ T/2

−T/2

dt
[
ei(ωfi+ω)t + ei(ωfi−ω)t

]∣∣∣∣∣
2 ∣∣∣〈Ef |V̂|Ei〉

∣∣∣2 . (14.2.38)

For finite T , the time integral can be carried out explicitly yielding

∫ T/2

−T/2

dt
[
ei(ωfi+ω)t + ei(ωfi−ω)t

]
=

T

[
sin[(ωfi + ω)T/2]

(ωfi + ω)T/2
+

sin[(ωfi − ω)T/2]

(ωfi − ω)T/2

]
. (14.2.39)

Assuming ω > 0, in the limit of large T , the second term on the right in eqn. (14.2.39)
dominates over the first and peaks sharply at ω = ωfi. Thus, we can retain only this
term and write the mean transition rate as

R
(1)
fi (T ) =

1

h̄2 T |F (ω)|2|〈Ef |V̂|Ei〉|2 sin2(ωfi − ω)T/2

[(ωfi − ω)T/2]2
. (14.2.40)

Regarding eqn. (14.2.40) as a function of ω, at large T , this function becomes highly
peaked when ω = ωfi but drops to zero rapidly away from ω = ωfi. The condition
ωfi = ω is equivalent to the condition Ef = Ei + h̄ω, which is a statement of energy
conservation. Since h̄ω is the energy quantum of the electromagnetic field, also known
as a photon, the transition can only occur if the energy of the field frequency ω is
exactly “tuned” for the the transition from Ei to Ef . Hence, a monochromatic field of
frequency ω can be used as a probe of the allowed transitions and hence the eigenvalue
structure of Ĥ0.

We now consider the T → ∞ limit more carefully. Denoting the rate in this limit
simply as Rfi, the integral in eqn. (14.2.39) in this limit becomes

lim
T→∞

∫ T/2

−T/2

dt
[
ei(ωfi+ω)t + ei(ωfi−ω)t

]
=

∫ ∞

−∞
dt

[
ei(ωfi+ω)t + ei(ωfi−ω)t

]

= 2π [δ(ωfi + ω) + δ(ωfi − ω)] . (14.2.41)

Again, for ω > 0 and ωfi > 0, only the second δ-function is ever nonzero, so we can
drop the first δ-function. Note that the second δ-function in eqn. (14.2.41) can also
be written as 2πh̄δ(Ef −Ei − h̄ω). Therefore, the expression for the mean rate in this
limit can be written as
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Rfi(ω) = lim
T→∞

P
(1)
fi (T )

T

= lim
T→∞

1

T h̄2

∣∣∣∣∣
∫ T/2

−T/2

dt ei(ωfi−ω)t

∣∣∣∣∣
2

|F (ω)|2
∣∣∣〈Ef |V̂|Ei〉

∣∣∣2

= lim
T→∞

1

T h̄2

[∫ T/2

−T/2

dt ei(ωfi−ω)t

]

×
[∫ T/2

−T/2

dt e−i(ωfi−ω)t

]
|F (ω)|2

∣∣∣〈Ef |V̂|Ei〉
∣∣∣2 , (14.2.42)

where we have dropped the “(1)” superscript (it is understood that the result is derived
from first-order perturbation theory) and indicated explicitly the dependence on the
frequency ω. When the integral on the third line of eqn. (14.2.42) is replaced by
the δ-function, the remaining integral becomes simply T since ωfi = ω, and this T
cancels the T in the denominator. For this reason, the division by T in eqn. (14.2.38) is
equivalent to expressing the rate as proper derivative limT→∞ dPfi/dt. The expression
for the rate now becomes

Rfi(ω) =
2π

h̄
|F (ω)|2

∣∣∣〈Ef |V̂|Ei〉
∣∣∣2 δ(Ef − Ei − h̄ω), (14.2.43)

which is known as Fermi’s Golden Rule. The rule states that, in first-order perturbation
theory, the transition rate depends only on the square of the matrix element of the
operator V̂ between initial and final states and explicitly requires energy conservation
via the δ-function. Fermi’s Golden Rule predicts the rate of transitions from a specific
initial state |Ei〉 to a final state |Ef 〉, both of which are eigenstates of Ĥ0 and which
are connected via the energy conservation condition Ef = Ei + h̄ω.

14.3 Time correlation functions and frequency spectra

In this section, the Fermi Golden Rule expression will be used to analyze the output
of an experiment in which a monochromatic field is applied to an ensemble of systems.
If we wish to calculate the transition rate for the ensemble, we must remember that
the systems in the ensemble are not in a single initial state |Ei〉. Rather, there is a

distribution of initial states prescribed by the equilibrium density matrix ρ(Ĥ0), which

satisfies the equilibrium Liouville equation [Ĥ0, ρ(Ĥ0)] = 0. Thus, in the canonical

ensemble, the probability that a given ensemble member is in an eigenstate of Ĥ0

with energy Ei is the density matrix eigenvalue

wi =
e−βEi

Q(N, V, T )
=

e−βEi

Tr
(
e−βĤ0

) . (14.3.1)

The rate we seek is the ensemble average of Rfi(ω) over initial states, denoted R(ω),
which is given by
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R(ω) = 〈Rfi(ω)〉 =
∑
i,f

Rfi(ω)wi. (14.3.2)

Although both initial and final states are summed in eqn. (14.3.2), we know that the
sum over final states is not independent, since the only permissible final states are
those connected to initial states by energy conservation. Thus, eqn. (14.3.2) indicates
that the contribution from each possible initial state |Ei〉 to the total weight is the
probability wi that a given member of the ensemble is initially in that state. Finally, we
sum over those final states that can be reached from the initial state without violating
energy conservation to obtain the average transition rate.

When we substitute eqn. (14.2.43) for Rfi(ω) into eqn. (14.3.2), the average rate
becomes

R(ω) =
2π

h̄
|F (ω)|2

∑
i,f

wi

∣∣∣〈Ef |V̂|Ei〉
∣∣∣2 δ(Ef − Ei − h̄ω). (14.3.3)

Writing the δ-function as an integral, eqn. (14.3.3) becomes

R(ω) =
1

h̄2 |F (ω)|2
∫ ∞

−∞
dt

∑
i,f

wie
i(Ef−Ei−h̄ω)t/h̄

∣∣∣〈Ef |V̂|Ei〉
∣∣∣2

=
1

h̄2 |F (ω)|2
∫ ∞

−∞
dt e−iωt

∑
i,f

wi〈Ei|V̂|Ef 〉〈Ef |V̂|Ei〉eiEf t/h̄e−iEit/h̄

=
1

h̄2 |F (ω)|2
∫ ∞

−∞
dt e−iωt

∑
i,f

wi〈Ei|V̂|Ef 〉〈Ef |eiĤ0t/h̄V̂e−iĤ0t/h̄|Ei〉. (14.3.4)

In the last line, we have used the fact that |Ei〉 and |Ef 〉 are eigenstates of Ĥ0 to
bring the two exponential factors into the angle brackets as the unperturbed propa-
gator exp(−iĤ0t/h̄) and its conjugate exp(iĤ0t/h̄). Note, however, that the operator

exp(iĤ0t/h̄)V̂ exp(−iĤ0t/h̄) = V̂(t) is just the representation of the operator V̂ in
the interaction picture (see eqn. (14.2.3)). Thus, the average transition rate can be
expressed as

R(ω) =
1

h̄2 |F (ω)|2
∫ ∞

−∞
dt e−iωt

∑
i,f

wi〈Ei|V̂(0)|Ef 〉〈Ef |V̂(t)|Ei〉, (14.3.5)

where the V̂(0) is the operator in the interaction picture at t = 0. Thus, both operators
in eqn. (14.3.5) are represented within the same quantum-mechanical picture. Note
that the sum over final states can now be performed using the completeness relation∑

f

|Ef 〉〈Ef | = Î (14.3.6)

of the eigenstates of Ĥ0. Eqn. (14.3.5) now becomes
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R(ω) =
1

h̄2 |F (ω)|2
∫ ∞

−∞
dt e−iωt

∑
i

wi〈Ei|V̂(0)V̂(t)|Ei〉

=
1

h̄2 |F (ω)|2
∫ ∞

−∞
dt e−iωt 1

Q(N, V, T )
Tr

(
e−βĤ0V̂(0)V̂(t)

)

=
1

h̄2 |F (ω)|2
∫ ∞

−∞
dt e−iωt〈V̂(0)V̂(t)〉. (14.3.7)

The last line shows that the ensemble-averaged transition rate at frequency ω is just
the Fourier transform of the quantum time correlation function 〈V̂(0)V̂(t)〉 (Berne,
1971).

In general, a quantum time correlation function of two operators Â and B̂ with
respect to an unperturbed Hamiltonian Ĥ0 is given by

CAB(t) =
Tr

[
Â(0)B̂(t)e−βĤ0

]
Tr

[
e−βĤ0

] . (14.3.8)

Although quantum time correlation functions possess many of the same properties as
their classical counterparts, we point out one crucial difference at this juncture. The
operators V̂(0) and V̂(t) are individually Hermitian, but since [V̂(0), V̂(t)] �= 0, the
autocorrelation function in eqn. (14.3.7) is an expectation value of a non-Hermitian

operator product V̂(0)V̂(t). Such a non-Hermitian expectation value suggests that
something fundamental is missing from the above analysis.

A little reflection reveals that the problem lies with our choice of ω > 0 in eqn.
(14.2.39). A complete analysis requires that we examine ω < 0 as well, in which case
the first term on the right side of eqn. (14.2.40) dominates and is retained, while the
second term is neglected. This is tantamount to substituting −ω for ω in eqn. (14.3.3),
which yields

R(−ω) =
2π

h̄
|F (ω)|2

∑
i,f

wi

∣∣∣〈Ef |V̂|Ei〉
∣∣∣2 δ(Ef − Ei + h̄ω). (14.3.9)

Unlike eqn. (14.3.3), which refers to an absorption process with Ef = Ei + h̄ω, eqn.
(14.3.9) describes a process for which Ef = Ei − h̄ω, or Ef < Ei, which is an emission
process. The system starts in a state with energy Ei and releases an amount of energy
h̄ω as it decays to a state with lower energy Ef . We will now show that eqn. (14.3.9)

can be expressed in terms of the correlation function V̂(t)V̂(0), which when added to

eqn. (14.3.7) leads to the Hermitian combination V̂(t)V̂(0) + V̂(0)V̂(t).
We begin by interchanging the summation indices i and f in eqn. (14.3.9). Doing

so gives

R(−ω) =
2π

h̄
|F (ω)|2

∑
i,f

wf

∣∣∣〈Ei|V̂|Ef 〉
∣∣∣2 δ(Ei − Ef + h̄ω), (14.3.10)
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where

wf =
e−βEf

Q(N, V, T )
=

e−βEf

Tr
[
e−βĤ0

] . (14.3.11)

The interchange of summation indices in eqn. (14.3.10) causes the δ-function condition
in eqn. (14.3.10) to revert to that contained in eqn. (14.3.9), namely, Ef = Ei + h̄ω.
Substituting this condition into the expression for wf gives

wf =
e−β(Ei+h̄ω)

Q(N, V, T )
= wie

−βh̄ω. (14.3.12)

Since δ(x) = δ(−x), eqn. (14.3.10) can be expressed as

R(−ω) =
2π

h̄
|F (ω)|2e−βh̄ω

∑
i,f

wi

∣∣∣〈Ei|V̂|Ef 〉
∣∣∣2 δ(Ef − Ei + h̄ω). (14.3.13)

Comparing eqn. (14.3.13) with eqn. (14.3.3) reveals that

R(−ω) = e−βh̄ωR(ω), (14.3.14)

which is known as the condition of detailed balance. According to this condition, the
probability per unit time of an emission event is smaller than that of an absorption
event by a factor of exp(−βh̄ω) in a canonical distribution, for which the probability
of finding the system with a high initial energy Ei is smaller than that for finding the
system with a smaller initial energy. Eqn. (14.3.14) is a consequence of the statistical
distribution of initial states; in fact, the individual transition rates Rfi(ω) satisfy the
microscopic reversibility condition Rfi(ω) = Rif (ω). If we followed all of the individual
transitions of an ensemble of systems, they would all obey microscopic reversibility.
However, because we introduce a statistical distribution, we no longer retain such a
detailed microscopic picture, with the result that the ensemble averaged absorption and
emission rates, R(ω) and R(−ω) do not obey the microscopic reversibility condition.

If the analysis leading from eqn. (14.3.3) to eqn. (14.3.7) is carried out on eqn.
(14.3.9), the result is

R(−ω) =
1

h̄2 |F (ω)|2
∫ ∞

−∞
dt e−iωt〈V̂(t)V̂(0)〉, (14.3.15)

and since R(−ω) �= R(ω), it follows that the correlation functions 〈V̂(0)V̂(t)〉 and

〈V̂(t)V̂(0)〉 are not equal. This could also have been gleaned from the fact that the

commutator [V̂(0), V̂(t)] does not vanish.
We now define the net energy absorption spectrum Q(ω) as the net energy absorbed

by unit time at frequency ω. Since the energy absorbed is just h̄ω, and the net rate is
the difference between the absorption and emission rates R(ω) − R(−ω), the energy
spectrum Q(ω) is given by

Q(ω) = [R(ω) − R(−ω)] h̄ω = h̄ωR(ω)
(
1 − e−βh̄ω

)
. (14.3.16)
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Note, however, that since R(−ω) = exp(−βh̄ω)R(ω), it follows that

R(ω) + R(−ω) =
(
1 + e−βh̄ω

)
R(ω) (14.3.17)

or

R(ω) =
R(ω) + R(−ω)

1 + e−βh̄ω
. (14.3.18)

Using eqn. (14.3.7) and eqn. (14.3.15), we express the sum R(ω) + R(−ω) as

R(ω) + R(−ω) =
1

h̄2 |F (ω)|2
∫ ∞

−∞
dt e−iωt〈V̂(0)V̂(t) + V̂(t)V̂(0)〉. (14.3.19)

Let us now define a new operator bracket

[Â, B̂]+ = ÂB̂ + B̂Â (14.3.20)

known as the anticommutator between Â and B̂. It is straightforward to see that the
anticommutator is manifestly Hermitian. Inserting the anticommutator definition into
eqn. (14.3.19), we obtain

R(ω) + R(−ω) =
1

h̄2 |F (ω)|2
∫ ∞

−∞
dt e−iωt

〈[
V̂(0), V̂(t)

]
+

〉
. (14.3.21)

Finally, substituting eqn. (14.3.21) into eqn. (14.3.18) and the result into eqn. (14.3.16),
the energy spectrum becomes

Q(ω) =
2ω

h̄
|F (ω)|2tanh(βh̄ω/2)

∫ ∞

−∞
dt e−iωt

〈
1

2

[
V̂(0), V̂(t)

]
+

〉
. (14.3.22)

Eqn. (14.3.22) demonstrates that the energy spectrum Q(ω) can be expressed in terms

of the ensemble average of a Hermitian operator combination [V̂(0), V̂(t)]+. In partic-
ular, Q(ω) is directly related to the Fourier transform of a symmetric quantum time

correlation function 〈[V̂(0), V̂(t)]+〉.
It is instructive to examine the classical limit of the quantum spectrum in eqn.

(14.3.22). In this limit, the operators V̂(0) and V̂(t) revert to classical phase space

functions so that V̂(0)V̂(t) = V̂(t)V̂(0) and [V̂(0), V̂(t)]+ −→ 2V(0)V(t). Also, as h̄ −→
0, tanh(βh̄ω/2) −→ βh̄ω/2. Combining these results, we find that the classical limit
of the quantum spectrum is just

Qcl(ω) =
ω2

kT
|F (ω)|2

∫ ∞

−∞
dt e−iωt〈V(0)V(t)〉cl, (14.3.23)

where the notation 〈V(0)V(t)〉cl serves to remind us that the time correlation function
is a classical one.
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14.4 Examples of frequency spectra

From eqn. (14.3.22), it is clear that in order to calculate a spectrum, we must be able
to calculate a quantum time correlation function. Unfortunately, numerical evaluation
of these correlation functions is an extremely difficult computational problem, an issue
we will explore in more detail in Section 14.6, where we will also describe approaches
for approximating quantum time correlation functions from path-integral molecular
dynamics. In this section, we will use a simple, analytically solvable example, the har-
monic oscillator, to illustrate the general idea of a quantum time correlation function.
As discussed in Section 10.4.1, expressions for equilibrium averages and thermody-
namic quantities for a harmonic oscillator form the basis of simple approximations for
general anharmonic systems. We will use the result we derive here for the position
autocorrelation function of a harmonic oscillator to devise a straightforward approach
to approximate absorption spectra from classical molecular dynamics trajectories.

14.4.1 Position autocorrelation function of a harmonic oscillator

We begin by considering the position autocorrelation function 〈x̂(t)x̂(0)〉 and sym-
metrized autocorrelation function 〈[x̂(t), x̂(0)]+〉 of a simple harmonic oscillator of
frequency ω0. In order to calculate the time evolution of the position operator, we use
the fact that the Schrödinger operator x̂ can be expressed in terms of the creation and
annihilation operators (or raising and lowering operators) â† and â, respectively, as

x̂ =

(
h̄

2mω0

)1/2 (
â + â†) , (14.4.1)

(Shankar, 1994) where the action of â and â† on an energy eigenstate of the oscillator
is

â|n〉 =
√

n|n − 1〉 â†|n〉 =
√

n + 1|n + 1〉. (14.4.2)

Moreover, these operators satisfy the commutation relation [â, â†] = 1. In terms of
the creation and annihilation operators, the Hamiltonian for a harmonic oscillator of
frequency ω0 can be written as

Ĥ0 =

(
â†â +

1

2

)
h̄ω0. (14.4.3)

In the interaction picture, the operators â and â† evolve according to the equations of
motion

dâ

dt
=

1

ih̄
[â, Ĥ0] = −iω0â

dâ†

dt
=

1

ih̄
[â†, Ĥ0] = iω0â

†. (14.4.4)

Eqns. (14.4.4) are readily solved to yield

â(t) = âe−iω0t â†(t) = â†eiω0t. (14.4.5)

Using eqn. (10.4.19), the correlation function 〈x̂(0)x̂(t)〉 can be written as



Quantum time-dependent statistical mechanics

〈x̂(0)x̂(t)〉 =
h̄

2mω0

1 − e−βh̄ω0

e−βh̄ω0/2

×
∞∑

n=0

e−(n+1/2)βh̄ω0〈n|(â + â†)(âe−iω0t + â†eiω0t)|n〉. (14.4.6)

After some algebra, we find that

〈x̂(0)x̂(t)〉 =
h̄

4mω0sinh(βh̄ω0/2)

[
eiω0teβh̄ω0/2 + e−iω0te−βh̄ω0/2

]
. (14.4.7)

Similarly, the correlation function 〈x̂(t)x̂(0)〉 can be shown to be

〈x̂(t)x̂(0)〉 =
h̄

4mω0sinh(βh̄ω0/2)

[
e−iω0teβh̄ω0/2 + eiω0te−βh̄ω0/2

]
. (14.4.8)

When we combine eqns. (14.4.7) and (14.4.8), the symmetric correlation function is
found to be

1

2

〈
[x̂(0), x̂(t)]+

〉
=

h̄

2mω0
tanh(βh̄ω0/2) cos(ω0t). (14.4.9)

A comparison of eqn. (14.4.9) and eqn. (13.3.39) reveals that the quantum and classical
correlation functions are related by

1

2

〈
[x̂(0), x̂(t)]+

〉
=

βh̄ω0

2
tanh(βh̄ω0/2) 〈x(0)x(t)〉cl . (14.4.10)

The connection established in eqn. (14.4.10) between the quantum and classical posi-
tion autocorrelation functions of a harmonic oscillator can be exploited as a method
for approximating the quantum position autocorrelation function of an anharmonic
system using the corresponding classical autocorrelation function. The latter can
be obtained directly from a molecular dynamics calculation. This approximation is
known as the harmonic approximation, within which the quantum-mechanical pref-
actor (βh̄ω0/2)tanh(βh̄ω0/2) serves to capture at least some of the true quantum
character of the system (Bader and Berne, 1994; Skinner and Park, 2001). The utility
of this approximation depends on how well a system can be represented as a collection
of harmonic oscillators.

14.4.2 The infrared spectrum

One of the most commonly used approaches to probe the vibrational energy levels of a
system is infrared spectroscopy, in which electromagnetic radiation of frequency in the
near infrared part of the spectrum (1012 to 1014 Hz) is used to induce transitions be-
tween the vibrational levels. By sweeping through this frequency range, the technique
records the frequencies at which the transitions occur and the intensities associated
with each transition.
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Infrared spectroscopy makes use of the fact that the total electric dipole moment
operator of a system μ̂ couples to the electric field component of an electromagnetic
wave via

Ĥ1(t) = −μ̂ · E(t). (14.4.11)

If we orient the coordinate system such that E(t) = (0, 0, E(t)) and recall that the
wavelength of infrared radiation is long compared to a typical sample size, then
E(t) = E(ω)e−iωt, and the perturbation Hamiltonian Ĥ1(t) is of the form given in
eqn. (14.2.37). For this perturbation, the energy spectrum is given by

Q(ω) =
ω

h̄
|E(ω)|2tanh(βh̄ω/2)

∫ ∞

−∞
dt e−iωt

〈
[μ̂z(0), μ̂z(t)]+

〉
. (14.4.12)

Since we could have chosen any direction for the electric field E(t), we may compute
the spectrum by averaging over the three spatial directions and obtain

Q(ω) =
ω

3h̄
|E(ω)|2tanh(βh̄ω/2)

∫ ∞

−∞
dt e−iωt 〈μ̂(t) · μ̂(0) + μ̂(0) · μ̂(t)〉 . (14.4.13)

What is actually measured in an infrared experiment is the absorptivity α(ω) from
the Beer–Lambert law. The product of α(ω) with the frequency-dependent index of
refraction n(ω) is directly proportional to Q(ω) in eqn. (14.4.13), Q(ω) ∝ α(ω)n(ω). If
the quantum dipole-moment autocorrelation function is replaced by a classical auto-
correlation function, with μ(t) =

∑
i qiri(t) the classical dipole moment for a system

of N charges q1, ..., qN , then the approximation in eqn. (14.4.10) can be employed.
Through the use of the Kramers–Krönig relations (see eqn. (14.5.20) in Section 14.5),

a straightforward computational procedure can be employed to compute n(ω) (Iftimie
and Tuckerman, 2005). The examples of water and ice considered by Iftimie and Tuck-
erman show that n(ω) has only a weak dependence on frequency so that α(ω)n(ω) is
a reasonable representation of the experimental observable.

As a specific example of an infrared spectrum, we show, in Fig. 14.5(a), computed
IR spectra from ab initio molecular dynamics calculations of pure D2O (Lee and Tuck-
erman, 2007), with a comparison to experiment (Bertie et al., 1989; Zelsmann, 1995).
In Fig. 14.5(b), we show computed IR spectra for 1 M and a 13 M aqueous KOD
solutions (Zhu and Tuckerman, 2002). In an ab initio molecular dynamics calculation,
a molecular dynamics trajectory is generated with forces computed from electronic
structure calculations performed “on the fly” as the simulation proceeds. The ab ini-
tio molecular dynamics technique allows chemical bond-breaking and -forming events
(which occur frequently in KOD solutions as protons are transfered from water to
OD− ions) to be treated implicitly in an unbiased manner. In each of these spectra,
the quantum dipole correlation function is replaced by its classical counterpart using
the harmonic approximation of eqn. (14.4.10). The simulation protocol employed in
Fig. 14.5(a) leads to a small red shift in the OD vibrational band compared to ex-
periment; however, the agreement is generally reasonable. The spectra in Fig. 14.5(b)
show how a strongly red-shifted OD vibrational at 1950 cm−1 band diminishes with
concentration and disappears in the pure D2O case. This band can be assigned to wa-
ter molecules in the first solvation shell of an OD− ion that donate a hydrogen bond
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Fig. 14.5 Computed (solid line) and experimental (dashed line) IR spectra for pure D2O

(a) and KOD solutions of 1 M (solid line) and 13 M (dashed line) concentrations.

to the OD− oxygen, forming a relatively strong hydrogen bond. The stretch mode of
these OD groups pointing directly to the hydroxyl oxygen are strongly red-shifted. As
the concentration is decreased, it is expected that this band, in particular, will exhibit
diminished intensity in the infrared spectrum.

14.5 Quantum linear response theory

In this section, we will show that energy spectrum can be derived directly from the
ensemble density matrix and the quantum Liouville equation without explicit reference
to the eigenstates of Ĥ0. This approach, known as quantum linear response theory, is
the quantum version of the classical linear response theory described in Section 13.2,
and it also the basis for the calculation of quantum transport properties. Since the
eigenstate approach to linear spectroscopy derived in Section 14.3 employed first-order
perturbation theory (Fermi’s Golden Rule), we expect to use a linearization of the
quantum Liouville equation, as was done in Section 13.2, in order to establish the
connection between the eigenstate and density-matrix theories.

Recall that the quantum Liouville equation is

∂ρ̂(t)

∂t
=

1

ih̄

[
Ĥ(t), ρ̂(t)

]
. (14.5.1)

In order to keep the discussion as general as possible, we will consider the solutions of
eqn. (14.5.1) for a general class of Hamiltonians of the form

Ĥ(t) = Ĥ0 − V̂Fe(t), (14.5.2)

where V̂ is a Hermitian operator and Fe(t) is an arbitrary function of time.
As in the classical case, we take an ansatz for ρ̂(t) of the form

ρ̂(t) = ρ̂0(Ĥ0) + Δρ̂(t), (14.5.3)
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where ρ̂0(Ĥ0) is the equilibrium density matrix for a system described by the unper-

turbed Hamiltonian Ĥ0 and which therefore satisfies an equilibrium Liouville equation[
Ĥ0, ρ̂0

]
= 0,

∂ρ̂0

∂t
= 0. (14.5.4)

Assuming that the system is in equilibrium before the perturbation is applied, the
initial condition on the Liouville equation is ρ̂(t0) = ρ̂0(Ĥ0), Δρ̂(t0) = 0. When

eqn. (14.5.3) is substituted into eqn. (14.5.1) and terms involving both V̂ and Δρ̂ are
dropped, we obtain the following equation of motion for Δρ̂(t):

∂Δρ̂(t)

∂t
=

1

ih̄

[
Ĥ0, Δρ̂(t)

]
− 1

ih̄

[
V̂, ρ̂0

]
Fe(t). (14.5.5)

Since this equation is a first-order inhomogeneous linear differential equation for an
operator and involves a commutator, left and right integrating factors in the form of
Û †

0 (t) = exp(iĤ0t/h̄) and Û0(t) = exp(−iĤ0t/h̄), respectively, are needed. With these
integrating factors, the solution for Δρ̂(t) becomes

Δρ̂(t) = − 1

ih̄

∫ t

t0

ds e−iĤ0(t−s)/h̄
[
V̂, ρ̂0

]
eiĤ0(t−s)/h̄Fe(s). (14.5.6)

The ensemble average of an operator Â in the time-dependent quantum ensemble
is given by

〈Â〉t = Tr
[
ρ̂(t)Â

]
= Tr

[
ρ̂0Â

]
+ Tr

[
Δρ̂(t)Â

]
= 〈Â〉 + Tr

[
Δρ̂(t)Â

]
, (14.5.7)

where 〈Â〉 is the equilibrium ensemble average of Â. When eqn. (14.5.6) is substituted
into eqn. (14.5.7), we obtain

〈Â〉t = 〈Â〉 − 1

ih̄

∫ t

t0

ds Tr
{
Âe−iĤ0(t−s)/h̄

[
V̂, ρ̂0

]
eiĤ0(t−s)/h̄

}
Fe(s)

= 〈Â〉 − 1

ih̄

∫ t

t0

ds Tr
{
eiĤ0(t−s)/h̄Âe−iĤ0(t−s)/h̄

[
V̂, ρ̂0

]}
Fe(s)

= 〈Â〉 − 1

ih̄

∫ t

t0

ds Tr
{
Â(t − s)

[
V̂(0), ρ̂0

]}
Fe(s). (14.5.8)

In the second line, we have used the fact that the trace is invariant to cyclic permu-
tations of the operators, Tr(ÂB̂Ĉ) = Tr(ĈÂB̂) = Tr(B̂ĈÂ). In the last line, Â(t − s)

denotes the operator Â in the interaction picture at time t − s, and V̂(0) denotes an
operator in this picture at t = 0. Using the cyclic property of the trace again, the
expression in eqn. (14.5.8) can be further simplified. Expanding the commutator in
the last line of eqn. (14.5.8) yields

〈Â〉t = 〈Â〉 − 1

ih̄

∫ t

t0

ds Tr
[
Â(t − s)V̂(0)ρ̂0 − Â(t − s)ρ̂0V̂(0)

]
Fe(s)
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= 〈Â〉 − 1

ih̄

∫ t

t0

ds Tr
[
ρ̂0Â(t − s)V̂(0) − ρ̂0V̂(0)Â(t − s)

]
Fe(s)

= 〈Â〉 − 1

ih̄

∫ t

t0

ds Tr
[
ρ̂0

(
Â(t − s)V̂(0) − V̂(0)Â(t − s)

)]
Fe(s)

= 〈Â〉 − 1

ih̄

∫ t

t0

ds Tr
{

ρ̂0

[
Â(t − s), V̂(0)

]}
Fe(s). (14.5.9)

Eqn. (14.5.9) is the quantum analog of the classical linear response formula given in
eqn. (13.2.27) and is hence the starting point for the development of quantum Green-
Kubo expressions for transport properties. Since these expressions are very similar
to their classical counterparts, we will not repeat the derivations of the Green-Kubo
formulae here.

The time correlation function appearing in eqn. (14.5.9) is referred to as the after-
effect function Φ

AV
(t) and is defined by

Φ
AV

(t) =
i

h̄
〈[Â(t), V̂(0)]〉. (14.5.10)

Note that although the operator combination [Â(t), V̂(0)] is anti-Hermitian,3 the i

prefactor in eqn. (14.5.10) fixes this: the operator i[Â(t), V̂(0)] is Hermitian. In order
to make contact with the treatment of Section 14.3, we set t0 = −∞ in eqn. (14.5.9)
to obtain

〈Â〉t = 〈Â〉 +

∫ t

−∞
ds Φ

AV
(t − s)Fe(s). (14.5.11)

According to eqn. (14.5.11), when V̂ is the operator we choose to measure in the
non-equilibrium ensemble, we find

〈V̂〉t = 〈V̂〉 +

∫ t

−∞
ds Φ

VV
(t − s)Fe(s), (14.5.12)

which involves the quantum autocorrelation function of V̂.
We now consider the special case of a monochromatic field of frequency ω, for

which Fe(t) = F (ω) exp(−iωt). Substituting this field form into eqn. (14.5.12) yields

〈V̂〉t = 〈V̂〉 + F (ω)

∫ t

−∞
ds Φ

VV
(t − s)e−iωs. (14.5.13)

However, because the lower limit of the time integral in eqn. (14.5.13) is −∞, it
is necessary to ensure that the potentially oscillatory integrand yields a convergent
result. In order to achieve this, we multiply the integrand by a convergence factor
exp(εt), which decays to 0 as t → −∞. After the integral is performed, the limit
ε → 0+ (the limit that ε approaches 0 from the positive side) is taken. The use of

3An anti-Hermitian B̂ satisfies B̂† = −B̂.
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convergence factors is a formal device, the necessity of which depends on the behavior
of the autocorrelation function. For nearly perfect solids and glassy systems, one would
expect the decay of the correlation function to be very slow, requiring the use of the
convergence factor. For ordinary liquids, the correlation function should decay rapidly
to zero, obviating the need for this factor. For generality, we retain it in the present
discussion. Introducing a convergence factor into eqn. (14.5.13) gives

〈V̂〉t = 〈V̂〉 + F (ω) lim
ε→0+

∫ t

−∞
ds Φ

VV
(t − s)e−iωseεs. (14.5.14)

We now change the integration variables in eqn. (14.5.14) from t to τ = t− s, we find

〈V̂〉t = 〈V̂〉 + F (ω) lim
ε→0+

e(iω+ε)t

∫ ∞

0

dτ Φ
VV

(τ)e−(iω+ε)τ . (14.5.15)

Eqn. (14.5.15) involves a Fourier–Laplace transform of the after-effect function at a
complex variable z = ω − iε. Let the function χ

VV
(z) denote this Laplace transform

(see Appendix D)

χ
VV

(z) =

∫ ∞

0

dτ Φ
VV

(τ)e−izτ , (14.5.16)

which is referred to as the susceptibility. Eqn. (14.5.15) can now be expressed as

〈V̂〉t = 〈V̂〉 + F (ω) lim
ε→0+

ei(ω−iε)tχ
VV

(ω − iε). (14.5.17)

By decomposing the susceptibility into its real and imaginary parts, we can relate it
directly to the energy spectrum Q(ω). In the limit ε → 0+, we obtain

χ
VV

(ω) = lim
ε→0+

∫ ∞

0

dτ e−ετΦ
VV

(τ)e−iωτ

= lim
ε→0+

∫ ∞

0

dτ e−ετΦ
VV

(τ) [cosωτ − i sinωτ ]

≡ Re [χ
VV

(ω)] − iIm [χ
VV

(ω)] , (14.5.18)

where

Re [χ
VV

(ω)] = lim
ε→0+

e−ετΦ
VV

(τ) cos ωτ

Im [χ
VV

(ω)] = lim
ε→0+

e−ετΦ
VV

(τ) sin ωτ. (14.5.19)

An important property of the susceptibility χ(z) is its analyticity in the complex z-
plane. For any analytic function, the real and imaginary parts are not independent
but satisfy a set of relations known as the Kramers–Krönig relations. Let χ′

VV
(ω) and
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χ′′
VV

(ω) denote the real and imaginary parts of χVV(ω), respectively, so that χ
VV

(ω) =
χ′

VV
(ω) + iχ′′

VV
(ω). The real and imaginary parts are related by

χ′
VV

(ω) =
1

π
P

∫ ∞

−∞
dω̃

ω̃χ′′
VV

(ω̃)

ω̃2 − ω2

χ′′
VV

(ω) = −ω

π
P

∫ ∞

−∞
dω̃

χ′
VV

(ω̃)

ω̃2 − ω2
. (14.5.20)

Here, P indicates that the principal value of the integral is to be taken. The Kramers–
Krönig relations can be expressed equivalently as

χ′
VV

(ω) =
1

π
P

∫ ∞

−∞
dω̃

χ′′
VV

(ω̃)

ω̃ − ω

χ′′
VV

(ω) = − 1

π
P

∫ ∞

−∞
dω̃

χ′
VV

(ω̃)

ω̃ − ω
, (14.5.21)

which are known as Hilbert transforms. We alluded to the use of these relations in
Section 14.4 where we present infrared spectra for water and aqueous solutions.

We will now show that the frequency spectrum of eqn. (14.3.22) can be related
to the imaginary part χ′′

VV
(ω) of the susceptibility. The spectrum of eqn. (14.3.22)

is given in terms of the anticommutator of V̂(0) and V̂(t), while the susceptibility is

derived from the after-effect function, which involves a commutator between V̂(0) and

V̂(t). Recall, however, that the frequency spectrum is defined as

Q(ω) = h̄ω [R(ω) − R(−ω)] . (14.5.22)

Substituting the definitions of R(ω) and R(−ω) from eqns. (14.3.7) and (14.3.15) into
this expression for Q(ω) yields

Q(ω) = h̄ω|F (ω)|2 1

h̄2

∫ ∞

−∞
dt e−iωt

〈
V̂(0)V̂(t) − V̂(t)V̂(0)

〉

= −ω|F (ω)|2 1

h̄

∫ ∞

−∞
dt e−iωt

〈[
V̂(t), V̂(0)

]〉

= iω|F (ω)|2
∫ ∞

−∞
dt e−iωtΦ

VV
(t). (14.5.23)

Next, we divide the time integration into an integration from −∞ to 0 and from 0 to
∞ as

Q(ω) = iω|F (ω)|2
[∫ 0

−∞
dt e−iωtΦ

VV
(t) +

∫ ∞

0

dt e−iωtΦ
VV

(t)

]

= −iω|F (ω)|2
[∫ ∞

0

dt eiωtΦ
VV

(−t) +

∫ ∞

0

dt e−iωtΦ
VV

(t)

]
, (14.5.24)

where in the first term the transformation t → −t has been made. In order to proceed,
we need to analyze the time-reversal properties of the after-effect function.
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Consider a general after-effect function Φ
AB

(t):

Φ
AB

(t) =
i

h̄

〈[
eiĤ0t/h̄Âe−iĤ0t/h̄, B̂

]〉
. (14.5.25)

Substituting −t into eqn. (14.5.25) yields

Φ
AB

(−t) =
i

h̄

〈
e−iĤ0t/h̄ÂeiĤ0t/h̄B̂ − B̂e−iĤ0t/h̄ÂeiĤ0t/h̄

〉

=
i

h̄

[
Tr

(
ρ̂0e

−iĤ0t/h̄ÂeiĤ0t/h̄B̂
)
− Tr

(
ρ̂0B̂e−iĤ0t/h̄ÂeiĤ0t/h̄

)]
. (14.5.26)

Because the trace is invariant under cyclic permutations of the operators and ρ̂0 com-
mutes with the propagators exp(±iĤ0t/h̄), we can express eqn. (14.5.26) as

Φ
AB

(−t) =
i

h̄

[
Tr

(
ρ̂0e

−iĤ0t/h̄ÂeiĤ0t/h̄B̂
)
− Tr

(
ρ̂0B̂e−iĤ0t/h̄ÂeiĤ0t/h̄

)]

=
i

h̄

[
Tr

(
e−iĤ0t/h̄ρ̂0ÂeiĤ0t/h̄B̂

)
− Tr

(
B̂e−iĤ0t/h̄ÂeiĤ0t/h̄ρ̂0

)]

=
i

h̄

[
Tr

(
ρ̂0ÂeiĤ0t/h̄B̂e−iĤ0t/h̄

)
− Tr

(
B̂e−iĤ0t/h̄Âρ̂0e

iĤ0t/h̄
)]

=
i

h̄

[
Tr

(
ρ̂0ÂeiĤ0t/h̄B̂e−iĤ0t/h̄

)
− Tr

(
ρ̂0e

iĤ0t/h̄B̂e−iĤ0t/h̄Â
)]

=
i

h̄

[
Tr

(
ρ̂0ÂB̂(t)

)
− Tr

(
ρ̂0B̂(t)Â

)]

=
i

h̄

〈
ÂB̂(t) − B̂(t)Â

〉

= − i

h̄

〈
[B̂(t), Â]

〉

= −Φ
BA

(t). (14.5.27)

Thus, the effect of time reversal on a general after-effect function is to reverse the order
of the operators and change the overall sign. If Â = B̂, then the after-effect function
only picks up an overall change of sign upon time reversal. When eqn. (14.5.27) is
introduced into eqn. (14.5.24), the energy spectrum becomes

Q(ω) = iω|F (ω)|2
[
−

∫ ∞

0

dt eiωtφ
VV

(t) +

∫ ∞

0

dt e−iωtΦ
VV

(t)

]

= 2ω|F (ω)|2
∫ ∞

0

dt sin(ωt)φ
VV

(t)
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= 2ω|F (ω)|2Im [χ
VV

(ω)] . (14.5.28)

Thus, the net absorption spectrum is related to the imaginary part of the frequency-
dependent susceptibility. Note that eqns. (14.5.28) and (14.3.22) are equivalent, demon-
strating that the spectrum is expressible in terms either of symmetric or antisymmet-
ric quantum time correlation functions. This derivation establishes the equivalence
between the wave-function approach, leading to the Fermi Golden rule treatment of
spectra, and the statistical-mechanical approach, which starts with the ensemble and
its density matrix ρ̂(t) and makes no explicit reference to the eigenstates of Ĥ0. This
is significant, as the former approach is manifestly eigenstate resolved, meaning that
it explicitly considers the transitions between eigenstates of Ĥ0, which is closer to
the experimental view. The latter, by contrast, is closer in spirit to the path-integral
perspective.

