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Preface

This book presents the material I use in my lectures on elementary
statistical mechanics, a one-semester course I have taught at the
University of Illinois and at the University of Pennsylvania. Students
enter this course with some knowledge of thermodynamics, the
Boltzmann distribution law, and simple quantum mechanics, usually
acquired from undergraduate physical chemistry or modern physics at
the level of Moore’s Physical Chemistry. The purpose of my lectures
is not only to give the students a deeper understanding of thermo-
dynamics and the principles of equilibrium statistical mechanics, but
also to introduce them to the modern topics of Monte Carlo
sampling, the renormalization group theory, and the fluctuation-
dissipation theorem. The ideas surrounding these topics have re-
volutionized the subject of statistical mechanics, and it is largely due
to them that the practitioners of statistical mechanics now play a
significant role in the current research and discoveries of fields
ranging from molecular biology to material science and engineering,
to chemical structure and dynamics, and even to high energy particle
physics. Thus, in my opinion, no serious student of the natural
sciences is properly educated without some understanding of these
modern topics and concepts such as ‘“‘order parameters” and “cor-
relation functions.” It is also my opinion and experience that these
topics and concepts can and should be covered in a one-semester
introductory course.

To cover this material at an introductory level, I make frequent
use of simplified models. In this way, I can keep the mathematics
relatively simple yet still describe many of the sophisticated ideas in
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the field. I refrain from treating advanced theoretical techniques
(e.g., diagrammatic and field theoretic methods) even though these
are among my favorite topics for research. I also treat only briefly the
traditional statistical thermodynamics subjects of ideal gases and gas
phase chemical equilibria. In the former case, this book should
provide necessary background for the interested student to pursue
advanced courses or readings in many-body theory. In the latter case,
since there are already so many excellent texts devoted to these
topics, it is wastefully redundant to spend much time on them here.
Furthermore, these subjects have now become rather standard in the
materials presented in undergraduate physical chemistry courses.

I have adopted a particular sequence of topics that perhaps
deserves some comment. The first two chapters are devoted entirely
to macroscopic thermodynamics, and microscopic statistical prin-
ciples do not appear until Chapter 3. In Chapter 1, I review
elementary thermodynamics and introduce Legendre transforms, and
in Chapter 2, I develop the concepts of phase equilibria and stability.
I use this strategy because the techniques and language introduced
here greatly add to the swiftness with which the principles of
statistica] mechanics can be understood and applied. Another ap-
proach could begin with the first half of Chapter 3 where the second
law appears as the direct consequence of the statistical assumption
that macroscopic equilibrium is the state of greatest randomness.
Then the thermodynamics in Chapters 1 and 2 could be combined
with the associated material in the latter half of Chapter 3 and in
Chapters 4 and 5. The different ensembles and the role of fluctua-
tions are treated in Chapter 3. Chapters 4 and 5 refer to my
discussions of the statistical mechanics of non-interacting ideal
systems and phase transformations, respectively.

The treatment of phase transitions in Chapter 5 focuses on the
Ising model. Within the context of that model, I discuss both mean
field approximations and the renormalization group theory. In the
latter case, I know of no other introductory text presenting a
self-contained picture of this important subject. Yet, as I learned
from Humphrey Maris and Leo Kadanoff’s pedagogical article,* it is
possible to teach this material at an elementary level and bring the
students to the point where they can perform renormalization group
calculations for problem set exercises.

Chapter 6 presents another very important subject not treated in
other texts of this level—the Monte Carlo method. Here, I again use
the Ising model as a concrete basis for discussion. The two-
dimensional case illustrates the behavior of fluctuations in a system

*H. J. Maris and L. J. Kadanoff, Am. J. Phys. 46, 652 (1978).
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which, if large enough, could exhibit true phase equilibria and
interfacial phenomena. The one-dimensional case serves to illustrate
principles of quantum Monte Carlo. The Metropolis algorithm is
described, and programs are provided for the student to experiment
with a microcomputer and explore the power and limitations of the
method.

In Chapter 7, we consider the equilibrium statistical mechanics of
classical fluids. In chemistry, this is a very important topic since it
provides the basis for understanding solvation. Some of the topics,
such as the Maxwell-Boltzmann velocity distribution, are rather
standard. But others are less so. In particular, definitions and
descriptions of pair correlation functions for both simple and
molecular fluids are presented, the connection between these func-
tions and X-ray scattering cross sections is derived, and their
relationship to chemical equilibria in solutions is discussed. Finally,
an illustration of Monte Carlo for a two-dimensional classical fluid of
hard disks is presented which the student can run on a
microcomputer.

The last chapter concerns dynamics—relaxation and molecular
motion in macroscopic systems that are close to or at equilibrium. In
particular, I discuss time correlation functions, the fluctuation-dis-
sipation theorem and its consequences for understanding chemical
kinetics, self-diffusion, absorption, and friction. Once again, in the
context of modern science, these are very important and basic topics.
But in terms of teaching the principles of non-equilibrium statistical
mechanics, the subject has too often been considered as an advanced
or special topic. I am not sure why this is the case. A glance at
Chapter 8 shows that one may derive the principal results such as the
fluctuation-dissipation theorem with only a few lines of algebra, and
without recourse to sophisticated mathematical methods (e.g., prop-
agators, projectors, and complex variables).

In all the chapters, I assume the reader has mastered the
mathematical methods of a typical three-semester undergraduate
calculus course. With that training, the student may find some of the
mathematics challenging yet manageable. In this context, the most
difficult portion of the book is Chapters 3 and 4 where the concepts
of probability statistics are first encountered. But since the material
in these chapters is rather standard, even students with a weak
background but access to a library have been able to rise to the
occasion. Students who have taken the course based on this text have
been advanced undergraduates or beginning graduates majoring in
biochemistry, chemistry, chemical engineering, or physics. They
usually master the material well enough to answer most of the
numerous Exercise questions. These Exercises form an integral part
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of the book, reinforcing and testing every subject, and in some cases
my only coverage of certain topics is found in the Exercises.

After their study of this book, I do hope a significant number of
students will pursue more advanced treatments of the subjects than
those I present here. For that reason, I have purposely peppered the
text with comments and questions to spur the students’ curiosity and
perhaps send them to the library for more reading. The Bibliography
at the end of each chapter suggests places for the students to start this
reading. In this sense, this book serves as both an introduction and a
guide to a discipline too broad and powerful for any one text to
adequately describe.

In creating this book, I have benefited from the help of many
people. John Wheeler has given his time unstintingly to help weed
out logical errors and points of confusion. Encouragement and advice
from Attila Szabo are greatly appreciated. I am also grateful to John
Light for his helpful review of an earlier version of the text. Several
students and my wife, Elaine, wrote and tested the computer
programs included in the book. Elaine provided a great deal of
advice on the content of the book as well. Finally, I am indebted to
Evelyn Carlier and Sandy Smith, respectively, for their expert
manuscript preparations of the first and final versions of the text.

Philadelphia and Berkeley D. C.
January 1986
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A Note to the Student

There are many Exercises to be done both within the main body of
the text and at the end of each chapter. For the most part, those
placed within the text are meant to be worked out immediately as
simple exercises. Occasionally, however, I have engaged in the
pedagogical device of asking questions that require development of a
sophisticated idea in order to obtain the answer. These Exercises are
marked with an asterisk, and there are three ways of handling them.
First, you might figure out the answer on the spot (in which case you
are more than pretty good!). Second, you could ‘“‘cheat” and look for
the required techniques in other textbooks (a kind of “cheating” I
hope to inspire). Third, you can keep on thinking about the problem
but proceed with studying the text. In the last case, you will often
find the techniques for the solution will gradually appear later.

Oxford has produced a set of solutions to many of the problems,* and
you might find it useful to look at this too. Finally, we have produced a
diskette with text related computer programs that run on IBM-PC
compatibles. It can be obtained directly from me at the Chemistry
Department, University of California, Berkeley, CA 94720, USA. Enclose
a check or money order of $4.00 made out to David Chandler to cover
Costs.

*David Wu and David Chandler, Solutions Manual for Introduction to
Modern Statistical Mechanics (Oxford U. Press, New York, 1988).
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CHAPTER 1

Thermodynamics,
Fundamentals

Statistical mechanics is the theory with which we analyze the
behavior of natural or spontaneous fluctuations. It is the ubiquitous
presence of fluctuations that makes observations interesting and
worthwhile. Indeed, without such random processes, liquids would
not boil, the sky would not scatter light, indeed every dynamic
process in life would cease. It is also true that it is the very nature of
these fluctuations that continuously drives all things toward ever-
increasing chaos and the eventual demise of any structure. (Fortun-
ately, the time scales for these eventualities are often very long, and
the destruction of the world around us by natural fluctuations is not
something worth worrying about.) Statistical mechanics and its
macroscopic counterpart, thermodynamics, form the mathematical
theory with which we can understand the magnitudes and time scales
of these fluctuations, and the concomitant stability or instability of
structures that spontaneous fluctuations inevitably destroy.

The presence of fluctuations is a consequence of the complexity of
the systems we observe. Macroscopic systems are composed of many
particles—so many particles that it is impossible to completely
control or specify the system to an extent that would perfectly
prescribe the evolution of the system in a deterministic fashion.
Ignorance, therefore, is a law of nature for many particle systems,
and this ignorance leads us to a statistical description of observations
and the admittance of ever-present fluctuations.

Even those observed macroscopic properties we conceive of as
being static are irrevocably tied to the statistical laws governing
dynamical fluctuations. As an illustration, consider a dilute gas that

3



4 INTRODUCTION TO MODERN STATISTICAL MECHANICS

obeys the ideal gas equation of state: pV =nRT (p is pressure, V is
the volume of the container, n is the number of moles, T is
temperature, and R is the gas constant). In Chapter 3, we will show
that this equation is equivalent to a formula for the mean square
density fluctuations in the gas. The equation can be regarded entirely
as a consequence of a particular class of statistics (in this case, the
absence of correlations between density fluctuations occurring at
different points in space), and need not be associated with any details
of the molecular species in the system. Further, if these (uncorre-
lated) density fluctuations ceased to exist, the pressure would also
vanish.

As we will see later in Chapter 8, we can also consider the
correlation or influence of a fluctuation occurring at one instant with
those occurring at other points in time, and these considerations will
tell us about the process of relaxation or equilibration from nonequi-
librium or unstable states of materials. But before we venture deeply
into this subject of characterizing fluctuations, it is useful to begin by
considering what is meant by ‘“‘equilibrium” and the energetics
associated with removing macroscopic systems from equilibrium. This
is the subject of thermodynamics. While many readers of this book
may be somewhat familiar with this subject, we take this point as our
beginning because of its central importance to statistical mechanics.
As we will discuss in Chapter 3, the reversible work or energetics
associated with spontaneous fluctuations determines the likelihood of
their occurrence. In fact, the celebrated second law of thermo-
dynamics can be phrased as the statement that at equilibrium, all
fluctuations consistent with the same energetics are equally likely.
Before discussing the second law, however, we need to review the
first law and some definitions too.

1.1 First Law of Thermodynamics and Equilibrium

The first law is concerned with the internal energy. The quantity, to
which we give the symbol E, is defined as the total energy of the
system. We postulate that it obeys two properties. First, internal
energy is extensive. That means it is additive. For example, consider
the composite system pictured in Fig. 1.1. By saying that the internal
energy is extensive, we mean

E=E1+E2.

Due to this additivity, extensive properties depend linearly on the
size of the system. In other words, if we double the size of the system
keeping other things fixed, the energy of the system will double.

The second postulated property is that we assume energy is
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Fig. 1.1. Composite system.

conserved. This means that if the energy of a system changes, it must
be as a result of doing something to the system—that is, allowing
some form of energy to flow into or out of the system. One thing we
can do is perform mechanical work. What else is there? Empirically
we know that the energy of a system can be changed by doing work
on the system, or by allowing heat to flow into the system. Therefore,
we write as a definition of heat:

‘ dE = 4Q +dw.j;

This equation is usually referred to as the first law. In it, W is the
differential work done on the system (manipulating mechanical
constraints), and ¢(Q is the differential heat flow into the system. The
work term has the general form

4w =f- dX,

where f is the applied “force,” and X stands for a mechanical
extensive variable. A familiar example is

dW = —p,,. dV,

where V is the volume of a bulk system, and p.,, is the external
pressure. As another example,

dW =fdL,

where here f is the tension applied to a rubber band and L is the
length of that rubber band. In general, there are many mechanical
extensive variables, and their changes involve work. The abbreviated
vector notation, f-dX, is used to indicate all the associated work
terms, fi dX, + fdX,+- - -.

The definition of heat is really not complete, however, unless
we postulate a means to control it. Adiabatic walls are the constraints
that prohibit the passage of heat into the system. Provided that one
state, say A, of the system can be reached from another, call it B, by
some mechanical process while the system is enclosed by an adiabatic
wall, it is then possible to measure the energy difference, E, — Ej,
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by determining the work required to pass between these states by an
adiabatic process.

In this remark on the measurability of energy, we are assuming
that there is an experimental means for characterizing the “state” of
a system.

Another important point to keep in mind is that work and heat are
forms of energy transfer. Once energy is transferred (W or dQ) it is
indistinguishable from energy that might have been transferred
differently. Although ¢W + dQ =dE, and there is a quantity E,
there are no quantities W and Q. Hence ¢W and {Q are inexact
differentials, and the strokes in dW and dQ are used to indicate this
fact.

Exercise 1.1 List a few familiar examples of the two types
of energy flow (e.g., two ways to melt ice—stirring or
sitting in the sun).

Experimentally we know that isolated systems tend to evolve
spontaneously toward simple terminal states. These states are called
equilibrium states. By ‘‘simple” we mean that macroscopically they
can be characterized by a small number of variables. In particular,
the equilibrium state of a system is completely characterized macro-
scopically by specifying E and X. For a system in which the relevant
mechanical extensive variables are the volume and the numbers of
molecules, the variables that characterize the system are

E,V,ny,...,n,...,n, <rcomponents.
volume L number of moles of
species |

If an electric field is applied, the total dipole of the system must be
added to the list of relevant variables. (By the way, in the case of
electric and magnetic fields, care is required in the development of an
extensive electrical and magnetic energy. Can you think of the source
of the difficulty? [Hint: Think about the spatial range of interactions
between dipoles.])

Incidentally, in a completely deductive development of macro-
scopic thermodynamics, one should distinguish between the composi-
tion variables n,, n,, . . ., n, and the mechanical extensive variables
such as the volume, V. We choose to ignore the distinction in this
text because one can, by use of semipermeable membranes, electro-
chemical cells, or phase equilibria, design experiments (real or
thought) in which transfer of moles and mixing occurs with the



THERMODYNAMICS, FUNDAMENTALS 7

UL LA
Adiabatic wall

2 ED, y) F] E® pid @ ;-:— iabatic wa

Y LY 7T

Rigid piston

Fig. 1.2. An illustrative system.

consumption or production of work. This observation can be used to
verify that composition variables play a mathematically equivalent
role to the standard mechanical extensive variables. See Exercise 1.5
below.

The complete list of relevant variables is sometimes a difficult
experimental issue. But whatever the list is, the most important
feature of the macroscopic equilibrium state is that it is characterized
by a very small number of variables, small compared to the
overwhelming number of mechanical degrees of freedom that are
necessary to describe in general an arbitrary non-equilibrium state of
a macroscopic many particle system.

Virtually no system of physical interest is rigorously in equi-
librium. However, many are in a metastable equilibrium that usually
can be treated with equilibrium thermodynamics. Generally, if in the
course of observing the system, it appears that the system is
independent of time, independent of history, and there are no flows
of energy or matter, then the system can be treated as one which is at
equilibrium, and the properties of the system can be characterized by
E,V,n,...,n, alone. Ultimately, however, one is never sure that
the equilibrium characterization is truly correct, and one relies on the
internal consistency of equilibrium thermodynamics as a guide to the
correctness of this description. An internal inconsistency is the
signature of non-equilibrium behavior or the need for additional
macroscopic variables and not a failure of thermodynamics.

What can thermodynamics tell us about these equilibrium states?
Consider a system in equilibrium state I formed by placing certain
constraints on the system. One (or more) of these constraints can be
removed or changed and the system will evolve to a new terminal
state II. The determination of state II can be viewed as the basic task
of thermodynamics.

As examples, consider the system pictured in Fig. 1.2, and imagine
the following possible changes:

1. Let piston move around.

2. Punch holes in piston (perhaps permeable only to one species).



8 INTRODUCTION TO MODERN STATISTICAL MECHANICS

3. Remove adiabatic wall and let system exchange heat with
surroundings.

What terminal states will be produced as a result of these changes? To
answer this question, a principle is needed. This principle is the
second law of thermodynamics.

While this motivation to consider the second law is entirely
macroscopic, the principle has a direct bearing on microscopic issues,
or more precisely, the nature of fluctuations. The reasoning is as
follows: Imagine that the constraints used to form the initial state I
have just been removed and the system has begun its relaxation to
state II. After the removal of the constraints, it becomes impossible
to discern with certainty whether the formation of state I was the
result of applied constraints (now removed) or the result of a
spontaneous fluctuation. Therefore, the analysis of the basic task
described above will tell us about the energetics or thermodynamics
of spontaneous fluctuations, and we shall see that this information
will tell us about the likelihood of fluctuations and the stability of
state II.

With this foreshadowing complete, let us now turn to the principle
that provides the algorithm for this analysis.

1.2 Second Law

As our remarks have already indicated, the second law is intimately
related to and indeed a direct consequence of reasonable and simple
statistical assumptions concerning the nature of equilibrium states.
We will consider this point of view in Chapter 3. But for now, we
present this law as the following postulate:

There is an extensive function of state, S(E, X), which is a
monotonically increasing function of E, and if state B is
adiabatically accessible from state A, then Sz = §,.

Notice that if this state B was reversibly accessible from state A, then
the process B—+A could be carried out adiabatically too. In that
case, the postulate also implies that S, = S;. Hence, if two states, A
and B, are adiabatically and reversibly accessible, S, = Sz. In other
words, the change AS =58z — 5, is zero for a reversible adiabatic
process, and otherwise AS is positive for any natural irreversible
adiabatic process. That is,

(As)adiabmic = 0,

where the equality holds for reversible changes only.
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The words “reversible” and “irreversible” deserve some com-
ment. A reversible process is one that can be exactly retraced by
infinitesimal changes in control variables. As such, it is a quasi-static
thermodynamic process carried out arbitrarily slowly enough so that
at each stage the system is in equilibrium. In other words, a
reversible process progresses within the manifold of equilibrium
states. Since these states are so simply characterized by a few
variables, any such process can be reversed by controlling those
variables; hence the name ‘“‘reversible.” Natural processes, on the
other hand, move out of that manifold through vastly more complex
non-equilibrium states requiring, in general, the listing of an enor-
mous number of variables (perhaps the positions of all particles) to
characterize these states. Without controlling all these variables
(which would be impossible in a general case), it is highly unlikely
that in an attempt to reverse such a process, one would observe the
system passing through the same points in state space. Hence, the
process is “‘irreversible.”

The extensive function of state, S(E, X), is called the entropy. As
we have already demonstrated, the entropy change for a reversible
adiabatic process is zero. Note also that entropy is a function of state.
That means it is defined for those states characterized by E and X.
Such states are the thermodynamic equilibrium states. Entropy obeys
several other important properties as well. To derive them, consider
its differential

dS = (3S/3E)x dE + (35/3X); - dX,

where the second term is an abbreviation for (35/9X,;)dX,+
(88/3X,)dX,+ - - -. For a reversible process, we also have

dE = (dQ)rev +f-dX.

Here, due to reversibility, the “force,” f, is a property of the system.
For instance, at equilibrium, the externally applied pressures, p.y,
are the same as the pressure of the system, p.

Combining the last two equations gives

dS = (3S/3E)x (#Q).er + [(35/3X) + (35/3E)xf] - dX.

For an adiabatic process that is reversible, we have that both dS and
(#Q)., are zero. Since the last equation must hold for all reversible
processes (i.e., all displacements connecting the manifold of equi-
librium states), it must hold for reversible adiabatic processes. To
ensure this behavior, the term in square brackets in the last equation
must be identically zero. Hence

(85/3X)g = —(3S/3E)xf.
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Note that all the quantities involved in this equation are functions of
state. Therefore, the equality holds for nonadiabatic as well as
adiabatic processes.

We postulate that § is a monotonically increasing function of E;
that is, (38/9E)x>0, or (3E/3S)x=0. This last derivative is
defined as the temperature, 7. That is,

T =(3E/3S)x =0.

We will see later that this definition is consistent with our physical
notion of temperature. Note that since both E and § are extensive,
the temperature is intensive. That is, T is independent of the size of
the system.

The last two equations combine to give

(38/3X)z = —f/T.
Therefore, since dS = (3S/3E)x dE + (35/3X); - dX, we have

dS = (1/T) dE - ((/T) - dX !

or

dE=TdS +f-dX. !

According to this last equation, the energy for equilibrium states is
characterized by § and X, that is,

E=E(S, X).

The boxed equations of this section are the fundamental relation-
ships that constitute the mathematical statement of the second law of
thermodynamics.

Exercise 1.2 An equation of state for a rubber band is

either
1/L\ L, 3
S=L0y(9E/Lo)I'Q—LO}’|:§ (L_o) +f—§], Lo=nl,,
or
i 1/LN\?> L, 3
S = Lyye® EIL“_LOY[E (L—o) +IO"E]; Lo = nly,

where v, l;, and 6 are constants, L is the length of the
rubber band, and the other symbols have their usual
meaning. Which of the two possibilities is acceptable?
Why? For the acceptable choice deduce the dependence
of the tension, f, upon T and L/n; that is, determine
f(T, L/n).
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Fig. 1.3. Composite system illustrating the meaning of internal constraints.

1.3 Variational Statement of Second Law

A useful form of the second law, and one that is most closely tied to
the energetics of fluctuations, is derived by considering a process in
which an internal constraint is applied quasi-statically at constant E
and X.

Internal constraints are constraints that couple to extensive
variables but do not alter the total value of those extensive variables.
For example, consider the system pictured in Fig. 1.3. The total value
V=V®+V® can be changed by moving the piston on the right.
But that process would not correspond to the application of an
internal constraint. Rather, imagine moving the interior piston. It
would require work to do this and the energy of the system would
therefore change. But the total volume would not change. This
second process does correspond to an application of an internal
constraint.

With this definition in mind, consider the class of processes
depicted in Fig. 1.4. The system initially is at equilibrium with
entropy S =S(E, X). Then, by applying an internal constraint, the
system is reversibly brought to a constrained equilibrium with the
same E and X, but with entropy S’ = S(E, X; internal constraint).
The states on the E-X plane are the manifold of equilibrium states in
the absence of the internal constraint. The application of the internal

Internal constraint

“

Natural process occurring

Quasi~static after internal constraint
process to £ is turned off
constrained

equilibrium state X

Equilibrium state with
entropy S(E. X)

Fig. 1.4. Entropy changes for a process involving the manipulation of an internal
constraint.
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YL AL

2 m (2) 2

V % System isolated

2 EWML E® % from surroundings
Vi

Heat conducting wall
divides subsystems (1) and (2)

Fig. 1.5. lllustrative composite system.

constraint lifts the system off this manifold. It will require work to do
this, and the requirement that there is no change in energy for the
process means that there must also have been a flow of heat.

After attaining and while maintaining this constrained state, we
will adiabatically insulate the system. Then, let us imagine what will
happen when we suddenly shut off the internal constraint. The
system will relax naturally at constant E and X back to the initial
state with entropy S as depicted in Fig. 1.4. By considering just this
last leg of this cyclic process, the second law tells us that the entropy
change is positive—that is,

§-8">0,
or that

S(E, X) > S(E, X; internal constraint).

In other words, the equilibrium state is the state at which S(E, X;
internal constraint) has its global maximum.

This variational principle provides a powerful method for deducing
many of the consequences of the second law of thermodynamics. It
clearly provides the algorithm by which one may solve the problem
we posed as the principal task of thermodynamics. To see why,
consider the example in Fig. 1.5. We can ask: Given that the system
was initially prepared with E partitioned with E{});, in subsystem 1
and E@),, in subsystem 2, what is the final partitioning of energy?
That is, when the system equilibrates, what are the values of E®) and
E®? The answer is: E and E® are the values that maximize
S(E, X; E?®, E®) subject to the constraint EV + E? = E.

The entropy maximum principle has a corollary that is an energy
minimum principle. To derive this corollary, we consider the com-
posite system drawn above and let E® and E® denote the
equilibrium partitioning of the energy. The entropy maximum
principle implies

S(EW - AE, XM) + S(E® + AE, X®) < S(ED + E®, X1 4+ X@),

Here, the quantity AE is an amount of energy removed from
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subsystem 1 and placed into subsystem 2. Such repartitioning lowers
the entropy as indicated in the inequality. Note that in computing the
entropy of the repartitioned system, we have used the fact that
entropy is extensive so that we simply add the entropies of the two

separate subsystems.
Now recall that S is a monotonically increasing function of E (i.e.,

the temperature is positive). Therefore, there is an energy
E<EW+E®
when AE # 0 such that
S(EM — AE, X®) + S(E® + AE, X®) = §(E, X + X@).

In other words, we can imagine applying internal constraints at
constant total § and X, and such processes will necessarily raise the
total energy of the system. That is, E(S, X) is a global minimum of
E(S, X; internal constraint). This statement is the energy minimum
principle to which we have referred.

Often, the extremum principles are stated in terms of mathemati-

cal variations away from the equilibrium state. We can write AE for
such variations in terms of a Taylor series:

AE = E(S, X; 8Y) — E(S, X; 0)
=(8E)sx+ (8’E)sx + -+,

where 8Y denotes a variation or partitioning of internal extensive
variables caused by the application of an internal constraint, and

(OE)s x = first-order variational displacement
=[(8E/3Y)s,x]y-0 6Y
(8°E)s,x = second-order variational displacement
= [(1/2)(%E/3Y?), x]y=o(8Y ), etc.
The principles cited above are (with this notation)
(0E)sx=0

for any small variation away from the equilibrium manifold of states
with Y =0, and (AE)s x >0 for all small variations away from the
stable equilibrium state. Similarly, (AS)g x <0.

1.4 Application: Thermal Equilibrium and Temperature

An instructive use of the variational form of the second law establishes
the criterion for thermal equilibrium and identifies the integrating
factor, T, as the property we really conceive of as the temperature.
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E“’, T“), s Efl), T(l)' s
(1 (2)

Thermal (heat) conductor

Fig. 1.6. Heat conducting system.

Consider the system in Fig. 1.6. Let us ask the question: At
equilibrium, how are T and T related? To obtain the answer,
imagine a small displacement about equilibrium due to an internal
constraint. The variational theorem in the entropy representation is

(08)ex<0.
Since E = E®” + E® is a constant during the displacement,
SEN = —3ED,
Further, since S is extensive
§=5M + 5O,
Thus
85 = 85D + 5@

= (asm) SE® + (—) SE®
SEM/x dE®/x

1 1
= (70~ 7o) 8

35®

where in the last equality we noted that
(8S/3E)x=1/T
and applied the condition that SE® = —8E™, Hence,

1 1

for all (positive or negative) small variations SE™. The only way this
condition can hold is if

TV = 7@

at equilibrium.

Notice the perspective we have adopted to derive the equilibrium
condition of equal temperatures: We assume the system is at an
equilibrium state, and we learn about that state by perturbing the
system with the application of an internal constraint. We then
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analyze the response to that perturbation, and by comparing with the
second law arrive at a conclusion concerning the equilibrium state we
began with. This type of procedure is very powerful and we will use it
often. In a real sense, it is closely tied to the nature of experimental
observations. In particular, if we conceive of a real experiment that
will probe the behavior of an equilibrium system, the experiment will
generally consist of observing the response of the system to an
imposed perturbation.

With this procedure, we have just proven that according to the
second law, the criterion for thermal equilibrium is that the two
interacting subsystems have the same temperature. Our proof used
the entropy variational principle. You can verify that the same result
follows from the energy variational principle.

Exercise 1.3 Perform the verification.

Next let’s change our perspective and consider what happens when
the system is initially not at thermal equilibrium—that is, initially
T #T®, Eventually, at thermal equilibrium, the two become
equal. The question is: how does this equilibrium occur?

To answer the question we use the second law again, this time
noting that the passage to equilibrium is a natural process so that the
change in entropy, AS, is positive (i.e., dS > T7' dQ and dQ for the
total system is zero). Thus

ASD + ASD = AS>0.

As a result (assuming differences are small)

asﬂ)) 3s®
— AE(1’+( ) AE® >0,
(aE“) " SE®/

or noting AE®W = —AE® and (35/3E)x = 1/T,

1 1 a
m—m AEY >0.

Now suppose T™"> T, Then AE® <0 to satisfy the inequality.
Similarly if 7 < T®, then we must have AE®Y > 0. Thus, we have
just proven that energy flow is from the hot body to the cold body.

In summary, therefore, heat is that form of energy flow due to a
temperature gradient, and the flow is from hot (higher T) to cold
(lower T).

Since heat flow and temperature changes are intimately related, it
is useful to quantify their connection by introducing heat capacities.
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For a quasi-static process we can define

40_ 4Q/T_ . dS
dT  * dT dT’
Of course, we should really specify the direction in which these
differential changes occur. The conventional and operational defini-

tions are

C="—=

a8 )

as
c=r(—) d Cx=T(3
f an x TaT

aT/¢

Since § is extensive, C; and Cx are extensive.

Exercise 1.4 Suppose you have two pieces of rubber
band, each one obeying the equation of state studied in
Exercise 1.2. The temperature, length per mole, and mole
number for the first piece are T!, [V, and »n®,
respectively. Similarly, the second piece has T®, I®, and
n®. Determine (as a function of these initial thermo-
dynamic properties) the final energies and temperatures of
the two rubber bands if they are held at constant length
and placed in thermal contact with one another. Neglect
thermal convection to the surroundings and mass flow.

1.5 Auxiliary Functions and Legendre Transforms

In the previous sections, we have introduced all the principles
necessary for analyzing the macroscopic thermodynamics of any
system. However, the ease with which the analyses can be performed
is greatly facilitated by introducing certain mathematical concepts
and methods. The tricks we learn here and in the remaining sections
of this chapter will also significantly add to our computational
dexterity when performing statistical mechanical calculations.

The first of these methods is the procedure of Legendre trans-
forms. To see why the method is useful, let’s use the specific form of
the reversible work differential appropriate to systems usually studied
in chemistry and biology. In that case, for reversible displacements

f-dX=-pdV + > u;dn;,
i=1

where p is the pressure of the system, V is the volume of the system,
n, is the number of moles of species i (there are r such species), and
u; is the chemical potential of species i. The chemical potential is
defined by the equation above. It is the reversible rate of change of
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Fig. 1.7. Composite system illustrating how mechanical work can be associated
with changes in mole numbers.

internal energy caused by changing mole number n; while keeping all
other mole numbers, S and V, constant. As we will stress in Chapters
2 and 3, the chemical potential is the intensive property that controls
mass or particle equilibrium just as temperature controls thermal
equilibrium. Indeed, we will find that gradients in chemical potentials
will induce the flow of mass or the rearrangements of atoms and
molecules, and the absence of such gradients ensures mass equi-
librium. Rearrangements of atoms and molecules are the processes
by which equilibria between different phases of matter and between
different chemical species are established. Chemical potentials will
therefore play a central role in many of our considerations through-
out this book.

Exercise 1.5 Consider the system pictured in Fig. 1.7. The
piston between subsystems I and II is permeable to species
1 but not to species 2. It is held in place with the
application of pressure p,. The other piston, held in
place with pressure pg, is permeable to species 2 but not
to species 1. Note that at equilibrium, p, =py—p; and
Pe=pn—pm- Show that with appropriate constraints
(e.g., surrounding the system with adiabatic walls), the
reversible mechanical work performed on the system by
controlling pressures p, and pp is reversible work we can
associate with changing the concentration variables in
subsystem II. Can you think of other devices for which
reversible work is connected with changing mole numbers
in a system?

In view of the form for f- dX, we have

dE=TdS—pdV + 2, u; dn,.

i=1
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Thus, E=E(S, V, ny,...,n,) is a natural function of S, V, and the
n’s. As a result, the variational principles (AE)sy,>0 and
(8E)s,v,»=0 tell us facts about equilibrium states characterized with
S, V, and n;’s. But now suppose an experimentalist insists upon using
T, V, and n to characterize the equilibrium states of a one-
component system. The questions are: is that characterization
possible, and, if so, what is the thermodynamic function analogous to
E that is a natural function of 7, V, and n?

The answer comes from considering Legendre transformations.
We do this now. Suppose f =f(x,, ..., x,) is a natural function of
Xy ...,X, Then

df = i u; dx;, U= (af,ax")xf'
i=1

Let
n
g=f—- Z Uu;x;.
i=r+1
Clearly,
n
dg=df — 2, [u;dx; +x; du,)
i=r+1
r n
= 2 U; dx,' + Z (_x,') du,-.
i=1 i=r+1
Thus, g=g(xy,..., %, U41,...,U,) is a natural function of
Xy,...,x and the conjugate variables to x,.;,...,x,, namely,
U415 - - -, Uy, The function g is called a Legendre transform of f. It
transforms away the dependence upon x,.,,, . .., x, to a dependence
upon u,,q, ..., U, It is apparent that this type of construction

provides a scheme for introducing a natural function of 7, V, and n
since T is simply the conjugate variable to S. But for the scheme to
provide a satisfactory solution to the questions posed above, the
Legendre transform, g(x,,...,x,, 4,4,..., 4,), must contain no
more or less information than f(x,, ..., x,). This equivalency is
readily established by noting that one may always return to the
original function f(x,, ..., x,). Geometrically, this observation cor-
responds to the fact that within a constant, a function can be
equivalently represented either as the envelope of a family of tangent
lines or by the locus of points satisfying f =f(x;, . . ., x,,).

To construct a natural function of T, V, and n, we thus subtract
from E(S, V, n) the quantity § x (variable conjugate to §)=ST.
Hence, we let

A=E_ TS=A(TJ V: n):
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which is called the Helmholtz free energy. Clearly,
dA=-SdT —pdV + 2, ; dn,.
i=1

The Legendre transform allows us to exchange a thermodynamic
variable with its conjugate. Exchanges between non-conjugate pairs,
however, are not possible for this scheme. For example, since
(S, V, n) provides enough information to characterize an equilibrium
state, so do (T, V, n), (S, p, n), and (T, p, n). However, (p, v, n) or
(8, T, p) are not examples of sets of variables that can characterize a
state. We will return to this point again when discussing thermo-
dynamic degrees of freedom and the Gibbs phase rule.

Other possible Legendre transforms are

G=E-TS-(-pV)
=E-TS +pV =G(T, p, n),
and
H=E—(-pV)=E+pV
=H(S, p, n),
which are called the Gibbs free energy and enthalpy, respectively.
Their differentials are

dG=-SdT +Vdp + D, p, dn,.
i=1

and

dH=TdS+Vdp+ D, u; dn,.
i=1

Exercise 1.6 Construct Legendre transforms of the en-
tropy that are natural functions of (1/7, V, n) and of
(1/T, V, u/T).

The variational principles associated with the auxiliary functions
H, A, and G are

(AH)S,p.n >0’ (6H)S.p,n ?'0,
(AA)7v,>0,  (8A)7v,,=0,
(AG)T,p.n > O’ (6G)T,p,n = Or

Exercise 1.7 Derive these principles.
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In Chapter 2, we will use these various representations of the
second law to derive conditions that characterize stable equilibrium
states.

1.6 Maxwell Relations

Armed with the auxiliary functions, many types of different measure-
ments can be interrelated. As an example, consider

(88/3V )z

implies we are viewing S as a function of v, T, n.

To analyze this derivative, we look at the differential of the natural
function of T, V, and n:

dA=-8SdT —pdV + pdn.

Note that if df = adx + b dy, then (3a/dy), = (8b/3x),. As a result,
the differential for A implies

(88/3V)r,,=(8p/3T )y,

which is a Maxwell relation.
As another example, consider (35/3p)r.., which requires us to
view S as a function of p, T, and n. Thus, look at the differential for

G,
dG=-SdT +Vdp + pdn.
Once again, noting that if adx + bdy is an exact differential, then
(3a/dy), = (8b/8x),; as a result, the differential for G yields
(88/8p)r.n=—(3V/3T)p,0»
which is another Maxwell relation.
Two more examples further demonstrate these methods and serve

to show how thermal experiments are intimately linked with equation
of state measurements.

ExamprLE 1: Let

a8
Cv B T(Ei)V,n‘



THERMODYNAMICS, FUNDAMENTALS

Then

Exercise 1.8 Derive an analogous formula for
(9C,/3p)1,n.

ExampLE 2: Let

as
C,= T(ﬁ)m.

Viewing S as a function of T, V, and » gives

as as

@s),=(Z7), @nn+(5;) @,

p.n V,n T.n n.p.
v (8T V.n d ,,,pl

GGG

which leads to

Hence

1
C=7

N

Next note that

Exercise 1.9 Derive this formula. [Hint: Begin by con-
ceiving of z as a function of x and y—that is, dz =
(8z/3x), dx + (3z/3y), dy.)
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As a result,
(8p/8T)y,n = —(8p/8V)1,,(3V/3T),,,,

2 C_—T(av)”[(av) ]

which is a famous result relating heat capacities to the isothermal
compressibility and the coefficient of thermal expansion.

Thus

1.7 Extensive Functions and the Gibbs—Duhem Equation

We have already discussed the meaning of “extensive.” In particular,
a macroscopic property is extensive if it depends /inearly on the size
of the system. With this meaning in mind, consider the internal
energy E, which is extensive, and how it depends upon § and X,
which are also extensive. Clearly,

E(AS, AX) = AE(S, X)

for any A. Thus, E(S, X) is a first-order homogeneous function of S
and X.* We shall derive a theorem about such functions and then use
the theorem to derive the Gibbs—-Duhem equation.

To begin, suppose f(x;,...,%,) is a first-order homogeneous
function of x,, ..., x,. Let u; = Ax;. Then

fluy, oo u) =2Af(x1, .., X5):

Differentiate this equation with respect to A:
Of (uy, ..., Un
(_f'(_'l__al-_—_)-)xt‘:f(xl, B xn)‘ (a)
But we also know that

df(ulr‘ Sitis n) Z(Gflau)u dut’

i=1

and as a result

(3 /3A), = 3, (3f 3u), (3uif 33,
= 3 (/3 (b)

* A homogeneous function of degree  is one for which f(Ax) = A"f(x).
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By combining Egs. (a) and (b) we obtain

T sona®p) = é:l (3f/3”f)u,-xf
for all A. Take A =1, and we have

flxy, ..., x,)= é:l (9f 19x:)x xi,

which is the result known as Euler’s theorem for first-order homoge-
neous functions.

Exercise 1.10 Derive an analogous theorem for homoge-
neous functions of order x.

Since E = E(S, X) is first-order homogeneous, Euler’s theorem gives
E=(8E/38)xS +(9E/5X)s X
=TS +f-X.

Let us now specialize as in the previous two sections:

f-dX=-pdV + > udn,.
i=1

Then
dE=TdS—pdV + u;dn;, (c)
i=1
that is, E = E(S, V, n;, ..., n,), and Euler’s theorem yields

E=TS —pV + > un.

i=1

Notice that the total differential of this formula is

dE=TdS+SdT —pdV —Vdp + 2, [;dn; +n;du;).  (d)

i=1

By comparing Eqs. (d) and (c) we discover

0=SdT —Vdp + >, n,du,

i=1

which is the Gibbs-Duhem equation.
Now let’s apply Euler’s theorem for first-order homogeneous
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functions to the Gibbs free energy:
G=E-TS+pV

=(TS—pV+ > pini) — TS +pV
i=1

= 2 uin;.

i=1

Thus, for a one-component system, u is simply the Gibbs free energy
per mole, G/n.
The result G = &, u;n, is a special case of the general result

,
X(T,p, Ry ey n,) — z Xil;,
i=1
where X is an extensive function when T, p, and the n;’s are used to
characterize states, and the x;’s are partial molar X’s,
Xi = (SX/an,-)r,‘,j,‘f= x,'(T, p, Bigenny n,).

The proof of the result that X = ¥, x;n; follows directly from Euler’s
theorem since at fixed T and p, X(T, p, ny,...,n,) is first-order
homogeneous in the mole numbers:

X(T,p,Any, ..., An)=AX(T,p, ny,...,n,).

1.8 Intensive Functions

These are zeroth-order homogeneous functions of the extensive
variables. For example,

p=p(S,V,n;,...,n)=pAS, AV, An,, ..., An,).

Exercise 1.11 Show that if X and Y are extensive, then
X/Y and 3X/3Y are intensive.

This equation is true for any A. Pick A™'=n, +n,+ - - +n, =total
number of moles = n. Then

p=p(Sin, Vin, 1, %0 ..., %),

where x; = n;/n is the mole fraction of species i. But the different x;’s
are not completely independent since

1= E X;.
i=1
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Fig. 1.8. Volume per mole of water at 1 atm pressure.

Thus,
p=pS/n,Vinxy, ..., %61, 1=x1=x2— "+ —x,,),

which proves that while 2 +r extensive variables are required to
determine the value of an extensive property of an equilibrium
system, only 1+ r intensive variables are needed to determine the
values of other intensive variables.

The reduction from 2 + r to 1 + r degrees of freedom is simply the
statement that intensive properties are independent of system size.
Hence, a variable indicating this size, required for extensive pro-
perties, is not needed to characterize intensive properties.

Having said all these things, here is a simple puzzle, the solution
of which provides a helpful illustration: If an intensive property of a
one-component equilibrium system can be characterized by two other
intensive properties, how do you explain the experimental behavior
of liquid water illustrated in Fig. 1.8? The temperature T is not
uniquely defined by specifying (V/n) =v* and p = 1 atm. The answer
to this apparent paradox is that p and V are conjugate variables.
Hence (p, V, n) do not uniquely characterize an equilibrium state.
However, (p, T, n) do characterize a state, and so do (v, T, n). Thus,
we should be able to uniquely fix v with p and T, and (v, T) should
determine p. The above experimental curve does not contradict this
expectation.

This puzzle illustrates the importance of using non-conjugate
variables to characterize equilibrium states.

