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Analytic expressions are derived for the atmospheric structure, greenhouse 
effect, and level of onset of convective instability in window gray and nongray 
planetary atmospheres. Where pressure-induced transitions or dust are principal 
sources of infrared opacity, gray approximations may have a strict relevance; 
but, even when permitted transitions are the opacity sources, the appropriate 
expressions for the nongray atmosphere are quite similar to those for the gray 
case. Constant lapse rates should occur in deep radiative equilibrium as well as 
deep convective equilibrium atmospheres. Atmospheres with polyatomic, con­
densable gases, pressure-sensitive opacities, and long-wavelength windows tend to 
have higher tropopauses and more extensive convective tropospheres than 
atmospheres with converse properties. The outer Jovian planets may have very 
extensive outer envelopes in radiative rather than convective equilibrium. The 
mean infrared optical depth, T, for a nongray convective atmospheric greenhouse 
on the Earth is about 2; for Venus, several hundred. In the window gray case, T 
increases with T about twice as fast for convective as for radiative atmospheres; 
in the nongray case, about four times as fast. 

INTRODUCTION 

The line character of molecular rotation­
vibration spectra implies that a real plan­
etary atmosphere is distinctly nongray in 
the infrared region of the spectrum central 
to studies of heat balance and atmospheric 
structure. Attempts to apply the gray 
approximation uncritically can lead, at 
least in principle, to significant errors. 
Nevertheless, there are a number of ap­
plications in which appropriate gray ap­
proximations can give a useful first 
estimate of the physical circumstances; 
there are also certain conceivable types of 
planetary atmospheres which can more 
rigorously be considered gray. In the study 
of stellar atmospheres, also, the gray 
assumption has proved a useful first 
approximation. 

In some applications of the present 
paper, we consider mean opacities of the 
Rosseland type 

- _ 1 Joo _ 1 dBvd /Joo dBvd (kR) = o (kv) dT v o dT v, (1) 
where kv is the mass extinction coefficient 
(cm

2 
g-1), v the frequency, T the absolute 

temperature, and Bv the Planck distri­
bution function for blackbody radiation. 
From (1) it is evident that TcR heavily 
weights window regions of the spectrum. 
Where, as is often the case, there is one 
dominant window in the absorption spec­
trum of a planetary atmosphere, Tc � kw, 
the extinction coefficient of the window 
region. In the Earth's atmosphere, such a 
dominant window region exists between 8 
and 13 fL, due to an absence of absorption 
by C02 and H20. A similar, somewhat 
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wider, window exists in the Martian at­
mosphere. In the lower atmosphere of 
Venus, C02 hot bands such as those at 8.4 
and at 10.4 µ,absorb in the 8-13 µ, interval, 
and the principal window region moves to 
slightly shorter wavelengths (Sagan, 1960; 
Pollack, 1969a). In the Jovian atmosphere, 
NH3 strongly absorbs at 8-13 µ,, and the 
principal expected windows are at wave­
lengths of 14-30 µ,,approximately (Trafton, 
1967). 

However, the Rosse land mean opacity 
is useful only when the corresponding 
optical depth exceeds unity. The clearest 
demonstration of the inapplicability of kR 
for small r occurs when kv = 0 at one 
frequency; then kR = 0. Thus, for small 
optical depths, kR overemphasizes window 
regions, leads to smaller opacities, and, 
therefore, to smaller radiative equilibrium 
temperature gradients than will actually 
obtain. For small r, another mean opacity, 
e.g., the Chandrasekhar mean, or the 
Planck mean, will be more appropriate. 

In this paper, we distinguish among (1) 
the pure gray case, in which kv is closely 
independent of v everywhere; (2) the 
window gray case, in which radiative 
transport occurs primarily through one 
window region, w, which can be considered 
gray; and (3) the nongray case, in which 
the atmosphere is not as cooperative as in 
cases (1) and (2). Where permitted tran­
sitions in the vibration-rotation spectra of 
gases dominate the absorption spectrum, 
the nongray case applies. Thus, for such 
planets as the Earth and Mars, the gray 
and window gray approximations are least 
applicable. Nevertheless, as we show later, 
even for these planets the gray approxi­
mations provide a fair description of the 
observed atmospheres. Where pressure­
induced dipole or quadrupole transitions 
are the dominant opacity source, the 
variation of kv with v will be quite smooth, 
�nd the window gray approximation, 
k = kw, will be appropriate. This circum­
stance has some applicability to the Jovian 
planets, where pressure-induced tran­
sitions of H2 are dominant (although 
permitted transitions ofNH3 and CH4 also 
occur), and, to a lesser extent, to the lower 
atmosphere of Venus. 