14.6 Approximations to quantum time correlation functions

In this section, we will discuss the general problem of calculating quantum time corre-
lation functions for condensed-phase systems. We will first show how to formulate the
correlation function in terms of the eigenstates of Ĥ0. While the eigenstate formulation
is useful for analyzing the properties of time correlation functions, we have already
alluded, in Section 10.1, to the computational intractability of solving the eigenvalue
problem of Ĥ0 for systems containing more than just a few degrees of freedom. Thus,
we will also express the quantum time correlation function using the path-integral
formulation of quantum mechanics from Chapter 12. Although, as we will show, even
the path-integral representation suffers from severe numerical difficulties, it serves as a
useful starting point for the development of computationally tractable approximation
schemes.

Let us begin with a standard nonsymmetrized time correlation function defined by

CAB(t) =
〈
Â(0)B̂(t)

〉
=

1

Q(N, V, T )
Tr

[
e−βĤÂeiĤt/h̄B̂e−iĤt/h̄

]
, (14.6.1)

where Â and B̂ are quantum mechanical operators in the interaction picture with
unperturbed Hamiltonian Ĥ.4 If we evaluate the trace in the basis of the eigenvectors
of Ĥ, then a simple formula for the quantum time correlation function results:

CAB(t) =
1

Q(N, V, T )

∑
n

〈En|e−βĤÂeiĤt/h̄B̂e−iĤt/h̄|En〉

=
1

Q(N, V, T )

∑
n,m

〈En|e−βĤÂ|Em〉〈Em|eiĤt/h̄B̂e−iĤt/h̄|En〉

=
1

Q(N, V, T )

∑
n,m

e−βEnei(Em−En)t/h̄〈En|Â|Em〉〈Em|B̂|En〉. (14.6.2)

4For the remainder of this chapter, we will drop the “0” subscript on the Hamiltonian, since it is

assumed that Ĥ represents the unperturbed Hamiltonian.
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Thus, if we are able to calculate all of the eigenvalues and eigenvectors of Ĥ, as
well as the full set of matrix elements of Â and B̂, then the calculation of the time
correlation function just requires carrying out the two sums in eqn. (14.6.2). Generally,
however, this can only be done for systems having just a few degrees of freedom. In the
condensed phase, for example, it is simply not possible to solve the eigenvalue problem
for Ĥ directly.

In the Feynman path-integral formalism of Chapter 12, the eigenvalue problem is
circumvented by computing thermal traces in the basis of coordinate eigenstates. We
will now apply this approach to the quantum time correlation function. For simplicity,
we will consider a single particle in one dimension, and we will let Â and B̂ be functions
of the position operator x̂, Â = Â(x̂), B̂ = B̂(x̂). Taking the coordinate-space trace,
we obtain

CAB(t) =

∫
dx〈x|e−βĤÂ(x̂)eiĤt/h̄B̂(x̂)e−iĤt/h̄|x〉

=

∫
dx dx′ dx′′〈x|e−βĤ|x′〉a(x′)〈x′|eiĤt/h̄|x′′〉b(x′′)〈x′′|e−iĤt/h̄|x〉. (14.6.3)

If each of the matrix elements 〈x|e−βĤ|x′〉, 〈x′|eiĤt/h̄|x′′〉, and 〈x′′|e−iĤt/h̄|x′〉 were
expressed as path integrals, we would interpret eqn. (14.6.3) as follows: Starting at x,
propagate along an imaginary time path to the point x′ and evaluate the eigenvalue
a(x′) of Â at that point; from x′, propagate backward in real time using the propagator

exp(iĤt/h̄) to the point x′′ and evaluate the eigenvalue b(x′′) of B̂; finally, propagate

forward in time using the propagator exp(−iĤt/h̄) from x′′ to the original starting
point x. This is represented schematically in Fig. 14.6(a). Unfortunately, standard
Monte Carlo or molecular dynamics schemes cannot be used to compute the two real-
time paths because the matrix elements of exp(±iĤt/h̄) are not positive definite, and
the sampling schemes of Section 7.3 break down. A possible alternative could be to
devise a molecular dynamics approach with complex variables (Gausterer and Klauder,
1986; Lee, 1994; Berges et al., 2007), although no known approach is stable enough to

x

x’

x’’ x x’

(a) (b)

Fig. 14.6 (a) Diagram of the real- and imaginary-time paths for the correlation function in

eqn. (14.6.3). (b) Same for the time correlation function in eqn. (14.6.4).
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guarantee convergence of a path integral with a purely imaginary discretized action
functional.

Before proceeding, we note that there are two alternative quantum time correlation
functions that have important advantages over CAB(t). The first is the symmetrized
correlation function GAB(t) defined by

GAB(t) =
1

Q(N, V, T )
Tr

[
ÂeiĤτ∗

c /h̄B̂e−iĤτc/h̄
]
. (14.6.4)

Here τc is a complex time variable given by τc = t − iβh̄/2. Although not equal, the
Fourier transform CAB(t)

C̃AB(ω) =
1

2π

∫ ∞

−∞
dte−iωtCAB(t) (14.6.5)

is related to the Fourier transform of GAB(t) by

G̃AB(ω) = e−βh̄ω/2C̃AB(ω), (14.6.6)

which provides a straightforward route to the determination of a spectrum, assuming
GAB(t) can be calculated. Eqn. (14.6.6) can be easily proved by performing the traces
in the basis of energy eigenstates (see Problem 14.2). The advantage of GAB(t) over
CAB(t) can be illustrated for a single particle in one dimension. We assume, again,
that Â and B̂ are functions only of x̂ and compute the trace in the coordinate basis,
which gives

GAB(t) =

∫
dx 〈x|Â(x̂)eiĤτ∗

c /h̄B̂(x̂)e−iĤτc/h̄|x〉

=

∫
dx dx′a(x)〈x|eiĤτ∗

c /h̄|x′〉b(x′)〈x′|e−iĤτc/h̄|x〉. (14.6.7)

If the two matrix elements 〈x|eiĤτ∗
c /h̄|x′〉 and 〈x′|e−iĤτc/h̄|x〉 are represented as path

integrals, the interpretation of eqn. (14.6.7) is clear. We start at x, calculate the eigen-
value a(x) of Â, propagate along a complex time path to x′, calculate the eigenvalue
b(x′) of B̂, and then propagate back to x along a complex time path that is the conju-
gate of the path from x to x′. This process is represented schematically in Fig. 14.6(b).
Since the two matrix elements are complex conjugates, and since a(x) and b(x′) are
both real, GAB(t) is, itself, a real object. More importantly, in contrast to CAB(t), the
complex time paths needed to represent the two matrix elements in eqn. (14.6.7) have
oscillatory phases, but they also have positive-definite weights, which tends to make
them somewhat better behaved numerically. If each matrix element in eqn. (14.6.7)
is discretized into paths of P points, then GAB(t) can be written as the limit of a
discretized path integral of the form
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GAB,P (t) =

1

Q(N, V, T )

∫
dx1 · · ·dx2P a(x1)b(xP+1)ρ(x1, ..., x2P )eiΦ(x1,...,x2P ), (14.6.8)

(Krilov et al., 2001), where ρ(x1, ..., x2P ) is a positive-definite distribution given by

ρ(x1, ..., x2P ) =

(
mP

2π|τc|h̄
)P

exp

[
− mPβ

4|τc|2h̄2

2P∑
k=1

(xk+1 − xk)
2 − β

2P

2P∑
k=1

U(xk)

]
. (14.6.9)

Here, x2P+1 = x1 due to the trace condition, and Φ(x1, ..., x2P ) is a phase factor
defined by

Φ(x1, ..., x2P ) =
mPt

2h̄|τc|2
[

P∑
k=1

(xk+1 − xk)2 −
2P∑

k=P+1

(xk+1 − xk)2
]

− t

h̄P

[
P∑

k=2

U(xk) −
2P∑

k=P+2

U(xk)

]
. (14.6.10)

In the limit P → ∞, GAB,P (t) = GAB(t). Note that the same path variables define ρ
and Φ, demonstrating explicitly that the paths have a positive-definite weight as well
as a phase factor. Moreover, because GAB,P (t) is real, the imaginary part of exp(iΦ)
must vanish.

The second alternate time correlation function is the Kubo-transformed correlation
function (Kubo et al., 1985) defined by

KAB(t) =
1

βQ(N, V, T )

∫ β

0

dλTr
[
e−(β−λ)ĤÂe−λĤeiĤt/h̄B̂e−iĤt/h̄

]
. (14.6.11)

Like GAB(t), KAB(t) is also purely real. In addition, KAB(t) reduces to its classical
counterpart both in the classical (β → 0) and harmonic limits. Consequently, KAB(t)
can be more readily compared to corresponding classical and harmonic time correlation
functions, which can be computed straightforwardly. As with GAB(t), there is a simple
relationship between the Fourier transforms of KAB(t) and CAB(t):

C̃AB(ω) =

[
βh̄ω

1 − e−βh̄ω

]
K̃AB(ω). (14.6.12)

Finally, we note that purely imaginary time correlation functions of the form

GAB(τ) =
1

Q(N, V, T )
Tr

[
e−βĤ Â e−τĤB̂eτĤ

]
(14.6.13)

can be computed straightforwardly using the numerical techniques for imaginary-time
path integrals. Eqn. (14.6.13) results from eqn. (14.6.1) when the Wick rotation from
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real to imaginary time is applied (see Section 12.2 and Fig. 12.5). An example of such
a correlation function is the imaginary-time mean square displacement given by

R2(τ) =
1

N

N∑
i=1

〈
[ri(τ) − ri(0)]

2
〉

, (14.6.14)

where τ ∈ [0, βh̄/2] (R2(τ) is symmetric about τ = βh̄/2). This important quantity
is related to the real-time velocity autocorrelation function Cvv(t) (more precisely, its
Fourier transform C̃vv(ω)) via a two-sided Laplace transform

R2(τ) =
1

π

∫ ∞

−∞
dω

e−βh̄ω/2

ω2
C̃vv (ω)

×
{

cosh

[
h̄ω

(
β

2
− τ

)]
− cosh

(
βh̄ω

2

)}
. (14.6.15)

Eqn. (14.6.15) suggests that performing the Wick rotation from real to imaginary
time is a well-posed problem that requires a Fourier transform followed by a Laplace
transform (see Appendix D). Unfortunately, the reverse process, transforming from
imaginary time back to real time, requires an inverse Laplace transform, which is an
extremely ill-posed problem numerically (see, for example, the discussion by Epstein
and Schotland (2008)). This is the primary reason that the analytic continuation of
imaginary time data to real-time data is such an immense challenge (Krilov et al.,
2001).

Before we discuss approximation schemes for quantum time correlation functions,
we need to point out that quantum effects in condensed-phase systems are often
squelched due to pronounced decoherence effects. In this case, off-diagonal elements
of the density matrix exp(−βĤ) tend to be small for large |x − x′|; consequently, the
sums over forward and backward real-time paths are not appreciably different. This
means that there is considerable cancellation between these two sums, a fact that
forms the basis of a class of approximation schemes known as semiclassical methods.
These include the Herman-Kluk propagator (1984), the linearized semiclassical ini-
tial value representation (Miller, 2005), the linearized Feynman–Kleinert path-integral
method (Poulsen et al., 2005; Hone et al., 2008), and the forward–backward ap-
proach (Nakayama and Makri, 2005) to name just a few. Although fascinating and
potentially very powerful, semiclassical approaches also carry a relatively high compu-
tational overhead, and we will not discuss them further here. Rather, we will focus on
two increasingly popular approximation schemes for quantum time correlation func-
tions that are based on the use of the imaginary-time path integral. Although these
schemes are somewhat ad hoc, they have the advantage of being computationally in-
expensive and straightforward to implement. They must, however, be used with care
because there is no rigorous basis for this class of methods; because of this, we will
also introduce a procedure for checking the accuracy of their results.

14.6.1 Centroid molecular dynamics

In 1993, J. Cao and G. A. Voth introduced the centroid molecular dynamics (CMD)
method as an approximate technique for computing real-time quantum correlation
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functions. The primary object in this approach is the path centroid defined in eqn.
(12.6.21). Toward the end of Section 12.6.1, we briefly discussed the centroid potential
of mean force (Feynman and Kleinert, 1986), and the CMD approach is rooted in this
concept and an idea put forth by Gillan (1987) for obtaining approximate quantum
rate constants from the centroid density along a reaction coordinate.

CMD is based on the notion that the time evolution of the centroid on this potential
of mean force surface can be used to garner approximate quantum dynamical properties
of a system. In CMD, the centroid for a single particle in one dimension, denoted here
as xc, is postulated to evolve in time according to the following equations of motion

ẋc =
pc

m
, ṗc = −dU0(xc)

dxc
≡ F0(xc) (14.6.16)

(Cao and Voth, 1994a; Cao and Voth, 1996), where m is the physical mass, pc is a
momentum conjugate to xc, and U0(xc) is the centroid potential of mean force given
by

U0(xc) = − 1

β
ln

{(
2πβh̄2

m

)1/2 ∮
Dx(τ) δ(x0 [x(τ)] − xc)e

−S[x(τ)]/h̄

}
, (14.6.17)

where x0[x(τ)] = (1/βh̄)
∫

dτ x(τ). In eqn. (14.6.17), S[x(τ)] is the Euclidean time
action and the δ-function restricts the functional integration to cyclic paths whose
centroid position is xc. Note that eqn. (12.6.23), in the limit P → ∞, is equivalent to
eqn. (14.6.17). Of course, in actual calculations, we use the discretized, finite-P version
of eqn. (12.6.23). The centroid force at xc, F0(xc) is derived from eqn. (14.6.17) simply
by spatial differentiation:

F0(xc) = −
∮

Dx(τ) δ(x0 [x(τ)] − xc)
[

1
βh̄

∫ βh̄

0
dτ ′ U ′(x(τ ′))

]
e−S[x(τ)]/h̄∮

D x(τ) δ(x0 [x(τ)] − xc) e−S[x(τ)]/h̄
. (14.6.18)

In a path-integral molecular dynamics or Monte Carlo calculation, the centroid force
would be computed simply from

F0(xc) = −
〈

1

P

P∑
k=1

∂U

∂xk
δ

(
1

P

P∑
k=1

xk − xc

)〉
f

. (14.6.19)

Although formally exact within the CMD framework, eqns. (14.6.17), (14.6.18), and
eqn. (14.6.19) are of limited practical use: Their evaluation entails a full path integral
calculation at each centroid configuration, which is computationally very demanding
for complex systems.

In order to alleviate this computational burden, an adiabatic approximation, simi-
lar to that of Section 8.10, can be employed (Cao and Voth, 1994b; Cao and Martyna,
1996). In this approach, an ordinary imaginary-time path-integral molecular dynam-
ics calculation in the normal-mode representation of eqn. (12.6.17) is performed with
two small modifications. First, the noncentroid modes are assigned masses that are
significantly lighter than the centroid mass(es) so as to effect an adiabatic decoupling
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between the two sets of modes. According to the analysis of Section 8.10, this al-
lows the centroid potential of mean force to be generated “on the fly” as the CMD
simulation is carried out. The decoupling is achieved by introducing an adiabaticity
parameter γ2 (0 < γ2 < 1), which is used to scale the fictitious kinetic masses of the
internal modes according to m′

k = γ2mλk and therefore accelerate their dynamics.
Second, while the path-integral molecular dynamics schemes of Section 12.6 employ
thermostats on every degree of freedom, in the adiabatic CMD approach, because we
require the actual dynamics of the centroids, only the noncentroid modes are coupled
to thermostats.

The key assumption of CMD is that the Kubo-transformed quantum time correla-
tion function KAB(t) of eqn. (14.6.11), for operators Â and B̂ that are functions of x̂
can be approximated by

KAB(t) ≈ 1

Q(β)

∫
dxcdpc a (xc(0)) b (xc(t)) exp

[
−β

(
p2

c

2m
+ U0(xc)

)]
. (14.6.20)

Here, the function b(xc(t)) is evaluated using the time-evolved centroid variables gener-
ated by eqns. (14.6.16), starting from {xc(0), pc(0)} as initial conditions. An analogous
definition holds for operators Â and B̂ that are functions of momentum only. As dis-
cussed by Hernandez et al. (1995), eqn. (14.6.20) can be generalized for operators that
are functions of both position and momentum using a procedure known as “Weyl op-
erator ordering”(Weyl, 1927; Hillery et al., 1984), which we alluded to in Section 9.2.5
(see eqn. (9.2.51)). CMD is exact in the classical limit and in the limit of a purely har-
monic potential. Away from this limit, position autocorrelation functions are accurate
up to O(h̄3) (Martyna, 1996) for short times up to O(t6) (Braams and Manolopoulos,
2007).

14.6.2 Ring-polymer molecular dynamics

The method known as ring-polymer molecular dynamics (RPMD), originally intro-
duced by Craig and Manolopoulos (2004), is motived by the primitive path-integral
algorithm of eqn. (12.6.4). Craig and Manolopoulos posited that these primitive equa-
tions of motion could be used to extract approximate real-time information. Indeed,
like CMD, the dynamics generated by eqns. (12.6.4) possess the correct harmonic and
classical limits.

The principal features that distinguish RPMD from CMD are threefold. First, the
RPMD fictitious masses are chosen such that each imaginary time slice or bead has the
physical mass m. Second, RPMD uses the full chain to approximate time correlation
functions. Thus, a quantum observable Â(x̂) is assumed to evolve in time according to

AP (t) =
1

P

P∑
k=1

a(xi(t)). (14.6.21)

RPMD, therefore, approximates the Kubo-transformed time correlation function KAB(t)
as

KAB(t) ≈ 1

(2πh̄)P QP (N, V, T )

∫
dP xdP p AP (0)BP (t) e−βP Hcl,P (x,p), (14.6.22)
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where βP = β/P (RPMD simulations are typically carried out at P times the actual
temperature) and

Hcl,P (x, p) =
P∑

k=1

p2
k

2m
+

m

2β2
P h̄2

P∑
k=1

(xk − xk+1)
2 +

P∑
k=1

U(xk) (14.6.23)

with xP+1 = x1. Note that the harmonic bead-coupling and potential energy terms
are taken to be P times larger than their counterparts in eqn. (12.6.3). We adopt
this convention for consistency with Craig and Manolopoulos (2004); it amounts to
nothing more than a rescaling of the temperature from T to PT . For operators linear
in position or momentum, the CMD and RPMD representations of observables are the
same, however, they generally differ for functions that are nonlinear in these variables.

The third difference is that RPMD is purely Newtonian. The equations of motion
are easily derived from eqn. (14.6.23):

ẋk =
pk

m

ṗk = − m

β2
P h̄2 [2xk − xk−1 − xk+1] − ∂U

∂xk
. (14.6.24)

In this dynamics, no thermostats are used on any of the beads since all beads are
treated as dynamical variables. As discussed in Section 13.2.1, however, the use of
eqn. (14.6.22) assumes that the distribution exp[−βP Hcl,P (x, p)] can be adequately
sampled, and as Section 12.6 makes clear, this requires some care. Thus, RPMD is
optimally implemented by performing a fully thermostatted path-integral molecular
dynamics calculation in staging or normal modes. From this trajectory, path configu-
rations are periodically transformed back to primitive variables and saved. From these
saved path configurations, independent RPMD trajectories are initiated, and these
trajectories are then used to compute the approximate Kubo-transformed correlation
function. The position autocorrelation function in RPMD is accurate for short times
up to O(t8) (Braams and Manolopoulos, 2007).

14.6.3 Self-consistent quality control of time correlation functions

The quality of CMD and RPMD correlation functions is often difficult to assess, and
therefore, it is important to have an internal consistency check for these predicted time
correlation functions. The measure we will propose allows the inherent accuracy of the
CMD or RPMD approximation to be evaluated for a given model without having to
rely on experimental data as the final arbiter.

Recall that a CMD or RPMD simulation yields an approximation to the Kubo-
transformed time correlation function. Consider, for example, the velocity autocorre-

lation function Cvv(t) and its Fourier transform C̃vv(ω). Let C̃
(est)
vv (ω) denote a CMD

or RPMD approximation to C̃vv(ω). Eqn. (14.6.15) allows us to reconstruct the asso-

ciated imaginary time correlation function R2
(est)(τ) from C̃

(est)
vv (ω). The approximate

R̄2(τ) function can then be compared directly to the numerically exact mean square
displacement function R2(τ) computed from the same simulation (see eqn. (14.6.14)).
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Pérez et al. (2009) suggested a dimensionless quantitative descriptor for the quality of
an approach (CMD/RPMD) can be defined by

χ2 =
1

β

∫ β

0

dτ

[
R̄2(τ) − R2(τ)

R2(τ)

]2

. (14.6.25)

If CMD or RPMD were able to generate exact quantum time correlation functions,
then χ2 would be exactly zero. Thus, the larger χ2, the poorer is the CMD or RPMD
approximation to the true correlation function.

As illustrative examples of the CMD and RPMD schemes and the error measure
in eqn. (14.6.25), we consider two one-dimensional systems with potentials given by
U(x) = x2/2 + 0.1x3 + 0.01x4 and U(x) = x4/4. These potentials are simulated at
temperature of β = 1 and β = 8 with P = 8 and P = 32 beads, respectively. For
the CMD simulations, the adiabaticity parameter is γ2 = 0.005. Figs. 14.7 and 14.8
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Fig. 14.7 Kubo-transformed position autocorrelation function for a mildly anharmonic po-

tential U(x) = x2/2+0.1x3 +0.01x4 at inverse temperatures β = 1 (top) and β = 8 (bottom).

show the Kubo-transformed time correlation functions Kxx(t) for these two prob-
lems, respectively, comparing CMD and RPMD to the exact correlation functions,
which are available for these one-dimensional examples via numerical matrix multipli-
cation (Thirumalai et al., 1983). Since the first potential is very close to harmonic, we
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expect CMD and RPMD to perform well compared to the exact correlation functions,
which, as Fig. 14.8 shows, they do. For the strongly anharmonic potential U(x) = x4/4,
both methods are poor approximations to the exact correlation function. We notice,
however, that the results improve at the higher temperature (lower β) for the mildly
anharmonic potential, which is expected, as the higher temperature is closer to the
classical limit. This trend is consistent with a study by Witt et al. (2009), who found
significant deviations of vibrational spectra from the correct results at low tempera-
tures. In particular, in a subsequent study by Ivanov et al. (2010), CMD was shown to
produce severe artificial redshifts in high-frequency regions of vibrational spectra. For
the quartic potential, the results are actually worse at high temperature indicating
that at low temperature (high β), the quartic potential is closer to the harmonic limit
for which CMD and RPMD are exact.
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Fig. 14.8 Kubo-transformed position autocorrelation function for a quartic potential

U(x) = x4/4 at inverse temperatures β = 1 (top) and β = 8 (bottom).

The second example is a more realistic one of fluid para-hydrogen, described by a
potential model of Silvera and Goldman (1978). Following Miller and Manolopoulos
(2005) and Hone et al. (2006), the system is simulated at a temperature of T = 14
K, a density of ρ =0.0234 Å−1, and N = 256 molecules subject to periodic boundary
conditions. In addition, we take P = 32 beads to discretize the path integral, and for
CMD, the adiabaticity parameter is taken to be γ2 = 0.0444. Fig. 14.9(a) shows the



Quantum time-dependent statistical mechanics

Kubo-transformed velocity autocorrelation functions for this system from CMD and
RPMD. The two methods appear to be in excellent agreement with each other. In fact,
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Fig. 14.9 (a) Velocity autocorrelation functions for para-hydrogen at T = 14 K for CMD

and RPMD simulations. (b) Exact imaginary-time mean-square displacements and imagi-

nary-time mean-square displacements reconstructed from the approximate CMD and RPMD

real-time correlation functions in part (a).

if these velocity autocorrelation functions are used to compute the diffusion constant
using the Green-Kubo theory in eqn. (13.3.33), we obtain D = 0.306 Å2/ps for CMD
and D = 0.263 Å2/ps for RPMD, both of which are in reasonable agreement with the
experimental value of 0.4 Å2/ps (Miller and Manolopoulos, 2005). Interestingly, we see
that the correlation function of this condensed-phase system decays to zero in a short
time, something which is not uncommon in the condensed phase at finite tempera-
ture. In Fig. 14.9(b), we show the imaginary-time mean-square displacements R2(τ)
computed directly from an imaginary-time path-integral calculation and estimated
from the CMD and RPMD approximate real-time correlation functions. Both approx-
imations miss the true imaginary-time data, particularly in the peak region around
τ = βh̄/2. The χ2 error measure for both cases is 0.0089 for RPMD and 0.0056 for
CMD. Interestingly, although Braams and Manolopoulos (2007) showed that RPMD
is a more accurate approach at very short times, CMD seems to give a slightly better
approximation to the true correlation function overall.

14.7 Problems

14.1. a. Derive eqns. (14.4.7) and (14.4.8).

b. Show that the Fourier transforms of correlation functions 〈x̂(0)x̂(t)〉 and
〈x̂(t)x̂(0)〉 are related by

1

2π

∫ ∞

−∞
dt e−iωt〈x̂(0)x̂(t)〉 = eβh̄ω 1

2π

∫ ∞

−∞
dt e−iωt〈x̂(t)x̂(0)〉.
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c. Show that the Fourier transform of 〈x̂(t)x̂(0)〉 is related to its classical
counterpart by

1

2π

∫ ∞

−∞
dt e−iωt 1

2
〈[x̂(t), x̂(0)]+〉 =

βh̄ω

2
tanh(βh̄ω/2)

1

2π

∫ ∞

−∞
dt e−iωt〈x(t)x(0)〉cl.

14.2. a. Derive eqns. (14.6.6) and (14.6.12).

∗b. Derive eqns. (14.6.8) through (14.6.10).

14.3. Derive eqn. (14.6.15).

14.4. A quantum harmonic oscillator of mass m and frequency ω is subject to a
time-dependent perturbation Ĥ1(t) = −αx̂ exp(−t2/τ2), t ∈ (−∞,∞). At
t0 = −∞, the oscillator is in its ground state.
a. To the lowest nonvanishing order in perturbation theory, calculate the

probability of a transition from the ground to the first excited state as
t → ∞.

b. To the lowest nonvanishing order in perturbation theory, calculate the
probability of a transition from the ground to the second excited state as
t → ∞.

14.5. The time-dependent Schrödinger equation for a single particle of mass m and
charge −e moving in a potential U(r) subject to an electromagnetic field is{

− 1

2m

[
−ih̄∇− e

c
A(r, t)

]2

− eφ(r, t) + V (r)

}
ψ(r, t) = ih̄

∂

∂t
ψ(r, t).

Show that the Schrödinger equation is invariant under a gauge transformation

A′(r, t) = A(r, t) −∇χ(r, t)

φ′(r, t) = φ(r, t) +
1

c

∂

∂t
χ(r, t)

ψ′(r, t) = e−ieχ(r,t)/h̄cψ(r, t).

14.6. Consider the free rotational motion of a rigid heteronuclear diatomic molecule
of (fixed) bond length R and moment of inertia I = μR2, where μ is the
reduced mass, about an axis through its center of mass perpendicular to the
internuclear bond axis. The molecule is constrained to rotate in the xy plane
only. One of the atoms carries a charge q and the other a charge −q.
a. Ignoring center-of-mass motion, write down the Hamiltonian, Ĥ0 for the

molecule.
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b. Find the eigenvalues and eigenvectors of Ĥ0.

c. The molecule is exposed to spatially homogeneous, monochromatic radi-
ation with an electric field E(t) given by

E(t) = E(ω)eiωtx̂,

where x̂ is the unit vector in the x-direction. Write down the perturbation
Hamiltonian Ĥ1.

d. Calculate the energy spectrum Q(ω) for ω > 0. Interpret your results,
and in particular, explain how the allowed absorptions and emissions
are manifest in your final expression. Plot the absorption part of your
spectrum. Where do you expect the peak intensity to occur?

Hint: Consider using a convergence factor, exp(−ε|t|), and let ε to go 0
at the end of the calculation.

e. Based on your results from parts (a)–(d), plot the spectrum three-dimensional
rigid rotor, for which the energy eigenvalues are Elm = h̄2l(l + 1)/2I and
m = −l, ..., l is the quantum number for the z-component of angular
momentum. Where do you expect the peak intensity to occur in the 3-
dimensional case?

14.7. Derive a discrete path-integral representation for the Kubo-transformed quan-
tum time correlation function KAB(t) defined in eqn. (14.6.11).

14.8. Consider two spin-1/2 particles at fixed points in space a distance R apart
and interacting with a magnetic field B = (0, 0, B). The particles carry charge
q and −q, respectively. The Hamiltonian of the system is

Ĥ = −γB · Ŝ − q2

R
,

where Ŝ = Ŝ1 + Ŝ2 is the total spin, and γ is the spin gyromagnetic ratio.

a. What are the allowed energy levels of this system?

b. Suppose that a time-dependent perturbation of the form

Ĥ1(t) = −γb · Ŝe−t2/τ2
,

where b = (b, 0, 0) is applied at t = −∞. At t = −∞, the system is in its
unperturbed ground state. To first order in perturbation theory, what is
the probability, as t −→ ∞, that the system will make a transition from
its ground state to a state with energy −q2/R?
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14.9. The density of vibrational states, also known as the power spectrum or spec-
tral density, is the Fourier transform of the velocity autocorrelation function:

I(ω) =
1

2π

∫ ∞

−∞
dt e−iωtCvv(t).

I(ω) encodes information about the vibrational modes of a system, however,
it does not provide any information about net absorption intensities. For
the two model velocity autocorrelation functions in Problem 13.1, calculate
the density of vibrational states and interpret them in terms of the physical
situations described by these two model correlation functions.

∗14.10. For the discrete correlation function GAB,P (t) defined in eqn. (14.6.8), we
could analyze the importance of the phase factor Φ(x1, ..., x2P ) by calculating
its fluctuation

(δΦ)2 ≡ 〈Φ2〉 − 〈Φ〉2 = 〈(Φ − 〈Φ〉)2〉
with respect to an equilibrium discrete path integral consisting of 2P imag-
inary time points. Using the path-integral virial theorem in eqn. (12.6.33)
derive a virial estimator for the above average.

14.11. Derive analytical expressions for the imaginary-time mean-square diaplace-
ment of a free particle in 1, 2, and 3 dimensions. In particular, show that
in d dimensions, R2(τ) is an inverted parabola, symmetric about the point
τ = βh̄/2. For each number of dimensions, sketch the graph of R2(τ) as a
function of τ . Finally, determine the numerical value of R2(βh̄/2) in anstroms
at T = 300 K for an electron and for a proton.
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The Langevin and generalized
Langevin equations

15.1 The general model of a system plus a bath

Many problems in chemistry, biology, and physics do not involve homogeneous systems
but are concerned, rather, with a specific process that occurs in some sort of medium.
Most biophysical and biochemical processes occur in an aqueous environment, and
one might be interested in a specific conformational change in a protein or the bond-
breaking event in a hydrolysis reaction. In this case, the water solvent and other degrees
of freedom not directly involved in the reaction serve as the “medium,” which is often
referred to generically as a bath. Organic reactions occur in a variety of different
solvents, including water, methanol, dimethyl sulfoxide, and carbon tetrachloride. For
example, a common reaction such as a Diels-Alder reaction can occur in water or in
a room-temperature ionic liquid. In surface physics, we might be interested in the
addition of an adsorbate to a particular site on the surface. If a reaction coordinate
(see Section 8.6) for the adsorption process can be identified, the remaining degrees of
freedom, including the bulk below the surface, can be treated as the environment or
bath. Many other examples fall into this general paradigm, and it is, therefore, useful
to develop a framework for treating such problems.

In this chapter, we will develop an approach that allows the bath degrees of free-
dom to be eliminated from a problem, leaving only coordinates of interest to be treated
explicitly. The resulting equation of motion in the reduced subspace, known as the
generalized Langevin equation (1905, 1908) after the French physicist Paul Langevin
(1872–1946), can only be taken as rigorous in certain idealized limits. However, as
a phenomenological theory, the generalized Langevin equation is a powerful tool for
understanding of a wide variety of physical processes. These include theories of chem-
ical reaction rates (Kramers, 1940; Grote and Hynes, 1980; Pollak et al., 1989; Pollak,
1990; Pollak et al., 1990) and of vibrational dephasing and energy relaxation to be
discussed in Section 15.4.

In order to introduce the basic paradigm of a subsystem interacting with a bath,
consider a classical system with generalized coordinates q1, ..., q3N . Suppose we are
interested in a simple process that can be described by a single coordinate, which we
arbitrarily take to be q1. We will call q1 and the remaining coordinates q2, ..., q3N the
system and bath coordinates, respectively. Moreover, in order to make the notation
clearer, we will rename q1 as q and the remaining bath coordinates as y1, ..., yn, where
n = 3N−1. In order to avoid unnecessary complexity at this point, we will assume that
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the system coordinate q is a simple coordinate, such as a distance between two atoms
or a Cartesian spatial direction (in Section 15.7, we will introduce a general framework
for treating the problem that allows this restriction to be lifted). The Hamiltonian for
q and its conjugate momentum p in the absence of the bath can then be written simply
as

H(q, p) =
p2

2μ
+ V (q), (15.1.1)

where μ is the mass associated with q and V (q) is a potential energy contribution
that depends only on q and, therefore, is present even without the bath. The system is
coupled to the bath via a potential Ubath(q, y1, ..., yn) that involves both the coupling
terms between the system and the bath and terms describing the interactions among
the bath degrees of freedom. The total potential is

U(q, y1, ..., yn) = V (q) + Ubath(q, y1, ..., yn). (15.1.2)

As an example, consider a system originally formulated in Cartesian coordinates
r1, ..., rN described by a pair potential

U(r1, ..., rN ) =
N∑

i=1

N∑
j=i+1

u(|ri − rj |). (15.1.3)

Suppose the distance r = |r1 − r2| between atoms 1 and 2 is a coordinate of interest,
which we take as the system coordinate. All other degrees of freedom are assigned
as bath coordinates. Suppose, further, that atoms 1 and 2 have the same mass. We
first transform to the center of mass and relative coordinates between atoms 1 and 2
according to

R =
1

2
(r1 + r2) r = r1 − r2, (15.1.4)

the inverse of which is

r1 = R +
1

2
r r2 = R − 1

2
r. (15.1.5)

The potential can then be expressed as

U(r1, ..., rN ) = u(|r1 − r2|) +

N∑
i=3

[u(|r1 − ri|) + u(|r2 − ri|)] +
N∑

i=3

N∑
j=i+1

u(|ri − rj |)

= u(r) +
N∑

i=3

[
u

(∣∣∣∣R +
1

2
rn − ri

∣∣∣∣
)

+ u

(∣∣∣∣R − 1

2
rn − ri

∣∣∣∣
)]

+

N∑
i=3

N∑
j=i+1

u(|ri − rj |), (15.1.6)

where n = (r1 − r2)/|r1 − r2| = r/r is the unit vector along the relative coordinate
direction. Eqn. (15.1.6) is of the same form as eqn. (15.1.2), in which the first term is
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equivalent to V (q), the term in brackets represents the interaction between the system
and the bath, and the final term is a pure bath–bath interaction.

Suppose the bath potential Ubath can be reasonably approximated by an expan-
sion up to second order about a minimum characterized by values q̄, ȳ1, ..., ȳn of the
generalized coordinates. The condition for Ubath to have a minimum at these values is

∂Ubath

∂qα

∣∣∣∣
{q=q̄,y=ȳ}

= 0, (15.1.7)

where all coordinates are set equal to their values at the minimum. Performing the
expansion up to second order gives

Ubath(q, y1, ..., yn) ≈ Ubath(q̄, ȳ1, ..., ȳn) +
∑
α

∂Ubath

∂qα

∣∣∣∣
{q=q̄,y=ȳ}

(qα − q̄α)

+
1

2

∑
α,β

(qα − q̄α)

[
∂2Ubath

∂qα∂qβ

∣∣∣∣
{q=q̄,y=ȳ}

]
(qβ − q̄β). (15.1.8)

The second term in eqn. (15.1.8) vanishes by virtue of the condition in eqn. (15.1.7).
The first term is a constant that can be made to vanish by shifting the absolute zero
of the potential (which is, anyway, arbitrary). Thus, the bath potential reduces, in this
approximation, to

Ubath(q, y1, ..., yn) =
1

2

n+1∑
α=1

n+1∑
β=1

q̃αHαβ q̃β , (15.1.9)

where Hαβ = ∂2Ubath/∂qα∂qβ |q=q̄,{y=ȳ} and q̃α = qα − q̄α are the displacements of
the generalized coordinates from their values at the minimum of the potential. Note
that since we have already identified the purely q-dependent term in eqn. (15.1.6),
the H11 arising from the expansion of the bath potential can be taken to be zero or
absorbed into the q-dependent function V (q). Since our treatment from this point on
will refer to the displacement coordinates, we will drop the tildes and let qα refer to the
displacement of a coordinate from its value at the minimum. Separating the particular
coordinate q from the other coordinates gives a potential of the form

Ubath(q, y1, ..., yn) =
∑

α

Cαqyα +
1

2

n∑
α=1

n∑
β=1

yαH̃αβyβ, (15.1.10)

where Cα = H1α = Hα1 and H̃αβ is the n × n block of Hαβ coupling only the
coordinates y1, ..., yn. The potential, though quadratic, is still somewhat complicated
because all of the coordinates are coupled through the matrix Hαβ . Thus, in order to
simplify the potential, we introduce a linear transformation of the coordinates y1, ..., yn

to x1, ..., xn via

yα =

n∑
β=1

Rαβxβ , (15.1.11)

where Rαβ is an orthogonal matrix that diagonalizes the symmetric matrix H̃αβ via

H̃diag = RTH̃R, where RT is the transpose of R and H̃diag contains the eigenvalue of H̃
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on its diagonal. Letting kα denote these eigenvalues and introducing the transformation
into eqn. (15.1.10), we obtain

Ubath(q, x1, ..., xn) =
∑
α

gαqxα +
1

2

∑
α

kαx2
α, (15.1.12)

where gα =
∑

β CβRβα. The potential energy in eqn. (15.1.12) is known as a har-
monic bath potential; it also contains a bilinear coupling to the coordinate q. We will
henceforth refer to the coordinate q as the “system coordinate.” In order to construct
the full Hamiltonian in the harmonic bath approximation, we introduce a set of mo-
menta p1, ..., pn, assumed to be conjugate to the coordinates x1, ..., xn, and a set of
bath masses m1, ..., mn. The full Hamiltonian for the system coordinate coupled to a
harmonic bath can be written as

H =
p2

2μ
+ V (q) +

n∑
α=1

[
p2

α

2mα
+

1

2

n∑
α=1

mαω2
αx2

α

]
+ q

n∑
α=1

gαxα, (15.1.13)

where the spring constants kα have been replaced by the bath frequencies ω1, ..., ωn

using kα = mαω2
α. We must not forget that eqn. (15.1.13) represents a highly idealized

situation in which the possible curvilinear nature of the generalized coordinates is
neglected in favor of a very simple model of the bath (Deutsch and Silbey, 1971;
Caldeira and Leggett, 1983).