Additional Exercises

1.12. Consider a rubber band of length L held at tension f. For
displacements between equilibrium states

dE = TdS +fdL + p dn,

where p is the chemical potential of a rubber band and # is the



1.13.

1.14.

1.15.

1.16.

1.17.

1.18.
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mass or mole number of the rubber band. Derive the analog of
the Gibbs—Duhem equation for a rubber band.

Suppose an equation of state for a rubber band is E =
6S?L/n? where 0 is a constant, L is the length of the rubber
band, and the other symbols have their usual meaning.
Determine the chemical potential, u(7, L/n), and show that
the equation of state satisfies the analog of the Gibbs—Duhem
equation.

Show that for a one component p — V — n system
(Ou/3v)r =v(3p/dv)r,

where v is the volume per mole. [Hint: Show that du =
—sdT + v dp, where s is the entropy per mole.]

For a p — V — n system, construct Legendre transforms of the
entropy which are natural functions of (1/T, V,n) and of
(1/7, V, u/T). Show that for a one-component system,

e~ GG, (3, o),
where §=1/T.

Suppose a particular type of rubber band has the equation of
state /=6f/T, where ! is the length per unit mass, f is the
tension, T is the temperature, and 6 is a constant. For this type
of rubber band, compute (3c,/8l)r, where ¢, is the constant
length heat capacity per unit mass.

Imagine holding a rubber band in a heat bath of temperature T
and suddenly increasing the tension from f to f + Af. After
equilibrating, the entropy of the rubber band, S(7, f + Af, n),
will differ from its initial value S(T, f, n). Compute the change
in entropy per unit mass for this process assuming the rubber
band obeys the equation of state given in Exercise 1.16.

Given the generalized homogeneous function
f(Ael.xl, )»Bzxz, 5 le"x,,,) = )tf(xl, Ve e x,,),
show that

of of
(L) et o)
4 ax] X2y a0y x,.+ * & axn X1yenny Xp_1
=f(x1: S xn)'

This result is a generalization of the Euler’s theorem discussed
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in the text. It plays an important role in the theory of phase
transitions when deriving what are known as ‘“‘scaling” equa-
tions of state for systems near critical points.
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CHAPTER 2

Conditions for Equilibrium
and Stability

In this chapter, we derive general criteria characterizing the equi-
librium and stability of macroscopic systems. The derivations are
based on the procedure already introduced in Chapter 1. In
particular, we first assume the system under investigation is stable
and at equilibrium, and we then examine the thermodynamic changes
or response produced by perturbing the system away from equi-
librium. The perturbations are produced by applying so-called
“internal constraints.” That is, the system is removed from equi-
librium by repartitioning the extensive variables within the system.
According to the second law of thermodynamics, such processes lead
to lower entropy or higher (free) energy provided the system was
initially at a stable equilibrium point. Thus, by analyzing the signs of
thermodynamic changes for the processes, we arrive at inequalities
consistent with stability and equilibrium. These conditions are known
as equilibrium and stability criteria.

We first discuss equilibrium criteria and show, for example, that
having T, p, and u constant throughout a system is equivalent to
assuring that entropy or the thermodynamic energies are extrema
with respect to the partitioning of extensive variables. To distinguish
between maxima or minima, one must continue the analysis to
consider the sign of the curvature at the extrema. This second step in
the development yields stability criteria. For example, we show that
for any stable system, (87/3S), ,=0, (3p/3V)r..<0, and many
other similar results. In particular, stability concerns the signs of
derivatives of intensive variables with respect to conjugate extensive
variables, or equivalently, the signs of second derivatives of free

28
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energies with respect to extensive variables. When developing the
theory of statistical mechanics in Chapter 3, we will find that these
criteria, often referred to as “convexity” properties, can be viewed as
statistical principles that equate thermodynamic derivatives to the
value of mean square fluctuations of dynamical quantities.

After examining several thermodynamic consequences of equi-
librium and stability, we apply these criteria to the phenomena of
phase transitions and phase equilibria. The Clausius—Clapeyron
equation and the Maxwell construction are derived. These are the
thermodynamic relationships describing how, for example, the boil-
ing temperature is determined by the latent heat and molar volume
change associated with the liquid-gas phase transition. While results
of this type are insightful, it should be appreciated that a full
understanding of phase transitions requires a statistical mechanical
treatment. Phase transformations are the results of microscopic
fluctuations that, under certain circumstances, conspire in concert to
bring about a macroscopic change. The explanation of this cooperati-
vity, which is one of the great successes of statistical mechanics, is
discussed in Chapter 5.

2.1 Multiphase Equilibrium

To begin the macroscopic analysis, consider a heterogeneous (multi-
phase) multicomponent system. Each phase comprises a different
subsystem. Repartitionings of extensive variables can be accom-
plished by shuffling portions of the extensive variables between
the different phases. For example, since E is extensive, the total
energy is
v
E= 2 E@®,

a=1

where « labels the phase and v is the total number of such phases. A
repartitioning of the energy would correspond to changing the E)’s
but keeping the total E fixed.

Here, one might note that this formula neglects energies as-
sociated with surfaces (i.e., interfaces between phases and between
the system and its boundaries). The neglect of surface energy is in
fact an approximation. It produces a negligible error, however, when
considering large (i.e., macroscopic) bulk phases. The reason is that
the energy of a bulk phase is proportional to N, the number of
molecules in the phase, while the surface energy goes as N*>. Hence,
the ratio of surface energy to bulk energy is N~'*, which is negligible
for N ~10*, the number of molecules in a mole. There are, of
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course, situations where the surface is of interest, and a discussion of
surface energy is given at the end of this chapter. But for now, we
focus on the bulk phases.

Keeping only the bulk terms for entropy, too, we write

S=> 54,
a=1
and similarly
v
V=2 v®
a=1

and

where n{* is the number of moles of species i in phase «. Then, from
the definition of 8E as the first-order variational displacement of E,

SE= [T(“) 85@ —p@ gY@ 4+ 3y 6n§“)].
i=1

a=1
The condition for equilibrium is
(8E)s,v.n,=0.
The subscripts indicate that we must consider processes that reparti-
tion §, V(*, and n{® keeping the total S, V, and n’s fixed. The
constancy of S, V, and the n,’s requires

> 88 =0, 2 V@ =0
a=1 =

a=1
and

> én®=0 for i=1,2,...,r

a=1

Consider the case with v =2 as pictured schematically in Fig. 2.1.
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The constancy of S, V, and n; corresponds to
08 = —55@,
VW =6y @,

and
énfV =—6én{.

The first-order displacement of E at constant S, V, and n, is

0<(6E)sym= (T(l) = T(Z)) 5SS — (p(l) _p(2)) oV

+ 3 (uf0 - uf?) onf?

Note: (6E)s,v,, =0 must hold for all possible small variations
8SW, sV, én,{‘). Since these variations are uncoupled and can be
either positive or negative, the only acceptable solution to
(0E)s,v,,=0is
TO=T®, pV=p®@
and
P=u®  i=1,2,...,7,
which guarantees
(6E)S, V.n; == 0

for small displacements away from equilibrium. Note that if the
fluctuations were to be constrained to be of only one sign, then the
equilibrium conditions would be inequalities rather than equalities.
For example, if 8V could not be negative, then the analysis we
have outlined would lead to the requirement that p¥ <p®.

The argument for unconstrained variations or fluctuations is easily
extended to any number of phases. Thus, for example, if all the
phases are in thermal equilibrium

TO=T@O=T® ...

if they are all in mechanical equilibrium

bl

1) — () = (3 —
p()_p()_p()_...

and if they are all in mass equilibrium

Y

Exercise 2.1 Carry out the extension to verify these
results.
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Fig. 2.2. Composite system.

It also follows that T, p, and the u,’s are constant throughout a single
homogeneous phase.

Exercise 2.2 Derive this fact.

Finally, we have shown that (6E);,v,,, =0 leads to a set of criteria for
equilibrium. One may also demonstrate that these criteria are both
necessary and sufficient conditions for equilibrium.

Exercise 2.3 Carry out the demonstration.

At this point, let us pause to consider a bit more about the
meaning and significance of chemical potentials. Since u®=pu®
guarantees mass equilibrium, it is interesting to study what action a
gradient in u produces. To do this, consider the composite system in
Fig. 2.2, and suppose the system is prepared initially with 4 > u@,
Mass flow will bring it to equilibrium with u§), = u.,. If no work is
done on the total system and there is no heat flow into the system,

AS>0

for the equilibration process. Assuming displacements from equi-
librium are small,

1) @) 1 2
u I u®
AS= —“—A (1)__A (2)=—(———_)A {1),
> T " T " T T "

where An = —An® is the change in moles in subsystem (1) during
the process. Thus, given > u®, AS >0 implies An™ < 0. That is,
matter flows from high u to low u.

We see that gradients in u (or more precisely, gradients in u/T)
produce mass flow. In that sense, —V(u/T) is a generalized force.
Similarly, —V(1/T) is a generalized force that causes heat to flow
(see Sec. 1.4). The intensive properties whose gradients cause flow of



CONDITIONS FOR EQUILIBRIUM AND STABILITY 33

the conjugate variables are often called thermodynamic fields or
thermodynamic affinities.

As a final remark concerning chemical potentials, note that we
have only imagined the repartitioning of species among different
phases or regions of space in the system. Another possibility is the
rearrangements accomplished via chemical reactions. The analysis of
these processes leads to the criteria of chemical equilibria. For now,
we leave this analysis as an exercise for the reader; it will be
performed in the text, however, when we treat the statistical
mechanics of gas phase chemical equilibria in Chapter 4.

2.2 Stability

The condition for stable equilibrium is (AE)s,v,, >0 for all displace-
ments away from the equilibrium manifold of states. Hence, for small
enough displacements (8E)s, . =0. But, in the previous section we
discovered that for unconstrained systems (for which the internal
extensive variables can fluctuate in both the positive and negative
directions), (8E)s,v,,» = 0. Thus, at and near equilibrium

(AE)s.v,n=(8’E)syn+ (°E)synt -

Since the quadratic (second-order term) will dominate for small
enough displacements, we have

(8°E)s,v.n=0.
Conditions derived from this relation are called stability criteria.
If the inequality
(6°E)s,v.n>0

is satisfied, the system is stable to small fluctuations from equi-
librium. That is, after the occurrence of a small fluctuation, the
system will return to the equilibrium state. If the equality holds,

(0°E)s,v,n=0,

the stability is undetermined and one must examine higher order
variations. If

(6%E)s,v.n <0,

the system is not stable and the slightest fluctuation or disturbance
will cause the system to change macroscopically. (For the purpose of
visualization, the reader might consider these remarks in light of the
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Fig. 2.3. Arbitrary composite system with two compartments.

analogy with a potential energy function containing both maxima and
minima.)

As an example, consider a composite system with two compart-
ments, as pictured in Fig. 2.3, and the fluctuations

85 =0= 65D + 55@

and
VD =8V@D = §pM = 4@ =,
Then
8°E = (8°E)V + (6°E)®
1 (3*E\D 1/3*E\®@
== | — (N2 4 — (2 = (2)y2
2 (352)1,,,,(65 y+3 (asz)v_,,(‘ss Vs

where the superscripts (1) and (2) on the derivatives indicate that the
derivatives are to be evaluated at equilibrium for subsystems (1) and
(2), respectively. Since 65" = —65®, and

(PE/85%)y,, = (8T/3S)y,, = T/C,,

we have
(EElsain =105 L+ L]
=3(6SVYT[1/C +1/CP),

where the second equality follows from T®=T®=T at equi-
librium. By applying (6°E);,v., =0, we therefore find

T[1/CP +1/CP) =0,
or since the division into subsystems can be arbitrary, this result
implies

T/C,=20 or C,=0.

Exercise 2.4 Derive an analogous result for C,. Here, it
may be useful to consider the enthalpy, H = E + pV.

Thus, a stable system will have a positive C,. If it did not, imagine
the consequences: Suppose two subsystems (1) and (2) were in
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thermal contact but not in equilibrium, T® # T®. The gradient in T
will cause heat flow, and the flow will be from high T to low T. But if
C, <0, the direction of heat flow would cause the gradient in T to
grow, and the system would not equilibrate. This illustrates the
physical content of stability criteria. If they are obeyed, the spon-
taneous process induced by a deviation from equilibrium will be in a
direction to restore equilibrium.
As another example, look at the Helmholtz free energy

(AA)T,V,n > 0, ((SA)T, V.n - 0, (62A)T‘ Vin = 0

One should note that it is not permissible to consider fluctuations in
T since these variational theorems refer to experiments in which
internal constraints vary internal extensive variables keeping the total
extensive variables fixed. T is intensive, however, and it makes no
sense to consider a repartitioning of an intensive variable.

The theorems are applicable to the variations

8V =0=6V®+6V®
and
onM = 6n?@ =0,

where we are once again considering the composite system with two
subsystems. The second-order variation in A is

SZA 1 aZA 2)
2 = syt (Z2 T
(8%A) 1y, = H(OV )[(avz),_,_j(avz)m]'

)..--3)..

the positivity of (6°A)r.v , implies

m @)
SERE
V/ign \oV/pa

and since the division into subsystems can be arbitrary

_ @) >
(av T,,,’O

Since

or

where
1/0
K =__(_‘_’)
P Vv Gp T.n

is the isothermal compressibility. Thus, if the pressure of a stable
system is increased isothermally, its volume will decrease.
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Exercise 2.5 Prove an analogous theorem for the adiaba-
tic compressibility,
1 /8V
K S T ( ) 5
S.n

v\ap
Exercise 2.6 Show that since K >0, stability implies that
O =0

As one further illustration of what can be learned from a stability
analysis, let us now suppose (6°A)ry,=0. That is, consider the
situation for which (3p/dV)r,=(8p/dv)r =0, where v=V/n,
when —6V® =6V®@, but 6nV =6n® =0. Then

0<(AA)ryn=(8’A)ryn+ (8*A)ryn+- -+,

Thus, by cbnsidering arbitrary small displacements, we see that
(8p/38v)r=0 implies

(6°A) 1.y, =0.
Thus,
AW 3’A\@
-GG
0=(V™) V3 r, \av3/r.,

Since this equation must hold for all small V™, both positive and
negative, the term in square brackets must be zero. Further,

FA\D 32p 1) azp M s 112
(W)T,,,_ B (EW)T,,,_ B (@)T (;T(T’) '

a‘ZP (1) 1 2 azp ) 1 2
&), (=) -G, =) -0
and since the division into subsystems can be arbitrary, we have
proven that if (3p/3v)r =0, then (8°p/3v?); =0.

Thus

Exercise 2.7 Determine the sign of (3°p/dv’)y if, for
a thermodynamically stable system, (3p/dv)r=0.
Determine what is known about (3*p/ov*),; if
(&p/dv)y =0.

A general rule for stability criteria should now be apparent. Let @
stand for the internal energy or a Legendre transform of it which is a
natural function of the extensive variables X, X,, ..., X,, and the
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intensive variables I,., ..., I,. Then
do=73 LdX,— > XdI,
i=1 j=r+1
and the stability criteria are

0:—:(ﬂ

a"(a’)xl,...,x,_l,x,ﬂ,...,X,.:,H ..... I,

Exercise 2.8 Derive this result.

Thus, for example, the derivatives

5 @
o o b i , d
(aU 5 : an,- T,V.n o Cp

must all be positive (or zero). However, the second law (i.e.
stability) says nothing about the sign of

ap) (a,u-
—=) and -—‘)
(GT v anl T, V,nyn

since these are not derivatives of intensive properties with respect to
their conjugate variables.

Exercise 2.9 An experimentalist claims to find that a
particular gaseous material obeys the conditions

(i) (8p/dv)r <0
(i) (3p/3T), >0
(iii) (3p/dv)r <0
(iv) (3T/3v),>0

(a) Identify which of these inequalities is guaranteed by
stability.

(b) Identify which pair of inequalities is inconsistent with
each other and demonstrate why they are inconsistent.

2.3 Application to Phase Equilibria

Suppose v phases are coexisting in equilibrium. At constant T and p,
the conditions for equilibrium are

W, Py 28 v, X)) = N T pox?; o oo o),
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a-f phase equilibria

Line ends at a ““critical point™

Phase a Line at which phases y and f§ coexist
“Triple point™: a-f~y phase equilibria

s

Fig. 2.4. A hypothetical phase diagram.

for 1<a<y<wv and 1<i<r. Here, x{/* is the mole fraction of
species i in phase a. This relation is an abbreviation for r(v — 1)
independent equations which couple together 2 + v(r — 1) different
intensive variables (7, p, and the mole fractions for each phase).
Hence, the thermodynamic degrees of freedom (the number of
independent intensive thermodynamic variables) is

f=2+v(r—-1)—-r(v—-1)
=2+r—-w

This formula is the Gibbs phase rule.

As an illustration, consider a one-component system. Without
coexisting phases, there are two degrees of freedom; p and T are a
convenient set. The system can exist anywhere in the p-T plane.
Three phases coexist at a point, and it is impossible for more than
three phases to coexist in a one-component system. Thus, a possible
phase diagram is illustrated in Fig. 2.4.

The equations that determine the lines on this picture are

wp, TY=pnP(p, T),
wAp, T)=u(p, T),

wP®p, T)=pu"(p, T).

For example, the content of the first of these equations is illustrated
in Fig. 2.5.

The second law says that at constant 7, p, and n, the stable
equilibrium state is the one with the lowest Gibbs free energy (which
is nu for a one-component system). This condition determines which
of the two surfaces corresponds to the stable phase on a particular

side of the a-f coexistence line.
According to this picture, a phase transition is associated with the

intersection of Gibbs surfaces. The change in volume in moving from

and
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Fig. 2.5. Chemical potential surfaces for two phases.

one surface to the other isothermally is given by the change in
(Ouldp)r =v.

The change in entropy associated with the phase transition is given by
the change in

(ou/3aT), = —s.

If the two surfaces happen to join smoothly to one another, then v
and s are continuous during the phase change. When that happens,
the transition is called second order or higher order. A first-order
transition is one in which, for example, v(7, p) is discontinuous. For
a one-component system, a second-order transition can occur at only
one point—a critical point. In a two-component system, one can find
lines of second-order phase transitions, which are called critical lines.

The p-T coexistence line satisfies a differential equation that is
easily derived from the equilibrium condition

uXT, p) = (T, p).
Since du = —sdT +vdp,
—s@ 4T +v@ dp = —sP dT +vP dp,
or
dp _ As(T)
aT " Au(T)’
where As(T)=s"T, p)—s®(T,p) and Av(T)=v"YT,p)-

v®(T, p), at a value of T and p for which phases & and B are at
equilibrium. This equation is known as the Clausius—Clapeyron
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Solution of Clausius-Clapeyron equation

Fig. 2.6. An isotherm in the p-v plane.

equation. Notice that the right-hand side is ill-defined at a second-
order phase transition.

Exercise 2.10 Derive the analogous differential equation
that describes the a-f coexistence line in the u-T plane.

Exercise 2.11 Use the Clausius—Clapeyron equation to
determine the slope of dp/dT for water-ice I equilibrium
and explain why you can skate on ice but not on solid
argon.

Another way to view phase equilibria is to look at a thermo-
dynamic plane in which one axis is an intensive field and the other
axis is the conjugate variable to this field. For example, consider the
p-v plane for a one-component system. In Fig. 2.6, the quantity
v¥ is the volume per mole of pure phase a when it is in equilibrium
with phase B at a temperature 7. v has a similar definition. Notice
how v(T, p) is discontinuous (i.e., the system suffers a first-order
phase transition) as we pass isothermally from a pressure just below
p(T) to one just above p(T). The equations that determine v‘®(T)
and v®(T) are

p(T) =p“XT, v =p®(T, v®)
and
,u(T) — ,u(“}(T, v("}) — ,u(ﬁ)(T, v(‘”),

where p'®(T, v) and p‘®)(T,v) are the chemical potential and
pressure, respectively, as a function of T and V for phase a.

Here is a puzzle to think about: For water near 1 atm pressure and
0°C temperature, the solid phase, ice I, has a larger volume per mole
than the liquid. Does this mean that the 0°C isotherm appears as
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Fig. 2.7a and b. Which one might be an isotherm for water?

pictured in Fig. 2.7a? Wouldn’t this behavior violate stability?
Perhaps Fig. 2.7b is correct.

Exercise 2.12 What is the correct answer to this puzzle?

__K__
Av(p)

(B) [ =

|
|

T(m

Solution to Clausius~
Clapeyron equation

Fig. 2.8. Isobar in the v-T plane.
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We can also look at the v-T plane. For many systems, the
picture looks like that shown in Fig. 2.8. At times this representation
is very informative. But sometimes it becomes difficult to use because
v and T are not conjugate, and as a result, v(7, p) is not necessarily
a monotonic function of 7.

Exercise 2.13* Draw a family of curves like that shown in
Fig. 2.8 for the v-T plane for water and ice I near 1°C and
1 atm.

The solution of the two coupled equations given above for v‘*(T)
and v®)(T) can be given a geometric interpretation, which is called a
Maxwell construction. Let a = A/n, and consider a graph of a vs. v at
constant 7. If a phase transition occurs, there will be a region
corresponding to pure phase o with a =a‘®, a region corresponding
to pure phase B with a =a‘®, and something in between. The a vs. v
isotherm appears as shown in Fig. 2.9. To prove that a double
tangent line connects a® to a® at the volumes v and v®,
respectively, note that (8 a

Hence, the equilibrium condition
p(T) = p(T, v(@) =pB(T, v

implies that the slope at v = v(* is the same as that at v =v®. The
common tangent construction then gives

a(T, v®) - a(T, v®) = —p(T)V'(T) - v*(T)]
or

(a+pv)@=(a+pv)?,

which is the equilibrium condition, ™ = u®,

a“*(T, v), tangent to straight line

! —p(T
aps—RLF) -T a® (T, 1. tangent to

straight line

|
| ,.
(a) e

_— — =

v

Fig. 2.9. The Helmholtz free energy per mole on an isotherm,
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(8
Fig. 2.10. A questionable Helmholz free energy per mole on an isotherm.
Finally, since p is fixed by T when two phases are in equilibrium,

the double tangent line drawn between v(® and v® is the free
energy per mole in the two-phase region (v(® <v <v®). Hence

é =ql® 4
n twv?-phasg U(B) U(
region (ﬁ) (a)
= ,,m(u_) + a(ﬁ)(l)
v ® _ @ VB — @)
where
he a® = a(T, v(T))
and
a® = a(T, v'®(T))

are the free energies per mole of the two pure phases when they are

in equilibrium with each other.

Exercise 2.14 Draw the analogous graph for (A4/V) vs.
v~! for an isotherm on which a phase transition occurs.

T Critical
point E
Gas e
=)
=
=
Liquid g
=
Liquid-gas %
equilibrium

2| sotd

[y
Dilute gas-solid equilibrium - Triple point
(1/v)

Fig. 2.11. Phase diagram for a simple material.
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Some approximate thermodynamic theories have free energies
that look like the one pictured here in Fig. 2.10, which cannot be
right because in the region v, <v <w, stability is violated—that is,

2
(5, (3),<o
81!2 T av T
for v between v, and v,. One assumes for these theories that the

instability is bridged by a phase transition located by a Maxwell
construction (the dashed line).

Exercise 2.15 The van der Waals equation of state is
p/RT =p/(1 - bp) —ap*/RT,

where R, b, and a are positive constants and p=n/V.
Show that below a certain temperature the van der Waals
equation of state implies a free energy that is unstable for
some densities. (Restrict analysis to p <b~1.)

The locus of points formed from v and v*® at different
temperatures gives a coexistence curve. For example, in a one-
component simple fluid like argon the phase diagram looks like the
diagram pictured in Fig. 2.11.

Exercise 2.16* Draw the analogous curves for water.

If an approximate theory is used in which an instability is
associated with a phase transition, the locus of points surrounding the
unstable region is called the spinodal. The spinodal must be
enveloped by the coexistence curve. For example, the van der Waals
equation yields a diagram like the one pictured in Fig. 2.12.

2.4 Plane Interfaces

If two phases are in equilibrium, there is a surface or interface of
material between them. Let us now focus attention on this interface.
(See Fig. 2.13.)

The density profile near the interface is sketched in Fig. 2.14. In
this figure, p(z) is the number of moles (or molecules) per unit
volume of a particular species, z, is the (arbitrary) location of the
dividing surface, and w is the width of the interface (typically a few
molecular diameters).
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p Liquid-gas
critical point

T<T,

Coexistence curve

Metastable

| Maxwell |
! Construction |

(335)]— i [v(l'l‘lil'ld)]— 1

fv

Fig. 2.12. Coexistence curves and spinodals.

Since E is extensive,
E=E@® L g6 4 E(’),

where E®) is the energy of the interface. This surface energy should
depend upon the surface area, o. Let

r= (GElaa)s,y,,,EO.
Then
dE=TdS—pdV +udn+ ydo.

The property v is called the surface tension. It is intensive by virtue of
its definition. It also should be positive. If not, lower energy states
would be obtained by making the phase boundary more irregular
since the irregularity will increase the surface area. Therefore, a
negative surface tension would drive the system to a terminal state in
which the surface was spread over the whole system. The boundary
between two phases would then cease to exist, and there would be no
“surface.”

Since the interface exists when there is two-phase equilibria, the
Gibbs phase rule tells us that y is determined by r intensive variables
where r is the number of components. For one component, T
suffices. Clearly, E is first order homogeneous in S, V, n, and o.

z

v o
Dividing Surface, —smlt/ /4414111414 /1= Intertace T
8

area ¢

Fig. 2.13. Hypothetical interface between two phases a and g.
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1<_._—L__Hypothet1ca] discontinuous

profile, py(2)

p(a) ________ L.

L z

Fig. 2.14. Density profile.

Thus,
E=TS—pV +un+yo.

Note that while E is of the order of N = total number of molecules,
yo is of the order of N*?, Thus, under normal circumstances, the
surface energy has a negligible effect upon bulk properties.

Exercise 2.17* You might be concerned that if we double
o while doubling S, V, and n, we must keep the geometry
of the system as a ‘“‘slab” of fixed thickness. This means
that there will be surface interaction energies with the
walls that are also proportional to 0. How do we separate
these energies from yo? Can you think of procedures to
do this? Consider two sorts: (i) Make measurements of
containers filled with pure vapor, pure liquid, and a
mixture of the two. (ii) Employ a container with periodic
boundary conditions. The latter might be difficult in
practice, but could be feasible in the world one can
simulate with computers (see Chapter 6).

Imagine a hypothetical phase that would result if phase «
maintained its bulk properties right up to the mathematical dividing
surface. For such a phase

dE® =TdS™ —pdV® + pdn'®,
E® = 185 _pv(a) + _u,n(").

Similarly,
dEP =Tds® —p dav® +u dn®,

E® = TS® — py® 4 un®.

Of course, V(® + V® =V, the total volume of the system. For any
extensive property, X, we can define surface excess extensive
property, X, by

X=X - X — X(ﬂ),
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since X is well defined, and X and X® are defined in terms of
bulk properties once the location of the dividing surface is specified.
Obviously, V© =0. What about n®*? Clearly,

=" dzpe)  n=[ dzpe),

where p,(z) is the hypothetical discontinuous density profile pictured
in Fig. 2.14. Thus,

w0 [ aslote) - putol

By viewing the figure showing p(z) and p,(z), it is seen that there
exists a choice of z, for which n> = 0. That particular choice is called
the Gibbs dividing surface. That is, the z, that solves

n(zz) =0

is the location of the Gibbs surface.
The energy differential for E® is

dE® = dE — dE® — dE®)
=T7dS® +ydo + pdn®,

where we have noted that dV = dV® + dV®, If the Gibbs surface is
chosen as the location of z,,

dE®) =T dS" + ydo.

With this choice,
E®) =TS8 + yg,

so that
y=(E® - TS§®)/o.

In other words, the surface tension is the surface Helmholtz free
energy per unit area. By virtue of its definition, y also plays the role
of the force constant in the restoring force that inhibits the growth of
surface area [i.e., recall (W )sutace = ¥ d0].

In the choice of Gibbs surface previously discussed, we removed
the term in E*? that depends upon mole number. The energetics of
the surface is a result of the repartitioning of the bulk phases that
occurs if the surface is altered. The absence of any dependence on
mole number, however, can only be accomplished for one species.
To develop the surface energy expressions for a mixture, we begin
with our expression for dE®) before the Gibbs surface is employed.
That is,

dE® =TdS® +ydo + Y, p, dn.

i=1
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Let component 1 be the solvent and the rest the solutes, and let us
choose z, to make n{” = 0. Then with this choice of Gibbs surface

dE®=TdS®) + ydo + 2, u; dn®.
=2

Forr=2,
dE® = TdS®) + ydo + u, dnf®,
which implies
E®)' =TS + yo + u,n$.

Hence, we have a Gibbs—Duhem-like equation

ody=—89dT —n§ du,.
At constant T this yields

ody=—n§du,.

The solution to this equation is called the Gibbs adsorption isotherm.
Rearranging the equation, we get

(n§/0) = —(3y/3u2)r
= —(8y/3p2)r(3p2/ 3p2)r-

Since (3u./3p,)r >0 by stability, this equation says that surface
tension decreases when a solute accumulates on a surface.

Exercise 2.18 Put some water in a bowl. Sprinkle pepper
on its surface. Touch a bar of soap to the surface in the
middle of the bowl. What happened? Touch the surface
with the soap again, and again. What happened and why?
[Hint: Consider the formula for the Gibbs adsorption
isotherm.]

Before ending this section on interfaces and surface tension, a few
qualitative remarks are in order. First, let us consider two immiscible
liquids, perhaps an oil and water equilibrium. In a gravitational field,
the heavier phase will fall to the bottom of the container, and a
planar interface will form between the two liquids. In the absence of
gravity, we can imagine that one of the fluids forms a spherical drop
of liquid surrounded by the other species of fluid. We suspect that the
drop would be spherical since this shape will minimize the surface
area of the interface and thereby minimize the contribution to the
free energy from the surface tension. Deformation of the surface will
lead to higher curvature, larger surface area, and, therefore, higher
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surface free energy. The restoring force that opposes this deforma-
tion is proportional to the surface tension. When this tension
vanishes, the deformations are not hindered; the interface will then
fluctuate wildly, the drop will become amoeboid and eventually
disintegrate. In other words, the two fluids will mix. This type of
behavior can be observed by adding a third component to an
oil-water mixture (perhaps a surfactant*) that would lower the
surface tension between the oil and water phases.

In some cases, the mixing of the phases is associated with the
formation of small assemblies such as micelles. A typical micelle is an
aggregate involving roughly 100 surfactant molecules. Here, one
imagines that the charged or polar head groups lie on a surface
surrounding the hydrophobic tails and oil thus inhibiting contact
between the water and oil. The surface tension, however, is relatively
low so that the shapes of these assemblies undoubtedly fluctuate
appreciably. Further, if one considers small enough systems at a truly
molecular level, fluctuations are almost always significant. Statistical
mechanics is the subject that describes the nature of these fluctua-
tions, our next topic in this book.

In Chapter 6 we study the phase equilibrium of a small system by a
numerical Monte Carlo simulation. A glance at the results of those
simulations provides ample evidence of the importance of fluctua-
tions at interfaces. Their importance must be considered carefully in
any microscopic formulation of interfacial phenomena. Indeed, the
reader may now wonder whether an interface with an intrinsic width
as pictured at the beginning of this section is actually well defined at a
microscopic level. It’s an important and puzzling issue worth thinking
about.

Additional Exercises
2.19. Show that
(K/Kr)=C,/C,,

where K, and K; are the adiabatic and isothermal compres-
sibilities, respectively, and C, and C, are the constant volume
and constant pressure heat capacities, respectively. Prove that
for any stable system

K, <Kr.

* Surfactant molecules are amphiphiles. That is, they possess a hydrophilic (charged or polar) head
N Y
group, and a hydrophobic (oil-like) tail.
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2.20. (a) It is easily verified that a rubber band heats up when it is
stretched adiabatically. Given this fact, determine whether
a rubber band will contract or expand when it is cooled at
constant tension.

(b) The same amount of heat flows into two identical rubber
bands, but one is held at constant tension and the other at
constant length. Which has the largest increase in
temperature?

2.21. (a) For many systems, the work differential associated with a
magnetic field of strength, H, is either

MdH or HdM,

where M is the net magnetization in the direction of the
magnetic field. Which of these is correct? For a stable
system, determine the signs of the isothermal and adiabatic
susceptibilities

xr = (M /3H) 1, v,
Xs=(0M/0H)s,,.v-

Determine the sign of y; — xs.

(b) For most paramagnetic substances, the magnetization at
constant H is a decreasing function of 7. Given this fact,
determine what happens to the temperature of a paramag-
netic material when it is adiabatically demagnetized. That
is, determine the sign of (87/3H);s,v, .-

2.22. Consider a one-component system when two phases, a and 8,
are in equilibrium. Show that the locus of points at which this
equilibrium occurs in the u-T plane is given by the solution to
the differential equation

du _sP® — 5@y ®
a7~ vB gyl

where s® and v® are the entropy and volume, respectively,
per mole of phase a when it is in equilibrium with phase B.
Why is du/dT a total derivative and not a partial? Suppose the
system contains two species. Derive the appropriate generali-
zation of the equation above. That is, determine (3u,/3T),, at
two-phase equilibrium, where x, is the mole fraction of
component 1.

It is found that when stretched to a certain length, a particular
spring breaks. Before the spring breaks (i.e., at small lengths),

2.23
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2.24.

the free energy of the spring is given by

A

kg § 20

M 2 )
where A=E — TS, M is the mass of the spring, and x is its
length per unit mass. After breaking (i.e., at larger lengths)

A

e th(x —xo)*+c.
In these equations, k, A, x,, and c are all independent of x, but
do depend on T. Furthermore, k > h, ¢ >0, and x,> 0 for all
1

(a) Determine the equations of state
f =tension =f(T, x),

for the spring at small and long lengths.
(b) Similarly, determine the chemical potentials

u=(8A/8M);,

where L is the total length of the spring.
(c) Show that

A
p=g

(d) Find the force that at given temperature will break the
spring.

(e) Determine the discontinuous change in x when the spring
breaks.

A hypothetical experimentalist measures the hypothetical
equation of state for a substance near the liquid-solid phase
transition. He finds that over a limited range of temperatures
and densities, the liquid phase can be characterized by the
following formula for the Helmholtz free energy per unit
volume:

AVIV =3a(T)p?,

where the superscript “/” denotes “liquid,” p=n/V is the
molar density, and a(T) is a function of the temperature,

a(T)=alT, @ = constant.
Similarly, in the solid phase he finds
AWV =1b(T)p?,
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with
b(T)=p/T, B = constant.

At a given temperature, the pressure of the liquid can be
adjusted to a particular pressure, p,, at which point the liquid
freezes. Just before solidification, the density is p?, while just
after it is p'.

(a) Determine p® and p as functions of the temperature.

(b) Determine p; as function of temperature.

(c) Determine the change in entropy per mole during
solidification.

(d) By using the Clausius—Clapeyron equation and the results
of parts (a) and (c), determine the slope of (dp/dT) at
solidification. Does your result agree with what you would
predict from the solution to part (b)?

The van der Waals equation is
p/RT =p/(1 - bp) —ap*/RT,

where p =n/V and a and b are constants. Show that there is a
region in the T-p plane in which this equation violates
stability. Determine the boundary of this region; that is, find
the spinodal. Prove that a Maxwell construction will yield a
liquid-gas coexistence curve which will envelop the region of
instability.

When a particular one-component material is in phase «, it
obeys equation of state
Bp =a+bpyu,
where f=1/T, and a and b are positive functions of 8. When
it is in phase ¥,
Bp =c +d(Bu)’,

where ¢ and d are positive functions of 8, d >b, and c<a.
Determine the density change that occurs when the material
suffers a phase transformation from phase « to phase y. What
is the pressure at which the transition occurs?
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CHAPTER 3
Statistical Mechanics

We now turn our attention to the molecular foundation of thermo-
dynamics, or more generally, the answer to the following question: If
particles (atoms, molecules, or electrons and nuclei,...) obey
certain microscopic laws with specified interparticle interactions,
what are the observable properties of a system containing a very
large number of such particles? That is, we want to discuss the
relationship between the microscopic dynamics or fluctuations (as
governed by Schrédinger’s equation or Newton’s laws of motion) and
the observed properties of a large system (such as the heat capacity
or equation of state).

The task of solving the equations of motion for a many-body
system (say N =number of particles ~10%) is so complicated that
even modern day computers find the problem intractable. (Though
scientists do use computers to follow the motion of thousands of
particles for times often long enough to simulate condensed phases
for times of the order of 107" or 107°sec.) At first you might think
that as the number of particles increases, the complexity and
obscurity of the properties of a mechanical system should increase
tremendously, and that you would be unable to find any regularity in
the behavior of a macroscopic body. But as you know from
thermodynamics, large systems are, in a sense, quite orderly. An
example is the fact that at thermodynamic equilibrium one can
characterize observations of a macroscopic system with only a
handful of variables. The attitude we shall take is that these
distinctive regularities are consequences of statistical laws governing
the behavior of systems composed of very many particles. We will
thereby avoid the need to directly evaluate the precise N-particle

54
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dynamics, and assume that probability statistics provides the correct
description of what we see during a macroscopic measurement.

The word ‘“‘measurement’ is important in these remarks. If we
imagined, for example, observing the time evolution of one particular
particle in a many-body system, its energy, its momentum, and its
position would all fluctuate widely, and the precise behavior of any of
these properties would change drastically with the application of the
slightest perturbation. One cannot imagine a reproducible measure-
ment of such chaotic properties since even the act of observation
involves a perturbation. Further, to reproduce the precise time
evolution of a many-body system, one must specify at some initial
time a macroscopic number (~10%) of variables. These variables are
initial coordinates and momenta of all the particles if they are
classical, or an equally cumbersome list of numbers if they are
quantal. If we would fail to list just one of these 10* variables, the
time evolution of the system would no longer be deterministic, and
an observation that depended upon the precise time evolution would
no longer be reproducible. It is beyond our capacity to control 10%
variables. As a result, we confine our attention to simpler properties,
those controlled by only a few variables. In some areas of physical
and biological science, it might not be easy to identify those
variables. But as a philosophical point, scientists approach most
observations with an eye to discovering which small number of
variables guarantees the reproducibility of phenomena.

The use of statistics for reproducible phenomena does not imply
that our description will be entirely undeterministic or vague. To the
contrary, we will be able to predict that the observed values of many
physical quantities remain practically constant and equal to their
average values, and only very rarely show any detectable deviations.
(For example, if one isolates a small volume of gas containing, say,
only 0.01 moles of gas, then the average relative deviation of the
energy of this quantity from its mean value is ~107''. The probability
of finding in a single measurement a relative deviation of 107° is
~1073*19" ) As a rough rule of thumb: If an observable of a many
particle system can be specified by a small number of other
macroscopic properties, we assume that the observable can be
described with statistical mechanics. For this reason, statistical
mechanics is often illustrated by applying it to equilibrium thermo-
dynamic quantities.

3.1 The Statistical Method and Ensembles

While it is not possible in practice, let us imagine that we could
observe a many-body system in a particular microscopic state. Its
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characterization would require an enormous number of variables. For
example, suppose the system was quantal obeying Schrédinger’s
equation

3
i 1Y) =H|y).

Here, as always, 2zh is Planck’s constant, # is the Hamiltonian
operating on the state vector |y ), and ¢ is the time. To specify the
state |y ) at a particular time, we need a number of variables of the
order of N, the number of particles in the system.

Consider, for example, stationary solutions

%lwv) =E‘V va))

and some simple and familiar quantum mechanical systems such as
the hydrogen atom, or non-interacting particles in a box. The index v
is then the collection of D - N quantum numbers, where D is the
dimensionality.

Once the initial state is specified, if it could be, the state at all
future times is determined by the time integration of Schrodinger’s
equation. The analogous statement for classical systems considers
points in phase space

(rN! pN)E(rla rZ’ (L arN; pl., v :PN),

where r; and p; are the coordinates and conjugate momenta,
respectively, for particle i. Points in phase space characterize
completely the mechanical (i.e., microscopic) state of a classical
system, and flow in this space is determined by the time integration
of Newton’s equation of motion, F = ma, with the initial phase space
point providing the initial conditions.

Exercise 3.1 Write down the differential equations cor-
responding to Newton’s laws when the total potential
energy is the function U(r;, ra, . . ., Ey).

Now try to think about this time evolution—the trajectory—of a
many-body system. As illustrated in Fig. 3.1, we might picture the
evolution as a line in “state space” (phase space in the classical case,
or Hilbert space spanned by all the state vectors |y) in the quantal
case). In preparing the system for this trajectory a certain small
number of variables is controlled. For example, we might fix the
total energy, E, the total number of particles, N, and the volume, V.
These constraints cause the trajectory to move on a “surface” of state
space—though the dimensionality of the surface is still enormously
high.
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Fig. 3.1. Trajectory in state space with each box representing a different state.

A basic concept in statistical mechanics is that if we wait long
enough, the system will eventually flow through (or arbitrarily close
to) all the microscopic states consistent with the constraints we have
imposed to control the system. Suppose this is the case, and imagine
that the system is constantly flowing through the state space as we
perform a multitude & of independent measurements on the system.
The observed value ascertained from these measurements for some
property G is

1 N
Gops=—. 2, Ga,
obs -N‘g§=:] a
where G, is the value during the ath measurement whose time
duration is very short—so short, in fact, that during the ath
measurement the system can be considered to be in only one
microscopic state. Then we can partition the sum as

G = 2 [l (number of times state v is )] G
obs ™ < | N \observed in the & observations/.! *’

where G, = (v| G |v) is the expectation value for G when the system
is in state v. The term in square brackets is the probability or weight
for finding the system during the course of the measurements in state
v. Remember, we believe that after a long enough time, all states are
visited. We give the probability or fraction of time spent in state v
the symbol P, and write

Gos =2, P,G,=(G).