Gray and window gray approximations 
are also valid in several circumstances in 
which dust is a principal source of extinc­
tion. Consider the circumstance that 
x = 21Ta(A > 1 for all wavelengths of in­
terest; here a is the mean particle radius, 
and ,.\ the wavelength of light. Then the 
extinction cross section will be independent 
of wavelength (see van de Hulst, 1957). If, 
further, the particle is large enough that 
akv � 1-so that the frequency variation 
of opacity has little influence on the par­
ticle transmissivity-then the absorption 
cross section will also be wavelength­
independent. We note that the scattering 
component, a diffraction term, can be 
ignored. Thus, this large particle circum­
stance lends to a pure gray case. 

For very small particles, x � 1, a window 
gray case arises independent of the ab­
sorption coefficient, provided only that 
there is some absorption. In this circum­
stance (see van de Hulst, 1957, p. 66), the 
absorption cross section is directly pro­
portional to A.-1a

3, while the scattering 
cross section is directly proportional to 
A.-4a6• For sufficiently small particles, the 
former dominates, and the extinction cross 
section has a smooth A.-1 dependence, 
superimposed on which is the absorption 
spectrum intrinsic to the wavelength de­
pendence of the imaginary part of the 
particle's refractive index. This dependence 
is generally smooth. The convolution of 
these two effects often yields a dominant 
window region, and a valid window gray 
approximation. 

Thus there are a sufficient number of 
cases of interest to warrant a fairly 
thorough investigation of the gray and 
window gray cases in a form which can be 
applied conveniently to real planetary 
atmospheres. In the following discussion 
we investigate the structure of gray and 
window gray atmospheres in radiative­
convective equilibrium, the question of the 
onset of convection, and the characteri­
zation of the atmospheric region at which 
convection begins, and then apply the 
results to several illustrative examples. We 
finally compare gray with nongray solu­
tions in the transmissivity-average ap­
proach and consider limiting cases. 
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RADIATIVE EQUILIBRIUM IN PURE GRAY 
AND WINDOW GRAY ATMOSPHERES 

Radiative equilibrium calculations for 
pure gray planetary atmospheres date 
back to the work of K. Schwarzschild, 
E. Gold, and R. Emden. Here we wish to 
generalize the discussion to the window 
gray case, allowing for the dependence of 
optical depth on pressure and, to a small 
extent, on path. 

In the following discussion, we assume 
that the optical depth in a frequency 
bandwidth w is 

(2) 
Here Wis the reduced path of absorbers or 
scatterers, Pis the ambient pressure, and r 
ands are dimensionless constants. Howard, 
Burch, and Williams (I956), and Burch, 
Gryvnak, Singleton, France, and Williams 
(1962) give numerous examples of gases 
which-at least over a limited range of 
pathlengths and pressures-behave ap­
proximately as in Eq. (2). A detailed 
discussion of the validity of Eq. ( 2) for CO 2 
and H20 is presented in the accompanying 
paper by Pollack (1969a); see also Bartko 
and Hanel (1968). 

The usual equation of radiative transfer 
implicitly assumes r = I, as in the standard 
subsidiary condition 

dT =-pk dz, (3) 
where p is the atmospheric density, and z, 
the altitude above the planetary surface. 
We might be tempted to generalize (3) to 

dT = -k' p' zr-I dz oc d(W'). (4) 

However, if we integrate (4) between two 
atmospheric levels, A and B, we find 
T oc W Br 

- W./. But Eq. (2) implies that 
T oc (W B - W Al'· Thus, the observations 
imply a failure of superposition (see 
Pollack, I 969b), which the formulation of 
Eq. (4) in general fails to reproduce. The 
exceptions are when W B � WA, or when 
r � I. In the case of these exceptions, it is 
possible to write down the appropriate 
equation of transfer 

lr - I l � I, (5) 

where Iv is the specific intensity, and Y'�, 
the source function, and then make the 
usual Eddington approximation to the 
equation of radiative transfer for the pure 
gray case. Taking care to preserve real 
values only we find 

T4=T,4[t+Hr+2)f], Ir- II � l, 

(6) 
where Te is the effective radiating or 
equilibrium temperature of the planet, and 
f is the mean optical depth and is propor­
tional to Tc'. Thus when r is very close to 
unity, the departure from the usual 
Eddington solution is small; when r is not 
very close to unity, the Eddington formu­
lation is invalid. The latter situation is 
typical of the nongray case, and will be 
considered further in the last sections of 
the present paper. In the following pages, 
we carry r -# I for completeness, but the 
results apply only when Ir - I I � 1. We 
also employ the Eddington approximation, 
considering fluxes only; the approximation 
is known to be quite accurate, even to 
rather small optical depths (Sobolev, I 963; 
Goody, 1964; Irvine, 1968). 