A real bath is often characterized by a continuous distribution of frequencies I(ω)
called the spectral density or density of states (see Problem 14.9). I(ω) is obtained by
taking the Fourier transform of the velocity autocorrelation function.1 The physical
picture embodied in the harmonic-bath Hamiltonian is one in which a real bath is
replaced by an ideal bath under the assumption that the motion of the real bath is
dominated by small displacements from an equilibrium point described by discrete
frequencies ω1, ..., ωn. This replacement is tantamount to expressing I(ω) as a sum of
harmonic-oscillator spectral density functions. It is important to note that the har-
monic bath does not allow for diffusion of bath particles. In general, a set of frequencies,
ω1, .., ωn, effective masses m1, ..., mn, and coupling constants to the system g1, ..., gn

need to be determined in order to reproduce at least some of the properties of the
real bath. The extent to which this can be done, however, depends on the particular
nature of the original bath. For the purposes of the subsequent discussion, we will
assume that a reasonable choice can be made for these parameters and proceed to
work out the classical dynamics of the harmonic-bath Hamiltonian.

15.2 Derivation of the generalized Langevin equation

We begin by deriving the classical equations of motion generated by eqn. (15.1.13).
From Hamilton’s equations, there are

1The density of states encodes the information about the vibrational modes of the bath; however,
it does not provide any information about absorption intensities.
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q̇ =
∂H

∂p
=

p

μ

ṗ = −∂H

∂q
= −dV

dq
−

∑
α

gαxα

ẋα =
∂H

∂pα
=

pα

mα

ṗα = − ∂H

∂xα
= −mαω2

αxα − gαq, (15.2.1)

which can be written as the following set of coupled second-order differential equations:

μq̈ = −dV

dq
−

∑
α

gαxα

mαẍα = −mαω2
αxα − gαq. (15.2.2)

Eqns. (15.2.2) must be solved subject to a set of initial conditions

{q(0), q̇(0), x1(0), ..., xn(0), ẋ1(0), ..., ẋn(0)}

The second equation for the bath coordinates can be solved in terms of the system
coordinate q by Laplace transformation, assuming that the system coordinate q acts
as a kind of driving term. The Laplace transform of a function f(t), alluded to briefly
in Section 14.6, is one of several types of integral transforms defined to be

f̃(s) =

∫ ∞

0

dt e−stf(t). (15.2.3)

As we will now show, Laplace transforms are particularly useful for solving linear
differential equations. A more detailed discussion of Laplace transforms is given in
Appendix D. From eqn. (15.2.3), it can be shown straightforwardly that the Laplace
transforms of df/dt and d2f/dt2 are given, respectively, by∫ ∞

0

dt e−st df

dt
= sf̃(s) − f(0)

∫ ∞

0

dt e−st d
2f

dt2
= s2f̃(s) − f ′(0) − sf(0). (15.2.4)

Finally, the Laplace transform of a convolution of two functions f(t) and g(t) can be
shown to be ∫ ∞

0

dt e−st

∫ t

0

dτf(τ)g(t − τ) = f̃(s)g̃(s). (15.2.5)

Taking the Laplace transform of both sides of the second line in eqn. (15.2.2) yields
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s2x̃α(s) − ẋα(0) − sxα(0) + ω2
αx̃α(s) = − gα

mα
q̃(s). (15.2.6)

The use of the Laplace transform has the effect of turning a differential equation into
an algebraic equation for x̃α(s). Solving this equation for x̃α(s) gives

x̃α(s) =
s

s2 + ω2
α

xα(0) +
ω2

α

s2 + ω2
α

ẋα(0) − gα

mα

q̃(s)

s2 + ω2
α

. (15.2.7)

We now obtain the solution to the differential equation by computing the inverse
transform x̃α(s) in eqn. (15.2.7). Applying the inverse Laplace transform relations in
Appendix D, recognizing that the last term in eqn. (15.2.7) is the product of two
Laplace transforms, we find that the solution for xα(t) is

xα(t) = xα(0) cosωαt +
1

ωα
ẋα(0) sin ωαt − gα

mαωα

∫ t

0

dτ sin ωα(t − τ)q(τ). (15.2.8)

For reasons that will be clear shortly, we integrate the convolution term by parts to
express it in the form∫ t

0

dτ sin ωα(t − τ)q(τ) =
1

ωα
[q(t) − q(0) cosωαt]

− 1

ωα

∫ t

0

dτ cosωα(t − τ)q̇(τ). (15.2.9)

Substituting eqn. (15.2.9) and eqn. (15.2.8) into the first line of eqn. (15.2.2) yields
the equation of motion for q:

μq̈ = −dV

dq
−

∑
α

gαxα(t)

= −dV

dq
−

∑
α

gα

[
xα(0) cosωαt +

pα(0)

mαωα
sin ωαt +

gα

mαω2
α

q(0) cosωαt

]

−
∑
α

g2
α

mαω2
α

∫ t

0

dτ q̇(τ) cos ωα(t − τ) +
∑
α

g2
α

mαω2
α

q(t). (15.2.10)

Eqn. (15.2.10) is in the form of an integro-differential equation for the system coor-
dinate that depends explicitly on the bath dynamics. Although the dynamics of each
bath coordinate are relatively simple, the collective effect of the bath on the system
coordinate can be nontrivial, particularly if the initial conditions of the bath are ran-
domly chosen, the distribution of frequencies is broad, and the frequencies are not all
commensurate. Indeed, the bath might appear to affect the system coordinate in a
seemingly random and unpredictable manner, especially if the number of bath degrees
of freedom is large. This is just what we might expect for a real bath. Thus, in order
to motivate this physical picture, the following quantities are introduced:
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R(t) = −
∑
α

gα

[(
xα(0) +

gα

mαω2
α

q(0)

)
cosωαt +

pα(0)

mαωα
sin ωαt

]
, (15.2.11)

ζ(t) =
∑

α

g2
α

mαω2
α

cosωαt, (15.2.12)

W (q) = V (q) −
∑
α

g2
α

mαω2
α

q2. (15.2.13)

In terms of these quantities, the equation of motion for the system coordinate reads

μq̈ = −dW

dq
−

∫ t

0

dτ q̇(τ)ζ(t − τ) + R(t). (15.2.14)

Eqn. (15.2.14) is known as the generalized Langevin equation (GLE). The quantity
ζ(t) in the GLE is called the dynamic friction kernel, R(t) is called the random force,
and W (q) is identified as the potential of mean force acting on the system coordi-
nate. Despite the simplifications of the bath inherent in eqn. (15.2.14), the GLE can
yield considerable physical insight without requiring large-scale simulations. Before
discussing predictions of the GLE, we will examine each of the terms in eqn. (15.2.14)
and provide a physical interpretation of them.

15.2.1 The potential of mean force

Potentials of mean force were first discussed in Chapter 8 (see eqns. (8.6.4) and (8.6.5)).
For a true harmonic bath, the potential of mean force is given by the simple expression
in eqn. (15.2.13); however, as a phenomenological theory, the GLE assumes that the
potential of mean force has been generated by some other means (using techniques from
Chapter 8, for example the blue moon ensemble of Section 8.7 or umbrella sampling
approach of Section 8.8) and attempts to model the dynamics of the system coordinate
on this surface using the friction kernel and random force to represent the influence of
the bath. The use of the potential of mean force in the GLE assumes a quasi-adiabatic
separation between the system and bath motions. However, considering the GLE’s
phenomenological viewpoint, it is also possible to use the bare potential V (q) and use
the GLE to model the dynamics on this surface instead. Such a model can be derived
from a slightly modified version of the harmonic-bath Hamiltonian:

H =
p2

2μ
+ V (q) +

n∑
α=1

[
p2

α

2mα
+

1

2

n∑
α=1

mαω2
α

(
xα +

gα

mαω2
α

q

)2
]

. (15.2.15)

15.2.2 The random force

The question that immediately arises concerning the random force in eqn. (15.2.14) is
why it is called “random” in the first place. After all, eqn. (15.2.11) defines a perfectly
deterministic quantity. To understand why R(t) can be treated as a random process,
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we note that a real bath, which contains a macroscopically large number of degrees
of freedom, will affect the system in what appears to be a random manner, despite
the fact that its time evolution is completely determined by the classical equations
of motion. Recall, however, that the basic idea of ensemble theory is to disregard the
detailed motion of every degree of freedom in a macroscopically large system and to
replace this level of detail by an ensemble average. It is in this spirit that we replace
the R(t), defined microscopically in eqn. (15.2.11), with a truly random process defined
by a particular time sequence of random numbers and a set of related time correlation
functions satisfied by this sequence.

We first note that the time correlation functions 〈q(0)R(t)〉 and 〈q̇(0)R(t)〉 are
identically zero for all time. To see this, consider first the correlation function

〈q̇(0)R(t)〉 =

〈
p(0)

μ
R(t)

〉

= − 1

Q

∫
dp dq exp

{
−β

[
p2

2μ
+ V (q)

]}

×
∫ n∏

α=1

dxα dpα exp

{
−β

[
n∑

α=1

(
p2

α

2mα
+

1

2

n∑
α=1

mαω2
αx2

α

)
+ q

n∑
α=1

gαxα

]}

× p

μ

∑
α

gα

[(
xα +

gα

mαω2
α

q

)
cosωαt +

pα

mαωα
sin ωαt

]
, (15.2.16)

where the average is taken over a canonical ensemble and Q is the partition function
for the harmonic-bath Hamiltonian. Since R(t) does not depend on the system mo-
mentum p, the integral over p is of the form

∫ ∞
−∞ dp p exp(−βp2/2μ) = 0, and the

entire integral vanishes. It is left as an exercise to show that the correlation func-
tion 〈q(0)R(t)〉 = 0 (see Problem 15.1). The vanishing of the correlation functions
〈q(0)R(t)〉 and 〈q̇(0)R(t)〉 is precisely what we would expect from a random bath
force, and hence we require that these correlation functions vanish for any model ran-
dom process. Finally, the same manipulations employed above can be used to derive
autocorrelation function 〈R(0)R(t)〉 with the result

〈R(0)R(t)〉 =
1

β

∑
α

g2
α

mαω2
α

cosωαt = kT ζ(t), (15.2.17)

which shows that the random force and the dynamic friction kernel are related (see
Problem 15.1). Eqn. (15.2.17) is known as the second fluctuation dissipation theo-
rem (Kubo et al., 1985). Once again, we require that any model random process we
choose satisfy this theorem.

If the deterministic definition of R(t) in eqn. (15.2.11) is to be replaced by a model
random process, how should such a process be described mathematically? There are
various ways to construct random time sequences that give the correct time correlation
functions, depending on the physics of the problem. For instance, the influence of a
relatively high-density bath, which affects the system via only soft collisions due to
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low amplitude thermal fluctuations, is different from a low-density, high-temperature
bath that influences the system through mostly strong, impulsive collisions. Here,
we construct a commonly used model, known as a Gaussian random process, for the
former type of bath. Since for most potentials, the GLE must be integrated numer-
ically, we seek a discrete description of R(t) that acts at M discrete time points
0, Δt, 2Δt, ..., MΔt. At the kth point of a Gaussian random process, Rk ≡ R(kΔt)
can be expressed as the sum of a Fourier sine and cosine series

Rk =

M∑
j=1

[
aj sin

(
2πjk

M

)
+ bj cos

(
2πjk

M

)]
, (15.2.18)

where the coefficients aj and bj are random numbers sampled from a Gaussian distri-
bution of the form

P (a1, ..., aM , b1, ..., bM ) =

M∏
k=1

1

2πσ2
k

e−(a2
k+b2k)/2σ2

k . (15.2.19)

For the random force to satisfy eqn. (15.2.17) at each time point, the width, σk, of the
distribution must be chosen according to

σ2
k =

1

βM

M∑
j=0

ζ(jΔt) cos

(
2πjk

M

)
, (15.2.20)

which can be easily evaluated using fast Fourier transform techniques. Since the ran-
dom process in eqn. (15.2.18) is periodic with period M , it clearly cannot be used for
more than a single period. This means that the number of points M in the trajectory
must be long enough to capture the dynamical behavior sought.

15.2.3 The dynamic friction kernel

The convolution integral term in eqn. (15.2.14)

∫ t

0

dτ q̇(τ)ζ(t − τ)

is called the memory integral because it depends, in principle, on the entire history
of the evolution of q. Physically, this term expresses the fact that the bath requires a
finite time to respond to any fluctuation in the motion of the system and that this lag
affects how the bath subsequently affects the motion of the system. Thus, the force
that the bath exerts on the system at any point in time depends on the prior motion of
the system coordinate q. The memory of the motion of the system coordinate retained
by the bath is encoded in the memory kernel or dynamic friction kernel, ζ(t). Note
that ζ(t) has units of mass·(time)−2. Since the dynamic friction kernel is actually an
autocorrelation function of the random force, it follows that the correlation time of the
random force determines the decay time of the memory kernel. The finite correlation
time of the memory kernel indicates that the bath, in reality, retains memory of the
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system motion for a finite time tmem. One might expect, therefore, that the memory
integral could be replaced, to a very good approximation, by an integral over a finite
interval [t − tmem, t]:∫ t

0

dτ q̇(τ)ζ(t − τ) ≈
∫ t

t−tmem

dτ q̇(τ)ζ(t − τ). (15.2.21)

Such an approximation proves very convenient in numerical simulations based on the
generalized Langevin equation, as it permits the memory integral to be truncated,
thereby reducing the computational overhead needed to evaluate it.

We now consider a few interesting limiting cases of the friction kernel. Suppose,
for example, that the bath is able to respond infinitely quickly to the motion of the
system. This would occur when the system mass, μ, is very large compared to the bath
masses, μ � mα. In such a case, the bath retains essentially no memory of the system
motion, and the memory kernel reduces to a simple δ-function in time:

ζ(t) = lim
ε→0

ζ0δ(t − ε). (15.2.22)

The introduction of the parameter ε ensures that the entire δ-function is integrated
over. Alternatively, we can recognize that for ε = 0, only “half” of the δ-function is
included in the interval t ∈ [0,∞), since δ(t) is an even function of time, and therefore,
we could also define ζ(t) as 2ζ0δ(t). Substituting eqn. (15.2.22) into eqn. (15.2.14) and
taking the limit gives an equation of motion for q of the form

μq̈ = −dW

dq
− lim

ε→0
ζ0

∫ t

0

dτ q̇(τ)δ(t − ε − τ) + R(t)

= −dW

dq
− lim

ε→0
ζ0q̇(t − ε) + R(t)

= −dW

dq
− ζ0q̇(t) + R(t), (15.2.23)

where all quantities on the right are evaluated at time t. Eqn. (15.2.23) is known as the
Langevin equation (LE), and it should be clear that the LE is ultimately a special case
of the GLE. The LE describes the motion of a system in a potential W (q) subject to an
ordinary dissipative friction force as well as a random force R(t). Langevin originally
employed eqn. (15.2.23) as a model for Brownian motion, where the mass disparity
clearly holds (Langevin, 1908). The most common use of the LE is as a thermostatting
method for generating a canonical distribution (see Section 15.5). The quantity ζ0 is
known as the static friction coefficient, defined generally as

ζ0 =

∫ ∞

0

dt ζ(t). (15.2.24)

Note that the random force R(t) is now completely uncorrelated, as it is required to
satisfy

〈R(0)R(t)〉 = 2kT ζ0δ(t). (15.2.25)

In addition, note that ζ0 has units of mass·(time)−1.
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The second limiting case we will consider is a sluggish bath that responds very
slowly to changes in the system coordinate. For such a bath, we can take ζ(t) approxi-
mately constant over a long time interval, i.e., ζ(t) ≈ ζ(0) ≡ ζ, for times that are short
compared to the actual response time of the bath. In this case, the memory integral
can be approximated as∫ t

0

dτ q̇(τ)ζ(t − τ) ≈ ζ

∫ t

0

dτ q̇(τ) = ζ(q(t) − q(0)), (15.2.26)

and eqn. (15.2.14) becomes

μq̈ = − d

dq

(
W (q) +

1

2
ζ(q − q(0))2

)
+ R(t). (15.2.27)

Here, the effect of friction is now manifest as an extra harmonic term in the potential

q

W(q)

Fig. 15.1 Example of the dynamic caging phenomenon. W (q) is taken to be the double-well

potential. The potential ζ(q − q0)
2/2 is the single-minimum solid line, and the dashed line

shows the potential shifted to the top of the barrier region.

W (q), and all terms on the right are, again, evaluated at time t. This harmonic term
in W (q) has the effect of trapping the system in certain regions of configuration space,
an effect known as dynamic caging. Fig. 15.1 illustrates how the caging potential
ζ[q − q(0)]2/2 can potentially trap the particle at what would otherwise be a point of
unstable equilibrium. An example of this is a dilute mixture of small, light particles
in a bath of large, heavy particles. In spatial regions where heavy particle cluster
forms a slowly moving spatial “cage,” the light particles can become trapped. Only
rare fluctuations in the bath open up this rigid structure, allowing the light particles
to escape the cage. After such an escape, however, the light particles can become
trapped again in another cage newly formed elsewhere for a comparable time interval.
Not unexpectedly, dynamic caging can cause a significant decrease in the rate of light-
particle diffusion.
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15.3 Analytically solvable examples based on the GLE

In the next few subsections, a number of simple yet illustrative examples of both
Langevin and generalized Langevin dynamics will be examined in detail. In particular,
we will study the free Brownian and compute its diffusion constant and then consider
the free particle in a more general bath with memory. Finally, we will consider the
harmonic oscillator and derive well-known relations for the vibrational and energy
relaxation times.

15.3.1 The free Brownian particle

A particle diffusing in a dissipative bath with no external forces is known as a free
Brownian particle. The dynamics is described by eqn. (15.2.23) with W (q) = 0:

μq̈ = −ζ0q̇ + R(t). (15.3.1)

Since only q̈ and q̇ appear in the equation of motion, we can rewrite eqn. (15.3.1) in
terms of the velocity v = q̇

μv̇ = −ζ0v + R(t). (15.3.2)

Eqn. (15.3.2) can be treated as an inhomogeneous first-order equation that can be
solved in terms of R(t). In order to derive the solution for a given initial value v(0),
we take the Laplace transform of both sides, which yields

μ(sṽ(s) − v(0)) = −ζ0ṽ(s) + R̃(s). (15.3.3)

Defining γ0 = ζ0/μ and f(t) = R(t)/μ and solving for ṽ(s) gives

ṽ(s) =
v(0)

s + γ0
+

f̃(s)

s + γ0
. (15.3.4)

The function 1/(s + γ0) has a single pole at s = −γ0. Hence, the inverse Laplace
transform (see Appendix D) yields the solution for v(t) as

v(t) = v(0)e−γ0t +

∫ t

0

dτ f(τ)e−γ0(t−τ). (15.3.5)

From eqn. (15.3.5), it is clear that the solution for a free Brownian particle has two
components: a transient component dependent on v(0) that decays at large t, and a
steady-state term involving a convolution of the random force with exp(−γ0t). Thus,
the system quickly loses memory of its initial condition, and the dynamics for long
times is determined by the bath, as we would expect for a random walk process such
as Brownian motion.

If we wish to compute the diffusion constant of the Brownian particle, we can use
eqn. (13.3.32) and calculate the the velocity autocorrelation function 〈v(0)v(t)〉. From
eqn. (15.3.5), the velocity correlation is obtained by multiplying both sides by v(0)
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and averaging over a canonical distribution of the initial conditions at temperature T ,
exp(−μv(0)2/kT )/Q:

〈v(0)v(t)〉 =
〈
(v(0))2

〉
e−γ0t +

∫ t

0

dτ 〈v(0)f(τ)〉e−γ0(t−τ). (15.3.6)

The second term in eqn. (15.3.6) vanishes because 〈v(0)f(τ)〉 = 〈v(0)R(τ)/μ〉 = 0.
Thus, interestingly, the velocity autocorrelation function is determined by the transient
term, hence, the short-time dynamics. Performing the average 〈(v(0))2〉

〈
(v(0))2

〉
=

∫ ∞
−∞ dv v2e−μv2/2kT∫ ∞
−∞ dv e−μv2/2kT

=
kT

μ
(15.3.7)

yields the velocity autocorrelation function as

〈v(0)v(t)〉 =
kT

μ
e−γ0t. (15.3.8)

Finally, from eqn. (13.3.32), we find

D =

∫ ∞

0

dt 〈v(0)v(t)〉 =
kT

μ

∫ ∞

0

dt e−γ0t =
kT

μγ0
=

kT

ζ0
(15.3.9)

which has the expected units of length2·(time)−1. Note that as ζ0 → ∞, the bath
becomes infinitely dissipative and the diffusion constant goes to zero. Note that this
simple picture of diffusion cannot capture the long-time algebraic decay of the velocity
autocorrelation function mentioned in Section 13.3.

15.3.2 Free particle in a bath with memory

If the bath has memory, then the dynamics of the particle is given by the GLE, which,
for a free particle, reads:

μq̈ = −
∫ t

0

dτ q̇(τ)ζ(t − τ) + R(t). (15.3.10)

As a concrete example, suppose the dynamic friction kernel is given by an exponential
function

ζ(t) = λAe−λ|t|, (15.3.11)

which could describe the long-time decay of a realistic friction kernel. Although the
cusp at t = 0 is problematic for the short-time behavior of a typical friction kernel, the
exponential friction kernel is, nevertheless, a convenient and simple model that can be
solved analytically and has been studied in considerable detail in the literature (Berne
et al., 1966). Once again, let us introduce the velocity v = q̇. For the exponential
friction kernel of eqn. (15.3.11), the GLE then reads

μv̇ = −λA

∫ t

0

dτ v(τ)e−λ(t−τ) + R(t), (15.3.12)

where we are restricting the time domain to t > 0. Let us introduce the quantities
a = A/μ and f(t) = R(t)/μ. The Laplace transform can turn in integro-differential
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equation (15.3.12) into a simple algebraic equation. Taking the Laplace transform of
both sides of eqn. (15.3.12), and solving for ṽ(s), we obtain

ṽ(s) =
v(0)(s + λ)

s2 + sλ + λa
+

f̃(s)(s + λ)

s2 + sλ + λa
, (15.3.13)

where the fact that the memory integral is a convolution has been used to give its
Laplace transform as a product of Laplace transforms of v(t) and ζ(t). As required
for Laplace inversion, the poles of the the function (s + λ)/(s2 + sλ + λa) are needed.
These occur where s2 + sλ + λa = 0, which yields two poles s± given by

s± = −λ

2
±

√
λ2 − 4λa

2
. (15.3.14)

The poles will be purely real if λ ≥ 4a and complex if λ < 4a. Performing the Laplace
inversion gives the solution in the form

v(t) = v(0)

[
(s+ + λ)es+t

(s+ − s−)
+

(s− + λ)es−t

(s− − s+)

]

+

∫ t

0

dτ f(t − τ)

[
(s+ + λ)es+τ

(s+ − s−)
+

(s− + λ)es−τ

(s− − s+)

]
. (15.3.15)

Since 〈v(0)f(t)〉 = 0, the velocity autocorrelation function becomes

〈v(t)v(0)〉 =
〈
(v(0))2

〉
e−λt/2

[
cosΩt +

λ

2Ω
sin Ωt

]
, (15.3.16)

where Ω =
√

λa − λ2/4 for complex roots and

〈v(t)v(0)〉 =
〈
(v(0))

2
〉

e−λt/2

[
coshαt +

λ

2α
sinh αt

]
, (15.3.17)

where α =
√

λ2/4 − λa. For both cases, the diffusion constant obtained from eqn.
(13.3.32) is

D =
kT

A
. (15.3.18)

Since
∫∞
0 ζ(t)dt = A, eqn. (15.3.18) is consistent with eqn. (15.3.9) for the free Brow-

nian particle. As A → ∞, the bath becomes highly dissipative and D → 0. Again, the
overall decay is exponential, which means that the long-time algebraic decay of the
autocorrelation function is not properly described.

15.3.3 The harmonic oscillator in a bath with memory

As a final example of a GLE model, consider a harmonic reaction coordinate described
by a bare potential V (q) = μω2q2/2. According to eqn. (15.2.13), the potential of mean
force W (q) is also a harmonic potential but with a different frequency given by
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ω̃2 = ω2 − 2
∑
α

g2
α

μmαω2
α

, (15.3.19)

so that

W (q) =
1

2
μω̃2q2. (15.3.20)

The quantity ω̃ is known as the renormalized frequency We will examine the case
in which the frequency of the oscillator is high compared to the bath frequencies, a
condition that exists when the coupling between the system and the bath is weak. In
the limit of high ω̃, the term −2

∑
α g2

α/μmαω2
α will be a small perturbation to ω2.

For a general friction kernel ζ(t), the GLE reads

q̈ = −ω̃2q −
∫ t

0

dτ q̇(τ)γ(t − τ) + f(t), (15.3.21)

where γ(t) = ζ(t)/μ and f(t) = R(t)/μ. Eqn. (15.3.21) must be solved subject to initial
conditions q(0) and q̇(0). Taking the Laplace transform of both sides and solving for
q̃(s) yields

q̃(s) =
(s + γ̃(s))

Δ(s)
q(0) +

q̇(0)

Δ(s)
+

f̃(s)

Δ(s)
, (15.3.22)

where
Δ(s) = s2 + ω̃2 + sγ̃(s). (15.3.23)

In order to perform the Laplace inversion, the poles of each of the terms on the right
side of eqn. (15.3.22) are needed. These are given by the zeroes of Δ(s). That is, we
seek solutions of

s2 + ω̃2 + sγ̃(s) = 0. (15.3.24)

Even if we do not know the explicit form of γ̃(s), when ω̃ is large compared to the
bath frequencies, it is possible to solve eqn. (15.3.24) perturbatively. We do this by
positing a solution to eqn. (15.3.24) for s of the form

s = s0 + s1 + s2 + · · · (15.3.25)

as an ansatz (Tuckerman and Berne, 1993). Substituting eqn. (15.3.25) into eqn.
(15.3.24) gives

(s0 + s1 + s2 + · · ·)2 + ω̃2 + (s0 + s1 + s2 + · · ·) γ̃ (s0 + s1 + s2 · · ·) = 0. (15.3.26)

Assuming ω̃2 >> sγ̃(s) at the root, we can solve this equation to lowest order by
neglecting the sγ̃(s) term, which gives

s2
0 + ω̃2 = 0, s0 = ±iω̃. (15.3.27)

Next, working to first order in the perturbation, we have

s2
0 + 2s0s1 + ω̃2 + s0γ̃(s0) = 0, (15.3.28)
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where it has been assumed that s0γ̃(s0) is of the same order as s1. Using the fact that
s2
0 = −ω̃2 and solving for s1, we obtain

s1 = −1

2
γ̃(±iω̃), (15.3.29)

which requires the evaluation of γ̃(s) at s = ±iω̃. Note that

γ̃(±iω̃) =

∫ ∞

0

dt γ(t)e∓iω̃t (15.3.30)

which contains both real and imaginary parts. Defining

γ̃(±iω̃) = γ′(ω̃) ∓ iγ′′(ω̃) (15.3.31)

there are, to first order, two roots of Δ(s), which are given by

s+ = i

(
ω̃ +

1

2
γ′′(ω̃)

)
− 1

2
γ′(ω̃) ≡ iΩ − 1

2
γ′(ω̃)

s− = −i

(
ω̃ +

1

2
γ′′(ω̃)

)
− 1

2
γ′(ω̃) ≡ −iΩ − 1

2
γ′(ω̃). (15.3.32)

Substituting the roots in eqn. (15.3.32) into eqn. (15.3.22) gives the solution

q(t) = q(0)e−γ′(ω̃)t/2

[
cosΩt +

γ′(ω̃)

2Ω
sin Ωt

]
+

q̇(0)

Ω
e−γ′(ω̃)t/2 sinΩt

+
1

Ω

∫ t

0

dτ f(t − τ)e−γ′(ω̃)τ/2 sin Ωτ

q̇(t) = q̇(0)

[
cosΩt − γ′(ω̃)

2Ω
sin Ωt

]
e−γ′(ω̃)t/2 − Ωq(0)e−γ′(ω̃)t/2 sin Ωt

+
1

Ω

[
f(0) sin Ωte−γ′(ω̃)t/2 +

∫ t

0

dτ f ′(t − τ) sin Ωτe−γ′(ω̃)τ/2

]
, (15.3.33)

where we have used the fact that γ′′(ω̃) 
 Ω, and we have neglected any terms
nonlinear in γ′(ω̃). Since 〈q(0)f(t)〉 = 0 and 〈q̇(0)f(t)〉 = 0, the velocity and position
autocorrelation functions become, respectively

Cvv(t) =
〈
q̇2(0)

〉
e−γ′(ω̃)t/2

[
cosΩt − γ′(ω̃)

2Ω
sin Ωt

]

Cqq(t) =
〈
q2(0)

〉
e−γ′(ω̃)t/2

[
cosΩt +

γ′(ω̃)

2Ω
sin Ωt

]
. (15.3.34)

As eqn. (15.3.34) shows, the decay time of both correlation functions is [γ′(ω̃)t/2]−1,
which is denoted T2 and is called the vibrational dephasing time. (We will explore



Langevin and generalized Langevin equations

vibrational and energy relaxation phenomena as an application of the GLE in greater
detail in Section 15.4.) According to eqn. (13.3.39), the velocity autocorrelation func-
tion of a harmonic oscillator in isolation is proportional to cosωt, where ω is the bare
frequency of the oscillator. In this case, the correlation function does not decay because
the system retains infinite memory of its initial condition. However, when coupled to a
bath, the oscillator exchanges energy with the bath particles via collision events and,
as a result, loses memory of its initial state on a time scale T2. If there is a very large
disparity of frequencies between the oscillator and the bath, the coupling between
them will be weak and T2 will be long, whereas if the oscillator frequency lies near or
within the spectral density of the bath, vibrational energy exchange will occur readily
and T2 will be short. Thus, T2 is an indicator of the strength of the coupling between
the oscillator and the bath. As the frequency of the oscillator is increased, the coupling
between the oscillator and the bath becomes weaker, and γ′(ω̃) decreases. According
to eqn. (15.3.34), this means that the correlation functions Cqq(t) and Cvv(t) decay
more slowly, and the number of oscillations that can cycle through on the time scale
T2 grows. Two examples of the velocity autocorrelation function Cvv(t) are shown in
Fig. 15.2. In this example, the values of ω̃, γ′(ω̃), and γ′′(ω̃) correspond to a harmonic
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Fig. 15.2 Velocity autocorrelation function of the bond length of a harmonic diatomic cou-

pled to a Lennard-Jones bath as described in the text. The bond frequencies ω = 60 and

ω = 90 are expressed in units of
√

ε/(mσ2).

diatomic molecule of atomic type A coupled to a bath of A atoms interacting with each
other and with the molecule via a Lennard-Jones potential at reduced temperature
T̂ = T/ε = 2.5 and reduced density ρ̂ = ρσ3 = 1.05. The frequencies ω = 60 and
ω = 90 are expressed in Lennard-Jones reduced frequency units

√
ε/(mσ2). A method

for calculating the friction kernel for a high-frequency oscillator weakly coupled to a
bath will be discussed in Section 15.7.

15.4 Vibrational dephasing and energy relaxation in simple fluids

An application of the GLE that is of particular interest in chemical physics is the study
of vibrational and energy relaxation phenomena. As we noted in Section 15.3.3, quan-
tifying energy exchange between the system and the bath provides direct information
about the strength of the system–bath coupling. For a harmonic oscillator coupled
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to a bath with memory, it was shown that, when the frequency of the oscillator is
high compared to the spectral density of the bath, the vibrational relaxation time T2

satisfies
1

T2
=

ζ′(ω̃)

2μ
. (15.4.1)

T2 is a measure of the decay time of the velocity and position autocorrelation functions.
In addition to T2, there is another relevant time scale, denoted T1, which measures
the rate of energy relaxation of the system. In this section, we will show how the GLE
can be used to develop classical relations between T1 and T2 for both harmonic and
anharmonic oscillators coupled to a bath. The times T1 and T2 are generally measured
experimentally using nuclear-magnetic resonance techniques and, therefore, relate to
quantum processes. However, we will see that the GLE can nevertheless provide useful
insights into the physical nature of these two time scales.

Using the solutions of the GLE, it is also possible to show that the cross-correlation
functions

Cvq(t) = 〈v(0)q(t)〉
Cqv(t) = 〈q(0)v(t)〉 (15.4.2)

have the same decay time. For this discussion, we will find it convenient to introduce
a change of nomenclature and work with normalized correlation functions:

Cab(t) =
〈a(0)b(t)〉

〈a2〉 . (15.4.3)

In terms of the four normalized correlations functions, Cqq(t), Cvv(t), Cqv(t), and
Cvq(t), the solutions of eqn. (15.3.21) can be expressed as

q(t) = q(0)Cqq(t) + q̇(0)Cvq(t) +

∫ t

0

dτ f(t − τ)Cvq(τ)

q̇(t) = q̇(0)Cvv(t) + q(0)Cqv(t) +

∫ t

0

dτ f(t − τ)Cvv(τ) (15.4.4)

(see Problem 15.4). Moreover, if the internal energy of the oscillator

ε(t) =
1

2
μq̇2(t) +

1

2
μω̃2q2(t) (15.4.5)

is calculated using the solutions in eqn. (15.4.4), the autocorrelation function of ε(t)
can be shown to be

Cεε(t) =
1

2
C2

vv(t) +
1

2
C2

qq(t) +
1

ω̃2
C2

qv(t) (15.4.6)

(see Problem 15.4). Since each of the correlation functions appearing in eqn. (15.4.6)
has an exponential decay envelope of the form exp(−ζ′(ω̃)t/2μ), it follows that Cεε(t)
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will decay as exp(−ζ′(ω̃)t/μ). This time scale corresponds to T1 and is given simply
by

1

T1
=

ζ′(ω̃)

μ
. (15.4.7)

A comparison of eqns. (15.4.7) and (15.4.1) reveals the prediction of the classical GLE
approach that the vibrational dephasing time and the energy relaxation time for a
harmonic oscillator coupled to a bath are related by

1

T2
=

1

2T1
. (15.4.8)

Eqn. (15.4.8) is true only for purely harmonic systems. However, real bonds always
involve some degree of anharmonicity, which changes the relation between T1 and T2.
The more general expression of this relation is

1

T2
=

1

2T1
+

1

T ∗
2

, (15.4.9)

where T ∗
2 is a pure dephasing time. Now suppose we add to the harmonic potential

μω̃2q2/2 a small cubic term of the form gq3/6 so that the potential of mean force W (q)
becomes

W (q) =
1

2
μω̃2q2 +

1

6
gq3. (15.4.10)

Theoretical treatments of such a cubic anharmonicity have been presented by Oxtoby
(1979), Levine et al. (1988), Tuckerman and Berne (1993), and Bader and Berne
(1994), all of which lead to explicit expressions for the pure dephasing time. We note,
however, that only direct solution of the full GLE, albeit an approximate one, yields
1/T2 in the form of eqn. (15.4.9), as we will now show.

The GLE corresponding to the potential in eqn. (15.4.10) reads

q̈ = −ω̃2q − g

2μ
q2 −

∫ t

0

dτ q̇(τ)γ(t − τ) + f(t). (15.4.11)

As long as the excursions of q in the cubic potential do not stray too far from the
neighborhood of q = 0, the motion of q remains bound between definite turning points.
However, as the energy of the oscillator fluctuations, the time required to move between
the turning points varies. In other words, the period of the motion, and hence the
frequency, varies as a function of the energy. Therefore, we seek a perturbative solution
of eqn. (15.4.11), in which the anharmonicity is treated as an effect that causes the
vibrational frequency to fluctuate in time. Eqn. (15.4.11) is then replaced, to lowest
order in perturbation theory, by an equation of the form

q̈ = −ω2(t)q −
∫ t

0

dτ q̇(τ)γ(t − τ) + f(t), (15.4.12)

where ω(t) = ω̃ + δω(t) and δω(t) = gf(t)/2μω̃3. By studying the autocorrelation
function Cqq(t) within perturbation theory, it was shown (Tuckerman and Berne, 1993)
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that Cqq(t) is an oscillatory function with an exponential decay envelope. Thus, the
general approximate form of Cqq(t) is

C(±)
qq (t) = C(±,0)

qq (t)

〈
e
i
∫

t

0
dτδω(τ)

〉
≈ C(±,0)

qq (t)e
−
∫

t

0
dτ(t−τ)〈δω(0)δω(τ)〉

, (15.4.13)

where C
(±,0)
qq (t) are purely harmonic autocorrelation functions similar to those in eqn.

(15.3.34). The exponential decay term in eqn. (15.4.13) is the result of a cumulant

expansion applied to 〈exp(i
∫ t

0 dτδω(τ)〉 (see eqn. (4.7.21)). Combining the decay of

C
(±,0)
qq (t) with the long-time behavior of the integral in eqn. (15.4.13) leads to the

vibrational dephasing time

1

T2
=

ζ′(ω̃)

2μ
+

g2kT

4μ3ω̃6
γ̃(0), (15.4.14)

where γ̃(0) is the Laplace transform of γ(t) at s = 0, which is also the static friction
coefficient. The second term in eqn. (15.4.14) is a consequence of the anharmonicity.
Since 1/T ∗

2 is a pure dephasing time, 1/T1 is still ζ′(ω̃)/μ to the same order in pertur-
bation theory. Hence, eqn. (15.4.14) implies that 1/T2 ≥ 1/2T1, where equality holds
for g = 0. This inequality between T1 and T2 is usually true for anharmonic systems.
An analysis by Skinner and coworkers using a higher order in perturbation theory
suggested possible violation of this inequality under special circumstances (Budimir
and Skinner, 1987; Laird and Skinner, 1991). Further analysis of such violations and
potential difficulties with their detection were subsequently discussed by Reichman
and Silbey (1996).

15.5 Molecular dynamics with the Langevin equation

Because the Langevin and generalized Langevin equations replace a large number of
bath degrees of freedom with the much simpler memory integral and random force
terms, simulations based on these equations are convenient and often very useful.
They have a much lower computational overhead than a full bath calculation and can,
therefore, access much longer time scales. The Langevin equation can also be used as
a simple and efficient thermostatting method for generating the canonical distribu-
tion; this is one of the most common uses of the Langevin equation. The generalized
Langevin equation can also be used as a thermostatting method; however, the need
to input a dynamic friction kernel ζ(t) renders the use of the GLE less convenient
for this purpose. Under certain conditions, a friction kernel can be generated from a
molecular dynamics simulation (Straub et al., 1988; Berne et al., 1990), subtleties of
which will be discussed in Section 15.7. When such a friction kernel is available, the
GLE can, to a good approximation, yield the same dynamical properties as the full
molecular dynamics calculation. Because of this important property, the GLE has been
employed in the development of low-dimensional or “coarse-grained” models derived
from fully atomistic potential functions. The use of the GLE helps to ensure that the
coarse-grained model can more faithfully reproduce the dynamics of the more detailed
model from which it is obtained (Izvekov and Voth, 2006).
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15.5.1 Numerical integration of the Langevin equation

In this section, we will focus on the numerical integration of the Langevin equation,
as it is a more commonly used simulation tool than the GLE. In developing an algo-
rithm that is accurate to order Δt2 in the positions and velocities, we will follow the
derivation introduced by Vanden-Eijnden and Ciccotti (2006).