The averaging operation (i.e., the weighted summation over G,)
indicated by the pointed brackets, (G), is called an ensemble
average. An “ensemble” is the assembly of all possible microstates—
all states consistent with the constraints with which we characterize
the system macroscopically. For example, the microcanonical en-
semble is the assembly of all states with fixed total energy E, and
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fixed size (usually specified by number of molecules, N, and volume,
V). The canonical ensemble, another example, considers all states
with fixed size, but the energy can fluctuate. The former is appropri-
ate to a closed isolated system; the latter is appropriate for a closed
system in contact with a heat bath. There will be much more said
about these ensembles later.

The idea that we observe the ensemble average, (G), arises from
the view in which measurements are performed over a long time, and
that due to the flow of the system through state space, the time
average is the same as the ensemble average. The equivalence of a
time average and an ensemble average, while sounding reasonable, is
not at all trivial. Dynamical systems that obey this equivalence are
said to be ergodic. 1t is difficult, in general, to establish the principle
of ergodicity, though we believe it holds for all many-body systems
encountered in nature. (It is often true for very small systems too,
such as polyatomic molecules. Indeed, the basis of the standard
theories of unimolecular kinetics rests on the assumed ergodic nature
of intramolecular dynamics.)

Exercise 3.2 Give some examples of non-ergodic systems.
That is, describe systems that do not sample all possible
states even after a very long time.

Incidentally, suppose you thought of employing stationary solu-
tions of Schrodinger’s equation to specify microscopic states. If truly
in a stationary state at some point in time, the system will remain
there for all time, and the behavior cannot be ergodic. But in a
many-body system, where the spacing between energy levels is so
small as to form a continuum, there are always sources of perturba-
tion or randomness (the walls of the container, for example) that
make moot the chance of the system ever settling into a stationary
state.

The primary assumption of statistical mechanics—that the ob-
served value of a property corresponds to the ensemble average of
that property—seems reasonable, therefore, if the observation is
carried out over a very long time or if the observation is actually the
average over very many independent observations. The two situa-
tions are actually the same if “long time” refers to a duration much
longer than any relaxation time for the system. The idea that the
system is chaotic at a molecular level leads to the concept that after
some period of time—a relaxation time, T ..«—the system will lose
all memory of (i.e., correlation with) its initial conditions. Therefore,
if a measurement is performed over a period Tmeasyre that is N7 ey,
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the measurement actually corresponds to & independent obser-
vations.

In practice, we often consider measurements on macroscopic
systems that are performed for rather short periods of time, and the
concept of ensemble averages is applicable for these situations, too.
This can be understood by imagining a division of the observed
macroscopic system into an assembly of many macroscopic sub-
systems. If the subsystems are large enough, we expect that the
precise molecular behavior in one subsystem is uncorrelated with that
in any of the neighboring subsystems. The distance across one of
these subsystems is then said to be much larger than the correlation
length or range of correlations. When subsystems are this large
they behave as if they are macroscopic. Under these conditions, one
instantaneous measurement of the total macroscopic system is
equivalent to many independent measurements of the macroscopic
subsystems. The many independent measurements should correspond
to an ensemble average.

3.2 Microcanonical Ensemble and the Rational Foundation of
Thermodynamics

The basic idea of statistical mechanics is, therefore, that during a
measurement, every microscopic state or fluctuation that is possible
does in fact occur, and observed properties are actually the averages
from all the microscopic states. To quantify this idea, we need to
know something about the probability or distribution of the various
microscopic states. This information is obtained from an assumption
about the behavior of many-body systems:

For an isolated system with fixed total energy E, and fixed
size (perhaps specified by the volume V and numbers of
particles N;, N,, ... ) all microscopic states are equally
likely at thermodynamic equilibrium.

In other words, the macroscopic equilibrium state corresponds to the
most random situation—the distribution of microscopic states with
the same energy and system size is entirely uniform.

Exercise 3.3 List several everyday examples supporting
this statistical characterization of the terminal state of a
macroscopic system (e.g., the behavior of a drop of ink in
a glass of water).
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To examine the implications of this reasonable assumption, let us
define

Q(N, V, E) = number of microscopic states with N and V,
and energy between E and E — 6E.

For notational and perhaps conceptual simplicity, we often omit
subscripts and simply write N to refer to the number of particles, and
we use the volume V to specify the spatial extent of the system. Our
remarks, however, are not confined to one-component three-
dimensional systems. The width 8E is some energy interval charac-
teristic of the limitation in our ability to specify absolutely precisely
the energy of a macroscopic system. If 8E was zero, the quantity
Q(N, V, E) would be a wildly varying discontinuous function, and
when it was non-zero, its value would be the degeneracy of the
energy level E. With a finite 8E, Q(N,V, E) is a relatively
continuous function for which standard mathematical analysis is
permissible. It will turn out that the thermodynamic consequences
are extraordinarily insensitive to the size of 8E. The reason for the
insensitivity, we will see, is that Q(N, V, E) is typically such a rapidly
increasing function of E, that any choice of 8E < E will usually give
the same answer for the thermodynamic consequences examined
below. Due to this insensitivity, we adopt the shorthand where the
symbol SE is not included in our formulas.

For macroscopic systems, energy levels will often be spaced so
closely as to approach a continuum. In the continuum limit it can be
convenient to adopt the notation

Q(N, V, E) dE = number of states with energy
between E and E + dE,

where Q(N, V, E), defined by this equation, is called the density of
states. In the applications we pursue, however, we will have little
need to employ this notation.

Exercise 3.4 For a system with discrete energy levels, give
a formula for the density of states, Q(N, V, E).
[Hint: You will need to use the Dirac delta function.]

According to the statistical assumption, the probability of a
macroscopic state v for an equilibrium system is

P,=1/Q(N, V, E)

for all states in the ensemble. For states outside the ensemble, for
example those for which E, #E, P, is zero. This ensemble, which is



STATISTICAL MECHANICS 61

appropriate to a system with fixed energy, volume, and particle
number—the assembly of all microstates with these constraints—is
called a microcanonical ensemble.

We can also consider as a definition of entropy the quantity

S=kzInQ(N, V, E),

where kjp is an arbitrary constant. (It’s called Boltzmann’s constant
and we shall find that from comparison with experiment that it has
the value

kp=1.380 % 10" "% erg/deg.)

Notice that S defined in this way is extensive since if the total system
were composed of two independent subsystems, A and B, with
number of states £, and Qj separately, then the total number would
be QAQB' That iS, SA+B = kB In (QAQB) = SA + SB.

The definition is also consistent with the variational statements of
the second law of thermodynamics. To see why, imagine dividing the
system with fixed total N, V, and E into two subsystems and
constraining the partitioning of N, V, and E to be N¥, N@; y@,
V®; and E®, E@, respectively. Any specific partitioning is a subset
of all the allowed states, and therefore the number of states with this
partitioning, Q(N, V, E; internal constraint) is less than the total
number Q(N, V, E). As a result,

S(N, V, E)>S(N, V, E; internal constraint).

This inequality is the second law, and we now see its statistical
meaning: the maximization of entropy coinciding with the attainment
of equilibrium corresponds to the maximization of disorder or
molecular randomness. The greater the microscopic disorder, the
larger the entropy.

The temperature T is determined from the derivative (35/3E)y. =
1/T. Therefore,

B=(kgT) ' =(8In Q/3E)n .

The thermodynamic condition that temperature is positive requires
that Q(N, V, E) be a monotonic increasing function of E. For
macroscopic systems encountered in nature, this will always be the
case.

Before accepting this fact as an obvious one, however, consider
the following puzzle: Suppose a system of N non-interacting spins in
a magnetic field H has the energy

N
-2 wH,  p=zxp

j=1
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In the ground state, all the spins are lined up with the field, and
Q =1. In a first excited state, one spin is flipped and & = N. The next
excitation has two spins flipped and Q= N(N —1)/2. Everything
looks fine until we realize that the degeneracy of the most excited
state is 1. Thus, at some point, Q(E, N, V) becomes a decreasing
function of E, which implies a negative temperature. How could this
be?

Exercise 3.5* Answer this question.

Assuming (3Q/3E)y,y is positive, the statistical postulate that at
fixed N, V, and E all microstates are equally likely provides a
molecular foundation for the theory of thermodynamics. The many
results derived during our discussion of that topic (concerning
stability, phase equilibria, Maxwell relations, etc.) are all conse-
quences of this single fundamental law of nature.

3.3 Canonical Ensemble

When applying the microcanonical ensemble, the natural variables
characterizing the macroscopic state of the system are E, V, and N.
As we have seen in the context of thermodynamics, it is often
convenient to employ other variables, and various representations of
thermodynamics are found by applying Legendre transforms. In
statistical mechanics, these manipulations are related to changes in
ensembles. As an important example, we consider now the canonical
ensemble—the assembly of all microstates with fixed N and V. The
energy can fluctuate, however, and the system is kept at equilibrium
by being in contact with a heat bath at temperature T (or inverse
temperature ).

Schematically, we might picture the ensemble as in Fig. 3.2. The
states we refer to here with the label v are states of definite
energy—eigenfunctions of Schrédinger’s equation, #vy, = E,v,.

A system for which the canonical ensemble is appropriate can be
viewed as a subsystem of one for which the microcanonical is
applicable. See Fig. 3.3. This observation allows us to derive the
distribution law for states in the canonical ensemble.

To begin, consider the case where the bath is so large that the
energy of the bath, Eg, is overwhelmingly larger than the energy of
the system, E,. Further, the bath is so large that the energy levels of
the bath are a continuum and dQ2/dE is well defined. The energy in the
system fluctuates because the system is in contact with the bath, but
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Fig. 3.2. Assembly of states for a closed system in a heat bath.

the sum E = Ez + E, is a constant. If the system is in one definite
state v, the number of states accessible to the system plus bath is
Q(Ep)=Q(E - E,). Therefore, according to the statistical
postulate—the principle of equal weights—the equilibrium probabil-
ity for observing the system in state v obeys

P,xQ(E-E,)=exp[lnQ(E—-E,)]
Since E, << E, we can expand In Q(E — E,) in the Taylor series
InQE-E,)=InQE)—-E(dInQ/dE)+---.

We choose to expand In Q(E) rather than Q(E) itself because the
latter is a much more rapidly varying function of E than the former.
We believe this because the formula § = kp In Q suggests that In Q is

relatively well behaved.

By retaining only those terms exhibited explicitly in the expansion
(which is valid because the bath is considered to be an infinite
thermal reservoir), and noting (3 In Q/8E)y, = B, we obtain

PV &= exp(_ﬁEv))

which is the canonical (or Boltzmann) distribution law. The constant
of proportionality is independent of the specific state of the system
and is determined by the normalization requirement

> P =1.

Bath Ep
Total is
isolated
System with fixed
E, N,V,and E

Fig. 3.3. A canonical ensemble system as a subsystem to microcanonical
subsystem.
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Hence,
P,=Q "exp (—-BE,),
where

Q(B, N, V)=2 e 5,

The function Q(B, N, V) is called the canonical partition function. It
depends upon N and V through the dependence of the E,’s on these

variables.
As an instructive example of its use, consider the calculation of

the internal energy E(B, N, V), which is (E) in the canonical
distribution:

(E)=(E,)= 5:' B.E,

= Z E e PEr / z e~ BEv
v v’

=—(2Q/3B)nvIQ
=—(3In Q/3B)w,v»

which suggests that In Q is a familiar thermodynamic function. In
fact, we will soon show that —~'In Q is the Helmholtz free energy.
For the next few pages, however, let us take this fact as simply given.

Exercise 3.6 Show that (36A/3f)yv=E, where A=E —
TS is the Helmholtz free energy.

The energies E, refer to the eigenvalues of Schrodinger’s equation
for the system of interest. In general, these energies are difficult, if
not impossible, to obtain. It is significant, therefore, that a canonical
ensemble calculation can be carried out independent of the exact
solutions to Schrédinger’s equation. This fact is understood as
follows:

Q=2 e PE=23 (ve P |v)
=Tre A%

where “Tr” denotes the trace of a matrix (in this case, the trace of
the Boltzmann operator matrix). It is a remarkable property of traces
that they are independent of the representation of a matrix. (Proof:
TrA=TrS§'A=TrS'AS.) Thus, once we know ¥ we can use
any complete set of wavefunctions to compute Q. In other words,
one may calculate Q =exp(—pA4) without actually solving
Schrédinger’s equation with the Hamiltonian .
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Exercise 3.7 Show that the internal energy, which is the
average of E,, can be expressed as Tr (e #%)/Tr(e~#¥).

When calculating properties like the internal energy from the
canonical ensemble, we expect that values so obtained should be the
same as those found from the microcanonical ensemble. Indeed, as
the derivation given above indicates, the two ensembles will be
equivalent when the system is large. This point can be illustrated in
'wo ways. First, imagine partitioning the sum over states in Q into
rroups of states with the same energy levels, that is

Q= > P&

v(states)

= 3 QE)e s,
I(levels)
where we have noted that the number of states, £(E,), is the
degeneracy of the /th energy level. For a very large system, the
spacing between levels is very small, and it seems most natural to
pass to the continuum limit

Q- Jm dEQ(E)e™PE,
0

where Q(E) is the density of states. In other words, for large
systems, the canonical partition function is the Laplace transform of
the microcanonical Q(E). An important theorem of mathematics is
that Laplace transforms are unique. Due to this uniqueness, the two
functions contain the identical information.

Nevertheless, energy fluctuates in the canonical ensemble while
energy is fixed in the microcanonical ensemble. This inherent
difference between the two does not contradict the equivalency of
ensembles, however, because the relative size of the fluctuations
becomes vanishingly small in the limit of large systems. To see why,
let us compute the averaged square fluctuation in the canonical
ensemble:

((OE)*) = ((E - (E))?)
=(E’) - (E)’
= E PVE\ZH_ (E Pva)2

=Q7(8°Q/3B%)nv— Q7 H3Q/3B)xv
=(8’In Q’aﬁz)N.V
= —(3(E)/3B)n.v-
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Noting the definition of heat capacity, C, = (3E/3T)y,y, We have
((6E)*) =ksT?C,,

which is a remarkable result in its own right since it relates the size of
spontaneous fluctuations, ((8E)*), to the rate at which energy will
change due to alterations in the temperature. (The result fore-
shadows the topics of linear response theory and the fluctuation-
dissipation theorem, which we will discuss in Chapter 8.) In the
present context, we use the fluctuation formula to estimate the
relative r.m.s. value of the fluctuations. Since the heat capacity is
extensive, it is of order N (where N is the number of particles in the
system). Furthermore (E) is also of order N. Hence the ratio of the
dispersion to the average value is of order N™*?; that is,

\/([E—-(E)lz)_\/kaTZC.,NO( 1 )
(Ey  (E) VN/

For a large system (N ~ 10%) this is a very small number and we may
thus regard the average value, (E), as a meaningful prediction of the
experimental internal energy. (For an ideal gas of structureless
particles, C,=3Nks, (E)=3NksT. Suppose N ~10%, then the
ratio above is numerically ~10~'!,) Furthermore, the microcanonical
E, when written as a function of f§, N, V by inverting
(@In Q/3E)y,v= B(E, N, V), will be indistinguishable from the can-
onical internal energy (E) provided the system is large.

Exercise 3.8 Note that the probability for observing a
closed thermally equilibrated system with a given energy
E is P(E)xQ(E)e P =exp[InQ(E)—BE]. Both
In Q(E) and —~BE are of the order of N, which suggests
that P(E) is a very narrow distribution centered on the
most probable value of E. Verify this suggestion by
performing a steepest descent calculation with P(E). That
is, expand InP(E) in powers of E=E—(E), and
truncate the expansion after the quadratic term. Use this
expansion to estimate for 0.001 moles of gas the probabil-
ity for observing a spontaneous fluctuation in E of the size
of 1075(E).

3.4 A Simple Example

To illustrate the theory we have been describing, consider a system of
N distinguishable independent particles each of which can exist in
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one of two states separated by an energy &. We can specify the state
of a system, v, by listing
v=(ny, N ..., Ry, BN), n;=0or1,

where n; gives the state of particle j. The energy of the system for a
given state is

N
Ev = Z nje,
j=1

where we have chosen the ground state as the zero of energy.

To calculate the thermodynamic properties of this model, we first
apply the microcanonical ensemble. The degeneracy of the mth
energy level is the number of ways one may choose m objects from a
total of N. That is,

Q(E, N)=N!/(N—m)!m!,

where
m=E/e.
The entropy and temperature are given by
S/ks=1nQ(E, N)

and

B=1/kgT =(8InQ/3E)N

=& (3 In Q/5m)y.

For the last equality to have meaning, N must be large enough that
Q(E, N) will depend upon m in a continuous way. The continuum
limit of factorials is Stirling’s approximation: nM!=MInM - M,
which becomes exact in the limit of large M. With that approximation

N! 2}
e In N=myml _En_:[(N“m) In(N—m)
—(N—-m)+mlnm—m]
=In (1\_.[_ 1).
m
Combining this result with the formula for 8 yields
N
Be=In (;n_ == 1)
or m_ 1
N 1+efe



68 INTRODUCTION TO MODERN STATISTICAL MECHANICS

As a result, the energy £ = me as a function of temperature is

E= N£1+ e’

which is 0 at 7 =0 (i.e., only the ground state is populated), and it is
Ne/2 as T = (i.e., all states are then equally likely).

Exercise 3.9 Use Stirling’s approximation together with
the formula for m/N to derive an expression for S(8, N).
Show that as f—» (i.e., T—0), S tends to zero. Find
S(E, N) and examine the behavior of 1/T as a function of
E/N. Show that for some values of E/N, 1/T can be
negative.

Of course, we could also study this model system with the
canonical ensemble. In that case, the link to thermodynamics is

~-BA=InQ=In 2 e FE,

Use of the formula for E, gives

0B.M= S exp[-p3em)

nyng, ... ny=0,1

since the exponential factors into an uncoupled product,

0B N =[] 3 e

j=1n;=0,1
=(1+e PV,
As a result
—BA=NIn(1+eF)

The internal energy is
3( ﬁA)) ge Pe
(E)= (6( B) N1+e““
= Ne(1 + P77,

in precise agreement with the result obtained with the microcanonical
ensemble.

Exercise 3.10 Determine the entropy using
—B(A—(E))=S/ks

and show the result is the same as that obtained for large
N from the microcanonical ensemble.
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Reservoir or bath

Np, Eg

N, E, System

Fig. 3.4. System immersed in a bath.

3.5 Generalized Ensembles and the Gibbs Entropy Formula

Let us consider now, in a rather general way, why changes in
ensembles correspond thermodynamically to performing Legendre
transforms of the entropy. To begin, consider a system with X
denoting the mechanical extensive variables. That is, §=
kg In Q(E, X), and

k3'dS = BdE + EdX.

For example, if X =N, then £=-pu. Or if X was the set of
variables V, N;, N,, ..., then & would correspond to the conjugate
set Bp, —Pu1, —Pua, - . ., respectively. The quantity —&/B therefore
corresponds to f of Chapters 1 and 2.

Imagine an equilibrated system in which E and X can fluctuate. It
can be viewed as a part of an isolated composite system in which the
other part is a huge reservoir for E and X. An example could be an
open system in contact with a bath with particles and energy flowing
between the two. This example is pictured in Fig. 3.4.

The probability for microstates in the system can be derived in the
same way we established the canonical distribution law. The result is

P, =exp(-BE, - §X,)/E,

E= ; exp(_ﬁEv - ng)

with

Exercise 3.11 Verify this result.

The thermodynamic E and X are given by the averages

(Ey=3 P.E.= [;‘“,;)]Ey
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and

0 =3rx=225]

where Y refers to all the extensive variables that are not fluctuating in
the system. In view of the derivative relationships,

dlnE=—(E)df—(X) d&.
Now consider the quantity
=—kz >, P,InP,.
We have
¥=—ks 2 P[~InE - BE, - £X,]
=kp{lnE+ B(E) + E(X)}.

Therefore, ¥/kp is the Legendre transform that converts InE to a
function of (E) and (X); that is,

d¥ = Bkpd(E) + Ekpd(X),

which implies the # is, in fact, the entropy S. Thus in general

L =—ks 2 P,In P,.j

This result for the entropy is a famous one. It is called the Gibbs
entropy formula.

Exercise 3.12 Verify that the microcanonical §=
ks In Q(N, V, E) is consistent with the Gibbs formula.

The most important example of these formulas is that of the grand
canonical ensemble. This ensemble is the assembly of all states
appropriate to an open system of volume V. Both energy and particle
number can fluctuate from state to state, and the conjugate fields that
control the size of these fluctuations are B and —fu, respectively.
Thus, letting v denote the state with N, particles and energy E,, we
have

P, =E 'exp (—BE, + BuN,),
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and the Gibbs entropy formula yields
S=—ks 2, P[-InE - BE, + BuN,]
= —kg[-InE - B(E) + Bu(N)],

or, on rearranging terms
InE=gpV,

where p is the thermodynamic pressure. Note that

E= 2 exp(—BE, + uN,)

is a function of B, Bu, and the volume. (It depends upon volume
because the energies E, depend upon the size of the system.) Hence,
the “free energy”’ for an open system, BpV, is a natural function of
B, Bu, and V.

Fluctuation formulas in the grand canonical ensemble are analyzed
in the same fashion as in the canonical ensemble. For example,

((8NY*) = (N = (N)Y*) = (N*) = (N)*
=2 N%Pv— Z ZNVNV'PVPV’

=[8*InE/3(Bu)lp.v
or

((8N)*) = (3(N)/3Bu)p.v-

Generalizations to multicomponent systems can also be worked out
in the same way, and they are left for the Exercises.

Recall that in our study of thermodynamic stability (i.e., the
convexity of free energies) we found that (n/du)=0. Now we see
the same result in a different context. In particular, note that
(N) =nN,, where N, is Avogadro’s number, and since SN =N —
(N) is a real number its square is positive. Hence, 8(N)/3Bu =
((6N)?) = 0. Similarly, in Chapter 2, we found from thermodynamic
stability that C, =0, and in this chapter we learn that kzT?C, =
((86E)*) = 0. In general, statistical mechanics will always give

—(3(X)/3E) = {(6X)*).

The right-hand side is manifestly positive, and the left-hand side
determines the curvature or convexity of a thermodynamic free
energy.
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Region of interest with m
cells

Cell i

Huge total system with fixed
number of particles, NtoraL

Fig. 3.5. Partitioning into cells.

3.6 Fluctuations Involving Uncorrelated Particles

In this section we will illustrate how the nature of spontaneous
microscopic fluctuations governs the macroscopic observable behavior
of a system. In the illustration, we consider concentration or density
fluctuations in a system of uncorrelated particles, and we show that
the ideal gas law (i.e., pV = nRT) follows from the assumption of no
interparticle correlations. We will return to the ideal gas in Chapter 4
where we will derive its thermodynamic properties from detailed
considerations of its energy levels. The following analysis, however,
is of interest due to its generality being applicable even to large
polymers at low concentration in a solvent.

To begin we imagine partitioning the volume of a system with cells
as pictured in Fig. 3.5. Fluctuations in the region of interest follow
the grand canonical distribution law described in Sec. 3.5. We will
assume that the cells are constructed to be so small that there is a
negligible chance for more than one particle to be in the same cell at
the same time. Therefore, we can characterize any statistically likely
configurations by listing the numbers (n,, n,, . . ., n,,), where

n; =1, if a particle is in cell
= (), otherwise.

In terms of these numbers, the instantaneous total number of
particles in the region of interest is

N=Eng,

i=1
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and the mean square fluctuation in this number is
((BN)*) = ([N = (N)P’) = (N*) = (N)
= 21 [{rn;) = (ni) (m;)]- (a)

bLj=

These relations are completely general. A simplification is found
by considering the case in which different particles are uncorrelated
with each other and this lack of correlation is due to a very low
concentration of particles. These two physical considerations imply

(miny) = (i) (my) for i#]j (b)
(see Exercise 3.17), and

(n;) «1, ©
respectively. Further, since n; is either zero or one, n?=n; and hence
(n?) = (n;) = (m), (d)

where the last equality follows from the assumption each cell is of the
same size or type. Hence, on the average, each cell behaves
identically to every other cell.

The insertion of (b) into (a) yields

(6N = 5 () = (m)?)
and the application of (d) gives
((6N)*) = m(ny)(1 - (ny)).

Finally, from (c) we arrive at
((8N)*) =m(n,) = (N).
By itself, this relationship is already a remarkable result, but its
thermodynamic ramification is even more impressive.

In particular, since the region of interest is described by the grand
canonical ensemble, we know that (see Sec. 3.5 and Exercise 3.15)

((8N)?) = (3(N)/3Bu)p.v-
Hence, for a system of uncorrelated particles, we have

(8(N)/3Bu)s,v=(N),
or dividing by V and taking the reciprocal
(8Buldp)s=p~",
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where p = (N)/V. Thus, by integration we have
Bu = constant + In p.

Further, from standard manipulations (see Exercise 1.14)

(36p/3p)s = p(3Buldp)s =1,

where the first equality is a general thermodynamic relation and the
second applies what we have discovered for uncorrelated particles.
Integration yields

Bp =p,
where we have set the constant of integration to zero since the
pressure should vanish as the density p goes to zero. This equation is
the celebrated ideal gas law, pV = nRT, where we identify the gas
constant, R, with Boltzmann’s constant times Avogadro’s number,
Ny:

R=k BNg.
In summary, we have shown that the assumption of uncorrelated
statistical behavior implies that for a one-component system
p o eﬁﬂ

and

Bplp=1.

Generalizations to multicomponent systems are straightforward and
left for Exercises.

3.7 Alternative Development of Equilibrium Distribution
Functions

The approach we have followed thus far begins with a statistical
characterization of equilibrium states and then arrives at the ine-
qualities and distribution laws we regard as the foundation of
thermodynamics. Alternatively, we could begin with the second law
and the Gibbs entropy formula rather than deducing them from the
principle of equal weights. In the next few pages we follow this
alternative development.

Extensivity of Entropy

Since the Gibbs entropy formula is our starting point, let’s check that
it satisfies the additivity property (extensivity) that we associate with
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Entropy Entropy
SA SB

Fig. 3.6. Two independent subsystems A and B.

entropy. Consider a system contained in two boxes, A and B (see
Fig. 3.6). Denote the total entropy of the system by 5, 5. If the entropy
is extensive, S,5 =S4 + Sz. From the Gibbs formula

SAB = _kB 2 E PAB(VA’ VB) lnPAB(vA! VB)’

where v, and vp denote states of the subsystems A and B,
respectively. Since the subsystems are uncoupled,

Paip(va, vg) = Pa(v4)Pa(vs).
Thus
San=—kg 2, 2, Pap(va, v5)[In Pip(va, v5)]

Ya Va

= —kp D, Pa(v) 2, Pa(va) In Py(v,)
—kg D, Pa(v4) 2 Pa(vp) In Py(vp)

= —kg E Py(va)In Py(vs) — kp E Pg(vp) In Py(vg)

Ve

=84+ S5,

where the second to last equality is obtained from the normalization
condition. This simple calculation shows that the Gibbs entropy
exhibits the thermodynamic property S,z = S, + S;.

Exercise 3.13 Show that if one assumes the functional
form

§= 2 BF(E);

where f(x) is some function of x, then the requirement
that S is extensive implies that f(x) = ¢ Inx, where c is an
arbitrary constant.
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The Microcanonical Ensemble

For an isolated system, the energy, E, the number of particles, N,
and the volume, V, are fixed. The ensemble appropriate to such a
system is the microcanonical ensemble: the assembly of all states with
E, N, and V fixed.

To derive the equilibrium probability for state j, P, we require
that the condition for thermodynamic equilibrium be satisfied.
According to the second law,

(6S)E,V.N = 0.

In other words, the partitioning of microscopic states at equilibrium
is the partitioning that maximizes the entropy. We use this principle
and carry out a maximization procedure with the constraints

(E) =2 E;P, (a)
(N)=2 NP, (b)

and
1= B, (©)

In the microcanonical ensemble where E; = E = constant, and N, =
N = constant, conditions (a), (b), and (c) are all the same.
Using the Lagrange multiplier y, we seek a F; for which

5(S +y1) =0,

or, inserting Eq. (c) and the Gibbs entropy formula,

0=6{—k321’,lnl’,+y2f}}
J

i

= }j) 8P[—kzIn P, — kg + v].

For this equation to be valid for all 6P, the quantity in [ ] must
equal zero. Thus

InP =

] = constant.

Yy — kg
kg

The constant can be determined from the normalization condition

11
1=Sp=Femm=3 1 1(5)
zf: ! 2;: TR Q\g
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Thus
Q = the number of states with energy E.

In summary, for the microcanonical ensemble

1
P = g’ for E;=E

=0, forE,#E
and the entropy is

1
S=+k52—lﬂg=kalﬂgzl=k3 In Q.
The Canonical Ensemble

This ensemble is appropriate to a closed system in a temperature
bath. N, V, and T are fixed, but the energy is not. Thermodynamic
equilibrium now gives

6(S+a(E)+y1)=0,

where o and y are Lagrange multipliers. By combining Egs. (a), (c),
and the Gibbs entropy formula with the above, we obtain

2 [~k InP,— ky + aE, + y] 6P, =0.
J

For this expression to hold for all 8P,

or E,— kg +
InP = ="K TY . (d)
ky
To determine « and y, we use the thermodynamic identity
6(E
[%]V’N = T = temperature.

With Eq. (a) we find

(B6(E))vn= E E; OF,
7
and from the Gibbs entropy formula and (d) we find
aE; — kg +
(88)w=—ky 3 65| =211 ]
i kg

= —kp 2, OPE;a/kp,
i
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where the last equality follows from the fact that ¥, 0F,=61=0.
Note that in the variation of (E), we do not alter E; since the
variation refers to changes in P (i.e., partitioning of states) with the
energies of the states fixed. Dividing (8(E))y. » by (85)y » yields

Combining this result with (d) and the Gibbs entropy formula gives

S=2Pj[E,+k,;T—yT]
J

T
_ (E) +kyT —yT
T :
Thus
yT =A + kgT,
where

A = (E) — TS = Helmholtz free energy.
In summary, the canonical ensemble has
Py =e~PlE—A)

where

Since P, is normalized,
2 B=1=ef3 e
7 I

Thus, the partition function, Q,
Q = E e_BEJ
i
is also given by
0 =e"FA

From thermodynamic considerations alone, it is clear that the
knowledge of Q tells us everything about the thermodynamics of our
system. For example,

25, 1258 -m
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where p is the pressure, and

e )

where (E) is the internal energy.

Similar analysis can be applied to other ensembles, too. In
general, therefore, the principle of equal weights is equivalent to the
Gibbs entropy formula and the variational statement of the second
law of thermodynamics.

Additional Exercises

3.14.

3.15.

3.16.

By applying Gibbs entropy formula and the equilibrium
condition

(68)(ey.v.(ny =0,

derive the probability distribution for the grand canonical
ensemble—the ensemble in which N and E can vary. Your
result should be

P = = exp [—ﬂEv + ﬁlqu]’

where v labels that state of the system (including the number
of particles) and

E=exp (fpV).
For an open multicomponent system, show that

( 6Nf‘5Nj> = (a(Nt )/35%')5.&#:. Vs

where 6N, =N, — (N;) is the fluctuation from the average of
the number of particles of type i, and p, is the chemical
potential for that type of particle. Similarly, relate
(8N,6N,ON,) to a thermodynamic derivative. Finally, for a
one-component system in the grand canonical ensemble, eval-
uate ((6E)?) and relate this quantity to the constant volume
heat capacity and the compressibility. The former determines
the size of the mean square energy fluctuations in the canonical
ensemble where density does not fluctuate, and the latter
determines the size of the mean square density fluctuations.

For 0.01 moles of ideal gas in an open thermally equilibrated
system, evaluate numerically the relative root mean square
deviation of the energy from its mean value and the relative
root mean square deviation of the density from its mean value.
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3.17. (a) Consider a random variable x that can take on any value in

the interval a <x <b. Let g(x) and f(x) be any functions
of x and let (- - -) denote the average over the distribution
for x, p(x)—that is,

(8) = [ axgp(o)

Show that

(&f)=(){f)
for arbitrary g(x) and f(x) if and only if
p(x) =6(x — xo),

where x, is a point between a and b, and §(x — x,) is the
Dirac delta function,

d(y)=0, y+#0

and

Edya(y)=1.

Note that according to this definition, d(x —x,) is a
normalized distribution of zero (or infinitesimal) width
located at x = x,.

(b) Consider two random variables x and y with the joint
probability distribution p(x, y). Prove that

(f(x)g0)) = (f){g)
for all functions f(x) and g(y), if and only if

px, y) =pi(x)p2(y),

where p,(x) and p,(y) are the distributions for x and y,
respectively.

3.18. Consider a system of N distinguishable non-interacting spins in

a magnetic field H. Each spin has a magnetic moment of size u,
and each can point either parallel or antiparallel to the field.
Thus, the energy of a particular state is

N
S —nuH, n=%l1,

i=1
where n;u is the magnetic moment in the direction of the field.

(a) Determine the internal energy of this system as a function
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of B, H, and N by employing an ensemble characterized by
these variables.

(b) Determine the entropy of this system as a function of S,
H, and N.

(c) Determine the behavior of the energy and entropy for this
system as T— 0.

3.19. (a) For the system described in Exercise 3.18, derive the

average total magnetization,
N
(M ) = <E .u'n’J')s
as a function of B, H, and N.
(b) Similarly, determine {(6M)?), where
M=M- (M),
and compare your result with the susceptibility

(3(M}/3H)g,n.

(c) Derive the behavior of (M) and ((6M)?) in the limit
T—0.

3.20. Consider the system studied in Exercises 3.18 and 3.19. Use an

ensemble in which the total magnetization is fixed, and
determine the magnetic field over temperature, SH, as a
function of the natural variables for that ensemble. Show that
in the limit of large N, the result obtained in this way is
equivalent to that obtained in Exercise 3.19.

3.21.* In this problem you consider the behavior of mixed valence

compounds solvated at very low concentrations in a crystal.
Figure 3.7 is a schematic depiction of such a compound. We
shall assume the compound has only two configurational states
as illustrated in Fig. 3.8. The two states correspond to having
the electron localized on the left or right iron atoms, respec-
tively. This type of two-state model is like the LCAO

Fig. 3.7. A mixed valence compound conceived of as two cations plus an

electron.
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(State 4) (State B)

Fig. 3.8. Two-state model of a mixed valence compound.

treatment of the H molecule in elementary quantum chem-
istry. In the solid state physics literature, the model is called
the “‘tight binding” approximation.

In the absence of the surrounding crystal, the Hamiltonian
for a compound is #; with matrix elements

(A| %,|A) = (B| % |B) =0 (our choice for the
zero of energy),
(A| #|B)=—A.
The dipole moment of one of the compounds for states A or B
is given by
p=(Alm|A)=—(B|m|B),
where m denotes the electronic dipole operator. For further

simplicity, imagine that there is negligible spatial overlap
between states A and B; that is,

(A|B)=0 and (A|m|B)=0.

The solvent crystal couples to the impurity mixed valence
compounds through the electric crystal field, €. The Hamil-
tonian for each compound is

H =3 —mé.

(a) Show that when €=0, the eigenstates of the single
compound Hamiltonian are

%) =5 04) 218)),

and the energy levels are £A.

(b) Compute the canonical partition function for the system of
mixed valence compounds when € =0, by (i) performing
the Boltzmann weighted sum with energy eigenvalues, and
(i) performing the matrix trace of e ”* employing the
configurational states |A) and |B). The latter states
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diagonalize m but not %,. Nevertheless, the two computa-
tions should yield the same result. Why?

(c) When € is zero, determine the averages (i) (m), (ii)
(|m|), and (iii) ((6m)?), where m =m — (m).

(d) When &+#0, the crystal couples to the impurity com-
pounds, and there is a free energy of solvation, [A(%) —
A(0)]/N, where N is the number of compounds. Compute
this free energy of solvation by (i) first determining the
eigen energies as a function of &, then performing the
appropriate Boltzmann weighted sum, and (ii) performing
the appropriate matrix trace employing configuration states
|A) and |B). The two calculations yield the same result,
though the second is algebraically more tedious. (You
might find it useful to organize the algebra in the second
case by exploring the properties of Pauli spin matrices.)

(e) When €+0, compute (|m|) and (m). Compare its value
with what is found when € =0. Why does (m) increase
with increasing &?

3.22. (a) Consider a region within a fluid described by the van der
Waals equation Bp =p/(1—bp)— Bap®, where p=
(N)/V. The volume of the region is L® Due to the
spontaneous fluctuations in the system, the instantaneous
value of the density in that region can differ from its
average by an amount dp. Determine, as a function of S,
p, a, b, and L? the typical relative size of these
fluctuations; that is, evaluate ((6p)*)"?/p. Demonstrate
that when one considers observations of a macroscopic
system (i.e., the size of the region becomes macroscopic,
L*— x) the relative fluctuations become negligible.

(b) A fluid is at its “critical point” when

(8Bp/3p)s = (3°Bp/3p®)p = 0.

Determine the critical point density and temperature for
the fluid obeying the van der Waals equation. That is,
compute . and p, as a function of a and b.

(c) Focus attention on a subvolume of size L* in the fluid.
Suppose L? is 100 times the space filling volume of a
molecule—that is, L?~ 100b. For this region in the fluid,
compute the relative size of the density fluctuations when
p =p., and the temperature is 10% above the critical
temperature. Repeat this calculation for temperatures
0.1% and 0.001% from the critical temperature.
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(d) Light that we can observe with our eyes has wavelengths of
the order of 1000 A. Fluctuations in density cause changes
in the index of refraction, and those changes produce
scattering of light. Therefore, if a region of fluid 1000 A
across contains significant density fluctuations, we will
visually observe these fluctuations. On the basis of the type
of calculation performed in part (b), determine how close
to the critical point a system must be before critical
fluctuations become optically observable. The phenome-
non of long wavelength density fluctuations in a fluid
approaching the critical point is known as critical opales-
cence. (Note: You will need to estimate the size of b, and
to do this you should note that the typical diameter of a
small molecule is around 5 A.)

3.23. Consider a solution containing a solute species at very low
concentrations. The solute molecules undergo conformational
transitions between two isomers, A and B. Let N, and N,
denote the numbers of A and B isomers, respectively. While
the total number of solute molecules N =N, + Ny remain
constant, at any instant the values of N, and Nj differ from
their mean values of (N,) and (Njg). Show that mean square
fluctuations are given by

((Na— (NA>)2> =x4xgN,

where x, and xp are the average mole fractions of A and B
species; that is,

x4 ={N4)/N.

[Hint: You will need to assume that the solutes are at such a
low concentration that each solute molecule is uncorrelated
from every other solute molecule. See Sec. 3.6.]
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CHAPTER 4

Non-Interacting (ldeal)
Systems

In this chapter we consider the simplest systems treated by statistical
mechanics. These are systems composed of particles (or quasi-
particles) that do not interact with each other; these models are
called ideal gases.

The principles of statistical mechanics prescribe the computation
of partititon functions like

2 exp (—BE,)
or

2 exp [-B(E, — uN,)].

These are Boltzmann weighted sums over all possible fluctuations,
that is, all microscopic states permitted by the constraints with which
we control the system. In the first sum, only states with the same
number of particles are considered; in the second, particle numbers
fluctuate, too, and the chemical potential term accounts for the
energetics of changing particle number. Notice that if we restricted
the second sum to include only those states v for which the number
of particles N, had the value N, then the second sum would be
proportional to the first.

These sums or partition functions are central to the theory since
the probability for something to occur is the Boltzmann weighted
sum over all fluctuations or microstates consistent with that occur-
rence. For instance, in an open system where the number of
particles, N,, can fluctuate from state to state, the probability of
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having precisely N particles is

Pyx > exp [~ B(E, — uN,)] = e Y exp (—BE,,),

N

where the superscript “N’’ on the summation indicates that the sum
includes only those states v for which N, =N, and those states are
labeled with the index vy,.

In the absence of constraints, fluctuations occur spontaneously,
and these formulas show that the likelihood of spontaneous fluctua-
tions is governed by energetics of these fluctuations as compared with
Boltzmann’s thermal energy, ks T = f~'. Thus, higher T allows for
greater fluctuations or randomness, and as T— 0, only those states
for which the energy per particle is the same as the energy per
particle of the ground state are accessible.

The systematic exploration of all possible fluctuations is often a
very complicated task due to the huge number of microscopic states
that must be considered, and the cumbersome detail needed to
characterize these states. This complexity is the reason why statistical
mechanics is often regarded as a difficult subject. As we proceed in
this book, however, we will introduce the reader to a number of
practical methods for sampling relevant fluctuations. The simplest of
these are factorization approximations that become exact when the
system is composed of non-interacting degrees of freedom—the class
of models considered in this chapter.

To understand how the factorization method works, suppose the
energy E, breaks into two parts: E, = E(" + EQ, where the state
label v depends upon n and m, and these indices m and n are
independent of each other. Then the canonical partition function,

Q= 2 ¢ PE~

=, exp(—BEY) exp (—BED),

can be factored as
Q=[S e (-pED)|| S exp (-pED) |
s Q(I)Q(z)’
where the second equality introduces O and Q® as the Boltzmann

weighted sums associated with the energies E{" and EJ,
respectively. Notice that these energies are uncorrelated in the sense
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that
(E(I)E(Z)) Q"l Z E(I)E(Z) exp[ ﬂ(Em + E(Z))]

~ [810 Q®/3(~)] (310, 0V/(~B)]
= (E)(E®).

Generalization to the case where there are N uncorrelated degrees of
freedom is not difficult, and one finds

Q= Q(IJQ(z) v Q(N).

If each of these degrees of freedom is of the same type, the formula
further reduces to
Q =[QV".

This factorization therefore implies that we only need to Boltzmann
sample microstates for one degree of freedom and then simply take
the Nth power of this result. To dramatize the significance of such a
simplification, suppose a system had N = 1000 degrees of freedom,
and each could exist in one of five microstates. The total number of
states to be sampled for the entire system is 5'°“—an impossibly
large number. The factorization, however, implies that we need only
explicitly enumerate five states.

In some cases, the factorization approximation is applicable
because the system is composed of uncorrelated particles. An
example is a classical ideal gas. Here, the energy is a sum of
one-particle energies, and, if the particles were distinguishable, the
partition function would be simply g”, where g is the Boltzmann sum
over states for a single particle. Further, at the high temperatures for
which “classical’” models are good approximations to reality (made
precise later), the number of single particle states available is very
large compared to the number of particles. In this case, each
N-particle state occurs N! times, corresponding to the number of
ways of assigning the N distinct one-particle states to the N
indistinguishable particles. Hence, the correct partition function is

1 N

n?