The usual pure gray Eddington solution 
assumes that the source function can be 
represented as aT4, where a is the Stefan­
Boltzmann constant. But for the window 
gray case this assumption fails. It is 
nevertheless possible to write the source 
function in the window region in the same 
form: 

(7) 

where n is a positive constant, not neces­
sarily an integer. This has proved to be a 
useful approximation in several other radi­
ative-transfer problems for planetary at­
mospheres, provided very large changes in 
T do not occur (see, e.g., Pollack and Sagan, 
I965). An estimate of its range of validity 
can be obtained from the following succes­
sive approximations argument: We define 
n (appropriately normalized) in terms of 
logarithmic derivatives 

n = d ln B/d lnT. (8) 
Explicitly evaluating the Planck function, 
we find 

n = b eb /(eb - I), b = hvw/kT, (9) 
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where hand k are Planck's and Boltzmann's 
constants, respectively. In all applications 
of the present paper the Wien approxi­
mation to the Planck distribution roughly 
holds, eb � 1, and 

(10) 

Since, then, for any small variation in T, 
n varies by a proportionate amount, in 
what sense can Eq. (7) with n constant be 
considered valid? We take B = Bref 
(T/Tref)n, and substitute in (8), taking care 
not to set terms in dn equal to zero. In the 
zeroth approximation, dn/dT = -hv/kT2 
from (10), and a new value of n is obtained. 
Proceeding by successive approximations 
we find 

where j is the order of the approximation. 
Thus, the iteration converges to Eq. (10) 
provided T/T,_1 < e; the approximation is 
valid over a substantial range in absolute 
temperatures. For larger ranges, the at­
mosphere can be divided into layers charac­
terized by different values of n, each with 
its own window frequency, vw, and mean 
temperature, T. Accordingly, we rewrite 
(6) as 

pn =Ten[!+ t(r + 2) f]. (12) 

The temperature at the top of the at­
mosphere, where f = 0, is 

(13) 

For an absorber or scatterer distributed in 
a planetary atmosphere with a constant 
mixing ratio, W = qP, where q is a pro­
portionality constant; thus 

(14) 

Throughout the discussion, q, r, and s 
refer to the dominant source of extinction 
in the window region. If there are several 
sources, mean values of these parameters 
must be estimated. The exponent s is a 
measure of pressure-broadening for a gas, 
or, for a cloud, of the vertical distribution 
of cloud particles; this latter use of s has 
been made, e.g., in Pollack and Sagan 
(1965). Are there lower limits on s? Com-

bining ( 14) with the equation of hydrostatic 
equilibrium, 

dP =+pg dz, (15) 

where g is the local acceleration due to 
gravity (P increasing with z, measured 
from a reference point near the top of the 
atmosphere) for the dust case (r = 1), we 
find 

where R is the universal gas constant. 
Since df/dz is positive definite, s > -1. 
From the equation of continuity for mass 
transport one can demonstrate (R. Wattson, 
1968, private communication) the stronger 
theorem thats> 0 everywhere. Therefore, 
unless additional physics-e.g., conden­
sation-is introduced, no cloud stratifi­
cation is possible; if the visible clouds of a 
planet are dust, there should be continuous 
dust clouds down to the surface. 

We are now in a position to calculate the 
atmospheric structure in radiative equi­
librium for the case that the principal 
source of extinction is uniformly mixed. 
We obtain dP/df from Eq. (14) and dfjdT 
from Eq. (12). The resulting expression for 
dP/dT = (dP/df) (df/dT) is integrated sub­
ject to the boundary condition that T --+ T 0 
as P --+ 0. Thus, 

pr+s 
= 

cwq'� + 2) [(�er - �J. (l 7) 
We then evaluate dT/dz = (dT/dP)(dP/dz), 
using the equation of hydrostatic equi­
librium. The result is 

(�T__) - +lL y(r + s) [1 - (To)n] (18) 
dz raa 

- cpn(y- l) T 
. 

Here cP is the specific heat capacity at 
constant pressure, and y == cp/cv is the ratio 
of specific heats. In deep atmospheres, g, 
cP, y, r, ands will all depend on z, but in 
most applications they can be taken as 
constants. We have derived Eq. (18) by an 
integral argument in order to display, e.g., 
P-T, T-T, and P-T relations. Alternatively 
we could have derived (18) more rigorously 
by using only a derivative formulation 
involving dBwfdT, and avoiding T-T rela­
tions. 