From a numerical standpoint, the most important thing to note about the Langevin
equation is that the random force R(t) is not a continuous function of t but rather
a stochastic process that is nowhere differentiable. It can, however, be realized on as
fine a time scale as required. Let us begin by writing the Langevin equation as

μq̈(t) = F (q(t)) − γμq̇(t) +
√

2kTγμη(t), (15.5.1)

where γ = ζ0/μ, and where we have redefined the random force R(t) =
√

2kTγμη(t).
Since 〈R(0)R(t)〉 = kT ζ0δ(t) = 2kTμγδ(t), it follows that 〈η(0)η(t)〉 = δ(t). Although
R(t) and η(t) are not differentiable, we can define integrals of these processes, and
therefore, it is useful to introduce a process w(t), known as a Wiener process, such
that η(t) = dw/dt. From the properties of η(t), w(t) can be shown to satisfy several
important properties. Let Δt be a small time interval. Then the following relations
hold for w(t):

〈w(s)w(s′)〉 = min(s, s′)

〈∫ t+Δt

t

ds (w(s) − w(t))

∫ t+Δt

t

ds′ (w(s′) − w(t))

〉
=

1

3
Δt3

〈
(w(t + Δt) − w(t))

∫ t+Δt

t

ds′ (w(s′) − w(t))

〉
=

1

2
Δt2. (15.5.2)

As a result of these properties, a representation of a Wiener process can be defined
thus: If R(t) is a Gaussian random process of the type we described in Section 15.2.2,
then the properties in eqns. (15.5.2) will be satisfied if

w(t + Δt) − w(t) =
√

Δtξ

∫ t+Δt

t

ds (w(s) − w(t)) = Δt3/2

(
1

2
ξ +

1

2
√

3
θ

)
. (15.5.3)

In the last two terms of the last line of eqn. (15.5.3), ξ and θ are Gaussian random
variables of zero mean, unit width, and zero cross-correlation:

〈ξ2〉 = 〈θ2〉 = 1 〈ξθ〉 = 0. (15.5.4)

Because of the stochastic nature of the Langevin equation, it is often represented not
as a continuous differential equation as in eqn. (15.5.1) but rather as a relationship
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between stochastic processes (Kubo et al., 1985). The latter is expressed in differential
form as

dq(t) = v(t)dt

dv(t) = f(q(t))dt − γv(t)dt + σdw(t), (15.5.5)

where σ =
√

2kTγ/μ and f(q) = F (q)/μ.
Before proceeding, let us note that eqns. (15.5.5) can be easily generalized to a

system of n coordinates as

dqi(t) = vi(t)dt

dvi(t) = f(q1(t), ..., qn(t))dt − γivi(t)dt + σidwi(t), (15.5.6)

where σi =
√

2kTγi/μi. The properties in eqns. (15.5.2) for the n Wiener processes
w1(t), ..., wn(t) in eqns. (15.5.6) become

〈wi(s)wj(s
′)〉 = min(s, s′)δij

〈∫ t+Δt

t

ds (wi(s) − wi(t))

∫ t+Δt

t

ds′ (wj(s
′) − wj(t))

〉
=

1

3
Δt3δij

〈
(wi(t + Δt) − wi(t))

∫ t+Δt

t

ds′ (wj(s
′) − wj(t))

〉
=

1

2
Δt2δij . (15.5.7)

The Wiener processes, themselves, are defined analogously to eqn. (15.5.3)

wi(t + Δt) − wi(t) =
√

Δtξi

∫ t+Δt

t

ds (wi(s) − wi(t)) = Δt3/2

(
1

2
ξi +

1

2
√

3
θi

)
(15.5.8)

with n independent Gaussian random variables ξ1, ..., ξn and θ1, ..., θn for which 〈ξiξj〉 =
〈θiθj〉 = δij and 〈ξiθj〉 = 0. Since eqns. (15.5.6), (15.5.7) and (15.5.8) are the only gen-
eralizations needed to describe a system of n variables, to keep the notation simple,
we will proceed with the single-particle system in eqns. (15.5.5), noting that the gen-
eralization of the algorithm for the n coupled Langevin equations (15.5.6) is straight-
forward.

An operator-based method for deriving numerical solvers of time-dependent sys-
tems was proposed by Suzuki (1993); however, it is only applicable to systems with con-
tinuous time-dependent driving terms such as those discussed in Chapter 13. Because
of the stochastic nature of the Langevin equation, however, application of the opera-
tor formalism used in Chapters 3–5 is rather subtle and cannot be applied straightfor-
wardly (Melchionna, 2007). The alternative derivation of Vanden-Eijnden and Ciccotti
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is simple yet elegant. We begin by integrating eqns. (15.5.5) from t to t + Δt to yield
a pair of integral equations

q(t + Δt) − q(t) =

∫ t+Δt

t

ds v(s)

v(t + Δt) − v(t) =

∫ t+Δt

t

ds f(q(s)) − γ

∫ t+Δt

t

ds v(s)

+ σ [w(t + Δt) − w(t)] . (15.5.9)

Note that the second line in eqn. (15.5.9) also holds for t + Δt = s:

v(s) = v(t) +

∫ s

t

du f(q(u)) − γ

∫ s

t

du v(u) + σ [w(s) − w(t)] . (15.5.10)

Since s ∈ [t, t + Δt], for small Δt, eqn. (15.5.10) can be approximated as

v(s) ≈ Δtv(t) + (s − t)f(q(t)) − (s − t)γv(t) + σ [w(s) − w(t)] . (15.5.11)

Integrating eqn. (15.5.11) from t to t + Δt yields

∫ t+Δt

t

ds v(s) = Δtv(t) +
1

2
Δt2 [f(q(t)) − γv(t)]

+ σ

∫ t+Δt

t

ds [w(s) − w(t)] . (15.5.12)

Similarly, we can evaluate time integrals of the force appearing in eqn. (15.5.9). By
integrating the identity df/dt = (∂f/∂q)q̇ = (∂f/∂q)v from t to s, we obtain

f(q(s)) = f(q(t)) +

∫ s

t

du v(u)f ′(q(u))

≈ f(q(t)) + (s − t)v(t)f ′(q(t)). (15.5.13)

Hence, integrating eqn. (15.5.13) from t to t + Δt yields

∫ t+Δt

t

ds f(q(s)) = Δtf(q(t)) +
1

2
Δt2v(t)f ′(q(t)). (15.5.14)

Finally, substituting eqns. (15.5.14) and (15.5.12) into eqn. (15.5.9) and using the
properties of the Wiener process in eqns. (15.5.2) and (15.5.3) yields the following
evolution scheme for the Langevin equation:
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q(t + Δt) = q(t) + Δtv(t) + A(t)

v(t + Δt) = v(t) + Δtf(q(t))

+
1

2
Δt2v(t)f ′(q(t)) + σ

√
Δtξ(t) − Δtγv(t) − γA(t), (15.5.15)

where

A(t) =
1

2
Δt2 (f(q(t)) − γv(t)) + σΔt3/2

(
1

2
ξ(t) +

1

2
√

3
θ(t)

)
(15.5.16)

and ξ(t) and θ(t) are Gaussian random variables sampled at time t. The appearance
of v(t)f ′(q(t)) in eqn. (15.5.15), which involves a force derivative, is inconvenient. This
term can be eliminated, however, by making use of eqn. (15.5.12). Substituting s =
t+Δt into the expression for f(q(s)), we see that Δtv(t)f ′(q(t)) = f(q(t+Δt))−f(q(t)).
Using this fact in eqn. (15.5.15) gives following solver for the Langevin equation:

q(t + Δt) = q(t) + Δtv(t) + A(t)

v(t + Δt) = v(t) +
1

2
Δt [f(q(t + Δt)) + f(q(t))]

− Δtγv(t) + σ
√

Δtξ(t) − γA(t). (15.5.17)

Note that if we set t = 0, then the integrator can be recast using the convention of
eqns. (3.10.31) and (3.10.32):

q(Δt) = q(0) + Δtv(0) + A(0)

v(Δt) = v(0) +
1

2
Δt [f(q(Δt)) + f(q(0))]

− Δtγv(0) + σ
√

Δtξ(0) − γA(0). (15.5.18)

The integrator in eqns. (15.5.17) and (15.5.18) reduce, as expected, to the velocity
Verlet integrator of eqns. (3.8.7) and (3.8.9) when γ = 0 and σ = 0, which is the limit
of no bath coupling.

As an application of eqns. (15.5.17), we calculate the trajectory, phase space, and
position distribution functions of a harmonic oscillator W (q) = μω2q2/2 with μ = 1,
ω = 1, and kT = 1 for γ = 0.5 and γ = 8; the results are shown in Fig. 15.3. The
Langevin equation is integrated for 108 steps with a time step of Δt = 0.01. Fig. 15.3)
shows how the trajectory changes between γ = 0.5 and γ = 8. Despite the different
values of the damping constant, the computed distribution functions agree with the
analytical distributions. Note that values of γ that are too small or too large lead to
distortions in the probability distribution. In the present example, values of γ less than
10−3 or greater than 100 lead to such distortions.
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Fig. 15.3 (Top) Trajectories of a harmonic oscillator with μ = 1, ω = 1, and kT = 1 coupled

to a bath via the Langevin equation for γ = 0.5 (left) and γ = 8 (right). Here, T = 2π/ω

is the period of the oscillator. (Middle) Phase space Poincaré sections. (Bottom) Position

probability distribution functions.

15.6 Sampling stochastic transition paths

The numerical integration algorithm of the previous subsection can be used in conjunc-
tion with the transition path sampling approach of Section 7.7 to sample a transition
path ensemble of stochastic paths from a region A of phase space to another region B.
As noted in Section 7.7, the shooting algorithm is an effective method for generating
trial moves from a path Y(t) to a new path X(t). Here, we describe a simple variant
of the shooting algorithm for paths satisfying the Langevin equation.

In fact, the shooting algorithm can be applied almost unchanged from that de-
scribed in Section 7.7. However, a few differences need to be pointed out. First, be-
cause of the random force term, eqn. (15.5.17) is not deterministic, which means that
a rule such as that given in eqn. (7.7.2) for a numerical solver such as velocity Verlet
cannot be used for Langevin dynamics. Rather, we need to account for the fact that
a distribution of q(t + Δt) values can be generated from q(t) due to the random force.
The evolution in eqn. (15.5.17) can be expressed compactly as

x(k+1)Δt = xkΔt + δxd + δxr (15.6.19)
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where the displacement δxd is purely deterministic, and δxr is due to the random force.
If we take the random force to be a Gaussian random variable, then we can state the
rule for generating trial moves in phase space from xkΔt to x(k+1)Δt as

T (x(k+1)Δt|xkΔt) = w(δxr) (15.6.20)

where w(x) is a Gaussian distribution of width determined by the friction (Chan-
drasekhar, 1943). In the high friction limit, eqn. (15.6.20) can be shown to be

T (q((k + 1)Δt)|q(kΔt)) =

√
μγ

4πkTΔt
exp

[
− μγ

4kTΔt
(q((k + 1)Δt) − q(kΔt))

2
]

(15.6.21)

for a single degree of freedom q (Dellago et al., 2002). Note that as Δt → 0, the
Gaussian distribution tends to a Dirac δ-function, as expected (see eqn. (A.5) in Ap-
pendix A).

The second difference in the shooting algorithm is in the choice of the shooting
point. Because the trajectories are stochastic, we are free to choose a shooting point
to lie on the old trajectory Y(t) without modification because a trajectory launched
from this point will be different from Y(t). Thus, given a stochastic transition path
Y(t) and a randomly chosen point yjΔt on this path, we can take the rule for generating
the new shooting point xjΔt to be

τ(xjΔt|yjΔt) = δ(xjΔt − yjΔt) (15.6.22)

Third, because the Langevin equation acts as a thermostatting mechanism, the distri-
butions of initial conditions f(x0) and f(y0) will be canonical by construction. Thus,
if canonical sampling is sought, then there is no need to apply the acceptance rule
min[1, f(x0)/f(y0)] for each trial path move. Putting this fact together with eqn.
(15.6.22) and the Gaussian form of eqn. (15.6.20), which is symmetric, gives a partic-
ularly simple acceptance criterion from eqn. (7.7.12)

Λ[X(t)|Y(t)] = hA(x0)hB(xnΔt) (15.6.23)

Thus, as long as the new path is a proper transition path from A to B, it is accepted
with probability 1. We can now summarize the steps of the shooting algorithm for
stochastic paths as follows:

1. Choose an index j randomly on the old trajectory Y(t) and take the shooting
point yjΔt to be the shooting point xjΔt.

2. Integrate the equations of motion backwards in time from the shooting point to
the initial condition x0 using a stochastic propagation scheme such as that of eqn.
(15.5.17).

3. If the initial condition x0 is not in the phase space region A, reject the trial move,
otherwise accept it.

4. Integrate the equations of motion forward in time to generate the final point xnΔt

using a stochastic propagation scheme such as that of eqn. (15.5.17).
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Fig. 15.4 The shooting algorithm for stochastic paths (see, also, Fig. 7.7)

5. If xnΔt ∈ B, accept the trial move, and reject it otherwise.

6. If the path is rejected at steps 3 or 5, then the old trajectory Y(t) is counted again
in the calculation of averages over the transition path ensemble. Otherwise, invert
the momenta along the backward path of the path to yield a forward moving
transition path X(t) and replace the old trajectory Y(t) by the new trajectory
X(t).

The shooting algorithm for stochastic paths is illustrated in Fig. 15.4. One final dif-
ference between the present shooting algorithm and that for deterministic molecular
dynamics is that for stochastic trajectories, it is not necessary to generate both for-
ward and backward segments from every shooting point. A stochastic path of higher
statistical weight in the transition path ensemble can be obtained by integrating only
backward in time and retaining the forward part of the old trajectory or vice versa.
Of course, when this is done, the difference between old and new paths is smaller and
sampling becomes less efficient. However, some fraction of the shooting moves can be
of this type in order to give a higher average acceptance rate.

15.7 Mori–Zwanzig theory

Our original derivation in Section 15.2 of the generalized Langevin equation was based
on the introduction of a harmonic bath as a model for a true bath. While conceptually
simple, such a derivation naturally raises the question of whether a GLE can be derived
in a more general way for an arbitrary bath. The Mori–Zwanzig theory (Mori, 1965;
Zwanzig, 1973) achieves this and gives us deeper physical insight into the quantities
that appear in the GLE (Deutsch and Silbey, 1971; Berne, 1971; Berne and Pecora,
1976).

The Mori–Zwanzig theory begins with the full classical Hamiltonian and effectively
“integrates out” the bath degrees of freedom by using a formalism known as the
projection operator method (Kubo et al., 1985). In this approach, we divide the full
set of degrees of freedom into the system and the bath, as was done for the harmonic
bath Hamiltonian. In the phase space, we consider the two axes corresponding to the
system coordinate q and its conjugate momentum p, and the remaining 6N − 2 axes
orthogonal to the system. In order to make this phase space picture concrete, let us
introduce a two-component system vector

A =

(
q
p

)
. (15.7.1)
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Geometrically, recall that the projection of a vector b along the direction of another
vector a is given by the formula

Pb =

(
b · a

|a|
)

a

|a| . (15.7.2)

Here, P is an operator that gives the component of b along the direction of a, with
a/|a| the unit vector along the direction of a. An analog of this formula is used to
construct projection operators in phase space parallel and perpendicular to the vector
A. The projection operator must also eliminate or integrate out the bath degrees of
freedom. Thus, we define the operator P that both projects along the direction of A
and integrates out the bath according to

P = 〈...A†〉〈AA†〉−1A, (15.7.3)

where the quantity on which P acts replaces the dots, and 〈...〉 denotes an average
over a canonical ensemble. A† is the Hermitian conjugate of A. The use of Hermitian
conjugates is introduced because of the close analogy between the Hilbert space for-
malism of quantum mechanics and the classical phase space propagator formalism we
will employ in the present derivation (see Section 3.10). The operator that projects
along the direction orthogonal to A is denoted Q and is simply I − P, where I is the
phase space identity operator. The operators P and Q can be shown to be Hermitian
operators. Note that this definition of the projection operator is somewhat more gen-
eral than the simple geometric projector of eqn. (15.7.2) in that the quantities 〈...A†〉
and 〈AA†〉−1 are matrices. These are multiplied together and then allowed to act on
A, ultimately producing another two-component vector. As expected for projection
operators, the actions of P and Q on the vector A are

PA = A, QA = 0. (15.7.4)

Since PA = A, it follows that P2A = PA = A, and Q2A = −QQA = 0 = QA, which
also means that P and Q satisfy

P2 = P, Q2 = Q. (15.7.5)

This condition is known as idempotency, and the operators P and Q are referred to as
idempotent operators.

The projection operators P and Q can be used to analyze the dynamics of the
system variables A. Recall that the time evolution of any quantity in the phase space is
determined by the action of the classical propagator exp(iLt). The vector A, therefore,
evolves according to

A(t) = eiLtA(0). (15.7.6)

Differentiating both sides of this relation with respect to time yields

dA

dt
= eiLtiLA(0), (15.7.7)

where iL is the classical Liouville operator of Section 3.10 We now use the projection
operators to separate this evolution equation for A(t) into components along A(0)
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and orthogonal to A(0). This is done by inserting the identity operator I into eqn.
(15.7.7) and using the fact that P + Q = I, which yields

dA

dt
= eiLt(P + Q)iLA(0) = eiLtPiLA(0) + eiLtQiLA(0). (15.7.8)

The first term can be evaluated by introducing eqn. (15.7.3) into eqn. (15.7.8):

eiLtPiLA(0) = eiLt〈iLAA†〉〈AA†〉−1A(0). (15.7.9)

The integrations implied by the angular brackets in eqn. (15.7.9) are performed over
an ensemble distribution of initial conditions A(0). The propagator exp(iLt) can be
pulled across the ensemble averages, since the quantity 〈iLAA†〉〈AA†〉−1 is a matrix
independent of the phase space variables. Thus,

eiLtPiLA(0) = 〈iLAA†〉〈AA†〉−1eiLtA(0)

= 〈iLAA†〉〈AA†〉−1A(t)

≡ iΩA(t),

where Ω is a force-constant matrix given by

Ω = 〈LAA†〉〈AAT〉. (15.7.10)

Note that because of the application of the operators exp(iLt) and P, the first term
in eqn. (15.7.8) is effectively linear in A(t).

In order to evaluate the second term, we start with the trivial identity

eiLt = eQiLt + eiLt − eQiLt. (15.7.11)

The operator difference exp(iLt)− exp(QiLt) appearing in this identity can be evalu-
ated as follows. We first take the Laplace transform of the exp(iLt) − exp(QiLt):∫ ∞

0

dt
[
eiLt − eQiLt

]
= (s − iL)

−1 − (s − QiL)
−1

. (15.7.12)

Eqn. (15.7.12) involves the difference of operator inverses. Given a generic operator
difference of the form O

−1
1 − O

−1
2 , we multiply the first term by the identity operator

expressed as I = O2O
−1
2 and the second term by the identity operator expressed as

I = O−1
1 O1 to yield

O
−1
1 − O

−1
2 = O

−1
1 (O2 − O1) O

−1
2 . (15.7.13)

Applying eqn. (15.7.13) to the difference in eqn. (15.7.12) gives



Mori–Zwanzig theory

(s − iL)−1 − (s − QiL)−1 = (s − iL)−1 (s − QiL − s + iL) (s − QiL)−1

= (s − iL)
−1

(1 − Q) iL (s − QiL)
−1

= (s − iL)
−1

PiL (s − QiL)
−1

, (15.7.14)

so that

(s − iL)
−1

= (s − QiL)
−1

+ (s − iL)
−1

PiL (s − QiL)
−1

. (15.7.15)

Inverting the Laplace transform of both sides, we obtain

eiLt = eQiLt +

∫ t

0

dτ eiL(t−τ)PiLeQiLτ . (15.7.16)

The second term in eqn. (15.7.8) can be evaluated by multiplying eqn. (15.7.16) on
the right by QiLA(0) to give

eiLtQiLA(0) = eQiLtQiLA(0) +

∫ t

0

dτ eiL(t−τ)PiLeQiLτQiLA(0). (15.7.17)

In the equation of motion for A, dA/dt = iLA, the vector iLA drives the evolution.
We can therefore think of iLA as a kind of general force driving the evolution of A,
with iLA(0) being the initial value of this force. Indeed, the second component of
this vector is the initial physical force since ṗ = F from Newton’s second law. The
action of Q on iLA(0) projects the initial force onto a direction orthogonal to A. The
evolution operator exp(QiLt) acts as a classical propagator of a dynamics in which the
forces are orthogonal to A. Therefore, F(t) ≡ exp(QiLt)QiLA(0) is the time evolution
of the projected force this orthogonal subspace. Of course, the propagator exp(QiLt)
and the true evolution operator exp(iLt) do not produce the same time evolution. The
dynamics generated by exp(QiLt) is generally not conservative and, therefore, not
straightforward to evaluate. However, we will see shortly that physically interesting
approximations are available for this dynamics in the case of a high frequency oscillator.

In order to complete the derivation of the GLE, we introduce the projected force
F(t) into eqn. (15.7.17) to obtain

eiLtQiLA(0) = F(t) +

∫ t

0

dτ eiL(t−τ)PiLeQiLτQiLA(0)

= F(t) +

∫ t

0

dτ eiL(t−τ)PiLF(τ)

= F(t) +

∫ t

0

dτ eiL(t−τ)〈iLF(τ)A†〉〈AA†〉−1A(0)
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= F(t) +

∫ t

0

dτ 〈iLF(τ)A†〉〈AA†〉−1eiL(t−τ)A(0)

= F(t) +

∫ t

0

dτ 〈iLF(τ)A†〉〈AA†〉−1A(t − τ). (15.7.18)

Since F(t) is orthogonal to A(t), it follows that

QF(t) = F(t). (15.7.19)

Eqn. (15.7.19) can be used to simplify the ensemble average appearing in eqn. (15.7.18).
We first express the ensemble average of iLF(τ)A† as

〈iLF(τ)A†〉 = 〈iLQF(τ)A†〉. (15.7.20)

We next transfer the operator iL to A† by taking the Hermitian conjugate of iL.
Recalling that L, itself, is Hermitian, we only need to change i to −i so that

〈iLF(τ)A†〉 = −〈QF(τ)(iLA)†〉. (15.7.21)

Using eqn. (15.7.19) and the fact that Q is Hermitian allows us to write eqn. (15.7.21)
as

〈iLF(τ)A†〉 = −〈Q2F(τ)(iLA)†〉

= −〈QF(τ)(QiLA)†〉

= −〈F(τ)F†(0)〉. (15.7.22)

Therefore, eqn. (15.7.18) becomes

eiLtQiLA = F(t) −
∫ t

0

dτ 〈F(τ)F†(0)〉〈AA†〉−1A(t − τ). (15.7.23)

Finally, combining eqn. (15.7.23) with eqns. (15.7.10) and (15.7.8) gives an equation
of motion for A in which bath degrees of freedom have been eliminated:

dA

dt
= iΩA−

∫ t

0

dτ 〈F(τ)F†(0)〉〈AA†〉−1A(t − τ) + F(t). (15.7.24)

Eqn. (15.7.24) takes the form of a GLE for a harmonic potential of mean force if
the autocorrelation function appearing in the integral is identified with the dynamic
friction kernel

K(t) = 〈F(t)F†(0)〉〈AA†〉−1. (15.7.25)

The quantity K(t) is called the memory function or memory kernel. Note that K(t) is
a matrix. Substituting eqn. (15.7.25) into eqn. (15.7.24) gives the generalized Langevin
equation for a general bath

dA

dt
= iΩA(t) −

∫ t

0

dτ K(τ)A(t − τ) + F(t). (15.7.26)

Although eqn. (15.7.26) is formally exact, the problem of determining F(t) and K(t)
is generally more difficult than simply simulating the full system because of the need
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to generate the orthogonal dynamics of exp(QiLt) (Darve et al., 2009). Taken as a
phenomenological theory, however, eqn. (15.7.26) implies that if the potential of mean
force is harmonic, and a memory function can be obtained that faithfully represents
the dynamics of the full bath, then the GLE will yield accurate dynamical properties
of a system.

If we wish to use eqn. (15.7.26) to generate dynamical properties in a low-dimensional
subspace of the original system, then several subtleties need to be considered. Consider
a one-dimensional harmonic oscillator with coordinate x, momentum p, reduced mass
μ, frequency ω, and potential minimum at x0. For this problem, the force-constant
matrix can be shown to be

iΩ =

(
0 1/μ

−μω̃2 0

)
(15.7.27)

(see Problem 15.9), where ω̃ is the renormalized frequency, which can be computed
using

ω̃2 =
kT

μ〈(x − 〈x〉)2〉 (15.7.28)

More importantly, the memory kernel K(t) is not a simple autocorrelation function.
A closer look at eqn. (15.7.25) makes clear that the required autocorrelation function
is

K(t) = 〈eQiLtFF†(0)〉〈AA†〉−1, (15.7.29)

which requires the orthogonal dynamics generated by exp(QiLt). For this example, it
can be shown that

K(t) =

(
0 0
0 ζ(t)/μ

)
(15.7.30)

and that

F(t) =

(
0

ṗ + μω̃2q

)
, (15.7.31)

where q = x − 〈x〉. If we denote the nonzero component as δf , we can express the
exact friction kernel as

ζ(t)

μ
=

〈δfeQiLtδf〉
〈p2〉 , (15.7.32)

which is nontrivial to evaluate. The standard autocorrelation function

φ(t)

μ
=

〈δfeiLtδf〉
〈p2〉 (15.7.33)

is not equal to the friction kernel. It was shown by Berne et al. (1990) that the Laplace
transforms of ζ(t) and φ(t) are related by

ζ̃(s)

μ
=

[φ̃(s)/μ]

1 −
{
[s/(s2 + ω̃2)][φ̃(s)/μ]

} , (15.7.34)

from which we can see that ζ̃(s) and φ̃(s) are equal only in the limit that s → 0. They
are also equal when ω̃ → ∞, and hence, the standard correlation function φ(t) is a
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reasonable approximation to ζ(t) only in the high-frequency limit. In fact, Berne et al.
showed formally that ζ(t) can be calculated in this limit from the correlation function

ζ(t)

μ
=

〈δfeiL̄tδf〉
〈p2〉 , (15.7.35)

where iL̄ is the Liouville operator for a system in which the oscillator coordinate
x is fixed at x = x0. Eqn. (15.7.35) can be used, for example, to approximate the
friction on a harmonic diatomic molecule by replacing it with a rigid diatomic in
which the distance between the two atoms is constrained to the value of the equilibrium
bond length. Importantly, as the frequency of the oscillator decreases, this rigid-bond
approximation breaks down, and care is needed to determine when φ(t) is a good
approximation to ζ(t).

15.8 Problems

15.1. Use the definition of R(t) for the harmonic-bath model in eqn. (15.2.11) to
show that 〈q(0)R(t)〉 = 0 and to derive eqn. (15.2.17).

15.2. Consider a single harmonic degree of freedom q, having a mass m, that obeys
the generalized Langevin equation

q̈ = −ω2q −
∫ t

0

dτ q̇(τ)γ(t − τ) + f(t).

Here ω is the frequency associated with the motion of q, γ(t) = ζ(t)/m, and
f(t) = R(t)/m, where R(t) and ζ(t) are the random force and friction kernel,
respectively. As a crude model of a rapidly decaying friction kernel, consider
a γ(t) that is constant over a very short time t0 and then drops suddenly to
0:

γ(t) = γ0θ(t0 − t).

Here γ0 is a constant, θ(x) is the Heaviside step function, and t, t0 ≥ 0.
a. Show that if t0 is small enough that exp(−st0) ≈ 1 − st0 for all relevant

values of s, then the presence of memory in this system causes the normal-
ized velocity autocorrelation function Cvv(t) to oscillate with a frequency
less than ω and to decay slowly in time. Determine the decay constant
and oscillation frequency of Cvv(t).

b. Suppose that we now let t0 become very large. Show that the velocity
autocorrelation no longer decays but oscillates with a frequency different
from ω. What is the oscillation frequency of Cvv(t)?
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c. Explain the physical origin of the behavior of the the velocity correlation
function in the two limits considered in parts a and b in terms of the
response of the bath to the system.

15.3. A simple model for electron transfer is defined by a quantum Hamiltonian of
the form

Ĥ =
ε

2
σz +

Δ

2
σx,

where ε and Δ are constants and σx, σy, and σz are the Pauli matrices given
by

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
.

The model assumes that there are only two states for the electron and is thus
a simplification of the true electron-transfer problem.
a. In the Heisenberg picture, the operators that describe the observables of

a system evolve in time according to the equation of motion

dÂ

dt
=

1

ih̄
[Â, Ĥ],

where Â is an arbitrary operator. Write down Heisenberg’s equations for
σx, σy , and σz .

b. Compute the autocorrelation function 〈σy(0)σy(t)〉 assuming an initial
canonical distribution.

c. In order to mimic the effect of an environment, the above two-level system
is often coupled to a bath of quantum-mechanical harmonic oscillators for
which the Hamiltonian is given by

Ĥ =
ε

2
σz +

Δ

2
σx +

∑
α

h̄ωα

[
â†

αâα +
1

2

]
+

h̄

2
σz

∑
α

gα

(
â†

α + âα

)
,

where α is an index that runs over all of the bath modes, ωα are the bath
frequencies, âα and â†

α are the bath annihilation and creation (lowering
and raising) operators, respectively, and gα are coupling constants. For
this Hamiltonian, write down the Heisenberg equations of motion for all
operators, including the Pauli matrices of the system and the creation
and annihilation operators of the bath.

d. By solving the Heisenberg equations for the bath operators, develop gen-
eralized Langevin type equations for the spin operators σx and σy.

15.4. a. Derive eqn. (15.4.4).
∗b. Derive eqns. (15.4.6).
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∗15.5. Consider a single harmonic degree of freedom q, having a mass m, that obeys
the generalized Langevin equation

q̈ = −ω2q −
∫ t

0

dτ q̇(τ)γ(t − τ) + f(t).

Here ω is the frequency associated with the motion of q, γ(t) = ζ(t)/m, and
f(t) = R(t)/m, where R(t) and ζ(t) are the random force and friction kernel,
respectively. Suppose q(0) = 0.
a. Show that the velocity autocorrelation function Cvv(t) obeys the following

integro-differential equation

d

dt
Cvv(t) = −

∫ t

0

dτ K(t − τ)Cvv(τ),

where K(t) = ω2 + γ(t). This equation is one in a class of integro-
differential equations known as Volterra equations.

b. Devise a numerical algorithm for extracting the memory function and
friction kernel given a velocity autocorrelation function obtained from a
molecular dynamics calculation. Note that this requires inversion of the
Volterra equation. Discuss any numerical difficulties you expect to arise
in the implementation of your algorithm.

c. Now consider a simple continuous model for the friction kernel γ(t) =
λAe−λt. In what time range would you expect this model to break down
physically and why?

d. Solve the Volterra equation for the velocity autocorrelation function using
the simple exponential friction kernel model in part c. Discuss the influ-
ence of the parameters A and λ on your solution. In addition, examine
the free particle case by taking the limit ω → 0.

e. Finally, discretize your velocity autocorrelation function into time steps
of size Δt for a given choice of A and λ, and use this discretized Cvv(t) to
test the algorithm you developed in part (b). How well can you recover the
exponential friction kernel? How robust is your algorithm to the addition
of a little random noise to your discretized Cvv(t)?

15.6. For a particle obeying eqn. (15.3.21), show that the density of vibrational
states is related to the friction kernel by

I(ω) =
ω2γ′(ω)

[ω2 − ω̃2 − ωγ′′(ω)]2 + [ωγ′(ω)]2
,

where γ′(ω) and γ′′(ω) are the real and imaginary parts of γ̃(iω) and I(ω) is
the Fourier transform of the velocity autocorrelation function

I(ω) =
1

2π

∫ ∞

−∞
dt 〈q̇(0)q̇(t)〉e−iωt.
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In general, the connection between the autocorrelation function of a ran-
dom process and a spectral density is known as the Wiener–Khintchine theo-
rem (Wiener, 1930; Khintchine, 1934; Kubo et al., 1985). Using eqn. (15.2.12),
derive the spectral density for a harmonic bath corresponding to 〈R(0)R(t)〉.

15.7. Write a program to integrate the Langevin equation with a Gaussian random
force for a harmonic oscillator with mass m = 1, frequency ω = 1, tem-
perature kT = 1, and friction γ = 1, using the integrator of Section 15.5.
Verify that the correct momentum and position distribution functions of the
canonical ensemble are obtained (see Problem 4.9).

15.8. Consider the adiabatic free energy dynamics approach of Section 8.10.
a. Reformulate this technique using a set of coupled Langevin equations

with two different temperatures Tq and T for the first n coordinates and
remaining 3N − n coordinates, respectively.

b. Write a program to integrate your equations for the example in eqn.
(8.10.21) using the parameters given following eqn. (8.10.22) and verify
that you are able to generate the analytical free energy profile in eqn.
(8.10.22).

15.9. a. Derive eqns. (15.7.27), (15.7.30), and (15.7.31).

∗b. Derive eqn. (15.7.34).

∗15.10. A solution contains a very low concentration of solute molecules (denoted A)
and solvent molecules (denoted B). Let the number of solute molecules be
NA with positions r1(t), ..., rNA(t). We can introduce a phase space function
solute concentration c(r, t) at any point r in space as

c(r, t) =

NA∑
i=1

δ(r − ri(t)).

a. Assuming the solution is in a cubic periodic box of length L, show that
the spatial Fourier transform c̃k(t) of c(r, t) is

c̃k(t) =

NA∑
i=1

e−ik·ri(t),

where k = 2πn/L, where n is a vector of integers.

b. Use the Mori–Zwanzig theory to derive a generalized Langevin equation
for c̃k(t) and give the explicit expressions for all terms in the equation.

c. Now consider the correlation function

C(k, t) =
〈c̃−k(0)c̃k(t)〉

〈c̃−kc̃k〉 .
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Starting with your generalized Langevin equation, derive an integro-differential
equation satisfied by C(k, t).

d. Show that the memory kernel in your equation is at least second order in
k.

e. Show that exp(QiLt) → exp(iLt) as |k| → ∞.

f. Suppose the memory kernel decays rapidly in time. In this limit, show
that the correlation function satisfies an equation of the form

∂

∂t
C(k, t) = −k ·D · kC(k, t),

where D is the diffusion tensor. Give an expression for D in terms of a
velocity autocorrelation function.
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Critical phenomena

16.1 Phase transitions and critical points

In Section 4.7, we studied the liquid–gas phase transition associated with the van der
Waals equation of state. We demonstrated the existence of a critical isotherm and
derived the thermodynamic state variables of the liquid–gas critical point. We also
showed that the behavior of certain thermodynamic properties is determined by a
set of power laws characterized by exponents known as critical exponents, and we
alluded to the phenomenon of universality, which provides a rationalization for the
observation that large classes of physically very different systems possess the same
critical exponents. In this chapter, we will explore the behavior of systems near their
critical points in greater detail.

To begin our discussion, consider a uniform gas of identical particles in a container
of volume V . The interactions between the particles are weak, and their motion is
primarily driven by the kinetic-energy (free particle) contribution to the Hamiltonian.
Collisions, which are overwhelmingly dominated by two-body interactions, are infre-
quent. If we assume that the collisions are approximately elastic, then each colliding
particle merely changes its direction of motion. The fact that an interaction event
determines when and where a particle’s next collision will occur is not particularly
important since the frequency of collision events is small. In this case, we speak of a
lack of correlation between collision events.

If the gas is now compressed at a given temperature so that both the pressure
and the density are increased, the interactions between the particles become more
important, at least locally. Formation of small, short-lived clusters might occur, due
to cooperative interactions that have a greater influence on the system beyond merely
changing a particle’s direction infrequently. Collision events now exhibit short-range
correlations with each other, which leads to the formation of such local structures.

If the system is compressed even further, a change of phase or phase transition
occurs in which the gas becomes a liquid. Although phase transitions are an everyday
phenomenon, their underlying microscopic details are fascinating and merit further
comment. Firstly, the macroscopic manifestation of a gas-to-liquid phase transition
is a discontinuous change in the volume. At the microscopic level, the interparticle
interactions give rise to long-range correlations—cooperative effects that cause the gas
particles to condense, forming well-defined solvation structures quantifiable through
spatial correlation functions such as those in Figs. 4.2 and 4.3.

Further compression leads to the formation of locally ordered structures that
resemble the solid. As the compression continues, long-range order sets in, and a liquid-
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to-solid phase transition occurs. Such a transition is accompanied by a discontinuous
change in the density, although the change is not as dramatic as in the gas-to-liquid
case. Other macroscopic observables known as order parameters (see Section 16.4)
change as well. In order to map out the specific values of pressure and temperature
at which the different phases exist, a phase diagram is used. A typical phase diagram
for a simple, one-component system is shown in Fig. 16.1. In the phase diagram, the
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Fig. 16.1 Typical phase diagram of a simple, one-component system. L1, L2, and L3 are

the sublimation, melting, and boiling curves, respectively.

lines that separate different phases are called coexistence curves. Among these, there
is the melting curve (L2) between the liquid and solid phases, the sublimation curve
(L1) between the solid and gas phases, and the boiling curve (L3) between the liquid
and gas phases. The point at which all three curves meet is called the triple point.

In the above discussion, where a constant temperature is assumed, the specific
value of the temperature determines whether or not a gas-to-liquid phase transition
can occur. If the temperature is too high, then the system cannot exist as a liquid
at any pressure. The temperature at which a gas–liquid phase transition just starts is
called the critical temperature, denoted Tc. The existence of a critical temperature is
the reason that the boiling curve in Fig. 16.1 terminates at a definite point, whereas
the melting and sublimation curves, in principle, do not. The point at which the boiling
curve terminates is called the critical point.

Consider next isotherms of the equation of state for a simple fluid, which are
illustrated in Fig. 16.2. For temperatures above Tc, no phase transition occurs, and the
isotherms are continuous. In the phase diagram, the region to the right of the critical
point is known as the supercritical fluid region where the system exhibits both gas-like
and liquid-like properties. For temperatures below Tc, one sees a discontinuous change
in the volume, signifying the transition from gas to liquid. When a phase transition is
characterized by a discontinuous change in an associated thermodynamic observable,
the transition is referred to as a first-order phase transition. In Fig. 16.2, there is one
point labeled C at which the phase transition is characterized by a continuous volume
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Fig. 16.2 Equation of state of a simple, one-component fluid. C denotes an inflection point.

change. This point, which is an inflection point along the isotherm, corresponds to the
critical point on the phase diagram. The isotherm that contains the point C is called
the critical isotherm. The phase transition that occurs at this point is an example
of a second-order phase transition. For a one-component system, the critical point is
the only point at which a second-order phase transition is possible. A two-component,
for example, system could have lines of second-order phase transitions, called critical
lines. As discussed in Section 4.7, C is a point of zero curvature, meaning that ∂P/∂ρ
and ∂2P/∂ρ2 both vanish at C.