Without the factor of (N!)™!, we would be overcounting the
distinguishable states.

In other cases, the factorization approximation is applicable even
when the actual particles in the system are not uncorrelated. Here,
one finds that it is possible to identify uncorrelated collective
variables—variables that depend upon the coordinates or states of a
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Fig. 4.1. The four states of a three-particle system with two single particle states.

large collection of particles. An example is the small amplitude
vibrational modes of a solid. These modes are called phonons.
Another example is the occupation numbers for quantum mechanical
systems composed of non-interacting particles.

In this chapter, we will consider phonons, occupation numbers,
classical ideal gases, and a number of other examples to illustrate
how the factorization method is applied.

4.1 Occupation Numbers

The first step in analyzing any model involves the classification of
microstates. The state of a quantum system can be specified by the
wavefunction for that state, W, (r, r,, ..., ry). Here, W, is the vth
eigensolution to Schrédinger’s equation for an N-particle system. If
the particles are non-interacting (i.e., ideal), then the wavefunction
can be expressed as a symmetrized* product of single particle
wavefunctions. Let us denote these single particle wavefunctions
as ¢4(r), ¢x(r),..., ¢j(r),.... For a particular state, say v,
W, (r, ..., ry) will be a symmetrized product containing n, particles
with the single particle wavefunction ¢,, n, particles with the
single particle wavefunction ¢,, and so on. These numbers,
ny, Ry, ..., N, ... are called the occupation numbers of the first,
second, . ..jth,... single particle states. If the N particles are
indistinguishable—as quantum particles are—then a state, v, is
completely  specified by the set of occupation numbers
(n1, nz, ..., my, .. .) since any more detail would distinguish between
the n; particles in the jth single particle state.

For example, consider three particles (denoted in Fig. 4.1 by
circles) which can exist in one of two single particle states, a and §.
All the possible states for this three-particle system are exhibited in
Fig. 4.1. In terms of occupation numbers, state 1 has n, =0, ng =3;
state 2 has n, =1, ng=2; and so on. Notice that an occupation
number is a collective variable in the sense that its value depends
upon the instantaneous state of all the particles.

Let us now express the total number of particles and the total

* For Fermi particles, the product is antisymmetric; for Bose particles the product is symmetric.
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energy in terms of the occupation numbers. Let
v={(ny, ny ..., n;,...)=vth state.
Then

N, = 2, n; = total number of particles in the vth state.
i
Let ¢ be the energy of the jth single particle state. Then,

E, =, gn; = energy in the vth state.
j

Particles with half-integer spin obey an exclusion principle*: n,=0
or 1, only. Such particles are called fermions and the statistics
associated with n; =0 or 1 is called Fermi—Dirac statistics.

Particles with integer spin obey Bose-Einstein statistics: n; =
0,1,2,3,.... These particles are called bosons.

4.2 Photon Gas

As an example of how we use occupation numbers, consider the
photon gas—an electromagnetic field in thermal equilibrium with its
container. We want to describe the thermodynamics of this system.
From the quantum theory of the electromagnetic field, it is found
that the Hamiltonian can be written as a sum of terms, each having
the form of a Hamiltonian for a harmonic oscillator of some
frequency. The energy of a harmonic oscillator is nfiw (zero point
energy omitted), where n=0,1,2,.... Thus, we are led to the
concept of photons with energy fiw. A state of the free electromag-
netic field is specified by the number n for each of the ‘““oscillators,”
and n can be thought of as the number of photons in a state with
single “‘particle” energy fia.

Photons obey Bose—Einstein statistics: n =0, 1, 2, . . .. The cano-
nical partition function is thus
e—ﬂA = Q = 2 e'ﬂE" = 2 e-ﬂ(n151+-n251+---+n;£,~+'--),
v ny,ng,..., ..

where we have used the occupation number representation of E,,
and denoted fiw; by ¢;. Since the exponential factors into independ-

*The requirement that the N-particle wavefunction be an antisymmetric product implies the
exclusion principle.
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ent portions, we have
0=I1| S e
J n;=0

The term in brackets is just a geometric series, thus

Q(photon gas) = l:[ [T:%?B?f]'

From this formula, we can obtain all the properties we want since
Q =e P4, One quantity that is particularly interesting is the average
value of the occupation number of the jth state, {n;). In the
canonical ensemble

—BE, — [ P SR
E n]e BE, E nje B(nie nyEj )

(nj) - VE e_ﬂEv " ny,12,... Q
- 9 —B(ng+---+mgi+--1)
= [a(—ﬁe,.),,l,%_,‘e /e
_ dlnQ
3(—Be;)’

Returning to our formula for O we thus have

2] —Be;
{n;) = +8(—ﬁs,-) {;—ln(l—e P )}

=e Paf[l — e P9]

or
(n;) =[ef1-1]"",

which is called the Planck distribution.

Exercise 4.1 For the photon gas derive a formula for the
correlation function (6n; én;) where dn; =n, — (n;).

Exercise 4.2* Use the formula for (n;) to show that the
energy density of a photon gas is oT*, where o is a
constant, (x?k%/15#°c?). [Hint: You will need to con-
struct a formula for the number of standing wave solutions
to use the wave equation for waves in a three-dimensional
cavity and with frequency between @ and o + dw.]
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4.3 Phonon Gas or Fluctuations of Atomic Positions in a Cold
Solid

As another example, consider the phonon gas—the normal modes of
a low temperature solid. For a cold enough lattice, the atoms remain
close to their equilibrium positions. As a result, the potential energy
of such a system can be expanded in powers of the displacement of
coordinates from their equilibrium locations. For many applications,
it is a good approximation to truncate this expansion at quadratic
order yielding the harmonic approximation

N
(Potential Energy) ~Up+3 > D (50 —59)

Lj=1 a,y=x,y,2z

X (85— Sﬁg))k injyr

where s;, is the value of the ath Cartesian coordinate for particle i,
5{Q is the corresponding equilibrium value, ks, is a (force) constant,
and U, is the zero point energy (the minimum value of the potential
energy). Note the absence of a linear term in this formula; it does not
appear because the first derivatives of the potential energy are zero at
the minimum.

Let us consider the consequences of the fact that in the harmonic
approximation, the Hamiltonian is a quadratic function of all the
coordinates. It is true that different coordinates are coupled or
tangled together through the DN x DN matrix of force constants.
(Here, D denotes the dimensionality, and there are DN coordinates
in total.) But since the elements of the force constant matrix, k,, jy,
are symmetric, a theorem of linear algebra is applicable that says it is
possible to untangle the quadratic function by finding a set of normal
coordinates or normal modes. Each normal mode of a harmonic
system is a coordinate that oscillates at a given frequency and
independent of all other normal modes. There are DN such
coordinates for any harmonic (i.e., quadratic) Hamiltonian. Each
normal mode is a linear combination of the original set of coordin-
ates, {s,, }; and when we adopt normal modes as our coordinates, the
total Hamiltonian can be written as a sum of DN independent
one-dimensional quadratic (i.e., harmonic oscillator) Hamiltonians.
To explicitly identify the normal modes of a particular harmonic
system, one must diagonalize a DN X DN matrix. For some discus-
sion of the procedure, see, for example, McQuarrie's Statistical
Mechanics (Sec. 11.4) or Hill's Introduction to Statistical Thermo-
dynamics (Sec. 5.2). But for the treatment we give here, we need
only accept the fact that a quadratic form can be diagonalized.

Therefore, by adopting the harmonic approximation, we know
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that the Hamiltonian can be expressed as
DN
x=72 %,
a=1
where

#, = harmonic oscillator Hamiltonian
with a fundamental frequency w,.

Once again, recall that the eigen energy of a harmonic oscillator with
frequency w is

(3 +n)hw, n=0,1,2,....
Thus, we introduce the notion of a phonon. Let n, denote the

number of phonons in the phonon state with energy #fiw,. Then the
energy of a state of the lattice takes on the occupation number form

DN
E, = 2 n o, + E,,

a=1

where
DN
Eo=Uy+ 2, tho,.
a=1

For convenience, let us take U, as the zero of energy. Then the
canonical partition function for the lattice becomes

o

QB.N.V)= 5 exp| -3 d+n)ho, ]

ny,ng,...=0

Since the exponential factors into a product of independent terms,
this expression gives

0= ﬁi (zn: exp[——ﬁ(% + n)hw‘,]).

The sum over n is performed using the formula for a geometric series
yielding

InQ= - %v In[exp(Bhw,/2) — exp(—Bhw,/2)].
a=1

Exercise 4.3 Verify this formula.

The sum over phonon states can be partitioned by introducing

g(w) do = the number of phonon states with frequency
between w and w + dw.
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Then

BA = Lm dw g(w) In[exp(Bhw/2) — exp(—Phw/2)].

This formula is the starting point for the analysis of thermodynamics
for harmonic lattices.

Exercise 4.4 Assume that only one phonon level is
appreciably populated

g(w) = é(w — wy),

and determine the low temperature behavior of a har-
monic solid. (This picture of a lattice is called the Einstein
model.)

Exercise 4.5* Assume the low frequency modes of a
lattice are simple plane waves so that

g(w)=(ND¥wf)w"!, o<,
= 0; w > Wy,

is a good approximation, and determine the low tempera-
ture behavior of a harmonic solid. (This picture of a lattice
is called the Debye model, and the cut-off frequency, w,,
is called the Debye frequency.)

4.4 |deal Gases of Real Particles

Bosons

Consider a system of N particles that obeys Bose—Einstein statistics
and does not interact. One way of evaluating the thermodynamics
of such a system is to evaluate the canonical ensemble partition
function, Q = ¥, exp (—BE,). Unlike the photon or phonon gases
that are composed of massless quasi-particles, the systems we
consider from now on are composed of particles that cannot be
created or destroyed. Thus, if we want to use the occupation
representation of states when performing the sum necessary to
calculate the canonical partition function, we must constrain the sum
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to those states in which the total number of particles is fixed at N:

0= 3 ex- ﬁZne]

ny,n2,.., 0

such that

Zn=N
7

Here (as always), ¢ denotes the energy of the jth single particle
state. The restriction on the summation in the equation produces a
combinatorial problem which can be solved; but the precise solution
is not simple. By doing statistical mechanics in the grand canonical
ensemble, however, the restricted sum does not appear.
In the grand canonical ensemble the partition function is
efrV =5 = 2 e BE~UN)
v

where v denotes a state with N, particles and energy E,. In terms of
occupation numbers

== 3 ew[-B3(5-mm]

L VYO TR Ao
Here, the exponential factors and we obtain

E=ef -H{Ee‘”“ ")"’} ljl{i??;(_":}

n;=0

or BpV=InE= -3 In[1 - ePt-o].
i

The average occupation number is
¥ n]_e"B[Ev_l“Vvl

v o=
T ek
_ 3InE
T 3(-Bg)
Using this formula with = for the ideal Bose gas we obtain

1
(n!') = eﬁ(e,-—u) =] e

Notice the singularity when u = g;. At this point, (n,) diverges; that
is, a macroscopic number of particles pile into the same single
particle state. The phenomenon is called Bose condensation, and the
condensation is thought to be the mechanism for superfluidity.
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Recall that photons and phonons are bosons in the sense that any
number can exist in the same single particle state. Thus according to
the formula we have just derived, the chemical potential of a phonon
in an ideal phonon gas is zero. Similarly, the chemical potential of a
photon in an ideal photon gas is zero.

Fermions

We now consider an ideal gas of real Fermi particles. Once again it is
much easier to work in the grand canonical ensemble, and this
ensemble’s partition function is

1

- 3 a[-83ne-n]

RLA2,. =0

{1]

Here we have noted that for fermions, n; =0 or 1 only. As is always
the case for non-interacting particles, the exponential in the sum-
mand factors and we obtain

1
BE= I_[ [ z e—ﬁ(s,-—u)n,]
j n;=0
. H [1+ e—ﬁ(el—n)],
i
or
BpV=InE= In[1+eP®-2)
J

Once again, the average occupation number is given by (n;)=
dIn Z/3(—Be)):
eBk—g) 1

(mj) = 1+ Pl gPle—m 1 °

which is called the Fermi Distribution.
In summary:

(")ep S
B._E: eﬁ(sj ") i 1

Information about correlations between different particles can be
described with the averages (n;n, - - -). To be specific, let us consider
a system of identical fermions. Here, n; is either zero or one, and
(n;) is the probability that a particle is in single particle state i.
Similarly

(n;n;) = joint probability that a particle is in
state i and a particle is in state j
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and

8;i = {mn;) = (n;)§; = joint probability that a particle is in
state i and another particle is in state j.

Exercise 4.6 Deduce this last assertion. [Hint: Express
n; as a sum of “occupation variables” for each particle in
the many particle fermion system. ]

Exercise 4.7 For an ideal gas of identical fermions,
determine g; as a functional of (n,).

4.5 Electrons in Metals

As an illustration, we now consider the thermal properties of
conducting electrons in metals. To a good approximation, we can
model these electrons as an ideal gas of fermions because at high
enough densities, the potential energy of interaction between identi-
cal fermions is often of little importance. The reason is that since no
two identical and therefore indistinguishable fermions can exist in the
same state, a high density system will necessarily fill many single
particle energy levels. The lowest energy of unoccupied states will
have a kinetic energy many times that of k57, and it is excitations
into these states that produce the fluctuations associated with
observed finite temperature thermodynamic properties. Thus, when
the density of a many particle system of fermions is high enough, the
energetics of interactions between particles becomes negligible.

As we see shortly, the conduction electrons of most metals satisfy
the criterion of high density. If we assume the conduction electrons
are an ideal gas, the average number of electrons occupying the jth
single particle state is

() = F(g)),
where F(¢) is the Fermi function
F(e)=[ePe ™ +1]7,
and ¢; is the energy of the jth single particle state:
g = (H°k*2m),

with m denoting electron mass, and the wavevector, k, is quantized
according to

k= (%n, +§n, +in,)n/L, my =0, 1,2, c0p
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where L’ =V is the (cubic) volume of the material containing the
electrons. These are the standard electron in a box formulas. Notice
that the state index, j, must specify the quantum numbers, n,, n,,
and n,. In addition, j must specify the spin state (up or down) of the
electron. Since (N) =Y, (n;), we have

(Ny=2 " de p(e)F(e),

where the factor of 2 accounts for the degeneracy of the two spin
states, and de p(¢) is the number of structureless single particle states
with energy between € and € + de. Equivalently,

(N) =2Lmdn, f:dny f:dnz Fle(k)]

=2 f f | ke, b, e e/ Yo

(2 5 f j j dk, dk, dk, F[e(K)]
=2V /@)’ [ dkFLe(h)],

where we have noted that for large enough volumes V, the spectrum
of wavevectors is a continuum so that an integration is appropriate,
and the last equality simply introduces a compact notation for
integrating over all k-space.

Exercise 4.8* Use the Euler-Maclaurin series to prove
that the errors incurred by regarding the discrete sums
over n, as integrals are negligible for large V.

To proceed, consider the form of the Fermi function. At T =0,

F(e)=1, € < Ug,
=0, £ > Ug,
where p, is the chemical potential of the ideal electron gas at T = 0;

it is often called the Fermi energy. The Fermi momentum, pr, is
defined by

po = p/2m = #2k%/2m.
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F(e)

Hy

Fig. 4.2. The Fermi function.

Thus, at T =0, we can perform the integral over F(¢) to obtain (N):
(N) =[2V/Q2n)’ [k}

A typical metal, Cu, has a mass density of 9 g/cm®. By assuming each
atom donates an electron to the conducting electron gas, we obtain
from this density

Kol kg = 80,000°K,,

which verifies that even at room temperature, the ideal gas ap-
proximation is accurate.

Exercise 4.9 Show that the number and conclusion cited
here are correct.

Figure 4.2 provides a sketch of the Fermi function for tempera-
tures much lower than uy/kp (e.g., room temperature). Its derivative
is a delta-like function, as illustrated in Fig. 4.3.

We can exploit this behavior when computing thermodynamic
properties. For example,

(E) =§, ()%
=2rd£p(s)F(£)s

- j " ded(e)(dF/de),

where in the last equality, we integrated by parts (the boundary term
is zero) and introduced

D(e) = J; ‘ dx 2p(x)x.
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—dF(e)/de

= b 2T

" z ¢
Ho

Fig. 4.3. Derivative of the Fermi function.

Since dF/de is highly localized near € = u, and ®(¢) is regular, we
can profitably expand ®(¢) about £ = u, and obtain

= 1 [d"® *[dF N
=-3 [ e o e
= (constant) + (kg T)*(another constant) + O(T*).

Exercise 4.10 Verify this result. [Hint: Introduce the
transformation of variables x = f(& — u) and note the u
and u, are close at small 7.]

Thus, we predict that for a conducting material at low enough
temperatures the heat capacity is linear in the temperature; that is,

C,xT

This prediction has been verified by many experiments.

We have already commented on our neglect of electron-electron
interactions. We have also neglected interactions between the lattice
atoms and the electrons. That is, we have neglected electron-phonon
interactions. It turns out that these subtle interactions are responsible
for the phenomenon of superconductivity.

4.6 Classical Ideal Gases, the Classical Limit

We now consider what happens to the statistical behavior of ideal
quantum mechanical gases as we approach high temperatures. This is
the classical limit. The number of particles is given by N =¥, n;. The
average number of particles is given by

(N) = 2 (n,-) = E [eﬂ(zj—.“) + 1]—1’
i j
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where in the last equality, the upper sign is for Fermi~Dirac statistics
and lower for Bose—Einstein statistics. The average density (N)/V is
the thermodynamic density. When the temperature is high (8 is
small) and the density is low, many more single particle states are
accessible than there are particles. Thus the relation (N) =X, (n;)
implies that for the considered case, each {n,.) must be small; that is,
(n;) < 1. This condition combined with the Fermi-Dirac and Bose—-
Einstein distributions implies

ePlEm > 1, (a)

Note that if this equation is true for all ¢;, then —Bu >> 1 when —0
and p— 0. The limiting case of B— 0 and p— 0 corresponds to the
limit of a classical ideal gas.

By virtue of the severe inequality, we have

( n,~) = g Blg—n) (b)

in the classical limit. The chemical potential, u, is determined by the
condition

(N) =3 () =3 e Pm = oS o=t
i j J
or

PP = (N> i (c)

e P
j

Thus, combining (b) and (c), we find

e e
()= (N)
7

which is the familiar form of the classical Boltzmann factor. Indeed,
note that since {n;) is the average number of particles in the jth
single particle state, we have

n,
(—'12 = probability of finding a particle

in single particle state j

o g BE

Now, let’s evaluate the canonical partition function in the classical
limit. The canonical partition function is related to the Helmholtz
free energy by

—fA=InQ,
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while the grand canonical partition is related to SpV by
BpV =InZE.
Recall that A = (E) — TS, and the Gibbs free energy is G = u(N) =
(E) + pV — TS. Using these relations, we obtain
In Q({N), V, T)= —Bu(N) +InE.
Inserting the grand partition functions for ideal fermions or bosons
into this equation yields

InQ({N), V, T)=—Bu(N) £ > In[1 +eP®=],
i

where the upper sign is for Fermi particles and the lower for Bose.
Using the inequality (a) and the expansion of the logarithm In (1 + x)
=x +---, the above equation becomes

In Q(N), V, T) = —Bu(N) + 3 P~

Inserting (c) into this formula, we have
InQ({N), V, T)= —Bu(N) + (N).
Next, note that the logarithm of (c) gives

Bu=In{N)—-In> e F4
i
so that

InQ=-NInN+N+NIn> e Po
j
where we have replaced (N) by N. Next, we use Stirling’s ap-
proximation In N! = N In N — N (which is exact in the thermodynamic
limit) to obtain

o= [z

in the classical limit. The factor of (N!)™' reflects the fact that the
particles are indistinguishable. It is the only remnant of quantum
statistics in the classical limit.

This formula for the partition function of the classical ideal gas can
be derived by an alternative route that does not make use of our
previous analysis of the fermion and boson gases. In particular,
consider an assembly of N indistinguishable and uncorrelated par-
ticles. (In quantum theory, even when particles do not interact,
indistinguishability implies correlations due to the required symmet-
rization of wavefunctions.) If we ignore for the moment the indis-
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tinguishability, the partition function is a single particle partition
function, ¢, raised to the Nth power, gq". As discussed in the
introductory remarks of this chapter, however, this result overcounts
states. The reason is that there are N! different ways to assign the
same set of distinct single particle state labels to the N particles. But
each way is equivalent since the particles are indistinguishable.
Hence, the result should be (N!)"'q™, which corrects for the
overcounting.

4.7 Thermodynamics of an Ideal Gas of Structureless Classical
Particles

We will now use the result of the classical limit and consider a system
of structureless particles of mass m in a volume V. The energy is due
solely to translational center-of-mass motion. The single particle
energy can be expressed as

H2k? T R .
sk=ﬁ, k=z(nx£+nyy+nzz).
Here L=V"; n,, n,, n, go from 1 to . (g is the particle in a
three-dimensional box energy level.) The classical partition function
is then

Q(N,V,T)= (N!)‘l[ > exp (-—ﬁﬂzk2/2m)]

ne,nyn=1

N

In the classical limit, B# is small, and in the thermodynamic limit L is
large. Thus, the difference between consecutive terms in the sum-
mand is small, and the sum can be taken over into an integral:

An, = L Ak, — L dk,,
T 14

L
An, =J—1Ak,—->§dk

'y

A Ak ke,
J 4

and

L? J“‘ i r
E—> Gy ) e fo dk, | d..



104 INTRODUCTION TO MODERN STATISTICAL MECHANICS

Thus,

b eXP(*thkZIZmP% L dk, dk, dk,

Rz, Ry, R

x exp [—BH* (k2 + k2 + k2)/2m]

=0 )3j dk, dk, dk,

X exp [— P (k2 + k2 + k%)/2m].
Defining the variable p = #ik, we have

0= [ aperoan]”
7 ler)s

where dp denotes dp, dp, dp,. The integral can be done in many
ways. The result is

VN 2am\3N?
Nh?Y ( B ) '
The internal energy, (E), and the pressure, p, are determined in the
usual way:

= Q(N’ v, T) =

dlnQ 3N _
W= (a( ﬁ)) =55 = NksT,
ﬁP=(%Q)ﬂ=%r, or pV =NkT.

Experimentally, the equation of state for a classical dilute gas is
found to be pV = nRT where R is the gas constant and » the number
of moles. Our result says that pV = NkzT. This is why, as already
stated in Sec. 3.6, the arbitrary constant k; has the numerical value
= R/N,=1.35805 X 10" ®erg/deg, where N, is Avogadro’s
number
The reader may find it useful to contrast this derivation of the
classical ideal gas law with the development carried out in Sec. 3.6.
In the earlier derivation, we did not explicitly invoke a classical limit;
we assumed only that different particles were uncorrelated. Does this
mean that non-interacting quantal fermions or bosons obey the
equation of state pV = nRT? The answer is no. Indeed, see Exercises
4.18-4.20. The reason is that, even in the absence of interparticle
interactions, the quantum mechanical nature of particle indistin-
guishability implies the existence of interparticle correlations. Thus,
while the correlations between different occupation numbers may
vanish with Bose—Einstein and Fermi-Dirac statistics, the
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interparticle correlations among indistinguishable particles remain
nontrivial. These correlations vanish, however, in the classical limit.

4.8 A Dilute Gas of Atoms

As a further illustration, we now consider a gas of atoms and attempt
to account for the internal structure of these particles. We specify the
state of an atom with

; ¥ state of nucleus
j=(K&,n,v). .
4~ electronic state

center-of-mass translation

The center-of-mass translations are uncoupled from the internal
structure (described with » and v), and to a good approximation, the
nuclear and electronic degrees of freedom are uncoupled (so that n
and v are approximate good quantum numbers). Thus

> e Pi= exp (—ph*k?/2m) > exp (—Bew),
/ L % i |

uns(T, V) (T

where &,, represents the energy for internal state (n, v). [Note:
qin(T) is said to be independent of the volume V. Why is this?] Let
£go denote the ground energy. Then

Gind(T) = €7F*® 3, exp [=B(m — £00)]-

For many atoms, internal excitation energies are very large compared
to kT. (For example, 1 eV corresponds to k5T when T = 10,000°K.)
For this situation, the only terms contributing significantly to the sum
are those with the same energy as £ Hence
@ine(T) = e~ Pe® X (degeneracy of ground level)
= Bego ganuc)ggelec)
where g™ and g{™® are the ground level degeneracies of the

nuclear states and electronic states, respectively. If we assume that
only spin degrees of freedom are important in the nucleus, then

g = (20 +1),

where I is the total spin quantum number of the nucleus. Combining
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all of these formulas leads to

_BA =In [(N!)—lqa'rans('rs V)qﬁ.(T)]
= —BNeo + N In [go(21 + D] + In [(N) g ene(T, V)],

The factor involving ¢..s(T, V) was analyzed in the previous
example when we studied structureless particles. Notice that the
internal structure affects the energy and entropy of the gas, but it
leaves the pressure unaltered.

Before leaving our discussion of atoms, the following puzzle is
worth thinking about: The electronic energy levels of a hydrogen
atom go as

8,,—'-—(50/112), n=12...,%
Thus,
GindT) = 81655 + g,eP* + g1eP 4 ... 4 g oPoom 4. ..

where g, is the degeneracy of the (n — 1)st electronic energy level.
Clearly, g, =1, and for large enough n, the nth term is simply g,..
Thus, the series is divergent! How can this difficulty be resolved?

Exercise 4.11 Answer the above question. [Hint: Con-
sider the average spatial extent of the electronic wave
function for the hydrogen atom as a function of n.]

4.9 Dilute Gas of Diatomic Molecules

We now consider the thermal properties of a gas composed of
molecular species. The internal energetics of molecules involve
vibrational and rotational motions as well as electronic and nuclear
spin degrees of freedom. To treat these motions, we use the
Born—Oppenheimer approximation. In this approximation, one im-
agines solving Schridinger’s equation for the molecule with the
nuclei nailed down. For each electronic state, there will be a different
energy for each nuclear configuration. The electronic energy as a
function of nuclear coordinates forms an effective (electronically
averaged) potential for the nuclei (this is the Hellman-Feynman
theorem). The potential is called a Born—Oppenheimer surface. For
each electronic state, there is a different surface. The rotational and
vibrational states of the nuclei are determined by solving
Schrédinger’s equation for the nuclei in these effective potentials.
For this scheme to be accurate, it must be true that the electronic
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motion is fast compared to the nuclear motion so that nuclear kinetic
energy may be neglected when determining the electronic wavefunc-
tion. It can be shown that the Born-Oppenheimer approximation is
exact in the limit m./M — 0, where m, is the mass of an electron, and
M is the mass of a nucleus. Of course, the ratio is never zero, but it is
small enough that the approximation is often accurate. It must also
be true that no two Born-Oppenheimer energies are close to one
another in any accessible nuclear configuration. If the Born-
Oppenheimer surfaces do get close, the small perturbations due to
the nuclear motions (i.e., the nuclear kinetic energy) will cause a
breakdown in the approximation.

In the Born—-Oppenheimer approximation, the wavefunction of a
diatomic molecule is

electronic coordinatesl

Lnuclear coordinates]
'
¥(r, R) = @u(7; R) 1 (R).

L

electronic w.f. parameterized by R

nuclear wavefunction, different for each n since each
n produces a different effective potential for R

With this form, the prescription described above is: (1) Calculate
@, (r, R) from

ﬁ p.e. for e]ectrons, lelectron—nuclei p.;]
]
v
[f(r) +U(r) + U(R) + U(r, R)]®,(r; R) = E,(R)®,(r, R),

|k.e. for clectrons] p-e. for nucleﬂ

(2) Determine y,,,(R) from

effective potential for nuclei

v
[K(R) + E,(R)]xn(R) = Enytnr(R).

k.e. for nuclei
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Eq(R) Trouble with Born-Oppenheimer approximation

Excited state E3(R)

Excited state £, (R)
Ground state E5(R)

€ |m — = —

o &
R§Y

Fig. 4.4. Hypothetical Born-Oppenheimer potentials for a diatomic molecule.

Exercise 4.12 Verify that this procedure provides an
accurate solution to Schrédinger’s equation for the mole-
cule provided the kinetic energy (k.e.) of the electrons is
much larger than the k.e. of the nuclei. Why is there
“trouble” at the indicated spot in Fig. 4.4.

Figure 4.4 is a schematic picture of some electron averaged
potentials (i.e., Born—-Oppenheimer surfaces).
With the Born-Oppenheimer approximation we write

qinl(T) = 2 (n; v| cXp [_'ﬂ‘%’int] |n, ‘V)

= 2‘} {{xov| exp [—696’(,?(1?)] [Xov)
+ (xlvl €xp [_B%Q(R)] |XIV) * - '};

where X 2(R) is the effective (electronically averaged) Hamiltonian
for the nuclear coordinates, R, when the molecule is the nth
electronic state; that is, #%(R)=K(R)+ E,(R). If we neglect all
but the ground electronic state,

Gin(T) = goe P >, exp [ B(Eo, — £0)].

Further, let us assume that vibrational and rotational motions of the
nuclei are uncoupled. This is often a good approximation due to a
mismatch in time scales (vibrations are usually more rapid than
rotations). Hence, we shall model the nuclear motions in the effective
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potential Eo(R) as harmonic oscillating rigid rotor motions. Then

EOV — Eg = (% + U)hwo + J(J + 1)ﬁ2/210,

vibrational T | rotational
energy, energy, degeneracy
nondegenerate | (27 +1)

v=0,1,2,..., and J=0,1,2,.... Here, wo, and I, are the

fundamental frequency and moment of inertia, respectively, as-
sociated with the ground state Born—Oppenheimer potential. That is,
L= po(R®?)? and

wg = y-l[aon(R)/ 3R2]R=R0(°q)’

where u = [(1/m4) + (1/mz)]™" is the reduced mass of the two nuclei.

At this point, it looks as if we should just sum over J and v to get
(7). However, there is a subtlety when the molecule is homo-
nuclear. In that case, one must be careful to sum over only those
states that are odd or even on interchanging nuclei depending on
whether the nuclei are fermions or bosons, respectively. In the
classical limit, this restriction leads to a division by a symmetry
number which accounts for the overcounting of states when one does
distinguish between the configurations 1—2 and 2—1. In our treat-
ment below, we will use this classical result. For a discussion of the
quantum mechanics, see for example, McQuarrie’s Statistical Mecha-
nics (Sec. 6.5) or Hill's Introduction to Statistical Thermodynamics
(Sec. 22.8).

Thus, we obtain

qine(T) "“’goe_ﬁeo% +1)Q2Iz + I)IQrmqvibIUAB,
1t

nuclear spin
state degeneracies

symmetry number, 1 if
A#Band2if A=B |

where

qeo(T) = ij‘, (2 + 1) exp [-J(J + 1)Bh*/21)]
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and

gei(T) = E exp [~ (3 + v)Bhasg).

The vibrational contribution, q.;,(7), is computed with the aid of the
geometric series,

guin(T) = [exp (Bhwo/2) — exp (—Bhwo/2)] .

Exercise 4.13 Derive this result.

The rotational contribution is more difficult. We can convert the sum
to an integral with the Euler—Maclaurin series provided the spacing
between rotational levels is small compared to k7. This condition is
usually met (except for hydrogen). Thus

Grod T) =~ jo " dJ(2T + 1) exp [~ + DBR2U] = T/Broe

where the last equality follows from a change in integration variables
from J to J(J + 1), and 6,,, is the rotational temperature, #*/2L k5.

Exercise 4.14* Use the Euler—Maclaurin series to show
that

T 1 Bm) 1 (Bm)z ]
=— = )+—=|— s,
el T) = 5~ [1 +3( ) s\7)

We can combine these results with

2eM 2
qtrans(Tr V) = V[ ﬁhz ] s M=m,+ mpg,
and thus
- [ﬁA(N, Vl T)]diatomic ideal gas
~—NInN+N+NhV
+3NIn (2eMkyT [h?)
+ N ln g;oe(T).
with

G T) = goe P21, + 1)(2Ls + 1)oxs
X (T/ 0ror)lexp (Bhwo/2) — exp (—Phwo/2)] 7",
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These equations provide a theory for the thermodynamic pro-
perties of molecular gases.

4.10 Chemical Equilibria in Gases

Among the many possible applications, the formulas we have derived
for gas phase partition functions can be used to compute chemical
equilibrium constants. But first it is convenient to establish a notation
and thermodynamic preliminaries. Consider the reaction

[ molecular species
aA+bB=2cC+dD.
stoichiometric coefficient
We can write this expression more compactly as
4
0 = 2 vixvi ’
i=1

where v, is the reaction coefficient. That is, v, =c, v,=d, v;=—a,
vi=—b, X,=C, X,=D, X;=A, X,=B. The stoichiometry places
a restriction on changes in mole numbers:

An,=(b/a)* Ang = —(c/a)"' Anc = —(d/a)™" Anp,.

Thus, the first-order virtual displacement of the internal energy due
to variations in mole numbers is

4
8E =2, p; bn;
i=1

=dnulps + (bla)up — (c/a)uc — (d/a)up)-
As a result, the equilibrium condition (AE)s v, > 0 implies
0=p,+(b/a)ug — (c/a)uc — (d/a)up,

or, more generally

&
0= Z Vildi
i=1
when components 1,2, . . ., r are involved in an equilibrium chemical

reaction.

This condition tells us a great deal about the composition of
reactants and products at equilibrium. To see why, let us define the
quantity y, by the equation

Bui=Inpy,  p;=NJ/V.
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Then at chemical equilibrium
0=2 v,Inpy,
i=1

=1In l:[l (oiv)™.
Thus

k=T =1 oy

which is called the law of mass action.

To make further progress we must determine a molecular expres-
sion for p; and thus y;. In the classical ideal gas approximation, the
partition function of an r-component mixture is

1 1 1
QB V, Ny, ..., N, =N—1!N—2!“'mqi"‘q¥1---q‘,‘".

where g; = q;(B, V') is the single particle partition function. Thus

pA=-nQ =3 [InN!-Nlng]).
i=1
As a result,
Bu; = (3BA/SN,)s, VN
=InN;—Ing;.

However,

g =(V/A)g™,
where (" is for species i the g,,(T) of the previous section, and

)u,- = h/ V 2ﬂml‘kBT

is the ‘‘thermal wavelength” for a particle of mass m;. Thus

Bu; =1n[p,(A}/q{™)].
Hence, we have identified y;, and the equilibrium constant is

K =1 [gf=o/a31".

i=1

The equilibrium constant is a function of temperature since both g{"™

and A, are functions of temperature.

This last formula is one of the early triumphs of statistical
mechanics as it represents a molecular expression for the equilibrium
constant appearing in the law of mass action.
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Additional Exercises

4.15. Consider an isomerization process

4.16.

A= B,

where A and B refer to the different isomer states of a
molecule. Imagine that the process takes place in a dilute gas,
and that A¢ is the energy difference between state A and state
B. According to the Boltzmann distribution law, the equi-
librium ratio of A and B populations is given by

(Na)/{Ng) = (84/gs)e "%,

where g, and gp are the degeneracies of states A and B,
respectively. Show how this same result follows from the
condition of chemical equilibria, u, = 3.

Consider the system described in Exercise 4.15. The canonical
partition function is

1 N
Q-N‘!q ’

where N is the total number of molecules, and g is the
Boltzmann weighted sum over all single molecule states, both
those associated with isomers of type 4 and those associated
with isomers of type B.

(a) Show that one may partition the sum and write
Q= EP'. exp [~BA(Na, Np)]

with
—BA(N,, Np) =In [(Na!Ns!) "gi*q3"),

where Y., is over all the partitions of N molecules into N,
molecules of type A and Nz molecules of type B, g, is the
Boltzmann weighted sum over states of isomer A, and g5 is
similarly defined.

(b) Show that the condition of chemical equilibria is identical
to finding the partitioning that minimizes the Helmholtz
free energy

(8A/3(N,))=(8A/3(Np}) =0,
subject to the constraint that (N,) + (Ng) = N is fixed.

4.17. For the system described in Exercises 4.15 and 4.16, we have
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the canonical partition function

Q=2 q¥'q¥r/NyINg!
N4, Np
(Ns+Ng=N)

=(ga+qs)"/N!
Show that
(Na) =q4(3In Q/8G4)gpn
=Nq4/(qa+qs)-
Use this result and the analogous formula for (Nz) to show
that (N,)/{(Ng) = q4/qps. Next, consider the fluctuations from
these mean values. Express the average of the square fluctua-

tion, (N, —(N,))?, as appropriately weighted sums over
states, and show that

([Na— (N)F) = QA(a(NA>/aQA)qa.N
= (N4} {Ng)/N.

Derive a similar expression for the fluctuations in Np.

4.18. (a) Show that for an ideal gas of structureless fermions, the
pressure is given by

Bp =3fin(2),

where z = exp (Su),
A= (Q2nph*Im)'?,

m is the mass of the particle,
A -x
fs,z(z)—v;J; dex?In (1+ ze™)

— 2 (_1)£+lz£/15f2,
I=1

and the chemical potential is related to the average
density,

p={(N)/V,
by

PR3 = finfz) = 3, (~ 112/
I=1

(b) Similarly, show that the internal energy, (E), obeys the
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relation
(E)=3pV.

4.19. Consider the ideal Fermi gas of Exercise 4.18 in the high

4.20.

temperature and/or low density regime (pA><«<1).
(a) Show that
z=pA+ (pA*/2V2+ - -.

(b) Use this result together with the Fermi distribution for (n, )
to deduce the Maxwell-Boltzmann distribution

(np) = prPe=b,

where p stands for momentum and ¢, = p*/2m.
(c) Show that the thermal wavelength, A, can be viewed as an
average De Broglie wavelength since

A~h/{|pl).
(d) Show that
Bplp =1+ pA*/(2)* +- -

Why does a finite value of pA’ lead to deviations from the
classical ideal gas law? Why should you expect the quan-
tum deviations to vanish when pA®— 0?

Consider now the ideal Fermi gas of Exercise 4.18 at low
temperature and/or high density (pA>>> 1).
(a) Show that

PR’ = fin(z) = (In 2)*?4/3Vx,

hence
z =~ gPer

where
er = (H*/2m)(67%p)?>.

[Hint: Use the integral representation of
fia(2) = (4/Vm) f dx x¥(z7 %" +1)71]
0

(b) Show that
p =2em/5(1+ OUZT?/e}).

Hence the pressure does not vanish at T = 0. Why?
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7 ////////////// Electrons at these
Conduction band (positive) energies
0 behave as free particles.

\ ith lattice site for nonconducting electron
Energy of a (there are p; of them per unit volume). Electrons
nonconducting in these sites are said to be in the valence band.
electron

4.21.

4.22‘

Fig. 4.5. Model for semiconductors.

In this problem, consider a model for semiconductors based
upon the Fermi ideal gas approximation for electrons. Our
schematic view of the system is shown in Fig. 4.5. Both & and
€ — g are large compared to k7.

(a) Show that the average electron density, p=(N)/V, is
given by

p= 2(p,)[e"6(£"’) + 1]-1
+[2/(27)?) f dk [ePlerten 4 1)1,

where &, = #%k?/2m,. The first of these two terms repre-
sents the average concentration of electrons in the lattice
sites, and the second term represents the concentration in
the conduction band.

(b) Noting that Ber>>1 and (€ — £¢) > 1, show that

pn = (ps/A*)deFe,

where 4 is the thermal wavelength for an electron, p is the
average density of unfilled lattice sites, and n is the density
of electrons in the conduction band. This relationship
provides a law of mass action for semiconductors since the
right-hand side plays the role of an equilibrium constant
for the product of variable concentrations on the left.

Consider an ideal gas of argon atoms in equilibrium with argon
atoms adsorbed on a plane surface. Per unit surface area, there
are p, sites at which the atoms can be adsorbed, and when they
are, their energy is —e per adsorbed atom. Assume the
particles behave classically (is this a good approximation at
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4.23.

4.24.

4.25-

1 atm and 300°K?) and show that

(paal/ Pg) = psA’ePs,

where A is the thermal wavelength for an argon atom, p, = fp
is the gas phase density, and p,y is the number of atoms
adsorbed per unit area. [Hint: At phase equilibrium, chemi-
cal potentials are equal. Further, as in Sec. 4.10, Bu in the gas
phase is In pA°.] Note the similarity between this classical result
and that found in Exercise 4.21. Comment.

(a) Prove that if the energy eigenvalues of a system can be
expressed as a sum of independent contributions E = E, +
Ep + Ec (e.g., electronic energy, vibrational energy, rota-
tional energy) that the heat capacity can be written
Cy = C{ + C{? + C§°). In addition, show that the heat
capacity is independent of zero point energy.

(b) Derive an expression for the electronic heat capacity
assuming that there are only three significant electronic
states and that they have energies and degeneracies given
by &0, 8o €1, 815 €2, 82-

(c) Given that the energies required for electronic transitions
correspond roughly to u.v. light (~50,000°K), show how
the calculated room temperature heat capacity of a diato-
mic molecule will change if the electronic degrees of
freedom are totally neglected. What if the ground electro-
nic state degeneracy is included but all the excited electro-
nic states are neglected?

(d) Show how the room temperature entropy of the same
molecule will change in these two cases.

State all the necessary assumptions and calculate the entropy
and C, (in units of cal per mole-deg) for HBr at 1 atm pressure
and 25°C given that #iw/kz=3700°K and #*/2lkz=12.1°K.
Here fiw is the energy spacing between the ground and the first
excited vibrational state in HBr and / is the moment of inertia
of HBr in the ground vibrational and electronic states. The
ground electronic state for HBr is nondegenerate.

Use the information compiled in Chapter 8 of Hill’s
Introduction to Statistical Thermodynamics to calculate the
equilibrium constant, K, for the reaction

Lell

when the reaction occurs in the dilute gas phase at T = 1000°K.
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4.26. Consider a one-component gas of non-interacting classical
structureless particles of mass m at a temperature 7.

(a) Calculate exactly the grand canonical partition function, Z,
for this system as a function of volume, V, temperature,
and chemical potential, . Your result should look like

Z=exp(zV),

where z is a function of 7 and p.