294 CARL SAGAN 

Equation (18) indicates that the radi­
ative temperature gradient is independent 
of the absolute value of the extinction 
coefficient or mixing ratio, and depends 
instead on pressure- and abundance­
broadening and the vertical distribution of 
aerosols. If we define f by T oc P'", the 
same remark is true for f. Since n > 3 for 
almost all cases of interest, Tn � T 0" at 
relatively modest depths. Thus, from (17), 
with the approximations already adopted, 
f '.'.:::'. (r + s)/n; except at the very top of a 
gray radiative equilibrium atmosphere, the 
structure is independent of Cw and q, and 
depends instead on r, s, and v,,,. 

From (18) we find that as T __,.. T0, 
(dT /dz)raa __,.. 0; towards the top of the 
atmosphere an approximately isothermal 
region should exist. Such a region, the 
stratosphere, is of course known from 
micro-wave occultation experiments for 
Mars and Venus, and has long been known 
for the Earth. For the reasons described 
earlier, Rosseland mean opacities do not 
apply for this case of small optical depth. 
Towards high altitudes, the integrated 
absorption declines, and new atmospheric 
windows open. Accordingly, n will change 
-probably markedly [see Eq. (10)]-and, 
by (18), this will alter the value of the 
temperature gradient for small f, and the 
level at which isothermality is reached. 
But the trend towards an isothermal 
stratosphere is clear. Equation ( 18) also 
implies that as T becomes larger then T 0, 
(dT /dz)raa __,.. const; below the isothermal 
region, a region of approximately constant 
temperature gradient should exist if radi­
ative equilibrium prevails. This argument 
suggests that constant subadiabatic lower 
atmospheric lapse rates may in certain 
cases be a consequence of radiative rather 
than convective equilibrium. However, at 
some point in the lower atmosphere, if it 
is sufficiently deep, convective equilibrium 
will prevail-as discussed in the following 
section. 

CONVECTIVE EQUILIBRIUM IN A 
WINDOW GRA y ATMOSPHERE 

The Schwarzschild instability criterion 
indicates that convection breaks out when 

the local or structural temperature gradi­
ent exceeds the adiabatic temperature 
gradient; in our case, when 

\ (dT /dz)rad\ > \ (dT /dz)aa\. ( 19) 

We adopt 

(dT/dz)ad = -g/17cp , (20) 

where 17, the subadiabatic index, is a 
measure of departures from the dry adia­
batic lapse rate due, e.g., to the release of 
latent heat of condensation (see Sagan, 
1962). Strictly speaking, 17 is also a function 
of z, but Eq. (20) is a convenient first 
approximation; in the terrestrial tropo­
sphere, 17 = 1.6 fairly closely. Combining 
(18), (19), and (20), we find the instability 
condition to be 

7L (r + � [1 -(To)n] > 1. (21) n(y-1) T 

In the case of classic astronomical interest 
(n=4, 17=1, r=l , s=O, T�T0), Eq. 
( 21) reduces toy < ! , as it should. Equation 
(21) can be put in neater form by combining 
with Eqs. (12) and (13); instability occurs 
when the weighted mean optical depth, f, 
exceeds some critical value, f1 (the sub­
script indicating tropopause) : 

where 

- 2 
[( � -1 ] Tt = T + 2 

1 - .!::!, ) - 1 , (22) 

� n(y - 1) hvw(Y - 1) 
.::, = 17y(r + 8) = 

�y(r + s) kT; (23l 

T is a mean temperature over the at­
mospheric depths of interest. 

In most applications, n is reasonably 
fixed; therefore f1 is approximately inde­
pendent of the atmospheric depth chosen 
for T. In Fig. 1 is a plot of f1 vs. 3. The 
parameter 3 is constrained to the range 
O < 3 < 1 for convective equilibrium. In 
fact from Eq. (21), deep in an atmosphere 
the instability condition is 3 < 1. By com­
paring Eqs. (18) and (20) we see that, for 
the deep atmosphere, 

� (dT/dz)ad t:!.,= . 
(dT/dz)rad 

According to the classical theory of specific 
heats, (y - l}/y = 2/(f + 2), where f is the 
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E 
FIG. I. Mean optical depth of the tropopause 

as a function of the parameter E, for r = 1. 

number of degrees of freedom of the mol­
ecule in question. It is evident that in­
creasing/, 77, ors, or decreasing vw decreases 
E and therefore decreases 'ti: an atmo­
sphere with polyatomic condensable gases, 
sources of extinction which are pressure­
sensiti ve, and long-wavelength windows 
will tend to have a high tropopause and an 
extensive convective troposphere; con­
versely, an atmosphere with monatomic 
or diatomic noncondensable gases, sources 
of extinction which are not pressure­
sensitive, and short-wavelength windows 
will tend to have a deep tropopause and a 
relatively modest troposphere. Because of 
modifications introduced below for the 
nongray case, it is not permissible to 
conclude that sources of extinction with 
large r will necessarily lead to high tropo­
pauses. 