16.2 The critical exponents α, β, γ, and δ

The liquid–gas critical point is characterized by a number of important properties.
First, certain thermodynamic variables are observed to diverge as the temperature
T approaches the critical temperature Tc; the divergence obeys a power-law form
in |T − Tc|−1. Other thermodynamic variables are found to exhibit a nondivergent
power-law dependence as the critical point is approached in either |T −Tc| or |ρ− ρc|,
where ρc is the critical density—the density at which the inflection point C occurs in
Fig. 16.2. The exponents that govern the aforementioned power laws are called critical
exponents. A second important property is the fact that large classes of systems,
known as universality classes, possess the same critical exponents. This phenomenon
of universality indicates that near a critical point, the details of the local interactions
between specific pairs or clusters of particles become less important than long-range
cooperative effects, which are largely insensitive to the particulars of an interaction
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potential. Thus, it is possible to obtain information about all of the systems in a
universality class by studying its physically simplest members.

We start by introducing a set of critical exponents, known as the primary expo-
nents, and the properties they characterize. We will illustrate these exponents first
using the gas–liquid critical point we have been discussing, however, we will see very
shortly how our these definitions carry over to a different type of physical system in the
same universality class. The first exponent pertains to the behavior of the constant-
volume (or constant-pressure) heat-capacity at the critical pressure and density as the
critical temperature Tc is approached from above. Recall that the heat capacity at
constant volume CV = (∂E/∂T )V = kβ2(∂2 ln Q(N, V, T )/∂β2)V . As T → Tc from
above, CV is observed to diverge with the power-law form

CV ∼ |T − Tc|−α. (16.2.1)

The critical exponent α, therefore, characterizes the divergence in CV as T → Tc.
The second exponent γ pertains to the divergence isothermal compressibility κT ,

defined as κT = −(1/V )(∂V/∂P )T (see eqn. (4.7.40)). At the critical pressure and
volume, as T → Tc from above, the isothermal compressibility is observed to diverge
following the power law

κT ∼ |T − Tc|−γ . (16.2.2)

The third exponent pertains to the shape of the critical isotherm near the inflection
point, characterized by the critical values ρc and Pc. In particular, it is seen that for
values of P and ρ near their critical values at T = Tc,

P − Pc ∼ (ρ − ρc)
δsign(ρ − ρc), (16.2.3)

where sign(ρ − ρc) = (ρ − ρc)/|ρ − ρc| is just the sign of (ρ − ρc). Thus, δ does not
characterize a divergence but rather describes the critical isotherm in the neighborhood
of the inflection point.

Finally, the fourth exponent refers to the dependence of the difference ρL − ρG

on temperature as Tc is approached from below. Here ρL and ρG refer to the liquid
and gas density values when the discontinuous change occurs. Is it observed that this
difference obeys the power law

ρL − ρG ∼ |Tc − T |β. (16.2.4)

α, β, γ, δ are the primary critical exponents.

16.3 Magnetic systems and the Ising model

The gas–liquid critical point we have been discussing is not the simplest system in
its universality class due to the complexity of the interactions and the complicated
ensemble distribution they generate. The problem would be simplified considerably
if we could restrict the particles to specific points in space, specifically the points
of a regular lattice, and use variables that take on discrete values rather than the
continuous Cartesian positions r1, ..., rN that characterize liquids and gases. The only
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requirements that we place on the simplified system is that it possess a critical point
and that it belong to the same universality class.

Fortunately, it is possible to fulfill these requirements by considering the phe-
nomenon of magnetization (the formation of magnetic ordering in a ferromagnetic
system). We are interested in the transition from a disordered to an ordered state that
occurs either by the application of an external field or spontaneously as the temper-
ature is reduced. The models that are often invoked to describe this process are of a
type known as lattice models. Since we know that magnetization involves the collective
alignment of the quantum spins of particles along a particular spatial axis, the basic
lattice model consists of N interacting particles having spins Ŝ1, ...ŜN placed at the
points of a regular lattice, as illustrated in Fig. 16.3. For simplicity, we consider the

Fig. 16.3 Small part of a cubic spin lattice.

particles to be spin-1/2, so that Ŝi = (h̄/2)σ̂i, where σ̂ is the vector of Pauli matrices
σ̂ = (σ̂x, σ̂y , σ̂z). When diagonalized, each of the Pauli matrices has eigenvalues ±1.
We consider only pairwise interactions among the spins described by a general spin-
spin coupling tensor Jij so that the Hamiltonian for the system in the absence of an
external magnetic field is

Ĥ0 = −1

2

∑
i,j

σ̂i · Jij · σ̂j . (16.3.1)

The model in eqn. (16.3.1) is known as the Heisenberg model. The ‘0’ subscript reminds
us that eqn. (16.3.1) prescribes a field-free Hamiltonian. When a magnetic field B is

applied to the system, the total Hamiltonian takes the form Ĥ = Ĥ0 + Ĥ1, where Ĥ1

is a perturbation due to the field and is given by

Ĥ1 = −
∑

i

γB · Ŝi = −
∑

i

h · σ̂i, (16.3.2)

where γ is the spin gyromagnetic ratio and h = γh̄B/2 (see Problems 9.1 and 10.2).
As we will discuss in the next section, the Heisenberg and liquid–gas models do not

belong to the same universality class. Therefore, we will consider a simplified version
of the model in eqns. (16.3.1) and (16.3.2), which ultimately renders the model easier
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to solve. The simplification we will make is to restrict the spins to lie along only
one spatial axis, specifically, the z-axis. With this choice, the spin matrices become
σ̂i = (0, 0, σ̂zi). In addition, since σ̂z is diagonal, we can reduce each spin matrix σ̂zi to
a scalar variable σzi that can take values of ±1 only. At this point, since there is only
one relevant spatial axis, we can henceforth drop the “z” label on the spin variables.
Finally, we will make the assumption that the spin-spin couplings, which are now
simply numbers Jij , couple only nearest neighboring spins. Thus, the Hamiltonian for
this idealized situation becomes

H = −1

2

∑
<i,j>

Jijσiσj − h
∑

i

σi, (16.3.3)

where the notation
∑

<i,j> signifies that only nearest-neighbor interactions are in-
cluded in the first term. The h = 0 limit of eqn. (16.3.3) gives the unperturbed Hamil-
tonian

H0 = −1

2

∑
<i,j>

Jijσiσj , (16.3.4)

The model described by eqn. (16.3.3) is known as the Ising model, named after the
German physicist Ernst Ising (1900–1998). We have dropped the hat from H in eqns.
(16.3.3) and (16.3.4), signifying that the Ising model is a type of generic discrete
model obtainable as idealizations of actual classical or quantum Hamiltonians (see
Problems 10.9 and 16.5 for examples of the former).

As for the gas–liquid phase transition, where the density ρ was used to distinguish
one phase from another, we seek a variable that can distinguish a disordered phase from
an ordered, magnetized phase. Thus, we introduce the average total magnetization

M =

〈
N∑

i=1

σi

〉
, (16.3.5)

which is an extensive thermodynamic observable. The equivalent intensive observable
is the average magnetization per spin m = M/N . In a perfectly ordered state, m = ±1
and M = ±N , depending on whether the spins are aligned along the positive or
negative z-direction. The applied magnetic field h plays the same role as the applied
external pressure P in the gas–liquid case and therefore the phase diagram is a plot
of the phases in the h–T plane, as shown in Fig. 16.4. As the figure suggests, the
uniaxial nature of the Ising model leads to a single line, h = 0, along which a first-
order phase transition between spin-up and spin-down ordered states can occur. All
thermodynamic functions are smooth functions of h and T everywhere else in the
phase diagram. The h = 0 coexistence line terminates at a critical point, the only
point at which the phase transition becomes second order. For T > Tc, the system is
in a disordered state for h = 0. It could still order in the presence of a finite applied
field and, therefore, is paramagnetic. For T < Tc, as h → 0, a finite magnetization
persists down to h = 0. If h → 0+, then the magnetization will be positive, and if
h → 0−, it will be negative. As this analysis implies, at h = 0, the magnetization
can be either positive or negative, and indeed, the Ising model exhibits a two-phase
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Fig. 16.5 Equation of state of the Ising model.

coexistence at h = 0. Since a plot of m vs. h for T < Tc is an isotherm of the equation
of state, such an isotherm shows a discontinuous change in m (see Fig. 16.5). For
T > Tc, the magnetization vanishes as h → 0. The critical isotherm shown in Fig. 16.5
separates these two modes of behavior. At h = 0, the isotherm has zero curvature,
meaning that ∂h/∂m = 0 and ∂2h/∂m2 = 0.

Table 16.1 draws an analogy between the gas–liquid and magnetic cases. It lists the
basic thermodynamic variables and thermodynamic relations among these variables,
which will be needed throughout our discussion. Accordingly, the primary critical
exponents are defined as follows. At h = 0 and m = 0 (the values of the magnetic field
and magnetization at the critical point), as T → Tc from above, the heat capacity at
constant magnetization CM diverges as

CM ∼ |T − Tc|−α. (16.3.6)
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Table 16.1 Comparison of thermodynamic variables and relations between gas–liquid and

magnetic systems.

Quantity Gas–Liquid Magnetic Quantity

Pressure P h Magnetic field

Volume V −M = −Nm Magnetization

Isothermal Magnetic
compressibility κT = −(1/V )(∂P/∂V ) χ = ∂m/∂h susceptibility

Helmholtz Helmholtz
free energy A(N, V, T ) A(N, M, T ) free energy

Gibbs Gibbs
free energy G(N, P, T ) G(N, h, T ) free energy

Pressure Magnetic field
relation P = −∂A/∂V h = ∂A/∂M relation

Volume Magnetization
relation V = ∂G/∂P M = −∂G/∂h relation

Const. Const.
volume magnetization

heat capacity CV = −T
(
∂2A/∂T 2

)
V

CM = −T
(
∂2A/∂T 2

)
M

heat capacity

Const. pressure Const. field

heat capacity CP = −T
(
∂2G/∂T 2

)
P

Ch = −T
(
∂2G/∂T 2

)
h

heat capacity

Similarly, at h = 0 and m = 0, as T → Tc from above, the susceptibility diverges as

χ ∼ |T − Tc|−γ . (16.3.7)

Along the critical isotherm, the behavior of the equation of state near the inflection
point is

h ∼ |m|δsign(m). (16.3.8)

Finally, as T → Tc from below, the discontinuity in the magnetization depends on
temperature according to the power-law

m ∼ |Tc − T |β. (16.3.9)

In this way, a perfect analogy is established between the magnetic and gas–liquid
systems. Before proceeding to analyze the magnetic system model, however, we first
clarify the concept of universality and provide a definition of universality classes.
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16.4 Universality classes

In a perfectly ordered magnetic state, the magnetization per spin m can take one of
two values, m = 1 or m = −1, depending on the direction in which the spins point.
In the former case, σ1 = 1, ..., σN = 1, while in the latter σ1 = −1, ..., σN = −1. If we
perform a variable transformation

σ′
i = −σi, (16.4.1)

which is simply a spin-flip transformation, the magnetization in a perfectly ordered
state changes sign. Note that the spin-flip transformation has the same effect as per-
forming a parity transformation, in which we let the spatial coordinate z → −z.1

Consider next the effect of the transformation in eqn. (16.4.1) on the unperturbed
Hamiltonian H0 of our idealized magnetic model. The unperturbed (h = 0) Hamilto-
nian is

H0 = −1

2

∑
<i,j>

Jijσiσj . (16.4.2)

If the spins in eqn. (16.4.2) are transformed according to eqn. (16.4.1), the Hamiltonian
becomes

H′
0 = −1

2

∑
<i,j>

Jijσ
′
iσ

′
j , (16.4.3)

which has exactly the same form as eqn. (16.4.2). Thus, the transformation in eqn.
(16.4.1) preserves the form of the Hamiltonian. The Hamiltonian H0 is said to be
invariant under a spin-flip transformation. This is not unexpected since the spin-flip
transformation is equivalent to a parity transformation, which is merely a different
choice of coordinates, and physical results should not depend on this choice. Thus, the
Hamiltonian H0 exhibits parity invariance.

Readers having some familiarity with the concepts of group theory will recognize
that the spin-flip transformation, together with the trivial identity transformation
σ′

i = σi, form a complete group of transformations with elements {1,−1}, a group
known as Z2. The Hamiltonian H0 is invariant under both of the operations of this
group. The magnetization of an ordered state, on the other hand, is not. Based on
these notions, we introduce the concept of an order parameter, which is needed to
define universality classes.

Suppose the unperturbed Hamiltonian H0 of a system is invariant with respect to
all of the transformations of a group G. If two phases can be distinguished by a specific
thermodynamic average 〈φ〉 (either a classical phase space average or a quantum trace)
that is not invariant under one or more of the transformations of G, then 〈φ〉 is called
an order parameter for the system. Because the magnetization m is not invariant under
one of the transformations in Z2, it can serve as an order parameter for the Ising model
with H0 given by eqn. (16.3.4).

The systems in a universality class are characterized by two parameters: (1) the
dimensionality d of the space in which the system exists; and (2) the dimension n of

1The general parity transformation is a complete reflection of all three spatial axes, r → −r.
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the order parameter. All systems possessing the same values of d and n belong to the
same universality class. Thus, comparing the gas–liquid system and the h = 0 Ising
model defined by eqn. (16.3.4), it should be clear why these two systems belong to the
same universality class. In both cases, the spatial dimensionality is d = 3. (In fact,
these models can be defined in any number of dimensions.) In addition, the dimension
of the order parameter for each system is n = 1, since for both systems, the order
parameter (ρ or m) is a simple scalar quantity. Consequently, the idealized magnetic
model can be used to determine the critical exponents of the d = 3, n = 1 universality
class. By contrast, in the Heisenberg model of eqn. (16.4.2), the spins can point in any
spatial direction, and the order parameter is the magnetization vector

M =

〈
N∑

i=1

σi

〉
, (16.4.4)

which has dimension n = 3, corresponding to the three components of M. Such a
system could be used to determine the exponents of the d = 3, n = 3 universality
class.

Having established the concept of a universality class, we will now proceed to
analyze the Ising model in order to gain an understanding of systems in the d = 3,
n = 1 universality class near their critical points.

16.5 Mean-field theory

We begin our treatment of the Ising model by invoking an approximation scheme
known as the mean-field theory. In this approach, spatial correlations are neglected,
and each particle is assumed to experience an “average” or “mean” field due to the
other particles in the system. Before examining the magnetic system, let us first note
that we previously encountered this approximation in our discussion of the van der
Waals equation in Section 4.7. We derived the van der Waals equation of state from
a perturbation expansion of the potential energy of a system, and we obtained the
approximate Helmholtz free energy of eqn. (4.7.24):

A = − 1

β
ln

(
ZN

(0)

N !λ3N

)
+ 〈U1〉0 − β

2

(〈U2
1 〉0 − 〈U1〉20

)
+ · · ·

where Z0
N is the configurational partition function due to the unperturbed potential

U0. Note that the second term in the free energy is just the average of the pertur-
bation U1, while the third term is the fluctuation in this potential 〈(U1 − 〈U1〉)2〉. In
the derivation of the van der Waals equation, the fluctuation term was completely
neglected. Furthermore, the unperturbed configurational partition function was taken
to be that of an ideal gas in a reduced volume. Thus, all of the interactions between
particles were assumed to arise from U1, and the approximation of retaining only the
first two terms in the free energy expression amounted to replacing U1 with 〈U1〉 in
the configurational partition function, i.e.,

ZN = ZN
(0)〈e−βU1〉 ≈ ZN

(0)e−β〈U1〉 (16.5.1)

(cf. eqn. (4.7.4)). The mean-field theory approximation can recover the first two terms
in the free energy. Recall that the van der Waals equation, despite its crudeness,
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predicts a gas-to-liquid phase transition as well as a critical point. The four primary
exponents were found in Section 4.7 to be α = 0, β = 1/2, γ = 1, and δ = 3 within the
mean-field approximation. In our discussion of the van der Waals equation, we referred
to the fact that the isotherms are unrealistic for T < Tc owing to regions where both P
and V increase simultaneously. In Fig. 4.8, the correction to a T < Tc isotherm, which
appears as the thin solid straight line, is necessary for the calculation of the exponent
β. The location of the thin solid line is determined using a procedure known as the
Maxwell construction, which states that the areas enclosed above and below the thin
line and the isotherm must be equal. Once the isotherms for T < Tc are corrected in
this manner, then the exponent β can be calculated (see Problem 16.3).

In order to apply the mean-field approximation to the Ising model, we assume that
the system is spatially isotropic. That is, for the spin-spin coupling Jij , we assume∑

j Jij is independent of the lattice location i. Since the sum in eqn. (16.3.4) is per-

formed over nearest neighbors of i, under the assumption of isotropy,
∑

j Jij = zJ̃,

where J̃ is a constant and z is the number of nearest neighbors of each spin (z = 2 in
one dimension, z = 4 on a two-dimensional square lattice, z = 6 on a three-dimensional
simple cubic lattice, z = 8 on a three-dimensional body-centered cubic lattice, etc.).
Absorbing the factor z into the constant J̃ , we define J = zJ̃.

Next, we consider the Hamiltonian in the presence of an applied magnetic field h:

H = −1

2

∑
<i,j>

Jijσiσj − h
∑

i

σi. (16.5.2)

The partition function is given by

Δ(N, h, T ) =
∑

σ1=±1

∑
σ2=±1

· · ·
∑

σN =±1

exp

⎧⎨
⎩β

⎡
⎣1

2

∑
<i,j>

Jijσiσj + h
∑

i

σi

⎤
⎦
⎫⎬
⎭ . (16.5.3)

To date, it has not been possible to obtain a closed-form expression for this sum in
three dimensions. Thus, to simplify the problem, we write the spin-spin product σiσj in
terms of the difference of each spin from the magnetization per spin m = (1/N)〈∑i σi〉:

σiσj = (σi − m + m)(σj − m + m)

= m2 + m(σi − m) + m(σj − m) + (σi − m)(σj − m). (16.5.4)

Since m ∼ 〈σ〉, the last term in eqn. (16.5.4) is a fluctuation term, which is neglected
in the mean-field approximation. If this term is dropped, then

1

2

∑
<i,j>

Jijσiσj ≈ 1

2

∑
<i,j>

Jij

[−m2 + m(σi + σj)
]

= −1

2
m2NJ + Jm

∑
i

σi, (16.5.5)

where the assumption of spatial isotropy has been used. Thus, the Hamiltonian reduces
to



Critical phenomena

H = −1

2

∑
<i,j>

Jijσiσj − h
∑

i

σi ≈ 1

2
NJm2 − (Jm + h)

∑
i

σi, (16.5.6)

and the partition function becomes

Δ(N, h, T ) ≈
∑

σ1=±1

∑
σ2=±1

· · ·
∑

σN =±1

exp

{
−β

[
1

2
NJm2 − (Jm + h)

∑
i

σi

]}

= e−βNJm2/2
∑

σ1=±1

∑
σ2=±1

· · ·
∑

σN =±1

exp

[
β(Jm + h)

∑
i

σi

]

= e−βNJm2/2
∑

σ1=±1

exp [β(Jm + h)σ1] × · · · ×
∑

σN =±1

exp [β(Jm + h)σN ]

= e−βNJm2/2

( ∑
σ=±1

eβ(Jm+h)σ

)N

= e−βNJm2/2
(
eβ(Jm+h) + e−β(Jm+h)

)N

= e−βNJm2/2 (2coshβ(Jm + h))
N

. (16.5.7)

From eqn. (16.5.7), the Gibbs free energy G(N, h, T ) can be calculated according to

G(N, h, T ) = − 1

β
ln Δ(N, h, T ) =

1

2
NJm2 − N

β
ln [2coshβ(Jm + h)] . (16.5.8)

The average magnetization is M = −(∂G/∂h), which means that the average mag-
netization per spin is m = M/N = −(∂g/∂h), where g(h, T ) = G(N, h, T )/N is the
Gibbs free energy per spin:

g(h, T ) =
1

2
Jm2 − 1

β
ln [2coshβ(Jm + h)] . (16.5.9)

Thus, the average magnetization per spin is given by

m = − ∂g

∂h
= tanhβ(Jm + h). (16.5.10)

Notice, however, that since m was introduced into the Hamiltonian, the result of this
derivative is an implicit relation for m that takes the form of a transcendental equation.

We now ask if an ordered phase exists at zero field. Setting h = 0 in eqn. (16.5.10),
the transcendental equation becomes m = tanh(βJm). Of course, m = 0 is a trivial
solution to this equation; however, we seek solutions for finite m, which we can obtain
by solving the equation graphically. That is, we plot the two functions f1(m) = m and
f2(m) = tanh(βJm) on the same graph and then look for points at which the two
curves intersect for different values of kT = 1/β. The plot is shown in Fig. 16.6. We
see that depending on the value of T , the curves intersect at either three points or one
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Fig. 16.6 Graphical solution of the transcendental equation tanh(βJm) = m.

point. Excluding the trivial case, m = 0, we see that for small enough T (βJ > 1), there
are two other solutions, which we label m0 and −m0. These solutions correspond to
magnetizations at zero field aligned along the positive and negative z-axis, respectively.
When the temperature is too high, that is, when βJ < 1, only the m = 0 solution
exists, and there is no magnetization at zero field and hence no spontaneous ordering.
The case βJ = 1 just separates these two regimes and corresponds, therefore, to a
critical isotherm. In fact, the condition βJ = 1 can be used to determine the critical
temperature:

βJ =
J

kT
= 1 ⇒ kTc = J. (16.5.11)

In order to clarify further the behavior of the system near the critical point, consider
expanding the free energy about m = 0 at zero field for temperatures near the critical
temperature. If the expansion is carried out up to quadratic order in m, we obtain

g(0, T ) ≈ c1 + J(1 − βJ)m2 + c2m
4 = a(T ), (16.5.12)

where c1 and c2 are constants with c2 > 0. Note that at zero field, the Gibbs free
energy per spin becomes the Helmholtz free energy per spin a(T ). If βJ > 1, the
sign of the quadratic term is negative, and a plot of the free energy as a function of
m is shown in Fig. 16.7(a). We can see from the figure that the free energy has two
minima at m = ±m0 and a maximum at m = 0, indicating that the ordered states,
predicted by solving for the magnetization m, are thermodynamically stable while the
disordered state with m = 0 is thermodynamically unstable. For βJ < 1, the sign of
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Fig. 16.7 Free energy of eqn. (16.5.12), g(0, T ). (a) T < Tc. (b) T > Tc.

the quadratic term is positive, and the free energy plot, shown in Fig. 16.7(b), possesses
a single minimum at m = 0, indicating that there are no solutions corresponding to
ordered states.

We now turn to the calculation of the critical exponents for Ising model within
the mean-field theory. From the free energy plot in Fig. 16.7(a), we can obtain the
exponent β directly. Recall that β describes how the discontinuity associated with the
first-order phase transition for T < Tc depends on temperature as T → Tc, and for
this, we need to know how m0 depends on T for T < Tc. The dependence of m0 on T
is determined by the condition that g(0, T ) be a minimum at m = m0:

∂g(0, T )

∂m

∣∣∣∣
m=m0

= 0, (16.5.13)

or

2J(1 − βJ)m0 + 4c2m
3
0 = 0

2J

T

(
T − J

k

)
+ 4c2m

2
0 = 0

2J

T
(T − Tc) + 4c2m

2
0 = 0

m0 ∼ (Tc − T )
1/2

, (16.5.14)

from which it is clear that β = 1/2.
In order to determine δ, the mean-field equation of state is needed, which is pro-

vided by eqn. (16.5.10). Solving eqn. (16.5.10) for h yields
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h = kT tanh−1(m) − mJ. (16.5.15)

We are interested in the behavior of eqn. (16.5.15) along the critical isotherm, where
m0 → 0 near the inflection point. Using the expansion tanh−1(x) ≈ x + x3/3 + · · ·
gives

h ≈ kT

[
m +

m3

3

]
− mJ

= mk

(
T − J

k

)
+

kT

3
m3

= mk (T − Tc) +
kT

3
m3. (16.5.16)

Thus, along the critical isotherm, T = Tc, we find that h ∼ m3, which implies that
δ = 3.

In order to calculate γ, we examine the susceptibility χ as T → Tc from above. By
definition,

χ =
∂m

∂h
=

1

∂h/∂m
. (16.5.17)

From eqn. (16.5.16),
∂h

∂m
= k(T − Tc) + kTm2. (16.5.18)

For T > Tc, m = 0, hence ∂h/∂m ∼ (T − Tc). Therefore, χ ∼ (T − Tc)
−1, from which

it is clear that γ = 1.
Finally, the exponent α is determined by the behavior of the heat capacity Ch as

T → Tc from above. Since Ch is derived from the Gibbs free energy, consider the limit
of eqn. (16.5.8) for T > Tc, where m = 0

G(N, h, T ) = −NkT ln 2. (16.5.19)

From this expression, it follows that Ch = 0; since, there is no divergence in Ch, we
conclude that α = 0.

In summary, we find that the mean-field exponents for the magnetic model are
α = 0, β = 1/2, γ = 1, and δ = 3, which are exactly the exponents we obtained for
the liquid–gas critical point using the van der Waals equation. Thus, within the mean-
field theory approximation, two very different physical models yield the same critical
exponents, thus providing a concrete illustration of the universality concept. As noted
in Section 4.7, the experimental values of these exponents are α = 0.1, β = 0.34,
γ = 1.35, and δ = 4.2, which shows that mean-field theory is not quantitatively
accurate. Qualitatively, however, mean-field theory reveals many important features
of critical-point behavior (even if it misses the divergence in the heat capacity) and is,
therefore, a useful first approach.

In order to move beyond mean-field theory, we require an approach capable of ac-
counting for the neglected spatial correlations. We will first examine the Ising model in
one and two dimensions, where the model can be solved exactly. Following this, we will
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present an introduction to scaling theory and the renormalization group methodology.

16.6 Ising model in one dimension

Solving the Ising model in one dimension is a relatively straightforward exercise. As
we will show, however, the one-dimensional Ising model shows no ordered phases.
Why study it then? First, there are classes of problems that can be mapped onto
one-dimensional Ising-like models, such as the conformational equilibria of a linear
polymer (see Problems 10.9 and 16.5). Second, the mathematical techniques employed
to solve the problem are applicable to other types of problems. Third, even the one-
dimensional spin system must become ordered at T = 0, and therefore, understanding
the behavior of the system as T → 0 will be important in our treatment of spin systems
via renormalization group methods.

From eqn. (16.5.2), the Hamiltonian for the one-dimensional Ising model is

H = −J
N∑

i=1

σiσi+1 − h

N∑
i=1

σi. (16.6.1)

In order to complete the specification of the model, a boundary condition is also
needed. Since the variable σN+1 appears in eqn. (16.6.1), it is convenient to impose
periodic boundary conditions, which leads to the condition σN+1 = σ1. The one-

...
σ σ

1 2
σ

3
σ

N
σ

N+1

Fig. 16.8 One-dimensional Ising system subject to periodic boundary conditions.

dimensional periodic chain is illustrated in Fig. 16.8. Because of the periodicity, the
Hamiltonian can be written in a more symmetric manner as

H = −J

N∑
i=1

σiσi+1 − h

2

N∑
i=1

(σi + σi+1) . (16.6.2)

The partition function corresponding to the Hamiltonian in eqn. (16.6.2) is

Δ(N, h, T ) =
∑

σ1=±1

· · ·
∑

σN =±1

exp

[
βJ

N∑
i=1

σiσi+1 +
βh

2

N∑
i=1

(σi + σi+1)

]
. (16.6.3)

Since each spin sum has two terms, the total number of terms represented by the spin
sums is 2N . A powerful method for evaluating the partition function is referred to as
the transfer matrix method, first introduced by Kramers and Wannier (1941a, 1941b).
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This method recognizes that the partition function can be expressed as a large product
of matrices. Consider the matrix P, whose elements are given by

〈σ|P|σ′〉 = eβJσσ′+βh(σ+σ′)/2. (16.6.4)

Since σ and σ′ can be only 1 or -1, P is a 2×2 matrix with elements given by

〈1|P|1〉 = eβ(J+h)

〈−1|P| − 1〉 = eβ(J−h)

〈1|P| − 1〉 = 〈−1|P|1〉 = e−βJ . (16.6.5)

Written as a matrix, P appears as

P =

(
eβ(J+h) e−βJ

e−βJ eβ(J−h)

)
. (16.6.6)

In terms of P, the partition function can be expressed as

Δ(N, h, T ) =
∑
σ1

· · ·
∑
σN

〈σ1|P|σ2〉〈σ2|P|σ3〉 · · · 〈σN−1|P|σN 〉〈σN |P|σ1〉. (16.6.7)

Because the partition function is now a matrix product of N factors of P, each sand-
wiched between spin states with a spin in common, P is known as the transfer matrix.
Using the completeness of the spin eigenvectors, each factor of the form

∑
σk

|σk〉〈σk|
appearing in eqn. (16.6.7) is an identity operator I, and the sum over N spins can be
collapsed to a sum over just one spin σ1, which yields

Δ(N, h, T ) =
∑
σ1

〈σ1|PN |σ1〉

= Tr
(
PN

)
. (16.6.8)

Interestingly, in deriving eqn. (16.6.8), we performed the opposite set of operations
used in eqns. (12.2.9) and (12.2.11) to derive the Feynman path integral. In the latter,
an operator product was expanded by the introduction of the identity between factors
of the operator.

The simplest way to calculate the trace is to diagonalize P, which yields two eigen-
values λ1 and λ2, in terms of which the trace is simply λN

1 + λN
2 . The eigenvalues of

P are solutions of det(P − λI) = 0, which gives the eigenvalues

λ = eβJ

[
cosh(βh) ±

√
sinh2(βh) + e−4βJ

]
. (16.6.9)

We denote these as values λ± (instead of λ1,2), where λ± corresponds to the choice of
+/- in eqn. (16.6.9). Thus, the partition function becomes

Δ(N, h, T ) = Tr
[
PN

]
= λN

+ + λN
− . (16.6.10)

Although eqn. (16.6.10) is exact, since λ+ > λ−, it follows that for N → ∞, λN
+ � λN

−
so that the partition function is accurately approximated using the single eigenvalue
λ+. Thus, Δ(N, h, T ) ≈ λN

+ , and the free energy per spin is simply
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g(h, T ) = −kT ln λ+

= −J − kT ln

[
cosh(βh) +

√
sinh2(βh) + e−4βJ

]
. (16.6.11)

From eqn. (16.6.11), the magnetization per spin can be computed as

m =

(
∂g

∂h

)
=

sinh(βh) + sinh(βh)cosh(βh)/
√

sinh2(βh) + e−4βJ

cosh(βh) +
√

sinh2(βh) + e−4βJ

. (16.6.12)

As h → 0, the magnetization vanishes, since cosh(βh) → 1 and sinh(βh) → 0. Thus,
there is no magnetization at any finite temperature in one dimension, and hence,
no nontrivial critical point. Note, however, that as T → 0 (β → ∞), the factors
exp(−4βJ) vanish, and m → ±1 as h → 0±. This indicates that an ordered state does
exist at absolute zero of temperature. The fact that m tends toward different limits
depending on the approach of h → 0 from the positive or negative side indicates that
T = 0 can be thought of as a critical point, albeit an unphysical one. Indeed, such
a result is expected since the entropy vanishes at absolute zero, and consequently an
ordered state must exist at T = 0. Though unphysical, we will find this critical point
useful for illustrative purposes later in our discussion of the renormalization group.

16.7 Ising model in two dimensions

In contrast to the one-dimensional Ising model, which can be solved with a few lines of
algebra, the two-dimensional Ising model is a highly nontrivial problem that was first
worked out exactly by Lars Onsager (1903–1976) in 1944 (Onsager, 1944). Extensive
discussions of the solution of the two-dimensional Ising model can be found in the
books by K. Huang (1963) and by R. K. Pathria (1972). Here, we shall give the basic
idea behind two approaches to the problem and then present the solution in its final
form.

Transfer matrix approach: The first method follows the transfer matrix approach
employed in the previous section for the one-dimensional Ising model. Consider the
simple square lattice of spins depicted in Fig. 16.9, in which each row and each column
contains n spins, so that N = n2. If i indexes the rows and j indexes the columns, then
the Hamiltonian, taking into account the restriction to nearest-neighbor interactions
only, can be written as

H = −J

n∑
i=1

n∑
j=1

[σi,jσi+1,j + σi,jσi,j+1] − h

n∑
i=1

n∑
j=1

σi,j . (16.7.1)

As in the one-dimensional case, we impose periodic boundary conditions on the square
lattice so that the spins satisfy σn+1,j = σ1,j and σi,n+1 = σi,1. The partition function
can now be expressed as
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Fig. 16.9 Two-dimensional Ising system subject to periodic boundary conditions.

Δ(N, h, T ) =
∑

σ1,1=±1

· · ·
∑

σn,1=±1

∑
σ1,2=±1

· · ·
∑

σn,2=±1

· · ·

∑
σ1,n=±1

· · ·
∑

σn,n=±1

exp

⎧⎨
⎩βJ

n∑
i,j=1

[σi,jσi+1,j + σi,jσi,j+1] + βh
n∑

i,j=1

σi,j

⎫⎬
⎭ . (16.7.2)

As there are N = n2 spin sums, each having two terms, the total number of terms
represented by the spin sums is 2N = 2n2

.
The form of the Hamiltonian and partition function in eqns. (16.7.1) and (16.7.2)

suggests that a matrix multiplication analogous to eqn. (16.6.7) involves entire columns
of spins and that the elements of the transfer matrix should be determined by the
columns rather than by the single spins of the one-dimensional case. (Note that we
could also have used rows of spins and written eqn. (16.7.2) “row-wise” rather than
“column-wise.”) Let us we define a full column of spins by a variable μj

μj = {σ1,j , σ2,j , ..., σn,j} . (16.7.3)

The Hamiltonian can then be conveniently represented in terms of interactions between
full columns of spins. We first introduce the two functions

E(μj , μk) = J

n∑
i=1

σi,jσi,k
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E(μj) = J

n∑
i=1

σi,jσi+1,j + h
∑
i,j

σi,j (16.7.4)

in terms of which the Hamiltonian becomes

H = −
n∑

j=1

[E(μj , μj+1) + E(μj)] (16.7.5)

and the partition function can be expressed as

Δ(N, h, T ) =
∑
μ1

∑
μ2

· · ·
∑
μn

exp

⎧⎨
⎩β

n∑
j=1

[E(μj , μj+1) + E(μj)]

⎫⎬
⎭ . (16.7.6)

Although eqn. (16.7.6) now resembles the partition function of a one-dimensional Ising
model, each sum over μj now represents 2n terms. We can, nevertheless, define a 2n×2n

transfer matrix P with elements

〈μ|P|μ′〉 = exp

{
β

[
E(μ, μ′) +

1

2
(E(μ) + E(μ′))

]}
, (16.7.7)

so that the partition function becomes

Δ(N, h, T ) =
∑
μ1

∑
μ2

· · ·
∑
μn

〈μ1|P|μ2〉〈μ2|P|μ3〉 · · · 〈μn|P|μ1〉 = Tr [Pn] . (16.7.8)

The partition function can now be computed from the 2n eigenvalues of P as

Δ(N, h, T ) = λn
1 + λn

2 + · · ·λn
2n . (16.7.9)

As in the one-dimensional case, however, as N → ∞, n → ∞, and the contribu-
tion from the largest eigenvalue will dominate. Thus, to a very good approximation,
Δ(N, h, T ) ≈ λn

max, and the problem of computing the partition function becomes one
of simply finding the largest eigenvalue of P.

A detailed mathematical discussion of how the largest eigenvalue of P can be found
is given by Huang (1963), which we will not replicate here. We simply quote the final
result for the Gibbs free energy per spin at zero field in the thermodynamic limit:

g(0, T ) = −kT ln [2cosh(2βJ)] − kT

2π

∫ π

0

dφ ln
1

2

(
1 +

√
1 − K2 sin2 φ

)
(16.7.10)

(Onsager, 1944; Kaufmann, 1949), where K = 2/[cosh(2βJ)coth(2βJ)]. The integral is
the result of taking the thermodynamic limit. In his 1952 paper, C. N. Yang obtained
an exact expression for the magnetization at zero field and showed that when T < Tc,
where Tc is given by

2tanh2(2J/kTc) = 1, kTc ≈ 2.269185J, (16.7.11)
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the magnetization is nonzero, indicating that spontaneous magnetization occurs in two
dimensions. The magnetization is

m =

{
0 T > Tc{

1 − [sinh(2βJ)]
−4

}1/8

T < Tc

. (16.7.12)

In addition to the existence of a spontaneously ordered phase, the heat capacity Ch

diverges as T → Tc. The expression for the heat capacity at h = 0 near T = Tc is

Ch(T )

k
=

2

π

(
2J

kTc

)2 [
− ln

∣∣∣∣1 − T

Tc

∣∣∣∣ + ln

(
kTc

2J

)
−

(
1 +

π

4

)]
, (16.7.13)

which diverges logarithmically. A graph of Ch vs. T is shown in Fig. 16.10. The log-
arithmic divergence emerges because the model is solved in two rather than three
dimensions; in the latter, we would expect a power-law divergence. The other critical
exponents can be derived for the two-dimensional Ising model and are α = 0 (logarith-
mic divergence), β = 1/8, γ = 7/4, and δ = 15. These are the exact exponents for the
d = 2, n = 1 universality class. To date, the three-dimensional Ising model remains
an unsolved problem. Should an exact solution emerge, the exponents for the d = 3,
n = 1 universality class would be known.

0

T

C
h

T
c

k/

Fig. 16.10 Heat capacity of the two-dimensional Ising model (see eqn. (16.7.13)).
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Graph-theoretic approach: The second approach is a combinatorial one that leads
directly to the partition of the two-dimensional Ising model in the zero-field limit. We
begin by introducing the shorthand notation K = βJ , and again we assume periodic
boundary conditions. The partition function in the zero-field limit can be written as

Q(N, T ) =
∑

σ1,1=±1

∑
σ2,1=±1

· · ·
∑

σn,1=±1

∑
σ1,2=±1

∑
σ2,2=±1

· · ·
∑

σn,2=±1

· · · (16.7.14)

×
∑

σ1,n=±1

∑
σ2,n=±1

· · ·
∑

σn,n=±1

exp

⎧⎨
⎩K

n∑
i,j=1

[σi,jσi+1,j + σi,jσi,j+1]

⎫⎬
⎭ .

The combinatorial approach starts with an identity derived from the fact that the
product of spins σi,jσi′,j′ = ±1 so that exp[Kσi,jσi′,j′ ] = exp[±K] = cosh(K) ±
sinh(K). From these relations, it follows that

exp [Kσi,jσi′,j′ ] = cosh(K) + σi,jσi′,j′ sinh(K)

= cosh(K) [1 + σi,jσi′,j′ tanh(K)]

= cosh(K) [1 + vσi,jσi′,j′ ] , (16.7.15)

where v = tanh(K). Converting exponentiated sums into products, the partition func-
tion can be written as

Q(N, T ) =
∑

{σ}=±1

exp

⎧⎨
⎩K

∑
i,j

[σi,jσi+1,j + σi,jσi,j+1]

⎫⎬
⎭

=
∑

{σ}=±1

exp

⎧⎨
⎩K

∑
i,j

σi,jσi+1,j

⎫⎬
⎭ exp

⎧⎨
⎩K

∑
i,j

σi,jσi,j+1

⎫⎬
⎭

=
∑

{σ}=±1

⎡
⎣∏

i,j

eKσi,jσi+1,j

⎤
⎦
⎡
⎣∏

i,j

eKσi,jσi,j+1

⎤
⎦

=
∑

{σ}=±1

⎡
⎣∏

i,j

cosh(K) (1 + vσi,jσi+1,j)

⎤
⎦
⎡
⎣∏

i,j

cosh(K) (1 + vσi,jσi,j+1)

⎤
⎦

= [cosh(K)]
ν

∑
{σ}=±1

∏
i,j

[1 + vσi,jσi+1,j ] [1 + vσi,jσi,j+1] , (16.7.16)

where ν is the total number of nearest neighbors on the two-dimensional lattice and
the notation

∑
{σ}=±1 indicates that all spins are summed over.