(b) From the result of part (a), determine the pressure, p, as a
function of T and the average particle density, p.

(c) For lcc of gas at STP, compute the relative root mean
square of the density fluctuations, [{(8p)%)/p?%]"%

(d) Calculate the probability of observing a spontaneous
fluctuation in 1cc of gas at STP for which the instan-
taneous density differs from the mean by one part in 10°.

Bibliography

The material covered in this chapter is discussed in all elementary texts.
Those referenced at the end of Chapter 3 may be useful to the student.

The discussion of the classical limit—the transition from quantum to
classical statistical mechanics—deserves a more complete treatment than
provided herein or in other introductions to the subject. Perhaps the best
treatments employ Feynman’s path integral formulation of quantum theory.
A most useful introduction to path integrals in statistical mechanics is given
in Chapter 3 of Feynman’s text:

R. P. Feynman, Statistical Mechanics (Benjamin, Reading,
Mass., 1972).

The discussion of symmetrized many particle wavefunctions and occupa-
tion numbers touches on the subject of “second quantization,” which is a
useful notational scheme. This subject is treated in Chapter 6 of Feynman’s
text.



CHAPTER 5

Statistical Mechanical Theory
of Phase Transitions

In Chapter 4 we considered many examples of ideal gases—systems
in which particles or degrees of freedom do not interact with each
other. We now leave that simple class of models and consider the
situation in which interparticle interactions cause correlations be-
tween many particles. Phase transitions provide the most striking
manifestations of interparticle interactions. Our discussion of the
microscopic theory for this type of phenomena will focus on a simple
class of lattice models. Most of what we say, however, has broad
implications extending far beyond these particular systems. In
particular, in the context of the lattice models we will discuss the
meaning of order parameters and broken symmetry, and we will
introduce the generally applicable approaches to treating coupled or
highly correlated systems with analytical theory: mean field theory
and renormalization group theory. These powerful concepts and
techniques play a central role in all of the physical sciences.

5.1 Ising Model
We consider a system of N spins arranged on a lattice as illustrated in
Fig. 5.1. In the presence of a magnetic field, H, the energy of the
system in a particular state, v, is
N
E,= — > Hus; + (energy due to interactions between spins),
i=1

119
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Fig. 5.1. Spins on a lattice.

where s; = £1. A simple model for the interaction energy is
—J Z ' S,'S izl
i

where J is called a coupling constant, and the primed sum extends
over nearest-neighbor pairs of spins. The spin system with this
interaction energy is called the Ising model.

Notice that when J >0, it is energetically favorable for neighbor-
ing spins to be aligned. Hence, we might anticipate that for low
enough temperature, this stabilization will lead to a cooperative
phenomenon called spontaneous magnetization. That is, through
interactions between nearest-neighbors, a given magnetic moment
can influence the alignment of spins that are separated from the given
spin by a macroscopic distance. These long ranged correlations
between spins are associated with a long ranged order in which the
lattice has a net magnetization even in the absence of a magnetic
field. The magnetization

(M>=§V1.usi

in the absence of the external magnetic field, H, is called the
spontaneous magnetization.

M|

> T

T,
Fig. 5.2. Spontaneous magnetization.
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Unless the temperature is low enough (or J is high enough), there
will be no net magnetization. Let 7, (the Curie temperature or
critical temperature) denote the highest temperature for which there
can be non-zero magnetization. We expect a curve like the one
illustrated in Fig. 5.2.

Exercise 5.1 Show that for positive J and zero field (i.e.,
H—07%), the lowest energy of the Ising model with a
cubic lattice is

Ey=—DNIJ, D = dimensionality,

and that this lowest energy corresponds to all the spins
aligned (either all up or all down). [Hint: The number of
nearest-neighbors for any given spin is 2, 4, or 6 in 1, 2, or
3 dimensions, respectively.] What is the ground state
energy for a two-dimensional Ising model with a triangular
lattice?

Exercise 5.2 Determine the magnitude of the spontaneous
magnetization of an Ising model at zero temperature.

Provided T, > 0, the system undergoes an order-disorder transition: a
phase transition. We study this magnetic system because it is simpler
than fluids. However, we will see that the magnetic transition is
closely analogous to liquid-gas transitions, and many other processes
of interest.

The macroscopic properties of this magnetic lattice can be
computed from the partition function

Q(B, N, H)=2 e P&
=§: ; e ;ilexp [ﬁyH Z:ls,.+ﬁl }u:'s;s,-].

The interaction term couples the different s;’s so that the multiple
sums are tangled together. In a one-dimensional lattice

L A
1 2 3 i-1 i i+l N

the interaction energy can be reduced to a sum over a single index

N
-J E SiSi+1
i=1
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(where we have used periodic boundary conditions; that is, the N + 1
spin is the first spin). For that case, the partition function can be
evaluated analytically yielding (at zero field)

Q(B, N, 0) = [2 cosh (B])]".

Exercise 5.3 Verify that this result is correct for large N.

It is also quickly verified that the one-dimensional model predicts no
spontaneous magnetization at any finite temperature (see Exercise
5.21).

The physical reason for the absence of spontaneous magnetization
is easily understood by considering the energetics of excitations to
disordered states. For example, one of the two ground states

N
i 2 = N
.
has an energy —NJ and a net magnetization per particle of . This is
an ordered state. The disordered state

Pt Lo

N
1 2 > N

with magnetization of zero has energy (—N + 4)J. This small change
in energy, only one part in N, is insufficient to stabilize the ordered
state. Indeed, for a one-dimensional system, the net magnetization
per particle should vanish for all temperatures higher than T ~
J/Nkg, which is vanishingly small for macroscopic N.

In a two-dimensional system, however, the excitation energy to a
disordered state is much higher. For example, the energy for the
configuration

€« —> —>

B
i T

bdd bod
is N'2 parts out of N higher than the energy of the perfectly ordered

configuration. This difference in energy can be sufficient to stabilize

an ordered state.
In fact, in two and three dimensions, the Ising model does exhibit

an order-disorder phase transition. However, the demonstration of

—— —> —>
€« —> —>
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this fact is nontrivial and represents one of the major achievements of
20th century science. In the 1940s, Lars Onsager showed that the
partition function of the two-dimensional Ising model (at zero field)
is

Q(B, N, 0) =2 cosh(B)e'])",
where

I=(2m)™! r de¢ In{3[1+ (1 — k*sin” ¢)"?]}

with
k = 2sinh(2p7)/cosh*(287).

Onsager’s result implies that the free energy associated with this
partition function is nonanalytic. Further, it can be shown that a
spontaneous magnetization exists for all temperatures below

T.=2.269] /kp.

[T. is the solution to sinh(2//ksT.)=1.] Near this temperature,
Onsager found that the heat capacity, C=(3(E)/3T)yq Iis
singular:

(C/N) ~ (8kg/7)(BJ) In|1/(T — T.)|.
Further, the behavior of the magnetization is
(M/N)~ (constant)(T, - T)?, T<T,

where B =1/8. (Don’t confuse this exponent with the reciprocal
temperature.)

No one has solved the three-dimensional Ising model analytically.
But numerical solutions have established that a critical temperature
exists which is roughly twice the value for two dimensions. Near that
temperature,

(C/IN)<|T =T |
and
M/N)=(T.-T)", T<T,
where the critical exponents have the values
a=0.125, p=0.313.

We will soon consider two approximate schemes for accounting for
the interactions between particles, and see what predictions these
methods make with regard to the phase transition in the Ising
magnet. First, however, there are a few more things that should be
said about the general physics of phase transitions.
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5.2 Lattice Gas

Here we will show that with a simple change in variables, the Ising
magnet becomes a model for density fluctuations and liquid-gas phase
transformations. To begin, we construct a model based upon the
lattice drawn at the beginning of this chapter. In this case, however,
the lattice divides space into cells. Each cell can be either occupied
by a particle or unoccupied. We will let n,=0 or 1 denote the
occupation number for the ith cell. The upper bound of n;=1 is
effectively an excluded volume condition saying that no pair of
particles can be closer than the lattice spacing. Attractions between
neighboring particles are accounted for in this model by saying that
when particles are in nearest-neighbor cells, the energy associated
with each such pair is —&. The total energy for a given set of
occupation numbers is then

- %’ nn;.

We will neglect any further detail concerning the configurations of
particles in the system. In this approximation, the configuration of
the system is determined by the set {n;}, and the grand canonical
partition function is given by

N
E= exp{ﬁu, Zln,»+ﬁ£ %:'ninj},

L TIETT n

where N is the number of cells (not particles) and u is the chemical
potential. The volume of the system is N times the volume of a cell.

The model system with this partition function is called the lattice
gas. It is isomorphic with the Ising magnet. The correspondence is
established by making the change of variables

s,'=2n,' - 1.

One finds that “spin up” in the Ising magnet corresponds to an
occupied cell in the lattice gas, “spin down” corresponds to an empty
cell, the magnetic field maps (within constants) to the chemical
potential, and the coupling constant J in the Ising magnet is £/4 in

Exercise 5.4 Make the correspondence concrete. In par-
ticular, derive the precise relationships between the para-
meters in the Ising magnet and those in the lattice gas that
make the canonical partition function of the former
identical within a proportionality constant to the grand
partition function of the latter.
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Fig. 5.3. Isomorphic systems.

the lattice gas. In Fig. 5.3, we illustrate the correspondence for one
particular configuration.

More sophisticated lattice models for density fluctuations can be
constructed by generalizing the nature of the lattice and the number
of components and by increasing the number of states per lattice site
from the two state (up and down spins) Ising magnet. Multistate
generalizations are often called Potts models, and the use of
complicated lattices are often called decorated lattice models.

5.3 Broken Symmetry and Range of Correlations

One feature of the order-disorder phenomenon in the Ising magnet
should cause all but the most casual observer to pause. In the
absence of the magnetic field, the model is symmetric with regard to
the up and down directions of the spin. Indeed, the ground state with
all spins aligned is two-fold degenerate since the total alignment can
be either up or down. Therefore, in the absence of an external
magnetic field, it would seem that an exact statistical mechanical
calculation of the magnetization through the formula

(M)=0"'3 (é Mss)e""’"*

would necessarily give zero. The reasoning here is quite simple: for
every configuration with positive M, =¥, us;, symmetry demands
that there is an equally weighted configuration with negative M,.
Hence, the sum is zero. How then should we think about the broken
symmetry of spontaneous magnetization?

One answer is constructed by considering a free energy that
depends upon the magnetization. In particular, imagine summing
over all states v for which the net magnetization is constrained to the



126 INTRODUCTION TO MODERN STATISTICAL MECHANICS
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Fig. 5.4. Reversible work function for the magnetization.

value M; that is,
O(M) =3 A(M — M,)e "=,

where A(M —M,) is 1 when M =M,, and zero otherwise. Clearly,
Q0=YuQ(M) and Q(M)/Q is the probability for observing the
system with magnetization M. The quantity

—ksT In O(M) = A(M)

is the free energy that determines the reversible work required to
change the magnetization of the system. From our discussion of the
energetics associated with destroying long ranged order, we imagine
that when the system is below the critical temperature, A(M) appears
as drawn schematically in Fig. 5.4. The energy AE is due to the
coupling of the spins to the external magnetic field. (We imagine that
the field is very small, perhaps so small that it is only slightly bigger
than a field proportional to N~'. Otherwise, the scale of this highly
schematic figure is surely not correct.) As H—0", the bias for up
spins disappears and A(M) becomes symmetric with positive and
negative values of M equally weighted. The energy E* is an
activation energy. If the system is in a state with M close to (M),
one requires a fluctuation with energy of the size of E* in order for
the system to reach a state with magnetization near —(M).

As we have discussed, E* is very large in two and three
dimensions, scaling as N'? and N*?, respectively, when H=0. Itis a
surface tension energy (or line tension in two dimensions). Thus, due
to the Boltzmann weight of configurations, the likelihood of fluctua-
tions between (M) and —(M) states becomes vanishingly small in
the limit of a large system. As a result, the occurrence of spon-
taneous magnetization or the symmetry breaking resulting from the
long ranged correlations can be viewed as follows: Through the
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application of an external field, the system is prepared with a
magnetization of a particular sign. The field can then be made
arbitrarily weak, and if we are below the critical temperature,
E*#0, and spontaneous fluctuations will not be of sufficient size to
destroy the broken symmetry.

Exercise 5.5 Consider this type of discussion in the
context of liquid-gas phase equilibria and gravitational
fields. Use the lattice gas model as a concrete example.

The fluctuating magnetization, M, is the order parameter for the
Ising system. Here, the words “order parameter” are used to denote
a fluctuating variable the average value of which provides a signature
of the order or broken symmetry in the system. For the correspond-
ing lattice gas, the order parameter is the deviation of the density
from its critical point value. To expand on the meaning of order
parameters, it is useful to introduce another concept: the range of
correlations—that is, the distance over which fluctuations in one
region of space are correlated or affected by those in another region.
If two points are separated by a distance larger than that range, then
the different fluctuations at these two points will be uncorrelated
from each other.

Consider the situation in which the range of correlations, R, is a
microscopic distance—that is, no larger than a few lattice spacings. In
that case, the lattice can be partitioned into a huge number of
statistically independent cells. Each cell would have a side length L
that is significantly larger than R but still microscopic in size. See Fig.
5.5. The net magnetization in each cell is uncorrelated to that of its
neighbors. Hence, there is no macroscopic cooperativity, and the
average total magnetization will be zero.

If, on the other hand, R was macroscopic in size, a net average
magnetization in a macroscopic sample could then exist. We see,
therefore, that the broken symmetry associated with a finite value of
average order parameter is intimately related to the existence of
long range order—that is, a range of correlations macroscopic in
size.

To write equations associated with these words, we introduce the
pair correlation function between spins i and j,

Cy= <S¢'Sj) = (si)(sJ')-
For the corresponding lattice gas model, c; is a constant times the

correlation function between densities in cells i and j. According to
its definition, ¢; vanishes when the spin (or occupation number) at
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Fig. 5.5. Partitioning with different lengths on a lattice.

lattice site i is uncorrelated with that at lattice site j. Hence,

N
s ¢1; = number of spins correlated to spin 1.
j=2

We have singled out spin 1 for notational convenience. All the spins,
of course, are equivalent. Note that as the range of correlations
grows, the number computed in the above summation also grows.

This number of correlated spins and thus the spatial range of
correlations is related to the susceptibility,

(-5 ),

To establish the relationship we note that from the analysis of
fluctuations in magnetization, we have the general result

X6, H) = ((5M),

where
M=M- (M)

=p é[-ﬁ - (s)]
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Therefore,

1= (2IN) S [sisy) — () (5]

ij=1
N
i
=pu 2"1:"
i=1

where, in the second equality, we have used the definiton of ¢; and
the fact that all lattice sites are equivalent. According to this last
formula, the divergence of the susceptibility is associated with the
existence of long ranged correlations. The reasoning is that the
right-hand side counts numbers of correlated spins, and this number
increases as the range of correlations increases.

One way y can diverge is related to the phenomenon of symmetry
breaking. Here, two phases coexist at 7 < T, and the application of
an infinitesimal field will suffice to produce a net macroscopic
alignment of spins. In particular, for positive H, if N— « and then
H—0" for T<T, then (M) =Nmyu, where mou is the spon-
taneous magnetization per spin (the subscript zero emphasizes that
the field is sent to zero). On the other hand, if H <0 and N— % and
then H— 0", then (M) = —Nmou. Hence, for T <T,, the (M) of
an infinite system is a discontinuous function of the field at H =0.
Therefore, its derivative, 3(M)/3H is divergent at H = 0.

To examine this behavior in more detail, consider the case where
T<T, N is big (but not yet infinite), and H=0. Due to the
symmetry of the system

(s:) =0.
At the same time* o
z <S]_Sj) =ng.
j=1

Now given this result, we see that the susceptibility at H = 0 for large
Nand T<T,is

x = Nmou®.
The behavior implied by the formula is depicted in Fig. 5.6. As the
diagram and the last formula indicate, the divergence of y that we

associate with symmetry breaking and long range order is a diver-
gence that appears in the limit of a very large system. Recall also that

* One may understand this equality by noting that the value of the tagged spin, s5,, is sufficient to
bias the system into one of the two states of broken symmetry (spin up or spin down). That is, if
$y=+1, then T; (s;5,) is Nmy; and if s;=~1, the sum is then —Nmgs, = +Nm,. Finally, the
probability of s, = +1 is 1/2 in both cases.



130 INTRODUCTION TO MODERN STATISTICAL MECHANICS

(M)

== fHu

[-@llN

Fig. 5.6. The average magnetization for T < T_ and large but finite N.

x is proportional to the mean square fluctuations in the magnetiza-
tion. The divergence of yx is therefore connected to the presence of
macroscopic fluctuations. In other words, the possibility of broken
symmetry implies correlations in fluctuations over macroscopic dis-
tances. The phenomenon we are considering here is like the behavior
of a coalesced drop of liquid that in the absence of gravity would
wander through the vapor. The large macroscopic fluctuations are
simply the appearance and disappearance of the droplet in the region
of observation. See Fig. 5.7. Notice that these fluctuations are
quenched by the application of a small symmetry breaking field.

At or near the critical point, however, a somewhat different
situation occurs. Here too y diverges. But now it is because of the
disappearance of the distinction between two phases (e.g., spin up
and spin down, or high density and low density). In other words,
when considering the bistable potential shown in Fig. 5.4, the barrier
vanishes; that is, the surface energy tends to zero. In that case,
(8H/3(M))g tends to zero as f— fB. at H=0. [For a lattice gas
model, or any fluid in general, the corresponding relation is

(aﬁwap)ﬁi(aﬁp/ap)ﬁ—»o

along the critical isochore as T— T, from above.] Since the barrier or
distinction between phases ceases to exist at the critical point, the
application of a small external field is not sufficient to break
symmetry and quench the macroscopic fluctuations implied by y — .
The critical point is therefore an infinitely susceptible state possessed



STATISTICAL MECHANICAL THEORY OF PHASE TRANSITIONS 131

N
\_{
1
@ Observed ®)
volume
Vapor—"’? . ’
(c)
Liquid ‘

Fig. 5.7. Fluctuations with phase equilibria.

by fluctuations. These fluctuations are not random but highly
correlated over large macroscopic distances.

Figure 5.7 illustrates what we might observe for the fluctuations
with liquid-vapor equilibrium. Pictures (a) and (b) are two situations
with the temperature T well below its critical value, 7., and no
gravitational field. Picture (c) also has T < T, but a gravitational
field is applied. Picture (d) imagines the fluid near its critical point.
The observed volume is indicated by the dashed line. The nearest-
neighbor spacing, /, in the lattice gas model corresponds to the
thickness of the lines drawn in these figures.

5.4 Mean Field Theory

In general, the theoretical treatment of systems undergoing phase
transitions requires the use of approximations. The first such ap-
proach we consider is a self-consistent field method that has provided
the foundation for nearly all many-body theories developed prior to
1970. To illustrate the method, we will apply it to the Ising magnet.
The idea is to focus on one particular particle (in this case a spin) in
the system and assume that the role of the neighboring particles
(spins) is to form an average molecular (magnetic) field which acts on
the tagged particle (spin). See Fig. 5.8. This approach, therefore,
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Fig. 5.8. Schematic view of mean field theory.

neglects the effects of fluctuations that extend beyond the length scale
associated with the primary or tagged lattice cell. The method
includes only those fluctuations that occur within the tagged cell, and
since these involve only one particle, the method succeeds at
reducing the many body statistical mechanics problem into a few
(i.e., one) body problem. Procedures of this type can never be exact,
but often they can be very accurate and quite useful. They are least
accurate, of course, for systems near critical points where cooperati-
vity in fluctuations extends over large distances.

To begin the mean field analysis, let us write the Ising model
energy, E,,

Ev = _'”H Z 8 % Z J,'js,‘sj',
i ij

where
J;y=J, iandj nearest neighbors,

=0, otherwise.

The force exerted on s; due to the neighboring spins and the external
field, H, is

~(3E,/3s)) = pH + X Jys;.
i
Therefore, the instantaneous field impinging on spin i is given by

uH, = pH + 2, Iys;.
I

As the neighboring spins fluctuate, H; fluctuates from its mean
(Hy) = H+ 3 Jy(s;)
I
=H+Jz(s;}/ u,

where in the second equality we have noted that (s;) = (s;) for all i
and j in the Ising model, and z is the number of nearest neighbors
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around a given tagged spin. It is the fluctuations of H, away from its
mean that couples the fluctuations of the tagged spin to those in its
environment. Indeed, in the mean field approximation which neglects
the deviations of H; from (H,;), the force on a tagged spin is
independent of the instantaneous configuration of the neighboring
spins.

The statistical mechanics of a system of uncoupled spins in a fixed
magnetic field was examined in Chapter 3 (see Exercises 3.18 and
3.19). Using the results derived there, we can compute the average
value of a tagged spin, labeled 1 for convenience, in the mean field
approximation

sy~ 3 siexplBu(H+ At/ S explBut + AH)s)

s1==%1

where AH is the molecular or environmental contribution to the
mean field; that is,

AH =Jz(s,)/p.
Performing the sums over the two spin states yields

= tanh (BuH + BzJm), (a)

where m is the magnetization per particle per u:

m=(M)/Nu= (g m:)/Nu
= (s8;) = (51)-

tanh (BJ/zm)

A

-~
] ™ prz>1

/ 1 ~ g/ < 1
|

|

| m

4 1

Nontrivial solution

to mean field equation
for fJz > |

Fig. 6.9. The mean field equations for different values of the coupling constant
{or temperature).
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Equation (a) for m is a transcendental equation whose solution
yields the magnetization predicted by this self-consistent mean field
theory. It is “self-consistent” in the sense that the mean field which
influences the average value of the magnetization depends itself upon
the average of the magnetization. Note from Fig. 5.9 that non-zero
solutions for m exist for H =0 when fzJ>1. Thus, for a square
lattice we predict the critical temperature

T; - ZDJ/ICB.
For T < T, the solution of m =tanh (fJzm) is
1 1+m
p= 2Jzm i (1 - m)'

Exercise 5.6 Verify this result. By Taylor expansion,
analyze the precise form of m for temperatures near
2DJ [k and show that the critical exponent g in this mean
field theory has the value 1/2. Show that at T =0, the
mean field theory for the spontaneous magnetization
yields m = £1.

Exercise 5.7 Draw a graph of T vs. m as given by the
mean field theory. This is the mean field theory prediction
of the spontaneous magnetization sketched at the begin-
ning of this chapter.

Exercise 5.8 Show that the total internal energy in the
mean field theory is

(E) = —NuHm — (1/2)JNzm?>.

At H=0 and T =0, this gives (E) =—NDJ, in agree-
ment with the exact result. What does the theory predict
for T > T.? Is the prediction correct?

Notice that for one dimension, the mean field theory predicts that
an order-disorder transition occurs at a finite temperature T.=
2J/kg. But the exact analysis of the one-dimensional Ising model
yields 7. =0 (i.e., no spontaneous magnetization at finite tempera-
tures). Thus, the theory is ‘“‘infinitely wrong” in one dimension.
Spontaneous fluctuations destroy the order. But mean field theory,
which neglects fluctuations, predicts long range order. In two
dimensions, the Onsager solution yields T.=2.3J/kg, while the
theory yields T, = 4J/kp. In three dimensions, the percentage error is
smaller: the correct answer (known from numerical work) is 7.~
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4J kg, whereas the theory gives T. = 6J/kp. In each case, the neglect
of fluctuations predicts transitions to an ordered state at temperatures
higher than the true transition temperature.

The theoretical estimates for the critical temperature in two and
three dimensions can be significantly improved by making more
sophisticated mean field approximations. These improvements are
constructed by tagging more than a single spin. For example, one
might consider summing over all but a pair of nearest-neighbor spins,
s; and s,. Then the molecular field acting on this pair can be
approximated as a mean field. This approach reduces the statistical
mechanics to a tractable two-body problem, and it accounts for
fluctuations at the single particle and pair level, but neglects those
involving larger numbers of particles. While it is possible to make
significant improvements in this way, mean field theories neglect
fluctuations over length scales larger than those associated with a
small number of particles, and this neglect will always predict
incorrect critical exponents. For example, mean field theories will
always yield §=1/2, independent of dimensionality. (Actually, in
dimensions higher than three, mean field theory can become correct.
The reason is not obvious, but can you think of the physical reason
for it to be true? The fact that mean field theory increases in accuracy
with increasing dimensionality is hinted at by the comparison of
critical temperatures.)

5.5 Variational Treatment of Mean Field Theory

In this section we embellish the mean field treatment of the Ising
model by introducing the concepts of thermodynamic perturbation
theory and a variational principle that can be used to optimize
first-order perturbation theory. The methods are quite general and
serve as a prescription for systematically deriving mean field theories.
The embellishment is not necessary, however, for understanding the
basis of renormalization group theory as described in the next two
sections, and the reader may wish to pass to that section, returning
here at a later time.

The Ising model problem is the computation of the Boltzmann
weighted sum

Q= D exp[-BE(s1, 52, ...,53)]

S1852004

with
E(sy,...,s5)= _%Ejijsisj = MHESn
ij i
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where J; is J for nearest neighbors i and j, and zero otherwise. The
interaction terms, —J;;s;5;, are responsible for cooperativity, but also
for the complexity of computing Q. In the last section, however, we
saw that by neglecting fluctuations from the mean in the environment
of each spin, the system behaves as one composed of independent
entities. Therefore, one way to begin a discussion of mean field
theory is to consider an energy function of the form

N
Eve(sy, - - -, sv)=—u(H + AH) 3 s,.

i=1

A system with this energy function is a model with independent
spins, and each spin fluctuates under the influence of a static or mean
field. This model presents a simple statistical mechanical problem.
The partition function is

N
Ome = Z H exp [Bu(H + AH)s;]

S1se.8n8 j=1
==1

= {2 cosh [Bu(H + AH)]}", (a)
and the average of any of the s,’s is
(s1)mr = tanh [Bu(H + AH)]. (b)

In adopting a mean field description, the static molecular field AH
must be identified. A physical argument was presented in Sec. 5.4
which set AH = zJ(s,)/u. The question we now ask is whether this
identification was actually the optimum one. In particular, once we
adopt the physical picture associated wth Epg(s,,...,sy) (ie.,
independent spins fluctuating in an effective static field), we can
strive to optimize the parameterization of that model. Of course, in
this case, the mean field model is particularly simple being charac-
terized by only one parameter, AH.

To optimize, we consider performing a perturbation theory with
the mean field model as the reference. This is done as follows: Let

AE(sy,...,Sn)=E(s1,...,5xv) = Eme(51, - - -, SN)-
Then

.....

where the arguments of Eyg(sy,...,sy) and AE(sq, ..., sy) are
understood but omitted for notational simplicity. By factoring the
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summand, we can also write
Q= 2 exp(—BEws)exp(—BAE)

= QMFs E exp (—BEwmr) exp (— BAE)/ Qup.

LoseesSN

Now, let us define

(- Imr=0mk > [ -1exp (—BEwnr)

as the Boltzmann averaging operation which is weighted with the
mean field energy function Eyg(s, . . ., sy). Then,

Q = Qwmr(exp (—BAE)) r.

This last equation, which is an exact factorization of the partition
function, is the starting point for thermodynamic perturbation
theory. The mean field model is the reference or zeroth-order
system, the perturbation energy is AE(sy, . . ., $x), and the effects of
this perturbation are computed by performing averages weighted by
the Boltzmann factor for the reference system. In developing a mean
field theory, we assume that fluctuations about the mean field energy
are small; that is, in some sense, AE is small. Thus, we Taylor
expand the second term:

(exp (—BAE))yr=(1—BAE+ - )y
=1-B(AE)me+- -
~exp (~B(AE )+

where the neglected terms are second and higher order in AE. We
therefore arrive at the first-order perturbation theory result
Q = Qwmr exp [~ (E — Eyr)mrl-
How good can this approximation be? The following bound is

useful:
ef=1+x.

Exercise 5.9 Draw a graph of e* vs. x and compare it with
(1+x) vs. x. Show that e*>1+x for all real x #0.
[Hint: Note that for real x, e* is a monotonically
increasing function of x as is its derivative too.]

By applying this bound, we have
(ef) = ' (el={N)

e N((L+f = (F)) =eP.
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Therefore, in the context of the thermodynamic perturbation theory
above, we have

Q = Qumrexp (—B(E — Emr)wmr)-

Exercise 5.10 Derive the first-order perturbation theory
for the free energy and show that it is an upper bound to
the exact free energy.

This inequality is often called the Gibbs—Bogoliubov-Feynman
bound. We can use the bound to optimize the mean field reference
system since we can adjust the molecular field AH so as to maximize
the right-hand side. That is, AH is determined by solving the
equation

2]
0=mQMFexP (=B{AE ) mp)- (c)

The calculation proceeds as follows: First,

_ﬁ(AE)MFzﬁN{%Jz<Sl)§dF_ﬂAH“'l)MF}’ (d)

where we have used the fact that since spins are uncorrelated in the
mean field model, (s;5;)mr= (5:)mr(5;)mr for i#j, and since all
spins are the same on the average, (s;)mr = ($;)mr. By combining (d)
and (a) with (c), and performing the differentiation, we obtain

0= BJz{s1)mr(3(s1)mr/OAH) — BuAH(3(s:)mr/3AH)
or
Jz{s\)mr = HAH.

Exercise 5.11 Verify this result. Further, show that with
this choice for AH, the first-order perturbation ap-
proximation for the free energy corresponds to Q = Qur,
and that —kzT In Qyr is actually an upper bound to the
exact free energy.

This identification of AH is identical to that adopted on physical
grounds in Sec. 5.4, and by combining it with Eq. (b) for (s,)me, We
obtain the same self-consistent mean field equations studied in that
section. Those equations are therefore the optimum theory that can
be constructed once one adopts the mean field model in which the
Ising magnet is pictured as a system of independent spins, each one
fluctuating under the influence of an average static environment.
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5.6 Renormalization Group (RG) Theory

We now consider a method that can account for large length scale
fluctuations, the renormalization group (RG) theory. This approach
to understanding phase transitions was developed in 1971 by Kenneth
Wilson, who was awarded the 1982 Nobel Prize in Physics for this
contribution. Wilson’s method is very general and has wide ap-
plicability extending well beyond the field of phase transitions.
Within this area of research, however, the theory can be viewed as an
extension and implementation of phenomenological ideas suggested
by Leo Kadanoff in the 1960s.

Several of the concepts in the RG theory can be illustrated with
the one-dimensional Ising model. So we start with that system even
though it does not exhibit a phase transition. In the absence of the
magnetic field, the partition function, Q, is given by

Q(K, N)= E €xXp [K(' 5 '+8132+32S3+53S4+S435+' ")],
F15825000, SN
=%1

where
K=J/kgT.

The first idea in the RG theory is to remove from the problem a finite
fraction of the degrees of freedom by averaging (summing) over
them. This is to be contrasted with the mean field theory approach
where all but a very few degrees of freedom are removed from
explicit consideration. To be specific, let us partition the summand of
Q as follows:

Q(K,N)= 2 exp [K(s152 + 5253)] exp [K(s354 + 5455)] - - -

81,5200 N

Now we can sum over all the even numbered spins, s,, 54, S¢, - - . -
The result is

Q(K,N)= % {exp[K(s:+s3)] +exp [~K(s, +s3)]}

51,53,55,...

X {exp [K(s3 +55)] +exp [~ K(s3 +55)]} - - -

By performing these sums, we have removed every other degree of
freedom:

OO0 o000 . —O0 O O
1 2 3 4 5 1 3 5
The second important idea in the RG theory is to cast this partially

summed partition function into a form that makes it look the same as
a partition function for an Ising model with N/2 spins and (perhaps)
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a different coupling constant (or reciprocal temperature) K. If this
rescaling is possible, then we can develop a recursion relation from
which we can compute Q(K, N) starting from a system with another
coupling constant (e.g., zero). Thus, we look for a function of K,
f(K), and a new coupling constant K’ such that

eK(s+s') 'S e-—K(s+s') =f(K)eK'.u‘
for all 5, s' = 1. If we can find these quantities, then

QK, N)= 3 f(K) exp(K'sys3)f (K) exp(K's;ss) - - -

=[f(KI"*Q(K", N/2),

which would be the desired recursion relation. A transformation like
this is called a Kadanoff transformation.

To determine the quantities K' and f(K), we note that if
s=s5"= %1, then

X + e X =f(K)eX.
The only other possibility is s = —s’ = +1 from which we have
2=f(K)e ™
or
f(K)=2eX.
Thus, we have two equations for two unknowns. The solution is
K’ =(1/2) In cosh (2K),
f(K) =2 cosh? (2K).
Armed with these formulas, consider
In Q = Ng(K).

Within a factor of —kzT, Ng(K) is a free energy, and since free
energies are extensive, we expect g(K) to be intensive—that is,
independent of system size. From the recursion relation,
InQ(K, N)=(N/2)Inf(K)+InQ(K', N/2), we have g(K)=(1/2)Inf(K)
+ (1/2)g(K"), or since f(K) =2 cosh'? (2K),

g(K')=2g(K) ~ In[2Vcosh (2K)]. (b)

Equations (a) and (b) are called renormalization group (RG) equa-
tions. (They describe transformations which obey the group property,
and they provide a renormalization scheme.) If the partition function
is known for one value of K’, we can generate In Q = Ng(K) for
other values with this recursion or ‘“‘renormalization.” Notice that in
the renormalization obtained from (a) and (b), the new coupling
constant, K', as computed from (a) is always less than K.

(a)
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An alternative set of RG equations would be

K = (1/2) cosh™! (¥, (c)
which is the inverse of (a), and
g(K)=(1/2)g(K')+ (1/2)In2+ K'/2, (d)

which is obtained by noting f(K) =2 exp (K').

Exercise 5.12 Derive these RG equations, and show that
K>K'.

To see how these equations work, we will apply (c) and (d)
starting with a small value of the coupling constant. Repeated
application will generate g(K) at successively larger values of the
coupling constant. Let’s start with K'=0.01. For such a small
coupling constant, interactions between spins are nearly negligible.
Thus, Q(0.01, N)= Q(0, N) =2". As a result,

g(0.01) =In2.
We now start the iteration. From (c) and (d) we find

K =0.100 334,
g(K) =0.698 147.

We now use these numbers as the new K primed quantities and
obtain

K =0.327 447,
g(K)=0.745 814,
and so on.
Renormalization
K group Exact

0.01 In2 0.693 197
0.100 334 0.698 147 0.698 172
—— 0.327 447 0.745 814 0.745 827
o S 0.636 247 0.883 204 0.883 210
0}’% - 0.972710 1.106 299 1.106 302
equations 1.316 710 1.386 078 1.386 080
(j) and (d) 1.662 637 1.697 968 1.697 968
v 2.009 049 2.026 876 2.026 877
2.355 582 2.364 536 2.364 537

2.702 146 2.706 633 2.706 634
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Notice how each iteration gives an even more accurate result. What
would happen if we moved in the opposite direction?

Exercise 5.13 Start with K =10, which is large enough
to approximate Q(10, N)=Q(K—», N)=2exp (NK)—
that is, g(10) =10. Apply the RG equations (a) and (b)
and generate a table like that on p. 141 but which progresses
from large K to small K. Show that by applying equations
(c) and (d), the errors in the nth iteration are 27" smaller
than the error in the initial estimate of g; and show that
the errors grow exponentially when you apply (a) and (b).

The successive application of the RG equations can be represented
by a flow diagram. Each iteration using Eq. (c) leads to higher values
of K:

X . U L. vy
K=0 K=w

Each iteration using Eq. (a) leads to lower values of K:

[V & —& < 3
P < € —tfe— >

K=0 K=w

There are two points, K =0 and K = «, for which the recursion does
not change K. These values of K are called fixed points. The fact that
there is uninterrupted flow between K =0 and K == (i.e., there are
no fixed points at finite K) means that there is no possibility in the
one-dimensional Ising model for a phase transition.

On removing degrees of freedom, we transform the problem to a
nearly identical one with a larger length scale. In this one-
dimensional example, the removal of degrees of freedom leads to a
smaller coupling constant K. We can understand this phenomenon
physically since there is no long range order (except at T =0, i.e.,
K — ), and hence longer length scales should be associated with less
order, and thus a smaller K. By removing degrees of freedom we
move to smaller K and thereby transform the problem to a weak
coupling one in which K is close to zero. Near a trivial fixed point,
such as K =0, properties are easily computed from perturbation
theory.

Notice that at K =0 and c, the fixed points for this system, the
lattice is completely disordered or ordered, respectively. When
completely ordered, the system appears to be the same, independent
of the length scale with which it is viewed. A similar statement is true
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Fig. 5.10. Decimation of half the spins on a square lattice.

for the entirely disordered case. The invariance to a length scale
transformation is an essential feature of the RG fixed points, even
when they are the trivial K =0 and = fixed points.

For systems exhibiting a phase transition such as the two-
dimensional Ising magnet, we will find nontrivial fixed points
associated with phase transitions.

5.7 RG Theory for the Two-Dimensional Ising Model*

Now let’s look at a system that does exhibit a phase transition. The
first step in the RG theory is to sum over a subset of all the spins in
the system. One possible choice of the subset is illustrated in Fig.
5.10. In this figure, the remaining circles represent those spins that
have not yet been summed. Notice that the remaining spins form a
lattice which is simple square (though rotated by 45°) just like the
original lattice.

To carry out the summation over half the spins, we partition the
summand in the canonical partition function, Q, so that every other
spin appears in only one Boltzmann factor:

Q= 2 - -exp[Kss(si+s:+53+5,)]

51482000

X exp [KSﬁ(Sz + 853 + 87 +Sg)] L

* The development in this section follows closely H. J. Maris and L. J. Kadanoff, Am. J. Phys. 46,
652 (1978).
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Thus, by performing the sums over every other spin we get

o= 2 o+ {exp [K(s; + 55+ 55+ 54)]

{remaining s;'s}

+ exp[—K(s; + 52+ 55+ 54)]}

X {exp [K(s2+ 53+ 57+ 53)]

+ cxp ["‘K(Sz +S3 +S7+Sg)]} -
As with the one-dimensional Ising model, we now would like to find
a Kadanoff transformation that turns this partially summed partition
function into a form that looks just like the original unsummed form.
This is not quite possible. Instead, the new partition function is one

appropriate to a system with a similar but more general Hamiltonian.
To see why, we might try to write

exp [K(s, + 5, + 53+ 54)] + exp [—K(s; + 52 + 53 +54)]
=f(K) exp [K'(5152 + 5154 + 5253 + 535,)]

7
ki

and require that this equation hold for all nonequivalent choices of
(51, $2, 53, 54). There are four possibilities:

S1 =85, =8§3=8,==1,
S1=8,=83= —§;= %1,
S1=8,=—§;=~—s5,= %1,
S;=—5,=85;= —s;=*x1.

But the supposition above has only two degrees of freedom f(K) and
K'(K). Thus, it cannot work.
The simplest possibility that can work is

eK(s,+s;+s;+s;) & e—K(Sl+52+53+Sg) =f(K) exp [(1/2)1{1
X (SI.S'z + 5283+ 538, +S4S])
+ K‘z(slS3 + 5254) + K3515253S4]. (a)

Inserting the four possibilities for (s,, 5;, 53, 54), we obtain

e** + e = f(K) exp (2K, + 2K, + K3),
eZK + e_z"zf(K)e'Ks,
2=f(K)exp (—2K, + K3),
2=f(K)exp (—2K, + 2K, + K3).
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The solutions exist. They are
K, =}Incosh (4K),
K, =} In cosh (4K),

K5 =}In cosh (4K) — % In cosh (2K),
and
f(K) = 2[cosh (2K)]"*[cosh (4K)]"8.

Exercise 5.14 Derive these equations.

Combining Eq. (a) with the partially summed partition function
yields
QK N)=[f(KN™ 2 -+ {exp[(Ki/2)(s152+ 5255
remaining s;’s
+ 5453+ 5451) + Ko(5153 +5554) + K3515,5354]}
X {exp [(K/2)(5253 + 5358 + $78g + §753)
+ Kz(Sst + S7S3) + K3525-]SBS3]} Ry

Notice that every nearest-neighbor pair is repeated exactly twice. For
example, s,5; appears in the Boltzmann factor arising from the
summing over §s, and in the one arising from the sum over sq.
However, the next nearest neighbors (e.g., s,5; and s,s,) appear only
once each; and the sets of four spins around in square (e.g., 5,525354)
appear only once each. Thus,

Q(K,N)= >, exp[K ‘Zj'sfsi]

N spins

=[P 3 exp|KiSa

N/2 spins

+ K, D s+ Ky 2" spsqs,s,],
im pqrt

where the double primed sum is over all next nearest-neighbor spins

(in the lattice with N/2 spins), and the triple primed sum is over all

sets of neighboring four spins around in a square.

Notice what has happened. We have removed degrees of freedom,
and due to the topology in the two-dimensional system—that is, the
high degree of connectivity—the resulting interactions between the
remaining degrees of freedom are more complicated than those in the
original problem. This occurrence is the usual state of affairs in
nontrivial interacting systems. We will see it again when we study
liquids. Due to those more complicated interactions, this last
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equation is not in a form for which an exact RG calculation can be
performed. To proceed, we must approximate the summand in the
partially summed partition function in such a way that the partially
summed quantity resembles the unsummed function. The simplest
approximation neglects K, and Kj; entirely. That gives

Q(K, N)=[f(K)]"*Q(K1, N/2)
with
K, = }1n cosh (4K).

These equations are equivalent to those obtained in the one-
dimensional analysis. They predict no phase transition.

To obtain a better result we must account at least for K,. A simple
scheme to do this is a mean-field-like approximation that attempts to
incorporate the effects of the non-nearest-neighbor interactions with
an altered coupling between nearest neighbors:

K] 2,5}3}' + K2 E”S]Sm = K,(Kl, Kz) 2' S,’Sj.
if im if

This approximation gives
Q(K, N)=[f(K)IV*QIK" (K1, K>), N/2].
We let g(K) = N~'In Q(K, N) stand for the free energy per spin. As
a result
g(K)=3Inf(K)+3g(K")
or
g(K’) =2g(K) — In {2[cosh (2K)]"*[cosh (4K)]"®}. (b)

Exercise 5.15 Derive these formulas.