For window gray calculations for Venus, 
Earth, Mars, and Jupiter, we take the 
appropriate values for the various par­
ameters, adopt r '.c::'. I as our approximations 
demand, and s '.c::'. t (see Pollack, l 969b); we 
find in all cases 'ti � 1. Convective equilib­
rium occurs only below the level at which 
significant opacity develops. An interesting 
case exists for the outer Jovian planets, 
Saturn, Uranus, and Neptune. We invoke 
the fact that the chemical compositions of 
the atmospheres of the Jovian planets are 
very similar. With vw fixed, the equilibrium 
temperatures are so low for the outer 
Jovian planets that E approaches unity, 
and 7'1 becomes very large; such planets 
have extremely extensive stratospheres, 
and tropopauses-if they exist at all-only 
at such great optical depths that they 
cannot be observed in the infrared. The 
received solar flux is too low to drive 
convection. It may be for this reason that 
the prominent atmospheric turbulence 
which characterizes Jupiter is less often 
observed in the more distant members of 
the Jovian group, even after allowance is 
made for the greater difficulty in observing 
these planets. Studies of the microwave 
spectra of the outer Jovian planets will 
be useful in elucidating their lower atmos­
pheric structures. 

In the case that the principal source of 
extinction is dust, which need not be 
uniformly mixed even in the absence of 
condensation, the dust must clearly be 
carried regularly into the atmosphere; 
otherwise it will fall out of the atmosphere, 
as described by the Stokes-Cunningham 
equation, in time scales short compared 
with the age of the solar system. This 
would seem to require a convective lower 
atmosphere. Hence, the dust will be verti­
cally distributed in such a way that an 
adiabatic lapse rate is maintained; the 
dust will act to minimize the radiative 
vis-a-vis the convective energy flux. Thus, 
from (22) and (23) with 77 = 1, and r = 1, 

S>n(y-1)7'+!_1 (24) y 7' ' 
specifying the relation between the vertical 
distribution and the optical depth. Typical 



296 CARL SAGAN 

lower limits on s obtained in this way for 
7 > 0.5 range from a few tenths (typical 
for the pure gray case, n = 4) to more than 
unity, values characteristic of gaseous 
opacity sources. In some cases of practical 
interest (e.g., deep C02 atmospheres) the 
right-hand side of inequality (24) becomes 
negative. In this case, s will take on larger 
values than the minimum necessary to 
maintain convective equilibrium. The ab­
surdly high values of s required by Eq. (24) 
to maintain convection for small optical 
depths imply that (a) some other opacity 
sources besides dust (e.g., the free at­
mosphere) are important for small7, and/or 
(b) convection is not maintained for small 
7. We know on other grounds that both (a) 
and (b) are true. 

At this point we wish to write the 
Schwarzschild instability criterion in terms 
of a critical tropopause temperature, Tt, 
instead of a critical tropopause mean 
optical depth, -Ti· From (13) and (21) con­
vection breaks out when T > Ti, where 

Tt = To[l - E]-l/n = Te[2(1 - E)]-lin. 

(25) 

Some limiting cases are of interest: When 
E = 0, T = T 0, and the entire atmosphere 
is in convective equilibrium. However, it is 
clear from the definition of E [Eq. (23)] 
that this never occurs; accordingly, a 
nonconvective upper atmospheric region 
must always exist. When E = 1, Ti= XJ, 
and the entire calculated atmosphere is in 
radiative equilibrium, with no convection 
to great depths. As we have seen E;?: 1 is 
not excluded, particularly for low-tem­
perature planets. Since, for the terrestrial 
planets and Jupiter a typical value of 
E � 0.5, we find that convective instability 
characteristically breaks out on such 
planets where 

T =Ti =Te. 