Now consider just the first few terms of the product (i, j = 1, 2), which contribute
the following factors to the partition function:

(1 + vσ1,1σ2,1)(1 + vσ1,2σ2,2)(1 + vσ1,1σ1,2)(1 + vσ2,1σ2,2)
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Multiplying this expression out gives

1 + v [σ1,1σ2,1 + σ1,2σ2,2 + σ1,1σ1,2 + σ2,1σ2,2]

+ v2 [σ1,1σ2,1σ1,2σ2,2 + σ1,1σ2,1σ1,1σ1,2 + σ1,1σ2,1σ2,1σ2,2

+σ1,2σ2,2σ1,1σ1,2 + σ1,2σ2,2σ2,1σ2,2 + σ1,1σ1,2σ2,1σ2,2]

+ v3 [σ1,1σ2,1σ1,2σ2,2σ1,1σ1,2 + σ1,1σ2,1σ2,1σ2,2σ2,2σ1,2

+σ1,1σ2,1σ2,1σ2,2σ1,1σ1,2 + σ1,1σ1,2σ1,2σ2,2σ2,2σ2,1]

+ v4 [σ1,1σ2,1σ2,1σ2,2σ2,2σ1,2σ1,2σ1,1] . (16.7.17)

As the power of v increases, the number of spin factors increases. Thus, in order to
keep track of the “bookkeeping,” we introduce a graphical notation. Each index pair

(1,1) (1,2)

(2,1) (2,2)

+ v

(1,1) (1,2)

(2,1) (2,2)
(

(1,1) (1,2)

(2,1) (2,2)

+

(1,1) (1,2)

(2,1) (2,2)

(1,1) (1,2)

(2,1) (2,2)

+ (+ v2(
(1,1) (1,2)

(2,1) (2,2)

(1,1) (1,2)

(2,1) (2,2)

+

+ +

(1,1) (1,2)

(2,1) (2,2)

+

(1,1) (1,2)

(2,1) (2,2)

+

(1,1) (1,2)

(2,1) (2,2)

+

(1,1) (1,2)

(2,1) (2,2)
( v 3(

(1,1) (1,2)

(2,1) (2,2)

+

(1,1) (1,2)

(2,1) (2,2)

+
(1,1) (1,2)

(2,1) (2,2)

+
(1,1) (1,2)

(2,1) (2,2)
(+ v4(

(1,1) (1,2)

(2,1) (2,2)
(

+

Fig. 16.11 Graphical representation of eqn. (16.7.17).



Critical phenomena

(i, j) on the spin variables σi,j corresponds to a point on the lattice. We identify these
points as the vertices of one or more graphs that can be drawn on the lattice. We
also identify a spin product σi,jσi′,j′ with an edge joining the vertices (i, j) and (i′, j′).
Thus, in eqn. (16.7.17), there are four vertices, (1, 1), (1, 2), (2, 1), (2, 2), corresponding
to four points on the lattice, and at the nth power of v, n = 0, ..., 4, there are n edges
joining the vertices. Fig. 16.11 shows the complete set of graphs corresponding to the
terms in eqn. (16.7.17).

We next ask what each graph contributes to the overall partition function. The
first graph, which contains no edges, obviously contributes exactly 1, and when this is
summed over N spins, each of which can take on two values, we obtain a contribution
of 2N . The graphs that arise from the v1 term contain a single edge. Consider, for
example, the product σ1,1σ2,1, which must be summed over σ1,1 and σ2,1. The spin sum
produces four terms corresponding to (σ1,1, σ2,1) = (1, 1), (−1, 1), (1,−1), (−1,−1).
When the spin products are taken, two of these terms will be 1 and the other two −1,
and the sum yields 0 overall. The same is true for each of the remaining spin products
in the v1 term. After some reflection, we see that all of the terms proportional to v2

and v3 also sum to 0. However, the v4 term, represented by a closed graph in which
each vertex is included in two edges, does not vanish, since each spin variable appears
twice. The contribution from this single graph (see v4 term in Fig. 16.11), when the
sum over all N spins is carried out, is v42N . Now, on a lattice of N spins, it is possible
to draw N − 1 such graphs containing four vertices. Thus, the total contribution from
graphs containing four vertices is (N − 1)v42N .

The analysis of the preceding paragraph suggests that the problem of evaluating
the partition function becomes one of counting the number n(r) of closed graphs that
can be drawn on the lattice containing r edges and then summing the result over r,
where r = 0, 4, 6, 8, .... Fig. 16.12 shows some examples of graphs that occur when
r = 6 and when r = 8. Once n(r) is known, the partition function can be shown to
take the following form:

Q(N, T ) = 2N [cosh(K)]
ν
∑

r

n(r)vr . (16.7.18)

We conclude this brief discussion by illustrating how eqn. (16.7.18) can be applied
to the one-dimensional Ising model on a periodic lattice. The partition function was
given by eqn. (16.6.10), which for h = 0 becomes

Q(N, T ) = 2N
[
coshN (K) + sinhN (K)

]
. (16.7.19)

We now show that the graph-theoretic approach to derive eqn. (16.7.19). First, note
that on a one-dimensional periodic lattice, only two graphs contribute: the graph with
r = 0 and the graph with r = N , which is the only graph that can be drawn for
r > 0 that involves each vertex in two edges. Thus, n(N) = 1, and the number of
nearest neighbors on the periodic lattice is ν = N . Putting these facts together gives
the partition function as

Q(N, T ) = 2N [cosh(K)]
N [

1 + vN
]
, (16.7.20)
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r=6

r=6 r=8

r=8r=8

Fig. 16.12 Examples of graphs that contribute to the partition function of the two-dimen-

sional Ising model for r = 6 and r = 8.

which simplifies to

Q(N, T ) = 2N
[
coshN (K) + sinhN (K)

]
(16.7.21)

in agreement with eqn. (16.7.19).

16.8 Spin correlations and their critical exponents

In Section 4.6.1, we considered spatial correlation functions in a liquid. Interestingly, it
is possible to define an analogous quantity for the Ising model. Consider the following
spin-spin correlation function at zero field:

〈σiσj〉 =
1

Q(N, T )

∑
σ1

· · ·
∑
σN

σiσje
−βH, (16.8.1)

where Q(N, T ) is the canonical partition function. If σi and σj occupy lattice sites
at positions ri and rj , respectively, then at large spatial separation r = |ri − rj |, the
correlation function should depend only on r. Heuristically, G(r) is assumed to decay
exponentially according to

G(r) ≡ 〈σiσj〉 − 〈σi〉〈σj〉 ∼ e−r/ξ

rd−2+η
(16.8.2)
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for T > Tc (Ma, 1976). The quantity ξ is called the correlation length. As a critical
point is approached from above, long-range order sets in, and we expect ξ to diverge
as T → T+

c . This divergence is characterized by an exponent ν such that

ξ ∼ |T − Tc|−ν . (16.8.3)

As T → T+
c , ξ → ∞, and the exponential numerator in G(r) becomes 1. In this

case, G(r) decays in a manner characteristic of a system with long-range order, i.e.,
as a small inverse power of r. The exponent η appearing in the expression for G(r)
characterizes this decay at T = Tc.

The exponents ν and η cannot be determined from mean-field theory, as the mean-
field approximation neglects all spatial correlations. In order to calculate these expo-
nents, fluctuations must be restored at some level. One method that treats correlations
explicitly is a field-theoretic approach known as the Landau–Ginzberg theory(Huang,
1963; Ma, 1976). This theory uses a continuous spin field to define a free energy func-
tional and provides a prescription for deriving the spatial correlation functions from
the external field dependence of the partition function via functional differentiation.
Owing to its mathematical complexity, a detailed discussion of this theory is beyond
the scope of this book; instead, in the next section, we will focus on an elegant ap-
proach that is motivated by a few simple physical considerations derived from the
long-range behavior spin-spin correlations.

16.9 Introduction to the renormalization group

The renormalization group (RG) theory is based on ideas first introduced by L. P.
Kadanoff (1966) and K. G. Wilson (1971) and posits that near a critical point, where
long-range correlations dominate, the system possesses self-similarity at any scale. It
then proposes a series of coarse-graining operations that leave the system invariant,
from which the ordered phases can be correctly identified.2 The RG framework also
offers an explanation of universality, provides a framework for calculating the critical
exponents (Wilson and Fisher, 1972; Bonanno and Zappalà, 2001), and through a
hypothesis known as the scaling hypothesis, generates sets of relations called scaling
relations (Widom, 1965; Cardy, 1996) among the critical exponents. Although we will
only here how the RG approach applies to the study of magnetic systems, the technique
is very general and has been employed in problems ranging from fluid dynamics to
quantum chemistry (see, for example, Baer and Head-Gordon (1998)). The proceeding
discussion of the RG will be based loosely on treatment given by Cardy (1996).

In order to illustrate the RG procedure, let us consider the example of a square
spin lattice shown in Fig. 16.13. In the left half of the figure, the lattice is separated
into 3×3 blocks. We now consider defining a new spin lattice from the old by applying
a coarse-graining procedure that replaces each 3×3 spin block with a single spin. Of
course, we need a rule for constructing this new spin lattice, so let us consider the

2The term “renormalization group” has little to do with group theory in the usual mathematical
sense. Although the RG does employ a series of transformations based on the physics of a system
near its critical point, the RG transformations are not unique and do not form a mathematical group.
Hence, references to “the” renormalization group are also misleading.
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Fig. 16.13 Example of the block spin transformation on a 6×6 square lattice. The lattice

on the right shows the four spins that result from applying the transformation to each 3×3

block.

following simple algorithm: (1) count the number of up and down spins in each block;
(2) if the majority of the spins in the 3×3 block are up, replace the block by a single
up spin, otherwise replace it by a simple down spin. For the example on the left in
Fig. 16.13, the new lattice obtained by applying this procedure is shown on the right
in the figure. Such a transformation is called a block spin transformation (Kadanoff,
1966). Near a critical point, the system will exhibit long-range ordering, hence the
coarse-graining procedure should yield a new spin lattice that is statistically equivalent
to the old one; the spin lattice is then said to possess scale invariance.

Given the new spin lattice generated by the block spin transformation, we now wish
to determine the Hamiltonian of this lattice. Since the new lattice must be statistically
equivalent to the original one, the natural route to the transformed Hamiltonian is
through the partition function. Thus, we consider the zero-field (h = 0) partition
function of the original spin lattice using the Hamiltonian H0 in eqn. (16.3.4) for the
Ising model as the starting point:

Q(N, T ) =
∑
σ1

· · ·
∑
σN

e−βH0(σ1,...,σN) ≡ Trσe−βH0(σ1,...,σN). (16.9.1)

The transformation function T (σ′; σ1, ..., σ9) that yields the single spin σ′ for each 3×3
block of 9 spin variables can be expressed mathematically as follows:

T (σ′; σ1, ..., σ9) =

⎧⎨
⎩

1 σ′ ∑9
i=1 σi > 0

0 otherwise
. (16.9.2)

This function ensures that when the spin sum over the original lattice is performed,
only those terms that conform to the rule of the block spin transformation are nonzero.
That is, the only nonzero terms are those for which σ′ and

∑9
i=1 σi have the same sign.

When eqn. (16.9.2) is inserted into eqn. (16.9.1), the function T (σ′; σ1, ..., σ9) projects
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out those configurations that are consistent with the block spin transformation rule,
while the sum over the old spin variables σ1, ..., σN leaves a function of only the new
spin variables {σ′

1, ..., σ
′
N ′}. Note that T (σ′; σ1, ..., σ9) satisfies the property∑

σ′=±1

T (σ′; σ1, ..., σ9) = 1, (16.9.3)

which means simply that only one of the two values of σ′ can satisfy the block spin
transformation rule. The new spin variables {σ′} can now be used to define a new
partition function. To see how this is done, let the Hamiltonian of the new lattice be
defined according to

e−βH
′
0({σ′}) = Trσ

[ ∏
blocks

T (σ′; σ1, ..., σ9)

]
e−βH0({σ}), (16.9.4)

which follows from eqn. (16.9.3). Summing both sides of eqn. (16.9.4) over the relevant
spin variables yields

Trσ′e−βH
′
0({σ′}) = Trσe−βH0({σ}). (16.9.5)

Eqn. (16.9.5) states that the partition function is preserved by the block spin trans-
formation and, consequently, so are the equilibrium properties.

If the block spin transformation is devised in such a way that the functional form
of the Hamiltonian is preserved, then the transformation can be iterated repeatedly on
each new lattice generated by the transformation: each iteration will generate a system
that is statistically equivalent to the original. Importantly, in a truly ordered state,
each iteration will produce precisely the same lattice in the thermodynamics limit, thus
signifying the existence of a critical point. If the functional form of the Hamiltonian is
maintained, then only its parameters (e.g., the strength of the spin-spin coupling) are
affected by the transformation, and thus, we can regard the transformation as one that
acts on these parameters. If the original Hamiltonian contains parameters K1, K2, ...,≡
K (for example, the coupling J in the Ising model), then the transformation yields a
Hamiltonian with a new set of parameters K′ = (K ′

1, K
′
2, ...) that are functions of the

old parameters
K′ = R(K). (16.9.6)

The vector function R defines the transformation. These equations are called the
renormalization group equations or renormalization group transformations. By iterat-
ing the RG equations, it is possible to determine if a system has an ordered phase and
for what parameter values the ordered phase occurs. In an ordered phase, each itera-
tion of the RG equations yields the same lattice with exactly the same Hamiltonian.
Requiring that the Hamiltonian itself remain unchanged under an RG transforma-
tion is stronger than simply requiring that the functional form of the Hamiltonian be
preserved. When the Hamiltonian is unchanged by the RG transformation, then the
parameters K′ obtained via eqn. (16.9.6) are unaltered, implying that

K = R(K). (16.9.7)

A point K in parameter space that satisfies eqn. (16.9.7) is called a fixed point of the
RG transformation. Eqn. (16.9.7) indicates that the Hamiltonian of an ordered phase
emerges from a fixed point of the RG equations.
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16.9.1 RG example: The one-dimensional Ising model

In the zero-field limit, the Hamiltonian for the one-dimensional Ising model is

H0({σ}) = −J

N∑
i=1

σiσi+1. (16.9.8)

Let us define a dimensionless Hamiltonian Θ0 = βH0 and a dimensionless coupling
constant K = βJ so that Θ0({σ}) = −K

∑N
i=1 σiσi+1. With these definitions, the

partition function becomes

Q(N, T ) = Trσe−Θ0({σ}). (16.9.9)

Consider the simple block spin transformation illustrated in Fig. 16.14. The figure

σ σ σ σ σ σ σ σ σ
1 2 3 4 5 6 7 8 9

σ σ σ σ σ σ σ σ σ
1 2 3 1 2 3 1 2 3

σ’
1

σ’
2

σ’
3

Fig. 16.14 Example of the block spin transformation applied to the one-dimensional Ising

model. The three spins that result are shown below.

shows the one-dimensional spin lattice with two different indexing schemes: The upper
scheme is a straight numbering of the nine spins in the figure, while the lower scheme
numbers the spins in each block. As Fig. 16.14 indicates, the block spin transforma-
tion employed in this example replaces each block of three spins with a single spin
determined solely by the spin at the center of the block. Thus, for the left block, the
new spin σ′

1 = σ2, for the middle block, σ′
2 = σ5, σ′

3 = σ8, and so forth. Though not
particularly democratic, this block spin transformation should be reasonable at low
temperature where local ordering is expected and the middle spin is likely to cause
neighboring spins to align with it. The transformation function T (σ′; σ1, σ2, σ3) for
this example can expressed mathematically simply as

T (σ′; σ1, σ2, σ3) = δσ′σ2 . (16.9.10)

The new spin lattice is shown below the original lattice in Fig. 16.14.
The transformation function in eqn. (16.9.10) is now used to compute the new

Hamiltonian Θ′
0 according to

e−Θ′
0({σ′}) =

∑
σ1

∑
σ2

∑
σ3

· · ·
∑
σN

(
δσ′

1σ2δσ′
2σ5 · · ·

)
eKσ1σ2eKσ2σ3eKσ3σ4eKσ4σ5 · · ·
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=
∑
σ1

∑
σ3

∑
σ4

∑
σ6

· · · eKσ1σ′
1eKσ′

1σ3eKσ3σ4eKσ4σ′
2 · · · (16.9.11)

Eqn. (16.9.11) encodes the information we need to determine the new coupling param-
eter K ′. We will use the rule that when the sums over σ3 and σ4 are performed, the
new interaction between σ′

1 and σ′
2 gives the contribution exp(K ′σ′

1σ
′
2) to the partition

function. If this rule is satisfied, then the functional form of the Hamiltonian will be
preserved. The sum over σ3 and σ4 that must then be performed in eqn. (16.9.11) is∑

σ3

∑
σ4

exp[Kσ′
1σ3] exp[Kσ3σ4] exp[Kσ4σ

′
2].

Note that the spin product σ3σ4 has two possible values, σ3σ4 = ±1, which allows us
to employ a convenient identity:

e±θ = coshθ ± sinhθ = coshθ [1 ± tanhθ] . (16.9.12)

Eqn. (16.9.12) allows us to express exp(Kσ3σ4) as

eKσ3σ4 = coshK [1 + σ3σ4tanhK]

If we define x = tanhK, the product of the three exponentials becomes

eKσ′
1σ3eKσ3σ4eKσ4σ′

2 = cosh3K(1 + σ′
1σ3x)(1 + σ3σ4x)(1 + σ4σ

′
2x)

= cosh3K(1 + σ′
1σ3x + σ3σ4x + σ4σ

′
2x

+σ′
1σ

2
3σ4x

2 + σ′
1σ3σ4σ

′
2x

2 + σ3σ
2
4σ′

2x
2

+σ′
1σ

2
3σ2

4σ
′
2x

3). (16.9.13)

When summed over σ3 and σ4, most terms in eqn. (16.9.13) cancel, yielding∑
σ3

∑
σ4

eKσ′
1σ3eKσ3σ4eKσ4σ′

2 = 2cosh3K
[
1 + σ′

1σ
′
2x

3
] ≡ coshK ′ [1 + σ′

1σ
′
2x

′] .

(16.9.14)
In eqn. (16.9.14), we have expressed the interaction in its original form but with a
new coupling constant K ′. In order for the interaction term [1 + σ′

1σ
′
2x

′] to match the
original interaction [1 + σ′

1σ
′
2x

3], we require x′ = x3 or
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tanhK ′ = tanh3K

K ′ = tanh−1
[
tanh3K

]
. (16.9.15)

Eqn. (16.9.15) defines the RG transformation as

R(K) = tanh−1
[
tanh3(K)

]
. (16.9.16)

We must remember, however, that eqn. (16.9.16) is particular to the block spin trans-
formation in eqn. (16.9.10). From eqns. (16.9.14) and (16.9.15), we obtain the new
Hamiltonian as

Θ′
0({σ′}) = N ′g(K) − K ′

N ′∑
i=1

σ′
iσ

′
i+1 (16.9.17)

where the spin-independent function g(K) is given by

g(K) = −1

3
ln

[
cosh3K

coshK ′

]
− 2

3
ln 2. (16.9.18)

and N ′ is a constant. Thus, apart from the N ′g(K) term in eqn. (16.9.17), the new
Hamiltonian has the same functional form as the original Hamiltonian, but it is a
function of the new spin variables and coupling constant K ′.

The block spin transformation of eqn. (16.9.10) could be applied again to the
Hamiltonian in eqn. (16.9.17), leading to a new Hamiltonian Θ′′

0 in terms of new spin
variables σ′′

1 , ...., σ′′
N ′′ and a new coupling constant K ′′. It is a straightforward exer-

cise to show that the coupling constant K ′′ would be related to K ′ by eqn. (16.9.15).
Repeated application of the block spin transformation is, therefore, equivalent to it-
eration of the RG equation. Since the coupling constant K depends on temperature
through K = J/kT , this iterative procedure can determine if, for some temperature,
an ordered phase exists. Recall that an ordered phase corresponds to the fixed point
condition in eqn. (16.9.7). From eqn. (16.9.16), this condition for the present example
becomes

K = tanh−1
[
tanh3K

]
. (16.9.19)

In terms of x = tanhK, the fixed point condition is simply x = x3. Since K ≥ 0, the
only possible solutions to this fixed point equation are x = 0 and x = 1.

To understand the physical content of these solutions, consider the RG equation
away from the fixed point: x′ = x3. Since K = J/kT , at high T , K → 0 and x =
tanhK → 0+. At low temperature, K → ∞ and x → 1−. If we view the RG equation
as an iteration or recursion of the form

xn+1 = x3
n, (16.9.20)

and we start the recursion at x0 = 1, then each successive iteration will yield 1. How-
ever, for any value x = 1− ε less than 1 (here, ε > 0), eqn. (16.9.20) eventually iterates
to 0. These two scenarios are illustrated in Fig. 16.15. The iteration of eqn. (16.9.20)
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Fig. 16.15 RG flow for the one-dimensional Ising model.

generates a renormalization group flow through the one-dimensional coupling-constant
space. The fixed point at x = 1 is called an unstable fixed point because any value of
x0 other than 1, when iterated through the RG equation, flows away from this point
toward the stable fixed point at x = 0. As the stable fixed point is approached, the
coupling constant decreases until it reaches K = 0, corresponding to infinite temper-
ature! At the unstable fixed point (x = 1), K = ∞ and T = 0. The absence of a fixed
point for any finite, nonzero value of temperature tells us that there can be no ordered
phase in and hence no critical point in one dimension. Note, however, that in one di-
mension, perfect ordering exists at T = 0. Although this is not a physically meaningful
ordered phase (T = 0 can never be achieved), this result suggests that ordered phases
and critical points are associated with the unstable fixed points of the RG equations.
Recall that we also obtained ordering at T = 0 from the exact analytical solution of
the one–dimensional Ising model in Section 16.6.

Let us make one additional observation about the T = 0 unstable fixed point by
analyzing the behavior of the correlation length ξ at T = 0. ξ has units of length, but if
we choose to measure it in units of the lattice spacing, then it can only depend on the
coupling constant K or x = tanhK, i.e., ξ = ξ(x). Under the block spin transformation
of eqn. (16.9.10), as Fig. 16.14 indicates, the lattice spacing increases by a factor of 3
as a result of coarse graining. Thus, in units of the lattice spacing, ξ must decrease by
a factor of 3 in order to maintain the same physical distance. Thus,

ξ(x′) =
1

3
ξ(x). (16.9.21)

More generally, if we had taken our blocks to have b spins, eqn. (16.9.21) suggests that
ξ should transform as

ξ(x′) =
1

b
ξ(x). (16.9.22)

In addition, the RG equation would become x′ = xb. We now seek a functional form for
ξ(x) that satisfies eqn. (16.9.22). In fact, only one functional form is possible, namely

ξ(x) ∼ 1

ln x
. (16.9.23)

This can be shown straightforwardly as follows:

ξ(x′) = ξ(xb) ∼ 1

ln xb
=

1

b ln x
=

1

b
ξ(x). (16.9.24)
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Therefore, the correlation length ξ(K) ∼ 1/ ln(tanhK) −→ ∞ as T −→ 0, so that at
T = 0 the correlation length is infinite, which is another indication that an ordered
phase exists.

Finally, we examine the behavior of the RG equation at very low T where K is
large. Note that eqn. (16.9.15) can be written as

tanhK ′ = tanh3K

= tanhKtanh2K

= tanhK

[
cosh(2K) − 1

cosh(2K) + 1

]
. (16.9.25)

The term in brackets is very close to 1 when K is large. Thus, when K is large, eqn.
(16.9.25) can be expressed as K ′ ∼ K, which is a linearized version of the RG equation.
On an arbitrary spin lattice, interactions between blocks are predominantly mediated
by interactions between spins along the boundaries of the blocks (see Fig. 16.16 for
an illustration of this in two dimensions). In one dimension, this interaction involves
a single spin pair, and thus we expect a block spin transformation in one dimension
to yield a coupling constant of the same order as the original coupling constant at low
T where there is significant alignment between the blocks.

16.10 Fixed points of the RG equations in greater than one

dimension

Fig. 16.16 Interactions between blocks of a square spin lattice.
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Fig. 16.16 shows a two-dimensional spin lattice and the interactions between two
blocks, which are mediated by the boundary spins. In more than one dimension, these
interactions are mediated by more than a single spin pair. For the case of the 3×3 blocks
shown in the figure, there are three boundary spin pairs mediating the interaction
between blocks. Consequently, the result of a block spin transformation should yield,
at low T , a coupling constant K ′ roughly three times as large as the original coupling
constant K, i.e., K ′ ∼ 3K. In a three-dimensional lattice, using 3 × 3 × 3 blocks,
interactions between blocks would be mediated by 32 = 9 spin pairs. Generally, in d
dimensions using blocks of bd spins, the RG equation at low T should behave as

K ′ ∼ bd−1K. (16.10.1)

The number b is called the length scaling factor. Eqn. (16.10.1) implies that for d > 1,
K ′ > K at low T . Thus, iteration of the RG equation at low temperature yields an RG
flow towards K = ∞, and the fixed point at T = 0 becomes stable (in one dimension,
this fixed point was unstable). However, we know that at high temperature, the system
must be in a disordered state, and hence the fixed point at T = ∞ must remain a
stable fixed point, as it was in one dimension. These two observations suggest that for
d > 1, there must be a third fixed point with coupling constant x̃ between T = 0 and
T = ∞. Moreover, an iteration initiated with x0 = x̃+ ε (ε > 0) must iterate to x = 1,
T = 0, and an iteration initiated from x0 = x̃− ε must iterate to x = 0 where T = ∞.
Hence, this fixed point is unstable and is, therefore, a critical point with K̃ = Kc.
To the extent that an RG flow in more than one dimension can be represented as a
one-dimensional process, the flow diagram would appear as in Fig. 16.17. Since this

. .Stable Stable

x = 1 x = 0

K = 8 K = 0

.
K = Kc

.
K = K0

Unstable

Fig. 16.17 Renormalization group flow in more than one dimension. The figure shows the

iteration to each stable fixed point starting from the unstable fixed point and an arbitrary

point K = K0.

unstable fixed point corresponds to a finite, nonzero temperature Tc, it is a physical
critical point.

This claim is further supported by the evolution of the correlation length under
the RG flow. Recall that for a length scaling factor b, the correlation length transforms
as ξ(K ′) = ξ(K)/b or ξ(K) = bξ(K ′). Suppose that we start at a point K near Kc

and that n(K) iterations of the RG equation are required to reach a value K0 between
K = 0 and K = Kc. If ξ0 is the correlation length at K = K0, which should be a finite
number of order 1, then by eqn. (16.9.22) we find that
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ξ(K) = ξ0b
n(K). (16.10.2)

As the starting point K is chosen closer and closer to Kc, the number of iterations
needed to reach K0 increases. In the limit that the initial point K → Kc, the number
of iterations is needed to reach K0 approaches infinity. According to eqn. (16.10.2), as
K approaches Kc, the correlation length becomes infinite as expected in an ordered
phase. Thus, the new unstable fixed point must correspond to a critical point.

From this understanding of the correlation length behavior, we can analyze the
exponent ν using the RG equation near the unstable fixed point. When K = Kc, the
fixed point condition requires that Kc = R(Kc). Near the fixed point, we can expand
the RG equation to give

K ′ ≈ R(Kc) + (K − Kc)R
′(Kc) + · · · . (16.10.3)

Let us write R′(Kc) as blnR′(Kc)/lnb and define an exponent y = ln R′(Kc)/ ln b. Using
this exponent, eqn. (16.10.3) becomes

K ′ ≈ Kc + by(K − Kc). (16.10.4)

Near the critical point, ξ diverges according to

ξ ∼ |T − Tc|−ν ∼
∣∣∣∣ 1

K
− 1

Kc

∣∣∣∣
−ν

∼
∣∣∣∣K − Kc

K

∣∣∣∣
−ν

∼
∣∣∣∣K − Kc

Kc

∣∣∣∣
−ν

. (16.10.5)

Thus, ξ ∼ |K − Kc|−ν . However, since ξ(K) = bξ(K ′), it follows that

|K − Kc|−ν ∼ b|K ′ − Kc|−ν = b|by(K − Kc)|−ν , (16.10.6)

which is only possible if

ν =
1

y
. (16.10.7)

Eqn. (16.10.7) illustrates the general result that critical exponents are related to deriva-
tives of the RG transformation.

16.11 General linearized RG theory

Our discussion in the previous section illustrates the power of the linearized RG
equations. We now generalize this approach to a Hamiltonian Θ0 with parameters
K1, K2, K3, ...,≡ K. Eqn. (16.9.6) for the RG transformation can be linearized about
an unstable fixed point at K∗ according to

K ′
a ≈ K∗

a +
∑

b

Tab(Kb − K∗
b ), (16.11.1)

where

Tab =
∂Ra

∂Kb

∣∣∣∣
K=K∗

. (16.11.2)
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Note that the matrix T is not required to be symmetric. Consequently, we define a
left eigenvalue equation for T according to∑

a

φi
aTab = λiφi

b. (16.11.3)

and a scaling variable ui as

ui =
∑

a

φi
a(Ka − K∗

a). (16.11.4)

The term “scaling variable” arises from the fact that ui transforms multiplicatively
near a fixed point under the linearized RG flow:

u′
i =

∑
a

φi
a(K ′

a − K∗
a)

=
∑

a

∑
b

φi
aTab(Kb − K∗

b )

=
∑

b

λiφi
b(Kb − K∗

b )

= λiui. (16.11.5)

Suppose the eigenvalues λi are real. Since u′
i = λiui, ui will increase if λi > 1 and

decrease if λi < 1. Redefining the eigenvalues λi as

λi = byi , (16.11.6)

we see that
u′

i = byiui. (16.11.7)

By convention, the quantities {yi} are referred to as the RG eigenvalues.
From the discussion in the preceding paragraph, three cases can be identified for

the RG eigenvalues:

1. If yi > 0, the scaling variable ui is called relevant because repeated iteration of
the RG transformation drives it away from its fixed point value at ui = 0.

2. If yi < 0, the scaling variable ui is called irrelevant because repeated iteration of
the RG transformation drives it toward 0.

3. yi = 0. The scaling variable ui is referred to as marginal because we cannot
determine from the linearized RG equations whether ui will iterate towards or
away from the fixed point.

Typically, scaling variables are either relevant or irrelevant; marginality is rare. The
number of relevant scaling variables corresponds to the number of experimentally tun-
able parameters such as P and T in a fluid systems or T and h in the magnetic system.
For the former, the relevant variables are called the thermal and magnetic scaling vari-
ables, respectively. The thermal and magnetic scaling variables have corresponding RG
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eigenvalues yt and yh. An analysis of the scaling properties of the singular part g̃(h, T )
of the Gibbs free energy g(h, T ), which obeys g̃(h, T ) = b−dg̃(byhh, byt, T ), leads to the
following relations for the primary critical exponents:

α = 2 − d

yt
, β =

d − yh

yt
, γ =

2yh − d

yt
, δ =

yh

d − yh
. (16.11.8)

These relations are obtained by differentiating g̃(h, T ) to obtain the heat capacity,
magnetization, and magnetic susceptibility. From eqns. (16.11.8), the relations α +
2β + γ = 2 and α + β(1 + δ) = 2, which are examples of scaling relations, can be
easily derived. Two other scaling relations can be derived from the scaling behavior of
the spin-spin correlation function G̃(r) = b−2(d−yh)G(r/b, bytt), where t = (T −Tc)/T .
These are α = 2 − dν and γ = ν(2 − η). Because of such scaling relations, we do not
need to determine all of the critical exponents individually. For the Ising model, we see
that there are four such scaling relations, indicating that only two of the exponents,
ν and η, of the six total are independent. Because a subset of the critical exponents
still need to be determined by some method, numerical simulations play an important
role in the implementation of the RG, and techniques such as the Wang-Landau and
M(RT)2 schemes carried out on a lattice are useful approaches that can be employed
(see Problems 16.8 and 16.9).

16.12 Understanding universality from the linearized RG theory

In the linearized RG theory, at a fixed point, all scaling variables are zero, regardless
of whether they are relevant, irrelevant, or marginal. Let us assume for the present
discussion that there are no marginal scaling variables. From the definitions of relevant
and irrelevant scaling variables, we can propose a formal procedure for locating fixed
points. Begin with the space spanned by the full set of eigenvectors of T, and project
out the relevant subspace by setting all the relevant scaling variables to zero by hand.
The remaining subspace is spanned by the irrelevant eigenvectors of T, which defines
a hypersurface in the full coupling constant space. This surface is called the critical
hypersurface. Any point on the critical hypersurface belongs to the irrelevant subspace
and iterates to zero under successive RG transformations. This procedure defines a
trajectory on the hypersurface that leads to the fixed point, as illustrated in Fig. 16.18.
This fixed point, called the critical fixed point, is stable with respect to irrelevant
scaling variables and unstable with respect to relevant scaling variables.

In order to understand the importance of the critical fixed point, consider a simple
model in which there is one relevant and one irrelevant scaling variable. Let these
be denoted as u1 and u2, respectively, and let these variables have corresponding
couplings K1 and K2. In an Ising model, K1 might represent the reduced nearest-
neighbor coupling, and K2 might represent a next-nearest-neighbor coupling. Relevant
variables also include experimentally tunable parameters such as temperature and
magnetic field. The reason u1 is relevant and u2 is irrelevant is that there must be
a nearest-neighbor coupling for the existence of a critical point and ordered phase at
h = 0, but magnetization can occur even if there is no next-nearest-neighbor coupling.
According to the procedure of the preceding paragraph, the condition
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Fig. 16.18 A renormalization group trajectory.

u1(K1, K2) = 0

defines the critical surface, which in this case, is a one-dimensional curve in the K1K2

plane as illustrated in Fig. 16.19. Here, the black curve represents the critical “sur-
face” (curve), and the point at which the arrows meet is the critical fixed point. The
full coupling constant space represents the space of all physical systems containing
nearest-neighbor and next-nearest-neighbor couplings. If we wish to consider the sub-
set of systems with no next-nearest-neighbor coupling (K2 = 0), the point at which
the line K2 = 0 intersects the critical surface defines the critical value K1c and the
corresponding critical temperature, and is an unstable fixed point of an RG transfor-
mation with K2 = 0. Similarly, if we consider a model for which K2 �= 0, then the
point at which this line intersects the critical surface determines the critical value of
K1 for such a model. In fact, for any of these models, K1c lies on the critical surface
and iterates toward the critical fixed point under the full RG transformation. Thus,
we have an effective definition of a universality class: All models characterized by the
same critical fixed point belong to the same universality class and share the same
critical properties.
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Fig. 16.19 Example curves defined by u1(K1, K2). The critical curve defined by

u1(K1, K2) = 0 is shown in black and iterates to the critical fixed point P .

16.13 Problems

16.1. Consider a block spin transformation of the one-dimensional Ising model with
h �= 0, in which every other spin is summed over. Such a procedure is also
called a decimation procedure.
a. Write down the transformation operator T for this transformation, and

show that the transformation leads to a value of b = 2.

b. Derive the RG equation for this transformation, and find the fixed points.

c. Sketch the RG flow in the (x, y) plane. What is the nature of the fixed
points, and what do they imply about the existence of a critical point?

16.2. A general class of models for magnetic systems are called Potts models, which
allow, in general, N discrete states for each spin variable on the lattice. The
one-dimensional three-state Potts model is defined as follows: each site i is a
‘spin’ which may take on three values, 1,2, or 3. The Hamiltonian is given by

H = −J
∑

i

δsi,si+1 .

Use the same decimation procedure as in problem 2, derive the RG equation,
and find the fixed points. Does this model have a critical point?
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∗16.3. The Maxwell construction in the van der Waals theory attempts to fix the
unphysical behavior of the theory resulting from ∂P/∂V > 0 for T < Tc. The
procedure is shown schematically in Fig. 16.20. The construction introduces

P

V

a
2

a
1

Tie line

Van der Waals

    isotherm

V V
L G

Fig. 16.20 Maxwell construction.

a tie line for the discontinuous change in volume resulting from the first-
order gas–liquid phase transition. The location of the tie line must be chosen
so that the two areas enclosed by the tie line and the PV curve above and
below the tie line are equal (a1 = a2). Show that the Maxwell construction
together with the van der Waals equation of state in eqn. (4.7.35) leads to a
mean-field value of the critical exponent β equal to 1/2.

16.4. For the spin- 1
2 Ising model in one dimension with h = 0, recall that the

partition function could be expressed in the form

Δ = Tr
(
PN

)
.

Consider a RG transformation, called the pair cell transformation, in which
Δ is reexpressed as

Δ = Tr
[(

P2
)N/2

]
.

The transfer matrix is redefined by P′ = P2. Find the RG equation corre-
sponding to this transformation and show that it leads to the expected stable
fixed point.
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Hint: Try redefining the coupling constant by u = eK and show that P′ can
be put in the same form as P, i.e., P′(u) = c(u)P(u′) and that c can be defined
implicitly in terms of u′.

∗16.5. A simple model of a long polymer chain consists of the following assumptions:
i. The conformational energy E of the chain is determined solely from its

backbone dihedral angles.
ii. Each dihedral angle can assume three possible values denoted t for “trans”

and g+ and g− for the two “gauche” conformations. However, the present
model is discrete in the sense that t, g+, and g− are the only values the
dihedral angles may assume.

iii. Each conformation has an intrinsic energy and is also influenced by the
conformations of nearest neighbor dihedral angles only. If the polymer has
N atomic sites, then there are N−3 dihedral angles numbered φ1, ..., φN−3

by convention. The total energy E(φ1, ..., φN−3) can be written as

E(φ1, ..., φN−3) =

N−3∑
i=1

ε1(φi) +

N−3∑
i=2

ε2(φi−1, φi),

where each φi has values t, g+, or g−.
iv. The two energy functions ε1 and ε2 are assumed to have the following

values:

ε1(t) = 0

ε1(g
+) = ε(g−) = ε

ε2(g
+, g−) = ε2(g

−, g+) = ∞

ε2(φi−1, φi) = 0 for all other combinations

a. Calculate the canonical partition function for this system. You may ex-
press your answer in terms of σ ≡ exp(−βε).

b. Show that, in the limit N → ∞, the partition function behaves as

lim
N→∞

1

N
ln Q = ln χ,

where

χ =
1

2

[
(1 + σ) +

√
1 + 6σ + σ2

]
.

c. What is the probability, for large N , that all angles will be in the trans
conformation?



Critical phenomena

d. What is the probability, for large N , that the angles will alternate trans,
gauche, trans, gauche, ...?