We can estimate K’ by considering the energy of the system when
all the spins are aligned. Since there are N nearest-neighbor bonds in
a two-dimensional cubic lattice with N/2 spins, and there are N
next-nearest-neighbor bonds, too,

K] E,S,'Sj =NK1, Kz Z”S(Sm - NKz
ij Im

when all the spins are aligned. As a result, we estimate
K'=K, +K,
or from the equations for K,(K) and K»(K),
K' =2 In cosh (4K). ()
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This equation (c) has a nontrivial fixed point! That is, a finite K,

exists for which
K. =%1n cosh (4K,).
Indeed,
K. =0.50698.

Equations (c) and (b) are RG equations that can be solved
iteratively to predict the thermodynamic properties of the two-
dimensional Ising model. The flow pattern breaks into two parts:

< < > > > sy
< —t X > > a4

K=0 K. K=

x

Exercise 5.16 Show that for K<K,, Eq. (c) yields
K' <K. Similarly, show that for K> K_, Eq. (c) yields
K'>K.

Since the iterations move away from K, this nontrivial fixed point is
called an unstable fixed point. The trivial fixed points at 0 and o,
however, are called stable fixed points.

To implement the RG equations (b) and (c) it is useful to have
their inverses:

K =} cosh™ (e3573) (c)
and
g(K)=1g(K") + % In {2¢** [cosh(4K"/3)]"*}. (b")

Exercise 5.17 Derive these equations.

From Taylor expansions near K =K, one finds that the heat

capacity, r

C=-x28K)
diverges as K — K, according to the power law

Cx|T-T|™%
where T = (J/kzK) and

a=2-In2/In(dK'/dK|x-x)
=0.131.

Exercise 5.18 Verify this result.
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Thus, we associate the fixed point K, wth a phase transition. The
critical temperature is given by

J
=0.50698
| ks T,
which is close to the exact value
J
= (.44069
kT,

obtained from Onsager’s solution. The RG prediction of a weakly
divergent heat capacity is in qualitative accord with Onsager’s result

Cx—In|T —T).

This application shows that even with crude approximations, the
RG theory provides a powerful way of looking at many-body
problems. Before ending, however, let us summarize a few of the
observations made in this section. One is that the connectivity or
topology that produces cooperativity and a phase transition also leads
to more and more complicated interactions as one integrates out
more and more degrees of freedom. For example, consider again the
square lattice pictured at the beginning of this section. “Integrating
out” spin 5 means that we have Boltzmann sampled the possible
fluctuations of that degree of freedom. Since spin 5 is coupled
directly to spins 1, 2, 3, and 4, the Boltzmann weighted sum over the
fluctuations of spin 5 (i.e., its configurational states) depends upon
the particular state of each of these other four spins. Hence, for
example, spin 4 “feels” the state of spin 1 through the fluctuations in
spin 5. In the lattice that remains after integrating out the first N/2
spins, 1 and 4 are not nearest neighbors. Neither are 1 and 3, yet they
too are manifestly coupled in the second stage of the RG procedure.
This is the origin of the complicated interactions. These new
couplings are clearly intrinsic to the connectivity of the model. In the
one-dimensional case, this degree of connectivity is absent, one does
not generate more complicated interactions by removing degrees of
freedom, and no phase transition appears.

Indeed, when we attempt to use the RG procedure and neglect the
complicated interactions, we are not able to predict the existence of a
phase transition in the two-dimensional model. One way to think
about the changes in interactions as one removes degrees of freedom
is to imagine a multidimensional interaction parameter space for the
coupling constants K;, K,, and K;. In that case, the partition
function depends upon all these parameters—that is,

Q=Q(K11 KZ; K3l" . ;N)l
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where ... is used to denote coupling constants for all imaginable
interactions (e.g., interactions involving six spins). The partition
function of actual interest is Q(K, 0, 0, . . . ; N), but the first interac-
tion of the RG procedure yields

Q(K,0,0,...;N)=[f(K)*"Q(K,, K2, K3, 0, ...;N/2).

To compute the partition function by an RG procedure, therefore,
one must consider transformations of coupling constants in a multi-
dimensional space. It is only by an approximation that we confined
the flow to a line in this parameter space.

In closing, we remark that while the theory was originally devised
to study second-order phase transitions, the ideas of length scale and
Kadanoff transformations, flow in Hamiltonian or coupling para-
meter space and fixed points extend far beyond this application, and
they are finding their way into many diverse areas of physics,
chemistry, and engineering.

5.8 Isomorphism between Two-Level Quantum Mechanical
System and the Ising Model

One reason for the importance of statistical mechanical techniques,
such as the renormalization group method, to various different areas
of the physical sciences is due to the isomorphism between quantum
theory and classical statistical mechanics. We illustrate the connec-
tion here by showing how the statistical behavior of a two-state
quantal system is isomorphic to that of the classical Ising model.

We consider the model described in Exercise 3.21. In particular,
we imagine a quantum mechanical particle (an electron in a mixed
valence compound) fluctuating or resonating between two different
localized states. As the particle moves from one position to the other,
the deviation from the average of the system’s dipole changes sign.
This variability of the dipole permits the instantaneous electric field
of the surrounding medium to couple to the system. In matrix form,
the Hamiltonian and dipole operator for the two-state system are

el 9] et )

Exercise 5.19 Show that the eigen energies for this
Hamiltonian are +A (i.e., the spacing between the two
levels is 2A), and the eigenvectors are proportional to
(1, £1).
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The coupling to the electric field, &, leads to the total Hamiltonian
%0 - Em.

We will assume the surrounding medium is sluggish in comparison to
the quantal system. This means that € is not dynamical and hence, &
is not an operator. For a given &, the partition function of the two
level system is

Q(8) = Tr e P¥o—m®)
where the trace, Tr, is over the two states of the quantal system.

The next step is the crucial trick. We divide the Boltzmann
operator into P identical factors:

Q(8) = Tr [P mO)F, (a)
For large enough P, we can use the result
e~ (B/P)(Ho—mE) - e*(ﬂIP)%oe(ﬂfP)mi[l + O(ﬁ / p)2]_ (b)

Exercise 5.20 Expand the exponential operators and ver-
ify that the left- and right-hand sides of this equation
agree through first order in §/P, and that the deviation at
second order involves the commutator [, m].

Thus, by going to large enough P, we can avoid the mathematical
difficulties associated with noncommuting operators. In their place,
however, one must account for P separate Boltzmann operators,
exp [—(B/P)(#,—m€)]. The matrix elements of each of these
operators can be analyzed as follows: Let u = £1 denote the state of
the quantal system. We have
(ulm|u') = 8 pu (©)
and
(u| #olu') = —(1 - 8,)A
= (uu’' — 1)A/2. (d)
As a result, from (d),
1+0(g%), wu=u'==1,
—&Hy .1\ =
{wle™ ) {eA+O(e‘3), utu' ==+1,
or
(u] e=*% |u') = VeA e "VeA[1 + O(&?)]. (e)
Further, from (c)
(u| €™ |u') = Buue™ ™. ()
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Fig. 5.11. A quantum path (above) and the corresponding configuration of the
isomorphic Ising magnet {below).

Hence, combining (b), (e), and (f) yields

(u| e#®*0=m® |1y = VeA exp [~uu’ InVeA
+ euBu] (1 + O(?)), (3]
where we have introduced the small reciprocal temperature
e=fp/P.

The trace in (a) can be evaluated employing the usual rule of
matrix multiplication—that is,

TrAF= F Ao de ~rAps

Up, U,y up

Thus, employing (g) we arrive at

Q(%)=1lm D (.«:A)P’Zexp[ﬁ (Ku,-u,+1+huj)],

Uy, Uz,... Up i=1
=+1

where kK = —InVeA and h = eu¥, and periodic boundary conditions
are employed, up,; =u;. The limit P— = is required to ensure that
the terms of the order of £ in (g) can be neglected. This last formula
for Q(%) demonstrates the isomorphism since the right-hand side is
indeed identical to the partition function for a one-dimensional Ising
magnet with a magnetic field.

The method we have used in deriving the isomorphism is the same
method introduced by Richard Feynman in the 1940s to derive his
path integral formulation of quantum mechanics. In fact, the sum
over configurations of the isomorphic Ising magnet is the sum over
quantum paths for the two state quantum mechanical system.
Adjacent antiparallel spins in the isomorphic magnet correspond to a
transition or tunneling event in which the quantal particle moves
from one spatial state to the other; that is, the electron in the mixed
valence compound resonates between the two nuclei. Figure 5.11
illustrates this isomorphism. The upper portion of the figure pictures
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a path of the quantal system as it moves between the states with
u=+1 and u=—1. The lower portion pictures the corresponding
configuration of the isomorphic Ising magnet. The disorder in the
Ising magnet coincides with resonance or quantum tunneling. The
ordered isomorphic Ising magnet, on the other hand, corresponds to
a spatially localized state in which tunneling does not occur.

In Exercise 5.26 you will consider how the coupling of this
two-state model to a slowly fluctuating electric field can cause the
onset of localization or the quenching of tunneling, and in the
isomorphic Ising magnet this localization corresponds to an order-
disorder transition. As a preamble to that exercise, let us consider
the energy eigenvalues for the problem. For a given value of &, the
diagonalization of the 2 x 2 Hamiltonian yields the following two
energy levels (see Exercise 3.21):

+VAT+ 7€

Now imagine that in the absence of the two-state system, the electric
field fluctuates slowly and in accord with a Gaussian probability
distribution

P(%) = exp(—p&?/20),

where o is a parameter that determines the size of the typical electric
field fluctuations; indeed, in the absence of the two-state system,

(€)=0
and

(&%) =0/B.

This information, plus the energy levels for the two-state system
coupled to the field, allows us to write down the energies for the full

system:
E.(%)=%*/20 + VAT+ i7 %%

There are two energies, E (%), since the reversible work to change
the field € depends upon whether the two-state system is in its
ground state or excited state. Note that our assumption that the
fluctuations in € are slow is really the assumption that these
fluctuations do not cause transitions between the two stationary
quantum states. In the usual terminology of quantum mechanics, this
assumption is called the adiabatic approximation. We considered
this approximation in a different context in Chapter 4 when discuss-
ing the Born—~Oppenheimer approximation. In Fig. 5.12, the pictures
of the corresponding energy surface for this problem show that when
the fluctuations in & are large enough—that is, when ou’> A—the
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Fig. 5.12. Energies of the two-state system coupled to a field.

configuration with €=0 is then unstable in the ground state. The
stable ground state minima correspond to the situation where the
two-state system is coupled to a net electric field. This field breaks
the dipolar symmetry of the two-state system leading to a nonzero
dipole, and the net polarity corresponds to a localization of the
dipole or quenching of its tunneling.

This phase transition-like behavior plays an important role in a
variety of condensed phase quantum phenomena including electron
transfer processes. After studying Exercise 5.26, the reader may wish
to reconsider the phenomena in the following way: The resonating
dipole, due to its alternating sign as it passes from one configuration
to the other, couples less strongly to the electric field than does the
nonresonating localized dipole. The strong interaction is also a
favorable one energetically since for large enough o, the pliable
electric field can fluctuate and orient parallel to the direction of the
dipole. It is this preference toward a strong and energetically
favorable interaction that causes the broken symmetry and localiza-
tion observed in this model and in the behavior of many molecular
systems found in nature. This type of localizaton phenomena is often
given the name self -trapping.

One last remark before ending this section is a suggestion, a word
of caution, and also a word of encouragement: Try to generalize the
isomorphism we have derived between the two-state quantum system
and the Ising magnet. In particular, consider a quantum system with
three (or more) states. You will find that indeed the sampling of
quantum paths does map onto a classical statistical mechanics
problem. But now, in general, the nearest-neighbor couplings
between the multistate ‘‘spins” involve complex numbers. This
feature means that one must perform Boltzmann weighted sums with
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alternating signs. In other words, quantum systems with three (or
more) states are isomorphic to classical Ising-like systems with
negative “probabilities” for certain states. You might consider what
feature of the two-state model allows one to avoid this difficulty, and
then you might try to invent a method that avoids the problem of
negative probabilities for three or more states. If you succeed in the
general case, publish!

Additional Exercises

5.21. The canonical partition function for the one-dimensional Ising
magnet in an external magnetic field is
N

Q= > exp [E (hs,-+Ksis,-+1)],

S1:82:0. 008N i=1
=%*1

where h = BuH, K = pBJ and we are using periodic boundary
conditions—that is, §; = sy -

(a) Show that Q can be expressed as
Q=Trq",
where q is the matrix

_ [exp (—h+K) exp(—K) ]
" Lexp (=K) exp(h+K)J

[Hint: Note that the summand of the argument of the
exponential in Q can be rewritten as h(s; +5,.)/2+
Ks;$;.1.]

(b) By noting that the trace of a matrix is independent of
representation, show that Q can be expressed as

Q=A+ AN,
where A, and A_ are the larger and smaller eigenvalues,
respectively, of the matrix q.
(c) Determine these two eigenvalues, and show that in the

thermodynamic limit (N — o)

InQ - —4K7112

e In A, = K + In {cosh (h) + [sinh® (h) +e™**]"*}.
This method for computing a partition function is called

the transfer matrix method.
(d) Evaluate the average magnetization and show that the
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5.22.

5.23.

5.24.

magnetization vanishes as h— 0". [Hint: You can deter-
mine (s,) by differentiating N~' In Q with respect to h.]

Consider the one-dimensional Ising model with an external
magnetic field. With suitably reduced variables, the canonical
partition function is

N N-1
QK,h,N)= > exp [h >s+K > s,.sm].
i=1 i=1

(a) Show that by summing over all the even spins
Q(K, h, N) =[f(K, )I"*Q(K', h', N/2),

where

h'=h + (1/2) In[cosh(2K + h)/cosh(-2K + h)],

K' = (1/4) In[cosh(2K + h) cosh(—2K + h)/cosh?(h)],
and

f(K, h) =2 cosh(h)[cosh(2K + h)
X cosh(—2K + h)/cosh®(h)]"*.

(b) Discuss the flow pattern for the renormalization equations,
h'=h'(h, K), K'=K'(K, h), in the two-dimensional pa-
rameter space (K, h).

(c) Start with the estimate that at K = 0.01,

8(0.01, ) =g (0, ),

follow the flow of the RG transformations for several
values of h, and estimate g(1, 1) from the RG equations.

(a) Show how the magnetization per spin in the Ising model
corresponds to the density, ¥, (n,)/V, in the lattice gas.

(b) Draw a labeled picture of the coexistence curve in the
temperature density plane for the two-dimensional lattice
gas.

Consider a hypothetical system (which forms a closed ring to
eliminate end effects) made up of N “partitions.” A small
section of it is pictured in Fig. 5.13. Each “cell” contains two
and only two (hydrogen) atoms—one at the top and one at the
bottom. However, each can occupy one of two positions—to
the left in the cell (e.g., bottom atom in “cell” jk) or to the
right (e.g., bottom atom in “cell” ij or top in “cell” mn). The
energies of the possible configurations (a “partition” with its
associated atoms) are given by the following rules.
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Fig. 5.13. Part of a large system that exhibits a phase transition.

o

(i) Unless exactly two atoms are associated with a parti-
tion, the energy of that configuration is (positive)
infinite (e.g., & = €, = +®).

(ii) If two atoms are on the same side of a partition, then
the energy of that configuration is zero (e.g., g =0).

(iii) If two atoms are on opposite sides of a partition, then
the energy of the configuration is € (e.g., £ = ¢, = £).

(a) Using the above rules, what are the energy levels possible
for the system of N partitions and associated atoms?

(b) How many states are present for each level? That is, what
is the degeneracy?

(c) Show that the canonical partition function for the system is
given by one of the following expressions:

Q =2 + 2Ne=Pe,
Q=2+2Ne P,  B=1/ksT
Q =2V 427 FNe,

(d) Compute the free energy per particle in the thermo-
dynamic limit, and show that the internal energy becomes
discontinuous at some temperature, say T, (Hint: At
what value of « is a™ discontinuous for m very large?)

(e) Express T; in terms of £ and fundamental constants.

[The problem you have solved represents a (ferroelectric)
phase transition in the KH,PO, crystal. See Am. J. Phys. 36
(1968), 1114. The ‘‘partitions” above represent the PO,

groups.]

5.25. Derive the behavior of the heat capacity at zero field for the
heat capacity as predicted from the mean field theory discussed
in the text. Determine the precise values just below and above
the critical temperature.

5.26. In this exercise, consider the Ising magnet that is isomorphic to
the two-state quantal system. Suppose that the electric field, &,
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is a random fluctuating field with a Gaussian probability
distribution,

P(€) x exp[—BE&*/20].

(a) Show that on integrating over &, one obtains the partition
function

Q= j d€ e PE2°Q (%)

e
=V2no/B ’l)im {(:::A)”’2 > exp[z ¢ T N
>0 i=1

{u;}

P
+(Buol2P) S u |},
ij=1
which is the partition function for a one-dimensional Ising
magnet with long ranged interactions. Here, 2A is the
energy spacing of the unperturbed two-state system, &€ =
B/P, and k = —InVeA. See Sec. 5.8.

(b) The long ranged interactions generated by integrating out
fluctuations in the electric field can induce a transition in
which tunneling is quenched; that is, the fluctuations in the
environment cause a spatial localization of the quantal
system. Demonstrate that this transition does occur by first
evaluating Q(%) and then showing that the Gaussian
weighted integral over & that gives Q is a non-analytic
function of o when §— . Identify the critical value of o
at which the transition occurs by considering where
((ébm)*) diverges. [Hint: The square fluctuation is a
second derivative of In Q.] Note that at non-zero tempera-
tures, BA is finite; the isomorphic Ising magnet is
effectively a finite system in that case, and no localization
transition occurs.

5.27. Consider a one-dimensional Ising magnet in a fluctuating
magnetic field, h. The particular model to be considered has
the partition function

o M=[ an =

S1aeeesSN
=1

N
x exp{ ~BNK 120+ 3, [Bhs, + Blsisil
i=1

with sy+1=s;. Note that when this system is large (i.e.,
N— x), the typical size of h is very small. Nevertheless, the
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presence of this small fluctuating field leads to an order-
disorder transition for this one-dimensional system.

(a) Integrate out the fluctuating spins with A held fixed and
thereby determine the reversible work function for h,
A(h; B, N).

(b) Show that below some temperature (i.e., above some
value of ), the free energy A(h; B, N) becomes a bistable
function of h.

(c) Derive an equation for the critical temperature below
which this system exhibits the phenomenon of symmetry
breaking.
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CHAPTER 6

Monte Carlo Method
in Statistical Mechanics

With the advent and wide availability of powerful computers, the
methodology of computer simulations has become a ubiquitous tool
in the study of many-body systems. The basic idea in these methods
is that with a computer, one may follow explicitly the trajectory of a
system involving 107 or 10° or even 10* degrees of freedom. If the
system is appropriately constructed—that is, if physically meaningful
boundary conditions and interparticle interactions are employed—the
trajectory will serve to simulate the behavior of a real assembly of
particles, and the statistical analysis of the trajectory will determine
meaningful predictions for properties of the assembly.

The importance of these methods is that, in principle, they provide
exact results for the Hamiltonian under investigation. Thus, simula-
tions provide indispensable bench marks for approximate treatments
of non-trivial systems composed of interacting particles. Often, the
simulations themselves are so efficient that they can be readily
performed for all circumstances of interest, and there is no need for
recourse to approximate and computationally simpler approaches.
There are, however, important limitations. The finite capacity of
computers (both in memory and in time) implies that one may consider
only a finite number of particles, and one may follow trajectories of
only finite length. The latter restriction places bounds on the quality
of the statistics one can acquire, and the former inhibits the study of
large length scale fluctuations. These issues will become clearer as we
become more specific with particular illustrations.

There are two general classes of simulations. One is called the
molecular dynamics method. Here, one considers a classical dynamical

159
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model for atoms and molecules, and the trajectory is formed by
integrating Newton’s equations of motion. The procedure provides
dynamical information as well as equilibrium statistical properties.
The other class is called the Monte Carlo method. This procedure is
more generally applicable than molecular dynamics in that it can be
used to study quantum systems and lattice models as well as classical
assemblies of molecules. The Monte Carlo method does not,
however, provide a straightforward method of obtaining time-
dependent dynamical information. In this chapter, our discussion of
Monte Carlo will focus on lattice models, the Ising magnet, and the
lattice gas, systems for which we already have some experience. The
illustrations are easily generalized to more complex problems.

Several computer codes are presented in this and later chapters.
They are all written in BASIC, and run on microcomputers. The
student should experiment with these programs as well as the
generalizations outlined in the Exercises. The experimentation is
indispensable for gaining a qualitative understanding of the power
and limitations of simulation calculations. In all cases, the models
analyzed in this chapter are models for which much is known from
exact analytical results. These exact results provide guidance in the
experimentation, and it is always useful to test simulation algorithms
against such results before venturing into the less well known. In
Chapter 7, we do step into that territory by presenting a Monte Carlo
program and calculation for a model of a liquid (albeit in two
dimensions).

6.1 Trajectories

A trajectory is a chronological sequence of configurations for a
system. For example, the configuration of a lattice gas or Ising
magnet is the list of spin variables si,s,,...,5y. Let v=
(s1,...,8y) be an abbreviation for a point in this N-dimensional
configuration space. Now imagine a path through this space. Let
v(t) denote the list s,,s,,...,Sy at the rth step in this path.
The path function v(¢) is then a trajectory. Schematically, we might
imagine the graph in Fig. 6.1 for the first eight steps in a trajectory.
The letters a, b, ¢, and d refer to different configurations. For
example, perhaps a=(1,1,-1,1,...), b=(1,-1,-1,1,... ),
c=(-1,-1,-1,1,...),andd=(1,-1,1, -1, ...).
Configurational properties change as the trajectory progresses,
and the average of a property G, =G(s1,52,..-,5y) over the
configurations visited during a trajectory with 7 steps is

1 T
(G>r=7~zlem-
t=
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Fig. 6.1. Trajectory.

In Monte Carlo calculations, one usually employs trajectories for
which thermally equilibrated averages, (G ), are given by

(G) =Il_‘_ﬂ (G)r

That is, the trajectories are ergodic, and constructed such that the
Boltzmann distribution law is in accord with the relative frequencies
with which different configurations are visited. In practice, trajec-
tories are carried out for only a finite time duration, and the average
over configurations will provide only an estimate of (G).

We can visualize the limited statistical accuracy of a finite time
average by considering the cumulative average as a function of 7. See
Fig. 6.2. The size of the oscillations about (G) coincides with the
statistical uncertainty in the average. This point is understood by
dividing a long trajectory into several shorter successive trajectories.
If the short trajectories are not too short, then the averages over each
of these subtrajectories can be viewed as statistically independent
observations, and a comparison between them can be used to
estimate standard deviations. Schematically, this idea is illustrated
with the picture of the time line divided into increments of length L:

«]—
—t -
B C D T

=

(G)

Fig. 6.2. Cumulative average.
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Let (G)'® denote the average of G, over the Bth increment,
Clearly,

(G)r=(LIT) 2 (G)™

I=A,B, ...

Further, a calculation of the standard deviation gives an estimate of
the statistical uncertainty
1/2

A(G)r=|WTP S (6)7=(6) Y]

As T — =, this statistical error tends to zero, vanishing as 72

Exercise 6.1 Show that A(G), given by this formula is
indeed an estimate of the size of the oscillations shown in
the figure depicting the cumulative averages (G ).

Unfortunately, straightforward applications of this type of analysis
are not always reliable indicators of statistical errors. Problems arise
when the system may be sluggish in the sense that trajectories move
slowly through available configuration space or the trajectories are
trapped in a subspace of the accessible configurations. This sluggish
behavior may arise from the physical nature of the system or it may
be a consequence of algorithm by which the trajectory is performed.
In the quasi-ergodic case where the trajectory samples only a subset
of available configurations, one can imagine a large energy barrier
that confines the system to this region. When the system is sluggish,
the time or number of steps, L, between statistically independent
sections of the trajectory becomes very large. For such a case, one
might be tricked into thinking that excellent statistics have been
obtained, when in fact, the system has progressed through only a
subset of the allowed fluctuations.

A test of the statistical independence can be obtained by comput-
ing correlation functions of the type

(L/T)El: {(GY? = (GrDG) """ = (G) )

and comparing the square root of this quantity with (G );. However,
even when the ratio is very small for a particular property G, it may
still be that some other (slow) property possesses significant correla-
tions between successive increments. These thoughts should always
be a source of concern when employing simulations. A certain degree
of experimentation is always required to indicate whether the
statistical results are reliable. And while the indications can be
convincing, they can never be definitive.



MONTE CARLO METHOD IN STATISTICAL MECHANICS 163

Exercise 6.2 Describe a model system for which you can
conceive of circumstances where Newtonian trajectories
will be quasi-ergodic. One example might be a system of
spherical particles jammed into a fixed volume and into a
metastable lattice configuration. Note that if one per-
formed trajectories where the volume of the container
could fluctuate and deform, the trajectory could even-
tually move to stable lattice configurations.

6.2 A Monte Carlo Trajectory

Now we consider a rule or algorithm for carrying out a trajectory.
The scheme does not correspond to a true dynamics. However, it is a
method for performing a random walk through configuration space.
Further, we will show that in the absence of quasi-ergodic problems,
averages over these statistical trajectories do correspond to equi-
librium ensemble averages. The method is called Monte Carlo. (The
origin of the name has to do with its exploitation of random number
sequences—the type of sequence encountered when playing roulette
in that European city.)

For any large non-trivial system, the total number of possible
configurations is an astronomically large number, and straightforward
sampling of all of these configurations is impractical. A similar
situation is encountered by pollsters trying to gauge preferences of
large groups of people. In that case, the researcher devises an
efficient method by which estimates are obtained from a relatively
small but representative fraction of the total population. Monte Carlo
calculations are analogous. A sample of representative states or
configurations is created by performing a random walk through
configuration space in which the relative frequency of visitations is
consistent with the equilibrium ensemble distribution. For a small
two-dimensional Ising magnet with only 20 x 20 = 400 spins, the total
number of configurations is 2°* > 10'®. Yet Monte Carlo procedures
routinely treat such systems successfully sampling only 10° configura-
tions. The reason is that Monte Carlo schemes are devised in such a
way that the trajectory probes primarily those states that are
statistically most important. The vast majority of the 2*® states are of
such high energy that they have negligible weight in the Boltzmann
distribution, and need not be sampled. The words importance
sampling are used to describe schemes that are biased to probe the
statistically important regions of configuration space.
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Because the Monte Carlo procedure is not truly dynamical, there
exists a great deal of flexibility in choosing the particular algorithm by
which the random walk is performed. Here, we give one reasonable
method for an Ising magnet. We begin by setting up our system in an
initial configuration. Then we pick out at random one of the spins in
this assembly. The random choice for the spin is performed with the
aid of the pseudo-random number generator (an algorithm that
generates a long sequence of random numbers uniformly distributed
in the interval between 0 and 1).* Since the N spins are labeled
perhaps as s(I) for 1<I<N, we can identify a spin by picking I as
the closest integer to a generated random number times N. Other
methods could be used too. For example, in a two-dimensional Ising
model, convenient bookkeeping might lead us to label spins with a
vector s(I,J), where 1<1I, J <V/N. In that case, we could generate
two random numbers, x and y, and ask for the integers, I and J,
which are closest to VN x and VN y, respectively.

Having picked out a spin at random, we next consider the new
configuration v’, generated from the old configuration, v, by flipping
the randomly identified spin. For example, v— v’ could correspond

to
foeanls ~Llds s —3 G s s L, L)

randomly identified  randomly identified
spin spin

The change in configuration changes the energy of the system by the
amount
AE,, =E,—E,.

This energy difference governs the relative probability of configura-
tions through the Boltzmann distribution, and we can build this
probability into the Monte Carlo trajectory by a criterion for
accepting and rejecting moves to new configurations.

In particular, if the energy change AE,,. is negative or zero, we
accept the move. If, however, AE . is positive, we draw a random
number x between 0 and 1, and accept the move only if we have
exp (—BAE,, ) =x. Otherwise the move to a new configuration in
the next step is rejected. In other words, with

v(it)=v,

we have
v(t+1)=v' when AE,, <0,

* Pseudo-random number generators are commonly available with digital computers as standard
software and/or hardware.
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and
v', exp(—BAE,,)=x,

v, exp(—PAE,,)<x,

when AE,, . >0. We now repeat this procedure for making a step
millions of times thus forming a long trajectory through configuration
space.

This algorithm for a trajectory is often called Metropolis Monte
Carlo in recognition of the scientists N. Metropolis, A. Rosenbluth,
M. Rosenbluth, A. Teller, and E. Teller who first published this type
of calculation in 1953. It is easy to argue that the procedure does
indeed provide a method for performing equilibrium averages. To
see this point we can phrase the procedure in terms of a transition
probability matrix. That is, let

v(t+1)={

w,,. = probability per unit time that if the system is in
state v, it will make a transition to state v’.

If we follow a first-order kinetics associated with this rate or
transition matrix, we have the equation

Pv = Z [_wvv'pv + wv'vpv']r

where p, gives the probability that the trajectory resides at a given
time in state v. (Kinetic equations of this form are often called master
equations.) At equilibrium in the canonical ensemble p, =0 and

(pv/p,)=exp (-BAE,,).
These equations provide the condition of detailed balance
Wy /w,) =(p./p,)=exp(—BAE,,).

Provided a trajectory algorithm obeys this condition, the statistics
acquired from the trajectory will coincide to those of the equilibrium
canonical ensemble. In the Metropolis algorithm,

" {1, AE,, <0,
v exp (—ﬁAEvv'), AEvv' ?O‘

That is, there is unit probability of accepting a move when the move
causes an energy decrease, and when the energy change is positive,
the move is accepted with an exponential probability. (Note: The
comparison of the uniform random number distribution with the
Boltzmann factor generates this exponential probability distribution.)
Given this formula for w,,., it is clear that the Metropolis Monte
Carlo generates a trajectory that samples configurations in accord
with the canonical Boltzmann distribution of configurations.
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Exercise 6.3 Construct and describe an algorithm which
employs a random number generator and samples states
of the Ising magnet consistent with the distribution

P,xexp (—BE, + EM,),

where M, is the magnetization of the Ising model for spin
configuration v.

Exercise 6.4 Describe a Monte Carlo algorithm that
samples canonical equilibrium for a model with

Ev=_(1/100)z'sisj, 'V=(Sl,52, e ,SN),
i

where the primed sum is over nearest neighbors on a
square lattice and the spins, s;, can take on several integer
values:

-10=s;=<10.

Demonstrate that the algorithm does obey detailed bal-
ance. Note that when constructing this algorithm, you must
specify step sizes for the attempted moves. Consider the
possibility of attempting steps for which As;=
s{(t+1) —s;(¢t) is larger in magnitude than 1. Will the
average acceptance of attempted moves depend upon the
average size of As;?

A Monte Carlo written in BASIC for the two-dimensional Ising
magnet in a square lattice with 20 X 20 = 400 spins appears at the end
of this chapter. It utilizes the random number generator provided by
the IBM PC computer.

The pictures in Fig. 6.3 show the evolution of the Monte Carlo
trajectory for a few thousand steps. To interpret the pictures, note
that periodic boundary conditions are employed. At temperatures
below critical (kzT./J~2), phase separation remains stable. But
except at very low temperatures, the interface clearly fluctuates in an
amoeboid fashion. At high temperatures, the trajectory quickly
moves to a highly disordered state. Compare that disorder to the type
of fluctuations observed near the critical temperature. Note that the
patterns formed by the fluctuations at T = T are very different than
the patterns formed when T is much larger than T.. The study of
correlations between fluctuations at different points in space provides
one method for quantifying this pattern recognition. Incidentally, a
few thousand moves are not nearly enough to acquire reasonable
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Fig. 6.3. Configurations in a Monte Carlo trajectory of a 20 x 20 Ising model.
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statistics from a Monte Carlo trajectory. Further, 400 spins is far too
small a system if one is really interested in acquiring quantitative
results for critical fluctuations. Nevertheless, the system is simple
enough to be examined with a microcomputer and serves as a very
instructive pedagogical tool.

Exercise 6.5 Run this Monte Carlo code on a computer.
Evaluate the average of the spin (for every hundredth step
in the trajectory, the code lists the value of the fraction of
up spins). Demonstrate that the average spin is zero for
temperatures higher than critical, and try to exhibit the
phenomenon of spontaneous symmetry breaking by show-
ing that the average spin is not zero when the temperature
is below critical. Explore the dependence of your observa-
tions on initial configurations of the magnet (the code
provides you with three immediate choices for initial
configurations; with slight alteration you can enlarge on
this variety), and on the time duration of the sampling.

6.3 Non-Boltzmann Sampling

Suppose it is convenient to generate a Monte Carlo trajectory for a
system with energy E{”, but you are actually interested in the
averages for a system with a different energetics

E,=E® + AE,.

For example, suppose we wanted to analyze a generalized Ising
model with couplings between certain non-nearest neighbors as well
as nearest neighbors. The convenient trajectory might then cor-
respond to that for the simple Ising magnet, and AE, would be the
sum of all non-nearest-neighbor interactions. How might we proceed
to evaluate the averages of interest from the convenient trajectories?
The answer is obtained from a factorization of the Boltzmann factor:

e~ BEv = p=PEY g—BAEy.
With this simple property we have
= —BED _
Q=2 e =003 e e 0,
v v

= QO(e_ﬂAEv>0J

where (- ), indicates the canonical ensemble average taken with
energetics E©®. We have already encountered this result when
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considering the method of thermodynamic perturbation theory in
Sec. 5.5. A similar result due to the factorization of the Boltzmann
factor is

(G)=Q7'2 G,eF&

=(Qo/Q)(G,e P25),
= (G,e FrE)of (e FAE),,

These formulas provide a basis for Monte Carlo procedures called
non-Boltzmann sampling and umbrella sampling. In particular, since
a Metropolis Monte Carlo trajectory with energy EX” can be used to
compute the averages denoted by (- - :)o, we can use the factoriza-
tion formulas to compute (G ) and (Q/Q,) even though the sampling
employing EY is not consistent with the Boltzmann distribution,
exp (—BE.).

The simplest idea one might have in this regard is to compute the
total free energy from In(Q/Q,) by taking EY=0. That idea is
usually not a good one, however, since the trajectory will be
unbiased and much of the trajectory can be wasted exploring regions
of configuration space that are inaccessible when the energy is E,.
The point of Monte Carlo is to avoid such inefficient exploration.
Non-Boltzmann sampling is a powerful tool when the reference or
unperturbed energy, E, creates a trajectory that is close to that for
E,.

Exercise 6.6 Consider an Ising magnet at a temperature T
and another at a different temperature T'. Show that the
difference in free energy per unit temperature between the
two can be computed by averaging

11
x| - 77)]

over a Monte Carlo trajectory for the system at one or the
other temperature.

Non-Boltzmann sampling can also be useful in removing the
bottlenecks that create quasi-ergodic problems and in focusing
attention on rare events. Consider the former first. Suppose a large
activation barrier separates one region of configuration space from
another, and suppose this barrier can be identified and located at a
configuration or set of configurations. We can then form a reference
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system in which the barrier has been removed; that is, we take
EP=E, -V,

where V, is large in the region where E, has the barrier, and it is zero
otherwise. Trajectories based upon the energy E( will indeed waste
time in the barrier region, but they will also pass from one side of the
barrier to the other thus providing a scheme for solving problems of
quasi-ergodicity.

The other situation we referred to occurs when we are interested
in a relatively rare event. For example, suppose we wanted to
analyze the behavior of surrounding spins given that an n X n block
were all perfectly aligned. While such blocks do form spontaneously,
and their existence might catalyze something of interest, the natural
occurrence of this perfectly aligned n xn block might be very
infrequent during the course of the Monte Carlo trajectory.

Exercise 6.7 Consider an analogous problem encountered
in solution theory. Two solutes are dissolved in a fluid of
400 solvent molecules to simulate a solution at low solute
concentrations. Suppose the solutes interact strongly with
each other and we are interested in studying these
interactions as they are mediated by the solvent. Then we
are interested in only those configurations for which the
solutes are close to each other. Use a lattice model and
estimate the fraction of accessible configurations in the
total system for which the solutes will be close together.
(The fraction is a terribly small number.)

How are we to obtain meaningful statistics for these rare events
without wasting time with irrelevant though accessible configura-
tions? The answer is as follows:
Perform a non-Boltzmann Monte Carlo trajectory with an energy
like:
E (VO) = Ev + vVv:

where W, is zero for the interesting class of configurations, and for all
others, W, is very large. The energy W, is then called an umbrella
potential. It biases the Monte Carlo trajectory to sample only the
rare configurations of interest. The non-Boltzmann sampling per-
formed in this way is called umbrella sampling.

To illustrate this methodology, we consider in the remainder of
this section the computation of the free energy function, A(M) (see
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Sec. 5.3). This function is defined for the Ising magnet by
N
exp [~BAG)) = A(M ~u 3 5,) exp (~PE,)

where A(x) is the Kronecker delta (it is 1 when x =0, and zero
otherwise). That is, exp [—~BA(M)] is the Boltzmann weighted sum
over those states for which the net magnetization is M. Clearly,

exp (-BAGD] < Po0) = (M- 3. 5.)),

where P(M) is the probability for observing the Ising magnet with
magnetization M. [In the limit of an infinite system, the integer
spacing between different values of M/u becomes an infinitesimal
spacing in comparison with the total range of M/u, which is between
—N and N. In that limit, the Kronecker delta could be replaced by a
Dirac delta function, and P(M) would then be a probability
distribution. |

In a straightforward computation of A(M), one would analyze the
number of times states of a given magnetization are visited during a
Monte Carlo trajectory. The histogram derived from this analysis is
proportional to P(M), and its logarithm determines A(M). In many
circumstances, such a procedure is completely satisfactory. However,
if we consider the situation of broken symmetry (i.e., when T < T)),
and plan to compute A(M) for a wide range of M values, we
immediately encounter a serious problem. In particular, for T < T,
A(M) is a bistable function of M, and for a large system, the great
majority of states have negligible statistical weight in comparison to
those for which M = £ Nmu (here, mpu is the spontaneous magnetiza-
tion per spin). For example, even for the relatively small system of
20 X 20 = 400 spins, at kzT/J =1, the surface energy is ~10k;zT, and
therefore the probability of states with M = 0 is about exp (—10) less
than those with broken symmetry. As a result, the visitation of states
with M =0 is an infrequent event, and as such, relatively poor
statistics will be acquired for these regions of infrequent visitations.

The method of umbrella sampling, however, avoids this difficulty.
We chose a set of umbrella or window potentials

N
W,=0, for Mi—w/2<p > s;<M+w/2
j=1
=%, otherwise.

For each of these potentials—that is, for each M,—a simulation is
performed. Within each window, the analysis of a histogram is
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Fig. 6.4. Method of umbrella sampling.

performed to determine the probability for the magnetization in the
range between M;—w/2 and M;+w/2. After the full range of
magnetization is studied in this way [which requires a minimum of
(Nu/w) separate simulations], the full P(M) and thus A(M) is found
by requiring that the latter of these functions is a continuous function
from one window to the next. Here, note that with this procedure,
A(M) is determined in each window to within an additive constant.
The presence of this constant, which must be adjusted from one
window to the next, is a consequence of the fact that the histograms
determine the probabilities in each window to within a constant of
normalization.

Figure 6.4 is a schematic of this procedure. Picture (a) shows one
of the window potentials; (b) and (c) depict a set of probabilities and
free energies A(M)=—p"'In P(M), respectively, that would be
acquired under ideal circumstances from each window; Picture (d)
shows the continuous curve that would be obtained by connecting the
A(M) from each region assuming windows have points in common
with their neighbors.

One way of thinking about this procedure is that by moving from
one window to the next, you are propelling the system reversibly
through the relevant states. It is “reversible” because within each
window, all states or fluctuations are sampled in accord with the
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Boltzmann distribution. Provided the variation of A(M) is no more
than 1 or 2k T within each window, one should be able (with a long
enough trajectory) to accurately sample the statistics in each window.
Let 7 denote the required computer time to acquire such statistics
within each window. Then, the total computation time to determine
A(M) is nt, where n is the number of windows necessary to span the
total range of M. Note that*

T o w2,

Therefore, the total computation time required to determine A(M)
by the method of umbrella sampling is

tepy & nwz.

Now, how much time would it have taken if we did not use this
method? As a lower bound, let us assume that A(M) does not vary
more than a few kT over the entire range of M. The size of this
range is nw. Therefore,* the time to sample this range is proportional
to (nw)* = ntcpy. Hence, without the windows, the computation time
would be n times longer than that with n wmdows The advantage
(i.e., lower computation time) of umbrella sampling is, of course,
even greater than this when regions of M have relatively high values
of A(M) and thus relatively low probabilities.

Exercise 6.8 This argument might suggest that the ultim-
ate efficiency would be obtained by choosing extremely
narrow windows. Why is this argument incorrect?
[Hint: Think about the acceptance rate of steps in the
Monte Carlo trajectory.]

The BASIC code for the 400 spin Ising magnet has been modified
to perform an umbrella sampling calculation of A(M). Figure 6.5
presents some representative results obtained in this way.

The calculations employed a window width of 40u. That is, 10
windows were used between M =0 and M =400u. In each window,
long trajectories were performed. The algorithm is the same as that
for the code presented in Sec. 6.2 except that an additional rejection
criteria is employed. In particular, moves are rejected if the total
magnetization, u X;s;, falls outside of the specified window. Other-
wise, the acceptance-rejection criteria are identical to the Metropolis
scheme. The number of “passes” referred to in the figure refers to

* The argument that establishes this proportionality requires one to know that in a random walk or
diffusive processes, such as Monte Carlo, the mean square distance traversed in a time ¢ is
proportional to f. We discuss diffusive motion in Chapter 8.
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Fig. 6.5. A(M) as calculated by umbrella sampling.

the length of the trajectories performed in each window. A pass
denotes N =400 attempted moves. Thus, 100 passes refers to a
trajectory of 40,000 steps. The statistics obtained from this trajectory
are apparently not nearly as good as those obtained with 5000 passes.