This condition is of course connected with 
our previous result that 'ft � 1 for these 
planets; we know from Eq. (12) that 
T =Te at 7' � Jt. Since convective clouds 
will, in general, exist only below the 
tropopause, the cloudtop temperature of 
an extensive planetary cloud layer will 

often have a temperature almost as low as 
Ti'.:::'. Te- For Jupiter, however, 

T1 '.:::'.Te'.:::'. 120°K 

implies that the atmosphere is in convec­
tive equilibrium far above the "visible 
cloudtops," where the temperature is de­
termined by spectroscopic techniques as 
150-200°K. Thus 8-13 fL limb-darkening 
on Jupiter should be explicable by assum­
ing pure absorption by ammonia in a 
convective atmosphere, the principal ab­
sorber in this wavelength interval. This in 
fact proves to be the case (Veverka and 
Sagan, 1969). For Venus, the deep sub­
adiabatic region below the apparent tropo­
pause (see Sagan and Pollack, 1969) might 
be thought due to the persistence of a 
constant lapse rate radiative equilibrium 
atmosphere down to the 400°K level [see 
Eq. (18)]. However, the foregoing con­
siderations, and similar nongray calcu­
lations make this suggestion implausible. 
Deposition of sunlight in the atmosphere 
below the clouds is a possible alternative 
explanation of the subadiabacity [see 
Pollack, l 969b]. 

It is remarkable, considering the caveats 
appropriate to gray and window gray 
atmospheres, how well they account for 
the gross features of planetary atmospheres 
-particularly of the terrestrial planets 
where they are known to be least ap­
plicable. The reason for this success ap­
pears to lie in a convergence between the 
analytic expressions for window gray and 
nongray atmospheres for realistic special 
cases, as detailed below. 

STRUCTURE AND CONVECTIVE INSTABILITY 
IN NONGRAY PLANETARY ATMOSPHERES 

We now wish to compare the results 
derived up to this point for a window gray 
atmosphere with those implied for a non­
gray atmosphere in which there is one 
dominant opacity source at each frequency 
interval, and one window region, w, which 
makes the major contribution to the net 
flux. The relative extinction in the window 
region will be weak. In a companion paper, 
Pollack ( l 969b) has developed an approach, 
utilizing transmission-averaged opacities, 
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to this nongray radiative-transfer problem 
which takes explicit account of the fact 
that superposition of optical depths no 
longer holds. One consequence of super­
position failure is a greater tendency 
towards convective instability than applies 
in an otherwise comparable gray problem. 
From Pollack's Eq. (23), we can write 

3F(z) Q1/rw p(s,,,fr,,+1) 8Ql/rw 
i/J z(Z) � -- - --"'--------- (26) rar - 47T nwBwI'( l  + r;l) 

Most of these quantities have counterparts 
in the gray formulation of the present 
paper: Tr£ p.P<z); F(z) is the net thermal 
flux; -r,,,==CwWrwpsw; 8=:dW/dP; G(T), 
related to the Boltzmann factor in mol­
ecular spectroscopy, allows for the tem­
perature dependence of optical depth: 
Tw x G(T); Bw oc Tn,,; and I' is the usual 
gamma function. Seeking an asymptotic 
power law solution, we now scale the right­
hand side of Eq. (26) in pressure: By 
assumption, F oc p-u and G oc P1'. In gen­
eral, u > 0 and will be small, and v > 0. 
Accordingly, 

./, OC p<sw/rwH l+(t'/r,,.)-1t-.Prnctllw �rod • (27) 

The presence of ifrad with a negative 
coefficient in the exponent implies that 
at sufficient depth ifrad will approach a 
constant value. This may be seen by 
evaluating Eq. (27) at some starting point 
and proceeding to levels of increasing 
atmospheric pressure. For u small, begin­
ning with any value of ifrad brings us to 
larger ifrad as we proceed deeper into the 
atmosphere. At some point the entire ex­
ponent in Eq. (27) will reach zero. There­
after if rad will remain constant. Setting the 
exponent of Eq. (27) equal to zero, we 
obtain an asymptotic value for a deep 
planetary atmosphere: 

In actuality, ifrad will vary slowly because 
nw is a slowly varying function of tempera­
ture, and u and v are not quite constants. 

In the discussion following Eq. (18) for 
the window gray case we found 

11 
ifrad = (r + s)/n, 

and r::::: 1, the equivalent of Eq. (28) with 
u = v = 0. Thus, in both the window gray 
and the nongray cases, we have found the 
deep atmospheric structure of a planetary 
atmosphere to depend on pressure-and 
abundance-broadening, and not on the 
absolute values of extinction coefficients. 

The structure of an adiabatic atmosphere 
can be represented as 

y-1 
iffld = --- . 

111' 
(29) 

Comparing with ifrad for the deep window 
gray atmosphere, we rederive the Schwarz­
schild convective instability criterion, Eq. 
(21), for T11 � T0". In just the same way, a 
nongray instability condition for deep 
atmospheres can be derived by comparing 
(28) and (29): 

. ,..., nwrw(Y - 1) 1w.!:f,w =: --- --- - -- < 1. (30) 
11y(s.,,, + r1,, + v - urw) 

We see that convection is promoted by 
large v and small u. 