16.6. Consider the Ising Hamiltonian in eqn. (16.3.3) for which each spin has z
neighbors on the lattice. Each spin variable σi can take on three values,
−1, 0, 1. Using mean-field theory, find the transcendental equation for the
magnetization, and determine the critical temperature of this model. What
are the critical exponents?

16.7. In 1978, H. J. Maris and L. J. Kadanoff introduced an RG procedure for the
two-dimensional zero-field Ising model (Maris and Kadanoff, 1978; Chandler,
1987). This problem explores this procedure step by step, leading to the RG
equation.
a. Consider the following labeling of spins on the two-dimensional periodic

lattice shown in Fig. 16.13(a).
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(a) (b)

Fig. 16.21 (a) Labeling of spins on a two-dimensional lattice.

(b) Spin lattice after decimation.

The first step is to sum over half of the spins on the lattice by partitioning
the summand of the partition function in such a way that each spin to
be summed over appears in only one Boltzmann factor. Show that the
resulting partition function, for one choice of the spins summed over,
corresponds to the spin lattice shown below and takes the form

Q =
∑

remaining spins

· · ·
[
eK(σ1+σ2+σ3+σ4) + e−K(σ1+σ2+σ3+σ4)

]

×
[
eK(σ2+σ3+σ7+σ8) + e−K(σ2+σ3+σ7+σ8)

]
· · · .

where K = βJ (see Fig. 16.13(b)).
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b. Consider trying to write one of the terms in brackets in the above expres-
sion as

eK(σ1+σ2+σ3+σ4) + e−K(σ1+σ2+σ3+σ4) = g(K)eK′(σ1σ2+σ2σ3+σ3σ4+σ4σ1),

where the new coupling constant K ′ and the function g(K) are to be de-
termined by requiring that this equation be satisfied by the four nonequiv-
alent choices of the spins:

σ1 = σ2 = σ3 = σ4 = ±1

σ1 = σ2 = σ3 = −σ4 = ±1

σ1 = σ2 = −σ3 = −σ4 = ±1

σ1 = −σ2 = σ3 = −σ4 = ±1.

Show that g(K) and K ′ cannot be determined in this way.

c. Consider instead introducing several new coupling constants, K1, K2, and
K3 and writing

eK(σ1+σ2+σ3+σ4) + e−K(σ1+σ2+σ3+σ4)

= g(K)e(1/2)K1(σ1σ2+σ2σ3+σ3σ4+σ4σ1)+K2(σ1σ3+σ2σ4)+K3σ1σ2σ3σ4 .

By inserting the four nonequivalent choices of the spin variables from part
b, find expressions for K1, K2, K3, and g(K) in terms of K. Interpret the
resulting partition function.

d. Note that the result of part (c) does not lead to an exact RG procedure.
Show that if K2 and K3 are neglected, an RG equation of the form

K1 =
1

4
ln cosh(4K)

results. Does this lead to a critical point?

e. In order to improve the results, it is proposed to neglect only K3 and treat
the K2 term approximately. Let Σ1 and Σ2 be the spin sums multiplying
K1 and K2, respectively, in the partition function expression. Consider
the approximation

K1Σ1 + K2Σ2 ≈ K ′(K1, K2)Σ
′
i,jσiσj ,

where the sum is taken only over nearest neighbors. What is the partition
function that results from this approximation?

f. Define the free energy per spin as

a(K) =
1

N
ln Q(K).

Show that the free energy satisfies an RG equation of the form

a(K) =
1

2
ln g(K) +

1

2
f(K ′).
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g. Show that K ′ can be estimated by

K ′ ≈ K1 + K2.

h. Derive the RG equation that results, and show that it predicts the exis-
tence of a critical point. What is the value of Kc?

i. By expanding the free energy in a Taylor series about K = Kc, calculate
the critical exponent α and compare your value to the exact solution of
Onsager.

j. Finally, compare the critical temperature you obtain to the Onsager re-
sult:

J

kTc
= 0.44069.

k. Devise an analog of the Maris-Kadanoff scheme for the one-dimensional
free-field Ising model by summing over every other spin on the one-
dimensional spin lattice. What is the RG equation that results? Show
that your one-dimensional equation yields the expected fixed point.

16.8. The Wang–Landau method (Wang and Landau, 2001) of Section 7.6 can be
easily adapted for spin lattices. First since the spin variables take on discrete
values, the total energy E of the spin lattice also takes on discrete values.
Therefore, we can write the canonical partition function as

Q(β) =
∑
E

Ω(E)e−βE ,

where Ω(E) is the density of states. A trial move consists of flipping a ran-
domly chosen spin and then applying eqn. (7.6.3) to decide whether the move
is accepted. Finally, the density states at the final energy E is modified by the
scaling factor using ln Ω(E) → ln Ω(E) + ln f . Write a Wang–Landau Monte
Carlo code to calculate the partition function and free energy per spin at
different temperatures of a 50×50 spin lattice in the absence of an external
field. Take the initial state of the lattice to be a randomly chosen set of spin
values, and apply periodic boundary conditions to the lattice.

16.9. Write a simple M(RT)2 Monte Carlo program to sample the distribution
function of a two-dimensional Ising model in the presence of an external field
h. Observe the behavior of your algorithm for temperatures T > Tc and
T < Tc at different field strengths. For each case, calculate and plot the
spin-spin correlation function 〈σiσj〉 − 〈σi〉〈σj〉.



Appendix A

Properties of the Dirac
delta-function

The Dirac delta-function is informally defined as having infinite height, zero width,
and unit area. When centered around x = 0, it can be heuristically represented as

δ(x) =

{∞ x = 0
0 x �= 0

. (A.1)

The δ-function has two important properties. First, its integral is unity:∫ ∞

−∞
dx δ(x) = 1. (A.2)

Second, the integral of a δ-function times any arbitrary function, f(x), is∫ ∞

−∞
dx δ(x)f(x) = f(0). (A.3)

Eqn. (A.1) is not rigorous and, therefore, is not especially useful when we wish to
derive the properties of the δ-function. For this reason, we replace eqn. (A.1) with a
definition involving a limit of a sequence of functions δσ(x) known as δ sequences:

δ(x) = lim
σ→0

δσ(x). (A.4)

The choice of the δ-sequence is not unique. Several possible choices are:

1. normalized Gaussian function

δσ(x) =
1√

2πσ2
e−x2/2σ2

, (A.5)

2. Fourier integral

δσ(x) =
1

π

σ

σ2 + x2
=

1

2π

∫ ∞

−∞
dk eikx−|σ|x, (A.6)

3. scaled sinc function

δσ(x) =
1

πσ
sinc

(x

σ

)
=

1

πx
sin

(x

σ

)
. (A.7)
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Let us employ the normalized Gaussian sequence in eqn. (A.5) to prove eqns. (A.2)
and (A.3). Eqn. (A.2) follows immediately from the fact that eqn. (A.5) is properly
normalized so that ∫ ∞

−∞
dx δ(x) = lim

σ→0

∫ ∞

−∞
dx δσ(x)

= lim
σ→0

1√
2πσ2

∫ ∞

−∞
dx e−x2/2σ2

= 1. (A.8)

To prove eqn. (A.3), we need to perform the integral∫ ∞

−∞
dx δ(x)f(x) = lim

σ→0

∫ ∞

−∞
dx δσ(x)f(x)

= lim
σ→0

1√
2πσ2

∫ ∞

−∞
dx e−x2/2σ2

f(x). (A.9)

This integral can be carried out by introducing a Taylor series expansion for f(x)
about x = 0 into eqn. (A.9):

1√
2πσ2

∫ ∞

−∞
dx e−x2/2σ2

f(x) =
1√

2πσ2

∫ ∞

−∞
dx e−x2/2σ2

∞∑
n=0

f (n)(0)

n!
xn

=
1√

2πσ2

∞∑
n=0

f (n)(0)

n!

∫ ∞

−∞
dx xne−x2/2σ2

, (A.10)

where f (n)(0) is the nth derivative of f(x) evaluated at x = 0. If n is odd, the integral
vanishes because the product of an odd and an even function yields equal areas of
opposite sign for x > 0 and x < 0. For n even, the integrals are just the moments of
the Gaussian distribution. These moments have the general form

1√
2πσ2

∫ ∞

−∞
dx xne−x2/2σ2

= (n − 1)!!σn, (A.11)

where (n − 1)!! = 1 · 3 · 5 · · · (n − 1) and −1!! ≡ 1. Since we need the limit σ → 0, the
only term that does not vanish in this limit is the n = 0 term. Thus, we find

lim
σ→0

∫ ∞

−∞
dx δσ(x)f(x) = f(0) (A.12)

In a similar manner, it is also possible to prove the more general property∫ ∞

−∞
dx δ(x − a)f(x) = f(a), (A.13)

which is left as an exercise for the reader.
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Consider, next, a δ-function of the form δ(ax). This can be simplified according to

δ(ax) =
1

|a|δ(x), (A.14)

which also implies that δ(−x) = δ(x). Similarly, a δ-function of the form δ(x2 − a2)
can be rewritten equivalently as

δ
(
x2 − a2

)
=

1

2|a| [δ(x − a) + δ(x + a)] . (A.15)

More generally, given a δ-function δ(g(x)) where g(x) is a function with n zeroes at
points, x̄1, ..., x̄n, such that g′(x̄i) �= 0, the δ-function can be simplified according to

δ(g(x)) =
n∑

i=1

δ(x − ȳi)

|g′(x̄i| . (A.16)

It is easy to see that eqns. (A.14) and (A.15) are special cases of eqn. (A.16). Eqn.
(A.16) can also be proved using δ-sequences by performing a change of variables y =
g(x) and employing similar arguments to those used in proving eqn. (A.3).



Appendix B

Evaluation of energies and forces

In any Monte Carlo or molecular dynamics calculation of a many-body system, the
most time-consuming step is the evaluation of energies and, when needed, forces. In
this appendix, we will discuss the efficient evaluation of energies and forces for simple
nonpolarizable force fields under periodic boundary conditions.

Let us begin by considering a system described by a typical nonpolarizable force
field as in eqn. (3.11.1). The bonding and bending terms are straightforward and
computationally inexpensive to evaluate; in Fig. 8.8, for instance, we illustrated a
scheme for calculating a dihedral angle for use in the torsional term. (One could also
simply calculate the angle between the planes defined by atoms 1, 2, and 3 and atoms
2, 3, and 4.) By far, the most expensive part of the calculation is evaluating the
nonbonded (nb) forces and energies given by the Lennard-Jones and Coulomb terms:

Unb(r1, ..., rN ) =
∑

i>j∈nb

{[
4εij

(
σij

rij

)12

−
(

σij

rij

)6
]

+
qiqj

rij

}
. (B.1)

As written, the evaluation of these energies and their associated forces requires O(N2)
operations, a calculation that quickly becomes intractable as N becomes very large.
Simulations of even small proteins in solution typically require at least 104 to 105

atoms, while simulations in materials science, such as crack formation and propagation,
can involve up to 109 atoms. Many interesting physical and chemical processes such as
these require long time scales to be accessed, and in order to reach these time scales, a
very large number of energy and force evaluations is needed. Such calculations would
clearly not be possible if the quadratic scaling could not be ameliorated. The goal,
therefore, is to evaluate the terms in eqn. (B.1) with O(N), or at worst, O(N ln N)
scaling.

The first thing we see about eqn. (B.1) is that the Lennard-Jones and Coulomb
terms have substantially different length scales. The former is relatively short range
and could possibly be truncated as a means of improving the scaling, but this is
not true of the Coulomb interaction, which is very long range and would, therefore,
suffer from severe truncation artifacts (see, for example, Patra et al. (2003)). Let us
begin, therefore, by examining the Coulomb term more closely. In order to reduce
the computational overhead of the long-range Coulomb interaction, we only need to
recognize that any function we might characterize as long-range in real space becomes
short-ranged in reciprocal or Fourier space. Moreover, since we are dealing with a
periodic system, a Fourier representation is entirely appropriate. Therefore, we can
tame the Coulomb interaction by dividing it into a contribution that is short ranged
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in real space and one that is short ranged in reciprocal space. Given two rapidly
convergent terms, the Coulomb interaction should be easier to evaluate and exhibit
better scaling.

We begin by introducing a simple identity that pertains to a function known as
the error function, erf(x), defined by

erf(x) =
2√
π

∫ x

0

dt e−t2 . (B.2)

In the limit x → ∞, erf(x) → 1. Note also that erf(0) = 0. The error function has a
complement, erfc(x) defined by

erfc(x) = 1 − erf(x) =
2√
π

∫ ∞

x

dt e−t2 . (B.3)

Both functions are defined for x ≥ 0. Note that as x → ∞, erfc(x) → 0. From
these definitions, it is clear that erf(x) + erfc(x) = 1. This identity can now be used
to divide up the Coulomb interaction into short-range and long-range components.
Consider writing 1/r as

1

r
=

erfc(αr)

r
+

erf(αr)

r
, (B.4)

where the parameter α has units of inverse length. Since erfc(αr) decays rapidly as r
increases, the first term in eqn. (B.4) is short ranged. The parameter α can be used to
tune the range over which erfc(αr)/r is nonnegligible. The second term in eqn. (B.4) is
long-ranged and behaves asymptotically as 1/r. Introducing eqn. (B.4) into eqn. (B.1),
we can write the nonbonded forces in terms of short- and long-ranged components as

Unb(r1, ..., rN ) = Ushort(r1, ..., rN ) + Ulong(r1, ..., rN )

Ushort(r1, ..., rN ) =
∑
S

∑
i>j∈nb

{[
4εij

(
σij

rij,S

)12

−
(

σij

rij,S

)6
]

+
qiqjerfc(αrij,S)

rij,S

}

Ulong(r1, ..., rN ) =
∑
S

∑
i>j∈nb

qiqjerf(αrij,S)

rij,S
, (B.5)

where rij,S = |ri − rj + S|, with S = mL for a periodic cubic box of side L. Here m is
a vector of integers. Note that if a system is sufficiently large, then the sums over the
lattice vectors S reduce to the single term m = (0, 0, 0). As we will soon see, the use
of the potential-energy contributions in eqn. (B.5) has a distinct advantage over eqn.
(B.1).

Let us consider first evaluating the short-range forces in eqn. (B.5). For notational
convenience, we denote this term compactly as Ushort =

∑
S

∑
i>j ushort(rij,S), where

ushort(r) consists of the Lennard-Jones and complementary error function terms.. Be-
cause the range of these interactions is finite, we can reduce the computational over-
head needed to evaluate them by introducing a cutoff radius rc, beyond which we
assume that the forces are negligible. The cutoff rc is important for determining α.
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Experience has shown that a good balance between the short- and long-range com-
ponents is achieved if α = 3.5/rc. If rc is chosen to be half the length L of a cubic
simulation box, rc = L/2, then the value α = 7/L should be used. For large system,
however, a typical value of rc is in the range of 10 to 12 Å, which is roughly a factor of
3 larger than a typical value of σij . In most simulations, it is the case that at r = rc,
ushort(r) is not exactly zero, in which case the potential energy exhibits a small jump
discontinuity as the distance between two particles passes through r = rc. This discon-
tinuity leads to a degradation in energy conservation. One approach for circumventing
this problem is simply to shift the potential ushort(r) by an amount ushort(rc), so that
the short-range interaction between two particles i and j becomes

ũshort(rij) =

⎧⎨
⎩

ushort(rij) − ushort(rc) if rij < rc

0 otherwise
(B.6)

However, there is a second problem with the use of cutoffs, which is that the forces
also exhibit a discontinuity at r = rc; a simple shift does not remove this discontinuity.
A more robust truncation protocol that ensures continuous energies and forces is to
smoothly switch off ushort(r) to zero via a switching function S(r). When a switch is
used, the potential becomes ũshort(r) = ushort(r)S(r). An example of such a function
S(r) was given in eqn. (3.14.5). Switching functions become particularly important
for simulations in the isothermal-isobaric ensemble, as the pressure estimator in eqn.
(4.6.57) is especially sensitive to discontinuities in the force (Martyna et al., 1999).

An important point concerning truncation of the potential is its effect on energies
and pressures. In fact, when the potential is assumed to be zero beyond rc, many weak
interactions among particle pairs will not be included. However, the contribution of
these negelcted interactions can be estimated using eqns. (4.6.46) and (4.6.69). Instead
of integrating these expressions from 0 to ∞, if the lower limit is taken to be rc, then
the integrals can be performed in the approximation that for r > rc, g(r) ≈ 1. For
example, the corrections to the energy per particle and pressure for a Lennard-Jones
potential in this approximation would be

Δu = 2πρ

∫ ∞

rc

dr r2u(r)

= 8επρ

∫ ∞

rc

dr r2

[(σ

r

)12

−
(σ

r

)6
]

=
8περσ3

3

[
1

3

(
σ

rc

)9

−
(

σ

rc

)3
]

(B.7)

ΔP = −2πρ2

3

∫ ∞

rc

dr r3u′(r)

= 16πρ2ε

∫ ∞

rc

dr r2

[
2
(σ

r

)12

−
(σ

r

)6
]
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=
16πρ2εσ3

3

[
2

3

(
σ

rc

)9

−
(

σ

rc

)3
]

(B.8)

Eqns. (B.7) and (B.8) are called the standard long range corrections (Allen and Tildes-
ley, 1989; Frenkel and Smit, 2002). They should be included in order to obtain accurate
thermodynamics averages from simulations using truncated potentials.

When periodic boundary conditions are employed (see left panel of Fig. 13.7),
interparticle distances are computed using the minimum image convention. The rule
of this convention is that in the infinite periodic array, particle i interacts with the
periodic image of particle j to which it is closest. For a system with an arbitrary box
matrix h, the three components of the vector difference rij = ri − rj are computed as
follows for a system with an arbitrary box matrix h:

si = h−1ri

sij = si − sj

sij ←− sij − NINT(sij) Minimum image convention

rij = hsij , (B.9)

where NINT(x) is the nearest-integer function. The first line transforms the coordi-
nates into the scaled coordinates of eqn. (5.7.2); the second line gives the raw inter-
particle vector differences; the third line applies the minimum image convention to
these differences; the last line transforms the differences back to the original Cartesian
variables.

A cutoff radius alone is insufficient to reduce the computational overhead associated
with the short-range forces since it is still necessary to look over all N2 pairs to
determine if the condition rij < rc is satisfied for a given particle pair. However, since
the cutoff radius ensures that a given particle will only interact with a finite number
of other particles, we can build a list of all particles j with which a particle i interacts.
Such a list is known as a Verlet neighbor list (Verlet, 1967). Since particles typically
diffuse, the neighbor list must be updated from time to time during the simulation.
The average frequency of updates is controlled by a parameter δ known as the skin
length. Fig. B.1 illustrates the construction of a neighbor list. For each particle i, we
identify all particles that lie within a distance rc + δ of i and store the indices of these
neighboring particles in an array. Once the list is built, we simply loop over its elements
and calculate all of the forces and energies of the pairs. Because some of the pairs in
the list are in the distance range rc < rij < rc + δ, some of the energies and forces
will be zero. The smaller δ is chosen, the fewer such interactions there will be, which
saves computational time. However, the larger δ is chosen, the more infrequently the
list needs to be updated. Thus, the value of δ should be optimized at the start of any
simulation.

At the start of a simulation, the initial positions r1(0), ..., rN (0) are saved and an
initial Verlet list is generated. At each time step kΔt, k = 1, 2, 3, ..., the displacement
Δi of each particle from its initial position Δi = |ri(kΔt) − ri(0)| is computed and
the maximum over all of these displacements Δmax is subsequently determined. If at
the nth step Δmax > δ/2, then the interactions contained in the list will no longer
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i
rc

r +δ
c

Fig. B.1 Building a Verlet list of the neighbors of particle i.

be correct, which means that the neighbor list needs to be recomputed. The saved
positions r1(0), ..., rN (0) are overwritten by r1(nΔt), ..., rN (nΔt), and the Verlet list
is regenerated using these positions. At each time step subsequent to the list update,
the displacement test is performed using Δi = |ri(kΔt)−ri(nΔt)|. If Δmax > δ/2, then
the neighbor list must be generated again. In this way, we can determine automatically
when the neighbor list must be recalculated.

It is worth mentioning in passing that an alternative to the Verlet list is the link list
or cell list (Hockney and Eastwood, 1981; Allen and Tildesley, 1989; Frenkel and Smit,
2002). This method consists of dividing the system into cells of size equal to or slightly
larger than the cutoff radius rc. Thus, each particle interacts only with particles in
the same cell or in nearest-neighbor cells. A link list is generally more efficient than a
Verlet list in large systems, as the calculation of the latter scales as O(N2) while the
former scales as O(N). However, the logic to write such a list if more involved. A very
useful intermediate approach uses a Verlet list for computing the forces and energies
and a link list to create the Verlet list. This improves considerably the efficiency of
generating the Verlet list. Finally, fast algorithms for computing short range forces
on massively parallel architectures have been developed (Plimpton, 1995) and have
proved highly successful, although we will not discuss such algorithms here.

We now turn to the evaluation of the long-range energy and forces in eqn. (B.5).
Because erf(αr)/r behaves as 1/r for large r, the long-range energy and forces cannot
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be evaluated efficiently in real space. However, because a long-ranged function in real
space is short ranged in Fourier or reciprocal space, if the latter is used, the scaling
can be improved, thereby reducing the computational overhead. Moreover, a Fourier
expansion of erf(αr)/r is consistent with the periodic boundary conditions typically
used in Monte Carlo and molecular dynamics calculations. For simplicity, we will
consider the case of a cubic simulation cell of length L and volume V = L3. As we saw
in Section 11.2, the reciprocal space of such a cell is composed of all reciprocal-space
vectors g = 2πn/L, where n is a vector of integers. Using the Poisson summation rule,
we can expand the error function term in a Fourier series as

∑
S

erf(α|r + S|)
|r + S| =

1

V

∑
g

Cgeig·r. (B.10)

In eqn. (B.10), the expansion coefficients are

Cg =
∑
S

∫
D(V )

dr
erf(α|r + S|)

|r + S| e−ig·r

=

∫
all space

erf(αr)

r
e−ig·r

=
4π

|g|2 e−|g|2/4α2
. (B.11)

The second line in eqn. (B.11) again follows from the Poisson summation formula,
which allows the sum over S to be eliminated in favor of an integral over all space.
Note that the coefficient corresponding to n = (0, 0, 0) is not defined, hence this term
must be excluded from the sum in eqn. (B.10). Moreover, it is not possible, in practice,
to perform a sum over an infinite number of reciprocal-space vectors as required by eqn.
(B.10). However, we note that the factor exp(−|g|2/4α2) decays to zero very quickly as
|g| → ∞, which means that the sum over reciprocal-space vectors can be truncated and
restricted only to a very small part of reciprocal space. We can readily see, therefore,
the advantage of working in Fourier space when faced with the calculation of long-
range forces! Because Cg only depends on the magnitude |g|, the most natural way to
truncate the Fourier sum is to restrict the sum to all reciprocal-space vectors g with
magnitudes |g| ≤ gmax, where gmax is chosen such that exp(−g2

max/4α2) is negligible.
The Fourier sum is consequently restricted to g-vectors that lie within a sphere in
reciprocal space of radius gmax. In addition, because the coefficients Cg are real and
depend only on |g|, they satisfy C−g = Cg and therefore we only need to keep half the
g-vectors in the sphere. For example, we could choose the hemisphere S for which gx

is positive or 0. When the sum is performed over half of reciprocal space, we simply
need to multiply the result by 2.

Taking into account the truncation of the Fourier sum and the restriction of the
g-vectors to a single hemisphere, the long-range potential energy can be expressed as

Ulong(r1, ..., rN ) =
2

V

∑
i>j

qiqj

∑
g∈S

4π

|g|2 e−|g|2/4α2
eig·(ri−rj). (B.12)
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As written, the sum over particles in eqn. (B.12) scales as O(N2). However, the compu-
tational overhead of eqn. (B.12) can be reduced substantially with a few clever tricks.
First, consider writing eqn. (B.12) as

Ulong(r1, ..., rN ) =
1

V

∑
i�=j

qiqj

∑
g∈S

4π

|g|2 e−|g|2/4α2
eig·(ri−rj). (B.13)

Next, we add and subtract the term with i = j to yield

Ulong(r1, ..., rN ) =
1

V

∑
i,j

qiqj

∑
g∈S

4π

|g|2 e−|g|2/4α2
eig·(ri−rj)

− 1

V

∑
i

q2
i

∑
g∈S

4π

|g|2 e−|g|2/4α2
. (B.14)

When this is done, the first term can be written as the square magnitude of a single
sum:

Ulong(r1, ..., rN ) =
1

V

∑
g∈S

4π

|g|2 e−|g|2/4α2

∣∣∣∣∣
∑

i

qie
ig·ri

∣∣∣∣∣
2

− 1

V

∑
i

q2
i

∑
g∈S

4π

|g|2 e−|g|2/4α2
. (B.15)

Note the presence of the structure factor S(g) =
∑

i qi exp(ig · ri) in the first term of
eqn. (B.15). The reciprocal-space sum in the second term of eqn. (B.15) can either be
evaluated once in the beginning and stored, or it can also be performed analytically if
we extend the sum to all of reciprocal space. For the latter, we first write

Ulong(r1, ..., rN ) =
1

V

∑
g∈S

4π

|g|2 e−|g|2/4α2 |S(g)|2

− 1

2V

∑
i

q2
i

∑
g �=(0,0,0)

4π

|g|2 e−|g|2/4α2
. (B.16)

We now note that
1

V

∑
g

4π

|g|2 e−|g|2/4α2
= lim

r→0

erf(αr)

r
. (B.17)

Since r and erf(αr) are both zero at r = 0, the limit in eqn. (B.17) can be performed
using L’Hôpital’s rule, so that

lim
r→0

erf(αr)

r
= lim

r→0

2

r
√

π

∫ αr

0

e−t2dt = lim
r→0

2α√
π

e−α2r2
=

2α√
π

. (B.18)

From this limit, eqn. (B.17) becomes
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Ulong(r1, ..., rN ) =
1

V

∑
g∈S

4π

|g|2 e−|g|2/4α2 |S(g)|2 − α√
π

∑
i

q2
i . (B.19)

Eqn. (B.19) is known as the Ewald sum for the long-range part of the Coulomb inter-
action (Ewald, 1921). The second term in eqn. (B.19) is known as the self-interaction
correction since it cancels out the i = j term, which describes a long-range interaction
of a particle with itself. The error that results when the second reciprocal-space sum
in eqn. (B.15) is extended over all of Fourier space can be compensated by multiplying
the last term by erfc(gmax/2α).

Although the sum in eqn. (B.19) is more efficient to evaluate than the double sum
in eqn. (B.12), two important technical problems remain. First, the |S(g)|2 factor in
eqn. (B.19) leads to an interaction between all charged particles. Unfortunately, if a
system contains molecules, then charged particles involved in common bond, bend,
or torsional interactions must not also have a charge–charge interaction, as these are
built into the intramolecular potential energy function. Therefore, these unwanted
Coulomb interactions need to be excluded from the Ewald sum. One way to solve this
problem is to add these unwanted term with the opposite sign in real space so that they
become new contributions to the intramolecular potential and approximately cancel
their reciprocal-space counterparts. If this is done, eqn. (B.19) becomes

Ulong(r1, ..., rN ) =
1

V

∑
g∈S

4π

|g|2 e−|g|2/4α2 |S(g)|2

−
∑

i,j∈intra

qiqjerf(αrij)

rij
− α√

π

∑
i

q2
i , (B.20)

where “intra” denotes the full set of bonded interactions. The second term in eqn.
(B.20) can, therefore, be incorporated into the bonded terms in eqn. (3.11.1). Eqn.
(B.20) is straightforward to implement, but because we are attempting to achieve the
cancellation in real space rather than in Fourier space, the cancellation is imperfect. In-
deed, Procacci et al. (1998) showed that better cancellation is achieved if the excluded
interactions are subtracted out using a reciprocal-space expression. In particular, these
authors demonstrated that the excluded interactions can be computed more precisely
using

Uexcl(r1, ..., rN ) = −
∑

i,j∈intra

qiqjχ(rij , gmax), (B.21)

where

χ(r, gmax) =
2

π

∫ ∞

gmax

dg e−g2/4α2 sin(gr)

gr
. (B.22)

An important technical point about the form of the Ewald sum is that it causes
the potential to acquire an explicit volume dependence. Thus, when calculating the
pressure or performing simulations in the NPT ensemble, it becomes necessary to use
the pressure estimators in eqns. (4.6.58) and (5.7.29).

The second technical problem associated with the Ewald sum is the high com-
putational overhead associated with the calculation of the structure factor S(g) =
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∑
i qi exp(ig · r) for large systems. As L increases, the number of g-vectors satisfying

the criterion |g| ≤ gmax becomes quite large, and the particle sum in S(g), which
also increases, must be carried out at each g-vector. The smooth particle-mesh Ewald
(SPME) method, an important advance introduced by Essmann et al. (1995), substan-
tially reduces the cost of the Ewald sum and improves the scaling with system size.
The SPME approach can be viewed as a kind of “smearing” of the charges, which are
located at arbitrary spatial points ri, over a finite set of points on a regular rectan-
gular lattice. In practice, this “smearing” is realized mathematically by employing an
interpolation formula to express the exponential exp(ig ·ri) in terms of the exponential
factors that depend on the coordinates of the grid points rather than the arbitrary
particle coordinate ri. Essmann et al. achieved this interpolation using a set of spline
functions known as the cardinal B-spline functions. The functions, denoted Mn(x), are
defined as follows: M2(x) = 1 − |x − 1| for 0 ≤ x ≤ 2 and M2(x) = 0 for x < 0 and
x > 2. For n > 2, Mn(x) are defined via the recursion relations

Mn(x) =
x

n − 1
Mn−1(x) +

n − x

n − 1
Mn−1(x − 1). (B.23)

The cardinal B-spline functions have several important properties. First, they have
compact support, meaning that Mn(x) is zero outside the interval 0 ≤ x ≤ n. Second,
Mn(x) is n − 2 times continuously differentiable. Third, the derivative dMn/dx can
be obtained from Mn−1(x) using another recurrence relation

d

dx
Mn(x) = Mn−1(x) − Mn−1(x − 1). (B.24)

Two other useful properties are:

Mn(x) = Mn(n − x)

∞∑
j=−∞

Mn(x − j) = 1. (B.25)

A plot of the first few cardinal B-spline functions is shown in Fig. B.2.
We now introduce the scaled particle coordinates si = V −1/3ri (which reduce to

si = ri/L for a cubic box), so that exp(ig · ri) = exp(2πin · si). Let the lattice be
cubic with Nl points along each direction and define new coordinates ui = Nlsi,
such that ui,α ∈ [0, Nl], α = x, y, z. Then, exp(2πin · si) = exp(2πin · ui/Nl). We
can then approximate the exponential exp(2πinαui,α/Nl) using a cardinal B-spline
interpolation formula as

e2πinαui,α/Nl ≈ bn(nα)
∞∑

k=−∞
Mn(ui,α − k)e2πinαk/Nl , (B.26)

where

bn(ν) = e2πi(n−1)ν/Nl

n−2∑
k=0

Mn(k + 1)e2πiνk/Nl . (B.27)

(Remember that n and nα are different indices!) The sum in eqn. (B.26) is not actually
infinite because Mn(x) has compact support. The number of nonzero terms, and hence
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Fig. B.2 Cardinal B-spline functions for n = 2, 4, 6, 8.

the accuracy of the interpolation, increases with n. Using eqn. (B.26), the structure
factor can then be evaluated using a (discrete) fast Fourier transform of the form

S(n) = bn(nx)bn(ny)bn(nz)Q̃(n), (B.28)

where

Q̃(n) =

Nl−1∑
kx=0

Nl−1∑
ky=0

Nl−1∑
kz=0

e2πinxkx/Nle2πinyky/Nle2πinzkz/NlQ(k) (B.29)

and

Q(k) =

N∑
i=1

qi

∑
j1,j2,j3

Mn(ux,i − kx − j1Nl)

× Mn(uy,i − ky − j2Nl)

× Mn(uz,i − kz − j3Nl) (B.30)

Because the computational overhead of a fast Fourier transform of length Nl scales as
O(Nl log Nl), and Nl ∝ N , it follows that using the smooth particle-mesh Ewald tech-
nique to evaluate the structure factor reduces the cost of an Ewald sum to O(N log N),
which becomes a significant computational savings in large systems.
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Finally, we note that Ewald summation need not be restricted to periodic sys-
tems. In fact, Martyna, Tuckerman, coworkers (1999, 2004a, 2002) showed that the
Ewald summation formalism could be easily modified in a unified manner for use in
systems with zero, one, or two periodic dimensions, corresponding to clusters, wires,
and surfaces, respectively.



Appendix C

Proof of the Trotter theorem

The Trotter theorem figures prominently throughout the book, in both the develop-
ment of numerical solvers for ordinary differential equations and in the derivation of
the Feynman path integrals. However, in eqn. (3.10.18), we presented the theorem
without proof. Therefore, in this appendix, we outline the proof of the theorem fol-
lowing a technique presented by Schulman (1981).

Let P̂ and Q̂ be linear operators on a general normed vector space V̂, also known
as a Banach space, and let ψ ∈ V̂. The Trotter theorem is equivalent to the statement
that there exists a linear operator R̂ on V̂ such that the difference

R̂tψ − lim
n→∞

(
P̂ t/nQ̂t/n

)
ψ = 0, (C.1)

where 0 ≤ t < ∞. Before proceeding, it is useful to introduce the following definition:
A contraction semigroup on V̂ is a family of bounded linear operators P̂ t, 0 ≤ t < ∞,
which are defined everywhere on V̂ and constitute a mapping V̂ → V̂ such that the
following statements are true:

P̂ 0 = 1, P̂ tP̂ s = P̂ t+s, t ≥ 0, s ≤ ∞, (C.2)

lim
t→∞

P̂ tψ = ψ, ||P̂ t|| ≤ 1. (C.3)

Here, the norm ||P̂ t|| is defined to be

||P̂ t|| = inf
β∈B

{
β | ||P̂ tφ|| ≤ β||φ|| ∀φ ∈ V̂, ||φ|| ≤ 1

}
. (C.4)

Let Â, B̂, and Â+ B̂ be infinitesimal generators of the contraction semigroups P̂ t, Q̂t,
and R̂t, respectively. This means, for example, that the action of Â on a vector ψ is

Âψ = lim
t→0

1

t

(
P̂ tψ − ψ

)
. (C.5)

Next, let h be a positive real number. It is straightforward to verify the following
identity for the contraction semigroups:(

P̂hQ̂h − 1
)

ψ =
(
P̂h − 1

)
ψ + P̂ h

(
Q̂h − 1

)
ψ. (C.6)

Using the infinitesimal generators allows us to write
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(
P̂ hQ̂h − 1

)
ψ = h

(
Â + B̂

)
ψ + O(h), (C.7)

where O(h) denotes any vector φ such that

lim
h→0

||φ||
h

= 0. (C.8)

In other words, ||x|| goes to 0 faster than h does. Note that we can also write(
R̂h − 1

)
ψ = h

(
Â + B̂

)
ψ + O(h). (C.9)

Consequently, (
P̂hQ̂h − R̂h

)
ψ = O(h). (C.10)

Now let h = t/n. We need to show that∣∣∣∣∣∣[(P̂ hQ̂h
)n

− R̂hn
]
ψ
∣∣∣∣∣∣ → 0 (C.11)

as n → ∞.
To see how this limit can be demonstrated, consider first the case n = 2. It is

straightforward to show that

(
P̂ hQ̂h

)2

− R̂2n =
(
P̂ hQ̂h − R̂h

)
R̂h + P̂ hQ̂h

(
P̂ hQ̂h − R̂h

)
. (C.12)

Likewise, for n = 3, a little algebra reveals that

(
P̂ hQ̂h

)3

− R̂3h =
(
P̂ hQ̂h − R̂h

)
R̂2h + P̂ hQ̂h

(
P̂ hQ̂h − R̂h

)
R̂h

+
(
P̂ hQ̂h

)2 (
P̂ hQ̂h − R̂h

)
. (C.13)

Generally, therefore,(
P̂ hQ̂h

)n

− R̂nh =
(
P̂ hQ̂h − R̂h

)
R̂(n−1)h + P̂ hQ̂h

(
P̂ hQ̂h − R̂h

)
R̂(n−2)h + · · ·

+
(
P̂hQ̂h

)n−1 (
P̂ hQ̂h − R̂h

)
. (C.14)

We now let the operators on the left and right sides of eqn. (C.14) act on ψ and take
the norm. This yields
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∣∣∣∣∣∣[(P̂ hQ̂h

)n

− R̂nh
]
ψ
∣∣∣∣∣∣ =

∣∣∣∣∣∣(P̂ hQ̂h − R̂h
)

R̂(n−1)hψ

+P̂hQ̂h
(
P̂ hQ̂h − R̂h

)
R̂(n−2)hψ

+ · · · +
(
P̂ hQ̂h

)n−1 (
P̂ hQ̂h − R̂h

)
ψ

∣∣∣∣
∣∣∣∣ . (C.15)

Recall that for ordinary vectors a, b, and c, such that a = b+c, the triangle inequality
|a| ≤ |b| + |c| holds. Similarly, we have∣∣∣∣∣∣[(P̂ hQ̂h

)n

− R̂nh
]
ψ
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣(P̂ hQ̂h − Rh

)
R(n−1)hψ

∣∣∣∣∣∣
+

∣∣∣∣∣∣P̂ hQ̂h
(
P̂ hQ̂h − Rh

)
R(n−2)hψ

∣∣∣∣∣∣ + · · · (C.16)

On the right, there are n terms, all of order O(h). Thus, the right side varies as
nO(h) = nO(t/n). As n → ∞, nO(t/n) → 0. Hence,

lim
n→∞

∣∣∣∣∣∣[(P̂ hQ̂h

)n

− R̂nh
]
ψ
∣∣∣∣∣∣ → 0, (C.17)

which implies eqn. (C.1).
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Laplace transforms

The Laplace transform of a function f(t) is just one of a general class of integral
transforms of the form

f̃(s) =

∫ ∞

0

dt K(st)f(t) (D.1)

where K(x) is a kernel that is typically a smooth and rapidly decaying function of x.
The Laplace transform corresponds to the choice K(x) = e−x.

Interestingly, even if the integral of f(t) over the interval t ∈ [0,∞) does not exist,
the Laplace transform f̃(s) nevertheless can. If there exists a positive constant s0 such
that |e−s0tf(t)| ≤ M for M finite, then f̃(s) exists for s > s0. By contrast, a function
such as f(t) = exp(t2) does not have a Laplace transform.