Before leaving this section, it is of interest to consider the
qualitative appearance of the free energy, A(M), we have computed.
On viewing Fig. 6.5, we see that the calculations do indeed
demonstrate the feature of broken symmetry where stable states exist
for M # 0. Further, we see that the barrier is rather flat, and the wells
are rather narrow. Can you predict how these features depend upon
the size of the system? First, let’s think about the stable states. If
plotted as a function of M/Ny, the minima of SA(M) will become
narrower as N increases. The reason is that the width of a well
determines for one of the stable states the typical size of the
spontaneous fluctuations in the order parameter, and since
{(6M)*) = 3(M)/3BH, the root mean square fluctuation of M/Nu is
of the order of 1/VN.

Now what about the barrier separating the stable states? Here, as
N increases, the barrier seen in Fig. 6.5 should get both higher and
flatter. The reasoning behind this prediction focuses on the energetics
of forming a surface and surface excitations—it is left as a puzzle for
the student to think about. (Hint: Consider first the energetics of
changing a region of an ordered Ising magnet into a region of
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opposite spin. To do this, a surface must be created, and
the magnitude of the net magnetization will be reduced. Next,
consider the energetics of the surface excitations required to further
reduce M.)

6.4 Quantum Monte Carlo

In Sec. 5.8 we introduced the concept of discretized quantum paths
and illustrated how, in this representation, quantum mechanics is
isomorphic with the Boltzmann weighted sampling of fluctuations in a
discretized classical system with many degrees of freedom. Since such
sampling can be done by Monte Carlo, this mapping provides a basis
for performing quantum Monte Carlo calculations. This particular
approach, treated in this section, is usually given the full name path
integral quantum Monte Carlo to distinguish it from a host of other
Monte Carlo sampling schemes used to generate numerical solutions
to Schrédinger’s equation. Path integral Monte Carlo is the method
of choice for studying quantum systems at non-zero temperatures.

We will keep the discussion at a relatively simple level by
considering only one model: the two-state quantum system coupled
to a Gaussian fluctuating field. This is the model examined in Sec. 5.8
and in Exercise 5.26. It is a system that can be analyzed analytically,
and comparison of the exact analytical treatment with the quantum
Monte Carlo procedure serves as a useful illustration of the conver-
gence of Monte Carlo sampling.

According to the analysis of the model presented in Sec. 5.8 and
Exercise 5.26, the quantal fluctuations are to be sampled from the
distribution

W(uy, ..., up; ) xexp[F(uy, ..., up; €)),

where
P
F=—BE 20+ (B/P)u D, u,€
i=1
P
- % ln(ﬁA/P) E Uilh;41-
i=1
Here,
u; = +1

specifies the state of the quantum system at the ith point on the
quantum path, there are P such points, and periodicity requires
Up,1=Uu,. As in Sec. 5.8, the parameters u and A correspond to the
magnitude of the dipole and half the tunnel splitting of the two-state
system, respectively. The electric field, &, is a continuous variable
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that fluctuates between —o and o, but due to the finite value of o,
the values of & close to Vo/p in magnitude are quite common.

The quantity & is often called the action. It is a function of the P
points on the quantum path (u,, ..., up). The discretized repre-
sentation of the quantum path becomes exact in the continuum limit
of an infinite number of points on the path—that is, P— . In that
limit, the path changes from a set of P variables, u, through u,, to a
function of a continuous variable. The action is then a quantity whose
value depends upon a function, and such a quantity is called a
functional.

A computer code presented at the end of the chapter, written in
BASIC to run on an IBM PC, samples the discretized weight function
W(uy, ..., up; € by the following procedure: Begin with a given
configuration. One of the P+ 1 variables u, through up and & is
identified at random, and the identified variable is changed. For
instance, if the variable is u;, the change corresponds to u;— —u;. If,
on the other hand, the identified variable is the field €, then the
change is €— & + A%, where the size of A% is taken at random from
a continuous set of numbers generated with the aid of the pseudo-
random-number generator.

This change is one of the variables causes a change in the action,
A¥. For example, if u;— —u;, then

A.SP=9°(u1,...,—-u,-,...;?a“’)—.?(ul,...,ui -..;Eg).

The Boltzmann factor associated with this change, exp (A¥), is then
compared with a random number x taken from the uniform distribu-
tion between 0 and 1. If

exp(AYL) >z,

the move is accepted. [Note that no explicit comparison is required if
A% >0 since in that case exp (A¥) > 1.] If, however,

exp (A¥) <x,

the move is rejected. An accepted move means that the new
configuration of the system is the changed configuration. A rejected
move means that the new configuration is unchanged from the
previous one.

As with the Ising model studied in Sec. 6.2, this standard
Metropolis procedure for a Monte Carlo step is repeated over and
over again producing a trajectory that samples configuration space
according to the statistical weight W(u,, . . . , up; €). Typical results
obtained by averaging properties over these trajectories are pre-
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Fig. 6.6. Cumulative average for the solvation energy as computed by path
integral quantum Monte Carlo.

sented in Fig. 6.6. The particular property considered in the figure is
the solvation energy corresponding to the average of the coupling
between the electric field and the quantal dipole. That is,

1 P
Em“=<;2;u%m>

Figure 6.6 illustrates the convergence of the averaging as it depends
upon the finite number of simulation steps and upon the finite
number of discretized path integral points. In both instances, exact
results are obtained in principle only when these numbers tend to
infinity.

Note that the model is completely characterized by two dimen-
sionless quantities: the reduced reciprocal temperature

B =84,
and the localization parameter
L= ou?/A.

As discussed in Chapter 5, the model exhibits a localization
transition-like behavior when L >1. In Exercise 6.14, you are asked
to run the quantum Monte Carlo code and attempt to observe this
phenomenon.
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Exercise 6.9 Verify that the exact result for the average
coupling energy in this model is given by

_BA f 4% e-PERLE2 Gnh (BVIF B9

E solv =

j d% e PF2LE2 cosh (BV] + €2

The computer code that generated these results for P = 32 points on
the quantum path appears at the end of this chapter.

Additional Exercises

For those problems requiring the accumulation of statistics, you may
want to use a compiled BASIC code, or rewrite the programs to run
on a computer faster than the IBM PC. Also note that the largest
integer carried by the IBMPC is 32767. Thus, when running
ambitious projects on that machine you will want to alter the step
counter to list hundreds of moves rather than singles.

6.10. Construct a Metropolis Monte Carlo code for a two-
dimensional Ising magnet with 20 X 20 = 400 spins and periodic
boundary conditions. Run the code and collect statistics from
the trajectory to analyze the spin statistics. In particular,
compute

1 N
i35
(o) = lim (G 2451)

and for various separations between spins i and j, compute the
correlation function

. 1 <6 2

(slsi) - <Si>(3j) = }-I_I.T:n [<}Vq é( & Si'sm>T_ (Si)if}:
where £ is over all pairs of spins in the lattice for which / and
m are separated by the same distance as i and j, and Nj; is the
total number of such pairs in the lattice. Perform these
calculations for temperatures both above and below the critical
point. Try to demonstrate the existence of long range correla-
tions near the critical point and spontaneous symmetry break-
ing below the critical temperature.

6.11. Consider the two-dimensional Ising model with an additional
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6.12.

external field in the energy,

N
2 hisi;
i=1

where h; = +h for spins lying on the left half of the top row of
the square lattice, h; = —h for spins in the right half of the top
row, and h; =0 for all other sites. For large enough A, and for
T <T., this field will bias interfaces to exist near the middle
and side columns of the square lattice.

(a) Modify the Monte Carlo code given in the Appendix to
include this external field and use it to observe fluctuations
of the interfaces.

(b) With the modified code at a temperature well below T,
(e.g., T=3T.), determine the spin-spin correlation func-
tion for pairs of spins situated in the column midway
between the left and right columns of the square lattice
(i.e., the tenth column in the 20 X 20 lattice).

(c) Perform the same Monte Carlo calculation as in part (b)
but now for the fifth column from the left.

(d) Plot the (s;s5;) — (5;) (s;) determined in parts (b) and (c) as
a function of the distance between the spins. Comment on
your observations. How would your results change if the
system size was changed to a 40 x40 lattice, and the
columns being sampled were changed to the tenth and
twentieth, respectively?

Your computer contains a pseudo-random-number generator
that creates (nearly) random sequences of numbers, x,
distributed uniformly between 0 and 1. Develop an algorithm
that uses this random number generator to create a Gaussian
distribution of random numbers. A Gaussian distribution is

p(x)=Valjme >,

and its first several moments are
(x)=(x’) =0,

@) =5,
(x*) =3(x?)2

Study the numerical accuracy and convergence with which your
algorithm reproduces these moments. (Note: There is more
than one way to work out this exercise. One method uses an
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acceptance-rejection procedure like the Metropolis Monte
Carlo algorithm. Another perhaps more efficient procedure
employs a change in variables.)

6.13. In a Monte Carlo trajectory there are, in general, two steps to
every successful move. The first stage is to make a trial move
and the second stage tests to see if that move should be
accepted. Therefore, the transition probability w,, can be
written

Wyt = Ty X Avv'
where

7, = probability in a given step that if the system is in
state v, it will make a trial transition to state v’,

and

A,, = probability that, if the system has made a trial move
from v to v’, the move will be accepted.

(a) Given an arbitrary form for m,,., write the form for A,,.
that maintains detailed balance and such that either one or
the other of A,,- and A,., is equal to unity but not both.

(b) Consider the system with energy levels

E=hw(v+3), van integer

and transition probabilities

nvv'={p’ v =V+1,
1=-p, v'=v-1,

and for all other v and v, 7., is zero. Find the value for p
that minimizes the probability that if a system is in state v,
it will make no transition. A good choice of p will make
this probability zero, in which case every move will be
accepted. Schemes such as this are often used in Monte
Carlo calculations since they keep the system moving, thus
reducing the length of a calculation required to obtain
good statistics. This particular method is a simplified
version of the scheme referred to as a “force bias” Monte
Carlo or “‘smart” Monte Carlo.

6.14. Consider the two-state quantum system coupled to the Gaus-
sian electric field & discussed in Secs. 5.8 and 6.4, and imagine
applying a static non-fluctuating field &,,,. The total Hamil-
tonian is then

% = 3, — m(E + Bupp) + €20
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Fig. 6.7. Localization of a quantum fluctuating dipole.

where

and
-
0 —u
The quantities A, u, and are o are constants.

(a) For this system, show that the average dipole, (m), is
given by

"4 exp (—B&/2L) sinh (BE)(E + &.,,)/ &
(m)=—

j " 4% exp (—BE/2L) cosh (BE)

where &2=[1+(E+ €,,.)°), &pp=(u/A)E,, B=PA,
and L = ou?/A.

(b) Numerically evaluate the integrals in part (a) and demon-
strate the behavior of {(m) illustrated in Fig. 6.7. (Note that
as B— =, the integrals can be evaluated analytically by the
method of steepest descent.) Note that for L>1, the
system exhibits a localization transition when §— . This
phenomenon was discussed in Sec. 5.8 and Exercise 5.26.
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(c) Modify the Monte Carlo code given in Sec. 6.4 to study the
localization phenomena. In particular, attempt to re-
produce the results given in the figure by averaging over
Monte Carlo trajectories.

Devise and implement a method for computing by Monte
Carlo the free energy of solvation for the two-state quantum
system coupled to the Gaussian electric field. [Hint: You will
need to compute the solvation energy, E,,, at a variety of
values of the dipole magnitude u keeping all other parameters
fixed.] Compare the Monte Carlo results with the exact result
obtained by performing the one-dimensional numerical integral

0 = (2A/u) j % exp(—f #2/2L) cosh(BVI + 2.

Modify the Ising model Monte Carlo code for 400 spins to
perform the umbrella sampling calculation of A(M) as de-
scribed in Sec. 6.3. Perform these calculations at a variety of
temperatures and use the value of M at which A(M) is a
minimum as an estimate of the spontaneous magnetization.
Compare your results so obtained with the exact result for the
spontaneous magnetization of the infinite square two-
dimensional Ising model. The exact result (the derivation of
which was first given by C. N. Yang in the 1950s) is

m(T) = {0, T>T,
la+ -6t + 2912772, T<T,

where z = exp (—2BJ), and T, corresponds to z, = V2-1.
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Appendix

Monte Carlo Program for the Two-Dimensional Ising Model*

DEFINT A,S,I,J,K,M,N

DIM A(22, 22},SUMC(5],KI(5) KJ(5)
ON KEY (1) GOSUB 40

ICOUNT=0 ‘initialize counter
CLS:KEY OFF
LOCATE 25,50: PRINT"-PRESS F1 TO RESTART-"
COLOR 15,0: LOCATE 2,15: PRINT "MONTE CARLO ISING MODEL "
COLOR 7: PRINT:PRINT "Monte Carlo Statistics for a 20X20 ISING MODEL with"
PRINT " periodic boundary conditions.™

PRINT: PRINT" The critical temperature is approximately 2.0."

PRINT:PRINT "CHOOSE THE TEMPERATURE FOR YOUR RUN. Type a number between "

120 INPUT" 0.1 and 100, and then press 'ENTER'.",T
130 IF T<.l THEN T=.1 ELSE IF T>100 THEN T=100

PRINT ">>>>> temperature=" T: T=1/T

KEY (1) ON

PRINT:;PRINT "DO YOU WANT TO STUDY THE CORRELATION FUNCTION (Y CR N)?"
COR$=INPUTS (1)

IF COR$="y"™ THEN COR§="Y"

IF COR$="Y" THEN PRINT ">>>> correlation data will be shown™ ELSE PRINT
>>>> no correlation data will be shown"

PRINT:PRINT "PICK THE TYPE COF INITIAL SPIN CONFIGURATION"

PRINT, "TYPE ¢ FOR ‘CHECKERBOARD’ PATTERN, OR"

PRINT,"TYPE i FOR ‘INTERFACE’ PATTERN"

PRINT, "TYPE u FOR ‘UNEQUAL INTERFACE' PATTERN"

X$=INPUTS (1)

250 IF X$="C" OR X$="c" GOTO 370

IF X$="u" THEN X$="U"
IF X$="i" THEN X$="I"
IF X$="I" OR X$="U" THEN 290 ELSE 210 ‘ROUTING TO PROPER INITIAL SETUP
CLS "initial INTERFACE setup
IF X$="U" THEN MAXJ=14 ELSE MAXJ=10
FOR I=0 TO 22
FOR J=0 TO MAXJ: A(I,J)=+1: NEXT

330 FOR J=MAXJ+l TO 22: A(I,J)=-1: NEXT

340  A(I,0)==1: A(I,21)=1:
NEXT

GOTO 420
CLS ‘INITIAL checkerboard PATTERN

380 A(0,0)=1
390 FOR I=0 TO 20: A{I+1,0)=-A(I,0)
400 FOR J=0 TO 20: A(I,J+1)=-A(I,J) :NEXT

410  NEXT

420 REM initial display:

430 LOCATE 25,50:PRINT"-PRESS Fl1 TO RESTART-"
440 FOR I=1 TO 20

450 FOR J=1 TO 20

* This program was written by Elaine Chandler.
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FOR J2=2*J-1 TO 2*J
LOCATE I,JZ: IF A(I,J)=1 THEN PRINT CHR$(219) ELSE PRINT CHR$(176)
NEXT J2,J,I
LOCATE 10,50: PRINT"TEMP="1/T
TIME$="00:00:00"
IF X$="U" THEN NPLUS=280 ELSE NPLUS=200
IF COR$="Y" THEN GOSUB 710
M=INT(20*RND+1) :N=INT (20*RND+1)} : S=-A(N,M): ICOUNT=ICOUNT+l ‘**flip a spin
B=T*S* (A (N-1,M) +A (N+1,M) +A (N, M-1) +A (N, M+1) ) *2
IF EXP(B)<RND GOTO 620 ‘test against random#
A(N,M)=S: NPLUS=NPLUS+S
IF N=1 THEN A(21,M}=S ELSE IF N=20 THEN A(0,M)=S
IF M=1 THEN A(N,21)=S ELSE IF M=20 THEN A(N,0)=$
FOR IX=2*M-1 TO 2*M ‘update the display
LOCATE N, IX:IF A(N,M)=1 THEN PRINT CHR$(219) ELSE PRINT CHRS$(176)
NEXT
LOCATE 23,21: PRINT ICOUNT: LOCATE 23,30: PRINT TIMES
IF (ICOUNT MOD 100)=0 THEN GOSUB 670
IF COR$="Y" AND (ICOUNT MOD 400)=0 THEN GCSUB 750

GOTO 530

END

LOCATE 12,50: PRINT "AT "ICOUNT;

XN=NPLUS/400!

PRINT USING " N+/N=_ ###";XN

RETURN

LOCATE 14,47: PRINT "Correlation Function:"

LOCATE 15,51: PRINT "d <s(0)s(d)>": LOCATE 16,50: PRINT"—-—-——m—m—m—u n
GOSUB 750

RETURN

FOR M=1 TO 5: SUMC (M)=0: 'Correlation calculation

LOCATE 14,6%: PRINT" (at "ICOUNT")"

FOR I=1 TO 20

FOR J=1 TO 20:KJ=(J+M) MOD 20: KI=(I+M) MOD 20: CCh=A(KI,J)+A(I,KJ)}

IF CC%=0 THEN GOTO 810

SUMC (M) =SUMC (M) +A (I, J) *CC%

NEXT J,I

LOCATE 16+M,50: PRINT M: LOCATE 16+M,S54: PRINT USING "+#.###"; SUMC(M) /800
NEXT M: RETURN

Quantum Monte Carlo Program for a Two-Level System

Coupled to a Fluctuating Field*

REM PROGRAM TO SIMULATE A TWO-LEVEL SYSTEM COUPLED TO
REM AN ADIABATIC GAUSSIAN FLUCTUATING FIELD

WHITE$ = CHRS (219)+CHR$ (219)

BLACKS = CHR$ (176) +CHR$ (176)

ON KEY({2) GOSUB 90

KEY(2) ON

DIM SIGMA%(32)

DIM ESOL! (2000}

REM RESTART FROM HERE

CLS
RANDOMIZE (310941!)
ON

INPUT "*+*BETWEEN (.01 AND 10 *#*#*%";LOCAL!

IF LOCAL!<.01 GOTO 150

IF LOCAL!>10 GOTO 150

PRINT "ENTER THE REDUCED TEMPERATURE 'BETA"":

INPUT "***BETWEEN 0.01 AND 16 ***":RBETA!

IF RBETA!<.01 GOTO 190

IF RBETA!>16 GOTO 190

INPUT "TOTAL NUMBER CF STEPS (INTEGER BELOW 1E+20)";MOVE!

230 IF MOVE!<0 THEN GOTO 220

370
380

IF MOVE!<>INT (MOVE!) THEN GOTO 220
IF MOVE!>1E+20 THEN GOTO 220
IVAR!=RBETA!/ (2*LOCAL!)

FSTEP !=SQR(1/IVAR!)

IF FSTEP!>1 THEN FSTEP!=1

KAY!=—, S5*LOG(RBETA!/32)
TKAY!=KAY!*2

LAMBDA!=RBETA!/32
TLAMBDA!=2*LAMBDA!

NEWENERGY ! =0

FILD!=0

ESOLV!=0

NEWESOLV { =0

FOR I=1 TC 32

IF I/2=INT{(I/2} THEN SIGMA%(T)=1 ELSE SIGMA%(I)=-1

* This program was written by Faramarz Rabii.
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NEXT I
CLS

GOSUB 1440

GOSUB 980

GOSUB 860

FOR IRUN!=1 TO MOVE!

LOCATE 16,45

PRINT "STEP =";IRUN!

JAY$=INT (RND*39) +1

IF JAY$#>32 THEN GOTO 520
OLDSIGMA%=SIGMA% (JAYS)

IF OLDSIGMA%=1 THEN SIGMA% (JAY%)=-1 ELSE SIGMA% (JAY%)=1
GOTO 550

GOSUB 1320

OLDFILD!=FILD!
FILD!=FILD!+FSTEP!*{.5-RND)
OLDENERGY ! =NEWENERGY !

OLDESOLV! =NEWESOLV !

GOSUB 1050

I1F NEWENERGY !>=OLDENERGY! THEN GOTO 610
PROB ! =EXP (NEWENERGY ! -OLDENERGY !}

IF RND>PROB! THEN GOTO 630

IF JAY%<33 THEN DIP!=NEWDIP!

GOTO 660

IF JAY%>32 THEN FILD!=OLDFILD! ELSE SIGMA%(JAY%)=OLDSIGMA%
NEWENERGY ! =OLDENERGY !
NEWESOLV!=OLDESOLV!

GOSUB 1240

ESOLV!=ESOLV! +NEWESOLV!
TST!=IRUN!/100

IF TST!<>INT(TST!) THEN GOTQ 830
ESOL! (TST!) =ESOLV!/IRUN!

LOCATE 17,22

PRINT " "

LOCATE 17,3

PRINT "SOLVATION ENERGY = ";-NEWESOLV!/RBETA!
LOCATE 18,3

PRINT "(IN UNITS OF DELTA)"

LOCATE 19,14

PRINT " »

LOCATE 19,3

PRINT"DIPOLE = ";DIP!/32

LOCATE 20,3

PRINT " (IN UNITS OF MU)"

IF IRUN!>MOVE! THEN GOTO 1770

NEXT IRUN!

GOTO 1770

REM OUT PUT CONFIGURATION

DIP!=0

LOCATE 11,3

FOR INDEX%=1 TO 32

IF SIGMA% (INDEX%)=1 THEN PRINT BLACKS: ELSE PRINT WHITES;
DIP!=DIP!+SIGMA% (INDEX%)

NEXT INDEX%

LOCATE 12,3

FOR INDEX%=1 TO 32

IF SIGMA% (INDEX%)=1 THEN PRINT WHITES$: ELSE PRINT BLACKS;
NEXT INDEX%

RETURN

REM subsection to compute overall initial energy
NEWENERGY ! =0

1000 FOR I=1 TO 32

1010 IF I=32 THEN J=1 ELSE J=I+1

1020 NEWENERGY !=NEWENERGY!+KAY!*SIGMA% (1) *SIGMA% (J)}
1030 NEXT I

1040 RETURN

1050 REM SUBSECTION TO QUICKLY COMPUTE NEW ENERGY
1060 IF JAY%=1 THEN JAYM1%=32 ELSE JAYM1%=JAY%-1
1070 IF JAY%=32 THEN JAYPl%=1 ELSE JAYP1%=JAY%+1
1080 IF JAY%>32 THEN GOTO 1200

1090 IF SIGMA% (JAY%)=1 THEN GOTO 1150

1100 NEWESOLV!=OLDESOLV!-FILD!*TLAMBDA!

1110 NEWENERGY!=OLDENERGY !-QLDESOLV!+NEWESOLV!

1130 NEWDIP!=DIP!-2

1140 GOTO 1230

1150 NEWESOLV!=OLDESOLV!+FILD!*TLAMBDA!

1160 NEWENERGY !=OLDENERGY!-OLDESOLV!+NEWESOLV!

1180 NEWDIP!=DIP!+2
1190 GOTO 1230

1210 NEWESOLV|=LAMBDA!*DIP!*FILD!

1220 NEWENERGY !=NEWENERGY!-OLDESOLV!+NEWESOLV!

1230 RETURN

1240 REM update display

1250 IF (IRUN!/4)<>INT((IRUN!/4)) THEN RETURN

1260 IF JAY%>32 THEN GOTO 1310

1270 LOCATE 11,2*JAY%+1

1280 IF SIGMA% (JAY$)=1 THEN PRINT BLACK$ ELSE PRINT WHITES

NEWENERGY ! =NEWENERGY ! =TKAY ! * (SIGMA% (JAYP1%) +SIGMA% (JAYM1%})

NEWENERGY ! =NEWENERGY ! +TKAY ! * (SIGMA% (JAYP1%) +SIGMA% (JAYM1%))

NEWENERGY ! =<OLDENERGY ! +IVAR! * (OLDFILD! *OLDFILD ! -FILD!*FILD!)
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1870
1880

LOCATE 12, 2*JAY%$+1
IF SIGMAS% (JAY%)=1 THEN PRINT WHITES ELSE PRINT BLACKS
RETURN

REM SUBSECTION TO OUT-PUT EXTERNAL FIELD
OLDFLDMAG%=FLDMAG*

FLDMAG%==INT (FILD!})

IF ABS (FLDMAG%)>9 THEN FLDMAG%=9*SGN (FLDMAG%)

IF ABS (FLDMAG%Y)>=ABS (OLDFLDMAGS) THEN GOTO 1400
LOCATE OLDFLDMAG&+11,74

PRINT CHRS$ (219);CHRS (219) ;CHRS(219)

GOTO 1430

LOCATE FLDMAG%+11,74

PRINT CHRS (176) ;CHRS (176) ; CHRS (176)

GOTO 1430

RETURN

REM SUBSECTION TO DRAW A BOX AROUND THE FIELD OUT-PUT
FOR I=1 TO 19

LOCATE I+1,73

PRINT cHR$(1?9] CHRS$ {219) ; CHR$ (219) ;CHR$ (219) ;CHRS (179)
NEXT I

LOCATE 1,73

PRINT "—==-e--®

LOCATE 21, 73

LOCATE 11, 70

PRINT "0.0"

LOCATE 2,70

PRINT "9.0"

LOCATE 20,69

PRINT "-9.0"

LOCATE 11,74

PRINT CHR$(176) ;CHR$ (176) ;CHR$ (176)
LOCATE 22,75

PRINT CHR$(24)

LOCATE 23,63

PRINT "FLUCTUATING FIELD";

LOCATE 23,9

PRINT "TO RESTART PRESS F2"

REM DISPLAY INITIAL CONDITIONS
LOCATE 3,1

PRINT "LOCALIZATION PARAMETER L=";LOCAL!
PRINT

PRINT "REDUCED TEMPERATURE BETA=";RBETA!
LOCATE 9,29

PRINT "THE QUANTUM PATH"

LOCATE 10,36

PRINT CHR${25)

RETURN

REM QUT-PUT SOLVATION ENERGY VALUES

LPRINT "RESULTS FOR THE SIMULATION OF A TWO-LEVEL SYSTEM COUPLED"

LPRINT "TO AN ADIABATIC FIELD."

LPRINT

LPRINT "INITIAL CONDITIONS ARE:"

LPRINT

LPRINT "LOCALIZATION PARAMETER L = ";LOCAL!
PRINT

LPRINT "REDUCED TEMPERATURE BETA = ";RBETA!
LPRINT

LPRINT "#OF STEPS","AVERAGE SOLVATION ENERGY IN UNITS OF DELTA"

LPRINT
IMAX$=MOVE! /100

FOR I=l TO IMAX$

LPRINT I*100,-ESOL! (I)/RBETA!
NEXT I

LOCATE 23,1

1940 END
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CHAPTER 7
Classical Fluids

The relative arrangements of atoms and molecules in fluid and solid
phases are most often accurately described in terms of the principles
of classical statistical mechanics. There are, of course, electrons
surrounding the nuclei in these systems, and the behavior of electrons
is surely quantum mechanical in nature. Yet after averaging over
these quantal fluctuations, the remaining problem is to sample the
statistical configurations of the nuclei in the effective interactions
induced by the electrons we have already integrated out. An example
of these effective interactions are the Born—Oppenheimer potentials
considered in Chapter 4.

Schematically, this procedure is as follows. In the partition
function

Q=2 exp (-PE,),

the state v can be characterized by the configuration of the nuclei,
denoted by the symbol R, and the electronic state {, parameterized by
R. It is then convenient to factor or partition the states or fluctuations
according to the configurations of the nuclei,

0= E {2 exp [_BER.:‘(R)]}
R U®)
= % exp [—BEx],

where i(R) stands for the ith state of the electrons when the
configuration of the nuclei (the centers of the atoms) is held fixed at
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R (this configurational variable, R, is actually an enormous collection
of all the coordinates necessary to specify the locations of all the
atomic centers). The quantity Eg is obtained by performing the
Boltzmann weighted sum within the curly brackets. It is the effective
energy or free energy governing the statistics for the configurations of
the nuclei.

The discussion in the previous paragraph is, of course, highly
schematic. We do know, however, from Sec. 5.8 and 6.4, that at least
one way to perform the Boltzmann weighted sum over the electronic
fluctuations or states is to evaluate quantum path summations. The
sum over i(R) then denotes such a procedure. In general, we see that
Ey is a free energy that depends upon temperature. Often, however,
the electronic states of a system are dominated by the lowest energy
level. In that case, the result of averaging out the quantal fluctuations
of electrons yields an Ep that must be the ground state Born-
Oppenheimer energy surface for all the nuclei. To simplify our
considerations, we will assume that this ground state dominance is an
accurate approximation for the systems we examine in this chapter.

The remaining problem is that of studying the spatial configura-
tions of the nuclei. This problem is usually well approximated with a
classical mechanical model. The reason, made more precise later in
this chapter, is that the nuclei are much heavier than electrons. The
relatively high mass implies that the quantum uncertainties in the
positions of nuclei are relatively small, and as a result, quantum
dispersion (i.e., the width of wavefunctions) becomes unimportant
when considering the spatial fluctuations of the nuclei in these
systems.

An important exception where a classical model of a fluid is not
acceptable is low temperature helium. We will not discuss this type of
system. Instead, we will consider the meaning of velocity distribu-
tions and intermolecular structure for fluids like argon or benzene or
water. Here, after averaging out the fluctuations associated with
electronic states, classical models are accurate.

7.1 Averages in Phase Space

When adopting a classical model, the microscopic state of the system
is characterized by a point in phase space. That is, a state is specified
by listing the coordinates and conjugate momenta of all the classical
degrees of freedom in the system:

("1,1'2, v JN§P1,P2,- LHO aPN)=(rN»PN)
= point in phase space for an
N particle system.
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Here r; = position of particle i, and p; = momentum of particle i, and
r™ and p" are abbreviations for points in configuration space and
momentum space, respectively.

In order to perform statistical mechanical calculations on a
classical model, we must be able to compute the classical analog of
objects like the canonical partition function,

Q(B, N, V)= e P&

The energy associated with a point in phase space is the Hamiltonian.
That is,

E,— #(r™, pV)=K(p™) + U(r"),

where K(p") denotes the kinetic energy of the classical degrees of
freedom, and U(r") is the potential energy. This latter part to the
energy is obtained by averaging over all the quantum degrees of
freedom that are not treated explicitly in the classical model. In other
words, the potential energy function U(r") must be determined from
a quantum electronic structure calculation. Finally, we remark that in
a conservative Newtonian system, the kinetic energy is a function of
momenta only, and the potential energy is a function of coordinates
only.*

Since the points in phase space form a continuum, the classical
canonical partition function must be something like

0= [ dr [ dp" exp B3, p"),

where [ dr" [ dp" is an abbreviation for

jdrljdrz'--jdrdeplfdpz---fdPN.

But the phase space integral has dimensions of action to the DN
power (D = dimensionality). Thus, there must be a multiplicative
factor, denoted by (?) in the equation, which makes Q dimensionless.
It should be a universal factor. As a result, we can determine it by
studying in detail one particular system. For an ideal gas of
structureless particles,

N
*(r™, pVy =2, p¥2m.
i=1

* Classical Lagrangian systems with holonomic constraints do have kinetic energies that can depend
upon configurations. However, such a dependence is an artifact of the holonomic constraints that
are absent for any system found in nature.
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Hence,
N

0=~ [ dpexp (-pp?/2m)|

By comparing this result with what we calculated in Sec. 4.7 (our
discussion of the classical ideal gas), we find

M) =WN!AML
Thus,

Q=Y e i (I/N!h“)]dr"’fdp” exp [-B¥(r", p™)].

We can understand the factor of N! by noting that the N identical
particles should be indistinguishable. Hence, the phase space integral
overcounts states N! times (the number of different ways we can
relabel all the particles). To avoid the overcounting, we must divide
by N!. The factor of h*" occurs for a less transparent reason (except
that it has dimensions of action to the 3N power). A rough argument
focuses attention on the uncertainty principle, &7 §p™ ~h3".
Hence, we expect our differential volume elements in phase space to
scale like #*N. That is,

S=T S ST [arv gt

&rN, 8pN

Exercise 7.1 For a system composed of three distinguish-
able types of particles, A, B, and C, justify the classical
partition function formula

Q= [(NA!)(NB!)(NC!)hs(NA+NB+NC)]-1jdrdepN

x exp [—Ba#(r", p™)],

where (r", pV) is an abbreviation for a point in phase
space for the (N4 + Ny + N¢)-particle system.

Often, we have systems in which there are quantum degrees of
freedom in each atom that do not couple to the classical variables and
therefore do not affect U(r™). In that case

1
Q= NN 9 fuantum(B) j ar® I dp™ exp [~ BH qassicalls

where glanum(B) is the partition function for those uncoupled
quantum mechanical degrees of freedom.
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The probability of a state in a classical system is
f@™, p¥) dr™ dp", where

f(r™, pV) = probability distribution for observing a system
at phase space point (r", p™).

Clearly,
7™, ™) = exp =B, p) | [ ar™ [ ap® exp (3™, p*)]

Since the Hamiltonian breaks into two parts, K(p") and U(r"), the
phase space distribution factors as

f@", pY)=@(p")P(r"),
where
@(p") = exp[-BK(p™)] / [ dp exp [-BK (o)
= probability distribution for observing system at
momentum space point p»

and
P(r™)=exp UG/ [ dr™ exp [-BUG)]

= probability distribution for observing system at
configuration space point r".

Exercise 7.2 Derive this result.

Exercise 7.3 Show that canonical partition function fac-
tors in such a way that

0 = Qigear Qcons

where Q4. is the ideal gas partition function and

Qeon =V~ [ dr™ exp[-pUC™)]

Further factorization of the momentum distribution is possible

since the kinetic energy is a sum of single particle energies ¥, p?/2m.
Thus

N
o(p™) =[] o(p),

i=1

where
p(p)=e#1m / [ ape=Polm,
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[Note, p; = (pk + pi, + pi.), where p,, is the Cartesian component of
the momentum for particle i in direction a.] The single particle
momentum distribution, ¢(p), is usually called the Maxwell-
Boltzmann (MB) distribution. It is the correct momentum distribu-
tion function for a particle of mass m in a thermally equilibrated
system. The system can be in any phase (gas, liquid, or solid) and the
distribution is still valid provided classical mechanics is accurate. One
consequence is that the average speed (or momentum) of a particle is
the same in a liquid and a gas (provided the temperature is the
same). Of course, the frequency of collisions in a liquid is much
higher than that in gas. For this reason, a molecule will travel much
farther per unit time in a gas phase than in a condensed phase even
though the single molecule velocity distributions are identical in the
two phases.

Some typical calculations we could perform with the MB distribu-
tion are

[ dplexp (~ppit2m) 4z [ dpp? exp (~p*rom)
() = S 3
[apexp(~gorrzm) ([ dp exp (~pp12m) |

= (8kpTm/m)"?

and

(p?) = (p2) + (p3) + (p2) =3(p2) =3mk,T.

Exercise 7.4 Derive these results.

Exercise 7.5 Show that the classical partition function is

0 = (N))"A;V f dr" exp [-BU()],
where

J’T = h/ VzkaT

is called the thermal wavelength.

Exercise 7.6 Given that at typical liquid densities po®=~1
(p=N/V, and o is the diameter of a molecule), estimate
the mean free path of and collision frequency of a
molecule in a room temperature liquid. Compare these
numbers with gas phase values.
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We can use the MB distribution to assess whether it is a good
approximation to avoid Schrédinger’s equation and use classical
mechanics to describe the microscopic states of a system. Classical
mechanics is accurate when the De Broglie wavelength,

App = h/P;

is small compared to relevant intermolecular length scales. An
estimate of a typical value for Apg is

A-DB“"”(IP') =h[VSk3Tm/JT"~'3.T.

This length is the typical distance over which the precise location of a
particle remains uncertain due to Heisenberg’s principle. When A; is
small compared to any relevant length scale, the quantal nature of
fluctuations becomes unimportant. For a dilute gas, relevant lengths
are p~'” (the typical distance between particles) and o (the diameter
of a particle). Here,

Ar<o

would seem to suffice as a criterion for classical statistical mechanics
to be valid. In general, however, one must consider the distance
scales that characterize the spatially smallest fluctuations under
consideration. The classical model is valid where, for typical fluctua-
tions, intermolecular distance changes of the order of A, produce
potential energy changes that are small compared to kzT. At liquid
densities, therefore, the parameter that measures the importance of
quantum mechanics is A, (|F|), where |F| is the magnitude of the
force between neighboring pairs of particles. When this parameter is
small, a classical model is accurate; when the parameter is large, the
quantal nature of fluctuations must be accounted for.

Exercise 7.7 For liquid nitrogen at its triple point, com-
pare A, with the “diameter” of the N, molecule (roughly

4 A).

The pressure is obtained from the free energy by differentiating
with respect to the volume V. That is, p = —(8A/8V )y . Due to
the factorization of the partition function, this relationship means
that the equation of state is obtained from the configurational part of
the partition function. That is

Pp=(0@InQ/3V)np
=§/1nfdrN exp [-BU(r™)].
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We ignore all interactions of the boundary with the system other than
those that confine the system to a particular volume in space. Hence,
the volume dependence of the configurational integral is in the limits
of integration only. Note also that as the volume increases, the
configurational integral necessarily increases, too, since the integrand
is always positive. Therefore, the derivative yielding p is always
positive. Thus within the class of models we examine here, the
pressure of an equilibrium system is always positive.

Notice that with classical models, we predict that the configura-
tional part of the partition function is independent of the momenta
and masses of particles. Therefore, the equation of state, p =
p(B, p), is independent of the masses of the particles in the system.
Thus, if the translational and rotational motions of water molecules
are well described by classical mechanics, then the equation of state
of the liquids H,O and D,O will be the same. The experimental
situation, however, is that there are noticeable differences. For
example, the density maximum in p(7) at p = 1 atm occurs at 4°C in
H,0, and at 10°C in D,0. The freezing of D,O occurs at a higher
temperature than H,O, too. To think about this phenomenon on
physical grounds you can imagine that the role of quantum mechanics
is to blur the positions of the atoms over a distance VB#°/m. For a
proton at room temperature, this corresponds to a length of about
0.3 A. The diameter of a water molecule is about 3 A. Since the
protons are strongly bound to oxygen atoms, most of the blurring is
associated with librational motion of the water molecules. As the
atomic mass increases, the diffusiveness of the location of the atoms
diminishes, and the fluid becomes more ordered. This is the reason
why, for example, D,0 ice melts at a higher temperature than H,O
ice.

7.2 Reduced Configurational Distribution Functions

The configurational distribution P(r"), does not factor into single
particle functions because the potential energy, U(r"), couples
together all of the coordinates. However, we can still discuss
distribution functions for a small number of particles by integrating
over all coordinates except those pertaining to the particles of
interest. For example,

PN (r, 1) = j dr, J dr, - - -JdrN P(r™)

= joint probability distribution for finding
particle 1 at position r, and particle 2 at r,.
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This distribution function is called a specific probability distribution
because it specifically requires particle 1 (and no other particle) to be
at r,, and similarly, it must be particle 2 at r,. Such requirements are
not physically relevant for systems composed of N indistinguishable
particles. Further, the specific reduced distribution must be vanish-
ingly small as N grows to a reasonable macroscopic value (say 10%).*

The more meaningful quantities are generic reduced distribution
functions. For example, let

p@M(r,, r,) = joint distribution function for finding a particle (any
one) at position r;, and any other particle (in the N
particle system) at r,.

Note that there are N possible ways of picking the first particle (the
one at r,), and there are N — 1 ways of picking the second. Thus,
p®™M(ey, 1) = N(N — 1)PM(r;, ).
In general
p“M(xy, 1, . .. ,1,) = joint distribution function that in an N

particle system, a particle will be found at
r;, another at r,, . .., and another atr,,

= [N!/(N—n)!]Jdr""'

x exp[-BU™)] | [ ar® exp[-BUG),

where drV™" is an abbreviation for dr,., dr,.,---dry. For an
1 n+2

isotropic fluid, we have
p"™M(®)=p=N/V.

In an ideal gas, different particles are uncorrelated. As a result,
for an ideal gas, the joint two-particle distribution, P“™(r,,r,),
factors as PN (r,) P"*)(r,). Thus, for an ideal gas

NN-1)
V2
where the last equality neglects the difference between N — 1 and N.
[There are situations (not treated in this text) for which the subtle

distinction between N and N —1 actually becomes important.] In
view of the ideal gas result for p®™(r,, 1,), it seems appropriate to

pM(xy, 1)) = =p*(1-N"")=p?

*If a fluid has a density ap =N/V, the average number of parii‘cles in a microscopic volume Q
is pQ. (Suppose 2=1A". Then pQ~ 10 %ina liquidaand 10" " in a gas.) The probability that
specifically particle 1 is in that volume is N™' pQ ~ 1077 pQ.
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introduce

g(r, )= P(ﬂN)(l'l, )/ P2
or

h(ry,x) = [P(WN)(l'h ) — lelpz
= 8(1'1, 1'2) - 1’

which is the fractional deviation from the ideal gas approximation to
the true two-particle distribution function. For an isotropic fluid,
these functions depend upon |r; — r,| = r only; that is,

g(ry, ) =g(r),
h(r;, ) =h(r)=g(r) - 1

The quantity g(r) is called a radial distribution function. It is also
often referred to as a pair correlation function or pair distribution
function. The quantity h(r) is called the pair correlation function too.

As already noted, p®'M(r,) = p for a uniform system. Thus

p @0, x)/p = pg(r)
= conditional probability density that a
particle will be found at r given that
another is at the origin.

The reasoning behind this result is based upon a theorem of
probability statistics: If x and y are random variables with a joint
distribution P(x, y), then the conditional probability distribution for
y given a specific value of x is P(x, y)/p(x), where p(x) is the
probability distribution for x. Alternatively,

pg(r) = average density of particles at r given that
a tagged particle is at the origin.

When the terminology “liquid structure” is used, one is referring
to quantities like g(r). Unlike a crystal, the single particle distribu-
tion for a fluid is trivial. It is simply a bulk property, the density. The
isotropic symmetry must be broken (e.g., by stating that a particle is
known to be at a particular location). Once the symmetry is broken,
there is interesting microscopic structure. Thus, for a fluid, one
thinks about relative arrangements of atoms or molecules rather than
absolute arrangements. To get a feeling for what pair correlation
functions look like, let’s consider a simple atomic liquid like argon. A
schematic view of the liquid (drawn in two dimensions for artistic
convenience) is shown in Fig. 7.1. In this picture, o is the van der
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Most probable
location of second
coordination shell

Most probable
location of first
coordination shell

Fig. 7.1. Simple liguid structure.