We now consider a few explicit cases, to 
determine the likelihood that the lower 
portions of nongray planetary atmospheres 
will be in convective equilibrium. 

In the case of the Earth, 11=1.6, y::::: 1.4. 
Detailed calculations indicate u is small 
and swfr10::::: 1. Therefore convective in­
stability requires nw ;S 11[1 + i(vfrw)], im­
plying convective instability in the deep 
terrestrial atmosphere. For Venus, with 
11::::: 1.2, at least in the upper troposphere 
(see Sagan and Pollack, 1969), and 
y/(y - 1)::::: 5, 

nw ;S 13[1 + i(v/r.,,,)], 
and ,\w � 4µ,, again a condition we expect 
to be fulfilled. For Jupiter, 

n,,, ;S 7[1 + i(v/rw)J, 

and ,\w � 20 µ,. Here convective instability 
is marginal, a situation enhanced as we 
proceed to the more distant Jovian planets. 
As in the gray case, there is a real question 
whether the deep atmospheres of Saturn, 
Uranus, and Neptune are in adiabatic 
equilibrium. 

Particularly when there are few hot 
bands in the principal window region, but 
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even in cases where hot bands are present. 
v - r,,,u � 0. Then, the structure of l1 non­
gray radiative requilibrium atmosphere 
and the nongray Schwarzschild instability 
criterion are identical to their window gray 
counterparts, with the exceptions: ( l) n i8 
replaced everywhere by n11.r11 .. and (:2) r if.I 
no longer restricted to values close to 
unity ( r,,.:::: i is more realistic for many 
gases). This then suggests t.hat the prin­
cipal analytic and numerical results of 
previous sections--including Eqs. ( 18). 
(:22), (24), and (:25)-remain valid if these 
two alterations are noted; and provides 
some explanation for the applicability of 
window gray calculations to distinctly 
nongray atmospheres. 

Tm'' GREENH011SE Ji�FFECTS rn RADlATlVI•' 
AND D! CONVECTlVE ATMOSPHERES 

\'\'e are now in a position to calculate and 
compare the so-called greenhouse effect.s 
in radiative and convective atmospheres, 
and in gray and nongray atmospherefl. 
using our previous approximat.ions. \Ve 
will then make several specific applications. 
The exact solution for the pure gray green­
house problem has recently been discussed 
by \Vildt (19G6). 

From T11• = C11.P''" TV'" for the nongray 
case. and the definition of if; we have 

( :� l) 
From (28) and (29), Eq. (31) specifies the 
T - T relations for radiative and convec­
tive equilibrium: 

T jT =(TIT )"'"r,,(,,,fr,,.)/(,,.+r,,.+r-11r,.J 
rad ri'f / ref 

T j'T = (T/T . )71Y(,,,+r,.)/(y-I) wl ref rPf 
These are the nongray counterparts of Eq. 
( 12) for the deep atmosphere and of a 
similar adiabatic equation in the wincknv 
gray ease. In the following, we make the 
approximation v - ur,,. � s11• + r,, .. Defining 
E by f x TE we find the results of Table l. 

T·able I is in accord with the relation 
between window gray and nongray cases 
discussed in the previous section; we note 
that S,,, "f n11 .. Typical values for S for the 
planets out to ,Jupiter are O.fi to 0.7; 

\\' i ndm\· gray 
K 011gra_\· 

T,\ BLE I 

II 
J'1rll1n 

11/S 
ll1c/SH' 

characteristically, r11.:::: �- Thus. in the 
window· gr1ty c:ase, T increases with T about 
twic:e as fast for convective as for radiative 
atmospheres; in the nongray case, about 
four times as fast. This implies that the use 
of, e.g., the Eddington solution to the 
transfer equation-derived under assump­
tion of radiative equilibrium-to calculate 
the optical depth needed in a given green­
house context (as, e.g., used by Jastrow 
and H,asool, 196:3) seriously underestimates 
the required optical depths. A similar 
C'onclusion has been reached by \Vattson 
( 1968), using the discrete ordin�te method 
for the solution of the transfer equation. 
Table I also implies that the radiative slope 
of the T-T relation is about twice as steep in 
the gray as in the nongray case. \Vhile 
Table I superfic:ially suggests identical 
convective slopes of the T-T relation for 
gray and nongray cases, this is not correct, 
because r takes on different values in the 
two cases. For example. for s = s,,. = �. 
r = 1, and r,,. = �, (n/S) � l.fi(n11./S11,), Thus 
the convective slope is less steep in the 
nongray than in the gray case. Accordingly, 
smaller optical depths are required to 
reach a given surface temperature in the 
nongray than in the gray c:ase, a rcfmlt of 
relevance to the V cnus greenhouse prob­
lem. As a final comment on Table I, we 
note that the slopes are generally steeper in 
window gray than in pure gray circum­
stances, because. in most applications, 
n > +. 