Laplace transforms of elementary functions are generally straightforward to evalu-
ate. Some examples are given below:

f(t) = tn f̃(s) =
n!

sn+1
,

f(t) = e−at f̃(s) =
1

s + a
,

f(t) = cos(ωt) f̃(s) =
s

s2 + ω2
,

f(t) = sin(ωt) f̃(s) =
ω

s2 + ω2
,

f(t) = cosh(αt) f̃(s) =
s

s2 − α2
,

f(t) = sinh(αt) f̃(s) =
α

s2 − α2
. (D.2)

In addition to these elementary transforms another useful result is the Laplace trans-
form of the convolution f(t) between two functions g(t) and h(t). Recall that this
convolution is defined as

f(t) =

∫ t

0

dτ g(τ)h(t − τ). (D.3)

The Laplace transform of f(t) is f̃(s) = g̃(s)h̃(s), which is known as the convolution
theorem. The proof of the convolution theorem proceeds by writing
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g̃(s)h̃(s) = lim
a→∞

∫ a

0

dx e−sxg(x)

∫ a−x

0

dy e−syh(y). (D.4)

The use of the upper limit a − x rather than simply a in the y integral is permissible
because of the lima→∞ and the fact that the integrals are assumed to decay rapidly.
The use of a triangular integration region rather than a square one simplifies the
algebra. We then introduce the change of variables x = t − z, y = z into the integral,
which leads to

g̃(s)h̃(s) = lim
a→∞

∫ a

0

dt e−st

∫ t

0

dz g(t − z)h(z). (D.5)

When a → ∞, eqn. (D.5) is the Laplace transform of a convolution.
Laplace transforms are particularly useful for simplifying ordinary differential and

integro-differential equations. In particular, an ordinary linear differential equation
for a function f(t) can be converted into a simple algebraic equation for f̃(s). This
conversion is accomplished by expressing derivatives as simple algebraic expressions
via Laplace transformation. Consider first the Laplace transform of the function g(t) =
f ′(t) = df/dt, which is given by

g̃(s) =

∫ ∞

0

dt e−st df

dt
. (D.6)

An integration by parts shows that

g̃(s) = e−stf(t)
∣∣∞
0

+ s

∫ ∞

0

dt e−stf(t)

= sf̃(s) − f(0), (D.7)

where it is assumed that lima→∞ e−saf(a) = 0. Similarly, if h(t) = f ′′(t) = d2f/dt2,
then by the same analysis

h̃(s) = s2f̃(s) − sf(0) − f ′(0). (D.8)

In general, if F (t) = dnf/dtn, then

F̃ (s) = snf̃(s) − sn−1f(0) − sn−2f ′(0) − · · · − f (n−1)(0). (D.9)

In Section 15.2, we showed how these relations can be used to convert a linear
second-order differential equation for f(t) into an algebraic equation for f̃(s), which
can then be easily solved. However, once an expression for f̃(s) is found, obtaining
f(t) requires performing an inverse Laplace transform, and the inversion of Laplace
transforms is considerably less straightforward than the forward Laplace transform.

Of course, the simplest way to invert a Laplace transform is to look up the given
form for f̃(s) in a table of Laplace transforms and find the corresponding form for
f(t). However, if f̃(s) cannot be found in the table, then an explicit inversion must
be performed. Unfortunately, as we noted earlier, f(t) can diverge exponentially and
its Laplace transform will still exist, a fact that makes Laplace inversion rather tricky.
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From a numerical standpoint, a forward Laplace transform can be perform straight-
forwardly, while a numerical Laplace inversion is a highly ill-posed problem mathe-
matically (Epstein and Schotland, 2008).

To see how the form of the inverse Laplace transform arises, let us assume that
f(t) exhibits an exponential divergence eγt, and let us define a function g(t) by f(t) =
eγtg(t). Since the Laplace transform restricts t to the interval [0,∞), we will assume
g(t) = 0 for t < 0. g(t) is a well-behaved function, and therefore we can define it via
its Fourier transform

g(t) =
1

2π

∫ ∞

−∞
dω eiωtĝ(ω). (D.10)

The Fourier transform ĝ(ω) can, itself, be expressed in terms of g(t) as

ĝ(ω) =

∫ ∞

0

dt g(t)e−iωt. (D.11)

Substituting eqn. (D.11) into eqn. (D.10) yields

g(t) =
1

2π

∫ ∞

−∞
dω eiωt

∫ ∞

0

du g(u)e−iωu. (D.12)

Since g(t) = e−γtf(t), eqn. (D.12) implies that

f(t) =
eγt

2π

∫ ∞

−∞
dω eiωt

∫ ∞

0

du f(u)e−γue−iωu. (D.13)

If we let s = γ + iω, then eqn. (D.13) becomes

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
ds est

∫ ∞

0

du f(u)e−us

=
1

2πi

∫ γ+i∞

γ−i∞
ds estf̃(s). (D.14)

Eqn. (D.14) defines the Laplace inversion problem as an integral over a complex vari-
able s, which can be performed using techniques of complex integration and the calcu-
lus of residues. For t > 0, eqn. (D.14) specifies the use of a contour of the type shown
in Fig. D.1 whose leading edge is parallel to the imaginary s axis and is chosen far
enough to the right to enclose all of the poles of f̃(s). The contour is then closed in the
left half of the complex plane. Denoting this contour as B for the Bromwich contour,
we can rewrite eqn. (D.14) as

f(t) =
1

2πi

∮
B

ds estf̃(s). (D.15)

As an example, consider inverting the Laplace transform for f̃(s) = α/(s2 − α2),
which we know from eqn. (D.2) to be the Laplace transform of f(t) = sinh(αt). We
set up the contour integration as
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Im(s)

Re(s)

Poles of f (s)
~

Fig. D.1 Bromwich contour, which contains all of the poles of f̃(s). Laplace inversion em-

ploys such a contour extended to infinity in all directions.

f(t) =
1

2πi

∮
B

ds
αest

(s − α)(s + α)
. (D.16)

The integrand in eqn. (D.16) has two first-order poles at s = α and s = −α. Thus, we
need to choose the leading edge of the contour to lie to the right of the point s = α on
the real s-axis. Once we do this and apply the residue theorem to each of the poles,
we obtain

f(t) =
α

2πi
2πi

[
eαt

2α
− e−αt

2α

]

=
1

2

[
eαt − e−αt

]

= sinh(αt). (D.17)

In Section 15.2, we showed how to solve ordinary linear differential equations using
Laplace transforms. Now let us use the result obtained in eqn. (D.17) in another
example that involves the application of the Laplace transform to the solution of an
integral equation. Consider the integral equation

x(t) = t + a2

∫ t

0

dτ (t − τ)x(τ), (D.18)

which we propose to solve for x(t) in terms of the constant a. We can make use of
the fact that the integral appearing in eqn. (D.18) is a convolution, and its Laplace
transform will simply be x̃(s)/s2, since the Laplace transform of f(t) = t is f̃(s) =
1/s2. Thus, taking the Laplace transform of both sides of eqn. (D.18), we obtain the
algebraic equation
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x̃(s) =
1

s2
+ a2 x̃(s)

s2
. (D.19)

Solving this for x̃(s), we obtain

x̃(s) =
1

s2 − a2
, (D.20)

and, as we have already shown, the inverse Laplace transform of x̃(s), which gives us
the solution x(t) is

x(t) =
1

a
sinh(at). (D.21)
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The canonical ensemble via continuous dynamics. J. Chem. Phys., 97, 2635.

Martyna, G. J., Tobias, D. J., and Klein, M. L. (1994). Constant pressure molecular
dynamics algorithms. J. Chem. Phys., 101, 4177.

Martyna, G. J. and Tuckerman, M. E. (1999). A reciprocal space based method
for treating long range interactions in ab initio and force-field-based calculations in
clusters. J. Chem. Phys., 110, 2810.

Martyna, G. J., Tuckerman, M. E., Tobias, D. J., and Klein, M. L. (1996). Explicit
reversible integrators for extended systems dynamics. Mol. Phys., 87, 1117.

Marx, D., Chandra, A., and Tuckerman, M. E. (2010). Aqueous basic solutions:
Hydroxide solvation, structural diffusion and comparison to the hydrated proton.
Chem. Rev..

Marx, D. and Hutter, J. (2009). Ab Initio Molecular Dynamics. Cambridge University
Press, Cambridge.

Marx, D. and Parrinello, M. (1994). Ab initio path-integral molecular dynamics. Z.
Phys. B , 95, 143.

Marx, D. and Parrinello, M. (1996). Ab initio path integral molecular dynamics:
Basic ideas. J. Chem. Phys., 104, 4077.

Marx, D., Tuckerman, M. E., Hutter, J., and Parrinello, M. (1999). The nature of
the hydrated excess proton in water. Nature, 367, 601.

McCammon, J. A., Gelin, B. R., and Karplus, M. (1977). Dynamics of folded proteins.
Nature, 267, 585.

McCammon, J. A., Gelin, B. R., Karplus, M., and Wolynes, P. G. (1976). Hinge-
bending mode in lysozyme. Nature, 262, 325.

McQuarrie, D. A. (2000). Statistical Mechanics. University Science Books, Sausalito,
CA.

Melchionna, S. (2007). Design of quasisymplectic propagators for Langevin dynamics.



References

J. Chem. Phys., 127, 044108.
Merli, P. G., Missiroli, G. F., and Pozzi, G. (1976). Statistical aspect of electron
interference phenomena. Am. J. Phys., 44, 306.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller,
E. (1953). Equation of state calculations by fast computing machines. J. Chem.
Phys., 21, 1087.

Miller, T. F., III, Eleftheriou, M., Pattnaik, P., Ndirango, A., Newns, D., and Mar-
tyna, G. J. (2002). Symplectic quaternion scheme for biophysical molecular dynam-
ics. J. Chem. Phys., 116, 8649.

Miller, T. F., III and Manolopoulos, D. E. (2005). Quantum diffusion in liquid para-
hydrogen from ring-polymer molecular dynamics. J. Chem. Phys., 122, 184503.

Miller, W. H. (2005). Quantum dynamics of complex molecular systems. Proc. Natl.
Acad. Sci. U.S.A., 102, 6660.

Minary, P., Martyna, G. J., and Tuckerman, M. E. (2003). Algorithms and novel appli-
cations based on the isokinetic ensemble. I. Biophysical and path integral molecular
dynamics. J. Chem. Phys., 118, 2510.

Minary, P., Morrone, J. A., Yarne, D. A., Tuckerman, M. E., and Martyna, G. J.
(2004a). Long range interactions on wires: A reciprocal space based formalism. J.
Chem. Phys., 121, 11949.

Minary, P. and Tuckerman, M. E. (2004). Reaction pathway of the [4+2] Diels-Alder
adduct formation on Si(100)-2×1. J. Am. Chem. Soc., 126, 13920.

Minary, P., Tuckerman, M. E., and Martyna, G. J. (2004b). Long time molecular
dynamics for enhanced conformational sampling in biomolecular systems. Phys.
Rev. Lett., 93, 150201.

Minary, P., Tuckerman, M. E., and Martyna, G. J. (2007). Dynamical spatial warping:
A novel method for the conformational sampling of biophysical structure. SIAM J.
Sci. Comput., 30, 2055.

Minary, P., Tuckerman, M. E., Pihakari, K. A., and Martyna, G. J. (2002). A new
reciprocal space based treatment of long range interactions on surfaces. J. Chem.
Phys., 116, 5351.

Miura, S. and Okazaki, S. (2000). Path integral molecular dynamics for Bose-Einstein
and Fermi-Dirac statistics. J. Chem. Phys., 112, 10116.

Mori, H. (1965). Transport collective motion and Brownian motion. Prog. Theor.
Phys., 33, 423.

Morrone, J. A. and Car, R. (2008). Nuclear quantum effects in water. Phys Rev.
Lett., 101, 017801.

Morrone, J. A., Srinivasan, V., Sebastiani, D., and Car, R. (2007). Proton momentum
distribution in water: an open path integral molecular dynamics study. J. Chem.
Phys., 126, 234504.

Mukamel, S. (1995). Principles of Nonlinear Optical Spectroscopy. Oxford University
Press, New York, NY.

Mundy, C. J., Balasubramanian, S., Bagchi, K., Martyna, G. J., and Klein, M. L.
(2000). Nonequilibrium molecular dynamics. Rev. Comp. Chem., 14, 291.

Nakayama, A. and Makri, N. (2005). Simulation of dynamical properties of normal
and superfluid helium. Proc. Natl. Acad. Sci. U.S.A., 102, 4230.



References
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Pérez, A., Tuckerman, M. E., and Müser, M. H. (2009). A comparative study of the
centroid and ring-polymer molecular dynamics methods for approximating quantum
time correlation functions from path integrals. J. Chem. Phys., 130, 184105.

Peters, B. (2006). Using the histogram test to quantify reaction coordinate error. J.
Chem. Phys., 125, 241101.

Peters, B., Beckham, G. T., and Trout, B. L. (2007). Extensions to the likelihood max-
imization approach for finding reaction coordinates. J. Chem. Phys., 127, 034109.

Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. J.
Comp. Phys., 117, 1.

Pollak, E. (1990). Variational transition-state theory for activated rate processes. J.
Chem. Phys., 93, 1116.

Pollak, E., Grabert, H., and Hanggi, P. (1989). Theory of activated rate-processes
for arbitrary frequency-dependent friction—Solution of the turnover problem. J.



References

Chem. Phys., 91, 4073.
Pollak, E., tucker, S. C., and Berne, B. J. (1990). Variational transition-state theory
for reaction-rates in dissipative systems. Phys. Rev. Lett., 65, 1399.

Poulsen, J. A., Nyman, G., and Rossky, P. J. (2005). Static and dynamic quantum
effects in molecular liquids: A linearized path integral description of water. Proc.
Natl. Acad. Sci. U.S.A., 102, 6709.

Procacci, P., Marchi, M., and Martyna, G. J. (1998). Electrostatic calculations and
multiple time scales in molecular dynamics simulation of flexible molecular systems.
J. Chem. Phys., 108, 8799.

Rahman, A. (1964). Correlations in motion of atoms in liquid argon. Phys. Rev., 136,
A405.

Rahman, A. and Stillinger, F. H. (1971). Molecular dynamics study of liquid water.
J. Chem. Phys., 55, 3336.

Ramshaw, J. D. (2002). Remarks on non-Hamiltonian statistical mechanics. Euro-
phys. Lett., 59, 319.

Rathore, N., Chopra, M., and de Pablo, J. J. (2005). Optimal allocation of replicas
in parallel tempering simulations. J. Chem. Phys., 122, 024111.

Rathore, N., Knotts IV, T. A., and de Pablo, J. J. (2003). Density-of-states simula-
tions of proteins. J. Chem. Phys., 118, 4285.

Reichman, D. R. and Silbey, R. J. (1996). On the relaxation of a two-level system:
Beyond the weak-coupling approximation. J. Chem. Phys., 104, 1506.

Ricci, M. A., Nardone, M., Ricci, F. P., Andreani, C., and Soper, A. K. (1995).
Microscopic structure of low temperature liquid ammonia: A neutron diffraction
study. J. Chem. Phys., 102, 7650.

Rosso, L., Abrams, J. B., and Tuckerman, M. E. (2005). Mapping the backbone
dihedral free-energy surfaces in small peptides in solution using adiabatic free-energy
dynamics. J. Phys. Chem. B , 109, 4162.

Rosso, L., Minary, P., Zhu, Z. W., and Tuckerman, M. E. (2002). On the use of the
adiabatic molecular dynamics technique in the calculation of free energy profiles. J.
Chem. Phys., 116, 4389.

Ryckaert, J. P. and Ciccotti, G. (1983). Introduction of andersen demon in the
molecular-dynamics of systems with constraints. J. Chem. Phys., 78, 7368.

Ryckaert, J. P., Ciccotti, G., and Berendsen, H. J. C. (1977). Numerical-integration
of cartesian equations of motion of a system with constraints—Molecular-dynamics
of n-alkanes. J. Comput. Phys., 23, 327.

Sardanashvily, G. (2002a). The Lyapunov stability of first-order dynamic equations
with respect to time-dependent Riemannian metrics. arXiv.nlin.CD/0201060v1 .

Sardanashvily, G. (2002b). The Lyapunov stability of first-order dynamic
equations with respect to time-dependent Riemannian metrics: An example.
arXiv.nlin.CD/0203031v1 .

Schoell-Paschinger, E. and Dellago, C. (2006). A proof of Jarzynski’s nonequilibrium
work theorem for dynamical systems that conserve the canonical distribution. J.
Chem. Phys., 125, 054105.

Schulman, L. S. (1981). Techniques and Applications of Path Integration. Wiley-
Interscience, New York, NY.



References

Sergi, A. (2003). Non-Hamiltonian equilibrium statistical mechanics. Phys. Rev.
E , 67, 021101.

Shankar, R. (1994). Principles of Quantum Mechanics (2nd edn). Plenum Press,
New York, NY.

Silvera, I. F. and Goldman, V. V. (1978). The isotropic intermolecular potential for
H2 and D2 in the solid and gas phases. J. Chem. Phys., 69, 4209.

Skeel, R. D. and Hardy, D. J. (2001). Practical construction of modified Hamiltonians.
SIAM J. Sci. Comput., 23, 1172.

Skinner, J. L. and Park, K. (2001). Calculating vibrational energy relaxation rates
from classical molecular dynamics simulations: Quantum correction factors for pro-
cesses involving vibration-vibration energy transfer. J. Phys. Chem. B , 105, 6716.

Sprik, M. and Ciccotti, G. (1998). Free energy from constrained molecular dynamics.
J. Chem. Phys., 109, 7737.

Stillinger, F. H. and Rahman, A. (1972). Molecular dynamics study of temperature
effects on water structure and kinetics. J. Chem. Phys., 57, 1281.

Stillinger, F. H. and Rahman, A. (1974). Improved simulation of liquid water by
molecular-dynamics. J. Chem. Phys., 60, 1545.

Strang, G. (1968). On the construction of and comparison of difference schemes.
SIAM J. Numer. Anal., 5, 506.

Straub, J. E., Borkovec, M., and Berne, B. J. (1988). Molecular dynamics study of
an isomerizing diatomic in a Lennard-Jones fluid. J. Chem. Phys., 89, 4833.

Suzuki, M. (1991a). Decomposition formulas of exponential operators and Lie expo-
nentials with some applications to quantum mechanics and statistical physics. J.
Math. Phys., 32, 400.

Suzuki, M. (1991b). General theory of fractal path-integrals with applications to
many-body theories and statistical physics. J. Math. Phys., 32, 400.

Suzuki, M. (1992). General nonsymmetric higher-order decomposition of exponential
operators and symplectic integrators. J. Phys. Soc. Japan, 61, 3015.

Suzuki, M. (1993). General decomposition theory of ordered exponentials. Proc.
Japan Acad. B , 69, 161.

Sweet, C. R., Petrone, P., Pande, V. S., and Izaguirre, J. A. (2008). Normal mode
partitioning of Langevin dynamics for biomolecules. J. Chem. Phys., 128, 145101.

Swope, W. C., Andersen, H. C., Berens, P. H., and Wilson, K. R. (1982). A computer-
simulation method for the calculation of equilibrium-constants for the formation
of physical clusters of molecules—Application to small water clusters. J. Chem.
Phys., 76, 637.

Takahashi, M. and Imada, M. (1984). Monte Carlo calculations of quantum systems.
II. Higher order correction. J. Phys. Soc. Japan, 53, 3765.

Tarasov, V. E. (2004). Phase-space metric for non-Hamiltonian systems. J. Phys.
A, 38, 2145.

Tesi, M. C., van Rensburg, E. J. J., Orlandini, E., and Whittington, S. G. (1996).
Monte Carlo study of the interacting self-avoiding walk model in three dimensions.
J. Stat. Phys., 82, 155.

Thirumalai, D., Bruskin, E. J., and Berne, B. J. (1983). An iterative scheme for the
evaluation of discretized path integrals. J. Chem. Phys., 79, 5063.



References

Tobias, D. J., Martyna, G. J., and Klein, M. L. (1993). Molecular dynamics simula-
tions of a protein in the canonical ensemble. J. Phys. Chem., 97, 12959.

Tolman, R. C. (1918). A general theory of energy partition with applications to
quantum theory. Phys. Rev., 11, 261.

Torrie, G. M. and Valleau, J. P. (1974). Monte-Carlo free-energy estimates using
non-Boltzmann sampling—Application to subcritical Lennard-Jones fluid. Chem.
Phys. Lett., 28, 578.

Torrie, G. M. and Valleau, J. P. (1977). Non-physical sampling distributions in
monte-carlo free-energy estimation—umbrella sampling. J. Comput. Phys., 23, 187.

Toxvaerd, S. (1994). Hamiltonians for discrete dynamics. Phys. Rev. E , 50, 2274.
Trotter, H. F. (1959). On the produce of semi-groups of operators. Proc. Amer.
Math. Soc., 10, 545.

Trout, B. L. and Parrinello, M. (1998). The dissociation mechanism of H2O in water
studied by first-principles molecular dynamics. Chem. Phys. Lett., 288, 343.

Tuckerman, M. E. (2002). Ab initio molecular dynamics: basic concepts, current
trends and novel applications. J. Phys. Condens. Matt., 14, R1297.

Tuckerman, M. E., Alejandre, J., Lopez-Rendon, R., Jochim, A. L., and Martyna,
G. J. (2006). A Liouville-operator derived measure-preserving integrator for molec-
ular dynamics simulations in the isothermal-isobaric ensemble. J. Phys. A, 39,
5629.

Tuckerman, M. E. and Berne, B. J. (1993). Vibrational relaxation in simple fluids—
Comparison of theory and simulation. J. Chem. Phys., 98, 7301.

Tuckerman, M. E., Liu, Y., Ciccotti, G., and Martyna, G. J. (2001). Non-Hamiltonian
molecular dynamics: Generalizing Hamiltonian phase space principles to non-
Hamiltonian systems. J. Chem. Phys., 115, 1678.

Tuckerman, M. E., Martyna, G. J., and Berne, B. J. (1992). Reversible multiple time
scale molecular dynamics. J. Chem. Phys., 97, 1990.

Tuckerman, M. E., Martyna, G. J., Klein, M. L., and Berne, B. J. (1993). Efficient
molecular dynamics and hybrid monte carlo algorithms for path integrals. J. Chem.
Phys., 99, 2796.

Tuckerman, M. E. and Marx, D. (2001). Heavy-atom skeleton quantization and
proton tunneling in ”intermediate-barrier” hydrogen bonds. Phys. Rev. Lett., 86,
4946.

Tuckerman, M. E., Marx, D., Klein, M. L., and Parrinello, M. (1996). Efficient and
general algorithms for path integral Car-Parrinello molecular dynamics. J. Chem.
Phys., 104, 5579.

Tuckerman, M. E., Marx, D., and Parrinello, M. (2002). The nature and transport
mechanism of hydrated hydroxide ions in aqueous solution. Nature, 417, 925.

Tuckerman, M. E., Mundy, C. J., Balasubramanian, S., and Klein, M. L. (1997). Mod-
ified nonequilibrium molecular dynamics for fluid flows with energy conservation. J.
Chem. Phys., 106, 5615.

Tuckerman, M. E., Mundy, C. J., and Martyna, G. J. (1999). On the classical statis-
tical mechanics of non-Hamiltonian systems. Europhys. Lett., 45, 149.

Vanden-Eijnden, E. and Ciccotti, G. (2006). Second-order integrators for Langevin
equations with holonomic constraints. Chem. Phys. Lett., 429, 310.



References

Verlet, L. (1967). Computer experiments on classical fluids. I. Thermodynamical
properties of Lennard-Jones molecules. Phys. Rev., 159, 98.

Voth, G. A. (1993). Feynman path integral formulation of quantum mechanical
transition state theory. J. Phys. Chem., 97, 8365.

Voth, G. A., Chandler, D., and Miller, W. H. (1989). Rigorous formulation of quantum
transition state theory and its dynamical corrections. J. Chem. Phys., 91, 7749.

Waldram, J. R. (1985). Theory of Thermodynamics. Cambridge University Press,
New York, NY.

Wang, F. and Landau, D. P. (2001). Determinating the density of states for classical
statistical models: A random walk algorithm to produce a flat histogram. Phys.
Rev. E , 64, 056101.

Watanabe, M. and Reinhardt, W. P. (1990). Direct dynamic calculation of entropy
and free-energy by adiabatic switching. Phys. Rev. Lett., 65, 3301.

Weber, H. J. and Arfken, G. B. (2005). Mathematical Methods for Physicists. Aca-
demic Press, Burlington, MA.

Weyl, H. (1927). Quantenmechanik und Gruppentheorie. Z. Phys., 46, 1.
Widom, B. (1965). Equation of state in the neighborhood of the critical point. J.
Chem. Phys., 43, 3898.

Wiener, N. (1930). Generalized harmonic analysis. Acta Math., 55, 117.
Wilson, K. G. (1971). Renormalization group and critical phenomena. 1. Renormal-
ization group and Kadanoff scaling picture. Phys. Rev. B , 4, 3174.

Wilson, K. G. and Fisher, M. E. (1972). Critical exponents in 3.99 dimensions. Phys.
Rev. Lett., 28, 240.

Witt, A., Ivanov, S. D., Shiga, M., Forbert, H., and Marx, D. (2009). On the applica-
bility of centroid and ring-polymer path integral molecular dynamics for vibrational
spectroscopy. J. Chem. Phys., 130, 194510.

Yan, Q. L., Faller, R., and de Pablo, J. J. (2002). Density-of-states Monte Carlo
method for simulation of fluids. J. Chem. Phys., 116, 8745.

Yang, C. N. (1952). The spontaneous magnetization of a two-dimensional Ising model.
Pys. Rev., 85, 808.

Yoshida, H. (1990). Construction of higher-order symplectic integrators. Phys. Lett.
A, 150, 262.

Yu, T. Q., Martyna, G. J., and Tuckerman, M. E. (2010). Measure-preserving in-
tegrators for molecular dynamics in the isothermal-isobaric ensemble derived from
the Liouville operator. Chem. Phys..

Zare, K. and Szebehely, V. (1975). Time transformations for the extended phase
space. Celestial Mechanics, 11, 469.

Zelsmann, H. R. (1995). Temperature-dependence of the optical-constants for liquid
H2O and D2O in the far IR region. J. Mol. Struct., 350, 95.

Zhang, F. (1997). Operator-splitting integrators for constant-temperature molecular
dynamics. J. Chem. Phys., 106, 6102.

Zhu, Z. W. and Tuckerman, M. E. (2002). Ab initio molecular dynamics investigation
of the concentration dependence of charged defect transport in basic solutions via
calculation of the infrared spectrum. J. Phys. Chem. B , 106, 8009.

Zhu, Z. W., Tuckerman, M. E., Samuelson, S. O., and Martyna, G. J. (2002). Using



References

novel variable transformations to enhance conformational sampling in molecular
dynamics. Phys. Rev. Lett., 88, 100201.

Zwanzig, R. (1973). Nonlinear generalized Langevin equations. J. Stat. Phys., 9, 215.
Zwanzig, R. W. (1954). High-temperature equation of state by a perturbation
method. 1. Nonpolar gases. J. Chem. Phys., 22, 1420.



Index

Action integral, 28–31, 459
imaginary time, 461

harmonic oscillator, 464
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Adiabatic free energy dynamics, 345–352
After-effect function, 550
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classical wave, 363, 528
probability, 363

Angular momentum, 14
Angular velocity, 39
Anticommutator, 544
Areal velocity, 14
Autocorrelation function

classical, 500
harmonic oscillator, 508
Mori–Zwanzig theory, 598
pressure tensor, 504
rigid-bond approximation, 599
velocity, 506, 579, 584
vibrational dephasing, 583–587

dipole and infrared spectrum, 546–548
quantum, 542

harmonic oscillator, 545–546
velocity, 558

Baker–Campbell–Hausdorff formula, 122
Banach space, 663
Blue moon ensemble, 333–339
Body-fixed frame, 38
Boiling curve, 606
Boltzmann statistics, 409
Boltzmann’s constant, 70, 76
Boltzmann’s relation, 76, 218
Bose–Einstein condensation, 405, 428, 436
Bose–Einstein distribution function, 434
Boundary conditions

determination of energy levels, 378
Lees–Edwards, 514
periodic, 125, 204, 378, 388, 406, 620, 622,

626, 648, 652, 657
Box matrix, 225
Box–Muller sampling, 101–103
Bra vector, Dirac, 365
Bromwich contour, 668
Brownian particle, 579–580
Bulk viscosity, 524

Cardinal B-spline function, 660
Carnot cycle, 58–59

Cell matrix, 225
Central limit theorem, 278–282
Central potential, 13
Chemical potential, 56, 75, 134, 135, 209,

215, 216, 222, 261, 263, 293, 417,
418, 427, 429

Clausius inequality, 60
Coexistence curves, 606
Committor distribution, 356–358

histogram test, 357
Commutator, 108, 370
Conservation law

action, 93
Andersen’s equations, 235
areal velocity, 14
blue moon ensemble, 337
conservation of energy, 11
energy, 7

Martyna–Tobias–Klein equations, 241
Nosé–Hoover chain equations, 191
Nosé–Hoover equations, 187

GSLLOD dynamics, 521
Hamiltonian, 20, 77
isokinetic equations, 201
Jarzynski’s equality, 326
linear momentum, 21

Martyna–Tobias–Klein equations, 241
Nosé–Hoover equations, 188

Martyna–Tobias–Klein equations, 238
Noether’s theorem, 22
non-Hamiltonian equilibrium phase space

distribution, 186
non-Hamiltonian phase space volume, 184
orbital angular momentum, 14
phase space distribution, 68
phase space volume, 65
planar Couette flow, 502
Poisson bracket, 21
shadow Hamiltonian, 121

Constant-energy hypersurface, 20, 77
Constant-energy surface, 20
Constraint

Gauss’s principle, 35
holonomic, 31, 103–106, 199, 252
nonholonomic, 31

Contraction semigroup, 663
Control variables

canonical ensemble, 133
grand canonical ensemble, 263, 264
isoenthalpic-isobaric ensemble, 216
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isothermal-isobaric ensemble, 216, 236
microcanonical ensemble, 75, 76, 95, 134

Convolution theorem, 666
Coordinates

action-angle, 93
Cartesian, 5
center-of-mass, relative, 15, 38, 154
collective variables, 331
cyclic, 14
generalized, 12, 18, 28, 30, 63, 334, 335,

345, 493, 568
minimal set, 32
normal mode, 476
normal modes, 26
phase space, 6, 23, 63
polar, 39, 93, 102
primitive, 480
reaction, 331–333
scaled, 163, 229, 234, 243, 245, 292
spherical polar, 13
staging, 473, 480

Copenhagen interpretation, 369
Correlation function

classical time, 498–584
classical time , 500
general spatial, 153
pair, 154
quantum time, 542, 544, 550, 555
spin-spin, 629

Correlation length, 630
Correlation time, 499
Coulomb gauge, 528
Critical exponents, 176, 607–608

α, 176, 619
β, 176
δ, 176, 619
η, 629–630
γ, 175, 618, 619
mean field theory, 177
mean-field theory, 615
ν, 629–630

Critical hypersurface, 641
Critical isotherm, 607
Critical point, 174, 606
Critical temperature, 174, 606

mean-field, 617
Cumulant expansion, 169–170
Cumulant generating function, 170
Cumulants, 169

Degeneracy, 439, 440
energy levels, 375, 388, 397–399, 402, 403
spin, 384, 412, 424, 435

Density functional theory, 405, 422, 423
Density of states, 301

vibrational, 567, 571
Detailed balance, 286, 543
Diffusion constant, 505–508
Dirac δ-function, 77, 81, 87, 88, 137, 138,

153, 179, 188, 217, 226, 227, 243,

279, 326, 333, 334, 338, 353, 540,
541, 543, 577, 649–651

Dirac bra vector, 365
Dirac ket vector, 365
Direct translation method, 113, 116, 198, 246
Dissipative flux, 496, 503, 506
Dynamic caging, 578

Eigenfunction, 373, 374, 405
Energy relaxation, 584–587
Ensemble

blue moon, 333–339
canonical, 133–135
classical canonical, 135–140
classical grand canonical, 264–269
classical isoenthalpic-isobaric, 216–218
classical isokinetic, 199–204
classical isothermal-isobaric, 218–222
classical microcanonical, 77–80
classical nonequilibrium, 491–499
classical uniform, 82
definition, 61–63
grand canonical, 263–264
isobaric, 214–216
magnetic system, 611
microcanonical, 74–77
quantum canonical, 397–398
quantum density matrix, 393
quantum grand-canonical, 398–399
quantum isothermal-isobaric, 398
quantum nonequilibrium, 548–550

Ensemble distribution
canonical, 138, 316, 349, 497
definition, 65
entropy, 73
equilibrium solution, 69, 186
generalized Liouville equation, 186
grand canonical, 267
isoenthalpic-isobaric, 217
isothermal-isobaric, 220, 524
Liouville equation, 68
microcanonical, 77
nonequilibrium ansatz, 495

Entropy
additivity, 86
Boltzmann’s relation, 76, 218
canonical ensemble, 140
Clausius, 60, 75
Gibbs, 72
Gibbs paradox, 90–92
grand canonical ensemble, 269
ideal gas, 90, 271
isothermal-isobaric ensemble, 222
microcanonical ensemble, 76
quantum harmonic oscillator, 400
second law of thermodynamics, 60
thermodynamic derivatives, 76, 134, 218
third law of thermodynamics, 61
uniform ensemble, 82

Equal a priori probability, 77
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Equation of state
critical exponent δ, 176, 612
definition, 55
grand canonical ensemble, 264, 268–269
high-temperature ideal boson gas, 430
high-temperature ideal fermion gas, 416
ideal gas, 55, 90, 144, 224, 270
Ising model, 611
isochores, 90
isotherms, 90
low-temperature ideal boson gas, 436
low-temperature ideal fermion gas, 428
mean-field Ising model, 618
simple fluid, 606
van der Waals, 173–175, 644
virial, 166

Ergodic hypothesis, 97
Ergodic system, 97
Error function, 653
Estimator

classical energy, 161
classical molecular pressure, 244
classical pressure, 163
classical pressure tensor, 228–233
energy, primitive path integral, 457, 470
energy, virial path integral, 482, 485
heat capacity, virial path integral, 487
Monte Carlo, 278
path integral, 455
pressure tensor, path integral, 487
pressure, primitive path integral, 458, 470
pressure, virial path integral, 485

Euler angles, 42
Euler’s theorem, 220, 261–263, 483
Euler–Lagrange equation, 10

action integral, 30
central potential, 13
Euclidean, 462
generalized coordinates, 12
harmonic oscillator, 11
path integral, 461

Ewald summation, 653, 656–662
smooth particle-mesh, 659–662

Excluded volume, 172
Expectation value, 363, 369

Fermi energy, 418
Fermi sign problem, 470
Fermi surface, 405, 419
Fermi’s Golden Rule, 540
Fermi–Dirac distribution, 418, 426
First law of thermodynamics, 56–57, 75, 324
Fluctuations

canonical energy, 140–142
isobaric volume, 258

Force
adiabatically averaged, 348
central potential, 13
conservative, 3
constraint, 36, 104, 252, 337

determination of hydrodynamic boundary
conditions, 522

external driving, 492–493
external driving, general, 494
external in nonequilibrium molecular

dynamics, 513–516
generalized, 335
Hooke’s law, 6, 124
linear driving, 504–505
long-range, 164, 656
multiple time-scale motion, 114
nonbonded, 652
pair-wise, 164
projection onto surface of constraint, 35
random, 574–576
shear, 491, 501–502
short-range

link list, 656
switching function, 654
truncation, 654
Verlet list, 655

simple force field, 113
torque, 41
van der Waals, 125

Force constant, Hooke’s law, 6
Free energy

Gibbs, 216
grand canonical, 263, 264
Helmholtz, 134

Free energy calculations
adiabatic free energy dynamics, 345–352
blue moon ensemble, 333–339
free energy perturbation, 312–315
Jarzynski’s equality, 322–329
λ free energy dynamics, 319–322
metadynamics, 352–356
thermodynamic integration, 315–318
umbrella sampling, 340–344
Wang–Landau algorithm, 344–345

Free energy perturbation, 312–315
Free energy profile, 319, 320, 333–339

quantum in malonaldehyde, 485–486
Friction kernel, 574, 576–578

exponential, 580–581
static friction coefficient, 577

Fugacity, 269, 413, 428, 429
Functional integral, 458–467
Functional integration

expansion about classical path, 464–467

Galilean relativity, 38
Gas constant, 55
Gauge invariance, 527
Gauss’s equation of motion, 36
Gauss’s principle, 35
Gaussian random process, 576
Generalized coordinates, 12

action integral, 28
adiabatic dynamics, 345–352
blue moon ensemble, 339
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blue moon ensemble, 334
collective variables, 331
conjugate momenta, 18
Hamiltonian, 19
harmonic bath model, 568–571
Lagrangian, 12
Liouville’s theorem, 63
phase space compressibility, 22
reaction coordinates, 331

Generalized Langevin equation
derivation from harmonic bath, 571–574
derivation from Mori–Zwanzig theory,

594–600
dynamic caging, 578
friction kernel, 576–578
potential of mean force, 574
random force, 574–576

Gibbs free energy, 216, 221, 263
magnetic mean-field, 616–617
one-dimensional Ising model, 622
two-dimensional Ising model, 624

Gibbs paradox, 90–92
Graph theory

two-dimensional Ising model, 626–629
Green–Kubo relation

bulk viscosity, 524
diffusion constant, 506
shear viscosity, 504

Hamilton’s equations, 19
driven oscillator, 492
energy conservation, 20
formal solution, 108
incompressibility, 22
Jarzynski equality, 324
linear response theory, 493
Liouville’s theorem, 63
microcanonical ensemble, 96
Newton’s second law, 19
symplectic structure, 22
time reversibility, 99

Hamiltonian
action-angle variables, 93
adiabatic dynamics, 345, 354
Andersen, 234
canonical distribution, 137
conservation of, 20
constant-energy surface, 20
constant-pressure molecular dynamics, 230
definition, 18
eigenvalue equation, 371
electromagnetic field, 529
free particle, 86, 142, 377
generalized coordinates, 18
Hamilton’s equations, 19
harmonic bath, 571, 574
harmonic bead-spring model, 145
harmonic oscillator, 92, 144, 380, 508
ideal gas, 87, 143, 405
interaction picture, 531

Ising model
block spin transformation, 632
general, 610
mean-field, 615
one-dimensional, 620
two-dimensional, 622
zero-field, 613

isoenthalpic-isobaric distribution, 217
Lagrangian, 18
λ-dynamics, 319
Liouville equation, 69
Liouville operator, 107
microcanonical distribution, 77
normal mode, 26
Nosé, 178
Nosé–Poincaré, 181
operator, 370
path-integral molecular dynamics

classical isomorphic, 472, 478
staging, 474

Poisson bracket, 21
quaternion, 118
raising and lowering operators, 382
shadow, 120–123
spin lattice, 609
temperature-accelerated molecular

dynamics, 354
thermal contact, 83
time-dependent perturbation, 529, 548
virial theorem, 80

Hard-sphere potential, 171
Heat capacity

classical harmonic oscillator, 145
constant pressure, 222
constant volume, 140, 275
critical point behavior, 176, 608, 611
definition, 56
discontinuity, 437, 441
energy fluctuations in canonical ensemble,

141
ideal gas, 144, 224
low-temperature ideal boson gas, 437
low-temperature ideal fermion gas, 428
mean-field theory, 619
molar, 140
quantum harmonic oscillator, 400
two-dimensional Ising model, 625
virial estimator, 487

Heaviside step function, 81, 130, 600
Heisenberg Hamiltonian, 609
Heisenberg uncertainty principle, 372
Helmholtz free energy, 134, 139, 227, 262

adiabatic free energy dynamics, 322, 346
difference as partition function ratio, 313
difference from blue moon ensemble,

334–336, 339
difference from Jarzynski’s equality, 323
difference from thermodynamic

integration, 316
difference from WHAM, 343
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metadynamics, 354
potential of mean force, 322
profile, 319
surface, alanine dipeptide, 330
van der Waals theory, 172

Hilbert space, 365
Hilbert transform, 552
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