Waals diameter* (about 3.4 A for argon); the cross-hatched atom is
the one we will take to be at the origin. The atoms are drawn close
together because of typical liquid densities, po® ~ 1. Since the fluid is
dense, there is a strong likelihood that a first neighbor shell will be
found around r = 0. The nearest neighbors, which comprise the first
coordination shell, tend to exclude the next nearest neighbors from
an intermediate region around r = (3/2)o. Thus, g(r) will be less than
unity in that region, and it will peak above the uncorrelated result
near r =20. Indeed, Fig. 7.2 shows what g(r) for a simple atomic
liquid looks like. The second peak corresponds to the most probable
location for the next nearest neighbors. These neighbors comprise
the second coordination shell. This layering manifests the granularity
(non-continuum nature) of the liquid. It shows up in an oscillatory
form for g(r), which persists until » is larger than the range of
correlations (typically a few molecular diameters in a dense liquid).
In the dilute gas phase, the range of correlations is just the range of
the intermolecular pair potential and there is no layering. [We will
return to the gas phase g(r) later at which point we will derive why it
looks as we have drawn it in the figure.]

Notice both in the picture of the liquid and in the graph of g(r)
that there is a finite density of particles even in ‘“‘unlikely” regions
like r = (3/2)o. This is one of the features that distinguishes a liquid

* Defined roughly as the distance of closest approach between two atoms during a physical
(non-chemical) encounter.
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g(r)

|
30

First | 1
coordination shell I'(—)l— Second coordination shell

Fig. 7.2. The radial distribution function for a simple fluid.

Y

from a crystalline solid. Without it, the possibility of diffusion would
be drastically reduced.

A schematic view of a solid (once again drawn in two dimensions)
is shown in Fig. 7.3. A radial distribution function for a three-
dimensional (fcc or bec) low temperature solid is depicted in Fig. 7.4.
This function is the angle average of g(r). Notice that the ordering of
the first coordination shell in a solid allows the second nearest
neighbors to be located at a distance V2o (or V30 in two
dimensions) from the tagged atom. This decrease from 2o accounts
for the fact that for simple systems, the bulk density of the solid
phase is higher than that for the liquid.

A quantitative comparison of the g(r)’s for liquid and solid argon
at its triple point (which corresponds to a low temperature liquid and
a high temperature crystal, respectively) is shown in Fig. 7.5.

The reader might wonder if the density of nearest neighbors is also
greater in the solid than the liquid. The number of neighbors within a

Fig. 7.3. Two-dimensional crystalline array of spherical particles.
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Nearest neighbors, first
coordination shell

Second nearest neighbors

g

JAWAWS

4 vie e

Fig. 7.4. Radial distribution function for a highly ordered solid.

distance r from a central atom is

n(r)=4np f rng(x) dx.

Exercise 7.8 Justify this formula.

When the integration is over the first coordination shells, the formula
yields

n(first coordinate shell) = 12

£(n

Fig. 7.5. Radial distribution functions for Iickuid and solid argon at the triple point
(0 =3.4A).
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for both the solid and the liquid. (This is the result in three
dimensions. What would it be in two?) Further, it is usually found
that g(r) for a solid peaks at a slightly larger distance than that for
the liquid. Thus, if these criteria are used, the nearest-neighbor
density of a liquid is not less than the nearest-neighbor density of a
solid. The difference between the two phases comes from the
ordering of the first coordination shell. This ordering allows the
closer approach of the second coordination shell. It also prohibits
appreciable concentrations of particles between the first two coor-
dination shells. This behavior gives rise to the long range order
present in a solid (and absent in a liquid), and it severely inhibits
diffusion.

7.3 Reversible Work Theorem

The reduced distribution functions are related to a Helmholtz free
energy by a remarkable theorem:

g(r)=e
where w(r) is the reversible work for a process in which two tagged

particles are moved through the system from infinite separation to a
relative separation r. Clearly,

w(r)=w(r; B, p).
Since the process is performed reversibly at constant N, V, and T,
w(r) is the change in Helmholtz free energy for the process.

To prove this theorem, we consider the solvent averaged force
between a pair of particles, say 1 and 2. Here, ‘“‘solvent” refers to all
the particles in the system except those that are tagged. By
performing the average over all configurations with particles 1 and 2
held fixed at r; and r,, respectively, we find that the averaged force is

=By

_jdrg e =8 dl'N(dU/drl)e_ﬂU

d
(e ve™)
1 r,r; fixed Idrs - drN e—ﬂU

= +k8T|:"‘€"i“Idr3 v dl'Ne-ﬁU]/fdr:;' i dl'Ne_'BU
dr,

d d
= e -BU _ -
kgT 7 In J dry---drye ™" =k, T i In [N(N 1)

xfdr; e dry e“’”/j dr”e‘ﬂ”] =kBT£-lng(r,,r2).
1
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This result shows that —kgT Ing(|r,—r;|) is a function whose
gradient gives the force between particles 1 and 2 averaged over the
equilibrium distribution for all the other particles. Integration of the
averaged force yields the reversible work. Thus, w(r) = —kzT Ing(r)
is indeed the reversible work as described above. As the derivation of
this result might suggest, w(r) is often called a potential of mean
force.

7.4 Thermodynamic Properties from g(r)

Up to this point, we have not specified a form for U(r™). The
simplest possibility is
N

U(’N)= Z u(r; —x;),

i>j=1

where u(r) is a pair potential, as sketched in Fig. 7.6, where we have
taken u(x) as the zero of energy. The pair decomposable form for
U(r™) is only an approximation even for atoms. The reason is that
the internal structure of an atom involves fluctuating charge distribu-
tions (the quantal electrons). The potential energy expressed as only
a function of nuclear coordinates arises in some fashion by integrat-
ing out the intra-atomic charge fluctuations. If the fluctuations are
large in size, the resulting energy function will be complicated,
coupling together more than pairs of particles. For most atoms,
however, the charge fluctuations are relatively small, and pair
decomposability is a good approximation. A commonly used two-
parameter expression for the pair potential, u(r), is the Lennard-
Jones potential,

u(r) = 4¢[(a/r)* — (o/r)%).

Exercise 7.9 Show that the minimum in the Lennard-
Jones potential is located at r, = 20 and that u(r) = —¢.

For interparticle separations larger than r,, u(r) is attractive, and for
smaller separations, u(r) is repulsive. The attractive interactions are
due to the dipole-dipole coupling of the charge fluctuations in the
separated atoms. Here, note that it is the average dipole of an
isolated atom that is zero. Instantaneous fluctuations can have
nonspherical symmetry, and the resulting dipole in one atom can
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=

0 T ! r
|
|
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Fig. 7.6. A pair potential.

couple to that in another leading to attractive interactions. Such
interactions are called London dispersion potentials, and these
potentials are proportional to r~°. There is quite a different origin to
the repulsive forces between atoms at small separations. At small r,
the electronic clouds on the two atoms must distort to avoid spatial
overlap excluded by the Pauli principle. By distorting the electron
distributions, the energy of the atoms increases thus leading to a
repulsion between atoms.

The Lennard-Jones potential has an attractive branch that is
asymptotic to r~%, but the particular 6-12 algebraic form is not
fundamental. The most important features of the Lennard—Jones pair
potential have to do with length scales. In particular, r, is roughly
10% larger than o, the distance at which u(r) = 0. Further, the range
of u(r) is roughly 2r,. This scaling holds empirically for most noble
gas atoms and to a lesser extent for some simple molecules like N,
and O,.

With the pair decomposable approximation, we can calculate the
internal energy as

(E) = (K(p")) + (UC™))
=N@2m)+( S uln-x)).

i>j=1

The first term on the right is (3/2)Nk;T. The second term is a sum of
N(N —1)/2 equivalent contributions (the number of separate pairs).
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Each one has the value (u(ry,)), where r;; = |r; — r;|. Thus

(5 um))=3 NN =1)(u()

NOV=1) [[@r™u(ry) exp[-BUC™)]
2

jdr” exp [-BU(r")]

=% fdl'x j’dl'z u(r)N(N - 1)

X J’drN"2 e"ﬂ”(’")/f dr™ e PU
1 (@N)
= 2 dry | dr, p=(xy, r2)u(ri).

For a uniform system, p@™)(r,,r,) = p°g(r;2). Thus, it is convenient
to change variables of integration from (r;,r;) to (r;5,r;). The r;
integration can be done freely to give a volume V. Thus,

( S u(r,.,.)>= (Vp*/2) f drg(Hu(r)

i>j=1

= % N J- dr pg(ru(r).

We can understand this result on physical grounds. For each particle,
there are 4sr’pg(r) dr neighbors in a shell of radius r and thickness
dr, and the energy of interaction between the central particles and
these neighbors is u(r). The factor of 1/2 is a symmetry number that
corrects for double counting.

Combining these results yields

3

(E)/N=5kBT +%p J'drg(r)u(r).

Exercise 7.10 Express the internal energy in terms of
reduced distribution functions when

uery= 2 u(ry) + > u®m-r,r—n).

i=j=1 i>j>l=1

Exercise 7.11* Show that when U(r") is pair decom-
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posable, the pressure is given by
Bplp=1—(Bpl6) j drg(r)r du(r)/dr.

This formula is called the virial theorem equation of state.
[Hint: In the configurational partition, for 1<i<N,
change coordinates to x; =V ~'"r,, so that dx;=V~'dr,
and the limits of integration no longer depend upon
volume.]

To see how the formulas for thermodynamic properties work, we
need a theory for g(r). One way to estimate g(r) focuses attention on
the potential of mean force, w(r). We can separate w(r) into two
parts:

w(r) =u(r) + Aw(r).

The pair potential, u(r), describes the reversible work to move the
particles in a vacuum. Thus, Aw(r) is the contribution to w(r) due to
surrounding particles in the system. That is, Aw(r) is the change in
Helmbholtz free energy of the solvent due to moving particles 1 and 2
from |r; —r;] = to |r; — x| = r. Clearly, in the low density limit

lim Aw(r)=0.
p—0
As a result,
g(r)=e""0[1+ 0(p)].

For higher densities, one must grapple with the deviations of
Aw(r) from zero. In the most successful approaches, one estimates
Aw(r) in terms of pg(r) and u(r). These approaches yield integral
equations for g(r) that are essentially mean field theories. We will
not discuss these more advanced treatments here. Instead, we will
consider the low density limit.

From the energy equation we have

AE/N = (p/2) j drg(ru(r)

= (p/2)[dxe M Ou(r)1 + 0()),
where we have used the low density result for g(r), and AE is defined
as FE — E;4ea. Note that
AE/N = 3(BAA/N)/3B,

where AA is the excess (relative to the ideal gas) Helmholtz free
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energy, that is,
—BAA =1n(Q/Qisen)-

Thus, integrating the molecular expression with respect to § yields

~BAAIN = (/) [drf () + 0(0?),
where
F(r)=ePu) 1.

From this expression for the free energy we can obtain the pressure p

via
3(BAAIN) .
pz——ap =Bp—p.

The differentiation yields

Bp = p + p*B,(T) + O(p?),
where

B(T)= -3 [ drf(r)

is called the second virial coefficient.

Exercise 7.12 Insert g(r)=exp[—pfu(r)] into the virial
theorem and show that the same equation is obtained for
the second virial coefficient. [Hint: You will need to
integrate by parts.]

Exercise 7.13 Evaluate the second virial coefficient for a
hard sphere system,
u(r)==», r<o,
=0, r>o,
and for a square well system
u(ry=«=, r<o,
=—g o<r<o’,
=0, r>0'.
Estimate the Boyle temperature, T [the temperature at
which B,(T) is zero].

Exercise 7.14 Sketch a graph of Bx(T) for a Lennard-
Jones potential.
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7.5 Measurement of g(r) by Diffraction

Let us now consider how pair correlation functions can be measured.
The measurement will have to probe distances of the order of or
smaller than Angstroms. Thus, if radiation is used, its wavelength
must be smaller than 1 A; such wavelengths are obtained with X-rays
or neutrons. The elementary theory of X-ray scattering is similar to
that for neutrons. We treat X-rays here.

A schematic view of an X-ray scattering experiment is shown in
Fig. 7.7. The scattered wave at the detector due to scattering from
one atom at R, is

[atomic scattering

factor } IRD - sl_l €Xp {l[km - Rs + kou: ¢ (RD = Rs)]}

(This is the spherical wave, first Born approximation.) If the detector
is far from the scattering center,

IRp — R|~|Rp —R|,

where R, is the center of the scattering cell. For that case, the
scattered wave at the detector is

f(k) |Rp — R,| ! e'kom* Rog=ik R,

where
k= l‘cmt - kin

is the momentum transfer (within a factor of #) for the scattered
X-ray, and f(k) is the atomic scattering factor. (It depends upon k.
Why?) Now consider the vector diagram in Fig. 7.8. Since photons
scatter nearly elastically, [ki,| = [kowl. As a result,

k = || = (47/A;;) sin (8/2).

Scattering sample

Incident plane wave, Kin

B/ 0, scattering angle

/ Scattered wave, Koy,

\_) Detector

Rp

Fig. 7.7. X-ray scattering.
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kin

ki)l.l‘

Fig. 7.8. Vector addition.

Exercise 7.15 Derive this formula for elastic scattering.

Since each atom in the system scatters, we have a superposition of
waves at the detector:
eikunl s R.D N

IR: = Rp| =1

(total scattered wave) = f(k) ek

where r; is the position of the jth atom. The intensity is the square of
the magnitude of the total wave, and the observed intensity is the
ensemble average of that square:

1(0) = observed intensity at detector
=[If (k)*/IR. — Rp|’INS(k),
where

s00=N"( 3 explik- (—x)]).

Lj=1

The quantity S(k) is called the structure factor. It is related in a
simple way to the Fourier transform of g(r).

To see why, expand the sum over particles in S(k) into self, / =,
and distinct, / #j, parts. There are N of the former and N(N — 1) of
the latter. Thus,

S(k)=1+NT'N(N —1)(e™ "17™)

N(N - l)fdrN g'k: (n—rde—hU

=1+N""
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=1+N"! j dr, j dr, p9(r;, 1) e™ 1™

| ]
fdrlfdrl2 Pzg("lz)

=1+p jdrg(r)e“‘".

As a result, the measured structure factor determines the Fourier
transform of g(r). Since Fourier transforms are unique, S(k) can be
inverted to determine g(r).

Exercise 7.16 Verify the algebraic details in this deriva-
tion and continue the reduction to show that

S(k) =1+ (4p/k) f " dr s et

7.6 Solvation and Chemical Equilibrium in Liquids

One of the most important aspects of liquid state science in the fields
of biophysics and chemistry is the role of liquid environments in
affecting conformational and chemical equilibria of solutes in solu-
tion. This is the subject of solvation, and here, too, reduced
distribution functions are closely related to experimental observations
of solvation.

To describe the relationship, we begin by deriving a formula for
the chemical potential for a simple structureless solute species
dissolved in a fluid at low solute concentrations. The total partition
function is

0= di)di)V—(NA+Ns)fdrNAjdrNs

X exp [—BUs(r™s) — BU,s(r™s, r™)],

where Q$YQ4Y is the ideal gas partition function for the solvent-
solute mixture (it depends upon the numbers of solute and solvent
molecules, N, and Ng, respectively, the volume V, and temperature
T), the potential energy Us is the potential energy for the pure
solvent (it is a function of the solvent configurations, r™), and U,y is
the contribution to the potential energy due to the coupling between
solvent and solute species. In this equation for the partition function
we have left out a contribution to the potential energy due to the
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interactions between different solute species. These interactions are
negligible at low enough solute contributions since in that case
interactions between different solutes occur for only a negligible
fraction of configuration space. The U,s term, however, cannot be
neglected since solutes are virtually always surrounded by and
interacting with solvent species.

To analyze the effect of the Uy, term, we employ a trick known as
the coupling parameter method. In particular, we let

0, = QLMY At J' dr™ f dr™s
X exp [~BUs(r™) — BAUs(r™, r™)],

where 0 A =<1 is the coupling parameter. When A =0, the solvent
and solutes behave independently of one another, and when A =1,
the Q, is the full partition function. Let us now consider the
differential change in In Q; due to changing A. Within a factor of — 8,
In Q, is the Helmholtz free energy for a system with total potential
energy Us+ AU,4s. By studying the change of In O, with respect to
changing A, we are therefore studying the reversible work to change
the solvent—solute coupling. In view of the previous formula,

dana= jdrNAfdrNS(—ﬁUAs) exp (—BUs — BAULs)

dA J
]dr”‘ j dr™s exp (—BUs — BAU,s)

where we have omitted the arguments of the potential energy
functions for notational convenience.

To proceed, we need to say something more about U ,g(r"s, r™).
We will assume a pair decomposable form,

Ny Ng
Uns(r™, )= 3, 3, sl = sl
i=1j=
where r,4 is the position of the ith solute, and s is the position of the
jth solvent. Inserting this expression into the formula for d In Q;/dA
and carrying out the same manipulations encountered in earlier
sections yields

~ksTdn Q,/dA =N, j dr as(r)psgas(r; A),

where ps = N;/V, and g4(r; A) is the radial distribution function for
a solvent-solute pair when the total potential energy for the whole
system is Us + AU,s.
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Exercise 7.17 Derive this result.

We can now formally integrate the derivative giving the free energy
A(Ns, NA, V, T) =Aid(NSs NA, V, T) + AAs(Ns, V, T)

1
+ NA L dA j dr uAS(r)psgAS(rr A)’

where A,, is the ideal gas Helmholtz free energy of the solvent-solute
mixture and AAg is the excess (beyond the ideal gas) Helmholtz free
energy for the pure solvent. The last equation was derived by noting
that In Qo= —B(Aiq + AA;). Finally, to complete our analysis, we
differentiate A with respect to N, to obtain the chemical potential at
infinite dilution:
pa=pi? + Apg,

where

1
Apy =j dA jdr Ps8as(r; Muas(r),
o

and p4? is the chemical potential for species A in an ideal gas. In
Exercise 7.32, you will develop a somewhat different derivation of
this same result for Ap,, and you will see that Au, is measured
experimentally by determining the Henry’s Law constants for an
ideal solution.

We now turn our attention to the situation where two solutes
encounter one another in solution. The analysis of the statistics of
this encounter leads us to the theory of chemical and conformational
equilibria in solution. The analysis can be made quite general, and
students are encouraged to try their hands at the generalizations.
But, for the sake of simplicity, we confine the discussion to the
chemical equilibrium

A+B=2AB,

which may occur in the gas phase or in a liquid solvent. An example
might be the dimerization of NO, to form N,O, in a gaseous
environment or in liquid CCl,.

To apply the rules of classical statistical mechanics to this process,
we must have a definition, preferably a configurational one, for when
an AB species is formed. We will focus on the distance r between the
centers of A and B, and say that an AB dimer is formed whenever
r <R, where R is some length we must specify. We will take R to be
the range of the covalent bonding energy, u.4z(r), which would favor
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the formation of the dimer. Let
HAB(r)=1, r<R,
=0, r=R.

Then the ratio of the classical intramolecular partition functions for
the AB dimer and monomers in the gas phase is (neglecting any
considerations of the internal structure of the A and B species)

448/45°59 = (1/0,5) [ dr Hag(r)e 0000,

where 0,45 is the symmetry number for the dimer (1 when A # B, and
2 when A = B), and the superscripts “id” indicate the expression is
appropriate to a dilute ideal gas where intermolecular interactions
are negligible. Accordingly, the equilibrium constant

K=pap/paps
is given in the gas phase by

K =(1/0,5) [ dr Hyp(r)e s,

In a condensed phase, the liquid solvent plays a role in the free
energetics for the association process. Consider carrying out the
dimerization by moving an A and B pair reversibly through the
solvent, starting with the pair separated by a macroscopic distance
and eventually reaching a mutual separation of r. Except for
requiring the solvent to remain at equilibrium, there is no restriction
on the concentration of solute species in the solvent. Since the
process is carried out reversibly, the solvent contribution to the
change in Helmholtz free energy is Aw,z(r), the indirect part of the
potential of mean force. The total free energetics is thus wu,4(r) +
Aw,p(r). Hence, in a liquid

K= (1/045) [ de Hap(0) exp[~Buan(r) ~ BAwas(r)

= K j dr s$3(r)yas(r),

where
S4(r) % Hyp(r)e ™ Pas?)

is the intermolecular distribution function for an AB dimer in the gas
phase, and

YAB(r) =e BAw,g(r)
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is called a cavity distribution function. It is given that name since
yag(r) is the radial distribution function for a pair of hypothetical
particles A and B that do not interact directly with each other and are
dissolved at infinite dilution in the solvent. These hypothetical
particles are therefore like cavities in the fluid.

Exercise 7.18 Show that in the liquid, the intramolecular
distribution is given by

48() = 588005 / [ desEHrIvan(0)

Exercise 7.19 Let Ay, denote the excess chemical poten-
tial (beyond that found in the gas phase) for species i in a
liquid solvent. Show that

Mtian = Aty + Atip = kpT In [ drs$30)yan(0).

Exercise 7.20 From the solubility of saturated alkane
chains in liquid water, is found that to an excellent
approximation, Au for the normal isomer of C,Hy,. in
water depends linearly upon n. Explain this observation.
[Hint: Consider the excess chemical potential in terms of
the reversible work to create certain arrangements of
“cavity particles” in the fluid; and also note that the
linearity with n is a good approximation but not an exact
result.] For n>10, it becomes difficult to measure Au
because of the diminishing solubility of the alkanes in
water. Nevertheless, if the Au’s could be measured, do
you think the linear dependence would persist for large n?
Explain.

7.7 Molecular Liquids

When scattering experiments are performed on molecular (as op-
posed to atomic) fluids, one obtains a superposition of scattering
from all pair separations of atoms both intramolecular and inter-
molecular. Thus, for a fluid where p is the number of molecules per
unit volume, the experiments probe both

P8ay(r) = density of atoms y at position r given that an atom
« in another molecule is at the origin



214 INTRODUCTION TO MODERN STATISTICAL MECHANICS
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1.1 A 334 75A

Fig. 7.9. Pair distribution function for liquid nitrogen.

and

Sqy(r) = probability distribution that atom y is at position
r given that another atom « in the same molecule
is at the origin.

Diffraction experiments determine a linear combination (in Fourier
transform space) of

Gy (r) = Say(r) + 8ay (7).

For liquid nitrogen, the pair distribution is sketched in Fig. 7.9.
The sharp peak at 1.1A is due to the intramolecular structure. In
particular, the N-N bond length for an N, molecule is L =1.1 A.
The remaining features are interpreted as follows: Since liquids are
dense, it is more likely that molecules will be touching their
neighbors. Thus, the main peak at 3.3 A indicates that the van der
Waals diameter of a nitrogen atom is roughly o = 3.3 A. Since each
atom is attached to another via a chemical bond, and since each atom
is touching atoms of neighboring molecules, it is likely that a tagged
atom will also have neighboring atoms at o + L. This is the reason for
the shoulder or auxiliary peak found in Guyy(r) at r= (3.3 + 1.1)A.

Integration over the first coordination shell gives*

5.6 A
n=4mx Gun(r)r? dr
3A

=12.

* Since each N, molecule has two atoms, the total density of N atoms around a central atom is
2pGpun(r). Hence, the total number of atoms in the first coordination shell is roughly 24.
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fw

Fig. 7.10. Liquid structure with diatomic molecules.

Thus, each N, molecule has roughly 12 neighbors in the first
coordination shell. This suggests that the structure in that shell after
averaging over each of the particles is somewhat like that in a simple
atomic fluid. Indeed, the location of the second coordination shell,
7.5A=2(0+ L/2), is in agreement with this idea. But notice that
the oscillations in Gyx(r) die out in a shorter distance than that for a
liquid composed of spherical particles. Also, the peaks are lower and
broader for the diatomic fluid. The reason is due to the presence of
two length scales, o and L, rather than just the van der Waals
diameter o. The second length introduces a larger variety of
possibilities for the local intermolecular structure, and this variety
produces a randomization that washes out the pair correlations.

A schematic picture of a region of the liquid we have just
described is shown in Fig. 7.10.

Exercise 7.21 The carbon-carbon pair distribution func-
tion for n-butane, CH,CH,CH,CH,;, is sketched in Fig.
7.11. Explain the qualitative features seen in this curve.
(You will need to note that n-butane has three stable
conformational states: trans, gauche+, and gauche—.)

Liquids nitrogen and butane are nonassociated liquids. That is,
their intermolecular structure can be understood in terms of packing.
There are no highly specific intermolecular attractions in these
systems. Perhaps the most important example of an associated liquid
is water. Here, the linear hydrogen bonding tends to produce a local
tetrahedral ordering that is distinct from what would be predicted by
only considering the size and shape of the molecule. The strength of
a linear hydrogen bond is roughly 10k 7 at room temperature. This
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Fig. 7.11. Pair distribution function for liquid n-butane.

should be compared with the typical size of attractive interactions in
nonassociated liquids: 1 to 2k T at the triple point.

A heuristic picture of three water molecules with the outer two
hydrogen bonding with the one in the middle is shown in Fig. 7.12. A
linear hydrogen bond is formed when a proton overlaps with or gets
close to one of the fictitious lone pair electron lobes (or “orbitals”).
With the three molecules shown, it is clear why the hydrogen
bonding favors tetrahedral ordering. Of course, this ordering persists
over large distances only in the ice phases. In the liquid, there is
sufficient randomness even in the first coordination shell that the

H

)

Fig. 7.12. Three water molecules and two hydrogen bonds.
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Fig. 7.13. Oxygen-oxygen radial distribution function for liquid water.

r

tetrahedral ordering is rapidly lost within one or two molecular
diameters. In fact, the oxygen-oxygen pair distribution function for
water at room temperature looks as shown in Fig. 7.13. The first
peak is located at roughly 2.8 A = oy, the hydrogen bond distance.
The second peak is found at 4.5A~1.6x2.8A, just as would be
expected from a tetrahedral structure. Further, when integrated over
the first coordination shell,

35A

n=4mp goolr)rrdr=4.

0
But beyond the second coordination shell, the pair correlations
essentially vanish. The orientational correlations vanish in even a
shorter distance than the translational correlations. This fact can be
established from the behavior of the OH and HH intermolecular
distribution functions which are shown in Fig. 7.14. It is clear that all
the features in these curves arise from the structure of the first

Baqy(r)

8uH (r)

[

Fig. 7.14. H-H and O-H distributions in liquid water.
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coordination shell only. Thus, the structure of liquid water is a highly
distorted random network of hydrogen bonded species.

It is interesting to juxtapose the distribution functions for water
with those for a nonassociated fluid. Recall that the second peak in
g(r) for a simple fluid occurs at twice the position of the first peak.
There is no remnant of the second neighbor peak for the solid
located at V2 o. Further, efficient packing of the nonassociated liquid
tends to make each molecule have 12 neighbors in its first coordination
shell. In contrast, a water molecule in water has roughly four nearest
neighbors, and there is a clear remnant of the ice structures in which
the second neighbors appear at 1.60yg. This local water structure is
tenuous. The tetrahedral ordering is an inefficient means of filling
space, since a large fraction of space remains unoccupied. The large
hydrogen bond energy is required to promote this local structure
which is so unfavorable as far as packing is concerned. But it is just
barely able to compete with the packing. As a result, the structure is
fragile as manifested by its unusually large temperature dependence.

Exercise 7.22* One anomalous behavior of water is its
unusually large heat capacity, C,. For water, C, (liquid) —
C,(gas) = 20R, whereas for most liquids the number is 2
to 5R. Show that this behavior is a direct manifestation of
the relatively large temperature dependence in the water
structure. [Hint: Think about relating the internal
energy to pair correlation functions.]

Since tetrahedral ordering leaves empty space in the fluid, it is
clear that the isothermal application of pressure (which will decrease
the volume per particle) will tend to rupture the local structure.
Thus, the ordering in water will decrease with increasing pressure. In
nonassociated liquids, higher pressure leads to greater packing and
thus more order. The fact that increasing pressure or density can lead
to less order in water is directly responsible for the density maximum
in water found, for example, at 4°C and 1 atm pressure.

Exercise 7.23 Verify this statement. [Hint: Note that
(3s/3p)r = —(8v/3T),.]

7.8 Monte Carlo for Hard Disks

In the preceding sections, we have described many of the general
properties of liquid phase pair correlation functions. Further, we
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have shown how the qualitative behavior of these functions can be
anticipated from a rudimentary knowledge of the interparticle
potentials acting between atoms and molecules. For instance, packing
effects or geometrical considerations that focus on the shapes of
molecules can be invoked to understand the structural behavior of
most dense fluids. However, for associated liquids such as water, one
must consider the effects of the highly directional and very strong
hydrogen bonds.

To go beyond the qualitative pictures and develop a quantitative
treatment of the connection between these potentials of interaction
and liquid structure requires calculations that in some way accurately
sample the multiparticle distribution

P(r™) « exp[—-BU(r™)].

There are several approaches to this problem. Some of them utilize
analytical treatments that involve perturbation theories and mean
field approximations of various sorts. A few such techniques have
been remarkably successful in explaining the nature of the liquid
state. Despite their intrinsic computational simplicity, however, the
analytical methods cannot be properly developed and tested without
the simultaneous implementation of computer simulations. The
simulations are numerical experiments used to test the accuracy of
the approximations used in the analytical theories. Further, while
numerically tedious, simulations are conceptually far simpler than the
analytical methods, the latter requiring much greater mathematical
sophistication than the former.

In Chapter 6 we introduced the Monte Carlo technique as one
such method for studying the fluctuations in discretized lattice
models. In this section we show how this numerical sampling scheme
can be extended to fluids where the degrees of freedom are
continuous. The particular model we consider is a two-dimensional
fluid of hard disks. This model is perhaps the simplest system which
exhibits many of the most important structural phenomena that occur
with dense fluid systems found in nature.

Exercise 7.24 With computer simulations, scientists have
observed that a two-dimensional fluid of hard disks, each
of diameter o, seems to become unstable when it is
compressed to a density higher than 70% of the closest
packed density, pcp. Above this density, the system
freezes into a periodic crystal. What is the value of pcp?
What would you predict as the crystal structure of the
hard disk solid?
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The generalization from Metropolis Monte Carlo for Ising models to
Metropolis Monte Carlo for fluids is relatively straightforward. For
the continuous variables that characterize the configurations of a
fluid, however, the numerical arithmetic is more difficult and requires
greater computation time than that for an Ising model. In the latter
case, most of the arithmetic operations can be reduced to multiplying
zeros and ones.

This additional numerical complexity might be contrasted with the
added conceptual complexity that is needed to generalize the
perturbation theory and mean field treatments of Ising models
presented in Chapter 5 to analogous theories for continuous fluids.

Exercise 7.25% Try to generalize the molecular mean field
treatment of Sec. 5.4 to the case of a continuous fluid with
pair interactions u(r). If you succeed, the analog of the
transcendental mean field equation m =tanh [SuH +
Pzim] is

(p®) =cexp | ~po() = B [ dr' (o)t -r ],

where c is a constant of proportionality, and ¢(r) is an
external potential energy field. Notice that this relation-
ship is an integral equation for (p(r)}, the average density
at position r. Suggest methods (numerical and/or analyti-
cal) by which you might solve this equation.

The so-called “integral equation theories™ of liquids are
based upon mean field approximations like this one
illustrated here.

The potential energy between a pair of particles ij in a hard disk fluid
is

ury)=, r;<o,

== 0, 4 if >0,
where
ri= = x%) + (- p)~

Here (x;, y;) are the Cartesian coordinates for particle i. In the
program listed below, N =20 disks are placed in a square cell of side
length L. The particle density, p = N/L?, is fixed by the value of L,
and the disk diameter, o, is the unit of length. Periodic boundary
conditions are employed so that if a particle leaves the cell during a
step of the simulation, another particle enters the cell at the other
side. For example, if the center of particle i changes from (x;, y;) to
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(x;+ 6, y;) in a Monte Carlo step and if x; + 6 is a position outside
the cell, then the new position for the center of particle i is actually
taken as (x; + 6 — L, y;). Notice that this type of boundary condition
corresponds to simulating an infinite system by considering only those
fluctuations which are periodically replicated from cell to cell.

After setting up an initial configuration of the system, r"V=
(X1, Y10+ -+ » X, Yir -+ -, Xn, Ynv), @ disk is identified by its position
(x, y). Each disk is considered in turn. A possible new position for
the disk under consideration is chosen by two random numbers, Ax
and Ay, in the range [—del, del], where “del” is adjusted experimen-
tally to give about a 30% acceptance of the new position. (A “del” in
the range [0.05, 0.1] seems to work well in the program listed in the
Appendix.) The possible new position is (x + Ax,y + Ay). The
energy difference, AU, between the possible new configuration, r'~,
and the old configuration, r", is either 0, if the disks do not overlap,
or =, if any of the disks do overlap. Recall from Chapter 6 that
according to the Metropolis algorithm for Monte Carlo, the new
configuration will be accepted if

exp(—pAU)=ux,

where x is a random number between ( and 1. Otherwise, the move
is rejected. In the case of hard disks, exp (—BU) is either 0 or 1. So
the acceptance criteria is simply decided upon whether or not a new
configuration introduces overlap of particles. The trajectory. moves
from step to step as described above, and the configuration at step
t+1is

PN+ 1) =rN()

if the attempted move to configuration r'" caused an overlap of two
disks, and

PN+ =N

if there was no overlap.

One property that can be computed from such a trajectory is the
radial distribution function, g(r). In particular, one may average the
occurrence of particular pair separations. This average can be
calculated by considering the average number of particles in a shell
located a distance r from some tagged particle j. The thickness of the
shell is taken to be 0.10. This increment of length will then be the
smallest length over which we resolve g(r). Let (m(r)) be the
average number in the shell at distance r. Then

("j(")) = %gt n;i(r),
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where nj;;(r) is the number of particles in the shell on pass i. Here, T
is the total number of passes, and one *“‘pass” corresponds to N steps.
This average is independent of which particle is the tagged particle.

Let
(n(r)) = (m(r)) = - = (nx(r)),

or,

() =33 (1)

1 N T
== ATT'J;I 21 nﬂ(r )‘
If the particles were uncorrelated, the average number in the shell at
distance r would be

(n(r))unc = (area of shell)o(N — 1)/N,

where p is the density of the liquid and (N — 1)/N corrects for the
inability of the tagged particle to be in the shell at distance r. Now
g(r) can be expressed as
(n(r))
r =
= )

N T

L X onyr)

j=1i=1
" (area of shell)(N—1)Tp"
The program in the end-of-chapter Appendix uses this algorithm. It
is written in BASIC for the Apple “Macintosh.”
As the trajectory progresses, the statistics for g(r) improve. Figure
7.15 taken from the Macintosh display illustrates the evolution of the
statistics for the density po®=10.7.

Exercise 7.26 Discuss how the accumulation of statistics
for g(r) depends on the size of the shell width.

Exercise 7.27 Experiment with the evolution of the
Monte Carlo trajectory as one changes the size of “del”
and thereby influences the percentage of accepted moves.
Note that if “del” is too large, nearly all moves will be
rejected, and the configurations of the system will not
efficiently sample configuration space. Similarly, if “del” is
too small, nearly all moves will be accepted, but the step
size will be so small that sampling will still be inefficient. It
would seem that there is an optimum midground. Can you
think of a criterion for optimizing the choice of step size?
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Fig. 7.15. Monte Carlo for hard disks.

Additional Exercises

7.28. Consider a dilute gas of argon atoms at a temperature T.

7.29.

Compute, as a function of T, the following mean values:

@ (v, ) (), (© (), (@) (w),
() ((vx+bv,)*),
where v, and v, are Cartesian coordinates of the velocity v of
one of the argon atoms. Discuss how your results will change if
the gas is compressed isothermally to the point at which it

liquifies, and it is further compressed to the point where it
freezes.

Consider a system of N distinguishable non-interacting har-
monic oscillators. The Hamiltonian is

N N
¥=2 pom+ Y k|t — 0P,

i=1 i=1

where r{” is the equilibrium position of the ith oscillator
particle.

(a) Assume that the oscillators obey Schrédinger’s equation
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7.30.

7.31.
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and determine the canonical partition function for this
system.

(b) Assume that the oscillators obey Newton’s equations of
motion and determine the partition function for this
system.

(c) Show that the results of (a) and (b) agree in the high
temperature limit.

Consider a system of classical particles with both pairwise
additive and three-body potentials. Show that the second virial
coefficient is independent of the three-body potentials.

In this problem you will consider an equilibrium classical fluid
of N hard rods confined to move on a line of length L as
depicted in Fig. 7.16. The length of each individual rod is /,
and pcp=1["' is the close packed value of the density,
p = N/L. The Helmholtz free energy for the system is given by

—BA=In [(N”'N)_ljj dxy -+ J;L dx”e—ﬂu],

where B! =kT, U is the total potential energy that depends
upon the rod positions x;,...,xy, and A is the thermal
DeBroglie wavelength. The pressure is given by

Bp = (- BA)/3L,
and the pair distribution function is defined by

pg(x) = average density of rods at position x given
that another is at the origin.

Note that x can be both positive and negative, and, for
simplicity, assume the origin is far from the walls.

(a) At a high density (but less than pcp), draw a labeled sketch
of g(x) for x > 0.

(b) Draw another labeled sketch of g(x) for x>0, but this
time for the case in which p— 0.

(c) Describe how g(x) depends qualitatively upon tempera-
ture, T.

-  f= N
mem = wmmZ

L |

Fig. 7.16. Classical fluid of hard rods confined to a line of fixed length.
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(d)

For p— pcp, compute the value of the integral
(32)1

dx g(x).

(e) As a function of N, p, and T, determine the (i) average

velocity of a rod, (ii) average speed of a rod, (iii) average
kinetic energy of a rod, and (iv) internal energy of the full
N particle system.

(f) With a (not too) tricky calculation, one can show that the

density dependence of the pressure for this system is given
by
Bp = p/(1 - bp),

where b is independent of density. (i) Is b a function of
temperature? (ii) Relate b to a second virial coefficient and
use this connection to compute b in terms of § and L

(g) Carry out the “tricky calculation™ referred to in part (f)

above.

7.32. (a) Consider gaseous argon. Neglect the internal structure of

(b)

(©

the argon atoms, and assume classical mechanics is valid.
With a statistical thermodynamics calculation, show that in
the low density limit, the chemical potential of gaseous
argon is given by

Bu=f(B)+Inp,

where f(B) is a function of § = 1/ksT, only, and p =N/V
is the density of the argon.

Now consider argon dissolved at low concentrations in
liquid water. Show that the chemical potential for argon in

this system is
Bu=f(B)+Inp + BApu,

where () is the same quantity appearing in part (a), p is
the density of argon in the water, and Apu is an “excess”
chemical potential that vanishes in the hypothetical limit in
which argon and water molecules do not interact with one
another (it is a function of the thermodynamic variables f
and py, where py is the density of water).

When the dilute argon vapor is in equilibrium with the
argon-water solution, the pressure, p, of the argon vapor
obeys Henry’'s Law

P= thr,
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where x is the mole fraction of the argon in the water, that
is,
x=p/(p+pw)=p/ow

and k, is the Henry’s Law constant. Show that

ky=pB"pw exp (BAp).

(d) The potential energy of the aqueous argon solution is very
complicated depending upon the orientations and positions
of all the water molecules and the coupling between each
water molecule and each argon atom. Assume the form of
the latter is such that

2:1 Uaw(lr — r;[)

is the potential energy associated with an argon atom at
position r. Here, r; is the location of the center of the ith
water molecule, and N is the total number of water
molecules. This being the case, show that

N
exp (~pan) = (1T exp [~usule—nD])
ok
where (---)y indicates the canonical ensemble average
over the coordinates of all the water molecules. (It is
weighted by the Boltzmann factor with the total potential
energy of all the water molecules.) [Hint: Conceive of
Ay as the difference between the Helmholtz free energy of
water when the solute is present and that when the solute
is absent.] Finally, use this result to show that

1
Au *L dA jdl' PwEaw(r; A)uaw(r),

where gaw(r;A) is the argon-water radial distribution
function for one argon dissolved in water and this argon is
coupled to the water via the pair potential Au,w(r).

7.33.* Consider the virial theorem for the equation of state (see
Exercise 7.11). For a two-dimensional fluid of hard disks,
show that

Bplo=1—(Bp/4) J dr g(r)rdu(r)/dr

=1 (Bon/2) [ drrg(r)idu(r)/a]

=1+ (po’n/2)g(c™),
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TCM.

7.35.

where g(o™) is the contact value of g(r). {Hint: In the last
equality, note that —Bg(r)[du(r)/dr] = y(r)d exp [—Bu(r)]/dr,
where y(r) = exp [—~BAw(r)] is the cavity distribution function.
Furthermore, note that the derivative of a step function is a
Dirac delta function.}

Use the Monte Carlo code for hard disks and the result of
Exercise 7.33 to evaluate the pressure of the hard disk fluid.
Note that to obtain g(¢™) you will need to extrapolate from r
values greater than o. Try a linear extrapolation. Compare
your results with the estimates of the pressure given below.
Comment on the sources of your errors (e.g., finite averaging
time, small system size, etc.)

(Pce/ ) (Bplp)
30 1.063
5 1.498
2 3.424
1.6 5.496
1.4 8.306

? pcp = closest packed density.
®Source: J. J. Erpenbeck and M.
Luban, Phys. Rev. A 32, 2920
(1985). These numbers were ob-
tained with very powerful compu-
ters. The uncertainty is in the third
decimal place.

Consider a classical fluid with the potential energy
N

U@r™y= 2 u(y—r)).

i>j=1
Imagine dividing the pair potential into two parts,
u(r) = ug(r) + uy(r).
Call uy(r) the reference potential, and define the reference

system as that system for which
N

> uollr — )

i>j=1

is the total potential energy. The remaining part of the pair
potential, u,(r), is then the perturbation pair potential.

(a) Show that the Helmholtz free energy of the full system is