If we differentiate 7' x P1' with respeet 
to z, and utilizc: the equations of state and 
of hydrostatic equilibrium, we find that 
dT/dz x (s + r)/n for the window gray 
radiative ease, and dT/dz x (s,,. + r11.) /n11.r11• 
for the nongray radiative case. But 
(s + r) :::: I.:) for the window gray case, 
while (811, + r,,. ) /r,,. � 2 for the nongray case. 
Thus, there is a slight tendency for steeper 
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temperature gradients for nongray than 
for gray radiative equilibrium. In convec­
tive equilibrium-the case holding for the 
deep atmosphere of the terrestrial planets 
--the temperature gradient is independent 
of whether the atmosphere is gray. By 
contrast T increases with f faster in the 
gray than in the nongray convective case, 
as we have seen. 

As a specific application, we consider the 
terrestrial greenhouse. The mean surface 
temperature of the Earth is about 10°0; 
from current values of the bolometric 
albedo, the equilibrium temperature of the 
Earth is about 30°0 cooler. The optical 
depth at T,, is approximately i, or 2/(2 + r), 
as suggested by Eq. (12). Taking y � 1.4, 
YJ � 1.6, ,\.,,, � 10 µ. and rw + sw around 1.5, 
we find n � 5.15, Ew � 0. 7, and f � 2. Con­
sidering ambiguities in the definition of 
f and in integrating over slant paths, this 
estimate is in rather good agreement with 
other calculations, e.g., the result that 
about 10% of the Earth's thermal emission 
escapes directly through the atmosphere 
to space (Byers, 1954, p. 307). 

In the case of Venus, T8/Te � 3, YJ::::: 1 for 
the lower atmosphere, y � 1.3, ,\,,, � 8 µ,, 
and T � 400°K; hence, n � 4.5, and E 
ranges from 1.0 to 0.67 for r,,, + Sw ranging 
from 1 to 1.5. The nongray adiabatic result 
appropriate to the problem is 

100 :( Tad :( 500. 

Had we assumed pressure-induced dipole 
transitions (r11, + Sw::::::: 2) as the principal 
source of opacity, we would have found 
Tad � 1300; pressure-induced opacity 
sources make relatively inefficient green­
houses. These convective greenhouses can 
be compared with corresponding values 
expected for radiative equilibrium: 
Trad::::::: 100 for the window gray case, and 
Trad� 9 for the nongray case. This last 
value is close to that originally estimated 
for Venus, assuming radiative equilibrium, 
some years ago (Sagan, 1960). In that 
paper, it was pointed out that permitted 
transitions of 002 could not supply the 
required opacity, and that if we are 
restricted to permitted transitions (see 
above), absorption by an abundant asym­
metric-top molecule was indicated, par-

ticularly to provide absorption at long 
wavelengths. It was then argued that 
water was the most likely such molecule. 
In a companion paper Pollack (1969a} has 
recalculated the nongray C02-H20 green­
house effect for Ven us, and confirms that 
plausible quantities of carbon dioxide and 
water vapor can account for the high 
surface temperatures. 

Similar calculations could, in principle, 
be performed for the atmospheres of the 
.Jovian planets. For a given f, higher 
temperatures are reached in radiative than 
in convective atmospheres. With the deep 
radiative regions suggested in the present 
paper for the outer Jovian planets, rather 
high temperatures should be reached not 
very far below the visible clouds. We have 
no estimates at the present time of f for 
these planets, or of a surface temperature, 
if, indeed, such planets have surfaces in the 
usual sense. Nevertheless, whether the 
atmospheres are in convective or in radi­
ative equilibrium, it seems likely that 
temperatures which are clement by ter­
restrial standards are to be found below the 
visible cloud tops of all the Jovian planets 
(see Sagan, 1961). At sufficiently great 
depths-say, hundreds of atmospheres 
pressure-Rayleigh scattering alone will 
reduce the incident solar flux to negligible 
quantities. If the clouds absorb in the 
visible and near-infrared, as the colors on 
Jupiter imply, the reduction to negligible 
flux will occur at lower pressures. '"rhen the 
greenhouse becomes sufficiently "dirty" 
the atmospheric structure will approach 
isothermality, for either convective or radi­
ative atmospheres. The isothermal regime 
will tend to continue towards great depths, 
until the effects of the intrinsic heat of the 
planet-ultimately due to gravitational 
potential energy and radioactive decay-­
begin to make themselves felt. 
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